The Effect of *Lactobacillus plantarum* ATCC 8014 and *Lactobacillus acidophilus* NCFM Fermentation on Antioxidant Properties of Selected *in vitro* Sprout Culture of *Orthosiphon aristatus* (Java Tea) as a Model Study

Dase Hunaefi ¹,²,*, Divine Akumo ³, Heidi Riedel ¹ and Iryna Smetanska ¹,⁴

¹ Department Method in Food Biotechnology, Institute of Food Technology and Food Chemistry, Berlin University of Technology, Königin-Luise Str. 22, 14195 Berlin, Germany; E-Mails: heidiriedel80@yahoo.de (H.R.); smetanska@mailbox.tu-berlin.de (I.S.)
² Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
³ Institute of Biotechnology, Laboratory of Bioprocess Engineering, Berlin University of Technology Ackerstr. 71-76, 13355 Berlin, Germany; E-Mail: akumo2@yahoo.com
⁴ Department of Plant Food Processing, University of Applied Science Weihenstephan-Triesdorf, Steingruber Str. 2, 91746 Weidenbach, Germany

* Author to whom correspondence should be addressed; E-Mail: dase.hunaefi@mailbox.tu-berlin.de; Tel.: +49-30-314-712-63; Fax: +49-30-832-766-3.

Supplementary Information

Table S1. Recent investigations on plant fermentation and its effect on antioxidant properties.

Plant	Condition of fermentation	Results		
White cabbage *(Brassica oleracea var. capitata cv. Megaton)* [1].	*L. plantarum* CECT 748, *Leuconostoc mesenteroides* CECT 219 or a mixed culture of both strains.	Phe, FD, FL, AA		
	Increased significantly *(p < 0.05)*; e.g. oats water sub fraction from 1,580.1 ± 62.6 mg GAE/100 g DW (un-fer.) to 3,632.7 ± 73.1 mg GAE/100 g DW *(fer. with A. oryzae).*	Increased significantly *(p < 0.05)*; e.g. *Oats ethyl acetate sub fraction from 3,714.8 ± 94.3 mg of rutin equivalents/100 g DW (un-fer.) to 7,893.1 ± 397.3 mg of rutin equivalents/100 g DW *(fer. with A. oryzae).*	Increased significantly *(p < 0.05)*; e.g. *Oats ethyl acetate sub fraction from 747.5 ± 14.6 micromoles of Trolox per gram of DW (un-fer.) to 1,687.9 ± 40.7 (fer. with *A. oryzae*).	
Oats *(Avena sativa L.)* [2].	SSF with *A. oryzae var. effuses, A oryzae,* and *A niger* on four subfractions of oats: n-hexane, ethyl acetate, n-butanol, and water with ethanol as solvent extractions.	NA	NA	NA

Oxygen radical absorbance capacity (ORAC) values (up to 2-fold) and NO production inhibitory potency (up to 2.6-fold).
Plant	Condition of fermentation	Results		
Soybean [3]	The steamed soybeans were let stand for 1 h at 37 °C to cool down. After, the cooked soybeans were inoculated with 5% (w/w) strain *Bacillus subtilis* CS90 (1.43 × 10⁷ cfu/mL) and fermented for 60 h at 37 °C in incubator and sampled at 0, 12, 24, 36, 48, and 60 h.	Increased from 53.43 mg/kg (0 h) to 9,414 mg/kg at the end of fermentation (60 h).		
		Total flavonols increased (data divided into different type flavonols although flavanol gallates contents decreased)		
Anoectochilus formosanus Hayata [4]	5×10⁷ cfu/mL *L. acidophilus* BCRC 17002, *Bifidobacterium longum* BCRC 14602, *L. casei* subsp. *Casei* BCRC 12248 was inoculated into 100 mL vegetable juice.	Increased; e.g. leaf (un-fer.) 6.07±1.0 and fermented 14.05±1.0 mg/g.	NA	
		NA	NA	
Spirulina *Arthrospira platensis* [5]	*B. bifidum*, *L. casei*, *B. infantis*, *B. longum*, *Lactococcus lactis* and *L.acidophilus*.	The results of their study indicated that LAB-fermented Spirulina contained more polyphenols.	NA	
Graftopetalum paraguayense E. Walther [6]	*L. acidophilus* BCRC 10695, *L. plantarum* BCRC 10357 and *L. paracasei* BCRC 14023.	Increased: e.g. water extract of immature *G. paraguayense* E. Walther fermentation by *L. plantarum* BCRC 10357 increased from 17.2 to 22.9 µg/mg.	NA	
		The level of antioxidants was significantly increased in immature *G. paraguayense* E. Walther fermented by *L. acidophilus* BCRC 10695, *L. plantarum* BCRC 10357 and *L. paracasei* BCRC 14023.		
Plant	Condition of fermentation	Results		
-----------------------------	--	---		
Codonopsis lanceolata [7]	**Bifidobacterium longum B6 and L. rhamnosus GG.**	**Phe**	Unlike the total phenols, fermentation decreased the total flavonoids. The lowest flavonoid contents were observed for high pressure assisted extraction of the fermented **C. lanceolata** with **B. longum** (0.44 mg RE/g) and **L. rhamnosus** (0.45 mg RE/g). The high pressure assisted extraction of un-fermented samples showed a maximum flavonoid content of 1.30 mg RE/g, followed by conventional extraction of un-fermented sample (0.78 mg RE/g).	
	The fermentation process significantly increased the total phenol content of **C. lanceolata** when compared to the conventional extraction without fermentation. The total phenol content of **C. lanceolata** was the highest for high pressure assisted extraction from **L. rhamnosus** fermented (8.45 mg GAE/g), followed by **B. longum** fermented samples (8.25 mg GAE/g), non-fermented (7.38 mg GAE/g), and conventional extraction without fermentation (6.69 mg GAE/g).	**FD**	NA	The lowest IC₅₀ values were 1.25 mg/mL for high pressure assisted extraction of **B. longum** fermented sample and 1.18 mg/mL for **L. rhamnosus** fermented sample, indicating that the fermented **C. lanceolata** extract had the highest antioxidant properties.

Phe = total phenolics; **FD** = total flavonoids; **FL** = total flavonols; and AA: antioxidant activity; SSF = solid state fermentations; and LSF = liquid state fermentations.

References

1. Martinez-Villaluenga, C.; Peñas, E.; Sidro, B.; Ullate, M.; Frias, J.; Vidal-Valverde, C. White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. *LWT-Food Sci. Technol.* **2012**, *46*, 77–83.
2. Cai, S.; Wang, O.; Wu, W.; Zhu, S.; Zhou, F.; Ji, B.; Gao, F.; Zhang, D.; Liu, J.; Cheng, Q. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the Total Phenolics Content (TPC), flavonoids, and antioxidant activities of subfractions from Oats (Avena sativa L.). *J. Agr. Food Chem*. **2011**, *60*, 507–513.

3. Cho, K.M.; Lee, J.H.; Yun, H.D.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics *Bacillus subtilis* CS90. *J. Food Compos. Anal*. **2011**, *24*, 402–410.

4. Ng, C.-C.; Wang, C.-Y.; Wang, Y.-P.; Tseng, W.-S.; Shyu, Y.-T. Lactic acid bacterial fermentation on the production of functional antioxidant herbal *Anoectochilus formosanus* Hayata. *J. Biosci. Bioeng*. **2011**, *111*, 289–293.

5. Liu, J.-G.; Hou, C.-W.; Lee, S.-Y.; Chuang, Y.; Lin, C.-C. Antioxidant effects and UVB protective activity of Spirulina (*Arthrospira platensis*) products fermented with lactic acid bacteria. *Process Biochem*. **2011**, *46*, 1405–1410.

6. Wu, S.-C.; Su, Y.-S.; Cheng, H.-Y. Antioxidant properties of *Lactobacillus*-fermented and non-fermented *Graptopetalum paraguayense* E. Walther at different stages of maturity. *Food Chem*. **2011**, *129*, 804–809.

7. He, X.; Zou, Y.; Yoon, W.-B.; Park, S.-J.; Park, D.-S.; Ahn, J. Effects of probiotic fermentation on the enhancement of biological and pharmacological activities of *Codonopsis lanceolata* extracted by high pressure treatment. *J. Biosci. Bioeng*. **2011**, *112*, 188–193.

8. Wang, N.-F.; Yan, Z.; Li, C.-Y.; Jiang, N.; Liu, H.-J. Antioxidant activity of peanut flour fermented with Lactic Acid Bacteria. *J. Food Biochem*. **2011**, *35*, 1514–1521.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).