Successful infusional 5-fluorouracil administration in a patient with vasospastic angina

Shannon Tai a, Divyanshu Mohananey b, Claire Griffiths c, Bradley Johnson b, Jalaj Garg b, Timothy J. Ridolfi d, Nicole L. Lohr b, Sakti Chakrabarti c, Sherry-Ann Brown e, f

a Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
b Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
c Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
d Division of Colorectal Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
e Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
f Corresponding author at: Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Wauwatosa, WI 53226, USA.

E-mail address: shbrown@mcw.edu (S.-A. Brown).

ABSTRACT
A 48-year-old female with metastatic colon adenocarcinoma and history of pre-existing coronary vasospasm with ventricular tachycardia (VT) successfully tolerated de novo 5-fluorouracil (5-FU)-chemotherapy infusions with prophylactic administration and optimization of anti-spasm medications. S-FU has been reported to produce severe cardiotoxic side effects, including coronary vasospasm, ventricular arrhythmias, and sudden cardiac death, and is not typically reported in individuals with pre-existing coronary vasospasm.

1. Introduction
Our case report is unique in a number of ways. First, to the best of our knowledge, this is the only case report detailing the management of 5-FU administration in a patient diagnosed with coronary vasospasm prior to initiation of 5-FU. Second, this report highlights the successful use of a range of methods (oral, intravenous, and patch) of nitroglycerin delivery. These are important, especially in the outpatient setting as oral administration of nitroglycerin may be difficult in patients with coloectomy and resultant poor absorption of oral medications. Lastly, this report highlights the role of additional monitoring such as a 14-day or implantable loop recorder in patients who are suspected to have arrhythmias secondary to vasospasm.

2. Case presentation
A 48-year-old female with a past medical history of hypertension, dyslipidemia, Raynaud’s disease, and nicotine use underwent hemicolectomy for an enhancing soft tissue density initially suspected as complicated diverticulitis of the descending colon. During surgery, she developed sinus bradycardia, ST depressions, and T-wave inversions, followed by non-sustained VT. Immediately post-operatively, the patient experienced chest and left shoulder pain with diaphoresis, associated with ST elevation in the inferior leads, ST depression in the lateral leads, and high-grade atrioventricular block (Fig. 1), followed by several episodes of sustained VT lasting for as long as 50 s (Fig. 2). She also then reported substernal chest pain at rest with spontaneous resolution (which she had thought to be heartburn) on multiple occasions prior to surgery.

On postoperative day 1, a transthoracic echocardiogram showed an ejection fraction of 64% with no regional wall motion abnormalities. On postoperative day 2, coronary angiography demonstrated no evidence of obstructive coronary artery disease (Fig. 3). Given that the symptoms and ECG findings were self-resolving, along with the risk of excessive bleeding with angiography and PCI in the immediate postoperative setting, catheterization was deferred to postoperative day 2. The troponin levels have been negative. Her symptoms and ECG findings, along with the absence of angiographically demonstrable obstructive coronary artery disease were highly suggestive of coronary artery vasospasm [1,2]. Her symptoms and ECG findings subsided on anti-anginal medications that included amiodopine, isosorbide mononitrate, and metoprolol tartrate which further supported the diagnosis.

Abbreviations: ECG, electrocardiogram; 5-FU, 5-fluorouracil; SCD, sudden cardiac death; VT, ventricular tachycardia.

https://doi.org/10.1016/j.ahjo.2022.100147
Received 30 December 2021; Received in revised form 16 May 2022; Accepted 17 May 2022
Available online 28 May 2022
2666-6022 © 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Oncologic workup revealed colonic adenocarcinoma, with liver metastasis. 4 cycles of systemic chemotherapy, followed by resection of the liver metastases, then another 8 cycles of systemic chemotherapy were planned, with curative intent [3]. She was evaluated in cardio-oncology prior to planned infusional 5-FU therapy. Initially, an alternative chemotherapy regimen consisting of bolus 5-FU (FLOX5-FU and oxaliplatin) was discussed [4]. However, in view of paucity of data regarding the efficacy of the FLOX regimen in potentially curable oligometastatic colon cancer and given known increased gastrointestinal side effects of 5-FU bolus [5], modified FOLFIRINOX (folinic acid, infusional 5-FU, irinotecan, and oxaliplatin) was initiated, after an extensive risk versus benefit discussion with the patient and her multidisciplinary care team.

For the first cycle of chemotherapy, the patient was admitted to intensive care unit with continuous electrocardiographic monitoring. Cycle 1 of FOLFIRINOX was administered as follows: irinotecan (165
Cardiotoxicity from 5-FU may include coronary vasospasm, cardiac arrhythmias, and SCD, with anginal chest pain as the most common presentation, with an incidence of up to 18% [4]. While prior data suggested that the risk of cardiotoxicity is higher in patients with pre-existing cardiac disease such as coronary vasospasm, coronary artery disease, or cardiomyopathy [6,7]; a more recent analysis reveals that patients with vasospasm may actually be less likely to have prior cardiovascular disease or risk factors or be on cardiac medications [8]. Our patient had pre-existing coronary vasospasm, hypertension, and dyslipidemia, without ischemic heart disease.

Mechanisms of cardiotoxicity induced by 5-FU include coronary vasospasm, direct myocardial injury, vascular endothelial dysfunction, and impaired oxygen delivery [6]. The primary mechanism is coronary vasospasm leading to an acute ischemic event. The direct toxic effect of 5-FU on vascular endothelial cells results in endothelial damage and subsequent platelet and fibrin accumulation as well [6]. 5-FU also converts the usual biconcave shape of erythrocyte membranes to an echinocyte shape, which diminishes the erythrocyte’s ability to deliver and transport oxygen, resulting in myocardial ischemia and injury [6].

In colorectal cancer treatment, 5-FU infusion is preferred over bolus in the adjuvant and metastatic settings in part due to tolerability [5,9]. In adjuvant treatment of resected colon cancer, infusion and bolus share similar disease-free survival and overall survival. However, side effects including neutropenia, diarrhea, and mucositis are significantly reduced with infusion compared to bolus and thus are the preferred route of administration [5]. In metastatic colorectal cancer, 5-FU infusion has shown a significantly improved response rate, and fewer toxicities compared to bolus dosing [9].

To the best of our knowledge, this is the first case report documenting successful de novo 5-FU administration in a patient with pre-existing coronary artery vasospasm. Recent literature has suggested strategies to manage fluoropyrimidine-induced chest pain in patients without pre-existing coronary vasospastic disease, but there are no established guidelines for managing 5-FU-induced cardiac complications in patients with pre-existing coronary vasospastic disease [4]. For prophylaxis of coronary vasospasm induced by 5-FU infusion in these high-risk patients, we propose starting nitroglycerin (10 μg/min) prior to chemotherapy infusion while inpatient followed by oral isosorbide mononitrate (and nitroglycerin patches if necessary), with sublingual nitroglycerin available for breakthrough, to vasodilate the coronary vessels during chemotherapy treatment. For the management of vasospastic episodes in between or after 5-FU treatments, appropriate titration of oral isosorbide mononitrate and nitroglycerin patches is warranted. In a recent study, 115 patients with vasospasm induced by 5-FU were studied; 5-FU rechallenge after pretreatment with calcium channel blockers (CCB) and/or nitrates was safe and allowed continued 5-FU therapy [10]. Of note, 78 of the 115 patients received oral long-acting CCB or nitrate therapy in this study and 34 patients had to stop 5-FU therapy. In our report, we use prophylactic and empiric IV nitroglycerin in a patient with baseline/pre-existing idiopathic and recurrent 5-FU-induced coronary vasospasm and high risk for ventricular arrhythmias. The successful use of our approach may be crucial for some patients in a similar circumstance, as chemotherapy options are limited in
these situations and an inability to use 5-FU may result in higher mortality [8,10].

For treating cardiotoxicity, vasodilatation with non-dihydropyridine calcium channel blockers and nitrates has been effective in relieving chest pain and ECG changes from coronary vasospasms induced by 5-FU, aborting symptoms in up to 70% of patients [6]. In the past, it was recommended that 5-FU should be immediately discontinued upon clinical symptoms or ECG changes, with avoidance of subsequent rechallenge – which has an 82–100% risk of recurrence and a mortality of 13% [6]. However, more recent data and associated recommendations suggest that rechallenge can be considered with appropriate monitoring and pre-treatment with nitrates and calcium-channel blockers [10–12].

Life-threatening ventricular arrhythmias and SCD are rare complications of coronary artery vasospasm. It has been suggested that patients with coronary artery vasospasm and life-threatening ventricular arrhythmias may benefit from ICD placement for secondary prevention of SCD [13]. Our patient did not receive an ICD for secondary prevention of SCD, due to an absence of hemodynamically unstable sustained VT or a history of cardiac arrest due to ventricular fibrillation, given that her VT was situational in the perioperative setting and therefore considered to be from a reversible cause. Her coronary artery vasospasm continues to be managed with medications.

A key limitation to our report was that we did not utilize a provocative challenge test to confirm the diagnosis of coronary vasospasm. While this testing would provide definitive evidence, it is not without risk, and while routine in some practices, is recommended particularly when clinical criteria and non-invasive assessment fail to confirm the diagnosis [14,15]. Our patient had symptoms and ECG changes suggestive of vasospasm, without any evidence of epicardial coronary artery disease on invasive angiography. Additionally, her symptoms were relieved by medications targeting coronary vasospasm. Given that her clinically diagnosed vasospasm was associated with VT, the risk versus benefit balance was considered in favor of treating the vasospasm without additional provocation testing to potentially elicit further VT. Echocardiographic, clinical, and laboratory findings were not otherwise suggestive of idiopathic myocarditis, and a cardiac MRI or further cardiovascular testing was not obtained. Clinical diagnosis of 5-FU vasospasm is consistent with prior literature, including a recent large retrospective analysis from Massachusetts General Hospital, where the authors described coronary vasospasm induced by 5-FU as the occurrence of new typical resting chest pain with or without ECG or biomarker changes [8]. Despite this limitation, this is the first case report documenting successful de novo 5-FU administration in a patient with previous coronary artery vasospasm and therefore adds to scant prior literature and guidance on this subject.

4. Conclusions

5-FU is well known to cause severe cardiotoxic side effects, often presenting as chest pain related to coronary vasospasm with a high risk of fatal cardiac complications. For patients with pre-existing coronary vasospasm, optimization of oral anti-spasmic medication and early preemptive treatment with nitroglycerin infusion, as well as prompt cessation of 5-FU when indicated, may be critical.

Ethics approval and consent to participate

Ethics approval and consent to participate was obtained. Patient gave informed consent.

Consent for publication

Consent for publication was obtained.

Availability of data and materials

Not applicable.

Funding

This publication was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Numbers UL1TR001436 and KL2TR001438. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

CRediT authorship contribution statement

Conception and design: SAB, CG, SC, NL, DM
Drafting of the manuscript: ST
Interpretation of data: SAB, CG, SC, NL, DM, ST, JG, TR, BJ
Critical revision: SAB, SC, DM, JG, CG.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

None.

References

[1] F. Picard, N. Sayah, V. Spagnoli, J. Adjedj, O. Varenne, Vasospastic angina: a literature review of current evidence, Arch. Cardiov. Dis. 112 (1) (2019) 44–55.
[2] S. Matsushita, K. Hyodo, T. Imazuru, C. Tokunaga, F. Sato, Y. Enomoto, et al., The minimum coronary artery diameter in which coronary spasm can be identified by synchrotron radiation coronary angiography, Eur. J. Radiol. 68 (3 Suppl) (2008) S84–S88.
[3] Colon Cancer.: National Comprehensive Cancer Network.n.d.
[4] S. Chakrabarti, J. Sara, R. Lobo, R. Eiring, H. Finnes, J. Mitchell, et al., Bolus 5-fluorouracil (5-FU) in combination with oxalplatin is safe and well tolerated in patients who experienced coronary vasospasm with infusional 5-FU or capecitabine, Clin. Colorectal Cancer 18 (1) (2019) 52–57.
[5] T. Andre, P. Colin, C. Louvet, E. Gamelin, O. Boucher, E. Achille, et al., Semimonthly versus monthly regimens of fluorouracil and leucovorin administered for 24 or 36 weeks as adjuvant therapy in stage II and III colon cancer: results of a randomized trial, J. Clin. Oncol. 21 (15) (2003) 2896–2903.
[6] C. Yuan, H. Faeckh, C. Allegro, T.J. George, J.S. Starr, 5-FU induced cardiotoxicity: case series and review of the literature, Cardiooncology 5 (2019) 13.
[7] G.M. L., J. G., N. S. Cardiotoxicity of Chemotherapeutic Agents,n.d.: 1: Nova Biomedical. p. 13–33.
[8] A. Zafar, Z.D. Drobsi, R. Mosara, R.M. Alvi, M. Lei, U.Y. Lou, et al., The incidence, risk factors, and outcomes with 5-fluorouracil-associated coronary vasospasm, JACC CardioOncol. 3 (1) (2021) 101–109.
[9] A. de Gramont, J.F. Bosset, P. Rougier, O. Bouché, P.L. Etienne, et al., Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a french intergroup study, J. Clin. Oncol. 15 (2) (1997) 808–815.
[10] A. Zafar, Z.D. Drobsi, M. Lei, C.A. Gongora, T. Quinaglia, U.Y. Lou, et al., The efficacy and safety of cardiac-protective therapy in patients with 5-FU (Fluorouracil)-associated coronary vasospasm, PLoS One 17 (4) (2022), e0265767.
[11] Claesen S.C. KB, R. O’Quinn, et al., Fluoropyrimidine-induced Cardiac Toxicity: Challenging the Current Paradigm, 2017.
[12] Padegimas A CJ. n.d. How to Diagnose and Manage Patients With Fluoropyrimidine-Induced Chest Pain: A Single Center Approach.
[13] Y. Matsum, M. Suzuki, M. Nishizaki, R. Hojo, Y. Hashimoto, H. Sakurada, Clinical implications of an implantable cardioverter-defibrillator in patients with vasoplastic angina and lethal ventricular arrhythmia, J. Am. Coll. Cardiol. 60 (10) (2012) 908–913.
[14] R.A. Montone, M.C. Mescu, A. De Vita, G.A. Lanza, G. Niccoli, Coronary provocative tests in the catheterization laboratory: pathophysiological bases, methodological considerations and clinical implications, Atherosclerosis 318 (2021) 14–21.
[15] M. Zaya, P.K. Mehta, C.N. Merz, Provocative testing for coronary reactivity and spasm, J. Am. Coll. Cardiol. 63 (2) (2014) 103–109.