Globally distributed software defined storage (proposal)

A Shevel1,2, S Khoruzhnikov1, V Grudinin1, O Sadov1 and A Kairkanov1

1ITMO University, St.Petersburg, Russian Federation
2National Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, Gatchina, Russian Federation

E-mail: shevel_a_y@niuitmo.ru

Abstract. The volume of the coming data in HEP is growing. The volume of the data to be held for a long time is growing as well. Large volume of data – big data – is distributed around the planet. The methods, approaches how to organize and manage the globally distributed data storage are required. The distributed storage has several examples for personal needs like owncloud.org, pydio.com, seafile.com, sparkleshare.org. For enterprise-level there is a number of systems: SWIFT - distributed storage systems (part of Openstack), CEPH and the like which are mostly object storage. When several data center’s resources are integrated, the organization of data links becomes very important issue especially if several parallel data links between data centers are used. The situation in data centers and in data links may vary each hour. All that means each part of distributed data storage has to be able to rearrange usage of data links and storage servers in each data center. In addition, for each customer of distributed storage different requirements could appear. The above topics are planned to be discussed in data storage proposal.

1. Introduction

In tuning of real storage system there are a lot of aspects and questions even the storage servers are located in one room. The number of nuances is much more in geographically distributed storage systems. The part of them are obvious, for example, reliable and secure data transfer over Internet between data storage and client.

In addition there are data transfers to do data synchronization to guarantee the replicas of the data are completely equal each other in different sites. Storage of the data in remote site and data transfer over long distance do require additional precautions such as a data encryption. Data compression and data deduplication are also important to decrease the total data volume to transfer and store.

More and more often we are dealing with big data.

2. Sources of the big data

Among sources of Big Data we have to mention scientific experimental installations:

- \sim1+ PB/year - International Thermonuclear Experimental Reactor (ITER - http://www.iter.org);
- \sim10+ PB/year - Large Synoptic Survey Telescope (LSST - http://www.lsst.org);
- \sim30+ PB/year — CERN – (http://www.cern.ch);
- \sim30+ PB/year — Facility for Antiproton and Ion research (FAIR - http://www.fair-center.eu);
- \sim30+ PB/year — The Cherenkov Telescope Array (CTA - http://www.cta-observatory.org);
- \sim300-1500 PB/year - Square Kilometre Array (SKA - https://www.skatelescope.org)

According to consensus estimation total volume of data in the World grows two times a year, i.e. about 75% of data was written in last two years.
3. **Current developments for distributed large volume data storage**
A number of data storage studies were presented in [1-3]. Several developments are described in [4-11]. There are interesting benchmarks in [12,13]. Network architecture and Software Defined Network (SDN) approach, in particular, are discussed in [14]. Which are useful features to be included into the design of a scalable multi-tenant software defined storage (SDS) globally distributed system.

4. **Main features of distributed storage**
SDS is an evolving concept in which the management and provisioning of data storage is decoupled from the physical storage hardware. SDS should include: Automation – Simplified management that reduces the cost of maintaining the storage Infrastructure; Standard Interfaces – APIs for the management, provisioning and maintenance of storage devices and services;

- Virtualized Data Path;
- Block, File and Object interfaces that support applications written to these interfaces;
- Scalability – Seamless ability to scale the storage infrastructure without disruption to availability or performance.

Any multi-tenant applications running on the public cloud could benefit from the concepts introduced by SDS by managing the allocation of tenant data. Important features of the Globally Distributed Software Defined Storage (GDSDS):

- **Data store and Data transfer** between client and data storage; also between components of the distributed storage;
- **Reliability**: data replication, erasure coding;
- **Reduce the data volume** to store and transfer:
- **Data compression, data deduplication** (at number of replicas, at level of files, at block level) [15-17];
- **Security**: Data encryption, ACL;
- **User interfaces**: web portal and set of Command Line Interfaces; *Advanced network architecture*;
- **Optimal Caching, Tiering; Automatic storage deployment** by user request.

It is assumed in the proposal:
- GDSDS consists of several groups of storage servers in Data Centers (DC) located in geographically different regions. DCs are connected by a number of parallel virtual data links.
- Data links may have different features: speed, price, encryption type (including quantum encryption [18]), etc.
- Data links have to be configured with SDN.
- GDSDS has web portal for clients and administrators to control and monitoring.
- Client can ask to perform a number of operations:
 - Create, Delete, Replicate, Migrate, etc of the Virtual Storage Instance (VSI) allocated in GDSDS.
 - The VSI can be created with different service level agreement (SLA).
 - Write/Read data to/from the VSI

SLA may include, for example:
- **Data Encryption** (with specific type of Encryption).
- **Data inline Compression** (with specific type of compression).
- The use of burst buffers [19-21] between VSI and user applications.
- **Number of replicas**.
- **In one specific Data Center (DC) or in many DCs with specific types of data links in between DCs.**
- Newly created VSI may have character of object storage, file system, or block storage.
- **Type of backend** (CEPH, SWIFT, etc).
• The preference of access to the geographically distributed data taking into account the context of CAP theorem [22], choose two of three options: consistency, availability, network partitioning.

5. General consideration
The general scheme of the GDSDS is shown in the figure 1. The clients can be also distributed around the World (client can be a person with desktop or smart phone, virtual machine in client data center, also client can be an organization with its own DC, etc). Several clients can use same VSI. In the figure 1 it is shown that all four clients have virtual storage which is located in two or more DCs. Obviously the connection between client and DCs with data located is very important for data transfer speed.

![Figure 1. General scheme of the GDSDS.](image)

If VSI has one or more replicas it is good to allocate data replicas in different DCs. At this point we have to take into account several aspects. First of all we (and client) must plan the procedure of the replicas synchronization. The synchronization of the data between DCs takes time. Do we permit the clients to access the replica during synchronization time or we need to put client request in wait state until the synchronization is completed or clients have to read newest replica of data? The answer depends on client’s business. In some cases clients are less sensitive to the consistency of the data, for example, in Google different clients in geographically different regions obtain different results on the same search request. In other situations clients could have another expectations, for example, they could expect exactly the same result (or very close in some context) on the request from any geographical region.
6. Proposal status and plan
A simple prototype was created with only backend – CEPH (version 11.2.0). The prototype has been deployed as single CEPH cluster using several virtual machines (VM) and dockers. Each VM has 2 virtual CPU, 8 GB of memory, three HDD drives (4 TB each). In total there are 25 OSD daemons (both VM and docker implementation). Two hardware servers under Scientific Linux 7.3 are located in different sites with a distance about 40 Km. Internal and external CEPH networks are in same address space for both sites as 10.100.1.0 and 10.10.1.0 respectively. The same address space is implemented over openVPN. Host servers are connected over Internet with nominal speed 1 Gbit. In our testbed the channel between sites is most important issue because it is loaded not only by CEPH data transfer. The transfer speed between client and CEPH storage shown by commands “rados bench write/read” give 20-25 MB/sec as maximum. That is the reason why we are trying to use two channels which are watched by perfsonar and experimenting to choose less loaded channel with SDN network switch.
We had no problems with data loss in spite of many uncoordinated reboots, upgrades, reinstallations, etc. However clients can not perform some of operations to get data when CEPH cluster is in error state.
Data transfer security with quantum key distribution model together with data encryption is in our nearest plans. Of course we are looking for support and volunteers.

7. Conclusion
We have analyzed a range of distributed storage systems, paid attention to most important features of these systems and suggested developing Geographically Distributed Software Defined Storage. It was found that it is better to use separate CEPH clusters for separate users especially with large storage requirements.

Acknowledgement
The research has been carried out with the financial support of the Ministry of Education and Science of the Russian Federation under grant agreement № 14.578.21.0112 (RFMEFI57815X0112) and № 02.G25.31.0229.

References
[1] Analysis of Six Distributed File Systems HAL-Inria, 2013 https://hal.inria.fr/hal-00789086/file/a_survey_of_dfs.pdf.
[2] Blomer J. Survey of distributed file system technology ACAT 2014, Prague (in references) Also iopscience.iop.org/article/10.1088/1742-6596/664/4/042004/pdf
[3] Shirinbab S. et al Performance Evaluation of Distributed Storage Systems for Cloud Computing IJCA, Vol. 20, No. 4, Dec. 2013, pp 195-207.
[4] Comparison of distributed file systems [Electronic resource]: https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems.
[5] Espinal X. et al Disk storage at CERN: Handling LHC data and beyond 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing Journal of Physics: Conference Series 513 (2014) 042017 doi:10.1088/1742-6596/513/4/042017 http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042017/meta
[6] Roblitz T. Towards Implementing Virtual Data Infrastructures – a case study with iRODS Computer Science 13 (4) 2012 http://dx.doi.org/10.7494/csci.2012.13.4.21
[7] Software Defined Storage LizardFS is a distributed, scalable, fault-tolerant and highly available file system [Electronic resource]: https://lizardfs.com/about-lizardfs/
[8] Adamas, J Why so Sirius? Ceph backed storage at the RAL Tier-1 [Electronic resource]: https://indico.cern.ch/event/46991/contributions/2136880/contribution.pdf
XtreemFS is a fault-tolerant distributed file system for all storage needs [Electronic resource]: http://www.xtreemfs.org/

http://www.orangefs.org/ project of scale-out network file system designed for use on high-end computing (HEC) systems that provides very high-performance access to multi-server-based disk storage, in parallel.

Shan McKee presentation: “Using Ceph via OSiRIS for ATLAS. Distributed Cephand Software Defined Networking for Multi-Institutional Research” [electronic resource] https://indico.cern.ch/event/523410/contributions/2355721/attachments/1368439/2074169/OSiRIS-ATLAS-XROOTd-workshop.pdf

Wong M.-T. et al Ceph as WAN Filesystem – Performance and Feasibility Study through Simulation [Network Research Workshop Proceedings of the Asia-Pacific Advanced Network 2014 v. 38, p. 1-11. http://dx.doi.org/10.7125/APAN.38.1 ISSN 2227-3026.

Zhang X. et al Ceph Distributed File System Benchmarks on an Openstack Cloud [Conference Paper, November 2015 https://www.researchgate.net/publication/286622938

Cui L. et al When big data meets software-defined networking: SDN for big data and big data for SDN [IEEE Network, Vol.30 Issue 1, pp 58 - 65 DOI: 10.1109/MNET.2016.7389832

Xin Du et al ProSy: A similarity based inline deduplication system for primary storage [Networking, Architecture and Storage (NAS), 2015 IEEE International Conference on Date of Conference: 6-7 Aug. 2015 DOI: 10.1109/NAS.2015.7255230

Avani Wildani et al HANDS: A heuristically arranged non-backup in-line deduplication system [Data Engineering (ICDE), 2013 IEEE 29th International Conference on Date of Conference: 8-12 April 2013 DOI: 10.1109/ICDE.2013.6544846

Srinivasan K. et al iDedup: Latency-aware, inline data deduplication for primary storage [USENIX FAST-2012 http://dl.acm.org/citation.cfm?id=2208485 Published in Proceeding FAST'12 Proceedings of the 10th USENIX conference on File and Storage Technologies.

Padamvathi V. et al Quantum Cryptography and Quantum Key Distribution Protocols: A Survey [Advanced Computing (IACC), 2016 IEEE 6th International Conference on Date of Conference: 27-28 Feb. 2016 DOI: 10.1109/IACC.2016.109 http://ieeexplore.ieee.org/document/7544898/

Editors: Richard Gerber et al DOE High Performance Computing Operational Review (HPCOR), Enabling Data-Driven Scientific Discovery at DOE HPC Facilities June 18-19, 2014 Oakland, CA 55 pages.

Jian Peng et al Simulating the Burst Buffer Storage Architecture on an IBM BlueGene/Q Supercomputer [sc16.supercomputing.org/sc-archive/tech_poster/poster_files/ post143s2-file3.pdf Super Computing 2016 2 pages.

Ning Liu et al On the Role of Burst Buffers in Leadership-Class Storage Systems [Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on Date of Conference: 16-20 April 2012 DOI:10.1109/MSST.2012.6232369 http://ieeexplore.ieee.org/document/6232369/ 11 pages.

Gilbert, S., Lynch, N. Brewer’s conjecture and the feasibility of consistent, available, and partition-tolerant web services. ACM SIGACT News 33, 2 (2002).