A review on B-type natriuretic peptide monitoring: assays and biosensors

Rita Maalouf1 · Steven Bailey2

Abstract Since its discovery in 1988, B-type natriuretic peptide (BNP) has been recognized as a powerful cardiovascular biomarker for a number of disease states, specifically heart failure. Concurrent with such a discovery, much effort has been allocated to the precise monitoring of physiological BNP levels. Thus, it can be used to guide the therapy of heart failure and determine the patient’s stage of disease. Thus, we discuss in this article BNP as a potent biomarker. Subsequently, we will review the progress of biosensing devices as they could be applied to monitor BNP levels as assays, benchtop biosensors and implantable biosensors. The analytical characteristics of commercially available BNP assays are presented. Still emerging as a field, we define four obstacles that present opportunity for the future development of implantable biosensor: foreign body response, sensor renewability, sensitivity and selectivity.

Keywords Brain natriuretic peptide · Biomarker · Heart failure · Implantable biosensor

Introduction

A recent report from the American Heart Association estimated that 85.6 million Americans over the age of 20 have one or more types of cardiovascular disease (CVD). Of these, 5.7 million are estimated to have heart failure (HF). One in nine deaths has HF mentioned on the death certificate. This was expected to cost billions of US dollars in medical services, medications and lost productivity; HF represents a significant drain on health resources both in the US and in many other nations. Projections show that by 2030, the prevalence and the total cost of HF will increase 46 and 127 %, respectively [1].

While an early diagnosis may help control the condition and prevent rapid decline, it would obviously be preferred to identify those patients at high risk of HF and offer preemptive specific and aggressive treatment before its onset. Thus, began the search for a window into HF and a metric to quantify the condition.

Why biomarkers?

Biomarkers are biological analytes detectable in the blood stream under specific physiological conditions [2]. As such, biomarkers are a cost-effective, precise way of peering through a patient’s physiological window and differentiating disease states in complex patients [3]. In particular, cardiovascular biomarkers promise to offer such a window into HF. Though controversy exists regarding the existence of an ideal cardiovascular biomarker to be considered useful in monitoring HF [2], an ultimate biomarker would be highly sensitive and specific for HF; be released quickly for early diagnosis, be persistent for a reasonable amount of time to allow for a diagnostic window and be quantified accurately and economically in a manner that would reflect changes in both the patient’s clinical status and prognosis [4, 5]. The biomarker may be a by-product of the disease state and may also directly participate in its pathogenesis or modulation [6]. Among cardiovascular biomarkers, brain natriuretic peptide and N-terminal pro-B-type natriuretic
peptide (NT-pro-BNP) have emerged as powerful diagnostic tools for acute HF and as screening tools for detecting left ventricular systolic and diastolic dysfunction [7–10]. Several clinical trials have also evaluated the benefit of monitoring BNP and NT-pro-BNP concentrations to guide the therapy and the management of chronic heart failure [11–13]. Some studies reported encouraging trends [14–17], and others showed benefits in subgroups of participants [18–20], while other trials showed no advantages of peptide-guided compared to clinically guided therapy [21–25]. On the other hand, a recent meta-analysis, conducted by Savarese et al. [26] on 2686 patients from the previously stated 12 trials, showed that natriuretic peptide-guided therapy is associated with outcome benefits.

Scope of this review

This review aims to survey the fields of BNP research and analyte detection techniques, specifically implantable BNP biosensors. Volumes have been dedicated both to the elucidation of BNP and biosensor technology. In this review, detail will be provided for the purpose of allowing the reader to grasp the skeleton concepts, thereby providing a foundational appreciation for BNP as a biomarker as well as for the necessity of an effective instrument to measure BNP. Our hope is to accomplish this by providing an overview of current and past BNP research without becoming encumbered by minutia. Should the reader like to engage the overwhelming amount of the BNP literature, we have attempted to provide ample references that will serve as a springboard for further research.

The field of biosensors is vast and constantly progressing; a complete account is beyond the scope of this review. After a brief introduction of assays and what we will consider benchtop biosensors, our gaze will fall more specifically upon implantable biosensors. While examples of implantable biosensors will be mentioned to provide something of a disciplinary context and to provide an appreciation of the challenges experienced in implantable biosensor development, we will focus discussion on those challenges and potential for growth as it relates more specifically to BNP implantable biosensors.

BNP

Discovery and structure of BNP

Originally named porcine brain natriuretic peptide (pBNP) after the porcine brain from which it was first derived, pBNP is a 26 amino acid chain that shares considerable sequence similarity with alpha human atrial natriuretic peptide (α-hANP) [27]. Another form with an additional six residues at the N-terminus, BNP1-32 [28] and a larger precursor form, 12 kDa, have been found, respectively, in the pig brain and heart [29]. It soon became clear that the main source of this natriuretic peptide was the heart rather than the brain [30, 31].

Stimulus, production and processing

BNP is produced predominantly in the left ventricular myocardium in response to myocyte distension caused by ventricular volume expansion or pressure overload [32–35]. Though somewhat unclear, it seems that BNP is regulated by post-translational processing; therefore, its gene product can increase very rapidly in response to stimulus [33, 36]. This is significant because ANP, which shares a similar stimulus, is regulated at the level of release from storage granules and therefore does not increase as rapidly or in as great a magnitude [33, 36, 37].

When threshold is reached, BNP is produced as a 134 amino acid pre-pro-BNP peptide that is cleaved soon after secretion to yield the 108 amino acid pro-BNP. Further cleavage produces the biologically active 32 amino acid BNP peptide (BNP1-32) which contains a 17 amino acid ring closed by a disulfide bond and also the linear 76 amino acid N-terminal peptide (NT-pro-BNP1-76) [33]. The biologically active BNP1-32, the pro-BNP and the NT-pro-BNP1-76 all can be measured in the plasma, as will be described below [36, 37].

Mechanism of action

Natriuretic peptides bind to three kinds of membrane bound natriuretic peptide receptors (NPR): NPR-A, NPR-B and NPR-C. These receptors and their respective activations are described in some detail by Vanderheyden et al. [36] and will not be delineated here. However, it is important to note that BNP1-32 mediates its biological actions by binding to NPR-A, which is abundant in the vascular endothelium system and is also present in the brain, the kidney and the adrenal glands [38–40]. BNP has been shown to be a counter-regulatory molecule for the renin–angiotensin–aldosterone system, to improve glomerular filtration rate and filtration fraction and to have diuretic, natriuretic and vasodilatory effects [41]. Thus, BNP dilates blood vessels, lowering vascular resistance while facilitating higher stroke volume, and also causes increased sodium secretion from the kidneys, increasing urine production while decreasing blood volume and therefore blood pressure.

Degradation and elimination

The degradation and elimination mechanisms of BNP are only partly understood and are somewhat surrounded by
controversy [42–45]. Of course, these must be further researched whether BNP is to be used as a predictable and precise marker of physiological condition; if it is to be a window into an internal physiology, we must know how long the window opens, why it opens, what causes the window to close and how clearly we can see through. Information will be presented here to give an appreciation of the complexity of tracking the moving target that is BNP. At present, research has demonstrated that the combined clearance of BNP by NPR-C, the cleavage and inactivation by neutral endopeptidase (NEP) and the clearance by normal glomerular filtration contribute to an estimated half-life of 20 min compared to 90–120 min for NT-pro-BNP which is only eliminated by renal filtration [36, 44, 46–48]. In addition to the NEP, BNP is also cleared through proteolysis by other peptidases including serine proteases, peptidyl arginine aldehyde proteases and kallikrein-like proteases [48].

A complication to measuring BNP concentrations (or any degradable biomarker, for that matter) is its sensitivity to degradation. Proteolytic cleavage of BNP’s highly sensitive N-terminal residues may begin within circulation or immediately after blood collection making precise measurements of physiological levels difficult to achieve. Chromatographic fractionation and analysis of plasma from heart failure patients collected in siliconized tubes to avoid contact activation of kallikreins have suggested that prior to any in vitro activation of proteases, there is a natural in situ activity that results in in vivo cleavage of the two amino acids at the N-terminus (Ser-Pro) [49]. The dipeptidyl peptidase IV, a serine protease that cleaves the N-terminal dipeptide after a proline amino acid, was proved to be responsible of this cleavage [42].

C-terminal proteolysis can occur in vivo and/or in vitro by activation of the kallikrein contact-activated system [50]. It has been reported that both the disulfide bond-mediated ring and the carboxyl terminal structure are stable in blood samples unless blood coagulation factors are activated, which often occurs when blood comes into contact with foreign surfaces, such as a glass test tube [51]. This type of degradation can be inhibited by using EDTA and siliconized glass tubes for biofluid collection and by the addition of kallikrein and serine protease inhibitors [49, 52–54].

Despite the important physiological role played by BNP as a natural hormone and its importance as a diagnostic analyte, little is known of the structure of circulating BNP and of its immunoreactivity, both of which are essential for its quantification. Various groups have found that BNP exists in plasma as two major forms: low molecular weight and high molecular weight corresponding to BNP1,32 (~3–4 kDa) and to pro-BNP1,108 (~30–40 kDa), respectively. Reversed-phase HPLC of extract from low molecular weight fraction of gel-filtration HPLC has shown that BNP1,32 is formed during blood circulation and consists of digested pro-BNP1,108. Little immunoreactivity was observed for the BNP fragments: BNP1,32, BNP3,32, BNP4,32 and BNP10,32 [45]. The high molecular weight which is about three or four times as large as that of pro-BNP (~12 kDa) and was reported by some authors to be the oligomerization product of pro-BNP which tend to form trimers or tetramers due to a leucine zipper motif in the pro-region [49, 53, 54]. Schellenberger et al. [55] have demonstrated that BNP precursor is an O-linked glycoprotein and that the high molecular weight is likely due to the glycosylation [55, 56]. It has been published also that pro-BNP is the predominant form displaying BNP immunoreactivity in patients with heart failure [56, 57].

As a marker for heart failure

BNP has emerged as a powerful sensitive and specific diagnostic and prognostic tool for the onset of acute heart failure and as a screening tool for detecting left ventricular systolic and diastolic function [8]. HF is characterized by a decrease in stroke volume, leading to insufficient cardiac output to meet the body’s needs. Concomitant with this decrease in stroke volume is an increase in right atrial pressure or filling pressure. This high filling pressure stretches the walls of the heart, causing BNP release as a kind of biological call for help, as described above, decreasing blood volume and therefore blood pressure. Though BNP may not be an appropriate biomarker for all cardiovascular conditions, it has been sufficiently demonstrated to be specific for numerous disease states.

BNP can serve as a biological marker in more than the stereotypical adult patient with HF. Recent studies have demonstrated that BNP is significantly higher in neonates with congenital heart disorders, such as hemodynamically significant left to right shunts [2, 58]. Pregnant women with severe preeclampsia, the most common pregnancy disorder resulting in significant maternal and neonatal morbidity and mortality, have also been observed to have elevated BNP level [2].

As a diagnostic tool, BNP can help narrow down a differential diagnosis; i.e., it can be used to differentiate dyspnea due to HF (high BNP levels) from dyspnea due to other causes (normal BNP levels) [59, 60]. Early diagnosis is critical, specifically in the elderly population, where misdiagnosis of HF can easily and rapidly lead to morbidity and mortality [61]. BNP levels also predict sudden cardiac death and ventricular arrhythmias [60].

Because BNP can also be used to measure the severity or progress of HF, it can also be used to monitor treatment efficacy in acute HF patients, wherein levels would be expected to decrease, albeit not original values [61–63].
Current studies are underway to further test the efficacy of HF treatment guided by BNP levels [7]. Currently, BNP is advocated as an important indicator in determining hospital discharge and future prognosis [64]. Regarding the most efficacious monitoring frequency, Dhaliwal et al. [61] observed that multiple BNP measurements did not provide a prognostic advantage over a single measurement when considering “disease effect” or “disease modifiability.” However, as noted, these data were gathered from a relatively small population size (n = 203) given treatment independent of information gleaned from BNP levels, leaving the possibility that continuous monitoring still promises to provide additional indicators for treatment decisions [61].

BNP monitoring

With the emergence of BNP as a useful biomarker, several techniques have been applied to assess its concentration in blood. What follows is a brief summary of assays, benchtop biosensors and implantable biosensors concluding with four areas we have identified as potential space for growth.

Assays

The first assays for BNP were competitive immunoassay methods using radio-labeled tracers (RIAs: radio immunoassays) [61, 65]. However, these assays suffered from large differences in specificity due to the presence of several related peptides in plasma or tissues samples, which could interfere with a competitive immunoassay. To overcome these problems, a non-competitive immunodiometric assay (IRMA) method based on a two-site sandwich immunometric measurement was proposed and has demonstrated increased specificity for BNP [66–68]. More recently, micromosaic immunoassays (μMIAs) have been developed to simultaneously screen for the presence of multiple cardiac biomarkers including myoglobin, cardiac Troponin I and C-reactive peptide. The μMIA represents both a step in the evolution in the immunosensor and a widespread sentiment for the necessity of monitoring cardiac biomarkers [69].

Though quickly acknowledged as a useful tool in monitoring HF, it took 12 years from its discovery until the first BNP assay received clearance from the Food and Drug Administration (FDA) in 2000. Table 1 shows the analytical characteristics of commercial BNP assays as stated by their respective manufacturers [70]. However, several studies demonstrate that there are marked differences in analytical performance and measured values among these commercial methods [44, 71–73].

Of particular note is that commercially available BNP assays are heterogeneous and measure both pro-BNP and the breakdown products of BNP, BNP1-32 [73–75]. BNP1-32 varies according to disease progression being diagnostically significant, but thus far, we do not have the tools to accurately differentiate the molecular forms. So far, researchers are not capable of differentiating the molecular forms of these peptides, such as different cleavage points and post-translational modifications, which may vary depending on the pathophysiological state of chronic HF [72, 73, 76].

Though by and large assays have been effective in their specific realms, hours often pass from when a test is ordered until the results are ready. New developments have led to the production of point-of-care (POC) assays that allow for more rapid testing. Unfortunately, POC assays sacrifice reliability in pursuit of practicability as noted by [5, 77]. Variations in chip-based immunoassays such as that developed by Wang et al. [78] allow for faster assay time (15 min) and multiple marker quantification, but they still require trained technicians who, in order to provide necessary monitoring, must repeatedly withdraw blood samples for analysis, another drawback of many assay techniques [5]. In addition to these mechanical disadvantages, because of the temporal limitations of assays, monitoring BNP via assay is like trying to watch a film three or four frame per hour: You cannot see the continual motion of BNP levels. Therefore, in addition to being painful and time-consuming, assays suffer from the inability of capturing real-time information that reflects an individual’s cycle, direction and trends throughout the day [78, 79].

Benchtop biosensors

Notwithstanding the availability of the above assays, biosensors continue to be developed. As stated, biosensors are electrical, optical, chemical or mechanical devices with the capability to detect biological species selectively [80, 81]. Put another way, a biosensor is simply an electronic device that produces electronic signals as the result of biological interactions [80]. Like assays, to be reliable, biosensors must possess a high level of sensitivity and selectivity for a desired molecule and are therefore usually designed to target one species. In addition, to be clinically useful, a biosensor must give rapid feedback. The economics of biosensors are such that defining a balance between the competing qualities of sensitivity, selectivity and response time is often hard to strike and becomes somewhat of an engineering tug-of-war as one must often take precedent at the expense of the other; for example, increasing selectivity with the addition of a zwitterionic semipermeable nanomembrane might also degrade response time [82]. Each biosensor, therefore, is developed.
with specific application in mind and therefore a specific equilibrium between sensitivity, selectivity and response time. More will be said of sensitivity and selectivity in section “Opportunities for future development” below.

There are many biosensor concepts. To use the classification set forth, they are generally divided into two groups: catalytic sensors and affinity sensors. Catalytic sensors employ enzymes, microorganisms or whole cells to catalyze biological interactions with a target substance. When this target substance is altered, it creates a change in the electrical properties of the device, thereby generating a response signal. Affinity systems use antibodies, receptors, nucleic acids or other members of a binding pair to form specific molecular interactions. When these reactions occur, there is a change in the molecular dipoles of the binding pair, which can be sensed by the device and therefore serve as a response signal.

Most similar to immunoassays are electrochemical enzyme immunoassays [82–84] and on-chip enzyme immunoassays such as the microfluidic device with a portable surface plasmon resonance (SPR)-based sensor reported by Kurita et al. [85]. This SPR-based sensor indirectly measure BNP by quantifying the activity of acetylcholine esterase attached to an anti-BNP antibody. Teramura et al. [86] have developed an SPR biosensor on a sandwich-type immunoassay using two kinds of monoclonal antibodies. A clever application of streptavidin-conjugated nanobeads reported by Mischak et al. [87]

Table 1 Analytical characteristics of commercial BNP assays as per the manufacturer (70)

Commercial diagnostic tests	Capture antibody	Detection antibody	Standard material	FDA cleared yes/no/claim
Abbott Architect, AxSYM iSTAT	NH₂ terminus and part of the ring structure (Scios), murine monoclonal AB, aa 5–13	COOH terminus, murine monoclonal AB, aa 26–32	Synthetic BNP 32	Assist in diagnosis of HF Assess severity of disease
Alere* Triage BNP	NH₂ terminus and part of the ring structure (Scios), murine monoclonal AB, aa 5–13	BNP (Biosite), murine omniclonal AB, epitope not characterized	Recombinant BNP	
Beckman Coulter* Access, Access 2, Dxi	BNP (Biosite), murine omniclonal AB, epitope not characterized	NH₂ terminus and part of the ring structure (Scios), murine monoclonal AB, aa 5–13	Recombinant BNP	
Siemens (Bayer) ACS 180, Advia Centaur, Advia Centaur CP	COOH terminus (BC-203) (Shionogi), murine monoclonal AB, aa 27–32	Ring structure (KY-hBNPII) (Shionogi), murine monoclonal AB	Synthetic BNP	
Siemens (Dade Behring) Dimension VISTA Dimension ExL	Ring structure (KY-hBNPII) murine monoclonal AB, aa 14–21	COOH terminus (BC-203), murine monoclonal AB, aa 27–32	Synthetic BNP 32	
Shionogi	COOH terminus (BC-203), murine monoclonal AB, aa 27–32	Ring structure (KY-hBNPII), murine monoclonal AB	Synthetic BNP	Not FDA cleared
Tosoh ST AIA-PACK BNP	COOH terminus (BC-203), murine monoclonal AB, aa 27–32	Ring structure (KY-hBNPII), murine monoclonal AB	Synthetic BNP 32	Not FDA cleared

CHF congestive heart failure, ACS acute coronary syndrome, aa amino acid, AB antibody

* Both the Alere and Beckman systems use the same two antibodies, but due to their different assay formats, designation of the monoclonal and omniclonal antibodies as capture and detection antibody is not absolute
allows an SPR sensor to detect changes at the level of picogram (pg/ml), a concept with many potential applications to biosensors. Other concepts for detecting cardiac biomarkers have also been developed such as nanofluidic channel-based and nanoparticle-enhanced florescence-based sensors [86], a silicon nanosensor for diagnosis of cardiovascular proteomic markers [88] and a polyaniline nanowire-based conductometric biosensor [89].

Though clinically useful, in vitro biosensors suffer from many of the same disadvantages as assays. Because they are extra-dermal, body fluids must either be withdrawn for analysis or a probe must be temporarily inserted into tissue to measure internal conditions; both are time-consuming, inconvenient and painful. In addition, the scope of most biosensors is limited to in vitro analysis either because they are too large to be effectively implanted or because they contain toxic materials and therefore cannot be used in vivo, a complication that will become significant as we discuss implantable biosensors below.

Implantable biosensors

To facilitate discussion, we will group implantable biosensors into two functional categories based on location: subcutaneous and vascular. As a class, implantable biosensors offer many advantages over external biosensors and assays, the greatest being valuable, real-time information. Real-time information allows more rapid modification of treatment to suit dynamic physiological conditions as well as earlier detection of threatening disease states [90]. As noted by Hirsch et al. [91], because traditional analyte monitors provide only a snapshot of physiological conditions with no indication to trend or rate of change, adjusting treatment and predicting disease states on this basis involves considerable guesswork, especially when self-administered as in the case of diabetes. Real-time monitoring permits moment-by-moment understanding of an individual’s biological rhythms throughout the day and how an individual responds to such things as exercise, meals, pregnancy or other events [7, 91].

Additional benefits of the implantable biosensor over assays or benchtop biosensors include the avoidance of much of the inconvenience, pain and time demands of drawing blood for periodic, quotidian or post-prandial analysis. There are, of course, psychological as well as economic advantages and should not be underestimated. In determining the causes of low adherence to monitoring schedules, recent evidence has pointed not to lack of patient education, as was previously thought, but to the consistent psychological and economic burden found with in vitro analysis [92, 93].

Because of their obvious application to diabetes management, much effort has been made to develop continuous glucose monitoring system (CGMS) [94–97]. Due to the molecular nature of glucose, the actual monitoring mechanisms of glucose, chemosensors, are technically different from the catalytic or affinity sensors used to quantify levels of proteins like BNP. The implantable glucose biosensors described below, therefore, serve to demonstrate not proof of technology, but proof of concept and of overall design.

Subcutaneous implantable biosensors

Subcutaneous biosensors are often needle-shaped and transdermal with the actual sensor implanted in the subcutaneous tissue and a lead wire extending to an extra-dermal monitoring display. Many implantable glucose sensors have been developed [91, 95, 97–99]. The first commercially glucose monitoring systems were initially labeled for up to 3 days of wear [100]. Next, the wear time was extended to 7 days [101]. Many sensors are coupled to insulin pumps that automatically regulate glucose levels within proscribed levels, alerting the patient when a threshold is breached [102, 103].

While subcutaneous sensors provide the benefits of real-time monitoring and do not require body fluids to be drawn for analysis, because they are part external, they possess disadvantages of decreased free movement, poor esthetic appeal and risk of infection [91, 104]. Extensive ongoing research is aiming to increase the sensor lifespan [105–109]. So far, patient trials have returned favorable results [110–112].

Vascular implantable biosensors

As suggested by the name, vascular implantable biosensors are inserted into a vessel and can either be catheter based or non-catheter based. Because of their suitability to cardiovascular applications, the majority of vascular implantable biosensors have been developed to be specific for cardiovascular biomarkers such as BNP.

Catheter-based systems can be deployed on an intracardiac lead or other delivery device as a stand-alone system or they can be incorporated onto an implantable medical device such as a pacemaker, defibrillator or cardiac resynchronization system [91]. Non-catheter-based sensors are often incorporated onto stents and are among the more advanced of this class [82]. Both are contained completely within the body (i.e., without any external anchors, leads or probes) and transmit transdermal signal to an external monitoring device via a telemetry device that utilizes radio waves [113, 114].

Because they are completely internal, implantable biosensors sidestep complications such as decreased free movement and infection which are common to transdermal catheters and needle-like probes [104, 115]. Non-catheter-based sensors have the added advantage of being...
localized to a specific intravascular region, thereby decreasing risk of damage to arterial walls.

As the next step in the biosensor evolution, vascular biosensors are still very much in the developmental process. While internalization is the implantable biosensor’s greatest asset, it is also its greatest obstacle as two complications quickly arise: evasion of the foreign body response and renewability; both are necessary to insure the longevity of the device. Therefore, in addition to the technical hurdles of selectivity, sensitivity and responsiveness present in other sensors, in vivo applications must also hurdle sustainability within a hostile host environment and continuity of function [110].

Opportunities for future development

Foreign body response

One problem specifically pertinent to vascular implantable biosensors and yet to be overcome is the matter of the foreign body response, or biofouling. As defined, biofouling is the accumulation of proteins, cells and other biological materials on a surface. This accumulation causes loss in sensitivity and/or activates the immune response that encapsulates the sensor in fibrous scar tissue as part of the body’s normal healing process. Biofouling arises with any implantable device and therefore has been investigated by many scientists with some success [116, 117].

Gant et al. [118] have developed a coating that expands with changes in temperature, thus in essence sloughing off any buildup of cells while changing the surface hydrophobicity of the implant to deter further buildup. Though conceptually appealing, complexities arise when considering how to affect and control such a temperature change in vivo. Furthermore, due to the temperature sensitive nature of the hydrogel membrane, it is unclear what effect the bodies’ natural temperature rhythms (daily, menstrual, etc.) would have on the efficacy of the material which demands calibration within a specific temperature range.

Other attempted solutions to the foreign body response have been addition of an external silicon membrane, composite layers of carbon nanotubules and other nanoporous membranes [118], zwitterionic coatings [119], thermo-responsive double network nanocomposite (DNNC) membrane [120] and matrices of proteases designed to degrade proteins bound to biosensor surfaces [121]. Though preliminary studies on glucose sensors have been hopeful, because the exact mechanism of biofouling is still under investigation, attempts to prevent or deter the process are speculative at best [81].

Sensor renewability

Current catalytic and affinity-based biosensors are designed such that analysis of a particular molecule will eventually exhaust a finite supply of enzyme or molecular binding partner. Of course, in vitro, this presents little problem, because one can refresh the sensor by replacing, in the case of an immunosensor, the supply of antibodies [81]. In vivo, however, the story is something different as the device is supposed to embrace the concept of laissez-faire; e.g., the device needs to be self-sustaining for a significant amount of time. Concomitant with the exhaustion of antibodies is the production of waste, something, again, inconsequential in vitro, but unacceptable in vivo where toxicity quickly becomes an issue [82].

Again taking example of affinity-based sensors, if the uptake and release of antigen from the sensing surface can be controlled by external factors, the antigen–antibody interaction will, in essence, be reusable allowing this type of implantable sensors to find much wider application and acceptance. This concept of a reusable sensor has become known as a “cleanable” sensing surface. Application of switchable or smart surfaces might be applied to allow for such a cleanup.

Smart surfaces are those which are able to respond to environmental stimuli, thereby forming a type of switch given certain conditions [122]. Various switchable surfaces initiated by external factors, including photon [123, 124], charge [125–127], pH [128, 129] and temperature [130] have been extensively studied. Electrical potential stimulation is a widely used method for controlling surface properties. It has been employed by using low density self-assembly monolayer for the design of switchable hydrophobic/hydrophilic surfaces by reversible conformational transitions [131, 132]. Electrical potential stimulation could be applied to such an immunosensor allowing the stimulus to “clean” the sensor.

Sensitivity and selectivity

Briefly mentioned above, more must be said of the balance between sensitivity and selectivity. Sensitivity is the magnitude of a biosensor’s response to a particular analyte. Selectivity refers to its ability to respond only to a specific analyte among the plethora found in biofluids [129]. Sensitivity and selectivity depend on the materials used to build the sensor and on the design of the sensor itself and often represent competing interests as one often improves at the expense of the other.

Both represent significant challenges in the development and acceptance of biosensors. To be useful in early disease states, where biomarkers levels are often less than tens of picomoles, sensors must be highly sensitive and specific
Compliance with ethical standards

Conflict of interest R. Maalouf and S. Bailey declare that they have no conflict of interest.

Ethical standard The manuscript does not contain clinical studies or patient data.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman MH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumaw RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–e322

2. McDonnell B, Hearty S, Leonard P, O’Kennedy R (2009) Cardiac biomarkers and the case for point-of-care testing. Clin Biochem 42:549–561

3. Moriates C, Maisel A (2010) The utility of biomarkers in sorting out the complex patient. Am J Med 123:393–399

4. Bozkurt B, Mann DL (2003) Use of biomarkers in the management of heart failure: are we there yet? Circulation 107:1231–1233

5. Yang Z, Min Zhou D (2006) Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clin Biochem 39:771–780

6. Konstam MA (2007) Natriuretic peptides and cardiovascular events: more than a stretch. JAMA 297:212–214

7. Caldwell MA, Howie JN, Dracup K (2003) BNP as discharge criteria for heart failure. J Card Fail 9:416–422

8. Lee DS, Vasan RS (2005) Novel markers for heart failure diagnosis and prognosis. Curr Opin Cardiol 20:201–210

9. Iqbal N, Wentworth B, Choudhary R, De La Parra Landa A, Kipper B, Fard A, Maisel AS (2012) Cardiac biomarkers: new tools for heart failure management. Cardiovasc Diagn Ther 2:147–164

10. Panagopoulou V, Deftereos S, Kossyvakis C, Raisakis K, Giannopoulos G, Bouras G, Pyrgakis V, Cleman MW (2013) NTproBNP: an important biomarker in cardiac diseases. Curr Top Med Chem 13:82–94

11. Motiwala SR, Januzzi JL Jr (2013) The role of natriuretic peptides as biomarkers for guiding the management of chronic heart failure. Clin Pharmacol Ther 93:57–67

12. Coco G, Jerie P (2015) Assessing the benefits of natriuretic peptides-guided therapy in chronic heart failure. Cardiol J 22:5–11

13. Balion C, McKelvie R, Don-Wauchope AC, Santaguida PL, Oremus M, Keshavarz H, Hill SA, Booth RA, Ali U, Brown JA, Bustamam A, Sohel N, Raina P (2014) B-type natriuretic
peptide-guided therapy: a systematic review. Heart Fail Rev 19:553–564

14. Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM (2000) Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355:1126–1130

15. Beck-da-Silva L, de Bold A, Fraser M, Williams K, Haddad H (2005) BNP-guided therapy not better than expert’s clinical assessment for beta-blocker titration in patients with heart failure. Congest Heart Fail 11:248–253

16. Jourdain P, Jondeau G, Funck F, Guelff P, Le Hellyco A, Donal E, Auperit JF, Aumont MC, Galimier M, Eicher JC, Cohen-Solal A, Juillère Y (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49:1733–1739

17. Pfisterer M, Buser P, Rickli H, Gutmann M, Erne P, Coho-S tein-Colah A, Juillère Y (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49:1733–1739

18. Lainchbury JG, Troughton RW, Strang, Frampton CM, Pilbrow A, Yandle TG, Hamid AK, Nicholls MG, Richards AM (2009) N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLE-SCARRED (NT-proBNPAssisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol 55:53–60

19. Persson H, Erntell H, Eriksson B, Johansson G, Swedberg K, Dahlström U (2010) Improved pharmacological therapy of chronic heart failure in primary care: a randomized Study of NT-proBNP Guided Management of Heart Failure—SIGNAL-HF (Swedish Intervention study—guidelines and NT-proBNP Analy sis in Heart Failure). Eur J Heart Fail 12:1300–1308

20. Eurlings LW, van Pol PE, Kok WE, van Wijk S, Lodewijks-van der Bolt C, Balk AH, Lok DJ, Crijns HJ, van Kraaij DJ, de Jonge N, Meeder JG, Prins M, Pinto YM (2010) Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart failure morbidity and mortality?) study. J Am Coll Cardiol 56:2090–2100

21. Anguita M, Esteban F, Castillo JC, Mazuelos F, López-Granados A, Arizón JM, Suárez De Lezo J (2010) Usefulness of brain natriuretic peptide levels, as compared with usual clinical control, for the treatment monitoring of patients with heart failure. Med Clin (Bac) 135:435–440

22. Berger R, Moertl D, Peter S, Ahmadi R, Huelsmann M, Yamuti S, Wagner B, Pacher R (2010) N-Terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol 55:645–653

23. Shah MR, Califf RM, Mohrig A, Bhapkar M, Bowers M, Mancini DM, Fizazi M, Stevenson LW, O’Connor CM (2011) The STARBRITe trial: a randomized, pilot study of B-type natriuretic peptide-guided therapy in patients with advanced heart failure. J Card Fail 17:613–621

24. Karlström P, Alehagen U, Roman K, Dahlström U, UPSTEP-Study Group (2011) Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur J Heart Fail 13:1096–1103

25. Januzzi JL Jr, Rehman SU, Mohammed AA, Bhardwaj A, Barajas L, Barajas J, Kim HN, Baggish AL, Weiner RB, Chen-Tournoux A, Marshall JE, Moore SA, Carlson WD, Lewis GD, Shin J, Sullivan D, Parks K, Wang TJ, Gregory SA, Uthamalingam S, Semigran MJ (2011) Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58:1881–1889

26. Savarese G, Trimalco D, Dellegrottaglie S, Prastaro M, Gambardella F, Rengo G, Leocso D, Perrone-Filardi P (2013) Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS ONE 8:e58287

27. Sudoth T, Kangawa K, Minamino N, Matsuho H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81

28. Sudoth T, Minamino N, Kangawa K, Matsuho H (1988) Brain natriuretic peptide-32: N-terminal six amino acid extended form of brain natriuretic peptide identified in porcine brain. Biochem Biophys Res Commun 155:726–732

29. Matsauro H, Sato Y, Niwa O, Mizutani F (2005) Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels. Anal Chem 77:4235–4240

30. Mukoyama M, Nakao K, Kosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87:1402–1412

31. Nakamura S, Naruse M, Naruse K, Kawana M, Nishikawa T, Hosoda S, Tanaka I, Yoshimi T, Yoshihara I, Inagami T (1991) Atrial natriuretic peptide and brain natriuretic peptide coexist in the secretory granules of human cardiac myocytes. Am J Hypertens 4:909–912

32. Clerico A, Rccchia FA, Passino C, Emdin M (2006) Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol 290:H17–H29

33. De Lemos JA, McGuire DK, Dzau MJ (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362:316–322

34. Rodeheffer RJ (2004) Measuring plasma B-type natriuretic peptide in heart failure: good to go in 2004? J Am Coll Cardiol 44:740–749

35. Wilkins MR, Redondo J, Brown LA (1997) The natriuretic peptide family. Lancet 349:1307–1310

36. Vanderheyden M, Bartunek J, Goethals M (2004) Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail 6:261–268

37. Yamanouchi S, Kudo D, Endo T, Yosihara I, Inagami T (1991) Atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87:1402–1412

38. King L, Wilkins MR (2002) Natriuretic peptide receptors and the heart. Heart 87:314–315

39. Kuhn M (2004) Molecular physiology of natriuretic peptide signaling. Basic Res Cardiol 99:76–82

40. Wittmann R (2004) Science review: natriuretic peptides in critical illness. Crit Care 8:342–349

41. Cataliotti A, Boerrigter G, Costello-Boerrigter LC, Schirger JA, Tsuruda T, Heublein DM, Chen HH, Malatino LS, Burnett JC Jr (2004) Brain natriuretic peptide enhances renal actions of furosemide and suppresses furosemide-induced aldosterone activation in experimental heart failure. Circulation 109:1680–1685

42. Brandt I, Lambeir AM, Ketelslegers JM, Vanderheyden M, Scharpe S, De Meester I (2006) Dipeptidyl-peptidase IV
converts intact B-type natriuretic peptide into its des-SerPro Form. Clin Chem 52:82–87
43. Kroll MH, Srisawasdi P (2007) The clearance of BNP modeled using the NT-proBNP-BNP relationship. Biosystems 88:147–155
44. Ozaki J, Shimizu H, Hashimoto Y, Itoh H, Nakao K, Inui KI (1999) Enzymatic inactivation of major circulating forms of atrial and brain natriuretic peptides. Eur J Pharmacol 370:307–312
45. Walther T, Stepan H, Pankow K, Germardt F, Faber R, Schultheiss HP, Siems WE (2004) Relation of ANP and BNP to their N-terminal fragments in fetal circulation: evidence for enhanced neutral endopeptidase activity and resistance of BNP to neutral endopeptidase in the fetus. BJOG 111:452–455
46. Kenny AJ, Bourne A, Ingram J (1993) Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochim Biophys Acta 941:83–88
47. McCullough PA, Omland T, Maisel AS (2003) B-type natriuretic peptides: a diagnostic breakthrough for clinicians. Rev Cardiovasc Med 4:72–80
48. Norman JA, Little D, Bolgar M, Di Donato G (1991) Degradation of brain natriuretic peptide by neutral endopeptidase: species specific sites of proteolysis determined by mass spectrometry. Biochem Biophys Res Commun 175:22–30
49. Shimizu H, Masuta K, Aono K, Asada H, Sasakura K, Tamaki M, Sugita K, Yamada K (2002) Molecular forms of human brain natriuretic peptide in plasma. Clin Chim Acta 316:129–135
50. Shimizu H, Aono K, Masuta K, Asada H, Misaki A, Teraoka H (2001) Degradation of human brain natriuretic peptide (BNP) by contact activation of blood coagulation system. Clin Chim Acta 305:181–186
51. Vittorini S, Prontera C, Zucchelli GC, Clerico A (2007) Cardiac natriuretic hormones: methodological aspects. Immuno-Anal Biol Spec 22:236–246
52. Belenkyy A, Smith A, Zhang B, Lin S, Despres N, Wu AHB, Bluestein BI (2004) The effect of class-specific protease inhibitors on the stabilization of B-type natriuretic peptide in human plasma. Clin Chim Acta 340:163–172
53. Seidler T, Pemberton C, Yandle T, Espiner E, Nicholls G, Richard M (1999) The amino terminal regions of proBNP and proANP oligomerise through leucine zipper-like coiled-coil motifs. Biochem Biophys Res Commun 255:495–501
54. Shimizu H, Aono K, Masuta K, Asada H, Sugita K, Saireni R (2003) Characterization of molecular forms of probrain natriuretic peptide in human plasma. Clin Chim Acta 334:233–239
55. Schellenberger U, O’Rear J, Guzzetta A, Jue RA, Proetter AA, Stephen Pollitt N (2006) The precursor to B-type natriuretic peptide is an O-linked glycoprotein. Arch Biochem Biophys 451:160–166
56. Liang F, O’Rear J, Schellenberger U, Tai L, Lasecki M, Schreiner GF, Apple FS, Maisel AS, Pollitt NS, Proetter AA (2007) Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J Am Coll Cardiol 49:1071–1078
57. Seferian KR, Tamm NN, Semenov AG, Mukharyamova KS, Tolstaya AA, Koskchina EV, Kara AN, Krasnoselsky MI, Apple FS, Esaikova TV, Filatov VL, Katrukha AG (2007) The brain natriuretic peptide (BNP) precursor is the major immunoreactive form of BNP in patients with heart failure. Clin Chem 53:866–873
58. Davlouros PA, Karatza AA, Xanthopoulou I, Dimitriou G, Georgiopoulou A, Mantagos S, Alexopoulos D (2011) Diagnostic role of plasma BNP levels in neonates with signs of congenital heart disease. Int J Cardiol 147:42–46
59. Blondé-Cynober F, Morineau G, Estrugo B, Fillie E, Aussel C, Vincent JP (2011) Diagnostic and prognostic value of brain natriuretic peptide (BNP) concentrations in very elderly heart disease patients: specific geriatric cut-off and impacts of age, gender, renal dysfunction, and nutritional status. Arch Gerontol Geriatr 52:106–110
60. Resnik JL, Hong C, Resnik R, Kazanegra R, Beede J, Bhalla V, Maisel A (2005) Evaluation of B-type natriuretic peptide (BNP) levels in normal and preeclamptic women. Am J Obstet Gynecol 193:450–454
61. Dhalwal AS, Deswal A, Pritchett A, Aguilar D, Kar B, Soucek J, Bozkurt B (2009) Reduction in BNP levels with treatment of decompensated heart failure and future clinical events. J Card Fail 15:293–299
62. Mair J, Falkensammer G, Poelzl G, Hammerer-Lercher A, Griesmacher A, Pachinger O (2007) B-type natriuretic peptide (BNP) is more sensitive to rapid hemodynamic changes in acute heart failure than N-terminal proBNP. Clin Chim Acta 379:163–166
63. Scott PA, Barry J, Roberts PR, Morgan JM (2009) Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur J Heart Fail 11:958–966
64. Bhardwaj A, Rehman SU, Mohamed A, Bagghis AL, Moore SA, Januzzi JL Jr (2010) Design and methods of the Pro-B Type natriuretic peptide Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Am Heart J 159:532–538
65. Hasegawa K, Fujiiwara H, Doyama K, Miyamae M, Fujiiwara T, Suga S, Mukoyama M, Nakao K, Imura H, Yasayama S (1993) Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Circulation 88:372–380
66. Del Ry S, Clerico A, Di Nisio M, Andreassi MG, Caprioli R, Iascone MR, Ferrazzi P, Biagini A (2000) Measurement of brain natriuretic peptide in plasma samples and cardiac tissue extracts by means of an immunoradiometric assay method. Scand J Clin Lab Invest 60:81–90
67. Kono M, Yamauchi A, Tsuji T (1993) An immunoradiometric assay for brain natriuretic peptide in human plasma. Jpn Soc Nucl Med Technol 13:2–7
68. Yandle T, Richards A, Gilbert A, Fisher S, Holmes S, Espiner E (1993) Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J Clin Endocrinol Metab 78:832–838
69. Wolf M, Juncker D, Michel B, Hunziker P, Delamarche E (2004) Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens Bioelectron 19:1193–1202
70. IFCC. Analytical characteristics of commercial MR-proANP, BNP and NT-proBNP assays as per the manufacturer. http://www.ifcc.org/media/276711/IFCC%20NP%20Assay%20Table %20November%202014.pdf
71. Apple FS, Panteghini M, Ravkilde J, Mair J, Wu AH, Tate J, Pagani F, Christenson RH, Jaffe AS, Committee on Standardization of Markers of Cardiac Damage of the IFCC (2005) Quality specifications for B-type natriuretic peptide assays. Clin Chem 51:486–493
72. Heublein DM, Huntley BK, Boerigter G, Cataliotti A, Sandberg SM, Redfield MM, Burnett JC Jr (2007) Immunoreactivity and guanosine 3',5'-cyclic monophosphate activating actions of various molecular forms of human B-type natriuretic peptide. Hypertension 49:1114–1119
73. Clerico A, Zaninotto M, Prontera C, Giovannini S, Ndreu R, Franzini M, Zucchelli GC, Plebani M, on behalf of SIBIOC
(2012) State of the art of BNP and NT-proBNP immunoassays: the cardiooomcheck study. Clin Chim Acta 414:112–119

74. Cauliez B, Santos H, Bauer F, Basuyau JP, Nadolny A, Galpy G (2012) Cross-reactivity with endogenous proBNP from heart failure patients for three commercial BNP immunoassays. Clin Chim Acta 413:337–338

75. Miller WL, Phelps MA, Wood CM, Schellenberger U, Van Le A, Perichon R, Jaffe AS (2011) Comparison of mass spectrometry and clinical assay measurements of circulating fragments of B-type natriuretic peptide in patients with chronic heart failure. Cir Heart Fail 4:355–360

76. Tsai SH, Lin YY, Chu SJ, Hsu CW, Cheng SM (2010) Interpretation and use of natriuretic peptides in non-congestive heart failure settings. Yonsei Med J 51:151–163

77. Hawkinson AM, Weiblein DM, Bergen HR, Cataliotti A, Bur­nett JC, Muddiman DC (2005) Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. PNAS 102:17442–17447

78. Wang J, Hong B, Kai J, Han J, Zou Z, Ahn CH, Kang KA (2009) Mini sensing chip for point-of-care acute myocardial infarction diagnosis utilizing micro-electro-mechanical system and nanotechnology. Adv Exp Med Biol 645:101–107

79. Reach G, Wilson GS (1992) Can continuous glucose monitoring be used for the treatment of diabetes? Anal Chem 64:381A–386A

80. Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sens Actuators B Chem 125:688–703

81. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimit­trakopoulos F (2010) Emerging synergy between nanotechnol­ogy and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

82. Manda V, Bennett TD, Yang Z (2005) Implantable biosensor devices for monitoring cardiac marker molecules. International application No.: PCT/US2004/027958

83. Matsuura H, Sato Y, Niwa O, Mizutani F (2005) Surface electrochemical enzyme immunoassay for the highly sensitive measurement of B-type natriuretic peptide. Sens Actuators B Chem 108:603–607

84. Mizutani F, Matsuura H (2005) Surface electrochemistry for the construction of highly sensitive immunoassay system. Curr Appl Phys 5:98–101

85. Kurita R, Yokota Y, Sato Y, Mizutani F, Niwa O (2006) On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem 78:5525–5531

86. Teramura Y, Arima Y, Iwata H (2006) Surface plasmon reso­nance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification. Anal Biochem 357:208–215

87. Mischak RP, Lim GA, Scardina JM (2000) Human brain natriuretic peptides. United States Patent. Patent No.: 6,124,430 A

88. Prasad S, Selvam AP, Reddy RK, Love A (2013) Silicon nanosensor for diagnosis of cardiovascular proteomic markers. J Lab Autom 18:143–151

89. Lee I, Luo X, Huang J, Cui XT, Yun M (2012) Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2:205–220

90. Hong B, Kai J, Ren Y, Han J, Zou Z, Ahn CH, Kang KA (2008) Highly sensitive rapid, reliable, and automatic cardiovascular disease diagnosis with nanoparticle fluorescence enhancer and mems. Adv Exp Med Biol 614:265–273

91. Hirsch IB, Armstrong D, Bergenstal RM, Buckingham B, Childs BP, Clarke WL, Peters A, Wolpert H (2008) Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM). Diabetes Technol Ther 10:232–244

92. Vincze G, Barner JC, Lopez D (2004) Factors associated with adherence to self-monitoring of blood glucose among persons with diabetes. Diabetes Educ 30:112–125

93. Wu AHB (2006) Serial testing of B-type natriuretic peptide and NTpro-BNP for monitoring therapy of heart failure: the role of biologic variation in the interpretation of results. Am Heart J 152:828–834

94. Goodall TA, Halford WK (1991) Self-management of diabetes mellitus: a critical review. Health Psychol 10:1–8

95. Hitchcock RW, Sorenson JL (2005) Implantable biosensor system, apparatus and method. United States Patent. Patent No.: US 6,965,791 B1

96. Pickup JC, Hussain F, Evans ND, Sachedina N (2005) In vivo glucose monitoring: the clinical reality and the promise. Biosens Bioelectron 20:1897–1902

97. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

98. Keller A, Pishko MV (2001) Subcutaneous glucose electrode. United States Patent. Patent No.: US 6,329,161 B1

99. Giuseppi-Elie A, Brahim S, Slaughter G, Ward KR (2005) Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens J 5:345–355

100. Mastrototaro J (1999) The MiniMed continuous glucose monitor­ing system (CGMS). J Pediatr Endocrinol Metab 3:751–758

101. Bailey T, Zisser H, Chang A (2009) New features and perfor­mance of a next-generation seven-day continuous glucose monitoring system with short lag time. Diabetes Technol Ther 11:749–755

102. Chia CW, Saudek CD (2004) Glucose sensors: toward closed loop insulin delivery. Endocrinol Metab Clin North Am 33:175–195

103. Brister M, Saint S, Neale PV, Kline DS, Thrower JP, Masterson S, Codd DS (2010) Transcutaneous analyte sensor. United States Patent. Patent No.: US 7,654,956 B2

104. Potkay J (2008) Long term, implantable blood pressure moni­toring systems. Biomed Microdevices 10:379–392

105. Chamberlain JJ, Small D (2008) Case study: successful use of a single subcutaneous continuous glucose monitor sensor for 28 days in a patient with type 1 diabetes. Clin Diabetes 26:138–139

106. Garg SK, Voelmlre MK, Gottlieb P (2009) Feasibility of 10-day use of a continuous glucose-monitoring system in adults with type 1 diabetes. Diabetes Care 32:436–438

107. Mortellaro M, DeHennis A (2014) Performance characterization of an abiotic and fluorescent-based continuous glucose moni­toring system in patients with type 1 diabetes. Biosens Bioelectron 61:227–231

108. Hoss U, Budiman ES, Liu H, Christiansen MP (2013) Contin­uous glucose monitoring in the subcutaneous tissue over a 14-day sensor wear period. J Diabetes Sci Technol 7:1210–1219

109. GlySens Incorporated (2015) GlySens incorporated secures FDA approval to extend second generation fully-implanted CGM sensor evaluation from 6 to 12 months. http://glysens.com/press-releases/glysens-incorporated-secures-fda-approval-to-extend-second-generation-fully-implanted-cgm-sensor-evaluation-from-6-to-12-months/. Accessed Nov 2015

110. Bowdle T (2002) Complications of invasive monitoring. Anesthesiol Clin N Am 20:571–588

111. The Juvenile Diabetes Research Foundation Continuous Glu­cose Monitoring Study Group (2008) Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 359:1464–1476

112. Vigersky RA, Fonda SJ, Chellappa M, Walker MS, Ehrhardt NM (2012) Short- and long-term effects of real-time continuous glucose monitoring in patients with type 2 diabetes. Diabetes Care 35:32–38
113. Chow EY, Beier BL, Francino A, Chappell WJ, Irazoqui PP (2009) Toward an implantable wireless cardiac monitoring platform integrated with an FDA-approved cardiovascular stent. J Intervent Cardiol 22:479–487

114. Shelchuk A (2007) Implantable biosensor and methods for monitoring cardiac health. United States Patent. US Patent 7,223,237 B2

115. Villaseca EH, Dublin GL, Goedeke SD, Haubrich GJ (2001) Telemetry system for implantable medical devices. United States Patent US Patent 6,169,925 B1

116. Gifford R, Kehoe JJ, Barnes SL, Kornilayev BA, Alterman MA, Wilson GS (2006) Protein interactions with subcutaneously implanted biosensors. Biomaterials 27:2587–2598

117. Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces 18:197–219

118. Gant RM, Abraham AA, Hou Y, Cummins BM, Grunlan MA, Coté GL (2010) Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater 6:2903–2910

119. Adiga SP, Jin C, Larry A, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:568–581

120. Abraham AA, Fei R, Coté GL, Grunlan MA (2013) Self-cleaning membrane to extend the lifetime of an implanted glucose biosensor. ACS Appl Mater Interfaces 5:12832–12838

121. Brault ND, Gao C, Xue H, Piliark M, Homola J, Jiang S, Yu Q (2010) Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron 25:2276–2282

122. Ligler FS, Gaber BP, Kusterbeck AW, Wemhoff GA (2001) Flow immunosensor apparatus. United States Patent. Patent No.: US 6,245,296 B1

123. Cooper CGF, MacDonald JC, Soto E, McGimpsey WG (2004) Non-covalent assembly of a photoswitchable surface. J Am Chem Soc 126:1032–1033

124. Russell TP (2002) Surface-responsive materials. Science 297:964–967

125. Delorme N, Bardeau JF, Bulou A, Poncin-Epaillard F (2005) Azobenzene-containing monolayer with photoswitchable wet-tability. Langmuir 21:12278–12282

126. Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, Langer R (2003) A reversibly switching surface. Science 299:371–374

127. Weissmuller J, Viswanath RN, Kramer D, Zimmer P, Wurshum R, Gleiter H (2003) Charge-induced reversible strain in a metal. Science 300:312–315

128. Hiramatsu H, Osterloh FE (2003) pH-controlled assembly and disassembly of electrostatically linked CdSe–SiO2 and Au–SiO2 nanoparticle clusters. Langmuir 19:7003–7011

129. Liu Y, Mu L, Liu B, Kong J (2005) Controlled switchable surface. Chem Eur J 11:2622–2631

130. Matthews JR, Tuncel DNS, Jacobs RMJ, Bain CD, Anderson HL (2003) Surfaces designed for charge reversal. J Am Chem Soc 125:6428–6433

131. Albrecht T, Armbruster S, Keller S, Strobl G (2001) Kinetics of reversible surface crystallization and melting in poly(ethylene oxide): effect of crystal thickness observed in the dynamic heat capacity. Eur Phys J E 6:237–243

132. Liu Y, Mu L, Liu B, Zhang S, Yang P, Kong J (2004) Controlled protein assembly on a switchable surface. Chem Commun 125:6428–6433

133. Chua JH, Chee RE, Agarwal A, Wong SM, Zhang GJ (2009) Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal Chem 81:6266–6272