LETTER TO THE EDITOR

Comprehensive proteomic profiling of serum extracellular vesicles in patients with colorectal liver metastases identifies a signature for non-invasive risk stratification and early-response evaluation

Kuailu Lin1,2†, Franziska Baenke1,3†, Xixi Lai1,4, Martin Schneider5, Dominic Helm5, Heike Polster1, Venkatesh S. Rao1, Nicole Ganig1,3, Fang Cheng Wong1, Lena Seifert1,3,6, Adrian M. Seifert1,3,6, Beatrix Jahnke1, Nicole Kretschmann7, Tjalf Ziemssen7, Fee Klupp8, Thomas Schmidt8,9, Martin Schneider8, Yi Han1, Tim F. Weber10, Verena Plodeck11, Heiner Nebelung11, Nathalie Schmitt12, Felix Korell12,13, Bruno C. Köhler12,14, Carina Riediger1, Jürgen Weitz1,3,6, Nuh N. Rahbari15*† and Christoph Kahlert1,3,6*†

Keywords: Extracellular vesicles, Protein signature, Molecular risk stratification, Early response prediction, Colorectal liver metastases

Background
Preoperative risk stratification and chemotherapy-response prediction for patients with colorectal liver metastases (CRLM) remain areas of unmet clinical need. Patients with colorectal liver metastases (CRLM) have a 5-year overall survival (OS) of 25.2% compared to 75.1% of patients without metastases [1]. Surgical resection of CRLM is an established treatment extending 5-year OS to 40–50% [2].

At present, molecular risk stratification of CRLM is based on histopathological assessment and prevalent drivers of disease derived from a tumour biopsy. Liquid biopsies, i.e. non-invasive analyses of circulating tumour-derived material, may provide unique information about the disease, and moreover, allow monitoring of tumour evolution in response to treatment [3].

Circulating extracellular vesicles (cEVs) are commonly found in body fluids. cEVs encapsulate various cargoes, including proteins, lipids and nucleic acids recapitulating molecular traits of its donor tissue [4]. Mutational changes frequently observed in cancer were detected in cEVs of CRC patients on mRNA level [5]. A differential abundance for distinct non-coding RNAs in cEVs in CRC compared to patients with benign disease have also been reported [6–8]. cEVs have been suggested to be more stable compared to serological proteins as the lipid bilayer protects the content from proteases and other enzymes [9]. In contrast to solid tumour biopsies, that are sampled from a single site, cEVs may provide unique information about the full metastatic complement [10].

The aim of this study was to identify a predictive signature based on the protein cargo of circulating
extracellular vesicles (cEVs) and to validate this EV protein (EVP) signature in independent patient cohorts.

Results and discussion

EVP signature for prognostic prediction CRLM survival

Our discovery cohort (Table 1) included patients with CRLM ($n=56$) or benign liver disease ($n=7$; BD) and we observed that the EVP concentration in the serum of the CRLM patients was significantly increased in comparison to patients with BD (before surgery: $p=0.01$; after surgery: $p<0.001$; Fig. 1A). Univariate Cox regression analysis revealed that EVP concentration was negatively associated with OS in patients with CRLM pre- and postsurgically ($p<0.01$; Fig. 1B), respectively. In independent

Table 1 Clinical characteristics of the entire study cohort
Overall
n
Median follow-up time (days)
Age (median)
Gender (%)
Female
Male
Residual disease (%)
No
Yes
Neoadjuvant therapy (%)
No
Yes
Tumor differentiation (%)
G1-G2
G3-G4
TNM (%)
IVA
IVB
KRAS (%)
Mutant
Wildtype
MSI (%)
MSI-L
MSI-H

(See figure on next page.)

Fig. 1 EVP signature for prognostic prediction CRLM survival. Quantification of EVPs from human serum samples: A Boxplot analysis of EVP concentration in the discovery cohort. *: $p \leq 0.05$, **: $p \leq 0.01$, p values by Mann-Whitney U test. B Kaplan-Meier curve of overall survival for patients with EVP concentration before and after surgery in the discovery cohort. p values of two equal-sized parts according to the median of EVP concentration by log-rank test. C Boxplot analysis of EVP concentration in the total validation cohort including internal and external validation cohorts. *: $p \leq 0.05$, p values by Mann-Whitney U test. D Kaplan-Meier curve of overall survival for patients with EVP concentration in the total validation cohort. p values of two equal-sized parts according to the median of EVP concentration by log-rank test. E Heatmap of 74 differentially expressed EVPs (FDR<0.05). Each column represents an individual patient ($n_{paired}=56$) and each row represents an EVP. Labels of the right side represent pre-surgical survival associated proteins by Univariate cox analysis. *: $p \leq 0.05$, **: $p \leq 0.01$, ***: $p \leq 0.001$, ****: $p \leq 0.0001$. Bold labels are EVPs selected for generating an EVP signature. F, K EVP analysis for prognostic prediction CRLM survival: Top panel: Kaplan-Meier survival analysis was used to analyze survival of low-risk and high-risk groups based on the cut-off value of the risk score estimated from the discovery cohort. Discovery cohort. G Internal validation cohort. H External validation cohort. p values by log-rank test. Bottom panel: Time-dependent Receiver operator characteristic (ROC) curves for the prognostic performance of the EVP signature in discovery cohort (I), internal validation cohort (J) and external validation cohort (K). 95% CI of AUC was marked by dotted line.
Fig. 1 (See legend on previous page.)
validation cohorts, the level of EVP concentration was higher in CRLM patients compared to BD patients \((p = 0.04; \text{Fig. 1C})\) and was negatively associated with OS \((p = 0.001; \text{Fig. 1D})\). Using the median EVP concentration as a cut-off, high EVP concentration was associated with significantly decreased median survival in the discovery (before surgery: \(p < 0.001\); after surgery: \(p = 0.0021\)) and the validation cohorts \((p = 0.001; \text{Fig. 1B, D})\), indicative of a prognostic value of EVP concentration in CRLM patients.

Mass spectrometry (MS) is emerging as a valuable tool to gain insight into the biology and clinical utility of EVPs \([11–13]\). Here, we first examined the EVP composition in liquid biopsies of patients with CRLM using LC–MS with a cEV median particle size of 98.2 and a mean particle concentration of 3.5E+11 (Supplementary Fig. 1A – D). A total of 563 proteins were detected in serum-derived EVs and most of the identified EVPs were involved in exosomes and extracellular components using Funrich software \([14, 15]\) (Supplementary Fig. 1E). Statistical analysis revealed 76 proteins in patients with CRLM and 10 proteins in BD that differed significantly pre- and post-surgically (FDR < 0.05). Focussing on EVPs differentially expressed in CRLM only, 74 EVPs were uniquely changed (Fig. 1E). To assess whether these 74 EVPs as prognostic biomarkers in CRLM, univariate analyses were performed using each EVP as covariate. Thirty EVPs were pre-surgically associated with OS \((p < 0.05)\) in the single biomarker model (Supplementary Table 1). Using the LASSO-Cox method six proteins to predict prognosis were identified (Supplementary Fig. 2A). For validation, ELISAs of these 6 EVPs were performed and significantly correlated to the proteomic data (Supplementary Fig. 2B). Using multivariate Cox regression, an EVP panel was constructed based on the ELISA data. Four of the six proteins were included \((p\text{-value} < 0.05\text{ Wald statistic, Supplementary Table 2})\) and a risk score was calculated. The high-risk group \((\text{risk score} ≥ -0.3316339)\) had 34 observations with 14 deaths in year 1, 24 deaths in year 2, 28 deaths in year 3; compared to the low-risk group \((\text{risk score} ≥ -0.3316339)\) that had 22 observations with no deaths in year 1, one death in year 2 and four deaths in year 3. The number of deaths after surgical resection was significantly higher after 1 year \((p < 0.002)\), 2 years \((p < 0.001)\) and 3 years \((p < 0.001)\) in the high-risk group. Kaplan–Meier analyses revealed a statistical difference in the median survival of the high-risk and low-risk groups \((p < 0.0001; \text{Fig. 1F})\). Some of these four proteins have been previously linked to CRC progression, such as the monocyte marker CD14 \([16]\) and Serpin A4, a regulator of angiogenesis \([17]\), whilst little is known about the role of CFP, a positive regulator of the complement system, and LBP (lipopolysaccharide binding protein). The risk score was also evaluated to the independent validation cohorts (Table 1) for the number of deaths in year 1, 2 and 3 in the inner cohort \((p < 0.002, p < 0.0001, p < 0.0001; \text{Supplementary Fig. 3B})\), and external cohort \((p = 0.13, p = 0.07, p = 0.03; \text{Supple-

\[\text{See figure on next page.}\]

Fig. 2 A Volcano plot of differently expressed (FDR < 0.05) EVPs between CRLM and BD in the discovery cohort using mass spectrometry. Each dot represents an individual protein. Boxplot analysis of EVP CXCL7 in the discovery cohort (B), and in the internal validation cohort (C): ns: \(p > 0.05\), \(*: p < 0.05\), \(* *: p < 0.01\), \(* * *: p < 0.001\). p values by Mann-Whitney U test. D Scheme of longitudinal blood sampling before the start of chemotherapy and two weeks after the start of chemotherapy. Imaging by CT-scan was performed before CMT and 3 months (median range: 1 – 9 months) after the start of CMT. (E-G) Three representative cases of patients either with a decrease of EV-bound CXCL7 and partial response (E), or with stable EV-bound CXCL7 and stable disease (F) or with increase of EV-bound CXCL7 and progressive disease (G). H Boxplot analysis of EVP CXCL7 in the longitudinal cohort for chemotherapy response prediction. CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease. ns: \(p > 0.05\), \(*: p < 0.05\), \(* *: p < 0.01\), \(* * *: p < 0.001\). p values by Mann-Whitney U test. I ROC curve analysis for prediction of CR/PR vs PD after completion of first round of chemotherapy.
Fig. 2 (See legend on previous page.)
contributor to prognosis. The calibration plots aligned well in the training and test set between the predictive power of the nomogram and actual observation (Supplementary Fig. 5b). The C-index of the training set for OS prediction (0.78; 95% CI:0.74–0.83) was significantly higher than the model comprised of age, EVP concentration and TNM stage (0.72; 95% CI:0.65–0.78; \(p = 0.003 \)). A similar trend was observed in the test set with the C-index significantly greater for the nomogram prediction (0.82; 95% CI:0.77–0.87) than the model without the risk group stratification (0.76; 95% CI:0.69–0.83; \(p = 0.008 \)). The cut-off values were determined by splitting the patients into three subgroups CRLM1, CRLM2, and CRLM3, each representing a distinct prognosis after sorting by total point in the training set. Applying the cut-off values to the test set allowed for significant differences in survival in three independent cohorts. In addition to age and TNM stage, the EVP signature and EVP concentration were identified as independent prognostic factors. EV-bound CXCL7 was found as a biomarker of early response in CRLM patients receiving systemic chemotherapy.

Conclusion

In this study, we present a preoperative risk discrimination strategy for patients with resectable CRLM for postoperative disease recurrence and survival. Using matched pre- and post-operative serum samples of patients undergoing CRLM resection, we developed a signature of four EVPs with preoperative prognostic value in three independent cohorts. In addition to age and TNM stage, the EVP signature and EVP concentration were identified as independent prognostic factors. EV-bound CXCL7 was found as a biomarker of early response in CRLM patients receiving systemic chemotherapy.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12943-022-01562-4.

Acknowledgements

The authors thank the patients and their families for agreeing to participate in this study. We thank Clare McManus for editing and proofreading.

Authors’ contributions

Conception and design: Christoph Kahlert, Nuh Rahbari. Administrative support: Provision of study material or patients: Celine Kuntzsch, Heike Polster, Franziska Baenke, Martin Schneider (University Hospital Heidelberg), Thomas Schmidt, Fee Klupp, Felix Korrell, Bruno Köhler. Collection and Assembly of data: All authors. Data analysis and interpretation: Kuailu Lin, Martin Schneider (Protein Analysis Unit), Franziska Baenke, Christoph Kahlert. Manuscript writing: Kuailu Lin, Franziska Baenke, Nuh Rahbari, Christoph Kahlert. Accountable for all aspects of work: All authors. The author(s) read and approved the final manuscript.

Funding

This work was funded by the Nationales Centrum für Tumorerkrankungen (NCT) Dresden/German Cancer Research Center, Roland-Ernst-Foundation,

Abbreviations

AUC: Area under the curve; BD: Benign disease; C-index: Concordance index; CEA: Carcinoembryonic antigen; CI: Confidential interval; CXCL7: Chemokine (C-X-C motif) ligand 7; cEVs: Circulating extracellular vesicles; CRC: Colorectal cancer; CR LM: Colorectal liver metastases; ELISA: Enzyme-linked immunosorbent assay; EV: Extracellular vesicles; EVP: Extracellular vesicle proteins; FDR: False Discovery Rate; i.e.: Id est; LC–MS: Liquid Chromatography Mass Spectrometry; mRNA: Messenger ribonucleic acid; MSI: Microsatellite Instability; OS: Overall survival; PD: Progressive disease; PR: Partial response; RECIST: Response Evaluation Criteria In Solid Tumors; SD: Stable disease; THBS4: Thrombospondin 4.
References

1. Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer. 2018;18:78.

2. Reissfelder C, Rahbani NN, Koch M, Ulrich A, Pfeilschifter I, Waltert A, Mul ler SA, Schenner P, Buchler MW, Weitz J. Validation of prognostic scoring systems for patients undergoing resection of colorectal cancer liver metastases. Ann Surg Oncol. 2009;16:3279–88.

3. Sarvegna G, Marsoni S, Biringen M, Battelli S, Pfeilschifter J, Schreier W, et al. Exosomal miRNA and exosomes from patients with colorectal cancer in a Chinese population. Oncol Lett. 2017;13:3608–16.

4. Reissfelder C, Rahbani NN, Koch M, Ulrich A, Pfeilschifter I, Waltert A, Mull er SA, Schenner P, Buchler MW, Weitz J. Validation of prognostic scoring systems for patients undergoing resection of colorectal cancer liver metastases. Ann Surg Oncol. 2009;16:3279–88.

5. Sarvegna G, Marsoni S, Biringen M, Battelli S, Pfeilschifter J, Schreier W, et al. Exosomal miRNA and exosomes from patients with colorectal cancer in a Chinese population. Oncol Lett. 2017;13:3608–16.

6. Baassiri A, Nasser F, Mukherji D, Shamseddine A, Nasr R, Temraz S. Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer. Int J Mol Sci. 2020;21:1398.

7. Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, Huang D, Weng WW, Tan C, Sheng W, et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2016;25:1158–66.

8. Oehme F, Kralj S, Gyöffy B, Muessele B, Ravo C, Greif H, Ziegler N, Lin K, Thepkayson ML, Polster H, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer. RNA Biol. 2019;16:1339–45.

9. Li A, Zhang T, Zheng M, Liu Y, Chen Z. Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol. 2017;10:175.

10. Vinik Y, Ortega FG, Mills GB, Lu Y, Jurkowicz M, Halperin S, Aharoni M, Gutmann M, Lev S. Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response. Sci Adv. 2020;6:eaba5714.

11. Choi D-S, Kim D-X, Kim YK, Gho YS. Proteomics of extracellular vesicles: exosomes and exosomes. Mass Spectrom Rev. 2015;34:474–90.

12. Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, Wen F, Ge W, Wang J, Yu S, et al. A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 2020;9:1750202.

13. Desurmont T, Skrypek N, Duhamel A, Jonckheere N, Millet G, Leteurtre E, Gosset P, Duchene B, Ramdane N, Hebbar M, et al. Overexpression of a potential therapeutic target for colorectal cancer. Am J Cancer Res. 2018;1:297–601.

14. Pathan M, Keerthikumar S, Ang CS, Gangaoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al. FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15:2597–601.

15. Pathan M, Keerthikumar S, Chisanga D, Alessandro R, Ang CS, Askenase P, Batagov AO, Benito-Martin A, Camussi G, Clayton A, et al. A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles. 2017;6:1321455.

16. Schauer D, Starlinger P, Alizbanovic L, Zajc P, Maier T, Feldman A, Padick- akudy R, Buchberger E, Elleved V, Spittler A, et al. Chemotherapy of colorectal liver metastases induces a rapid rise in intermediate blood monocytes which predicts treatment response. Oncoimmunology. 2016;5:e1160185.

17. Sun HH, Mi YS, Yu FD, Han Y, Liu XS, Lu S, Zhang Y, Zhao SL, Ye L, Liu TT, et al. SERPIN4A4 is a novel independent prognostic indicator and a potential therapeutic target for colorectal cancer. Am J Cancer Res. 2016;6:1636–49.

18. Desurmont T, Skrypek N, Duhamel A, Jonckheere N, Millet G, Letteurtre E, Gosset P, Duchene B, Ramdane N, Hebbbar M, et al. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival. Cancer Sci. 2015;106:262–9.

19. Li L, Zhang L, Tian Y, Zhang T, Duan G, Liu Y, Yin Y, Hua D, Qi X, Mao Y. Serum chemokine CXCL7 as a diagnostic biomarker for colorectal cancer. Front Oncol. 2019;9:921.

20. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.