A Short Note on Contracting Self-Similar Solutions of the Curve Shortening Flow

Lucas Z. Veeravalli, Emma H. Veeravalli, Alain R. Veeravalli

Université d’Evry-Val d’Essonne, Département de Mathématiques
23 Boulevard de France, 91037 Evry Cedex, France
✉ Alain.Veeravalli@univ-evry.fr

Received: 30 June 2015

Abstract
By the curve shortening flow, the only closed contracting self-similar solutions are circles: we give a very short and intuitive geometric proof of this basic and classical result using an idea of Gage [4].

Keywords and Phrases: Curve shortening flow, self-similar, contracting solutions.

MSC 53C44, 53A04.

1 Introduction
Let \(\gamma \) be a smooth closed curve parametrized by arc length, embedded in the Euclidean plane endowed with its canonical inner product denoted by a single point. A one-parameter smooth family of plane closed curves \((\gamma(\cdot, t))_t\) with initial condition \(\gamma(\cdot, 0) = \gamma\) is said to evolve by the curve shortening flow (CSF for short) if

\[
\frac{\partial \gamma}{\partial t} = \kappa \mathbf{n}
\]

(1)

where \(\kappa \) is the signed curvature and \(\mathbf{n} \) the inward pointing unit normal. By the works of Gage, Hamilton and Grayson any embedded closed curve evolves to a convex curve (or remains convex if so) and shrinks to a point in finite time[1].

In this note, we are interested by self-similar solutions that is solutions which shapes change homothetically during the evolution. This condition is equivalent to say, after a suitable parametrization, that

\[
\kappa = \varepsilon \gamma \cdot \mathbf{n}
\]

(2)

with \(\varepsilon = \pm 1 \). If \(\varepsilon = -1 \) (resp. +1), the self-similar family is called contracting (resp. expanding). For instance, for any positive constant \(C \) the concentric circles \((s \mapsto \sqrt{1 - 2t} \cos s, \sin s))\), form a self-similar contracting solution of the CSF shrinking to a point in finite time and as a matter of fact, there is no more example than this.

\[1\]The reader could find a dynamic illustration of this result on the internet page http://a.carapetis.com/csf/
one:

by the curve shortening flow, the only closed embedded contracting self-similar solutions are circles.

To the author knowledge, the shortest proof of this was given by Chou-Zhu [3] by evaluating a clever integral. The proof given here is purely geometric and based on an genuine trick used by Gage in [4].

2 A geometric proof

Let γ be a closed, simple embedded plane curve, parametrized by arclength s, with signed curvature κ. By reversing the orientation if necessary, we can assume that the curve is counter-clockwise oriented. The length of γ is denoted by L, the compact domain enclosed by γ will be denoted by Ω with area A and the associated moving Frenet frame by (t, n). Let $\gamma_t = \gamma(t, \cdot)$ be the one parameter smooth family solution of the CSF, with the initial condition $\gamma_0 = \gamma$.

Multiplying (1) by n, we obtain

$$\frac{\partial \gamma}{\partial t} \cdot n = \kappa$$

Equations (1) and (3) are equivalent: from (3), one can look at a reparametrization $t \mapsto \varphi(t, s)$ such that $\tilde{\gamma}(t, s) = \gamma(t, \varphi(t, s))$ satisfies (1). A simple calculation leads to an ode on φ which existence is therefore guaranteed [3]. From now, we will deal with equation (3).

If a solution γ of (3) is self-similar, then there exists a non-vanishing smooth function $t \mapsto \lambda(t)$ such that $\gamma_t(s) = \lambda(t) \gamma(s)$. By (2), this leads to $\lambda'(t) \gamma(s) \cdot n(\gamma(s)) = \kappa(\gamma(s))$, that is $\lambda'(t) \lambda(t) \gamma(s) \cdot n(s) = \kappa(s)$. The function $s \mapsto \gamma(s) \cdot n(s)$ must be non zero at some point (otherwise κ would vanish everywhere and γ would be a line) so the function $\lambda'\lambda$ is constant equal to a real ε which can not be zero. By considering the new curve $s \mapsto \sqrt{|\varepsilon|} \gamma\left(s / \sqrt{|\varepsilon|}\right)$ which is still parametrized by arc length, we can assume that $\varepsilon = \pm 1$. In the sequel we will assume that γ is contracting, that is $\varepsilon = -1$ which says that we have the fundamental relation:

$$\kappa + \gamma \cdot n = 0$$

An immediate consequence is the value of A: indeed, by the divergence theorem and the turning tangent theorem,

$$A = \frac{1}{2} \int_{\gamma} (x dy - y dx) = -\frac{1}{2} \int_0^L \gamma(s) \cdot n(s) ds = \frac{1}{2} \int_0^L k(s) ds = \pi$$

2 The nonembedded closed curves were studied and classified by Abresch and Langer [1]
Therefore, our aim will be to prove that $L = 2\pi$ and we will conclude by using the equality case in the isoperimetric inequality.

The second remark is that the curve is an oval or strictly convex: indeed, by differentiating $\frac{d}{dt} (4)$ and using Frenet formulae, we obtain that $\kappa' = \kappa \gamma \cdot \gamma'$ which implies that $\kappa = Ce^{\gamma^2/2}$ for some non-zero constant C. As the rotation index is $+1$, C is positive and so is κ.

2.1 Polar tangential coordinates

As equation (4) is invariant under Euclidean motions, we can assume that the origin O of the Euclidean frame lies within Ω with axis \overrightarrow{Ox} meeting γ orthogonally. We introduce the angle function θ formed by $-\mathbf{n}$ with the x-axis as shown in the figure below:

![Figure 1: Polar tangential coordinates](image-url)
Thus, consider the function defined by \(\gamma(s) = \int_0^s \kappa(u) du \) since \(\theta'(0) = 0 \). As \(\theta' = \kappa > 0 \), \(\theta \) is a strictly increasing function on \(\mathbb{R} \) onto \(\mathbb{R} \). So \(\theta \) can be chosen as a new parameter and we set \(\gamma(\theta) = (\bar{x}(\theta), \bar{y}(\theta)) = \gamma(s) \), \(\bar{t}(\theta) = (-\sin \theta, \cos \theta) \), \(\bar{m}(\theta) = (-\cos \theta, -\sin \theta) \) and we consider the function \(p \) defined by \(p(\theta) = -\bar{r}(\theta) \cdot \bar{m}(\theta) \). As \(\theta(s+L) = \theta(s)+2\pi \), we note that \(\bar{t}, \bar{m} \) and \(p \) are \(2\pi \)-periodic functions. The curve \(\bar{r} \) is regular but not necessarily parametrized by arc length because \(\overline{r}'(\theta) = \frac{1}{\kappa(\theta)} \gamma'(s) \) and we note \(\kappa \) its curvature. By definition, we have

\[
\bar{x}(\theta) \cos \theta + \bar{y}(\theta) \sin \theta = p(\theta)
\]

which, by differentiation w.r.t. \(\theta \), gives

\[
-\bar{x}(\theta) \sin \theta + \bar{y}(\theta) \cos \theta = p'(\theta)
\]

Thus,

\[
\begin{cases}
\bar{x}(\theta) &= p(\theta) \cos \theta - p'(\theta) \sin \theta \\
\bar{y}(\theta) &= p(\theta) \sin \theta + p'(\theta) \cos \theta
\end{cases}
\]

Differentiating once more, we obtain

\[
\begin{cases}
\bar{x}'(\theta) &= -[p(\theta) + p''(\theta)] \sin \theta \\
\bar{y}'(\theta) &= [p(\theta) + p''(\theta)] \cos \theta
\end{cases}
\]

Since \(\gamma \) is counter-clockwise oriented, we have \(p + p'' > 0 \).

Coordinates \((\theta, p(\theta))_{0 \leq \theta < 2\pi} \) are called \textit{polar tangential coordinates} and \(p \) is the \textit{Minkowski support function}. By \((8) \), we remark that the tangent vectors at \(\bar{r}(\theta) \) and \(\bar{r}(\theta+\pi) \) are parallel. We will introduce the \textit{width function} \(w \) defined by

\[
w(\theta) = p(\theta) + p(\theta+\pi)
\]

which is the distance between the parallel tangent lines at \(\bar{r}(\theta) \) and \(\bar{r}(\theta+\pi) \) and we denote by \(\ell(\theta) \) the segment joining \(\bar{r}(\theta) \) and \(\bar{r}(\theta+\pi) \).

With these coordinates, the perimeter has a nice expression:

\[
L = \int_0^{2\pi} \sqrt{(\bar{x}'(\theta))^2 + (\bar{y}'(\theta))^2} \, d\theta = \int_0^{2\pi} [(p + p'') \cos \theta - p' \sin \theta] \, d\theta = \int_0^{2\pi} p(\theta) \, d\theta
\]

(Cauchy formula)

The curvature \(\kappa \) of \(\bar{r} \) is

\[
\kappa = \frac{\bar{x}\bar{y}' - \bar{x}'\bar{y}}{(\bar{x}^2 + \bar{y}^2)^{3/2}} = \frac{1}{p + p''}
\]

and equation \((8) \) reads \(\kappa = p \). So, finally,

\[
\kappa = p = \frac{1}{p + p''}
\]
2.2 Bonnesen inequality

If \(B \) is the unit ball of the Euclidean plane, it is a classical fact that the area of \(\Omega - tB \) (figure 2) is \(A_{\Omega}(t) = A - Lt + \pi t^2 \) [2].

![Figure 2: The domain \(\Omega - tB \) with positive \(t \)](image)

The roots \(t_1, t_2 \) (with \(t_1 \leq t_2 \)) of \(A_{\Omega}(t) \) are real by the isoperimetric inequality and they have a geometric meaning: indeed, if \(R \) is the circumradius of \(\Omega \), that is the radius of the circumscribed circle, and if \(r \) is the inradius of \(\Omega \), that is the radius of the inscribed circle, Bonnesen [2, 5] proved in the 1920’s a series of inequalities, one of them being the following one:

\[
t_1 \leq r \leq R \leq t_2
\]

Moreover, and this is a key point in the proof, any equality holds if and only if \(\gamma \) is a circle. We also note that \(A_{\Omega}(t) < 0 \) for any \(t \in (t_1, t_2) \).

2.3 End of proof

Special case: \(\gamma \) is symmetric w.r.t. the origin \(O \), that is \(\gamma(\theta + \pi) = -\gamma(\theta) \) for all \(\theta \in [0, 2\pi] \), which also means that \(p(\theta + \pi) = p(\theta) \) for all \(\theta \in [0, 2\pi] \). So the width function \(w \) is twice the support function \(p \). As \(2r \leq w \leq 2R \), we deduce that for all \(\theta \), \(r \leq p(\theta) \leq R \). If \(\gamma \) is not a circle, then one would derive from Bonnesen inequality that \(t_1 < r \leq p(\theta) \leq R < t_2 \). So \(A_{\Omega}(p(\theta)) < 0 \) for all \(\theta \), that is \(\pi p^2(\theta) < Lp(\theta) - \pi \). Multiplying this inequality by \(1/p = p + p'' > 0 \) and integrating on \([0, 2\pi]\), we would obtain \(\pi L < \pi L \) by Cauchy formula ! By this way, we proved that any symmetric smooth closed curve satisfying \(\gamma \) is a circle. As the area is \(\pi \), the length is \(2\pi \) of course.
General case: using a genuine trick introduced by Gage [4], we assert that

> for any oval enclosing a domain of area A, there is a segment $\ell(\theta_0)$ dividing Ω into two subdomains of equal area $A/2$.

Proof: let $\sigma(\theta)$ be the area of the subdomain of Ω, bounded by $\gamma([\theta, \theta + \pi])$ and the segment $\ell(\theta)$. We observe that $\sigma(\theta) + \sigma(\theta + \pi) = A$. We can assume without lost of generality that $\sigma(0) \leq A/2$. Then we must have $\sigma(\pi) \geq A/2$, and by continuity of σ and the intermediate value theorem, there exists θ_0 such that $\sigma(\theta_0) = A/2$ and the segment $\ell(\theta_0)$ proves the claim.

Let ω_0 be the center of $\ell(\theta_0)$. If γ_1 and γ_2 are the two arcs of γ separated by $\ell(\theta_0)$, we denote by γ_i ($i = 1, 2$) the closed curve formed by γ_i and its reflection through ω_0. Each γ_i is a symmetric closed curve and as $\ell(\theta_0)$ joins points of the curve where the tangent vectors are parallel, each one is strictly convex and smooth (figure 3).

Moreover, each γ_i satisfies equation (4) and encloses a domain of area $2 \times A/2 = A$. So we can apply the previous case to these both curves and this gives that length(γ_i) = 2π for $i = 1, 2$, that is length(γ_i) = π which in turn implies that $L = 2\pi$. So γ (that is γ) is a circle. This proves the theorem.

\[\square\]
References

[1] U. Abresch, J. Langer, The normalized curve shortening flow and homothetic solutions, J. Diff. Geom. 23 (1986), no. 2, 175-196.

[2] Yu. D. Burago, V. A. Zalgaller, Geometric inequalities, Springer-Verlag, Berlin-Heidelberg 1988.

[3] K. S. Chou, X. P. Zhu, The curve shortening problem, Chapman& Hall/CRC, Boca Raton, 2001.

[4] M. E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Mathematical Journal, 50 (3) (1983) 1225-1229.

[5] J. Zhou, F. Chen, The Bonnesen-type inequalities in a plane of constant curvature, J. Korean Math. Soc. 44 (6), (2007) 1363-1372.