Kempton, P.D. and Downes, Hilary and Lustrino, M. (2018) Pb and Hf isotope evidence for mantle enrichment processes and melt interactions in the lower crust and lithospheric mantle in Miocene orogenic volcanic rocks from Monte Arcuentu (Sardinia, Italy). Geosphere 14 (3), pp. 926-950. ISSN 1553-040X.
Pb and Hf isotope evidence for mantle enrichment processes and melt interactions in the lower crust and lithospheric mantle in Miocene orogenic volcanic rocks from Monte Arcuentu (Sardinia, Italy)

Pamela D. Kempton1, Hilary Downes2, and Michele Lustrino1,4

1Department of Geology, Kansas State University, Manhattan, Kansas 66506, USA
2Department of Earth & Planetary Sciences, Birkbeck, University of London, WC1E 7HX, UK
3Dipartimento di Scienze della Terra, Università degli Studi di Roma La Sapienza, P.le A. Moro, 5, 00185 Roma, Italy
4Istituto di Geologia Ambientale e Geoingegneria (IGAG) - CNR, c/o Dipartimento di Scienze della Terra, Università degli Studi di Roma La Sapienza, P.le A. Moro, 5, 00185 Roma, Italy

ABSTRACT

Miocene (ca. 18 Ma) subduction-related basalts and basaltic andesites from Monte Arcuentu, southern Sardinia, Italy, show a remarkable correlation between 87Sr/86Sr (from ~0.705 to ~0.711) over a small range of SiO2 (~51–58 wt%) that contrasts with most other orogenic volcanic suites worldwide. New high-precision Pb and Hf isotope data help to constrain the petrogenesis of these rocks.

The most primitive Monte Arcuentu rocks (MgO >8.5 wt%) were sourced from a mantle wedge metasomatized by melts derived from terrigenous sediment, likely derived from Archean terranes of northern Africa. This gave rise to magmas with high 87Sr/86Sr (0.705–0.709) and 207Pb/204Pb (15.65–15.67) with moderate εHf (~1 to +8) and εNd (~6 to +1), but it does not account for the full range of compositions observed. More evolved rocks (MgO <8.5 wt%) have higher 87Sr/86Sr (up to 0.711) and 207Pb/204Pb (up to 15.68), with εHf and εNd as low as ~8 and ~9, respectively. Mixing calculations suggest that evolved rocks with low Rb/Ba and low 208Pb/204Pb interacted with lower crust similar compositionally to that exposed today in Calabria, Italy, which was formerly in crustal continuity with Sardinia. High Rb/Ba and high 208Pb/204Pb magmas interacted with lithospheric mantle similar to that sampled by Italian lamproites. Partial melting of lower crustal and upper mantle lithologies was facilitated by the rapid extension, and subsequent passive mantle upwelling, that occurred as Sardinia drifted away from the European plate during the Oligo-Miocene (ca. 32–15 Ma). Fractional crystallization under these PT conditions involved olivine + clinopyroxene with little or no plagioclase, such that differentiation proceeded without significant increase in SiO2. The Monte Arcuentu rocks provide insights into assimilation process in the lower crust and lithospheric mantle that may be obscured by upper crustal assimilation–fractional crystallization (AFC) processes in other orogenic suites.
geodynamic evolution of this region, but also to further explore the behavior of HF during subduction and the question of sediment melt versus aqueous fluid enrichment of the mantle wedge. We have chosen this locality because previous research has suggested the petrogenesis of these rocks was dominated by mantle metasomatic processes rather than crustal contamination (Downes et al., 2001). Here we report new HF and high-precision Pb isotope data for the previously studied samples.

The Cenozoic igneous rocks of Sardinia can be divided into two main groups (Lustrino et al., 2011, 2013): a late Eocene–middle Miocene subduction-related (SR; ca. 38–15 Ma) group and a middle Miocene–Pleistocene anorogenic group (ca. 12–0.1 Ma). Our study focuses on the Monte Arcuentu volcano products belonging to the older activity. We will show that Monte Arcuentu is geochemically distinct from the rest of the SR magmatism on Sardinia, and other orogenic magmatism globally, preserving a record of its metasomatized mantle source in the most primitive rocks, which is overprinted by interaction with lithospheric mantle and/or lower crust in the more evolved rocks.

GEOLOGIC BACKGROUND

Sardinia, Italy, and Corsica, France, form a small continental micro-plate in the western Mediterranean, situated between Neogene oceanic-type crust and thinned continental crust of the Tyrrhenian Sea to the east and the Ligurian-Provençal Basin to the west (Fig. 1). It consists of an ~25–35-km-thick crust (Splendore and Marotta, 2013), whose late Precambrian to Paleozoic basement was deformed and metamorphosed during the Caledonian and Hercynian orogenies and extensively intruded by calc-alkaline granitoids (Tommasini et al., 1995; Rossi et al., 2009; Casini et al., 2015). The basement is overlain by Mesozoic sediments that were deposited when Sardinia was part of the passive margin of southern Europe (Carminati et al., 2010).

The geodynamics of the western Mediterranean are complex, but essentially involve subduction with different polarities of the Alpine Tethys oceanic lithosphere due to northward migration of Africa during the Mesozoic (Réhault et al., 1984, 2012; Carminati et al., 2010). Detailed reviews of the geologic evolution of the region are given by Carminati et al. (2012), Lustrino et al. (2013) and references therein, so only essential aspects will be mentioned here.

During the Cretaceous, subduction was oriented in a southeast direction beneath the approaching African promontory known as Adria, but once it had docked with Europe during the Eocene, the direction of subduction of Tethys lithosphere flipped and the remaining oceanic lithosphere was subducted west-northwest beneath Europe, giving birth to the Apeninne-Maghrebian subduction system (Fig. 1; Gueguen et al.; 1998; Carminati et al., 2012; Lustrino et al., 2017). At the beginning of the Oligocene, Sardinia was part of the Iberian Peninsula, but back-arc spreading split it away, initiating a southeast-directed drifting stage from ca. 32–23 Ma. The Sardinia–Corsica micro-plate then began rotating ~60° counterclockwise during the Miocene (23–15 Ma) until it reached its current position and orientation during the Langhian (Gattacceca et al., 2007; Advokaat et al., 2014) (Fig. 1B). During middle to late Miocene, oceanic slab roll-back resulted in passive asthenospheric upwelling in the back-arc domain and opening of the Ligurian-Provençal Basin (Lustrino et al., 2009). At ca. 10 Ma, back-arc basin spreading resumed east of Sardinia–Corsica, eventually leading to formation of the Tyrrenhian Sea (Carminati et al., 2010, 2012). The subduction hinge also shifted eastward, where it exists today beneath Calabria and the Aeolian arc.

The late Eocene–middle Miocene SR volcanism on Sardinia consists of medium-K arc tholeiites to high-K calc-alkaline rocks, mostlyemplaced during an Aquitanian-Langhian flare-up phase (Beccaluva et al., 1985; Lecca et al., 1997; Morra et al., 1997; Lustrino et al., 2009; Conte et al., 2010). The earliest sporadic volcanic products (ca. 38–24 Ma) were andesitic, whereas the bulk of the magmatism (22 and 18 Ma) consisted of dacite to rhyolite ignimbrite flows (e.g., Lecca et al., 1997) associated with formation of the Sardinia Rift (Fig. 1). Minor products were generated until ca. 15 Ma in the southern (e.g., Sulcis; Morra et al., 1994; Conte et al., 2010; Gisbert and Gimeno, 2017) and central sectors of the island (e.g., Mt. Arci). With relocation of the subduction zone farther east—roughly coeval with the opening of the Tyrrenhian Sea and the potassic-ultrapotassic volcanism of peninsular Italy—the late Miocene to Pleistocene (ca. 12–0.1 Ma) volcanoism of Sardinia shifted abruptly from orogenic to anorogenic in character, with sodic alkaline to tholeiitic lavas (Lustrino et al., 2007; 2013).

Our study builds on that of Downes et al. (2001) of the Miocene Monte Arcuentu volcano, located within the southern extension of the Olgo–Miocene Sardinia Rift on the southern margin of the younger (Plio–Pleistocene) Campidano graben (Fig. 1A). Earlier studies encompassed a wider geographic area, referred to collectively as the Arcuentu Volcanic Complex (Assorgia et al., 1995; Brotzu et al., 1997). These studies include a more compositionally diverse volcano-sedimentary succession that has been divided into four units (A to D) based on age (Brotzu et al., 1997). The eruptive products include a thick set of lavas (unit C; ca. 20–18 Ma) that overlie older submarine volcaniclastic deposits (units A and B; ca. 30–22 Ma). The volcaniclastic deposits are crosscut by numerous, ca. 18–m.y.-old basaltic dikes (unit D; ca. 18–17 Ma). The samples for our study are from the uppermost (Burdigalian age) units located at the center of the complex at Monte Arcuentu, equivalent to upper unit C and unit D of Brotzu et al. (1997).

GEOCHEMISTRY OF THE ARCUENTU ROCKS

Arcuentu volcanic rocks (here including both Arcuentu Volcanic Complex and Monte Arcuentu) are largely basaltic andesites with minor basalts and andesites (Downes et al., 2001; Franciosi et al., 2003; Lustrino et al., 2013). They are distinct from most other SR volcanic rocks of Sardinia in that they have lower total alkalis (Na2O + K2O) for a given SiO2, and highly evolved compositions are absent (Fig. 2). In an AFM diagram (Fig. 3), the Arcuentu rocks straddle the boundary between tholeiitic and calc-alkaline rocks proposed by Irvine and Baragar (1971), but a traditional Peacock (1931) plot clearly classifies them as calcic rather than calc-alkaline (Fig. 4). Figure 3 also shows that their high MgO character places them among the most primitive of Sardinia SR rocks.
Major and trace element variations versus MgO (Downes et al., 2001) highlight the dominant role of mafic mineral fractionation in producing much of the observed compositional spectrum.

Arcuentu rocks have trace element features typical of other SR magmas worldwide, i.e., strong depletions in the HFSE such as Nb, Ta, and Ti; enrichment in LILE such as Rb, Ba, and Th; high concentrations of Pb and enrichment of light rare-earth elements (LREE) relative to heavy rare-earth elements (HREE) (Supplemental Fig. S1). However, there are noticeable differences between Arcuentu rocks and other Sardinia SR rocks in the abundances and evolutionary trends of several key major and trace elements (Fig. 5). Other SR rocks show decreasing TiO$_2$ with increasing SiO$_2$, whereas Arcuentu shows only a weak correlation between these two elements and, if anything, the
opposite trend. Furthermore, concentrations of TiO$_2$ and Al$_2$O$_3$ (Figs. 5A and 5B), as well as P$_2$O$_5$ (Fig. S2A [footnote 1]), tend to be lower for a given SiO$_2$ content than in other Sardinia SR rocks. Both Arcuentu and other Sardinia SR rocks exhibit weak negative correlations between CaO/Al$_2$O$_3$ versus SiO$_2$ and Mg$^#$ [i.e., Mg/(Mg+(0.9*Fe))] versus SiO$_2$, but the trends for Arcuentu rocks are much steeper and the values higher, on average, for a given SiO$_2$ (Figs. S2B and S2C). Their relatively primitive nature is demonstrated by their Ni (Fig. 5C) and Cr (Fig. S2D) contents. Conversely, Sr concentrations are significantly lower for a given SiO$_2$ than other Sardinia SR rocks (Fig. 5D).

Compositional similarities between the Arcuentu rocks and some other Sardinia SR rocks are noteworthy. Some rocks from Montresta and Marmilla, Sardinia, Italy, have high MgO, Ni, and Cr contents, but most of these rocks have lower SiO$_2$ contents (Morra et al., 1997; Mattioli et al., 2000); they are also isotopically distinct (discussed below).

RESULTS

Our new Hf and high-precision Pb isotope data for Monte Arcuentu are presented in Table 1 and Figures 6–8, where they are shown relative to other Cenozoic volcanic rocks of the western Mediterranean. Analytical details can be found in the Appendix. In the 176Hf/177Hf versus 143Nd/144Nd diagram (Fig. 6), Monte Arcuentu rocks form an array that plots roughly parallel to the Terrestrial Array (Vervoort et al., 2011), with εHf values ranging from +8 to –8 and ΔHf (i.e., the vertical deviation from the terrestrial array) ranging from –0.2 to 2.5.

Figure 2. Total Alkalis versus SiO$_2$ classification diagram (Le Maitre et al., 2002) for Monte Arcuentu volcanic rocks compared with other Sardinia SR rocks. Data from compilation of Lustrino et al. (2013); references available therein.

Figure 3. AFM (total alkalis, FeO$_{tot}$, MgO) diagram with boundary curves between calc-alkaline and tholeiitic from Kuno (1968) (K), and Irvine and Baragar (1971) (I&B).
to +3.7. The most radiogenic compositions are only slightly less radiogenic than calc-alkaline volcanics from the Aeolian islands of Alicudi and Filicudi. Peccerillo et al. (1993) interpreted these islands as being derived from mantle sources that are among the least modified by subduction zone processes in the Aeolian arc. In contrast, the least radiogenic Hf and Nd isotope compositions overlap the fields for Roman Province volcanics and Italian lamproites. Hercynian lower crustal xenoliths and sediments from the Eastern Mediterranean and Ionian Sea exhibit wide ranges in Nd and Hf isotope values and overlap the Monte Arcuentu rocks for all but the most radiogenic compositions. There are few published Hf isotope data for other Sardinia SR rocks, but the three samples reported by Lustrino et al. (2013) plot parallel to and slightly below the Monte Arcuentu array, close to the Terrestrial Array (Fig. 6).

Figure 5. Selected major and trace elements versus SiO₂ for Monte Arcuentu and other Sardinia SR rocks. Data sources as in Figure 2. TiO₂ values for six samples from Marmilla, Italy, are known to be in error (Mattioli, pers. comm.) and have been excluded from the diagram.
In a $\text{Pb}^{207}/\text{Pb}^{204}$ versus $\text{Pb}^{206}/\text{Pb}^{204}$ diagram (Fig. 7A), the Monte Arcuentu data plot between the HIMU (i.e., high μ, where $\mu = 238\text{U}/204\text{Pb}$) and EM (enriched mantle) end-members of Stracke (2012). They have high $\text{Pb}^{206}/\text{Pb}^{204}$ values for a given $\text{Pb}^{206}/\text{Pb}^{204}$, in common with most volcanic rocks from the Aeolian arc and central Italy. Monte Arcuentu rocks have lower $\text{Pb}^{206}/\text{Pb}^{204}$ than most other orogenic magmatism of the region but show some overlap with rocks from the Roman Province and Italian lamproites (Figs. 7A and 7B). They exhibit a Y-shaped vertical array, the low $\text{Pb}^{207}/\text{Pb}^{204}$ end of which points toward the composition of some tholeiitic basalts from the Tyrrhenian Sea (Fig. 7A). The high $\text{Pb}^{207}/\text{Pb}^{204}$–high $\text{Pb}^{206}/\text{Pb}^{204}$ branch overlaps the compositions of Eastern Mediterranean sediments, as well as Italian lamproites, although most of the sediments have higher $\text{Pb}^{206}/\text{Pb}^{204}$ and $\text{Pb}^{207}/\text{Pb}^{204}$ and $\text{Pb}^{208}/\text{Pb}^{204}$. The high $\text{Pb}^{207}/\text{Pb}^{204}$–low $\text{Pb}^{208}/\text{Pb}^{204}$ branch extends toward the compositions of some Hercynian basement rocks of Calabria and lower crustal xenoliths from the Massif Central. In contrast, most other Sardinia SR rocks have lower $\text{Pb}^{206}/\text{Pb}^{204}$ and/or $\text{Pb}^{208}/\text{Pb}^{204}$ ratios (Fig. 7B) that scatter between the Campanian Province field and unradiogenic Plio–Pleistocene anorogenic volcanics (UPV) of Sardinia (Fig. 7).

Many of the older literature data in this diagram appear to exhibit vertical arrays similar to Monte Arcuentu. However, most of these older data were collected using thermal ionization mass spectrometry, the analytical uncertainty for which is usually an order of magnitude greater or more than that of the new multicollector–inductively coupled plasma–mass spectrometer (MC-ICP-MS) Pb data reported here for Monte Arcuentu. Because the variations in $\text{Pb}^{208}/\text{Pb}^{204}$ tend to be small, this greater analytical uncertainty can make it difficult to recognize trends within these older data.

In $\text{Pb}^{208}/\text{Pb}^{204}$ versus $\text{Pb}^{207}/\text{Pb}^{204}$ space, the Monte Arcuentu rocks plot at a steep angle to the trends exhibited by most localities of the western Mediterranean (Fig. 8A), clearly indicating that mixing is responsible for the Pb isotope variations. The low $\text{Pb}^{208}/\text{Pb}^{204}$ end of the array trends toward Tyrrhenian Sea tholeiites, overlapping the fields for Eastern Mediterranean and Ionian Sea sediments, whereas the high $\text{Pb}^{208}/\text{Pb}^{204}$ data trend toward the compositions of some Calabrian basement and Hercynian lower crust (Fig. 8B), although these crustal rocks exhibit a considerable range in Pb isotope compositions.

DISCUSSION

Crustal Contamination versus Source Enrichment

Based on major and trace element modeling, Brotzu et al. (1997) concluded that the petrogenesis of Arcuentu Complex rocks was dominated by fractional crystallization in mid- to shallow crustal reservoirs and that crustal contamination was negligible. Focusing on the rocks from Monte Arcuentu, as opposed to the broader Arcuentu complex, Downes et al. (2001) reinforced this conclusion using Sr, Nd, and O isotope data, and instead attributed the observed isotopic variations to mantle metasomatism, i.e., enrichment of the sub-arc mantle wedge via subduction. One aspect of the geochemistry that strongly supports this argument is the unusual variation shown by the Monte Arcuentu rocks in $\text{Sr}^{87}/\text{Sr}^{86}$ versus SiO_2 (Fig. 9). In this diagram, the Monte Arcuentu samples display a remarkably steep correlation that contrasts with most other orogenic volcanic rocks. Arc volcanics from Tonga-Fiji-Vanuatu and the Northern, Central, and Southern Volcanic Zones of the Andes, for example, exhibit broad trends with slopes that are much shallower than the Arcuentu Complex (Fig. 9A). Rocks from the Altiplano-Puna back-arc region of the Central Andes exhibit greater compositional diversity, but the increase in $\text{Sr}^{87}/\text{Sr}^{86}$ with increasing SiO_2 for individual centers is still significantly less than that observed for the Arcuentu Complex (Fig. 9A; see Figs. S3A–S3C [footnote 1]). At low SiO_2 contents, subduction enrichment is likely to be responsible for at least some of the increase in $\text{Sr}^{87}/\text{Sr}^{86}$ relative to depleted mantle, but the spread to high SiO_2 is generally ascribed to combined fractional crystallization—assimilation in crustal magma chambers and/or deep crustal MASH (Melting, Assimilation, Stagnation, Homogenization; Hildreth and Moorbath, 1988) zones. Data for several islands of the Aeolian Arc follow similar trends to those of the Andes and Tonga-Fiji-Vanuatu. Rocks from Alicudi have low, depleted-mantle-like $\text{Sr}^{87}/\text{Sr}^{86}$ and hence record the smallest degree of subduction enrichment among Aeolian arc volcanoes (Pecceirillo et al., 1993). The horizontal arrays for Vulcano and Stromboli, with their higher $\text{Sr}^{87}/\text{Sr}^{86}$ compositions, indicate either progressively greater mantle enrichment or crustal contamination (or

Sample	Type	Lu	Hf	$^{176}\text{Hf}/^{177}\text{Hf}$	^{182}Hf	$^{206}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{204}\text{Pb}$	$^{208}\text{Pb}/^{204}\text{Pb}$
ST43	Dike	0.22	1.5	0.282795	0.95	18.6177	15.6651	38.7824
ST46	Dike	0.27	1.1	0.283010	8.40	18.6758	15.6441	38.7187
ST62	Lava	0.44	3.6	0.282557	-7.41	15.5745	15.6778	38.9546
ST84	Breccia	0.37	3.9	0.282572	-6.84	15.5806	15.6833	39.0440
ST117	Lava	0.31	2.2	0.282702	-2.33	18.7421	5.6822	38.7444
ST142	Dike	0.25	1.5	0.282734	-0.53	18.6899	5.6778	38.9102
ST347	Lava	0.27	3.5	0.282671	-3.42*	18.7627	5.6784	38.9102
ST357	Lava	0.40	3.5	0.282568	-6.81	18.5894	5.6815	38.9263
ST360	Lava	0.31	1.5	0.282909	4.95	18.6619	5.6784	38.7865

Notes: Age data from Assorgia et al. (1995). Lu and Hf concentrations from Downes et al. (2001).

*Lu concentration not available; εHf calculated assuming an average $^{176}\text{Lu}/^{177}\text{Hf}$ for the suite of 0.021.
both). In contrast, the steep array for Monte Arcuentu overlaps the fields for medium- to high-K volcanics of central-southern Italy (Campanian Province, Ernici-Roccamonfina, Vulsini Mountains) and trends toward the field for Italian lamproites. Although the Monte Arcuentu rocks are clearly not as K-rich as the Italian lamproites, the trend suggests that metasomatized mantle, similar to that producing the potassic and ultrapotassic magmas of central Italy, was involved in their petrogenesis.

The Monte Arcuentu rocks also contrast with the other Sardinia SR rocks (Fig. 9B). Instead of the steep, well-defined trend shown by Monte Arcuentu, other SR rocks form a broad, concave downward array that extends both to lower and higher SiO₂, but with a more limited range in ⁸⁷Sr/⁸⁶Sr. None of the other Sardinia SR rocks have ⁸⁷Sr/⁸⁶Sr values greater than ~0.709, whereas the Monte Arcuentu rocks have ⁸⁷Sr/⁸⁶Sr values up to ~0.711. Conversely, the lowest ⁸⁷Sr/⁸⁶Sr for Monte Arcuentu is ~0.705, even for basaltic rocks with relatively high Mg numbers [i.e., Mg# >0.68], whereas ~10% of the other SR rocks have ⁸⁷Sr/⁸⁶Sr less than ~0.705, some as low as 0.7035 (Lustrino et al., 2013).

Within the broad array of Sardinia SR rocks, each volcanic center tends to be slightly different, so the data are summarized in Figure 9C using a best-fit polynomial to represent each center. For most centers, the curves show an overall positive correlation between ⁸⁷Sr/⁸⁶Sr and SiO₂, suggesting that the magmas have undergone moderate amounts of crustal contamination (Lustrino et al., 2013). However, two areas show an unusual pattern in which the ⁸⁷Sr/⁸⁶Sr values decrease as the magmas become more evolved. This has been interpreted by Lustrino et al. (2013) as evidence that the most differentiated SR rocks formed by partial melting of preexisting basaltic lower crust. The downward limb of the curve represents a mixing trajectory between mildly evolved and contaminated melts of the upward limb (i.e., ⁸⁷Sr/⁸⁶Sr increasing with SiO₂) and silica-rich partial melts derived from previously underplated basaltic/gabbroic SR rocks. This model requires an exceptional heat source to produce siliceous melts from mafic lower crust, which Lustrino et al. (2013) argue was due to rapid upwelling of hot asthenospheric mantle resulting from high rates of separation of Sardinia from continental Europe during the Oligo–Miocene (Morra et al., 1997; Mattioli et al., 2000).
Figure 7. (A) $^{207}\text{Pb}/^{204}\text{Pb}$ versus $^{206}\text{Pb}/^{204}\text{Pb}$ for Monte Arcuentu rocks relative to other volcanic rocks of the western Mediterranean. (B) Detail of Monte Arcuentu data relative to other Sardinia SR rocks. Data sources listed in Table A1. Mantle end-members (HIMU—high μ; DM—depleted mantle; EM—enriched mantle; PREMA—prevalent mantle) from Stracke (2012). UPV—unradiogenic Pb volcanics.
Figure 8. (A) 208Pb/204Pb versus 206Pb/204Pb for Monte Arcuentu rocks relative to other volcanic rocks of the western Mediterranean. Symbols as in Figure 7A. (B) Detail of Monte Arcuentu data relative to other SR rocks of Sardinia. Data sources listed in Table A1. Mantle end-members are as defined in Figure 7.
Figure 9. Plots of $^{87}\text{Sr}/^{86}\text{Sr}$ versus SiO$_2$. (A) Monte Arcuentu rocks shown relative to Cenozoic volcanics of the Tyrrhenian region (data sources listed in Table A1), and subduction-related (SR) volcanics from Tonga-Fiji-Vanuatu (Pearce et al., 2007), and the arc front of the Northern, Central and Southern Volcanic Zones (NVZ, CVZ, and SVZ) of the Andes. Data sources for the Andes as follows: NVZ from the compilation of Hidalgo et al. (2012, their supplementary data file); Southern Volcanic Zone (SVZ) data from Hickey-Vargas et al. (2016) and references identified by these authors as SVZ arc front; CVZ frontal arc data from the compilation of Mamani et al. (2010, their repository item), plus data from Davidson et al. (1990) and Freymuth et al. (2015). Solid blue arrow indicates inferred trend for mantle metasomatism/subduction enrichment. Solid black arrow indicates variation in $^{87}\text{Sr}/^{86}\text{Sr}$ as a function of fractional crystallization alone; dotted arrow indicates slope of the regression for data on volcanic products from the CVZ back-arc region, excluding ignimbrites (see Fig. S1). (B) Monte Arcuentu samples shown relative to other Sardinia SR rocks (Lustrino et al., 2013). Solid line indicates linear regression of the Monte Arcuentu data excluding the only andesite analyzed ($y = 0.0009x + 0.6599$). Regression of the Monte Arcuentu data, including the andesite, yields the equation $y = 0.006x + 0.6770$; $R^2 = 0.611$. Best-fit second order polynomial for other SR rocks yields the equation $y = -0.0013x^2 + 0.0013x + 0.6665$; $R^2 = 0.39$. (C) Monte Arcuentu shown relative to other Sardinia SR rocks with the individual volcanic centers identified by Lustrino et al. (2013) represented by a best-fit second order polynomial.
The best fit curve through the data for Marmilla forms a steep parabola that passes through most of the Monte Arcuentu data. However, all but one sample from Marmilla plot within the low SiO$_2$ end of the Monte Arcuentu array (87Sr/86Sr < 0.7088); therefore, the parabola is constrained by one evolved sample only (with ~71 wt% SiO$_2$). Nonetheless, the Marmilla samples show some major and trace element similarities to the Monte Arcuentu rocks, e.g., low Al$_2$O$_3$ and high MgO for a given SiO$_2$. These two localities are separated by less than 30 km across the Campidano graben and prior to this Plio–Pleistocene extension would have been even closer, suggesting they may record similar petrogenetic processes.

A second argument presented by Downes et al. (2001) in favor of subduction-modified mantle sources for Monte Arcuentu magmas is the variation of Sr isotopes with δ^{18}O. In δ^{18}O versus 87Sr/86Sr (not shown), the data for clinopyroxene separates form a positive correlation that is only slightly concave upward (Downes et al., 2001). Calculated mixing curves between primitive Monte Arcuentu basalts and Hercynian felsic granulites pass through the majority of the data but require assimilation in excess of 40% felsic crust. Assimilation of this much felsic crust by the most primitive basaltic rocks in the suite would result in significant increases in SiO$_2$, which are not observed.

Source Enrichment

Sediment Melting versus Fluid Fluxing

If we accept that crustal contamination is not the main process responsible for the compositional variations observed within the Monte Arcuentu suite, then the likely alternative is source enrichment. Melting of a pyroxene-rich sub-arc mantle (e.g., Lambart et al., 2013) can be ruled out on the basis of major and trace element systematics (see Figs. S4A and S4B [footnote 1]). We, therefore, consider source enrichment via sediments recycled during subduction, as suggested by the 87Sr/86Sr versus SiO$_2$ trend (Fig. 9A). The questions that follow are: (a) What was the nature of the sediments? and, (b) Was the process controlled by dehydration of sediments or was sediment melting involved?

Numerous studies have now shown that Hf, and to a lesser extent Nd, tend to behave as conservative elements in the arc environment when aqueous fluids alone are involved (Johnson and Plank, 1999; Kempton et al., 2001; Barry et al., 2006; Pearce et al. 2007). Assuming a mantle source similar to that for Etna as the composition of the unmodified mantle wedge (Fig. 6), the Monte Arcuentu samples with the most depleted Nd and Hf isotopic ratios could be explained by interaction between that mantle and fluids derived from subducted sediments. That is, subduction fluxing by aqueous fluid carrying Nd (as a non-conservative element) but little Hf (a conservative element) could reduce the Nd isotope ratio of the mantle wedge while having little effect on the Hf isotope composition (Pearce et al., 2007). The result would be an offset in isotopic composition like that observed between Etna and the most depleted Monte Arcuentu rocks (Fig. 6). However, this mechanism by itself cannot account for the more enriched isotope signatures observed within the Monte Arcuentu suite. It is also inconsistent with the Pb isotope systematics (Fig. 7), since Monte Arcuentu samples do not plot along a mixing line between sediments and Etna mantle. Therefore, sediment melting is required to explain the full range of rNd and 176Hf values for Monte Arcuentu rocks.

Trace element plots, such as Th/Nb versus Ba/Nb (Fig. 10), also support an origin via sediment melting rather than fluid fluxing. Ba tends to be incompatible regardless of whether the process is sediment melting or sediment dehydration, but Th varies from compatible (immobile) in aqueous fluids to incompatible (mobile) during sediment melting (Johnson and Plank, 1999). Therefore, a high Th/Nb for a given Ba/Nb, as observed for Monte Arcuentu, is consistent with metasomatism of the mantle source via sediment melting.

Nature of the Subducted Sediment

To further constrain the nature of the subducted sediment, we need to place some constraints on the isotopic composition of the mantle source prior to metasomatism. Pb isotope data rule out a mantle source like that giving rise to Etna or the Iblean Plateau. Conversely, while Pb isotope data appear to rule out the depleted mantle (DM) end-member as the source for the Monte Arcuentu rocks, a slightly more radiogenic DM source, like that of some Tyrrhenian Sea basalts, is consistent with the low 206Pb/204Pb end of the Monte Arcuentu vertical array (Fig. 7A). We, therefore, model possible mixing scenarios between Tyrrhenian Sea-type mantle and subducted sediment using Sr, Nd, and Hf isotope data (Figs. 11 and 12).

Miocene to Quaternary sediments from the central and eastern Mediterranean (Klaver et al., 2015) have been well characterized in terms of Sr, Nd,
Pb, and Hf isotopes; however, Figure 11 shows that, on average, the Sr-Nd isotope compositions of these sediments are too low and too high, respectively, to serve as the contaminant required by the Monte Arcuentu array. This is in part because of their high-biogenic carbonate content (Klaver et al., 2015). Such sediments tend to have 87Sr/86Sr values that are limited by the composition of seawater (~0.709 or less), which is considerably lower than the most radiogenic Monte Arcuentu samples (~0.711). Fluvial input from the Nile also tends to have relatively unradiogenic Sr and Pb isotope compositions combined with radiogenic Nd-Hf isotope ratios (Klaver et al., 2015). As a result, contamination of the mantle source by sediments like those in the eastern Mediterranean is unable to explain the full range of Sr-Nd-Pb-Hf isotope compositions at Monte Arcuentu. Sediments from farther west in the Ionian Sea have slightly higher 87Sr/86Sr (~0.7115), but their 143Nd/144Nd and 176Hf/177Hf values overlap the enriched end of the Monte Arcuentu data (Figs. 11 and 12). Thus, the amount of mantle contamination that would be required would be unrealistically large, i.e., >80%, to explain the most enriched samples (Fig. 11). Their 206Pb/204Pb values are also too low to explain the compositional range of Monte Arcuentu rocks (Fig. 7B).

An alternative source for the subducted sediment component could be Hercynian-age rocks of Europe. However, mixing curves calculated between Tyrrhenian Sea (TS) mantle and Sahara sediment; circles on this curve denote increments of 5% mixing; 1% divisions are shown as tick marks over the first 5% mixing interval. The isotopic composition of TS is inferred from Tyrrhenian Sea basalt data (Becaluva et al., 1990): 87Sr/86Sr = 0.70393, 143Nd/144Nd = 0.51281, Sr = 21.1 ppm, Nd = 1.35 ppm. Isotopic values for Sahara sediment are based on the west Sahara potential source area defined by Scheuven et al. (2013) with elemental concentrations estimated from Grousset et al. (1998): 87Sr/86Sr = 0.720, 143Nd/144Nd = 0.51195, Sr = 142 ppm, Nd = 30.2 ppm. The dotted green curve represents mixing between average TS mantle and Eastern Mediterranean sediments from Klaver et al. (2015): 87Sr/86Sr = 0.70954, 143Nd/144Nd = 0.51227, Sr = 834 ppm, Nd = 21.7 ppm. The dashed orange curve represents mixing between average TS mantle and Ionian Sea sediments (Kempton, unpublished data): 87Sr/86Sr = 0.71147, 143Nd/144Nd = 0.51216, Sr = 282 ppm, Nd = 28 ppm. The dotted blue curve represents mixing between average TS mantle and Hercynian Upper Crust (HUC) calculated from data in Downes et al. (1997): 87Sr/86Sr = 0.72315, 143Nd/144Nd = 0.512148, Sr = 138 ppm, Nd = 26 ppm; only the first 10% mixing interval is indicated for the Eastern Mediterranean, Ionian, and Hercynian Upper Crust curves. Shown for reference is the average composition of Hercynian Lower Crust (HLC) calculated from lower crustal xenolith data in Downes et al. (1990, 1991). Other data sources as in Table A1. MORB—mid-oceanic ridge basalt.
to have radiogenic $^{176}\text{Hf} / ^{177}\text{Hf}$ for a given $^{143}\text{Nd} / ^{144}\text{Nd}$ (Pourmand et al., 2014), and plot significantly above the terrestrial array (Fig. 12). Bayon et al. (2009) found that the Nd and Hf isotope systems are decoupled during continental weathering and sediment transport. Nd isotopes are not significantly fractionated during these processes, but a major fraction of Hf is hosted in zircon, which tends to be sorted into silt and sand fractions during sediment transport. While both elements tend to be fractionated during these processes, but a major fraction of Hf is hosted in zircon, which tends to be sorted into silt and sand fractions during sediment transport. Bayon et al. (2009) found that the Nd and Hf isotope systems are decoupled during continental weathering and sediment transport. Nd isotopes are not significantly fractionated during these processes, but a major fraction of Hf is hosted in zircon, which tends to be sorted into silt and sand fractions during sediment transport. As a result, weathering and sediment transport produce two distinct arrays in the εHf versus εNd diagram: a “zircon-bearing sediment array” and a “zircon-free sediment array” (Fig. 12). Mixing calculations involving these two end-members suggest that neither extreme can explain the Monte Arcuentu data array: Contamination by zircon-poor sediment produces a concave downward curve, whereas zircon-bearing sediment produces a concave upward curve (Fig. 12). However, a mixture of fine- and coarse-grained sediment produces a curve that passes through the data, suggesting the sediment contributing to the metasomatism of the Monte Arcuentu mantle was a mixture of both fine-grained, zircon-free sediment, and coarser, zircon-bearing continental shelf-type sediments.

Consistent with the interpretation that the sediment contaminant was terrigenous in origin is the good correlation ($R^2 = 0.8$) exhibited by Monte Arcuentu samples in a plot of $^{176}\text{Hf} / ^{177}\text{Hf}$ versus $^{143}\text{Nd} / ^{144}\text{Nd}$ (Fig. 13), where the data overlap the fields for turbidites and terrestrial clays. By comparison, hydrogenic and hydrothermal sediments extend to significantly higher Hf values not observed at Monte Arcuentu.

Therefore, Sr-Nd-Hf isotope data are consistent with a model in which the sediments involved in metasomatism of the Monte Arcuentu mantle source were (i) predominantly terrigenous in origin, (ii) derived from Archean terranes of northern Africa, and (iii) contributed to the mantle wedge through melting rather than dehydration.

Pb isotope analyses of Saharan sediments are limited, and aerosols, even from remote areas, are at least partly of anthropogenic origin (Abouchami et al., 2013; Kumar et al., 2014). Nonetheless, available data appear to be inconsistent with the mixing model proposed above based on Sr-Nd-Hf isotopes. Surface sediments from the Bodélé Depression, thought to be one of the largest sources of Saharan dust (Abouchami et al., 2013), have Pb isotope
compositions that are more radiogenic than most sediments from the eastern Mediterranean (206Pb/204Pb > 18.9). If representative of the full range of compositions for Sahara aerosols and sediments, they cannot explain the Monte Arcuentu data, particularly the rocks that have high 207Pb/204Pb and 208Pb/204Pb at low 206Pb/204Pb (Figs. 7B and 8B). Thus, the full range of Pb isotope data for Monte Arcuentu cannot be explained by mantle metasomatism alone in response to subduction of any known sediments.

A Case for Both Source Enrichment and Crustal Contamination?

The analysis above suggests that, while source contamination can explain some of the compositional variation in the Monte Arcuentu rocks, neither source metasomatism nor crustal contamination alone can explain the full range of major element, trace element and isotope compositions observed.

In order to resolve this conundrum, we revisit the major and trace element characteristics of the Arcuentu rocks. Most of the lavas are too evolved to have equilibrated directly with mantle peridotite. MgO contents are as low as 2.4 wt%, requiring significant amounts of differentiation of primitive magmas to explain these evolved compositions (e.g., Toothill et al., 2007; Melekhova et al., 2015). Yet, we show in Figure 5 that, except for two andesites, most Arcuentu rocks have less than 58 wt% SiO₂, and correlations between SiO₂ and most major and trace elements tend to be weak—variations that differ from many of the orogenic volcanic suites from Sardinia.

In contrast, many of these elements show significant correlations with MgO (Fig. 14)—Al₂O₃, TiO₂, and Sr increase with decreasing MgO, whereas most other Sardinia SR rocks show scattered but broadly positive correlations. Furthermore, Monte Arcuentu rocks that have the lowest MgO contents tend to have the highest ⁸⁷Sr/⁸⁶Sr and ²⁰⁷Pb/²⁰⁴Pb, and lowest ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf values, i.e., isotope variations broadly correlate with indices of magmatic differentiation (Figs. 15A and 15B). Although weak correlations are observed between SiO₂ and most major and trace elements (Fig. 5), SiO₂ correlates positively with ²⁰⁷Pb/²⁰⁴Pb and negatively with ¹⁴⁳Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf (Figs. 16A and 16B), similar to the correlation observed between SiO₂ and ⁸⁷Sr/⁸⁶Sr (Figs. 9A and 9B; Fig. S3 [footnote 1]).

The limited range in SiO₂ within the Monte Arcuentu suite indicates that either the magmas underwent limited fractional crystallization or that SiO₂ was buffered during the process. MgO contents as low as 2.8 wt% (for rocks with ~52 wt% SiO₂) confirm that fractional crystallization has occurred. The positive correlation between MgO and Ni (Fig. 14C), and the wide range in Ni contents can be modeled as the result of ~10%–15% olivine fractionation, depending on the D-value assumed; and while the Ni concentrations observed are relatively high for arc rocks, they are lower than in melts in equilibrium with primitive mantle (e.g., ~400–500 ppm). Fractionation of ~30% olivine would be required to account for this compositional range, assuming a parental magma originally in equilibrium with the mantle.

Therefore, the fractionating assemblage must have been a combination of phases with a bulk solid SiO₂ composition similar to that of the parental melt. The observed increases in TiO₂ and Al₂O₃ (and Sr) with increasing degree of fractionation (Fig. 14) indicate that Fe-Ti oxides and plagioclase were not significant fractionating phases. The absence of plagioclase in the fractionating assemblage suggests that the Monte Arcuentu rocks evolved over a range of near-Moho and lower-crustal depths, i.e., pressures higher than the stability of plagioclase, similar to the Lesser Antilles (Melekhova et al., 2015).

Mafic cumulates consisting of varying proportions of Fe- and Al-rich clinopyroxene and olivine are common in lower crustal xenolith suites (Kempton, 1987; Kempton and Dungan, 1989; Cigolini, 2007; Perinelli et al., 2017). Indeed, Muoi and Arai (2014) report a suite of wehrlites, clinopyroxenites and dunites,
which they interpret as cumulates from the sub-arc Moho. The crystallization sequence implied by these xenoliths is distinct from that of olivine-saturated magmas at low pressure and involves a process whereby olivine- and clinopyroxene-oversaturated melts fluctuate around the olivine-clinopyroxene co-tectic as the melts evolve, resulting in the crystallization of abundant wehrlites, clinopyroxenites, and dunites in the upper mantle and lower crust.

Depending on the proportion of clinopyroxene to olivine, such fractionating assemblages would not significantly increase the SiO$_2$ of the residual liquid, but would result in significant magmatic differentiation, driving liquids to low MgO contents, as well as low Ni and Cr. The roughly constant CaO contents of Monte Arcuentu rocks as a function of MgO (Fig. S5A [footnote 1]) suggest that clinopyroxene and olivine fractionated in roughly equal proportions.

Figure 14. Selected major and trace elements versus MgO for Monte Arcuentu and other SR rocks of Sardinia. In these diagrams, samples from Marmilla are distinguished from other SR rocks (green dots) to note geochemical similarity between this locality and Monte Arcuentu. Curves are best fit second order polynomial to the Monte Arcuentu (blue) and other SR rocks (brown). Data sources as in Figure 2.
An implication of this scenario is that Monte Arcuentu parental magmas stalled near the Moho, where they potentially interacted with, and became contaminated by, lithospheric mantle and/or mafic lower crust. Assimilation of mafic lower crust has often been discounted on thermodynamic grounds, but thermodynamic modeling studies (Annen and Sparks, 2002; Dufek and Bergantz, 2005; Annen et al., 2006; Solano et al., 2012) have shown that, for high rates of melt accumulation and high melt fractions, repeated overlapping basaltic intrusions into a deep “hot zone” at the base of the crust allows melt to remain compositionally stable for long periods. Each increment of basalt intrusion into the deep “hot zone” can generate partial melting of surrounding rocks due to heat transfer, with the nature of the resulting hybrid melt depending on the spectrum of lithologies available in the portion of lithosphere (crust or mantle) intruded (e.g., Gao et al., 2016) and the details of the AFC process.

Isotope and trace element variations in the Monte Arcuentu suite provide us with geochemical evidence for the nature of these deep crust/upper mantle interactions without the geochemical overprinting of mid- to upper crustal AFC processes seen in most other orogenic suites. The variations in Nd, Sr, and Hf isotopes are somewhat less sensitive in this context, because lithospheric mantle and lower crust tend to plot in similar parts of the isotope diagrams (Figs. 6, 11, and 12), but Pb isotope variations and some key trace element ratios are more illuminating.

Assuming that the most primitive basalt compositions have undergone limited fractional crystallization and crustal contamination, we can infer that their isotopic variability reflects the compositional heterogeneity of the enriched mantle source, i.e., metasomatized by melts derived from recycling of sediments dominated by Sahara sediment. The most primitive rocks at Monte Arcuentu (MgO >8 wt %) have a range for 143Nd/144Nd up to 0.5130 and 176Hf/177Hf values down to 0.2825, with 187Os/188Os values down to 0.170 and 187Os/188Os values down to 0.2828, respectively, and 207Pb/204Pb values up to 15.673 (Fig. 16). Therefore, isotope compositions outside this range must be the product of interactions with the crust and/or lithospheric mantle.

Figures 7B and 15B suggest that interaction with lower crust similar to the Hercynian basement rocks of Calabria is responsible for the evolved Monte Arcuentu rocks with high 207Pb/204Pb–high 206Pb/204Pb is less clear, but the overlap with compositions of Italian lamproites and other potassic volcanic rocks of central Italy suggest that their parental magmas may have interacted with lithospheric mantle.

This interpretation is supported by variations in key trace element ratios, such as Rb/Ba, which in the Monte Arcuentu rocks correlate with Pb isotope ratios, i.e., rocks with high 207Pb/204Pb have high Rb/Ba, whereas those with lower 207Pb/204Pb have lower Rb/Ba (Fig. 17A). This is significant because lower crust typically has a low Rb/Ba ratio, as shown by Hercynian lower crustal
xenoliths of Europe (Downes et al., 1991) and Calabrian basement (Caggianelli et al., 1991). Upper crust is distinguished by having much higher Rb/Ba, e.g., most Hercynian granitoids (Downes et al., 1997) have Rb/Ba ratios >0.2. The lithospheric mantle is likely to be heterogeneous, depending on age and geologic history, but we can infer that in the Mediterranean region its Rb/Ba ratio is likely to be high. Italian lamproites, for example, have Rb/Ba ratios up to 0.65 (Fig. 17A; Prelević et al., 2010). The lamproite from Sisco, Corsica, France—the nearest lamproite locality to Monte Arcuentu in time and space—has both high Rb/Ba (0.34) and high Pb isotope ratios ($^{206}\text{Pb}/^{204}\text{Pb} = 18.85$, $^{207}\text{Pb}/^{204}\text{Pb} = 15.7$).

Further support for this interpretation is provided by the variation in $^{143}\text{Nd}/^{144}\text{Nd}$ versus Rb/Ba (Fig. 17B). High MgO rocks from Monte Arcuentu have a limited range of Rb/Ba ratios with $^{143}\text{Nd}/^{144}\text{Nd}$ values of 0.5123–0.5127. More evolved rocks separate into two groups, the low Rb/Ba–low $^{143}\text{Nd}/^{144}\text{Nd}$ (and low $^{206}\text{Pb}/^{204}\text{Pb}$) group trend toward the compositions of lower crust,
supporting the interpretation that their parental magmas interacted with lower crustal lithologies. The high Rb/Ba group trends toward the fields for Hercynian granitoids (upper crust) and lithospheric mantle. Because upper crust and lithospheric mantle plot in roughly the same part of the diagram, we cannot distinguish them based on Figure 17B. However, the variations in 206Pb/204Pb versus Rb/Ba (Fig. 17A) clearly show that upper crustal contamination is unlikely, because of its much lower 206Pb/204Pb (and 207Pb/204Pb; Downes et al., 1997).

Proposed Model for the Origin of Monte Arcuentu Magmas

Figure 18 summarizes the proposed model for the origin of Monte Arcuentu rocks, which are unique among Sardinia SR rocks. Lower Al₂O₃, TiO₂, P₂O₅, and higher Ni and Cr for a given SiO₂ or MgO, suggest that the Monte Arcuentu mantle source was more depleted than that giving rise to other Sardinian SR rocks (Figs. 5, 14, S2 [footnote 1], and S4). Sr, Nd, Pb, and Hf isotopes, however, provide evidence for time-integrated enrichment relative to DM, suggesting a source that was more akin to that of Tyrrhenian Sea tholeiites (Fig. 7).

The mantle source was metasomatized by partial melts derived from subducted sediments that were predominantly terrigenous and derived from Archean terranes of northern Africa. This metasomatized mantle source can explain the range of isotope signatures observed in high-MgO basaltic rocks but not the full range of isotopic compositions (Figs. 6, 7, and 8). Mixing calculations suggest that less than 3% source contamination is needed to account for the Sr, Nd, and Hf compositions of the most primitive rocks (Figs. 11 and 12).

In contrast to most other orogenic settings, most of the Monte Arcuentu parental magmas stalled at the base of the crust or at the top of the lithospheric mantle on their way to the surface and underwent MASH-type processes (Hildreth and Moorbath, 1988). As a result, we envisage four possible scenarios to explain the geochemical evolution of the Monte Arcuentu magmas.

1. Melts escaped to the surface with minimal interaction with crust or lithospheric mantle, preserving the isotopic signature of the metasomatized mantle source. Some of the most primitive rocks may fall into this category. They exhibit a range of 87Sr/86Sr values up to 0.709, 143Nd/144Nd and 176Hf/177Hf values down to 0.5123 and 0.2828, respectively, and 207Pb/204Pb values up to 15.673.

2. Melts ponded at the Moho and interacted with enriched lithospheric mantle. They evolved to low MgO, low Ni and Cr contents as a result of olivine and clinopyroxene fractionation and underwent limited enrichment in SiO₂. These melts erupted with higher 206Pb/204Pb, 143Nd/144Nd, and 176Hf/177Hf than the primitive lavas of (1). Italian lamproites provide an indication of the composition of the lithospheric mantle in this scenario.

3. Melts ponded within the lower crust and interacted with lithologies similar to Calabrian basement or Hercynian lower crust. These melts are compositionally similar to (2) but are distinguished by their lower 206Pb/204Pb and Rb/Ba, inherited from interaction with these older rocks (Fig. 17B).

4. Melts ponded within and interacted with mid- to upper crust, evolving to higher SiO₂ and Rb/Ba; 143Nd/144Nd compositions overlap the range of evolved Monte Arcuentu lavas. We have no Pb or Hf analyses of the two Monte Arcuentu andesites, so we do not know precisely how mid- to upper crustal AFC processes affected these isotope
ratios. However, based on data for other Sardinia SR rocks, $^{207}\text{Pb}/^{204}\text{Pb}$ is likely to be lower than in the melts contaminated by both lithospheric mantle and lower crust.

Aside from scenario 4, we have so far ignored the effects of shallow level magma chamber processes. However, rocks from Arcuentu are commonly porphyritic, including the presence of plagioclase phenocrysts (Brotzu et al., 1997). Presence of this relatively low-pressure phase is seemingly at odds with most of the scenarios above. However, Brotzu et al. (1997) used major and trace element modeling to show that shallow-level magma chamber processes affecting the Arcuentu Complex rocks involved fractional crystallization but negligible crustal contamination. Instead, these authors proposed that Arcuentu Complex magmas underwent polybaric fractionation at elevated to moderate pressures, and that the shallow-crustal magma chamber was filled by melts that were already moderately evolved. Therefore, while Arcuentu Complex magmas may have undergone late stage crystallization of plagioclase phenocrysts to varying degrees in shallow crustal magma chambers, this process operated as a closed system and did not obscure key geochemical characteristics inherited from melt interactions that occurred in the lower crust and lithospheric mantle.

The model proposed here for the origin of Monte Arcuentu magmas requires high rates of melt accumulation and high melt fractions in order to
partially melt the lithospheric mantle and lower crust, given the typically refractory nature of these lithologies, but such a scenario is consistent with the rapid rotation and extension that was occurring in southern Sardinia at the time (Montigny et al., 1981; Morra et al., 1997; Mattioli et al., 2000; Gattacceca et al., 2007; Carminati et al., 2012). The Sardinia–Corsica complex is also one of the few places in the western Mediterranean where geophysical data confirm the existence of mechanically non-competent crustal layers (Splendore and Marotta, 2013). These authors estimate that up to 50% of the upper crust and up to 100% of the lower crust are non-competent. There is also a rapid decrease in strength, up to two or three orders of magnitude, below the Sardinia–Corsica complex (Splendore and Marotta, 2013).

The fact that Monte Arcuentu may represent some of the latest stages of orogenic magmatism on Sardinia may have contributed to the predominance of lower crustal/upper mantle interactions. Earlier phases of orogenic magmatism would have provided the heat needed to “soften” the lower crust, making it possible for assimilation of these otherwise refractory lithologies over time. Furthermore, the tectonic conditions following rotation of Sardinia at 18 Ma, i.e., high rates of extension, may have facilitated more rapid ascent of magmas with minimal interaction with mid-to upper crust (Morra et al., 1997; Mattioli et al., 2000). This clearly contrasts with the petrogenesis of most other Sardinia SR rocks, which appear to have differentiated and assimilated larger proportions of middle to upper crust (Guarino et al., 2011; Lustrino et al., 2013).

Whether the mantle-derived melts interact with pre-existing (old) crust or basalts/gabbros from earlier melt injection events may relate to crustal structure and/or length of time over which magmatism has occurred. Geophysical data suggest that the overall crustal thickness of Sardinia is similar north to south, with the north slightly thicker (Splendore and Marotta, 2013). However, the upper crust is believed to be thicker than the lower crust in the north, whereas the reverse is true for the south where the lower crust is thicker. It is intriguing to speculate whether this thicker lower crust in southern Sardinia is the cause or the outcome of the petrogenetic model proposed here, i.e., Monte Arcuentu lavas predominantly ponding and crystallizing in the lower crust, thickening it, or whether a thicker lower crust presented a greater barrier to ascent, forcing more magmas to stall here in their ascent to the surface. More detailed petrologic study of individual volcanic centers across Sardinia may help to resolve this question.

CONCLUSIONS

- Miocene subduction-related volcanic rocks from Monte Arcuentu, southern Sardinia, are compositionally unique compared with most orogenic magmas. They exhibit a wide range in Sr, Nd, Pb, and Hf isotopic compositions and MgO for a very limited range in SiO2. These compositional variations reflect AFC processes that occurred mainly in the lower crust and upper mantle where clinopyroxene and olivine were the predominant fractionating phases rather than plagioclase.

- The parental magmas were derived from a mantle source that had been metasomatized by partial melts derived from subducted sediment. Trace element and isotopic ratios for the most primitive rocks (MgO >8 wt%) suggest a high proportion of terrigenous or detrital material within the subducted sediment, most likely derived from the Archean terranes of northern Africa, and contamination of a mantle source similar to that giving rise to Tyrrhenian Sea basalts.

- Because mantle enrichment processes were dominated by sediment melting rather than sediment dehydration, Hf behaved as a mobile, non-conservative element.

- Trace element and isotopic ratios for the more evolved rocks in the suite provide evidence for assimilation of lower crust and/or lithospheric mantle.

- Partial melting of these normally refractory lithologies was facilitated by the rapid phase of extension and rotation of Sardinia during the mid-Miocene.

- The Monte Arcuentu rocks provide insights into assimilation processes in the lower crust and lithospheric mantle that may be obscured by upper crustal AFC processes in other orogenic suites.

ACKNOWLEDGMENTS

PDK and HD acknowledge support from the National Environment Research Council (NERC) Isotope Geosciences Laboratory for the new Pb and Hf isotope data; Ian Millar is thanked for completing the Pb isotope mass spectrometry and Tiffany Barry for completing the Hf isotope mass spectrometry. Angelo Peccei and Gianfilippo De Astis are gratefully acknowledged for providing the Ionian Sea sediment samples. Sue Trayhorn and Bob Thompson are recognized for initiating the project and collecting the original samples. ML acknowledges Sapienza Università di Roma (Progetti Ricerca Ateneo 2016 and 2017) financial support. The manuscript benefited from the thoughtful reviews of Nick Rogers and Bob Stern. Thanks to Shan de Silva for his editorial handling.

APPENDIX. ANALYTICAL METHODS

Samples for Pb and Hf isotope analysis were prepared at the NERC Isotope Geosciences Laboratory (NIGL) following procedures outlined in Kempton (1996) and Kempton et al. (2000) for Pb and Hf, respectively. All samples were dissolved from hand-picked chips that were leached in cold, dilute HCl for ~30 min to remove the effects of low temperature alteration, although the low loss on ignition (LOI) for the dike and lava samples (<1.1 wt%; Downes et al., 2001) indicates the rocks are relatively fresh. The LOI for breccia sample ST84 is slightly higher at 1.86 wt%. Pb isotopes were analyzed on a Neptune MC-ICP-MS at Thermo Scientific, Bremen, Germany, using the Ti-doping method to correct for mass fractionation during the run. All Pb isotope ratios have been corrected relative to the NIST NBS 981 composition of Todt et al. (1996). Based on repeated runs of NBS 981, the reproducibility of whole rock Pb isotope measurements is better than ± 0.01% (2σ). Hf isotopes were analyzed on a Neptune MC-ICP-MS at Goethe Universität Frankfurt, Germany. Within-run standard error for Hf isotope measurements is normally less than 22 ppm (2σ). Minimum uncertainties are derived from external precision of standard measurements, which average 43 ppm (2σ). Replicate analysis of internal rock standard, pk-G-D12, over the course of analysis yields 0.283048 ± 12 (2σ, n = 27), which is indistinguishable from previously reported value determined by MC-ICP-MS (Kempton et al., 2000). The data are corrected for mass fractionation during the run by normalization to 185Hf/187Hf of 0.7295 and are reported relative to an accepted value of the Hf isotope standard JMC 475 of 0.282160.
Isotope ratios	Sr	Nd	Pb	Hf
Sardinia, including Monte Arcuentu			X	X
this study	X	X		
Downes et al. (2001)			X	
Lustrino et al. (2013) and references therein	X	X	X	X
Etna				
Armenti et al. (1989)	X	X		
Gasperini et al. (2002)			X	X
Spence (2012)	X	X	X	
Tonarini et al. (1995)	X	X		
Viccaro and Cristofolini (2008)	X	X	X	
Viccaro et al. (2011)				
Iblean Plateau				
Gasperini et al. (2002)			X	X
Kempton (unpublished data)			X	
Tonarini et al. (1996)	X	X		
Trua et al. (1998)	X	X	X	
Tyrrenian Sea				
Beccaluva et al. (1990)	X	X		
Gasperini et al. (2002)			X	X
Trua et al. (2003)	X	X		
Western Aeolian Arc (Alicudi and Filicudi)				
Francalanci et al. (1993)	X	X	X	
Gasperini et al. (2002)			X	
Kempton (unpublished data)				
Peccei et al. (1993)	X	X	X	
Peccei et al. (2004)	X	X	X	
Santo et al. (2004)	X	X		
Vulcano				
De Astis et al. (2000)	X	X	X	
Del Moro et al. (1998)	X	X	X	
Gasperini et al. (2002)			X	
Gioncada et al. (2003)	X	X	X	
Stromboli				
Francalanci et al. (1993)	X	X		
Kempton (unpublished data)			X	
Landi et al. (2009)	X	X		
Campanian Province				
Ayuso et al. (1998)	X	X	X	
Belkin and De Vivo (1993)	X	X	X	
D’Antonio and Di Girolamo (1994)	X	X		
D’Antonio et al. (1999)	X	X		
De Astis et al. (2006)	X	X	X	
Di Renzo et al. (2007)	X	X	X	
Gasperini et al. (2002)			X	
Hawkesworth and Vollmer (1979)	X	X		
Kempton (unpublished data)			X	
Orsi et al. (1995)	X	X		
Pappalardo et al. (2002)	X	X	X	
Ernici & Roccamontesina				
Civetta et al. (1981)	X	X	X	
Conticelli et al. (2009)	X	X	X	
Gasperini et al. (2002)	X	X	X	
Roman Province				
Conticelli et al. (1997)	X	X		
Fornaseri et al. (1963)	X	X		
Gasperini et al. (2002)	X	X	X	
Perini et al. (2004)	X	X	X	
Rogers et al. (1985)	X	X		
Italian lamproites				
Conticelli et al. (2013)	X	X	X	
Kempton (unpublished data)	X	X	X	
Prelević et al. (2010)	X	X	X	
Eastern Mediterranean Sea sediments				
Kiaver et al. (2015)	X	X	X	
Ionian Sea sediments				
Kempton (unpublished data)	X	X	X	
Hercynian crust				
Downes et al. (1990, 1991, 1997)	X	X	X	
Vervoort et al. (2000)				
Calabrian basement				
Caggianelli et al. (1991)	X	X	X	
REFERENCES CITED

Abouchami, W., Nàtheb, K., Kumar, A., Galert, S.J.G., Jochum, K.P., Williams, E., Horbe, A.M.C., Rosa, J.W.C., Balsam, W., Adams, D., Mezger, K., and Adrease, M.A., 2013, Geochemical and isotopic characterization of the Bodelé Depression dust source and implications for transatlantic dust transport to the Amazon Basin: Earth and Planetary Science Letters, v. 380, p. 112–123, https://doi.org/10.1016/j.epsl.2013.08.028.

Advokaet, E.L., van Hinsbergen, D.J.J., Maffione, M., Langeriez, C.G., Vissers, R.L.M., Cherchi, A., Schroed, R., Madani, H., and Columbu, S., 2014, Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region: Earth and Planetary Science Letters, v. 401, p. 183–195, https://doi.org/10.1016/j.epsl.2014.06.012.

Albarède, F., Simonetti, A., Vervoort, J.D., Blichert-Toft, J., and Abouchami, W.A., 1998, A Hf-Nd isotopic correlation in ferromanganese nodules: Geophysical Research Letters, v. 25, p. 3885–3889, https://doi.org/10.1029/98GL00008.

Annen, C., and Sparks, R.S.J., 2002, Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust: Earth and Planetary Science Letters, v. 203, p. 337–345, https://doi.org/10.1016/S0012-821X(02)00829-9.

Annen, C., Blundy, J.D., and Sparks, R.S.J., 2004, The genesis of intermediate and silicic magmas in deep crustal hot zones: Journal of Petrology, v. 45, p. 505–539, https://doi.org/10.1093/petrology/egi084.

Armienti, P., Innocenti, F., Petriti, R., Pompilio, M., and Villari, L., 1989, Petrology and Sr-Nd isotopic geochemistry of recent lavas from Mt. Etna: Bearing on the volcano feeding system: Journal of Volcanology and Geothermal Research, v. 39, p. 318–327, https://doi.org/10.1016/0377-0273(89)90095-4.

Assorgia, A., Balogh, K., Lecca, L., Ibbà, A., Procù, A., Secchi, F., and Tilocca, G., 1995, Volcano- logical structures and character of Oligo-Miocene volcanic successions from Central Sardinia (Italy): Rapporti Alpi Appennino: Accademia Nazionale delle Scienze, v. 14, p. 397–424.

Avanzinelli, R., Lustrino, M., Mattei, M., Melloso, L., and Conticelli, S., 2009, Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins: Lithos, v. 113, p. 213–227, https://doi.org/10.1016/j.lithos.2009.03.029.

Ayuso, R.A., De Vivo, B., Rolandi, G., Seal, R.R., II, and Paone, A., 1998, Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy: Journal of Volcanology and Geothermal Research, v. 82, p. 53–78, https://doi.org/10.1016/S0377-0273(97)00057-2.

Barry, T.L., Pearce, J.A., Leat, P.T., Millar, I.L., and le Roex, A.P., 2006, Hf isotope evidence for the origin of Atlantic dust transport to the Amazon Basin: Earth and Planetary Science Letters, v. 76, p. 6–24.

Bayon, G., Burton, K.W., Soulet, G., Vigier, N., Dennielou, B., Etoubleau, J., Ponzevera, E., and Germain, R., 2010, Petrogenesis of the high-alumina basalt-andesite suite from Sant’Antico Island, SW Sardinia, Italy: Periodico di Mineralogia, v. 79, p. 27–65.

Conticelli, S., Francalanci, L., Manetti, P., Cioni, R., and Sbrana, A., 1993, Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy: The role of evolution ary processes in the genesis of variably enriched alkaline magmas: Journal of Volcanology and Geothermal Research, v. 75, p. 107–136, https://doi.org/10.1016/S0377-0273(96)00025-5.

Conticelli, S., Marchioni, S., Rosa, C., Giordano, G., Boari, E., and Avanzinelli, R., 2009, Shoshonite and sub-alkaline magmas from an ultrapotassic volcanic: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy: Contributions to Mineralogy and Petrology, v. 167, p. 41–63, https://doi.org/10.1007/s00410-008-0319-8.

Conticelli, S., Avanzinelli, R., Poli, G., Braschi, E., and Giordano, G., 2013, Shift from lamproite-like to leucitic rocks: Sr-Nd-Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy: Chemical Geology, v. 353, p. 246–266, https://doi.org/10.1016/j.chemgeo.2012.10.018.

D’Antonio, M., and Di Girolamo, P., 1994, Petrological and geochemical study of mafic shoshon itic volcanic rocks from Procida-Vivara and Ventotene Islands (Campanian Region, South Italy): Acta Vulcanologica, v. 5, p. 69–80.

D’Antonio, M., Civetla, L., and Di Girolamo, P., 1999, Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity: Mineralogy and Petrology, v. 67, p. 163–192, https://doi.org/10.1007/BF02988829.

De Astis, G., Peteccelli, A., Kempton, P.D., Le Volpe, L., and Wu, C., 2000, Transition from calc-alkaline to leucitic rocks: Sr-Nd-Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy: Journal of Petrology, v. 41, p. 753–784, https://doi.org/10.1093/petrology/egl081.

De Astis, G., Kempton, P.D., La Volpe, L., and Wu, C., 2006, Trace element and isotopic data from a deep borehole (Camaldoli della Torre): Journal of Petrology, v. 47, p. 331–351, https://doi.org/10.1093/petrology/egl002.

De Astis, G., Kempton, P.D., and La Volpe, L., 2008, Trace element and isotopic varia- tions from Mt. Vulture to Campanian volcanoes: Constraints for slab detachment and mantle inflow beneath southern Italy: Contributions to Mineralogy and Petrology, v. 151, p. 412–432, https://doi.org/10.1007/BF02988829.

De Astis, G., Kempton, P.D., Peccecelli, A., and Wu, T.W., 2006, Trace element and isotopic varia- tions from Mt. Vulture to Campanian volcanoes: Constraints for slab detachment and mantle inflow beneath southern Italy: Journal of the Virtual Explorer, v. 36, paper 9, https://doi.org/10.3809/jvirtex.2010.00226.

De Astis, G., Kempton, P.D., Peccecelli, A., and Wu, T.W., 2006, Trace element and isotopic varia- tions from Mt. Vulture to Campanian volcanoes: Constraints for slab detachment and mantle inflow beneath southern Italy: Contributions to Mineralogy and Petrology, v. 151, p. 331–351, https://doi.org/10.1007/BF02988829.

Del Moro, A., Giocanda, A., Pinellieri, L., Sbrana, A., and Joron, J.L., 1998, Sr, Nd and Pb isotope evidence for open system evolution at Vulcano, Aeolian Arc, Italy: Lithos, v. 43, p. 81–106, https://doi.org/10.1016/S0024-4937(98)00008-5.

Di Renzo, V., Vito, M.A., Arienzo, I., Carandente, A., Civetla, L., D’Antonio, M., Giordano, F., Orsi, G., and Tonarini, S., 2007, Magmatic history of Somma-Vesuvius on the basis of new geo- chemical and isotopic data from a deep borehole (Camaldoli della Torre): Journal of Petrology, v. 48, p. 753–784, https://doi.org/10.1016/j.petro.2007.08.001.

Downes, H., Dupuy, C., and Leyreloup, A.F., 1990, Crustal evolution of the Hercynian belt of West ern Europe: Evidence from lower-granitic xenoliths (French Massif Central): Chemical Geology, v. 83, p. 209–231, https://doi.org/10.1016/S0008-915X(89)80028-1.

Downes, H., Kempton, P.D., Briot, D., Harmon, R.S., and Leyreloup, A.F., 1991, Pb and O systemat ics in granulite facies xenoliths, French Massif Central: Implications for crustal processes:...
Hanyu, T., Tatsumi, Y., and Nakai, S., 2002, Contribution of slab-melts to the formation of high-Mg andesite magmas; Hf isotopic evidence from SW Japan: Geophysical Research Letters, v. 29, p. 2367–2370, https://doi.org/10.1029/2001GL009578.

Hickey-Vargas, R., Holbik, S., Tormey, D., Frey, F.A., and Moreno Roa, H., 2016, Basaltic rocks from the Andean Southern Volcanic Zone: Insights from the comparison of along-strike and small-scale geochemical variations and their sources: Lithos, v. 258–259, p. 115–122, https://doi.org/10.1016/j.lithos.2016.04.014.

Hidalgo, S., Gerbe, M.C., Martin, H., Samaniego, P., and Bourdon, E., 2012, Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr–Nd–O isotopes: Lithos, v. 132–133, p. 180–192, https://doi.org/10.1016/j.lithos.2011.11.019.

Hildreth, W., and Moorbath, S., 1988, Crustal contributions to arc magmatism in the Andes of central Chile: Contributions to Mineralogy and Petrology, v. 98, p. 455–489, https://doi.org/10.1007/BF00372365.

Irving, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 523–548, https://doi.org/10.1139/e71-005.

Jicha, B.R., Singer, B.S., Brophy, J.G., Fournelle, J.H., Johnson, C.M., Beard, B.L., Lapen, T.J., and Mahlen, T.J., 2004, Variable impact of the subducted slab on Aleutian Island arc magma sources: Evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances: Journal of Petrology, v. 45, p. 1845–1875, https://doi.org/10.1093/jpetro/45.11.1845.

Johnson, M.C., and Plank, T., 1999, Dehydration and melting experiments constrain the fate of subducted sediments: Geochemistry, Geophysics, Geosystems, v. 1, no. 12, https://doi.org/10.1029/1999GC000014.

Kempton, P.D., 1967, Mineralogic and geochemical evidence for differing styles of meltasomatism in spinel lherzolite xenoliths: Enriched mantle source regions of basalts? in Menzies, M., and Hawkesworth, C.J., eds., Mantle Metasomatism: London, UK, Academic Press, p. 45–89.

Kempton, P.D., 1995, Common Pb chemical procedures for silicate rocks and minerals, methods of data correction and an assessment of data quality at the NERC Isotope Geosciences Laboratory: NIGL Report Series, no. 78, 26 p.

Kempton, P.D., and Dungan, M.A., 1989, Geology and petrology of basalts and included mafic, ultramafic and granulitic xenoliths from the Geronimo volcanic field, southeastern Arizona, in Sacco, D.J., and Zidek, J., eds., Field Excursions to Volcanic Terranes in the Western United States, Volume I: Southern Rocky Mountain Region: Socorro, New Mexico, USA, New Mexico Bureau of Mines and Mineral Resources, v. 46, p. 161–173.

Kempton, P.D., Nowell, G.M., Fitton, J.G., Saunders, A.D., and Taylor, R.N., 2000, The Iceland plume in space and time: A Sr-Nd-Pb-Hf study of the North Atlantic rifted margin: Earth and Planetary Science Letters, v. 177, p. 255–271, https://doi.org/10.1016/S0012-821X(00)00479-9.

Kempton, P.D., Pearce, J.A., Gill, J., and Barry, T.L., 2001, Mantle domain boundaries in the Western Pacific: Evidence from Nd-Hf Isotope Systematics: Journal of Conference Abstracts, v. 6, p. 418.

Kepler, H., 2017, Fluids and trace element transport in subduction zones: The American Mineralogist, v. 102, p. 5–20, https://doi.org/10.2138/am-2017-5716.

Kepler, H., 2017, Fluids and trace element transport in subduction zones: The American Mineralogist, v. 102, p. 5–20, https://doi.org/10.2138/am-2017-5716.

Klawer, M., Djuj, T., de Graaf, S., Sakes, A., Wijbrans, J., Davies, G., and Vroon, P., 2015, Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: Implications for Aegean and Aeolian arc volcanism: Geochimica et Cosmochimica Acta, v. 153, p. 148–168, https://doi.org/10.1016/j.gca.2015.01.007.

Kuno, H., 1968, Origin of andesite and its bearing on arc structure: Bulletin Volcanologique, v. 32, p. 141–176, https://doi.org/10.1016/BF02958689.

Kumar, A., Abouchami, W., Galer, S.J.G., Garrison, V.H., Williams, E., Garrison, V.H., Williams, E., and Andreae, M.O., 2014, A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean: Atmospheric Environment, v. 82, p. 130–143, https://doi.org/10.1016/j.atmosenv.2013.10.021.

Kurnian, S., and Father, P., 2003, Markers of the pyroxenite contribution in the Andes: Geochemistry, Geophysics, Geosystems, v. 4, no. 12, https://doi.org/10.1029/2003GC000604.

Kurnian, S., and Father, P., 2003, Markers of the pyroxenite contribution in the Andes: Geochemistry, Geophysics, Geosystems, v. 4, no. 12, https://doi.org/10.1029/2003GC000604.

Hawkesworth, C.J., and Vollmer, R., 1979, Crustal contamination versus enriched mantle: Nd/143Nd and Sr/87Sr evidence from the Italian volcanics: Contributions to Mineralogy and Petrology, v. 69, p. 151–165, https://doi.org/10.1007/BF00371858.

Kempton et al. | Miocene subduction-related rocks from Monte Arcentu, Sardinia
Lustrino, M., Fedele, L., Melluso, L., Morra, V., Ronga, F., Geldmacher, J., Duggen, S., Agostini, M., Mamani, M., Wörner, G., and Sempere, T., 2010, Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 19°S): Tracing crustal thickening and magmatic generation through time and space: Geological Society of America Bulletin, v. 122, no. 1–2, p. 162–182, https://doi.org/10.1130/B26538.1.

Matioli, M., Guerrera, F., Tramontana, M., Raffaelli, G., and D’Atri, M., 2000, High-Mg Tertiary basalt from Southem Sardinia (Italy): Earth and Planetary Science Letters, v. 179, p. 1–7, https://doi.org/10.1016/S0012-821X(00)00103-5.

Melekhova, E., Blundy, J., Robertson, R., and Humphreys, M.C.S., 2015, Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles: Journal of Petrology, v. 56, no. 1, p. 161–192, https://doi.org/10.1093/petrology/egu074.

Montigny, L., Edel, J.B., and Thuillier, R., 2011, Oligo-Mio rotation of Sardinia: K-Ar ages and paleomagnetic data of Tertiary volcanism: Earth and Planetary Science Letters, v. 54, p. 261–271, https://doi.org/10.1016/S0012-821X(81)90009-1.

Morra, V., Scicchi, R.A., and Assorgia, A., 1994, Petrogenetic significance of peralkaline rocks from Cenozoic calc-alkaline volcanism from Sardinia, Italy: Chemical Geology, v. 119, p. 109–142, https://doi.org/10.1016/S0009-2541(94)00172-4.

Morra, V., Scicchi, F.A.G., Meluss, L., and Franciosi, L., 1997, High-Mg subduction-related Ter- tiary basalts in Sardinia, Italy: Lithos, v. 40, p. 69–91, https://doi.org/10.1016/S0024-4537(96)00028-X.

Münker, C., Worner, G., Yodoginski, G., and Churikova, T., 2004, Behaviour of high field strength elements in subduction zones: Constraints from Kamchatka-Aleutian arc lavas: Earth and Planetary Science Letters, v. 224, p. 275–293, https://doi.org/10.1016/j.epsl.2004.05.036.

Muris, R., and Araújo, F.A., 2014, Formation pressures inferred from Takashima xenoliths, southwest Japan arc: Journal of Petrological and Mineralogical Sciences, v. 109, p. 79–84, https://doi.org/10.2465/jmms.131003.

Ori, G., Civetta, L., D’Antonio, M., Di Girolamo, P., and Piochi, M., 1995, Step-filling and development of a three-layer magma chamber: The Neapolitan Yellow Tuff case history: Journal of Volcanology and Geothermal Research, v. 67, p. 291–312, https://doi.org/10.1016/0377-0273(94)00119-2.

Pappalardo, L., Piochi, M., D’Antonio, M., Civetta, L., and Petrioli, R., 2002, Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd, and Pb isotope data: Journal of Petrology, v. 43, p. 1415–1434, https://doi.org/10.1093/petrology/43.8.1415.

Patchett, P.J., White, W.M., Feldman, H., Kielczuk, S., and Hofmann, A.W., 1984, Hafnium/rare earth element fractionation in the sedimentary system and initial recycling into the Earth’s mantle: Earth and Planetary Science Letters, v. 69, p. 365–378, https://doi.org/10.1016/0012-821X(84)90195-X.

Peacock, M.A., 1933, Classification of igneous rock series: The Journal of Geology, v. 41, p. 54–67, https://doi.org/10.1086/223788.

Wolley, A.R., 2002, Igneous Rocks: A Classification and Glossary of Terms: Cambridge, UK, Cambridge University Press, 236 p.
Splendore, R., and Marotta, A.M., 2013, Crust-mantle mechanical structure in the Central Mediterranean region: Tectonophysics, v. 603, p. 89-103, https://doi.org/10.1016/j.tecto.2013.05.017.

Stracke, A., 2012, Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle: Chemical Geology, v. 330-331, p. 274-295, https://doi.org/10.1016/j.chemgeo.2012.08.007.

Todt, W., Cliff, R.A., Hanser, A., and Hofmann, A.W., 1996, Evaluation of a 40Ar-36Ar double spike for high-precision lead isotope analysis, in Basu, A., and Hart, S., eds., Earth Processes: Reading the Isotopic Code: Washington, D.C., USA, American Geophysical Union, https://doi.org/10.1029/GM095p0429.

Truà, T., Serri, G., and Marani, M.P., 2003, Lateral flow of African mantle below the nearby Tyrrhenian plate: Geochemical evidence: Terra Nova, v. 15, p. 433-440, https://doi.org/10.1046/j.1365-3121.2003.00509.x.

Vervoort, J.D., Patchett, P.J., Alibardi, F., Blichert-Toft, J., Rudnick, R., and Downes, H., 2000, Hf-Nd isotopic evolution of the lower crust: Earth and Planetary Science Letters, v. 181, p. 115-129, https://doi.org/10.1016/S0012-821X(00)00170-9.

Vervoort, J.D., Plank, T., and Prytulak, J., 2011, The Hf-Nd isotopic composition of marine sediments: Geochimica et Cosmochimica Acta, v. 75, p. 5903-5926, https://doi.org/10.1016/j.gca.2011.07.046.

Viccaro, M., and Cristofolini, R., 2008, Nature of mantle heterogeneity and its role in the short-term geochemical and volcanological evolution of Mt. Etna (Italy): Lithos, v. 105, p. 272-288, https://doi.org/10.1016/j.lithos.2008.05.001.

Viccaro, M., Nicotra, E., Millar, I.L., and Cristofolini, R., 2011, The magma source at Mount Etna volcano: Perspectives from the Hf isotope composition of historic and recent lavas: Chemical Geology, v. 281, p. 343-351, https://doi.org/10.1016/j.chemgeo.2010.12.020.

Woodhead, J.D., Hergt, J.M., Davidson, J.P., and Eggins, S.M., 2001, Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes: Earth and Planetary Science Letters, v. 192, p. 331-346, https://doi.org/10.1016/S0012-821X(01)00453-8.

Zamboni, D., Gazel, E., Ryan, J., Cannatelli, C., Lucchi, F., Atlas, Z., Trela, J., Mozza, S., and DeVivo, B., 2018, Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction zone processes: Geochemistry, Geophysics, Geosystems, v. 17, p. 2034-2053, https://doi.org/10.1002/2016GC006301.

Zirakparvar, N.A., 2017, Constraints on Lu-Hf and Nb-Ta systematics in globally subducted oceanic crust from a survey of orogenic eclogites and amphibolites: Geochemistry, Geophysics, Geosystems, v. 17, p. 1540-1557, https://doi.org/10.1002/2016GC006377.