Ti$_3$SiC$_2$ MAX Phase Synthesis by Plasma Basis Method

Badis Bendjemil1,2,3,*, Faming Zhang3,4

1LASEA, Department of Chemistry, University of Badji-Mokhtar, 23000 Annaba, Algeria
2University of 8 Mai 1945 Guelma, 24000 Guelma, Algeria
3Physics of new Materials, Institute of Physics, University of Rostock, 18055 Rostock, Germany
4School of Materials Science and Engineering, Southeast University, 211189 Nanjing, China
*Corresponding Author: badis23@ymail.com

Abstract The polycrystalline dense Ti$_3$SiC$_2$ based ceramic have been prepared by several techniques. The effects on the addition of TiC or SiC are also studied. Ti$_3$SiC$_2$ has an unusual combination of electrical, thermal and mechanical extraordinary properties. It has furthermore damage tolerant and oxidation resistance. In this work we have produced Ti$_3$SiC$_2$ by electro-thermal explosion chemical reaction started with high current density (680 amperes) followed by uniaxial pressure. The microstructures of the materials were studied using XRD, SEM and EDX. The surface of Ti$_3$SiC$_2$ was studied by means of X-ray photoelectron spectroscopy (XPS). High resolution C$_1$s, Si$_2$p, Ti$_2$p, Ti$_3$s core level spectra are inspected in terms of electronic structure. Valence band spectra will be performed to confirm the validity of the theoretical calculations.

Keywords Ti$_3$SiC$_2$ Based Ceramic, Intermetallic, Bicarbide, Electro-thermal Explosion Reaction (ETE), Core Level Excitation, XPS

PACS 47.35.Lf, 47.27.nb

1. Introduction

The MAX phases constitute a group of ternary ceramics which has received intense attention over the last decade due to their unique combination of properties. The Ti$_3$SiC$_2$ is the most well studied MAX phase to date and it has turned out to be a promising candidate for high temperature applications. It is oxidation resistant, refractory and not susceptible to thermal shock. It can be machined with conventional tools, which is of great technological importance.

Most attempts to synthesis bulk Ti$_3$SiC$_2$ has been done starting with powders including pure titanium, but Ti powder is oxidising [1] and requires an inert atmosphere throughout the synthesis process which makes the procedures unsuitable for large scale production.

Authors	Starting powders	Synthesis Method	Intermediate Phases	Secondary Phases
Pampuch et al.[9]	Ti/Si/C	SHS	Liquid	TiC
Orthner et al.[10]	Ti/Si/C	SHS/MA	TiSi$_3$, TiSi$_3$C$_x$	TiC
Zhou et al.[8]	Ti/Si/C	Hot Pressing	Liquid	TiC
Zhang et al.[7]	Ti/Si/C	PDS	Liquid	TiC, SiC, TiSi$_3$
Barsoum et al.[2, 3]	Ti/Si/C	HP/HIP	TiC$_x$, TiSi$_3$C$_x$	---
Wu et al.[11, 12]	Ti/Si/C	Pressureless	TiC$_x$, TiSi$_3$C$_x$	TiC$_x$
Istomin et al.[13]	Ti/Si/C	Vacuum	TiC$_x$, TiSi$_3$, TiSi$_3$C$_x$	TiC$_x$
Riley et al.[14]	Ti/Si/C	SHS	Solid solution	TiC$_x$
Sun et al.[4]	Ti/Si/TiC	Vacuum	TiC, TiSi$_3$C$_x$	---
Li & Miyamoto[15]	Ti/Si/TiC	Pressureless	Liquid	---
Gao et al.[5]	Ti/Si/TiC	HIP	TiSi$_3$C$_x$	TiC$_x$
Yang et al.[16]	Ti/Si/TiC	Vacuum	TiSi$_3$, TiSi$_2$	---
Radhakrishnan et al.[17, 18]	TiC/Si	Pressureless/HP	TiSi$_2$, SiC, TiC	---
Li et al. [19]	TiC/Si	Pressureless	TiSi$_3$	SiC, TiC
Hwang et al.[20]	TiC0.67/Si	Pressureless	---	TiC$_x$
Córdoba et al.[21]	TiC/Si	Pressureless	---	SiC, TiC
The previous work on the Ti₃SiC₂ is summarised in Table 1. There is consensus in the literature with some minor variations on the route of formation of Ti₃SiC₂ from starting powders containing pure Ti. Barsoum et al. [2, 3] suggested a series of reactions from Ti/Si/C starting powders based on the intermediate phases TiC, Ti₃SiC₂, and Ti₅Si₃C. Their results were essentially confirmed by Wu et al. and Iostomin et al. The latter added the intermediate phase TiSi₂. Sun et al. [4] and Gao et al. [5] used Ti/Si/TiC starting powders but found the same intermediate phases. Gao et al. also reported on the effect of the partial pressure of Si in the furnace atmosphere on the thermochemical stability of Ti₃SiC₂. They observed that the MAX phase tend to decompose, as initially proposed by Racault et al. [6] into TiC and gaseous Si. The reactions are often observed to take place in a silicon rich liquid [7-9] from which the Ti₃SiC₂ crystals grow. The liquid is sometimes associated with one or both of the two eutectic reactions of the Ti-Si phase diagram; Ti-Ti₃Si and Si-TiSi₂.

Recent interest in the phase is due to the availability of improved material from a hot-pressing route, leading to high purity polycrystalline single-phase samples of near-theoretical density. The structure has been reported [23] as hexagonal in space group P₆₃/mmc (194) with a < 0.307 nm and c < 1.769 nm. It shows a great resistance against oxidation, extreme hardness, and above all, its strength to temperatures that makes the best superalloys available today unusable. Up to now, no other material has shown such a combination of properties like machinability, strength, and ductility at elevated temperatures and nonsusceptibility to thermal shock. It is self-lubricating so it will be better than graphite for rotating electrical contacts for ac motors. It is a promising candidate for ceramic engines. As far as the experiments of this compound are concerned. Jeitschko and Nowotny [22] have synthesized Ti₃SiC₂ by a chemical reaction between TiH₂, Si, and graphite at 2000 °C. Goto and Hirai have synthesized Ti₃SiC₂ by a chemical-vapor deposition technique. There is very little known about this material. Panczyk et al. [23], have shown that the melting point of Ti₃SiC₂ is around 3000 °C. Pampuch et al. [24], have produced by self-propagating high-temperature synthesis and ceramic processing Ti₃SiC₂-based material. Their measured value of the Young’s modulus is 326 GPa and higher hardness [23]. The study of the electronic structure and the chemical bonding get a better insight into this important material. In order to study the electronic structure of Ti₃SiC₂, Full-Potential Linear-Muffin-Tin-Orbital method (FPLMTO) is used [25]. The calculations were based on the Local-Density Approximation (LDA) and have been used by the Hedin–Lundqvist 10 parametrization for the exchange and correlation potential. Basis functions, electron densities, and potentials were calculated without any geometrical approximation [26]. The radial basis functions within the muffin-tin spheres are linear combinations of radial wave functions and their energy derivatives, computed at energies appropriate to their site and principal as well as orbital atomic quantum numbers, whereas outside the muffin-tin spheres the basis functions are combinations of Neuman or Hankel functions [27, 28]. For sampling the irreducible wedge of the Brillouin zone, the special k-point method is used [29].

Ti₃SiC₂ belongs to the D₆h₄-P63/mmc space group of hexagonal crystalline structure [30]. Its primitive cell contains two formula units. The observed lattice parameters are a = 53.064 Å and c = 517.650 Å. C/a is optimized by calculating of the total energy for different c/a values at the equilibrium volume. The calculated value of c/a is around 5.77, which is in very good agreement with the experiment value of 5.76. The calculated value of the bulk modulus is 225 GPa and is in good agreement with the experimental value [28]. If one compares it with TiC, which has a bulk modulus of 240 GPa [31], they are comparable; the density of states (DOS) for Ti₃SiC₂ and the corresponding band structure is showed. The lowest-lying states around 10 eV are originated from the nonmetal C₂ states. If one compares this with the DOS of TiC [32], there are also C₂ states, which lay around 10.0 eV. Between 9.0 and 6.0 eV below the E_F, there are states, which are derived from the Si₃s states. However, one can see a big gap in TiC in this energy range, due to the absence of Si. The states just below E_F are dominated by strongly hybridizing bonding states combinations of Ti₃d orbitals of eg symmetry, C and Si p-derived orbitals. The states above E_F contain antibonding Ti₃d dominated orbitals of eg symmetry, C and Si p states. In the case of TiC, the states near E_F show the same character. E_F in TiC is lies exactly in the pseudogap, whereas in Ti₃SiC₂ it has moved outside of this gap. This indicates that TiC should be harder than Ti₃SiC₂.

The modern electronic structure theory is sufficiently developed to give an accurate description of Ti₃SiC₂. The calculated volume and structural parameter are in very good agreement with the experiment. The chemical bonding appears to be similar to that for TiC.

A polycrystalline material based on a Ti₃SiC₂ compound produced by sintering of powders prepared using electro-thermal explosion (ETE) has been shown to have the advantages of ceramic materials combined with some metal-type plastic properties. The reaction in ternary Ti-Si-C system under the SHS regime may produce either TiC, SiC, Ti₃Si, Ti₅Si₃ or Ti₃SiC₂: each in a quantity depending on the starting mixture composition [33], however, until now attempts to produce a Ti₃SiC₂ single phase resulted at the very most in 10 % TiC, 20% of SiC and amount of titanium-silicon intermetallic as ascertainment, the effect of the addition (TiC, SiC) are also studied [34, 35].

In this work, we have produced Ti₃SiC₂ with chemical reaction by electro-thermal explosion with high current density (680 A²) followed by uniaxial pressure.

The present study investigated the microstructures of materials using XRD, FESEM equipped by EDX analysis. The Ti₃SiC₂ is studied by means of X-ray photoelectron spectroscopy. High resolution C₁s, Si₂p, Ti₂p, Ti₃s core level
spectra are inspected in terms of electronic structure. Valence band spectra will be performed to confirm the validity of the theoretical calculations. The aim of these studies is synthesizing a highly pure Ti$_3$SiC$_2$ ceramic machinable material with better thermal, physical and mechanical properties.

2. Experimental

Polycrystalline high-purity Ti, C, and Si powders (99.99% pure) of the nominal composition Ti$_3$SiC$_2$ were mechanically alloyed. The powder was prepared from Good fellow SARL powder in a high-energy Fritsch planetary ball mill with a balls/mass ratio of 13/1. The rotation speed could be varied within the range 450–650 rpm. In order to avoid oxidation during alloying, the ball mill was filled with high-purity argon gas. The vial was opened in 10–12 h to assure high homogenization and repeated fractioning. The powders were compacted into small discs (2–3 mm) at the compacting pressure $P=6000$ psi and then subjected to ETE reaction in in vacuum and Argon that launched at 680 A° during 360 seconds followed by uniaxial pressure. The combustion is started at the measured temperature by an infrared pyrometer at about 1800°C.

The reactions considered for the three different systems were the following:

$$3\text{Ti} + (1-x)\text{Si} + 2\text{C}\rightarrow \text{Ti}_3\text{SiC}_2 \quad (2.1)$$

The structural properties were determined by XRD using a Philips diffractometer (Co-K$_\alpha$ radiation). Further structural characterizations were carried out by energy-dispersive X-ray microanalysis (EDX), field emission scanning electron microscopy (FESEM), and optical microscopy (OM). FESEM micrographs were taken with a JEOL-JSM-840A instrument equipped with an EDX accessory to check the elemental composition of the system. XPS analysis were carried out in an ESCALAB Mk. II instrument using Al$_{K\alpha}$ X-rays as the source of excitation, the gun being run at 13 kV and 20 mA. Survey spectra were obtained over a kinetic energy range of 80–600 eV, in steps of 0.5 eV (CAE mode) of 100 eV. Detailed data were obtained for selected ranges of photoelectron energies (i.e. Ti$_{2p}$, C$_{1s}$, O$_{1s}$ and Si$_{2p}$ lines) in steps of 0.2 eV and at a pass energy of 20 eV; the regions were scanned repetitively in order to improve the signal-to-noise ratio. X-ray induced AES (XAES) structures data of SiKLL were obtained from excitation with Bremsstrahlung radiation; repetitive scans were carried out at pass energy of 20 eV and for steps of 0.2 eV. The XPS data were processed by subtraction of a Shirley-type background; minor charge shifting was accounted for by setting the graphitic adventitious C$_{1s}$ component to 284.6 eV and by ensuring internal self-consistency of the shifted spectra. The noisiest of the spectra (e.g. SiKLL spectra) were smoothed, but not otherwise processed. The spectra from as-mounted, specimens were characterized by surface oxide and some adventitious surface carbon. Both were substantially removed by a light ion etch (ca. 6 mA min cm$^{-2}$ dose of 3 keV).

![Figure 1. Crystal structure of Ti$_3$SiC$_2$, obtained from Full Potentiel Local Orbital Band Structure Sheme (FPLO) ab-initio calculations code. Red, blue, and black spheres represent Ti, Si, and C atoms, respectively.](image)

3. Results and Discussion

Ti$_3$SiC$_2$ (Fig.2) bulk bicarbide base ceramic (TiC, SiC) produced by electro-thermal explosion (ETE, Fig.1) of crystalline elemental powder of Ti, C, and Si after balls milling, 13/1 (balls/mass) has been synthesized. The phase composition after ETE reaction has been studied using the X-ray diffraction technique (Fig.3) The diffraction pattern of the combustion product formed upon ETE reaction in the starting mechanically alloyed powder Ti, C, and Si is seen to contain Ti$_3$SiC$_2$ bulk bicarbide base ceramic. The morphology by Field Emission Scanning Electron Microscopy (FESEM) and Optical Microscopy (OM) is reported in the Fig.5. The observation have proved that the elongation slabs with rounded corners of well fused Ti$_3$SiC$_2$ grains form a matrix within some rounded TiC and less frequent angular SiC inclusions are present in the Fig.5.
Figure 2. a. Welding resistance machine, b-Scheme of current distribution

Figure 3. XRD patterns of the ETE from Ti-Si-C system product.
The formation of Ti$_3$SiC$_2$ bulk bicarbide is a two-step process. The first one involves the diffusion of Si into TiC to form Ti$_3$SiC$_2$ bulk bicarbide, the second step is the diffusion of Ti into SiC resulting Ti$_3$SiC$_2$ bulk bicarbide. The remaining TiC and SiC is reparted in the matrix based ceramic [33].

Further studies have been carried out by X-ray photoelectron spectroscopy (XPS) The Figure 6 shows the...
XPS data. The persistence of surface oxide is apparent from the intensity of the O\textsubscript{1s} line. The spectra of the model compounds were representative of those from specimens arising from optimized processing routes. Detailed spectra are shown in Fig. 6(a), (b) and (c) for C\textsubscript{1s}, Ti\textsubscript{2p} and Si\textsubscript{2p}/KLL, respectively. The C\textsubscript{1s} spectra (Fig.6(a)) for Ti\textsubscript{3}SiC\textsubscript{2} and (Fig.6(b)) for TiC revealed major contributions from adventitious graphitic/aromatic components at 284.6 eV and less intense, but well resolved, carbide components at lower binding energies (BEs). The SiC spectrum, on the other hand, was dominated by a carbide peak at 283.5 eV and a small unresolved graphitic component on the high-BE shoulder of the main peak. The Ti\textsubscript{2p} envelopes (Fig. 6(a)) reflected mainly carbide contributions, with that from the TiC surface having the slightly higher BE. The detailed Si spectra (Fig. 6(c)) exhibited various features. The SiC specimen resulted in envelopes (Si\textsubscript{2p} and Si\textsubscript{KLL}) predominantly due to carbide, but with a small high-BE shoulder on the 2p envelope reflecting a SiO\textsubscript{x} state, which is matched by a small, well will to be resolved component in the KLL envelope at a kinetic energy (KE) of ca. 1608.5 eV. The spectra for Ti\textsubscript{3}SiC\textsubscript{2} exhibited two major contributions, one being at a BE of ca. 98.5 eV with a strong Si\textsubscript{KLL} component at ca. 1617.4 eV. The slightly more intense contribution, most likely due to SiO\textsubscript{x} related features, was found at ca. 102.3 eV with a matching KLL component at ca. 1610.6 eV. The error bars on the experimental results were typically 0.2 eV, with somewhat larger uncertainties in the data for Si KLL.

4. Conclusions

We have produced successfully via ETE reaction the Ti\textsubscript{3}SiC\textsubscript{2} bulk bicarbide based ceramic (TiC, SiC). Further experiment will be focused in the synthesis of the highly pure Ti\textsubscript{3}SiC\textsubscript{2} bulk bicarbide with Sparck Plasma Sintering (SPS) and then reinforced by single, multi-walled carbon nanotubes and nanocarbon fibers to obtain better properties for specified application.

Acknowledgments

I am grateful to Dr. M. Schubert, Institute of Metallic Materials, IFW-Dresden, Germany for his help in samples analysis (FESEM/EDX). I also acknowledge the head of the Spectroscopy group at the IFF-IFW-Dresden-Germany, Professor Heiko Peisert for the X-ray photoelectron spectroscopy (XPS) measurements.
REFERENCES

[1] Poulsen E. Safety-Related Problems in the Titanium Industry in the Last 50 Years. JOM: The Member Journal of TMS 2000, 50-13.

[2] Barsoum MW, El-Raghy T. Synthesis and Characterization of a Remarkable Ceramic: Ti$_3$SiC$_2$. J. Am. Ceram. Soc. 1996, 79-1953.

[3] El-Raghy T, Barsoum MW. Processing and Mechanical Properties of Ti$_3$SiC$_2$: I, Reaction Path and Microstructure Evolution. J. Am. Ceram. Soc. 1999, 82-2849.

[4] Sun ZM, Yang S, Hashimoto H. Ti3SiC2 powder synthesis. Ceramics International 2004, 30-1873.

[5] Gao NF, Miyamoto Y, Zhang D. On physical and thermochemical properties of high-purity Ti$_3$SiC$_2$. Materials Letters 2002, 55-61.

[6] Racault C, Langlais F, Naslain R. Solid-state synthesis and characterization of the ternary phase Ti$_3$SiC$_2$. Journal of Materials Science 1994, 29-3384.

[7] Zhang ZF, Sun ZM, Hashimoto H, Abe T. Effects of sintering temperature and Si content on the purity of Ti$_3$SiC$_2$ synthesized from Ti/Si/TiC powders. Journal of Alloys and Compounds 2003, 352-283.

[8] Zhou Y, Sun Z. Temperature fluctuation/hot pressing synthesis of Ti3SiC2. Journal of Materials Science 2000, 35-4343.

[9] Pampuch R, Lis J, Stobierski L, Tymkiewicz M. Solid Combustion Synthesis of Ti$_3$SiC$_2$. Journal of the European Ceramic Society 1989, 5-283.

[10] Orthner HR, Tomasi R, Botta F. WJ. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling. Materials Science and Engineering 2002, A336-202.

[11] Wu E, Kisi EH, Kennedy SJ, Studer AJ. In Situ Neutron Powder Diffraction Study of Ti$_3$SiC$_2$ Synthesis. J. Am. Ceram. Soc. 2001, 84-2281.

[12] Wu E, Kisi EH, Riley DP, Smith RI. Intermediate Phases in Ti3SiC2 Synthesis from Ti/SiC Mixtures Studied by Time-Resolved Neutron Diffraction. J. Am. Ceram. Soc. 2002, 85-3084.

[13] Isotomin PV, Nadutkin AV, Ryabkov I, Goldin BA. Preparation of Ti3SiC2. Inorganic Materials 2006, 42-250.

[14] Riley DP, Kisi EH, Hansen TC, Hewat AW. Self-Propagating High-Temperature Synthesis if Ti$_3$SiC$_2$: Ultra-High-Speed Neutron Diffraction Study of the Reaction Mechanism. J. Am. Ceram. Soc. 2002, 85-2417.

[15] Li JT, Miyamoto Y. Fabrication of Monolithic Ti$_3$SiC$_2$ Ceramic Through Reactive Sintering of Ti/Si/2TiC. Journal of Materials Science and Processing 1999, 345-357.

[16] Yang S, Sun ZM, Hashimoto H. Synthesis of Ti$_3$SiC$_2$ powder from 1Ti/(1-x)Si/2TiC powder mixtures. Journal of Alloys and Compounds 2004, 368-318.

[17] Radhakrishnan R, Bhaduri SB, Henager JCH. Analysis on the sequence of formation of Ti$_3$SiC$_2$ and Ti$_3$SiC$_2$/SiC composites. Powder Metallurgy Technology Conference; May 1995 in Seattle, Washington, 1995.

[18] Radhakrishnan R, Henager J. C. H., Brimhall JL, Bhaduri SB. Synthesis of Ti$_3$SiC$_2$/SiC and Ti$_3$SiC$_2$ composites using displacement reactions in the Ti-Si-C system. Scripta Materialia 1996, 34-1809.

[19] Li S-B, Xie J-X, Zhang L-T, Cheng L-F. In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC Materials Science and Engineering A 2004, 381-51.

[20] Hwang SS, Park SW, Kim TW. Synthesis of the Ti$_3$SiC$_2$ by solid state reaction below melting temperature of Si. Journal of Alloys and Compounds 2005, 392-285.

[21] Córdoba JM, Sayagués MJ, Alcalá MD, Gotor FJ. Synthesis of Ti3SiC2 Powders: Reaction Mechanism. J. Am. Ceram. Soc. 2007, 90-825.

[22] W. Jeitschko and H. Nowotny, Die Kristallstruktur von Ti3SiC2 ein neuer Komplexcarbid-Typ, Monatshette für Chemie / Chemical Monthly 98, 1967, 329-337.

[23] J. Panczyk, T.Niemynski, L. Vinogradov, and V. Sinelnikova, Production of Ti3SiC2 material, Chem. Abstr. 77, 64084c, 1972-76.

[24] R. Pampuch, J. Lis, J. Piekarczyk and L. Stobierski. New ceramics based on. Ti3SiC2, J. Mater. Syn. Proc. 1, 1993, 93-100.

[25] JM Wills and 0. Eriksson, Synthesis of band and model Hamiltonian theory for hybridizing cerium systems, Phys. Rev. B 36, 1987, 3809-3823.

[26] O. K. Andersen, Linear methods in band theory, Phys. Rev. B 12, 1975, 3060 -3083.

[27] H. L. Skriver, the LMTO Method, Springer, Berlin, 1984.

[28] D. J. Chadi and M. L. Cohen, Special points in the Brillouin zone, Phys. Rev. B 8, 1973, 5747–5753.

[29] W. B. Pearson, The crystal chemistry and physics of metals and alloys Wiley-interscience, New York, 1972, 502 -518.

[30] R. Chang and L. J. Graham, Low-temperature elastic properties of ZrC and TiC, J. Appl. Phys. 37, 1966, 3778-3786.

[31] R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO, Phys. Rev. B 53, 1996, 3072-3087.

[32] J. Lis, R. Pampuch, and L. Stobierski., Reactions during SHS in a Ti–Si–C system , Int. Journal of SHS, 1, 1992, 401-408.

[33] C.L. Yeh and Y.G. Shen, Effects of SiC addition on formation of Ti$_3$SiC$_2$ by self-propagating high-temperature synthesis , Journal of Alloys and Compounds, 461, 2008, 654-660.

[34] M. Zakeri, M.R. Rahimipour and A. Khanmohammadian, Effect of the starting materials on the reaction synthesis of Ti$_3$SiC$_2$, Ceramics International 35, 2008, 1553-1557.

Briggs, D. and Beamson G, Primary and secondary oxygen-induced Cls binding energy shifts in X-ray photoelectron spectroscopy of polymers, Anal. Chem 64, 1992, 1729-1736.