The inheritance of female mating behaviour in the seaweed fly, *Coelopa frigida*

ANDRÉ S. GILBURN AND THOMAS H. DAY*
Department of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH
(Received 20 April 1994 and in revised form 17 May 1994)

Summary
In order to understand the evolution of female mate preferences it is important to determine whether the genes for the preference and those for the preferred character are linked. It has previously been shown that female preference in the seaweed fly, *Coelopa frigida*, varies with the \(a/\beta\) inversion system on chromosome I. This inversion system is known to genetically determine, at least in part, the male preferred character, large size. This study was undertaken to determine whether the genes determining mate preferences, as well as those determining female receptivity, co-inherit with the inversion. In the full sibs of animals recently collected from a natural population in Sweden it is shown that high acceptance rate and strong preference for large male size both co-segregate with the \(a\) form of the inversion, and that low acceptance rate and a weak preference for large size co-segregate with the \(\beta\) form of the inversion. Both sets of genes appear to be located in or near the \(a/\beta\) inversion. The heterogeneity between crosses suggests the natural population from which the animals were collected was polymorphic for behavioural genes on the \(\beta\) haplotype. Crosses involving animals that had been in laboratory culture for seven generations indicated that variation in female mating behaviour had been lost. Possible reasons for the apparent instability of such behaviour are discussed.

1. Introduction
Many models have attempted to describe the evolution of female mating preferences in species with non-resource based mating systems (see review by Kirkpatrick & Ryan, 1991). The two most studied models, the 'good genes' mechanism (Zahavi, 1975; Bell, 1978; Hamilton & Zuk, 1982; Andersson, 1982, 1986; Kirkpatrick, 1986; Pomiankowski, 1987; Iwasa, Pomiankowski & Nee, 1991) and the Fisherian process (Fisher, 1930; Lande, 1981; Kirkpatrick, 1982; Pomiankowski, Iwasa & Nee, 1991) both require the development of a genetic correlation between the female preference and an advantageous character. In the good genes mechanism the other character is assumed to be a viability trait, whereas in the Fisherian process it is assumed to be the male preferred trait, which gains its advantage from the expression of the preference itself.

Empirical tests of the good genes mechanism have concentrated on correlations between the preferred trait and male viability. Milinski & Bakker (1990) found a positive correlation in the three-spined stickleback, *Gasterosteus aculeatus*, between the preferred character, the intensity of redness in males, and male health, as routinely estimated in fisheries research by the weight/length ratio. They also showed that infection with parasites reduces male colour intensity. The implication is that the more intensely red males are indicating that they carry genes for parasite resistance. In a similar study, Møller (1990) not only found a correlation between male tail length and the level of mite infestation in the barn swallow, *Hirundo rustica*, but also demonstrated a genetic basis to mite resistance. However, none of these studies directly demonstrated that a genetic correlation exists between the female mating preference and parasite resistance.

The Fisherian process is extremely difficult to test empirically since the crucial characters are sex limited—the preference is expressed in females, and the preferred trait in males. Bakker (1993) obtained indirect evidence for a genetic correlation by showing that the most discriminating female sticklebacks tend to produce intensely red sons. In laboratory selection experiments using stalk-eyed flies (*Cyrtodiopsis dalmanni*), Wilkinson & Reillo (1994) observed a
inversion system on chromosome I which can be characterized to exist in a Swedish population, a characteristic form of the inversion, and is associated with small male size (Day et al. 1982). The C allele (as defined by the alcohol dehydrogenase locus) is in complete linkage disequilibrium with the αβ inversion system; the Adh-B allele is inherited exclusively with the α form of the inversion, and is associated with large male size. The Adh-D allele is inherited with the β form of the inversion, and is associated with small male size (Day et al. 1982). The C allele (as defined by starch gel electrophoresis) does not exhibit linkage disequilibrium of this type, but the C allele present in the B + C line is almost certainly associated with the β sequence, since CC homozygotes are of the small size characteristic of ββ homokaryotypes (Butlin et al. 1982; Gilburn & Day, 1994b).

Large numbers of flies from the October sample were used to create a broad-based, laboratory popu-
Inheritance of mating behaviour

lation in which a substantial fraction of the natural genetic variation was retained. Virgin females from the first generation of offspring from this laboratory stock were paired with males from the B+C line. When progeny eggs were seen, the Adh genotypes of all parents were determined. If the male parent was BC and the female BD, the larvae were allowed to develop; larvae from all other crosses were discarded. The intention was to generate progeny among which there were no recombinants within the area of the inversion. Since there is no recombination in males, nor between the α and β sequences in heterokaryotypes (Day et al. 1982), the parental haplotypes - including any associated genes for female preference - should be inherited intact.

The progeny were collected as virgin adults and stored at 4 °C until required. Before use in behavioural trials, they were transferred to 26 °C for 2 d of sex-deprivation. The males were kept separately during this period, whereas females were kept in groups of up to 25. Individual pairs were then placed in mating chambers (without the use of anaesthesia) and the reaction of the female to the male's initial mount determined (Gilburn et al. 1992). If she prevented the male from making genital contact, she was scored as rejecting the male; if the male was allowed to copulate, she was recorded as accepting the male. The mating behaviour of C. frigida has been described in detail by Day, Foster & Engelhard (1990). Females were used in only one trial. The Adh genotype of each female was subsequently determined using starch gel electrophoresis (Butlin et al. 1982). All the female progeny from eight pairs of parents from the first generation were typed.

Eight further crosses were carried out using females from the Träslövsläge line that had been maintained in laboratory culture for six generations. The males were taken from the B+C line as before. All other procedures were the same as in the first experiment.

The acceptance rates and preferences of groups of females were compared by logistic regression analysis using the Generalized Linear Interactive Modelling program (GLIM, Numerical Algorithms Group). The methods have been fully described by Gilburn et al. (1992). Briefly, acceptance rate - a measure of general willingness to mate - was calculated as the proportion of trials in which the female accepted the male. Preference (or discrimination) refers to the ability of a female to distinguish between males of different phenotype, and was estimated by the regression coefficient of acceptance on male size. Following this initial regression, groups of females were added to the model as a categorical variable in order to compare the acceptance rates of females of different karyotype and different genotype. Finally, an interaction term was fitted to compare preferences.

3. Results

The results and analyses of the first generation females will be described in detail; those from the seventh generation are given at the end of this section.

(i) Is there variation in female acceptance rate between the different female genotypes?

The acceptance rates of the four daughter genotypes from the BC x BD cross are given in Table 1, with no regard to the sizes of males with which they were paired. It is apparent that the presence of the Adh-B allele (which is being used simply as a marker for the α inversion) is associated with high acceptance rate. Direct comparisons of acceptance rates were made after the variation in male size had been removed (Table 2). Highly significant differences were revealed between BB females and all other genotypes, and also between BC and CD females. Several points are worthy of comment.

The difference between BB and BC females suggests that the inversion haplotype inherited from the father affects female receptivity. In other words, the paternal α haplotypes contained alleles associated with higher receptivity than the paternal β haplotypes. However, because there is no recombination in males, these differences could also be due to genetic variation on chromosome I as a whole, rather than just the αβ inversion system.

Table 1. The acceptance rates of first generation females carrying different Adh genotypes with no regard to the sizes of males with which they were paired

Adh genotype	Inversion karyotype	No. of observations	Acceptance rate
BB	αα	75	0.76
BC	αβ	62	0.48
BD	αβ	65	0.42
CD	ββ	69	0.28

Table 2. Comparison of the acceptance rates of different pairs of female Adh genotypes calculated from the regression of female acceptance rate on female genotype, after acceptance rate was regressed on male size. Data are from the first generation

Adh genotypes	F	d.f.	P
BB BC	10.00	1,134	0.002
BB BD	17.38	1,157	<0.001
BB CD	41.13	1,141	<0.001
BC BD	0.51	1,144	0.51
BC CD	5.69	1,128	0.019
BD CD	2.86	1,151	0.093
By similar reasoning, the difference between the \textit{BB} and \textit{BD} females is likely to result from the maternal \(\alpha\) haplotypes containing alleles associated with higher receptivity than the maternal \(\beta\) haplotypes. In this case, because recombination can occur between homologous chromosomes (though not in the region of the \(\alpha\beta\) inversion), we can be more confident that the differences observed are determined by genes located in or near the inversion. That a difference does exist between the two haplotypes inherited from mothers is also suggested by the difference between the \textit{BC} and \textit{CD} females. The smaller differences seen between the two heterokaryotypes (\textit{BC} and \textit{BD}) and the \(\beta\) homokaryotypes (\textit{CD}), suggest that the alleles determining low acceptance associated with the \(\beta\) sequence may show incomplete dominance over those for high acceptance associated with the \(\alpha\).

(ii) \textit{Are there two homogeneous categories of haplotypes?}

In the first experiment females recently collected from a wild population were mated with males from the \(B + C\) line. The fathers' contributions to the progeny were therefore relative homogeneous – either a single \(C\) allele, or one of at most three \(B\) alleles. The maternal contribution, on the other hand, will have depended on the heterogeneity of the \(\alpha\) and \(\beta\) haplotypes in the population at Traslovsläge at the time of sampling. The variation between crosses gives an indication of the homogeneity of the \(\alpha\) and of the \(\beta\) haplotypes in the wild population.

The acceptance rates of the eight sets of progeny are given in Table 3. Tests for heterogeneity between crosses for each of the four daughter genotypes, when variation due to male size had been removed, yielded probabilities of 0.79 (\textit{BB}), 0.48 (\textit{BC}), 0.09 (\textit{BD}) and 0.009 (\textit{CD}). The values for \textit{BB} and \textit{BC} daughters suggest, admittedly on the basis of a sample of only eight \(\alpha(B)\) haplotypes, that there is no heterogeneity at the loci determining acceptance rate. (It is also consistent with the original three \(\alpha(B)\) haplotypes in the \(B + C\) line being similar.) In contrast, significant differences between crosses were observed in the \textit{CD} progeny. This is consistent with the \(\beta(D)\) haplotypes being heterogeneous in the original population. Inspection of Table 3 allows tentative identification of the variants: the \(\beta(D)\) haplotypes inherited in crosses 2 and 4 appear to determine distinctly higher acceptance rates than were seen in the other six crosses. Cross 4 also produced \textit{BD} offspring with the highest acceptance rate, and the females from cross 2 exhibited the second highest acceptance rate. Clearly we cannot be certain on the basis of such a small sample that the relevant loci are genuinely polymorphic, but this result is consistent with others indicating greater homogeneity of the \(\alpha\) than of the \(\beta\) sequence (Gilburn – unpublished results).

![Table 3. The acceptance rates of the different progeny female genotypes of each pair separately. Sample sizes are given in brackets. The data are from the progeny of first generation females.](https://doi.org/10.1017/S001667230003250X)

Progeny genotype	Pair no.	\(BB\)	\(BC\)	\(BD\)	\(CD\)
1	0.80(10)	0.67(6)	0.40(5)	0.00(6)	
2	0.71(7)	0.50(10)	0.56(16)	0.56(16)	
3	0.86(14)	0.63(11)	0.50(12)	0.13(8)	
4	0.71(7)	0.80(5)	1.00(4)	0.80(5)	
5	0.73(11)	0.27(11)	0.40(15)	0.00(8)	
6	0.67(9)	0.33(6)	0.18(11)	0.29(14)	
7	0.80(10)	0.43(7)	0.27(11)	0.17(6)	
8	0.71(7)	0.27(11)	0.36(11)	0.11(9)	

![Table 4. The regression coefficients of female acceptance rate on male size for each female genotype from the first generation females.](https://doi.org/10.1017/S001667230003250X)

Adh genotype	Regression coeff.	S.E.	\(P\)
\(BB\)	+3.46	1.08	< 0.01
\(BC\)	+0.82	0.63	= 0.19
\(BD\)	+0.71	0.48	= 0.14
\(CD\)	+1.93	0.66	< 0.01

(iii) \textit{Are the females, regardless of their genotype, expressing a preference for large males?}

Preference was estimated from the logistic regression coefficient of acceptance rate on male size. From such an analysis it was clear that females (with no regard to their genotype) were expressing a strong mating preference for large male size \((F = 16.24; \text{ d.f.} = 1, 289; \ P < 0.001)\). This has been the consistent finding of previous studies on the Traslovsläge population (Gilburn et al. 1993).

(iv) \textit{Are there differences in preference between the different daughter genotypes?}

Regression coefficients were calculated for each female genotype separately (Table 4). All four genotypes exhibited a preference for large size, although this was significant only for the \textit{BB} and \textit{CD} females. A difference was found between \textit{BBs} and both \textit{BDs} \((F = 6.048; \text{ d.f.} = 1,156; \ P < 0.025)\) and \textit{BCs} \((F = 4.633; \text{ d.f.} = 1,133; \ P < 0.05)\). The former difference was in the haplotype inherited from their mothers, whereas the latter involved the paternal chromosome I. In other words, both maternal and paternal \(\alpha\) haplotypes appear to be associated with a stronger mating preference for large male size than the \(\beta\) haplotypes, although the difference associated with male haplotype could be due to genetic variation from the entire first chromosome.
Inheritance of mating behaviour

Table 5. The overall acceptance rates of females carrying different Adh genotypes. The data are from the seventh generation

Adh genotype	Inversion karyotype	No. of observations	Acceptance rate
BB	aα	43	0.56
BC	aβ	54	0.46
BD	aβ	60	0.45
CD	ββ	43	0.37

Table 6. The acceptance rates of the different progeny female genotypes of each pair separately. Sample sizes are given in brackets. The data are from the seventh generation

Pair no.	BB	BC	BD	CD
9	0.83 (6)	0.50 (6)	0.33 (3)	0.33 (3)
10	0.83 (6)	0.40 (5)	0.38 (8)	0.75 (4)
11	0.75 (4)	0.67 (6)	0.63 (8)	0.75 (4)
12	0.50 (4)	0.57 (7)	0.36 (11)	0.29 (7)
13	0.60 (5)	0.43 (7)	0.50 (10)	0.14 (7)
14	0.67 (6)	0.20 (5)	0.67 (6)	0.33 (3)
15	0.20 (10)	0.33 (15)	0.14 (7)	0.50 (4)
16	0.00 (2)	0.67 (3)	0.57 (7)	0.27 (11)

Table 7. The regression coefficients of female acceptance rate on male size for each female genotype from the seventh generation

Adh genotype	Regression coeff.	S.E.	P
BB	+1.09	0.82	0.23
BC	+1.23	0.66	0.09
BD	+1.23	0.61	0.07
CD	+0.80	0.64	0.28

Two further comparisons can be made. The BC and CD daughters also differed in the haplotype they received from their mothers, but the difference in preference between these two groups was not significant. There was no difference between BD and CD daughters which differed in their paternally inherited first chromosomes.

(v) Analysis of the seventh generation females

Another set of eight crosses was performed using animals from the same two stocks, except that the stocks had been maintained in laboratory culture for an additional six generations. All experimental procedures were exactly the same as for the first experiment. From Tables 5 and 6 it is apparent that clear-cut differences in acceptance rate associated with female inversion genotype found in the first generation were not observed. The BB females did exhibit the highest acceptance rate and the CD the lowest, but there were no significant differences between the different genotypes. It must also be noted that there was no significant change in the acceptance rates of any female genotype from the first experiment. There was no evidence for heterogeneity in acceptance rates between crosses; the probability values were: 0.29 (BB), 0.74 (BC), 0.55 (BD) and 0.75 (CD).

The seventh generation females differed from the first in another respect. No differences in preference were observed between genotypes – indeed, none of the individual genotypes expressed a significant preference, although each did yield a positive regression coefficient (Table 7). Comparing the preferences measured in the first and seventh generations, there were no significant changes for any of the genotypes.

4. Discussion

The results using females recently collected from the wild showed that full siblings differed in their mating behaviour, and that some of these differences were associated with the chromosome I inversion system. High acceptance rate and strong preference for large male size both co-segregated with the α form of the inversion. On the other hand, low acceptance rate and a weak preference for large size co-segregated with the β form of the inversion. These observations were entirely consistent with the behaviour of females newly collected from a population at Träslövsläge (Gilburn et al. 1993). They also suggest that the genetic determinants of two aspects of female mating behaviour – receptivity and discrimination – are located in or near the αβ inversion.

A second inference to be drawn from these results is that at least the β haplotype is polymorphic in the Träslövsläge population for the loci determining acceptance rate. The α haplotype may also be polymorphic, but in the small sample of chromosomes examined, no heterogeneity was detected.

These results from first generation females offered hope of understanding the inheritance of female mating behaviour. However, the second set of trials suggested the understanding may not be achieved quickly. Although there were no significant differences between the two experiments, it appears that culture of animals in the laboratory for six generations resulted in acceptance rates becoming more homogeneous. Furthermore, there was an apparent homogenization in mate choice. In the first generation clear differences were seen in the mating behaviour of different female karyotypes; after seven generations this variation appears to have been lost. This change is strikingly similar to that observed in Adalia bipunctata (Majerus et al. 1982, 1986; Kearns et al.

https://doi.org/10.1017/S001667230003250X Published online by Cambridge University Press
in the inversion or alternatively, be genetically correlated with the inversion through the action of sexual selection. However, the results of this study do suggest that genes affecting female mating behaviour, if not actually located within the inversion, are likely to be syntenic with chromosome I, and probably closely linked to the αβ system. We are currently studying the behaviour of isokaryotypic lines in which all genetic variation associated with the αβ inversion system has been removed. Any apparent differences in the behaviour of these lines must be either environmental, or due to changes in allele frequencies at loci not associated with the inversion system.

This work was supported by a grant (GR3/7189) from the Natural Environment Research Council and a studentship (to ASG) from the Science and Engineering Research Council.

References

Andersson, M. B. (1982). Sexual selection, natural selection and quality advertisement. *Biological Journal of the Linnean Society* 17, 375–393.

Andersson, M. B. (1986). Evolution of condition-dependent sex ornaments and mating preferences: sexual selection based on viability differences. *Evolution* 40, 809–816.

Bakker, T. C. M. (1993). Positive genetic correlation between female preference and preferred male ornament in sticklebacks. *Nature* 363, 255–257.

Bell, G. (1978). The handicap principle in sexual selection. *Evolution* 32, 872–885.

Butlin, R. K., Read, I. L. & Day, T. H. (1982). The effects of a chromosomal inversion on adult size and male mating success in the seaweed fly, *Coelopa frigida*. *Heredity* 49, 51–62.

Day, T. H., Dobson, T., Hillier, P. C, Parkin, D. T. & Clarke, B. C. (1982). Associations of enzymic and chromosomal polymorphisms in the seaweed fly, *Coelopa frigida*. *Heredity* 48, 35–44.

Day, T. H., Foster, S. P. & Engelhardt, G. (1990). Mating behaviour in seaweed flies (*Coelopa frigida*). *Journal of Insect Behavior* 3, 105–120.

Engelhardt, G., Foster, S. P. & Day, T. H. (1989). Genetic differences in mating success and female choice in seaweed flies (*Coelopa frigida*). *Heredity* 62, 123–131.

Fisher, R. A. (1930). *The Genetical Theory of Natural Selection*. Oxford: Clarendon Press.

Gilburn, A. S., Foster, S. P. & Day, T. H. (1992). Female mating preference for large size in *Coelopa frigida*. *Heredity* 69, 209–216.

Gilburn, A. S., Foster, S. P. & Day, T. H. (1993). Genetic correlation between a female mating preference and the male preferred character in the seaweed fly, *Coelopa frigida*. *Evolution* (in the press).

Gilburn, A. S. & Day, T. H. (1994a). Evolution of female choice in seaweed flies: Fisherian and good genes mechanisms operate in different populations. *Proceedings of the Royal Society of London B* 255, 159–165.

Gilburn, A. S. & Day, T. H. (1994b). Sexual dimorphism, sexual selection and the αβ inversion polymorphism in the seaweed fly, *Coelopa frigida*. *Proceedings of the Royal Society of London B* (submitted).

Hamilton, W. D. & Zuk, M. (1982). Heritable true fitnesses and bright birds: a role for parasites. *Science* 218, 384–387.

Heisler, I. L. (1984). Inheritance of female mating propen...
Inheritance of mating behaviour

Iwasa, Y., Pomiankowski, A. & Nee, S. (1991). The evolution of costly preferences II. The ‘handicap’ principle. *Evolution* 45, 1431–1442.

Kearns, P. W. E., Tomlinson, I. P. M., Veltman, C. J. & O’Donnell, P. (1992). Non-random mating in *Adalia bipunctata*. II. Further tests for female mating preference. *Heredity* 68, 385–389.

Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. *Evolution* 36, 1–12.

Kirkpatrick, M. (1986). The handicap mechanism of sexual selection does not work. *American Naturalist* 127, 222–240.

Kirkpatrick, M. & Ryan, M. J. (1991). The evolution of mating preferences and the paradox of the lek. *Nature* 350, 33–38.

Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. *Proceedings of the National Academy of Science USA* 78, 3721–3725.

Majerus, M. E. N., O’Donald, P. & Weir, J. (1982). Female mating preference is genetic. *Nature* 350, 521–523.

Majerus, M. E. N., O’Donald, P., Kearns, P. W. E. & Ireland, N. (1986). Genetics and evolution of female choice. *Nature* 321, 164–167.

Milinski, M. & Bakker, T. C. M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. *Nature* 344, 330–333.

Moller, A. P. (1990). Effects of a haematophagous mite on the barn swallow (*Hirundo rustica*): a test of the Hamilton and Zuk hypothesis. *Evolution* 44, 771–784.

O’Donald, P. & Majerus, M. E. N. (1992). Non-random mating in *Adalia bipunctata* III. New evidence of genetic preference. *Heredity* 69, 521–526.

Pomiankowski, A. (1987). Sexual selection: The handicap principle does work – sometimes. *Proceedings of the Royal Society of London B* 231, 123–145.

Pomiankowski, A., Iwasa, Y. & Nee, S. (1991). The evolution of costly preferences I. Fisher and biased mutation. *Evolution* 45, 1422–1430.

Ritchie, M. G. (1992). Setbacks in the search for mate preference genes. *Trends in Ecology and Evolution* 7, 328–329.

Wilkinson, G. S. & Reillo, P. R. (1994). Female choice responds to selection on an exaggerated male trait in a stalk-eyed fly. *Proceedings of the Royal Society of London B* 255, 1–6.

Zahavi, A. (1975). Mate selection – a selection for a handicap. *Journal of Theoretical Biology* 53, 205–214.

Zouros, E. (1981). The chromosomal basis of sexual isolation in two sibling species of *Drosophila: D. arizonensis* and *D. mojavensis*. *Genetics* 97, 703–718.