PRMT5 epigenetically regulates the E3 ubiquitin ligase ITCH to influence lipid accumulation during mycobacterial infection

Salik Miskat Borboraa, R.S. Rajmanib, Kithiganahalli Narayanaswamy Balajia,*

a Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012, Karnataka, India

b Center for Infectious Disease Research, Indian Institute of Science, Bangalore – 560012, Karnataka, India

*To whom correspondence should be addressed: Dr. Kithiganahalli Narayanaswamy Balaji,

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India

Phone: +91-80-22933223,

E-mail address: balaji@iisc.ac.in
Abstract

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux genes. Here, we define an Mtb-orchestrated modulation of the ubiquitination mechanism of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of *Itch* gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In our study, perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in primary murine macrophages (*ex vivo*) and in a therapeutic mouse model of TB infection (*in vivo*). These findings provide new insights on the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our
observations could help design novel adjunct therapies and combinatorial drug regimen
for effective anti-TB strategies.

Author Summary

Mycobacterium tuberculosis generates lipid-laden cells (foamy macrophages-FMs) that
offer a favorable shelter for its persistence. During infection, we observe a significant
reduction in the expression of the E3 ubiquitin ligase, ITCH. This repression allows the
sustenance of key lipid accretion molecules (ADRP and CD36), by curbing their
proteosomal degradation. Further, we show the repression of ITCH to be dependent on
the concerted action of the bifunctional transcription factor, YY1 and the arginine methyl
transferase, PRMT5. NOTCH signaling pathway was identified as a master-regulator of
YY1 expression. *In vitro* and *in vivo* analyses revealed the significance of PRMT5 in
regulating FM formation and consequently mycobacterial burden.
Introduction

Mycobacterium tuberculosis (Mtb), the principal etiological agent of the pulmonary ailment, tuberculosis (TB), continues to co-evolve with the human population making itself one of the major infectious diseases afflicting mankind. Globally in 2020, there were an estimated 1.5 million deaths due to TB, a figure which saw a sharp increment following the onset of the COVID-19 pandemic (WHO, Annual TB Report, 2021).

Upon infecting the host, Mtb directs the release of definite cues that aids in the formation of a highly organized immune structure- the granuloma (1). TB granulomas are constituted by macrophages, neutrophils, monocytes, dendritic cells, B- and T-cells, fibroblasts, and epithelial cells (2, 3). Anatomical dissection into the distinct features of the macrophages within the TB granuloma has revealed accumulated lipids as one of the leading physiological countenances. Also referred to as foamy macrophages (FM), these cells act as a protective niche wherein the bacterium thrives and persists. Mtb deregulates host cellular machinery to trigger increased lipid intake into the cells with a concomitant decrease in the efflux of lipids- thereby contributing to a lipid-rich environment (4). While the transcriptional regulation of a gamut of such molecules has been reported, there are scant reports on the post-translational regulation of proteins necessary for FM formation in the context of Mtb infection. Parallel studies have highlighted deregulated autophagy (5) and lipophagy (6) to be instrumental in regulating lipid turnover during Mtb infection. Ubiquitin-dependent degradation of specific proteins implicated during FM formation is yet another mechanism that can control the stability of proteins that aid in lipid accumulation, thereby securing the integrity of lipids (7). In this context, Nedd4-family ligases (a sub-family of HECT-domain containing E3 ligases), among others, are known
to play distinctive roles in maintaining the stability of diverse proteins involved in FM formation. Notably, NEDD4-1 can interact with the ATP-Binding Cassette (ABC) transporters- ABCG1 and ABCG4, two essential regulators of cellular lipid homeostasis (8). Besides, another report alluded to the role of AIP4 or ITCH in maintaining the levels of the important FM protein, ADRP (9).

During TB, accumulated host lipids have been associated with mycobacterial survival as they provide essential nutrients, contribute to reduced antigen presentation (10-12) and aid in pathogen latency and reactivation (13). While it was our interest to define ubiquitination mechanisms contributing to copious levels of lipid within the cells, a study revealed that knocking down Nedd4 in THP-1 macrophages elicited higher CFU of Mtb and other intracellular pathogens (14). This encouraged us to investigate the role of NEDD4-family of E3 ligases in the context of Mtb-driven FM formation and thereupon pathogen survival.

Pathogen-driven epigenetic changes have been indicated to govern the expression of distinct molecules that contribute to mycobacterial survival (4, 15-18). Molecular dissection of the specific roles of such epigenetic regulators bears significance as perturbing the same could provide valuable cues to modify existing drug regimen against TB. Emerging literature have indicated towards epigenetic regulation of NEDD4-family ligases. Precisely, HDAC2-dependent downregulation of histone methyltransferase Ehmt2 (G9a) contributed to the activation of NEDD4 due to the loss of repressive methylation signature (19). Thus, investigation on the contribution of epigenetics towards the expression of E3 ligases and consequently, FM generation during mycobacterial infection, seemed an intriguing question.
While a plethora of epigenetic regulators have been associated with the progression of several infectious diseases, including TB (4, 16, 18, 20, 21), there is a dearth of reports on the role of arginine methyl transferases such as Protein arginine methyl transferases (PRMTs) during distinct infections. Of all the characterized PRMTs, PRMT1, PRMT2, PRMT3, PRMT6, PRMT8 and CARM1 catalyze asymmetric methylation, while PRMT5 and PRMT9 bring about symmetric methylation on specific arginine (22). Available reports have demonstrated the role of PRMT5 in regulating lipid biogenesis. Notably, PRMT5 arbitrates seipin-mediated lipid droplet biogenesis in adipocytes (23). Besides, PRMT5 could enhance lipogenesis in cancer cells by methylating SREBP1a (24). These reports encouraged us to investigate a PRMT5-mediated regulation of FM formation during Mtb infection. Also, using specific inhibitors against PRMT5, we attempted to comprehend the possible roles of lipid dysregulation in augmenting mycobacterial survival in vitro and in vivo.

Here, we demonstrate that Mtb infection contributed to the repression of the E3 ligase, ITCH, in a NOTCH signaling-dependent manner, that leads to enhanced lipid accumulation in the macrophages. We observed that diminished levels of ITCH aided in sustaining the levels of key LD molecules, ADRP and CD36, and consequently elevating lipid pools within the cells. Additionally, we report the critical role of PRMT5 in mediating ITCH repression during virulent Mtb infection whilst underscoring the beneficial impact of the use of PRMT5 inhibitor in resolving tuberculose granuloma-like lesions in mice. Thus, the current study emphasizes on the crucial role of host epigenetic regulators in augmenting TB pathology and draws attention towards specific cellular nodes that could be targeted for the development of host-directed therapeutics against TB.
Results

Mycobacterial infection elicits differential expression of the E3 ubiquitin ligase, ITCH, to enhance lipid accumulation in cells

As distinct bona fide cellular organelles, lipid droplets are formed by the coordinated action of diverse processes which include its biogenesis, maturation, and turnover (25).

As introduced, ubiquitination has been implicated in the regulation of proteins that contribute to lipid turnover within cells (26), thereby providing distinct regulatory potential to the entire process of lipid accumulation (27). Besides, Nedd4-family ligases were reported to be responsible for ubiquitination and degradation of lipid-associated proteins such as ADRP (9). With this premise, we screened for Nedd4-family ligases that are differentially expressed during Mtb infection and can potentially aid in FM formation during mycobacterial infection. Interestingly, we found the transcript levels of the E3 ligase Itch to be significantly downregulated both in vitro (Fig. S1A) and in vivo (Fig. S1B), prompting us to investigate the molecule further. This was corroborated at the protein level as primary murine macrophages displayed diminished levels of ITCH protein (Fig. 1A) upon mycobacterial infection, while homogenates from the lungs of Mtb-infected mice exhibited a similar downregulated expression of ITCH (Fig. 1B).

An earlier report had highlighted the role of ITCH in ubiquitinating ADRP, a key molecule during FM formation (9). Additionally, previous investigation had underscored the role of ADRP and CD36 in Mtb-mediated FM formation (4). To evaluate the role of ITCH in FM formation during Mtb infection, murine peritoneal macrophages (Mtb-infected and uninfected) were co-stained for lipid droplets and ITCH. Mtb infection revealed enhanced accumulation of lipids with a concomitant decrease in the levels of ITCH expression (Fig. 1A).
1 C, D). Also, transient over expression of ITCH in RAW 264.7 macrophages compromised the Mtb-induced FM formation, thereby emphasizing on the role of ITCH in lipid accumulation (Fig. 1E, F). Furthermore, ITCH over expression compromised the elevated levels of key lipid accumulation molecules, ADRP and CD36 (Fig. 1G). These observations led us to assess the possible role of ITCH in the proteasomal degradation of the said proteins. We found a significant degree of interaction of ITCH with ADRP and CD36 in the uninfected scenario (Fig. 1H), suggesting the contribution of ITCH in maintaining lipid homeostasis in macrophages under basal conditions. However, in the event of ITCH repression during Mtb infection, ADRP and CD36 levels are sustained, thereby leading to lipid accumulation. Together, these observations indicate a role for ITCH in regulating FM formation during Mtb infection.

Transcription regulator, YY1, aids in Mtb-mediated repression of ITCH

Having established the repression of ITCH upon mycobacterial infection, we analyzed the promoter region of *Itch* gene to identify the potential regulators of ITCH expression. Bioinformatic assessment of the 2kb upstream sequence revealed two putative binding sites of the transcriptional regulator, YY1. A previous report suggests an enhanced expression of YY1 in human TB samples, where it plays a cardinal role in the regulation of specific cytokines (28). Essentially, YY1 is a zinc finger domain containing protein that can activate or repress genes based on its interacting partners (29). Primary murine macrophages displayed an enhanced expression of YY1 in a time-dependent manner upon mycobacterial infection (Fig. 2A). A similar trend was observed *in vivo* as an elevated YY1 expression was observed in the lung homogenates from the lungs of Mtb-infected mice (Fig. 2B). Analysis of the subcellular localization of YY1 in murine
macrophages revealed that Mtb infection enhanced the nuclear localization of YY1 (Fig. 2C), underscoring the possible role of YY1 in mediating transcriptional processes upon Mtb infection. Next, we compromised Yy1 levels in murine macrophages with targeted siRNA and found a marked rescue in the Mtb-driven repression of ITCH (Fig. 2D). This was further confirmed by ChIP assay, that indicated an enhanced recruitment of YY1 at its respective binding sites on the promoter of ITCH (Fig. 2E).

With the premise of YY1-dependent downregulation of ITCH, we verified the contribution of YY1 in FM generation during Mtb infection. We found the expression of the FM markers, ADRP and CD36, to be compromised in Mtb-infected primary murine macrophages transfected with Yy1 siRNA (Fig. 2F). Furthermore, depletion of Yy1 in primary murine macrophages also reduced lipid accumulation in Mtb-infected macrophages as assessed by the abundance of the BODIPY 493/503 signal (Fig. 2G, H).

NOTCH signaling pathway contributes to mycobacteria-induced lipid accumulation through YY1

Orchestrated cellular events such as FM formation are dictated by definite signals that might be either intracellular or extracellular. Studies have revealed that TNF receptor signaling through the downstream activation of the caspase cascade and the mammalian target of rapamycin complex 1 (mTORC1) is central to triglyceride accumulation in human macrophages infected with Mtb (30). Besides, NOTCH signaling and EGFR signaling have been separately implicated in Mtb-driven LD formation (4, 6).
Here, we sought to examine such upstream regulatory events that can potentially contribute to the differential expression of YY1 during mycobacterial infection. Using specific pharmacological interventions against the said pathways, we found the possible role of NOTCH signaling in the expression of YY1 as inhibition of the pathway using γ-secretase inhibitor (GSI) compromised the ability of Mtb to induce the expression of YY1 in macrophages (Fig. 3A). NOTCH pathway activation is characterized by the cleavage of the intracellular domain of the NOTCH receptor (NICD), that shuttles to the nucleus to generate specific transcriptional response. In line with previous reports (31, 32), we found an activation of NOTCH signaling pathway (elevated NICD expression) in primary murine macrophages infected with Mtb (Fig. S3A). The transcription factor, HES1, a bona fide target of NOTCH signaling, was found to be upregulated upon Mtb infection as assessed by transcript analysis (Fig. S3B) as well as luciferase reporter assay (Fig. S3C).

To verify the role of NOTCH pathway activation in augmenting YY1 levels, we overexpressed NICD in RAW 264.7 macrophages and found enhanced levels of YY1 transcript even in the absence of Mtb infection, underscoring the role of NOTCH in the elevated expression of YY1 (Fig. 3B). Further, Mtb-mediated expression of YY1 was compromised in macrophages expressing Notch1 siRNA (Fig. 3C). Additionally, perturbation of the NOTCH pathway in murine peritoneal macrophages using GSI alleviated the Mtb-mediated diminished expression of ITCH (Fig. 3D). Also, NICD overexpressing macrophages displayed compromised expression of ITCH (Fig. 3E), corroborating our observations on the role of the NOTCH pathway in regulating the levels of YY1 and consequently the E3 ligase, ITCH. Furthermore, inhibition of the NOTCH
pathway hindered the accumulation of lipids during Mtb infection (Fig. 3F, G), thereby endorsing the significant role of NOTCH-YY1-ITCH axis in Mtb-induced FM formation.

The accumulation of host lipids during mycobacterial infection has been majorly attributed to the facilitation of nutrients to the bacteria. In this context, using in vitro CFU analysis, we found that perturbation of NOTCH pathway (using GSI) severely compromised mycobacterial survival in primary murine macrophages by rescuing the levels of ITCH and initiating ITCH-mediated ubiquitination of FM markers (Fig. 3H). It has been already reported that NOTCH signaling aids in mycobacterial survival within the host (31).

PRMT5 imparts repressive methylation signature on the promoter of ITCH during mycobacterial infection

As introduced, YY1 is a bifunctional transcription factor that is capable of activating or repressing genes based on its association with distinct factors. In the given scenario, since the expression of ITCH was repressed, we sought to delineate the possible way in which YY1 could accomplish the same. Ample evidence has highlighted the association of YY1 with the Polycomb-group (PcG) proteins to bring about repression of target genes. Notably, upon binding to the DNA, YY1 could initiate PcG protein recruitment that results in concomitant histone deacetylation and methylation (32). Herein, hinging on the available reports, we surmised if YY1 could bring about repression of ITCH by recruiting members of the PcG proteins. A ChIP assay was performed to assess for the recruitment of the principal methyl transferase, EZH2- a member of the PcG proteins, at the YY1 binding site on the promoter of ITCH. It was observed that Mtb infection did not elicit an appreciable recruitment of EZH2 or its cognate methylation signature H3K27me3 at the YY1 binding sites on the promoter of ITCH (Fig. 4A). Based on this result, we construed
that YY1 might interact with distinct epigenetic molecules other than EZH2 to bring about the repression of ITCH. Extensive review of literature revealed that PRMT1, an arginine methyl transferase could interact with YY1 to elicit the enhanced expression of genes (33). This hinted at a possible interaction between YY1 and enzyme(s) from the PRMT-family of methyl transferases. It is important to note that PRMT1 effectuates asymmetric dimethylation in the H4R3 residue (H4R3me2a) to initiate the expression of genes. Interestingly, symmetric dimethylation at the same arginine residue of histone 4 (H4R3me2s) brings about repression in gene expression. This symmetric dimethylation is catalyzed by the enzyme PRMT5 (34). This coerced us to conjecture if YY1 could interact with PRMT5 and catalyze the symmetric dimethylation (H4R3me2s) signature on the promoter region of ITCH and arbitrate its repression. A ChIP assay confirmed the occupancy of PRMT5 and its cognate repressive methylation mark at the YY1-binding sites on the promoter of ITCH (Fig. 4B). We also observed that upon the perturbation of PRMT5 enzymatic activity with a specific inhibitor EPZ015666, Mtb-mediated diminished expression of ITCH was rescued in primary murine macrophages (Fig. 4C). Besides, gene-specific knockdown of Prmt5 in primary murine macrophages alleviated Mtb-mediated repression of ITCH during infection (Fig. 4D). Further, immunoprecipitation analysis in murine macrophages revealed enhanced interaction between YY1 and PRMT5 upon mycobacterial infection (Fig. 4E), implying a possible scenario wherein YY1 could engage PRMT5 on the ITCH promoter, resulting in the deposition of repressive methylation mark H4R3me2s. To conclusively implicate the significance of the association of YY1 and PRMT5 for the recruitment of the repressive methylation signature on the promoter of ITCH, siRNA against Yy1 was employed to selectively decrease the
levels of Yy1 in primary murine macrophages. Subsequently, it was observed that cells
which were depleted of Yy1 showed compromised recruitment of PRMT5 as well as the
repressive methylation mark H4R3me2s on the promoter of ITCH (Fig. 4F).
Together, these results suggest that Mtb infection mediates the repression of the E3
ligase through the concerted action of YY1 and PRMT5.

PRMT5 activity contributes to sustained lipid accumulation in Mtb-infected macrophages

With the premise that YY1 and PRMT5 orchestrate the Mtb-mediated repression of ITCH,
we assessed the role of PRMT5 in FM formation. To this end, PRMT5 expression was
compromised in primary murine macrophages infected with Mtb using specific siRNA. We
found that loss of PRMT5 restricted the Mtb-induced expression of ADRP and CD36, and
consequently lipid accumulation (Fig. 5A, C, D). In line, inhibition of PRMT5 enzymatic
activity compromised the levels of CD36 and ADRP and the resultant FMs, thereby
validating the essential role of PRMT5 in lipid accrual during mycobacterial infection (Fig.
5B, E, F). Since accumulated lipids provide a favorable niche to the internalized
mycobacteria (35), we evaluated the status of mycobacterial survival in macrophages
upon treatment with PRMT5 inhibitor. Perturbation of PRMT5 enzyme activity in infected
macrophages revealed a significant reduction in mycobacterial burden (Fig. 5G), thereby
indicating a compelling role of the PRMT5 inhibitor, EPZ015666, in reducing Mtb survival.

Perturbation of PRMT5 activity aids in enhanced mycobacterial killing and
resolution of granuloma-like lesions during infection.
Having established the role of YY1-PRMT5 axis in mediating ITCH repression and consequently FM formation during Mtb infection, we employed an in vivo mouse model of TB (Fig. 6A) to understand the effect of perturbing the signaling axis on mycobacterial organ burden and pulmonary pathology. Utilizing the specific pharmacological inhibitor, EPZ015666, we found that perturbation of PRMT5 enzyme activity compromised FM generation in the lungs of infected mice (Fig. 6B). Further, the formation of hallmark TB granulomatous lesions within the lungs of treated mice was significantly reduced as indicated by the H and E-stained lung sections and assessment of granuloma fraction within the infected lungs (Figure 6C, D). Corroborating our histological findings, we observed an appreciable decrease in mycobacterial burden in the lungs of Mtb-infected mice treated with PRMT5 inhibitor.

Thus, we first report the YY1-PRMT5-dependent repression of the E3 ligase, ITCH, during Mtb infection. The reduction in the expression of ITCH contributed to enhanced lipid accretion in infected cells, thereby aiding mycobacterial survival, both in vitro and in vivo. With these lines of evidence, we highlight the crucial contribution of NOTCH-YY1-PRMT5 axis in the pathogenesis of TB disease (Fig. 7).

Discussion

The enormous success of Mtb in continuing to affect human lives stems from its ability to persist within the body of the infected individual and attain adequate insurance against definitive drugs. FM formation has been attributed as a major development that aids pathogen survival within the hypoxic environment of the host cell. Untreated TB patients harbor lipid rich FMs in their lungs that have been shown to contain viable mycobacteria (36). Mtb-induced FMs are rich in triacylglycerols and sterol esters which become the
major source of nutrition for the pathogen wherein it slowly acquires a dormant phenotype (37). While metabolic adjustments by the bacterium in acquiring a dormancy phenotype provides survival advantages, FMs provide additional benefits to Mtb for its sustenance. Interestingly, FMs displayed enhanced protection from cell death (38) whilst also demonstrating a change to a more favorable inflammatory milieu for mycobacterial survival (4, 38). Since several proteins have been implicated in Mtb-driven FM formation, it becomes pertinent to explore the regulatory mechanisms that contribute to the expression and stability of these proteins within the cells.

Ubiquitination is implicated in diverse cellular processes including protein degradation by the proteasome, cell cycle progression, transcriptional regulation, DNA repair and signal transduction (39). Pathogenic species have devised crafty ways to hijack this host cellular process to augment their own survival. Distinct bacteria such as Salmonella, Shigella and Legionella secrete ubiquitin ligase-like effectors which are involved in the modulation of critical events of the host that subsequently aid in pathogen survival (40). Specifically, Salmonella enterica could effectuate ubiquitination of MHCII through its effector protein SteD, which acts as an adaptor between MHCII and the host E3 ligase MARCH8 (41). Also, Legionella pneumophila has been shown to mediate the proteasomal degradation of several proteins assembled on the Legionella containing vacuole (LCV) through its effector protein AnkB. Besides, changes in the expression of distinct host E3 ligases could contribute to bacterial pathogenesis. Mice deficient in the E3 ligase gene Hectd3 could enhance host immune responses against bacteria such as Francisella novicida, Mycobacterium bovis (BCG), and Listeria and limit their dissemination (42). Furthermore, as mentioned earlier, NEDD4 (a member of the HECT family of E3 ligases) contributed
to enhanced autophagy and mitophagy in infected cells, thereby leading to bacterial clearance (14). In the current study, analysis of the expression of the NEDD4-family of E3 ligases revealed an appreciable decline in the expression of ITCH. While we established the role of ITCH in contributing to pro-mycobacterial FM formation, its role in modulating anti-mycobacterial processes require further investigation. The role of EGFR pathway in augmenting Mtb survival has been underscored previously (6, 43). Available reports allude towards a direct effect of ITCH on the stability of EGF tyrosine kinase receptor, thereby bringing about EGFR signaling downregulation (44). Thus, repression of ITCH could be yet another mechanism that contributes towards EGFR signaling activation during Mtb infection. Besides, ITCH has also been shown to regulate the turnover of distinct proteins involved in coordinating T cell immunity (45). Altogether, additional consequences of Mtb-mediated downregulation of ITCH at the systemic scale other than its role in FM generation, would be promising avenues for future research.

Mtb infection launches a circumspect regulation of the host cell transcriptional regulators to effectuate lipid accumulation in macrophages. Congruent to earlier reports (28), the expression of YY1 was found to be elevated in the current study upon virulent mycobacterial infection. In parallel studies, targeted knockdown of YY1 decreased the expression of several key effectors of lipid metabolism (46). Besides, YY1 promoted lipid accumulation in zebrafish liver (47). Additionally, YY1 has been reported to play a significant role in different infectious scenarios. Notably, IFN-1 production is under the dynamic regulation of YY1 during different stages of viral infection (48). YY1 could enhance the gene expression of Human T lymphotropic virus type 1 (HTLV-1) by binding to specific viral RNA (49). Furthermore, YY1 aided in the integration of Moloney Murine
Leukemia Virus cDNA into the host chromosomes (50). Thus, it was of our interest to evaluate the role of YY1 in regulating pro-mycobacterial events in infected cells. Moreover, we also attempted to dissect the definitive signaling events that led to the enhanced expression of YY1. Albeit our initial observations designated a role for the NOTCH signaling pathway in the regulation of YY1, available literature also indicated the possible association between NOTCH pathway and YY1 upregulation. To our interest, CBF-1 independent NOTCH signaling could modulate the gene expression of YY1 target genes (51). An ancillary support for the role of NOTCH pathway could be derived from two reports wherein the juxtacrine signaling pathway was instrumental in M. bovis-mediated SOCS3 upregulation in macrophages on one hand (52), while on the other, YY1 was important for the elevated expression of SOCS3 in neuroinflammation and neuropathic pain (53).

During infection, the surface proximal events of signaling activation are transformed into distinct immunological responses via the action of cellular intermediates that regulate nuclear transactions, including transcription factors and epigenetic modulators. Regulated histone methylation has a diverse role to play during several viral and bacterial infections. For instance, influenza virus and vesicular stomatitis virus have been shown to induce H3K79 methylation by DOT1 histone methyl transferase (HMT) that controls antiviral interferon signaling in host cells (54). The HMT SET8 has been reported to modulate apoptosis and inflammatory responses during mycobacterial infection (18), while EZH2 has been implicated in the downmodulation of antigen presentation (55). Further, demethylases such as JMJD3 and acetylation readers such as BRD4 have been shown to regulate pathogen-specific lipid accumulation (4, 6). Here, we uncover the role
of PRMT5 in mediating lipid accumulation through its close association with the transcriptional regulator, YY1. Histone methyl transferases, including those belonging to the arginine methyltransferase family (PRMTs) have been shown to associate with YY1. Precisely, PRMT1 and PRMT7 interact with YY1 to regulate the expression of specific genes (33, 56). Besides, YY1 could transcriptionally activate PRMT5 and aid in proliferation and invasion in laryngeal cancer cells (57). With our observation on the close association between PRMT5 and YY1, it would be worthwhile in future to understand the co-occupancy of the two factors on distinct gene loci that contribute to mycobacterial survival within macrophages.

Taken together, the current study unravels the implication of the interplay of specific signaling components and host epigenetic machinery in governing the pathogenesis of Mtb. The bacterium is highly intricate in its mechanisms of infection and presents itself in drug-resistant forms, thereby posing definite bottlenecks in the development of effective therapeutics. In this light, it becomes highly important to study the exact molecular details of infection and understand the roles that the host play in driving its pathogenesis to create a library of possible target molecules for therapeutic purposes.

Although the regulation of lipid accumulation has been studied at the transcriptional level, we provide an alternate perspective of the relevance of turnover of lipids. We show that controlling the turnover of proteins associated with FM via proteasomal degradation is important to aggregate lipids and that the downregulation of the E3 ubiquitin ligase ITCH by YY1-PRMT5 axis plays a primary role in this process. Besides, the lipids can also undergo turnover by distinct regulated processes such as enzymatic degradation (by lipases) and lipid-specific autophagy. Uncovering the contribution of each of these
mechanisms would be useful in designing the most effective combination of drug targets against Mtb infection. Additionally, the effect of the use of the PRMT5 inhibitor in reducing Mtb burden requires further investigation. PRMT5 has been reported to negatively regulate cGAS-mediated antiviral responses (58). It must be noted that available reports have alluded to the role of PRMT5 in regulating the alternative splicing of genes (59). In this respect, Mtb infection has been shown to regulate alternate splicing events to program macrophage responses (60, 61). The reduced mycobacterial burden and granuloma-like regions within the lungs of infected mice upon PRMT5 inhibitor administration might be indicative of a differential immune response to the pathogen when compared to the untreated animals. While reduced lipids would certainly contribute to decreased mycobacterial burden, it would be imperative to evaluate the role of PRMT5 inhibitor in deregulating the alternative splicing events and modulating the other discussed immune mechanisms during mycobacterial infection.

Materials and Methods

Cells and Mice

Four to six weeks old, male and female BALB/c mice were utilized for all experiments. Mice were procured from The Jacksons Laboratory and maintained at the Central Animal Facility (CAF) in Indian Institute of Science (IISc) under 12-hour light and dark cycle. For *in vitro* experiments, mouse peritoneal macrophages were utilized. Briefly, mice were injected intraperitoneally with (4-8 %) Brewer’s thioglycollate and peritoneal exudates were harvested in ice cold PBS after four days, seeded in tissue culture dishes. Adherent cells were utilized as peritoneal macrophages. RAW 264.7 mouse monocyte-like cell line was obtained from National Centre for Cell Sciences (NCCS), India. All cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Thermo Fisher Scientific) supplemented with 10% heat inactivated Fetal Bovine Serum (FBS, Gibco, Thermo Fisher Scientific) and maintained at 37 °C in 5% CO₂ incubator.

Ethics Statement

Experiments involving mice were carried out after the approval from Institutional Ethics Committee for animal experimentation. The animal care and use protocol adhered were approved by national guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India. Experiments with virulent mycobacteria (Mtb H37Rv) were approved by the Institutional Biosafety Committee.

Bacteria

Virulent strain of Mtb (Mtb H37Rv) was a kind research gift from Prof. Amit Singh, Department of Microbiology and Cell Biology, and Centre for Infectious Disease Research, IISc. Mycobacteria were cultured in Middlebrook 7H9 medium (Difco, USA) supplemented with 10% OADC (oleic acid, albumin, dextrose, catalase). Single-cell suspensions of mycobacteria were obtained by passing mid log phase culture through 23-, 28- and 30-gauge needle 10 times each and used for infecting primary cells or RAW 264.7 cells at multiplicity of infection 10. The studies involving virulent mycobacterial strains were carried out at the biosafety level 3 (BSL-3) facility at Centre for Infectious Disease Research (CIDR), IISc.

Reagents and antibodies

All general chemicals and reagents were procured from Sigma-Aldrich/ Merck Millipore, HiMedia and Promega. Tissue culture plastic ware was purchased from Jet Biofil or
Tarsons India Pvt. Ltd. and Corning Inc. siRNAs were obtained from Dharmacon as siGENOME SMART-pool reagents against Yy1, Prmt5, Notch1. Oleic acid, HRP-tagged anti-β-ACTIN (A3854), 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI) were procured from Sigma-Aldrich. Anti-cleaved NOTCH1, anti-ITCH, anti-YY1, anti-α-TUBULIN, anti-PRMT5, anti-EZH2, anti-H3K27me3 antibodies were procured from Cell Signaling Technology (USA). Anti-H4R3me2s antibody was sourced from Abcam. Anti-ADRP and anti-CD36 antibodies were procured from Santa Cruz Biotechnology (USA). Anti-LAMINB antibody was purchased from IMGENEX. HRP conjugated anti-rabbit IgG/anti-mouse IgG was obtained from Jackson ImmunoResearch (USA). Lipofectamine 3000 was purchased from Thermo Fisher Scientific. BODIPY 493/503 (4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene lipid stain was from Molecular Probes (Invitrogen/ Thermo Fisher Scientific).

Treatment with pharmacological reagents.

Primary macrophages pre-treated with the following reagents one hour prior to infection with Mtb H37Rv: GSI (Calbiochem, 10 μM); EPZ015666 (Tocris, 20 μM); Gefitinib (Cayman Chemicals, 20 μM); LY294002 (Calbiochem, 50 μM); IWP-2 (Calbiochem, 20 μM). MG132 (Sigma-Aldrich, 10 μM) was added 4 h. prior to harvest.

Plasmids and constructs

NICD overexpression (OE) plasmid and β-galactosidase plasmids were received as kind gifts from Prof. Kumaravel Somasundaram, (IISc, Bangalore). ITCH OE plasmid was procured from Addgene. HES1-luciferase plasmid was a kind gift from Prof. Ryoichiro Kageyama, Institute for Virus Research, Kyoto University.
Transient transfection studies.

RAW 264.7 macrophages were transfected with the indicated constructs (NICD OE, ITCH OE, HES1-luc.); or primary macrophages were transfected with 100 nM each of siGLO Lamin A/C, non-targeting siRNA or specific siRNAs with the help of Lipofectamine 3000 for 6 h; followed by 24 h recovery. 70-80 % transfection efficiency was observed by counting the number of siGLO Lamin A/C positive cells in a microscopic field using fluorescence microscopy. Transfected cells were subjected to the required infections/treatments for the indicated time points and processed for analyses.

Luciferase Assay

RAW 264.7 cells were transfected with HES1-luciferase and β-galactosidase plasmids using Lipofectamine 3000 for 6 h, followed by 24 h of recovery. subjected to the required infections/treatments for the indicated time points and processed for analyses. Briefly, cells were harvested and lysed in reporter lysis buffer (Promega) and luciferase activity was assayed using luciferase assay reagent (Promega). The results were normalized for transfection efficiencies by assay of β-galactosidase activity.

RNA isolation and quantitative real time PCR (qRT-PCR)

Treated samples were harvested in TRIzol (Sigma-Aldrich) and incubated with chloroform for phase separation. Total RNA was precipitated from the aqueous layer. Equal amount of RNA was converted into cDNA using First Strand cDNA synthesis kit (Applied Biological Materials Inc.). The cDNA thus obtained was used for SYBR Green (Thermo Fisher Scientific) based quantitative real time PCR analysis for the concerned genes. *Gapdh* was used as internal control gene. Primer pairs used for expression analyses are
Genes	Forward primer (5’-3’)	Reverse primer (5’-3’)
Gapdh	GAGCCAAACGGGTACATCATCT	GAGGGGCCATCCACAGTCTT
Nedd4	GTGCCGATGAATGGTTGCTG	TCAACGCCATCAAAGCCCTGTG
Nedd4-2	TTGTCCTCTGACCCAATAGA	CAACTCTCCGATCTCAATAAC
Smurf1	ACATCGTCAGGTGTTCT	GGGCAGGTGTCTGTATTG
Smurf2	TCAGTCCAGAGACCGAATAG	TCAGTCCAGAGACCGAATAG
Wwp1	CTTGCTCACTCCGTTACTT	GCAAGGCCACCATAATC
Wwp2	CTCACCTACTCCGTTTATC	CACTCTCCAGGTGTTCCT
Nedl1	AACATCAAGTGCCCTATG	GGTGCTGTTTCTTCTACTG
Itch	TGGGTAGTCTGACCATGAATCT	GGGTAAACAATAACTGTGAGG
Yy1	CATCTGCACACCCACGTTCCAGAGTCC	GCACACATAGGGCCGTCTCCCGGTATG
		G
Hes1	GAGAGGCTGCCAAGGTTTTTGT	CACTGGAAGGTGACAAGTGCG

Primers were synthesized and obtained from Eurofins Genomics Pvt. Ltd. (India).

Nuclear-cytoplasmic extraction

Cells were treated as indicated, harvested by centrifugation, and gently resuspended in ice-cold Buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, and 0.5 mM PMSF). After incubation on ice for 15 min, cell membranes were disrupted with 10% NP-40 and the nuclear pellets were recovered by centrifugation at
13,226 × g for 15 min at 4°C. The supernatants from this step were used as cytosolic extracts. Nuclear pellets were lysed with ice-cold Buffer C (20 mM HEPES pH7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, and 1 mM PMSF) and nuclear extracts were collected after centrifugation at 13,226 × g for 20 min at 4°C.

Immunoblotting

Cells post treatment and/or infection were washed with 1X PBS. Whole cell lysate was prepared by lysing in RIPA buffer [50 mM Tris-HCl (pH 7.4), 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 μg/ml each of aprotinin, leupeptin, pepstatin, 1 mM Na3VO4, 1 mM NaF] on ice for 30min. Total protein from whole cell lysates was estimated by Bradford reagent. Equal amount of protein was resolved on 12% SDS-PAGE and transferred onto PVDF membranes (Millipore) by semi-dry immunoblotting method (Bio-Rad). 5% non-fat dry milk powder in TBST [20 mM Tris-HCl (pH 7.4), 137 mM NaCl, and 0.1% Tween 20] was used for blocking nonspecific binding for 60 min. After washing with TBST, the blots were incubated overnight at 4°C with primary antibody diluted in TBST with 5% BSA. After washing with TBST, blots were incubated with anti-rabbit IgG secondary antibody conjugated to HRP antibody (111-035-045, Jackson ImmunoResearch) for 4h at 4°C. The immunoblots were developed with enhanced chemiluminescence detection system (Perkin Elmer) as per manufacturer’s instructions. For developing more than one protein at a particular molecular weight range, the blots were stripped off the first antibody at 60 °C for 5 min using stripping buffer (62.5 mM Tris-HCl, with 2 % SDS 100 mM 2-Mercaptoethanol), washed with 1X TBST, blocked; followed by probing with the subsequent antibody following the described procedure. β-ACTIN was used as loading control.
Immunoprecipitation Assay

Immunoprecipitation assays were carried out following a modified version of the protocol provided by Millipore, USA. Treated samples were washed in ice cold PBS and gently lysed in RIPA buffer. The cell lysates obtained were subjected to pre-clearing with BSA-blocked Protein A beads (Bangalore Genei, India) for 30 min at 4 °C and slow rotation. The amount of protein in the supernatant was quantified and equal amount of protein was used for pull down from each treatment condition; using Protein A beads pre-conjugated with the antibody of interest or isotype control IgG antibody. After incubation of the whole cell lysates with the antibody-complexed beads for 4 h at 4 °C on slow rotation, the pellet containing the bead-bound immune complexes were washed with RIPA buffer twice. The complexes were eluted by boiling the beads in Laemmli buffer for 10 min. The bead free samples were resolved by SDS-PAGE and the target interacting partners were identified by immunoblotting. Clean-Blot™ IP Detection Reagent (21230) was obtained from Thermo Scientific.

Chromatin Immunoprecipitation (ChIP) Assay

ChIP assays were carried out using a protocol provided by Upstate Biotechnology and Sigma-Aldrich with certain modifications. Briefly, treated samples were washed with ice cold 1X PBS and fixed with 3.6 % formaldehyde for 15 min at room temperature followed by inactivation of formaldehyde with 125 mM glycine. Nuclei were lysed in 0.1% SDS lysis buffer [50 mM Tris-HCl (pH 8.0), 200 mM NaCl, 10 mM HEPES (pH 6.5), 0.1 % SDS, 10 mM EDTA, 0.5 mM EGTA, 1 mM PMSF, 1 μg/ml of each aprotinin, leupeptin, pepstatin, 1 mM Na3VO4 and 1 mM NaF]. Chromatin was sheared using Bioruptor Plus (Diagenode, Belgium) at high power for 70 rounds of 30 sec pulse ON and 45 sec pulse OFF.
Chromatin extracts containing DNA fragments with an average size of 500 bp were immunoprecipitated with KLF5 or BRD4 or H3K27Ac or rabbit preimmune sera complexed with Protein A agarose beads (Bangalore Genei). Immunoprecipitated complexes were sequentially washed with Wash Buffer A, B and TE [Wash Buffer A: 50 mM Tris-HCl (pH 8.0), 500 mM NaCl, 1 mM EDTA, 1 % Triton X-100, 0.1 % Sodium deoxycholate, 0.1 % SDS and protease/phosphatase inhibitors; Wash Buffer B: 50 mM Tris-HCl (pH 8.0), 1 mM EDTA, 250 mM LiCl, 0.5 % NP-40, 0.5 % Sodium deoxycholate and protease/phosphatase inhibitors; TE: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA] and eluted in elution buffer [1 % SDS, 0.1 M NaHCO3]. After treating the eluted samples with RNase A and Proteinase K, DNA was purified and precipitated using phenol-chloroform-ethanol method. Purified DNA was analyzed by quantitative real time RT-PCR. All values in the test samples were normalized to amplification of the specific gene in Input and IgG pull down and represented as fold change in modification or enrichment. All ChIP experiments were repeated at least three times. The list of primers is given below:

S.No	Gene	Forward primer (5’→3’)	Reverse Primer (5’→3’)
		AACAGTGGTGAGGCAGACATAGG	ATCCCCAAAACCCAAAACCCA
1	Itch (Site1)	CCGAATTTAGGGCTGTGC	CCATCCTCCCAACTCAGAATC

Primers were synthesized and obtained from Eurofins Genomics Pvt. Ltd. (India).
In vitro CFU analysis

Mouse peritoneal macrophages were infected with Mtb H37Rv at MOI 5 for 4 h. Post 4 h, the cells were thoroughly washed with PBS to remove any surface adhered bacteria and medium containing amikacin (0.2 mg/ml) was added for 2 h to deplete any extracellular mycobacteria. After amikacin treatment the cells thoroughly washed with PBS were taken for 0 h time point, and a duplicate set was maintained in antibiotic free medium for next 48 h along with respective inhibitors GSI and EPZ015666. Intracellular mycobacterial burden was enumerated by lysing macrophages with 0.06 % SDS in 7H9 Middlebrook medium. Appropriate dilutions were plated on Middlebrook 7H11 agar plates supplemented with OADC (oleic acid, albumin, dextrose, catalase). Total colony forming units (CFUs) were counted after 21 days of plating.

In vivo mouse model for TB and treatment with pharmacological inhibitor.

BALB/c mice (n=30) were infected with mid-log phase Mtb H37Rv, using a Madison chamber aerosol generation instrument calibrated to 100 CFU/animal. Aerosolized animals were maintained in securely commissioned BSL3 facility. Post 28 days of established infection, mice were administered eight intra-peritoneal doses (modified from (62)) of EPZ015666 (4mg/kg) every alternate day over 28 days. On 56th day post inhibitor treatment, mice were sacrificed, the left lung lobe was homogenized in sterile PBS, serially diluted, and plated on 7H11 agar containing OADC to quantify CFU. Upper right lung lobes were fixed in formalin, and processed for hematoxylin and eosin staining, or immunofluorescence analyses. Also, specific lobes from the lungs of mice were homogenized for the extraction of RNA and protein.
Hematoxylin and Eosin staining.

Microtome sections (5 μm) were obtained from formalin-fixed, paraffin-embedded mouse lung tissue samples using Leica RM2245 microtome. Deparaffinized and rehydrated sections were subjected to Hematoxylin staining followed by Eosin staining as per manufacturer instructions. After dehydrating, sections were mounted using permount. Sections were kept for drying overnight and handed over to consultant pathologist for blinded analyses.

Cryosection preparation.

The excised lung tissue portions were fixed in 4% paraformaldehyde solution. Subsequently, the tissues were kept in 30% sucrose solution. The fixed lung pieces were placed in the optimal cutting temperature (OCT) media (Jung, Leica). Cryosections of 10 μm were prepared using Leica CM 1510 S or Leica CM 3050 S cryostat and then stored at -80 ºC.

Immunofluorescence

Cells were fixed with 3.6% formaldehyde for 30 min. at room temperature. Fixed samples were blocked with 2% BSA in PBST (containing 0.02% saponin) for 1 h. After blocking, samples were stained with the indicated antibodies at 4 ºC overnight, followed by incubation with DyLight 488-, Alexa 549- or Alexa 643-conjugated secondary antibodies for 2 h and nuclei were stained with DAPI. The samples were mounted on glycerol. Confocal images were taken with Zeiss LSM 710 Meta confocal laser scanning microscope (Carl Zeiss AG, Germany) using a plan-Apochromat 63X/1.4 Oil DIC objective (Carl Zeiss AG, Germany) and images were analyzed using ZEN 2009 software.
Lipid droplet staining

Lipid droplets were stained using neutral lipid dye BODIPY 493/503 (Invitrogen). Formaldehyde-fixed cells were stained with BODIPY (10 μg/ml) for 30 min at room temperature. Cells were washed, and nuclei were stained with DAPI. After washing with PBS, samples were mounted on glycerol and visualized and analyzed by confocal microscopy.

Statistical analysis. Levels of significance for comparison between samples were determined by the student’s t-test and one-way ANOVA followed by Tukey’s multiple-comparisons. The data in the graphs are expressed as the mean ± S.E. for the values from at least 3 or more independent experiments and P values < 0.05 were defined as significant. GraphPad Prism software (6.0 versions, GraphPad Software, USA) was used for all the statistical analyses.

Acknowledgements

We thank CAF, IISc for maintaining and providing mice for experimentation. NICD OE and β-galactosidase plasmids were kind research gifts from Prof. Kumaravel Somasundaram, Department of Microbiology and Cell Biology, IISc. HES1-luciferase plasmid was a kind gift from Prof. Ryoichiro Kageyama, Institute for Virus Research, Kyoto University. We acknowledge the help of BSL-3 facility and staff for helping us in our in vitro and in vivo experiments with Mtb H37Rv.

Funding: This work was supported by funds from the Department of Biotechnology (DBT, No.BT/PR13522/COE/34/27/2015 dt 22.8.2017 to K.N.B) and the Department of Science and Technology (DST, EMR/2014/000875 dt 4.12.15 to K.N.B.), New Delhi, India. K.N.B.
thanks Science and Engineering Research Board (SERB), DST for the award of J. C. Bose National Fellowship (No. SB/S2/JCB-025/2016 dt 25.7.15), 2nd term J.C. Bose National Fellowship (JBR/2021/000011), and core research grant (CRG/2019/002062).

The authors thank DST-FIST, UGC Centre for Advanced Study and DBT-IISc Partnership Program (Phase-II at IISc, BT/PR27952/INF/22/212/2018) for the funding and infrastructure support. Fellowships were received from UGC and IISc (SMB). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author contributions: SMB, conceptualization, investigation, formal analysis, manuscript draft preparation, editing; RSR, investigation; KNB, conceptualization, formal analysis, supervision, manuscript review and editing.

Disclosure statement

The authors declare no potential conflicts of interest
References

1. Lugo-Villarino G, Hudrisier D, Benard A, Neyrolles O. Emerging trends in the formation and function of tuberculosis granulomas. Front Immunol. 2012;3:405.

2. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352-66.

3. Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007;5(1):39-47.

4. Holla S, Prakhar P, Singh V, Karnam A, Mukherjee T, Mahadik K, et al. MUSASHI-Mediated Expression of JMJD3, a H3K27me3 Demethylase, Is Involved in Foamy Macrophage Generation during Mycobacterial Infection. PLoS Pathog. 2016;12(8):e1005814.

5. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol. 2016;17(6):677-86.

6. Mukherjee T, Bhatt B, Prakhar P, Lohia GK, Rajmani RS, Balaji KN. Epigenetic reader BRD4 supports mycobacterial pathogenesis by co-modulating host lipophagy and angiogenesis. Autophagy. 2021:1-18.

7. Bersuker K, Olzmann JA. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1166-77.

8. Alrosan A, Aleidi SM, Yang A, Brown AJ, Gelissen IC. The Adaptor Protein Alix is Involved in the Interaction Between the Ubiquitin Ligase NEDD4-1 and its Targets, ABCG1 and ABCG4. Int J Mol Sci. 2019;20(11).
9. Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC. Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol. 2010;8:72.

10. Caceres N, Tapia G, Ojanguren I, Altare F, Gil O, Pinto S, et al. Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis (Edinb). 2009;89(2):175-82.

11. Cardona PJ, Gordillo S, Diaz J, Tapia G, Amat I, Pallares A, et al. Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect Immun. 2003;71(10):5845-54.

12. Ordway D, Henao-Tamayo M, Orme IM, Gonzalez-Juarrero M. Foamy macrophages within lung granulomas of mice infected with Mycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J Immunol. 2005;175(6):3873-81.

13. Caire-Brandli I, Papadopoulos A, Malaga W, Marais D, Canaan S, Thilo L, et al. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect Immun. 2014;82(2):476-90.

14. Pei G, Buijze H, Liu H, Moura-Alves P, Goosmann C, Brinkmann V, et al. The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy. Autophagy. 2017;13(12):2041-55.
15. Cheng CY, Gutierrez NM, Marzuki MB, Lu X, Foreman TW, Paleja B, et al. Host sirtuin 1 regulates mycobacterial immunopathogenesis and represents a therapeutic target against tuberculosis. Sci Immunol. 2017;2(9).

16. Ghorpade DS, Holla S, Sinha AY, Alagesan SK, Balaji KN. Nitric oxide and KLF4 protein epigenetically modify class II transactivator to repress major histocompatibility complex II expression during Mycobacterium bovis bacillus Calmette-Guerin infection. J Biol Chem. 2013;288(28):20592-606.

17. Mahadik K, Prakhar P, Rajmani RS, Singh A, Balaji KN. c-Abl-TWIST1 Epigenetically Dysregulate Inflammatory Responses during Mycobacterial Infection by Co-Regulating Bone Morphogenesis Protein and miR27a. Front Immunol. 2018;9:85.

18. Singh V, Prakhar P, Rajmani RS, Mahadik K, Borbora SM, Balaji KN. Histone Methyltransferase SET8 Epigenetically Reprograms Host Immune Responses to Assist Mycobacterial Survival. J Infect Dis. 2017;216(4):477-88.

19. Wei J, Xiong Z, Lee JB, Cheng J, Duffney LJ, Matas E, et al. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci. 2016;36(7):2119-30.

20. Ding SZ, Fischer W, Kaparakis-Liaskos M, Liechti G, Merrell DS, Grant PA, et al. Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS One. 2010;5(4):e9875.

21. Hamon MA, Batsche E, Regnault B, Tham TN, Seveau S, Muchardt C, et al. Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci U S A. 2007;104(33):13467-72.
22. Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer’s Best-Kept Secret? Trends Mol Med. 2019;25(11):993-1009.

23. Jia Z, Yue F, Chen X, Narayanan N, Qiu J, Syed SA, et al. Protein Arginine Methyltransferase PRMT5 Regulates Fatty Acid Metabolism and Lipid Droplet Biogenesis in White Adipose Tissues. Adv Sci (Weinh). 2020;7(23):2002602.

24. Liu L, Zhao X, Zhao L, Li J, Yang H, Zhu Z, et al. Arginine Methylation of SREBP1a via PRMT5 Promotes De Novo Lipogenesis and Tumor Growth. Cancer Res. 2016;76(5):1260-72.

25. Cohen S. Lipid Droplets as Organelles. Int Rev Cell Mol Biol. 2018;337:83-110.

26. Alberts P, Rotin D. Regulation of lipid droplet turnover by ubiquitin ligases. BMC Biol. 2010;8:94.

27. Thiele C, Spandl J. Cell biology of lipid droplets. Curr Opin Cell Biol. 2008;20(4):378-85.

28. Rangel-Santiago JF, Baay-Guzman GJ, Duran-Padilla MA, Lopez-Bochm KA, Garcia-Romero BL, Hernandez-Cueto DD, et al. A novel role of Yin-Yang-1 in pulmonary tuberculosis through the regulation of the chemokine CCL4. Tuberculosis (Edinb). 2016;96:87-95.

29. Khachigian LM. The Yin and Yang of YY1 in tumor growth and suppression. Int J Cancer. 2018;143(3):460-5.

30. Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S, et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog. 2018;14(8):e1007223.
31. Zheng R, Liu H, Zhou Y, Yan D, Chen J, Ma D, et al. Notch4 Negatively Regulates the Inflammatory Response to Mycobacterium tuberculosis Infection by Inhibiting TAK1 Activation. J Infect Dis. 2018;218(2):312-23.

32. Srinivasan L, Pan X, Atchison ML. Transient requirements of YY1 expression for PcG transcriptional repression and phenotypic rescue. J Cell Biochem. 2005;96(4):689-99.

33. Rezai-Zadeh N, Zhang X, Namour F, Fejer G, Wen YD, Yao YL, et al. Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev. 2003;17(8):1019-29.

34. Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33(1):1-13.

35. Dawa S, Menon D, Arumugam P, Bhaskar AK, Mondal M, Rao V, et al. Inhibition of Granuloma Triglyceride Synthesis Imparts Control of Mycobacterium tuberculosis Through Curtailed Inflammatory Responses. Front Immunol. 2021;12:722735.

36. Hunter RL, Jagannath C, Actor JK. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb). 2007;87(4):267-78.

37. Barisch C, Soldati T. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie. 2017;141:54-61.

38. Agarwal P, Combes TW, Shojaaee-Moradie F, Fielding B, Gordon S, Mizrahi V, et al. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol. 2020;11:1394.

39. Zheng N, Shabek N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu Rev Biochem. 2017;86:129-57.

40. Maculins T, Fiskin E, Bhogaraju S, Dikic I. Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res. 2016;26(4):499-510.
41. Bayer-Santos E, Durkin CH, Rigano LA, Kupz A, Alix E, Cerny O, et al. The Salmonella Effector SteD Mediates MARCH8-Dependent Ubiquitination of MHC II Molecules and Inhibits T Cell Activation. Cell Host Microbe. 2016;20(5):584-95.

42. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128(9):4148-62.

43. Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A. 2015;112(6):1827-32.

44. Courbard JR, Fiore F, Adelaide J, Borg JP, Birnbaum D, Ollendorff V. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J Biol Chem. 2002;277(47):45267-75.

45. Melino G, Gallagher E, Aqeilan RI, Knight R, Peschiaroli A, Rossi M, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 2008;15(7):1103-12.

46. Pan G, Diamanti K, Cavalli M, Lara Gutierrez A, Komorowski J, Wadelius C. Multifaceted regulation of hepatic lipid metabolism by YY1. Life Sci Alliance. 2021;4(7).

47. Her GM, Pai WY, Lai CY, Hsieh YW, Pang HW. Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta. 2013;1831(6):1037-51.

48. Zan J, Zhang H, Gu AP, Zhong KL, Lu MY, Bai XX, et al. Yin Yang 1 Dynamically Regulates Antiviral Innate Immune Responses During Viral Infection. Cell Physiol Biochem. 2017;44(2):607-17.
49. Wang GZ, Goff SP. Yin Yang 1 is a potent activator of human T lymphotropic virus type 1 LTR-driven gene expression via RNA binding. Proc Natl Acad Sci U S A. 2020;117(31):18701-10.

50. Inayoshi Y, Okino Y, Miyake K, Mizutani A, Yamamoto-Kishikawa J, Kinoshita Y, et al. Transcription factor YY1 interacts with retroviral integrases and facilitates integration of moloney murine leukemia virus cDNA into the host chromosomes. J Virol. 2010;84(16):8250-61.

51. Liao WR, Hsieh RH, Hsu KW, Wu MZ, Tseng MJ, Mai RT, et al. The CBF1-independent Notch1 signal pathway activates human c-myc expression partially via transcription factor YY1. Carcinogenesis. 2007;28(9):1867-76.

52. Narayana Y, Balaji KN. NOTCH1 up-regulation and signaling involved in Mycobacterium bovis BCG-induced SOCS3 expression in macrophages. J Biol Chem. 2008;283(18):12501-11.

53. Sun M, Sun Y, Ma J, Li K. YY1 promotes SOCS3 expression to inhibit STAT3-mediated neuroinflammation and neuropathic pain. Mol Med Rep. 2021;23(2).

54. Marcos-Villar L, Diaz-Colunga J, Sandoval J, Zamarreno N, Landeras-Bueno S, Esteller M, et al. Epigenetic control of influenza virus: role of H3K79 methylation in interferon-induced antiviral response. Sci Rep. 2018;8(1):1230.
56. Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, et al. PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res. 2014;74(19):5656-67.

57. Wang N, Wu D, Long Q, Yan Y, Chen X, Zhao Z, et al. Dysregulated YY1/PRMT5 axis promotes the progression and metastasis of laryngeal cancer by targeting Hippo pathway. Journal of cellular and molecular medicine. 2021;25(2):946-59.

58. Ma D, Yang M, Wang Q, Sun C, Shi H, Jing W, et al. Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response. Sci Adv. 2021;7(13).

59. Metz PJ, Ching KA, Xie T, Delgado Cuenca P, Niessen S, Tatlock JH, et al. Symmetric Arginine Dimethylation Is Selectively Required for mRNA Splicing and the Initiation of Type I and Type III Interferon Signaling. Cell Rep. 2020;30(6):1935-50 e8.

60. Kalam H, Fontana MF, Kumar D. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection. PLoS Pathog. 2017;13(3):e1006236.

61. Kalam H, Singh K, Chauhan K, Fontana MF, Kumar D. Alternate splicing of transcripts upon Mycobacterium tuberculosis infection impacts the expression of functional protein domains. IUBMB Life. 2018;70(9):845-54.

62. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11(6):432-7.
Figure 1. E3 ubiquitin ligase ITCH (AIP4) repression aids in Mtb-mediated enhanced lipid accumulation. (A) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h. Whole cell lysates were assessed for ITCH protein expression by Western blotting. (B) Balb/c mice were aerosol-infected with Mtb H37Rv for 28 days. Protein levels of ITCH was analyzed in the lung homogenates of uninfected and infected mice by western blotting. (C, D) Mouse peritoneal macrophages were infected with Mtb H37Rv for 48 h and assessed for lipid accumulation (BODIPY493/503) and ITCH expression by immunofluorescence microscopy; (C) representative image and (D) respective quantification. (E, F) RAW 264.7 cells were transfected with pcDNA3.1 and ITCH OE vectors. Transfected cells were infected with Mtb H37Rv for 48 h and assessed for the accumulation of lipids by fluorescence microscopy (BODIPY493/503); (E) representative image and (F) respective quantification. (G) RAW 264.7 cells were transfected with pcDNA3.1 and ITCH OE vectors; Transfected cells were infected with Mtb H37Rv for 24 h and whole cell lysates were assessed for the levels of the indicated lipid accumulation markers by immunoblotting. (H) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h and treated with MG132 for the last 4 h of infection. Whole cell lysates were immunoprecipitated with IgG control or ITCH antibodies and assessed for their interaction with the indicated lipid accumulation markers by immunoblotting. All immunoblotting and immunofluorescence data are representative of three independent experiments. Lung homogenates from at least three mice were independently assessed for ITCH expression by immunoblotting. Immunoblotting data is representative of three independent experiments. β-ACTIN was utilized as loading control. Med, medium; OE,
over expression; CTCF, corrected total cell fluorescence. *, p<0.05; ***, p<0.001; ****, p < 0.0001 (Student's t-test in D, One way ANOVA in F; GraphPad Prism 6.0). Scale bar, 5 μm.

Figure 2. Transcription factor YY1 regulates ITCH repression during Mtb infection.

(A) Mouse peritoneal macrophages were infected with Mtb H37Rv for the indicated time points and YY1 expression was analyzed in the whole cell lysates by immunoblotting. (B) Mouse peritoneal macrophages were infected with Mtb H37Rv for the indicated time points. Cells were partitioned into nuclear and cytoplasmic fractions and assessed for the nuclear translocation of YY1 by immunoblotting. (C) Balb/c mice were aerosol-infected with Mtb H37Rv for 28 days. Protein levels of YY1 was analyzed in the lung homogenates of uninfected and infected mice by western blotting. (D) Mouse peritoneal macrophages were transfected with NT or Yy1 siRNAs. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of ITCH by immunoblotting. (E) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h and assessed for the recruitment of YY1 over the Itch promoter by ChIP assay. (F) Mouse peritoneal macrophages were transfected with NT or Yy1 siRNAs. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of ADRP and CD36 by immunoblotting. (G, H) Mouse peritoneal macrophages were transfected with NT or Yy1 siRNAs. Transfected cells were infected with tdTomato Mtb H37Rv for 48 h and analyzed for lipid accumulation (BODIPY493/503) by confocal microscopy; (G) representative image and (H) respective quantification. All immunoblotting, immunofluorescence and ChIP data are representative of three independent experiments. Lung homogenates from at least three mice were independently assessed for YY1 expression by immunoblotting.
β-ACTIN, α-TUBULIN and LAMINB1 were utilized as loading control. NT, non-targeting; CTCF, corrected total cell fluorescence; ChIP, Chromatin immunoprecipitation; ns, non-significant. *, p<0.05; ****, p < 0.0001 (Student’s t-test in E, One way ANOVA in H; GraphPad Prism 6.0). Scale bar, 5 μm.

Figure 3. Activated NOTCH signaling pathway aids in enhanced YY1 production during Mtb infection. (A) Mouse peritoneal macrophages were treated with the indicated inhibitors for 1 h, followed by 24 h infection with Mtb H37Rv. Whole cell lysates were assessed for the expression of YY1 by immunoblotting. (B) RAW 264.7 cells were transfected with pCMV or NICD overexpression vectors and assessed for the transcript levels of Yy1 by qRT-PCR. (C) Mouse peritoneal macrophages were transfected with NT or Notch siRNAs. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of YY1 and NOTCH1 by immunoblotting. (D) Mouse peritoneal macrophages were treated with NOTCH pathway inhibitor GSI for 1 h, followed by 24 h infection with Mtb H37Rv. Whole cell lysates were assessed for the expression of ITCH by immunoblotting. (E) RAW 264.7 cells were transfected with control or NICD overexpression vectors and assessed for the expression of ITCH by immunoblotting. (F, G) Mouse peritoneal macrophages were treated with the NOTCH pathway inhibitor GSI for 1 h, followed by 48 h infection with tdTomato Mtb H37Rv and analyzed for lipid accumulation (BODIPY493/503) by confocal microscopy; (F) representative image and (G) respective quantification. (H) Mouse peritoneal macrophages were infected with Mtb H37Rv for 4 h. Extracellular bacteria were removed, and the infected cells were cultured in the presence or absence of PRMT5 inhibitor, EPZ015666 for 48 h. Cells were lysed and plated on 7H11 to enumerate intracellular Mtb H37Rv burden. qRT-PCR data
represents mean±S.E.M. and immunoblotting and immunofluorescence data are representative of three independent experiments. OE, over expression; NT, non-targeting; CTCF, corrected total cell fluorescence; CFU, colony forming units. IWPII, WNT pathway inhibitor; LY294002, PI3K pathway inhibitor; Gefitinib, EGFR pathway inhibitor; GSI, Gamma secretase inhibitor (GSI), NOTCH pathway inhibitor. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p < 0.0001 (Student’s t-test in D, One way ANOVA in G,H; GraphPad Prism 6.0). Scale bar, 5 μm.

Figure 4. YY1 associates with the arginine methyl transferase PRMT5 to regulate repression of ITCH during Mtb infection. (A) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h and assessed for the recruitment of EZH2 and associated H3K27me3 marks over the Itch promoter by ChIP assay. (B) Mouse peritoneal macrophages were treated with PRMT5 inhibitor EPZ015666 for 1 h, followed by 24 h infection with Mtb H37Rv. Whole cell lysates were assessed for the expression of ITCH by immunoblotting. (C) Mouse peritoneal macrophages were transfected with NT or Prmt5 siRNAs. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of ITCH by immunoblotting. (D) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h, whole cell lysates were immunoprecipitated with IgG control or PRMT5 antibodies and assessed for their interaction with YY1 by immunoblotting. (E) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h and assessed for the recruitment of PRMT5 and associated H4R3me2s marks over the Itch promoter by ChIP assay. (F) Mouse peritoneal macrophages were transfected with NT or Yy1 siRNAs. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the recruitment of PRMT5 and associated H4R3me2s marks over the Itch promoter
by ChIP assay. qRT-PCR data represents mean±S.E.M. and immunoblotting data are representative of three independent experiments. NT, non-targeting; ChIP, Chromatin immunoprecipitation. *p<0.05; **, p<0.01; *** p<0.001;****, p < 0.0001 (One way ANOVA; GraphPad Prism 6.0).

Figure 5. PRMT5 activity aids in the sustained accumulation of lipid droplets during Mtb infection. (A) Mouse peritoneal macrophages were transfected with NT or Prmt5 siRNAs. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of ADRP and CD36 by immunoblotting. (B) Mouse peritoneal macrophages were treated with PRMT5 inhibitor EPZ015666 for 1 h, followed by 24 h infection with Mtb H37Rv. Whole cell lysates were assessed for the expression of ADRP and CD36 by immunoblotting. (C, D) Mouse peritoneal macrophages were transfected with NT or Prmt5 siRNAs. Transfected cells were infected with tdTomato Mtb H37Rv for 48 h and analyzed for lipid accumulation (BODIPY493/503) by confocal microscopy; (C) representative image and (C) respective quantification. (E, F) Mouse peritoneal macrophages were treated with PRMT5 inhibitor EPZ015666 for 1 h, followed by 48 h infection with tdTomato Mtb H37Rv and analyzed for lipid accumulation (BODIPY493/503) by confocal microscopy; (E) representative image and (F) respective quantification. (G) Mouse peritoneal macrophages were infected with Mtb H37Rv for 4 h. Extracellular bacteria were removed, and the infected cells were cultured in the presence or absence of PRMT5 inhibitor EPZ015666 for 48 h. Cells were lysed and plated on 7H11 to enumerate intracellular Mtb H37Rv burden. All immunoblotting and immunofluorescence data are representative of three independent experiments. NT, non-
targeting; CTCF, corrected total cell fluorescence; CFU, colony forming units. ***
p<0.001;****, p < 0.0001 (One way ANOVA; GraphPad Prism 6.0).

Figure 6. Inhibition of PRMT5 alleviates TB pathology. (A) Schematic representing
the therapeutic regimen followed in a mouse model of Mtb infection. (B-E) Balb/c mice
were infected with Mtb H37Rv and treated with PRMT5 inhibitor EPZ015666 as indicated
in (A). (B) Lung cryosections were assessed for lipid accumulation by confocal
microscopy (BODIPY493/503) (number of mice per group = 3). (C, D) TB pathology
(granulomatous lesions) in the lungs was analyzed by H and E staining; (C)
representative images and (D) respective quantification (number of mice per group = 5).
(E) Mycobacterial burden in the lungs of infected and PRMT5 inhibitor treated mice was
enumerated by plating lung homogenates on 7H11 plates (number of mice per group = 5).
Specific regions of the H and E-stained sections were zoomed by the pathologist for
evaluation of granuloma fraction. Accordingly, the portions that have been zoomed are
demarcated in the images; Magnification, 4X (left panel); 40X (middle panel); 100X (right
panel); Scale bar for H and E images, 200 μm. Scale bar of immunofluorescence, 5μm.
G, granulomatous lesion; AS, alveolar space, FC, foam cell; CFU, colony forming units.
****, p < 0.0001 (Student’s t-test; GraphPad Prism 6.0).

Figure 7. Model: Mycobacteria utilizes YY1-PRMT5 axis to repress ITCH that aids in
lipid accumulation

Supplementary Figure Legends

Figure S1: ITCH is downregulated during mycobacterial infection. (A) Mouse
peritoneal macrophages were infected with Mtb H37Rv for the indicated time points and
assessed for the transcript levels of NEDD family E3 ubiquitin ligases. (B) Balb/c mice were aerosol-infected with Mtb H37Rv for 28 days. Transcript levels of NEDD family E3 ubiquitin ligases was analyzed in the lung homogenates of uninfected and infected mice by qRT-PCR, (number of mice per group = 4). qRT-PCR data represents mean±S.E.M. from three independent experiments. *, p<0.05; **, p<0.01; *** p<0.001 (Student’s t-test; GraphPad Prism 6.0).

Figure S2: Validation of YY1 siRNA. Mouse peritoneal macrophages were transfected with NT or Yy1 siRNA. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of YY1 by immunoblotting. Immunoblotting data is representative of three independent experiments. NT, non-targeting. β-ACTIN was utilized as loading control.

Figure S3: NOTCH signaling is upregulated upon mycobacterial infection. (A) Mouse peritoneal macrophages were infected with Mtb H37Rv for 1 h. Whole cell lysates were assessed for NICD expression by immunoblotting. (B) Mouse peritoneal macrophages were infected with Mtb H37Rv for 24 h and assessed for the expression of NOTCH target gene Hes1 by qRT-PCR. (C) RAW264.7 macrophages were transiently transfected with HES1-luciferase and the transfected cells were infected with Mtb H37Rv for 24 h, followed by assessment of luciferase counts using luminometer. Immunoblotting data is representative of three independent experiments; qRT-PCR and luciferase data represents mean±S.E.M. NICD, NOTCH intracellular domain; Med, Medium. β-ACTIN was utilized as loading control. *, p<0.05; *** p<0.001 (Student’s t-test; GraphPad Prism 6.0).
Figure S4: Validation of PRMT5 siRNA. Mouse peritoneal macrophages were transfected with NT or Prmt5 siRNA. Transfected cells were infected with Mtb H37Rv for 24 h and assessed for the expression of PRMT5 by immunoblotting. Immunoblotting data is representative of three independent experiments. NT, non-targeting. β-ACTIN was utilized as loading control.
Fig. 7

Macrophage (No infection) Macrophage upon infection with Mtb

- NOTCH receptor
- Pattern recognition receptor
- Mycobacterium tuberculosis
- Lipid droplets

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467864; this version posted November 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Fig. S1

![Graph showing fold change over Gapdh for different conditions](image1)

In vivo

![Graph showing fold change over Gapdh for different conditions](image2)

Fig. S2

![Western blot images](image3)

Fig. S3

![Western blot images](image4)
Fig. S4

- PRMT5
- β-ACTIN

Mtb H37Rv

aRNA	-	+
NT		
Pmm5		