Quantum information scrambling and entanglement in bipartite quantum states

Kapil K. Sharma · Vladimir P. Gerdt

Received: 21 December 2020 / Accepted: 20 May 2021 / Published online: 2 June 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Investigating the influence of quantum information (QI) scrambling on quantum correlations in a physical system is an interesting problem. In this article, we establish the mathematical connections among the quantifiers known as quantum information scrambling, Uhlmann fidelity, Bures metric and bipartite concurrence. We study these connections via four-point out-of-time-order correlation function used for quantum information scrambling. Further, we study the dynamics of all the quantifiers and investigate the influence of QI scrambling on entanglement in two qubits prepared in Bell states. We also investigate the QI scrambling and entanglement balancing points in Bell states under Ising Hamiltonian.

Keywords Quantum information scrambling · Uhlmann fidelity · Bures metric · Concurrence · OTOC · Balancing points

1 Introduction
Quantum information scrambling (QI scrambling) [1–4] is known as the spreading of the quantum information over the physical system. The phenomenon of quantum information scrambling may take place in any physical system because of the chaotic situations. From classical mechanics perspective, the chaos is observed by studying the dynamics of classical trajectories in phase space. If the initial condition is very sensitive, then the trajectories diverge in the space and follow the Lyapunov exponent as $e^{\lambda t}$ [5,6]. This diversion of trajectories in the phase space is known as butterfly
effect [7]. It is difficult to study butterfly effect in quantum mechanics because a
notion of trajectories is missing. However, the notion of trajectories takes place not
only in classical but also in semi-classical domain [8].

The chaos in the quantum domain does not have a single definition, and there are
many ways to look into quantum chaos from the quantum mechanics point of view [9].
However, the notion of trajectories takes place in classical or semi-classical domain [8].

A popular approach to study the chaos in the physical system is to measure the degree
of irreversibility by using the mismatch between forward–backward evolution of the
system. In order to quantify the chaos by using forward–backward evolution approach,
the famous quantifiers are known as Loschdimdt Echo and irreversible entropy pro-
duction [10–12]. These quantifiers also have experimental manifestations in varieties
of physical systems. In connection of forward–backward evolution approach, recently
out-of-time-order correlators (OTOC) attracted much attention to measure the quan-
tum information density matrices [13]. OTOC was originally discovered by Larkin and Ovchinnikov in their application of the quasi-classical
method to theory of superconductivity in 1968 [14]. They studied the behavior of
classical pair correlator function, i.e.,
\[C_c(t) = \langle [p(t)p(0)]^\dagger[p(t)p(0)] \rangle = e^{2\lambda t} \]
in Fermi gas with the Lyapunov exponent \(\lambda \). The Lyapunov exponent quantifies the
strength of the chaos which is unbounded for classical physical systems while it has
a bound for quantum systems with the limit \(\lambda \leq 2\pi K T / \hbar \). Recent trends in quan-
tum chaos deal with the quantum mechanical version of \(C_c(t) \) represented in terms
of quantum operators. The quantum version of OTOC has close connection with the
black hole information problem and with holographic theories of quantum chaos in
many body physics. It has been shown by Hayden and Preskill [1] by considering a
simple model of random unitary evolution that black holes rapidly process the quan-
tum information and exhibit the fastest information scrambling. Temperature is natural
recourse of energy for black holes, which is a major factor for information scrambling;
hence, it is customary to study the quantum information scrambling in thermal density
matrices. Continuing the OTOC discussion, here we mention that the investigation of
different versions of OTOC is also an active area. The impact of OTOC can disturb
the quantum correlations in a physical system, but simultaneously the deep distinction
between quantum information scrambling and decoherence is not clear [15].

A lot of work have been carried out on OTOC in different physical systems dealing
with varieties of domains like conformal field theories, quantum phase transition,
Luttinger liquids, quantum Ising chain, symmetric Kitaev chain, quadratic fermions,
hardcore boson model, XX spin chain with random field [16–21]. Often, the OTOC in
spin chains have been studied as a function of the distance between two arbitrary spins
which are imposed by actions of the local non-commutative operators [22]. Further,
the Lyapunov exponent as a function of the velocity, i.e., \(\lambda(v) \), has been studied in
classical and semiclassical regime and early time behavior of quantum information
scrambling has been investigated with Baker–Campbell–Hausdorff (BCH) formula
[23,24]. We recall that at present the quantum chaos community is bound to study
OTOC in thermal density matrices by following the analogy of the involvement of the
temperature with black holes. However, dynamical studies in varieties of non-thermal
quantum states are missing. In the present study, we treat QI scrambling with non-
thermal density matrices. Although QI scrambling is many body effect with respect
to temperature, in the present study we have shown that it can also be observed at bipartite level in non-thermal density matrices. The present study is totally new in this direction.

In the given work, we establish the direct mathematical connection between quantum information scrambling and concurrence in pure bipartite quantum states [25–27]. With this mathematical connection, it is easy to study the direct influence of quantum information scrambling on the entanglement; such connection is also beneficial to figure out the sudden death of entanglement [29–33]. However, establishing such direct connections is a hard problem for larger Hilbert spaces. We also establish mathematical connections between quantum information scrambling, Uhlmann fidelity and Bures metric [28,34]. These quantifiers are helpful to study the degree of mismatch between forward and backward evolution and the influence of this mismatch on QI scrambling. Further, we study the dynamical behavior of the above-mentioned quantifiers in two-qubit Bell states [35], which proves the strength of mathematical relations.

To start with, the quantum mechanical version of OTOC is given by the expectation value of the operator,

\[C(t) = [W(t), V]^\dagger [W(t), V]. \tag{1} \]

In quantum mechanics, the expectation value of an operator \(O \) is defined as \(\langle O \rangle_\rho = Tr[O.\rho] \), where \(O \) is the operator and \(\rho \) represents the density matrix of a quantum state. The expectation value of \(C(t) \) is represented in Heisenberg picture, and we assume that the operators \(W(t) \) and \(V \) are Hermitian as well as unitary. For initial stage at \(t = 0 \), the operators \(W(0) \) and \(V \) commute and no QI scrambling takes place. It is expressed by the condition

\[[W(0), V] = 0. \tag{2} \]

As time advances, the commutativity between \(W(t) \) and \(V \) may break, which produces QI scrambling. So the condition for the existence of QI scrambling can be considered as

\[[W(t), V] \neq 0. \tag{3} \]

The unitary time evolution of the operator \(W(t) \) under a certain Hamiltonian governs the degree of commutativity and hence information scrambling. The unitary time evolution of the operator \(W(t) \) is given by the series

\[W(t) = e^{iHt}W(0)e^{-iHt} = W(0) + it[H, W(0)] + \frac{t^2}{2!}[H, [H, W(0)]] + it^3\frac{3!}{3!}[H, [H, [H, W(0)]]] + \cdots \tag{4} \]

At \(t = 0 \), the series yields \(W(0) \) and no scrambling takes place. For the existence of QI scrambling, the condition \(([H, W(0)] \neq 0) \) should also be satisfied. Here we mention that if \(H \) and \(W(0) \) are bounded operators with \(\|H\| \leq \epsilon \) and \(\|W(0)\| \leq \epsilon \), then the series is a convergent and it is helpful to study the behavior of QI scrambling.
2 Linking QI scrambling, Uhlmann fidelity and Bures metric

In this section, we explore the derivation of the OTOC and establish the mathematical connections among the quantifiers known as QI scrambling, Uhlmann fidelity and Bures metric for pure quantum states. We recall the definition of OTOC given in Eq. (1) as

$$ C(t) = [W(t), V]^\dagger \cdot [W(t), V] = P \cdot Q $$

(5)

where

$$ P = [W(t), V]^\dagger = V^\dagger \cdot W(t)^\dagger - W(t)^\dagger \cdot V^\dagger $$

and

$$ Q = [W(t), V] = W(t) \cdot V - V \cdot W(t). $$

(6)

The product $P \cdot Q$ reads

$$ P \cdot Q = V^\dagger \cdot W(t)^\dagger \cdot W(t) \cdot V - V^\dagger \cdot W(t)^\dagger \cdot V \cdot W(t) $$

$$ -W(t)^\dagger \cdot V^\dagger \cdot W(t) \cdot V + W(t)^\dagger \cdot V^\dagger \cdot V \cdot W(t) $$

(7)

Here $W(0)$ and V are Hermitian operators, so they must satisfy the following conditions

$$ W(0)^\dagger = W(0), \quad W(t)^\dagger = W(t) $$

(8)

and

$$ V^\dagger = V. $$

(9)

Applying these conditions to Eq. (7), we obtain

$$ P \cdot Q = 2 \cdot I - V \cdot W(t) \cdot V \cdot W(t) - W(t) \cdot V \cdot W(t) \cdot V $$

$$ = 2 \cdot I - \{ W(t) \cdot V \cdot W(t) \cdot V \}^\dagger - W(t) \cdot V \cdot W(t) \cdot V $$

(10)

with the identity matrix I. Taking the average on both sides with the density matrix ρ and applying the cyclic property of the trace operation, our simplification yields

$$ \langle P \cdot Q \rangle_\rho = 2(1 - \Re \{ Tr[W(t) \cdot V \cdot W(t) \cdot V \cdot \rho] \}). $$

(11)

Taking into account Eqs. (5) and (11), we obtain the expression of OTOC as

$$ \langle C(t) \rangle_\rho = \langle P \cdot Q \rangle_\rho = 2[1 - \Re \{ Z \}], $$

(12)
where

\[Z = Tr[M], \quad M = W(t) \cdot V \cdot W(t) \cdot V \cdot \rho. \]

(13)

Here we assume

\[F_R(t) = \Re\{Z\}. \]

(14)

As per the notation used in the OTOC literature, finally Eq. (12) can be rewritten over a density matrix \(\rho \) as

\[\langle C(t) \rangle_{\rho} = 2 [1 - F_R(t)]. \]

(15)

To establish the OTOC connection with the Uhlmann fidelity of pure quantum states, we consider Eqs. 13–14 and rewrite the factor \(F_R(t) \) by using the cyclic property of trace operation over the quantum state \(|\psi\rangle \)

\[F_R(t) = \Re[(\langle\psi|W(t) \cdot V \cdot W(t) \cdot V|\psi\rangle)] = \Re[(y|x)] \]

with

\[|x\rangle = W(t) \cdot V|\psi\rangle \]

(16)

and

\[|y\rangle = V \cdot W(t)|\psi\rangle. \]

(17)

Here the state \(|x\rangle \) represents forward evolution of the state \(|\psi\rangle \) and \(\langle y| \) represents the backward evolution of the state \(|\psi\rangle \) under the actions of the operators \(W(t) \) and \(V \). Since the operators \(W(t) \) and \(V \) are unitary, the state \(|\psi\rangle \) does not lose its purity during the complete evolution. Here under the complete evolution we mean the total evolution involving the forward and backward evolution. The Uhlmann fidelity gives the information about the overlapping of quantum states and measures the degree of mismatch between two quantum states. The Uhlmann fidelity between two pure quantum states \(\{|x\rangle, |y\rangle\} \) is defined as

\[f = |\langle y|x\rangle|^2. \]

(18)

The above equation gives the degree of mismatch between the forward and backward evolution of the quantum state \(|\psi\rangle \). Here \(f \) is a real quantity; the range of the fidelity is \(f \in [0, 1] \). We plug-in the values from Eqs. (16) and (17) into Eq. (18). Then, we obtain

\[f = |Z|^2 \]

(19)
or taking into account Eqs. 13–14,

\[f = \left(F_R(t) \right)^2 + \left(\text{Im}(Z) \right)^2, \quad \sqrt{f} = |Z| \quad (20) \]

Here the density matrix \(\rho = |\psi\rangle\langle\psi| \) (cf. 13) is used in the context of pure quantum states. Given a mixed (not pure) state in Eq. (13),

\[\rho = \sum_{i=1}^{n} p_i |\psi_i\rangle\langle\psi_i|, \quad n \geq 2, \quad p_i \geq 0, \quad \sum_{i=1}^{n} p_i = 1 \quad (21) \]

defined on a Hilbert space \(\mathcal{H}_A \), one can take a purification (cf. [36]) of \(\rho \) defined on a Hilbert space \(\mathcal{H}_A \otimes \mathcal{H}_B \),

\[|\Psi\rangle = \sum_{i=1}^{n} \sqrt{p_i} |\psi_i\rangle |\phi_i\rangle, \quad Tr_B (|\Psi\rangle\langle\Psi|) = \rho \quad (22) \]

where \(Tr_B \) denotes partial trace over the subsystem \(B \). Thus, Eqs. (13) can be written as

\[Z = \langle \Psi | \left(W(t) \cdot V \cdot W(t) \cdot V \otimes I_B \right) |\Psi\rangle \quad (23) \]

where \(I_B \) is the identity matrix acting on elements in \(\mathcal{H}_B \). Accordingly, instead of Eqs. (16) and (17) we can consider the pure states

\[W(t) \cdot V \otimes I_B |\Psi\rangle \quad \text{and} \quad V \cdot W(t) \otimes I_B |\Psi\rangle. \quad (24) \]

From Eqs. (15) and (20), it follows

\[F_R(t) = \sqrt{f - \left(\text{Im}(Z) \right)^2} \quad (25) \]

and

\[\langle C(t) \rangle_\rho = 2 \left[1 - \sqrt{f - \left(\text{Im}(Z) \right)^2} \right]. \quad (26) \]

Equation (26) establishes the connection between Uhlmann fidelity and QI scrambling. If the imaginary part is zero,

\[\text{Im}(Z) = 0, \quad (27) \]

then \(\langle C(t) \rangle_\rho \) takes the following form,

\[\langle C(t) \rangle_\rho = 2 \left[1 - \sqrt{f} \right]. \quad (28) \]
Equations (25) and (28) show that \sqrt{f} is the exact (i.e., reachable) upper bound on $F_R(t)$ and $2[1 - \sqrt{f}]$ is the exact lower bound on the QI scrambling $\langle C(t) \rangle_{\rho}$, respectively. The indicated bounds are reached when Z becomes real. Below we investigate connection between the QI scrambling and Bures metric. Referring to [37], we know that the relation between Bures metric D and Uhlmann fidelity is given by

$$D = \sqrt{2(1 - \sqrt{f})} \quad (29)$$

Adjusting the value of f from Eq. (29) into Eq. (26), we obtain

$$\langle C(t) \rangle_{\rho} = 2\left[1 - \sqrt{\left(1 - \frac{D^2}{2}\right)^2 - \left(Im\{Z\}\right)^2} \right] \quad (30)$$

Under the condition given in Eq. (27), Eq. (30) reads

$$\langle C(t) \rangle_{\rho} = D^2 \quad (31)$$

The last equation establishes the relation between QI scrambling and Bures metric. We mention that Bures metric is another measure of closeness of two quantum states and related with Uhlmann fidelity. Here we find that under the condition given in Eq. (27) the QI scrambling is a square function of the Bures metric. In the present paper, we only focus on Uhlmann fidelity as this has lucid properties and widely used in the literature.

2.1 Important properties of QI scrambling

Based on Eq. (26), we find the following properties of QI scrambling

1. Positivity, $\langle C(t) \rangle_{\rho} \geq 0$.
2. Bounded limits, $0 \leq \langle C(t) \rangle_{\rho} \leq 2$.
3. Exchange symmetry over forward and backward evolution. The Uhlmann fidelity has the following obvious symmetry,

$$f = |\langle y|x\rangle|^2 = |\langle x|y\rangle|^2 .$$

Hence, we conclude that under the exchange of forward and backward evolution the QI scrambling $\langle C(t) \rangle_{\rho}$ will remain the same.

2.2 Linking QI scrambling and two-qubit concurrence

In this section, we establish the mathematical connection between QI scrambling and the two-qubit concurrence. Here we mention that concurrence C_r is a good measure of entanglement for two-qubit systems, and it has its experimental manifestations. The concurrence is defined as

$$C_r(|\psi\rangle) = |\langle \psi|\sigma_y \otimes \sigma_y |\psi^*\rangle| \quad (32)$$
or

\[C_r(|\psi\rangle) = |Tr[(\sigma_y \otimes \sigma_y).(|\psi\rangle\langle\psi|)]| . \tag{33} \]

Here \(\sigma_y \otimes \sigma_y\) is the spin flip matrix, which flips both the spins under the action of Pauli \(Y\) operator and \(|\psi\rangle\) is the complex conjugate of the state \(|\psi\rangle\). If we consider the case \(|\psi\rangle = |\psi\rangle\), which means that the density matrix \(\rho\) has only real entries, the condition \(\rho^\ast = \rho\) is satisfied. By using this condition, we may write Eq. (33) as

\[C_r(\rho) = |Tr[(\sigma_y \otimes \sigma_y).\rho]| \tag{34} \]

Furthermore, we may straightforwardly write the concurrence in the state \(M\) given by Eq. (13)

\[C_r(M) = |Tr[(\sigma_y \otimes \sigma_y) \cdot M| \tag{35} \]

or

\[C_r(M) = |Tr[(\sigma_y \otimes \sigma_y) \cdot W(t) \cdot V \cdot W(t) \cdot V \cdot \rho]|. \tag{36} \]

We know that the product of two Hermitian matrices \(A\) and \(B\) is Hermitian if and only if \([A, B] = 0\). The product \(W(t) \cdot V\) may not be Hermitian in general, because of the condition \([W(t), V] \neq 0\) (cf. 3). Hence, overall the Matrix \(M\) may not be Hermitian, in general, i.e., \((M^\dagger \neq M)\). For two qubits, the structure of operators \(W(t)\) and \(V\) can be expanded in the composite Hilbert space \(H_1 \otimes H_2\) with the dimension \((2^2 \times 2^2)\). We analytically found the structure of the matrix \(M\) whose trace is invariant under the action of the operator \(\sigma_y \otimes \sigma_y\) in the space \(H_1 \otimes H_2\). This form of the matrix \(M\) and its transpose is given by

\[M = \begin{pmatrix}
 a & b & c & -a \\
 d & e & f & \\
 g & h & i & j \\
 k & l & -j \\
\end{pmatrix}, \quad M^T = \begin{pmatrix}
 a & d & g & j \\
 b & e & h & k \\
 c & e & h & i \\
 -a & f & i & -j \\
\end{pmatrix} \tag{37} \]

with

\[|Tr[M]| = |Tr[M^T]| . \tag{38} \]

Here \((a, b, c, d, e, f, g, h, i, j, k, l)\) are complex numbers. The transpose of the matrix \(M\), i.e., \(M^T\), is also trace invariant under the action of the operator \(\sigma_y \otimes \sigma_y\). Investigation of the matrix \(M\) depends on many factors such as the Hamiltonian \(H\) of the physical system, the nature of the scrambling operators \(W(0), V\) and the density matrix \((\rho)\) of the state. Finding out the exact form of the constitutes \([H, W(0), V, \rho]\), which produces the structure of \(M\) is mathematically difficult problem. We recall that
the trace of M is invariant under the action of $\sigma_y \otimes \sigma_y$, so we obtain the following relation

$$|\text{Tr}[M]| = |\text{Tr}[(\sigma_y \otimes \sigma_y) \cdot M]|$$ (39)

or

$$|\text{Tr}[M^T]| = |\text{Tr}[(\sigma_y \otimes \sigma_y) \cdot M^T]|.$$ (40)

By substituting the value of M from Eq. (13), we can write Eq. (39) as follows

$$|\text{Tr}[W(t) \cdot V \cdot W(t) \cdot V \cdot \rho]| = |\text{Tr}[(\sigma_y \otimes \sigma_y) \cdot W(t) \cdot V \cdot W(t) \cdot V \cdot \rho]|$$ (41)

Using the above relation, we can easily obtain the new form of Eq. (36),

$$C_r(M) = \text{Tr}[W(t) \cdot V \cdot W(t) \cdot V \cdot \rho]$$ (42)

Substituting the value of the factor \sqrt{f} from Eq. (20) in Eq. (42), we can establish the connection between concurrence and Uhlmann fidelity as given by

$$C_r(M) = \sqrt{f}$$ (43)

Obtaining the value of \sqrt{f} from Eq. (29) and plug-in into Eq. (43), we can establish the direct connection between concurrence and Bures metric as

$$C_r(M) = 1 - \frac{D^2}{2}.$$ (44)

Putting the value of f from Eq. (43) in Eq. (26), we can obtain the direct connection between QI scrambling and concurrence as

$$\langle C(t) \rangle_\rho = 2 \left[1 - \sqrt{(C_r(M))^2 - (\text{Im}\{Z\})^2} \right].$$ (45)

As a consequence of the last equation, one can write the following expression for concurrence $C_r(M)$

$$C_r(M) = \sqrt{\left[1 - \langle C(t) \rangle_\rho \right]^2 + \left(\text{Im}\{Z\}\right)^2}.$$ (46)

The obtained equation establishes the connection between QI scrambling and concurrence. It should be noted that because of Eq. (43) and $f \in [0, 1]$ the expression occurring in Eq. (46) under the radical symbol satisfies the following inequality

$$0 \leq \left[1 - \frac{\langle C(t) \rangle_\rho}{2} \right]^2 + \left(\text{Im}\{Z\}\right)^2 \leq 1.$$ (47)
If $\text{Im}\{Z\} = 0$, then Eq. (46) is simplified to

$$C_r(M) = 1 - \left[\frac{\langle C(t) \rangle_\rho}{2} \right].$$

The above mathematical relations are helpful to study the direct influence of QI scrambling on two-qubit concurrence during the complete evolution with the following conditions:

1. The density matrix ρ deals with two-qubit pure quantum states having real elements.
2. The density matrix after the complete evolution has the form given by Eq. (37).

If the exact structure of M given in Eq. (37) is not obtained, then one is forced to study the concurrence by using Eq. (32). The Uhlmann fidelity and Bures metric, both are measures of the degree of mismatch of quantum state during forward and backward evolution. We recall that in the present work we only focus on Uhlmann fidelity, since it is widely used in literature. We divide our study in two cases as given below.

2.3 Case 1: $\text{Im}\{Z\} = 0$

In this subsection, we discuss the behavior of QI scrambling $\langle C(t) \rangle_\rho$, concurrence $C_r(M)$ and fidelity f when Eq. (27) holds in all the corresponding mathematical expressions. We plot the QI scrambling and concurrence vs. the Uhlmann fidelity f by using Eqs. (28) and (43) in the left part of Fig. 1. We find that the QI scrambling is monotonically decreasing and the entanglement expressed by concurrence is a monotonically increasing function. The decreasing nature of QI scrambling also comes from the series given in Eq. (4), as this series is a convergent one. Both the graphs intersect at $f = 0.44$; hence, QI scrambling and entanglement both have equal value at this point. We refer to this point as QI scrambling and concurrence balancing point. At $f = 1$, the QI scrambling becomes zero, which means that the operators $W(0)$ and V commute and contribute in no scrambling, but the concurrence sustains to $C_r(\rho) = 1$.

![Fig. 1](image-url)
Quantum information scrambling and entanglement in…

In general, the decreasing nature of QI scrambling enhances the entanglement. This may also be observed in the right figure incorporated in Fig. 1, which is a plot of entanglement vs. QI scrambling by using Eq. (48). We find, when QI scrambling is minimal, $\langle C(t) \rangle_\rho = 0$, the entanglement is maximal, i.e., $C_r(\rho) = 1$, but increasing QI scrambling decreases the entanglement linearly.

2.4 Case 2: $\text{Im}\{Z\} \neq 0$

In this subsection, we consider first the behavior of QI scrambling $\langle C(t) \rangle_\rho$ and fidelity f, with nonzero imaginary part of Z dealing with Eq. (26). The graphical results are shown in Fig. 2a. We find that the QI scrambling is zero at the point

$$\left(f = 1, \text{Im}\{Z\} = 0\right)$$

and grows in its value w.r.t the factor $(f - \text{Im}\{Z\}^2)$; this factor is non-negative because of the equality holds in Eq. (20). The scrambling achieves its maximum value at $(\langle C(t) \rangle_\rho = 2)$ at,

$$\left(f - \text{Im}\{Z\}^2\right) = 0.$$

Further, in Fig. 2b we plot the action of QI scrambling and the factor $(\text{Im}\{Z\})$ on the entanglement characterized by the concurrence $C_r(M)$. This dependence is given by Eq. (46). We establish the mere fact that as the amount of scrambling increases, it leads to decay of the entanglement in the system. Hence, we find the destroying behavior of QI scrambling such that it may not serve as a useful candidate for bipartite entanglement.
3 Dynamics of quantifiers in bell states

In this section, we study the dynamics of QI scrambling, Uhlmann fidelity and concurrence by considering two qubits prepared in Bell states

$$|\psi_\pm \rangle_1 = \frac{1}{\sqrt{2}}([00] \pm [11])$$

$$|\psi_\pm \rangle_2 = \frac{1}{\sqrt{2}}([01] \pm [10]).$$

The corresponding density matrices of these states are expressed as $$(\rho_\pm)_1$$ and $$(\rho_\pm)_2$$. We assume that the two qubits are prepared in Bell states and carry the Ising interaction with external imposed magnetic field in z direction. This Ising Hamiltonian is expressed as

$$H = -j_z \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - b \sum_{i=1}^2 \sigma_i^z$$

In the above equation, the first sum is taken over the pairs of adjacent spins and the notation $\langle i,j \rangle$ indicates that sites i and j are nearest neighbors. The operator $W(0)$ evolves under the Hamiltonian H and follows the series given in Eq. (4). This series can be easily derived by using the famous Baker–Campbell–Hausdorff formula [23,24]. The rate of change of this series plays an important role in QI scrambling. To proceed the dynamical study of QI scrambling and concurrence, we consider here the scrambling operators as Pauli ones such that

$$\{W(0), V\} = \{\sigma_i, \sigma_j\}$$

with

$$\{\sigma_i, \sigma_j\} \in \{\sigma_x, \sigma_y, \sigma_z\}, \quad (i, j) \in \{x, y, z\}.$$

All the Pauli operators are Hermitian as well as unitary matrices in agreement with Eqs. (8) and (9) and fulfill the need of choosing $\{W(0), V\}$. Please note that the curly bracket “{}” does not have the meaning of anti-commutator here; it is used just as a bracket to close the two operators and this holds throughout the manuscript. Now we consider the case when any one of the two qubits evolves under the action of Pauli operators. For example, let these operators act on the first qubit. In this direction, we can develop the structure of the operators $\{W(0), V\}$ for two qubits in the composite Hilbert space $H_1 \otimes H_2$ as given by

$$\{W(0), V\}_{(i,j)} = \{\sigma_i \otimes I, \sigma_j \otimes I\}.$$

Here we mention that the following factor

$$\text{Tr}[W(t) \cdot V \cdot W(t) \cdot V \cdot \rho]$$

$$\text{Tr}[W(t) \cdot V \cdot W(t) \cdot V \cdot \rho]$$
is responsible for QI scrambling and concurrence obtained in Eqs. (26) and (42), respectively. This factor is invariant under the cyclic permutations of the operators. We consider the following option

$$\{W(0), V\}_{(j,i)} = \{\sigma_j \otimes I, \sigma_i \otimes I\}.$$ \hspace{1cm} (54)

Then, because of the cyclic permutation property, both Eqs. (52) and (54) will produce the same results of QI scrambling and entanglement. So we are led to choose the following combinations of the operators

$$\{W(t), V\} = \{\sigma_x \otimes I, \sigma_x \otimes I\}, \{\sigma_x \otimes I, \sigma_y \otimes I\}, \{\sigma_y \otimes I, \sigma_x \otimes I\}, \{\sigma_y \otimes I, \sigma_y \otimes I\}, \{\sigma_z \otimes I, \sigma_z \otimes I\}, \{\sigma_z \otimes I, \sigma_z \otimes I\}.$$

We study all the Bell states given in Eqs. (49) and (50) under the above-mentioned combinations of operators. We find that all the Bell states \((\rho_{\pm})_1\) and \((\rho_{\pm})_2\) under the actions of the combinations

$$\{\sigma_x \otimes I, \sigma_x \otimes I\}, \{\sigma_x \otimes I, \sigma_y \otimes I\}, \{\sigma_y \otimes I, \sigma_x \otimes I\}, \{\sigma_y \otimes I, \sigma_y \otimes I\}, \{\sigma_z \otimes I, \sigma_z \otimes I\}, \{\sigma_z \otimes I, \sigma_z \otimes I\}$$

produce the same results for all the quantifiers such that QI scrambling \(\langle C(t) \rangle\), fidelity \(f\), Bures metric and concurrence \(C_r(M)\). The functions of these quantifiers are obtained as follows

- **QI scrambling**: \(\langle C(t) \rangle = 2 (1 - \cos[4t(b + jz)])\),
- **Uhlmann Fidelity**: \(f = \cos^2[(4t(b + jz))]\),
- **Bures Metric**: \(D = \sqrt{2} \cdot \sqrt{1 - \cos[4t(b + jz)]}\),
- **Concurrence**: \(C_r(M) = \cos[4t(b + jz)]\).

On the other hand, the actions of the following operators

$$\{\sigma_x \otimes I, \sigma_z \otimes I\}, \{\sigma_y \otimes I, \sigma_z \otimes I\}, \{\sigma_z \otimes I, \sigma_x \otimes I\}, \{\sigma_z \otimes I, \sigma_z \otimes I\}$$

do not produce any scrambling for all the states \((\rho_{\pm})_1\) and \((\rho_{\pm})_2\). Corresponding to these action operators, the values of all the quantifiers \{QI scrambling, Uhlmann Fidelity, Bures Metric and Concurrence\} are obtained as \([0, 1, 0, 1]\). The functions occurring in all the quantifiers are oscillating functions with the parameters \((b, jz, t)\). Here we plot the dynamical behavior of the quantifiers QI scrambling, Uhlmann fidelity and concurrence with the varying parameters \((b, jz)\) vs. the parameter time \(t\) in Fig. 3.

We find the peak value of the QI scrambling vanish the entanglement in the system and makes it zero. The QI scrambling and entanglement balancing points are periodic in Bell states. On the other hand, we also do analysis of QI scrambling vs. Uhlmann fidelity. As the Uhlmann fidelity \(f\) is zero, it means the degree of mismatch between forward and backward evolution of the quantum state \(|\psi\rangle\) is very high and hence the QI scrambling is also very high, which consequently kills the entanglement in the system.
Fig. 3 Time evolution of QI scrambling $\langle C(t) \rangle_{\rho}$, fidelity f and concurrence $C_r(M)$ for Bell states

If the Uhlmann fidelity f approaches to the amplitude as unity, then the forward and backward evolution of the state $|\psi\rangle$ is the same and QI scrambling is zero in the states, which helps to keep the high amount of the entanglement in Bell states.

4 Conclusion

In this article, we established the mathematical connections among the quantifiers for QI scrambling, Uhlmann fidelity, Bures metric and bipartite concurrence. Most importantly, a mathematical relation is developed between QI scrambling and concurrence, which is useful to study the direct influence of QI scrambling on bipartite entanglement for real density matrices. Further, we have studied the dynamical behavior of quantum information scrambling, Uhlmann fidelity and entanglement with Ising Hamiltonian in two qubits prepared in Bell states. We have used the scrambling operators as Pauli operators and determined the combinations of scrambling operators under which no scrambling takes place in Bell states.

The influence of QI scrambling on bipartite entanglement has been studied and thereby established that the increasing amount of QI scrambling decreases the entanglement in the system and has the destroying influence on the entanglement. In addition, we found that the dynamics of all the quantifiers in Bell states is periodic. It is also investigated that the QI scrambling and entanglement balancing points are periodic as well. The present work may be explored in larger perspectives and may be helpful for the quantum information community.

References

1. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007)
2. Sekino, Y., Susskind, L.: Fast scramblers. JHEP 0810, 065 (2008)
3. Lashkari, N., Stanford, D., Hastings, M., Osborne, T., Hayden, P.: Towards the fast scrambling conjecture. JHEP 1304, 022 (2013)
4. Landsman, K.A., Figgatt, C., Schuster, T., Linke, N.M., Yoshida, B., Yao, N.Y., Monroe, C.: Verified quantum information scrambling. Nature 567, 61 (2019)
5. Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4, 37 (2016)
6. Cencini, M., Cecconi, F., Vulpiani, A.: From Simple Models to Complex Systems. World Scientific (2010)
7. Ghys, É.: The Butterfly Effect. In: Cho, S.J. (ed.) The Proceedings of the 12th International Congress on Mathematical Education. Springer, Cham, pp. 19–39 (2015)
8. Haake, F.: Quantum Signatures of Chaos. Springer Series in Synergetics (2010)
9. Stokmann, H.J.: Quantum Chaos: An Introduction. Cambridge University Press (1999)
10. Peres, A.: Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30, 1610 (1984)
11. Jalabert, R.A., Pastawski, H.M.: Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86, 2490 (2001)
12. Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227 (1978)
13. Kitaev, A.: Correlations in the Hawking Radiation and Thermal Noise. Talk at the 2015 Breakthrough Prize Fundamental Physics Symposium, Nov. 10, 2014 (2014). https://breakthroughprize.org/Laureates/1/L3
14. Larkin, A., Ovchinnikov, Y.N.: Quasiclassical Method in the Theory of Superconductivity. Sov. Phys. JETP 28(6), 1200 (1969)
15. Yoshida, B., Yao, N.Y.: Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019)
16. Roberts, D.A., Stanford, D.: Diagnosing chaos using Four-point functions in two-dimensional conformal field theory. Phys. Rev. Lett. 115, 131603 (2015)
17. Dóra, B., Moessner, R.: Out-of-time-ordered density correlators in Luttinger liquids. Phys. Rev. Lett. 119, 026802 (2017)
18. Lin, C.J., Motrunich, O.I.: Out-of-time-ordered correlators in short-range and long-range hard-core boson models and in the Luttinger-liquid model. Phys. Rev. B 98, 134305 (2018)
19. Lin, C.J., Motrunich, O.I.: Out-of-time-ordered correlators in a quantum Ising chain. Phys. Rev. B 97, 144304 (2018)
20. Kos, P., Prosen, T.: Time-dependent correlation functions in open quadratic fermionic systems, time-dependent correlation functions in open quadratic fermionic systems. J. Stat. Mech. 2017, 123103 (2017)
21. Riddell, J., Sørensen, E.S.: Out-of-time ordered correlators and entanglement growth in the random-field XX spin chain. Phys. Rev. B 99, 054205 (2019)
22. Swingle, B.: Unscrambling the physics of out-of-time-order correlators. Nat. Phys. 14, 988 (2018)
23. Achilles, R., Bonfiglioli, A.: The early proofs of the theorem of Campbell, Baker, Hausdorff and Dynkin. Arch. Hist. Exact Sci. 66, 295 (2012)
24. Bonfiglioli, A., Fulci, R.: Topics in Noncommutative Algebra: The Theorem of Campbell. Lecture Notes in Mathematics, Springer, Berlin, Baker, Hausdorff and Dynkin (2012)
25. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)
26. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
27. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
28. Uhlmann, A.: Transition probability (fidelity) and its relatives. Found. Phys. 41, 288 (2011)
29. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in qubit-qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)
30. Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter qubit-qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)
31. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinskii-Moriya interaction on quantum correlations in two qubit Werner states and MEMS. Quantum. Info. Process. 14, 1361 (2015)
32. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in two parameter qubit-qutrit states with x-component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)
33. Sharma, K.K., Gerdt, V.P.: Entanglement sudden death and birth effects in two qubits maximally entangled mixed states under quantum channels. Int. J. Theor. Phys. 59, 403 (2020)
34. Buers, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w^*-algebras. Trans. Am. Math. Soc. 135, 199 (1969)
35. Sych, D., Leuchs, G.: A complete basis of generalized Bell states. New J. Phys. 11, 013006 (2009)
36. Kleinmann, D., Karpenmann, H., Meyer, T., Bruss, D.: Physical purification of quantum states. Phys. Rev. A 73, 062309 (2006)
37. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D. 23, 357 (1981)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.