Bilinear R parity violation at the ILC

Neutrino physics at colliders?

Benedikt Vormwald
Winterseminar der RWTH Aachen
Saas Grund, 08.-15.01.2011
Outline

- Supersymmetry
- R parity violation and neutrino masses
- Potential of ILC
- Outlook
Supersymmetry

Motivation

Standard model has still some open questions (2 examples)

- **Unification**
 - Hierarchy problem

Huge loop correction to Higgs mass:

\[
\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{\text{UV}}^2 + \ldots
\]

\[\Lambda_{\text{UV}} \approx 10^{16}\text{GeV}\]

Solution: introduce massive scalar fields

\[
\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{\text{UV}}^2 - 2m_s \ln \left(\frac{\Lambda_{\text{UV}}}{m_S} \right) \right] + \ldots
\]

Cancelation of quadratic divergences, if 2 massive scalars per fermion with \(\lambda_S = |\lambda_f|^2\)
Supersymmetry

What is SUSY?
- Symmetry in spin-space
- Every particle has a supersymmetric partner:
 - SM Fermions \leftrightarrow SUSY scalars
 - SM bosons \leftrightarrow SUSY fermions
- Many models on the market, but simplest: MSSM

SUSY breaking
In a perfect symmetry particle and sparticle mass should be degenerated \Rightarrow not observed
SUSY has to be broken!

mSUGRA (105 parameters \rightarrow 5 parameters)

\[
\begin{align*}
M_3 &= M_2 = M_1 = m_{1/2} \\
\tilde{m}_Q^2 &= \tilde{m}_{\tilde{u}}^2 = \tilde{m}_{\tilde{d}}^2 = \tilde{m}_{\tilde{L}}^2 = \tilde{m}_{\tilde{e}}^2 = m_0^2 \\
a_u &= A_0 y_u \\
a_d &= A_0 y_d \\
a_e &= A_0 y_e \\
tan \beta \\
\text{sgn}(\mu)
\end{align*}
\]

Planck scale

SUSY spectrum & couplings

electroweak scale

(W. Porod, arXiv:hep-ph/0301101)
Supersymmetry

Particle spectrum (MSSM - mSUGRA)

Benchmark point SPS 1a
\[m_0 = 70 \text{ GeV}, \ m_{1/2} = 250 \text{ GeV}, \ \tan \beta = 10, \ \text{sgn}(\mu) = 1, \ A_0 = -300 \text{ GeV} \]

After EW symmetry breaking
(more complicated due to 2 Higgs doublets)

- 5 massive Higgs
- 4 neutralinos
- 4 charginos
- 8 gluinos
- squarks
- sleptons

neutralino LSP
Supersymmetry

Particle spectrum (MSSM - mSUGRA)

Benchmark point SPS 1a:\n\[m_0 = 70 \text{ GeV}, \ m_{1/2} = 250 \text{ GeV}, \ \tan \beta = 10, \ \text{sgn}(\mu) = 1, \ A_0 = -300 \text{ GeV} \]

After EW symmetry breaking
(more complicated due to 2 Higgs doublets)

mass eigenstates
- 5 massive Higgs
- 4 neutralinos
- 4 charginos
- 8 gluinos
- squarks
- sleptons

neutralino LSP

Standard Model particles
R parity

What is R parity?

- B and L violating terms allowed in superpotential (\Leftrightarrow SM)
- B and L violation never observed (proton decay)

→ Invent new symmetry which is a combination of B, L (and S)

\[
P_R = (-1)^{3B + L + 2S}
\]

→ SM particles: $P_R = +1$
→ SUSY partners: $P_R = -1$

Consequences of conservation:

- proton decay prohibited
- sparticles can only be produced in pairs
- SUSY decay products contain odd number of LSPs
- LSP absolutely stable
What is R parity?

• B and L violating terms allowed in superpotential (\leftrightarrow SM)
• B and L violation never observed (proton decay)

\rightarrow Invent new symmetry which is a combination of B, L (and S)

\[P_R = (-1)^{3B + L + 2S} \]

\rightarrow SM particles: $P_R = +1$
\rightarrow SUSY partners: $P_R = -1$

Consequences of conservation:

• proton decay prohibited $\quad \rightarrow$ just break L or B
• sparticles can only be produced in pairs $\quad \rightarrow$ holds for small RPV parameters
• SUSY decay products contain odd number of LSPs
• LSP absolutely stable $\quad \rightarrow$ LSP decays!
Superpotential

\[
W = \varepsilon_{ab} \left(h_U^{ij} \hat{Q}_i^a \hat{U}_j \hat{H}_u^b + h_D^{ij} \hat{Q}_i^b \hat{D}_j \hat{H}_d^a + h_E^{ij} \hat{L}_i^b \hat{R}_j \hat{H}_u^a - \mu \hat{H}_d^a \hat{H}_u^b + \varepsilon_i \hat{L}_i^a \hat{H}_u^b \right)
\]

MSSM superpotential

- Higgs/Slepton-mixing
- Sneutrinos acquire VEV \(\langle \tilde{\nu}_i \rangle = \nu_i \)
- corresponding RPV soft SUSY breaking term

\[
L_{soft}^{BRpV} = -B_i \varepsilon_{ab} \varepsilon_i \hat{L}_i^a H_u^b
\]

masses and mixings of neutral fermions

Basis of neutral fermions:

\[
\psi^{0T} = (-i \lambda', -i \lambda^3, \tilde{H}_d^1, \tilde{H}_u^2, \nu_e, \nu_\mu, \nu_\tau)
\]

Mass terms in the Lagrangian are given by:

\[
L_m = -\frac{1}{2} \left(\psi^0 \right)^T M_N \psi^0 + h.c.
\]

4x4 MSSM neutralino mixing matrix

\[
M_N = \begin{pmatrix}
M_{\chi^0} & m^T \\
m & 0
\end{pmatrix}
\]

4x3 RPV matrix
Approximate diagonalization of M_N

M_N can be block-diagonalized for small RPV parameters via the Seesaw-like diagonalization:

$$M_N = \text{diag}(M^{\chi^0}, m_{\text{eff}})$$

$$m_{\text{eff}} = -mM^{\chi^0}m^T = \frac{M_1g^2 + M_2g'^2}{4 \text{det } M^{\chi^0}} \begin{pmatrix}
\Lambda_e^2 & \Lambda_e \Lambda_\mu & \Lambda_e \Lambda_\tau \\
\Lambda_\mu \Lambda_e & \Lambda_\mu^2 & \Lambda_\mu \Lambda_\tau \\
\Lambda_\tau \Lambda_e & \Lambda_\tau \Lambda_\mu & \Lambda_\tau^2
\end{pmatrix}$$

where $\Lambda_i = \epsilon_i \nu_d + \mu \nu_i$ „alignment parameters“

A final diagonalization of M^{χ^0} leads to the neutralino masses m^{χ^0} and a diagonalization of m_{eff} leads to one tree level neutrino mass.
Some results of this model

- largest neutrino mass at tree level
- 2 mixing angles at tree level
- remaining masses/angles at 1-loop-level
- correct scales of mass differences Δm_{ij}^2

How is that connected to colliders?

dominant part of $\tilde{\chi}_1^0 - W - l_i$ coupling: $O_i^L = \Lambda_i \cdot f(M_1, M_2, \mu, \tan \beta, \nu_d, \nu_u) \propto \Lambda_i$

$\tan^2 \theta_{23} = \left| \frac{\Lambda_\mu}{\Lambda_\tau} \right|^2 \approx \frac{BR(\tilde{\chi}_1^0 \rightarrow \mu W)}{BR(\tilde{\chi}_1^0 \rightarrow \tau W)}$

\Rightarrow Neutrino physics at collider experiments
Particle spectrum (MSSM – mSUGRA - bRPV)

Benchmark point SPS 1a' with bRPV
\[m_0 = 70 \text{ GeV}, \quad m_{1/2} = 250 \text{ GeV}, \quad \tan \beta = 10, \quad \text{sgn}(\mu) = 1, \quad A_0 = -300 \text{ GeV} \]

bRPV parameters
Fit to neutrino data

Standard Model particles
Particle spectrum (MSSM – mSUGRA - bRPV)

Benchmark point SPS 1a' with bRPV
$m_0 = 70$ GeV. $m_{1/2} = 250$ GeV, $\tan \beta = 10$, $\text{sgn}(\mu) = 1$, $A_0 = -300$ GeV

bRPV parameters
Fit to neutrino data

- Higgs/Slepton mixing
- generalized particle names S, P
- particle "character" mostly unchanged
Particle spectrum (MSSM – mSUGRA - bRPV)

Benchmark point SPS 1a' with bRPV
$m_0 = 70$ GeV, $m_{1/2} = 250$ GeV, $\tan \beta = 10$, $\text{sgn}(\mu) = 1$, $A_0 = -300$ GeV

bRPV parameters
Fit to neutrino data

\rightarrow Higgs/Slepton mixing
\rightarrow generalized particle names S, P
\rightarrow particle “character“ mostly unchanged

\rightarrow Neutralino/neutral lepton (neutrino) mixing
\rightarrow effect very small
\rightarrow BUT visible in LSP-to-SM decay

Standard Model particles
ILC potential

Production cross section

s-channel

\[e^+ e^- \rightarrow Z \rightarrow \tilde{\chi}_i^0 \]

t/u-channel

\[e^+ e^- \rightarrow \tilde{e}^{L,R} \rightarrow \tilde{\chi}_i^0 \]

LSP mixing character (at SPS1a):
- 97.9% Bino
- 0.1% Wino
- 1.8% up-type Higgsino
- 0.2% down-type Higgsino

Higgsino part of neutralino only couples to Z

Gaugino part of neutralino only couples to scalar SUSY partners

→ t/u-channel main production process
Production cross section

cross section: $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production

- main production processes: t-, u-channel

- „selectron“ exchange

- $m(\sim e^-_L) > m(\sim e^-_R) \rightarrow \sigma_+ < \sigma_-$
ILC potential

Production cross section

cross section: \(\tilde{\chi}_1^0 \tilde{\chi}_1^0 + X \) production

- small RPV parameters
 \(\rightarrow \) LSP decays into SM

- typical SUSY cascades with LSP decay in the end

- almost all sparticle-production processes can be used to study LSP decays

\[e^+ e^- \rightarrow \ldots \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 + X \]

- green: \(P(e^+) = -0.8, P(e^-) = 0.3 \)
- dark green: \(P(e^+) = -0.8, P(e^-) = -0.3 \)
- black: \(P(e^+) = 0.0, P(e^-) = 0.0 \)
- grey: \(P(e^+) = 0.8, P(e^-) = 0.3 \)
- blue: \(P(e^+) = 0.8, P(e^-) = -0.3 \)
Decay channels of LSP (BR>0.01)

LSP decay	Branching ratio
W μ	0.034
W τ	0.031
ν₂ b b	0.035
ν₁ τ e	0.159
ν₁ τ μ	0.279
ν₁ τ τ	0.453

Study neutrino parameters
- neutrino mixing, ...

Study LSP parameters
- mass (endpoint), mixing character, ...

Decay width of LSP

\[\Gamma = 3.77 \cdot 10^{-13} \text{ GeV} \Rightarrow \Gamma \approx 523 \mu m \]

Displaced vertices expected!

Analysis strategy
- LFV signal
- two displaced vertices per event (+cascade products from IP)
- high effective mass per event
Statistical uncertainties (one example)

\[\int L \, dt = 500 \text{ fb}^{-1} \] (4 years of ILC running)
\[\sigma_{\text{SMBG}}(500 \text{ GeV}) = 2200 \text{ fb} \]
Detection efficiency = 0.5

Signal/background estimation
- tree level cross sections for SM BG
 (Whizard 2.0; arXiv:0708.4233)
- just looking for similar final states

\[e^+ e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (\nu \tau \tau)(\nu \tau \mu) \]
\[e^+ e^- \rightarrow \text{SM} \rightarrow \tau \tau \nu \mu \nu \]
\[= 3\tau + 1\mu + \text{MET} \]

\[\rightarrow N_{W\mu} = 37500 \cdot 0.5 = 18750 \quad \sigma_{\text{rel}}^{\text{stat}} = 0.74\% \]
\[\rightarrow N_{W\tau} = 34100 \cdot 0.5 = 17050 \quad \sigma_{\text{rel}}^{\text{stat}} = 0.77\% \]

\[\sigma_{\text{rel}}^{\text{stat}}(\text{Br}(\chi \rightarrow W\mu)/\text{Br}(\chi \rightarrow W\tau)) \approx 1\% \]
\[\rightarrow \theta_{\text{atm}} = (46.36 + 0.15)^\circ \]

→ Comparable results for almost all decay channels (at least \(S/\sqrt{B} > 10 \)
Conclusion

- bRPV enables access to neutrino parameters at colliders
- Predicted cross sections are quite promising
- SM background small
- Need for very good vertex detection
- Polarization is a very useful tool to increase signal over background
- ILC is highly capable to look at that kind of models

Outlook

- Implementation of bRPV in Whizard on the way
- Detailed study in progress
Thank you for your attention.
Backup slides
cross sections ($P(e^-) = 0.8, P(e^+) = -0.3$)

production channels
- $e^-e^+ \rightarrow \text{bRPV SUSY}$
- $e^-e^+ \rightarrow \ldots \rightarrow \text{LSP pair} + X$
- $e^-e^- \rightarrow \text{chi}_i \text{chi}_j$
- $e^-e^+ \rightarrow \text{S}^i \text{S}^j$
- $e^-e^+ \rightarrow q\bar{q}$

\sqrt{s}/GeV

cross sections ($P(e^-) = 0.8, P(e^+) = 0.3$)

production channels
- $e^-e^+ \rightarrow \text{bRPV SUSY}$
- $e^-e^+ \rightarrow \ldots \rightarrow \text{LSP pair} + X$
- $e^-e^- \rightarrow \text{chi}_i \text{chi}_j$
- $e^-e^- \rightarrow \text{S}^i \text{S}^j$
- $e^-e^+ \rightarrow q\bar{q}$

\sqrt{s}/GeV

cross sections ($P(e^-) = 0.8, P(e^+) = 0.0$)

production channels
- $e^-e^+ \rightarrow \text{bRPV SUSY}$
- $e^-e^+ \rightarrow \ldots \rightarrow \text{LSP pair} + X$
- $e^-e^- \rightarrow \text{chi}_i \text{chi}_j$
- $e^-e^- \rightarrow \text{S}^i \text{S}^j$
- $e^-e^+ \rightarrow q\bar{q}$

\sqrt{s}/GeV
cross section: neutralino production

```
\sigma / \text{fb}
```

- $e^+ e^- \rightarrow \text{ch}_i \chi_j$
- $P(\chi') = -0.8, P(e') = 0.3$
- $P(\chi') = -0.8, P(e') = -0.3$
- $P(\chi') = 0.0, P(e') = 0.0$
- $P(\chi') = 0.8, P(e') = 0.3$
- $P(\chi') = 0.8, P(e') = -0.3$

cross section: chargino production

```
\sigma / \text{fb}
```

- $e^+ e^- \rightarrow \text{ch}_i \chi_j$
- $P(\chi') = -0.8, P(e') = 0.3$
- $P(\chi') = -0.8, P(e') = -0.3$
- $P(\chi') = 0.0, P(e') = 0.0$
- $P(\chi') = 0.8, P(e') = 0.3$
- $P(\chi') = 0.8, P(e') = -0.3$
cross section neutral scalar production

$e^+e^- \rightarrow \chi_i \chi_j$
- $P(\epsilon') = -0.8, P(\epsilon'') = 0.3$
- $P(\epsilon') = -0.8, P(\epsilon'') = -0.3$
- $P(\epsilon') = 0.0, P(\epsilon'') = 0.0$
- $P(\epsilon') = 0.8, P(\epsilon'') = 0.3$
- $P(\epsilon') = 0.8, P(\epsilon'') = -0.3$

cross section charged scalar production

$e^+e^- \rightarrow S_i S_j$
- $P(\epsilon') = -0.8, P(\epsilon'') = 0.3$
- $P(\epsilon') = -0.8, P(\epsilon'') = -0.3$
- $P(\epsilon') = 0.0, P(\epsilon'') = 0.0$
- $P(\epsilon') = 0.8, P(\epsilon'') = 0.3$
- $P(\epsilon') = 0.8, P(\epsilon'') = -0.3$
Backup Slides
The model

Mass matrices

\[M_{\chi^0} = \begin{pmatrix}
 M_1 & 0 & -\frac{1}{2} g' v_d & \frac{1}{2} g' v_u \\
 0 & M_2 & \frac{1}{2} g v_d & -\frac{1}{2} g v_u \\
 -\frac{1}{2} g' v_d & \frac{1}{2} g' v_u & 0 & -\mu \\
 \frac{1}{2} g v_d & -\frac{1}{2} g v_u & -\mu & 0 \\
\end{pmatrix} \]

\[m = \begin{pmatrix}
 -\frac{1}{2} g' v_1 & \frac{1}{2} g v_1 & 0 & \varepsilon_1 \\
 \frac{1}{2} g' v_2 & -\frac{1}{2} g v_2 & 0 & \varepsilon_2 \\
 \frac{1}{2} g' v_3 & -\frac{1}{2} g v_3 & 0 & \varepsilon_3 \\
\end{pmatrix} \]
Phenomenology

(Semi-)leptonic LSP decay channels (SU3)

\[\tilde{\chi}_1^0 \rightarrow \tau^\pm + e^\mp + \nu \quad 9\% \]
\[\tilde{\chi}_1^0 \rightarrow \tau^+ + \tau^- + \nu \quad 24\% \]
\[\tilde{\chi}_1^0 \rightarrow \mu^\pm + \tau^\mp + \nu \quad 16\% \]
\[\tilde{\chi}_0^0 \rightarrow W + l \quad 13\% \]

(data created with Spheno 3beta36)

Why muon channel?

\[\rightarrow ATLAS \text{ has a very good muon spectrometer!} \]
\[\rightarrow \text{Working group is interested in muons} \]

Group in Valencia working on \[\tilde{\chi}_1^0 \rightarrow W\mu \]

(CERN-ATL-COM-PHYS-2009-543)

Typical bRPV SUSY decay chain

\[2x \]
\[\tilde{g} \langle d \tilde{d}_L \tilde{\chi}_1^- \rangle \langle u \tilde{\nu}_3 \rangle \langle \tau \tilde{\chi}_1^0 \rangle \langle \mu \tilde{\nu}_1 \rangle \]

\[\text{MSSM} \]

\[\text{bRPV} \]

- bRPV (in that case) doesn't affect SUSY cascade
- two cascades with two neutralino decays in each event
- neutralino decays!
ATLAS detector
Software workflow

Reconstruction chain

- SPheno: bilinear RPV model
- Generation
- Simulation
- Digitization
- Reconstruction
- GRID
- Analysis

SUSY? bRPV?

Backgrounds

Cuts
Standard model backgrounds:
- ttbar
- single top
- W+jets
- Z+jets
- WW+WZ+ZZ
- QCD dijets

(officially produced samples, CM=10TeV)

Reasonable Triggers

Signal final state signature:
mu, tau, missing E_T

Trigger	Signal eff.	BG eff.
mu10	0.58	4.15 10^{-5}
tau20i	0.65	8.81 10^{-4}
tau20i_mu10	0.38	1.35 10^{-6}

→ trigger **mu10** chosen
→ available in L31 trigger menu
→ very good background reduction

Trigger	BG eff.
mu10	
QCD dijets	4.1 10^{-5}
W+jets	0.29
Z+jets	0.43
ttbar	0.36
single top	0.30
WW+WZ+ZZ	0.39
Observables

Number of mu/tau

Asking for at least one muon and one tau in final state is very selective!
\[M_{\text{eff}} = E_T^{\text{miss}} + \sum_{1\ldots4} p_T^{\text{jet}} + \sum p_T^{e} + \sum p_T^{\mu} \]

Observables

Effective mass

Cuts:
- **loose:** \(M_{\text{eff}} > 600 \) GeV
- **medium:** \(M_{\text{eff}} > 800 \) GeV
- **tight:** \(M_{\text{eff}} > 1000 \) GeV

Mu10 trigger, mu/tau, preselection cuts, CM=10TeV

Maximum of (SUSY) signal \(M_{\text{eff}} \) at higher energy
Observables

Transverse sphericity

\[S_T = \frac{2\lambda_2}{\lambda_1 + \lambda_2} \]

\(\lambda_1, \lambda_2 \) eigenvalues of sphericity tensor

Cuts:
- loose: \(S_T > 0.10 \)
- medium: \(S_T > 0.15 \)
- tight: \(S_T > 0.20 \)

Cut useful for QCD background reduction

mu10 trigger, mu/tau, preselection cuts, CM=10TeV

ATLAS work in progress
Cuts - summary

triggered/preselected

mu/tau & loose

mu/tau & medium

mu/tau & tight

	loose	medium	tight
# events SUSY	1913	1339	727
# events BG	1493	160	54
S/B	1.3	8.4	13.4
S/\sqrt{B}	49.5	106.0	98.6

→ very good background reduction!
→ medium cuts are used
Signal channel/ SUSY background

Calculation of invariant mass of μ and τ

Truth:

Reco:

$\tilde{\chi}_1^0 \rightarrow \mu \nu$

\rightarrow dilepton edge (Three-body-decay)

\rightarrow reduction of combinatorical BG necessary
Signal channel/ SUSY background

1. $\Delta R_{\mu \tau}$ cut for different $\mu \tau$-pairs (truth)

$\Delta R_{\mu \tau}$ distribution of signal and BG pairs:

Resulting $m_{\mu \tau}$ distribution:

\Rightarrow reasonable cut: $\Delta R_{\mu \tau} < 1.2$ (χ decay products boosted)
Mass reconstruction of LSP

Signal channel/ SUSY background

2. Opposite sign- same sign subtraction (truth)

ATLAS work in progress

- OS
- SS
- OS-SS
- signal

entries/10GeV/2fb vs. $m_{\mu\tau}$ [GeV]
Signal channel/ SUSY background

Invariant mass of μ and τ after $\Delta R_{\mu\tau}$ cut and OS-SS subtraction (reco)

Simple linear fit leads to mass-endpoint:

$$m^{EP}_\chi = (107 \pm 14) \text{GeV}$$

$$m^{\text{theory}}_\chi = 118 \text{GeV}$$
Conclusion

• bRPV enables access to **neutrino physics at the collider**

• selected trigger and cuts lead to a **very good background reduction**

• RPV signal can be observed

• dilepton edge can be used to **determine the mass of neutralino**

 • linear fit shows good results

 • advanced fitting methods under study (inflection point method) (CERN-ATL-COM-PHYS-2008-038)

• effort to tau identification and object selection

• Waiting for 7 TeV MC samples
Benchmark scenarios

mSUGRA

SUSY has to be broken!

\[M_3 = M_2 = M_1 = m_{1/2} \]
\[m_{\tilde{Q}}^2 = m_{\tilde{u}}^2 = m_{\tilde{d}}^2 = m_{\tilde{L}}^2 = m_{\tilde{e}}^2 = m_0 \]
\[m_{H_u}^2 = m_{H_d}^2 = m_0^2 \]
\[a_u = A_0 y_u \quad a_d = A_0 y_d \quad a_e = A_0 y_e \]
\[\tan \beta \]
\[\text{sgn}(\mu) \]

Planck scale

SUSY spectrum & couplings
electroweak scale

RGE
SPheno 3.0

(W. Porod,
arXiv:hep-ph/0301101)
Benchmark scenarios

SUSY benchmark points

Special benchmark points for ATLAS:

Name	m_0 [GeV]	$m_{1/2}$ [GeV]	A_0 [GeV]	$\tan \beta$	$\text{sgn } \mu$	Characteristics
SU1	70	350	0	10	+	Coannihilation region
SU2	3550	300	0	10	+	Focus point region
SU3	100	300	-300	6	+	Bulk region
SU4	200	160	-400	10	+	Low mass point
SU6	320	375	0	50	+	
SU8.1	210	360	0	40	+	Funnel region
SU9	300	425	20	20	+	

(ATLAS CSC Note)
Phenomenology

Comparison of SU points for LSP decay

Chosen LSP-decay to investigate: \(\tilde{\chi}_1^0 \rightarrow \mu^+ + \tau^- + \nu \)

Name	\(m_{\chi^0} \times 10 \)	Decay length [m]	BR(2BD)	BR(3BD-non/semilept.)	BR(3BD-leptonic)	BR(\(\chi^0 \rightarrow \tau \tau \nu \))	BR(\(\chi^0 \rightarrow \mu \tau \nu \))
SU1	139	1,2 10^{-4}	0,32	0,02	0,66	0,33	0,10
SU2	120	2,0 10^{-3}	0,85	0,09	0,06	0,01	0,01
SU3	118	2,9 10^{-4}	0,46	0,05	0,49	0,25	0,08
SU4	60	0,1	~0	0,36	0,64	0,30	0,08
SU6	152	4,1 10^{-4}	0,73	0,01	0,26	0,14	0,03
SU8.1	145	3,1 10^{-4}	0,48	0,01	0,51	0,28	0,06
SU9	173	2,0 10^{-5}	0,88	0,01	0,11	0,06	0,01

(data created with Spheno 3beta36, W. Porod, arXiv:hep-ph/0301101)
SPheno Parameters in bRPV

9 extra parameters for bRPV

Define them explicitly

OR

Constraints:
• Successful electroweak symmetry breaking corresponds to minimization of effective potential; technically:
 3 extra tadpole equations linear in B_i

• Results from neutrino oscillation data (2 mass differences, 3 mixing angles) fix 5 bilinear parameters (ϵ_i, ν_i)

• Remaining parameter should be of the same order as the others
Signal channel/ SUSY background

Calculation of invariant mass of μ and τ

p_T distribution of neutralinos:

$\Delta R_{\mu\tau}$ distribution of signal and BG pairs:

\Rightarrow Decay products should be boosted

\Rightarrow Reasonable cut: $\Delta R_{\mu\tau} < 1.2$
Reconstruction of muons

- Figure 1: Distribution of the number of μ^\pm per event.
- Figure 2: Distribution of $\mu^\pm p_T$ (GeV).
- Figure 3: Efficiency and fake rate of muon reconstruction.
- Figure 4: Distribution of $(p_T^{reco} - p_T^{truth})/p_T^{truth}$.
Reconstruction of taus

Truth including leptonic tau decays
Object Selection

Muons:
- combined muon
- $p_T > 10$ GeV
- $|\eta| < 2.7$
- isolation cone $0.2/10$ GeV

Electrons:
- isEm flag: „medium“
- $p_T > 10$ GeV
- $|\eta| < 2.5$ and $|\eta| \notin [1.37,1.52]$

Jets:
- $p_T > 20$ GeV
- $|\eta| < 2.5$

Taus:
- 1 / 3 tracks
- charge = ± 1
- $p_T > 10$ GeV
- $|\eta| < 2.5$ and $|\eta| \notin [1.37,1.52]$
- Likelihood flag: „Loose“

Overlap removal:
- remove electrons within $0.2<\Delta R<0.4$ to a jet
- remove jets within $\Delta R<0.2$ to an electron
- remove jets within $\Delta R<0.4$ to another particle
References

Romao: *Testing Neutrino Parameters at Future Accelerators.*
 arXiv:hep-ph/0211276v1

Hirsch, Díaz, Porod, Romae, Valle: *Neutrino Masses and Mixings from Supersymmetry with Bilinear R-Parity Violation: A Theory for Solar and Atmospheric Neutrino Oscillations.*
 arXiv:hep-ph/0004115v2

Torro, Mitsou, Garcia: *Probing Bilinear R-Parity Violating Supersymmetry in the Muon plus Jets Channel.*
 ATL-COM-PHYS-2009-543

ATLAS Collaboration: ATLAS CSC Note. Supersymmetry Searches with ATLAS