EDITORIAL

Management of valvar aortic stenosis in children

J D R Thomson

What is the best treatment for the child with valvar aortic stenosis—balloon or surgical valvotomy?

In this issue of Heart two sets of authors report their separate experience of balloon dilation for valvar aortic stenosis in a combined total of 339 consecutive children of all ages.1 2 Balloon valvoplasty in this setting was first described in 1983 and has gradually become the therapeutic procedure of choice in most units for the treatment of isolated congenital aortic stenosis.3 With any new treatment data takes time to emerge but 20 years down the line are we now able to put balloon aortic valvoplasty in its rightful context?

BALLOON OR SURGICAL VALVOTOMY

Surgical valvotomy for congenital aortic stenosis was the treatment for childhood aortic stenosis for over 30 years before balloon aortic valvoplasty. Unfortunately there are no trials of appropriate design to allow a valid comparison of surgery and balloon valvotomy. When considering the best treatment for childhood aortic stenosis by necessity we must rely on data which is fraught with problems. Existing studies are retrospective and non-randomised, reporting different age groups using varied techniques across a number of eras. A major problem in the literature is the significant variation in indication for intervention and reintervention.

Even allowing for such inconsistencies both techniques seem broadly comparable in terms of immediate gradient relief, procedural mortality, and longer term survival.4–12 There are relatively recent reports of encouraging survival rates with both surgery and balloon valvotomy even in the troublesome neonatal group in which triage for a Norwood approach based on an improved understanding of the limits of a biventricular repair must have played a significant part.12–14

Valvotomy of any kind is a palliative procedure and reintervention remains frequent. As longer term data emerges reintervention rates after balloon valvotomy become of some concern. Reich and colleagues report overall intervention-free survival of 39% to 14.4 years.1 In the neonatal group the results are worse with 29% of patients in this study surviving to 14.4 years without reintervention and just 35% surviving without a second procedure to three years in the study by Balmer and colleagues.1 2 A mixture of recurrent aortic stenosis and important regurgitation were the indications for further procedures. These data are not out of context with the existing balloon valvoplasty literature in which other authors report 50% of children requiring reintervention by eight years after the initial valvotomy.9

Are surgical results any better?

In historical surgical series 15–40% of patients have required reintervention between 5–10 years after the initial valvotomy.13–15 Undoubtedly over the 20 year story of balloon valvotomy, surgery, particularly of the left ventricular outflow tract, has improved significantly. There are a scattering of contemporary surgical reports describing excellent results with low reintervention rates (up to 90% free from reintervention at 10 years post-surgery).15–16 However, absolute numbers reported in such studies are small (possibly as a result of the increasing prevalence of balloon valvotomy as the primary treatment modality) and the same concerns about the comparability of data exist.

Studies that report non-randomised comparisons of balloon and surgical valvotomy generally report similar results (including reintervention rates) for both approaches, but important demographic differences between groups are always present.15–17

Are there particular anatomical variants that should be addressed surgically?

A particular problem for the interventional cardiologist is the severely abnormal valve, usually bicuspid or unicuspid, in which there is a high risk for procedural failure and subsequent reintervention. The application of a circumferential force to an “unbalanced” valve, often with a rudimentary third cusp, is more likely to induce cusp avulsion through the uneven distribution of force. Reich and colleagues identified “functionally bicuspid” valves as a risk factor for both aortic regurgitation and subsequent reintervention.1 It has been suggested that this sort of valve is better dealt with surgically.14–16 Although there are reports of skilful valve repair in this setting often with valve augmentation (it would be unfair to call this sort of procedure a simple valvoplasty), numbers are small and as yet there is no longer term follow up data.15–20 There are also surgical data suggesting that patients with this sort of anatomy come to valve replacement early whatever the approach.21

It may be that given the high reintervention rate in this group there is an even stronger argument for balloon valvotomy as initial palliation, so avoiding a sternotomy in a patient in whom reintervention is almost certain.

Aortic regurgitation

Although reintervention after valvotomy occurs for recurrent stenosis, the major concern after any sort of valvotomy is aortic regurgitation. Quantifying aortic regurgitation after valvotomy
is difficult. Echocardiography is the mainstay of assessment but it is a far from perfect tool.22 23 In addition many (retrospective) studies fail to apply consistent and robust echocardiographic assessments during follow up. Given the occurrence of late deaths, particularly in some of the older studies, we cannot assume that lack of subsequent valve replacement means that important aortic valve regurgitation was not present.

Reich and Balmer are to be commended on their echocardiographic follow up.1 2 Using consistent criteria both sets of authors report what others have previously suggested: that aortic regurgitation is progressive. We should not be surprised by this; normal aortic valves leak progressively with age and it is possible that in anatomically abnormal valves, the process is accelerated.24 25 Unrecognised cusp avulsion and perforation after balloon valvotomy is relatively common26 and perhaps this further increases the rate of the degenerative process in the balloon group leading to earlier reintervention.

Complications

A key stimulus behind the introduction of balloon aortic valvoplasty was the avoidance of a median sternotomy in a patient group likely to require further surgery. The growing evidence of the neurodevelopmental consequences of cardiopulmonary bypass in the developing brain add further justification to this rationale.27 However, of serious concern after balloon aortic valvoplasty is the high incidence of procedural femoral artery damage which is a consistent feature in reported series, particularly in infants.14 Balmer and colleagues report femoral artery occlusion requiring treatment in 57% of infants less than 3 months of age.15 Magnetic resonance imaging studies of iliofemoral vessels after balloon angioplasty show that the majority of children have evidence of obstructive lesions.26 Other procedural approaches are reported in small numbers, but as yet we have little or no evidence of the long term implications for these vessels.29

WHAT CAN WE CONCLUDE

Both balloon and surgical valvotomy are firmly established as effective initial treatments in childhood aortic stenosis; as such, it is exceedingly unlikely that we will ever have robust randomised data to really say what the best treatment is for the child with aortic stenosis. We cannot conclude with any certainty that reintervention comes any earlier after balloon valvotomy, but it seems clear that aortic regurgitation is progressive and reintervention almost inevitable. As in many aspects of the management of the patient with congenital heart disease difficult anatomy is a challenge for everyone concerned with treatment. Further consideration to the approach for balloon angioplasty, particularly in infants and neonates given the high incidence of long term femoral artery damage, seems appropriate.

REFERENCES

1 Reich O, Tax P, Marek J, et al. Long term results of percutaneous balloon valvuloplasty of congenital aortic stenosis: independent predictors of outcome. Heart 2004;90:70–6.
2 Balmer C, Beghetto M, Fasnoch M, et al. Balloon aortic valvuloplasty in paediatric patients: progressive aortic regurgitation is common. Heart 2004;90:77–81.
3 Laboabdi Z. Aortic balloon valvuloplasty. Am Heart J 1983;106:751–2.
4 Justo RN, McCrindle BW, Benson LJ, et al. Aortic valve regurgitation after surgical versus percutaneous balloon valvotomy for congenital aortic valve stenosis. Am J Cardiol 1996;77:1332–8.
5 Jindal RC, Saxena A, Junesa R, et al. Long-term results of balloon aortic valvuloplasty for congenital aortic stenosis in children and adolescents. J Heart Valve Dis 2000;9:623–8.
6 Moore P, Egito E, Mowrey H, et al. Midterm results of balloon dilation of congenital aortic stenosis. J Am Coll Cardiol 1996;27:1257–63.

McCrindle BW. Independent predictors of immediate results of percutaneous balloon aortic valvuloplasty in children. Valveplasty and angioplasty of congenital anomalies (VACA) registry investigators. Am J Cardiol 1996;77:286–93.

Lambert V, Obreria D, Losay J, et al. Long-term results after valvotomy for aortalic valve stenosis in children. Eur J Cardiothorac Surg 2000;10:290–6.

Keene JF, Driscoll DJ, Gersomy WM, et al. Second natural history study of congenital heart defects: results of treatment of patients with valvar aortic stenosis. Circulation 1993;87(Suppl I):116–52.

Hsieh KS, Keane IF, Nadas AS, et al. Long term follow up of valvotomy before 1968 for congenital aortic stenosis. Am J Cardiol 1986;58:338–41.

Kugelmeier J, Egolf J, Real F, et al. Congenital aortic stenosis. Early and late results of aortic valvotomy. Thorac Cardiovasc Surg 1982;30:91–5.

McCrindle BW, Blackstone EH, Williams WG, et al. Are outcomes of surgical versus transcatheter balloon valvotomy equivalent in neonatal critical aortic stenosis? Circulation 2001;104(12 suppl I):1152–8.

Lofland G, McCrindle BW, Williams WG, et al. Critical aortic stenosis in the neonate: a multi-institutional study of management, outcomes, and risk factors. Congenital Heart Surgeons Society. J Thorac Cardiovasc Surg 2001;121:10–27.

Egito ES, Moore P, O’Sullivan J, et al. Transvascular balloon dilation for neonatal critical aortic stenosis: early and midterm results. J Am Coll Cardiol 1999;29:442–7.

Dettet C, Fischlein T, Feldmeier C, et al. Aortic valvotomy for congenital valvar aortic stenosis: a 37 year experience. Ann Thorac Surg 2001;71:1564–71.

Alexiou C, Chen Q, Langley SM, et al. Is there still a place for open surgical valvotomy in the management of aortic stenosis in children? The view from Southampton. Eur J Cardiothorac Surg 2001;20:239–46.

Mosca RS, Iannetti MD, Schwartz SM, et al. Critical aortic stenosis in the neonate: A comparison of balloon valvuloplasty and transventricular dilation. J Thorac Cardiovasc Surg 1995;109:47–57.

Tolan MJ, Daubney PE, Slavik Z, et al. Aortic valve repair of congenital stenosis with bovine pericardium. Ann Thorac Surg 1997;63:465–9.

Fraser CD, Jr, Wang N, Mes RB, et al. Repair of insufficient bicuspid aortic valves. Ann Thorac Surg 1994;58:386–90.

Bacha EA, Satou GM, Moram AM, et al. Valve-sparing operation for balloon-induced aortic regurgitation in congenital aortic stenosis. J Thorac Cardiovasc Surg 2001;122:162–6.

van Son JA, Reddy VM, Black MD, et al. Morphologic determinants favoring surgical aortic valvuloplasty versus pulmonary autograft aortic valve replacement in children. J Thorac Cardiovasc Surg 1996;111:1149–56.

Toni LY, Minich LL, Day RW, et al. Doppler echocardiographic evaluation of aortic regurgitation in children. Am J Cardiol 1997;80:927–31.

Pye M, Rae AP, Hutton I, et al. Quantification of aortic regurgitation using continuous and pulsed wave Doppler echocardiography. Int J Cardiol 1990;27:101–6.

Thomson JD, Allen J, Gibbs JL. Left sided valvar regurgitation in normal children and adolescents. Heart 2000;83:185–7.

Akiyama T, Yoshikawa J, Yoshih K, et al. Age related valvar regurgitation: a study by pulsed Doppler echocardiography. Circulation 1987;76:262–5.

Howkins JA, Minich LL, Shaddy RE, et al. Aortic valve repair and replacement after balloon aortic valvuloplasty in children. Ann Thorac Surg 1998;61:1355–8.

Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995;334:549–55.

Burrows PE, Benson LN, Babyn P, et al. Magnetic resonance imaging of the iliofemoral arteries after balloon dilation angioplasty of aortic arch obstructions in children. Circulation 1994;90:915–20.

Robinson BV, Bresnitzka-Rojay G, Weiber HS, et al. Balloon aortic valvuloplasty through a carotid cutdown in infants with severe aortic stenosis: results of the multi-centric study. Cardial Young 2000;10:225–32.