CONFORMAL FIELD THEORIES WITH INFINITELY MANY CONSERVATION LAWS

Ivan Todorov
Theory Division, Department of Physics, CERN, CH-1211 Geneva 23, Switzerland; e-mail: ivbortodorov@gmail.com
and
Institute for Nuclear Research and Nuclear Energy
Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria
(permanent address); e-mail: todorov@inrne.bas.bg

Abstract

Globally conformal invariant quantum field theories in a D-dimensional space-time (D even) have rational correlation functions and admit an infinite number of conserved (symmetric traceless) tensor currents. In a theory of a scalar field of dimension D-2 they were demonstrated to be generated by bilocal normal products of free massless scalar fields with an O(N), U(N), or Sp(2N) (global) gauge symmetry [BNRT].

Recently, conformal field theories "with higher spin symmetry" were considered for D=3 in [MZ] where a similar result was obtained (exploiting earlier study of CFT correlators). We suggest that the proper generalization of the notion of a 2D chiral algebra to arbitrary (even or odd) dimension is precisely a CFT with an infinite series of conserved currents. We shall recast and complement (part of) the argument of Maldacena and Zhiboedov into the framework of our earlier work. We extend to D = 4 the auxiliary Weyl-spinor formalism developed in [GPY] for D = 3. The free field construction only follows for D > 3 under additional assumptions about the operator product algebra. In particular, the problem of whether a rational CFT in 4D Minkowski space is necessarily trivial remains open.

1Expanded version of a talk at the TH Journal Club on String Theory, CERN, February 27, 2012.
1 Introduction

Knowledge is recollection. (attributed to Socrates)

Higher dimensional conformal field theory (CFT) experienced a revival since the late 1990’s. There were two independent developments.

One of them arose in an attempt to extend the notion of a 2D chiral algebra to higher dimensions. It led to the study of globally conformal invariant (GCI) quantum field theory (QFT) \[NT\] and to the notion of a D-dimensional vertex algebra \[N, BN\]. Global conformal invariance led to a QFT with rational correlation functions that is only consistent for even space-time dimensions \(D\). The resulting 4D CFT considered in \[NST02, NST03, NRT05, NRT08, BNRT\] gives rise to bilocal fields whose operator product expansion (OPE) involves an infinite series of conserved higher spin (symmetric, traceless) tensor currents. Whenever such a bilocal field, say \(W(x_1, x_2)\), is generated by products of scalar fields of dimension \(D - 2\), it was proven to be a sum of normal products of free massless fields with a compact symmetry group.

The other, more popular development was an outgrow of the fashionable “AdS/CFT correspondence” (that brought, in the words of Sasha Polyakov, higher dimensional CFT to the masses). The particular branch of it which concerns us arose from the observation \[HS\] that the free \(\mathcal{N} = 4\) superconformal Yang-Mills theory (with a vanishing \(\text{'t}\) Hooft coupling) on the boundary corresponds to a massless higher spin theory in the bulk. The systematic study of such higher spin theories beginning with \[PV\] proceeded uninterrupted for some 25 years (see the recent partly expository papers \[V11, V12\] where earlier references can be found) but only started attracting attention around 2002 \[M02, SS\], and especially after an exact duality was conjectured \[KP\] between the (nonsupersymmetric!) 3D \(O(N)\) vector model (in the free field limit) and Vasiliev’s higher spin theory in \(AdS_4\) (see \[DMR\] for a later update and \[GGHR\] for another point of view on these developments). The correlation functions in a 3D CFT (or in any odd dimensional CFT) are not rational. If one assumes, however, the presence of a higher spin conserved current, it is demonstrated in \[MZ\] that the theory again involves an infinite number of conservation laws\(^2\). This characteristic property thus provides a generalization of a chiral vertex algebra valid for both even and odd dimensions. The main result of \[MZ\] is a proof of a statement similar to the one

\(^2\)A follow-up of this work \[MZ12\] deals with a broken higher spin symmetry.
cited above: the presence of conserved currents of spin higher than two in a
theory with a unique stress energy tensor implies for $D = 3$ that the theory
is generated by bilocal fields that appear as normal products of free massless
fields. This result can be viewed as an extension of the well known Coleman-
Mandula theorem [CM67] to the case of a CFT (in which there is no mass
gap and no S-matrix). The triviality of the S-matrix is replaced by the iden-
tification of the correlation functions of the stress-energy tensor with ones
constructed by free fields. (It was Gerhard Mack [M77] who advanced, back
in the 1970’s, the idea that the algebra of observables can be determined by
the correlation functions (and the OPE) of the stress-energy tensor.)

The aim of the present lecture is to display in some detail the relation
between a central argument in (Secs. 5.3-5 of) [MZ] and our earlier work
[BNRT]. Preparing the ground for a further study of four dimensional CFT
with higher spin symmetry we extend to $D = 4$ (in Sect. 3 and in A1-3) the
auxiliary Weyl-spinor formalism developed in [GPY] for $D = 3$. The rest
of the paper presents a review and discussion of published results. Sect. 2
provides a brief survey (based on a single example) of our early work on con-
formal bilocal fields. We remark that the old argument remains valid without
change for odd space-time dimensions. We begin Sect. 4 with a (rather su-
perficial) review of part of the reasoning of Maldacena and Zhiboedov which
brings us to the presence of a scalar field J_0 of dimension $D - 2 (= 1$ for $D = 3)$
coupled to the stress energy tensor. We then demonstrate how the argument
of [BNRT] (based on the study of unitary positive energy representations of
infinite dimensional Lie algebras) allows to recover (and complement at one
point) the result of [MZ]. In the discussion (Sect. 5) we reproduce the 4-point
function of a conserved (spin one) current obtained very recently by Staniev
[S] that does not appear to allow a free field construction.

2 Huygens locality; twist $D - 2$ bilocal fields

Finite conformal transformations can map spacelike into timelike separated
pairs of points. Local commutativity of Wightman functions (SW) and GCI
then imply Huygens’ locality: commutators of observable (Bose) fields have
support on the light cone,

$$(x_{12}^2)^n[\phi_1(x_1), \phi_2(x_2)] = 0 \quad (x_{12} = x_1 - x_2, \quad x^2 = x^2 - (x^0)^2) \quad (2.1)$$
for n sufficiently large (if ϕ_i are fields of dimension d_i and spin s_i, then it would suffice to take $n \geq d_i + s_i, i = 1, 2$). Combined with energy positivity, Eq. (2.1) yields in turn rationality of correlation functions [NT]. These properties are only consistent with the known behaviour of free fields and conserved currents if the dimension D of space-time is even. (The geometric reason for the difference between even and odd dimensions can be traced back to the fact that conformally compactified Minkowski space, \[\mathbb{M} = (S^{D-1} \times S^1)/\{1, -1\}, \] is only orientable for D even. In particular, the real projective plane, that is isomorphic to the 2-sphere with identified opposite points - the first factor in (2.2) for $D = 3$ - is a prime example of a non-orientable manifold.)

The spectacular development of 2D CFT in the 1980’s was based on the preceding progress in the study of infinite dimensional (Kac-Moody and Virasoro) Lie algebras and their representations. This tool did not seem to work in higher dimensions, however. It was proven [B] that scalar Lie fields do not exist in three or more dimensions. It is all the more interesting that this no-go result does not apply to bilocal fields, in particular to the field $W(x_1, x_2)$ defined as the contribution of twist $D - 2$ currents to the operator product expansion (OPE) of a pair of scalar fields of dimension $D - 2$:

\[
(\Delta_{ij}^+)^{-1}\phi^*(x_1)\phi(x_2) = N\Delta_{12}^+ + W(x_1, x_2) + O(x_{12}^2), \quad W(x_1, x_2)^* = W(x_2, x_1).
\] (2.3)

If the local field is real, $\phi = \phi^*$, then the bilocal field is symmetric, $W(x_1, x_2) = W(x_2, x_1)$; the positive constant $N(= N_\phi)$ gives the normalization of the 2-point function of ϕ:

\[
<\phi(x_1)\phi(x_2)^*> = N(\Delta_{12}^+)^2,
\] (2.4)

while $\Delta_{ij}^+ = \Delta^+(x_i - x_j)$ is the Wightman 2-point function of a free massless scalar field φ, in D space-time dimension:

\[
\Delta_{12}^+ = \frac{\rho_{12}^{2-D}}{(D-2)|S^{D-1}|}, \quad \rho_{12} = (x_{12}^2 + i0x_{12}^0)^{\frac{D}{2}}, \quad |S^{D-1}| = \frac{2\pi^{D/2}}{\Gamma(D/2)}. \] (2.5)

It is a consequence of the theory of the unitary positive energy irreducible representations of the (quantum mechanical) conformal group Spin($D, 2$) (see [M] for $D = 4$ and [FF] for arbitrary D) that symmetric tensor currents of twist $D - 2$ (in a QFT satisfying Wightman positivity) are conserved.
As W has by definition an expansion in terms (of suitable integrals) of such currents (see [FGG], [DMPPT], [NST02]), it then follows [NST03] that W is biharmonic (i.e. satisfies the d’Alembert equation in each argument). Global conformal invariance and rationality allow to compute the 4-point function

$$< W(1, 2)W(3, 4) > = N\Delta_{14}^+\Delta_{23}^+ = \sum_{s=0}^{\infty} < W(1, 2)\Pi_s W(3, 4) >, \quad (2.6)$$

$$\left(W(i, j) \equiv W(x_i, x_j) \right)$$

(provided that $\rho_{12}^{D-2}\phi(x_1)\phi(x_2) \to 0$ for $x_1 \to x_2$). Here Π_s is the (orthogonal) projection operator to the “spin s subspace” - more precisely to the subspace generated by (neutral) scalar (for $s = 0$), vector (for $s = 1$) and rank s symmetric traceless tensors of scale dimension $d_s = D - 2 + s$. We note that each conformal partial wave (cf. [DMPPT], [DO]) - i.e., each term in the right hand side of (2.6) - is not a rational function (it involves logarithms); only the infinite sum gives the rational expression in the first equation (2.6). Thus, GCI implies the presence of an infinite set of (twist $D - 2$) conserved currents. Furthermore, Eq. (2.3), the first equation (2.6) and the analysis of the GCI 4-point function $< \phi^*(x_1)\phi(x_2)\phi^*(x_3)\phi(x_4) >$ imply the commutation relations

$$[W(1, 2), W(3, 4)] = \Delta_{23}^-W(1, 4) + \Delta_{14}^-W(3, 2) + N\Delta_{12,34}, \quad (2.7)$$

$$\Delta_{ij} := \Delta_{ij}^+ - \Delta_{ij}^-, \quad \Delta_{12,34} = \Delta_{14}^-\Delta_{23}^- - \Delta_{14}^+\Delta_{23}^+.$$

We note that Eq. (2.7) also makes sense in odd space-time dimensions when the (pure imaginary) commutator function Δ_{ij} violates Huygens’ locality (it is an integrable function with support in the closure of the cone of time-like separations: $(x_{ij}^0)^2 - x_{ij}^2(= -x_{ij}^2) \geq 0$). In all cases the bilocal field W and the unit operator span an infinite dimensional Lie algebra (that was identified as a central extension of $u(\infty, \infty)$ or of $Sp(2\infty, \mathbb{R})$ for $\phi = \phi^*$). It was demonstrated (first under somewhat restrictive assumptions in [NST02], then, gradually in full generality in [NRT05] and [BNRT]) that for unitary positive energy representations of the arising infinite dimensional Lie algebras the parameter N in (2.7) (and in similar formulas for more general bilocal fields considered in these papers) has to be a (positive) integer. This implies the existence of a free field construction of the bilocal field with the above properties. We shall expand on this statement in Sect. 4 after displaying its relevance to the argument of [MZ].
3 Two and three point spin-tensor invariants

The study of conformally invariant 3-point functions of conserved (vector and tensor) currents has started over half a century ago \cite{S71, MS}. An early result was the construction \cite{S88} of the 3-point functions of a $U(1)$ current J_1 and of the stress-energy tensor J_2 for $D = 4$ ending with the observation that all the appearing structures are reproduced by composites of free scalar, spinor and Maxwell fields. This was followed (six years later) by a study of conformal invariant 3-point functions for arbitrary D in \cite{OP} and (after five more years) in \cite{AF}. Lately (after another ten years) generating functions for all 3-point functions of three currents J_s of arbitrary spins s in $D = 3$ were written down \cite{GPY}; a set of algebraic generating functions for 3-point correlators in $D = 4$ were proposed in \cite{S}; the result is been extended to arbitrary D in \cite{Z}. Methods - old and new - of constructing conformal invariant correlation functions and OPE continue to attract attention - see e.g. \cite{CPPR, S-D}.

One device (which goes back to Weyl when applied to the unitary group and to Penrose\footnote{In fact, the ideas associated nowadays with “Penrose twistor theory” go back to Julius Plücker (1801-1868) who introduced a parametrization of 3D projective lines in terms of a quadric in the projective space \mathbb{P}^5 (published posthumously, in Plücker’s memoir “New geometry of space based on the consideration of a line as a space element” prepared by his assistant Felix Klein and by Alfred Clebsch in 1868-69 - see the lively historical survey \cite{G}). I thank Raymond Stora for reminding me of Plücker’s pioneering role.} (and Witten) when applied to the conformal group), used systematically in \cite{GPY} for $D = 3$, consists in replacing spin-tensor indices by 2-component spinors. We shall work it out here and in the Appendix (see A1-3) for the $D = 4$ case and will indicate the reduction to $D = 3$ in Sect. 4 (and in A4).

To set the stage we shall review some basic facts on the unitary positive energy irreducible representations (UPEIR) of the 4-dimensional quantum mechanical conformal group $C = SU(2, 2)$ \cite{M} (for reviews and further developments - see \cite{TF, FF}). Local field UPEIR are induced by finite dimensional irreducible representations (IR) of the 11-parameter parabolic subgroup P of C that leaves the point $x = 0$ invariant,

$$P = N_c \rtimes (\mathbb{R}_+ \times SL(2, \mathbb{C})),$$

where \mathbb{R}_+ is the (multiplicative) dilation group (of positive reals), N_c is the
4-parameter (nilpotent) abelian group of special conformal transformations

\[n_c : x \to \frac{x + cx^2}{1 + 2cx + c^2x^2} \]
(3.2)

(that acts trivially on \(x = 0 \)). The inducing representations are labeled by the \(SL(2, \mathbb{C}) \) weight \((s_1, s_2), s_i = 0, \frac{1}{2}, 1, ...\) and the scale dimension \(d \) that labels the IR of the 1-parameter dilation group; \(2s_1(2s_2) \) count the udotted (dotted) spinor indices \(A, \dot{B} = 1, 2 \). We shall contract the indices \((A, \dot{B})\) of local fields by complex 2-component spinors \(\lambda = (\lambda_A) \) (and their conjugates).

Let \(\tilde{\Lambda} \in SL(2, \mathbb{C}) \) and \(\Lambda = \Lambda(\pm \tilde{\Lambda}) \) be the corresponding (proper) Lorentz transformation; let further \(a \in \mathbb{R}^4 \) parametrize coordinate translation and let \(\rho > 0 \). Let, finally, \(\phi = \phi(x; \lambda, \bar{\lambda}) \) be a local field of Lorentz weight \((s_1, s_2)\) and dimension \(d \). The transformation law of \(\phi \) under Poincaré transformations and dilation (the subgroup of \(\mathcal{C} \) conjugate to \(\mathcal{P} \) that leaves invariant the tip of the cone at infinity) can be written as:

\[
U(\tilde{\Lambda}, a)\phi(x; \lambda, \bar{\lambda})U(\tilde{\Lambda}, a)^{-1} = \phi(\Lambda x + a; \lambda \tilde{\Lambda}^{-1}, \lambda^* \tilde{\Lambda}^{-1} \bar{\lambda}), \\
U(\rho)\phi(x; \lambda, \bar{\lambda})U(\rho)^{-1} = \rho^d\phi(\rho x; \rho^{1/2} \lambda, \rho^{1/2} \bar{\lambda}), \\
d = t + s_1 + s_2. \tag{3.3}
\]

Here \(t \) is the twist (a terminology usually applied to the case \(s_1 = s_2 = r/2 \) where \(r \) is the spin of the (rank \(r \)) symmetric tensor current). The special conformal transformation law of \(\phi \) can be deduced from the knowledge of the action of the Weyl inversion (see Appendix A2). We shall write down the corresponding infinitesimal conformal law:

\[
[C_{\mu}, \phi(x; \lambda, \bar{\lambda})] = [x^2 \partial_{\mu} - 2x_{\mu}(x \partial + t) - (\lambda \tilde{\sigma}_{\mu} x^\nu \sigma_\nu \frac{\partial}{\partial \lambda} + \text{c.c.})]\phi(x; \lambda, \bar{\lambda}) \\
= [x^2 \partial_{\mu} - 2x_{\mu}(x \partial + d) - (\lambda \sigma_{\mu\nu} x^\nu \frac{\partial}{\partial \lambda} + \text{c.c.})]\phi(x; \lambda, \bar{\lambda}) \tag{3.4}
\]

(c.c. standing for complex conjugation). The Pauli matrices \(\sigma^\mu \) and \(\tilde{\sigma}^\mu \) differ just by their transformation properties, which are so chosen that \(\zeta_\mu = \lambda \tilde{\sigma}_{\mu} \bar{\lambda} \) behaves as a (null) 4-vector while \(\frac{\partial}{\partial \lambda} \sigma^\mu \frac{\partial}{\partial \nu} \frac{\partial}{\partial \lambda} \) is a Lorentz invariant differential operator (see Eq. (3.13) and Appendix A). The \(sl(2, \mathbb{C}) \) generators \(\sigma_{\mu\nu} \) (A.5) obey the self duality relations obtained from \(\sigma_{12} = i\sigma_{03} = i\sigma_3 \) by cyclic permutations of the subscripts \((1, 2, 3)\).

For a pair of points \(x_1, x_2 \) in 4D Minkowski space and a pair of spinors \(\lambda_1, \lambda_2 \) (of undotted and dotted indices, respectively) we make correspond a
(complex) conformal invariant (see Appendix A2)

\[P_{12} = \lambda_1 \bar{\sigma}_2 \bar{\lambda}_2, \bar{x} = x^0 + x^1 \sigma_1 + x^2 \sigma_2 + x^3 \sigma_3. \]

(3.5)

(For a reminder of the Pauli matrix gymnastics and of the conformal properties of \(\lambda_i \) we again refer to the Appendix.) In particular, the 2-point function of the Weyl spinor field \(\psi(x, \lambda) \) and its conjugate has the form

\[w_\psi := \langle \psi(x_1, \lambda_1) \psi^*(x_2, \bar{\lambda}_2) \rangle = \frac{P_{12}}{2\pi^2 \rho_{12}^2} \]

(3.6)

where \(\rho_{12} \) and \(P_{12} \) are given by (2.5) and (3.5). Besides the 2-point invariants \(P_{ij} = -\bar{P}_{ji} \) one also has real three 3-point invariants \(L_i, i = 1, 2, 3 \) (denoted by \(-Q_i \) for \(D = 3 \) in \textbf{GPY}) obtained from anyone of them by cyclic permutations:

\[L_1(= L_{23}) = \lambda_1 (\bar{x}_{12} + \bar{x}_{31}) \bar{\sigma} \bar{\lambda}_1 =: \zeta_1 (\bar{x}_{12} - \bar{x}_{13}), \]

\[L_2(= L_{31}) = \zeta_2 (\bar{x}_{23} + \bar{x}_{12}), L_3(= L_{12}) = \zeta_3 (\bar{x}_{23} - \bar{x}_{13}), \zeta_i^2 = 0. \]

(3.7)

The lightlike “polarization” 4-vectors \(\zeta_i \) given by the sesquilinear expressions \(\zeta_{i\mu} = \lambda_i \sigma_\mu \bar{\lambda}_i \) also appear in the product

\[2P_{12}P_{21} = \zeta_1 \zeta_2 \bar{x}_{12}^2 - 2(\bar{x}_{12} \zeta_1)(\bar{x}_{12} \zeta_2) =: R_{12}, \]

(3.8)

a standard expression, encountered in the conformal invariant 2-point functions of rank \(r \) symmetric tensor currents \(J_{r}(i) = J_{r}(x, \zeta_i) \):

\[< J_{r}(1)J_{r}(2) > = C(r, D) \frac{(R_{12})^r}{(\rho_{12}^2)^{D-2}}. \]

(3.9)

The conformal 2-point functions of twist \(D-2 \) currents automatically satisfy the conservation law which can be written as follows in terms of the lightlike vector \(\zeta \):

\[\zeta^* \partial_x J_{r}(x, \zeta) = 0 \text{ where } \zeta^* = (\zeta \partial_\zeta + \frac{D}{2} - 1) \partial_\zeta - \frac{1}{2} \zeta \partial^2_\zeta. \]

(3.10)

(The systematics of replacing vector indices by lightlike vectors has been spelled out in \textbf{BT} where the above \(\zeta^* \) is defined as the \textit{interior derivative} on the lightcone. The term with the d’Alembert operator \(\partial^2_\zeta \) does not contribute
when acting on \((R_{12})^r\) since \(r(r - 1)(x^2\zeta_2 - 2(x\zeta_2)x)^2 = 0\) for \(\zeta_2^2 = 0\). We note that even for integer spin skew-symmetric tensor fields it is convenient to use the spinorial invariants \(P_{12}\) rather than the quadratic combination \((3.8)\). For instance the 2-point function of the selfdual Maxwell tensor

\[
F(x, \lambda) := \frac{1}{2} F^{\mu\nu}(x) \omega_{\mu\nu}, \quad \omega_{\mu\nu} = \lambda \sigma_{\mu\nu} \epsilon \lambda (\omega^{\mu\nu} \omega_{\mu\nu} = 0)
\]

and its hermitian conjugate, and their 3-point function with the (electromagnetic) stress-energy tensor \(T = T_F\) have the form

\[
< F(x_1, \lambda_1) F^*(x_2, \bar{\lambda}_2) > (\equiv < F(1) F(2)^* >) \sim \frac{P^2_{12}}{P^2_{12}},
\]

\[
< F(1) F(2)^* T(3) > \sim \frac{P^2_{13} P^2_{32}}{P^2_{13} P^2_{32}}.
\]

The free field equations for \(\phi = \psi, F\) and the conservation law for \(J\), consistent with the above 2- and 3-point functions, can be written as:

\[
\sigma^\mu \partial_\mu \phi(x; \lambda) = 0, \quad \partial_\mu = \frac{\partial}{\partial x^\mu}, \quad \partial_\mu \sigma^\mu \partial_\lambda J_r(x; \lambda, \bar{\lambda}) = 0;
\]

The free Weyl field \(\phi(x, \lambda)\) is a free massless field transforming under the (complex) representation \((s, 0)\) of the spinorial Lorentz group \(SL(2, \mathbb{C})\) (that is a homogeneous polynomial in \(\lambda\) of degree \(2s\)). The real part of the cyclic n-point invariant

\[
2 \text{Re}(P_{12} P_{23} \ldots P_{n-1n} P_{n1}) = P_{12} P_{23} \ldots P_{n1} + (-1)^n P_{1n} P_{n(n-1) \ldots P_{21}}
\]

can be expressed in principle in terms of \(R_{ij}\) \((3.8)\) and \(L_k\) \((3.7)\). The result is relatively simple for the 3-point function (derived in Appendix A2):

\[
2 P_{12} P_{23} P_{31} - 2 P_{21} P_{32} P_{13} = R_{12} L_3 + R_{23} L_1 + R_{13} L_2 + 2 L_1 L_2 L_3.
\]

It becomes much more involved (and less satisfactory) for higher point correlation functions (see Appendix A3). The expression \((3.15)\) appears in the numerator of the 3-point function of a non-abelian current \(J^a = : \psi^*(x, \bar{\lambda}) t^a \psi(x, \lambda):\) where the free Weyl field \(\psi\) is equipped with internal symmetry indices coupled to the matrices \(t^a\) that span a finite dimensional representation of the associated Lie algebra. The 3-point function of the \(U(1)\)-current (corresponding to \(t^a = 1\), on the other hand, is proportional instead to the imaginary
part of the triple product, $2i\text{Im}(P_{12}P_{23}P_{31}) = P_{12}P_{23}P_{31} + P_{21}P_{32}P_{13}$, which is the odd structure (involving the Levi-Civita tensor), computed in \[S\] :

$$2i(P_{12}P_{23}P_{31} + P_{13}P_{32}P_{21}) = \zeta_1 \wedge \zeta_2 \wedge \zeta_3 \wedge (\dot{x}_{13}^2 \dot{x}_{23} x_{12} + \dot{x}_{12}^2 \dot{x}_{23} x_{13}) + 2\dot{x}_{23}^2 \zeta_1(x_{12} + x_{13}) \zeta_2 \wedge \zeta_3 \wedge \dot{x}_{12} \wedge \dot{x}_{13} + 2\dot{x}_{13}^2 \zeta_2(x_{12} - x_{23}) \zeta_1 \wedge \zeta_3 \wedge \dot{x}_{12} \wedge \dot{x}_{23} - 2\dot{x}_{12}^2 \zeta_3(x_{13} + x_{23}) \zeta_1 \wedge \zeta_2 \wedge \dot{x}_{13} \wedge \dot{x}_{23}, \quad (3.16)$$

where $x \wedge y \wedge z \wedge w := \varepsilon^{\alpha\beta\mu\nu} x_\alpha y_\beta z_\mu w_\nu$. The 3-point function of the rank two current that coincides with the fermionic stress-energy tensor $J_2 = T_\psi$, however, admits a factor given by the ”parity even” product \[\text{[3.14]}\]:

$$<J_2(1)J_2(2)J_2(3)> = \frac{8}{\pi^6} \frac{P_{12}P_{23}P_{31} - P_{13}P_{32}P_{21}}{\rho_{12}^2 \rho_{23}^2 \rho_{13}^2} [3(R_{12}L_3 + R_{23}L_1 + R_{13}L_2) - 2(P_{12}P_{23}P_{31} - P_{13}P_{32}P_{21})]. \quad (3.17)$$

The identity \[\text{[3.15]}\] also allows to simplify the expression for the 3-point function of the stress-energy tensor $T(x, \zeta)$ for the Maxwell field (first computed in \[S88\]),

$$<T(1)T(2)T(3)> = \frac{16}{\pi^6 \rho_{12}^2 \rho_{23}^2 \rho_{13}^2} [R_{12}R_{23}R_{13} + (R_{12}L_3 + R_{23}L_1 + R_{13}L_2 + 2L_1L_2L_3)^2] = \frac{64(P_{12}^2 P_{23}^2 P_{31}^2 + P_{21}^2 P_{32}^2 P_{13}^2)}{\pi^6 \rho_{12}^2 \rho_{23}^2 \rho_{13}^2} \quad (3.18)$$

More generally, let $\phi(x, \lambda)$ be a chiral conformal field of twist one that transforms under the representation $(s, 0)$ of $SL(2, \mathbb{C})$. Then its 2-point function is given by

$$<\phi(x_1, \lambda_1) \phi^*(x_2, \bar{\lambda}_2)> = N_s \frac{P_{12}^{2s}}{\rho_{12}^2} \quad (3.19)$$

and satisfies the free field equation \[\text{[3.13]}\]. As demonstrated in \[S\] for each $r \geq 2s$ there exists a conserved current given by a sesquilinear combination of (derivatives of) ϕ, ϕ^*. In particular, the rank $r = 2s$ tensor current $J_r(x; \lambda, \bar{\lambda}) =: \phi^*(x, \bar{\lambda}) \phi(x, \lambda)$ has a 3-point function of the form

$$<J_r(1)J_r(2)J_r(3)> = C_r \frac{(P_{12}P_{23}P_{31})^r + (P_{13}P_{32}P_{21})^r}{(\rho_{12}\rho_{23}\rho_{13})^2}, \quad (3.20)$$

where $J_r(i) = J_r(x_i; \lambda_i, \bar{\lambda}_i)$. (For $r > 2s$ this 3-point function contains the factor $(P_{12}P_{23}P_{31})^{2s} + (-P_{13}P_{32}P_{21})^{2s}$.) One has, in fact, the following generalization of the Weinberg-Witten theorem \[WW\]: a conserved rank r current
J_r can couple to a spin s chiral field ϕ (in the sense that the 3-point function $\langle \phi(1)\phi(2)^*J_r(3) \rangle \neq 0$) if and only if $2s \leq r$. Curiously, conformal invariance does not forbid such a coupling for higher point correlation functions or composite fields. An interesting example of this type has been constructed in \[S\]. If $J(x, \zeta)(= J_1)$ is a conserved $U(1)$ current and $F(x, \lambda)$ has the property of the selfdual Maxwell field (with 2- and 3-point functions given by (3.12)) then, in accord with the Weinberg-Witten theorem, there is no non-trivial conformal 3-point function $\langle F(1)F(2)^*J(3) \rangle$ (consistent with current conservation) but the product of two J's may be coupled to F^2. Indeed, using the new 3-point invariants (A.18) that involve the isotropic selfdual skew symmetric tensor $\omega_{\mu\nu}$ (3.11) (see Appendix A2) one can write

$$\langle J(1)J(2)F^2(3) \rangle \sim \frac{RL_{13}RL_{23}}{\rho_{12}^4},$$

(3.21)
a particularly interesting example since it is not reproduced by free fields.

4 Reduction to $D = 3$. Infinite Lie algebras

The passage from four to three dimension in the above expressions amounts to reducing the complex transverse variable $y = x_1 + ix_2$ to a real one, $y = \bar{y}$ and regarding λ_i as real spinors (the 4D spinorial Lorentz group $SL(2, \mathbb{C})$ going to $SL(2, \mathbb{R})$ in 3D). Introducing also the lightcone variables $x^\pm = x^0 \pm x^3$ we can present the two-by-two real symmetric matrix $\tilde{x}\sigma$ in the form:

$$\tilde{x}\sigma = \frac{x}{x^2}, \quad \tilde{x} = x^+\sigma_+ + x^-\sigma_- + y\sigma_1, \text{ where } \sigma_\pm = \frac{1}{2}(1 \pm \sigma_3).$$

(4.1)

Their conformal transformation properties are described in Appendix A4. The six 2- and 3-point invariants $P_{ij}, L_k, i \neq j, k = 1, 2, 3$ are all real and continue to obey the cubic relation (3.15) (while $P_{12}P_{23}P_{31} + P_{13}P_{32}P_{21} = 0$). Any polynomial of $\{P_{ij}, L_k\}$ that is homogeneous of degree $2s_i$ with respect to λ_i, λ'_i when multiplied by $(\rho_{12}\rho_{23}\rho_{13})^{-1}$ gives a tensor structure for $\langle J_{s_1}J_{s_2}J_{s_3} \rangle$ consistent with conformal invariance. The P’s and L’s are the building blocks of the generating functions of 3-point functions of higher spin currents. To write down the most general conformal 3-point function one has to take into account also parity violating structures computed in [GPY] (which involve the rank three Levi-Civita tensor). Remarkably, all the basic 3-point functions become rational upon multiplying by $\rho_{12}\rho_{23}\rho_{13}$.
Current conservation is not automatic since the general conformal 3-point functions need not belong to a unitary theory. When imposed, the parity violating structures \(<J_{s_1} J_{s_2} J_{s_3}>_{\text{odd}}\) are found to only exist if \(s_i\) satisfy the triangle inequality, \(|s_1 - s_2| \leq s_3 \leq s_1 + s_2\) and then to be unique (for each triple of such \(s\) - see Sect. 3 of [GPY]). The “parity preserving” 3-point functions, on the other hand, are just the two Bose and Fermi structures coming from products of derivatives of free fields. A basic assertion of [GPY] (for which an improved argument is presented in Sect. 6.5 of [MZ]) says that the presence of higher spin conserved currents (with \(s \geq 4\)) excludes the non free “odd structures” for \(D = 3\).

Here are some of the steps in the argument of Maldacena and Zhboedov.

Let \(J_s\) be a rank \(s(>2)\) conserved tensor current. Writing \(j_s\) for its contraction with a fixed a lightlike vector \(\zeta\) such that \(x\zeta = \lambda \tilde{x}\lambda = x^+ (\lambda = (1,0))\), \(j_s(x) := J_s(x, \zeta)\) (4.2)

we assume that the charge (of scale dimension \(s - 1\))

\[Q_s := \int_{x^+ = \text{const}} j_s dy dx^-\] (4.3)

is a well defined operator (that annihilates the vacuum). The dimensionless charge \(Q_1\) is central while for \(s > 1\) the commutators \([Q_s, j_s']\) have the form

\[[Q_s, j_s'] = \sum_{s' = \text{max}(s' - s + 1,0)}^{s+s-1} a_{s's's''} \partial^{s'+s-1-s''} j_{s''}, \partial \equiv \frac{\partial}{\partial x^-}\] (4.4)

such that the nonvanishing of \(a_{sml}\) is equivalent to the nonvanishing of \(a_{sml}\).

One proves - taking into account that (integrals of) \(J_2\) generate all conformal transformations - that \([Q_s, j_2]\) involves (for \(s > 1\)) a non-zero term proportional to \(\partial j_s\) (in particular, \(Q_2\) is just the component \(P_\pm\) of the energy momentum operator, i.e. the generator of translation in the variable \(x^-\)).

Using the assumed uniqueness of the field \(J_2\), which coincides with the stress-energy tensor, as well as the fact that the OPE of two fermionic currents \((j_2j_2)_f\), has a different singularity than that of two bosonic ones, \((j_2j_2)_b\), one concludes that if \(<j_2j_2j_2>_b \neq 0\) then \(<j_2j_2j_2>_f = 0\) and vice versa. In the first case, exploiting the presence of a conserved charge \(Q_4\), one proves that there exists a scalar field \(j_0\) (of dimension 1) such that \(<j_2j_2j_0>_f \neq 0\). Furthermore, the OPE of a pair of \(j_0\)'s gives rise to a (hermitean) bilocal field
which contains (much like our $W(x_1, x_2)$ of Sect. 2) the stress-energy tensor and the higher spin conserved currents in its OPE (see below). Similarly, in the second case, one proves the existence of a scalar field of dimension two that behaves as a (skewsymmetric) product of two (2-component free massless) Majorana spinor fields (in $D = 3$). Fixing attention to the first (bosonic) case we shall demonstrate that the remaining argument (contained in Secs. 5.3-5 of $[MZ]$) can be reduced to a special case of the results of $[BNRT]$ which we proceed to summarize, noting that they remain valid for odd space-time dimensions.

The OPE of twist two scalar fields like J_0 gives rise to a family of bilocal scalar fields $\{V_M(x_1, x_2)\}$ where the M's span a real matrix algebra closed under transposition. (The field $W(x_1, x_2)$ of Eqs. (2.3) (2.7) can be viewed as a special case in which the possible values of M are either the (two-by-two) unit matrix or the skew-symmetric matrix $\epsilon = i\sigma_2$.) One proves (in Secs. 2 and 3 of $[BNRT]$ (b)) that it generates an infinite Lie algebra of one of the following three types\footnote{They correspond to irreducible real matrix algebras, whose commutants, according to the real version of Schur’s lemma, are isomorphic to \mathbb{R}, \mathbb{C} and \mathbb{H} (the quaternions), respectively. (The last possibility yielding a $USp(2N)$ gauge symmetry is missed in $[MZ]$.)} a central extension of (i) the real symplectic algebra $sp(2\infty, \mathbb{R})$, (ii) the pseudounitary algebra $u(\infty, \infty)$, and (iii) the non-compact orthogonal algebra $so^\ast(4\infty)$. Furthermore, one proves that in each case the unitary positive energy representations of the corresponding infinite dimensional Lie algebra are generated by a finite set of free massless scalar fields with (global) gauge symmetry group, $O(N), U(N), \text{or } USp(2N)$, respectively. We shall sketch one step of the proof which goes back to $[NST02]$ (and corresponds to the argument in Sect. 5.7 of $[MZ]$), choosing for the sake of definiteness the case of the $u(\infty, \infty)$ Lie algebra generated by the commutation relations (CR) (2.7). (We refer for detail to $[BNRT]$ (a).)

The conformal Lie algebra in D dimensions $\mathcal{C} = so(D, 2)$ can be viewed as a Lie subalgebra of the suitable centrally extended completion \hat{u} of the infinite Lie algebra $u(\infty, \infty)$. The maximal compact subgroup $SO(2) \times SO(D)$ of the conformal group has a one-dimensional centre $SO(2)$. Its (hermitean) generator H the conformal Hamiltonian is positive definite whenever the standard Minkowski space Hamiltonian P_0 is. Furthermore, it belongs to a compact Cartan subalgebra of \hat{u} (contained in a completion of $u(\infty) \oplus u(\infty)$) has a (finitely degenerated) discrete spectrum in any unitary positive energy irreducible representation (UPEIR) of \hat{u}. We consider a basis $\{f_i\}$ of
eigenfunctions of H. (Such a basis is constructed in Appendix A to \cite{BNRT} (a) in terms of homogeneous harmonic polynomials in a complex realization of the conformal compactification of Minkowski space.) A local field smeared with f_i behaves as a creation operator while smearing with the conjugate \bar{f}_i gives rise to an annihilation operator. We consider the n-th order determinant of mutually commuting (double) annihilation operators

$$D_n(= D_n^{(r)}) = \det(X_{ij})|_{i,j=1}^n, \quad X_{ij} = W(\bar{f}_{r+i}, \bar{f}_{r+j})$$

where $W(f, g)$ is the smeared bilocal field W (and the superscript r is designed to indicate that we are not necessarily starting with the lowest energy eigenvalue - a possibility, actually used in the argument of Sect. 2.2 of \cite{BNRT} (a)). A groundstate $|\mathbf{h}\rangle$ of an UPEIR of \hat{u} is a minimal energy eigenstate of the Cartan subalgebra that is annihilated by all lowering operators including X_{ij}. The norm square of the vector $D_n^*|\mathbf{h}\rangle$ can be computed algebraically (using the CR of \hat{u}) and is a polynomial $p_n(N)$ of degree n in the central charge N defined in (2.7). In order to determine this polynomial we shall exploit our knowledge of its behaviour for integer values of N. In fact, in a realization of W as a sum of normal products of free complex massless scalar fields N is an integer,

$$W(x, y) = \sum_{i=1}^{m} :\varphi_i^*(x)\varphi_i(y) : \Rightarrow N = m.$$ \hfill (4.6)

For such a W $p_n(N)$ will vanish if $m < n$ and will be positive for $m = n$. This implies that for general N

$$p_n(N) = <\mathbf{h}|D_nD_n^*|\mathbf{h}> \sim N(N-1)...(N-n+1)$$

with an irrelevant positive coefficient. The nonnegativity of $p_n(N)$ for all n implies that N must be a positive integer. Then one proves (see Theorem 1 of \cite{BNRT} (a)):

(i) All UPEIRs of \hat{u} are realized (with multiplicities) in the Fock space of N free massless complex scalar fields by (4.6) (with $m = N$).

(ii) The ground states of equivalent representations of \hat{u} in the Fock space form irreducible representations (IRs) of the gauge group $U(N)$. This establishes a one-to-one correspondence between the IRs of \hat{u} occurring in the Fock space and the IRs of $U(N)$.

13
5 Discussion

Considering together our earlier work [NT, NST02, NST03, NRT08, BNRT] on globally conformal invariant QFT in an even number of space-time dimensions and the recent paper of Maldacena and Zhiboedov [MZ] on 3D CFT with higher spin symmetry, we came to the conclusion that the crucial property which generalizes chiral (meromorphic) 2D CFT to higher (both even and odd) dimensions is the presence of an infinite series of conserved tensor currents. It turns out that both the main result of [MZ], namely:

Any $D = 3$ CFT with a unique rank two conserved current J_2 (with the properties of the energy momentum tensor) which admits higher rank conserved currents J_s, $s > 2$, is generated by a bilocal field that is a sum of normal products of free (scalar or spin $\frac{1}{2}$) fields.

and the argument designed to prove it parallels (as shown in Sect. 4) our earlier results and argument, valid for a theory with higher spin symmetry generated by a scalar field of dimension $D - 2$ in a D-dimensional space-time.

It was noted back in [NST03] that in a $D = 4$ GCI QFT generated by a scalar field of dimension four with the properties of a gauge field Lagrangian the methods used earlier (in [NST02]) do not imply such a no go result. Furthermore, the three point function (3.18) provides a structure absent for $D = 3$, for which the above mentioned arguments do not seem to apply. Even more suggestive, the new 4-point function of the (spin one) $U(1)$-current, discovered by Stanev [S],

$$< J^{a_1}(x_1).J^{a_2}(x_2).J^{a_3}(x_3).J^{a_4}(x_4) >= \prod_{i=1}^4 \epsilon^{a_i \mu_i \nu_i \rho_i} R_{\mu_1 \mu_2}(x_{12}) R_{\nu_1 \nu_3}(x_{13}) R_{\rho_1 \rho_4}(x_{14}) R_{\nu_2 \nu_3}(x_{23}) R_{\nu_2 \nu_4}(x_{24}) R_{\rho_3 \rho_4}(x_{34}),$$

(5.1)

which does not appear to have a free field realization, and the related 3-point function (3.21) seem to leave open the way for constructing a non-trivial rational CFT model in 4D.

Acknowledgments. I thank Yassen Stanev for collaboration, Karl-Henning Rehren and Raymond Stora for their interest and critical remarks, and Ali Tavanfar for inviting me to present a talk on this topic to the TH Journal Club. The hospitality and support of the Theory Division of CERN is gratefully acknowledged. The author’s work has been supported in part by grant DO 02-257 of the Bulgarian National Science Foundation.
Appendix A. Conformal invariants in four and three dimensions

A1. Multiple role of Pauli matrices

We introduce two copies, σ^μ and $\tilde{\sigma}_\mu$ of the same two-by-two matrices, assuming that they transform under inequivalent representations of $SL(2, \mathbb{C})$:

$$\begin{align*}
\sigma^0(= -\sigma_0) &= 1 = \tilde{\sigma}_0(= -\tilde{\sigma}^0), \\
\sigma^i(= \sigma_i) &= \tilde{\sigma}_i,
\end{align*}$$

(A.1)

equipped with different undotted and dotted indicies $A, \dot{B} = 1, 2$:

$$\begin{align*}
\tilde{x} = x^\mu \tilde{\sigma}_\mu &= (\tilde{x}^{A\dot{B}}), \\
\partial = \partial_\mu \sigma^\mu = (\partial_{A\dot{B}})
\end{align*}$$

(A.2)

and use the skew-symmetric tensor

$$\begin{align*}
(\epsilon^{A\dot{B}}) &= ((\bar{\epsilon}^{A\dot{B}})(= (\epsilon_{A\dot{B}})), \\
\epsilon^{12} &= 1
\end{align*}$$

(A.3)

for raising (and lowering) indices. The matrix valued vectors σ^μ and $\tilde{\sigma}_\nu$ obey the exchange relations

$$\begin{align*}
\tilde{\sigma}_\mu \sigma^\nu + \tilde{\sigma}_\nu \sigma^\mu &= 2 \delta^\nu_\mu (\delta^{A}_B), \\
\sigma^\mu \tilde{\sigma}_\nu + \sigma^\nu \tilde{\sigma}_\mu &= 2 \delta^\nu_\mu (\delta^{B}_A).
\end{align*}$$

(A.4)

The generators of the two (complex conjugate to each other) 2-dimensional representations of $SL(2, \mathbb{C})$ can be written as

$$\begin{align*}
\sigma_{\mu\nu} &= \frac{1}{2}(\tilde{\sigma}_\mu \sigma^\nu - \tilde{\sigma}_\nu \sigma^\mu) = \tilde{\sigma}_\mu \sigma^\nu - \eta_{\mu\nu} = ((\sigma_{\mu\nu})^A_B), \\
\bar{\sigma}_{\mu\nu} &= \frac{1}{2}(\sigma^\mu \tilde{\sigma}_\nu - \sigma^\nu \tilde{\sigma}_\mu)(= -\sigma^*_{\mu\nu})
\end{align*}$$

(A.5)

$$(\eta_{\mu\nu}) = diag(- + + +)$$

and satisfy the (anti)selfduality condition

$$\begin{align*}
* \sigma_{\mu\nu} := \frac{1}{2} \epsilon_{\mu\nu\kappa\lambda} \sigma^{\kappa\lambda} &= i \sigma_{\mu\nu}, \\
* \bar{\sigma}_{\mu\nu} &= -i \tilde{\sigma}_{\mu\nu} \quad \text{(for } \epsilon^{0123} = -\epsilon_{0123} = 1). \quad \text{(A.6)}
\end{align*}$$

The tensor valued matrices (A.5) can be also used to decompose a (real) skew-symmetric tensor $F_{\mu\nu}$ (like the Maxwell field) into (complex) irreducible components $(1, 0) \oplus (0, 1)$ with respect to $SL(2, \mathbb{C})$:

$$\begin{align*}
F_{\mu\nu} &= F^A_B (\sigma_{\mu\nu})^B_A + c.c. \Rightarrow F^A_B = \frac{1}{4} F_{\mu\nu} (\sigma^{\mu\nu})^A_B, \\
F^S_S &= 0, F^{AB} = F^A_S \epsilon^{SB} = F^{BA}, \tilde{\sigma}_{\mu\nu} = \tilde{\epsilon} \tilde{\sigma}_{\mu\nu}.
\end{align*}$$

(A.7)
A2. Two and three point conformal invariants for $D = 4$.

The 2-component spinors λ_1, λ_2 in (3.5) are translation invariant but transform non-trivially under the (Weyl) conformal inversion (that is a proper conformal transformation, i.e., belongs to the connected component of $SU(2,2)$),

$$I_{\mu}: (x_0, x) \rightarrow \left(\frac{x_0}{x^2}, -\sigma, \lambda_1 \rightarrow \lambda_1 \tilde{\sigma}, \tilde{\lambda}_2 \rightarrow \tilde{\lambda}_2 \tilde{\sigma}, \lambda_2 \rightarrow \lambda_2 \tilde{\sigma}, (A.8)$$

(We note that while I_{μ} acts on the 4-vector x as an involution, the square of its action on λ gives $-\lambda$, -1 being the non-trivial central element of $SL(2, \mathbb{C})$ which is mapped on the identity of the (connected) Lorentz group $SO_0(3,1)$.)

It is a simple exercise to check that P_{12} is invariant under I_{μ}. In order to verify the formula (3.8) for $P_{12}P_{21}$ one uses

$$\zeta_{i\mu} = \lambda_i \tilde{\sigma} \tilde{\lambda}_i \Rightarrow \zeta_{i\mu}(\sigma^{AB}) \tilde{\sigma}^{AB} = 2 \lambda_i \tilde{\sigma} \tilde{\lambda}_i = \zeta_i^{AB},$$

$$\eta^{\mu\nu} \tilde{\sigma}^{A\beta} \otimes \tilde{\sigma}^{B\gamma} = -2 \epsilon^{AB} \tilde{\sigma} \tilde{\sigma} = -2 \tilde{\sigma} \Rightarrow \zeta_{i\mu} = -\zeta_i \tilde{\sigma}, \zeta_{i\mu} = 0, i = 1, 2. \quad (A.9)$$

The derivation of the cubic relation (3.15) requires more work. One again applies (A.9) to write

$$2x_{12}^2 x_{23}^2 x_{13}^2 (P_{12}P_{23}P_{31} - P_{32}P_{21}P_{13}) =$$

$$-\frac{1}{4} \text{tr} \left[(\zeta_1 \tilde{\sigma} \zeta_{12} \zeta_2 \tilde{\sigma} \zeta_{12} \zeta_3 \tilde{\sigma} - \zeta_3 \tilde{\sigma} \zeta_{12} \zeta_2 \tilde{\sigma} \zeta_1 \sigma) \tilde{x}_{13} \right], \quad (A.10)$$

then uses $x_{13} = x_{12} + x_{23}$ and $\tilde{x} \zeta \sigma \tilde{x} = 2(x \zeta) x - x^2 \zeta$ to reduce the problem to the trace of the product of four two-by-two matrices where one finally applies the formula

$$\frac{1}{2} \text{tr} (abc \tilde{d}) = ab \tilde{d} - ac b \tilde{d} + ad b \tilde{d} + i \epsilon^{\lambda \mu \nu} a_\lambda b_\mu c_\nu (\epsilon^{0123} = 1) \Rightarrow \frac{1}{4} \text{tr} (\bar{a} \tilde{b} \bar{c} \tilde{d} + \bar{b} \tilde{d} \bar{c} \tilde{a}) = ab \tilde{d} - ac b \tilde{d} + ad b \tilde{d}$$

for $a = a_\mu \sigma^\mu, \tilde{b} = b^\mu \tilde{\sigma}_\mu, ab = a_\mu b^\mu. \quad (A.11)$

Both the two- and the three-point invariants, P_{12} and L_i are homogeneous of degree $(1,1)$ in $(\lambda_i, \tilde{\lambda}_j)$. We now proceed to displaying 3-point invariants of degree $(3,1)$ (and their conjugate of degree $(1,3)$) which, clearly, cannot
be expressed in terms of the preceding. To this end we first introduce a skew-symmetric tensor \((3.11)\) of degree \((2,0)\)

\[
\omega_{\mu\nu}(= \omega(\lambda, \lambda))_{\mu\nu} = \lambda \sigma_{\mu\nu} \epsilon \lambda. \tag{A.12}
\]

For fixed indices \(\omega\) defines a quadratic form in \(\lambda\), which gives rise (by a standard polarization procedure) to a symmetric bilinear form \(\omega(\lambda_1, \lambda_2)\). Setting \(\omega(i) := \omega(\lambda_i, \lambda_i)\) and using \((A.9)\) we can write

\[
\omega(1)_{\mu\rho} \tau^\sigma \omega(2)_{\tau \nu} = \omega(\lambda_1, \lambda_2)_{\mu\nu} \lambda_1 \epsilon \lambda_2. \tag{A.13}
\]

It follows that for \(\lambda_1 = \lambda_2\) the product \((A.13)\) vanishes. In view of the self-duality condition \((A.6)\) \(\omega_{\mu\nu}\) has only three linearly independent (complex) components. It is convenient to choose a basis of light-cone and transverse projections (which are real for real \(\lambda\) - cf. \((4.1)\)):

\[
\omega_+ := \frac{1}{2}(\omega_{13} + \omega_{10}) = \lambda_1^2, \omega_- := \frac{1}{2}(\omega_{13} - \omega_{10}) = \lambda_2^2, \omega_0 := \frac{1}{2} \omega_{03} = \lambda_1 \lambda_2. \tag{A.14}
\]

The inner product of two such vectors \(\omega(i) = \omega(\lambda_i), i = 1, 2,\) is given by

\[
\omega(1) \omega(2) := \frac{1}{8} \omega^{\mu\nu}(1) \omega_{\mu\nu}(2) = \omega_+(1) \omega_- (2) + \omega_-(1) \omega_+ (2) + 2 \omega_0(1) \omega_0(2) = (\lambda_{11} \lambda_{22} - \lambda_{12} \lambda_{21})^2. \tag{A.15}
\]

In particular, we see that the 3-vector \(\omega = \omega(\lambda)\) is isotropic:

\[
\omega^2 = 2(\omega_+ \omega_- - \omega_0^2) = 0 \tag{A.16}
\]

(something that also follows from \((A.13)\)). Consider now the 2- and 3-point 4-vectors \(R^\mu_{i3}, i = 1, 2\) and \(L^\mu_3\) (with \(\zeta_3\) replaced by the 4-vector index \(\mu\)):

\[
R^\mu_{i3} = \tilde{x}^\mu_{i3} \zeta^\nu_{3} - 2(\zeta_i \tilde{x}_{i3}) \tilde{x}^\mu_{i3}, i = 1, 2; \quad L^\mu_3 = \tilde{x}^\mu_{23} - \tilde{x}^\mu_{13}. \tag{A.17}
\]

The self-dual projections of their skew-symmetric products,

\[
RL_{i3} := \frac{1}{2} R^\mu_{i3} \omega_{\mu\nu} L^\nu_3, i = 1, 2, \omega = \omega(3) \tag{A.18}
\]

are conformal invariant. In verifying this we observe that under the Weyl inversion \((A.8)\) \(\omega\) transforms as

\[
(I_\omega \omega)_a = (x^2)^{-2} V^b_a \omega_b, a, b = +, -, 0, x = x_3, V_+^+ = (x^+)^2, V_-^+ = \bar{y}^2, V_0^0 = 2x^+ \bar{y}, V_+^- = y^2, V_-^- = (x^-)^2, V_0^0 = 2yx^-, V_0^+ = yx^+, V_0^- = \bar{y}x^-, V_0^0 = x^+ x^- + y\bar{y}. \tag{A.19}
\]
This transformation law satisfies, as expected,

\[(I_w^2)^2 = (x^2)^{-2}\omega^2 = 0.\] \hspace{1cm} (A.20)

A3. The fermionic box diagram: a four point invariant

The following relation, computed by Yassen Stanev, demonstrates that the real part of the product of four P-invariants can be only expressed (in a rather complicated way) in terms of R- and L-invariants on the price of introducing fake singularities (in \(x_{13}^2\) and \(x_{24}^2\)):

\[
4(P_1P_2P_3P_4 + P_1P_4P_3P_2) = (R_{12} + 2L_{24}^1L_{34}^1)(R_{34} + 2L_{42}^3L_{13}^4) + \\
(R_{14} + 2L_{24}^1L_{13}^4)(R_{23} + 2L_{34}^3L_{42}^1) - 4L_{24}^1L_{34}^3L_{42}^1L_{13}^4 \\
- \frac{1}{s}(R_{12} + 2L_{24}^1L_{13}^4)(R_{34} + 2L_{42}^3L_{23}^4) - \frac{1}{s}(R_{14} + 2L_{34}^3L_{12}^4)(R_{23} + 2L_{24}^3L_{12}^4) \\
+ \frac{2}{t}(L_{24}^1L_{34}^1R_{24} + R_{13}L_{41}^2L_{13}^4) + \frac{2}{s}(L_{34}^1L_{12}^4R_{24} + R_{13}L_{34}^2L_{12}^4) \\
+ \frac{s}{t}R_{12}R_{34} + \frac{t}{s}R_{14}R_{23} + \frac{1 - s - t}{st}R_{13}R_{24}, \hspace{1cm} (A.21)
\]

where \(s, t\) are the independent cross-ratios

\[
s = \frac{x_{12}^2x_{34}^2}{x_{13}^2x_{24}^2}, \hspace{1cm} t = \frac{x_{14}^2x_{23}^2}{x_{13}^2x_{24}^2}. \hspace{1cm} (A.22)
\]

The expression in the right hand side of (A.21) is not unique because of relations of the type

\[
L_{12}^4 + L_{23}^4 = L_{13}^4. \hspace{1cm} (A.23)
\]

In any case, it appears advantageous to use \(P_{ij}\) and a set of independent \(L_{ij}^k\) as a basis of conformal invariant spin-tensors of dimension (1, 1) in \((\lambda, \bar{\lambda})\) even when they may be expressed in terms of \(R_{ij}\) and \(L_{ij}^k\). (One has to add to this list invariants of higher weight like \(RL_{i3}\) \([A.18]\) and their conjugates.)

A4. Reduction to the D=3 case.

In three dimension the 4D spinorial Lorentz group \(SL(2, \mathbb{C})\) reduces to its real subgroup \(SL(2, \mathbb{R})\) so that the spinors \(\lambda_i\) can be chosen real. We then only need one set of symmetric Pauli matrices\(^5\) \((\sigma_+, \sigma_1, \sigma_3)\) where \(\sigma_\pm\) correspond to the light-cone coordinate \(x^\pm\) (cf. (4.1)): \(x^0 + x^3\sigma_3 = x^+\sigma_+ + x^-\sigma_-\). We shall feel free to use the orthogonal or the lightcone (and transverse)

\(^5\)The matrices \(\sigma_0 = 1, \sigma_1, \sigma_3\) actually correspond to \((\tilde{\sigma}_\mu)\) but we drop the tilde sign.
coordinates depending on convenience, taking for the line element either of the two equivalent forms:

\[dx^2 = (dx^1)^2 + (dx^3)^2 - (dx^0)^2 = dy^2 - dx^+dx^- . \]
(A.24)

The exchange relations (A.4) assume a familiar form in terms of the generators \(\gamma_\mu \) of the Clifford algebra \(Cl(2, 1) \) of 3-dimensional Minkowski space (cf. [TII]) which are two-by-two real traceless matrices:

\[\gamma_\mu = \sigma_\mu \epsilon, \mu = 0, 1, 3 \text{ (or +, −, 1)} \Rightarrow [\gamma_\mu, \gamma_\nu]_+ := \gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = 2 \delta_\mu^\nu (\delta_B^A). \]
(A.25)

The relations (A.9) on the other hand assume the form

\[\gamma^{A_1}_{B_1} \gamma^{A_2}_{B_2} = \delta_{B_2}^{A_1} \delta_{B_1}^{A_2} + \epsilon^{A_1 A_2} \epsilon_{B_2 B_1} ; \]
(A.26)

\[\zeta_i^\mu = \lambda_i \sigma^\mu \lambda_i, i = 1, 2, \zeta_{12}^\mu = \lambda_1 \sigma^\mu \lambda_2 = \zeta_{21}^\mu \Rightarrow \]
\[\zeta_{12}^2 = (\lambda_1 \epsilon \lambda_2)^2 = -\frac{1}{2} \zeta_1 \zeta_2, \zeta_i^2 = 0 = \zeta_{12} \zeta_i . \]
(A.27)

References

[AF] G. Arutyunov and S. Frolov, Three-point Green function of the stress-energy tensor in the AdS/CFT correspondence, Phys. Rev. D60 (1999) 026004; arXiv:hep-th/9901121.

[BN] B. Bakalov, N.M. Nikolov, Jacobi identity for vertex algebras in higher dimensions, J. Math. Phys. 47 (2006) 053505; arXiv:math-ph/0601012.

[BNRT] B. Bakalov, N.M. Nikolov, K.-H. Rehren, I. Todorov, (a) Unitary positive energy representations of scalar bilocal fields, Commun. Math. Phys. 271 (2007) 223-246 (math-ph/0604069v3); (b) Infinite dimensional Lie algebras in 4D conformal quantum field theory, J. Phys. A Math Theor. 41 (2008) 194002 (arXiv:0711.0627v2 [hep-th]).

[BT] V. Bargmann, I.T. Todorov, Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(\(N\)), J. Math. Phys. 18:6 (1977) 1141-1148.
[B] K. Bauman, There are no scalar Lie fields in three and more dimensional space-time, *Commun. Math. Phys.* **47** (1976) 69-74.

[CM67] S. Coleman, J. Mandula, All possible symmetries of the S-matrix, *Phys. Rev.* **159**:5 (1967) 1251-1256.

[CPPR] M.S. Costa, J. Penedones, D. Poland, S. Rychkov, Spinning conformal correlators, arXiv:1107.3554v2 [hep-th].

[DMPPT] V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova, I.T. Todorov, *Harmonic Analysis on the n-Dimensional Lorentz Group and its Application to Conformal Quantum Field Theory*, Lecture Notes in Physics **63**, Springer-Verlag, Berlin 1977, 280pp.

[DO] F.A. Dolan, H. Osborn, Conformal partial waves and operator product expansion, *Nucl. Phys.* **B678** (2004) 491-507; hep-th/0309180.

[DMR] M.R. Douglas, L. Mazzucato, S.S. Razamat, Holographic dual of free field theory, *Phys. Rev.* **D83** (2011) 071701; arXiv:1011.4926v2 [hep-th].

[FF] S. Ferrara, C. Fronsdal, Conformal fields in higher dimensions, arXiv:hep-th/0006009v3.

[FFG] S. Ferrara, R. Gatto, A.F. Grillo, Conformal algebra in space-time and operator product expansion, Springer tracts in modern physics **67**, Springer, Berlin et al. 1973, 69pp.

[FV] E.S. Fradkin, M.A. Vasiliev, On the gravitational interaction of massless higher-spin fields, *Phys. Lett.* **B189** (1987) 89-95; Cubic interaction in extended theories of massless higher-spin fields, *Nucl. Phys.* **B291** (1987) 141-171.

[GGHR] M.R. Gaberdiel, R. Gopakumar, T. Hartman, S. Raju, Partition functions of holographic minimal models, arXiv:1106.1897v1 [hep-th].

[G] S.G. Gindikin, The complex universe of Roger Penrose, *Mathematical Intelligencer* **5**:1 (1983) 27-35; The ideas of Plücker in modern mathematical physics (Russian), *Istor.-Mat. Issled.* **30** (1986), 248-261.

[GPY] S. Giombi, S. Prakash, X. Yin, A note on CFT correlators in three dimensions, arXiv:1104.4317v3 [hep-th]. See also the earlier paper: S.
Giombi, Xi Yin, Higher spins in AdS and twistorial holography, JHEP 1104 (2011) 086; arXiv:1004.3736v3 [hep-th].

[HS] P. Haggi-Mani, Bo Sundborg, Free large N supersymmetric Yang-Mills theory as a string theory, JHEP 0004 (2000) 031; arXiv:hep-th/0002189v2.

[KP] I.R. Klebanov, A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys.Lett. B550 (2002) 213-219; arXiv:hep-th/0210114v4.

[M] G. Mack, All unitary representations of the conformal group SU(2,2) with positive energy, Commun. Math. Phys. 55 (1977) 1-28.

[M77] G. Mack, Duality in quantum field theory, Nucl. Phys. B118 (1977) 445-457.

[MS] G. Mack and K. Symanzik, Currents, stress tensor and generalized unitarity in conformal invariant quantum field theory Comm. Math. Phys. 27:4 (1972) 247-282.

[MZ] J. Maldacena, A. Zhiboedov, Constraining conformal field theories with higher spin symmetry, arXiv:1112.1016 [hep-th].

[MZ12] J. Maldacena, A. Zhiboedov, Constraining conformal field theories with slightly broken higher spin symmetry, arXiv:1204.3882.

[M02] A. Mikhailov, Notes on higher spin symmetries, arXiv:hep-th/0201019v1.

[N] N.M. Nikolov, Vertex algebras in higher dimensions and globally conformal invariant quantum field theory, Commun. Math. Phys. 253 (2005) 283322; arXiv:hep-th/0307235.

[NRT05] N.M. Nikolov, K.H. Rehren, I.T. Todorov, Partial wave expansion and Wightman positivity in conformal field theory, Nucl. Phys. B722 (2005) 266296; hep-th/0504146.

[NRT08] N.M. Nikolov, K.H. Rehren, I.T. Todorov, Harmonic bilocal fields generated by globally conformal invariant scalar fields, Commun. Math. Phys. 279 (2008) 225-250; arXiv:0704.1960v4 [hep-th]; Pole structure and biharmonic fields in conformal QFT in four dimensions, Bulg. J. Phys. 35 (2008) 113-124; arXiv:0711.0628v1 [hep-th].
[NST02] N.M. Nikolov, Ya.S. Stanev, I.T. Todorov Four-dimensional CFT models with rational correlation functions, *J. Phys. A: Math. Gen.* **35** (2002) 2985-3007; [arXiv:hep-th/0110230](http://arxiv.org/abs/hep-th/0110230).

[NST03] N.M. Nikolov, Ya.S. Stanev, I.T. Todorov, Globally conformal invariant gauge field theory with rational correlation functions, *Nucl. Phys.* **B670** (2003) 373-400; [arXiv:hep-th/0305200](http://arxiv.org/abs/hep-th/0305200).

[NT] N.M. Nikolov, I.T. Todorov, Rationality of conformally invariant local correlation functions on compactified Minkowsi space, *Commun. Math. Phys.* **218** (2001) 417-436; [hep-th/0009004](http://arxiv.org/abs/hep-th/0009004).

[OP] H. Osborn, A. C. Petkou, Implications of conformal invariance in field theories for general dimensions, *Annals Phys.* **231** (1994) 311-362; [arXiv:hep-th/9307010](http://arxiv.org/abs/hep-th/9307010).

[S71] E.J. Schreier, Conformal symmetry and three-point functions, *Phys. Rev. D3* (1971) 980-988.

[SS] E. Sezgin, P. Sundell, Massless higher spins and holography, *Nucl. Phys.* **B644** (2002) 303-370; [arXiv:hep-th/0205131](http://arxiv.org/abs/hep-th/0205131).

[S-D] D. Simmons-Duffin, Projectors, shadows, and conformal blocks, [arXiv:1204.3894v1 [hep-th]](http://arxiv.org/abs/1204.3894).

[S88] Ya.S. Stanev, Stress-energy tensor and U(1)-current operator product expansions in conformal QFT, *Bulg. J. Phys.* **15**:2 (1988) 93-107.

[S] Ya.S. Stanev, Correlation functions of conserved currents in four dimensional conformal field theory, [arXiv:1206.5639 [hep-th]](http://arxiv.org/abs/1206.5639); ROM2F/2012/04.

[SW] R.F. Streater, A.S. Wightman, *PCT, Spin and Statistics, and All That*, Princeton Univ. Press, Princeton, N.J. 2000.

[T] I.T. Todorov, Local field representations of the conformal group and their applications, in: it Mathematics + Physics, Lectures on Recent Results Ed. L. Streit, Vol 1, World Scientific, Singapore 1985, pp. 195-338.

[T11] I. Todorov, Clifford algebras and spinors, *Bulg. J. Phys.* **38** (2011) 3-28; [arXiv:1106.3197v2 [math-ph]](http://arxiv.org/abs/1106.3197).
[TMP] I.T. Todorov, M.C. Mintchev, V.B. Petkova, *Conformal Invariance in Quantum Field Theory*, Scuola Normale Superiore, Pisa 1978 (273 pages).

[V11] M.A. Vasiliev, Cubic vertices for symmetric higher-spin gauge fields in $(A)dS_d$, arXiv:1108.5921 [hep-th].

[V12] M.A. Vasiliev, Holography, unfolding and higher-spin theory, arXiv:1203.5554 [hep-th].

[WW] S. Weinberg, E. Witten, Limits on massless particles, *Phys. Lett.* B96 (1980) 59-62.

[Z] A. Zhiboedov, A note on 3-point functions of conserved currents, arXiv:1206.6370 [hep-th].