Risk factors, Treatment and Outcomes of Subacute Thyroiditis Secondary to COVID-19: A
Systematic Review

Jacob Christensen¹, Kevin O’Callaghan¹, Holly Sinclair¹, Kate Hawke³, Amanda Love³, Krispin Hajkowicz¹, Adam G. Stewart¹,²,⁴

¹Infectious Diseases Unit, Royal Brisbane & Women’s Hospital, Herston, Brisbane, Australia
²Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
³Department of Endocrinology, Royal Brisbane & Women’s Hospital, Herston, Brisbane, Australia
⁴Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia

Corresponding Author:

Dr. Adam G. Stewart
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
adam.stewart@uq.edu.au
+61 7 33465555

Keywords: subacute thyroiditis, SARS-CoV-2, COVID-19 complications

Word Count: 1978
Abstract

Background

COVID-19 is known to cause an acute respiratory illness, although clinical manifestations outside of the respiratory tract may occur. Early reports have identified SARS-CoV-2 as a cause of subacute thyroiditis (SAT).

Methods

A systematic review was conducted in accordance with the PRISMA guidelines. MEDLINE, Web of Science and PubMed databases were queried in February 2021 for studies from December 2019 to February 2021. MeSH search terms “COVID-19”, “SARS-CoV-2” and “coronavirus” along with search terms “thyroiditis”, “thyrotoxicosis”, “thyroid” were used. Descriptive statistics for continuous variables and proportions for categorical variables were calculated.

Results

15 publications reporting on 17 individual cases of COVID-19 induced SAT were identified. Age ranged from 18 to 69 years old. The majority of the cases were female (14 of 17, 82%). The delay between onset of respiratory symptoms and diagnosis of SAT ranged from 5 to 49 days (mean, 26.5). Systemic inflammatory response syndrome (SIRS) related to viral infection was uncommonly reported at the time of SAT diagnosis. Thyroid ultrasonography frequently reported an enlarged hypoechoic thyroid with decreased vascularity and heterogenous echotexture. Elevated CRP was common at the time of SAT diagnosis, with results ranging from 4.5 to 176 mg/L (mean, 41 mg/L).
Anti-thyroid antibodies were frequently negative. SAT specific treatment included corticosteroids for 12/17 (70.5%) patients. Most return to normal thyroid status.

Conclusion

COVID-19 associated SAT may be difficult to identify in a timely manner due to potential absence of classic symptoms, as well as cross-over of common clinical features between COVID-19 and thyrotoxicosis.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered after a cluster of patients with pneumonia of unknown cause were identified in Wuhan, China in December 2019(1). As of 13 April 2021, there have been almost 140 million global cases of SARS-CoV-2 infection with almost 3 million deaths. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 binding to angiotensin converting enzyme 2 (ACE2) on cell surfaces, is typically characterised by a respiratory tract infection ranging in severity from mild to life-threatening(2). However, disorders of many organ systems have been associated with COVID-19. Thrombotic complications, myocardial dysfunction, acute kidney injury, hepatocellular injury, neurologic illnesses and dermatological complications have all been associated with COVID-19(3). Moreover, ACE2 has been shown to be expressed in many extrapulmonary tissues, including thyroid follicular cells(4). There are numerous ways in which COVID-19 may affect thyroid function, and a few published case reports have described the development of new thyroid disease associated with COVID-19. Sub-acute thyroiditis (SAT) is an inflammatory disorder of the thyroid gland often causing thyrotoxicosis and is often associated with viral infection and lymphocytic infiltration(5). Early case reports suggest that SAT may be associated with SARS-CoV-2, although further description of pathology, risk factors, clinical course and
outcomes are needed. Here we performed a systematic review of all published cases of SAT associated with SARS-CoV-2 infection in order to better characterise this clinical phenomenon.

Methods

Design

A short narrative systematic review was conducted in accordance with PRISMA guidelines. The Joanna Briggs Institute checklist for systematic reviews was used as a critical appraisal tool of evidence synthesis.

Inclusion criteria

Articles were included in the review if they met the following criteria: (1) case report or case series of patients with confirmed SAT secondary to COVID-19; (2) manuscript published in English between December 2019 to February 2021; (3) published in a peer-reviewed journal. Articles were excluded if there was a possible alternative diagnosis identified or if they noted the condition without containing unique case descriptors.

Search strategy

MEDLINE, Web of Science and PubMed databases were queried in February 2021 for studies published in English, including case reports and case series from December 2019 to February 2021. MeSH search terms “COVID-19”, “SARS-CoV-2” and “coronavirus” along with search terms “thyroiditis”, “thyrotoxicosis”, “thyroid” were used to extract relevant papers. Reference lists of key included articles were also examined for additional relevant papers. Conference abstracts and other unpublished accounts were excluded from our review. After a removal of duplicates a total of 268 articles were retained and the titles and abstracts were read to assess if the article met inclusion
criteria (Figure 1). During the process, 235 articles did not meet inclusion criteria and were removed. The remaining 33 articles were read in full while applying the inclusion criteria and were assessed independently. During this process a further 18 articles were excluded. The remaining 15 manuscripts were identified as relevant to the research question.

Outcome measures

The full published manuscripts were reviewed by two authors (JC and AGS) to assess whether the appropriate clinical information in published texts were present. Extraction of data was undertaken independently by one author (JC). Extracted data included patient demographics (age, sex), clinical features, imaging findings, pathology data (CRP, thyroid function testing, antibodies), treatment and illness outcome (ICU admission, disease resolution). Descriptive statistics for continuous variables and proportions for categorical variables were calculated.

Results

At the time of publication, there have been 17 cases of reported COVID-19 associated SAT in 15 publications (9-21) (Table 1). The age of patients ranged from 18 to 69 years old. The majority of the cases were female (14 of 17, 82%). Most had clinical features of hyperthyroidism and thyroiditis; the most common being neck pain and tenderness (13/17, 82%) and tachycardia (8/17, 47%). Other clinical features included palpitations; anxiety; heat intolerance; agitation; insomnia; weight loss; irregular menses; excess perspiration; fever; asthenia; tremors; hyperreflexia and goitre. The delay between onset of respiratory symptoms and diagnosis of SAT ranged from 5 to 49 days (mean 26.5, IQR 16-30). Of the cases reporting date of diagnosis, majority of SAT diagnoses were made at or after 14 days post onset of respiratory symptoms (11/13, 84.6%). Only one patient was diagnosed with SAT within a week after respiratory symptom onset. None of the reported cases documented additional extra-pulmonary end-organ manifestations of COVID-19. Of the 15 cases commenting on
imaging findings, thyroid ultrasonography frequently reported an enlarged hypoechoic thyroid with decreased vascularity and heterogenous echotexture. Thyroid scintigraphy and radioiodine studies all showed markedly reduced or absent uptake in the gland consistent with SAT. Features of systemic inflammatory response syndrome (SIRS) related to viral infection were uncommonly reported at the time of SAT diagnosis, with few patients experiencing fevers and leucocytosis. Requirement for supplemental oxygen was only reported for one patient in the literature. No patients were reported to require ventilatory support. Elevated CRP was common at the time of SAT diagnosis, with results ranging from 4.5 to 176 mg/L (mean, 41 mg/L) with 27% of patients had CRP measurements exceeding 100mg/L. Elevated ESR was reported in 7 patients. There were no normal-range ESR measurements reported at time of COVID-19 or SAT diagnosis. The greatest ESR measurement was 110mm/hr. Antiviral treatment was not commonly administered to patients, with only two patients receiving hydroxychloroquine. SAT specific treatment included corticosteroids for 12/17 (70.5%) patients. Six patients required a beta-blocker for management of tachycardia. Anti-thyroid antibody testing was reported in 16 patients and most results were negative. Only one positive anti-thyroid antibody result was reported with an anti-thyroglobulin antibody level of 120.2 IU/mL. This patient was biochemically euthyroid at 15 days follow up. No positive TSH receptor antibody results were reported. Most of the reported follow up showed a return to normal thyroid status. To date, five patients have gone on to develop hypothyroidism requiring thyroxine.

Discussion

Viral infection appears to be the most common trigger for SAT(22, 23). The most common viruses that are associated with SAT include adenovirus, influenza, mumps, enterovirus and coxsackievirus(24). The incidence of SAT is higher in female compared to male sex (19.1 vs 4.1 per 100,000/year, respectively)(25). SAT is clinically characterised by neck pain and thyroid tenderness and features of hyperthyroidism. Typically, elevated free T3 and T4 levels are seen in conjunction
with raised inflammatory markers and white blood cell count (24). Anti-thyroid antibodies are typically absent. Early corticosteroid use for SAT may improve clinical outcomes (26).

The SARS-CoV-2 virus uses ACE2 combined with the transmembrane protease TMPRSS2 to enter and infect thyroid follicular cells (27). Broadly speaking, it has been proposed that COVID-19 affects thyroid function indirectly (abnormal systemic inflammatory-immune responses) and directly (viral effect on gland). Indirect effects on the thyroid gland include hyperactivity of the Th1/Th17 immune responses that may play a role in triggering and sustaining inflammation of the gland (28, 29).

Indeed, thyroid ACE2 expression may be positively linked to inflammatory signatures and interferon response, thereby increasing the uptake of virus during acute illness (30). Histopathological findings in the thyroid gland of patients with COVID-19 has demonstrated extensive injury and apoptosis to follicular epithelium and parafollicular cells (31). Subacute thyroiditis appears to be the most common thyroid related clinical syndrome associated with COVID-19. Despite the viral cytopathic effects often seen on histological examination of thyroid tissue in patients with SAT, detection of culprit virus is usually unrewarding (32). It has been proposed that a multitude of mechanisms contribute to the pathogenic pathway leading to thyroid follicular cell destruction in the context of recent or concurrent viral infection (22); this includes direct effect of the virus, autoimmune phenomena and abnormal systemic inflammatory responses (33-35).

In our systematic review, we aimed to identify key characteristics of this clinical phenomenon. The predominance of female patients is not surprising given that thyroid disease overall has a much higher prevalence rate in this population (36). Severity of COVID-19 infection does not appear to be affected by sex. The majority of patients with SAT secondary to COVID-19 were under 50 years of age. Given the clear positive correlation between age and illness severity, confounding factors may have obscured the diagnosis of SAT or the presence of other entities such as Euthyroid Sick Syndrome (ESS) may be more common in the severe and critically ill populations (1). The majority of
patients had typical clinical features of SAT including neck tenderness and thyrotoxicosis. Meticulous clinical examination may be important to identify a tender thyroid as many patients may have neck tenderness secondary to upper respiratory tract inflammation. SAT can be seen with and without neck tenderness (22, 24). Without neck tenderness, clinicians need to consider COVID-19-induced SAT as a cause for other, less localising signs. With regards to time of onset of SAT clinical features in relation to symptoms of SARS-CoV-2 infection, a wide range was observed. This may reflect the difference in pathophysiological mechanisms affecting the thyroid gland itself with regards to the direct viral cytopathic effect early in disease versus the inflammatory dysregulation that occurs later during the course of illness (28). Interestingly, none of the patients had additional extrapulmonary end organ dysfunction related to COVID-19. In addition, SIRS, use of supplemental oxygen and ventilatory support was seen infrequently in this cohort. This may reflect a patient-level risk factor profile (e.g. female sex, genetic) or presence of confounding processes affecting thyroid function (e.g. ESS) in sicker patients. Anti-thyroid antibody testing appears to be unhelpful in this setting and has not been recommended routinely. A single measurement of TSH receptor antibodies to exclude Graves’ disease would be a reasonable approach. Thyroid imaging, if deemed appropriate, shows features consistent with SAT; although in most settings of suspected SAT, reliance on clinical features and biochemical tests is usually all that is required. Indeed, imaging is not required for diagnosis and is not recommended during the infectious period due to potential risk of viral transmission to healthcare workers. A good response to corticosteroid treatment is usually observed with regards to SAT. An additional 28-day mortality benefit demonstrated with dexamethasone in hospitalised patients with COVID-19 in the RECOVERY trial (37). Antithyroid medication have not proven to be effective during the thyrotoxic stage of illness, although were used in two cases of COVID-19 associated SAT (11, 12). Most patients with adequate follow-up had documented return to a euthyroid state, consistent with the evolution of typical SAT.

Routine assessment of thyroid function in the setting of COVID-19 has not been recommended in the COVID-19 clinical management guidelines by the World Health Organisation updated in 25th
The true prevalence of thyroid disease and thyroid function abnormalities in COVID-19 patients is largely unknown. The impact of COVID-19 on the thyroid gland can be heterogeneous and can include thyrotoxicosis, hypothyroidism and non-thyroidal illness syndrome(28). Moreover, ESS, which is characterised by a decreased level of serum T3 and/or thyroxine (T4) without an increase in TSH, is often seen in critically ill patients and was noted in 27.5% of SARS-CoV-2 infected patients in one study(39). Therefore, categorisation of a particular patient into specific disease state may prove to be difficult in some cases. Interestingly, based on a recently published meta-analysis pre-existing thyroid disease seems to be associated with enhanced risk of severe COVID-19 infection(40). This finding may be explained by the role of thyroid hormones in regulating the innate immune response and the increased level of TNF-α and IL-6 observed in patients with thyroid disease(41).

Conclusion

SAT is emerging as a recognised complication of the pandemic disease COVID-19. This complication may be difficult to identify in a timely manner due to potential absence of classic symptoms (e.g. neck tenderness), as well as cross-over of common clinical features between COVID-19 and thyrotoxicosis. Features consistent with SAT including thyroid tenderness and tremor that are atypical for a systemic viral infection should prompt investigation for thyrotoxicosis. This short systematic review highlights the importance of considering SAT in those with COVID-19 and clinicians should consider requesting thyroid function tests in this setting. The prevalence and outcomes of SAT in COVID-19 requires further investigation.

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.

2. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422.

3. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-32.

4. Rotondi M, Coperchini F, Ricci G, Denegri M, Croce L, Ngontejeu ST, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest. 2020.

5. Samuels MH. Subacute, silent, and postpartum thyroiditis. Med Clin North Am. 2012;96(2):223-33.

6. Garg MK, Gopalakrishnan M, Yadav P, Misra S. Endocrine Involvement in COVID-19: Mechanisms, Clinical Features, and Implications for Care. Indian J Endocrinol Metab. 2020;24(5):381-6.

7. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151(4):W65-94.

8. Critical Appraisal Tools2020. Available from: https://jbi.global/critical-appraisal-tools.

9. Asfuroglu Kalkan E, Ates I. A case of subacute thyroiditis associated with Covid-19 infection. J Endocrinol Invest. 2020;43(8):1173-4.

10. Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves' disease after COVID-19. J Endocrinol Invest. 2020;43(10):1527-8.

11. Pastor S, Molina A, Sr., De Celis E. Thyrotoxic Crisis and COVID-19 Infection: An Extraordinary Case and Literature Review. Cureus. 2020;12(11):e11305.

12. Ippolito S, Dentali F, Tanda ML. SARS-CoV-2: a potential trigger for subacute thyroiditis? Insights from a case report. J Endocrinol Invest. 2020;43(8):1171-2.

13. Brancatella A, Ricci D, Viola N, Sgro D, Santini F, Latrofa F. Subacute Thyroiditis After SARS-COV-2 Infection. J Clin Endocrinol Metab. 2020;105(7).

14. Brancatella A, Ricci D, Cappellani D, Viola N, Sgro D, Santini F, et al. Is Subacute Thyroiditis an Underestimated Manifestation of SARS-CoV-2 Infection? Insights From a Case Series. J Clin Endocrinol Metab. 2020;105(10).

15. Ruggeri RM, Campenni A, Siracusam, Foglietti G, Gullo D. Subacute thyroiditis in a patient infected with SARS-CoV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones (Athens). 2020.

16. Muller I, Cannavaro D, Dazzi D, Covelli D, Mantovani G, Muscatello A, et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 2020;8(9):739-41.

17. Chong WH, Shkolnik B, Saha B, Beegle S. Subacute Thyroiditis in the Setting of Coronavirus Disease 2019. J Endocrinol Metab. 2020;105(10).

18. San Juan MDJ, Florencio MQV, Joven MH. Subacute Thyroiditis in a Patient with Coronavirus Disease 2019. AACE Clin Case Rep. 2020;6(6):e361-e4.

19. Matar SAM, Koh SJ, Rama Chandran S, Cherg BPZ. Subacute thyroiditis associated with COVID-19. BMJ Case Rep. 2020;13(8).

20. Chakraborty U, Ghosh S, Chandra A, Ray AK. Subacute thyroiditis as a presenting manifestation of COVID-19: a report of an exceedingly rare clinical entity. BMJ Case Rep. 2020;13(12).

21. Campos-Barrera E, Alvarez-Cisneros T, Davalos-Fuentes M. Subacute Thyroiditis Associated with COVID-19. Case Rep Endocrinol. 2020;2020:8891539.

22. Desailly R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;6:5.

23. Slatosky J, Shipman B, Wahta H. Thyrotoxicosis: differential diagnosis and management. Am Fam Physician. 2000;61(4):1047-52.

24. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348(26):2646-55.
25. Fatourechi V, Aniszewski JP, Fatourechi GZ, Atkinson EJ, Jacobsen SJ. Clinical features and outcome of subacute thyroiditis in an incidence cohort: Olmsted County, Minnesota, study. J Clin Endocrinol Metab. 2003;88(5):2100-5.
26. Sato J, Uchida T, Komiy A, Goto H, Takeno K, Suzuki R, et al. Comparison of the therapeutic effects of prednisolone and nonsteroidal anti-inflammatory drugs in patients with subacute thyroiditis. Endocrine. 2017;55(1):209-14.
27. Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe. 2020;1(6):e245-e53.
28. Scappaticcio L, Pitoia F, Esposito K, Piccardo A, Trimbo P. Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord. 2020.
29. Lania A, Sandri MT, Cellini M, Mirani M, Laveezi E, Mazziotti G. Thyrotoxicosis in patients with COVID-19: the THYRCOV study. Eur J Endocrinol. 2020;183(4):381-7.
30. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45.
31. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 2020;177:104759.
32. Mori K, Yoshida K, Funato T, Ishii T, Nomura T, Fukuzawa H, et al. Failure in detection of Epstein-Barr virus and cytomegalovirus in specimen obtained by fine needle aspiration biopsy of thyroid in patients with subacute thyroiditis. Tohoku J Exp Med. 1998;186(1):13-7.
33. Cunha BA, Berbari N. Subacute thyroiditis (de Quervain’s) due to influenza A: presenting as fever of unknown origin (FUO). Heart Lung. 2013;42(1):77-8.
34. Dimos G, Pappas G, Akritidis N. Subacute thyroiditis in the course of novel H1N1 influenza infection. Endocrine. 2010;37(3):440-1.
35. Nishihara E, Ohye H, Amino N, Takata K, Arishima T, Kudo T, et al. Clinical characteristics of 852 patients with subacute thyroiditis before treatment. Intern Med. 2008;47(8):725-9.
36. Morganti S, Ceda GP, Seyhined DNA, Milli B, Ugootti D, Prampolini R, et al. Thyroid disease in the elderly: sex-related differences in clinical expression. J Endocrinol Invest. 2005;28(11 Suppl Proceedings):101-4.
37. Group RC, Horby P, Lim WS, Emlerson JR, Maffham M, Bell JL, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704.
38. COVID-19 Clinical management: Living guidance 25 January 20212021.
39. Zou R, Wu C, Zhang S, Wang G, Zhang Q, Yu B, et al. Euthyroid Sick Syndrome in Patients With COVID-19. Front Endocrinol (Lausanne). 2020;11:566439.
40. Hariyanto TI, Kurniawan A. Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr. 2020;14(S5):1429-30.
41. Lv LF, Jia HY, Zhang HF, Hu YX. Expression level and clinical significance of IL-2, IL-6 and TGF-beta in elderly patients with goiter and hyperthyroidism. Eur Rev Med Pharmacol Sci. 2017;21(20):4680-6.
Tables and Figures

Table 1: Systematic review of 17 patients with COVID-19 associated subacute thyroiditis

Reference	Age	Sex	Clinical features of Hyperthyroidism	Time from onset of symptoms of COVID-19 to diagnosis of thyroiditis	Other end-organ manifestations of COVID-19	Thyroid Imaging Findings	SIRS at Diagnosis	Supplemental Oxygen	Ventilatory Support	CRP (mg/L)	Antiviral Treatment	Anti-thyroid Agents	Thyroid Function at Diagnosis	Thyroid Antibodies	Outcome
(9)	41	F	Neck pain/thyroid tenderness	NR	No	US: Decreased vascularity	Yes	NR	NR	101	Hydroxychloroquine	Prednisolone	TSH <0.01 mIU/L T3 7.7 pmol/L T4 25.7 pmol/L	Negative	NR
(11)	49	F	Thyrotoxicosis symptoms	38 days	No	NR	No	No	No	4.5	Hydrocortisone	Thiamazole	TSH <0.01 mIU/L T4 32.9 pmol/L	NR	NR
(12)	69	F	Thyrotoxicosis symptoms	5 days	No	US: Enlarged thyroid; Decreased vascularity 99mTc: No uptake	NR	Low flow	No	NR	Hydroxychloroquine	Methimazole	TSH 0.08 mIU/L T3 5.5 pmol/L T4 24.6 pmol/L	Negative	Clinical and biochemical improvement at Day 10
(14)	38	F	Neck pain/thyroid tenderness	Thyrotoxicosis symptoms	16 days	US: Enlarged thyroid; Decreased	NR	No	No	11.2	Prednisolone	Methimazole	TSH 0.1 mIU/L T3 8.0 pmol/L	Negative	Normal thyroid biochemistry at 2

This article is protected by copyright. All rights reserved.
No	Age	Sex	Symptoms	Duration	US Findings	Vascularity	Imaging Findings	Treatment	Biochemical Details	Notes								
(14) 29	F	Neck pain/ thyroid tenderness	Thyrotoxicosis symptoms	30 days	No	US: Enlarged thyroid; Decreased vascularity	NR	No	7.9	No		Prednisolone Propranolol	TSH <0.01 mIU/L	T3 8.9 pmol/L	T4 31.8 pmol/L	Anti-thyroglobulin antibodies 38	Required thyroxine treatment long term	
(14) 29	F	Neck pain/ thyroid tenderness	Thyrotoxicosis symptoms	36 days	No	US: Enlarged thyroid; Decreased vascularity	NR	No	No	NR	No						Normal thyroid biochemistry at 5 weeks	
(14) 46	F	Neck pain/ thyroid tenderness	Thyrotoxicosis symptoms	29 days	No	US: Enlarged thyroid	NR	No	No	NR	No		Prednisolone	TSH <0.01 mIU/L	T3 6.9 pg/mL	T4 27.8 ng/dL	Negative	Normal thyroid biochemistry at 15 days
(15) 43	F	Neck pain/ thyroid tenderness	Thyrotoxicosis symptoms	18 days	No	US: Decreased vascularity	Yes	No	No	6.9	No		Prednisolone	TSH <0.01 mIU/L	T3 7.03 pg/mL	T4 26.9 ng/dL	Negative	Normal thyroid biochemistry at 4 weeks
No.	Age	Gender	Symptoms	Duration	US:	TSH	T4	Treatment	Outcome	Notes								
-----	-----	--------	----------	----------	-----	-----	----	------------	---------	-------								
(17)	37	M	Neck pain/ thyroid tenderness Thyrotoxicosis symptoms	30 days	No	Heterogenous echotexture	No	No	No	20	No	TSH <0.01 mIU/L T4 23 pmol/L	Negative	Required thyroxine treatment long term				
(18)	47	F	Neck pain/ thyroid tenderness	NR	No	Heterogenous echotexture	NR	No	No	5	No	TSH 0.05 mIU/L T4 16.8 pmol/L	Negative	Required thyroxine treatment long term				
(19)	34	M	Neck pain/ thyroid Goitre	9 days	No	Enlarged thyroid; Decreased vascularity	No	No	No	122	No	Prednisolone Atenolol	TSH <0.01 mIU/L T3 13.4 pmol/L T4 41.8 pmol/L	Negative	Clinical and biochemical resolution at 10 weeks			
(20)	58	M	Neck pain/ thyroid tenderness Thyrotoxicosis symptoms	NR	NR	Enlarged thyroid; Decreased vascularity 99mTc: Reduced uptake	NR	NR	NR	16.6	Prednisolone Propranolol	Favipiravir Azithromycin Zinc Vitamin C	TSH <0.005 mIU/L T3 2.88 ng/mL T4 20.1 µg/dL	Negative	Required thyroxine treatment long term			
(21)	37	F	Neck pain/ thyroid tenderness	30 days	No	99mTc: Reduced uptake	NR	No	No	66	No	NR	TSH <0.01 mIU/L T4 1.6 ng/dL	Negative	Clinical and biochemical resolution at 1 month			
(22)	46	F	Neck pain/ enlarged tender thyroid	NR	No	USS: Enlarged thyroid; Normal vascularity ; nodule. 99mTc: Reduced uptake	NR	No	No	13	No	Prednisolone	TSH 0.11 mIU/L T4 2.18 ng/dL	Negative	Clinical and biochemical resolution at 3 months			
No.	Age	Gender	Neck pain; Thyrotoxicosis symptoms	Reduced uptake	99mTc: Reduced uptake	TSH < 0.001 mIU/L	T4 37.5 pmol/L	Clinical and biochemical resolution										
-----	-----	--------	-----------------------------------	----------------	-----------------------	-------------------	-----------------	-----------------------------------										
26	28	F	Neck pain; Thyrotoxicosis symptoms	No	Yes			14 days Negative 2 months										
26	29	F	Neck pain; Thyrotoxicosis symptoms	No	NR			49 days Negative 10 weeks										

NR: Not recorded
Figure 1: PRISMA flow diagram illustrating selection process for systematic review of unique cases of COVID-19 associated subacute thyroiditis

Electronic Databases: MEDLINE, Web of Science, PubMed

Search results combined after duplicates removed (n = 268)

Records screened on the basis of title and abstract

Included (n = 33)

Records screened on basis of full manuscripts

Included (n = 15)

Records excluded (n = 235)
- Not thyroiditis as a complication
- Not in English
- Not related to COVID-19

Records excluded (n = 18)
- Not a unique case record