APPLICATIONS OF TERNARY RINGS TO \(C^* \)-ALGEBRAS

FERNANDO ABADIE AND DAMIÁN FERRARO

Abstract. We show that there is a functor from the category of positive admissible ternary rings to the category of \(* \)-algebras, which induces an isomorphism of partially ordered sets between the families of \(C^* \)-norms on the ternary ring and its corresponding \(* \)-algebra. We apply this functor to obtain Morita-Rieffel equivalence results between cross sectional \(C^* \)-algebras of Fell bundles, and to extend the theory of tensor products of \(C^* \)-algebras to the larger category of full Hilbert \(C^* \)-modules. We prove that, like in the case of \(C^* \)-algebras, there exist maximal and minimal tensor products. As applications we give simple proofs of the invariance of nuclearity and exactness under Morita-Rieffel equivalence of \(C^* \)-algebras.

Contents

1. Introduction 1
2. Ternary rings 3
2.1. Ternary rings 3
3. Correspondence between \(C^* \)-seminorms. 8
3.1. \(C^* \)-seminorms. 8
3.2. From pre-\(C^* \)-trings to pre-\(C^* \)-algebras 9
3.3. Positive modules 14
4. \(C^* \)-ternary rings 16
5. Applications 18
5.1. \(C^* \)-algebras associated with Fell bundles 18
5.2. Tensor products of \(C^* \)-trings 19
5.3. Exact \(C^* \)-trings 22
References 23

1. Introduction

An important tool in the study of \(C^* \)-algebras is Morita-Rieffel equivalence. When two \(C^* \)-algebras are Morita-Rieffel equivalent, they are related by a certain type of bimodule, from which one can see that these algebras share many properties. A Morita-Rieffel equivalence between two \(C^* \)-algebras implies that these algebras have many characteristics in common: they have the same K-theory, their spectra and primitive ideal spaces are homeomorphic, etc. In [12], Zettl introduced and studied \(C^* \)-ternary rings, and showed that these objects are essentially Morita-Rieffel equivalence bimodules. In fact, given a \(C^* \)-ternary ring \(E \), there

Date: November 9, 2018.
Key words and phrases. ternary rings, Morita-Rieffel equivalence, nuclear, exact.
exists essentially a unique structure of Morita-Rieffel equivalence bimodule on E compatible with its structure of ternary ring (perhaps after a minor change on the ternary product).

On the other hand, when dealing with constructions such as tensor products or any sort of crossed products of C^*-algebras, in general one has to follow two steps: first one defines some $*$-algebra, and then one takes the completion of that algebra with respect to a C^*-norm. A situation that appears frequently is that there is more than one reasonable C^*-norm to perform this second step. In many cases, for instance in several imprimitivity theorems, one is interested in finding a Morita-Rieffel equivalence between different C^*-completions of a given pair of $*$-algebras which are related by a certain bimodule. This is the situation we study in the present paper, adopting a viewpoint similar to that in Zettl's work, but starting from a more algebraic level.

More precisely, suppose E is an $A - B$ bimodule, where A and B are $*$-algebras, $\langle \cdot, \cdot \rangle_A : E \times E \to A$ and $\langle \cdot, \cdot \rangle_B : E \times E \to B$ satisfy all the algebraic properties of Hilbert bimodule inner products. In particular $\langle x, y \rangle_A z = x \langle y, z \rangle_B$, $\forall x, y, z \in E$. Then we can endow E with a $*$-ternary ring structure by defining a ternary product $(\cdot, \cdot, \cdot) : E \times E \times E \to E$ such that $(x, y, z) = x \langle y, z \rangle_B$. We show that, under certain conditions, the partially ordered sets of C^*-norms on E and on the $*$-algebras A and B are isomorphic to each other, in such a way that the completions with respect to corresponding C^*-norms under these isomorphisms yields a Morita-Rieffel equivalence bimodule.

We think that the best way to do it is by using the above mentioned abstract characterization of equivalence bimodules given by Zettl in [12], under the name of C^*-ternary rings. Such an object is a Banach space with a ternary product on it, which implicitly carries all the structure of an equivalence bimodule. Natural morphisms between C^*-ternary rings are linear maps that preserve ternary products. With such morphisms, one obtains a C^*-category, which is very convenient for the study of properties invariant under Morita-Rieffel equivalence.

The structure of the paper is as follows. In the next section, working in a pure algebraic level, we define the category of admissible $*$-ternary rings, and we show there is a functor from this category to the category of $*$-algebras or, more precisely, to the category of right basic triples (see Definition 2.6). In Section 3, given an admissible ternary ring E with associated basic triple $(E, A, \langle \cdot, \cdot \rangle_A)$, we consider the lattice of C^*-seminorms on A that satisfy the Cauchy-Schwarz inequality $\|\langle x, y \rangle_A\|^2 \leq \|\langle x, x \rangle\| \|\langle y, y \rangle\|$, $\forall x, y \in E$. Then we prove that this lattice is isomorphic to the lattice of C^*-seminorms on E. In passing we obtain some of the results of [12] and [1] regarding C^*-ternary rings. Besides, since there is also a functor to the category of left basic triples, we obtain a fortiori an isomorphism between the lattices of C^*-seminorms (satisfying the Cauchy-Schwarz property) on the $*$-algebras associated to the left and to the right sides. The Hausdorff completions of corresponding C^*-seminorms under this isomorphism turn out to be Morita-Rieffel equivalent. In the last part of Section 3 we consider positive ternary rings, for which the C^*-seminorms on the associated $*$-algebras automatically satisfy the Cauchy-Schwarz inequality. In Section 4 we briefly study the case of C^*-ternary rings, in which basic triples are replaced by C^*-basic triples, that is, Hilbert modules, and the functors from C^*-ternary rings to C^*-basic triples are shown to be exact. Finally, Section 5 is devoted to applications. We first refine a result from
concerning cross sectional algebras of Fell bundles over groups. Then we consider tensor products of C^*-ternary rings, which is essentially the same as tensor products of Hilbert modules. We show that the theory of tensor products of C^*-algebras extends to this larger category, in the sense that there exist a maximal and a minimal tensor products. By using this theory we obtain easy and natural proofs of the known results of the Morita-Rieffel invariance of nuclearity and exactness of C^*-algebras.

2. Ternary rings

2.1. Ternary rings.

Definition 2.1. A $*$-ternary ring is a complex linear space E with a map $\mu : E \times E \times E \to E$, called $*$-ternary product on E, which is linear in the odd variables and conjugate linear in the second one, and such that:

$$\mu(\mu(x, y, z), u, v) = \mu(x, \mu(u, z, y), v) = \mu(x, y, \mu(z, u, v)), \forall x, y, z, u, v \in E$$

A homomorphism of $*$-ternary rings is a linear map $\phi : (E, \mu) \to (F, \nu)$ such that

$$\nu(\phi(x), \phi(y), \phi(z)) = \phi(\mu(x, y, z)), \forall x, y, z \in E.$$ Sometimes we will write $(x, y, z)_E$ or $(x, y, z)_F$ instead of $\mu(x, y, z)$, and we will use the expression $*$-tring instead of $*$-ternary ring.

There is an inclusion of the category of $*$-algebras into the category of $*$-trings: if A is a $*$-algebra, then $(x, y, z) \mapsto xy^*z$ is a ternary product on A, and if $\pi : A \to A'$ is a homomorphism of $*$-algebras, then so is of $*$-trings.

Definition 2.2. If a subspace F of a $*$-tring E is invariant under the ternary product, we say that it is a sub-$*$-tring of E, or just a subring of E. A subring F is said to be hermetic in E if for $x \in E$ we have $(x, x, x) \in F \iff x \in F$.

Definition 2.3. A $*$-tring E will be called admissible if $\{0\}$ is hermetic in E. A $*$-algebra A will be called admissible if it is admissible as a $*$-tring.

Note that a $*$-algebra A is admissible if and only if the condition $a^*a = 0$ implies $a = 0$.

Definition 2.4. Let E be a $*$-tring and $F \subseteq E$ a subspace. We say that F is an ideal of E if $(E, E, F) + (E, F, E) + (F, E, E) \subseteq F$.

If $\pi : E \to F$ is a homomorphism into an admissible $*$-tring F, then $\ker \pi$ is an hermetic ideal of E:

$$\pi((x, x, x)) = 0 \iff (\pi(x), \pi(x), \pi(x)) = 0 \iff \pi(x) = 0$$

In case F is an ideal of E, then E/F has an obvious structure of $*$-tring for which the canonical map $q : E \to E/F$ is a homomorphism of $*$-trings. Note that E/F is admissible whenever F is hermetic. In particular if $\pi : E \to F$ is a homomorphism into an admissible $*$-tring F, then $E/\ker \pi$ is admissible.

Suppose E is a complex vector space, and let E^* denote its complex conjugate linear space. If (E, μ) is a $*$-tring, then $\mu^* : E^* \times E^* \times E^* \to E^*$ given by $\mu^*(x, y, z) = \mu(z, y, x), \forall x, y, z \in E^*$, is a $*$-ternary product on E^*. We call (E^*, μ^*) the adjoint or reverse $*$-tring of (E, μ). If $\pi : E \to F$ is a homomorphism, then π remains a homomorphism $E^* \to F^*$, so it is clear that reversion is an autofunctor of order two of the category of $*$-trings, which moreover sends admissible $*$-trings
into admissible ∗-trings. If A is a ∗-algebra considered as a ∗-tring as above, then its reverse ∗-tring A∗ is the conjugate linear space of Aop considered as a ∗-tring.

Example 2.5 (Basic triples). Suppose \((E, A, \langle \cdot, \cdot \rangle)\) is a triple consisting of a \(\mathbb{C}\)-vector space \(E\), a ∗-algebra \(A\) over which \(E\) is a right module, and a sesquilinear map \(\langle \cdot, \cdot \rangle : E \times E \to A\) (conjugate linear in the first variable), such that \(\langle x, y \rangle a = \langle x, ya \rangle\) and \(\langle x, y \rangle^* = \langle y, x \rangle\), ∀\(x, y \in E\), \(a \in A\). Then \((\cdot, \cdot) : E \times E \times E \to E\) given by \(\langle x, y, z \rangle \mapsto x\langle y, z \rangle\) is a ternary product. We will say that \((E, (\cdot, \cdot))\) is the ternary ring associated with \((E, A, (\cdot, \cdot))\).

Definition 2.6. Triples as in Example 2.5 will be referred to as (right) basic triples. A basic triple \((E, A, \langle \cdot, \cdot \rangle)\) will be called admissible whenever \(A\) is admissible, and full if \(\text{span}\{\langle x, y \rangle_A : x, y \in E\} = A\). By a homomorphism from the basic triple \((E, A, \langle \cdot, \cdot \rangle)\) into the basic triple \((F, B, \langle \cdot, \cdot \rangle)\) we mean a pair \((\varphi, \psi)\) of maps such that \(\varphi : E \to F\) is linear, \(\psi : A \to B\) is a homomorphism of ∗-algebras, and \(\varphi(xa) = \varphi(x)\psi(a)\), ∀\(x \in E\), \(a \in A\).

Similarly we can define left basic triples, using left instead of right \(A\)-modules.

We will see soon that any admissible ∗-tring can be described in terms of basic triples as in Example 2.5.

Proposition 2.7. Let \((E, A, \langle \cdot, \cdot \rangle)\) be a basic triple.

1. If \(A\) is admissible, and \(\langle x, x \rangle = 0\) implies \(x = 0\), then the ∗-tring \(E\) is admissible as well.
2. If \((E, A, \langle \cdot, \cdot \rangle)\) is admissible and full, then \(E\) is faithful as an \(A\)-module.

Proof. If \(x \in E\) is such that \(\langle x, x \rangle = 0\), then
\[
\langle x, x \rangle^* \langle x, x \rangle = \langle x, x \rangle \langle x, x \rangle = \langle x, x \rangle = 0.
\]
Now, if \(A\) is admissible, the latter equality implies \(\langle x, x \rangle = 0\), so \(x = 0\). As for the second statement suppose \((E, A, \langle \cdot, \cdot \rangle)\) is admissible and full, and \(a \in A\) is such that \(a = \sum_{j=1}^n \langle y_j, z_j \rangle\) and \(ya = 0\), ∀\(y \in F\). Then we have \(a^*a = \sum_{j=1}^n \langle y_j, z_j \rangle a = 0\), so \(a = 0\). Then \(E\) is a faithful \(A\)-module. \(\square\)

Lemma 2.8. Suppose that \((E, A, \langle \cdot, \cdot \rangle)\) and \((F, B, \langle \cdot, \cdot \rangle)\) are basic triples, with the former full, and \(F\) admissible as ∗-tring and faithful as a \(B\)-module. Then, if \(\varphi : (E, (\cdot, \cdot)) \to (F, (\cdot, \cdot))\) is a homomorphism between their associated ∗-trings, there exists a unique homomorphism of ∗-algebras \(\psi : A \to B\) such that \(\psi((x, y)_A) = \langle \varphi(x), \varphi(y) \rangle_B\), ∀\(x, y \in E\). Besides we have \(\varphi(xa) = \varphi(x)\psi(a)\), ∀\(x \in E\), \(a \in A\), and
\[
\ker \psi \subseteq \{a \in A : Ea \subseteq \ker \varphi \} \subseteq \{a \in A : \psi(a)^* \psi(a) = 0\},
\]
both inclusions being equalities if \(B\) is admissible. If \(E\) is also a faithful \(A\)-module and \(\varphi\) is injective, then so is \(\psi\).

Proof. We will suppose that \((F, B, (\cdot, \cdot))\) is full: otherwise we just replace \(B\) by \(\text{span}(F, B)_B\). We concentrate in showing the existence of the map \(\psi\), because its uniqueness is obvious. To this end suppose that \(x_1, \ldots, x_n\) and \(y_1, \ldots, y_n\) are elements in \(E\) such that \(\sum_{j=1}^n \langle x_j, y_j \rangle_A = 0\), and therefore also \(\sum_{j=1}^n \langle y_j, x_j \rangle_A = 0\). Consider the element \(c := \sum_{j=1}^n \langle \varphi(x_j), \varphi(y_j) \rangle_B\) of \(B\). All we have to do is to show
that $c = 0$. Now, if $x \in E$ and $u \in F$ we have
\[
(\varphi(x), uc, uc) = \sum_k (\varphi(x), (u, \varphi(x_k), \varphi(y_k)), uc)
\]
\[
= \sum_k (\varphi(x), \varphi(y_k), \varphi(x_k)), uc) = (\varphi(x \sum_k (y_k, x_k)_A), u, uc) = 0.
\]
Hence, if $u \in F$:
\[
(uc, uc, uc) = \sum_j ((u, \varphi(x_j), \varphi(y_j)), uc, uc) = \sum_j (u, \varphi(x_j), (\varphi(y_j), uc, uc)) = 0
\]
Since F is admissible, it follows that $uc = 0$, $\forall u \in F$, so $c = 0$ because F is a faithful B-module.

Suppose now that $a \in \ker \psi$. Then $\varphi(xa) = \varphi(x)\psi(a) = 0$, so $Ea \subseteq \ker \varphi$. On the other hand, if the element $a = \sum_j (x_j, y_j)_A$ is such that $Ea \subseteq \ker \varphi$, then
\[
\psi(a^*)a = \psi(\sum_i (y_i,x_i,y_i)_A) = \sum_i ((\varphi(y_i), \varphi(x_i), \varphi(y_i), y_i)_A) = 0
\]
because $\varphi(x_i,a) = 0 \forall i$. In case B is admissible we have $\psi(a^*)a = 0$ if and only if $a \in \ker \psi$, so in this case the three considered sets agree. Finally, when E is faithful and $\ker \varphi = 0$, we have $\{a \in A : Ea \subseteq \ker \varphi\} = 0$, so $\ker \psi = 0$.

Given two modules E and F over a ring R, we denote by $\text{Hom}_R(E,F)$ the abelian group of R-linear maps from E into F, and just by $\text{End}_R(E)$ in case $E = F$. Let E be an admissible $*$-tring, and suppose $T \in \text{End}_C(E)$ is such that there exists $S \in \text{End}_C(E)$ that satisfies $(x,Ty,z) = (Sx,y,z), \forall x,y,z \in E$. Since $\{0\}$ is hermetic in E, given $T \in \text{End}_C(E)$, there exists at most one such endomorphism S; in this case we say that S is the adjoint of T to the left, and we denote it by T^*. The set $\mathcal{L}(E)$ of C-linear endomorphisms of E that have an adjoint to the left is clearly a unital subalgebra of $\text{End}_C(E)$. Every pair of elements $y,z \in E$ gives rise to an endomorphism $\theta_{y,z} : E \to E$ given by $\theta_{y,z}(x) := (x,y,z)$. It is readily checked that $\theta_{y,z}$ is adjointable with adjoint $\theta_{z,y}$.

Proposition 2.9. Let E be an admissible $*$-tring. Then the map $* : \mathcal{L}(E) \to \mathcal{L}(E)$, given by taking the adjoint, is an involution in $\mathcal{L}(E)$. Moreover, the $*$-algebra $\mathcal{L}(E)$ is an admissible $*$-tring, and $\text{span}\{\theta_{y,z} : y,z \in E\}$ is a twosided ideal of $\mathcal{L}(E)$, which is essential in the sense that $T \theta_{y,z} = 0 \forall y,z \in E$ or $\theta_{y,z}T = 0 \forall y,z \in E$ implies $T = 0$.

Proof. It is clear that the map $T \mapsto T^*$ is conjugate linear and antiprimitive. On the other hand, if $T \in \mathcal{L}(E)$:
\[
(u, T(x,y,z), u) = (u, z, (y, T(x), u)) = (u, z, (T^*(y), x, u)) = (u, (x, T^*(y), z), u)
\]
\forall x,y,z,u \in E$ and $T \in \mathcal{L}(E)$, which shows that $T^{**} = T$. Now, if $x \in E$, and $T \in \mathcal{L}(E)$ is such that $T^*T = 0$: $(Tx,Tx,Tx) = (x, T^*T(x), x) = 0$, so $T(x) = 0$, and therefore $T = 0$. Finally, if $T \in \mathcal{L}(E)$ and $x,y,z \in E: \theta_{y,z}T(x) = (x, T^*(y), z) = \theta_{y,z}(x)$. Thus $T \theta_{y,z} = (\theta_{z,y}T^*)^* = \theta_{y,z}T$. This shows that $\text{span}\{\theta_{y,z} : y,z \in E\}$ is an ideal of $\mathcal{L}(E)$. If $\theta_{y,z}T = 0 \forall y,z \in E$, then $0 = \theta_{T(x),T(x)}T(x) = (Tx,Tx,Tx), \forall x \in E$. Then $Tx = 0 \forall x \in E$ because E is admissible, so $T = 0$.

\qed
The next result shows that any admissible $*$-tring E gives rise to an admissible and full right basic triple $(E, E^r_0, \langle \cdot, \cdot \rangle_r)$. In the same way one could show that E also defines a left basic triple $(E, E'^l_0, \langle \cdot, \cdot \rangle_l)$.

Theorem 2.10. Let E and F be admissible $*$-trings. Then:

1. There exists a pair $(E^r_0, \langle \cdot, \cdot \rangle_r)$ such that $(E, E^r_0, \langle \cdot, \cdot \rangle_r)$ is an admissible and full basic triple, whose associated $*$-tring is E.
2. If $\pi : E \to F$ is a homomorphism of $*$-trings, and $(E^r_0, \langle \cdot, \cdot \rangle_r)$ and $(F^r_0, \langle \cdot, \cdot \rangle_r)$ are pairs like above for E and F respectively, there exists a unique homomorphism of $*$-algebras $\pi^*_0 : E^r_0 \to F^r_0$ such that $\pi^*_0((x,y)_r) = (\pi(x), \pi(y))_r, \forall x, y \in E$.

Moreover, $\pi(xb) = \pi(x)\pi(b), \forall x \in E, b \in E^r_0$, that is, the pair (π, π^*_0) is a homomorphism of basic triples.

3. The pair $(E^r_0, \langle \cdot, \cdot \rangle_r)$ is the unique (up to canonical isomorphisms) such that the triple $(E, E^r_0, \langle \cdot, \cdot \rangle_r)$ is a full and admissible with E as associated $*$-tring.

Proof. Note that E is a faithful right $\mathcal{L}(E)^{\text{op}}$-module with $xT := T(x)$. Consider the ideal $E^r_0 := \text{span}\{\theta_{y,z} : y,z \in E\}$ of $\mathcal{L}(E)^{\text{op}}$ and let $\langle \cdot, \cdot \rangle_r : E \times E \to E^r_0$ be given by $(x,y)_r := \theta_{x,y}$. It is routine to verify that $(E, E^r_0, \langle \cdot, \cdot \rangle_r)$ is a full and admissible basic triple whose associated $*$-tring is E. The second statement follows at once from 2.8 and 2.7 while the last assertion of the theorem follows immediately from the second one.

Corollary 2.11. The assignment

$$(E \cong F) \mapsto (E, E^r_0, \langle \cdot, \cdot \rangle_r) \xrightarrow{\pi, \pi^*_0} (F, F^r_0, \langle \cdot, \cdot \rangle_r)$$

defines a functor from the category of admissible $*$-trings into the category of admissible and full basic triples.

Corollary 2.12. Let $(E, A, \langle \cdot, \cdot \rangle_A)$ be a basic triple such that E is faithful as an A-module and E is admissible as a $*$-tring. Then there exists a unique homomorphism $\psi : E^r_0 \to A$ such that $\langle x, y \rangle_r = \langle x, y \rangle_A, \forall x, y \in E$. The homomorphism ψ is injective, and it is an isomorphism if $(E, A, \langle \cdot, \cdot \rangle_A)$ is full.

Proof. Let $(E, E^r_0, \langle \cdot, \cdot \rangle_r)$ be the full and admissible basic triple provided by Theorem 2.10. The identity map on E is an injective homomorphism of $*$-trings, so by 2.8 there exists a unique homomorphism $\psi : E^r_0 \to A$ such that $\langle x, y \rangle_r = \langle x, y \rangle_A, \forall x, y \in E$, which is injective because E is faithful as E^r_0-module. It is clear that ψ is also surjective when the given basic triple is full.

Corollary 2.13. Let $(E, A, \langle \cdot, \cdot \rangle_A)$ be a full basic triple such that E is faithful as an A-module. Then A is admissible if E is admissible.

Proof. Just note that if E is admissible, then $E^r_0 \cong A$ by 2.12 and E^r_0 is admissible according to 2.10.

Corollary 2.14. Let F be an ideal of the admissible $*$-tring E, $(E, E^r_0, \langle \cdot, \cdot \rangle_E)$ and $(F, F^r_0, \langle \cdot, \cdot \rangle_F)$ the full and admissible basic triples associated, respectively, with E and F (given by Theorem 2.10). If $A := \text{span}\{\langle x, y \rangle_E : x, y \in F\}$, then A is a $*$-ideal of E^r_0, and the basic triples $(F, F^r_0, \langle \cdot, \cdot \rangle_F)$ and $(F, A, \langle \cdot, \cdot \rangle_E)$ are isomorphic.
Proof. The triple $(F, A, \langle \cdot, \cdot \rangle_r)$ is admissible and full, with F as induced $*$-tring. Then F is a faithful A-module by 2.7. According to 2.12, there exists a unique map $\psi : F_r^0 \to A$ such that (id, ψ) is a homomorphism from $(F, F_0^r, \langle \cdot, \cdot \rangle_F)$ to $(F, A, \langle \cdot, \cdot \rangle_E)$, and ψ is an isomorphism of $*$-algebras. It follows that (id, ψ) is the inverse homomorphism of (id, ψ). \hfill \Box

From now on if F is an ideal in the admissible $*$-tring E, we will think of F_0^r as a $*$-ideal of E_0^r via the identification provided by 2.14:

$$F_0^r \cong \text{span}\{\langle x, y \rangle_E : x, y \in F\}. \tag{2.2}$$

For the next result recall that an ideal F of the $*$-tring E is hermetic if and only if E/F is admissible.

Proposition 2.15. Let $\pi : E \to F$ be a homomorphism between the admissible $*$-trings E and F, such that $\ker \pi$ is hermetic. If $I_{\ker \pi} := \{a \in E_0^r : Ea \subseteq \ker \pi\}$, then:

$$(\ker \pi)_0^r \subseteq \ker \pi^r \subseteq I_{\ker \pi}$$

Proof. Taking into account (2.2) above and the second part of 2.10, the first inclusion is clear. The second inclusion follows from the admissibility of $E/\ker \pi$ and (2.1) in Lemma 2.8. \hfill \Box

Remark 2.16. Suppose F is an hermetic ideal of the admissible $*$-tring E. Let $q : E \to E/F$ be the quotient map, $I_F := \{a \in E_0^r : Ea \subseteq F\}$, $p : E_0^r \to E_0^r/I_F$ the canonical projection and $q_0^r : E_0^r/I_F \to (E/F)_0^r$ the isomorphism induced by q_0^r, so the following diagram commutes:

$$
\begin{array}{ccc}
E_0^r & \xrightarrow{q_0^r} & (E/F)_0^r \\
p \downarrow & & \downarrow q_0^r \\
E_0^r/I_F & \xrightarrow{\overline{q}_0^r} & \overline{(E/F)_0^r}
\end{array}
$$

Then:

$$\overline{q}_0^r(p(\langle x, y \rangle_E)) = q_0^r(\langle x, y \rangle_E) = \langle q(x), q(y) \rangle_{E/F}, \quad \forall x, y \in E.$$

Therefore the pair $((E/F)_0^r, \langle \cdot, \cdot \rangle_{E/F})$ associated with E/F in Theorem 2.10 may be replaced by the pair $(E_0^r/I_F, \langle \cdot, \cdot \rangle_{E/F})$, where $\langle q(x), q(y) \rangle_{E/F} = p(\langle x, y \rangle_E), \forall x, y \in E$ and the action of E_0^r/I_F on E/F is given by $q(x)p(a) = q(xa), \forall x \in E, a \in A$.

Proposition 2.17. Let $\pi : E \to F$ be a homomorphism between admissible $*$-trings. Then:

1. π is injective if and only if $\pi_0^r : E_0^r \to F_0^r$ is injective.
2. If π is onto, or an isomorphism, then so is $\pi_0^r : E_0^r \to F_0^r$.

Proof. Since the second statement is clear we prove only the first one. Now if π_0^r is injective and $x \in E$, the admissibility of E and F implies that:

$$\pi(x) = 0 \iff (\pi(x), \pi(x))_r = 0 \iff \pi_0^r(\langle x, x \rangle_r) = 0 \iff x = 0,$$

so π is injective as well. On the other hand the injectivity of π implies that of π_0^r by 2.8. \hfill \Box
3. Correspondence between C^*-seminorms.

3.1. C^*-seminorms.

Definition 3.1. A C^*-seminorm on a $*$-tring (E, μ) is a seminorm such that:

1. $\|\mu(x, y, z)\| \leq \|x\| \|y\| \|z\|$, $\forall x, y, z \in E$.
2. $\|\mu(x, x, x)\| = \|x\|^3$, $\forall x \in E$.

If $\|\cdot\|$ is a norm, we call it a C^*-norm, and we say that $(E, \|\cdot\|)$ is a pre-C^*-ternary ring. If $(E, \|\cdot\|)$ is also a Banach space, we say that it is a C^*-ternary ring, or just a C^*-tring.

If E is a $*$-tring, the set of C^*-seminorms on E will be denoted by $SN(E)$, and $N(E)$ will denote the set of C^*-norms on E. The set $SN(E)$ is partially ordered by: $\gamma_1 \leq \gamma_2$ if $\gamma_1(x) \leq \gamma_2(x)$, $\forall x \in E$.

Definition 3.2. A $*$-tring E will be called C^*-closable, or just closable, in case $N(E) \neq \emptyset$. Similar terminology will be used for $*$-algebras.

Observe that any C^*-closable $*$-tring is admissible.

In the next proposition, whose easy proof is left to the reader, we record some basic facts about $*$-trings.

Proposition 3.3. Let E be a $*$-tring. Then:

1. $N_\gamma := \{x \in E : \gamma(x) = 0\}$ is an hermetic ideal of E, for all $\gamma \in SN(E)$.
2. The intersection of hermetic subrings is also hermetic.
3. The quotient E/N is admissible, where $N := \cap\{N_\gamma : \gamma \in SN(E)\}$ and N_γ is as in 1.
4. If $SN(E)$ separates points of E, then E is admissible.
5. If $SN(E)$ separates points of E and is bounded, then E is C^*-closable.

If H and K are Hilbert spaces and $B(H, K)$ denotes the corresponding space of bounded linear maps, a subspace E of $B(H, K)$ closed under the ternary product $(R, S, T) \mapsto RST \in E$, $\forall R, S, T \in E$, is a $*$-tring with that product. In case E is also closed it is called a ternary ring of operators (TRO). Note that if (E, μ) is a C^*-tring, then $(E, -\mu)$ also is a C^*-tring, called the opposite of (E, μ) and denoted by E^{op}. The opposite of a TRO is called anti-TRO.

New C^*-ternary rings can be obtained by direct sums: if $(E, \|\cdot\|, \mu_E)$ and $(F, \|\cdot\|_F, \mu_F)$ are C^*-trings, then $(E \oplus F, \max\{\|\cdot\|_E, \|\cdot\|_F\}, \mu_E \oplus \mu_F)$ is a C^*-tring. We denote it just by $E \oplus F$.

Suppose that E is a full right Hilbert A-module, and define the ternary product on E: $\mu_E(x, y, z) := x(y, z)$. Then (E, μ_E) is a C^*-tring with the norm $\|x\| = \sqrt{\langle x, x \rangle}$. Now, if F is a full right Hilbert B-module, then $E \oplus F^{\text{op}}$ is also a C^*-tring. This is the fundamental example of C^*-tring, as shown by Zettl in [12, 3.2] (see also Corollary 3.10 below).

Zettl also showed that there exist unique sub-C^*-trings E_+ and E_- of E such that $E = E_+ \oplus E_-$, and E_+ is isomorphic to a TRO, while E_- is isomorphic to an anti-TRO (see [12]). The decomposition above is called the fundamental decomposition of E.

Definition 3.4. We say that a C^*-tring E is positive (negative) if $E = E_+$ (respectively: if $E = E_-$).
If E is a C^*-tring, we define $E_p := E_+ \oplus E^{2p}$. Then E_p is a positive C^*-tring.

Let E^* be the reverse $*$-tring of (the $*$-tring) E. It is clear that a norm on E is a C^*-norm if and only if is a C^*-norm on E^*. Moreover, E is a (positive) C^*-tring if and only if so is E^*.

3.2. From pre-C^*-trings to pre-C^*-algebras. In what follows we will examine an intermediate situation between the $*$-algebraic context of [2,10] and the C^*-context originally considered by Zettl.

If α is a seminorm on the vector space X, then $N_\alpha := \{x \in X : \alpha(x) = 0\}$ is a closed subspace of X, so X/N_α is a normed space with the norm $\tilde{\alpha}$ induced by α: $\tilde{\alpha}(x + N_\alpha) = \alpha(x)$. The completion $(X,\tilde{\alpha})$ of $(X/N_\alpha,\tilde{\alpha})$ will be referred to as the Hausdorff completion of the seminormed space (X,α), and the map $x \mapsto x + N_\alpha$ will be called the canonical map.

In case γ is a C^*-seminorm on the ternary ring E, then E/N_γ is a pre-C^*-tring with the induced norm $\tilde{\gamma}$. Thus the corresponding Hausdorff completion E_γ of E is a C^*-tring.

Proposition 3.5. Suppose E is an admissible $*$-tring and $\gamma \in SN(E)$. Let $\gamma^r : E_\gamma^0 \to [0,\infty)$ be the operator seminorm on E_γ^0, that is:

$$\gamma^r(a) := \sup\{\gamma(xa) : \gamma(x) \leq 1\}.$$

Then $\gamma^r \in SN(E_\gamma^0)$, and $\gamma^r \in N(E_\gamma^0) \iff \gamma \in N(E)$. Moreover the following relations hold:

$$\gamma(xa) \leq \gamma(x)\gamma^r(a), \forall x \in E, a \in E_\gamma^0$$

$$\gamma^r((x,y)_r) \leq \gamma(x)\gamma^r(y), \forall x, y \in E$$

$$\gamma^r(x)^2 = \gamma^r((x,x)_r), \forall x \in E$$

Proof. Given $a = \sum_{i=1}^n (x_i,y_i) \in E_\gamma^0$ the linear map $x \mapsto xa$ is bounded because $\gamma(xa) \leq \gamma(x)\sum_{i=1}^n \gamma(x_i)\gamma(y_i)$. Then (3.2) and (3.3) follow immediately and Definition 3.6 implies (3.4). With $a \in E_\gamma^0$ as before and $x \in E$ we have

$$(xa, xa, xa) = \sum_{i=1}^n ((x_i, y_i), xa, xa) = \sum_{i=1}^n (x_i, x_i, y_i, x_i, x_a),$$

so

$$\gamma^r(xa)^3 = \gamma^r(x, xaa^*), xa \leq \gamma^r(aa^*) \gamma^r(a) \gamma^r(x)^3,$$

from where it follows that $\gamma^r((a)^2) \leq \gamma^r(aa^*) \leq \gamma^r(a)\gamma^r(a)^*$. From the computations above is clear that $\gamma^r \in N(E_\gamma^0) \iff \gamma \in N(E)$. In particular E_γ^0 is a C^*-closable algebra whenever E is a C^*-closable tring.

Definition 3.6. Suppose $(E, A, \langle , \rangle_A)$ is a basic triple such that (E, γ) is a C^*-tring and a Banach module over the C^*-algebra (A, α), and that $\langle , \rangle_A : E \times E \to A$ is continuous. Then the triple is said to be a C^*-basic triple. We say that it is full if the ideal span $\{x, y \in E \mid x, y \in E\}$ of A is dense in A.

The next two results will be useful for studying the relation between a C^*-basic triple $(E, A, \langle , \rangle_A)$ and the basic triple $(E, E_\gamma^0, \langle , \rangle_r)$. What we will show first, in 3.4, is that $(E, E_\gamma^0, \langle , \rangle, \gamma)$ can be embedded in $(E, A, \langle , \rangle_A)$.

Proposition 3.7. Let A be a Banach $*$-algebra and I a $*$-ideal of A, not necessarily closed. Then any C^*-seminorm on I can be extended to a C^*-seminorm on A. If I is dense, such extension is unique.
Proof. Consider $\alpha \in SN(I)$, $\alpha \neq 0$. Let I_α be the Hausdorff completion of (I, α), $p : I \rightarrow I_\alpha$ the canonical map, and let $\pi : I_\alpha \rightarrow B(H)$ be a faithful representation. Now, according to [3, VI-19.11], the representation $\pi p : I \rightarrow B(H)$ can be extended to a representation ρ of A. Then $a \mapsto \|\rho(a)\|$ defines a C^*-seminorm on A that defines α. Note that the continuity of ρ implies the continuity of α, from which the uniqueness of the extension follows in case I is dense in A. \hfill \Box

Corollary 3.8. Let I be a $*$-ideal of the C^*-algebra A. Then the unique C^*-norm one can define in I is the restriction of I to the norm of A.

Proposition 3.9. Let $(E, A, \langle, \rangle_A)$ be a full C^*-basic triple, and γ and α the corresponding norms of E and A. Then (A, α) is the completion of (E_0, γ^r), and (\langle, \rangle_A) is the continuous extension of \langle, \rangle_r.

Proof. Note that E is admissible for it is a C^*-tring. On the other hand E is a faithful A-module: if $a \in A$ is such that $xa = 0 \forall x \in E$, then $\langle x, y \rangle_A a = 0 \forall x, y \in E$, so it follows that $ba = 0$ for every b in the dense ideal span$\{\langle x, y \rangle_A : x, y \in E\}$ of A, which implies $a = 0$. Thus there exists, by 2.7, a unique homomorphism $\psi : E_0^r \rightarrow A$ such that $\psi(\langle x, y \rangle) = \langle x, y \rangle_A$, $\forall x, y \in E$. Besides ψ is injective and $\psi(E_0^r) = \mathrm{span}\{\langle x, y \rangle_A : x, y \in E\}$ (thus we may suppose E_0^r is a dense ideal of A). Now [3,8] implies γ^r_0 is the restriction of α to $\psi(E_0^r)$, and, since the latter is dense in A, we conclude that A is the completion of E_0^r.

As a consequence we obtain the following result, due to H. Zettl:

Corollary 3.10 (cf. [12, Proposition 3.2]). Let (E, γ) be a C^*-tring and E^r the completion of E_0^r with respect to γ^r. Then $(E, E^r, \langle, \rangle_r)$ is, up to isomorphism, the unique full C^*-tring whose first component is E.

Proposition 3.11. Let $\pi : E_1 \rightarrow E_2$ be a homomorphism of $*$-trings between the C^*-trings E_1 and E_2. Then there exists a unique homomorphism $\pi^r : E^r_1 \rightarrow E^r_2$ such that $\pi^r(\langle x, y \rangle_{E_2}) = \langle \pi(x), \pi(y) \rangle_{E^r_2}$, $\forall x, y \in E$, and $\pi(xa) = \pi(x)\pi^r(a)$ $\forall x \in E$, $a \in E^r$. Consequently π is always contractive, and is isometric if and only if it is injective.

Proof. It is clear that, if the homomorphism π^r exists, it must be an extension of $\pi^r_0 : E_0^r \rightarrow E_0^r$. Let $\rho : F^r \rightarrow B(H)$ be a faithful representation. Then $\rho \pi^r_0$ is a representation of E_0^r. Now, since $(E, E^r, \langle, \rangle_r)$ is a C^*-tring, E_0^r is a *-ideal in E^r. Therefore $\rho \pi^r_0$ can be uniquely extended to a representation $\bar{\rho} : E^r \rightarrow B(H)$ (VI-19.11]). Since $\rho(F^r)$ is closed and $\bar{\rho}(E^r)$ is a subset of the closure of $\rho \pi^r_0(E_0^r)$, we have $\bar{\rho}(E^r) \subseteq \rho(F^r)$. Then take $\pi^r := \rho^{-1} \bar{\rho}$. Note that $\|\pi(x)\| = \|\pi^r(\langle x, x \rangle)\| \leq \|\langle x, x \rangle\| = \|x\|^2$, with equality if π^r is injective. This shows that π is contractive. Finally, if π is injective, so is π^r_0 and, as in the proof of 3.8, this implies that π^r also is injective, thus an isometry. \hfill \Box

Corollary 3.12 (cf. [1] Proposition 4.1). The assignment

$$(E, F) \mapsto (E, E^r, \langle, \rangle_r) \hookrightarrow (F, F^r, \langle, \rangle_r)$$

defines a functor from the category of C^*-trings to the category of full C^*-basic triples.

It follows from Proposition 3.5 that any C^*-seminorm on E_0^r induced by a C^*-seminorm on E by means of 3.1 must satisfy the Cauchy-Schwarz condition 3.3.
So it is natural to restrict our attention to the following subsets of C^*-seminorms on E_0^*:

$$\mathcal{SN}(E_0^*) := \{\alpha \in \mathcal{SN}(E_0^*) : \alpha((x,y)_r)^2 \leq \alpha((x,x)_r)\alpha((y,y)_r)\}$$

$$\mathcal{N}_{cs}(E_0^*) := \mathcal{SN}(E_0^*) \cap \mathcal{N}(E_0^*).$$

In fact it will be convenient to place ourselves in a slightly more general setting:

Definition 3.13. Let $(E, A, \langle , \rangle)$ be a basic triple. We define

$$\mathcal{SN}(A) := \{\alpha((x,y)) \leq (\alpha(x)\alpha(y)) \in \mathcal{SN}(A) : \alpha(x)^2 \leq \alpha((x,x))\alpha((y,y))\}, \forall x, y \in E.$$

Proposition 3.14. Let $(E, A, \langle , \rangle)$ be a basic triple, and consider E with the *-tring structure induced by \langle , \rangle. Given $\alpha \in \mathcal{SN}(A)$, let $\hat{\alpha} : E \to [0,\infty)$ be defined by:

$$\hat{\alpha}(x) := \alpha((x,x))^{1/2} \quad \text{(3.5)}$$

Then

1. $\hat{\alpha}(ax) \leq \hat{\alpha}(a)\alpha(a)$.
2. $\hat{\alpha} \in \mathcal{SN}(E)$.
3. If E is a faithful A-module and $\hat{\alpha} \in \mathcal{N}(E)$, then $\alpha \in \mathcal{N}_{cs}(A)$.
4. If $\alpha \in \mathcal{N}_{cs}(A)$ and $\langle x,x \rangle = 0$ implies $x = 0$, then $\hat{\alpha} \in \mathcal{N}(E)$.

Proof. Since the Cauchy-Schwarz inequality holds for α, it follows as usual that $\hat{\alpha}$ satisfies the triangular inequality and, since homogeneity is obvious, $\hat{\alpha}$ is a seminorm on E. On the other hand, since α is a C^*-seminorm and satisfies the inequalities, we have, for all $x, y, z \in E, a \in A$:

$$\hat{\alpha}(ax) = \alpha(a^*\langle x,x \rangle a)^{1/2} \leq \alpha(a)\hat{\alpha}(x)$$

$$\hat{\alpha}(x,y,z) = \hat{\alpha}(x,y,z) \leq \hat{\alpha}(x)\alpha(\langle y,z \rangle) \leq \hat{\alpha}(x)\hat{\alpha}(y)\hat{\alpha}(z)$$

$$\hat{\alpha}(\langle x,x \rangle) = \alpha(\langle x,x \rangle)^{3/2} = \alpha((x,x)^3)^{1/2} = \alpha((x,x)^3)^{1/2} = \alpha(x)^3,$$

so $\hat{\alpha}$ is a C^*-seminorm on E. The first of the above inequalities implies that $\hat{\alpha}^*\hat{\alpha}$ is a norm whenever $\hat{\alpha}$ is and is E is a faithful A-module. Finally, if α is a norm, it follows directly from the inequalities that $\hat{\alpha}$ also is a norm when the condition $\langle x,x \rangle = 0$ implies $x = 0$. \qed

Corollary 3.15. If E is an admissible *-tring and $\gamma \in \mathcal{SN}(E)$, $\alpha \in \mathcal{SN}_{cs}(E_0^*)$, then $\hat{\gamma}^* = \gamma$ and $\hat{\alpha}^* \leq \alpha$.

Proof. The first statement follows immediately from (3.3) and (3.5). As for the second one we have $\hat{\alpha}(a) = \sup\{\hat{\alpha}(ax) : \hat{\alpha}(x) \leq 1\} \leq \alpha(a)$ by 1. of (3.14). \qed

Corollary 3.16. Let $(E, A, \langle , \rangle)$ be a full basic triple, and $\alpha \in \mathcal{SN}_{cs}(A)$. If $\hat{\alpha} \in \mathcal{SN}(E)$ is given by (3.5), then $I_{N_{\alpha}} = N_{\alpha}$, where $I_{N_{\alpha}} := \{a \in A : Ea \subseteq N_{\hat{\alpha}}\}$.

Proof. The inclusion $N_{\alpha} \subseteq I_{N_{\alpha}}$ is clear because $\hat{\alpha}(ax) \leq \hat{\alpha}(a)\alpha(a)$, $\forall x \in E, a \in A$. Conversely, suppose that $a \in A$ is such that $\hat{\alpha}(ax) = 0, \forall x \in E$. Then $\alpha(a^*\langle x,y \rangle a) = \alpha(\langle xa,ya \rangle) = 0, \forall x, y \in E$. Now, since the triple is full, we can write $aa^* = \sum_j \langle x_j, y_j \rangle$, for certain $x_j, y_j \in E$, so we have:

$$0 \leq \alpha(a)^4 = \alpha(a^*a)^2 \leq \alpha(a^*aa^*a) = \alpha(a^* \sum_j \langle x_j, y_j \rangle a) \leq \sum_j \alpha(a^*\langle x_j, y_j \rangle a) = 0,$$

hence $a \in N_{\alpha}$. \qed
Proposition 3.17. Let \((E, A, \langle \cdot, \cdot \rangle)\) be a full basic triple, and \(\alpha \in SN_{cs}(A)\). Let
\(\gamma := \bar{\alpha} \in SN(E)\), \(\bar{\alpha}\) given by (6.5). Then \(E_\gamma\) is a \(C^*\)-tring, \((E_\gamma', \bar{\gamma}') = (A_\alpha, \bar{\alpha})\) and \(\bar{\alpha}' = \alpha\).

Proof. Denote by \(q : E \to E/N_\gamma \subseteq E_\gamma\) and \(p : A \to A/N_\alpha \subseteq A_\alpha\) the corresponding canonical maps. We define \(E/N_\gamma \times A/N_\alpha \to E/N_\gamma\) and \([\cdot, \cdot] : E/N_\gamma \times E/N_\gamma \to A_\alpha\) such that \(q(x)p(a) := q(xa)\) and \([q(x), q(y)] := p(\langle x, y \rangle)\) respectively. Let us see that these operations are continuous in the norms \(\bar{\gamma}\) and \(\bar{\alpha}\). The action of \(A_\alpha\) on \(E/N_\gamma\) is continuous, for if \(x, y \in E\) and \(a \in A:\)
\[
\bar{\gamma}(q(x)p(a)) = \bar{\gamma}(q(xa)) = \bar{\gamma}(x)\alpha(a) = \bar{\gamma}(x)\bar{\alpha}(p(a))
\]
And the sesquilinear map \([\cdot, \cdot]_{E/N_\gamma}\) also is continuous, because:
\[
\bar{\alpha}(\langle q(x), q(y) \rangle_{E/N_\gamma}) = \bar{\alpha}(p(\langle x, y \rangle_{E})) = \alpha(\langle x, y \rangle_{E}) \leq \bar{\gamma}(x)\bar{\gamma}(y) = \bar{\gamma}(q(x))\bar{\gamma}(q(y)).
\]
Therefore these operations extend to continuous maps \(E_\gamma \times A_\alpha \to E_\gamma\) and \([\cdot, \cdot] : E_\gamma \times E_\gamma \to A_\alpha\), so we obtain a full \(C^*\)-basic triple \((E_\gamma, A_\alpha, [\cdot, \cdot])\). Therefore \((A_\alpha, \alpha) = (E_\gamma, \bar{\gamma}')\) by (3.9). As for the last assertion, we have to prove that \(\bar{\gamma}' = \alpha\) or, equivalently, that \(\gamma' = \bar{\alpha}\). So it is enough to show that \(\gamma' = \bar{\gamma}'p\). But, if \(a \in A:\)
\[
\gamma'(p(a)) = \sup\{\bar{\gamma}(q(x)p(a)) : \bar{\gamma}(q(x)) \leq 1\} = \sup\{\bar{\gamma}(q(xa)) : \gamma(x) \leq 1\} = \gamma'(a).
\]

Propositions 3.5 and 3.14 allow us to define maps \(\Phi_r : SN(E) \to SN_{cs}(E_0)\) and \(\Psi_r : SN_{cs}(E_0^\gamma) \to SN(E)\) such that \(\Phi_r(\gamma) = \gamma'\), given by (3.1), and \(\Psi_r(\alpha) = \bar{\alpha}\), given by (6.5). We want to show that in fact \(\Phi_r\) and \(\Psi_r\) are mutually inverse maps that preserve the order.

Theorem 3.18. Let \(E\) be an admissible \(*\)-tring. Then the maps \(\Phi_r : SN(E) \to SN_{cs}(E_0)\) and \(\Psi_r : SN_{cs}(E_0^\gamma) \to SN(E)\) are mutually inverse isomorphisms of lattices. Moreover, \(\Phi_r(N(E)) = N_{cs}(E_0)\) and \(\Psi_r(N_{cs}(E_0^\gamma)) = N(E)\).

Proof. By Corollary 3.15 we have \(\Psi_r \Phi_r = Id_{SN(E)}\), and Proposition 3.17 shows that \(\Phi_r \Psi_r = Id_{SN_{cs}(E_0)}\), so the maps \(\Phi_r\) and \(\Psi_r\) are mutually inverse. Besides, it follows from (6.5) that \(\Phi_r(\gamma)\) is a norm if and only if so is \(\gamma\). On the other hand is clear that \(\Psi_r\) preserves the order, thus it remains to be shown that \(\Phi_r\) also preserves the order. To this end consider \(\gamma_1 \leq \gamma_2\) in \(SN(E)\). Since \(id : (E, \gamma_2) \to (E, \gamma_1)\) is continuous, it induces a homomorphism \(\pi : E_{\gamma_2} \to E_{\gamma_1}\), which in turn induces, according with Proposition 3.11 a homomorphism \(\pi^* : E_{\gamma_2}^* \to E_{\gamma_1}^*\), which is necessarily contractive. Thus if \(a \in E_{\gamma_1}^*\), we have:
\[
\gamma_1^*(a) = \bar{\gamma}_1^*(\pi^*(a + N_{\gamma_1}^*)) \leq \bar{\gamma}_2^*(a + N_{\gamma_1}^*) = \gamma_2^*(a),
\]
which shows that \(\gamma_1^* \leq \gamma_2^*\).

All we have done to the right side can be done also to the left side. For example, every admissible \(*\)-tring \(E\) induces a (left) admissible and full basic triple \((E, E_0, \langle \cdot, \cdot \rangle)\), we have an isomorphism of posets \(\Phi_l : SN(E) \to SN_{cs}(E_0)\) with inverse \(\Psi_l : SN_{cs}(E_0) \to SN(E)\), given by \(\Phi_l(\gamma) = \gamma^l\) and \(\Psi_l(\alpha) = \bar{\alpha}\), where \(\gamma^l(a) := \sup\{\gamma(ax) : \gamma(x) \leq 1\}\) and \(\bar{\alpha}(x) := (\alpha(x, x)^{1/2}\), etc. Then we obtain the following consequences:

Corollary 3.19. Let \(E\) be an admissible \(*\)-tring. Then \(\Phi_l \Psi_l : SN_{cs}(E_0) \to SN_{cs}(E_0^\gamma)\) is an isomorphism of lattices such that \(\Phi_l \Psi_l(N_{cs}(E_0)) = N_{cs}(E_0^\gamma)\). The inverse of \(\Phi_l \Psi_l\) is \(\Phi_l \Psi_l\).
As mentioned at the end of 3.1 in [12] Theorem 3.1], Zettl proved that any C^*-tring is of the form $E = E_+ \oplus E_-$, where E_+ and E^{op} are isomorphic to a TRO. In fact we have $E_+ := \{ x \in E : \langle x, x \rangle_r \text{ is positive} \}$, $E_- := \{ x \in E : -\langle x, x \rangle_r \text{ is positive} \}$, and E_+ and E_- are ideals of E such that $\langle E_+, E_- \rangle = 0$. If $E_p := E_+ \oplus E^{op}$, we will have that $E^{op}_p = E$ and $E'_p = E'$, and now E_p is a Morita-Rieffel equivalence between E' and E.

Thus we have:

Corollary 3.20. Let E be an admissible *-tring and $\gamma \in SN(E)$. Then E^I_γ and E^*_γ are Morita-Rieffel equivalent C^*-algebras.

In general we will have to deal with algebras that strictly contain E^*_0, but whose C^*-seminorms are essentially the same, as the following results show.

Proposition 3.21. Let I be a selfadjoint ideal of a *-algebra A, and suppose that $\alpha \in SN(I)$. Let $\alpha' : A \to [0, \infty]$ be given by $\alpha'(a) := \sup\{ \alpha(ax) : x \in I, \alpha(x) \leq 1 \}$. For every $a \in A$ consider $L_a : I \to I$, such that $L_a(x) = ax$, $\forall x \in I$. Then the following statements are equivalent:

1. $\alpha'(a) < \infty$, $\forall a \in A$.
2. L_a is bounded, $\forall a \in A$.
3. α can be extended to a C^*-seminorm on A.

Suppose that one of the conditions above holds true. Then:

(a) α' is a C^*-seminorm on A, and $\alpha' \leq \beta$ for every $\beta \in SN(A)$ that extends α.
(b) If α is a norm, then α' is a norm if and only if $\text{Ann}_A(I) = 0$, where $\text{Ann}_A(I) := \{ a \in A : ax = 0, \forall x \in I \}$.

Proof. Since $\|L_a\| = \alpha'(a)$, we have that conditions 1. and 2. are equivalent. It is also clear that 3. \Rightarrow 1. Suppose now that $\alpha'(a) < \infty$, $\forall a \in A$. Let show that α' is a C^*-seminorm on A that extends α. It is easy to check that $\alpha'(ab) \leq \alpha'(a)\alpha'(b)$, $\forall a, b \in A$. Moreover:

$$\alpha'(a^*a) = \sup\{\alpha(a^*ax) : x \in I, \alpha(x) \leq 1 \} \geq \sup\{\alpha(x^*a^*ax) : x \in I, \alpha(x) \leq 1 \}$$

$$\geq \sup\{\alpha(ax)^2 : x \in I, \alpha(x) \leq 1 \} = \alpha'(a)^2.$$

Therefore $\alpha' \in SN(A)$. The fact that α' extends α, as well as assertion (a), are consequences of the fact that for every C^*-seminorm β on A one has that $\beta(a) = \sup\{\beta(ab) : \beta(b) \leq 1 \}$. Finally, suppose that α is a norm on I. Then $\alpha'(a) = 0 \iff \alpha(ax) = 0, \forall x \in I$, that is $\alpha'(a) = 0 \iff a \in \text{Ann}_A(I)$. \qed

Theorem 3.22. Let $(E, A, \langle , , \rangle)$ be an admissible basic triple, with E a faithful A-module, and admissible as *-tring. Suppose that any C^*-seminorm on E^*_0 can be extended in a unique way to a C^*-seminorm on A (recall Corollary 2.12). Then the lattices $SN(E)$ and $SN^{(0)}_{cs}(A)$ are isomorphic. If in addition $\text{Ann}_A(E^*_0) = 0$, the posets $N(E)$ and $N^{(0)}_{cs}(A)$ are isomorphic as well.

Proof. Since any C^*-seminorm on E^*_0 can be uniquely extended to a C^*-seminorm on A, we are allowed to identify $SN(A)$ and $SN(E^*_0)$ as lattices, and it is clear that this yields also an identification between $SN^{(0)}_{cs}(A)$ and $SN_{cs}(E^*_0)$, and the latter is isomorphic to $SN(E)$ by [3]. If moreover $\text{Ann}_A(E^*_0) = 0$, the same argument applies to $N(E)$ and $N_{cs}(A)$. \qed

In case A is a Banach *-algebra, any C^*-seminorm on a *-ideal can be extended to a C^*-seminorm defined on the whole algebra. Moreover we have:
Proposition 3.23. Let A be an admissible Banach $*$-algebra and I a dense $*$-ideal of A, not necessarily closed. Then any C^*-norm on I can be uniquely extended to a C^*-norm on A.

Proof. Let $\alpha \in \mathcal{N}(I)$. By $[3.21]$ α has a unique extension to a C^*-seminorm on A, and by $[3.22]$ (this extension must be α' such that $\alpha'(a) = \sup \{\alpha(ax) : x \in I, \alpha(x) \leq 1\}$.

Suppose $a \in \text{Ann}_A(I)$. Then $aa^* = 0$, because I is dense in A and $ax = 0$, $\forall x \in I$. Thus $a = 0$ for A is admissible. Then α' is a norm by $[3.21]$. □

Corollary 3.24. Let $(E, A, \langle \cdot, \cdot \rangle_E)$ be an admissible basic triple with A a Banach $*$-algebra and E a faithful A-module. Suppose in addition that E is an admissible $*$-triple such that E^+_0 is a dense ideal of A (recall Corollary 2.12). Then the lattices $SN(E)$ and $SN_{cs}(A)$ are isomorphic, as well as the partially ordered sets $\mathcal{N}(E)$ and $\mathcal{N}_{cs}(A)$.

Proof. Just combine Theorem 3.22 with Proposition 3.21 and Proposition 3.23. □

Corollary 3.25. Let $(E, A, \langle \cdot, \cdot \rangle_A)$ and $(E, B, \langle \cdot, \cdot \rangle_B)$ be respectively left and right admissible basic triples, with A and B Banach $*$-algebras such that E is an $(A-B)$-bimodule with the given structure, and $\langle x, y \rangle_A z = x \langle y, z \rangle_B$, $\forall x, y, z \in E$. If E is faithful as a left A-module and as a right B-module, and E^0_0 and E^0_1 are dense in A and B respectively, then there is an isomorphism of lattices between $SN\langle \cdot, \cdot \rangle_A(A)$ and $SN\langle \cdot, \cdot \rangle_B(B)$, that restricts to an isomorphism between the posets $\mathcal{N}_{cs} \langle \cdot, \cdot \rangle_A(A)$ and $\mathcal{N}_{cs} \langle \cdot, \cdot \rangle_B(B)$.

3.3. Positive modules. In general is not a simple task to decide if a given C^*-seminorm satisfies the Cauchy-Schwarz property with respect to a certain sesquilinear map. However this is always the case for the positive modules we introduce next.

Let α be a C^*-seminorm on the $*$-algebra A, and let $p_\alpha : A \rightarrow A_\alpha$ be the canonical map, where A_α is the Hausdorff completion of A. If $\Lambda \subseteq SN(A)$, then $A_\Lambda^+ := \cap_{\alpha \in \Lambda} p_\alpha^{-1}(A_\alpha^+)$ is a cone. When $\Lambda = SN(A)$, we write A^+ instead of A_Λ^+. Therefore A^+ is the set of elements of A that are positive in any C^*-Hausdorff completion of A. Of course the map $A \rightarrow A_+^\alpha$ is order reversing.

Definition 3.26. Given $\Lambda \subseteq SN(A)$, we say that $a \in A$ is positive in (A, Λ), or that it is Λ-positive, if $a \in A_\Lambda^+$. The elements of A^+ are just called the positive elements of A.

It is clear that A^+ contains the cone $C_A := \{\sum_{i,j=1}^n a_i^* a_j : n \in \mathbb{N}, a_i \in A, i = 1, \ldots, n\}$, and that $p_\alpha(C_A)$ is dense in A_α^+, $\forall \alpha \in SN(A)$. Also note that if $\phi : A \rightarrow B$ is a homomorphism between $*$-algebras, then $\phi(A^+) \subseteq B^+$ and $\phi(C_A) \subseteq C_B$.

If $SN(A)$ is bounded, with $\alpha := \max SN(A)$, then a is positive in A if and only if a is positive in (A, α). In particular, if A is a Banach $*$-algebra, then $a \in A^+$ if and only if $i(a) \in C^*(A)^+$, where $i : A \rightarrow C^*(A)$ is the natural map of A into its C^*-enveloping algebra $C^*(A)$.

Lemma 3.27. Let A be C^*-closable. Then $A^+ = \bigcap \{p_\alpha^{-1}(A_\alpha^+) : \alpha \in N(A)\}$.

Proof. Clearly we have that $A^+ \subseteq \bigcap \{p_\alpha^{-1}(A_\alpha^+) : \alpha \in N(A)\}$. Let $\beta \in SN(A)$. Since the maximum of two C^*-seminorms is again a C^*-seminorm, and since A is C^*-closable, we may pick $\beta' \in N(A)$ such that $\beta' \geq \beta$. Then the identity map on A induces a homomorphism $\phi : A_{\beta'} \rightarrow A_{\beta}$, determined by $\phi(p_{\beta'}(a)) = p_{\beta}(a)$, $\forall a \in A$. \[\square\]
If \(a \in \bigcap \{ p_\alpha^{-1}(A)_\beta^+ : \alpha \in \mathcal{N}(A) \} \) then \(p_\beta(a) \in A_\beta^+ \), and therefore \(p_\beta(a) \in A_\beta^+ \). This proves the converse inclusion.

Once we have a cone of positive elements on a \(* \)-algebra \(A \), we are able to define a notion similar to that of Hilbert module.

Definition 3.28. Let \(A \) be a \(* \)-algebra, \(E \) a right \(A \)-module, and \(\Lambda \subseteq S\mathcal{N}(A) \). We say that a map \(\langle \cdot, \cdot \rangle : E \times E \to \Lambda \) is a \(\Lambda \)-semi-pre-inner product on \(E \) if:

1. \(\langle x, \lambda_1 y + \lambda_2 z \rangle = \lambda_1 \langle x, y \rangle + \lambda_2 \langle x, z \rangle, \forall x, y, z \in E, \lambda_1, \lambda_2 \in \mathbb{C} \).
2. \(\langle x, ya \rangle = \langle x, y \rangle a, \forall x, y \in E, a \in A \).
3. \(\langle y, x \rangle = \langle x, y \rangle^*, \forall x, y \in E \).
4. \(\langle x, x \rangle \) is \(\Lambda \)-positive, \(\forall x \in E \).

The pair \((E, \langle \cdot, \cdot \rangle) \) is then called a right positive \(\Lambda \)-module. In case \(\Lambda = S\mathcal{N}(A) \) we say that \((E, \langle \cdot, \cdot \rangle) \) is a right positive \(A \)-module.

Similarly we define left semi-pre-inner-products and left positive modules.

Definition 3.29. An admissible \(* \)-tring \(E \) is right (left) positive if \((E, \langle \cdot, \cdot \rangle_r) \) is a positive \(E_0^+ \)-module (respectively: \((E, \langle \cdot, \cdot \rangle_l) \) is a positive \(E_0^- \)-module). It is said positive if it is both left and right positive.

Observe that if \(E \) is a \(C^* \)-tring, which is positive as an admissible \(* \)-tring, then it is obviously a positive \(C^* \)-tring. Conversely, it is readily checked that any positive \(C^* \)-tring is a positive admissible \(* \)-tring.

Proposition 3.30. Let \((A, \alpha) \) be a \(C^* \)-seminormed algebra and \((E, \langle \cdot, \cdot \rangle) \) a right positive \((A, \alpha)\)-module. Let \(\tilde{\alpha} : E \to [0, \infty) \) be given by \(\tilde{\alpha}(x) = \sqrt{\alpha(\langle x, x \rangle)}, \forall x \in E \). Consider \(E \) as a \(* \)-tring with \(\langle x, y, z \rangle := x \langle y, z \rangle, \forall x, y, z \in E \). Then:

1. We have \(\alpha(a) \leq \alpha(b) \) whenever \(a \) and \(b - a \) are positive elements of \(A \).
2. \(\tilde{\alpha}(x)^2 \mu(x) - \langle x, y \rangle^* x, y \rangle \) is positive in \((A, \alpha)\), and \(\alpha(\langle x, y \rangle) \leq \tilde{\alpha}(x)\tilde{\alpha}(y), \forall x, y \in E \) (Cauchy-Schwarz).
3. \(\alpha(x, x) a^* a - a^* x, x \rangle a \geq 0, \forall x \in E, a \in A \).
4. \(\tilde{\alpha}(x a) \leq \tilde{\alpha}(x)\alpha(a), \forall x \in E, a \in A \).
5. \(\tilde{\alpha} \in \mathcal{S}\mathcal{N}(E) \).

Proof. Let \(p_a : A \to A/I_a =: A_\alpha \) be the natural map, where \(I_a := \{ \alpha \in A : \alpha(a) = 0 \} \), and let \(\tilde{\alpha} \) be the quotient norm on \(A_\alpha \). Now let \(F := \text{span}\{ x \in E : x \in E, b \in I_a \} \). Then \(E/I_a \subseteq F \), so \(E/F \) is an \(A/I_a \)-module. Moreover, \((E, F) \subseteq I_a \) and \((F, E) \subseteq I_a \), so we can consider the map \([,] : E/F \times E/F \to A/I_a \) given by \([q(x), q(y)] = p_\mu([x, y]), \) which satisfies properties 1.-4. of Definition 3.28 above. If \(a \) and \(b - a \) are positive in \(A \), then \(0 \leq p_\mu(a) \leq p_\mu(b) \) in \(A_\alpha \), and therefore \(\alpha(p_\mu(a)) \leq \alpha(p_\mu(b)) \), that is \(\alpha(a) \leq \alpha(b) \). This proves 1. Now, the first part of the second statement follows from the proof of [6] Proposition 1.1, since \(p_\mu(\tilde{\alpha}(x)^2 \mu(x) - \langle y, x \rangle(x, y)) = \tilde{\alpha}(\langle q(x), q(y) \rangle) \mu(y, q(y)) - \mu(q(y), q(x)) \mu(q(x), q(y)) \) in \(A_\alpha \). The second part of 2. follows from the first one and from 1. To see 3. just observe that by applying \(p_\mu \) to the element \(\alpha(x, x) a^* a - a^* x, x \rangle a \) of \(A \) we get the positive element \(\tilde{\alpha}(x, x) p_\mu(a) - p_\mu(a) a^* x, x \rangle p_\mu(a) \) of \(A_\alpha \). Assertion 4. easily follows from 1. and 3.: by 3. we have \(a^* x, x \rangle a \leq \tilde{\alpha}(x)^2 a^* a, \) then \(\tilde{\alpha}(x a)^2 = \alpha(x a, x a) \) = \(\alpha(a^* x, x)a \), and by 1. this is less or equal to \(\alpha(\tilde{\alpha}(x)^2 a^* a) \) = \(\tilde{\alpha}(x)^2 \alpha(a)^2 \). It is clear that \(\alpha(\lambda x) = |\lambda| \tilde{\alpha}(x), \forall x \in E, \lambda \in \mathbb{C} \), and from the Cauchy-Schwarz inequality just proved it readily follows that \(\tilde{\alpha} \) also
satisfies the triangle inequality, so it is a seminorm on E. Now, if $x, y, z \in E$:
\[\hat{\alpha}(x, y, z)^2 = \alpha((y, z)^* \langle x, \gamma \rangle \langle y, z \rangle) \]
Thus, in the case $x = y = z$:
\[\hat{\alpha}(x, x, x)^2 = \alpha((x, x)^* \langle x, x \rangle \langle x, x \rangle) = \alpha(x)^3. \]

According to 3, we have $(y, z)^* \langle x, x \rangle \langle y, z \rangle \leq \alpha((x, x)^* \langle y, z \rangle \langle y, z \rangle)$ in (A, α). From this fact, together with 4. and the Cauchy-Schwarz inequality we conclude that
\[\hat{\alpha}(x, y, z)^2 \leq \hat{\alpha}(x)^2 \alpha((y, z)^* \langle y, z \rangle) \]
so $\hat{\alpha}$ is a C^*-seminorm on E. \(\square\)

Corollary 3.31. If E is a right positive *-tring, then $SN_{cs}(E_0^r) = SN(E_0^r)$, and $SN(E) \cong SN(E_0^r)$ and $N(E) \cong N(E_0^r)$ as ordered sets.

Proposition 3.32. Let E be an admissible *-tring and $\gamma \in SN(E)$. If E is a right positive (E_0^r, γ^*)-module, then E is also a left positive (E_0^r, γ^*)-module. Therefore E is right positive if and only if is left positive.

Proof. Let E_γ be the Hausdorff completion of (E, γ). Since E_γ is a right Hilbert module over E_0^r, it turns out that E_γ is a positive C^*-tring, and therefore a left Hilbert module over E_0^r, so E is a left positive (E_0^r, γ^*)-module. \(\square\)

Proposition 3.33. Let B be an admissible Banach *-algebra and suppose E is a right closed ideal of B such that span${x^* y : x, y \in E}$ is dense in B. Let A be the closure in B of span${x y^* : x, y \in E}$. If $x x^*$ is positive in A, $\forall x \in E$, then the restriction map $\varphi : SN(B) \to SN(A)$, $\beta \mapsto \beta|_A$, is a lattice isomorphism such that $\varphi(N(B)) = N(A)$, and for each $\beta \in SN(B)$ the Hausdorff completion B_β of B is Morita-Rieffel equivalent to the Hausdorff completion $A_{\varphi(\beta)}$ of A. In particular, the corresponding enveloping C^*-algebras $C^*(B)$ and $C^*(A)$ of B and A are Morita-Rieffel equivalent C^*-algebras.

Proof. Let $\langle , \rangle_B : E \times E \to B$ and $\langle , \rangle_A : E \times E \to A$ be such that $\langle x, y \rangle_B = x^* y$ and $\langle x, y \rangle_A = x y^*$. Then E is both a positive B-module and a positive A-module. Since B is admissible, so are E and A. Besides E is a faithful B-module, for if $x b = 0 \forall x \in E$, then $\sum x^* y b = 0 \forall x, y \in E$, so $b^* b = 0$, and this implies $b = 0$ because B is admissible. Similarly, E is a faithful A-module. It follows by 2.12 that we can identify E_0^r with span${x^* y : x, y \in E}$ and E_0^l with span${x y^* : x, y \in E}$. Now the proof ends with an invocation to Corollary 3.25. \(\square\)

4. C^*-ternary rings

As previously mentioned, Zettl found a unique decomposition $E = E_+ \oplus E_-$ of any C^*-tring E, E_+ being isomorphic to a TRO and E_- being isomorphic to an anti-TRO (see the discussion preceding Corollary 3.20). Of course, because of the uniqueness of the fundamental decomposition, there is a left version of the situation above: $E_+ := \{ x \in E : \langle x, x \rangle \in E_+ \}$, $E_- := \{ x \in E : \langle x, x \rangle \in -E_+ \}$, $\langle x, E_- \rangle = 0$, $E_1^l = E_1^l \oplus E_1^l$, and $(E_+, -, \langle \cdot , \cdot \rangle)$ and $(E_-, -, \langle \cdot , \cdot \rangle)$ are full left Hilbert E_0^l and E_0^l modules respectively. This way, E is an $(E_1^l - E_1^l)$ Banach bimodule that satisfies
\[\langle x, y \rangle z = \mu(x, y, z) = \langle x, y \rangle z, \forall x, y, z \in E. \]

If E is a C^*-tring, we define $E_p := E_+ \oplus E_{op}$. Then E_p is a positive C^*-tring, and $E_1^r = E^r$, $E_1^l = E^l$. Therefore E_p is a $(E_1^l - E_1^r)$-imprimitivity bimodule, so
in particular E^3 and E^r are Morita-Rieffel equivalent. Note also that if $\phi : E \to F$ is a homomorphism of C^*-trings, then $\phi(E_+) \subseteq F_+$ and $\phi(E_-) \subseteq F_-$, because $(\phi(x), \phi(y)) = \phi((x, y))$. Therefore $\phi : E_p \to F_p$ is also a homomorphism of C^*-trings. Thus $E \to E_p$ is a functor.

Let E^* be the reverse $*$-tring of E. It is clear that a norm on E is a C^*-norm if and only if it is a C^*-norm on E^*. Moreover, E is a (positive) C^*-tring if and only if so is E^*, and $E^1 = (E^*)^r$, $E^r = (E^*)^l$. Note that E and E^* are essentially the same object as C^*-trings. Thus the properties of E^r and E^l deduced from properties of E will be the same.

Definition 4.1. By a left (right) ideal of the C^*-ternary ring E, we mean a closed subspace F of E such that $(E, E, F) \subseteq F$ (respectively: $(F, E, E) \subseteq F$). An ideal of E is both a left and a right ideal of E. We denote by $L(E)$, $R(E)$, and $I(E)$ the families of left, right, and twosided ideals of E.

Our definition of ideal, for a closed subspace F of E, is equivalent to the definition which just requires the condition $(E, E, F) \subseteq F$ to be satisfied. Note that E_+ and E_- are ideals in every C^*-tring E. Moreover, since E_+ and E_- are orthogonal, it easily follows that a closed subspace F of E is an ideal of E if and only if it is an ideal in E_p. Thus the ideal structures of E and of E_p are the same.

If A is a C^*-algebra, we will denote by $I(A)$ and $H(A)$ respectively the families of (closed) twosided ideals and hereditary C^*-subalgebras of A.

As in the algebraic case, if E is a C^*-tring and F is a sub-C^*-tring of E, then the subalgebra $\text{span}(F, F)_r$ of E^r may be taken to represent the C^*-algebra F^r. With this choice of F^r we have the following result:

Proposition 4.2. The map $L(E) \to H(E^r)$ given by $F \mapsto F^r$ is a bijection, with inverse given by $A \mapsto E A$. When restricted to $I(E)$, the map $F \mapsto F^r$ is a bijection onto $I(E^r)$. Moreover, all of these maps are lattice isomorphisms.

Proof. We prove that the map $L(E) \to H(E^r)$ is a bijection. Recalling that we may replace E by E_p (which can be seen as a full right Hilbert E^r-module), the rest of the proof follows from [3, 3.22]. If A is a C^*-subalgebra of E^r: $(E, E, E) = E(E, E)A = (E, E, E)A \subseteq EA$, so EA is a left ideal in E. Conversely, if F is a left ideal in E:

\[
(F, F)(E, E)(F, F) = (E(F, F), (E, F, F)) \subseteq (F, F).
\]

Thus, taking the closed linear spans in both sides of the above inclusion we have: $F^r E^r F^r = F^r$, which shows that F^r is hereditary. To see that the correspondences are mutually inverses, note that if F is a C^*-tring, then $F = F F^r$. On the other hand, if A is a hereditary C^*-subalgebra of E^r, then $EA = \text{span}(EA, EA)_r = \text{span}A(E, E)_r A = A E^r A = A$. □

Corollary 4.3. Let $\pi : E \to F$ be a homomorphism of $*$-trings, where E and F are C^*-trings. Then $(\ker \pi)^r = \ker(\pi^r)$.

Proof. It is clear that $\ker \pi \supseteq E \ker \pi^r$, so $(\ker \pi)^r \supseteq \ker \pi^r$. On the other hand $(\ker \pi)^r = \text{span}\{\langle x, y \rangle_r : x, y \in \ker \pi\} \subseteq \ker \pi^r$. □

Remark 4.4. By Proposition 2.17 if $\pi : E \to F$ is a surjective homomorphism between C^*-trings, then $\pi_0 : E_0 \to F_0$ is also surjective, so also is $\pi^r : E^r \to F^r$ for the image of π^r is closed. However the converse is false: consider the Hilbert space inclusion $\mathbb{C} \hookrightarrow \mathbb{C}^2$; then ι is not onto, although ι^r is the identity on \mathbb{C}.

For a proof of the next result the reader is referred to [3, 3.25].

Proposition 4.5. Let F be an ideal of a C^*-tring E, and consider the quotient E/F with its natural structure of $*$-tring. Then E/F is a C^*-tring with the quotient norm, and $(E/F)^r = E^r/F^r$.

Corollary 4.6. Let E and G be C^*-trings, and $\pi : E \to G$ a homomorphism of $*$-trings. Consider $F = \ker(\pi)$, and let $p : E^r \to E^r/F^r$ be the quotient map. Then there exists a unique homomorphism of C^*-algebras $\overline{\pi} : E^r/F^r \to G^r$ such that $\overline{\pi}p = \pi^r$. The homomorphism $\overline{\pi}$ is injective. In particular, if $\pi : E \to E/F$ is the quotient map, where F is an ideal of E, then $\overline{\pi} : E^r/F^r \to (E/F)^r$ is a natural isomorphism.

Proof. Proposition 3.11 provides a unique homomorphism of C^*-algebras $\pi^r : E^r \to G^r$ such that $\langle \pi(x), \pi(y) \rangle = \pi^r((x, y))$, $\forall x, y \in E$. The existence and uniqueness of $\overline{\pi}$, as well as its injetivity, follow now from the quotient universal property, together with the fact that $\ker(\pi^r) = F^r$ by Corollary 1.3. Finally, if F is an ideal of E, by Proposition 4.5 we have that E/F is a C^*-tring, and the projection $\pi : E \to E/F$ is a homomorphism of $*$-trings.

Corollary 4.7. The functor $E \mapsto E^r$, $\pi \mapsto \pi^r$, from the category of C^*-trings into the category of C^*-algebras, is exact. More precisely: if

\[
\begin{array}{cccc}
0 & \longrightarrow & F_1 & \overset{\phi}{\longrightarrow} & F_2 & \overset{\psi}{\longrightarrow} & F_3 & \longrightarrow & 0
\end{array}
\]

is an exact sequence of C^*-trings, then the sequence:

\[
\begin{array}{cccc}
0 & \longrightarrow & F_1^r & \overset{\phi^r}{\longrightarrow} & F_2^r & \overset{\psi^r}{\longrightarrow} & F_3^r & \longrightarrow & 0
\end{array}
\]

also is exact.

Corollary 4.8. If $\pi : E \to F$ is a homomorphism of C^*-trings, then $\pi(E)$ is closed in F. The ideals of a C^*-tring E are exactly the kernels of the homomorphisms defined on E.

5. Applications

5.1. C^*-algebras associated with Fell bundles. The proof of Theorem 1.1 of [2] relies on the existence of a certain inner product (see Corollary 5.3 below), although no proof is included there of the fact that such inner product is indeed positive. In the following lines we provide such a proof, and we refine the above mentioned result.

Recall that a right ideal $\mathcal{E} = (E_t)_{t \in G}$ of a Fell bundle $\mathcal{B} = (B_t)_{t \in G}$ is a sub-Banach bundle of \mathcal{B} such that $\mathcal{E}\mathcal{B} \subseteq \mathcal{E}$.

Given a right Hilbert B-module X, let denote by D_X the cone of finite sums $\sum_i (x_i, x_i) \subseteq B^+$. It is clear that if $\{X_\lambda\}_{\lambda \in \Lambda}$ is a family of right Hilbert B-modules and $X := \oplus X_\lambda$ (direct sum of Hilbert modules), then $\sum_\lambda D_{X_\lambda} \subseteq D_X$ -with equality if Λ is finite- and $\sum_\lambda D_{X_\lambda}$ is dense in D_X.

Similarly, for the right ideal \mathcal{E} of the Fell bundle \mathcal{B}, we define $D_\mathcal{E} := \{\sum_{i=1}^n c_i^* c_i : n \in \mathbb{N}, c_i \in \mathcal{E}, \forall i\} \subseteq B_\mathcal{E}^+$. Then we have:
Lemma 5.1. Let $\mathcal{E} = (E_t)_{t \in G}$ be a right ideal of the Fell bundle $\mathcal{B} = (B_t)_{t \in G}$. Then $\text{span}(\mathcal{E}^* \mathcal{E} \cap B_c)$ is dense in B_c if and only if the cone $D_\mathcal{E}$ satisfies the following property:

$$\forall b \in B_c, \; \epsilon > 0, \; \text{there exists } d \in D_\mathcal{E} \text{ such that } \|d\| \leq 1 \text{ and } \|b - bd\| < \epsilon. \quad (5.1)$$

Proof. Suppose that $b \in B_c$ is such that for any $\epsilon > 0$ there exists $d \in D_\mathcal{E}$ such that $\|b - bd\| < \epsilon$. Since $D_\mathcal{E} \subseteq \text{span}(\mathcal{E}^* \mathcal{E} \cap B_c)$ and the latter is an ideal in B_c, we conclude that $b \in \overline{\text{span}(\mathcal{E}^* \mathcal{E} \cap B_c)}$. Then $\text{span}(\mathcal{E}^* \mathcal{E} \cap B_c)$ is dense in B_c whenever $D_\mathcal{E}$ satisfies (5.1). Note now that $D_\mathcal{E} = \sum_{t \in G} D_{E_t}$, which is dense in $D_\mathcal{E}$, where $E_\cdot := \oplus_{t \in G} E_t$. Thus $D_\mathcal{E}$ satisfies (5.1) if and only if that property holds for D_{E_t}. Assume that $\text{span}(\mathcal{E}^* \mathcal{E} \cap B_c)$ is dense in B_c. Then E is a full Hilbert module over B_c, and therefore it satisfies (5.1) by [6, (ii) of Lemma 7.2]. □

Lemma 5.2. Let $\mathcal{B} = (B_t)_{t \in G}$ be a Fell bundle over the locally compact group G, $A = (A_t)$ a sub-Fell bundle of \mathcal{B}, and $\mathcal{E} = (E_t)$ a right ideal of \mathcal{B} such that $A \subseteq \mathcal{E}$, $\mathcal{E}^* \subseteq A$ and $\text{span}(\mathcal{E}^* \mathcal{E} \cap B_c)$ is dense in B_c. If $\xi \in L^1(\mathcal{E})$, then $\xi \ast \xi^*$ can be arbitrarily approximated in $L^1(A)$ by a finite sum $\sum_{j=1}^m \eta_j \ast \eta_j^*$, where $\eta_j \in L^1(A)$, $\forall j = 1, \ldots, m$.

Proof. We will suppose that $\xi \in C_c(\mathcal{E})$, which is clearly enough. Since $C_0(\mathcal{E})$ is a nondegenerate right Banach B_c-module, given a positive integer n there exists $b_n \in B_c$ such that $\|\xi - \xi b_n\| < 1/n$ and $0 \leq b_n \leq 1$. Then we can find $c_n \in D_\mathcal{E}$ such that $\|b_n^{1/2} - b_n^{1/2} c_n\| < 1/n$. Set $d_n := b_n^{1/2} c_n b_n^{1/2}$ and note that $d_n \in D_\mathcal{E}$ because \mathcal{E} is a right ideal. The continuity of the operations imply $\|b_n - d_n\| \to 0$ and $\|\xi - \xi d_n\| \to 0$. Thus $\|\xi \ast \xi^* - \xi d_n \ast \xi^*\| \to 0$.

Now for every n there exist $u_1, \ldots, u_m \in \mathcal{E}$ such that $d_n = \sum_{j=1}^m u_j \ast u_j$. Thus $\xi d_n \ast \xi^* = \sum_{j=1}^m (\xi u_j \ast u_j) \ast \xi^* = \sum_{j=1}^m (\xi u_j^*) \ast (\xi u_j^*)^*$ and, as \mathcal{E} is a right ideal, $\xi u_j^* \in C_c(A)$. This completes the proof. □

Corollary 5.3. Under the assumptions of Lemma 5.2, let $\|\cdot\|_{L^1(A)} : L^1(A) \to [0, \infty)$ be the maximal C^*-norm of $L^1(A)$. Then $L^1(\mathcal{E}) \times L^1(\mathcal{E}) \to L^1(A)$ given by $(\xi, \eta) \mapsto \xi \ast \eta^*$ is an inner product.

Corollary 5.4. Under the assumptions of Lemma 5.2, the map $\varphi : SN(L^1(B)) \to SN(L^1(B))$ given by $\beta \mapsto \beta|_{L^1(A)}$ is an isomorphism of partially ordered sets that sends the maximal and reduced norms on $L^1(B)$ to the maximal and reduced norms on $L^1(A)$ respectively, and such that $\varphi(N(L^1(B))) = N(L^1(A))$. Moreover, the Hausdorff completions of $L^1(B)$ and $L^1(A)$ with respect to β and $\varphi(\beta)$ respectively are Morita-Rieffel equivalent.

Proof. We only have to prove the correspondence between the reduced C^*-norms, but this is the content of [2]. □

5.2. Tensor products of C^*-trings. In the present section we apply the previous results to the study of tensor products of C^*-trings. Maximal and minimal tensor product for TROs were constructed in [5] using linking algebras, but we define tensor products of C^*-trings E and F using the tensor products of E^r and F^r. The main result is Theorem 5.12.

From now on the algebraic tensor product of the C-vector spaces E_1, \ldots, E_n will be denoted by $E_1 \bigotimes \ldots \bigotimes E_n$, or just by $\bigotimes_{j=1}^n E_j$. Let E_{ij}, F_{ij} be complex vector spaces, $\forall i = 1, \ldots, m$, $j = 1, \ldots, n$, and suppose that $a_{ij} : \prod_{j=1}^n E_{ij} \to $
F_i is a n-linear map, for each $i = 1, \ldots, m$. Then it is clear that there exists a unique n-linear map $\alpha := a_1 \otimes \cdots \otimes a_m : \prod_{i=1}^n \mathcal{O}_{m_i} \to \mathcal{O}_n$ such that $\alpha(e_1^{(i)}, \ldots, e_n^{(i)}) = \alpha(\gamma(e_1, \ldots, e_n))$. Using this fact we have the following result, whose straightforward proof is left to the reader.

Proposition 5.8. If (E, μ) is a *-ring, then $(E \otimes F, \mu \otimes \nu)$ is also a *-ring. Furthermore, if $(E, A, \langle \cdot, \cdot \rangle_A)$ and $(F, B, \langle \cdot, \cdot \rangle_B)$ are full basic triples associated to (E, μ) and (F, ν), respectively, then $(E \otimes F, A \otimes B, \langle \cdot, \cdot \rangle_A \otimes \langle \cdot, \cdot \rangle_B)$ is a full basic triple associated to $(E \otimes F, \mu \otimes \nu)$.

Definition 6.6. A C^*-tensor product of two *-rings $(E, \mu, \| \|)$ and $(F, \nu, \| \|)$ is a completion of the corresponding algebraic tensor product $(E \otimes F, \mu \otimes \nu)$ with respect to a C^*-norm. If γ is such a C^*-norm, we denote by $E \bigotimes_{\gamma} F$ the corresponding C^*-tensor product.

Definition 6.7. We say that a C^*-ring E is nuclear if for every C^*-ring F there exists just one C^*-tensor product $E \bigotimes F$.

We will see next that $SN(E \otimes F) = SN(E_p \otimes F)$, which implies, in particular, that a C^*-ring E is nuclear if and only if E_p is nuclear.

Proposition 5.8. Let E be a *-ring, and F_1, F_2 ideals of E such that $E = F_1 \oplus F_2$. If $\gamma \in SN(E)$, and $x = y + z$, with $y \in F_1$ and $z \in F_2$, then $\gamma(x) = \max\{\gamma(y), \gamma(z)\}$.

Proof. Since $\gamma(x) = \sup\{\gamma((x, u, v)) : u \in E, \gamma(u) \leq 1\}$, it follows that $\gamma(x) \geq \gamma(z)$, so $\gamma(x) \geq \max\{\gamma(y), \gamma(z)\}$. To prove the converse inequality, let us first introduce the following notation. For $u \in E$ let $u_0 := z$, $u_n := (u_{n-1}, u_{n-1}, u_{n-1})$ if $n \geq 1$. Then we have that $\gamma(u_n) = \gamma(u_{n-1})^3$, $\forall n \geq 1$, so $\gamma(u_n) = \gamma(u)^{3^n}$, $\forall n \geq 0$. Since $(E, F_1, F_2) = 0$, it follows that $x_n = y_n + z_n$. Thus: $\gamma(x) = \gamma(x_n)^{1/3^n} = \gamma(y_n + z_n)^{1/3^n} \leq (\gamma(y_n) + \gamma(z_n))^{1/3^n} = (\gamma(y)^{3^n} + \gamma(z)^{3^n})^{1/3^n} \rightarrow \max\{\gamma(y), \gamma(z)\}$, whence $\gamma(x) \leq \max\{\gamma(y), \gamma(z)\}$. \hfill \square

Corollary 5.9. Let E and F be C^*-rings. Then $SN(E \otimes F) = SN(E_p \otimes F)$ and $N(E \otimes F) = N(E_p \otimes F)$. Consequently a C^*-ring E is nuclear if and only if E_p is nuclear.

Our aim is to prove that there is an isomorphism between $N(E \otimes F)$ and $N(E^* \otimes F^*)$. The key step is to show that each C^*-norm on $E \bigotimes F$ has unique extension to a C^*-norm on $E^* \bigotimes F^*$.

Lemma 5.10. Let I and J be *-ideals (not necessarily closed) of the C^*-algebras A and B, respectively. Then the map $\Theta: N(A \otimes B) \to N(I \otimes J)$, $\gamma \mapsto \gamma|_{I \otimes J}$, is an order preserving surjection. If, in addition, I and J are dense in A and B, respectively, then Θ is a bijection.

Proof. Clearly Θ is order preserving. Fix $\delta \in N(I \otimes J)$. Given $a \in A$ and $z = \sum_{j=1}^n x_i \otimes y_j \in I \otimes J$, define $w := \sum_{j=1}^n (|a|^2 - a^*a)^{1/2} x_i \otimes y_j \in A \otimes B$. In case A is unital it is clear that $w \in I \otimes J$. If A is not unital, I is an ideal of the unitization of A, so $w \in I \otimes J$ in any case. Then

$$\|a\|^2 z = \left(\sum_{j=1}^n ax_j \otimes y_j\right)^* \left(\sum_{j=1}^n ax_j \otimes y_j\right) = w^* w \in (I \otimes \delta J)^+$$

and $\delta(\sum_{j=1}^n ax_j \otimes y_j) \leq \|a\| \delta(\sum_{j=1}^n x_i \otimes y_j)$. Similarly, if $b \in B$, we also have $\delta(\sum_{j=1}^n x_i \otimes by_j) \leq \|b\| \delta(\sum_{j=1}^n x_i \otimes y_j)$. Thus $\delta((a \otimes b)z) \leq \|a\| \|b\| \delta(z)$, $\forall a \in A$,
Proposition 5.11. Let E and F be positive C^*-trings and consider the admissible full basic triples $(E, E_0^f, \langle \cdot, \cdot \rangle^E)$ and $(F, F_0^f, \langle \cdot, \cdot \rangle^F)$ given by Theorem 2.10. Then the full basic triple $(E \otimes F, E_0^f \otimes F_0^f, \langle \cdot, \cdot \rangle^E \otimes \langle \cdot, \cdot \rangle^F)$ is admissible. Furthermore, $E \otimes F$ is positive and

$$SN_\odot(E_0^f \otimes F_0^f) = SN(E_0^f \otimes F_0^f)$$

Proof. To simplify our notation we denote $[\cdot, \cdot]$ the map $\langle \cdot, \cdot \rangle^E \otimes \langle \cdot, \cdot \rangle^F$. Note $E_0^f \otimes F_0^f$-module is admissible because it is a $*$-subalgebra of the C^*-closable $*$-algebra $E^r \otimes F^r$. We will show that $E \otimes F$ is a positive $E_0^f \otimes F_0^f$-module. Lemma 5.10 implies there is a maximal C^*-norm on $E_0^f \otimes F_0^f$, namely the restriction of the maximal C^*-norm of $E^r \otimes F^r$. The comments preceding Lemma 3.27 imply that, to show $E \otimes F$ is positive, it suffices to prove that $[u, u] \geq 0$ in the maximal tensor product $E^r \otimes_{\text{max}} F^r$. Given $u = \sum_{j=1}^{n} x_j \otimes y_j \in E \otimes F$ we have

$$[u, u] = \sum_{j,k=1}^{n} \langle x_j, x_k \rangle^E \odot \langle y_j, y_k \rangle^F.$$

Then Lemmas 4.2 and 4.3 of [10] give the desired result.

To show $[u, u] = 0$ implies $u = 0$ we use the linking algebras $L(E)$ and $L(F)$ and the linear maps

$$\alpha: E \otimes F \rightarrow L(E) \otimes L(F), \ x \otimes y \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix},$$

$$\beta: L(E) \otimes L(F) \rightarrow E \otimes F, \ \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \odot \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix} \mapsto x_1 \otimes y_1 + x_2 \otimes y_2,$$

$$\gamma: E \otimes F \rightarrow L(E) \otimes L(F), \ a \otimes b \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}.$$

Then $\alpha(\alpha(u)) = \gamma([u, u]) = 0$, so $\alpha(u) = 0$ and $u = \beta(\alpha(u)) = 0$.

Theorem 5.12. Let E and F be C^*-ternary rings. Then every set among the partially ordered sets $N(E^l \otimes F^l)$, $N(E \otimes F)$ and $N(E^r \otimes F^r)$ is isomorphic to each other. Besides, if $\gamma \in N(E \otimes F)$ and γ^l and γ^r are the corresponding C^*-norms on $N(E^l \otimes F^l)$ and $N(E^r \otimes F^r)$ respectively, then $E \otimes F$ is a Morita-Rieffel equivalence bimodule between $E^l \otimes_{\gamma^l} F^l$ and $E^r \otimes_{\gamma^r} F^r$.

Proof. Proposition 5.11 together with Corollary 3.31 imply $N(E \otimes F)$ is isomorphic (as a partially ordered set) to $N(E \otimes F)_0$. By 5.5 the posets $N(E \otimes F)^r_0$ and $N(E_0^f \otimes F_0^f)$ are isomorphic, and the latter is isomorphic to $N(E^r \otimes F^r)$ by Lemma 5.10. Thus $N(E \otimes F) \cong N(E^r \otimes F^r)$. Similarly we have $N(E \otimes F) \cong N(E^l \otimes F^l)$.

Corollary 5.13. Let E and F be C^*-trings. Then there exist a maximum C^*-norm $\| \cdot \|_{\text{max}}$ on $E \otimes F$, and a minimum C^*-norm $\| \cdot \|_{\text{min}}$ on $E \otimes F$, and

$$(E \otimes F)^l = E^l \otimes_{\text{max}} F^l, \quad (E \otimes F)^r = E^r \otimes_{\text{max}} F^r,$$

$$(E \otimes F)^l = E^l \otimes_{\text{min}} F^l, \quad (E \otimes F)^r = E^r \otimes_{\text{min}} F^r.$$
Corollary 5.14 (cf. [5] Theorem 6.5). The following assertions are equivalent for a C^*-tring E:

1. E is a nuclear C^*-tring (5.1).
2. E' is a nuclear C^*-algebra.
3. E^r is a nuclear C^*-algebra.

The equivalence between 2. and 3. in 5.14 is exactly the following well-known result ([3], [11]): if A and B are two Morita-Rieffel equivalent C^*-algebras then A is nuclear if and only if so is B.

5.3. Exact C^*-trings. To end the section we introduce the notion of exact C^*-tring, extending the notion of exact TRO of [5], and we prove a result similar to Corollary 5.14. The reader is referred to [9] for the theory of exact C^*-algebras.

Suppose that $0 \rightarrow F_1 \xrightarrow{\phi} F_2 \xrightarrow{\psi} F_3 \rightarrow 0$ is an exact sequence of C^*-trings, that is, ϕ and ψ are homomorphisms of C^*-trings, ϕ is injective, ψ is surjective, and $\ker \psi = \phi(F_1)$. Let E be a C^*-tring. Then the sequence

$$0 \rightarrow E \odot F_1 \xrightarrow{id \otimes \phi} E \odot F_2 \xrightarrow{id \otimes \psi} E \odot F_3 \rightarrow 0$$

also is exact. We have an inclusion

$$(E \otimes F_2)/(E \otimes F_1) \hookrightarrow (E \otimes_{\text{min}} F_2)/(E \otimes_{\text{min}} F_1)$$

and the latter quotient is a C^*-tring. Then there exists a C^*-norm γ on $E \odot F_3$ such that

$$0 \rightarrow E \otimes_{\text{min}} F_1 \xrightarrow{id \otimes \phi} E \otimes_{\text{min}} F_2 \xrightarrow{id \otimes \psi} E \otimes_{\gamma} F_3 \rightarrow 0$$

is exact. Since γ is greater or equal to the minimum norm, the identity map on $E \otimes F_3$ extends to a surjective homomorphism $E \otimes_{\gamma} F_3 \rightarrow E \otimes_{\text{min}} F_3$.

Definition 5.15. We say that a C^*-tring E is exact if for each exact sequence

$$0 \rightarrow F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow 0$$

of C^*-trings we have that

$$0 \rightarrow E \otimes_{\text{min}} F_1 \rightarrow E \otimes_{\text{min}} F_2 \rightarrow E \otimes_{\text{min}} F_3 \rightarrow 0$$

also is exact.

Proposition 5.16. Let E and F be C^*-trings, and suppose that G is an ideal of F (Definition 4.1). Then

$$0 \rightarrow E \otimes_{\text{min}} G \rightarrow E \otimes_{\text{min}} F \rightarrow E \otimes_{\text{min}} (F/G) \rightarrow 0$$

is exact if and only if the following sequence is exact:

$$0 \rightarrow E^r \otimes_{\text{min}} G^r \rightarrow E^r \otimes_{\text{min}} F^r \rightarrow E^r \otimes_{\text{min}} (F^r/G^r) \rightarrow 0$$

Proof. Suppose first that the sequence below is exact:

$$0 \rightarrow E \otimes_{\text{min}} G \rightarrow E \otimes_{\text{min}} F \rightarrow E \otimes_{\text{min}} (F/G) \rightarrow 0$$
By Corollaries 5.13 and 4.7 we have the following commutative diagram

\[
\begin{array}{ccccccccc}
0 & \rightarrow & (E \otimes_{\min} G)^r & \rightarrow & (E \otimes_{\min} F)^r & \rightarrow & (E \otimes_{\min} (F/G))^r & \rightarrow & 0 \\
\Rightarrow & & \Rightarrow & & \Rightarrow & & \Rightarrow & & \\
0 & \rightarrow & E^r \otimes_{\min} G^r & \rightarrow & E^r \otimes_{\min} F^r & \rightarrow & E^r \otimes_{\min} (F/G)^r & \rightarrow & 0 \\
\Rightarrow & & \Rightarrow & & \Rightarrow & & \Rightarrow & & \\
0 & \rightarrow & E^r \otimes_{\min} G^r & \rightarrow & E^r \otimes_{\min} F^r & \rightarrow & E^r \otimes_{\min} F^r/G^r & \rightarrow & 0 \\
\end{array}
\]

Since the upper two rows are exact, the third one also is exact.

To prove the converse, note first that

\[
\begin{array}{ccccccccc}
0 & \rightarrow & E \otimes_{\min} G & \rightarrow & E \otimes_{\min} F & \rightarrow & (E \otimes_{\min} F)/(E \otimes_{\min} G) & \rightarrow & 0 \\
\end{array}
\]

is exact, and \((E \otimes_{\min} F)/(E \otimes_{\min} G)\) is a \(C^*\)-completion of the ternary ring \(E \otimes (F/G)\). Denoting the corresponding \(C^*\)-norm by \(\gamma\), we have a surjective homomorphism \(\phi: E \otimes \gamma (F/G) \rightarrow E \otimes_{\min} (F/G)\) which extends the identity on \(E \otimes (F/G)\). Now, applying the exact functor \(E \mapsto E^r\) we obtain the commutative diagram with exact rows that follows:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & E^r \otimes_{\min} G^r & \rightarrow & E^r \otimes_{\min} F^r & \rightarrow & E^r \otimes_{\gamma} F^r/G^r & \rightarrow & 0 \\
\Rightarrow & & \Rightarrow & & \Rightarrow & & \Rightarrow & & \\
0 & \rightarrow & E^r \otimes_{\min} G^r & \rightarrow & E^r \otimes_{\min} F^r & \rightarrow & E^r \otimes_{\min} F^r/G^r & \rightarrow & 0 \\
\end{array}
\]

It follows that the homomorphism \(\phi^r\) is an isomorphism. \(\square\)

Corollary 5.17 (cf. [5, Theorem 6.1]). A \(C^*\)-tring \(E\) is exact (5.15) if and only if \(E^r\) is an exact \(C^*\)-algebra.

Proof. Immediate from Proposition [5.10] \(\square\)

As previously for nuclear \(C^*\)-algebras, we easily obtain from 5.17 the following known result([7]): if \(A\) and \(B\) are Morita-Rieffel equivalent \(C^*\)-algebras, then \(A\) is exact if and only if \(B\) is exact.

REFERENCES

1. F. Abadie, *Enveloping Actions and Takai Duality for Partial Actions*, J. Funct. Anal., **197** (2003), 14-67.
2. F. Abadie, L. Martí Pérez, *On the amenability of partial and enveloping actions*, Proc. Amer. Math. Soc. **137** (2009), no. 11, 3689-3693.
3. W. Beer, *On Morita equivalence of nuclear \(C^*\)-algebras*, J. Pure Appl. Math. **26** (1982), 249-267.
4. J. M. Fell, R. S. Doran, *Representations of \(*\)-algebras, locally compact groups, and Banach \(*\)-algebraic bundles*, Pure and Applied Mathematics vol. **125** and **126**, Academic Press, Boston, MA, 1988.
5. M. Kaur, Z.J. Ruan, *Local Properties of Ternary Rings of Operators and Their Linking \(C^*\)-Algebras*, Journal of Functional Analysis **195** (2002), 262 - 305.
6. E. C. Lance, *Hilbert \(C^*\)-modules. A toolkit for operator algebraists*, London Mathematical Society, Lecture Note Series **210**, Cambridge University Press, 1995.
7. C. K. Ng, *\(C^*\)-exactness and crossed products by actions and coactions*, J. London Math. Soc. (2), **51** (1995), 321-330.
8. I. Raeburn, D. P. Williams, *Morita Equivalence and Continuous-Trace C*-algebras*, Math. Surveys and Monographs, Volume 60, Amer. Math. Society, 1998.
9. S. Wassermann, *Exact C*-algebras and Related Topics*, Lecture Notes Series 19, Seoul National University, 1994.
10. N. E. Wegge-Olsen, *K-Theory and C*-algebras*, Oxford Science Publications, Oxford University Press, Oxford-New York-Tokyo, 1993.
11. H. H. Zettl, *Strong Morita equivalence of C*-algebras preserves nuclearity*, Arch. Math. 38 (1982), 448-452.
12. H. H. Zettl, *A Characterization of Ternary Rings of Operators*, Advances in Math. 48 (1983), 117-143.

Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
E-mail address: fabadie@cmat.edu.uy

Departamento de Matemática y Estadística del Litoral, Universidad de la República, Rivera 1350, CP 50000, Salto, Uruguay
E-mail address: dferraro@unorte.edu.uy