6-19-2020

The effect of critical shoulder angle on functional compensation in the setting of cuff tear arthropathy.

Jeffrey Lu
Thomas Jefferson University

Manan Patel
Rothman Institute

Joseph A. Abboud
Rothman Institute

John G. Horneff
Rothman Institute

Follow this and additional works at: https://jdc.jefferson.edu/rothman_institute

Part of the Orthopedics Commons

Let us know how access to this document benefits you

Recommended Citation

Lu, Jeffrey; Patel, Manan; Abboud, Joseph A.; and Horneff, John G., "The effect of critical shoulder angle on functional compensation in the setting of cuff tear arthropathy." (2020). *Rothman Institute Faculty Papers*. Paper 141.
https://jdc.jefferson.edu/rothman_institute/141

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Rothman Institute Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
The effect of critical shoulder angle on functional compensation in the setting of cuff tear arthropathy

Jeffrey Lu, BS a, Manan Patel, BA b, Joseph A. Abboud, MD b, John G. Horneff III, MD b,∗

a Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
b Department of Orthopaedic Surgery, The Rothman Institute at Thomas Jefferson University, Philadelphia, PA, USA

Introduction: Critical shoulder angle (CSA) has been shown to influence rates of rotator cuff tears and glenohumeral arthritis with a larger CSA associated with rotator cuff tears and a smaller CSA associated with glenohumeral arthritis. There has been no study to determine whether such radiographic measurement influences the function of patients with demonstrated cuff tear arthropathy (CTA). The purpose of this study was to examine whether smaller CSAs were associated with greater range of motion (ROM) in patients diagnosed with CTA.

Materials and methods: Ninety-three patients with a diagnosis of CTA with adequate anteroposterior shoulder radiographs were included in the study. Patient demographics were recorded. The presence of a rotator cuff tear was confirmed via advanced imaging or when applicable via the operative report. Patients’ ROM was evaluated through the physician’s office note. Shoulder radiographs were used to measure CSA, glenoid inclination, acromial index (AI), and acromiohumeral interval. Patient ROM was measured and grouped into 2 different tiered cohorts: cohort 1 had 4 subgroups of forward elevation (FE) (ie, <45°, 45°–90°, 91°–135°, and 136°–180°) and cohort 2 had 2 subgroups of FE (ie, <90° and >90°). We then analyzed FE between these groups in the context of their radiographic measurements.

Results: The average patient age was 73.8 ± 8.0 years. There was no significant difference in acromiohumeral interval. AI was found to be significantly different between patients presenting with <90° in FE compared with those >90° (P = .02). Average CSA was significantly lower in patients with FE greater than 90° at 33.7 ± 3.9° compared with patients with FE less than 90° at 37.1 ± 6.3° (P = .002). There was also a significant difference with regard to CSAs, with those patients with FE < 45° having a mean CSA of 38.2° ± 8.3° compared with those patients with FE ≥ 135° having a mean CSA of 33.3° ± 4.3° (P = .02).

Conclusion: Patients diagnosed with CTA can significantly vary in their shoulder function and ability to forward elevate. Lower CSA was found to be associated with higher FE in patients with CTA preoperatively. In addition, patients with a smaller AI were also found to have better overhead function. Analyzing CSA on plain radiographs may help manage functional expectations in patients with CTA.

© 2020 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cuff tear arthropathy (CTA), first described in 1983 by Neer et al., is a chronic condition where massive rotator cuff tears (RCTs) lead to instability and disuse in the glenohumeral joint, resulting in humeral head atrophy and proximal migration. An intact rotator cuff produces a net inferior and compressive force to counteract the superior directed force of the deltoid. With a massive RCT, there is an unopposed and unopposed superiorly directed deltoid force, leading to proximal humeral migration, degeneration of the acromion and coracoid, and reduced motion. This pathology leads to the clinical symptoms often seen in patients with CTA including but not limited to restricted forward elevation (FE) and abduction of the arm. Among these patients with decreased function, there is a subset who cannot elevate their arms actively beyond 90° despite intact passive range of motion (ROM). These patients are defined as having pseudoparalysis. However, there remain patients who are diagnosed with CTA who are able to compensate and maintain the functional use of their arms.

The critical shoulder angle (CSA) is a radiologic measurement of the scapula that examines the inclination of the glenoid as well as the lateral extension of the acromion. Patients with a larger CSA are often found to have either an increased superior tilt of the glenoid, a larger lateral extension of the acromion, or a combination...
Extraocular muscles of both. This anatomical geometry of the scapula can result in an increased stress on the rotator cuff. Nyffeler et al.12 originally suggested that the more lateral acromion alters the resultant force vector of the middle deltoid muscle fibers that, in turn, can lead to a greater stress on the supraspinatus as it attempts to counteract the proximally driven vector. In addition, a more lateral acromion decreases the compressive force component created by the deltoid, which, when combined with a superiorly inclined glenoid face, allows the humeral head to be more easily driven upward. Moor et al.13 took this theory and examined the true anteroposterior (AP) shoulder radiographs of patients with either osteoarthritis or RCTs. The authors found that patients with larger CSAs had a higher likelihood of RCTs, whereas those with smaller CSAs had a higher likelihood of osteoarthritis of the glenohumeral joint.14,15

Considering that there exists a population of patients who have CTA but are still able to function with good FE, we decided to extrapolate this idea of CSA as it applies to the function of patients with CTA. We hypothesize that this radiographic parameter could impact the function of the cuff-deficient glenohumeral joint with smaller CSAs affording patients’ greater active FE. We also hypothesize that a smaller acromial index (AI) and a larger acromioluteal interval may correlate with greater active FE.

Material and methods

This study was a single-center, retrospective cohort study of patients diagnosed with CTA between January 2019 and September 2019. Patients were included if they had the diagnosis of CTA, were older than 18 years, and had preoperative AP shoulder radiographs. Patients were excluded if they had a fracture, a history of previous ipsilateral shoulder surgery, acute traumatic tears, or inadequate plain radiographic imaging. CTA was diagnosed by fellowship-trained surgeons based on clinical findings and shoulder radiograph findings, as described by Neer et al.16 However, if further confirmation was necessary, CTA was confirmed through either advanced diagnostic imaging or, in the case of those patients who went on to surgery, via reporting of a rotator cuff tendon tear in the operative report for reverse total shoulder arthroplasty (RSA). All patients included in the study were either treated nonoperatively or with RSA. No other surgical treatments were performed on patients included in the study.

Radiographs were standardized to AP radiographs of the affected shoulder taken within 1 year from the index office visit. Measurements were performed by 2 reviewers overseen by 1 fellowship-trained surgeon. Radiographic measurements included CSA, AI, glenoid inclination (GI), and acromiohumeral interval (AHI). Radiographs were accessed through the Sectra PACS system (Sectra Medical, Shelton, CT, USA). CSA was measured, as defined by Moor et al.17 with a line from the inferior pole of the glenoid to the superior pole and a line from the inferior pole of the glenoid to the lateral edge of the acromion (Fig. 1). AI was measured as the ratio of the distance between the glenoid pole and the lateral edge of the acromion (Fig. 2). AHI was measured as the distance between the glenoid pole and a line from the inferior pole of the glenoid to the lateral edge of the humerus (Fig. 3). GI was measured as defined by Maurer et al.18 where the beta angle was subtracted from 90°. The beta angle is defined as the angle formed between the floor of the supraspinatus fossa and the glenoid pole (Fig. 4). Shoulders were then classified based on the degree of CTA, as described by Hamada et al.19

Preoperative FE, age, gender, and body mass index (BMI) for each patient were obtained from the patient’s first office visit electronic medical record. The patient’s progression to reverse shoulder arthroplasty was recorded as well when performed.

Forward elevation analysis was undertaken in 2 different ways. First patients were grouped into 4 cohorts (ie, ≤45°, 46°–90°, 91°–135°, and >135°) and 2 cohorts (ie, ≤90° and >90°) based on FE (Table I). Cohorts were chosen to examine the degree of influence CSA had on FE. Analysis was taken under these 2 different ways to note the influence of CSA on CTA as it pertains to function and the various definitions of pseudoparalysis.

Statistical analysis was performed to assess the effect of these radiographic measurements on FE. The data were found not to be normally distributed, and a correlational analysis between FE and CSA was performed using a nonparametric Spearman’s test. In addition, analysis was performed by grouping FE values and performing Mann-
and 29.3 ± 6.4 kg/m², respectively (Table I). All 93 patients were diagnosed and treated for CTA with either nonoperative treatment (ie, corticosteroid injections, nonsteroidal anti-inflammatory drugs, therapy) or RSA. Of the 93 patients, 30 underwent RSA (32.3%) as their treatment choice at the time of evaluation.

Forward elevation

BMI, age, and gender were not significantly different between FE cohorts. Likewise, AHI measurements were not different between any of the cohorts. CSA measurements were significantly different for multiple cohorts (P = .002 for <90° vs. >90° groups, P = .02 for <45° vs. >135°, P = .006 for 46°-90° vs. >135°) (Table II). The Hamada classification was not found to be significantly different between patients with FE ≤ 90° compared with patients with FE > 90°. No other significance was found between cohorts. In addition, AI was found to be significantly different between patients presenting with ≤90° of FE and patients presenting with >90° of FE (0.8 vs. 0.7; P = .02). Of the 93 patients who went on to RSA, 20 patients had FE ≤ 90° whereas 10 patients had FE > 90°.

Correlational analysis shown in Table III was performed with all patients in the study. Patients with smaller CSA were found to have greater FE (Spearman’s rho = -.259, P = .012). A more anteriorly tilted glenoid was correlated with a smaller CSA (Spearman’s rho = 0.323, P = .002). In addition, a larger AI was correlated with higher CSA (Spearman’s rho = 0.854, P < .001). No other parameters measured were found to be correlated with FE.

Discussion

This is the first study to examine CSA as it relates to patients with CTA as a measure of their function. All patients in this study had a demonstrated RCT with a mean CSA of 35.5° ± 5.6°. We hypothesized that the function of these patients could be partially influenced by some of the same radiographic parameters that put patients at risk for RCT vs. osteoarthritis. In the setting of CTA, the deltoid is no longer opposed by the deficient rotator cuff forces. As such, the fulcrum created by the compressive and downward force of the rotator cuff is lost. Despite this, some patients with CTA are still able to demonstrate reasonable shoulder function with FE above 90°. Part of this functional compensation could be attributed to a more inferior tilted glenoid that creates more resistance to the superior vector of the deltoid and allows the humeral head to pivot. In addition, a more medial extension of the acromion decreases the vertical shear of the deltoid fibers proposed by Nyffeler et al.31 which aids in elevation of the arm. This notion was confirmed by our data as we demonstrated that patients diagnosed with CTA with greater than 90° of FE had a smaller average CSA when compared with the average CSA of patients with less than 90° of FE. The average CSA of patients with FE less than 45° was found to be greater than the average CSA of patients with FE greater than 135° (38.2° vs. 33.3°; P = .017). The average CSA of patients with FE between 46° and 90° was also found to be greater than the average CSA of patients with FE greater than 135° (37.1° vs. 33.3°; P = .006). In addition, we found a negative correlation between CSA and FE, suggesting that smaller CSA leads to less deficit in FE. Previous studies have demonstrated good interobserver reliability of CSA with Moor et al.17 reporting a bias of 0° with limits of agreement of −2° to +2°. Bjarnison et al.2 demonstrated a systematic difference between observers of 1.5° for CSA in patients with RCT and 0.7° for CTA patients with osteoarthritis. Furthermore, the Hamada classification did not appear to affect FE in patients with CTA as the Hamada classification between FE < 90° vs. FE > 90° was not significantly different (P = .182). This study demonstrates an association between a lower CSA and preservation of ROM in patients

Figure 3 Acromiohumeral interval (AHI).

Figure 4 Glenoid inclination.

Whitney U and Kruskal-Wallis tests. The Mann-Whitney U test was used when FE was grouped into 2 cohorts (ie, ≤90° vs. >90°), and Kruskal-Wallis was performed when FE was grouped into 4 cohorts (ie, ≤45°, 45°-90°, >91°-135°, and >136°-180°). The follow-up Mann-Whitney U test was performed for post hoc pairwise analysis. All statistical analyses were performed with Statistical Package for the Social Sciences (SPSS) Statistics software 26 (IBM Corp., Armonk, NY, USA).

Results

Demographics

After applying inclusion and exclusion criteria following IRB approval, 93 patients were included in this study for analysis—62 females and 31 males with an average age and BMI of 73.8 ± 8.0 years.
with known CTA and shows the significance of CSA in patients who already have known cuff tears.

Cuff tear arthropathy describes a form of glenohumeral arthritis secondary to long-term rotator cuff deficiency. Patients with CTA have varying degrees of function in respect to FE, losses ranging from 15° to 60°, and external rotation, losses ranging from 10° to 35°, $\cite{22,23}$ CSA is a radiologic measurement, which takes into account the GI and the AI, associated with degenerative joint disease and RCTs. $\cite{17}$ Previous studies have demonstrated the association between CSA and development of rotator cuff disease. 1,6,9,13,18 Nyffeler et al. 11 proposed that with larger acromial extension, the middle fibers of the deltoid are almost straight, allowing more humeral elevation. With a smaller acromion, the ascension force decreases whereas the compressive force on the humeral head increases. 21 Terrier et al. 26 demonstrated a similar finding in a 3D finite-element study where a larger acromion increased superior translation of the humeral head during active FE. 17 Moor et al. applied this idea and further demonstrated an association between smaller CSAs with glenohumeral arthritis and larger CSAs with RCTs. The authors noted that those with CSA $>35^\circ$ were more likely to demonstrate RCTs, whereas those with CSA $<30^\circ$ were more likely to demonstrate osteoarthritis. 13 Heuberer et al. 12 found patients with osteoarthritis had lower CSAs ($27.3^\circ \pm 3.5^\circ$) compared with patients with RCTs ($36.3^\circ \pm 2.7^\circ$; $P < .001$), corroborating the results of Moor et al. In addition, in a subset of patients with CTA, the mean CSA was $35.2^\circ \pm 2.8^\circ$, similar to the results of this study. 12 Watanabe et al. 17 noted that patients with RCTs had a larger CSA compared with patients without RCTs ($P < .001$). Li et al. 14 similarly found that CSAs $>35^\circ$ were associated with RCTs, due to the increased superior shear forces, whereas CSAs $<30^\circ$ were associated with glenohumeral osteoarthritis, due to increased compressive forces across the glenohumeral joint. The value of this study is that it is the first to demonstrate the difference in the cuff-deficient shoulder function as it relates to radiographic parameters. One of the complications commonly described after RSA is loss of external rotation and internal rotation. 11,25,28 Given the known loss of external and internal rotation after RSA, these findings may be useful in identifying patients who may be more successfully treated with reconstruction options such as superior capsular reconstruction, partial rotator cuff repair, or tendon transfer before considering reverse shoulder arthroplasty. Mihata et al. 16 reported an average active external rotation improvement of 14° after superior capsular reconstruction. These evolving techniques help to preserve patient anatomy that is one major drawback of reverse arthroplasty. Further studies are required to determine the biomechanical basis and the clinical utility of these findings with the hopes of determining better indications for these techniques. In advanced CTA disease, reverse shoulder arthroplasty is often the best surgical option, but we hope that this study will encourage further investigation into alternative treatment options.

This study was limited by the retrospective, case-control study design. One could argue that patients identified earlier in the disease course may have higher FE compared with those identified later. However, the Hamada classifications did not significantly differ between FE cohorts, suggesting that in our study, radiographic progression of CTA did not play a significant role in determining FE. In addition, a larger sample size may have allowed for identification of other radiographic measurements with the impact on ROM. Another limitation involves the subjective nature of measuring ROM. Forward elevation data were collected from reports by multiple shoulder and elbow surgeons, potentially introducing some error into the data. However, this is how we communicate as surgeons in real everyday practice so it is realistic. Finally, some patients who were diagnosed with CTA and went on to reverse shoulder replacement because of significant pain or poor function did not require advanced imaging. Even though they were demonstrated to have an RCT on examination

Table I	Demographic data for the entire cohort
No. with confirmed RCT, n (%)	93
Age (yr)	73.8 \pm 8.0
Sex	62F, 31M
BMI (kg/m²)	29.3 \pm 6.4
Mean CSA	35.5 \pm 5.6
No. proceeded to RSA, n (%)	30 (32.3)
Forward elevation $<90^\circ$ before RSA	20
Forward elevation $>90^\circ$ before RSA	10

Table II	Demographic data and measurements based on forward elevation							
$\leq 45^\circ$	46^-90°	91^-135°	$>135^\circ$	P value	$\leq 90^\circ$	$>90^\circ$	P value	
N = 16	N = 36	N = 12	N = 29	N = 52	N = 41			
Age (yr)	75.2 \pm 6.1	72.9 \pm 8.1	71.8 \pm 5.9	74.5 \pm 9.2	.479	73.6 \pm 7.6	73.7 \pm 8.4	.956
Sex	7 (24.1%)	10 (34.5%)	2 (6.9%)	10 (34.5%)	.441	17 (58.6%)	12 (41.4%)	.450
Male	9 (34.1%)	26 (40.6%)	10 (15.6%)	19 (29.7%)	.35	35 (54.7%)	29 (45.3%)	.693
Female	28.2 \pm 6.6	30.7 \pm 7.2	28.8 \pm 5.3	28.6 \pm 6.2	.460	29.9 \pm 7.0	28.7 \pm 5.9	.391
BMI (kg/m²)	.08 \pm 0.1	.08 \pm 0.1	.07 \pm 0.1	.07 \pm 0.1	.780	.08 \pm 0.1	.07 \pm 0.1	.023
Acromial index	.08 \pm 0.1	.08 \pm 0.1	.07 \pm 0.1	.07 \pm 0.1	.780	.08 \pm 0.1	.07 \pm 0.1	.023
Hamada classification	34 (65.4%)	32 (78%)	.182					
Hamada ≤ 3	18 (34.6%)	9 (22%)	.966					
Hamada >3	5.7 \pm 3.6	4.7 \pm 2.8	5.9 \pm 1.9	4.7 \pm 2.6	.111	5.3 \pm 3.3	5.2 \pm 2.7	.966

BMI, body mass index; CSA, critical shoulder angle; AHI, acromiohumeral interval. $\leq 45^\circ$, $\geq 46^-90^\circ$, $\geq 91^-135^\circ$, $\geq 135^\circ$, $P < .017$, $P < .006$. Δ
and at the time of surgery, there was no quantitative assessment of the size of their cuff tear or qualitative assessment of their cuff muscle atrophy. However, the AH in all cohorts was not significantly different. Previous studies have shown a correlation between AH and RCT size.20,24 Lastly, as CTA progresses, it is possible that increased wear patterns on the glenoid can eventually lead to changes in the measured CSA. This is much more of concern with a more advanced wear pattern demonstrated in a Sirveaux E2/E3 glenoid. Although we did not use this classification scheme, the majority of patients in our study were Hamada Grade 3 or less that are less worn patterns seen with CTA. In addition, there was no noted impact of Hamada Grade on study were Hamada Grade 3 or less that are less worn patterns seen.

We realize that the function of the cuff-de

parameters may serve as a valuable assessment in determining which treatment options to consider in the cuff-deficient patient.

Conclusion

Patients diagnosed with CTA can significantly vary in their shoulder function and ability to forward elevate. Although multifactorial, this study demonstrates that a smaller CSA in the setting of a shoulder function and ability to forward elevate. Although multifactorial, this study demonstrates that a smaller CSA in the setting of a

shoulder. J Shoulder Elbow Surg 2016;25:1328–36. https://doi.org/10.1016/j.jse.2015.11.059.

4. Burkart SS. Fluoroscopic comparison of kinematic patterns in massive rotator cuff tears: a suspension bridge model. Clin Orthop Rel Res 1992:144–52. https://doi.org/10.1016/0009-9290(92)90112-9.

5. Hamada K, Fukuda H, Mikasa M, Kobayashi Y. Roentgenographic findings in massive rotator cuff tears. A long-term observation. Clin Orthop Relat Res 1990;6–9.

6. Herrmann S, König C, Helfer M, Perka C, Greiner S. Reverse shoulder arthroplasty leads to significant biomechanical changes in the remaining rotator cuff. J Orthop Surg Res 2017;12:75. https://doi.org/10.1186/s13018-017-0713-3.

7. Eajazi A, Kussman S, Lebedis C, Guermazi A, Kompel A, Jawa A, et al. Rotator cuff tear arthropathy: pathophysiology, imaging characteristics, and treatment options. AJR Am J Roentgenol 2015;205:W502–11. https://doi.org/10.2214/ AJR.14.113815.

8. Field LD, Dines DM, Zabinski SJ, Warren RF. Hemiarthroplasty of the shoulder for rotator cuff arthropathy. J Shoulder Elbow Surg 1997;6:18–23.

9. Gerber C, Sneede JK, Baumgartner D, Viehhofer AF. Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: a biomechanical analysis. J Orthop Res 2014;32:952–7. https://doi.org/10.1002/jor.22621.

10. Hamada K, Fukauda H, Mikasa M, Kobayashi Y. Roentgenographic findings in massive rotator cuff tears. A long-term observation. Clin Orthop Relat Res 1990;6–9.

11. Herrmann S, König C, Helfer M, Perka C, Greiner S. Reverse shoulder arthroplasty leads to significant biomechanical changes in the remaining rotator cuff. J Orthop Surg Res 2017;12:75. https://doi.org/10.1186/s13018-017-0713-3.

12. Heuberer PR, Plachen F, Willinger M, Moroder P, Laky B, Pauzenberger L, et al. Critical shoulder angle combined with age predict five shoulder pathologies: a retrospective analysis of 1000 cases. BMC Musculoskelet Disord 2017;18:259. https://doi.org/10.1186/s12891-017-1559-9.

13. Hughes RE, Bryant CR, Hall JM, Wening J, Huston JJ, Kuhn JE, et al. Glenoid inclination is associated with full-thickness rotator cuff tears. Clin Orthop Relat Res 2003;86–91. https://doi.org/10.1097/01.blo.0000151441.05180.0e.

14. Li X, Olszewski N, Abdul-Rassoul H, Curry EJ, Galvin JW, Eichinger JK. Relationship between the critical shoulder angle and shoulder disease. JBJS Rev 2018;8:e1. https://doi.org/10.1002/jbjsrw.10017.

15. Maurer A, Fucetese SF, Pfirrmann CWA, Worth SH, Dhajangiri A, Jost R, et al. Assessment of glenoid inclination on routine clinical radiographs and computed tomography examinations of the shoulder. J Shoulder Elbow Surg 2012;21:1096–103. https://doi.org/10.1016/j.jse.2011.07.010.

16. Mihata T, Lee TQ, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, et al. Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Arthroscopy 2013;29:459–70. https://doi.org/10.1016/j.arthro.2012.10.022.

17. Moor BK, Bouaicha S, Rothenhundt DA, Sukthankar A, Gerber C. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritits of the glenohumeral joint? A radiological study of the critical shoulder angle. Bone Joint J 2013;95-B:935–41. https://doi.org/10.1302/0301-620X.95B7.31028.

18. Moor BK, Wieser K, Slankamenac K, Gerber C, Bouaicha S. Relationship of individual scapular anatomy and degenerative rotator cuff tears. J Shoulder Elbow Surg 2014;23:536–41. https://doi.org/10.1016/j.jse.2013.11.008.

19. Neer CS, Craig EV, Fukuda H. Cuff-tear arthropathy. J Bone Joint Surg Am 1972;54:1232–4.

20. Növe-Josserand I, Edwards TB, O’Connor DP, Walch G. The acromiohumeral and coracohumeral intervals are abnormal in rotator cuff tears with muscular fatty degeneration. Clin Orthop Relat Res 2005;90–6. https://doi.org/10.1097/ 01.blo.0000151441.05180.0e.

21. Nyffeler RW, Werner CML, Sukthankar A, Schmid MR, Gerber C. Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Joint Surg Am 2006;88:800–5. https://doi.org/10.2106/JBJS.D.03042.

22. Rugg CM, Gallo RA, Craig EV, Feeley BT. The pathogenesis and management of cuff tear arthropathy. J Shoulder Elbow Surg 2018;27:2271–83. https://doi.org/10.1016/j.jse.2018.07.020.

23. Sanchez-Sotelo J, Cofield RH, Rowland CM. Shoulder hemiarthroplasty for glenohumeral arthritis associated with severe rotator cuff deficiency. J Bone Joint Surg Am 2001;83:1814–22.

24. Saupe N, Pfirrmann CWA, Schmid MR, Jost B, Werner CML, Zanetti M. Association between rotator cuff atrophy and reduced acromiohumeral distance. AJR Am J Roentgenol 2006;187:376–82. https://doi.org/10.2214/AJR.05.0435.

25. Scarlat MM. Complications with reverse total shoulder arthroplasty and recent evolutions. Int Orthop 2013;37:843–51. https://doi.org/10.1007/s00264-013-1832-6.

26. Terrier A, Reist A, Nyffeler RW. Influence of the Delta III reattachment shoulder reaction force and humeral head translation during abduction in the scapular plane. J Biomech 2006. https://doi.org/10.1016/s0021-9290(06)8218-5.

27. Watanabe A, Ono Q, Nishigami T, Hirooka T, Machida H. Association between the critical shoulder angle and rotator cuff tears in Japan. Acta Med Okayama 2018;72:547–51. https://doi.org/10.18926/AMO/56371.

28. Werner CML, Steinnmann PA, Gilbart M, Gerber C. Treatment of painful pseudo-arthrosis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis. J Bone Joint Surg Am 2005;87:1476–86. https://doi.org/10.2106/JBJS.D.0342.

29. Zackendorf JD, Scott AJ, Gallagher MA. Hemiarthroplasty for cuff tear arthropathy. J Shoulder Elbow Surg 2000;9:169–72.