Mean-Field Reflected BSDEs: the general Lipschitz case

Ying Hu∗ Remi Moreau † Falei Wang‡

Abstract
In [9], a mean-field type reflected backward stochastic differential equation was formulated, motivated by applications in pricing life insurance contracts with surrender options. The uniqueness and existence result was established through a fixed point method when the driver is independent of the second unknown z. The existence result alone was generalized using a penalization method under some additional assumptions. In this note, we develop a new fixed point method to establish existence as well as uniqueness of the solution of the mean-field reflected BSDEs, removing these additional regularity assumptions.

Key words: mean-field, reflected BSDEs, fixed point method

MSC-classification: 60H10, 60H30

1 Introduction
Let (Ω, F, P) be a given complete probability space under which B is a d-dimensional standard Brownian motion. Suppose (F_t)_{0≤t≤T} is the natural filtration generated by B augmented by the P-null sets and P the corresponding sigma algebra of progressive sets of Ω × [0, T]. This paper is devoted to the study of the following mean-field type reflected backward stochastic differential equations (BSDEs):

$$\begin{aligned}
&Y_t = \xi + \int_t^T f(s, Y_s, P_{Y_s}, Z_s)ds - \int_t^T Z_s dB_s + K_T - K_t, \quad 0 \leq t \leq T, \\
&Y_t \geq h(t, Y_t, P_{Y_t}), \quad \forall t \in [0, T] \quad \text{and} \quad \int_0^T (Y_t - h(t, Y_t, P_{Y_t}))dK_t = 0,
\end{aligned}$$

(1)

where P_{Y_t} is the marginal probability distribution of the process Y at time t, the terminal condition ξ is a scalar-valued F_T-measurable random variable, the driver f : Ω × [0, T] × R × P_1(R) × R^d → R and the constraint h : Ω × [0, T] × P_1(R) × R → R are progressively measurable maps with respect to F × B(R) × B(P_1(R)) × B(R^d) and P × B(P_1(R)) × B(R) respectively.

It is well known that El Karoui et al. [10] introduced the following reflected BSDE

$$\begin{aligned}
&Y_t = \xi + \int_t^T f(s, Y_s, Z_s)ds - \int_t^T Z_s dB_s + K_T - K_t, \quad 0 \leq t \leq T, \\
&Y_t \geq L_t, \quad \forall t \in [0, T] \quad \text{and} \quad \int_0^T (Y_t - L_t)dK_t = 0,
\end{aligned}$$

(2)

∗Univ. Rennes, CNRS, IRMAR-UMR 6625, F-35000, Rennes, France and School of Mathematical Sciences, Fudan University, Shanghai 200433, China. ying.hu@univ-rennes1.fr. Research supported by Lebesgue Center of Mathematics “Investissements d’avenir” program-ANR-11-LABX-0020-01, by CAESARS-ANR-15-CE05-0024 and by MFG-ANR-16-CE40-0015-01.
†Univ. Rennes, CNRS, IRMAR-UMR 6625, F-35000, Rennes, France. remi.moreau@ens-rennes.fr.
‡Zhongtai Securities Institute for Financial Studies and School of Mathematics, Shandong University, Jinan 250100, China. flwang2011@gmail.com. Research supported by the Natural Science Foundation of Shandong Province for Excellent Youth Scholars (ZR2021YQ01), the National Natural Science Foundation of China (Nos. 12171280, 12031009 and 11871458) and the Young Scholars Program of Shandong University.
in which the obstacle \(L \) is a given stochastic process. Great progress has since then been made in this field, as it has rich connections with obstacle problems of partial differential equations and American option pricing (see [11]). In particular, the term \(Y \) can be seen as a solution of an optimal stopping problem

\[
Y_t = \underset{\text{stopping time} \geq t}{\text{ess sup}} E_t \left[\eta 1_{\{\tau = T\}} + L_\tau 1_{\{\tau < T\}} + \int_t^\tau f(s, Y_s, Z_s) ds \right], \forall t \leq T.
\]

(3)

For more details on this topic, we refer the reader to [1, 8, 12–14] and the references therein.

Recently, in order to study partial hedging of financial derivatives, various mean-field type reflected BSDEs were introduced, in which the driver \(f \) and the obstacle \(h \) may depend on the law of the term \(Y \). For example, Briand, Elie and Hu [6] considered BSDEs with mean reflection to study the super-hedging problem under running risk management constraint. We refer the reader to [2–4, 7, 15] and the references therein for some other important contributions.

In particular, motivated by applications in pricing life insurance contracts with surrender options, Djehiche, Elie and Hamadène formulated in [9] mean-field reflected BSDEs of the form (1). When the driver \(f \) is independent of the second unknown \(z \), they used a fixed point method to prove the existence and uniqueness result for mean-field reflected BSDEs similar to (1) via the Snell envelope representation (3):

\[
\Gamma(\Upsilon)_t = \underset{\text{stopping time} \geq t}{\text{ess sup}} E_t \left[\xi 1_{\{\tau = T\}} + h(\tau, \Upsilon_\tau, (P_{\Upsilon_s})_{s=\tau}) 1_{\{\tau < T\}} + \int_t^\tau f(s, \Upsilon_s, P_{\Upsilon_s}) ds \right], \forall t \leq T.
\]

(4)

On the other hand, under some additional assumptions, they applied a penalization method to obtain the existence of a solution when the driver \(f \) also depends on the second unknown \(z \). More precisely, they used a global domination condition in the \(z \) component and assumed that

\[
f(s, Y_s, P_{Y_s}, Z_s) = F(s, Y_s, E[Y_s], Z_s), \quad h(t, Y_t, P_{Y_t}) = H(t, Y_t, E[Y_t]),
\]

where \(F \) and \(H \) are non-decreasing with respect to \(E[Y_s] \). Our aim is to establish the existence as well as the uniqueness of the solution to the mean-field reflected BSDE [11] without these additional assumptions. The key point of our method is based on the following representation result for the reflected BSDE (4):

\[
Y_t = \underset{\text{stopping time} \geq t}{\text{ess sup}} y^T_{\tau}, \forall t \leq T,
\]

(5)

where \(y^T_{\tau} \) is the solution to the following standard BSDE:

\[
y^T_{\tau} = \eta 1_{\{\tau = T\}} + L_\tau 1_{\{\tau < T\}} + \int_t^\tau f(s, y^T_s, z^T_s) ds - \int_t^\tau z^T_s dB_s.
\]

Note that equation (5) does not explicitly involve the term \(Z \), which differs from the Snell envelope representation (3). With help of (4), we construct a solution map \(\Gamma \) when the driver \(f \) depends on the second unknown \(z \). By some technical computations, we prove the existence and uniqueness of the solution to mean-field reflected BSDEs of the form (4). In conclusion, we develop a fixed point method to deal with mean-field reflected BSDEs which gives some extension of the result from [9] to the case where the driver depends on the second unknown \(z \).

The paper is organized as follows. In section 2, we state the main result concerning the existence and uniqueness of solutions of mean-field reflected BSDE [11]. Section 3 is devoted to some technical lemmas and to the proof of the main result.
Notation.

For each Euclidian space, we denote by $\langle \cdot, \cdot \rangle$ and $| \cdot |$ its scalar product and the associated norm, respectively. Then, for each $p \geq 1$, we consider the following collections:

- \mathcal{L}^p is the collection of real-valued \mathcal{F}_T-measurable random variables ξ satisfying $E[|\xi|^p] < \infty$;
- $\mathcal{H}^{p,d}$ is the collection of \mathbb{R}^d-valued \mathcal{F}-progressively measurable processes $(z_t)_{0 \leq t \leq T}$ satisfying
 $$E \left[\left(\int_0^T |z_t|^2 dt \right)^{\frac{p}{2}} \right] < \infty;$$
- \mathcal{S}^p is the collection of real-valued \mathcal{F}-adapted continuous processes $(y_t)_{0 \leq t \leq T}$ satisfying
 $$E \left[\sup_{0 \leq t \leq T} |y_t|^p \right] < \infty;$$
- \mathcal{A}^p is the collection of continuous non-decreasing processes $(K_t)_{0 \leq t \leq T} \in \mathcal{S}^p$ with $K_0 = 0$;
- $\mathcal{P}_p(\mathbb{R})$ is the collection of all probability measures over $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with finite pth moment, endowed with the p-Wasserstein distance W_p;
- \mathcal{T}_t is the collection of \mathcal{F}-stopping times τ such that $\tau \geq t$ \mathbf{P}-a.s..

We denote by $\mathcal{H}^{p,d}_{[a,b]}, \mathcal{S}^p_{[a,b]}$ and $\mathcal{A}^p_{[a,b]}$ the corresponding collections for the stochastic processes with time indexes on $[a,b]$.

2 The main result

In this section, we study the solvability of the mean-field reflected BSDE (1). In what follows, we make use of the following conditions on the terminal condition ξ, the driver f and the constraint h.

H1 There exists a constant $p > 1$ such that the terminal condition $\xi \in \mathcal{L}^p$ with $\xi \geq h(T, \xi, \mathbf{P}_T)$.

H2 The process $f(t, 0, 0, 0)$ belongs to $\mathcal{H}^{p,1}$ and there exists a constant $\lambda > 0$ such that for any $t \in [0, T]$, $y_1, y_2 \in \mathbb{R}$, $\nu_1, \nu_2 \in \mathcal{P}_1(\mathbb{R})$ and $z_1, z_2 \in \mathbb{R}^d$

$$|f(t, y_1, \nu_1, z_1) - f(t, y_2, \nu_2, z_2)| \leq \lambda (|y_1 - y_2| + W_1(\nu_1, \nu_2) + |z_1 - z_2|).$$

H3 The process $h(t, y, \nu)$ belongs to \mathcal{S}^p for any $y \in \mathbb{R}$, $\nu \in \mathcal{P}_1(\mathbb{R})$ and there exist two constants $\gamma_1, \gamma_2 > 0$ such that for any $t \in [0, T]$, $y_1, y_2 \in \mathbb{R}$, $\nu_1, \nu_2 \in \mathcal{P}_1(\mathbb{R})$

$$|h(t, y_1, \nu_1) - h(t, y_2, \nu_2)| \leq \gamma_1 |y_1 - y_2| + \gamma_2 W_1(\nu_1, \nu_2).$$

Definition 2.1 *By a solution to (1), we mean a triple of progressively measurable processes (Y, Z, K) in the product space $\mathcal{S}^p \times \mathcal{H}^{p,d} \times \mathcal{A}^p$ such that (1) holds.*

We are now ready to state the main result of this paper.

Theorem 2.2 *Assume that (H1)-(H3) are satisfied. If γ_1 and γ_2 satisfy

$$\left(\frac{p+1}{p-1} \right)^{\frac{1}{p-1}} \left(\left(\frac{p}{p-1} \right)^p \gamma_1 + \gamma_2 \right) < 1,$$

then the mean-field reflected BSDE (1) admits a unique solution $(Y, Z, K) \in \mathcal{S}^p \times \mathcal{H}^{p,d} \times \mathcal{A}^p$.*

Remark 2.3 Note that the enhanced sufficient condition (1) is crucial for Theorem 2.2 as in [8]. Theorem 3.1. In particular, the condition (1) does not depend on the Lipschitz constant of f with respect to the second unknown z.

3
3 The proof

In order to prove Theorem 2.2, we need to state some technical results on the representation of solutions of BSDEs. For each \mathcal{F}-stopping time τ taking values in $[0, T]$ and for every \mathcal{F}_τ-measurable function $\eta \in \mathcal{L}^p$, we first define the following map:

$$E^\eta_{t, \tau} := Y_t, \quad \forall t \in [0, T],$$

where Y is the solution to the following standard BSDE on the random time horizon $[0, \tau]$

$$Y_t = \eta + \int_t^\tau g(s, Z_s)ds - \int_t^\tau Z_s dB_s.$$ \hfill (7)

Suppose that g satisfies Assumption (H2). It follows from [5] or [16] that the BSDE (7) admits a unique solution $(Y, Z) \in \mathcal{S}^p \times \mathcal{H}^{p.d}$. Moreover, it is easy to check that

$$Y_t = Y_{t\wedge \tau}, Z_t = Z_t 1_{[0, \tau]}(t), \quad \forall t \in [0, T].$$

Lemma 3.1 Suppose that $\eta^i \in \mathcal{L}^p$ is \mathcal{F}_τ-measurable and the driver g^i satisfies the Assumption (H2), for $i = 1, 2$. Then for each $t \in [0, T]$ and $\mu \in (1, p]$

$$|E^\eta_{t, \tau}[\eta^i]| \leq \exp \left(\frac{\lambda^2}{2(\mu - 1)}(T - t) \right) E_t \left[\left(|\eta^i| + \int_t^\tau |g^i(s, 0)|ds \right)^\mu \right]^{\frac{1}{\mu}},$$

$$|E^{\eta^i}_{t, \tau}[\eta^i] - E^{\eta^2}_{t, \tau}[\eta^2]| \leq \exp \left(\frac{\lambda^2}{2(\mu - 1)}(T - t) \right) E_t \left[\left(|\eta^i - \eta^2| + \int_t^\tau |g^1(s, 1) - g^2(s, 0)|ds \right)^\mu \right]^{\frac{1}{\mu}}.$$

Proof. We only give the proof for the second inequality, since the first one can be proved in a similar way. Let (Y^1, Z^1) be the solution to BSDE (7) corresponding to the terminal condition η^i, $i = 1, 2$. For each $t \in [0, T]$, denote by

$$\beta_t = \frac{g^1(t, Z^1_t) - g^1(t, Z^2_t)}{|Z^1_t - Z^2_t|^2} (Z^1_t - Z^2_t) 1_{\{|Z^1_t - Z^2_t| \neq 0\}}.$$

Then, the pair of processes $(Y^1 - Y^2, Z^1 - Z^2)$ solves the following BSDE:

$$Y_t^1 - Y_t^2 = \eta^1 - \eta^2 + \int_t^\tau \left(\beta_s (Z^1_s - Z^2_s) \right)^\top + g^1(s, Z^1_s) - g^2(s, Z^2_s) 1_{[0, \tau]}(s)ds - \int_t^\tau 1_{[0, \tau]}(s)(Z^1_s - Z^2_s)dB_s.$$ \hfill (8)

Note that $\tilde{B}_t := B_t - \int_0^t \beta_s 1_{[0, \tau]}(s)ds$, defines a Brownian motion under the equivalent probability measure \tilde{P} given by $d\tilde{P} := E(\beta \cdot B)^T_0 d\mathcal{P}$ with

$$E(\beta \cdot B)^T_t = \exp \left(\int_t^\tau \beta_s 1_{[0, \tau]}(s)dB_s - \frac{1}{2} \int_t^\tau |\beta_s|^2 1_{[0, \tau]}(s)ds \right), \quad 0 \leq t \leq T.$$ \hfill (9)

It follows that for every $t \in [0, T]$

$$Y_t^1 - Y_t^2 = E_{\tilde{P}} \left[\eta^1 - \eta^2 + \int_t^\tau \left(g^1(s, Z^2_s) - g^2(s, Z^2_s) \right) 1_{[0, \tau]}(s)ds \right]$$

$$= E_t \left[E(\beta \cdot B)^T_t \left(\eta^1 - \eta^2 + \int_t^\tau \left(g^1(s, Z^2_s) - g^2(s, Z^2_s) \right) 1_{[0, \tau]}(s)ds \right) \right].$$
Noting that $|\beta_t| \leq \lambda$ and by a standard computation, we have that for any $q \geq 1$,

$$
E_t\left[|\mathcal{E}(\beta \cdot B)|^q\right] \leq \exp\left(\frac{\lambda^2}{2}(q^2 - q)(T-t)\right).
$$

In view of Hölder’s inequality, we have for any $\mu \in (1, p]$

$$
|Y_t^1 - Y_t^2| \leq \exp\left(\frac{\lambda^2}{2(\mu - 1)}(T-t)\right)E_t\left[\left(|\eta^1 - \eta^2| + \int_t^T |g^1(s, Z_s^2) - g^2(s, Z_s^2)|ds\right)^\mu\right]^{\frac{1}{\mu}}.
$$

The proof is complete. \(\blacksquare\)

Next, we introduce a representation result for the solution of the following reflected BSDE:

$$
\begin{align*}
Y_t &= \eta + \int_t^T g(s, Z_s)ds - \int_t^T Z_s dB_s + K_T - K_t, \quad 0 \leq t \leq T, \\
Y_t &\geq L_t, \quad \forall t \in [0, T] \quad \text{and} \quad \int_0^T (Y_t - L_t)dK_t = 0,
\end{align*}
$$

(8)

where $\eta \in \mathcal{L}^p$, $L \in \mathcal{S}^p$ with $L_T \leq \xi$ and the driver g satisfies Assumption (H2). It follows from [10] or [12] that the reflected BSDE (8) admits a unique solution $(Y, Z, K) \in \mathcal{S}^p \times \mathcal{H}^{p,d} \times \mathcal{A}^p$.

Lemma 3.2 For each $t \in [0, T]$, the solution Y_t to the reflected BSDE (8) satisfies the following property:

$$
Y_t = \text{ess sup}_{\tau \in \mathcal{T}_t} \mathcal{E}^q_{t, \tau}[\eta 1_{\{\tau = T\}} + L_\tau 1_{\{\tau < T\}}].
$$

Proof. For any $\tau \in \mathcal{T}_t$, we have

$$
Y_s = Y_\tau + \int_s^\tau g(r, Z_r)dr - \int_s^\tau Z_r dB_r + K_\tau - K_\tau, \quad \forall s \in [t, \tau].
$$

Note that $Y_\tau \geq \eta 1_{\{\tau = T\}} + L_\tau 1_{\{\tau < T\}}$ and K is a non-decreasing process. It follows from a comparison theorem on BSDEs that

$$
Y_t \geq \mathcal{E}^q_{t, \tau}[\eta 1_{\{\tau = T\}} + L_\tau 1_{\{\tau < T\}}], \quad \forall \tau \in \mathcal{T}_t.
$$

On the other hand, we define the stopping time $\tau^* = \inf\{\tau \in [t, T] : Y_\tau = L_\tau\} \wedge T$. Since $Y_\tau \geq L_\tau$ and $\int_t^\tau (Y_\tau - L_\tau)dK_\tau = 0$, we conclude that $K_{\tau^*} = K_t$, which indicates that

$$
Y_s = Y_{\tau^*} + \int_s^{\tau^*} g(r, Z_r)dr - \int_s^{\tau^*} Z_r dB_r, \quad \forall s \in [t, \tau^*].
$$

Note that $Y_{\tau^*} = \xi 1_{\{\tau^* = T\}} + L_{\tau^*} 1_{\{\tau^* < T\}}$ by the definition of τ^*. It follows that

$$
Y_t = \mathcal{E}^q_{t, \tau^*}[\eta 1_{\{\tau^* = T\}} + L_{\tau^*} 1_{\{\tau^* < T\}}],
$$

which completes the proof. \(\blacksquare\)

Remark 3.3 Unlike the classical Snell envelope method, we establish a representation result for the solution of the reflected BSDE in Lemma 3.2, which enables us to construct a contraction map to solve mean-field reflected BSDEs of the form (1) when the driver f also depends on the second unknown z.

We are now ready to prove Theorem 2.2. More precisely, we first state the existence and uniqueness of the solution on a small time interval $[T - h, T]$, in which h is to be determined later. Then, we stitch the local solutions to build the global solution.
Let us start by defining a map \(\Gamma \) on the space \(S^p_{[T-h,T]} \); given for each \(U \in S^p_{[T-h,T]} \) by

\[
\Gamma(U)_t := \text{ess sup}_{\tau \in T_t} \mathcal{E}^U_{t,\tau} \left[1_{\{\tau = T\}} + h(\tau, U_\tau, (Pu_\tau)_s = \tau) 1_{\{\tau < T\}} \right], \quad \forall t \in [T-h,T],
\]

where the driver \(f^U \) is given by \(f^U(t, z) := f(t, U_1, Pu_1, z) \). According to Assumption (H3), it is obvious that \((h(s, U_\tau, Pu_\tau))_{s \in [T-h,T]} \in S^p_{[T-h,T]} \). It follows from Lemma \ref{lem:existence_of_solution} that \(\Gamma(U) \) is the \(S^p \)-solution to the reflected BSDE \ref{eq:BSDE} with data \((\eta, g, L) = (\xi, f^U, h(\cdot, U_\cdot, Pu_\cdot)) \). Thus for any \(h \in (0, T] \), we have

\[
\Gamma \left(S^p_{[T-h,T]} \right) \subset S^p_{[T-h,T]}.
\]

Next, we show the uniqueness and existence of the local solution.

Lemma 3.4 Assume that (H1)-(H3) hold. If \(\gamma_1 \) and \(\gamma_2 \) satisfy \ref{eq:gamma1_gamma2}, then there exists a constant \(\delta > 0 \) depending only on \(p, \lambda, \gamma_1 \) and \(\gamma_2 \) such that for any \(h \in (0, \delta) \), the mean-field reflected BSDE \ref{eq:BSDE} admits a unique solution \((Y, Z, K) \in S^p_{[T-h,T]} \times \mathcal{H}^d_{[T-h,T]} \times \mathcal{A}^p_{[T-h,T]} \) on the time interval \([T-h, T]\).

Proof. The proof will be divided into two steps.

Step 1 (The contraction). Let \(U^i \in S^p_{[T-h,T]} \), \(i = 1, 2 \). In view of Lemma \ref{lem:continuity_of_Gamma}, we conclude that for any \(t \in [T-h, T] \), \(\tau \in T_t \) and \(\mu \in (1, p) \),

\[
\left| \mathcal{E}^U_{t,\tau} 1_{\{\tau = T\}} + h(\tau, U^1_\tau, (Pu^1_\tau)_s = \tau) 1_{\{\tau < T\}} \right| - \mathcal{E}^{U^2}_{t,\tau} 1_{\{\tau = T\}} + h(\tau, U^2_\tau, (Pu^2_\tau)_s = \tau) 1_{\{\tau < T\}} \right|^{\mu} \leq \exp \left(\frac{p\lambda^2 h}{2(\mu - 1)} (T-t) \right) \mathcal{E}^U_{t,\tau} \left[\left| h(\tau, U^1_\tau, (Pu^1_\tau)_s = \tau) - h(\tau, U^2_\tau, (Pu^2_\tau)_s = \tau) \right| + \int_t^T \left| f^{U^1}(s, Z^1_s) - f^{U^2}(s, Z^2_s) \right| \, ds \right]^{\mu/\gamma}
\]

which implies the following,

\[
|\Gamma(U^1)_t - \Gamma(U^2)_t|^\mu \leq \exp \left(\frac{p\lambda^2 h}{2(\mu - 1)} \right) \mathcal{E}^U_{t,\tau} \left[\left(\gamma_1 + \lambda h \right) \sup_{s \in [T-h,T]} \left| U^1_{s+} - U^2_{s+} \right| + \left(\gamma_2 + \lambda h \right) \sup_{s \in [T-h,T]} \mathbb{E}[\left| U^1_{s+} - U^2_{s+} \right|] \right]^{\mu/\gamma}.
\]

The convexity inequality \((ax + by)^p \leq (a + b)^{p-1}(ax^p + by^p)\) holds for any non-negative constants \(a, b, x, y\) and \(p \geq 1 \). It follows that

\[
\mathcal{E}^U_{t,\tau} \left[\left(\gamma_1 + \lambda h \right) \sup_{s \in [T-h,T]} \left| U^1_{s+} - U^2_{s+} \right| + \left(\gamma_2 + \lambda h \right) \sup_{s \in [T-h,T]} \mathbb{E}[\left| U^1_{s+} - U^2_{s+} \right|] \right]^{\mu/\gamma}
\]

\[
\leq (\gamma_1 + \gamma_2 + 2\lambda h)^{\frac{p}{\mu-1}} \left(\gamma_1 + \lambda h \right) \mathcal{E}^U_{t,\tau} \left[\sup_{s \in [T-h,T]} \left| U^1_{s+} - U^2_{s+} \right|^\mu \right] + (\gamma_2 + \lambda h) \sup_{s \in [T-h,T]} \mathbb{E}[\left| U^1_{s+} - U^2_{s+} \right|^\mu]^{\frac{1}{\mu}}
\]

\[
\leq (\gamma_1 + \gamma_2 + 2\lambda h)^{\mu-1} \left(\gamma_1 + \lambda h \right) \mathcal{E}^U_{t,\tau} \left[\sup_{s \in [T-h,T]} \left| U^1_{s+} - U^2_{s+} \right|^\mu \right] + (\gamma_2 + \lambda h) \sup_{s \in [T-h,T]} \mathbb{E}[\left| U^1_{s+} - U^2_{s+} \right|^\mu].
\]
Recalling (9) and applying Doob’s maximal inequality, we derive
\[
E \left[\sup_{t \in [T-h, T]} |\Gamma(U^1)_t - \Gamma(U^2)_t|^p \right] \leq \exp \left(\frac{p\lambda^2 h}{2(\mu - 1)} \right) (\gamma_1 + \gamma_2 + 2\lambda h)^{p-1} \\
\times \left((\gamma_1 + \lambda h) \left(\frac{p}{p-\mu} \right)^{\frac{p}{p-1}} E \left[\sup_{s \in [T-h, T]} |U^1_s - U^2_s|^p \right] + (\gamma_2 + \lambda h) \sup_{s \in [T-h, T]} E[|U^1_s - U^2_s|^p] \right).
\]
Consequently, for any \(\mu \in (1, p) \) and \(h \in (0, (\mu - 1)^2] \), we have
\[
E \left[\sup_{t \in [T-h, T]} |\Gamma(U^1)_t - \Gamma(U^2)_t|^p \right] \leq \Lambda(\mu) E \left[\sup_{s \in [T-h, T]} |U^1_s - U^2_s|^p \right]^{\frac{1}{p}}
\]
with
\[
\Lambda(\mu) = \exp \left(\frac{\lambda^2(\mu - 1)}{2} \right) (\gamma_1 + \gamma_2 + 2\lambda(\mu - 1)^2)^{\frac{p-1}{p}} \left((\gamma_1 + \lambda(\mu - 1)^2) \left(\frac{p}{p-\mu} \right)^{\frac{p}{p-1}} + (\gamma_2 + \lambda(\mu - 1)^2) \right)^{\frac{1}{p}}.
\]
Under assumption (6), we can then find a small enough constant \(\mu^* \in (1, p) \) depending only on \(p, \lambda, \gamma_1 \) and \(\gamma_2 \) such that \(\Lambda(\mu^*) < 1 \). Now we define
\[
\delta := (\mu^* - 1)^2.
\]
(10)
It is obvious that \(\Gamma \) is a contraction map on the time interval \([T-h, T] \) for any \(h \in (0, \delta] \).

Step 2 (Uniqueness and existence). Note that any solution \(Y \) to the mean-field reflected BSDE (11) is a fixed point of the map \(\Gamma \). For any \(h \in (0, \delta] \), \(\Gamma \) has a unique fixed point \(Y \in S_{[T-h, T]}^p \), so that
\[
Y_t = \text{ess sup}_{\tau \in T} E_{\tau, \tau}^{f^p, Y} [1_{\tau = T} + h(\tau, Y, (P_{Y_s})_{s=\tau})1_{\tau < T}], \quad \forall t \in [T-h, T].
\]
On the other hand, the reflected BSDE (8) with data \((\eta, g, L) = (\xi, f^p, h(\cdot, Y, (P_Y)_{\cdot}))\) admits a unique solution
\[
(\tilde{Y}, Z, K) \in S_{[T-h, T]}^p \times \mathcal{H}_{[T-h, T]}^{p, d} \times \mathcal{A}_{[T-h, T]}^p.
\]
It follows from Lemma 3.2 that \(\tilde{Y} = \Gamma(Y) = Y \), which implies that \((Y, Z, K)\) is a solution to the mean-field reflected BSDE (11) on the time interval \([T-h, T] \).

Let us now turn to the proof of uniqueness. Suppose \((Y', Z', K')\) is also a solution to the mean-field reflected BSDE (11) on the time interval \([T-h, T] \). In the spirit of Lemma 3.2, \(Y' \) is the fixed point of the map \(\Gamma \), which indicates that \(Y = Y' \). Applying Itô’s formula to \(|Y - Y'|^2\) yields that \(Z = Z' \) and then \(K = K' \). This completes the proof. \(\blacksquare \)

Now we are in a position to complete the proof of the main result.

Proof of Theorem 2.2. The uniqueness of the global solution on \([0, T] \) is inherited from the uniqueness of local solution on each small time interval. It suffices to prove the existence.

By Lemma 3.4 there exists a constant \(\delta > 0 \) depending only on \(p, \lambda, \gamma_1 \) and \(\gamma_2 \), such that the mean-field reflected BSDE (11) admits a unique solution
\[
(Y^1, Z^1, K^1) \in S_{[T-\delta, T]}^p \times \mathcal{H}_{[T-\delta, T]}^{p, d} \times \mathcal{A}_{[T-\delta, T]}^p.
\]
on the time interval $[T - \delta, T]$. Next, taking $T - \delta$ as the terminal time and applying Lemma 3.4 again, the mean-field reflected BSDE (1) admits a unique solution $(Y^2, Z^2, K^2) \in S_{[T-2\delta,T-\delta]}^p \times H_{[T-2\delta,T-\delta]}^{p,d} \times A_{[T-2\delta,T-\delta]}^p$ on the time interval $[T - 2\delta, T - \delta]$. Denote by

$$Y_t = \sum_{i=1}^{2} Y^i_t 1_{[T-i\delta,T-(i-1)\delta]} + Y^1_T, \quad Z_t = \sum_{i=1}^{2} Z^i_t 1_{[T-i\delta,T-(i-1)\delta]} + Z^1_T 1_{[T,T]}, \quad K_t = K^2_t 1_{[T-i\delta,T-(i-1)\delta]} + (K^2_T + K^1_T) 1_{[T-\delta,T]}.$$

It is easy to check that $(Y, Z, K) \in S_{[T-2\delta,T]}^p \times H_{[T-2\delta,T]}^{p,d} \times A_{[T-2\delta,T]}^p$ is a solution to the mean-field reflected BSDE (1). Repeating this procedure, we get a global solution $(Y, Z, K) \in S^p \times H^{p,d} \times A^p$. The proof of the theorem is complete.

References

[1] Bénédet, C., Chassagneux, J.-F. and Richou, A. (2022) Switching problems with controlled randomisation and associated obliquely reflected BSDEs. Stochastic Processes and their Applications, 144, 23-71.

[2] Bouchard, B., Elie, R. and Réveillac, A. (2015) BSDEs with weak terminal condition. Ann. Probab., 43(2), 572-604, 2015.

[3] Briand, P., Cardaliaguet, P., Chaudru de Raynal, P.É. and Hu, Y. (2020) Forward and backward stochastic differential equations with normal constraints in law. Stochastic Process. Appl., 130(12), 7021-7097.

[4] Briand, P., Chaudru de Raynal, P.É., Guillin, A. and Labart, C. (2020) Particles Systems and Numerical Schemes for Mean Reflected Stochastic Differential Equations. Ann. Appl. Probab., 30(4), 1884-1909.

[5] Briand, P., Delyon, B, Hu, Y, Pardoux, E and Stoica, L. (2003) L^p-solutions of backward stochastic differential equations. Stochastic Process. Appl., 108, 109-129.

[6] Briand, P., Elie, R. and Hu, Y. (2018) BSDEs with mean reflection. Ann. Appl. Probab., 28(1), 482-510.

[7] Chen, Y., Hamadène, S. and Mu, T. (2020) Mean-Field Doubly Reflected Backward Stochastic Differential Equations, in arXiv:2007.04598.

[8] Cvitanić, J. and Karatzas, I. (1996) Backward stochastic differential equations with reflection and Dynkin games. Ann. Probab., 24(4), 2024-2056.

[9] Djehiche, B., Elie, R. and Hamadène, S. (2021) Mean-field reflected backward stochastic differential equations. Ann. Appl. Probab., in press.

[10] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M.C. (1997) Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab., 25(2), 702-737.

[11] El Karoui, N., Pardoux, E. and Quenez, M.C. Reflected backward SDEs and American options. In Numerical methods in finance, vol. 13 of Publ. Newton Inst. Cambridge Univ. Press, Cambridge, 1997, 215-231.
[12] Hamadène, S. and Popier, A. (2012) L^p-solutions for reflected backward stochastic differential equations. Stoch. Dyn., 12(2), 1150016, 35pp.

[13] Hamadène, S. and Zhang, J. (2010) Switching problem and related system of reflected backward SDEs. Stochastic Process. Appl., 120(4), 403-426.

[14] Hu, Y. and Tang, S. (2010) Multi-dimensional BSDE with oblique reflection and optimal switching. Probab. Theory Related Fields, 147(1-2), 89-121.

[15] Li, J. (2014). Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs. Journal of Mathematical Analysis and Applications, 413(1), 47-68.

[16] Pardoux, E. and Peng, S. (1990) Adapted solution of a backward stochastic differential equation. Systems Control Lett., 14(1), 55-61.