Predictive Value of CHA2DS2-VASc-HSF Score for Severity of Acute Coronary Syndrome

Jingyi Liu, MM1, Yang Ma, MM2, Haiwei Bu, MM1, Wei Qin, MM1, Fei Shi, MM1, and Ying Zhang, MM1

Abstract
CHADS2 and CHA2DS2-VASc scores have been used to assess the prognostic risk of thromboembolism in non-valvular atrial fibrillation patients. Recent studies have shown the utility of CHADS2 and CHA2DS2-VASc scores for evaluating the severity of coronary artery disease (CAD). The newly defined CHA2DS2-VASc-HSF score evaluates atherosclerosis and is associated with CAD severity. This study investigated the association between the CHA2DS2-VASc-HSF score and acute coronary syndrome (ACS) severity as assessed by the Gensini score and the number of vessels. Furthermore, this study also compared the diagnostic value of the CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF score for ACS. A total of 2367 eligible patients (ACS group \(n = 2030 \); non-CAD group \(n = 337 \)) were consecutively enrolled in this study. Receiver operating characteristic curve diagnostic tests and logistic regression models were used to analyze the risk factors for ACS. The CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores were significantly higher in the ACS group than those in the control group. After adjusting for numerous traditional CAD risk factors, an increased CHA2DS2-VASc-HSF score was found to be an independent risk factor for patients with ACS (odds ratio 1.401, 95% confidence interval 1.044, −1.879; \(P < 0.05 \)). A newly diagnosed CHA2DS2-VASc-HSF score predicts the severity of ACS.

Keywords
CHA2DS2-VASc-HSF score, acute coronary syndrome, Gensini score, diagnosis

Date received: 8 November 2021; revised: 19 December 2021; accepted: 30 December 2021.

Coronary artery disease (CAD) is responsible for one-third of the total deaths in people older than 35. As a type of CAD, acute coronary syndrome (ACS) is the leading cause of death worldwide, comprising a group of conditions that include ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and unstable angina. The most common cause of ACS is occlusion of a coronary vessel secondary to the disruption of an atherosclerotic plaque with subsequent thrombus formation. CHA2DS2 and CHA2DS2-VASc score models are widely used to predict the risk of subsequent thromboembolic events in patients with atrial fibrillation (AF) and include similar risk factors for the development of CAD. Recent evidence has shown that the CHADS2 score has prognostic ability in CAD regardless of the presence of AF and has suggested the power of CHADS2 and CHA2DS2-VA to assess major adverse cardiovascular outcomes in the setting of ACS. Moreover, a retrospective study found that the CHA2DS2-VASc score was associated with a higher risk of in-hospital mortality rates in patients who underwent primary percutaneous coronary intervention (PCI) for STEMI. We formulated a new score, the CHA2DS2-VASc-HSF, which includes the variables hyperlipidemia (H), smoking (S), and family history of CAD (F), in addition to the previous risk factors to assess the risk of CAD (Table 1). We sought to evaluate the ability of this new score to independently predict ACS and compared its predictive value.

1 Chengde Medical University Affiliated Hospital, Chengde, HeBei, 067000, China
2 Chengde Medical University Affiliated Hospital, Chengde, HeBei, 067000, China

Corresponding Author:
Ying Zhang, MM, Department of Cardiology, The Affiliated Hospital of Chengde Medical University, 067000, Chengde, China.
Email: cyfyzy@126.com
ability to that of the CHA2DS2 and CHA2DS2-VASc scores in patients with ACS with multiple vessels.

Methods

A total of 2030 inpatients with ACS (case group) and 337 non-CAD inpatients (control group) were consecutively enrolled in this retrospective study in the Department of Cardiology at the Affiliated Hospital of Chengde Medical University, from December 2015 to May 2019. All patients were subjected to diagnostic coronary angiography (CAG). ACS patients included those with unstable angina, prior myocardial infarction [MI] and peripheral artery disease, including diabetes mellitus13 (defined as a fasting blood glucose level >126 mg/dL, blood glucose ≥200 mg/dL, or using antidiabetic drugs), hyperlipidemia14 (defined as increased level of low-density lipoprotein cholesterol [LDL-C] according to the National Cholesterol Education Program-3 recommendations and history of using lipid lowering medications), previous ischemic stroke or transient ischemic attack (TIA), vascular disease (defined as myocardial infarction [MI] and peripheral artery disease, including chronic heart failure (CHF) (defined signs/symptoms of heart failure confirmed with objective evidence of cardiac dysfunction), smoking status15 (defined as smoking >10 cigarettes a day for ≥1 year without a quit attempt), and family history of CAD (defined as MI before 55 years of age for men or 65 years of age for women in first-degree relatives).

For each patient, SBP, DBP, ejection fraction (EF), left atrial diameter, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), white blood cell (WBC) count, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), LDL-C, uric acid (UA), blood urea nitrogen (BUN), and renal function test results were obtained. All participants provided written informed consent.

CAG was performed using the standard Judkins technique. CAG: the stenosis at least or more than 50% in one or more of the left main, left anterior descending, left circumflex, right coronary, or their main branches. The Gensini score is a comprehensive score that assesses the extent of CAD burden on angiography. This score is calculated as the sum of the severity scores assigned depending on the degree of angiographic luminal stenosis in each segment of the coronary artery, exponentially increasing by the severity of lesions (25%, 50%, 75%, 90%, 99%, and 100% coronary stenosis), with a cumulative effect according to multiple lesions and lesion location.

The CHADS2 nomenclature represents congestive heart failure (C), hypertension (HT), age (A), diabetes mellitus (DM), and stroke (S) and is calculated by assigning 1 point each for the presence of C, HT, A >75 years, and DM, and by assigning 2 points for history of S or TIA. The CHA2DS2-VASc score, a modification of the CHADS2 score, extends the latter by including additional common stroke risk factors, including vascular disease (V), age 65 to 74 years (A), and female sex (as a sex category [Sc]). In the CHA2DS2-VASc score, age >75 years (A2) was assigned 2 points. The CHA2DS2-VASc-HSF score (Table 1) adds hyperlipidemia (H), smoking (S), family history (F) and male gender (instead of female gender) to the previous scores.

The maximum CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores are 6, 9, and 12, respectively.

Statistical analyses were performed using the Statistical Package for Social Sciences software (version 26.0; SPSS Inc., Chicago, IL, USA). The Kolmogorov-Smirnov test was used to analyze continuous data with normal or skewed distributions. The mean ± standard deviation and quartile median are used to express normal and skewed continuous data, respectively. To investigate differences between the groups, the t-test was applied for normally distributed continuous variables, the Mann-Whitney U-test for continuous variables with abnormal distribution, and the Chi-square test for categorical variables. Regression analyses were performed to identify candidate variables among demographics, risk factors, and biomarkers. Logistic regression analysis was performed to investigate the multivariable adjusted association of CHADS2-VASc-HSF score with ACS. Statistical significance was set at a two-tailed P-value of <0.05.

Results

Both age and the proportion of males was greater in the ACS group than in the control group (both, $P<0.001$).
Table 2. Baseline characteristics and laboratory measurements of patients.

Characteristics	ACS group (n = 2030)	Control group (n = 337)	Z/t/x2	P
Age (y)	59 (52.65)	57 (52.65)	-4.051	<0.001
Male (n/%)	1458 (71.8)	159 (47.2)	81.076	<0.001
Hypertension (n/%)	1119 (58.6)	153 (45.5)	20.178	<0.001
Dyslipidemia (n/%)	1431 (70.5)	207 (61.6)	10.597	0.001
T2DM(n/%)	478 (23.5)	36 (10.7)	27.877	<0.001
Vascular disease (prior myocardial infarction / peripheral artery disease / aortic calcification) (n/%)	60 (3.0)	3.0 (0.9)	4.729	0.030
Current smoker (n/%)	1007 (49.6)	93 (27.7)	55.601	<0.001
Alcohol abuse (n/%)	363 (17.9)	66 (19.6)	0.565	0.452
HR (bpm)	76.0 (66.0, 86.0)	72.0 (64.0, 81.5)	-3.747	<0.001
SBP (mm Hg)	141.0 (127.0, 158.0)	130.0 (120.0, 145.0)	-8.028	<0.001
DBP (mm Hg)	80.0 (74.0, 90.0)	81.0 (73.5, 90.0)	-0.375	0.708
LA (mm)	34.0 (32.0, 37.0)	34.0 (31.0, 38.0)	-1.295	0.195
LVEDD (mm)	50.0 (47.0, 54.0)	49.0 (46.0, 53.0)	-4.094	<0.001
LVSDD (mm)	34.0 (31.0, 38.0)	32.0 (30.0, 36.0)	-6.307	<0.001
EF%	59.0 (53.0, 64.0)	61.0 (57.0, 66.0)	-6.038	<0.001
WBC (10^3/L)	7.17 (5.01, 9.86)	6.41 (5.24, 7.67)	-4.005	<0.001
TC (mmol/L)	4.33 (3.67, 5.08)	4.13 (3.39, 4.685)	-4.406	<0.001
TG (mmol/L)	1.535 (0.990, 2.35)	1.380 (0.980, 2.115)	-2.016	0.044
HDL-C (mmol/L)	1.08 (0.910, 1.280)	1.12 (0.960, 1.33)	-2.802	0.005

Table 2. (continued)

Characteristics	ACS group (n = 2030)	Control group (n = 337)	Z/t/x2	P
LDL-C (mmol/L)	2.31 (1.83, 2.90)	2.09 (1.58, 2.65)	-4.928	<0.001
Blood Glucose (mmol/L)	6.57 (5.49, 8.86)	5.56 (4.98, 6.58)	-9.334	<0.001
CHADS2 score	1.0 (0.0, 2.0)	1.0 (0.0, 1.0)	-5.779	<0.001
CHA2DS2-VASc score	2.0 (1.0, 3.0)	3.0 (2.0)	-2.289	0.022

Dyslipidemia, hypertension, type 2 DM (T2DM), vascular disease, ischemic stroke, current smoker, history of MI, and history of heart failure (HF)/EF<40% were more common in the ACS group than in the control group (all P<0.05). Similarly, the medians of heart rate, SBP, LVEDD, and LVESD were higher in the ACS group than in the control group; however, the median EF was lower in the ACS group than in the control group, whereas HDL-C was higher in the ACS group than in the control group (all P<0.001). Moreover, the median white blood cell (WBC) count, TC, TG, and LDL-C levels were higher in the ACS group than in the control group, whereas HDL-C was higher in the ACS group than in the control group (all P<0.05). In addition, the prevalence rate of family history of CAD was higher in the ACS group than in the control group, but the difference was not statistically significant (P>0.05). Interestingly, the CHADS2,CHADS2-VASc, and CHADS2-VASc-HSF scores were significantly higher in the ACS group than in the control group (all P<0.05) (Table 2).

The diagnostic test analysis showed that in the ACS and control subgroups, the area under the curve (AUC) of the CHADS2 score, CHA2DS2-VASc score and CHADS2-VASc-HSF score were 0.593, 0.538, and 0.692, respectively; the optimal diagnostic cut-off point values were 1.5, 2.5, and 2.5, respectively; the sensitivity was 30.8%, 25.8%, and 76.8%, respectively; and the specificities were 83.7%, 82.5%, and 51.6%, respectively (Table 3).

The median CHADS2,CHA2DS2-VASc, and CHADS2-VASc-HSF scores were significantly higher in the multiple vessel disease group than in the single-vessel group (all P<0.001) (Table 4). Multivariate logistic regression model 1 showed that male sex, age ≥60 years, T2DM, SBP ≥140, LDL ≥3.4, EF <50%, and CHA2DS2 score were independent risk factors for ACS, and the odds ratios (ORs) of these factors were 3.781 (2.928,
CHADS2-VASc-HSF score were independent risk factors for EF <50%, and the CHA2DS2-VASc score were independent risk factors of a high Gensini score, and the ORs of these factors were 2.499 (1.952, 3.200), 1.780 (1.424, 2.225), 1.658 (1.227, 2.241), 1.998 (1.613, 2.476), 1.861 (1.263, 2.740), 2.577 (1.835, 3.619), and 1.553 (1.212, 1.991), respectively (all P < 0.05) (Table 6).

Table 7 manifests the results of multivariate logistic regression for the association of the CHADS2-VASc-HSF score among multiple vessels. There were 7 models after adjusting for age, sex, dyslipidemia, hypertension, T2DM, vascular disease, current smoking, history of HF, history of kidney failure, cardiogenic shock, family history of CAD, alcohol abuse, heart rate, ventricular EF, elevated SBP, WBC count, BUN, creatinine level, UA level, elevated fasting glucose, reduced HDL-C, elevated TG, TC, and LDL-C. The ORs were 1.879, 1.363, 1.504, 1.345, 1.376, and 1.360 for ACS with multiple vessels in models 1, 2, 3, 4, 5, 6, and 7, respectively (all P < 0.05) (Table 7).

Discussion

The main findings of this present study were as follows: (1) the CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores were significantly different for various numbers of diseased vessels; (2) the CHA2DS2-VASc-HSF score showed better predictability for patients with ACS than did the CHADS2 and CHA2DS2-VASc scores; (3) the CHA2DS2-VASc-HSF score was an independent risk factor for patients with ACS; (4) the CHA2DS2-VASc-HSF score was the best score scheme to predict ACS severity, and a score >2.5 may predict ACS severity. The results suggest that the CHA2DS2-VASc-HSF score is a comprehensive risk scoring tool for the risk stratification of patients with ACS.

In addition to predicting outcomes of patients with AF, the individual score components of the CHADS2 score are traditional risk predictors of coronary arteriosclerosis. Chan et al. previously reported an important association between the CHADS2 score and vascular endothelial function assessed by flow-mediated dilatation in non-AF patients. Patients with HF, HT, older age, and DM without AF have elevated markers of endothelial dysfunction and hypercoagulability, indicating that platelet activation might be attributed to underlying risk factors other than AF. Li et al. found that a higher CHADS2 score was associated with a higher risk of combined outcomes, all-cause death, and cardiovascular death in patients with CAD. Chen et al. suggested that the CHA2DS2-VASc score may play a vital role in predicting MI and HF in patients.
higher CHADS2 score than those with single-vessel disease.\(^9\) CAD patients with multivessel disease had a significant risk assessment for CAD.\(^11\) CHA2DS2-VASc-HSF scores were obviously higher in the

\[\begin{array}{l|lll} \text{Factor} & \text{OR} & 95\% \text{CI} & \text{P} \\
\hline \text{Male} & 3.781 & 2.928-4.883 & <0.001 \\
\text{Age} \geq 60 & 2.058 & 1.583-2.675 & <0.001 \\
\text{T2DM} & 2.029 & 1.317-3.125 & 0.001 \\
\text{SBP} \geq 140 & 2.095 & 1.629-2.695 & <0.001 \\
\text{LDL} \geq 3.4 & 2.231 & 1.382-3.602 & 0.001 \\
\text{EF <50\%} & 2.800 & 1.826-4.292 & <0.001 \\
\text{CHA2DS2} & 1.573 & 1.085-2.279 & 0.017 \\
\text{CHA2DS2-VASc} & - & - & - \\
\text{CHA2DS2-VASc-HSF} & - & - & - \\
\hline \end{array} \]

CI: confidence interval; EF: ejection fraction; LDL: low-density lipoprotein; OR: odds ratio; SBP: systolic blood pressure; T2DM: type 2 diabetes mellitus

without AF.\(^{21}\) Furthermore, in patients who underwent primary PCI, the CHA2DS2-VASc score was shown to predict thrombus burden,\(^{22}\) no-reflow phenomenon,\(^{23}\) major adverse cardiac events,\(^{24}\) in-hospital mortality, and long-term adverse clinical outcomes.\(^{25-27}\) By incorporating the majority of risk factors for CAD, the CHA2DS2-VASc-HSF score provides a comprehensive risk assessment for CAD.\(^{11}\)

This newly developed score has been independently associated with the severity of atherosclerosis and CIN development\(^{28}\) in patients with STEMI. In line with previous reports, in our study the CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores were obviously higher in the ACS group than those in the control group; the sensitivity value of the CHA2DS2-VASc-HSF score was greater than the specificity value, and the diagnostic efficiency of the CHA2DS2-VASc-HSF score in the ACS group was greater than that in the control group. The higher AUC in the CHA2DS2-VASc-HSF score (compared to that of the CHADS2 and CHA2DS2-VASc scores) indicates that it could be used as a predictive indicator for ACS. In Tabata’s study, CAD patients with multivessel disease had a significantly higher CHADS2 score than those with single-vessel disease.\(^9\) In particular, we recognize that all 3 scores were higher in multivessel disease than in single-vessel disease.

Cetin et al. showed that the CHADS2 and CHA2DS2-VASc scores correlated significantly with the Gensini score \(r = 0.383\) and \(0.300, P < 0.001\), suggesting that the CHA2DS2-VASc score reflects the severity of CAD.\(^{15}\) However, our study is the first to report that the risk of elevated CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores were in a high Gensini score group than in the low Gensini score.

Orcun et al. demonstrated that the CHA2DS2-VASc score was correlated with severe CAD by univariate analysis, but it did not independently predict severe CAD following multivariate analysis, whereas the CHA2DS2-VASc-HSF score did.\(^{29}\) However, in contrast to previous studies, we demonstrated that CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores were independent risk factors for patients with ACS using multivariate logistic regression models for ACS analysis. The CHA2DS2-VASc-HSF scores differed between the ACS and control groups. Our study demonstrated that the risk of elevated CHADS2, CHA2DS2-VASc, and CHA2DS2-VASc-HSF scores was greater in the ACS group than in the control group.

Zhang et al. demonstrated that the components of the 3 scores are common risk factors for atherosclerosis, vascular spasm, and microvascular dysfunction.\(^{30}\) Hyperglycemia may be associated with vascular smooth muscle cell proliferation and migration, oxidative stress, a hypercoagulable state, and
Table 7. Logistic Regression model of CHA2DS2-VASc-HSF score in the acute coronary syndrome subgroup with multiple vessels.

Model	OR (95% CI)	p-Value
Unadjusted	1.844 (1.480, 2.297)	<0.001
Model 1	1.879 (1.481, 2.385)	<0.001
Model 2	1.363 (1.025, 1.812)	0.033
Model 3	1.504 (1.119, 2.022)	0.007
Model 4	1.369 (1.024, 1.829)	0.034
Model 5	1.345 (1.006, 1.799)	0.046
Model 6	1.376 (1.026, 1.846)	0.033
Model 7	1.360 (1.013, 1.826)	0.041

Model 1: adjusted for age ≥ 60, sex
Model 2: adjusted for dyslipidemia, hypertension, T2DM, vascular disease (prior myocardial infarction/peripheral artery disease/aortic calcification) + Model 1
Model 3: adjusted for dyslipidemia, hypertension, vascular disease (prior myocardial infarction/peripheral artery disease/aortic calcification), current smoker + Model 1
Model 4: adjusted for history of heart failure, history of kidney failure, cardiogenic shock, and family history of CAD + Model 2
Model 5: adjusted for SBP ≥ 140 mm Hg, HR ≥ 100 bpm and EF < 50% + Model 4
Model 6: adjusted for white blood cell count > 10^9/L, BUN > 7.1 mmol/L, UA > 510 mmol/L, Scr > 110 mmol/L, and fasting glucose > 6.1 mmol/L + Model 4
Model 7: TC > 5.2 mmol/L, TG > 1.7 mmol/L, LDL > 3.4 mmol/L and HDL < 1.0 mmol/L + Model 6
BUN: blood urea nitrogen; EF: ejection fraction; HDL: high-density lipoprotein; HF: heart failure; HR: heart rate; SBP: systolic blood pressure; Scr: serum creatinine; TC: total cholesterol; TG: triglycerides; T2DM: type 2 diabetes mellitus; UA: uric acid

the inflammatory response, which contribute to CAD. Dyslipidemia also contributes to cerebrovascular and cardiovascular disorders, which are considered in the CHA2DS2-VASc model. In addition, male patients are more likely to smoke and suffer from obesity than female patients. Compared with the CHADS2 and CHA2DS2-VASc scores, the CHA2DS2-VASc-HSF score provided similar discrimination for ACS. After adjusting these factors and other traditional CAD factors, we consider that the CHA2DS2-VASc-HSF score remains a significant predictor for patients with ACS in multiple vessels, even following a multivariate analysis for traditional CAD characteristics, further supporting our hypothesis.

Our study had several limitations. First, this was a single-center study; further studies are needed to establish the value of this finding in the context of current clinical practice. Second, the sample size of patients in this study was relatively small. Third, the CHA2DS2-VASc-HSF score can be developed with other biochemical and echocardiographic predictors of atherosclerosis in further studies. Hence, a multi-regional and multi-ethnic study is needed in the future.

In summary, the CHA2DS2-VASc-HSF score may be convenient and easily applied in clinical practice, and it can be used to assess high-risk patients and prepare therapeutic interventions.

Acknowledgements

We are grateful for the assistance of doctors and technicians in the division of radiology, The Affiliated Hospital of Chengde Medical University.

Author Contributions

J.Y. L. contributed to the conception and design of the study, the acquisition, analysis, and interpretation of the data, and the drafting of the manuscript. Y.M., H.W.B., W.Q., and F.S. contributed to the acquisition of the data. Y.Z. contributed to the critical revision of the manuscript for important intellectual content. All authors approved the final version of the manuscript for publication.

Authors’ Note

Ethical approval was obtained from the Institutional Review Board of The Affiliated Hospital of Chengde Medical University (Number: CYFYL2021174). Written informed consent was obtained from the patients for their anonymized information to be published in this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

ORCID iDs

Jingyi Liu https://orcid.org/0000-0001-7123-0119
Fei Shi https://orcid.org/0000-0002-8779-3263
Ying Zhang https://orcid.org/0000-0002-4822-4295

References

1. Singh A, Museedi AS, Grossman SA. Acute coronary syndrome. In: StatPearls. StatPearls Publishing, 2021.
2. Rozenbaum Z, Elis A, Shuvy M, et al. CHA2DS2-VASc Score and clinical outcomes of patients with acute coronary syndrome. Eur J Intern Med. 2016;36:57-61.
3. Barman HA, Kahyaoglu S, Durmaz E, et al. The CHADS-VASc score is a predictor of no-reflow phenomenon after saphenous vein graft coronary artery bypass grafting. Am J Cardiol. 2014;113(6):950-956.
4. Bozbay M, Uyarel H, Cicek G, et al. CHA2DS2-VASc Score predicts in-hospital and long-term clinical outcomes in patients with ST-segment elevation myocardial infarction. Clin Appl Thromb Hemost. 2017;23(2):132-138.
5. Gürbak I, Panç C, Şahin AA, et al. CHA2DS2-VASc Score as a predictor of no-reflow phenomenon after saphenous vein graft percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndrome. Kardiol Pol. 2020;78(11):1129-1136.
6. CETIN M, Cakici M, Zencir C, et al. Prediction of coronary artery disease severity using CHADS2 and CHA2DS2-VASc scores and a newly defined CHA2DS2-VASc-HS score. Am J Cardiol. 2014;113(6):950-956.
7. Lu DY, Huang CC, Huang PH, et al. Usefulness of the CHADS2 score for prognostic stratification in patients with coronary artery disease having coronary artery bypass grafting. Am J Cardiol. 2017;119(6):839-844.
8. Huang FY, Huang BT, Pu XB, et al. CHADS2, CHA2DS2-VASc and R2CHADS2 scores predict mortality in patients with coronary artery disease. *Intern Emerg Med*. 2017;12(4):479-486.

9. Tabata N, Yamamoto E, Hokimoto S, et al. Kumamoto Intervention Conference Study (KICS) Investigators. Prognostic value of the CHADS2 score for adverse cardiovascular events in coronary artery disease patients without atrial fibrillation-a multicenter observational cohort study. *J Am Heart Assoc*. 2017;6(8):e006355.

10. Ipek G, Onuk T, Karatas MB, et al. CHA2DS2-VASc score is a predictor of no-reflow in patients with ST-segment elevation myocardial infarction who underwent primary percutaneous intervention. *Angiology*. 2016;67(9):840-845.

11. Modi R, Patted SV, Halkati PC, et al. CHA2DS2-VASc-HSF score - New predictor of severity of coronary artery disease in 2976 patients. *Int J Cardiol*. 2017;228:1002-1006.

12. Chen Q-J, Qu H-J, Li D-Z, et al. Prognostic nutritional index predicts clinical outcome in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. *Sci Rep*. 2017;7(1):3285.

13. Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). *Eur Heart J*. 2018;39(2):119-177.

14. Yamada Y, Sakamoto S, Rii J, et al. Prognostic value of an inflammatory index for patients with metastatic castration-resistant prostate cancer. *Prostate*. 2020;80(9):559-569.

15. Uysal OK, Turkoglu C, Duran M, et al. Predictive value of newly defined CHA2DS2-VASc-HSF score for severity of coronary artery disease in ST segment elevation myocardial infarction. *Kardiol Pol*. 2016;74(9):954-960.

16. Chan YH, Yiu KH, Lau KK, et al. The CHADS2 and CHA2DS2-VASc scores predict adverse vascular function, ischemic stroke, and cardiovascular death in high-risk patients without atrial fibrillation: role of incorporating PR prolongation. *Atherosclerosis*. 2014;237(2):504-513.

17. Akiyama E, Sugiyama S, Matsuzawa Y, et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. *J Am Coll Cardiol*. 2012;60(18):1778-1786.

18. Fujisue K, Sugiyama S, Matsuzawa Y, et al. Prognostic significance of peripheral microvascular endothelial dysfunction in heart failure with reduced left ventricular ejection fraction. *Circ J*. 2015;79(12):2623-2631.

19. McClung JA, Naseer N, Saleem M, et al. Circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently of HbA(1c). *Diabetologia*. 2005;48(2):345-350.

20. Li Y, Wang J, Lv L, Xu C, Liu H. Usefulness of the CHADS2 and RCHADS2 scores for prognostic stratification in patients with coronary artery disease. *Clin Interv Aging*. 2018;13:565-571.

21. Açıkçöz SK, Açıkçöz E, Çiçek G. Value of CHA2DS2-VASc score for prediction and ruling out of acute stent thrombosis after primary percutaneous coronary intervention. *Angiology*. 2020;71(5):411-416.

22. Satılmış S, Durmuş G. Predictive accuracy of CHA2 DS 2-VASc score in determining the high thrombus burden in patients with non-ST-elevation myocardial infarction. *Acta Cardiol*. 2021;76(2):140-146.

23. Wang Y, Zhao HW, Zhang XJ, et al. CHA2DS2-VASe score as a preprocedural predictor of contrast-induced nephropathy among patients with chronic total occlusion undergoing percutaneous coronary intervention: a single-center experience. *BMC Cardiovasc Disord*. 2019(1):19.74.

24. Orvin K, Bental T, Assali A. Usefulness of the CHA2DS2-VASe score to predict adverse outcomes in patients having percutaneous coronary intervention. *Am J Cardiol*. 2016;117(9):1433-1438.

25. Baydar O, Kilic A. CHA2DS2-VASC Score predicts risk of contrast-induced nephropathy in non-ST elevation myocardial infarction patients undergoing percutaneous coronary interventions. *Kidney Dis (Basel)*. 2019;5(4):266-271.

26. Shuvy M, Klein E, Cohen T, Shlomo N, Rozenbaum Z, Perez D. Value of adding the CHA2DS2-VASe score to the GRACE score for mortality risk prediction in patients with acute coronary syndrome. *Am J Cardiol*. 2019;123(11):1751-1756.

27. Kilic S, Kocabas U, Can LH, Yavuzgil O, Çetin M, Zoghi M. Predictive value of CHA2DS2-VASC and CHA2DS2-VASC-HS scores for failed reperfusion after thrombolytic therapy in patients with ST-segment elevation myocardial infarction. *Cardiol J*. 2019;26(2):169-175.

28. Cicek G, Yildirim E. CHA2DS2-VASe Score predicts contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction, who have undergone primary percutaneous coronary intervention. *Kardiol Pol*. 2018;76(1):91-98.

29. Čiftçi O, Yılmaz KC, Karacaglar E, Yılmaz M, Ozin B, Muderrisoglu IH. The novel CHA2DS2-VASC-FSH score is predictive of severe coronary artery disease on coronary angiography in patients with atrial fibrillation and unstable symptoms. *Eurasian J Med*. 2019;51(2):165-171.

30. Zhang QY, Ma SM, Sun JY. New CHA2DS2-VASe-HSF score predicts the no-reflow phenomenon after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. *BMC Cardiovasc Disord*. 2020;20(1):346.

31. Bessonov IS, Kuznetsov VA, Potolinskaya VV, Zyrianov IP, Sapozhnikov SS. Vliianie giperlikemii na rezul'taty chreskozhnynkh koronarnyh vmeshatel'stv bol'nkyh ostryn infarktom miokarda s pod’emom segmenta ST [impact of hyperglycemia on the results of percutaneous coronary interventions in patients with acute ST-segment elevation myocardial infarction]. *Ter Arkh*. 2017;89(9):25-29.

32. Ashoori A, Pourhosseini H, Ghodsi S, et al. CHA2DS2-VASC Score as an independent predictor of suboptimal reperfusion and short-term mortality after primary PCI in patients with acute ST segment elevation myocardial infarction. *Medicina (Kaunas)*. 2019;55(2):35.