Abstract

Nonlinear Conjugate gradient methods (CG) are widely used for solving unconstrained optimization problems. Their wide application in many Fields such as Engineering, Applied Sciences and Economics is due to their low memory requirements and global convergence properties. Numerous studies and modifications directed towards improving the efficiency of these methods have been conducted. In this paper, a new conjugate gradient parameter β_k that possess convergence properties is presented. We also present preliminary numerical results to show the efficiency of the proposed method.

References

1. Andrei, N.: An unconstrained optimization test functions collection, Adv. Model. Optim. 10(1), 147–161 (2008)
2. Goldstein,A. A. On Steepest Descent SIAM J. Control. 3(1965) 147-151.
3. Polak, E.,Ribiere, Note sur la convergence de directions conjugees, Rev. Francaise
4. Byrd, R. H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)

5. Ibrahim, M. A., Mamat M., and Leong W., J.: BFGS Method: A New Search Direction. Sains Malaysiana 42(10) 2014, 1593-1599

6. Dai, Y. H.: On the nonmonotone line search. J. Optim. Theory Appl. 112(2), 315–330 (2002)

7. Armijo, L. Minimization of Functions having Lipschitz Continuous Partial Derivatives, Pacific J. Math 16(1966)1-3

8. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. program. 91 (2), 201–213 (2002)

9. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1), 21–42 (1992)

10. Hestenes, M.R., Steifel, E. Method of Conjugate Gradient for Solving Linear Equations, J. Res. Nat. Bur. Stand.49 (1952) 409- 436.

11. Fletcher, R. Reeves, C. Function Minimization by Conjugate Gradients, Comput. J. 7 (1964) 149-154.

12. Dai, Y. H., Yuan, Y. Nonlinear Conjugate Gradient Method, Shanghai Scientific and Technical Publishers, Beijing, 1998

13. Liu, Y., Storey, C. Efficient Generalized Conjugate Gradient Algorithms Part 1: Theory, J. Comput. Appl. Math. 69(1992) 129-137.

14. Panier, E.R., Tits, A.L.: Avoiding the maratos effect by means of a nonmonotone line search I. General constrained problems. SIAM J. Numer. Anal. 28(4), 1183–1195 (1991)

15. Perry, J.M.: A class of conjugate gradient algorithms with a two step variable metric memory. Center for Mathematical Studies in Economics and Management Science. Evanston Illinois: Northwestern University Press. 1977

16. Sun, W., Han, J., Sun, J.: Global convergence of nonmonotone descent methods for unconstrained optimization problems. J. Comput. Appl. Math. 146(1), 89–98 (2002)

17. Shi, Z.J., Wang, S., Xu, Z.: The convergence of conjugate gradient method with nonmonotone line search. Appl. Math. Comput. 217(5), 1921–1932 (2010)

18. Yuan, G., Wei, Z.: Non monotone backtracking inexact BFGS method for regression analysis. Comm. Stat. Theory Meth. 42(2), 214–238 (2013)

Index Terms

Computer Science Algorithms

Keywords
Unconstrained Optimization, Conjugate Gradient Method, Conjugate Gradient Coefficient, Global Convergence.