Mini Review

MicroRNA Functions in Brite/Brown Fat — Novel Perspectives towards Anti-Obesity Strategies

Michael Karbiener, Marcel Scheideler *

RNA Biology Group, Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria

A R T I C L E I N F O

Article history:
Received 1 August 2014
Accepted 11 September 2014
Available online 18 September 2014

Keywords:
Obesity
Adipose tissue
Brite/beige adipocyte
Brown adipocyte
Non-coding RNA
MicroRNA

A B S T R A C T

Current anti-obesity strategies are aiming at restricting energy uptake, but still, obesity treatment is far from being satisfactory. The discovery of active brown adipose tissue (BAT) in adult humans currently opens new avenues to combat obesity and follow-up complications as it tackles the other side of the energy balance: energy expenditure via non-shivering thermogenesis. This process of energy dissipation in the adipose tissue is tightly controlled, and the elucidation of its regulatory network is a key plank for therapeutic applications. MicroRNAs (miRNAs) belong to a novel class of regulatory determinants which are small non-coding RNAs with vital roles in regulating gene expression that also play a role in many human diseases. In this review we summarize miRNAs which have been shown to govern thermogenic, i.e. brite or brown, adipocyte recruitment and physiology. Notably, most miRNAs in this context have so far been characterized solely in mice, revealing a great demand for more human studies. As in the context of other diseases, RNA-based therapeutics have meanwhile entered clinical trials, further exploring the functions of miRNAs in brown and white adipose tissues could result in novel therapeutic approaches to treat obesity and its follow-up complications.

© 2014 Karbiener and Scheideler. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction .. 101
2. MicroRNAs in brite/brown adipocyte differentiation and function .. 102
 2.1. MIR-193b-365 involvement in brown adipocyte differentiation .. 102
 2.2. MIR-196a is a positive regulator of brite adipocyte differentiation ... 102
 2.3. MIR-133 is a negative regulator of brite and brown adipocyte differentiation 102
 2.4. MIR-155 hampers differentiation of brite and brown adipocytes ... 103
 2.5. MIR-27 represses differentiation of brite and brown adipocytes ... 103
 2.6. MIR-106b-93 is a negative regulator of brown adipocyte differentiation 103
 2.7. MIR-26 family induces and promotes human brite adipocyte differentiation 103
3. Summary and outlook .. 103
4. Competing interests ... 104
5. Acknowledgments ... 104
6. References ... 104

1. Introduction

The whole body energy balance depends on two sides of the same coin: energy uptake and energy expenditure. As obesity is a consequence of energy uptake that exceeds energy expenditure, current anti-obesity strategies are aiming at restricting energy uptake. Nevertheless, this treatment strategy acting on one side of the coin is far from being satisfactory so far, unfortunately [1]. Nowadays, there is emerging evidence that a lifestyle-modification program characterized by a balanced diet and combined with an increase in energy expenditure can reduce obesity and the risk of obesity-related comorbid conditions [2]. Increased energy expenditure can be achieved either by physical activity, mainly in the muscle [3], or by non-shivering thermogenesis in the adipose tissue [4], owing to the fact that active (i.e., thermogenic)
brown adipose tissue (BAT) has recently been “re-discovered” in adult humans [5–9]. Indeed, human BAT recruitment and activation upon cold exposure have very recently been demonstrated to increase non-shivering thermogenesis, to elevate energy expenditure and finally to contribute to body fat reduction [10–12]. These findings underline the paradigm shift that recruitment and activation of thermogenic adipocytes, i.e. increasing energy combustion in the adipose organ by non-shivering thermogenesis, might contribute to anti-obesity strategies [13].

Thermogenic adipocytes are distinct from white adipocytes in that they have more mitochondria, and in that uncoupling protein 1 (UCP1) is highly enriched in these mitochondria. UCP1 uncouples substrate oxidation from ATP production so that heat is generated instead [14]. In addition to thermogenic brown adipocytes which are located in BAT, upon cold exposure, UCP1-expressing thermogenic adipocytes can also be recruited in white adipose tissue (WAT), so-called brite (brown-in-white) or beige adipocytes, resulting in WAT ‘browning’ [15–19]. Thermogenic adipocytes have a substantial impact on the energy balance, as UCP1-promoted heat production – non-shivering thermogenesis – is a highly energy-dissipating process [20,21].

This attracts constantly growing attention in the search for molecular pathways, pharmacological agents and endogenous signals that regulate the formation of thermogenic adipocytes [22–24]. As proof of concept, first promising targets in human have already been identified comprising endocrine and paracrine mediators such as FGF21 [25,26] and natriuretic peptides [27–29], as well as transcriptional regulators such as PPARγ, C/EBP and PDM16 [30].

However, the role of non-coding RNAs (ncRNAs), a novel class of regulatory determinants, is still mostly unknown in this context. The best explored subclass of ncRNAs comprises microRNAs (miRNAs), small RNAs of approximately 23 nucleotides, which play a central role in RNA interference (RNAi), a post-transcriptional gene silencing mechanism existing in many eukaryotes [31–34]. miRNAs interact with partially complementary sites in the 3′ UTR of mRNAs to diminish protein output, via both inhibition of translation and mRNA destabilization [35]. Despite their recent discovery, it is already well-known that miRNAs play pivotal roles in numerous biological processes. Important- ly, fat-selective inactivation of Dicer, a necessary factor for miRNA output, via both inhibition of translation and mRNA destabilization is a highly energy-dissipating process [20,21].

miRNAs play pivotal roles in numerous biological processes. Important- ly, fat-selective inactivation of Dicer, a necessary factor for miRNA output, via both inhibition of translation and mRNA destabilization is a highly energy-dissipating process [20,21].

The miR-133 family has an established role in the physiology of cardiac and skeletal muscle [52–54]. In addition, Trajkovski et al. have described an involvement of miR-133a and -133b in brown and brite adipogenesis [55]. Cold exposure led to a pronounced decrease of both miRNAs in mouse BAT and subcutaneous WAT (scWAT). Inhibition of miR-133a/b during differentiation of immortalized brown preadipocytes strongly increased the expression of Ucp1 and its upstream regulators Pdm16 and peroxisome proliferator activated receptor α (Pparα), resulting in increased cellular respiration. Of note, these browning effects were accompanied by a general promotion of adipogenesis (assessed by expression of the adipogenic master regulator peroxisome proliferator activated receptor γ (Pparγ), and the portion of lipid-filled cells). Conversely, transfection of miR-133 mimics blunted the expression of brown and general adipocyte markers. Similar effects of the miR-133 family were also observed with preadipocytes isolated from scWAT. Further in vitro experiments demonstrated a novel regulatory cascade in which β-adrenergic stimulation leads to suppression of the myocyte enhancer factor 2 (Mef2) transcription factor family, thereby reducing miR-133a/b levels, leading to increases of the direct miR-133 target Pdm16 and subsequent browning. A more recent study recapitulated the negative effect of miR-133a on brown and brite adipocyte differentiation [56]. The authors used a knockout mouse model in which 3 of the 4
alleles that normally generate mature miR-133a were deleted. While this strong reduction of miR-133a did not affect brown marker gene expression in BAT, pronounced “browning” of iWAT was observed. Further, glucose tolerance and insulin sensitivity were markedly improved compared to wild type mice of matched age, gender and genetic background. Interestingly, the miR-133a/b effects on brown/brite adipocyte development have recently been demonstrated to extend to the myogenic lineage. Inhibition of the miR-133 family in satellite cells (i.e., adult skeletal muscle stem cells) promoted the development of Ucp1+ and Prdm16+ adipocytes in vitro and in vivo [57]. Collectively, the studies by Liu et al. and Yin et al. suggest a dual action of miR-133a/b, governing non-shivering thermogenesis in genuine adipose tissues as well as in skeletal muscle.

2.4. MiR-155 hampers differentiation of brite and brown adipocytes

MiR-155 was identified by Chen et al. as another negative regulator of BAT development and thermogenesis [58]. Using murine brown preadipocytes, the authors found that miR-155 prevents adipocyte differentiation via direct targeting of C/ebpα. In turn, C/ebpα was demonstrated to suppress transcription of miR-155, thereby establishing a double-negative feedback loop in brown precursor cells. Strikingly, transgenic mice that overexpressed miR-155 (globally or specifically in BAT) exhibited smaller BAT depots, as well as reduced Ucp1+ in the tissue, which was corroborated by decreased BAT-derived thermogenesis. The in vivo relevance of this miRNA was further supported by a mouse knockout model: miR-155−/− mice were more resistant to cold stress than wild type littermates, presumably due to more metabolically active BAT and browning of iWAT. However, possible consequences of miR-155 overexpression/deletion on diet-induced weight gain have not been investigated so far. Further, it should be noted that miR-155 has profound functions in the hematopoietic system [59]. For instance, invalidation of the miR-155 gene in mice evoked severe defects in T-cell differentiation and B-cell differentiation [60]; thus, possible beneficial metabolic effects of miR-155 antagonism might be paralleled by detrimental effects on immune responses.

2.5. MiR-27 represses differentiation of brite and brown adipocytes

The miR-27 family was one of the first that was functionally linked to white adipogenesis [37,61,62], exhibiting a strong anti-adipogenic function due to direct targeting of the Ppary 3’UTR [37]. A possible role in differentiation of brown precursor cells could thus be anticipated and was recently confirmed, as inhibition of miR-27a/b led to marked increases of Prdm16, Pparγ, and peroxisome proliferator activated receptor, γ coactivator 1 α (Pgc1α) miRNAs, Ucp1 protein, as well as respiratory capacity [63]. Similar positive effects on brown markers were observed when miR-27a/b were inhibited during differentiation of stromal vascular cells from scWAT and visceral WAT. Conversely, these marker genes were repressed if miR-27a levels were elevated during differentiation via transfection of miRNA mimics. Of interest, four important transcriptional regulators of the brown gene expression program – Prdm16, Pparγ, Camp responsive element binding protein 1 (Creb1), and Pgc1β – were validated as direct targets of the miR-27 family, which revealed a direct molecular link of these miRNAs to the core protein network governing the development of thermogenic adipocytes.

2.6. MiR-106b-93 is a negative regulator of brown adipocyte differentiation

MiR-106b and miR-93 originate from a single (i.e., polycistronic) transcript and belong to the miR-17 family which comprises several other members that are partitioned between three distinct miRNA clusters. While the members of one of these clusters – miR-17–92 – were found to promote (white) adipocyte differentiation of 3T3-L1 preadipocytes [64], Wu et al. recently described a negative effect of miR-106b and miR-93 on brown adipogenesis, as inhibition of either miRNA during differentiation of brown preadipocytes increased lipid accumulation and the levels of brown and general adipocyte markers [65]. These diverging results might be explained by the fact that the previous study overexpressed the entire miR-17–92 cluster which also comprises miRNAs not belonging to the miR-17 family (i.e. with another seed sequence). Alternatively, the different developmental origins of brown as opposed to white precursor cells might result in different repertoires of miRNAs that are targeted by members of the miR-17 family.

2.7. MiR-26 family induces and promotes human brite adipocyte differentiation

It should be noted that functional characterization of the above described miRNAs in brown and brite adipogenesis has been performed almost entirely in mouse. In contrast, a recent study has revealed the first “browning” effect of miRNAs in human adipogenesis [39]. MiR-26a and miR-26b levels were found to increase during adipocyte differentiation of human multipotent adipose-derived stem (hMADS) cells [66,67,18], and their inhibition strongly prevented lipid accumulation and expression of general adipocyte markers. In contrast, elevation of miR-26a/b by transfection of mimics modestly accelerated adipogenesis. Interestingly, global gene expression analysis of miR-26a-transfected cells revealed a significant induction of pathways related to energy dissipation. Brown marker genes – most importantly UCPI – were indeed found to be strongly upregulated, leading to increased basal and uncoupled respiration upon treatment with miR-26. Mitochondrial morphology was likewise shifted towards a more brown phenotype. Mechanistically, the combination of transcriptomics, an RNAi screen, and reporter assays revealed that the effects of miR-26a/b are largely mediated via its direct target ADAM metallopeptidase 17 (ADAM17/TACE), a gene that was previously described to negatively regulate non-shivering thermogenesis [68,69]. Finally, miR-26a was found enriched in mouse BAT versus WAT, and to be induced in WAT upon cold exposure, which further supports a physiological relevance of the miR-26 family that could also be utilized for therapeutic purposes.

3. Summary and outlook

As overweight and obesity have reached pandemic dimensions, the demand for treatments which effectively promote weight loss is higher than ever. In this respect, approaches aimed to reduce energy intake (either intestinal absorption of nutrients, or central regulation of appetite) have been pursued for decades, yet have continuously failed to reduce body fat on a long-term perspective. Recently, the alternative concept of promoting energy expenditure via activation and recruitment of thermogenic adipocytes has been revitalized as several studies have demonstrated the presence of BAT in healthy adults. Indeed, the finding that BAT activity is inversely correlated with BMI in humans [7] suggests a physiological relevance for brown and brite adipocytes in the control of body weight, as has been demonstrated for mice [20]. The development of pharmacological compounds able to promote glucose and fatty acid oxidation, either by activation of pre-existing thermogenic adipocytes or their de novo recruitment, is therefore heavily pursued by both academia and the biotech industry, not least due to interesting therapeutic perspectives.

It is however evident that the molecular mechanisms governing white, brown and brite adipocyte development are still incompletely elucidated. This is especially true for human, as the vast majority of studies in adipocyte biology has been performed in mouse or cells derived thereof. Further, the more recently discovered classes of ncRNAs remain largely uncharacterized with respect to their impact on metabolism. miRNAs are one such class, with only a few studies published to date that describe an impact on thermogenic adipocyte development. Due to the nature of miRNAs to simultaneously act on a large set of mRNA targets, they appear as powerful determinants in cell fate
decisions like stem cell self-renewal and differentiation [70–72]. Likewise, a strong involvement of particular miRNA families in complex diseases like obesity and diabetes can be anticipated. As for other diseases, it should be noted that therapeutic approaches aimed to antagonize or restore miRNA function have already made their way “from bench to bedside”: While an anti-miR-122 inhibitor compound has been shown to effectively reduce hepatitis C viral load in a phase 2a clinical trial [73], a miR-34 mimic with the perspective to treat liver cancer has recently entered phase 1 [74]. It is thus conceivable that future research further exploring the molecular actions of miRNAs in adipocytes and adipose tissue will reveal pharmacological ways to promote energy expenditure in fat cells that could eventually result in novel anti-obesity therapeutics.

Competing interests
The authors indicate no potential conflicts of interest.

Acknowledgments
We thank for the financial support given by the Austrian Science Fund (FWF, P25729-B19) and the EU (HEALTH-F2-2011-278373).

References
[1] Kim GW, Lin JE, Blomain ES, Waldman SA. New advances in models and strategies for developing anti-obesity drugs. Expert Opin Drug Discov 2013;8:655–71. http://dx.doi.org/10.1517/17460441.2013.792804.
[2] Niedergerd J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. N Engl J Med 2009;360:1500–7. http://dx.doi.org/10.1056/NEJMoa0808949.
[3] Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–9. http://dx.doi.org/10.1056/NEJMoa0808781.
[4] Yoneshiro T, Aida S, Matsushita M, Watanabe K, Yoneshiro T, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009;58:S152–31. http://dx.doi.org/10.2337/db09-0530.
[5] Yoneshiro T, Aida S, Matsushita M, Watanabe K, Yoneshiro T, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009;58:S152–31. http://dx.doi.org/10.2337/db09-0530.
[6] Yoneshiro T, Aida S, Matsushita M, Watanabe K, Yoneshiro T, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009;58:S152–31. http://dx.doi.org/10.2337/db09-0530.
[7] Yoneshiro T, Aida S, Matsushita M, Watanabe K, Yoneshiro T, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009;58:S152–31. http://dx.doi.org/10.2337/db09-0530.
[8] Yoneshiro T, Aida S, Matsushita M, Watanabe K, Yoneshiro T, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009;58:S152–31. http://dx.doi.org/10.2337/db09-0530.
[46] Feuermann Y, Kang K, Cavarrova O, Haetsch N, Jang SJ, et al. miR-193b and miR-365–1 are not required for the development and function of brown fat in the mouse. RNA Biol 2013; 10:1807–14. http://dx.doi.org/10.4161/rna.27239.

[47] Mori M, Nakagami H, Rodríguez-Aranjo C, Ninuma K, Kameda Y. Essential role for miR-199a in brown adipogenesis of white fat progenitor cells. PLoS Biol 2012; 10:e1001314. http://dx.doi.org/10.1371/journal.pbiol.1001314.

[48] Schiancosi CC, Ferrara A, Pizzuti G, Meroni P, Stoffel M, et al. High miR-199a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 2009; 15:2089–96.

[49] Liu X, Lu K, Wang K, Sun M, Zhang E, et al. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HIN1. BMC Cancer 2012; 12:348. http://dx.doi.org/10.1186/1471-2407-12-348.

[50] Yang G, Han Y, Chen X, Zhang D, Wang L, et al. MiR-199a Exerts its oncogenic effect in glioblastoma multiforme by inhibition of K-Ras both in vitro and in vivo. Neuro Oncol 2014; 16:562–61. http://dx.doi.org/10.1093/neuonc/nos030.

[51] Hou T, Ou J, Zhao X, Huang X, Huang Y, Zhang Y. MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer 2014; 110:1250–8. http://dx.doi.org/10.1038/bjc.2013.829.

[52] Chen J-F, Ma Z, Thompson J, Wu J, Callis H, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38:228–33. http://dx.doi.org/10.1038/ng1725.

[53] Casé A, Calafucci D, Felicetti F, Bonci D, Ardito A, et al. MicroRNA-133 controls cardia hypertrophy. Nat Med 2007; 13:613–8. http://dx.doi.org/10.1038/nm1582.

[54] Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008; 22:3242–54. http://dx.doi.org/10.1101/gad.1738708.

[55] Trajkovski M, Ahmed K, Esau C, Stoffel M, Myerfork-133 regulates brown fat differentiation through Pdm16. Nat Cell Biol 2012; 14:1330–5. http://dx.doi.org/10.1038/ncb2612.

[56] Liu W, Bi P, Shan T, Yang X, Yin H, et al. miR-133a regulates adipocyte brown in vivo. PloS Genet 2013; 9:e1003626. http://dx.doi.org/10.1371/journal.pgen.1003626.

[57] Yin H, Flot A, Soleimani YD, Benziinger CF, Antoun G, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Pdm16. Cell Metab 2013; 17:210–24. http://dx.doi.org/10.1016/j.cmet.2013.01.004.

[58] Chen Y, Siegel F, Kischull S, Raas B, Frohlich H, et al. MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 2013; 4:1769. http://dx.doi.org/10.1038/ncomms2742.

[59] Seddiki N, Berezai R, Raffin N, Levy Y, Swaminathan S. Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology 2014; 142:32–8. http://dx.doi.org/10.1111/imn.12227.

[60] Rodriguez A, Vigorito E, Clare S, Warren MW, Couttet P, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316:608–11. http://dx.doi.org/10.1126/science.1139253.

[61] Kim SV, Han YM, Lee HY, Son YH, Lee CY, et al. MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010; 392:323–8. http://dx.doi.org/10.1016/j.bbrc.2010.01.012.

[62] Liu Q, Gao Z, Alarcón RM, Ye J, Yin Z. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009; 276:2348–58.

[63] Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metab Clin Exp 2014; 63:272–82. http://dx.doi.org/10.1016/j.metabol.2013.10.004.

[64] Wang Q, Lu Y, Wang J, Kong J, Qi Y, et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor RB2/p130. Proc Natl Acad Sci U S A 2008; 105:2889–94. http://dx.doi.org/10.1073/pnas.0800178105.

[65] Wu Y, Qin J, Zhang Y, Xie Y, Hu P, et al. Identification of miR-106a-5p as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun 2013; 438:575–80. http://dx.doi.org/10.1016/j.bbrc.2013.08.016.

[66] Rodríguez A-M, Eladbi C, Delhée P, Aspler J, Verneau C, et al. Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun 2004; 315:255–63. http://dx.doi.org/10.1016/j.bbrc.2004.01.053.

[67] Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 2009; 27:2753–60. http://dx.doi.org/10.1002/stem.200.

[68] Serino M, Menghini R, Fiorentino L, Amoruso R, Mauriello A, et al. Mice heterozygous for tumor necrosis factor-alpha converting enzyme are protected from obesity-induced insulin resistance and diabetes. Diabetes 2007; 56:2541–6. http://dx.doi.org/10.2337/db07-0360.

[69] Gelling RW, Yan W, Al-Noori S, Pardini A, Morton GJ, et al. Deficiency of TNFalpha converting enzyme (TACE/ADAM17) causes a lean, hypermetabolic phenotype in mice. Endocrinology 2008; 149:6053–64. http://dx.doi.org/10.1210/en.2008-0775.

[70] Gangarara VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009; 10:116–25. http://dx.doi.org/10.1038/nrm2621.

[71] Houbaviy HB, Murray MR, Sharp PA. Embryonic stem cell-specific microRNAs. Dev Cell 2003; 5:351–8. http://dx.doi.org/10.1016/S1534-5807(03)00227-2.

[72] Xu N, Papagiannakopoulou T, Pan C, Thomson JA, Kong KS. MicroRNA-45 regulates OCT4, Sox2, and Klf4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137:647–58. http://dx.doi.org/10.1016/j.cell.2009.02.038.

[73] Janssen HLA, Reesink HRT, Lawler CJ, Teumen S, Rodriguez-Vorres M, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368:1685–94. http://dx.doi.org/10.1126/science.1139253.