Chapter 6

Development of the Cardiac Conduction System and the Possible Relation to Predilection Sites of Arrhythmogenesis, with Special Emphasis on the Role of the Posterior Heart Field

Edris A.F. Mahtab¹, Monique R.M. Jongbloed¹, Nico A. Blom², Martin J. Schalij³, Adriana C. Gittenberger-de Groot¹

¹Department of Anatomy & Embryology, ²Department of Pediatric Cardiology and ³Department of Cardiology, Leiden University Medical Center, The Netherlands

Modified after:
Jongbloed MRM, Mahtab EAF et al., 2008, The Scientific World Journal 8, 239-269
Development of the Cardiac Conduction System and the Possible Relation to Predilection Sites of Arrhythmogenesis, with Special Emphasis on the Role of the Posterior Heart Field

Abstract
The cardiac conduction system encompasses a complex system responsible for the coordinated contraction of the heart. In the developing heart, as well as in the adult heart, tissues of the (putative) cardiac conduction system are characterized by different properties compared to the surrounding working myocardium, which can be observed on a histological level, as well as by the expression patterns of several immunohistochemical and molecular markers. In recent years, many markers have been discovered that have helped to elucidate the processes involved in cardiac conduction system development. It has become clear that multiple genes, cells and their interactions are involved in this complex process. In this chapter, an overview of the current knowledge on cardiac conduction system development is supplied, also positioning specifically podoplanin as our gene of interest for this thesis. Furthermore, several controversies regarding conduction system development are discussed, as well as the possible significance of embryologic development of the cardiac conduction system for the development of arrhythmias later in life.
Introduction
Cardiac arrhythmias are frequently encountered in clinical practice. Clinical mapping studies demonstrate that arrhythmias are often found at specific anatomical sites. The development of the heart and the cardiac conduction system cannot be seen as separate entities, but are closely related (Fig. 1). Therefore, in this chapter cardiac development will be described shortly, whereafter the development of the cardiac conduction system is addressed. Subsequently, anatomical predilection sites for the occurrence of clinical arrhythmias will be described in relation to cardiac conduction system development.

Figure 1. Schematic overview of the time span of development of the different cardiac components. Development of the cardiac conduction system is narrowly related to the development of the cardiac chambers and vascular system.

Short Outline of Cardiac Development
In vertebrates, the heart is the first organ that is formed and becomes functional during early embryogenesis. For a short description of the cardiac development relevant for understanding the characteristics of conduction system differentiation the information presented in Chapter 1 can be used. The heart tube is initially attached to the embryonic (non-cardiac) mesoderm via the dorsal mesocardium, which is disrupted during looping only leaving contact at the arterial and venous pole. After looping, the heart tube consists of several segments, being the left and right horn of the sinus venosus, the primitive atrium, the ventricular inlet segment...
and the ventricular outlet segment. These segments are separated by so-called transitional zones that connect at the inner curvature of the heart (Fig. 2a-c). Cardiac septation and the formation of valves at the right and left AV junctions and in the right and left ventricular outflow tracts eventually results in the presence of a functional four chambered heart, that directs the separate systemic and pulmonary circulation of blood.

Figure 2. Schematic representation of the cardiac rings. a. During looping, so-called transitional zones or rings can be recognised in the heart that are positioned in between the putative cardiac chambers, being the sinoatrial transition (SAR), the atrioventricular transition (AVR), the primary ring (PR) and the ventriculo-arterial transition (VAR). b,c. Position of these rings during further cardiac development. AS: aortic sac, PA: primitive atrium, SV: sinus venosus, VIS: ventricular inlet segment, VOS: ventricular outlet segment.

Development of the Cardiac Conduction System

As mentioned in Chapter 1, the origin of the cells of the cardiac conduction system (CCS) has been the topic of interest in many studies of the last decade. Retroviral reporter gene transfection lineage studies have demonstrated that cardiomyocytes are the progenitors of the cardiac conduction cells in the embryonic heart. Whether the cardiomyocytes that form CCS-tissue are derived from the division of differentiated (pre-specified) conduction cells (“specification-model”), or are recruited from a pool of multipotent (undifferentiated) cardiomyogenic cells (“recruitment-model”), is however still unclear. The origin of the CCS is also viewed by some researchers as myocardium originating from the primary heart tube, in which the expression of certain genes prevent differentiation of this myocardium to a chamber working myocardium phenotype. In this theory, this first heart field derived myocardium will contribute to the CCS, while the chamber myocardium balloons out from the primary heart tube (the so called Ballooning model).
Studies performed in chick embryos have demonstrated the development of both working myocardial cells and central and peripheral conduction cells from the same clone, and therefore strongly indicate that cells of the CCS originate from a common myogenic precursor in the embryonic tubular heart, i.e. a bipotential myocardial cell population, that is selectively recruited to the developing cardiac pacemaking and conduction system2,6. However, the mechanisms that determine the fate of the cardiomyocytes to become either a working myocardial cell or a cardiac conduction cell, are still unclear. The growth and differentiation factor Neuregulin can induce cardiomyocytes to a conduction system phenotype, as was demonstrated by the induction of ectopic CCS-\textit{lacZ} expression after exposure to Neuregulin7. Furthermore, changes in electrical activation patterns supporting a critical role of Neuregulin in recruitment of cardiomyocytes to the cardiac pacemaking and conduction system have been observed. Recently, an interaction between Endothelin and Neuregulin has been suggested to promote the differentiation of the murine CCS8. Gassanov et al. describe differentiation of atrial derived cardiomyocytes to a pacemaker like phenotype induced by Endothelin-1 (but not Neuregulin), using murine embryonic stem cells expressing enhanced green fluorescent protein (EFGP) under the transcriptional control of the ANP (atrial natriuretic peptide) promoter9.

Posterior Heart Field and Cardiac Conduction System
Extracardiac Contributions to the Cardiac Conduction System

Neural crest cells
Neural crest cells migrate to the heart and enter the heart at the arterial and venous pole as mentioned in Chapter 1. A specific population of neural crest cells entering the heart at the venous pole can be observed in the vicinity of putative elements of the cardiac conduction system before they undergo a fate of apoptosis, which has led to the hypothesis that these cells may indirectly be involved in CCS differentiation\(^{10-12}\). Recent work from Gurjarpadhye et al. demonstrates that neural crest ablation in chick results in lack of differentiation of the compact lamellar organisation by the His bundle (that separates it from the working myocardium)\(^ {13}\). Nakamura et al., who also demonstrated the presence of neural crest cells near elements of the cardiac conduction system in mice, describe that some of these neural crest derived cells possess glial markers, that are known to be expressed in cells contributing to the electrical insulation of nerves\(^ {14}\).

Epicardium derived cells
The second extracardiac contribution to the heart comes from the epicardium derived cells (EPDCs). Epicardium formation is initiated by the formation of the proepicardial organ, a villous structure that protrudes in the pericardial cavity close to the venous pole of the heart\(^ {15}\). As we have indicated that the proepicardial organ is also derived from the posterior heart field, the true extracardiac origin of the EPDC can be debated\(^ {15}\) (Chapter 3 and 7, this thesis). EPDCs contribute to several cardiac structures, including the coronary arteries, the atrioventricular valves, the fibrous heart skeleton and the myocardial architecture\(^ {15}\). In the cardiac conduction system, EPDCs are important for the induction of Purkinje fiber formation\(^ {16}\). The peripheral Purkinje fibers develop from differentiating ventricular cardiomyocytes\(^ {2,17,18}\). Inhibition of proepicardial outgrowth causes Purkinje fiber hypoplasia and abnormal differentiation of Purkinje fibers in quail embryos\(^ {16}\). EPDCs may either be involved in Purkinje fiber development by cooperation with inducing factors secreted by endothelial and endocardial cells, or by production of endothelial factors themselves\(^ {15,19}\).

In a recent study, both epicardium and EPDCs were found to be expressing periostin, that is found in colocalization with EPDCs in the atrioventricular valves and fibrous heart skeleton, also contributing to the annulus fibrosis, that electrically isolates the atria from the ventricles\(^ {20}\).
Histology

Although in recent years several immunohistochemical and molecular markers of the developing CCS have been identified, the original descriptions of the developing CCS are based on strictly histological criteria as observed with light microscopy. Thirty years ago Viragh and Challice have described in great detail the developing CCS in mouse embryos. From these studies it has become clear that areas of putative CCS can be distinguished from the working myocardium based on histological criteria. In these studies cells of the developing CCS were characterized by a larger cell size, less developed and reduced number of myofibrils and a higher glycogen content than working cardiomyocytes.

The earliest sign of a morphologically specialized atrioventricular (AV) conduction pathway can be observed at embryological day (E) 9-10 in the mouse, and is located at the inner dorsal wall of the AV canal. During development this primordial AV node becomes structurally more compact. At stage E11 the primordia of both the sinoatrial node (in the medio-anterior wall of the right superior caval vein) and the AV node can clearly be distinguished. Both these structures, as well as the AV bundle, develop simultaneously in the mouse heart, between E11-E12 (5-5.5 weeks in the human). At E13.5, all components of the CCS can be distinguished, with exception of the Purkinje fibers.

The AV node is connected with the His bundle that is located on the ridge of the interventricular septum. The left and right bundle branches extend down the subendocardial layers on both sides of the interventricular septum.

Insulation of the atrial myocardium from the ventricular myocardium occurs by development of the annulus fibrosis, that starts out by fusion of sulcus tissue with cushion tissue at the ventricular site of the AV junctional myocardium and moves the original atrioventricular myocardium to an atrial position. At E13-14 connective tissue begins to invade the AV sulcus and histological separation of the atria from the ventricles is initiated. Also, progressive insulation between the cells of the CCS and the ventricular working myocardium occurs. These processes however remain incomplete until birth and continue in the neonatal period.

Some authors have described an anterior AV node related to congenital heart disease. A dual origin of the AV node is supported by observations with the marker HNK1 in human. In the histological studies by Viragh and Challice also a left sided sinoatrial node was observed in the medial wall of the left superior caval vein, that eventually became integrated into the dorsal wall of the left atrium. A dual sinoatrial node is a condition that has been associated in humans with right isomerism. In chapters 2 and 4 of this thesis we provide more insight on the role of the posterior heart field in the formation of the myocardial Anlage of a transient left sided sinoatrial node and the definitive right sinoatrial node, suggesting a bilateral development of the sinoatrial node. Interestingly, the earliest pacemaker in the tubular heart has been
demonstrated at the site of the left atrium primordium32. Whether these cells also contribute to the atrioventricular conduction system, as postulated, remains to be proven. Another recent study indicates that the transcription factor Pitx2c, involved in left/right signalling in the heart, suppresses sinus node formation on the left side33, as foetuses that lack the expression of Pitx2c exhibit right isomerism and form sinus nodes at both the right and left sinoatrial junction33-36.

The 4 Ring Theory of CCS Development

Using the same histological criteria as Viragh and Challice to distinguish working myocardium from myocardium with more specialized features, the observation was made that after looping of the heart has started, 4 rings of tissue could be distinguished from the surrounding working myocardium, as described in 1976 by Wenink37. These 4 rings are positioned at the above described transitional zones of the heart38, being the sinoatrial ring in between the sinus venosus segment and the primitive atrium, the atrioventricular ring in between the primitive atrium and primitive left ventricle, the primary ring or fold that separates the primitive left ventricle from the primitive right ventricle and the ventriculo-arterial ring at the junction of the primitive right ventricle with the truncus or putative outflow tract of the heart (Fig. 2a).

At these transitional zones, different staining properties of the myocardium, as well as size and chromatin distribution of the cells indicated the presence of primitive specialized tissue. The so-called “ring-theory”, hypothesizes that these 4 rings of “specialized” tissue are the precursors of the CCS. During further looping of the primitive heart tube these 4 rings come together in the inner curvature of the heart (Fig. 2b,c), and during further differentiation of the heart part of the tissue loses its specialized character. What remains of the rings become the definitive elements of the mature cardiac conduction system. According to this theory the sinoatrial ring contributes to the formation of the sinoatrial node, both the sinoatrial ring and atrioventricular ring contribute to the AV-node, and the primary ring gives rise to the His bundle and bundle branches. This theory has since its introduction been the subject of discussion and controversy, which was renewed in recent years after the introduction of several immunohistochemical and molecular markers for CCS development.

Figure 3. HNK1 expression in the human embryo. Explanation see text. LVV left venous valve, PV: primitive pulmonary vein, RVV: right venous valve, VCS: superior caval vein. Adapted from: Blom et al29.
Immunohistochemical Markers of CCS Development

In the past decades several immunohistochemical markers have been used to study the developing CCS. Although many of these markers have increased our understanding of CCS development, a limitation is that none of them are specific for cardiac conduction system only. In the nineties, the expression pattern of a neurofilament-like protein in the rabbit heart was used as marker for the developing CCS. The presence of neurofilament-like protein was demonstrated in a ring at the sinoatrial and atrioventricular junctions and in ventricular components of the developing CCS, which were distributed in the ventricular subendocardium and connected to the atrioventricular ring.

Expression of the monoclonal antibody HNK1, originally used as a marker of neural crest cells during embryologic development, is observed in the sinus venosus myocardium and in the developing CCS of several species, including rat, chick and human. HNK1 is predominantly expressed in the developing sinoatrial and atrioventricular CCS, and the expression pattern seems to correspond with the rings described by Wenink. In human embryos, HNK1 stains the sinoatrial node, the internodal myocardium in the right atrium, the right atrioventricular ring with the posterior and anterior AV nodes, a retro aortic ring, the His bundle and the bundle branches. Furthermore, the myocardium surrounding the primitive pulmonary vein demonstrates transient staining (Fig. 3).

The neural tissue antigen Gln2, highly homogenous to HNK1, was described to be expressed in a single ring of tissue at the site of the primary ring in the early embryonic heart, which changes shape during development as a result of tissue remodelling underlying cardiac septation. This ring was hypothesized to eventually give rise to the atrioventricular CCS.

The cell surface carbohydrate PSA-NCAM has been detected in ventricular trabeculae and the interventricular septum in the chick, in a pattern resembling the bundle branches and Purkinje fibers.
Podoplanin and Posterior Heart Field in CCS Development

In Chapter 2 we described the expression of podoplanin as a coelomic and myocardial marker. Podoplanin is a 43 kd mucin-type transmembrane glycoprotein that outside the heart is found in e.g. osteoblasts, the nervous system, epithelia of lung, eye, esophagus and intestine, mesothelium of the visceral peritoneum, in the podocytes of the kidney and in lymphatic endothelium44-47. Expression of podoplanin in the heart indicates this protein as a marker for developing sinus venosus myocardium derived from the posterior heart field, which contributes to mesenchyme and myocardium at the venous pole of the primary heart tube (Chapter 3). Podoplanin is expressed in the coelomic lining (in close contact with the sinoatrial nodal myocardium) and in the underlying mesenchyme adjacent to the cardinal veins. Podoplanin positive mesenchyme differentiates into myocardium that stains negative for Nkx2.5 in the sinoatrial node and in the wall of the cardinal veins. During cardiac development, podoplanin is expressed, besides in the proepicardial organ and epicardium, in myocardium along the right and left cardinal vein and in both the right- and left sided sinoatrial node (which persists in later stages only in the right sided sinoatrial node and part of the venous valves, an expression pattern opposed to Nkx2.5), the base of the atrial septum, the posterior atrioventricular canal, the atrioventricular nodal region, the common bundle (His bundle) and moderator band. Also, during early developmental stages, podoplanin is expressed in the differentiating primitive myocardium of the wall of the pulmonary veins (Chapter 2) (Fig. 4).

In podoplanin knockout mice, the sinus venosus myocardium is underdeveloped (Chapter 4 and 5). The sinoatrial node and venous valves are hypoplastic, as well as the dorsal atrial wall and the atrial septum, resulting in a larger secondary foramen. Also the wall of the pulmonary and cardinal veins are hypoplastic. The myocardium around the wall of the cardinal veins shows several discontinuities. Furthermore, myocardialization around the pulmonary veins is diminished and in several areas of the wall of the common pulmonary vein the myocardium is absent. In the older embryonic stages the medial layer smooth muscle cells in the wall of the pulmonary vein and left dorsal atrial wall is very thin in the mutants compared to the wild type embryos. With regard to the CCS abnormalities the hypoplastic sinoatrial node is related to the diminished contribution of the posterior heart field. The abnormal sinoatrial node in this model might provide more insight into development of clinical syndromes such as sick sinus syndrome. Functional experiments are necessary to elucidate this.

In an earlier paragraph of this chapter the role of EDPCs in formation of the Purkinje fibers has been reported. Podoplanin is involved in the formation of the EPDCs by regulating E-cadherin, which is an essential epithelial molecule involved in epithelial-mesenchymal transformation48 (Chapter 3 and 7). In podoplanin mutants, E-cadherin is downregulated leading to an impaired epithelial-mesenchymal transformation and consequently diminished formation of EPDCs.
This finding has been linked to abnormal and deficient development of the Purkinje fibers and results in functional CCS abnormalities16.

Figure 4. Three-dimensional (3-D) reconstructions (a,d,g for color codes see below) and transverse sections (b,c,e,f,h,i) of an E13.5 wildtype (WT) mouse heart demonstrating podoplanin and Nkx2.5 expression. a. ventral view of a reconstruction giving an overview of podoplanin expression in various parts of the cardiac conduction system (CCS) myocardium. Line b indicates podoplanin expression in the sinoatrial node region (SAN) and line c indicates podoplanin staining around the common pulmonary vein (CPV) corresponding to sections b and c respectively (for details see e and f). Podoplanin expression is indicated in the SAN, right (RVV) and left (LVV) venous valves, the atrioventricular nodal region (AVN), common bundle (CB) and bundle branches (BB). d and g: dorsal view of reconstructions showing respectively podoplanin positive (purple) and Nkx2.5 negative (lime green) areas at the sinus venosus region of the embryonic heart. Line e demonstrates a dorsal view of podoplanin expression at the SAN and line f demonstrates a dorsal view of podoplanin expression around the CPV, indicated in sections e and f respectively (boxed area in b and c). Lines h and i indicate similar regions as lines e and f showing Nkx2.5 negative areas of the SAN (section h) and around the CPV (marked area in section i). The podoplanin positive area of the sinus venosus region corresponds with the more extensive Nkx2.5 negative (mosaic) area (compare d with g). AS: atrial septum, LA: left atrium, LV: left ventricle, RV: right ventricle. Colour codes: light brown: myocardium of the atria, dark brown: myocardium of the ventricles, transparent blue: cardinal veins, pink: pulmonary veins, purple: podoplanin positive myocardium and lime green: Nkx2.5 negative (mosaic) myocardium. Scale bars: b and c: 200 μm, e,f,h and i: 100 μm.
Molecular Markers for CCS Development

In recent years extensive study focusing on genetic determinants of cardiac conduction system formation has evolved. Study of transcription factors involved in cardiogenesis have made clear that regulation of myocardial differentiation into either a conductional or working myocardial phenotype is not dependent on a single gene, but is a multifactorial process during which several factors from different gene families contribute to the formation of the different subcompartments of this complex system. Molecular markers that have been used to delineate (elements of) the developing cardiac conduction system include minK-lacZ, CCS-lacZ, cGATA-6-lacZ, cardiac troponin I-lacZ, GATA-1, the homeodomain transcription factor Nkx2.5, the recently described Hop and Shox2, Id2, HCN 4 and the T-box transcription factors Tbx2, Tbx3 and Tbx5. Furthermore, the expression pattern of several connexins in cardiac tissues has contributed to our understanding of the development and function of the CCS. Most of these transcription factors do not function in an autonomic matter, but interact with other factors, resulting in synergistic or repressing effects. The currently known molecular markers of CCS development are briefly described under the subheadings below.

The T-box family of transcription factors

In the developing heart the T-box transcription factors Tbx2 and Tbx3 are expressed in the cardiac inflow tract, the atrioventricular canal, the outflow tract and inner curvature of the heart. These factors presumably are transcriptional repressors of chamber formation, as both genes repress the genes Nppa (ANF) and Cx40, present in (e.g.) atrial working myocardium. In general, expression of Tbx2 and Tbx3 is mainly observed in putative slow conducting areas, but also in the His bundle and the proximal part of the bundle branches. The expression of Tbx2 decreases from early foetal stages, whereas the expression of Tbx3 increases. In the developing heart expression of Tbx3 is observed in the sinoatrial node, AV node, but also in intermodal myocardium, and in the His bundle and proximal bundle branches. Next to expression in part of the putative CCS, Tbx3 expression is also observed in the atrioventricular cushions. Homozygous Tbx3 mutant mice display a syndrome known in humans as ulnarmammary syndrome, and display early embryonic mortality, presumably due to severe compromise of the yolk sac.

Recently, the function of Tbx3 in controlling the sinoatrial node gene program has been described. Tbx3 is expressed in the developing and mature sinoatrial node, and is required to suppress the expression of genes regulating atrial differentiation. Furthermore, Tbx3 can induce ectopic pacemaker sites in the atria. The T-box transcription factor Tbx5 is also expressed in the developing central CCS, including the AV node, AV bundle and bundle branches, and is needed for correct morphogenesis and maturation of the CCS. Mice lacking Tbx5 display a cardiac phenotype that resembles the Holt-Oram syndrome, including atrial
septal defects and conduction system abnormalities54. ANF and Cx40, both expressed in cells of the (fast conducting) CCS are gene targets of Tbx5, and Cx40 is abrupted in Tbx5 mutated mice (Tbx5del/+))53. Tbx18 is expressed in the sinus horns and is most likely essential for proper formation of the sinus venosus, as in mice deficient for Tbx18, formation of the sinus venosus is disturbed55.

Homeodomain transcription factors

The homeodomain transcription factor Nkx2.5 is one of the earliest markers of the cardiac lineage, and is already expressed in the cardiogenic mesoderm56. During cardiac development expression of Nkx2.5 correlates with the recruitment of cells to the developing atrioventricular conduction system57. During development of the CCS, Nkx2.5 expression is elevated in the differentiating atrioventricular conduction system, compared to expression in the adjacent working myocardium. In Nkx2.5 haplo-insufficient mice, there is hypoplasia of the AV node and His bundle, and the number of peripheral Purkinje fibers is significantly reduced58. Cardiac phenotypes of mutations in Nkx2.5 in mouse models resemble those in humans and include conduction defects59. Nkx2.5 is not expressed in posterior heart field derived myocardium including the sinoatrial node and the sinus venosus55 (Chapter 2). Furthermore, Nkx2.5 interacts with the Cx40 promoter region, and mice lacking Nkx2.5 demonstrate a significant decrease in Cx40 expression60. Nkx2.5 can form a complex with the transcription factor Tbx2, that is able to suppress ANF promoter activity in the AV canal, which may be a mechanism that helps to regulate the sites of chamber formation in the developing heart61. Nkx2.5 can also bind to Tbx5, and both are essential components in the activation of the ANF gene.

The homeodomain transcription factor Msx2, a downstream target of Pax-3/splotch (which is a key player within early cardiac neural crest development), is expressed in the developing central CCS but not the peripheral Purkinje fibers, in the chick. However, no abnormalities in the cardiac conduction have been observed in Msx2 mutant mice62,63. The homeobox gene Hop is strongly expressed in the AV node, His bundle and bundle branches of the adult CCS and Hop null mice demonstrate conduction defects below the AV node, related to decreased expression of Cx4064.

The homeodomain transcription factor Shox2 is expressed in the embryo in the craniofacial region, limbs, brain and heart65. In the heart, it can be detected as early as E8.5 in the posterior region of the primitive heart tube. During further development Shox2 is expressed in the sinus venosus myocardium, that includes the sinoatrial nodal region and the venous valves, and expression is also observed in the primitive left and right bundle branches66. Shox2 knockout mice die between 11.5 and 13.5 days post coitum, and show severe hypoplasia of the sinus venosus myocardium of the posterior heart field, including a decreased size of the
sinoatrial node region and hypoplastic venous valves. Interestingly, in knockout mice aberrant expression of Cx40, Cx43 and of Nkx2.5 is observed within the sinoatrial node, indicating abnormal differentiation of the sinoatrial node, as well as disturbed pacemaker function of the node in zebrafish embryos. Given these results, an important function for Shox2 in recruiting sinus venosus myocardium including the sinoatrial nodal region was hypothesized. The bicoid related homeodomain transcription factor Pitx2c is involved in directing left-right identity in the heart at the venous pole and is probably involved in suppression of left sided sinus node formation, as Pitx2c deficient foetuses form sinoatrial nodes in both the right and left atrium.

Id family of transcriptional repressors (helix-loop-helix containing transcriptional repressors)

Recently, conduction system specific expression of Id2 has been described. The gene Id2, identified by serial gene expression analysis (SAGE) as having ventricular conduction system expression, is a downstream target of Tbx5 and Nkx2.5. Specification of the ventricular cardiac conduction system fails in mice haploinsufficient for both Tbx5 and Nkx2.5. Id2-/- mice demonstrate ECG features of abnormal interventricular conduction such as left bundle branch block in newborn and adult knock-out mice. Furthermore, intracardiac recordings are consistent with abnormal intraventricular conduction within the bundle branches. Id2-/- mice display abnormal morphology of the atroventricular bundle and left bundle branch, similar to abnormalities observed in adult mice with Tbx5 haplo-insufficiently. In situ hybridization demonstrated that Id2, expressed in the cardiac conduction system in wild type hearts, is not expressed in compound Tbx5+/−/Nkx2.5+/− hearts, indicating that ventricular cardiac conduction system specific expression of Id2 is dependent on Nkx2.5 and Tbx5.

Basic helix-loop-helix (bHLH) transcription factors

Non-expression of the basic helix-loop-helix (bHLH) transcription factor Mesp1 has recently been reported in the ventricular conduction system.

The GATA family of transcription factors/Zinc finger subfamilies

The GATA-family is a relatively small family of transcription factors, and for 3 of the 6 known vertebrate GATA transcription factors a role in cardiogenesis has been identified: GATA4, GATA5 and GATA6. Expression of GATA4 is present in both the adult and embryonic heart, and disruption results in cardiac dysmorphogenesis with early embryonic mortality. The large degree of interaction of the different transcription factors is again demonstrated in a recent study that demonstrated that, next to Tbx3 and Nkx2.5, the Cx40 promoter also is modulated by the cardiac transcription factor GATA4. GATA4 is expressed in Purkinje fibers of the adult chick heart. GATA-5 mRNA is observed in the precardiac mesoderm of the primitive streak embryo. In the embryonic heart, there is expression of the GATA-5 gene in the atrial
and ventricular chambers, that during further development becomes restricted to the atrial endocardium. Furthermore, cGATA5 is expressed in the endocardial cushions and in the cardiac conduction system, in the sinoatrial node, AV node, bundle of His and left and right bundle branches. Interestingly, the GATA5 gene is also expressed in a dynamic fashion over time in the septum transversum and epicardial organ in the mouse and avian heart, giving rise to the (GATA5 expressing) epicardium. The cGATA6 gene enhancer specifically marks components of the developing atrioventricular CCS and AV node, but not the more distal components of the CCS. Expression of cGATA6 remains visible in the mature CCS.

MinK/lacZ knock-in/ knock-out

The minK gene (also known as IsK and KCNE1) encodes a 129 amino-acid protein, that modifies electrical currents in the heart resulting from expression of the genes HERG and KvLQT1. Mutations in both HERG and KvLQT1, that encode the structural subunits for the channels involved in the cardiac delayed rectifier currents IKr and IKs, respectively, are the most common causes of congenital long-QT syndrome (LQTS). Disruption of the minK gene and integration of the lacZ gene results in β-galactosidase expression under the control of endogenous minK regulatory elements, which has been used to study the expression pattern of minK in mice. Disruption of the minK gene causes inner ear defects and QT interval prolongation in bradycardic conditions, the combination of which is known as the Jervell-and Lange-Nielsen syndrome. MinK-/- myocytes lack the delayed rectifier current IKs and demonstrate significantly reduced IKr, which indicates a role of minK in modulating both rectifier currents. MinK-lacZ is expressed in the developing cardiac conduction system in murine embryos starting on E8.25. Expression was observed in discrete rings at the sinoatrial, atrioventricular, interventricular, and ventriculoarterial junctions, and became during further development more restricted to e.g. the left en right the atrioventricular rings, the venous valves, and components of the definitive cardiac conduction tissues. Expression was not observed at the site of the pulmonary veins.

CCS-lacZ insertional mutation

In 2000, fortuitous insertion of a lacZ gene in the murine genome unexpectedly resulted in expression of lacZ in the (developing) conduction system of the heart. Although the gene was originally referred to as “Engrailed2-lacZ”, the transgene is most likely under the transcriptional control of an unidentified integration site and not by the Engrailed2 regulatory elements included in the transgene proper. The gene was therefore renamed to cardiac conduction system (CCS)-lacZ by Fishman et al. Optical mapping studies performed in murine embryos demonstrated a clear correlation of electrical activation with CCS-lacZ expressing areas. Study of the genetic background of CCS-lacZ expression in this model has shown
rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. The same study indicated that regulatory elements from the gene Slco3A1 influences CCS-restricted reporter gene expression80. Members of the Slco family encode for organic anion transporting polypeptides that mediate transport of both natural substances (such as prostaglandins, bile salts, thyroid, and steroid hormones) as well as exogenous drugs (including digoxin, angiotensin converting enzyme inhibitors, HMG-coenzyme A reductase inhibitors, methotrexate, and rifampin) across the cell membrane81,82. With the extent of the recombination observed in the CCS-lacZ model it is likely that regulatory elements from more than one gene may be involved80 (Fig. 5).

Figure 5. Simplified working scheme of the transgenic CCS-lacZ mouse model. The bacterial LacZ reporter gene was placed under the control of engrailed-2 promoter elements. Random integration of the construct in the mouse genome resulted in β-galactosidase expression in the cardiac pacemaking and conduction system throughout the heart. Beta-galactosidase catalyses the conversion from X-gal to 5-bromo-4-chloro-indoxyl, which after non-enzymatic dimerisation and oxidation is visible as a blue precipitate in the cells in which the reporter gene is expressed. As expression in the cardiac conduction system was not observed in a number of additional lines of mice harbouring the same transgenic construct, it is likely that the lacZ expression is under the transcriptional control of an unknown locus at the site of integration, rather than of the En-2 regulatory elements within the construct. Further study indicated that regulatory elements from the gene Slco3A1 influence cardiac conduction system-restricted reporter gene expression.
CCS-lacZ is expressed in all components of the developing cardiac conduction system, including the right and left venous valves and septum spurium of the sinus venosus (Fig. 6) and putative sinoatrial node, the left and right atrioventricular ring, His bundle, bundle branches and Purkinje fibers. **CCS-lacZ** is also expressed in the moderator band of the right ventricle, Bachmann’s bundle, the retroaortic root bundle and in the myocardial sleeve that develops around the pulmonary vein, areas related to arrhythmogenesis in adults. Findings in this model thus supported the hypothesis that the occurrence of cardiac arrhythmias in the heart is not random, but may be related to persisting, cq reactivated areas of developing cardiac conduction system83-85.

Figure 6. Transversal sections at the atrial level of a CCS-lacZ mouse at age E14.5. a,b. Sections at the level of entrance of the pulmonary vein (arrow head) in the left atrium (a) and through the coronary sinus (b). CCS-lacZ expression is observed in the right venous valve (RVV), left venous valve (LVV) and septum spurium (SS) of the sinus venosus. c, d. Details of the boxed areas in a and b, that demonstrate continuity of the CCS-lacZ positive myocardium of the left atrial dorsal wall with the base of left venous valve of the sinus venosus (asterisk) in the right atrium. Ao: aorta, CS: coronary sinus, LA: left atrium, PA: pulmonary artery, RA: right atrium, SP: septum primum. Adapted from Jongbloed et al.84. Scale bars:100 μm.
CCS-lacZ expression can also be observed in intraluminal endothelial cells, which is hypothesized to be linked to the secretion of endothelial-derived factors involved in induction of cardiomyocytes to acquire a conduction system phenotype. Indeed, the endothelial paracrine factor Neuregulin-1 has been demonstrated to induce ectopic expression of CCS-lacZ and therefore may play a critical role in recruitment of cells to the CCS. Timing of exposure to the endothelial factors may be crucial, as the inductive effect of Neuregulin in the CCS-lacZ mouse was restricted to a window of sensitivity between E8.5 and E 10.57.

In the adult mouse heart, using serial sections of CCS-lacZ hearts, Cx40 immunostaining (marking ventricular CCS cells) could be co-localized with CCS-lacZ transgene expression in the AV node, His bundle, bundle branches and subendocardial Purkinje fibers along the interventricular septum. In contrast to the developing heart and neonatal heart, in the adult mouse heart, CCS-lacZ expression can no longer be demonstrated within the sinoatrial node.

The hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel family

Four genes encoding HCN channels have been identified, HCN1, HCN2, HCN3 and HCN4. HCN channels carry an inward current, the depolarizing Na/K current If, that underlies cardiac pacemaker activity. In the adult heart, both HCN2 and HCN4 are expressed. During development HCN4 is expressed as early as E7.5 in the cardiac crescent. Interestingly, in the early heart tube (E8) expression is observed bilaterally in the sinus venosus, corresponding to previous optical mapping studies by Kamino et al, and studies in chick by van Mierop et al. Later in development expression of HCN becomes asymmetrical and restricted to the right atrium, at the site of the developing sinoatrial node. In the postnatal and adult heart, HCN4 is highly expressed in the sinoatrial node. HCN4 knockout mice die between E9.5 and E 11.5. As these knockout mice do not display mature pacemaker potentials, it is likely that HCN4 channels are required for proper pacemaker function of the sinoatrial node. The expression pattern of HCN4 overlaps with the expression of markers of the posterior heart field, such as podoplanin (Chapter 4) and Shox2. The expression of HCN4 reflects the sinus venosus myocardium of the posterior heart field, and becomes restricted to the sinoatrial node.

The expression of HCN4 in the sinus venosus myocardium at early developmental stages suggests the presence of conduction tissue at those regions. The HCN4 expression diminishes during development in the sinus venosus myocardium and concentrates in the left- and right sided sinoatrial node suggesting the completion of conduction tissue differentiation. However, both the left-sided sinoatrial node as well as cells around the wall of the pulmonary and cardinal veins may regain their HCN4 positivity and thus reacquire their pacemaker potential which may be linked to ectopic automaticity from these sites as can be observed in patients
with atrial fibrillation91. The discontinuity or deficiency of the pulmonary venous myocardium, as was observed in the podoplanin mutants, may form the substrate for re-entry at this site, which may be important for maintenance of atrial fibrillation once it has been initiated92. \textit{HCN2} is expressed in a broader distribution pattern than \textit{HCN4} and includes ventricular myocardium, but is also moderately expressed in the sinoatrial node93.
Connexins Expressed in Cardiac Conduction Tissue

Myocardial cells of the heart are electrically connected via gap junctions. Gap junctions consist of 2 connexons, which are hexamers of transmembrane protein subunits called connexins, necessary for electrical and metabolic coupling between cells. In the heart, 4 major connexins have been identified: Cx40, expressed in fast conducting cardiac tissues and in the atria, Cx43, expressed in the slower conducting working myocardium of the atria and ventricles, and in the distal part of the conduction system, Cx45, expressed in slow conducting pathways, including SA node and AV node and in the myocardium of the primary heart tube. Recently, a novel isoform of connexin has been identified, Cx30.2, that is expressed mainly in the conduction system of the heart, predominantly in the sinoatrial node, AV node, and AV bundle. The latter expression patterns are the patterns as observed in adult mouse hearts. However, the expression of connexins in the heart is variable between different species, and also varies during the different stages of development. A schematic overview of expression of Cx 40, 43, 45 and 30.2 in the adult mouse heart is provided in (Fig. 7).

Cx40 can be detected starting from E9.5 in the mouse heart, when it is present first in the primitive atria and primitive left ventricle, later also in the primitive right ventricle, but not in the AV canal and interventricular septum. During further development, together with the development of the specialized CCS, expression becomes restricted to atrial myocytes, (but also appears to be present in the right venous valve of the embryonic sinus venosus), and the ventricular conduction system.

In adult species, Cx40 expression has also been demonstrated in the sinus node in rabbit, dog, and human, and in the AV node of several species, including rabbit, mouse, and rat. Cx40 deficiency results in sinoatrial conduction defects, significant decrease of conduction velocities in the atria, and conduction delay in the His bundle. Cx40 knock-out mice display an increased incidence of inducible atrial arrhythmias, and significant conduction delay in infra-His and AV nodal conduction. Possibly Cx45 compensates partially for the lack of Cx40 in these mouse models.

Cx43 is expressed in an inverse pattern of Cx40, and is first detected in the primitive ventricle at E9.5 and in the atria at E12.5. At later embryonic stages (E14.5 onward) Cx43 expression increases and is present in the adult ventricular (working) myocytes. Cx43 knockout mice die at birth because of developmental defects in the pulmonary outflow tract, presumably resulting from defective migration of cardiac neural crest cells to this region. Cardiac specific deletion of Cx43 results in sudden cardiac death from spontaneous ventricular arrhythmias at 2 months postnatal, which indicates an important role for Cx43 for maintenance of electrical stability in the heart.
Cx45 is expressed already in all compartments of the linear heart tube (E8.5), including the inflow tract, AV canal and outflow tract. Expression of Cx45 decreases throughout development and in the adult mouse heart Cx45 is present in the AV node, His bundle, and surrounding the Purkinje fibers95,99. Cx45 knockout mice demonstrate conduction block and die of heart failure at E10114.

Cx30.2 decelerates the impulse conduction through the AV node and thus contributes to the slowdown of the impulse propagation through the AV node, which is important in preventing rapid conduction to the ventricles115,116. Mice in which the coding region of Cx30.2 has been replaced by a lacZ reporter gene demonstrate a shortening of the QT interval by 25% compared to wild type mice, due to a significantly accelerated conduction above the level of the His bundle116.

Figure 7. Schematic overview of the expression of connexin 40, 43, 45 and 30.2 in the adult mouse heart. The expression pattern of Cx30.2 largely colocalizes with expression of Cx4597. avn: atrioventricular node, bb: bundle branches, dr: distal part of bundle branche, His: His bundle, ivs: interventricular septum, Pf: Purkinje fibers, pr: proximal part of bundle branch, san: sinoatrial node. Adapted from Miquerol et al49.
Development of the Embryonic ECG

The rhythmic heartbeat, that is characterized by sequential contraction of the atria and ventricles, is coordinated by a complex network of cells throughout the heart, the cardiac pacemaking and conduction system (CCS). In the adult heart, the slow conducting components of this system are the sinoatrial node and AV-node; the fast conducting elements are the common bundle of His, the right and left bundle branches and the peripheral Purkinje fibers.

Peristaltic contraction of the tubular heart can be observed as early as 23 days post conception (dpc) in human (8.5 dpc in mouse), which results in propulsion of blood from the venous to the arterial pole of the heart\(^\text{117}\). Sequential contraction of atria and ventricles can be observed as soon as cardiac looping starts, along with the occurrence of a surface ECG. Although a distinct sinoatrial node primordium can only be detected at E11 in murine hearts\(^\text{23}\), pacemaker property is already present in the primitive heart tube in the sinoatrial region at the venous pole of the heart. Interestingly, the earliest pacemaker has been demonstrated at the site of the left atrium primordium, and during development shifts toward the right atrial primordium\(^\text{32,118}\).

The change in activation pattern from a base-to-apex to the mature apex-to-base pattern, that is needed for efficient ejection of blood from the ventricles in the outflow tracts of the heart, is a consequence of the development of the His-Purkinje system, and reflects the impulse propagation through this rapidly conducting system. This change initiates before ventricular septation is completed and is described to be fully accomplished after septation in the majority of cases\(^\text{26,79,119}\). Recent data from our group show that septation may not be crucial in this process, since electrophysiologic experiments demonstrated premature ventricular base activation to remain present in over half of postseptated embryonic quail hearts till near hatching stages\(^\text{26}\).

It is described that the timing of the maturation of the His-Purkinje system may depend on hemodynamic loading, as pressure overload accelerates the timing of the change to an apex to base activation pattern, whereas a decreased loading of the embryonic ventricle delays this conversion in ventricular activation sequence\(^\text{120}\). The possible importance of hemodynamics in conduction system development also seems to be demonstrated by the fact that pressure overload of the ventricle results in significantly increased expression of endothelin converting enzyme 1, a precursor of active endothelin which is a shear stress dependent factor involved in the conversion of working cardiomyocytes into conduction system cells, and Cx40 positive Purkinje fibers\(^\text{121}\).

In order for the atrioventricular conduction axis to become functional, electrical isolation of the atria from the ventricles must occur, except at the site of the AV-node/His bundle. However, a typical electrogram characterised by a p-wave reflecting atrial activation, atrioventricular delay demonstrated by electrical silence on the ECG and a QRS-complex reflecting
ventricular activation, can already be recorded from the embryo at early stages, when the fibrous isolation of the ventricles has not been completed yet (Fig. 8), indicating that functional isolation between atria and ventricles is present before anatomical isolation of the atria from the ventricles has been achieved. On the other hand, as mentioned above, due to persistent accessory myocardial continuities between atrium and ventricle, premature activation of the ventricles can remain present even after septation26. In the quail heart, left sided accessory pathways were less frequently encountered than right sided pathways, which suggests a developmental time difference in completion of left and right AV ring isolation26, which is consistent with the relative late development of the right ventricular inlet85.

Neural crest cells may also play an important role in the maturation of cardiac conduction, as neural crest ablation in chick results in lack of differentiation of a compact lamellar organisation by the His bundle and of (electrical) isolation from the working myocardium, and in failure of the conduction system the covert to a mature apex to base activation pattern13. The role of neural crest cells may largely be inductive, as neural crest cells are present near elements of the cardiac conduction system during a critical time span before they undergo a process of apoptosis10.

Next, EPDCs also may play an important role in atrioventricular isolation. EPDCs colocalize with periostin in the fibrous heart skeleton, which has been suggested to induce the transformation of myocardium into mesenchyme and in later stages fibrous tissue20,122,123. Disturbance of EPDC formation by proepicardial outgrowth inhibition results in reduced periostin expression in the endocardial cushions and atrioventricular junction, indicating that EPDCs are local producers of periostin17,20,124. Reduced expression of periostin results in disturbed development of fibrous tissue at the atrioventricular junction and in persistent atrioventricular myocardial connections, resulting in ventricular pre-excitation15,20,125.

Figure 8. ECG recording of a murine embryo aged 10.5 days. The cardiac activation is characterised by 2 deflections representing atrial (A) and ventricular (V) activation, separated by a delay (103 ms).
Semantic Issues Regarding the Definition of Cardiac Conduction System

Over the years, several controversies regarding semantics and different applications of definitions have elicited strenuous discussions between researchers in the field of cardiac anatomy and development. One of these issues regards the question whether it is justified to name the tissues in the embryonic heart that are responsible for the embryonic ECG conduction tissue.

Discussions about the definitions of the adult conduction system have already in 1910 led Aschoff and Monckeberg to describe 3 prerequisites that must apply to tissues in order to be designated "cardiac conduction tissue". These criteria are 1) cells should be histologically distinct, 2) cells should be able to be followed from section to section in serially prepared tissues and 3) the specialised cells should be insulated from the working myocardium by sheets of fibrous tissue. However, these criteria are not always compelling, as not all 3 criteria apply to all components of the CCS, such as the tissues of the sinoatrial and AV node, tissues that are generally accepted to be part of the cardiac pacemaking and conducting system.

Also, these adult criteria do not seem to apply to the developing cardiac conduction system since the embryonic heart already demonstrates sequential contraction of atria and ventricles regulating blood flow, concomitant with a mature surface ECG, well before the criteria of Aschoff and Monckeberg apply to these tissues.

Furthermore, several molecular markers and functional criteria are now available that help distinguish working myocardium from myocardium that displays a more specialized phenotype, before fibrous insulation is achieved.

Throughout this chapter when referred to the developing cardiac conduction system, the entire cardiac pacemaking and conduction system is meant, which thus means not only the nodal tissues, nor only the fast conduction tissues, but the entire network of nodes, tracts and fibers responsible for the coordinated, and in some cases, uncoordinated contraction of the heart, that is reflected by the electrical registration on the surface ECG.
Development of the Cardiac Conduction System in Relation to Putative Sites of Clinical Arrhythmias

It is well known from electrophysiological studies that the occurrence of clinical arrhythmias is related to anatomical predilection sites. Clinical mapping studies have demonstrated that ectopic pacemaker foci are preferentially encountered in specific parts of the right and left atrium. In the right atrium foci are often encountered in sinus venosus related areas, such as the crista terminalis, a structure related to the initiation/perpetuation of atrial flutter; and the ostia of the caval veins and coronary sinus as initiators of clinical arrhythmias. In the left atrium atrial fibrillation has been attributed to arrhythmogenic foci that originate from the pulmonary veins. Furthermore, the interatrial bundle of Bachmann and accessory pathways, such as present in Wolf-Parkinson White (WPW) syndrome and Mahaim tachycardia, are anatomical structures important in cardiac conduction and arrhythmogenesis. Moreover, it has been demonstrated that the myocardium at the atrioventricular junction itself has specialized properties, and arrhythmias originating from both the tricuspid and mitral junction have been described. The question therefore arises why these structures, which do not belong to the mature cardiac conduction system, are able to generate or sustain arrhythmias. An answer to this question may be found in the embryonic development of the cardiac conduction system. In the following paragraphs specific anatomical sites that are related to arrhythmogenesis in human are described.

Internodal pathways

One of the areas of controversy over the last decades, lasting now for almost a century, is the existence of functional internodal tracts. These internodal tracts have been described to run in the right atrium in between the sinoatrial node and the AV node. The pathways as originally described by James consist of 3 cellular tracts, distinguishable from the atrial myocardium based on histological study of atrial sections (stained mostly with Goldner Trichome): a posterior pathway along the crista terminalis, an anterior pathway which continues to the left atrium via Bachmann’s bundle, and a medial pathway that runs in the interatrial septum. Specialized Purkinje-like and transitional cells could be demonstrated in these three pathways. In the embryonic heart, internodal tracts have been distinguished from the atrial myocardium based on the expression pattern of the immunological marker HNK1. In this study, HNK1 was detected in the right venous valve (the putative crista terminalis that will form the boundary between the trabeculated and smooth walled myocardium of the right atrium), corresponding to the posterior pathway as described by James; in the left venous valve, that in humans becomes incorporated in the interatrial septum; and in an anterior pathway consisting of the septum spurium (the fused anterior right and left venous valves), that could be followed towards...
the left atrium in a retro-aortic position140. Recent data of molecular studies also indicate that the embryological sinus venosus is molecularly distinct from the surrounding working atrial myocardium, as similar patterns of expression are observed with the molecular marker CCS-lacZ, MinK-lacZ and Shox26,78,84. As mentioned earlier, targeted mutation of the Shox2 gene results in severe hypoplasia of the sinus venosus myocardium, including the sinoatrial nodal region and the venous valves66.

Although tracts with different histological, immunohistochemical and molecular characteristics thus can be distinguished in the atria, the functionality of these tracts is yet to be determined. Results of several studies have suggested preferential spread of atrial activation in a fashion that may correspond to these pathways. For instance, optical mapping studies have demonstrated a non-radial spread of intra-atrial conduction in the rat, and the recorded conduction patterns were preferential in a pattern corresponding to the posterior and anterior pathways as described by James141. However, whether this preferential conduction in the atria, as is observed in these regions, is due to the presence of specialized cells, or is merely an anisotropic organisation of tissue142 remains to be determined. Studies in 1966 and 1967 have demonstrated that the administration of elevated levels of potassium induced electrical quiescence of the atrial myocardium, with the exception of cells specifically localized in the areas corresponding the internodal pathways143,144. More recently, Racker demonstrated 3 bundles with unique potential and conduction capacities in dogs, that run in between the sinoatrial and AV node, supporting the presence of specialized properties of cells in these areas145.
Pulmonary Veins
Since arrhythmogenic capacities have been attributed to the pulmonary veins, these structures have become an important subject of interest, both for those working in the clinical field of electrophysiology, and for those working in basic science. In the following sections a short overview of morphological, molecular and electrophysiological data in relation to the controversial presence of specialized myocardium at the site of the pulmonary veins is provided.

Myocardialization of the pulmonary veins: development of a myocardial sleeve
The arrhythmogenic capacities of the pulmonary veins have been attributed to sleeves of myocardium that surround the pulmonary veins. Anatomical studies describe in detail the length and thickness of the veins. In general, the myocardial sleeves surrounding the left superior pulmonary vein are the longest, whereas the sleeves surrounding the right inferior pulmonary vein are shorter, and in some cases absent. These data correspond with the frequency of ectopic foci encountered in clinical mapping studies.

The mechanisms of the development of the myocardial sleeves of the pulmonary veins is unresolved. The sleeves could develop due to a process of myocardialization, i.e. growth of existing cardiomyocytes into mesenchyme, or migration of myocardial cells from the sinoatrial region (now referred to as the posterior heart field) to the pulmonary veins. Although this mechanism may underlie the process of myocardialization of the coronary veins, a process of recruitment and differentiation of cells from the mediastinal mesocardium (the posterior heart field) into cardiomyocytes seems the most likely mechanism behind the second wave of myocardialization responsible for the myocardium formation at the sites of the systemic and pulmonary veins (Chapter 2 and 4). In the mouse, this secondary myocardialization of the pulmonary veins has been observed starting at E12.5.

In mouse models where markers of the posterior heart field are deficient, myocardialization of the pulmonary veins is disturbed, as is observed in Pitx2c and podoplanin deficient mice (Chapter 4 and 5). In the latter model the formation and differentiation of the smooth muscle cells of the wall of the common pulmonary vein and left atrium is also disturbed, which indicates a major role for the posterior heart field not only in the myocardialization process of the pulmonary vein but also in the development of the smooth muscle cells at the venous pole of the heart (Chapter 5).

An interesting question is why these myocardial sleeves possess specialized capacities responsible for the ectopic beats initiating and sustaining clinical tachycardias. The next sections describe the results of several morphological and electrophysiological studies that support the presence of specialized characteristics of the myocardium surrounding the pulmonary veins.
Morphological studies indicative for the presence of specialized conduction cells in the pulmonary veins

Already in 1874, attention was drawn to possible independent pacemaking activity of the pulmonary veins by Brunton & Fayrer, who observed independent pulsation of the pulmonary veins in the otherwise mechanical silent hearts of rabbits and cats154. In 1986, Masani studied the structure of the myocardial layer surrounding the pulmonary veins in rats, and was able to demonstrate the presence of cells with clear cytoplasm, few myofibrils and round or oval mitochondria, that resembled sinus node pacemaker cells155.

More recently, Perez-Lugones et al. have identified the presence of P cells, transitional cells and Purkinje cells in human pulmonary veins156. Interestingly, these cells were mainly found in the pulmonary veins of subjects with atrial fibrillation.

It has been hypothesized that deterioration or destruction of the primary pacemaker results in an atrial rhythm originating from these ectopic nodal foci157. Next to the pulmonary veins, cells resembling cardiac conduction cells have also been identified in the Eustachian ridge of cats158 and in Bachmann’s bundle in dogs139.

Electrophysiological studies performed in pulmonary veins

Several studies demonstrated distinct electrophysiological capacities of pulmonary veins as compared to the atria159-161. A greater degree of decremental conduction and shorter effective refractory periods have been observed in the myocardial sleeves of the pulmonary veins as compared to the myocardium of the atrium in patients with paroxysmal atrial fibrillation162,163.

Pulmonary venous cardiomyocytes have distinct electrophysiological properties compared to cardiomyocytes in the left atrium, with a reduced resting membrane potential, action potential amplitude, a smaller phase 0 upstroke velocity and a shorter duration of the action potential159.

In accordance with these findings, it has been demonstrated that the myocardium surrounding pulmonary veins has different ionic current properties in comparison to the left atrium. The inward-rectifier current is smaller, whereas the delayed rectifier currents are larger in the pulmonary vein than in the left atrium159. These results are supported by a study of Chen et al., who distinguished 76% pacemaker cardiomyocytes and 24% non-pacemaker cardiomyocytes in pulmonary veins, with distinct action potentials and ionic current properties161.

The exact mechanism of the contribution of the pulmonary veins to arrhythmogenicity is still unresolved. Independent spontaneous pacemaker activity has been demonstrated in the pulmonary veins of guineas-pigs, rabbits and cat164. More recent reports also support abnormal automaticity or enhanced pacemaker activity in the pulmonary veins, with or without infusion of medication or pacing manoeuvres164-168. Furthermore, independent atrial fibrillation has been demonstrated in the pulmonary veins169. Moreover, enhanced triggered after-depolarisations, sometimes in combination with spontaneous activity, has been supposed as the mechanism
responsible for the arrhythmogenicity of the pulmonary veins170-173. The anisotropic arrangement of the myocardium may form the substrate for re-entry at this site, which may be important for maintenance of the arrhythmia once it has been initiated92. The cellular properties of the pulmonary venous cardiomyocytes mentioned above including reduced resting membrane potential, action potential amplitude, a smaller phase 0 upstroke velocity and a shorter duration of the action potential, resulting in shorter refractoriness and slowed conduction, favour the occurrence of re-entry159,168,174,175.

Molecular markers expressed in pulmonary veins

In accordance with findings of different electrophysiological properties of the pulmonary venous myocardium, differences in ion channel subunit expression have been observed in the pulmonary veins compared to the left atrial free wall. These differences include a greater abundance of the rapid delayed-rectifier α-subunit HERG, and of the slow delayed-rectifier α subunit KvLQT1, and lower abundance of the inward-rectifier subunit Kir2.3, which may underlie the differences in ionic currents observed between pulmonary veins and left atrial cardiomyocytes176.

The molecular marker CCS-lacZ is expressed in the left atrial myocardium surrounding the entrance of the primitive pulmonary vein in early developmental stages (Fig. 9a,b). At later stages, a myocardial sleeve develops surrounding the pulmonary veins (Fig. 9c). Interestingly, this sleeve demonstrates marked CCS-lacZ expression84. Podoplanin is expressed in the pulmonary veins in a pattern complementary to CCS-lacZ. In contrast to atrial myocardium, that strongly expresses Nkx2.5, Nkx2.5 is initially expressed in an only mosaic pattern in the pulmonary veins (Chapters 2, 4 and 5) (Fig. 4), and this area eventually becomes completely Nkx2.5 positive.

Recently, Gudblartsson et al. have reported a strong association between the occurrence of atrial fibrillation and 2 sequence variants on chromosome 4q25. Interestingly, both variants are located in the genome adjacent to Pitx2c177, that is highly expressed in the posterior heart field on the left side, surrounding the pulmonary vein prior to and during formation of the pulmonary myocardium and later becomes confined to the pulmonary myocardium136,151,179.
AV Junction - Accessory Pathways / Mahaim Fibers

In early embryonic stages, atrial and ventricular myocardium is continuous through the myocardium of the atrioventricular (AV) canal. In normal adult cardiac conduction, the AV conduction axis is the only functional atrioventricular conduction tract. AV re-entrant tachycardias are based on the presence of accessory myocardial bundles connecting atrial and ventricular tissue, thus bypassing the insulating function of the AV-groove. The most well known is the bundle of Kent, present in the Wolf-Parkinson White (WPW) syndrome. As was demonstrated in chick, accessory atrioventricular myocardial continuities may persist in the embryo till late stages, causing premature activation of the ventricles even after septation.

Moreover, several arrhythmias have been described in literature that originate from the tricuspid and mitral junction. AV junctional cells surrounding both the tricuspid and mitral annuli resemble nodal cells in their cellular electrophysiology.

A special form of re-entrant tachycardia is Mahaim tachycardia, during which antidromic re-entrant tachycardia occurs over an accessory bundle with AV node like conduction properties. The proximal insertion often localized to the lateral, anterolateral or posterolateral tricuspid annulus and distal insertion into the right ventricular free wall or the right bundle branch. To date there are two mouse models for WPW syndrome. Mutations in the gene PRKAG2 (that encodes the gamma-2 subunit of the AMP-activated protein kinase) have been observed in patients with WPW-syndrome. Mice that carry a mutation in the PRKAG2 gene display ventricular pre-excitation and a phenotype identical to humans with a familial form of ventricular pre-excitation. Patel et al. demonstrated the postnatal development of myocardial connections through the annulus fibrosus of the AV valves in mice over-expressing the PRKAG2 mutation. The findings in these models seem to be associated with cardiac hypertrophy, accumulation of excessive amounts of cardiac glycogen, and disruption of the annulus fibrosus by glycogen filled cardiomyocytes.

Furthermore, specific deletion in the AV canal of the gene ALK3, coding for the type 1a receptor for bone morphogenetic proteins in the AV canal during development, causes ventricular pre-excitation, indicating an important role of this gene in proper AV junction development.

As was mentioned earlier, epicardial inhibition studies demonstrate reduced periostin expression at the atrioventricular junction, resulting in disturbed development of fibrous tissue at the atrioventricular junction, persistent atrioventricular myocardial connections with resulting ventricular pre-excitation, which may be an mechanism explaining WPW-syndrome.

Data derived from the CCS-lacZ mouse demonstrate that the occurrence of Mahaim fibers may be related to the embryonic development of the right ventricular inflow tract. The development of the right atrial/right ventricular connection and concomitant outgrowth of the right ventricle, results in a division of the CCS-lacZ positive tissue of the primary fold that originally separated
the primitive left and right ventricles. This division results in the development of the right ventricular moderator band (Fig. 9c), that forms a right sided AV continuity, conform a Mahaim fiber. Electrophysiological experiments supported the presence of a conducting right sided AV pathway85.

Figure 9. CCS-lacZ expression at the site of the developing pulmonary veins. a. Transverse section of an E10.5 murine embryo, at the level of entrance of the primitive pulmonary vein (arrow), which at this stage does not demonstrate CCS-lacZ staining. b. Dorsal view of a 3-D reconstruction of the same embryo. Ventricular myocardium, branchial arch arteries and cardinal veins are transparent. Color-codes: yellow: lumen of the common atrium and the primitive pulmonary vein (PPV), red: lumen of the common ventricle, Blue: CCS-lacZ positive myocardium. The arrow points at the primitive pulmonary vein. c. Transverse section of an E13.5 embryo, which now shows marked CCS-lacZ expression of the myocardium surrounding the pulmonary vein (arrow). Marked staining is also visible in the right ventricular moderator band (MB). Abbreviations: AVC: atriocentral canal, LA: left atrium, LV: left ventricle, LVV: left venous valve, PA: primitive atrium, PF: primary fold, RA: right atrium, RV: right ventricle, RVV: right venous valve, SS: septum spurium, VIS: ventricular inlet segment, VOS: ventricular outlet segment. Scale bars: a: 100 μm, c: 200 μm.
Chapter 6

Conclusion
Although the exact mechanisms of cardiac conduction system development are still to be unravelling, it has become clear that the development of the cardiac conduction system is a multifactorial process, in which multiple factors are involved and interact. Based on the expression patterns of several known markers the developing conduction system seems to be more extensive than the definitive adult cardiac conduction system. Furthermore, areas of “primitive” conduction system correlate with predilection sites for the occurrence of clinical arrhythmias in adults. We hypothesize that either embryonic remnants, or the re-expression of an embryonic phenotype may explain this correlation. The processes that induce cardiomyocytes to acquire a cardiac conduction phenotype have not been elucidated. Recent data support a contribution of cells from the posterior heart field to the formation of the cardiac conduction system.

Acknowledgments
We thank Jan Lens and Ron Slagter for expert technical assistance with the figures.
Reference List

1. Gittenberger-de Groot AC, DeRuiter MC, Bartelings MM, Poelmann RE. Embryology of congenital heart disease. In: Cardiology. Crawford MH, DiMarco JP, eds. 2004. Mosby International Limited, London.

2. Gourdie RG, Mima T, Thompson RP, Mikawa T. Terminal diversification of the myocyte lineage generates purkinje fibers of the cardiac conduction system. Development. 1995;121:1423-1431.

3. Gourdie RG, Harris BS, Bond J, Justus C, Hewett KW, O'Brien TX, Thompson RP, Sedmera D. Development of the cardiac pacemaking and conduction system. Birth Defects Res. 2003;69:46-57.

4. Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229:763-770.

5. Christoffels VM, Habets PE, Franco D, Campione M, de Jong F, Lamers WH, Bao ZZ, Palmer S, Biben C, Harvey RP, Moorman AF. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol. 2000;223:266-278.

6. Cheng G, Litchenberg WH, Cole GJ, Mikawa T, Thompson RP, Gourdie RG. Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development. 1999;126:5041-5049.

7. Rentschler S, Zander J, Meyers K, France D, Levine R, Porter G, Rivkees SA, Morley GE, Fishman GI. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci U S A. 2002;99:10464-10469.

8. Patel R, Kos L. Endothelin-1 and Neuregulin-1 convert embryonic cardiomyocytes into cells of the conduction system in the mouse. Dev Dyn. 2005;233:20-28.

9. Gassanov N, Er F, Zagidullin N, Hoppe UC. Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J. 2004;18:1710-1712.

10. Poelmann RE, Gittenberger-de Groot AC. A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development? Dev Biol. 1999;207:271-286.

11. Poelmann RE, Jongbloed MR, Molin DGM, Fekkes ML, Wang Z, Fishman GI, Doetschman T, Azhar M, Gittenberger-de Groot AC. The neural crest is contiguous with the cardiac conduction system in the mouse embryo: a role in induction? Anat Embryol. 2004;208:389-393.

12. Gittenberger-de Groot AC, Blom NM, Aoyama N, Sucov H, Wenink AC, Poelmann RE. The role of neural crest and epicardium-derived cells in conduction system formation. Novartis Found Symp. 2003;250:125-134.

13. Gurjarpadhye A, Hewett KW, Justus C, Wen X, Stadt H, Kirby ML, Sedmera D, Gourdie RG. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol. 2007;292:H1291-H1300.

14. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res. 2006;98:1547-1554.

15. Lie-Venema H, van den Akker NMS, Bax NAM, Winter EM, Maas S, Kekarainen T, Hoeben RC, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Origin, fate, and function of epicardium-derived cells (EPCDs) in normal and abnormal cardiac development. ScientificWorldJournal. 2007;7:1777-1798.

16. ralp I, Lie-Venema H, Bax NAM, Wilfels MC, Van der Laarse A, DeRuiter MC, Bogers AJ, Van Den Akker NM, Gourdie RG, Schalij MJ, Poelmann RE, Gittenberger-de Groot AC. Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec. 2006;288A:1272-1280.

17. Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Mentlink MMT, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043-1052.

18. Hyer J, Johansen M, Prasad A, Wessels A, Kirby ML, Gourdie RG, Mikawa T. Induction of purkinje fiber differentiation by coronary arterIALIZation. Proc Natl Acad Sci U S A. 1999;96:13214-13218.

19. Eid H, de Bold K, Chen JH, de Bold AJ. Epicardial mesothelial cells synthesize and release endothelin. J Cardiovasc Pharmacol. 1994;24:715-720.
20. Lie-Venema, H., Eralp, I, Markwald, R. R., Van Den Akker, N. M., Wijffels, M., Kolditz, D. P., Van der Laarse, A., Schaltij, M. J., Poelmann, R. E., Bogers, A., and Gittenberger-de Groot, A. C. Periostin expression by epicardium-derived cells (EPDCs) is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differentiation. 2008. Ref Type: In Press

21. Virágh Sz, Challice CE. The development of the conduction system in the mouse embryo heart. I. The first embryonic AV-conduction pathway. Dev Biol. 1977;56:382-396.

22. Virágh Sz, Challice CE. The development of the conduction system in the mouse embryo heart. II Histogenesis of the atrioventricular node and bundle. Dev Biol. 1977;56:397-411.

23. Virágh Sz, Challice CE. The development of the conduction system in the mouse embryo heart. III The development of sinus muscle and sinoatrial node. Dev Biol. 1980;80:28-45.

24. Virágh Sz, Challice CE. The development of the conduction system in the mouse embryo heart IV. Differentiation of the atrioventricular conduction system. Dev Biol. 1982;89:25-40.

25. Wessels A, Markman MW, Vermeulen JL, Anderson RH, Moorman AFM, Lamers WH. The development of the atrioventricular junction in the human heart. Circ Res. 1996;78:110-117.

26. Kolditz DP, Wijffels MCEF, Blom NA, Van der Laarse A, Markwald RR, Schaltij MJ, Gittenberger-de Groot AC. Persistence of functional atrioventricular accessory pathways in post-septated embryonic avian hearts: implications for morphogenesis and functional maturation of the cardiac conduction system. Circulation. 2007;115:17-26.

27. Anderson RH, Becker AE, Arnold R, Wilkinson JL. The conducting tissues in congenitally corrected transposition. Circulation. 1974;50:911-923.

28. Bae EJ, Noh CI, Choi JY, Yun YS, Kim WH, Lee JR, Kim YJ. Twin AV node and induced supraventricular tachycardia in Fontan palliation patients. Pacing Clin Electrophysiol. 2005;28:126-134.

29. Blom NA, Gittenberger-de Groot AC, DeRuiter MC, Poelmann RE, Mentink MM, Ottenkamp J. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. Circulation. 1999;99:800-806.

30. Dickinson DF, Wilkinson JL, Anderson KR, Smith A, Ho SY, Anderson RH. The cardiac conduction system in situ ambigus. Circulation. 1979;59:879-885.

31. Wu MH, Wang JK, Lin JL, Lai LP, Lue HC, Young ML, Hsieh FJ. Supraventricular tachycardia in patients with right atrial isomerism. J Am Coll Cardiol. 1998;32:773-779.

32. Kamino K, Hirota A, Fuji S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature. 1981;290:595-597.

33. Mommersteeg MT, Hoogaars WM, Prall OW, Gier-de Vries C, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF, Christophoffs VM. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007;100:354-362.

34. Franco D, Campione M. The role of Pitx2 during cardiac development. Linking left-right signalling and congenital heart defects. Trends Cardiovasc Med. 2003;13:157-163.

35. Liu C, Liu W, Palei J, Lu MF, Brown NA, Martin JP. Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development. 2002;129:5081-5091.

36. Poelmann RE, Jongbloed MR, Gittenberger-de Groot AC. Pitx2: a challenging teenager. Circ Res. 2008;102:749-751.

37. Wenink ACG. Development of the human cardiac conducting system. J Anat. 1976;121/3:617-631.

38. Gittenberger-de Groot AC, Bartelings MM, DeRuiter MC, Poelmann RE. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res. 2005;57:169-176.

39. Gorza L, Vitadello M. Distribution of conduction system fibers in the developing and adult rabbit heart revealed by an antineurofilament antibody. Circ Res. 1989;65:360-369.

40. DeRuiter MC, Gittenberger-de Groot AC, Wenink ACG, Poelmann RE, Mentink MMT. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat Rec. 1995;243:84-92.
139

Posterior Heart Field and Cardiac Conduction System

41. Wenink ACG, Symersky P, Ikeda T, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. HNK-1 expression patterns in the embryonic rat heart distinguish between sinusatrial tissues and atrial myocardium. Anat Embryol. 2000;201:39-50.

42. Wessels A, Vermeulen JL, Verbecke FJ, Virálgh Sz, Kalman F, Lamers WH, Moorman AFM. Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle. III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec. 1992;232:97-111.

43. Chuck ET, Watanabe M. Differential expression of PSA-NCAM and HNK-1 epitopes in the developing cardiac conduction system of the chick. Dev Dyn. 1997;209:162-195.

44. Breiteneder-Geleff S, Matsu K, Soleiman A, Meraner P, Pozzewski H, Kalt R, Schaffner G, Kerjaschki D. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997;151:1141-1152.

45. Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver G, Delmar M. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22:3546-3556.

46. Wetterwald A, Hoffstetter W, Cecchini MG, Lanksche R, Wagner C, Fleisch H, Atkinson M. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone. 1996;18:125-132.

47. Williams MC, Cao Y, Hinds A, Rishi AK, Wetterwald A. T1 alpha protein is developmentally regulated and expressed by alveolar type I cells, choroid plexus, and ciliary epithelia of adult rats. Am J Respir Cell Mol Biol. 1996;14:577-585.

48. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76-83.

49. Miquerol L, Dupays L, Théveniau-Ruissy M, Alcoléa S, Jarry-Guichard T, Abran P, Gros D. Gap junctional connexins in the developing mouse cardiac conduction system. Novartis Found Symp. 2003;250:80-109.

50. Hoogar AWM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res. 2004;62:489-499.

51. Davenport TG, Jerome-Majewska LA, Papaioannou VE. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar-mammary syndrome. Development. 2003;130:2263-2273.

52. Hoogaars WM, Engel A, Bruns JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Bakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM. Tbx3 controls the sinusoid and implantation site gene program and imposes pacemaker function on the atria. Genes Dev. 2007;21:1098-1112.

53. Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupersmidt S, Roden D, Berul CI, Seidman CE, Seidman JG. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development. 2004;131:4107-4116.

54. Bruneau BG. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res. 2002;90:509-519.

55. Christoffels VM, Mrommersteeg MT, Trieu OC, Pelle NO, Gier-De Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, Kispert A. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res. 2006;98:1555-1563.

56. Harris BS, Jay PY, Racketly MS, Iznus S, O’Brien TX, Gourdie RG. Transcriptional regulation of cardiac conduction system development: 2004 FASEB cardiac conduction system minimeeting, Washington, DC. Anatomical Record Part A. Discoveries in Molecular Cellular and Evolutionary Biology. 2004;290A:1036-1045.

57. Thomas PS, Kasahara H, Edmonson AM, Iznus S, Yacoub MH, Barton PJ, Gourdie RG. Elevated expression of Nkx-2.5 in developing myocardial conduction cells. Anat Rec. 2001;263:307-313.
Chapter 6

58. Jay PY, Harris BS, Maguire CT, Buenger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O’Brien TX, Gourdie RG, Berul CI, Izumo S. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004;113:1130-1137.

59. Kasahara H, Wakimoto H, Liu M, Maguire CT, Converso KL, Shiio T, Huang WY, Manning WJ, Paul D, Lawitts J, Berul CI, Izumo S. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J Clin Invest. 2001;108:189-201.

60. Linhares VL, Almeida NA, Menezes DC, Elliott DA, Lai D, Beyer EC, Campos de Carvalho AC, Costa MW. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc Res. 2004;64:402-411.

61. Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev. 2002;16:1234-1246.

62. Jay PY, Maguire CT, Wakimoto H, Izumo S, Berul CI. Absence of Msx2 does not affect cardiac conduction or rescue conduction defects associated with Nkx2-5 mutation. J Cardiovasc Electrophysiol. 2005;16:82-85.

63. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000;24:391-395.

64. Ismat FA, Zhang M, Kook H, Huang B, Zhou R, Ferrari VA, Epstein JA, Patel VV. Homeobox protein Hop functions in the adult cardiac conduction system. Circ Res. 2005;96:896-903.

65. Blaschke RJ, Monaghan AP, Schiller S, Schechinger B, Rao E, Padilla-Nash H, Ried T, Rappold GA. SHOX, a SHOX-related homeobox gene, is implicated in craniofacial, brain, heart, and limb development. Proc Natl Acad Sci U S A. 1998;95:2406-2411.

66. Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, Schöler H, Feitsma H, Rappold GA, Gittenberger-de Groot AC. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 2007;115:1830-1838.

67. Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, Seidman JM, Seidman CE. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell. 2007;129:1365-1376.

68. Kitajima S, Miyagawa-Tomita S, Inoue T, Kanno J, Saga Y. Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn. 2006;235:395-402.

69. Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 2000;275:38949-38952.

70. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM. GATA4 transcription factor is required for ventral morphogenesis and heart lobe formation. Genes Dev. 1997;11:1048-1060.

71. Takebayashi-Suzuki K, Pauliks LB, Eltsefon Y, Mikawa T. Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle. Developmental Biology. 2001;234:390-401.

72. Morrisey EE, Ip HS, Tang Z, Lu MM, Parmacek MS. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol. 1997;183:21-36.

73. MacNeil C, French R, Evans T, Wessels A, Burch JB. Modular regulation of cGATA-5 gene expression in the developing heart and gut. Dev Biol. 2000;217:62-76.

74. Davis DL, Edwards AV, Juraszek AL, Phelps A, Wessels A, Burch JB. A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech Dev. 2001;108:105-119.

75. Edwards AV, Davis DL, Juraszek AL, Wessels A, Burch JB. Transcriptional regulation in the mouse atrioventricular conduction system. Novartis Found Symp. 2003;250:177-189.
Kupershmidt S, Yang T, Anderson ME, Wessels A, Niswender KD, Magnuson MA, Roden DM. Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ Res. 1999;84:146-152.

Drici MD, Arrighi I, Chouabe C, Mann JR, Lazdunski M, Romey G, Barhanin J. Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res. 1998;83:95-102.

Kondo RP, Anderson RH, Kupershmidt S, Roden DM, Evans SM. Development of the cardiac conduction system as delineated by minK-lacZ. J Cardiovasc Electrophysiol. 2003;14:383-391.

Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE, Jalife J, Fishman GI. Visualization and functional characterization of the developing murine cardiac conduction system. Development. 2001;128:1785-1792.

Shroud DM, Darrow BJ, Kim SD, Zhang J, Jongbloed MR, Rentschler S, Moskowitz IP, Seidman J, Fishman GI. Complex genomic rearrangement in CCS-LacZ transgenic mice. Genesis. 2005;45:76-82.

Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta. 2003;1609:1-18.

Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653-665.

Gonzalez MD, Contreras LJ, Jongbloed MR, Rivera J, Donahue TP, Curtis AB, Bailey MS, Conti JB, Fishman GI, Schalij MJ, Gittenberger-de Groot AC. Left atrial tachycardia originating from the mitral annulus-aorta junction. Circulation. 2004;110:3187-3192.

Jongbloed MRM, Schalij MJ, Poelmann RE, Blom NA, Fekkes ML, Wang Z, Fishman GI, Gittenberger-de Groot AC. Embryonic conduction tissue: a spatial correlation with adult arrhythmogenic areas? Transgenic CCS/lacZ expression in the cardiac conduction system of murine embryos. J Cardiovasc Electrophysiol. 2004;15:349-355.

Jongbloed MR, Wijffels MC, Schalij MJ, Blom NA, Poelmann RE, van Der LA, Mentink MM, Wang Z, Fishman GI, Gittenberger-de Groot AC. Development of the right ventricular inflow tract and moderator band: a possible morphological and functional explanation for Mahaim tachycardia. Circ Res. 2005;96:776-783.

Viswanathan S, Burch JB, Fishman GI, Moskowitz IP, Benson DW. Characterization of sinoatrial node in four conduction system marker mice. J Mol Cell Cardiol. 2007;42:946-953.

Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Exp Patterns. 2003;3:777-783.

Stieber J, Herrmann S, Feil S, Loster J, Biel M, Hofmann F, Ludwig A. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A. 2003;100:15235-15240.

van Mierop LH. Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol. 1967;212:407-415.

Haisaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le MA, Le MP, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659-666.

Verheule S, Wilson EE, Arora R, Engle SK, Scott LR, Olgin JE. Tissue structure and connexin expression of canine pulmonary veins. Cardiovasc Res. 2002;55:727-738.

Yeager M. Structure of cardiac gap junction intercellular channels. J Struct Biol. 1998;121:231-245.
Chapter 6

94. Delorme B, Dahl E, Jarry-Guichard T, Marics I, Briand JP, Willecke K, Gros D, Theveniau-Ruissy M. Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn. 1995;204:358-371.

95. Alcolea S, Theveniau-Ruissy M, Jarry-Guichard T, Marics I, Tzouanacou E, Chauvin JP, Briand JP, Moorman AF, Lamers WH, Gros DB. Downregulation of connexin 45 gene products during mouse heart development. Circ Res. 1999;84:1365-1379.

96. Coppen SR, Severs NJ, Gourdie RG. Connexin45 (a6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet. 1999;24:82-90.

97. Kreuzberg MM, Sohl G, Kim JS, Verselis VK, Willecke K, Bukauskas FF. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res. 2005;96:1169-1177.

98. Soufan AT, van den Hoff MJ, Ruijter JM, de Boer PA, Hagoort J, Webb S, Anderson RH, Moorman AF. Reconstruction of the patterns of gene expression in the developing mouse heart reveals an architectural arrangement that facilitates the understanding of atrial malformations and arrhythmias. Circ Res. 2004;95:1207-1215.

99. Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, Yeh H, Severs NJ. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminals border. J Histochem Cytochem. 1999;47:907-918.

100. Kwong KF, Schuessler RB, Green KG, Laing JG, Beyer EC, Boineau JP, Saffitz JE. Differential expression of gap junction proteins in the canine sinus node. Circ Res. 1998;82:604-612.

101. Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE. Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol. 1995;6:813-822.

102. Dobrzynski H, Nikolski VP, Sambelashvili AT, Greener ID, Yamamoto M, Boyett MR, Efimov IR. Site of origin and molecular substrate of atrioventricular junctional rhythm in the rabbit heart. Circ Res. 2003;93:1102-1110.

103. Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP. The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci. 1993;105 (Pt 4):985-991.

104. Kirchhoff S, Nelles E, Hagendorff A, Kruger O, Traub O, Willecke K. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol. 1998;8:299-302.

105. Bevilacqua LM, Simon AM, Maguire CT, Gehrmann J, Wakimoto H, Paul DL, Berul CI. A targeted disruption in connexin40 leads to distinct atrioventricular conduction defects. J Interv Card Electrophysiol. 2000;4:459-467.

106. Simon AM, Goodenough DA, Paul DL. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol. 1998;8:295-298.

107. Tamaddon HS, Vaidya D, Simon AM, Paul DL, Jalife J, Morley GE. High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circ Res. 2000;87:929-936.

108. VanderBrink BA, Sellitto C, Saba S, Link MS, Zhu W, Homoud MK, Estes NA, III, Paul DL, Wang PJ. Connexin40-deficient mice exhibit atrioventricular nodal and infra-Hisian conduction abnormalities. J Cardiovasc Electrophysiol. 2000;11:1270-1276.

109. Alcolea S, Jarry-Guichard T, de BJ, Gonzalez D, Lamers W, Coppen S, Barrio L, Jongsm J, Gros D, van RH. Replacement of connexin40 by connexin45 in the mouse: impact on cardiac electrical conduction. Circ Res. 2004;94:100-109.

110. Delorme B, Dahl E, Jarry-Guichard T. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res. 1997;81:423-437.

111. Fromagel C, Aoumari AF, Dupont E, Briand JP, Gros D. Changes in the expression of connexin 43, a cardiac gap junctional protein, during mouse heart development. J Mol Cell Cardiol. 1999;32:1245-1258.

112. Reaume AG, Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J. Cardiac malformation in neonatal mice lacking connexin43. Science. 1995;267:1831-1834.
113. Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res. 2001;88:333-339.

114. Nishi K, Kumat M, Egashira K, Miwa T, Hashizume K, Miyano Y, Shibata Y. Mice lacking connexin45 conditionally in cardiac myocytes display embryonic lethality similar to that of germline knockout mice without endocardial cushion defect. Cell Commun Adhes. 2003;10:365-369.

115. Kreuzberg MM, Willecke K, Bukauskas FF. Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med. 2006;16:266-272.

116. Kreuzberg MM, Schrickel JW, Ghanem A, Degen J, Janssen-Bienhold U, Lewalter T, Tiemann K, Willecke K. Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci U S A. 2006;103:5959-5964.

117. Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124:2099-2117.

118. DeHaan RL. Migration patterns of the precardiac mesoderm in the early chick embryo. Exp Cell Res. 1963;29:544-560.

119. de Jong F, Ophofl T, Wilde AA, Janse MJ, Charles R, Lamers WH, Moorman AF. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res. 1992;71:240-250.

120. Reckova M, Roxengarten C, Dealmeda A, Stanley CP, Wessels A, Gourdie RG, Thompson RP, Sedmera D. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res. 2003;93:77-85.

121. Hall CE, Hurtado R, Hewett KW, Shulimovich M, Poma CP, Reckova M, Justus C, Pennisi DJ, Tobita K, Sedmera D, Gourdie RG, Mikawa T. Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development. 2004;131:581-592.

122. Kern CB, Hoffman S, Moreno R, Damon BJ, Norris RA, Krug EL, Markwald RR, Mjaatvedt CH. Immunolocalization of chick peristin protein in the developing heart. Anat Rec. 2005;284A:415-423.

123. Ji X, Chen D, Xu C, Harris SE, Mundy GR, Yoneda T. Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. J Bone Miner Metab. 2000;18:132-139.

124. Norris RA, Kern CB, Wessels A, Morales El, Markwald RR, Mjaatvedt CH. Identification and detection of the peristin gene in cardiac development. Anat Rec. 2004;281:1227-1233.

125. Kolditz DP, Wijffels MC, Blom NA, van Der LA, Hahurij ND, Lie-Venema H, Markwald RR, Poelmann RE, Schalij MJ, Gittenberger-de Groot AC. Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation. 2008;117:1508-1517.

126. Anderson RH, Christoffels VM, Moorman AF. Controversies concerning the anatomical definition of the conduction tissues. Anat Rec B New Anat. 2004;280:8-14.

127. Aschoff. Referat uber die Herzstorungen in ihren Bezielungen zu den spezifischen Muskelsystemen des Herzens. Zbl Pathol. 1910;21:3-35.

128. Monckeberg JG. Beitrag zur normalen und pathologischen Anatomie des Herzens. Verh Deutsch Path Gesch. 1910;14:64-71.

129. Kalman JM, Olgin JE, Karch MR, Hamdan M, Lee RJ, Lesh MD. “Cristal tachycardias”: origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography. J Am Coll Cardiol. 1998;31:451-459.

130. Olgin JE, Kalman JM, Fitzpatrick AP, Lesh MD. Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter. Activation and entrainment mapping guided by intracardiac echocardiography. Circulation. 1995;92:1839-1848.
131. Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, Ding YA, Chang MS, Chen SA. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation. 2000;102:67-74.

132. Katritsis D, Ioannidis JP, Gialitzoglou E, Korovessis P, Anagnostopoulos CE, Camm AJ. Conduction delay within the coronary sinus in humans: implications for atrial arrhythmias. J Cardiovasc Electrophysiol. 2002;13:859-862.

133. Al-Khatib SM, Pritchett EL. Clinical features of Wolff-Parkinson-White syndrome. Am Heart J. 1999;138:403-413.

134. Kumagai K, Uno K, Khrestian C, Wald AL. Single site radiofrequency catheter ablation of atrial fibrillation: studies guided by simultaneous multisite mapping in the canine sterile pericarditis model. J Am Coll Cardiol. 2000;36:917-923.

135. Kistler PM, Sanders P, Morton JB, Vohra JK, Sparks PB, Kalman JM. Focal atrial tachycardia arising from the mitral annulus: electrocardiographic and electrophysiologic characterization. J Am Coll Cardiol. 2003;41:2212-2219.

136. Morton JB, Sanders P, Das A, Vohra JK, Sparks PB, Kalman JM. Focal atrial tachycardia arising from the tricuspid annulus: electrophysiologic and electrocardiographic characteristics. J Cardiovasc Electrophysiol. 2001;12:653-659.

137. James TN. The connecting pathways between the sinus node and AV node and between the right and left atrium in the human heart. Am Heart J. 1963;66:498-508.

138. James TN. The internodal pathways of the human heart. Progress in Cardiovascular Diseases. 2001;43:495-535.

139. Sherf L, James TN. Fine structure cells and their histologic organization within internodal pathways of the heart: clinical and electrocardiographic implications. Am J Cardiol. 1979;44:345-369.

140. Gittenberger-de Groot AC, Wenink CG. The specialized myocardium in the fetal heart. In: Embryology and teratology of the heart and the great arteries. van Mierop LHS, Oppenheimer-Dekker A, Bruins eds. 1978. Univ. Press, Leiden.

141. Sakai T, Hirota A, Momose-Sato Y, Sato K, Kamino K. Optical mapping of conduction patterns of normal and tachycardia-like excitations in the rat atrium. Jpn J Physiol. 1997;47:179-188.

142. Spach MS, Kootsey JM. The nature of electrical propagation in cardiac muscle. Am J Physiol. 1983;244:H3-H22.

143. Vassalle M, Hoffman BF. The spread of sinus activation during potassium administration. Circ Res. 1965;17:285-295.

144. Wagner ML, Lazzara R, Weiss RM, Hoffman BF. Specialized conducting fibers in the interatrial band. Circ Res. 1966;18:502-518.

145. Racker DK. Sinoventricular transmission in 10 mM K+ by canine atrioventricular nodal inputs. Superior atrioventricular bundle and proximal atrioventricular bundle. Circulation. 1991;83:1738-1753.

146. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 1999;10:1525-1533.

147. Ho SY, Cabrera JA, Tran VH, Farre J, Anderson RH, Sanchez-Quintana D. Architecture of the pulmonary veins: relevance to radiofrequency ablation. Heart. 2001;86:265-270.

148. Millino C, Sarinella F, Tiveron C, Villa A, Sartore S, Ausoni S. Cardiac and smooth muscle cell contribution to the formation of the murine pulmonary veins. Dev Dyn. 2000;218:414-425.

149. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE. Differences in development of coronary arteries and veins. Cardiovasc Res. 1997;36:101-110.

150. Kruithof BP, van den Hoff MJ, Wessels A, Moorman AF. Cardiac muscle cell formation after development of the linear heart tube. Dev Dyn. 2003;227:1-13.

151. Momenneeghe MT, Brown NA, Prall OW, de Gier-de VC, Harvey RP, Moorman AF, Christoffels VM. Pitx2c and Nkx2-5 Are Required for the Formation and Identity of the Pulmonary Myocardium. Circ Res. 2007;101:902-909.

152. Snarr BS, O’Neal JL, Chintalapudi MR, Wirrig EE, Phelps AL, Kubalak SW, Wessels A. Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ Res. 2007;101:971-974.
145. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, Hsu TL, Ding YA, Chang MS. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation. 1999;100:1879-1886.

146. Brunton TL, Fayrer J. Note on independent pulsation of the pulmonary veins and vena cava. Proc R Soc Lond. 1874;25:174-178.

150. Masani F. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat. 1986;145:133-142.

151. Perez-Lugones A, McMahon JT, Ratliff NB, Saliba WI, Schwikerdt RA, Marrouche NF, Saad EB, Nava JA, McCarthy PM, Tchou P, Gilinov AM, Natale A. Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14:803-809.

152. Sealy WC, Bache RJ, Seaber AV, Bhattacharga SK. The atrial pacemaking site after surgical exclusion of the sinoatrial node. J Thorac Cardiovasc Surg. 1973;65:841-850.

153. Rubenstein DS, Fox LM, McNulty JA, Lipsius SL. Electrophysiology and ultrastructure of eustachian ridge from cat right atrium: a comparison with SA node. J Mol Cell Cardiol. 1987;19:965-976.

154. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Melnyk P, Hohnloser SH, Nattel S. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol. 2003;551:801-813.

155. Jais P, Hocini M, Macle L, Weerasooriya R, Shah DC, Garrigue S, Raybaud F, S navia JL, McCarthy PM, Tchou P, Gillinov AM, Natale A. Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2002;13:33-37.

156. Cheung DW. Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J Physiol. 1981;314:445-456.

157. Chen YJ, Chen SA, Chang MS, Lin CI. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implications for the genesis of atrial fibrillation. Cardiovasc Res. 2000;48:265-273.

158. Dixit S, Gerstenfeld EP, Callans DJ, Marchlinski FE. Mechanisms underlying sustained firing from pulmonary veins: evidence from pacing maneuvers and pharmacological manipulation. Pacing Clin Electrophysiol. 2004;27:1120-1129.
Chapter 6

174. Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, Jais P, Janse MJ, Haissaguerre M, De Bakker JM. Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation. 2002;105:2442-2448.

175. Nattel S. Basic electrophysiology of the pulmonary veins and their role in atrial fibrillation: precipitators, perpetuators, and perplexers. J Cardiovasc Electrophysiol. 2003;14:1372-1375.

176. Melnyk P, Ehrlich JR, Pourrier M, Villeneuve L, Cha TJ, Nattel S. Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res. 2005;65:104-116.

177. Gudbjartsson DF, Amor DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, Jonsdottir A, Baker A, Thorleifsson G, Kristjansson K, Palsson A, Blondal T, Sulem P, Backman VM, Hardarson GA, Palsson E, Helgason A, Sigurdjonsdottir R, Sverrisson JT, Kostulas K, Ng MC, Baum L, So WY, Wong KS, Chan JC, Furie KL, Greenberg SM, Sale M, Kelly P, MacRae CA, Smith EE, Rosand J, Hillert J, Ma RC, Ellinor PT, Thorsteinsdottir U, Stefansson K. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448:353-357.

178. Franco D, Campione M, Kelly R, Zammit PS, Buckingham M, Lamers WH, Moorman AF. Multiple transcriptional domains, with distinct left and right components, in the atrial chambers of the developing heart. Circ Res. 2000;87:984-991.

179. Becker AE, Anderson RH. The Wolff-Parkinson-White syndrome and its anatomical substrates. Anat Rec. 1981;201:169-177.

180. McGuire MA, Debakker JMT, Vermeulen JT, Moorman AFM, Loh P, Thibault B, Vermeulen JLM, Becker AE, Janse MJ. Atrioventricular junctional tissue: discrepancy between histological and electrophysiological characteristics. Circulation. 1996;94:571-577.

181. Klein GJ, Guiraudon GM, Kerr CR, Sharma AD, Yee R, Szabo T, Wah JA. “Nodoventricular” accessory pathway: evidence for a distinct accessory atrioventricular pathway with atrioventricular node-like properties. J Am Coll Cardiol. 1988;11:1035-1040.

182. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, id Hassan AS, Ahmad F, Shah G, Fananapazir L, Bachinski LL, Roberts R. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344:1823-1831.

183. Sidhu JS, Rajawat YS, Rami TG, Gollob MH, Wang Z, Yuan R, Marian AJ, Demayo FJ, Weilbacher D, Taffet GE, Davies JK, Carling D, Khoury DS, Roberts R. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation. 2005;111:21-29.

184. Patel VV, Arad M, Moskowitz IP, Maguire CT, Branco D, Seidman JG, Seidman CE, Benes VI. Electrophysiologic characterization and postnatal development of ventricular pre-excitation in a mouse model of cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Am Coll Cardiol. 2003;42:942-951.

185. Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez-Alayde AR, Sawyer DB, Waller M, Li GH, Burgon PG, Maguire CT, Stapleton D, Schmitt JP, Quinones M, Pizarra A, Kupersmidt S, Roden DM, Benes VI, Seidman CE, Seidman JG. Transgenic mice overexpressing mutant PRRG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation. 2003;107:2850-2856.

186. Gauskin V, Morley GE, Cox L, Zwislen A, Vince KM, Enikei L, Tinh Y, Liu J, Hong C, Myers D, Conway S, Deppe C, Mishina Y, Behringer RR, Hanks MC, Schneider MD, Hul救治ick D, Fishman GI, Burch JB, Vatner SF, Gauskin V, Morley GE. Abnormal conduction and morphology in the atrioventricular node of mice with atrioventricular canal targeted deletion of A3b3/8mr1a receptor. Circulation. 2007;116:2535-2543.
