Morpho-Phylogenetic Evidence Reveals Novel Pleosporalean Taxa from Sichuan Province, China

Xian-Dong Yu, Sheng-Nan Zhang and Jian-Kui Liu

Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; yuxiandong@std.uestc.edu.cn (X.-D.Y); zhangshengnan@uestc.edu.cn (S.-N.Z.)

* Correspondence: liujiankui@uestc.edu.cn; Tel.: +86-028-6183-1832

Abstract: Pleosporales is the largest and most morphologically diverse order in Dothideomycetes, including a large proportion of saprobic fungi. During the investigation of microfungi from decaying wood in Sichuan Province, several novel fungal taxa of asexual and sexual morphs were collected, identified, and well-described. Phylogenetic analyses based on SSU, ITS, LSU, RPB2 and TEF1α gene sequences suggested that these new taxa were related to Pleosporales and distributed in five families, viz. Amorosiaceae, Bambusicolaceae, Lophiostomataceae, Occultibambusaceae and Tetraplosphaeriaceae. The morphological comparison and molecular phylogeny evidence justify the establishment of six new taxa, namely Bambusicola guttulata sp. nov., Flabellascoma sichuanense sp. nov., Neoangustimassarina sichuanensis gen. et sp. nov., Occultibambusa sichuanensis sp. nov. and Pseudotetraploa bambusicola sp. nov. Among them, Neoangustimassarina was introduced as the second sexual morph genus in Amorosiaceae; Bambusicola, O. sichuanensis and P. bambusicola were isolated from bamboos, which contributed to the diversity of bambusicolous fungi. The detailed, illustrated descriptions and notes for each new taxon are provided, as well as a brief note for each family. The potential richness of fungal diversity in Sichuan Province is also discussed.

Keywords: 6 new taxa; Dothideomycetes; multi-gene; phylogeny; taxonomy

1. Introduction

Pleosporales is the largest order in the class Dothideomycetes [1], and its members are found worldwide on a variety of host plants as epiphytes, endophytes, saprobes and parasites [2–4]. In addition, they are commonly found in terrestrial, marine and freshwater habitats [5–7]. Some of them produce secondary metabolites that can serve as a basis for developing new antimicrobials, agrochemical pesticides and other useful compounds [8].

The Pleosporales was invalidly introduced by Luttrell [9], and later revised by Barr [10], based on the family Pleosporaceae with the type species Pleospora herbarum [11]. Members of Pleosporales usually have perithecioid ascomata, cellular pseudoparaphyses, bitunicate and fissitunicate asci, and various shaped, aseptate or septate ascospores, with or without a gelatinous sheath [12–14], and their asexual morphs are coelomycetes and hyphomycetes [12,13]. For example, asexual morphs of Bambusicola and Pseudotetraploa are the most common forms of coelomycetes and hyphomycetes in Pleosporales, respectively. Zhang et al. listed 26 families in Pleosporales [12], while Hyde et al. revised Pleosporales and accepted 41 families [13]. Hongsanan et al. redefined the families of Dothideomycetes and accepted 91 families in Pleosporales based on morphology and multigene analysis [15]. Currently, Pleosporales consists of approximately 91 families and 655 genera (including 41 genera incertae sedis) [16].

Fungi have a broad geographical distribution and diversity comparable to plants and other organisms [17,18]. However, the fungal kingdom, in general, is less well-documented than the plant kingdom in terms of the number of species [19]. As one of the biodiversity hotspots in China, Sichuan Province (located in southwestern China) has a variety of...
complex topography (mountains, hills, plains, basins and plateaus) and climate conditions, and these are important factors contributing to the biodiversity [20]. However, little research on fungi has been carried out in this area; meanwhile, the highly variable climate and lush vegetation are shown to have an important influence on fungal diversity. Therefore, Sichuan Province is believed to have a large amount of hidden fungal diversity to be explored and discovered [21,22].

During a survey of micro-fungi from decomposing wood in Sichuan Province, China, a series of interesting asexual and sexual fungi were collected. In this study, we aim to describe these new findings and contribute fungal diversity to China. The multi-gene phylogeny integrated with morphological comparison was carried out to determine the classification of these new collections. One new genus and five new species are introduced, and the establishment of these new taxa is justified by morphology and phylogenetic evidences.

2. Materials and Methods

2.1. Isolation and Morphological Examination

Fungi associated with decaying wood were collected from Sichuan Province, China in 2021. Specimens were placed in envelopes and taken to the laboratory. Fungal colonies and fruiting bodies were observed using Motic SMZ 168-B. Fungal structures were examined and photographed by using a Nikon ECLIPSE Ni-U compound microscope fitted with a Nikon DS-Ri2 digital camera. The detailed morphological examination approaches used in this paper were generally based on Senanayake et al. [23]. Single spore isolations were made following the method in Senanayake et al. [23]. Measurements were made with the Tarosoft (R) Image Framework program v. 0.9.7, following the procedures outlined by Liu et al. [24]. Photo plates representing fungal structures were processed in Adobe Photoshop CS6 software (Adobe Systems Inc., San Jose, CA, USA). Herbarium specimens (dry branches with fungal material) were deposited in the herbarium of Cryptogams, Kunming Institute of Botany Academia Sinica (HKAS), Kunming, China and the herbarium of the University of Electronic Science and Technology (HUEST), Chengdu, China. The isolates obtained in this study were deposited in China General Microbiological Culture Collection Center (CGMCC), Beijing, China and the University of Electronic Science and Technology Culture Collection (UESTCC), Chengdu, China. The names of the new taxa were registered in MycoBank [25].

2.2. DNA Extraction, PCR Amplification and Sequencing

A Trelief TM Plant Genomic DNA Kit (Beijing TsingKe Biotech Co., Ltd., Beijing, China) was used to extract total genomic DNA from fresh mycelia, according to the manufacturer’s instructions. DNA amplification was performed by polymerase chain reaction (PCR). SSU, ITS, LSU, RPB2 and TEF1α gene regions were amplified using the primer pairs NS1/NS4, ITS5/ITS4, LR0R/LR5, fRPB2-5F/fRPB2-7cR and 983F/2218R, respectively, [26–29]. The amplification reactions were performed in 25 µL PCR mixtures containing 22 µL PCR MasterMix (Green) (TsingKe Co., Beijing, China), 1 µL DNA template and 1 µL of each primer (10 µM/L). The PCR thermal cycle program for SSU, ITS, LSU, RPB2 and TEF1α amplification were listed in Table 1. PCR products were checked on 1% agarose electrophoresis gels stained with Gel Red. The sequencing reactions were carried out with primers, mentioned above, by Beijing Tsingke Biotechnology Co., Ltd., Chengdu, China.
Table 1. PCR thermal cycles for SSU, ITS, LSU, RPB2 and TEF1α amplification.

Step	SSU	ITS, LSU, RPB2	TEF1α						
Initial Denaturation	98 °C	2 min	1	98 °C	2 min	1	98 °C	2 min	1
Denaturation	98 °C	10 s	35	98 °C	10 s	35	61.7 °C	10 s	35
Annealing	72 °C	10 s	35	72 °C	10 s	35	72 °C	10 s	35
Extension	72 °C	5 min	1	72 °C	5 min	1	72 °C	5 min	1
Hold	4 °C	-	-	4 °C	-	-	4 °C	-	-

2.3. Phylogenetic Analyses

The chromatograms of the new sequences obtained in this study were viewed in Finch TV Version 1.4.0 (https://digitalworldbiology.com/FinchTV (accessed on 22 September 2021)). The BLAST searches were performed for finding similar sequences that match our data. A concatenated dataset of the SSU, ITS, LSU, RPB2 and TEF1α sequences were used for phylogenetic analyses with the inclusion of reference taxa from GenBank (Table 2). The sequences were aligned by using the online multiple-alignment program MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/ (accessed on 5 January 2022)) [30], and the alignment was manually optimized in BioEdit v.7.0.9 [31]. Each gene dataset was concatenated by Mesquite v. 3.11 (http://www.mesquiteproject.org/ (accessed on 15 April 2022)) for multi-gene phylogenetic analyses. Maximum likelihood (ML) and bayesian inference (BI) were carried out as detailed in Dissanayake et al. [32]. The programs used in this study are RAxMLGUI v. 1.0 [33], PAUP v.4.0b10 [34], Mr Modeltest 2.3 [35] and MrBayes v. 3.1.2 [36,37]. The phylogenetic tree was visualized by FigTree v.1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 15 April 2022)).

Table 2. Taxa used in the phylogenetic analyses and their GenBank accession numbers. Newly generated sequences are indicated with * and the ex-type strains are in bold.

Species	Voucher/Strain/Isolate	GenBank Accession Number
Alfoldia vorosii	CBS 145501	MK589346 JN859336 MK589354 N/A MK599320
Alfoldia vorosii	REF113	MK589345 JN859333 MK589353 N/A MK599319
Alfoldia vorosii	REF117	MK589347 JN859335 MK589355 N/A MK599321
Amorocoelophoma camelliae	NTUCC 18-097-1	MT071230 MT112303 MT071279 MT459143 MT743271
Amorocoelophoma camelliae	NTUCC 18-097-2	MT071231 MT112304 MT071280 MT459141 MT743272
Amorocoelophoma camelliae	NTUCC 18-097-3	MT071232 MT112305 MT071281 MT459142 MT743273
Amorocoelophoma cassiae	MFLUCC 17-2283	MK347847 MK347739 MK347956 MK434894 MK360041
Amorocelophoma neoregelliae	CBS 146820	N/A MK064410 MK064467 MK078193 MK078247
Amorosia littoralis	CBS 120399	AM292056 AM292057 N/A N/A N/A
Angustimassarina acerina	MFLUCC 14-0505	KP8991123 KP899132 KP888637 N/A KR075168
Angustimassarina araezoensis	MFLUCC 13-0578	KY01113 KY496743 KY496722 N/A KY514392
Angustimassarina camporesii	MFLU 18-0087	MN244173 MN244197 MN244167 N/A N/A N/A
Angustimassarina italica	MFLUCC 15-0082	KY011124 KY496756 KY496736 N/A KY514400
Angustimassarina lonicerae	MFLUCC 15-0087	N/A KY496759 KY496724 N/A N/A
Angustimassarina populi	MFLUCC 13-0034	KP899128 KP899137 KP888642 N/A KR075164
Angustimassarina prenilcurensis	MFLUCC 15-0074	N/A KY496745 KY496725 KY514404 N/A
Angustimassarina quercicola	MFLUCC 14-0506	KP899124 KP899133 KP888638 N/A KR075169
Angustimassarina rosarum	MFLUCC 15-0080	N/A MG828869 MG828895 N/A N/A
Angustimassarina sylvestrica	MFLUCC 18-0550	MK314097 MK307843 MK307844 N/A MK360181
Angustimassarina alni	MFLUCC 15-0184	KY548098 KY548099 KY548097 N/A N/A N/A
Angustimassarina corioli	MFLUCC 14-0981	N/A MF167431 MF167432 N/A MF167433
Aquatisphaeria thailandica	MFLUCC 21-0025	MW890967 MW890969 MW890763 N/A N/A
Bambusicola aquatica	MFLUCC 18-1031	MT864293 MT627729 MN913710 MT878462 MT954392
Bambusicola bambusae	MFLUCC 11-0614	JX442039 JX442031 JX442035 KP761718 KP761722
Bambusicola didymospora	MFLUCC 10-0557	KU872110 KU940116 KU863105 KU940163 KU940188
Bambusicola dimorpha	MFLUCC 13-0282	KY038354 KY026382 KY000661 KY000663 N/A
Species	Voucher/Strain/Isolate	GenBank Accession Number
---------------------------------	------------------------	--------------------------
Bambusicola ficuum	MFLUCC 17-0872	MT215580
Bambusicola fuscipora	MFLUCC 20-0149	MW076529
Bambusicola guttulata	CGMCC 3.20935	ON332919
Bambusicola guttulata	UESTCC 22.0002	ON332920
Bambusicola irregulispora	MFLUCC 11-0437	JX442040
Bambusicola loculata	MFLUCC 13-0856	KJ761735
Bambusicola massarinia	MFLUCC 11-0389	JX442041
Bambusicola pustulata	MFLUCC 15-0190	KU872112
Bambusicola sichuanensis	SICAUCC 16-0002	MK253528
Bambusicola splendidia	MFLUCC 11-0439	JX442042
Bambusicola subthaailandica	SICAUCC 16-0005	MK253529
Bambusicola thailandica	MFLUCC 11-0147	KU904119
Bambusicola trisepatipora	MFLUCC 11-0166	N/A
Bacillarunispora eleanatidis	MFLUCC 17-0872	MT215580
Bacillarunispora inclinatostiola	CGMCC 3.20403	ZM698486
Bacillarunispora sinensis	KUMCC 17-0030	MH393556
Coryphocerasica	MFLU 20-0500	MT54923
Coryphocerasica italica	MFLUCC 11-0437	LC312473
Coryphocerasica migratoria	CBS 143645	LC312503
Coryphocerasica minimum	CBS 143646	LC312504
Flabellascoma aquaticoides	CGMCC 3.20936	ON332921
Hypocerasica schenckii	UESTCC 22.0003	ON332922
Hyphomycetes narovskii	NFCCI 4155	MG844280
Lentitostroma bomarum	CBS 11537	LC312506
Leptoparales palmarum	CBS 143653	LC312514
Leucaenicola aequa	MFLU 17-2423	MK347853
Leucaenicola camelliae	NTUC 18-093-4	MT071229
Leucaenicola phragmacarpa	MFLU 18-2072	MK347892
Lophiomurispora hongheensis	KUMCC 20-0216	MK253537
Lophiomurispora hongheensis	KUMCC 20-0217	MK253533
Lophiostoma bomarum	CBS 143645	LC312503
Lophiostoma kaiyangensis	CBS 138445	LC312504
Lophiostoma macrostomum	KT 709/HHF 2792	AB521732
Lophiostoma pseudodactylosporum	MFLUCC 13-0451	N/A
Lophiostoma ravennicum	MFLUCC 14-0005	KF968415
Marsarinia corticola	CBS 154.93	FJ795491
Neoangustimassarina sichuanensis	CGMCC 3.20937	ON332917
Neoangustimassarina sichuanensis	UESTCC 22.0001	ON332918
Neocutulambusina chinensis	MFLUCC 12-0559	KU712485
Neoucchitambusina kaiyangensis	CGMCC 3.20404	MZ964886
Neoucchitambusina trachyacma	CGMCC 3.20405	MZ964887
Neothrombostroma encephalarti	CBS 146037	N/A
Neothrombostroma encephalarti	CPC 35999	N/A
Neovaginatispora elegans	MFLUCC 17-2156	MT226676
Neovaginatispora fuscata	KG 161	AB618698
Neovaginatispora fuscata	KT 634	AB618900
Oecchitambusina aequa	MFLUCC 11-0006	KX698112
Oecchitambusina aequa	MK253537	MK253532
Oecchitambusina chinienis	MFLUCC 16-0380	KX655551
Oecchitambusina figueira	MFLUCC 11-0437	JX442042
Oecchitambusina figueira	MFLUCC 17-0872	MT215580
Oecchitambusina figueira	MFLUCC 11-0437	JX442042
Oecchitambusina figueira	MFLUCC 17-0872	MT215580

Table 2. Cont.
Table 2. Cont.

Species	Voucher/Strain/Isolate	GenBank Accession Number				
		SSU	ITS	LSU	RPB2	TEF1α
Occultibambusa fusispora	MFLUCC 11-0127	N/A	KU940125	KU863114	KU940172	KU940195
Occultibambusa hongheensis	KUMCC 21-0020	MZ329029	MZ329037	MZ329033	N/A	MZ325467
Occultibambusa jonesii	GZCC 16-0137	KY628324	N/A	KY628322	KY814758	KY814756
Occultibambusa kunmingensis	HKAS 10216	MT664342	MT627716	MN913733	MT578453	MT594407
Occultibambusa maolanensis	GZCC 16-0116	KY628325	N/A	KY628323	KY814759	KY814757
Occultibambusa pustula	MFLUCC 11-0502	KU872118	KU940126	KU863115	N/A	N/A
Occultibambusa sichuanensis	CGMC 3.20938	N/A	ON332913	ON332931	ON383989	ON381181
	UESTCC 22.0004	N/A	ON332914	ON332922	ON383990	ON381182
Palmiascoma gregariascomum	MFLUCC 11-0175	KPT753958	KPT744452	KPT744495	KP998466	N/A
Palmiascoma quingense	KUMCC 19-0201	MT477186	MT477183	MT495782	N/A	
Parapaucispora	KT 2237	LC100018	LC100021	LC100026	N/A	LC100030
Pauicospora quadrirapidigera	KT 84	AB618692	LC017344	AB619011	N/A	LC001755
Pauicospora versicolor	KH 110	AB918731	AB918732	N/A	LC001760	
Podocarpomyces kunyanaus	CBS 146076	MN562155	MN567662	MN586816	MN586836	
Pseudolophodera fusca	KTI161	AB524463	AB524789	AB524604	N/A	N/A
Pseudotetraploa curvinodaculata	JCM 12852	AB524467	AB524792	AB524608	N/A	N/A
Pseudotetraploa javanicus	JCM 12854	AB524470	AB524795	AB524611	N/A	N/A
Pseudotetraploa longissima	JCM 12853	AB524471	AB524796	AB524612	N/A	N/A
Pseudotetraploa rajmahacheni	NCFCC 4168	N/A	MN937222	MN937204	N/A	N/A
Pseudotetraploa bambusicolae	CGMC 3.20939	ON332923	ON332915	ON332931	ON383991	ON381183
Pseudotetraploa bursulaculosa	UESTCC 22.0005	ON332924	ON332916	ON332934	ON383992	ON381184
Quadririca meridionalis	CBS 125427	AB524472	AB524797	AB524613	N/A	N/A
Quadririca meridionalis	CBS 125684	AB524473	AB524798	AB524614	N/A	N/A
Seriascoma bambusae	KUMCC 21-0021	MZ329031	MZ329039	MZ329035	MZ329036	MZ325468
Seriascoma didymosporum	MFLUCC 11-0179	KU872119	KU940127	KU863116	KU940173	KU940196
Seriascoma yunnanense	MFLU 18-0660	MN174694	MN174695	MN210324	MN381858	
Shrungabeeja aquatica	MFLUCC 18-0664	N/A	MT627722	MT627663	N/A	N/A
Shrungabeeja longipendiculata	BCC 76463	KT376471	KT376474	KT376472	N/A	N/A
Shrungabeeja quadrajensis	MFLUCC 17-2362	N/A	MT627681	MN913685	N/A	N/A
Tetratiploa aquatica	MFLU 19-0995	N/A	MT530448	MT530452	N/A	N/A
Tetratiploa aristata	CBS 99670	AB524486	AB524805	AB524627	N/A	N/A
Tetratiploa duxthabejeja	NCFCC 4621	N/A	MN937226	MN937208	N/A	N/A
Tetratiploa nagasakienis	JCMM 13168	AB524489	AB524806	AB524630	N/A	N/A
Triplophaeria acuta	JCMM 13171	AB524492	AB524809	AB524633	N/A	N/A
Triplophaeria maximai	JCMM 13172	AB524496	AB524812	AB524637	N/A	N/A
Triplophaeria yezoensis	CBS 125436	AB524497	AB524813	AB524638	N/A	N/A
Vaginatispora amygdali	CBS 143662	LC312495	LC312524	LC312553	LC312611	LC312582
Vaginatispora appendiculata	MFLUCC 16-0314	KU743219	KU743217	KU743218	N/A	KU743220
Vaginatispora aquatica	MFLUCC 11-0083	KJ591575	KJ591577	KJ591576	N/A	N/A
Versicolisporium trispectrum	JCM 14775	AB524501	AB565596	AB330081	N/A	N/A
Versicolisporium trispectrum	UESTCC 21.0016	N/A	N/A	N/A	N/A	

3. Results
3.1. Phylogenetic Analyses

Five gene loci SSU, ITS, LSU, RPB2 and TEF1α were used to determine the phyloge-netic placement of the new collections. The concatenated matrix comprised 124 taxa with a total of 4633 characters (SSU: 1021 bp; ITS: 684 bp; LSU: 904 bp; RPB2: 1031 bp; TEF1α: 993 bp) including gaps. Maximum likelihood (ML) and Bayesian inference (BI) analyses were carried out to infer phylogenetic relationships. The best scoring ML tree (Figure 1) was selected to represent the relationships among taxa, in which a final likelihood value of −51844.747390 is presented. The matrix had 2418 distinct alignment patterns. Estimated base frequencies were as follows: A = 0.245989, C = 0.250069, G = 0.270993, T = 0.232949; substitution rates AC = 1.588007, AG = 3.646881, AT = 1.331328, CG = 1.142338, CT = 7.560715, GT = 1.000000. GTR + I + G is the best-fit model selected by AIC in MrModeltest based on each gene (SSU, ITS, LSU, RPB2 and TEF1α), which was used for maximum likelihood and Bayesian analysis. Six simultaneous Markov chains were run for 1,970,000 generations and trees were sampled every 1000 generations and 1970 trees were obtained. The
first 394 trees representing the burn-in phase of the analyses were discarded, while the remaining 1576 trees were used for calculating posterior probabilities in the majority rule consensus tree (critical value for the topological convergence diagnostic is 0.01).
Figure 1. RAxML tree generated from combined SSU, ITS, LSU, RPB2 and TEF1α sequence data of targeted five families (Amorosiaceae, Bambusicolaceae, Lophiostomataceae, Occultibambusaceae, Palmiasiaceae).
and Tetraplosphaeriaceae) in Pleosporales. Bootstrap values for ML equal to or greater than 75% are placed above the branches. Branches with Bayesian posterior probabilities (PP) from MCMC analysis equal to or greater than 0.95 are in bold. The tree was rooted with *Hysterium rhizophorae* (NFCCI 4250). The ex-type strains are indicated in bold and newly generated sequences are indicated in red.

The newly obtained isolates were grouped with pleosporalean families of Amorosiaceae, Bambusicolaceae, Lophiostomataceae, Occultibambusaceae and Tetraplosphaeriaceae. Two isolates of *Neoangustimassarina sichuanensis* (CGMCC 3.20937 and UESTCC 22.0001) formed a distinct, well-supported clade (84% ML/1.00 BYPP) in Amorosiaceae. Two isolates of *Bambusicola guttulata* (CGMCC 3.20935 and UESTCC 22.0002) were nested in the genus *Bambusicola* in Bambusicolaceae. Two isolates of *Flabellascoma sichuanense* (CGMCC 3.20936 and UESTCC 22.0003) clustered with *Flabellascoma* in Lophiostomataceae. Two strains of *Occultibambusa sichuanensis* (CGMCC 3.20938 and UESTCC 22.0004) formed a distinct branch within Occultibambusaceae, which was closely related to *Occultibambusa hongheensis* (KUMCC 21-0020), *O. maolanensis* (GZCC 16-0116), and *Versicolorisporium triseptatum* (JCM 14775 and NMX1222) with statistical support (100% ML/1.00 BYPP). The other two strains of *Pseudotetraploa bambusicola* (CGMCC 3.20939 and UESTCC 22.0005) grouped with *Pseudotetraploa* species in Tetraplosphaeriaceae.

3.2. Taxonomy

Pleosporales Luttr. ex M.E. Barr, *Prodromus to class Loculoascomycetes*: 67 (1987)

Amorosiaceae Thambug and K.D. Hyde, *Fungal Diversity* 74: 252 (2015)

Notes: Amorosiaceae was established by Thambugala et al. [38] and typified by *Amorosia* Mantle and D. Hawksw., which is characterized by micronematous to semi-macronematous conidiophores, integrated, terminal, or intercalary, monoblastic conidiogenous cells, elongate-clavate and 3–4-septate conidia [39]. Six genera were accepted in the family, *viz.* *Alfoldia* D.G. Knapp, Imrefi and Kovács, *Amorosia* Mantle and D. Hawksw., *Amorocoelophoma* Jayasiri, E.B.G. Jones and K.D. Hyde, *Angustimassarina* Thambugula, Kaz. Tanaka and K.D. Hyde, *Neothyrostroma* Crous and *Podocarpomyces* Crous [38–42]. *Angustimassarina* is the only genus in the family that represents the sexual morph [38]. Herein, we introduce the second genus with a sexual morph to Amorosiaceae.

Neoangustimassarina X.D. Yu and Jian K. Liu, gen. nov.

Type species: *Neoangustimassarina sichuanensis* X.D. Yu, S.N. Zhang and Jian K. Liu

MycoBank: MB 843716

Etymology: The name refers to the similarity to the genus *Angustimassarina*.

Saprobic on dead wood in terrestrial habitat. **Sexual morph**: *Ascomata* solitary, scattered, immersed, visible as pale brown, circular cap with a small central black dot, sub-globose, uniloculate. *Peridium* composed of several layers of hyaline to brown cells of *textura angularis*. *Hamathecium* hyphae-like, pseudoparaphyses, embedded in a gelatinous matrix. *Asci* 8-spored, bitunicate, fissitunicate, broad clavate to cylindric-clavate, short pedicellate. *Ascospores* biseriate, fusiform with obtuse ends, hyaline, 1-septate, guttulate, smooth-walled, surrounded by a mucilaginous sheath. **Asexual morph**: Undetermined.

Notes: The monotypic genus was introduced to accommodate *Neoangustimassarina sichuanensis*, which formed a distinct clade within Amorosiaceae (Figure 1). *Neoangustimassarina* resembles *Angustimassarina* in forming globose to subglobose ascomata, hyaline, and septate ascospores surrounded by mucilaginous sheaths [38]. However, *Neoangustimassarina* differs from the latter in having immersed ascomata without a pore opening, broader asci (broad clavate to cylindric-clavate vs. cylindrical to cylindric-clavate), and the septa of the ascospores (1-septate vs. 1–3-septate). We, hereby, introduce the new genus based on the distinctiveness of morphology and multi-gene phylogeny.

Neoangustimassarina sichuanensis X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Figure 2
MycoBank: MB 843717

Etymology: The epithet refers to Sichuan Province where the fungus was collected.

Holotype: HKAS 123092

Saprobic on dead wood in terrestrial habitat. **Sexual morph**: Ascomata solitary, scattered, immersed, visible as circular, pale brown to nearly white flat cap, with a small black dot in the center, in vertical section 135–235 µm high, 190–260 µm diam., subglobose, uniloculate, ostiolate. **Peridium** 10–23 µm wide, composed of several layers of hyaline to brown cells of *textura angularis*. **Hamathecium** 1.9–2.9 µm wide, hyphae-like, pseudoparaphyses, embedded in a gelatinous matrix. **Asci** 78–125 × 20–30 µm (\(\bar{x} = 92 \times 25 \mu m\), \(n = 30\)), 8-spored, bitunicate, fissitunicate, broad clavate to cylindric-clavate, straight or slightly curved, short pedicellate to subsessile, rounded at the apex, with an ocular chamber. **Ascospores** 23–35 × 6.5–10.5 µm (\(\bar{x} = 30 \times 9 \mu m\), \(n = 30\)), overlapping biseriate, fusiform with obtuse ends, hyaline, 1-septate, constricted at the septum, the upper cell slightly wider than the lower cell, guttulate when young, smooth-walled, surrounded by a wide mucilaginous sheath.

Asexual morph: Undetermined.

Culture characteristics: Colonies on PDA reaching 50–60 mm after 7 weeks at 25°C, circular, dry, the mycelium sparse at the margin, greyish-brown, reverse dark brown.

Material examined: CHINA, Sichuan Province, Chengdu City, Pengzhou County, Huilonggou Scenic Area, 31°14′21″ N, 103°47′28″ E, 1135 m Elevation, on dead wood, 28 July 2021, X.D. Yu, HLG3 (HKAS 123092, holotype); ex-holotype living culture CGMCC 3.20937; ibid., HUEST 22.0001, isotype, ex-isotype living culture UESTCC 22.0001.

Bambusicolaceae D.Q. Dai and K.D. Hyde, *Fungal Diversity* 63: 49 (2013)

Notes: Bambusicolaceae was established by Hyde et al. [13] to accommodate *Bambusicola*, D.Q. Dai and K.D. Hyde [43]. Four genera were accepted in this family, viz. *Bambusicola* [43], *Corylicola* [44], *Leucaenicola* [41] and *Palmiascoma* [45]. Most *Bambusicola* species are parasites or saprobes and have been found on Bamboos (Poaceae) in terrestrial habitats [43,46–50], except *B. aquatica* (from a freshwater habitat) and *B. ficuum* (on *Ficus* sp., Moraceae) [51,52]. In this study, a coelomycetous *Bambusicola* species is introduced.

Bambusicola D.Q. Dai and K.D. Hyde, *Cryptogamie Mycologie* 33: 367 (2012)

Bambusicola guttulata X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Figure 3.

MycoBank: MB 843718

Etymology: Referring to the conidia with large guttules.

Holotype: HKAS 123091

Saprobic on dead branches of bamboo. **Sexual morph**: Undetermined. **Asexual morph**: **Conidiomata** 100–170 µm high, 130–250 µm diam., dark brown to black, pycnidial, usually forming in a linear series on the host surface, solitary, closed when young, becoming erumpent, stromatic, irregular subglobose in section, immersed or semi-immersed, unilocular, thick-walled. **Conidiomatal wall** 25–55 µm wide, composed of thick-walled, subhyaline to brown cells of *textura angularis*. **Conidiophores** hyaline, cylindrical, branched, straight or slightly flexuous, septate, and occasionally reduced to conidiogenous cells. **Conidiogenous cells** 6–16 × 3–5 µm, holoblastic, hyaline, cylindrical, branched, determinate, terminal, smooth-walled. **Conidia** 14–21 × 4–6 µm (\(\bar{x} = 17 \times 5 \mu m\); \(n = 30\)), hyaline to pale brown, unicellular when young, becoming 1-septate at maturity, cylindrical to subcylindrical, sometimes with a narrow and truncate base, straight or slightly curved, smooth-walled, guttulate.

Culture characteristics: Colonies on PDA reaching 30–40 mm after 7 weeks at 25°C, irregular, raised to umbonate, surface rough, dense, edge undulate, greyish-yellow, dry, reverse dark brown.

Material examined: CHINA, Sichuan Province, Chengdu City, Tianfu New Area, Dalin Village, 30°16′43″ N, 104°6′44″ E, 500 m Elevation, on dead branches of bamboo,
Notes: Two isolates of Bambusicola guttulata formed a distinct lineage in Bambusicola (Figure 1). Morphologically, B. guttulata is most similar to the asexual morph of the generic type B. massarinia compared to the anamorphic species in the genus Bambusicola [43]. However, B. guttulata has broader conidia than that of B. massarinia (14–21 × 4–6 µm vs. 14–20 × 2–3 µm). The establishment of the new species B. guttulata is justified by morphological and phylogenetic evidence.

Lophiostomataceae Sacc., Sylloge Fungorum 2: 672 (1883)

Notes: Nitschke [53] introduced “Lophiostomeae” based on the type species of Lophiostoma macrostomum (Tode) Ces. and De Not. Saccardo formally established the family Lophiostomataceae and placed “Lophiostomeae” in the order Pleosporales [54]. Members of this family have crest-like ostioles in most cases and easily to be recognized. They are characterized by immersed to erumpent ascomata, mostly clavate asci, hyaline to dark brown ascospores with appendages or mucilaginous sheaths [38,55]. With the continuous increase of new members, the family currently comprises 30 genera [16]. A new species added to the genus Flabellascoma is identified and described.

Flabellascoma A. Hashim., K. Hiray. and Kaz. Tanaka, Studies in Mycology 90: 167 (2018)

Flabellascoma sichuanense X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Figure 4.

Mycobank: MB 843719

Etymology: The epithet refers to Sichuan Province where the fungus was collected.

Holotype: HKAS 123094

Saprobic on dead branches of Eriobotrya sp. (Rosaceae). Sexual morph: Ascomata solitary, scattered, rarely clustered, immersed to erumpent, visible as black, crest-like ostiolar neck on the substrate, in vertical section 150–350 µm high, 190–280 µm diam., subglobose, uniloculate. Ostiole central, laterally compressed, periphysate. Peridium 25–35 µm wide, composed of several layers of brown, thick-walled cells of textura angularis. Hamathecium 1.5–3.5 µm wide, hyphae-like, pseudoparaphyses, embedded in a gelatinous matrix. Asci 55–75 × 9.5–13 µm (̅x = 64 × 11 µm, n = 30), 8-spored, bitunicate, fissitunicate, cylindric-clavate, straight or slightly curved, shortly pedicellate, rounded at the apex, with an ocular chamber. Ascospores 15–18 × 5–7 µm (̅x = 16.5 × 5.5 µm, n = 30), overlapping biseriate, fusiform, hyaline, 1-septate, constricted at the septum, the upper cell slightly wider than the lower cell, guttulate, smooth-walled, with a narrow bipolar sheath. Sheath 3.0–7.0 µm long, 1.5–2.5 µm wide, drawn-out at both ends, with an internal chamber at both ends of ascospores (Figure 4). Asexual morph: Undetermined.

Culture characteristics: Colonies on PDA reaching 40–50 mm after 7 weeks at 25 ºC, circular, with dense mycelium on the surface, dark grayish of the inner ring, and brown of the outer ring; in reverse black of the inner ring, and brown of the outer ring.

Material examined: CHINA, Sichuan Province, Chengdu City, Tianfu New Area, Dalin Village, 30°16′43″ N, 104°6′44″ E, 500 m Elevation, on dead branches of Eriobotrya sp. (Rosaceae), 24 July 2021, X.D. Yu, L4 (HKAS 123094, holotype); ex-holotype living culture CGMCC 3.20936; ibid., HUEST 22.0003, isotype, ex-isotype living culture UESTCC 22.0003.

Notes: The phylogenetic result based on SSU, ITS, LSU, RPB2 and TEF1α sequence data showed that the new collection Flabellascoma sichuanense nested in Flabellascoma (Figure 1) and formed a distinct lineage. Morphologically, it fits well with the genus Flabellascoma in having immersed ascomata, bitunicate, fissitunicate, cylindricl, clavate asci and fusiform, hyaline, 1-septate ascospores with a narrow bipolar sheath [56]. However, the dimensions of asci and ascospores distinguish F. sichuanense from other species (Table 3).
Table 3. Morphological comparative data of Flabellascoma species.

Taxa	Ascomata (µm)	Hamathecium (µm)	Ascospores (µm)	Sheath (µm)	References
F. aquaticum	280–440 × 260–390	1.2–2.0	16–18 × 4.3–5.3	4.7–7.0 µm wide	[57]
F. cycadiscola	490–530 × 600–620	1.0–3.0	17–23 × 4.5–7.0	7.0–10 µm long	[56]
F. fusiforme	310–420 × 320–380	1.5–3.0	15–18 × 4.0–5.0	5.4–8.0 µm wide	[57]
F. minimum	250–320 × 350–500	1.5–3.0	12–17 × 3.5–5	5.5–8.0 µm long	[56]
F. sichuanense	150–350 × 190–280	1.5–3.5	15–18 × 5.0–7.0	3.0–7.0 µm long, 1.5–2.5 µm wide	This study

Occultibambusaceae D.Q. Dai and K.D. Hyde, Fungal Diversity 82: 25 (2017)

Notes: Species of Occultibambusaceae are mostly saprobic and frequently found on monocotyledons or hardwood trees in terrestrial and aquatic habitats [47,58]. Dai et al. [47] established this family to accommodate Neoccultibambusa, Occultibambusa, Seriascoma and Versicolorisporium. Brunneofusispora, typified by Brunneofusispora sinensis, was subsequently introduced to this family by Phookamsak et al. [59]. Phylogenetically, the coelomycetous genus Versicolorisporium appeared to be a close relationship with Occultibambusa in previous studies [21,52,60,61]. However, they continue to be treated as two distinct genera because the known asexual morph of Occultibambusa is different from Versicolorisporium [60]. In this study, a new Occultibambusa species is introduced.

Occultibambusa D.Q. Dai and K.D. Hyde, Fungal Diversity 82: 25 (2017)

Occultibambusa sichuanensis X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Figure 5.

MycoBank: MB 843720

Etymology: The epithet refers to Sichuan Province where the fungus was collected.

Holotype: HKAS 123093

Saprobic on dead branches of Bamboo. Sexual morph: Ascomata solitary to gregarious, semi-immersed, visible as black domes on the substrate, in vertical section 130–180 µm high, 340–440 µm diam., subglobose, coriaceous, uniloculate. Peridium 25–90 µm wide, composed of several layers of brown, thick-walled cells of textura angularis. Hamathecium 2.8–3.3 µm wide, hyphae-like, cellular pseudoparaphyses, embedded in a gelatinous matrix. Asci 70–100 × 22–27 µm (X = 85 × 24 µm, n = 30), 8-spored, bitunicate, fissitunicate, obvoid to pyriform, straight or slightly curved, shortly pedicellate, rounded at the apex, with an ocular chamber. Ascospores 31–41 × 6.5–10 µm (X = 36 × 8 µm, n = 30), 3-seriate, fusiform, straight to somewhat curved, brown, 1-septate, constricted at the septum, guttulate, smooth-walled, surrounded by a mucilaginous sheath. Asexual morph: Undetermined.

Culture characteristics: Colonies on PDA reaching 40–50 mm after 7 weeks at 25 °C, circular, with sparse mycelium on the surface, light gray of the inner ring, and brown of the outer ring; in reverse olive green.

Material examined: CHINA, Sichuan Province, Chengdu City, Pengzhou County, Hui-longgou Scenic Area, 31°14′21″ N, 103°47′28″ E, 1135 m Elevation, on dead branches of bamboo in a terrestrial environment, 28 July 2021, X.D. Yu, HLG8 (HKAS 123093, holotype); ex-holotype living culture CGMCC 3.20938; ibid., HUEST 22.0004, isotype, ex-isotype living culture UESTCC 22.004.

Notes: The blast search based on LSU sequence data of our new collection showed that the closest hits were Versicolorisporium triseptatum (HHUF 28815 = JCM14775, identity 99.18%; NMX1222, identity 99.03%), and Occultibambusa bambusae (MFLUCC 11-0394, identity 98.01%); the closest hits based on ITS sequence were Versicolorisporium triseptatum (JCM 14775, identity 93.95%; NMX1222, identity 93.72%), and Occultibambusa hongheensis (KUMCC 21-0020, identity 90.95%); the closest hits based on TEF1 sequence were Occultibambusa hongheensis (KUMCC 21-0020, identity 97.02%), and O. naolimensis (KUMCC 21-0020, identity 96.91%). Multi-gene phylogeny showed that the new collection grouped
with *Occultibambusa* and *Versicolorisporium*. It formed a sister clade with *V. triseptatum* with high statistical support (100% ML/1.00 BYPP, Figure 1). However, the morphology of our collection fits well with *Occultibambusa*. Further morphological evidence of its association with *Versicolorisporium* is somewhat difficult due to the lack of asexual morph in our collection. Therefore, we recognize our new collection as a new species of *Occultibambusa*, namely, *O. sichuanensis*. The morphological comparison of *Occultibambusa* species was listed in Table 4.

Taxa	Ascomata (µm)	Asci	Ascospores	References	
		Morphology	Size (µm)		
O. aquatica	100–250 × 180–280	Clavate	73–86 × 9–13	19–25 × 3.5–6.5	[62]
O. bambusae	150–200 × 400–550	Broadly cylindrical	(50–)60–80(–90) × (9.5–)11.5–14.5(–15)	(22–)23.5–27.5× 4.5–7	[47]
O. chiangraiensis	195–295 × 352–520	Clavate-oblong	47–92 × 12–16	16–24 × 5–7	[62]
O. fusiapora	135–185 × 240–275	Clavate to cylindric-clavate	(60–)65–90(–110) × (11–)12–14(–15)(–16)	(20–)22–25(–26) × 5–6(–6.5)	[47]
O. longheensis	180–340 × 400–550	Cylindric-clavate to clavate	(78–)80–130(–137) × (18–)19–23(–25)	(25–)27–30 × (5.5–)8–9(–10)	[60]
O. jonesii	196–236 × 200–260	Broadly cylindrical to clavate	(65–)75–89(–105) × 13.5–19	27–33.5 × 5.5–6.5	[63]
O. kunmingensis	110–150 × 220–260	Clavate or cylindric-clavate	110–140(–160) × 13–16.5	32–40 × 5–6.5	[52]
O. maolanensis	544–600 diameter	Broadly cylindrical to clavate	(66–)77–85(–94) × 17–20(–24)	25–31 × 8–10	[63]
O. pustula	150–200 × 200–300	Cylindrical	80–105 × 8–12	22–25 × 5–5.5	[47]
O. sichuanensis	130–180 × 340–440	Obovoid to pyriform	70–100 × 22–27	31–41 × 6.5–10	This study

Table 4. Morphological comparative data of *Occultibambusa*.

Tetraplosphaeriaceae Kaz. Tanaka and K. Hiray, _Studies in Mycology_ 64: 177 (2009)

Notes: _Tetraplosphaeriaceae_ was introduced by Tanaka et al. [64], and typified by _Tetraplosphaeria_. The latest taxonomic treatment of the family contains nine genera [1]. _Pseudotetraploa_ is a genus with only known asexual forms, which were commonly associated with _Poaceae_ (*Dendrocalamus stocksii, Pleioblastus chino, Pleioblastus chino, Sasa kurilensis*)
distributed in Japan or India [64,65]. In this study, a new Pseudotetraploa species associated with bamboos from China is introduced.

Pseudotetraploa Kaz. Tanaka and K. Hiray, *Studies in Mycology* 64: 193 (2009)

Pseudotetraploa bambusicola X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Figure 6.

Mycobank: MB 843721

Etymology: Refers to the bamboo host.

Holotype: HKAS 123095

Saprobic on dead branches of Bamboo. **Sexual morph**: Undetermined. **Asexual morph**: Colonies effuse, black. Mycelium superficial. Conidiophores absent. Conidiogenous cells monoblastic, integrated, usually indistinguishable from superficial hyphae. Conidia 23–41 × 14–24 µm (x = 32 × 19 µm, n = 50), solitary, amygdaliform to ovoid, or obvoid, dark brown to black, pseudoseptate, consisting of 3–4 columns, with 0–4 setose appendages. Appendages 8.85–95 × 2.5–4.5 µm (x = 36 × 3.5 µm, n = 50), 0–4-septate, dark brown, smooth, unbranched, straight or curved.

Culture characteristics: Colonies on PDA reaching 40–50 mm after 7 weeks at 25 °C, circular, dry, with dense mycelium, raised, entire at the edge, grayish brown, reverse dark brown.

Material examined: CHINA, Sichuan Province, Chengdu City, Longquanyi District, Longquan Mountain Scenic Area, 30°32′47″ N, 104°19′11″ E, 800 m Elevation, on dead branches of bamboo in a terrestrial environment, 13 August 2021, X.D. Yu, THGL14 (HKAS 123095, holotype); ex-holotype living culture CGMCC 3.20939; *ibid.*, HUEST 22.0005, isotype, ex-isotype living culture UESTCC 22.0005.

Notes: The phylogenetic result (Figure 1) showed that *Pseudotetraploa bambusicola* formed a distinct lineage within *Pseudotetraploa* [64]. Morphologically, *Pseudotetraploa bambusicola* resembles *P. curviappendiculata*, *P. javanica*, *P. longissimi* and *P. rajmachiensis* in having monoblastic conidiogenous cells. However, they can be distinguished by the shape of conidia (oblavate to narrowly obpyriform in *P. curviappendiculata* and *P. longissimi*; ovoid in *P. javanica*, ovoid to oblclavate or obpyriform in *P. rajmachiensis*; amygdaliform to ovoid, or obovoid in *P. bambusicola*) [64].
Figure 2. *Neoangustimassarina sichuanensis* (HKAS 123092, holotype) (a–c) Ascomata on host substrate. (d–f) Vertical section of ascoma. (g–k) Asci. (l,m) Structure of peridium. (n) Pseudoparaphyses. (o–s) Ascospores. (t) Germinated ascospore. (u,v) Colonies on PDA, above (u) and below (v). Scale bars: (d–f) = 100 μm, (g–t) = 20 μm.
type B. massarinia compared to the anamorphic species in the genus Bambusicola [43]. However, B. guttulata has broader conidia than that of B. massarinia (14–21 × 4–6 μm vs. 14–20 × 2–3 μm). The establishment of the new species B. guttulata is justified by morphological and phylogenetic evidence.

Figure 3. Bambusicola guttulata (HKAS 123091, holotype) (a–c) Conidiomata on surface of dead bamboo culms. (d,e) Vertical section of conidioma. (f) Wall of conidioma. (g–j) Conidiogenous cells bearing conidia (the arrows indicated how the conidiogenous cells produce conidia). (k–o) Conidia. (p) Germinating conidia. (q,r) Colonies on PDA, above and below. Scale bars: (d,e) = 50 μm, (f,g,p) = 20 μm, (h–o) = 10 μm.
Notes: Nitschke [53] introduced “Lophiostomeae” based on the type species of *Lophiostoma macrostomum* (Tode) Ces. and De Not. Saccardo formally established the family Lophiostomataceae and placed “Lophiostomeae” in the order Pleosporales [54]. Members of this family have crest-like ostioles in most cases and easily to be recognized. They are characterized by immersed to erumpent ascomata, mostly clavate asci, hyaline to dark brown ascospores with appendages or mucilaginous sheaths [38, 55]. With the continuous increase of new members, the family currently comprises 30 genera [16]. A new species added to the genus *Flabellascoma* is identified and described. *Flabellascoma A. Hashim., K. Hiray. and Kaz. Tanaka, Studies in Mycology 90: 167 (2018) Flabellascoma sichuanense X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Figure 4.*

Figure 4. Flabellascoma sichuanense (HKAS 123094, holotype) (a–c) Ascomata on host substrate. (d) Vertical section of ascoma. (e) Ostiole, showing periphyses. (f) Structure of peridium. (g) Pseudoparaphyses. (h–k) Asci. (l–o) Ascospores. (p) Germinated ascospore. (q,r) Colonies on PDA, above and below. Scale bars: (d,e) = 50 μm, (f,p) = 20 μm, (g–o) = 10 μm.
in previous studies [21,52,60,61]. However, they continue to be treated as two distinct gen-
era because the known asexual morph of \textit{Occultibambusa} is different from \textit{Versicolorispo-
rium} [60]. In this study, a new \textit{Occultibambusa} species is introduced. \textit{O}
cultibambusa} D.Q. Dai and K.D. Hyde, \textit{Fungal Diversity} 82: 25 (2017)
\textit{Occultibambusa sichuanensis} X.D. Yu, S.N. Zhang and Jian K. Liu, sp. nov., Fig-
ure 5.

Figure 5. \textit{Occultibambusa sichuanensis} (HKAS 123093, holotype) (a–c) Ascomata on host substrate.
(d,e) Vertical section of ascoma. (f–j) Asci. (k) Structure of peridium. (l) Pseudoparaphyses. (s) As-
cospores. (t) Germinated ascospore. Colonies on PDA, above and below. Scale bars: (d,e) = 50 \(\mu\)m,
(f–k,m–t) = 20 \(\mu\)m, (l) = 10 \(\mu\)m.

MycoBank: MB 843720
Figure 6. *Pseudotetraploa bambusicola* (HKAS 123095, holotype) (a–c) Colonies on natural substratum. (d–l) Conidia. (m) Germinating conidium. (n) Colony on PDA from above and below. Scale bars: (d–m) = 20 μm.

4. Discussion

The genus *Flabellascoma* was introduced by Hashimoto et al. [56] to accommodate two terrestrial species *F. cycadicola* A. Hashim., K. Hiray and Kaz. Tanaka and *F. minimum*. Subsequently, two species *F. aquaticum* D.F. Bao, Z.L. Luo, K.D. Hyde and H.Y. Su and *F. fusiforme* D.F. Bao, Z.L. Luo, K.D. Hyde and H.Y. Su from freshwater habitats were introduced based on multi-gene phylogeny [57]. Members of *Flabellascoma* have similar morphological features [56,57] and it is difficult to distinguish *Flabellascoma* species by the size and shape of asci and ascospores [57]. Bao et al. [57] proposed that the ascomatal features appear to be remarkable features to distinguish taxa in this genus. Molecular data were found to be more supportive for the identification of the new species in this study, and we believed that DNA data provided more objective evidence for the species distinction of *Flabellascoma*.
In previous studies, the relationship between *Occultibambusa* and *Versicolorisporium* has not been well resolved due to the asexual morphs of *Occultibambusa* and *Versicolorisporium* being inconsistent [60]. In our phylogenetic tree, however, the genus *Occultibambusa* is not monophyletic (Figure 1), of which *O. fusispora* formed an independent lineage in Occultibambusaceae; this is consistent with recent relevant studies [60,61]. *Occultibambusa fusispora* is the only species in the genus reported with its holomorph [47]; we cannot solve the problem between *Occultibambusa* and *Versicolorisporium* due to the type-of-species issue, although *O. fusispora* has an asexual morph. Therefore, further studies are needed to provide sexual and asexual links of the type of species of *O. bambusae* and *V. triseptatum* towards the classification of *Occultibambusa* and *Versicolorisporium* with more sampling and taxa population included in the analysis.

During the investigation of microfungi in Sichuan Province, we randomly sampled three times in the vicinity of Chengdu city from July to August 2021. Morphological and phylogenetic results showed that these newly collected interesting taxa were distributed in five different pleosporalean families. It is worth noting that three new species found on bamboo are typical bambusicolous fungi. Bamboo is a gramineous plant with economic and ornamental value, and its culms and leaves are abundant in saprobic fungi [44,66–68]. China has the richest bamboo resources, with a total of 861 species distributes in 43 genera [69]. Among them, Sichuan has a large area of bamboo forests, with an area of 592,800 ha, ranking fifth in the country after Fujian, Jiangxi, Zhejiang and Hunan [69]. In recent years, an increasing number of new species of bambusicolous fungi have been reported and discovered in China [60,67,70,71]. Therefore, the unique natural conditions in Sichuan are of great potential for the excavation and identification of bamboo fungi.

Author Contributions: Conceptualization, X.-D.Y., S.-N.Z. and J.-K.L.; methodology, X.-D.Y.; formal analysis, X.-D.Y.; resources, X.-D.Y.; data curation, X.-D.Y. and S.-N.Z.; writing—original draft preparation, X.-D.Y.; writing—review and editing, X.-D.Y., S.-N.Z. and J.-K.L.; supervision, J.-K.L.; project administration, J.-K.L.; funding acquisition, J.-K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This study is supported by the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou province (Grant No. U1812401).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The sequences data were submitted to GenBank.

Acknowledgments: Sajeewa Maharachchikumbura is thanked for his helps with sample collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kirk, P.; Cannon, P.; Minter, D.; Stalpers, J. *Ainsworth and Bisby's Dictionary of the Fungi*, 10th ed.; CABI Publishing: Wallingford, UK, 2008; ISBN 978-0-85199-826-8.

2. Mapook, A.; Boonmeem, S.; Liu, J.K.; Jones, E.B.G.; Bahkali, A.H.; Hyde, K.D. Taxonomic and phylogenetic placement of *Phaeodimeriella* (Pseudoperisporiaceae, Pleosporales). *Cryptogam. Mycol.* 2016, 37, 157–176. [CrossRef]

3. Ferdinandez, H.S.; Manamgoda, D.S.; Udayanga, D.; Deshapriya, N.; Munasinghe, M.S.; Castlebury, L.A. Molecular phylogeny and morphology reveal three novel species of *Curvularia* (Pleosporales, Pleosporaceae) associated with cereal crops and weedy grass hosts. *Mycol. Prog.* 2021, 20, 431–451. [CrossRef]

4. Matsumura, M.; Kato, W.; Hashimoto, A.; Takahashi, Y.S.; Shirouzu, T.; Tanaka, K. *Crassiperidium* (Pleosporales, Dothideomycetes), a new ascomycetous genus parasitic on *Fagus crenata* in Japan. *Mycosphere* 2018, 9, 1256–1267. [CrossRef]

5. Liu, Z.P.; Zhang, S.N.; Cheewangkoon, R.; Zhao, Q.; Liu, J.K. *Crassoascoma* gen. nov. (Lentitheciaceae, Pleosporales): Unrevealing Microfungi from the Qinghai-Tibet Plateau in China. *Diversity* 2022, 14, 15. [CrossRef]

6. Li, W.L.; Ba, D.F.; Liu, N.G.; Hyde, K.D.; Liu, J.K. *Aquatisphaeria thailandica* gen. et sp. nov. (Tetraplosphaeriaceae, Pleosporales) from freshwater habitat in Thailand. *Phytotaxa* 2021, 513, 118–128. [CrossRef]

7. Jones, E.B.G.; Devadatha, B.; Abdel-Wahab, M.A.; Dayaratne, M.C.; Zhang, S.N.; Hyde, K.D.; Liu, J.K.; Bahkali, A.H.; Sarma, V.V.; Tibell, S.; et al. Phylogeny of new marine Dothideomycetes and Sordariomycetes from mangroves and deep-sea sediments. *Bot. Mar.* 2020, 63, 155–181. [CrossRef]
39. Mantle, P.G.; Hawksworth, D.L.; Pazoutova, S.; Collinson, L.M.; Rassing, B.R. Anarosia littoralis gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycete from the littoral zone in The Bahamas. Mycol. Res. 2006, 110, 1371–1378. [CrossRef]

40. Crous, P.W.; Carnegie, A.J.; Wingfield, M.J.; Sharma, R.; Mughini, G.; Noordeloos, M.E.; Santini, A.; Shouche, Y.S.; Bezerra, J.D.P.; Dima, B.; et al. Fungal Plant description sheets: 688–950. Persoonia 2019, 42, 291–473. [CrossRef] [PubMed]

41. Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019, 10, 1–186. [CrossRef]

42. Crous, P.W.; Wingfield, M.J.; Lombard, L.; Roets, F.; Swart, W.J.; Alvarado, P.; Carnegie, A.J.; Moreno, G.; Luangsa-ard, J.; Thangavel, R.; et al. Fungal Plant description sheets: 951–1041. Persoonia 2019, 43, 223–425. [CrossRef]

43. Dai, D.Q.; Bhat, D.J.; Liu, J.K.; Zhao, R.L.; Hyde, K.D. Bambusicola, a new genus from bamboo with asexual and sexual morphs. Cryptogam. Mycol. 2012, 33, 363–379. [CrossRef]

44. Wijesinghe, S.N.; Wang, Y.; Camporesi, E.; Wanasinghe, D.N.; Boonmee, S.; Hyde, K.D. A new genus of Bambusicolaceae (Pleosporales) on Corylus avellana (Fagales) from China. Biodivers. Data J. 2020, 8, e59957. [CrossRef]

45. Saccardo, P.A. Sylloge Fungorum Omnium Hucusque Cognitorum. Persoonia 1883, 1, 7–272. [CrossRef]

46. Dai, D.Q.; Bahkali, A.H.; Li, W.J.; Bhat, D.J.; Zhao, R.L.; Hyde, K.D. Bambusica loculata sp. nov. (Bambusicolaceae) from bamboo. Phytotaxa 2015, 213, 122–130. [CrossRef]

47. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. Fungal Divers. 2017, 82, 1–105. [CrossRef]

48. Thambugula, K.M.; Wanasinghe, D.N.; Phillips, A.J.L.; Camporesi, E.; Bulgakov, T.S.; Phukhamsakda, C.; Ariyawansa, H.A.; Gunasekara, L.D.; Phookamsak, R.; Dissanayake, A.; et al. Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 2017, 8, 697–796. [CrossRef]

49. Yang, C.L.; Xu, X.L.; Liu, Y.G. Two new species of Bambusica (Bambusicolaceae, Pleosporales) on Phyllostachys heteroclada from Sichuan, China. Nova Hedwig. 2019, 108, 527–545. [CrossRef]

50. Monkai, J.; Wanasinghe, D.N.; Jeewon, R.; Promputtha, I.; Phookamsak, R. Morphological and phylogenetic characterization of fungi within Bambusicolaceae: Introducing two new species from the Greater Mekong Subregion. Mycol. Prog. 2021, 20, 721–732. [CrossRef]

51. Brahmanage, R.S.; Dayaratne, M.C.; Wanasinghe, D.; Thambugula, K.M.; Jeewon, R.; Chethana, K.W.T.; Samarakoon, M.C.; Tennakoon, D.S.; De Silva, N.J.; Camporesi, E.; et al. Taxonomic novelties of saprobic Pleosporales fungi from selected dicotyledons and grasses. Mycosphere 2020, 11, 2481–2541. [CrossRef]

52. Dong, W.; Wang, B.; Hyde, K.D.; McKenzie, E.H.C.; Raja, H.A.; Tanaka, K.; Abdel-Wahab, M.A.; Abdel-Aziz, F.A.; Doilom, M.; Phookamsak, R.; et al. Freshwater Dothideomycetes. Fungal Divers. 2020, 105, 319–575. [CrossRef]

53. Nitschke, T. Grundlage eines systems der Pyrenomyceten. Verh. Des Nat. Ver. Der Preuss. Rheinl. Westfal. Und Des Regier. Osnabrück 1869, 26, 70–77.

54. Saccardo, P.A. Sylloge Fungorum Omnium Hucusque Cognitorum. Sylloge Fungorum 1883, 2, 672.

55. Maharachchikumbura, S.S.; Wanasinghe, D.N.; Cheewangkoon, R.; Al-Sadi, A.M. Uncovering the hidden taxonomic diversity of fungi in Oman. Fungal Divers. 2021, 106, 229–268. [CrossRef]

56. Hashimoto, A.; Hirayama, K.; Takahashi, H.; Matsumura, M.; Okada, G.; Chen, C.Y.; Huang, J.W.; Kakishima, M.; Ono, T.; Tanaka, K. Resolving the Lophiostoma bipolare complex: Generic delimitations within Lophiostomataceae. Stud. Mycol. 2018, 90, 161–189. [CrossRef]

57. Bao, D.F.; Su, H.Y.; Maharachchikumbura, S.S.N.; Liu, J.K.; Nalumpang, S.; Luo, Z.L.; Hyde, K.D. Lignicolous freshwater fungi from China and Thailand: Multi-gene phylogeny reveals new species and new records in Lophiostomataceae. Mycosphere 2019, 10, 1080–1099. [CrossRef]

58. Doilom, M.; Dissanayake, A.J.; Wanasinghe, D.N.; Boonmee, S.; Liu, J.K.; Bhat, D.J.; Taylor, J.E.; Bahkali, A.H.; Mckenzie, E.H.C.; Hyde, K.D. Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers. 2017, 82, 107–182. [CrossRef]

59. Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunaratna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019, 95, 1–273. [CrossRef]

60. Jiang, H.B.; Phookamsak, R.; Hyde, K.D.; Mortimer, P.E.; Xu, J.C.; Kakumyan, P.; Karunaratna, S.C.; Kumla, J. A Taxonomic Appraisal of Bambusicolous Fungi in Occultibambusaceae (Pleosporales, Dothideomycetes) with New Collections from Yunnan Province, China. Life 2021, 11, 932. [CrossRef] [PubMed]

61. Yu, X.D.; Zhang, S.N.; Cheewangkoon, R.; Liu, J.K. Additions to Occultibambusaceae (Pleosporales, Dothideomycetes): Unrevealing Palmicolous Fungi in China. Diversity 2021, 13, 516. [CrossRef]

62. Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.; Jones, E.G.; Phookamsak, R.; Ariyawansa, H.A.; Boonmee, S.; Zhao, Q. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 80, 1–270. [CrossRef]
Zhang, J.F.; Liu, J.K.; Hyde, K.D.; Yang, W.; Liu, Z.Y. Fungi from Asian Karst formations II. Two new species of *Occultibambusa* (Occultibambusaceae, Dothideomycetes) from karst landforms of China. *Mycosphere* 2017, 8, 550–559. [CrossRef]

Tanaka, K.; Hirayama, K.; Yonezawa, H.; Hatakeyama, S.; Harada, Y.; Sano, T.; Shirouzu, T.; Hosoya, T. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with *Tetraploa*-like anamorphs. *Stud. Mycol.* 2009, 64, 175–209. [CrossRef]

Hyde, K.D.; Dong, Y.; Phookamsak, R.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Liu, N.G.; Abeywickrama, P.D.; Mapook, A.; Wei, D.; et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers.* 2020, 100, 5–277. [CrossRef]

Kelchner, S.A. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. *Mol. Phylogenet. Evol.* 2013, 67, 404–413. [CrossRef]

Feng, Y.; Liu, J.K.; Lin, C.G.; Chen, Y.Y.; Xiang, M.M.; Liu, Z.Y. Additions to the Genus *Arthrinium* (Apiosporaceae) From Bamboos in China. *Front. Microbiol.* 2021, 720, 12. [CrossRef] [PubMed]

Dai, D.Q.; Tang, L.Z.; Wang, H.B. A Review of Bambusicolous Ascomycetes. *Bamboo Curr. Future Prospect.* 2018, 165, 10. [CrossRef]

Dlamini, L.C.; Fakudze, S.; Makombe, G.G.; Muse, S.; Zhu, J. Bamboo as a Valuable Resource and its Utilization in Historical and Modern-day China. *BioResources* 2022, 17, 1926–1938. [CrossRef]

Sun, Y.R.; Goonasekara, I.D.; Thambugala, K.M.; Jayawardena, R.S.; Wang, Y.; Hyde, K.D. *Distoseptispora bambusae* sp. nov. (Distoseptisporaceae) on bamboo from China and Thailand. *Biodivers. Data J.* 2020, 8, e53678. [CrossRef] [PubMed]

Jiang, H.B.; Zhang, S.J.; Phookamsak, R.; Promputtha, I.; Kakumyan, P.; Xu, J.C. *Amphibambusa hongheensis* sp. nov., a novel bambusicolous ascomycete from Yunnan, China. *Phytotaxa* 2021, 505, 201–212. [CrossRef]