3D analysis of the incident diffuse irradiance on the building’s surfaces in an urban environment

Stoyanka M. Ivanova*
Civil Engineering and Geodesy, University of Architecture, Sofia, Bulgaria

Abstract
The design of a future building with very high-energy efficiency demands from the architect to study the available solar resources in this urban environment. The purpose of the presented methodology is to study the variations in all components of the incident solar radiation daily, monthly and seasonally for all building facades. This is realized in the computer program 3D–SOLARIA. In the focus of the paper is the estimation of the background component of the incident diffuse solar irradiation on a building facade under orthogonally obstructed sky, using anisotropic sky view factors.

Keywords: solar irradiance; anisotropic sky model; anisotropic view factors; partially obstructed sky; Urban environment

Received 9 June 2013; revised 16 December 2013; accepted 20 December 2013

1 INTRODUCTION
The European directive on the energy performance of the buildings prescribes very high-energy efficiency of the new buildings. For this purpose, the architect has to know the solar resources for the future building in the early design stage, when he shapes his idea. Daily, monthly and seasonal variations in the incident solar radiation on all building surfaces are important. Their analysis is a difficult task in an urban environment because of the presence of many obstructing objects—buildings, installations, vegetation etc. The seasonal analysis could help the architect to differentiate the opposite needs of solar energy in the winter and summer (more solar energy in the winter and less solar energy in the summer).

The solving methods vary from very simple ones (with angular criteria and angular zones) to very complex, which divide the sky into hundreds of patches. Two examples are the programs SUNtool – CITYSIM [1] and Solar Radiation Technology to Revit [2]. They divide every building surface into small fragments and study the visibility to their centers of each sky patch in relation to each potentially obstructing object. This solving method needs a lot of computer time. Its advantage is that it could work with objects in any shape and in any position.

2 METHODOLOGY
Most objects in an urban environment have orthogonal surfaces, which are perpendicular or parallel to each other. This allowed us to develop an analytical approach [3] to both receiving and obstructing rectangular building surfaces, without the usage of hundreds of sky patches. The estimation of the incident diffuse solar irradiation and especially its background component is in the focus of this paper.

2.1 Anisotropic radiance model
Our approach needs a suitable anisotropic radiance model to be able to predict the radiance in any point of the sky in any time, and to be applied for overcast, nonovercast and ‘real’ sky. An irradiance model has to predict correctly the irradiance values on a sloped surface. The anisotropic model of Muneer [4] is used as a base model for the presented approach, because it is one of the most used anisotropic irradiance models [5–7] and has some features of a radiance model with the usage of the adapted equation of Moon and Spencer [8] about the luminance distribution under overcast sky

\[L_\theta = L_z (1 + b \cdot \cos \theta)/(1 + b) \]

Steven and Unsworth [9] and later Usher and Muneer [10] integrated this equation to obtain the ratio between the irradiance on a sloped surface \(I_{DB} \) and the horizontal diffuse irradiance \(I_{DH} \) under
overcast sky:

\[T = \frac{I_{DB}}{I_{DH}} = \cos^2 \left(\frac{\beta}{2} \right) + \frac{2b}{\pi(3 + 2b)} \left[\sin(\beta) - \beta \cdot \cos(\beta) - \pi \cdot \sin^2 \left(\frac{\beta}{2} \right) \right] \]

Muneer’s model [11] estimates the diffuse irradiance on a sloped sunlit surface under non-overcast sky as follows:

\[I_{DB} = I_{DH}T(1 - F) + F \cdot r_b \]

where \(F \) is the ratio between the beam and the extraterrestrial horizontal irradiances, \(T \) is calculated as a function of the radiance distribution index \(b \) and slope angle \(\beta \) in Equation (1), and \(r_b = \cos(\text{inc})/\sin(\text{solalt}) \) is the beam conversion factor. The circumsolar brightening is simplified as concentrated at the position of the sun. The interdependence between \(b \) and \(F \) is visible in the Equation (3) by Muneer [4] with parameters’ values \(a_1 = 0.00333; a_2 = -0.415; a_3 = -0.6987 \) for northern Europe and \(a_1 = 0.00263; a_2 = -0.712; a_3 = -0.6883 \) for southern Europe.

\[\frac{2b}{\pi(3 + 2b)} = a_1 + a_2F + a_3F^2 \]

Muneer estimates the diffuse irradiance on a sloped shaded surface under non-overcast sky with the same equation \(I_{DB} = I_{DH}T \) as for a sloped surface under an overcast sky. There \(T \) depends on \(b = 5.73 \), even if this means the background radiation at the horizon is calculated of less value than the background zenith radiation, which obviously is not true for a clear sky. This separately treating of sunlit and shaded surfaces with different values of \(b \) leads to internal contradiction. If the receiving surface is horizontal or with a small slope angle, the irradiance coming from the southern and northern halves of the sky has to be modeled with ‘sunlit’ (negative) values of \(b \), Equation (3). If the receiving surface is shaded, the same areas in the northern half of the sky dome has to be modeled with ‘shaded’ (positive) value \(b = 5.73 \).

Most other models (Hay [12]; Hay and Davies [13]; Hay and McKay [14]; Ma-Iqbal [15]) accept that the background diffuse component is the same for sunlit and for shaded surfaces under a nonovercast sky and use \(F \) (or other sky clarity index) as a value, which mixes the background and the circumsolar components. Such approach helps to avoid the mentioned internal contradiction. If we apply this approach to Muneer’s model, we can distinguish as independent both components \(I_{DB} \) and \(I_{CD} \) of the diffuse irradiance on a sloped surface as follows:

\[I_{DB} = I_{DH}(1 - F) \left(\cos^2 \left(\frac{\beta}{2} \right) + \frac{2b}{\pi(3 + 2b)} \left[\sin(\beta) - \beta \cdot \cos(\beta) - \pi \cdot \sin^2 \left(\frac{\beta}{2} \right) \right] \right) \]

\[I_{CD} = I_{DH}F \cdot r_b \]

For a horizontal surface \((T = 1 \text{ and } r_b = 1)\) under an unobstructed sky, the background and the circumsolar components of the diffuse irradiance are estimated as follows:

\[I_{BDH} = I_{DH}(1 - F) \]

\[I_{CDH} = I_{DH}F \]

For northern Europe and a value \(F = 0.5625 \), the estimated ratio of the vertical diffuse irradiance to the horizontal diffuse irradiance is 0.331, which is very close to the measured data for European sites. This ratio varies daily and hourly as it is a function of the ratio \(F \) between the beam and the extraterrestrial horizontal irradiances. Anyway, sometimes the calculated too low values of \(b \) (too close to \(-1\)) indicate an overestimated horizon brightening and a need of a recalibration of the model.

2.2 Basic anisotropic sky view factors

In order to predict the incident background diffuse solar radiation on a building, we need to estimate it for any of its external surfaces. When we know the horizontal diffuse irradiance, we can find its background component with Equation (6). Later, our task is to find the ratio between the background diffuse irradiance from a partially obstructed anisotropic sky onto a building’s surface and the background horizontal diffuse irradiance from an unobstructed anisotropic sky. In [3], we named this ratio ‘anisotropic background sky view factor’ (horizontal, vertical and sloped). More detailed information how to estimate the anisotropic vertical factor (AVF) from the visible sky area to a point on a vertical surface (fragment) is given there. The basic considered sky sectors are displayed on Figure 1.

![Figure 1. Basic considered sky sectors, displayed on a rectangular cuboid with dimensions a x c x d, with a fisheye projection onto a point on a cuboid’s vertical wall. The point is at distance x from the left vertical edge and at distance h from the top horizontal edge of the studied vertical wall. The projections of the other lines of the cuboid’s edges delimit the basic considered sky sectors: circular sectors A1, A2, A3, A4; elliptic sectors B1, B2, B3, B4.](https://academic.oup.com/ijlct/article-abstract/10/3/262/704606)
2.3 Derivative anisotropic sky view factors

With combinations of sums and differences of the AVF of the mentioned basic sectors, we can estimate the value of the AVF of each visible part of sky; in case, it is obstructed by one or more orthogonally orientated horizontal or vertical surfaces (Figure 2).

The fisheye projections on Figure 2a–e look like interiors, but the estimated AVF for the sky areas could be subtracted from the maximum possible value of an AVF for a vertical surface: \((3\pi + 4b)/(2\pi (3 + 2b))\). This way we receive the resulting value of AVF of the visible sky areas toward an exterior wall (façade) as in Figure 2f and g etc.

The resulting Equations (8–10) for AVF of the three most widely used combined projections: \(A_1 - B_1\) (Figure 2a), \(A_2 - B_2\) (Figure 2b), \(B_1 + B_2\) (Figure 2c) are listed below:

\[
\text{AVF}_{A_1 - B_1, \text{point}} = \frac{3}{3 + 2b} \frac{1}{2\pi} \left(\frac{\text{arctg} \frac{h}{x} - \frac{x}{\sqrt{x^2 + c^2}} \text{arctg} \frac{h}{\sqrt{x^2 + c^2}}}{3 + 2b} \right) + \frac{2b}{3 + 2b} \frac{1}{2\pi} \left(1 - \frac{h}{\sqrt{x^2 + h^2}} - \frac{x}{\sqrt{x^2 + c^2} + \sqrt{x^2 + c^2 + h^2}} \right)
\]

(8)

\[
\text{AVF}_{A_2 - B_2, \text{point}} = \frac{3}{3 + 2b} \frac{1}{2\pi} \left(\frac{\text{arctg} \frac{h}{x} - \frac{x}{\sqrt{c^2 + h^2}} \text{arctg} \frac{x}{\sqrt{c^2 + h^2}}}{3 + 2b} \right) + \frac{2b}{3 + 2b} \frac{1}{2\pi} \left(\frac{x}{\sqrt{x^2 + h^2}} - \frac{x}{(c^2 + h^2) \sqrt{x^2 + c^2 + h^2}} \right)
\]

(9)

\[
\text{AVF}_{B_1 + B_2, \text{point}} = \frac{3}{3 + 2b} \frac{1}{2\pi} \left(\frac{x}{\sqrt{x^2 + c^2}} \text{arctg} \frac{h}{\sqrt{x^2 + c^2}} + \frac{h}{\sqrt{x^2 + c^2 + h^2}} \text{arctg} \frac{x}{\sqrt{c^2 + h^2}} \right) + \frac{2b}{3 + 2b} \frac{1}{2\pi} \left(\frac{x}{\sqrt{x^2 + c^2 + h^2}} - \frac{x}{(c^2 + h^2) \sqrt{x^2 + c^2 + h^2}} \right)
\]

(10)

These three equations include two parts. The isotropic part \(P_i\) multiplied by \(3/(3 + 2b)\) is the isotropic view factor for the specific sector. The anisotropic part \(P_a\) multiplied by \(2b/(3 + 2b)\) is an anisotropic correction of the isotropic view factor. Both isotropic and anisotropic parts depend only on geometric data. They can be calculated once for each considered point and then to be used in combination with the varying value of \(b\) for different time periods.

3 RESULTS

Using described methodology and solar data from PVGIS [16], we developed a computer program ‘3D–SOLARIA’ to estimate, display and study all components of the solar irradiance and solar irradiation for different time periods (days, months, seasons) on the rectangular fragments of all vertical walls of a considered building.

The order of tasks to estimate the AVF of a fragment of a vertical wall is as follows:

(1) Analysis of the visibility of all other vertical walls of the considered building and other obstructing buildings.

(2) Estimation of AVF of all partially and completely visible vertical walls. These estimated values are summarized in the value \(\text{AVF}_{\text{visible_walls}}\).

(3) Estimation of AVF of all hidden parts of partially visible vertical walls. These estimated values are summarized in the value \(\text{AVF}_{\text{invisible_parts}}\).

(4) The value of \(\text{AVF}_{\text{visible_sky}}\) from the visible part of the sky is estimated as follows:

\[
\text{AVF}_{\text{visible_sky}} = \frac{3}{3 + 2b} \left(\frac{1}{2} \sum_{k=1}^{N_{\text{visible_words}}} P_{i_k} + \sum_{j=1}^{N_{\text{invisible_parts}}} P_{j_j} \right) + \frac{2b}{3 + 2b} \left(\frac{1}{\pi} \sum_{k=1}^{N_{\text{visible_words}}} P_{i_k} + \sum_{j=1}^{N_{\text{invisible_parts}}} P_{j_j} \right)
\]

(11)

Figure 2. Combined projections: (a) area \(A_1 - B_1\); (b) area \(A_2 - B_2\); (c) area \(B_1 + B_2\); (d) area \(B_1 + B_2\); (e) area \(A_2 - B_2\); (f) area \(A_1 + A_2\); (g), (h), (i) more complex projections.
The four sums in Equation (11) have to be estimated once for each fragment of the considered receiving wall. For each varying value of \(b \), we estimate \(AV_{\text{visible_sky}} \) and use it to calculate the background diffuse irradiance \(I_{\text{bd_fragment}} \) in the center point of the vertical fragment as follows:

\[
I_{\text{bd_fragment}} = AV_{\text{visible_sky}} I_{\text{BDH}}
\]

(12)

To the estimated value, then we add the values of estimated circumsolar component of the diffuse irradiance, the beam and reflected irradiance.

At this stage, we use the widely used isotropic constant model (ICM) of Liu and Jordan [17] for estimation of the reflected irradiance. It assumes a constant albedo 0.2 and needs a ground view factor (GVF), which we estimate using the first addend of Equation (11) as follows:

\[
\text{GVF} = 1 - \text{SVF} = \frac{1}{2} + \sum_{k=1}^{N_{\text{visible_walls}}} P_k - \sum_{j=1}^{N_{\text{invisible_parts}}} P_j
\]

(13)

A further work in this direction is planned in order to use our approach to improve the exactness of the predicted reflected irradiance. This could be possible on account of the ability of our approach to calculate the incident beam and diffuse irradiance in any point of any visible surface in front of the considered building surface.

The program has two modes. In Irradiance mode, it calculates the instantaneous density of the solar radiation \([W/m^2]\) incident on the fragments of all considered walls in different time moments, Figure 3. Different kinds of skies are considered, using the Muneer’s Equation from [18]:

\[
D/G = 1.006 - 0.317K_t + 3.1241K_t^2 - 12.7616K_t^3 + 9.7166K_t^4
\]

(14)

In irradiation mode, the program calculates and displays the average daily irradiation \([Wh/m^2]\) on the considered fragments for different time periods (days, months, seasons, year), Figure 4. It is used the conversion from ‘clear sky’ to ‘real sky’ irradiation given in [19].

4 APPLICATION IN THE BUILDING DESIGN AND FUTURE WORK

The main purpose of the developed methodology is to estimate the incoming solar energy to the surfaces of the considered future building in the different seasons and in this way to allow the architect to study the building shape in order to increase the

Figure 3. Exemplary images, generated in 3D–SOLARIA Irradiance Mode for 1st January, 8:30 in Sofia: (a) solar irradiance – \(D/G = 0.54, K_t = 0.55 \); (b) solar irradiance – \(D/G = 0.81, K_t = 0.4 \); (c) solar irradiance – \(D/G = 0.97, K_t = 0.23 \); (d) background diffuse irradiance – \(D/G = 0.81 \); (e) diffuse irradiance – \(D/G = 0.81 \); (f) diffuse, beam and reflected irradiance – \(D/G = 0.81 \).
solar gains in winter and to decrease the solar fluxes in summer in the current urban environment.

This way the architect could study different variants of the building’s shape and composition in the early design stage. The estimation and visualization of the incident irradiance on the all fragments of the building surfaces gives the architect a better idea about the 3D variation of the incoming solar energy and how it depends by the surfaces’ orientation and the environment. The images of the visualized incident irradiance or irradiation are much easier to be understood than numerical tables with estimated values. This is not only more informative, but also more precise than the widely used method to estimate solar energy only toward the middle point of every wall.

The building variants with surfaces with insufficient solar energy (and insufficient daylight) or with exaggerated solar energy (in the summer) lead to more problems in the later design stages. Sometimes, these problems can be resolved with appropriate type of glass (with a suitable shading coefficient) in glazed facades or with shading devices. Sometimes is better to think about a different building shape.

Depending of the building’s purpose the architect may need to assure more or less solar radiation on the building facades in the different seasons. The program’s results could help him to find out the suitable places for openings—windows, glazed doors and glazed facades.

The precise estimation of the incident solar radiation on a glazed building façade and the known relation between the incident solar irradiance and the incident solar illuminance can help to estimate the available daylight. Such option is useful for the architects and will be added in the future.

There is a direct relation between the mean anisotropic sky view factor for a surface (estimated as an average value of the anisotropic sky view factors of all fragments of the surface) and the background diffuse component of the surface’s shading factor. It can be expanded with the calculation of the circumsolar diffuse radiation and the beam radiation in order to calculate global shading factor. The architects may use such numerical value to evaluate the obstructing effect, caused by the urban environment. Its value is a result of the interaction between the available solar energy, the building’s shape and its environment. The calculation of such global shading factor, average for the building, is also planned to be added in the future.

These program’s possibilities could help the architect to think more how to use the solar energy and to design buildings with better energy performance.

Figure 4. Exemplary images, generated in 3D–SOLARIA Irradiation Mode — average daily irradiation under a real sky in Sofia: (a) background diffuse irradiation in July; (b) diffuse irradiation in July; (c) diffuse, beam and reflected irradiation in July; (d) background diffuse irradiation in December; (e) diffuse irradiation in December; (f) diffuse, beam and reflected irradiation in December.

S.M. Ivanova
5 CONCLUSIONS

A modified version of the anisotropic irradiance model of Muneer in combination with a new analytical approach to the visible anisotropic sky areas in an urban environment are in the base of new developed program 3D–SOLARIA. Its purpose is to estimate, display and study the variations in the beam and diffuse components of the solar irradiance and solar irradiation for different time periods on the fragments of the building’s facades.

Our analytical approach treats the background diffuse radiance not as uniform, but as anisotropic as it is indeed in the reality. It allows us to calculate the diffuse irradiance in any point of the considered building surfaces under any type of sky (from clear to overcast) and under ‘real’ sky.

Our methodology reduces the geometry of the visible part of sky to two numerical values (value of SVF and value of its anisotropic correction), which are used in the hourly and daily calculation of the incident diffuse radiation. This allows us to reach very fast results, because the necessary processing time is a function only of the complexity of the 3D model of the considered building and its environment and does not depend by number of sky patches.

The disadvantage of this approach is its current ability to work only with orthogonal surfaces. Fortunately, such surfaces are dominant in the architecture and in the urban environment. The developed set of anisotropic factors still needs a lot of efforts to be expanded with anisotropic factors for other geometries. This way the mentioned disadvantage can be surmounted.

REFERENCES

[1] Robinson D, Haldi F, Kämpf J, et al. CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In: Proceedings of Eleventh International IBPSA Conference. Glasgow 2009 pp.1083–90.
[2] Thuesen N, Kirkegaard PH, Jensen RL. Evaluation of BIM and Ecotect for Conceptual Architectural Design Analysis. In: Proceedings of the International Conference on Computing in Civil and Building Engineering.
[3] Ivanova SM. Estimation of background diffuse irradiance on orthogonal surfaces under partially obstructed anisotropic sky. Part I—vertical surfaces. Solar Energy 2013;95:376–91.
[4] Muneer T. Solar Radiation and Daylight Models. 2nd edn. Oxford: Elsevier Butterworth Heinemann, 2004.
[5] Loutzenhiser PG, Manz H, Felsmann C, et al. Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Solar Energy 2007;81:254–67.
[6] Wlodarczyk D, Nowak H. Statistical analysis of solar radiation models onto inclined planes for climatic conditions of Lower Silesia in Poland. Arch Civil Mech Eng 2009;9:127–144.
[7] Evseev EG, Kudish AI. The assessment of different models to predict the global solar radiation on a surface tilted to the south. Solar Energy 2009;83:377–88.
[8] Moon P, Spencer DE. Illumination from a non-uniform sky. Trans Illum Eng Soc, London 1942;37:707–25.
[9] Steven MD, Unsworth MH. The angular distribution and interception of diffuse solar radiation below overcast skies. Quart J R Met Soc 1980;106:57–61.
[10] Usher JR, Muneer T. Case studies in solar radiation modelling. Math Comput Model 1989;12:1155.
[11] Muneer T. Solar radiation model for Europe. Building Serv Eng Res Technol 1990;11:153–63.
[12] Hay JE. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Solar Energy 1979;23:301.
[13] Hay JE, Davies JA. Calculation of the solar radiation incident on an inclined surface. In: Proceedings of the First Canadian Solar Radiation Data Workshop. Canada: Ministry of Supply and Services 1980:p. 59.
[14] Hay JE, McKay DC. Calculation of solar irradiances for inclined surfaces: verification of models which use hourly and daily data. IEA Task IX Final Report. Atmospheric Environment Service, Downsview, Canada, 1988.
[15] Iqbal M. Introduction to Solar Radiation. New York: Academic Press, 1983.
[16] Photovoltaic Geographical Information System. http://re.jrc.ec.europa.eu/pvgis/, 2012 (19 January 2014, date last accessed).
[17] Liu BYH, Jordan RC. The long term average performance of flat plate solar energy collectors. Solar Energy 1963;7:53–74.
[18] Muneer T, Gul M, Kambzedis H, et al. An all-sky solar radiation model based on meteorological data. In: Proceedings of the CIBSE/ASHRAE Joint Annual Conference. Harrogate, United Kingdom, 1996
[19] Hofierka J, Šůří M. The solar radiation model for Open source GIS: implementation and applications. In: Proceedings of the Open Source GIS—GRASS Users Conference. 2002.