Two-phonon structures for beta-decay theory

A. P. Severyukhin1,2+, N. N. Arsenyev1, I. N. Borzov3,1, R. G. Nazmitdinov4,1,2, and S. Åberg5

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
2Dubna State University, 141982 Dubna, Moscow region, Russia
3National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
4Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
5Mathematical Physics, Lund University, PO Box 118, S-22100 Lund, Sweden

Abstract. The β-decay rates of 60Ca have been studied within a microscopic model, which is based on the Skyrme interaction T45 to construct single-particle and phonon spaces. We observe a redistribution of the Gamow-Teller strength due to the phonon-phonon coupling, considered in the model. For 50Sc, the spin-parity of the ground state is found to be 1^-. We predict that the half-life of 60Ca is 0.3 ms, while the total probability of the βxn emission is 6.1%. Additionally, the random matrix theory has been applied to analyse the statistical properties of the 1^- spectrum populated in the β-decay to elucidate the obtained results.

The multi-neutron emission is basically a multistep process consisting of (a) the β-decay of the parent nucleus (N, Z) which results in feeding the excited states of the daughter nucleus (N - 1, Z + 1) followed by the (b) γ-deexcitation to the ground state or (c) multi-neutron emissions to the ground state of the final nucleus (N - 1 - X, Z + 1) [see, e.g., Ref. [1]]. There is a strong need in a consistent estimate of the multi-neutron emission for the analysis of radioactive beam experiments and for modeling of astrophysical r-process. Recent experiments indicate on evidence of strong shell effects in exotic calcium isotopes [2, 3]. Therefore, the β-decay properties of neutron-rich isotope 52Ca provide valuable information [4], with important tests of theoretical calculations (see, e.g., Ref. [5]). In the report we demonstrate the importance of the phonon-phonon coupling (PPC) on the β-delayed multi-neutron emission of the neutron-rich nucleus 60Ca discovered in [6].

One of the successful tools for studying charge-exchange nuclear modes is the quasiparticle random phase approximation (QRPA) with the self-consistent mean-field derived from a Skyrme energy-density functional (EDF). Indeed, such QRPA calculations enable one to describe the properties of the parent ground state and Gamow-Teller (GT) transitions using the same EDF. In the case of the β-decay of 60Ca, we use the EDF T45 which takes into account the tensor force added with refitting the parameters of the central interaction [7]. The set T45 gives enough positive value of the spin-isospin Landau parameter calculated at the saturation density ($G'_0=0.1$), and a reasonable description of the Q_{β} and S_{in} values for the βxn-emission of the even neutron-rich Ca isotopes. The pairing correlations are generated by a zero-range volume force with a strength of -315 MeVfm3, and a smooth cut-off at 10 MeV above the Fermi energies [8]. This value of the pairing strength has been fitted to reproduce the experimental neutron pairing energy of 50,52,54Sc [5, 9]. The calculated Q_{β}-window of the β-decay of 60Ca and S_{in} values of 50Sc are shown in Fig. 1. There is the possibility of the nonzero probability of one-, two-, three-, four- and fifth-neutron emission. As expected, the largest contribution to the calculated β-decay half-life comes from the 1^+_0 state, which is dominated by one unperturbed configuration. The lowest two-quasiparticle (2QP) state is the configuration [π1f_{7/2}, ν1f_{5/2}].

We employ the standard procedure [10] to construct the QRPA equations on the basis of HF-BCS quasiparticle states of the parent nucleus. The residual interactions in the particle-hole channel and the particle-particle channel are derived consistently from the Skyrme EDF. The eigenvalues of the QRPA equations within the finite rank separable approximation are found numerically as the roots of the secular equation for the cases of electric excitations [8, 11] and charge-exchange excitations [12, 13]. It enables us to perform the QRPA calculations in a large 2QP spaces. In particular, the cut-off of the discretized continuous part of the single-particle spectra is performed at the energy of 100 MeV. This is sufficient for exhausting the Ikeda sum rule $S_- = S_+ = 3(N - Z)$.

Taking into account the basic ideas of the quasiparticle-phonon model (QPM) [14, 15], the Hamiltonian is then diagonalized in a space spanned by

*Corresponding author.

E-mail: sever@theor.jinr.ru
In order to construct the wave functions (1) of the low-energy one-phonon states having energy ωQ of the daughter nucleus, we solve the following Hamiltonian matrix elements coupling between one- and two-phonon configurations, are shown as solid lines and dashed lines, respectively. The smoothing parameter 1 MeV is used for the strength distribution described by the Lorentzian function.

![Figure 1. GT strength distributions of 60Ca as functions of the excitation energy of the daughter nuclei. The calculations, taking into account the microscopic and random coupling matrix elements between the one- and two-phonon configurations, are shown as solid lines and dashed lines, respectively. The smoothing parameter 1 MeV is used for the strength distribution described by the Lorentzian function.](image)

The wave functions of the neutron-proton one-phonon states having energy ω of the daughter nucleus (N - 1, Z + 1); $\bar{\omega}_{\mu i}$ are the wave functions of the neutron-proton one-phonon states having energy $\omega_{\mu i}$ of the parent nucleus (N, Z). The unknown amplitudes $R(J\nu)$ and $P^{\mu i/J/J}_{A_{2}2} (J\nu)$ the variational principle leads to the set of linear equations with the rank equal to the number of one- and two-phonon configurations,

$$
(\omega_{\mu i} - \Omega_{\nu}) R(J\nu) + \sum_{A_{2}1i} U^{A_{2}1i}_{i} (Ji) P^{A_{2}1i}_{A_{2}2} (J\nu) = 0,
$$

(2)

To solve these equations it is required to compute the Hamiltonian matrix elements coupling between one- and two-phonon configurations

$$
U^{A_{2}1i}_{i} (Ji) = \langle 0 | Q_{Ji} H [Q^{A_{2}1i}_{A_{2}2} | 0 \rangle.
$$

(4)

In order to construct the wave functions (1) of the low-energy 1^+ states, in the present study we assume that the two-phonon configurations are constructed from the 1^+ and 3^+ charge-exchange phonons, and the 2^+ and 4^+ phonons. The redistribution of the GT strength due to the PPC is mostly sensitive to the multi-neutron emission probability.

In the allowed GT approximation, the β^- decay rate is expressed by summing up the probabilities (in units of $G_A^2/4\pi$) of the energetically allowed transitions ($E_{GT} \leq \Omega$) weighted with the integrated Fermi function

$$
T_{1/2}^{-1} = D^{-1} \left(\frac{G_A^2}{4\pi} \right) \sum_{k} f_{\nu}(Z+1, A, E_{GT}^{\nu}) B(GT)_{k},
$$

(5)

where l_{ν}^{GT} is the partial β^- decay rate, $G_A/G_V = 1.25$ is the ratio of the weak axial-vector and vector coupling constants and $D = 6147$ s (see Ref. [19]). E_{ν}^{GT} denotes the excitation energy of the daughter nucleus. As proposed in Ref. [20], this energy can be estimated by the following expression:

$$
E_{\nu}^{GT} = \Omega_{\nu} - E_{1^+_1}^{GW},
$$

(6)

where $E_{1^+_1}^{GW}$ is the Ω_{ν} is the 1$^+_1$ eigenvalues of the equations, and $E_{2QPOP, lowest}$ corresponds the lowest 2QP energy, i.e., the energy [$\pi f_1/2, \pi f_1/2$] in the case of 60Ca. Moreover, the ground state of 60Sc is found as 1^+. The wave functions allow us to determine GT transitions whose operator is

$$
B(GT)_{k} = | \langle N-1, Z+1; 1^+_1 | \hat{O}^- | N, Z; 0^+_0 \rangle |^2.
$$

(8)
Since the tensor correlation effects are taken into account within the $1p$–$1h$ and $2p$–$2h$ configurational spaces, any quenching factors are redundant [21].

The difference in the characteristic time scales of the β-decay and subsequent neutron emission processes justifies an assumption of their statistical independence. As proposed in Ref. [22], the P_{sn} probability of the βxn emission accompanying the β decay to the excited states in the daughter nucleus can be expressed as

$$P_{sn} = T_{1/2} D^{-1} \left(\frac{G_{v}}{G_{t}} \right)^{2} \sum_{k} f_{0}(Z + 1, A, E_{k}^{GT}) B(GT)_{k}, \quad (9)$$

where the GT transition energy (E_{k}^{GT}) is located within the neutron emission window $Q_{\beta xn} = Q_{\beta} - S_{sn}$. For P_{1n} we have $Q_{\beta xn} \leq E_{k}^{GT} \leq Q_{\beta}$. While for P_{sn} this becomes $Q_{\beta xn} \leq E_{k}^{GT} \leq Q_{\beta xn}$. Since we neglect the γ-deexcitation of the daughter nucleus, some overestimation of the resulting P_{sn} values can be obtained [18].

The largest contribution (93%) in half-life comes from the 1^+_1 state calculated with the PPC. The dominant contribution (94%) in the wave function of the first 1^+_1 state comes from the $[111,QRPA]$ configuration which is mainly built on the configuration $(\pi f_{5/2}, \nu f_{5/2})$. The inclusion of the PPC leads to a redistribution of the GT strength and the fragmentation is shown in Fig. 1. The excitation energies refer to the ground state of the daughter nucleus 60Sc. The half-life $T_{1/2}=0.3$ ms and the total probability of the βxn emission of $P_{tot}=4.8 \%$ are calculated within the QRPA. The inclusion of the two-phonon terms results in the same half-life and $P_{tot}=6.1 \%$. Using the large β-decay window, we obtain the unexpectedly small value of P_{tot}, the effect which was predicted within the one-phonon approximation before. Similar P_{1n}-value of 7.7% was predicted within the pn-QRPA [23], however with nearly 18 times longer half-life of 5.3 ms. The DF3+QRPA calculation predicted a 6 times longer half-life of $T_{1/2}=1.8$ ms but also a low P_{sn}-value of 11.3% [24].

A natural question arises: what is the complexity of the configurational space should be enough in order to obtain the half-life and the β-delayed neutron emission at extreme N/Z ratio? This restriction can be justified by the rough estimate from the random matrix theory [25]. We generalize the approach based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the QRPA [26]. We find that the distribution of the matrix elements is well reproduced by a truncated Cauchy distribution. The similar tendency is observed for the description of a guss structure of the spreading widths of monopole, dipole, and quadrupole giant resonances [24,27]. Considering truncated Cauchy distributions, according to the central limit theorem, the resulting shape (the average of the sum) is driving the Gaussian distribution. Since the distribution of the matrix elements is symmetric with a finite rms value, we may generate the random matrix elements from the truncated Cauchy distribution or from a Gaussian distribution [27].

With the motivation above, we assume that the matrix elements can be replaced by a random interaction where the matrix elements are Gaussian distributed random numbers,

$$P(U) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{U^2}{2\sigma^2} \right), \quad (10)$$

with the rms value σ calculated with the microscopic PPC. Solutions are ensemble averaged over the random interaction and give the GT strength distribution, see Fig. 1. The value $P_{tot}=5.3\%$ and the GT strength distribution calculated with the random coupling matrix elements are close to those that were calculated within the microscopic PPC. We conclude that the present approach makes it possible to perform the new analysis of the rates of the β-delayed multi-neutron emission. The vitality of the obtained results enables us to extend the validity of our approach to the next level of simplifications. Namely, considering the microscopic one-phonon states coupled randomly to the two-phonons energies generated from the Gaussian Orthogonal Ensembles distribution. The computational developments that would allow us to conclude on this point are under way.

In summary, by means of the Skyrme mean-field calculations and considering the coupling between the phonons, we have studied the β-decay properties of 60Ca. Using the Skyrme interaction T45 in conjunction with the volume pairing interaction, the unexpectedly low probability of the βxn emission is obtained. To check this, the statistical properties of the 1^+ spectrum populated in the β-decay are analyzed. The restriction of the two-phonon configurations can be justified by the rough estimate from the random matrix theory, which demonstrate the unimportance of other two-phonon composition on the half-life and the neutron-emission probability.

This work was partly supported by Russian Foundation for Basic Research under Grant nos. 16-02-00228 and 16-52-150003.

References

[1] I. N. Borzov, Phys. Rev. C 71, 065801 (2005)
[2] F. Wienholtz et al., Nature, 498, 346 (2013)
[3] D. Steppenbeck et al., Nature, 502, 207 (2013)
[4] A. Huck et al., Phys. Rev. C 31, 2226 (1985)
[5] A. P. Severnyukhin, Phys. Part. Nucl. 48, 920 (2017)
[6] O. B. Tarasov et al., Phys. Rev. Let. 121, 022501 (2018)
[7] T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007)
[8] A. P. Severnyukhin, V. V. Voronov, Nguyen Van Giai, Phys. Rev. C 77, 024322 (2008)
[9] A. P. Severnyukhin, N. N. Arsenyev, E. O. Sushenok, I. N. Borzov, Yu. E. Penionzhkevich, D. Verney, Proc. of Int. Symposium on Exotic Nuclei (EXON-2016), eds. Yu. E. Penionzhkevich, Yu. G. Sobolev (World Scientific, Singapore, 2017), 100
[10] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 71, 034310 (2005)
[11] Nguyen Van Giai, Ch. Stoyanov, V. V. Voronov, Phys. Rev. C 57, 1204 (1998)
[12] A. P. Severyukhin, V. V. Voronov, Nguyen Van Giai, Prog. Theor. Phys. 128, 489 (2012)
[13] A. P. Severyukhin, H. Sagawa, Prog. Theor. Exp. Phys. 2013, 103D03 (2013)
[14] V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol and Philadelphia, 1992)
[15] V. A. Kuzmin, V. G. Soloviev, Jour. Phys. G 10, 1507 (1984)
[16] A. P. Severyukhin, V. V. Voronov, I. N. Borzov, Nguyen Van Giai, Rom. Journ. Phys. 58, 1048 (2013)
[17] A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, Nguyen Van Giai, Phys. Rev. C 90, 044320 (2014)
[18] A. P. Severyukhin, N. N. Arsenyev, I. N. Borzov, E. O. Sushenok Phys. Rev. C 95, 034314 (2017)
[19] J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin, 2007)
[20] J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, R. Surman, Phys. Rev. C 60, 014302 (1999)
[21] G. F. Bertsch, I. Hamamoto, Phys. Rev. C 26, 1323 (1982)
[22] A. C. Pappas, T. Sverdrup, Nucl. Phys. A 188, 48 (1972)
[23] T. Marketin, L. Huther, G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016)
[24] I. N. Borzov, private communication
[25] M. L. Metha, Random Matrices 3rd ed. (Elsevier, Amsterdam, 2004).
[26] A. P. Severyukhin, S. Åberg, N. N. Arsenyev, R. G. Nazmitdinov, Phys. Rev. C 95, 061305(R) (2017)
[27] A. P. Severyukhin, S. Åberg, N. N. Arsenyev, R. G. Nazmitdinov, Phys. Rev. C 97, 059802 (2018)