Fast BTG-Forest-Based Hierarchical Sub-sentential Alignment

Hao Wang and Yves Lepage
Graduate School of Information, Production and Systems, Waseda University
{oko_ips@ruri., yves.lepage@waseda.jp}

Abstract
In this paper, we propose a novel BTG-forest-based alignment method. Based on a fast unsupervised initialization of parameters using variational IBM models, we synchronously parse parallel sentences top-down and align hierarchically under the constraint of BTG. Our two-step method can achieve the same run-time and comparable translation performance as fast_align while it yields smaller phrase tables. Final SMT results show that our method even outperforms in the experiment of distantly related languages, e.g., English–Japanese.

1 Introduction
Bracketing transduction grammars (BTGs) (Wu, 1997) are known to produce high quality, phrase-friendly alignments (Xiong et al., 2010; Wang et al., 2007) for phrase-based statistical machine translation (SMT) (Koehn et al., 2003) or syntax-based machine translation (Chiang, 2007).

Differing from generative methods (Och and Ney, 2003; Liang et al., 2006) that the complexity of word alignment grows exponentially with the length of the source and the target sentences, e.g., IBM models (Brown et al., 1993) and HMM-based model (Vogel et al., 1996), BTG provides a natural, polynomial-time, alternative method to reduce the search space in aligning. It also eliminates the need for any of the conventional heuristics.

Since BTG is effective to restrict the exploration of the possible permutations and alignments, there has been some interest in using BTGs for the purpose of alignment (Wu, 1995; Zhang and Gildea, 2005; Wang et al., 2007; Xiong et al., 2010; Neubig et al., 2011, 2012).

In particular, Cherry and Lin (2007) presented a phrasal BTG to the joint phrasal translation model and reported the results on word alignment. Haghghi et al. (2009); Riesa and Marcu (2010) showed that BTG, which captures structural coherence between parallel sentences, helps in word alignment. (Saers et al., 2009) explored approximate BTG parsing and probabilistic induction for word alignment. Neubig et al. (2011) incorporated a Gibbs sampling into joint phrase alignment and extraction framework. Kamigaito et al. (2016) modified the bidirectional agreement constraints and applied a more complex version (BTG-style agreement) to train the BTG model jointly.

However, state-of-the-art BTG-based alignment methods are considered much time-consuming than the simplified generative model (Dyer et al., 2013). The biggest barrier to applying BTG for alignment is the time complexity of naïve CYK parsing (\(O(n^6)\)), which makes it hard to deal with long sentences or large grammars in practice. Most of the previous research attempts to reduce the computational complexity of BTG parsing with some pruning methods. Zhang and Gildea (2005) propose tic-tac-toe pruning by extending BTG with the additional lexical information based on IBM model 1 Viterbi probability. Haghghi et al. (2009) investigate pruning based on the posterior predictions from two joint estimated models. Li et al. (2012) present a simple beam search algorithm for searching the Viterbi BTG alignments.

In this paper, we propose a novel and fast BTG-parsing based word alignment method, which works as a heuristic to explore probable alignments in a given alignment matrix. It can be regarded as a hybridization of BTG parsing and IBM. We improved (Lardilleux et al., 2012) with k-best beam search and introduced several new fast ways to build soft matrices using IBM models.
Our aligner works as a top-down parser to generate hierarchical many-to-many symmetric alignments directly. We compare it with state-of-the-art methods and prove that it can lead to higher quality output for SMT.

2 From Viterbi Alignment to Bipartite Graph Bipartitioning

Given a source sentence \(F \) and a target sentence \(E \), alignment associations between the bilingual sentences can be represented as a contingency matrix, which we note as \(M(F, E) \) (Matusov et al., 2004; Liu et al., 2009).

Given this adjacent matrix, there exist a number of methods to extract \(1 \)-to-1 alignments or directly extract \(\)many-to-many\ alignments from it. For example, Liu et al. (2010) propose a linear model to score the word alignments for searching the best one. These supervised approaches work using a large number of features (Haghighi et al., 2009; Liu et al., 2010). We focus on simple unsupervised alignment. Other works are trying to induce BTGs with supervised (Haghighi et al., 2009; Burkett et al., 2010) or unsupervised (Wu, 1997; Zhang and Gildea, 2005) training, but they have a common disadvantage: they are time-consuming. In fact, BTG parsing is as simple as what we will discuss in the following.

Consider a bipartite graph \(G(U, V, E) \) with representing the matrix \(M \), with \(\{U, V\} \) two independent subsets of vertices and \(E \) a set of edges. Each pair of nodes \((f, e) \) is connected with a weighted edge. With the constraints of BTGs, synchronously parsing a sentence pair \((F, E) \) is a top-down processing that is equivalent to recursively bi-partitioning the graph \(G \) into two disjoint sets of words \(U \) and \(V \) across languages. For example, assume splitting the source sentence \(F = \{X, \bar{X}\} \) (splitting at index \(j \), between \(f_j \) and \(f_{j+1} \)) and the target sentence \(E = \{Y, \bar{Y}\} \) (splitting at index \(i \), between \(e_i \) and \(e_{i+1} \)) in a dichotomous way, i.e., \(\)straight \(\{U : XY, V : \bar{X}Y\} \) or \(\)inverted \(\{U : \bar{X}Y, V : XY\} \). Recursively bi-partitioning in \(G \) will finally derive a BTG parse tree in which each leaf stands for a word-to-word correspondence. In this explanation, applying BTG parsing to a sentence pair can be regarded as trying to find the most reasonable splitting points \((i, j) \) in \(F \) and \(E \) at the same time. In the case of \(\)straight\, the optimal partition of such a graph is to find the minimum of the risk when reducing \(G(U, V, E) \) to two subgraphs \(G(X, Y, E_{XY}) \) and \(G(\bar{X}, \bar{Y}, E_{\bar{X}\bar{Y}}) \) with applying BTG rule at \((i, j) \), at which the risk of reducing (cutting) \(\)cut\((U, V) \) (or \(\)cut\((i, j) \)) can be computed as total weight of the removed edges as:

\[
\begin{align*}
\text{cut}(i, j|\gamma) &= \begin{cases}
\text{asso}(X, Y) + \text{asso}(\bar{X}, Y), & \gamma = \text{straight} \\
\text{asso}(X, Y) + \text{asso}(\bar{X}, Y), & \gamma = \text{inverted}
\end{cases} \\
\text{asso}(X, Y) &= \sum_{f \in X} \sum_{e \in Y} w(f, e)
\end{align*}
\]

(1)

However, the minimum cut criterion favors cutting small sets of isolated nodes in the graph. To solve this problem, Shi and Malik (2000) propose a \(\)normalized cut\ (Ncut) to compute the cost as a fraction of the total edge connections to all the nodes in the graph. Following (Vilar, 2005), Lardilleux et al. (2012) use Ncut for sub-sentential alignment, with a naïve assumption that words in a language are independent from each other as:

\[
Ncut(i, j|\gamma) = \frac{\text{cut}(i, j|\gamma)}{\text{cut}(i, j)} + 2 \times \text{cut}_{\text{left}}(i, j|\gamma)
\]

(3)

\(\gamma \) is just the opposite of \(\)\(\gamma \). The ideal criterion Ncut for a recursive partitioning algorithm should minimize the disassociation between the unaligned blocks while maximizing the association within the aligned blocks at the same time. The time complexity of such a top-down algorithm is \(O(m \times n \times \log \min(m, n)) \), better than an exhaustive BTG bi-parsing algorithm which is known to be in \(O(m^3 \times n^3) \).

3 Forest-based BTG Alignment

Lardilleux et al. (2012) employs best-1 parsing to find the optimal \(\)Ncut\, which is intended to minimize. They binary segment the alignment matrix recursively to compute BTG-like alignments based on word level association scores but have not reported the alignment performance independently. While experimentally, we found that this strategy does not ensure the best global derivation. Different from that, we propose a BTG-forest-based parsing/alignment method with a beam search. Firstly, we define a scoring function \(\)Score\(() \) aiming to find the best derivation \(\tilde{D} \) with the minimal value:

\[
\tilde{D} = \arg \min_{D} \text{Score}(D_{\text{Ncut}}|M)
\]

(4)
Algorithm 1 Top-Down Parsing

1: function TopDownParsing(F, E, τ)
2: $M \leftarrow \text{initializeSoftMatrix}(F, E, \tau)$
3: $S_0 \leftarrow \{\text{initializeState}(0, |F|, 0, |E|)\}$
4: $S_{final} \leftarrow \{}$
5: for $i = 0$ to min($|F|, |E|$) do
6: for all $s \in S_i$ do
7: for all $s' \in \text{NextStates}(s, M)$ do
8: $S_{i+1} \leftarrow S_{i+1} \cup s'$
9: if $\text{isTerminal}(s')$ then
10: $S_{final} \leftarrow S_{final} \cup s'$
11: $S_{i+1} \leftarrow \text{top}(k, S_{i+1})$
12: $D = \arg \max_{D} \text{Score}(D|M)$
13: return D

$Ncut$ can be expressed as the arithmetic mean of two F-measures between U and V. For example, in the straight case, when $\{U : XY, V : XY\}$:

$$F_{avg}(U, V) = \frac{F_1(X,Y) + F_1(X,Y)}{2} = 1 - \frac{Ncut(U, V)}{2}$$

(5)

With this expression, minimizing $Ncut$ is equivalent to maximizing F_{avg}. Intuitively, it suffices to replace $Ncut$ with F_{avg} to derive the following formula, which gives the probability of a parsing tree, i.e., the probability of a sequence of derivation D. The best derivation D and the best word alignment $\hat{\alpha}$ can be defined as,

$$D = \arg \max_{D} \text{Score}(D_{\text{avg}}|M)$$

(6)

$$= \arg \max_{d_k \in D} \prod_{k=1}^{K} F_{avg}(d_k)$$

(7)

$$\hat{a} = Proj(D)$$

(8)

Here, d_k denote the operation of derivation at step k during parsing, defined as a triple (i, j, γ), where i, j are the splitting indices and γ is either straight or inverted. Our incremental top-down BTG parsing algorithm with beam search is presented in Algorithm 1. We consider that the incremental parser has a parser state at each step. The state is defined as a four-tuple (P, D, v, τ). P is the stack of unparsed blocks. D is the list of previous derivations $\{d_0, \ldots, d_{i-1}\}$. A block denoted by $([i_0, i_1], [j_0, j_1])$ covers the source words from f_{j_0} to f_{j_1-1} and the target words from e_{i_0} to e_{i_1-1}. v records the current score. τ is set to true on termination (stack P is empty) and is false elsewhere. At the beginning, the initial state contains only a block which covers all the words in F and E. The block is split recursively and the node type γ (straight or inverted) is decided when the splitting point is determined according to the defined score function. $\text{top}(k, S)$ returns the first k-th states from S in terms of their scores v.

The computational complexity of the top-down parsing algorithm is $O(k \times n \times m \times \log \min(m, n))$ for sentence lengths n and m, with a beam size of k. The log of $\min(m, n)$ stands for the parsing depth. For each iteration, each state in the history will be used to generate new states as shown in Algorithm 2. Algorithm 1 terminates when no new hypothesis is generated or when it has reached the maximum number of iterations $\min(m, n)$.

For the initialization of the matrix, there is a number of ways to define the weights of $w(f, e)$. The simplest one is to use the posterior probabilities of IBM model 1. (Moore, 2005) pointed at several disadvantages of IBM model 1: it is either too sensitive to rare words or over-weights frequent words (like function words). For this reason, we incorporate variational Bayes (VB) into our model as proposed in (Riley and Gildea, 2012). We assume the distribution of the target vocabulary to be a Dirichlet distribution, with a symmetric Dirichlet prior as $\theta(f|e) \sim \text{Dirichlet}(\alpha)$. After computation of the posterior probabilities with the EM algorithm, the symmetrical score of $\theta(f|e)$ is defined as the geometric mean of the lexical translation probabilities in both directions $p(f|e)$ and $p(e|f)$.

$$w(f_j, e_i) = e^\frac{\theta(f_j, e_i)}{\sigma_{\theta}} \times \left\{ \begin{array}{ll} p_0 & \text{otherwise} \\ e^\frac{\theta(f_j, e_i)}{\sigma_{\theta}} & \text{if } h < r \end{array} \right.$$

(9)

$$\theta(f_j, e_i) = \log(\sqrt{\theta(f|e) \times \theta(e|f)})$$

(10)

$$\delta(j, i, n, m) = \log(1 - h(j, i, n, m))$$

(11)

where $\theta(f_j, e_i)$ is a word-to-word translation model and $\delta(j, i, n, m)$ is a distortion model. r is a distortion model. $r \approx 0.01$.
is a distortion threshold depends on language. σ_θ and σ_δ are hyper-parameters and $h(j, i, n, m) = [j/n - i/m]$. Although this is not mandatory, we adjust values to a specified range $w(f_j, e_i) \in [p_0^2, 1], p_0 = 10^{-4}$. Since $Neut$ is a normalized score, it does not require any normalization term. The hyper-parameters σ_θ and σ_δ are fixed at the beginning of experimentation by maximizing the $Recall$ in the preliminary experiments.

4 Experiments

For evaluation of word alignment, we use the KFTT Corpus\(^2\) for English–Japanese. In the case of GIZA++ and fast_align, we train word alignments in both directions with the default settings, i.e., the standard bootstrap for IBM model 4 alignment in GIZA++ ($1^5H^3C^5$) and 5 iterations for fast_align. We then symmetrize the word alignments using $grow-diag-final-and (+gdfa)$ and evaluate with the final obtained alignments. Perhaps some comparison with other BTG alignment methods is necessary to confirm the advantages of our proposed method. For this consideration, we use an open-sourced BTG-based word aligner, pialign\(^3\). We run it with 8 threads and train the model with batch size 40 and only taking 1 sample during parameter inference. We extract phrases directly from the word-to-word alignment (many-to-many) with traditional heuristic \((\text{Koehn et al.}, 2003)\) for translation. For our implementation, named Hieralign, we limit the run-time to that of fast_align for fairness. We perform 5 iterations EM estimation using IBM 1 with variational Bayes, with a beam size of 10 during parsing. Since reestimation of the Viterbi probability with the $gdfa$ heuristic (+VBH) is very fast, we also employ it before the step of the parsing. For the phrase-based SMT task, we conduct experiments in English–German (en–de) using the WMT 2008 Shared Task\(^4\); English–Japanese (en–ja) using the KFTT corpus. For translation evaluation, training, development, test sets are independent.

Table 1 shows that our proposed method achieves competitive performance on the KFTT Corpus with state-of-the-art alignment methods. AER (Hieralign) is behind fast align, even more than GIZA++. However, (Lopez and Resnik, 2006; Fraser and Marcu, 2007) question the link between this word alignment quality metrics and translation results. There is no proof that improvements in alignment quality metrics lead to improvements in phrase-based SMT performance. Since our method forces each source and target word aligned (many-to-many), it is prone to generate fewer entries in the translation tables. We thus measured the sizes of the translation tables obtained. Phrase tables extracted from the alignments by Hieralign are smaller by a third in comparison to those of the baseline.

The accuracy of the translations produced by our method are compared to those produced by GIZA++ (+gdfa), fast_align (+gdfa) and pialign in Table 2, in which standard automatic evaluation metrics are used: BLEU (Papineni et al., 2002) and RIBES (Isozaki et al., 2010). There is no significant difference on the final results in en–de and even better in en–ja. Given the results in Table 2 with the distortion feature ($\sigma_\theta = 3, \sigma_\delta = 5$) and without distortion feature ($\sigma_\theta = 1$), we can also draw the conclusion that adding the distortion feature slightly improves the alignment results.

5 Conclusion

To summarize, we proposed a novel BTG-forest-based top-down parsing method for word alignment, we improved (Lardilleux et al., 2012) with better parameter initialization method and return a open-sourced software Hieralign. We

\(^2\)http://www.phontron.com/kftt/

\(^3\)http://www.phontron.com/pialign/

\(^4\)http://www.statmt.org/wmt08/shared-task.html
achieved comparable translation scores with state-of-the-art methods, while the speed is fast. For future work, we believe that incorporating neural models to build the soft-matrix for our method should make a positive influence.

References

Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer. 1993. The mathematics of statistical machine translation: Parameter estimation 19(2):263–311.

David Burkett, John Blitzer, and Dan Klein. 2010. Joint parsing and alignment with weakly synchronized grammars. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, pages 127–135.

Colin Cherry and Dekang Lin. 2007. Inversion transduction grammar for joint phrasal translation modeling. In Proceedings of the NAACL-HLT 2007/AMTA Workshop on Syntax and Structure in Statistical Translation. Association for Computational Linguistics, pages 17–24.

David Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics 33(2):201–228.

Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013. A simple, fast, and effective reparameterization of IBM model 2. In Proceedings for the NAACL. Association for Computational Linguistics.

Alexander Fraser and Daniel Marcu. 2007. Measuring word alignment quality for statistical machine translation. Computational Linguistics 33(3):293–303.

Aria Haghighi, John Blitzer, John DeNero, and Dan Klein. 2009. Better word alignments with supervised itg models. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Association for Computational Linguistics, volume 2, pages 923–931.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. 2010. Automatic evaluation of translation quality for distant language pairs. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pages 944–952.

Hidetaka Kamigaito, Akihiro Tamura, Hiroya Takamura, Manabu Okumura, and Eiichiro Sumita. 2016. Unsupervised word alignment by agreement under itg constraint. In EMNLP, pages 1998–2004.

Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In EMNLP, pages 388–395.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology. Association for Computational Linguistics, volume 1, pages 48–54.

Adrien Lardilleux, François Yvon, and Yves Lepage. 2012. Hierarchical sub-sentential alignment with anyalign. In Proceedings of the 16th Annual Conference of the European Association for Machine Translation (EAMT 2012), pages 279–286.

Peng Li, Liu Yang, and Maosong Sun. 2012. A beam search algorithm for itg word alignment. In Proceedings of the 24th International Conference on Computational Linguistics. page 673.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Alignment by agreement. In Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. Association for Computational Linguistics, pages 104–111.

Yang Liu, Qun Liu, and Shouxun Lin. 2010. Discriminative word alignment by linear modeling. Computational Linguistics 36(3):303–339.

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu. 2009. Weighted alignment matrices for statistical machine translation. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, volume 2, pages 1017–1026.

Adam Lopez and Philip Resnik. 2006. Word-based alignment, phrase-based translation: Whats the link. In Proceedings of AMTA. volume 6, pages 90–99.

Evgeny Matusov, Richard Zens, and Hermann Ney. 2004. Symmetric word alignments for statistical machine translation. In Proceedings of the 20th International Conference on Computational Linguistics. Association for Computational Linguistics, page 219.

Robert C Moore. 2005. Association-based bilingual word alignment. In Proceedings of the ACL Workshop on Building and Using Parallel Texts. Association for Computational Linguistics, pages 1–8.

Graham Neubig, Taro Watanabe, Shinsuke Mori, and Tatsuya Kawahara. 2012. Machine translation without words through substring alignment. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers. Association for Computational Linguistics, pages 165–174.
Graham Neubig, Taro Watanabe, Eiichiro Sumita, Shinsuke Mori, and Tatsuya Kawahara. 2011. An unsupervised model for joint phrase alignment and extraction. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, pages 632–641.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, pages 311–318.

Jason Riesa and Daniel Marcu. 2010. Hierarchical search for word alignment. In Proceedings of the 48th annual meeting of the association for computational linguistics. Association for Computational Linguistics, pages 157–166.

Darcey Riley and Daniel Gildea. 2012. Improving the IBM alignment models using variational bayes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers. Association for Computational Linguistics, volume 2, pages 306–310.

Markus Saers, Joakim Nivre, and Dekai Wu. 2009. Learning stochastic bracketing inversion transduction grammars with a cubic time biparsing algorithm. In Proceedings of the 11th International Conference on Parsing Technologies. Association for Computational Linguistics, pages 29–32.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8):888–905.

Juan Miguel Vilar. 2005. Experiments using MAR for aligning corpora. In Proceedings of the ACL Workshop on Building and Using Parallel Texts. Association for Computational Linguistics, pages 95–98.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. 1996. HMM-based word alignment in statistical translation. In Proceedings of the 16th Conference on Computational Linguistics. Association for Computational Linguistics, volume 2, pages 836–841.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Binarizing syntax trees to improve syntax-based machine translation accuracy. In EMNLP-CoNLL. Citeseer, pages 746–754.

Dekai Wu. 1995. Stochastic inversion transduction grammars, with application to segmentation, bracketing, and alignment of parallel corpora. In Proceedings of the 14th International Joint Conference on Artificial Intelligence. volume 95, pages 1328–1335.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Linguistics 23(3):377–403.

Deyi Xiong, Min Zhang, and Haizhou Li. 2010. Learning translation boundaries for phrase-based decoding. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, pages 136–144.

Hao Zhang and Daniel Gildea. 2005. Stochastic lexicalized inversion transduction grammar for alignment. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, pages 475–482.