Open-Sourced CIViC Annotation Pipeline to identify and annotate clinically relevant variants using single-molecule molecular inversion probes

Erica K Barnell
Adam Waalkes
Matt C Mosior
Kelsi Penewit
Kelsy C Cotto

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs
Authors
Erica K Barnell, Adam Waalkes, Matt C Mosior, Kelsi Penewit, Kelsy C Cotto, Arpad M Danos, Lana M Sheta, Katie M Campbell, Kilannin Krysiak, Damian Rieke, Nicholas C Spies, Zachary L Skidmore, Colin C Pritchard, Todd A Fehniger, Ravindra Uppaluri, Ramaswamy Govindan, Malachi Griffith, Stephen J Salipante, and Obi L Griffith
Open-Sourced CIViC Annotation Pipeline to Identify and Annotate Clinically Relevant Variants Using Single-Molecule Molecular Inversion Probes

Erica K. Barnell, MD, PhD; Adam Waalkes, PhD; Matt C. Mosior, MCS; Kelsi Penewit; Kelsy C. Cotto, PhD; Arpad M. Danos, PhD; Lana M. Sheta; Katie M. Campbell, PhD; Kilannin Krysiak, PhD; Damian Rieke, MD; Nicholas C. Spies, MD; Zachary L. Skidmore, MEng; Colin C. Pritchard, MD, PhD; Todd A. Fehniger, MD, PhD; Ravindra Uppaluri, MD, PhD; Ramaswamy Govindan, MD; Malachi Griffith, PhD; Stephen J. Salipante, MD, PhD; and Obi L. Griffith, PhD

PURPOSE Clinical targeted sequencing panels are important for identifying actionable variants for patients with cancer; however, existing approaches do not provide transparent and rationally designed clinical panels to accommodate the rapidly growing knowledge within oncology.

MATERIALS AND METHODS We used the Clinical Interpretations of Variants in Cancer (CIViC) database to develop an Open-Sourced CIViC Annotation Pipeline (OpenCAP). OpenCAP provides methods to identify variants within the CIViC database, build probes for variant capture, use probes on prospective samples, and link somatic variants to CIViC clinical relevance statements. OpenCAP was tested using a single-molecule molecular inversion probe (smMIP) capture design on 27 cancer samples from 5 tumor types. In total, 2,027 smMIPs were designed to target 111 eligible CIViC variants (61.5 kb of genomic space).

RESULTS When compared with orthogonal sequencing, CIViC smMIP sequencing demonstrated a 95% sensitivity for variant detection (n = 61 of 64 variants). Variant allele frequencies for variants identified on both sequencing platforms were highly concordant (Pearson’s r = 0.885; n = 61 variants). Moreover, for individuals with paired tumor and normal samples (n = 12), 182 clinically relevant variants missed by orthogonal sequencing were discovered by CIViC smMIP sequencing.

CONCLUSION The OpenCAP design paradigm demonstrates the utility of an open-source and open-access database built on attendant community contributions with peer-reviewed interpretations. Use of a public repository for variant identification, probe development, and variant interpretation provides a transparent approach to build dynamic next-generation sequencing–based oncology panels.

INTRODUCTION Despite recognition that genomics plays an important role in tumor prognosis, diagnosis, and treatment, scaling genetic analysis for routine analysis of most tumor specimens has been unattainable. Barriers preventing widespread incorporation of genomic analysis into treatment protocols include costs associated with genomic sequencing and analysis, computational limitations preventing timely identification of relevant variants, and rapidly evolving knowledge of the clinical actionability of variants. Technologic improvements in sequencing and data analysis continue to reduce these first 2 limitations; however, less progress has been made in integrating dynamic genomic annotation into clinical workflows. More than 22% of oncologists have acknowledged limited confidence in their own understanding of how genomic knowledge applies to patients’ treatment, and 18% reported testing patients’ genetics infrequently. In the face of exponential growth in clinically relevant genomic findings, driven by precision oncology efforts, there will likely be increased inability for physicians to command the most current information, resulting in increasing delay between academic discovery and clinical utility. This information gap has been described as the interpretation bottleneck. Alleviating the interpretation bottleneck will require codevelopment of targeted sequencing panels, bioinformatic tools, and variant knowledgebases that effectively elucidate and annotate clinically actionable variants from sequencing data. These requirements each raise separate challenges. With regard
to targeted panel development, commercial and academic pancancer clinical gene capture panels have now become commonplace, with at least 2 obtaining US Food and Drug Administration approval (FoundationONE CDx [Foundation Medicine, Cambridge, MA] and Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets [Memorial Sloan Kettering Cancer Center, New York, NY]). Even so, few panels indicate how genomic loci are selected for panel inclusion (Data Supplement), and none have proposed a sustainable or scalable mechanism to allow for panel evolution over time in response to knowledge advances in molecular oncology. With regard to bioinformatic tool development, the OncoPaD portal provides one of the only methods to create rational designed panels by linking clinically relevant variants to genomic loci on the basis of a cohort of tumor samples; however, this database is not directly linked to actively updated clinical interpretations with detailed underlying evidence. The final challenge of building knowledgebases for variant interpretation perhaps poses even greater and more persistent challenges. Commercial entities typically rely on the manual curation and organization of research findings into structured databases, which are expensive to create and maintain, forcing companies to limit public access or to charge for use. The resulting lack of transparency creates inefficiencies in the field through unnecessary replication of curation effort and suboptimal communication with clinicians, ultimately hindering development of effective patient treatment plans. Separately, governmental and academic institutions have developed variant interpretation resources, such as the Catalogue of Somatic Mutations in Cancer,11 ClinVar,12 and cBioPortal,13,14 that have drastically improved research efforts and academic discovery; however, these resources do not have well-supported (evidence-based) clinical relevance summaries for cancer variants that can be easily accessed and used by physicians. Several resources provide detailed clinical interpretation of cancer variants (eg, OncoKB,16 JAX Clinical Knowledgebase,17 and others), but these databases are either limited by license restrictions or closed curation models.

To address these limitations, we developed a method to identify, capture, and annotate variants using the Clinical Interpretation of Variants in Cancer (CIViC) database.18 The CIViC database is a freely accessible (public domain content), publicly curated, expert-moderated repository of therapeutic, prognostic, predisposing, and diagnostic information in precision oncology.19 The database provides a powerful platform for panel development and variant annotation for the following reasons: each variant within CIViC is described by clinical relevance summaries linked to medical literature; the history of curation within CIViC is stored and publicly available to all users; and CIViC has an open-source, open-access applied programming interface (API) for external query. Using the CIViC database and API, we developed the Open-Sourced CIViC Annotation Pipeline (OpenCAP) for creating custom capture panels, executing capture panel sequencing on prospective samples, identifying variants from sequencing data, and annotating variants for clinical relevance.20 An exemplary clinical capture panel was created using OpenCAP to demonstrate utility. Specifically, variants within the CIViC database were identified based on clinical relevance, and single-molecule molecular inversion probes (smMIPs) were designed to target variants of interest. This panel was used on cancer samples to evaluate design, and identified somatic variants were compared with orthogonal sequencing. Variants identified via smMIP capture were linked back to the CIViC database for clinical annotation (Fig 1). Ultimately, this method could be used to rapidly and efficiently link variants to clinical relevance summaries, enabling the development of custom capture panels for a variety of clinical and research scenarios.

MATERIALS AND METHODS

Development of Operating Procedure for OpenCAP

OpenCAP was built to guide users through the development of a custom capture panel linked to CIViC clinical relevance...
OpenCAP consists of 5 sections, each with examples and user tutorials. The first section describes CIViC and directs users through the CIViC Web interface. The next section describes methods for building a custom capture panel, which includes identifying pertinent variants within the CIViC database and targeting those variants with probes using curated genomic coordinates. Subsequently, OpenCAP gives a high-level overview of the massively parallel sequencing pipeline, which includes brief summaries for sample procurement, nucleic acid generation,
library preparation, and high-throughput sequencing. The final sections describe identifying variants from raw sequencing data and annotating those variants for clinical relevance.

Determining Eligible CIViC Variants for smMIP Capture

Variants in CIViC were filtered using their Variant Evidence Score (required > 20 points) and sequence ontology identification numbers (SOIDs; must be DNA based; Appendix). Variants were also filtered if all evidence supported only germline clinical relevance, evidence was directly conflicting, or a majority of evidence in a container variant (eg, MUTATION) pointed to a hotspot that was already being covered. The remaining variants were eligible for the CIViC smMIP capture panel.

Designing smMIPs for the CIViC Capture Reagents

Variants were further categorized by length. If the variant length was < 250 base pairs, the variant was eligible for hotspot targeting. If the variant was > 250 base pairs, the variant required either sparse or full tiling of the protein coding exons (Appendix). For all variants, smMIPs were designed and synthesized as previously described23 with the single alteration that the “-double_tile_strands_ separately”24 flag was used with the MIPgen tool to separately capture each strand of DNA surrounding the target.

Rescue and Annotation of Clinically Relevant Variants

Variants called using the CIViC smMIP capture panel were compared with variants called using original sequencing for samples that had matched tumor and normal sequencing. All genomic loci were manually reviewed23 using both the smMIP aligned Binary Alignment Map (BAM) files and the original aligned BAM files. Variants only identified using smMIP sequencing were grouped into the following 4 categories: germline polymorphism, pipeline artifact (low variant support or poor mapping), variant support on smMIP sequencing but no support on original sequencing, or variant support on both smMIP sequencing and original sequencing. For variants that showed support on smMIP sequencing but no variant support on original sequencing, the binomial probability was used to assess whether ≤ 3 variant-supporting reads would be detected with 95% confidence using the original coverage and the observed smMIP variant allele frequency (VAF). The accession number for the first release of the Database of Genotypes and Phenotypes study was phs001890.v1.p1, and the accession number for first release of the Sequence Read Archive was PRJNA529857.

RESULTS

Identification of Eligible CIViC Variants for smMIP Targeting

At the time of the CIViC smMIP capture panel design, there were 988 variants from 275 genes within the CIViC database with at least 1 evidence item. After filtering based on the Variant Evidence Score and the SOID (Appendix, Data Supplement), smMIPs were designed to cover all eligible CIViC variants. A set of 2,097 probes was developed and tested on control samples. Of these, 70 probes showed poor capture efficiency and were eliminated from the panel. Removal of the underperforming probes affected 32 variants across 16 genes. The final capture reagent targeted 111 CIViC variants spanning approximately 61.5 kb of genomic space (Data Supplement). When compared with other pancancer panels, the CIViC capture panel showed high overlap with previously defined clinical variants. For example, the CIViC smMIP capture panel covered 10 of the 13 well-defined variants on FoundationOne CDx (EGFR: exon 19, L858R, and T790M; BRAF: V600E/K; ERBB2 amplification; KRAS G12/13; BRCA1; and BRCA2).24 The 3 variants on FoundationOne CDx that were not originally covered by the smMIPS panel (KRAS wild type, NRAS wild type, and ALK rearrangements) have all since attained a Variant Evidence Score that would be sufficient for inclusion in a panel built today. Of the 111 targeted variants, 71 required hotspot targeting, 14 variants required sparse exon tiling, and 26 required full exon tiling. The 111 variants covered by the CIViC smMIP capture panel were based on 1,168 clinically relevant evidence items, whereby 820 evidence items (70%) predicted response to a therapeutic, 232 (20%) detailed diagnostic information, 52 (4%) indicated diagnostic information, and 64 (6%) supported predisposition to cancer (Fig 2).

Tumor Samples Used to Validate CIViC smMIP Design

Samples used to validate the CIViC smMIP capture panel design were derived from 5 different cancer genomic studies (Data Supplement). Tumor and paired normal samples were obtained from 5 individuals with head and neck squamous cell carcinoma (HNSCC), 9 individuals with small-cell lung cancer,25 and 1 individual with Hodgkin lymphoma (HL). Tumor-only samples were obtained from 1 individual with HL, 1 individual with acute myeloid leukemia,26 and 5 individuals with colorectal cancer (CRC). In total, 37 samples were evaluated from 22 individuals. Samples from the CRC cohort were formalin-fixed paraffin-embedded, and all other samples were fresh frozen tissue. Each of the 22 individuals had previously undergone whole-exome or whole-genome sequencing, somatic variant calling, and somatic variant refinement via manual review (Appendix). Considering original sequencing, there were 12,602 putative somatic variants called for these 22 samples. The average variant burden was 573 variants per sample, with a range of 2-3,900 variants per sample. Variant coordinates from these samples were compared with the genomic region covered by the CIViC smMIP capture panel to determine potential validating variants. In total, there were 84 variants identified via original sequencing that overlapped with the CIViC smMIP capture panel (Data Supplement).

smMIP Sequencing and Data Analysis

Initial quality check. The average number of tags captured for all samples was 5.4 million (standard deviation,
sequencing were compared with the VAF obtained using the CIViC smMIPs. To compare VAF quantitation across platforms, the 19 variants obtained from samples that failed the CIViC smMIP sequencing quality check were eliminated (Fig 4A). Subsequently, we eliminated the 4 variants that were not validated using the CIViC smMIP reagents (Fig 4B). When comparing original VAFs to CIViC smMIP VAFs, Pearson correlation for the remaining 61 variants was 0.885. There were several variants whereby the VAF observed by the CIViC smMIP sequencing was lower than that observed by the original sequencing. These outliers were not associated with tumor type, sequencing mass input, average coverage, presence of matched normal, or sample type (Figs 4C to 4F).

Analysis of Variants Only Identified Using CIViC smMIP Sequencing

Using samples that had sequencing data for both tumor and matched normal (n = 12 samples), we evaluated whether the targeted CIViC smMIP sequencing could identify clinically relevant variants that had not been observed by the original sequencing. There were 273 variants recovered by CIViC smMIP sequencing that were not identified using original sequencing. After manually reviewing these variants within the original exome or genome alignments, 55 variants (20.1%) were identified as germline mutations. smMIP sequencing VAF distribution at 50% and 100% further supported that these variants were germline polymorphisms (Fig 5A). An additional 36 variants (13.2%) were thought to be caused by pipeline artifacts and attributable to assumptions underlying automated callers or alignment problems. The majority of these artifacts were associated with nucleotide repeats in the reference sequence (Fig 5B). There were 171 variants (62.6%) called as somatic using CIViC smMIPs that did not have any variant support on the original sequencing. For these variants, we calculated the binomial probability that ≤ 3 reads would support the variant given the original coverage (number of chances to get a variant supporting read) and the observed smMIP VAF (likelihood that a read would show variant support). If the binomial probability of ≤ 3 variant-supporting reads was > 95%, then it was considered statistically unlikely that a variant would be called using original sequencing data. Using this calculation, 162 variants (94.7%) showed insufficient coverage in the original sequencing for detection (Fig 5C). Finally, 11 variants (4.2%) were not called as somatic on original sequencing but did show some variant support in those original sequencing data. The VAFs observed on original sequencing data were strongly correlated with the VAFs observed using CIViC smMIP sequencing (Pearson’s r = 0.92; Fig 5D). Reviewing manual review files from the original sequencing, we observed that 6 of these variants failed manual review as a result of low VAF, 4 variants had not been called by automated somatic variant callers, and 1 variant failed manual review as a result of a perceived

FIG 2. Regions targeted by the Clinical Interpretations of Variants in Cancer (CIViC) single-molecule molecular inversion probes (smMIPs) are, by design, supported by extensive clinical relevance according to the CIViC database. Variants that were eligible for CIViC smMIP development were divided into various coverage methods based on sequence ontology identification number and length. The bar graph shows the total number of evidence items used for each of the groups parsed by the evidence type.

3.3 million tags). One HNSCC normal sample failed smMIP capture, 2 HNSCC tumor samples had significantly fewer reads than the rest (ie, > 1 standard deviation), and 1 HL tumor sample had reduced tag complexity relative to the rest (ie, < 600,000 unique captured smMIPs). Sequencing failure for these 4 samples was attributable to poor template quality or quantity and not attributable to the capture reagents. All other samples passed sequencing quality checks. After quality check, 31 samples derived from 19 individuals were eligible for reagent validation. These samples had 65 variants derived from orthogonal sequencing that had overlap with the CIViC smMIP coverage (Fig 3). The average consensus read depth for these 65 variants was 2,942 reads (standard deviation, 4,697 reads).

Accuracy of CIViC smMIP variant identification compared with exome or genome variant identification. Of the 65 variants identified on exome sequencing, all but 4 were also identified using CIViC smMIP sequencing (Fig 3). One variant was missed as a result of lack of adequate coverage, 2 variants were missed as a result of low-performing probes, and 1 variant was retrospectively considered ineligible as a result of smMIP design (Appendix). After removing this variant from the list of eligible variants, the CIViC smMIP capture sequencing attained a 95% sensitivity for variant detection (n = 64 variants).

VAF correlation between CIViC smMIP sequencing and exome or genome sequencing. VAFs obtained via original
sequencing artifact. In summary, there were 182 potentially clinically relevant somatic variants missed by original sequencing, primarily as a result of insufficient coverage, that contained CIViC variant annotations.

Annotation of CIViC smMIP Capture Panel Somatic Variants Using OpenCAP

Using the OpenCAP annotation software, we developed clinical interpretation reports for all variants observed using the CIViC smMIP capture panel. In total, there were 1,340 variants observed across the 19 samples that passed smMIP sequencing. Of the 1,340 variants observed, 127 had direct matches (chromosome, start, stop, reference, variant) with CIViC annotations (average, 6.7 variants per sample). The OpenCAP output report for variants observed on original sequencing and validated by the CIViC smMIP capture panel for CRC1 is shown in the Data Supplement. For each identified clinical variant, links to external databases, CIViC variant descriptions, associated CIViC assertions, and associated CIViC evidence items are provided. Associated evidence items provide a brief description of the clinical relevance, links to CIViC evidence items, and associated citations. An illustrative output report that displays most OpenCAP features, including CIViC variant descriptions and CIViC assertions, was created using a previously reported patient from the literature27 (Data Supplement).

DISCUSSION

OpenCAP is a resource for users to develop a custom capture panel that can be easily linked to actively maintained clinical relevance summaries. The methods described by OpenCAP to build a clinical capture panel offer several advantages relative to existing design paradigms. Use of an open-source database provides a systematic mechanism to survey existing literature...
within precision oncology to identify variants that are relevant for capture. In addition, the public API permits rapid mapping of identified somatic and germline variants to CIViC clinical relevance summaries. Most importantly, the variants covered by CIViC and associated clinical summaries can be updated in real time as knowledge is entered into the database to accommodate new information discovered within the field of precision oncology.

The smMIP capture method for sequencing provides inherent error correction capability, scalability to detect ultrasensitive variation, and cost effectiveness within a modular design. Combining the public access CIViC database with an ultrasensitive and versatile capture reagent provides an advantageous and principled method for building precision oncology capture reagents. This approach could enable a standardized framework for detecting and interpreting cancer-relevant genomic variation, lowering barriers to use of genomic analysis in the clinical practice of oncology. For maximal flexibility, OpenCAP describes methods for using both unique molecular identifiers (UMIs) and non–UMI-based probes to capture variants of interest.

The CIViC smMIP capture panel used Variant Evidence Scores and SOIDs to identify variants of interest for targeting. However, alternate filtering strategies have been outlined in OpenCAP documents. Regardless of variants targeted for capture, the presented research helped to show that CIViC variants and variant coordinates can be used for accurate capture panel design (95% detection accuracy with Pearson’s $r = 0.885$ for VAFs). This finding helps to validate that the methods described in OpenCAP can be used to accurately interrogate desired variants of interest.

FIG 4. Variant allele frequencies (VAFs) observed using original exome or whole-genome sequencing compared with VAFs observed using Clinical Interpretations of Variants in Cancer (CIViC) single-molecule molecular inversion probe (smMIP) sequencing. (A) Correlation of VAF with original sequencing parsed by sequencing status (ie, passed sequencing if total sequencing counts were > 1 standard deviation from the mean and tag complexity was > 600,000 unique captured smMIPs). (B) Correlation of VAF with validation status (ie, true if the variant identified using exome or genome sequencing was identified on CIViC smMIP sequencing). (C) Correlation of VAF parsed by coverage at variant loci. (D) Correlation of VAF parsed by DNA mass input for library construction. (E) Correlation of VAF parsed by presence or absence of matched normal tissue. (F) Correlation of VAF parsed by tumor type. AML, acute myeloid leukemia; CRC, colorectal cancer; HL, Hodgkin lymphoma; OSCC, oral squamous cell carcinoma; SCLC, small-cell lung cancer.
Like all targeted reagents, the preliminary CIViC smMIP design has limitations that can be addressed with future iterations. First, the reagent design is limited by the current knowledge within CIViC. Extensive curation from certain groups (eg, the University Health Network curation of VHL variants) disproportionately increases representation for certain genes, cancers, and variant types. Conversely, lack of curation in certain areas shows a disproportionate decreased representation. To address existing curation disparities, CIVIC has joined the Variant Interpretation for Cancer Consortium (VICC) to integrate multiple variant interpretation knowledgebases into a single meta-knowledgebase. Successful execution of the aims outlined by the VICC would result in harmonization of information from CIViC, the Cancer Genome Interpreter, Clinical Knowledgebase, MolecularMatch, OncoKB, Precision Medicine Knowledgebase, and others. This would allow users to leverage variant interpretations across multiple platforms for building custom capture panels that are linked to clinical relevance summaries.

FIG 5. Analysis of variants rescued by Clinical Interpretations of Variants in Cancer (CIViC) single-molecule molecular inversion probe (smMIP) sequencing for samples with both tumor and matched normal. There were 217 variants called as somatic by CIViC smMIP sequencing that were not identified by the original sequencing. All variants were manually reviewed using both CIViC smMIP sequencing data and original sequencing data. (A) During manual review, 55 variants were identified as germline. A histogram shows that the distribution of the smMIP variant allele frequencies (VAFs) for these germline variants was observed at 50% and 100% VAF, indicating heterozygosity and homozygosity, respectively. (B) An additional 36 variants were identified as sequencing artifacts. Most artifacts were either mononucleotide repeats (MN), dinucleotide repeats (DN), or tandem repeats (TR). Other artifacts include multiple mismatches (MM) or multiple variants (MV). (C) During manual review, 162 variants did not show any support in the original sequencing data. Most unsupported variants did not have sufficient coverage to be detected based on a binomial probability of ≤ 3 variant-supporting reads (see Materials and Methods). (D) The remaining 11 variants had variant support in original sequencing but were not called as somatic in final original annotation. The scatter plot shows correlation between original VAF and CIViC smMIP VAF for these variants.
In summary, the methods described here validate that community curated data on clinically relevant cancer variants can provide a systematic and dynamic method for capture reagent design. The curated coordinates in the database accurately map to desired variants, and probes designed using these coordinates show accurate recapitulation of the genomic landscape described by orthogonal sequencing. It is our hope that OpenCAP will provide the research community with a novel method to develop next-generation sequencing–based oncology panels.

AFFILIATIONS

1Washington University School of Medicine, St Louis, MO
2University of Washington, Seattle, WA
3University of California, Los Angeles, Los Angeles, CA
4Charité Universitätsmedizin Berlin, Berlin, Germany
5Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA

Preprint version available on https://www.biorxiv.org/content/10.1101/479394v2

CORRESPONDING AUTHOR

Obi L. Griffith, PhD, Washington University School of Medicine, 4444 Forest Park Ave, 5th Floor, St Louis, MO 63108; Twitter: @obigriffith; e-mail: obi-griffith@wustl.edu.

EQUAL CONTRIBUTION

M.G., S.J.S., and O.L.G. were co-senior authors of this article.

Preprint version available on https://www.biorxiv.org/content/10.1101/479394v2

PRIOR PRESENTATION

Presented in part at the 15th Annual Meeting of the American Physician Scientists Association, Chicago, IL, April 5-7, 2019.

SUPPORT

E.K.B. was supported by the National Cancer Institute (NCI; Grants No. T32GM007200 and U01CA209936). Select sample data were funded by the Genomics of Acute Myeloid Leukemia Program Project Grant (T. Ley, principal investigator, Grant No. P01 CA101937). R.U. was funded by the National Comprehensive Cancer Network Oncology Research Program, with general research support provided by Novartis, the V Foundation for Cancer Research, and the National Institute of Dental and Craniofacial Research of the National Institutes of Health (NIH; Grant No. R01DE024403). R.G. is funded by NIH/NCI Grant No. U01CA231844. M.G. is funded by the V Foundation for Cancer Research and National Human Genome Research Institute NIH Grant No. R00HG007940. S.J.S. is funded by NIH/NCI Grant No. R33CA222344. O.L.G. is funded by the V Foundation for Cancer Research and NIH/NCI Grant No. U01CA209936. This research was supported by a Cancer Moonshot funding opportunity, specifically an Activities to Promote Technology Research Collaborations for Cancer Research (Admin Supp) award (S.J.S. and O.L.G.) under parent Grants No. NIH/NCI R33CA222344 and NIH/NCI U01CA209936.

AUTHOR CONTRIBUTIONS

Conception and design: Erica K. Barnell, Adam Waalkses, Matt C. Mosior, Kelsi C. Cotto, Kilannin Krysiak, Malachi Griffith, Stephen J. Salipante, Obi L. Griffith

Financial support: Stephen J. Salipante

Provision of study materials or patients: Damian Rieke, Todd A. Fehniger, Ravindra Uppaluri, Ramaswamy Govindan, Stephen J. Salipante, Obi L. Griffith

Collection and analysis of data: Erica K. Barnell, Adam Waalkses, Kelsi Penewit, Kelsi C. Cotto, Lana M. Sheta, Kilannin Krysiak, Damian Rieke, Todd A. Fehniger, Ravindra Uppaluri, Malachi Griffith, Stephen J. Salipante, Obi L. Griffith

Data analysis and interpretation: Erica K. Barnell, Adam Waalkses, Arpad M. Danos, Katie M. Campbell, Nicholas C. Spies, Zachary L. Skidmore, Collin C. Pritchard, Ramaswamy Govindan, Malachi Griffith, Stephen J. Salipante, Obi L. Griffith

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rc or ascopubs.org/cci/author-center.

Erica K. Barnell

Employment: Geneoscopy

Stock and Other Ownership Interests: Geneoscopy

Patents, Royalties, Other Intellectual Property: Inventor on intellectual property in start-up company (Geneoscopy)

Travel, Accommodations, Expenses: Geneoscopy

Adam Waalkses

Research Funding: Gilead Sciences

Patents, Royalties, Other Intellectual Property: Provisional application filed: Genome-Scale Molecular Diagnostics for Microsatellite instability Using Targeted Molecular Counting Methods (IP: 48143.02US1); provisional application filed: Ultraresensive and Universal Detection of Genomic Chimerism by Single-Molecule Molecular Inversion Probe Capture and Methods of Use (IP: 48101.01US1)

Kelsi Penewit

Research Funding: Gilead Sciences

Katie M. Campbell

Employment: Geneoscopy

Stock and Other Ownership Interests: Geneoscopy

Consulting or Advisory Role: Geneoscopy

Kilannin Krysiak

Consulting or Advisory Role: Gerson Lehrman Group

Damian Rieke

Honoraria: Bristol-Myers Squibb

Consulting or Advisory Role: Alacris Theranostics

Zachary L. Skidmore

Stock and Other Ownership Interests: AIM ImmunoTech, Catalyst Pharmaceuticals

Todd A. Fehniger

Stock and Other Ownership Interests: Kiadis Pharma, Indapta, Orca Biosystems

Honoria: CytoSen

Consulting or Advisory Role: NKarta, Nektar

Research Funding: Altor BioScience (Inst), Affimed (Inst), Compass Therapeutics (Inst)

Travel, Accommodations, Expenses: Miltenyi Biotech
REFERENCES

1. Nunes RA, Harris LN: The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin Breast Cancer 3:125-135, 2002

2. Griffin M, Griffith OL, Smith SM, et al: Genome Modeling System: A knowledge management platform for genomics. PLoS Comput Biol 11:e1004274, 2015

3. Mardis ER: The $1,000 genome, the $100,000 analysis? Genome Med 2:84, 2010

4. Collins FS, Varmus H: A new initiative on precision medicine. N Engl J Med 372:793-795, 2015

5. Gray SW, Hicks-Courant K, Cronin A, et al: Physicians' attitudes about multiplex tumor genomic testing. J Clin Oncol 32:1317-1323, 2014

6. Good BM, Ainscough BJ, McMichael JF, et al: Organizing knowledge to enable personalization of medicine in cancer. Genome Biol 15:438, 2014

7. Dorschner MO, Amendola LM, Turner EH, et al: Actionable, pathogenic incidental findings in 1,000 participants' exomes. Am J Hum Genet 93:631-640, 2013

8. Green RC, Berg JS, Grody WW, et al: ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15:565-574, 2013

9. Verma A, Rohatgi N, Julka P, et al: FoundationOne as a relevant tool for comprehensive genomic profiling and assessment of tumor mutation burden in the era of precision oncology in India. J Clin Oncol 35:e23096, 2017 (suppl 15)

10. Cheng DT, Mitchell TN, Zehir A, et al: Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 17:251-264, 2015

11. Rubin-Perez C, Deu-Pons J, Tamborero D, et al: Rational design of cancer gene panels with OncoPd. Genom Med 8:98, 2016

12. Forbes SB, Beare D, Boutselakis H, et al: COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777-D783, 2017

13. Lee T, Lee B, Choi YL, et al: Non-small cell lung cancer with concomitant EGFR, KRAS, and ALK mutation: Clinicopathologic features of 12 cases. J Pathol 267:169-174, 2014

14. Grif

15. Gray SW, Hicks-Courant K, Cronin A, et al: Physicians' attitudes about multiplex tumor genomic testing. J Clin Oncol 32:1317-1323, 2014

16. Chakravarty D, Gao J, Phillips SM, et al: OncoKB: A precision oncology knowledge base. JCO Precis Oncol 10.1200/PO.17.00012

17. Patterson SE, Liu R, Statz CM, et al: The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics 10:4, 2016

18. The McDonnell Genome Institute at Washington University School of Medicine: CIVIC. http://www.civicdb.org/

19. Griffith M, Spies NC, Krysiak K, et al: CIVIC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 49:170-174, 2017

20. The McDonnell Genome Institute at Washington University School of Medicine: OpenCAP. https://opencap.readthedocs.io/en/latest/

21. Waalikes A, Penewit K, Wood B. L., et al: Ultrasensitive detection of acute myeloid leukemia minimal residual disease using single molecule molecular inversion probes. Haematologica 102:1549-1557, 2017

22. Boyle EA, O’Roak BJ, Martin BK, et al: MiPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics 30:2670-2672, 2014

23. Barnell EK, Runnion P, Campbell KM, et al: Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples. Genet Med 21:972-981, 2019

24. US Food and Drug Administration: FDA grants marketing approval to FoundationOne CDx in vitro diagnostic. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-marketing-approval-foundationone-cdx-vitro-diagnostic

25. Wagner AH, Devarakonda S, Skidmore ZL, et al: Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer. Nat Commun 9:3787, 2018

26. Griffith M, Miller CA, Griffith OL, et al: Optimizing cancer genome sequencing and analysis. Cell Syst 1:210-223, 2015

27. Lee T, Lee B, Choi YL, et al: Non-small cell lung cancer with concomitant EGFR, KRAS, and ALK mutation: Clinicopathologic features of 12 cases. J Pathol Transl Med 50:197-203, 2016

28. Wagner AH, Walsh B, Mayfield G, et al: A harmonized meta-knowledgebase of clinical interpretations of cancer genomic variants. https://www.biorxiv.org/content/10.1101/366856v2

29. Tamborero D, Rubio-Perez C, Deu-Pons J, et al: Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med 10:25, 2018

30. Patterson S, Statz C, Yin T, et al: The JAX Clinical Knowledgebase: A valuable resource for identifying evidence related to complex molecular signatures in different types of cancer. Cancer Genet 214:215-33, 2017 (abstr)

31. Huang L, Fernandes H, Zia H, et al: The cancer precision medicine knowledge base for structured clinical-grade mutations and interpretations. J Am Med Inform Assoc 24:513-519, 2017
APPENDIX

Determining Eligible Clinical Interpretations of Variants in Cancer Database Variants for Single-Molecule Molecular Inversion Probe Capture

Filtering based on the Variant Evidence Score. All variants within the Clinical Interpretations of Variants in Cancer (CIViC) database are built on evidence statements that have been manually curated from the medical literature. Given that variants within the CIViC database have diverse quantity and quality of evidence support, the Variant Evidence Score was developed to calculate the relative abundance of total available curated evidence for each variant. The Variant Evidence Score reflects the strength of the evidence that was curated and the total amount of curation that has been completed for each variant. To determine evidence strength, the Evidence Level Score and the Trust Rating Score were calculated. The Evidence Level Score is a 10-point scale that weights the evidence strength based on category. Broadly, highest points are awarded to large clinical studies, and lower points are awarded to case studies, in vitro studies, and inferential evidence. The Trust Rating Score is a 5-star scale that reflects the curator’s confidence in the quality of the study. To determine the total level of curation for each variant, Evidence Level Scores were multiplied by Trust Rating Scores and summed across all evidence items. This final value (ie, the CIViC Variant Evidence Score) was incorporated into the CIViC database and is now available for all variants in the CIViC Web interface, regular data releases, and application programming interface. Using the CIViC Variant Evidence Score, variants within the top 10% of total curation (corresponding to a Variant Evidence Score > 20 points) were selected to develop the CIViC single-molecule molecular inversion probe (smMIP) capture panel and were eligible for smMIP targeting. Of note, the CIViC Variant Evidence Score evaluates the total level of curation within the database and does not reflect the community consensus of clinical relevance. In addition, the CIViC Variant Evidence Score does not differentiate from conflicting or confounding evidence and weights all evidence based on the algorithm described earlier.

Filtering based on the sequence ontology identification number. Variants were also filtered to only include variants that could be analyzed using a DNA-based sequencing platform. This required use of curated sequence ontology identification numbers (SOIDs). Within CIViC, SOIDs are manually classified as DNA based, RNA based, and/or protein based (Data Supplement). For example, variants with the variant type of “missense_variant” would be labeled as “DNA-based,” whereas variants with the variant type of “transcript_variant” would be labeled as “RNA-based.” Variants that had a “DNA-based” SOID were considered eligible for smMIP targeting, and variants whose SOIDs were “RNA-based” and/or “protein-based” were ineligible.

Categorization of Variants Based on Length

Using CIViC curated coordinates, variant length was determined (ie, variant start position minus variant stop position). This difference inferred the total number of smMIP probes required to adequately assess each variant.

Hotspot targeting. If the variant length was < 250 base pairs, the variant was eligible for hotspot targeting. For variants that required hotspot targeting, smMIP probes were designed for the genomic region indicated in the CIViC database.

Sparse exon tiling and full exon tiling. If the variant was > 250 base pairs, the variant required some or total tiling of the protein coding exons. For all variants that required sparse exon tiling or full exon tiling, the representative transcript from the CIViC database was used to obtain all possible exons associated with each Ensembl gene. The Ensembl gene was used to obtain all possible exons (biomart=“ENSEMBL_MART_ENSEMBL”, host=“grch37 ensembl.org”), exons were further filtered by Biotype to remove untranslated regions. Some large-scale copy number variants (ie, “AMPLIFICATION,” “LOSS,” “DELETION”) were eligible for sparse tiling, wherein 10 probes distributed across the exons of the gene were retained to enable assessment of copy number state. Other variant types such as “MUTATION” or “FRAMEhift MUTATION” required tiling of all protein coding exons. Categorization of all variants eligible for capture is described in the Data Supplement. For variants that required full exon tiling, overlapping smMIPs (ie, at least 1 base pair of overlap) were designed to tile across all protein coding exons in the gene that encompassed the variant. For variants that required sparse exon tiling, approximately 10 smMIPs were designed to cover a portion of the transcript.

smMIP Sequencing and Data Analytics

Sequencing library construction and balancing of the probe pool were performed as described previously, and sequencing was performed using an Illumina NextSeq500 (Illumina, San Diego, CA). Probes were excluded from the final reagent if they demonstrated poor hybridization to target sequence during initial quality checks.

Sequence data analysis was performed as previously described with 3 enhancements. First, consensus reads were generated using the fgbiotools (http://fulcrumgenomics.github.io/fgbio/) CallMolecularConsensusReads utility with parameters “--error-rate-post-umi=30--min-reads=2--min-input-base-quality=20”. Second, a custom variant caller was used to identify all consensus calls at a site having at least 2 supporting reads with a minimum specified mapping quality (mapping quality score > 0). Third, variants were required to be detected on at least 4 DNA strands (at least 2 positive and at least 2 negative) to be considered real, rather than postbiological artifacts (Eijkelenboom A, et al: J Mol Diagn 18:851-863, 2016). Collectively, these provisions require that at least 2 reads are derived from a common unique molecular identifier to create a consensus read and that multiple consensus reads in both directions support the apparent variant. This helps to exclude preanalytic artifacts reflecting DNA damage and stochastic errors that occur during library construction and sequencing. DNA input ranged from 100-500 ng across samples; however, any sample with an overlapping variant that had a variant allele frequency (VAF) < 5% used 500 ng to increase the number of template molecules interrogated.

Orthogonal Sequencing and Data Analytics

Orthogonal sequencing data from previously conducted whole-exome or genome sequencing was used to validate the CIViC smMIP capture design. Sequencing alignment and somatic variant calling for the acute myeloid leukemia (AML) sample AML31 was performed according to Griffith et al. Briefly, reads were aligned to GRCh37 using Burrows-Wheeler Aligner (BWA) v0.5.9 (Li H, Durbin R: Bioinformatics 25:1754-1760, 2009), and variants were called using 1 of 7 variant callers listed in the article. Sequencing data from the small-cell lung cancer (SCLC) samples, oral squamous cell carcinoma (OSCC) samples, and Hodgkin lymphoma (HL) samples were analyzed using the Genome Modeling System at the McDonnell Genome Institute. Reads from these studies were aligned to the reference genome (hg19/GRCh37 or hg38/GRCh38) using BWA-MEM v0.7.10 (Li H, https://arxiv.org/abs/1303.3997), and duplicates were marked by Picard (http://broadinstitute.github.io/picard/) and/or SAMBLASTER v0.1.22 (Faust GG, Hall IM: Bioinformatics 30:2503-2505, 2014). For the SCLC samples, single nucleotide variants (SNVs) were called using SomaticSniper (Larson DE, et al: Bioinformatics 28:311-317, 2012; Larson DE, et al: Curr Protoc Bioinformatics 45:15.5.1-8, 2014), VarScan (Koboldt DC, et al: Genome Res 22:568-576, 2012), and Strelka (Saunders CT, et al: Bioinformatics 28:1811-1817, 2012); small insertions and deletions (indels) were called using GATK (McKenna A, et al: Genome Res 20:1297-1303, 2010), Pindel (Ye K, et al: Bioinformatics 25:2865-2871, 2009), VarScan2 (Rebbe E, et al: Psychiact Genet 27:62-70, 2017), and Strelka. For OSCC samples, SNVs were detected using SomaticSniper v1.0.4, VarScan2 v2.3.6, Strelka v1.0.11, SAMtools r982 (Li H, et al: Bioinformatics 25:2078-2079, 2009), and Mutect v1.4 (Cibulskis K, et al: Nat Biotechnol 31:
213-219, 2013). Small indels were detected by GATK v5336 (https://software.broadinstitute.org/gatk/), VarScan2, Strelka, and Mutect. For HL samples, SNVs were called using the intersection of SomaticSniper v1.0.4, VarScan v2.3.6, Strelka v1.0.11, and Mutect v1.1.4, and indels were called using GATK, Pindel v0.5, VarScan v2.3.6, and Strelka v1.0.11. For these 3 cohorts, variants identified by automated callers were subjected to heuristic filtering (removal of variants with low VAF [< 5%] or low coverage [< 20 times in tumor or normal track]), and false positives were removed via manual somatic variant refinement. If variant coordinates corresponded to GRCh38, their coordinates were converted to GRCh37 using LiftOver (Hinrichs AS, et al: Nucleic Acids Res 34:D590-D598, 2006). For the colorectal cancer (CRC) cohort, sequencing, variant calling, and clinical annotation were performed according to methods highlighted in Pritchard et al (J Mol Diagn 16:56-67, 2014). Briefly, sequencing was performed using Illumina next-generation sequencing (Illumina, San Diego, CA), and sequencing reads were aligned using BWA v0.6.1 and SAMtools v0.1.18. Indel realignment was then performed using GATK v1.6, and duplicate reads were removed using Picard v1.72. SNV and indel calling was performed using the GATK Universal Genotyper with default parameters and VarScan v2.3.2.

Assessment of Variants Missed Using the CIViC smMIP Capture Panel

Of the 65 variants identified on exome sequencing, all but 4 were also identified using CIViC smMIP sequencing. One variant was missed as a result of lack of adequate coverage, 2 variants were missed as a result of low-performing probes, and 1 variant was retrospectively considered ineligible as a result of smMIP design. The variant missed as a result of inadequate coverage was a TP53 (p.G266R) variant identified in the AML31 tumor sample. Original sequencing indicated that this variant was present at 0.04% VAF; therefore, given smMIP coverage of 2,388 reads at this site, there was only a 0.01% chance that this variant would have been detected (1-tailed probability of ≥ 4 reads [K] of 2,388 reads [n]; P = .0046). However, this low-prevalence variant could have been recovered given additional sequence coverage. In addition, there were 2 variants missed as a result of low molecular inversion probe (MIP) performance. The first variant that was missed (chr10: g.89690805G>A in the SCLC8 tumor sample at 94% VAF) was a result of poor performance of the MIP covering the region of interest in the reverse direction. This MIP showed only 1 aligned read across all 36 samples and had no aligned reads in SCLC8. Despite the fact that there was extensive support from the forward MIP (95% VAF with 34 of 35 consensus reads), the requirement that both forward and reverse reads show support prevented this variant from being called. The second missed variant (PTEN e8-1 in the SCLC4 tumor sample at 100% VAF) was a result of low performance of MIPs in both directions. Even though both the forward and the reverse MIPs showed variant support, the forward MIP only contained 2 consensus reads and the reverse MIP only contained 1 consensus read, preventing it from being called as somatic. The final variant (chr17:g7577094C>T in the CRC5 tumor sample at 32% VAF) was retrospectively considered ineligible because the original smMIPs developed to cover the eligible STK variant called for sparse tiling (ie, identification of copy number change). As such, the variant was contained by a region that did not have full coverage in the forward direction. When evaluating the reverse MIP that contained this site, we observed a 34% VAF (402 of 1,184 reads), which was comparable to the original sequencing data. However, lack of a secondary probe designed against the complementary DNA strand prevented this variant from being called as somatic.

Code and Accessibility

All raw data, analysis, and preprocessing code, are publicly available on the GitHub repository (https://github.com/griffithlab/civic-panel). All plots were produced using the MatPlotLib library in Python (Hunter JD: Comput Sci Eng 9:90-95, 2007). The raw sequencing data are publicly available for most projects included in this study (Data Supplement). The smMIP sequence analysis pipeline is accessible on bitbucket (https://bitbucket.org/uwlabmed/smmips_analysis).

Data Statement

The raw smMIP sequencing data associated with samples from the McDonnell Genome Institute (head and neck squamous cell carcinomas, SCLCs, HLLs, and AMLs) have been submitted to the Database of Genotypes and Phenotypes under accession No. phs001890.v1.p1. Institutional review board approval, consent forms and versions, and other demographic data are provided in this submission. The raw smMIP sequencing data associated with samples from Washington University (CRCs) have been submitted to the Sequence Read Archive under accession No. PRJNA529857.