Genes associated with inflammation may serve as biomarkers for the diagnosis of coronary artery disease and ischaemic stroke

Peng-Fei Zheng1,†, Fu-Jun Liao2,†, Rui-Xing Yin1,3,4,*, Lu-Zhu Chen5, Hui Li6, Rong-Jun Nie1, Yong Wang1 and Pei-Juan Liao1

Abstract

Background: The current research aimed to expound the genes and pathways that are involved in coronary artery disease (CAD) and ischaemic stroke (IS) and the related mechanisms.

Methods: Two array CAD datasets of (GSE66360 and GSE97320) and an array IS dataset (GSE22255) were downloaded. Differentially expressed genes (DEGs) were identified using the limma package. The online tool Database for Annotation, Visualization and Integrated Discovery (DAVID) (version 6.8; david.abcc.ncifcrf.gov) was used to annotate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses of the DEGs. A protein-protein interaction (PPI) network was constructed by Cytoscape software, and then Molecular Complex Detection (MCODE) analysis was used to screen for hub genes. The hub genes were also confirmed by RT-qPCR and unconditional logistic regression analysis in our CAD and IS patients.

(Continued on next page)
Results: A total of 20 common DEGs (all upregulated) were identified between the CAD/IS and control groups. Eleven molecular functions, 3 cellular components, and 49 biological processes were confirmed by GO enrichment analysis. Furthermore, the 20 common upregulated DEGs were enriched in 21 KEGG pathways. A PPI network including 24 nodes and 68 edges was constructed with the STRING online tool. After MCODE analysis, the top 5 high degree genes, including Jun proto-oncogene (JUN, degree = 9), C-X-C motif chemokine ligand 8 (CXCL8, degree = 9), tumour necrosis factor (TNF, degree = 9), suppressor of cytokine signalling 3 (SOCS3, degree = 8) and TNF alpha induced protein 3 (TNFAIP3, degree = 8) were noted. RT-qPCR results demonstrated that the expression levels of CXCL8 were increased in IS patients than in normal participants and the expression levels of SOCS3, TNF and TNFAIP3 were higher in CAD/IS patients than in normal participants. Meanwhile, unconditional logistic regression analysis revealed that the incidence of CAD or IS was positively correlated with the CXCL8, SOCS3, TNF and TNFAIP3.

Conclusions: The CXCL8, TNF, SOCS3 and TNFAIP3 associated with inflammation may serve as biomarkers for the diagnosis of CAD or IS. The possible mechanisms may involve the Toll-like receptor, TNF, NF-kappa B, cytokine-cytokine receptor interactions and the NOD-like receptor signalling pathways.

Keywords: Coronary artery disease, Ischaemic stroke, Gene ontology annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, Database for annotation visualization and integrated discovery (DAVID), Protein-protein interaction (PPI) network, RT-qPCR, Unconditional logistic regression

Background

Coronary artery disease (CAD) and ischaemic stroke (IS) are prominent causes of disability, mortality, morbidity, functional deterioration and healthcare expenses and account for approximately 30% of all deaths worldwide [1–4]. Twins and family studies have proven that both CAD and IS are highly heritable [5, 6], and hereditary elements are thought to account for approximately 30–60% of CAD and IS cases [7]. Atherosclerosis is generally regarded as the pathological foundation of CAD [8] and IS [9]. In addition, there is some evidence of several shared genetic characteristics of both diseases [10]. Both diseases are risk factors for one another [11, 12], and they are considered to be therapeutic targets for clinical research and for evaluating the risk of major adverse cardiac events (MACEs). A recent study showed that CAD and IS result from various factors and can be influenced by genomic background, lifestyle, environmental factors and alterations of plasma lipid levels as well as their interactions with each other [13]. To some extent, there is a consensus on the effectiveness of the early prevention of CAD and IS.

As a novel and practical approach for identifying CAD and IS susceptibility genes, a microarray analysis may be helpful for the early diagnosis of CAD and IS [14, 15]. However, the sensitivity and reproducibility of microarray results may be limited [16, 17]. Thus, a comprehensive analysis may be useful to improve the reliability and integrity of the conclusions. Through this method, we can achieve a more accurate approach of identifying susceptibility genes for CAD and IS and further explore their potential biological functions. The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) [18] is an international public database for next-generation sequence functional genomic datasets and high-throughput microarray data submitted by researchers worldwide. In this study, we downloaded two CAD datasets (GSE66360 and GSE97320) and one IS dataset (GSE22255) to identify differentially expressed genes (DEGs) in patients suffering from CAD or IS and healthy controls. The purpose of the present research was to confirm new biomarkers for the early diagnosis of CAD and IS.

Materials and methods

CAD and IS microarray data sets

Two CAD datasets (GSE66360 and GSE97320) and another IS dataset of IS (GSE22255) were obtained from the GPL570 Affymetrix Human Genome U133 Plus 2.0 array. The GSE22255 dataset included 20 normal samples and 20 IS samples. An integrated analysis of 53 normal samples and 52 CAD samples from the two CAD datasets was performed. The original files in CEL format were transformed into an expression value matrix using the Affy package in R with the RMA method to normalize the expression values and the SVA method to remove batch differences [19]. Then, the bioconductor package was used to transform the probe ID into a gene symbol [20]. When multiple probes corresponded to one common gene, the average value was taken as its expression value.

Differentially expressed gene (DEG) identification

The DEGs between patients suffering from CAD or IS and healthy participants were identified using the limma package [21]. The threshold values were $P < 0.05$ and $|\text{log fold change (FC)}| > 1$. To visualize the shared DEGs between the CAD datasets and the IS dataset, an online
tool (bioinformatics.psb.ugent.be/webtools/Venn) was used to draw a Venn diagram.

Functional enrichment analysis
The online tool Database for Annotation, Visualization and Integrated Discovery (DAVID) (version 6.8; david.abcc.ncifcrf.gov) was used to annotate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway [22] and Gene Ontology (GO) enrichment analyses [23] of the common differentially expressed genes. \(P < 0.05 \) was defined as the threshold for significant enrichment for KEGG and GO analyses.

PPI interaction network construction and module analysis
A PPI interaction network of common DEGs was constructed with the Search Tool for the Retrieval of Interacting Genes database (version 11.0; www.string-db.org) [24], and a combined score of \(> 0.9 \) was defined as the cut-off value. Cytoscape 3.7.1 (www.cytoscape.org) was applied to visualize the PPI network [25]. Degrees were used to verify the significance of protein nodes in the PPI network. As one of the core components of the PPI network, the network module may have specific biological functions. The Cytoscape software (version 3.61) Molecular Complex Detection (MCODE) plugin was used to identify the most common and largest module clusters with the following parameters: EASE \(\leq 0.05 \), count \(\geq 2 \) and MCODE score > 6 [26].

Sample verification and diagnostic criteria
A total of 420 unrelated participants (202 IS patients and 218 CAD patients) were recruited from the First Affiliated Hospital of Guangxi Medical University from Jan. 1, 2015 to Dec. 31, 2016. CAD was defined as significantly coronary artery stenosis \(\geq 50\% \) in at least anyone of the three main coronary vessels or their main branches (branch diameter \(\geq 2 \) mm) [27]. All patients with IS received a brain magnetic resonance imaging (MRI) scan and strict neurological examination. The diagnostic criteria for IS were derived from the International Classification of Diseases (9th Revision). All subjects with a history of type 1 diabetes, neoplasm, autoimmune disorder, abnormal renal or liver function, haemopathy or thyroid dysfunction were excluded. The patients with CAD had no history of IS, and the patients with IS had no history of CAD.

A total of 203 healthy controls matched by ethnic group (Han Chinese), age, and gender were also recruited. All subjects were healthy, and none of them had a history of CAD, myocardial infarction, IS or type 2 diabetes mellitus (T2DM), as determined by history-taking, questionnaires, or critical clinical examination. All participants were randomly recruited from the Physical Examination Center of the First Affiliated Hospital, Guangxi Medical University in the same period. Before the beginning of the study, all participants signed a written informed consent form. The research proposal was approved by the Ethics Committee of the First Affiliated Hospital, Guangxi Medical University (No: Lunshen-2011-KY-Guoji-001; Mar. 7, 2011).

Quantitative real-time PCR
RT-qPCR was used to validate the four significantly dysregulated mRNAs identified by the microarray results in the 603 subjects. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) that were separated from blood samples using TRIzol reagent and reverse transcribed into cDNA using the PrimeScript RT reagent kit (Takara Bio, Japan) according to the manufacturer’s instructions. The resulting cDNA was used as a template for RT-qPCR. Supplementary Table 2 shows the sequences of the specific primers designed by Sangon Biotech (Shanghai, China) and used to detect the 5 hub genes. Quantitative RT-PCR was performed using Taq PCR Master Mix Kit (Takara) on an ABI Prism 7500 sequence-detection system (Applied Biosystems, USA) using RT Reaction Mix in a total volume of 20 \(\mu \)L with conditions of 95 °C pre-denaturation for 30 s, 95 °C for 30 s, and 60 °C for 30 s for 40 cycles.

Diagnostic criteria
In our Clinical Science Experiment Center, 0.56–1.70 mmol/L serum triglyceride (TG), 3.10–5.17 mmol/L total cholesterol (TC), 0.80–1.05 g/L apolipoprotein (Apo) B, 2.70–3.10 mmol/L low-density lipoprotein cholesterol (LDL-C), 1.20–1.60 g/L ApoA1, 1.16–1.42 mmol/L high-density lipoprotein cholesterol (HDL-C) and a ApoA1/ApoB ratio of 1.00–2.50 were defined as normal values. The diagnostic criteria of hyperlipidaemia [28], hypertension [29], obesity, normal weight, and overweight [30] were referred to in previous studies. Participants who had been previously diagnosed with diabetes and participants with 2-h postprandial plasma glucose \(\geq 11.1 \) mmol/L or fasting plasma glucose \(\geq 7.0 \) mmol/L were defined as diabetic patients [31].

Statistical analyses
All data were x (Version 22.0). The values are presented as the mean ± SD. The chi-square test was used to calculate the differences in the rates between patients and controls. Independent samples \(t \) test was used to analyse differences in general characteristics between patients and controls. Unconditional logistic regression was used to evaluate the relationship between genes and clinical variables and the incidence of CAD or IS. The heatmap and ggplot2 packages (https://cran.r-project.org/) were used to draw the volcano plot and heat map.
Results
Identification of DEGs in GSE97320, GSE66360 and GSE22255
After data normalization and removed of batch differences, a total of 643 genes, including 178 downregulated genes and 465 upregulated genes, were defined as DEGs between the patients with CAD and healthy controls according to the following criteria: |logFC| > 1 and $P < 0.05$. A total of 29 DEGs, including 2 downregulated genes and 27 upregulated genes were identified between IS patients and healthy controls, and 20 common upregulated DEGs between the CAD patients and controls and between IS patients and controls were identified (Table 1 and Fig. 1). Analysis of heatmap clustering and the volcano plot showed that the identified DEGs can easily distinguish patients with CAD or IS from healthy controls (Figs. 2 and 3).

KEGG pathway and GO functional enrichment analysis
The online tool DAVID was used to predict the potential biological functions of the DEGs. A total of 21 KEGG pathways, including the Toll-like receptor signalling pathway (TNF, JUN, $CXCL8$, and $IL1B$); the NF-kappa B signalling pathway (TNF, $CXCL8$, $IL1B$, and $TNFAIP3$); the TNF signalling pathway (TNF, $SOCS3$, JUN, $IL1B$, and $TNFAIP3$), 11 molecular functions, 3 cellular components, and 49 biological processes were enriched in the present study, and GO:0006915~apoptotic process ($IL1B$ and $TNFAIP3$), GO:0042346~positive regulation of NF-kB import into nucleus (TNF and $IL1B$), GO:0045429~positive regulation of nitric oxide biosynthetic process (TNF and $IL1B$), GO:0006954~inflammatory response (TNF, $CXCL8$, $IL1B$, and $TNFAIP3$), GO:0050995~negative regulation of lipid catabolic process (TNF and $IL1B$), GO:0034116~positive regulation of heterotypic cell-cell adhesion (TNF and $IL1B$), GO:0048661~positive regulation of smooth muscle cell proliferation (TNF and JUN), GO:0010803~regulation of tumour necrosis factor-mediated

Table 1 All of 20 common upregulated differentially expressed genes between the groups of CAD or IS and control

Upregulated Gene	CAD vs. control	IS vs. control		
	Log fold change	P-value	Log fold change	P-value
JUN	1.53	1.18E-06	1.53	0.0009
ATF3	1.45	6.13E-12	1.07	0.0306
BRE-AS1	1.04	8.94E-07	1.41	0.0387
CCNL1	1.72	5.33E-09	1.08	0.0018
CXCL2	1.91	6.40E-08	2.27	0.0207
CXCL8	1.50	0.0001	2.65	0.0031
EGR1	1.58	1.66E-05	1.43	0.0086
G0S2	1.35	2.65E-06	2.29	0.0043
IER3	1.94	1.35E-09	1.18	0.0045
IL1B	2.68	3.30E-13	1.55	0.0459
NAMPT	2.03	1.09E-08	1.30	0.0076
NR4A2	2.78	6.33E-14	1.53	0.045
OSM	1.53	3.29E-08	1.17	0.0068
PPP1R15A	1.93	6.47E-12	1.15	0.0132
PTGS2	1.56	9.92E-05	1.76	0.0222
RGS1	1.58	1.30E-06	1.35	0.0259
SAMSN1	1.41	0.0001	1.22	0.0049
SOCS3	1.37	7.20E-07	1.05	0.0291
TNF	1.21	1.45E-05	1.52	0.0059
TNFAIP3	1.34	4.07E-05	1.02	0.0190

Fig. 1 Venn map showing the intersection of DEGs between CAD vs normal and IS vs normal
signalling pathway (TNF and TNFAIP3), GO: 0001525—angiogenesis (JUN and CXCL8) and GO: 0043122—regulation of I-kappaB kinase/NF-kB signalling (TNF and IL1B) were selected for further analysis, as presented in Fig. 4. More detailed information is presented in Supplementary Table 1.
PPI network construction and module analysis for DEGs

A PPI network including 24 nodes and 68 edges was constructed with the STRING online tool. After MCODE analysis, the top 5 high degree genes, including C-X-C motif chemokine ligand 8 (CXCL8, degree = 9), Jun proto-oncogene (JUN, degree = 9), tumour necrosis factor (TNF, degree = 9), suppressor of cytokine signalling 3 (SOCS3, degree = 8), and TNF alpha induced protein 3 (TNFAIP3, degree = 8), were identified in the present study (Fig. 5).

Validation by RT-qPCR

The RT-qPCR results revealed that the expression levels of CXCL8 were increased in IS patients than in normal participants and the expression levels of SOCS3, TNF and TNFAIP3 genes were higher in CAD/IS patients than in normal participants. Meanwhile, there was no difference in the expression of JUN between CAD/IS patients and the control group. The RT-qPCR results in our study were in accordance with the results of the microarray analysis (Fig. 6). The primer sequences for the abovementioned genes are shown in Supplementary Table 2.

Biochemical characteristics and unconditional logistic regression analysis

As mentioned in Table 2, the female to male ratio, age, serum ApoB levels, the proportion of drinkers, height and diastolic blood pressure were similar between the controls and patients. The proportion of smokers, weight, systolic blood pressure, glucose, body mass index (BMI), pulse pressure, and serum LDL-C, TG and TC levels were significantly lower and serum ApoA1, HDL-C levels and the ApoA1/ApoB ratio were significantly higher in controls than in both CAD and IS patients.

Fig. 4 Functional annotation for DEGs. a GO enrichment analysis of DEGs; b KEGG pathways analysis of DEGs

Fig. 5 PPI network construction and identification of hub genes. a PPI network of the selected DEGs. The edge shows the interaction between two genes. Significant modules identified from the PPI network using the MCODE with a score > 6.0. b Module-1 with MCODE = 9
Unconditional logistic regression analysis revealed that the overexpression of $CXCL8$, $SOCS3$, TNF, and $TNFAIP3$, hyperlipidaemia, smoking and diabetes were considered independent risk factors for the incidence of CAD or IS; the incidence of IS was also positively correlated with hypertension, and the incidence of CAD was negatively correlated with alcohol consumption (Fig. 7).

Discussion

Currently, the diagnosis of CAD is based on ischaemia-related symptoms, detailed physical examination, electrocardiogram changes, elevated biomarkers of myocardial injury and coronary angiography [32, 33]. Meanwhile, the diagnosis of ischaemic stroke (IS) is also based on the patient’s symptoms, signs, strict neurological examination and serum lipid levels.

Table 2 Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants

Characteristic	Control (n = 203)	Case	P vs. controls		
Male/female	149/54	160/58	146/56	P<0.05	P<0.05
Age (years)	61.61 ± 11.95	62.32 ± 10.53	62.73 ± 12.37	0.270	0.111
Height (cm)	164.61 ± 7.37	165.18 ± 7.03	163.93 ± 7.33	0.419	0.352
Weight (kg)	53.75 ± 9.10	65.94 ± 10.58	62.94 ± 11.13	0.000	0.000
BMI (kg/m²)	19.94 ± 3.76	24.11 ± 3.21	23.34 ± 3.42	0.000	0.000
Smoking, n %	67(33.0)	98 (45.0)	88(43.6)	0.013	0.032
Alcohol, n %	54(26.6)	60(27.5)	57(28.2)	0.913	0.739
SBP (mmHg)	130.00 ± 18.91	136.70 ± 22.63	147.78 ± 21.02	0.001	0.000
DBP (mmHg)	80.78 ± 11.45	79.30 ± 13.19	82.78 ± 11.61	0.219	0.082
PP (mmHg)	49.22 ± 14.39	57.40 ± 19.97	65.00 ± 17.15	0.000	0.000
Glu (mmol/L)	6.08 ± 1.80	6.46 ± 1.87	6.44 ± 1.52	0.034	0.030
TC (mmol/L)	4.43 ± 1.00	4.79 ± 1.35	4.70 ± 1.05	0.003	0.010
TG (mmol/L)	1.35 ± 1.20	1.76 ± 1.12	1.63 ± 1.60	0.000	0.049
HDL-C (mmol/L)	1.85 ± 0.47	1.15 ± 0.32	1.25 ± 0.37	0.000	0.000
LDL-C (mmol/L)	2.76 ± 0.98	3.03 ± 1.09	2.95 ± 0.81	0.008	0.034
ApoA1 (g/L)	1.41 ± 0.33	1.01 ± 0.31	1.02 ± 0.22	0.000	0.000
ApoB (g/L)	0.93 ± 0.20	0.95 ± 0.27	0.89 ± 0.26	0.378	0.084
ApoA1/ApoB	1.58 ± 0.47	1.15 ± 0.50	1.28 ± 0.49	0.000	0.000

SBP Systolic blood pressure, DBP Diastolic blood pressure, PP Pulse pressure, Glu Glucose, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, Apo A Poloprotein, TC Total cholesterol, TG Triglyceride

* Continuous data were presented as means ± SD and determined by two side t-test

* A chi-square analysis was used to evaluate the difference of the rate between the groups
and MRI scans [34]. However, the early diagnosis of CAD and IS is still limited. As a novel and practical approach for identifying CAD and IS susceptibility genes, microarray analysis may be helpful for the early diagnosis of CAD and IS [14, 15]. However, the sensitivity and reproducibility of microarray results may be limited [16, 17]. Thus, it is important for us to identify several new biomarkers for the early diagnosis of CAD and IS through the integrated analysis of different datasets. Therefore, in the present research, we integrated and analysed two different CAD datasets and an IS dataset, identified 20 common DEGs to further and analysed their KEGG pathways, GO functional enrichment, and PPI networks and modules to define five significantly DEGs (CXCL8, TNF, SOCS3, TNFAIP3, and JUN). However, when we verified the above results in our experiment, we found that the expression of CXCL8, TNF, SOCS3, and TNFAIP3 was higher in patients with CAD or IS than in healthy controls and that there was no significant difference in the expression of JUN between CAD or IS patients and the control group.

A recent study showed that CAD and IS result from various factors and can be influenced by genomic background, lifestyle, environmental factors, alterations in plasma lipid levels and the interactions of these factors [13]. Atherosclerosis is generally regarded as the pathological foundation of CAD [8] and IS [9]. Actually, atherosclerosis is not only a lipid-driven disease, but also a type of chronic inflammatory process involving numerous inflammatory cells and mediators [35]. The toll-like receptor signalling pathway plays a crucial role in inflammatory and autoimmune diseases. TNF-α is one of the most important members of the TNF superfamily. It is mainly secreted by macrophages and participates in the regulation of a wide spectrum of biological processes, including cell proliferation, lipid metabolism, apoptosis and differentiation. All of the above biological processes can lead to chronic immunoinflammatory lesions that eventually result in atherosclerosis [38]. Previous studies have proven that the NF-kappa B (NF-kB) signalling pathway plays a key role in the inflammatory reaction, leading to the transcription of genes involved in endothelial inflammation and injury. TNF-α is a major inflammatory cytokine involved in activating the NF-kB signalling pathway to induce the production of more inflammation mediators and reactive oxygen species [39, 40]. At the same time, numerous scientific studies have shown that, in atherogenesis, increased levels of IL-1β and TNF-α, as the two leading mediators of the inflammatory response, in result from increased transcriptional activity of the NF-kB gene [41, 42]. A recent compelling study showed that quercetin may play an anti-inflammatory role in the treatment of stable coronary heart disease by reducing the transcriptional activity of the NF-kB gene [43]. Similar studies have also shown that NF-kB acts as a key regulator of various genes involved in inflammation and cell survival and is activated after cerebral ischaemia in microglia, neurons, astrocytes and infiltrating inflammatory cells [44]. These results show that the TNF and NF-kB signalling pathways may be involved in the development of CAD and IS. In the
present study, enrichment analysis of KEGG pathways indicated that the TNF, SOCS3, JUN, and TNFAIP3 genes may be involved in the TNF signalling pathway and that TNF, CXCL8 and TNFAIP3 may be involved in the NF-kB signalling pathway. Meanwhile, cytokine-cytokine receptor interactions (TNF, CXCL8, and IL1B) and the NOD-like receptor signalling pathway (TNF, CXCL8, IL1B, TNFAIP3) were also identified in our study.

In addition, several main biological processes that may be involved in chronic inflammatory lesions that eventually result in atherosclerosis were identified by GO functional enrichment analysis of DEGs, such as GO:0006915—apoptotic process (TNFAIP3), GO:0042346—positive regulation of NF-kB import into nucleus (TNF), GO:0045429—positive regulation of nitric oxide biosynthetic process (TNF), GO:0006954—inflammatory response (TNF, CXCL8 and TNFAIP3), GO:0050995—negative regulation of lipid catabolic process (TNF), GO:0048661—positive regulation of smooth muscle cell proliferation (TNF), GO:0010803—regulation of tumour necrosis factor-mediated signalling pathway (TNF) and TNFAIP3), GO:0001525—angiogenesis (CXCL8), GO:0042517—positive regulation of tyrosine phosphorylation of Stat3 protein (SOCS3) and GO:0043122—regulation of I-kappaB kinase/NF-kB signalling (TNF). This information about the relevant pathways is not novel; however, the analytical approach is different from that of previous studies. Thus, the combination of previous and current research results revealed that TNF, CXCL8, SOCS3 and TNFAIP3 may be involved in chronic inflammatory lesions that eventually result in atherosclerosis, CAD or IS. Furthermore, RT-qPCR and unconditional logistic regression also validated the above results in our CAD and IS patients. We obtained results that were consistent with those of the microarray analysis, which might increase the credibility of the conclusions.

Conclusions
Two microarray CAD datasets and an IS dataset were integrated and analysed in the present study. Five hub genes (SOCS3, JUN, TNF, CXCL8, and TNFAIP3) were identified following GO functional enrichment analysis, KEGG pathway enrichment analysis, PPI network construction and MCODE analysis, but only four genes (SOCS3, TNF, CXCL8, and TNFAIP3) were verified by RT-qPCR in our CAD or IS patients. The CXCL8, TNF, SOCS3, TNFAIP3 genes, which are associated with inflammation, may serve as biomarkers for the diagnosis of CAD or IS. The mechanism may involve the TNF signalling pathway, the Toll-like receptor signalling pathway, the NF-kappa B signalling pathway, cytokine-cytokine receptor interactions and the NOD-like receptor signalling pathway.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12944-020-01217-7.

Additional file 1: Table S1 KEGG pathways and GO function enrichment analyses of twenty common upregulated-DEGs. Table S2 PCR primers for quantitative real-time PCR

Abbreviations
Apo: Apolipoprotein; BMI: Body mass index; CAD: Coronary artery disease; CXCL8: C-X-C motif chemokine ligand 8; DAVID: Database for Annotation, Visualization and Integrated Discovery; DEGs: Differentially expressed genes; GEO: Gene Expression Omnibus; GO: Gene Ontology; HDL-C: High-density lipoprotein cholesterol; IS: Ischemic stroke; JUN: Jun proto-oncogene; KEGG: Kyoto Encyclopedia of Genes and genomes; LDL-C: Low-density lipoprotein cholesterol; logFC: Log fold change; MACEs: Major adverse cardiac events; MCODE: Molecular Complex Detection; MRI: Magnetic resonance imaging; NF-kB: NF-kappa B; PPI: Protein-protein interaction; RT-qPCR: SOCS3: Suppressor of cytokine signaling 3; T2DM: Type 2 diabetes mellitus; TC: Total cholesterol; TG: Triglyceride; TNF: Tumor necrosis factor; TNFAIP3: TNF alpha induced protein 3

Acknowledgements
We thank all the participants of this study.

Authors’ contributions
P.F.Z. and F.-J.L. conceived the study, participated in the design, performed the statistical analyses, and drafted the manuscript. R.-X.Y. conceived the study, participated in the design, carried out the epidemiological survey, collected the samples, and helped to draft the manuscript. L.-Z.C., H.L., R.-J.N., Y.W. and P.-J.L. carried out the epidemiological survey and collected the samples. All authors read and approved the final manuscript.

Funding
This study was supported by the National Natural Science Foundation of China (No: 81460169). There was no role of the funding body in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The study design was approved by the Ethics Committee of the First Affiliated hospital, Guangxi Medical University (No: Lunshen-2011-KY-Guoji-001; March 7, 2011). Informed consent was obtained from all participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, People’s Republic of China. 2Department of Cardiology, the First Affiliated Hospital, Guizhou Medical University, 28 Guyi Street, Guiyang 550000, Guizhou, People’s Republic of China. 3Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, 6 Shuangyong Road, Nanning 530021, Guangxi, People’s Republic of China. 4Guangxi Medical University, 71 Hedi Road, Nanning 530021, Guangxi, People’s Republic of China. 5Department of Cardiology, Shaoyang Central Hospital, 36 QianYuan lane, Shaoyang 420020, Hunan, People’s Republic of China. 6Clinical Laboratory of The Affiliated Cancer Hospital, Guangxi Medical University, 1186/s12944-020-01217-7.
Received: 5 August 2019 Accepted: 3 March 2020
Published online: 12 March 2020

References

1. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease—the Framingham Heart Study. Can J Cardiol. 1988;4(Suppl A):5A–10A.

2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SH, Alvarado M, Anderson HR, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–128.

3. Finegold JA, Asaria P, Francis DP. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol. 2013;168(2):934–45.

4. Bonita R. Epidemiology of stroke. Lancet. 1992;339(8789):342–4.

5. Roberts R, Stewart AF. The genetics of coronary artery disease. Curr Opin Cardiol. 2012;27(3):221–7.

6. Dichgans M. Genetics of ischaemic stroke. Lancet Neurol. 2007;6(2):149–61.

7. Marenberg ME, Risch N, ., Berkman LF, Floderus B, ., Faire U, De. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 1994; 330(15): 1041–1046.

8. Libby P, Surroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481–8.

9. Holmstedt CA, Turan TN, Chirmowitz M. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 2013;12(11): 1106–14.

10. Banerjee A, Lim CC, Silver LE, Welch SJ, Banning AP, Rothwell PM. Familial history of stroke is associated with acute coronary syndrome in women. Circ Cardiovasc Genet. 2011;4(1):19–5.

11. Kannel WB, Wolf PA, Verter J. Manifestations of coronary disease predisposing to stroke. The Framingham study. JAMA. 1982;248(25):2946–2950.

12. Sacco RL, Benjamin EJ, Broderick JP, Dyken M, Easton JD, Feinberg WM, Goldstein LB, Gorelick PB, Howard G, Kittner SJ, Manolio TA, Whitman JP, et al. American Heart Association prevention conference. V. Prevention and rehabilitation of stroke. Risk factors. Stroke. 1997;28(1):1507–17.

13. Zhang Q-H, Yin R-X, Chen W-X, Cao X-L, Wu J-Z. TRB181 and TRP51 variants, G×G and G×G interactions on serum lipid levels, the risk of coronary heart disease and ischemic stroke. Sci Rep. 2015;5:12376.

14. Sinnaeve PR, Donahue WP, Grass P, Ten D, Vonderviszt J, Chiboust SD, Kraus WE, Sketch M Jr, Nelson C, Ginsburg GS, Goldschmidt-Clermont PJ, Granger CB. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS One. 2009;4(9):e7037.

15. Lin J, Kakkar V, Lu X. Essential roles of toll-like receptors in atherosclerosis. Curr Med Chem. 2016;23(30):451–64.

16. Cole JE, Georgiou E, Monaco C. The expression and functions of toll-like receptors in atherosclerosis. Curr Med Chem. 2011;18(22):2927–60.

17. Lin J, Kakkar V, Lu X. Essential roles of toll-like receptors in atherosclerosis. Curr Med Chem. 2016;23(30):451–64.

18. Cole JE, Georgiou E, Monaco C. The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010;2010:393946.

19. Garab-Herrero L, Lazo PS. Signal transduction by tumor necrosis factor and their haplotypes with serum lipid levels and the risk of coronary artery disease and ischemic stroke. Lipids Health Dis. 2018;17(1):30.

20. Shaw LJ, Shi L, Sheng C, Chen C, Liao H, Wu Z, et al. Knockout-ANGPTL3 SNPs and their haplotypes with serum lipid levels and the risk of coronary artery disease and ischemic stroke. J Transl Med. 2010;8:14.

21. Tripathi T, Tripathi J, Tripathi B. Inhibition of NF kappa B in stable coronary artery disease: is there a role? J Cereb Blood Flow Metab. 2012;32(6):1061–6.

22. Ridder DA, Schwaninger M. NF-kappaB signaling in cerebral ischemia. Neuroscience. 2009;158(3):995–1006.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.