Visualization of CD4/CD8 T Cell Commitment

By Susan Chan, Margarida Correia-Neves, Andrée Dierich, Christophe Benoist, and Diane Mathis

From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), Strasbourg 67404 Illkirch Cedex, France

Summary

A system to innocuously visualize T cell lineage commitment is described. Using a “knock-in” approach, we have generated mice expressing a β-galactosidase reporter in place of CD4; expression of β-galactosidase in these animals appears to be an accurate and early indicator of CD4 gene transcription. We have exploited this knock-in line to trace CD4/CD8 lineage commitment in the thymus, avoiding important pitfalls of past experimental approaches. Our results argue in favor of a selective model of thymocyte commitment, demonstrating a fundamentally symmetrical process: engagement of either class of major histocompatibility complex (MHC) molecule by a differentiating CD4+CD8+ cell can give rise to T cell antigen receptor (TCR)hi thymocytes of either lineage. Key findings include (a) direct demonstration of a substantial number of CD4-committed, receptor/coreceptor-mismatched cells in MHC class II-deficient mice, a critical prediction of the selective model; (b) highly efficient rescue of such "mismatched" intermediates by forced expression of CD8 in a TCR transgenic line, and an explanation of why previous experiments of this nature were less successful—a major past criticism of the selective model; (c) direct demonstration of an analogous, though smaller, population of CD8-committed mismatched intermediates in class I-deficient animals. Finally, we found no evidence of a CD4 default pathway.

Key words: homologous recombination • transgenesis • positive selection • CD4 • β-galactosidase

Most conventional T lymphocytes fall into two classes—MHC class II-restricted, CD4+ helper, and MHC class I-restricted, CD8+ cytotoxic cells. Precursors of both classes differentiate in the thymus, according to an elaborate program classically visualized by following changes in expression of cell surface markers, in particular the CD4 and CD8 coreceptors (1, 2). The most immature thymocytes express no (or very little) CD4 or CD8 and are thus termed double-negative (CD4+CD8+; DN) cells; they also display no α/β TCR on the surface. DN thymocytes differentiate into double-positive (CD4+CD8+; DP) cells, most of which express low levels of surface TCR. Only 3–5% of DP thymocytes survive the transition to end-stage single-positive (SP) cells (3, 4) committed to either the CD4+ or CD8+ lineage and expressing high levels of TCR.

Survival and commitment at the DP stage of thymocyte differentiation are dictated by positive selection events that depend critically on specific interaction between the thymocyte’s TCR and MHC molecules expressed on thymic stromal cells. Experiments involving TCR transgenic (tg) mice have demonstrated that DP thymocytes expressing class I-reactive TCRs are selected to become CD8+ cells (5–7), whereas those displaying class II-reactive receptors differentiate into CD4+ cells (8, 9). Thus, lineage commitment is an inseparable by-product of the positive selection process, the specificity of the TCR being matched to a particular class of MHC molecule and thereby to a particular coreceptor.

The mechanism by which this match is achieved and the nature of the signals directing CD4/CD8 lineage commitment remain unclear. For several years, discussions have crystallized around the issue of whether lineage choice is primarily instructive (directed by the TCR–MHC interaction) or selective (decided after an initially noncommittal TCR–MHC interaction), or is some combination of the two. A series of studies on MHC-deficient and TCR tg mice had concluded that DP thymocytes expressing a class I-reactive TCR can commit to either the CD4+ or CD8+
lineage (10–14); the same appeared true of DP cells with a class II–reactive receptor (10, 15–17). These conclusions, in line with a selective mechanism of lineage commitment, were based mainly on two kinds of observations. First, intermediate thymocyte populations (CD4⁺CD8⁻, CD4⁻⁺CD8⁻) were described, apparently composed of cells in transit between the DP and SP compartments and including a fraction with mismatched receptors and coreceptors (10, 15, 16). Second, it was possible to “rescue” a population of mature lymphocytes seemingly derived from these “mismatched” thymocytes by forcing expression of the appropriate coreceptor (14, 15). In most of these studies, lineage commitment was assessed by one of two criteria: reduced surface expression of one of the coreceptors after positive selection, and helper or cytotoxic function of mature lymphocyte descendents in cases where terminal differentiation was (or was made) possible.

Unfortunately, results from more recent experiments have seriously undermined these conclusions, in particular the reliance on surface levels of coreceptor to identify intermediate populations and to serve as a marker of lineage commitment. For example, when the class I–reactive population of CD4⁺CD8⁻ thymocytes from MHC class II–deficient mice was injected into wild-type thymus, only CD8⁺ thymocytes were eventually recovered (18–20). Furthermore, when the same population was analyzed via an assay based on protease stripping and coreceptor reexpression, it appeared that many CD4⁺CD8⁻ cells had turned off CD4 but not CD8 transcription (21, 22). These findings argued for greater complexity during the positive selection process, and demonstrated that surface coreceptor levels can be tardy and potentially misleading indicators of gene activity and lineage commitment.

However, intrathymic cell transfers and coreceptor reexpression assays are themselves potentially artifacts, as they entail manipulation of surface molecules (i.e., cross-linking, proteolysis) that could easily alter experimental outcome. Thus, the mechanism of lineage commitment is still a contentious issue, but it remains an important one as a framework for understanding the positive selection decision-making process at the molecular level. Therefore, we sought to develop a system for visualizing T cell commitment ex vivo in an innocuous manner. We searched for a reporter of gene activity that could be detected easily with indicators of gene activity and lineage commitment.

We report here the generation of mice with the LacZ gene targeted into the CD4 locus and experiments exploiting this gene. To obtain CD4⁺ mice, we constructed a targeting vector as illustrated in Fig. 1. In brief, a 7.8-kb AvrII-SphI genomic fragment from the CD4 locus was subcloned. A 323-bp fragment containing most of exons 2 and 3 (including a 30-bp intron) was deleted, and three cloning sites (XhoI, EcoRI, and XbaI) were inserted by single-strand mutagenesis. The fragment’s coding potential was interrupted by insertion of the 4.3-kb βgeo cassette (with its splice acceptor, Kozak ATG, and polyA tail, and multiple cloning sites [23]) into the XhoI site of exon 2 immediately before the CD4 ATG site, so that exon 2 begins and ends as follows: 5' GCTGAGATTCGAAAAAAGGAAACGCTGCTC-3'.

The resulting vector was linearized and electroporated into D3 embryonic stem (ES) cells as described (25). Of the 100 G418-resistant D3 clones analyzed, 6 carried the predicted integration by homologous recombination were identified. Using an XhoI-SphI 5' external probe, we considered a clone positive if it contained the normal 15-kb band plus an additional 9.6-kb band after XhoI digestion and Southern blotting. The positive clones were confirmed using an internal neo probe. Clone VE34 was expanded and injected into C57Bl/6 (B6) blastocysts, which were reimplanted into pseudopregnant females. Chimeras were crossed onto B6 mice to obtain germline transmission, and offspring carrying the mutation were maintained in a conventional animal facility.

“Homozygous” CD4⁺ mice were produced by crossing the CD4⁺⁺ line with heterozygous CD4-deficient (CD4⁺⁺) mice (26). Antibodies, cytometric, and staining of thymocyte and lymph node cell suspensions was performed as described (25).

Three- to five-color flow cytometric analyses were performed on a cytometer (Elite; Coulter Corp., Hialeah, FL) equipped with 4 decade logarithmic amplifiers. List mode data were collected on 5 × 10⁶ or 10⁷ cells.

Fluorescein Digalactopyranoside Staining. Fluorescein digalactopyranoside (FDG) staining was adapted from Nolan et al. (29). In brief, 4–6 × 10⁶ cells were stained, washed, and resuspended in 120 μL PBS. FDG (Molecular Probes, Inc., Eugene, OR, or Sigma Chemical Co., St. Louis, MO) at the stock concentration of 100 mM in H₂O/DM SO/ethanol, 1:1:1 (vol/vol/vol), was diluted to a working condition of 7.5 mM with H₂O. Both cells and diluted FDG were warmed to 37°C for 5 min. 80 μL of warmed FDG was added to cells while gently vortexing. Cells were incubated for 5 min at 37°C. FDG loading was stopped by adding 2 mL of ice-cold PBS. Cells were kept on ice for 5 min, then transferred to a 15°C water bath for 15–30 min to enhance β-galactosidase (βgal) activity. Cells were then ready to analyze, or were kept on ice until analysis by flow cytometry.

Immunoprecipitation Experiments. Thymocyte suspensions were washed three times with methionine-free DM E (GIBCO BR L, Gaithersburg, MD) supplemented with 5% FCS. Cells were labeled with [³⁵S]methionine (~1,200 Ci/mmol; Amersham Pharmacia Biotech, Inc., Piscataway, NJ) at 10⁶ cells/ml 1 mM. To begin the chase, thymocytes were washed with DM E containing 10X cold methionine, and then recultured in DM E (plus 5% FCS, 10X cold methionine) for the different time points. At each time point, aliquots (10⁶) of cells were washed twice with PBS and frozen as pellets in liquid nitrogen. Frozen pellets were lysed.
Results

Generation of CD4\(+/L\) mice. To provide a convenient and harmless means of monitoring CD4 gene activity, we set out to confer a protein reporter with an identical pattern of expression. $\beta$gal seemed a good reporter candidate because it is easy to visualize, is inert, and, being cytoplasmic, possesses no signaling capacity, a disadvantage of most cell-surface reporters (31, 32). We chose a “knock-in” approach rather than transgenesis of a promoter-reporter construct in order to mimic as closely as possible the complex transcriptional controls on the native CD4 gene (33–37). Thus, mice expressing $\beta$gal in place of CD4 were generated by targeting a $\beta$gal coding region into the CD4 locus via homologous recombination in ES cells (Fig. 1). To ensure faithful expression of the $\beta$gal reporter (and to inactivate the CD4 gene at the same time), we introduced the $\beta$gal coding sequences exactly at the CD4 initiation codon in exon 2. The inserted sequence directs the translation of a fusion protein comprised of $\beta$gal and the neomycin (neo) resistance domain ($\beta$geo, chosen because it is known to be expressed in normal T cells [23]); the insert also contains an expressible neo gene under an independent PGK promoter for selection of ES cell transfectants (Fig. 1).

The final construct was electroporated into ES cells, and G418-resistant clones carrying the specific homologous recombination event were selected. Chimeras generated from the injection of a positive clone into B6 blastocysts were mated with B6 females to obtain germline transmission of the knock-in mutation. The resulting mouse line was generally kept in heterozygous form (CD4\(+/-\); hereafter “+”) designates the wild-type CD4 locus, “L” our targeted CD4-gal insertion, and “0” the original CD4 knockout mutation because it is known to be expressed in normal T cells [23]); the insert also contains an expressible neo gene under an independent PGK promoter for selection of ES cell transfectants (Fig. 1).

It was first necessary to determine just how closely the expression of $\beta$gal matched that of CD4. Lymph node cells and thymocytes were stained with FGD to detect cytoplasmic $\beta$gal expression (29) in addition to antibodies against CD4, CD8, and CD3, and were analyzed by flow cytometry (Fig. 2). $\beta$gal expression was essentially superimposable...
with that of CD4 in both primary and secondary lymphoid organs. In the lymph nodes, CD4+ cells expressed high levels of βgal, whereas CD8+ and non-T cells expressed low to background levels (Fig. 2 A). Similarly in the thymus, CD4 SP and CD4+CD8+ DP cells were βgal+, whereas mature CD8 (CD3hi) SP and immature DN cells were not (Fig. 2 B). βgal did not appear in only a select subset of CD4+ T cells for example, the minor (and peculiar) NK1.1+CD4+ subset of α/β T cells (38) was also βgal+ in thymic and splenic cell suspensions of CD4+/L mice (not shown). Importantly, βgal expression did not detectably alter thymus cellularity or population distributions, as assessed with a panel of markers including CD3, CD4, CD8, CD69, CD24, CD5 and peanut agglutinin-binding polysaccharides (not shown).

Upon closer examination, we noticed some interesting features of the expression of the βgal reporter. First, CD3- thymocytes within the CD8 SP population, the immediate precursors of DP cells, were βgal+, implying that enzymatic activity was detectable earlier than surface expression of CD4 (Fig. 2 B). Second, a proportion of the CD4+ CD8-CD3hi thymocytes expressed low levels of βgal, suggesting that reporter activity was downregulated earlier than surface CD4 upon positive selection. These observations argued that βgal levels responded faster to changes in transcriptional activity at the CD4 locus than the level of CD4 protein itself. To test this hypothesis, we compared the turnover of CD4 and βgal proteins (Fig. 2 C). In vitro metabolic labeling with [35S]methionine and precipitation with antibodies against CD4 and βgal revealed that the half-life of βgal (4.1 h) was significantly shorter than that of CD4 (6.2 h).

Thus, not only was βgal a faithful reporter of CD4 gene expression, it also appeared to be an early indicator.

βgal as a Marker for CD4 and CD8 Lineage Commitment in the Thymus. Since βgal appeared to be an early indicator of CD4 gene transcription, it represented a valuable marker of lineage commitment during the initial stages of T cell selection in the thymus. Thus, we stained CD4+/L thymocytes simultaneously for CD4, CD8, CD3, and βgal. In Fig. 3 A, CD3hi thymocytes are displayed in a CD4/CD8 plot, and show the customary boomerang-shaped distribution extending from the mature CD4 SP to the mature CD8 SP compartments. Several distinct gates were set within this boomerang to permit us to investigate the activity of the CD4 gene, as reflected by βgal staining, within different populations. The terminally differentiated populations (gates B and C) showed essentially homogeneous patterns of βgal staining: CD4 SP thymocytes were βgal+, CD8 SP cells βgal-. In contrast, most of the intermediate populations (gates E, G, and F) contained cells of both phenotypes, even the small CD3hi subpopulation which displayed high surface levels of CD4 and CD8 (gate D). These profiles confirmed the notion that surface co-receptor levels do not fully and immediately reflect lineage commitment (18, 21), and encouraged us to exploit the βgal marker for investigating lineage commitment ex vivo under unmanipulated conditions. However, it should be kept in mind that, although the βgal- phenotype unambiguously denotes a shut-off of CD4 transcriptional activity in this context, and thus commitment to the CD8 lineage, βgal+ populations cannot be interpreted as readily, potentially including cells that have not yet committed to or those that are already committed to the CD4 lineage.

CD4+/L mice were crossed with MHC class I- and II-negative (IIo) animals to allow us to evaluate the commitment status of MHC class I-reactive CD4+CD8hi thymocytes cells proposed to be transitory intermediates committed to the CD4 lineage (10). Thymocytes from IIo CD4+/L mice were analyzed as above (Fig. 3 B). The CD4+CD8hi popu-
lation (gate E) split clearly into two subsets, βgal+ and βgal−; there was a significant increase in the βgal+ subset compared with the same transitional population in the class II− positive mouse. This result is consistent with the notion that at least some CD8-committed thymocytes transiently downmodulate surface CD8 levels after positive selection (18, 21), but also suggests that a sizeable contingent of CD4-committed cells can be selected in the absence of MHC class II molecules.

That CD4-committed thymocytes were selected on MHC class I (in the absence of class II) molecules is substantiated in Fig. 4, a five-color cytofluorimetric analysis of the expression of CD4, CD8, CD3, βgal, and CD69, an early and transient marker of positive selection (14, 39–41). When CD69− thymocytes from II0 mice were displayed in CD3/βgal plots, it seemed that CD4− and CD8-committed thymocytes could be traced by virtue of their very positions within this plot. The CD8-committed cells appeared to reside chiefly within the CD3hiβgallo and βgal− gates; as they lost βgal expression, they also began to switch from the transitional CD4+CD8int phenotype to the definitive CD4int CD8+ and CD8 SP phenotypes (compare the CD4/CD8 profiles, gates A and B of Fig. 4). In contrast, only CD4+ thymocytes were found within the CD3hiβgalhi population (gate C), well separated from cells along the CD8 pathway.

Although rendered unlikely by the very appearance of the profiles in Fig. 4, a caveat to these interpretations is that CD4+CD8int cells with high βgal expression may still have been destined for the CD8 lineage, but just had not yet downregulated βgal expression. To address this point, we purified CD4+CD8intCD3hiβgalhi and CD4+CD8intCD3hiβgallo thymocytes, and compared their CD8 mRNA con-

Figure 3. Expression of the βgal reporter in thymocyte populations. (A) βgal expression in CD4+/L mice. CD3hi thymocytes were gated according to their CD4/CD8 expression into distinct populations: CD4 SP cells (4182), transitional CD4−CD8int cells (418lo), DP cells (418hi), CD4hiCD8int cells (418lo), intermediate CD4intCD8− cells (418hi), and CD8 SP cells (418hi). Histograms represent the intensity of βgal expression within each of these CD4/CD8 gates. The mean fluorescence intensity (MFI) values for CD3 expression within the respective βgallo and βgalhi subsets are shown above each histogram, except in cases where there are few or no cells within the βgal gates. The separate histogram at the upper right hand corner represents the intensity of βgal expression for total DP thymocytes (B) βgal expression in II0 CD4+/L mice. βgal expression within CD4/CD8 thymocyte subsets of CD4+/L mice on an MHC class II− negative background. Thymocytes were analyzed as in A.

Figure 4. Multiparameter visualization of lineage commitment. Thymocytes from a II0 CD4+/L mouse were analyzed after gating on CD69+ cells. The lower left panel displays the βgal/CD3 profile of these cells, from which four populations can be distinguished: cells that express the highest levels of CD3 but have downregulated βgal expression (A); others that also express the highest levels of CD3, but have maintained CD4 gene activity, as evidenced by full βgal staining (C); intermediates in the process of downregulating βgal (B); and immature thymocytes that express low levels of CD3 and high levels of βgal (D). The CD4/CD8 profiles of these populations are shown in the smaller panels.
tent by reverse transcriptase (RT)-PCR (Fig. 5). If the CD4+CD8intβgalhi cells were CD8-committed or even uncommitted, their CD8 mRNA levels should be as high as those detected in the CD4+CD8intβgallo or DP populations. However, if the CD4+CD8intβgalhi thymocytes were CD4-committed, they should have downregulated CD8 transcription at least to some degree. The latter scenario appears to be the correct one: CD4+CD8intβgalhi thymocytes expressed on average two- to threefold less CD8 mRNA than their βgallo counterparts, suggesting that many, if not all, of the CD4+CD8intβgalhi thymocytes in II0 mice were CD4 committed.

Our original results (10) and those of van Meerwijk and German (16) suggested that a mirror-image population, committed to the CD8 lineage upon selection on MHC class II molecules, also exists. However, this interpretation was questioned in subsequent reports (21, 22, 42). Therefore, we analyzed β2-microglobulin (β2m)-negative (II0) mice (43) in which the CD4-βgal reporter had been introduced, allowing a distinction between true CD8-committed cells and other populations (i.e., DPs, CD4-committed). The cytometric analysis in Fig. 6A illustrates that CD4intCD8+CD3hi cells did exist in class I-deficient mice, albeit at a much lower frequency than their counterparts in class II-deficient animals, and that they displayed the βgallo phenotype expected of the CD8 lineage. The low expression of βgal established that these cells were not contaminants from the neighboring CD4intCD8-CD3hi population, the great majority of which were βgallo. Our results also indicated that the CD4intCD8+CD3hi cells were a homogeneous set, as we did not detect CD4-committed cells within this population, a result consistent with recent findings from other groups (18, 21, 44, 45).

In the same series of experiments, MHC double-deficient (I0II0) mice with a CD4+/CD8-lineage upon selection on MHC class II molecules, also exists. However, this interpretation was questioned in subsequent reports (21, 22, 42). Therefore, we analyzed β2-microglobulin (β2m)-negative (II0) mice (43) in which the CD4-βgal reporter had been introduced, allowing a distinction between true CD8-committed cells and other populations (i.e., DPs, CD4-committed). The cytometric analysis in Fig. 6A illustrates that CD4intCD8+CD3hi cells did exist in class I-deficient mice, albeit at a much lower frequency than their counterparts in class II-deficient animals, and that they displayed the βgallo phenotype expected of the CD8 lineage. The low expression of βgal established that these cells were not contaminants from the neighboring CD4intCD8-CD3hi population, the great majority of which were βgallo. Our results also indicated that the CD4intCD8+CD3hi cells were a homogeneous set, as we did not detect CD4-committed cells within this population, a result consistent with recent findings from other groups (18, 21, 44, 45).

In the same series of experiments, MHC double-deficient (I0II0) mice with a CD4+/CD8-lineage upon selection on MHC class II molecules, also exists. However, this interpretation was questioned in subsequent reports (21, 22, 42). Therefore, we analyzed β2-microglobulin (β2m)-negative (II0) mice (43) in which the CD4-βgal reporter had been introduced, allowing a distinction between true CD8-committed cells and other populations (i.e., DPs, CD4-committed). The cytometric analysis in Fig. 6A illustrates that CD4intCD8+CD3hi cells did exist in class I-deficient mice, albeit at a much lower frequency than their counterparts in class II-deficient animals, and that they displayed the βgallo phenotype expected of the CD8 lineage. The low expression of βgal established that these cells were not contaminants from the neighboring CD4intCD8-CD3hi population, the great majority of which were βgallo. Our results also indicated that the CD4intCD8+CD3hi cells were a homogeneous set, as we did not detect CD4-committed cells within this population, a result consistent with recent findings from other groups (18, 21, 44, 45).

In the same series of experiments, MHC double-deficient (I0II0) mice with a CD4+/CD8-lineage upon selection on MHC class II molecules, also exists. However, this interpretation was questioned in subsequent reports (21, 22, 42). Therefore, we analyzed β2-microglobulin (β2m)-negative (II0) mice (43) in which the CD4-βgal reporter had been introduced, allowing a distinction between true CD8-committed cells and other populations (i.e., DPs, CD4-committed). The cytometric analysis in Fig. 6A illustrates that CD4intCD8+CD3hi cells did exist in class I-deficient mice, albeit at a much lower frequency than their counterparts in class II-deficient animals, and that they displayed the βgallo phenotype expected of the CD8 lineage. The low expression of βgal established that these cells were not contaminants from the neighboring CD4intCD8-CD3hi population, the great majority of which were βgallo. Our results also indicated that the CD4intCD8+CD3hi cells were a homogeneous set, as we did not detect CD4-committed cells within this population, a result consistent with recent findings from other groups (18, 21, 44, 45).

In the same series of experiments, MHC double-deficient (I0II0) mice with a CD4+/CD8-lineage upon selection on MHC class II molecules, also exists. However, this interpretation was questioned in subsequent reports (21, 22, 42). Therefore, we analyzed β2-microglobulin (β2m)-negative (II0) mice (43) in which the CD4-βgal reporter had been introduced, allowing a distinction between true CD8-committed cells and other populations (i.e., DPs, CD4-committed). The cytometric analysis in Fig. 6A illustrates that CD4intCD8+CD3hi cells did exist in class I-deficient mice, albeit at a much lower frequency than their counterparts in class II-deficient animals, and that they displayed the βgallo phenotype expected of the CD8 lineage. The low expression of βgal established that these cells were not contaminants from the neighboring CD4intCD8-CD3hi population, the great majority of which were βgallo.

In the same series of experiments, MHC double-deficient (I0II0) mice with a CD4+/CD8-lineage upon selection on MHC class II molecules, also exists. However, this interpretation was questioned in subsequent reports (21, 22, 42). Therefore, we analyzed β2-microglobulin (β2m)-negative (II0) mice (43) in which the CD4-βgal reporter had been introduced, allowing a distinction between true CD8-committed cells and other populations (i.e., DPs, CD4-committed). The cytometric analysis in Fig. 6A illustrates that CD4intCD8+CD3hi cells did exist in class I-deficient mice, albeit at a much lower frequency than their counterparts in class II-deficient animals, and that they displayed the βgallo phenotype expected of the CD8 lineage. The low expression of βgal established that these cells were not contaminants from the neighboring CD4intCD8-CD3hi population, the great majority of which were βgallo.
more convoluted, generating large numbers of CD4+CD8int cells. This also appears to be true when endogenous TCR gene rearrangements in both transgenic lines are prevented by the SCID, RAG, or TCR Cα mutation (10; Heath, W., personal communication; Correia-Neves, M., unpublished results). Such a dichotomy suggests that there must be at least two modes (or a continuum) of class I-restricted CD8 lineage differentiation.

With both class I-restricted TCR tg lines, the CD4+CD8int populations contained βgallo and βgalhi cells. βgallo cells were most likely CD8-committed, in keeping with results from cell transfer experiments (18). A key question was whether the βgalhi cells were just precursors of the CD8-committed cells or whether they really included a CD4-committed population as we suspected. If there were CD4-committed cells destined to die because they bear mismatched T cell receptors and coreceptors, it should be possible to rescue them by restoring surface CD8 expression. Furthermore, the efficiency of the rescue should correlate with the ability of the TCR to generate the transitional CD4+CD8intβgalhi phenotype. Thus, one would predict that such a rescue experiment should be more successful in the OVA than the HY animals, which had previously yielded few rescued cells (49–51). We tested this prediction by crossing the HY and OVA lines with a transgenic mouse line expressing near-physiological levels of the CD8α and β chains (CD8aab [42]). Representative CD4/CD8 profiles of thymocytes and lymph node cells from these crosses are shown in Fig. 8. As observed previously (49–51), rescue of CD4+ (tgCD8+) T cells was very limited in the HY mouse; in striking contrast, close to half of the peripheral clonotypehi lymphocytes in the OVA cross were of the CD4 lineage. Thus, there was a direct relationship between the number of CD4+CD8intβgalhi thymocytes and the number of rescued class I-restricted CD4+ (tgCD8+) cells. We also observed a significant decrease in the positive selection of OVAhi thymocytes into the CD8 SP compartment. As the affinity of the OVA receptor may be quite high for its selecting ligand.

Thus, in the HY system, differentiation towards the CD8 lineage seems to proceed quite directly, from DP to CD4intCD8int to CD4-CD8+ cells, with the OVA line, it appears is not an artifact of transgene vectors or sites of integration.)

Figure 6. Lineage commitment in MHC class I-deficient and MHC-deficient mice. (A) βgal expression within defined CD4/CD8 thymocyte subsets of CD44+/L mice on a β2m− background. Thymocytes were analyzed as described in the legend to Fig. 3. (B) CD3hi thymocytes in MHC-deficient mice. CD3hi thymocytes were stained and gated according to their CD4/CD8 expression.

Figure 7. βgal expression in thymocyte populations of HY TCR tg and OVA TCR tg mice. Thymocytes from HY-TCRtgCD4+/L and OVA-TCRtgCD4+/L mice were analyzed by four-color flow cytometry. CD4/CD8 profiles of thymocytes expressing the transgene-encoded TCR (as distinguished by T3.70 for the HY TCR and anti-Vα2 for the OVA TCR) are shown. Thymocyte subpopulations were further defined (see the legend to Fig. 3) and analyzed for βgal expression.
(18), it is possible that the CD8-committed cells were deleted due to the higher levels of CD8 expression.

CD4 Lineage Cells in the Absence of CD4. Finally, we made use of the βgal reporter mice to examine the issue of CD4 lineage commitment in the absence of CD4. Previous studies had demonstrated a population of MHC class II-restricted, CD4⁺CD8⁻ TCRhi Th cells in CD4-deficient mice (26, 52–54). Although it was never formally demonstrated, these cells were quite logically considered to belong to the CD4 lineage.

We readdressed this issue by analyzing offspring from crosses of CD4-βgal knock-in mice with one of the original CD4 knockout lines (26), comparing profiles of βgal⁺ cells in heterozygous CD4⁺/L animals with those in fully deficient CD4⁻/L animals. In a four-color cytfluorimetric analysis using F6G and antibodies against CD4, CD8, and CD3, the usual CD4⁺CD8⁻ profile can be substituted with a βgal⁺CD8⁻ profile (Fig. 9). In CD4⁻ mice, the βgal⁺CD8⁻ cells in the thymus and lymph nodes were essentially all CD4⁺CD3hi, as expected; on average, they amounted to 4.0 and 15.1% of total thymocytes and lymphocytes, respectively. When the same gate was applied to βgal⁺CD8⁻ cells from CD4-negative CD4⁻/L mice, the same populations of CD3⁺ T cells were present (now CD4⁻). The thymocyte population was only moderately diminished in number, whereas the reduction was more marked in the lymph nodes. The βgal⁺CD8⁻ cells were analyzed for various surface markers and for their TCR Vβ region usage. Preliminary results indicated that these cells were not particularly different in CD4⁺ and CD4⁻ mice, implying that the cells selected in the absence of CD4 were not a special subset of Th cells (not shown).

These results formally demonstrate that thymocytes can be selected into the CD4 lineage in the absence of cell surface CD4.

Discussion

The CD4-βgal knock-in mouse line provides an accurate, convenient, and harmless means of monitoring CD4...
gene activity directly ex vivo. Expression of the βgal reporter faithfully mimicked CD4 expression, was readily detectable, and had no detectable immunological consequences. The reporter could be used whether or not the CD4 molecule itself was present. The choice of reporter also proved advantageous because the half-life of the βgal chimeric protein was significantly shorter than that of CD4, meaning that βgal activity more closely approximated CD4 gene transcription than surface display of CD4 itself. In this report, we have exploited the CD4-βgal line to study CD4/CD8 lineage commitment.

CD4-committed Intermediates in the Absence of MHC Class II Molecules. For some years, debate on the mechanism of CD4/CD8 lineage commitment has centered around the issue of whether commitment is essentially instructive or selective (49, 55, 56). A crucial distinguishing feature of these two models is the possibility of transitional populations, with mismatched receptors and coreceptors in the latter but not the former. Evidence for such populations was provided by studies on MHC-deficient and TCR tg mice and by rescue experiments based on forced expression of coreceptors (11, 12, 14, 15). However, a key finding in several of these studies was brought into question because of results from transfer experiments (18, 19) and coreceptor reexpression assays (21). In particular, these data were considered to invalidate the support given the selective model of lineage commitment by the demonstration of transitional intermediates in class II- and class I-deficient mice. We now exploit the βgal marker to establish that the CD4+CD8int population from class II-deficient mice includes cells committed to both the CD4 and CD8 lineages. CD4-committed cells maintain active CD4 gene transcription, whereas CD8-committed cells have turned off the CD4 gene, as reflected by expression of the βgal reporter (Figs. 3B and 5).

It might be argued that the CD4+CD8intβgalhi thymocytes seen in class II-deficient mice are just precursors of the βgallo cells, having not yet shut down transcription of the CD4 gene. Several observations are inconsistent with this contention: the low level of CD8 m RNA in CD4+CD8intβgalhi cells compared with their βgallo counterparts, as predicted if they are of the CD4 lineage; the very position of the βgalhi cells on the βgal/CD3 plot, visibly on a different branch than that of the βgallo cells (Fig. 4); the correlation between the numbers of CD4+CD8int βgalhi cells and the ability of the CD8 transgenes to rescue the CD4-committed cells in OVA and HY transgenic mice (Figs. 7 and 8). Finally, we have recently found that altering the avidity of TCR signaling by introducing a CD5 knockout mutation (57) increases the numbers of CD4+CD8intβgalhi cells in I0 mice, without affecting CD4+CD8int βgallo numbers; a change in ratio incompatible with a simple precursor/product relationship (Chan, S., manuscript in preparation).

The data presented here do not really contradict those from the transfer and coreceptor reexpression studies (18, 19, 21, 22). The transfer experiments (18, 19, 58) demonstrated that the CD4+CD8int population from I0 mice contained CD8-committed thymocytes, but did not rule out that it also includes CD4-committed cells because, having mismatched receptors and coreceptors, these cells should not have survived in the host wild-type thymus any better than in the I0 donor. As for the coreceptor reexpression assays, the data actually did show that cells committed to both lineages were present within the CD4+CD8int population of I0 mice (Fig. 4A in reference 21). The existence of CD4-committed cells was discounted by these authors in favor of a CD4 “default selection” pathway, hypothesized to occur independently of MHC engagement. However, no evidence for such a pathway has been observed in several studies (22, 41; Fig. 6B), so that it appears reasonable to equate the CD4-committed CD4+CD8int cells described in this report with those that reexpressed only CD4 after pronase treatment.

The existence of CD4-committed, but class I-reactive, intermediates is consistent with results from the older experiments forcing expression of coreceptors via transgenesis (11, 12, 14). Our data (Figs. 7 and 8) extend the older data by utilizing, in two TCR transgenic systems, the prediction that the numbers of intermediates with mismatched receptors and coreceptors should correlate with their ability to be rescued to full maturity by artificially expressing the appropriate coreceptor. Our results also explain the range in observations made in previous rescue experiments, relatively efficient rescue being obtained in some cases (11, 14, 59) but not in others (49, 50). Inefficient rescue has been cited repeatedly as evidence for instructive or hemi-instructive models (11, 12, 21). It is clear now that rescue experiments are not inherently inefficient but one must choose an appropriate TCRtg system that provides enough intermediates to be rescued.

The Asymmetry of Commitment. The present data reconfirm the existence of CD4 lineage-committed transitional intermediates that were nudged down the differentiation pathway by engagement of their TCRs by MHC class I molecules in the absence of class II molecules. An analogous population of CD8 lineage-committed cells was hypothesized when CD4intCD8+ cells were found in class I-deficient mice (10, 16), but their existence has been questioned (20–22, 42). Our findings confirm that transitional intermediates committed to the CD8 lineage in the absence of MHC class I molecules do exist, as evidenced by the absence of βgal expression in CD4+CD8intCD8hi cells in I0 mice (Fig. 6A). This result is consistent with reports that transgenic mice expressing class II-restricted TCRs (17, 60) and MHC-deficient mice complemented with MHC class II genes delivered by an adenovirus vector injected intrathymically (Rooke, R., manuscript in preparation) can give rise to mature bona fide CD8+ cells. However, the numbers of CD8-committed transitional intermediates in class I-deficient mice are low: 2.3 ± 0.9% of the numbers in normal mice (n = 5), compared with 20 ± 5% the normal numbers for CD4-committed intermediates in class II-negative animals. The rarity of the CD4intCD8+ cells may explain why they were not detected by other groups—either because three-color bromodeoxyuridine la-
Asymmetry is also evident in the fact that no CD4-committed equivalent of CD8-committed CD4+CD8int thymocytes (waltzers) has been described. Here, we detected no βgalhi cells in the CD4intCD8− population, in good agreement with findings from several groups (18, 21, 22). Thus, while commitment to the CD8 lineage can launch at least two different modes of differentiation, either direct progression to the CD4−CD8+ phenotype as seen for cells in the H Y system, or transit through the CD4+CD8int stage as seen for OVA T cells, commitment to the CD4 lineage seems to provoke a quite direct progression to the mature SP stage.

Pathways. What explains the diverse modes of differentiation exhibited by the CD8 lineage? A hint may come from the results of recent analyses of cis-control elements of the CD8α gene (62, 63) and past studies on CD4 gene control elements (35, 36, 64). Distinct enhancer elements promote expression of CD8, and perhaps CD4, in DP versus mature SP cells. Regulation is further complicated by a slencer located in the CD4 gene. It may be that, concomitant with positive selection, transcriptional activity driven by the DP cell-specific enhancer is shut off, and then whether the cells destined to become CD8 SP proceed directly or transit through the CD4+CD8int stage may simply reflect the speed with which the transcription factors binding to the “mature” CD8 SP–specific enhancer and/or the CD4 slencer become operational.

Differential mobilization or demobilization of transcription factors could result from different TCR affinities/avidities. It was suggested some time ago that the affinity/avidity of a DP thymocyte’s TCR for the positively selecting ligand or stromal cells might play a role in determining its pathway of differentiation (14, 49), and recent data support this notion (60, 65). It seems likely that the divergent behaviors of OVA and HY TCR tg thymocytes reflect different strengths of interaction between the two TCRs and their positively selecting ligands (18). Pircher and colleagues have also attributed the differing numbers of CD4+CD8int cells found in the P14 TCR tg line on the H-2k and H-2bm13 backgrounds to different avidities for the selecting ligands (13). At present, it is not clear whether stronger signals promote differentiation along the CD4 or CD8 pathway, as arguments have been presented on both sides (14, 49, 60, 66). Thymocyte-extrinsic factors within the thymus milieu as well as intrinsic factors of a more generalized nature also play a role in determining cell fate. Concerning the former, it should be kept in mind that the thymic stroma is very heterogeneous, containing niches where the expression of MHC molecules can vary markedly (4, 67); concerning the latter, recent results on Notch are intriguing (68).

CD4 Lineage Cells in the Absence of CD4. Finally, we confirmed that the population of MHC class II–restricted CD4−CD8− T lymphocytes previously observed in CD4-deficient mice (26, 52–54) do indeed belong to the CD4 lineage. In CD4− mice (CD40−/−), a subset of DN α/β T cells in both the thymus and the peripheral lymphoid organs expresses high levels of βgal (Fig. 9). Thus, commitment to the CD4 lineage does not require the CD4 molecule; in fact, it is quite efficient in its absence. Interestingly, although the numbers of DN CD3+βgal− thymocytes generated after selection were quite high (~30% the numbers in normal mice), their relative abundance was lower in the periphery (~12%). A possible explanation for this diminution is that signals from the CD4 molecule contribute (albeit in a dispensable fashion) both to the thymic selection of CD4+ T cells and to their later export and persistence in the peripheral lymphoid organs. This would be consistent with the idea that maintenance of naive CD4+ T cells in the periphery requires continued “tickling” by MHC molecules (69, 70).

Conclusions. The results presented here argue that CD4/CD8 lineage commitment is fundamentally symmetrical, in that engagement of either class of MHC molecule by a differentiating DP thymocyte can give rise to transitional intermediates committed to either lineage. There does not appear to be a CD4 lineage default pathway, nor any special requirements to provoke commitment to the CD8 lineage. Along both routes of differentiation, the initial lineage choice is validated at a later stage, when only those cells expressing appropriately matched T cell receptors and coreceptors are permitted to survive.

We thank S. Gilfillan for the D4 EcoRI genomic library; P. Soriano for the βgeo cassette; D. Littman for the CD4-deficient mice; H. von Boehmer and P. Kisielow for the HY TCR tg mice; R. Dubridge and D. Ca- pong for the β2m− mice; A. Baron for the CD8 transgenics; P. Kästner for critically reading the manuscript; C. Waltzinger for performing the cytofluorimetric analyses and cell sorting; P. Bohn-Marchal, C. Ebel, P. Gerber, J. Hergueux, and Corinne Bronn for excellent assistance; and P. Michel, F. Fischer, and V. Louerat for maintaining the mice.

This work was supported by institute funds from the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Hôpital Universitaire de Strasbourg, and Bristol-
References

1. Fowlkes, B.J., and D.M. Pardoll. 1989. Molecular and cellular events of T cell development. Adv. Immunol. 44:207–264.
2. Robey, E., and B.J. Fowlkes. 1994. Selective events in T cell development. Annu. Rev. Immunol. 12:675–705.
3. Shortman, K., D. Vremec, and M. Egerton. 1991. The kinetics of T cell antigen receptor expression by subgroups of CD4^+ CD8^- thymocytes delineation of CD4^+ 8^-3(2^-) thymocytes as post-selection intermediates leading to mature T cells. J. Exp. Med. 173:323–332.
4. Huesmann, M., B. Scott, P. Kisielow, and H. von Boehmer. 1991. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell. 66:533–540.
5. Teh, H.S., P. Kisielow, B. Scott, H. Kishi, Y. Uematsu, H. Bluthmann, and H. von Boehmer. 1988. Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature. 335:229–233.

6. Sha, W.C., C.A. Nelson, R.D. Newberry, D.M. Kranz, J.H. Ruse, L. Loh. 1988. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nat. 336:73–76.

7. Pircher, H., K. Burki, R. Lang, H. Hengartner, and R.M. Zinkernagel. 1989. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature. 342:559–561.

8. Berg, L.J., A.M. Pullen, B. Fazekas de St. Groth, D. Mathis, C. Benoist, and M.M. Davis. 1989. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell. 58:1035–1046.

9. Kaye, J., M.L. Hsu, M.E. Sauron, S.C. Jameson, N.R. Gascogne, and S.M. Hedrick. 1989. Selective development of CD4^+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature. 341:746–749.

10. Chan, S.H., D. Cosgrove, C. Waltzinger, C. Benoist, and D. Mathis. 1993. Another view of the selective model of thymocyte selection. Cell. 73:225–236.

11. Robey, E., A. Itano, W.C. Fanslow, and B.J. Fowlkes. 1994. Constitutive CD8 expression allows inefficient maturation of CD4^+ helper T cells in class II major histocompatibility complex mutant mice. J. Exp. Med. 179:1997–2004.

12. Itano, A., D. Kioussis, and E. Robey. 1994. Stochastic component to development of class II major histocompatibility complex-specific T cells. Proc. Natl. Acad. Sci. USA. 91:220–224.

13. Pircher, H., P.S. Ohashi, R.L. Boyd, H. Hengartner, and K. Brudusch. 1994. Evidence for a selective and multi-step model of T cell differentiation: CD4^+CD8^+ thymocytes selected by a transgenic T cell receptor on major histocompatibility complex class I molecules. Eur. J. Immunol. 24:1982–1987.

14. Chan, S.H., C. Waltzinger, A. Baron, C. Benoist, and D. Mathis. 1994. Role of coreceptors in positive selection and lineage commitment. EMBO (Eur. Mol. Biol. Organ.) J. 13:4842–4849.

15. Davis, C.B., N. Killeen, M.E. Crooks, D. Raulet, and D.R. Littman. 1993. Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell. 73:237–247.

16. van Meerwijk, J.P., and R.N. Germain. 1993. Development of mature CD8^+ thymocytes selection rather than instruction? Science. 261:911–915.

17. Kirberg, J., A. Baron, S. Jakob, A. Rolink, K. Karjalainen, and H. von Boehmer. 1994. Thymic selection of CD8^+ single positive cells with a class II major histocompatibility complex–restricted receptor. J. Exp. Med. 180:25–34.

18. Lundberg, K., W. Heath, F. Kontgen, F.R. Carbone, and K. Shortman. 1995. Intermediate steps in positive selection: differentiation of CD4^+ thymocytes into CD4^+8^- TCR hi thymocytes. J. Exp. Med. 181:1643–1651.

19. Kydd, R., K. Lundberg, D. Vremec, A.W. Harris, and K. Shortman. 1995. Intermediate steps in thymic positive selection. Generation of CD4^+8^- T cells in culture from CD4^+8^-, CD4^+8^-hi, and CD4^+8^-lo thymocytes with up-regulated levels of TCR CD3. J. Immunol. 155:3806–3814.

20. Benveniste, P., G. Knowles, and A. Cohen. 1996. CD8/CD4 lineage commitment occurs by an instructional/default process followed by positive selection. Eur. J. Immunol. 26:461–471.

21. Suzuki, H., J.A. Punt, L.G. Granger, and A. Singer. 1995. Asymmetric signaling requirements for thymocyte commitment to the CD4^+ versus CD8^- T cell lineages a new perspective on thymic commitment and selection. Immunity. 2:413–425.

22. Lucas, B., and R.N. Germain. 1996. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4^-CD8^+ thymocyte differentiation. Immunity. 5:461–477.

23. Chen, Z., G.A. Friedrich, and P. Soriano. 1994. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8:2293–2301.

24. Adra, C.N., P.H. Boer, and M.W. MCBurney. 1987. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene. 60:65–74.

25. Cosgrove, D., D. Gray, A. Dierich, J. Kaufman, M. Lemeur, C. Benoist, and D. Mathis. 1991. Mice lacking MHC class II molecules. Cell. 66:1051–1066.
26. Nolan, G.P., S. Fiering, J.F. Nicolas, and L.A. Herzenberg. 1993. Regulated expression of human CD4 rescues helper T cell development in mice lacking expression of endogenous CD4. EMBO J. (Eur. Mol. Biol. Organ.) J. 12:1547–1553.

27. Tomonari, K. 1988. A rat antibody against a structure functionally related to the mouse T-cell receptor/T3 complex. Immunogen. 28:455–458.

28. Pircher, H., N. Rebai, M. Groettrup, C. Grégoire, D.E. Speiser, M.P.H. Hopp, E. Palmer, R.M. Zinkernagel, H. Hengartner, and B. Mässlin. 1992. Preferential positive selection of Vα2+CD8+ T cells in mouse strains expressing both H-2k and T cell receptor Vα+ haplotypes: determination with a Vα2-specific monoclonal antibody. Eur. J. Immunol. 22:399–404.

29. Nolan, G.P., S. Fiering, J.F. Nicolas, and L.A. Herzenberg. 1988. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-d-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. USA. 85:2603–2607.

30. Dialynas, D.P., Z.S. Quan, K.A. Wall, A. Pierres, J. Quentin, M.R. Loken, M. Pierres, and F.W. Fitch. 1983. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J. Immunol. 131:2445–2451.

31. Le Mouellic, H., Y. Lallemand, and P. Brulet. 1990. Normal development of mice lacking expression of endogenous CD4. Proc. Natl. Acad. Sci. USA. 87:4712–4716.

32. Mansour, S.L., K.R. Thomas, C.X. Deng, and M.R. Capecchi. 1990. Introduction of a lacZ reporter gene into the murine L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J. Immunol. 131:2445–2451.

33. Rahemtulla, A., T.M. Kündig, A. Narendran, M.F. Bachmann, M. Julian, C.J. Paige, R.M. Zinkernagel, and T.W. Mak. 1994. Class II major histocompatibility complex-restricted T cell function in CD4-deficient mice. Eur. J. Immunol. 24:2213–2218.

34. Swat, W., M. Dessing, H. von Boehmer, and P. Kišelůw. 1993. CD69 expression during selection and maturation of CD4+8 T thymocytes. Eur. J. Immunol. 23:739–746.

35. Sawada, S., J.D. Scarborough, N. Killeen, and D.R. Littman. 1993. CD69 expression during selection and maturation of CD4+8 T thymocytes. J. Exp. Med. 184:2091–2099.

36. Lucas, B., F. Vasseur, and C. Penit. 1995. Stochastic coreceptor shut-off is restricted to the CD4 lineage maturation pathway. J. Exp. Med. 181:1623–1633.

37. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2m, MHC class I proteins, and CD8+ T cells. Science. 248:1227–1229.

38. Akashi, K., and I.L. Weissman. 1996. The c-kit+ maturation pathway in mouse thymic T cell development: lineages and selection. Immunol. 5:147–161.

39. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2m, MHC class I proteins, and CD8+ T cells. Science. 248:1227–1229.

40. Akashi, K., M. Kondo, and I.L. Weissman. 1998. Two distinct pathways of positive selection for thymocytes. Proc. Natl. Acad. Sci. USA. 95:2486–2491.

41. Cardell, S., S. Tangri, S. Chan, M. Kronenberg, C. Benoist, and D. Mathis. 1995. CD1-restricted CD4+ T cells in mice with histocompatibility complex class II-deficient mice. J. Exp. Med. 182:993–1004.

42. Hogquist, K.A., S.C. Jameson, W.R. Heath, J.L. Howard, M.J. Bevan, and F.R. Carbone. 1994. T cell receptor antagonist peptides induce positive selection. Cell. 76:17–27.

43. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2m, MHC class I proteins, and CD8+ T cells. Science. 248:1227–1229.

44. Robey, E.A., B.J. Fowlkes, J.W. Gordon, D. Kiousis, H. von Boehmer, F.R. amdell, and R. Axel. 1991. Thymic selection in CD8 transgenic mice supports an instructive model for commitment to a CD4+ or CD8+ lineage. Cell. 64:99–107.

45. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2m, MHC class I proteins, and CD8+ T cells. Science. 248:1227–1229.

46. Borgulya, P., H. Kishi, U. Muller, J. Kirberg, and H. von Boehmer. 1991. Development of the CD4 and CD8 lineage of T cells: instruction versus selection. EMBO (Eur. Mol. Biol. Organ.) J. 10:913–918.

47. Seong, R.H., J.W. Chamberlain, and J.R. Parnes. 1992. Signal for T-cell differentiation to a CD4+ cell lineage is delivered by CD4 transmembrane region and/or cytoplasmic tail. Nature. 356:718–720.

48. Akashi, K., and I.L. Weissman. 1996. The c-kit+ maturation pathway in mouse thymic T cell development: lineages and selection. Immunol. 5:147–161.

49. Ackerman, A., W.P. Fung-Leung, M.W. Schilham, T.M. Kündig, S.R. Sambhar, A. Narendran, A. Arabian, A. Wakeham, C.J. Paige, R.M. Zinkernagel, et al. 1991. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature. 353:180–184.

50. Ackerman, A., M. Kündig, A. Narendran, M. Bachmann, M. Julian, C.J. Paige, R.M. Zinkernagel, and T.W. Mak. 1994. Class II major histocompatibility complex-restricted T cell function in CD4-deficient mice. Eur. J. Immunol. 24:2213–2218.

51. Locksley, R.M., S.L. Rainer, H. Halam, D.R. Littman, and N. Killeen. 1993. Helper T cells without CD4: control of Leishmaniasis in CD4-deficient mice. Science. 261:1448–1451.

52. Knight, K., H. Bluthmann, U.D. Staerz, M. Steinmetz, and H. von Boehmer. 1988. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+ T thymocytes. Nature. 337:472–476.

53. Hogquist, K.A., S.C. Jameson, W.R. Heath, J.L. Howard, M.J. Bevan, and F.R. Carbone. 1994. T cell receptor antagonist peptides induce positive selection. Cell. 76:17–27.

54. Hogquist, K.A., S.C. Jameson, W.R. Heath, J.L. Howard, M.J. Bevan, and F.R. Carbone. 1994. T cell receptor antagonist peptides induce positive selection. Cell. 76:17–27.

55. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2m, MHC class I proteins, and CD8+ T cells. Science. 248:1227–1229.

56. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β2m, MHC class I proteins, and CD8+ T cells. Science. 248:1227–1229.
thymocytes into mature CD8 single-positive cells independent of MHC class I recognition. Eur. J. Immunol. 27:2024–2032.

59. Baron, A., K. Hafen, and H. von Boehmer. 1994. A human CD4 transgene rescues CD4⁻CD8⁺ cells in beta 2-microglobulin-deficient mice. Eur. J. Immunol. 24:1933–1936.

60. Matechak, E.O., N. Killeen, S.M. Hedrick, and B.J. Fowlkes. 1996. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity. 4:337–347.

61. Marodon, G., and B. Rocha. 1994. Generation of mature T cell populations in the thymus. CD4 or CD8 down-regulation occurs at different stages of thymocyte differentiation. Eur. J. Immunol. 24:196–204.

62. Hostert, A., M. Tolaini, K. Roderick, N. Harker, T. Norton, and D. Kioussis. 1997. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity. 7:525–536.

63. Ellmeier, W., M.J. Sunshine, K. Losos, F. Hatam, and D. Littman. 1997. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity. 7:537–547.

64. Uematsu, Y., A. Donda, and G. De Libero. 1997. Thymocytes control the CD4 gene differently from mature T lymphocytes. Int. Immunol. 9:179–187.

65. Sharp, L.L., D.A. Schwarz, C.M. Bott, C.J. Marshall, and S.M. Hedrick. 1997. The influence of the MAPK pathway on T cell lineage commitment. Immunity. 7:609–618.

66. Bommhardt, U., M.S. Cole, J.Y. Tso, and R. Zamoyska. 1997. Signals through CD8 or CD4 can induce commitment to the CD4 lineage in the thymus. Eur. J. Immunol. 27:1152–1163.

67. Merkenschlager, M., C. Benoist, and D. Mathis. 1994. Evidence for a single-niche model of positive selection. Proc. Natl. Acad. Sci. USA. 91:11694–11698.

68. Robey, E., D. Chang, A. Itano, D. Cado, H. Alexander, D. Lans, G. Weinmaster, and P. Salmon. 1996. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell. 87:483–492.

69. Takeda, S., H.R. Rodewald, H. Arakawa, H. Bluethmann, and T. Shimizu. 1996. MHC class II molecules are not required for survival of newly generated CD4⁺ T cells, but affect their long-term life span. Immunity. 5:217–228.

70. Rooke, R., C. Waltzinger, C. Benoist, and D. Mathis. 1997. Targeted complementation of MHC class II deficiency by intrathyrmic delivery of recombinant adenoviruses. Immunity. 7:123–134.