Protozoan parasites of Vannamei Shrimp (*Litopenaeus vannamei*) in farmed fish from Pasuruan, Indonesia

U Hafidloh¹ and P D W Sari²*

¹Undergraduate Student of Fisheries and Marine Faculty, Universitas Airlangga Mulyorejo, Campus C, Surabaya, Indonesia
²Fish Health Management and Aquaculture Department, Fisheries and Marine Faculty, Universitas Airlangga Mulyorejo, Campus C, Surabaya, Indonesia

*Corresponding author: putri.dw@fpk.unair.ac.id

Abstract. This work investigated the protozoan parasites infesting the vannamei shrimp in farmed fish from Pasuruan, Indonesia. The protozoan parasites found in infested vannamei shrimp were ectoparasites; the protozoan *Zoothamnium* sp., *Vorticella* sp. and *Epistylis* sp. The fish were collected from a fish culture center in Pasuruan, Indonesia, weekly for one month. The diagnosis method as a part of the protozoan ectoparasite examination was scraping. The prevalence rate of protozoan ectoparasites were, respectively, 72.5% for *Zoothamnium* sp., 55% for *Vorticella* sp. and 42.5% for *Epistylis* sp.

1. Introduction

Over the last few years, commodities that have a lot of contribution to the aquaculture sector in Indonesia include vannamei shrimp (*Litopenaeus vannamei*). This species is relatively easy to breed and culture, so they have become an economic commodities in several countries globally. The advantages of vannamei shrimp include their tolerance to viral infections such as WSSV (White Spot Syndrome Virus), TSV (Taura Syndrome Virus) and IHNV (Infectious Hypodermal and Hematopoietic Necrosis Virus) [1].

In line with the number of enthusiasts for shrimp culture, there are also some disturbing problems which hamper the development of shrimp culture businesses, which comes from fish parasites. According to [2], the parasites that attack vannamei shrimp culture generally come from the Ciliate class. Some species from the Ciliate class includes *Zoothamnium* sp., *Vorticella* sp., and *Epistylis* sp. One of the diseases that often attacks shrimp in both ponds and hatcheries comes from a pathogen of the ciliate group, especially the species’ *Zoothamnium* sp. and *Vorticella* sp. [3]

This study aims to observe protozoa parasites in vannamei shrimp culture from farm ponds in Pasuruan, Indonesia. This information is expected to provide information on the field of parasitology and the enforcement of shrimp health diagnosis. [4] monitored parasites in fish and shrimp culture with the aim of knowing the types of parasites that attack both fish and shrimp in order to determine the factors causing a decline in growth, meat quality and productivity.

2. Material and methods

A total of 40 vanamei shrimps were taken randomly from shrimp culture ponds in Kalianyar Village, Bangil District, Pasuruan Regency, East Java. The shrimp were brought live to the laboratory for an ectoparasite examination in accordance with [5]. The examination of ectoparasites covered the surface
of the body of the shrimp, their gills, swimming leg and walking leg. The examination of the swimming leg and walking leg was done by the cutting method so then all parts of the leg could be observed for ectoparasites. The specimen was then observed using a binocular microscope with a magnifications of 40x and 100x.

The measurement of the water quality parameters in the form of temperature, pH, DO, ammonia and nitrite was also carried out at the time of the vanamei shrimp sampling.

3. Results and discussion

Based on the observations, it was found that vanamei shrimps were infested by Ciliata ectoparasites; Zoothamnium sp., Vorticella sp., and Epistylis sp.

![Figure 1](image)

Figure 1. Infestation of protozoan ectoparasites in vanamei shrimp (Litopenaeus vannamei): A. Swimming leg of vanamei shrimp infested by Zoothamnium sp. (400x); B. Body surface of vanamei shrimp infested by Vorticella sp. (400x) and C. Epistylis sp. infested walking leg of vanamei shrimp (400x).

3.1 Prevalence and Intensity

The prevalence and intensity of ectoparasite infestations in vanamei shrimp has been shown in Table 1.

Parasites	Predilection	Prevalence	Intensity of the parasite	
Zoothamniumsp.	Telson	SL/WL	72,5	
	145	93	72,5	
Vorticellasp.		206	55	13,7
Epistylissp.			42,5	7,29

(SL = swimming leg; WL = walking leg)

The prevalence value of ectoparasites in vanamei shrimp ranged from 22.5% - 72.5% with the highest intensity value being for the Zoothamnium sp. infestation.

Protozoan ectoparasite abundance varies greatly depending on the different physico-chemical conditions of the water bodies. As stated, generally highly nutrient rich waters commonly found in culture situations tend to favor the proliferation of ectoparasite organisms, which feed by filtering nutrients or microorganisms from the water [6]. Giving too much food causes the remaining food to be left in many ponds. This means that the content of the organic matter in the pond is high and spurs on the growth of the parasites which are also able to grow well. This is because according to [7], Zoothamnium sp. is a normal living ciliate in shrimp culture ponds. So, even though the water quality
is good, this parasite can still grow. An abundance of Zoothamnium sp. infested the vannamei shrimp in this study; this is still reasonable so long as they do not cause high mortality.

Parasitic groups of protozoan are generally found in environmental conditions that experience instability in the water quality, especially temperature, as Zoothamnium sp. can breed faster in environmental conditions that have a temperature value above 30 °C [8].

The presence of this parasite is not widely found. It could be because the environment is not suitable for growth, because according to [9], Vorticella sp. lives well in fresh and marine waters. The growth in brackish waters, as a medium for vannamei shrimp culture, also affects the growth rate of the parasite Vorticella sp. This protozoan parasite is generally found in conditions where the shrimp are stressed and affected by changes in the fluctuation of the water quality conditions, especially temperature, as well as maintenance that contains a lot of feed residues. As a result of this, there is an accumulation of organic matter which will increase the ammonia levels so then the dissolved oxygen content in the water will decrease. According to [10], these parasites are found naturally in the culture environment and can cause death, but they can also cause problems in shrimp culture when the environmental conditions are poor and suitable for its development.

4. Conclusion
The research obtained its results from the fish that were collected from the fish culture center in Pasuruan, Indonesia, weekly for one month. The diagnosis method for protozoan ectoparasites was scraping. The prevalence rates of protozoan ectoparasites were, respectively, 72.5% for Zoothamnium sp., 55% for Vorticella sp. and 42.5% for Epistylis sp.

5. References
[1] Sudradjad A Rusastra I W Heruwati E S and Priono B 2004 Analysis of Aquaculture Fisheries Jakarta: Badan Riset Kelautan dan Perikanan p 135
[2] Sudrajat A 2010 Shrimp Culture in Rice Fields and Ponds (Jakarta: Penebar Swadaya) p 170
[3] Lavilla-Pitogo CR GD Lio-Po ER Cruz-Lacierda EV Alapide-Tendencia LD de la Pena 1989 Disease of Penaeid Shrimps in the Philippines Aquaculture Extension Manual No 16 Second Edition (California: University of California) p 87
[4] Triyanto dan Alim Isnansetyo 2004 Journal of fisheries science 1 34-38
[5] Islahuttaman 2008 Shrimp Disease and Prevalention (Nanggroe Aceh Darussalam: Balai Budidaya Air Payau Ujung Batee) p 28
[6] Kaushik M 2002 Occurance of Protozoan Ectoparasites of Penaeid Shrimp in The Bheries of West Bengal A Thesis Department of Fishery Pathology and Microbiology (Mohanpur Campus West Bengal India: Faculty of Fishery Science) p 140
[7] Novita D T R Ferasyi Z A Muchlisin 2016 JIM FKP Unsyiah I 268-279
[8] Irvansyah MY N Abdulgani and G Mahasri 2012 JSS ITS I E5-E9
[9] Kudo RR 1977 Protozoology 5 th edition (USA: Charles Thomas publisher) p 90
[10] Wyk PV M D Hodgkins R Laramore KL Main J Mountain J Scarpa 1999 Farming Marine Shrimp in Recirculating Freshwater Systems Florida Department of Agriculture and Consumer Services (USA: Harbor Branch Oceanographic Institution) p 229

Acknowledgment
The authors would like to thank those who have assisted in the research, especially the Technical Implementation Unit of Brackish Water Development, Bangil, Pasuruan, who provided excellent facilities and services during this research.