The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations

C.W. Hergenrother1, C.K. Maleszewski1, M.C. Nolan1, J.-Y. Li2, C.Y. Drouet d’Aubigny1, F.C. Shelly1, E.S. Howell1, T.R. Kareta1, M.R.M. Izawa3, M.A. Barucci4, E.B. Bierhaus5, H. Campins6, S.R. Chesley7, B.E. Clark8, E.J. Christensen1, D.N. DellaGiustina1, S. Fornasier4, D.R. Golish1, C.M. Hartzell9, B. Rizk1, D.J. Scheeres10, P.H. Smith1, X.-D. Zou2, D.S. Lauretta1 & The OSIRIS-REx Team

During its approach to asteroid (101955) Bennu, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu’s immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission’s safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu’s surface to an upper limit of 150 g s$^{-1}$ averaged over 34 min. Bennu’s disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu’s rotation rate is accelerating continuously at 3.63 \pm 0.52 \times 10$^{-6}$ degrees day$^{-2}$, likely due to the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, with evolutionary implications.
The Approach phase for the OSIRIS-REx mission occurred between 17 August 2018 and 2 December 2018.1 Observations of near-Earth asteroid (NEA) Bennu began as the asteroid was just bright enough for detection by the OSIRIS-REx Camera Suite (OCAMS). The three goals for the Approach phase of the mission were to optically acquire the asteroid, survey the vicinity of the asteroid for any hazards (natural satellites or dust trails) that may be present, and characterize the asteroid point-source properties for comparison with ground- and space-based telescopic data.1 Here we show that we detect no hazards within the sub-meter sensitivity limits of our Approach phase observations. Further work will follow since images from our navigation camera later revealed the existence of apparent particles in close vicinity of Bennu. We find strong agreement between the pre-encounter and OSIRIS-REx disk-integrated photometric properties. We detect a continuous acceleration in Bennu’s rotation and conclude that it results from the YORP effect.2

Results

Search for dust. The first dedicated science observation of Bennu by OSIRIS-REx was a search for dust on 11 and 12 September 2018 when Bennu was at a heliocentric distance of 1.21 au. We used the OCAMS PolyCam and MapCam instruments2 to survey all space within a 35,000 km radius of Bennu. If present, unbond dust released due to outgassing processes would appear as diffuse cometary features (trails or tails) along the directions between the anti-solar and anti-heliocentric velocity vectors. The shape of such features is governed by the balance between radiation pressure and gravity and is particle size-dependent. Only particles ejected in the anti-solar direction two to eight weeks prior to the observations would have been detected in our MapCam images. We observed no detectable dust during this search.

We determined upper limits of 300 kg for the dust mass within 405 km of Bennu and 150 g s⁻¹ averaged over 34 min for the average dust production rate by considering the properties and ephemeris of Bennu, assuming a dust flux such as that from a near-surface coma, and assuming the dust ejection velocity measured for comet 67 P at perihelion (see methods). Observations in the thermal infrared taken with the Spitzer space telescope (hereafter, Spitzer) yielded upper limits on dust mass from Bennu of 1000 kg and on dust production rate of 1 g s⁻¹ (ref. 7). The OSIRIS-REx Approach phase dust searches were comparable in sensitivity to Spitzer observations with regards to dust mass but much less sensitive to lower dust production rates.

Our upper limit on Bennu’s average dust production rate is on the extreme lower end of those of main belt comets, which are in the range of 100 to 4000 g s⁻¹ (ref. 8). Asteroid (3200) Phaethon, the parent of the Geminid meteor shower, reaches a peak dust production of approximately 300 g s⁻¹ (ref. 9) during its perihelion passage, possibly driven by thermal desiccation of surface rocks. As Bennu’s surface has many rocks with apparent fracturing that may have been thermally induced10,11 similar dust production due to thermal desiccation may occur on Bennu.

We will conduct two dedicated searches for dust mass loss at a high phase angle of approximately 130 degrees during the Detailed Survey phase of the mission in spring 2019. The higher phase angle of these searches enhances dust observability if the dust particles are forward-scattering, as would be expected for sub-micron-sized particles.12

Search for natural satellites. The fraction of NEAs larger than 300 m with satellites is 15 ± 4%.13 The smallest asteroid satellite yet observed is approximately 44 m in diameter, around the primary body NEA 2000 CO₁₀.14 Pre-encounter modeling suggests that any Bennu satellites with diameters larger than 1 m could be stable on orbits within 20 km, and diameters of 10 cm could be stable on orbits within 12 km.15,16 Ground-based radar observations were sensitive to satellites of Bennu down to a size of 2 to 20 m diameter, depending on the rotation rate of the satellites.17

For OSIRIS-REx, we calculated the detectable satellite size using the lower-limit bound of Bennu’s albedo (0.03) and the upper-limit on steepness of the phase function slope (0.043 mag per degree) determined from the ground.18 We tested different exposure durations to decrease the glare of Bennu and allow detections down to a projected height of 20 m above the sunlit limb. From the multiple search dates, the cadence of images taken per date, and multiple search methods—including visual inspection and use of the asteroid-hunting Catalina Sky Survey automated moving object detection software—19—we estimated that our detection efficiency would be approximately 99% for satellites 10 cm and larger. Orbiting satellites would spend some fraction of their orbits in front of or behind the asteroid. The multiple dates and 5-h observing windows per date ensured that orbiting objects were detectable.

We conducted our search for natural satellites using PolyCam (Fig. 1). Initially, when the spacecraft was at a range of 3100 km, the search was over an area of 60 km radius when our observations were sensitive to 0.5 m or larger satellites. Later, as the spacecraft got closer, satellites as small as 8 cm would have been bright enough to be imaged within 18 km of Bennu. As the spacecraft approached Bennu, the PolyCam field of view narrowed down to smaller areas of the sky, allowing us to search for smaller satellites (Fig. 2). In all, we used PolyCam and MapCam on ten dates to search for satellites, and our observations were sensitive to objects as small as 24 cm in diameter within the entire Hill Sphere (31 km) (Supplementary Table 1).

The Hayabusa mission could detect satellites down to 1 m around NEA (25143) Itokawa,21 the Rosetta mission could detect satellites between 1 and 6 m around comet 67 P,22 and the Dawn mission could detect satellites as small as 3 m around (4) Vesta and 12 m around (1) Ceres.23,24 In contrast, the high sensitivity of our OCAMS instruments allowed us to search for satellites at the sub-meter scale. No satellites were detected down to our sensitivity limits.

Although we detected no dust or satellites during our dedicated search with the OCAMS instruments during the Approach phase, images collected in January 2019 by one of the navigation cameras (NavCam1)25 have since revealed apparent particles in the vicinity of Bennu. These probable particles are likely to be smaller than the sensitivity limit of the Approach-phase satellite search. Their nature and production mechanism are still under investigation, although they appear to originate from Bennu. We plan to continue monitoring the near-Bennu environment throughout the rest of the mission.

Disk-integrated phase function. From the ground, the disk-integrated phase function of Bennu was determined using measurements obtained between 2005 and 2012.18 For direct comparison to the ground-based data, we first limited the OCAMS data to the same phase angle range as the ground-based data. This analysis yields a linear fit with \(H_B = 20.51 \pm 0.04 \) and \(B_0 = 0.039 \pm 0.001 \), in good agreement with the ground-based data. The phase slope of Bennu is similar to that of other low-albedo main belt asteroids such as the C, F, and P types (0.04 to 0.05 mag per degree of phase angle)26.

We then modeled the full disk-integrated phase dependence of Bennu with several methods, including the Lommel-Seeliger model,27 the IAU H-G model,28 and the more recently adopted...
The IAU albedo objects is a recognized deficiency of this model. The \(H_{G_1 G_2} \) model results in an artificial drop in the magnitude at phase angles < 1°. We fitted the v-band phase function data of Bennu with both the original and the revised \(H_{G_1 G_2} \) models\(^{29,30}\) (Supplementary Table 2). The revised \(H_{G_1 G_2} \) model fits the data in the full range of phase angles that they cover (Fig. 3). In general, the \(G \)-parameters (\(G, G_1, G_2, \) and \(G_{12} \)) of all three models suggest a shallower phase slope with increasing wavelength, consistent with phase reddening in the visible wavelengths\(^{10}\).

The disk-integrated Lommel-Seeliger model yields a geometric albedo of 0.044 ± 0.002 and Bond albedo of 0.0170. The \(H_{G_{12}} \) model found an \(H_v \) of 20.41 ± 0.02. This compares well with the best pre-encounter \(H_v \) value of 20.56 \(^{\text{201518}} \). The ground-based photometry did not include observations at phase angles less than 15 degrees phase angle but did extend up to 100 degrees phase angle. The good agreement between the ground-based and OSIRIS-REx photometric results highlights the importance of supporting ground-based asteroid observations at multiple observing geometries.

Comparing the magnitude derived from the linear fit (i.e. excluding the opposition effect) with the absolute magnitude from the revised \(H_{G_{12}} \) model, we found a magnitude increase (\(\Delta m \)) of 0.20 mag that could be related to the opposition effect (Fig. 3, inset). The parameters of Bennu’s opposition effect are consistent with the values reported in the literature for about 40% of low-albedo asteroids with average opposition effect amplitudes of 0.16 ± 0.05 mag and starting phase angles of 6 to 7 degrees\(^{32,33}\).

Rotation state. We had extensive knowledge of the rotation state of Bennu from our pre-encounter astronomical campaigns\(^{3,17,18}\) when lightcurve observations yielded a synodic rotation period of 4.2905 ± 0.0065 h\(^{18}\). The observed low amplitude and trimodal (three maxima and three minima) lightcurve was consistent with the rotation of a nearly spherical body observed at high phase angles. We used the best-fit shape and pole position for Bennu from a combination of radar images and lightcurve data\(^{17}\). The sidereal rotation period determined from the lightcurve and radar data was 4.29746 ± 0.0002 h. Bennu’s obliquity was determined to be 178 ± 4 degrees with the rotation pole at (87, –65) ± 4 degrees (J2000 equatorial coordinates)\(^{17}\). From ground-based and Hubble Space Telescope observations in 1999, 2005, and 2012, an increase was detected in the rotation rate of Bennu of 2.64 ± 2.05 × 10\(^{-6}\) degrees day\(^{-2}\), possibly due to YORP thermal torques\(^{34}\).

For the present study, we measured Bennu’s rotation rate by obtaining a series of asteroid light curves using the OCAMS MapCam instrument with the \(b’ \), \(v \), \(w \), and \(x \) spectral filters (centered at 470, 550, 770, and 860 nm wavelengths, respectively)\(^{1}\).
and a period of 4.296007 ± 0.000002 h (compared to a rotation rate of 2011.1697 ± 0.0011 degrees day–1 and period of 4.296061 ± 0.000002 h) suggesting that the YORP acceleration has changed over time, possibly due to changes in Bennu’s orbit or its shape.

The small opposition effect is consistent with what we would expect for low-albedo, carbonaceous bodies. The red line is the linear fit to observations made at less than 7.5 degrees phase angle. The blue line is the linear fit to all OSIRIS-REx data points at greater than 7.5 degrees phase angle. Source data are provided in Supplementary Tables 2 and 3.

The OSIRIS-REx lightcurves have a different shape than the ground-based lightcurves, with four peaks instead of three, due to the Approach phase data being taken at much lower solar phase angle (4 to 18 degrees) than any of the earlier telescopic data (60 to 71 degrees).

Bennu’s rotation rate has accelerated since 1999, but previous work could not distinguish between continuous spin-up due to YORP and a step change in rotation rate due to a change in moment of inertia. Here we confirm that the acceleration has continued to the present day and is most likely due to the YORP effect. We derive an acceleration of 3.63 ± 0.52 x 10–6 degrees day–1, with a rotation rate of 2011.1697 ± 0.00111 degrees day–1, and a period of 4.296007 ± 0.000002 h (compared to a rotation rate of 2011.1445 ± 0.00111 degrees day–1 and period of 4.296061 ± 0.000002 h at the J2000 epoch). Figure 4 shows the OSIRIS-REx Approach phase lightcurve and model fits using the shape model and this acceleration (black curve). The acceleration that we determine is a better fit to the observations than the previously determined values (Fig. 4, orange curve) or a constant rotation rate since 2009 (Fig. 4, green curve). The inset plot shows that the rotational phase determined at four epochs is consistent with a rotation rate increasing along a quadratic curve. This is evidence for a continuous change—i.e., YORP—not a step change.

The doubling time for this acceleration is about 1.5 million years, indicating that Bennu’s surface could be unstable on million-year timescales. However, such timescales are much shorter than Bennu’s apparent surface age of at least 100 million years, suggesting that the YORP acceleration has changed over time, possibly due to changes in Bennu’s orbit or its shape. All of the NEAs, including Bennu, for which YORP has been detected have been accelerating, and many of the top-shaped NEAs are binary systems; perhaps Bennu will evolve to this state. The OSIRIS-REx spacecraft will continue to probe the near-surface environment of Bennu to resolve the relationship between its surface and its rotation state.

Methods

Search for dust near Bennu. A sequence of images centered on Bennu was obtained using the OCAMS PolyCam and MapCam imagers. The image sequence was median co-added on the motion of Bennu to produce a map of the dust near Bennu. Dust would have exhibited itself as diffuse features either around Bennu, trailing Bennu in the anti-solar direction, or trailing Bennu along its orbit.

For simplicity, we assumed constant particle sizes as a function of beta as first proposed in ref. 6. Most of the adaptations we made involve changing the location of observing from Earth to the spacecraft’s position. This allowed us to generate trail locations as a function of right ascension and declination.

To estimate times in which the earliest particles ejected, trails from our model were plotted over the median co-added images of Bennu from the hazards search. The combined plot was visually inspected to determine at what time each trail would leave the field-of-view of the co-added image. The range of particle sizes used to estimate ejection time are for beta values of 0.01 and 0.1. This corresponds to grain sizes of 66.1 and 3.3 microns respectively.

Determining the bound on the mass loss rate. To provide a bound on the mass loss rate of a detectable coma, we adapt a method used for members of the

Fig. 3 Phase function observations and models for Bennu. Over-plotted are the model fits to the new data: a Lommel-Seeliger model and a revised H, G12 model. The ground-based measurements are published in18. We originally converted the ground-based measurements to the v-band magnitude scale, plotted with 1-sigma photometric error bars. The 1-sigma photometric error bars for OCAMS data are less than or equal to the size of the data points. Inset, upper right: The OSIRIS-REx measurements at low phase angles (0 to 12 degrees). We plot this subset of the data to illustrate the small opposition effect present for asteroid Bennu. The small opposition effect is consistent with what we would expect for low-albedo, carbonaceous bodies. The red line is the linear fit to observations made at less than 7.5 degrees phase angle. The blue line is the linear fit to all OSIRIS-REx data points at greater than 7.5 degrees phase angle. Source data are provided in Supplementary Tables 2 and 3.

Methods

Search for dust near Bennu. A sequence of images centered on Bennu was obtained using the OCAMS PolyCam and MapCam imagers. The image sequence was median co-added on the motion of Bennu to produce a map of the dust near Bennu. Dust would have exhibited itself as diffuse features either around Bennu, trailing Bennu in the anti-solar direction, or trailing Bennu along its orbit.

For simplicity, we assumed constant particle sizes as a function of beta as first proposed in ref. 6. Most of the adaptations we made involve changing the location of observing from Earth to the spacecraft’s position. This allowed us to generate trail locations as a function of right ascension and declination.

To estimate times in which the earliest particles ejected, trails from our model were plotted over the median co-added images of Bennu from the hazards search. The combined plot was visually inspected to determine at what time each trail would leave the field-of-view of the co-added image. The range of particle sizes used to estimate ejection time are for beta values of 0.01 and 0.1. This corresponds to grain sizes of 66.1 and 3.3 microns respectively.

Determining the bound on the mass loss rate. To provide a bound on the mass loss rate of a detectable coma, we adapt a method used for members of the

Fig. 3 Phase function observations and models for Bennu. Over-plotted are the model fits to the new data: a Lommel-Seeliger model and a revised H, G12 model. The ground-based measurements are published in18. We originally converted the ground-based measurements to the v-band magnitude scale, plotted with 1-sigma photometric error bars. The 1-sigma photometric error bars for OCAMS data are less than or equal to the size of the data points. Inset, upper right: The OSIRIS-REx measurements at low phase angles (0 to 12 degrees). We plot this subset of the data to illustrate the small opposition effect present for asteroid Bennu. The small opposition effect is consistent with what we would expect for low-albedo, carbonaceous bodies. The red line is the linear fit to observations made at less than 7.5 degrees phase angle. The blue line is the linear fit to all OSIRIS-REx data points at greater than 7.5 degrees phase angle. Source data are provided in Supplementary Tables 2 and 3.

Methods

Search for dust near Bennu. A sequence of images centered on Bennu was obtained using the OCAMS PolyCam and MapCam imagers. The image sequence was median co-added on the motion of Bennu to produce a map of the dust near Bennu. Dust would have exhibited itself as diffuse features either around Bennu, trailing Bennu in the anti-solar direction, or trailing Bennu along its orbit.

For simplicity, we assumed constant particle sizes as a function of beta as first proposed in ref. 6. Most of the adaptations we made involve changing the location of observing from Earth to the spacecraft’s position. This allowed us to generate trail locations as a function of right ascension and declination.

To estimate times in which the earliest particles ejected, trails from our model were plotted over the median co-added images of Bennu from the hazards search. The combined plot was visually inspected to determine at what time each trail would leave the field-of-view of the co-added image. The range of particle sizes used to estimate ejection time are for beta values of 0.01 and 0.1. This corresponds to grain sizes of 66.1 and 3.3 microns respectively.

Determining the bound on the mass loss rate. To provide a bound on the mass loss rate of a detectable coma, we adapt a method used for members of the
Centaur population. The goal of this method is to estimate the total mass of a possible coma from light measured using photometry of an annulus between two circular apertures. We also estimate the approximate time that dust would remain in the given annulus. Dividing these two quantities provides us with a mass loss rate.

A median co-add of images from the Dust Search campaign was created, and then two photometry measurements of Bennu at radii of 20 and 30 arcseconds were measured. The IRAF phot package was used to determine instrumental magnitude of these apertures. We also corrected for the effects of the point spread function leaking into the coma annulus as suggested in ref. 38. These magnitudes were transformed into a R-band magnitude system where the apparent magnitude of the Sun is known (for Eq. 3).

Equations 1, 3, and A4 in ref. 38 were used to calculate the bound mass in the annulus between the two photometric apertures. Phase angle, Bennu-Sun distance, and Bennu-OSIRIS-REx distances were calculated from Bennu’s ephemeris using JPL HORIZONS. The phase darkening correction was interpolated from the phase darkening curve developed in refs. 12,59. To convert from cross-section to mass (equation A4), we assume that the R-band albedo is equal to the V-band albedo and set it to a value of 0.045. We assume the same particle sizes, \(a = 1 \) cm and \(a_{\text{eff}} = 0.1 \) micron38,40.

The residence time is calculated from Eq. 4 in ref. 38. We adopt an outflow velocity of 25 m s\(^{-1}\), which is the estimated value of the ejection velocity for 67P/Churyumov-Gerasimenko at perihelion41. This value is chosen since the perihelion of 67P is close to the Bennu-Sun distance during the hazards search (1.3 vs. 1.2 au). It also agrees with measurements taken of the ejection velocity from the Rosetta mission42.

Search for natural satellites around Bennu. Dedicated searches for natural satellites in orbit around Bennu were conducted on 10 separate dates. A summary of the observing circumstances and detection limits of each date is given in Supplementary Table 1. Observations were collected over the course of 5 h (between 4:00 and 9:00 UTC) on each date.

Each date of the search consisted of 3 × 3 mosaic fields with approximately 10% overlap between each field. Each field was imaged between 15 and 30 times over a span of time allowing an object with Bennu rates of motion to move between 5 and 30 pixels relative to the background stars. This dwell time on each field ranged from 4.2 to 25.7 min depending on Bennu’s varying rates of relative motion. Each field was visited between 2 and 4 times on each date. As a result, each field was imaged 60 times per date. Exposure times ranged from 5 s to 0.15 s. Shorter exposure times were used during the later search dates to avoid saturation and pixel blooming near the asteroid. The shorter exposure times were set to still allow the detection of satellites as small as 10 cm.

On 23 to 28 October 2018, only PolyCam was used. Observations between 30 October and 11 November 2018 used a combination of MapCam and PolyCam. Each post–30 October search consisted of a 3 × 3 MapCam mosaic and a single PolyCam field centered on Bennu. The 30 and 31 October PolyCam fields were not used for satellite searching as Bennu was located near the edge or outside the small PolyCam field-of-view due to the greater navigational uncertainty after the third asteroid approach maneuver.

Three different methods were utilized to search for satellites within the OCAMS images. The first involved manually blinking the 15 or 30 images taken per field per visit for moving objects. The second combined, or stack and shifted, all of the images taken during a visit on the motion of Bennu. The combined images minimized the signal of background stars while enhancing the brightness of objects moving at the rate of Bennu. The third search method used the moving object detection software of the Catalina Sky Survey (CSS) to automatically detect satellites19. The CSS software was used on 5 images at a time. Due to the large number (15–30) images taken per visit, up to 6 different combinations of the images were run through the CSS software enabling multiple opportunities for detection. The software approach was not used on 23–25 October due to the slow apparent motion of Bennu and any satellites relative to the background stars. It was also not applicable on 30–31 October and 10–11 November due to the short exposure times used and the low number of detectable background stars.

The sensitivity and efficiency of the satellite search was improved by conducting a search for Earth Trojan Asteroids (ETAs) during the outbound cruise phase in February 201743,44 by exercising the entire moving object detection process, lessons learned during the ETAs search resulted in changes to detection software, number and cadence of observations, exposure times, and the use of both PolyCam and MapCam.

OCAMS disk-integrated photometry calibration. The combination of the OCAMS narrow point spread function (PSF) with its detector’s strongly non-uniform pixel response makes photometric calibration using standard stars more challenging than expected. A dedicated calibration campaign has yielded valuable insights but disappointing results. A second campaign incorporating lessons learned from our first attempt is planned. In the interim, we use defocused images of open star cluster NGC 3532 to derive an absolute radiometric calibration for the PolyCam. We then use near simultaneous MapCam and PolyCam observations of Bennu to transfer this calibration to the MapCam.

During outbound cruise, PolyCam acquired a through-focus sequence of images of NGC 3532. In one of these images, stars are defocused enough to cover approximately 100 pixels, thereby minimizing the effects of aliasing. We exclude stars near the edge of the detector or in pixel regions which do not behave like the bulk of the detector. Stars for which any raw counts are out of the linear range for PolyCam (<12,500 DN) are also rejected. Despite the significant defocus, stars are still well resolved and can be automatically detected, identified and measured. Stars close to each other are also excluded. Visual inspection of each of the remaining stars is used to exclude a further 95 stars with PSF indicative of one or more
unresolved companions, leaving 187 stars in our sample. In addition to being an open cluster, NGC 3532 is also a diffuse nebula, so we estimate and remove the local background of the nebula at each star.

Given the panchromatic filter’s 650 nm center wavelength, the integrated star flux is then compared to the R magnitude reported by the American Association of Variable Star Observers (AAVSO) NGC 3532 Standard Field catalog. The fit between the logarithm of measured DN/s and the AAVSO Catalog m_R magnitudes is very good ($R = 0.998$). When corrected to the OSIRIS-REx reference temperature that fit is:

$$m_R = -2.5\log_{10}(DN/(s/PolyCam\;T_{ref})) + 18.2180$$ \hspace{1cm} (1)

By design all OCAMS panchromatic filters have identical bandpasses. This allows us to use Bennu as a proxy to extend PolyCam’s absolute calibration to the MapCam. To do this, we use a pair of PolyCam and MapCam images taken on 25 November 2018. Between the two images Bennu rotated one full rotation plus 1 min and 47 s (2.5 degrees). As a result, Bennu presents essentially the same face to the cameras in both images. We estimate how much this difference could affect our calibration, by comparing the integrated flux in PolyCam images taken 7 min before and 7 min after the one used to compare with MapCam. The integrated flux difference between those images is approximately 0.5%.

PolyCam and MapCam imaged Bennu at slightly different phase angles ($\Delta\omega = 0.4$ degrees). In the time between the two images the spacecraft also closed in on Bennu by approximately 1.5 km. Correcting for these effects we estimate that the integrated flux observed by MapCam should be 1.4% greater than PolyCam’s.

We use the OCAMS radiometrically calibrated frad product to integrate Bennu’s flux and relate the two cameras. This product is a dark subtracted, flat fielded, radiometrically calibrated (frad = DN/s/277.035). After correcting for phase angle and distance changes, the calculated ratio between the two cameras is 24.902 and the derived calibration is given by:

$$m_B = -2.5\log_{10}(MapCam_frad/PAN*24.902*277.035) + 18.2180$$ \hspace{1cm} (2)

\section*{Disk-integrated photometry modeling.}

The ground-based campaigns covered a range of phase angles from 15.0 to 95.6 degrees yielding an absolute magnitude (H_0) of 20.61 ± 0.20 and phase slope (R_0) of 0.040 ± 0.003 magnitude per degree of phase angle. We applied a known correlation between the slope of the linear phase function and the albedo of asteroids26,25 to estimate a global average geometric albedo of 0.030–0.04525 for Bennu. For the spacecraft phase function campaign, we acquired images daily between 2 October and 2 December 2018. These observations yielded photometric measurements covering a phase angle range from 0.7 to 86.5 degrees in the MapCam v filter (Supplementary Table 2).

The disk-integrated Lommel-Seeliger phase function model (with an exponential phase function and a polynomial in the exponent)27 is

$$\Phi(\alpha) = \rho \left[1 + \sin^2 \frac{\alpha}{2} - \frac{\sin \alpha}{\alpha} \ln \left(\frac{\alpha}{4}\right)\right]/(\alpha)$$ \hspace{1cm} (a)

and

$$f(\alpha) = \exp(p_1 \alpha + p_2 \alpha^2 + p_3 \alpha^3)$$ \hspace{1cm} (4)

where α is phase angle in degrees; ρ is geometric albedo, and p_1, p_2, and p_3 are parameters that defines the shape of the phase function. Resulting parameters for the Lommel-Seeliger, as well as the IAU H_G, Muinonen H_G, and revised H_G12 models are given in Supplementary Table 2.

We fitted the v-band phase function data of Bennu with both the original and the revised H_G12 models with the implementation of both H_G12 models in the photometry module of the Python package for small-body planetary astronomy skybpy that is currently under development46. The non-linear fitting was performed with the Levenberg-Marquardt algorithm47 as implemented in the fitting module in astroby, which is a community-developed core Python package for astronomy48.

\section*{Rotation rate of Bennu.}

We obtained photometric measurements over two full asteroid rotations (around 8.6 h). We used the integrated flux from MapCam images by adding up the radiance from all of the pixels on Bennu to compute a lightcurve. We then compared these lightcurves with the predicted brightness using version 13 of the asteroid shape model15 (Fig. 4).

To compute the rotational acceleration, we followed the procedure from44, adding the data from these observations to the ground-based and Hubble Space Telescope observations from 1999, 2005, and 2012 as used in that work. We used the shape model from19 along with the rotation pole from20 and the observing geometry to compute synthetic lightcurve points using a Lommel-Seeliger photometric function for the observing times of the data. At each of the observation epochs, we adjusted the rotation phase of the model slightly to minimize chi-squared using the method of50 for the data taken at that epoch. We took the absolute phase uncertainty at each of those epochs to be the amount of rotation required to increase reduced chi-squared by 1. The phase uncertainties at each epoch (2.3, 1.6, 8.0, and 1.8 degrees, respectively) are slightly larger than those reported in34, probably because the shape model used in that analysis was determined in part from those same lightcurve data, while this work uses a shape model from spacecraft imagery. There was no 2018 data point in the earlier analysis, as these data were not yet available.

Because the absolute rotation phase is known to within 10 degrees from24, there is no ambiguity in the absolute rotation phase, and we were able to fit a quadratic polynomial to the measured rotation phase as a function of observation time (Eq. 5).

$$P = W_0 + W_1T + W_2T^2$$ \hspace{1cm} (5)

Since rotation rate is the time derivative of phase, W_1 is the rotation rate at $T = 0$ and $2W_2$ is the rate of change of the rotation rate. In Fig. 3, we plot this curve using $T = 0$ at the time of the first ground-based observation on 20 September 1999.

\section*{References}

1. Lauretta, D. S. et al. OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212, 925–984 (2017).

2. Rizk, B. et al. OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. 214, 26 (2018).

3. Hergenrother, C. W. et al. The design reference asteroid for the OSIRIS-REx Mission Target (101955) Bennu. Preprint at https://arxiv.org/abs/1409.4704 (2014).

4. OSIRIS-REx, Mission Status Update, https://www.asteroidmission.org/status-updates/ (2019).

5. Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. in Asteroids IV (eds Michel, P., DeMeo, F. E., & Bottke, W. F.), 509–532 (University of Arizona Press, Tucson, AZ, 2015).

6. Finson, M. J. & Probstein, R. F. A theory of dust comets. I. Model and spreadsheets are available upon request to editors and reviewers.

7. Lauretta, D. S. et al. OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212, 925–984 (2017).

Received: 31 January 2019 Accepted: 26 February 2019

Published online: 19 March 2019
7. Emery, J. P. et al. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu. Icarus 234, 17–35 (2014).
8. Snodgrass, C. et al. The Main Belt Comets and ice in the Solar System. Astron. Astrophys. Rev. 25, 5 (2017).
9. Jewitt, D., Li, J. & Agarwal, J. The dust tail of asteroid (3200) Phaethon. Astrophys. J. Lett. 771, L36 (2013).
10. Delbo, G. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-Rex imaging and thermal analysis. Nat. Astron. https://doi.org/10.1038/s41550-019-0731-1 (2019).
11. Walsh, K. J. et al. Craters, boulders and regolith of (101955) Bennu indicative of a rubble pile. Nat. Geosci. https://doi.org/10.1038/s41561-019-0326-6 (2019).
12. Marcus, I. N. Forward-scattering enhancement of comet brightness. I. Background and model. Int. Comet Q. 29, 39–66 (2007).
13. Pravec, P. et al. Photometric survey of binary near-Earth asteroids. Icarus 181, 63–93 (2006).
14. Johnston, W. R. Binary Minor Planets Compilation V2.0. NASA Planetary Data System (2018).
15. Scheeres, D. J. et al. The geophysical environment of Bennu. Icarus 276, 116–140 (2016).
16. Rieger, S., Scheeres, D. J. & Barbee, B. Orbital Stability Regions for Hypothetical Natural Satellites of (101955) Bennu. J. Spacecraft Rockets https://doi.org/10.2514/1.A34160 (2018).
17. Nolson, M. C. et al. Shape model and surface properties of the OSIRIS-Rex target Asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226, 629–640 (2013).
18. Hergenrother, C. W. et al. Lightcurve, color and phase function photometry of the OSIRIS-Rex target asteroid (101955) 1999 RQ36. Icarus 226, 663–670 (2013).
19. Christensen, E. J. & al. Simulating the performance of ground-based asteroid surveys. AAS DPS #46, Abstr. id. 414, 03 (2014).
20. Scheeres, D. J. et al. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-Rex measurements. Nat. Astron. https://doi.org/10.1038/s41550-019-0721-3 (2019).
21. Fuse, T., Yoshida, F., Tholen, D., Ishiguro, M. & Saito, J. Searching satellites of asteroid Itokawa by imaging observation with Hayabusa spacecraft. Earth Planets Space 60, 33–37 (2008).
22. Bertini, I. et al. Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astron. Astrophys. 583, A19 (2015).
23. McCadden, L. A. et al. Vesta’s missing moons: comprehensive search for natural satellites of Vesta by the Dawn spacecraft. Icarus 257, 207–216 (2015).
24. McCadden, L. A. et al. Dawn mission’s search for satellites of Ceres: intact protoplanets don’t have satellites. Icarus 316, 191–204 (2018).
25. Bos, B. et al. Touch And Go Camera System (TAGCAMs) for the OSIRIS-REx asteroid sample return mission. Space Sci. Rev. 214, 37 (2018).
26. Belskaya, I. N. & Shevchenko, V. G. Opposition effect of asteroids. Icarus 147, 94–100 (2005).
27. Hapke, B. Theory of Reflectance and Emission Spectroscopy. (Cambridge University Press, Cambridge, UK, 2012).
28. Bowell, E. et al. in Asteroids II (eds Binzel, R. P., Gehrels, T. G. & Matthews, M. A.), pp. 524–556, (University of Arizona Press, Tucson, AZ, 1998).
29. Muinonen, K. et al. A three-parameter magnitude phase function for asteroids. Icarus 209, 542–555 (2010).
30. Penttilä, A., Shevchenko, V. G., Willkman, O. & Muinonen, K. H. G1, G2 photometric phase function extended to low-accurary data. Planet. Space Sci. 123, 117–125 (2016).
31. Shevchenko, V. G. et al. Asteroid observations at low phase angles. Bright. Behav. dark asteroids. Icarus 196, 601–611 (2008).
32. Li, J. Y., Hellfstein, P., Buratti, B., Takir, D. & Clark, B. E. (2015). in Asteroids IV (eds Michel, P., DeMeo, F. E., & Bottke, W. F.), 129–150 (University of Arizona Press, Tucson, AZ, 2015).
33. Shevchenko, V. G. & Belskaya, I. N. Opposition effect of dark asteroids: Diversity and albedo dependence. Abstr. for European Planetary Science Congress 2010, Rome, Italy, 738 (2010).
34. Nolan, M. C. et al. Detection of rotational acceleration of Bennu using HST lightcurve observations, Geophys. Res. Lett., https://doi.org/10.1029/2018GL080658 (2019).
35. Barnouin, O. S. et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. https://doi.org/10.1038/s41561-019-0330-z (2019).
36. Durech, J. et al. YORP and Yarkovsky effects in asteroid (1685) Toro, (2100) Ra-Shalom, (3130) Eger, and (161989) Cacus. Astron. Astrophys. 609, A86 (2018).
37. Vincent, J.-B. Comet-toolbox: numerical simulations of cometary dust tails in your browser. Asteroids Comets Meteors conference, Helsinki, (2014).
The OSIRIS-REx Team

D.E. Highsmith, J. Small, D. Vokrouhlicky, N.E. Bowles, E. Brown, K.L. Donaldson Hanna, T. Warren, C. Brunet, R.A. Chicoine, S. Desjardins, D. Gaudreau, T. Haltigin, S. Millington-Veloza, A. Rubi, J. Aponte, N. Gorius, A. Lunsford, B. Allen, J. Grindlay, D. Guevel, D. Hoak, J. Hong, D.L. Schrader, J. Bayron, O. Golubov, P. Sánchez, J. Stromberg, M. Hirabayashi, C.M. Hartzell, S. Oliver, M. Rascon, A. Harch, J. Joseph, S. Squyres, D. Richardson, J.P. Emery, L. McGraw, R. Ghent, R.P. Binzel, M.M. Al Asad, C.L. Johnson, L. Philpott, H.C.M. Susorney, E.A. Cloutis, R.D. Hanna, H.C. Connolly Jr., F. Ciceri, A.R. Hildebrand, E.-M. Ibrahim, L. Breitenfeld, T. Glotch, A.D. Rogers, B.E. Clark, S. Ferrone, C.A. Thomas, H. Campins, Y. Fernandez, W. Chang, A. Cheuvront, D. Trang, S. Tachibana, H. Yurimoto, J.R. Brucato, G. Poggiali, M. Majola, E. Dotto, E. Mazzotta Epifani, M.K. Crombie, C. Lantz, M.R.M. Izawa, J. de Leon, J. Licandro, J.L. Rizos Garcia, S. Clemett, K. Thomas-Keptra, S. Van wal, M. Yoshikawa, J. Bellerose, S. Bhaskaran, C. Byles, S.R. Chesley, C.M. Elder, D. Farnocchia, A. Arbison, B. Kennedy, A. Knight, N. Martinez-Vlasoff, N. Mastrodemos, T. McElrath, W. Owen, R. Park, B. Rush, L. Swanson, Y. Takahashi, D. Velez, K. Yetter, C. Thayer, C. Adam, P. Antreasian, J. Bauman, C. Bryan, B. Carcich, M. Corvin, J. Geeraert, J. Hoffman, J.M. Leonard, E. Lessac-Chenen, A. Levine, J. McAdams, L. McCarthy, D. Nelson, B. Page, J. Pelgrift, E. Sahr, K. Stakkestad, D. Stanbridge, B. Williams, K. Williams, P. Wolff, P. Hayne, D. Kubitschek, M.A. Barucci, J.D.P. Deshapriya, S. Fornasier, M. Fulchignoni, P. Hasselmann, F. Merlin, A. Praet, E.B. Bierhaus, O. Billett, A. Boggs, B. Buck, S. Carlson-Kelly, J. Cerna, K. Chaffin, E. Church, M. Coltrin, J. Daly, A. Deguzman, R. Dubisher, D. Eckart, D. Ellis, P. Falkenstein, A. Fisher, M.E. Fisher, P. Fleming, K. Fortney, S. Francis, S. Freund, S. Gonzales, P. Haas, A. Hastein, D. Hauf, A. Hilbert, D. Howell, F. Jaen, N. Yakayako, M. Jenkins, K. Johnson, M. Lefevre, H. Ma, C. Mario, K. Martin, C. May, M. McGee, B. Miller, C. Miller, G. Miller, A. Mirfakhrai, E. Muhle, C. Norman, R. Olds, C. Parish, M. Ryle, M. Schmitzer, P. Sherman, M. Skeen, M. Susak, B. Sutter, Q. Tran, C. Welch, R. Witherspoon, J. Wood, J. Zareski, M. Arvizu-Jakubicki, E. Asphaug, E. Audri, R.-L. Ballouz, R. Bandrowski, K.J. Becker, T.L. Becker, S. Bendall, C.A. Bennett, H. Bloomenthal, D. Blum, W.V. Boynton, J. Brodbeck, K.N. Burke, M. Chojnacki, A. Colpo, J. Contreras, J. Cutts, C.Y. Drouet d’Aubigny, D. Dean, D.N. DellaGiustina, B. Diallo, D. Drinno, K. Drozd, H.L. Enos, R. Enos, C. Fellows, T. Ferro, M.R. Fisher, G. Fitzgibbon, M. Fitzgibbon, J. Forelli, T. Forrester, I. Galinsky, R. Garcia, A. Gardner, D.R. Golish, N. Habib, D. Hamara, D. Hammond, K. Hanley, K. Harshman, C.W. Hergenrother, K. Herzog, D. Hill, C. Hoekenga, S. Hooven, E.S. Howell, E. Huettner, A. Janakus, J. Jones, T.R. Karetza, J. Kidd, K. Kingsbury, S.S. Balram-Knuston, L. Koebel, J. Kreiner, D. Lambert, D.S. Laurenta, C. Lewin, B. Lovelace, M. Loveridge, M. Lujan, C.K. Maleszewski, R. Malhotra, K. Marchese, E. McDonough, N. Mogk, V. Morrison, E. Morton, P. Hayne, D. Kubitschek, M.A. Barucci, J.D.P. Deshapriya, S. Fornasier, M. Fulchignoni, P. Hasselmann, F. Merlin, A. Praet, E.B. Bierhaus, O. Billett, A. Boggs, B. Buck, S. Carlson-Kelly, J. Cerna, K. Chaffin, E. Church, M. Coltrin, J. Daly, A. Deguzman, R. Dubisher, D. Eckart, D. Ellis, P. Falkenstein, A. Fisher, M.E. Fisher, P. Fleming, K. Fortney, S. Francis, S. Freund, S. Gonzales, P. Haas, A. Hastein, D. Hauf, A. Hilbert, D. Howell, F. Jaen, N. Yakayako, M. Jenkins, K. Johnson, M. Lefevre, H. Ma, C. Mario, K. Martin, C. May, M. McGee, B. Miller, C. Miller, G. Miller, A. Mirfakhrai, E. Muhle, C. Norman, R. Olds, C. Parish, M. Ryle, M. Schmitzer, P. Sherman, M. Skeen, M. Susak, B. Sutter, Q. Tran, C. Welch, R. Witherspoon, J. Wood, J. Zareski, M. Arvizu-Jakubicki, E. Asphaug, E. Audri, R.-L. Ballouz, R. Bandrowski, K.J. Becker, T.L. Becker, S. Bendall, C.A. Bennett, H. Bloomenthal, D. Blum, W.V. Boynton, J. Brodbeck, K.N. Burke, M. Chojnacki, A. Colpo, J. Contreras, J. Cutts, C.Y. Drouet d’Aubigny, D. Dean, D.N. DellaGiustina, B. Diallo, D. Drinno, K. Drozd, H.L. Enos, R. Enos, C. Fellows, T. Ferro, M.R. Fisher, G. Fitzgibbon, M. Fitzgibbon, J. Forelli, T. Forrester, I. Galinsky, R. Garcia, A. Gardner, D.R. Golish, N. Habib, D. Hamara, D. Hammond, K. Hanley, K. Harshman, C.W. Hergenrother, K. Herzog, D. Hill, C. Hoekenga, S. Hooven, E.S. Howell, E. Huettner, A. Janakus, J. Jones, T.R. Karetza, J. Kidd, K. Kingsbury, S.S. Balram-Knuston, L. Koebel, J. Kreiner, D. Lambert, D.S. Laurenta, C. Lewin, B. Lovelace, M. Loveridge, M. Lujan, C.K. Maleszewski, R. Malhotra, K. Marchese, E. McDonough, N. Mogk, V. Morrison, E. Morton,
R. Munoz1, J. Nelson1, M.C. Nolan1, J. Padilla1, R. Pennington1, A. Politi1, N. Ramos1, V. Reddy1, M. Riehl1, B. Rizk1, H.L. Roep1, S. Salazar1, S.R. Schwartz1, S. Selzwick1, N. Shultz1, P.H. Smith1, S. Stewart1, S. Sutton1, T. Swindle1, Y.H. Tang1, M. Westermann1, C.W.V. Wolner1, D. Worden1, T. Zega1, Z. Zeszut1, A. Bjarström50, L. Bloomquist50, C. Dickinson50, E. Keates50, J. Lianq50, V. Niño50, A. Taylor50, F. Tet50, M. Caplinger51, H. Bowles52, S. Carter52, S. Dickenshied52, D. Doerres52, T. Fisher52, W. Hagee52, J. Hill52, M. Miner52, D. Noss52, N. Piacentine52, M. Smith52, A. Toland52, P. Wren52, M. Bernacki53, D. Pino Munoz53, S.-i. Watanabe46,54, S.A. Sandford55, A. Aqueche56, B. Ashman56, M. Barker56, A. Bartels56, K. Berry56, B. Bos56, R. Burns56, A. Calloway56, R. Carpenter56, N. Castro56, R. Cosentino56, J. Donaldson56, J.P. Dworkin56, J. Elsila Cook56, C. Emr56, D. Everett56, D. Fennell56, K. Fleshman56, D. Folt56, D. Gallagher56, J. Garvin56, K. Getzandanner56, D. Glavin56, S. Hull56, K. Hyde56, H. Ido56, A. Ingenhyn56, N. Jones56, P. Kaotira56, L.F. Lim56, A. Liounis56, C. Lorentson56, D. Lorenz56, J. Lyzhoft56, E.M. Mazarico56, R. Mink56, W. Moore56, M. Moreau56, S. Mullen56, J. Nagy56, G. Neumann56, J. Nuth56, D. Poland56, D.C. Reuter56, L. Rhoads56, S. Rieger56, D. Rowlands56, D. Sallitt56, A. Scroggins56, G. Shaw56, A.A. Simon56, J. Swenson56, P. Vasudeva56, M. Wasser56, R. Zellar56, J. Grossman57, G. Johnston57, M. Morris57, J. Wendel57, A. Burton58, L.P. Keller58, L. McNamara58, S. Messenger58, K. Nakamura-Messenger58, A. Nguyen58, K. Righter58, E. Queen59, K. Bellamy60, K. Dill60, S. Gardner60, M. Giuntini60, B. Key60, J. Kissell60, D. Patterson60, D. Vaughan60, B. Wright60, R.W. Gaskell61, L. Le Corre61, J.-Y. Li61, J.L. Molaro61, E.E. Palmer61, M.A. Siegler61, P. Tricarico61, J.R. Weirich61, X.-D. Zou61, T. Ireland61, K. Tait62, P. Bland63, S. Anwar64, N. Bojorquez-Murphy64, P.R. Christensen64, C.W. Haberle64, G. Mehall64, K. Rios64, I. Franchi65, B. Rozitis65, C.B. Beddingfield66, J. Marshall66, D.N. Brack66, A.S. French66, J.W. McMahon66, D.J. Scheeres66, E.R. Jwini67, T.J. McCoy67, S. Russell67, M. Killgore68, W.F. Botte69, V.E. Hamilton69, H.H. Kaplan69, K.J. Walsh69, J.L. Bandfield70, B.C. Clark70, M. Chodas71, M. Lambert71, R.A. Masterson71, M.G. Daly72, J. Freemantle72, J.A. Seabrook72, O.S. Barnouin73, K. Craft73, R.T. Daly73, C. Ernst73, R.C. Espiritu73, M. Holdridge73, M. Jones73, A.H. Nair73, L. Nguyen73, J. Peacher73, M.E. Perry73, J. Plescia73, J.H. Roberts73, R. Steele73, R. Turner73, J. Backer74, K. Edmundson74, J. Mapel74, M. Milazzo74, S. Sides74, C. Manzoni75, B. May75, M. Delbo76, G. Libourel76, P. Michel76, A. Ryan76, F. Thibaut76 & B. Marty77

11Aerospace Corporation, Chantilly, VA, USA. 12Astronomical Institute, Charles University, Prague, Czech Republic. 13Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK. 14Canadian Space Agency, Saint-Hubert, Quebec, Canada. 15Catholic University of America, Washington, DC, USA. 16Center for Astrophysics, Harvard University, Cambridge, MA, USA. 17Center for Meteorite Studies, Arizona State University, Tempe, AZ, USA. 18City University of New York, New York, NY, USA. 19Colorado Center for Astrodynamics Research, University of Colorado, Boulder, CO, USA. 20Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia. 21Department of Aerospace Engineering, Auburn University, Auburn, AL, USA. 22Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, USA. 23Department of Astronomy, Cornell University, Ithaca, NY, USA. 24Department of Astronomy, University of Maryland, College Park, MD, USA. 25Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA. 26Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada. 27Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. 28Present address: Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada. 29Department of Geography, University of Winnipeg, Winnipeg, Manitoba, Canada. 30Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA. 31Department of Geology, Rowan University, Glassboro, NJ, USA. 32Department of Geoscience, University of Calgary, Calgary, Alberta, Canada. 33Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. 34Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, USA. 35Edge Space Systems, Greenbelt, MD, USA. 36General Dynamics C4 Systems, Denver, CO, USA. 37Hawaii Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI, USA. 38Hokkaido University, Sapporo, Japan. 39INAF–Astrophysical Observatory of Arcetri, Florence, Italy. 40INAF–Osservatorio Astronomico di Padova, Padova, Italy. 41INAF–Osservatorio Astronomico di Roma, Rome, Italy. 42Indigo Information Services, Tucson, AZ, USA. 43Institut d’Astrophysique Spatiale, CNRS/Université Paris Sud, Orsay, France. 44Institute of Astrophysics, National Supercomputer Centre, University of Southern Denmark, Odense, Denmark. 45Jacobs Technology, Houston, TX, USA. 46Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. 47Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 48Kinex Aerospace, Inc., Simi Valley, CA, USA. 49Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA. 50Macdonald, Dettwiler and Associates, Brampton, Ontario, Canada. 51Malin Space Science Systems, San Diego, CA, USA. 52Mars Space Flight Facility, Arizona State University, Tempe, AZ, USA. 53Mines ParisTech, Paris, France. 54Nagoya University, Nagoya, Japan. 55NASA Ames Research Center, Moffett Field, CA, USA. 56NASA Goddard Space Flight Center, Greenbelt, MD, USA. 57NASA Headquarters, Washington, DC, USA. 58NASA Johnson Space Center, Houston, TX, USA. 59NASA Langley Research Center, Hampton, VA, USA. 60NASA Marshall Space Flight Center, Huntsville, AL, USA. 61Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia. 62Royal Ontario Museum, Toronto, Ontario, Canada. 63School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia. 64School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA. 65School of Physical Sciences, The Open University of Hertfordshire, Division of Physics, Astronomy and Mathematics, Hatfield, Hertfordshire, United Kingdom. 66School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom. 67School of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom. 68School of Physics and Astronomy, University of Wisconsin-Madison, Madison, WI, USA. 69Smithsonian Institution, National Air and Space Museum, Washington, DC, USA. 70Southwest Research Institute, San Antonio, TX, USA. 71Spanish National Research Council, Instituto de Astrofísica de Canarias and Instituto de Astrofísica de Gaia, La Laguna, Spain. 72Space Telescope Science Institute, Baltimore, MD, USA. 73Space Science Institute, Boulder, CO, USA. 74Space Telescope Science Institute, Cambridge, MA, USA. 75Space Telescope Science Institute, Baltimore, MD, USA. 76State University of Campinas, Campinas, SP, Brazil. 77State University of Campinas, Campinas, SP, Brazil.
