The Global Spike: Conserved Dendritic Properties Enable Unique Ca^{2+} Spike Generation in Low-Threshold Spiking Neurons

William M. Connelly,1,4 Vincenzo Crunelli,1,3 and Adam C. Errington2

1Neuroscience Division, School of Biosciences, and 2Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom, 3Department of Physiology and Biochemistry, University of Malta, Msida MSD 2080, Malta, and 4Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra City, Australian Capital Territory 2600, Australia

Low-threshold Ca^{2+} spikes (LTS) are an indispensable signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson’s disease, and schizophrenia. However, although dendritic T-type Ca^{2+} channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca^{2+} imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca^{2+} spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca^{2+}/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons.

Key words: dendrites; low-threshold spike; T-type Ca^{2+} channel; thalamic reticular nucleus; thalamocortical

Significance Statement

Low-threshold Ca^{2+} spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson’s disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca^{2+} channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca^{2+} imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons.

Introduction

Action potential bursts after transient membrane potential hyperpolarization were first described in the thalamus by Andersen.
and Eccles (1962), a feature they termed “postanodal exhalta-
tion.” Subsequently, after detailed characterization (Descênes et al., 1984; Jahnson and Llinás, 1984a,b), the underlying phenom-
emon has become known as the “low-threshold spike” (LTS) and has been described in cells including subthalamic neurons (Na-
kanishi et al., 1987), cortical (Goldberg et al., 2004) and striatal
(Kawaguchi, 1993) interneurons, serotonergic dorsal raphe neu-
rons (Burlhis and Aghajanian, 1987), neurons of the inferior ol-
ivary nucleus (Llinás and Yarom, 1981a), and deep cerebellar
nucleus neurons (Llinás and Mäthlehaler, 1988).

Nevertheless, LTS are most prominent in glutamatergic
thalamocortical (TC) neurons and GABAergic neurons of the
thalamic reticular nucleus (TRN) where they are essential for
normal thalamic function. LTS play an indispensible role in
rhythmic sleep-related activity including delta waves (Steriade et al., 1991), slow (<1 Hz) oscillations (Steriade et al., 1993; Hughes et al., 2002; Blethyn et al., 2006), and 7–14 Hz sleep spindles (Contreras and Steriade, 1996) and also mediate an attention-
dependent thalamic “wake-up” signal to the cortex during wake-
fulness (Swadlow and Gusev, 2001). Moreover, LTS have been
implicated in several serious pathological conditions including
epilepsy (Pinault et al., 1998), Parkinson’s disease (Magnin et al., 2000), and schizophrenia (Ferrarelli et al., 2010).

Recently, Ca2+-imaging studies in TC (Errington et al., 2010, 2012; Sieber et al., 2013) and TRN (Crandall et al., 2010; Chausson et al., 2013) neurons demonstrated that LTS are asso-
ciated with widespread dendritic T-type Ca2+ channel-
dependent Ca2+ influx. Consistent with computational studies
(Destexhe et al., 1998; Zomorrodii et al., 2008), these findings
imply a central role for dendritic T-type Ca2+ channels in LTS
generation. However, these data do not explain how the LTS is
generated. In fact, three plausible, but distinct, models could be
reasoned to explain these results. First, like Na+ −mediated action
potentials (Stuart et al., 1997), LTS might originate in the axo-
somatic region and activate dendritic T-type Ca2+ channels by
active or passive dendritic backpropagation. This mechanism
was originally favored for LTS by Llinás and Yarom (1981b) in in-
ferior olivary neurons. Second, like dendritic Ca2+ (Schiller et al., 1997) or NMDA (Schiller et al., 2000) spikes, LTS might be locally
triggered in dendrites by activation of high-density T-type Ca2+
channels before propagating throughout the cell. Third, the
electrotonic properties of low-threshold (LT)-spiking neurons mean
that, although they are widely distributed in space, T-type Ca2+
channels can be simultaneously activated throughout the soma-
todendritic tree to generate a unique “global spike,” a mechanism
suggested for TC neurons in a computational modeling study
by Neubig and Sejnowski (2000). Since each has different im-
plications for dendritic signaling in LT-spiking neurons, un-
derstanding which mechanism underlies LTS generation is
critical. However, to test these hypotheses, knowledge of the
dendritic properties of LT-spiking neurons is required, and,
unfortunately, this is almost completely absent from our cur-
rent understanding.

Here, using dual somatodendritic recordings, Ca2+-imaging,
and computational modeling, we demonstrate that despite dif-
fferences in morphology and functional roles, TC and TRN neu-
rons have highly conserved dendritic electrical properties. We
find that these properties, including highly asymmetric somato-
dendritic voltage transfer, underpin simultaneous recruitment of
spatially distributed T-type Ca2+ channels that act in concert to
generate a distinctive global Ca2+ spike. This unique mechanism,
which we predict is shared by all LT-spiking cells, sets the LTS
apart from other dendritic electrical and biochemical signals and
has important consequences for synaptic signaling, integration
and plasticity.

Materials and Methods
Electrophysiology. Coronal slices (250–300 μm) containing the dorsal
lateral geniculate nucleus (dLGN) and horizontal slices containing the
TRN were prepared from postnatal day 20–25 (P20–P25; dLGN) and
P17–P21 (TRN) Wistar rats of either sex, which were deeply anesthetized
using isoflurane, as described by Errington et al. (2010) and with ap-
proval of the Cardiff University Research Ethics Committee and in ac-
cordance with the Home Office Animals (Scientific Procedures) Act
1986, United Kingdom. For recording, slices were transferred to a sub-
mersion chamber continuously perfused with warmed (33–34°C) ACSF
[in mM: 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 Na2HPO4, 25
NaHCO3, and 25 α-glucose (305 mOsm)] at a flow rate of 2.5–3 ml/min.
Somatic whole-cell patch-clamp recordings were made from TC and
TRN neurons (visually identified by infrared gradient contrast video
microscopy) using a Multiclamp 700B amplifier (Molecular Devices)
and pipettes with resistances of 4–6 MΩ when filled with an internal
solution containing (in mM) 130 K-glucate, 20 KCl, 10 HEPES, 0.16
EGTA, 2 Mg-ATP, 2 Na2-ATP, and 0.3 Na2-GTP, pH 7.3 (295 mOsm),
and supplemented with 50 μM Alexa 594 (Invitrogen). Recording solu-
tions did not routinely include any synaptic blocking drugs or other
blocking toxins unless specifically indicated. Electrophysiological data
were sampled at 20–50 kHz and filtered at 6 kHz. Somatic series
resistance at the start of experiments was between 9 and 15 MΩ and varied
≈20% during recordings. Two-photon fluorescence microscopy, using a
Prairie Ultima (Prairie Technologies) microscope and titanium/sapphire
pulsed laser (Chameleon Ultra II; Coherent) tuned to 810 nm, was
combined with infrared scanning gradient contrast to make targeted
dendritic patch-clamp recordings from thin (~0.7–2 μm) dendrites of
TC (see Fig. 2A) and TRN (see Fig. 3A) neurons. Dendritic recording
pipettes were made from borosilicate glass capillaries (BF200-100-10;
Sutter Instruments) and had resistances of 25–40 MΩ when filled with
the internal recording solution described above. This resulted in record-
ings that had high series resistance values (TC: 60–105 MΩ, 79.6 ± 1.8
MΩ, n = 28; TRN: 35–71 MΩ, 53.5 ± 2.0 MΩ, n = 20). However, series
resistance of dendritic recordings was not correlated with distance of the
recording site from the soma in either TC (n = 28; r = 0.07; p = 0.70,
Pearson’s r test; Fig. 1E) or TRN (n = 20; r = 0.22; p = 0.36, Pearson’s r
test; Fig. 1F) neurons. Nonetheless, since the recording pipette behaves
as a low-pass filter with a cutoff frequency inversely proportional to its
resistance (Rp) and capacitance (Cp), it is critical that careful compensa-
tion is performed so that high-frequency dendritic voltages are mini-
dantly distorted. Thus, dendritic and somatic bridge balance and pipette
capacitance neutralization were carefully adjusted and monitored
throughout experiments by application of low-frequency (50 Hz), low-
resistance current steps (10–40 pA). Importantly, in our recordings,
although the low capacitance and high input resistance of the dendrites
resulted in large and rapid dendritic voltage responses, these were con-
siderably slower than the near instantaneous voltage drop observed with
an “unbalanced bridge.” Nonetheless, absolutely “perfect” bridge bal-
ance may not have been achieved in each recording. However, potential
small errors in bridge balance settings cannot account for the dendritic
voltage responses and input resistances we measure (see Results).
We tested the ability of high-resistance electrodes to record membrane po-
tential transients by performing dual somatic recordings from TC neu-
rons with high-resistance (Rp: 69.4 ± 5.3 MΩ, n = 3) and low-resistance
(Rp: 10.3 ± 0.7 MΩ, n = 3; Fig. 1A–C) electrodes. We found no signifi-
cant (p > 0.49, paired t test) difference in the amplitude of action poten-
tials recorded by high-resistance electrodes versus low-resistance electrodes (Fig. 1B,C), consistent with previous findings (Nevian et al.,
2007; Ballther et al., 2009; Larkum et al., 2009; Kruepeli et al., 2011).
Thus, we conclude that compensation can be performed accurately even
for high-resistance electrodes and that the dendritic voltages we report
are accurate.

Measurement of steady-state electrotonic parameters. To measure the
steady-state voltage and current transfer properties of dendrites, long
current injection steps were used (500–1000 ms). Current was injected at

15506 • J. Neurosci., November 25, 2015 • 35(47):15505–15522
Connelly et al. • The Global Low-Threshold Spike
either the somatic or dendritic recording electrode resulting in four possible voltage measurements, namely the voltage at the soma with somatic injection (VSS), voltage at the dendrite with somatic injection (VDs), voltage at the soma with dendritic injection (VSD), and voltage at the dendrite with dendritic injection (VDD). Local somatic and dendritic input resistance (R\textsubscript{N}) was measured by dividing the average (over 50 ms) local voltage response at the end of the step by the injected current (R\textsubscript{N} = VSD / I\textsubscript{S} and R\textsubscript{N dendrite} = VDD / I\textsubscript{D}). The transfer resistance (R\textsubscript{C}) was measured by dividing the voltage response at the noncurrent injecting electrode by the current injected at the reciprocal electrode (R\textsubscript{C} = VSD / I\textsubscript{D} or VDD / I\textsubscript{S}). Steady-state voltage transfer between soma and dendrites (VSS → VD\textsubscript{S}) was defined by VD\textsubscript{S} / VSS and between dendrites and soma (VDD → VSD) by VSD / VDD. Current transmission was calculated as the ratio of current arriving at the soma to the current injected into the dendrite. According to Ohm’s law, the current arriving at the soma is equal to the somatic voltage response to current injected in the dendrite.

![Figure 1](image-url)
divided by the somatic \(R_N \). Therefore, the current transmitted to the soma is \(I_s = V_S / R_N = V_{SP2} / V_{SN} \). To quantify the relationship between measured values (e.g., steady-state voltage attenuation) and the distance between the dendritic and somatic recording electrodes, data were fit with a mono-exponential function, \(f(x) = \exp(-x / A_{eff}) \), to yield the ‘effective space constant’ \(A_{eff} \). Approximations of the electrotonic lengths \((L) \) of TC and TRN neuron dendrites were calculated based on the space constant \((A_{eff}) \) derived from decaying exponential fits to our dendritic recording data \((L = \text{physical dendritic length}/A_{eff}) \). Estimates of the mean physical lengths of TC \((160 \mu m)\) and TRN \((400 \mu m)\) neuron dendrites were based on previous detailed anatomical measurements made by Ohara and Havyon \((1994; \text{TC}), \text{Spreafico et al. (1991; \text{TRN})}, \text{and Lübke (1993; \text{TRN})} \).

Low-threshold spikes were evoked by injection of depolarizing \((40 – 120 \text{ pA})\) and/or hyperpolarizing \((-80 – 200 \text{ pA})\) current steps \((1 \text{ s})\) duration) into the somatic and dendritic recording electrodes in TC and TRN neurons held at their resting membrane potential. In TC neurons, rebound bursts were evoked by hyperpolarizing the soma from the resting membrane potential to \(-82.5 \pm 1.5 \text{ mV} \) \((n = 28)\). In TRN, cells were held at \(-55 \text{ mV} \) and hyperpolarized to \(-70.3 \pm 1.4 \text{ mV} \) \((n = 20)\). For TC neurons, the peak amplitude was measured as the difference between the peak of the \(\text{Ca}^{2+} \) spike component of the LTS and the resting membrane potential immediately before LTS were evoked (see Fig. 6A). In TRN neurons, all quantitative data are derived from measuring the peak of the \(\text{Ca}^{2+} \) spike component of the LTS in TTX \((0.5 \mu m)\) and the resting membrane potential. Although we evoked LTS using both hyperpolarizing (from rest in TC neurons and from \(-55 \text{ mV} \) in TRN neurons) and depolarizing current steps, quantitative data are derived only from depolarizing currents. LTS threshold was determined as the point at which the first derivative \((dV/dt)\) of the membrane potential resulting from the minimum depolarizing current step required to generate an LTS exceeded \(0.5 \text{ mV} \cdot \text{s}^{-1} \).

Frequency-dependent impedance. Impedance \((Z)\) was obtained by injecting a sinusoidal frequency-modulated current \((I_{\text{CHIRP}}) \) of linearly increasing frequency \((0.1 – 20 \text{ Hz})\) and \(10 \text{ s}\) duration into either the somatic or dendritic recording pipette. \(I_{\text{CHIRP}} \) was calculated by the following:

\[
I_{\text{CHIRP}} = A \sin \left(\frac{\pi f_{\text{max}} t}{f_{\text{max}}} \right)
\]

where \(A \) is the peak-to-peak amplitude, \(f_{\text{max}} \) is the peak frequency reached at time \(t_{\text{max}} \) and \(t \) is time \((\text{starting at zero})\). Fast Fourier transforms \((\text{FFTs})\) of the time domain current and voltage traces produced complex numbers comprising real, \(\text{Re} (f) \), and imaginary, \(\text{Im} (f) \), parts that represent the signal in the frequency domain. Subsequently, the impedance magnitude was calculated by the following:

\[
|Z(f)| = \sqrt{[\text{Re}(Z(f))]^2 + [\text{Im}(Z(f))]^2}
\]

and the impedance phase \((\text{in radians})\) was calculated by the following:

\[
\phi(f) = \tan^{-1} \frac{\text{Im}(Z(f))}{\text{Re}(Z(f))}
\]

Somatic and/or dendritic input impedance amplitude profiles \((\text{ZAP})\) were calculated by dividing the magnitude of the local voltage response \(|Z(f)_{\text{local voltage}}| \) by the magnitude of the local current injection \(|Z_N| = Z(f)_{\text{local voltage}}/Z(f)_{\text{local current}} \). The amplitude of \(I_{\text{CHIRP}} \) \((\pm 20 \text{ pA})\) was adjusted to keep voltage responses below the threshold for LTS initiation, and the lowest frequency analyzed was \(0.5 \text{ Hz}\) to avoid boundary artifacts of the FFT \((\text{spectral resolution}, 0.15 \text{ Hz})\). Transfer impedance amplitude profiles \((\text{ZAP})\) were calculated by injecting \(I_{\text{CHIRP}} \) into the somatic or dendritic recording electrode and recording the voltage response at the reciprocal electrode \((V_{\text{reciprocal}}) \). Thus, \(Z_{\text{reciprocal}} = Z(f)_{\text{reciprocal voltage}}/Z(f)_{\text{local current}} \). Input impedance phase profiles \((\text{ZPP})\) were calculated as the algebraic difference between the phase of the local voltage response \(\Phi(f)_{\text{local voltage}} \) and the local current input \(\Phi(f)_{\text{local current}} \). Transfer impedance phase profiles \((\text{ZPP})\) were calculated as the algebraic difference between phase of the local injected current \(\Phi(f)_{\text{local current}} \) and the phase of the voltage at the reciprocal electrode \(\Phi(f)_{\text{reciprocal voltage}} \). All voltages represent averages of five trials.

Somatic \(ZAP_N \) were fit with a single-pole resistance and capacitance transfer function of the following form:

\[
Z_{\text{reciprocal \; cell}} = \frac{1}{\left[1 + R \cdot C \cdot (2\pi f)^2 \right]}
\]

where \(R \) is resistance \((\text{constrained to fit the mean somatic steady-state \(R_{N} \)}) \) \(C \) is capacitance, and \(f \) is frequency. The cutoff frequency \((f_c)\) was calculated as follows:

\[
f_c = \frac{1}{2 \pi R C}
\]

Two-photon \(\text{Ca}^{2+} \) imaging. Two-photon \(\text{Ca}^{2+} \) imaging and focal TTA-P2 application were performed using a Prairie Ultima microscope \((\text{Prairie Technologies})\) and titanium/sapphire pulsed laser \((\text{Chameleon Ultra II; Coherent})\) tuned to \(\lambda = 810 \text{ nm} \) as previously described in detail by Errington et al. \((2010)\). Briefly, the internal patch pipette solution, described above, was supplemented with the red \(\text{Ca}^{2+} \)-insensitive dye Alexa Fluor 594 \((25 \mu m)\) and the green \(\text{Ca}^{2+} \) indicator Fluo 5F \((300 \mu m)\), and cells were allowed to fill for 20 min before commencing experiments. Line scans were performed at 500 Hz \((2 \text{ ms per line})\) at selected dendritic regions of interest, and the ratio of green over red fluorescence \((\Delta G/R)\) was measured as the stimulus-evoked change in intracellular \(\text{Ca}^{2+} \).

Computational modeling. Simulations were performed using NEURON 7.2 \((\text{Carnevale and Hines, 2006})\). A morphologically accurate model cell was taken from the study by Briska et al. \((2003)\). Briefly, they prepared brain slices \((500 \mu m)\) from adult Sprague Dawley rats \((100 – 300 \text{ g})\), and a biocytin-filled TC neuron from the dLGN was reconstructed using the NeuroLucida system \((\text{see Fig. 9A})\). This was subsequently used to produce a multicompartmental NEURON model comprising 196 sections with a total of 684 segments. We obtained passive biophysical properties by fitting the model cell to the parameters that gave the best fit to our somatic and dendritic recordings using the principal axis method \((\text{PRAXIS})\). Initially, axial resistance \((R)\) and specific membrane capacitance \((C_m)\), along with a rough approximation of membrane conductance, were estimated using purely passive conditions. Fits were made to somatic and dendritic voltage transients obtained during dual physiological recordings in response to 3 \text{ ms}, \(-100 \text{ pA} \) current injections steps. This approach yielded best-fit estimates for \(R_1 \) of \(170 \Omega \cdot \text{cm}^2 \) and \(C_m \) of 0.7 \(\mu \text{F/cm}^2 \). Leak conductance \((\text{GL})\) and hyperpolarization-activated cyclic nucleotide-gated conductance \((\text{H-current}, \text{g_H})\) were then estimated by fitting the model to voltages evoked by longer 500 ms current steps of \(-40 \text{ pA}\). Several different models of \(\text{g_H} \) were tested, but our recordings were best described by the rate of \(\text{g_H} \) activation in the model proposed by McCormick and Pape \((1990)\). Fitting was attempted with linear variation of the density of these conductances along the somato-dendritic axis. The data were, however, found to be best fit with an invariant channel density, a finding that is consistent with previous \(\text{in vitro} \) findings \((\text{Williams and Stuart, 2000})\). Several models of T-type \(\text{Ca}^{2+} \) channels were investigated, and the best fit to our data was obtained using the model proposed by Destexhe et al. \((1998)\). The gating of the T-type \(\text{Ca}^{2+} \) channel was shifted by 12 mV in the hyperpolarizing direction. This was necessary to account for differences in recording conditions between our study, where a liquid junction potential of 12 mV was not corrected for, and the study by Huguenard and Prince \((1992)\), which obtained the experimental data used by the model of Destexhe et al. \((1998)\). Variations in somatodendritic T-type conductance distribution were tested. When channels were restricted to the soma and/or proximal dendrites, the intracellular dendritic calcium transients \((\Delta \text{Ca}^{2+})\) previously reported \((\text{Crandall et al., 2010; Errington et al., 2010, 2012; Sieber et al., 2013})\) could not be reproduced. However, using a uniform somatodendritic channel density distribution produced the best fit to electrophysiological recordings as well as producing the roughly uniform \(\Delta \text{Ca}^{2+} \) described in our previous study. To describe intracellular \(\text{Ca}^{2+} \) accumulation and removal, a simple \(\text{Ca}^{2+} \) extrusion mechanism was inserted. This model was described by McCormick and Huguenard \((1992)\) and had first-order
kinetics leading to extrusion of Ca$^{2+}$ to a final resting concentration of 200 mM, with a time constant of 5 ms. A Ca$^{2+}$-activated cation channel (g_{Ca}) was included in our model using values calculated by Destexhe et al. (1994). Fast voltage-gated sodium channels (g_{Na}) were included from the study by Destexhe et al. (1998). Finally, an inwardly rectifying potassium channel (g_{KIR}) was required to accurately reproduce the steady-state $I-V$ behavior observed during dual recordings. The model used is described by Williams et al. (1997); although we found that a shift of 15 mV in the depolarizing direction was required to allow the model to match our electrophysiological data. Once the necessary channels were inserted into the model, we recalculated g_{KLEAK} by fitting to electrophysiological data, to account for their conductance at rest.

Thus, our final model comprised the following: g_{KLEAK} was modeled with a reversal potential of -79 mV and conductance of $150 \; \mu$S/cm2, and g_{Na} had a reversal potential of -45 mV and peak conductance of $150 \; \mu$S/cm2. T-type Ca$^{2+}$ channels (g_{t}) were modeled with a reversal potential of 120 mV and a permeability of $0.7 \; \mu$S/m/s. The g_{Ca} had a conductance of $250 \; \mu$S/cm2 and reversal potential of -20 mV. The g_{KIR} and the fast voltage-gated potassium channel (g_{K}) had conductances of $20 \; \mu$S/cm2 and $50 \; \mu$S/cm2, respectively. Both potassium channels had reversal potentials of -100 mV. The g_{Na} had conductance of $50 \; \mu$S/cm2 and reversal potential of 50 mV. Throughout this manuscript, when referring to the ability of g_{t} to provide current, we use the term “conductance” rather than “permeability.” Whereas the model is in actuality based on permeability rather than conductance, we use this naming convention to simplify the text.

Simulations were solved with a fixed time step of $50 \; \mu$s or using the implicit variable time-step solver CVODE, depending on the nature of the simulation (Cohen and Hindmarsh, 1996). Dendrites used for simulations were selected based on their morphology. In most model dendrites, overall dendritic lengths were very similar. In comparison, the length of the primary dendrites varied, and thus the higher-order thin dendrites also had different dendritic path lengths. Primary dendrites, because of their relatively large diameter, added little axial resistance, and thus distal dendrites arising from longer first-order dendrites had lower input resistance than those arising from shorter primary dendrites. Thus, we selected four dendrites with input resistance profiles that encompassed the range we found in our experiments (see Fig. 9A).

Data analysis and statistics. Data analysis was performed using pClamp 10 (Molecular Devices), MatLab (Mathworks), ImageJ (NIH), and Prism (GraphPad Software) software. Distance measurements were performed on image stacks collected at the end of recordings using MetaMorph (Molecular Devices) as described by Errington et al. (2010). Statistical testing was by paired/unpaired t-test, repeated-measures ANOVA, or Pearson’s r test where appropriate. Space constants were derived from exponential fits to the experimental data. All values are given as mean ± SEM.

Results
Conserved steady-state electrical properties between TC and TRN neuron dendrites

Previous studies indicate that the majority of T-type Ca$^{2+}$-channels responsible for generating LTS in LT-spiking neurons are found in their dendrites (Destexhe et al., 1998; Williams and Stuart, 2000; Crandall et al., 2010; Errington et al., 2010). Therefore, to investigate the mechanism underlying LTS generation, we first characterized the basic electrotonic properties of LT-spiking cells that, unlike those of other cell types, remain almost wholly unknown. We combined two-photon fluorescence with infrared scanning gradient contrast (see Materials and Methods) to obtain, for the first time, recordings along the entire somato-dendritic axis of TC neurons (range, 20–158 μm; mean distance, 83.2 ± 6.7 μm; $n = 35$; Fig. 2A) and along almost the entire length of TRN neuron dendrites (range, 35–200 μm; mean distance, 105.4 ± 11.12 μm; $n = 20$; Fig. 3A). In our recordings, we observed a small, distance-dependent dendritic resting membrane potential depolarization relative to the soma in both TC (slope, 0.035 mV · μm$^{-1}$; $n = 35$; $r = 0.53$; $p < 0.001$, Pearson’s r test; Fig. 1E) and TRN (slope, 0.011 mV · μm$^{-1}$; $n = 20$; $r = 0.14$; $p = 0.039$, Pearson’s r test; Fig. 1F) neurons. In both cell types, the mean dendritic resting membrane potential was significantly more depolarized than at the soma (TC: $S_-, -73.8 ± 1.2$ mV; $D_-, -71.3 ± 1.1$ mV; $n = 20$; $p = 0.0019$, paired t test; Fig. 3C; TRN: $S_-, -69.4 ± 0.6$ mV; $D_-, -65.5 ± 0.5$ mV; $n = 35$; $p < 0.0001$, paired t test; Fig. 2B).

We tested the steady-state (DC) electrical conduction properties of these neurons using long, stepwise current injections. At rest, somatic current injection produced somatic voltage responses (V_{S_0}) typical of TC (Fig. 2B) and TRN (Fig. 3B) neurons, having prominent LTS. In both neurons, the concurrent dendritic voltage responses (V_{D_0}) were strikingly similar to V_{S_0} (TC (Fig. 2B), TRN (Fig. 3B)) regardless of the dendritic recording location. In contrast, dendritic current injection produced V_{D_0} that were increasingly larger than V_{S_0} as the dendritic recording site became more distal (TC (Fig. 2C), TRN (Fig. 3C)). Steady-state voltage transfer was evaluated by comparing somatic and dendritic voltage responses produced by −40 pA hyperpolarizing current steps. Somatic current injections revealed highly efficient steady-state voltage transfer between soma and dendrites (V_{S_0}→V_{D_0}) in both TC (range, 0.69–1.01; 0.88 ± 0.01; $n = 35$; Fig. 2E) and TRN (range, 0.83–1.04; 0.93 ± 0.01; $n = 20$; Fig. 3D) neurons. Fitting decaying exponential functions to the data yielded effective space constants of $\lambda_{eff} = 654 \; \mu$m (TC; Fig. 2E) and $\lambda_{eff} = 1521 \; \mu$m (TRN; Fig. 3D). Using previous measurements of dendritic length (Spaufico et al., 1991; Ohara and Hanton, 1994; Lübke, 1993), we estimated the electrotonic length of these dendrites. In the somatofugal direction, both TC ($L_0 = 0.24$) and TRN ($L_0 = 0.26$) neurons have similar short electrotonic lengths and are, therefore, very electrotonically compact. In clear comparison, steady-state voltage transfer between dendrites and soma (V_{D_0}→V_{S_0}) was much less efficient in TC (0.15–1.05, 0.45 ± 0.05, $\lambda_{eff} = 69 \; \mu$m, $L_0 = 2.3$, $n = 35$; Fig. 2E) and TRN (0.09–0.75, 0.38 ± 0.04, $\lambda_{eff} = 98 \; \mu$m, $L_0 = 4.1$, $n = 20$; Fig. 3D) neurons. Interestingly, asymmetry between (V_{S_0}→V_{D_0}) and V_{D_0}→V_{S_0} was remarkably similar in both neurons despite their differing dendritic morphology. Such asymmetry is consistent with cable theory of branching neurons and is attributable to imbalances in impedance load encountered by current flowing in opposing directions along the dendritic cable as a result of the significantly different boundary conditions imposed by the soma/proximal dendrites and sealed terminal ends of the dendrite (Rall and Rinzel, 1973; Carnevale et al., 1997; Jaffe and Carnevale, 1999). Consistent with this concept, dendritic input resistance (R_i) increased markedly in both TC (156.6 MΩ at 25 μm to 1.1 GΩ at 114 μm; 537.5 ± 41.0 MΩ, $n = 35$; Fig. 2F) and TRN (157 MΩ at 35 μm to 1.03 GΩ at 183 μm; 388.8 ± 46.2 MΩ, $n = 20$; Fig. 3E) neurons as a function of distance from the soma (TC somatic R_i: 102.9–450.3 MΩ, 197.6 ± 11.4 MΩ, $n = 35$; Fig. 2F; TRN somatic R_i: 80.0 to 221.3 MΩ, 131.0 ± 8.4 MΩ, $n = 20$; Fig. 3E). In these neurons, they experimentally measured R_i values are consistent with those previously predicted by computational modeling studies (Lajeunesse et al., 2013). Significantly, however, in both types of LT-spiking neurons, unlike steady-state voltage transfer between dendrite and soma, current transmission, calculated as the ratio of current arriving at the soma to that injected into the dendrite, was highly efficient (TC: $\lambda_{eff} = 614 \; \mu$m, $n = 35$; Fig. 2F; TRN: $\lambda_{eff} = 1519 \; \mu$m, $n = 20$; Fig. 3H; Carnevale and Johnston, 1982). Consequently, the majority of current injected into the dendrite flows along the axial path toward the soma, meaning the observed dendrite to soma voltage attenuation is caused by large differences in local dendritic and
A schematic is used throughout to indicate that the illustrated data are drawn from TC neuron recordings. B, \(\Delta V_{SD} \) (blue) and \(\Delta V_{DS} \) (red) evoked by 500 ms somatic current injections between \(-160\) and \(+200\) pA. Inset, Mean somatic and dendritic resting membrane potentials. C, \(\Delta V_{SD} \) and \(\Delta V_{DS} \) evoked by 500 ms dendritic current injections between \(-100\) and \(+80\) pA. D, Schematic illustrating the two-port T-circuit model incorporating the axial impedances \(Z_A \) and \(Z_B \) and the common transfer impedance \(Z_C \) used to describe dendritic electrical conduction. E, Normalized steady-state voltage transfer in the \(S \rightarrow D \) (red) and \(D \rightarrow S \) (blue) directions. Solid colored lines, Decaying exponential fits to the experimental data; gray lines, voltage transfer in each direction from four model dendrites. F, Somatodendritic input resistance \((R_N) \) profile. Red circles, Somatic and dendritic \(R_N \) for individual neurons; blue square, mean somatic \(R_N \); gray lines, somatic and dendritic \(R_N \) profiles of model dendrites. G, Transfer resistance \((R_N) \) versus distance from soma calculated for \(S \rightarrow D \) (red) and \(D \rightarrow S \) (blue) directions. Gray lines, \(S \rightarrow D \) for model dendrites. H, \(\Delta V_{SD} \) and \(\Delta V_{DS} \) evoked by current injection at the reciprocal recording site. The dashed black line indicates unity. I, Normalized dendrite to soma current transmission versus distance from soma. Solid red line, Decaying exponential fit to the data.

Figure 2. Steady-state electrical properties of TC neuron dendrites. A, Overlay of two-photon fluorescence and infrared scanning gradient contrast images of a dLGN TC neuron showing the location of a somatic (red) and a dendritic (red) recording pipette. Inset, Schematic of the recording configuration illustrating the neuron recorded from (TC) and the placement of recording electrodes. This schematic is used throughout to indicate that the illustrated data are drawn from TC neuron recordings. B, \(\Delta V_{SD} \) (blue) and \(\Delta V_{DS} \) (red) evoked by 500 ms somatic current injections between \(-160\) and \(+200\) pA. Inset, Mean somatic and dendritic resting membrane potentials. C, \(\Delta V_{SD} \) and \(\Delta V_{DS} \) evoked by 500 ms dendritic current injections between \(-100\) and \(+80\) pA. D, Schematic illustrating the two-port T-circuit model incorporating the axial impedances \(Z_A \) and \(Z_B \) and the common transfer impedance \(Z_C \) used to describe dendritic electrical conduction. E, Normalized steady-state voltage transfer in the \(S \rightarrow D \) (red) and \(D \rightarrow S \) (blue) directions. Solid colored lines, Decaying exponential fits to the experimental data; gray lines, voltage transfer in each direction from four model dendrites. F, Somatodendritic input resistance \((R_N) \) profile. Red circles, Somatic and dendritic \(R_N \) for individual neurons; blue square, mean somatic \(R_N \); gray lines, somatic and dendritic \(R_N \) profiles of model dendrites. G, Transfer resistance \((R_N) \) versus distance from soma calculated for \(S \rightarrow D \) (red) and \(D \rightarrow S \) (blue) directions. Gray lines, \(S \rightarrow D \) for model dendrites. H, \(\Delta V_{SD} \) and \(\Delta V_{DS} \) evoked by current injection at the reciprocal recording site. The dashed black line indicates unity. I, Normalized dendrite to soma current transmission versus distance from soma. Solid red line, Decaying exponential fit to the data.

In dendrites of both LT-spiking neurons, \(V_{SD} \) and \(V_{DS} \) were nearly identical (“reciprocity”), indicating linear behavior at sub-threshold voltages (Koch, 1984). Linear fits of \(V_{SD} \) versus \(V_{DS} \) revealed slopes of \(1.06 \pm 0.03 \) in TC \((n = 35; \text{Fig. 2H})\) and \(1.01 \pm 0.02 \) in TRN \((n = 20; \text{Fig. 3G})\) neurons. Consequently, electrical conduction between soma and dendrites is well described by a linear two-port circuit model (Carnevale and Johnston, 1982; Jaffe and Carnevale, 1999). Briefly, two-port electrotonic theory proposes that electrical coupling between any two points in a linear system, i.e., the dendrite and soma, can be described by an equivalent circuit consisting of three impedances (or resistances in the DC case), two axial impedances, and a common transfer impedance \((Z_C) \). This model predicts that in neurons displaying steep somatodendritic gradients of \(R_N \), as described above for TC (Fig. 2F) and TRN (Fig. 3E) neurons, to account for the observed \(V_{SD} \rightarrow V_{DS} \) voltage attenuation, transfer resistance \((R_C) \) will vary little with distance from the soma (Jaffe and Carnevale, 1999). This is precisely what we observed in our somatodendritic recordings [TC (Fig. 2G), TRN (Fig. 3F)]. Moreover, as predicted for a linear system, measured \(R_C \) values were equal whether calculated from somatic (\(V_{SD} \)) or dendritic (\(V_{DS} \)) current injections in both TC (\(V_{DS} R_C = 165.2 \pm 7.8 \Omega; V_{SD} R_C = 177.3 \pm 8.9 \Omega; n = 35, p = 0.07, \text{paired} \ t \text{test}; \text{Fig. 2G} \)) and TRN (\(V_{DS} R_C = 122.2 \pm 7.8 \Omega; V_{SD} R_C = 122.7 \pm 8.9 \Omega; n = 20, p = 0.85, \text{paired} \ t \text{test}; \text{Fig. 3F} \)) neurons. This distance-dependent profile of \(R_C \) in LT-spiking neurons demonstrates that currents of equal size entering any location within the dendritic tree will be almost equally efficient in depolarizing the soma and produce similar changes in somatic voltage. The steady-state electrical conduction properties of both TC and TRN
dendrites were similar when the neurons were depolarized (−55 mV) as they were at rest (Table 1). Thus, despite having very different dendritic morphologies, the steady-state electrotonic properties of TC and TRN neurons are remarkably similar.

Frequency-dependent impedance properties of LT-spiking neurons

So far, we have examined the electrical properties of TC and TRN neuron dendrites under steady-state (DC) conditions. Of course, neuronal signals including LTS are dynamic and time-varying signals, and TC and TRN neurons are known to reside in active oscillating circuits. Electrical impedance is the ratio of the recorded voltage response to an injected current and is a standard measurement for characterizing frequency-dependent neuronal membrane properties. Impedance is a complex quantity having a real part, the resistance, and an imaginary part, the reactance. Whereas resistance (R) is always a positive value, reactance can be either a positive or negative value depending on the presence of capacitive (C) or inductive (L) elements within the circuit (Narayanan and Johnston, 2008). The phase relationship between injected current and recorded voltage is a measure of reactance and can be used to determine the presence and function of inductive elements within neurons. Therefore, we tested frequency-dependent properties by injecting sinusoidal frequency-modulated currents (I_CHIRP, 0.1–20 Hz, ±20 pA, 10 s) into the soma (I_CHIRP,S) and dendrites (I_CHIRP,D) of these neurons.
Table 1. Somatodendritic electrical properties of TC and TRN neurons at −70 and −55 mV

	TC	TRN		
	−70 mV	−55 mV	−70 mV	−55 mV
Input resistance (\(R_S\) soma (ME))	197.6 ± 11.4	305.1 ± 15.8	131.0 ± 8.4	179.2 ± 24.3
Input resistance (\(R_S\) dendrite (ME))	537.5 ± 40.1	679.9 ± 93.5	388.8 ± 46.2	441.1 ± 53.9
Transfer resistance (\(R_{L-}\) to \(D\) (ME))	165.2 ± 7.8	272.0 ± 23.0	122.2 ± 7.8	169.5 ± 22.6
Transfer resistance (\(R_{D}\) to \(S\) (ME))	177.3 ± 8.9	286.5 ± 13.4	122.7 ± 8.9	168.6 ± 21.4
Reciprocity slope	1.06 ± 0.03	1.04 ± 0.05	1.01 ± 0.02	0.98 ± 0.02
\(\tau_{I\rightarrow S\rightarrow 0\rightarrow \mu m}\)	654	816.8	1521	2051
\(\tau_{I\rightarrow S\rightarrow 0\rightarrow \mu m}\)	69	116.2	98	105.1
\(n\)	35	5	20	13

Data are presented as mean ± SEM. The numbers of recorded dendrites (\(n\)) are as indicated.

two types of LT-spiking neurons [TC (Fig. 4A,B), TRN (Fig. 5A,B)].

First, using the discrete Fourier transforms of the somatic (\(V_{CHIRP-S}\)) and dendritic (\(V_{CHIRP-D}\)) voltage responses, we calculated the input (ZPPN) and transfer (ZPPC) impedance amplitude profiles. Injection of \(I_{CHIRP}\) revealed frequency-dependent attenuation of local input impedance (\(Z_{in}\)) in TC (1 Hz, 211.3 ± 20.1 MΩ; 20 Hz, 51.2 ± 3.2 MΩ; \(n = 9, p < 0.0001\), paired t test; Fig. 4A,C) and TRN (1 Hz, 129.3 ± 10.6 MΩ; 20 Hz, 71.6 ± 6.2 MΩ; \(n = 14, p < 0.0001\)), paired t test; Fig. 5A,C) neurons. In our recordings, we did not observe strong membrane potential resonance, and somatic ZPPN in both LT-spiking cells displayed low-pass filter characteristics and could be fit by an RC function. These fits revealed cutoff frequencies (\(f_c\)) of 4.9 ± 0.5 and 12.9 ± 0.5 Hz and time constants of 35.0 ± 3.9 and 12.6 ± 0.4 ms in TC ([\(n = 9\); Fig. 4C]) and TRN ([\(n = 14\); Fig. 5C]) neurons, respectively.

In contrast to the soma, and in line with steady-state \(B_{so}\) the magnitude of dendritic ZPPN in both TC (1 Hz, 524.40 ± 65.76 MΩ; 20 Hz, 341.6 ± 66.41 MΩ; \(n = 9, p < 0.0001\), paired t test; Fig. 4B,D,G) and TRN (1 Hz, 547.8 ± 70.7 MΩ; 20 Hz, 405.0 ± 48.5 MΩ; \(n = 16, p < 0.0001\), paired t test; Fig. 5B,D,G) neurons was dependent on the distance of the recording location from the soma and was also frequency dependent. Dendritic ZPPN could not, however, be fit by the same RC function as somatic ZPPN, indicating substantially different dendritic filtering properties. Thus, across a range of frequencies, the distance-dependent somatic and dendritic input impedance profiles matched those observed with DC inputs and were remarkably similar between TC and TRN neurons.

To test whether somatodendritic conduction of non-DC signals in LT-spiking neurons was linear, we calculated ZPPN by dividing the magnitude of voltage response at one recording electrode by that of \(I_{CHIRP}\) at the other. In both types of LT-spiking cells, ZPPN decreased with increasing signal frequency and, similar to the DC case, was equal in both \(S\)−\(D\) and \(D\)−\(S\) directions at all frequencies tested [TC (Fig. 4E–G), TRN (Fig. 5E–G)]. This can be observed by comparing \(V_{CHIRP-D}\) evoked by \(I_{CHIRP}\) [TC (Fig. 4A), TRN (Fig. 5A, red trace)] with \(V_{CHIRP-S}\) evoked by \(I_{CHIRP-D}\) [TC (Fig. 4B), TRN (Fig. 5B, blue trace)]. These data demonstrate that somatodendritic conduction of low-frequency (<20 Hz) signals in LT-spiking neurons can be described by a linear model. Furthermore, these findings demonstrate that across a range of input frequencies, the relationship between ZPPN, ZPPC, and distance from the soma remains constant, and both TC and TRN neurons have distance-dependent dendritic gradients of \(Z_S\) but nearly spatial uniformity of \(Z_C\) [TC (Fig. 4G), TRN (Fig. 5G)]. As a consequence, these properties result in strongly asymmetric voltage transfer in the \(S\)−\(D\) and \(D\)−\(S\) direction in both TC (Fig. 4F) and TRN (Fig. 5F). In particular, in the \(S\)−\(D\) direction, voltage attenuation is very low and insensitive to input frequency, meaning that current transmission between \(D\)−\(S\) remains highly efficient. Accordingly, voltage changes at the soma of LT-spiking neurons are transferred throughout the entire dendritic tree with little reduction in amplitude. This has important consequences for the activation of dendritic T-type \(Ca^{2+}\) channels during LTS (discussed below).

We also investigated phase properties by calculating the input (ZPPS) and transfer (ZPPC) impedance phase profiles. First, as can be seen from ZPPS, at all frequencies in both TC (Fig. 4C,D,H) and TRN (Fig. 5C,D,H) neurons, \(V_{CHIRP-S}\) and \(V_{CHIRP-D}\) always lagged injected current. Together with the lack of a resonance peak in ZPPS, these data suggest that LT-spiking neurons have the properties of a simple low-pass RC electrical circuit. However, both TC and TRN neurons express hyperpolarization-activated cyclic nucleotide-gated channels (HCN; \(I_{h}\)) that are strongly linked to the emergence of resonance and bandpass-filtering properties (Hutcheon and Yarom, 2000). Indeed, some neurons that express \(I_{h}\) are best modeled not as RC circuits but as RCL circuits (Narayanan and Johnston, 2008; Vaidya and Johnston, 2013). Resonance and bandpass filtering emerges through the interaction between passive and active properties of neurons with resistance (\(R\)) and capacitance (\(C\)) acting to passively low-pass (RC) filter signals (\(f_c = 1/2\pi RC\)), whereas the inductive conductance (\(L\)) acts as a high-pass (RL) filter (\(f_c = 1/2\pi L\)), where \(\pi\) equals the channel activation time constant; Hutcheon and Yarom, 2000). In both TC and TRN neurons, as well as other LT-spiking cells including subthalamic neurons and deep cerebellar nucleus neurons, the predominantly expressed channel isoform is HCN-2, which has slow activation kinetics at typical resting membrane potentials. As a consequence, \(f_c\) for the high-pass RL filter in these neurons at rest (−70 mV) is very low (∼0.15 Hz), and thus we see a general broadband suppression of low frequencies up to the low-pass cutoff frequency rather than a sharp resonant-type bandpass profile in the ZAP.

For \(I_{CHIRP}\), ZPPS was frequency dependent in both TC (Fig. 4C) and TRN (Fig. 5C) neurons, having minimal phase lag at frequencies <2 Hz (less than −1/12π rad) but phase differences of more than −1/3π radians with 20 Hz input. This corresponds to a time delay of 8–10 ms between the somatic current and voltage (20 Hz). In comparison, although ZPPS for \(I_{CHIRP}\) were also frequency dependent, the phase lag of voltage responses to current input at 20 Hz was significantly less [less than −1/16π rads, 2.5–3 ms; TC (Fig. 4D), TRN (Fig. 5D)]. Interestingly, dendritic ZPPS showed little change with increasing distance from the soma in both TC (Fig. 4G) and TRN (Fig. 5G) neurons, indicating that dendritic voltage phase is dictated by local, mostly invariant, membrane properties. Similarity to ZPPC, ZPPC calculated as the difference in phase between the local voltage response and current injected at the reciprocal recording site, was frequency dependent and equal in both the \(S\)−\(D\) and \(D\)−\(S\) direction for TC (Fig. 4E–H) and TRN (Fig. 5E–H) cells. ZPPC was mostly insensitive to the distance between the voltage recording and current injecting site [TC (Fig. 4G), TRN (Fig. 5G)]. Thus, in the \(S\)−\(D\) direction, \(V_{CHIRP-D}\) is almost equally phase lagged to \(I_{CHIRP}\) at dendritic recording locations, and in the \(D\)−\(S\) direction, \(V_{CHIRP-S}\) are equally in phase with \(I_{CHIRP-D}\) regardless of the dendritic input location. This “phase reciprocity” is evident in
Figure 4. Frequency-dependent properties of TC neuron dendrites. A, Example traces of somatic ($V_{\text{CHIRP}}^\text{S}$, blue) and dendritic ($V_{\text{CHIRP}}^\text{D}$, red) voltage responses to somatic frequency-modulated current injections ($I_{\text{CHIRP}}^\text{S}$, black). B, As in A for dendritic current injections ($I_{\text{CHIRP}}^\text{D}$). C, D, E, F, G, H, I, J, Plots of somatic ZAP and ZPP. Light blue lines, Individual neurons; dark blue line, mean somatic ZAP and ZPP. D, Plots of dendritic ZAP and ZPP. Light red lines, Individual neurons; dark red line, mean dendritic ZAP and ZPP. E, F, G, H, I, J, Plots of somatic ZAP and ZPP. Light blue lines, Individual neurons; dark blue line, mean somatic ZAP and ZPP. G, Input impedance amplitude (top) and phase (bottom; black circles, ZAP; blue circles) versus distance from soma for 10 Hz current injections. H, Example traces depicting the phase relationship between voltage and injected current (black) at 20 Hz for somatic (blue) and dendritic (125 μm, red) recordings. I, Plot of frequency-dependent voltage attenuation between $S \rightarrow D$ (red) and $D \rightarrow S$ (blue) versus distance from soma. J, Plot of frequency-dependent voltage phase difference between $S \rightarrow D$ (red) and $D \rightarrow S$ (blue) versus distance from soma.
Figure 5. Frequency-dependent properties of TRN neuron dendrites. A, Example traces of somatic (V_{CHIRP}S, blue) and dendritic (V_{CHIRP}D, red) voltage responses to somatic frequency-modulated current injections (I_{CHIRP}S, black). B, As in A for dendritic current injections (I_{CHIRP}D). C, Plots of somatic ZAP_{N} and ZPP_{N}. Light blue lines, Individual neurons; dark blue line, mean somatic ZAP_{N}/ZPP_{N}. D, Plots of dendritic ZAP_{N} and ZPP_{N}. Light red lines, Individual neurons; red line, mean dendritic ZAP_{N}/ZPP_{N}. E, Plots of somatic ZAP_{C} and ZPP_{C}. Light blue lines, Individual neurons; blue line, mean somatic ZAP_{C}/ZPP_{C}. F, Plots of dendritic ZAP_{C} and ZPP_{C}. Light red lines, Individual neurons; red line, mean dendritic ZAP_{C}/ZPP_{C}. G, Input impedance amplitude (top) and phase (bottom; black circles, ZAP_{N}/ZPP_{N}) and S→D (red circles) and D→S (blue circles) transfer impedance amplitude and phase (ZAP_{C}/ZPP_{C}) versus distance from soma for 10 Hz current injections. H, Example traces depicting the phase relationship between voltage and injected current (black) at 20 Hz for somatic (blue) and dendritic (125 μm, red) recordings. I, Plot of frequency-dependent voltage attenuation between S→D (red) and D→S (blue) versus distance from soma. J, Plot of frequency-dependent voltage phase difference between S→D (red) and D→S (blue) versus distance from soma.
Our data reveal that despite differences in dendritic morphology and electrical properties, the highly conserved dendritic properties are critical in the generation of LTS. Therefore, we focused on LTS generation specifically in TC neurons. First, we reasoned that if LTS were triggered by an all-or-none mechanism, they would not show frequency dependence. However, we observed that the LTS in TC neurons showed a degree of amplitude attenuation and phase lag, which is expected for a propagating signal. In contrast, the ZAP and ZPP data suggest that, even with an active dendritic T-type Ca\(^{2+}\) channel, the threshold for LTS generation is highly asymmetric. Thus, current input to the soma, across a range of frequencies, produces voltage changes that are efficiently transmitted throughout the whole dendritic tree with minimal amplitude attenuation and phase shift. Conversely, current input to dendrites produces voltage responses that undergo strong attenuation and have significant phase shifts between the dendrite and soma. As we describe below, these highly conserved dendritic properties are critical in enabling LTS in both TC and TRN neurons.

Low-threshold spikes cannot be locally generated in dendrites

Our data reveal that despite differences in dendritic morphology (Fig. 2A, and Fig. 3A), major T-type Ca\(^{2+}\) channel subunit expression (mostly Ca\(_{v}3.1\) in TC cells and a combination of Ca\(_{v}3.2\) and 3.3 in TRN cells; Perez-Reyes, 2003), and neurotransmitter released (glutamate/GABA), the two classes of LT-spiking neurons investigated here have remarkably similar dendritic electrical properties. We hypothesized that, in combination with dendritic expression of T-type Ca\(^{2+}\) channels, a much higher degree of amplitude attenuation and phase lag would be expected for local sub-LTS threshold voltage changes but demonstrates that they are not sufficient to trigger an all-or-none local LTS without activation of downstream channels in the soma and contralateral dendrites. As demonstrated in Figures 6D and 7D, the minimal dendritic depolarization or hyperpolarization required to evoke an LTS was substantially greater than that required at the soma. On the other hand, the threshold voltage for LTS was equal for both somatic and dendritic current injections in TC (soma, −59.95 ± 0.46 mV; dendrite, −58.61 ± 0.87 mV; n = 25, p = 0.22, unpaired t test) and TRN (soma, −57.14 ± 1.13 mV; dendrite, −59.29 ± 0.82 mV; n = 10, p = 0.14, unpaired t test) neurons. Furthermore, the threshold for LTS in LT-spiking neurons was equal for a large hyperpolarizing dendritic current injection, which the amplitude would be comfortably suprathreshold for LTS generation if occurring at the soma, was incapable of triggering “local” dendritic LTS. This does not imply that local dendritic T-type Ca\(^{2+}\) channels do not contribute to local sub-LTS threshold voltage changes but demonstrates that they are not sufficient to trigger an all-or-none local LTS without activation of downstream channels in the soma and contralateral dendrites. As demonstrated in Figures 6D and 7D, the minimal dendritic depolarization or hyperpolarization required to evoke an LTS was substantially greater than that required at the soma. On the other hand, the threshold voltage for LTS was equal for both somatic and dendritic current injections in TC (soma, −59.95 ± 0.46 mV; dendrite, −58.61 ± 0.87 mV; n = 25, p = 0.22, unpaired t test) and TRN (soma, −57.14 ± 1.13 mV; dendrite, −59.29 ± 0.82 mV; n = 10, p = 0.14, unpaired t test) neurons. Furthermore, the threshold for LTS evoked by a large hyperpolarizing dendritic current injection, which LTS occurred in the soma and dendrites of both TC (−2.2 to 11.2 mV, 3.7 ± 0.7 mV, n = 25; Fig. 6D, E) and TRN (−3.1 to 7.2 mV, −1.9 ± 1.0 mV, n = 10; Fig. 7D, E) neurons. It is important to note that in this case, the threshold refers to the apparent membrane potential in the dendrite at which LTS can be evoked and does not refer to the activation threshold for T-type Ca\(^{2+}\) channels that we expect to be the same at both the soma and in the dendrites. In fact, our computational model, no differences in activation or inactivation properties of T-type Ca\(^{2+}\) channels between soma and dendrites were required to reproduce the voltage responses we recorded experimentally. In clear comparison with somatic input, when evoked by dendritic current injection, a pronounced distance-dependent difference in the threshold for LTS and LTSD in both TC (−0.5 to 41.3 mV, 17.1 ± 2.2 mV, n = 25; Fig. 6D, E) and TRN (6.5–35.5 mV, 24.20 ± 2.7 mV, n = 10; Fig. 7D, E) neurons was observed. The distance-dependent difference between dendritic and somatic threshold reflects the inefficient V\(_{D}–V_{S}\) in these cells. As a consequence, dendritic voltage change, whose amplitude would be comfortably suprathreshold for LTS generation if occurring at the soma, was incapable of triggering "local" dendritic LTS.
In the presence of bath-applied TTX (0.5 μM) calcium transients (∆[Ca$^{2+}$]), measured in proximal (<20 μm; ∆G/R, 0.19 ± 0.02; n = 4) and distal (>120 μm; ∆G/R, 0.30 ± 0.05; n = 4) dendrites of TC neurons (Fig. 8A,B,D) during an LTS evoked by somatic current injection (42.0 ± 0.9 mV, n = 4), were similar to those described previously (Errington et al., 2010). Focal application of TTA-P2 (10 μM; Fig. 8A), at a concentration sufficient to easily block all T-type Ca$^{2+}$ channels (Dreyfus et al., 2010), resulted in ∼75% reduction in the size of proximal (0.05 ± 0.1, n = 4, p = 0.0027, paired t test) but not distal (0.28 ± 0.05, n = 4, p = 0.46, paired t test) ∆[Ca$^{2+}$] (Fig. 8C,D). Nonetheless, in the presence of TTA-P2, the somatically recorded LTS remained unaffected (41.4 ± 1.2 mV, n = 4, p = 0.47, paired t test; Fig. 8B–D). Thus, somatic T-type Ca$^{2+}$ channels are not a necessary requirement for LTS generation. These data offer support to the hypothesis that LTS are generated not by a focal but global mechanism requiring T-channels throughout the dendritic tree.

The involvement of dendritic T-type Ca$^{2+}$ channels in LTS generation was supported by dendritic recording experiments. We surmised that if LTS(D) passively reflects LTS(S), without an active dendritic T-type Ca$^{2+}$ channel contribution, the ratio of LTS(D) and LTS(S) amplitude (LTS(D)/LTS(S)) would be insensitive to dendritic polarization. However, evoking LTS by brief somatic current injection during concurrent injection of long current steps into dendrites (93–122 μm from the soma) revealed that dendritic hyperpolarization (∼40 pA, 0.97 ± 0.02; n = 5, p > 0.05, repeated-measures ANOVA) reduces and depolarization (+20 pA, 0.77 ± 0.03; n = 5, p < 0.05, repeated-measures ANOVA) increases the difference in amplitude between LTS(D) and LTS(S) compared with rest (0 pA, 0.90 ± 0.03, n = 5; Fig. 8E,F). Moreover, these experiments reveal that even dramatic membrane polarization cannot induce local failure of LTS in dendrites, providing additional support for the global generation hypothesis.
Nonetheless, although dendritic T-type Ca\(^{2+}\) channels appear to be actively involved in LTS generation and are sufficient in the absence of somatic channels to generate the LTS, a key question remains. Is the somatic T-channel density alone sufficient to locally initiate an LTS? Since it is experimentally implausible to selectively block dendritic T-channels while allowing somatic channels to remain available, to answer this question we developed a new multicompartment computational model of a TC neuron based on our novel dendritic recordings and morphology taken from Briska et al. (2003). Results from four dendrites (Fig. 9A), selected to encompass a range of branching patterns and local input impedances, demonstrate that our model accurately reproduces the “passive” cellular properties we observed experimentally, including asymmetric voltage transfer, somatodendritic \(R_{\text{m}}\) gradient, and uniform \(R_{\text{d}}\) distribution (Fig. 1E–G). Subsequently, to model the LTS, we tested several T-type Ca\(^{2+}\) channel distributions including somatic-only, graded \(S \rightarrow D\), graded \(D \rightarrow S\), and uniform distribution. Uniform distribution of T-type Ca\(^{2+}\) channel conductance (\(g_T\)) produced model voltage responses in soma and dendrites most similar to those seen in dual patch-clamp recordings (Fig. 9B) while also reproducing intracellular \(\Delta[\text{Ca}^{2+}]\) equivalent to those described previously (Fig. 10B; Crandall et al., 2010; Errington et al., 2010, 2012; Sieber et al., 2013). Moreover, the range of uniformly distributed \(g_T\) densities capable of reproducing the voltage signals we recorded in vitro was relatively narrow, and the optimal value (\(g_T, 7 \times 10^{-5} \text{ cm/s}\)) was similar to that reported in a previous study (Destexhe et al., 1998; Fig. 9C).

Thus, using these parameters, our TC neuron model could reproduce both the electrical signals and \(\Delta[\text{Ca}^{2+}]\) observed in the soma and dendrites during LTS (Fig. 10A, B). First, consistent with our previous experimental data (Fig. 8), we found that when \(g_T\) was uniformly distributed, its complete removal from the soma and proximal (\(\leq 20 \mu\text{m}\) from the soma) dendrites alone had almost no effect on LTS generation (Fig. 10C). In marked contrast, when the level of \(g_T\) was systematically and selectively reduced only in dendrites (\(> 20 \mu\text{m}\) from the soma), we found a progressive reduction in the ability to produce LTS (Fig. 10C).
Interestingly, we found that a reduction in dendritic g_T of ~70% (~$1-2 \times 10^{-3}$ cm/s) was required to preclude LTS generation in our model (Fig. 9C), a finding that mimics previous in vitro data demonstrating a level of “channel redundancy” for LTS generation in LT-spiking neurons with uniform T-channel distribution (Dreyfus et al., 2010). Thus, even though the density of somatic g_T (7×10^{-3} cm/s) in our standard model conditions was somewhat higher than that estimated in the soma of dissociated TC neurons (1.7×10^{-3} cm/s; Destexhe et al., 1998), in the absence of dendritic T-channels, our model indicates that somatic channels alone are incapable of generating a local LTS. Finally, to test whether the inability of somatic channels alone to produce an LTS under our standard model conditions was attributable to an underestimate of somatic g_T, we concentrated the total conductance from our uniform model into the soma alone (g_T, 9.2×10^{-4} cm/s). Whereas this was able to produce LTS in both soma and dendrites of our model TC neuron (Fig. 10A, B), these potentials differed significantly from those we recorded experimentally and produced markedly different $\Delta [Ca^{2+}]$ distributions from those observed experimentally in these dendrites (Fig. 8B; Crandall et al., 2010; Errington et al., 2010, 2012; Sieber et al., 2013). Furthermore, similarly to the distributed case, although a 70% reduction in the density of soma-only g_T was required to prevent LTS generation, the resulting g_T density (2×10^{-4} cm/s) at which LTS failed (Fig. 10A) remained an order of magnitude greater than both that estimated at the soma experimentally (Destexhe et al., 1998) and the minimum density of uniformly distributed g_T (g_T, 2×10^{-5} cm/s) capable of producing LTS in our model (Fig. 9C).

Consequently, we conclude that LTS cannot be locally generated at the soma of LT-spiking neurons. Based on our data, we propose that LTS are produced by a unique mechanism that ex-
ploits the dendritic electrical properties of LT-spiking neurons to allow the synchronous recruitment of widely spatially distributed T-type Ca$^{2+}$ channels. These relatively low-density channels act in concert to produce a global LTS. Finally, although TC neurons predominantly express CaV3.1 (α1G) T-type Ca$^{2+}$ channel subunits and TRN cells express both CaV3.2 (α1G) and CaV3.3 (α1I; Perez-Reyes, 2003), both cells generate LTS using the same globally distributed mechanism. Thus, whereas the precise molecular identity of the T-type Ca$^{2+}$ channel subunits expressed in particular neurons might shape their LTS properties, specific expression patterns of particular isoforms are not required for global spike generation as long as T-type Ca$^{2+}$ channels are roughly uniformly expressed throughout the somatodendritic tree.

Discussion
The major findings of this study are that (1) dendritic properties are highly conserved between two prominent types of LT-spiking cells despite differences in their morphology and function; (2) these properties play a critical role in LTS generation by enabling synchronous recruitment of spatially distributed dendritic T-type Ca$^{2+}$ channels; and (3) this underlies a unique whole-cell Ca$^{2+}$ spiking mechanism that sets the LTS apart as a distinctive, all-or-none, global somatodendritic electrical and biochemical signal. We propose that this mechanism applies to all LT-spiking cells and is likely to have important implications for synaptic signaling, dendritic integration, and plasticity.

Conserved dendritic properties in LT-spiking neurons
The dendritic properties of LT-spiking neurons have not previously been studied directly, despite evidence of a role for dendritic T-type Ca$^{2+}$ channels in LTS generation (Destexhe et al., 1998; Williams and Stuart, 2000; Errington et al., 2010). Here, we find that key features of dendritic electrical conduction are highly conserved between TC and TRN cells. In particular, our data reveal that signal transfer between soma and dendrites in these neurons is strongly directionally asymmetric. Thus, whereas (VSS−VDS) is particularly efficient, VD D−VSD is much more inefficient. We find that, rather than through loss of current from leaky dendrites, this marked disparity occurs as a result of drastic increases in local dendritic ZN with increased distance from the soma. Consequently, as the distance between two points along the somatodendritic axis increases, there is little variation in ZC. This means that the efficiency of current transmission from dendrites to the soma of LT-spiking neurons is virtually independent...
of the dendritic input location. In a previous study, Jaffe and Carnevale (1999) demonstrated that in neurons with this somatodendritic profile of ZN and ZC, synaptic currents can produce soma-only placement of channels, significantly higher local conductance was required (9.2 \times 10^{-4} \text{ cm/s}) to produce LTS. With this channel distribution, note the unusually long LTS duration compared with those measured experimentally. Soma-only channels with a density 10-fold greater (2 \times 10^{-4} \text{ cm/s}) than the minimum distributed density required to produce an LTS were unable to produce an LTS. Uniform distribution of T-type Ca^{2+} channels results in similar-sized \(\Delta [\text{Ca}^{2+}] \) in the soma (blue) and dendrites (red), consistent with previous Ca^{2+} imaging data. Bottom traces show the \(\Delta [\text{Ca}^{2+}] \) produced with only somatic T-type Ca^{2+} channels. No increase in dendritic Ca^{2+} is observed with this channel distribution. Global LTS generation can be understood by considering the electrotonic structure of LT-spiking neurons. In particular, since dendritic T-type Ca^{2+} channels may be separated in physical space by several hundred micrometers (e.g., at the tips of opposing TRN dendrites), in electrotonic space they are much closer together because the complex, branching dendritic trees of LT-spiking neurons are effectively collapsed to allow the cell to behave more like an iso-potential sphere. Thus, as the soma is depolarized (e.g., by summating synaptic potentials), the membrane potential in even the most distal regions of the dendritic tree follows with minimal difference in phase or amplitude. This means that the relatively low-density dendritic T-type Ca^{2+} channels can be activated together and act in concert to produce an LTS.

From this model, it is clear that the voltage recorded at any point on an LT-spiking cell during an LTS relies more on a global...
depolarizing effect produced by summed distal current sources than depolarization resulting from local current flow. Supporting this idea, to trigger an LTS, dendritic current injection sufficient to depolarize the soma and, as a consequence of efficient (VS−→VDS), the “downstream” dendritic tree to spike threshold was required. As such, LTS only occur under conditions where the entire cell is depolarized to LT-spiking threshold. Even strong dendritic depolarization cannot produce LTS if the resulting somatic potential does not reach spike threshold because local T-type Ca2+ conductance is too low to permit spike initiation. These data show that, as well as producing Ca2+ signals (Crandall et al., 2010; Errington et al., 2010, 2012; Sieber et al., 2013) throughout LT-spiking cells, LTS are always associated with a global electrical signal whose amplitude and phase are mostly independent of where they are recorded within the cell.

Another explanation for the results we present here is that LTS are generated by a high-density hot spot of T-type Ca2+ channels in the axon, a structure that, for technical reasons, we are unable to image or directly record from in these neurons. Several strong lines of evidence argue against this mechanism. First, the dendritic \(\Delta(Ca^{2+}) \) we observed in our computational model, with uniform somatodendritic distribution of T-type Ca\(^{2+} \), were very similar to those previously described experimentally (Errington et al., 2010). This channel distribution accurately reproduced the somatic and dendritic membrane potential transients we recorded without requiring a focal hot spot of T-type Ca\(^{2+} \) channels in the axon or elsewhere. Second, in both TRN neurons and cortical LT-spiking interneurons, there is no evidence for an axonal hot spot of T-type calcium channels, and instead these channels are found to be distributed across the dendritic membrane (Liu et al., 2011). Third, in experiments where we focally applied the T-type Ca\(^{2+} \) antagonist TTA-P2 to TC neurons, we saw no difference in the somatically recorded LTS. In these experiments, we would also expect to block any T-type Ca\(^{2+} \) channels in the initial segment of the axon. Consequently, these data suggest that it is unlikely that the LTS is generated by an axonal mechanism and provide support to the whole-cell mechanism we propose.

LT-spiking neurons share a number of important similarities including similar morphologies with long thin dendrites that are relatively aspiny. Specifically, LT-spiking cells lack large apical dendrites, and as such, their dendritic morphology is compatible with them having electrical conduction properties suitable to those we have reported for TC and TRN neurons (Jaffe and Carnevale, 1999). LT-spiking neurons also have similar somatically recorded electrical characteristics, in particular the ability to generate rebound LTS. Furthermore, in common with TC and TRN neurons (Crandall et al., 2010; Errington et al., 2010), both low-threshold spiking cortical interneurons (Goldberg et al., 2004) and subthalamic neurons (Atherton et al., 2010) have LTS-evoked T-type Ca\(^{2+} \) channel-dependent dendritic \(\Delta(Ca^{2+}) \). Therefore, although recording from dendrites of all LT-spiking neuron dendrites is beyond the scope of a single study, we anticipate that LTS in all LT-spiking cells result from the global mechanism we have described here.

Physiological consequences of global low-threshold spikes

Whereas our new findings explain how LTS are generated, they do not answer why a global distribution of T-type Ca\(^{2+} \) channels is favored. In TC neurons, one reason might relate to the fact that action potential bursts associated with low-threshold spikes more strongly activate their neocortical targets than single action potentials (Swadlow and Gusev, 2001). As such, it is thought that this wake-up call represents a critical form of thalamic signaling to cortex. Since LTS produce a global electrical and biochemical signal throughout the entire dendritic tree, all synapses would be able to “sense” the occurrence of an LTS regardless of its location. Thus, in this case, the LTS acts as an intracellular synchronization signal that couples this special form of TC output to the site of synaptic input in the dendrites, perhaps to reset dendritic integration or induce synaptic plasticity. Related to this point, it has been demonstrated that LTS play a critical role in LTD at inhibitory TRN neuron synapses on to TC neurons by producing Ca\(^{2+} \) entry through both T- and L-type Ca\(^{2+} \) channels (Sieber et al., 2013). In this situation, because of its all-or-none nature, the LTS could act as a global, somatodendritic plasticity signal causing synaptic potentiation at all TRN synapses rather than targeting specific inputs. This may indicate a homeostatic plasticity role for the LTS that helps to stabilize neurons and networks within particular states (e.g., through Ca\(^{2+} \)-dependent enhancement of HCN channels; Lüthi and McCormick, 1998) to alter oscillatory bursting during sleep.

References

Andersen P, Eccles J (1962) Inhibitory phasing of neuronal discharge. Nature 196:645–647, CrossRef Medline

Atherton JF, Kitano K, Baufretton J, Fan K, Wokosin D, Tktatch T, Shigemoto R, Surmeier DJ, Bevan MD (2010) Selective participation of somatodendritic HCN channels in inhibitory but not excitatory synaptic integration in neurons of the subthalamic nucleus. J Neurosci 30:16025–16040. CrossRef Medline

Bathellier B, Margrie TW, Larkum ME (2009) Properties of piriform cortex pyramidal cell dendrites: implications for olfactory circuit design. J Neurosci 29:12641–12652. CrossRef Medline

Blethen KL, Hughes SW, Töth TI, Cope DW, Crucelli V (2006) Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 26:2474–2486. CrossRef Medline

Briska AM, Ulrich DJ, Lytton WW (2003) Computer model of passive signal integration based on whole-cell in vitro studies of rat lateral geniculate nucleus. Eur J Neurosci 17:1531–1541. CrossRef Medline

Burfis TM, Aghajanian GK (1987) Pacemaker potentials of serotonergic dorsal raphe neurons: contribution of a low-threshold Ca\(^{2+} \) conductance. Synapse 1:582–588. CrossRef Medline

Carnevale NT, Hines ML (2006) The neuron book. Cambridge, UK: Cambridge UP.

Carnevale NT, Johnston D (1982) Electrophysiological characterization of remote chemical synapses. J Neurophysiol 47:606–621. Medline

Carnevale NT, Tsai KI, Claiborne BJ, Brown TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J Neurophysiol 78:703–720. Medline

Chaussson P, Leresche N, Lambert RC (2013) Dynamics of intrinsic dendritic calcium signalling during tonic firing of thalamic reticular neurons. PLoS One 8:e72275. CrossRef Medline

Cohen SD, Hindmarsh AC (1996) CVODE, a stiff/nonstiff ODE solver in C. Comput Phys 10:138–143. CrossRef

Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of cortical thalamic feedback in a thalamically generated rhythm. J Physiol 490:159–179. CrossRef Medline

Crandall SR, Govindaiah G, Cox CL (2010) Low-threshold Ca\(^{2+} \) current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci 30:15419–15429. CrossRef Medline

Deschênes M, Paradis M, Roy JP, Steriade M (1984) Electrophysiology of neurons of the lateral thalamic nucleus in cat: resting properties and burst discharges. J Neurophysiol 51:1196–1219. Medline

Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803–818. Medline

Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588. Medline

Dreyfus FM, Tischerer A, Errington AC, Renger JJ, Shin HS, Ubele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of \(I_{\text{window}} \). J Neurosci 30:99–109. CrossRef Medline
Errington AC, Renger J, Uebbe VN, Crunelli V (2010) State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 30:14843–14853. CrossRef Medline

Errington AC, Hughes SW, Crunelli V (2012) Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro. J Physiol 590:3691–3700. CrossRef Medline

Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, Bria P, Kalin NH, Tonioli G (2010) Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry 167:1339–1348. CrossRef Medline

Foust A, Popovic M, Zecевич D, McCormick DA (2010) Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 30:6891–6902. CrossRef Medline

Goldberg JH, Lacefield CO, Yuste R (2004) Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurons: implications for control of pyramidal cell bursting. J Physiol 558:465–478. CrossRef Medline

Hughes SW, Cope DW, B lethyn KL, Crunelli V (2002) Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 35:5947–5958. CrossRef Medline

Huguenard JR, Prince DA (1992) A novel T-type current underlies burst firing in GABAergic neurons of the rat thalamic reticular nucleus. J Neurosci 12:3804–3817. Medline

Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222. CrossRef Medline

Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82:3268–3285. Medline

Jahnsen H, Llinás R (1984a) Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J Physiol 349:205–226. CrossRef Medline

Jahnsen H, Llinás R (1984b) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurons in vitro. J Physiol 349:227–247. CrossRef Medline

Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurophysiol 62:2979–3004. CrossRef Medline

Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50:15–33. CrossRef Medline

Koel MW, Hsueh SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186. CrossRef Medline

Kreppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528. CrossRef Medline

Lajeunesse F, Kröger H, Timofeev I (2013) Regulation of AMPA and NMDA channels in thalamic neurons. J Physiol 591:291–313. CrossRef Medline

Larkum ME, Nevian T, Larkum M, A. Schiller GJ (2008) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. J Neurophysiol 100:1263–1280. CrossRef Medline

Larsen NS, Hugonnard M, Sakmann B, Prince DA (1995) The role of CaV3.3 channels in thalamic thalamocortical neurons. J Neurosci 15:605–616. CrossRef Medline

Lehnertz K, Schuster P, Neuroth H (2008) Dynamic analysis and modeling of multiple epileptic seizures. Front Comput Neurosci 2:5. CrossRef Medline

Llinács R, Mühlethaler M (1988) Electrophysiology of guinea-pig cerebellar neurons in the in vitro brain stem cerebellar preparation. J Physiol 404:241–258. CrossRef Medline

Llinás R, Yarom Y (1981a) The molecular physiology of thalamic neurons: a new approach. Brain Res 229:367–383. CrossRef Medline

Llinás R, Yarom Y (1981b) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro. J Physiol 315:563–580. CrossRef Medline

LuBke J (1993) Morphology of neurons in the thalamic reticular nucleus (TRN) of mammals as revealed by intracellular injections into fixed brain slices. J Comp Neurol 329:458–471. CrossRef Medline

Liu XR, Murray KD, Jones EG (2011) Low-threshold calcium channel subunit Ca2+ is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol 6:1181–1195. CrossRef Medline

Lütü A, McCormick DA (1998) Periodicity of thalamic synchronized oscillations: the role of Ca2+ mediated upregulation of I\textsubscript{Na}. Neuron 20:553–565. CrossRef Medline

Magnin M, Morel A, Jeammond D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in Parkinsonian patients. Neuroscience 96:549–554. CrossRef Medline

McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400. Medline

McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J Physiol 431:291–318. CrossRef Medline

Nakanishi H, Kita H, Kita SI (1987) Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation. Brain Res 437:35–44. CrossRef Medline

Narayanan R, Johnston D (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J Neurosci 28:5846–5860. CrossRef Medline

Neubig M, Sejnowski TJ (2000) Propagation in thalamocortical dendrites. Soc Neurosci Abstr 26:336.14. CrossRef Medline

Neuhaus A, Larkum ME, Polsky A, Schiller GJ (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206–214. CrossRef Medline

Ohara PT, Hatton JA (1994) Dendritic architecture of rat somatosensory thalamocortical projection neurons. J Comp Neurol 349:159–171. CrossRef Medline

Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161. CrossRef Medline

Pinaud D, Leresche N, Charpier S, Deniau JM, Marescaux C, Vergnes M, Crunelli V (1998) Intracellular recordings in thalamic neurons during spontaneous spike and wave discharges in rats with absence epilepsy. J Physiol 509:449–456. CrossRef Medline

Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–687. CrossRef Medline

Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 515:605–616. CrossRef Medline

Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289. CrossRef Medline

Sieber AR, Min R, Nevian T (2013) Non-Hebian long-term potentiation of inhibitory synapses in the thalamus. J Neurosci 33:15675–15685. CrossRef Medline

Spreafico R, Battaglia G, Frassoni C (1991) The reticular thalamic nucleus (RTN) of the rat: cytoarchitectural, Golgi, immunocytochemical, and horseradish peroxidase study. J Comp Neurol 304:478–490. CrossRef Medline

Steriade M, Dossi RC, Nuñez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200–3217. Medline

Steriade M, Contreras D, Carró Dossi R, Nuñez A (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284–3299. Medline

Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 515:605–616. CrossRef Medline

Swadlow HA, Gusev AG (2001) The impact of “bursting” thalamic impulses at a neocortical synapse. Nat Neurosci 4:402–408. CrossRef Medline

Vaidya SP, Johnston D (2013) Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nat Neurosci 16:1812–1820. CrossRef Medline

Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317. Medline

Williams SR, Turner JP, Hughes SW, Crunelli V (1997) On the nature of anomalous rectification in thalamocortical neurons of the cat ventrobasal thalamus in vitro. J Physiol 505:727–747. CrossRef Medline

Zomorodri R, Kröger H, Timofeev I (2008) Modeling thalamocortical cell: impact of Ca2+ channel distribution and cell geometry on firing pattern. Front Comput Neurosci 2:5. CrossRef Medline

Connelly et al. (2015) The Global Low-Threshold Spike