Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién, Panama

Rolando Torres-Cosme¹*, Chystrie Rigg²*, Ana María Santamaría²*, Vanessa Vásquez², Carlos Victoria³, José Luis Ramírez⁴, José E. Calzada², Lorenzo Cáceres Carrera¹*

¹ Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, República de Panam, 2 Departamento de Investigación en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panam, República de Panam, 3 Departamento de Control de Vectores, Ministerio de Salud (MINSAL), Panam, República de Panam, 4 Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America

* These authors contributed equally to this work.

lcaceres@gorgas.gob.pa, cacereslorenzo@gmail.com

Abstract

Background

More than 85% of the malaria cases in Panama occur in poor, rural and indigenous regions like Darién Province. Vector diversity, infection rate and spatial distribution are important entomological parameters of malaria transmission dynamics. Their understanding is crucial for the development of effective disease control strategies. The objective of this study was to determine the composition of Anopheles species, their natural infection rate and their geographic distribution to better understand the malaria transmission dynamics in Darién, Panama.

Methods

Anophelines mosquitoes were captured during the rainy and dry season of 2016. We selected five communities where adult anophelines were collected using CDC light-traps, and through protective human-baited traps. Detection of natural infection and Plasmodium genotype were detected via nested PCR through the amplification of ssrRNA and the circumsporozoite protein gene (csp), respectively.

Results

A total of 1,063 mosquitoes were collected for the detection of natural infection with Plasmodium spp. Nine Anophelines species were identified, with the predominant species being: An. (Nys.) darlingi (45.0%) and An. (Nys.) albimanus (42.6%). Natural infection in An. (Nys.) albimanus with P. vivax was detected in one mosquito pool from the community Pueblo Tortuga (0.6%), three from Marraganti (1.7%), two from Bajo Chiquito (1.1%) and three pools from Alto Playona 3 (1.7%). For An. (Nys.) darlingi mosquitoes, we detected seven positive pools from the community Bajo Chiquito (4.0%), two pools...
from Marraganti (1.1%) and two pools from Alto Playona (1.1%). The *P. vivax* allelic variant VK210 was detected in infected mosquitoes.

Conclusion

The results from this study provide new information on the transmission dynamics associated with anophelines vectors in the Darién region. This is the first report of natural *P. vivax* infection in *An. (Nys.) darlingi* and its incrimination as a potential malaria vector in this region of Panama. Additional studies are necessary to expand our knowledge and determine crucial parameters in malaria transmission in Darién, which in turn will aid the National Malaria Program in attaining an adequate malaria control strategy towards malaria elimination.

Introduction

Malaria is one of the most important public health problems; in 2018 it caused more than 228 million cases and 405,000 deaths according to the World Health Organization (WHO) [1]. This disease affects the health and work capacity of large number of people due to its vast geographic distribution, morbidity, mortality and socio-economic impact [2]. Malaria transmission currently exists in 21 countries and territories of the American continent. In these areas, 132 million people are at risk of infection, while 21 million people live in areas of high transmission risk. According to Pan American Health Organization (PAHO), since 2015 the Americas have experienced an increase in the number of cases mainly due to a rise in the incidence in Venezuela, and to a higher transmission rate in endemic areas from countries like Brazil, Colombia, Guyana, Nicaragua and Panama. In addition, there has been recent outbreaks in countries that have been advancing towards malaria elimination (Costa Rica, Dominican Republic and Ecuador). In comparison, Paraguay and Argentina have received certification as malaria-free countries in July 2018 and May 2019, respectively. Also, is worth mentioning the scenario in El Salvador and Belize, who have presented no autochthonous cases since 2017 and 2019, respectively [3].

Despite the regional efforts, malaria in Panama continues to represent an important public health problem [4], with active transmission limited to 10 municipalities (12.5% of the total Panamanian municipalities), and with the poorest rural regions (mostly indigenous), being the most affected population. This is in part due to the geographical isolation and the lack of access to public health services, poverty and illiteracy. Indigenous regions, which occupy 22% of the national territory and only 12% of the total population, register more than 85% of the total malaria diagnosed cases [5]. The variations that occur in these regions determine the main changes affecting malaria epidemiology in Panama.

Generally, the circulation of the malaria parasites follows the spatial distribution of their anophelines vectors [6]. The genus *Anopheles* is found throughout the world and the majority of the 465 known species are not malaria vectors. Approximately, 41 species of the genus *Anopheles* are associated with *Plasmodium* transmission to humans [7]. In Panama, *An. (Nys.) albimanus* is of great entomological and epidemiological importance given that its predominance and role as primary malaria vector along the coastal areas of the Caribe and the Pacific. *Anopheles (Ano.) punctimacula*, is known as an important secondary vector. Nevertheless, there are other anophelines species that could be implicated in malaria transmission in the different endemic regions of Panama. For instance, *An. (Nys.) darlingi*, has recently been described in specific regions of Panama [8]. However, it is the primary malaria vector of much
of Latin America and is known to readily colonize habitats with diverse ecological characteristics. Furthermore, depending on the environment, this mosquito species displays a range of behaviors: anthropophily, opportunism, endo-exophagy, and endo-exophily. It also frequently colonizes anthropogenic sites and is susceptible to *P. vivax* and *P. falciparum* [9, 10].

The determination of natural *Plasmodium* infection in anophelines mosquitoes is an important step to discern the main malaria vector species that exists in a region [11]. In Panama, experimental infections with human blood infected with circulating gametocytes, have found that seven *Anopheles* species are susceptible to infection with either *P. vivax* or *P. falciparum*. Nevertheless, only four of these species have been found to be naturally infected in the wild with *Plasmodium spp.* oocysts and/or sporozoites [12–16]. Currently there are 26 *Anopheles* species described in Panama [17–19]. The species *An. (Ano.) malefactor*, was also included by Wilkerson and Strickman [19] following a systematic revision differentiating this species from its synonym *An. (Ano.) punctimacula s.l.* [18]. Additionally, a recent report described the presence of *An. (Nys.) darlingi* in two communities in Darién province located at the eastern end of the country bordering with Colombia [20].

Social, environmental, economic, demographic and climatic changes can significantly influence the distribution of anophelines in endemic areas [21–23]. Although some species have been incriminated as local or regional vectors in neighboring countries [24], their importance as malaria vectors in Panama has yet to be determined. Additional entomological studies evaluating the vectorial capacity of other anophelines species are needed to determine their epidemiological importance in each of the Panamanian endemic regions. Equally important is the frequent monitoring of entomological parameters such as abundance, composition and natural infection with *Plasmodium*. Information gathered in these areas will contribute to the improvement of regional and local vector control strategies that can lead to malaria elimination in Panama. In this regard the objectives of this entomological study were to determine the species composition, spatial distribution, detection of natural *Plasmodium* infection and genotype, and their association with dominant mosquito species in Darién. This study provides new information on malaria transmission dynamics and has great public health significance allowing a more adequate selection of vector control interventions in this endemic region of Panama.

Material and methods

Description of the study area

The collection of adult *Anopheles* mosquitoes was conducted in the indigenous comarcas Emberá-Wounaan and Wargandi, located in Darién. The term comarca refers to an administrative region within Panama and it is assigned to a given indigenous population. The eastern side of Panama, where Darién is located, has seen 61.5% of national malaria cases in the last years [5]. The climate of this region is tropical, with high humidity like the rest of Panama, and it is influenced by the intertropical convergence zone [25]. Darién has two well defined seasons with moderate high temperature and humidity: the dry season (January—April) and the rainy season (May—December). The average annual precipitation ranges from 1,700 to 2,000 mm, with May and November being the rainiest months. The temperature does not present significant variations, ranging from 25.6 to 27.1˚C. This region registers a relative humidity of 84% and it ranges from 75% (March, dry season) to 93% (November, rainy season) [26]. According to the system of biosphere classifications by Holdridge, Darién belongs to a tropical rainforest [27].

Study design and site selection

Site selection was conducted in conjunction with technical personnel from the National Malaria Program (NMP) of the Ministry of Health (known as MINSA in Spanish). The
selected sites were indigenous communities that presented active malaria transmission: Marraganti, Bajo Chiquito, Pueblo Tortuga and Alto Playona, located in the comarca Embera-Wounaan, and Morti in the indigenous comarca Guna of Wargandi (Fig 1 and Table 1). All the communities were characterized by being located near a river that are used as the main communication means with other nearby communities, surrounded by an ecology of lowlands, creeping vegetation and secondary forest. Most households in this area presented wooden walls, tin roofs and a few were protected from insect entrance. Selection of communities was based on the following criteria: (1) its entomological importance with regards to vectors, (2) its epidemiological importance according to the transmission rate and (3) accessibility and safety to visit the community, as the presence of irregular armed groups and drug traffickers is frequent in certain areas from Darién.

Comarca: The term comarca refers to an administrative region within Panama and it is assigned to a given indigenous population. We designed a cross-sectional study to identify the species of *Anopheles* vectors present in the selected communities and to detect natural *Plasmodium* infection and genotype in these vectors. Mosquitoes were collected via two methods...
in each of the selected communities where malaria cases were registered: protective human-baited capture (PHBC), which consists of exposing only one limb and capturing the mosquito upon landing before the bite begins [24]; and CDC light traps (LTs). Each locality represented a sampling site, and for each selected location mosquito samplings were conducted for nine months; twice during the dry season (March and April) and twice during the rainy season (May to November) of 2016. The NMP provided the following epidemiological data: geographical location of the malaria cases, clinical characteristics of the disease, date of the first cases, affected and exposed population, socioeconomic information, basic sanitation services, health service characteristics, demographic information and prevention and control interventions carried out in the region. This information was important to select the study sites, based on the communities that registered higher malaria transmissions in recent years.

Collection of adult mosquitoes
To collect adult mosquitoes, four houses that presented malaria or were near to a mosquito breeding sites were selected. Mosquito collection in each of the sites were conducted at different dates but within the same dry and rainy season. Mosquito collections with PHBC were carried out in the five selected communities during four consecutive nights in the intra and peridomicile areas simultaneously once a month, for nine months including the dry (March and April) and rainy seasons (May to November) of 2016. To determine the human biting rate per night (HBRs), the PHBC consisted in simultaneously having one-person intradomicile and another in the peridomicile per night in the four households within each locality. Mosquito collections were conducted during the 18:00 and 22:00 hours, given that previous reports have indicated that this is the period of greater mosquito biting activity [28, 29]. Collections were made during the first 50 min of every hour. During this period, HBRs were calculated, such as the biting/human/night (BHN) rate during the period from 18:00 p.m. to 22:00 p.m. [30]. The biting rate was obtained from the total number of mosquitoes captured divided by the number of collectors and the total hours of captures [31]. Mosquito collections were conducted by experienced technical personnel from the NMP and the Medical Entomology Department from the Gorgas Memorial Institute for Health Studies, trained in the capture of malaria mosquito vectors. To reduce bias during collections, personnel were rotated at specific periods every hour. The technical biosafety recommendations from WHO [32] were followed to minimize the risk of malaria infection in the field team.

Mosquito collections using LTs were also conducted during four consecutive nights simultaneously to the PHBC collections. The (LTs) were located at the height of 1.5 m above the

Table 1. Epidemiological information from the studied communities in Darién, 2016.

Comarca	Community	Coordinates	Altitude	Households	Population	Malaria Cases
Embera-Wounaan	Marraganti	8°27’56.15” N	50 m	95	390	8
		77°41’54.77” W				
	Bajo Chiquito	8°27’22.17” N	40 m	48	180	4
		7°40’45.84” W				
	Pueblo Tortuga	8°32’2.32” N	71 m	42	190	2
		77°42’44.53” W				
	Alto Playona	8°32’20.02” N	49 m	67	215	2
		77°52’56.35” W				
Wargandi	Morti	9°10’13.29” N	11 m	80	395	20
		78°47’58.72” W				

Total: 479 households, 1,755 people, 36 malaria cases.

https://doi.org/10.1371/journal.pone.0250059.t001
ground during the hours of 18:00 and 6:00 [33, 34]. Neither octanol nor carbon dioxide (CO₂) were used as mosquito attractant. Traps were distributed near houses (different from the homes where PHBC collections were made) and mosquito breeding sites (extradomicile) to a distance about 25 m. Collections with PHBC were used to measure the intensity of the anophelines bite, while the LTs were used to improve the opportunity to collect a greater variety of species of [35, 36]. Additional parameters such as temperature and relative humidity were recorded during the periods of mosquito collection using a data logger (EXTECH instruments RHT10, No. 11092261). Rainfall data were obtained from a meteorological station in the locality of Yaviza, near the collection sites.

Taxonomic determination

All biological material collected was placed in previously labeled containers and preserved in liquid nitrogen (Thermo Scientific™). Each container had information such as locality, type of collection (intra, peridomicile and LTs) and date. Samples were sent to the Department of Medical Entomology at the Gorgas Institute for its identification. Mosquito identification to the species level was conducted using taxonomical keys for adult mosquitoes [19, 37] and the Reference Collection from the Gorgas Memorial Institute for Health Studies.

To confirm the identity of *Anopheles* species in *Plasmodium* positive pools, the mitochondrial COI gene was analyzed using primers UEA3 (5′-TATAGCATCAGCATTAATTTAA-3′) and UEA10 (5′-TCCAATGCACTAATCTGCCATATTA-3′) and PCR conditions as previously described [20, 38, 39]. The PCR-amplified products from these samples were excised from agarose gel and purified using the Qiagel gel extraction Kit (Qiagen, CA, USA) following the manufacturer’s instructions. DNA sequencing of both strands was carried out using the same primers with an ABI Prism 3500 XL130 sequencer (Applied Byosistems, Foster City, CA, USA). Resulting sequences were edited using Sequencher software. The DNA sequences were compared with Anopheles COI sequences available in the GenBank by performing a BLAST search from the National Center for Biotechnology Information Database (http://www.ncbi.nlm.nih.gov/BLAST/).

Detection of *Plasmodium* spp. genotype and natural infection in *Anopheles* spp. mosquitoes

Adult female mosquitoes were grouped per species in anophelines pools. Each pool was made of two to five female mosquitoes of the same species, according to the date and site of collection, and type of capture (PHBC or LTs). It has been described that it is possible to detect infectivity in mixtures of mosquitoes; thus, complete mosquitoes of the same species were processed [40–44]. Each pool was placed in an Eppendorf tube, where they were first macerated in a solution of 180 μl of 1X PBS. Next, DNA extraction was performed following the protocol from Qiagen DNeasy Blood & Tissue (Qiagen, USA). The isolated DNA was stored at -20°C until further use.

We used a nested PCR that amplifies the small subunit ribosomal RNA (ssrRNA) genes to confirm the presence of natural infection of *Plasmodium* spp. in pools of *Anopheles* spp. mosquitoes, following a slightly modified methodology proposed by Snounou et al. [45]. Two genus-specific primers rPLU5 (5′-CCT GTT GGT GCC TTA AAC TTC-3′) and rPLU6 (5′-TTA AAA TTA CAG TTA AAA CG-3′), are used for the first cycle of amplification. An aliquot of the product obtained is used for a second amplification cycle, in which each parasite species is detected separately using species specific primers. In the second PCR reaction only specific primers for *P. falciparum* (205 pb): rFAL1 (5′-TTA AAC TGG TTT GGG AAA ACC AAA TAT ATT-3′), rFAL2 (5′-ACA CAA TGA ACT CAA TCA TGA CTA
CCC GTC–3’ and P. vivax (120 pb) rV1V1 (5’–CGC TTC TAG CTT AAT CCA CAT AAC TGA TAC–3’), rV1V2 (5’–ACT CCC AAG CCG AAG CAA AGA AAG TCC TTA–3’) were included, because the other Plasmodium human species (P. ovale and P. malariae) have not been reported in Panama in more the four decades. All mixture and amplification conditions were as described previously [45].

The circumsporozoite protein gene (csp) was used as marker to genotype Plasmodium vivax in positive pools of natural infected An. (Nys.) darlingi and An. (Nys.) albimanus. A nested PCR amplification method was used to amplify the csp gene (700 to 800bp) following previously reported protocols with some minor modifications [46]. The primers were as follows: VCS-OF (ATGTAGATCTGTCCAAGGCCATAA), VCS-OR (TAATTGAATAATGCTAGGACTAACAATATG) as primary primers and VCS-NF (GCAGAACCAAAAAATCCACGTGA AAATAAG), VCS-NR (CCAACGGTAGCTCTAACTTTATCTAGGTAT) as a nested primer. All mixture and amplification conditions were as described previously [46]. The nested PCR products were electrophoresed on a 1.5% agarose gel and then directly sequenced in both directions using an ABI Prism 3500 XL sequencer (Applied Byosistems, Foster City, CA, USA). The sequences were edited and aligned with Sequencher 4.1.4, and Phylogenetic trees were made using the Molecular Evolutionary Genetics Analysis (MEGA) 7.0.

Data analysis
The abundance of each species of mosquito per community was expressed as a percentage, obtained from the number of each species of mosquito captured in each community among the total of the species captured in all communities. The percentage of Plasmodium infected Anopheles was assessed by the number of positive Anopheles specimens of a given species (np) out of the total analyzed by community (nt) by 100 [IR = (np/nt) × 100]. The natural infection rate (IR) was also estimated by the method of pooled prevalence for variable pool size and perfect tests using the pooled prevalence calculator (https://epitools.ausvet.com.au/ppvariablepoolsize). In addition, the confidence interval (CI 95%) was calculated to indicate the reliability of the estimated value. The BHN activity was registered directly from PHBC. Hourly data from all collections were grouped and the total number of bites per hour was obtained for each species by intradomiciliary and peridomiciliary behavior. Mosquito species mean density for Anopheles species with more than five specimens per locality, was calculated as the geometric mean of the number of mosquitoes captured per person each night.

Ethical considerations
The methodology used to collect the mosquitoes was approved by the Technical and Institutional Ethics Committee of the NMP of the Ministry of Health (MINSA) (Note No. 25/DCV/DGS/MINSA/2016). Samples and human data were not used.

Results
Biting activity
The collections yielded 1,063 female adult mosquitoes, from which we were able to identify nine species (Table 2). The most predominant species were An. (Nys.) darlingi, 45% (n = 478) and An. (Nys.) albimanus 42.6% (n = 453), followed by An. (Ano.) pseudopunctipennis s.l. 8.2% (n = 87), An. (Nys.) oswaldoi s.l. 1.4% (n = 15), An. (Ano.) punctimacula s.l. 0.3% (n = 3) and An. (Nys.) triannulatus s.l. 0.3% (n = 3).

IR: Mosquito infection rate. Anopheles (Nys.) darlingi and An. (Nys.) albimanus were present during the entire collection period presenting a maximum endophagic and exophagic
Table 2. Abundance and natural *Plasmodium vivax* infection in mosquitoes collected in Darién, Panama.

Species Mosquitoes	Embera-Wounaan	Wargandi	Total Mosquitos Species	(%) Mosquitos Species				
	Bajo Chiquito	Alto Playona	Marraganti	Pueblo Tortuga	Morti			
An. (Nys.) albimanus (PHBC)	137	24	215	64	3	443	42.6	
CDC trap	3	1	6			10		
Relative abundance %	30.9	5.5	48.7	14.1	0.6			
No. pool positives	2	3	3	1				
IR % (CI)	1.1 (-0.4–2.6)	1.7 (-0.2–3.6)	1.7 (-0.2–3.6)	0.6 (-0.5–1.7)				
An. (Nys.) darlingi (PHBC)	385	10	73	468	45.0			
CDC trap	6	4			10			
Relative abundance %	81.8	2.1	16.1					
No. pool positives	7	2	2					
IR % (CI)	4.0 (1.1–6.9)	1.1 (-0.4–2.6)	1.1 (-0.4–2.6)	0.6 (-0.5–1.7)				
An. (Ano.) punctimacula s.l. (PHBC)	1	2	3	0.3				
CDC trap								
Relative abundance %	33.3	66.7						
No. pool positives								
IR % (CI)								
An. (Ano.) malefactor (PHBC)	1	1		0.1				
CDC trap								
Relative abundance %	100							
No. pool positives								
IR % (CI)								
An. (Ano.) apicimacula (PHBC)	1	1		0.1				
CDC trap								
Relative abundance %	100							
No. pool positives								
IR % (CI)								
An. (Nys.) strodei (PHBC)	1	14	15	1.4				
CDC trap	1	1						
Relative abundance %	6.7	93.3						
No. pool positives								
IR % (CI)								
An. (Nys.) triannulatus s.l.(PHBC)	40	1	25	8	74	8.2		
CDC trap	2	11			13			
Relative abundance %	48.3	1.1	41.4	9.2				
No. pool positives								
IR % (CI)								

(Continued)
behavior between 18:30 and 19:30 hours, and with a gradual decrease in activity along the collection period. All the species were collected with PHBC in the intradomicile and in the peridomicile in each of the communities. The species more frequently collected in the intradomicile and peridomicile respectively were 195 and 273 for An. (Nys..getProperties() darlingi, followed by 188 and 255 for An. (Nys..getProperties() albimanus, 31 and 46 for An. (Ano..getProperties() pseudopunctipennis s.l., and one and two for An. (Ano..getProperties() punctimacula s.l. (Table 3). No significant differences were observed in the BHN bite rate in the intra and peridomicile areas in the species captured in the studied communities.

The PHBC for An. (Nys..getProperties() darlingi and An. (Nys..getProperties() albimanus in the intra and peridomicile area did not show a marked difference in the BHN rates. In the five communities, an average

Table 2. (Continued)

Species Mosquito	Embera-Wounann	Wargandi	Total Mosquito				
	(Intra	Peri	Intra	Peri			
Anopheles (Nys.) spp. (PHBC)	4	1	3	8	0.9		
CDC trap	2	2					
Relative abundance %	60.0	10.0	30.0				
No. pool positives	1						
IR % (CI)							
Anopheles (Ano.) spp. (PHBC)	1	1	0.1				
CDC trap	1						
Relative abundance %	100						
No. pool positives	2						
IR % (CI)							
Anopheles spp. (PHBC)	4	4	8	0.9			
CDC trap	1						
Relative abundance %	50.0	50.0					
No. pool positives	2						
IR % (CI)							
Total	589	52	345	64	13	1063	100

https://doi.org/10.1371/journal.pone.0250059.t002

Table 3. Number of Anopheles species captured in the intradomicile and peridomicile in the communities sampled in the Darien Region, Panama.

Species Mosquito	Embera-Wounann	Wargandi	Total Mosquito								
	(Intra	Peri	Intra	Peri							
An. (Nys.) darlingi	163	222	3	7	29	44	468				
An. (Nys.) albimanus	55	82	14	14	116	24	40	3	443		
An. (Ano.) pseudopunctipennis s.l.	16	24	1	9	16	3	5	74			
An. (Nys.) oswaldoi s.l.	1	6	8	15							
An. (Ano.) punctimacula s.l.	1	1	2	3							
An. (Nys.) triangulatus s.l.	1	1	2								
An. (Ano.) apicimacula	1	1									
An. (Ano.) malefactor	1	1									
Anopheles (Nys.) spp.	4	1	3	8							
Anopheles (Ano.) spp.	1	1									
Anopheles spp.	1	3	4	8							
Total	236	337	15	28	145	186	24	40	3	10	1024

https://doi.org/10.1371/journal.pone.0250059.t003
bite rate between 0.20 to 0.39 and 0.30 to 0.55 was obtained in the intra and peri-domicile, respectively for An. (Nys.) darlingi, For An. (Nys.) albimanus it was between 0.22 to 0.40 and 0.22 to 0.56, respectively. The monthly density of An. (Nys.) darlingi in the intra and peridomicile was between 0.13 to 0.44 and 0.25 to 0.57 mosquito/person/night, respectively (Figs 2 and 3). For An. (Nys) albimanus it was 0.22 to 0.42 and 0.31 to 0.59 mosquito/person/night, respectively (Figs 4 and 5). Observations made in the nine months of this study, allowed to establish that An. (Nys.) darlingi and An. (Nys.) albimanus were present throughout the year with endophagic and exophagic behavior, given that they were captured in the intradomicile and in the peridomicilio (Fig 5).

Collections with PHBC resulted more effective with respect to the number of adult mosquitoes collected (n = 1,024, 96.3%), in comparison to the number of mosquitoes collected with LTs (n = 39, 3.7%). The majority of mosquitoes were collected during May, when the rainy season begins, and October (n = 173, 16.3%) and November (n = 208, 19.6%); which traditionally are the rainiest months of the year (Table 4). Collections during the dry season months registered a lower number of captured adult mosquitoes, March (n = 47, 4.4%) and April (n = 18, 1.7%). The studied communities that registered the major percentage of captured mosquitoes were Bajo Chiquito (n = 589, 55.4%) and Marraganti (n = 345, 32.5%), followed by Pueblo Tortuga (n = 64, 6.0%) and Alto Playona (n = 52, 4.9%). In turn, the localities in which a larger number of mosquito species was collected were Bajo Chiquito with seven species, followed by Marraganti and Alto Playona with five species, respectively.

Detection and genotype of natural *Plasmodium spp.* infection in *Anopheles spp.*

A total of 574 the 1,063 adult females collected were selected and processed according to the quantity, mosquito species, collecting date, capture type (PHBC or LTs) and study site for the detection and genotype of *Plasmodium* natural infections by PCR. The samples were grouped in 148 anophelines pools per species of varying size (between 1 and 5 individuals). The contribution of all the species selected for this test and number of the pools analyzed were as follow: An. (Nys.) albimanus (n = 179, 42 pools), An. (Nys.) darlingi (n = 305, 68 pools), An. (Ano.) punctimacula s.l. (n = 29, 12 pools), An. (Ano.) pseudopunctipennis s.l. (n = 43, 15 pools), An.
From 148 pools tested, 20 (13.5%) resulted positive for *P. vivax* by the ssrRNA PCR technique. These *P. vivax* positive pools were comprised of nine positive pools from *An. (Nys.) albimanus* (6.1%) and 11 positive pools from *An. (Nys.) darlingi* (7.4%). The overall *Plasmodium* prevalence was 0.037 (95% Cl, 0.0232–0.0552) in *An. (Nys.) albimanus* and 0.0384 (95% Cl, 0.0201–0.0649) in *An. (Nys.) darlingi* (Table 5).

The geographical distribution of the positive *An. (Nys.) albimanus* pools was: one *P. vivax* pool in the community of Pueblo Tortuga (0.6%), three positive pools in Marraganti (1.7%), two pools in Bajo Chiquito (1.1%) and three pools in Alto Playona (1.7%). As for the 11 *P.
vivax-positive *An. (Nys.) darlingi* samples, seven positive pools were from the community of Bajo Chiquito (4.0%), two pools from Marraganti (1.1%) and two pools from Alto Playona (1.1%) (Fig 1). All other species were negative for *P. vivax* by the ssrRNA PCR technique. All collected samples tested negative for *P. falciparum*. Most positive samples were captured in the peridomicile, and only two samples from *An. (Nys.) albimanus* were collected in the extra-domicile using LTs in the community of Alto Playona.

From the positive pool samples, it was possible to genotype *P. vivax* in seven of them, four from *An. (Nys.) darlingi* and three from *An. (Nys.) albimanus* by sequencing the csp gene marker. Amplified products were in the range between 700 to 800 bp and their sequence analysis determined that they were homologous to the VK210 variant, grouping together with other isolates from Central America (Fig 6). Sequences from this study are available at the GenBank database under the accession numbers: MN66917, MN66918, MN66919, MN66920, MN66921, MN66922, MN66923 (Fig 7).

Table 4. Number of *Anopheles* mosquito species captured with protective human-baited capture and CDC light traps per month in the communities under study in the Darién Region, Panama, 2016.

Species mosquito	March	April	May	June	July	August	September	October	November	Total
An. (Nys.) darlingi	7	8	105	35	32	41	41	103	106	478
An. (Nys.) albimanus	30	7	80	47	40	35	42	70	102	453
An. (Ano.) pseudopunctipennis s.l.	10	3	58	7	1	8		87		
An. (Ano.) punctimacula s.l.	3									3
An. (Nys.) oswaldoi s.l.	7	8							15	
An. (Ano.) apicimaculata	1								1	
An. (Ano.) malefactor									1	
An. (Nys.) triannulatus s.l.	2	1							3	
An. (Nys.) strodei	1								1	
Anopheles (Nys.) spp.									10	
Anopheles (Ano.) spp.									1	
Anopheles spp.									10	
Total mosquitoes per month	47	18	258	97	79	85	98	173	208	1063

https://doi.org/10.1371/journal.pone.0250059.t004
In addition, analysis of *Anopheles* COI gene confirmed the identity of *An. (Nys.) darlingi* and *An. (Nys.) albimanus* as the species naturally infected with *P. vivax* in this study. These sequences were deposited in the GenBank database under the accession numbers: MT706455 for *An. (Nys.) darlingi* and MT706456 for *An. (Nys.) albimanus*.

Discussion

Biting activity

The diversity of *Anopheles* mosquitoes in Panama is favored by a vast variety of habitats and environmental conditions that support the development, dispersion and persistence of these mosquito populations. The abundance and human feeding preference are among the main characteristics that define a mosquito species as an effective mosquito vector [47]. Nevertheless, the composition and frequency of mosquito species vary between sampling sites and seasons, making it even more important the need for a constant monitoring to better understand these parameters [47, 48]. Our data shows that *An. (Nys.) albimanus* was the dominant species...
in four out of the five sampled sites. This species is described as predominantly exophagic, with preference for animals and with hematophagy occurring during the entire night [48].

In turn, *An. (Nys.) darlingi* was the species that registered the major number of captured mosquitoes and was dominant in one of the collection sites (Bajo Chiquito). *Anopheles (Nys.) darlingi* is considered one of the most effective primary vectors due to its high anthropophilic behavior, high abundance in certain areas, susceptibility to infection by several *Plasmodium* species and plastic behavior [49]. This species can also adapt to diverse habitats, including habitats developed because of human activities [50, 51]. Our study showed that both mosquito species (*An. (Nys.) darlingi* and *An. (Nys.) albimanus*) had the greatest density and biting activity between 18:30 and 19:30 hours, diminishing towards midnight as described in previous studies [22, 28, 51]. A study in Colombia also observed that the greatest intradomicile and peridomicile biting activity of *An. (Nys.) darlingi* was between 18:00 and 19:00 hours [24, 52], similarly to our data and those described in French Guyana and Brazil [46]. Furthermore, studies conducted in Barú municipality, a locality in Panama bordering Costa Rica, demonstrated that *An. (Nys.) albimanus* had greater abundance and biting frequency than *An. (Ano.) punctimacula s.l.* between 18:30 and 19:30 hours [29]. Overall, our entomological data from the intradomicile and peridomicile collections suggest that there is higher transmission risk between 18:00 and 22:00 hours, when the anophelines population is higher. Therefore, considering the abundance and high *Plasmodium* natural infection of these two species in most collecting sites, our data is highly suggestive that *An. (Nys.) darlingi* and *An. (Nys.) albimanus* are acting as the main malaria vectors in this area. Nevertheless, other malaria vector species found in this study and also known to be present in other neotropical countries, such as *An. (Ano.) pseudopunctipennis s.l.*, *An. (Nys.) oswaldoi s.l.*, *An. (Ano.) punctimacula s.l.* and *An. (Ano.) triannulatus s.l.* [28, 53], could also be implicated in the local transmission.

The intra and peridomicile PHBC rates for both *An. (Nys.) darlingi* and *An. (Nys.) albimanus* were similar, without significant differences in the biting activity percentages, confirming the exophagic and endophagic behavior of these species [54]. While the PHBC for both species was respectively 0.20 to 0.50 bites per night, other studies have found more variable biting...
rates for An. (Nys.) darlingi [55, 56]. The low density recorded in these two species may be due to variations in temperature, rainfall, human activity, proximity and availability of breeding sites and other environmental factors [57, 58]. It could also be due to the collection period during the study, thus it was not possible to establish if these populations present a greater activity at other hours of the night, as it has been described in other populations of the region [24]. For instance, rates of 0.1–15.1 BHN [22] and 2.2–55.5 BHN [54] were observed in Colombia and 53.8 to 837.7 BHN in the Brazilian amazon [59]. Also, studies conducted with An. (Nys.) albimanus in eight communities during a malaria outbreak in Panama displayed a PHBC of 1.9 to 30.9 BHN [29]. A previous study conducted in 31 endemic sites in Panama found that the BHN oscillated between 2.4 and 10.2 BHN [8]. Further studies conducted in the endemic regions of the Colombian Pacific found that An. (Nys.) albimanus had the highest biting activity between 17:00 and 19:00 hours, reaching a PHBC of 38.4 bites/night [60]. In general, our results indicated a lower BHN rate compared to reports conducted in other Neotropical countries. It is thus necessary to conduct prolonged studies to estimate the densities and understand the biting behavior of this mosquito species in the different Panamanian regions.

Our monthly mosquito collections indicated that the greatest anophelines density was obtained in the months of May, October and November (rainy season), with predominance of An. (Nys.) darlingi and An. (Nys.) albimanus. The lowest densities for both species were observed in March (dry season). Several studies have described patterns of seasonal fluctuation in the abundance and frequency of anophelines vectors, showing greater densities during the rainy months and lower densities during the dry months [61, 62]. Few studies have demonstrated no correlation between the levels of precipitation and the density of anophelines mosquitoes [41, 58]. On the other hand, it has also been reported that an increase in density can be observed on the transition periods between the dry and rainy seasons [63, 64]. However, it has been proposed that the changes in vector density not only depends on the aforementioned factors but rather it responds to an interaction between the availability of breeding sites, the levels of water sources and other environmental variables [48].

In this study, captures with PHBC were more effective compared to LTs. In general, catches with LTs outdoors are less efficient compared to PHBC. They are used as a supplement to captures with PHBC, with the purpose of having a greater opportunity and probability of capturing a larger number of anophelines species. For instance, in a study carried out in Córdoba, Colombia, only six species of Anopheles were captured intradomicile and in the peridomicile with LTs. This number of captured species was small considering that there are 20 species recorded in that region out of a total of 47 species registered in Colombia. In addition, trap catches require that the traps do not harm captured mosquitoes [54, 65]. Therefore, captures with PHBC have become the most widely used in malaria studies [43, 66, 67].

Detection of natural Plasmodium infection in Anopheles spp.

The communities that yielded P. vivax positive mosquito pools also registered active malaria transmission during our study, with the highest number of cases observed during the transition period between the rainy season and the dry season [5]. The dynamics of malaria epidemics are strongly influenced by climate. In particular, at the geographical limits of its distribution, malaria transmission is driven by environmental factors changes as temperature, rain and humidity [68].

Interestingly, our study allowed us to detect for the first time in the country the natural P. vivax infection of An. (Nys.) darlingi, and to suggest its potential incrimination as a malaria vector in this region of Panama. At the same time, our results showed that two other species historically considered to be important malaria vectors, An. (Ano.) punctimacula s.l. and An.
Anopheles pseudopunctipennis s.l., were not infected Plasmodium. Thus, their epidemiological relevance as vectors could not be confirmed for this region. This could have been due to the low number of individuals of both species captured during this study.

The genus Anopheles is present around the world with about 465 species, of which 41 species are important malaria vectors [69]. Although different mosquito species can be involved in malaria transmission in different regions [58, 70, 71], little is known about the contribution of each species in malaria prevalence in heterogeneous environments. This is especially true given that each species has unique developmental, ecological and behavioral characteristics. A study conducted in Brazil indicated that this scenario becomes more complex with the presence of three different malaria parasite species [72, 73] in the same geographical region. Anopheles (Nys.) albimanus and An. (Ano.) punctimacula s.l. are considered as the primary and secondary malaria vectors, respectively in Panama. Anopheles (Nys.) albimanus is the most prevalent in the endemic regions [8]. A recent study reported the detection, via PCR, of natural P. vivax infections in An. (Nys.) albimanus mosquitoes collected from the communities of Achutupo and Playon Chico, both in the indigenous comarca of Guna Yala [5]. In addition, other studies have detected P. vivax natural infections in An. (Nys.) albimanus (via ELISA tests) and in An. (Ano.) punctimacula s.l. (through PCR assays) collected in Bocas del Toro province [74]. In another study An. (Nys.) albimanus mosquitoes was found naturally infected with P. vivax in samples collected in the community of Ipetí Guna, located in the Madungandi comarca [44].

The determination of natural Plasmodium infection of anophelines mosquitoes is an important component in the assessment of different mosquito species as malaria vectors [11]. Nevertheless, there are other anophelines species that could be important malaria vectors in the different endemic regions of Panama. Previous studies conducted in Panama have detected natural infection P. vivax or P. falciparum in An. (Nys.) albimanus, An. (Nys.) argyritarsis, An. bachtmani [syn. An. (Nys.) triannulatus] and An. (Ano.) punctimacula s.l. [syn. An. (Ano.) malefactor], while the following mosquitoes were experimentally infected: An. (Ano.) pseudopunctipennis s.l., An. (Nys.) tarsimaculatus [Syn. An. (Ano.) aquasalis], An. (Ano.) apicimacula, An. (Ano.) eiseni and An. (Ano.) neomaculipalpus [12–16].

Another important result is the distribution of An. (Nys.) darlingi in new areas and communities far from Jaque and Biroquera, where it was first reported in the country [20]. The new locations are situated further into the Darién southeast region and closer to the Colombian border. These new records extend the distribution of An. (Nys.) darlingi in Panama. The detection of natural An. (Nys.) darlingi infection, increases its population spread to three communities of the five evaluated. In addition, it suggests its participation in the active P. vivax malaria transmission, in a similar fashion than An. (Nys.) albimanus in this region of Panama.

Darién, as a Panamanian region bordering with Colombia, shares part of its entomofauna, including anophelines malaria vectors. Epidemiological and entomological studies conducted in Colombia have incriminated 12 anophelines species as malaria vectors. Three of these species are primary malaria vectors: An. (Nys.) albimanus, An. (Nys.) darlingi and An. (Nys.) nuneztovari s.l. [75]. The other nine species are secondary or local vectors: An. (Ano.) pseudopunctipennis s.l., An. (Ano.) punctimacula s.l., An. (Ano.) calderoni, An. (Ano.) neomaculipalpus, An. (Ker.) pholidotus, An. (Ker.) neivai s.l., An. (Nys.) rangeli, An. (Nys.) benarrochi, and An. (Nys.) oswaldoi s.l. [75, 76].

Plasmodium spp. genotyping

Genetic studies of circulating malaria parasite populations in humans and vectors reveal critical information about the epidemiology and dynamics of disease transmission and offer tools to support control and elimination efforts [77]. In the present study, we only identified the P.
vivax allelic variant VK210 naturally infecting An. (Nys.) albimanus and An. (Nys.) darlingi mosquitoes circulating in the studied areas. It is possible, however, the lack of detection of the VK247 variant might be due the low number of samples analyzed, as this variant has been described circulating in malaria endemic communities near the border with Colombia close to the ones studied [78].

There are studies related to the diversity in infectivity of allelic variants and the susceptibility of mosquito species to different allelic variants, which may explain the detection patterns at the species level, where An. (Nys.) albimanus seems to be susceptible to VK210 and VK247 infection [52]. However, other studies conducted in anophelines mosquitoes from Brazilian Amazon, observed the distribution of P. vivax VK247 changed over time in the main malaria vectors on the Brazilian Amazon. Anopheles (Nys.) darlingi was abundant in certain localities while An. (Nys.) albimanus s.l. in others, which highlights the importance of entomological studies for the control of human malaria [79]. Investigations carried out in Mexico considered that An. (Nys.) albimanus is more susceptible to VK210 infection and An. (Ano.) pseudopunctipennis was more susceptible to VK47 [80].

Studies on genotyping parasite populations have the power to reveal key information about the epidemiology and dynamics of malaria transmission, with the potential to offer tools to support control and elimination efforts [81]. In future studies, is also critical to evaluate the epidemiologic role on malaria transmission of other anophelines species previously described in the Darien region such as An. (Nys.) triannulatus s.l., An. (Nys.) oswaldoi s.l., An. (Ano.) pseudopunctipennis s.l., An. (Ano.) punctimacula s.l., and An. (Ano.) malefactor. Additional molecular studies of malaria allelic variants circulating in Panama at the local and regional are necessary to expand our current knowledge, determine parameters that affect malaria transmission dynamics, and to develop novel malaria control strategies [82, 83]. Previously in An. (Nys.) albimanus collected from 2006–2007 in Bocas del Toro, Panama, nine pools were detected naturally infected with P. vivax by an ELISA test (three pools with the VK210 variant and six with the VK247 variant) [74].

An important limitation of this study was that it was not possible to carry out salivary gland dissections for the detection of P. vivax sporozoites in An. (Nys.) albimanus and An. (Nys.) darlingi. Therefore, we were not able to corroborate and confirm the PCR results that suggested the incrimination of An. (Nys.) albimanus and An. (Nys.) darlingi in malaria transmission at the local level. However, it should be noted that An. (Nys.) Darlingi has been sufficiently proved for its great vector capacity through various studies, classifying it as the most efficient malaria-transmitting species in the Americas.

In conclusion, this study provides important new information on the transmission dynamics associated with mosquito vectors in the Darien region. The data show that the most abundant and distributed species were An. (Nys.) albimanus and An. (Nys.) darlingi, which were also found coexisting in the same geographical area. Furthermore, this study reports for the first time the detection of natural P. vivax infection in An. (Nys.) darlingi, its incrimination in malaria transmission and its identification in new areas of Darien. This study also detected the P. vivax variant VK210 in An. (Nys.) albimanus and An. (Nys.) darlingi mosquitoes. Nevertheless, it is necessary to evaluate the role of other anophelines species, such as An. (Nys.) triannulatus s.l., An. (Nys.) oswaldoi s.l., An. (Ano.) pseudopunctipennis s.l., An. (Ano.) punctimacula s.l. and An. (Ano.) malefactor, in malaria transmission dynamics given their epidemiological importance has yet to be determined. In addition, results of this research add important new entomological information that should be considered in transmission dynamic studies, and in surveillance/control strategies in the Darien region. Specifically, at the local level, these findings provide a new geographical range for mosquitoes, some of which could be acting as local vectors. Our findings highlight the need for additional studies to expand our knowledge on the
behavior, spatial/temporal distribution, and malaria transmission dynamics by \textit{An. (Nys.) darlingi} in this Panamanian region.

Supporting information

S1 Data.

(XLS)

Acknowledgments

We would like to acknowledge the assistance of Dra. Panamá García (Director, Darién Health Region); Licdo. Fernando Vizcaino (Director, Department of Vector Control); Santos Vega (Coordinator, Vector Control-Darién Health Region); Mario Avila (Coordinator of the Operational Research Section of the MINSA), Silvio Betancourt (vector control technician); Regino Cordoba (vector control technician), Eliverio López (vector control technician), Oliverio López (Health assistant), the research assistants, Dan Martinez and Randy Rodrigues from ICGES and Alberto Cumbrera for the development of maps used in this study.

Author Contributions

Conceptualization: Lorenzo Cáceres Carrera.

Data curation: Rolando Torres-Cosme, Chystrie Rigg, Ana María Santamaría, José Luis Ramírez, José E. Calzada, Lorenzo Cáceres Carrera.

Formal analysis: Rolando Torres-Cosme, Chystrie Rigg, Ana María Santamaría, Vanessa Vásquez, Carlos Victoria, José Luis Ramírez, José E. Calzada, Lorenzo Cáceres Carrera.

Funding acquisition: Lorenzo Cáceres Carrera.

Investigation: Rolando Torres-Cosme, Chystrie Rigg, Ana María Santamaría, Vanessa Vásquez, Carlos Victoria, José Luis Ramírez, José E. Calzada, Lorenzo Cáceres Carrera.

Methodology: Lorenzo Cáceres Carrera.

Project administration: Lorenzo Cáceres Carrera.

Supervision: Rolando Torres-Cosme, Lorenzo Cáceres Carrera.

Validation: Lorenzo Cáceres Carrera.

Writing – original draft: Lorenzo Cáceres Carrera.

Writing – review & editing: Rolando Torres-Cosme, Chystrie Rigg, Ana María Santamaría, Vanessa Vásquez, Carlos Victoria, José Luis Ramírez, José E. Calzada, Lorenzo Cáceres Carrera.

References

1. World Health Organization. World Malaria Report. World 2019. World Health Organization. Geneva, Switzerland 2019. \url{https://www.who.int/publications/m/item/2019-world-malaria-report}. Accessed: 5 April 2020.

2. Padilla JC, Álvarez G, Montoya R, Chaparro P; Herrera S. Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz 2011; 106:114–22. \url{https://doi.org/10.1590/s0074-02762011000900015} PMID: 2181765

3. Organización Panamericana de la Salud. Actualización Epidemiológica: Malaria en las Américas en el contexto de la pandemia de COVID-19. Washington, D.C. OPS/OM. 2020; Pag. 7. \url{https://www.paho.org/es/documentos/actualizacion-epidemiologica-malaria-10-junio2020}. Accessed: 14 May 2020.
4. Cáceres L, Rovira J, García A, Torres R. Determinación de la resistencia a insecticidas organofosforados, carbamatos y piiretroïdes en Anopheles albimanus (Diptera: Culicidae) de Panamá. Biomédica. 2011; 31:419–27. https://doi.org/10.1590/S0120-41572011000300014 PMID: 22674318

5. Cáceres Carrera L, Victoria C, Ramirez JL, Jackman C, Calzada JE. Study of the epidemiological behavior of malaria in the Darien region, Panama. 2015–2017. PLoS One. 2019;5; 14(11):e0224508. https://doi.org/10.1371/journal.pone.0224508 PMID: 31730618

6. Rezende HR, Soares RM, Cerutti C, Alves IC, Natal D, Urbiniatti PR, et al. Entomological characterization and natural infection of anophelines in an area of the Atlantic Forest with autochthonous malaria cases in mountainous region of Espírito Santo State, Brazil. Neotrop. Entomol. 2009; 38:272–80. https://doi.org/10.1590/S1519-566x2009000200017 PMID: 19488519

7. Calderaro A, Piccolo G, Gorini C, Rossi S, Montecchini S, Dell’Anna ML, et al. Accurate identification of the six human Plasmodium spp. causing imported malaria, including Plasmodium ovale wallikeri and Plasmodium knowlesi. Malar J. 2013; 12,321. https://doi.org/10.1186/1475-2875-12-321 PMID: 24034175

8. Loaiza J, Berningham E, Scott ME, Rovira JR and Conn JE. Species composition and distribution of adult Anopheles (Diptera: Culicidae) in Panama. J Med Entomol. 2008; 45:841–51. doi.org/10.1093/jmedent/45.5.841 PMID: 18826025

9. Alimi TO, Fuller DO, Qualls WA, Herrera SV, Arevalo-Herrera M, Quinones ML, et al. Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population. Parasit Vectors. 2015;20; 8:431. https://doi.org/10.1186/s13071-015-1033-9 PMID: 26289677

10. Campos M, Alonso DP, Conn JE, Vinetz JM, Emerson KJ, Ribolla PEM. Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasit Vectors. 2019;17; 12 (1):242. https://doi.org/10.1186/s13071-019-3498-4 PMID: 31101311

11. Beier JC. Malaria parasite development in mosquitoes. Annu Rev Entomol. 1998; 43:519–43. https://doi.org/10.1146/annurev.ento.43.1.519 PMID: 9444756

12. Darling, ST. Isthmian Canal Commission Report. Laboratory of the Board of Health; Washington, DC: 1910. Studies in relation to malaria.

13. Roveboom LE. Infection of Anopheles (Diptera: Culicidae) in Panama. J Med Entomol. 1936; 3:461–2.

14. Simmons JS. Anopheles (Anopheles) punctimacula naturally infected with malaria plasmodia. Am. J. Trop. Med. Hyg 1935; 5:521–22.

15. Simmons JS. Anopheles (Anopheles) punctimacula (Dyar & Knab) experimentally infected with malaria plasmodia. Science 1936;215:2269.

16. Simmons JS. Observations on the importance of Anopheles punctimacula as a malaria vector in Panama, and report of experimental infections in A. neomaculipalpus, A. apicimacula, and A. eiseni. Am. J. Trop. Med. Hyg 1937; 17:191–212.

17. Stojanovich CJ, Gorham JR, Scott HG. Clave ilustrada para los mosquitos anofelines de América Central y Panamá. Atlanta: Department of Health, Education and Welfare; 1966. p. 59. https://www.biodiversitylibrary.org/content/part/JAMCA/MS_V05_N2_P097-156.pdf. Accessed 15 May 2019.

18. Faran ME. Mosquito studies (Diptera: Culicidae). XXXIV. A revision of the Albinanus section of the sub-genus Nyssorhynchus of Anopheles. Contrib. Am. Entomol. Inst. (Ann Arbor) 1980; 15:1–215

19. Wilkerson RC, Strickland D, Litwak TR. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. J Am Mosq Control Assoc. 1990; 6:7–34. PMID: 2342742

20. Loaiza J, Scott M, Berningham E, Rovira J, Sanjur O, Conn JE. Short Report: Anopheles darlingi (Diptera: Culicidae) in Panama. Am J Trop Med Hyg. 2009; 81:23–6. PMID: 19556561

21. Montoya-Lerma J, Solarte YA, Giraldo-Calderón GI, Quiñones ML, Ruiz-López F, González R. Malaria vector species in Colombia a review. Mem Inst Oswaldo Cruz. 2011; 106:223–38. https://doi.org/10.1590/s0074-02762011000900028 PMID: 21881778

22. Naranjo-Díaz N, Rosero DA, Rúa-Unbe G, Luckhart S, Correa MM. Abundance, behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. Parasit Vectors. 2013; 6:61. https://doi.org/10.1186/1756-3305-6-61 PMID: 23497535

23. Orjuela LI, Ahumada ML, Avila I, Herrera S, Beier JC, Quiñones ML. Human biting activity, spatial-temporal distribution and malaria vector role of Anopheles calderoni in the southwest of Colombia. Malar J. 2015; 14:256. https://doi.org/10.1186/s12936-015-0764-6 PMID: 26104785

24. Ahumada ML, Pareja PX, Buitrago LS, Quiñones ML. Comportamiento de picadura de Anopheles darlingi Root, 1926 (Diptera: Culicidae) y su asociación con la transmisión de malaria en Villavicencio (Colombia). Biomédica. 2013; 33:241–50. https://doi.org/10.7705/biomedica33i2.1492 PMID: 24652134
25. Autoridad Nacional del Ambiente. Atlas ambiental de la República de Panamá. Primera versión 2010. http://online.fliphtml5.com/eebm/ehya/index.html#p=2. Accessed May 2018.

26. Empresa de Transmisión Eléctrica S. A. Departamento de Hidrometeorología. Estadística panameña. 2019. http://www.hidromet.com.pa/open_data.php?id=1540203&t_est=M&clas=dat&2&periodicidad=3&sensor=TEMP. Accessed 15 May 2019.

27. Autoridad Nacional del Ambiente. Atlas ambiental de la República de Panamá. 2010; 187 pag. http://www.somasp.org/noticias/Atlas_Ambiental.pdf. Accessed 1 December 2018. Accessed December 2019.

28. Calzada JE, Marquez R, Rigg C, Victoria C, De La Cruz M, Chaves LF, et al. Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama. Malar J. 2015; 14:459. https://doi.org/10.1186/s12936-015-0987-6 PMID: 26578076

29. Cáceres L, Rovira J, Torres R, García A, Calzada J, De La Cruz M. Characterization of Plasmodium vivax malaria transmission at the border of Panamá and Costa Rica (in Spanish). Microbiol. 2012; 32:557–69. https://doi.org/10.1590/S0120-415720120000110 PMID: 23715231

30. Brady OJ, Godfray HC, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016; 110:107–17. https://doi.org/10.1093/trstmh/trv113 PMID: 26822603

31. Williams J, Pinto J. United States Agency for International Development. Training Manual on Malaria Entomology For Entomology and Vector Control Technicians. 2012; 85 page. https://www.paho.org/hq/dmdocuments/2012/2012-Training-manual-malaria-entomology.pdf. Accessed: 2 February 2021.

32. Organización Mundial de la Salud. Técnicas entomológicas de campo para la lucha antipalúdica. Parte II. Geneva: Organización Mundial de la Salud; 1993. p. 77.

33. Chamberlain R, Sudia D. Methods for study of mosquitoes as virus hosts and vectors. Methods virol. 1967; 1:63–103.

34. Service M. Mosquito ecology: Field sampling methods. 2nd ed. London: Chapman & Hall; 1993. P 988

35. Hi JLK, Smith T, Mai A, Ibam E and Alpers MP. Comparison between anopheline mosquitoes (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea. Bull Entomol Res. 2000; 90:211–19. https://doi.org/10.1071/0007-48530000033x PMID: 10996862

36. Salazar CN, Fernández R W, Iannacone OJ, Morales AA, Espinoza SM. Comparación de dos métodos de colecta para anofelinos (cebo humano y trampa de luz CDC), durante la época seca y lluviosa, Yurimaguas, peru 2005. Rev Peru Med Exp Salud Publica. 2006; 23(2):87–97.

37. Clark-Gil S. and Darsie RF. The mosquitoes of Guatemala their identification, distribution and bionomics. Mosquito Systematics. 1983; 15(3):151–284.

38. Jaramillo LM, Gutiérrez LA, Luckhart S, Conn JE, Correa MM. Molecular evidence for a single taxon, Anopheles nuneztovari s.l., from two endemic malaria regions in Colombia. Mem Inst Oswaldo Cruz. 2011; 106(8):1617–23. https://doi.org/10.1590/S0074-02762011000800020 PMID: 22241127

39. Gutiérrez LA, Gómez GF, González JJ, Castro MI, Luckhart S, Conn JE, Et al. Microgeographic genetic variation of the malaria vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia. Am J Trop Med Hyg. 2010; 83(1):38–47. https://doi.org/10.4269/ajtmh.2010.09-0381 PMID: 20595475

40. Da Silva-Vasconcelos A, Nieves MY, Neves E, Lessa R, da Luz RN, Sibajev A, et al. Biting indices, host-seeking activity and natural infection rates of anopheline species in Boa Vista, Roraima, Brazil from 1996 to 1998. Mem Inst Oswaldo Cruz. 2002; 97:151–61. https://doi.org/10.1590/S0074-02762002000002 PMID: 12016435

41. Magris M, Rubio-Palis Y, Menares C, Villegas L. Vector bionomics and malaria transmission in the Upper Orinoco River Southern Venezuela. Mem Inst Oswaldo Cruz.2007; 102:303–11. https://doi.org/10.1590/s0074-02762007005000049 PMID: 17568935

42. Gutiérrez LA, González JJ, Gómez GF, Castro MI, Rosero DA, Luckhart S, et al. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, Northwestern Colombia. Mem Inst Oswaldo Cruz. 2009; 104:1117–24. https://doi.org/10.1590/S0074-02762009000800008 PMID: 21043072

43. Álvarez N, Rosero DA, Gómez GF, Correa MM. Detección de mosquitos Anopheles infectados naturalmente con Plasmodium spp. en Puerto Liberado, Córdoba, Colombia. Hechos Microbiol. 2011; 2:27–35.

44. Rigg CA, Hurtado LA, Calzada JE, Chaves LF. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect Genet Evol. 2019; 69:216–23. https://doi.org/10.1016/j.meegid.2019.02.003 PMID: 30731298

45. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993; 61:315–20. https://doi.org/10.1016/0166-6851(93)90077-b PMID: 8264734
46. Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourmeur F, Loaoreesuwan S, et al. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005; 4:20. https://doi.org/10.1186/1475-2875-4-20 PMID: 15854233

47. Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: What makes a malaria vector? Trends Parasitol. 2010; 26:130–6. https://doi.org/10.1016/j.pt.2009.12.001 PMID: 20056485

48. Montoya C, Bascuñán P, Rodríguez-Zabala J, Correa MM. Abundance, composition and natural infection of Anopheles mosquitoes from two malaria-endemic regions of Colombia. Biomédica 2017; 37(Supl.2):98–105. https://doi.org/10.7705/biomedica.v37i0.3553 PMID: 21691482

49. Martins-Campos KM, Pinheiro WD, Vitor-Silva S, Siqueira AM, Melo GC, Rodrigues IC, et al. Integrated vector management targeting Anopheles darlingi populations decreases malaria incidence in an unstable transmission area, in the rural Brazilian Amazon. Malar J. 2012; 11:351. https://doi.org/10.1186/1475-2875-11-351 PMID: 23088224

50. Reis IC, Cod econ CT, Camara DCP, Carvajal JJ, Pereira GR, Keppeler EC, et al. Diversity of Anopheles spp. (Diptera: Culicidae) in an Amazonian Urban Area. Neotrop Entomol. 2018; 47:412–17. https://doi.org/10.1007/s13744-018-0595-6 PMID: 29470810

51. Hiwat H, Bretas G. Ecology of Anopheles darlingi in Colombia. Infect Genet Evol. 2016; 39:64–73. https://doi.org/10.1016/j.meegid.2016.01.004 PMID: 26792711

52. Prado CC, Alvarado-Cabrera LA, Camargo-Ayala PA, Garzón-Ospina D, Camargo M, Soto-De León SC, et al. Behavior and abundance of Anopheles darlingi in communities living in the Colombian Amazon. PLoS One. 2019;7; 14(3):e0213335. https://doi.org/10.1371/journal.pone.0213335 PMID: 30845198

53. Hiwat H, Bretas G. Ecology of Anopheles darlingi Root with respect to vector importance: a review. Parasit Vectors. 2011;4; 1:177. https://doi.org/10.1186/1756-3305-4-177 PMID: 21923902

54. Jiménez P, Conn JE, Wirtz R, Brochero H. Anopheles (Diptera: Culicidae) vectors of malaria in Puerto Carreñ o municipality, Vichada, Colombia. Biomedical. 2012; 32(Suppl1):13–21. https://doi.org/10.1590/S0074-02762012000900003 PMID: 23235809

55. Hiwat H, De Rijk M, Andriessen R, Koenraadt C, Takken W. Evaluation of methods for sampling the vector? Trends Parasitol. 2010; 26:130–6. https://doi.org/10.1016/j.pt.2009.12.001 PMID: 20056485

56. Prado CC, Alvarado-Cabrera LA, Camargo-Ayala PA, Garzón-Ospina D, Camargo M, Soto-De León SC, et al. Behavior and abundance of Anopheles darlingi in communities living in the Colombian Amazon. PLoS One. 2019;7; 14(3):e0213335. https://doi.org/10.1371/journal.pone.0213335 PMID: 30845198

57. Moreno JE, Rubio-Palis Y, Pérez E, Sánchez V. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med Vet Entomol. 2007; 21:339–49. https://doi.org/10.1111/j.1365-2915.2007.00704.x PMID: 18022972

58. Galardo AKR, Arruda M, D’Almeida Couto AAR, Wirtz R, Lounibos LP, Zimmerman RH. Malaria vector incrimination in three rural riverine villages in the Brazilian Amazon. Am J Trop Med Hyg. 2007; 76:461–9. PMID: 17360868

59. Escovar JE, González R, Quiñones ML. Anthropophilic biting behaviour of Anoph eles (Kertesz ia) neivai Howard, Dyar & Knab associated with Fishermen’s activities in a malaria-endemic area in the Colombian Pacific. Mem Inst Oswaldo Cruz. 2013; 108(8):1057–64. https://doi.org/10.1590/0074-0276130256 PMID: 24402159

60. Girod R, Gaborit P, Carinci R, Issaly, Fouque F. Anopheles darlingi bionomics and transmission of Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae in 38 Ame rican villages of the Upper-Maroni Amazonian forest, French Guiana. Mem Inst Oswaldo Cruz. 2008; 103:702–10. https://doi.org/10.1590/s0074-027620080007000013 PMID: 19057822

61. Voorham J. Intra-population plasticity of Anopheles darlingi (Diptera: Culicidae) biting activity patterns in the state of Amapa, Brazil. Rev Saude Pùbl. 2002; 36:75–80. https://doi.org/10.1590/s0034-89102002000100012 PMID: 11887233

62. Achee N, Grieco J, Rejmankova E, André R, Vanzie E, Polanco J, et al. Biting pattern and seasonal densities of Anopheles mosquitoes in the Cayo District, Belice, Central America with emphasis in Anopheles darlingi. J Vector Ecol. 2006; 31:45–57. https://doi.org/10.3376/1081-1710(2006)31[45:bpasdo]2.0.co;2 PMID: 16859089
64. Povoa MM, Wirtz RA, Lacerda R, Miles MA, Warhurst D. Malaria vectors in the municipality of Serra do Navio, State of Amapá, Amazon Region, Brazil. Mem Inst Oswaldo Cruz. 2001; 96:179–84. https://doi.org/10.1590/s0074-02762001000200008 PMID: 11285494

65. Pombi M, Guelbeogo W, Calzetta M, Sagnon NF, Petracca V. Evaluation of a protocol for remote identification of mosquito vector species reveals BG-Sentinel trap as an efficient tool for Anopheles gambiense outdoor collection in Burkina Faso. Malar J. 2015; 14:161. https://doi.org/10.1186/s12936-015-0674-7 PMID: 25888896

66. Aycardi MP, Correia MM, Zarate E, Padrón C. Determinación de especies anofelinas en una localidad endémica de malaria en el departamento de Córdoba, noroeste de Colombia. Entomotropica. 2016; 31:294–301.

67. González C, Molina AG, León C, Salcedo N, Rondón S, Paz A, et al. Entomologico characterization of malaria in northern Colombia through vector and parasite species identification, and analyses of spatial distribution and infection rates. Malar J. 2017; 27; 16(1):431. https://doi.org/10.1186/s12936-017-2076-5 PMID: 29078770

68. Laneri K, Cabelia B, Prado PI, Mendes Coutinho R, Kraenkel RA. Climate drivers of malaria at its southern fringe in the Americas. PLoS One. 2019; 14(7):e0219249. https://doi.org/10.1371/journal.pone.0219249 PMID: 31291316

69. Harbach R. 2013. The Phylogeny and Classification of Anopheles. Chapter 1. Pp 3–55. In: Sylvie Mangin (Ed.). 2013. Anopheles mosquitoes- New insights into malaria vectors. 811 pp.

70. Hayes J, Calderón G, Falcón R, Zambrano V. Newly incriminated anopheline vectors of human malaria parasites in Junin Department, Peru. J Am Mosq Control Assoc 1987; 3:418–22. PMID: 3330360

71. Oliveira-Ferreira J, Lourenço-de-Oliveira R, Teva A, Deane LM, Daniel-Ribeiro CT. Natural malaria infections in anophelines in Rondônia State, Brazilian Amazon. Am J Trop Med Hyg 1990; 43:6–10. PMID: 2200290

72. Arruda M, Souza RC, Veiga ME, Ferreira AF, Zimmerman RH. Prevalence of Plasmodium vivax variants VK247 and P. vivax-like human malaria: a retrospective study in indigenous Indian populations of the Amazon region of Brazil. Trans R Soc Trop Med Hyg 1998; 92:628. https://doi.org/10.1016/s0035-9203(98)90786-x PMID: 10326105

73. Oliveira-Ferreira J, Pratt-Riccio LR, Arruda M, Santos F, Ribeiro CTD, Golberg AC, et al. HLA class II and antibody responses to circumsporozoite protein repeats of P. vivax (VK210, VK247, and P. vivax-like) in individuals naturally exposed to malaria. Acta Trop 2004; 92:63–9. https://doi.org/10.1016/j.actatropica.2004.02.011 PMID: 15301976

74. Lainhart W, Dutari LC, Rovira JR, Sucupira IMC, de Oliveira Martins BM, de Paula Souza E Guimarães RJ, Catete CP, de Souza RTL, et al. VK210 and VK247 genotypes of Plasmodium vivax in anopheline mosquitoes. Acta Tropica. 2011; 118(2):118–22. https://doi.org/10.1016/j.actatropica.2010.12.008 PMID: 21927733

75. Olano V, Brochero H, Saenz R, Quiñones ML, Molina JA. Mapas preliminares de la distribución de especies de Anopheles vectores de malaria en Colombia. Biomédica. 2001; 21:402–8

76. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010; 3:2–26. https://doi.org/10.1186/1756-3305-3-2 PMID: 20145730

77. Cassianio GC, Storti-Melo LM, Póvoa MM, Galardo AK, Rossit AR, Machado RL. Development of PCR-RFLP assay for the discrimination of Plasmodium species and variants 42 of P. vivax (VK210, VK247 and P. vivax-like) in Anopheles mosquitoes. Acta Tropica. 2011; 118(2):118–12. https://doi.org/10.1016/j.actatropica.2011.02.011 PMID: 21420375

78. Gutiérrez LA, Naranjo N, Jaramillo LM, Muskus C, Luckhart S, Conn JE, et al. Natural infectivity of Anopheles species from the Pacific and Atlantic regions of Colombia. Acta Trop. 2008; 107:99–105. https://doi.org/10.1016/j.actatropica.2008.04.019 PMID: 18554564

79. Santos EA, Sucupira IMC, de Oliveira Martins BM, de Paula Souza E Guimarães RJ, Catete CP, de Souza RTL, et al. VK210 and VK247 genotypes of Plasmodium vivax in anopheline mosquitoes from Brazilian Amazon. Sci Rep. 2019; 9(1):9391. https://doi.org/10.1128/IAI.67.1.410-412.1999 PMID: 1150599022.

80. Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coinfecting Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun. 1999; 67:410–2. https://doi.org/10.1128/IAI.67.1.410-412.1999 PMID: 9864243

81. González-Cerón L, Martínez-Barnetche J, Montero-Solís C, Santillán F, Soto AM, Rodríguez MH, et al. Molecular epidemiology of Plasmodium vivax in Latin America: polymorphism and evolutionary relationships of the circumsporozoite gene. Malar J. 2013; 12:243. https://doi.org/10.1186/1475-2875-12-243 PMID: 23855807
82. Barros FS, Honório NA, Arruda ME. Mosquito anthropophily: implications on malaria transmission in the Northern Brazilian Amazon. Neotrop. Entomol. 2010; 39(6), 1039–43. https://doi.org/10.1590/S1519-566X2010000600029 PMID: 21271076

83. Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2009; 81(1), 5–1. PMID: 19556558