Galectins in the Pathogenesis of Rheumatoid Arthritis

Song Li¹, Yangsheng Yu¹, Christopher D Koehn², Zhixin Zhang¹,³ and Kaihong Su¹,²,³

¹Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
²Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
³The Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA

Abstract

Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease characterized by synovial inflammation and hyperplasia. Multiple proteins, cells, and pathways have been identified to contribute to the pathogenesis of RA. Galectins are a group of lectins that bind to β-galactoside carbohydrates on the cell surface and in the extracellular matrix. They are expressed in a wide variety of tissues and organs with the highest expression in the immune system. Galectins are potent immune regulators and modulate a range of pathological processes, such as inflammation, autoimmunity, and cancer. Accumulated evidence shows that several family members of galectins play positive or negative roles in the disease development of RA, through their effects on T and B lymphocytes, myeloid lineage cells, and fibroblast-like synoviocytes. In this review, we will summarize the function of different galectins in immune modulation and their distinct roles in RA pathogenesis.

Keywords: Rheumatoid arthritis; Galectin; Inflammation; Pathogenesis; T cells; Fibroblast-like synoviocytes

Introduction

Rheumatoid arthritis (RA) is a complex and common systemic autoimmune disease, characterized by synovial inflammation and hyperplasia, cartilage and bone destruction, and extra-synovial symptoms [1]. The prevalence of RA in the adult population is estimated at 1% worldwide and is three times higher in women than in men [2]. RA principally attacks flexible joints symmetrically, progressing from distal joints to proximal joints [3]. RA inflammation can also diffuse into extra-synovial tissues and organs, leading to a higher risk of developing cardiovascular diseases, lymphoma, and lung cancer [2, 4, 5]. The diagnosis of clinical RA is based on several criteria, including physical symptoms, joint radiographs, and serological tests [6]. Treatment strategies for RA patients include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biological agents, such as blocking antibodies for tumor necrosis factor alpha (TNFαs) and interleukin-6 (IL-6) [2]. Although these drugs can relieve symptoms and delay disease progression, none of them provide a cure for RA nor have consistent efficacy in all patients.

The etiology of RA involves a complex interplay of multiple proteins, cells, and pathways. Among those, galectins have recently emerged as an important group of proteins which modulate immune activation and inflammation [7]. Galectins are the lectin family members that bind to β-galactoside carbohydrates. They are widely expressed in different tissues and organs with the highest expression in the immune system [8]. Through binding to their receptors, galectins mediate fundamental intra- and inter-cellular signaling as well as cell-extracellular matrix (ECM) interactions [8]. As potent immune regulators, galectins play an important role in a number of pathological processes including inflammation, autoimmunity, fibrosis, and cancer [7].

In this review, we will summarize the current understanding of the role of different galectins in RA, based on a comprehensive literature review of published empirical review. The electronic databases of PubMed/Medline, Embase, EBSCO, SCOPUS, and Cochrane Library were searched using key words “arthritis” and “galectin” in all fields to the cut-off date of September 16, 2013. Over 100 manuscripts in English language were identified in the search. Among those, thirty research manuscripts and one conference abstract provide direct evidence regarding the pathogenic role and therapeutic potential of galectins in RA (Table 1). Herein, we will briefly review the pathogenic mechanisms of RA and discuss in detail the role of different galectins in RA pathogenesis and therapeutics.

Pathogenesis of RA

Although RA was first described more than 200 years ago, its etiology has not been completely characterized. Both genetic and environmental factors contribute to the development of RA. To date, more than 30 genetic loci have been found to contribute to RA susceptibility and disease severity [9-11]. Many of those genetic loci are related to immune cell activation, such as MHC class I allele HLA-DRB1 and gene variants of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and protein-tyrosine-phosphatase nonreceptor type 22 (PTPN22). Environmental risk factors include bacterial and viral infections, smoking, and alcohol consumption [11,12]. Gene-environment interactions can also synergistically increase the risk of developing RA in certain subgroups of people. For example, a combination of smoking and the HLA-DRB1 allele increases the risk for RA by 21-fold in the anti-cyclic citrullinated peptide antibody (ACPA) positive population [13].

A major characteristic of RA is the infiltration of multiple leukocytes into the joints, including B cells, T cells, macrophages, dendritic cells, and neutrophils. Infiltrated leukocytes form ectopic germinal centers and drive adaptive immune responses in the RA joints. B cells can locally produce autoantibodies, including ACPA [14, 15]. T cells play a central role in mediating joint damage by driving the activation of other effector cells [16,17]. Although CD4 T cells are the dominant T cell

*Corresponding author: Kaihong Su, Ph.D., Associate Professor, Department of Pathology and Microbiology, University of Nebraska Medical Center, 987660 Nebraska Medical Center, Omaha, NE 68198-7660, USA, Fax: 402-559-7716, E-mail: ksu@unmc.edu

Received August 26, 2013; Accepted September 23, 2013; Published September 30, 2013

Citation: Li S, Yu Y, Koehn CD, Zhang Z, Su K (2013) Galectins in the Pathogenesis of Rheumatoid Arthritis. J Clin Cell Immunol 4: 164. doi:10.4172/2155-9899.1000164

Copyright: © 2013 Li S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Over-expression of galectin-3 was detected in RA, suggesting a pathogenic role and therapeutic potential of galectins in RA. Galectin-1 is involved in inhibiting IL-2 secretion [55]. Galectin-1 deficient mice were more susceptible to CIA [70]. Galectin-9 deficiency promoted Th1 and Th17; and inhibited Treg differentiation, rendering susceptibility to CIA [103]. Galectin-9 induced apoptosis of FLS from RA patients in cell culture [104]. Galectin-9 ameliorated immune-complex-induced arthritis by regulating the expression profile of macrophage Fc receptors [118]. Galectin-3 deficiency mice displayed reduced disease severity of antigen-induced arthritis [94]. Another characteristic of RA is the activation of local fibroblast-like synoviocytes (FLS) [26]. In RA joints, resident FLS show a transformed phenotype for interacting with immune cells [27]. In addition, RA FLS release proteolytic enzymes such as matrix metalloproteinases (MMP), cathepsins, and plasmins. Thus, it has been suggested that FLS are the main cells responsible for the invasion and destruction of cartilage and bones, promotion of angiogenesis, and facilitation of osteoclastogenesis [27].

Besides the cells mentioned above, numerous proteins have been shown to play a role in RA pathogenesis. Some of them have been successfully adapted in clinical diagnosis and therapies for RA, such as ACPA, TNFα, IL-1, and IL-6 [2]. The family of galectins is involved in a wide range of biological processes. Their immune modulating role has drawn an increasing attention in the field of arthritis research. Our discussion will now turn to the function of galectins and their potential role in RA pathogenesis and therapies.

The Family of Galectins

Galectins are a group of lectins that specifically bind to β-galactoside carbohydrates and share significant sequence similarity in their carbohydrate-recognition domains (CRDs) [8]. The galectin genes are evolutionarily conserved and can be found in many organisms, including viruses, sponges, fungi, plants, nematodes, insects, and vertebrates [8]. Currently there are at least 15 mammalian galectins, all of which contain one or two CRDs of about 130 amino acids each. Based on the CRD organization, galectins are divided into three subfamilies (Figure 1, panel A). Galectin-1, -2, -5, -7, -10, -11, -13, and -14 contain on the CRD organization, galectins are divided into three subfamilies (Figure 1, panel A). Galectin-1, -2, -5, -7, -10, -11, -13, and -14 contain only one CRD and are classified as the "proto type". In contrast, the

Galectin	Animal studies	Human studies	Therapeutic potential
Galectin-1	Administration of galectin-1 suppressed CIA by enhancing T cell apoptosis and inhibiting IL-2 secretion [55]. Galectin-1 limited neutrophil recruitment to inflammatory tissue by in vitro experiment and galectin-1-deficient mice [69]. Galectin-1 deficient mice were more susceptible to CIA [70].	Down-regulated expression of galectin-1 in the synovial fluid from RA/JIA patients [71,75,74].	Administration of galectin-1 or its derivates ameliorated CIA [55,75,76,79]. Galectin-1 induced chondrogenic differentiation of MSCs from RA bone marrow [80].
Galectin-3	Over-expression of galectin-3 was detected in CIA [93]. Galectin-3 deficient mice displayed reduced disease severity of antigen-induced arthritis [94].	Increased expression of galectin-3 in sera and synovial fluid in RA/JIA patients [71,72,91,95-97]. A galectin-3 gene allele (LGALS3 +292C) is more prevalent in RA patients [99]. RA patients had a higher number of galectin-3-expressing FLS [100]. Galectin-3 induced FLS to secret a set of pro-inflammatory cytokines and chemokines [101].	Intra-articular lentivirus-mediated delivery of galectin-3 shRNA ameliorated CIA in rats [75]. Downregulation of galectin-3 inhibited IL-6 secretion in FLSs from RA synovium [102].
Galectin-9	Galectin-9 deficiency promoted Th1 and Th17; and inhibited Treg differentiation, rendering susceptibility to CIA [103]. Galectin-9 induced apoptosis of FLS and down-regulated pro-inflammatory cytokine production [104]. Galectin-9 ameliorated immune-complex-induced arthritis by regulating the expression profile of macrophage Fc receptors [118].	Galectin-9 induced apoptosis of FLS from RA patients in cell culture [104]. Decreased expression of galectin-9 was detected in RA patients with high disease activities [119]. Down-regulated expression of Tim-3 led to defective galectin-9-induced apoptosis of CD4+ T cells [120].	Administration of galectin-9 ameliorated CIA or immune complex-induced arthritis [104,118].
Galectin-2	Galectin-2 3279C/T gene polymorphism is correlated with diastolic blood pressure in patients with RA [123].		
Galectin-8	CD44vRA, a CD44 variant prevalent in RA patients, can neutralize the galectin-8 induced apoptosis of synoviocytes [125]. Autoantibodies against galectin-8 were detected in the sera of about 20% of RA patients [126,127]. A galectin-8 gene variant is prevalent in RA patients and associates with the early onset of RA [128].		
“tandem-repeat type” (galectin-4, -6, -8, -9, and -12) have two separate CRDs connected by non-conserved amino acid sequences. Galectin-3 is the only member of the “chimeric type” and contains one CRD and a non-lectin region of about 120 residues at the N-terminal of CRD [8]. Some galectins can self-dimerize or oligomerize, forming bivalent or multivalent complexes for stronger signaling [28,29] (Figure 1, panel A).

Galectins have been detected in numerous tissues and organs. Their distributions can be ubiquitous (e.g. galectin-1, -3, -8 and -9) or limited to specific tissue types (e.g. galectin-2 and -4) [30]. Due to the absence of the classical signal sequence for insertion into the endoplasmic reticulum (ER), galectins primarily localize intracellularly [31]. However, some types of galectins can be found on the cell surface (e.g. galectin-9) or secreted through a non-classical ER/Golgi-independent pathway to the extracellular compartment (e.g. galectin-1 and -3) [32,33].

Function of Galectins

The sugar-binding specificity and affinity vary among different members of the galectin family, implicating their specialized and diversified functions [34]. Each galectin recognizes a set of glycoproteins with a particular oligosaccharide sequence. The variety of binding partners and wide distribution of galectins allow them to function in multiple biological reactions, including mRNA splicing (e.g. galectin-1 and -3) [35,36], cell apoptosis (e.g. galectin-3, -7, -9, -12) [37-39], cell cycle regulation (e.g. galectin-3 and -12) [40,41], cell activation (e.g. galectin-3) [42,43], cell adhesion and migration (e.g. galectin-1, -2, -3, -4, -8 and -9) [44], and cell differentiation (e.g. galectin-3, -9, -10) [45]. Pathologically, galectins have been linked to a number of diseases including cancer, cardiovascular disease, liver fibrogenesis, asthma, and RA [7].

The role of galectins in RA varies among different members of the galectin family, implicating their potential function in RA. We will now discuss each of the five types of galectins regarding to their potential function in RA.

Galectin-1 in RA

Overview of galectin-1

Galectin-1 is a “proto type” galectin and can form homodimers by cross-linking [46,47]. It is highly expressed by immune-related cells such as lymphoid stromal cells, macrophages [48], T cells [49], and endothelial cells [50]. In most studies, galectin-1 has been shown to be immunosuppressive and anti-inflammatory. The main receptors of galectin-1 on the T cell surface are CD43 and CD45 [51,52]. Through surface receptor binding, galectin-1 regulates negative selection of T cells in the thymus [51,53], induces Th1 and Th17 cell apoptosis [54], and promotes the shift from Th1 to Th2 polarized immune responses [55]. Treatment of T cells with galectin-1 changes the cytokine profile, with decreased pro-inflammatory cytokines such as TNFα, IL-1β, IL-2, and IFNγ [56,57] and increased anti-inflammatory cytokines such as IL-10 [58]. For B cells, galectin-1 negatively regulates cell proliferation and BCR-mediated signal transduction [59]. Galectin-1 also regulates innate immune cell activation. Treatment of galectin-1 dramatically reduced neutrophil infiltration, mast cell degranulation [60], and inducible nitric oxide synthase (iNOS) expression in macrophages [61]. The anti-inflammatory activity of galectin-1 has also been suggested in various experimental models of inflammatory or autoimmune diseases including experimental autoimmune uveitis [62], myasthenia gravis [63], graft-versus-host disease [64], experimental autoimmune encephalomyelitis [65], experimental colitis [66], diabetes [67], concanavalin A-induced hepatitis [68], and collagen-induced arthritis [55].

Galectin-1 in arthritis animal models

The link between galectin-1 and RA was first reported by Rabinovich et al. in 1999 using collagen-induced arthritis (CIA) mouse model [55]. A single injection of fibroblasts engineered to secrete mouse galectin-1...
or daily administration of 100 µg of recombinant human galectin-1 in DBA/1 mice was sufficient to suppress the overall clinical and histopathological manifestations of CIA [55]. Galectin-1 treatment also reduced the anti–collagen antibody levels and skewed the cytokine profile toward a type-2 polarized immune reaction [55]. Further investigation into the mechanism revealed that galectin-1 treatment enhanced the susceptibility of T cells to antigen-induced apoptosis, increased T cell adhesion to extracellular matrix, and also inhibited IL-2 secretion from collagen-specific T cell hybridomas [54,56,57]. In addition, galectin-1 functions to limit neutrophil recruitment to TNF-treated endothelium; and leukocyte adhesion and emigration were significantly increased in galectin-1-deficient mice inflamed with IL-1β [69]. In a more recent study, galectin-1-deficient mice exhibited increased susceptibility to CIA, with earlier onset of arthritis and more severe manifestations than the wild type mice [70]. These studies further demonstrated the inhibitory function of galectin-1 in the development of arthritis and the disease severity in animal models.

Galectin-1 in RA patients

In human patients, in situ immunohistochemistry showed remarkably reduced expression of galectin-1 in synovial tissue from patients with long duration of juvenile idiopathic arthritis (JIA) [71]. Reduced expression of galectin-1 may lead to defective mononuclear cell apoptosis in JIA patients [71]. Furthermore, expression of galectin-1 has never been found at the sites of cartilage invasion in RA [72,73]. Although the plasma levels of galectin-1 are comparable between RA patients and healthy controls, concentration of galectin-1 in synovial fluid (SF) is significantly decreased [74]. The reduced SF galectin-1 levels correlate to the increased levels of anti-galectin-1 autoantibodies and anti-cyclic citrullinated peptide (CCP) antibodies in RA patients [74]. These clinical studies confirmed the potential involvement of galectin-1 in RA pathogenesis, and provided a rational for using synovial galectin-1 as a biomarker for RA prognosis.

Therapeutic potential of galectin-1

Based on the immunomodulatory effects of galectin-1 in RA, there has been much interest in designing galectin-1 derivatives as anti-RA drugs. In one study, intra-articular lentiviral vectors encoding galectin-1 were injected into rats with CIA [75]. This treatment significantly ameliorated CIA, measured by articular index, radiographic, and histological scores; T-cell infiltrates; and microvessel density in the ankle joints [75]. High frequencies of antigen-induced T cell apoptosis were also noticed in the lymph nodes of treated rats [75]. However, the anti-RA activities of galectin-1 require concentrations higher than 7 µM to allow formation of galectin-1 homodimers [76,77]. To overcome this limitation, galectin-1 was conjugated onto gold nanoparticles (Au-Gal1) to form a multivalent structure [78]. Au-Gal1 provided enhanced inhibitory function of galectin-1 in the development of arthritis and the disease severity in animal models.

In summary, galectin-1 plays an inhibitory role in the development of experimental arthritis mainly through the induction of T cell apoptosis and skewed type-2 cytokine response. In human patients, the expression levels of galectin-1 were significantly down-regulated in the synovium of RA and JIA patients and the downregulation of galectin-1 was correlated with the increased anti-CCP titers. In pre-clinical animal studies, administration of galectin-1 or its derivatives ameliorated the antigen-induced arthritis, providing a strong rational for using galectin-1 as anti-RA drugs in the future.

Galectin-3 in RA

Overview of galectin-3

While galectin-1 is a negative regulator of autoimmunity in RA, galectin-3 promotes inflammation in RA. Galectin-3 is the only chimeric type of galectin. It has a long N-terminal domain with proline and glycine-rich repeats connected to one CRD [81]. The N-terminal domain, which is 34% homologous to the collagen-1 chain, is responsible for self-oligomerization, and thus is essential for its biological activity [81]. Galectin-3 exists as monomer in solution, and self-assembles into higher order oligomers in the presence of multivalent carbohydrate ligands [82].

Functionally, galectin-3 is also known as epsilon BP for its IgG-binding activity and as Mac-2, a macrophage surface antigen [81]. By cross-linking cell surface receptors, galectin-3 activates several types of lymphoid and myeloid cells. It increases IL-2 production in T cells [83] and promotes IgE production in B cells [84]. For myeloid-lineage cells, galectin-3 stimulates superoxide release from neutrophils and monocytes [43], potentiates IL-1 production by monocytes [85], and induces 5-hydroxytryptamine (5-HT) release from mast cells [86] and basophils [87]. In addition, galectin-3 can bridge cells and the ECM to promote chemo-attraction and retention of macrophages [88] and neutrophils [89]. In line with its in vitro pro-inflammatory activity, it has been shown that the levels of galectin-3 are elevated in the serum or nidi of patients with inflammatory diseases including RA [72], systemic lupus erythematosus (SLE) [90], Behçet’s disease [91], and systemic sclerosis [92].

Galectin-3 in arthritis animal models

Studies with CIA rats found increased galectin-3 secretion into the plasma over time, which correlated with the disease progression, implicating that galectin-3 promotes the development of experimental arthritis [93]. Recent studies with galectin-3-deficient mice further confirmed the stimulating role of galectin-3 in arthritis [94]. The joint inflammation and bone erosion of antigen-induced arthritis were markedly suppressed in galectin-3-deficient mice as compared with the wild type mice [94]. The reduced arthritis in galectin-3-deficient mice was accompanied by decreased levels of antigen-specific IgG and proinflammatory cytokines including TNFα, IL-6, and IL-17 [94]. Furthermore, an exogenous supply of recombinant galectin-3 restored the reduced arthritis and cytokine production in galectin-3-deficient mice [94]. This study provided the direct evidence that galectin-3 plays a crucial role in the development of arthritis in animal models.

Galectin-3 in RA patients

In human patients, galectin-3 was detected in the synovial tissue of RA and JIA patients, with clear accumulation at the sites of cartilage invasion [71,72,95-97]. The serum levels of galectin-3 were elevated in patients with RA, JIA, Behçet’s disease, or systemic sclerosis [72,97]. Although the increased galectin-3 is not specific for RA, the serum levels of galectin-3 were significantly associated with the C-reactive protein (CRP) levels and the disease activity scores in patients with JIA, suggesting that galectin-3 may be utilized as a biomarker for the disease progression of JIA [98]. In addition, the galectin-3 gene allele (LGAL3S +292C) is more prevalent in RA patients than in healthy controls, indicating that genetic polymorphisms of galectin-3 may influence the susceptibility to RA [99].
In addition to immune cells, FLS in the synovium of RA patients also express galectin-3 at high levels [72,73,95]. While floating FLS only express low levels of galectin-3 [95], adhesion of FLS to cartilage components through CD51/CD61 induces galectin-3 expression [100]. In RA patients, about 39% of FLS are cartilage-adhering cells, which is four times more than in osteoarthritis (OA) patients. The increased numbers of adhering FLS contribute to the elevated galectin-3 levels in the RA synovium [100]. Moreover, galectin-3 can induce rheumatoid FLS to secrete a set of pro-inflammatory cytokines and chemokines including IL-6, granulocyte-macrophage colony-stimulating factor (GMCSF), TNF, CXCL8, CCL2, CCL3, and CCL5 [101]. The induction of cytokines and chemokines by galectin-3 appears to involve different signaling pathways. The MAPK-ERK pathway was necessary for cytokine IL-6 production, while phosphatidylinositol 3-kinase (PI3K) was required for chemokine CCL5 induction [101]. These studies using human materials further suggest a promiscuous role of galectin-3 in the pathogenesis of RA.

Therapeutic potential of galectin-3

In concordance with the human and animal studies discussed above, silencing of galectin-3 expression by intra-articular injections of shRNA into rat ankle joints ameliorated the manifestation of CIA, suggesting that downregulation of galectin-3 may be a therapeutic strategy for RA [75]. In addition, using FLS derived from the synovium of RA patients, it has been reported that downregulation of galectin-3 expression by galectin-3 siRNA inhibited spontaneous and LPS-induced secretion of inflammatory cytokine IL-6, further suggesting the potential of targeting galectin-3 in the suppression of joint inflammation [102].

Overall, galectin-3 acts as a positive regulator for inflammation by stimulating pro-inflammatory cytokine/chemokine production and potentiating myeloid lineage cell activation. In animal models, galectin-3 aggravates antigen-induced arthritis. In patients with RA and JIA, the levels of galectin-3 are increased in both serum and synovium. Thus, galectin-3 blockade may provide a novel strategy for the treatment of RA.

Galectin-9 in RA

Overview of galectin-9

Like galectin-1, galectin-9 is anti-inflammatory, as suggested by studies in several disease animal models including CIA [103,104], asthma [105], nephrotoxic serum nephritis [106], diabetic nephropathy [107], and autoimmune encephalitis [108]. Galectin-9 contains two distinct CRDs connected by a linker peptide [109]. Three isoforms of galectin-9 have been reported which differ in the length of the linker peptide: short type (311 AAs), medium type (323 AAs), and long type (355 AAs). Galectin-9 can also form stable dimers or multimers to induce stronger signals [110]. Galectin-9 is expressed by T cells, macrophages, endothelial cells, and fibroblasts and plays an important role in regulating inflammation and immune responses [111-113].

Galectin-9 negatively regulates pro-inflammatory T cell responses. An important cell surface receptor for galectin-9 is T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3). Tim-3 is specifically expressed on CD4+ Th1 cells, CD8+ cytotoxic T cells, and CD11b+ dendritic cells (DC), but not on Th2 cells or macrophages [114-116]. The galectin-9-Tim-3 pathway induces apoptosis of CD4+ Th1 and CD8+ cytotoxic T cells. Blockade of this interaction in vivo results in exacerbated autoimmunity and abrogation of self-tolerance in animal models [117]. Galectin-9 also regulates T cell subset differentiation in vitro and in vivo. In cell culture, treatment with galectin-9 induced the differentiation of naïve T cells to regulatory T cells (Treg) and suppressed the differentiation of Th17 cells [103].

Galectin-9 in arthritis animal models

In mouse models, galectin-9 deficiency led to increased numbers of Th1 and Th17 cells and decreased numbers of Treg cells in the joint, rendering susceptibility to CIA [103]. Conversely, subcutaneous and intraperitoneal delivery of the human stable galectin-9 recombinant proteins decreased the production of proinflammatory cytokine and suppressed the disease symptoms in the CIA mice [103]. Another study by the same group demonstrated that treatment with human stable galectin-9 induced apoptosis of cells in the joints of CIA mice and SCID mice implanted with RA patient synovial tissues [103,104]. Furthermore, galectin-9 was shown to negatively regulate macrophage activation by increasing the expression of immunoinhibitory FcRⅡb and decreasing the expression of immunostimulating FcRⅠ, leading to the suppression of arthritis in an immune complex-induced arthritis mouse model [118].

Galectin-9 in RA patients

Using a cell culture system, stable galectin-9 protein preferentially induced apoptosis and suppressed the proliferation of RA patient-derived FLS [103,104]. In RA patients, decreased galectin-9-Tim-3 signaling has been observed. The levels of Tim-3 expression on CD4+ T cells from RA patients were lower compared to those from healthy controls, leading to blunted galectin-9-mediated apoptosis of CD4+ T cells [119,120]. Another study showed that galectin-9 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) were significantly lower in RA patients with moderate to high disease activity than those with low disease activity [104,119], implicating that galectin-9 may prevent the disease progression of RA.

Therapeutic potential of galectin-9

As discussed in the section of galectin-9 in arthritis animal models, administration of human stable recombinant galectin-9 ameliorated arthritis in CIA and an immune complex-induced arthritis mouse model, assessed by panus formation, inflammatory cell infiltration, and bone/cartilage destruction [103,104]. These studies warrant the development of galectin-9 derivatives with enhanced in vivo stability and efficacy for the treatment of RA.

Taken together, galectin-9 is a negative regulator of arthritis as suggested by both animal and human studies. Galectin-9 plays a key role in T cell differentiation through the galectin-9-Tim-3 pathway. Galectin-9 induces the differentiation of naïve T cells to Treg cells and suppresses the differentiation of proinflammatory Th17 cells. In addition, galectin-9 induces apoptosis of FLS which may prevent synoviocyte hyperproliferation in RA joints. Therefore, up-regulation of galectin-9 and galectin-9-Tim-3 pathway is a promising strategy for the treatment of RA.

While galectin-1, 3, and 9 has been extensively studied regarding their modulating role in inflammation and arthritis, galectin-2 and -8 have been less studied in these aspects. Only a few reports revealed the linkage of galectin-2 and -8 with RA. In the following, we will briefly summarize these findings.

Galectin-2 in RA

Galectin-2 is structurally similar to galectin-1, but has a distinct expression profile which is primarily confined to the gastrointestinal tract [121]. Like galectin-1, galectin-2 induces T cell apoptosis and suppressed colitis in a mouse model [122]. A human genetic study showed that galectin-2 3279C/T gene polymorphism may be independently associated with diastolic blood pressure in patients with RA [123]. These studies indicate that galectin-2 may play a suppressive role in RA, but more confirmative evidence is needed to support this notion.
Galectin-8 in RA

Galectin-8 is a modulator of cell adhesion and cell growth [124]. The soluble form of galectin-8 was detected in the synovium of RA patients at the concentration that can induce apoptosis of synoviocytes [125]. However, the galectin-8-mediated apoptosis of synoviocytes was neutralized by free CD44vRA, a CD44 variant prevalent in RA SF [125]. In another study, function-blocking autoantibodies against galectin-8 were detected in a small percentage (about 20%) of RA patients [126,127]. The blockade of galectin-8 function in RA patients suggests that galectin-8 may play a suppressive role in RA. The potential role of galectin-8 in RA was further supported by a human association study. A single nucleotide polymorphism of galectin-8 that substitutes tyrosine for phenylalanine at position 18 was shown to be more prevalent in RA patients; and also associate with the early onset of RA in a large cohort [128].

Conclusion

RA is a systemic autoimmune disease that involves a complex interplay of a variety of immune-modulating proteins [1]. Increasing amounts of evidence suggest that individual galectins, including galectin-1,-2, -3, -8, and -9, could play positive or negative roles in the pathogenesis of RA. Manipulation of certain types of galectins can suppress or aggravate the disease symptoms in arthritis animal models, indicating the therapeutic potential of galectins for the treatment of RA. Several anti-galectin compounds are under phase 1 or 2 clinical trials for the treatment of fibrosis and cancer. Although there are no ongoing clinical trials targeting galectins for the treatment of RA, we hope that galectin-related anti-inflammatory therapies will be developed in the future as we continue to unravel the specific immunomodulatory functions of individual galectins.

Acknowledgement

Research reported in this publication was supported in part by National Institutes of Health Grants AR059351 (to K.S.), AR048592, AI073174, AI074948, and AI076475 (to Z.Z.) and by a Research Support Fund grant from the Nebraska Institute of Health Grants AR059351 (to K.S.), AR048592, AI073174, AI074948, and AI1076475 (to Z.Z.).

References

1. Molness IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365: 2205-2219.
2. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376: 1094-1108.
3. Khurana R, Beney SM (2005) Clinical aspects of rheumatoid arthritis. Pathophysiology 12: 153-165.
4. Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD, Tanaseescu R (2010) Extra-articular Manifestations in Rheumatoid Arthritis. Maedica (Buchar) 5: 286-291.
5. Westlake SL, Colebatch AN, Baird J, Kiey P, Quinn M, et al. (2010) The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 49: 295-307.
6. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, et al. (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69: 1580-1588.
7. Kyyosov AA, Traber PG (2012) Galectins and disease implications for targeted therapeutics. OUP, USA.
8. Cooper DN, Barondes SH (1999) God must love galectins; he made so many of them. Glycobiology 9: 979-984.
9. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, et al. (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42: 508-514.
10. Barton A, Worthington J (2009) Genetic susceptibility to rheumatoid arthritis: an emerging picture. Arthritis Rheum 61: 1441-1446.
11. Plenge RM (2009) Recent progress in rheumatoid arthritis genetics: one step towards improved patient care. Curr Opin Rheumatol 21: 262-271.
12. Hitchon CA, El-Gabalawy HS (2011) Infection and rheumatoid arthritis: still an open question. Curr Opin Rheumatol 23: 352-357.
13. Klareskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C, et al. (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 54: 38-48.
14. Snir O, Widhe M, Hermansson M, von Spee C, Lindberg J, et al. (2010) Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum 62: 44-52.
15. Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM, et al. (2013) Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med 210: 445-455.
16. Brennan F, Foey A (2002) Cytokine regulation in RA synovial tissue: role of T cell/macrophage contact-dependent interactions. Arthritis Res 4 Suppl 3: S177-S182.
17. Schuricht U, Pfirsichke C, Imler IM, Hückel M, Gajda M, et al. (2008) Interactions of T helper cells with fibroblast-like synoviocytes: up-regulation of matrix metalloproteinases by macrophage migration inhibitory factor from both Th1 and Th2 cells. Arthritis Rheum 58: 3030-3040.
18. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, et al. (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103: 1345-1352.
19. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, et al. (1999) Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42: 963-970.
20. Edwards SW, Hallett MB (1997) Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 18: 320-324.
21. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Immunol 6: 173-182.
22. Bell AL, Magill MK, McKane R, Irvine AE (1995) Human blood and synovial fluid neutrophils cultured in vitro undergo programmed cell death which is promoted by the addition of synovial fluid. Ann Rheum Dis 54: 910-915.
23. Yu Y, Su K (2013). Neutrophil Extracellular Traps and Systemic Lupus Erythematosus. J Clin Cell Immunol 4: 139. doi: 10.4172/2155-9899.1000139
24. Cascão R, Rosário HS, Couto-Carneiro MM, Fonseca JE (2010) Neutrophils in rheumatoid arthritis: More than simple final effectors. Autoimmun Rev 9: 531-535.
25. Kinne RW, Stuhlmueller B, Burmester GR (2007) Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res Ther 9: 224.
26. Müller-Ladner U, Ospelt C, Takagi M, Izumori K, Takahashi H, et al. (2010) The role of neutrophils in rheumatoid synovium. Arthritis Rheum 63: 221-225.
27. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, et al. (1999) Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42: 963-970.
28. Edwards SW, Hallett MB (1997) Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 18: 320-324.
29. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Immunol 6: 173-182.
30. Bell AL, Magill MK, McKane R, Irvine AE (1995) Human blood and synovial fluid neutrophils cultured in vitro undergo programmed cell death which is promoted by the addition of synovial fluid. Ann Rheum Dis 54: 910-915.
31. Yu Y, Su K (2013). Neutrophil Extracellular Traps and Systemic Lupus Erythematosus. J Clin Cell Immunol 4: 139. doi: 10.4172/2155-9899.1000139
54. Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM, et al. (1999) Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 190: 385-398.

55. Rabinovich GA, Ariel A, Hershkovitz R, Hirabayashi J, Kassai K I, et al. (1999) Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97: 100-106.

56. van der Leij J, van den Berg A, Blokzijl T, Harms G, van Goor H, et al. (2004) Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol 204: 511-518.

57. van der Leij J, van den Berg A, Harms G, Eschbach H, Vos H, et al. (2007) Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol Immunol 44: 506-513.

58. Yu X, Siegel R, Roeder RG (2006) Interaction of the B cell-specific transcripational coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation. J Biol Chem 281: 15505-15516.

59. Rabinovich GA, Sotomayor CE, Riera CM, Bianco I, Corea SG (2000) Evidence of a role for galectin-1 in acute inflammation. Eur J Immunol 30: 1331-1339.

60. Corea SG, Sotomayor CE, Aoki MP, Maldonado CA, Rabinovich GA (2003) Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology 13: 119-128.

61. Toscano MA, Comodoro AG, Ilarregui JM, Bianco GA, Liberman A, et al. (2006) Galectin-1 suppresses autoimmunity renal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 176: 6323-6332.

62. Levi G, Tarrab-Hazdai R, Teichberg VI (1983) Prevention and therapy with electrophilic of experimental autoimmunity myasthenia gravis in rabbits. Eur J Immunol 13: 500-507.

63. Baum LG, Blackburn DP, Arias-Magallano S, Nanigian D, Uh SY, et al. (2003) Amelioration of graft versus host disease by galectin-1. Clin Immunol 109: 295-307.

64. Offner H, Celnik B, Bringman TS, Casentini-Borocz D, Nedwin GE, et al. (1990) Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol 28: 177-184.

65. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, et al. (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124: 1381-1394.

66. Perone MJ, Bertera S, Tawadrous ZS, Shufesky WJ, Piganeli JD, et al. (2006) Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J Immunol 177: 5278-5289.

67. Santucci L, Fiorucci S, Camilleri F, Servillo G, Federici B, et al. (2000) Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 31: 399-406.

68. Cooper D, Norling LV, Perrelli M (2008) Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. J Leukoc Biol 83: 1459-1466.

69. Iqbal AJ, Cooper D, Vugler A, Gittens BR, Moore A, et al. (2013) Endogenous galectin-1 exerts tonic inhibition on experimental arthritis. J Immunol 191: 171-177.

70. Harjacek M, Diaz-Cano S, De Miguel M, Wolfe H, Maldonado CA, et al. (2001) Expression of galectins-1 and -3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis. J Rheumatol 28: 1914-1922.

71. Ohshima S, Kuchen S, Seemayer CA, Kyburz D, Hirt A, et al. (2003) Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48: 2788-2795.

72. Dasuri K, Antonovic M, Chen K, Wong K, Standing K, et al. (2004) The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res Ther 6: R161-168.

73. Xibillé-Friedmann D, BustoS Rivera-Bahena C, Rojas-Serrano J, Burgos-Vargas R, Montiel-Hernández JL (2013) A decrease in galectin-1 (Gal-1) levels correlates with an increase in anti-Gal-1 antibodies at the synovial level in patients with rheumatoid arthritis. Scand J Rheumatol 42: 102-107.

74. Wang CR, Shliau AL, Chen SY, Cheng ZS, Li YT, et al. (2010) Intra-articular lentivirus-mediated delivery of galectin-3 shRNA and galectin-1 gene ameliorates collagen-induced arthritis. Gene Ther 17: 1225-1233.
76. Nishi N, Abe A, Iwaki J, Yoshida H, Itoh A, et al. (2008) Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1. Glycobiology 18: 1055-1073.

77. Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 270: 5198-5206.

78. Huang YJ, Shiu AL, Chen SY, Chen YL, Wang CR, et al. (2012) Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur Cell Mater 23: 170-181.

79. Cedeno-Laurient F, Barthel SR, Opperman MJ, Lee DM, Clark RA, et al. (2010) Development of a novel recombinant galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J Immunol 185: 4659-4672.

80. Dudovics V, Kunstár A, Kovács J, Lakatos T, Géher P, et al. (2009) Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: measurements in a microroute system. Cells Tissues Organs 189: 207-317.

81. Dumic J, Dabicel S, Filigel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760: 616-635.

82. Ochiang J, Furbak V, Lukyanov P (2004) Extracellular functions of galectin-3. Glycoconjug J 19: 527-535.

83. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT (1996) Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 148: 1661-1670.

84. Kimata H (2002) Enhancement of IgE production in B cells by neutrophils via galectin-3 in IgE-associated atopic eczema/dermatitis syndrome. Int Arch Allergy Immunol 128: 168-170.

85. Jeng KC, Frigeri LG, Liu FT (1994) An endogenous lectin, galectin-3 (epsilon BMP/Mac-2), potentiates IL-1 production by human monocytes. Immunol Lett 43: 113-116.

86. Frigeri LG, Zuberi RI, Liu FT (1993) Epsilin BMP, a beta-galactoside-binding animal lectin, recognizes IgE receptor (Fc epsilon RI) and activates mast cells. Biochemistry 32: 7644-7649.

87. Zuberi RI, Frigeri LG, Liu FT (1994) Activation of rat basophilic leukemia cells by epsilin BMP, an IgE-binding endogenous lectin. Cell Immunol 156: 1-12.

88. Sano H, Hsu DK, Yu L, Aggar JR, Kuwabara I, et al. (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165: 2156-2164.

89. Kuwabara I, Liu FT (1996) Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156: 3939-3944.

90. Kang EH, Moon KC, Lee EY, Lee YJ, Lee EB, et al. (2009) Renal expression of galectin-3 in systemic lupus erythematosus patients with nephritis. Lupus 18: 22-28.

91. Lee YJ, Kang SW, Song JK, Park JJ, Bae YD, et al. (2007) Serum galectin-3 and galectin-3 binding protein levels in Behçet’s disease and their association with disease activity. Clin Exp Rheumatol 25: 541-45.

92. Taniguchi T, Asano Y, Akamata K, Noda S, Masui Y, et al. (2012) Serum levels of galectin-3 are elevated with disease activity, severity, and progression. Int J Rheum Dis 14: 345-352.

93. Hu CY, Chang SK, Wu CS, Tsai WI, Hsu PN (2011) Galectin-3 gene (LGALS3) +292C allele is a genetic predisposition factor for rheumatoid arthritis in Taiwan. Clin Rheumatol 30: 1227-1233.

94. Neidhart M, Zaucke F, von Knoch R, Jüngel A, Michel BA, et al. (2009) Galectin-3 is induced in rheumatoid arthritis synovial fibroblasts after adhesion to cartilage oligomeric matrix protein. Ann Rheum Dis 64: 419-424.

95. Filer A, Bik M, Parsonage GN, Fitton J, Trebicka E, et al. (2009) Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum 60: 1604-1614.

96. Arad U, Angel-Korman A, Amir S, Tzadok S, Seagal O, et al. (2011) Knockdown of galectin-3 inhibits spontaneous and lipopolysaccharide-induced IL-6 secretion in fibroblast-like synoviocytes. Arthritis Rheum 63: 10. SUPPL. 1.

97. Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, et al. (2008) Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 127: 78-88.

98. Seki M, Sakata KM, Oomizu S, Arikawa T, Sakata A, et al. (2007) Beneficial effect of galectin 9 on rheumatoid arthritis by induction of apoptosis of synovial fibroblasts. Arthritis Rheum 56: 3969-3976.

99. Katoh S, Ishi N, Nobumoto A, Takekita K, Dai SY, et al. (2007) Galectin-9 inhibits CD44-hyaluronan interaction and suppresses a murine model of allergic asthma. Am J Respir Crit Care Med 176: 27-35.

100. Tsuchiyama Y, Wada J, Zhang H, Morita Y, Hiraguchi K, et al. (2000) Efficacy of galectins in the amelioration of nephrotic syndrome nephritis in Wistar Kyoto rats. Kidney Int 58: 1941-1952.

101. Baba M, Wada J, Eguchi J, Hashimoto I, Okada T, et al. (2005) Galectin-9 inhibits glomerular hypertrophy in db/db diabetic mice via cell-cycle-dependent mechanisms. J Am Soc Nephrol 16: 3222-3234.

102. Zhu C, Anderson AC, Schubart A, Xiong H, Imlitila J, et al. (2005) The Tim-3 ligand galectin-9 negatively regulates helper T cell type 1 immunity. Nat Immunol 6: 1245-1252.

103. Türeci O, Schmitt H, Fadile N, Pfreundschuh M, Sahin U (1997) Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin's disease. J Clin Immunol 17: 423-432.

104. Miyashita N, Nishi N, Abe H, Kashio Y, Shinonaga R, et al. (2007) Carbohydrate-recognition domains of galectin-9 are involved in intercellular interaction with galectin-9 itself and other members of the galectin family. Glycobiology 17: 423-432.

105. Matsumoto R, Matsumoto H, Seki M, Hata M, Asano Y, et al. (1998) Human ecalactin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes. J Biol Chem 273: 16976-16984.

106. Asakura H, Kashio Y, Nakamura K, Seki M, Dai S, et al. (2002) Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9. J Immunol 169: 5912-5918.

107. Imazumi T, Kumagai M, Sasaki N, Kurotaki H, Mori F, et al. (2002) Interferon-gamma stimulates the expression of galectin-9 in cultured human endothelial cells. J Leukoc Biol 72: 486-491.

108. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, et al. (2007) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415: 539-541.

109. Neidhart M, Anderson AC, Bregli L, Hastings WD, Kassam N, et al. (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318: 1141-1143.

110. Wang F, He W, Zhou H, Yuan J, Wu K, et al. (2007) The Tim-3 ligand galectin-9 negatively regulates CD8+ alloreactive T cell and prolongs survival of skin graft. Cell Immunol 250: 68-74.

111. Li X, Zhao YQ, Li CW, Yuan FL (2012) T cell immunoglobulin-3 as a new
therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 16: 1145-1149.

118. Arikawa T, Watanabe K, Seki M, Matsukawa A, Oomizu S, et al. (2009) Galectin-9 ameliorates immune complex-induced arthritis by regulating Fc gamma R expression on macrophages. Clin Immunol 133: 382-392.

119. Lee J, Oh JM, Hwang JW, Ahn JK, Bae EK, et al. (2011) Expression of human TIM-3 and its correlation with disease activity in rheumatoid arthritis. Scand J Rheumatol 40: 334-340.

120. Lee J, Park EJ, Noh JW, Hwang JW, Bae EK, et al. (2012) Underexpression of TIM-3 and blunted galectin-9-induced apoptosis of CD4+ T cells in rheumatoid arthritis. Inflammation 35: 633-637.

121. Oka T, Murakami S, Arata Y, Hirabayashi J, Kasai K, et al. (1999) Identification and cloning of rat galectin-2: expression is predominantly in epithelial cells of the stomach. Arch Biochem Biophys 361: 196-201.

122. Sturm A, Lensch M, André S, Kaltner H, Wiedenmann B, et al. (2004) Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 173: 3825-3837.

123. Panoulas VF, Douglas KM, Smith JP, Metsios GS, Elisaf MS, et al. (2009) Galectin-2 (LGALS2) 3297C/T polymorphism may be independently associated with diastolic blood pressure in patients with rheumatoid arthritis. Clin Exp Hypertens 31: 93-104.

124. Zick Y, Eisenstein M, Goren RA, Hadari YR, Levy Y, et al. (2004) Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycoconjug J 19: 517-526.

125. Eshkar Sebban L, Ronen D, Levartovsky D, Elkayam O, Caspi D, et al. (2007) The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. J Immunol 179: 1225-1235.

126. Massardo L, Metz C, Pardo E, Mezzano V, Babul M, et al. (2009) Autoantibodies against galectin-8: their specificity, association with lymphopenia in systemic lupus erythematosus and detection in rheumatoid arthritis and acute inflammation. Lupus 18: 539-546.

127. Sarter K, Janko C, André S, Muñoz LE, Schorn C, et al. (2013) Autoantibodies against galectins are associated with antiphospholipid syndrome in patients with systemic lupus erythematosus. Glycobiology 23: 12-22.

128. Pal Z, Antal P, Srivastava SK, Hullam G., Sensei AF, et al. (2012) Non-synonymous single nucleotide polymorphisms in genes for immunoregulatory galectins: association of galectin-8 (F19Y) occurrence with autoimmune diseases in a Caucasian population. Biochim Biophys Acta 1820: 1512-1518.