ABSTRACT

Objective: The objective of this study was to analyze GC–MS analysis of whole plant methanolic extract of Dryopteris hirtipes from Dryopteridaceae family.

Methods: Gas chromatography and mass spectrometry analysis of whole plant extract was carried out with instrument GC–MS.

Results: The methanolic extract of D. hirtipes reveals to identify more known and unknown bioactive compounds. In this study, seven major bioactive compounds were identified such as Stigmast-5-en-3-ol(56.65%), Phytol (5.39%), Lanost -8-en-3-ol-(3 β)(3.18%), Neophytadiene(2.68%), Tri-o-trimethylsilyl N-heptafluorobutyryl derivative of terbutaline(2.19%), 1H-Imidazole 2-methanol(1.28%), and 8A-(2,4-Dimethyl-1-nitro-o-pent-2-yl) dioxytocopherol(1.0%) and low concentrations of compounds like hexadecanoic acid(0.6%).

Conclusion: These identified compounds are having active pharmacological properties such as antimicrobial property, hypotension, anti-inflammatory, anti-tumor, anti-cancer, anti-hepatitis, analgesic, and antipyretic properties. However, D. hirtipes is a rare pteridophyte and used to cure many diseases, and so there need further studies to isolate and identify the specific active compounds present in it.

Keywords: Gas chromatography–mass spectrometry, Dryopteris hirtipes, Pteridophytes, Bioactive compounds.
Table 1: GC–MS Analysis in methanolic extract of D. hirtipes

S. No.	RT	Name of the compound	Molecular formula	Molecular weight	Area %	Biological reports
1	16.271	Neophytadiene	C_{20}H_{38}O_{20}	278.524	2.68	Analgesic, antipyretic, anti-inflammatory, antioxidant, and antimicrobial activity
2	18.965	Phytol	C_{20}H_{40}O_{20}	128.1705	5.39	Antimicrobial, anticancer, anti-inflammatory activity
3	22.433	1H-Imidazole-2-methanol	C_{4}H_{6}N_{2}O_{2}	98.10	1.28	Antihypertensive, anti-inflammatory
4	24.161	Stigmast-5-en-3-ol	C_{29}H_{50}O_{20}	414.718	56.65	Act as hypotension, reduce blood glucose level, antiarthritics, antiulcer activity
5	24.679	8A-(2,4-dimethyl-1-nitrilo-pent-en-yl)dioxy	C_{40}H_{67}NO_{4}	625.973	1.0	Antioxidant property
6	24.791	Lanost-8-en-3-ol(3 beta)	C_{30}H_{52}O_{20}	428.733	3.18	Anti-inflammatory, antitumor, anti-cancer, anti-hyper, lipidaemia, antihepatitis
7	26.915	Tri-o-trimethylsilyl N-heptafluorobutyl derivative of terbutaline	C_{12}H_{19}NO_{3}	225.288	2.19	Anti-inflammatory, antiasthma drug

RESULTS AND DISCUSSION

Chromatogram of GC–MS studies on bioactive components in methanolic extract of D. hirtipes showed the presence of major seven compounds, and the other complex mixture components related to the peaks were determined. The active principles with their retention time (RT), molecular weight (MW), molecular formula, and concentration (Peak area %) in Table 1 and Figure 2. The most prevailing compounds found to be Stigmast-5-en-3-ol (56.65%), Phytol(5.39%), Lanost-8-en-3-ol(3.18%), Neophytadiene(2.68%), Tri-o-trimethylsilyl N-Heptafluorobutyl derivative of terbutaline (2.19%), 1H-Imidazole-methanol(1.8%), and 8A-(2,4-Dimethyl 1-nitrilo-pent-en-yl)dioxy) tocopherone (1.0%), bioactive compounds represented in Figure 3.
The diverse active components have been considered to have a wide range of activities which may be used to cure various diseases.

Stigmast-5-en-3-ol (56.65%) is a derivative of phytosterol and it has the tendency to reduce blood level of glucose, acts as anti-inflammatory, anti-pyretic, anti-arthritis, and anti-ulcer activity were reported in their findings [15-19]. Phytol (5.39%) is a diterpene with antimicrobial properties against many bacterial strains and also possesses antioxidant, anti-inflammatory properties in the methanolic extract of A. capillus-veneris [20,21] reported in ethanolic extract of Jatropha gossypifolia and also reported the bioactive compound in ethanolic extracts of Christella dentata [22]. Lanost-8-en-3-ol-3β, a steroid family, possess that anti-inflammatory, anti-tumor, anticancer, and anti-hepatitis activity were reported [23,24].

The presence of bioactive compound neophyadiene (2.68%) a hydrocarbons possess anti-inflammatory, antioxidant, and disinfectant activity which were reported [22,25,26] in their research findings. 1H-imidazole-2-methanol contains a special pharmacological properties such as antidepressants and anti-inflammatory properties which were identified and suggested their findings performed in benzene/ethanol extracts in oil tea cake [27].

8A-(2,4-Dimethyl-1-nitilo-pent-2-yl)-dioxy)-tocopherone components that it possess antioxidant property reported [28]. The phyto-components present in D. hirtipes may contribute the major proportion and trace amounts of compounds like hexadecanoic acid that possesses such as an analgesic, anti-inflammatory, antioxidant, anticancer, and antidepressants. These natural components should be explored for the beneficiary in the fields of medical and pharmacy.

CONCLUSION

In the present study, seven major known chemical constituents and some unknown chemical constituents have been identified from the whole plant in the methanolic extract of D. hirtipes Linn. In those, seven bioactive compounds show the medicinal properties to treat various ailments. Further investigation is required for the analysis of specified compounds in D. hirtipes which may lead to explore the development of the new drug to the society.

ACKNOWLEDGMENTS

The authors must be thankful to Dr. D. Natarajan, Assistant Professor, Department of Biotechnology, Periyar University, Salem, for his support and encouragement and for providing laboratory facilities.
AUTHORS’ CONTRIBUTIONS
The author processed the main concepts of this work, experimental data design, drafted the manuscript, interpreting results, and discussion and submit the corrected version to be published.

CONFLICTS OF INTEREST
The author declares that there are no conflicts of interest regarding the publication of this site.

AUTHOR FUNDING
The author declared no financial support.

REFERENCES
1. Moran RC. Biogeography of ferns and lycophytes. In: Haufler C, Ranker TA, editors. The Biology and Evolution of Ferns and Lycophytes. Cambridge: Cambridge University Press; 2006. p. 369-96.
2. Wallace RA, Sander GP, Feil RJ. Biology: The Science of Life. New York: Harper Collins; 1991. p. 547-55.
3. Singh BP, Upadhyay R. Observations on some ferns of Pachmarhi biosphere reserve in traditional veterinary uses. Indian Fern J 2010;27:94-100.
4. Sharma BD, Vyas MS. Ethnobotonical studies on the fern and fern allies of Rajasthan. Bull Bot Surv India 1985;27:90-1.
5. Chandra S. The Ferns of India (Enumerations, Synonyms and Distributions). Dehradun, New Delhi: International Book Distributors; 2000. p. 454.
6. Vyas GD. Soil fertility Deterioration in cropland due to pesticide. J Indian Bot Soc 1999;78:177-8.
7. Hoshizaki BJ, Wilson KA. The cultivated species of the fern genus Dryopteris in the United States. Am Fern J 1999;89:1-98.
8. Shah NC, Singh SC. Hitherto unreported phytotherapeutic uses from tribal pockets of Madhya Pradesh (India). Ethnobotany 1990;2:91-5.
9. Vasudeva SM. Economic importance of pteridophytes. Indian Fern J 1990;16:130-52.
10. Verma P, Khan AA, Singh KK. Traditionalphytotherapy among the Baiga tribe of Shadol district of Madhya Pradesh, India. Ethnobotany 1995;7:69-73.
11. Asolkar LV, Kakkar KK, Chakre OJ. Glossary of Indian Medicinal Plants. New Delhi: CSIR; 1995. p. 65.
12. Jie MS, Choi CY. MS characterization of picolinyl and methyl ester derivatives of isomeric thia fatty acids. J Int Fed Clin Chem 1991;3:122.
13. Betz JM, Gay ML, Mossoba MM, Adamus S, Portz BS. Chiral gas chromatographic determination of ephedrine-type alkaloids in dietary supplements containing ma huang. J AOAC Int 1997;80:303-15.
14. Sridharan S, Meena V, Kaviitha V, Nayagam AA. GC-MS study and Phytochemical profiling of Mimosa pudica Linn. J Pharm Res 2011;4:741-2.
15. Poudyali B, Singh B. Potential antibacterial and antioxidant properties of aqueous, ethanol and methanol extracts of Tectarimacrodonota C.CHR. Int J Pharm Sci Res 2019;10:3785-94.
16. Bihana S, Dhimim A, Singh G, Satija S. Gas chromatography-mass spectroscopy analysis of bioactive compounds in the whole plant parts of ethanolic extract of Asclepias curassavica L. Int J Green Pharm 2018;12:107.
17. Yamuna P, Abirami P, Vijayashalin P, Sharmila M. GC-MS analysis of bioactive compounds in the entire plant parts of ethanolic extract of Gomphrena decumbens Jacq. J Med Plants Stud 2017;5:31-7.
18. Ankita S, Tribbuvan S, Rekha V. GC-MS analysis of bioactive phytocomponents from Rumex vesicarius L. Int J Res Pharm Sci 2015;6:269-72.
19. Socolsky C, Salvatore A, Asakaya Y, Bardon A. Bioactive new bitter tasting p-hydroxy styrene glycoside and other constituents from the fern Elaphoglossum spathulatum. Arkivoc 2003;10:347-55.
20. Kumar SS, Samyudari P, Ramakrishnan R, Nagarajan N. Gas chromatography and mass spectrometry analysis of bioactive constituents of Adiantum capillus-veneris L. Int J Pharm Sci 2014;6:60-3.
21. Bharathy V, Mariasumathy B, Uthayakumari F. Determination of phytocomponents by GC-MS in leaves of Jatropha gossypifolia. Sci Res Rep 2012;2:286-90.
22. Rekha K, Jose NM. Metabolic profiling of rhizome, petiole and leaves of Christiea derrade (Forsk) Browney and Jermy using GC-MS analysis. Int J Curr Adv Res 2018;7:16238-24.
23. Okeleye BI, Mkwtwetsha NT, Ndp N. Evaluation of the Antibacterial and antifungal potential of Peltophorun africanaum: Toxicological effect on human chandelier. Sci World J 2013;2013;878735.
24. Jimenez-Allanes MA, Gamboa A, Zambranovazquez O, Fischer MM, Hernandez-Portilla LB, Zamilpa A. Phytochemistry of Cnidoscolus teuhuacensis Breckon (Euphorbiaceae), an endemic Mexican plant with potent therapeutic benefits. Am J Ethnomed 2018;5:6.
25. Sharmila M, Rajeswari M, Jayashree I, Geetha DH. GC-MS analysis of bioactive compounds of Amarantus polygonoides Linn. (Amaranthaceae). Int J Appl Adv Sci Res 2016;1:2456-3080.
26. Socolsky C, Salvatore A, Asakaya Y, Bardon A. Bioactive new bitter tasting p-hydroxy styrene glycoside and other constituents from the fern Elaphoglossum spathulatum. Arkivoc 2003;10:347-55.
27. He GX, Zhang DQ, Liu QM, Peng K. 450°C-based pyrolysis GC/MS analysis of utilization of benzene/ethanol-extracted residue from oil-tea cake. Key Eng Mater 2011;480-481:472-7.
28. Lielder DC, Baker PF, Kayseen KL. Oxidation of Vitamin E. Evidence for competing autooxidation and peroxyl radical trapping reactions of the tocopheroxyl radical. J Am Chem Soc 1990;112:6995-7000.