Methicillin-resistant *Staphylococcus aureus* bloodstream infection: risk factors and clinical outcome in non-intensive-care units

Infeção de corrente sanguínea por *Staphylococcus aureus* resistente à meticilina: fatores de risco e evolução clínica em unidades não críticas

Karine Spirandelli Carvalho Naves¹, Natália Vaz da Trindade¹ and Paulo Pinto Gontijo Filho¹

ABSTRACT

Introduction: Methicillin-resistant *Staphylococcus aureus* (MRSA) is spread out in hospitals across different regions of the world and is regarded as the major agent of nosocomial infections, causing infections such as skin and soft tissue pneumonia and sepsis. The aim of this study was to identify risk factors for methicillin-resistance in *Staphylococcus aureus* bloodstream infection (BSI) and the predictive factors for death. **Methods:** A retrospective cohort of fifty-one patients presenting bacteraemia due to *S. aureus* between September 2006 and September 2008 was analysed. *Staphylococcus aureus* samples were obtained from blood cultures performed by clinical hospital microbiology laboratory from the Uberlândia Federal University. Methicillin-resistance was determined by growth on oxacillin screen agar and antimicrobial susceptibility by means of the disk diffusion method. **Results:** We found similar numbers of MRSA (56.8%) and methicillin-susceptible *Staphylococcus aureus* (MSSA) (43.2%) infections, and the overall hospital mortality rate was 47%, predominantly in MRSA group (70.8% vs. 29.2%) (p=0.05). Age (p=0.02) was significantly higher in MRSA patients as also was the use of central venous catheter (p=0.02). The use of two or more antimicrobial agents (p=0.03) and the length of hospital stay prior to bacteraemia superior to seven days (p=0.006) were associated with mortality. High odds ratio value was observed in cardiopathy as comorbidity. **Conclusions:** Despite several risk factors associated with MRSA and MSSA infection, the use of two or more antimicrobial agents was the unique independent variable associated with mortality. **Keywords:** *Staphylococcus aureus*. MRSA. Bacteraemia. Risk factors.

INTRODUCTION

A broad variety of infections, ranging from minor infections of the skin to severe infections as bloodstream infections, can be caused by *Staphylococcus aureus*. Methicillin-resistant *Staphylococcus aureus* (MRSA) is an endemic nosocomial pathogen, but its geographic spread in the community has been documented. Some previous studies of patients with MRSA bloodstream infection (BSI) have reported higher mortality rates, increased morbidity, and longer hospital length of stay than those with methicillin-susceptible *Staphylococcus aureus* BSI. In the UK, MRSA infection is cited with increasing frequency as causing or contributing to death. Risk factors for methicillin-resistance in these infections have been extensively described, but the studies vary among institutions.

Methicillin-resistance among *S. aureus* remains an important problem in Latin America hospitals, but rates vary significantly from hospital to hospital. In Brazil, the Antimicrobial Surveillance Program (SENTRY) described a prevalence of MRSA bacteraemia of 30.9% in hospitalized patients between 1997 and 2000, but in large Brazilian teaching hospitals, up to 73% of clinically significant *S. aureus* bacteraemia were caused by methicillin-resistant strains. Ribas et al. reported 49.5% of bloodstream infection in Clinical Hospital of Uberlândia’s Federal University due to *S. aureus*, and recently, Carvalho and Gontijo Filho described 63.7% of *S. aureus* BSI due to MRSA in adult critical-care unit.

The objectives of this study were to identify institution-specific risk factors for methicillin-resistance in *S. aureus* BSI to determine the predictive factors for death and assess the impact of methicillin-resistance on mortality in patients in non-intensive-care units of a Brazilian University Hospital.
METHODS

The study was conducted in a 500-bed teaching hospital that provides tertiary care for Uberlândia and surroundings. The investigation was designed as a retrospective cohort of patients presenting bacteraemia due to S. aureus. Clinical and epidemiological data were collected from the hospital patient records.

Bloodstream infections were classified as primary when they were not related to any other focus of infection. BSIs were considered to be secondary when they were clinically referred to infection in another site than the vascular system12. Previous antimicrobial therapy was defined as the use of any antibiotic within 30 days prior to bacteremia13. Antimicrobial therapy was considered to be adequate if the drug used within the first 48h after blood culture collection had in vitro activity against the isolated S. aureus strain13. Bacteraemia-associated mortality was characterized by the patient’s death during the bacteremic episode and/or 30 days after hospitalization period patient’s death during the bacteremic episode associated mortality was characterized by the variables. The χ2 statistic or Fisher’s exact test containing antimicrobial agents. agar and antimicrobial susceptibility by means determined by growth on oxacillin screen laboratory. Methicillin-resistance was at 35 ± 2°C in the hospital microbiology of human blood and incubated for 24-48h (Isofar Ltda, Brazil) supplemented with 5%

Continuous variables were compared using the t test for normally distributed variables for the outcome groups of interest. Multivariate analysis was performed using the automatic commercial system Bactec/Alert® (Vitek system). Positive cultures were further sub-cultured in Mueller-Hilton Agar (Isofar Ltda, Brazil) supplemented with 5%

Ethical considerations

The present study was approved by the Ethics Committee of Federal University of Uberlândia (UFU) (014/06).

RESULTs

Between September 2007 and September 2008, 134 S. aureus BSIs were identified. Methicillin-resistance rate was 59.7% (80/134). Among these cases, 83 were excluded from the study because of incomplete or missing data. A total of 51 episodes in 39 patients were then reviewed. Ten patients presented multiple episodes of MRSA BSI, and two presented multiple episodes of MSSA BSI. Thirty-one infections occurred in male patients, and twenty occurred in female patients (Table 1).

Table 1 shows clinical and demographic characteristics of patients with MRSA and MSSA BSI. Methicillin-resistant Staphylococcus aureus bloodstream infection occurred in older patients, after a longer time following admission when compared with MSSA BSI. All Methicillin-resistant Staphylococcus aureus bloodstream infection were classified as nosocomial. The use of more than two antimicrobial agents, comorbidity, and length of hospital stay prior to bacteraemia longer than seven days were more frequent in MRSA group. Presence of intravascular device was significantly higher in MRSA group than in MSSA group. The sources of S. aureus BSI are also listed in Table 1, and in both, MRSA and MSSA, primary BSIs were the most common sources than secondary ones, and 22 (75.9%) of whom with MRSA episodes were associated with central venous catheter.

![Table 1 - Clinical and demographic characteristics of patients with MRSA and MSSA BSIs.](image-url)

MRSA: methicillin-resistant Staphylococcus aureus; MSSA: methicillin-susceptible Staphylococcus aureus; BSI: bloodstream infection; CI: confidence interval; LOS: length of hospital stay; ITU: intensive-therapy unit.
The overall mortality rate was 47%. Univariate analysis for potential prognostic death factors associated with *Staphylococcus aureus* bacteraemia is presented in Table 2. The presence of MRSA (p=0.057), clinical status, represented by patient’s unit (p=0.046), and length of hospital stay prior to bacteraemia higher than seven days (p=0.006) were significantly associated with death. No difference was found regarding sex, age, severity of underlying disease, nosocomial origin of the infection, or presence of intravascular device among the patients who died compared with the patients who survived.

In multivariate analysis (Table 3), the use of more than two antibiotics was independently associated with mortality by *S. aureus* (OR=8.65; 95% CI=1.92 to 39.07; p=0.05). ORs observed for long duration of hospital stay (OR=4.7) and cardiopathy (OR=5.85) were both high in death patients group.

TABLE 2 - Potential prognostic death factors associated with *Staphylococcus aureus* bacteraemia.

Factors associated	Outcome n = 51				
	death n=24(47.0)	survival n=27(53.0)	Odds ratio (CI)	p (≤0.05)	
Sex					
female	11	9	33.3	1.692 (0.544 - 5.259)	0.361
male	13	18	63.0		
Age (years)					
≥60	13	8	29.6	2.807 (0.88 - 8.88)	0.075
≤60	11	19	70.4		
Origin onset					
community-acquired	0	2	7.4	0.208 (0.009 - 4.56)	0.491
nosocomial	24	25	92.6		
Susceptibility to meticillin					
resistant	17	12	44.4	3.035 (0.949 - 9.709)	0.057
sensitive	7	15	55.6	0.3294 (0.1030 - 1.0533)	0.109
Antimicrobial therapy					
no	2	3	11.0		
yes	22	24	89.0		
≥2	16	10	41.6	2.744 (0.874 - 8.618)	0.034
Initial antimicrobial therapy					
inadequate	10	7	25.9	2.041 (0.625 - 6.663)	0.234
adequate	14	20	74.1	0.490 (0.150 - 1.600)	0.234
Comorbidity					
diabetes	4	3	15.0	1.60 (0.319 - 8.01)	0.693
cardiopathy	5	4	20.0	1.51 (0.355 - 6.443)	0.718
pulmonary disease	3	0	0.0	8.95 (0.438 - 183.0)	0.097
nefropathy	0	4	20.0	0.106 (0.005 - 2.092)	0.112
malignancy	5	3	15.0	2.105 (0.445 - 9.950)	0.450
others	5	6	30.0	0.921 (0.241 - 3.516)	1.000
Surgery					
surgical	16	15	55.5	0.777 (0.229 - 2.635)	0.686
Presence of central venous catheter unit					
surgical	16	16	59.3	1.375 (0.437 - 4.319)	0.585
ITU					
surgical	1	1	3.7	1.130 (0.006 - 19.13)	1.000
clinical	5	4	14.8	1.513 (0.355 - 6.443)	0.718
pediatric	11	5	18.5	3.457 (0.988 - 12.09)	0.046
others	2	4	14.8	0.522 (0.086 - 3.149)	0.671
Length of hospital stay prior to bacteraemia					
>7 days	21	14	51.8	6.500 (1.561 - 27.06)	0.006
≤7 days	3	13	48.2	0.153 (0.036 - 0.640)	0.007

CI: confidence interval; ITU: intensive therapy unit.

TABLE 3 - Multivariate analysis for mortality by *Staphylococcus aureus* bacteraemia.

Variable	Odds ratio	95% CI	p
More than two antimicrobial agents	8.655	1.92 to 39.07	0.005
MRSA infection	0.500	0.11 to 2.24	0.361
Cardiopathy	5.851	0.91 to 37.51	0.062
Presence of intravascular device	0.888	0.20 to 3.98	0.876
Length of hospital stay prior to bacteraemia	4.716	0.79 to 27.99	0.087

CI: confidence interval; MRSA: methicillin-resistant *Staphylococcus aureus*.

The overall mortality rate was 47%. Univariate analysis for potential prognostic death factors associated with *S. aureus* bacteraemia is presented in Table 2. The presence of MRSA (p=0.057), clinical status, represented by patient’s unit (p=0.046), and length of hospital stay prior to bacteraemia higher than seven days (p=0.006) were significantly associated with death. No difference was found regarding sex, age, severity of underlying disease, nosocomial origin of the infection, or presence of intravascular device among the patients who died compared with the patients who survived.

In multivariate analysis (Table 3), the use of more than two antibiotics was independently associated with mortality by *S. aureus* (OR=8.65; 95% CI=1.92 to 39.07; p=0.05). ORs observed for long duration of hospital stay (OR=4.7) and cardiopathy (OR=5.85) were both high in death patients group.
Hospital-acquired bloodstream infections caused by *S. aureus*, mainly those due to methicillin-resistant *S. aureus* (MRSA), are associated with significant mortality and morbidity, adding considerable costs to hospital care. In Brazil, *S. aureus* was the most common cause of bloodstream infection (20.2%), and resistance to methicillin was observed in 31% of *S. aureus* isolates in the Brazilian hospital participating in the SENTRY Antimicrobial Surveillance Programme. However, MRSA rates may vary greatly among hospitals (59.9-73%). In our hospital, bacteraemia rates caused by MRSA were both high in both critical (63.7%) and non-critical units (62.5%). In our study, we observed a similar rate (56.8%) of BSI due to MRSA in clinical, burned, and oncology wards, and almost all BSIs (96%) had nosocomial origin.

The emergence of MRSA is largely due to the dissemination of clonal strains between patients favored for poor infection control politics and antimicrobial pressure, but this correlation has been difficult to establish due to the high number of variables involved. Risk factors for methicillin resistance reported in literature also vary among institutions and patients. The major independent risk factors include: advanced age, residence in a nursing home, long duration of hospitalization, prior antibiotic exposure, insulin-requiring diabetes, intravascular devices, presence of decubitus ulcers or pneumonia as source of BSI, adequacy of antimicrobial therapy, and severity of clinical status.

In the present study, based on univariate analysis, age and presence of central venous catheter (CVC) were risk factors for MRSA bacteraemia as also reported previously. Most (72.4%) of MRSA bacteraemia were classified as primary, and CVC was probably the foci of infection as discussed by Das et al. A high proportion of these infections were detected in clinical ward (34.5%), while most studies reported higher MRSA infections in critical-care units.

Other analyzed variables such as length of hospital stay prior to bacteraemia (OR=3.19), cardiopathy as comorbidity (OR=2.85), and more than two antimicrobial drugs usage (OR=2.74), despite having no significance, presented high OR values when compared with MRSA and MSSA infections. Several studies also have demonstrated that longer hospitalization before the onset of bacteraemia and antimicrobial use in greater frequency were risk factors for MRSA infection. None of these factors — age, central vascular catheter presence or even the use of more than two antimicrobial drugs, cardiopathy, or longer hospital stay prior to bacteraemia — were independently prognostic factors for MRSA infection in our study.

Comparisons of mortality between patients with MRSA and MSSA have been contradictory in the literature. Several studies including a meta-analysis have demonstrated an increase in mortality among patients with MRSA bacteraemia versus MSSA bacteraemia. In this study, a higher crude mortality of 58.6% vs 24.1% (OR=3.036; p=0.05) was observed in the MRSA group than the MSSA group, respectively, a higher rate than those reported in the United Kingdom and United States hospitals.

Traditional risk factors for mortality include older age, inadequate treatment, and severity of comorbidity. Despite the fact that these variables were not significant in our study, we attribute an association between these risk factors and mortality due to the high OR values of 2.80, 2.04, and 3.85, respectively. Intensive-care unit admission before bacteraemia is also a predictor for MRSA-BSI mortality. Most of the deaths due to staphylococcal BSI occurred in the clinical ward (45%; p=0.046), with only 4% of patients carried out in the ICU.

Length of hospitalization is a measure of morbidity, as well as invasive device use such as CVC. In the univariate analysis, death was associated with an increase in length of hospital stay for more than seven days (p<0.05) and the use of more than two antimicrobial drugs (p=0.034), but only the former was independently significant (OR=8.65; p=0.005) in multiple regression analysis. In multivariable analysis for the length of hospital stay prior to bacteraemia superior to seven days (OR=4.7) and cardiopathy as comorbidity (OR=5.8), we observed high OR values. These findings coincide with previous reports demonstrating that factors for mortality include: longer of hospital stay before bacteraemia and comorbidities as cardiopathy. Nevertheless, in our study, patients with bacteraemia were usually confined in non-critical units due to lack of sufficient beds in the ICU where 33.3% of patients received inadequate empirical antimicrobial therapy that resulted in higher rate (41.6%) of hospital mortality. Eighty percent of the patients who died using an inadequate treatment were from MRSA BSI group.

One of the limitations of the study was that it was done retrospectively and performed at a single hospital.

In addition, the small sample size of the study limited the detection of statistically significant differences. We also did not use the Apache II or other scores to assess severity of illness prognostic indicator on the hospital mortality.

In conclusion, high hospital mortality was observed even in cases of patients who were admitted in non-critical-care units. We found several risk factors associated to MRSA and MSSA bacteraemia and high mortality level of *S. aureus* bacteraemia. However, the use of two or more antimicrobial agents was the unique independent variable for death. This can be partially justified by high frequency of inadequate empirical therapy observed in our study. In spite of the limitations, mainly the small number of patients, the findings suggest an imperative for hospitals to review their antimicrobial policies.

The authors declare that there is no conflict of interest.

REFERENCES

1. Grundmann H, Aires-de-Souza MA, Boyce J, Tiensrma E. Emergence and resurgence of methicillin-resistant *S. aureus* as public-health threat. Lancet 2006; 368:874-885.

2. Kopp BJ, Nix DE, Armstrong EP. Clinical and economic analysis of methicillin-resistant and methicillin-susceptible *S. aureus* infections. Ann Pharmacother 2004; 38:1377-2382.

3. Cosgrove SE, Zanolus G, Perencevich R, Schwaber MJ, Karchmer AW, Careli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible *S. aureus* bacteremia: a meta-analysis. Clin Infect Dis 2003; 36:53-59.

4. Whitby M, McLaws ML, Berry G. Risk of death from methicillin-resistant *Staphylococcus aureus* bacteremia: a meta analysis. Med J Aust 2001; 175:264-267.

5. Thompson DS, Workman R, Strutt M. Contribution of acquired methicillin-resistant *Staphylococcus aureus* bacteremia to overall mortality in a general intensive care unit. J Hosp Infect 2008; 70:223-227.
6. Lodise Jr TP, McKinnon PS, Rybak M. Prediction model to identify patients with S. aureus bacteremia at risk for methicillin resistance. Infect Control Hosp Epidemiol 2003; 24:655-661.

7. McHugh CG, Riley IW. Risk factors and costs associated with methicillin-resistant S. aureus blood-stream infections. Infect control Hosp Epidemiol 2004; 25:425-430.

8. Sader H, Jones RN, Gales AC, Silva JB, Pignatari AC. SENTRY participants. SENTRY Antimicrobial Surveillance Program Report: Latin America and Brazilian results for 1997 through 2001. Braz J Infect Dis 2004; 8:25-79.

9. Gales AC, Sader HS, Ribeiro J, Zoccoli C, Barth A, Pignatari C. Antimicrobial susceptibility of Gram Positive bacteria isolated in brazilian hospitals participating in the SENTRY program (2005-2008). The Braz J Infect Dis 2009; 13:90-98.

10. Ribas RM, Freitas C, Gontijo-Filho PP. Nosocomial methicillin-resistant Staphylococcus aureus bacteremia in a tertiary care hospital: Risk factors, overall mortality and antimicrobial resistance. Int J Med Sci 2009; 1:412-417.

11. Carvalho RH, Gontijo-Filho PP. Epidemiologically relevant antimicrobial resistant phenotypes in pathogens isolated from critically ill patients in a Brazilian university hospital. Braz J Microbiol 2008; 39:623-630.

12. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections. Am J Infect Control 1988; 16:128-140.

13. Guilarde AO, Turchi MD, Martelli CMT, Primo MGB. Staphylococcus aureus bacteremia: incidence, risk factors and predictors for death in a Brazilian teaching hospital. J Hosp Infect 2006; 63:330-336.

14. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000; 118:146-155.

15. Cosgrove SE, QY, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin-resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 2005; 26:166-174.

16. Millar BC, Loughrey A, Elborn JS, Moore JE. Proposed definitions of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA). J Hosp Infect 2007; 67:109-113.

17. Da Silva Coimbra MV, Silva-Carvalho MC, Wisplinghoff H, Hall GO, Tal lent S, Wallace S, et al. Clonal spread of methicillin-resistant Staphylococcus aureus in a large geographic area of the United States. J Hosp Infect 2003; 53:103-110.

18. Tenover FC, Moellering Jr RC. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretative criteria for Staphylococcus aureus. Clin Infect Dis 2007; 44:1208-1215.

19. Cordova SP, Heath CH, McGechie DR, Keil AD, Beers MY, Riley TV, Methicillin-resistant Staphylococcus aureus bacteremia in Western Australia teaching hospitals, 1997-1999: risk factors, outcomes and implications for management. J Hosp Infect 2004; 56:22-28.

20. Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR, Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 2004; 39:776-782.

21. Jernigan J, Pullen A, Flowers L, Bell M, Jarvis W. Prevalence of and risk factors for colonization with meticillin-resistant Staphylococcus aureus at the time of hospital admission. Infect Control Hosp Epidemiol 2003; 24:409-414.

22. Pujol M, Pena C, Pallares R, Ayats J, Ariza J, Gudiol F. Risk factors for nosocomial bacteraemia due to meticillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 1994; 13:96-102.

23. Boyko EJ, Ahroni JH, Stensel V, Forsberg RC, Davignon DR, Smith DG. A prospective study of risk factors for diabetic foot ulcer. Diabetes Care 1999; 22:1036-1042.

24. Das I, O’Connell N, Lambert P. Epidemiology, clinical and laboratory characteristics of Staphylococcus aureus bacteraemia in a university hospital in UK. J Hosp Infect 2007; 65:117-123.

25. Wang FD, Chen YY, Chen TL, Liu CY. Risk factors and mortality in patients with nosocomial Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol 2008; 36:118-122.

26. De Oliveira Conterno L, Wey SB, Castelo A. Staphylococcus aureus bacteremia: comparison of two periods and a predictive model of mortality. Braz J Infect Dis 2002; 6:288-297.

27. Melzer M, Eykyn SJ, Gransden WR, Chinn S. Is methicillin-resistant Staphylococcus aureus more virulent than methicillin-susceptible S. aureus? A comparative cohort study of British patients with nosocomial infection and bacteraemia. Clin Infect Dis 2003; 37:1453-1460.

28. Nickerson EK, Wuthiekanun V, Wonguwan G, Limmathurosakul D, Sirsamang P, Mahavanakul W, et al. Factors Predicting and Reducing Mortality in Patients with Invasive Staphylococcus aureus Disease in a Developing Country. Plos One 2009; 4:1-8.

29. Libert M, Elkholti M, Massaut J, Karmali R, Mascart G, Cherifi S. Risk factors for meticillin resistance and outcome of Staphylococcus aureus bloodstream infection in a Belgian university hospital. J Hosp Infect 2008; 68:17-24.

30. Vincent JL. Nosocomial infections in adult intensive-care units. Lancet 2003; 361:2068-2077.

31. Soriano A, Martiner JA, Mensa J, Marco F, Almela M, Moreno-Martinez A, et al. Pathogenic significance of methicillin resistance for patients with Staphylococcus aureus bacteremia. Clin Infect Dis 2000; 30:368-373.