Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca\(^{2+}\) Signaling in Mouse Aortic Endothelium

François-Xavier Boittin\(^a\),a Florian Alonso\(^a\),c Loïc Le Gal\(^b\), Florent Allagnat\(^b\), Jean-Louis Bény\(^a\), Jacques-Antoine Haefliger\(^b\)

\(^a\)Department of Zoology and Animal Biology, Laboratory of Vascular Cell Physiology, University of Geneva, Geneva 4; \(^b\)Service of Internal Medicine, Laboratory of Experimental Medicine, Department of Physiology, Lausanne; \(^c\)These authors contributed equally to this work

Key Words
Gap junction • Connexin • Endothelium • Aorta • Calcium

Abstract
Background/Aims: Smooth muscle tone is controlled by Ca\(^{2+}\) signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40) and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca\(^{2+}\) signaling of the mouse aorta.

Methods: Ca\(^{2+}\) imaging was performed on intact aortic endothelium from both wild type (Cx40\(^+/+\)) and Connexin40-deficient (Cx40\(^{-/-}\)) mice. Results: Acetylcholine (ACh) induced early fast and high amplitude Ca\(^{2+}\) transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca\(^{2+}\) transients toward adjacent cells in WT and Cx40\(^{-/-}\) mice. As compared to WT, Cx40\(^{-/-}\) mice displayed a reduced propagation of ACh-induced Ca\(^{2+}\) waves, indicating that Cx40 contributes to the spreading of Ca\(^{2+}\) signals. The propagation of those Ca\(^{2+}\) responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca\(^{2+}\) waves.

Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca\(^{2+}\) signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

Introduction
Ca\(^{2+}\) signaling in the endothelium is fundamental for the regulation of vascular tone and arterial blood pressure. There is a tight link between the spreading of Ca\(^{2+}\) waves occurring during agonist stimulation of endothelial cells and the subsequent relaxation of smooth
muscle cells. Indeed, agonists such as acetylcholine (ACh) trigger cytosolic Ca\(^{2+}\) increases in the endothelium which can mediate the production of vasodilators such as NO, PGI\(_2\) and the EDHF, depending on the vascular bed [1-3].

The endothelium of blood vessels is composed of endothelial cells which are interconnected by gap junction channels [4]. These channels are made of two connexons (also called hemichannels) whose association at intercellular junctions forms a functional pore enabling the diffusion of ions or intracellular messengers between adjacent cells [5]. In cultured endothelial cells, gap junctions allow the propagation of Ca\(^{2+}\) waves in the endothelial layer through the diffusion of Ca\(^{2+}\) or second messenger such as InsP\(_3\) [6]. However, ATP release through hemichannels may also contribute to the propagation of Ca\(^{2+}\) waves by activating purinergic receptors on adjacent endothelial cells, in particular upon mechanical stimulation of endothelial cells [7, 8].

The mouse aortic endothelium express Connexin40 (Cx40) and Cx37 [9] and both isoforms are involved in the formation of functional gap junctions and diffusion of dyes between native endothelial cells [10, 11]. Cx40 may also form hemichannels releasing ATP among other molecules. In cultured renal glomerular endothelial cells, it has been hypothesized that the propagation of Ca\(^{2+}\) waves upon mechanical stimulation occurs through purinergic stimulation of adjacent cells [8].

Several studies described that the lack of Cx40 reduces the conducted vasodilation in different resistance vessels [12-14]. In addition, endothelial gap junctions have been shown to modulate vasomotor tone by regulating the release of relaxing factors such as NO and EDHF [12, 15-17]. Finally, Cx40 appears to be of major importance for the conduction of endothelium-dependent vasodilations along arterioles as it cannot be replaced by Cx45 [14].

In the intact mouse aortic endothelium, Ca\(^{2+}\) signaling upon agonist stimulation is either homogeneous in the case of ATP or highly heterogeneous in the case of ACh or other agonists [18]. However, the reasons for these differences have not been investigated so far. Here, we used Ca\(^{2+}\) imaging of intact aortic endothelium from wild type (Cx40\(^{+/-}\)) and Cx40-deficient (Cx40\(^{-/-}\)) mice to investigate the origin of heterogeneous Ca\(^{2+}\) signaling as well as the effect of Cx40 deficiency. We first show that while ATP triggered homogeneous Ca\(^{2+}\) signals in the endothelial layer, ACh triggers early fast and high amplitude Ca\(^{2+}\) increases in only a fraction of native endothelial cells. This heterogeneous response of the endothelium to global ACh stimulation is linked to the restricted expression of M3 muscarinic ACh receptors (M3-mACHRs) on a subpopulation of native endothelial cells. We then demonstrate that those early fast Ca\(^{2+}\) increases occurring in a limited fraction of native endothelial cells spread toward adjacent cells through endothelial gap junction channels, without the involvement of hemichannel-dependent ATP release. Altogether our results indicate that the heterogeneous cholinergic Ca\(^{2+}\) signaling of the mouse aortic endothelium is linked to both restricted M3-mACHRs expression and spreading of Ca\(^{2+}\) signals through gap junctions made of Cx40 and Cx37.

Materials and Methods

Animals

The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). Mouse care and euthanasia procedures were approved by our institution and the Veterinary Office (Lausanne, Switzerland), and conform to the guide for the care and use of laboratory animals (University of Lausanne, A55213-01). Cx40-deficient mice (Cx40\(^{-/-}\)) deleted for the gap junction alpha-5 protein were a gift from Dr. K. Willedge [19]. Breeding pairs of Cx40\(^{-/-}\) mice were crossed with control C57/B16 partners. Homozygous Cx40\(^{-/-}\) and wild type mice (Cx40\(^{+/-}\)) were then identified using PCR of genomic DNA. Primers used for PCR were as follow: for the Cx40 recombinant allele (494 bp), 5'-GGATCGGCGATAGTTGCTAAC-3'
Ca⁺ measurements in the endothelial layer of fresh mouse aortic strips

Anesthetized Cx40-/- and Cx40+/+ mice with 2-bromo-2-chloro-1,1,1-trifluoroethane, were killed by cervical dislocation and the thoracic aorta was quickly removed, cleaned and opened longitudinally. Aortic strips (of around 1 mm²) were then cut for Ca²⁺ measurements or immunostaining of native aortic endothelial cells. Ca²⁺ measurements in the endothelial layer of mouse aortic strips were performed as previously described [20]. Briefly, aortic strips were loaded for 1 h at 37°C with Fluo-4-AM (50 μM) in a solution containing (in mM): 140 NaCl, 5.6 KCl, 1 MgCl₂, 2 CaCl₂, 10 glucose and 10 Hepes, pH 7.4. After being loaded, aortic strips were washed and clamped horizontally in the experimental chamber with the endothelial layer above. Dye-loaded aortic strips were then used for Ca²⁺ imaging experiments, using an Olympus upright microscope equipped with a 40x water immersion extra-long working distance objective. Aortic strips were excited between 460 and 490 nm and the emitted fluorescence from Fluo-4-AM-loaded endothelial cells was collected between 515 and 550 nm using a Photometric Cool Snap camera. Before measurement, the smooth muscle layer can be excluded [20]. Moreover, we have previously reported that ACh does not trigger contraction of the smooth muscle layer in the mouse aorta [21]. In Figures 2C and 6C, the “% of whole field surface” represents the percentage of the whole field surface (76800 μm²) that shows Ca²⁺ increases (>1.02 in Fluo-4 ratio) in response to bath application of ACh in control conditions or after preincubation of aortic strips with carbamoylcholine, 1-octanol or suramin. For experiments shown in Figures 2A and 6B, a control ACh stimulation of the same field of endothelial cells was performed prior to preincubation with carbamoylcholine and further ACh stimulation.

Western blotting

Aortas were excised, rapidly placed into liquid nitrogen, reduced to powder, and homogenized by sonication in SDS Lysis Buffer (62.5 mM Tris-EDTA, pH 6.8, 5% SDS). Samples were processed as published [9, 15]. To prepare enriched endothelial cells samples, aortas were longitudinally opened in 100 μl PBS, and pinned on silicone, endothelium-side up. A scalpel was used to gently scrape off endothelial cells. Aliquots of endothelial cells were homogenized in SDS Lysis Buffer. Samples were equally loaded on a 10% polyacrylamide gel followed by electrophoresis and transferred onto PVDF membrane (Immobilon-P; Millipore, Volketswil, Switzerland). Protein content was measured using a detergent-compatible DC protein assay kit (Bio-Rad Laboratories, Reinach BL, Switzerland). Membranes were incubated for 1 hour in PBS containing 5% milk and 0.1% Tween 20 (blocking buffer). Saturated membranes were incubated overnight at 4°C with rabbit anti-muscarinic ACh Receptor M3 (H-210) antibody (Sc-9108, 1/500, Santa Cruz Biotechnology, Inc), rabbit anti-Cx40 antibody (AB1726; 1:250, Chemicon), rabbit anti-Cx37 antibody (Cx37A11-A, 1:1000, Biotrend Chemikalien GmbH) or monoclonal antibody anti-alpha-tubulin (T5168, Sigma-Aldrich, 1:3000). After incubation at room temperature for 1 hour with a convenient secondary antibody conjugated to horseradish peroxidase (Fluka Chemie, diluted 1:20,000), membranes were revealed by enhanced chemiluminescence (ECL) according to the manufacturer’s instructions (Amer sham Bioscience Europe). Densitometric analyses of immunolabeled proteins (western blots) were performed using the ImageQuant Software (Molecular Dynamics, Amersham Bioscience Europe).
En face immunostaining of muscarinic ACh receptors M3 and endothelial Connexins

Aortic strips from mouse thoracic aorta were clamped horizontally with the endothelial layer above in silconed Petri dishes containing PBS. Aortic strips were fixed with 100% ethanol for 15 min at -20°C, washed and incubated with PBS containing 0.1% Triton X100 and 0.5% BSA for 15 min. After saturation, aortic strips were incubated overnight with a rabbit anti-(M3-mAChRs) (H-210) antibody (Sc-9108, 1/50, Santa Cruz Biotechnology, Inc) in PBS containing 0.1% Triton X100 and 0.5% BSA [22, 23]. After extensive washing, aortic strips were incubated for 1 h with an Alexa Fluor 488-conjugated donkey anti-rabbit antibody (Invitrogen) in PBS containing 0.1% Triton X100 and 0.5% BSA. Aortic strips were then washed and mounted in PBS containing 50% glycerol and 0.4μg/mL of DAPI before observation of the endothelial layer with a fluorescence microscope (Leica Leitz DMRB, Nida, Switzerland). Control experiments were performed by omitting the primary antibody. The % of endothelial cells stained with the M3-mAChRs antibody was assessed using ImageJ software. For M3 receptor/Cx40 and M3 receptor/Cx37 double immunostainings in aortic endothelium (Fig. 4), a goat polyclonal antibody specific to mouse M3-mAChRs was used (Sc-7474, 1/50, Santa Cruz Biotechnology, Inc) and incubated simultaneously with rabbit polyclonal antibody specific to either mouse Cx40 (AB1726, 1/50, Millipore) or mouse Cx37 (Cx37A11-A, 1/50, Biotrend Chemikalien GmbH). Primary antibodies were detected using donkey anti-goat immunoglobulins labeled with Alexa Fluor 488 and donkey anti-rabbit immunoglobulins labeled with Alexa Fluor 594 (Invitrogen). For Cx40/Cx37 double immunostaining in aortic endothelium (Fig. 5), a mouse monoclonal antibody specific to mouse Cx40 was used (37-8900, Invitrogen, 1/200) and was detected using anti-mouse immunoglobulins labeled with Alexa Fluor 594 (Invitrogen).

Chemicals

Acetylcholine (ACh), Adenosine 5’-triphosphate (ATP), carbeneoxalone (3β-Hydroxy-11-ooxolean-12-en-30-oic acid 3-hemisuccinate) and suramin were from Sigma. Fluo-4AM was purchased from Molecular probes.

Statistical analysis

Results are expressed as mean ± SEM. The number of mice used is indicated in the figure legends. One-way ANOVA was performed to compare the mean values between groups, using the post hoc Bonferroni test, as provided by The Statistical Package for the Social Science (SPSS 17.0, Chicago, IL). Student’s t-test was used to compare data from two groups. P values of <0.05 were considered as significant.

Results

Heterogeneity of ACh-induced Ca2+ responses in the intact mouse aortic endothelium

Ca2+ imaging of intact aortic endothelium from Cx40+/+ and Cx40−/− mice was used to investigate the origin of heterogeneous Ca2+ signaling in response to global ACh stimulation. Global stimulation of the intact endothelium (Fig. 1A) of Cx40+/+ aortic strips with 10 μM ACh triggered Ca2+ increases in only a fraction of native endothelial cells (Fig. 1B), whereas ATP stimulated Ca2+ increases in all endothelial cells of the field (Fig. 1C). Examination of ACh-induced Ca2+ increases in individual endothelial cells revealed highly heterogeneous Ca2+ responses in term of amplitude and kinetic among the population of endothelial cells displaying Ca2+ increases (Fig. 1D). Some endothelial cells responded by an early fast and high amplitude biphasic Ca2+ increase composed by a peak and a plateau phase (see picture 5 and representative Ca2+ responses (cell a or d) in Fig. 1B and D), and are surrounded by cells displaying slower Ca2+ increases of lower amplitude (see picture 6 and Ca2+ responses for cells b and c or e and f in Fig. 1B and D) whose amplitude attenuates with the distance from cell a or d. This suggests that the fast biphasic Ca2+ increases occurring in some endothelial cells (for example cell a or d) spread towards adjacent cells (cells b and c or e and f, Fig. 1B and D). In contrast, ATP induced a fast and high amplitude Ca2+ increases (also composed by a peak and a plateau phase) that were synchronous and of similar amplitude and kinetic in all endothelial cells of the same field (cells a, b, c, d, e and f; Fig. 1C and D).
ACh-induced Ca²⁺ responses involve interendothelial cells communication in the mouse aortic endothelium

To investigate whether the spreading of ACh-induced Ca²⁺ increases occurs through gap junction channels or through a paracrine effect of ATP, we tested the effect of gap junction and purinergic receptor inhibition on the ACh-induced Ca²⁺ responses of Cx40+/+ aortic strips [24, 25]. As shown in Fig. 2A, preincubation of Cx40+/+ aortic strips with the gap junction inhibitor carbenoxolone (100 μM) completely inhibited the spreading of the fast biphasic Ca²⁺ increase occurring in cell (a) toward adjacent cells (b or c) while the amplitude of the fast ACh-induced Ca²⁺ increase of cell (a) remained unaffected (Fig. 2A-B). On the contrary, preincubation of Cx40+/+ aortic strips with the purinergic antagonist suramin (200μM), did not inhibit the spreading of ACh-induced fast Ca²⁺ increases (Fig. 2B). As a positive control,
we observed that suramin fully blocked the \(\text{Ca}^{2+} \) responses to exogenous ATP (Fig. 2B). Quantitative assessment of the percentage of cells showing \(\text{Ca}^{2+} \) responses confirmed that suramin had no impact of the \(\text{Ca}^{2+} \) wave propagation while carboxoloxine, at 100 or 200 \(\mu \text{M} \), fully blocked the spreading. Similar results were obtained when Cx40+/+ aortic strips were pre-incubated with 1-Octanol (4 mM), another gap junction inhibitor (Fig. 2C).
Immunolocalization of M3 muscarinic ACh receptors in the mouse aortic endothelium

The endothelium from Cx40+/+ and Cx40-/- mouse aortic strips was immunostained using an anti-M3 muscarinic ACh receptors (M3-mAChRs) antibody [22, 23]. M3-mAChRs staining was detected in only a fraction of endothelial cells both in Cx40+/+ and Cx40-/- mice (Fig. 3A). In Cx40+/+ mice, analysis revealed that M3-mAChRs were present in a random pattern of ACh responses observed in the mouse aortic endothelium could be linked to the heterogeneous pattern of ACh responses observed in the mouse aortic endothelium could be linked to the heterogeneous expression of M3-mAChRs. In addition, Western Blot analysis of whole aorta of Cx40-/- and Cx40+/+ mice revealed that M3-mAChRs expression levels were not significantly different in the Cx40-/- mice when compared to control mice (Cx40+/+) (Fig. 3B).

Expression of the M3 muscarinic ACh receptors and the Cx40 and Cx37 in the aortic endothelium

To evaluate whether the fraction of endothelial cells expressing M3-mAChRs expresses gap junctions made of Cx40 and Cx37, we performed double immunostaining on "en face" aortic endothelium. Combining Cx40 (in red) with M3-mAChRs (in green) antibodies revealed the presence of Cx40 at regions of cell-cell contact between endothelial cells expressing M3-
mAChRs and adjacent endothelial cells in Cx40+/+ mice (Fig. 4A, upper panels). Consistently, Cx40 was not detected in the aortic endothelium of Cx40-/- mice (Fig. 4A, lower panels). Immunofluorescence studies using Cx37 (in red) and M3-mAChRs antibodies revealed that endothelial cells expressing M3-mAChRs also express Cx37 at plasma membrane both in Cx40+/+ and Cx40-/- mice (Fig. 4B and C). The expression of Cx37 was similar in the endothelial cells expressing the M3 muscarinic receptor compared to the surrounding endothelial cells. These data demonstrate that, in Cx40+/+ mice, the fraction of endothelial cells expressing M3-mAChRs formed gap junctions made of Cx40 and Cx37 with neighboring cells whereas in Cx40-/- mice, this subpopulation of endothelial cells can only communicate with adjacent cells through channels made of Cx37. Double immunolabeling of Cx40 and Cx37 of "en face" preparations showed a colocalization of Cx40 and Cx37 at the membrane of endothelial cells in Cx40+/+ mice. No Cx40 was detected in the endothelium of Cx40-/- mice and the Cx37 immunolabeling was decreased in those mice (Fig. 5A). ImmunobLOTS analysis of an enriched fraction of freshly scraped endothelial cells of aortas revealed a 50% decrease in Cx37 levels in the aortic endothelium of Cx40-/- mice compared to Cx40+/+ animals (Fig. 5B). Cx43 [9] or Cx32 [26] were not expressed in endothelial cells of Cx40+/+ or Cx40-/— mice (data not shown).
Fig. 5. Decreased Cx37 expression in the aortic endothelium of Cx40-/- mice. A: Antibodies detected Cx40 and Cx37 between aortic ECs of Cx40+/+ mice whereas no Cx40 and decreased Cx37 levels were found in ECs of Cx40-/- mice. B: Western blot analysis performed on enriched aortic endothelial cells samples confirmed the absence of Cx40 and revealed a 50 % decrease of Cx37 levels in the endothelium of Cx40-/- mice. (8 Cx40+/+ and 8 Cx40-/- mice).

Fig. 6. Altered ACh-induced Ca²⁺ responses in the endothelium from Cx40-/- mice. A: Time sequences of Fluo-4 ratio images corresponding to the evolution of Fluo-4 ratio in endothelial cells after ACh stimulation of aortic strips from Cx40+/+ and Cx40-/- mice. The bar chart on the left represents the average amplitude of fast biphasic ACh-induced Ca²⁺ increases in endothelial cells from Cx40+/+ and Cx40-/- mice (n.s.: not significant). The lower panels (right) are representative time course of the Fluo-4 ratio in individual endothelial cells indicated on the upper image (a, b and c for Cx40+/+; d, e and f for Cx40-/-). B: Time sequences of Fluo-4 ratio images in endothelial cells after ACh stimulation of the same Cx40-/- aortic strip in control and after preincubation with carbenoxolone (200 μM) for 30 min. This experiment is representative from five independent trials. C: Average values showing the % of whole field surface responding to ACh in the aortic endothelium from Cx40+/+ or Cx40-/- mice preincubated or not with carbenoxolone (200 μM, 30 min preincubation). The numbers above bars correspond to the total number of fields used for quantification. Data are mean ± SEM.
Intercellular dye transfer experiments indicate that gap junctions made of Cx40 and Cx37 participate in cell-cell communication between endothelial cells [10, 11]. To assess the contribution of Cx40 and Cx37 in the spreading of ACh-induced Ca²⁺ responses, we investigated ACh-induced Ca²⁺ responses in the aortic endothelium from Cx40-/- mice, featuring also reduced Cx37 levels in the aortic endothelium [11, 15]. As shown in Fig. 6A, the amplitude of the early fast biphasic Ca²⁺ increases was not different in Cx40-/- mice when compared to their wild type littermate, indicating that the transduction pathway activated upon ACh stimulation is not altered in the endothelium from these mice. The propagation of ACh-induced fast Ca²⁺ increases toward adjacent cells was still observed in Cx40-/- mice (Fig. 6A-B). However quantitative assessment of the responding area revealed that the propagation of Ca²⁺ increases was significantly reduced by about 25% in Cx40-/- compared to Cx40+/+ mice (28 ± 4% (n = 33) and 38.6 ± 3.2% (n = 34) for Cx40-/- and Cx40+/+ mice respectively) (Fig. 6C). As a negative control of propagation, we observed that this spreading was completely blocked upon carbenoxolone treatment in Cx40+/+ and Cx40-/- mice, (Fig. 6B-C). Of note, carbenoxolone did not alter the amplitude of the fast biphasic Ca²⁺ increases (data not shown).

Discussion

We showed that ACh but not ATP stimulation evokes Ca²⁺ increases in a fraction of native endothelial cells from mouse aorta (~40%) as already observed [18]. In rat thoracic aorta, a similar heterogeneity was observed in endothelial cells in response to ACh [27]. Our finding that M3 muscarinic ACh receptors (M3-mAChRs) are expressed in a fraction of endothelial cells likely explain these results, as ACh-induced endothelial Ca²⁺ responses and relaxation have been demonstrated to rely on the activation of these receptors in the mouse aorta [21, 28]. On the contrary to those evoked by ATP, ACh-induced Ca²⁺ responses were found to be highly heterogeneous among native endothelial cells. While a fraction of cells displayed early fast and high amplitude biphasic Ca²⁺ increases, adjacent cells showed lower and slower increases in Ca²⁺. Our results demonstrate that the ACh-induced early fast biphasic Ca²⁺ increases spread toward adjacent cells through gap junction channels, as attested by its blockade by the gap junction blockers carbenoxolone or 1-octanol. Such spreading of ACh-induced Ca²⁺ signals is in accordance with dye transfer experiments showing extensive coupling between endothelial cells from the mouse aorta [10, 11]. In line with the work of Berra-Romani et al. [29], our results show homogenous endothelial Ca²⁺ signaling in response to ATP stimulation. In contrast to these results, Kameritsch et al., recently reported heterogeneous Ca²⁺ responses to ATP and demonstrated a role for endothelial gap junctions in the spreading of Ca²⁺ signaling in response to ATP stimulation [30]. This discrepancy could be due to differences in ATP concentrations used to stimulate endothelial cells or in the portion of the aorta used to perform the experiments.

The blockade of purinergic receptors did not prevent the spreading of the fast ACh-induced Ca²⁺ increases, indicating that there was no paracrine effect of ATP released through hemichannels and/or pannexin channels. Therefore, in contrast to the response of mechanically stimulated cells, which involves an ATP-dependent paracrine effect [8], the propagation of ACh-induced Ca²⁺ increases is probably mediated by the intercellular diffusion of Ca²⁺, InsP₃, or other intracellular messengers though gap junction channels [5, 6, 31-33].

Only ~6% of endothelial cells still displayed Ca²⁺ increases upon ACh stimulation when the propagation of the Ca²⁺ waves was completely blocked using the gap junction channel inhibitor carbenoxolone. Immunofluorescent experiments further revealed that about 6% of the cells express the M3-mAChRs. Although it was not possible to perform M3 muscarinic receptors staining on the same preparation used for Ca²⁺ imaging, our data thus strongly suggest that the cells responding to ACh are those expressing the M3-mAChRs. Our results
Role of endothelial connexins in the ACh-induced Ca2+ signaling. In Cx40+/+ mice, during ACh stimulation, endothelial connexins mediate the spreading of Ca2+ signals from endothelial cells expressing the M3 muscarinic receptor to neighboring cells. In Cx40-/- mice, the absence of Cx40 and the decrease of Cx37 levels induced calcium signaling between endothelial cells.

Fig. 7. Role of endothelial connexins in the ACh-induced Ca2+ signaling. In Cx40+/+ mice, during ACh stimulation, endothelial connexins mediate the spreading of Ca2+ signals from endothelial cells expressing the M3 muscarinic receptor to neighboring cells. In Cx40-/- mice, the absence of Cx40 and the decrease of Cx37 levels impact on the efficiency of the ACh-induced calcium signaling between endothelial cells.

also demonstrate that the percentage of cells exhibiting Ca2+ increases is reduced by 25\% in Cx40-/- mice compared to Cx40+/+ mice. Interestingly, the percentage of ACh-responsive cells after gap junction blockade was similar in Cx40-/- and Cx40+/+ mice, indicating that the proportion of endothelial cells responding to ACh after gap junctions inhibition is not altered in Cx40-/- mice. Therefore, the reduced ACh-responding surface in Cx40-/- mice is mainly due to a reduction of the propagation of ACh-induced Ca2+ transients between endothelial cells, hence due to impaired gap junctional coupling. However, the ACh-induced Ca2+ waves still occurred in the Cx40-/- aortic endothelium. Cx37 expression levels are reduced in the aortic endothelium from Cx40-/- mice and it was shown that both Cx40 and Cx37 participate to gap junction-dependent coupling in the mouse aortic endothelium [10, 11, 15]. Thus, the remaining Cx37 expression seems sufficient to build functional gap junctions allowing the spreading of Ca2+ responses in the Cx40-/- aortic endothelium [15]. Therefore our results suggest that both Cx40 and Cx37 are functional components of interendothelial cells gap junctions enabling the spreading of ACh-induced Ca2+ increases (Fig. 7). In conclusion, we show that the highly heterogeneous cholinergic Ca2+ signaling in the mouse aortic endothelium is due to restricted M3-mAChRs expression on a subpopulation of endothelial cells and propagation of Ca2+ signals through gap junction channels composed of Cx40 and Cx37.

Grants

This work was supported by grants from the Swiss National Science Foundation (3100A0-100098, 31003A-138528), the Donation Georges and Antoine Claraz, the Octav and Marcela Botnar Foundation and the Novartis and Muschamp Foundations.

Disclosures

No conflicts of interest are declared by the authors.
References

1. Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB: Role of Ca²⁺ signaling in the regulation of endothelial permeability. Vascul Pharmacol 2002;39:173-185.

2. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weisgerber P, Biel M, Philipp S, Freier D, Droogmans G, Hofmann F, Flockerzi V, Nilius B: Lack of an endothelial store-operated Ca²⁺ current impairs agonist-dependent vasorelaxation in TRP4⁻/- mice. Nat Cell Biol 2001;3:121-127.

3. de Wit C, Hoepfl B, Wolfe SE: Endothelial mediators and communication through vascular gap junctions. Biol Chem 2006;387:3-9.

4. Figueroa XF, Duling BR: Gap junctions in the control of vascular function. Antioxid Redox Signal 2009;11:251-266.

5. Harris AL: Connexin channel permeability to cytoplasmic molecules. Prog Biochem Biophys 2007;94:120-143.

6. Carter TD, Chen XY, Carlile G, Kalaponakis E, Ogden D, Evans WH: Porcine aortic endothelial gap junctions: Identification and permeation by caged InsP3. J Cell Sci 1996;109:1765-1773.

7. Gomes P, Srinivas SP, Vereecke J, Himpens B: Lack of an endothelial store-operated Ca²⁺ current impairs agonist-dependent vasorelaxation in TRP4⁻/- mice. Nat Cell Biol 2001;3:121-127.

8. Tomà I, Bansal E, Meer J, Kang JJ, Vargas SL, Peti-Peterdi J: Connexin40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol-Regul Integr Comp Physiol 2008;294:R1769-1776.

9. Alonso F, Krattinger N, Mazzolai L, Simon A, Waeger H, Meda P, Haefliger JA: An angiotensin II- and nfkappab-dependent mechanism increases connexin43 in murine arteries targeted by renin-dependent hypertension. Cardiovasc Res 2010;87:166-176.

10. Kruger O, Beny JL, Chabaud E, Traub O, Theis M, Brik K, Kirchhoff S, Willecke K: Altered dye diffusion and upregulation of connexin37 in mouse aortic endothelium deficient in connexin40. J Vasc Res 2002;39:160-172.

11. Simon AM, McWhorter AR: Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40. J Cell Sci 2003;116:2223-2236.

12. de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U: Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 2000;86:649-655.

13. Figueroa XF, Duling BR: Dissection of two cx37-independent conducted vasodilator mechanisms by deletion of cx40. Electrotonic versus regenerative conduction. Am J Physiol Heart Circ Physiol 2008;295:H2001-H2007.

14. Wolfe SE, Schmidt VJ, Hoepfl B, Gebert A, Alcoka S, Gros D, de Wit C: Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilatations along arterioles. Circ Res 2007;101:1292-1299.

15. Alonso F, Boittin FX, Beny JL, Haefliger JA: Loss of connexin40 is associated with decreased endothelium-dependent relaxations and enos levels in the mouse aorta. Am J Physiol Heart Circ Physiol 2010;299:H1365-H1373.

16. de Wit C, Roos F, Bolz SS, Pohl U: Lack of vascular connexin40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Gen 2003;13:169-177.

17. Pfenniger A, Derouette JP, Verma V, Lin X, Foglia B, Coombs W, Roth I, Satta N, Dunoyer-Geindre S, Sorgen P, Taffet S, Kwak BR, Delmar M: Gap junction protein cx37 interacts with endothelial nitric oxide synthase in endothelial cells. Arterioscler Thromb Vasc Biol 2010;30:827-834.

18. Marie I, Beny JL: Calcium imaging of murine thoracic aorta endothelium by confocal microscopy reveals inhomogeneous distribution of endothelial cells responding to vasodilator agents. J Vasc Res 2002;39:260-267.

19. Kirchhoff S, Nelles E, Hagendorff A, Kruger O, Traub O, Willecke K: Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol 1998;8:299-302.

20. Boittin FX, Gribi F, Serrit K, Beny JL: Ca²⁺-independent PLA₂ controls endothelial store-operated Ca²⁺ entry and vascular tone in intact aorta. Am J Physiol Heart Circ Physiol 2008;295:H2466-2474.

21. Beny JL, Nguyen MN, Marino M, Matsui M: Mucinase receptor knockout mice confirm involvement of M3 receptor in endothelium-dependent vasodilatation in mouse arteries. J Cardiovasc Pharmacol 2008;51:505-512.
22 Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, Mark GP, Grando SA, Spindel ER: M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 2007;67:3936-3944.

23 Zen Y, Fuji T, Yoshikawa S, Takamura H, Tani T, Ohta T, Nakanuma Y: Histological and culture studies with respect to ABG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol 2007;170:1750-1762.

24 Ryan MJ, Liu B, Herbowy MT, Gross KW, Hajduczok G: Intercellular communication between renin expressing a4.1 cells, endothelial cells and smooth muscle cells. Life Sci 2003;72:1289-1301.

25 Sagar GD, Larson DM: Carbenoxolone inhibits junctional transfer and upregulates connexin43 expression by a protein kinase A-dependent pathway. J Cell Bioch 2006;98:1543-1551.

26 Oikamoto T, Akiyama M, Takeda M, Gabazza EC, Hayashi T, Suzuki K: Connexin32 is expressed in vascular endothelial cells and participates in gap-junction intercellular communication. Biochem Biophys Res Commun 2009;382:264-268.

27 Huang TY, Chu TF, Chen HI, Jen CJ: Heterogeneity of [Ca^{2+}] signaling in intact rat aortic endothelium. Faseb J 2000;14:797-804.

28 Khurana S, Chacon I, Xie G, Yamada M, Wess J, Kaufman JP, Kennedy RH: Vasodilatory effects of cholinergic agonists are greatly diminished in aorta from M3R-/- mice. Eur J Pharmacol 2004;493:127-132.

29 Berra-Romani R, Rinaldi C, Raqeeb A, Castelli L, Magistretti J, Taglietti V, Tanzi F: The duration and amplitude of the plateau phase of ATP- and ADP-evoked Ca^{2+} signals are modulated by ectonucleotidases in situ endothelial cells of rat aorta. J Vasc Res 2004;41:166-173.

30 Kameritsch P, Pogoda K, Ritter A, Munzing S, Pohl U: Gap junctional communication controls the overall endothelial calcium response to vasoactive agonists. Cardiovasc Res 2012;93:508-515.

31 Christ GJ, Moreno AP, Melman A, Spray DC: Gap junction-mediated intercellular diffusion of Ca^{2+} in cultured human corporal smooth muscle cells. Am J Physiol 1992;263:C373-383.

32 Parthasarathi K, Ichimura H, Monna E, Lindert J, Quadri S, Isselkutz A, Bhattacharya J: Connexin 43 mediates spread of Ca^{2+}-dependent proinflammatory responses in lung capillaries. J Clin Invest 2006;116:2193-2200.

33 Saez JC, Connor JA, Spray DC, Bennett MV: Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 1989;86:2708-2712.