The Effectiveness of problem-based hybrid learning model in physics teaching to enhance critical thinking of the students of SMAN

R Sujanem¹, S Poedjiastuti² and B Jatmiko²

¹Universitas Pendidikan Ganesha, Indonesia
²Universitas Negeri Surabaya, Indonesia

E-mail: raisujanem@yahoo.com

Abstract. This research aimed at analysing the effectiveness of Problem Based-Hybrid Learning (Pro-BHL) to enhance the critical thinking skill (cts) of the students of SMA in Physics teaching. Pro-BHL model is a model of teaching which combines face – to – face PBL and online learning. Pro-BHL model is effective to enhance cts if: 1) there is a significant improvement in the students’ cts at α=5%; and 2) The minimal N-gain average falls into medium category or consistent. This study involved 86 students who spread into three groups of grade X. The design of this study was one group pre-test and post-test group design. Before the teaching using Pro-BHL model, the students in three groups were given a cts test (pre-test). And at the end of the teaching, the students were given the same test (post-test). The collected data were analyzed by Paired-Test, normalized gain (N-gain T-Test) and ANOVA. The result showed that: (1) the teaching with Pro-BHL model can enhance the students’ cts (α =5%); (2) the N-gain average for the three groups falling into high category; and (3) do not differ from one another. Thus, it this can be concluded that the Pro-BHL model is effective to enhance the students’ cts in physics teaching.

1. Introduction

One of the paradigms of the 21st century is the expectation that the students master critical thinking (cts). Cts is a paradigmatic process when a student makes a decision about what he or she believes and what he or she does [1, 2]. The indicators of cts include: to formulate a problem, to give an argument, to make a deduction, to make an induction, and to make a decision. Cts is very important to be trained since this critical thinking is carried from birth [3].

The importance of cts is in accordance with what is stipulated in curriculum 2013, which is the reference in teaching process to achieve the expected learning outcome [4]. According to Semerci [5], students with higher cts obtain higher learning achievement if they are compared to students with lower cts. Cts is the key in education to solve a problem. Most of jobs require workers with cts [6]. By examining closely how important is cts, teaching process should stress the importance of students’ cts. However, the fact shows that cts in schools in Indonesia, especially at senior high schools has not been well trained so that the cts of senior high school graduates is still relatively low [7, 8]. The low cts of the graduate of elementary schools up to university level in Indonesia is often complained [9]. One of the factors which is assumed to be the cause of the low cts of the students, among others things is the type of test item given to the students uses Bloom taxonomy at a low level, so that it does not train the...
students thinking skill [2, 10]. The quality of physics teaching as part of science education up to now is still low and experiences a decrease as seen in the results of the study done by PISA (Program for International Student Assessment), i.e., a study that focuses on reading, mathematics and science literacies, that showed that the ranking of science in Indonesia is at the 62th from 69 countries [11]. This shows that the quality of science education in Indonesia, including Bali Province tends to be low. This is supported by the result of research done by Sadia [12] in some regencies in Bali that shows that the cts of the students of senior high school students at tenth grade fall into low qualification with the mean score of 49.38 in 0-100 scale. In addition, teachers still find difficulty in teaching cts to the students and there are still a few teaching models that teach cts to the students. The result of preliminary research on cts about temperature and heat at SMAN 1 Singaraja (Bali), showed that mean score was in the range of 35.30 – 41.10; falling into insufficient category [13, 14]. Based on the exposure to problems and examples above, it is identified by preliminary research that the students’ cts is still low, the teacher knows less about how to improve the cts and we do not have adequate models of teaching to train cts. Teachers still teach the traditional teaching-learning. Traditional teaching strategies emphasize most of the materials by lecture, whereas the PBL method relies on the problem as a vehicle to guide learners to relevant content information [15, 16].

Based on the explanation above, the problem that arises is how effective is Pro-BHL teaching model to increase the cts of the students of SMAN? This problem is formulated in more detailed as follows:(1) Is there any increase in students’ cts after being given a teaching with Pro-BHL?; (2) What is the extent of the average level of the increase (average gain score) for the three groups; and (3) Is the average N-gain consistent for the three groups.

Regarding the still low cts of the students of senior high schools in Bali, an alternative solution needs to be found to train the cts of the students in accordance with curriculum 2013 [4]. One of the alternative models which assumed to be able to train the cts with Problem-Based Hybrid Learning model (Pro-BHL). Based on hybrid learning, learning is basically a social process which will be compromised if all the modules that take place in the virtual world are far from human interaction [17, 18]. Driscoll [19] shows that blended/hybrid learning can mean differently for different people. Pro-BHL model is teaching model which combines face to face Problem Based Learning (PBL) in the classroom and online learning. In the Pro-BHL model, the students are faced with the problem of ill-structure, then the students work in groups to formulate the problem. The teacher facilitates the students in learning, organizes the learning tasks, mediates problem formulation, and formulates hypotheses. Students in groups to solve problems that have been formulated earlier. Traditional teaching strategies emphasize the broad coverage of content areas through lecture, giving the example problems, and practice questions [20]. Students conduct investigations, collect data, analyze inductively and deductively, and make conclusions, to seek information through printed books available on the internet, have a discussion, are engaged in question and answer activities and present their work through a series of activities on the model Pro-BHL done carefully so it could be expected to train CTS.

Pro-BHL model in Senior high school Physics teaching contains ill-structured problems, physical phenomena, strategic and essential concept, contextual concept, animation/simulation, video, examples and contextual exercises; while learning tools such as lesson plans, worksheets, and teaching materials for Pro-BHL model can be accessed online with address http://Probhl.com. Pro-BHL model in Physics teaching refers to Blended Problem-Based Learning model (BPBL) [18, 21] and Problem Based Blended Learning model (PPBL) Wannapiroon [22]. Donnelly [16] combines face to face PBL teaching in the classroom with e-learning which is known as blended PBL (BPBL). Wannapiroon [22] combines blended/hybrid learning model and PBL which is known as PBBL.
2. Method

2.1. Research Design
This study emphasized the analysis of the effect of Pro-BHL model in Physics teaching on students’ cts, therefore in this study used pre-experimental with pre-test and post-test design as follows: O1 X O2 [23, 24]. Before teaching by using Pro-BHL model, the three groups where given pre-test (O1), and after teaching ws done by using Pro-BHL model (X), the three groups were given the same test again(post-test) (O2).

This research was done with three groups (A, B, and C) of the students of tenth grade in the academic year 2015-2016 at SMA Negeri 1 Singaraja with the total of 86 students, each group consisting of 29, 29, and 28 students respectively.

2.2. Method data collecting and Analysis of data
This research use test method for collecting the data. The test was used to know the improvement in cts of the students before and after the implementation of Pro-BHL model. The test consisted of pre-test and post-test according to cts indicators. The cts test instrument was in the form of essay test, consisting of the following indicators: (1) formulating problems, (2) giving arguments, (3) making and deduction, (4) making induction, and (5) making decision.

The data from the result of the cts test collected were analyzed by using paired t-test or non parametric analysis of Wilcoxon test. Paired t-test was done if the criteria of population data had normal distribution [23, 25, 26, 27]. If the data did not meet the criteria of normal distribution, then Wilcoxon test was used. While, the computation of N-gain value was done to analyze the level of the students cts which was caused by Pro-BHL model implementation in Physics teaching. The mean of the cts improvement was determined by the value of the normalization of gain (N-gain). The category of N-gain according to Hake [28] are: (1) teaching with “high improvement average”, if \(N\text{-gain} \geq 0.7 \); (2) teaching with “medium improvement average”, if \(0.7 > N\text{-gain} \geq 0.3 \); and (3) teaching with “low improvement average”, if \(N\text{-gain} < 0.3 \). Statistical analysis was done using IBM SPSS Statistics 20 software [27]. After that, analysis of variance (ANOVA) was done to analyze consistence (no difference) in the average of cts improvement using Pro-BHL model among classes A, B, and C. ANOVA was done when the requirement of N-gain average for the three groups, each coming from population with a normal distribution and the three groups were homogeneous was met.

3. Result and Discussion

3.1. Result
The description of data of every group: A, B, and C is shown in diagram consisting of: mean score for pre-test, mean score for post-test, and N-gain average for cts. The description is shown in Figures 1 and 2.

![Figure 1](image1.png)
Figure 1. Mean scores for cts pre-test, post-test

![Figure 2](image2.png)
Figure 2. Mean scores improvement <g> cts
Figure 1 shows improvement in cts in three groups: A, B, and C. Improvement in cts of the three groups were categorized into high category shown by N-gain value as in Figure 2. The result of paired t-test between pre-test and post-test of cts for the three groups had met the criteria of normality and homogeneity as shown in Table 1. While, the ANOVA result about the improvement of cts of student for the three groups had met the criteria of normality and homogeneity as shown in Table 2.

Table 1. Result of Paired T-Test between The Scores for Pre-Test and Post-Test

No	Data	Average Test (t)	Df	p (2-tailed)	Remark
1	Group A	-32,339	28.00	< 0.0001	Ho is rejected
2	Group B	-49,938	28.00	< 0.0001	Ho is rejected
3	Group C	-35,788	27.00	< 0.0001	Ho is rejected

*p < 0.05 (2-tailed)

Table 2 shows that the value of p for the result paired t-test of the scores of pre-test and post-test in cts in the three group is < 0.05 and on the whole have negative values. This means that there is a significant difference (statistically) in the cts of the students between before and after the implementation of Pro-BHL model in teaching. The cts of the students after the implementation of Pro-BHL model was higher then before the implementation of Pro-BHL model.

Table 2. Results of ANOVA of the Improvement of the Students’ cts

No	Data	F	Df	P	Remark
1	Average N-gain of the cts of Groups A, and C	0.496	83	0.611	Ho is accepted

*p < 0.05

Table 2 shows that the value of p in the result of ANOVA for groups A, B , and C is 0.611. Since the value of p > 0.05, then statistically, there is no difference in the average of improvement in the students’ cts (consistent), significant at α = 5% for the three groups A, B, and C.

3.2. Discussion

Pro-BHL model can be implemented in Physics teaching. This model requires the identification of unstructured problems, formulating problems, collecting information from the internet to solve the problems, processing information, presenting the result of problems solving, doing a discussion, asking and answering questions, so that the students are able to master cts.

The achievement of cts by the students is shown in Figure 1. The mean scores in cts for the pre-test in the three groups (A, B, and C) before Pro-BHL model was implemented were low, i.e., 30.3; 29.9; and 30.1 from 0 – 100 scale. After Pro-BHL model was implemented, the means score in cts of the students in the three groups were higher, i.e., 81.8; 81.0; and 79.9. The low score and cts of the students in the condition before Pro-BHL model was implemented was probably cause by the students who had not been cts after Pro-BHL model was implemented, their scores were higher. They improvement of the mean score in cts of the students is shown in Table 1, statistically significant α = 5%. In Table 2 it is shown that the average N-gain for every groups: A, B, and C, all have high categories according to Hake’s criteria [28] that is 0.7.

In Table 2 it is shown the improvement of cts of the students, N-gains in the three groups: A, B, and C which are not different one and another or consistent. This shows that the implementation of Pro-BHL model could consistently improve the students cts. This is in line with the schema theory that state when individual reconstructs information, he or she adaptated which the knowledge that he or she had in mind [29]. Pro-BHL model is a model for integrating ICT in education which can give opportunity for the achievement higher level of cts. The effect of Pro-BHL model only improvement of cts is supported by the finding Wannapiroon [20] who state that higher level cts was achieve after
teaching by using PBL model. Similarly this is also supported by the result of the research done by [30,31] who state that the students cts improve in Physics through the implementation PBL online; Elnethra and Sulaiman [30, 31] who conclude that PBL online can improve cts; and [32] who shows that PBL significantly improve the students competence in planning and organizing teaching. The ability Pro-BHL model that provide hyperlinks familiarize the students to see the flexibility of the teaching material.

4. Conclusion
Based on the discussion of the result of the research it can be concluded that Physics teaching with Pro-BHL teaching model can effectively improve the cts of the students of SMA N 1 Singaraja, as shown by: (1) the improvement of the students cts significantly at $\alpha = 5\%$, (2) the average of cts gain (N-gain average) for the three groups = 0.7 categorize into high category, and (3) the N-gain averages are not different for the three groups of research or consistence.

Acknowledgement
The authors thank the Headmaster of State Senior High School-1 Singaraja who had been willing to provide a place for this research.

References
[1] Ennis R H 2012 The Nature of critical thinking: Outlines of critical thinking dispositions and abilities Retrieved from http://www.criticalthinking.net/longdefinition.html
[2] Ennis R H 1996 Critical thinking (Upper Saddle River, NJ: Prentice-Hall)
[3] Redhana I W and Liliasari 2008 Program pembelajaran keterampilan berpikir kritis pada topik laju reaksi untuk siswa SMA [Critical thinking skills learning program on reaction rate topics for High School Students] FORUM KEPENDIDIKAN 27 103-112
[4] Kemdikbud 2016 Salinan Lampiran Peraturan Menteri Pendidikan dan Kebudayaan Nomor 21 Tahun 2016 tentang Standar Ist Pendidikan Dasar dan Menengah [Copy of Appendix of the Regulation of the Minister of Education and Culture No. 21 Year 2016 about Standard of Contents of Elementary and High School Education] (Jakarta: Kemdikbud)
[5] Semerci C 2005 The influence of the critical thinking skills on the students’ achievement. Pakistan Journal of Social Sciences 3 598-602
[6] Azami Z, Yuzainee M Y, Mohd Z O, Azah M, Norhamidi M and Ramli, M 2009 Perceptions and expectation toward engineering graduates by employers: A Malaysian study case. WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION 6 296-305
[7] Ananiadou K and Claro M 2009 21st Century Skill And Competency for New Millennium Learners in OECD Countries (OECD Education Working Papers, No.41: OECD Publishing)
[8] Partnership For 21 St Century Skills 2009 P21 Framework Definition. Retrieved from http://www.p21.org_storage/documents/docs/P21_Framework_Definitions_Ne w_Logo_2015.pdf
[9] Reta I K 2012 Pengaruh model pembelajaran berbasis masalah terhadap keterampilan berpikir kritis ditinjau dari gaya kognitif siswa [The influence of problem-based learning model to critical thinking skill in terms of student's cognitive style] Jurnal Penelitian Pascasarjana Undiksha, 2(1), 1-17.
[10] Pursitasari I D and Permanasari A 2012 Model integrated problem solving based learning pada perkuliahan dasar-dasar kimia analitik [Integrated problem solving based learning model on lectures of analytical chemistry basics] Jurnal Ilmu Pendidikan 18 172-178
[11] Gurría A 2016 Programme for international student assessment 2 PISA 2012 results in focus (OECD Secretary-General)
[12] Sadia I W 2008 Model pembelajaran yang efektif untuk meningkatkan keterampilan berpikir kritis [Effective teaching model for improving critical thinking skill] Jurnal pendidikan dan Pengajaran Undiksha 41 219-237
[13] Sujanem R 2015 Profil Keterampilan berpikir kritis dan kemampuan pemecahan masalah siswa SMAN di kota Singaraja [Profile of Students’ critical thinking skill and problem solving ability of SMAN students in Singaraja city] Prosiding Seminar Nasional Sains UKSW 2015, 19 September 2015

[14] Sujanem R 2015 Analisis kebutuhan model pro-bhl untuk meningkatkan keterampilan berpikir kritis dan kemampuan pemecahan masalah siswa dalam pembelajaran fisika SMA [Need analysis of Pro-BHL model to improve critical thinking skills and problem-solving abilities of the students of the senior high school in physics teaching] Proceedings Seminar Nasional FMIPA UNDIKSHA V Tahun 2015 “Optimalisasi Peran MIPA dalam Membangun Sumber Daya Manusia Indonesia yang Kompetitif”, 07 Desember 2015

[15] Barbara J D1995 Problem-based learning in physics: the power of students teaching students. Center For Teaching Effectiveness.

[16] Gijselaers W H 1996 Connecting problem-based practices with educational theory. Ne Diction for Teaching and Learning 68 13-21.

[17] Graham C R 2004 Blended Learning System: Definition, Current Trend, and Future Directions. In Bonk C J and Graham C R (Eds) (in press). Handbook of blended learning: Global Perspectives, local designs (San Francisco, CA: Pfeiffer Publishing)

[18] Donnelly R 2006 Blended problem-based learning for teacher education: Lessons learnt Journal of Learning, Media and Technology 31 93-116

[19] Driscoll M 2002 Blended Learning: let’s get beyond the hype, e-Learning, http://elearningmag.com/ltimagazine, March 1, 2002.

[20] Slavin R E 2009 Educational psychology theory and practice Eight edition (Bostond: Pearson

[21] Moeller S Spitzer K and Spreckelasen C 2010 How to configure blended problem based learning—Results of a randomized trial Medical Teacher, 32, 328–346.

[22] Wannapiroon P 2008 Development of problem-based blended learning in developing undergraduate students’ critical thinking. Journal of ICT to Improve Learning 1 1-7.

[23] Sugiyono 2012 Metode penelitian pendidikan: Pendekatan kuantitatif, kualitatif, dan R&D [Educational research method: quantitative, qualitative approach, and R&D] (Bandung: Alfabeta)

[24] Fraenkel J R and Wallen N E 2009 How to design and evaluate research in education (7th ed.) (New York: McGraw-Hill)

[25] Ary D Jacob L C and Sorenen C 2010 Introduction to research in education (Canada: Cengage Learning)

[26] Arikunto S 2010 Dasar-dasar evaluasi pendidikan [The Basics of educational evaluation] (Jakarta: Bumi Aksara)

[27] Priyatno D 2012 Belajar Praktis Analisis Parametrik dan Non Parametrik dengan SPSSI & Prediksi Pertanyaan Pendadaran Skripsi dan [Practical learning about parametric and non parametric analysis with spss & the prediction of questions and discussion of thesis] (Yogyakarta: Penerbit Gava Media)

[28] Hake R R 1998 Interactive-engagement versus traditional methods: a six-thousand student survey of mechanics test data American Journal of Physics 66 64–74

[29] Santrock J W 2011 Educational psychology 5th edition (New York: McGraw-Hill)

[30] Elnetthra F E and Sulaiman F 2013 The Role of PBL in improving physics students’ creative thinking and its imprint on gender. International Journal of Education and Research 1 1-10

[31] Sulaiman F 2013 The Effectiveness of PBL online on physics students’creativity and critical thinking: a case study at Universiti Malaysia Sabah International Journal of Educational and Research, 1 (3), 1-18

[32] Vidic A D 2010 The Impact of problem-based learning on statistical thinking of engineering and technical high school students.ICOTS8 (2010) Invited Paper Refereed. International Association of Statistical Education (IASE)