Passive immunization with an extended half-life monoclonal antibody protects Rhesus macaques against aerosolized ricin toxin

Chad J. Roy1✉, Greta Van Slyke2, Dylan Ehrbar3, Zachary A. Bornholdt2, Miles B. Brennan3, Lioudmila Campbell3, Michelle Chen3, Do Kim3, Neil Mlakar3, Kevin J. Whaley3, Jeffrey W. Frod4,6, Fernando J Torres-Velez2, Ellen Vitetta5, Peter J. Didier1, Lara Doyle-Meyers1, Larry Zeitlin3✉, and Nicholas J. Mantis2✉

Inhalation of ricin toxin (RT), a Category B bioterror agent, provokes an acute respiratory distress syndrome marked by pro-inflammatory cytokine and chemokine production, neutrophilic exudate, and pulmonary edema. The severity of RT exposure is attributed to the tropism of the toxin’s B subunit (RTB) for alveolar macrophages and airway epithelial cells, coupled with the extraordinarily potent ribosome-inactivating properties of the toxin’s enzymatic subunit (RTA). While there are currently no vaccines or treatments approved to prevent RT intoxication, we recently described a humanized anti-RTA IgG1 MAb, huPB10, that was able to rescue non-human primates (NHPs) from lethal dose RT aerosol challenge if administered by intravenous (IV) infusion within hours of toxin exposure. We have now engineered an extended serum half-life variant of that MAb, huPB10-LS, and evaluated it as a pre-exposure prophylactic. Five Rhesus macaques that received a single intravenous infusion (25 mg/kg) of huPB10-LS survived a lethal dose aerosol RT challenge 28 days later, whereas three control animals succumbed to RT intoxication within 48 h. The huPB10-LS treated animals remained clinically normal in the hours and days following toxin insult, suggesting that pre-existing antibody levels were sufficient to neutralize RT locally. Moreover, pro-inflammatory markers in sera and BAL fluids collected 24 h following RT challenge were significantly dampened in huPB10-LS treated animals, as compared to controls. Finally, we found that all five surviving animals, within days after RT exposure, had anti-RT serum IgG titers against epitopes other than huPB10-LS, indicative of active immunization by residual RT and/or RT-immune complexes.

Published in partnership with the Sealy Center for Vaccine Development

INTRODUCTION

The Centers for Disease Control and Prevention (CDC), along with other U.S. government and international agencies, recognize that the deliberate release of biological toxins and highly infectious agents into the public sphere remains a threat to both military and civilian personnel.1,2 Ricin toxin (RT), for example, was recently castor bean plant (Ricinus communis) that kills mammalian cells with remarkable efficiency through the coordinated activity of two subunits, RTA and RTB.4 RTB, a galactose-specific lectin, mediates the endocytosis and intracellular trafficking of RTA from the plasma membrane to the endoplasmic reticulum (ER), by way of the trans Golgi network (TGN). Within the lumen of the ER, RTA is liberated from RTB and then translocated into the cytoplasm where it irreversibly inactivates ribosomes by depurination of a conserved adenosine moiety within the sarcin/ricin loop of 28 S rRNA.5,6 Ribosome arrest triggers the so-called ribotoxic-stress response (RSR), which, in turn, activates stress activated protein kinase pathways and programmed cell death (PCD).

The full cytotoxic and inflammatory potential of RT are especially apparent in the lung following aerosol exposure. Following inhalation, RT exposure manifests as hemorrhage, inflammatory exudate, and edema.7,8 A precipitous decline in alveolar macrophages (AMs) occurs within hours and is accompanied by a corresponding influx of polymorphonuclear (PMN) cells.9 Disease severity and lung permeability track with the increase of pro-inflammatory cytokines like IL-6, IL-1, and tumor necrosis factor alpha (TNF-α) in serum and bronchoalveolar lavage (BAL) fluids.10-12 Local damage is further exacerbated by TNF-α and its family members like TRAIL, which render lung epithelial cells hyper-sensitive to the effects of RT, as evidenced by augmented (>300 fold) secretion of IL-6 and other pro-inflammatory cytokines, as well as a lower threshold to elicit PCD.13 This positive feedback loop likely contributes to the rapid onset of acute lung injury that is observed in Rhesus macaques following RT aerosol exposure.8,11

Given the rapid onset of RT toxicity following aerosol exposure, the opportunity to intervene and reverse the effects of lethal dose RT exposure is likely to be on the order of hours. As a case in point, we recently reported that huPB10, a humanized monoclonal antibody (MAb) directed against an immunodominant epitope near RTA’s active site, was able to rescue Rhesus macaques from a 3 × LD50 RT aerosol challenge when administered ~4–6 h after toxin exposure.11 The MAb presumably intercepted extracellular (free or surface-bound) ricin in the lung environment before it was internalized by target cells, thereby preventing macrophage and epithelial cell intoxication. HuPB10 intervention also dramatically...
blunted the local and systemic pro-inflammatory cytokine and chemokine responses normally associated with RT exposure, with the most apparent effect being on IL-6.

While the demonstration that a single huPB10 infusion was able to rescue Rhesus macaques from the lethal effects of RT justifies the pursuit of a variety of post-exposure therapies, the relatively short therapeutic window associated with lethal dose RT prompted us to explore the use of huPB10 as a pre-exposure prophylactic (PrEP). The benefits of passive immunization strategies are well recognized, particularly within the realm of biodefense where access to immediate immunity is critical. In the case of huPB10, proof of concept pre-exposure prophylaxis studies have already been conducted in mice. In the mouse model, full protection against 10 × LD₅₀ intranasal RT challenge was achieved when serum levels of huPB10 were ≥20 µg/ml, thereby providing us with a rough benchmark for NHP studies. HuPB10 production has already been shown to be scalable in both plant- and mammalian-based platforms and was therefore chosen as a candidate to pursue as a PrEP.

RESULTS

Recombinant huPB10 IgG variants with extended serum half-lives in NHPs

In an effort to enhance the serum half-life of huPB10 before embarking on PrEP studies in NHPs, we engineered variants of huPB10 with YTE and LS modifications of the Fc region that enhance interaction with FcRn. The YTE (M252Y, S254T, T256E) provided by Dr. Javad Aman (Integrated Biotherapeutics). The model, full protection against 10 × LD₅₀ intranasal RT challenge dose across all animals was 29.6 ± 7.4 (5.1 ± 1.2 × LD₅₀).

As expected, all three control animals succumbed to ricin intoxication within a 30–48 h period (Table 1; Fig. 1a). In contrast, all five of the animals pretreated with huPB10-LS survived RT challenge. In the immediate period following toxin exposure, the control animals demonstrated elevated heart and respiratory rates and reduced oxygen consumption, as compared to the huPB10-LS group of animals, whose general physiology was considered normal. Blood chemistry analysis revealed distinct differences between the control (Ig121-treated) and huPB10-LS treated animals following ricin challenge (Supplementary Fig. 3). Most notably was the elevated level of total white blood cells in the control animals (45.1 ± 16.0 × 10⁹/mL), as compared to either pre-challenge counts of all animals (7.8 ± 4.2 × 10⁹/mL) and the huPB10-LS treated group of animals (18.8 ± 7.8 × 10⁹/mL).

At necropsy, the wet weight of the lungs of the control animals ranged from 50 to 100 g, as compared ~30–40 g in normal animals of the same body weight, based on historical data at the Tulane National Primate Research Center (TNPRC). The wet weights of the lungs of the huPB10-LS animals at necropsy following euthanasia on study day 21 were within normal range (Fig. 1b; Supplementary Fig. 4). Gross examination of the lungs from control animals following RT challenge revealed coalescing hemorrhage with frothy exudate marked by fibrin in lung parenchyma, as we have reported previously. There was evidence of fibrinosuppurative bronchointerstitial pneumonia with pulmonary edema and bronchial epithelial necrosis, with severe fibrinosuppurative lymphadenitis in the bronchial lymph nodes. Histologically, the lungs of the control animals had all the hallmarks of RT-induced injury; edema, corresponding hemorrhage, and numerous PMN cells. In contrast, the lumina of airways from huPB10-LS treated animals were clear and the epithelial surfaces devoid of inflammatory cells. Most tissues were negative for the eosinophil major basic protein (MBP), as determined by IHC. In two huPB10-LS treated animals, there was evidence of minimal infiltration of airways epithelia with equal proportions of neutrophils and eosinophils (Supplementary Figs 5–6).

Analysis of inflammatory markers in serum and BAL fluids following RT exposure

Serum samples and BAL fluids collected from the study animals (three control and six huPB10-LS treated) before and one day after RT challenge were analyzed by 29-plex Luminex array to assess the impact of pre-existing huPB10-LS on systemic and local inflammatory responses (Fig. 2). Principal component analysis (PCA) of RT-induced changes in serum cytokines successfully segregated the control and the experimental animals into non-overlapping clusters (Fig. 2). The cytokines IL-6, G-CSF, IL-15, IL-1RA, and GM-CSF, listed in order of influence, were the largest contributors to the first two principle components (Fig. 2; Supplementary Data 1).

PCA of cytokine expression in the BAL fluids resulted in slightly overlapping clusters for the two groups, due to skewing by a single macaque (KA06) in the control group (Table 1; Fig. 2). KA06 was the heaviest animal in the experiment (10.32 kg) and survived the longest (46 h post-challenge). By chance, it also received the lowest dose of RT of any animal in the study (18.4 µg/kg). Cytokine responses to RT challenge were muted in this animal relative to the other controls, as evidenced by the smallest fold changes in MCP-1, IL-1β, MDC, and IL-1RA, along with others in the BAL fluid. Otherwise, EGF, IL-1β, MIP-1β, eotaxin, and HGF were the main drivers of variation in the BAL fluid dataset (Fig. 2; Supplementary Data 1).

The effect of huPB10-LS on overall cytokine levels was remarkable. In sera, the concentration of IL-6 increased ~1800-fold in controls, but only ~16-fold in the macaques pretreated with huPB10-LS (Fig. 2). Similarly, concentrations of IL-1RA and MCP-1 were elevated ~29-fold and 6.6-fold, respectively, in the control animals, but only 5-fold and not elevated in the case of huPB10-LS treated monkeys. The trend was similar in the BAL, although the overall degree of variation in the BAL fluid dataset (Fig. 2; Supplementary Data 1).
Table 1. Experimental animals and outcome of RT aerosol challenge.

Treatment	ID	kg	RT (LD₅₀)	serum BAL	TTD⁴ live/total			
Ig121	KA06	10.32	18.4	3	–	–	46	
KN88	6.67	21.3	3.5	–	–	–	32	
LE35	7.03	27.0	4.5	–	–	–	30	0/3
huPB10-LS	LC63	6.8	36.8	6.1	315.2	0.19	–	
	LA76	6.6	35.9	5.9	177.7	0.38	–	
	LA17	5.6	34.4	5.7	113.4	0.37	–	
	LH54	5.12	26.1	4.4	213.3	0.32	–	
	LI64	4.57	37.1	6.2	244.9	0.40	5/5	

^ahuPB10-LS (μg/mL) in serum collected prior to challenge and BAL collected on day –7.
^bRT (LD₅₀) dose (μg/kg) received per animal.
^cLD₅₀ equivalent.
^dTime to death (TTD).

DISCUSSION

Among the CDC’s list Select Agents and Toxins, none is more potent provocateur of pulmonary inflammation and acute lung injury than RT. The severe damage to the respiratory mucosa following RT exposure is the result of direct cytotoxic effects on AMs and airway epithelial cells, combined with a profound pro-inflammatory response driven by IL-6, IL-1, and TNF-α. In this report we demonstrate for that pre-exposure infusion with a single MAb at a dose of 25 mg/kg is sufficient to protect NHPs against a lethal dose RT aerosol challenge one month later. The five Rhesus macaques that received huPB10-LS IgG had slightly elevated pro-inflammatory cytokine levels in their sera and BAL fluids immediately following RT aerosol exposure, but were otherwise normal in the days and weeks following challenge. In fact, by all metrics, huPB10-LS prophylaxis afforded the same degree of immunity to Rhesus macaques as was achieved through active vaccination with RiVax, an RTA-based subunit vaccine. This raises the prospect that a single MAb-based drug product can afford both immediate and long-lasting (e.g., months) immunity to a notorious biothreat agent.

We found that the LS modification (M428L, N434S) more than doubled the serum half-life of huPB10-LS from 12.3 days to 28.4 days in Rhesus macaques. As both the LS and YTE mutations are highly conserved in different RT variants of both human and non-human primate viruses, a case in point, the concentration of IL-6 was elevated at least ~1000-fold in the BAL fluids as revealed by a mouse PB10 capture ELISA (Fig. 3b, c; Supplementary Fig. 7). To examine the nature of the de novo RT-neutralizing antibody response induced within 14 days in huPB10-LS-treated Rhesus macaques following RT challenge. This phenomenon is reminiscent of the so-called “vaccinal effect,” which refers to the ability of immune complexes to act as self-adjuvant immune stimulators. The exact phenomenon was observed decades ago by Lemely and Wright when mice were passively immunized with a PB10-like MAb called UNIVAX70 and then challenged with RT by the subcutaneous route. While this effect is not necessarily an added benefit for an agent like RT, it could certainly have important applications in reoccurring diseases like flu or even pneumonia.

METHODS

Ricin toxin (RT)

The purified RT from castor beans (*Ricinus communis*) used in this study was from the same lot used in previous Rhesus macaques challenge studies.1,2

MACs

HuPB10-LS was expressed using a non-fucosylating CHO-K1-CH host cell line. Cells were grown in fed batch culture in 2.5 L shake flasks using BalaCD CHO Growth A media (FUJIFILM Irvine Scientific, Santa Ana, CA) and Efficient Feed B (ThermoFisher Scientific, Waltham, MA). The conditioned media were collected, filtered, and stored at −20°C prior to PrA purification. The conditioned media was thawed and loaded onto a MabSelect SuRe LX Protein A column, washed with PBS, then eluted using 0.1 M Acetic Acid...
containing 0.2 M L-Arginine, pH ~2.9. The resulting eluate was neutralized with 2 M Tris base to pH ~7. The huPB10-LS MAb was further purified using ceramic hydroxyapatite (CHT) Type II, 40 µm, column (Bio-Rad, Hercules, CA). The CHT column removed the majority of the aggregates present after PrA purification. The neutralized post-Protein A eluate was diluted five-fold using Milli-Q water to reduce the conductivity to ≤ 6 mS/cm before loading onto the CHT column. The diluted sample was loaded, washed with 5 mM sodium phosphate, pH 6.8 wash buffer, then eluted using a linear gradient from 5 mM sodium phosphate to 250 mM sodium phosphate, pH 6.8 elution buffer over 30 column volumes. The linear gradient was held at ~28% when the UV280 reached the maximum absorbance to elute remaining antibody on the column. The MAb was then subjected to tangential flow filtration and buffer exchanged into formulation buffer (20 mM citrate, 10 mM glycine, 8% sucrose, 0.01% polysorbate 80, pH 5.5) and tested. The concentration of the formulated huPB10-LS drug substance was 22.1 mg/mL with 97% monomer via SE-HPLC and an endotoxin level of 0.055 EU/mg. Control animals received the anti-SEB IgG1 (Ig121) provided by Dr. Javad Aman (Integrated Biotherapeutics).

Study designs and approval

The studies described involving Rhesus macaques (Macaca mulatta) were approved animal use protocols by the Institutional Animal Care and Use Committee (IACUC) at Tulane University, New Orleans, LA. Rhesus macaques were born and housed at the Tulane National Primate Research Center (Covington, LA), which is US Department of Agriculture-licensed and fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). To establish the pharmacokinetic (PK) properties of huPB10 and huPB10-LS, animals (n = 9; average weight = 8.0 ± 2.01 kg) were dosed intravenously (IV), intramuscularly (IM) or subcutaneously (SC) with 10 mg/kg and monitored over a period of 60 days. For the RT challenge study, groups of animals received a single IV administration of huPB10 or (control antibody IgG121) by slow infusion at an individualized unit dose of 25 mg/kg on study Day −28. Treated animals were observed for signs of adverse reactions to the MAb during administration and throughout the anesthesia recovery period. Animals that were determined to be in respiratory distress and those that survived for 21 days after exposure to ricin were euthanized by an overdose of sodium pentobarbital, consistent with the recommendation of the American Veterinary Medical Association’s Panel on Euthanasia, and submitted for necropsy.

Fig. 1 Prophylactic administration of huPB10-LS IgG protects Rhesus macaques from lethal dose aerosolized RT. Groups of Rhesus macaques received Ig121 IgG (n = 3) or huPB10-LS IgG on day −28 and then challenged with RT aerosol, as described in the text. The experiment was terminated on day +21 at which time surviving animals were euthanized and subjected to necropsy. a Kaplan-Meier survival plot. All five monkeys treated with huPB10-LS IgG survived RT exposure. b Wet lung weight (both lobes; average ± SD) at necropsy. c–e Heart rates, respiratory rates and oxygen consumption in two groups of animals at indicated time (hours) post-RT challenge.
Fig. 2 Pre-existing huPB10-LS IgG dampens local inflammatory responses associated with aerosol RT exposure. Serum samples (a) and BAL fluids (b) collected from Ig121 IgG- and huPB10-LS IgG-treated animals before and 24 h after RT exposure were subjected to 29-plex Luminex analysis, as described in the Materials and Methods. Top: Scatter plots of first 2 principal components of log₂-transformed cytokine fold changes from all animals included in the study, calculated used singular value decomposition. Each dot represents an individual monkey in the Ig121 (black) and huPB10-LS (red) groups. Ellipses represent 95% confidence intervals around group mean. Middle: Eigenvectors are colored to show the percent contribution of each variable to the principal components. Bottom: Heatmaps presenting log₂-fold change in cytokines, chemokines, and growth factors (y-axis) in the sera and BAL fluids between samples collected experimental day +1, to day −7 (serum) and −7 days (BAL fluids). Individual animal identifiers are shown on the x-axis and correspond to Table 1. Fold increase in values are shown in red, while fold decreases are in blue.
De novo appearance of ricin-specific antibodies in serum and BAL fluids in huPB10-LS treated animals following RT exposure.

Fig. 3 De novo appearance of ricin-specific antibodies in serum and BAL fluids in huPB10-LS treated animals following RT exposure.

A. huPB10-LS decay

- Average (with SEM) serum huPB10-LS IgG1 concentrations at timepoints immediately before (day 0; Table 1) and after (days 1, 3, 7, 14, 21) RT challenge.

B. de novo anti-RT IgG in serum

- Appearance of non-PB10, RT-specific IgG antibodies in serum following RT challenge, as determined by a PB10 capture ELISA (see Materials and Methods).

C. de novo anti-RT IgG in BAL

- Appearance of non-PB10, RT-specific IgG antibodies in BAL fluids in the experimental group of Rhesus macaques following RT challenge, as determined by a PB10 capture ELISA (see Materials and Methods).

RT challenge

Aerosolization, dosing and delivery of RT were performed on study Day 0.20 The LD$_{50}$ of ricin is 5.8 μg/kg body weight and the target dose for this experiment was set at the equivalent of 3 x LD$_{50}$ (≈18 μg/kg). The mean inhaled dose of ricin across all animals was 29.7 ± 7.4 μg/kg or 5.1 ± 1.2 LD$_{50}$. The schedule for collection of blood and BAL36 are shown in Fig. S2. Animals were euthanized upon completion of the experiment (study Day +21) or at any time during the experiment for humane reasons, as mandated by Tulane University’s IACUC. Euthanasia was achieved with an overdose of sodium pentobarbital, as per the recommendation of the American Veterinary Medical Association’s Panel on Euthanasia. All animals were subject to complete necropsy. After gross necropsy, tissues were collected in neutral buffered zinc-formalin solution (Z-Fix Concentrate, Anatach, Battle Creek, MI). Fixed tissues were embedded in paraffin and sectioned for IHC.35

IHC

Tissue sections, 3–4 μm in thickness, were deparaffinized in CitriSolve (Decon Labs., King of Prussia, PA) and rehydrated by processing them through graded alcohol solutions. Antigen unmasking was accomplished by digesting tissue in 10 μg/ml of protein kinase for 15 min at room temperature (Fisher Scientific, Waltham, MA). Endogenous enzymes and non-specific background were blocked with Background Punisher (Biocare Medical, Pacheco, CA), followed by BLOXALL (Vector Laboratories, Burlingame, CA). The primary antibody (NBP1-42140; Novus Biologicals, Centennial, CO) was incubated on the tissue sections at a dilution of 1:100 for 1 h at room temperature. Subsequently, sections were sequentially incubated with an alkaline phosphatase-based detection polymer kit (MACH 4; Biocare Medical), and Warp Red (Biocare Medical). Sections were counterstained with Tach’s hematoxylin (Biocare Medical) and mounted using a permanent mounting medium (EcoMount; Biocare Medical).

Serum antibody analysis

For the PK study, an Octet RED96 based method was used for quantitation of huPB10 serum concentration. In order to quantitate the amount of huPB10 IgG MAb and -LS MAb variant in NHP serum samples, we created custom quantitative biosensors. Biotinylated Ricinus communis agglutinin II (Vector Laboratories, Cat: B-1095) was diluted to 50 μg/mL in 2x kinetics buffer and immobilized on High Precision Streptavidin (SAX) Biosensors (Pall ForteBio, Cat: 185117) for 3.5 h at room temperature without shaking. The ricin coated sensors were then run through a standard ForteBio dip and read quantitation method using each animal’s Day 0 serum sample as background subtraction and quantitated using an huPB10 IgG standard curve (40, 20, 10, 5, 2.5, 1.25, and 0.625 μg/ml diluted into 2x kinetics buffer). NHP samples were diluted in a 2:3 ratio of serum sample to 2x kinetics buffer to further reduce background. A 100x kinetics buffer stock was created from 10 mg of BSA, 20 μL of Tween-20, and 10 mL of PBS.

For ELISAs, Immulon 4HBX 96-well microtiter plates were coated with RT or E12 peptide corresponding to RTA residues 94–111 (HPDQEQ-DAEATHLFQDI).35 Serum huPB10-LS IgG concentrations were determined by interpolation on a standard curve (huPB10 IgG1) using a nonlinear regression model and least squares fit in GraphPad Prism 8.2 (GraphPad Software, La Jolla California USA). huPB10-LS IgG was depleted from day 21 serum samples using MicroLink™ (ThermoScientific) affinity column filtration, according to the manufacturer’s instructions. Columns were coupled with E12 peptide (1.25 μg/ml) diluted 1:1 with coupling buffer. Flow-through fractions per animal were pooled and analyzed by ELISA and as noted above.

The SyH7 and IB2 capture ELISA with biotin-labeled RT.36 Immulon 4HBX 96-well microtiter plates were coated with SyH7 or IB2 MAb (1 μg/ml in PBS) overnight at 4°C. The plates were blocked with goat serum (2%), washed, and then overlaid with a mixture of biotin-labeled RT and serial dilutions of Rhesus macaque competitor serum. The amount of biotin-RT used in the competition ELISA was equivalent to the labeled RT and serial dilutions of Rhesus macaque competitor serum. The plates were washed and developed with streptavidin-HRP (1:1000; ThermoFisher Scientific) and TMB. The percent (%) inhibition of ricin binding was calculated from the optical density (OD) values as follows: 1− value OD$_{450}$ (biotin-ricin + competitor Ab) ÷ value OD$_{450}$ (biotin-ricin without competitor Ab) × 100.

Statistical analysis

Statistical analysis was carried out with GraphPad Prism 8.2. The mean survival times after exposure to RT were compared by log-rank analysis of Kaplan–Meier survival curves. The statistical significance of the effects of
ricin challenge and huPB10 intervention on cytokine/chemokine/growth factor levels were analyzed with two-way repeated measures ANOVAs in both serum and BAL, with the repeated measures being pre- and post-exposure status, and treatment group as the independent measure. Resulting p-values were corrected with the Benjamini, Krieger, and Yekutieli method to control false discovery rate. If a significant interaction effect was found by two-way ANOVA, Sidák’s multiple comparisons tests were performed to compare pre-challenge to post-challenge values for each group. Due to the low abundance of many of the inflammatory markers in serum and BAL fluids examined by Luminex, all analyses were performed on log2 transformed raw fluorescent intensity values to avoid the need to censor values.37 A P value less than 0.05 was considered significant. PCA analysis was performed using singular value decomposition with the R package FactoMineR.38 Friedman tests with post hoc Dunn’s multiple comparisons tests were used to compare pre-challenge levels of de novo anti-RT IgG with levels from post-challenge timepoints. The same procedure was used to compare pre- and post-challenge levels of epitope-specific MAb competition.

REFERENCES

1. Wolfe, D. N., Florence, W. & Bryant, P. Current biodefense vaccine programs and challenges. Hum. Vaccin Immunother. 9, 1591–1597 (2013).
2. Zilinskas, R. A. & Mauger, P. E-commerce and biological weapons nonproliferation: Online marketplaces challenge export controls to reduce the risk that rogue states or terrorists could acquire the capacity to produce biological weapons. EMBO Rep. 16, 1415–1420 (2015).
3. Cieslak, T. J. et al. Beyond the dirty dozen: a proposed methodology for assessing future bioweapon threats. Mil. Med. 183, e59–e65 (2018).
4. Sowa-Rogozinska, N., Sominka, H., NOWAKOWSKA-GołąBAcK, J., Sandvig, K. & SLOMINska-Wojewódzka, M. Intracellular transport and cytotoxicity of the protein toxin ricin. Toxins (Basel) 11, https://doi.org/10.3390/toxins11060350 (2019).
5. Endo, Y., Mitsui, K., Motizuki, M. & Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 262, 5908–5912 (1987).
6. Endo, Y. & Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 262, 8128–8130 (1987).
7. Gal, Y. et al. Treatments for pulmonary ricin intoxication: current aspects and future prospects. Toxins (Basel) 9, https://doi.org/10.3390/toxins9100311 (2017).
8. Pincus, S. H. et al. Clinical and pathological findings associated with aerosol exposure of macaques to ricin toxin. Toxins (Basel) 7, 2121–2133 (2015).

9. Sapoznikov, A. et al. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: neutrophil-dependent and -independent impairment of junction proteins. Am. J. Physiol. Lung Cell Mol. Physiol. https://doi.org/10.1152/ajplung.00300.2018 (2018).

10. Lindauera, M. L., Wong, J., Iwakawa, Y. & Magun, B. E. Pulmonary inflammation triggered by ricin toxin requires macrophages and IL-1 signaling. J. Immunol. 183, 1419–1426 (2009).

11. Roy, C. J. et al. Rescue of Rhesus macaques from the lethality of aerosolized ricin toxin. JCI Insight 4, https://doi.org/10.1172/jci.insight.124771 (2019).

12. Wong, J., Korcheva, V., Jacoby, D. B. & Magun, B. Intrapulmonary delivery of ricin at high dosage triggers a systemic inflammatory response and glomerular damage. Am. J. Pathol. 170, 1497–1510 (2007).

13. Rong, Y., Westfall, J., Ehrbar, D., LaRocca, T. & Mantis, N. J. TRAIL (CD253) sensitizes human airway epithelial cells to toxin-induced cell death. mSphere 3, https://doi.org/10.1128/mSphere.00399-18 (2018).

14. Froude, J. W., Stiles, B., Pelat, T. & Thullier, P. Antibodies for biodefense. Mabs 3, 517–527 (2011).

15. Van Slyke, G. et al. Humanized monoclonal antibody that passively protects mice against systemic and intranasal ricin toxin challenge. Clin. Vaccin. Immunol. 23, 795–799 (2016).

16. Kuo, T. T. & Aveson, V. G. Neonatal Fc receptor and IgG-based therapeutics. Mabs 3, 422–430 (2011).

17. Zalesky, J. et al. Enhanced antibody half-life improves in vivo activity. Nat. BioTechnol. 28, 157–159 (2010).

18. Verreaut, D. et al. Effective treatment of staphylococcal enterotoxin B (SEB) aerosol intoxication in Rhesus macaques using two parentally-administered high affinity monoclonal antibodies. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02049-19 (2019).

19. Toth, R. T. I. et al. High-definition mapping of four spatially distinct neutralizing epitope clusters on RiVax, a candidate ricin toxin subunit vaccine. Clin. Vaccine Immunol. 24, https://doi.org/10.1128/CVI.00327-17 (2017).

20. Roy, C. J. et al. Thermostable ricin vaccine protects Rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. Proc. Natl Acad. Sci. USA 112, 3782–3787 (2015).

21. Domachowske, J. B. et al. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 37, 866–892 (2018).

22. Griffin, M. P. et al. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 61, https://doi.org/10.1128/AAC.01714-16 (2017).

23. Gaudinski, M. R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody CRC011S: A Phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

24. Yu, X. Q. et al. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother. 61, https://doi.org/10.1128/AAC.01714-16 (2017).

25. Yang, B. et al. ZMappTM reinforces the airway mucosal barrier against ebola virus. J. Infect. Dis. https://doi.org/10.1093/infdis/jiy230 (2019).

26. Yermakova, A. et al. Neutralizing monoclonal antibodies against disparate epitopes on ricin toxin’s enzymatic subunit interfere with intracellular toxin transport. Sci. Rep. 6, 22721 (2016).

27. Russell, T. & Bell, T. J. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14, 81–93 (2014).

28. Rong, Y. et al. An intranasally administered monoclonal antibody cocktail abrogates ricin toxin-induced pulmonary tissue damage and inflammation. Hum. Vaccin Immunother. 1–15, https://doi.org/10.2164/hv.19.201664243 (2019).

29. Worsb, T., Hammerschmidt, S. I. & Forster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17, 30–48 (2017).

30. DiLillo, D. J. & Ravetch, J. V. Fc-Receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol. Res. 3, 704–713 (2015).

31. Naranjo-Gomez, M. & Pelegrin, M. Vaccinal effect of HIV-1 antibody therapy. Curr. Opin. HIV AIDS 14, 325–333 (2019).

32. Schoofs, T. et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 352, 997–1001 (2016).

33. Lemley, P. V. & Wright, D. C. Mice are actively immunized after passive monoclonal antibody prophylaxis and ricin toxin challenge. Immunology 76, 511–513 (1992).

34. Tate, M. K., Rico, P. J. & Roy, C. J. Comparative study of lung cytologic features in normal Rhesus (Macaca mulatta), cynomolgus (Macaca fascicularis), and African green (Chlorocebus aethiops) nonhuman primates by use of bronchoscopy. Comp. Med. 54, 393–396 (2004).

35. O’Hara, J. M., Brey, R. N. III & Mantis, N. J. Comparative efficacy of two leading candidate ricin toxin a subunit vaccines in mice. Clin. Vaccin. Immunol. 20, 789–794 (2013).

36. Westfall, J. et al. Thermal stability and epitope integrity of a lyophilized ricin toxin subunit vaccine. Vaccine 36, 5967–5976 (2018).

37. Breen, E. J., Tan, W. & Khan, A. The statistical value of raw fluorescence signal in luminesX MAP based multiplex immunoassays. Sci. Rep. 6, 26996 (2016).

38. Lé, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

ACKNOWLEDGEMENTS

The authors thank the Wadsworth Center’s Biochemistry and Immunology core facility for assistance with flow cytometry and the Histopathology Core facility for assistance with tissue section preparations. We thank Dr. Javad Aman (Integrated BioTherapeutics) for the SEB MAb. This work was supported by Contract No. W911QY-16-C-0051 to LZ from the Department of the Army, Department of Defense, and Contract No. HHSN27201400020C and grant AI125190 to NJM. from the National Institutes of Allergy and Infectious Diseases, National Institutes of Health (NIH). The work at Tulane National Primate Research Center was also supported in part by grant OD011104 to CJR from the Office of Research Infrastructure Programs (ORIP), Office of the Director, NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Defense or the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

Z.B., L.C., M.C., D.K., N.M., E.S.V., K.W. generated reagents; G.V.S., P.J.D., L.D.M., Y.R., F.J.T. and C.J.R. conducted animal studies and animal tissue/sample analysis; D.J.E. and J. F. performed statistical analysis; C.J.R., N.J.M. and L.Z. are responsible for experimental design. C.J.R., M.B., L.Z. and N.J.M. prepared and edited the manuscript.

COMPETING INTERESTS

Z.B., L.C., M.C. and D.K. are Mapp Biopharmaceutical employees and shareholders. K.W. and L.Z. are employees, shareholders, and co-owners of Mapp Biopharmaceutical. The other authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/s41541-020-0162-0.

Correspondence and requests for materials should be addressed to C.J.R., L.Z. or N.J.M.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.