Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to \(p,p' \)-DDE

Diogo Pestana\(^1,2,3\), Diana Teixeira\(^1,2,3\), Manuela Meireles\(^3\), Cláudia Marques\(^1,2,3\), Sónia Norberto\(^3\), Carla Sá\(^3\), Virgínia C. Fernandes\(^4\), Luísa Correia-Sá\(^4\), Ana Faria\(^1,2,3,5\), Luísa Guardão\(^6\), João T. Guimarães\(^3,7\), Wendy N. Cooper\(^8\), Ionel Sandovici\(^8\), Valentina F. Domingues\(^6\), Cristina Delerue-Matos\(^6\), Rosário Monteiro\(^3,9\), Miguel Constância\(^8\) & Conceição Calhau\(^1,2,3\)

Endocrine-disrupting chemicals such as \(p,p' \)-dichlorodiphenyldichloroethylene (\(p,p' \)-DDE), are bioaccumulated in the adipose tissue (AT) and have been implicated in the obesity and diabetes epidemic. Thus, it is hypothesized that \(p,p' \)-DDE exposure could aggravate the harm of an obesogenic context. We explored the effects of 12 weeks exposure in male Wistar rats’ metabolism and AT biology, assessing a range of metabolic, biochemical and histological parameters. \(p,p' \)-DDE-treatment exacerbated several of the metabolic syndrome-accompanying features induced by high-fat diet (HF), such as dyslipidaemia, glucose intolerance and hypertension. A transcriptome analysis comparing mesenteric visceral AT (vAT) of HF and HF/DDE groups revealed a decrease in expression of nervous system and tissue development-related genes, with special relevance for the neuropeptide galanin that also revealed DNA methylation changes at its promoter region. Additionally, we observed an increase in transcription of dipeptidylpeptidase 4, as well as a plasmatic increase of the pro-inflammatory cytokine IL-1β. Our results suggest that \(p,p' \)-DDE impairs vAT normal function and effectively decreases the dynamic response to energy surplus. We conclude that \(p,p' \)-DDE does not merely accumulate in fat, but may contribute significantly to the development of metabolic dysfunction and inflammation. Our findings reinforce their recognition as metabolism disrupting chemicals, even in non-obesogenic contexts.

A combination of complex events are contributing to the current obesity epidemic and ultimately to the metabolic syndrome (MetS), a serious worldwide health threat\(^1\). Metabolic disorders such as cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2D) result from alterations of metabolic pathways in several organs. They are the result of the co-occurrence of obesity (particularly central obesity), dyslipidaemia, hyperglycaemia and hypertension\(^2\). Amongst obese individuals, variable prevalence of cardiometabolic complications is often observed, with metabolically healthy subjects accounting for 10–25%\(^3\). A central role in unhealthy obesity, also known as dysmetabolic obesity, is attributed to visceral adipose tissue (vAT) dysfunction and inflammation, affecting...
the dialog with other central (brain) and peripheral organs (liver, gut, muscle), but causal factors are still largely unknown.

The rate at which the prevalence of these conditions are increasing suggests that environmental and behavioural influences are “fuelling” the epidemic. Concerns have focused on the hypothesis that exposure to environmental endocrine-disrupting chemicals (EDCs) may be involved in the rise of obesity and MetS epidemic observed worldwide in the last 40 years. In particular, the man-made lipophilic persistent organic pollutants (POPs) with hormone-like activity (endocrine disruptors) can lead to an environmental disruption of metabolism and putative diabetogenic effects. POPs are bioaccumulated and biomagnified in the food chain and can be found in the adipose tissue (AT) of virtually all human populations, functioning not only as a reservoir and a source of chronic internal exposure, but also as a possible tissue target of their disruptive effects. Due to their lipophilic nature, food consumption represents the main pathway for exposure to these contaminants, mainly through ingestion of fat-containing foods such as dairy products, meat and fish.

Recently, a series of studies concerning the burden of disease and cost analysis of exposure to EDCs revealed a likely substantial contribution to disease and dysfunction across the life course with elevated annual costs, both in the European Union and USA, emphasizing the need for evaluation of effects, better monitoring and active prevention. Supporting these warnings are, among others, several epidemiological and in vivo studies that reported the positive correlation of EDCs concentrations, both in AT and plasma, with the prevalence of obesity, MetS, insulin resistance, hypertension and CVD, as well as adipocyte dysfunction.

Studies such as those developed by Ruzzin et al. where dietary supplementation with salmon oil contaminated with a mixture of POPs in conjunction with high-fat (HF) diet feeding promoted the development of obesity and T2D in a rodent model, led to the proposition of a broader metabolism disrupting chemical hypothesis where EDCs act as metabolic disruptors that increase the susceptibility to metabolic diseases. A recent publication reviewed the putative mechanisms of metabolic disruption, highlighting the effects on adipogenesis and adipokine production, neuroendocrine control of feeding and metabolism, energy homeostasis and T2D trough alteration of insulin action, glucose disposal and beta cell survival and function, as well as hepatic steatosis and hyperlipidemia. Involved molecular mechanism encompass the alteration of hormonal and homeostatic systems related to sex hormones (e.g. estrogens and androgens, thyroid function and corticosteroids) acting through nuclear receptors, nonnuclear steroid hormone receptors, orphan receptors (for example, neurotransmitter receptors), orphan receptors (such as aryl hydrocarbon receptor, AhR), endoplasmic reticulum and oxidative stress, inflammatory disruption and epigenetic changes.

In a recent paper, Gauthier et al. showed that the metabolically dysfunctional obese phenotype was associated with higher plasma POP levels. Results from our group in obese individuals revealed that POP levels especially in vAT, the main reservoir, were higher in subjects with evidence of metabolic abnormalities, thus complementing and strengthening the Gauthier study. In this context, the mechanisms by which POPs exert their effects could involve various pathways including dysregulation of hormonal systems, nuclear receptors and epigenetic processes, in addition to possible action on neurotransmitter receptors and systems. Altogether, these mechanisms could ultimately interfere with AT remodeling and function with local and systemic consequences. Hence, POPs stored in AT may be a key component in the pathogenesis of MetS, in synergy with lifestyle factors, to promote obesity and its associated complications, namely T2D.

One of these synthetic organic chemicals is the pesticide p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), which has been associated with an increased prevalence of obesity and T2D in several epidemiological studies. However, the causal relationship and specific mechanisms of action are still under discussion. This study was designed to evaluate if exposure of rats to sustained low levels of p,p'-DDE (2.5 times less than lowest-observed-adverse-effect level), either in presence or absence of a HF diet, could contribute to the appearance or aggravation of metabolic disorders and possible functioning as an environmental modifier between obesity subphenotypes. For this purpose, the metabolic characterization of these rats was accompanied by a comprehensive and integrative evaluation of vAT histology, transcriptome and DNA methylation changes in key differentially expressed genes.

Results
Weight measurements and body composition. HF fed rats had a significantly accelerated growth during the treatment (Fig. 1), evident in body weight evolution, weight gain per animal and energy intake (kcal/day/animal). Exposure to p,p'-DDE did not alter body weight profile in any of the diets. At the end of the treatment, both groups that ingested HF had significantly higher fat mass (bioelectrical impedance evaluation, p < 0.0001) and an effect in heart and pancreas (p = 0.014 and p = 0.012), respectively increasing and decreasing their weights.

AT - distribution, lipolysis and p,p'-DDE accumulation. HF diet, independently of exposure to p,p'-DDE, had a significant effect on AT weight increase (Fig. 2A). In contrast, vAT mature adipocytes basal lipolysis (Fig. 2B) was decreased when p,p'-DDE exposed and non-exposed animals were fed with HF diet, translated by a smaller glycerol and non-esterified fatty acids (NEFAs) release (p < 0.0001 and p = 0.0022). Nevertheless, p,p'-DDE exposure increased vAT lipolysis (glycerol, p = 0.0255), an effect more pronounced in St/DDE rats without the overwhelming effect of HF diet. p,p'-DDE was only present in AT of exposed rats (data not shown) and its concentration was higher in St/DDE compared to HF/DDE rats in both mesenteric and subcutaneous AT depots (Fig. 2C1). However, no difference between exposed groups was observed in p,p'-DDE burden, calculated after normalization for AT weight (Fig. 2C1).

Evaluation of MetS features. An oral glucose tolerance test (OGTT) was performed after 7 weeks of treatment (Fig. 3A) to evaluate the effects of p,p'-DDE exposure in glycaemic response in both diets. The animals from both groups fed with HF diet exhibited impaired glucose tolerance, being more pronounced in HF/DDE
group (Fig. 3AI). Unlike standard diet-fed groups, glycaemia did not return to baseline in HF/DDE and HF after 120 min of glucose administration. Total area under the curve (AUC) of the glycaemic response was calculated for each experimental group (Fig. 3AIII). HF diet increased the AUC independently of \(p, p'\)-DDE exposure \((p = 0.0063)\), but in addition to a later and higher glucose peak in the OGTT, the effect of HF/DDE treatment was also reflected by a higher AUC comparing to St \((p < 0.05, \text{Tukey’s post-hoc test})\). In turn, \(p, p'\)-DDE exposure had a significant increasing effect on fasting glucose independently of the diet \((p = 0.0033, \text{Fig. 3AII})\). Fasting insulin levels (Fig. 3AIV) at the end of the treatment were tendentiously higher in HF diet groups, a tendency more pronounced in HF/DDE animals, which is in accordance to the results obtained for this group in OGTT. Correspondingly, homeostasis model assessment (HOMA) of insulin resistance indicated the same pattern (Fig. 3AV).

Biochemical parameters and circulating cytokine profiles. Plasma and urine biochemical parameters can be found as Supplementary Table S1. A significant interaction between HF diet and \(p, p'\)-DDE exposure was observed, resulting in the increase of plasma uric acid and lactate levels only in HF/DDE animals (interaction;
p = 0.0015 and p = 0.0114). The same pattern was observed in some of the cellular damage plasma marker levels, with a significant increase of amylase, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, AST and creatine kinase (CK) only in HF/DDE animals (interaction; \(p < 0.05 \), \(p = 0.0156 \), \(p = 0.0376 \), \(p = 0.0484 \) and \(p = 0.0241 \), respectively).

Figure 2. Adipose tissue (AT) depot weight (A), lipolysis in isolated mature adipocytes (B) and \(pp'\)-DDE levels in AT (concentration, CI; burden, CII), after 12 weeks. Values are represented as mean ± SEM. Statistical analysis with (A, B) two-way ANOVA (main effects: diet, \(pp'\)-DDE exposure and their interaction; \(p < 0.05 \)), followed by Tukey’s multiple comparison post-hoc test: *\(p < 0.05 \) vs St and/or St/DDE; (C) unpaired t test when comparing between treatment groups (St/DDE and HF/DDE) and paired t test when comparing between different ATs from the same treatment group: *\(p < 0.05 \). St, standard diet; HF, high fat diet; \(pp'\)-DDE, \(pp'\)-dichlorodiphenyldichloroethylene; vAT, visceral adipose tissue; scAT, subcutaneous adipose tissue; NEFAs, non-esterified fatty acids.
Urinary glucose levels were higher in HF diet-fed groups \((p = 0.0301)\), but more prominent in HF/DDE animals. In the same way, microalbuminuria, which presence in urine is in itself alarming, was affected both by diet and \(p,p'\)-DDE exposure \((p = 0.0473\) and \(p = 0.0332\), respectively), with a significant increase in HF/DDE animals compared to their St and HF counterparts \((p < 0.05, \text{Tukey's post-hoc test})\).

Circulating cytokines levels at 12 weeks (Fig. 4), showed a significant increase in leptin and leptin/adiponectin ratio by HF diet \((p < 0.0001\) and \(p = 0.0004\)). No significant differences were observed in TNF-\(\alpha\) and MCP-1.
levels. In contrast, IL-1β levels increased both by HF ($p = 0.0028$) and p,p'-DDE exposure ($p = 0.0034$), but with a significant increase in HF/DDE-treated rats when compared with all other groups ($p < 0.05$, Tukey's). We observed an opposite effect for anti-inflammatory cytokines IL-10 and TGF-β1.
Mesenteric vAT morphology. Adipocyte area (Fig. 5) was higher in HF diet groups \((p < 0.0001)\). HF/DDE rats \((vs\) HF) had an increase in % smaller/medium \((<4000 \mu m^2)\) and a decrease of bigger \((>6000 \mu m^2)\) adipocytes. We observed increased proliferation in St/DDE and HF rats, but the interaction between HF diet and \(p,p'\)-DDE exposure led to a significant decrease \((p = 0.0038)\). Moreover, HF diet contributed for increased percentage of apoptotic cells, independently of exposure to \(p,p'\)-DDE \((p = 0.0356)\).

Comparison of global gene expression between HF and HF/DDE rats. Gene expression microarrays in mesenteric vAT from HF and HF/DDE rats showed that 320 genes were up-regulated and 311 were down-regulated (at least 1.25-fold change). Detailed data concerning up- and down-regulated genes are shown in Supplementary Table S2. The largest changes induced by HF/DDE were seen in down-regulated genes, such as galanin \((Gal; -4.92\text{-fold}),\) cholinergic receptor nicotinic alpha 3 \((Chrna3; -3.20\text{-fold}),\) somatostatin \((Sst; -2.88\text{-fold}),\) neuromedin U \((Nimu; -2.75\text{-fold})\) or neuropeptide Y \((Npy; -1.78\text{-fold})\). Expression of genes such as dipeptidylpeptidase 4 \((Dpp4; 2.36\text{-fold})\) and ISL LIM homeobox 1 \((Isl1; 1.77\text{-fold})\) were up-regulated.

The differentially transcribed genes, mainly the down-regulated genes, were associated with several biological functions and pathways (Table 1). Cell-to-cell signalling and interaction, nervous system development and function, molecular transport, cellular assembly, organization and function, as well as cell and tissue morphology were on the top down-regulated functions by HF/DDE. Top transcription factors associated with HF/DDE (see Supplementary Fig. S1) disclosed an activation of hepatocyte nuclear factor 4 \(\alpha (HNF4A; z\text{-score 2.427})\) and a contrary trend for estrogen receptor \(\alpha (Esr1).\) Simulating a data network between transcription factors and modulated genes using IPA, we observed a link between the transcription factors \(Esr1\) and \(Isl1\), and \(Gal\).

Effects of all treatments in expression of specific genes and treatment-dependent changes in Galanin promoter methylation status. Nervous system development and function-related genes were evaluated by qRT-PCR (Fig. 6). We observed an overall up-regulation of selected genes, namely

Figure 5. Mesenteric visceral adipose tissue morphology and proliferative and apoptotic status. (A) Adipocyte area; (B) adipocyte distribution regarding their size; (C) proliferation; (D) apoptosis; (E) proliferation/apoptosis ratio. Statistical analysis with two-way ANOVA (main effects: diet, \(p,p'\)-DDE exposure and their interaction; \(p < 0.05)\), followed by Tukey’s multiple comparison post-hoc test: *\(p < 0.05\) vs St; \#\(p < 0.05\) vs HF. Scale bar represents 200 \(\mu m\). St, standard diet; HF, high fat diet; \(p,p'\)-DDE, \(p,p'\)-dichlorodiphenyldichloroethylene.
neuropeptide-related genes Gal, Npy, Nmnu and Sst and the galanin receptor 1 (Galr1), in HF group comparing to other treatments, including HF/DD (significant interaction between HF diet and p.p'-DDE; exposure). Several neuropeptide receptors such as Chrra3, Chrmt2 (cholinergic receptor, muscarinic 2), and Htr3a (5-hydroxytryptamine receptor 3A), as well as calcium (calbindin 2; Calb2), nitric oxide (nitric oxide synthase 1, neuronal; Nos1) and vesicle trafficking-related genes followed the same pattern. In contrast, the concomitant exposure to HF diet and p.p'-DDE was associated with the up-regulation of Dpp4, Isl1 and Nampt (nicotinamide phosphoribosyltransferase), this last with a p.p'-DDE-dependent increase. Esr1 transcription did not show any difference between groups. From the nine genes with altered expression in HF/DDE animals that were studied, four CpGs comparing to HF/DDE and whilst the differences were small in magnitude and limited to a few CpGs sites, they were located near to AP-1 binding sites.

Table 1. Ingenuity pathway analysis of HF/DDE regulated genes, either evaluating the overall differentially transcribed genes or with down and up-regulated genes analysed in separate. The ratio refers to the proportion of molecules within the pathway.

Top overall Bio functions and pathways	Ranking of functions (down and up-regulated genes analysed in separate)					
Molecular and Cellular Functions	**p value**	**# genes**	**Down regulated genes**	**p value**	**Up-regulated genes**	**p value**
Cell-to-cell Signalling and interaction	1.93 × 10^-12	75	Cell-to-cell Signalling and interaction	1.96 × 10^-25	Tissue Morphology	2.04 × 10^-4
Molecular transport	5.67 × 10^-10	68	Nervous System Development and Function	1.21 × 10^-18	DNA Replication, Recombination, and Repair	2.68 × 10^-4
Small molecule biochemistry	5.67 × 10^-10	75	Genetic Disorder	1.62 × 10^-17	Cellular Assembly and Organization	4.71 × 10^-4
Cell morphology	5.40 × 10^-07	56	Neurological Disease	1.62 × 10^-17	Cellular Function and Maintenance	4.71 × 10^-4
Cellular assembly and organization	5.40 × 10^-07	95	Psychological Disorders	1.62 × 10^-17	Cellular Development	6.62 × 10^-4
Physiological system development and function	**p value**	**# genes**	Behaviour	1.65 × 10^-12	Embryonic Development	6.62 × 10^-4
Nervous system development and function	1.93 × 10^-12	114	Skeletal and Muscular Disorders	7.28 × 10^-12	Gene Expression	7.71 × 10^-4
Behaviour	2.26 × 10^-07	59	Molecular Transport	9.57 × 10^-10	Cancer	1.31 × 10^-3
Tissue development	4.06 × 10^-06	56	Small Molecule Biochemistry	9.57 × 10^-10	Cell Death	1.31 × 10^-3
Skeletal and muscualr system development and function	7.61 × 10^-06	25	Cellular Assembly and Organization	1.72 × 10^-9	Reproductive System Disease	1.31 × 10^-3
Tissue morphology	7.61 × 10^-06	56	Cellular Function and Maintenance	1.72 × 10^-9	Cell Morphology	1.39 × 10^-3
Canonical pathways	**p value**	**Ratio**	Nutritional Disease	9.01 × 10^-8	Nervous System Development and Function	2.80 × 10^-3
Serotonin receptor signalling	5.77 × 10^-03	4/46 (0.087)	Skeletal System Development and Function	1.03 × 10^-7	Cardiovascular System Development and Function	3.80 × 10^-3
Xenobiotic metabolism signalling	2.73 × 10^-02	12/194 (0.061)	Tissue Morphology	1.03 × 10^-7	Protein Synthesis	5.38 × 10^-2
LPS/IL-1 mediated inhibition of RXX function	3.18 × 10^-02	10/235 (0.043)	Cell Morphology	2.63 × 10^-7	Cellular Growth and Proliferation	6.00 × 10^-3
Pentose phosphate pathway	3.60 × 10^-02	3/80 (0.038)	Organismal Injury and Abnormalities	2.66 × 10^-7	Auditory and Vestibular System Development and Function	6.15 × 10^-4
cAMP-mediated signalling	3.80 × 10^-02	10/219 (0.046)	Cellular Development	2.70 × 10^-7	Behaviour	6.15 × 10^-3

Discussion

The HF-fed rats exhibited several of the MetS features (Fig. 8) already described for this model⁴³, ⁴⁴, namely: a rapid weight gain, mostly due to a dramatic increase in AT mass; dysglycaemia with impaired response to glucose and tendentially higher fasting insulin levels and HOMA index, mild dyslipidaemia; hyperleptinemia; and a rapid weight gain, mostly due to a dramatic increase in AT mass; dysglycaemia with impaired response to glucose and tendentially higher fasting insulin levels and HOMA index, mild dyslipidaemia; hyperleptinemia; and a reduction of the anti-inflammatory cytokine IL-10, alongside with a slight decrease in TGF-β1 levels, an immune system-modulating cytokine⁴⁵.

However, our fundamental focus was on the assessment of p.p'-DDE exposure when supplied in an obesogenic context. Our study has revealed that HF-fed rats exposed to p.p'-DDE develop a severe and more exuberant metabolic dysfunction, independent of body weight changes (Fig. 8). The interaction between HF diet and p.p'-DDE exposure observed in this study corroborates the suggestion that contaminants in foods can contribute to the worsening of metabolic complications of obesity⁴⁶, and allowed us to further explore their causal effects.

Accordingly, HF/DDD had a clear aggravation of glycaemic metabolism (Fig. 3A), with a significant effect of p.p'-DDE increasing fasting blood glucose levels and impairing glycaemia control with a pronounced tendency of increased fasting insulin levels and HOMA index for insulin resistance, effects to some extent already observed in ST/DD and in accordance with studies linking p.p'-DDE exposure to insulin resistance and T2D⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰.

In this context, the up-regulation of Dpp4 transcription in HF/DDE mesenteric vAT (see Supplementary Table S2 and Fig. 6) could be contributing for their metabolic impairment worsening, as recently described⁴⁶, ⁴⁷. In fact, Dpp4 (also known as CD26) is a ubiquitously expressed glycoprotein that is responsible for the rapid
catalytic degradation of incretins, such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), responsible for an important part of postprandial insulin secretion. DPP4 also mediates the degradation of many growth factors and hormones, chemokines and neuropeptides and is upregulated in pro-inflammatory states including obesity and T2D. Recently, Dpp4 was also considered a novel cross-talk adipokine with autocrine and paracrine effects on insulin sensitivity impairment. On the other hand, insulin resistance may play an important role in the development of hypertension. Corroborating epidemiological data, p,p'-DDE manifestly induced hypertension (Fig. 3B), an effect that was aggravated by the simultaneous ingestion of HF diet, but apparently distinct from those induced by HF diet alone. Furthermore, one cannot overlook the probable effects of dyslipidaemia observed in HF/DDE animals (Fig. 3C), which, through lipotoxic events in insulin-responsive organs, may contribute to a reduction in peripheral insulin response. Indeed, p,p'-DDE exposure contributed to a more marked dyslipidaemia compared to HF diet alone, namely with higher HDL levels, the main transporter of cholesterol in rats. Additionally, without an overall increase in HF-fed rats NEFAs, HF/DDE vAT lipolysis was increased (Fig. 2B), although in a smaller

Figure 6
Gene expression analysis by quantitative real-time PCR (qRT-PCR) in visceral adipose tissue. Gene expression normalised to the housekeeping genes (Hprt, Gusb and Tbp). Statistical analysis with two-way ANOVA (main effects: diet, p,p'-DDE exposure and their interaction; p < 0.05), followed by Tukey’s multiple comparison post-hoc test: *p < 0.05 vs St, #p < 0.05 vs HF/DDE and Øp < 0.05 vs St/DDE. St, standard diet; HF, high fat diet; p,p'-DDE, p,p'-dichlorodiphenyldichloroethylene.
magnitude compared to St/DDE animals, probably due to an overwhelming effect of HF or a different p,p'-DDE concentration profile.

Taking into account an adipocentric view of metabolic dysfunction, we further evaluated the contribution of the mesenteric VAT impairment, considered determinant in the causal pathway of the MetS and dysmetabolic obesity, namely by exacerbating the effects of HF, in which the impairment of AT normal function seems to play a central role. St, standard diet; HF, high fat diet; p,p'-DDE, p,p'-dichlorodiphenyldichloroethylene; vAT, visceral adipose tissue.

Figure 7. Methylation profile of galanin (Gal) promoter region in mesenteric vAT measured by Sequenom MassARRAY. The results are presented as average of percentage methylation ± SEM for each CpG site or aggregate of CpG sites. Statistical analysis unpaired t test: *p < 0.05. Gray area represents a CpG island. HF, high fat diet; p,p'-DDE, p,p'-dichlorodiphenyldichloroethylene; TSS, transcription start site.

Figure 8. Schematic representation of the effects observed with the different treatments, whereby p,p'-DDE exposure appears to have an effect in metabolic syndrome evolution and dysmetabolic obesity, namely by exacerbating the effects of HF, in which the impairment of AT normal function seems to play a central role. St, standard diet; HF, high fat diet; p,p'-DDE, p,p'-dichlorodiphenyldichloroethylene; vAT, visceral adipose tissue.
evaluated in all treatments (Fig. 6). The higher expression of nervous system-related genes in HF rats compared to a non-obesogenic context, possibly in response to higher energy influx and AT increase as is known that high caloric intake leads to an increased sympathetic tone57, seem impaired when rats were also exposed to p,p′-DDE, possibly contributing to AT dysfunction. Indeed, the autonomic innervation of AT is important in the regulation of tissue mass and function through neuro-adipose junctions that also mediate leptin-driven lipolysis56, 59. Moreover, exposure to EDCs, namely p,p′-DDE, have been associated with several effects on the nervous system, acting not only as neurotoxicants but also disrupting neurotransmitter function60, 61.

These changes are demonstrative of the decrease in competent metabolic control cross-talk mechanisms, as AT is known to be innervated by the autonomic nervous system, especially by sympathetic nerves62. Moreover, parasympathetic innervation in AT, along with the ability of macrophages to participate in this cross-talk63, has been recently linked with cytokine production, inflammation, energy homeostasis and insulin resistance trough the cholinergic anti-inflammatory pathway64. Remarkably, several genes related to parasympathetic nervous system, such as cholinergic receptors and Nos1, were down-regulated.

Additionally, transcript levels of some neuropeptides followed the same pattern. Gal, the most altered gene (receptor also down-regulated), is involved in the positive regulation of food intake and the risk for obesity, but also contributes to the decrease of insulin resistance and blood pressure65, 66. Gal is engaged in the regulation of numerous physiological processes and distributed widely throughout the central and peripheral nervous system and other tissues, such as vAT. The mechanisms underlying the effects of Gal on appetite and obesity are its interaction with other appetite-regulating peptides, such as the positive interaction with Npy and negative with leptin, and the stimulation of muscle to use carbohydrates over lipids67. Indeed, as in vivo evidence suggest, Gal may counteract the metabolic disturbances induced by a HF diet, in part corroborated in this study, by means of the favouring of carbohydrate over lipid metabolism in muscle68, 69.

One can also hypothesize about the possible molecular mechanism involved in this HF diet x p,p′-DDE exposure interaction. As xenoestrogen, p,p′-DDE can interfere with estrogen signalling, namely in the induction of Gal69. The considerable inhibition of Egr1 transcription factor status in HF/DDE animals (see Supplementary Fig. S1), notwithstanding its unaltered transcription (Fig. 6), can be related with the Isl1-ER cross-talk ability to inhibit the ER-driven transcriptional activation70. Alternatively, compared to HF/DDE, the HF animals presented a decrease in DNA methylation at Gal regulatory region near to AP-1 binding sites, which could also help explain its increased expression (Fig. 7). Once more, p,p′-DDE exposure demonstrated to counteract this effect.

Furthermore, the HF diet x p,p′-DDE exposure interaction led to an increase of inflammation (Fig. 4), with a striking increase in plasmatic IL-1β levels, to some extent also seen in l/dDDE group, alongside a decline in anti-inflammatory cytokines. This cytokine, is implicated in T2D through the activation of the inflammasome, and important part of our innate immune system that responds to danger signals that are sensed by intracellular NOD-like receptors (NLRs), such as NLRP3 inflammasome that after activation facilitates caspase-1-dependent processing of pro-IL-1β into its active form71. Indeed, IL-1β is associated with visceral obesity and β cell failure72, 73, promotion of AT inflammation and limitation of fat expandability, ultimately contributing to ectopic lipid accumulation and disturbed fat-liver crosstalk73, 74, as well as to cardiac arrhythmias75. In this regard, a negative correlation was observed between the weight of vAT and other metabolically active organs susceptible to accumulation of tissue mass and function through neuro-adipose junctions that also mediate leptin-driven lipolysis58, 59.

Additionally, transcript levels of some neuropeptides followed the same pattern. Gal, the most altered gene (receptor also down-regulated), is involved in the positive regulation of food intake and the risk for obesity, but also contributes to the decrease of insulin resistance and blood pressure65, 66. Gal is engaged in the regulation of numerous physiological processes and distributed widely throughout the central and peripheral nervous system and other tissues, such as vAT. The mechanisms underlying the effects of Gal on appetite and obesity are its interaction with other appetite-regulating peptides, such as the positive interaction with Npy and negative with leptin, and the stimulation of muscle to use carbohydrates over lipids67. Indeed, as in vivo evidence suggest, Gal may counteract the metabolic disturbances induced by a HF diet, in part corroborated in this study, by means of the favouring of carbohydrate over lipid metabolism in muscle68, 69.

One can also hypothesize about the possible molecular mechanism involved in this HF diet x p,p′-DDE exposure interaction. As xenoestrogen, p,p′-DDE can interfere with estrogen signalling, namely in the induction of Gal69. The considerable inhibition of Egr1 transcription factor status in HF/DDE animals (see Supplementary Fig. S1), notwithstanding its unaltered transcription (Fig. 6), can be related with the Isl1-ER cross-talk ability to inhibit the ER-driven transcriptional activation70. Alternatively, compared to HF/DDE, the HF animals presented a decrease in DNA methylation at Gal regulatory region near to AP-1 binding sites, which could also help explain its increased expression (Fig. 7). Once more, p,p′-DDE exposure demonstrated to counteract this effect.

Furthermore, the HF diet x p,p′-DDE exposure interaction led to an increase of inflammation (Fig. 4), with a striking increase in plasmatic IL-1β levels, to some extent also seen in l/dDDE group, alongside a decline in anti-inflammatory cytokines. This cytokine, is implicated in T2D through the activation of the inflammasome, and important part of our innate immune system that responds to danger signals that are sensed by intracellular NOD-like receptors (NLRs), such as NLRP3 inflammasome that after activation facilitates caspase-1-dependent processing of pro-IL-1β into its active form71. Indeed, IL-1β is associated with visceral obesity and β cell failure72, 73, promotion of AT inflammation and limitation of fat expandability, ultimately contributing to ectopic lipid accumulation and disturbed fat-liver crosstalk73, 74, as well as to cardiac arrhythmias75. In this regard, a negative correlation was observed between the weight of vAT and other metabolically active organs susceptible to accumulate lipids, especially liver (data not shown). Moreover, we already described that p,p′-DDE exposure associated with HF diet enhances the impairment of liver fatty acid composition and increases their overall levels, confirming a close relationship with hepatic lipid dysfunction76. Despite its well accepted relation with dysmetabolic obesity, the triggers that determine differential inflammasome activation remain to be identified77, emerging the environmental exposure to POPs, and EDCs in general, as another plausible mechanism.

This AT impairment contributes to the dysfunction of other metabolically active organs and interfere with its toxicological functions, namely of protection13. Indeed, HF/DDE animals presented a strong indication of cellular damage, with a significant increase of AST, AST/ALT and CK only in HF diet-fed animals exposed to p,p′-DDE, which may imply liver, kidney or muscle damage (see Supplementary Table S1). Ultimately, this damage can have a plausible relationship with the observed metabolic dysfunction, namely with glucose intolerance as a result of pancreas dysfunction, expressed by an increase in total plasmatic amylase. Moreover, the observed renal dysfunction could also implicate this organ in the MetS aggravation by p,p′-DDE exposure associated with HF diet enhances the impairment of liver fatty acid composition and increases their overall levels, confirming a close relationship with hepatic lipid dysfunction76. Despite its well accepted relation with dysmetabolic obesity, the triggers that determine differential inflammasome activation remain to be identified77, emerging the environmental exposure to POPs, and EDCs in general, as another plausible mechanism.

This AT impairment contributes to the dysfunction of other metabolically active organs and interfere with its toxicological functions, namely of protection13. Indeed, HF/DDE animals presented a strong indication of cellular damage, with a significant increase of AST, AST/ALT and CK only in HF diet-fed animals exposed to p,p′-DDE, which may imply liver, kidney or muscle damage (see Supplementary Table S1). Ultimately, this damage can have a plausible relationship with the observed metabolic dysfunction, namely with glucose intolerance as a result of pancreas dysfunction, expressed by an increase in total plasmatic amylase. Moreover, the observed renal dysfunction could also implicate this organ in the MetS aggravation by p,p′-DDE exposure associated with HF diet enhances the impairment of liver fatty acid composition and increases their overall levels, confirming a close relationship with hepatic lipid dysfunction76. Despite its well accepted relation with dysmetabolic obesity, the triggers that determine differential inflammasome activation remain to be identified77, emerging the environmental exposure to POPs, and EDCs in general, as another plausible mechanism.

This AT impairment contributes to the dysfunction of other metabolically active organs and interfere with its toxicological functions, namely of protection13. Indeed, HF/DDE animals presented a strong indication of cellular damage, with a significant increase of AST, AST/ALT and CK only in HF diet-fed animals exposed to p,p′-DDE, which may imply liver, kidney or muscle damage (see Supplementary Table S1). Ultimately, this damage can have a plausible relationship with the observed metabolic dysfunction, namely with glucose intolerance as a result of pancreas dysfunction, expressed by an increase in total plasmatic amylase. Moreover, the observed renal dysfunction could also implicate this organ in the MetS aggravation by p,p′-DDE exposure associated with HF diet enhances the impairment of liver fatty acid composition and increases their overall levels, confirming a close relationship with hepatic lipid dysfunction76. Despite its well accepted relation with dysmetabolic obesity, the triggers that determine differential inflammasome activation remain to be identified77, emerging the environmental exposure to POPs, and EDCs in general, as another plausible mechanism.

Taken together, our results confirm that p,p′-DDE exposure appears to have an important effect in MetS evolution and dysmetabolic obesity, exacerbating the effects of HF diet, in which the impairment of AT normal function seems to play an important role (Fig. 8). We verified that although p,p′-DDE exposure did not led to increased obesity, it contributed to a more exuberant MetS, aggravating some of its features, such as glucose intolerance, hypertension, dyslipidaemia and inflammation. In an adipocentric view of the genesis of MetS, the results of the mesenteric vAT evaluation also point to a deleterious effect of exposure to p,p′-DDE in a HF diet context. In addition, p,p′-DDE also exerts noteworthy independent effects, as the induction of hypertension, elevated fasting glucose and inflammation, even when not in an obesogenic context. The involvement of p,p′-DDE in these pathological developments emphasizes the need for a better understanding of EDCs mechanisms of action and their recognition as metabolism disrupting chemicals. To some extent, these results can help explain the individual variability of obesity effects and introduce these compounds as possible markers of dysmetabolic obesity.

Methods

Animal treatment. Twenty-four male Wistar rats, weighing 267 ± 11.8 g (8 weeks), were purchased from Charles River (Barcelona, Spain) and after at least 1 week of acclimatization under controlled environmental conditions (22–24°C and 12 h light/dark cycles), were randomly divided into four groups and treated for 12...
weeks: St, standard diet group; St/DDE, standard diet with \(p,p' \)-DDE exposed group; HF, high-fat diet group; HF/DDE, high-fat diet with \(p,p' \)-DDE exposed group. The \(p,p' \)-DDE exposure was applied in drinking water with the average concentration of 100 \(\mu g/kg/day \) (2.5 times less than lowest-observed-adverse-effect level). The “Standard” (Teklad 2014, Harlan Laboratories, Santiago, Spain) and “High Fat” (D1245 Research Diets, New Brunswick, USA) diets had, respectively, 13% and 45% of energy from lipids. Body weights were monitored weekly. For the extended treatment details see Supplementary Methods online. Animal handling and housing protocols followed European Union guidelines (Directive 2010/63/EU) and Portuguese Act (129/92) for the use of experimental animals. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Faculty of Medicine of University of Porto.

Evaluation of metabolic parameters.

Oral glucose tolerance test (OGTT). After 7 weeks of treatment, the rats were fasted for 4–6 hours and a baseline blood drawn from the saphenous vein was collected for plasma fasting glucose evaluation. The rats were gavaged with a glucose solution (2 mg/g of body weight) and glycemia measured thereafter until 120 min. Glucose levels were measured with Precision Xtra Plus test strips using a Optium Xceed device (Abbott Diabetes Care, Ltd., Maidenhead, UK). Plasma insulin levels at the end of the study were measured using a Rat/Mouse Insulin ELISA kit (Merck Millipore, Madrid, Spain). The homeostasis model assessment (HOMA) was used to calculate approximate insulin resistance using the formula: glucose (mg/dL) x insulin (ng/ml)/405.

Systolic blood pressure evaluation. Measurement of SBP in conscious restrained rats was carried out by the non-invasive tail-cuff method using LE 5000 (Letica, Rochester Hills, USA) at weeks 4, 7 and 10. Each value of SBP was obtained by averaging out three to five consecutive similar measurements.

Blood and urine biochemical analysis. Biochemical evaluation of plasma and urine was performed at São João Hospital Center Clinical Pathology Department. Routine biochemical parameters were measured using conventional methods with an Olympus AU5400® automated clinical chemistry analyser (Beckman-Coulter®, Izasa, Porto, Portugal). Low-density lipoprotein (LDL) cholesterol was calculated according to Friedewald’s equation. NEFAs were quantified using an in vitro enzymatic colorimetric method assay (Wako Chemicals GmbH, Neuss, Germany).

Cytokine profile evaluation. Interleukin-1 beta (IL-1β), IL-10, tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta 1 (TGF-β1) were measured with custom Milliplex Rat kits (Merck Millipore, Madrid, Spain), using Luminex xMAP Multiplexing Technology platform. Leptin, adiponectin and monocyte chemotactant protein-1 (MCP-1) were determined using, respectively, Rat Leptin ELISA Kit (Merck Millipore, Madrid, Spain), Adiponectin Enzyme Immunoassay Kit and MCP-1 ELISA Kit (RayBiotech, Norcross, USA).

Adipocyte isolation, lipolysis and determination of \(p,p' \)-DDE in the AT. Portions of visceral and subcutaneous AT (epididymal vAT and scAT, respectively) were used for adipocyte isolation according to the method of Rodbell et al. with some modifications, and determination of lipolysis (see Supplementary Methods online). The \(p,p' \)-DDE analysis was performed according to the method described by Fernandes & Pestana, and were expressed as \(\mu g \) of \(p,p' \)-DDE/kg of tissue or as \(p,p' \)-DDE burden in AT.

AT morphology, apoptosis and proliferation. A portion of mesenteric vAT was fixed in buffered formaldehyde 10%, at least for 48 h (4 °C), dehydrated and finally embedded in paraffin. Three \(\mu m \) thick sections were obtained with a Leica® Microtome (RM2125RT, Lisbon, Portugal) for morphological analysis, apoptosis determination, and immunohistochemistry. Adipocyte size measurement was performed from hematoxylin-eosin-stained tissue sections as previously described. Apoptosis was analysed using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (Roche) and proliferation the immunohistochemical labeling of protein Ki67 protein (anti-Ki67, 1:50; fluorescein isothiocyanate-conjugated secondary antibody, 1:200; in 4% bovine serum albumin; Santa Cruz Biotechnology), with simultaneous of total DAPI-stained nuclei (4',6-diamidino-2'-phenylindole dihydrochloride; Roche) count for the same optical fields. Images from five randomly-selected different optical fields were acquired, under specimen identity occultation, with a Nikon Eclipse 50i® microscope and analysed with Image] software® (National Institute of Health, Bethesda, USA).

AT total RNA isolation and microarrays. Total RNA was isolated from mesenteric vAT samples ground in liquid nitrogen, using RNA STAT-60 reagent (AMS Biotechnology, Abingdon, UK) followed by chloroform extraction and isopropanol precipitation. RNA extracts were treated with DNasel to avoid contamination with genomic DNA and its concentration was assessed spectrophotometrically with a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and their integrity determined with the Agilent 2100 Bioanalyzer (Agilent Technologies, Massy, France). Only the high-quality RNA was processed and samples from HF and HF/DDE rats were used for the microarray analysis. Sample processing and data acquisition were carried out by the Genomics Core Lab of the University of Cambridge Biomedical Research Centre (Cambridge, UK). Biotinylated cRNA preparation and hybridization to Affymetrix Rat GeneChip® Gene 1.0 ST Arrays were performed according to the recommended Affymetrix protocol (GeneChip Expression Analysis Technical Manual, Affymetrix, Santa Clara, CA, USA). Arrays were scanned and raw image data were converted to CEL files using Affymetrix GeneChip Software.
Microarray data analysis and functional profiling. All downstream analysis of microarray data was performed using Agilent's GeneSpring GX 9 software (Agilent Technologies Inc, Santa Clara, USA). After importing the data, the CEL files were analysed under high stringency in order to reduce the number of false positives, as previously reported26. Two different analysis algorithms were used (robust multi-array average (RMA) and Plier analysis) and only genes whose expression patterns in each of the analyses were identical were taken forward for further study. Gene expression levels were considered significantly up- or down-regulated with a fold change of at least 1.25 fold with a p value of 5% (Student’s t-test). The pathway and biological analysis of gene expression data was performed using the Ingenuity pathway analysis software (IPA, Ingenuity® Systems, Redwood City, USA).

Gene expression analysis by quantitative real-time PCR (qRT-PCR). To validate the microarray data, 10 differentially transcribed genes (up- and down-regulated) were selected for qRT-PCR analysis (see Supplementary Fig. S3). Several target genes’ expression levels were evaluated in all treatment groups. Total RNA (1 μg) was reverse transcribed to cDNA using MultiScribe Reverse Transcriptase with random primers according to the manufacturer’s protocol (Applied Biosystems). All cDNA samples were analysed in triplicate by qRT-PCR conducted with SYBR green qPCR Mix (SYBR Green JumpStart Taq ReadyMix for qPCR, Sigma) on a 7500 Fast Real-Time PCR System (Applied Biosystems, UK). Gene expression was calculated using the $2^{-\Delta\Delta C_T}$ method27 and normalized against the geometric mean expression levels of the endogenous control genes: hypoxanthine-guanine-phosphoribosyltransferase (Hprt), β-glucuronidase (Gusb) and TATA box binding protein (Tbp). Gene-specific primers are listed in Supplementary Table S3.

Sequenom MassARRAY quantitative methylation analysis. Genomic DNA was isolated from mesenteric vAT following standard methods and methylation analysis was performed following the protocol recommended by Sequenom (Sequenom, San Diego, USA). Aliquots of 0.5 μg were converted with sodium bisulphite using the EZ DNA Methylation™ Kit according to the manufacturer’s instructions (Zymo Research, Irvine, USA). Amplification of bisulphite-treated DNA (~2.5 ng μl-$^{-1}$) was performed using HotStarTaq DNA polymerase (Qiagen, UK) and primer pairs designed with Sequenom EpiDesigner (see parameters summarized in Supplementary Table S4). The PCR programme consisted of an initial 15 min denaturation at 94 °C followed by 45 cycles of 20 s at 94 °C, 30 s at the annealing temperature and 1 min at 72 °C. According to the manufacturer’s protocol (Sequenom Inc., CA, USA), the amplicons of bisulphite PCR were treated with shrimp alkaline phosphatase (SAP) followed by in vitro transcription with T7 RNA polymerase and base-specific cleavage using MassCLEAVE T cleavage kit. The samples were desalted and spotted on a 384-SpectroCHIP (Sequenom), followed by spectral acquisition on a MassARRAY Analyzer Compact MALDI-TOF MS (Sequenom). The resulting methylation calls were performed by the EpiTYPER software (Sequenom) to generate quantitative results for each CpG site or an aggregate of CpG sites. Three independent bisulphite-converted DNAs were analysed per sample. Quantification of methylation was performed in triplicate and the average of the two most concordant replicates was taken at each CpG site. The average methylation was calculated as a mean value of the CpG methylation values and expressed as percentage methylation.

Statistical analysis. Values are expressed as the arithmetic mean ± standard error of the mean (SEM). Two-way ANOVA was used to determine the main effects of diet [Standard (St and St/DDE) vs High-fat diet (HF and HF/DDE), p,p’-DDE exposure [non-exposed (St and HF) vs exposed Rats (St/DDE and HF/DDE)]] and their interaction (diet x p,p’-DDE exposure). Posteriorly, tukey’s multiple comparison post-hoc test was used to determine differences between all experimental groups and represented with corresponding symbols. Two-way ANOVA repeated measures followed by Tukey’s multiple comparison post-hoc test was used to evaluate the differences between experimental conditions throughout time. To analyse the differences between 2 groups, a Student’s t test was used: unpaired t test when comparing methylation profile between treatment groups (HF and HF/DDE); regarding p,p’-DDE concentrations and p,p’-DDE burden in AT, unpaired t test when comparing between treatment groups (St/DDE and HF/DDE) and paired t test when comparing between different ATs from the same treatment group. The association between various parameters were analysed computing Pearson’s correlation coefficients. All statistical analyses were performed using GraphPad Prism 6 statistical software (GraphPad Software Inc., La Jolla, USA). The differences were considered statistically significant when p < 0.05.

References
1. Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428, doi:10.1016/S0140-6736(05)66378-7 (2005).
2. Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645, doi:10.1161/CIRCULATIONAHA.109.192864 (2009).
3. Blüher, M. The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Current opinion in lipidology 21, 38–43, doi:10.1097/MOL.0b013e32832346cc (2010).
4. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell metabolism 20, 103–118, doi:10.1016/j.cmet.2014.05.005 (2014).
5. Baillie-Hamilton, P. F. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 8, 38–43, doi:10.1089/jcm.2002.0107 (2002).
6. Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and obesity. Diabetes 60, 1838–1848, doi:10.2337/db11-0153 (2011).
7. Prateke, D. et al. The Role of Endocrine Disruptors on Metabolic Dysfunction. Current opinion in lipidology 21, 38–43, doi:10.1097/MOL.0b013e32832346cc (2010).
27. Pestana, D. R. & Sargis, R. M. Adipocytes under assault: environmental disruption of adipose physiology.

26. Ruzzin, J. G. & Sargis, R. M. Environmental endocrine disruption of energy metabolism and cardiovascular risk.

24. Regnier, S. M. & Sargis, R. M. The hijacking of cellular signaling and the diabetes epidemic: mechanisms of environmental disruption of insulin action and glucose homeostasis. Diabetes & metabolism journal 38, 13–24, doi:10.1007/d3.438v-2015-4101 (2015).

23. Gore, A. C. & Sargis, R. M. Environmental disruption of dysmetabolism and dysmetabolic implications. Environmental research 133C, 170–177, doi:10.1016/j.envres.2014.05.026 (2014).

22. Kirkley, A. G. & Sargis, R. M. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Environmental research 133C, 170–177, doi:10.1016/j.envres.2014.05.026 (2014).

21. Sargis, R. M. Endocrine disruptors and the safety of food chains. Endocrine reviews 34, 114–21, doi:10.1210/jc.2013-3935 (2014).

20. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and glucose homeostasis. Journal of clinical endocrinology and metabolism 103, 746–757, doi:10.1210/er.2015-1093 (2015).

19. Trasande, L. et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union. The journal of clinical endocrinology and metabolism 100, 1245–1255, doi:10.1210/jc.2014-4324 (2015).

18. Trasande, L. et al. Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis. Andrology 4, 565–572, doi:10.1111/andr.12178 (2016).

17. Mantovani, A. Endocrine Disruptors and the Safety of Food Chains. Endocrine reviews 34, 114–21, doi:10.1210/jc.2013-3935 (2014).

16. Darnerud, P. O. Endocrine disrupters as obesogens. Nature reviews. endocrinology 9, 565–572, doi:10.1038/nrendo.2013.213 (2016).

15. Schafer, K. S. & Kegley, S. E. Persistent toxic chemicals in the US food supply. Environmental research 133C, 170–177, doi:10.1016/j.envres.2014.05.026 (2014).

14. Myre, M. & Imbeault, P. Persistent organic pollutants meet adipose tissue hypoxia: does cross-talk contribute to inflammation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 120, 190–197, doi:10.1210/jc.2014-4324 (2015).

13. Heindel, J. J. et al. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect 120, 190–197, doi:10.1210/jc.2014-4324 (2015).

12. Turyk, M., Anderson, H. A., Knobeloch, L., Imm, P. & Persky, V. W. Prevalence of diabetes and body burdens of polychlorinated biphenyls, polybrominated diphenyl ethers, and p,p'-diphenyldichloroethylene in Great Lakes sport fish consumers. Chemosphere 75, 674–679, doi:10.1016/j.chemosphere.2008.12.035 (2009).

11. Gore, A. C. et al. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine reviews 34, 114–21, doi:10.1210/jc.2013-3935 (2014).

10. Heindel, J. J. et al. Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Acta Diabetol 53, 13–21, doi:10.1007/s00592-008-0049-4 (2009).

9. Lee, D. H. et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetes Care 29, 1638–1644, doi:10.2337/dc06-0543 (2006).

8. Giroux, J. P. et al. A common denominator for the obesity epidemic. Nature reviews. endocrinology 9, 565–572, doi:10.1038/nrendo.2013.213 (2016).

7. Vizoso, Y., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).

6. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).

5. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).

4. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).

3. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).

2. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).

1. Arsenescu, V. I., Arsenescu, R. I., King, V., Swanson, H. & Cassis, L. A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116, 761–768, doi:10.1289/ehp.10554 (2008).
Acknowledgements
The authors thank Giles Yeo (University of Cambridge, Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Cambridge, United Kingdom) for the excellent mentoring support regarding the microarray data analysis and functional profiling. The excellent contribution of the technicians from the Department of Clinical Pathology (Hospital S. João, Porto, Portugal) with the determination of biochemical markers is also gratefully acknowledged. This article was supported by ERDF (European Regional Development Fund) through the operation POCI-01-0145-FEDER-007746 funded by the Programa Operacional Competitividade e Internacionalização – COMPETE2020 and by National Funds through FCT - Fundação para a Ciência e a Tecnologia within CINTESIS, R&D Unit (reference UID/IC4255/2013); PEst-OE/SAU/UI0038/2011; SFRH/BPD/109158/2015; SFRH/BD/46640/2008, SFRH/BD/64691/2009, SFRH/BD/78367/2011, SFRH/BD/93073/2013, SFRH/BPD/109153/2015, SFRH/BD/47200/2008, SFRH/BPD/75294/2010; and SFRH/BPD/40110/2007.

Author Contributions
D.P. performed most of the experiments, interpreted data, and wrote the initial draft of the manuscript. D.T., M.M., S.N., C.M., A.F., C.S. were involved in animal treatment, performing experiments and data analysis. V.C.F., L.C.S., V.F.D. and C.D.M. performed p,p'-DDE measurements. L.G. and J.T.G. were responsible for animal treatment management and biochemical parameters analysis, respectively. M.C. provided facilities and expertise in some steps of the work, advised on the study concept and critically revised the manuscript. Along with W.N.C. and I.S., guided D.P. in microarray, qRT-PCR and Sequenom analysis. R.M. and C.C. were responsible for conception and design of the study, analysis and interpretation of data, manuscript revision, and approval of the final version of the manuscript. C.C. is the guarantor of this work and, as such, takes responsibility for the work as a whole, including the study design, access to data, and the decision to submit and publish the manuscript. All authors contributed to the data interpretation, to the preparation of the manuscript, and to the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-02885-9

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017