Thermo Power Plant “Kosovo B” – A Pollution Source for Sitnica River

Besime Sh. Kajtazi and Tania Floqi

Abstract — Kosovo’s waters are unevenly distributed in time and space. Kosovo is water scarce, and it also has the low level of water resources development and storage. In particular Iber basin is water stressed, but in the next 20 years it is expected that all Kosovo’s basins will be water stressed [1]. This is due to population and general economic growth, and resource variability. The anticipated revitalization of the irrigation and mining sector and additional demands from the energy sector will increase pressure on new water demands [5]. For these reasons, the water quality of existing resources will become an ever-growing problem if not addressed now. The lignite-fired power plant “Kosovo B” is main the energy source in the country. The wastewater produced from its operation is discharged into Sitnica river with minimum treatment. With study of pollution level of wastewater discharges, this article sets several recommendations for treatment of wastewater in order that power plant meets national and EU operation requirements.

Index Terms — Clean rivers; industrial pollution; protection of water resources.

I. INTRODUCTION

Sitnica is the main river stretching in Kosovo valley that confluence with Ibar, one of main river basins in Kosovo which further flows towards north of country joining Danub later. The watershed covers a total area of 2,873 km², or about 25% of the total area of Kosovo. Sitnica is lowland river with very variable flow, being very low during summer 0.5 m³/s while during winter reaches up to 328 m³/s [2]. It originates in the northeast foothills of the Sharr mountains in the municipality of Ferizaj, where it is called Sazlija. It then heads to the north and the plains of Kosovo where it is joined, by several tributaries. In the suburbs of the capital Pristina, it enters the mining basin of Kosovo and is joined by two much polluted tributaries: Graçanka and Prishtevka. It is in this section that the quality of its water deteriorates sharply with wastewater discharges from Pristina, wastewater from industries located along its course (coal mines and thermoelectric power stations), and landfills and storage of solid wastes along the river banks etc.

Kosovo is at very early stages of building the facilities for treatment of wastewater. Only 0.7% of produced wastewater is treated before its return to the nature [3]. All other wastewater is discharged without any prior treatment to nearby streams and rivers.

The main energy production industry (thermopower plant “Kosovo B”) is located nearby Sitnica and their operation is not compliant with environmental protection standards and regulations.

The wastewater generated from the operation of lignite-fired power plant with minimal treatment such as sedimentation, is discharged into Sitnica river.

The wastewaters discharged from power plant are as follows [4]:
- Bottom ash removal water;
- Heavy Fuel Oil polluted water;
- Run-off water, potentially polluted by oils and hydrocarbons (including coal yard);
- Water Chemical Treatment plant effluents, including:
 - Sludge produced by softening (decarbonization - DECA) treatment;
 - Water from regeneration of ion-exchange resins;
 - Overflow of decarbonization (DECA) and demineralization (DEMI) water basins;
- Sanitary wastewater.

II. METHODS AND MATERIALS

Through wastewater sampling in six discharging points from operations of thermal power plant “Kosovo B” and their laboratory analyses, we have analyzed the pollution that this industry being the main source of energy production for the country, is causing to another important natural resource Sitnica river.

Fig. 1. Layout of the thermo powerplant Kosovo B and the locations of the six sampling points.
In Fig. 1 we have presented the layout of the thermopower plant “Kosovo B” and the locations of the six points where the wastewater samples have been taken for analyses as follows:

1. Sludge from the Decarbonization process. This wastewater is the sludge that is produced from raw water treatment plant that treats water for the energy production.
2. Slag from boiler bottom ash cooling and removal. It is the water that is used to cool the ash created from coal burning before it undergoes sedimentation.
3. Sewer is the sanitary wastewater collected from administrative buildings and kitchen.
4. Slag from boiler bottom ash cooling and removal. The water that is used to cool the ash created from coal burning after sedimentation and before discharge into river.
5. Rainwater, sink pumps, cooling tower overspill. This is mainly drainage water, and spill from cooling tower.
6. Counter-wash from the Decarbonization process. Water that is used to wash the filters in the decarbonization process.

The testing methods and standards applied for analyses are mainly ISO, DIN, and EPA standards based on parameters each specifically and they are shown below in Table 1.

In one of the columns of Figure 1, we have presented the Industrial emission limits according to national Administrative Instruction nr. 30/2014[7] that are applicable for discharges from industry into the river.

III. Results

The results from analyses of the six samples of wastewater generated by energy production can be summarized as follows:

Parameter	Method	Industrial emission limits acc. AI nr. 30/2014	
Flow	l/m	17.0 5510 18.9 90.0 45.0 6.0	
Temperature	°C	14.6 25.2 20.1 29.3 31.2 16.5	
Electrical conductivity	µS/cm	170 340 620 390 440 120	
pH	ISO 10523	10.57 8.72 7.81 9.74 9.92 9.99	
Colour	Pt/Co	ISO 7887:1994	None None Light black Light black None
TSS	g/l	ISO 11923:1997 35-60 6.0 40.0 172 128.0 16.0 20.0	
TDS	mg/l	US EPA 8163	80.0 200 340 240 220.0 200
TPH	mg/l	EPA 1664	<20 <20
Total F	mg/l	EPA 365.3	0.55 0.63 0.59
Total CL	mg/l	ISO 7393:1985	<0.03 0.03 0.06
Al	mg/l	EPA 3015A, EPA 6010C:2007	3 0.470 0.320 0.726
As	mg/l	EPA 3015A, EPA 6010C:2007	0.16 <2 ppb <2 ppb <2 ppb
Cr	mg/l	EPA 3015A, EPA 6010C:2007	1 0.039 0.038 0.036
Hg	mg/l	EPA 3015A, EPA 6010C:2007	0.04 <1 ppb <1 ppb <1 ppb
Mn	mg/l	EPA 3015A, EPA 6010C:2007	0.012 0.016 0.060
Ni	mg/l	EPA 3015A, EPA 6010C:2007	0.101 0.132 0.130
Pb	mg/l	EPA 3015A, EPA 6010C:2007	0.5 <1 ppb <1 ppb <1 ppb
S	mg/l	EPA 3015A, EPA 6010C:2007	400 4.066 9.210 9.240
Zn	mg/l	EPA 3015A, EPA 6010C:2007	1 0.124 0.111 0.132
Ca	mg/l	ISO 7980:1986, EPA 6010 C:207	8.47
Mg	mg/l	ISO 7980:1986, EPA 6010 C:207	1.80
BOD	mg/L	ISO 5815:2003	25 83
COD	mg/L	ISO 6060:1989	125 236
N (Total)	mg/L	ISO 5663	20 17.68
P (Total)	mg/L	EPA 8048	1.16
Faecal Coliform	Cfu/ml	ISO 9308-1	>300
Escherichia Coli	Cfu/ml	ISO 9308-1	1000/100ml >300
Anionic surfactants	mg/L	ISO 7875-1: 1996	0.39
Non-ionic surfactants	g/L	ISO 7875-2: 1984	0.07

- The temperature of these wastewater discharges is between 14-29°C, that can be considered high for some aquatic life species.
- Electrical conductivity varies between 120-620 µS/cm.
- pH value is going from 7.81 up to 10.5 which makes these wastewaters basic.
- TSS are above limit in two samples (3 and 4).
- BOD and COD analyzed in sample 3(sewerage) are above the limits and they show the organic load and total load of the wastewater.
- It was noted that some of metals (As, Hg, Pb) are exceeding the limits.

IV. Discussions

Pollution coming from thermopower plants represents important pollution pressure in Sitnica river, and its better management represents an important area for improving the ecological status of the river.

In order that the power plant operations are compliant with national legislation requirements and European Directives (Industrial Emission Directive 2010/75/EU and Large Combustion Plant Best References) [8], based on studies, analyses and the results of the laboratory tests of the taken
samples, the appropriate treatment facilities are proposed as follows:
- An appropriate wastewater treatment plant, consisting of a physical-chemical and biological stage should be designed and built in order to treat the wastewater streams: sanitary, bottom ash removal, Deca process sludge and atmospheric water in order to fully comply with environmental standards.
- For runoff and heavy fuel oils (HFO) contaminated water a basin should be dimensioned and built combined with appropriate treatment stages (sedimentation and skimming) in order to remove the pollutants.
- the possibility of re-use of the treated wastewater in the plant (i.e., for ash transport) with purpose to reduce the water consumption.

V. CONCLUSIONS

Sitnica river is important water resource for central part of Kosovo and it must be protected. The achieve this goal there are a series of actions and investments to be undertaken.

On regards to the pollution from thermopower plant we recommend the:
- Construction wastewater treatment plant for industrial wastewater discharges;
- Construction and development of monitoring stations of water discharges from thermo power plant in Sitnica river and regular reporting to the competent authorities.

Kosovo as the rest of the Western Balkan region, enjoys an enlargement perspective. The policy development should be aligned with EU "acquis", and infrastructure should be implemented according to European codes and standards.

Country is struggling with the compliance with EU directives, especially with the Urban Wastewater Treatment Directive (UWWTD) and Industrial Emissions Directive (IED). The lack of appropriate facilities for wastewater treatment before their discharge into recipient represents an important gap in water sector that need to be addressed in order to comply with EU standards and regulation.

While water is a central issue in water security, it is increasingly clear that this goes beyond single sector issue topics and it percolates into all parts of society and economy.

REFERENCES

[1] State Water Strategy for Kosovo 2017-2036.
[2] Report: State of waters in Kosovo, Kosovo Environmental Protection Agency, 2015.
[3] Report: Annual report of water service providers 2019, Water Regulatory Authority of Kosovo.
[4] Report: Feasibility Study for Environmental and other measures on Kosovo B Thermal Power Plant, May 2017, Kosovo.
[5] Report: Kosovo Water Security Report, The World Bank 2017.
[6] Edited book: E. Roberts Alley, P.E. 2007 Water Quality Control. Mc Graw Hill, WEF PRESS Water Environment Federation Alexandria, Virginia, pp.2.3 -2.7.
[7] Administrative Instruction nr. 30/2014 on industrial emission limits, Ministry of Environment and Economy of Kosovo.
[8] https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0075&from=EN.

Besime Sh. Kajtazi was born in Mitrovica, Kosovo. She holds Master of Science degree from the Faculty of Civil Engineering, University of Prishtina, Kosovo in 2005. Since 2006, she works as a Task Manager for water sector in European Union Office in Kosovo. As Task manager in EU office, she ensures effective and efficient programming and implementation of financial assistance in the area of Water and Environment in line with the EU regulations and procedures, ensuring maximum impact to support the EU membership preparation of the beneficiary country (Kosovo). Mrs Kajtazi is author and co-author of scientific articles in engineering sciences and has participated in national and international conferences.