Research Article

Reconstruction Design of Existing Residential Buildings Based on 3D Simulation Method

Wang Bo¹ and Chen Mengjia ²

¹Hunan Zhongda Design Institute Co., Ltd., Changsha, Hunan, China
²School of Architecture, Central South University, Changsha, Hunan, China

Correspondence should be addressed to Chen Mengjia; 171301011@csu.edu.cn

Received 1 December 2021; Revised 30 December 2021; Accepted 26 January 2022; Published 28 February 2022

Academic Editor: Wei Zhang

Copyright © 2022 Wang Bo and Chen Mengjia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existing building reconstruction methods exist after three-dimensional building modeling information is not complete, and the wall insulation performance improvement effect is not obvious. Therefore, a reconstruction method of existing residential buildings based on 3D simulation is proposed. This paper analyzes the present situation of energy consumption of existing residential buildings, analyzes the fuzziness characteristic in the process of testing the thermal performance of existing residential buildings by the method of spatially distributed fusion and feature extraction, uses the fuzzy equilibrium scheduling method to decompose the fuzziness characteristic scale of the thermal performance of the thermal insulation of existing residential buildings, and optimizes the design of the thermal performance of the thermal insulation transformation of existing residential buildings. The 3D simulation software is a 3D modeling tool named 3DS Max. The real-time simulation software Unity3D engine is used to reconstruct the building scene and complete the reconstruction of existing residential buildings. The experimental results show that the information integrity of the building model reconstructed by 3D simulation technique is nearly 100%, and the insulation performance of the building wall is better.

1. Introduction

A large number of unrenovated existing residential communities are experiencing material aging and social decline, causing the decline of the old city as a whole, thus affecting the development of the whole city. Residential community occupies the largest proportion of land in the urban built-up area, and residential building occupies the highest proportion in the urban building stock. The old urban residential community is formed gradually in the long-term historical development process, and it is the epitome of urban development in each historical period. Judging from the current state of the city, most of the older existing houses are concentrated in the urban central area [1]. There are some problems in the existing residential communities, such as small scale of urban pattern, high density of population, high proportion of low-income population, obsolete infrastructure, and poor housing quality. Today, information technology has already become the production tool of the new era. In any industry, the application of information exchange and processing relying on computer technology has been popularized in most industries, among which the manufacturing industry and the electronic industry can be regarded as revolutionary changes, but the impact on the construction industry is still relatively low, the application of computer and digital technology in the construction industry is still immature, and the competition in the construction industry is becoming increasingly fierce. It is necessary to enhance the competitiveness and drive the modernization of the design industry by using information technology in this period. At the same time, with the construction industry low energy consumption, green and sustainable development requirements, strengthening the construction of information technology has become the future direction of construction [2, 3]. With the development of computer software and hardware, the emergence of
building information model provides a new solution to the above problems. It is a revolutionary technology from traditional 2D drawing to 3D design and construction. It is called the second technological revolution of the building industry. Three-dimensional simulation not only realizes the rapid development and upgrading of existing technology but also affects the change of design organization and management and will affect the change of people’s thinking mode in the long run. From the design point of view, 3D simulation application is not only to improve the design efficiency and shorten the design cycle but also to improve the design quality and core competitiveness.

Reference [4] proposes a virtual space reconstruction method based on the principle of visual space orientation. Firstly, the spatial orientation is based on vision, and the geometric structure of visual spatial orientation is determined. Secondly, combined with the principle of VR technology, visual perception interaction is carried out. In order to maintain symmetry, the left and right viewing angles of the target are determined, and the target is fixed. Finally, in order to solve the conflict between VR system and users, the virtual space is corrected based on the central eye principle, including three processes, 3D image acquisition, image presentation, and virtual space perception, and the virtual space reconstruction is realized combined with the conflict derivation formula. Reference [5] carries out three-dimensional scene simulation and reconstruction based on the refinement of air ground integration and octree theory. The measurement data of the building scene is obtained by tilt photography, and the feature points are extracted. The error mathematical model of regional network is constructed between GCP, connection points, and connection lines, acquiring all image location elements and generating dense point clouds. According to the position of point cloud, texture mapping is carried out by combining virtual reality with matching the best viewing angle image so as to complete 3D modeling. Reference [6] proposes the energy-saving design of small buildings in summer with an intelligent cooling system and studies a new refrigeration control strategy. As a part of an intelligent energy system, this strategy balances thermal comfort and building energy consumption by using sensing and machine programming technology. In order to achieve this goal, the intelligent cooling system couples the general form of the building with energy consumption and personnel thermal comfort cooling simulated using EnergyPlus software and compares it with similar buildings without SCS. At the beginning of the study, using the data of hundreds of randomly selected survey groups, by analyzing and verifying the specific relationship between different groups in the statistical society, the body mass index and its thermal comfort temperature were obtained, and the sample buildings were modeled by EnergyPlus software. The results show that if the intelligent ventilation system which can calculate the thermal comfort temperature according to human BMI is adopted, the cooling load of buildings can be saved by 35% every year. Reference [7] proposes that, based on the example of public building projects in cold areas, the thermal insulation characteristic parameters of the enclosure structure are tested, and the results show that there is a large gap with the requirements of the current energy-saving standard. By reasonably setting parameters and using energy consumption simulation, the annual energy consumption difference of the enclosure structure before and after reaching the standard is compared. This paper deeply analyzes the energy-saving potential of different transformation schemes and the energy-saving sensitivity of different envelope structures, estimates the transformation costs of different schemes, takes into account the energy-saving effect and economic benefit, and determines the final energy-saving transformation scheme of maintenance structure.

However, the above literature methods have incomplete building information after three-dimensional modeling, and the improvement effect of wall insulation performance is not obvious. Therefore, a building reconstruction method of existing residential community based on a three-dimensional simulation method is proposed. Firstly, this method analyzes the current situation of building energy consumption in the existing residential community and uses the fuzzy equilibrium scheduling method to decompose the fuzzy characteristic scale of the thermal insulation performance of the building wall in the existing residential community under the limit search. The innovation of the research method is to optimize the thermal performance of thermal insulation transformation of existing residential community buildings. The information integrity of the reconstructed building model by three-dimensional simulation technology is close, and the thermal insulation performance of the reconstructed building wall is better.

2. Reconstruction of Existing Residential Community Buildings Based on Three-Dimensional Simulation Method

2.1. Current Situation of Building Energy Consumption in Existing Residential Communities

Before the research of the key technology of the wall structure rebuilding, the actual building energy consumption status in hot summer and cold winter areas is briefly understood.

The total energy consumption of buildings includes the energy consumption of public buildings, residential buildings, and other buildings, and the energy consumption of residential buildings includes the existing residential community buildings and dormitories, among which the existing residential community buildings account for about 93%. Therefore, the energy consumption of residential buildings is the key component of the energy consumption of buildings [8].

Heat loss in existing residential buildings is an important factor of energy loss at this stage, which is caused by heat transfer of wall structure and heat infiltration of air in windows and doors. According to the related data, the heat consumption of the wall structure is about 70 ~ 81%. Thus, in the green residential energy-saving planning, the first is to solve the wall structure thermal insulation function [9, 10].

In order to deeply study the energy consumption situation of existing residential buildings in hot summer and
2.2. Calculation and Fusion of Thermal Performance Parameters. The fuzziness characteristic of the heat preservation and transformation of the wall of the existing residential community is analyzed by the method of spatially distributed fusion and feature extraction, the fuzziness characteristic scale decomposition of the heat preservation and transformation of the wall of the existing residential community is decomposed by the fuzzy equilibrium scheduling method under the extreme search, and the optimization design of the test model of the heat preservation and transformation of the wall of the existing residential community is conducted [13–16].

The characteristic quantities of thermal performance distribution of wall insulation transformation of existing residential community buildings are \(R_{r1}(T_{z1}) \leq R_{r2}(W_{z2}) \) and \(R_{r2}(T_{z2}) \leq R_{r1}(W_{z1}) \). Transform the thermal performance test problem of thermal insulation transformation of building walls in existing residential communities into an optimization problem:

\[
\min_{[W_{z1}, W_{z2}]} \text{Tr}[W_{1}W_{1}^{H} + W_{2}W_{2}^{H}].
\]

Combined with the method of space ambiguity detection, the operation and maintenance parameters of the thermal performance test of the wall insulation rebuilding in the existing residential community are analyzed, the correlation eigenvalues of the thermal performance test of the wall insulation rebuilding in the existing residential community are extracted to obtain the optimal parameters \(T_{r1}^{0} \) and \(T_{r2}^{0} \), the convergence constraint method is adopted to control the process of the thermal performance test of the wall insulation rebuilding in the existing residential community, and all the characteristic solutions are satisfied with \(R_{mac}(W_{z1}, W_{z2}) \geq R_{e}(T_{r1}^{0}, T_{r2}^{0}). \)

Using the adaptive parameter fusion method, the in-depth learning function of thermal performance test of wall insulation transformation of existing residential community buildings is obtained as follows:

\[
\begin{align*}
&\min_{[T_{r1}, T_{r2}]} \text{Tr}[T_{r1}T_{r1}^{H} + T_{r2}T_{r2}^{H}], \\
&\text{s.t. } \bar{R}_{r1}(T_{r1}) + \bar{R}_{r2}(T_{r2}) > R_{mac}(W_{1}^{0}, W_{2}^{0}).
\end{align*}
\]

The optimal solution to the problem has a closed form. The optimal characteristic of the thermal performance test of the wall insulation transformation of existing residential community buildings is \(T_{r} \). The fuzzy control method can be used to test the thermal performance of the wall insulation transformation of existing residential community buildings. Combined with the fuzzy parameter optimization method, the structural design of the wall insulation parameter optimization fusion model is carried out.

2.3. Reconstruction of Exterior Wall Based on Heat Transfer Performance Coefficient. The nontransparent wall structure is to change the thickness of the insulation layer to obtain the design heat transfer performance coefficient. If the insulation thickness is too small, the heat transfer performance coefficient will become larger, resulting in more building heat loss [17]. If the thickness of insulation layer is too small, the economic investment will become more. Using the technology for reference to meet the requirements of heat transfer performance coefficient of inner wall structure, the thickness of insulation layer is 120 ~ 340 mm, the step size of simulation variable is 30 mm, the relative heat transfer performance coefficient of the outer wall is 0.198 ~ 0.084 W/(m²-K), and the heat transfer performance coefficient of the roof is 0.175 ~ 0.063 W/(m²-K).

In cooler climates, the key is to ensure that the building is well insulated [18–20]. Enhanced insulation level can not only reduce energy consumption but also achieve a higher indoor temperature in winter and improve residential comfort in summer at a lower surface temperature. The process of energy consumption with the thickness of insulation layer is shown in Figure 2.
2.4. 3D Simulation System Settings. Generally, the range of indoor 3D simulation scene is large, the number of simulation models in the scene is large, the scene is complex, and the amount of data is large. The system not only needs to realize the fidelity of the simulation environment but also needs to obtain good real-time and interactive performance. Therefore, the hardware configuration is CPU 2.99 GHz; main memory is 3.63 GB; graphics display card is E8400. The operating system is based on Microsoft’s Windows XP Professional 2002. Windows 2002 is based on an NT technology framework; the kernel is powerful and stable, with a friendly human-computer interaction interface, is the mainstream operating system, supporting multithreading technology, and is conducive to real-time simulation to ensure friendly and timely human-computer interaction.

2.4.1. 3D Modeling Tool 3DS Max. 3DS Max is a 3D model and animation rendering software developed by Autodesk Company. It is widely used in advertising, film and television, industrial design, architectural design, multimedia production, games, auxiliary teaching, and engineering visualization. Compared to the same type of 3D modeling software, SketchUp, 3DS Max has many advantages in model optimization, texture rendering, and fineness. Its advantages include the following:

(i) Powerful function and good expansibility. 3DS Max has the formidable modeling ability, has the formidable superiority in the role modeling and the animation manufacture aspect, and has many plug-ins to be able to help the user to carry on the work conveniently.

(ii) Simple operation and convenient use. 3DS Max is arguably the easiest 3D software to get started with.

(iii) The stability of the software is high; compatibility is good.

(iv) The effect is very realistic. So this system uses 3DS Max as the tool for making indoor 3D models.

3DS Max is mainly used for modeling objects, environment scenes, and roles in 3D display and can export models in other file formats through related plug-ins, such as .osgb files by using OSG -for- 3ds Max plug-ins, which allow plug-ins to extend the features of the model to provide a lot of convenience for expansion and application. In 3DS Max software, we can use different kinds of modeling methods to choose the appropriate modeling methods according to the structure characteristics of modeling objects. The common modeling methods include basic geometry modeling, surface raster modeling, composite object modeling, and graphical modeling. 3DS Max has powerful functions in animation rendering, polygon processing, mesh smoothing generation, material parameter design, and so on. In the process of modeling, it is very important to choose different modeling methods according to the characteristics of objects. Using the way of changing view angle, we can visually and intuitively observe the concrete shape of the object and improve the efficiency of model design.
2.4.2. Real-Time Simulation Software Unity 3D Engine. Unity 3D is a multiplatform game development engine developed by Danish Unity Technologies. It is a fully integrated professional game production tool. Unity engine is very powerful. One of its most remarkable features is cross-platform development. Game software or simulated reality system made with Unity 3D can be released on PC, MAC, Android, and mainstream home game console platforms launched by Microsoft, Nintendo, and Sony. Once launched, it is favored by game and simulated reality developers; it has become a 3D production engine with rapid development in recent years.

Unity 3D engine is a hierarchical development environment, which can provide users with a very perfect graphical interface, with visual editing, detailed attribute editing, and dynamic scene preview functions. Unity 3D engine integrates rich development resources, mainly including terrain making tools, common scripts, physical engines, particle systems, lighting modules, rendering modules, collision detection components, and processing methods for setting images. More importantly, Unity 3D engine also provides users with a powerful class library: mono behavior. In this class library, developers can easily call these methods for function development through various defined methods. Unity3D is not only widely used in the game field but also widely used in 3D simulation, 3D product display, 3D simulation exhibition, and 3D scene navigation. Unity3D is a unique 3D engine. The rendering, scheduling management, and simulation driving of the simulation scene adopt the graphical user interface that can operate flexibly in the Unity 3D engine environment to complete the configuration and driving graphics and use mono behavior class library and C# language application program interface API to flexibly realize system functions.

2.4.3. Auxiliary Software. In addition to the modeling software and driver software, AutoCAD software/Photoshop image processing software is also used in the auxiliary aspect. AutoCAD software is used to receive and process the CAD drawings of the indoor plane.

In the indoor 3D simulation interactive system, the core content is to build a 3D simulation environment to reflect the real scene. In the process of modeling, different modeling methods are selected for different types of entities, which can reduce the complexity of the model and improve the lifelike effect. In this paper, we choose geometric modeling technology to construct an indoor simulation environment. Firstly, we obtain the vector data and texture data based on the indoor environment plane diagram and photographic photos. Secondly, we use geometric modeling technology to construct the entity scene and indoor objects model and then process the model by texturing, hiding, and transparent culling. Figure 4 shows a flowchart for modeling an indoor simulated environment.

2.5. Building Scene Reconstruction Based on 3D Simulation Method. The three-dimensional simulation method is used to match the feature points of the building simulation scene [25]. The traditional 3D simulation reconstruction method needs to calculate the mapping matrix ξ of the view; that is,

$$\lambda_j \cdot x_j = \xi \cdot X_j.$$

In the formula, x_j represents a plane image point, X_j represents a three-dimensional point opposite it, and λ_j represents a depth parameter. However, in practical applications, it cannot achieve the effect of error-free shooting, angle, and depth, other conditions between the captured images cannot be unified, and these defects will interfere with the reconstruction effect [26].

Aiming at the above problems, this paper uses the iterative factorization method to match the feature points of multiple views. The iterative results of rotation matrix R, shift vector T, and depth matrix λ instead of the mapping matrix in the traditional method, can be used in the spherical coordinates to reduce the error caused by calculating the depths of two graphs [27].

The factorization algorithm is proposed according to the orthogonal projection environment. Based on this idea, a large number of affine and photographic models are proposed [28]. Based on the characteristics of spherical coordinate system, the relative motion parameters of image sequences are obtained according to the following algorithms in the environment of known matching points, but no camera parameters. Assume that the expression for the position of the plane point is

$$\lambda_j^i \cdot x_j^i = \lambda_j \cdot R_j \cdot x_j + T_j.$$

In the formula, $i = 1, 2, \ldots, n$ represents the feature points, $j = 1, 2, \ldots, m$ represents the number of images, λ represents the scaling parameters relative to the feature points, R and T represent the rotation matrix and translation vector, respectively, and R_j and T_j represent the changes in
According to the set of feature points, P_i is assumed to be a feature point on image I_{new}, and this point corresponds to point P_{i+1} on image I_{new}. If their corresponding points in 3D space are represented as X, the aim of reconstruction is to calculate X. Through the process of polar correction, it is determined that the relative points of p_i and p_{i+1} in the initial coordinate system are H and J, respectively.

\[
T_{i+1}^{-1} \cdot P^h_{i} = P^h_{i+1} \cdot X^h, \\
T_{i+1}^{-1} \cdot P^h_{i+1} = P_{i+1} \cdot X^h.
\]

(5)

2.6. Construction of Index System. Drainage system, building planning, lighting and electrical system, heating and refrigeration system, and enclosure structure are selected as the criterion layer of the index system. The energy-saving renovation technology of existing residential buildings uses positive and negative ideal points to deal with the indicators. Converting the low optimal index into the high optimal index, the structure energy consumption evaluation index is treated by the same chemotaxis.

\[
x'_{ij} = \begin{cases}
 x_{ij} & \text{optimal index}, \\
 \frac{1}{x_{ij}} & \text{worst indicator}, \\
 \frac{F}{F + |x_{ij} - F|} & \text{general indicators}.
\end{cases}
\]

(6)

In the formula, x_{ij} represents the indicator value, x'_{ij} represents the value of the indicator after convergent processing, and F represents the set of samples.

Set normalized matrix $B = (b_{ij})_{n \times m}$ with the following expression:

\[
B = \begin{bmatrix}
 b_{11} & \cdots & b_{1m} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \cdots & b_{nm}
\end{bmatrix},
\]

(7)

where element b_{ij} can be calculated by the following formula:

\[
b_{ij} = a_{ij} + \sqrt{\sum_{i=1}^{n} a_{ij}^2}.
\]

(8)

Because of different units, energy consumption evaluation indexes of the building envelope cannot be unified, and the influence on index weight is not considered. It is necessary to standardize energy consumption evaluation indexes. The proposed method uses the vector normalization method to deal with the evaluation index of energy consumption of building envelope structure. A is used to describe the evaluation index matrix of energy consumption of building envelope structure, which is composed of N samples, and its expression is as follows:

\[
A = \left(a_{ij} \right)_{n \times m}.
\]

(9)

In the formula, a_{ij} represents matrix elements. After the normalization of the above formula, the index values are taken in the $[0, 1]$ interval.

Let d^+_i represent the Euclidean distance from the positive ideal solution to scheme x_i, and d^-_i represent the distance between the negative ideal solution and scheme x_i, which can be calculated by the following formula:

Figure 4: Flowchart of simulation environment modeling.
Discrete Dynamics in Nature and Society

\[
\begin{align*}
\left\{ \begin{array}{l}
d_1^j = \left(\sum_{i=1}^{m} (b_{ij} - b_1^j)^4 \right)^{1/4} \\
d_2^j = \left(\sum_{i=1}^{m} (b_{ij} - b_2^j)^4 \right)^{1/4}
\end{array} \right.
\end{align*}
\]

Let \(f_j \) represent the closeness between the positive ideal solution and each sample case, and its calculation formula is as follows:

\[
f_j = \frac{d_1^j}{d_1^j + d_2^j}.
\]

2.7. Transformation Measures

2.7.1. Building Structure Optimization. Due to the economic and technical reasons, the layout, shape, and orientation of the existing residential buildings are “facts achieved,” which greatly restrict the creativity of architects and engineers, but can only be “reconstructed” on the original basis, and it is difficult to make great changes to the original architectural shape. Therefore, the original shape and structure shall be faithfully followed in the renovation, the existing residential buildings shall not be dismantled or altered arbitrarily, and some necessary improvements shall be made prudently so as to meet the required functional and aesthetic requirements. Complete and meticulous design, quality materials, correct construction methods, and good sense of scale are the necessary conditions for creating a livable environment. The original building for additional or partial reconstruction, so that the existing residential building has a rich sense of hierarchy, is the architectural designer in the transformation of common practices.

The renovation and transformation of the existing single residential buildings shall be based on the principle of being as close as possible to the existing living standards; that is, the area standards and equipment standards shall meet the requirements of modern house types as much as possible, and at the same time, the specific housing needs and payment capacity of each family shall be taken into consideration, and the corresponding schemes and standards shall be formulated according to the specific conditions of specific objects.

The adjustment and reconstruction of the interior space of a single dwelling house is the focal point of the renewal and reconstruction of the interior space of the single dwelling house. Key measures include (vertical and horizontal) expansion.

On the basis of basically preserving the existing buildings, the extension is to build new entities on the basis of the structure of the original buildings or within the close space scope through certain technical measures to supplement and expand the space of the original buildings, which can be divided into longitudinal extension and horizontal extension. The Longitudinal Method of Adaptability and Reuse In the Reconstruction of Existing Residential Buildings, Scale Reconstruction is a common method [29]. The scale characteristics of the building can make the building show the proper expected effect, change the original building scale sense, and make the reconstruction of the building look new.

Usually, after the existing residential buildings are used for a period of time, it is often found that the space cannot meet the needs. When the original structure and sunshine spacing allow, it can develop to the upper space. This addition form can not only increase the use area of the building but also improve the use function of the building. In addition, it can also reinforce the existing structural hidden dangers. Through the storey addition and reconstruction of existing residential buildings, the land use rate is improved. Under the condition of unchanged floor area, the building area is increased, the plot ratio is improved, the project cost is reduced, and the service life of buildings is prolonged. Therefore, the storey addition and reconstruction of existing buildings has obvious social and economic benefits [30]. Strictly speaking, there are two kinds of vertical storey adding reconstruction methods: one is to directly add a slope roof with certain utilization space on the flat roof of existing residential buildings, that is, the common flat to slope transformation; the other is to directly add a flat floor with a net height of more than 2.2 m on the flat roof of the existing residential building and add a slope roof on the newly added flat floor. Here, the two reconstruction methods are defined as adding sloping roof reconstruction method and adding storey reconstruction method.

2.7.2. Energy Consumption Technology Optimization. Solar energy is a clean, efficient, and never depleted new energy with safe, reliable, noiseless, pollution-free advantages; the use of solar energy can generally be divided into passive solar energy technology, active solar energy technology, and solar photovoltaic technology (natural lighting is not discussed here).

(1) Utilization of passive solar energy in the transformation of existing residential construction. In the transformation, designers should not only understand the amount of solar radiation in the area where the building is located. For example, Taiyuan City has sufficient light, abundant light, energy and heat. The annual total sunshine hours are 2360 to 2796 hours, and the annual total solar radiation is 5442.8 megajoules per square meter to 5652.18 megajoules per square meter, which belongs to the scope of the national high illumination rate. Moreover, possible occlusions of surrounding buildings and plants (to be avoided by lighting surfaces or collectors during the heating season) should be obtained through site surveys, which should be used as the basis for the design of passive solar buildings [31,32]. Usually, the lighting surface or collector should face south as far as possible but needs to be analyzed in specific circumstances. For example, public buildings that need heating early in the morning and do not need heating in the evening and in the evening, orientations to the south and east are better; in areas where there is morning fog and cloudy, and buildings used mainly at night, orientations to the west can be used. The area of the
window opening should be determined according to the heat balance of the heating and refrigeration season.

(2) Active solar energy utilization and solar photovoltaic technology.

In order to avoid shielding, solar collectors are often combined on the roof of buildings, and their inclination has some empirical values to refer to: when used to prepare hot water, the empirical value of the inclination angle (the angle between the collector and the horizontal line) is equal to the latitude value of the area where the device is located; when used for heating, the empirical value is latitude plus 15° (with a slight deviation from these optimized angles, the effect is good). How to integrate solar collector with architecture has been a hot issue in recent years. Discussions in Taiyuan are currently focused on how to integrate the collector of the water heater with the building [33,34]. In recent years, other big cities have developed some heat collection systems that can be perfectly combined with exterior walls and windows. Because these devices can be considered together with the building structure, they have a strong overall feeling with the building.

3. Experimental Test and Analysis

In order to verify the functionality and practical significance of the reconstruction of existing residential community buildings based on the three-dimensional simulation method, experiments are carried out to verify it. Taking a typical city with hot summer and cold winter as an example, an existing residential community building in an area of the city is selected to verify the practicability of the reconstruction technology in this paper and the wall structure optimization method defined in the above research is integrated. Research on energy consumption simulation of model buildings. Existing residential community building room internal structure set for the master bedroom, second bedroom, balcony, bathroom, kitchen, and so on. The heat disturbance in a room is the default value of the system, the maximum power for adjusting lights is 10 W, and the "definition of ventilation scope" is selected for indoor ventilation. The minimum number of ventilation times in a room and outside is 2/h when the air conditioner is turned on in winter and summer, the number of ventilation times is set to 5/h when the air conditioner is not turned on in summer, the maximum number of ventilation times in an indoor and outside is 5/h, and then the calculation result of the building load of the existing residential community is shown in Table 1.

According to Table 1, through tape measure, vibration excitation equipment, vibration pickup (sensor), coupling agent, foundation pile dynamic tester, and so on, build the on-site test environment for the detection technology of building reconstruction in existing residential communities. In the on-site layout, the excitation equipment is made of iron, with a mass of 6.13 kg and a pulse width of 1.35 ms; the main frequency is 1480 Hz; the force value is greater than 8 kN; the percussion method is vertical percussion; the percussion frequency is once in 2S. The sensor used is a piezoelectric acceleration sensor. The sensor has high acquisition accuracy and strong anti-interference. It is suitable for on-site industrial measurement, laboratory testing, and instruments. Sensor operation: at least 2 measuring points shall be arranged, and the reflected wave signal shall be collected at the sampling frequency of 0.2 Hz/s. The adopted pile dynamic tester is RS-1616W(L), which has a high-performance processor, main frequency of 1.5 GHz, and running memory of 1 GB; Android operating system and simple and convenient touch screen operation; on-site multihammer superposition and average signal to realize real-time upload of the waveform of each hammer; multihammer waveform that is displayed in the same box to automatically screen invalid data; data files that can be uploaded to the cloud server to realize remote real-time transmission and management of field data; professional data processing and analysis software with comprehensive functions, flexible print settings, rapid analysis of test data, and generation of the test report.

The three-dimensional simulation modeling results of 3DS MAX software are shown in Figure 5. The building after simulation modeling is used to simulate and test the energy consumption improvement effect of building wall.

In order to verify the thermal performance of thermal insulation transformation of the existing residential community building wall, the experimental sample wall is taken to test the thermal insulation performance of the existing residential community building wall.

The reconstruction integrity of different methods is compared, and the results are shown in Figure 6. Among them, the reconstruction integrity of 3D simulation building is expressed by 0% ∼ 100%. The larger the value, the higher the 3D simulation building integrity, and vice versa.

It can be seen from the analysis that the integrity of the building simulation scene reconstructed by the method in this paper is significantly higher than the three-dimensional simulation building reconstruction method based on the octree theory proposed in reference [5] and the building structure energy-saving reconstruction method based on public building engineering in cold areas proposed in reference [6], and its maximum value is close to 100%. The maximum value of the proposed three-dimensional simulation building reconstruction method based on the octree theory and reference [6] building structure energy-saving reconstruction method based on public building projects in cold areas is less than 50%. This is because this method calculates the depth confidence values of all sampling points and sorts the calculation results, which avoids the repeated fusion of multiview 3D sampling points, and improves the integrity of image 3D simulation.

To sum up, the reconstruction method of existing residential community buildings based on the three-dimensional simulation method has better thermal insulation performance of external walls, which can effectively complete the reconstruction of building scenes and realize the reconstruction of existing residential community buildings.
Table 1: Building load of the existing residential community.

Statistical items	Company	Statistical value
Building air conditioning area m²		236.54
Annual maximum heat load kW		22.02
Maximum cooling load of the whole year kW		45.56
Annual cumulative heat load kWh		5714.22
Annual maximum heat load W/m²		90.13
Maximum cooling load of the whole year W/m²		667.09
Annual cumulative cooling load kWh/m²		12.34
Annual cumulative cooling load kWh/m²		8.36
Heat load index in heating season W/m²		9.12
Air conditioning seasonal cooling load index W/m²		1.45

Figure 5: 3D simulation modeling results of 3DS MAX software.

Figure 6: Comparison of reconstruction integrity by different methods.
4. Conclusion

In order to solve the problems of incomplete building information after 3D modeling and ineffective improvement of wall insulation performance, a new reconstruction method of existing residential buildings based on 3D simulation is proposed. The fuzzy degree of thermal performance of the wall insulation retrofit is analyzed, and the fuzzy equilibrium scheduling method is used to decompose the wall insulation feature scale. The 3D modeling tool 3DS Max is used as the 3D simulation method, and the real-time simulation software UNITY3D engine is used to complete the reconstruction of building scenes and the transformation of existing residential buildings. The experimental results show that the information integrity of 3D simulation technology is higher, and the thermal insulation performance of the reconstructed wall is better, which can provide a reliable research basis.

Data Availability

The raw data supporting the conclusions of this paper will be made available by the authors, without undue reservation.

Conflicts of Interest

The authors declared that they have no conflicts of interest regarding this work.

References

[1] M. N. Levine, S. W. Hammerstedt, A. Regnier, and A. E. Badillo, “Monte alban’s hidden past: buried buildings and sociopolitical transformation-addendum,” Latin American Antiquity, vol. 32, no. 1, p. 227, 2021.
[2] Y. N. Al-Betawi, F. H. Al Nassar, A. A. Al Husban, and S. Al Husban, “Transformations in the built form as a reflection of social change, the case of apartment buildings in Amman,” Open House International, vol. 45, no. 1/2, pp. 143–171, 2020.
[3] S. Ding, X. Zhao, H. Xu, Q. Zhu, and Y. Xue, "NSCT PCNN image fusion based on image gradient motivation," IET Computer Vision, vol. 12, no. 4, pp. 377–383, 2018.
[4] Z. -P. Xia, F. -Y. Hu, C. Cheng, and M. -M. Gu, "Virtual reality space reconstruction based on visual space orientation theory," Chinese Journal of Liquid Crystals and Displays, vol. 34, no. 2, pp. 215–219, 2019.
[5] W. Jinxin, Z. Guangcheng, L. Fengnian, Z. G. Zeng Tao, and Q. Tianrong, "Sphere geodesic octree grid method for true three-dimensional geological model construction," Journal of Geo-Information Science, vol. 21, no. 08, pp. 1161–1169, 2019.
[6] D. Chakraborty, A. Alam, S. Chaudhuri, H. Basagaoglu, T. Sulbaran, and S. Langar, "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, vol. 291, no. 6, Article ID 116807, 2021.
[7] Y. Daneshvart, M. Sabzezarvar, and S. Hashemi, "Energy efficiency of small buildings with smart cooling system in the summer," Frontiers in Energy, vol. 35, pp. 1–10, 2020.
[8] A. A. Ahmed Gassar, G. Y. Yun, and S. Kim, "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, vol. 187, no. 15, pp. 115973.1–115973.13, 2019.
[9] H. Zhong, J. Wang, H. Jia, Y. Mu, and S. Lv, "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, vol. 242, no. 1-1284, pp. 403–414, 2019.
[10] P. Shine, T. Scully, J. Upton, and M. D. Murphy, "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, vol. 250, no. 1, pp. 1110–1119, 2019.
[11] A. K. Cui, J. Chen, and W. Z. Bao, "Study on renovation of building envelope and energy-saving in cold area," Architectural Technology, vol. 51, no. 3, pp. 381–384, 2020.
[12] Z. Donglin, Y. Li, and Z. W. Li, "Research on large-scale building energy efficiency retrofit based on energy consumption investigation and energy-saving potential analysis," Journal of Energy Engineering, vol. 145, no. 6, pp. 04019024.1–04019024.14, 2019.
[13] W. Li, X. Hu, J. Du, and B. Xiao, “Adaptive remote-sensing image fusion based on dynamic gradient sparse and average gradient difference," International Journal of Remote Sensing, vol. 38, no. 23, pp. 7316–7332, 2017.
[14] B. Güneralp, Y. Zhou, D. Urgevorsatz et al., "Global scenarios of urban density and its impacts on building energy use through 2050," Proceedings of the National Academy of Sciences of the U S A, vol. 114, no. 34, pp. 8945–8950, 2017.
[15] S. Wang and C. Li, "The impact of urbanization on CO2 emissions in China: an empirical study using 1980–2014 provincial data[]],” Environmental Science and Pollution Research International, vol. 25, no. 1, pp. 1–9, 2017.
[16] X. Deng, M. Wang, D. Sun, and Z. Fan, “Effect of building form on energy consumption of academic library buildings in different climate zones in China,” IOP Conference Series: Earth and Environmental Science, vol. 531, no. 1, Article ID 012060, 2020.
[17] Y. Pan and L. Zhang, “Data-driven estimation of building energy consumption with multi-source heterogeneous data," Applied Energy, vol. 268, Article ID 114965, 2020.
[18] T. Lei and Y. Yan, "Shooting panoramic building image automatic stitching matching simulation," Computer Simulation, vol. 35, no. 4, pp. 382–386, 2017.
[19] H. Fu, J. C. Baltazar, and D. E. Claridge, "Review of developments in whole-building statistical energy consumption models for commercial buildings," Renewable and Sustainable Energy Reviews, vol. 147, 2021.
[20] Y. Wei, L. Xia, S. Pan et al., “Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks,” Applied Energy, vol. 240, no. APR.15, pp. 276–294, 2019.
[21] U. Ali, M. H. Shamsi, M. Bohacek et al., “A data-driven approach for multi-scale gis-based building energy modeling for analysis, planning and support decision making,” Applied Energy, vol. 279, Article ID 115834, 2020.
[22] N. Xu, S. Ding, Y. Gong, and J. Bai, “Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model,” Energy, vol. 175, no. 15, pp. 218–227, 2019.
[23] G. N. Duan and Y. R. Wang, “Simulation of HVAC energy consumption prediction for super high-rise building,” Computer Simulation, vol. 35, no. 12, pp. 317–320, 2018.
[24] M. Frankel, X. Lu, C. Chewning, and L. Sela, “Water-energy benchmarking and predictive modeling in multi-family residential and non-residential buildings,” Applied Energy, vol. 281, 2021.
[25] P. H. Venkatrao and S. S. Damodar, “HWFusion: h Whale optimisation based fusion model for magnetic resonance
imaging multimodal image fusion,” *IET Image Processing*, vol. 12, no. 4, pp. 572–581, 2018.

[26] G. Yu, Z. Yang, R. Gang, F. Qiuchen, and L. Guozhi, “Image stitching combined with optimal stitching and multi-resolution fusion,” *Journal of Image and Graphics*, vol. 22, no. 6, pp. 842–851, 2018.

[27] D. Qiang, L. Jinghong, and W. C. Z. Qianfei, “Image mosaic algorithm based on improved BRISK,” *Journal of Electronics and Information Technology*, vol. 39, no. 2, pp. 444–450, 2017.

[28] B. Jiang and X. P. Zhai, “Image mosaic algorithm based on PCA-SIFT feature matching,” *Journal of Computer Applications*, vol. 36, no. a02, pp. 143–145, 2016.

[29] R. A. Agathokleous and S. A. Kalogirou, “Status, barriers and perspectives of building integrated photovoltaic systems,” *Energy*, vol. 191, no. 15, pp. 116471.1–116471.8, 2020.

[30] P. Mayencourt and C. Mueller, “Structural optimization of cross-laminated timber panels in one-way bending,” *Structures*, vol. 18, no. C, pp. 48–59, 2019.

[31] U. Strith, “Seasonal solar energy storage technologies in buildings,” *ASHRAE Transactions*, vol. 125, no. 1, pp. 668–681, 2019.

[32] M. Asif, M. A. Hassanain, K. M. Nahiduzzaman, and H. Sawalha, “Techno-economic assessment of application of solar PV in building sector,” *Smart and sustainable built environment*, vol. 8, no. 1, pp. 34–52, 2019.

[33] M. Kova, G. Stegnar, M. Esen, and S. Mere, “Assessing solar potential and battery instalment for self-sufficient buildings with simplified model,” *Energy*, vol. 173, no. 15, pp. 1182–1195, 2019.

[34] R. Fan, Y. Li, T. Bu et al., “Comparative study of solar hot air heating systems with phase change materials in plateau areas,” *Energy and Buildings*, vol. 224, Article ID 110265, 2020.