Li et al., 2019, Cell Reports 28, 2689–2703
September 3, 2019 © 2019 The Author(s).
https://doi.org/10.1016/j.celrep.2019.07.103
Nonreciprocal and Conditional Cooperativity Directs the Pioneer Activity of Pluripotency Transcription Factors

Sai Li,1 Eric Bo Zheng,2 Li Zhao,2 and Shixin Liu1,3,*

1Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA
2Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
3Lead Contact
*Correspondence: shixinliu@rockefeller.edu
https://doi.org/10.1016/j.celrep.2019.07.103

SUMMARY

Cooperative binding of transcription factors (TFs) to chromatin orchestrates gene expression programming and cell fate specification. However, the biophysical principles of TF cooperativity remain incompletely understood. Here we use single-molecule fluorescence microscopy to study the partnership between Sox2 and Oct4, two core members of the pluripotency gene regulatory network. We find that the ability of Sox2 to target DNA inside nucleosomes is strongly affected by the translational and rotational positioning of its binding motif. In contrast, Oct4 can access nucleosomal sites with equal capacities. Furthermore, the Sox2-Oct4 pair displays nonreciprocal cooperativity, with Oct4 modulating interaction of Sox2 with the nucleosome but not vice versa. Such cooperativity is conditional upon the composite motif’s residing at specific nucleosomal locations. These results reveal that pioneer factors possess distinct chromatin-binding properties and suggest that the same set of TFs can differentially regulate gene activities on the basis of their motif positions in the nucleosomal context.

INTRODUCTION

Transcription factors (TFs) access and interpret the genome by recognizing specific DNA sequences and regulating the transcriptional activity of selected sets of genes (Lambert et al., 2018; Ptashne and Gann, 2002). In eukaryotic nuclei, genomic DNA is wrapped around histone octamers, forming nucleosomes building blocks and higher order chromatin structures (Luger et al., 2012; McGinty and Tan, 2015). The compaction of DNA into chromatin often occludes TFs from their cognate binding motifs, thereby constituting an important regulatory layer of gene expression control and cell identity determination (Li et al., 2007; Segal and Widom, 2009). A subset of TFs, known as pioneer factors (PFs), possess the ability to access nucleosomal DNA and closed chromatin, which further recruits other chromatin-binding proteins and the transcription machinery to their target sites and initiate transcriptional reprogramming and cell fate transitions (Meers et al., 2019; Zaret and Mango, 2016). TF pairs can exhibit cooperative binding behavior; that is, binding of one factor to DNA facilitates targeting of the other (Morgunova and Taipale, 2017). Such cooperativity can be mediated by direct TF-TF interaction or through the DNA substrate (Jolma et al., 2015; Kim et al., 2013). Alternatively, because of the competition between TFs and histones for DNA binding, TF-TF cooperativity can be manifested indirectly and often nonspecifically in the context of chromatin (Adams and Workman, 1995; Mirny, 2010; Polach and Widom, 1996; Vashee et al., 1998). In this scenario, PFs are the first to engage and open up closed chromatin, making it more accessible to other TFs (Sartorelli and Puri, 2018; Zaret and Carroll, 2011).

One of the most prominent examples of TFs shaping gene expression pattern is the Yamanaka factors (Sox2, Oct4, Klf4, and c-Myc), which can convert mammalian somatic cells into induced pluripotent stem cells (Takahashi and Yamanaka, 2006). It was shown that Sox2, Oct4, and Klf4, but not c-Myc, can function as PFs by binding to nucleosomes in vitro and silent, DNase-resistant chromatin in vivo (Soufi et al., 2012, 2015). During reprogramming toward pluripotency, these factors cooperatively target selected enhancers and activate or repress the expression of distinct genes in a stage-specific manner (Chronis et al., 2017; Soufi et al., 2012).

Among these pluripotency TFs, Sox2, and Oct4 are also core members of the transcriptional regulatory network that governs embryogenesis and the maintenance of embryonic stem cells (Li and Belmonte, 2017; Rizzino and Wuebben, 2016). Sox2 contains an HMG domain that binds to the minor grove of the DNA helix, whereas Oct4 harbors a bipartite POU domain that interacts with the DNA major groove, allowing the formation of Sox2-Oct4-DNA ternary complexes with the TF pair binding to adjacent motifs (Reményi et al., 2003; Williams et al., 2004). Chromatin immunoprecipitation sequencing (ChIP-seq) experiments revealed that Sox2 and Oct4 co-occupy the cis-regulatory elements of a large number of target genes (Boyer et al., 2005; Chen et al., 2008; Whyte et al., 2013), suggesting that this TF pair works synergistically to regulate gene expression. Indeed, juxtaposed HMG-POU composite motifs are found upstream of many pluripotency-associated genes (Ambrosetti et al., 1997; Nishimoto et al., 1999; Okumura-Nakanishi et al., 2005; Rodda et al., 2005; Tomioka et al., 2002).
Despite extensive research, the capacity of and mutual relationship between Sox2 and Oct4, and PFs in general, in targeting nucleosomal DNA remains a matter of debate (Biddle et al., 2019; Chronis et al., 2017; Franco et al., 2015; Iwafuchi-Doi et al., 2016; Soufi et al., 2015; Swinstead et al., 2016). Recent data suggested that the pioneer activity of a given TF may be conditional and dependent on the local chromatin environment (King and Klose, 2017; Liu and Kraus, 2017; Soufi et al., 2015; Swinstead et al., 2016; Yu and Buck, 2019). Popular methods of choice for studying TF-chromatin interaction, such as genome-wide binding and bulk biochemical assays, lack sufficient temporal resolution to inform the time order of binding events (usually occurring on the order of seconds) by multiple TFs. Single-particle tracking in living cells can capture the dynamic nature of TF binding (Chen et al., 2014; Lam et al., 2012; White et al., 2016), but the underlying DNA sequence and chromatin state in these assays are usually not well defined. By contrast, in vitro single-molecule measurements allow precise control of the substrates and have been used to provide quantitative information on the binding/dissociation kinetics of TFs and chromatin regulators (Choi et al., 2017; Donovan et al., 2019; Gibson et al., 2017; Klic et al., 2015; Luo et al., 2014).

In this work, we used single-molecule fluorescence microscopy to measure the binding dynamics of Sox2 and Oct4—both individually and in combination—on a variety of DNA and nucleosome substrates. We found that although both classified as PFs, Sox2 and Oct4 exhibit markedly distinct properties of nucleosome targeting. Sox2 strongly favors nucleosome dyad-positioned sites over end-positioned ones, whereas Oct4 indiscriminately binds to targets at all positions. Oct4 and Sox2 are hierarchically recruited to composite nucleosomal motifs, with Oct4 predominantly engaging first. We further demonstrated that the Sox2-Oct4 pair displays nonreciprocal cooperativity and that such cooperativity is dependent on the location of the composite motif with respect to the nucleosome. Consistent with these in vitro results based on a strong nucleosome positioning sequence (NPS), our analyses of the genomic data showed that the DNA binding sites of Sox2, but not Oct4, are preferentially located toward the center of the nucleosome. This study helps clarify the biophysical rules governing the Sox2-Oct4 partnership and suggests that genes may be differentially regulated by the same set of TFs on the basis of their motif positioning in the nucleosomal context.

RESULTS

Single-Molecule Analysis of Sox2 Binding to DNA

We labeled the purified full-length human Sox2 with a Cy5 fluorophore near its C terminus (Figure S1). We also constructed a DNA template containing the 601 NPS (Lowary and Widom, 1998) with a canonical Sox2 binding motif (CTTTGTT) located at its end (nucleotides 1–7), which was termed DNA$_{601}$ (Figure 1A). Cy3-labeled DNA templates were immobilized on a glass coverslip and their locations visualized using total internal reflection fluorescence (TIRF) microscopy (Figures 1B and 1C). Cy5-Sox2 was injected into the flow chamber at a concentration of ~2 nM. Binding and dissociation of individual Sox2 molecules at the DNA loci were monitored in real time (Figure 1C). Single-molecule fluorescence trajectories allowed us to measure the waiting time (t_{off}) before the first binding event occurred, as well as the residence time (t_{on}) of Sox2 on DNA (Figure 1D). The distribution of t_{on} built from many binding events can be well fit by a single-exponential function (Figures 1E and S2). After correcting for dye photobleaching (Figure S1C), we determined the characteristic lifetime ($	au$) of Sox2 binding to DNA$_{601}$, governed by the corresponding dissociation rate constant, to be 19.7 ± 2.3 s.

Sox2 Fails to Stably Bind to End-Positioned Nucleosomal DNA

Sox2 is considered a PF, capable of targeting DNA sites within nucleosome-occupied genomic regions (Zaret and Mango, 2016). To directly observe the behavior of Sox2 on nucleosomal DNA, we created a mononucleosome substrate, termed NuC$_{601}$-End, which was assembled with DNA$_{601}$-End and Cy3-labeled histone H2B as well as unlabeled H2A, H3, and H4 (Figure 1A). Fluorescence signal from Cy3-H2B was used to localize individual nucleosome substrates on the surface (Figure 1F). We used DNase I digestion followed by sequencing to show that NuC$_{601}$-End shares an identical digestion pattern with nucleosomes assembled with the unmodified 601 NPS (Figure S3), suggesting that nucleosome positioning is not perturbed by the engineered Sox2 binding motif.

Interestingly, we found that the average residence time of Sox2 on NuC$_{601}$-End (4.6 ± 1.7 s) is 5-fold shorter than that on DNA$_{601}$-End. The t_{on} distribution on NuC$_{601}$-End cannot be described by a single-exponential model but is well fit by two exponential components: a predominant, shorter lived population ($t_{\text{on1}} = 1.3$ s, fraction $A_1 = 85\%$) and a rare, longer lived one ($t_{\text{on2}} = 14.1$ s, $A_2 = 15\%$) (Figures 1G–1I). The fast component likely corresponds to the nonsequential binding of Sox2 on chromatin substrates as reported before (Chen et al., 2014). The slow component, on the other hand, likely represents the specific interaction between Sox2 and its cognate DNA sequence. We also compared the average t_{on} between DNA$_{601}$-End and NuC$_{601}$-End and found no significant difference (Figure 1J), suggesting similar association rates for Sox2 binding to DNA and nucleosome substrates.

Notably, the specific binding mode of Sox2 on NuC$_{601}$-End constitutes only a minor fraction of all binding events, indicating that nucleosome packing makes the DNA motif less accessible to Sox2. Indeed, when we superimposed the Sox2-DNA structure with the nucleosome structure, we observed substantial steric clash of the Sox2 HMG domain against the histone H3 and the neighboring DNA gyre (Figure 1K; NuC$_{601}$-End). Then we moved the Sox2 binding motif inward (toward the nucleosome dyad) by 7 bp and created a new nucleosome substrate, NuC$_{601}$-End+7. This change shifts the phasing of the minor groove face of the DNA motif, which is recognized by Sox2, relative to the histone octamer, such that the steric hindrance between Sox2 and the nucleosome is much reduced (Figure 1K; NuC$_{601}$-End+7). Accordingly, we observed a significantly larger fraction of long-lived binding events compared with NuC$_{601}$-End ($A_2 = 62\%$ for NuC$_{601}$-End+7 versus 15\% for NuC$_{601}$-End; Figure 1I), supporting the notion that these events correspond to the specific Sox2-nucleosome interaction mode.
Figure 1. Sox2 Displays Differential Binding Kinetics on DNA and Nucleosome Substrates

(A) Diagram of DNA and nucleosome substrates containing a Sox2 binding motif (blue) located near the end of a 601 NPS (orange).

(B) Schematic of the single-molecule TF binding assay using a total internal reflection fluorescence microscope.

(C) A representative field of view under green and red laser excitation showing immobilized substrates (marked by circles) and bound TFs (marked by arrowheads), respectively.

(D) A representative fluorescence-time trajectory showing Cy5-labeled Sox2 binding to a Cy3-labeled DNA₅-End substrate. A 532 nm laser was first turned on to locate the surface-immobilized substrates. Then a 640 nm laser was switched on to monitor Sox2 binding and dissociation. Sox2 was injected at the timepoint indicated by the dashed line. The waiting time before the first binding event occurred (tₐₜ) and the lifetime of binding events (tₖₜ) were measured.

(E) Cumulative distribution (open circles) of the Sox2 residence time (tₙ) on DNA₅-End and its fit (red curve) to a single-exponential function, y(t) = A × exp(-t/tₙ) + y₀.

(F) A representative fluorescence-time trajectory showing Cy5-Sox2 binding to a Cy3-labeled Nuc₅-End substrate. Two photobleaching steps under green laser excitation confirm the existence of two Cy3-labeled H2B, suggesting an intact nucleosome.

(G) Cumulative distribution (open circles) of the Sox2 residence time (tₙ) on Nuc₅-End and its fit (solid curve) to a double-exponential function, y(t) = A₁ × exp(-t/t₁) + A₂ × exp(-t/t₂) + y₀. The dashed curve displays a poor fit to a single-exponential function.

(H) Time constants for the two exponential components (t₁ and t₂) from the double-exponential fit shown in (G) (black bars for Nuc₅-End, blue bars for Nuc₅-End+7).

(I) Relative weights of the fast (A₁) and slow (A₂) exponential components for Nuc₅-End (black) and Nuc₅-End+7 (blue).

(J) Average waiting time (tₐₜ) before Sox2 binding to DNA₅-End or Nuc₅-End.

(K) The Sox2-DNA structure (PDB: 1GT0; yellow) superimposed on the 601 nucleosome structure (PDB: 3L2O; gray) aligned by the DNA motif (blue), which spans nucleotides 1–7 for Nuc₅-End (left) or nucleotides 8–14 for Nuc₅-End+7 (right). Steric clash between Sox2 and the nucleosome is highlighted in red.

Data are represented as mean ± SD. See also Figures S1, S2, and S3.
Sox2 Stably Engages with Binding Sites near the Nucleosome Dyad

The data above show that nucleosome wrapping can significantly inhibit Sox2 binding to an end-positioned nucleosomal DNA motif. To test whether this inhibitory effect is universal among all nucleosomal DNA sites, we placed the Sox2 binding motif at the center of the 601 NPS (nucleotides 72–78) and assembled a nucleosome substrate, NucS-Dyad (Figure 2A). In stark contrast to its behavior on NucS-End, Sox2 exhibited prolonged binding to NucS-Dyad (an average t_{on} of 22.2 s for NucS-Dyad versus 4.6 s for NucS-End). The residence time distribution for Sox2 on NucS-Dyad is also characterized by a double-exponential function ($t_1 = 2.1$ s, $t_2 = 36.8$ s). Importantly, specific Sox2 binding events on NucS-Dyad are both longer lived (t_2) and more prevalent (A_2) than those on NucS-End (Figures 2B and 2C, compare End and Dyad columns), indicating that the dyad position presents an optimal environment for Sox2 engagement. This interpretation is supported by structural superposition that shows minimal interference imposed by histones and nucleosomal DNA on Sox2 (Figure 2D). This is also in accordance with a recent study reporting that Sox family TFs exhibit preferred binding around the nucleosome dyad region (Zhu et al., 2018).

To evaluate whether the extended dyad region is in general favored by Sox2, we generated three more nucleosome substrates by shifting the Sox2 motif away from the dyad axis, either to the right by 3 or 6 bp or to the left by 2 bp (NucS-Dyad+3, NucS-Dyad+6, and NucS-Dyad-2, respectively; Figure 2A). We found that all dyad-positioned sites can better accommodate specific Sox2 binding than the end-positioned site, but to different degrees (Figures 2B and 2C). NucS-Dyad and NucS-Dyad+3 in which the minor groove of the Sox2 binding motif is mostly outward facing, have higher fractions of long-lived binding. On the other hand, the minor groove is mostly inward facing for NucS-Dyad+6 and NucS-Dyad-2, which also feature lower fractions of specific Sox2 interaction (Figures 2C–2E and S4A–S4C). Thus, even though Sox2 generally prefers the dyad region, the likelihood and lifetime of its specific nucleosome-binding mode are nonetheless influenced by the rotational phasing of the DNA motif.

Next we asked whether the direction of Sox2 on DNA plays any role in its nucleosome-targeting activity. To this end, we engineered a reverse Sox2 motif at the dyad axis by placing the preferred binding around the nucleosome dyad region (Zhu et al., 2018).

Figure 2. The Pioneer Activity of Sox2 Is Regulated by the Rotational Phasing of Its Binding Motif
(A) Diagram of nucleosome substrates harboring a Sox2 binding motif around the nucleosome dyad axis. In the NucRev-S-Dyad construct, the Sox2 motif is placed in the opposite direction to those in the other constructs.
(B) Time constants for the fast and slow exponential components (t_1 and t_2) that describe the residence time of Sox2 on different nucleosome substrates.
(C) Fraction of long-lived, specific Sox2 binding events (A_2) for the different nucleosome substrates.
(D) Structural superposition illustrating the putative binding configuration of Sox2 on the NucS-Dyad substrate. The Sox2 HMG domain and the DNA motif are shown in yellow and blue, respectively.
(E) Zoomed-in view of the nucleosome dyad region displaying the orientation of the DNA minor groove. The midpoints of the Sox2 binding motif placed at different positions (Dyad-2, Dyad, Rev-Dyad, Dyad+3, and Dyad+6) are indicated in blue.

Data are represented as mean ± SD. See also Figures S2, S3, and S4.
canonical CTTTGTT sequence in the opposite strand and reconstituted another nucleosome substrate, termed NuCRev-S-Dyad (Figure 2A). This change flips the direction of the bound Sox2 on DNA but keeps the minor groove outward facing (Figure S4D). We found that the lifetime of the specific binding events (t_{2o}) on NuCRev-S-Dyad is reduced compared with NuC3-Dyad (Figure 2B), which may be attributed to increased steric hindrance or altered local sequence context. The relative weight of the specific binding mode (A_2) on NuCRev-S-Dyad still remains high (Figure 2C), which can be explained by the outward-facing minor groove (Figure 2E). Collectively, these results demonstrate that the pioneer activity of Sox2 is sensitively modulated by the position, orientation, and polarity of its binding motif within the nucleosome.

Oct4 Binds Equally to End- and Dyad-Positioned Nucleosomal DNA Motifs

Next we examined the behavior of the other core pluripotency TF, Oct4, on DNA and nucleosome substrates. We purified and fluorescently labeled full-length human Oct4 with Cy5 (Figure S1), incorporated an 8-bp-long Oct4 binding motif into the 601 NPS at either the end or the dyad position (DNA3-O-End and DNA3-Dyad) and assembled nucleosomes with these DNA templates (NuC3-O-End and NuC3-Dyad; Figure 3A). We then conducted single-molecule TIRF experiments to measure the interaction between Oct4 and these substrates (Figure 3B). The t_{on} distribution of Oct4 on each substrate can be well described by single-exponential kinetics (Figure 3C). Interestingly, unlike Sox2, the residence times (t_{on}) of Oct4 on these substrates are statistically identical among each other (Figure 3D), as are the average t_{off} values that describe the association rates of Oct4 (Figure 3E).

These results suggest that Oct4 displays no discrimination between bare DNA and nucleosome substrates or between end-positioned and dyad-positioned nucleosomal DNA motifs (Figures S4E and S4F). In addition, reversing the direction of the nucleosomal DNA motif does not significantly change the binding behavior of Oct4 either (Figures S4G and S4H).

We note that in all of the Sox2/Oct4 binding experiments described above, the density of fluorescent nucleosomes on the surface did not appreciably decrease after addition of the TFs (Figures 3F–3H), suggesting that Sox2/Oct4 binding does not evict histones from the DNA.

Nonreciprocal Regulation between Sox2 and Oct4 in Nucleosome Binding

Having characterized the individual behaviors of Sox2 and Oct4, next we set out to interrogate the cooperativity between this TF pair in nucleosome targeting. First we engineered a composite Sox2/Oct4 binding motif into the 601 NPS at the end position (nucleotides 1–15) and assembled the nucleosome substrate, termed NuC3SO-End (Figure 4A). We then examined the effect of Oct4 on Sox2 binding by complementing Cy5-Sox2 with unlabeled Oct4 in the single-molecule experiments. Remarkably, we found that Oct4 prolonged the average residence time of Sox2 on NuC3SO-End by 3-fold (Figure 4B). A detailed kinetic analysis revealed that the lengthened dwell time is attributed mainly to increased weight of the specific Sox2 binding mode ($A_2 = 13\%$ without Oct4 versus 36\% with Oct4; Figures 4C and 4D). On the other hand, Oct4 had little impact on the association kinetics of Sox2 (Figure S5A). Therefore, the net effect is an enhanced affinity of Sox2 to an end-positioned nucleosomal target in the presence of Oct4. This conclusion was corroborated by the bulk electrophoretic mobility shift assay (EMSA), which showed that the dissociation constant (K_d) for Sox2-NuC3SO-End interaction is smaller in the presence of Oct4 than in its absence (Figures 4E, 4F, and S5C). Notably, the stimulatory effect of Oct4 on Sox2 is restricted to the nucleosome targets, as Oct4 exerts no influence on Sox2 interaction with the bare DNA substrate DNA3SO-End (Figures 4B and S5A).

Besides the canonical composite motif in which Sox2 and Oct4 binding sites are immediately juxtaposed with each other, a variant motif composed of Sox2 and Oct4 sites separated by 3 bp is also found in some cis-regulatory elements, such as the Fgf4 enhancer (Ambrosetti et al., 1997). Thus we generated a nucleosome substrate that contains such a gapped composite motif at its end position (NuC3SO+3-End; Figure 4A) and found that Oct4 exerts a similar, albeit somewhat weaker, positive effect on Sox2 engagement (compare NuC3SO+3-End with NuC3SO-End; Figures 4B–4D).

To assess how the relative direction of Sox2 and Oct4 binding in a composite site might influence their nucleosome-mediated cooperativity, we juxtaposed a reverse Sox2 motif and a forward Oct4 motif at the nucleosome end position, either with no gap or with a 3 bp gap (NuCRev-SO-End and NuCRev-SO+3-End; Figure 4G). In contrast to the results for NuC3SO-End and NuC3SO+3-End, Oct4 did not stabilize Sox2 binding in the oppositely oriented configuration (Figure 4H).

We then conducted the converse experiments by using Cy5-Oct4 and unlabeled Sox2 to check the influence of Sox2 on the interaction of Oct4 with DNA and nucleosome substrates. Neither t_{on} nor t_{off} of Oct4 on any of these substrates was significantly affected by Sox2 (Figures 4I, 4J, and S5B). Therefore, despite both being classified as PFs, Oct4 can stabilize the engagement of Sox2 with certain nucleosomal DNA sites but not vice versa.

Hierarchically Ordered Targeting of Oct4 and Sox2 to Nucleosomes

To directly follow the order of binding by Sox2 and Oct4 to the same nucleosome target, we labeled the TF pair with distinct fluorophores—Oct4 with Cy5 and Sox2 with AlexaFluor488—and used an alternating laser excitation scheme to simultaneously monitor their behaviors (Figure 5A). We found that the vast majority of overlapping Sox2/Oct4 binding events featured Oct4 binding first followed by Sox2 arrival (Figures 5B–5D). This result, together with the single-color residence time measurements described above, suggests that Oct4 facilitates the stable interaction of Sox2 with target sites located inside the nucleosome. Consistently, in the dual-color experiment, the Sox2 binding events that overlapped with an Oct4 binding event were significantly longer lived than those that did not overlap (Figure 5E).

Effect of Oct4 on the Nucleosome Binding Activity of Sox2 Is Position Dependent

We then asked whether the enhanced binding of Sox2 in the presence of Oct4 could be observed at other nucleosomal
positions besides the end. In particular, we were curious as to whether binding to the nucleosome dyad, which is already favored by Sox2, could be further stimulated by Oct4. To answer this question, we placed a canonical Sox2:Oct4 composite motif at the dyad position (nucleotides 72–86) of the 601 NPS (NucSO-Dyad; Figure 6A). Surprisingly, this construct yielded a markedly different picture than NucSO-End: Oct4 had a negligible impact on t_{on} of Sox2 on NucSO-Dyad (Figure 6B); it moderately reduced the lifetime of specific Sox2 binding (Figure 6C), but did not affect its relative population (Figure 6D). Oct4 also did not cause a noticeable change in t_{off} of Sox2 on NucSO-Dyad (Figure S5A). Moreover, EMSA results showed
Figure 4. Oct4 and Sox2 Exhibit Nonreciprocal Cooperativity

(A) Diagram of nucleosome substrates containing an end-positioned Sox2-Oct4 composite motif, either with no gap (NucSO-End) or with a 3 bp gap between the Sox2 and Oct4 binding motifs (NucSO+3-End).

(B) Average residence times (t_{on}) of Sox2 on different DNA and nucleosome substrates shown in (A) in the absence or presence of Oct4.

(C) Time constants for the long-lived, specific Sox2 binding mode (τ_2) on NucSO-End and NucSO+3-End in the absence or presence of Oct4.

(D) Relative populations of specific Sox2 binding events (A_2) on NucSO-End and NucSO+3-End in the absence or presence of Oct4.

(E) A representative EMSA gel showing the formation of Sox2-NucSO-End complexes, or the formation of Sox2-NucSO-End-Oct4 ternary complexes when Oct4 is present, at different Sox2 concentrations. Cy5-labeled Sox2 and unlabeled Sox2 exhibited virtually identical binding patterns (not shown).

(F) Dissociation constant (K_D) for the Sox2-NucSO-End interaction in the absence or presence of Oct4 determined from the EMSA results. n = 3 experimental replicates.

(G) Diagram of nucleosome substrates containing an end-positioned composite motif in which Sox2 and Oct4 sites are oriented in opposite directions, either with no gap (NucRevSO-End) or with a 3 bp gap (NucRevSO+3-End).

(H) Average residence times (t_{on}) of Sox2 on different DNA and nucleosome substrates shown in (G) in the absence or presence of Oct4.

(I) Average residence times (t_{on}) of Oct4 on different DNA and nucleosome substrates containing an end-positioned composite motif in the absence or presence of Sox2.

(J) Same as (I), except that the substrates contain a composite motif in which Sox2 and Oct4 sites are oriented in opposite directions.

Data are represented as mean ± SD. See also Figures S5 and S6.
that K_D for the Sox2-NucSO-Dyad interaction was increased by the presence of Oct4 (Figures 6E, 6F, and S5D). These results together illustrate that instead of promoting Sox2 binding as observed at end-positioned sites, Oct4 weakly diminishes the affinity of Sox2 to the nucleosome dyad. We speculated that this mild inhibition might be caused by the geometrical interference between the two TFs. Indeed, when a 3 bp gap was inserted between Sox2 and Oct4 binding sites at the dyad position (NucSO+3-Dyad; Figure 6A), the negative effect of Oct4 on the specific Sox2 binding mode was attenuated (Figure 6C).

On the other hand, Sox2 exerts minimal influence on Oct4 binding to dyad-positioned sites (Figures 6G and S5B), similar to the results obtained with end-positioned sites.

Overall, our data show that the effect of Oct4 on the nucleosome binding activity of Sox2 could be positive, negative, or neutral depending on the position and configuration of the composite motif in the nucleosome context. Moreover, it is worth mentioning that the nonreciprocal and conditional cooperativity between Oct4 and Sox2 is position dependent, while Oct4’s is not. We did not observe clear cooperativity between Sox2 and Oct4 on NucLIN28B (Figures S6D and S6E). This can be rationalized by the fact that the Sox2 and Oct4 binding motifs within NucLIN28B are oriented in opposite directions and separated by

Figure 5. Hierarchical Engagement of Oct4 and Sox2 in Nucleosome Targeting

(A) Schematic of the three-color TIRF assay that simultaneously monitors Sox2 and Oct4 binding. Histone H2B, Oct4, and Sox2 are labeled with Cy3, Cy5, and AlexaFluor488, respectively.

(B) Representative fluorescence-time trajectories showing overlapping Sox2 and Oct4 binding events on NucSO-End, which reveal the order of TF engagement.

(C) Pie chart showing the distribution of different scenarios regarding the order of Sox2/Oct4 binding to nucleosome substrates. $n = 134$ (number of overlapping Sox2 and Oct4 binding events analyzed).

(D) Histogram of the lag time between Oct4 and Sox2 binding. The positive part of the histogram (red) corresponds to Oct4-first events and is fit to a single-exponential function (black curve).

(E) Cumulative distributions of the Sox2 residence time for the binding events that overlapped with an Oct4 binding event (filled circles) and for those that did not overlap (open circles) ($p = 3.3 \times 10^{-11}$, two-sided Kolmogorov-Smirnov test).

See also Figures S5 and S6.

Pioneer Activities of Pluripotency TFs at a Native Genomic Locus

Next we explored the binding behavior of Sox2 and Oct4 at a natural genomic site. We chose the human LIN28B locus, which encodes a key protein regulating cell pluripotency and reprogramming (Shyh-Chang and Daley, 2013). We cloned a 162-bp-long DNA segment from this region, which is occupied by a well-positioned nucleosome and targeted by both Sox2 and Oct4 (Soufi et al., 2015). We then used this DNA template to reconstitute nucleosomes, termed NucLIN28B. The predicted cognate Sox2 and Oct4 binding motifs are both located between the end and center of NucLIN28B (Figure S6A) (Soufi et al., 2015). We found that the average residence time of Sox2 on NucLIN28B is longer than that on NucSO-End but shorter than that on NucSO-Dyad (Figure S6A). In contrast, t_{avg} for Oct4 on NucLIN28B is indistinguishable from those on NucSO-End and NucSO-Dyad (Figure S6C). These results lend further support to our conclusion that Sox2’s pioneer activity is position dependent, while Oct4’s is not. We did not observe clear cooperativity between Sox2 and Oct4 on NucLIN28B (Figures S6D and S6E). This can be rationalized by the fact that the Sox2 and Oct4 binding motifs within NucLIN28B are oriented in opposite directions and separated by...
3 bp, consistent with the results for NucRev-SO-End and NucRev-SO+3-End (Figures 4G and 4H).

The LIN28B locus is also bound by c-Myc, another Yamanaka TF that, unlike Oct4 and Sox2, is thought to lack the pioneer activity and preferentially bind to open chromatin (Soufi et al., 2015). We purified and fluorescently labeled c-Myc together with its heterodimeric partner Max (Figure S1) and tested its ability to bind DNA and nucleosome substrates at the single-molecule level (Figure S6F). We found that c-Myc bound to DNA-LIN28B and Nuc-LIN28B much more transiently compared with Sox2 and Oct4 (Figure S6G). Thus, c-Myc possesses an inherent, albeit weak, ability to target nucleosomes.

Figure 6. Oct4 Negatively Influences Sox2 Binding to the Nucleosome Dyad

(A) Diagram of nucleosome substrates containing a dyad-positioned Sox2:Oct4 composite motif, either with no gap (NucSO-Dyad) or with a 3 bp gap between the Sox2 and Oct4 motifs (NucSO+3-Dyad).

(B) Average residence times (t_{on}) of Sox2 on different DNA and nucleosome substrates shown in (A) in the absence or presence of Oct4.

(C) Time constants for the specific Sox2 binding mode (τ_2) on NucSO-Dyad and NucSO+3-Dyad in the absence or presence of Oct4.

(D) Relative populations of specific Sox2 binding events (A_2) in the absence or presence of Oct4.

(E) A representative EMSA gel showing the formation of Sox2-NucSO-Dyad complexes at different Sox2 concentrations in the absence or presence of Oct4.

(F) Dissociation constant (K_d) for the Sox2-NucSO-Dyad interaction in the absence or presence of Oct4 determined from the EMSA results. n = 3 experimental replicates.

(G) Average residence times (t_{on}) of Oct4 on different DNA and nucleosome substrates containing a dyad-positioned composite motif in the absence or presence of Sox2.

Data are represented as mean ± SD. See also Figures S5 and S6.
recapitulated on a genomic scale, we mined published nucleosome mapping and Sox2/Oct4 ChIP-seq data and interrogated the distributions of Sox2 and Oct4 binding sites relative to nucleosome locations (Figure 7A). We first calculated the aggregate nucleosome-positioning scores surrounding Sox2/Oct4 binding sites in mouse epiblast stem cells (mEpiSCs) (Matsuda et al., 2017) and mouse embryonic stem cells (mESCs) (Teif et al., 2012). In both cell types, the average nucleosome occupancy across all Sox2 binding sites is greater than that for all Oct4 binding sites (Figure 7B), indicating that...
Sox2 binding sites are more enriched in nucleosome-occupied regions. We then plotted the distribution of Sox2/Oct4 binding sites in mEpiSCs averaged over all nucleosome-bound regions aligned by their dyad positions. Within the 147 bp window corresponding to the nucleosome, Sox2 binding sites exhibited a strong preference for the dyad region over the edges of the nucleosome (Figure 7C). In contrast, the distribution of Oct4 binding sites within the nucleosome showed no significant difference between nucleosome dyad and ends (Figure 7D). Similar patterns were observed in mESCs (Figures 7E and 7F) and human ESCs (Figure S7). Intriguingly, the distributions of noncanonical Sox2 and Oct4 motifs in the human genome, which are enriched in nucleosome-occupied regions as previously reported (Soufi et al., 2015), showed distinct patterns from those of canonical motifs (Figure S7), implying that the genome encodes subtle and diverse regulatory information that instructs TF targeting.

DISCUSSION

TF binding positions are usually classified into nucleosome-depleted and nucleosome-enriched regions. In this work, we went beyond such general localization analysis by dissecting the dynamic binding pattern of a TF within a nucleosome. Compared with bulk biochemical and genome-wide binding assays, our single-molecule platform affords higher temporal resolution and unique kinetic information, which enabled us to quantitatively determine the cooperativity between pluripotency resolution and unique kinetic information, which enabled us to interrogate TF-chromatin interaction, the list of nucleosome-binding TFs is expected to continue to grow. Our data further suggest that the pioneer activity of these TFs, governed by the structural characteristics of their respective DNA-binding domains, is not a binary property but rather falls on a continuous spectrum.

Distinct Nucleosome-Targeting Properties of PFs

TFs generally prefer binding to nucleosome-depleted and nucleosome-enriched regions in the genome (Wang et al., 2012), with the exception of PFs that are able to access closed chromatin (Slattery et al., 2014; Zaret and Mango, 2016). The ensuing question then is, does a PF target all nucleosomal DNA sites with equivalent kinetics? We show that, at least for some PFs, the answer is no. In accordance with earlier bulk studies (Liu and Kraus, 2017; Zhu et al., 2018), our single-molecule results demonstrate that the pioneer activity of Sox2 is sensitive to both translational and rotational positioning of its cognate motif within the nucleosome. Dyad-positioned sites support prolonged Sox2 binding compared with end-positioned sites. This may be because the dyad region, where only one DNA gyre is wound, can better accommodate DNA bending and minor groove widening that are essential for recognition by the HMG domain of Sox2 (Scaffidi and Bianchi, 2001). The specific Sox2 binding mode at the dyad region is even more stable than Sox2 interaction with bare DNA, implying additional contacts between the histones and Sox2. As to the rotational setting of the Sox2 binding motif, a more accessible minor groove (facing away from the histone octamer) generally corresponds to a higher affinity. A preference for specific motif positioning in the nucleosome context has also been suggested for other TFs, such as p53, which favors exposed sites (Cui and Zhurkin, 2014) and nucleosome edges (Yu and Buck, 2019).

On the contrary, we found no positional preference for Oct4, which indiscriminately targets nucleosomal DNA at different locations. This could be rationalized by the fact that Oct4 contains two DNA-binding domains (POU5 and POU4D3), each recognizing a 4 bp half-motif locating at opposite sides of the DNA helix (Esch et al., 2013). Regardless of the nucleosomal DNA position, one of these half-motifs is solvent exposed, which is apparently sufficient for mediating stable Oct4-nucleosome interaction. In support of this idea, partial motifs are prevalently found in Oct4 target sites located within nucleosome-enriched genomic regions (Soufi et al., 2015). It was recently reported that POU family TFs exhibit a preference toward nucleosome edges (Zhu et al., 2018). However, this conclusion was drawn from the behaviors of the TF DNA-binding domains, while we used full-length Oct4 in the current study.

Therefore, although both regarded as PFs, Sox2 and Oct4 display drastically different nucleosome binding profiles. We note that our interpretations are based on the superposition between the available structures of TF-DNA complexes and unbound nucleosomes. It is conceivable that the nucleosome structure may be remodeled upon TF engagement. We found that c-Myc, previously thought not to have an intrinsic nucleosome-targeting capability, can nonetheless bind to nucleosomal DNA, albeit transiently. With more sensitive methods such as single-molecule imaging being deployed to interrogate TF-chromatin interaction, the list of nucleosome-binding TFs is expected to continue to grow. Our data further suggest that the pioneer activity of these TFs, governed by the structural characteristics of their respective DNA-binding domains, is not a binary property but rather falls on a continuous spectrum.

Nonreciprocal and Conditional TF-TF Cooperativity

Clustered binding of TFs is a hallmark of cis-regulatory elements, such as promoters and enhancers, which integrate multiple TF inputs to direct gene expression. High-throughput methods have been developed to systematically determine the binding patterns of TF pairs on DNA (Chang et al., 2017; Joilma et al., 2015; Siggers et al., 2011; Slattery et al., 2011). However, the biophysical basis for cooperative TF binding in the nucleosome context remains underexplored. In particular, the relationship of chromatin targeting between a PF and a non-pioneer factor, and between a pair of PFs, is still under debate. Using the Sox2-Oct4 TF pair and 601 NPS as a model system, our study sheds new light on this issue. First of all, cooperativity can be unilateral. Oct4 stabilizes the binding of Sox2 to an end-positioned motif, perhaps by opening up a stretch of nucleosomal DNA and generating a local environment permissive to Sox2 binding (Figure 7G). Conversely, Sox2 has no effect on the behavior of Oct4 on the nucleosome. Using multi-color imaging, we directly followed the order of TF engagement with the nucleosome and found that Oct4 preceding Sox2 is the predominant scenario. This is notably different from live-cell results (Chen et al., 2014), which concluded that Sox2 is the lead TF guiding Oct4 to its target sites. This conclusion was based on single-color imaging as well as mathematical modeling and was later
challenged by theoretical re-analysis (Biddle et al., 2019). Such discrepancy could be due to the heterogeneous chromatin states inside the cell, which may complicate data interpretation. In any case, the pioneer activity of a TF appears to be hierarchical, reinforcing the aforementioned notion that it should not be considered as an all-or-none trait.

Second, we showed that the Sox2-Oct4 cooperativity is strongly dependent on the geometry of the composite motif. Contrary to the positive effect exerted at nucleosomal-end positions, Oct4 has a negative impact on Sox2’s access to the dyad region, where Sox2 exhibits a robust pioneer activity by itself. We speculate that without the benefit of creating extra free DNA surface for Sox2, steric hindrance between the two proteins may become the deciding factor around the dyad region. Therefore, when two TFs are invading the same nucleosome, multiple mechanisms can contribute to their interplay, yielding synergistic or antagonistic binding depending on the specific motif arrangement. The determinants of Sox2-Oct4 cooperativity have been studied in depth with DNA substrates (Jauch et al., 2011; Merino et al., 2014; Reményi et al., 2003; Tapia et al., 2015). Future structural work on the Sox2-Oct4-nucleosome ternary complexes will help illuminate the mechanism by which the nonreciprocal and conditional cooperativity is accomplished.

The notion of mixed cooperativity across distinct genomic loci was also recently proposed in a theoretical study to explain in vivo Sox2 and Oct4 binding data (Biddle et al., 2019). Whether this phenomenon is applicable to other TF pairs warrants further investigation. Additionally, in this work we mainly used the 601 NPS, which has an exceptionally strong affinity to histone octamers (Vasudevan et al., 2010). It is worthwhile to evaluate to what extent the TF binding patterns hold using natural nucleosomal DNA sequences with higher accessibility (Takizawa et al., 2018).

Perspective

Combinatorial control of gene expression by specific TF circuits underlies the operation of diverse gene regulatory networks (Thompson et al., 2015). Our results point to an intriguing scenario in which the same group of TFs can activate one set of genes while repressing another set on the basis of their differential cooperativity in specific chromatin contexts. Importantly, TFs need not directly interact with one another in order to achieve nucleosome-mediated cooperativity, which greatly broadens the potential scope of this model in gene regulation. Future research seeking direct evidence for this paradigm will help us better understand how TF-chromatin association and its variation underpin normal cell physiology and disease (Deplancke et al., 2016) and how dynamic and stochastic molecular interactions lead to deterministic and precise gene expression programs.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Bacterial strains and growth conditions
- METHOD DETAILS
 - Expression, purification, and fluorescent labeling of TFs
 - Preparation of histones and DNA templates and assembly of nucleosomes
 - Single-molecule experiments
 - Electrophoretic mobility shift assay (EMSA)
 - DNase footprinting
 - Structure alignment
 - Nucleosome positioning
 - TF binding sites
 - Genomic data analysis

QUANTIFICATION AND STATISTICAL ANALYSIS

DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2019.07.103.

ACKNOWLEDGMENTS

We thank Bryan Harada and Rachel Leicher for help with sample preparation. Michael Wasserman for single-molecule data analysis, Xiangwu Ju for the DNase footprinting assay, and other members of the Lu laboratory for discussions. We also thank Abdenour Soufi for sharing the human Sox2/Oct4 ChIP-seq dataset. S. Li was supported by a Tri-Institutional Starr Stem Cell Scholars Fellowship. E.B.Z. was supported by a Medical Scientist Training Program grant from the NIH (T32GM007739) to the Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program. L.Z. was supported by the Robert Wood Johnson Foundation, a Monique Weill-Caulier Career Scientist Award, and an Alfred P. Sloan Research Fellowship (FG-2018-10627). S. Liu was supported by the Robertson Foundation, a Kimmel Scholar Award, a Sinsheimer Scholar Award, an Alfred P. Sloan Research Fellowship, a Robertson Foundation, and a Monique Weill-Caulier Career Scientist Award, a March of Dimes Basil O’Connor Starter Scholar Award (S-FY17-61), a Kimmel Scholar Award, a Sinsheimer Scholar Award, an NIH Pathway to Independence Award (R00GM107365), and an NIH Director’s New Innovator Award (DP2HG010510).

AUTHOR CONTRIBUTIONS

S. Liu conceived and oversaw the project. S. Li performed all biochemical and single-molecule experiments and analyzed the data. E.B.Z. and L.Z. performed genomic data analysis. All authors contributed to writing the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Adams, C.C., and Workman, J.L. (1995). Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421.

Ambrosetti, D.C., Basilico, C., and Dailey, L. (1997). Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on...
protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol. Cell. Biol. 17, 6321–6329.

Biddle, J.W., Nguyen, M., and Gunawardana, J. (2019). Negative reciprocity, not ordered assembly, underlies the interaction of Sox2 and Oct4 on DNA. eLife 8, e41017.

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

Chang, Y.K., Srivastava, Y., Hu, C., Joyce, A., Yang, X., Zuo, Z., Havranek, J.J., Stormo, G.D., and Jauch, R. (2017). Quantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq. Nucleic Acids Res. 45, 832–845.

Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Orlov, Y.L., Zhang, W., Jiang, J., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117.

Chen, K., Xi, Y., Pan, X., Li, Z., Kaestner, K., Tyler, J., Dent, S., He, X., and Li, W. (2013). DNPPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 23, 341–351.

Chen, J., Zhang, Z., Li, L., Chen, B.C., Revyakin, A., Haji, B., Legant, W., Daham, M., Lionnet, T., Betzig, E., et al. (2014). Single-molecule dynamics of enhancesosome assembly in embryonic stem cells. Cell 156, 1274–1285.

Choi, J., Bachmann, A.L., Tauscher, K., Benda, C., Fierz, B., and Müller, J. (2017). DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat. Struct. Mol. Biol. 24, 1059–1047.

Chorin, C., Fiziev, P., Papp, B., Butz, S., Bonora, G., Sabri, S., Ernst, J., and Plath, K. (2017). Cooperative binding of transcription factors orchestrates reprogramming. Cell 176, 442–459.

Cui, F., and Zhurkin, V.B. (2014). Rotational positioning of nucleosomes facilitates selective binding of p53 to response elements associated with cell cycle arrest. Nucleic Acids Res. 42, 836–847.

Deplancke, B., Ajpren, D., and Gardeux, V. (2016). The genetics of transcription factor DNA binding variation. Cell 166, 538–554.

Donovan, B.T., Chen, H., Jipa, C., Bai, L., and Poirier, M.G. (2019). Dissociation rate compensation mechanism for budding yeast transcription factor expression. eLife 8, 43008.

Esch, D., Vahokoski, J., Groves, M.R., Pogenberg, V., Cociocaru, V., Vom Bruch, H., Han, D., Drexl, H.C., Arauzo-Bravo, M.J., Ng, C.K., et al. (2013). A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat. Cell. Biol. 15, 295–301.

Farina, A., Faiola, F., and Martinez, E. (2004). Reconstitution of an E box-binding Myc:Max complex with recombinant full-length proteins expressed in Escherichia coli. Protein Expr. Purif. 34, 215–222.

Franco, H.L., Nagari, A., and Kraus, W.L. (2015). TFα signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol. Cell. Biol. 58, 21–34.

Gibson, M.D., Gatchalian, J., Slater, A., Kutateladze, T.G., and Poirier, M.G. (2017). PHF1 Tudor and N-terminal domains synergistically target partially unwrapped nucleosomes to increase DNA accessibility. Nucleic Acids Res. 45, 3767–3776.

Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018.

Harada, B.T., Hwang, W.L., Deindi, S., Chatterjee, N., Bartholomew, B., and Zhuang, X. (2016). Stepwise nucleosome translocation by RSC remodeling complexes. eLife 5, e10051.

Hinchits, A.S., Karolchik, D., Baertsch, R., Barber, G.P., Bejerano, G., Clawson, H., Diekman, M., Furey, T.S., Harte, R.A., Hsu, F., et al. (2006). The UCSC Genome Browser database: update 2006. Nucleic Acids Res. 34, D590–D598.

Iwafuchi-Doi, M., Donahue, G., Kakumanu, A., Watts, J.A., Mahony, S., Pugh, B.F., Lee, D., Kaestner, K.H., and Zaret, K.S. (2016). The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol. Cell 62, 79–91.

Jauch, R., Aksoy, I., Hutchins, A.P., Ng, C.K., Tian, X.F., Chen, J., Palasingam, P., Robson, P., Stanton, L.W., and Kolatkar, P.R. (2011). Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells 29, 940–951.

Jolma, A., Yin, Y., Nitta, K.R., Dave, K., Popov, A., Taipale, M., Enge, M., Kivioja, T., Morgunova, E., and Taipale, J. (2015). DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527, 384–388.

Juette, M.F., Terry, D.S., Wasseman, M.R., Altman, R.B., Zhou, Z., Zhao, H., and Blanchard, S.C. (2016). Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344.

Kilic, S., Bachmann, A.L., Bryan, L.C., and Fierz, B. (2015). Multivalency governs HP1α association dynamics with the silent chromatin state. Nat. Commun. 6, 7313.

Kim, S., Broström, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C., Yang, L., Gao, Y.Q., et al. (2013). Probing allostery through DNA. Science 339, 816–819.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360.

King, H.W., and Klose, R.J. (2017). The pioneer factor OCT4 requires the chromatin remodeler BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 6, e22631.

Lam, C.S., Mistri, T.K., Foo, Y.H., Sudhahanar, T., Gan, H.T., Rodda, D., Lim, L.H., Chou, C., Robson, P., Wohland, T., and Ahmed, S. (2012). DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. Biochem. J. 448, 21–33.

Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T.R., and Weirach, M.T. (2016). The human transcription factors. Cell 172, 650–665.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

Lee, K.M., and Narlikar, G. (2001). Assembly of nucleosomal templates by salt dialysis. Curr. Protoc. Mol. Biol. 54, 21.6.1–21.6.16.

Li, M., and Belmonte, J.C. (2017). Ground rules of the pluripotency gene regulatory network. Nat. Rev. Genet. 18, 180–191.

Li, B., Carey, M., and Workman, J.L. (2007). The role of chromatin during transcription. Curr. Protoc. Mol. Biol. R25.

Li, G., Margueron, R., Hu, G., Stokes, D., Wang, Y.H., and Reinberg, D. (2010). Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell 38, 41–53.

Liu, Z., and Kraus, W.L. (2017). Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Mol. Cell 65, 589–603.

Lowary, P.T., and Widom, J. (1998). New DNA sequence rules for high affinity DNA binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42.

Luger, K., Rechtsteiner, T.J., and Richmond, T.J. (1999). Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19.

Luger, K., Dechassa, M.L., and Tremethick, D.J. (2012). New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13, 436–447.

Luo, Y., North, J.A., Rose, S.D., and Poirier, M.G. (2014). Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res. 42, 3017–3027.
Matsuda, K., Mikami, T., Oki, S., Iida, H., Andradi, M., Boss, J.M., Yamaguchi, K., Shigenobu, S., and Kondoh, H. (2017). ChiP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network. Development 144, 1948–1958.

McGinty, R.K., and Tan, S. (2015). Nucleosome structure and function. Chem. Rev. 115, 2255–2273.

Meers, M.P., Janssens, D.H., and Henikoff, S. (2019). Pioneer factor-nucleosome binding events during differentiation are motif encoded. Mol. Cell 75, 562–575.

Merino, F., Ng, C.K.L., Veerapandian, V., Schöler, H.R., Jauch, R., and Cojocaru, V. (2014). Structural basis for the SOX-dependent genomic redistribution of OCT4 in stem cell differentiation. Structure 22, 1274–1286.

Mimy, I.A. (2010). Nucleosome-mediated cooperativity between transcription factors. Proc. Natl. Acad. Sci. U S A 107, 22534–22539.

Morgunova, E., and Taipale, J. (2017). Structural perspective of cooperative factors. Trends Cell Biol. 47, 1–8.

Nishimoto, M., Fukushima, A., Okuda, A., and Muramatsu, M. (1999). The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol. 19, 5453–5465.

Okumura-Nakaniishi, S., Saito, M., Niwa, H., and Ishikawa, F. (2005).Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem. 280, 5307–5317.

Polach, K.J., and Widom, J. (1996). A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812.

Ptashne, M., and Gann, A. (2002). Genes and Signals (Cold Spring Harbor Lab Press).

Reme{\'n}yi, A., Lins, K., Nissen, L.J., Reinbold, R., Schöler, H.R., and Wilmans, M. (2003). Crystal structure of a POLII/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 17, 2048–2059.

Rizzino, A., and Wuebben, E.L. (2016). Sox2/Oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta 1859, 780–791.

Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., and Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 280, 24731–24737.

Sartorelli, V., and Puri, P.L. (2018). Shaping gene expression by landscaping chromatin architecture: lessons from a master. Mol. Cell 71, 375–388.

Scaffidi, P., and Bianchi, M.E. (2001). Spatially precise DNA bending is an essential activity of the sox2 transcription factor. J. Biol. Chem. 276, 47296–47302.

Segal, E., and Widom, J. (2009). From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–459.

Shyh-Chang, N., and Daley, G.Q. (2013). Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 12, 395–406.

Sigters, T., Chang, A.B., Teixeira, A., Wong, D., Williams, K.J., Ahmed, B., Ragoussis, J., Udalova, I.A., Smale, S.T., and Bulyk, M.L. (2011). Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nat. Immunol. 13, 95–102.

Slattery, M., Riley, T., Liu, P., Abe, N., Gomez-Alcala, P., Dorr, I., Zhou, T., Rohs, R., Honig, B., Bussemaker, H.J., and Mann, R.S. (2011). Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282.

Slattery, M., Zhou, T., Yang, L., Dantas Machado, A.C., Gordán, R., and Rohs, R. (2014). Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci. 39, 381–399.

Soufi, A., Donahue, G., and Zaret, K.S. (2012). Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004.

Soufi, A., Garcia, M.F., Jaroszewicz, A., Osman, N., Pellegrini, M., and Zaret, K.S. (2015). Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568.

Swinstead, E.E., Miranda, T.B., Paakkinah, V., Baek, S., Goldstein, I., Hawkins, M., Karpova, T.S., Ball, D., Mazza, D., Lavis, L.D., et al. (2016). Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

Takizawa, Y., Tanaka, H., Machida, S., Koyama, M., Maehara, K., Ohkawa, Y., Wade, P.A., Wolf, M., and Kurumizaka, H. (2018). Cryo-EM structure of the nucleosome containing the ALB1 enhancer DNA sequence. Open Biol. 8, 170255.

Tapia, N., MacCarthy, C., Esch, D., Gabriele Marthaler, A., Tiemann, U., Araizo-Bravo, M.J., Jauch, R., Cojocaru, V., and Schöler, H.R. (2015). Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Sci. Rep. 5, 13533.

Teif, V.B., Vainstein, Y., Caudron-Herger, M., Malm, J.P., Marth, C., Höfer, T., and Rippe, K. (2012). Genome-wide nucleosome positioning during embryonic stem cell development. Nat. Struct. Mol. Biol. 19, 1185–1192.

Thompson, D., Regev, A., and Roy, S. (2015). Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 31, 399–428.

Tomikoa, M., Nishimoto, M., Miyagi, S., Katayanagi, T., Fukui, N., Niwa, H., Muramatsu, M., and Okuda, A. (2002). Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res. 30, 3202–3213.

Vashee, S., Melcher, K., Ding, W.V., Johnston, S.A., and Kodadek, T. (1998). Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein–protein interactions. Curr. Biol. 8, 452–458.

Vasudevan, D., Chua, E.Y.D., and Davey, C.A. (2010). Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 403, 1–10.

Wang, J., Zhuang, J., Iyer, S., Lin, X., Whitfield, T.W., Greven, M.C., Pierce, B.G., Dong, X., Kundaje, A., Cheng, Y., et al. (2012). Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812.

White, M.D., Angelini, J.F., Alvarez, Y.D., Kaur, G., Zhao, Z.W., Mocskos, E., Bruno, L., Bissiere, S., Levi, V., and Plachta, N. (2016). Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165, 75–87.

Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahi, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319.

Williams, D.C., Jr., Cai, M., and Clore, G.M. (2004). Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem. 279, 1449–1457.

Yazdi, P.G., Pedersen, B.A., Taylor, J.F., Khatib, O.S., Chen, Y.H., Chen, Y., Jacobsen, S.E., and Wang, P.H. (2015). Nucleosome organization in human embryonic stem cells. PLoS ONE 10, e0136314.

Yin, J., Straight, P.D., McLoughlin, S.M., Zhou, Z., Lin, A.J., Golan, D.E., Kelley, N.L., Koller, R., and Walsh, C.T. (2005). Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinylation transferase. Proc. Natl. Acad. Sci. U S A 102, 15815–15820.

Yin, J., Lin, A.J., Golan, D.E., and Walsh, C.T. (2006). Site-specific protein labeling by Sfp phosphopantetheinylation transferase. Nat. Protoc. 1, 280–285.
Yu, X., and Buck, M.J. (2019). Defining TP53 pioneering capabilities with competitive nucleosome binding assays. Genome Res. 29, 107–115.
Zaret, K.S., and Carroll, J.S. (2011). Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241.
Zaret, K.S., and Mango, S.E. (2016). Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr. Opin. Genet. Dev. 37, 76–81.
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137.
Zhu, F., Farnung, L., Kaasinen, E., Sahu, B., Yin, Y., Wei, B., Dodonova, S.O., Nitta, K.R., Morgunova, E., Taipale, M., et al. (2018). The interaction landscape between transcription factors and the nucleosome. Nature 562, 76–81.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Bacterial and Virus Strains			
Escherichia coli Rosetta (DE3) pLysS	Novagen	Cat#70956-3	
Escherichia coli BL21 (DE3)	Invitrogen	N/A	
Chemicals, Peptides, and Recombinant Proteins			
Cy3 NHS Ester mono-reactive dye	GE Healthcare	Cat# PA23001	
Cy3 maleimide mono-reactive dye	GE Healthcare	Cat# PA23031	
Cy5 maleimide mono-reactive dye	GE Healthcare	Cat# PA15131	
Alexa Fluor 488 C₂ maleimide	Invitrogen	Cat# A10254	
Coenzyme A trilithium salt	Sigma-Aldrich	Cat# C3019	
(3-Aminopropyl)triethoxysilane	Vector Laboratories	Cat# SP-1800	
Trolox	Sigma-Aldrich	Cat# C3019	
Glucose oxidase	Sigma-Aldrich	Cat# C3019	
Dextrose monohydrate	Sigma-Aldrich	Cat# D9559	
Catalase	Sigma-Aldrich	Cat# C100	
Bio-PEG-SVA, MW 5,000	Laysan Bio	Cat# 143-117	
mPEG-SVA, MW 5,000	Laysan Bio	Cat# 144-136	
MS(PEG)₄ methyl-PEG₄-NHS Ester	Thermo Fisher Scientific	Cat# 22341	
Streptavidin	Thermo Fisher Scientific	Cat# 434302	
Nanostrip	VWR	Cat# 10135-756	
Igepal CA-630	Sigma-Aldrich	Cat# I8896	
DNase I	Invitrogen	Cat# 18068015	
NEBNext Ultra II DNA Library Prep Kit	New England Biolabs	Cat# E7645	
SYBR Gold	Invitrogen	Cat# S11494	
Oligonucleotides	See Table S1	This paper	N/A
Recombinant DNA			
pEP4 E02S CK2M EN2L	Addgene	Cat# 20924	
human Sox2 in pET28B vector	This paper	N/A	
human Oct4 with C-terminal Sfp tag in pET28B vector	This paper	N/A	
human c-Myc with C-terminal Sfp tag in pET28B vector	This paper	N/A	
human Max in pET28B vector	This paper	N/A	
Sfp enzyme in pET29B vector	Addgene	Cat# 75015	
Xenopus laevis histones	This paper	N/A	
601 plasmid in pBluescript II SK vector	(Li et al., 2010)	N/A	
mutant 601 plasmids	This paper	N/A	
Software and Algorithms			
SPARTAN	(Juette et al., 2016)	https://www.scottblanchardlab.com/software	
ORIGIN	OriginLab	https://www.originlab.com	
MATLAB	MathWorks	https://www.mathworks.com/products/matlab.html	
PRISM	GraphPad	https://www.graphpad.com/scientific-software/prism	
PYMOL	Schrödinger, LLC	http://www.pymol.org	
Custom analysis scripts	This paper	https://www.github.com/LiZhaoLab/Oct4Sox2_nucpos/	
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shixin Liu (shixinliu@rockefeller.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains and growth conditions

E. coli Rosetta (DE3) pLysS cells were cultured in a Luria-Bertani (LB) medium containing 50 μg/ml kanamycin and 34 μg/ml chloramphenicol. *E. coli* BL21 (DE3) cells were cultured in an LB medium containing 100 μg/ml ampicillin.

METHOD DETAILS

Expression, purification, and fluorescent labeling of TFs

The human Sox2 and Oct4 genes were purchased from Addgene and the human c-Myc and Max genes were amplified from HeLa cell cDNA (US Biological T5595-0449). Each gene was cloned into the bacterial vector pET28B with a hexahistidine tag at its N terminus. All proteins were expressed in Rosetta (DE3) pLyS cells (Novagen #70956-3) in an LB medium. Cell were grown at 37°C until OD_600_ reached 0.6, and then induced with 0.5 mM IPTG at 37°C for 4 h for Oct4 or 2 h for Sox2, at 30°C overnight for c-Myc, or at 25°C overnight for Max. For Sox2, Oct4, and c-Myc, cells were harvested and lysed by sonication in a denaturing buffer, followed by centrifugation at 15,000 rpm for 40 min. Proteins were first purified on a Ni-NTA affinity column. The eluted Sox2 and Oct4 were refolded by dialyzing to 2 M urea and then to 0 urea using a desalting column (GE healthcare). Further purification was carried out by gel filtration using a Superdex 200 10/300 GL column (GE Healthcare). Ni-NTA-purified c-Myc was mixed with Max at a molar ratio of 1:2.5 as described previously (Farina et al., 2004), and then purified by gel filtration as described above.

The only cysteine in Sox2 located at amino acid #265 near the flexible C terminus was labeled with Cy5 maleimide (GE healthcare) or AlexaFlour488 C6 maleimide (Thermo Fisher) at a mixing ratio of 1:1.5 after desalting column purification. An Sfp tag was introduced to the C terminus of Oct4 and c-Myc (Yin et al., 2005). After desalting column purification, the Sfp-tagged proteins were incubated with the Sfp synthase (purified in-house) and CoA-Cy5 (synthesized and purified in-house) at a molar ratio of 1:1.5:2.5 at 4°C overnight. To synthesize CoA-Cy5, the coenzyme A trilithium salt (Sigma-Aldrich) was conjugated with Cy5 maleimide at room temperature for 2 h and purified with a C18 250x 4.6mm column (Agilent) as previously described (Yin et al., 2006). Free dye molecules and the Sfp synthase were removed from the labeled proteins by gel filtration.

Preparation of histones and DNA templates and assembly of nucleosomes

Xenopus laevis histones were recombinantly expressed in BL21 (DE3) cells. H2B T49C mutant was generated by site-directed mutagenesis. The mutant histone was purified and labeled with Cy5 maleimide (GE Healthcare) or AlexaFlour488 C6 maleimide (Thermo Fisher) at a mixing ratio of 1:1.5 after desalting column purification. An Sfp tag was introduced to the C terminus of Oct4 and c-Myc (Yin et al., 2005). After desalting column purification, the Sfp-tagged proteins were incubated with the Sfp synthase (purified in-house) and CoA-Cy5 (synthesized and purified in-house) at a molar ratio of 1:1.5:2.5 at 4°C overnight. To synthesize CoA-Cy5, the coenzyme A trilithium salt (Sigma-Aldrich) was conjugated with Cy5 maleimide at room temperature for 2 h and purified with a C18 250x 4.6mm column (Agilent) as previously described (Yin et al., 2006). Free dye molecules and the Sfp synthase were removed from the labeled proteins by gel filtration.

Single-molecule experiments

Glass slides and coverslips were cleaned by sonication in acetone and 1 M KOH, followed by treatment with Nanostrip (WWR). They were then subjected to argon plasma cleaning (Harrick Plasma) followed by silanization with 2% 3-aminopropyltriethoxysilane in acetone. Cleaned slides and coverslips were passivated with a mixture of polyethylene glycol (PEG) and biotin-PEG (Laysan Bio) at 20°C overnight. Glass slides and coverslips were cleaned by sonication in acetone and 1 M KOH, followed by treatment with Nanostrip (VWR). They were then subjected to argon plasma cleaning (Harrick Plasma) followed by silanization with 3% 3-aminopropyltriethoxysilane in 1 M KOH.

Polynucleosomal DNA templates were made by PCR using biotinylated primers and a plasmid containing a 601 NPS (Li et al., 2016). Histone octamers were reconstituted with equal ratio of each histone and purified by gel filtration as described previously (Harada et al., 2010) that was modified such that a Sox2 motif (CTTTGTT), a reverse Sox2 motif (AACAAAG), an Oct4 motif (ATGCATCT), a reverse Oct4 motif (AGATGCAT), a composite Sox2:Oct4 motif (CTTTGTTATGCATCT), a composite motif containing a reverse Sox2 motif (AACAAAGATGCATCT), a composite Sox2:Oct4 motif with a 3-bp spacer (CTTTGTTTGGATGCATCT), or a composite motif containing a reverse Sox2 motif and a 3-bp spacer (AACAAATGGATGATCATC) was placed at indicated positions. The DNA products were purified by ion-exchange chromatography on a Mono Q column (GE Healthcare) and stored in TE buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA). For fluorescent labeling, DNA modified with a primary amine group was mixed with Cy3 maleimide (GE Healthcare) under denaturing conditions (Harada et al., 2016). Histone octamers were reconstituted with equal ratio of each histone and purified by gel filtration as described previously (Luger et al., 1999). DNA templates were made by PCR using biotinylated primers and a plasmid containing a 601 NPS (Li et al., 2016). Histone octamers were reconstituted with equal ratio of each histone and purified by gel filtration as described previously (Harada et al., 2010) that was modified such that a Sox2 motif (CTTTGTT), a reverse Sox2 motif (AACAAAG), an Oct4 motif (ATGCATCT), a reverse Oct4 motif (AGATGCAT), a composite Sox2:Oct4 motif (CTTTGTTATGCATC), a composite motif containing a reverse Sox2 motif (AACAAAGATGCATC), a composite Sox2:Oct4 motif with a 3-bp spacer (CTTTGTTTGGATGCATC), or a composite motif containing a reverse Sox2 motif and a 3-bp spacer (AACAAATGGATGATCATC) was placed at indicated positions. The LIN28B genomic DNA fragment was purchased from IDT. The DNA products were purified by ion-exchange chromatography on a Mono Q column (GE Healthcare) and stored in TE buffer (10 mM Tris-HCl, pH 8.0, 0.1 mM EDTA). For fluorescent labeling, DNA modified with a primary amine group was mixed with Cy3 NHS ester (GE Healthcare) at room temperature for 2 h. Free dyes were subsequently removed by a Sephadex G-25 column (GE Healthcare). Nucleosomes were assembled by salt gradient dialysis as previously described (Lee and Narlikar, 2001). The assembly efficiency was optimized by titrating the DNA:octamer molar ratio. The purity of the products was evaluated on a 5% native TBE-PAGE gel.

The only cysteine in Sox2 located at amino acid #265 near the flexible C terminus was labeled with Cy5 maleimide (GE healthcare) or AlexaFlour488 C6 maleimide (Thermo Fisher) at a mixing ratio of 1:1.5 after desalting column purification. An Sfp tag was introduced to the C terminus of Oct4 and c-Myc (Yin et al., 2005). After desalting column purification, the Sfp-tagged proteins were incubated with the Sfp synthase (purified in-house) and CoA-Cy5 (synthesized and purified in-house) at a molar ratio of 1:1.5:2.5 at 4°C overnight. To synthesize CoA-Cy5, the coenzyme A trilithium salt (Sigma-Aldrich) was conjugated with Cy5 maleimide at room temperature for 2 h and purified with a C18 250x 4.6mm column (Agilent) as previously described (Yin et al., 2006). Free dye molecules and the Sfp synthase were removed from the labeled proteins by gel filtration.

Single-molecule experiments

Glass slides and coverslips were cleaned by sonication in acetone and 1 M KOH, followed by treatment with Nanostrip (WWR). They were then subjected to argon plasma cleaning (Harrick Plasma) followed by silanization with 2% 3-aminopropyltriethoxysilane in acetone. Cleaned slides and coverslips were passivated with a mixture of polyethylene glycol (PEG) and biotin-PEG (Laysan Bio) at 20°C overnight. For Sox2, Oct4, and c-Myc, cells were harvested and lysed by sonication in a denaturing buffer, followed by centrifugation at 15,000 rpm for 40 min. Proteins were first purified on a Ni-NTA affinity column. The eluted Sox2 and Oct4 were refolded by dialyzing to 2 M urea and then to 0 urea using a desalting column (GE healthcare). Further purification was carried out by gel filtration using a Superdex 200 10/300 GL column (GE Healthcare). Ni-NTA-purified c-Myc was mixed with Max at a molar ratio of 1:2.5 as described previously (Farina et al., 2004), and then purified by gel filtration as described above.

The only cysteine in Sox2 located at amino acid #265 near the flexible C terminus was labeled with Cy5 maleimide (GE healthcare) or AlexaFlour488 C6 maleimide (Thermo Fisher) at a mixing ratio of 1:1.5 after desalting column purification. An Sfp tag was introduced to the C terminus of Oct4 and c-Myc (Yin et al., 2005). After desalting column purification, the Sfp-tagged proteins were incubated with the Sfp synthase (purified in-house) and CoA-Cy5 (synthesized and purified in-house) at a molar ratio of 1:1.5:2.5 at 4°C overnight. To synthesize CoA-Cy5, the coenzyme A trilithium salt (Sigma-Aldrich) was conjugated with Cy5 maleimide at room temperature for 2 h and purified with a C18 250x 4.6mm column (Agilent) as previously described (Yin et al., 2006). Free dye molecules and the Sfp synthase were removed from the labeled proteins by gel filtration.
catalase, 2 mM trolox (Sigma-Aldrich). Movies were recorded at room temperature with a frame rate of 300 ms. Positions of the immobilized substrates were determined during the initial 20 frames using a 532-nm laser. TF binding dynamics were then observed using a 640-nm laser. To simultaneously monitor two fluorescently labeled TF species, an alternating excitation scheme was adopted in which a 640-nm laser and a 488-nm laser were each switched on for one frame in an interlaced fashion. Labeled and unlabeled TFs were typically used at a concentration of 2 nM and 20 nM, respectively. Single-molecule fluorescence-time trajectories were extracted and analyzed with the SPARTAN software (Juette et al., 2016). TF binding events were identified using a fluorescence intensity threshold. Histogram building and curve fitting were performed with the Origin software (OriginLab).

Electrophoretic mobility shift assay (EMSA)

10 nM of DNA or nucleosome substrates were incubated with indicated TFs in a binding buffer (10 mM Tris-HCl, pH 7.5, 1 mM MgCl₂, 1 mM DTT, 10 mM KCl, 0.5 mg/ml BSA, and 5% glycerol) at room temperature for 10 min. The reaction mixture was loaded on a 5% non-denaturing polyacrylamide gel, which was run in 0.5 × Tris-Borate-EDTA at 4°C at 80 V, stained by SYBR Gold (Invitrogen), and scanned by a Typhoon FLA 7000 gel imager (GE Healthcare). Band intensities were extracted by ImageQuant (GE healthcare). The fraction of substrates bound by Sox2 is defined as: fSox2/substrate = (fSox2/substrate + ffree substrate). The fraction of substrates bound by Sox2 in the presence of Oct4 is defined as: fTF/substrate = (fTF/substrate - fOct4/substrate)/(fTF/substrate + ffree substrate). fTF/substrate denotes the intensity for substrates bound by any TF; fOct4/substrate denotes the intensity for substrates bound by Oct4 alone.

DNase footprinting

200 ng of bare DNA or reconstituted nucleosome substrates (in 50 μL of Buffer I: 10 mM Tris-HCl, pH 7.5, 1 mM MgCl₂, 10 μM ZnCl₂, 0.2 mM DTT, 10 mM KCl, 0.5 mg/ml BSA, and 5% glycerol) were treated with 0.008 units of DNase I (Invitrogen; in 50 μL of Buffer II: 10 mM MgCl₂ and 5 mM CaCl₂) at 25°C for 3 min. The digestion reaction was stopped by the addition of 90 μL of Buffer III (20 mM Tris-HCl, pH 7.5, 50 mM EDTA, 2% SDS, and 0.2 mg/ml proteinase K) and chilled on ice for 10 min. The digested DNA was cleaned by TE-buffer-saturated phenol:chloroform:isoamyl alcohol (25:24:1, v/v) and then prepared for Illumina sequencing with the NEBNext Ultra II DNA Library Prep Kit (New England BioLabs). The adaptor-ligated DNA was amplified for 10 cycles following the manufacturer’s protocol. Sequencing was performed on a MiSeq platform. The paired-end reads were aligned to the correspondent DNA sequence. The read counts at each nucleotide position across the template sequence were extracted with custom Perl scripts.

Structure alignment

The structures of DNA in complex with Oct4POU and Sox2HMG (PDB: 1GT0) and the 601 nucleosome (PDB: 3LZ0) were obtained from the RCSB protein data bank (Reményi et al., 2003; Vasudevan et al., 2010). The DNA bound to Sox2HMG or Oct4POU was superimposed on specific positions of the nucleosomal DNA using the “align” command in PyMOL for aligning the 3′-, 4′-, and 5′-carbon atoms in the ribose sugar.

Nucleosome positioning

Raw sequencing paired-end reads were downloaded from the NCBI Sequence Read Archive (SRA) for MNase-seq nucleosome mapping data from human ESCs (SRP028172) (Yazdi et al., 2015) and MNase-seq data from mouse ESCs (SRX187610) (Teif et al., 2012). Using bowtie1 (v. 1.2.2) (Langmead et al., 2009) in “-v” alignment mode, raw sequencing reads with a maximum of 2 mismatches were aligned to the appropriate reference assembly (GRCh38 for human data and mm9 for mouse data), excluding nonstandard chromosomes. Only reads mapping to unique locations were kept for further analysis. DANPOS2 in “dpos” mode (v. 2.2.2) (Chen et al., 2013) was used to infer nucleosome positioning from mapped paired-end reads pooled across runs. Positions were represented as both genomic intervals defining peak locations as well as quantitative nucleosome position scores for 10-bp non-overlapping windows along the genome. Peaks were filtered using a custom script (https://github.com/LiZhaoLab/Oct4Sox2_nuclpos/tree/master/scripts/danpos_xls_process.py) to retain only those with a summit height of over 1.5 times the genomic mean. Nucleosome dyads are assumed to correspond to the summit positions.

TF binding sites

For mouse ESCs, ChIP-seq data were downloaded as raw single-end reads from the NCBI SRA (Oct4, SRR713340; Sox2, SRR713341; control, SRR713343) (Whyte et al., 2013). Fastq data were aligned using hisat2 (v. 2.0.5) (Kim et al., 2015) with default parameters, except with splice-awareness disabled, to the UCSC mm9 assembly of the mouse genome, excluding unmapped and random chromosomes. ChIP-seq peak locations were then called using MACS2 (v. 2.1.2) (Zhang et al., 2008) using the same settings as previously described (defaults except genome size 1.87 × 10⁹, P-value threshold 10⁻⁹, and “–keep-dup” set to “auto”) (Whyte et al., 2013). For mouse EpiSCs, ChIP-seq data were downloaded as BED intervals from the NCBI GEO (Oct4, GSM1924747; Sox2, GSM1924748) (Matsuda et al., 2017). We defined TF binding sites as locations conforming to the canonical binding motif within 200 bp of the respective ChIP-seq peak. Genomic sequences around the ChIP-seq peaks from each cell type were then checked for TF binding motifs using FIMO (v. 4.11.2) (Grant et al., 2011) with default parameters and motifs from JASPAR (Oct4, MA1115.1; Sox2, MA0143.3). When more than one genomic location for a TF motif were found within a given ChIP-seq peak, all locations were analyzed. When no good match was found within a given ChIP-seq peak, those genomic regions and the nucleosomes therein were no longer considered in the subsequent analysis. For human ESCs, ChIP-seq peaks were downloaded from

e3 Cell Reports 28, 2689–2703.e1–e4, September 3, 2019
NCBI GEO (Oct4, GSM896985; Sox2, GSM896986) (Soufi et al., 2012) and converted from hg18 to GRCh38 via UCSC liftOver (http://hgdownload.cse.ucsc.edu/downloads.html) (Hinrichs et al., 2006). The peaks were then checked for canonical TF binding motifs using FIMO as described above. To identify noncanonical binding sites, these same windows were also checked for the noncanonical motifs identified by (Soufi et al., 2015), with a P-value threshold of 0.001.

Genomic data analysis
Nucleosome positions and motif centers described above were integrated using custom scripts. To obtain the aggregate nucleosome occupancy, we calculated the average of the nucleosome positioning scores of all 1-kb regions centered on each motif center. To calculate the distribution of distances between nucleosome centers and TF binding sites, we aligned nucleosome positions with TF binding sites and extracted the distance between the center of the nucleosome and the center of the motif location.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical significance was determined by unpaired two-tailed Student’s t tests using GraphPad Prism. Welch’s two-sample t tests were conducted using the base implementation in the “stats” package of R (v. 3.4.3) on the count values for the central 13 bp and the 13 bp just inside the nucleosome boundary. The difference between two groups was considered statistically significant when the p value is less than 0.05 (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: not significant).

DATA AND CODE AVAILABILITY
Raw data are available upon reasonable request. For the genomic data analysis, full conda, R/bioconductor, and python environment details, as well as custom scripts and Jupyter notebooks for data analysis and figure generation, are available at the project repository (https://www.github.com/LiZhaoLab/Oct4Sox2_nuclpos/).
Supplemental Information

Nonreciprocal and Conditional Cooperativity Directs the Pioneer Activity of Pluripotency Transcription Factors

Sai Li, Eric Bo Zheng, Li Zhao, and Shixin Liu
Figure S1. Site-Specific Labeling of Pluripotency TFs and Photobleaching Kinetics of Fluorescently Labeled TFs, Related to Figures 1 and 3
(A) Schematic of the full-length human Sox2, Oct4, c-Myc and Max proteins. Their DNA-binding domains are indicated.
(B) SDS-PAGE analysis of Cy5-labeled Sox2, Oct4, and c-Myc:Max heterodimer.
(C) Cumulative distributions of the observed Cy5-labeled Sox2 residence time on DNA measured at different levels of laser power.
(D) Same as (C) except for analyzing Cy5-labeled Oct4. In (C) and (D), the photobleaching rate constant (k_{bleach}) is assumed to be linearly dependent on the laser power at non-saturating conditions. As such,
k_{bleach} can be calculated by solving $k_{\text{off,obs}} = k_{\text{bleach}} + k_{\text{off}}$ at multiple laser powers, with $k_{\text{off,obs}}$ and k_{off} representing the observed TF dissociation rate constant and the true dissociation rate constant, respectively. At 30% power, the time constants for Cy5-Sox2 photobleaching and Cy5-Oct4 photobleaching are calculated to be 75 s and 42 s, respectively.
Figure S2. Histograms of TF residence time on different DNA and nucleosome substrates, Related to Figures 1, 2, and 3
(A) Histograms of Sox2 residence time.
(B) Histograms of Oct4 residence time.
Figure S3. Evaluating Nucleosome Positioning Using DNase Footprinting, Related to Figures 1 and 2
(A) DNase I footprinting pattern for a DNA substrate containing a wildtype 601 NPS (DNA\textsubscript{WT601}, blue) or a mononucleosome substrate reconstituted from the same DNA template (Nuc\textsubscript{WT601}, pink). The DNase-protected region in the Nuc\textsubscript{WT601} data reflects the position of the nucleosome.
(B) Same as (A), except with a DNA template containing a 7-bp-long Sox2 binding motif placed at the end of the 601 NPS (DNA\textsubscript{S-End}, light blue; Nuc\textsubscript{S-End}, brown).
(C) Same as (A), except with a DNA template containing a Sox2 binding motif placed at the dyad of the 601 NPS (DNA\textsubscript{S-Dyad}, light green; Nuc\textsubscript{S-Dyad}, light pink).
All three nucleosome constructs share a similar protection pattern, suggesting that nucleosome positioning is not perturbed by the engineered TF binding motifs.
Figure S4. Additional Structural Modeling and Kinetic Analysis of Sox2 and Oct4 Binding to Nucleosome Substrates, Related to Figures 2 and 3

(A-C) The Sox2HMG:DNA structure (PDB: 1GT0; yellow) superimposed on the 601 nucleosome structure (PDB: 3LZ0) aligned by the DNA motif (blue) located at the dyad+3 (A), dyad+6 (B), or dyad-2 (C) position. Steric clash between Sox2 and the nucleosome is highlighted in red.

(D) Sox2HMG:DNA structure superimposed on a 601 nucleosome with a Sox2 binding motif CTTTGTT (blue) encoded in either the Watson or the Crick strand at the dyad position. In both cases the minor groove of the binding site faces outward, but Sox2 binds in mirrored directions.

(E and F) Superposition between the Oct4POU:DNA structure (PDB: 1GT0) and the 601 nucleosome structure (PDB: 3LZ0) aligned by the DNA motif (orange) located at the end (E) or dyad (F) position. The Oct4 POU\(_{\text{HD}}\) and POU\(_{\text{S}}\) domains are shown in green and cyan, respectively.

(G) Diagram of the nucleosome substrate (Nuc\(_{\text{Rev-O-Dyad}}\)) containing a reverse Oct4 binding motif near the dyad.

(H) Average Oct4 residence times on Nuc\(_{\text{O-Dyad}}\) and Nuc\(_{\text{Rev-O-Dyad}}\).
Figure S5. Additional Quantification of Sox2- and Oct4-Nucleosome Interactions, Related to Figures 4, 5, and 6

(A) Average waiting time (t_{off}) before Sox2 binding to a DNA or nucleosome substrate containing a composite Sox2:Oct4 motif, in the absence or presence of Oct4.

(B) Average waiting time before Oct4 binding to the same substrates as in (A) in the absence or presence of Sox2.

(C) Fraction of Nuc$_{SO-End}$ substrates that were bound to Sox2 as a function of Sox2 concentration in the absence (blue circles) or presence (black circles) of 10 nM Oct4. K_D values were determined by fitting the data to a Hill function (blue and black curves). Hill coefficient $n_{Hill} = 1.2 \pm 0.1$ without Oct4 and 1.2 ± 0.1 with Oct4.
(D) Same as (C), except for analyzing the Sox2:NSO-Dyad interaction. \(n_{\text{Hill}} = 1.4 \pm 0.2 \) without Oct4 and 1.2 ± 0.2 with Oct4.

(E) Average residence times (\(t_{\text{on}} \)) of Sox2 on \(\text{NSO-End} \) and \(\text{NSO-Dyad} \) in the absence or presence of Oct4 under different salt conditions.

(F) Average residence times of Oct4 on \(\text{NSO-End} \) and \(\text{NSO-Dyad} \) under different salt conditions. Data are represented as mean ± SD.
Figure S6. Pluripotency TFs Exhibit Distinct Binding Behaviors at a Native Genomic Locus, Related to Figures 4, 5, and 6

(A) Diagram of the LIN28B genomic locus. Positions of the predicted Sox2, Oct4, and c-Myc binding sites are indicated. The putative Sox2 and Oct4 sites are oppositely oriented.

(B) Average residence times of Sox2 on nucleosome substrates with differentially positioned Sox2 binding motifs.

(C) Average residence times of Oct4 on nucleosome substrates with differentially positioned Oct4 binding motifs.

(D) Average residence time of Sox2 on NucLIN28B in the absence or presence of Oct4.

(E) Average residence time of Oct4 on NucLIN28B in the absence or presence of Sox2.

(F) Representative fluorescence-time trajectories showing Cy5-labeled c-Myc:Max binding to Cy3-labeled DNA LIN28B and NucLIN28B.

(G) Comparison of the average residence time of c-Myc, Sox2, and Oct4 on DNA LIN28B (left) and NucLIN28B (right).

Data are represented as mean ± SD.
Figure S7. Analysis of Sox2 and Oct4 Binding Preference in Human Embryonic Stem Cells, Related to Figure 7

(A) Sequence logo of the canonical Sox2 binding motif (top) and smoothed (3-bp filter) distribution of the distance between a canonical Sox2 binding site and the nearest nucleosome dyad (bottom) in hESCs ($N = 2,909$). Position 0 (dashed line) corresponds to the dyad; the dotted line approximates the edges of the nucleosome. Displayed significance is from t-test conducted between a 13-bp window centered at the dyad and a 13-bp window inside the nucleosome edge ($P = 0.0040$).

(B) Same as (A), except for analyzing noncanonical Sox2 motifs ($N = 9,264$; $P = 0.66$).

(C) Same as (A), except for analyzing canonical Oct4 binding motifs ($N = 5,455$; $P = 0.50$).

(D) Same as (C), except for analyzing noncanonical Oct4 motifs (variant I) resembling one half of the canonical octameric Oct4 motif ($N = 20,698$; $P = 4.0 \times 10^{-8}$).

(E) Same as (C), except for analyzing noncanonical Oct4 motifs (variant II) resembling the other half of the canonical octameric Oct4 motif ($N = 31,367$; $P = 0.51$).
Table S1. Oligonucleotides used in this work. Related to STAR Methods

Oligonucleotides (TF binding motifs in bold)	Source	
601 DNA_{S\text{End}}	This paper	
CTTTGTTATCCCGGTGCGAGGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{S\text{End}+7}	This paper	
CTGGGAGACTTTGGTTGCGAGGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{S\text{Dyad}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{S\text{Dyad}+3}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{S\text{Dyad}+6}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{O\text{End}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{O\text{Dyad}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{O\text{Dyad}+2}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{O\text{Dyad}+6}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATATCCTGT		
601 DNA_{Rev\text{S\text{End}}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{Rev\text{S\text{Dyad}}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{Rev\text{S\text{Dyad}+2}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{Rev\text{S\text{End}+3}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
601 DNA_{Rev\text{S\text{End}+6}}	This paper	
CTGGGAGATCCCGGTGCCGCCGCTCAATTGGTGCTAGACAGCTCTAGCAGCCAAGCGCTTTAAACGCCAGGTACGCGCTGTCGCCGCCGCTTTTAAACCGCAAGGAGTTACTCCCTAGTCTTCCAGGCAAGGAGTTCAGATATATACATCCTGT		
DNA_{SO-Dyad}	DNA_{SO+3-Dyad}	DNA_{LIN28B}
----------------------	----------------------	-----------------------
AACAAAGTGGATGACATCTGAGGCCGCTCAATTGCTGTAAGACAGCTCTAGCAGCCGCTGTCACCGCTTAAGGCCAACGGATATTACTCCCTAGTCTCCAGGACAGTGTCAGATATA	This paper	This paper
CTGGGAGATCCCGGTGCGAGGCGCTCAATTGTCGTAAGACAGCTCTAGCAGCCGCTTAAACGCACGTA	This paper	This paper
GGTGTCTTTGTTATGCATCTTTAAGCCCAAAGGGGATTACTCCCTAGTCTCCAGGACAGTGTCAGATATA	CATCCCTG	CATCCCTG
AGTGTATTTAACATATCTCAGTGGTGAATTACATGGAACTTACCTCCAAACATAACAGATGCTGAAT	IDT	IDT
/5Biosg/TACCGAACGTCCGAACGATGATGCCGGAT	IDT	IDT
/5AmMC6/TACGCGAATTCCAACGACACCGCACT	IDT	IDT
Biotin/lin28B-F	IDT	IDT
/5Biosg/AGTGGTATTTAACATATCTCAGTGGTGAATTACATGGAACTTACCTCCAAACATAACAGATGCTGAAT	IDT	IDT
AmC6/lin28B-R	IDT	IDT
/5AmMC6/TGTCTTTATTCACAAGCTTGACAA	IDT	IDT
H2B T49C mutant-F	IDT	IDT
GATTGCCGACTCTGCATCCAGGCCATACAAAG	IDT	IDT
H2B T49C mutant-R	IDT	IDT
GGGGTCACCTGCTTTACGACCTTG	IDT	IDT
Sox2-F	IDT	IDT
GGAATCCCATATGTAACCAATGATGGAGACG	IDT	IDT
Sox2-R	IDT	IDT
CCGCTCGAGTCACTGTTGAGAGGGGC	IDT	IDT
Oct4-F	IDT	IDT
GGAATCCCATATGGAACGCCAAGCTGCTCCG	IDT	IDT
Oct4-R	IDT	IDT
GCCGACGTCGACTGTGGTGAATGCAATGGAAG	IDT	IDT
Oct4 with C-terminal Sfp tag-F	IDT	IDT
CTAATACGAGCTAATACAACTGGAATGCAAGCCACCCACC	IDT	IDT
Oct4 with C-terminal Sfp tag-R	IDT	IDT
CATGATAGTGATCCTGGTGAATGCAATGGAAGGGC	IDT	IDT
Oct4 with C-terminal Sfp tag	IDT	IDT
c-Myc-F	IDT	IDT
GGAATCCCATATGCGAGTTTTTTTGCGGTAAG	IDT	IDT
c-Myc-R	IDT	IDT
CCGCTCGAGTACGCAACGGAGGTTCCCTAG	IDT	IDT
c-Myc with C-terminal Sfp tag-F	IDT	IDT
CTAATACGAGCTAATACAACTGGAATGCAAGCCACCCACC	IDT	IDT
c-Myc with C-terminal Sfp tag-R	IDT	IDT
TCGTGAATGGAATGTTTCGCCAACAAAGAGGTTCCGCTAGCTGTTG	IDT	IDT
Max-F	IDT	IDT
GGAATCCCATATGGAACGCCAAGCTGCAAC	IDT	IDT
Max-R	IDT	IDT
CCGCTCGAGTACGCAACGGAGGTTCCCTAG	IDT	IDT

Supplementary Table:

Primer	Description
Biotin-601-F	IDT
/5Biosg/TACCGAACGTCCGAACGATGATGCCGGAT	IDT
/5AmMC6/TACGCGAATTCCAACGACACCGCACT	IDT
Biotin/lin28B-F	IDT
/5Biosg/AGTGGTATTTAACATATCTCAGTGGTGAATTACATGGAACTTACCTCCAAACATAACAGATGCTGAAT	IDT
AmC6/lin28B-R	IDT
/5AmMC6/TGTCTTTATTCACAAGCTTGACAA	IDT
H2B T49C mutant-F	IDT
GATTGCCGACTCTGCATCCAGGCCATACAAAG	IDT
H2B T49C mutant-R	IDT
GGGGTCACCTGCTTTACGACCTTG	IDT
Sox2-F	IDT
GGAATCCCATATGTAACCAATGATGGAGACG	IDT
Sox2-R	IDT
CCGCTCGAGTCACTGTTGAGAGGGGC	IDT
Oct4-F	IDT
GGAATCCCATATGGAACGCCAAGCTGCTCCG	IDT
Oct4-R	IDT
GCCGACGTCGACTGTGGTGAATGCAATGGAAG	IDT
Oct4 with C-terminal Sfp tag-F	IDT
CTAATACGAGCTAATACAACTGGAATGCAAGCCACCCACC	IDT
Oct4 with C-terminal Sfp tag-R	IDT
CATGATAGTGATCCTGGTGAATGCAATGGAAGGGC	IDT
Oct4 with C-terminal Sfp tag	IDT
c-Myc-F	IDT
GGAATCCCATATGCGAGTTTTTTTGCGGTAAG	IDT
c-Myc-R	IDT
CCGCTCGAGTACGCAACGGAGGTTCCCTAG	IDT
c-Myc with C-terminal Sfp tag-F	IDT
CTAATACGAGCTAATACAACTGGAATGCAAGCCACCCACC	IDT
c-Myc with C-terminal Sfp tag-R	IDT
TCGTGAATGGAATGTTTCGCCAACAAAGAGGTTCCGCTAGCTGTTG	IDT
Max-F	IDT
GGAATCCCATATGGAACGCCAAGCTGCAAC	IDT
Max-R	IDT
CCGCTCGAGTACGCAACGGAGGTTCCCTAG	IDT