Biomimetic non-classical crystallization induced hierarchically structured efficient circularly polarized phosphors

Hong-Bin Yao (✉ yhb@ustc.edu.cn)
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 https://orcid.org/0000-0002-2901-0160

Li-Zhe Feng
Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Jing-Jing Wang
Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Tao Ma
University of Science and Technology of China

Yi-Chen Yin
University of Science and Technology of China

Kuang-Hui Song
Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Zi-Du Li
Department of Physics, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Man-Man Zhou
Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, China

Shan Jin
Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, China

Taotao Zhuang
Department of Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Fengjia Fan
University of Science and Technology of China https://orcid.org/0000-0002-5447-6296

Manzhou Zhu
Abstract

Hierarchically structured chiral luminescent materials hold promise for achieving efficient circularly polarized luminescence. However, a feasible chemical route to fabricate hierarchically structured chiral luminescent polycrystals is still elusive because of their complex structures and complicated formation process. We here report a biomimetic non-classical crystallization (BNCC) strategy for preparing efficient hierarchically structured chiral luminescent polycrystals using well-designed highly luminescent homochiral copper(I)-iodide hybrid clusters as basic units for biomimetic crystallization. By monitoring the crystallization process, we unravel the BNCC mechanism, which involves crystal nucleation, nanoparticles aggregation, oriented attachment, and mesoscopic transformation processes. We finally obtain the circularly polarized phosphors with both high luminescent efficiency (32%) and high luminescent dissymmetry factor (1.5×10^{-2}), achieving the first demonstration of a circularly polarized phosphor converted light emitting diode with a polarization degree of 1.84% at room temperature. Our designed BNCC strategy provides a simple, reliable and large-scale synthetic route for preparing bright circularly polarized phosphors.

Full Text

In recent years, chiroptical materials with circularly polarized luminescence (CPL) characteristics have received considerable attentions in the fields of photoelectric devices, 3D optical displays, optical information encryptions, and optical sensors. The performance of CPL-active materials can be evaluated by the luminescent efficiency and luminescence dissymmetry factor (i.e. g_{lum}), which is defined as

$$g_{\text{lum}} = 2 \times \frac{I_L - I_R}{I_L + I_R}$$

where I_L and I_R are intensities of left- and right-handed circularly polarized emissions. The maximum value of g_{lum} is ±2, which implies the ideal left- or right-handed circularly polarized luminescence. However, because of the inter-restriction of magnetic dipole transition and electric dipole transition, traditional CPL-active materials, such as chiral luminescent organic molecules and coordination compounds, are difficult to obtain both high photoluminescence efficiency and large g_{lum} values.

The hierarchical configuration of chiroptical units are promising to enhance CPL performance via the novel structural chirality amplification through multiscale levels. However, the well-developed hierarchical construction of chiral unit assemblies for efficient CPL is still lack on account of the structural diversity and multi-size dispersity of the conventional chiral units. In addition, understanding the mechanism of structure-function relationship of chiral unit assemblies is highly dependent on the structure of basic chiral units. Therefore, an advanced strategy to conduct hierarchically structured assemblies of well-defined chiral luminescent units across multiscale levels towards efficient CPL is urgently desirable.
In natural biomaterials, hierarchical structures regulated by chiral molecules across multiple scale for chirality amplification is considerably ubiquitous. As the building blocks of lives on the earth, chiral sugars and amino acids endow the biomacromolecules such as nucleic acids and proteins with stable helical structures. These macromolecules like proteins serve as organic matrix, which induce and regulate the stereoselective non-classical crystallization of calcium carbonate at room temperature to form the macroscale chiral-shaped biominerals, e.g., helical textures on seashells. This implies that the hierarchically structured chiral polycrystals can be synthesized for chirality amplification through a feasible biomimetic non-classical crystallization (BNCC) process at room temperature based on the well-defined homochiral units. Nevertheless, using the mild BNCC strategy to construct artificial hierarchically structured polycrystals with high performance CPL has never been achieved due to the absence of homochiral luminescent units.

An appropriate homochiral unit to construct hierarchical CPL-active assemblies via BNCC should be structurally robust and highly luminescent. Here, we turn our attention to copper(I)-iodide (Cu-I) hybrid clusters owing to their highly luminescent efficiency characteristics, as well as structural identity and robustness for the rational design of homochiral units. We consider that the chiral Cu-I hybrid clusters are potential homochiral units to fabricate hierarchically structured CPL-active materials through the feasible and mild BNCC route.

Herein, we report a BNCC route to synthesize hierarchical structure induced chirality amplified CPL-active materials as efficient circularly polarized phosphors endowing light emitting diodes (LEDs) bright circularly polarized emissions. Our strategy is featured by the multiscale design and assembly process that mimicking the formation of chiral biominerals. We design and synthesize a series of chiral Cu-I hybrid clusters as highly luminescent homochiral units. Thereafter, to amplify the chirality for efficient CPL, we conduct the assemblies of Cu-I hybrid clusters at nano- and micro- scales to yield hierarchically structured CPL polycrystals via the BNCC. Compared to directly precipitated powders without hierarchical chiral structures, our hierarchical assemblies of chiral Cu-I hybrid clusters exhibit much higher g_{lum} value of 1.5×10^{-2}, as well as maintaining high photoluminescence quantum yield (32%). Using obtained polycrystals as phosphors, for the first time, we present a CPL-active light emitting diode device with a polarization degree of 1.84% at room temperature.

Results And Discussion

Homochiral luminescent cluster design and synthesis. Aiming to the rational design of reliable basic units, we select chiral modified triethylenediamine (ted) as chiral ligands to construct robust and luminescent homochiral Cu-I hybrid clusters for the first time. Synthetic procedures of these four chiral ligands are described in Fig. 1a. To study the effects of chiral center position and chain length of ligands on the BNCC assembly, four chiral ligands with different alkyl chain lengths and chiral center positions are designed (Fig. 1b, left column). Four different chiral iodohydrocarbons are synthesized from corresponding chiral alcohol molecules by nucleophilic substitution (detail phase see Methods). Then,
such chiral alkyl chains are introduced into to form chiral quaternary ammonium salts, which serve as ligands combined with Cu-I inorganic modules by means of all-in-one typed coordinate bonds and ionic bonds together to construct chiral hybrid clusters. All the synthetic organic compounds can be confirmed by 1H NMR analysis (Supplementary Fig. 1-8).

As shown by fluorescence microscopy images (Supplementary Fig. 9), high quality single crystals of chiral clusters were obtained by the slow diffusion method. All chiral cluster structures in the obtained single crystals can be determined by single-crystal X-ray diffraction (SCXRD). As shown in middle column of Fig. 1b, the obtained chiral clusters from L_2 to L_4 have the same Cu-I nucleus, and the corresponding formulas can be illustrated as $Cu_5I_7(L_2)_2$, $Cu_5I_7(L_3)_2$ and $Cu_5I_7(L_4)_2$, respectively. Differently, the crystal obtained by L_1 is constructed by $Cu_4I_4(L_1)_4^{4+}$ as cationic clusters and one dimensional $Cu_8I_{12}^{4-}$ chains as counterparts to balance the charges. Detailed crystallography parameters of the obtained crystals are shown in Supplementary cif. files and summarized in Supplementary Table 1. Besides, powder X-ray diffraction (PXRD) patterns of four directly solution-precipitated powders are highly consistent with the simulated ones, which can verify their high crystallinity and phase purity (Supplementary Fig. 10). In addition, all these clusters crystallize into chiral space groups, namely, $P4_2$, $P1$, $P3_21$, and $P1$, corresponding to $Cu_4I_4(L_1)_4^{4+}$, $Cu_8I_{12}^{4-}$, $Cu_5I_7(L_2)_2$, $Cu_5I_7(L_3)_2$, and $Cu_5I_7(L_4)_2$, respectively. Meanwhile, these four kinds of homochiral clusters show helical arrangements in crystal lattices (Fig. 1b, right column, and Supplementary Fig. 11-14). Additionally, circularly dichroism (CD) signals of these isotropic powders measured by diffuse reflectance are clearly distinct (Supplementary Fig. 15), implying that the chirality were successfully introduced into novel Cu-I hybrid clusters on the molecular scale.

Optical properties of chiral cluster based single crystal powders. To explore optical properties of the synthesized Cu-I hybrid chiral clusters, a series of characterizations on these synthesized single crystal powders were carried out. Fig. 2a shows steady photoluminescent (PL) spectra and UV–vis absorption spectra of these crystal powders. The PL peaks of four crystal powders shift from green (540 nm) to orange red (650 nm) with the chiral ligand employed from L_1 to L_4. Alkyl chain lengths show an obvious influence on the luminescent efficiency as that PLQYs increase with shortening the chain length (50%, 65%, 10%, 7% for $Cu_4I_4(L_1)_4^{4+}$, $Cu_8I_{12}^{4-}$, $Cu_5I_7(L_2)_2$, $Cu_5I_7(L_3)_2$, and $Cu_5I_7(L_4)_2$, respectively). It is probably because the shorter alkyl chains have less rotations and wiggles in the crystal lattice to enhance the aggregation induced light emission. UV–vis absorption spectra show that all these clusters have strong absorptions of light at the wavelength lower than 400 nm, implying their potentials as efficient phosphors due to large Stokes shifts induced weak self-absorption. Thermogravimetric analyses (TGA) further indicate that the obtained hybrid clusters have excellent thermal stabilities with average thermal decomposition temperatures higher than 200°C (Fig. 2b). In addition, PL lifetimes decay curves of $Cu_4I_4(L_1)_4^{4+}$, $Cu_8I_{12}^{4-}$ and $Cu_5I_7(L_2)_2$ show best fit with single (first-order) exponential decay functions (Fig. 2c), and the PL lifetime decay constant (τ) is 7.2 and 3.4 μs respectively, identifying that their
emission behaviors belong to phosphorescence (Fig. 2d). In addition, these isotropic crystal powders behave CPL, but their g_{lum} values were still low on the order of 10^{-4} magnitude (Supplementary Fig. 16).

BNCC of hierarchically organized chiral polycrystals. As shown in above results, CD and CPL signals of single crystal powders are relatively weak. Aiming to largely improve chiroptical properties, we attempt to magnify the chirality of the well-designed chiral clusters via the BNCC induced hierarchically structural assemblies (Fig. 3a). We first used polyvinyl pyrrolidone (PVP, K88-96), a kind of amphiphilic polymer, to confine Cu-I ionic chains in the micelle, which formed a homogeneous colloidal solution according to our previous work.\(^{29}\) Then, the synthesized chiral ligands were added into the colloidal solution system, in which the coordinative and electrostatic interactions make these primary liquid precursors combine together to form the designed chiral clusters. Under the regulation of PVP and excess chiral ligands, the aggregation of chiral clusters gradually transformed into hierarchically structured polycrystals through the BNCC process.

We monitored the crystallization process of Cu$_{4}$(L$_{1}$)$_{4}$Cu$_{8}$I$_{12}$ and Cu$_{5}$L$_{7}$ hierarchical polycrystals at different crystal formation state by scanning electron microscopy (SEM). Impressively, the crystallization process can be well described by BNCC, which is classified in the following four stages. (1) Crystal nucleation: intermediary clusters composed of inorganic and organic units act as building blocks to form crystallized nanoparticles through crystal nucleation in micelles, which can be revealed by SEM images (Fig. 3b and Fig. 3f) and powder X-ray diffraction (PXRD) patterns (Supplementary Fig. 17a, c) show the consistent diffraction peaks with that of single crystal powders of Cu$_{4}$(L$_{1}$)$_{4}$Cu$_{8}$I$_{12}$ and Cu$_{5}$L$_{7}$.30 (2) Nanoparticles aggregation: as reactions progressed, nanoparticles aggregate together and have a tendency to form specific shapes driven by the molecular interactions among the nanoparticles (Fig. 3c and Fig. 3g). PXRD patterns show narrower widths of peaks than that of nanoparticles at the first stage, indicating that the hybrid crystal grain size became larger, confirming the aggregation of nanoparticles (Supplementary Fig. 17a, c). (3) Oriented attachment: electrostatic interactions and Van der Waals forces can further induce these aggregated nanoparticles to arrange with a specific orientation. At this stage, excess chiral ligands, regarded as a kind of amphipathic surfactants, were partially and dynamically absorbed on the nanoparticle surfaces to “code” their alignment.30 More importantly, excess chiral ligands in the colloidal solution created a chiral microenvironment, inducing the helical oriented attachment of nanoparticles and spontaneously forming highly ordered mesocrystals with primary helical morphology (Fig. 3d and Fig. 3h). (4) Mesoscopic transformation into polycrystals: at this stage, mesocrystals have already exhibited crystallographic register because of highly ordered arrangement of nanoparticles. However, they behave transient features due to the high driving force of the fusion of crystal boundaries.30 To be specific, although nanoparticles align to each other with high orientation, some gaps are still preserved among them. Enough rotational freedom was still existed so that particles can rotate and wiggle to correct positions.31 At one certain point, crystal faces are driven to mutually align and fuse by large thermodynamic driving force.32,33 Eventually, mesocrystals evolved to the final hierarchically organized chiral polycrystals with high thermodynamic stability (Fig. 3e and Fig. 3i).
We further confirm the driving forces of chiral crystallization through the high resolution transmission electron microscopy (HRTEM). As shown in Fig. 3j, the lattice fringe spacing is 3.7 Å and 7.8 Å, corresponding to the interplanar spacing (600) and (220) planes of the assembled \(\text{Cu}_4\text{I}_4\left(\text{L}_1\right)_4^{4+} \text{Cu}_8\text{I}_{12}^{4-} \) polycrystals, respectively. Meanwhile, a selected area electron diffraction (SAED) pattern shows the electron diffraction spots of (400) and (440) planes (inset in Fig. 3j). These results reveal that the exposed crystal planes in the obtained polycrystals is the (002) plane dominantly, which further indicates that the helical arrangements of assembly units depend on a specific steric configuration caused by the Van der Waals forces among chiral ligands extended out of the (002) planes between two surfaces of the assembly units of \(\text{Cu}_4\text{I}_4\left(\text{L}_1\right)_4^{4+} \text{Cu}_8\text{I}_{12}^{4-} \) polycrystals (Fig. 3k).

Similarly, such BNCC process can be also observed in the formation of \(\text{Cu}_5\text{I}_7\left(\text{L}_2\right)_2 \) polycrystals (Supplementary Fig. 17b) with drop-shaped micromorphology (Supplementary Fig. 18a-d). Nonetheless, hierarchical crystallization process of \(\text{Cu}_5\text{I}_7\left(\text{L}_4\right)_2 \) is unique in comparison to other three polycrystals, which went through microstructures of conglobate particles, nanosheets and helical nanobelts, respectively (see Supplementary text 1).

The crystallization monitoring also revealed that different crystallization rate induced by ligands correspondingly influenced hierarchical features of the obtained polycrystals. The short alkyl chain ligands would lead to more rapid formation of nanoparticles than that for ligands with long chains. To be specific, PXRD patterns indicated that the crystalline phases of \(\text{Cu}_4\text{I}_4\left(\text{L}_1\right)_4^{4+} \text{Cu}_8\text{I}_{12}^{4-} \) and \(\text{Cu}_5\text{I}_7\left(\text{L}_2\right)_2 \) have already formed at 20 and 3 minutes, respectively. In contrast, the crystalline phase of \(\text{Cu}_5\text{I}_7\left(\text{L}_3\right)_2 \) did not form entirely in the initial reaction of 2 hours. For \(\text{Cu}_5\text{I}_7\left(\text{L}_4\right)_2 \), the final nanobelts need longer time (7 ~ 12 hours) to crystallize (Supplementary Fig. 17d and 18g, h). These are the fact that short alkyl chains absorbed on the assembly units lead to less repulsive forces than long alkyl chains (Supplementary Fig. 20). For the same reason, ligands with short terminal chains, such as \(\text{L}_1 \) and \(\text{L}_2 \), tend to induce assembly units to arrange more compactly (Fig. 3e and Supplementary Fig. 18d). Oppositely, \(\text{L}_3 \) and \(\text{L}_4 \) prefer to induce assembly in a sparser way derive from the relative independence of assembly units (Fig. 3i and Supplementary Fig. 18h).

Hierarchical structure amplified chiroptical properties of polycrystals. We measured the solid state CD spectra of the obtained polycrystals via diffuse reflectance method to compare with that of single crystal powders without hierarchical structure features (Supplementary Fig. 15 and Supplementary Fig. 21). The results suggested that CD signals displayed an order of magnitude improvement by this BNCC process, demonstrating the effective magnification of chirality via the hierarchical organization of chiral clusters. In addition, we prepared polycrystals based on the racemic \(\text{L}_1 \) ligands through the same BNCC process. The obtained polycrystals present bundle structures that consisted of gathered parallel nanorods (Supplementary Fig. 22a) rather than helical structures of polycrystals induced by homochiral ligands. No corresponding CD and CPL signals were obtained for these racemic polycrystals (Supplementary Fig. 22b-d), which confirmed that the chirality of hierarchical polycrystals is indeed derived from homochiral
hybrid clusters, implying the importance of homochiral clusters for stereoselectivity of hierarchical crystallization.

To further amplify the chirality by structural regulation, we explored the relationship between hierarchical features and chiroptical properties through changing the concentration of chiral ligands in the reaction solutions. The polycrystals obtained at different concentration of ligands are all crystalline phases (Supplementary Fig. 23). Fig. 4a-p and Supplementary Fig. 24a-p provide SEM images with high and low magnification, respectively. For Cu$_4$I$_4$(L$_1$)$_4$$^{4+}Cu_8I_{12}$$^{4-}$, when the concentration of L$_1$ is low, the obtained polycrystals are rod-like morphology (Fig. 4a and Supplementary Fig. 24a), showing weak signals of CD (80 mdeg) and CPL (g$_{\text{lum}}$ = 9.6 × 10$^{-3}$) (Supplementary Fig. 25). With the increase of the concentration of L$_1$, excess chiral ligands absorbed on nanoparticle surfaces and existed in the solution make nanoparticles favor to attach mutually and twist via helical pattern, forming the hierarchically structured chiral polycrystals (Fig. 4b and Supplementary Fig. 24b). The helical degree is maximum when the concentration of L$_1$ reaches to 6 mM (Fig. 4c and Supplementary Fig. 24c). Simultaneously, at this concentration, chiroptical properties of the obtained polycrystals are strongest correspondingly. CD spectrum shows a positive Cotton effect and the CD signal reaches to 260 mdeg. The CPL signal is also strongest with the highest g$_{\text{lum}}$ value of 1.5 × 10$^{-2}$ (Supplementary Fig. 25). However, a greater amount of L$_1$ did not lead to the stronger chiral bias. On the contrary, when concentration of L$_1$ is higher than 7 mM, weaker CD signals and CPL emissions are observed. This is understandable because reaction rate is accelerated with the increase of the L$_1$ concentration so that the crystallization is completed more rapidly than the process of chiral regulation. Thus, a plenty of monomer particles aggregated more closely and attempted to form radially oriented nanorods converging to the center point without chiral structural features (Fig. 4d and Supplementary Fig. 24d).

For Cu$_5$I$_7$(L$_2$)$_2$ polycrystals, the bent garlic clove-like shapes were observed when the concentration of L$_2$ is low (Fig. 4e and Supplementary Fig. 24e). This bent hierarchical structures do not exhibit strong CD and CPL due to their bent directions are random when they are dispersed in solvent, leading to the same contribution of left-handed and right-handed CD or CPL signals (Supplementary Fig. 26). As the concentration of L$_2$ increased, the degree of bending reduced and polycrystals tended to display drop-like shapes (Fig. 4f, g and Supplementary Fig. 24f, g). Meanwhile, CD spectra showed positive Cotton effects and these drop-like polycrystals exhibited the strongest CD and CPL with a g$_{\text{lum}}$ value of 4.0 × 10$^{-3}$ (Supplementary Fig. 26). When the concentration of L$_2$ increased to 30 mM, nanoparticles aggregated into glomerate structures, assimilating with that of Cu$_4$I$_4$(L$_1$)$_4$$^{4+}Cu_8I_{12}$$^{4-}$ (Fig. 4h and Supplementary Fig. 24h), which presented weak CD and CPL (Supplementary Fig. 26).

For Cu$_5$I$_7$(L$_3$)$_2$ polycrystals, long lamellar units twined mutually into helically structured micromorphology. We found that helical structures always existed regardless of the concentration of L$_3$. When the concentration of L$_3$ was low, plenty of lamellar units twined densely and terminals of unit stretched out of the side so that the chiral scattering on helical structure is not very obvious (Fig. 4i and Supplementary
Fig. 24i), resulting in the relatively weak CD and CPL (Supplementary Fig. 27). However, the higher concentration of L_3 caused sparser units to twine together (Fig. 4j, k and Supplementary Fig. 24j, k), which is because the higher dense of ligands on surfaces of lamellar units induced the helical assembly. Furthermore, with the increase of the concentration of L_3, the helicity of polycrystals became stronger and then prolonged (Fig. 4i and Supplementary Fig. 24i). As a consequence, the variation tendency of CD and CPL are much the same as that of helicity change of hierarchical structures, both of which are enhanced with the increase of the concentration of L_3 (Supplementary Fig. 27).

With respect to Cu$_5$I$_7$(L$_4$)$_2$ polycrystals, as the concentration of L_4 increased, the variation tendency of hierarchical structures was similar to the structure change with the prolongation of the reaction time, which experienced through the conglobate particles, nanosheets and helical nanobelts (Fig. 4m-p, Supplementary Fig. 24m-p). The chiroptical properties of these polycrystals is not strictly related to the microstructure variation because of their different crystal phases. The nanosheets with no helical structures can yield stronger CPL with a g_{lum} value of 6.0 \times 10$^{-3}$ and weaker CD than helical nanobelts (Supplementary Fig. 28).

Circularly polarized phosphor performance for the application in LED device. As a result of our above exploratory experiments on the regulation of ligand variety and concentration, we state that these two factors both play important roles in obtaining outstanding CPL-active polycrystals. As shown in Fig. 5a, on the one hand, ligands with long alkyl chains at molecular terminals, such as L_3 and L_4, may cause low luminescent efficiency (PLQYs ~ 7% and 6%), owing to the irregular vibration of alkyl chains in crystal lattices render the energy dissipation as heat. On the other hand, despite short alkyl chains contribute a lot on PLQYs (50% for Cu$_5$I$_7$(L$_2$)$_2$), they may probably lead to weak chiral induction of ligands in the BNCC and then impede the formation of hierarchical structures without obvious chiral features (Fig. 4e-h). Additionally, positions of chiral center are away from terminals of alkyl chain, such as L_2 and L_3, which may adversely impact on chiroptical properties owing to the inadequate interactions among chiral groups in the hierarchically structured polycrystals. As shown in Fig. 5b-d, the CD and CPL signals of Cu$_5$I$_7$(L$_2$)$_2$ and Cu$_5$I$_7$(L$_3$)$_2$ polycrystals are much weaker than that of Cu$_4$I$_4$(L$_1$)$_4$$^{4+}$ Cu$_8$I$_{12}$$^{4-}$ polycrystals. Besides, the concentration of ligands can give rise to different chiral hierarchical structures via influencing the process of BNCC. A small or excessive amount of ligands are both detrimental to the chiroptical properties of the finally obtained polycrystals. Taken together, among these ligands, L$_1$ possesses the proper chain length and position of chiral center, not only resulting in good luminescent efficiency (PLQY ~ 32%), but also realizing effective chiral hierarchical crystallization at a certain concentration of ligands. As shown in Fig. 5d, the final optimized Cu$_4$I$_4$(L$_1$)$_4$$^{4+}$ Cu$_8$I$_{12}$$^{4-}$ chiral hierarchically structured polycrystals achieved the highest g_{lum} value of 1.5× 10$^{-2}$, which stands out among reported CPL materials (Supplementary Table 2).

These hierarchically structured chiral polycrystals present similar thermal stabilities to single crystals with the average thermal decomposition temperature higher than 200°C (Supplementary Fig. 29),
implying that they are suitable as phosphors for LED coating. To validate the feasibility of chiral polycrystals application in circularly polarized LED, we dispersed $\text{Cu}_4\text{I}_4(\text{L}_1)_4$ $^{4+}$ $\text{Cu}_8\text{I}_{12}^{4-}$ polycrystals in the dichloromethane (CH_2Cl_2) solution of polymethyl methacrylate (PMMA) and coated them on the LED lamp. A uniform composite film of PMMA/chiral polycrystals was formed after solidification when CH_2Cl_2 evaporated. As shown in Fig. 5e, the fabricated LED device successfully realized bright green light emission with the chromaticity coordinate at (0.350, 0.571). We measured the circularly polarized light emitted by the fabricated LED device (details in Supplementary Fig. 30). There is a marked difference between the left- and right-handed light emission intensities, revealing the obvious circularly polarized light emitted by the fabricated LED device (Fig. 5f). The polarized degree (P) was calculated by

$$ P = \frac{I_L - I_R}{I_L + I_R} \times 100\% $$

Where I_L and I_R are emission intensities of left- and right-handed components of the circularly polarized LED device, respectively. The LED device exhibited polarization degree of 1.84% in the wavelength range of 500 to 600 nm at room temperature (Fig. 5g), which is the first demonstration of bright circularly polarized phosphor converted LED. In contrast, the LED device coated with racemic polycrystals did not exhibit any circularly polarized light emission (Supplementary Fig. 31).

Conclusion

In summary, we proposed BNCC strategy to synthesized a series of hierarchically structured polycrystals with efficient CPL on the basis of rationally designed chiral clusters. We demonstrate that the obtained polycrystals can realize the magnification of chirality via the multiscale levels from molecular to nano- and then to mesoscopic scale. Furthermore, we unravel the non-classical crystallization of chiral clusters – mimicking biomineralization field – to demonstrate the formation process of these polycrystals that can be expanded to other chiral luminescent material systems. Eventually, a LED device with circularly polarized light emission of a polarization degree of 1.84% at room temperature was demonstrated for the first time, which provides a new strategy to fabricate an efficient circularly polarized lightsource.

Methods

Chemicals. Cuprous iodide (CuI, 98%, Aladdin), potassium iodide (KI, 99%, Sinopharm Chemical Reagent Co. Ltd (SCRC)), Triethylenediamine (ted) (99%, Energy), (S)-2-methylbutan-1-ol (98%, TCI), (S)-pentan-2-ol (98%, TCI), (S)-butan-2-ol (98%, TCI), (S)-2-methylhexan-1-ol (98%, TCI), polyvinylpyrrolidone (PVP K88-96, Mw = 1300000, Aladdin), iodine (99%, SCRC), triphenylphosphine (98%, SCRC), imidazole (99%, SCRC), dichloromethane (99%, SCRC), polymethyl methacrylate (PMMA, Macklin), ethanol (99.7%, SCRC), ethyl acetate (anhydrous, 99.8%, Alfa Aesar).

Preparation of (S)-1-iodo-2-methylbutane. Iodine (3.8 g, 15 mmols, 1.5 equiv.) was added into a solution of triphenylphosphine (3.93 g, 15 mmols, 1.5 equiv.) in CH_2Cl_2 (100mL) at room temperature. The
solution was allowed to stir for 10 minutes. Imidazole (1.7 g, 25 mmols, 2.5 equiv.) was subsequently added into the mixture above. After 10 minutes, chiral alcohol (S)-2-methylbutan-1-ol (0.88 g, 10 mmols, 1.0 equiv.) was dropped into the solution and the reaction system was stirred for 3 hours. Then, the reaction mixture was quenched by the addition of the saturated aqueous solution of Na$_2$S$_2$O$_3$ (50 mL). Organic and aqueous layers were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3×100 mL). The combined organic layers were dried with Na$_2$SO$_4$ (anhydrous). The mixture was filtered and the filtrate was concentrated to give crude product. The residue was purified by silica gel column chromatography with hexane to get the colorless oily product (1.69 g, 85.3% yield).

Preparation of (R)-2-iodobutane. The synthetic procedure of (R)-2-iodobutane is similar as that of (S)-1-iodo-2-methylbutane. Only (S)-pentan-2-ol served as chiral alcohol. The yield is 75.0%.

Preparation of (R)-2-iodoheptane. The synthetic procedure of (R)-2-iodoheptane is similar as that of (S)-1-iodo-2-methylbutane. Only (S)-heptan-2-ol served as chiral alcohol. The yield is 87.3%.

Preparation of (S)-1-iodo-4-methylhexane. The synthetic procedure of (S)-1-iodo-4-methylhexane is similar as that of (S)-1-iodo-2-methylbutane. Only (S)-4-methylhexan-1-ol served as chiral alcohol. The yield is 97.4%.

Preparation of (S)-1-(2-methylbutyl)-1,4-diazabicyclo[2.2.2]octan-1-ium (L$_1$, (S)-2-Me-bu-ted) iodide. (S)-1-iodo-2-methylbutane (1.60 g, 8 mmol, 1.0 equiv.) was added dropwise into ethyl acetate (60 mL) containing ted (1.35 g, 12 mmol, 1.5 equiv.) under magnetic stirring. The mixture was allowed to stir at room temperature and white solid precipitated out in one day. After this time, the generated precipitates were collected by centrifuged, washed with ethyl acetate, and dried under vacuum to give the pure product (1.56 g, 62.9% yield).

Preparation of (S)-1-(sec-butyl)-1,4-diazabicyclo[2.2.2]octan-1-ium (L$_2$, (S)-1-Me-pr-ted) iodide. L$_2$ was synthesized in a similar way to L$_1$. (R)-2-iodobutane served as chiral iodohydrocarbon. The reaction mixture was stirred at room temperature for 3 days. The yield is 92.1%.

Preparation of (S)-1-(pentan-2-yl)-1,4-diazabicyclo[2.2.2]octan-1-ium (L$_3$, (S)-1-Me-bu-ted) iodide. L$_3$ was synthesized in a similar way to L$_1$. (R)-2-iodopentane served as chiral iodohydrocarbon. The reaction mixture was stirred at room temperature for 3 days. The yield is 60.8%.

Preparation of (S)-1-(4-methylhexyl)-1,4-diazabicyclo[2.2.2]octan-1-ium (L$_4$, (S)-4-Me-hex-ted) iodide. L$_4$ was synthesized in a similar way to L$_1$. Only (S)-1-iodo-4-methylhexane served as chiral iodohydrocarbon. The yield is 89.9%.

Growth of single crystals of chiral hybrid clusters. In a 5 mL vial, CuI (190 mg, 1 mmol) was dissolved in KI saturated solution (2 mL). Acetonitrile (1 mL) was added slowly along the inner wall into the bottom layer. Then, 0.5 M ethanol solution of L$_1$ (0.8 mL) (2 mL for L$_2$-L$_4$) was added slowly along the inner wall in to the vial. Transparent single crystals formed overnight and were collected by filtration.
Synthesis of hierarchically structured polycrystals. In a 30 mL vial, 200 mg of polyvinylpyrrolidone (PVP K88-96) was added into 20 mL of ethanol under vigorous magnetic stirring. After PVP K88-96 was fully dissolved, KI saturated solution (0.4 mL) containing CuI (38 mg, 0.2 mmol) was added into the PVP/ethanol solution above. Then, a certain volume of ligands/ethanol solution (0.5 M) was added in. The mixture was allowed to vigorously stir for 12h and then left standing overnight. The resulting white precipitation was collected by centrifugation at 6000 r/min for 3 min, washed with deionized water and ethanol respectively. The obtained polycrystal powders were dispersed in ethanol for storing.

Circularly polarized phosphor coating on LED lamp. In a 5 mL vial, 1 g of PMMA was dissolved in 2 mL of CH$_2$Cl$_2$. Then, the fabricated Cu$_4$I$_4$[L$_1$]$_4$$^{4+}$[Cu$_8I_{12}$]$^{4-}$ polycrystal powders with the strongest CPL signals were dispersed in PMMA/CH$_2$Cl$_2$ solution. The Cu$_4$I$_4$[L$_1$]$_4$$^{4+}$[Cu$_8I_{12}$]$^{4-}$ polycrystals dispersion was coated on an ultraviolet LED (3.6 V, 3.0 W, 365 nm) lamp bead. Solidification occurs when the CH$_2$Cl$_2$ evaporated, which gives a uniform film coating.

Characterizations. NMR spectra were recorded on Bruker 400 MHz spectrometers. Single crystal X-ray diffraction (SCXRD) was performed on a Rigaku Oxford diffraction Gemini S Ultra diffractometer using Cu Kα radiation for Cu$_4$I$_4$[L$_1$]$_4$$^{4+}$[Cu$_8I_{12}$]$^{4-}$, and using Mo Kα radiation for Cu$_5$I$_7$[L$_2$]$_2$, Cu$_5$I$_7$[L$_3$]$_2$, and Cu$_5$I$_7$[L$_4$]$_2$. All single crystals were kept at 100 K during data collection. The data collection and processing were carried out with CrysAlisPro software. Using Olex2, the structures were solved with the ShelXT structure solution program using Direct Methods and then refined with the ShelXL refinement package using Least Squares minimisation. Fluorescence microscopy images were obtained by an OLYMPUS DP72 fluorescence microscopy using the WU filter with an X-Cite 120Q excitation light source system. UV–vis absorption spectra were recorded by a Varian Cary 300 UV-vis absorption spectrophotometer. Powder X-ray diffraction (PXRD) patterns were recorded using a Philips X’Pert PRO SUPER X-ray diffractometer with Cu Kα radiation. Photoluminescence (PL) spectra and photoluminescence quantum yields (PLQYs) were collected by a Hamamatsu absolute PL yield spectrometer C11347, using 350-nm excitation on powders or ethanol suspensions in a quartz cuvette at room temperature. Thermogravimetric analyses (TGA) curves were recorded by a Q5000IR thermal gravimetric analyzer with a heating rate of 10°C/min under nitrogen atmosphere. PL lifetime measurements were carried out on a Deltaflex Steady-state/Lifetime Spectrofluorometer. Scanning electron microscopy (SEM) images were taken by A Carl Zeiss Supra 40 field emission scanning electron microscope with an accelerating voltage of 5 kV. All samples were observed after gold sputtering for 60 s with a constant current of 30 mA. Transmission electron microscopy (TEM) images were taken by a Hitachi HT-7700 transmission electron microscope with an accelerating voltage of 120 kV. The high resolution transmission electron microscopy (HRTEM) images and the selected area electron diffraction (SAED) were acquired on a Talos F200X high-resolution transmission electron microscopy. Circular dichroism (CD) spectra were recorded by a JASCO-1700 Circular Dichroism Spectrophotometer using diffuse reflectance method for solid state samples and a JASCO-800 Circular Dichroism Spectrophotometer using transmission method for the ethanol dispersion of polycrystals with “standard” sensitivity at 100 nm min$^{-1}$ scan speed. Circularly polarized luminescence (CPL) spectra were recorded.
on a JASCO CPL-300 Spectrophotometer with excitation of 350 nm at scan speed of 100 nm min$^{-1}$. The chromaticity coordinate of coated LED was measured by PR-670 spectrometer. The spectra of left- and right-handed circularly polarized light of fabricated LED device were recorded by FLMS12313 spectrometer.

Declarations

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information or from the authors.

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 52073271, 21875236, 21573211, 21633007 and 22161142004), the Fundamental Research Funds for the Central Universities (Grant No. WK2060190085), the Joint Funds from Hefei National Synchrotron Radiation Laboratory (Grant No. KY2060000172) and the State Key Laboratory of Luminescence and Applications (Grant SKLA-2020-06). We also thank the support from the USTC Center for Micro and Nanoscale Research and Fabrication.

Author contributions

H.-B.Y. conceived the idea, designed the experiment and analyzed the data. L.-Z.F. synthesized the materials, carried out characterizations and analyzed the data. J.-J.W. participated in data analyses and conducted the TEM characterization. K.-H.S. and T. Z. participated in data analyses and manuscript organization. T.M. and Y.-C.Y. drew schematic diagram of assembly and crystallization process. Z.-D.L. and F.-J.F. provided assistance for emission polarization measurements of LED. M.-M.Z., S.J., and M.-Z.Z. provided the supports for CPL measurements. L.-Z.F. and H.-B.Y. co-wrote the manuscript. H.-B.Y. directed and supervised the project. All authors contributed to discussions and finalizing the manuscript.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to H.-B.Y..

Competing financial interests

The authors declare no competing financial interests.

References
1. Di Nuzzo, D. *et al.* High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. *ACS Nano* **11**, 12713–12722 (2017).

2. Kim, D. Y. Potential application of spintronic light-emitting diode to binocular vision for three-dimensional display technology. *J. Korean Phys. Soc.* **49**, 505–508 (2006).

3. Srivastava, A. K. *et al.* Photoaligned nanorod enhancement films with polarized emission for liquid-crystal-display applications. *Adv. Mater.* **29**, 1701091 (2017).

4. Sherson, J. F. *et al.* Quantum teleportation between light and matter. *Nature* **443**, 557–560 (2006).

5. Zheng, H. Z. *et al.* Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. *Adv. Mater.* **30**, 1705948 (2018).

6. Carr, R., Evans, N. H. & Parker, D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. *Chem. Soc. Rev.* **41**, 7673–7686 (2012).

7. Roose, J., Tang, B. Z. & Wong, K. S. Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. *Small* **12**, 6495–6512 (2016).

8. Sang, Y. T., Han, J. L., Zhao, T. H., Duan, P. F. & Liu, M. H. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. *Adv. Mater.* **32**, 1900110 (2020).

9. Jiang, W. *et al.* Emergence of complexity in hierarchically organized chiral particles. *Science* **368**, 642–648 (2020).

10. Yan, J. *et al.* Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. *Chem. Mater.* **32**, 476–488 (2020).

11. Ma, K. *et al.* Boosting the circularly polarized luminescence of small organic molecules via multidimensional morphology control. *Chem. Sci.* **10**, 6821–6827 (2019).

12. Zhao, T. H., Han, J. L., Duan, P. F. & Liu, M. H. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical. *Acc. Chem. Res.* **53**, 1279–1292 (2020).

13. Globus, N. & Blandford, R. D. The Chiral Puzzle of Life. *Astrophys. J. Lett.* **895**, L11 (2020).

14. Mann, S. *et al.* Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. *Science* **261**, 1286–1292 (1993).

15. Sugawara, T., Suwa, Y., Ohkawa, K. & Yamamoto, H. Chiral biomineralization: mirror-imaged helical growth of calcite with chiral phosphoserine copolypeptides. *Macromol. Rapid Commun.* **24**, 847–851 (2003).

16. Addadi, L. & Weiner, S. Crystals, asymmetry and life. *Nature* **411**, 753–755 (2001).

17. Zhou, Y. *et al.* Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. *ACS Nano* **10**, 3248–3256 (2016).

18. Zhang, X. *et al.* Systematic approach in designing rare-earth-free hybrid semiconductor phosphors for general lighting applications. *J. Am. Chem. Soc.* **136**, 14230–14236 (2014).
19. Liu, W. et al. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. *J. Am. Chem. Soc.* **137**, 9400–9408 (2015).

20. Fang, Y. et al. A systematic approach to achieving high performance hybrid lighting phosphors with excellent thermal- and photostability. *Adv. Funct. Mater.* **27**, 1603444 (2017).

21. Chen, C. et al. Highly luminescent inks: aggregation-induced emission of copper-iodine hybrid clusters. *Angew. Chem. Int. Ed.* **57**, 7106–7110 (2018).

22. Liu, W. et al. All-in-one: achieving robust, strongly luminescent and highly dispersible hybrid materials by combining ionic and coordinate bonds in molecular crystals. *J. Am. Chem. Soc.* **139**, 9281–9290 (2017).

23. Hei, X. Z. et al. Blending ionic and coordinate bonds in hybrid semiconductor materials: a general approach toward robust and solution-processable covalent/coordinate network structures. *J. Am. Chem. Soc.* **142**, 4242–4253 (2020).

24. Yao, L. et al. Circularly polarized luminescence from chiral tetranuclear copper(I) iodide clusters. *J. Phys. Chem. Lett.* **11**, 1255–1260 (2020).

25. Hernn-Gmez, A., Rodríguez, M., Parella, T. & Costas, M. Electrophilic iron catalyst paired with a lithium cation enables selective functionalization of non-activated aliphatic C-H bonds via metallocarbene intermediates. *Angew. Chem. Int. Ed.* **58**, 13904–13911 (2019).

26. Liu, W., Fang, Y. & Li, J. Copper iodide based hybrid phosphors for energy-efficient general lighting technologies. *Adv. Funct. Mater.* **28**, 1705593 (2018).

27. Kenry, Tang, B. & Liu, B. Catalyst: aggregation-induced emission-how far have we come, and where are we going next? *Chem* **6**, 1195–1198 (2020).

28. Guan, J. X., Shen, C. Z., Peng, J. & Zheng, J. R. What leads to aggregation-induced emission? *J. Phys. Chem. Lett.* **12**, 4218–4226 (2021).

29. Wang, J. J. et al. Highly luminescent copper iodide cluster based inks with photoluminescence quantum efficiency exceeding 98%. *J. Am. Chem. Soc.* **142**, 3686–3690 (2020).

30. Meldrum, F. C. & Colfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. *Chem. Rev.* **108**, 4332–4432 (2008).

31. Lee, E. J. H., Ribeiro, C., Longo, E. & Leite, E. R. Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals. *J. Phys. Chem. B* **109**, 20842–20846 (2005).

32. Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. *Phys. Rev.* **78**, 275–289 (1950).

33. Alivisatos, A. P. Naturally aligned nanocrystals. *Science* **289**, 736–737 (2000).

34. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **42**, 339–341 (2009).

35. Sheldrick, G. M. SHELXT–Integrated space-group and crystal-structure determination. *Acta Crystallogr. A Found. Adv.* **71**, 3–8 (2015).
36. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C Struct. Chem. 71, 3–8 (2015).

Figures

Figure 1

Chiral ligand design and structure characteristics of the synthesized chiral clusters. a, Reaction procedure scheme for the synthesis of four chiral ligands (L₁ to L₄). b, structures of four chiral ligands L₁–L₄ (left column), four chiral Cu-I hybrid clusters Cu₄[I₃(L₁)]₄⁺ Cu₈I₁₂⁴⁺, Cu₅I₁₇(L₂)₂, Cu₅I₁₇(L₃)₂ and Cu₅I₁₇(L₄)₂ (middle column), and their corresponding schematics of helical arrangements along different axes in crystal lattices (right column). The Cu₈I₁₂⁴⁺ chains were omitted in the helical arrangement structure of Cu₄[I₃(L₁)]₄⁺ Cu₈I₁₂⁴⁺ for clarity. Color scheme: Cu, red; I, yellow; N, blue; C, Gray.
Figure 2

Optical properties, thermal stabilities, and photoluminescence mechanism of the synthesized hybrid crystal powders. **a**, Steady PL (solid) spectra and UV-vis absorption (dotted) spectra and of Cu$_{4+}$(L$_1$)$_4$Cu$_8$I$_{12}^4$-, Cu$_5$I$_7$(L$_2$)$_2$, Cu$_5$I$_7$(L$_3$)$_2$, and Cu$_5$I$_7$(L$_4$)$_2$ single crystal powders at room temperature. **b**, Corresponding TGA curves of four kinds of hybrid crystals. **c**, PL lifetime decay curves of Cu$_{4+}$(L$_1$)$_4$Cu$_8$I$_{12}^4$- and Cu$_5$I$_7$(L$_2$)$_2$ hybrid crystals. **d**, Photoluminescence mechanism of corresponding Cu-I hybrid crystals indicating the phosphorescence emission process.

Figure 3

BNCC of hierarchically organized chiral polycrystals. **a**, Schematic diagram of biomimetic non-classical crystallization process involving nanocrystal nucleation, aggregation, oriented attachment and mesoscopic transformation. The Cu$_8$I$_{12}^4$- chains were omitted for clarity. **b-e**, SEM images of different crystallization stages of Cu$_{4+}$(L$_1$)$_4$Cu$_8$I$_{12}^4$- polycrystals with reaction time of 3 min (**b**), 20 min (**c**), 1 h (**d**), 6 h (**e**), respectively ([L$_1$] = 6 mM). **f-i**, SEM images of different crystallization stages of Cu$_5$I$_7$(L$_3$)$_2$ polycrystals with reaction time of 2 h (**f**), 4 h (**g**), 5 h (**h**), 6 h (**i**), respectively ([L$_3$] = 25 mM). **j**, HRTEM image of Cu$_{4+}$(L$_1$)$_4$Cu$_8$I$_{12}^4$- polycrystals with an inset SAED pattern. **k**, Detailed schematic illustration of the driving forces for the helical arrangements of assembly units in the polycrystals. Assembly units are represented by blue rods. The enlarged picture shows the specific steric configuration caused by the interactions between chiral ligands extended out of the (002) planes of the assembly unit surfaces of Cu$_{4+}$(L$_1$)$_4$Cu$_8$I$_{12}^4$- polycrystals. Interactions between chiral ligands were represented by green labels.

Figure 4

Influence of the concentration of ligands on the crystallization of hierarchically structured polycrystals. **a-d**, SEM images of Cu$_{4+}$(L$_1$)$_4$Cu$_8$I$_{12}^4$- polycrystals with the concentrations of L$_1$ as 4 mM (**a**), 5 mM (**b**), 6 mM (**c**), 10 mM (**d**), respectively. **e-h**, SEM images of Cu$_5$I$_7$(L$_2$)$_2$ polycrystals with the concentrations of L$_2$ as 5 mM (**e**), 10 mM (**f**), 20 mM (**g**), 30 mM (**h**), respectively. **I**, SEM images of Cu$_5$I$_7$(L$_3$)$_2$ polycrystals with the concentrations of L$_3$ as 10 mM (**i**), 20 mM (**j**), 25 mM (**k**), 40 mM (**l**), respectively. **m-p**, SEM images of Cu$_5$I$_7$(L$_4$)$_2$ polycrystals with the concentrations of L$_4$ as 3 mM (**m**), 5 mM (**n**), 10 mM (**o**), 20 mM (**p**), respectively.
Figure 5

Chiroptical properties of hierarchically chiral polycrystals and circularly polarized characteristics of the LED device.

a, PL spectra of Cu$_4$I$_4$(L$_1$)$_4^{4+}$, Cu$_8$I$_{12}^{4-}$, Cu$_5$I$_7$(L$_2$)$_2$, Cu$_5$I$_7$(L$_3$)$_2$, and Cu$_5$I$_7$(L$_4$)$_2$ polycrystals synthesized with different concentration of ligands: 6 mM (L$_1$), 20 mM (L$_2$), 40 mM (L$_3$), 20 mM (L$_4$). **b-d**, The corresponding CD spectra (b), CPL spectra (c), and g$_{\text{lum}}$ spectra (d).

e, Chromaticity coordinates graph of the LED device with the coating of Cu$_4$I$_4$(L$_1$)$_4^{4+}$, Cu$_8$I$_{12}^{4-}$ polycrystals. Inset: image of the fabricated LED device under operation. **f-g**, CPL spectra (f) and the polarized degree (g) of the fabricated LED device based on Cu$_4$I$_4$(L$_1$)$_4^{4+}$, Cu$_8$I$_{12}^{4-}$ polycrystals powered by 2.4 V.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- **SupplementaryCu4I4L14.cif**
- SupplementaryCu5I7L22.cif
- SupplementaryCu5I7L32.cif
- SupplementaryCu5I7L42.cif
- SupportingInformation.docx