Boyle’s Conjecture and perfect localizations

Jaime Castro Pérez∗
Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey
Calle del Puente 222, Tlalpan, 14380, México D.F., México.
Mauricio Medina Bárcenas† José Ríos Montes‡
Angel Zaldívar§
Instituto de Matemáticas, Universidad Nacional Autónoma de México
Area de la Investigación Científica, Circuito Exterior, C.U., 04510, México D.F., México.

October 13, 2018

Abstract

In this article we study the behaviour of left QI-rings under perfect localizations. We show that a perfect localization of a left QI-ring is a left QI-ring. We prove that Boyle’s conjecture is true for left QI-rings with finite Gabriel dimension such that the hereditary torsion theory generated by semisimple modules is perfect. As corollary we get that Boyle’s conjecture is true for left QI-rings which satisfy the restricted left socle condition, this result was proved first by C. Faith in [3].

∗jcastrop@itesm.mx
†mmedina@matem.unam.mx
‡jrios@matem.unam.mx
§zaldivar@matem.unam.mx
1 Introduction

Through all this paper R will denote an associative ring with unit element. We will work with unitary left R-modules and the category of modules will be denoted by R-Mod. For general background on module and ring theory we refer the reader to [1], [10], [11] and [12].

Remember that an R-module M is quasi-injective if every morphism $f : N \to M$ with $N \leq M$ can be extended to an endomorphism of M. Equivalently M is quasi-injective if and only if M is fully invariant in its injective hull. A ring R is called left QI-ring if every quasi-injective left R-module is injective, these rings were introduced by A. Boyle in [2]. Also in [2] is shown that a left QI-ring is left noetherian and left V-ring; recall that a left V-ring is defined as a ring where every simple left module is injective.

In [4] the author introduces two examples of non semisimples left QI-rings. These examples are left hereditary rings, that is, every left ideal is projective.

In [2, Theorem 5] A. Boyle characterizes two-sided hereditary, right noetherian, left QI-rings and she conjectured that every left QI-ring is left hereditary. In [6] C. Faith gave an approach to this conjecture. In [6, Corrolary 3] is shown that every left QI-ring is a finite product of simple left QI-rings, so it is enough formulate Boyle’s conjecture for simple left QI-rings.

C. Faith, in [6, Theorem 18], answers in affirmative Boyle’s conjecture for simple left QI-rings which satisfy the restricted left socle condition (RLS):

If $I \neq R$ is an essential left ideal, then R/I has non zero socle.

The Theorem 18 in [6] was extended by T. Rizvi and D. Van Huynh in [9]. But the conjecture is still open.

This paper is organized in three sections, the first one is this introduction and the second one concerns to present the necessary preliminaries.

Section 3 is where we develop our work and it contains the main results, we prove that if R is a left QI-ring and τ is a perfect torsion theory then the ring of quotients τR is left QI (Proposition 3.10). Also, we prove that Boyle’s conjecture is true for all those left QI-rings with finite Gabriel dimension such that the hereditary torsion theory generated by the semisimple modules is perfect (Theorem 3.12).
2 Preliminaries

One useful tool to characterize rings, is the hereditary torsion theories. Let us recall the definition of hereditary torsion theory:

Definition 2.1. A pair of nonempty classes of modules $\tau = (\mathcal{T}, \mathcal{F})$ is a torsion theory if

1. $Hom_R(T, F) = 0$ for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
2. If M is such that $Hom_R(M, F) = 0$ for all $F \in \mathcal{F}$ then $M \in \mathcal{T}$.
3. If N is such that $Hom_R(T, N) = 0$ for all $T \in \mathcal{T}$ then $N \in \mathcal{F}$.

It is said τ is hereditary if \mathcal{T} is closed under submodules. The set of hereditary torsion theories in R-Mod is denoted R-tors. The class \mathcal{T} is called the torsion class and \mathcal{F} the torsion free class.

It can be proved R-tors is a frame with order the inclusion of torsion classes, the least and greatest elements of R-tors are denoted by ξ and χ respectively. Given a class of modules C there exists the least hereditary torsion theory $\xi(C)$ such that C is contained in the torsion class and there exist the greatest hereditary torsion theory $\chi(C)$ such that C is contained in the torsion free class. If $\tau = (\mathcal{T}, \mathcal{F})$, the modules in \mathcal{T} are called τ-torsion modules and the modules in \mathcal{F} are called τ-torsion free. For more details see [7].

There exist a bijective correspondence between R-tors and R-Gab, where R-Gab denotes the set of Gabriel topologies in R. see [12] VI, Theorem 5.1.

An R-module N is called τ-cocritical with $\tau \in R$-tors if N is τ-torsion free but every proper factor module is τ-torsion. With this modules can be defined the Gabriel filtration in R-tors as:

\[\tau_0 = \xi \]

If i is a non limit ordinal:

\[\tau_i = \tau_{i-1} \vee \bigvee \{\xi(N) \mid N \text{ is } \tau_{i-1}\text{-cocritical}\} \]

If i is a limit ordinal:

\[\tau_i = \bigvee_{j<i} \tau_j \]
Since R-tors is a set it must exist a least ordinal α such that $\tau_\alpha = \tau_{\alpha + \beta}$ for all ordinals β. If $\tau_\alpha = \chi$ then we say R has Gabriel dimension equal to α and we denote it as $Gdim(R) = \alpha$.

The concept of QI-ring can be generalized to modules, one paper in this sense is [5]. In that paper it is shown ([5, Theorem 3.9]) that (in a more general context) a ring R is left QI if and only if R has Gabriel dimension and every hereditary pretorsion class is a hereditary torsion class. A hereditary pretorsion class in R-Mod is a class of modules closed under submodules, direct sums and quotients.

Let us recall the concept of perfect localization.

Definition 2.2. If $\varphi : R \to S$ is an epimorphism in the category of rings which makes S into a flat right R-module, then we will call S a left perfect localization of R.

Remark 2.3. Given a hereditary torsion theory $\tau \in R$-tors we will say that τ is perfect if the ring of quotients τR is a perfect left localization of R.

Remark 2.4. Given $\tau \in R$-tors, let us denote the localization functor as $q_\tau : R - Mod \to \tau R - Mod$. If τ is perfect then q_τ is exact. [12, XI, Proposition 3.4]. We will write $\tau N = q_\tau(N)$.

3 Left QI-rings and perfect torsion theories

Remark 3.1. Let $\tau \leq \sigma \in R$-tors. Note that if N is σ-torsion free then $q_\sigma(N)$ is σ-torsion free. In fact, since $\tau \leq \sigma$ then N is τ-torsion free, so we have an essential monomorphism $\psi_N : N \to q_\tau(N)$.

Lemma 3.2. Let $\tau \leq \sigma \neq \chi \in R$-tors perfect torsion theories with R σ-torsion free. Let $q_\tau : R - Mod \to \tau R - Mod$ denote the localization functor.

1. If $\sigma = (\mathfrak{I}, \mathfrak{F})$ then $\hat{\sigma} := (q_\tau(\mathfrak{I}), q_\tau(\mathfrak{F})) \in \tau$-tors.

2. If \mathcal{F}_σ and $\mathcal{F}_{\hat{\sigma}}$ denote the Gabriel topologies in R and τR associated to σ and $\hat{\sigma}$ respectively, then:

 \[J \in \mathcal{F}_{\hat{\sigma}} \iff J = \tau I \text{ with } I \in \mathcal{F}_\sigma \]

3. σR is $\hat{\sigma}$-closed (as τR-module).
4. There is a ring isomorphism $\sigma R \cong (\tau R)$

5. $\hat{\sigma} \in \tau R$-tors is perfect.

Proof. 1. Let $\tau \leq \sigma \in R$-tors, with $\sigma = (\mathcal{T}, \mathcal{F})$. Then $\hat{\sigma} = (q_{\tau}(\mathcal{T}), q_{\tau}(\mathcal{F}))$ where

$$q_{\tau}(\mathcal{T}) = \{ q_{\tau}(M) | M \in \mathcal{T} \}$$

$$q_{\tau}(\mathcal{F}) = \{ q_{\tau}(N) | N \in \mathcal{F} \}$$

Let $q_{\tau}(M) \in q_{\tau}(\mathcal{T})$ and $q_{\tau}(N) \in q_{\tau}(\mathcal{F})$. Since τ is perfect, $q_{\tau}(M) = \tau R \otimes R M$. Then

$$\text{Hom}_{\tau R}(q_{\tau}(M), \tau N) = \text{Hom}_{\tau R}(\tau R \otimes R M, \tau N) \cong \text{Hom}_{\tau R}(M, \text{Hom}_{\tau R}(\tau R, \tau N))$$

$$\cong \text{Hom}_{\tau R}(M, \tau N) = 0$$

by remark 3.1.

Now, let $q_{\tau}(N) = \tau N$ an τ-module such that $\text{Hom}_{\tau R}(\tau R \otimes R M, \tau N) = 0$ for all $M \in \mathcal{T}$. Following the above isomorphisms, we get that $\text{Hom}_{\tau R}(M, \tau (N)) = 0$, i.e., $\tau N \in \mathcal{F}$. Since $\tau \leq \sigma$, we have a monomorphism $\psi_N : N \rightarrow \tau N$ so $N \in \mathcal{F}$. Thus $\tau N \in q_{\tau}(\mathcal{F})$.

On the other hand, suppose τM is an τ-module such that $\text{Hom}_{\tau R}(\tau M, \tau N) = 0$ for all $\tau N \in \mathcal{F}$. Then, we have that $\text{Hom}_{\tau R}(M, \tau N) = 0$. Let $N \in \mathcal{F}$ and suppose $\text{Hom}_{\tau R}(M, N) \neq 0$. Hence there exists $0 \neq f : M \rightarrow N$, this implies that $0 \neq \psi_N f : M \rightarrow \tau N$. Contradiction. Thus $\text{Hom}_{\tau R}(M, N) = 0$ for all $N \in \mathcal{F}$, hence $M \in \mathcal{T}$.

Thus, we have that $\hat{\sigma}$ is a torsion theory. Let us see it is hereditary.

Let $\tau M \in q_{\tau}(\mathcal{T})$ and $K \leq \tau M$ an τ-submodule. There is a monomorphism $\psi : M/\tau(M) \rightarrow \tau M$. Consider $K \cap (M/\tau(M))$ which is a σ-torsion R-module. By [12, XI, Proposition 3.7] $q_{\tau}(K \cap (M/\tau(M))) = K$. Thus $K \in q_{\tau}(\mathcal{T})$.

2\Rightarrow. Let $I \in \mathcal{F}_\sigma$. We have the following commutative diagram with exact rows:

$$
\begin{array}{c}
0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0 \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
0 \rightarrow \tau I \rightarrow \tau R \rightarrow \tau(R/I) \rightarrow 0
\end{array}
$$

Since R/I is σ-torsion then $\tau(R/I) \in q_{\tau}(\mathcal{T})$ and $\tau R / \tau I \cong \tau(R/I)$. Thus $\tau I \in \mathcal{F}_\hat{\sigma}$.

5
\(\Rightarrow \). Let \(E \) be an injective \(R \)-module such that \(\chi(E) = \sigma \). Since \(E \) is \(\sigma \)-torsion free then it is \(\tau \)-torsion free. Hence \(E \) is \(\tau \)-closed, so \(E = \tau E \). Let \(J \in \mathcal{J}_\theta \), since \(R \) is \(\tau \)-torsion free then \(J = \tau (J \cap R) \). Therefore:

\[
\text{Hom}_R(R/J \cap R, E) = \text{Hom}_R(R/J \cap R, \tau E) \cong \text{Hom}_R(R/J \cap R, \text{Hom}_R(\tau R, E)) \\
\cong \text{Hom}_\tau(\tau R \otimes_R R/J \cap R, E) \cong \text{Hom}_\tau(\tau (R/J \cap R), E) = \text{Hom}_\tau(\tau R/J, E)
\]

Since \(E \) is \(\sigma \)-torsion free then \(E \) is \(\hat{\sigma} \)-torsion free but \(\tau R/J \) is \(\hat{\sigma} \)-torsion. Thus \(\text{Hom}_\tau(\tau R/J, E) = 0 \). This implies \(\text{Hom}_R(R/J \cap R, E) = 0 \) and hence \(J \cap R \in \mathcal{F}_\sigma \).

3. Let us see first that \(\sigma R \) is \(\tau \)-closed (as \(R \)-module). By [12, IX, Proposition 1.8] \(\sigma R \) is \(\sigma \)-closed, that is, \(\sigma R \) is \(\sigma \)-torsion free and \(\mathcal{F}_\sigma \)-injective. Thus \(\sigma R \) is \(\tau \)-torsion free and since \(\mathcal{F}_\tau \subseteq \mathcal{F}_\sigma \) then \(\sigma R \) is \(\mathcal{F}_\tau \)-injective.

Since \(R \) is \(\sigma \)-torsion free then \(\tau R \) is \(\hat{\sigma} \)-torsion free and we have following inclusions

\[
R \hookrightarrow \tau R \hookrightarrow \sigma R
\]

Also, we have to note that these inclusions are essential, so \(\sigma R \) is \(\hat{\sigma} \)-torsion free. Now, let \(J \in \mathcal{J}_\theta \) and \(g : J \to \sigma R \) an \(\tau R \)-morphism. Then \(J = \tau (J \cap R) \) and by (2) \(R/J \cap R \) is \(\tau \)-torsion. If \(\psi : R/J \cap R \to \tau (R/J \cap R) = \tau R/J \) is the canonical homomorphism then \(\text{Ker}(\psi) \) and \(\text{Coker}(\psi) \) are \(\tau \)-torsion, therefore they are \(\sigma \)-torsion. So we have the following short exact sequence:

\[
0 \to \frac{R/J \cap R}{\text{Ker}(\psi)} \to \tau R/J \to \text{Coker}(\psi) \to 0
\]

Thus, \(\tau R/J \) is \(\sigma \)-torsion.

Since \(\sigma R \) is \(\mathcal{F}_\sigma \)-injective there exists an \(R \)-morphism \(\bar{g} : \tau R \to \sigma R \) such that \(\bar{g}|_J = g \). We have that \(\sigma R \) is \(\tau \)-closed, so \(\bar{g} \) is an \(R \)-morphism between \(\tau \)-closed \(R \)-module, hence \(\bar{g} \) is an \(\tau R \)-morphism. Thus \(\sigma R \) is \(\mathcal{F}_\tau \)-injective.

4. Since \(\sigma R \) is an \(\tau R \)-module which is \(\hat{\sigma} \)-closed and \(\tau R \leq \sigma R \) then \(\sigma R \cong \hat{\sigma}(\tau R) \).

5. We have \(\sigma R \cong \hat{\sigma}(\tau R) \). Let \(N \) be an \(\sigma R \)-module. Since \(\sigma \) is perfect then \(N = \sigma N \) with \(R N \) \(\sigma \)-torsion free. Then \(\tau N \in \mathcal{q}_\tau(\mathfrak{F}) \). Thus \(\sigma N \) is \(\hat{\sigma} \)-torsion free. By [12, XI, Ex. 6] \(\hat{\sigma} \in \tau R \)-tors is perfect.

\[\square \]

Lemma 3.3. Let \(\tau \leq \sigma \) be perfect torsion theories in \(R \)-Mod and let \(q_\tau : R - \text{Mod} \to \tau R - \text{Mod} \) the localization functor.
1. If M is σ-cocritical then τM is $q_r(\sigma)$-cocritical.

2. If an τR-module K is $q_r(\sigma)$-cocritical then K as R-module is σ-cocritical.

Proof. 1. Since M is σ-torsion free then τM is $q_r(\sigma)$-torsion free. Let $N \leq \tau M$ be an τR-submodule. Since M is σ-torsion free then it is τ-torsion free, so the canonical morphism $\psi_M : M \to \tau M$ is a monomorphism. By [12, IX, Proposition 4.3] $N = \tau(N \cap M)$. Since τ is perfect, then q_r is exact, hence $M_N \cong q_r(\frac{M}{N \cap M})$. By hypothesis $\frac{M}{M \cap N}$ is σ-torsion thus $\frac{M}{N \cap N}$ is $q_r(\sigma)$-torsion.

2. Let K be a $q_r(\sigma)$-cocritical. Since K is $q_r(\sigma)$-torsion free then $K = \tau M$ for some M σ-torsion free. So, as R-module K is σ-torsion free. Now, let $L < K$ be an R-submodule such that K/L is σ-torsion free. Since q_r is exact $\frac{K}{L} \cong q_r(\frac{K}{L})$ but $q_r(\frac{K}{L})$ is $q_r(\sigma)$-torsion and $\frac{K}{L}$ $q_r(\sigma)$-torsion, this is a contradiction. This implies that $N/L = t_r(K/L) \neq 0$ and $\frac{K}{N} \cong \frac{K/L}{N/L}$ is σ-torsion free, hence $N = K$. Thus K/L is σ-torsion.

Lemma 3.4. Let R be a ring with finite Gabriel dimension, $Gdim(R) = n$. Let $\{\tau_i\}_{i=0}^n$ be the Gabriel filtration in R-tors with every τ_i perfect. If $q_{\tau_i} : R - Mod \to \tau_i R - Mod$ is the localization functor and $\{\omega_j\}$ is the Gabriel filtration in $\tau_i R$-tors, then $q_{\tau_i}(\tau_{i+1}) = \omega_i$ for all $0 \leq i$.

Proof. By induction over i. If $i = 0$ then $\tau_1 = \xi \in \tau_1 R$-tors and $\omega_0 = \xi$. Now suppose the result is valid for each natural less than i.

By hypothesis of induction $q_{\tau_i}(\tau_i) = \omega_{i-1}$, so

$$\omega_i = \omega_{i-1} \vee \bigvee \{\xi(K)|K \text{ is } \omega_{i-1}\text{-cocritical}\}$$

$$= q_{\tau_i}(\tau_i) \vee \bigvee \{\xi(K)|K \text{ is } q_{\tau_i}(\tau_i)\text{-cocritical}\}$$

Let K be a $q_{\tau_i}(\tau_i)$-cocritical, then by Lemma 3.3, 2 K as R-module is τ_i-cocritical, hence K is τ_{i+1}-torsion. Therefore $\omega_i \leq q_{\tau_i}(\tau_{i+1})$. By Lemma 3.3, 1 if N is τ_i-cocritical then $\tau_i N$ is $q_{\tau_i}(\tau_i) = \omega_{i-1}$-cocritical, so $\tau_i N$ is ω_{i-1}-torsion.

Let L be a ω_{i-1}-torsion free. Then L is $\omega_{i-1} = q_{\tau_i}(\tau_i)$-torsion free and hence RL is τ_i-torsion free. If L is not τ_{i+1}-torsion free there exists an R-morphism $0 \neq f : N \to L$ with N τ_i-cocritical. Then we have a non zero τ_i R-morphism $\tau_i f : \tau_i N \to L$ with $\tau_i N$ ω_{i-1}-cocritical. Contradiction. Thus L is τ_{i+1}-torsion free. This implies that L is $q_{\tau_i}(\tau_{i+1})$-torsion free. Thus $q_{\tau_i}(\tau_{i+1}) \leq \omega_i$.

\[\Box\]
Corollary 3.5. Let R be a ring with finite Gabriel dimension, $\text{Gdim}(R) = n$. Let $\{\tau_i\}_{i=0}^n$ be the Gabriel filtration in $R\text{-Mod}$. Suppose that every τ_i is perfect, then $\text{Gdim}(\tau_1 R) < n$.

Proof. If $\{\omega_j\}$ is the Gabriel filtration in $\tau_1 R$ then, by Lemma 3.4 $q_{\tau_1}(\tau_{i+1}) = \omega_i$ for all $0 \leq i$. Since $\text{Gdim}(R) = n$ then $\tau_n = \chi$ so $\omega_{n-1} = q_{\tau_1}(\tau_n) = q_{\tau_1}(\chi) = \chi \in \tau_1 R\text{-tors}$. This implies that $\text{Gdim}(\tau_1 R) \leq n - 1$. □

Lemma 3.6. Let $\tau \in R\text{-tors}$ and $\{\sigma_i\}_{i \in I} \subseteq R\text{-tors}$ be a family of perfect torsion theories such that $\tau \leq \sigma_i$ for all $i \in I$. If $q_{\tau} : R - \text{Mod} \rightarrow \tau R - \text{Mod}$ is the localization functor then

$$q_{\tau}(\bigvee_{i \in I} \sigma_i) = \bigvee_{i \in I} q_{\tau}(\sigma_i)$$

Proof. Write $\bigvee_{i \in I} \sigma_i = (\mathcal{F}_{\bigvee \sigma_i}, \mathcal{F}_{\bigvee \sigma_i})$. Then

$$q_{\tau}(\bigvee_{i \in I} \sigma_i) = (q_{\tau}(\mathcal{F}_{\bigvee \sigma_i}), q_{\tau}(\mathcal{F}_{\bigvee \sigma_i}))$$

The torsion free class of $\bigvee_{i \in I} \sigma_i$ is described as $\mathcal{F}_{\bigvee \sigma_i} = \bigcap_{i \in I} \mathcal{F}_{\sigma_i}$. So, if $q_{\tau}(N) \in q_{\tau}(\mathcal{F}_{\bigvee \sigma_i})$ then $N \in \bigcap_{i \in I} \mathcal{F}_{\sigma_i}$, hence $q_{\tau}(N) \in \bigcap_{i \in I} q_{\tau}(\mathcal{F}_{\sigma_i})$. Thus

$$\bigvee_{i \in I} q_{\tau}(\sigma_i) \leq q_{\tau}(\bigvee_{i \in I} \sigma_i)$$

Now, suppose $\bigvee_{i \in I} q_{\tau}(\sigma_i) < q_{\tau}(\bigvee_{i \in I} \sigma_i)$, that is, $\mathcal{F}_{\bigvee q_{\tau}(\sigma_i)} < q_{\tau}(\mathcal{F}_{\bigvee \sigma_i})$ then there exists $0 \neq q_{\tau}(N) \in q_{\tau}(\mathcal{F}_{\bigvee \sigma_i})$ such that $q_{\tau}(N) \in q_{\tau}(\mathcal{F}_{\bigvee q_{\tau}(\sigma_i)}) = \bigcap_{i \in I} q_{\tau}(\mathcal{F}_{q_{\tau}(\sigma_i)})$.

Since $\tau(N/\tau(N)) = 0$ then $q_{\tau}(N) = q_{\tau}(N/\tau(N))$, we have that $N \in \mathcal{F}_{\bigvee \sigma_i}$ then $N/\tau(N) \in \mathcal{F}_{\bigvee \sigma_i}$. Therefore, we can assume N is τ-torsion free. By the choice of N there exists $j \in I$ such that $N \notin \mathcal{F}_{\sigma_j}$, so $\sigma_j(N) = N' \neq 0$. On the other hand, $q_{\tau}(N) \in \bigcap_{i \in I} \mathcal{F}_{q_{\tau}(\sigma_i)}$ then there exists $N_j \in \mathcal{F}_{\sigma_j}$ such that $q_{\tau}(N) = q_{\tau}(N_j)$. Since $\tau < \sigma_j$, N_j is τ-torsion free, thus $N_j \leq e \mathfrak{M}_j = q_{\tau}(N)$. This implies that $0 \neq N' \cap N_j$ but N' is σ_j-torsion and N_j is σ_j-torsion free, this is a contradiction. Thus

$$\bigvee_{i \in I} q_{\tau}(\sigma_i) = q_{\tau}(\bigvee_{i \in I} \sigma_i)$$

□
Remark 3.7. In general Lemma 3.4 is not true for infinite ordinals. Let R be a ring with Gabriel dimension, $Gdim(R) = \alpha$, $\omega < \alpha$. Let $\{\tau_i\}_{i=0}^\alpha$ the Gabriel filtration in R-tors and suppose that every τ_i is perfect. Then, by the proof of Lemma 3.4 if $\{w_i\}$ is the Gabriel filtration in $\tau_1 R$-tors we have that $q_{\tau_1}(\tau_{i+1}) = w_i$ for all $i \in \mathbb{N}$. If ω is the first infinite ordinal, by Lemma 3.6
\[
q_{\tau_1}(\tau_\omega) = q_{\tau_1}(\bigvee_{i \in \mathbb{N}} \tau_i) = \bigvee_{i \in \mathbb{N}} q_{\tau_1}(\tau_i) = \bigvee_{i \in \mathbb{N}} w_{i-1} = w_\omega
\]

Definition 3.8. An injective left R-module E is called completely injective if every factor module of E is injective.

The following result is well known, see [1, 18, Ex. 10]

Proposition 3.9. Let R be a ring. R is left hereditary if and only if every injective module is completely injective.

Proposition 3.10. Let R be a left QI-ring and $\tau \in R$-tors a perfect torsion theory. Then the ring of quotients τR is a left QI-ring.

Proof. Let τA be a quasi-injective τR-module. Then we can consider A as a τ-torsion free R-module and by [12, IX, Proposition 2.5] $E(A)$ is an injective envelope of τA in τR-Mod. Hence $\tau A \leq E(A)$ is a fully invariant τR-submodule.

Let $f \in End_R(E(A))$, since $E(A)$ is τ-closed then f is an τR-morphism. Then $f(\tau A) \leq \tau A$, i.e., τA is a quasi-injective R-module. Since R is left QI, τA is an injective R-module. Thus by [12, IX, Proposition 2.7] τA is an injective τR-module. \qed

Remark 3.11. Let R be a left QI-ring. Consider the class of all semisimple left R-modules, it is known that this class is a hereditary pretorsion class but since R is left QI then, semisimple modules form a hereditary torsion class [5, Theorem 3.9]. Let us denote the hereditary torsion theory associated to the semisimple torsion class by τ_{ss}. The radical associated to τ_{ss} is Soc.

In the same way, if we consider the pretorsion class of all singular modules it is a hereditary torsion class. We will denote the hereditary torsion class by τ_g and the radical associated by \mathcal{Z}. Notice that if R is a simple ring then τ_g is the unique coatom in R-tors.

Theorem 3.12. Let R be a (simple) left QI-ring. Suppose that $Gdim(R) = n$ and let $\{\tau_i\}_{i=1}^n$ be the Gabriel filtration in R-tors. Suppose τ_1 is perfect. If $\tau_1 R$ is left hereditary then R is left hereditary.
Proof. Since R is a left QI-ring then $\tau_1 = \tau_{ss}$ and by hypothesis $\tau_1 R$ is left hereditary.

Now, let E be an indecomposable non singular injective left R-module. Let $E \to F$ be an epimorphism. Since R is a left noetherian and left V-ring $F = \text{Soc}(F) \oplus F'$ where F' is τ_1-torsion free and $\text{Soc}(F)$ is injective. So, to prove R is left hereditary is enough to prove that every factor module F of E with $\text{Soc}(F) = 0$ is injective.

Let $\rho : E \to F$ be an epimorphism such that $\text{Soc}(F) = 0$. This implies that $\text{Ker}(\rho) \in \text{Sat}_{\tau_1}(E)$. By $[12]$ Proposition 4.2 $\text{Sat}_{\tau_1}(E)$ consist of the τ_1-closed submodules of E. Consider the following diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & \text{Ker}(\rho) & \longrightarrow & E & \longrightarrow & F & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \text{Ker}(\rho) & \longrightarrow & E & \longrightarrow & \tau_1 F & \longrightarrow & 0
\end{array}
$$

Since τ_1 is perfect the localization functor is exact and $\text{Ker}(\rho)$ and E are τ_1-closed, so the second row is exact. This implies F is τ_1-closed. Thus ρ is an $\tau_1 R$-morphism. Since $\tau_1 R$ is left hereditary and E is an injective $\tau_1 R$-module then F is an injective $\tau_1 R$-module. Thus F is an injective R-module.

By $[6]$ Proposition 14A] every injective R-module is completely injective, thus R is left hereditary.

Theorem 3.13. Let R be a (simple) left QI-ring. Suppose that $Gdim(R) = n$ and let $\{\tau_i\}_{i=1}^n$ be the Gabriel filtration in R-tors. Then the following conditions are equivalent:

1. Every τ_i is perfect
2. R is left hereditary.

Proof. \Rightarrow By induction over n.

If $n = 1$ then R is semisimple, and thus R is hereditary.

Suppose the result is true for all left QI-rings R with $Gdim(R) < n$ such that every element in the Gabriel filtration is perfect. Let R be a left QI-ring with $Gdim(R) = n$. By hypothesis $\tau_1 = \tau_{ss}$ is perfect.

By Proposition 3.10 $\tau_1 R$ is a left QI-ring and by Lemma 3.5 $Gdim(\tau_1 R) < n$. Since the Gabriel filtration in $\tau_1 R$-tors is $\{q(\tau_i)\}_{1 \leq i < n}$ then, by
Lemma 3.2 we can apply the induction hypothesis. Hence $\tau_1 R$ is left hereditary. Thus by Theorem 3.12 R is left hereditary.

\Leftarrow. If R is left hereditary and left QI-ring then every hereditary torsion theory is perfect [12 XI, Corollary 3.6].

Definition 3.14. An R-module M satisfies the restricted left socle condition (RLS) if for any essential submodule $N \neq M$, the factor module M/N has non zero socle.

Proposition 3.15. Let R be a simple left QI-ring which is non semisimple. The following are equivalent:

1. R satisfies RLS.
2. $\tau_{ss} = \tau_g$
3. $Gdim(R) = 2$.
4. There exists a non singular indecomposable completely injective module E which is τ_{ss}-cocritical.

Proof. 1 \Rightarrow 2. Since R is non semisimple, then by Remark 3.11 $\tau_{ss} \leq \tau_g$. Now let M be a singular module and $0 \neq m \in M$. Then $(0 : m)$ is an essential left ideal of R. Thus $0 \neq Soc(R/(0 : m)) = Soc(Rm)$. This implies that $Soc(M) \leq M$ but $Soc(M)$ is a direct summand, so $M = Soc(M)$.

2 \Rightarrow 3. If $\{\tau_i | i \geq 0\}$ is the Gabriel filtration in R-tors then $\tau_1 = \tau_{ss} = \tau_g$. Since R is simple τ_g is a coatom in R-tors, thus $\tau_2 = \chi$.

3 \Rightarrow 4. If $Gdim(R) = 2$, then the Gabriel filtration in R-tors is $\{\xi, \tau_{ss}, \chi\}$. Therefore

$\chi = \tau_{ss} \lor \bigvee \{\xi(N) | N \text{ τ_{ss}-cocritical}\}$

Assume that every τ_{ss}-cocritical module is singular, then $\chi \leq \tau_g$, this is a contradiction. Hence, there exists a non singular τ_{ss}-cocritical module N. Since N is cocritical, it is uniform and so $E(N)$ is a non singular indecomposable injective module. By [3] proposition 2.1 $E(N)$ is also τ_{ss}-cocritical, thus we are done.

4 \Rightarrow 1. Since R is a simple ring then R is a prime ring. By [3 Corollary 2.15], E is up to isomorphism the only non singular indecomposable injective module. Now, by [3 Theorem 2.20] $E(R) \cong E^k$ for some $k > 0$; since E is completely injective then $E(R)$ so does by [6 Proposition 14A]. Let $I \leq_e R$, then $I \leq_e E(R)$ and so $E(R)/I$ is semisimple. Thus R/I is semisimple.

\[\square \]
Remark 3.16. In [6, Theorem 17] it is constructed an indecomposable injective module E such that E is non semisimple and satisfies \(RLS \). Then \(\text{Soc}(E) = 0 \), that is, E is τ_{ss}-torsion free. Since E is uniform and satisfies \(RLS \) then E is τ_{ss}-cocritical. Thus if E is nonsingular then E satisfies condition 4 of Proposition 3.15.

As Corollary we have the next result due to C. Faith [6, Theorem 18]

Corollary 3.17. Any left QI-ring R with restricted left socle condition is left hereditary.

Proof. By Proposition 3.15 R has $Gdim(R) = 2$. Hence the Gabriel filtration in R-tors is \(\{\xi, \tau_g, \chi\} \) where ξ and χ are the least and greatest elements of R-tors respectively. The element $\tau_g \in R$-tors is the Goldie’s torsion theory and it is perfect because R is left noetherian [12, Proposition 2.12 and Proposition 3.4]. Thus, by Theorem 3.13 R is left hereditary. \(\square \)

Lemma 3.18. Let $R = R_1 \times \cdots \times R_n$ be a finite product of rings. Then R satisfies \(RLS \) if and only if R_i satisfies \(RLS \) for all $1 \leq i \leq n$.

Proof. \(\Rightarrow \). Let $1 \leq i \leq n$ and I_i an essential left ideal of R_i. Then $I = R_1 \times \cdots \times I_i \times \cdots R_n$ is an essential left ideal of R. By hypothesis, R/I contains a simple R-module S, and we have that $R/I \cong R_i/I_i$. Thus S is a simple R_i-module and it can be embedded in R_i/I_i.

\(\Leftarrow \). Let I be an essential left ideal of R, then $I = I_1 \times \cdots \times I_n$ with I_i an essential left ideal of R_i. By hypothesis R_i/I_i contains a simple R_i-module and we have that $R/I \cong (R_1/I_1) \oplus \cdots \oplus (R_n/I_n)$. Thus R/I contains a simple R-module. \(\square \)

Remark 3.19. Let $R = R_1 \times \cdots \times$ be a product of rings. Notice that E is a non singular indecomposable injective R-module then E is a non singular indecomposable injective R_i-module for some $1 \leq i \leq n$. On the other hand, if E_i is a non singular indecomposable injective R_i-module then E_i is a non singular indecomposable injective R-module.

Theorem 3.20. Let $R = R_1 \times \cdots \times R_n$ be a left QI-ring such that each R_i is a simple left QI-ring and non semisimple. The following conditions are equivalent:

1. R satisfies \(RLS \).
2. For each \(1 \leq i \leq n \) there exists a non singular indecomposable injective \(R_i \)-module \(E_i \) which are \(\tau_{ss} \)-cocritical as \(R \)-modules.

3. \(Gdim(R) = 2 \).

4. \(\tau_{ss} = \tau_g \) in \(R \)-tors.

Proof. \(1 \Rightarrow 2 \). Since \(R \) satisfies \(RLS \) then by Lemma 3.18 each \(R_i \) satisfies \(RLS \). Hence by Proposition 3.15 there exist a non singular indecomposable injective \(R_i \)-module \(E_i \) which satisfies \(RLS \).

\(2 \Rightarrow 3 \). Let \(\{ \tau_j \} \) be the Gabriel filtration in \(R \)-tors. By Remark 3.19 each \(E_i \) is a non singular indecomposable injective \(R_i \)-module, so each \(E_i \) is \(\tau_{ss} \)-torsion free. Since each \(E_i \) is \(\tau_{ss} \)-cocritical then

\[
\tau_{ss} \lor \bigvee \xi(E_i) \leq \tau_2
\]

Now, if \(E \) is a non singular indecomposable injective \(R \)-module then \(E \) is a non singular indecomposable injective \(R_i \)-module for some \(1 \leq i \leq n \). But since \(R_i \) is simple and hence a prime ring, by [3, Corollary 2.20] \(E \cong E_i \). Thus all non singular indecomposable injective \(R \)-modules, up to isomorphism, are \(E_1, ..., E_n \). Again by [3, Corollary 2.20] \(\hat{R} \cong E_1^{k_1} \oplus \cdots \oplus E_n^{k_n} \) where \(\hat{R} \) denotes the injective hull of \(R \) for some natural numbers \(k_1, ..., k_n \). Thus \(\tau_{ss} \lor \bigvee \xi(E_i) = \chi \). So, \(Gdim(R) = 2 \).

\(3 \Rightarrow 4 \). If \(Gdim(R) = 2 \) then the Gabriel filtration in \(R \)-tors is \(\{ \xi, \tau_{ss}, \chi \} \). Since every \(R_i \) is a simple left QI-ring non semisimple, then all simple \(R \)-modules are singular. Thus \(\tau_{ss} \leq \tau_g \).

Suppose \(\tau_{ss} < \tau_g \) then there exists \(C \) such that \(C \) is \(\tau_{ss} \)-cocritical and \(\tau_g \)-torsion. If \(c \in C \), \(\text{ann}(c) \leq_e R_i \), and \(\text{ann}(c) = I_1 \times \cdots \times I_n \) with \(I_i \leq_e R_i \). Hence \(R_i/I_i \) is singular and we have a monomorphism

\[
R/I \cong (R_1/I_1) \oplus \cdots \oplus (R_n/I_n) \to C
\]

Since every \(R_i \) is a simple left QI-ring and \(R_i/I_i \) is singular then by Proposition 3.15 \(R_i/I_i \) is a semisimple \(R_i \) module, hence it is semisimple as \(R \)-module. Thus \(C \) is semisimple and \(\tau_{ss} = \tau_g \).

\(4 \Rightarrow 1 \). Let \(I \leq_e R \), then \(R/I \) is \(\tau_g \)-torsion then it is \(\tau_{ss} \)-torsion. This implies that \(R/I \) contains a simple \(R \)-module. Thus \(R \) satisfies \(RLS \). \(\square \)
References

[1] Frank W Anderson and Kent R Fuller. *Rings and categories of modules*. Springer-Verlag, 1992.

[2] A Boyle. Hereditary QI-rings. *Transactions of the American Mathematical Society*, 192, 1974.

[3] Jaime Castro, Mauricio Medina, and José Ríos. Modules with ascending chain condition on annihilators and goldie modules. to appear.

[4] John H Cozzens. Homological properties of the ring of differential polynomials. *Bulletin of the American Mathematical Society*, 76(1):75–79, 1970.

[5] John Dauns and Yiqiang Zhou. QI-modules. In *Modules and Comodules*. Trends in Mathematics, pages 173–183. Birkhäuser Verlag Basel, 2008.

[6] Carl Faith. On hereditary rings and Boyle’s conjecture. *Archiv der Mathematik*, 27(1):113–119, 1976.

[7] Jonathan S. Golan. *Torsion theories*, volume 29. Longman Scientific and Technical, Essex, and John Wiley and Sons, New York, 1986.

[8] Jonathan S. Golan and Zoltan Papp. Cocritically nice rings and boyle’s conjecture. *Communications in Algebra*, 8(18):1775–1798, 1980.

[9] Dinh Van Huynh and S. Tariq Rizvi. An approach to boyle’s conjecture. *Proceedings of the Edinburgh Mathematical Society*, (40):267–273, 1997.

[10] F Kasch. *Modules and rings*, volume 17. Academic Press, 1982.

[11] T. Y. Lam. *Lectures on modules and rings*. Springer, 1999.

[12] Bo Stenström. *Rings of quotients: An introduction to methods of ring theory*. Springer-Verlag, 1975.