Dissipative Effects on Reheating after Inflation

Kyohei Mukaida (Univ. of Tokyo)

Based on: 1212.4985, 1208.3399 with K. Nakayama;
[JCAP03(2013)002, JCAP01(2013)017],
also 1308.4394 with K. Nakayama and M. Takimoto
Introduction
Introduction

- After the inflation, the *inflaton* should convert its energy to *radiation*: Reheating.
- How does the *reheating* proceed?

▶ “Standard” picture:
Introduction

- After the inflation, the **inflaton** should convert its energy to radiation: **Reheating**.

- How does the **reheating** proceed?

▷ “Standard” picture:

\[V_\phi \]

\[\phi \]

Inflaton

\[\lambda \phi \bar{\chi} \chi \]

Decay

\[\chi \leftrightarrow \tilde{\chi} \]

\[\cdots \]

\[A_\mu \]

Radiation

\[\chi', \chi'' \]
Introduction

- After the inflation, the **inflaton** should convert its energy to **radiation**: **Reheating**.

- Reheating temperature: $T_R \sim \left[\frac{90}{\pi^2 g_*} \right]^{1/4} \sqrt{M_{\text{pl}} \Gamma_{\phi}^{(\text{pert})}}$

- “Standard” picture:

V_ϕ

\[\Phi \]

Inflaton

\[@ H \sim \Gamma_{\phi}^{(\text{pert.})} \]

Decay

\[\lambda \phi \chi \chi \]

Radiation

χ, χ', χ''

A_μ
\(T_R \) characterizes the thermal history of Universe:

- Efficiencies of Lepto/Baryogenesis
- Abundance of (unwanted) relics: gravitino, moduli, axion, axino...
- Precise calc. of spectral index
- ...

"Standard" picture:

\[V_\phi \]

\[\phi \]

Inflaton

\[\lambda \phi \phi^* \]

\[\phi \]

@ \(H \sim \Gamma_\phi^{(pert)} \)

Radiation

Decay

\[\chi \rightarrow \chi' , \chi'' \]

\[\tilde{\chi} \]

\[A_\mu \]

Reheating temperature:

\[T_R \sim \left[\frac{90}{\pi^2 g_*} \right]^{1/4} \sqrt{\frac{M_{pl}}{\Gamma_\phi^{(pert)}}} \]
\(T_R \) characterizes the thermal history of Universe:

- Efficiencies of Lepto/Baryogenesis
- Abundance of (unwanted) relics: gravitino, moduli, axion, axino...
- Precise calc. of spectral index
- ...

Reheating

Reheating temperature: \(T_R \sim \left[\frac{90}{\pi^2 \varphi} \right]^{1/4} \sqrt{M} \)

However...

This Simple Picture does NOT ALWAYS hold!
Outline

- Introduction
- **Non-Thermal/Thermal** Dissipation
- Numerical Results
Dissipation
Dissipation

- Missing Two effects:

\[\lambda \phi \bar{\chi} \chi; (\lambda^2 \phi^2 |\tilde{\chi}|^2) \]

Real Scalar

Interaction

\[\chi \leftarrow \rightarrow \tilde{\chi} \]

Radiation

\[\chi', \chi'' \]

Gauge int.

\[A_\mu \]
Missing Two effects:

Before going into details, let us clarify our setup:

$$\mathcal{L}_{\text{kin}} - \frac{1}{2} m_\phi^2 \phi^2 + \lambda \phi (\bar{\chi}_L \chi_R + \text{h.c.}) + \mathcal{L}_{\text{other}}$$
Missing Two effects:

Before going into details, let us clarify our setup:

\[\mathcal{L}_{\text{kin}} - \frac{1}{2} m_\phi^2 \phi^2 + \lambda \phi (\bar{\chi}_L \chi_R + \text{h.c.}) + \mathcal{L}_{\text{other}} \]
Dissipation

- **Missing Two effects:**
 - Before going into details, let us clarify our setup:

\[
\mathcal{L}_{\text{kin}} - \frac{1}{2} m^2 \phi^2 + \lambda \phi (\bar{\chi} L \chi_R + \text{h.c.}) + \mathcal{L}_{\text{other}}
\]

- Real Scalar
- **Interaction**
- **Radiation**
- **Gauge int.**
Missing Two effects:

- Before going into details, let us clarify our setup:

\[
\mathcal{L}_{\text{kin}} - \frac{1}{2} m_\phi^2 \phi^2 + \lambda \phi (\bar{\chi}_L \chi_R + \text{h.c.}) + \mathcal{L}_{\text{other}}
\]
Missing Two effects:

Before going into details, let us clarify our setup:

\[\mathcal{L}_{\text{kin}} - \frac{1}{2} m^2 \phi^2 + \lambda \phi (\bar{\chi}_L \chi_R + \text{h.c.}) + \mathcal{L}_{\text{other}} \]
Dissipation

■ **Missing Two** effects:

▷ What if $m_{\text{eff},\chi} \gg m_\phi$??

\[
m_{\text{eff},\chi}^2 = \lambda^2 \phi(t)^2 + m_{\chi}^{\text{th}}(T)^2 \sim g^2 T^2
\]

Radiation

Gauge int.

Real Scalar

Interaction

$\lambda \phi \bar{\chi} \chi; (\lambda^2 \phi^2 |\bar{\chi}|^2)$

$\chi \leftrightarrow \tilde{\chi}$

χ', χ''

A_μ
Dissipation

- **Missing Two effects:**

 ▶ What if \(m_{\text{eff, } \chi} \gg m_\phi \)?

\[
m_{\text{eff, } \chi}^2 = \lambda^2 \phi(t)^2 + m_\chi^\text{th}(T)^2 \sim g^2 T^2
\]

1. If \(m_{\text{eff, } \chi} \sim \lambda \tilde{\phi} \gg m_\phi \)
 ➞ Non-perturb. particle production (Non-Thermal)
 e.g., [L. Kofman, A. Linde, A. Starobinsky]

2. If \(m_{\text{eff, } \chi} \sim m_\chi^\text{th} \gg m_\phi \)
 ➞ Scatterings by abundant thermal particles (Thermal)
 e.g., [J. Yokoyama; M. Drewes; A. Berera, Mar Bastero-gil, R. Ramos, J. Rosa]
Dissipation

- Missing Two effects:
 - What if $m_{\text{eff}, \chi} \gg m_{\phi}$?
 - $m_{\text{eff}, \chi}^2 = \lambda^2 \phi(t)^2 + m_{\chi}^\text{th}(T)^2 \sim g^2 T^2$

1. If $m_{\text{eff}, \chi} \sim \lambda \tilde{\phi} \gg m_{\phi}$
 - Non-perturb. particle production (Non-Thermal)
 e.g., [L. Kofman, A. Linde, A. Starobinsky]

2. If $m_{\text{eff}, \chi} \sim m_{\chi}^\text{th} \gg m_{\phi}$
 - Scatterings by abundant thermal particles (Thermal)
 e.g., [J. Yokoyama; M. Drewes; A. Berera, Mar Bastero-gil, R. Ramos, J. Rosa]
Dissipation

- Missing **Two** effects:

 - What if \(m_{\text{eff, }\chi} \gg m_\phi \) ?

\[
m_{\text{eff, }\chi}^2 = \lambda^2 \phi(t)^2 + m_{\chi}^{\text{th}}(T)^2 \sim g^2 T^2
\]

1. If \(m_{\text{eff, }\chi} \sim \lambda \tilde{\phi} \gg m_\phi \)
 - \(\Rightarrow \) Non-perturb. particle production (Non-Thermal)
 e.g., [L. Kofman, A. Linde, A. Starobinsky]

2. If \(m_{\text{eff, }\chi} \sim m_{\chi}^{\text{th}} \gg m_\phi \)
 - \(\Rightarrow \) Scatterings by abundant thermal particles (Thermal)
 e.g., [J. Yokoyama; M. Drewes; A. Berera, Mar Bastero-gil, R. Ramos, J. Rosa]
Reheating After Inflation

- Rough sketch of reheating after inflation w/ $m_\phi \ll \lambda \phi_i$.
 End of inflation. ($m_\phi \ll \lambda \phi_i$)
Reheating After Inflation

- Rough sketch of reheating after inflation with $m_\phi \ll \lambda \phi_i$.

 End of inflation. ($m_\phi \ll \lambda \phi_i$)

 Non-Thermal Dissipation (Preheating)
Non-Thermal Dissipation
(Preheating)
The non-perturbative particle production occurs if

\[\lambda \phi \gg \max \left[m_\phi, \frac{m_{\text{th}}(T)^2}{m_\phi} \right] \]

[\text{L. Kofman, A. Linde, A. Starobinsky}]

\[\omega_x / \omega_x^2 \gg 1 \]

\[\omega_x = \sqrt{k^2 + m_{\chi}(T)^2 + \lambda^2 \phi^2(t)} \sim g^2 T^2 \]
Non-Thermal Dissipation

- The non-perturbative particle production occurs if

\[\lambda \tilde{\phi} \gg \max \left[m_\phi, \frac{m^{\text{th}}(T)^2}{m_\phi} \right] \]

[L. Kofman, A. Linde, A. Starobinsky]

- If the produced \(\chi \) is not stable...

\[\Gamma_{\chi} \sim \kappa^2 m^2 \text{eff,}_\chi \sim \kappa^2 \lambda |\phi(t)| \]

- \(\chi \) can decay completely before \(\phi \) moves back if

\[\kappa^2 \lambda \tilde{\phi} \gg m_\phi. \]

- Effective dissipation of \(\phi \):

\[\Gamma_\phi \sim N_{\text{d.o.f.}} \frac{\lambda^2 m_\phi}{2\pi^4 |\kappa|}. \]
Non-Thermal Dissipation

The non-perturbative particle production occurs if

$$\lambda \tilde{\phi} \gg \max \left[m_\phi, \frac{m_{\text{th}}^2(T)}{m_\phi} \right]$$

[L. Kofman, A. Linde, A. Starobinsky]

Adiabaticity

- If the produced χ is not stable...

$$\Gamma_\chi \sim \kappa^2 m_{\text{eff,}\chi}^2 \sim \kappa^2 \lambda |\phi(t)|$$

- χ can decay completely before Φ moves back if

$$\kappa^2 \lambda \tilde{\phi} \gg m_\phi.$$

- Effective dissipation of Φ: $\Gamma_\phi \sim N_{\text{d.o.f.}} \frac{\lambda^2 m_\phi}{2\pi^4 |\kappa|}$.

preheating ends!
Reheating After Inflation

- Rough sketch of reheating after inflation w/ $m_\phi \ll \lambda \phi_i$.

End of inflation. ($m_\phi \ll \lambda \phi_i$)

Non-Thermal Dissipation (Preheating)

High T plasma; $m_\phi \ll T$ is produced and the preheating ends: $[\lambda \tilde{\phi} m_\phi]^{1/2} \sim m^{th}_\chi$.

ϕ: Inflaton

Decay

$\Gamma_\chi \sim \kappa^2 \lambda |\phi(t)|$;

$\kappa^2 \lambda \tilde{\phi} \gg m_\phi$.

Radiation χ', χ''...

A_μ
Reheating After Inflation

- Rough sketch of reheating after inflation with $m_\phi \ll \lambda \phi_i$.

 End of inflation. ($m_\phi \ll \lambda \phi_i$)

 \[m_\phi \quad \sim \quad \frac{1}{2} m_{\text{th}}. \]

Non-Thermal Dissipation (Preheating)

*High T plasma; $m_\phi \ll T$ is produced and the preheating ends: $[\lambda \tilde{\phi} m_\phi]^{1/2} \sim m_{\chi}^\text{th}$.***

Thermal Dissipation

Time
Thermal Dissipation
Thermal Dissipation

Thermal Dissipation (due to abundant particles):

e.g., [Hosoya, Sakagami; Yokoyama; Drewes; Berara et al.]

\[\ddot{\phi} + (3H + \Gamma_{\phi}) \dot{\phi} + m_{\phi}^2 \phi = -\frac{\partial F}{\partial \phi} \]

Friction coefficient from Kubo-formula: \(\Gamma_{\phi} \approx -\lim_{\omega \to m_{\phi}} \frac{\Im \Pi_{\text{ret}}(\omega, 0)}{\omega} \).

- Small \(\phi \): \(\lambda \phi \ll T \Rightarrow \) scatterings including \(\chi \).
 \[\Gamma_{\phi} \sim \lambda^2 \alpha T \left(\Gamma_{\phi} \sim \lambda^4 \phi^2 / (\alpha T) \right) \]

- Large \(\phi \): \(\lambda \phi \gg T \Rightarrow \) scatterings by gauge bosons.
 \[\Gamma_{\phi} \sim \alpha^2 \frac{T^3}{\phi^2} \]

[D. Bodeker; M. Laine]
Main Message

- Rough sketch of reheating after inflation w/ $m_\phi \ll \lambda \phi_i$.

 End of inflation. ($m_\phi \ll \lambda \phi_i$)

 Non-Thermal Dissipation (Preheating)

 High T plasma; $m_\phi \ll T$ is produced and the preheating ends: $[\lambda \tilde{\phi} m_\phi]^{1/2} \sim m^\text{th}_\chi$.

 Thermal Dissipation

 Reheating by Thermal Dissipation!?
Numerical Results
Numerical Results

- Contour plot of T_R as a function of λ and m_Φ.

"Decay"

$$T_R \propto \sqrt{\lambda^2 M_{\text{pl}} m_\Phi}$$

"Thermal"

$$T_R \propto \sqrt{\lambda M_{\text{pl}} m_\Phi}$$

Coupling btw Φ & radiation

$\phi_i = 10^{18}$ GeV
$\alpha = 0.05$

Kyohei Mukaida - Univ. of Tokyo
Numerical Results

- Contour plot of T_R as a function of λ and $m\phi$.

\[T_R \propto \sqrt{\lambda^2 M_{pl} m\phi} \]

- “Decay”

\[\frac{T_R}{q^2 M_{pl}} m \]

- “Thermal”

\[T_R \propto \sqrt{\lambda M_{pl} m\phi} \]

\[\phi_i = 10^{18} \text{ GeV} \]
\[\alpha = 0.05 \]

Thermal Dissipation dominates the reheating for small $m\phi$ and not small λ.
Summary

- The dynamics of reheating can be changed dramatically by non-thermal/thermal effects.

- Most prominent for an inflaton with a small mass and a relatively large coupling to radiation.

 e.g., Higgs inflation and its variants;
 Dark Matter inflation;
 Inflation w/ SUSY flat direction (MSSM inflation);

- Other examples where thermal effects may play important roles: saxion, curvaton, Affleck-Dine...

[T. Moroi, KM, K. Nakayama and T. Takimoto; 1304.6597]
[KM, K. Nakayama and T. Takimoto; 1308.4394]
Back Up
Numerical Results
Numerical Results

- Reheating temperature T_R as a function of λ.

\[T_R [\text{GeV}] \]

"Decay"
reheating via
\[\Gamma^\text{eff}_\phi \sim \lambda^2 m_\phi \]
\[T_R \propto \sqrt{\lambda^2 M_{\text{pl}} m_\phi} \]

"Thermal"
reheating via
\[\Gamma^\text{eff}_\phi \sim \frac{\lambda}{\alpha} \tilde{T}^2 \]
\[T_R \propto \sqrt{\lambda M_{\text{pl}} m_\phi} \]

$m_\phi = 1 \text{ TeV}$

Kyohei Mukaida - Univ. of Tokyo
• T_R can be much higher than m_ϕ.

- Reheating temperature T_R as a function of λ.

$T_R [\text{GeV}]$

$m_\phi = 1 \text{ TeV}$

"Decay"

reheating via
$\Gamma_\phi^{\text{eff}} \sim \lambda^2 m_\phi$

$T_R \propto \sqrt{\lambda^2 M_{\text{pl}} m_\phi}$

"Thermal"

reheating via
$\Gamma_\phi^{\text{eff}} \sim \frac{\lambda T^2}{\alpha \tilde{\phi}}$

$T_R \propto \sqrt{\lambda M_{\text{pl}} m_\phi}$

"Decay" (Red line)

"Thermal" (Blue line)
Numerical Results

- Reheating via \textit{thermal} dissipation.

\begin{align*}
\text{``Thermal''} & \quad \Gamma_{\text{eff}} \sim \lambda^2 \alpha T \\
T_R & \sim 10^5 \text{ GeV}
\end{align*}

\(m_\phi = 1 \text{ TeV}\)
\(\phi_i = 10^{18} \text{ GeV}\)
\(\lambda = 10^{-5}\)
\(\alpha = 0.05\)
Numerical Results

- Reheating via thermal dissipation.

Γ_{\phi}^{\text{eff}} \propto \tilde{\phi}^2 \quad \text{v.s.} \quad H \propto \tilde{\phi}

Γ decreases faster than H. → This term alone cannot complete the reheating.

T_R \sim 10^5 \text{ GeV}

m_\phi = 1 \text{ TeV}
φ_i = 10^{18} \text{ GeV}
\lambda = 10^{-5}
α = 0.05
Preheating
Non-Thermal Dissipation

- For $\kappa^2 \lambda \tilde{\phi} \ll m_\phi$ (or stable χ); the parametric resonance may occur while

$$k_*^2 \gtrsim m_{\text{scr,} \chi}^2 \sim g^2 \frac{n_\chi}{k_*}.$$

$$\lambda \tilde{\phi} \gg \max \left[m_\phi, \frac{m_{\text{scr,} \chi}^2}{m_\phi} \right]$$

where $k_* = \sqrt{\lambda m_\phi \tilde{\phi}}$.

Kyohei Mukaida - Univ. of Tokyo
Non-Thermal Dissipation

- For $\kappa^2 \lambda \tilde{\phi} \ll m_\phi$ (or stable χ); the parametric resonance may occur while

$$k_*^2 \gtrsim m_{\text{sc},\chi}^2 \sim g^2 \frac{n_\chi}{k_*}.$$

- Around that time, the bottleneck process of the energy loss of scalar is the annihilation of χ:

$$\dot{\rho}_\phi + \Gamma^{(\chi-\text{ann})}_\phi \rho_\phi = 0;$$

where the oscillation time averaged Γ is defined as

$$\overline{\Gamma}^{(\chi-\text{ann})}_\phi \rho_\phi = m_{\text{eff},\chi} \langle \sigma_{\text{ann}} | v | \rangle n^2_\chi + \cdots.$$

[T. Moroi, KM, K. Nakayama and T. Takimoto]
Non-Thermal Dissipation

- Non-perturbative particle production occurs:
 \[
 \lambda \tilde{\phi} \gg \max \left[m_\phi, \frac{m_\chi^\text{th}(T)^2}{m_\phi} \right].
 \]

- The evolution crucially depends on \(\chi\)'s property:

 For \(\kappa^2 \lambda \tilde{\phi} \gg m_\phi\); the energy loss of scalar \(\rightarrow\) the decay of \(\chi\), and this process ends at \(k_* \sim m_\chi^\text{th}(T)\).

 For \(\kappa^2 \lambda \tilde{\phi} \ll m_\phi\); the parametric resonance may occur and the energy loss of scalar \(\rightarrow\) \(\chi\)'s annihilation.
Bulk Viscosity
Bulk Viscosity

- The dissipation rate at large Φ is directly related to the bulk viscosity of Yang-Mills plasma.

\[
\Gamma_{\phi} = - \lim_{\omega \to 0} \frac{\Im \Pi_{\text{ret}}(\omega, 0)}{\omega} = \lim_{\omega \to 0} \frac{1}{2\omega} \int d^4x e^{-i\omega t} \langle [\hat{O}(t, x), \hat{O}(0)] \rangle; \quad \hat{O}(x) = \frac{A}{8\pi^2\phi} F_{\mu\nu}^a(x) F_{\mu\nu}^a(x)
\]

Bulk Viscosity: $\zeta = \frac{1}{9} \int d^4x e^{-i\omega t} \langle [T_{\mu}^\mu(t, x), T_{\nu}^\nu(0, 0)] \rangle$

$\zeta \sim \frac{\alpha^2 T^3}{\ln[1/\alpha]}$; @ weak coupling

[D. Bodeker; M. Laine]

[Arnold, Dogan, Moore; hep-ph/0608012]