Donor KIR3DL1/receptor HLA-Bw4-80I Combination Reduces Acute Leukemia Relapse after Umbilical Cord Blood Transplantation without in Vitro T-cell Depletion

Xincheng Fang1, Xiaoyu Zhu2, Baolin Tang2, Kaidi Song2, Wen Yao2, Xiang Wan2, Huilan Liu2, Jun Peng1 and Zimin Sun2.

1 Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250012, China.
2 Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China.

Competing interests: The authors declare no conflict of interest.

Abstract. Background: Donor natural killer (NK) cell alloseactivity in umbilical cord bone marrow transplantation (UCBT) can lead to leukemic relapse. However, NK cell function is calibrated by interaction with human leukocyte antigens (HLAs). This study aimed to investigate graft-resistant leukemia after transplantation and compared specific genotypes of killer immunoglobulin-like receptors (KIRs) in donors and human leukocyte antigen ligands in patients.

Methods: We retrospectively analyzed 232 patients with acute leukemia from a single center. Patients had undergone UCBT with myeloablative conditioning and without anti-thymocyte globulin. We identified the KIR genotypes of cord blood donors using polymerase chain reaction with sequence-specific primers. All of the donors contained KIR3DL1.

Results: The patients were divided into three groups according to the HLA-B locus. The donor KIR3DL1 and recipient HLA-Bw4-80I combination was predictive of being highly educated and was associated with a lower relapse ($P=0.006$) and better overall survival (probability of relapse=0.13, $P<0.001$) than the uneducated group. We found no significant increase in the incidence of acute or chronic graft-versus-host disease.

Conclusions: Our data suggest that the donor KIR3DL1/receptor and HLA-Bw4-80I combination in UCBT results in stronger graft-versus-leukemia effects and improved outcomes in patients with acute leukemia.

Keywords: Acute myeloid leukemia; Natural killer cells; Killer immunoglobulin-like receptors; Umbilical cord blood transplantation; Acute lymphocytic leukemia.

Citation: Fang X., Zhu X., Tang B., Song K., Yao W., Wan X., Liu H., Peng J., Sun Z. Donor KIR3DL1/receptor HLA-Bw4-80I combination reduces acute leukemia relapse after umbilical cord blood transplantation without in vitro T-cell depletion. Mediterr J Hematol Infect Dis 2021, 13(1): e2021005, DOI: http://dx.doi.org/10.4084/MJHID.2021.005

Published: January 1, 2021 Received: August 13, 2020 Accepted: December 3, 2020

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Jun Peng, Ph.D., Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250012, China. Tel.: +86 53182169114, Fax: +86 53182169114. E-mail: junpengfxc@163.com

Introduction. Umbilical cord blood transplantation (UCBT) is widely used for treating hematological malignancies.1 Natural killer (NK) cells are an essential component of umbilical cord blood stem cells and are the fastest recovering cells in the early stage after UCBT. Therefore, NK cells are an essential component of the graft-versus-leukemia (GVL) response and are critical for positive outcomes after UCBT.2-3 NK cells have a
Materials and Methods.

 Patients and transplant protocols. All participants in the study provided written informed consent. Participants included patients with lympho-and myeloproliferative malignancies who received UCBT at the Center of Hematology, Anhui Provincial Hospital between Jul 31, 2012, and Dec 31, 2017. Donor sources were unrelated from a cord blood bank and matched at alleles of HLA-A, -B, -C, -DRB1, and -DQB1; the rest were 1 (n=98) or >=2 HLA allele (n=101) mismatched. Most of them (n= 180) received reduced-intensity conditioning (RIC), which contains fludarabine (Flu), and 33 patients received myeloablative conditioning. The platelet recovery was defined by a level of at least 20,000/µl for three consecutive days after transplantation. Full donor chimerism was defined as the presence of > 95% of the donor cells. Acute GVHD (aGVHD) was defined as the development of grade II to IV GVHD during the first 100 days post-transplantation. Severe aGVHD involved the development of grade III to IV GVHD. Chronic GVHD (cGVHD) occurred over 100 days post-transplantation.

 HLA typing. Genomic DNA was extracted from patients' whole blood and cord blood with the QIAamp DNA blood mini kit (Qiagen, Hilden, Germany). HLA classes I and II alleles were hybridized with the LAB Type SSO kit (One Lambda, Hannover, GERMANY). HLA sequences were read with a LAB Scan 200 (Luminex, Texas, USA) and computer-assisted HLA Fusion software. According to the HLA-B locus of donors, patients were divided into the following three groups: HLA-Bw6, HLA-Bw4-80I, and HLA-Bw4-80I.

 KIR genotyping. According to the manufacturer's instructions, KIR genotyping was performed using polymerase chain reaction with the KIR typing kit (BAG Healthcare, Lich, Germany). The KIR genotype of cord blood donors was detected by the sequence-specific primer method. The KIR genotype of cord blood donors all contained KIR3DL1.

 Statistical analysis. The Kaplan–Meier method was used to calculate probabilities of relapse-free, OS, and DFS, including the 95% confidence interval (CI). The nonparametric test was used for comparing outcomes by three different HLA-B groups. Finally, Cox regression models were constructed to assess HLA groups' effect on the outcome variables while controlling for demographic and other covariates that showed an association with the primary outcomes. The cumulative incidence was used to estimate non-recurring mortality (NRM), neutrophil and platelet recovery, and aGVHD and cGVHD. Calculations were performed using SPSS version 17.0.

 Results. The ages of the 232 AL and MDS patients ranged from 2 to 45 with a median of 13 years, contains 110 women and 122 men. All the patients were diagnosed with acute myeloid leukemia (AML, n=112), acute lymphocyte leukemia (ALL, n=104), and myelodysplastic syndrome (MDS, n=16). All patients were Chinese. One hundred sixteen patients were at first remission, 52 patients at Second/third remission, 64 patients were not in remission when transplantation. All the patients received UCBT. 23 pairs were 6/6 allele matched at HLA-A, -B, -C, -DRB1, and -DQB1; the rest were 1 (n=98) or >=2 HLA allele (n=101) mismatched. Most of them (n=180) received reduced-intensity conditioning (RIC), which contains fludarabine (Flu),
busulfan (BU), and cyclophosphamide (CY); some of them (n=47) received conditioning total body irradiation (TBI), cytarabine (Ara-c) and CY, 5 of them received conditioning Ara-c, BU and CY. There were no significant differences in other clinical variables. We classified patients according to the presence of genes encoding recipient HLA-B ligands for donor inhibitory KIRs. None of the patients received rabbit antithymocyte globulin. GVHD prophylaxis regimens for UCBT included cyclosporine A and mycophenolate mofetil. We classified patients according to the presence of genes encoding recipient HLA-B ligands. The characteristics of each HLA-B group are shown in Table 1.

Table 2 shows the comparison of the transplantation results of the three groups. Only nine of the total patients had primary graft failure. The median recovery time of neutrophils in the Bw6, Bw4-80T, and Bw4-80I groups was 16 (14-20) days, 17 (14-21) days, and 17 (14-19) days, respectively. The engraftment rate in the Bw6, Bw4-80T, and Bw4-80I groups was 96.5%, 95.5%, and 96.2%, respectively (P=0.202). The median recovery time of platelet recovery in Bw6, Bw4-80T, and Bw4-80I groups was 36 (29-47) days, 38 (29-60) days, and 38 (31-45) days. The days of neutrophils and platelet recovery showed no significant difference among the three groups. The cumulative incidence of recovery of neutrophils by day 42 in the three groups was 96.5% (95% CI, 89.4% to 98.8%), 95.6% (95% CI, 86.6% to 98.5%), and 94.8%, respectively (95% CI, 86.7% to 98%; P=0.81).

Within 100 days after transplantation, the incidence of grades II to IV aGVHD in the Bw6, Bw4-80T, and Bw4-80I groups was 38.4% (95% CI, 25.1% to 48.5%), 35.3% (95% CI, 24.1% to 46.7%), and 42.3% (95% CI, 31.2% to 53.0%), respectively (P=0.68). The cumulative incidence of severe aGVHD (grades III and IV) in the three groups was 15.1% (95% CI, 8.5% to 23.6%),

Characteristic, n (%)	Bw4*80I	Bw4*80T	Bw6	P value
Patients	86	68	78	
Median Recipient age, y, (range)	13 (1-44)	12 (1-43)	13 (1-45)	0.820
Median weight, Kg, (range)	41 (37.3-45.9)	41.5 (36.5-46.4)	42.7 (38.2-47.2)	0.909
Recipient gender				0.634
Female	38	35	37	
Male	50	36	36	
Diagnose				0.657
AML	37	35	40	
ALL	44	28	32	
MDS	5	5	6	
HLA Compatibility				0.658
6/6	7	9	7	
5/6	42	27	29	
4/6 or 3/6	37	32	32	
Disease stage				0.754
First remission	41	34	41	
Second/third remission	23	13	16	
Not remission	17	23	24	
Disease risk status				0.652
Poor	16	5	8	
Intermediate	70	63	70	
TNC (10^7/Kg)	4.44 (3.86-15.01)	4.5 (3.9-15.1)	4.34 (3.87-14.81)	0.877
CD34 (10^5/Kg)	2.52 (2.1-12.8)	2.49 (1.99-12.98)	2.34 (2.0-12.69)	0.788
Conditioning regimen				0.675
Flu+BU+CY	63	52	65	
Ara-c+BU+CY	4	1	0	
TBI+Ara-c+CY	19	15	13	

CR1: complete remission at the first time; CR2/3: complete remission at the second or third time; NR: refractory/relapsed disease; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; MDS: myelodysplastic syndrome; FLU: fludarabine; TBI: total body irradiation; CY: cyclophosphamide; BU: busulfan; Ara-c: cytarabine.
Table 2. Transplantation results of the three groups, according to HLA-B subtype.

Results n (%)	Bw4*80I	Bw4*80T	Bw6	P value
Recovery time of neutrophils days, (range)	16 (14-20)	17 (14-21)	17 (14-19)	0.951
Recovery time of neutrophils days, (range)	36 (29-47)	38 (29-60)	38 (31-45)	0.871
Acute GVHD	33 (38.4%)	24 (35.3%)	33 (42.3%)	0.093
Chronic GVHD	7 (8.1%)	6 (8.8%)	13 (16.7%)	0.759
Relapse	5 (6.4%)	9 (13.2%)	21 (24.4%)	0.023
Have disease	5 (6.4%)	10 (14.7%)	25 (29.0%)	0.0004
Death	18 (23.1%)	18 (26.5%)	27 (31.4%)	0.4785

22.1% (95% CI, 13.0% to 32.6%), and 24.7% (95% CI, 15.7% to 34.8%), respectively (P=0.38). Among the patients who survived for longer than 100 days, the cumulative incidence of cGVHD at 2 years showed a tendency to be higher in the Bw4-80I group. The cumulative incidence of cGVHD at 2 years after transplantation in the Bw6, Bw4-80T, and Bw4-80I groups was 10.6% (95% CI, 4.4% to 19.9%), 10.6% (95% CI, 4.1% to 20.5%), and 20.6% (95% CI, 10.5% to 33.0%), respectively (P=0.18).

The cumulative incidence of relapse two years after transplantation in the Bw4-80I group was significantly lower than that in the other two groups. In the Bw4-80I group, only 5 cases (6.4%) relapsed, while in the Bw6 group, 21 cases (24.4%) relapsed. In the univariate analysis, the HLA-B subtype was a significant risk factor for relapse (P=0.02). At 2 years after transplantation, the DFS in the Bw4-80I group (91.7%, 95% CI, 81.7% to 96.5%) was significantly higher than that in the other 2 groups (Bw6 group: 60.2%, 95% CI, 81.1% to 96.5%; Bw4-80T group: 79.3%, 95% CI, 64.2% to 88.5%, P=0.002; Figure 1). Multivariate analysis was performed for variables, including age, receptor weight, HLA matching, diagnosis, stage, conditioning regimen, and HLA-B subtype, to identify risk factors in the three groups (P=0.0003). TRM occurred in 12 of 86 recipients in the Bw6 group, in 15 of 68 recipients in the Bw4-80T group, and in 13 of 78 recipients in the Bw4-80I group. The main cause of death was a severe infection caused by bone marrow failure after recurrence; the first type of infection was a fungal infection. The cumulative incidence of TRM by 2 years was 14.6% (95% CI, 6.6% to 21.9%), 22.2% (95% CI, 11.6% to 31.4%), and 16.9% (95% CI, 8.1% to 24.8%) in the three groups, respectively (P=0.45). OS at 2 years was 64.6% (95% CI, 51.9% to 74.7%), 73.4% (95% CI, 61.2% to 83.4%), and 76% (95% CI, 64.9% to 84.4%) in the Bw6, Bw4-80T, and Bw4-80I groups, respectively (P=0.53), with no significant difference between the groups (Figure 2). In multivariate analysis, including HLA-B difference and other factors, OS at two years after transplantation in the Bw4-80I group (hazard ratio=0.13, P=0.0001) was significantly higher than that in the Bw6 group. HLA-B difference was a risk factor for OS (P=0.0003).

Discussion. The objective of this study was to investigate the effect of donor KIR and recipient ligands conditioning regimen, and HLA-B subtype, to identify risk factors in the three groups (P=0.0003). TRM occurred in 12 of 86 recipients in the Bw6 group, in 15 of 68 recipients in the Bw4-80T group, and in 13 of 78 recipients in the Bw4-80I group. The main cause of death was a severe infection caused by bone marrow failure after recurrence; the first type of infection was a fungal infection. The cumulative incidence of TRM by 2 years was 14.6% (95% CI, 6.6% to 21.9%), 22.2% (95% CI, 11.6% to 31.4%), and 16.9% (95% CI, 8.1% to 24.8%) in the three groups, respectively (P=0.45). OS at 2 years was 64.6% (95% CI, 51.9% to 74.7%), 73.4% (95% CI, 61.2% to 83.4%), and 76% (95% CI, 64.9% to 84.4%) in the Bw6, Bw4-80T, and Bw4-80I groups, respectively (P=0.53), with no significant difference between the groups (Figure 2). In multivariate analysis, including HLA-B difference and other factors, OS at two years after transplantation in the Bw4-80I group (hazard ratio=0.13, P=0.0001) was significantly higher than that in the Bw6 group. HLA-B difference was a risk factor for OS (P=0.0003).

Discussion. The objective of this study was to investigate the effect of donor KIR and recipient ligands conditioning regimen, and HLA-B subtype, to identify risk factors in the three groups (P=0.0003). TRM occurred in 12 of 86 recipients in the Bw6 group, in 15 of 68 recipients in the Bw4-80T group, and in 13 of 78 recipients in the Bw4-80I group. The main cause of death was a severe infection caused by bone marrow failure after recurrence; the first type of infection was a fungal infection. The cumulative incidence of TRM by 2 years was 14.6% (95% CI, 6.6% to 21.9%), 22.2% (95% CI, 11.6% to 31.4%), and 16.9% (95% CI, 8.1% to 24.8%) in the three groups, respectively (P=0.45). OS at 2 years was 64.6% (95% CI, 51.9% to 74.7%), 73.4% (95% CI, 61.2% to 83.4%), and 76% (95% CI, 64.9% to 84.4%) in the Bw6, Bw4-80T, and Bw4-80I groups, respectively (P=0.53), with no significant difference between the groups (Figure 2). In multivariate analysis, including HLA-B difference and other factors, OS at two years after transplantation in the Bw4-80I group (hazard ratio=0.13, P=0.0001) was significantly higher than that in the Bw6 group. HLA-B difference was a risk factor for OS (P=0.0003).
The role of KIRs in early reporting and their ligands in UCBT is not consistent. NK cell alloreactivity in a transplantation setting was first recognized in patients with acute myeloid leukemia in the absence of T cells. Therefore, a high recurrence of leukemia was observed in this group. The KIR3DL1/receptor Bw4-80I group could not educate NK cells. Conversely, the donor NK cells in vivo before transplantation. Recent reports have continued to focus on the efficacy of better transplantation associated with the activating KIR gene. A limitation of these studies is that they only considered KIR–ligand mismatch, without consideration for the role of NK licensing. Our study assessed the effect of NK cell licensing and education. The higher GVL effects in the donor KIR3DL1/receptor Bw4-80I group can be explained by the more active cytolytic function of alloreactivity in donor NK cells because of interaction between the Bw4-80I ligand and donor NK cells. Conversely, the donor KIR3DL1/receptor Bw6 group could not educate NK cells. Therefore, a high recurrence of leukemia was observed in this group. The KIR3DL1/receptor Bw4-80T group also educated NK cells, while its lower education conferred a mild improvement in DFS, PR, and OS. We observed that the different education results did not affect single factor analysis of OS. Conversely, in multi-factor analysis with the regression model, the effect of other confounding factors was adjusted, and it revealed the effect of each factor on the dependent variable.

The number of UCBT cases in most transplant centers has a limited investigation of the role of KIRs in UCBT. Therefore, how donor NK cells enter the recipient after cord blood transplantation and how they differentiate, educate, or play a role in the killing are unclear. Many studies have focused on the combination of KIR2DL1/2/3 and HLA-C. However, our previous findings indicated that, although the inhibitory KIR2DL1/2/3 family members’ binding affinity to ligands and diversity of surface expression were observed, these differences were smaller than those in the KIR3DL1 and HLA-B ligand pair. Therefore, we consider that focusing on the KIR3DL1-Bw pair is more meaningful.

Previous studies have shown that higher GVL effects are associated with a higher probability of GVHD, but our study did not show that aGVHD of the KIR3DL1/receptor Bw4-80I group was increased. There were no significant differences in the II-IV GVHD and III-IV GVHD in group Bw4-80I. Although group Bw4-80I showed a trend for a higher incidence of cGVHD, this difference was not significant. We also found that different KIR and donor groups did not significantly affect the neutrophil and platelet implantation rate, consistently with other studies. Conclusions. Our data show that the donor KIR3DL1/receptor and recipient Bw4-80I combination may affect the PR and DFS in T cell-repleted UCBT in Chinese patients. Therefore, close monitoring of the residual disease status may be recommended in patients with HLA-Bw6 receiving KIR3DL1 cord blood. Further studies are required to clarify the relationship between NK cells’ education and clinical outcomes of UCBT. Examination of a larger cohort is also required to develop confident recommendations.

Acknowledgments. This study was funded by grants from the National Natural Science Foundation of China (No. 81470350) and the Fundamental Research Funds for the Central Universities (No. WK9110000001). Alexandra H. Marshall (Marshall Medical Communications) edited the manuscript. We also thank Ellen Knapp, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References:

1. Pasquini M, Wang Z, Horowitz MM, Gale RP. 2013 report from the Center for International Blood and Marrow Transplant Research (CIBMTR): current uses and outcomes of hematopoietic cell transplants for blood and bone marrow disorders. Clin Transpl. 2013: 187-97.

2. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990; 75: 555-62. https://doi.org/10.1182/blood.V75.3.555.555 PMid:2297567

3. Farag SS, Fehniger TA, Ruggeri L, Velandi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002; 100: 1935-47. https://doi.org/10.1182/blood-2002-02-0350 PMid:12200350

4. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 295: 2997-100. https://doi.org/10.1126/science.1068440 PMid:11896281

www.mjhid.org Mediterr J Hematol Infect Dis 2021; 13; e2021005 Pag. 5 / 6
5. Middleton D, Gonzalez F. The extensive polymorphism of KIR genes. Immunology. 2010; 129: 8-19. https://doi.org/10.1111/j.1365-2567.2009.03208.x PMid:20028428 PMCid:PMC2807482

6. McQueen KL, Parham P. Variable receptors controlling activation and inhibition of NK cells. Curr Opin Immunol. 2002 Oct; 14(5): 615-21. https://doi.org/10.1016/S0952-7915(02)00380-1

7. Anfossi N, André P, Guia S, Falk CS, Roetynck S, Stewart CA et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006 Aug; 25(2): 331-42. Epub 2006 Aug 10. https://doi.org/10.1016/j.immuni.2006.06.013 PMid:16901727

8. Moesta AK, Norman PJ, Yawata M, Yawata N, Gleimier M, Parham P. Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J Immunol. 2008 Mar 15; 180(6): 3969-79. https://doi.org/10.4049/jimmunol.180.6.3969 PMid:18322286

9. O'Connor, G.M. and McVicar, D. The Yin-Yang of KIR3DL1/S1: molecular mechanisms and cellular function. Crit.Rev. Crit Rev Immunol. 2013; 33(3): 203-18. https://doi.org/10.1615/CritRevImmunol.2013007409 PMid:23756244 PMCid:PMC3501362

10. Boudreau JE, Giglio F, Gooley TA, Stevenson PA, Le Luduec JB, Shaffer BC et al. KIR3DL1/HLA-B subtypes govern acute myelogenous leukemia relapse after hematopoietic cell transplantation. J Clin Oncol. 2017 Jul 10; 35(20): 2260-2278. https://doi.org/10.1200/JCO.2016.70.7059 PMid:28520526 PMCid:PMC5501362

11. Ben MD, Beckman DL, Ebihara T, Taffner SM, Poursine-Laurent J, White JM et al. Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A. 2017 Oct 3; 114(40): E8440-E8447. https://doi.org/10.1073/pnas.1713064114 PMid:28923946 PMCid:PMC5653927

12. Farag SS, Fehringer TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002; 100: 1935-47. https://doi.org/10.1182/blood-2002-02-0350 PMid:12200350

13. Ruggeri L, Mancusi A, Burchielli E, Capanni M, Carotti A, Aloisi T et al. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. Blood Cells Mol Dis. 2008 Jan-Feb; 40(1): 84-90. https://doi.org/10.1016/j.bcmd.2007.06.029 PMid:17964828

14. Stringaris K, Adams S, Uribe M, Eniafe R, Wu CO, Savani BN et al. Donor KIR Genes 2DL5A, 2DS1 and 3DS1 are associated with a reduced rate of leukemia relapse after HLA identical sibling stem cell transplantation for acute myeloid leukemia but not other hematologic malignancies. Biol Blood Marrow Transplant. 2010; 16(9): 1257-1264 https://doi.org/10.1016/j.bbmt.2010.03.004 PMid:20302958 PMCid:PMC3801172

15. Sahin U, Dalva K, Gunfor F, Ustun C, Beksaç M. Donor-recipients killer immunoglobulin like receptor (KIR) genotype matching has a protective effect on chronic graft versus host disease and relapse incidence following HLA-identical sibling hematopoietic stem cell transplantation. Ann Hematol. 2018 Jun; 97(6): 1027-1039. https://doi.org/10.1007/s00277-018-3274-0 PMid:29549412

16. Hoseinian SA, Jafari D, Mahmooodi M, Alimoghaddam K, Ostadali M, Talebradeh Bonakdar A, et al. The impact of donor and recipient KIR genes and KIR ligands on the occurrence of acute graft-versus-host disease and graft survival after HLA-identical sibling hematopoietic stem cell transplantation. Turk J Med Sci. 2018 Aug 16; 48(4): 794-804. https://doi.org/10.3906/sag-1712-75

17. Moesta AK, Norman PJ, Yawata M, Yawata N, Gleimier M, Parham P. Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J Immunol. 2008 Mar 15; 180(6): 3969-79. https://doi.org/10.4049/jimmunol.180.6.3969 PMid:18322206

18. Dunphy SE, Guinan KJ, Chorcora CN, Jayaraman J, Traherne JA, Trowsdale J et al. 2DL1, 2DL2 and 2DL3 contribute to KIR phenotype variability on human NK cells. Genes Immun. 2015 Jul-Aug; 16(5): 301-10. https://doi.org/10.1038/jgone.2015.15 PMid:25950617

19. Cooley S, Trachtenberg E, Bergemann TL, Saetern K, Klein J, Le CT et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009; 113(3): 726-732. https://doi.org/10.1182/blood-2008-07-171926 PMid:18945962 PMCid:PMC2628378

20. Erbe AK, Wang W, Reville PK, Carmichael L, Kim K, Mendonca EA et al. HLA-Bw4-4-80 isoform differentially influences clinical outcome as compared to HLA-Bw4-4-70 and HLA-A-Bw4 isoforms in rituximab or dinutuximab-based cancer immunotherapy. Front Immunol. 2017 Jun 12; 8: 675. https://doi.org/10.3389/fimmu.2017.00675 PMid:28659916 PMCid:PMC5466980