Testing the Halophila Stipulacea Environmental Threat as A Potential Antioxidant Agent

Clementina Sansone (✉ clementina.sansone@szn.it)
Stazione Zoologica Anton Dohrn https://orcid.org/0000-0002-3007-8154

Christian Galasso
Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121, Napoli, Italy;

Marco Lo Martire
Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche;

Tomás Vega Fernández
Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121, Napoli, Italy;

Luigi Musco
Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121, Napoli, Italy;

Antonio Dell'Anno
Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche;

Antonino Bruno
Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy;

Douglas M. Noonan
Department of Biotechnology and Life Sciences, University of Insubria, 211000 Varese, Italy

Adriana Albini
Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy;

Christophe Brunet
Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121, Napoli, Italy;

Research

Keywords: oxidative stress, marine biotechnology, seagrass, carotenoids, scavenging effect, repair activity

DOI: https://doi.org/10.21203/rs.3.rs-78848/v1
Abstract

Marine biotechnology is promising to provide new solutions to society and humans, such as for health protection or natural treatments against diseases. In this framework, different strategies are explored to select marine organisms to initiate the pipeline, hopefully ended by the product development. Organisms with fast growth rates and great biological adaptive capacity are of biotechnological interests, since competitiveness might rely on increased physiological or biochemical processes’ capability seeking to protect, defend on repair intracellular damages. This study focused on the fast-growing and invasive seagrass *Halophila stipulacea*, a non-indigenous species widespread in the Mediterranean Sea to investigate its antioxidant activity, both in scavenging reactive oxygen species and in repairing damages from oxidative stress on human fibroblast cells. Results indicated that the ethanol/water extracts of the leaves of *H. stipulacea* were able to scavenge reactive oxygen species and in repair damages from oxidative stress. Moreover, greater bioactivities were observed in old leaves compared to young ones, paralleled with a higher content in carotenoids and carbohydrate contribution to organic matter content. Our results suggest a potential of the (old) leaves of *H. stipulacea* as skin-protective and/or oxidative stress damage repair agents. This study paves the way to transmute the invasive *H. stipulacea* environmental threat in goods for human health.

Introduction

Among the injuries relied on the production of reactive oxygen species (ROS) in humans, chronic exposure of human skin to pro-oxidant agents is a critical factor causing several deleterious short and long-term damages, e.g. photo-aging (Holick 2016). Antioxidants have a key role in counteracting free radicals, preventing or limiting damages in living organisms (Pandel et al. 2013). Exogeneous antioxidants are requested to enhance the protection or repairing processes, with a special regard on natural antioxidative compounds, generally more active (Schieber and Chandel 2014) and eco-friendly produced. Photosynthetic organisms represent the most important source of natural products, providing health benefits (McChesney et al. 2007), with plant-derived compounds used in clinical practise as anticancer, anti-inflammatory, antibiotic, or other medicinal drugs (McChesney et al. 2007; Cragg et al. 2009). Despite the high genetic and phenotypic diversity of algae and seagrasses, and their increasing biotechnological interests (Zidorn 2016; Galasso et al. 2018; Rocha et al. 2018; Sansone et al. 2018), marine photosynthetic organisms are less exploited compared to terrestrial ones. Conversely to terrestrial plants and marine algae (Thomas et al. 2013), the bioactive profile of seagrasses is still almost unknown; recent studies demonstrated antitumor activity, increase of fibroblast growth rate and collagen production of ethanolic extracts of *Posidonia oceanica* leaves (Cornara et al. 2018; Leri et al. 2018).

It is not conceivable using living seagrasses/plants harvested from their habitats as a biotechnological resource, but in case of invasive species the paradigm becomes not even more true.

Halophila stipulacea (Forsskål and Niebuhr) Ascherson (order Alismatales, family Hydrocharitaceae) is a marine seagrass, increasingly invasive in the Mediterranean where it replaced *Cymodocea nodosa*
(Sghaier et al. 2011), in parallel with the ongoing “tropicalization” of the Mediterranean basin (Borghini et al. 2014). It is noteworthy that *H. stipulacea* was included in the “100 Worst Invasive Alien Species in the Mediterranean” (Lowe et al. 2000). In the Mediterranean, *H. stipulacea* populations vary (Chiquillo et al. 2019), with meadows shrinking in winter, and expanding in summer (Manh Nguyen et al. 2020; Winters et al. 2020).

The potential bioactivity and biological properties of *Halophila stipulacea* has been reported (Mabrouk et al. 2020). Organic extracts of *H. stipulacea* obtained from leaves and stems were evaluated on human cell lines as antiobesity agent and on microfouling and macrofouling organisms as antifouling product (Mabrouk et al. 2020). Also, ethanolic leaf extracts have shown antioxidant activity as well as antibacterial activities (Kannan Rengasamy et al. 2012).

This study aims to investigate the potential biotechnological interest of the invasive *H. stipulacea*. *Halophila stipulacea* was sampled in the Sicily coast (Mediterranean Sea) while the target human cell line was the WI38 lung epithelial cells. This cell line representing a well-established experimental tool since they have a limited replicative potential, which brings to cease of *in vitro* growth in short time (Finkel and Holbrook 2000; Toussaint et al. 2000; Seo et al. 2016), is frequently used as an *in vitro* model for studying toxicity, oxidative stress and aging-related disorders (Wolf et al. 2002).

In this study, we determined the bioactive interest of *H. stipulacea* as antioxidant and in scavenging and/or repairing oxidative stress in the human cell line, using biochemical and molecular approaches. Macromolecular composition and pigments content of the extract were also characterized in both old and young leaves of *H. stipulacea*. It is noteworthy that the antioxidant activity of plant extracts might increase from early vegetative stage to maturation, as it occurs in fruits (Lisiewska et al. 2006; Habermann et al. 2016; Salami et al. 2017), in relation with the changes in secondary metabolites production during aging (Figueiredo et al. 2008). Indeed, old leaves displayed a significantly higher antioxidant capacity and ability to scavenge and repair epithelial cells from oxidative stress, probably at least in part relied to the much higher content of carotenoids, mainly xanthophylls known as photoprotective and/or antioxidant compounds in photosynthetic organisms. These results are discussed for their biotechnological meaning and in the optics of transmuting an environmental threat in a societal good. The exploitation of *H. stipulacea* as a source of wellness, however, still requires technological development and strategy for the control and removal of this invasive species (Hyytiäinen et al. 2013; van Tussenbroek et al. 2016).

Materials And Methods

Halophila stipulacea collection

Rhizomes of *H. stipulacea* were collected in July 2016 in the harbour of Castellammare del Golfo in the Mediterranean Sea (38°01'45.2"N, 12°52'51.8"E) at 0.5 m depth. The seagrass formed a dense patch of c.a. 1.5 m diameter on muddy sand bottom, exposed to direct sunlight, in an area characterised by urban
run-off. After collection, the fronds were gently rinsed in seawater to remove sediment particles and associated epibionts and transported in seawater tanks to the laboratory for the subsequent analyses.

Preparation of ethanol/water extracts from *Halophila stipulacea* leaves

Extracts for pigment analysis and biological assays were obtained from freeze-dried young and old leaves of *H. stipulacea*, according to Sansone et al. (Sansone et al. 2017) at room temperature, under dark and N₂ atmosphere to avoid oxidation during procedure. One g of leaves was placed in 1 ml of ethanol/water mixture (3/1; v/v) for 30 min in dark condition and mechanically disrupted with a pestle. The mixture was separated by centrifugation at 4500 g for 15 min, at 4°C, and the upper layer was transferred to a clean tube. Pellets were resuspended in 1 ml of ethanol/water mixture to repeat the procedure, maximising the extraction yield. Hydroalcoholic extracts were dried in a rotary vacuum evaporator (Buchi rotavapor R-114) and the dried extracts were stored at -20°C.

Pigment HPLC analysis

Pigment analysis was conducted by High Performance Liquid Chromatography (HPLC), according to method described in Smerilli et al. (Smerilli et al. 2019). Prior to injection into the HPLC, 250 µl of an Ion Pairing Agent (ammonium acetate 1 mol l⁻¹, final concentration of 0.33 mol l⁻¹) was added to 0.5 ml of the lyophilised extracts and incubated for 5 min in the dark at 4°C. These samples were then injected in the 50 µl loop of the Hewlett Packard series 1100 HPLC (Hewlett Packard, Wilmington, NC, USA), equipped with a reversed-phase column (C8 Kinetex column; 50 mm × 4.6 mm; 2.6 µm particle size, Phenomenex®, USA). The temperature of the column was steadily maintained at 20°C and the flow rate of the mobile phase was set up at 1.7 ml min⁻¹. The mobile phase was composed of two solvent mixtures: “A” - methanol/aqueous ammonium acetate (70/30, v/v); “B” - methanol. During the elution (12 min), a gradient between the solvents was programmed: 75% A (0 min), 50% A (1 min), 0% A (8 min) isocratic for 3 min. Chlorophylls and carotenoids were detected by diode-array spectroscopy (spectrum data collected in the range 350 - 750 nm) using a Hewlett Packard photodiode array detector, model DAD series 1100 and absorbance chromatogram was reported at 440 nm. Chlorophylls, and their degradation products were also detected by fluorescence using a Hewlett Packard standard FLD cell series 1100 with excitation and emission wavelengths set at 407 nm and 665 nm, respectively. Identification and quantification of pigments were carried out using pigment standards from the D.H.I. Water & Environment (Horsholm, Denmark).

Biochemical characterization of lipids, proteins and carbohydrates

The concentration of proteins, carbohydrates and lipids was determined on young and old leaves, previously freeze dried. Total protein concentrations were determined according to Lowry et al. (LOWRY et al. 1951) as modified by Hartree (Hartree 1972) and Rice (Rice 1982) to compensate for phenol interference and are expressed as bovine serum albumin (BSA) equivalents. Total carbohydrate concentrations, expressed in glucose equivalents, were obtained according to the Gerchakov and Hatcher (Gerchakov and Hatcher 1972) protocol based on the phenol and concentrated sulfuric acid reaction with
saccharides. Total lipids were extracted in chloroform: methanol (1:1, vol:vol) (Bligh and Dyer 1959), and the resulting fraction, after evaporation in a dry hot bath at 80 to 100°C for 20 min, was quantified according to the sulfuric acid carbonisation procedure (Marsh and Weinstein 1966). Total lipids were expressed in tripalmitine equivalents. Protein, carbohydrate and lipid concentrations were expressed as mg g\(^{-1}\) of dry weight.

Scavenging activity against DPPH radical

2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) was used for the radical scavenger assay (Sigma Aldrich, cat. 257621). Various concentrations of extract from *H. stipulacea* were mixed with a final concentration of DPPH of 0.1 mM in methanol, allowed to react for 30 min in the dark, and absorbance was measured at 517 nm using a microplate reader.

Cell culture and treatments of human cells

WI-38 cell line was purchased from the American Type Culture Collection (ATCC® CCL-75™) and grown in MEM (Eagle's minimal essential medium) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 units ml\(^{-1}\) penicillin, 100 units ml\(^{-1}\) streptomycin, 2mM of L-glutamine and non-essential amino acids (NEAA, 2 mM) in a 5% CO\(_2\) atmosphere at 37°C. WI-38 cells (2 x 10\(^3\) cells well\(^{-1}\)) were seeded in a 96-well plates and kept overnight for attachment. The two ethanol/water dried extracts, dissolved in dimethyl sulfoxide (DMSO, final concentration 0.5 %), was used for cell treatments. Seventy percent confluent cells were treated with the two ethanol/water extracts (young and old leaves) at 1, 10 and 100 μg ml\(^{-1}\) for 48 hours, in order to assess cytotoxicity. In addition, cells were pre-treated with the two extracts at 1, 10 and 100 μg ml\(^{-1}\) for 2 hours and then injured with 10 mM of H\(_2\)O\(_2\) for 48 hours. This experiment can reveal the potential scavenging activity of samples tested; positive control was obtained injuring cells with only 10 mM of H\(_2\)O\(_2\) for 48 hours. Moreover, WI-38 cells were pre-injured for 2 hours with 10 mM of H\(_2\)O\(_2\) and then recovered with the extracts at 1, 10 and 100 μg ml\(^{-1}\) for 48 hours. This experimental approach examines the potential repair activity of samples after cell oxidative damage; positive control was obtained pre-injuring cells for 2 hours with 10 mM of H\(_2\)O\(_2\) and then recovered with only culture medium.

Viability assays

Cytotoxicity, scavenging and repair activity of the ethanol/water extracts were tested using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide, Applichem) on the WI-38 cell line (Mosmann 1983). After 48 hours of treatment, WI-38 cells were incubated with 10 μl (5 mg ml\(^{-1}\)) of MTT and incubated for 3 hours at 37°C with 5% CO\(_2\). The resulting formazan crystals produced by only viable cells were dissolved with 100 μl of isopropyl alcohol. The absorbance was recorded on a microplate reader at a wavelength of 570 nm. The effects of the extracts were evaluated as percent of cell viability estimated as the ratio between mean absorbance of each sample and mean absorbance of control (untreated cells).

RNA extraction and Real-Time qPCR
WI-38 cells (2x10^6 cells), used for RNA extraction and analysis, were seeded in Petri dishes (100 mm diameter) to obtain several types of samples. For gene expression studies, we chose the most active concentration (10 μg ml⁻¹) of old leaf extract that showed strong repair and scavenging activities, without any cytotoxic effect, and 10 mM H₂O₂ as cellular injury. Controls encompassed negative (cells without any treatments, collected after 3 hours) and positive ones (cells treated with H₂O₂ for 1 hour and then with fresh medium for 2 hours). The three types of analysed samples correspond to cells treated with the leaf extract (3 hours); cells treated with the leaf extract (2 hours) and then injured with H₂O₂ (1 hour) and cells injured with H₂O₂ (1 hour) and recovered with the leaf extract (2 hours). Gene expression was analysed after 3 hours of treatment to observe activation of detoxification and cell repair pathways occurring after this time. Once the treatment was over, WI-38 cells were washed in the Petri dish by adding cold Phosphate-Buffered Saline (PBS) and rocking gently. Cells were lysed in the Petri dish by adding 1 ml of Trisure Reagent (Bioline) and RNA was isolated according to the manufacturer’s protocol. RNA concentration and purity were assessed using the nanophotometer Nanodrop. The reverse transcription reaction was carried out with the RT² first strand kit (Qiagen), and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) was performed using the RT² Profiler PCR Arrays kit (Cat. No. PAHS-065Y, Qiagen). Plates were run on a ViiA7, Standard Fast PCR Cycling protocol with 10 μl reaction volumes. Cycling conditions were 1 cycle initiation at 95°C for 10 min followed by amplification for 40 cycles at 95°C for 15 s and 60°C for 1 min. Amplification data were collected via ViiA 7 RUO Software (Applied Biosystems). The cycle threshold (Ct)-values were analysed with PCR array data analysis online software (GeneGlobe Data Analysis Center http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php, Qiagen). Real time data were expressed as fold expression, describing the changes in gene expression between treated cells and untreated cells (control). The expression of 84 genes involved in oxidative stress was analysed (Table S1). Control genes for real-time qPCR were actin-beta (ACTB), beta-2-microglobulin (B2M), hypoxanthine phosphoribosyl transferase (HPRT1) and ribosomal protein large P0 (RPLP0), the expression of which remained constant.

Results

Pigments

The main pigments found in *H. stipulacea* belong into the two photoprotective cycles, violaxanthin, antheraxanthin and zeaxanthin (xanthophyll cycle), and the siphonein-siphonaxanthin cycle, together with other carotenoids neoxanthin, lutein, α- and β-carotenes and the chlorophylls *a* and *b* (chl. *a* and chl. *b*). Pigment composition was identical in old and young leaves, but their concentration significantly varied with leaf aging (Fig. 1A). Indeed, the concentrations of xanthophyll-cycling pigments (sum of violaxanthin, antheraxanthin and zeaxanthin), as well as the sum of siphonein-cycling pigments, were significantly higher in old leaves than in the young ones (p<0.001). The sum of α- and β-carotenes was similar in the two types of leaf (Fig. 1A), while chl. *a* concentration was significantly higher in young than in old leaves (p<0.01).
The ratio between accessory pigments and chl. a was used as an index of change in photosystems’ structure in old vs young leaves (Fig. 1B). Except for chlorophyll b and the α- and β-carotenes, all the accessory pigments vs chl. a ratios were significantly higher in old leaves compared to young ones (p<0.001). Among the xanthophyll-cycling pigments, the two photoprotective antheraxanthin and zeaxanthin displayed the greatest increase with leaf aging (Fig. 1B). In synthesis, carotenoids with known role in photoprotection and/or protection against reactive oxygen species enhanced with aging (Fig. 1 A, B).

Macromolecular composition

Protein, carbohydrate and lipid concentrations in young leaves were significantly higher than in old ones (p<0.05; Table 1). In particular, protein concentrations decreased from 21.3 ± 0.5 to 8.2 ± 0.6, carbohydrates from 19 ± 0.6 to 10.9 ± 1.1 and lipids from 5.8 ± 0.1 to 1.6 ± 0.3 mg·g⁻¹ in young and old leaves, respectively (Table 1).

In young leaves, proteins and carbohydrates represented the main macromolecular components, contributing for 46.2 % and 41.2 % to the total organic matter pool, respectively, followed by lipids (12.6 %). Conversely, in old leaves carbohydrates represented the dominant component (accounting for 52.6% of the total organic matter pool) followed by proteins and lipids (39.6 % and 7.8 %, respectively).

	Proteins	Carbohydrates	Lipids
Young leaves	21.3±0.5	19.0±0.6	5.8±0.1
Old leaves	8.2±0.6	10.9±1.1	1.6±0.3

Antioxidant activity

Old leaf extracts provided a significantly (p<0.001) much higher antioxidant power than young leaves (Fig. 2). Indeed, at the two low concentrations, young leaf extracts did not exert any antioxidant function, while old leaf extract was already bioactive.

Cytotoxicity, scavenging and repair effects of the leaf extracts

The old leaf extract did not induce any cytotoxicity on WI-38 cells for none of the three tested concentrations (Fig. 3A). Conversely, the young leaf extract displayed a slight cytotoxicity on WI-38 cells (Fig. 3A), with a cell viability decreasing from 83% (at 1 μg ml⁻¹) to 67% (at 100 μg ml⁻¹).

For the scavenging assay, positive control, corresponding to WI-38 cells injured by 10 mM of H₂O₂ for 48 hours, resulted in very low cell viability (38%). When WI-38 cells were pre-treated with young leaf extract
before H$_2$O$_2$ injury, cell viability enhanced up to 64%, 71% and 81% at 1, 10 and 100 μg ml$^{-1}$, respectively (Fig. 3B). Using old leaf extract as pre-treatment, a further enhancement of cell viability was noticed up to 82%, 96% and 113% at 1, 10 and 100 μg ml$^{-1}$, respectively (Fig. 3B).

For the repair assay, the positive control represented by WI-38 cells injured with 10 mM of H$_2$O$_2$ for 1 hour, displayed 52% of viable cells. Recovery treatment using 1, 10 and 100 μg ml$^{-1}$ of young leaf extract increased cell viability up to 75%, 79% and 86%, respectively (Fig. 3C). Using the old leaf extract, cell viability became 62%, 94% and 108%, respectively (Fig. 3C).

Oxidative stress gene expression in WI-38 cells treated with old leaf extracts

WI-38 cells treated with old leaf extract upregulated MBL2 and MPO (17.1 and 31.1 in fold regulation, respectively) and downregulated EPHX2 and GSR (-18.2 and -17.1 in fold regulation, respectively) (Tables S1, S2 and Fig. 4). Conversely, the WI-38 cells pre-treated with old leaf extract, before the prooxidant treatment with 10 mM of H$_2$O$_2$ induced an upregulation of all genes involved in antioxidant activity analysed (e.g., CCL5, GPX5, GSR, KRT1, LPO, MBL2, MPO, MT3, NOX5, TPO), with the exception of EPHX2 (-9.9 in fold regulation, Fig. 4, Tables S1, S2).

The prooxidant treatment alone of the WI-38 cell line with 10 mM of H$_2$O$_2$ induced an upregulation of the genes MBL2, MPO and SPINK1 (7.0, 8.8 and 33.7 in fold regulation, respectively) and the downregulation of the GSR gene (-2.7 in fold regulation) (Tables S1, S2 and Fig. 4).

Recovery treatment with old leaf extract after the injury with H$_2$O$_2$ revealed by the upregulation of all genes analysed (e.g., CCL5, EPHX2, GPX5, KRT1, LPO, MBL2, MT3, NOX5, TPO) with the exception of the GSR gene (Fig. 4 and Tables S1, S2).

Discussion

The seagrass *H. stipulacea* was selected as target in our study due to its capacity to thrive in a wide range of environmental conditions and to out-compete native species in the Mediterranean Sea, where it is invasive (Beer and Waisel 1982; Schwarz and Hellblom 2002; Sharon et al. 2009; Mejia et al. 2016).

Indeed, opportunism and/or competitiveness is linked to a high ability in coping with environmental variations to expand their ecological niche, profiting of new favourable environmental conditions, probably based on physiological and biochemical plasticity for maintaining high growth rate. This implies relevant biochemical energy conveyed towards growth as well as efficient processes to protect cells and repair damages in case of non-optimal environmental conditions. Those characteristics are putative promoters for biotechnological investigations looking for active natural compounds/extracts for human health benefits, such as antioxidants.

Indeed, results obtained in this study highlight the high potential of the seagrass species *H. stipulacea* as source of bioactive extracts able to counteract and repair human epithelial cells from induced-oxidative stress. While young leaf extracts are not attractive, old leaf ones are, conversely, biotechnologically...
appealing. Organismal ageing induces a senescence process that in turn accentuates the modulation of
physiology, biochemistry and functioning of biological machinery (Pushpa Bharathi et al. 2016).
Senescence is regulated by many processes (Pushpa Bharathi et al. 2016) and by ROS, which act as
signalling for production of secondary metabolites involved in several defence and protective
mechanisms (Wingler et al. 2006, 2009). Even though concentration of carotenoids might remain stable
during ageing/senescence in some plants (Van Doorn 2008), growth stage of a photosynthetic organism
notably affects the bioactive compounds content and antioxidant activity often increasing in aged
biological material (Raniello et al. 2004, 2006; Sánchez-Quiles and Tovar-Sánchez 2014; Sugawara et al.
2014; Uragami et al. 2014).

In *H. stipulacea* the enhancement of antioxidant ability with leaf aging is paralleled an almost all
carotenoids increase and with the decrease in chl.a content. The decrease in the chlorophyll
concentration in old leaves, as already observed (Socaci et al. 2017) might induce a lowering of light
energy transfer in the cells, that in turn would explain the lower organic matter content in aged leaves
compared to young leaves. The higher contribution of carbohydrates into the organic matter content is a
common feature in plants during ageing, potentially promoting or triggering senescence (Drew 1978;
Pourtau et al. 2006; Gullón et al. 2018; Santhanam et al. 2018; Woo et al. 2018).

The significant increase in carotenoids with age might – at least in part -explain the enhanced
antioxidant power of the extracts. Indeed, carotenoids, such as violaxanthin, neoxanthin, antheraxanthin,
zeaxanthin, lutein are epidemiologically correlated with a lower risk for several diseases and to have
beneficial effects on eye health (Stahl and Sies 2005; Ma and Lin 2010; Galasso et al. 2017). Additionally,*
H. stipulacea contains the keto-carotenoids siphonein and siphonaxanthin, exclusively present in aquatic
photosynthetic organisms, as already found in green macroalgae such as *Codium fragile, Caulerpa
lentillifera* and *Umbraulva japonica* (Ricketts 1971). These pigments fill the role of maximizing the
absorption of the green and blue-green wavelengths (Raniello et al. 2004). Moreover, they are known to
act as defence against light stress (Raniello et al. 2004), being active in photoprotection processes
(Raniello et al. 2006; Uragami et al. 2014). The two carotenoids siphonein and siphonaxanthin have been
reported as bioactive compounds (Ganesan et al. 2010, 2011). Siphonoxathin is also known to induce
apoptosis in leukemia cells (Ganesan et al. 2011), with additional anti-angiogenic or anti-diabetic role
(Ganesan et al. 2010; Li et al. 2015).

The bioactivity induced on human fibroblast cells by the extracts involves a molecular response in cells
towards the defence and detoxification from peroxidative cell damages. Among the targeted genes, CCL5,
LPO, KRT1, LPO, MBL2, MT3, NOX5 and TPO are known to activate intracellular detoxification pathways
in response to oxidative stress, with the involvement of the peroxisome's machinery (Izumi and Ishida
2011). Yet, the activation of GPX5 is responsible for the protection from lipid oxidation and DNA mutation
induced by high level of intracellular ROS (Jajic et al. 2015).

All these results confirm the pro-active effect of the *H. stipulacea* extracts against damaged epithelial
human cells or protecting them, thanks to an induced-gene activation cascading effect. Advanced
chemical investigations might further help in relying the displayed bioactivity to the compounds’diversity harvested in the extract, even though the role of carotenoids – in term of quantity and diversity, the latter enhancing the bioactive ability of the extract – is well-known. The high content and diversity in carotenoids, mainly those involved in photoprotective process, is also promising for developing further studies investigating the role of these extracts on human skin cell line to counteract UV damages.

Conclusion

Our study lays the foundation for a potential biotechnological future of the invasive seagrass *H. stipulacea* that might fill the role of natural provider of antioxidant compounds acting against oxidative stress in human epithelial cells. This species being a threat for coastal marine ecosystems due to its invasiveness might represent a novel valuable source of human health benefits natural products. It is important to consider that such opportunity, even if not unique, is very rare, since it is not thinkable to harvest from the sea species for biotechnological outputs without causing detrimental effects to the environment. In this case, a careful harvesting of *H. stipulacea* from nature could bring up a synergy between the commercial exploitation for human wellbeing of the invader in areas where the species is not native and benefits for the conservation of the natural capital and ecosystem health.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors agreed with this publication

Availability of data and materials

The datasets generated for this study are available on request to the corresponding author

Competing interests

There are not competing interests

Funding

C.G. is supported by SZN research fellowship.

Author Contributions
C.S., L.M. and T.V.F. conceived the experiments. C.S. and C.B. designed the experiments. L.M. and TVF
sampled *H. stipulacea*. C.S. and C.G. carried out the experiments with cell culture and real-time-PCR.
M.L.M. and A.d.A. performed the biochemical composition analysis. C.B. analyzed the HPLC results. C.S.,
C.G., A.d.A., C.B., A.B., D.M.N. and A.A. analyzed the data. All authors wrote the paper.

Acknowledgments

The authors would like to acknowledge the support of Ida Orefice in the HPLC analysis.

References

1. Beer S, Waisel Y (1982) Effects of light and pressure on photosynthesis in two seagrasses. Aquatic
Botany. https://doi.org/10.1016/0304-3770(82)90068-7
2. BLIGH EG, DYER WJ (1959) A rapid method of total lipid extraction and purification. Canadian
journal of biochemistry and physiology. https://doi.org/10.1139/o59-099
3. Borghini M, Bryden H, Schroeder K, et al (2014) The Mediterranean is becoming saltier. Ocean
Science. https://doi.org/10.5194/os-10-693-2014
4. Chiquillo KL, Barber PH, Willette DA (2019) Fruits and flowers of the invasive seagrass *Halophila
stipulacea* in the Caribbean Sea. Botanica Marina. https://doi.org/10.1515/bot-2018-0052
5. Cornara L, Pastorino G, Borghesi B, et al (2018) *Posidonia oceanica* (L.) delile ethanolic extract
modulates cell activities with skin health applications. Marine Drugs. https://doi.org/10.3390/md16010021
6. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-
cancer agents. Chemical Reviews. https://doi.org/10.1021/cr900019j
7. Drew EA (1978) Factors affecting photosynthesis and its seasonal variation in the seagrasses
Cymodocea nodosa (Ucria) Aschers, and *Posidonia oceanica* (L.) Delile in the mediterranean.
Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/0022-0981(78)90128-4
8. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite
production in plants: Volatile components and essential oils. Flavour and Fragrance Journal.
https://doi.org/10.1002/ffj.1875
9. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature
10. Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: Biological
functions and industrial applications. Antioxidants 6:. https://doi.org/10.3390/antiox6040096
11. Galasso C, Nuzzo G, Brunet C, et al (2018) The marine dinoflagellate *alexandrium minutum* activates
a mitophagic pathway in human lung cancer cells. Marine Drugs 16:. https://doi.org/10.3390/md16120502
12. Ganesan P, Matsubara K, Ohkubo T, et al (2010) Anti-angiogenic effect of siphonaxanthin from green
alga, *Codium fragile*. Phytomedicine. https://doi.org/10.1016/j.phymed.2010.05.005
13. Ganesan P, Noda K, Manabe Y, et al (2011) Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochimica et Biophysica Acta - General Subjects. https://doi.org/10.1016/j.bbagen.2011.02.008

14. GERCHAKOV SM, HATCHER PG (1972) IMPROVED TECHNIQUE FOR ANALYSIS OF CARBOHYDRATES IN SEDIMENTS. Limnology and Oceanography

15. Gullón B, Eibes G, Moreira MT, et al (2018) Yerba mate waste: A sustainable resource of antioxidant compounds. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2018.01.064

16. Habermann E, Imatomi M, Pontes FC, Gualtieri SCJ (2016) Antioxidant activity and phenol content of extracts of bark, stems, and young and mature leaves from Blepharocalyx salicifolius (Kunth) O. Berg. Brazilian Journal of Biology. https://doi.org/10.1590/1519-6984.03815

17. Hartree EF (1972) Determination of protein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry. https://doi.org/10.1016/0003-2697(72)90094-2

18. Holick MF (2016) Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and Vitamin D for health. In: Anticancer Research

19. Hyytiäinen K, Lehtiniemi M, Niemi JK, Tikka K (2013) An optimization framework for addressing aquatic invasive species. Ecological Economics. https://doi.org/10.1016/j.ecolecon.2013.04.001

20. Izumi M, Ishida H (2011) The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via rubisco-containing bodies during leaf senescence. Plant Signaling and Behavior. https://doi.org/10.4161/psb.6.5.14949

21. Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants

22. Kannan Rengasamy RR, Rajasekaran A, Micheline GD, Perumal A (2012) Antioxidant activity of seagrasses of the Mandapam coast, India. Pharmaceutical Biology. https://doi.org/10.3109/13880209.2011.591807

23. Leri M, Ramazzotti M, Vasarri M, et al (2018) Bioactive compounds from posidonia oceanica (L.) delile impair malignant cell migration through autophagy modulation. Marine Drugs. https://doi.org/10.3390/md16040137

24. Li Z-S, Noda K, Fujita E, et al (2015) The Green Algal Carotenoid Siphonaxanthin Inhibits Adipogenesis in 3T3-L1 Preadipocytes and the Accumulation of Lipids in White Adipose Tissue of KK-Ay Mice. The Journal of Nutrition. https://doi.org/10.3945/jn.114.200931

25. Lisiewska Z, Korus A, Kmiecik W, Gebczyński P (2006) Effect of maturity stage on the content of ash components in raw and preserved grass pea (Lathyrus sativus L.) seeds. International Journal of Food Sciences and Nutrition. https://doi.org/10.1080/09637480500515420

26. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). https://doi.org/10.1614/WT-04-126.1

27. LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ (1951) Protein measurement with the Folin phenol reagent. The Journal of biological chemistry. https://doi.org/10.1016/0922-338X(96)89160-4
28. Ma L, Lin XM (2010) Effects of lutein and zeaxanthin on aspects of eye health. Journal of the Science of Food and Agriculture

29. Mabrouk SB, Reis M, Sousa ML, et al (2020) The Marine Seagrass Halophila stipulacea as a Source of Bioactive Metabolites against Obesity and Biofouling. Marine Drugs. https://doi.org/10.3390/md18020088

30. Manh Nguyen H, Savva I, Kleitou P, et al (2020) Seasonal dynamics of native and invasive Halophila stipulacea populations—A case study from the northern Gulf of Aqaba and the eastern Mediterranean Sea. Aquatic Botany. https://doi.org/10.1016/j.aquabot.2020.103205

31. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. Journal of Lipid Research

32. McChesney JD, Venkataraman SK, Henri JT (2007) Plant natural products: Back to the future or into extinction? Phytochemistry. https://doi.org/10.1016/j.phytochem.2007.04.032

33. Mejia AY, Rotini A, Lacasella F, et al (2016) Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2015.09.014

34. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. https://doi.org/10.1016/0022-1759(83)90303-4

35. Pandel R, Poljšak B, Godic A, Dahmane R (2013) Skin Photoaging and the Role of Antioxidants in Its Prevention. ISRN Dermatology. https://doi.org/10.1155/2013/930164

36. Pourtau N, Jennings R, Pelzer E, et al (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta. https://doi.org/10.1007/s00425-006-0243-y

37. Pushpa Bharathi N, Amudha P, Vanitha V (2016) seagrasses - Novel marine nutraceuticals. International Journal of Pharma and Bio Sciences

38. Raniello R, Lorenti M, Brunet C, Buia MC (2004) Photosynthetic plasticity of an invasive variety of Caulerpa racemosa in a coastal Mediterranean area: Light harvesting capacity and seasonal acclimation. Marine Ecology Progress Series. https://doi.org/10.3354/meps271113

39. Raniello R, Lorenti M, Brunet C, Buia MC (2006) Photoacclimation of the invasive alga Caulerpa racemosa var. cylindracea to depth and daylight patterns and a putative new role for siphonaxanthin. Marine Ecology. https://doi.org/10.1111/j.1439-0485.2006.00080.x

40. Rice D (1982) The Detritus Nitrogen Problem: New Observations and Perspectives from Organic Geochemistry. Marine Ecology Progress Series. https://doi.org/10.3354/meps009153

41. Ricketts TR (1971) The structures of siphonein and siphonaxanthin from Codium fragile. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)90263-2

42. Rocha DHA, Seca AML, Pinto DCGA (2018) Seaweed secondary metabolites in vitro and in vivo anticancer activity. Marine Drugs
43. Salami M, Rahimmalek M, Ehtemam MH (2017) Comprehensive Research on Essential Oil and Phenolic Variation in Different Foeniculum vulgare Populations During Transition from Vegetative to Reproductive Stage. Chemistry and Biodiversity. https://doi.org/10.1002/cbdv.201600246

44. Sánchez-Quiles D, Tovar-Sánchez A (2014) Sunscreens as a source of hydrogen peroxide production in coastal waters. Environmental Science and Technology. https://doi.org/10.1021/es5020696

45. Sansone C, Galasso C, Orefice I, et al (2017) The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Scientific Reports. https://doi.org/10.1038/srep41215

46. Sansone C, Nuzzo G, Galasso C, et al (2018) The Marine Dinoflagellate Alexandrium andersoni Induces Cell Death in Lung and Colorectal Tumor Cell Lines. Marine Biotechnology 20:. https://doi.org/10.1007/s10126-018-9817-5

47. Santhanam R, Santhanam R, Suleria H, et al (2018) Biology and Ecology of Pharmaceutical Marine Plants. In: Biology and Ecology of Pharmaceutical Marine Plants

48. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Current Biology

49. Schwarz AM, Hellblom F (2002) The photosynthetic light response of Halophila stipulacea growing along a depth gradient in the Gulf of Aqaba, the Red Sea. Aquatic Botany. https://doi.org/10.1016/S0304-3770(02)00080-3

50. Seo HR, Choi MJ, Choi JM, et al (2016) Malvidin Protects WI-38 Human Fibroblast Cells Against Stress-induced Premature Senescence. Journal of Cancer Prevention. https://doi.org/10.15430/jcp.2016.21.1.32

51. Sghaier YR, Zakhama-Sraieb R, Benamer I, Char-Cheikhrouha F (2011) Occurrence of the seagrass Halophila stipulacea (Hydrocharitaceae) in the southern Mediterranean Sea. Botanica Marina. https://doi.org/10.1515/BOT.2011.061

52. Sharon Y, Silva J, Santos R, et al (2009) Photosynthetic responses of Halophila stipulacea to a light gradient. II. Acclimations following transplantation. Aquatic Biology. https://doi.org/10.3354/ab00148

53. Smerilli A, Balzano S, Maselli M, et al (2019) Antioxidant and photoprotection networking in the coastal diatom skeletonema marinoi. Antioxidants 8:. https://doi.org/10.3390/antiox8060154

54. Socaci SA, Rugină DO, Diaconeasa ZM, et al (2017) Antioxidant Compounds Recovered from Food Wastes. In: Functional Food - Improve Health through Adequate Food

55. Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. In: Biochimica et Biophysica Acta - Molecular Basis of Disease

56. Sugawara T, Ganesan P, Li Z, et al (2014) Siphonaxanthin, a green algal carotenoid, as a novel functional compound. Marine Drugs

57. Thomas F, Lundqvist LCE, Jam M, et al (2013) Comparative characterization of two marine alginate lyases from zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M113.467217
58. Toussaint O, Medrano EE, Von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Experimental Gerontology

59. Uragami C, Galzerano D, Gall A, et al (2014) Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy. Photosynthesis Research. https://doi.org/10.1007/s11120-014-0011-y

60. Van Doorn WG (2008) Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? Journal of Experimental Botany

61. van Tussenbroek BI, van Katwijk MM, Bouma TJ, et al (2016) Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean. Journal of Sea Research. https://doi.org/10.1016/j.seares.2016.05.005

62. Wingler A, Masclaux-Daubresse C, Fischer AM (2009) Sugars, senescence, and ageing in plants and heterotrophic organisms. In: Journal of Experimental Botany

63. Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. In: Journal of Experimental Botany

64. Winters G, Beer S, Willette DA, et al (2020) The tropical seagrass halophila stipulacea: Reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Frontiers in Marine Science 7:1–28

65. Wolf FI, Torsello A, Covacci V, et al (2002) Oxidative DNA damage as a marker of aging in WI-38 human fibroblasts. Experimental Gerontology. https://doi.org/10.1016/S0531-5565(02)00005-0

66. Woo HR, Masclaux-Daubresse C, Lim PO (2018) Plant senescence: How plants know when and how to die. Journal of Experimental Botany

67. Zidorn C (2016) Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry