Kinematic alignment technique for total hip and knee arthroplasty: the personalized implant positioning surgery

Charles Rivière1
Stefan Lazic2
Loïc Villet3
Yann Wiart4
Sarah Muirhead Allwood5
Justin Cobb6

Introduction

In the 20th century, Sir John Charnley and Sir John Insall successfully introduced modern total joint replacements for hips (THA) and knees (TKA), respectively. In order to prevent implant fixation failure and accelerated polyethylene wear, it was initially recommended that implants were positioned in a ‘biomechanically friendly’ way, which disregarded most of the individual patient anatomy.1–5 Therefore, knee implants were aligned perpendicular to the femoral and tibial mechanical axes2,3 and the acetabular cup component was medialized as much as possible.1,4,5 A few years later, Lewinnek et al6 recommended that the acetabular cup was radiographically positioned with 40° inclination and 20° anteverision, as they found it reduced the risk of prosthetic hip dislocation.

While those initial surgical techniques made for popular and clinically successful total joint replacements, many complications have remained, most notably the functional limitations after TKA7 and the persistence of frequent instability after THA.8 In response to those complications, many improvements were developed in the field of joint replacement over the last few decades, moving away from these conventional methods of positioning to more personalized techniques, namely kinematically aligned (KA) THA9 and TKA.10

This instructional review aims, in the first half, to outline the rationale and clinical outcomes of conventional implant-positioning surgical techniques for TKA and THA and then, in the second half, to describe the newly promoted more personalized techniques (kinematic alignment).
Conventional techniques for hip and knee replacement: rationale and limitations

Conventional technique for TKA

For decades, knee components have been positioned following the concept of mechanical alignment (MA), where implants are aligned perpendicular to the femoral and tibial mechanical axes in order to create a straight lower limb with a prosthetic tibio-femoral joint line (TFJL) perpendicular to the overall limb mechanical axis (Fig. 1). Also, the femoral component is expected to be frontally and axially aligned with the trans-epicondylar axis, which then becomes the prosthetic flexion-extension axis, and the flexion and extension gaps are made, sometimes through the need for soft-tissue release, rectangular and identical in every knee.2,3 All of these things aim to optimize long-term implant survivorship. Also, it aligns the extensor mechanism, which reduces the risk of patella instability.2,3

Besides these biomechanical advantages, there remain some inconveniences related to the disregard for individual knee anatomy: first, changing the lower limb and joint line alignment often leads to the need for technically demanding, and therefore poorly reliable, soft-tissue balancing;2,11 second, a high rate of lateral trochlea facet and distal condyle overstuffing, potentially responsible for clinically deleterious lateral retinacular stretching and patella mal-tracking;12 and third, abnormal tibiofemoral (TF) and patella-femoral joint (PF) kinematics.13 These drawbacks might explain why MA TKAs have remained overall functionally disappointing with high rates of residual symptoms (an average of 50%)7 despite the many improvements in surgical precision and knee implant design.14-17

Conventional positioning for THA

For decades, it was recommended that the prosthetic hip centre of rotation be medialized relative to the native centre of rotation by medialization of the acetabular component and a compensatory increase of femoral offset (Fig. 2).4,5 The rotation is mainly biomechanical, as this reduces the joint reaction force secondary to a reduction of the abduction moment from the abductors,4,18 thus reducing the risk of early implant loosening and accelerated polyethylene liner wear. This concept has generated good long-term implant survivorship.19

Since 1978, the prosthetic cup orientation has been recommended to be at 40° inclination and 20° anteversion (Lewinnek box) relative to the anterior pelvic plane (Lewinnek plane), as this was shown to reduce the risk of prosthetic dislocation.6 Because the native acetabular orientation varies in the population,20,21 a similar prosthetic orientation for all patients is rarely likely to reproduce their constitutional acetabular anteversion, either anatomical or functional, and their functional cone of hip mobility (Fig. 2). As the soft tissues around the hip tend to limit the motion of the hip within its physiological cone of mobility,22,23 this positioning (disregarding the individual acetabular anteversion) is likely not to be optimal and therefore sometimes generates complications such as articular impingement and prosthetic instability.24,25

Personalized techniques for total joint replacement: the kinematic revolution

Kinematic alignment technique for TKA

Following the results of a few studies suggesting that the standing post-operative limb alignment was of poor
predictive value for clinical outcomes for patients with MA TKA, the idea of preserving the constitutional knee alignment arose.

Since 2007, Howell et al have promoted the KA technique for TKA, which aims at restoring the native three-dimensional (or constitutional) anatomy of the TFJL and at aligning the implants with the kinematic axis of the knee, namely the cylindrical (or trans-condylar) axis around which the tibia flexes and extends around the femur (Fig. 1). In simplistic terms, the KA technique is almost a true resurfacing of the TFJL, where implant thickness aims to replace the exact same amount of ‘bone cartilage’ removed and therefore to restore the highly variable individual native pre-arthritic (or constitutional) TFJL orientation and soft-tissue laxity. It is important to understand that the KA technique is not a modification of the MA technique, but rather a new surgical technique for TKA, with only the sagittal positioning of the femoral component shared with the MA technique. The KA technique, like the MA technique, can be performed with the use of navigation or patient-specific instrumentation or manual instrumentation.
Current evidence has shown this personalized technique performs better early on than the MA technique for TKA. Five randomized studies32,34–38 have shown the KA TKA to provide faster recovery than MA TKA, and a meta-analysis39 concluded that KA TKAs provide better functional outcomes and similar complication rates compared with MA TKA at two-year follow-up. Also, a prospective cohort study40 and a systematic review41 found the KA technique to generate excellent overall outcomes up until six years of follow-up. Longer-term outcomes are needed in order to define the best indication for the KA technique, as it is likely some patients would not benefit from restoration of their constitutionally extreme ‘patho-anatomy’.42

Kinematic alignment technique for THA

Technological developments enabling more precise surgery (computer-assisted surgery, robotics43) and improvement in implant design and quality (wear-resistant surface bearings,44 biological implant fixation) have enabled the progressive evolution of THA towards a more anatomical technique aiming to better restore the native hip centre of rotation5 and acetabular anteversion (Fig. 2).45,46 A technique for aligning the prosthetic cup parallel to the transverse acetabular ligament (TAL), and therefore allowing a personalized cup position, has recently been promoted with high safety and efficacy regarding dislocation risk.45,46 However, despite more personalized cup positioning and improvements in implant tolerance (larger head-neck ratio design to prevent articular impingement, larger head to increase the jumping distance), prosthetic instability remains a concerning complication and one of the main causes of early revision after THA.8,45

There are two types of abnormal lumbopelvic sagittal kinematics which may influence complications after THA.9 The first one is related to insufficient pelvic retroversion (Fig. 4) when sitting or squatting (type 1)9,47–51,61 and the second (Fig. 5) is a consequence of ageing of the spine where the pelvis becomes progressively more retroverted when standing (type 2).52,53 Patients with one of these aforementioned abnormal types of pelvic kinematics or an abnormally low pelvic incidence (< 35°) are therefore affected by a clinically deleterious lumbopelvic stiffness.54–60 This generates aberrant functional acetabular orientation in sitting/squatting9,47–51,61 or standing positions.59,62 A compensatory effect by the use of a larger hip range of motion makes these patients ‘hip users’9 (Fig. 3). With THA, this lumbopelvic stiffness might be responsible for some complications such as prosthetic instability9,55,57 and/or edge-loading.50 Sagittal pelvic kinematics can be estimated in daily practice through standing and sitting lateral lumbopelvic images, either with conventional radiographs or EOS images63–65 (EOS imaging system®, Biospace®, Paris, France).

The concept of KA THA9 consists of restoring the constitutional hip anatomy (proximal femur anatomy and acetabular centre of rotation) and taking into account the
individual sagittal lumbopelvic kinematics in order to plan the implant design (cup and head size), the acetabular cup orientation (using the TAL19,46) and the need for spinal surgery to correct a severe sagittal imbalance (Table 1). The more stiff a lumbopelvic complex is, the more it seems sensible firstly to use a large diameter femoral head24,25,66,67 or dual mobility cup with a mobile liner68,69 which are more tolerant to articular impingement and edge loading, and second to adjust cup positioning relative to the TAL19,46 in order to partially correct the abnormal functional cup positioning that would have resulted in anatomic positioning2,58,59,61 (Table 2). To illustrate, it might be sensible to implant an elderly patient with severe abnormal type 2 pelvic kinematics with a dual mobility cup implanted with anatomic anteversion (parallel to the TAL) or maybe slightly reduced (Table 2). If the same type 2 kinematic abnormality was seen in a younger patient, it might be more reasonable to use a 36 mm diameter head and to adjust the cup using the TAL19,46 with reduced anteversion and inclination (Table 2). Although more high-quality randomized controlled trials are needed to establish the safety and effectiveness of KA THA, in the author’s (CR’s) experience with > 150 KA THAs, no adverse clinical or aberrant radiographic features in this cohort have been observed.

Conclusion

Both KA and conventional implant positioning have different advantages and disadvantages. The main advantage of conventional positioning is that it has a well-established, large evidence base regarding complications such as
polyethylene wear in TKA\(^1,3\) and dislocation in THA,\(^6\) for example. However, the main disadvantage with conventional positioning is that it ignores individual variation in anatomy/kinematics, although it remains unclear whether restoring extreme native ‘patho-anatomy’ would be of benefit for every patient.\(^42\) Even though KA TKA has shown that restoring extreme native ‘patho-anatomy’ would be of benefit for every patient, \(^42\) further research is still needed (for KA THA and KA TKA) to determine the true value and role of ‘personalized’ implant positioning.

5. Meermans G, Doorn JV, Kats JJ. Restoration of the centre of rotation in primary total hip arthroplasty: the influence of acetabular floor depth and reaming technique. Bone Joint J 2016;88-B:1997-603.

6. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip replacement arthroplasties. J Bone Joint Surg [Am] 1978;60-A:217-220.

7. Nam D, Nunley RM, Barrack RL. Patient dissatisfaction following total knee replacement: a growing concern? Bone Joint J 2014;96-B(suppl A):96-100.

8. Bozic KI, Kurtz SM, Lau E, et al. The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg [Am] 2009;91:128-33.

9. Riviére C, Lazennec YJ, Van Der Straeten C, et al. The influence of spine-hips relation on total hip replacement: A systematic review. Orthop Traumatol Surg Res 2017;103:559-68.

10. Stephen M, Howell MLH. Kinematic alignment in total knee arthroplasty. In: Scott WN, ed. Insall & Scott Surgery of the knee. Fifth ed. New York: Elsevier, 2011:255-69.

11. Gu Y, Roth JD, Howell SM, Hull ML. How frequently do four methods for mechanically aligning a total knee arthroplasty cause collateral ligament imbalance and change alignment from normal in white patients? AAOS Exhibit Selection. J Bone Joint Surg [Am] 2014;96-e100.

12. Riviére C, Auvinet E, Aframian A, et al. High rate of distal lateral trochea facet overstuffing after mechanically aligned TKA: Clinically deleterious? Orthop Traumatol Surg Res 2017.

13. Eckhoff DG, Bach JM, Spitzer VM, et al. Three-dimensional mechanical, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg [Am] 2005;87(suppl 2):71-80.

14. Sassoon A, Nam D, Nunley R, Barrack R. Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res 2015;473:151-8.

15. Xie C, Liu K, Xiao L, Tang R. Clinical outcomes after computer-assisted versus conventional total knee arthroplasty. Orthopedics 2012;35:e647-53.

16. Chen JY, Chin PL, Tay DK, et al. Functional outcome and quality of life after patient-specific instrumentation in total knee arthroplasty. J Arthroplasty 2015;30:1224-8.

17. Mattei L, Pellegrino P, Calò M, Bistolfi A, Castoldi F. Patient specific instrumentation in total knee arthroplasty: a state of the art. Ann Trans Med 2016;4:126.

18. Charles MN, Bourne RB, Davey JR, et al. Soft-tissue balancing of the hip: the role of femoral offset correction. Instr Course Lect 2005;54:131-41.

19. Hiddema WB, van der Merwe JF, van der Merwe W. The transverse acetabular ligament as an intraoperative guide to cup abduction. J Arthroplasty 2016;31:1609-13.

20. Thelen T, Thelen P, Demezon H, Amouile S, Le Huc J. Normative 3D acetabular orientation measurements by the low-dose EAS imaging system in 102 asymptomatic subjects in standing position: analyses by side, gender, pelvic incidence and reproducibility. Orthop Traumatol Surg Res 2017;103:209-15.

21. Fujita K, Kabata T, Maeda T, et al. The use of the transverse acetabular ligament in total hip replacement: an analysis of the orientation of the trial acetabular component using a navigation system. Bone Joint J 2014;96-B:306-11.

22. Safi M, Lopomo N, Zaffagnini S, et al. In vitro analysis of peri-articular soft tissues passive constraining effect on hip kinematics and joint stability. Knee Surg Sports Traumatol Arthrosc 2013;21:1655-63.

23. Smith MV, Costic RS, Allaire R, Schilling PL, Sekiya JK. A biomechanical analysis of the soft tissue and osseous constraints of the hip joint. Knee Sports Traumatol Arthrosc 2014;22:946-52.
24. Banerjee S, Pivc R, Issa K, et al. Large-diameter femoral heads in total hip arthroplasty: an evidence-based review. Am J Orthop (Belle Mead NJ) 2014;43:506-12.

25. Miki H, Kyo T, Kuroda Y, Nakahara I, Sugano N. Risk of edge-loading and prosthesis impingement due to posterior pelvic tilting after total hip arthroplasty. Clin Biomech (Bristol, Avon) 2014;29:667-13.

26. Parratte S, Pagnano MW, Trousdale RT, Berry DJ. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg [Am] 2010;92:2143-9.

27. Puthumanapully PK, Harris SJ, Leong A, et al. A morphometric study of normal and varus knees. Knee Surg Sports Traumatol Arthrosc 2014;22:2891-9.

28. Deep K, Picard F, Clarke JV. Dynamic knee alignment and collateral knee laxity and its variations in normal humans. Front Surg 2015;2:62.

29. Roth JD, Hull ML, Howell SM. The limits of passive motion are variable between and unrelated within normal biarticular joints. J Orthop Res 2015;33:1594-602.

30. Roth JD, Howell SM, Hull ML. Native knee laxities at 0 degrees, 45 degrees, and 90 degrees of flexion and their relationship to the goal of the gap-balancing alignment method of total knee arthroplasty. J Bone Joint Surg [Am] 2015;97:1678-84.

31. Hutt JR, LeBlanc MA, Massé V, Lavigne M, Vendittoli PA. Kinematic TKA using navigation: surgical technique and initial results. Orthop Traumatol Surg Res 2016;102:99-104.

32. Waterson HB, Clement ND, Eyres KS, Mandalia VI, Toms AD. The early outcome of kinematic versus mechanical alignment in total knee arthroplasty: a prospective randomised control trial. Bone Joint J 2016;98-B:1360-8.

33. Howell SM, Roth JD, Hull ML. Kinematic alignment in total knee arthroplasty. Definition, history, principle, surgical technique, and results of an alignment option for TKA. Arthroplasty 2014;44:53.

34. Dossett HG, Swartz GJ, Estrada NA, LeFevre GW, Kwasman BG. Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics 2012;35:0660-9.

35. Young SW, Walker ML, Bayan A, et al. The Chitranjan S. Ranawat Award: no difference in 2-year functional outcomes using kinematic versus mechanical alignment in TKA: a randomized controlled clinical trial. Clin Orthop Relat Res 2017;475:9-20.

36. Callies T, Bauer K, Stukkenborg-Golsman C, et al. PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 2017;25:1745-8.

37. Matsumoto T, Takayama K, Ishida K, et al. Radiological and clinical comparison of kinematic versus mechanically aligned total knee arthroplasty. Bone Joint J 2017;99-B:640-6.

38. Dossett HG, Estrada NA, Swartz GJ, et al. A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J 2014;96-B:907-13.

39. Courtney PM, Lee GC. Early outcomes of kinematic alignment in primary total knee arthroplasty: a meta-analysis of the literature. J Arthroplasty 2017;32:2028-32.

40. Howell SM, Papadopoulos S, Kuznik K, Ghaly LR, Hull ML. Does varus alignment adversely affect implant survival and function six years after kinematically aligned total knee arthroplasty? Int Orthop 2015;39:2177-24.

41. Lee YS, Howell SM, Won YY, et al. Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017;25:3467-79.

42. Rivière C, Irunpour F, Auvinet E, et al. Alignment options for total knee arthroplasty: a systematic review. Orthop Traumatol Surg Res 2017;103:947-56.

43. Sugano N. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg 2013;5:1-9.

44. Kumar N, Arora GN, Datta B. Bearing surfaces in hip replacement—Evolution and likely future. Med J Armed Forces India 2014;70:371-6.

45. Archbold HA, Mockford B, Molloy D, et al. The transverse acetabular ligament: an aid to orientation of the acetabular component during primary total hip replacement: a preliminary study of 1000 cases investigating postoperative stability. J Bone Joint Surg [Br] 2006;88:883-6.

46. Meftah M, Yadav A, Wong AC, Ranawat AS, Ranawat CS. A novel method for accurate and reproducible functional cup positioning in total hip arthroplasty. J Arthroplasty 2013;28:1200-5.

47. Ng KC, Lamontagne M, Adamczyk AP, Rakhra KS, Beaulé PE. Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI. Clin Orthop Relat Res 2015;473:1289-96.

48. Lamontagne M, Kennedy MJ, Beaulé PE. The effect of cam FAI on hip and pelvic motion during maximum squat. Clin Orthop Relat Res 2009;467:645-50.

49. Bagwell JJ, Sibbje J, Gerhardt M, Powers CM. Hip kinematics and kinetics in persons with and without cam femoroacetabular impingement during a deep squat task. Clin Biomech (Bristol, Avon) 2016;31:87-92.

50. Pierrepoint JW, Feyen H, Miles BP, et al. Functional orientation of the acetabular component in ceramic-on-ceramic total hip arthroplasty and its relevance to squeaking. Bone Joint J 2016;98-B:910-6.

51. Rivière C, Hardijzer A, Lazennec JY, et al. Spine–hip relations add understandings to the pathophysiology of femoro-acetabular impingement: A systematic review. Orthop Traumatol Surg Res 2017;103:549-57.

52. Esposito CI, Miller TT, Kim HJ, et al. Does degenerative lumbar spine disease influence femoroacetabular flexion in patients undergoing total hip arthroplasty? Clin Orthop Relat Res 2016;474:1788-97.

53. Rousseau MA, Lazennec JY, Boyer P, et al. Optimization of total hip arthroplasty implantation: is the anterior pelvic plane concept valid? J Arthroplasty 2009;24:22-6.

54. Ochi H, Homma Y, Baba T, et al. Sagittal spinopelvic alignment predicts hip function after total hip arthroplasty. Gait Posture 2017;52:293-300.

55. Delsole EM, Vigdorich JK, Schwarzkopf R, Errico TJ, Buckland AJ. Total hip arthroplasty in the spinal deformity population: does degree of sagittal deformity affect rates of safe zone placement, instability, or revision? J Arthroplasty 2017;32:1910-7.

56. Barry JJ, Sing DC, Vail TP, Hansen EN. Early outcomes of primary total hip arthroplasty after prior lumbar spinal fusion. J Arthroplasty 2017;32:470-4.

57. Perfetti DC, Schwarzkopf R, Buckland AJ, Paulino CB, Vigdorich JK. Prosthetic dislocation and revision after primary total hip arthroplasty in lumbar fusion patients: a propensity score matched-pair analysis. J Arthroplasty 2017;32:1635-40.

58. Gu M, Zhang Z, Kang Y, et al. Roles of sagittal anatomical parameters of the pelvis in primary total hip replacement for patients with ankylosing spondylitis. J Arthroplasty 2015;30:2219-23.

59. Stef M, Lundergan W, Heckmann N, et al. Spino-pelvic mobility and acetabular component position for total hip arthroplasty. Bone Joint J 2017;99-B(suppl A):37-45.
60. Sariali E, Klouche S, Mamoudy P. Investigation into three dimensional hip anatomy in anterior dislocation after THA. Influence of the position of the hip rotation centre. *Clin Biomech (Bristol, Avon)* 2012;27:562-7.

61. Kanawade V, Dorr LD, Wan Z. Predictability of acetabular component angular change with postural shift from standing to sitting position. *J Bone Joint Surg [Am]* 2014;96:978-86.

62. McCarthy TF, Alipit V, Nevelos J, Elmallah RK, Mont MA. Acetabular cup anteversion and inclination in hip range of motion to impingement. *J Arthroplasty* 2016;31(suppl):264-8.

63. Phan D, Bederman SS, Schwarzkopf R. The influence of sagittal spinal deformity on anteversion of the acetabular component in total hip arthroplasty. *Bone Joint J* 2015;97-B:707-17.

64. Lazennec JY, Brusson A, Rousseau MA. Hip-spine relations and sagittal balance clinical consequences. *Eur Spine J* 2017;26(suppl 3):686-98.

65. Lazennec JY, Brusson A, Rousseau MA. Lumbar-pelvic-femoral balance on sitting and standing lateral radiographs. *Orthop Traumatol Surg Res* 2013;99(suppl):S87-S103.

66. Cinotti G, Lucioli N, Malagoli A, Calderoli C, Cassese F. Do large femoral heads reduce the risks of impingement in total hip arthroplasty with optimal and non-optimal cup positioning? *Int Orthop* 2011;35:317-33.

67. Malik A, Maheshwari A, Dorr LD. Impingement with total hip replacement. *J Bone Joint Surg Am* 2007;89:1832-42.

68. Vielpeau C, Lebel B, Ardouin L, Burdin G, Lautridou C. The dual mobility socket concept: experience with 668 cases. *Int Orthop* 2011;35:225-30.

69. Ko LM, Hozack WJ. The dual mobility cup: what problems does it solve? *Bone Joint J* 2016;98-B(suppl A):60-3.