Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

Yuuru i J i1,2, Guannan Mao1, Yingying Wang1* and Mark Bartlam2,3 *

1 Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
2 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
3 College of Life Sciences, Nankai University, Tianjin, China

*Correspondence: b bartlam@nankai.edu.cn; e-mail: wangyy@nankai.edu.cn

Alkanes are major constituents of natural gas and petroleum. Many living organisms such as plants, green algae, bacteria, or animals can also produce alkanes. For example, methanogenic bacteria produce methane as a metabolic end product. Plants and animals can secrete alkanes as part of their surface waxes, which they use in order to prevent water loss (Cheesbrough and Kolattukudy, 1988). As the major components of petroleum and natural gas, alkanes play an important role in modern life. However, the inertness and viscosity of solid alkanes present a significant challenge for environmental scientists once they enter soil and water bodies via accidental oil spills and other sources. Efforts to try to restore oil-contaminated soil and water, microbial degradation of these contaminants may present the best solution as a large number of microorganisms, which have various uptake mechanisms and enzyme systems, can grow by utilizing these contaminants as their sole carbon and energy source. In doing so, these microbes convert the inert alkanes into less inert substances that are easier to be oxidized and employed by other microorganisms. Accordingly, studying the enzyme systems employed by these alkane-degrading microorganisms has considerable importance for environmental and industrial applications. Understanding the mechanisms of alkane degradation by these enzyme systems may help in the control of oil pollution and in the modification of those energy-intensive industrial processes producing more valuable chemicals from the inert alkanes, such as converting methane to methanol.

Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminal (or terminal) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

Keywords: alkane hydroxylases, biodegradation mechanism, aerobic, pMMO, sMMO, AlkB, cytochrome P450, LeaD

In this review, we briefly summarize both the aerobic and anaerobic degradation pathways and degradation mechanisms of n-alkanes by microbes. We focus on the key enzymes involved in the initial activation step of aerobic degradation of n-alkanes, i.e., alkane hydroxylases, and discuss their structural features, structure-function relationship, and potential applications in industry.

AEROBIC DEGRADATION PATHWAY

Activation of alkanes by microbes can be carried out under both aerobic and anaerobic conditions with different enzyme systems. Under aerobic conditions, oxygen serves as the electron acceptor, while under anaerobic conditions, sulfate and nitrite accept electrons in order to complete the process.

AEROBIC DEGRADATION PATHWAY

Under aerobic conditions, the alkane degradation reaction is initiated by oxygenases, which introduce oxygen atom(s) into alkane substrates. Four pathways for the initial attack on n-alkanes have been identified, and the reactions have been elucidated (Figure 1). First is the monomethyl (or terminal) oxygenation pathway, which has been found in many bacteria such as Geobacillus thermodenitrificans NG80-2 (Li et al., 2008). In this pathway, the reaction proceeds as follows: alkanes are first attacked at their terminal methyl group to yield the corresponding primary alcohols, which are further oxidized by alcohol dehydrogenases and
FIGURE 1 | The four types of aerobic degradation pathway (adapted from van Beilen et al., 2003). Fatty acids produced via terminal oxidation can either enter β-oxidation or be oxygenated further by the ω-fatty acid monooxygenase to form dicarboxylic acid, i.e., biterminal oxidation. Subterminal oxidation leads to the secondary alcohol or methyl acetone, which can further be oxidized by the subsequent Baeyer-Villiger monooxygenase and esterase, generating an alcohol and a fatty acid. The Finnerty pathway is initiated by dioxygenases to form dialkyl hydroperoxides, which are then in turn oxidized to peroxy acids, alkyl aldehydes, and fatty acids.
aldehyde dehydrogenases to fatty acids. The fatty acids then enter β-oxidation (Watkinson and Morgan, 1990). Second is biteminal oxidation, in which the termini of the n-alkane undergo oxidation to the corresponding fatty acid without rupturing of the carbon chain. In this pathway, the fatty acid produced in the monoterminal oxidation pathway undergoes ω-hydroxylation at the terminal methyl group (the ω position), yielding an ω-hydroxy fatty acid that is further converted to a dicarboxylic acid, which then also enters β-oxidation (Kester and Foster, 1963; Watkinson and Morgan, 1990; Coon, 2005). Subterminal oxidation has been recognized in Pseudomonas aeruginosa (Fornery and Markovetz, 1970) and Gordonia sp. strain TY-5 (Kotani et al., 2003). This process takes place when alkanes are oxidized at the subterminal position to form a primary alcohol and a secondary alcohol or methyl acetone with the same chain length as the substrate (Fornery and Markovetz, 1970). A recent study has also found subterminal oxidation of n-alkanes in the Gordonia sp. strain TY-5, degrading propane into a secondary alcohol. The secondary alcohol is converted to the corresponding ketone, and then oxidized by a Baeyer–Villiger monooxygenase to form an ester. The ester is hydroxylated by an esterase, generating an alcohol and a fatty acid (Kotani et al., 2007).

The three aforementioned pathways have been known for several decades and were verified through studies with bacteria from different genera. Enzymes participating in the first step of each of the three pathways, usually called alkane hydroxylases or alkane oxygenases, form the focus of this review.

Another long-chain n-alkane oxidation pathway is unique to Acinetobacter sp. strain H01-N, as postulated by Finnerty (1988). In this pathway, it is proposed that n-alkanes are oxidized to form n-alkyl hydroperoxides and then peroxo acids, alkyl aldehydes, and finally fatty acids. The first step involves a dioxygenase, which has been reported to be common in n-alkane-using Acinetobacter spp. (Maeng et al., 1996). However, further studies are needed in order to elucidate this process in greater detail.

Anaerobic Degradation Pathway

Under anaerobic conditions, nitrate or sulfate is used as a terminal electron acceptor. To date, there are two known mechanisms of n-alkane anaerobic degradation (Figure 2). One is the fumarate addition pathway and the other is the carboxylation pathway. The anaerobic n-alkane degradation microorganisms that have been studied thoroughly are the sulfate-reducing bacterial strain AK-01 (So and Young, 1999), strain CV2803T (Cravo-Laureau et al., 2005).
Anaerobic biodegradation of bacterium Desulfatibacillum aliphaticivorans (Aeckersberg et al., 1998). Instead, it transforms an alkane to an anaerobically via a desaturation to the corresponding 1-alkenes (1991). Strain Hxd3 was later shown not to degrade alkanes under anaerobic conditions (Parekh et al., 1977; Aeckersberg et al., 1991). Strain Hxd3 was later shown not to degrade alkanes anaerobically via a desaturation to the corresponding 1-alkenes (Aeckersberg et al., 1998). Instead, it transforms an alkane to a fatty acid via a subterminal carboxylation at the C₂ position of the alkane and elimination of the two adjacent terminal carbon atoms (So et al., 2003). Researchers observed that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain termini, resulting in a fatty acid that is shorter by one carbon than the original alkane. In other words, following the degradation mechanism that strain Hxd3 employed, it can transform C-odd alkanes substrates to C-even fatty acids and vice versa (So et al., 2003). To date, it is the only isolated and identified strain that anaerobically degrades via the subterminal carboxylation pathway.

Fumarate addition proceeds via subterminal (at the C₂ position) of the alkane to the double bond of fumarate, resulting in the formation of an alkylsuccinate. The alkylsuccinate is further degraded via carbon skeleton rearrangement and β-oxidation. The fumarate addition pathway has been found in both sulfate-reducing bacteria and denitrifying bacteria and a nitrate-reducing consortium (Kropp et al., 2000; Rabus et al., 2001; Cravo-Laureau et al., 2005; Davidova et al., 2005; Callaghan et al., 2006, 2009; Kniemeye et al., 2007). For instance, the sulfate-reducing bacterium Desulfobulbus aliphatis strain CV2003 oxidizes n-alkanes into fatty acids anaerobically via the addition of fumarate at C₂ position, and unlike strain Hxd3, total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms when it was grown on a C-even alkane (hexadecane). The same is true for other strains employing the fumarate addition pathway (Cravo-Laureau et al., 2005). A more recent study on the Desulfoviridena/Desulfococcus cluster strain BuS5 degrading propane indicates a subterminal as well as a novel terminal alkane addition with fumarate, i.e., the fumarate adds to the primary carbon atom of propane (Kniemeye et al., 2007).

It has been reported that different alkane degradation pathways could occur simultaneously within mixed sulfate-reducing consortia (Callaghan et al., 2006). To sum up, these findings underline that fumarate addition and carboxylation are important.

Anaerobic degradation mechanisms may be widespread among phylogenetically and/or physiologically distinct microorganisms. Anaerobic methane oxidation (AMO) has also recently been identified. Purified nickel-containing methyl-coenzyme M reductase (MCR) from Methanothermobacter marburgensis can convert methane into methyl-coenzyme M under equilirium conditions; the apparent Vₘ₉₉ (maximum rate) and Kₘ (Michaelis constant) are both consistent with the observed V_m₉₉ kinetics for the anaerobic oxidation of methane with sulfate (Scheller et al., 2010). In another recent study, AMO is also observed to be coupled with the reduction of nitrite to dinitrogen in an enrichment culture (Ettwig et al., 2010). This is a very interesting phenomenon as the anaerobic bacterium, Methylosinusitolbacter oxyfera, essentially features a methane aerobic oxidation pathway with the oxygen derived from the conversion of two nitric oxide molecules. It remains to be seen how widespread this mechanism is among anaerobic bacteria, although such a process is predicted to offer certain ecological advantages for recalcitrant substrates including aromatic compounds, alkanes and alkenes under dynamic oxic/anoxic conditions. Microbial mats collected at cold methansea seeps in the Black Sea have also been shown to oxidize methane anaerobically using sulfate as an electron acceptor (Mayr et al., 2008). These microbial mats predominantly consist of sulfate-reducing bacteria and archaea of the ANME-1 and ANME-2 type. Nevertheless, further studies are required to understand the mechanisms and the enzymes involved.

DIVERSITY OF ALKANE HYDROXYLASES

Only four types of n-alkane aerobic degradation pathways have been identified to date, and the number of alkane hydroxylases that have been isolated, characterized, and analyzed by structural biology techniques remains limited. Studies have shown that they belong to different enzyme families. In the following section, we will classify the alkane hydroxylases into several groups according to their substrate range, degradation characteristics, and so on.

METHANE MONOOXYGENASES AND PROPANE, BUTANE OXYGENASES

The first step in the catabolism of methane is catalyzed by methane monooxygenase (MMO) to form methanol. Methanol is then oxidized by methanol dehydrogenase to form formaldehyde, which is then converted to formate and carbon dioxide by formaldehyde and formate dehydrogenases to provide energy for the cell. It is reported that methanotrophs could also assimilate formaldehyde via the ribulose monophosphate pathway or serine pathway (Lieberman and Rosenzweig, 2004). Besides MMO-containing methanotrophic bacteria, only one other enzyme, ammonia monooxygenase, can activate the C–H bond in methane (Whitman et al., 1983). Due to the inert nature of methane (104 kcal mol⁻¹ C-H bond), it has proven difficult for industries to convert it to methanol under ambient temperature and pressure (Lieberman and Rosenzweig, 2003).

There are two types of MMO: a membrane-bound, particulate MMO (pMMO) and a cytoplasmic, soluble MMO (sMMO). For most methanotrophs such as Methylobacterium capsulatum (Bath), which contain both pMMO and sMMO, it is the concentration of copper ions in the medium that determines which MMO is
expressed. Under low copper concentration conditions, the cells express only sMMO, while only pMMO is expressed when there is a high copper to biomass ratio (Stanley et al., 1983; Prior and Dalton, 1985; Murrell et al., 2000; Choi et al., 2003).

pMMO

Unlike sMMO, pMMO has a relatively narrow substrate specificity. It can only oxidize short chain n-alkanes (fewer than five carbon atoms). The oxidation of propane, n-butane and n-pentane preferentially occurs at the C2 position (Chan et al., 2004). Furthermore, it is reported that pMMO could also epoxidate alkenes at the double bond. Unlike the limited existence of sMMOs, pMMO is ubiquitous in methanotrophic bacteria. As a membrane-bound protein, difficulties in solubilizing and purifying active pMMO present challenges for understanding its structure, including concentration of metal ions and location of the active site. Furthermore, difficulties in obtaining enzymatically active, pure pMMO have led to conflicting results of in vitro biochemical characterization (Kitimoto et al., 2005). Two groups reported structures of pMMO from the methanotroph *Methylosinus trichosporium* (Bath) in 2005 by X-ray crystallography (Lieberman and Rosenzweig, 2005) or by electron microscopy and single-particle analysis (Kitimoto et al., 2005). The research findings from the two studies are consistent and provide structural information for an enzyme that play an important role in the transformation of methane to methanol, and which may find applications in tackling global warming given that methane is a type of greenhouse gas. The enzyme consists of a hydroxylase formed by two polypeptides with molecular masses approximately 47 kDa (hydroxylase formed by three polypeptides with molecular masses approximately 22 Å at the opposing end to the soluble region. A hydrophobic substrate-binding pocket distal to the histidines is a conserved dinuclear site that contains two copper ions, which serve to stabilize the dioxygen-binding most likely occurs via replacement of the weakly coordi...
is that the substrate enters the active site through one or more of the five hydrophobic cavities identified in the α subunit (Merkx et al., 2001).

Many spectroscopic techniques suggest that MMOB exerts its influences on MMOH by binding in the vicinity of the di-iron site and slightly altering its structure. The regulatory protein MMOB controls the substrate selectivity of MMO. MMOB binds to MMOH, which contains the active site, and appears to create a pore consistent with the size of methane in the active site. Mutagenesis of MMOB may therefore broaden the substrate range (Zhang et al., 2006).

MMOR contains one [2Fe-2S] cluster and one FAD cofactor, which both promote electron transfer from NADH to MMOH. The [2Fe-2S] cluster is located in the N-terminal portion of MMOR. The FAD cofactor is located in the C-terminal domain of MMOR, as is the NADH-binding region.
Soluble MMO utilizes a complex electron shuttle system with the function of NADH-oxidation and hydroxylation of methane played respectively by two proteins. Activation of dioxygen and the actual hydroxylation reaction both occur within the MMOH protein.

Other oxygenases for short-chain n-alkanes
Other gaseous alkanes are metabolized by strains expressing propane or butane monoxygenases (BMOs) that are related to pMMO or sMMO. A new isolate, Gordonia sp. strain TY-5, is capable of growth on propane and n-alkanes from C_{2} to C_{12} as the sole carbon source. A gene cluster designated prmABC, which encodes the components of a putative dinuclear-iron-containing multicomponent monoxygenase, was cloned and sequenced. It was found that prmABC disrupted mutants cannot grow on propane, suggesting that prmABC gene products play an essential role in propane oxidation by the bacterium. Further studies show that it oxidizes propane via subterminal oxidation to 2-propanol via a monoxygenase (Kotani et al., 2003) and then further to acetone (Kotani et al., 2007). A gene cluster designated acmAB was cloned in which the acmA and acmB genes encode a Baeyer–Villiger monooxygenase and esterase, respectively. Further studies show that acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation. The propane metabolism pathway in Gordonia sp. strain TY-5 started with the oxidation of propane to 2-propanol, which is further converted to acetone, followed by methyl acetate, which is finally oxidized to acetic acid and methanol (Kotani et al., 2007).

Butane monoxygenase from the Gram-negative β-proteobacterium Thauera butanovorans, previously called “Pseudomonas butanovorans” (Dubbelis et al., 2009), can oxidize alkanes C_{2}–C_{9} (Halsey et al., 2006) and has received considerable attention from researchers. It is a three-component di-iron monoxygenase system that consists of an iron-containing hydroxylase (BMOH), a flavo-iron sulfur-containing NADH-oxidoreductase (BMOR), and a small regulatory component protein (BMOB). BMO has a strong regiospecificity of hydroxylation at the terminal carbon atom (Dubbelis et al., 2007). Although BMO shares high homology with sMMO, researchers had not identified any oxygenases for short-chain n-alkanes propane and pentane, resulting in a striking difference in the response to even- versus odd-chain-length alkanes (Doughty et al., 2006).

Recently, researchers have identified a novel membrane-associated monoxygenase (pBMO) from the Gram-positive bacterium Nocardoides sp. strain CF8 growing on butane. The arrangement of the genes encoding pBMO and the genes encoding pMMO from the methane-oxidizing bacteria are similar. Phylogenetic analysis suggests that pBMO represents a deeply branching third lineage of the bacterial family (Sayavedra-Soto et al., 2011), although further studies are needed to provide a comprehensive understanding of pBMO.

The alkA family of alkane hydroxylases
The most widely characterized alkane degradation system is the alk system of Pseudomonas putida GPo1 (commonly known as Pseudomonas oleovorans GPo1 = TF4-1L = ATCC 29347), which oxidizes C_{5}–C_{12} n-alkanes to 1-alkanols (van Beilen et al., 1994). The 1-alkanol products are then sequentially converted to the corresponding aldehydes, carboxylic acids, and acyl-coenzymes A (CoA), which then enter the β-oxidation pathway (Throne-Holst et al., 2007). The alk system can also catalyze versatile reactions including the hydroxylation of linear and branched aliphatic, alicyclic, and alkyllaromatic compounds, demethylation of branched methyl ethers, and epoxidation of terminal olefins (van Beilen et al., 2005). This enzyme system has also been reported to oxidize gaseous alkanes such as propane and n-butane (Johnson and Hyman, 2006).

The Pseudomonas putida GPo1 alkane hydroxylase system is composed of three components: alkane hydroxylase (AlkB), rubredoxin (AlkG), and rubredoxin reductase (AlkT; Smits et al., 2002). AlkB is a non-heme iron integral membrane protein that carries out the hydroxylation reaction (Kok et al., 1989; van Beilen et al., 1992). The NADH-dependent flavoprotein rubredoxin reductase transfers electrons from reduced nicotinamide to rubredoxin (Lode and Coom, 1971). Rubredoxin, a small red-colored iron-sulfur protein, transfers reducing equivalents to AlkB (McKenna and Coon, 1970; Smits et al., 2002).

The OCT plasmid of GPo1 encodes two rubredoxins, AKB and AlkB. AlkB is unusual in that it is more than three times the size of other bacterial rubredoxins. It is composed of two rubredoxin domains connected by a 78-amino acid linker (Kok et al., 1989). Each domain binds a single iron atom, although the iron in the N-terminal domain is very loosely bound and is usually lost in the isolated protein (van Beilen et al., 1994). Rubredoxins cloned from microbes that grow on n-alkanes can be grouped into AlkG1- and AlkB2-type rubredoxins based on their amino acid sequences. All of the alkane-degrading strains contain AlkB2-type rubredoxins, whereas AlkB1-type rubredoxins are only present in a limited number of alkane-degrading strains. Two iron-binding CxxCG motifs are common to most alkane-degrading rubredoxins. Abrogation of the second CxxCG motif results in the failure of AlkB1 to transfer electrons to the alkane hydroxylase, thus providing a means of distinguishing AlkB1-type rubredoxins from the AlkB2-type rubredoxins.

Researchers have employed protein engineering to study the substrate specificity of AlkB and found that W55 (in the case of Pseudomonas putida AlkB) or W38 (in the case of Alcanivorax borkumensis AlkB1) plays a key role in determining the substrate range. Interestingly, mutation of this amino acid to a much less
bulky amino acid enables AlkB in *Pseudomonas putida* to oxidize longer n-alkanes than the wild-type (van Beilen et al., 2005).

To date, there is no detailed structural information for AlkB, nor is there much biochemical data for AlkB with an extended substrate range. Nevertheless, a topology model of AlkB has provided some insight into its structure-function relationship. AlkB is predicted to contain six alpha-helical TM segments (van Beilen et al., 1992), which are thought to form a hydrophobic pocket. The N-terminus, two hydrophilic loops, and a large C-terminal domain are all located in the cytoplasm. Only three very short loops close to the amino acid positions 62, 112, and 251 are exposed to the periplasm (van Beilen et al., 1992). Mutagenesis experiments have verified that the eight histidines on the TM segment are very important for activity of AlkB, such as coordinating the Fe ions in the di-iron active site (Shanklin and Whittle, 2003). AlkB is proposed to belong to a larger family containing the non-NAD(P)H- and an iron-sulfur protein (which shuttles electrons to the reductase) from NAD(P)H via an FAD- and flavin mononucleotide (FMN)-containing cytochrome P450 reductase (van Beilen and Funhoff, 2005). P450s from bacteria are mostly soluble while P450s from yeast and mammals are usually membranous, which makes their further study more challenging. At the time of writing, more than 4,000 P450 enzymes are known (van Beilen and Funhoff, 2005). However, with regard to P450s degrading n-alkanes, the number is rather small.

To date, the P450s that have received the most attention and been extensively studied are the P450cam system from *Pseudomonas putida* ATCC 7455, which require putidaredoxin and putidaredoxin reductase to transfer electrons from NADH to P450cam for the oxidation of camphor to 3-exo-hydroxycamphor (Figure 3C; Trudgill et al., 1966; Poulos et al., 1987), and P450 BM-3 from Bacillus megaterium 14581 that hydroxylates medium-chain (from C12 to C18) saturated fatty acids (Figure 3D; Narhi and Falco, 1986; Ravichandran et al., 1993). P450 BM-3 is the most active of all P450 enzymes, and this has been suggested to be due to the fusion of a hydroxylase domain and a reductase domain into a single polypeptide chain, which is different to other P450 enzymes (Narhi and Falco, 1986). Although these two enzymes have been studied intensively, none of their substrates are n-alkanes, which are the most inert molecules. Researchers have thus employed molecular biology and other related methods in combination with structural information to modify the substrate-binding pockets and active sites of the enzymes, in order to make them more suitable for binding to and degrading smaller n-alkane molecules. For instance, P450cam was engineered into an alkane hydroxylase with amino acid residues in the active site replaced by residues with bulkier and more hydrophobic side chains. The resulting mutant (F87W/Y96F/T101L/V247L) had a comparable catalytic turnover rate for n-butane oxidation to that of the wild-type and exhibited the highest propane oxidation rate of the P450cam enzymes studied (Bell et al., 2003). Rational evolution of P450 BM-3 produced a triple mutant (Phe87Val, Leu188Gln, Ala247Gly) that is capable of oxidation of n-octane at a similar rate as n-dodecanolic acid (Appel et al., 2001). Directed evolution of P450 BM-3 produced mutant 139-3 that can degrade n-alkanes (from C8 to C40) at the subterminal position, which resembles the native enzyme's regiospecificity for fatty acids (Cleider et al., 2002).

CYTOCHROME P450 ALKANE HYDROXYLASES

Cytochrome P450 enzymes are terminal monooxygenases that have been detected in nearly all domains of life, from prokaryotes such as *Pseudomonas putida* to eukaryotes, where yeasts can serve as an example. Their ubiquitous existence in nature determines their diverse substrate range, including fatty acids, steroids, prostaglandins, as well as many exogenous materials such as drugs, anesthetics, organic solvents, ethanol, alkylaryl hydrocarbon products, pesticides, and carcinogens (Bernhardt, 2006). Based on differences in the components of the P450 monooxygenase systems, they can be grouped into two classes. Class I P450s are characterized by differences in the components of the P450 monooxygenase system. They can be grouped into two classes. Class I P450s are the first CXXCG motifs (Nie et al., 2011). All AlkB-fused rubredoxins contain the conserved C(P/S)DCGVR motif in addition to the P450 BM-3 produced mutant 139-3 that can degrade n-alkanes (from C8 to C40) at the subterminal position, which resembles the native enzyme's regiospecificity for fatty acids (Cleider et al., 2002). CYP102A3 from *B. subtilis* hydroxylates medium-chain fatty acids in subterminal positions, as does P450 BM-3 (CYP102A1) from *B. megaterium* (Whitehouse et al., 2010). Two CYP102A3 mutants can oxidize octane with ratios of 43% (S189Q) and 49% (F88V/S189Q), respectively, which shows that F88 and S189 are important in determining the substrate spectrum of CYP102A3 (Lenti et al., 2004).

CYP153 enzymes are class I P450 proteins requiring the presence of an electron-delivering protein system (ferredoxin and ferredoxin reductase protein). Cytochrome P450 enzymes from the CYP153 family are the first soluble P450 enzymes that specifically display hydroxylating activity toward the terminal position of alkane (Scheps et al., 2011). CYP153A4 from *Myxococcus xanthus* sp. BM-3 is the first soluble P450 that hydroxylates unreactive aliphatic alkanes, mainly medium-chain-length alkanes (from
of long-chain alkane hydroxylases remained unclear until the 2.7 Å structures have been cloned and characterized. To date, few long-chain alkane hydroxylases degradation processes usually do not belong to the three groups mentioned above. Several bacterial strains can assimilate -alkanes with carbon chain length longer than C20. However, enzymes involved in these degradation processes usually do not belong to the three groups mentioned above. To date, few long-chain alkane hydroxylases have been cloned and characterized. Three-dimensional structures of long-chain alkane hydroxylases remained unclear until the 2.7 Å apo-enzyme and 1.9 Å holo-enzyme structures of LadA, a long-chain alkane monooxygenase, were reported in 2008 (Figure 4A; Li et al., 2008). LadA, isolated from the thermophilic bacillus Geobacillus thermodenitrificans NG80-2, utilizes a terminal oxidation pathway for the conversion of long-chain n-alkanes (from C15 to at least C30) to corresponding primary alcohols. The terminal oxidation pathway from Geobacillus thermodenitrificans NG80-2 has been well characterized and consists of three components: LaDA, which is the key initiating enzyme; two alcohol dehydrogenases (ADH1 and ADH2) for the conversion of alkyl alcohols to alkyl aldehydes (Ji et al., 2013); and an aldehyde dehydrogenase (ALDH) for the conversion of alkyl aldehydes to fatty acids (Feng et al., 2007).

LaDA was revealed to belong to the SsuD subfamily of the bacterial luciferase family via a surprising structural relationship (Li et al., 2008). The structure of LaDA contains a triosephosphate isomerase (TIM) barrel fold that differs from the prototypical TIM barrel structure due to five extended insertion regions (IS1-5) and an extension at the C-terminus of the polypeptide chain (Li et al., 2008). A pocket at the C-terminal entrance of the TIM barrel is sufficiently large enough to accommodate a FMN, O2, and part of the terminal of a long-chain n-alkane. LaDA was thus confirmed to be a flavoprotein monooxygenase that utilizes dioxygen to insert an oxygen atom into the substrate. The flavin ring of FMN lies in the barrel with its plane almost parallel to the staves of the barrel and its Si-face exposed to solvent (Figure 4B). The ribityl side chain and phosphate moieties insert between strands β4 and β5 of LaDA in an elongated manner. A cavity above the Si-face of FMN is lined by the residues F10, M12, I18, K347, W348, and F349, with polar residues concentrated on the left sphere and hydrophobic residues on the right sphere (Figure 4B).

Several species of yeast belonging to the genus Candida excrete αω-di acids as a by-product when grown on n-alkanes or fatty acids as the carbon source. One such yeast species, Candida tropicalis ATCC 20336, has been studied in detail in regard to the CYP52 family, which is important for the conversion of n-alkanes and fatty acids to αω-dicarboxylic acids. For alkanes, the first reaction occurs in the ω-oxidation pathway with the formation of the αω-dicarboxylic acids. For alkanes, the first reac-

Several bacterial strains can assimilate n-alkanes with carbon chain length longer than C20. However, enzymes involved in these degradation processes usually do not belong to the three groups mentioned above. To date, few long-chain alkane hydroxylases have been cloned and characterized. Three-dimensional structures of long-chain alkane hydroxylases remained unclear until the 2.7 Å apo-enzyme and 1.9 Å holo-enzyme structures of LadA, a long-chain alkane monooxygenase, were reported in 2008 (Figure 4A; Li et al., 2008). LadA, isolated from the thermophilic bacillus Geobacillus thermodenitrificans NG80-2, utilizes a terminal oxidation pathway for the conversion of long-chain n-alkanes (from C15 to at least C30) to corresponding primary alcohols. The terminal oxidation pathway from Geobacillus thermodenitrificans NG80-2 has been well characterized and consists of three components: LaDA, which is the key initiating enzyme; two alcohol dehydrogenases (ADH1 and ADH2) for the conversion of alkyl alcohols to alkyl aldehydes (Ji et al., 2013); and an aldehyde dehydrogenase (ALDH) for the conversion of alkyl aldehydes to fatty acids (Feng et al., 2007).

LaDA was revealed to belong to the SsuD subfamily of the bacterial luciferase family via a surprising structural relationship (Li et al., 2008). The structure of LaDA contains a triosephosphate isomerase (TIM) barrel fold that differs from the prototypical TIM barrel structure due to five extended insertion regions (IS1-5) and an extension at the C-terminus of the polypeptide chain (Li et al., 2008). A pocket at the C-terminal entrance of the TIM barrel is sufficiently large enough to accommodate a FMN, O2, and part of the terminal of a long-chain n-alkane. LaDA was thus confirmed to be a flavoprotein monooxygenase that utilizes dioxygen to insert an oxygen atom into the substrate. The flavin ring of FMN lies in the barrel with its plane almost parallel to the staves of the barrel and its Si-face exposed to solvent (Figure 4B). The ribityl side chain and phosphate moieties insert between strands β4 and β5 of LaDA in an elongated manner. A cavity above the Si-face of FMN is lined by the residues F10, M12, I18, K347, W348, and F349, with polar residues concentrated on the left sphere and hydrophobic residues on the right sphere (Figure 4B).

Several species of yeast belonging to the genus Candida excrete αω-di acids as a by-product when grown on n-alkanes or fatty acids as the carbon source. One such yeast species, Candida tropicalis ATCC 20336, has been studied in detail in regard to the CYP52 family, which is important for the conversion of n-alkanes and fatty acids to αω-dicarboxylic acids. For alkanes, the first reaction occurs in the ω-oxidation pathway with the formation of the αω-dicarboxylic acids. For alkanes, the first reac-

Several bacterial strains can assimilate n-alkanes with carbon chain length longer than C20. However, enzymes involved in these degradation processes usually do not belong to the three groups mentioned above. To date, few long-chain alkane hydroxylases have been cloned and characterized. Three-dimensional structures of long-chain alkane hydroxylases remained unclear until the 2.7 Å apo-enzyme and 1.9 Å holo-enzyme structures of LadA, a long-chain alkane monooxygenase, were reported in 2008 (Figure 4A; Li et al., 2008). LadA, isolated from the thermophilic bacillus Geobacillus thermodenitrificans NG80-2, utilizes a terminal oxidation pathway for the conversion of long-chain n-alkanes (from C15 to at least C30) to corresponding primary alcohols. The terminal oxidation pathway from Geobacillus thermodenitrificans NG80-2 has been well characterized and consists of three components: LaDA, which is the key initiating enzyme; two alcohol dehydrogenases (ADH1 and ADH2) for the conversion of alkyl alcohols to alkyl aldehydes (Ji et al., 2013); and an aldehyde dehydrogenase (ALDH) for the conversion of alkyl aldehydes to fatty acids (Feng et al., 2007).

LaDA was revealed to belong to the SsuD subfamily of the bacterial luciferase family via a surprising structural relationship (Li et al., 2008). The structure of LaDA contains a triosephosphate isomerase (TIM) barrel fold that differs from the prototypical TIM barrel structure due to five extended insertion regions (IS1-5) and an extension at the C-terminus of the polypeptide chain (Li et al., 2008). A pocket at the C-terminal entrance of the TIM barrel is sufficiently large enough to accommodate a FMN, O2, and part of the terminal of a long-chain n-alkane. LaDA was thus confirmed to be a flavoprotein monooxygenase that utilizes dioxygen to insert an oxygen atom into the substrate. The flavin ring of FMN lies in the barrel with its plane almost parallel to the staves of the barrel and its Si-face exposed to solvent (Figure 4B). The ribityl side chain and phosphate moieties insert between strands β4 and β5 of LaDA in an elongated manner. A cavity above the Si-face of FMN is lined by the residues F10, M12, I18, K347, W348, and F349, with polar residues concentrated on the left sphere and hydrophobic residues on the right sphere (Figure 4B).

Several species of yeast belonging to the genus Candida excrete αω-di acids as a by-product when grown on n-alkanes or fatty acids as the carbon source. One such yeast species, Candida tropicalis ATCC 20336, has been studied in detail in regard to the CYP52 family, which is important for the conversion of n-alkanes and fatty acids to αω-dicarboxylic acids. For alkanes, the first reaction occurs in the ω-oxidation pathway with the formation of the αω-dicarboxylic acids. For alkanes, the first reac-

Several bacterial strains can assimilate n-alkanes with carbon chain length longer than C20. However, enzymes involved in these degradation processes usually do not belong to the three groups mentioned above. To date, few long-chain alkane hydroxylases have been cloned and characterized. Three-dimensional structures of long-chain alkane hydroxylases remained unclear until the 2.7 Å apo-enzyme and 1.9 Å holo-enzyme structures of LadA, a long-chain alkane monooxygenase, were reported in 2008 (Figure 4A; Li et al., 2008). LadA, isolated from the thermophilic bacillus Geobacillus thermodenitrificans NG80-2, utilizes a terminal oxidation pathway for the conversion of long-chain n-alkanes (from C15 to at least C30) to corresponding primary alcohols. The terminal oxidation pathway from Geobacillus thermodenitrificans NG80-2 has been well characterized and consists of three components: LaDA, which is the key initiating enzyme; two alcohol dehydrogenases (ADH1 and ADH2) for the conversion of alkyl alcohols to alkyl aldehydes (Ji et al., 2013); and an aldehyde dehydrogenase (ALDH) for the conversion of alkyl aldehydes to fatty acids (Feng et al., 2007).

LaDA was revealed to belong to the SsuD subfamily of the bacterial luciferase family via a surprising structural relationship (Li et al., 2008). The structure of LaDA contains a triosephosphate isomerase (TIM) barrel fold that differs from the prototypical TIM barrel structure due to five extended insertion regions (IS1-5) and an extension at the C-terminus of the polypeptide chain (Li et al., 2008). A pocket at the C-terminal entrance of the TIM barrel is sufficiently large enough to accommodate a FMN, O2, and part of the terminal of a long-chain n-alkane. LaDA was thus confirmed to be a flavoprotein monooxygenase that utilizes dioxygen to insert an oxygen atom into the substrate. The flavin ring of FMN lies in the barrel with its plane almost parallel to the staves of the barrel and its Si-face exposed to solvent (Figure 4B). The ribityl side chain and phosphate moieties insert between strands β4 and β5 of LaDA in an elongated manner. A cavity above the Si-face of FMN is lined by the residues F10, M12, I18, K347, W348, and F349, with polar residues concentrated on the left sphere and hydrophobic residues on the right sphere (Figure 4B).
In the absence of a LadA:FMN:alkane ternary complex, in silico docking of C17-C22 alkanes was used to provide insights into substrate binding and the terminal hydroxylation of long-chain aliphatic alkanes. All substrates were identically coordinated with the terminal carbon located above the FMN Si-face, located close to the C4a atom, and interposing the cavity mentioned above. The carbon chain adopts a sinuous conformation along the surface of the insert region IS4, with its terminal lying parallel to the plane of flavin Si-face. The substrates bind to the protein via hydrophobic interactions between the majority of the alkane chain and a cluster of hydrophobic residues in LadA, including F10, I347, W348, and F349 (Figure 4B). Li et al. (2008) speculated that the substrate-binding mode requires substrate specificity and thus determines the range of the alkane carbon chain length for catalysis. It was predicted that alkane chains of C14 and lower would be of insufficient length for the terminal carbons to reach the active site while the opposing terminal part was anchored to the protein.

As the carbon–hydrogen bond is inert in aliphatic alkanes, the activation of the substrate is rationally required before it reacts with the C4a-hydroperoxoflavin intermediate. Four polar residues, H17, Y63, Q79, and H311, are located above the terminal carbon of the alkane (Figure 4B). Enzyme inactivation activity assays performed on single point mutants indicate that mutation of each of these four residues completely abolishes the catalytic activity of LadA. Thus, they are likely to play crucial roles in the catalytic reaction, and it was suggested that their polar side chains may be involved in substrate activation and electron transfer. Mutation of a fifth residue, C14, was also shown to abolish LadA catalytic activity, but this was achieved by disrupting the homodimer interface, indicating that dimerization is also important for catalytic activity. Although the process of activation and the precise catalytic mechanism could not be elucidated from the reported LadA structure, the structural analysis of LadA has provided a rational basis for further biochemical studies.

A recent study by Dong et al. (2012) reported the use of random- and site-directed mutagenesis to enhance the activity of LadA. Three mutants, A102D, L320V, and F146C/N376I, are located above the terminal carbon of the alkane (Figure 4B). Enzyme inactivation activity assays performed on single point mutants indicate that mutation of each of these four residues completely abolishes the catalytic activity of LadA. Thus, they are likely to play crucial roles in the catalytic reaction, and it was suggested that their polar side chains may be involved in substrate activation and electron transfer. Mutation of a fifth residue, C14, was also shown to abolish LadA catalytic activity, but this was achieved by disrupting the homodimer interface, indicating that dimerization is also important for catalytic activity. Although the process of activation and the precise catalytic mechanism could not be elucidated from the reported LadA structure, the structural analysis of LadA has provided a rational basis for further biochemical studies.

Another noteworthy phenomenon is that although LadA belongs to the flavoproteins, the activity of the enzyme appears to be independent of flavin reductase, as indicated by in vitro activity assays performed with and without the presence of a reductase. Flavoprotein monooxygenases catalyze an overall reaction involving three general chemical processes: (a) reduction of the cofactor flavin by NAD(P)H; (b) reaction of the reduced flavin with O2 to provide a C4a-flavin(hydro)peroxide, which is the oxygenated reagent; and (c) binding, orienting, and activating the substrate for oxygenation by C4a-(hydro)peroxoflavin. A new group of flavoprotein monooxygenases has recently been identified that consist of two components: a NAD(P)H-dependent flavin reductase for reduction of flavin, and a monooxygenase that uses reduced flavin as a substrate for the oxidation reaction. The luciferase systems, to which LadA is related, are the first and the most extensively studied two-component flavin-dependent monooxygenases. It was previously proposed that electrons may be directly transferred from NAD(P)H to the flavin during hydroxylation in some flavoproteins, including the well-studied PHBH (p-hydroxybenzylate hydroxyase, Bloomer et al., 2002), and LadA. However, this hypothesis needs to be further confirmed (Dong et al., 2012).

OTHER LONG-CHAIN n-ALKANE HYDROXYLASES

Other studies focused on long-chain alkane degradation have remained mainly at the level of genetic studies, with little or no further research on the enzymes involved. A novel dioxygenase isolated from Acinetobacter sp. strain M-1 utilizes n-alkanes ranging in length from C10 to C28 as its sole carbon and energy source with the presence of FAD and C14 for its activity via the Fiinnerty pathway (Maeng et al., 1996). Acinetobacter baemolyticus strain AR-46, which is evolutionarily distant from the known hydrocarbon-degrading Acinetobacter spp., is reported to be able to utilize long-chain n-alkanes ranging from C46 to C80 through the monomolecular oxidation pathway (Bihari et al., 2007). Based on these results, it is evident that an alkM encoded non-heme iron integral membrane alkane hydroxylase is the first key enzyme in the monomolecular oxidation pathway. Acinetobacter sp. strain DSM 17874 can utilize C20–C24 n-alkanes as its sole carbon source (Throne-Holst et al., 2007). alkM was identified as the gene encoding a putative flavin-binding monooxygenase which enables the strain to utilize long-chain n-alkanes (>C21). An interesting phenomenon whereby an alkM-deficient mutant was still able to grow with C24 and shorter alkanes as its sole carbon source, indicated that the same strain uses another enzyme system for degradation of shorter alkanes (Throne-Holst et al., 2007). By using highly degenerate primers, Liu et al. (2011) amplified the alkM gene, with a n-alkane-substrate range from C12 to C24, from the marine alkane degrader Alcanivorax borkumensis B-5. This substrate range complements those of alkB and pet50 genes that also exist in the strain. Studies using the same methods indicate that alkM is more likely to be found in marine hydrocarbon-degrading bacteria, which implies that the alkM gene is very important for the degradation of long-chain alkanes in the ocean (Wang and Shao, 2012).

OUTLOOK

Alkane hydroxylases are widespread in petroleum-degrading bacteria and a number of them are quite efficient in oxidizing substrates. Therefore, there is considerable interest in employing alkane hydroxylases for industrial applications. Thermophilic long-chain n-alkane-degrading bacterial strains are of particular interest for their biotechnological applications. There are several
advantages of using thermophilic microorganisms for bioremediation of hydrocarbons over mesophilic organisms. Generally speaking, elevated temperature can increase the solubility of hydrophobic pollutants, decrease their viscosity, enhance their diffusion, and transfer long-chain n-alkanes from the solid phase to liquid phase (Feitkenhauer et al., 2003). Most alkane hydroxylases are relatively complex and difficult to use in vivo, as they are composed of multiple components, such as the P450 system and the ALKB system, leading to low electron transfer rates. They also usually require the presence of cofactors, which are sensitive to inactivation by activated oxygen species and sensitive to product inhibition. Furthermore, the substrates and the products of these enzymes tend to be quite hydrophobic and toxic to the host cell. Enzymes such as the long-chain monooxygenase LaaC could be a favorable candidate in industrial oxygenation reactions as it meets most of the demands of an ideal enzyme used in industry (van Beilen and Funhoff, 2007): it is cofactor-independent, less sensitive to high temperature, and abundant quantities of the enzyme can be produced through heterologous expression in E. coli. Although there are problems that hinder their application in industry, protein engineering, site-directed mutagenesis and random mutagenesis, together with structural information for such enzymes, can help to overcome any problems and aid the development of alkane hydroxylase enzymes into efficient, highly selective catalysts.

ACKNOWLEDGMENTS

The authors are grateful to the financial support from the Ministry of Science & Technology 973 Project (2010CB912602), the National Science Foundation of China (31370265), and the Tianjin Municipal Science and Technology Commission (12JCZDJC29700).

REFERENCES

Ackenbergh, F., Bak, F., and Widdel, F. (1991). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacteria. Arch. Microbiol. 155, 5–14.

Ackenbergh, F., Rainer, F. A., and Widdel, F. (1998). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anaerobic conditions. Arch. Microbiol. 170, 361–368.

Appel, D., Lutz-Wahl, S., Fischer, P., Schnebecke, U., and Schmied, R. D. (2001). A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, aromas and heterocycles. J. Bacteriol. 183, 6670–6683.

Balkarantrirat, N., Smith, S. M., Rossat, Y., Yatsunami, L. A., Steinen, T. L., and Rossat, Y. (2010). Oxidation of methane by a biological deoxyperoxide. Nature 463, 115–119.

Bau, P., Kattelus, B. Andersson, S., and Rossen, B. (2008). The membrane-associated form of methane monooxygenase from Methylococcus capsulatus (Bath) is a copper protein. Biochim. Biophys. Acta 1789, 417–427.

Bell, S. G., Orton, E., Bögel, H., Steinen, T. L., Raffa, A., Campbell, S., et al. (2003). Engineering cytochrome P450s into an alkane hydroxylator. Biofuels Biorefinery 7, 2133–2140.

Bernhardt, R. B. (2006). Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124, 128–145.

Bihari, Z., Ponto-Stamatius, A., Camu, G., Balazs, M., Bar- tos, P., Kovaro, P., et al. (2007). Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus A61-A. Z. Naturforsch. C 62, 285–293.

Bihari, Z., Stevnik, A., Stubo, Z., Blayac, A., Zombori, Z., Balazs, M., et al. (2011). Functional analysis of long-chain alkane degradation by Deltaproteobacteria. Frontiers Microbiol. Lett. 316, 103–107.

Callaghan, A. V., Gag, L. M., Kropp, K. G., Sulfia, J. M., and Young, L. Y. (2006). Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl. Environ. Microbiol. 72, 4724–4828.

Callaghan, A. V., Tierney, M., Phillips, C. D., and Young, L. Y. (2009). Anaerobic biodegradation of N-alkanes by a nitrate-reducing consortia. Appl. Environ. Microbiol. 75, 1339–1344.

Chepurnoy, V. S., Chen, K. H. C., Yu, S. F.-C., Chen, C.-L., and Kao, S. S.-J. (2006). Toward defining the structure and function of the particulate methane monooxygenase from methanotrophs. Biochemistry 45, 4432–4440.

Chowbrough, T. M., and Koike, T. (1996). Microbial preperation from a animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J. Biol. Chem. 265, 2778–2783.

Choi, D. W., Kunz, R. C., Boyd, H. E. S., Semrau, J. D., Antho- line, W. E., Han, J. I., et al. (2004). Toward delineating the function of the particulate methane monooxygenase from methanotrophic bacteria. J. Biol. Chem. 279, 14181–14186.

Dubbels, B. L., Sayavedra-Soto, L. A., Arp, D. L., and Bottomley, P. J. (2006). Product repression of alkane monooxygenase expression in Pseudomonas putida KT2474. J. Bacteriol. 188, 2563–2567.

Dubbels, B. L., Sayavedra-Soto, L., Arp, D. L., and Bottomley, P. J. (2007). Alkane monooxygenase of ‘Pseudomonas putida’ KT2474 has purified and biochemical characterization of a terminal alkane-monooxygenating dioxygen monooxygenase. Microbiol. 153, 1369–1376.

Dubbels, B. L., Sayavedra-Soto, L. A., Bottomley, P. J., and Arp, D. L. (2008). Thioesterase inactivation of p450 alkane-monooxygenating bacteria previously referred to as ‘Pseudomonas putida’, J. Bacteriol. 190, 5759–5765.

Ettwig, K. F., Butler, M. K., Le Puidier, D., Polletier, E., Mangnouot, S., Kaiser, M. M., et al. (2005). Nitrogen-driven anaerobic methane oxidation by organic bacteria. Nature 464, 543–546.

Feitkenhauer, M., Müller, K., and Marnk, H. (2005). Degradation of polycyclic aromatic hydrocarbons and long-chain alkanes at 60°C. Phys. Chem. Chem. Phys. 7, 1467–1472.

Feng, L., Wang, X., Cheng, L., Ren, Y., Zhao, G., Gao, C., et al. (2007). Genome and protein engineering of terminal alkane degrading GpOB22, a halophilic archaeon isolated from a deep-sea subsurface oil reservoir. Proc. Natl. Acad. Sci. U.S.A. 104, 3860–3867.

Finney, W. (1980). ‘Lipases of Actinobacteria’ in Proceedings of the World Conference on Biotechnology for the Sun and Oil Industry, ed. T. H. Applewhite (Urbana: Amer Oil Chemists Society), 184–188.

Forney, L. W., and Markowitz, A. J. (1970). Subterranean oxidation of aliphatic hydrocarbons. J. Bacteriol. 102, 281–282.

Funhoff, E. G., Bauer, U., Garcia-Rubio, L., Whithoff, B., and Van Beilen, J. B. (2008). CYP153A6 catalyzes terminal alkane hydrocarbons. J. Bacteriol. 190, 5220–5227.

Glodek, A., Baran, E., and Arnold, F. H. (2002). Laboratory evolution of a robust, self-sufficient, highly active alkanes hydroxylator. Nat Biotechnol. 20, 1135–1139.

Hakemian, A. S., Kondapalli, K. C., Tabor, J., Hoffman, B. M., Steinen, T. L., and Rossat, Y. (2008). The metal centers of particulate methane monooxygenase from Methylococcus capsulatus Bath. Biocatal. Biotecnol. 47, 6795–6801.
Ji et al. Alkane hydroxylase diversity and biodegradation

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 08 December 2012; accepted: 28 February 2013; published online: 21 March 2013.

Copyright © 2013 Ji, Mao, Wang and Bartlam. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any change or secondary use is properly credited.