Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements

James J. P. Stewart

Abstract Several modifications that have been made to the NDDO core-core interaction term and to the method of parameter optimization are described. These changes have resulted in a more complete parameter optimization, called PM6, which has, in turn, allowed 70 elements to be parameterized. The average unsigned error (AUE) between calculated and reference heats of formation for 4,492 species was 8.0 kcal mol$^{-1}$. For the subset of 1,373 compounds involving only the elements H, C, N, O, F, P, S, Cl, and Br, the PM6 AUE was 4.4 kcal mol$^{-1}$. The equivalent AUE for other methods were: RM1: 5.0, B3LYP 6-31G*: 5.2, PM5: 5.7, PM3: 6.3, HF 6-31G*: 7.4, and AM1: 10.0 kcal mol$^{-1}$. Several long-standing faults in AM1 and PM3 have been corrected and significant improvements have been made in the prediction of geometries.

Keywords NDDO · Parameterization · PM6 · Transition metals

Introduction

Over the past 30 years, NDDO-type [1, 2] semiempirical methods have evolved steadily. The earliest of these methods was MNDO [3, 4], which itself was a major advance over even earlier non-NDDO methods such as MINDO/3 [5]. The main advantage of MNDO over earlier methods was that the values of the parameters were optimized to reproduce molecular rather than atomic properties. When it first appeared, MNDO was immediately popular because of its increased accuracy, but, with the passage of time, various limitations were found, among the most important of which was the almost total absence of a hydrogen bond. As hydrogen bonding is essential to life, this particular fault essentially precluded MNDO being used in modeling biochemistry.

In 1985 an attempt, AM1 [6], was made to improve MNDO by adding a stabilizing Gaussian function to the core-core interaction to represent the hydrogen bond. Despite the fact that this was an over-simplification of a very complicated phenomenon, the overall effect was similar, and for the first time NDDO methods gave a good, albeit limited, model of hydrogen bonding.

In the course of the next several years, improvements were made to the method of parameter optimization. The result of this was the PM3 method [7–10], which culminated in the parameterization of all the elements in the main group in 2004 [11]. At the same time, various changes to the original set of approximations used in MNDO were proposed, the most important of which were the addition of d-orbitals to main-group elements [12, 13] and the introduction of diatomic parameters. Work started on the transition metals, and parameters for some of these have been reported [14, 15]. More recently, parameter sets tailored to reproduce specific phenomena such as the binding energy of nucleic acid base pairs [16], iron complex catalyzed hydrogen abstraction [17], phosphatase-catalyzed reaction barriers [18], and the redox properties of iron containing proteins [19] have been developed.

Because of the way advances in NDDO developments occurred, in terms of the modifications of the approximations
and the extensions to specific elements or groups of elements, there has been an inevitable lack of consistency. The aim of the current work was three-fold: to investigate the incorporation of some of the reported modifications to the core-core approximations into the NDDO methodology; to carry out a systematic global parameter optimization of all the main group elements, with emphasis on compounds of interest in biochemistry; and to extend the methodology by performing a restricted optimization of parameters for the transition metals. This resulted in the development of a new method, consisting of the final set of approximations used and the optimized parameters. This method will be referred to as parametric method number 6, or PM6. The name PM6 was chosen to avoid any confusion with two other unpublished methods, PM4 and PM5.

Theory

Despite the apparent complexity of semiempirical methods, there are only three possible sources of error: reference data may be inaccurate or inadequate, the set of approximations may include unrealistic assumptions or be too inflexible, and the parameter optimization process may be incomplete. In order for a method to be accurate, all three potential sources of error must be carefully examined, and, where faults are found, appropriate corrective action taken.

Reference data

In contrast to earlier methods, in which reference data was assembled by painstakingly searching the original literature, the current work relies heavily on the large compendia of data that have been developed in recent years. The most important of these are the WebBook [20], for thermochemistry, and the Cambridge Structural Database [21] (CSD), for molecular geometries.

During the early stages of the current work, consistency checks were performed to ensure that erroneous data were not used. These checks revealed many cases in which the calculated heats of formation were inconsistent with the reference heats of formation reported in the NIST database. On further checking, many of these reference data were also found [22, 23] to be inconsistent with other data in the WebBook. In those cases where there was strong evidence of error in the reference data, the offending data were deleted, and the webbook updated [24].

For molecular geometries, gas phase reference data are preferred, but in many instances such data were unavailable, and recourse was made to condensed-phase data. Provided that care was taken to exclude those species whose geometries were likely to be significantly distorted by crystal forces, or which carried a large formal charge, condensed-phase data of the type found in the CSD were regarded as being suitable as reference data.

Because earlier methods used only a limited number of reference data, most of the cases where the method gave bad results were not discovered until after the method was published. In an attempt to minimize the occurrence of such unpleasant surprises, the set of reference data used was made as large as practical. To this end, where there was a dearth or even a complete absence of experimental reference data, recourse was made to high level calculations. Thus, for the Group VIII elements, there are relatively few stable compounds, and the main phenomena of interest involve rare gas atoms colliding with other atoms or molecules, so reference data representing the mechanics of rare gas atoms colliding with other atoms was generated from the results of ab-initio calculations. Additionally, there is an almost complete lack of thermochemical data for many types of complexes involving transition metals, so augmenting what little data there was with the results of ab-initio calculations was essential.

Use of Ab-Initio results

Ab-initio calculations provide a convenient source of reference data; for this work, extensive use has been made of results of Hartree Fock and B3LYP density functional [25, 26] methods (DFT), both with the 6–31G(d) basis set for elements in the periodic table up to argon. For systems involving heavier elements, the B88–PW91 functional [27, 28] was used with the DZVP basis set. Within the spectrum of ab-initio methods these methods are not particularly accurate; many methods with larger basis sets and with post-Hartree-Fock corrections are more accurate. However, the methods used in this work were chosen because they were regarded as robust, practical methods, allowing many systems to be modeled in a reasonable amount of time, a condition that could not be achieved with the more sophisticated ab-initio methods.

Procedure used in deriving \(\Delta H_f \)

Reference heats of formation, \(\Delta H_f \), for compounds and ions of elements for which there was a paucity of data were derived from DFT total energies in two stages. In the first stage, a basic set of ~1,400 well-behaved compounds, for which reliable reference values of experimental \(\Delta H_f \) were available, was assembled. Only compounds containing one or more of the elements H, C, N, O, F, P, S, Cl, Br, and I were used. For this set, a root-mean-square fit was made to the reference \(\Delta H_f \) using the calculated total energies, \(E_{\text{tot}} \), and the atom counts. Thus, the error function, \(S \), in Eq. (1) was minimized.

\[
S = \sum_j \left(\Delta H_f(\text{Ref.}) - 627.51 \left(E_{\text{tot}} + \sum_i C_i n_i \right) \right)^2
\]

In this expression, the \(C_i \) are constants for each atom of type \(i \), and the \(n_i \) are the number of atoms of that type.
In the second stage, the contribution to the total energy of compounds containing element X arising from the elements in the first stage was removed using the coefficients from Equation (1). A second RMS fit was then performed. In this, the function minimized, \(S \), was the RMS difference between the reference \(\Delta H_f \) of compound X and the values predicted from the DFT energy, Eq. (2).

\[
S = \sum_j \left(\Delta H_f(\text{Ref.}) - 627.51 \left(E_{\text{Tot}} + \sum_i C_i \mu_i + C_y n_y \right) \right)^2
\]

In this expression, the only unknown is the multiplier coefficient \(C_y \). After solving for \(C_y \), the \(\Delta H_f \) of any compound of X could then be predicted as soon as its DFT total energy was evaluated.

Training set reference data

The training set of reference data used was considerably larger than that used in parameterizing PM3 [7, 8], where approximately 800 discrete species were used. In optimizing the parameters for PM6, somewhat over 9,000 separate species were used, of which about 7,500 were well-behaved stable molecules. The remainder consisted of reference data that were tailored to help define the values of individual parameters or sets of parameters.

Use of rules in parameter optimization

Most reference data can be expressed as simple facts. Indeed, all the earlier NDDO methods were parameterized using precisely four types of reference data: \(\Delta H_f \), molecular geometries, dipole moments, and ionization potentials. During the development of PM6, however, the use of other types of reference data was found to be necessary. Because of their behavior, these new data are best described as “rules.” In this context, a rule can therefore be regarded as a reference datum that is a function of one or more other data. To illustrate the use of a rule, consider the binding energy of a hydrogen bond in the water dimer. By default, the weighting factor for \(\Delta H_f \) for normal compounds is 1.0 kcal mol\(^{-1}\). With this weighting factor, average unsigned errors in the predicted \(\Delta H_f \) of the order of 3–5 kcal mol\(^{-1}\) would be acceptable, particularly as the spectrum of values of \(\Delta H_f \) spans several hundreds of kilocalories per mole. However, the binding energy of a hydrogen bond in a water dimer is only 5 kcal mol\(^{-1}\). To have an average unsigned error (AUE) of 4 kcal mol\(^{-1}\) in the prediction of hydrogen bond energies would render such a method almost useless for modeling such phenomena.

One way to increase the importance of the hydrogen bond in water would be to increase the weight for the \(\Delta H_f \) of the water molecule, \(-57.8 \text{ kcal mol}^{-1}\), and the water dimer system, ca. \(-120.6 \text{ kcal mol}^{-1}\). While this would have the intended effect of increasing the weight of the hydrogen bond energy, it would also have the undesired effect of increasing the weight of the \(\Delta H_f \) of water.

An alternative would be to express the \(\Delta H_f \) of the water dimer in terms of the \(\Delta H_f \) of two individual water molecules. The difference between the two \(\Delta H_f \) of water dimer and that of two isolated water molecules, would be the energy of the hydrogen bond. If the weight assigned to this quantity were then increased, it would increase the weight for the hydrogen bond energy without also increasing the weight for the \(\Delta H_f \) of water. Such a reference datum is referred to here as a rule. That is, rules relate the \(\Delta H_f \) of a moiety to that of one or more other moieties. Thus, in the above example, the simple reference datum \(H \), representing the \(\Delta H_f \) of an isolated water molecule, could be expressed as:

\[
H = -57.8
\]

Using a rule-based reference datum to represent the strength of the hydrogen bond, and giving a weight of 10 to the hydrogen bond energy, the \(\Delta H_f \) of the water dimer would then be defined as

\[
H = 10(-5 + H_{\text{H}_2\text{O}} + H_{\text{H}_2\text{O}})
\]

In this expression, \(H_{\text{H}_2\text{O}} \) was the calculated \(\Delta H_f \) in kcal mol\(^{-1}\), of an isolated water molecule. This rule could be interpreted as “The calculated strength of the hydrogen bond formed when two water molecules form the dimer should be 5 kcal mol\(^{-1}\), and the importance should be 100 times that of ordinary heats of formation.”

Rules are very useful in defining the parameter hypersurface. Examples of such tailoring are as follows:

Correcting qualitatively incorrect predictions

During the parameterization of transition metals, some systems were predicted to have qualitatively the wrong structure. For example, \([\text{Cu}^{II}\text{Cl}_4]^{2-}\) was initially predicted to have a tetrahedral structure, instead of the \(D_{2d} \) geometry observed. To induce the parameters to change so as to make the \(D_{2d} \) geometry more stable than the \(T_d \) geometry, a rule was added to the set of reference data for copper compounds. This rule was constructed using the results of B3LYP calculations on \([\text{Cu}^{II}\text{Cl}_4]^{2-}\). First, the total energies of the optimized B3LYP structure and that of the structure resulting from the semiempirical calculation were evaluated. The difference between these energies was then used in constructing the rule. In this case, the rule was that “The \(\Delta H_f \) of the geometry predicted by the faulty semiempirical method should be \(n.n \) kcal mol\(^{-1}\) more than that of the B3LYP geometry.” When such a rule was included in the parameter optimization, with an appropriate large weight, any tendency of the parameters to predict the incorrect geometry resulted in a large contribution
to the error function. That is, with the new rule in place, there was a strong disincentive to prediction of the incorrect structure. Usually one rule was sufficient to correct most qualitative errors, but for a few complicated structures more than one rule was needed. The commonest need for multiple rules occurred when, initially, one rule was used to correct a faulty prediction and, after re-optimizing the parameters, the geometry optimized to a new structure that was distinctly different from either the correct structure or the incorrect structure covered by the rule. When that happened, the procedure just described was repeated, and a new rule added to the set of reference data to address the new incorrect structure. In extreme cases, several such rules might be needed, each one defining a geometry that was incorrect and should therefore be avoided.

Rare gas atoms at sub-equilibrium distances

For some elements, specifically those of Group VIII, there is an understandable shortage of useful experimental reference data. In addition, most simulations involving these elements are likely to involve a rare-gas atom dynamically interacting with another atom or with a molecule at distances significantly less than the equilibrium distance. This makes determining the potential energy surface at sub-equilibrium distances important. As with hydrogen bond energies, the energies involved in this domain are likely to be in the order of a few kcal mol$^{-1}$. The shape of the potential energy surface (PES) can readily be mapped using DFT methods. By selecting two or three representative points on this PES, reference data rules can be constructed that describe the mechanical properties of the interactions. As with hydrogen bonding, a large weight can be assigned to these rules.

Use of rules to restrain parameter values

In general, uncharged atoms that are separated by a distance sufficiently large so that all overlaps between orbitals on the two atoms are vanishingly small will not interact significantly, and what interaction energy exists would arise from VDW terms: of their nature, these are mildly stabilizing. Although statements of this type are obviously true, when they are expressed as rules and added to the training set of reference data they can help define the parameter values. For a pair of atoms, A and B, a simple diatomic system would be constructed in which the interatomic separation was the minimum distance at which any overlaps of the atomic orbitals would still be insignificant. The electronic state of such a system would then be the sum of the states of the two isolated atoms. Thus, if both A and B were silicon, then, since the ground state of an isolated silicon atom is a triplet, the combined state would be a quintet. Because the two atoms do not interact significantly, a rule could then be constructed that said “The energy of the diatomic system is equal to the addition of energies of the two individual systems.” By giving this rule a large weight, any tendency of the method to generate a spurious attraction or repulsion between the atoms would be prevented.

Atomic energy levels

In keeping with the philosophy that a large amount of reference data should be used in the parameter optimization, spin-free atomic energy levels were used for most elements. The exceptions were carbon, nitrogen, and oxygen, where there were enough conventional reference data that the addition of atomic energy levels would not significantly improve the definition of the parameter surface.

NDDO approximations do not allow for spin-orbit coupling. Therefore, spin-free levels were needed. For a few elements, there were insufficient spin states to allow the spin-free energy levels to be calculated. For all the remaining elements, spin-free energy levels were calculated.

In Moore’s compendia [29–31] of atomic energy levels, observed emission spectra were used in determining the energy levels of the various states of neutral and ionized atoms. Most of these energy levels were characterized by three quantum numbers: the spin and orbital angular momenta, and the “J” or spin-orbit quantum number. The starting point for determining the spin-free atomic energy levels for a given element consisted of identifying each complete manifold of atomic energy levels for that element, that is, each set of levels split by spin-orbit coupling. If all members of the set were present, i.e., all energy levels from L+S to |L−S|, then the weighted barycenter of energy could be calculated. The spin-free energy level, E, was derived from the spin-split levels $E_0(S,L,J)$ using Eq. (3).

$$E = \frac{1}{(2S + 1)(2L + 1)} \sum_{J=|L−S|}^{L+S} (2J + 1) E_0(S,L,J) \quad (3)$$

In those cases where the ground state of an atom was itself a member of a spin-split manifold, the barycenter of the ground state manifold was calculated and used in re-defining the spin-free ground state. For all elements except tungsten, this change in definition was benign. There is a 3S_1 level present in tungsten that is located only 8.4 kcal mol$^{-1}$ above the ground state. This puts it inside the $^5D_{5/2}$ manifold, which has a barycenter at 12.7 kcal mol$^{-1}$. The effect of this was that, on going from a spin-split to a spin-free ground state, the ground state changed from $6d^25d^1$ or 5D to $6d^65d^5$ or 7S, and the 5D state now became an excited state with an energy of 4.4 kcal mol$^{-1}$. To allow for this, a corresponding change was made to the ground state configuration in the PM6 definition of tungsten.

Where there were relatively few other reference data, the singly-ionized, and, in rare cases, the doubly-ionized, spin-free states were also evaluated and used as reference data.
Each energy level contributed one reference datum to the training set. Most atoms have a large number of atomic energy levels, so in order to minimize the probability that a level might be incorrectly assigned, each level was labeled with three quantum numbers: the total spin momentum, the total angular momentum, and the principal quantum number for these two quantum numbers. These were compared with the corresponding values calculated from the state functions. Since each set of three quantum numbers is unique, the potential for mis-assignment was minimized. In rare cases, particularly during the early stages of parameter optimization, two states with the same total spin and angular quantum numbers would be interchanged, with the result that the calculated principal quantum number would also be interchanged. All such cases always involved the ground state, and were quickly identified and corrected.

Approximations

Most of the approximations used in PM6 are identical to those in AM1 and PM3. The differences are:

Core-core interactions

In the original MNDO set of approximations, two changes were made to the simple point-charge expression for the core-core repulsion term. Beyond about five Ångstroms, there should be no significant interaction of two neutral atoms. However, in MNDO, the two-electron, two-center $\langle s_As_A | s Bs_B \rangle$ integrals and the electron-core interactions do not converge to the exact point charge expression; instead, they are always slightly smaller. To prevent there being a small net repulsion between two uncharged atoms, the core-core expression is modified by the exact $1/R_{AB}$ term being replaced by the term used in the $\langle s_As_A | s Bs_B \rangle$ integrals. An additional term is needed to represent the increased core-core repulsion at small distances due to the unpolarizable core. These two changes can be expressed as the MNDO core-core repulsion term as shown in Eq. (4).

\[
E_n(A, B) = Z_a Z_B \langle s_As_A | s Bs_B \rangle \left(1 + e^{-\alpha_{R_{AB}} R_{AB}} + e^{-\alpha_{R_{AB}} R_{AB}} \right) \tag{4}
\]

This approximation works well for most main-group elements, but when molybdenum was being parameterized, Voityuk [14] found that the errors in heats of formation and geometries were unacceptably large, and good results were achieved only when a diatomic term was added to the core-core approximation, as shown in Eq. (5).

\[
E_n(A, B) = Z_a Z_B \langle s_As_A | s Bs_B \rangle \left(1 + x_{AB} e^{-\alpha_{R_{AB}} R_{AB}} \right) \tag{5}
\]

When PM3 parameters for elements of Groups IA were being optimized, the MNDO approximation to the core-core expression was found to be unsuitable. In these approximations, the two-electron, two-center integrals and corrected.

En A

\[
E_n(A, B) = Z_a Z_B \langle s_As_A | s Bs_B \rangle \left(1 + x_{AB} e^{-\alpha_{R_{AB}} R_{AB}} \right) + C_0/C_1 + C_0/C_1 + C_0/C_1 \tag{6}
\]

At normal chemical bonding distances, Eqs. (5) and (6) have essentially similar behavior, but at distances of greater than about 3 Å the effect of the perturbation is to make the PM6 function significantly smaller than the Voityuk approximation.

d-orbitals on main-group elements

Thiel and Voityuk have shown [13] that a large increase in accuracy results when d-orbitals are added to main-group elements that have the potential to be hypervalent. During preliminary stages of this work, d-orbitals were excluded from main-group elements, and the parameters were optimized. This work was then repeated but with d-orbitals on various main-group elements. The results were in accordance with Thiel’s observation: the accuracy of the method increased significantly. Because of this, d-orbitals were added to several main-group elements: the value of the increased accuracy far outweighs the extra computational cost.

The effect of the addition of d-orbitals was fundamentally different between main-group elements and transition metals. For main-group elements, the effect of d-orbitals is merely a perturbation: to a large degree the chemistry of these elements is determined by the s and p atomic orbitals. This is not the case with transition metals, where the d-orbitals are of paramount importance and the s and p orbitals are of only very minor significance. In recognition of the importance of the s and p shells in main-group chemistry, specific parameters are used for the five one-center two-electron integrals. Conversely, for the transition metals, the values of these integrals are derived directly from the internal orbital exponents.
As noted earlier, the NDDO core-core interaction is a function of the number of valence electrons. For elements on the left of the periodic table these numbers are small and can cause the elements to appear to be too small. This was part of the rationale behind the adoption of Voityuk’s diatomic core-core parameters. However, even the Voityuk approximation failed during parameter optimization when, in rare cases, a pair of atoms would approach each other very closely. Examination of these catastrophes indicated that the cause was the complete neglect of the unpolarizable core of the atoms involved. To allow for its presence, the core-core interaction for all element pairs was modified by the addition of a simple function, f_{AB}, based on the first term of the Lennard-Jones potential [32]. A candidate function was constructed, Eq. (7), using the fact that, to a first approximation, the size of an atom increases as the third power of its atomic number.

$$f_{AB} = c \left(\frac{Z_A^{1/3} + Z_B^{1/3}}{R_{AB}} \right)^{12} \quad (7)$$

The value of c was set to 10^{-8}, this being the best compromise between the requirements that the function should have a vanishingly small value at normal chemical distances. That is, under normal conditions the value of the function should be negligible, and at small interatomic separations the function should be highly repulsive, i.e., that it should represent the unpolarizable core.

Individual core-core corrections

For a small number of diatomic interactions, the general expression for the core-core interaction was modified in order to correct a specific fault. Because it is desirable to keep the methodology as simple as possible, modifications of the approximations were made only after determining that the existing approximations were inadequate. The diatomic specific modifications were:

O–H and N–H

In the original MNDO formalism, the general core-core interaction, Eq. (4), was replaced in the cases of O–H and N–H pairs with Eq. (8).

$$E_n(A, B) = Z_A Z_B \langle s_A s_A | s_B s_B \rangle \left(1 + R_{AB e}^{-\alpha_{AB}} + R_{AB}^{-\alpha_{AB}} \right) \quad (8)$$

An unintended effect of this change was that at distances where hydrogen-bonding interactions are important, the diatomic contribution to the ΔH_f is greater than if the general approximation, Eq. (4), had been used. This contributed to a reduced hydrogen-bonding interaction in MNDO, and was a contributor to the need for modified core-core interactions in AM1 and PM3.

In PM6, the MNDO core-core approximation is replaced by Voityuk’s diatomic expression, but even with that modification, the resulting hydrogen bond interaction energy was too small. In an attempt to increase it, the Voityuk approximation was replaced by Eq. (9).

$$E_n(A, B) = Z_A Z_B \langle s_A s_A | s_B s_B \rangle \left(1 + x_{AB} e^{-\alpha_{AB} R_{AB}} \right) \quad (9)$$

At normal O–H and N–H separations, approximately 1 Å, Eqs. (5) and (9) have similar values, but at hydrogen bonding distances, ~2 Å, the contribution arising from the exponential term is significantly reduced, resulting in a corresponding increased hydrogen bond interaction energy.

C–C

After optimizing all parameters, it was found that compounds containing yne groups, C≡C=, were predicted to be too stable by about 10 kcal mol$^{-1}$ per yne group. This error was unique to compounds with extremely short C–C distances, and in light of the increased emphasis on accurately reproducing the properties of organic compounds, the C–C core-core term was perturbed by the addition of a repulsive term. This term was optimized to correct the error in the yne groups and to have a negligible effect on all other C–C interactions. The optimized form of the C–C core-core interaction is given in Eq. (10).

$$E_n(A, B) = Z_A Z_B \langle s_A s_A | s_B s_B \rangle \left(1 + x_{AB} e^{-\alpha_{AB} (R_{AB} + 0.0003 R_{AB})} + 9.28 e^{-5.98 R_{AB}} \right) \quad (10)$$

Si–O

During testing of PM6, neutral silicate layers of the type found in talc, H$_2$Mg$_3$Si$_4$O$_{12}$, were found to be slightly repulsive instead of being slightly bound. An attempt was made to correct for this error by adding a weak perturbation to the Si–O interaction, illustrated by Eq. (11).

$$E_n(A, B) = Z_A Z_B \langle s_A s_A | s_B s_B \rangle \left(1 + x_{AB} e^{-\alpha_{AB} (R_{AB} + 0.0003 R_{AB})} - 0.0007 e^{-(R_{AB} - 2.9)^2} \right) \quad (11)$$
Nitrogen sp² pyramidalization

Although PM6 predicted the degree of pyramidalization of primary amines correctly, it overestimated the pyramidalization of secondary and tertiary amines. The degree of pyramidalization of these amines was decreased by adding a function to make the calculated ΔH_f more negative as the nitrogen became more planar, as shown in Eq. (12).

$$\Delta H'_f = \Delta H_f - 0.5e^{-100\phi}$$

In this equation, the angle ϕ is a measure of the non-planarity of the nitrogen environment, and is given by 2π minus the sum of the three contained angles about the nitrogen atom. For planar sp² secondary and tertiary amines, this correction amounted to 0.5 kcal mol⁻¹ per nitrogen atom.

More elements

The NDDO basis sets of many of the elements parameterized in PM6 have not previously been described. For all elements except hydrogen, which has only an s orbital, the basis set consists of an s orbital, three p orbitals, and, for most elements, a set of five d orbitals. Slater atomic orbitals are used exclusively; these are of form:

$$\phi = \frac{(2\xi)^{n+1/2}}{(2n)!^{1/2}} r^{n-1} e^{-\xi r} Y_l^m(\theta, \phi)$$

Where ξ is the orbital exponent, n is the principal quantum number (PQN), and the $Y_l^m(\theta, \phi)$ are the normalized real spherical harmonics. The PQN are those of the valence shell, i.e., the set of atomic orbitals most important in forming chemical bonds. For PM6, the PQN used are shown in Table 1. For most main-group elements, the s and p PQN are the same, and, when d orbitals are present, all three PQN are the same: that is, the PQN are (ns, np, nd). For transition metals, the d PQN is one less than that of the s and p shells, i.e., (ns, np, (n-1)d). An exception to this generalization occurs in the elements of Group VIII. Here, the valence shell is completely filled, so in all chemical interactions that could occur between an atom of a Group VIII element and any other atom, electron density could only migrate from the Group VIII element to the other atom. That is, when a rare gas element forms any type of chemical bond it would necessarily become slightly positive. This is an unrealistic result. In order to allow rare gas elements to have the potential of being slightly negative, the set of valence orbitals was changed from (ns, np) to (np, (n+1)s), for the elements Ne, Ar, Kr, and Xe. Helium is the only exception to this change, because it does not have a “1p” valence shell. For helium, the valence shell used was (1s, 2p), this being considered the best compromise.

Table 1 Principal quantum numbers for atomic orbitals

	s	p	d	s	p	d
H	1					
He	1	2				
Li	2	2				
Be	2	2	Y	5	5	4
B	2	2	Zr	5	5	4
C	2	2	Nb	5	5	4
N	2	2	Mo	5	5	4
O	2	2	Te	5	5	4
F	2	2	Ru	5	5	4
Ne	3	2	Rh	5	5	4
Na	3	3	Pd	5	5	4
Mg	3	3	Ag	5	5	4
Al	3	3	Cd	5	5	4
Si	3	3	In	5	5	4
P	3	3	Sn	5	5	4
S	3	3	Sb	5	5	5
Cl	3	3	Te	5	5	5
Ar	4	3	I	5	5	5
K	4	4	Xe	6	6	5
Ca	4	4	Cs	6	6	6
Sc	4	4	Ba	6	6	6
Ti	4	4	La	6	6	5
V	4	4	Lu	6	6	5
Cr	4	4	Hf	6	6	5
Mn	4	4	Ta	6	6	5
Fe	4	4	W	6	6	5
Co	4	4	Re	6	6	5
Ni	4	4	Os	6	6	5
Cu	4	4	Ir	6	6	5
Zn	4	4	Pt	6	6	5
Ga	4	4	Au	6	6	5
Ge	4	4	Hg	6	6	6
As	4	4	Tl	6	6	6
Se	4	4	Pb	6	6	6
Br	4	4	Bi	6	6	6

Parameter optimization

Background

The objective of parameter optimization is to modify the values of the parameters so as to minimize the error function, S, Eq. (13), representing the square of the differences between the values of reference data, $Q_{ref}(i)$, and the values calculated using the semiempirical method, $Q_{calc}(i)$, with appropriate weighting factors, g_i.

$$S = \sum_i (g_i(Q_{calc}(i) - Q_{ref}(i)))^2$$

This process is initiated by rendering the reference data in the training set dimensionless. The default conversion factors are given in Table 2, with weighting factors for
reference data represented by rules being much larger, typically in the order of 5–20 kcal mol\(^{-1}\).

The elements were divided into four sets: core elements, (H, C, N, and O), other elements important in organic chemistry (F, Na, P, S, Cl, K, Br, I), the rest of the main group, and the transition metals. Elements were assigned to the different sets based on their presumed degree of importance in biochemistry, and this importance was converted into a weighting factor to be used in the parameterization optimization procedure. Reference data representing species consisting only of core elements were given their default weight. When other elements were present, the weight was set to the default weight times the smallest multiplier shown in Table 2. Thus the default weight for a reference datum involving tetramethyllead, Pb(CH\(_3\))\(_4\), would be multiplied by 0.8 reflecting the fact that this species contains an element in the main group set.

For a given set of parameters, \(P\), optimization proceeds by calculating the values of all the \(Q_{\text{calc}}(i)\), their first derivatives with respect to each parameter, \(P(j)\), and the second derivatives with respect to every pair of parameters. Evaluating these quantities is time-consuming, and considerable effort was expended in minimizing the need for explicit evaluation of these functions. The most efficient strategy developed [7] involved assuming that, in the region of parameter space near to the current values of the parameters, the values of the first derivatives of the \(Q_{\text{calc}}(i)\) with respect to \(P\) were, at least to a first approximation, constant. By making this assumption the values of the parameters could then be updated using perturbation theory. Because the assumption is only valid in the region of the starting point in parameter space, periodically the focus was moved to the new point in parameter space and a complete explicit re-evaluations of all the functions performed. The parameter optimization process terminated when the scalar of the first derivatives dropped below a preset limit. This process was fully automated, and for given sets of reference data and parameters, parameter optimization could be performed rapidly, easily, and reliably.

Table 2 Default weighting factors for reference data

Reference data	Weight
\(\Delta H_r\)	1.0 mol.kcal\(^{-1}\)
Bond length	0.7 Å \(^{-1}\)
Angle	0.7 degrees \(^{-1}\)
Dipole	20 Debye \(^{-1}\)
I.P.	10 eV \(^{-1}\)
Elements	Multiplier
Core	1.0
Organic	0.9
Main group	0.8
Transition metals	0.7

Sequence of optimization of parameters

Notwithstanding the reliability of the parameter optimization procedure, a simple global optimization of all the parameters for all 70 elements involving about over 9,000 discrete species was found to be impractical because of the large number of derivatives involved. Such an optimization would involve over 2,000 parameters and over 10,000 reference data. The set of second derivatives alone would consist of \(2 \times 10^{10}\) terms. With more powerful computers, evaluating such large sets of derivatives might be practical some day, but even then, one faulty reference datum or one faulty initial parameter value would ruin an optimization run. The strategy of parameter optimization was approached with great caution, and the procedure finally adopted was as follows:

Because the elements H, C, N, and O are of paramount importance in biochemistry, and because large amounts of reference data are available, the starting point for parameter optimization involved the simultaneous optimization of parameters for these four elements. For the purposes of discussion, this set of four elements will be called the “core elements”.

Once stable parameters had been obtained, parameters for other elements important in organic chemistry were optimized in two stages. First, the parameters for the core elements were held constant, and parameters for the elements F, P, S, Cl, Br, and I were optimized one at a time. Then all parameters for all ten elements were simultaneously optimized. This set (the organic elements) was then used as the starting point for parameterizing the rest of the main group.

The same sequence was followed for the rest of the main-group elements. That is, parameters for each element were optimized while freezing the parameters for the organic elements. Then, once all the elements had been processed, all parameters for all of the 39 main-group elements, plus zinc, cadmium, and mercury, were optimized simultaneously.

When parameters for the transition metals were being optimized, all parameters for the main group elements were held constant. There were several reasons for this. Most importantly, the reference data for the transition metals, particularly the thermochemical data, was of lower quality, so one consideration was to prevent the transition metals from having a deleterious effect on the main-group elements. Another important consideration was that most compounds involving transition metals also involved only elements of the organic set. Since parameters for these elements had been optimized using a training set consisting of all the main-group elements, the values of the optimized parameters would likely be relatively insensitive to the influence of the small number of additional reference data involving transition metals.
In general, all parameters for a given element were optimized simultaneously; this was both efficient and convenient. In some optimizations, specifically those involving a new element, only sub-sets of parameters were used. Three main sub-sets were used:

Parameters that determine atomic electronic properties

For most elements, atomic energy levels are determined by six parameters: the one-electron one-center integrals U_{ss}, U_{pp}, U_{dd}, and the internal orbital exponents ζ_{sp}, ζ_{pp} and ζ_{dd}. If the heat of ionization and sufficient atomic energy level data were available, these quantities could be uniquely defined; there would be no need for the use of molecular reference data. These parameters were the first to be optimized whenever an optimization was started for an element that had not previously been parameterized.

Parameters that determine molecular electronic properties

Two of the more important electronic molecular properties are the dipole moment, which indicates the degree of polarization within a molecule, and the ionization potential. These properties are determined primarily by 12 parameters: the six parameters that determine atomic electronic properties and six additional parameters: β_s, β_p, and β_d and the Slater orbital exponents ζ_s, ζ_p, and ζ_d. In the second stage of parameter optimization, the first six parameters were held constant at the values defined using atomic data and the second set optimized. During this operation, all geometries were fixed at their reference values.

Parameters that determine geometries

As soon as an initial optimized set of electronic parameters was available, the diatomic and other core-core parameters could be optimized. The most efficient process was to optimize these parameters initially without allowing the electronic parameters or the molecular geometries to optimize. If geometries were allowed to optimize, optimization of the core-core parameters would be slowed considerably, because of the tight dependency of the optimized geometries on the values of the core-core parameters, and vice versa.

As soon as all parameters had been optimized using fixed geometries, the geometries were allowed to relax and the parameters that determine geometry re-optimized. After that there would be three sets of incompletely optimized parameters: the six atomic electronic parameters, the six molecular electronic parameters and the core-core parameters. The only remaining operation was the simultaneous optimization of all the parameters. If the training set of reference data was insufficient to unambiguously define the values of all the parameters, then, at that stage, the potential existed for the parameters to become ill-defined. An example of this would be where there were too few atomic energy levels to allow all six parameters in the first set to be defined. To allow for this, a penalty function was added to each parameter. If the values of a parameter exceeded pre-defined limits, the error function S was incremented by a constant times the square of the excess. No penalty was applied if the value of a parameter was between the pre-defined limits; that is, no bias was applied to the numerical value of a parameter. During the early stages of simultaneous optimization of all the parameters for a given element the penalty function was used frequently. In the later stages the penalty function was invoked rarely, and then only when there was a distinct shortage of reference data.

Results

Parameters for PM6

PM6 atomic and diatomic parameters for the 70 elements are presented in Tables 3 and 4, respectively. Not all elements have all parameters: where monatomic parameters are missing, the associated approximations were not used. For diatomic parameters, where an atom-pair is missing, no representatives of that type of bond were used.

Accuracy

Comparison with other semiempirical methods

Using the program MOPAC2007 [33], an extensive comparison was made between the results obtained using PM6 and those from PM5, PM3, and AM1. This comparison was started by generating tables of reference data (that is, ΔH_f, geometries, ionization potentials (I.P.s), and dipole moments) and differences between the calculated and reference values, using each of the four methods presented here. Because of their size they are provided in the supplementary material. To simplify navigating within the tables, all species are listed in the order of their empirical formula.

Average unsigned errors (AUE) for ΔH_f for each element parameterized at the PM6 level are shown in Table 5, together with AUE for PM5, PM3, and AM1. The number of data used in each average varies depending on the elements available in each method. AM1 boron [34] uses a different core-core interaction expression from the other elements and was not used. AUE for bond-lengths are shown in Table 6. In those cases where a calculated bond-length was very large, indicating that the bond had broken, the bond-length was not used in the analysis. If such data had been used, the resulting statistics would have been misleading. AUE for angles are shown in Table 7. Errors in angles for many elements that form very ionic, i.e., labile, bonds are of less importance than errors involving elements that form strong
Element	Parameters	Element	Parameters	Element	Parameters		
Hydrogen	-11.246958	U_{0}[eV]	-70.515047	U_{0}[eV]	-28.339246		
	-8.352984	U_{0}[eV]	-62.963069	U_{0}[eV]	-23.373875		
	1.268641	U_{0}[eV]	-103.631790	β_{0}[eV]	-1.962378		
	14.497666	β_{0}[eV]	8.027521	β_{0}[eV]	-3.330294		
	0.024184	β_{0}[eV]	-1.125760	ζ_{0}[bohr]	2.023087		
	3.055953	β_{0}[eV]	-3.507531	ζ_{0}[bohr]	2.106818		
	1.786011	ζ_{0}[bohr]	1.479150	g_{0}[eV]	9.906091		
		ζ_{0}[bohr]	6.002246	g_{0}[eV]	10.520060		
		ζ_{0}[bohr]	1.080747	g_{0}[eV]	4.826006		
		ζ_{0}[bohr]	1.459152	g_{0}[eV]	7.906653		
	-31.770699	z_{0}[bohr]	1.392614	μ_{0}[eV]	3.500299		
	-5.856382	z_{0}[bohr]	2.161909	μ_{0}[eV]	7.977036		
	-58.903774	μ_{0}[eV]	7.788675	μ_{0}[eV]	7.788675		
	-37.036974	μ_{0}[eV]	8.295758	μ_{0}[eV]	-29.88217		
Helium	3.313204	g_{0}[eV]	8.720241	U_{0}[eV]	-22.156954		
	3.857133	g_{0}[eV]	1.880189	β_{0}[eV]	-8.621087		
	9.445299	h_{0}[eV]	1.272092	β_{0}[eV]	-4.989752		
	11.201419	μ_{0}[eV]	9.300165	ζ_{0}[bohr]	2.383841		
	9.214548	F_{0}[eV]	1.601345	ζ_{0}[bohr]	2.057908		
	13.046115	G_{0}[eV]	7.977036	g_{0}[eV]	8.296655		
	0.299954	h_{0}[eV]	5.013349	g_{0}[eV]	6.584674		
		Cobalt	g_{0}[eV]	5.013349			
		Tin	g_{0}[eV]	6.584674			
		Lithium	U_{0}[eV]	-21.039413			
		U_{0}[eV]	10.000000	h_{0}[eV]	0.531212		
		U_{0}[eV]	-28.608971	a [none]	-1.004587		
		β_{0}[eV]	-8.992062	h [Å]	4.706252		
		β_{0}[eV]	-0.100000	c [Å]	1.180218		
		ζ_{0}[bohr]	2.953445	ζ_{0}[bohr]	0.981041		
		ζ_{0}[bohr]	1.666113	Antimony	ζ_{0}[bohr]	2.481509	
		ζ_{0}[bohr]	3.000000	g_{0}[eV]	2.840152		
		ζ_{0}[bohr]	1.860218	U_{0}[eV]	-41.68879		
		ζ_{0}[bohr]	0.519518	U_{0}[eV]	-39.541180		
		ζ_{0}[bohr]	1.000000	U_{0}[eV]	-6.581635		
		ζ_{0}[bohr]	0.352115	β_{0}[eV]	-7.472322		
		g_{0}[eV]	2.840152	β_{0}[eV]	-5.940750		
		Beryllium	g_{0}[eV]	3.425933			
		g_{0}[eV]	5.956968	ζ_{0}[bohr]	2.391178		
		-16.360315	5.221864	ζ_{0}[bohr]	1.773006		
		-16.339216	0.390087	ζ_{0}[bohr]	2.465990		
		-3.196549	1.446283	ζ_{0}[bohr]	5.935591		
		-4.451920	1.680225	ζ_{0}[bohr]	6.145086		
		1.212539	5.704031	ζ_{0}[bohr]	5.704031		
		1.276487	10.588832	ζ_{0}[bohr]	10.588832		
		7.552804	7.310023	ζ_{0}[bohr]	7.310023		
		10.203045	9.281009	ζ_{0}[bohr]	9.281009		
		12.862153	8.954081	ζ_{0}[bohr]	8.954081		
		13.602855	0.779112	ζ_{0}[bohr]	0.779112		
		N[0][eV]	-8.086696	Tellurium	N[0][eV]	-8.086696	
Element	Parameters	Element	Parameters	Element	Parameters		
---------	------------	---------	------------	---------	------------		
b [Å]	1.704828	β r [eV]	-8.655910	U [eV]	-114.73316		
c [Å]	1.785591	ζ (bohr r⁻¹)	1.591828	U r [eV]	-140.96389		
Zn	2.304739	β [eV]	-70.00162	0.748470	β r [eV]	-6.151642	
Zn	-25.967679	ζ (bohr r⁻¹)	0.753327	2.514761	β [eV]	-70.00162	
Zn	-19.115864	ζ (bohr r⁻¹)	1.461345	1.731319	β [eV]	-70.00162	
β [eV]	-4.959706	g [eV]	4.080876	2.014 [eV]	6.577163		
β [eV]	-6.565753	g [eV]	4.099452	2.014 [eV]	6.577163		
β [eV]	1.634174	g [eV]	4.487545	2.014 [eV]	6.577163		
β [eV]	1.479195	g [eV]	3.937771	2.014 [eV]	6.577163		
β [eV]	6.179341	g [eV]	0.993498	2.014 [eV]	6.577163		
β [eV]	7.294021	g [eV]	1.588797	2.014 [eV]	6.577163		
β [eV]	7.829395	F¹⁺ [eV]	8.041664	2.014 [eV]	6.577163		
β [eV]	6.401072	Gº⁺ [eV]	6.002052	2.014 [eV]	6.577163		
h [eV]	1.252045	U [eV]	-59.973232	Copper	U [eV]	-56.45835	
U [eV]	-97.002205	β [eV]	30.522481	U [eV]	-28.822603	Carbon	U [eV]
U [eV]	-51.089653	β [eV]	30.522481	U [eV]	-51.089653		
U [eV]	-39.937820	β [eV]	30.522481	U [eV]	-39.937820		
β [eV]	-15.382326	ζ [bohr r⁻¹]	-9.369508	ζ [bohr r⁻¹]	4.486853		
β [eV]	-7.471929	ζ [bohr r⁻¹]	-10.00000	ζ [bohr r⁻¹]	1.917072		
ζ [bohr r⁻¹]	2.047558	ζ [bohr r⁻¹]	-16.982092	ζ [bohr r⁻¹]	1.675175		
ζ [bohr r⁻¹]	1.702841	ζ [bohr r⁻¹]	1.669096	ζ [bohr r⁻¹]	9.135244		
ζ [bohr r⁻¹]	13.355519	ζ [bohr r⁻¹]	3.000000	ζ [bohr r⁻¹]	6.888191		
ζ [bohr r⁻¹]	11.528134	ζ [bohr r⁻¹]	2.734990	ζ [bohr r⁻¹]	3.791523		
ζ [bohr r⁻¹]	10.778326	ζ [bohr r⁻¹]	1.899598	ζ [bohr r⁻¹]	7.234759		
ζ [bohr r⁻¹]	9.482126	ζ [bohr r⁻¹]	3.000000	ζ [bohr r⁻¹]	9.154406		
ζ [bohr r⁻¹]	0.717322	ζ [bohr r⁻¹]	1.484317	ζ [bohr r⁻¹]	9.154406		
a [none]	0.046302	g [eV]	10.384910	g [eV]	8.035916		
b [Å]	2.102006	g [eV]	12.145361	g [eV]	5.04215		
c [Å]	1.333959	g [eV]	17.870050	a [none]	-0.35519		
b [Å]	15.665922	b [Å]	17.870050	a [none]	-0.35519		
c [Å]	2.037934	c [Å]	2.037934	c [Å]	1.223844		
Nitrogen	h [eV]	F⁺ [eV]	9.848807	X [eV]	9.848807		
U [eV]	-57.784823	Gº⁺ [eV]	9.848807	X [eV]	9.848807		
β [eV]	-49.893036	Zinc	U [eV]	-18.270227	U [eV]	-167.163063	
β [eV]	-17.979377	U [eV]	-3.90622	U [eV]	-3.90622		
ζ [bohr r⁻¹]	2.380406	U [eV]	-7.834895	β [eV]	-3.90622		
ζ [bohr r⁻¹]	1.999246	U [eV]	-13.276833	ζ [bohr r⁻¹]	2.759787		
ζ [bohr r⁻¹]	6.361900	β [eV]	1.479642	ζ [bohr r⁻¹]	1.977446		
ζ [bohr r⁻¹]	12.570756	ζ [bohr r⁻¹]	1.512875	ζ [bohr r⁻¹]	20.000252		
ζ [bohr r⁻¹]	10.576425	ζ [bohr r⁻¹]	1.794842	ζ [bohr r⁻¹]	4.175902		
ζ [bohr r⁻¹]	2.871545	g [eV]	8.074242	g [eV]	2.305787		
ζ [bohr r⁻¹]	0.495196	g [eV]	20.000041	b [Å]	4.063220		
c [Å]	1.704857	g [eV]	6.782785	b [Å]	4.418843		
Oxygen	h [eV]	0.662036	Cesium	U [eV]	-3.90622	U [eV]	-3.90622
Element	Parameters	Element	Parameters	Element	Parameters		
---------	------------	---------	------------	---------	------------		
Gallium	Uₚₑ [eV]	Uₚₑ [eV]	-91.678761	Ga	Uₚₑ [eV]	-3.748609	
	Uₚₑ [eV]	Uₚₑ [eV]	-70.460949	Uₚₑ [eV]	-30.600226	βₚₑ [eV]	2.287838
	Uₚₑ [eV]	Uₚₑ [eV]	-65.635137	βₚₑ [eV]	21.032425	βₚₑ [eV]	5.908071
	Uₚₑ [eV]	Uₚₑ [eV]	-21.622604	βₑ [eV]	-10.808320	βₑ [eV]	5.956008
	Uₚₑ [eV]	Uₚₑ [eV]	5.421751	βₑ [eV]	-4.185500	βₑ [eV]	1.619485
	Uₚₑ [eV]	Uₚₑ [eV]	2.270960	γₑ [bohr⁻¹]	2.339067	γₑ [bohr⁻¹]	6.464751
	Uₚₑ [eV]	Uₚₑ [eV]	11.304042	γₑ [bohr⁻¹]	1.729592	γₑ [bohr⁻¹]	4.004501
Fluorine	Uₚₑ [eV]	Uₚₑ [eV]	15.807424	γₑ [bohr⁻¹]	10.354885	γₑ [bohr⁻¹]	13.775390
	Uₚₑ [eV]	Uₚₑ [eV]	13.618205	γₑ [bohr⁻¹]	7.993674	γₑ [bohr⁻¹]	12.912537
	Uₚₑ [eV]	Uₚₑ [eV]	10.332765	γₑ [bohr⁻¹]	6.090184	γₑ [bohr⁻¹]	1.026928
	Uₚₑ [eV]	Uₚₑ [eV]	5.010801	hₑ [eV]	6.299226	hₑ [eV]	1.295974
	Uₚₑ [eV]	Uₚₑ [eV]	-0.017771	hₑ [eV]	1.929574	Barium	4.086310
	Uₚₑ [eV]	Uₚₑ [eV]	1.806435	Germanium	Uₚₑ [eV]	9.306985	
	Uₚₑ [eV]	Uₚₑ [eV]	8.826713				
Uₚₑ [eV]	-140.225626	βₑ [eV]	-14.854297	βₑ [eV]	1.395379		
Uₚₑ [eV]	-98.778044	βₑ [eV]	-2.591269	βₑ [eV]	1.430139		
Uₚₑ [eV]	69.922953	βₑ [eV]	-30.448165	βₑ [eV]	4.740579		
Uₚₑ [eV]	2.043849	γₑ [bohr⁻¹]	7.518301	γₑ [bohr⁻¹]	3.345166		
Uₚₑ [eV]	2.906722	γₑ [bohr⁻¹]	6.594443	γₑ [bohr⁻¹]	3.142783		
Uₚₑ [eV]	12.466818	γₑ [bohr⁻¹]	6.066801	γₑ [bohr⁻¹]	0.290742		
Uₚₑ [eV]	18.46082	γₑ [bohr⁻¹]	5.305947	Lanthanum	Uₚₑ [eV]	19.641953	
	Uₚₑ [eV]	Uₚₑ [eV]	12.197816				
Uₚₑ [eV]	2.604382	Arsenic	Uₚₑ [eV]	2.604382	Uₚₑ [eV]	-22.059431	
	Uₚₑ [eV]	Uₚₑ [eV]	6.004648				
	Uₚₑ [eV]	Uₚₑ [eV]	1.847724	Uₚₑ [eV]	-37.965965	Uₚₑ [eV]	-22.638968
Uₚₑ [eV]	-30.282658	βₑ [eV]	-11.963725	βₑ [eV]	0.796727		
Uₚₑ [eV]	85.441118	βₑ [eV]	-7.340073	βₑ [eV]	1.249122		
Uₚₑ [eV]	69.793475	βₑ [eV]	-33.261962	βₑ [eV]	2.673780		
Uₚₑ [eV]	6.000148	γₑ [bohr⁻¹]	2.961717	γₑ [bohr⁻¹]	4.331620		
	Uₚₑ [eV]	Uₚₑ [eV]	3.834528	γₑ [bohr⁻¹]	1.765191		
	Uₚₑ [eV]	Uₚₑ [eV]	19.999574	γₑ [bohr⁻¹]	1.392142		
	Uₚₑ [eV]	Uₚₑ [eV]	16.896951	γₑ [bohr⁻¹]	2.065413		
	Uₚₑ [eV]	Uₚₑ [eV]	8.963560	γₑ [bohr⁻¹]	3.186832		
	Uₚₑ [eV]	Uₚₑ [eV]	16.027799	γₑ [bohr⁻¹]	6.453440		
	Uₚₑ [eV]	Uₚₑ [eV]	8.712542	γₑ [bohr⁻¹]	7.322704		
	Uₚₑ [eV]	Uₚₑ [eV]	6.213687	γₑ [bohr⁻¹]	18.077465		
	Uₚₑ [eV]	Uₚₑ [eV]	9.310836	γₑ [bohr⁻¹]	18.579057		
	Uₚₑ [eV]	Uₚₑ [eV]	0.280662	γₑ [bohr⁻¹]	0.138601		
	Uₚₑ [eV]	Uₚₑ [eV]	8.856858				
Sodium	Gₑ [eV]	Gₑ [eV]	7.925585				
	Gₑ [eV]	Gₑ [eV]	8.856858				
	Gₑ [eV]	Gₑ [eV]	7.925585				
Lutetium	Gₑ [eV]	Gₑ [eV]	8.856858				
	Gₑ [eV]	Gₑ [eV]	7.925585				
Table 3 (continued)

Element	Parameters	Element	Parameters	Element	Parameters
ζ (bohr2)	0.686327	β, [eV]	-9.55700	U_{4p} [eV]	-13.05056
ζ (bohr2)	0.950068	ζ, (bohr2)	2.512366	β, [eV]	-5.509778
g_0 [eV]	4.059972	ζ, (bohr2)	2.007576	β, [eV]	-0.937679
g_{0s} [eV]	7.061183	g_0, [eV]	5.522356	β, [eV]	-7.737752
g_0 [eV]	9.285340	g_0, [eV]	2.907562	ζ, (bohr2)	5.471741
g_{0s} [eV]	17.034978	g_{0s}, [eV]	6.042931	ζ, (bohr2)	1.712296
h_{4p} [eV]	0.640715	h_{4p}, [eV]	6.735106	ζ, (bohr2)	2.225892
a [Å]	-1.026036	h_{2p} [eV]	3.095889	z_a, (bohr2)	1.632335
b [Å2]	2.014506	z_a, (bohr2)	4.033128		
c [Å]	1.271202	Bromine	0.921999		
g_0 [eV]	6.209796				
Magnesium					
U_{4p} [eV]	-45.834364	g_0, [eV]	7.379102		
U_{4p} [eV]	-50.293675	g_{0s}, [eV]	16.831746		
U_{4p} [eV]	-14.574228	U_{4p}, [eV]	7.086738	g_0, [eV]	14.58613
U_{4p} [eV]	-7.583850	β, [eV]	-32.131665	h_{4p}, [eV]	0.209008
β, [eV]	-9.604832	β, [eV]	-9.514483	ρ, (core) [bohr$^{-1}$]	2.743282
β, [eV]	3.419698	β, [eV]	-9.839124	P_{4p}, [eV]	3.924927
ζ, (bohr2)	1.310803	ζ, (bohr2)	4.670684	G_{4s}, [eV]	1.000946
ζ, (bohr2)	1.388897	ζ, (bohr2)	2.039626		
g_0 [eV]	7.115328	ζ, (bohr2)	1.521031	Hafnium	
g_{0s} [eV]	3.253024	z_a, (bohr2)	3.094777		
g_{0s} [eV]	4.737311	z_a, (bohr2)	3.085764	U_{4p}, [eV]	-22.375140
g_{0s} [eV]	8.428485	z_a, (bohr2)	2.820003	U_{4p}, [eV]	-13.081870
h_{4s} [eV]	0.877379	g_0, [eV]	7.617691	U_{4p}, [eV]	-20.637741
g_{0s} [eV]	9.649216	β, [eV]	-3.884443		
g_{0s} [eV]	8.343792	β, [eV]	-21.550119		
g_{0s} [eV]	3.264264	β, [eV]	3.602338		
ζ, (bohr2)	2.364264	g_0, [eV]	4.986553	ζ, (bohr2)	3.085344
ζ, (bohr2)	1.749102	U_{4s}, [eV]	8.535384	g_0, [eV]	4.293729
ζ, (bohr2)	1.269384	U_{4s}, [eV]	-80.484321	g_{0s}, [eV]	14.769194
z_a, (bohr2)	4.742314	β, [eV]	-2.727088	g_{0s}, [eV]	12.809708
z_a, (bohr2)	4.666926	β, [eV]	-16.142951	h_{4p}, [eV]	0.011028
z_a, (bohr2)	7.131138	ζ, (bohr2)	1.312248	P_{4p}, [eV]	4.842900
g_0 [eV]	6.652155	ζ, (bohr2)	4.491371	G_{4s}, [eV]	4.386101
g_{0s} [eV]	7.456935	g_{0s}, [eV]	19.996857		
g_{0s} [eV]	7.668857	g_{0s}, [eV]	1.175304	Tantalum	
h_{4p} [eV]	0.435060	g_{0s}, [eV]	9.174874		
a [Å2]	1.002222	h_{2p} [eV]	14.926948	U_{4p}, [eV]	-39.00984
b [Å2]	1.517400	U_{4p}, [eV]	1.163975		
c [Å]	0.659101	Rubidium	0.9189065		
Silicon					
U_{4p} [eV]	-3.636505	β, [eV]	-5.818839		
U_{4p} [eV]	-2.500671	ζ, (bohr2)	4.578087		
U_{4p} [eV]	-27.358058	β, [eV]	9.988744	ζ, (bohr2)	4.841244
U_{4p} [eV]	-20.490578	β, [eV]	1.343004	ζ, (bohr2)	1.838249
Element	Parameters	Element	Parameters	Element	Parameters
---------	------------	---------	------------	---------	------------
Uₐ [eV]	-22.751900	ζₜ [bohr⁻¹]	5.510145	zₐ [bohr⁻¹]	1.741367
βₜ [eV]	-8.686909	ζₐ [bohr⁻¹]	1.335170	zₚ [bohr⁻¹]	3.430157
βₜ [eV]	-1.856482	gₐ [eV]	6.680824	zₚ [bohr⁻¹]	2.311198
βₐ [eV]	-6.360627	gₚ [eV]	20.001098	g₌ [eV]	6.624580
ζₚ [bohr⁻¹]	1.752741	g₌ [eV]	5.068747	g₉ [eV]	7.805321
ζ₉ [bohr⁻¹]	1.198413	g₆ [eV]	2.747860	g₆ [eV]	14.315323
ζ₉ [bohr⁻¹]	2.128593	h₆ [eV]	3.602634	g₉ [eV]	12.416054
z₈ [bohr⁻¹]	8.388111	h₆ [eV]	0.577263		
z₉ [bohr⁻¹]	1.843048	Strontium	F₃₄ [eV]	8.544247	
z₉ [bohr⁻¹]	0.708600		G₃₄ [eV]	2.074254	
g₆ [eV]	5.194805	U₆ [eV]	-10.427671		
g₆ [eV]	5.090534	U₆ [eV]	-9.943751	Tungsten	
g₆ [eV]	5.185150	β₆ [eV]	-6.253108		
g₆ [eV]	4.769775	β₆ [eV]	-8.944498	U₆ [eV]	-44.524060
h₆ [eV]	4.255012	ζ₆ [bohr⁻¹]	2.197303	U₆ [eV]	-40.015000
a [none]	0.208571	ζ₆ [bohr⁻¹]	1.730137	U₆ [eV]	-46.490410
b [Å⁻¹]	6.000483	g₆ [eV]	4.603664	β₆ [eV]	-16.964660
c [Å]	1.185245	g₆ [eV]	5.716099	β₆ [eV]	5.623170
		g₆ [eV]	7.334620	h₆ [eV]	-2.947340
Phosphorus					
U₆ [eV]	-48.729905	a [none]	-0.012948	ζ₆ [bohr⁻¹]	2.665490
U₆ [eV]	-40.354689	b [Å⁻¹]	6.000126	z₆ [bohr⁻¹]	1.794400
U₆ [eV]	-7.349246	c [Å]	3.011964	z₆ [bohr⁻¹]	1.958660
β₆ [eV]	-14.833780			z₆ [bohr⁻¹]	1.876450
β₆ [eV]	-11.744725	Yttrium	g₆ [eV]	5.702025	
β₆ [eV]	-20.099893		g₆ [eV]	6.323145	
ζ₆ [bohr⁻¹]	2.158033	U₆ [eV]	-14.247809	g₆ [eV]	2.604333
ζ₆ [bohr⁻¹]	1.805343	U₆ [eV]	-14.817140	g₆ [eV]	7.115919
ζ₆ [bohr⁻¹]	1.230358	U₆ [eV]	-16.394302	h₆ [eV]	1.319912
z₆ [bohr⁻¹]	6.042705	β₆ [eV]	0.343336	F₃₄ [eV]	7.788190
z₆ [bohr⁻¹]	2.376473	β₆ [eV]	-3.180807	G₃₄ [eV]	1.684940
z₆ [bohr⁻¹]	7.147750	β₆ [eV]	-4.508957		
g₆ [eV]	8.758856	ζ₆ [bohr⁻¹]	0.593368		
g₆ [eV]	8.483679	ζ₆ [bohr⁻¹]	1.490422		
g₆ [eV]	8.662754	ζ₆ [bohr⁻¹]	1.850893	U₆ [eV]	-41.291342
g₆ [eV]	7.734264	z₆ [bohr⁻¹]	0.902611	U₆ [eV]	-35.089592
h₆ [eV]	0.871681	z₆ [bohr⁻¹]	1.484400	U₆ [eV]	-44.178985
a [none]	-0.034320	z₆ [bohr⁻¹]	1.384238	β₆ [eV]	3.830075
b [Å⁻¹]	6.001394	g₆ [eV]	4.046733	β₆ [eV]	-1.638530
c [Å]	2.296737	g₆ [eV]	4.726277	β₆ [eV]	-1.414411
		g₆ [eV]	7.278752	ζ₆ [bohr⁻¹]	2.411839
Sulfur					
U₆ [eV]	-47.530706	p(core) [bohr⁻¹]	2.773703	z₆ [bohr⁻¹]	1.680823
U₆ [eV]	-39.191045	F₃₄ [eV]	4.972716	z₆ [bohr⁻¹]	1.331218
U₆ [eV]	-46.306944	G₃₄ [eV]	5.016364	z₆ [bohr⁻¹]	1.490623
β₆ [eV]	-13.827440	g₆ [eV]	6.394256		
β₆ [eV]	-7.684613	Zirconium	g₆ [eV]	5.555717	
β₆ [eV]	-9.968172	g₆ [eV]	5.555699		
ζ₆ [bohr⁻¹]	2.192844	U₆ [eV]	-20.008884	g₆ [eV]	4.816877
ζ₆ [bohr⁻¹]	1.841078	U₆ [eV]	-14.559692	h₆ [eV]	1.220913
Table 3 (continued)

Element	Parameters	Element	Parameters	Element	Parameters
ζ (bohr⁻¹)	3.109401	Uₐ [eV]	-21.302857	F'ₐ [eV]	5.442818
zₐ [bohr⁻¹]	0.479722	β [eV]	9.551952	G'ₐ [eV]	2.376279
z₂ [bohr⁻¹]	1.015507	β [eV]	-4.551915		
z₃ [bohr⁻¹]	4.317470	β [eV]	-3.213274	Osmium	
gₐ [eV]	9.170350	ξ [bohr⁻¹]	1.692590		
g₂ [eV]	5.944296	ξ [bohr⁻¹]	1.694616	Uₐ [eV]	-26.434080
g₃ [eV]	6.165473	ξ [bohr⁻¹]	1.567392	Uₐ [eV]	-48.793500
gₙ [eV]	7.301878	z₂ [bohr⁻¹]	1.189109	Uₐ [eV]	-55.837980
hₐ [eV]	5.005404	zₐ [bohr⁻¹]	0.800002	β [eV]	-12.508730
a [μm]	-0.036928	zₑ [bohr⁻¹]	1.190249	β [eV]	0.946880
b [Å⁻¹]	1.795907	gₐ [eV]	5.331208	β [eV]	5.164360
c [Å]	2.082618	gₐ [eV]	4.150579	ξ [bohr⁻¹]	3.031000
Chlorine		β [eV]	3.967381	ξ [bohr⁻¹]	1.593960
Uₐ [eV]	-61.389930	F'ₐ [eV]	5.010704	z₂ [bohr⁻¹]	1.564220
U₂ [eV]	-54.482601	G'ₐ [eV]	2.943652	zₐ [bohr⁻¹]	1.770010
U₃ [eV]	-38.258155	gₐ [eV]	7.017863		
β [eV]	-2.367988	Niobium	gₐ [eV]	6.384200	
β [eV]	-13.802139		β [eV]	6.526073	
β [eV]	-4.037750	Uₐ [eV]	-31.269298	β [eV]	5.661968
ζ [bohr⁻¹]	2.637050	Uₐ [eV]	-20.151277	hₐ [eV]	1.508825
ζ [bohr⁻¹]	2.118146	Uₐ [eV]	-38.893116	F'ₐ [eV]	2.021170
ζ [bohr⁻¹]	1.324033	β [eV]	-12.045244	G'ₐ [eV]	1.392130
z₂ [bohr⁻¹]	0.956297	β [eV]	1.465762		
z₃ [bohr⁻¹]	2.464087	β [eV]	-5.920190	Iridium	
z₄ [bohr⁻¹]	6.410325	ζ [bohr⁻¹]	2.355662		
gₐ [eV]	11.142054	ξ [bohr⁻¹]	1.386607	Uₐ [eV]	-29.703974
g₂ [eV]	7.487881	ξ [bohr⁻¹]	1.977324	Uₐ [eV]	-38.210024
g₃ [eV]	9.551886	z₂ [bohr⁻¹]	1.490754	Uₐ [eV]	-32.538202
gₙ [eV]	8.128438	zₐ [bohr⁻¹]	0.827670	β [eV]	-10.943427
hₐ [eV]	5.004257	zₑ [bohr⁻¹]	1.448367	β [eV]	2.906650
a [μm]	-0.013213	gₐ [eV]	6.683592	β [eV]	-3.791731
b [Å⁻¹]	3.687022	gₐ [eV]	4.885339	ξ [bohr⁻¹]	1.506067
c [Å]	2.548435	gₐ [eV]	4.377647	ξ [bohr⁻¹]	4.105673
Argon		β [eV]	3.815026	ξ [bohr⁻¹]	2.670047
Uₐ [eV]	-7.787931	F'ₐ [eV]	6.550874	zₐ [bohr⁻¹]	3.191892
U₂ [eV]	-83.211487	G'ₐ [eV]	1.065577	zₐ [bohr⁻¹]	0.662007
β [eV]	-8.839842	gₐ [eV]	4.203820		
β [eV]	-28.427303	Molybdenum	gₐ [eV]	3.57467	
ζ [bohr⁻¹]	6.000272	Uₐ [eV]	-53.467728	ξ [bohr⁻¹]	13.320955
ζ [bohr⁻¹]	5.949170	Uₐ [eV]	-36.291951	hₐ [eV]	0.018501
gₐ [eV]	17.859776	Uₐ [eV]	-55.839977	F'ₐ [eV]	2.627170
gₙ [eV]	4.168451	β [eV]	-0.189344	G'ₐ [eV]	2.996029
g₂ [eV]	11.852500	β [eV]	7.017762		
g₃ [eV]	15.669543	β [eV]	-10.941126	Platinum	
hₐ [eV]	4.574549	ξ [bohr⁻¹]	1.060429		
Potassium		ξ [bohr⁻¹]	1.350412	Uₐ [eV]	-73.516173
		ξ [bohr⁻¹]	1.827152	Uₐ [eV]	-68.320056
		z₂ [bohr⁻¹]	1.512995	Uₐ [eV]	-76.586873
Element	Parameters	Element	Parameters	Element	Parameters
---------	------------	---------	------------	---------	------------
U₀ [eV]	-3.801108	zₚ [bohr⁻¹]	1.355055	βₒ [eV]	1.515148
U₂ [eV]	-3.339656	zₚ [bohr⁻¹]	1.876231	βₗ [eV]	3.296964
β [eV]	-8.755195	8.576652	[eV]	18.044737	
βₛ [eV]	-1.788061	6.888293	[eV]	2.301264	
ζ [bohr⁻¹]	6.000478	6.644509	[eV]	1.662404	
ζₛ [bohr⁻¹]	1.127503	5.790552	[eV]	3.168852	
g₀ [eV]	3.369251	1.317368	[eV]	2.270099	
g₀ [eV]	6.120351	10.000608	[eV]	1.949896	
g₀ [eV]	0.995005	1.216752	[eV]	7.173856	
g₀ [eV]	18.999148	8.638286	[eV]	7.922254	
hₙ [eV]	0.300325	7.057990	[eV]	8.137643	
a [Å]	0.157519	4.185202	[eV]	6.360087	
c [Å]	2.047539	-34.910293	[eV]	1.892517	
U₀ [eV]	6.000566	-45.530412	[eV]	7.096591	
U₀ [eV]	4.102105	5.827103	[eV]	4.484183	
β₂ [eV]	-2.791024	5.596426	[eV]	1.616577	
β₂ [eV]	-8.06697	4.877169	[eV]	5.053567	
U₀ [eV]	-10.77058	-5.724355	[eV]	9.300152	
U₀ [eV]	-9.754177	1.956245	[eV]	29.276168	
β₁ [eV]	-4.343881	6.062999	[eV]	11.03443	
β₂ [eV]	-1.296612	1.757360	[eV]	8.053048	
ζₛ [bohr⁻¹]	1.528258	1.411033	[eV]	61.715468	
ζₛ [bohr⁻¹]	2.080094	1.141313	[eV]	1.814169	
g₀ [eV]	5.725733	1.159312	[eV]	3.684356	
g₀ [eV]	4.781065	6.326174	[eV]	2.444880	
g₀ [eV]	7.172103	5.587138	[eV]	7.049900	
g₀ [eV]	7.431876	5.596426	[eV]	1.777089	
hₙ [eV]	1.240572	4.877169	[eV]	5.053567	
a [Å]	-0.025275	1.258989	[eV]	2.444880	
b [Å]	0.500017	5.434888	[eV]	7.049900	
c [Å]	2.329051	1.106875	[eV]	9.300152	
Scandium	-15.544461	U₀ [eV]	-44.901521	g₀ [eV]	25.39184
Scandium	-18.642925	U₀ [eV]	-41.414099	hₙ [eV]	0.148234
Scandium	-16.059444	U₀ [eV]	-37.934514	F₉ [eV]	8.827257
βₗ [eV]	-8.620944	βₗ [eV]	-12.859508	Gᵣ [eV]	4.915252
βₛ [eV]	3.075948	βₛ [eV]	-8.480558	1.459195	
βₛ [eV]	-9.76661	βₛ [eV]	-3.830797	ζ [bohr⁻¹]	1.402469
ζₛ [bohr⁻¹]	1.345196	5.537201	[eV]	-17.608732	
ζₛ [bohr⁻¹]	1.859012	2.093164	[eV]	-18.396417	
z₀ [bohr⁻¹]	0.848418	0.984449	[eV]	-3.045239	
z₀ [bohr⁻¹]	2.451729	4.586613	[eV]	-5.693556	
z₀ [bohr⁻¹]	0.789372	0.785337	[eV]	2.104896	
g₀ [eV]	4.638215	4.413643	[eV]	1.516293	
g₀ [eV]	5.739164	5.356966	[eV]	6.378222	
g₀ [eV]	14.604872	22.400448	[eV]	10.143176	
g₀ [eV]	12.802595	19.599957	[eV]	10.397393	
g₀ [eV]	14.093635	8.641509	[eV]	14.794056	
g₀ [eV]	0.193835	hₙ [eV]	0.926128		
Element	Parameters	Element	Parameters	Element	Parameters
---------	------------	---------	------------	---------	------------
F_{a}^{m} [eV]	4.798313	G_{a}^{m} [eV]	5.859738	Thallium	
G_{a}^{m} [eV]	5.380136	Rhodium			
Titanium					
U_{m} [eV]	-20.513756	U_{m} [eV]	-29.518621	U_{m} [eV]	-29.826907
U_{p} [eV]	-25.507973	U_{pe} [eV]	-40.045431	β_{p} [eV]	-7.230170
U_{d} [eV]	-17.260909	U_{pd} [eV]	-35.818492	β_{d} [eV]	-7.575544
U_{a} [eV]	-23.809486	U_{pa} [eV]	-8.221241	ζ_{p} [bohr$^{-1}$]	3.335883
β_{a} [eV]	3.389142	β_{pa} [eV]	-15.5569	ζ_{p} [bohr$^{-1}$]	1.766141
β_{p} [eV]	-3.355350	β_{pd} [eV]	-13.396182	ζ_{p} [eV]	5.015118
β_{d} [eV]	-1.842829	ζ_{p} [bohr$^{-1}$]	1.324919	ζ_{p} [eV]	13.932049
ζ_{p} [bohr$^{-1}$]	5.327777	ζ_{pd} [bohr$^{-1}$]	4.306111		10.495551
ζ_{p} [bohr$^{-1}$]	1.640688	ζ_{pd} [bohr$^{-1}$]	2.901406		10.526198
ζ_{p} [bohr$^{-1}$]	1.418280	z_{a}^{m} [bohr$^{-1}$]	0.809023	h_{p} [eV]	0.293760
z_{a}^{m} [bohr$^{-1}$]	1.045904	z_{a}^{m} [bohr$^{-1}$]	6.985259		
z_{a}^{m} [bohr$^{-1}$]	1.078644	z_{a}^{m} [bohr$^{-1}$]	0.643134		
z_{a}^{m} [bohr$^{-1}$]	0.717945	g_{0} [eV]	3.631179		
g_{0} [eV]	5.717851	g_{0} [eV]	4.407820	U_{m} [eV]	-35.038145
g_{0} [eV]	5.800015	g_{0} [eV]	33.825599	U_{m} [eV]	-25.413401
g_{0} [eV]	6.414726	g_{0} [eV]	29.478305	β_{p} [eV]	-8.323792
g_{0} [eV]	5.623133	b_{m} [eV]	0.000092	β_{p} [eV]	-2.237891
b_{m} [eV]	1.403732	F_{m} [eV]	1.775497	ζ_{p} [bohr$^{-1}$]	2.369910
F_{m} [eV]	6.560562	G_{m} [eV]	1.851571	ζ_{p} [bohr$^{-1}$]	1.685246
G_{m} [eV]	3.398235	Palladium			
		g_{e} [eV]	5.254128		
		g_{e} [eV]	7.061016		
Vanadium					
U_{m} [eV]	-32.162276	U_{m} [eV]	-21.073382	h_{v} [eV]	1.081819
U_{p} [eV]	-21.572501	U_{p} [eV]	-85.325301	a [none]	-0.239493
U_{d} [eV]	-34.506245	U_{d} [eV]	-8.038245	b [Å$^{-1}$]	5.444338
β_{a} [eV]	-1.211330	β_{a} [eV]	0.740037	c [Å]	1.613982
β_{p} [eV]	0.740746	β_{p} [eV]	-2.394498		
β_{d} [eV]	3.153669	ζ_{p} [bohr$^{-1}$]	1.658503		
ζ_{p} [bohr$^{-1}$]	1.974330	ζ_{p} [bohr$^{-1}$]	1.156718		
ζ_{p} [bohr$^{-1}$]	1.063106	ζ_{p} [bohr$^{-1}$]	2.219861	U_{m} [eV]	-42.409177
ζ_{p} [bohr$^{-1}$]	1.394806	z_{a}^{m} [bohr$^{-1}$]	1.794058	U_{m} [eV]	-36.393746
z_{a}^{m} [bohr$^{-1}$]	1.094426	z_{a}^{m} [bohr$^{-1}$]	6.158778	β_{p} [eV]	-34.951578
z_{a}^{m} [bohr$^{-1}$]	0.755378	z_{a}^{m} [bohr$^{-1}$]	1.630913	β_{p} [eV]	-7.359060
z_{a}^{m} [bohr$^{-1}$]	1.099367	g_{0} [eV]	8.043535	ζ_{p} [bohr$^{-1}$]	3.702377
g_{0} [eV]	5.983116	g_{0} [eV]	9.755042	ζ_{p} [bohr$^{-1}$]	1.872327
g_{0} [eV]	4.738769	g_{0} [eV]	30.199556	g_{0} [eV]	5.851823
g_{0} [eV]	4.499763	g_{0} [eV]	26.318284	g_{0} [eV]	6.790583
g_{0} [eV]	3.944481	h_{v} [eV]	0.086121	h_{v} [eV]	8.389442
h_{v} [eV]	0.901105	F_{m} [eV]	8.004447	g_{0} [eV]	7.724219
F_{m} [eV]	6.810021	G_{m} [eV]	2.613348	h_{v} [eV]	0.295606
G_{m} [eV]	1.831407	Silver			
Chromium					
U_{m} [eV]	-34.864339	U_{m} [eV]	-36.118023		
U_{p} [eV]	-26.978615	U_{p} [eV]	-35.662727		
U_{d} [eV]	-54.431036	β_{a} [eV]	-6.129623		
β_{p} [eV]	-5.122615	β_{p} [eV]	1.004115		
covalent bonds. The angles subtended by such bonds are
often determined largely by the electronic structure of the
atom. Information on the accuracy of prediction of molecular
electronic structure can also be inferred from the AUE of
dipole moments, Table 8, and ionization potentials, Table 9.

Comparison of the accuracy of PM6 with the other NDDO
methods PM5, PM3, and AM1, was made more complicated
by the fact that different sets of elements were available in
each method. To allow a simple comparison, therefore,
average unsigned errors (AUE) for the four common
properties for various subsets are presented in Tables 10, 11,
12, 13 and 14. To ensure a valid comparison the same
number of data were used in each method, except for AM1
in “whole of main group”, where data for cadmium and boron were not used.

Comparison with AM1*

Winget, et al. [15], developed AM1* parameters for P, S, and
Cl, in which Voityuk’s diatomic parameters were used for all
atom-pairs involving P, S, and Cl with H, C, N, O, F, P, S, Cl and Mo. In the AM1* method, all parameters for elements
other than the ones being optimized are held constant at the
AM1 values. As such, AM1* could be regarded as a hybrid
method: parameters for a few individual elements are re-
optimized, in this case with some changes in the set of
approximations, while holding the parameters for the other
methods constant at their AM1 values. Tables comparing
individual P, S, and Cl species calculated with AM1* and
PM6 are given in the supplementary material. A summary of
the statistical analysis is given in Table 15. Winget et al. also
reported AM1* parameters for titanium and zirconium [15].
These parameters were not used in the comparison given
here because the set of approximations used was incompat-
ible with the set used in PM6.

Comparison with RM1

In 2006, ten elements, H, C, N, O, F, P, S, Cl, Br, and I, that had
been parameterized at the AM1 level were re-parameterized
[35]; the result was a new method, RM1. No changes were
made to the set of approximations used, so that, for
example, P, S, Cl, Br, and I used only the s-p basis set.
That is, RM1 was functionally identical to AM1. A
statistical analysis showed that RM1 was more accurate
than any of the other NDDO methods, and therefore was
the method of choice for modeling organic compounds.

A comparison of PM6 with the other NDDO
methods PM5, PM3, and AM1, was made more complicated
by the fact that different sets of elements were available in
each method. To allow a simple comparison, therefore,
average unsigned errors (AUE) for the four common
properties for various subsets are presented in Tables 10, 11,
12, 13 and 14. To ensure a valid comparison the same
number of data were used in each method, except for AM1
in “whole of main group”, where data for cadmium and boron were not used.

Comparison with high-level methods

A comparison of PM6, HF 6–31G(d) and B3LYP 6–31G(d)
errors in predicted Δ_H_f for 1373 compounds is given in the
supplementary material. Only compounds containing the
elements H, C, N, O, F, P, S, Cl, and Br were considered,
these being the more important elements in biochemistry.

A statistical analysis of errors in thermochemical
predictions for the three methods is given in Table 16. A

Table 3 (continued)
Element
β_0 [eV]
β_0 [eV]
ζ [bohr']
ζ [bohr']
ζ [bohr']
x_n [bohr']
x_n [bohr']
x_n [bohr']
g_0 [eV]
g_0 [eV]
g_0 [eV]
g_0 [eV]
h_0 [eV]
F_0 [eV]
G_0 [eV]

Manganese

U_0 [eV] | -51.460000 | U_0 [eV] | -14.645792 |
U_0 [eV]	-37.543990	U_0 [eV]	-9.318664
U_0 [eV]	-47.655370	U_0 [eV]	-11.613183
ζ [bohr']	-4.185290	ζ [bohr']	1.663178
ζ [bohr']	-3.479630	ζ [bohr']	1.384108
ζ [bohr']	-13.473190	ζ [bohr']	1.957413
ζ [bohr']	2.131680	ζ [bohr']	6.677284
ζ [bohr']	1.525880	ζ [bohr']	5.953373
ζ [bohr']	2.607800	ζ [bohr']	18.729843
ζ [bohr']	1.132450	ζ [bohr']	9.917452
ζ [bohr']	0.962550	ζ [bohr']	0.825192
g_0 [eV]	6.190990	g_0 [eV]	6.757427
g_0 [eV]	6.284594	g_0 [eV]	7.262255
g_0 [eV]	1.520518	g_0 [eV]	7.690920
G_0 [eV]	1.105330	G_0 [eV]	1.105330

Voityuk reported the parameterization of molybdenum
[14] at the AM1* level. These parameters were added to the
standard AM1 parameters and were used in the analysis.

Comparison with high-level methods

A comparison of PM6, HF 6–31G(d) and B3LYP 6–31G(d)
errors in predicted Δ_H_f for 1373 compounds is given in the
supplementary material. Only compounds containing the
elements H, C, N, O, F, P, S, Cl, and Br were considered,
these being the more important elements in biochemistry.

Ab-initio Δ_H_f were obtained from the calculated total
energies by the addition of a simple atomic correction and
conversion from atomic units to kcal mol$^{-1}$. No allowance
was made for thermal population effects, zero point
energies, etc., the assumption being made that such effects
could be absorbed into the atomic corrections.

A statistical analysis of errors in thermochemical
predictions for the three methods is given in Table 16. A
Table 4 Diatomic core–core parameters

α_{ij} [Å^{-1}]	x_{ij}	α_{ij} [Å^{-1}]	x_{ij}	α_{ij} [Å^{-1}]	x_{ij}
H H 3.540942 2.243587 Cu Cl 2.776531 0.139065 Te P 1.453718 1.109289					
Cu Cu 3.616846 5.184376 Te S 1.830170 0.943925					
He H 2.989881 2.371199 He H 2.989881 2.371199					
He He 3.783559 3.450900 Zn H 1.987891 3.109193 Te P 1.453718 1.109289					
Cu Cu 3.616846 5.184376 Te S 1.830170 0.943925					
Li H 2.136265 2.191985 Li H 2.136265 2.191985					
Li He 3.112403 9.273676 Zn O 2.335054 2.265313 Se Se 1.566008 1.187826					
Li Li 4.714674 16.116384 Zn F 2.410021 1.225545 Te Br 1.250940 0.394202					
Zn Si 1.832058 3.783905 Te Cd 1.307262 1.085919					
Be H 2.475418 2.562831 Zn P 1.220480 0.581530 Te In 1.540988 2.039582					
Be He 3.306702 12.544878 Zn S 1.455000 0.648000 Te Sn 1.763941 2.951976					
Be Li 2.236728 3.287165 Zn Cl 1.625176 0.721351 Te Se 1.566008 1.187826					
Be Be 1.499907 0.238633 Zn Ca 1.119180 1.240290					
B H 2.615231 1.321394 I Li 2.640642 2.823403 Ge O 2.889607 0.990211					
B He 3.163140 1.974170 Ga H 1.847350 1.386652 I O 2.267986 0.416942					
B Li 3.759397 7.886018 C H 1.027806 0.216506 Ga F 2.679689 0.416942					
B Be 1.888998 1.151792 Ga N 2.121820 1.188338 I N 1.677518 0.264903					
Be H 2.475418 2.562831 Zn P 1.220480 0.581530 Te In 1.540988 2.039582					
Be He 3.306702 12.544878 Zn S 1.455000 0.648000 Te Sn 1.763941 2.951976					
Be Li 2.236728 3.287165 Zn Cl 1.625176 0.721351 Te Se 1.566008 1.187826					
Be Be 1.499907 0.238633 Zn Ca 1.119180 1.240290					
C H 1.027806 0.216506 Ga Si 1.913780 1.002290 I O 2.268891 0.866204					
C He 3.042705 3.213971 Ga P 2.979650 0.500000 I F 2.203580 0.392425					
C Li 3.263200 16.180002 Ga S 2.232108 2.456284 I Ne 2.414415 1.503568					
C Be 2.321864 1.290072 Ga O 2.348347 1.523644 I C 2.068710 0.810156					
C B 3.197887 2.819187 Ga F 2.679689 0.416942 I N 1.677518 0.264903					
C C 2.613713 0.813510 Ge H 2.206793 1.733226 I Si 1.595797 0.700299					
C N 0.969406 0.175506 Ge C 2.257469 1.297510 I P 2.131593 3.047207					
N H 0.969406 0.175506 Ge C 2.257469 1.297510 I P 2.131593 3.047207					
N He 2.814339 1.077861 Ge N 1.988226 0.637506 I S 1.855110 0.709929					
N Li 2.640623 2.823403 Ge O 2.139413 0.826964 I Cl 1.574161 0.310474					
N Be 2.580895 1.740605 Ge F 2.384777 0.651977 I Ar 1.576587 0.305367					
N B 2.477004 0.952822 Ge Si 0.299721 0.178680 I K 1.539714 4.824353					
N C 2.686108 0.859949 Ge P 2.469291 5.616349 I Ca 2.196490 7.689921					
N N 2.574502 0.675313 Ge S 2.024588 1.160957 I Sc 1.814884 3.114282					
O H 1.260942 0.192295 Ge Mn 2.382834 2.255151 I V 2.683520 6.198112					
O He 3.653775 6.684525 Ge Co 2.852610 2.151850 I Cr 2.634224 2.598590					
O Li 2.584442 1.968598 Ge Ge 2.019000 3.023000 I Mn 2.266900 1.193410					
O Be 3.051867 3.218155 I Fe 1.912829 0.532622					
O B 2.693512 1.269801 As H 1.993527 1.090589 I Co 3.235204 1.105239					
O C 2.889607 0.990211 As C 1.855069 0.579098 I Ni 1.085343 0.017459					
O N 2.784292 0.764756 As N 1.496543 0.273337 I Cu 0.834305 0.006781					
O O 2.623998 0.535112 As O 2.003950 0.701614 I Zn 1.394762 0.976607					
α_ii [Å^{-1}]	x_ii	α_ii [Å^{-1}]	x_ii	α_ii [Å^{-1}]	x_ii
---	---	---	---	---	---
As	F	2.012583	0.402628	I	Ga
F	H	3.136740	0.815802	As	Al
				Ge	
F	He	2.856543	0.745107	Si	1.915600
F	Li	3.043901	1.979585	S	1.954368
F	Be	3.726923	3.882993	Cl	1.691070
F	B	2.823837	0.862761	Ti	1.939211
F	C	3.027600	0.732968	Co	3.368140
F	N	2.856646	0.635854	Se	1.954368
F	O	3.015444	0.681343	As	1.588264
F	Ne	5.999680	5.535021	Se	1.954368
Ne	H	3.677578	1.960924	C	3.441188
Ne	Li	2.193666	0.704958	N	2.494384
Ne	Be	1.316588	0.392628	O	1.981449
Ne	B	2.756190	2.764140	Ne	3.441188
Ne	C	3.441188	5.468780	Na	2.651594
Ne	N	4.426370	29.999909	Mg	2.210603
Ne	O	2.889587	0.763899	Na	1.703029
Ne	Ne	1.774236	1.543037	Mg	1.569961
Ne	Na	0.500326	0.207831	Br	2.196050
Ne	He	1.703029	4.282517	Br	2.494384
Ne	Li	1.267299	0.881482	Br	1.981449
Ne	Be	1.255480	3.121620	Br	2.196050
Ne	B	1.569961	3.188608	Br	2.494384
Ne	C	2.196050	4.520429	Br	1.981449
Ne	N	2.494384	8.586387	Br	1.981449
Ne	O	1.981449	3.270079	Br	2.196050
Ne	Ne	1.774236	1.543037	Br	2.494384
Ne	Na	0.446355	0.287137	Br	2.196050
Table 4 (continued)

α_i [Å⁻¹]	x_j	α_i [Å⁻¹]	x_j	α_i [Å⁻¹]	x_j
Mg Na	1.506773 8.675619 Br	Ar K 2.450801 3.262668 Xe	I 0.799155 0.112090		
Mg Mg	1.093574 0.465645 Br	K 1.616093 3.322795 Xe	Xe 1.244762 0.344474		
Al H	2.025996 2.958379 Br	Sc 1.793486 2.098251 Cs H 0.264882 0.096901			
Al He	2.255830 2.701400 Br	Ti 1.674847 0.883434 Cs B 1.487110 10.392610			
Al Li	1.581593 1.106819 Br	V 1.902904 0.612698 Cs C 2.147104 24.514623			
Al Be	1.938237 5.037214 Br	Cr 1.566028 0.217853 Cs N 2.446532 29.711077			
Al B	2.059569 2.741479 Br	Mn 2.283820 1.183580 Cs O 2.085139 8.176843			
Al C	2.267440 2.928056 Br	Fe 3.641782 6.061921 Cs F 2.834100 22.233416			
Al N	2.009754 1.345202 Br	Co 2.632688 0.425148 Cs P 1.487110 10.392610			
Al O	2.498660 2.131396 Br	Ni 2.772136 0.632145 Cs S 0.264882 0.096901			
Al F	3.084258 1.975635 Br	Cu 5.826407 0.768517 Cs Cl 1.674847 0.883434			
Al Ne	2.447869 1.709200 Br	Zn 1.416120 0.747027 Cs Br 1.167189 29.711077			
Al Na	1.020871 2.071847 Br	Ga 1.819105 1.261036 Cs I 0.919562 10.392610			
Al Mg	1.975230 13.472443 Br	Ge 1.602366 6.061921 Cs Cs 1.170843 25.320055			
Al Al	1.387774 2.139200 Br	As 2.617820 0.768517 Cs Cs 1.975230 13.472443			
Si H	1.896950 0.924196 Br	Br 1.758146 0.615308 Ba C 0.770626 0.119793			
Si He	2.040498 1.853583 Br	Ba N 1.148233 0.207934 Ba Na 1.506773 8.675619			
Si Li	1.789609 3.090791 Kr	H 3.770453 5.125897 O 1.283018 0.348945			
Si Be	1.263132 0.623433 Kr	He 1.996943 0.627701 O F 3.452321 4.134407			
Si B	1.982653 1.028278 Kr	Li 3.314562 8.758697 O Cl 1.674847 0.883434			
Si C	1.984498 0.785745 Kr	Be 3.253048 10.237796 O Br 1.167189 29.711077			
Si N	1.818988 0.592972 Kr	B 2.363169 2.946781 Br 1.167189 29.711077			
Si O	1.923600 0.751095 Kr	C 2.076378 0.652623 Br Br 1.167189 29.711077			
Si F	2.131028 0.543516 Kr	N 1.644052 0.199606 Br Ba 1.167189 29.711077			
Si Ne	2.867784 14.378676 Kr	O 0.292300 0.006733 Br Ba 1.167189 29.711077			
Si Na	2.007615 9.237644 Kr	F 3.452321 4.134407 Ba I 0.982528 0.835997			
Si Mg	3.139749 29.994520 Kr	Ne 2.813679 1.433722 Ba Ba 0.339269 0.356186			
Si Al	1.900000 2.000000 Kr	Na 2.480598 8.354448 Ba La 4.246713 5.901716			
Si Si	1.329000 0.273477 Kr	Mg 1.391487 0.888436 La H 0.83667 0.623501			
P H	1.926537 1.234896 Kr	Si 1.764100 0.554250 La N 0.758881 0.104778			
P He	2.093158 1.490218 Kr	Cl 1.884974 0.520217 La O 1.318333 0.557957			
P Li	1.394544 1.122950 Kr	Ar 1.995125 0.554874 La F 2.379335 2.401903			
P Be	1.800070 1.684831 Kr	K 2.182487 8.609782 La Al 1.003510 0.500540			
P B	1.923168 1.450886 Kr	Ca 1.305197 0.878891 La Si 2.016820 3.219030			
P C	1.994653 0.979512 Kr	Br 1.529006 0.308098 La P 0.954500 0.541660			
P N	2.147042 0.972154 Kr	Kr 1.135319 0.052099 La S 1.834129 2.682412			
P O	2.220768 0.878705 Kr	Al 2.467131 5.091716 La C 0.604869 0.108649			
P F	2.234356 0.514575 Rb	H 2.443556 29.861632 La Br 0.758881 0.104778			
P Ne	2.219036 0.774954 Rb	He 1.270741 1.862585 La I 0.592666 0.226883			
P Na	1.500320 2.837095 Rb	Br 5.33239 9.040493 La La 4.248067 5.175162			
P Mg	1.383773 1.177881 Rb	C 2.765830 29.974031 La La 4.248067 5.175162			
Table 4 (continued)

α_{ij} [Å⁻¹]	x_{ij}	α_{ij} [Å⁻¹]	x_{ij}	α_{ij} [Å⁻¹]	x_{ij}
P 1.980727	5.050816	Rb N 0.761047	0.024636	Gd H 0.390870	0.135810
P 3.313466	13.239121	O 1.334908	1.125350	Gd C 0.446870	0.053040
P P 1.505792	0.902501	Rb F 3.638122	28.815278	Gd N 1.159410	0.205050
		Rb Ne 2.267591	7.736563	Gd O 0.862040	0.175800
S H 2.215975	0.849712	Rb Al 0.798774	2.992457	Gd F 1.497980	0.334630
S He 1.959149	0.837618	Rb S 1.303184	0.964411	Gd Al 1.003510	0.500540
S Li 2.294275	2.642502	Cl 2.274411	10.384486	Gd Si 2.016820	3.219030
S Be 2.781736	3.791565	Rb Ar 2.510977	18.433329	Gd P 0.954450	0.541660
S B 2.403696	1.125394	Rb Br 1.797766	5.176214	Gd S 2.003930	2.655400
S C 2.210305	0.666849	Rb Kr 2.268753	15.307503	Gd Cl 0.806810	0.089970
S N 2.289990	0.738710	Rb Sr 1.180818	20.147610	Gd Br 0.715810	0.240740
S O 2.383289	0.747215	Sr H 2.105914	12.973316	Gd Gd 3.348180	2.670400
S F 2.187186	0.375251	Sr C 1.986688	6.654657	Sr C 2.312813	4.453825
S Ne 2.787058	3.296160	Sr Mg 1.500163	0.500748	Sr Mg 2.312813	4.453825
S Na 1.400850	0.852434	Sr N 2.183629	6.853866	Sr N 2.183629	6.853866
S Mg 1.500163	0.500748	Sr Si 2.969780	10.971705	Sr Si 2.969780	10.971705
S Al 1.976705	2.347384	Sr P 2.789150	1.552100	Sr P 2.789150	1.552100
S Si 1.885916	0.876658	Sr S 1.598106	3.129603	Sr S 1.598106	3.129603
S P 1.595325	0.562266	Sr Cl 1.854190	3.783995	Sr Cl 1.854190	3.783995
S S 1.794556	0.473856	Sr Br 1.524316	2.766567	Sr Br 1.524316	2.766567
S Cl 2.402886	0.754831	Sr Sr 1.000040	5.372120	Sr Sr 1.000040	5.372120
S Ne 2.787058	3.296160	Sr Mg 1.500163	0.500748	Sr Mg 1.500163	0.500748
S Na 1.400850	0.852434	Sr N 2.183629	6.853866	Sr N 2.183629	6.853866
S Mg 1.500163	0.500748	Sr Si 2.969780	10.971705	Sr Si 2.969780	10.971705
S Al 1.976705	2.347384	Sr P 2.789150	1.552100	Sr P 2.789150	1.552100
S Si 1.885916	0.876658	Sr S 1.598106	3.129603	Sr S 1.598106	3.129603
S P 1.595325	0.562266	Sr Cl 1.854190	3.783995	Sr Cl 1.854190	3.783995
S S 1.794556	0.473856	Sr Br 1.524316	2.766567	Sr Br 1.524316	2.766567
S Cl 2.402886	0.754831	Sr Sr 1.000040	5.372120	Sr Sr 1.000040	5.372120
S Ne 2.787058	3.296160	Sr Mg 1.500163	0.500748	Sr Mg 1.500163	0.500748
S Na 1.400850	0.852434	Sr N 2.183629	6.853866	Sr N 2.183629	6.853866
S Mg 1.500163	0.500748	Sr Si 2.969780	10.971705	Sr Si 2.969780	10.971705
S Al 1.976705	2.347384	Sr P 2.789150	1.552100	Sr P 2.789150	1.552100
S Si 1.885916	0.876658	Sr S 1.598106	3.129603	Sr S 1.598106	3.129603
S P 1.595325	0.562266	Sr Cl 1.854190	3.783995	Sr Cl 1.854190	3.783995
S S 1.794556	0.473856	Sr Br 1.524316	2.766567	Sr Br 1.524316	2.766567
S Cl 2.402886	0.754831	Sr Sr 1.000040	5.372120	Sr Sr 1.000040	5.372120
Zr H 4.056167	3.933445	Zr C 2.029427	1.999182	Zr C 2.029427	1.999182
Zr He 2.716562	1.177211	Zr N 1.707083	0.995045	Zr N 1.707083	0.995045
Ar H 4.056167	3.933445	Zr O 1.709570	1.057525	Zr O 1.709570	1.057525
Ar Be 3.044007	2.755492	Zr F 1.900925	0.861142	Zr F 1.900925	0.861142
Table 4 (continued)

	\(\alpha_{ij} \) [Å⁻¹]	\(x_{ij} \)	\(\alpha_{ij} \) [Å⁻¹]	\(x_{ij} \)	\(\alpha_{ij} \) [Å⁻¹]	\(x_{ij} \)		
Ar	2.415471	1.931586	Zr	1.270620	0.874060	Ta	1.838949	0.847439
Ar	1.471309	0.122309	Zr	1.750833	1.723343	Ta	2.053679	1.015461
Ar	2.326805	0.562581	Zr	1.091858	0.748376	Ta	2.412629	1.751083
Ar	2.246073	0.357959	Zr	2.129761	2.429324	Ta	3.107390	3.146520
Ar	3.920658	9.269715	Zr	1.328835	0.443099	Ta	2.551120	8.276130
Ar	2.963747	1.304697	Zr	1.446868	0.858909	Ta	2.531800	6.261880
Ar	2.167677	3.398138	Zr	3.85968	3.07773	Ta	2.246723	2.975980
Ar	2.092664	1.970638	Ta	1.608805	0.516413	Nb	2.505912	3.603779
Ar	2.645165	1.852099	Nb	2.621012	4.575481	Nb	2.023863	1.213587
Ar	1.780350	1.067890	Nb	1.869475	0.608268	Nb	1.727941	2.123388
Ar	2.049398	0.653769	Nb	1.310690	0.278000	Nb	2.130880	1.832270
Ar	2.306432	0.972699	Nb	2.221608	6.201507	Nb	2.551010	8.276040
K	0.648173	0.364934	Nb	2.249842	2.460020	W	2.551120	8.276130
K	1.418501	2.890495	Nb	2.215275	1.891557	W	2.551030	8.276040
K	1.036487	4.374567	Nb	4.521360	2.026590	W	2.551030	8.276040
K	1.931888	6.732221	Nb	2.006678	1.921269	W	2.551030	8.276040
K	2.031768	8.900541	Nb	1.727941	2.123388	W	2.551030	8.276040
K	2.241757	10.317987	W	1.542570	0.488630	W	2.551030	8.276040
K	2.325859	7.977707	Mo	2.035748	0.934686	W	2.551030	8.276040
K	1.508571	1.012275	Mo	2.198672	1.190742	W	2.551030	8.276040
K	3.182817	4.374567	Mo	1.869475	0.608268	W	2.130880	1.832270
K	1.138021	0.233995	Mo	1.755424	0.511267	W	2.440770	8.286550
K	0.884307	5.563027	Mo	2.202593	0.610429	W	2.940870	7.471390
K	0.884810	3.290502	Mo	2.440770	8.286550	W	2.940870	7.471390
K	1.976076	29.944708	Mo	2.130880	1.832270	W	2.306285	0.690687
K	1.675930	8.279200	Mo	1.939658	0.830428	W	1.918332	0.445213
K	1.443738	4.475384	Mo	1.783362	0.474325	W	1.918332	0.445213
K	2.512156	29.528951	Mo	3.939420	2.142390	Re	2.610119	3.559286
K	1.622163	1.231481	Mo	2.674616	1.741943	Re	2.775930	0.849450
K	2.302803	9.710508	Mo	1.283334	0.225918	Re	2.852340	2.151580
K	1.435514	5.934329	Mo	2.034254	0.626462	Re	2.440770	8.286550
Ca	2.141859	7.728606	Tc	2.306285	0.690687	Re	2.306285	0.690687
Ca	1.719847	2.913852	Tc	3.939420	2.142390	Re	2.610119	3.559286
Ca	1.700010	1.700010	Tc	2.674616	1.741943	Re	2.775930	0.849450
Ca	1.035305	0.148450	Tc	2.405190	1.024616	Re	2.852340	2.151580
Ca	2.386600	2.988074	Tc	3.064815	5.811784	Re	2.440770	8.286550
Ca	3.263897	17.028946	Tc	2.463401	1.496502	Re	2.610119	3.559286
Ca	2.645053	3.482821	Tc	2.572043	1.651583	Re	6.000258	4.488852
Ca	0.954530	0.332586	Tc	2.852820	2.152090	Re	2.852820	2.152090
Ca	3.107104	9.657590	Tc	2.523660	2.026260	Os	3.404180	4.393870
Element	α_{ij} [Å^{-1}]	x_{ij}	Element	α_{ij} [Å^{-1}]	x_{ij}	Element	α_{ij} [Å^{-1}]	x_{ij}
---------	-----------------	-------	---------	-----------------	-------	---------	-----------------	-------
Ca	2.299800	8.959800	Tc	2.828264	3.820130	Os	2.336500	0.498410
Ca	1.612565	4.188555	N	1.143090	0.080870	Br	2.550740	8.275750
Ca	1.218788	0.336233	Ru	2.892899	7.137976	O	1.350360	0.184300
Ca	1.024142	0.410840	Ru	2.784833	1.134936	F	1.507620	0.140050
Ca	0.958171	0.325739	Ru	2.334094	2.976279	P	2.836090	6.058300
Ca	1.034881	0.291072	Ru	3.878711	6.947128	Os	2.809500	4.186050
Ca	1.119200	1.240320	Ru	2.775910	0.849430	Os	1.833070	0.327920
Ca	1.889674	0.030591	Ru	0.298916	0.056974	Os	4.521090	2.026320
Sc	1.179485	0.351199	Ru	2.508076	0.006683	Os	1.766890	0.382430
Sc	2.630490	8.608052	Ru	2.852320	2.151560	Os	2.021630	0.830440
Sc	2.270004	3.231881	Ru	2.523160	2.021210	Os	2.039300	0.058047
Sc	3.107985	7.252347	Ru	0.572056	0.097805	Os	1.690295	0.115047

Table 4 (continued)
Table 4 (continued)

	α_{ij} [Å⁻¹]	x_{ij}		α_{ij} [Å⁻¹]	x_{ij}		α_{ij} [Å⁻¹]	x_{ij}			
V	S	2.704124	2.035039	Ag	C	4.404336	11.335456	Au	O	1.548763	0.077192
V	Cl	1.688529	0.243657	Ag	N	4.659871	19.803710	Au	F	4.453145	9.594384
V	K	4.521360	2.026590	Ag	O	1.893874	0.165661	Au	Al	1.572570	1.057140
V	V	4.832391	10.779892	Ag	F	4.628423	12.695884	Au	P	1.618713	0.067001
Cr	H	0.882661	0.044469	Ag	P	6.000006	0.049932	Au	Cl	3.539414	2.257702
Cr	C	3.656754	6.110187	Ag	S	3.653121	11.188022	Au	Br	0.581911	0.004237
Cr	N	3.029186	1.920324	Ag	Cl	4.441176	23.765459	Au	I	0.577916	0.008816
Cr	O	2.500000	1.055511	Ag	Br	3.677491	1.714369	Au	Au	0.903162	0.013091
Cr	F	2.716521	0.737607	Ag	Ag	2.127645	0.557742	Au			
Cr	Na	2.295056	8.364274	Hg				Hg			
Cr	Si	1.860760	1.029110	Cd	H	2.628748	11.914201	Hg			
Cr	P	1.695383	0.600177	Cd	C	1.425678	0.603441	Hg			
Cr	S	2.260978	0.550334	Cd	N	0.970423	0.180663	Hg			
Cr	Cl	2.152618	0.369073	O				Hg			
Cr	K	1.564044	1.564044	Cd				Hg			
Cr	Cr	1.645549	10.318607	Cd				Hg			
Mn	H	2.309940	1.269210	Cd	Cl	0.943547	0.140424	Hg			
Mn	C	3.000750	2.583110	Cd	Br	1.001451	0.272267	Hg			
Mn	N	2.921470	1.956750	Cd				Hg			
Mn	O	2.577540	2.185620	Cd				Hg			
Mn	F	2.719500	0.073700	In				Hg			
Mn	Al	1.768360	1.040790	Sn				Hg			
Mn	Si	1.937959	0.950580	In				Hg			
Mn	P	1.947020	1.130320	In				Hg			
Mn	S	2.482510	1.612650	In				Hg			
Mn	Cl	1.657010	0.201850	In				Hg			
Mn	Ca	1.491440	0.620180	In				Hg			
Mn	Mn	2.665420	0.246004	In				Hg			
Mn	Fe	1.768360	1.040790	In				Hg			
Mn	Co	1.937959	0.950580	In				Hg			
Fe	H	0.854488	0.025195	In				Hg			
Fe	C	3.991343	0.36835	In				Hg			
Fe	N	2.500486	0.155342	In				Hg			
Fe	O	1.726313	0.136422	In				Hg			
Fe	F	4.294707	0.657350	Sn				Hg			
Fe	P	2.567534	0.431291	Sn				Hg			
Fe	S	0.988991	0.033478	Sn				Hg			
Fe	Cl	1.229793	0.019473	Sn				Hg			
Fe	K	2.000000	0.060000	Sn				Hg			
Fe	Fe	2.723275	1.846890	Sn				Hg			
Co	H	2.966518	2.472465	Sn				Hg			
Co	C	3.716233	2.129390	Sn				Hg			
check was also done to verify that the error distribution was approximately Gaussian. The resulting histogram, shown in Fig. 1, shows that the distribution is indeed Gaussian.

Hydrogen bonding

One of the commonest forms of hydrogen bonding involves a hydrogen atom attached to an oxygen atom and forming a weak bond to a distant oxygen atom. The simplest, well-characterized case is that of the water dimer. In an exhaustive analysis of this system, Tschumper, et. al. [36], characterized this system using CCSD(T) and a large basis set. They identified and characterized ten stationary points on the 12-dimensional potential energy surface of the dimer and determined that the lowest energy conformer of the water dimer was 5.00 kcal mol$^{-1}$ more stable than two isolated water molecules. A comparison of the relative heats of formation of these points calculated using NDDO methods is shown in Table 17. The AUE for the various methods are as follows: PM6: 1.35 kcal mol$^{-1}$, PM5: 3.35, PM3: 2.16, and AM1: 1.67.

The energies of various different types of hydrogen bonds were estimated from the energy released when the two small molecules involved associate to form a hydrogen-bonded system. Table 18 lists the values predicted using B3LYP and the NDDO methods.

Nitrogen pyramidalization

A well-documented fault in PM3 nitrogen was its exaggerated degree of pyramidalization when in the sp^2 configuration. This is dramatically evident in N-methylacetamide, where the H-N-C–C torsion angle should be 180°, but is predicted by PM3 to be 136°. That is, the nitrogen, instead of being in a planar environment, is predicted to be highly

α$_{ij}$ [Å$^{-1}$]	x_{ij} α$_{ij}$ [Å$^{-1}$]	x_{ij} α$_{ij}$ [Å$^{-1}$]	x_{ij}
Co N 3.618638 2.653836 Sn Br 1.535089 0.668798 Pb P 4.516800 5.033200			
Co O 3.726911 5.252022 Sn Sn 0.921000 0.287000 Pb S 1.027519 0.175150			
Co F 3.956347 4.858030 Pb Cl 1.094123 0.164814			
Co Si 2.469805 1.090240 Sb H 1.571272 0.795343 Pb V 1.500000 1.000000			
Co P 1.152055 0.105936 Sb C 1.696206 0.579212 Pb Cr 1.860760 1.029110			
Co S 2.429255 0.436707 Sb N 0.676115 0.082065 Pb Zn 1.500000 1.000000			
Co Cl 3.217497 1.033414 Sb O 1.846384 0.634234 Se 2.000000 0.111195			
Co Co 3.288166 3.919618 Sb F 2.182922 0.650277 Br 0.865550 0.148229			
Ni H 2.635280 1.763124 Si 2.686590 8.713749 Mo 2.000000 5.000000			
Ni C 4.285513 7.133324 S 1.418837 0.396969 Te 1.002559 0.809042			
Ni N 3.845215 4.286800 Cl 1.117287 0.156475 I 0.983474 0.267426			
Ni O 2.937322 0.885942 Mn 2.400320 2.236710 Pb Pb 1.881764 2.362343			
Ni F 3.440241 1.088208 Co 2.204630 2.276050			
Ni Si 2.068881 0.938646 Sb Br 1.063916 0.198044 Bi H 1.679905 1.397462			
Ni P 3.260283 5.059727 Te 2.204850 2.276260 Bi Li 0.340140 0.695320			
Ni S 2.002752 0.274852 Ru 2.204350 2.275760 Bi C 1.534025 0.576179			
Ni Cl 2.200512 0.202313 Rh 2.204930 2.276340 Bi N 1.143876 0.152738			
Ni Ni 1.097960 0.035474 Sn In 2.141933 6.660801 Bi O 1.553297 0.33042			
Cu H 2.335359 0.603591 Sb Sb 1.348535 0.724885 Bi F 2.355400 1.035324			
Cu C 4.638773 7.067794 Te H 2.039130 1.807679 Bi Cl 1.272975 0.326871			
Cu N 4.214337 3.228667 Te C 1.992816 0.970494 Bi Se 1.344746 0.651208			
Cu O 3.959951 2.000000 Te N 1.722269 0.358393 Br Br 1.146233 0.381170			
Cu F 4.478832 1.282108 Te O 1.853064 0.382926 Bi I 1.302171 0.862377			
Cu P 0.210640 0.020126 Te F 1.998576 0.200822 Bi Bi 1.074064 1.168214			
Cu S 0.273112 0.005248 Te Al 1.387541 2.106812			
Table 5 Average unsigned errors in calculated heats of formation (kcal mol\(^{-1}\))

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Hydrogen	7.29	3039	13.89	2340	17.09	2340	21.12	2270
Helium	0.00	1	0.00	1	0.00	1	0.00	1
Lithium	7.98	83	15.31	83	18.02	83	18.84	83
Beryllium	5.92	34	29.06	34	29.58	34	18.51	34
Boron	6.44	122	10.81	120	11.84	120	–	–
Carbon	7.31	2828	13.03	2155	15.06	2155	19.42	2123
Nitrogen	8.22	1067	16.45	761	20.96	761	24.23	744
Oxygen	8.42	1758	16.59	1243	20.13	1244	27.68	1229
Fluorine	8.49	497	22.31	350	21.25	350	37.40	334
Neon	0.00	1	0.00	1	0.00	1	0.00	1
Sodium	5.72	40	8.57	39	9.47	39	10.77	38
Magnesium	9.84	66	12.07	66	17.94	66	18.71	66
Aluminum	7.61	75	17.49	75	19.15	75	18.99	75
Silicon	6.51	98	9.28	96	12.80	96	17.00	95
Phosphorus	8.20	110	16.61	98	17.36	98	20.06	95
Sulfur	8.81	427	15.40	330	18.44	330	26.38	323
Chlorine	8.28	670	16.69	390	18.71	390	23.06	383
Argon	0.00	1	0.00	1	0.00	1	0.00	1
Potassium	6.53	43	12.33	42	9.36	42	28.38	41
Calcium	11.87	43	28.68	43	44.34	43	63.20	43
Scandium	10.33	52	–	–	–	–	–	–
Titanium	10.20	85	–	–	–	–	–	–
Vanadium	14.29	59	–	–	–	–	–	–
Chromium	14.09	60	–	–	–	–	–	–
Manganese	12.77	44	–	–	–	–	–	–
Iron	18.31	76	–	–	–	–	–	–
Cobalt	15.51	42	–	–	–	–	–	–
Nickel	15.10	51	–	–	–	–	–	–
Copper	13.00	47	–	–	–	–	–	–
Zinc	5.56	54	17.84	54	32.93	54	37.06	54
Gallium	7.51	47	29.12	47	37.58	47	46.87	47
Germanium	9.83	67	12.20	67	15.86	67	19.12	67
Arsenic	6.94	49	15.22	49	16.68	49	17.34	49
Selenium	4.40	25	39.58	25	39.71	25	32.00	25
Bromine	7.37	330	17.20	199	25.04	199	28.22	199
Krypton	0.00	1	0.00	1	0.00	1	0.00	1
Rubidium	10.91	24	16.57	24	21.47	24	29.33	23
Strontium	7.72	38	52.46	38	103.16	38	57.21	38
Yttrium	13.28	51	–	–	–	–	–	–
Zirconium	11.18	46	–	–	–	–	–	–
Niobium	8.57	51	–	–	–	–	–	–
Molybdenum	13.41	70	–	–	–	–	–	–
Technetium	15.14	50	–	–	–	–	–	–
Ruthenium	13.87	56	–	–	–	–	–	–
Rhodium	20.92	32	–	–	–	–	–	–
Palladium	11.65	47	–	–	–	–	–	–
Silver	4.67	14	–	–	–	–	–	–
Cadmium	3.49	38	34.66	38	61.92	38	–	–
Indium	7.33	54	31.53	54	29.83	54	32.16	54
Tin	7.14	77	16.83	77	17.10	77	20.21	77
Antimony	5.41	58	30.98	58	34.61	58	35.00	58
Tellurium	8.20	45	35.66	45	46.80	45	22.91	45
Iodine	7.23	279	23.77	176	25.90	176	36.55	175
Xenon	0.00	1	0.00	1	0.00	1	0.00	1
Cesium	6.89	40	37.01	40	35.22	40	55.33	39
Barium	12.12	37	98.20	37	154.65	37	161.09	37
Table 5 (continued)

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Lanthanum	10.37	37	–	–	–	–	–	–
Lutetium	7.68	24	–	–	–	–	–	–
Hafnium	8.52	37	–	–	–	–	–	–
Tantalum	14.37	36	–	–	–	–	–	–
Tungsten	7.38	28	–	–	–	–	–	–
Rhenium	10.40	57	–	–	–	–	–	–
Osmium	6.46	19	–	–	–	–	–	–
Iridium	10.21	25	–	–	–	–	–	–
Platinum	11.61	77	–	–	–	–	–	–
Gold	12.82	32	–	–	–	–	–	–
Mercury	5.94	51	16.39	51	17.67	51	19.75	51
Thallium	10.42	44	32.63	44	73.96	45	73.18	45
Lead	7.92	44	18.08	44	14.18	44	16.71	44
Bismuth	7.74	53	99.88	53	28.95	53	119.23	53

Table 6 Average unsigned errors in bond lengths (Å)

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Hydrogen	0.044	238	0.056	219	0.032	217	0.035	181
Helium	0.251	6	0.459	6	0.182	6	0.655	5
Lithium	0.175	111	0.191	110	0.167	110	0.171	105
Beryllium	0.076	42	0.131	42	0.067	42	0.085	42
Carbon	0.027	116	0.043	116	0.066	122	–	–
Nitrogen	0.090	663	0.145	309	0.124	259	0.163	253
Oxygen	0.095	1163	0.122	625	0.103	577	0.117	571
Fluorine	0.063	396	0.096	246	0.069	251	0.101	228
Neon	0.353	5	0.182	2	0.062	1	0.030	1
Sodium	0.229	33	0.200	33	0.208	30	0.140	29
Magnesium	0.089	106	0.067	106	0.167	105	0.073	106
Aluminum	0.045	77	0.120	72	0.098	70	0.138	70
Silicon	0.039	97	0.056	94	0.074	95	0.077	90
Phosphorus	0.039	141	0.078	92	0.073	92	0.083	87
Sulfur	0.094	359	0.107	216	0.091	207	0.134	200
Chlorine	0.069	672	0.098	283	0.095	284	0.130	285
Argon	0.258	4	0.303	1	–	–	–	–
Potassium	0.139	46	0.135	47	0.148	47	0.281	46
Calcium	0.133	67	0.177	69	0.151	67	0.102	60
Scandium	0.053	90	–	–	–	–	–	–
Titanium	0.078	140	–	–	–	–	–	–
Vanadium	0.090	168	–	–	–	–	–	–
Chromium	0.080	89	–	–	–	–	–	–
Manganese	0.083	107	–	–	–	–	–	–
Iron	0.102	117	–	–	–	–	–	–
Cobalt	0.107	100	–	–	–	–	–	–
Nickel	0.065	133	–	–	–	–	–	–
Copper	0.174	130	–	–	–	–	–	–
Zinc	0.076	77	0.084	77	0.098	77	0.142	76
Gallium	0.048	80	0.105	81	0.192	81	0.135	81
Germanium	0.038	131	0.045	131	0.056	133	0.068	133
Arsenic	0.073	72	0.069	70	0.080	72	0.099	72
Selenium	0.056	56	0.094	55	0.071	54	0.061	54
Bromine	0.104	358	0.106	184	0.146	182	0.136	184
Krypton	0.059	6	0.417	3	0.623	3	0.602	3
Rubidium	0.413	36	0.498	37	0.176	34	0.230	36
Table 6 (continued)

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Strontium	0.087	56	0.199	55	0.128	32	0.242	47
Yttrium	0.132	69	–	–	–	–	–	–
Zirconium	0.063	65	–	–	–	–	–	–
Niobium	0.060	88	–	–	–	–	–	–
Molybdenum	0.104	89	–	–	–	–	0.095	84
Technetium	0.078	84	–	–	–	–	–	–
Ruthenium	0.073	113	–	–	–	–	–	–
Rhodium	0.162	68	–	–	–	–	–	–
Palladium	0.080	120	–	–	–	–	–	–
Silver	0.151	41	–	–	–	–	–	–
Cadmium	0.159	54	0.179	55	0.121	50	–	–
Indium	0.039	77	0.085	77	0.155	77	0.102	77
Tin	0.073	96	0.065	96	0.078	96	0.087	94
Antimony	0.060	92	0.169	91	0.083	91	0.135	92
Tellurium	0.070	80	0.162	79	0.123	77	0.122	79
Iodine	0.144	286	0.137	147	0.146	145	0.175	141
Xenon	0.620	8	0.584	4	0.472	2	0.793	6
Cesium	0.258	40	0.335	43	0.372	25	0.358	43
Barium	0.202	51	0.228	47	0.207	48	0.261	51
Lanthanum	0.253	47	–	–	–	–	–	–
Lutetium	0.050	60	–	–	–	–	–	–
Hafnium	0.071	42	–	–	–	–	–	–
Tantalum	0.074	59	–	–	–	–	–	–
Tungsten	0.141	57	–	–	–	–	–	–
Rhenium	0.068	108	–	–	–	–	–	–
Osmium	0.072	50	–	–	–	–	–	–
Iridium	0.169	71	–	–	–	–	–	–
Platinum	0.057	140	–	–	–	–	–	–
Gold	0.158	84	–	–	–	–	–	–
Mercury	0.143	64	0.110	64	0.135	63	0.139	64
Thallium	0.202	59	0.248	55	0.208	45	0.268	43
Lead	0.140	53	0.167	53	0.121	53	0.125	51
Bismuth	0.142	81	0.616	75	0.225	82	0.682	75

Table 7 Average unsigned errors in bond angles (Degrees)

Element	PM6	No. in set	PM5	No. in set	PM3	No. in set	AM1	No. in set
Lithium	7.79	28	6.82	28	3.53	28	9.48	28
Beryllium	6.61	14	6.44	14	6.94	14	5.98	14
Boron	3.27	31	4.41	31	4.61	31	–	–
Carbon	2.50	134	2.79	134	2.75	131	2.25	131
Nitrogen	7.32	37	8.01	37	6.75	35	7.94	31
Oxygen	12.14	59	11.12	58	10.17	53	9.57	42
Fluorine	8.32	3	16.18	3	26.34	3	24.67	2
Sodium	21.00	4	2.87	4	3.43	4	5.32	4
Magnesium	8.44	24	7.28	24	14.23	24	7.10	24
Aluminum	4.05	20	5.26	20	7.21	19	4.33	19
Silicon	5.25	35	3.37	35	2.81	34	2.88	34
Phosphorus	3.24	35	4.40	35	6.01	35	5.07	35
Sulfur	5.23	46	5.64	45	5.42	41	5.05	41
Chlorine	3.65	5	19.47	5	10.31	5	14.80	5
Potassium	17.90	11	10.27	11	12.93	11	12.75	11
Calcium	14.99	16	11.35	16	16.81	16	18.06	15
Scandium	7.98	32	–	–	–	–	–	–
Titanium	7.86	39	–	–	–	–	–	–
Vanadium	7.46	44	–	–	–	–	–	–
pyramidal. The results of a survey of 19 molecules that contain sp^2 nitrogen are presented in Table 19.

Transition metals

Optimizing parameters for transition metals was not as straightforward as for the main group elements. As with the main group compounds, there is a wealth of structural reference data on transition metal complexes. However, unlike main group compounds, there is a distinct shortage of reliable thermochemical data. To alleviate this shortage, the thermochemical data that was available was augmented by the results of DFT calculations. It was recognized, however, that these derived reference data were likely to be of a lower accuracy than the experimental data. Many transition metal complexes are also highly labile; a consequence of this was that some moieties that are known to exist in the solid phase were predicted to be

Element	PM6	No. in set	PM5	No. in set	PM3	No. in set	AM1	No. in set
Chromium	3.77	19			8.16	27	13.34	27
Gallium	4.43	18	10.86	18	14.43	18	13.84	18
Germanium	4.58	52	5.37	52	8.95	52	5.71	52
Arsenic	6.29	36	6.52	36	6.48	36	5.03	36
Selenium	7.27	24	16.16	24	12.37	23	5.46	23
Bromine	12.64	4	20.03	4	19.21	3	3.27	3
Rubidium	9.69	11	10.20	11	21.03	11	6.68	11
Strontium	18.16	25	32.91	25	32.92	25	31.00	25
Yttrium	12.29	34			8.73	27		
Zirconium	10.36	12						
Niobium	6.54	23						
Molybdenum	8.15	27			8.73	27		
Technetium	4.96	22						
Ruthenium	6.93	34						
Rhodium	10.66	22						
Palladium	9.19	46						
Silver	23.36	9						
Cadmium	15.23	10	13.52	10	20.09	10		
Indium	4.47	17	7.21	17	5.30	17	4.94	17
Tin	3.06	34	4.09	34	3.74	34	11.81	34
Antimony	6.49	41	12.24	41	6.84	41	7.40	41
Tellurium	4.85	25	7.00	25	5.33	25	7.87	25
Iodine	8.33	1	12.55	1	20.66	1	4.53	1
Cesium	15.50	12	8.52	12	19.38	12	11.75	12
Barium	28.65	10	28.43	10	37.04	10	36.17	10
Lanthanum	9.25	14						
Lutetium	7.08	26						
Hafnium	5.64	10						
Tantalum	9.88	15						
Tungsten	10.90	9						
Rhenium	7.39	32						
Osmium	12.67	10						
Iridium	7.86	18						
Platinum	5.92	72						
Gold	13.59	16						
Mercury	20.20	15	20.99	15	18.47	15	21.49	15
Thallium	5.73	10	10.28	10	19.95	10	25.38	10
Lead	4.33	20	5.24	20	4.61	20	3.57	19
Bismuth	8.01	25	21.74	25	8.28	25	33.99	25
Table 8 Average unsigned errors in dipole moments (D)

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Hydrogen	0.62	266	0.80	265	0.64	222	0.50	204
Lithium	0.78	16	0.95	16	0.79	16	0.52	16
Beryllium	1.63	1	1.49	1	0.27	1	0.53	1
Boron	0.66	17	0.66	17	0.73	17	–	–
Carbon	0.51	219	0.62	218	0.41	176	0.42	165
Nitrogen	0.61	48	0.66	48	0.46	40	0.55	39
Oxygen	0.99	198	1.27	196	1.05	74	0.74	75
Fluorine	0.80	124	1.11	121	0.59	63	0.69	59
Sodium	1.34	6	0.80	6	1.97	6	1.26	6
Aluminium	0.33	1	1.50	1	1.76	1	0.53	1
Silicon	0.21	1	1.09	11	0.72	11	0.29	11
Phosphorus	0.83	14	0.79	14	0.37	10	0.87	10
Sulfur	0.62	28	1.01	28	0.74	21	0.70	21
Chlorine	0.99	103	1.27	100	0.77	47	0.84	43
Potassium	0.44	4	0.34	4	1.30	4	0.58	4
Calcium	0.73	4	1.12	4	1.23	4	0.33	4
Scandium	1.11	9	–	–	–	–	–	–
Titanium	1.02	8	–	–	–	–	–	–
Vanadium	0.82	8	–	–	–	–	–	–
Chromium	1.98	9	–	–	–	–	–	–
Manganese	1.06	11	–	–	–	–	–	–
Iron	1.61	14	–	–	–	–	–	–
Cobalt	1.04	6	–	–	–	–	–	–
Nickel	1.40	15	–	–	–	–	–	–
Copper	1.11	10	–	–	–	–	–	–
Zinc	0.21	4	0.18	4	0.16	4	0.16	4
Gallium	0.20	1	1.81	1	1.35	1	0.64	1
Germanium	0.63	23	0.63	23	0.55	23	0.59	23
Arsenic	0.37	6	0.99	6	0.35	6	0.37	6
Selenium	0.66	10	0.94	10	0.61	10	0.80	10
Bromine	0.90	88	1.34	87	1.01	37	0.50	39
Rubidium	1.84	6	2.43	6	1.65	6	0.44	6
Strontium	1.64	6	1.31	6	2.55	6	1.51	6
Yttrium	1.70	8	–	–	–	–	–	–
Zirconium	0.94	8	–	–	–	–	–	–
Niobium	0.91	10	–	–	–	–	–	–
Molybdenum	1.09	8	–	–	–	–	1.48	8
Technetium	1.74	13	–	–	–	–	–	–
Ruthenium	1.13	12	–	–	–	–	–	–
Rhodium	1.09	6	–	–	–	–	–	–
Palladium	0.97	8	–	–	–	–	–	–
Silver	1.98	9	–	–	–	–	–	–
Cadmium	0.42	2	2.22	2	0.67	2	–	–
Indium	0.47	3	0.78	3	0.75	3	1.36	3
Tin	0.28	13	0.41	13	0.88	13	0.81	13
Antimony	0.55	5	0.77	5	0.48	5	0.61	5
Tellurium	0.47	2	0.75	2	0.31	2	1.35	2
Iodine	1.03	77	1.54	77	1.48	28	1.22	30
Cesium	1.25	9	3.47	9	1.89	9	0.87	9
Barium	1.77	11	1.29	11	1.93	11	1.11	11
Lanthanum	1.23	8	–	–	–	–	–	–
Hafnium	0.63	6	–	–	–	–	–	–
Tantalum	0.97	5	–	–	–	–	–	–
Tungsten	0.92	14	–	–	–	–	–	–
Rhenium	0.76	13	–	–	–	–	–	–
Osmium	0.63	8	–	–	–	–	–	–
Table 8 (continued)

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Iridium	0.96	8	–	–	–	–	–	–
Platinum	1.07	8	–	–	–	–	–	–
Gold	0.78	14	–	–	–	–	–	–
Mercury	0.63	9	0.77	9	0.63	9	0.67	9
Thallium	0.89	3	1.35	3	0.45	3	2.43	3
Lead	0.73	6	0.76	6	0.41	6	0.82	6
Bismuth	0.42	8	3.21	8	1.14	8	3.40	8

Table 9 Average unsigned errors in ionization potential (eV)

Element	PM6	No.	PM5	No.	PM3	No.	AM1	No.
Hydrogen	0.43	226	0.40	226	0.60	226	0.52	217
Lithium	0.89	12	0.88	12	1.29	12	0.59	12
Beryllium	0.52	7	0.29	7	0.93	7	0.45	7
Boron	0.31	11	0.34	11	1.01	11	–	–
Carbon	0.41	230	0.39	230	0.54	230	0.54	227
Nitrogen	0.55	43	0.45	43	0.53	43	0.48	42
Oxygen	0.62	72	0.56	72	0.63	72	0.69	69
Fluorine	0.64	67	0.65	67	0.74	67	0.85	65
Sodium	0.34	5	0.34	5	1.43	5	0.51	4
Magnesium	0.97	4	1.05	4	1.10	4	1.41	4
Aluminum	0.62	3	0.29	3	0.40	3	0.69	3
Silicon	0.43	11	0.81	11	0.70	11	0.68	11
Phosphorus	0.49	13	0.47	13	0.64	13	0.56	13
Sulfur	0.52	46	0.51	46	0.48	46	0.62	46
Chlorine	0.48	62	0.58	62	0.57	60	0.61	57
Potassium	0.23	4	0.50	4	0.54	4	0.34	3
Calcium	0.74	1	1.24	1	0.52	1	0.41	1
Scandium	3.73	1	–	–	–	–	–	–
Titanium	0.09	1	–	–	–	–	–	–
Zinc	0.32	5	0.35	5	0.99	5	0.49	5
Gallium	0.52	3	0.73	3	1.28	3	1.16	3
Germanium	0.70	13	0.49	13	0.93	13	1.05	13
Arsenic	0.69	5	0.31	5	0.62	5	0.79	5
Selenium	0.38	10	0.29	10	0.47	10	1.22	10
Bromine	0.28	33	0.39	33	1.20	33	0.49	32
Rubidium	0.18	3	0.39	3	0.93	3	0.22	3
Strontium	0.63	1	0.38	1	0.14	1	0.26	1
Cadmium	0.33	5	0.46	5	0.39	5	–	–
Indium	0.63	2	0.86	2	2.06	2	0.83	2
Tin	0.70	14	0.48	14	1.22	14	0.44	14
Antimony	0.44	5	0.90	5	1.16	5	0.54	5
Tellurium	0.43	3	0.20	3	0.25	3	0.70	3
Iodine	0.47	29	0.46	29	0.48	29	0.89	29
Cesium	0.58	4	0.71	4	1.37	4	1.11	4
Barium	0.08	1	0.97	1	0.08	1	0.75	1
Mercury	0.51	12	0.43	12	0.74	12	0.49	12
Thallium	0.30	3	0.46	3	0.80	3	0.53	3
Lead	0.56	13	0.47	13	0.93	13	0.65	13
Bismuth	0.98	5	1.28	5	0.72	5	1.66	5
unstable in the gas phase, at least at the PM6 level of calculation. In most cases, such moieties had a high formal charge, therefore, without any countercharge, their instability in isolation is understandable. When an intrinsically unstable ion was identified, it was removed from further consideration.

Most transition metal compounds also have extensive UV-visible properties, arising from d-d transitions and from charge-transfer excitations, the presence of these absorption bands being indicative of the existence of low-lying electronic excited states. The self-consistent field (SCF) equations frequently did not converge unless special techniques were used. One of these, using the direct inversion of the iterative sub-space [37], or DIIS, would frequently yield an SCF when other methods failed. However, as a result of the way it works, the DIIS converged the wavefunction to the nearest stationary point, not necessarily to the lowest energy point. Because of the potential existence of multiple low-lying excited states, special care had to be taken when the DIIS technique was used. Conversely, the tendency to converge to the nearest stationary point was an advantage when electronic states of transition metal atoms were being optimized. In several instances, the lowest energy wavefunction corresponded to a hybrid of s, p and d atomic orbitals that did not transform as any irreducible representation of the group of the sphere. In those cases, the wavefunction could be induced to converge to the correct spherical harmonic solution by using the DIIS procedure.

Table 10	Average unsigned errors in ΔH_f for various sets of elements (kcal mol$^{-1}$)					
Set of elements	No.	PM6	RM1	PM5	PM3	AM1
H, C, N, O	1157	4.64	4.89	5.60	5.65	9.41
H, C, N, O, F, P, S, Cl, Br, I	1774	5.05	6.57	6.75	8.05	12.57
Whole of main group	3188	6.16	15.27	17.76	22.34	
70 elements	4492	8.01				

Table 12	Average unsigned errors in angles for various sets of elements (Degrees)					
Set of elements	No.	PM6	RM1	PM5	PM3	AM1
H, C, N, O	100	3.1	3.1	3.3	2.5	2.7
H, C, N, O, F, P, S, Cl, Br, I	244	3.2	4.0	4.3	3.8	3.4
Whole of main group	900	8.0	8.6	8.5	8.8	
70 elements	1681	7.9				

| Sets of transition metals |

For the purpose of discussion, the set of 30 transition metals can be partitioned into eight of the groups of the Periodic Table, with each group containing one or more triads of elements. A detailed discussion of each element is impractical because of the wide range of compounds in transition metal chemistry. The following section, therefore, will be limited to systems where PM6 does not work well, and to systems illustrative of the structural chemistry of specific elements.

Group IIIA: Scandium, Yttrium, Lanthanum, and Lutetium

Possibly because of its scarcity, only a few experimental thermochemical reference data for scandium compounds were available for use in the parameterization. What reference data existed were augmented by the results of DFT calculations and with a large number of atomic energy levels for the neutral and ionized atom. Only the chemistry of ScIII was studied. Most bond lengths involving scandium were reproduced with good accuracy (for example tri (η^5-cyclopentadienyl)-scandium, Fig. 2), the exception being the coordination complex [Sc(H$_2$O)$_3$]$^{3+}$ which PM6 predicts to decompose to [Sc(H$_2$O)$_7$]$^{3+}$ plus two water molecules.

As with scandium, very few thermochemical reference data were found for yttrium or lanthanum. To compensate for this, extensive use was made of the CSD.

Table 11	Average unsigned errors in bond lengths for various sets of elements (Å)					
Set of elements	No.	PM6	RM1	PM5	PM3	AM1
H, C, N, O	413	0.025	0.022	0.033	0.021	0.031
H, C, N, O, F, P, S, Cl, Br, I	712	0.031	0.036	0.044	0.037	0.046
Whole of main group	2636	0.085	0.121	0.104	0.131	
70 elements	5154	0.091				

Table 13	Average unsigned errors in dipole moments for various sets of elements (D)					
Set of elements	No.	PM6	RM1	PM5	PM3	AM1
H, C, N, O	55	0.38	0.22	0.31	0.26	0.26
H, C, N, O, F, P, S, Cl, Br, I	131	0.37	0.33	0.50	0.36	0.38
Whole of main group	313	0.60	0.86	0.72	0.65	
70 elements	569	0.85				
The chemistry of lutetium is similar to that of lanthanum, with the principal difference being that whereas LaIII has an empty 4f shell, in LuIII that shell is completely filled. Since the 4f shell is, at least chemically, virtually inert, lutetium could be regarded as a conventional transition metal, and was therefore included in this work.

Group IVA: Titanium, Zirconium, and Hafnium

In contrast to all the elements of Group IIIA, titanium is plentiful, and an abundance of reference data on TiIII and the more common TiIV is available. These data include many tetrahedral and octahedral inorganic complexes as well as organotitanium compounds. Most bond lengths are reproduced with good accuracy, the exceptions being the Ti-H bond in TiH$_4$, where the predicted value, 1.36 Å, is 0.37 Å shorter than the reference, and coordination complexes which involve oxygen forming a purely dative bond to titanium. In this latter case, the Ti-O bond is typically too long by 0.1 to 0.3 Å.

The behavior of zirconium and hafnium is similar to that of titanium.

Group VA: Vanadium, Niobium, and Tantalum

Most of the structural chemistry of vanadium in its five common oxidation states, 0, II, III, IV, and V, are reproduced with good accuracy. The common VO$_3$ structure which occurs in bis(Acetylacetonato)-oxo-vanadium (iv), where vanadium forms a double bond to one oxygen atom and single bonds to the other four, is reproduced accurately, the V=O distance being 1.58 Å (reference, 1.56), the V-O distance 2.03 Å (1.97), and the O-V=O angle: 104.5 ° (105.9).

Not all systems were reproduced with such accuracy. When there are several ligands around a vanadium atom, the effects of steric crowding are over-emphasized, and PM6 incorrectly predicts that one of the metal-oxygen bonds would break. An example is bis(bis(μ$_2$-trifluoroacetato-O,O')- (η$_5$-cyclopentadienyl)-vanadium), where each vanadium atom extends bonds to four oxygen atoms and one cyclopentadienyl. In this system, PM6 predicts that one of the V-O bonds would break.

In the heavier elements there is an increased tendency to form highly symmetric polynuclear complexes. An example is the tantalum dication, [Ta$_6$Cl$_{12}$]$^{2+}$. This is predicted to have an octahedral structure in modest agreement with the DFT result (Fig. 3).

Transition metal complexes usually have one or more unpaired electrons; such systems can only be modeled using an open shell method such as unrestricted Hartree Fock (UHF) or restricted Hartree Fock followed by a configuration interaction (RHF-CI) correction. The UHF method is faster and more reliable, and is the method of choice when only simple properties such as heats of formation or geometries are of interest. For [M$_6$X$_{12}$]$^{2+}$, M = Nb or Ta, X = Cl or Br, UHF predicts an almost octahedral complex, a very slight distortion lowering the symmetry to D$_{4h}$. This distortion is also reflected in the asymmetric charge distribution. When RHF-CI is used, the geometry converges on the exact O$_h$ structure.

Group VIA: Chromium, Molybdenum, and Tungsten

Most Cr–O and Cr–N bonds are reproduced well, as illustrated by [CrIII(EDTA)]$^{−}$ in Fig. 4. The organometallic bond in chromium hexacarbonyl is 1.90 Å, which is in good agreement with the crystal structure, 1.92 Å, found in FOHCOU01[21].

The octacyano-molybdate(IV) moiety, [MoIV(CN)$_8$]$^{4−}$, is a stable eight-coordinate organometallic molybdenum complex ion whose geometry in the crystal is that of a slightly distorted square antiprism. Rather unexpectedly, this structure was reproduced by PM6, the expectation being that in the absence of crystal field forces the structure would have optimized to a geometry which has

Set of elements	No. PM6	RM1	PM5	PM3	AM1
H, C, N, O	99	0.45	0.41	0.51	0.45
H, C, N, O, F, P, S, Cl, Br, I	229	0.47	0.44	0.51	0.56
Whole of main group	383	0.50	0.49	0.68	0.63
70 elements	385	0.50			

Table 15 Average unsigned errors in phosphorus, sulfur, and chlorine

	PM6	AM1* No.	Bond length (Å)	Dipole (D)	I.P. (eV)	Angles (Degrees)
Phosphorus	8.3	19.1	0.022	0.051	0.57	0.49
Sulfur	6.5	10.6	0.029	0.060	0.36	0.64
Chlorine	6.1	18.2	0.025	0.106	0.55	0.60
a higher symmetry, i.e., converged to the exact D$_{4d}$ geometry. The predicted Mo-C distance was 2.22 versus 2.16 Å, again in unexpectedly good agreement for an ion with such a large formal charge.

Molybdenum forms the cluster anion [Mo$_6$(η$_3$-Cl$_8$)Cl$_6$]$^{2-}$ in which the six molybdenum atoms form a regular octahedron. PM6 successfully reproduces this structure, and predicts the following distances: Mo-Mo: 2.30 (2.63), Mo-η$_3$Cl: 2.75 (2.56), and Mo-Cl: 2.50 (2.43 Å).

The trioxide of molybdenum can form polyoxometalates, a typical example of which is the α-keggin heteropolyoxy-anion [SiO$_4$@MoVI$_{12}$O$_{36}$]$^{4-}$. In this structure, shown in Fig. 5, each Mo forms a double bond with one oxygen, single bonds to four other oxygen atoms, and what can only be described as a third of a bond to a sixth oxygen that is part of the SiO$_4$ unit. Despite the apparently high symmetry, Td, this system has only a center of inversion. This low symmetry is reproduced by PM6.

PM6 predicts the structures of all three hexacarbonyls with good accuracy, but gives qualitatively the wrong structures for the dinuclear decacarbonyls. This failure to qualitatively predict the structure of the polynuclear carbonyls occurred frequently during the survey of the transition metals.

Group VIIA: Manganese, Technetium, and Rhenium

Like many other transition metals, manganese can form sepulchrates, closo polyhedral complexes of general structure 3, 6, 10, 13, 16, 19-hexaaza-bicyclo(6.6.6)icosane. In contrast to the more common open hexadentate chelates of manganese, e.g. [MnII(EDTA)]$^{2-}$, the metal atom in a sepulchrate is extremely tightly bound, and cannot be removed without destroying the organic framework. A simple sepulchrate is shown in Fig. 6. PM6 predicts the Mn-N distance with good accuracy but gets the twist angle incorrect. A DFT calculation reproduced the twist angle found in the crystal, which suggests that the error in the twist angle cannot be attributed to the neglect of crystal packing forces.

Although there is a large amount of structural information on technetium compounds, there is a distinct shortage of thermochemical data. To make up for this, almost all the reference heats of formation of representative technetium compounds were derived from DFT calculations. Only one heat of formation was used in this derivation, that of the isolated technetium atom, therefore the reference values used almost certainly include a systematic error that may amount to many kilocalories per mole. Consequently, the reference heats of formation and the errors in PM6 predicted heats of formation of technetium compounds should be taken cum grano salis. However, this should not be construed as implying that they are meaningless: because reactions are balanced, when heats of reaction are evaluated, any systematic errors in the heats of formation are cancelled out.

One of the more important technetium species is the pertechnetate ion, [TcO$_4$]$^{-}$, used in nuclear medicine. In this ion, PM6 predicts the Tc-O distance to be 1.73 Å, in good agreement with the DFT value of 1.76 Å.

Statistic	PM6	B3LYP*	HF*
Median	3.26	3.75	5.10
AUE	4.44	5.19	7.37
RMS	6.23	7.42	10.68

* Basis set: 6–31G*

Table 16 Statistical analysis of errors in predicted ΔH$_f$ for various methods (kcal mol$^{-1}$)

Fig. 1 Histogram of errors in calculated ΔH$_f$
Group VIIIA: Iron, Cobalt, Nickel, Ruthenium, Rhodium, Palladium, Osmium, Iridium, and Platinum

The geometries of most compounds of this large group were reproduced with modest to good accuracy, including the iron-porphorin complex, Fig. 7, of the type found in heme. The main exception is iron pentacarbonyl, Fe(CO)₅, which in its equilibrium geometry is known unambiguously to be of point-group D₃h, and which PM6 predicts to be equally unambiguously C₄v. When this error was discovered, attempts were made to correct the fault by adding a rule to the training set for iron. This rule stated that “The C₄v geometry was 28.7 kcal mol⁻¹ higher in energy than the D₃h geometry,” 28.7 kcal mol⁻¹ being the difference between the energies of the two structures calculated using DFT. However, even when a very large weighting factor, 20.0, was used, the C₄v structure remained more stable than the D₃h, albeit the error in the relative energies was decreased. During this optimization errors in all other iron compounds increased significantly. Rather than accept a general deterioration in the predicted properties of iron compounds, the rule was removed from the training set.

The well-known red complex nickel dimethylglyoxime is normally encountered in the quantitative analysis of inorganic nickel in solution. At the center of the molecule is the planar structure NiN₄, which is frequently found in nickel compounds in biochemical systems. PM6 predicts this with good accuracy (Fig. 8).

One of the first polyhapto organometallic complexes discovered was Zeise’s salt. In the anion, [PtCl₃(η²-C₂H₄)]⁻, platinum forms a synergic bond with an ethylene molecule. The calculated and X-ray structures of this complex are shown in Fig. 9.

Structure	Ref.	ΔHf (kcal mol⁻¹)			
		PM6	PM5	PM3	AM1
(Non-planar open C₃)	−5.00	−3.96	−0.24	−2.79	−2.81
1 (Non-planar open C₃)	0.00	0.00	0.00	0.00	0.00
2 (Open C₃)	0.52	0.83	0.50	0.91	0.64
3 (Planar Open C₃)	0.57	0.66	0.25	0.93	0.46
4 (Cyclic C₄)	0.70	0.29	0.11	2.10	−0.94
5 (Cyclic C₂)	0.95	0.77	0.39	2.63	−0.51
6 (Cyclic C₂₃)	0.99	0.59	0.21	2.71	−0.67
7 (Triply Hydrogen Bonded)	1.81	0.93	−1.85	1.16	−0.95
8 (Non-planar Bifurcated)	3.57	2.67	−0.83	1.71	1.26
9 (Non-planar Bifurcated)	1.79	0.73	−1.95	1.15	−0.87
10 (Planar Bifurcated C₃v)	2.71	1.42	−1.77	1.28	−0.05

*: Relative to two isolated water molecules
+: Structures 2 – 10 are relative to Structure 1

Table 18: Comparison of B3LYP and PM6 hydrogen bond energies (kcal mol⁻¹)

Hydrogen-bonded system	Ref	PM6	PM5	PM3	AM1
Ammonia - ammonia	−2.94	−2.34	−0.77	−0.67	−1.41
Water - methanol	−4.90	−5.12	−2.59	−0.20	−4.52
Water - acetone	−5.51	−5.25	−2.43	−2.22	−4.09
Water, dimer, linear (O–H–O = 180°)	−5.00	−3.69	−1.57	−3.49	−3.16
Water, dimer	−5.00	−4.88	−2.43	−1.95	−5.01
Benzene dimer, T-shaped	−2.34	−0.83	−0.22	−0.56	−0.07
Water - acetate anion	−19.22	−18.72	−12.28	−15.77	−15.91
Water - formaldehyde	−5.17	−4.22	−2.17	−2.73	−3.40
Water - ammonia	−6.36	−4.32	−2.75	−1.53	−2.90
Water - formamide	−8.88	−7.60	−4.14	−4.33	−7.54
Formic acid, dimer	−13.90	−10.03	−4.75	−8.65	−6.44
Water - methylammonium cation	−18.76	−14.90	−8.94	−10.48	−14.36
Formamide - formamide	−13.55	−10.83	−4.46	−6.08	−8.14
Acetic acid, dimer	−14.89	−10.33	−4.50	−8.70	−6.44
Group IB: Copper, Silver, and Gold

Copper phthalocyanine is an extremely stable blue dyestuff. As with nickel dimethylglyoxime, the planar CuN₄ moiety at the center of the porphyrin ring is typical of many copper species of importance in biochemistry. PM6 reproduces it with very good accuracy (Fig. 10).

Dimethyl gold cyanide tetramer provides a good example of a square-planar AuIII complex. In this system, each gold atom forms covalent single bonds of length 1.99 Å (2.01) to the carbons of the methyl groups, a weaker, longer bond of length 2.12 Å (2.23) to the carbon of the cyanide group, and a still longer bond, 2.27 Å (2.23) to the nitrogen atom.

Gold also forms small planar clusters. PM6 predicts that neutral clusters of up to about nine gold atoms should be planar, an example being the D₆h Au₇ cluster, in which the Au-Au distance is predicted to be 2.71 Å (2.01). Clusters of up to 12 gold atoms are also predicted to be stable, provided the cluster has a single negative charge.

Group IIB Zinc, Cadmium, and Mercury

These elements have completely filled d shells; therefore the valence shell can be limited to the s and p orbitals. As such, they behave like main-group elements.

Table 19 Average errors in pyramidalization of nitrogen (Torsion angle about nitrogen, in degrees)

Statistic	PM6	PM3	AM1	RM1
Average signed error	-1.7	-13.6	0.2	9.7
Average unsigned error	5.0	15.0	3.5	19.1

Discussion

Methodological changes

During the development of PM6, only very minor changes were made to the set of approximations. The main change was in the construction of the training set used for
parameter optimization. One of the most important changes was the use of rules in the training set to define chemical information that was not a function of any single molecule. In earlier methods the training set had included only standard reference data. Of their nature, such data could not allow for chemical facts that were independent of any one moiety. For example, the strength of a hydrogen bond is of great importance in biochemistry, but it could not be expressed in terms of a single species. By use of rules, the value of some chemical quantity could be related to that of another. In the case of hydrogen bonding, the heat of formation of the water dimer was made a function of the heat of formation of two separated water molecules.

Rules were particularly useful when elements of the three transition metal series were being optimized. Many complexes of these elements are highly labile, and, in the early stages of parameter optimization, there was a strong tendency for the optimized geometry of such complexes to be qualitatively incorrect. Faults of this kind could not be corrected by simply increasing the weight assigned to the correct geometry, so rules were developed to indicate that the faulty geometries were indeed incorrect. Specific points on the potential energy surface were selected, and from single-point high level calculations, the relative energy of these points above the minimum was evaluated. The points selected were precisely those qualitatively incorrect geometries resulting from the use of the then-current parameters. The fact that the incorrect geometry was predicted by high level methods to be of higher energy than the correct geometry was then added to the set of rules. A good example of such a rule was the rule concerning Fe(CO)₅ mentioned above, in which the only datum that was defined referred to the relative energies of the compound in two different symmetries. No reference was made to the bond lengths, or bond angles. With such a rule in place, the
parameters could be re-optimized to minimize the error arising from the rule, with the effect that the energy of the incorrect symmetry increased relative to that of the correct symmetry. In the majority of cases, one rule of this type was sufficient; less frequently, two rules were used, and, in rare cases, even more rules were necessary.

Another change was the use of very large reference data training sets. In earlier parameterizations, the training set used was deliberately made as small as possible. Only when the resulting method was used in a survey of species not used in the training set could the predictive power of the method be determined. The training set used in the development of PM6 was designed to be considerably larger than the survey set. The rationale for this was that, by including in the training set reference data for unconventional species, e.g., non-equilibrium and hypothetical species, a greater region of the error-function surface could be defined. This would in turn, result in a better definition of the values of the parameters. That this is useful can be evidenced by the recent work in parameterizing chlorine at the AM1* level, where the compound 1,1',2-trichloro-1,2,2'-trifluoroethane, C₂Cl₃F₃ has a reported ΔHᵦ of –173.7 kcal mol⁻¹, but the value predicted using AM1* was –273.9 kcal mol⁻¹. That is, the AM1* value was in error by over 100 kcal mol⁻¹. If this compound had been included in the training set, it is highly likely that the error would have been significantly reduced.

Although over 10,000 reference data were used in the PM6 training set, there are several indications that even this large number is still inadequate for the definition of the values of the parameters, and that an even larger training set would be highly desirable. In light of this, work has begun on identifying species to be added to the training set. During the testing of PM6, several faults were found in the method. Some of these were quickly traced to specific core-core parameters. One of the hydrogen atoms in the complex [Sc³⁺(H₂O)₇]³⁺ was predicted to readily move toward the central atom with the result that a Sc-H bond was formed. Such faults could easily be corrected by the addition to the training set of appropriate reference data from high-level calculations. This was done in several instances, and the specific error was corrected, but this action then also required all the testing to be re-started. Because this was a time-consuming process, when faults were found near the end of the testing phase, the decision was taken that the fault should be noted, as in the Sc-H error mentioned here, and to take no further action at that time.
A different type of error, found only near the end of testing, was the unrealistically large p electron population of some transition metals. The values of the parameters that determine the p population are defined using two very different groups of reference data: atomic energy levels and conventional properties of polyatomics. If atomic energy levels were excluded from the parameter optimization, then the p population would become very small; but if atomic energy levels were excluded, then the resulting method would not be suitable for reproducing such levels. The decision to use all available atomic energy levels in the training set was a value judgement. In the next training set, it is likely that the result of this decision-making process will be different.

Detecting faults in semiempirical methods is difficult, and rather than wait until all errors of this type were found and fixed, a process that could potentially take several more years, the decision was made to freeze the parameters at their current value. Obviously, PM6 still has many errors; some have already been described. Work has already started in an attempt to correct them.

Elimination of computational artifacts

Earlier NDDO methods, particularly PM3 and AM1, produced artifacts in potential energy surfaces as a result of unrealistic terms in the core-core approximation, specifically in the set of Gaussian functions used. In PM6, only one Gaussian-type correction to the core-core potential is allowed, and, consequently, the potential for these artifacts has been reduced. On the other hand, because PM6 uses diatomic parameters, the likelihood of readily-characterized errors involving specific pairs of atoms, e.g. Sc and H, as mentioned earlier, is increased. Errors of this type can be easily eliminated by a re-parameterization of the faulty diatomic.

There are over 450 sets of diatomic interactions parameterized in PM6, covering most of the common types of chemical bonds. But the number of potential bonds is much larger: given 70 elements, there are almost 2500 diatomic sets. If a molecule contains two elements for which the diatomic interaction parameters are missing, then, provided the elements are well separated, say by more than 4 Ångstroms, the absence of the parameters will not be important. If the two elements were near to each other, then the diatomic core-core parameters would be needed. This would involve generating a small training set of reference data that included a few examples of the type of interaction involved, and optimizing the two terms in the diatomic interaction.

This ability to add diatomic parameter sets to PM6 without modifying the underlying parameterization has the advantage that more and more types of interaction can be added without changing the essential nature of the method.

Accuracy

PM6, being the most recent member of the NDDO family of approximate semiempirical methods, is understandably the most accurate. The development of each new method has been guided by the knowledge of the documented faults found in the earlier methods. This is reflected in the steady decrease in AUE of simple organic compounds, from 12.0 kcal mol$^{-1}$ for AM1 to 4.9 kcal mol$^{-1}$ for PM6.

Several low-energy phenomena are predicted more accurately by PM6, with the most important of these being the prediction of the energies and geometries involved in hydrogen bonding. One consequence of this increased accuracy is that the lowest energy conformer of acetylace-tone is now correctly predicted to be the ene-ol structure, and not the twisted di-one configuration.

Despite the improvement in hydrogen bonding, a significant error was found in the balance of energies involved in forming zwitterions of hydroxyl and amine groups. This is best illustrated by the dimer of 2-aminophenol, where PM6 predicts that the zwitterion should be 3.6 kcal mol$^{-1}$ more stable than the neutral form, but higher level calculations indicate that the neutral form should be 17.7 kcal mol$^{-1}$ more stable than the zwitterion. In the solid state, CSD entries AMPHOM01 – AMPHOM10 [21], 2-aminophenol exists as the neutral species.

In general, however, average unsigned errors in ΔH_f have steadily decreased as semiempirical methods have evolved. Earlier NDDO methods such as PM3 and AM1 had AUE significantly larger than the 6–31G* Hartree Fock method. With the advent of PM5 and RM1 errors were intermediate between HF and B3LYP. In the current work, AUE in ΔH_f are lower than those of both B3LYP and HF 6–31G*. This increase in accuracy of prediction of ΔH_f relative to higher level methods should not be construed as disparaging those methods: semiempirical methods in general, and PM6 in particular, were parameterized to reproduce ΔH_f. The performance of these methods when applied to non-equilibrium systems, in particular transition states, is likely to be very inferior to that of B3LYP or HF 6–31G*.

As a result of the current work, there is a clear strategy for further improving the accuracy of semiempirical methods. All three potential sources of error need to be addressed. Regarding reference data, considerably more data are needed than were used here. This would likely come from increased use of high-level theoretical methods: methods significantly more accurate than those used here would obviously be needed in any future work. Parameter optimization can be performed with confidence and reliability, particularly when well-behaved systems are used. In all cases examined where problems were encountered in parameter optimization, problems also occurred in the normal SCF calculation in MOPAC2007. This implies
that as faults in the SCF procedure are corrected, faults in parameter optimization would also be removed.

Permanent errors

Notwithstanding the optimism just expressed, not all errors can be eliminated by better data and better optimizations. Despite strenuous efforts, some calculated quantities persistently failed to agree with the reference values. Many potential causes for these failures were investigated. In each case the weight for the offending quantity was increased considerably and the parameter optimization re-run. When that was done, the specific error decreased, but errors elsewhere increased disproportionately. Since the final gradient of the error function was acceptably small, it followed that the parameter optimization was not in error. The reference data were checked to ensure that they were in fact trustworthy. Because two of the three possible origins of error had been eliminated, the inescapable conclusion was that there is a fault in the set of approximations. The most serious of these faults was the qualitatively incorrect prediction of the geometry of the exceedingly simple system, iron pentacarbonyl.

Conclusions

The NDDO method has been modified by the adoption of Voityuk’s core-core diatomic interaction parameters. This has resulted in a significant reduction in error for compounds of main-group elements, and, together with Thiel’s d-orbital approximation, allows extension of the NDDO method to the whole of the transition metal block.

The accuracy of PM6 in predicting heats of formation for compounds of interest in biochemistry is somewhat better than Hartree Fock or B3LYP DFT methods, using the 6-31G(d) basis set. For a representative set of compounds, PM6 gave an average unsigned error of 4.4 kcal mol$^{-1}$; for the same set HF and B3LYP had AUE of 7.4 and 5.2 kcal mol$^{-1}$, respectively.

The potential exists for further large increases in accuracy. This would likely result from the increased use of accurate reference data derived from high-level methods, and from the development of better tools for detecting errors at an early stage of method development.

Acknowledgments This work was funded by the National Institute of General Medical Sciences (NIGMS) Grant No. 2 R44 GM067327–02.

References

1. Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129–S135
2. Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47:2026–2033
3. Dewar MJ, Thiel W (1977) J Am Chem Soc 99:4907–4917
4. Dewar MJ, Thiel W (1977) J Am Chem Soc 99:4999–4907
5. Bingham RC, Dewar MJ, Lo DH (1975) J Am Chem Soc 97:1285–1293
6. Dewar MJ, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909
7. Stewart JJP (1989) J Comp Chem 10:209–220
8. Stewart JJP (1989) J Comp Chem 10:221–264
9. Stewart JJP (1991) J Comp Chem 12:320–341
10. Anders E, Koch R, Freunsch P (1993) J Comp Chem 14:1301–1312
11. Stewart JJP (2004) J Mol Model 10:155–164
12. Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404
13. Thiel W, Voityuk AA (1996) J Phys Chem 100:616–629
14. Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089–4094
15. Winget P, Clark T (2005) J Mol Model 11:439–456
16. Giese TJ, Sherer EC, Cramer CJ, York DM (2005) J Chem Theory and Comp 1:1275–1285
17. Tejero I, González-Lafort A, Lluch JM (2007) J Comp Chem 28:997–1005
18. Arantes GM, Loos M (2006) Phys Chem Chem Phys 8:347–353
19. McNamara JP, Sundararajan M, Hillier IH, Ge J, Campbell A, Morgado C (2006) J Comp Chem 27:1307–1323
20. Afeefy HY, Liebman JF, Stein SE (2003) Neutral Thermochemical Data In: Linstrom PJ, Mallard, WG, Eds. NIST Chemistry WebBook, NIST Standard Reference Number 69 http://webbook.nist.gov/chemistry National Institute of Standards and Technology, Gaithersburg MD, 20899
21. Allen FH (2007) Acta Cryst B 53:380–388
22. Stewart JJP (2004) J Phys Chem Ref Data 33:713–724
23. Stewart JJP (2004) J Mol Modelling 10:6–12
24. http://webbook.nist.gov/cgi/cbook.cgi?Source=2004STE6-10&Units=SI&Mask=1
25. Becke AD (1993) J Chem Phys 37:5648
26. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
27. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687
28. Wang B, Ford G (1994) J Comp Chem 15:200–207
29. Moore CE Atomic energy levels, Vol. I (Hydrogen through Vanadium); Natl. Bur. Stand. (U.S.) Cir. No. 467 (U.S. GPO, Washington, D.C.), 1946
30. Moore CE Atomic Energy Levels, Vol. II (Chromium through Niobium); Circular of the National Bureau of Standards 467, U.S. Government Printing Office: Washington, DC, 1952
31. Moore CE Atomic Energy Levels, Vol. III (Molybdenum through Lanthanum and Hafnium through Actinium); Circular of the National Bureau of Standards 467, U.S. Government Printing Office: Washington, DC, 1958
32. Leennard-Jones JE (1931) Proc Phys Soc 43:461–482
33. Stewart JJP; 7.101W; Stewart Computational Chemistry: Colorado Springs, 2007
34. Dewar MJ, Jie C, Zoebisch EG (1988) Organometallics 7:513–521
35. Rocha GB, Freire RO, Simas AM, Stewart JJP (2006) J Comp Chem 27:1101–1111
36. Tschumper GS, Leininger ML, Hoffman BC, Valeev EF, Schaefer HF, Quack M (2002) J Chem Phys 116:690–701
37. Pulay P (1980) Chem Phys Lett 73:393–398