Fusion Dynamics of Low-Energy Heavy-Ion Collisions for Production of Superheavy Nuclei

Xiao Jun Bao*

Department of Physics, Collaborative Innovation Center for Quantum Effects, and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, China

One of the major motivations for low-energy heavy-ion collision is the synthesis of superheavy nuclei. Based on the following two main aspects, various theoretical and experimental studies have been performed to explore the fusion dynamical process of superheavy nuclei production. The first reason is to elucidate and analyze the synthesis mechanism of superheavy nuclei; the other is to search the favorable incident energy and the best combination of projectile and target to produce new superheavy elements and isotopes of superheavy elements.

Keywords: low-energy heavy-ion collisions, superheavy nuclei production, fusion dynamics, transport theory, TDHF model

1. INTRODUCTION

The maximum mass and charge of a nucleus is a long-standing fundamental problem in nuclear physics [1, 2]. Pioneer studies have theoretically predicted the “island of stability” of superheavy nuclei (SHN). The macroscopic-microscopic models predicted 298Fl to be the double magic nucleus [3–7]. However, results of the self-consistent models showed that the closed shell of $Z = 114$ becomes weaker, and $Z = 114$ is replaced by $Z = 120$ or 126 [8–13].

The production process of superheavy nuclei is a very complicated dynamical problem [14]. Many theoretical models have been developed to explain the experimental data. On one hand, the synthesis mechanism of superheavy nuclei needs to be elucidated [15–21]. Different approaches are devoted to calculate and analyze the fusion probability and the distribution of quasifission fragments [15–41]. However, none of them has absolute advantage. On the other hand, in order to produce the new superheavy elements, or isotopes of superheavy elements, the favorable incident energy and the best combination of projectile and target should be evaluated.

The extended nuclear landscape allows us to investigate the nuclear structure of superheavy nuclei and the nuclear reaction mechanism. To search for the optimal condition of synthesis, the influence of the entrance channel [29, 42, 43] and the isospin of heavy colliding nuclei [44–46] on the evaporation residual cross section have been studied systematically in many works. The predictions of the possible way to synthesize the new superheavy elements $Z = 119$ and 120 have also been carried out [17, 47–52].

2. EXPERIMENTAL PROGRESS

Producing superheavy nuclei in the laboratory is one of the major motivations of low-energy heavy-ion physics [1, 2, 53–55]. Over the past 30 years, great progress has been achieved for superheavy nuclei production in experimental studies [53–55]. The experimental trends α decay half-lives, and the evaporation residue cross sections of the superheavy nuclei show
that the stability of superheavy nuclei increases as the neutron number approaches the closed neutron shell closure $N = 184$. However, the location of the “island of stability” has not been determined by experiment. Up until now, based on the fusion-evaporation reaction, the superheavy nuclei with charge numbers in the range of $Z = 104-118$ have been synthesized successfully.

The superheavy elements $Z = 107 – 112$ was first synthesized by using the cold fusion reactions [1, 53, 54, 56, 57]. The excitation energy range of the formed compound nucleus was 10–18 MeV. The measurement of the evaporation residue cross section decreased dramatically from $Z = 107$ to $Z = 113$. Moreover, the final evaporated residual nuclei were extremely neutron deficient. Experiments of producing superheavy nuclei by cold fusion have been repeated and verified by other laboratories [54, 58, 59].

The 48Ca-induced hot-fusion reactions were used to synthesize $Z = 112 – 118$ superheavy nuclei in experiment [54, 55, 60]. From the measurement of evaporation residue cross sections, we found that there was no significant difference from $Z = 112–118$, and the values of the evaporation residual cross sections were all in the order of picobarn. Experiments based on hot fusion for synthesizing $Z = 112$ and 114–117 superheavy nuclei have been verified by other laboratories [60].

To search for the optimal condition of the superheavy nuclei production, various experiments have been performed to study the entrance channel effect on the evaporation residual cross section [61–65]. Recently, the isospin effect of the target nucleus on the evaporation residue cross section has been explored [66–68]. Some laboratories have also attempted to synthesize the $Z = 119$ and 120 superheavy elements by using hot fusion [69, 70].

Experimentally, the measurement of fusion probability is required to distinguish quasifission between fusion-fission and fast fission [71–76]. The experimental characteristics of the quasifission process are different from the fusion-fission process [77]. Therefore, it is important to distinguish the fusion and quasifission fragments for a better understanding of the fusion mechanism.

3. THEORETICAL DESCRIPTION OF FUSION REACTIONS

Theoretically, the synthesis process of superheavy nuclei can be divided into three stages [39]. A schematic diagram for this process is shown in Figure 1. The first stage is the capture process, which can be evaluated by the capture cross section. The second stage is that the dinuclear system evolves from the touching configuration to the formation of the compound nucleus, which can be evaluated by the fusion probability. The last stage is where the excited compound nucleus cools down through emitting neutrons or fission, and this can be evaluated by the survival probability. Finally, a very small evaporation residue cross section is obtained for the superheavy nuclei production. The evaporation residue cross section can be expressed as [39],

$$\sigma_{ER}(E_{c.m.}) = \sum_{f} \sigma_{cap}(E_{c.m.,f}) P_{CN}(E_{c.m.,f}) W_{sur}(E_{c.m.,f})$$ (1)

where $E_{c.m.}$ is the incident energy in the center-of-mass frame.

3.1. Capture Cross Sections

For the low-energy heavy-ion collision, the capture cross section from the sub-barrier region to above the Coulomb barrier is an important issue for theoretical and experimental studies [78–83]. One of reasons is that the overall uncertainties in predicting superheavy nuclei production are associated with the calculations of capture cross sections [50, 84, 85].

The capture process is closely related to the nuclear structure of the interacting nuclei [86–97]. This is because the nucleus-nucleus potential contains nuclear structure information. To precisely describe the measurements of capture cross sections, the nucleus-nucleus interaction potential is the most important input quantity. In addition, the heavy-ion capture process is intimately linked to nuclear deformation [87, 88]. Thus, the nuclear deformation must be reliable to some extent.

Theoretically, the capture cross section is one of the important components in the synthesis of superheavy nuclei. The capture cross section have been explored extensively [82–84] from light to superheavy by averaging the penetration probability over barrier heights. Most of them have tested a number of experimental data of capture cross sections, however, these experimental data do not contain the capture cross sections of superheavy nuclei [84]. Therefore, it is very important to examine carefully the capture process for the study of the synthesis mechanism of superheavy nuclei.

Usually, the capture cross section σ_{cap} is mainly calculated with an empirical coupled-channel approach for the superheavy nuclei production [17, 44–52]. From a theoretical point of view, one of the powerful methods is to solve coupled-channels equations numerically. This may help us to understand the influence of the couplings between nuclear intrinsic degrees of freedom and the relative motion on capture cross sections.

Recently, the quantum diffusion approach [98–101] has also been used to calculate capture cross sections. This model takes into consideration the influence of fluctuations and dissipation effects on capture cross sections. The nuclear deformation effects and mutual orientations of the colliding nuclei are taken into account through using a double folding potential, and
the influence of two neutrons transfer onto the sub-barrier capture through the change of the deformations of the colliding nuclei [100].

Another powerful theoretical tool is to calculate the capture cross section by the time-dependent Hartree Fock (TDHF) method. Recently, the pioneering work of studying capture cross section based on TDHF has been completed for the \(^{40}\text{Ca} + ^{238}\text{U}\) reaction [102]. In addition, Umar et al. found that the capture cross sections calculated by TDHF method agreed with the experimental data within 20% [103].

3.2. Fusion Dynamics

In order to explain the fusion dynamics process (the second stage), various theoretical approaches and models have been developed. The simplification can be made in different ways, and, as a result, we can obtain different theoretical pictures for the same real nuclear process. Some of the models can be roughly divided into two types. The first type is based on transport equations to describe the fusion dynamics process [15–41]. The second one is based on the time-dependent Hartree Fock method to describe the main experimental features in the process of fusion dynamics [104–115].

The first approach is that the multitude of degrees of freedom are decomposed into a dominating collective degree of freedom and other degrees (non-collective) of freedom. Therefore, the dissipative processes are introduced to account for the coupling between the collective motions and the intrinsic motions of the freedom of the system. Many models based on transport equations have been developed, and they assumed that the main characteristics of fusion dynamics process can be described by using the main collective degrees of freedom.

On the one hand, after eliminating the intrinsic motion, a stochastic equation can be derived theoretically. Many models adopted the Langevin forces (Langevin equation) to describe stochastic characteristics of the coupling between collective motions and intrinsic degrees of freedom. One can calculate a bundle of trajectories by solving a stochastic equation [16, 17, 28, 31, 35, 36].

On the other hand, through eliminating the intrinsic degrees of freedom, a diffusion equation can be derived theoretically to describe the distribution of collective degrees of freedom in the phase space [19–21, 27, 29, 29, 30, 32, 41–43, 46, 47, 49, 51, 116, 117]. Diffusion equations (the master equation, Smoluchowski equation, etc.) may be used to describe the transport process of collective degrees of freedom in phase space.

The second approach is the time-dependent Hartree Fock method. The basic idea of this method is that the mean field produced by all nucleons not only determines the intrinsic motion of a single particle but also describes the evolution characteristics of collective degrees. TDHF calculations may be used to compute the ratio of fusion cross sections to capture cross sections. In addition, the TDHF method may be used to explore the effect of the orientation of the projectile and the target at the contact point, and the role of the nuclear shell structure and tensor force [104–115].

3.3. Fusion Mechanism

For the real fusion dynamics process, a theoretical model may be considered as a collection of theoretical assumptions. Up to now, there have been proposed fusion mechanisms that are incompatible with the compound nucleus formation. One assumption is that all the nucleons are immediately collectivized into one superdeformed mononucleus. Then, the dynamic evolution behavior of the superdeformed mononucleus can be described by the equation of motion or transport theory [15–17, 33, 34, 118]. The macroscopic dynamical model is the first model to describe the fusion mechanism based on the idea of forming one superdeformed mononucleus [15]. However, it encountered serious difficulties in attempts to describe evaporation residue cross sections for the synthesis of superheavy nuclei.

As the macroscopic dynamical models, the same approximations are used in the fluctuation-dissipation model [16, 118], the two-step model [17], and the fusion-by-diffusion model [33, 34]. But two significant improvements are taken into account for the description of the fusion-dynamics mechanism: shell effects in the calculation of the potential energy surface of the reaction system and statistical fluctuations in the interaction of colliding nuclei. These improvements permit one to describe the evaporation residue cross section of superheavy nuclei, the mass distribution of quasifission, and fusion-fission products [16, 17, 33, 34, 118, 119].

Another assumption is that two touching nuclei always keep their own identity with their ground state characteristics and deformations (dinuclear system model) [19–21, 29], fusion is achieved by means of nucleon transfer. However, the real situation is due to strong Coulomb and nuclear interactions between projectile and target; the dinuclear system should be gradually deformed [30, 48]. This assumption has recently been improved upon. The coupling of the deformations evolution of project and target and the nucleon transfer has been studied numerically [120, 121]. The calculated results for the cold and hot fusion reactions by using the dinuclear system model match well with the available experimental data [20, 27, 29, 29, 30, 32, 41–43, 46, 47, 49, 51, 116, 117]. The fusion probability and the distribution of the quasifission fragments can be reasonably described based on the dinuclear system model [120–122].

A new fusion mechanism on compound nucleus formation was proposed by Zagrebaev [18]. The concept of a nucleon collectivization model assumes that two nuclei gradually lose their individualities through increasing the number of collectivized nucleons [18]; the reliability of the theoretical hypothesis needs further demonstration [123]. The nucleon collectivization model allows us to describe reasonably the fusion probability as well as the charge and mass distributions of the quasifission products [124].

3.4. Selection of Collective Degree and Calculation of Related Input Quantity in Transport or Diffusion Equations

To theoretically describe fusion dynamics and the mechanism based on transport equations as mentioned above, one needs to assume that several important degrees of freedoms can be...
used to describe the main characteristics of fusion dynamics process [15–21]. These important degrees of freedoms include the distance between the nuclear centers, the neutron and proton asymmetries of projectile-target combinations, deformations, and corresponding orientation effects, which influence the dynamics from touching the configuration to the compound nucleus.

Because equations of motion contain time derivatives up to the second order, there are three quantities in each equations of motion. The first quantity is the conservative potential. The second and third are the friction tensor (friction force) and the inertia tensor (inertia parameter), respectively. For the conservative potential, two different approaches have been taken into account to calculate the potential energy surface. The two assumptions of calculating potential energy surface are frozen density or sudden approximation [19–21] and the adiabatic approximation [15–18].

Recently, Diaz-Torres showed that the gradual transition of potential energy surface from the diabatic to the adiabatic should be more realistic for describing the fusion or quasifission [125, 126]. In addition, one needs to consider how the shell structure evolves with excitation energy and deformation. The excitation energy dissipated from kinetic energy of relative motion makes the individual shell structure of nuclei become damped [127–131], and deformation tends to be spherical [132]. Thus, the dynamical potential energy surface has to be further studied. However, a small amount of research work has involved the shell correction energy employed in the fusion process being temperature dependent [133] and the potential energy surface from diabatic approximation to adiabatic approximation to describe the whole dynamic evolution process.

The dissipation tensor arises from the distinction between collective motion and intrinsic motion. The dissipation tensor accounts for the coupling between the collective degrees of freedom and other degrees (non-collective) of freedom. When equations of motion or stochastic equations are used to describe the dynamic process, the friction coefficients are mainly treated by the phenomenological approaches for the description of the fusion dynamics process [16, 124].

The inertial tensor describes the response of the system to small changes in the collective degrees of freedom. The macroscopic approach, macroscopic-microscopic approach, and microscopic approach are used to calculate the inertia tensor of the fission dynamics process [134–137]. However, in the low-energy heavy-ion collisions process, it seems that the proper calculation on inertial parameters has not been paid enough attention compared to the fission dynamics process. In the stochastic equation, the inertia parameter is calculated by the Werner-Wheeler approach [124, 127]. In the diffusion equation, the inertia parameter is treated as a reduced mass of relative motion [138]. From the theoretical point of view, the inertia parameters and friction coefficient of theoretical calculations have to match our understanding of the potential energy surface in the transport equations.

3.5. Survival Probabilities

The last important factor is the survival probability of the compound nucleus against fission in the deexcitation process. For exciting compound nuclei, there are two methods to describe the fission process: the statistical approach and the dynamical approach. Based on the statistical model, two different approaches are taken into account for the excitation energy dependent shell structure. The first one is to introduce the influence of excitation energy on the shell structure through the energy level density parameter [139]. The second one is to ensure the excitation energy-dependent shell effect is taken into account by the effective potential energy surface [140].

The uncertainty of survival probability calculation based on statistical model mainly comes from two aspects. On one hand, a number of approximations are adopted in the calculation of survival probability. One the other hand, the survival probabilities for the $x\pi$ evaporation channels are very sensitive to the model input. The level densities, fission barriers, neutron-separation energies, as well as the transmission coefficients have to be known with sufficient accuracy. Only systematic calculations based on the same assumptions and parameters can help to confirm the validity and reliability of the theoretical approximations and input quantities [28, 117].

4. THE OPTIMUM PROJECTILE-TARGET COMBINATION AND BOMBARDING ENERGY

4.1. Influence of Entrance Channel on ERCSs

Systematic studies of the existing experimental ERCSs are helpful to reveal reaction mechanisms. In addition, searching the optimal combination of the projectile and target and the range of the favorable beam energy is essential.

Some work systematically studies the influence of the neutron number of a target or projectile on the evaporation residue cross section [32, 36, 44–46]. Many researchers have found that the fusion probability and survival probability are sensitive to the neutron number of the target or projectile nuclei [32, 36, 44–46]. For 48Ca-induced hot fusion, the excess neutron of target nucleus is beneficial to the increase of the evaporation residue cross section of the synthesized superheavy nuclei [32, 45, 46].

Using a different combination of projectile and target to produce the same compound nucleus may help us to reveal the effect of the ground-state deformations, the reaction Q value, the asymmetry of charge and mass of target and projectile, and the Coulomb barrier on the evaporation residual cross section [33, 138, 141]. The results calculated by Liu et al. show that the Q value of reaction has a significant effect on the capture cross section and fusion probability [142].

4.2. The ERCS of Production Using Radioactive Beams

In order to investigate the possibility of neutron-rich superheavy nuclei production with radioactive beams, some calculations have been made [25, 116, 143, 144]. The evaporation residue
cross section by using radioactive beams are comparable with a stable beam for some superheavy nuclei production [116, 143]. However, the choice of reaction channels is determined by the product of beam intensity and evaporation residue cross section [143].

The intensities of stable beams, in most of the cases, are significantly larger than those of the radioactive beams [143], and the results have shown that the calculated evaporation residue cross section based on stable beam is more favorable for the production of many superheavy nuclei [116, 143]. In addition, due to small evaporation residue cross sections and low radioactive beam intensities, the synthesis of higher charge number superheavy nuclei by using the neutron-rich radioactive beams seems impossible based on today’s experimental conditions [116, 143].

4.3. Prediction ERCS \(Z = 119\) and \(120\)

By comparing evaporation residue cross sections for production \(Z = 119\) and \(120\), we found that the calculations from different models were obviously different [17, 47–52, 124]. On one hand, the survival probability of the compound nucleus was very sensitive to the fission barrier. However, the difference in fission barriers of superheavy nuclei calculated by different models was obvious not only due to the absolute values but also the trends with charge number \(Z\) [2, 85]. On the other hand, due to different assumptions, the fusion probability calculated by different models was significantly different for synthesis \(Z = 119\) and \(120\) [84].

According to our calculation and other theoretical predictions, almost all the models that predicted evaporation residue cross sections to produce superheavy new element \(Z = 119\) are generally greater than those in producing \(Z = 120\) [17, 47–52].

5. THE FUTURE

The synthesis of SHN in the laboratory has made great progress, and all the elements up to \(Z=118\) have been synthesized successfully. However, the location of the island of stability has not been confirmed in experiments. Although many theoretical approaches were used to study the fusion mechanism, there are still many problems that have not been solved properly.

In my opinion, the transport theory is the least developed one due to three factors: (i) the neck formation itself and the relationship between dynamic deformation and neck formation should be included to improve the theoretical description of fusion dynamic mechanism; (ii) the gradual transition of the potential energy surface from the diabatic approximation to the adiabatic approximation needs to be further explored; and (iii) the further study of inertia and damping coefficients to match our understanding of the potential energy surface in the transport equations should be performed.

6. SUMMARY

The evaporation residue cross section of superheavy nuclei depends on three factors: the capture cross section \(\sigma_{\text{cap}}\), the fusion probability \(P_{\text{CN}}\), and the survival probability \(W_{\text{sur}}\). We found that the reasonable description of the capture cross section near the Coulomb barrier is very important. The coupled channel or TDHF can be better approached to calculate the value, especially for superheavy nuclei calculations.

I think the fusion probability \(P_{\text{CN}}\) for producing superheavy nuclei is still not well understood. Not only the magnitude of the fusion probability \(P_{\text{CN}}\) but also the dependence of \(P_{\text{CN}}\) on the excitation energy and the entrance channel are lacking in clarity. The fusion mechanism must be further studied.

The uncertainty of survival probability calculation based on a statistical model mainly comes from theoretical approximations and input quantities. Systematic calculations based on the same assumptions and parameters can help to confirm the validity and reliability of the theoretical approximations and input quantities.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and it has approved it for publication.

FUNDING

This work was supported by the National Natural Science Foundation of China (Grants 11705055) and Hunan Provincial Natural Science Foundation of China (2018JJ3324).

REFERENCES

1. Hofmann S, Münzenberg G. The discovery of the heaviest elements. Rev Mod Phys. (2000) 72:733. doi: 10.1103/RevModPhys.72.733
2. Giuliani SA, Matheson Z, Nazarewicz W, Olsen E, Reinhard PG, Sadhukhan J, et al. Colloquium: superheavy elements: oganesson and beyond. Rev Mod Phys. (2019) 91:011001. doi: 10.1103/RevModPhys.91.011001
3. Sobczewski A, Gareev FA, Kalinkin BN. Closed shells for \(Z > 116\) in a diffuse potential well. Phys Lett. (1966) 22:500. doi: 10.1016/0031-9163(66)91243-1
4. Mosel U, Greiner W. On the stability of superheavy nuclei against fission. Z Phys. (1969) 222:261. doi: 10.1007/BF01392125
5. Nilsson SG, Tsang CF, Sobczewski A, Szymanski Z, Wycech S, Gustafson C, et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl Phys A. (1969) 131:1. doi: 10.1016/0375-9474(69)90809-4
6. Moller P, Nix JR, Myers WD, Swiatecki WJ. Nuclear ground-state masses and deformations. At Data Nucl Data Tables. (1995) 59:185. doi: 10.1006/adnd.1995.1002
7. Smolanczuk R. Properties of the hypothetical spherical superheavy nuclei. Phys Rev C. (1997) 56:812. doi: 10.1103/PhysRevC.56.812
8. Decharge J, Berger JE, Dietrich K, Weiss MS. Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles. Phys Lett B. (1999) 451:275–82. doi: 10.1016/s0370-2693(99)00225-7
9. Bender M, Nazarewicz W, Reinhard PG. Shell stabilization of super- and hyperheavy nuclei without magic gaps. Phys Lett B. (2001) 515:42–8. doi: 10.1016/S0370-2693(01)00863-2
10. Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys. (1996) 37:193–263. doi: 10.1016/0146-6410(96)00054-3
11. Meng J, Toki H, Zhou SG, Zhang SQ, Long WH, Geng LS. Relativistic continuum Hartree Bogoliubov theory for ground-state
properties of exotic nuclei. Prog. Part Nucl. Phys. (2006) 57:470–563. doi: 10.1016/j.ppnp.2005.06.001

12. Li J, Long WH, Margueron J, Van Giai N. Superheavy magic structures in the relativistic HartreeFock/C Bogoliubov approach. Phys Lett B. (2014) 732:169–74. doi: 10.1016/j.physletb.2014.03.031

13. Cowpré S, Dobaczewski J, Heenen PH, Magierski P, Nazarewicz W. Shell structure of the superheavy elements. Nucl Phys A. (1996) 611:211–46. doi: 10.1016/S0375-9474(96)00337-5

14. Siwek-Wilczynska K, Cap T, Kowal M, Wilczynski J. Theoretical study of the structure of the superheavy elements. Nucl Phys A. (2006) 771:50. doi: 10.1016/j.nuclphysa.2006.03.002

15. Diaz-Torres A, Adamian GG, Antonenko NV, Scheid W. Quasifission process in a transport model for a dinuclear system. Phys Rev C. (2001) 64:024604. doi: 10.1103/PhysRevC.64.024604

16. Zagrebaev VI. Synthesis of superheavy nuclei: nucleon collectivization as a mechanism for compound nucleus formation. Phys Rev C. (2001) 64:034606. doi: 10.1103/PhysRevC.64.034606

17. Adamian GG, Antonenko NV, Scheid W, Volkov VV. Competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl Phys A. (1997) 627:361. doi: 10.1016/S0375-9474(97)90065-2

18. Shen CW, Li JQ, Zhao EG. Isospin dependence of reactions 48Ca+c→231Bk. Int. J. Mod. Phys. E. (2008) 17:66. doi: 10.1142/S0218301308011768

19. Wang N, Zhao EG, Scheid W. Synthesis of superheavy nuclei based on dinuclear system model. Nucl Phys A. (2006) 771:50. doi: 10.1016/j.nuclphysa.2006.03.002

20. Wang N, Tian J, Scheid W. Systematics of fusion probability in hot fusion reactions. Phys Rev C. (2011) 84:061601(R). doi: 10.1103/PhysRevC.84.061601

21. Wu ZH, Zhu L, Li F, Yu XB, Su J, Guo CC. Synthesis of neutron-rich superheavy nuclei with radioactive beams within the dinuclear system model. Phys Rev C. (2018) 97:064609. doi: 10.1103/PhysRevC.97.064609

22. Shen CW, Kosenko G, Abe Y. Two-step model for fusion of the synthesis of superheavy elements. Phys Rev C. (2002) 66:061602. doi: 10.1103/PhysRevC.66.061602

23. Wang N, Li QJ, Zhao EG. Orientation effects of deformed nuclei on the production of superheavy elements. Phys Rev C. (2008) 78:054607. doi: 10.1103/PhysRevC.78.054607

24. Siwek-Wilczynska K, Cap T, Kowal M, Sobczewski A, Wilczynski J. Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z=114–120 elements based on macroscopic-microscopic fusion barriers. Phys Rev C. (2012) 86:044611. doi: 10.1103/PhysRevC.86.044611

25. Nasirov AK, Giardina G, Mandaglio G, Manapane F, Heinz S, et al. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z = 120 element. Phys Rev. C. (2009) 79:024606. doi: 10.1103/PhysRevC.79.024606

26. Bao JD. Synthesis of superheavy element 120 via50Ti+ACf hot fusion reactions. Phys Rev C. (2009) 80:034608. doi: 10.1103/PhysRevC.80.034608

27. Zagrebaev VI, Karpov AV, Greiner W. Possibilities for synthesis of new isotopes of superheavy elements in fusion reactions. Phys Rev C. (2012) 85:014608. doi: 10.1103/PhysRevC.85.014608

28. Cap T, Wilczynska KS, Kowal M, Wilczynski J. Calculations of the cross sections for the synthesis of the new 293–296118 isotopes in 249–252(Ca,xn) reactions. Phys Rev C. (2013) 88:034603. doi: 10.1103/PhysRevC.88.034603

29. Wang N, Zhao EG, Scheid W. Synthesis of superheavy nuclei with Z=118 in hot fusion reactions. Phys Rev C. (2014) 89:034601. doi: 10.1103/PhysRevC.89.034601
55. Oganessian YT. Synthesis of the heaviest elements in 48Ca-induced reactions. Radiochim Acta. (2011) 99:429. doi: 10.1524/ract.2011.1860

56. Münzenberg G. Recent advances in the discovery of transuranium elements. Rep Prog Phys. (1988) 51:57. doi: 10.1088/0034-4885/51/1/I02

57. Hofmann S. New elements-approaching Z=114. Rep Prog Phys. (1998) 61:139.

58. Kosuke M, Kouji M, Daiya K, Takahiro A, Sin-ichi G, Hiromitsu H, et al. Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113. J Phys Soc Jpn. (2004) 73:2593. doi: 10.1143/JPSJ.73.2593

59. Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, et al. New result in the production and decay of an isotope, 278113, of the 113th Element. J Phys Soc Jpn. (2012) 81:103201. doi: 10.1143/JPSJ.81.103201

60. Oganessian YT, Utyonkov VK. Super-heavy element research. Rep Prog Phys. (2015) 78:036301. doi: 10.1088/0034-4885/78/3/036301

61. Dvorak J, Bruchle W, Dullmann Ch E, Dvorakova Z, Eichler E, et al. Cross section limits for the 248Cm(55Mg,4n)5n+268,269Fs reactions. Phys Rev C. (2009) 79:036702. doi: 10.1103/PhysRevC.79.036702

62. Graeger R, Ackermann D, Chelnokov M, Chepigin V, Dullmann Ch E, et al. The processes of fusion-fission and quasi-fission of superheavy nuclei. doi: 10.1103/PhysRevC.88.054618

63. Nishio K, Hofmann S, Heberger FP, Ackermann D, Antalic S, et al. Nuclear orientation in the reaction mechanism in the system 132Xe+56Fe at 5.73 MeV/u: evidence for a new type of strongly damped collisions. Z Phys A. (2006) 358:150c. doi: 10.1007/BF01417723

64. Oganessian Yu Ts, Utyonkov VK, Abdullin FS, Dmitriev SN, Graeger R, et al. Fission and quasifission characteristics and timescales in heavy element formation reactions. Phys Rev C. (2013) 88:054618. doi: 10.1103/PhysRevC.88.054618

65. Aritomo Y, et al. Nuclear orientation in the reaction 34S+197Au. Phys Rev C. (2014) 90:014614. doi: 10.1103/PhysRevC.90.014614

66. Utyonkov VK, Brewer NT, Oganessian Yu Ts, Rykaczewski KP, Abdullin F, et al. Mapping quasifission characteristics and timescales in energies around the Coulomb barrier. Nucl Phys A. (2015) 940:327. doi: 10.1016/j.nuclphysa.2015.09.004

67. Iltis IM, Kozulin EM, Iltis MG, Knyazheva GN, Bogachev AA, Chernysheva EV, et al. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Fs. Phys Rev C. (2011) 83:064613. doi: 10.1103/PhysRevC.83.064613

68. Kozulin EM, Knyazheva GN, Novikov KV, Iltis IM, Iltis MG, Dmitriev SN, et al. Fission and quasi-fission of composite systems with Z=108-120: transition from heavy-ion reactions involving S and Ca to Ti and Ni isomers. Phys Rev C. (2014) 90:054613. doi: 10.1103/PhysRevC.90.054613

69. Banerjee K, Hinde DJ, Dasgupta M, Simpson EC, Jeung DY, Simenel C, et al. Mechanisms suppressing superheavy element yields in cold fusion reactions. Phys Rev Lett. (2019) 122:232503. doi: 10.1103/PhysRevLett.122.232503

70. Dasgupta M, Hinde DJ, Rowley N, Stefanini AM. Measuring barriers to fusion. Annu Rev Nucl Part Sci. (1998) 48:401.

71. Hagino K, Takigawa N. Subbarrier fusion reactions and many-particle quantum tunneling. Prog Theor Phys. (2012) 128:1061. doi: 10.1143/PTP.128.1061

72. Back BR, Esbensen H, Jiang CL, Rehm KE. Recent developments in heavy-ion fusion reactions. Rev Mod Phys. (2014) 86:317. doi: 10.1103/RevModPhys.86.317

73. Montagnoli G, Stefanini AM. Recent experimental results in sub- and near-barrier heavy-ion fusion reactions. Eur Phys J A. (2013) 53:169. doi: 10.1140/epja/i2013-12350-2

74. Wang N, Wu XZ, Li ZX, Liu M, Scheid W. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei. Phys Rev C. (2006) 74:044604. doi: 10.1103/PhysRevC.74.044604

75. Wang B, Wen K, Zhao WJ, Zhao EG, Zhou SG. Systematics of capture and fusion dynamics in heavy-ion collisions. At Data Nucl. Data Tables. (2017) 114:281. doi: 10.1016/j.adt.2016.06.003

76. Loveland W. An experimentalist’s view of the uncertainties in understanding heavy element synthesis. Eur Phys J A. (2015) 51:120. doi: 10.1140/epja/i2015-15120-2

77. Bao XJ, Guo SQ, Zhang HE, Li IQ. Influence of proton shell closure on the enhancement of sub-barrier fusion cross sections by neutron particle quantum tunneling. Phys Rev C. (2014) 89:054609. doi: 10.1103/PhysRevC.89.054609

78. Wang N, Wu XZ, Li ZX, Liu M, Scheid W. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei. Phys Rev C. (2008) 78:064604. doi: 10.1103/PhysRevC.78.064604

79. Sargsyan VV, Kanokov Z, Adamian GG, Antonenko NV, Scheid W. Capture process in nuclear reactions with a quantum master equation. Phys Rev C. (2009) 80:034606. doi: 10.1103/PhysRevC.80.034606

80. Sargsyan VV, Adamian GG, Antonenko NV, Scheid W, Zhang HQ. Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies. Phys Rev C. (2011) 84:064614. doi: 10.1103/PhysRevC.84.064614

81. Chen C, Song YJ, Chen JS, Liao JX, Li C. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei. Phys Rev C. (2010) 82:034610. doi: 10.1103/PhysRevC.82.034610

82. Wang N, Wu XZ, Li ZX, Liu M, Scheid W. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei. Phys Rev C. (2006) 74:044604. doi: 10.1103/PhysRevC.74.044604

83. Wang B, Wen K, Zhao WJ, Zhao EG, Zhou SG. Systematics of capture and fusion dynamics in heavy-ion collisions. At Data Nucl. Data Tables. (2017) 114:281. doi: 10.1016/j.adt.2016.06.003

84. Loveland W. An experimentalist’s view of the uncertainties in understanding heavy element synthesis. Eur Phys J A. (2015) 51:120. doi: 10.1140/epja/i2015-15120-2

85. Bao XJ, Guo SQ, Zhang HE, Li IQ. Influence of proton shell closure on the enhancement of sub-barrier fusion cross sections by neutron particle quantum tunneling. Phys Rev C. (2014) 89:054609. doi: 10.1103/PhysRevC.89.054609

86. Diaz-Torres A, Hinde DJ, Dasgupta M, Milburn G, Tostevin JA. Dissipative quantum dynamics in low-energy collisions of complex nuclei. Phys Rev C. (2008) 78:064604. doi: 10.1103/PhysRevC.78.064604

87. Misicu S, Greiner W. Influence of hexadecupole deformation and role of orientation in capture reactions with 48Ca projectiles leading to superheavy nuclei. Phys Rev C. (2004) 69:054601. doi: 10.1103/PhysRevC.69.054601

88. Misicu S, Esbensen H. Hindrance of heavy-ion fusion due to nuclear incompressibility. Phys Rev Lett. (2000) 86:112701. doi: 10.1103/PhysRevLett.86.112701
141. Bao XJ, Guo SQ, Zhang HF, Li JQ. Influence of entrance channel on production cross sections of superheavy nuclei. Phys Rev C. (2017) 96:024610. doi: 10.1103/PhysRevC.96.024610

142. Liu ZH, Bao JD. Q-value effects on the production of superheavy nuclei. Phys Rev C. (2006) 74:057602. doi: 10.1103/PhysRevC.74.057602

143. Loveland W. Synthesis of transactinide nuclei using radioactive beams. Phys Rev C. (2007) 76:014612. doi: 10.1103/PhysRevC.76.014612

144. Loveland W. The synthesis of new neutron-rich heavy nuclei. Front Phys. (2019) 7:23. doi: 10.3389/fphy.2019.00023

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.