RESULTS: Out of 64 pancreatic cancer tissues, 21 were marked as Vimentin methylation-positive, and 43 were marked as Vimentin methylation-negative. The location of pancreatic carcinoma was related to the Vimentin methylation state. The pathological T staging ($P < 0.001$), adjuvant chemotherapy ($P = 0.003$) and the Vimentin methylation state ($P = 0.037$) were independent prognostic factors.

CONCLUSION: In our study, Vimentin methylation status can predict the prognosis of pancreatic cancer patients. However, additional experiments and clinical trials are needed to accurately validate this observation.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Vimentin; Methylation; Pancreatic carcinoma; Prognosis

Core tip: Vimentin is reported to be an important mesenchymal marker, and plays an important role in epithelial-mesenchymal transition in malignant tumors with regard to cellular adhesion, migration and signaling. In our study, we found that pathological T staging ($P < 0.001$), adjuvant chemotherapy ($P = 0.003$) and the Vimentin gene methylation state ($P = 0.037$) were independent prognostic factors. However, additional experiments and clinical trials are needed to accurately validate this observation.

Zhou YF, Xu W, Wang X, Sun JS, Xiang JJ, Li ZS, Zhang XF. Negative methylation status of Vimentin predicts improved prognosis in pancreatic carcinoma. World J Gastroenterol 2014; 20(36): 13172-13177 Available from: URL: http://www.wjg.net/1007-9327/full/v20/i36/13172.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i36.13172

INTRODUCTION

Pancreatic cancer is one of the most lethal malignan-
Vimentin is reported as an important mesenchymal marker, and plays an important role in epithelial-mesenchymal transition in malignant tumors with regard to cellular adhesion, migration and signaling. Several investigators have previously shown that Vimentin is an important marker for the early detection of cancer, such as bladder cancer, hepatocellular carcinoma and colorectal cancer. In addition, methylation of the Vimentin gene is described as a marker in several malignant tumors, including gastric carcinoma, colorectal carcinoma, cervical cancer and bladder cancer. In our current study, we have attempted to identify the relationship between the methylation state of Vimentin and pancreatic cancer.

MATERIALS AND METHODS

Sample collection and DNA preparation

Sixty-four primary tumor specimens and normal tissues were collected consecutively from pancreatic cancer patients undergoing surgery at Hangzhou First People’s Hospital and Affiliated Hospital of the Logistics University of the Chinese People’s Armed Police Force. All specimens were confirmed by histopathology. Written informed consent was obtained from all patients. All the collected samples were stored at -80°C. DNA from the samples was extracted by QIAamp DNA Mini Kit (Catalog number: 51306, Qiagen, Hilden, Germany). The clinicopathological characteristics of the patients who were enrolled in our study are shown in Table 1.

Sodium bisulfite modification

Genomic tumor DNA (1 μg) and the corresponding normal pancreatic tissue specimens were subjected to bisulfite treatment using an Epitect Bisulfite Kit (Catalog No. 59104, Qiagen, Hilden, Germany). The clinicopathological characteristics of the patients who were enrolled in our study are shown in Table 1.

Quantitative methylation-specific polymerase chain reaction

The bisulfite-treated DNA was amplified using a quantitative methylation-specific polymerase chain reaction and a Thermal Cycler Dice® Real-time System TP800 (Takara Bio Inc., Otsu, Japan). Thermo-cycling was carried out in a final volume of 25 μL containing 1.0 μL of the DNA sample, 100 nmol/L each of the Vimentin or β-actin primers (forward and reverse sequences), and 12.5 μL of SYBR Premix Ex Taq™ (Takara Bio Inc., Otsu, Japan), which consists of Taq DNA polymerase,

Table 1 Clinicopathological features of pancreatic carcinoma (n) (%)
Data
Sex
Male
Female
Tumor position
Head
Body and tail
Preoperative CEA level
Normal
Elevated
Preoperative CA19-9 level
Normal
Elevated
Pathological N staging
N0
N1
Pathological T staging
T1
T2
T3
Adjuvant chemotherapy
No
Yes

The pathological T and N staging was based on the UICC staging systems for pancreatic cancer; 1Median age 54 years, range: 36-71 years; 2Median age 53 years, range: 41-68 years.
Zhou YF et al. Vimentin methylation in pancreatic carcinoma

Table 2 Univariate analysis of overall survival in pancreatic carcinoma

Variables	n	Median survival (mo)	P value
Sex			
Male	42	13.45	0.819
Female	22	10.84	
Preoperative CEA			
Normal	33	15.15	0.260
Elevated	31	13.61	
Preoperative CA19-9			
Normal	40	14.12	0.947
Elevated	24	15.09	
Tumor position			
Body and tail	40	16.20	0.007
Head	24	11.25	
Pathological T stage			< 0.001
T1	19	21.01	
T2	30	13.10	
T3	15	8.00	
Pathological N stage			0.311
N0	34	14.28	
N1	30	16.20	
Adjuvant chemotherapy			
Yes	33	16.12	0.015
No	31	13.07	
Vimentin methylation state			0.013
Positive	21	11.09	
Negative	43	16.03	

RESULTS

Vimentin methylation in pancreatic cancer and corresponding pancreatic tissues

We detected Vimentin methylation in pancreatic cancer and corresponding pancreatic tissues. Of the 64 pancreatic cancer tissues, 21 of them had a high-level methylation status and 45 of the corresponding pancreatic tissues had a high level of methylation. There were 9 pancreatic cancer tissues and 5 normal corresponding pancreatic tissues without methylation of the Vimentin gene. In addition, Vimentin methylation scores were recorded and informed that 43 of them were marked as Vimentin methylation-negative, and the remaining 21 were Vimentin methylation-positive.

Vimentin methylation state was related to the age and the diameter of the tumor

The clinicopathological factors seen between these two groups are summarized in Table 1. Moreover, we found that the location of the pancreatic carcinoma was associated with the status of Vimentin methylation. However, patient gender, preoperative serum tumor markers, lymph node metastasis and pathological T-stage were found not to be associated with the Vimentin methylation state.

Vimentin methylation state was an independent prognostic factor in pancreatic cancer

Univariate analysis showed that tumor position (P = 0.002), pathological T-staging (P < 0.001), adjuvant chemotherapy (P = 0.015) and the Vimentin methylation state (P = 0.013) were prognostic factors in pancreatic carcinoma (Table 2 and Figure 1). Multivariate analysis showed that the pathological T-staging (P < 0.001), adjuvant chemotherapy (P = 0.003) and the Vimentin methylation state (P = 0.037) were independent prognostic factors (Table 3).

DISCUSSION

An estimated 44030 people were diagnosed with pancreatic cancer and approximately 37660 people died of pancreatic cancer in the United States in 2011[19]. Although the technology of radiotherapy and chemotherapy has been developed, the incidence and mortality rates have remained approximately the same over the past two decades. A mutation in the CDKN2A (p16) gene has been reported...
found that of 64 pancreatic cancer tissues, 21 of them displayed a high level of methylation status and 45 of the corresponding pancreatic tissues displayed a high level of methylation. Moreover, survival analysis showed that the Vimentin methylation status was an independent prognostic factor as well as a prognostic marker in T-staging and adjuvant chemotherapy. We are also aware that a low methylation status is always associated with high Vimentin expression levels. Additionally, Vimentin has been shown to be associated with several pathways, including cell adhesion, cytoplasmic microtubule assembly, and cytoskeleton remodeling. Higher Vimentin expression in pancreatic cancer cells may imply a higher state of malignancy of these cells, with an associated higher metastatic ability. The detailed mechanism of Vimentin and its gene methylation status requires further study.

Our observations only covered 64 pancreatic cancer patients, which is a small population sample. Although our results showed that the Vimentin methylation status could be used to predict prognosis in pancreatic cancer, more studies and clinical trials are needed to validate this result. In summary, our study showed that pancreatic cancer patients exhibiting a negative Vimentin methylation directly modulating transcription factor function or by triggering the formation of inactive chromatin. We found that of 64 pancreatic cancer tissues, 21 of them displayed a high level of methylation status and 45 of the corresponding pancreatic tissues displayed a high level of methylation. Moreover, survival analysis showed that the Vimentin methylation status was an independent prognostic factor as well as a prognostic marker in T-staging and adjuvant chemotherapy. We are also aware that a low methylation status is always associated with high Vimentin expression levels. Additionally, Vimentin has been shown to be associated with several pathways, including cell adhesion, cytoplasmic microtubule assembly, and cytoskeleton remodeling. Higher Vimentin expression in pancreatic cancer cells may imply a higher state of malignancy of these cells, with an associated higher metastatic ability. The detailed mechanism of Vimentin and its gene methylation status requires further study.

Our observations only covered 64 pancreatic cancer patients, which is a small population sample. Although our results showed that the Vimentin methylation status could be used to predict prognosis in pancreatic cancer, more studies and clinical trials are needed to validate this result. In summary, our study showed that pancreatic cancer patients exhibiting a negative Vimentin methylation
Zhou YF et al. Vimentin methylation in pancreatic carcinoma

status displayed a poorer prognosis as compared with those with a positive status. The role of Vimentin methylation in pancreatic cancer warrants further empirical exploration.

COMMENTS

Background

Vimentin is reported as an important mesenchymal marker, and plays an important role in epithelial-mesenchymal transition in malignant tumors with regard to cellular adhesion, migration and signaling. In their current study, authors have attempted to identify the relationship between the methylation state of the Vimentin gene and pancreatic cancer.

Research frontiers

Several investigators have previously shown that Vimentin is an important marker for the early detection of cancer, such as bladder cancer, hepatocellular carcinoma and colorectal cancer. In addition, methylation of Vimentin is described as a marker in several malignant tumors, including gastric carcinoma, colorectal carcinoma, cervical cancer and bladder cancer.

Innovations and breakthroughs

The location of pancreatic carcinoma was related to the methylation state. The pathological T staging (P < 0.001), adjuvant chemotherapy (P = 0.003) and the Vimentin methylation state (P = 0.037) were independent prognostic factors.

Applications

This result showed that the Vimentin methylation status could be used to predict prognosis in pancreatic cancer.

Peer review

The manuscript is very interesting. The authors try to determine the existence of a potential relationship between the methylation state of Vimentin and the pathological T staging. The authors found that Vimentin methylation status can predict the prognosis of pancreatic cancer patients.

REFERENCES

1 Michalski CW, Weitz J, Büchler MW. Surgery insight: surgical management of pancreatic cancer. Nat Clin Pract Oncol 2007; 4: 526-535 [PMID: 17728711 DOI: 10.1038/ncponcol0925]

2 Hirata K, Egawa S, Kimura Y, Nobuoka T, Oshima H, Katamura T, Mizuguchi T, Furuhata T. Current status of surgery for pancreatic cancer. Dig Surg 2007; 24: 137-147 [PMID: 17476103 DOI: 10.1159/000102867]

3 Cardenes HR, Chiorean EG, Dewitt J, Schmidt M, Loeheer P. Locally advanced pancreatic cancer: current therapeutic approach. Oncology 2006; 11: 612-623 [PMID: 16794240 DOI: 10.1634/theoncologist.11-6-612]

4 Carpelan-Holmström M, Nordling S, Pukkala E, Sankila R, Lüttges J, Klöppel G, Haglund C. Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating the data of the Finnish Cancer Registry. Gut 2005; 54: 385-387 [PMID: 15710987 DOI: 10.1136/gut.2004.047919]

5 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225-249 [PMID: 19474385 DOI: 10.3323/caac.2006]

6 Sultana A, Smith CT, Cunningham D, Starling N, Neoptolemos JP, Ghaneh P. Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer. J Clin Oncol 2007; 25: 2607-2615 [PMID: 17757041 DOI: 10.1200/JCO.2006.09.2551]

7 Hawes RH, Xiong Q, Waxman I, Chang KJ, Evans DB, Abbruzzese JL. A multispecialty approach to the diagnosis and management of pancreatic cancer. Am J Gastroenterol 2000; 95: 17-31 [PMID: 10638554 DOI: 10.1111/j.1572-0241.2000.01699.x]

8 Wu X, Lu XH, Xu T, Qian JM, Zhao P, Guo XZ, Yang XO, Jiang WJ. Evaluation of the diagnostic value of serum tumor markers, and fecal k-ras and p53 gene mutations for pancreatic cancer. Chin J Dig Dis 2006; 7: 170-174 [PMID: 16880798]

9 Leung TK, Lee CM, Wang PC, Chen HC, Wang HJ. Difficulty with diagnosis of malignant pancreatic neoplasms coexisting with chronic pancreatitis. World J Gastroenterol 2005; 11: 5075-5079 [PMID: 16124071]

10 Zhou G, Chiu D, Qin D, Niu L, Cai J, He L, Huang W, Xu K. The efficacy evaluation of cryosurgery in pancreatic cancer patients with the expression of CD44v6, integrin-β1, CA199, and CEA. Mol Biotechnol 2012; 52: 59-67 [PMID: 22382453 DOI: 10.1007/s12033-012-9153-2]

11 Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973-981 [PMID: 16567498 DOI: 10.1083/jcb.20061018]

12 Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 2007; 313: 2050-2062 [PMID: 17512929 DOI: 10.1016/j.yexcr.2007.03.040]

13 Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknæs M, Skotheim RI, Rodrigues A, Magalhães JS, Oliveira J, Lothe RA, Teixeira MR, Jeronimo C, Lind GE. Three epi-genetic biomarkers, CD95, TMEF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res 2010; 16: 5842-5851 [PMID: 20975101 DOI: 10.1158/1078-0432.CCR-10-1132]

14 Wong KF, Luk JM. Discovery of lamin B1 and vimentin as circulating biomarkers for early hepatocellular carcinoma. Methods Mol Biol 2012; 909: 295-310 [PMID: 22003725]

15 Shirahata A, Sakata M, Sakuraba K, Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y, Hibi K. Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res 2009; 29: 279-281 [PMID: 19338162]

16 Shirahata A, Sakuraba K, Kitamura Y, Yokomizo K, Gotou T, Saitou M, Kigawa G, Nemoto H, Sanada Y, Hibi K. Detection of vimentin methylation in the serum of patients with gastric cancer. Anticancer Res 2012; 32: 791-794 [PMID: 22999995]

17 Jung S, Yi L, Kim J, Jeong D, Oh T, Kim CH, Kim C, Shin J, An S, Lee MS. The role of vimentin as a methylation biomarker for early diagnosis of cervical cancer. Mol Cells 2011; 31: 405-411 [PMID: 21491170 DOI: 10.1007/s10059-011-0229-x]

18 Hibi K, Sakata M, Sakuraba K, Shirahata A, Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y. Abrerrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer. Anticancer Res 2008; 28: 1581-1584 [PMID: 18630515]

19 Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61: 212-236 [PMID: 21685461 DOI: 10.3322/caac.201121]

20 Ghiorzo P, Gargiulo S, Nasti S, Pastorino L, Battistuzzi L, Bruno W, Bonelli L, Taveggia P, Pugliese V, Borgonovo G, Mastracci L, Fornarini G, Romagnoli P, Iiritano E, Savarino V, Bianchi-Scarrà G. Predicting the risk of pancreatic cancer: on CDKN2A mutations in the melanoma-pancreatic cancer syndrome in Italy. J Clin Oncol 2007; 25: 5336-537, author reply 5336-537 [PMID: 18024887 DOI: 10.1200/JCO.2007.13.5624]

21 Whelan AJ, Bartsch D, Goodfellow PJ. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med 1995; 333: 975-977 [PMID: 7666917 DOI: 10.1056/NEJM19951231335150]

22 Ferrone CR, Levine DA, Tang LH, Allen PJ, Jarnagin W, Brennan MF, Offit K, Robson ME. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J Clin Oncol 2007; 25: 433-438 [PMID: 17804988 DOI: 10.1200/JCO.2006.15.5623]

23 Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, Korte B, Gerdes B, Kress R, Ziegler A, Raeburn JA, Campdra D, Grützmann R, Rehder H, Rothmund M, Schmiegel W, Neoptol-
emos JP, Bartsch DK. BRCA2 germline mutations in familial pancreatic carcinoma. *J Natl Cancer Inst* 2003; 95: 214-221 [PMID: 12569143 DOI: 10.1093/jnci/95.3.214]

24 Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, Neoptolemos JP, Greenhalf W, Bartsch DK. PALB2 mutations in European familial pancreatic cancer families. *Clin Genet* 2010; 78: 490-494 [PMID: 20412113 DOI: 10.1111/j.1399-0004.2010.01425.x]

25 Lindor NM, Petersen GM, Spurdle AB, Thompson B, Goldgar DE, Thibodeau SN. Pancreatic cancer and a novel MSH2 germline alteration. *Pancreas* 2011; 40: 1138-1140 [PMID: 21926548 DOI: 10.1097/MPA.0b013e318220c217]

26 Bird A. DNA methylation patterns and epigenetic memory. *Genes Dev* 2002; 16: 6-21 [PMID: 11782440 DOI: 10.1101/gad.947102]

27 Shin TH, Paterson AJ, Grant JH, Meluch AA, Kudlow JE. 5-Azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor alpha expression. *Mol Cell Biol* 1992; 12: 3998-4006 [PMID: 1380648]

28 Ammanamanchi S, Kim SJ, Sun LZ, Brattain MG. Induction of transforming growth factor-beta receptor type II expression in estrogen receptor-positive breast cancer cells through Sp1 activation by 5-aza-2’-deoxycytidine. *J Biol Chem* 1998; 273: 16527-16534 [PMID: 9632722 DOI: 10.1074/jbc.273.26.16527]
