Genome-Wide Off-Target Analysis in CRISPR-Cas9 Modified Mice and Their Offspring

Yan Dong,†,1 Haimei Li,†,1 Liang Zhao,§ Peter Koopman,¶ Feng Zhang,§ and Johnny X. Huang†,§,2

*Gansu Provincial Maternity and Child Care Hospital, 143 North Road, Qilihe District, Lanzhou 730050, China, †School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, China, and §Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia

ORCID IDs: 0000-0002-3489-7421 (L.Z.); 0000-0001-6939-0914 (P.K.); 0000-0003-3595-208X (J.X.H.)

ABSTRACT The emergence of the CRISPR-Cas9 system has triggered a technical revolution in mammalian genome editing. Compared to traditional gene-targeting strategies, CRISPR-Cas9 technology offers a more efficient and cost-effective approach for generating genetically modified animal models. However, off-target cleavage in CRISPR-mediated genome editing is a major concern in the analysis of phenotypes as well as the selection of therapeutic targets. Here, we analyzed whole-genome sequencing (WGS) data from two knock-out (KO) mouse strains generated by using the CRISPR-Cas9 system targeting the Mmd1 and Paqr8 loci. A total of nine individuals were sequenced including two parents, four F1 offspring and three uninjected control mice. Using GATK and bcftools software, we identified two off-target events in the founder mice. The two CRISPR-Cas9-induced off-target events were predictable using Cas-OFFinder and were not passed on to the offspring that we investigated. In addition, our results indicated that the number of CRISPR-Cas9-induced mutations was not statistically distinguishable from the background de novo mutations (DNMs).

CRISPR-Cas systems have become the most powerful tools for genome editing and have been used for the modification of genomes in a wide variety of organisms (Hsu et al. 2014; Doudna and Charpentier 2014; Hwang et al. 2013). Type II CRISPR-Cas9 is the most commonly used genome editing system, involving Cas9 nuclease from Streptococcus pyogenes and a 17-20 nt single guide RNA (sgRNA) complementary to a target site (protospacer) adjacent to a 5'-NGG protospacer adjacent motif (PAM) (Jinek et al. 2012; Mulepati et al. 2014; Shah et al. 2013). However, the possibility of inducing off-target mutations has limited the use of CRISPR-Cas9 technology in research and clinical applications (Cho et al. 2014; Fu et al. 2013; Lessard et al. 2017; Scott and Zhang 2017). Many efforts have been made to minimize the off-target effects of CRISPR-Cas systems by designing high-fidelity nucleases such as eSpCas9 (Slaymaker et al. 2016), SpCas9-HF1 (Kleinstiver et al. 2016), HypaCas9 (Chen et al. 2017), HeFspCas9 (Kulcsár et al. 2017), HiFiCas9 (Vakulskas et al. 2018), Sniper Cas9 (Lee et al. 2018) and EvoCas9 (Casini et al. 2018). It has also been reported that the use of Cas9 nickase (Trevino and Zhang 2014; Shen et al. 2014; Ran et al. 2013) or Cas9 from Streptococcus canis (ScCas9) (Chatterjee et al. 2018) can decrease off-target effects to a certain extent. Furthermore, properly timed addition of Cas9 inhibitors could reduce off-target editing (Harrington et al. 2017; Shin et al. 2017b). A recent report suggested that precise editing mainly depends on the fourth nucleotide upstream of the PAM (Chakrabarti et al. 2019), which could be used in sgRNA design to decrease off-target effects. Nevertheless, the mechanism responsible for CRISPR-Cas-mediated off-target effects remains unclear, and the detection of unintended off-target mutations is of concern.

Unbiased genome-wide methods for detecting DNA double-strand breaks (DSBs) and identifying off-target cleavage events have been established. These methods include BLESS (Crosetto et al. 2013), Digenome-seq (Kim et al. 2015, 2016), GUIDE-seq (Tsai et al. 2015), HTGTS (Frock et al. 2015), CIRCLE-seq (Tsai et al. 2017) and VIVO (Akcakaya et al. 2018). A new method for detecting in vivo off-target effects referred to as DISCOVER-seq...
(Wienert et al. 2019) has been reported recently. Furthermore, the analysis of editing fidelity could be more precise if pedigree-matched controls are included (Iyer et al. 2018). These methods show high sensitivity in detecting CRISPR-Cas9-induced off-target effects; however, they have limitations such as abundant false positives, cellular model restriction and complex experimental designs.

Here, we assessed off-target events in CRISPR-Cas9-modified knock-out (KO) mice and their offspring by whole-genome sequencing (WGS) analysis and using GATK and bcftools. As part of a broader program of studying the regulation of sex development, we are interested in exploring the developmental roles of several candidate genes obtained from an expression screen, including Mmd and Paqr8 (Zhao et al. 2018), via CRISPR-induced loss-of-function experiments, which provide an opportunity for the in-depth study of many technical issues, such as the type and frequency of off-target events in CRISPR experiments. We sequenced nine individual mice, including two CRISPR-Cas9 edited Mmd and Paqr8 KO mice (founders) and their offspring (F1), together with three un.injected controls. We confirmed one CRISPR-Cas9-induced off-target event in each CRISPR-Cas9-edited KO mouse, which all occurred at sites predicted during sgRNA design. We also confirmed that the off-target events identified in parent mice were not passed on to the next generation. More importantly, we found that the frequency of CRISPR-mediated mutagenesis was not statistically distinguishable from the background rate of de novo mutations (DNMs).

MATERIALS AND METHODS

Production of genetically modified mice

SgRNAs were selected using the online CRISPR design tool CRISPOR (Hauessler et al. 2016) (http://crispor.tefor.net/). Genetically modified mice were produced using a previously described method (Yang et al. 2014). In brief, C57BL/6 female mice and CD1 mouse strains were used as embryo donors and foster mothers, respectively. Cas9 protein, tracrRNA and crRNAs were purchased from Integrated DNA Technologies, Singapore. To prepare the Cas9 ribonucleoprotein (RNP), tracrRNA and crRNAs were annealed to form an RNA duplex, which was subsequently mixed with Cas9 protein, followed by incubation at 37°C for 15 min. For microinjection, the Cas9 RNP containing Cas9 protein (30 ng/µL) and RNA duplexes (10 ng/µL each) was injected into the pronuclei of zygotes. The injected zygotes were cultured overnight in EmbryoMax Advanced KSOM medium (Merck Millipore, MR-101-D) at 37°C under 5% CO2 to the two-cell stage. Then, 16-20 two-cell-stage embryos were transferred to the oviducts of pseudopregnant CD1 females at 0.5 dpc. All animal procedures were conducted at the University of Queensland and were approved by the Animal Care Committee at the University of Queensland Animal Ethics Committee.

WGS, variant calling and filtration

Whole-genome sequencing libraries of nine samples were prepared using standard protocols for the Illumina X10 platform, generating 2,492 gigabytes of raw data. The Illumina raw reads were trimmed using Cutadapt (Martin 2011) to remove adaptors and bases of low quality. Then, the cleaned reads were mapped to the reference genome from the Ensembl database (http://ftp.ensembl.org/pub/release-89/) using the BWA mem program (Li and Durbin 2009). Sequence variants were called for all parents and offspring using GATK and bcftools. Variant calling and filtration using GATK software were performed with the UnifiedGenotyper and VariantFiltration commands, respectively. The parameters for single-nucleotide variants (SNVs) were set as follows: QD < 2.0, FS > 40.0, MQ > 40.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, and those for indels were QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0. The bcftools version and command options were as follows: bcftools-1.9 mpileup, bcftools mpileup –Ou, bcftools call –cv, bcftools norm –f, bcftools filter –Oz -s LOWQUAL -e “QUAL < 10 or DP < 10”. Bcftools mpileup configured for sensitivity required a minimum allele fraction of 0.05. Bcftools called between 220,709 and 252,140 variants per sample with a genotyping quality ≥ 10 and a median of 245,475 variants. All variant loci were required to have a total depth of at least 10 reads for further analysis. DNM calling for all variants was performed independently for each parent/offspring. The following criteria were applied to remove false positives and obtain final variants: (1) A minimum variant allele fraction of 5% was set to allow mosaic alleles. (2) Any variant coincident with an allele reported in the C57BL/6NJ strain in the Mouse Genomes Project was removed. (3) All individual repeat tracks within the University of California Santa Cruz (UCSC) RepeatMasker track

![Figure 1](image)

Figure 1 Generation of Mmd and Paqr8 KO alleles using CRISPR/Cas9. (A) Targeting strategy of the Mmd gene. PCR genotyping primers indicated in the scheme produced bands with correct size (525 bp) in targeted mice, but not in WT samples. (B) Targeting strategy of the Paqr8 gene. PCR genotyping primers indicated in the scheme produced a band of 841 bp in KO allele, and 1818 bp in WT allele. Black arrows indicate sgRNAs; Green and Red arrows indicate PCR primers; M, DNA marker; KO, knock-out samples; WT, wild type samples.
RESULTS

Targeting of Mmd and Paqr8 genes

To generate Mmd or Paqr8 KO alleles, we employed a pair of sgRNAs to delete one or more coding exons in each gene. The two sgRNAs (sgRNA-m-5’ and sgRNA-m-3’) used for disrupting the Mmd gene were located in introns 3 and 6, respectively, resulting in the deletion of a 3448 bp region including exons 4-6 (Figure 1A). In the targeting of Paqr8, both sgRNAs (sgRNA-p-5’ and sgRNA-p-3’) were located within exon 3, and a 977 bp region was deleted (Figure 1B).

The Cas9 protein and the sgRNAs targeting Mmd or Paqr8 were coinjected into 40 C57BL/6 mouse zygotes via pronuclear microinjection. The injected zygotes were allowed to develop to the 2-cell stage and were then transferred into 0.5-day postcoital pseudopregnant CD1 females. After natural delivery, a total of three founder mice with the desired mutant alleles were identified using PCR and Sanger sequencing (Table 1). The primers used for PCR genotyping are shown in Supplementary Table 1. We then tested germline transmission by

Table 1 CRISPR/Cas9-mediated gene targeting in C57BL/6 mice

Gene	Injected Zygotes	Transferred 2-cell embryos (Recipients)	Newborns	Mouse with correct mutant allele(s)
Mmd	40	34 (2)	4	2
Paqr8	40	38 (2)	4	1

(approximately 1.2 Gb) were merged, and all variants inside or 1 bp adjacent to merged repeats were removed. (4) Any de novo variant shared by two or more samples was removed.

Data Availability

The WGS data used in this study can be accessed at http://gsa.big.ac.cn/, with the accession of CRA001780. All data necessary for confirming the conclusions of the article are present within the article, figures, tables and supplementary tables. Supplemental material available at FigShare: https://doi.org/10.25387/g3.8137763.

Figure 2 Analysis of CRISPR-Cas9-induced off-target events using WGS. (A) Mice used in this study. (B) WGS coverage. Nine mice were subjected to WGS, yielding a median depth of 101.6X. (C) Work flow of variant calling and filtering. (D) Final SNV counts summary. (E) Final indel counts summary.
backcrossing male founder with wild-type (WT) C57BL/6 females and successfully generated heterozygous F1 individuals.

WGS data analysis

We sequenced the whole genomes of nine mice (Figure 2A), including two founder mice (M01 and P01), four heterozygous mice (M02, M03, P02 and P03) and three uninjected control mice (WT1, WT2 and WT3). Sequencing was performed on the Illumina X10 WGS platform, yielding a median sequencing depth of 101.6x per genome (Figure 2B). We first normalized the WGS data by deleting regions of low-quality reads using Cutadapt software, setting the threshold at 30 (Martin 2011). Unclear reads and fragments of less than 60 bp were also deleted from the data. After data processing, we acquired an average of 241.32 GB of clean data for each sample. The work flow of variant calling and filtering is indicated in Figure 2C. We performed variant calling using both GATK (UnifiedGenotyper and VariantFilteruration) software (McKenna et al. 2010) and bcftools (mpileup and bcftools call) (Li 2011), resulting in median values of 240,156 variants per sample (129,970 SNVs/110,186 indels) and 238,913 variants per sample (127,508 SNVs/111,405 indels), respectively (Table 2). We then filtered the high-quality calls using reference mouse genome GRCm38 (Ensembl), the UCSC database and the International Mouse Phenotyping Consortium (IMPC) database for all samples, removing repeats and coincident regions. After visual inspection of the filtered variants, false positives were removed, and candidate DNMs for each sample were acquired (Table 2). As a result, median values of 1020 candidate DNMs (708 SNVs/312 indels) and 470 candidate DNMs (312 SNVs/158 indels) were obtained using the GATK method and bcftools, respectively. Furthermore, we compared the candidate DNMs of M01 and P01 mice to those of three WT mice and removed coincident mutations. Similarly, in the case of F1 offspring mice (M02, M03, P02 and P03), we removed the coincident mutations found in WT mice. Final SNV and indel counts were then obtained (Figure 2D and 2E). As a result, the median number of final SNVs was 141, and the median number of final indels was 11 (Table 2).

Statistical analysis of variants from KO and WT samples

We next conducted a Kruskal-Wallis Rank test using the candidate and final variant counts (Table 3). The results showed no significant differences between the Mmd, Paqr8 and WT groups ($P = 0.1499$ and $P = 0.6701$ for candidate SNV counts and indel counts, respectively; $P = 0.0181$ and $P = 0.2881$ for final SNV counts and indel counts, respectively). Additionally, a Wilcoxon rank test was performed to identify significant differences between the CRISPR-Cas9 edited groups (Table 3). The results showed no significant difference between the two groups.

Table 2 Summary of high-quality variant counts, filtered DNMs and final variants

Mouse sample	Treatment Group	Relationship	Quality passed variants (GATK)	Candidate de novo mutations (GATK)	Candidate de novo mutations (bcftools)	Final SNVs	Final Indels
M01	Cas9 RNP	Parent	129169 113307	130516 117545	647 301	141 21	
M02	Offspring		128666 116517	126096 123203	644 231	37 1	
M03	Offspring		130771 114722	127508 120029	644 229	28 3	
P01	Cas9 RNP	Parent	130152 115350	135322 116818	708 312	155 12	
P02	Offspring		128514 110186	126265 11366	392 221	46 5	
P03	Offspring		129970 102837	126670 94039	399 162	45 4	
WT1			130319 109723	134782 110693	1447 439	200 23	
WT2			128871 109005	124798 109253	935 320	168 11	
WT3			130665 112541	131262 111405	1064 385	188 18	
Median			129970 110186	127508 111405	647 301	141 11	

Table 3 Statistical analysis of final variant counts

Groups compared (mouse number)	Value compared	Test	Result	Null Hypothesis	Reject Null Hypothesis
Mmd(3), Paqr8(3), WT (3)	Candidate SNV	Kruskal-Wallis Rank Sum	(G) chi-squared = 5.4222, df = 2, p-value = 0.06646	No significant difference in treatment group means	No
	Candidate indel counts	Kruskal-Wallis Rank Sum	(B) chi-squared = 5.6471, df = 2, p-value = 0.0594	No significant difference in treatment group means	No
	Final SNV	Kruskal-Wallis Rank Sum	(G) chi-squared = 3.8222, df = 2, p-value = 0.1479	No significant difference in treatment group means	No
	Final indels	Kruskal-Wallis Rank Sum	(B) chi-squared = 5.6, df = 2, p-value = 0.06081	No significant difference in treatment group means	No
Mmd(3), Paqr8(3)	Final SNV	Wilcoxon Rank Sum	W = 2, p-value = 0.4	No significant difference in treatment group means	No
	Final indel	Wilcoxon Rank Sum	W = 3, p-value = 0.7	No significant difference in treatment group means	No
Determination of Cas9-induced off-target effects

To investigate whether our strategy can identify Cas9-induced off-target effects, we compared the final variants with the expected off-target effects for each sgRNA predicted by Cas-OFFinder software (Bae et al. 2014). A total of 114 off-target sites were predicted for the targeting of the *Mmd* gene (31 and 83 for sgRNA-m-5' and sgRNA-m-3', respectively), while 163 loci were predicted for the *Paqr8* gene (55 and 111 for sgRNA-p-5' and sgRNA-p-3', respectively) (Supplementary Table 1). We identified one indel in each founder mouse (M01 and P01), which was shown by both our final variants and the predicted lists of Cas-OFFinder, indicating real Cas9-induced off-target events. The indels were located on chr14 and chr2 and were generated by sgRNA-m-3' and sgRNA-p-5', respectively (Table 4). These mutations might be filtered out among the final variants of the offspring mice using our filtering strategy. Thus, we performed PCR verification and Sanger sequencing to confirm the off-target mutations in the offspring mice. We did not find those mutations in M02, M03, P02 and P03, indicating that the off-target mutant alleles were not passed on to the F1 mice that we inspected.

DISCUSSION

We generated *Mmd* and *Paqr8* KO mouse strains using the CRISPR-Cas9 system. To increase the targeting efficiency, we applied a two-sgRNA system with the aim of deleting multiple exons of the *Mmd* gene and part of exon 1 of the *Paqr8* gene. We performed pronuclear microinjection of the Cas9 protein in our experiments, which may contribute to minimizing off-target effects because the protein can be degraded a few hours after microinjection. We obtained four newborns from 40 injected zygotes for each strain, with up to 50% of the newborn mice harboring biallelic mutations in the targeted genes, suggesting that the two-sgRNA system is highly efficient in generating KO mice. However, the use of two sgRNAs may increase Cas9-induced off-target events. Although no unexpected phenotypes were observed in the founder mice, we conducted WGS analysis to identify off-target sites.

The mechanism responsible for Cas9-induced off-target effects could be highly related to the tolerance of sgRNA mismatches, especially the seed sequence of the sgRNAs, which is the 6-11 nt region immediately upstream of the PAM sequence (Zhang et al. 2015; Shin et al. 2017a). Moreover, GC contents and the positions of cytosine and adenine are suggested to contribute to Cas9-induced off-target effects (Zhang et al. 2015). Thus, most CRISPR design tools score sgRNAs based on the number of nucleotide mismatches, the position and the distance to the PAM, providing potential off-target sites predicted by algorithms. A recent study presented a binding energy model for Cas9 RNP in which energy parameters were introduced into sgRNA design to increase specificity (Alkan et al. 2018). Nevertheless, there could be other factors involved in off-target cleavage that have not yet been incorporated into current algorithms. In our study, although the two confirmed off-target sites were both predicted by Cas-OFFinder, there is still a lack of evidence showing the accuracy of current algorithms.

Previous studies have addressed concerns by using WGS for detecting DNMs, which may represent mutations introduced by the CRISPR-Cas9 system (Iyer et al. 2015; Mianné et al. 2016). To overcome the defects of studies using only strain-matched controls, pedigree-matched controls were introduced for the analysis of off-target events (Iyer et al. 2018). Furthermore, a new method referred to as GOTI (Genome-wide Off-target analysis by Two-cell embryo Injection) was developed to detect off-target mutations (Zuo et al. 2019). However, these methods require the sequencing of all parents to establish pedigree trees or to perform microinjection at the two-cell stage. In this study, we sequenced the whole genomes of one parent and two offspring from each strain, together with three uninjected mice. We found that the data obtained from those mice were sufficient to analyze off-target events when two widely used analysis software platforms, GATK and bcftools, are used. Variant calling was independently performed using each software platform, and high-quality variants were then filtered using the UCSC and IMPC databases, resulting in candidate DNMs. Final variants were then obtained by comparing the parents and/or controls using the criteria mentioned in the section Materials and Methods. Two off-target sites were successfully identified during the analysis, indicating that a few background controls together with a partial pedigree tree may fulfill the detection of off-target sites induced by CRISPR-Cas9. We have shared our WGS data at Genome Sequence Archive (see Data Availability), which can be utilized by other researchers.

Intriguingly, statistical analysis showed that there was no significant difference between Cas9-induced mutagenesis and background DNMs, which is consistent with previous studies (Iyer et al. 2018; Akcakaya et al. 2018). In addition, off-target and on-target mutations could segregate through meiosis and homologous recombination, especially when they are located on different chromosomes. The two off-target effects identified in the current study were located on chr14 and chr2, whereas *Mmd* and *Paqr8* are located on chr11 and chr1, respectively. Although the off-target mutations are heritable, we did not find them in the F1 mice that we examined. Nevertheless, it is highly likely that a two-sgRNA system may increase Cas9-induced off-target effects; therefore, it is not recommended to use more than two sgRNAs unless large deletions are being generated.

LITERATURE CITED

Akcakaya, P., M. L. Bobbin, J. A. Guo, J. Malagon-Lopez, K. Clement et al., 2018 In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561: 416–419. https://doi.org/10.1038/s41586-018-0500-9

Alkan, F., A. Wenzel, C. Anthon, J. H. Havgaard, and J. Gorodkin, 2018 CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome Biol. 19: 177. https://doi.org/10.1186/s13059-018-1534-x

Bae, S., J. Park, and J. S. Kim, 2014 Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30: 1473–1475. https://doi.org/10.1093/bioinformatics/btu048

Casini, A., M. Olivieri, G. Petris, C. Montagna, G. Reginato et al., 2018 A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 36: 265–271. https://doi.org/10.1038/nbt.4066

Chakrabarti, A. M., T. Henser-Brownhill, J. Monserrat, A. R. Poetsch, N. M. Luscombe et al., 2019 Target-specific precision of CRISPR-mediated
Kim, D., S. Bae, J. Park, E. Kim, S. Kim, S. Bae, J. Y. Ho, E. Kii et al., 2013 Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10: 361–365. https://doi.org/10.1038/nmeth.2408

Doudna, J. A., and E. Charpentier, 2014 Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096

Frock, R. L., J. Hu, R. M. Meyers, Y. J. Ho, E. Kii et al., 2015 Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33: 179–186. https://doi.org/10.1038/nbt.3101

Fu, Y., J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon et al., 2013 High-frequency off-target mutagenesis induced by CRISPR-Cas9 nucleases in human cells. Nat. Biotechnol. 31: 822–826. https://doi.org/10.1038/nbt.2623

Haeussler, M., K. Schonig, H. Eckert, A. Eschstruth, J. Mianne et al., 2016 Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17: 148. https://doi.org/10.1186/s13059-016-1012-2

Harrington, L. B., K. W. Doxzen, E. Ma, J. J. Liu, G. J. Knott, et al., 2017 A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170: 1224–1233 e15.

Hsu, P. D., E. S. Lander, and F. Zhang, 2014 Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

Hwang, W. Y., Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai et al., 2013 Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31: 227–229. https://doi.org/10.1038/nbt.2501

Iyer, V., K. Boroviak, M. Thomas, B. Doe, L. Riva et al., 2018 No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet. 14: e1007503. https://doi.org/10.1371/journal.pgen.1007503

Iyer, V., B. Shen, W. Zhang, A. Hodgkins, T. Keane et al., 2015 Off-target mutations are rare in Cas9-modified mice. Nat. Methods 12: 479. https://doi.org/10.1038/nmeth.3408

Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., 2012 A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. https://doi.org/10.1126/science.1225829

Kim, D., S. Bae, J. Park, E. Kim, S. Kim et al., 2015 Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12: 237–243, 1 p following 243.

Kim, D., S. Kim, S. Kim, J. Park, and J. S. Kim, 2016 Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 26: 406–415. https://doi.org/10.1101/gr.195988.115

Kleinstiver, B. P., V. Pattanayak, M. S. Prew, S. Q. Tsai, N. T. Nguyen et al., 2016 High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529: 490–495. https://doi.org/10.1038/nature16526

Kulcsár, P. I., A. Talas, K. Huszar, Z. Ligeti, E. Toth et al., 2017 Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 18: 190. https://doi.org/10.1186/s13059-017-1318-8

Lee, J. K., E. Jeong, J. Lee, M. Jung, E. Shin et al., 2018 Directed evolution of CRISPR-Cas9 to increase its specificity. Nat. Commun. 9: 3048. https://doi.org/10.1038/s41467-018-05477-x

Lessard, S., L. Francioli, J. Alfoldi, J. C. Tardif, P. T. Ellinor, et al., 2017 Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc. Natl. Acad. Sci. 114: E11257–E11266. https://doi.org/10.1073/pnas.1714640114

Li, H., 2011 A statistical framework for SNP calling, mutation discovery, association mapping and population genetic parameter estimation from sequencing data. Bioinformatics 27: 2987–2993. https://doi.org/10.1093/bioinformatics/btr509

Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Martin, M., 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBNet. Journal 17: 10–12. https://doi.org/10.14806/ej.17.1.200

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., 2010 The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20: 1297–1303. https://doi.org/10.1101/gr.107524.110

Mianné, J., L. Chessum, S. Kumar, C. Aguilar, G. Codner et al., 2016 Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med. 8: 16. https://doi.org/10.1186/s13059-016-0273-4

Mulepati, S., A. Heroux, and S. Bailey, 2014 Structural biology. crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345: 1479–1484. https://doi.org/10.1126/science.1256996

Ran, F. A., P. D. Hsu, C. Y. Lin, S. J. Gootenberg, S. Konermann et al., 2013 Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

Scott, D. A., and F. Zhang, 2017 Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat. Med. 23: 1095–1101. https://doi.org/10.1038/nmm.4377

Shah, S. A., S. Erdmann, F. J. Mojica, and R. A. Garrett, 2013 Protoscaler recognition motifs: mixed identities and functional diversity. RNA Biol. 10: 891–899. https://doi.org/10.4161/rna.23764

Shen, B., W. Zhang, J. Zhang, J. Zhou, J. Wang et al., 2014 Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11: 399–402. https://doi.org/10.1038/nmeth.2857

Shin, H. Y., C. Wang, K. H. Lee, K. H. Yoo, X. Zeng et al., 2017a CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat. Commun. 8: 15464. https://doi.org/10.1038/ncomms15464

Shin, J. F., Jiang, J. J. Liu, N. L. Bray, B. J. Rauch et al., 2017b Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3: e1701620. https://doi.org/10.1126/sciadv.1701620

Slaymaker, I. M., L. Gao, B. Zetsche, D. A. Scott, W. X. Yan et al., 2017a CRISPR-based therapeutic genome editing. Nat. Med. 23: 1095–1101. https://doi.org/10.1038/nmm.4377

 Trevino, A. E., and F. Zhang, 2014 Genome editing using Cas9 nickases. Methods Enzymol. 546: 161–174. https://doi.org/10.1016/B978-0-12-801185-0-00008-8

Tsi, S. Q., N. T. Nguyen, J. Malagon-Lopez, V. V. Topkar, M. J. Aryee et al., 2017a CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14: 607–614. https://doi.org/10.1038/nmeth.4278

Vakulskas, C. A., D. P. Dever, G. R. Rettig, R. Turk, A. M. Jacob et al., 2018 A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24: 1216–1224. https://doi.org/10.1038/s41591-018-0137-0
Wienert, B., S. K. Wyman, C. D. Richardson, C. D. Yeh, P. Akcakaya et al., 2019 Unbiased detection of CRISPR off-targets in vivo using DISCOVER-seq. Science 364: 286–289.

Yang, H., H. Wang, and R. Jaenisch, 2014 Generating genetically modified mice using CRISPR/Cas-mediating genome engineering. Nat. Protoc. 9: 1956–1968. https://doi.org/10.1038/nprot.2014.134

Zhang, X. H., L. Y. Tee, X. G. Wang, Q. S. Huang, and S. H. Yang, 2015 Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4: e264. https://doi.org/10.1038/mtna.2015.37

Zhao, L., C. Wang, M. L. Lehman, M. He, J. An et al., 2018 Transcriptomic analysis of mRNA expression and alternative splicing during mouse sex determination. Mol. Cell. Endocrinol. 478: 84–96. https://doi.org/10.1016/j.mce.2018.07.010

Zuo, E., Y. Sun, W. Wei, T. Yuan, W. Ying et al., 2019 Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364: 289–292. https://doi.org/10.1126/science.aav9973

Communicating editor: A. McCallion