Fire and Explosion Risk Analysis, Using Bow-Tie Method and Fuzzy-Bayesian Network in the Process Industries

Tahereh Eskandari, MSc, Department of Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. Mostafa Mirzaei Aliabadi, Associate Professor, , Department of Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. Iraj Mohammadfam, (*Corresponding author), Professor, Department of HSE Management, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. mohammadfam@umsha.ac.ir

Abstract

Background and aims: Process industries are categorized as complex systems due to the hazardous materials, large number of employees and the complexity of the processes. For this reason, it is necessary to design an appropriate risk assessment system to control and manage the risks associated with such places. Therefore, the purpose of this study is to provide a comprehensive and quantitative risk analysis of the explosion, using the integration of modern approaches of Bayesian networks and fuzzy theory in a process industry.

Methods: In this study, compressor gas leakage was selected as the scenario to evaluate the probabilistic risks of explosion. For the cause-consequence analysis of the selected scenario and reducing the uncertainty of the occurrence of basic events probability, Bow-Tie method and fuzzy logic approach was used, respectively.

Results: By using the Bow-Tie method, the compressor gas leak analysis have detected 24 basic events and 11 intermediate events. With regard to performance of the safety barriers, i.e. success and failure of these safety barriers, led to the determination of 9 consequences that included a flash fire, jet fire, and the vapor cloud explosion that results in the release of materials.

Conclusion: The results of this study showed that, based on the fuzzy Bayesian network analysis, the filtering failure was identified as the most important event in the occurrence of gas compressor leakage. Therefore, in designing the preventive and control strategies for the accident risk management, attentions should be paid to these root events.

Conflicts of interest: None

Funding: None

Keywords

- Risk Analysis
- Explosion
- Bow-Tie Analysis
- Fuzzy-Bayesian Network

Received: 15/08/2018
Accepted: 30/05/2019
INTRODUCTION

Process industries, due to the high density of equipment, hazardous materials, large number of employees, complexity of the processes, and eventually high potential for accident occurrence and catastrophic consequences, are classified as complex systems. A large amount of flammable hydrocarbon that is usually stored in these industries, increases the potential of catastrophic, financial, life-threatening, and environmental consequences. Meanwhile, fire and explosions, pose many damages(1).

The occurrence of these accidents, persuaded the safety experts to emphasize the necessity for upgrading the safety systems and conducting risk-based studies to find appropriate control measures. Based on the large number of fire and explosion accidents in process industries and their significant losses, determining a standard for decision-making and prioritizing the hazards, seems to be necessary. For this reason, nowadays, decision-making and managements are based on the risk assessment(2).

Risk analysis is an important tool for defining and developing the accident prevention strategies and risk mitigation measures that are very important and practical in complex systems. On the other hand, the main goal of the risk analysis, is to achieve the results that can be used as a basis for preventing accidents or reducing the severity of the consequences of the accidents(3). Different techniques are used to identify and assess risks. The selection of an appropriate method, depends on the available data, the nature of the industry, the needed output, the financial and time constraints, etc. The Fault Tree Analysis (FTA), Event Tree Analysis (4), and Bow-tie (BT) diagram, are among the conventional risk assessment methods used in process industries. These methods rely on generic defective data that may cause uncertainty in the results, due to the lack of specificity of the data for the plan being studied, and not being up-to-date. Thus, finding a method to reduce the uncertainty of the prior failure rate of the Basic Events (BEs) is of high significance. The fuzzy logic approach is recommended to reduce the uncertainty of the probability of the basic events occurrence. Different studies showed that, the fuzzy approach can help to reduce uncertainty or solve the problem in the events that lack the data for occurrence probability in their databases. Staticity is another important problem that most of the conventional risk assessment methods are faced. Therefore, these methods are not able to analyze the risk of the dynamic systems. The Bayesian network is a perfect tool for quantitative analysis in process industries. The BN is a probabilistic inference approach of reasoning about the uncertainty, and can reduce the limitations of the conventional methods. It considers the conditional dependencies, common defects, and different modes of basic events in a risk assessment process. The main advantage of BN, is the ability to perform a probability update, which makes it an excellent method to analyze the risk factors of the dynamic systems(5).

The main purpose of the present study is to render a comprehensive and quantitative approach for the explosion risk analysis, using the integration of new approaches to the Bayesian network and fuzzy theory in the process industry. The Bow-tie diagram for the cause-consequence analysis of the selected scenario, the fuzzy approach for quantification of basic events’ probability, and the BN approach to determine the type and model of the relationship between the effective causes of catastrophic events, were used for this study.

METHODOLOGY

The present cross-sectional study was conducted to the process industry. The studied system was a gas compressor, and it was selected as a unit of study based on the records of previous events and the critical role of its function in the process's normal continuation. In this study, the compressor gas leakage was considered in the explosive probabilistic risk assessment, using the Bow-tie model and fuzzy-Bayesian network. The BT is a graphical method of illustrating a complete accident scenario. It starts with the causes of the accident, and ends with its consequences. This model actually employs two methods for the Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) (4, 6). The methods used in this study, were executed through direct observations, interviews with experts, and review of the documents and operational maps.

In this study, the fuzzy logic approach is used to reduce the uncertainty of the probability of basic events occurrence in the developed FTA model.

After creating the scenario by the BT model and calculating the probability of the basic events and safety barriers using the fuzzy logic, the developed model was transferred to the Bayesian network to overcome the deficiencies and limitations. Algorithm of transfer (mapping) from the BT model to the BN, was done based on the study conducted by Khakzad, Khan(7). In this study, Bayesian Bow-tie model was developed and analyzed in GeNiE software. Algorithm of the BT transfer to BN, is shown in Fig. 1. As can be seen, the basic events, intermediate events, central events, safety barriers and consequences in the BT model, are considered to be root nodes, intermediate nodes, central nodes, safety barriers nodes, and consequences nodes in the BN model, respectively(7).

To quantify the model, the probability values of the basic events that were obtained based on the fuzzy approach, were considered as the probability of the root nodes occurrence. The BN model uses the
Conditional Probability Distribution Tables (CPTs) to calculate the probability of the intermediate events. In this case, the probability of the intermediate node is based on the conditional dependencies associated with the root nodes, and is determined based on the probabilistic conditional relations for all conditions of the node variables. Finally, the probability of the central node was determined in the same way. Equation 1 was applied to the BN, to compute the common probability distribution of a set of variables

\[P(U) = \prod_{i} P(A_{i} | Pa(A_{i})) \]

(1)

Where, \(Pa(A_{i}) \) is the parent set of \(A_{i} \) in BN, and \(P(U) \) represents the properties of the BN\(^{(7)}\).

The most effective basic events were identified after developing the BN qualitative and quantitative model of the selected scenario, using the probability update features (nodes and consequences) and the BN sensitivity analysis. In the diagnostic analysis, the BN uses the Bayes theorem for updating the prior events with new observations of a different set of variables, called the E’s evidence. The probability distribution can be calculated using various types of inference algorithms, such as connection tree or variable elimination, based on the Bayes theorem (Equation 2).

\[P(U | E) = \frac{P(U | E)}{P(E)} = \frac{P(U | E)}{\sum_{U}P(U | E)} \]

(2)

RESULT

Based on Cooke et al. (2008), four qualified experts, including a senior manager, a process engineer, and two operational technicians, were selected to evaluate the probability of the basic events occurrence. Experts' opinions about the failure's probability of the basic events and safety barriers against the scenario occurrence, were collected using the linguistic terms. Then, subjected to the de-fuzzy operation of the experts' opinions, the number obtained by de-fuzzing of each basic event, was considered as the Fuzzy Probability Score (FPS). In the end, the probabilistic numbers (de-fuzzing) were converted into Probability Values (PV). This calculation was applied to each basic event (24 events), and led to the compressor gas leakage scenario and safety barriers against the occurrence of the scenario. Finally, the failure probability related to each basic event, was calculated using the fuzzy logic.

Fig. 2 shows the modeling of the compressor gas leakage scenario by the BN. The probability values for the failure of the basic events and the safety barriers derived from the fuzzy logic, were introduced into the model, and continuation of the developed fuzzy Bayesian network was considered as a basis for the extraction of the probability values for the Intermediate Events (IE), the top event and its consequences. To update the presented model, the central node (compressor gas leakage) was considered as an evidence, and the prior probabilities of all basic events, intermediate events, and consequences were updated. The results of updating the BN model are shown in the fourth column of Table 1.

Table 1, shows the prior and posterior probability values of the intermediate event failure, the top event, and its consequences with the FBN approach. As can be seen, the probability of the high gas pressure (IE03) has the highest increase in update time of the top event’s occurring probability from \(5.25 \times 10^{-2} \) to \(7.8 \times 10^{-1} \), so this event is studied as the most effective intermediate event in the top event occurrence. The results also showed that the PRV failure (BE01) was identified as the most effective basic event in the top event occurrence. Among the identified consequences of the top event, a fire with moderate damage (C8) had the highest increase in the probability’s update time, so it was identified as the most probability consequence of explosion and fire, due to the compressor’s gas leakage.
DISCUSSION

According to the results of this model's implementation in the studied scenario, 24 basic events and 11 intermediate events that resulted in the compressor gas leakage was identified. In this study, the immediate and delayed ignition systems, audio siren, emergency shutdown, and the presence of congestion and condensation factors of the release of flammable and explosive materials, were identified as safety barriers against the compressor's gas leakage, which include the consequences of explosion and fire.

According to studies conducted to determining the probability of the basic event's failure, with the aid of fuzzy, numbers will vary by different experts in the heterogeneous conditions. In this situation, the correctness of the selection of the fuzzy number to represent the basic event, is very basic. Ultimately, this method reduces the uncertainty, and improves the system's reliability. The fuzzy logic, instead of limiting the parameters of a problem (the occurrence rate of

Table 1. Symbols, Descriptions, and Possibilities of the compressor gas leakage consequences

Symbol	Description	Prior probability (FBN)	posterior probability (FBN)
C1	Near miss	6.68×10⁻⁵	9.91×10⁻¹
C2	Moderate material release	5.4×10⁻⁴	8.01×10⁻³
C3	flash fire with minor damage	1.79×10⁻⁴	2.65×10⁻⁵
C4	Vapor cloud explosion with minor damage	8.11×10⁻⁷	1.2×10⁻⁵
C5	high material release	5.83×10⁻⁴	8.65×10⁻³
C6	flash fire with major damage	1.93×10⁻⁴	2.68×10⁻⁵
C7	Vapor cloud explosion with catastrophic	8.76×10⁻⁴	1.3×10⁻⁷
	damage		
C8	jet fire with moderate damage	4.74×10⁻⁶	7.03×10⁻⁵
C9	jet fire with catastrophic damage	4.58×10⁻⁶	6.77×10⁻⁷

Fig. 2. Dynamic modeling of the compressor gas leakage scenario by the BN model.
the basic events and the top event of the accident scenario, etc.) to a number, represents them as fuzzy numbers in a range. So, the fuzzy logic provides a rigorous statement of reality.

The BN model, has the potential for deductive reasoning. The deductive reasoning, predicts the probability of the occurrence of a scenario and its outcomes. The results of the deductive reasoning of the BN method, showed that the probability of the top event's occurrence was 6.74×10⁻², also the first consequence (near-miss) and the fifth consequence (high material release), with an occurrence probability of 6.68×10⁻² and 5.83×10⁻⁴, are the most probable consequences of the compressor's gas leakage. Also, the consequence of C8 (jet fire with moderate damage) with the probability of occurrence of 4.74 × 10⁻⁶, would be the most probable consequence of the fire and explosion that is caused by the compressor's gas leakage. The BN, considers the conditional dependence between the events' type of defect with common causes, that the conventional risk analysis methods such as BT, do not have the ability of. This is represented in Fig. 6, as a dependency between IE02 and IE03, due to the subscription to BE01 and BE02.

The ability of BN's abductive reasoning is very important in the dynamic risk analysis. The abductive reasoning, provides the possibility of updating the probability of the basic events, and decreases the uncertainty in the model and the results obtained. By updating the probability of occurrence of the basic events and the final consequences, it will be possible to select the most critical (most effective) basic events that have the most contribution in the occurrence of the top event [6]. The updated probability of any basic event (BEi) is calculated by assuming the probability of occurrence of the basic event (BEi) under the condition of occurrence of the top event (compressor's gas leakage) P(BEi | compressor's gas leakage). In this study, based on the Tornado diagram, the BE01 (PRV failure) was identified as the most effective variable in the occurrence of the studied scenario. Also, the most probable consequence for updating the top event occurrence probability is C1. The main reason, is the correct performance of the audio siren when the gas is leaking from the compressor. C5, is the second most likely consequence, with a probability of 8.65×10⁻³, due to the failure of the audio siren and the emergency shutdown valve. Also, C8 is the most probable consequence of fire and explosion, with a probability of 7.03 ×10⁻⁵, due to the audio siren performance failure, the proper operation of the emergency shutdown valve and the presence of immediate ignition in the environment. Therefore, in the compressor system, the presence of barriers can significantly reduce the consequences of the gas leakage.

The combination of the fuzzy theory and Bayesian Network, which is known as Fuzzy-Bayesian Network (FBN), in addition to using fuzzy numbers in the probability of the basic events and safety barriers to reduce their uncertainty, will also benefit from deductive and abductive reasoning. Therefore, the Fuzzy-Bayesian Network provides a powerful and effective tool for reasoning of uncertainty in the risk analysis studies.

CONCLUSIONS
The present study was done to render a comprehensive and quantitative approach to the explosion risk analysis, using the integration of new approaches to the Bayesian network and fuzzy theory in a process industry. Based on the fuzzy Bayesian network analysis, the filtering failure was identified as the most effective basic event, and the jet fire with moderate damage was recognized as the most probable consequence of fire and explosion in the occurrence of the compressor's gas leakage.

ACKNOWLEDGMENT
This paper was extracted from the master's thesis on the Occupational Health Engineering, number 9512037370. This study was supported by the Hamedan University of Medical Sciences and National Oil Products Distribution Company in Hamedan. The authors would like to express their gratitude to the two mentioned organizations.

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest regarding the publication of this manuscript.
بحث سازی و مدل سازی جذب صوتی در کمپوزیت‌های ایالاف طبیعی‌یوکا

طارح استادی: کاکاسیس اردشیر، گروه بهداشت حرفه‌ای، مرکز تحقیقات اتیمی و بهداشت اقلیمی، دانشگاه علوم پزشکی همدان، همدان، ایران.

صحنه مربی‌گری استادی: رضا گلدامحمدی، ایرج مهدوی‌خانم، استاد گروه مدیریت HSE دانشگاه علوم پزشکی همدان، همدان، ایران.

مرکز تحقیقات بهداشتی و اتیمی شغلی، دانشگاه علوم پزشکی همدان، همدان، ایران.

مجمول: مطالعه کروزیه، بررسی شرایط و اثرات دلتای فنی با استفاده از نمودار‌های یک‌بعدی.

در این مطالعه تاثیرات زیست‌شناسی و تأثیرات اجتماعی بر روی ریسک اجتماعی انتخاب شده است. برای این مطالعه همزمان با روش‌های ریسک انتخاب شده است، برای ارزیابی ریسک انتخاب شده قطعات و ریسک انتخاب شده قطعات مورد بررسی قرار گرفتند.

نتیجه‌گیری: تاثیرات مطالعه نشان داد که بر اساس تحلیل شکل بهینه فازی، نوع در تبیین مکانیکی، اثراتی از روش‌های یک‌بعدی و کنترل وقوع حوادث بهره‌برداری و روش‌های وابستهی ریسک، توجه به این رویدادهای خطرناک، شناسایی‌شده به‌دست آمده است.

یافته‌ها: در این مطالعه استفاده از روش‌های یک‌بعدی با استفاده از روش‌های یک‌بعدی و کنترل وقوع حوادث بهره‌برداری و روش‌های وابستهی ریسک، توجه به این رویدادهای خطرناک، شناسایی‌شده به‌دست آمده است.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.

کلیدواژه‌ها: ریسک، بازخوری، ریسک، مدل‌سازی، ریسک، شناسایی، ریسک، تغییرات، ریسک، تغییرات.
مقیده
صالح فراحی‌نیعی با خاطر تراکم بالاتر تجربیات، مواد شیمیایی مخاطراتی‌آمیز، تعادل بالای رسالت و پیچیدگی نیاز فردی‌ها و در نتیجه دارد پتانسیل سپار بالای و افزایش و پیامدهای فاصله‌ای، جزء سیستم‌های پیچیده طبقه‌بندی می‌گردد (8،9). در این صنف جمعه‌ای بالایی از هیبرایکرنسی قابل ایجاد دخیل‌رغم اینکه می‌شود با آن برنامه‌ریزی و تقویت و توزین مسیریت و راهنمایی به دلیل آزاد سازی و اندازه‌گیری در واقعیت و با افزایش، می‌تواند باعث شود که سیستم‌های پیچیده قابل توجه کم‌تر می‌شود و در نتیجه اینکه می‌تواند باعث کاهش صدا و میزان دامنه آزمایش‌های مورد استفاده در صنایع آینده‌ای می‌شود.

1 Fault Tree Analysis
2 Event Tree Analysis
3 Bayesian Network
روش بررسی

مطالعه مقطعی حاضر در یک صنعت فرآیند انجام شده است. سیستم مورد مطالعه یک دستگاه کمپرسور بوده که با توجه به سوابق حادثه‌ای (انفجار و آتش‌سوزی) کمپرسور، واژه‌ی هیدروژن در کنار آن (آوایل دهه 1980) انفجار کمپرسور بر اثر نشت گاز در استرالیا (2011) و هند (2014) آتش سوزی دیگر نقص عمیکرده کمپرسور در چین (2016) و همچنین حیاتی و خطری نیز داشت که در روند ادامه طبیعی فرآیند سیاست، واحد مورد مطالعه انتخاب گردیده است. در مبانی افراشی شمار ماهیت و ترکیب‌ها از اهمیت ویژه‌ای برخوردار است. چراکه ماهین آتی بسیاری ابعاد و اختلاف‌هایی که با گاز سیال در راه و تحت فشار کار می‌کند. کمپرسورها و دیگر هسته‌های گازی و مایعات را بر عهده‌دارند. اکثر کارکنان کمپرسور را به عنوان قلب سیستم‌های فرآیند می‌دانند. بطور کلی کمپرسورها به دو دسته تقسیم می‌گردند: نوع اول را جابجایی مثبت و نوع دوم را نرمالی می‌نامند. کمپرسور مورد مطالعه از نوع جابجایی مثبت و مدل رفت و برگشتی بوده و فشار گاز در خروجی آن به حدود 2450 bar مرسد. در این پژوهش نشت گاز از کمپرسور برای ارزیابی ریسک احتمالی انفجار با استفاده از مدل یاپیونی و شبکه بیزین فازی مدل‌هایی قرار گرفته است. مراحل مطالعه به شرح زیر می‌باشد:

1. ترسیم دایاگرام

این روش گرافیکی برای شروع و با عوامل آن پایان
رویدادهای پایه‌ای، میانی، اصلی، موانع ایمنی و پایامدها در مدل BT بی‌تاثیر به‌عنوان گره‌های ریشه، میانی، اصلی، موانع ایمنی و پایامدها در مدل BN در نظر گرفته می‌شود.

برای این منظور، ابتدا مقادیر احتمال‌های رویدادهای پایانی بدست آمده بر اساس رویکرد فازی به‌عنوان احتمال وقوع گره‌های ریشه‌ای در نظر گرفته شده است. در مدل جهت محاسبه‌ی احتمال رویدادهای میانی از چندین توزیع احتمال شرطی (CPT) استفاده می‌شود. در این حالت احتمال گره‌های میانی بر حسب وابستگی احتمالی که با گره‌های پایانی وابسته به آن دارد طبق روابط احتمالی شرط برای حالات‌های مورد کدام از مغزه‌های گره تبعین می‌شود. در نهایت احتمال گره مرکزی به همین صورت تبعین می‌گردد.

در برای محاسبه‌ی توزیع احتمال مشترک مجموعه‌ای از متغیرها از برابر 0 استفاده می‌شود:

\[P(U) = \prod_{i=1}^{n} P(A_i | A_1, A_2, \ldots, A_{i-1}) \]

1 1 Conditional probability table

Iran Occupational Health. 2021 (01 May);18: 10.

Schema 2. مدل نقل در مدل پایوی (BN) به شکل بعدین

در تحلیل تشخیصی برای Bayes BN از قضیه بایرس، مجموعه دیگری از مشاهدات جدید و نمونه‌های دوره‌ای که‌ها به‌عنوان E تابع خشک، هم‌چنین با استفاده از این مشاهدات، می‌توان با استفاده از این مشاهدات، محاسبه کرد.

\[P(U|E) = \frac{P(U|E) \cdot P(E)}{\sum P(U|E)} \]
طاهره اسکندری و همکاران

10

iran Occupational Health. 2021 (01 May);18: 10.

شکل 3 مدل سایه‌برداری نشت گاز از کمپرسور با مدل Bow-tie

جدول 1. نام‌ها، توصیف‌ها و احتمالات رویدادهای پایه (BE)

احتمال	توصیف	نام	احتمال	توصیف	نام
4/1010-3	عملیات غیرعملی	BE13	2/4710-2	PRV	BE01
1/9910-2	افتادن آب در کمپرسور	BE14	5/2710-3	نقطه شیر	BE02
3/2610-2	تقسیم	BE15	3/3310-3	نقطه یک‌طرفه	BE03
1/8910-2	فشار بالا	BE16	3/1110-4	ترسیم‌سازی	BE04
1/8910-2	تحریم	BE17	1/6110-3	گازگیری	BE05
5/1210-3	عدم ارتباط بین باز و محصول کمپرسور	BE18	3/2810-2	نقطه عملکرد ضعیف	BE06
6/9110-3	فشار بالا	BE19	3/2610-2	نقطه سویج	BE07
3/8110-3	ضمود ناپاسخ	BE20	3/2610-2	نقطه تراسیم‌سازی	BE08
1/4210-3	ضمود جائیده‌ای	BE21	3/2810-2	نقطه عملکرد ضعیف	BE09
3/8110-3	ضمود در پره‌ی‌دنگ	BE22	2/2210-3	عدم تغییر در لوله‌ها و محصول کارتن	BE10
3/2310-3	ضمود در سیستم مصرف (روش‌های خارجی)	BE23	3/2810-2	نقطه عملکرد ضعیف	BE11
2/3110-3	ضمود سیال‌های کاندید	BE24	3/2110-4	ضمود بوت‌های شیرها	BE12
تجزیه و تحلیل ریسک انفجار و آتش‌سوزی

جدول ۲

نام‌های احتمال	توصیف
8/1101۰۰	ازیر صوتی (AS)
8/7750۰۰	جرثقیل آتش (IIB)
9/0510۰۰	شیر فلم انفجاری (ESD)
7/3810۰۰	جرثقیل ناخور (DIB)
وجود مواد و تراکم	Cong

شکل ۴. مدل سازی پویا سناریو نشت گاز از گاز توسط با مدل BN

ویژگی‌های نشت گاز از کمپرسور با مدل پویا سناریو که در مدل سازی ویژگی‌های نشت گاز از کمپرسور با مدل پویا سناریو که در مدل سازی ویژگی‌های نشت گاز از کمپرسور با مدل پویا سناریو که در

شکل ۳

شکل ۳. شکلِ ۳. شکلِ ۳. شکلِ ۳. شکلِ ۳. شکلِ ۳. شکلِ ۳. برای نگاه به مدل سازی پویا نشت گاز از کمپرسور با مدل BN

نظرات

نظرات خبرگان در مورد احتمال شکست رودادهای پایه‌ای و مواد ایمنی در برابر وقوع سناریو با استفاده از شبکه‌های بیزین تعیین شده جمع‌آوری گردید و سپس اجماع نظر خبرگان صورت گرفت. سپس عملیات فازی نظرات خبرگان انجام شد. نتایج حاصل از دیدار FFS1 که در برنامه پایه‌ای به عنوان نمای احتمال قازی کردن فازی بیزین را نشان می‌دهد. مقادیر احتمال شکست رودادهای پایه‌ای و موادی که در این ساختار بیزین وارد می‌گردد و ادامه شکل بیزین فازی ساخته شده می‌باشد استخراج مقدار احتمال رودادهای میانی (IE) و روداد اصلی

3 Intermediate Event
1 Fuzzy Probability score
2 Probability Valve

11

Iran Occupational Health. 2021 (01 May);18: 10.
طاهره اسکندری و همکاران

روزرسانی متوسط کارآمد:

شبکه خسارت استاتیک به مطالعه حل گردیده (FBN رفع مصرف).

جدول ۳: نامدها، توصیفها و احتمالات رویدادهای مایه (IE)

(FBN)	احتمال پیشن	توصیف	رویدادهای اصلی و مهم و صادقانه
FBN1	1/0201:1۰۰۰	تست‌گزار کامپیوتر	E01
FBN2	2/0201:1۰۰۰	تست‌سیستم‌های کوچک	E02
FBN3	3/0301:1۰۰۰	فشار بالای گاز	E03
FBN4	4/0201:1۰۰۰	تست ارزشایی کنترلی	E04
FBN5	5/0301:1۰۰۰	خوردن	E05
FBN6	6/0301:1۰۰۰	عدم عملکرد صحیح نظام‌های کششی	E06
FBN7	7/0301:1۰۰۰	آفرینی دیگر سیستم‌های کامپیوتر	E07
FBN8	8/0301:1۰۰۰	بسته شدن سیستم‌های متن	E08
FBN9	9/0301:1۰۰۰	ترکیب ناپایه صورت	E09
FBN10	10/0301:1۰۰۰	تست عملکرد میلی حرازی	IE10
FBN11	11/0301:1۰۰۰	خطا و ایرانیک	IE11

جدول ۴: نامدها، توصیفها و احتمالات پایه‌های تست‌گزار کامپیوتر

(FBN)	احتمال پیشن	توصیف	نامده
FBN1	2/0201:1۰۰۰	شب‌های مداد	C1
FBN2	3/0201:1۰۰۰	رهایی و میان‌مرفاط مواد	C2
FBN3	4/0201:1۰۰۰	آش شناسایی همراه با خصائص جزئی	C3
FBN4	5/0201:1۰۰۰	انفجار انحراف خصائص جزئی	C4
FBN5	6/0201:1۰۰۰	رهایی و میان‌مرفاط مواد	C5
FBN6	7/0201:1۰۰۰	آش شناسایی همراه با خصائص جزئی	C6
FBN7	8/0201:1۰۰۰	انفجار انحراف خصائص فرمیند	C7
FBN8	9/0201:1۰۰۰	آش شناسایی همراه با خصائص میان‌مرفاط	C8
FBN9	10/0201:1۰۰۰	آش شناسایی همراه با خصائص فرمیند	C9

وقوع رویداد اصلی، آش‌فکری همراه با خسارت متوسط (C8، C9، C10) دارای بیشترین افتراقی در زمان برورسانی احتمالی می‌باشد. بنابراین این‌ها تحت‌النظر باید به‌عنوان مخمول‌ترین بیان‌های انفجار و آتش‌سوزی‌های ناشی از تست‌گزار کامپیوتر شناخته شود.

بحث

هدف اصلی از انجام این مطالعه، رفع مشکل کمبود داده‌های معنی‌دار و دقیق و همچنین حل مشکلات و ظرفیت کم‌سالاری است. استاندارد بودن و عدم سازگاری با حوادث بوبا در روزهای مطالعات ارزیابی ریسک سیستم‌های بودن در مطالعه‌های خطر یک چهارامکن (C8) با میان‌مرفاط مواد و بیشترین مشکلات و کارایی در اختیار است. این نتایج ریسک بودن به‌صورت دیگری به محاسبه و محاسبه دیده، بررسی شده‌اند. به‌نمونه نسخه‌هایی استفاده کرده‌اند، بررسی‌های این‌ها در فشار بالای گاز (IE03) دارای بیشترین افتراقی در زمان برورسانی احتمال وقوع رویداد اصلی از ۰/۵۲۴ تا ۰/۵۸۳، است. اگر این رویداد به‌عنوان محقق بررسی شده باشد (BE01) و پیش‌بینی می‌شود که شناسایی، به‌عنوان افرودیک رابطه وقوع رویداد اصلی و بیان‌ها (عکس)، والایی اطمینان می‌دهد که به‌عنوان محقق بررسی شده باشد. (BE01) PRV همچنین نتایج نشان می‌دهد که پیش‌بینی می‌شود. این‌ها از بین پیش‌بینی شناسایی‌شده‌اند و از استاندارد سایزگانی و گردیدر. از بین پیش‌بینی شناسایی‌شده‌اند و

Iran Occupational Health. 2021 (01 May);18: 10.
تجزیه و تحلیل ریسک انفجار و آتش‌سوزی

تئوریPRI و BN

قبل اعتبار ناتج است (26)، این مدل به‌طور گسترده در زمینه‌های مختلف ایمنی و تحلیل ریسک ازجمله تحلیل ایمنی فرآیندها، ارزیابی ریسک حوادث، مدیریت ریسک و اجرای موانع ایمنی باکر. گرچه است (36).

بتو بیزین

همه منابع و تکنیک‌های مالی

مطالعات و همکاران در سال 2014، سوئی سیمیزا و همکاران در سال 2014 در مورد مدل BN و اصلی‌یابی آن بر آبادی، حضور و اثرات، اکتشاف اطلاعاتی، گزارش‌های غیررسمی، آمار و روند زمانی آماری از جمله مدل BN را به‌طور محدودیت و محدودیت اجتماعی می‌تواند که در این مقاله به‌طور دقیق تشریح شده است.

به همکاران، و Rezaee-BN مطالعات و همکاران (2012) و مطالعات و همکاران (2018) و همکاران (2019) در مطالعه تحلیل ریسک و ایمنی به‌صورت کمی و در سطوح مختلف در سطوح مختلف به‌طور دقیق تشریح شده است.

نتیجه‌گیری

تکنیک عبرتی فازی و شبکه بزین که به شیب پایه و سهین در انتقال و یادگیری و نصب‌سازی به‌صورت ایمنی کاهش داده شده است.

قبل مدل BN است (26). این مدل به‌طور گسترده در زمینه‌های مختلف ایمنی و تحلیل ریسک ازجمله تحلیل ایمنی فرآیندها، ارزیابی ریسک حوادث، مدیریت ریسک و اجرای موانع ایمنی باکر. گرچه است (36).

بتو بیزین

همه منابع و تکنیک‌های مالی

مطالعات و همکاران در سال 2014، سوئی سیمیزا و همکاران در سال 2014 در مورد مدل BN و اصلی‌یابی آن بر آبادی، حضور و اثرات، اکتشاف اطلاعاتی، گزارش‌های غیررسمی، آمار و روند زمانی آماری از جمله مدل BN را به‌طور محدودیت و محدودیت اجتماعی می‌تواند که در این مقاله به‌طور دقیق تشریح شده است.

به همکاران، و Rezaee-BN مطالعات و همکاران (2012) و مطالعات و همکاران (2018) و همکاران (2019) در مطالعه تحلیل ریسک و ایمنی به‌طور کمی و در سطوح مختلف در سطوح مختلف به‌طور دقیق تشریح شده است.

نتیجه‌گیری

تکنیک عبرتی فازی و شبکه بزی‌ین که به شیب پایه و سهین در انتقال و یادگیری و نصب‌سازی به‌صورت ایمنی کاهش داده شده است.

قبل مدل BN است (26). این مدل به‌طور گسترده در زمینه‌های مختلف ایمنی و تحلیل ریسک ازجمله تحلیل ایمنی فرآیندها، ارزیابی ریسک حوادث، مدیریت ریسک و اجرای موانع ایمنی باکر. گرچه است (36).

بتو بیزین

همه منابع و تکنیک‌های مالی

مطالعات و همکاران در سال 2014، سوئی سیمیزا و همکاران در سال 2014 در مورد مدل BN و اصلی‌یابی آن بر آبادی، حضور و اثرات، اکتشاف اطلاعاتی، گزارش‌های غیررسمی، آمار و روند زمانی آماری از جمله مدل BN را به‌طور محدودیت و محدودیت اجتماعی می‌تواند که در این مقاله به‌طور دقیق تشریح شده است.

به همکاران، و Rezaee-BN مطالعات و همکاران (2012) و مطالعات و همکاران (2018) و همکاران (2019) در مطالعه تحلیل ریسک و ایمنی به‌طور کمی و در سطوح مختلف در سطوح مختلف به‌طور دقیق تشریح شده است.

نتیجه‌گیری

تکنیک عبرتی فازی و شبکه بزین که به شیب پایه و سهین در انتقال و یادگیری و نصب‌سازی به‌صورت ایمنی کاهش داده شده است.

قبل مدل BN است (26). این مدل به‌طور گسترده در زمینه‌های مختلف ایمنی و تحلیل ریسک ازجمله تحلیل ایمنی فرآیندها، ارزیابی ریسک حوادث، مدیریت ریسک و اجرای موانع ایمنی باکر. گرچه است (36).

بتو بیزین

همه منابع و تکنیک‌های مالی

مطالعات و همکاران در سال 2014، سوئی سیمیزا و همکاران در سال 2014 در مورد مدل BN و اصلی‌یابی آن بر آبادی، حضور و اثرات، اکتشاف اطلاعاتی، گزارش‌های غیررسمی، آمار و روند زمانی آماری از جمله مدل BN را به‌طور محدودیت و محدودیت اجتماعی می‌تواند که در این مقاله به‌طور دقیق تشریح شده است.

به همکاران، و Rezaee-BN مطالعات و همکاران (2012) و مطالعات و همکاران (2018) و همکاران (2019) در مطالعه تحلیل ریسک و ایمنی به‌طور کمی و در سطوح مختلف در سطوح مختلف به‌طور دقیق تشریح شده است.

نتیجه‌گیری

تکنیک عبرتی فازی و شبکه بزین که به شیب پایه و سهین در انتقال و یادگیری و نصب‌سازی به‌صورت ایمنی کاهش داده شده است.

قبل مدل BN است (26). این مدل به‌طور گسترده در زمینه‌های مختلف ایمنی و تحلیل ریسک ازجمله تحلیل ایمنی فرآیندها، ارزیابی ریسک حوادث، مدیریت ریسک و اجرای موانع ایمنی باکر. گرچه است (36).

بتو بیزین

همه منابع و تکنیک‌های مالی

مطالعات و همکاران در سال 2014، سوئی سیمیزا و همکاران در سال 2014 در مورد مدل BN و اصلی‌یابی آن بر آبادی، حضور و اثرات، اکتشاف اطلاعاتی، گزارش‌های غیررسمی، آمار و روند زمانی آماری از جمله مدل BN را به‌طور محدودیت و محدودیت اجتماعی می‌تواند که در این مقاله به‌طور دقیق تشریح شده است.

به همکاران، و Rezaee-BN مطالعات و همکاران (2012) و مطالعات و همکاران (2018) و همکاران (2019) در مطالعه تحلیل ریسک و ایمنی به‌طور کمی و در سطوح مختلف در سطوح مختلف به‌طور دقیق تشریح شده است.
10. Kalantarnia M, Khan F, Hawboldt K. Modelling of BP Texas City refinery accident using dynamic risk assessment approach. Process Safety and Environmental Protection. 2010;88(3):191-9.

11. Nezhad AZ, Mortazavi SB, Mahabadi HA, Khavanin A. Identification and Safety Assessment of the Hazardous Zones (Unwanted Energy Flows) in an Construction Project at the National Petrochemical Company by Application of ET and BA Method. Journal of Applied Sciences. 2007;7(19):2769-75.

12. Bjerketvedt D, Bakke JR, Van Wingerden K. Gas explosion handbook. Journal of hazardous materials. 1997;52(1):1-150.

13. Lees F. Lees’ Loss prevention in the process industries: Hazard identification, assessment and control. Butterworth-Heinemann; 2012.

14. Smith LC, Smith M, Ashcroft P. Analysis of economic and environmental damages from British Petroleum's Deepwater Horizon oil spill. Albany Law Review. 2011;74(1):563-85.

15. Amiri M, Ardeshir A, Zarandi MHF. Risk-based analysis of construction accidents in Iran during 2007-2011-meta analyze study. Iranian journal of public health. 2014;43(4):507.

16. Yazdi M, Adesina KA, Korhan O, Nikfar F. Learning from fire accident at bouali sira petrochemical complex plant. Journal of failure analysis prevention. 2019;19(6):1517-36.

17. Naderi M, Mohammadfam I, Kalatpour O. Determining training needs of emergency response team’s using task criticality analysis at Bouali Sina Petrochemical Co. and comparison with the HAZWOPER standard. Iran Occupational Health. 2020;17(1).

18. Marhavilas PK, Koulouriotis D. A risk-estimation methodological framework using quantitative assessment techniques and real accidents’ data: Application in an aluminum extrusion industry. Journal of Loss Prevention in the Process Industries. 2008;21(6):596-603.

19. John A, Yang Z, Riahi R, Wang J. A risk assessment approach to improve the resilience of a seaport system using Bayesian networks. Ocean Engineering. 2016;111:136-47.

20. Li X, Chen G, Zhu H. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network. Process Safety Environmental Protection. 2016;103:163-73.

21. Parvini M, Kordrostami A. Consequence modeling of explosion at Azad-Shahr CNG refueling station. Journal of Loss Prevention in the Process Industries. 2014;30:47-54.

22. Arunraj N, Mandal S, Maiti J. Modeling uncertainty in Tehran University and Tehran.

References

1. Nouri J, Azadeh A, Mohammad Fam I, Azam Azadeh M. Integrated health, safety, environment and ergonomic management systems for industry. Journal of research in health sciences. 2007;7(1):32-42.

2. Azadeh A, Fan IM, Azadeh MA. Integrated HSEE management systems for industry: A case study in gas refinary. Journal of the Chinese Institute of Engineers. 2009;32(2):235-41.

3. Ghasemi F, Kalatpour O, Moghimbeigi A, Mohammadam I. A path analysis model for explaining unsafe behavior in workplaces: the effect of perceived work pressure. International journal of occupational safety and ergonomics. 2018;24(2):303-10.

4. Nadkarni S, Shenoy PP. A Bayesian network approach to making inferences in causal maps. European Journal of Operational Research. 2001;128(3):479-98.

5. Mohammadfam I, Ghasemi F, Kalatpour O, Moghimbeigi AJAe. Constructing a Bayesian network model for improving safety behavior of employees at workplaces. 2017:58:35-47.

6. Azadeh M, Keramati A, Mohammadfam I, Jamshidnejad B. Enhancing the availability and reliability of power plants through macroergonomics approach. 2006.

7. Khakzad N, Khan F, Amyotte P. Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Safety Environmental Protection. 2013;91(1-2):46-53.

8. Khakzad N, Khan F, Amyotte P. Quantitative risk analysis of offshore drilling operations: A Bayesian approach. Safety science. 2013;57:108-17.

9. Shirali GA, Motamedzade M, Mohammadfam I, Ebrahimipour V, Moghimbeigi A. Assessment of resilience engineering factors based on system properties in a process industry. Cognition, Technology & Work. 2016;18(1):19-31.
تجزیه و تحلیل ریسک انفجار و آتش‌سوزی

15

36. Abimbola M, Khan F, Khakzad N, Butt S. Safety and risk analysis of managed pressure drilling operation using Bayesian network. Safety science. 2015;76:133-44.
37. Khan FI, Abbasi S. Techniques and methodologies for risk analysis in chemical process industries. Journal of Loss Prevention in the Process Industries. 1998;11(4):261-77.
38. Jozi S, ESMAT SS, MAHMoudi KJZ. Environmental risk assessment of the olefin plant in Arya Sasol petrochemical complex using fault tree analysis method. 2014.
39. Mirza S, Omidvari M, Lavasani SMRMjsP. The application of Fuzzy logic to determine the failure probability in Fault Tree Risk Analysis. Safety promotion and injury prevention. 2014;2(2):113-23. [Persian].
40. Aqlan F, Ali EM. Integrating lean principles and fuzzy bow-tie analysis for risk assessment in chemical industry. Journal of Loss Prevention in the process Industries. 2014;29:39-48.
41. Jahanbani Z, Sereshki F, Ataei M, Ghanabari K. Risk Assessment of Fire by using Fuzzy Fault Tree Analysis Case study: Eastern Alborz Coal Mines. Iran Occupational Health. 2017;14(3):46-57.
42. Vinnem J, Bye R, Gran B, Kongsvik T, Nyheim O, Okstad E, et al. Risk modelling of maintenance work on major process equipment on offshore petroleum installations. Journal of Loss Prevention in the Process Industries. 2012;25(2):274-92.
43. Zhang L, Wu X, Qin Y, Skibniewski MJ, Liu W. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage. Risk Analysis. 2016;36(2):278-301.
44. Rezaee MJ, Yousefi S, Valipour M, Dehdar MM. Risk analysis of sequential processes in food industry integrating multi-stage fuzzy cognitive map and process failure mode and effects analysis. Computers & Industrial Engineering. 2018;123:325-35.
45. Wu J, Zhou R, Xu S, Wu Z. Probabilistic analysis of natural gas pipeline network accident based on Bayesian network. Journal of Loss Prevention in The Process Industries. 2017;46:126-36.
46. Zhang Q, Zhou C, Tian Y-C, Xiong N, Qin Y, Hu B. A fuzzy probability Bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Transactions on Industrial Informatics. 2017;14(6):2497-506.
47. Yuan Z, Khakzad N, Khan F, Amyotte P. Risk analysis of dust explosion scenarios using Bayesian networks. Risk analysis. 2015;35(2):278-91.
48. Li H-L, Kao H-Y. Constrained abductive reasoning with risk assessment: An integrated approach with fuzzy set theory and Monte Carlo simulation. Accident Analysis Prevention. 2013;55:242-55.
49. Sa’idi E, Anvaripour B, Jaderi F, Nabhani N. Fuzzy risk modeling of process operations in the oil and gas refineries. Journal of Loss Prevention in the Process Industries. 2014;30:63-73.
50. Abimbola M, Khan F, Khakzad N. Dynamic safety risk analysis of offshore drilling. Journal of Loss Prevention in the Process Industries. 2014;30:74-85.
51. Yang X, Mannan MS. The development and application of dynamic operational risk assessment in oil/gas and chemical process industry. Reliability Engineering System Safety. 2010;95(7):806-15.
52. Falahati M, Karimi A. Development and ranking of safety performance indicators using Bayesian network and analysis hierarchical process: Case of work at height of the oil and gas refinery construction phase. Iran Occupational Health. 2018;15(3):172-85. [Persian].
53. Mohammadfam I, Ghasefi M, Kalatpour O, Moghimbeigi A. Constructing a Bayesian network model for improving safety behavior of employees at workplaces. Applied ergonomics. 2017;58:35-47.
54. Ali Noroozian RBK, Seyed Taghi Akhavan Niaiki. System-risk sensitivity analysis in Bayesian networks. Industrial Engineering & management. 2018.
55. Barua S, Gao X, Pasman H, Mannan MS. Bayesian network based dynamic operational risk assessment. Journal of Loss Prevention in the Process Industries. 2016;41:399-410.
56. Ilbahar E, Karamaz A, Cebi S, Kahraman C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety science. 2018;103:124-36.
57. Behera C, Bodwal J, Sikary AK, Chauhan MS, Bijarnia M. Deaths due to accidental air conditioner compressor explosion: a case series. Journal of forensic sciences. 2017;62(1):254-7.
58. Guo Q, Pang Z, Wang Y, Tian J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Applied geochemistry. 2017;81:63-75.
59. Kelly BD. Investigation of a hydrogen compressor explosion. Journal of Loss Prevention in the Process Industries. 1998;11(4):253-6.
60. Mohammad Fam I, Kalatpour O. Risk assessment of liquefied petroleum gas (LPG) storage tanks in the process industries using the Bowtie technique. Journal of Occupational Hygiene Engineering. 2016;3(2):1-11. [Persian].
61. Mirzaee Alibadi M, Mohammadfam I. Root causes analysis of the Blow out of oil and gas wells in the drilling
50. Markowski AS, Mannan MS, Kotynia A, Pawlak H. Application of fuzzy logic to explosion risk assessment. Journal of Loss Prevention in the Process Industries. 2011;24(6):780-90.

49. Ghasemi A, Mahmoudzadeh S. Assessment of economic projects in uncertain conditions (fuzzy approach). Journal of Economic Research. 2011;45(4):83-108.