The Ras superfamily at a glance

Krister Wennerberg1,*, Kent L. Rossman2 and Channing J. Der2

1Cytoskeleton Inc., 1830 S. Acoma Street, Denver, CO 80223, USA
2University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599-7295, USA

*Author for correspondence (e-mail: kristerw@cytoskeleton.com)

Journal of Cell Science 118, 843-846 Published by The Company of Biologists 2005 doi:10.1242/jcs.01660

Supplementary material available online at http://jcs.biologists.org/cgi/content/full/118/5/843/DC1

The Ras superfamily of small guanosine triphosphatases (GTPases) comprise over 150 human members (Table S1 in supplementary material), with evolutionarily conserved orthologs found in Drosophila, C. elegans, S. cerevisiae, S. pombe, Dictyostelium and plants (Colicelli, 2004). The Ras oncogene proteins are the founding members of this family, which is divided into five major branches on the basis of sequence (Fig. S1 in supplementary material) and functional similarities: Ras, Rho, Rab, Ran and Arf. Small GTPases share a common biochemical mechanism and act as binary molecular switches (Vetter and Wittinghofer, 2001). Although similar to the heterotrimeric G protein α subunits in biochemistry and function, Ras family proteins function as monomeric G proteins. Variations in structure (Biou and Cherfils, 2004), post-translational modifications that dictate specific subcellular locations and the proteins that serve as their regulators and effectors allow these small GTPases to function as sophisticated modulators of a remarkably complex and diverse range of cellular processes. Here, we present the basic structural features of Ras proteins, with respect to specific Ras sequences, to highlight the general properties of this family of proteins and discuss features that distinguishes the various branches of the superfamily from Ras.

Ras superfamily structure

Ras superfamily GTPases function as GDP/GTP-regulated molecular switches (Vetter and Wittinghofer, 2001). They share a set of conserved G box GDP/GTP-binding motif elements beginning at the N-terminus: G1,
GXXXGKS/T; G2, T; G3, DXXQ0/H/T; G4, T/NKXD; and G5, C/SAX/L/T (Bourne et al., 1991) (Fig. S1 in supplementary material). Together, these elements make up an ~20 kDa G domain (Ras residues 5-166) that has a conserved structure and biochemistry shared by all Ras superfamily proteins, as well as Gα and other GTPases.

Ras superfamily GTPase biochemistry and regulation

Small GTPases exhibit high-affinity binding for GDP and GTP, and possess low intrinsic GTP hydrolysis and GDP/GTP exchange activities. GDP/GTP cycling is controlled by two main classes of regulatory protein. Guanine-nucleotide-exchange factors (GEFs) promote formation of the active, GTP-bound form (Schmidt and Hall, 2002), whereas GTPase-activating proteins (GAPs) accelerate the intrinsic GTPase activity to promote formation of the inactive GDP-bound form (Bernards and Settleman, 2004). GTPases within a branch use shared and distinct GAPs and GEFs. GTPases in different branches exhibit structurally distinct but mechanistically similar GAPs and GEFs. The two nucleotide-bound states have similar conformations but these have pronounced differences corresponding to the switch I (Ras residues 30-38) and switch II (59-67) regions: the GTP-bound form (Bernards and Hall, 2000; Repasky et al., 2004). The two switches undergo significant conformational changes during GDP/GTP cycling. Although the GTP-bound form is the active form for all Ras superfamily GTPases, the cycling between the GDP-bound and GTP-bound states, in which distinct functions are associated with each nucleotide-bound form, is also critical for the activities of Rab, Arf and Ran GTPases. The core effector domain (Ras residues 32-40) includes the switch I domain and is critical for direct association with effectors (Herrmann, 2003).

Lipid modification and membrane targeting

A second important biochemical feature of a majority of Ras superfamily proteins is their post-translational modification by lipids. The majority of Ras and Rho family proteins terminate with a C-terminal CAAX (C=Cys, A=aliphatic, X=any amino acid) tetrapeptide sequence (Cox and Der, 2002). This motif, when coupled together with residues immediately upstream (e.g. cysteine residues modified by the fatty acid palmitate), comprises the membrane-targeting sequences that dictate interactions with distinct membrane compartments and subcellular locations. The CAAX motif is the recognition sequence for farnesyltransferase and geranylgeranyltransferase I, which catalyze the covalent addition of a farnesyl or geranylgeranyl isoprenoid, respectively, to the cysteine residue of the tetrapeptide motif. Rab family proteins terminate in a distinct set of cysteine-containing C-terminal motifs (CC, CXC, CCX, CXX, or CXXX) that are similarly modified by geranylgeranyltransferase II, which also attaches geranylgeranyl groups. Some members of the Arf family are modified at their N-termini by a myristate fatty acid. These modifications are essential for facilitating membrane association and subcellular localization critical for biological activities. Rho and Rab GTPases are regulated by a third class of proteins, guanine nucleotide dissociation inhibitors (GDIs), which mask the prenyl modification and promote cytosolic sequestration of these GTPases (Seabra and Wasseimer, 2004). Some Ras superfamily members do not appear to be modified by lipids, but still associate with membranes (e.g. Rit, RhoBTB, Miro and Sar1). Others (e.g. Ran and Rerg) are not lipid modified and are not bound to membranes.

Subgrouping of the Ras superfamily

The Ras superfamily has traditionally been divided into five different major branches. The classification of some less-studied proteins into these major subfamilies is arbitrary, and sequence comparisons of the G domains suggest that they may define distinct subfamilies.

In the absence of any functional data, a definitive classification of these GTPases is not yet possible. Here, we group the proteins that, on the basis of structure, function or both, clearly belong to a specific subfamily. In cases where neither structural nor functional data support putting a protein in one of the major subfamilies, we leave the protein as ‘Unclassified’ even though some of these proteins have previously been labeled as belonging to a certain subfamily. In the human genome, there are also a large number of Ras superfamily pseudogenes. We have chosen not to include gene sequences from databases where no evidence of transcription has been found. Furthermore, in addition to the proteins listed here, there are many genes that have regions predicted to encode sequences similar to parts of a small GTPase domain, but we have chosen only to include proteins that contain complete Ras-like GTPase domains.

The Ras family

The Ras sarcoma (Ras) oncoproteins are the founding members of the Ras family (36 members) and have been the subject of intense research scrutiny, in large part because of their critical roles in human oncogenesis (Repasky et al., 2004). Ras proteins serve as signaling nodes activated in response to diverse extracellular stimuli. Activated Ras interacts with multiple, catalytically distinct downstream effectors, which regulate cytoplasmic signaling networks that control gene expression and regulation of cell proliferation, differentiation, and survival.

The best characterized Ras signaling pathway is activation of Ras by the epidermal growth factor receptor tyrosine kinase through the RasGEF Sos (Repasky et al., 2004). Activated Ras binds to and promotes the translocation of the Raf serine/threonine kinase to the plasma membrane, where additional phosphorylation events promote full Raf kinase activation. Raf phosphorylates and activates the MEK1/2 dual specificity protein kinase, which phosphorylates and activates the ERK1/2 mitogen-activated protein (MAP) kinase. Activated ERK translocates to the nucleus, where it
phosphorylates Ets-family transcription factors, which in turn activate Ets-responsive promoters.

Other Ras family proteins, including Rap, R-Ras, Rap1 and Rheb proteins, also regulate signaling networks. Finally, although biochemically similar to Ras, several Ras family proteins appear to act as tumor suppressors, rather than as oncogenes (e.g. Rerg, Noey2 and D-Ras), in cancer development (Colicelli, 2004).

The Rho family
Like Ras, Ras homologous (Rho) proteins also serve as key regulators of extracellular-stimulus-mediated signaling networks that regulate actin organization, cell cycle progression and gene expression (Etienne-Manneville and Hall, 2002). Twenty members have been identified, RhoA, Rac1 and Cdc42 being the best studied. Rho GTPases are key regulators of actin reorganization. RhoA promotes actin stress fiber formation and focal adhesion assembly; Rac1 promotes lamellipodium formation and membrane ruffling; and Cdc42 promotes actin microspikes and filopodium formation. Consequently, Rho GTPases have been implicated in the regulation of cell polarity, cell movement, cell shape, and cell-cell and cell-matrix interactions, as well as in regulation of endocytosis and exocytosis (Ridley, 2001). Reflecting their involvement in such a diversity of cellular processes, RhoA, Rac1 and Cdc42 proteins are each regulated by a surprising diversity of GEFs and GAPs (Schmidt and Hall, 2002; Moon and Zheng, 2003) and utilize a similarly diverse set of downstream effectors (Bishop and Hall, 2000). Actin reorganization functions have also been observed for other Rho family GTPases, in particular Rnd proteins, which antagonize RhoA.

Although the Miro proteins were first described as Rho proteins, these atypical GTPases instead appear to form their own subgroup of the Ras superfamily (Wennerberg and Der, 2004). In addition to their N-terminal GTPase domain, they contain EF-hand domains and one C-terminal GTPase-like domain. They lack the insert domain that is characteristic of Rho GTPases (Fig. S1 in supplementary material). The Miro proteins do not regulate the cytoskeleton; instead they are localized to mitochondria and regulate the integrity of these cellular compartments.

The Rab family
First described as Ras-like proteins in grain (Rab), Rab proteins comprise the largest branch of the superfamily, with 61 members (Pereira-Leal and Seabra, 2001). Rab GTPases are regulators of intracellular vesicular transport and the trafficking of proteins between different organelles of the endocytic and secretory pathways (Zerial and McBride, 2001). Rab proteins facilitate vesicle formation and budding from the donor compartment, transport to the acceptor compartment, and vesicle fusion and release of the vesicle content into the acceptor compartment.

Rab proteins localize to specific intracellular compartments consistent with their function in distinct vesicular transport processes (Zerial and McBride, 2001). This localization is dependent on prenylation, and specificity is dictated by divergent C-terminal sequences. For example, Rab1 is located in the intermediate compartment of the cis-Golgi network and is involved in ER-to-Golgi transport. By contrast, Rab5 is located in early endosomes and regulates clathrin-coated-vesicle-mediated transport from the plasma membrane to early endosomes. Similar distinct intracellular locations and roles in vesicular transport have been established for other Rab members.

The Ran family
The Ras-like nuclear (Ran) protein is the most abundant small GTPase in the cell and is best known for its function in nucleocytoplasmic transport of both RNA and proteins (Weis, 2003). Although related to the Rab proteins in sequence, it has features that distinguish it. Unlike other small GTPases, Ran function is dependent on a spatial gradient of the GTP-bound form of Ran. There is a single human Ran protein that is regulated by a Ran-specific nuclear GEF and cytoplasmic GAP activities. This results in a high concentration of Ran-GTP in the nucleus, which facilitates the directionality of nuclear import and export. Nuclear Ran-GTP interacts with importin to promote cargo release, and with exportin-complexed cargo, to facilitate nuclear import and export of cargo, respectively. By a similar mechanism, Ran GDP/GTP cycling also regulates mitotic spindle assembly, DNA replication and nuclear envelope assembly (Li et al., 2003).

The Arf family
Like the Rab proteins, the ADP-ribosylation factor (Arf) family proteins are involved in regulation of vesicular transport, Arf1 being the best characterized (Memon, 2004). Arf GDP/GTP cycling is regulated by distinct GEFs and GAPs (Nie et al., 2003). Arf-GTP, the active form, interacts with effectors including vesicle coat proteins. Conformational differences between the two nucleotide-bound forms include not only the switch I and II regions, but also changes in the N-terminal region that allow the myristate group to interact with membranes in their GTP-bound state (Pasqualato et al., 2002).

Arf1 regulates the formation of vesicle coats at different steps in the exocytic and endocytic pathways (Nie et al., 2003; Memon, 2004). GTP- and donor-membrane-bound Arf associates with and activates coat proteins. The Arf–coat-protein complex then facilitates cargo sorting and vesicle formation and release. GAP-mediated formation of Arf-GDP is required for dissociation of the Arf–coat-protein complex and subsequent vesicle fusion with acceptor membranes. In contrast to Rab proteins, which function at single steps in membrane trafficking, Arf proteins can act at multiple steps. For example, Arf1 controls the formation of coat protein I (COPI)-coated vesicles involved in retrograde transport between the Golgi and ER, of clathrin/adapter protein 1 (AP1)-complex-associated vesicles at the trans-Golgi network (TGN) and on immature secretory vesicles, and of AP3-containing endosomes. Arf6 is functionally distinct from Arf1 and can regulate actin organization as well as endocytosis. Regulation and function of Sar1 is
similar to that of Arf1, controlling the assembly of the COPI-coated vesicles at the ER. Arf1 also functions in membrane trafficking. Other family members exhibit different or poorly characterized cellular functions.

The complex modes of regulation of Ras superfamily small GTPases facilitate their key involvement in an amazingly diverse spectrum of biochemical and biological processes. The extent of this superfamily, when combined with Gα subunits and up to 50 other human GTPases (Colicelli, 2004), reveals the versatile role of GTPase switches in the control of cellular processes.

References
Bernards, A. and Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 14, 377-385.
Biou, V. and Cherfils, J. (2004). Structural principles for the multispecificity of small GTP-binding proteins. Biochemistry 43, 6833-6840.
Bishop, A. L. and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem. J. 348, 241-255.
Bourne, H. R., Sanders, D. A. and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.
Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci. STKE 2004, RE13.
Cox, A. D. and Der, C. J. (2002). Ras family signaling: therapeutic targeting. Cancer Biol. Ther. 1, 599-606.
Etienne-Manneville, S. and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629-635.
Herrmann, C. (2003). Ras-effector interactions: after one decade. Curr. Opin. Struct. Biol. 13, 122-129.
Li, H. Y., Cao, K. and Zheng, Y. (2003). Ran in the spindle checkpoint: a new function for a versatile GTPase. Trends Cell Biol. 13, 553-557.
Memon, A. R. (2004). The role of ADP-riboylation factor and SAR1 in vesicular trafficking in plants. Biochim. Biophys. Acta 1664, 9-30.
Moon, S. Y. and Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13-22.
Nie, Z., Hirsch, D. S. and Randazzo, P. A. (2003). Arf and its many interactors. Curr. Opin. Cell Biol. 15, 396-404.
Pasqualato, S., Renault, L. and Cherfils, J. (2002). Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 3, 1035-1041.
Pereira-Leal, J. B. and Seabra, M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889-901.
Repasky, G. A., Chenette, E. J. and Der, C. J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 14, 639-647.
Ridley, A. J. (2001). Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471-477.
Schmidt, A. and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587-1609.
Seabra, M. C. and Wasmieer, C. (2004). Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 16, 451-457.
Vetter, I. R. and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.
Weis, K. (2003). Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-451.
Wennerberg, K. and Der, C. J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301-1312.
Zerial, M. and McBride, H. (2001). Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107-117.
Table: Alignment of the GTPase domain of the Ras superfamily members

Gene	Core effector domain/G2		
Arf1	18 MRILVMGLDAAGKTTILYKLKG--EEIVTIP----II--GFNVET 55		
Arf3	18 MRILVMGLDAAGKTTILYKLKG--EEIVTIP----II--GFNVET 55		
Arf4	18 MRILVMGLDAAGKTTILYKLKG--EEIVTIP----II--GFNVET 55		
Arf5	18 MRILVMGLDAAGKTTILYKLKG--EEIVTIP----II--GFNVET 55		
Arf6	18 MRILVMGLDAAGKTTILYKLKG--EQSTIP----IV--GFNVET 55		
Ard1	405 IRVVTIQLGDAGKTTILFKLKQD--EMQPIP----II--GFNVET 442		
Ar11	18 MRILILGLDAAGKTTILYQLQVQ--EEIVTIP----II--GFNVET 55		
Arl5	17 HKKVIVGLDAGKTTILYQFSMN--EEIVHSP----II--GSMVPE 54		
Arl8	16 HKKVIVGLDAGKTTILYQFSMN--EEIVHSP----II--GSMVPE 53		
Arl12	17 LRLLMGLDAAGKTTILKFPNGE--DIDSIP----LL--GFNKRI 54		
Arl13	18 VRLILLGLDAAGKTTLLKLAQE--DIHITP----Q----GFNKS 55		
Arl16	19 VHLCLGLDAGKTTINLKLPSNA--QSSQPLS----II--GFSIEM 58		
Arl14	21 FHIIVGLDAAGKTTVLRLQFPN--EFVNTVP----KK--GFNTEK 58		
Arl17	14 LHIVMLGLDAAGKTTVLRLKFPN--EFVNTVP----II--GFNTEK 51		
Arf4L	22 LHVVVGLDAGKTTLLYLKFKP--EFVQSP----KK--GFNTEK 59		
Arl11	13 AOVMGLDAGKTTLLYKLQKH--QLVETLP----IV--GFNVPE 50		
FLJ22595	14 AQLVLGLDAGKTTLLYKLRA--KDITIP----II--GFNVEM 51		
ArfrP1	18 YCILILGLDAAGKTTFLQGKRNKMYLGLSLKTT--IV--GLNIGT 63		
Arl12L1	22 YVLMLGLDAGKTTAKGIOQY----PEDVAP----IV--GFSKIN 59		
Arl9	19 KQILMLGLDAAGKTTSLVhLSNRA--QDSVAP----Q----GFHACD 57		
Arl10A	78 REVVLGLDAGKTTFLVLSKGP--PLECHIP----W----GFNSVRE 116		
Sarla	26 GKLVLGLDAGKTTLLHLMKDL----RLQGVHP----L--HPTSEE 63		
SarlB	26 GKLVLGLDAGKTTLLHLMKDL----RLQGVHP----L--HPTSEE 63		
Arl10B	21 MEILVLQGYSKTTYTVNIAQG--QNNEDMIP--Q----GFNMRRK 59		
Arl10C	21 MEILVLQGYSKTTYTVNIAQG--QNNEDMIP--Q----GFNMRRK 59		
LOC339231	24 GMCLLGLATGVKTLVRLQEVSSRDGKDLGEFPEKTRP--IV--GTELTD 71		
RhoA	6 KKLIVVGLDAGKTTCLLIVFSKQQ--FFEVPVP----TF--ENVYAD 45		
RhoC	6 KKLIVVGLDAGKTTCLLIVFSQDQ--FFEVPVP----TF--ENVYAD 45		
RhoB	6 KKLIVVGLDAGKTTCLLIVFSKQDQ--FFEVPVP----TF--ENVYAD 45		
Rnd2	8 CKIVVGLDAGKTTCLLIVSFKQD----FPYQYP----TF--ENYTA 47		
Rnd3	24 CKIVVGLDAGKTTCLLIVSFKQD----FPYQYP----TF--ENYTA 47		
Rnd1	14 CLLVVGLDAGKTTCLLIVSFKQD----FPYQYP----TF--ENYTA 47		
RhoD	18 VKVVLGLDAGKTTSLMVFADGAP--FPESYP----TF--ERYMVE 57		
Rif	20 KLVIVVGLDAGKTTSLMVSQGQG--FPEHYAP----SVF--EKTASA 59		
Rac1	4 IKCVVGLDAGKTTCLLISSTNTA--FPGEYIP----TFV--DNYSAN 43		
Rac2	4 IKCVVGLDAGKTTCLLISSTNTA--FPGEYIP----TFV--DNYSAN 43		
Rac3	4 IKCVVGLDAGKTTCLLISSTNTA--FPGEYIP----TFV--DNYSAN 43		
RhoG	4 IKCVVGLDAGKTTCLLISSTNTA--FPGEYIP----TFV--DNYSAN 43		
TC10	18 KKVVGLDAGKTTCLLMSYANDA--FPEEPYP----TFV--DHYAVS 57		
TCL	22 KKVVGLDAGKTTCLLMSYANDA--FPEEPYP----TFV--DHYAVT 61		
Cdc42	4 2 KKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TFV--DNYSAN 43		
Wrch-2	32 IKCLVGLDAGKTTSLIVSTSCTNG--YPARYRP----CAL--DTFSVQ 71		
Wrch-1	50 IKCLVGLDAGKTTSLIVSTSCTNG--YPARYRP----CAL--DTFSVQ 71		
RhoH	5 2 KKVVLGLDAGKTTSLMVFADGAP--FPESYP----TFV--DHYAVS 57		
RhoB1	15 IKCVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
RhoB2	15 IKCVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
H-Ras	4 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
K-Ras2B	2 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
N-Ras	4 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
R-Ras	30 HKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
TC21	15 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
M-Ras	14 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Rit1	22 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Rit2	21 YKLIVVGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Rap1A	4 YKLVLGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Rap1B	4 YKLVLGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Rap2A	4 YKLVLGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Rap2C	4 YKLVLGLDAGKTTCLLISSTNTA--FPGEYIP----TF--DNYSAN 43		
Protein	Length	Sequence	Description
----------	--------	----------	-------------
Rab23	12	IVMVVGNAVGKSSLMQRCKG -------------- -IFTKD--YKGI GF DFLERQ	50
RabL4	8	AAACILAPAVGKTALAQIFRSDG-------- -AHF QKSS YLTG MD LVLVKT	47
Rab9A	10	FKVILLGDGGVGSMLMNRYVTSN-------- -KFDTQS--LPF H GVE FLN K	47
Rab9B	10	FKVILLGDGGVGSMLMNRYVTSN-------- -KFDSQS--APH H GVE FLN R	47
Rab7A	8	KPVILGDSGVGSLMNQYVNK-------- -KFSNQ--YA KIGAD FLK	48
Rab7B	8	KLVIGVAIGVGTSLPHQVYHKL-------- -TFYEE--YQT G LGA SI L K	48
Rab32	38	FKVILGAVGKTSLMVIFRSDG--------- -AHFQ---LFSQH--YRAIGVD FALK	49
Rab38	10	YKVILGADLGKSTKIRR YVHKL-------- -NFSSH--YRAIGVD FALK	49
Rab7L1	7	FKVILGAVGKTSLMVIFRSDG--------- -AHFQ---LFSQH--YRAIGVD FALK	47
Rab5A	21	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab5C	21	FKLVLGDSGVGSSLMVRF VKG------ -QPEH--QESTGAAFLT Q	60
Rab5B	21	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab22A	5	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab22B	5	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab24	5	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab21	5	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab17	29	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab6A	14	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab6C	14	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab6B	14	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab28	13	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab22B	8	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab15	9	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab34	53	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Rab36	53	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Ran	11	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
RabL2A	22	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
RabL2B	22	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Miro1	5	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Miro2	5	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
ArfRP2	33	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
SRPRB	65	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
LOC401884	1	FKLVLGDSGVGSSLMRVFQK------ -QPEH--QESTGAAFLT Q	60
Protein	Sequence	Length	
-----------	--------------	--------	
Arf1	VEYKN--------ISFTV 65		
Arf3	VEYKN--------ISFTV 65		
Arf4	VEYKN--------ICFTV 65		
Arf5	VEYKN--------ICFTV 65		
Arf6	VTYKN--------VKFNV 65		
Ardr1	VEYKN--------LKFTI 452		
Ar1l1	VTYKN--------LKFQV 65		
Ar1l5	IVINN--------TRFLM 64		
Ar1l8	IVVKN--------THFLM 63		
Ar1l2	LEHRG--------FKLNI 64		
Ar1l3	VQSQG--------FKLNV 65		
Ar1l6	FKSSS--------LSFTV 68		
Ar1l4	IKVTLGNSKT---VTFHF 73		
Ar1l7	IKLSNGTAKG---VTFHF 73		
Arf4L	IRVPLGGSRG---ITFQV 74		
Ar1l11	LKAPG---H---VSLTL 61		
FLJ22595	IELER---N---LSLTV 62		
ArfRP1	VDVGK--------ARLMF 73		
Ar1l2l1	LRQGK--------FEVTI 69		
Ar1l9	INTED--------SOMEF 67		
Ar1l10A	LPTKD--------FEVDL 126		
Sar1a	LTIAG--------MTFTT 73		
Sar1b	LTIAG--------MTFTT 73		
Ar1l10B	ITKGN--------VTIKL 69		
Ar1l10C	VTKGN--------VTIKI 69		
LOC339231	IVAQR--------KITT 80		
RhoA	IEVDGKQ------VELAL 57		
RhoC	IEVDGKQ------VELAL 57		
RhoB	IEVDGKQ------VELAL 57		
Rnd2	FEIDKRR------IELNM 59		
Rnd3	FEIDTQR------IELSL 75		
Rnd1	LETEEQR------VELSL 65		
RhoD	LQVKGKP------VHLHI 69		
Rif	VTVGSKE------VSLNL 71		
Rac1	VMVDGKP------VNLGL 55		
Rac2	VMVDKGP------VNLGL 55		
Rac3	VMVDGKP------VNLGL 55		
RhoG	SAVDGRT------VNLNL 55		
TC10	VTVGGKQ------YLLGL 69		
TCL	VTVGGKQ------YLLGL 69		
Cdc42	VMIGGEP------YTLGL 55		
Wrch-2	VLVGDAP------VEREL 83		
Wrch-1	VSVDGRP------VRQLQ 101		
RhoH	VFMDGQ------ISLGL 56		
RhoBTB1	CQVELERSRDVDEVVS--VSLRL 82		
RhoBTB2	CQVELERSRDVDDVS--VSLRL 82		
H-Ras	VVID-GETCL---LDI 55		
K-Ras2B	VVID-GETCL---LDI 55		
N-Ras	VVID-GETCL---LDI 55		
N-Ras	CSVD-GIPAR---LDI 81		
TC21	CVID-DRAAR---LDI 66		
M-Ras	TEID-NQWAI---LDV 65		
Rit1	IRID-DEPAN---LDI 73		
Rit2	VRID-NEPAY---LDI 72		
Rap1A	VEVDFQOQCM------LEI 55		
Rap1B	VEVDFAQCM------LEI 55		
Rap2A	IEVD-SSPSV------LEI 55		
Rap2C	IEVD-SSPSV------LEI 55		
Protein	Sequence	Length	Number
-------------	-------------------------------	--------	--------
Rap2B	IEVD-SSPSV		
RasA	VVLD-GEEVQ		
RasB	VVLD-GEEVQ		
E-Ras	LTLD-SGDCI		
Gem	LMVD-GESAT		
Rad	IVVD-GEEAS		
Rem1	LTVD-GEDTT		
Rem2	IMVD-KEEVT		
Rerg	ATID-DEVVS		
Ris	ETVD-HQPVH		
RasL11A	VYVE-GDQLS		
RasL11B	VQIE-GETLA		
FLJ22655	LCLE-RKQLN		
Di-Ras1	ISCD-KSVCT		
Di-Ras2	ISCD-KSIC		
Noey2	LGCS-HGVLs		
RasD1	YSIR-GEVYQ		
RasD2	YNIR-GDMYQ		
RRP22	VLLD-GAVYD		
RasL10B	VVMN-GHVHD		
Rho	ITVN-GQEYH		
Rhee	ITDN-GQFY		
NKIRas1	VETDRGVEQ		
NKIRas2	IETDRGVEQ		
Rab40A	ILLD-QQRVK		
Rab40B	ILLD-GRRVK		
Rab40C	ILLD-GRRVR		
Rab1A	IELD-GKTIK		
Rab1B	IELD-GKTIK		
Rab35	VEIN-GEKVK		
Rab3A	VYRN-DKRIK		
Rab3C	VENK-EKRIK		
Rab30	VENK-EKRIK		
Rab3B	VENK-EKRIK		
Rab3D	VENK-EKRIK		
Rab8A	IELD-GKRIK		
Rab8B	IELD-GKRIK		
Rab10	VEIN-GKIK		
Rab13	VDIE-GKIK		
Rab12	VELR-GKIR		
Rab18	ISVD-GNRAK		
Rab19	LDID-GKVKNSSSASIIITFASIQIHQTOKMSPQIQWTKSSHYLWEPLIWTLLPVLQLMQV	117	
Rab41	LEIQ-GKRYK		
Rab30	VEIN-GKVK		
Rab33A	VEIE-GKIK		
Rab33B	VEID-GERIK		
Rab2A	ITTD-GKQIK		
Rab2B	VNDG-GKQIK		
Rab4A	INVG-GKVK		
Rab4B	VINV-GKTVK		
Rab14	IEVS-GQIK		
Rab11A	IQVD-GKTIK		
Rab11B	IQVD-GKTIK		
Rab25	VNLG-TAAVK		
Rab39A	LEIEPGKRIK		
Rab39B	VEIEPGKRIK		
RasEF	LIVDGE		
Ras27A	VVYRASPDPDATGRQQ		
Rab27B	VYNAQGPNGSSGKAF		
Rab23 IQVNDE--D---VRLML 62
RabL4 VPVPDTGDS---VELFI 61
Rab9A DLEV-DGHF---VTMQI 60
Rab9B DLEV-GRF---VTQLI 60
Rab7A EVMVD-DRL---VTMQI 61
Rab7B IIIILG-DTT---LKLQI 61
Rab32 VLNWDSDRL---VRLQL 79
Rab38 VLNWDPETV---VRLQL 63
Rab7L1 VLQWSDYEI---VRLQL 61
Rab5A TVCLDDTT---VKFEI 73
Rab5C TVCLDDTT---VKFEI 73
Rab5B SVCLDDTT---VKFEI 73
Rab22A TVQYQNEL---HKFLI 58
Rab22B TVPCGNEL---HKFLI 59
Rab24 VNSVGDR---VTLGI 61
Rab21 KLNIGGKR---VNLAI 72
Rab17 VVVDVGATS---LKLIE 80
Rab6A TMYLELDRT---IRLQL 66
Rab6C TMYLEDGT---IGLRL 66
Rab6B TMYLEDRT---VRLQL 66
Rab28 RITLPGNLN---VTLQI 66
Rab15 IEVVGIKVR---IQLI 61
Rab34 FEVLGIPFS---LQL 105
Rab36 FEIAGIPYS---LQLI 176
Ran VFHTN-RGP---IKFNV 63
RabL2A ATVDGKT---ILVDF 74
RabL2B ATVDGTR---ILVDF 74
Miro1 VPT---HI 55
Miro2 VPT---HI 55
Rab20 WRSSYN---IISI 53
RabL3 YKEGTPEEK---CYIEL 64
ArfRP2 VPQFN---AILNV 80
RabL5 VTSNKNKGT---CEFEL 61
SRPRB VNNRNGNS---LTL 115
LOC401884 AARGAGRGRG---RGR 52
Rab27B

Rab27A

RasEF

Rab37

Rab26

Rab42

Rab39B

Rab39A

Rab25

Rab11B

Rab14

Rab4B

Rab2B

Rab2A

Rab33B

Rab30

Rab41

Rab19

Rab18

Rab12

Rab13

Rab10

Rab8B

Rab3D

Rab3B

Rab3C

Rab3A

Rab35

Rab1B

Rab1A

rab40B

Rab40A

Rab40C

Rab1A

Rab1B

Rab35

Rab3A

Rab3C

Rab3B

Rab3D

Rab8A

Rab8B

Rab10

Rab13

Rab12

Rab18

Rab19

Rab41

Rab30

Rab33A

Rab33B

Rab2A

Rab2B

Rab4A

Rab4B

Rab14

Rab11A

Rab11B

Rab25

Rab39A

Rab39B

Rab42

Rab26

Rab27A

Rab27B

E-Ras

Gem

Rad

Rem1

Rem2

Rerg

Rem2

Rerg

Rem1

Rem2

E-Ras

Rad

Rem1

Rem2
Rab23 --------------------------DIPTVLVQNKIDLD-----DSCIKN----- 133
RabL4 GI------------------------SLPGVLVGNKDTLAG----------RRAVDS----- 134
Rab9A VKEP-------------------ESFPFVILGNKIDISE-------RQVSTED------ 136
Rab9B VKDP-------------------EHFPFVILGNKVDKED--------RQVTTED------- 136
Rab7A PRDP-------------------ENFPFVILGNKIDKED--------RQVATK------- 137
Rab7B PME---------------------QSYPNVLLGNKIDLAD-------RKVPOE-------- 137
Rab32 LPNG-------------------SPIAVLLANKCDQNK---------DSSQSP-------- 155
Rab38 LPNG-------------------KPVSVLLANKCDQG----------DVLMNNG------ 140
Rab7L1 LPNG-------------------EPVPCLLANKCDLSP--------WAVSRD-------- 137
Rab5A -QAS-------------------PNIVIALSGNKADLAN-------KRAVDFQ------- 146
Rab5C -QAS-------------------PNIALAGNKADLAN-------KRAVEFQ------- 146
Rab5B -QAS-------------------PSIALAGNKADLAN-------KRMVEYE------- 146
Rab22A -HGP-------------------PNIVAIAGNKCDLD-------VREVMER-------- 131
Rab22B -HGP-------------------ENIVNAIAGNKCDLD-------IREVPLK------- 132
Rab24 -LEE-------------------G-CQIYLCGKSDLED---------RRRRVFDH------ 137
Rab21 -MLG-------------------NEICLCIVGNKIDLEK-------ERHVSIQ------- 145
Rab17 -LHP-------------------GEVLMVLGNKTLSQ---------EREVTFO------- 154
Rab6A -ERG-------------------SDVIIMLVGNKTLAD-------KRVQSIE-------- 139
Rab6C -ERG-------------------SDVITHLVGNKTLAD-------KRVQSVE-------- 139
Rab6B -ERG-------------------SDVIMLVGNKTLAD-------KRVITIE-------- 139
Rab28 -ESE-------------------TQPLVAVLVGNKIDLEH-------MRTIKPE------- 142
Rab15 ATS-------------------LPCGCEGASP--------GKARRGPD------ 132
Rab34 PSSV-------------------LLFLVGSKDLST----------PAQYALME------ 180
Rab36 AGSC-------------------FIIFLVCNKNKIDLS-------GAACEQA------ 251
Ran N-------------------------IPIVLCGNKVIDKD--------RKVKAK-------- 134
RabL2A PE-------------------IPCIVVANKIDIN---------VT--------- 141
RabL2B PE-------------------IPCIVVANKIDIN---------VT--------- 141
Miro1 DKDS-------------------RPLLLVGNKSLVE--------YSSMT--------- 130
Miro2 TQGP-------------------RVPIILVGNKSLRS-------GSSMEA-------- 130
Rab20 KD---------------------CLFAIVGNKVDLTE-------EGALAGQ------- 126
RabL3 VPTGVLVTNGDYEQFADNQPLLVVGTKLOIHE--KRHEVLTTAFLAED 170
ArfRP2 LCT-------------------LPFLILAHQDHPA--------ARSVQE--------I 155
Rab5 LQD---------------------TQCMLIAHKPGSG----------DK--------- 131
SRPRB GLKN-------------------TPSFLIACKQDIAMAKS--------AKLIQQQLEK--E 200
LOC401884 LTMG-------------------MGQKEAPHCGEVVRGG--------FGTVVRGG------G 131
Rab27B -QARELADKY-G-------------IP
Rab27A -EAIALAEKY-G-------------IP
Rab26 -DGEKLAKEY-G-------------LP
Rab39B -EAEKLAAAY-G-------------MK
Rab39A -EAEKLSADC-G-------------MK
Rab25 -EARMFAENN-G-------------LL
Rab14 -EAKQFAEEN-G-------------LL
Rab4B -EASRFAQEN-E-------------LM
Rab4A -EASRFAQEN-E-------------LM
Rab2B -EGEAFAREH-G-------------LI
Rab33A -LALKFADAHNM-------------L-
Rab30 -RAEEFSEAQDM-------------Y-
Rab41 -EAQSLAEHYDI-------------LC
Rab19 -DACTLAEKYGL-------------LA
Rab18 -EGLKFARKH-S-------------ML
Rab12 -QGEKFAQQITG-------------MR
Rab13 -QADKLAREH-G-------------IR
Rab8B -RGEKLAIDY-G-------------IK
Rab8A -RGEKLALDY-G-------------IK
Rab3D -DGRRLADDL-G-------------FE
Rab3B -KGQLLAEQL-G-------------FD
Rab3A -RGRQLADHL-G-------------FE
Rab35 -DAYKFAGQM-G-------------IQ
Rab1B -TAKEFADSL-G-------------IP
Rab1A -TAKEFADSL-G-------------IP
Rab40C -QARAYAEKNC--------------MT
rab40B -QAQAYAERLG--------------VT
Rab40A -QAQAYAERLG--------------VT
NKIRas2 -VAQHWAKSEK--------------VK
NKIRas1 -VAQQWAKSEK--------------VR
RhebL1 -EGKKLAESWG--------------AT
Rheb -EGKALAESWN--------------AA
RasL10B -VSHLVRKT-WK--------------CG
RRP22 -LAALVRRG-WR--------------CG
RasD2 -AELLVSGD-EN--------------CA
Noey2 -DGATCAMEWN--------------CA
Di-Ras2 -EAEALARTWK--------------CA
Di-Ras1 -EAQAVAQEWK--------------CA
FLJ22655-EGQKLALENR--------------CQ
RasL11A -DGIQLANELG--------------SL
Ris -EGVALAGRPG--------------LW
Rerg -EGEKLATELA--------------CA
Rem2 -EGRHLAGTLS--------------CK
Gem -EGRACAVVFD--------------CK
E-Ras -AAAALAHSWG--------------AH
RalA -EAKNRAEQWN--------------VN
Rap2B -EGKALAEYW-E-------------LM
Rap2A -EGKALAEYW-E-------------LM
Protein	Sequence	Length
Rab23	-EEAEALAKRLK-------------LR	172
RabL4	-EEAEALAKRLK-------------LR	173
Rab9A	-EEAEALAKRLK-------------LR	176
Rab9B	-EEAEALAKRLK-------------LR	173
Rab7L	-EEAEALAKRLK-------------LR	176
Rab5A	-EEAEALAKRLK-------------LR	177
Rab5C	-EEAEALAKRLK-------------LR	177
Rab5B	-EEAEALAKRLK-------------LR	177
Rab22A	-EEAEALAKRLK-------------LR	179
Rab22B	-EEAEALAKRLK-------------LR	184
Rab24	-EEAEALAKRLK-------------LR	184
Rab21	-EEAEALAKRLK-------------LR	185
Rab17	-EEAEALAKRLK-------------LR	185
Rab6A	-EEAEALAKRLK-------------LR	186
Rab6C	-EEAEALAKRLK-------------LR	186
Rab6B	-EEAEALAKRLK-------------LR	186
Rab28	-EEAEALAKRLK-------------LR	187
Rab15	-EEAEALAKRLK-------------LR	187
Rab34	-EEAEALAKRLK-------------LR	187
Rab36	-EEAEALAKRLK-------------LR	187
Ran	-EEAEALAKRLK-------------LR	187
RabL2A	-EEAEALAKRLK-------------LR	188
RabL2B	-EEAEALAKRLK-------------LR	188
Rab20	-EEAEALAKRLK-------------LR	188
RabL3	-EEAEALAKRLK-------------LR	188
ArfRP2	-EEAEALAKRLK-------------LR	188
SRPRB	-EEAEALAKRLK-------------LR	188
LOC401884	-EEAEALAKRLK-------------LR	188
Supplemental Table. The Ras superfamily, subfamilies, accession numbers and additional information

Protein	Synonyms	Accession no	Characterized	Comments
Ras family (36)				
H-Ras, isoform 1		NP_005334	yes	
H-Ras, isoform 2	H-RasIDX	NP_789765	yes	
H-RasIDX				
N-Ras		NP_002515	yes	
K-Ras2B		NP_004976	yes	
K-Ras2A		NP_203524	yes	
R-Ras		NP_006261	yes	
TC21	R-Ras2	NP_036382	yes	
M-Ras	R-Ras3	NP_036351	yes	
Rap1A	Krev-1/Smgp21	NP_002875	yes	
Rap1B		NP_056461	yes	
Rap2A		NP_066361	yes	
Rap2B		NP_002877	yes	
Rap2C		NP_067006	yes	
Rit1	Roc1/RibB	NP_008843	yes	
Rit2	Rin/Roc2/RibA	NP_002921	yes	
Rem1	Gcs	NP_054731	yes	
Rem2		AAH35663	yes	
Rad	R-Rad/Rem3	NP_004156	yes	
Gem	Kir	NP_859053	yes	
Rheb1	Rheb2	NP_005605	yes	
Rheb2	RhebL1	NP_653194	yes	
Noey2	ARHI/RhoI	NP_004666	yes	
Di-Ras1	Rig/GBTS1	NP_660156	yes	
Di-Ras2		NP_060064	yes	
E-Ras	H-Ras2/H-RasP	NP_853510	yes	
Rerg		NP_116307	yes	
RalA, isoform 1		NP_005393	yes	
RalA, isoform 2		AAA36542	yes	
RalB		NP_002872	yes	
RKIRas1	κB-Ras1	NP_065078	yes	
RKIRas2	κB-Ras2	NP_060065	yes	
RasD1	DexRas/Ags1	NP_057168	yes	
RasD2	Rhes/Tem2	NP_055125	yes	
RRP22	RasL10A	NP_006468	no	
RasL10B		NP_201572	no	
RasL11A		NP_996563	no	
RasL11B		NP_076429	no	
Ris/RasL12		NP_057647	no	
FLJ22655		NP_079006	no	Lacks G1 box.
Rho family (20)				
RhoA	ARHA/Rho H12	NP_001655	yes	
RhoB	ARHB/Rho H6	NP_004031	yes	
RhoC	ARHC/Rho H9	NP_786886	yes	
RhoD	ARHD/RhoHP1	NP_055393	yes	
Rnd3	RhoE/ARHE/Rho8	NP_005159	yes	
Rnd1	ARHS/Rho6	NP_055285	yes	
Rnd2	ARHN/RhoN/Rho7	NP_005431	yes	
Rif	ARHF/RhoF	NP_061907	yes	
RhoG	ARHG	NP_001656	yes	
RhoH	TTF/ARHH	NP_004301	yes	
Rac1	TC25	NP_008839	yes	
Rac1, isoform b		NP_061485	yes	
Rac2		NP_002863	yes	
Rac3		NP_005043	yes	
Protein	Synonyms	Accession no	Characterized	Comments
--------------	---------------------------------	--------------	---------------	-------------------
Cdc42, placental	G25K/Cdc42Hs	NP_001782	yes	
Cdc42, brain		NP_426359	yes	
TCI0	RhoQ/ARHQ/RasL7A	NP_036381	yes	
TCL	TC10/RhoT/RhoJ/ARHJ/RasL7B	NP_065714	yes	
Wrch-1	RhoU/ARHU/Cdc42L1	NP_067028	yes	
Wrch-2	Chp/RhoV/ARHV	NP_598378	yes	
RhoBTB1		NP_055651	yes	Multi-domain protein
RhoBTB2	DBC2	NP_055993	yes	Multi-domain protein
Arf family (27)				
Arf1		NP_001649	yes	
Arf3		NP_001650	yes	
Arf4		NP_001651	yes	
Arf5		NP_001653	yes	
Arf6		NP_001654	yes	
Sar1a	SARA1/Masra2	NP_064535	yes	
Sar1b	SARA2/Sar1a homolog 2/CMRD	NP_057187	yes	
Arl1		NP_001168	yes	
Arl2		NP_001658	yes	
Arl3		NP_004302	yes	
Arl4		NP_007625	yes	
Arl5, isoform 1		NP_036229	yes	
Arl6	BBS3	NP_816931	yes	
Arl7	LAK	NP_005728	yes	
Arl8		NP_848930	no	
Arl9		AAS07576	no	
Arl10A		NP_775935	no	
Arl10B	Gie2	NP_620150	yes	
Arl10C	Gie1	NP_060654	yes	
Arl11	ArlTS1	NP_612459	no	
Arxl1, isoform α	ArfD1/Trim23/RNF46	NP_001647	yes	Multi-domain protein
Arxl1, isoform β		NP_150230	yes	
Arxl1, isoform γ		NP_150231	yes	
Arf4L		NP_001652	yes	
ArfRP1		NP_003215	yes	
ArfRP2		NP_061960	no	
Arl2L1, isoform 1		NP_878899	no	Multi-domain protein
FLJ22595		NP_079323	no	
LOC339231		XP_290777	no	
Rab family (61)				
Rab1A		NP_004152	yes	
Rab1B		NP_112243	yes	
Rab2A		NP_002856	yes	
Rab2B		NP_116235	no	
Rab3A		NP_002857	yes	
Rab3B		NP_002858	yes	
Rab3C		NP_612462	yes	
Rab3D	GOV/D2-2/Rab16/Rad3D	NP_004274	yes	
Rab4A		NP_004569	yes	
Rab4B		NP_057238	yes	
Rab5A		NP_004153	yes	
Rab5B		NP_002859	yes	
Rab5C, isoform a	RabL/Rab5CL	NP_958842	yes	
Rab5C, isoform b		NP_004574	yes	
Rab6A, isoform a		NP_002860	yes	
Rab6A, isoform b		NP_942599	yes	
Protein	Synonyms	Accession no	Characterized	Other Comments
-----------	-----------	--------------	---------------	----------------
Rab6B		NP_057661	yes	
Rab6C	WTH3	NP_115520	yes	
Rab7A		NP_004628	yes	
Rab7B		NP_796377	yes	
Rab8A	MEL	NP_005361	yes	
Rab8B		NP_057614	yes	
Rab9A		NP_004242	yes	
Rab9B	Rab9L	NP_057454	no	
Rab10		NP_057215	yes	
Rab11A	YL8	NP_004654	yes	
Rab11B	H-YPT3	NP_004209	yes	
Rab12		XP_113967	yes	
Rab13		NP_002861	yes	
Rab14	FBP	NP_057406	yes	
Rab15		NP_941959	yes	Lacks G4 box
Rab17		NP_071894	yes	
Rab18		NP_067075	yes	
Rab19	Rab19B	XP_379935	no	
Rab21		NP_055814	yes	
Rab22A		NP_065724	yes	
Rab22B	Rab31	NP_006859	no	
Rab23	HSPC137	NP_057361	yes	
Rab24		AAH21263	yes	
Rab25	CATX-8	AAH33322	yes	
Rab26		NP_055168	yes	
Rab27A	Ram	NP_899059	yes	
Rab27B		NP_004154	yes	
Rab28		NP_004240	yes	
Rab30		NP_055303	yes	
Rab32		NP_006825	yes	
Rab33A	RabS10	NP_004785	yes	
Rab33B		NP_112586	yes	
Rab34	Rab/Rab39	NP_114140	yes	
Rab35	Ray/H-ray/Rab1C	NP_006852	yes	
Rab36		NP_004905	yes	
Rab37		NP_783865	yes	
Rab38	NY-MEL-1	NP_071732	yes	
Rab39A		NP_059986	yes	
Rab39B		NP_741995	no	
Rab40A	Rab2A/Rar-2	NP_543155	no	
Rab40B	Rab/SEC4L	NP_006813	no	
Rab40C	Rab3/RarL/RasL8C	NP_066991	yes	
Rab41	Rab43	NP_940892	no	
Rab42		AK026009 (mRNA)	no	
Rab7L1	Rab29(rat)	NP_003920	yes	
RabL4	RayL	NP_006851	no	
RasEF	Rab45	NP_689786	no	Multi-domain protein

Ran family (1)

Ran
NP_006316 yes

Unclassified (9)

Miro-1
NP_060777 yes Multi-domain protein

Miro-2
NP_620124 yes Multi-domain protein

SRPRB
NP_067026 no

LOC401884
XP_377476 no No G4 box. G1 & G3 poorly conserved

Rab20
NP_060287 yes

RabL2A
NP_009013 no
Protein	Synonyms	Accession no	Characterized	Comments
RabL2B, isoform 2		NP_009012	no	
RabL2B, isoform 1		NP_001003789		
RabL3		NP_776186	no	
RabL5		NP_073614	no	Lacks G4 box