Savunma Sanayisinde Aşırı Koşullara Maruz Kalan Hafif Yapısal Malzemelerin Yüzey Modifikasyonu

Hayrani ULUTÜRK*, Uğur MALAYOĞLU** ve Kadir Cihan TEKİN***

Öz

Bu çalışmada, alüminyum oksit, silisyum oksit, wolfram-titanyum karbür ve titanyum karbür parçacıklar ilave edilerek hazırlanan çözeltilerde, plazma elektrolitik oksidasyon (PEO) yöntemyile AA7075 alemi üzerine seramik kaplamalar geliştirilmiştir. Kaplamaların faz bileşimi x-ışını kırınımı (XRD) yöntemiyle incelenmiştir. Taramalı elektron mikroskobu (SEM) ile kaplamaların yüzey morfolojisi ve kestinin mikroyapısını incelenmiştir. Enerji dağılımı x-ışını spektrometresi (EDX) sayesinde kaplamaların kimyasal analizi yapılmıştır. Kaplamaların sertlik değerleri mikroVickers sertlik test cihazıyla ölçülmuştur. Kaplama yapılan altlık alemi sertliğini ve aşınma davranışını incelemek amacıyla 100Cr6 çelik ve alüminyum oksit bilyelere karşı kuru kuru kaymalı aşınma testleri yapılmıştır. Aşınma testi sonrası yüzey profilometresiyle aşınma profili çıkarılarak aşınan malzeme hacmi hesaplanmıştır. Yapılan testler sonucunda AA7075 alemi yüzey sertliği ve aşınma dayanımının üretilen PEO kaplamalarla önemli ölçüde arttığı gözlenmiştir. Kaplamalar yoğun iç tabaka ve gözenekli üst tabakadan oluşmaktadır. Kaplama sertliğinin altlık/kaplama arayüzeyine yakın bölgede yüksek, yüzeye doğru ılerlediğçe gözenekliliğin artışından dolayı düştüğü belirlenmiştir. Silisyum oksit parçacık içeren çözeltide üretilen kaplamaların diğer kaplamalarına göre daha kalın ve pürüzlü olduğu tespit edilmiştir. En düşük aşınma kaybı titanyum karbür içeren çözeltide üretilen kaplamada elde edilmiştir.

Anahtar Kelimeler: AA7075, Plazma Elektrolitik Oksidasyon, Nanoparçacık, Sertlik, Aşınma.

* Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Nanobilim ve Nanomühendislik Bölümü, hayrani_uluturk@hotmail.com.
** Prof.Dr., Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü, u.malayoglu@gmail.com
*** Dr., Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü, kadir.tekin@deu.edu.tr .

Geliş Tarihi/Received : 13.05.2019
Kabul Tarihi/Accepted : 23.05.2019
Araştırma Makalesi/Research Article
DOI: 10.17134/khosbd.642140
Surface Modification of Light Alloys Exposed to Excessive Conditions in the Defense Industry

Abstract

In this study, ceramic coatings were developed on AA7075 alloy by plasma electrolytic oxidation (PEO) method in different solutions prepared by adding aluminum oxide, silicon oxide, wolfram-titanium carbide and titanium carbide particles. The phase composition of the coatings was investigated by x-ray diffraction (XRD) method. The surface morphology of the coatings and the microstructure of the cross-section were investigated by scanning electron microscopy (SEM). Chemical analyzes of the coatings were made by means of energy distribution x-ray spectrometry (EDX). The hardness values of the coatings were measured by microVickers hardness tester. In order to examine the friction and wear behavior of the coated substrates, dry sliding wear tests were performed against 100Cr6 steel and alumina balls. After the wear test, the wear profile was obtained by the surface profilometer and the material volume loss was calculated. As a result of the tests, it has been observed that the surface hardness and wear resistance of the AA7075 alloy was significantly increased by the application of PEO coatings. The coatings consist of a dense inner layer and a porous outer layer. It has been determined that the coating hardness increased close to substrate/coating interface while decreasing towards the free surface due to the increased porosity. The coatings produced in silicon oxide particle-containing solutions were found to be thicker and rougher than the other coatings. The lowest wear loss was obtained in the coating produced in titanium-carbide-containing solutions.

Keywords: AA7075, Plasma Electrolytic Oxidation, Nanoparticle, Hardness, Wear.

Giriş

Günümüz endüstrisinin vazgeçilmez bir malzemesi olan alüminyum ve alüminyum alaşımları; yüksek özgül mukavemet, düşük yoğunluk ve kolay şekillendirme gibi özelliklerinden dolayı elektronik, havacılık, savunma sanayisi ve benzeri birçok alanda kullanılmaktadır. Ancak düşük aşınma direnci, alüminyum ve alaşımlarının uygulama alanlarını sınırlamaktadır. Bunun yanı sıra, alüminyum
ve alaşımları kimyasal bileşimlerinden dolayı, korozyona karşı hassastır. Alüminyum alaşımının yukarıda bahsi geçen bu dezavantajların minimize etmek için alaşımlandırma, ışıl işlemler ve yüzey kaplama işlemler uygulanmaktadır (Davis, 1993; Necşulescu, 2011). Bu işlemler arasından yüzey kaplama işlemleri, alüminyum alaşımlarının çevresel etkilere karşı korunabilmesi, yüzey özelliklerinin iyileştirilmesi amacıyla yaygın olarak kullanılmaktadır (Shibe ve Chawla 2014).

Seramik kaplamalar, alüminyum ve alaşımların, mekanik ve yüzey özelliklerinin geliştirilmesi, alüminyum ve alaşımların korozyona, aşınmaya ve yüksek sıcaklığa karşı direncinin arttırılması amacıyla kullanılmaktadır. Seramik kaplamalar metaller ile kıyaslandığında daha yüksek sertliğe sahip oldukları için altlık malzemeyle yüksek aşınma direnci kazandırırlar. Ek olarak metal altlığın sahip olduğu kolay şekillendirilebilme ve tokluk gibi bazı özellikleri de korunabilmektedir. Seramik kaplama için kullanılan en yaygın yüzey işlem yöntemleri, anotlama, termal püskürme, plazma elektrolitik oksidasyon (PEO), kimyasal buhar birikirme (CVD) ve fiziksel buhar birikirme (PVD) olarak verilebilir.

Öte yandan PEO veya diğer adıyla mikro ark oksidasyon (MAO), karmaşık şekilli parçaların kaplanmasına imkan veren ve asidik çözelti içermeyen çevreye duyarlı bir kaplama yöntemi olması sebebiyle son yıllarda araştırmacıların ilgi odaklı haline gelmiştir. PEO yöntemi, elektrolitik sıvı içerisinde dalgarlanan metallerin ve alaşımlarının yüzeyinde oksit oluşturma ve buna bağlı olarak altlık malzemesinin fiziksel özelliklerinin geliştirilmesi amacıyla uygulanmaktadır. Bu süreç altlık olarak kullanılan alaşımların yüzeyinde oksit tabakasının birikirilmesi ve oksit tabakasının büyümesi şeklinde gerçekleşir. Seramik oksit kaplamasının yüksek sertliği sayesinde altlık metalin aşınma direncine kayda değer seviyede artış göstermektedir (Yerokhin vd., 1999).

PEO yönteminde, proses voltajı, kaplama süresi, elektrolit bileşimi ve nanoparçacıkların ilavesi gibi kaplama özelliklerini etkileyen birçok parametre vardır. Fatimah ve ark.’ın çalışmasında, PEO yöntemi kullanılarak Al6061 alaşımı üzerine oluşturulan kaplamada, SiO2 ve ZrO2 nanoparçacıkların elektrolit içine ilavesiyle çatılaşmayı doldurmuş ve kaplamalardaki gözenekleri azaltma özelliğine dikkat çekmiştirler. Nasiri Vatan ve Adabi’nin çalışmasında WC nanoparçacıkların kaplamaların aşınma ve korozyon direncini geliştirdiği
Hayrani ULUTÜRK,UGHUR MALAYOĞLU ve Kadir Cihan TEKİN

belirtilmiştir. Arunnellaiappan ve ark’nın çalışmasında α-Al₂O₃ nanoparçacıklı PEO numunelerinin yüksek korozyon koruması sağladığı belirtilmiştir.

Bu çalışmada; savunma sanayisinde kullanılan AA7075’in PEO yöntemi ile kaplanması, sert ve yüksek aşınma direncine sahip yüzey kaplamaları elde edilmesi hedeflenmektedir. Çözelti içerisine farklı miktarlarda silisyum oksit, alüminyum oksit, wolfram-titanyum karbür ve titanyum karbür parçacıkları ilave edilmiş ve bu parçacıkların kaplama özelliklerine etkisi incelenmiştir.

Malzeme ve Metot

Parçacıkların Boyutsal Ölçümü

Üretici firmadan tedarik edilen parçacıkların boyutsal ölçümleri için Malvern Panalytical marka Zetasizer Nano ZS cihazı kullanılmıştır. Dinamik ışık saçılımı ilkesiyle çalışan bu cihazla 0,3 nm ile 10 µm arasındaki nano- ve mikro-boyutlu parçacıkların boyutsal ölçümleri yapılmaktadır. Ölçüm öncesinde parçacıkların saf su veya alkol benzeri sıvılar içerisinde topaklanma olmadan dağıtılması gerektiği için alüminyum oksit, titanyum karbür ve wolfram-titanyum karbür parçacıkları, 0,5 g/l sodyum dodesil sülfat (SDS) içeren 50 ml saf su çözeltisine ilave edilerek ultrasonik karıştırıcıyla 10 dakika süresince karıştırılmıştır. Silisyum oksit parçacıkların saf su içerisinde ıslayılmış olmadığı için öncelikle etanol içinde spatül yardımıyla mekanik olarak karıştırılmış daha sonra bu karışımın üzerine 0,5 g/l sodyum dodesil sülfat (SDS) içeren 50 ml saf su çözeltisi ilave edilerek ultrasonik karıştırıcıyla 10 dakika boyunca karıştırılmıştır. Parçacıkları içeren çözeltiden belirli bir miktar şırıngayla alınarak cihazın ölçüm kabına aktarılmış ve boyut dağılımı ölçülmüştür.

PEO Kaplama İşlemi

AA7075 alüminyum aksımdan üretilmiş 25 mm çapında silindir çubuk, SiC kesme diski ile 10 mm kalınlığında parçalara ayrılarak altlık numuneleri elde edilmiştir. Numunelerin yüzeyleri sırasıyla 240, 400, 800 ve 1200 grit su zımparasıyla zımparalanıp daha sonra asetonla ultrasonik banyoda temizlenmiş ve sıcak havaya kurutulmuştur. Kaplama ana çözeltisinde 7 g/l sodyum metasilikat pentahidrat (Na₂SiO₃·5H₂O), 4 g/l potasyum hidroksit (KOH) ve 2,7 g/l potasyum
sodyum tartarat tetrahidrat (C₄H₄KNaO₆·4H₂O) kullanılmıştır. Parçacık takviyeli kaplamaları hazırlamak için, öncelikle 100 ml saf su içerisinde parçacıkların toplaklanmadan dağılmasını sağlamak amacıyla 0,5 g/l SDS ilave edilmiştir. Hazırlanan bu çözütiye alüminyum oksit, titanyum karbür ve wolfram-titanyum karbür parçacıkları, 1 g/l ve 3 g/l derişimlerinde ilave edilmiştir. Silisyum oksit parçacıklarının saf su içerisinde ıslatılabilirliği düşük olduğu için öncelikle etanol içinde spatül yardımıyla mekanik olarak karsıtılmış daha sonra SDS içeren saf su içeren diğer nanoparçacıklarla aynı oranlarda ilave edilmiştir. Hazırlanan parçacık ilaveli çözüti Bandelin Sonopuls ultrasonik homojenizatör yardımıyla 4 dakika boyunca karsıtılmıştır. Daha sonra parçacık ilaveli çözüti ayrıca hazırlanan ana çözüti içerisinde eklenerek 20 dakika boyunca ultrasonik olarak karsıtılmıştır. Kaplama işleminde alternatif akım (AC) kaynağına ve çözüti banyosuna sahip Keronite G2 kaplama ünitesi kullanılmıştır. Kaplama banyosuna daldırılan altlık numuneye 10 dakika süresince 20 A/dm² sabit akım yoğunluğu uygulanmış sonraki 50 dakika boyunca akım yoğunluğu azaltarak işlem sonlandırılmıştır. İşlem sonrası numune saf suyla yıkanıp sıcak havayla kurutulmuştur. PEO kaplama işlemine ait detaylı bilgiler Tablo 1'de verilmiştir.

Tablo 1. PEO İşleminde Kullanılan Çözütilerin İçeriği ve Kaplama İşlem Parametreleri

Kaplama Kodu	Parçacık Takviyesi ve Derişimi	Ana Çözüti İçeriği	Kaplama İşlem Süresi	Uygulanan Akım Yoğunluğu
Katkısız		7 g/l sodiyum metasilikat pentahidrat, 4 g/l potasyum hidroksit, 2,7 g/l potasyum sodyum tartarat tetrahidrat	60 dakika	20 A/dm² - 10 dakika <20 A/dm² - 50 dakika
SO-1	Silisyum oksit, 1 g/l			
SO-3	Silisyum oksit, 3 g/l			
AO-1	Alüminyum oksit, 1 g/l			
AO-3	Alüminyum oksit, 3 g/l			
WTC-1	Wolfram-titanyum karbür, 1 g/l			
TC-1	Titanyum karbür, 1 g/l			
Kaplama Linç Yapısal İncelemesi

Kaplama yüzey pürüzlülüğü Ambios XP-2 yüzey profilometresinde ölçülmüştür. Kaplamanın yüzey morfolojisinin incelenmesi ve arakesit mikroyapı görüntülerinin elde edilmesi için JEOL 6060 taramalı elektron mikroskobu (SEM) kullanılmıştır. Kaplanmış numuneler kesme diskiyle kesilip epoksi reçineyle kalıba alınarak arakesit incelemesi için numuneler hazırlanmıştır. Daha sonra zımparalama ve elmasla parlatma işlemlerinden geçirilerek SEM incelemesi öncesinde kesit yüzeyi altın filme kaplanmıştır. Kaplamanın kimyasal analizi için enerji dağılımı x-ışını spektrometresi (EDX) kullanılmıştır. Parçacıkların ve kaplamanın faz analizi Rigaku D-Max X-ışını difraktometresiyle yapılmıştır.

Sertlik Ölçümü

Altlık alaşım ve kaplamaların sertlik değerleri, Shimadzu mikroVickers sertlik cihazında 0,025 kg yük uygulanarak ölçülmüştür. Sertlik ölçümü ara kesit numunelerinde kaplama kalınlığı boyunca belirli mesafeler aralıklarında iz vurularak yapılmıştır.

Aşınma Testi

Altlık alaşım ve kaplanmış numunelerin aşınma testlerinde CSM Instruments marka standart tribometre kullanılmıştır. Kuru kaymalı aşınma testleri 10 N sabit yük altında, 10 mm stroke mesafesiyle, 6 mm çapındaki 100Cr6 çelik ve alüminyum oksit bilículere karşı yapılmıştır. Toplam aşınma mesafesi ve kayma hızı sırasıyla 200 m ve 0,06 m/s olarak belirlenmiştir. Aşınma testi sonrasında altlık numunelerin ve bilüelerin aşınan yüzeylerini optik mikroskop altında incelenmiştir. Kaplanmış numunelerde yapılan aşınma testlerinde, çelik bilyeye üzerindedir oluşan aşınma izinin çap ölçülmüş ve ASTM G99 test standardına göre hacim kaybı hesaplanmıştır. Altlık alaşım ve kaplamaların aşınma izinin profil Ambios XP-2 yüzey profilometreyle çıkarılmış ve aşınma sonrası hacimsel malzeme kaybı hesaplanmıştır.
Parçacıkların Boyutsal Ölçümü

Parçacıkların boyutsal dağılımı ve yüzdeleri Şekil 1’de gösterilmiştir. Silisyum oksit, alüminyum oksit, wolfram-titanyum karbür ve titanyum karbür parçacıkların ortalama boyutları sırasıyla 272 nm, 1493 nm, 417 nm ve 195 nm ölçülmüştür. En düşük parçacık boyutuna sahip malzemenin titanyum karbür olduğu ayrıca diğer malzemelere kıyasla alüminyum oksidin ortalama boyutunun mikro ölçekte olduğu tespit edilmiştir.

Şekil 1. Parçacıkların Tane Boyutu Analizi Sonuçları
Şekil 2’deki parçacıkların XRD analiz sonuçları incelendiğinde, silisyum oksit malzemenin spektrumunda kristalin faza ait herhangi pik olmadığı, sadece 10°-30° arasında geniş bir tepenin olduğu tespit edilmiştir. Bu sonucu göre silisyum oksit malzemenin amorf yapıda olduğu ortaya çıkmıştır. Alüminyum oksit malzemenin çoğunlukla α-Al₂O₃ ve çok az miktarda β-Al₂O₃, titanyum kARBür malzemenin TiC, ve wolfram-titanyum kARBür malzemenin C₅Ti₄W kristalin faz yapılarına sahip olduğu belirlenmiştir.

Şekil 2. PEO İşleminde Kullanılan Parçacıkların XRD Analizi Sonuçları
PEO kaplama yapılan numunelerin XRD spektrumları ve analiz sonuçları Şekil 3 ve Tablo 2’de gösterilmiştir. X-ışınları kaplamadan geçerek altlık ulaşabildiği için XRD spektrumunda alüminyum metaline ait pikler görülmektedir. Tüm kaplamalarda, altlık arasında bulunan alüminyumun oksitlenerek sinterlenmesi sonunda yarı-kararlı γ-Al₂O₃ fazının oluştuğu gözlenmiştir. Yarı-kararlı γ-Al₂O₃ fazı 1050 °C sıcaklığında termodinamik açıdan kararlı olan α-Al₂O₃ fazına dönüştüktedir (Lamouri vd., 2017). Yapılan analizlerde kararlı α-Al₂O₃ fazını ait piklerin şiddeteti γ-Al₂O₃ fazına kıyasla daha az olduğu için kaplama yapısında daha az miktarında bulunduugu tespit edilmiştir. SDS ile çevrelenmiş negatif yüklü alüminyum oksit parçacıkları PEO işlemi sırasında anot yüzeyine yönlenerek kaplama içerisinde dahil olması sonucunda AO-1 ve AO-3 kaplamaların yapısındaki α-Al₂O₃ miktarının arttığı ortaya çıkmıştır. Silisyum oksit parçacık içeren çözeltide üretilen kaplamalarda, özellikle SO-1 kaplamının yapısında müllit fazının olduğu tespit edilmiştir. Ana kaplama çözeltisinde sodyum metasilikat pentahidrat olmasına karşın diğer kaplamalarda müllit fazi tespit edilmemiştir. Bu nedenle amorf silisyum oksit parçacıkların kaplama içerisinde dahi olup alüminyum oksitle reaksiyona girmesi sonucunda müllit fazını oluşturdugu düşünülmektedir. PEO işleminde plazma deşarjı sırasında plazma termokimyasal ve elektrokimyasal reaksiyonlar meydana gelir. Çözelti içerisindeki yüzey aktif madreyle çevrelenmiş halde olan amorf silisyum oksit parçacıkları, elektriksel alan kuvvetiyle alüminyum yüzeyine doğru hareket ederek kaplamının yüzeyinde birikir. Amorf yapıdaki silisyum oksit parçacıklar, plazma deşarjının ürettiği yüksek sıcaklık nedeniyle yarı-kararlı γ-Al₂O₃ fazının içerisinde doğru yayın ve bunun sonucunda müllit (3Al₂O₃·2SiO₂) fazının oluşması sağlanır (Xin vd., 2006). Diğer taraftan, SO-3 kaplamada, çözelti içerisindeki parçacık derişimi yüksek olduğundan daha fazla amorf silisyum oksidin biriktiği ve kristalin fazlara ait piklerin şiddetinin bu nedenle azalığı dönüşümüne uğramadan yapıya dahil olduğu gözlenmiştir.
Şekil 3. PEO Kaplamaların XRD Analizi Sonuçları

Tablo 2. Elde Edilen XRD Sonuçlarına Göre Kaplamaların İçerdiği Fazlar

Kaplamalar	İçerdiği Fazlar
Katkısz	γ-Al₂O₃, α-Al₂O₃
SO-1	γ-Al₂O₃, α-Al₂O₃, Müllit
SO-3	γ-Al₂O₃, α-Al₂O₃, Müllit
AO-1	γ-Al₂O₃, α-Al₂O₃
AO-3	γ-Al₂O₃, α-Al₂O₃
WTC-1	γ-Al₂O₃, α-Al₂O₃, C₅Ti₄W
TC-1	γ-Al₂O₃, α-Al₂O₃
Savunma Sanayisinde Aşırı Koşullara Maruz Kalan
Hafif Yapısal Malzemelerin Yüzey Modifikasyonu

SEM Analizi

Kaplamaların arakesit görüntüleri Şekil 4’de gösterilmektedir. Kesit görüntülerinden ölçülen kaplama kalınlıkları ve profilometreyle ölçülen pürüzlülük değerleri Tablo 3’de verilmiştir. Kaplamaların geneline bakıldığında, yoğun alt tabaka ile göreceli olarak daha gözenekli ve pürüzlü üst tabakadan meydana geldikleri görülmektedir. Çözeltiye parçacık ilavesi yapılmışsa yüzey pürüzlülüğünün arttığı gözlenmiştir. Katkısız kaplamaya karşılaştırıldığında, silisyum oksit parçacık içeren çözeltide üretilen kaplamaların kalınlığının önemli ölçüde arttığı ancak diğer parçacık malzemelerin ilavesiyle elde edilen kaplamaların neredeyse benzer kalınlığa sahip oldukları tespit edilmiştir. SO-1 ve SO-3 kaplamalar birbiriyle kıyaslandığında, artan parçacık derişimiyle daha az gözenekli ve kalın bir alt tabakanın oluştuğu, ancak üst tabakanın daha gözenekli ve pürüzlü hale geldiği belirlenmiştir.
Tablo 3. Kaplama Kalınlıkları ve Yüzey Pürüzlülüğü Değerleri

Kalınlık(μm)	SO-1	SO-3	AO-1	AO-3	WTC-1	TC-1	
49,1	64,3	107,3	46,6	49,2	49,1	48,5	
Ra(μm)	4,22	8,10	13,03	4,91	5,53	5,91	6,28

EDX yöntemiyle kaplamaların yüzeyinden alınan kimyasal analiz sonuçları Tablo 4'de verilmiştir. Tüm kaplamalarda silisyum elementinin bulunması çözeltideki silikat iyonlarının (SiO$_3^{2-}$) yüksek oranda yapıya katıldığını göstermektedir. SO-1 ve SO-3 kaplamalarda amorf silisyum oksit silikat iyonlarıyla birlikte yapıya katıldığı için katıksız kaplamaya kıyasla daha yüksek miktarda silisyum içerdığı ve alüminyum içeriğinin azaldığı gözlenmiştir. Çözeltideki α-Al$_2$O$_3$ parçacıkların oranı arttırıca yapıya dahil olan silisyumun azaldığı diğer taraftan alüminyumun arttığı görülmüştür. WTC-1 ve TC-1
kaplamalarda çözelti içerisinde wolfram ve titanyum içeren parçacıkların yapıya dahil olduğu görülmektedir.

Tablo 4. Kaplamaların Yüzeyinden Alınan EDX Analizi Sonuçları

Element	Katkısız	SO-1	SO-3	AO-1	AO-3	WTC-1	TC-1
O	18,94	20,5	23,26	19,93	19,52	17,93	18,41
Na	0,61	0,77	0,81	0,24	0,19	0,38	0,81
Mg	1,02	0,56	0,31	0,82	0,78	0,78	0,74
Al	42,37	27,75	16,63	44,73	49,06	36,8	32,29
Si	29,3	42,04	52,03	27,77	23,39	26,69	27,98
K	4,8	5,79	5,58	3,46	4,44	4,17	4,93
Ti	-	-	-	-	1,16	6,38	
Zn	2,96	2,59	1,38	3,05	2,62	2,88	2,24
W	-	-	-	-	4,93	-	
C	-	-	-	-	-	4,28	6,22

SO-1 ve SO-3 kaplamaların kesiti boyunca alüminyum ve silisyumun miktarının önceki olarak değişimi Şekil 5’de verilmiştir. Silisyumun yüzeye yakın bölgelerde yüksek oranda bulunduğu ve altlığa doğru azalması ortaya çıkmıştır. Diğer taraftan alüminyumun silisyuma göre tam tersi bir profile sahip olduğu görülmektedir. Bu sonuçlara bakıldığında, kaplamaların yüzeyine yakın bölgede parçacıkların daha fazla biriktığı ortaya çıkmıştır. Kaplamada plazma deşarjı esnasında altlık malzeme oksitlenir ve ergiyik halde yüksek basıncın etkisiyle çözelti/kaplama arayüzeyine doğru hareket eder. Bu esnada çözeltideki iyonlar ve parçacıklar elektriksel alanın etkisiyle plazma deşarj kanalı içerisinde doğru hareket ederek plazma içindeki ergişi oksit malzemeyle birleşerek yüzeyde katılaşır ve birikir. Arakesit görüntülerindeki kalınlık artışı ve EDX sonuçları incelendiğinde kaplama içerisinde en fazla silisyum oksit parçacıkların dahi olduğu görülmektedir.
Şekil 5. SO-1 ve SO-3 Kaplamaların Kesitinde Kalınlık Boyunca Alüminyum ve Silisyum Miktarının Değişimi

Sertlik Ölçümü Sonuçları

Kaplamaların kesitleri boyunca belirli aralıklarla ölçülen mikroVickers sertlik değerleri Şekil 6’te gösterilmiştir. Altlık AA7075 alaşımıyla karşılaştırıldığında, kaplamaların yapısında kristalin seramik fazların bulunması sayesinde sertlik değerlerinin kayda değer oranda arttığı görülmektedir. Kaplamaların altlığı yakın olan bölgede sertliğin yüksek, yüzeye yakın bölgelerde ise düşük olduğu belirlenmiştir. Bunun temel sebebi arakesit görüntülerinde görüldüğü üzere kaplama/altlık arayüzeyinden yüzeye doğru ilerledikçe kaplama gözenekliliğinin artmasıdır (Krell ve Schädlich, 2001). SO-1 ve SO-3 kaplamalarında yüzeye yakın bölgede gözeneklikli artış için sertlik düşüşü diğer kaplamalara kıyasla daha fazladır. Sertliğinin SO-1 ve SO-3 kaplamalarda aşırı düşmesinin diğer bir sebebi olarak yüzeye yakın bölgede amorf silisyum oksit ve müllit fazının oluşumu gösterilebilir. Amorf silisyum oksit (7,12 Gpa) ve müllit (15 Gpa) fazlarının sertliğinin, alüminyum oksit (korund: 23 Gpa) malzemenin sertliğinden daha düşük olduğu bilinmektedir (Kollenberg ve Schneider, 1989; Pitchford vd., 2004; McColm, 1990).
AA7075 altlık alaşımı ile kaplamaların aşınma hızı değerleri ve aşınma izi profilleri sırasyyla Şekil 7 ve Şekil 8'de verilmiştir. Ayrıca aşınma testi sonrasında katkısız kaplama ve altlık alanının yüzeylerinde çelik ve alüminyum oksit bilyelerin oluşturduğu aşınma izlerinin optik mikroskop görüntülerini Şekil 9'da gösterilmiştir. Kaplamasız AA7075 alaşımı, çelik ve alüminyum oksit bilyelere kıyasla düşük yüzey sertliğine sahip olduğu için aşınma testi sırasında temas yüzeyinde oluşan kayma gerilmelerinin etkisiyle aşırı plastik deformasyona uğrar

Şekil 6. Kaplamaların Kesitten Kalınlık Boyunca Ölçülen Sertlik Değerleri

Aşınma Testi Sonuçları
ve adeziv aşınmaya maruz kahr. Buna ilave olarak sert aşındırıcı bilye, abraziv aşınmaya sebep olarak atlıktaka ciddi oranda malzeme kayına yol açmaktadır. Atlık alaşımının yüzeyinde oluşan aşınma izi incelendiğinde abraziv aşınmayı gösteren derin çizikler görülmekte ve izin kenarlarında metal malzemenin plastik deformasyonu sonucunda yııklanmaların oluşturulmuş tespit edilmiştir. Diğer taraftan kalın ve sert kaplamayı yükseltme kapasitesi yüksek olduğu için testi boyunca yüzeye yakın bölgesinde oluşan kayma gerilmelerini içerisinde tutar. Bunun sonucunda altlık alaşımının bilyeyle temasını önler ve aşınma direncini arttırmır. Alüminyum oksit bilyenin oluşturduğu aşınma izi profilleri incelendiğinde, tüm kaplamaların aşınma testi boyunca altlık yüzeyinde tutunarak alüminyum alaşının aşırı malzeme kayına uğramasını önlediği gözlenmektedir. Alüminyum oksit bilyenin yüzeyinde oluşan aşınma, aşınma kaybını hesaplamak için uygun geometriye sahip olmadığını rağmen, bilye üzerindeki aşınma yönüne paralel çiziklerin varlığı kaplama bilyeyi belirli bir miktar aşındırmıştır. Alüminyum kaplamasının yüzeyinde oluşan aşınma, bilyenin yüzeyinde oluşmuş ancak kaplamayı yüzey profiline herhangi bir aşırı malzeme kaybı kaybusuna rastlanmamışıtır. Aşınma izleri incelendiğinde çelik bilyenin düz ve çizikli bir aşınma yüzeyine sahip olduğu tespit edilmiştir. Bunun temel nedeni sert PEO kaplama üzerinde bulunan çıkışların çelik yüzeyinden abraziv aşınmaya malzeme kopmasıdır. Çelik bilye aşırı malzeme kayına uğrarken kaplama yüzeyindeki çıkışlar düzleşip sadece ihmal edilebilir düzeyde malzeme kayına uğramaktadır. SO-1 ve SO-3 kaplamaların diğer kaplamalara kıyasla daha fazla malzeme kayına uğradığı görülmüştür. Bunun nedeni, SO kaplamaların üst tabakasında gözenekliliğin artmasıyla sertliğin düşmesi ve kaplama içindeki kohezyon kuvvetlerinin azalmasıdır. SO hariçindeki kaplamaların aşınma hızları benzer olmakla birlikte en düşük aşınma hızı TC-1 kaplamada elde edilmiştir.
Savunma Sanayisinde Aşırı Koşullara Maruz Kalan Hafif Yapısal Malzemelerin Yüzey Modifikasyonu

Alumina bilyeyle karşı numunenin aşınması
Çelik bilyeyle karşı numunenin aşınması
Çelik bileyedeki aşınma

Şekil 7. Altlık Alanın, Kaplamaların ve Çelik Bilyenin Aşınma Hızı Değerleri

Şekil 8. Alüminyum Oksit Bilyeye Karşı Yapılan Testlerde Altlık AA7075 ve Kaplamaların Yüzeyinde Oluşan Aşınma İz Profilleri
Sonuçlar

Alüminyum oksit, silisyum oksit, wolfram-titanyum karbür ve titanyum karbür parçacıkları ilave edilerek hazırlanan çözeltilerde, plazma elektrolitik oksidasyon (PEO) yöntemiyle AA7075 alaşımı üzerine seramik kaplamalar geliştirilmiş, mikroyapı incelemesi, faz analizi, sertlik ölçümü, sürünme ve aşınma testi başarılı bir şekilde uygulanmış ve sonuçlar aşağıda sunulmuştur.

1. Altlık alaşımı üzerinde oluşturulan katkısız ve parçacık takviyeli PEO kaplamaların kalınlık değerleri 46-107 μm aralığında değişmektedir. En kalın kaplamalar silisyum oksit parçacık takviyeli çözeltilerde üretmiştir.
2. Kaplamaların yoğun alt tabaka ve gözenekli üst tabakadan oluşturduğu çelişme belirlenmiştir.
3. Faz analizi sonucunda tüm kaplamarda γ-Al₂O₃ ve az miktarda α-Al₂O₃ olduğu tespit edilmiştir. SO kaplamalarda amorf silisyum oksidin yapıya
katılmasıyla mülit fazın oluştuğu belirlenmiştir. WTC-1 kaplamada çözelti içerisindeki wolfram-titanyum karbür parçacıkların yapışma değişime uğramadan yapıya dahil olduğu ortaya çıkmıştır.

4. Kaplamaların sertlik değerlerinin kaplama/altılık arayüzeyine yakın yoğun tabakada yüksek, yüzeye doğru ilerledikçe artan gözeneklilik sebebiyle düşük çıktığı tespit edilmiştir.

5. PEO kaplamaların altlık Alaşımın aşınma direncini önemli ölçüde arttırdığı tespit edilmiştir. Yüksek sertlikte kalin oksit tabakasının yük taşıma kapasitesini arttığı ve bu sayede aşınma hızını azalttığı sonucuna varılmıştır.

Extended Summary

Introduction

Aluminum and aluminum alloys, an an essential material of today's industry, are widely used in many fields such as electronics, aerospace, defense industries owing to its high specific strength, low density and easy forming. However, low wear resistance limits the application fields of aluminum and its alloys. In addition, aluminum and its alloys are susceptible to corrosion due to their chemical composition. In order to minimize these disadvantages mentioned above, alloying, heat treatment and surface coating processes are applied (Davis, 1993; Necșulescu, 2011). Surface coating processes among these processes are widely used to protect aluminum alloys against environmental influences and to improve surface properties (Shibe and Chawla 2014).

On the other hand, PEO, or micro-arc oxidation (MAO), has become the focus of attention of researchers in recent years as it is an environmentally sensitive coating method that allows the coating of complex shaped parts and does not contain acidic solution. This process includes the deposition and growth of an oxide layer on substrate alloys. Due to the high hardness of the ceramic oxide coating, a significant increase in the wear resistance of the substrate metal is observed (Yerokhin et al., 1999). In this study, ceramic coatings were developed on AA7075 alloy by plasma electrolytic oxidation (PEO) method in different solutions prepared by adding aluminum oxide, silicon oxide, wolfram-titanium carbide and titanium carbide particles.
Materials and Method

Particle Size Measurement

Malvern Panalytical brand Zetasizer Nano ZS device was used for the dimensional measurement of the particles supplied by the manufacturer. Prior to measurement, aluminum oxide, titanium carbide, wolfram-titanium carbide and titanium carbide particles were added into 50 ml of pure water solution containing 0.5 g/l sodium dodecyl sulfate (SDS) and mixed with ultrasonic agitator for 10 min.

PEO Coating Process

Specimens of 10 mm thickness and 25 mm diameter were obtained by cutting a cylindrical bar made of AA7075 aluminum alloy using SiC abrasive disc. The surfaces of the specimens were grind with 240, 400, 800 and 1200 grit sand papers respectively and then ultrasonically cleaned in acetone and dried with hot air. After specimen preparation, PEO treatment was conducted using a bipolar AC power source.

Structural Analysis of Coatings

The surface roughness of the coatings was measured using the Ambios XP-2 surface profilometer. JEOL 6060 scanning electron microscope (SEM) was used to investigate the surface morphology of the coatings and to obtain the cross sectional images. Energy dispersive x-ray spectrometry (EDX) was used for chemical analysis of coatings. The phase analysis of the particles and coatings was conducted by the Rigaku D-Max X-ray diffractometer.

Hardness Measurement

The hardness values of the substrate alloy and the coatings were measured using Shimadzu microVickers hardness tester with an applied load of 0.025 kg.

Wear Test

Dry sliding wear tests were performed against 100Cr6 steel and aluminum oxide balls with a diameter of 6 mm, at a constant load of 10 N, and with a stroke
length of 10 mm. Total wear distance and sliding velocity were determined as 200 m and 0.06 m/s, respectively.

Test Results and Discussion

Particle Size Measurement

The mean sizes of silicon oxide, aluminum oxide, wolfram-titanium carbide and titanium carbide particles were measured as 272 nm, 1493 nm, 417 nm and 195 nm, respectively.

XRD analysis

According to XRD analysis results, the silicon oxide material was found to be amorphous. It has been also determined that the aluminum oxide material involves mostly \(\alpha-\text{Al}_2\text{O}_3 \) and very little amount of \(\beta-\text{Al}_2\text{O}_3 \). Titanium carbide and wolfram-titanium carbide materials are consisted of TiC and \(\text{C}_5\text{Ti}_4\text{W} \) crystalline phases.

In all coatings, it has been observed that the semi-stable \(\gamma-\text{Al}_2\text{O}_3 \) phase was formed by oxidation of the aluminum substrate. The semi-stable \(\gamma-\text{Al}_2\text{O}_3 \) is transformed into a thermodynamically stable \(\alpha-\text{Al}_2\text{O}_3 \) phase above 1050 °C (Lamouri et al., 2017). It has been determined that the amount of \(\alpha-\text{Al}_2\text{O}_3 \) is less than that of \(\gamma-\text{Al}_2\text{O}_3 \). The negatively charged aluminum oxide particles surrounded by SDS molecules were moved to the anode surface during the PEO process, resulting in an increase in the amount of \(\alpha-\text{Al}_2\text{O}_3 \) in the structure of the AO-1 and AO-3 coatings. Mullite is determined in the coatings produced in the silicon oxide particle-containing solution.

SEM analysis

In general, it has been observed that the coatings consist of a porous and rough outer layer, and a dense inner layer. The surface roughness increased with increased particle concentration in the solution. The presence of silicon in all coatings shows that silicate ions (SiO\(_3^2\)) in the base electrolyte is highly incorporated into the structure. The incorporation of amorphous silicon oxide particles and silicate ions resulted in increased silicon contents in SO-1 and SO-3 coatings. As the ratio of \(\alpha-\text{Al}_2\text{O}_3 \) particles in the solution increased, the aluminum
content in AO coatings increased. In WTC-1 and TC-1 coatings, it has been observed that wolfram and titanium-containing particles are included in the coating structures.

It has been found that the amount of silicon increased in the regions close to the surface then decreased towards the substrate alloy. According to this, it has been revealed that more particles accumulated in the regions close the coating surfaces.

Hardness Measurement Results

Compared to the substrate AA7075 alloy, it has been observed that the hardness values increased significantly due to the presence of crystalline ceramic phases in coating structures. It has been determined that the hardness of inner layer is higher than the outer layer of coatings. This is related to the increased porosity of the coating close to the surface regions.

Wear Test Results

The uncoated AA7075 alloy has been found to suffer from excessive material loss during the wear test since it has lower surface hardness compared to steel and aluminum oxide balls. On the other hand, the coatings showed considerably lower wear rates than substrate alloy due to their high hardness and high load bearing capacity. It has been observed that the porous outer layer of SO coatings is easily worn out during sliding test and resulted in increased wear rate as compared with other coatings. The lowest wear rate was obtained with TC-1 coatings.

Conclusion

The thickness of the PEO coatings with and without particle-reinforcement ranges from 46 to 107 μm. Thickest coating is produced in silicon oxide particle-containing solution with a concentration of 3 g/l. The coatings are generally consisted of a dense inner layer and porous outer layer. It has been determined that PEO coatings significantly increase the wear resistance of the substrate alloy. The lowest wear rate of coating was obtained with the titanium carbide particle addition into the base solution.
Kaynakça

Kitaplar

Davis, J.R. (1993). *Aluminum and Aluminum Alloys*. Cleveland: ASM International.

McColm, I. (1990). *Ceramic Hardness*. New York: Springer US.

Makaleler

Arunnellaippan, T., Arun, S., Hariprasad, S., Gowtham, S., Ravisankar, B., Rama Krishna, L., Rameshbabu, N. (2018). Fabrication of corrosion resistant hydrophobic ceramic nanocomposite coatings on PEO treated AA7075. *Ceramics International*, 44, 874–884.

Fatimah, S., Kamil, M.P., Kwon, J.H., Kaseem, M., Ko,Y.G. (2017). Dual incorporation of SiO$_2$ and ZrO$_2$ nanoparticles into the oxide layer on 6061 Al alloy via plasma electrolytic oxidation: Coating structure and corrosion properties. *Journal of Alloys and Compound*, 707, 358-364.

Kollenberg. W., Schneider, H. (1989). Microhardness of Mullite at Temperatures to 1000°. *Journal of the American Ceramic Society*, 72(9), 1739-1740.

Krell, A., Schädlich, S. (2001). Nanoindentation hardness of submicrometer alumina ceramics. *Materials Science and Engineering: A*, 307(1–2), 172-181.

Lamouri, S., Hamidouche, M., Bouaoudja, N., Belhouchet, H., Garnier, V., Fantozzi, G., Trelkat, J.F. (2017). Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification, *Boletín de la Sociedad Española de Cerámica y Vidrio*, 56(2), 47-54.

Nasiri Vatan, H., Adabi, M. (2017). Investigation of wear and corrosion resistance of nanocomposite coating formed on AZ31B Mg alloy by plasma electrolytic oxidation. *The International Journal of Surface Engineering and Coatings*, 95(6), 308-315.

Necşulescu, D.A. (2011). The Effects of Corrosion on The Mechanical Properties of Aluminium Alloy 7075-T6. *U.P.B. Sci. Bull. Series B*, 73(1), 223-229.
Pitchford, J.E., Stearn, R.J., Kelly, A., Clegg, W.J. (2004). Effect of Oxygen Vacancies on the Hot Hardness of Mullite. *Journal of the American Ceramic Society*, 84(5), 1167-1168.

Shibe, V., Chawla, V. (2014). A Review of Surface Modification Techniques in Enhancing the Erosion Resistance of Engineering Components. *International Journal of Research in Mechanical Engineering & Technology*, 4, 92-95.

Xin, S., Song, L., Zhao, R., Hu, X. (2006) Composition and thermal properties of the coating containing mullite and alumina, *Materials Chemistry and Physics*, 97(1), 132-136.

Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., Dowey, S.J. (1999). Plasma electrolysis for surface engineering. *Surface and Coatings Technology*, 122, 73–93.