On the maximum value of conflict-free vertex-connection number of graphs*

Zhenzhen Li, Baoyindureng Wu †
College of Mathematics and System Sciences, Xinjiang University
Urumqi, Xinjiang 830046, P.R. China

Abstract A path in a vertex-colored graph is called conflict-free if there is a color used on exactly one of its vertices. A vertex-colored graph is said to be conflict-free vertex-connected if any two vertices of the graph are connected by a conflict-free path. The conflict-free vertex-connection number, denoted by \(vcfc(G) \), is defined as the smallest number of colors required to make \(G \) conflict-free vertex-connected. Li et al. [10] conjectured that for a connected graph \(G \) of order \(n \), \(vcfc(G) \leq vcfc(P_n) \). We confirm that the conjecture is true and pose a relevant conjecture concerning the conflict-free connection number introduced by Czap et al. in [6].

Keywords: Conflict-free connection; Conflict-free vertex-connection; Tree

1 Introduction

We consider simple, finite and undirected graphs only, and refer to the book [1] for undefined notation and terminology. Let \(G = (V, E) \) be a finite graph with vertex set \(V \) and edge set \(E \). The size of \(G \), denoted by \(e(G) \), is \(|E| \). The degree of a vertex \(v \), denoted by \(d_G(v) \), is the number of edges which are incident with \(v \) in \(G \). As usual, \(\delta(G) \) and \(\Delta(G) \) denote the minimum degree and the maximum degree of \(G \), respectively. A subgraph \(H \) of \(G \) is a spanning subgraph of \(G \) if \(V(H) = V(G) \).

We use \(K_n \), \(P_n \), and \(K_{1,n-1} \) to denote the complete graph, the path, and the star of order \(n \), respectively.

Very recently, Czap et al. introduced the concept of conflict-free connection in [6]. A path in an edge-colored graph is called conflict-free if there is a color used on exactly one of its edges. An edge-colored graph is said to be conflict-free connected if any two vertices of the graph are connected by a conflict-free path. The conflict-free connection number of a connected graph, denoted by \(cfc(G) \), is defined as the smallest number of colors required to make \(G \) conflict-free connected.

*Research supported by NSFC (No. 11571294)
†Corresponding author. Email: baoywu@163.com (B. Wu)
Motivated by the above mentioned concepts, as a natural counterpart of a conflict-free connection number, Li et al. [10] introduced the concept of conflict-free vertex-connection number. A path in a vertex-colored graph is called conflict-free if there is a color used on exactly one of its vertices. A vertex-colored graph is said to be conflict-free vertex-connected if any two vertices of the graph are connected by a conflict-free path. The conflict-free vertex connection number, denoted by $vcfc(G)$, is defined as the smallest number of colors required to make G conflict-free vertex-connected. Note that for a nontrivial connected graph G of order n,

$$2 \leq vcfc(G) \leq n$$ (1)

Li et al. determined the conflict-free vertex connection number of almost all graphs by showing the following result.

Theorem 1.1. (Li et al. [10]) Let G be a connected graph G of order at least three. Then $vcfc(G) = 2$ if and only if G is 2-connected or it has only one cut vertex.

So, a basic question arise: what is the maximum value of the conflict-free vertex connection numbers of all graphs of order n?

It can be observed in [10] that for a nontrivial connected graph G, if H is a spanning subgraph of G, then $vcfc(H) \geq vcfc(G)$. In particular, for any spanning tree T of G, $vcfc(T) \geq vcfc(G)$. Thus the maximum value of the conflict-free vertex connection numbers must be achieved by some tree of order n. It can be checked that $vcfc(K_{1,n-1}) = 2$ for any $n \geq 2$. In particular, Li et al. showed that

Theorem 1.2. (Li et al. [10]) For an integer $n \geq 2$, $vcfc(P_n) = \lceil \log_2(n + 1) \rceil$.

A k-ranking of a connected graph G is a labeling of its vertices with labels $1, \ldots, k$ such that every path between any two vertices with the same label i in G contains at least one vertex with label $j > i$. A graph G is said to be k-rankable if it has a k-ranking. The minimum k for which G is k-rankable is denoted by $r(G)$. Iyer et al. [9] showed that for a tree of order $n \geq 3$, $r(T) \leq \log_2\frac{n}{2}$. Li et al. [10] showed that

Theorem 1.3. (Li et al. [10]) For a tree of order $n \geq 3$, $vcfc(T) \leq \log_2\frac{n}{2}$.

Further, Li et al. [10] conjectured that

Conjecture 1.4. For a connected graph G of order n, $vcfc(G) \leq vcfc(P_n)$.

The aim of this note is to prove the conjecture. We refer to [2, 3, 4, 5, 8, 12] for some relevant works on conflict-free coloring of graphs.
2 The proof

We begin with the following key lemma. For convenience, we denote by moc($T - v$) the maximum value of the orders of all components of $T - v$.

Lemma 2.1. Let T be a tree of order $n \geq 3$. If n is odd, then there exists a vertex v with moc($T - v$) $\leq \frac{n-1}{2}$.

Proof. Choose a vertex $v_0 \in V(T)$ such that moc($T - v_0$) = min\{moc($T - v$) | v run over all non-leaf vertices of T\}. We claim that v_0 is the vertex v, as we required. If it is not, then there exists a component of $T - v_0$, say T_1, has order $n_1 > \frac{n-1}{2}$. Note that $n_1 = moc(T - v_0)$. Let v_1 be the neighbor of v_0 in T_1. Let us consider the orders of the components of $T - v_1$. The component of $T - v_0v_1$ containing v_0 is a component of $T - v_1$ having order with $n - n_1 < n - \frac{n-1}{2} = \frac{n+1}{2}$ (implying that $n - n_1 \leq \frac{n-1}{2}$). Moreover, since all other components of $T - v_1$ is a proper subgraph of T_1, their orders are less than the order of T_1. It follows that moc($T - v_1$) $< n_1 = moc(T - v_0)$, contradicting the choice of v_0. This shows that the claim is true, and thus the result follows.

Now we are ready to prove Conjecture 1.4.

Theorem 2.2. For a tree T of order n, vcfc(T) \leq vcfc(P_n).

Proof. We show it by induction on n. The result is trivially true when $n = 2$, and now assume that $n \geq 3$. Then there exists an integer $k \geq 2$ such that $2^{k-1} \leq n \leq 2^k - 1$. Let T be a spanning tree of G. As we have seen before, vcfc(G) \leq vcfc(T). By Theorem 1.2, vcfc(P_n) = k. So it suffices to show that vcfc(T) \leq k.

By Lemma 2.1, there exists a vertex $v \in V(G)$ with moc($T - v$) $\leq 2^{k-1} - 1$ (If necessary, by adding some pendent vertices to T, one can make the resulting tree T' have $2^{k-1} - 1$ vertices, and apply Lemma 2.1 to T'). Let T_1, \ldots, T_l be all components of $T - v$, and $n_i = |V(T_i)|$ for each i. By the induction hypothesis, vcfc(T_i) $\leq k - 1$ for each i. Taking a conflict-free coloring of T_i using colors in $\{1, \ldots, k - 1\}$ for each i, and color the vertex v by k, we obtain a conflict-free coloring of T using colors in $\{1, \ldots, k\}$. This proves vcfc(T) $\leq k$, and thus vcfc(G) \leq vcfc(P_n).

3 Further research

In this note, we focuss on the conflict-free vertex-connection number, and combining some known results, we have shown that for a connected graph of order n,

$$2 \leq vcfc(G) \leq \lceil \log_2(n + 1) \rceil,$$
where the lower bound can be achieved by 2-connected graphs of order \(n \) and the upper bound can be achieved by \(P_n \).

In [6], Czap et al. determined the conflict-free connection number of all graphs by showing that for a noncomplete 2-connected graph \(G \), \(cfc(G) = 2 \). It was further extended in [2] by Chang et al. showing that for a noncomplete 2-edge-connected graph \(G \), \(cfc(G) = 2 \).

Clearly, for an integer \(n \geq 2 \), \(K_n \) is the unique connected graph \(G \) of order \(n \) with \(cfc(G) = 1 \). On the other hand, \(cfc(K_{1,n-1}) = n - 1 \). Observe that for a nontrivial connected graph \(G \), if \(H \) is a spanning subgraph of \(G \), then \(cfc(H) \geq cfc(G) \). In particular, for any spanning tree \(T \) of \(G \), \(cfc(T) \geq cfc(G) \). Thus the maximum value of the conflict-free connection numbers must be achieved by some tree of order \(n \). Actually, (see [10]) for a nontrivial connected graph \(G \) of order \(n \),

\[
1 \leq cfc(G) \leq n - 1,
\]

with the left hand side of equality if and only if \(G \cong K_n \), and with the right hand side of equality if and only if \(G \cong K_{1,n-1} \).

It is an interesting problem to decide that among all trees of order \(n \), which one has the least conflict-free connection number? Czap et al. [6] showed that for an integer \(n \geq 2 \), \(cfc(P_n) = \lceil \log_2 n \rceil \). We pose the following conjecture.

Conjecture 3.1. For a tree \(T \) of order \(n \), \(cfc(T) \geq \lceil \log_2 n \rceil \).

Another interesting problem, posed by Li [11], is the complexity for determining the conflict-free connection number or the conflict-free vertex-connection number of a graph. Yang [13] designed a polynomial-time algorithm to determine the conflict-free connection number of a tree.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] H. Chang, T.D. Doan, Z. Huang, X. Li, I. Schiermeyer, Graphs with conflict-free connection number two, Xiv:1707.01634v1 [math.CO].

[3] H. Chang, Z. Huang, X. Li, Y. Mao, H, Zhao, Nordhaus-Gaddum-type theorem for conflict-free connection number of graphs, arXiv:1705.08316 [math.CO].

[4] P. Cheilaris, B. Keszegh, D. Pálvölgyi, Unique-maximum and conflict-free coloring for hypergraphs and tree graphs, SIAM J. Discrete Math. 27 (2013) 1775-1787.

[5] P. Cheilaris, G. Tóth, Graph unique-maximum and conflict-free colorings, J. Discrete Algorithms 9 (2011) 241-251.
[6] J. Czap, S. Jendrol, J. Valiska, Conflict-free connection of graphs, Accepted by Discuss. Math. Graph Theory.

[7] B. Deng, W. Li, X. Li, Y. Mao, H. Zhao, Conflict-free connection numbers of line graphs, arXiv:1705.05317 [math.CO].

[8] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33 (2003) 94-136.

[9] A.V. Iyer, H.D. Ratliff, G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988) 225-229.

[10] X. Li, Y. Zhang, X. Zhu, Y. Mao, H. Zhao, Conflict-free vertex-connections of graphs, arXiv:1705.07270v1[math.CO].

[11] X. Li, private communication.

[12] J. Pach, G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab. Comput. 18 (2009) 819-834.

[13] W. Yang, private communication.