Search for Stopped Gluinos in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

The results of the first search for long-lived gluinos produced in 7 TeV pp collisions at the CERN Large Hadron Collider are presented. The search looks for evidence of long-lived particles that stop in the CMS detector and decay in the quiescent periods between beam crossings. In a dataset with a peak instantaneous luminosity of 1×10^{32} cm$^{-2}$s$^{-1}$, an integrated luminosity of 10 pb$^{-1}$, and a search interval corresponding to 62 hours of LHC operation, no significant excess above background was observed. Limits at the 95% confidence level on gluino pair production over 13 orders of magnitude of gluino lifetime are set. For a mass difference $m_{\tilde{g}} - m_{\tilde{\chi}_1^0} > 100$ GeV/c2, and assuming BR($\tilde{g} \rightarrow g\tilde{\chi}_1^0$) = 100%, $m_{\tilde{g}} < 370$ GeV/c2 are excluded for lifetimes from 10 μs to 1000 s.

Submitted to Physical Review Letters

*See Appendix A for the list of collaboration members
Many extensions of the standard model predict the existence of new heavy quasi-stable particles [1]. Such particles are present in some supersymmetric models [2–4], “hidden valley” scenarios [5], and grand-unified theories (GUTs), where the new particles decay through dimension five or six operators suppressed by the GUT scale [6]. Long-lived particles are also a hallmark of split supersymmetry [7], where the gluino (\(\tilde{g}\)) decay is suppressed due to the large gluino-squark mass splitting, from which the theory gets its name. Of these possibilities, the Compact Muon Solenoid (CMS) experiment is most sensitive to models like split supersymmetry where production proceeds via the strong interaction resulting in relatively large cross sections at the Large Hadron Collider (LHC) [8–11]. For this reason, we have targeted the search described in this Letter at long-lived gluinos. Existing experimental constraints on the lifetime of such gluinos are weak [12, 13]; these gluinos may be stable on typical CMS experimental timescales. Lifetimes of \(O(100–1000)\) seconds are especially interesting in cosmology since such decays would affect the primordial light element abundances, and could resolve the present discrepancy between the measured \(^6\)Li and \(^7\)Li abundances and those predicted by conventional big-bang nucleosynthesis [6, 14].

If long-lived gluinos were produced at the LHC, they would hadronize into \(\tilde{g}g, \tilde{g}q\bar{q}, \tilde{g}qqq\) states, collectively known as “R-hadrons” some of which would be charged, while others would be neutral. Those that were charged would lose energy via ionization as they traverse the CMS detector. For slow R-hadrons, this energy loss would be sufficient to bring a significant fraction of the produced particles to rest inside the CMS detector volume [15]. These “stopped” R-hadrons may decay seconds, days, or even weeks later, resulting in a jet-like energy deposit in the CMS calorimeter. These decays will be out-of-time with respect to LHC collisions and may well occur at times when there are no collisions in CMS. The observation of such decays, in what should be a “quiet” detector except for an occasional cosmic ray, would be an unambiguous discovery of new physics.

The CMS apparatus has an overall length of 22 m, a diameter of 15 m, and weighs 14 000 tons. The CMS coordinate system has the origin at the center of the detector. The z-axis points along the direction of the counterclockwise beam, with the transverse plane perpendicular to the beam; \(\phi\) is the azimuthal angle in radians, \(\theta\) is the polar angle, and the pseudorapidity is \(\eta \equiv -\ln(\tan[\theta/2])\). The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL) and the brass-scintillator hadronic calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel return yoke. The HCAL, when combined with the ECAL, measures jets with a resolution \(\Delta E/E \approx 100 \% \sqrt{E \text{[GeV]}} \oplus 5 \%\). The calorimeter cells are grouped in projective towers, of granularity \(\Delta\eta \times \Delta\phi = 0.087 \times 0.087\) at central rapidities. In this analysis, jets are reconstructed using an iterative cone algorithm with \(R = \sqrt{\Delta\phi^2 + \Delta\eta^2} = 0.5\). The reconstructed jet energy \(E\) is defined as the scalar sum of the calorimeter tower energies inside the jet. The first level (L1) of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select (in less than 3 \(\mu\)s) the most interesting events. The High Level Trigger (HLT) processor farm further decreases the event rate to 300 Hz before data storage. A more detailed description of the CMS experiment can be found elsewhere [16].

The 7 TeV center-of-mass \(pp\) collision data analyzed in this Letter were recorded by CMS between April and October 2010. We divide these data into two samples: the first corresponds to 95 hours of trigger live-time during LHC “fills”, in which the instantaneous luminosity was \(2 - 7 \times 10^{27} \text{cm}^{-2}\text{s}^{-1}\). We use this as a control sample to estimate the background rate. Because these data were recorded at relatively low instantaneous luminosity, there is negligible risk that a stopped-particle signal is present in this sample. The second sample, in which we search for
the presence of a stopped-particle signal, corresponds to 62 hours of trigger live-time during which data, corresponding to an integrated luminosity of 10 pb$^{-1}$, were recorded by CMS with a peak instantaneous luminosity of 1×10^{32} cm$^{-2}$s$^{-1}$. In producing these data, the LHC was filled with up to 312 proton bunches per beam.

Figure 1: Probability for a produced R-hadron to stop anywhere inside the CMS detector for different gluino masses and $\sqrt{s} = 7$ TeV. The solid line shows the stopping probability for the cloud model with both electromagnetic (EM) and nuclear interactions (NI), the dashed line is for the EM only model, and the dotted line is for the “neutral R-baryon” model in which only R-mesons stop [17]. Charge exchange reactions are considered NI.

We employed a dedicated trigger to search for decays of particles at times when there are no collisions. Information from the beam position and timing (BPTX) monitors are used to identify gaps between the proton bunches that comprise the LHC beam. The BPTX monitors are positioned 175 m from the center of CMS on either side of the CMS interaction region and produce a signal when an LHC proton bunch passes the monitor. Even though the R-hadron decay does not produce a true jet, the resultant energy deposition is sufficiently jet-like that a jet trigger is reasonably efficient. We therefore require a jet trigger together with the condition that a coincidence of signals from both BPTX did not occur, ensuring that the trigger will not fire on jets produced from pp collisions. The L1 trigger requires a jet with at least 10 GeV transverse energy. A 20 GeV threshold on jet energy is applied in the HLT. At both L1 and HLT, the pseudorapidity of the jet, $|\eta_{\text{jet}}|$, is required to be less than 3.0.

Additional selection criteria are applied during data analysis. Despite the BPTX veto in the trigger, several beam-related processes remain possible sources of background. In order to reject background events due to an unpaired proton bunch passing through CMS, events in
which either BPTX is over threshold are vetoed. Instrumental effects during trigger generation, and features of the LHC beam such as lower intensity “satellite” bunches that accompany the colliding protons, can cause triggers in some of the 25 ns intervals (BX’s) which precede or follow the one in which the intended proton collisions occur. We therefore reject any event occurring up to two BX’s before, or one BX after, the BX in which collisions are expected. To reject beam-halo muon events, which may not be synchronous with proton collisions, we employ a loose beam-halo veto using the cathode strip chambers (CSC) in the endcap muon system. The algorithm rejects events in which a beam-halo trigger was recorded, or a track segment was reconstructed in the CSC system with timing consistent with beam-halo, or a muon track was reconstructed with beam-halo-like kinematics. Finally, to ensure that no out-of-time \(pp \) collision events due to satellite bunches contaminate the search sample, events with one or more reconstructed primary vertices are rejected.

A small fraction of cosmic rays traversing the CMS detector deposit significant energy in the calorimeters. To reduce this background, events that contain reconstructed muons are vetoed. Once beam-related backgrounds and cosmic rays are removed, the remaining source of background is instrumental noise. Standard calorimeter cleaning and noise rejection criteria [18–20] are applied. We restrict our search to jets in the central HCAL; we require that the most energetic jet in the event has \(|\eta_{\text{jet}}| < 1.3 \). To suppress noise fluctuations and energy deposits from cosmic rays, a jet with reconstructed energy above 50 GeV is required. To remove events where a single HCAL channel has misfired, events with more than 90% of the energy deposited in three or fewer calorimeter towers are vetoed. We also require that the leading jet has at least 60% of its energy contained in fewer than 6 towers. To suppress noise from hybrid photodiode discharge [18], events with 5 or more of the leading towers at the same azimuthal angle, or where more than 95% of the jet energy is contained within towers at the same azimuthal angle, are rejected.

The HCAL electronics have a well-defined time response to charge deposits generated by showering particles. Analog signal pulses produced by these electronics are sampled at 40 MHz, in synchrony with the LHC clock. These pulses are readout over ten BX samples centered around the pulse maximum. A physical pulse has some notable properties which we use to distinguish it from noise pulses. There is a clear peak in the signal pulse shape (\(BX_{\text{peak}} \)), significant energy in one bunch crossing before the peak (\(BX_{\text{peak} - 1} \)), and an exponential decay for several BX’s following the peak. We use the ratios \(R_1 = BX_{\text{peak} + 1} / BX_{\text{peak}} \) and \(R_2 = BX_{\text{peak} + 2} / BX_{\text{peak} + 1} \) to characterize the exponential decay, requiring \(R_1 > 0.15 \) and \(0.10 < R_2 < 0.50 \). Since a physical pulse spans only four time samples we are able to reject noise events based on the presence of energy in previous or successive BX’s. We remove events with more than 10% of the energy of the pulse outside of the central four BX’s. Energy deposits from physical particles tend to have a large fraction of the pulse energy in the peak BX. Noise does not produce this pulse shape; noise pulses tend to be spread across many BX’s or localized in one BX. We require the ratio of the peak energy to the total energy to be between 0.4 and 0.7. The requirement that the pulse shape satisfy all the preceding criteria rejects 50% of the remaining events in the background sample while preserving 93% of simulated signal events.

We have developed a custom, factorized simulation of gluino production, stopping, and decay to investigate the experimental signature of this atypical signal. First, we generate \(q\bar{q} \rightarrow \tilde{g}\tilde{g} \) and \(gg \rightarrow \tilde{g}\tilde{g} \) events at \(\sqrt{s} = 7 \) TeV using PYTHIA [21]. The lifetime of the gluino is set such that it is stable. Gluino masses \(m_{\tilde{g}} = 150 \) to 500 GeV/\(c^2 \) are studied. PYTHIA hadronizes the produced gluino into R-hadrons. A modified GEANT4 [22] that implements a “cloud model” of heavy stable colored interactions with matter [23] is used to simulate the interaction of these R-hadrons with the CMS detector and to record the location at which those R-hadrons that do not
exit the detector come to rest. Figure 1 presents the stopping probability as a function of gluino mass obtained from our simulation for this model and two alternative models of R-hadronic interactions with matter. Next, we again use PYTHIA to produce an R-hadron at rest which we translate from the nominal vertex position to the recorded stopping location and decay the constituent gluino instantaneously via $\tilde{g} \rightarrow g \tilde{\chi}^0_1$. Finally, we use a specialized Monte Carlo simulation to determine how often the stopped gluino decay would occur during a triggerable beam gap. Further details of this simulation are described elsewhere [24].

The efficiency with which triggered events pass all selection criteria is estimated from the simulation to be 54% for a representative gluino decay signal ($m_{\tilde{g}} = 300$ GeV/c^2 and $m_{\tilde{\chi}^0_1} = 200$ GeV/c^2). This point was chosen to be above existing limits and within the reach of CMS. The equivalent efficiency with respect to all stopped particles is 17% since a significant number of R-hadrons stop in uninstrumented regions of the CMS detector where their subsequent decay would not be observable. For any new physics model that predicts events with sufficient visible energy, $m_{\tilde{g}} - m_{\tilde{\chi}^0_1} > 100$ GeV/c^2, this efficiency does not change significantly. We measure the background rate in the control sample after all but one of the selection criteria are applied, $R_{\text{N} - 1 \text{ control}}$. We also measure the background rate in the control sample after all selection criteria are applied, $R_{\text{N control}}$. To obtain an estimate of the background rate in the search sample after all selection criteria, we again measure the rate after omitting one selection criterion and multiply it by the ratio of the rates obtained from the control sample, $R_{\text{N search}} = R_{\text{N} \text{ search}} \left(R_{\text{N control}} / R_{\text{N control}} \right)$. This procedure is performed twice, each time omitting one of the most powerful background rejection criteria such that $R_{\text{N} - 1} \gg R_{\text{N}}$; we take the mean of both determinations as the final background rate estimate.

We estimate the systematic uncertainty on the background to be 23% from the observed variation of the control sample rate $R_{\text{N} - 1 \text{ control}}$ during the time period in which the data were taken. There is also a potential systematic uncertainty due to the accuracy with which the energy deposition of our jet-like signal is simulated. From proton/pion test-beam data and studies of the energy deposited in HCAL by incident cosmic rays, we estimate this introduces a 7% uncertainty on the acceptance. The systematic uncertainty due to trigger efficiency is negligible since the data analyzed are well above the turn-on region. Similarly, the systematic uncertainty due to reconstruction efficiency is negligible since we restrict our search to $m_{\tilde{g}} - m_{\tilde{\chi}^0_1} > 100$ GeV/c^2 wherein we are fully efficient. Finally, there is an 11% uncertainty on the luminosity measurement [25]. Limits on a particular model (e.g., gluinos in split supersymmetry) introduce more substantial systematic uncertainties, since the signal yield is sensitive to the stopping probability. The stopping probability varies greatly depending on the model of R-hadronic interactions used in the simulation.

After the selection criteria described in the preceding paragraphs are applied, we perform a counting experiment and a time-profile analysis on the remaining data. For the counting experiment, we consider gluino lifetime hypotheses from 75 ns to 10^6 seconds, where we have chosen the upper limit of the search to be the longest lifetime for which we can still expect to observe at least one event. For lifetime hypotheses shorter than one LHC orbit (89 µs), we search within a time window following each filled bunch crossing. This time window is equal to $1.256 \times \tau_{\tilde{g}}$ for optimal sensitivity to each hypothesized gluino lifetime $\tau_{\tilde{g}}$. In addition to the lifetimes required to map the general features of the exclusion limit, we include two lifetimes for each observed event: the largest lifetime hypothesis for which the event lies outside the time window, and the smallest lifetime hypothesis for which the event is contained within the time window. For lifetime hypotheses longer than one LHC fill, we do not consider the possibility that any observed events may have come from gluinos produced in a previous fill.
In the search sample, we do not observe a significant excess above expected background for any lifetime hypothesis. The results of this counting experiment for selected lifetime hypotheses are presented in Table 1. In the absence of any discernible signal, we proceed to set 95% confidence level (C.L.) limits on 13 orders of magnitude in gluino lifetime using a hybrid CLs method inspired by Ref. [27]. In Fig. 2 we show the 95% C.L. limit on $\sigma(pp \rightarrow \tilde{g}) \times BR(\tilde{g} \rightarrow g\chi^0_1)$ for a mass difference $m_\tilde{g} - m_{\chi^0_1} > 100 \text{ GeV}/c^2$. The error bands include statistical and systematic uncertainties. With the horizontal line in Fig. 2 we show a recent NLO+NLL calculation of the $m_\tilde{g}$ mass difference inspired by Ref. [27].

In the search sample, we do not observe a significant excess above expected background for any lifetime hypothesis. The results of this counting experiment for selected lifetime hypotheses are presented in Table 1. In the absence of any discernible signal, we proceed to set 95% confidence level (C.L.) limits on 13 orders of magnitude in gluino lifetime using a hybrid CLs method [27] inspired by Ref. [27]. In Fig. 2 we show the 95% C.L. limit on $\sigma(pp \rightarrow \tilde{g}) \times BR(\tilde{g} \rightarrow g\chi^0_1)$ for a mass difference $m_\tilde{g} - m_{\chi^0_1} > 100 \text{ GeV}/c^2$. The error bands include statistical and systematic uncertainties. With the horizontal line in Fig. 2 we show a recent NLO+NLL calculation of the $m_\tilde{g}$ mass difference inspired by Ref. [27]. In Fig. 2 we show the 95% C.L. limit on $\sigma(pp \rightarrow \tilde{g}) \times BR(\tilde{g} \rightarrow g\chi^0_1)$ for a mass difference $m_\tilde{g} - m_{\chi^0_1} > 100 \text{ GeV}/c^2$. The error bands include statistical and systematic uncertainties. With the horizontal line in Fig. 2 we show a recent NLO+NLL calculation of the cross section at $\sqrt{s} = 7 \text{ TeV}$ for $m_\tilde{g} = 300 \text{ GeV}/c^2$ from the authors of Ref. [11]. To illustrate the effect of the stopping probability uncertainty, we present three different 95% C.L. limits on $\sigma(pp \rightarrow \tilde{g}) \times BR(\tilde{g} \rightarrow g\chi^0_1)$ in which the three different R-hadron models are used. Assuming the cloud model for the interaction of R-hadrons with matter, and assuming $BR(\tilde{g} \rightarrow g\chi^0_1) = 100\%$, we are able to exclude lifetimes from 75 ns to $3 \times 10^5 \text{ s}$ for $m_\tilde{g} = 300 \text{ GeV}/c^2$ with the counting experiment. Finally, we present the result as a function of the gluino mass in Fig. 3. Under the same assumptions as for the cross section limit, we exclude $m_\tilde{g} < 370 \text{ GeV}/c^2$ for lifetimes between 10 μs and 1000 s. If we assume the EM only model for R-hadronic interactions with matter in order to compare with what was done in Ref. [12], this exclusion becomes $m_\tilde{g} < 302 \text{ GeV}/c^2$.

Table 1: Results of counting experiments for selected values of $\tau_\tilde{g}$. Entries between 1×10^{-5} and $1 \times 10^6 \text{ s}$ are identical and are suppressed from the table.

Lifetime [s]	Expected Background (± stat. ± syst.)	Observed
1×10^{-7}	$0.8 \pm 0.2 \pm 0.2$	2
1×10^{-6}	$1.9 \pm 0.4 \pm 0.5$	3
1×10^{-5}	$4.9 \pm 1.0 \pm 1.3$	5
1×10^6	$4.9 \pm 1.0 \pm 1.3$	5

We also perform a time-profile analysis. Whereas, for short lifetimes, a signal from a stopped gluino decay is correlated in time with the collisions, backgrounds are flat in time. Since the signal and background have very different time profiles, it is possible to extract both their contributions by analyzing the distribution of the observed events in time. We assume all colliding bunches in an orbit have equal instantaneous luminosity. We build a probability density function (PDF) for the gluino decay signal as a function of time for a given gluino lifetime hypothesis and the actual times of LHC beam crossings as recorded in our data. Figure 4 shows an example of such a PDF for a gluino lifetime of 1 μs; the in-orbit positions of 2 observed events in the subset of our data that were recorded during an LHC fill with 140 colliding bunches are overlaid. We limit the range of lifetime hypotheses considered for this time-profile analysis to 75 ns to 100 μs such that the gluino lifetime is not much longer than the orbit period. For each lifetime hypothesis we build a corresponding signal time profile, fit the signal plus background contribution to the data, and extract a 95% C.L. upper limit on the possible signal contribution. The obtained results are plotted as a dotted line in Fig. 2. This temporal analysis relies only on the flatness of the background shape; it does not have the counting experiment’s systematic uncertainty on the background normalization. Consequently, its dominant systematic uncertainty is the 11% uncertainty on the luminosity measurement. For a mass difference $m_\tilde{g} - m_{\chi^0_1} > 100 \text{ GeV}/c^2$, assuming $BR(\tilde{g} \rightarrow g\chi^0_1) = 100\%$, we are able to exclude $m_\tilde{g} > 382 \text{ GeV}/c^2$ at the 95% C.L. for a lifetime of 10 μs with the time-profile analysis.

We have presented the results of the first search for long-lived gluinos produced in 7 TeV pp collisions at the LHC. We looked for the subsequent decay of those gluinos that would have
stopped in the CMS detector during time intervals where there were no pp collisions. In particular, we searched for decays during gaps in the LHC beam structure. We recorded such decays with dedicated calorimeter triggers. In a dataset with a peak instantaneous luminosity of $1 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$, an integrated luminosity of 10 pb$^{-1}$, and a search interval corresponding to 62 hours of LHC operation, no significant excess above background was observed. Limits at the 95% C.L. on gluino pair production over 13 orders of magnitude of gluino lifetime are set. For a mass difference $m_{\tilde{g}} - m_{\tilde{\chi}_1^0} > 100 \text{GeV}/c^2$, assuming $\text{BR}(\tilde{g} \rightarrow \tilde{\chi}_1^0) = 100\%$, we exclude $m_{\tilde{g}} < 370 \text{GeV}/c^2$ for lifetimes from 10 μs to 1000 s with a counting experiment. Under the same assumptions, we are able to further exclude $m_{\tilde{g}} < 382 \text{GeV}/c^2$ at the 95% C.L. for a lifetime of 10 μs with a time-profile analysis. These results extend existing limits from the DØ Collaboration [12] on both gluino lifetime and gluino mass. These limits are the most restrictive to date.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sci-
Figure 3: 95% C.L. limits on gluino pair production cross section times branching fraction as a function of gluino mass assuming the “cloud model” of R-hadron interactions (solid line) and EM interactions only (dot-dashed line). The $m_{\tilde{g}} - m_{\tilde{\chi}^0_1}$ mass difference is maintained at 100 GeV/c^2; results are only presented for $m_{\tilde{\chi}^0_1} > 50$ GeV/c^2. The NLO+NLL calculation is from a private communication with the authors of Ref. [11]. The lifetimes chosen are those for which the counting experiment and time-profile analysis are most sensitive.
Figure 4: The top panel shows the in-orbit positions of 2 observed events in the subset of our data that was recorded during an LHC fill with 140 colliding bunches. The decay profile for a 1 μs lifetime hypothesis is overlaid. The bottom panels are zoomed views of the boxed regions around the 2 events in the top panel so that the exponential decay shape of the signal hypothesis can be seen.

[3] H. Baer et al., “A Heavy gluino as the lightest supersymmetric particle”, Phys. Rev. D59 (1999) 075002, arXiv:hep-ph/9806361 doi:10.1103/PhysRevD.59.075002

[4] T. Jittoh et al., “Long life stau”, Phys. Rev. D73 (2006) 055009, arXiv:hep-ph/0512197 doi:10.1103/PhysRevD.73.055009

[5] M. Strassler and K. Zurek, “Echoes of a hidden valley at hadron colliders”, Phys. Lett. B651 (2007) 374, arXiv:hep-ph/0604261 doi:10.1016/j.physletb.2007.06.055

[6] A. Arvanitaki et al., “Astrophysical Probes of Unification”, Phys. Rev. D79 (2009) 105022, arXiv:0812.2075 doi:10.1103/PhysRevD.79.105022

[7] N. Arkani-Hamed and S. Dimopoulos, “Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC”, JHEP 06 (2005) 073, arXiv:hep-th/0405159

[8] S. Dawson et al., “Search for Supersymmetric Particles in Hadron - Hadron Collisions”, Phys. Rev. D31 (1985) 1581. doi:10.1103/PhysRevD.31.1581

[9] W. Beenakker et al., “Squark and gluino production at hadron colliders”, Nucl. Phys. B492 (1997) 51. arXiv:hep-ph/9610490 doi:10.1016/S0550-3213(97)00084-9

[10] T. Plehn et al., “Squark and gluino production with jets”, Phys. Lett. B645 (2007) 217, arXiv:hep-ph/0510144 doi:10.1016/j.physletb.2006.12.009
[11] W. Beenakker et al., “Soft-gluon resummation for squark and gluino hadroproduction”, JHEP 12 (2009) 041, arXiv:0909.4418.

[12] DØ Collaboration, “Search for stopped gluinos from p̅p collisions at √s = 1.96-TeV”, Phys. Rev. Lett. 99 (2007) 131801, arXiv:0705.0306.

[13] A. Arvanitaki et al., “Limits on split supersymmetry from gluino cosmology”, Phys. Rev. D72 (2005) 075011, arXiv:hep-ph/0504210.

[14] T. Jittoh et al., “Stau properties from the Big-Bang Nucleosynthesis and the relic abundance of dark matter”, Phys. Rev. D78 (2008) 055007, arXiv:0805.3389.

[15] A. Arvanitaki et al., “Stopping gluinos”, Phys. Rev. D76 (2007) 055007, arXiv:hep-ph/0506242.

[16] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 0803 (2008) S08004.

[17] G. Buccella, F. Farrar and A. Pugliese, “R Baryon Masses”, Phys. Lett. B153 (1985) 311.

[18] CMS Collaboration, “Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter”, JINST 5 (2010) T03014.

[19] CMS Collaboration, “HCAL Commissioning in Proton Collisions at √s = 7 TeV”, CMS-PAS JME-10-007 (2010).

[20] CMS Collaboration, “MET Performance in Minimum-Bias and Jet Events from Proton-Proton Collisions at √s = 7 TeV”, CMS-PAS JME-10-004 (2010).

[21] T. Sjöstrand et al., “PYTHIA 6.4 Physics and Manual”, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[22] GEANT4 Collaboration, “GEANT4: A simulation toolkit”, Nucl. Instrum. Meth. A506 (2003) 250.

[23] R. Mackeprang and A. Rizzi, “Interactions of coloured heavy stable particles in matter”, Eur. Phys. J. C50 (2007) 353, arXiv:hep-ph/0612161.

[24] CMS Collaboration, “Searching for Stopped Gluinos during Beam-off Periods at CMS”, CMS-PAS EXO-09-001 (2009).

[25] CMS Collaboration, “Measurement of CMS Luminosity”, CMS-PAS EWK-10-004 (2010).

[26] A.L. Read, “Modified frequentist analysis of search results (The CL(s) method)”, in First Workshop on Confidence Limits, CERN, Geneva, Switzerland, pp. 81–101. Jan, 2000.

[27] R. Cousins and V. Highland, “Incorporating systematic uncertainties into an upper limit”, Nucl. Instrum. Meth. A320 (1992) 331.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer¹, S. Hänsel, C. Hartl, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, G. Kasieczka, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
L. Benucci, L. Ceard, K. Cerny, E.A. De Wolf, X. Janssen, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaeta, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
V. Adler, S. Beauceron, F. Blekman, S. Blyweert, J. D’Hondt, O. Devroede, A. Kalogeropoulos, J. Maes, M. Maes, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wickens

Ghent University, Ghent, Belgium
S. Costantini, M. Grunewald, B. Klein, A. Marinov, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, J. Caudron, J. De Favereau De Jeneret, C. Delaere, P. Demin, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaître, J. Liao, O. Militaru, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, L. Quertenmont, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, F. Torres Da Silva De Araujo

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
F.A. Dias, M.A.F. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores², F. Marinho, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov¹, L. Dimitrov, V. Ganchev¹, P. Iaydjiev¹, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Traynov, I. Vankov
University of Sofia, Sofia, Bulgaria
M. Dyulendarova, R. Hadjiiska, V. Kozhuharov, L. Litov, E. Marinova, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, J. Wang, J. Wang, X. Wang, Z. Wang, M. Xu, M. Yang, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu

Universidad de Los Andes, Bogota, Colombia
A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina3, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, R. Fereos, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran4, M.A. Mahmoud5

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, K. Kannike, M. Müntel, M. Raidal, L. Rebane

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Errola

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, J. Klem, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Bianchini, M. Bluf6, C. Bourin, P. Busson, C. Charlot, L. Dobrzynski, R. Granier de Cassagnac, M. Hagenauer, P. Minè, C. Mironov, C. Ochando, P. Paganini, S. Porteboeuf, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, B. Wyslouch7, A. Zabi
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, A. Besson, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A.-C. Le Bihan, Y. Mikami, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
C. Baty, N. Beaufere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, A. Falkiewicz, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, H. Xiao

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
V. Roinishvili

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, M. Weber, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, W. Bender, M. Erdmann, J. Frangenheim, T. Hebbeker, A. Hinzmann, K. Hoepfner, C. Hof, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske, C. Magass, G. Masetti, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teysier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, M. Davids, M. Duda, G. Flügge, H. Geenen, M. Giffels, W. Haj Ahmad, D. Heydhausen, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchallla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, M. Thomas, D. Tornier, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz, K. Borras, A. Cakir, A. Campbell, E. Castro, D. Dammann, G. Eckerlin, D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, I. Glushkov, J. Hauk, H. Jung, M. Kasemann, I. Katkov, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann, R. Mankel, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, J. Olzem, A. Parenti, A. Raspereza, A. Raval, R. Schmidt, T. Schoerner-Sadenius, N. Sen, M. Stein, J. Tomaszewska, D. Volyanskyy, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
C. Autermann, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, K. Kaschube, G. Kaussen, R. Klanner, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, M. Schröder, T. Schum, J. Schwandt, A.K. Srivastava, H. Stadie, G. Steinbrück, J. Thomsen, R. Wolf

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
J. Bauer, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, C. Hackstein, F. Hartmann, S.M. Heindl, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc
T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, D. Piparo, G. Quast, K. Rabbertz, F. Ratnikov, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, M. Zeise, V. Zhukov, E.B. Ziebarth

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Petراكou

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, G. Debreczeni, C. Hajdu, D. Horvath, A. Kapusi, K. Krajczar, A. Laszlo, F. Sikler, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhattachar, M. Choudhary, V. Dhingra, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J.B. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, S. Bhattacharya, B.C. Choudhary, P. Gupta, S. Jain, S. Jain, A. Kumar, R.K. Shivpuri

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, S.K. Kataria, A.K. Mohanty, L.M. Pant, P. Shukla, P. Suggisetti

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, M. Guchait, A. Gurtu, M. Maity, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Sah, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad, A. Mohammad, M. Mohammad Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, A. Dimitrov, L. Fiore, G. Isaili, L. Lusito, G. Maggi, M. Maggi, N. Manna, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, G.A. Pierro, A. Pompili, G. Pugliese, F. Romano, G. Roselli, G. Selvaggi, L. Silvestris, R. Trentadue, S. Tuppiti, G. Zito
INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, P. Capiluppi, A. Castro, F.R. Cavallotto, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, M. Giunta, C. Grandi, S. Marcellini, M. Meneghelli, A. Montanari, F.L. Navarra, F. Odorici, A. Perrotta, A.M. Rossi, T. Rovelli, G. Siroli, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, A. Tricomi, C. Tuve

INFIN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D'Alessandro, F. Focardi, S. Frosali, E. Gallo, C. Genta, P. Lenzi, M. Meschini, S. Paolotti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFIN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Menichini

INFIN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, G.B. Cerati, F. De Guio, L. Di Matteo, A. Ghezzi, M. Malberti, S. Malvezzi, A. Martelli, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis, V. Tancini

INFIN Sezione di Napoli , Università di Napoli “Federico II”, Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, A. Cimmino, A. De Cosa, M. De Gruttola, F. Fabozzi, A.O.M. Iorio, L. Lista, M. Merola, P. Noli, P. Paolucci

INFIN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, P. Bellan, M. Bellato, A. Branca, P. Checchia, E. Conti, M. De Mattia, T. Dorigo, F. Gasparini, P. Giubilato, A. Gresele, S. Lacaprara, I. Lazzizzera, M. Margoni, G. Maronti, A.T. Meneguzzo, M. Nespolo, M. Passaseo, L. Perrozzi, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, A. Triossi, S. Vanini, P. Zotto, G. Zumerle

INFIN Sezione di Pavia, Università di Pavia, Pavia, Italy
P. Baesso, U. Berzano, C. Riccardi, P. Torre, P. Vitulo, C. Viviani

INFIN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, B. Caponera, L. Fanò, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, A. Santocchia, L. Servoli, S. Taroni, M. Valdata, R. Volpe

INFIN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, A. Kraan, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, F. Palla, F. Palmonari, S. Sarkar, G. Segneri, A.T. Serban, P. Spagnolo, R. Turchini, G. Tonelli, A. Venturi, P.G. Verdini

INFIN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy
L. Barone, F. Cavallari, D. Del Re, E. Di Marco, M. Diemoz, D. Franci, M. Grassi, E. Longo, G. Organtini, A. Palma, F. Pandolfi, R. Paramatti, S. Rahatlou
INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaia,b,1, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b,1, C. Mariottia, M. Maronea,b, S. Masellia, E. Migliorea,b, G. Milaa,b, V. Monacoa,b, M. Musicha,b, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia,b,1, A. Romeroa,b,1, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, D. Trocinoa,b, A. Vilela Pereiraa,b,1

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
F. Ambroglinia,b, S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, D. Montaninoa,b, A. Penzoa

Kangwon National University, Chunchon, Korea
S.G. Heo

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, D. Son, D.C. Son

Chonnam National University, Institute for Ununiverse and Elementary Particles, Kwangju, Korea
Zero Kim, J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, B. Hong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, H.B. Rhee, E. Seo, S. Shin, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla Valdez, E. De La Cruz Burelo, R. Lopez-Fernandez, A. Sánchez Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
P. Allfrey, D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Martins, P. Musella, A. Nayak, P.Q. Ribeiro, J. Seixas, P. Silva, J. Varela1, H.K. Wöhr

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Finger, M. Finger Jr., I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
N. Bondar, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, V. Kaftanov1, M. Kossov1, A. Krokhotin, N. Lychkovskaya, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
E. Boos, M. Dubinin18, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, S. Bitioukov, V. Grishin1, V. Kachenov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, S. Slabospitsky, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic19, M. Djordjevic, D. Krpic19, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, C. Diez Pardos, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, M. Chamizo Llatas, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, R. Gonzalez Suarez, C. Jordà, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A. Ruiz Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell, D. Benedetti, C. Bernèt, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, H. Breuker, G. Brona, K. Bunkowski, T. Camporesi, E. Cano, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, R. Covarelli, B. Curé, D. D’Enterria, T. Dahms, A. De Roeck, F. Duarte Ramos, A. Elliott-Peisert, W. Funk, A. Gaddi, S. Gennai, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, F. Govoni, S. Gowdy, L. Guiducci, M. Hansen, J. Harvey, J. Hegeman, B. Hegner, C. Henderson, H.F. Hoffmann, A. Honma, V. Innocente, P. Janot, E. Karavakis, P. Lecoq, C. Leonidopoulos, C. Lourenço, A. Macpherson, T. Mäki, L. Malgeri, M. Mannelli, L. Masetti, F. Meijsers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, G. Polese, A. Racz, G. Rolandi, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, M. Simon, P. Sphicas, D. Spiga, M. Spiropulu, F. Stöckli, M. Stoye, P. Tropea, A. Tsirou, A. Tsyganov, G.I. Veres, P. Vichoudis, M. Voutilainen, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotsikinis, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille, A. Starodumov

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
P. Bortignon, L. Caminada, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Eegster, K. Freudencode, C. Grab, A. Hervé, W. Hintz, P. Lecomte, W. Lütersmann, C. Marchica, P. Martinez Ruiz del Arbol, P. Meridiani, P. Milenovic, F. Moortgat, P. Nef, F. Nesi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, L. Sala, A.K. Sanchez, M.-C. Sawley, B. Stieger, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland
E. Aguiló, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek, L. Wilke

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, W.T. Chen, S. Dutta, A. Go, C.M. Kuo, S.W. Li, W. Lin, M.H. Liu, Z.K. Liu, Y.J. Lu, J.H. Wu, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, J.G. Shiu, Y.M. Tzeng, M. Wang
Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerçi, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, A. Kayis Topaksu, A. Nart, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, B. Tali, H. Topakli, D. Uzun, L.N. Vergili, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, D. Demir, E. Gulmez, A. Halu, B. Isildak, M. Kaya, O. Kaya, M. Ozbek, S. Ozkorucuklu, N. Sonmez

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
P. Bell, F. Bostock, J.J. Brooke, T.L. Cheng, E. Clement, D. Cussans, R. Frazier, J. Goldstein, M. Grimes, M. Hansen, D. Hartley, G.P. Heath, H.F. Heath, B. Huckvale, J. Jackson, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, S. Ward

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, B. Camanzi, D.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, B.W. Kennedy, E. Oliayi, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, J. Ballin, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, G. Davies, M. Della Negra, J. Fulcher, D. Futyan, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur, M. Vazquez Acosta, T. Virdee, S. Wakefield, D. Wardrope, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, USA
K. Hatakeyama

Boston University, Boston, USA
T. Bose, E. Carrera Jarrin, A. Clough, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohl, D. Sperka, L. Sulak

Brown University, Providence, USA
A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, S. Esen, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Narain, D. Nguyen, M. Segala, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
M.A. Borgia, R. Breeden, M. Calderon De La Barca Sanchez, D. Cebra, S. Chauhan, M. Chertok, J. Conway, P.T. Cox, J. Dolen, R. Erbacher, E. Friis, W. Ko, A. Kopecky, R. Lander, H. Liu, S. Maruyama, T. Miceli, M. Nikolic, D. Pellett, J. Robles, T. Schwarz, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, C. Veelken
University of California, Los Angeles, Los Angeles, USA
V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein, J. Tucker, V. Valuev

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao, F. Liu, H. Liu, A. Luthra, H. Nguyen, G. Pasztor, A. Satpathy, B.C. Shen, R. Stringer, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, E. Dusinberre, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, B. Mangano, J. Muelmenstaedt, S. Padhi, C. Palmer, G. Petrucchini, H. Pi, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, Y. Tu, A. Vartak, F. Würthwein, A. Yagil

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowell, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant

California Institute of Technology, Pasadena, USA
A. Bornheim, J. Bunn, Y. Chen, M. Gataullin, D. Kcira, V. Litvine, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, N. Terentyev, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, B. Heyburn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner, S.L. Zang

Cornell University, Ithaca, USA
L. Agostino, J. Alexander, A. Chatterjee, S. Das, N. Eggert, L.J. Fields, L.K. Gibbons, B. Heltsley, W. Hopkins, A. Khukhunaishvili, B. Kreis, V. Kuznetsov, G. Nicolas Kaufman, J.R. Patterson, D. Puigh, D. Riley, A. Ryd, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, F. Borcherdung, K. Burkett, J.N. Butler, V. Chethluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, M. Demarteau, D.P. Eartly, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, K. Gunthotil, O. Gutsche, A. Hahn, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, E. James, H. Jensen, M. Johnson, U. Joshi, R. Khatiwada, B. Kilminster, B. Klima, K. Kousouris, S. Kunori, S. Kwan, P. Limon, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, T. McCauley, T. Miao, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, S. Popescu, R. Pordes, O. Prokofyev, N. Saoulidou, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun
University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, S. Goldberg, B. Kim, S. Klimenko, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypros, K. Matchev, G. Mitselmakher, L. Muniz, Y. Pakhotin, C. Prescott, R. Remington, M. Schmitt, B. Scurlock, P. Sellers, N. Skhirtladze, D. Wang, J. Yelton, M. Zakaria

Florida International University, Miami, USA
C. Ceron, V. Gaultney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Bandurin, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, S. Sekmen, V. Veeraraghavan

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner, R. Cavanaugh, C. Dragou, E.J. Garcia-Solis, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, C. O’Brien, C. Silvestre, A. Smoron, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, K. Cankocak, W. Clarida, F. Duru, C.K. Lae, E. McCliment, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskew, D. Fehtling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, M. Murray, D. Noonan, V. Radicci, S. Sanders, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
T. Bolton, I. Chakaberia, A. Ivanov, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze, Z. Wan

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, S.C. Eno, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellog, M. Kirn, Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, P. Everaerts, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahn, C. Paus, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, K. Sumorok, K. Sung, E.A. Wenger, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti
University of Minnesota, Minneapolis, USA
P. Cole, S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, P.R. Dudero, G. Franzoni, J. Haupt, K. Klapoetke, Y. Kubota, J. Mans, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, C. Lundstedt, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, K. Kaadze, S. Reucroft, J. Swain, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Odell, R.A. Oiferzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, J. Warchol, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbardo, V. Halyo, P. Hebda, A. Hunt, J. Jones, E. Laird, D. Lopes Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, A. Everett, A.F. Garfinkel, Z. Gecse, L. Gutay, Z. Hu, M. Jones, O. Kobyasi, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, K. Potamianos, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar

Rice University, Houston, USA
C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, J.H. Liu, J. Morales, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-
Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA
O. Atramentov, A. Barker, D. Duggan, Y. Gersttein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, R. Patel, A. Richards, K. Rose, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
J. Asaadi, R. Eusebi, J. Gilmore, A. Gurrola, T. Kamon, V. Khotilovich, R. Montalvo, C.N. Nguyen, J. Pivarski, A. Safonov, S. Sengupta, A. Tatarinov, D. Toback, M. Weinberger

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, M. Buehler, S. Conetti, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, J.N. Bellinger, D. Carlsmith, S. Dasu, J. Efron, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton1, M. Herndon, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, D. Lomidze, R. Loveless, A. Mohapatra, W. Parker, D. Reeder, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at Suez Canal University, Suez, Egypt
5: Also at Fayoum University, El-Fayoum, Egypt
6: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
7: Also at Massachusetts Institute of Technology, Cambridge, USA
8: Also at Université de Haute-Alsace, Mulhouse, France
9: Also at Brandenburg University of Technology, Cottbus, Germany
10: Also at Moscow State University, Moscow, Russia
11: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
12: Also at Eötvös Loránd University, Budapest, Hungary
13: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
14: Also at University of Visva-Bharati, Santiniketan, India
15: Also at Facoltà Ingegneria Università di Roma “La Sapienza”, Roma, Italy
16: Also at Università della Basilicata, Potenza, Italy
17: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
18: Also at California Institute of Technology, Pasadena, USA
19: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
20: Also at University of California, Los Angeles, Los Angeles, USA
21: Also at University of Florida, Gainesville, USA
22: Also at Université de Genève, Geneva, Switzerland
23: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
24: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
25: Also at University of Athens, Athens, Greece
26: Also at The University of Kansas, Lawrence, USA
27: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
28: Also at Paul Scherrer Institut, Villigen, Switzerland
29: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
30: Also at Adiyaman University, Adiyaman, Turkey
31: Also at Mersin University, Mersin, Turkey
32: Also at Izmir Institute of Technology, Izmir, Turkey
33: Also at Kafkas University, Kars, Turkey
34: Also at Suleyman Demirel University, Isparta, Turkey
35: Also at Ege University, Izmir, Turkey
36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
37: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
38: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
39: Also at Institute for Nuclear Research, Moscow, Russia
40: Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania
41: Also at Istanbul Technical University, Istanbul, Turkey