Using a template engine as a computer algebra tool

Migran N. Gevorkyan,1,* Anna V. Korolkova,1, † and Dmitry S. Kulyabov1,2, ‡

1Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia (RUDN University)
6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
2Laboratory of Information Technologies
Joint Institute for Nuclear Research
6, Joliot-Curie, Dubna, Moscow region, 141980, Russian Federation

In research problems that involve the use of numerical methods for solving systems of ordinary differential equations (ODEs), it is often required to select the most efficient method for a particular problem. To solve a Cauchy problem for a system of ODEs, Runge–Kutta methods (explicit or implicit ones, with or without step-size control, etc.) are employed. In that case, it is required to search through many implementations of the numerical method and select coefficients or other parameters of its numerical scheme. This paper proposes a library and scripts for automated generation of routine functions in the Julia programming language for a set of numerical schemes of Runge–Kutta methods. For symbolic manipulations, we use a template substitution tool. The proposed approach to automated generation of program code allows us to use a single template for editing, instead of modifying each individual function to be compared. On the one hand, this provides universality in the implementation of a numerical scheme and, on the other hand, makes it possible to minimize the number of errors in the process of modifying the compared implementations of the numerical method. We consider Runge–Kutta methods without step-size control, embedded methods with step-size control, and Rosenbrock methods with step-size control. The program codes for the numerical schemes, which are generated automatically using the proposed library, are tested by numerical solution of several well-known problems.

I. INTRODUCTION

Runge–Kutta methods are basic numerical methods for solving nonrigid systems of ordinary differential equations (ODEs). Numerical schemes of high orders (tenth and higher) with step-size control and dense output are well known. For many programming languages, there are libraries that implement the most efficient numerical schemes. The most well debugged codes were generated for Fortran 77 by Ernst Hairer and his colleagues; the codes were described in [1, 2] and are available online [3]. These routines implement the methods DOPRI5 [4] and DOPRI853 [5], which feature step-size control and dense output. The latter method also supports order switching between 8 and 5 for better performance when solving smooth problems.

The DOPRI5 and DOPRI853 subroutines are very well optimized and are included in many libraries and math packages, e.g., Matlab [6], Octave [7], SciPy [8], SciLab [9], Boost C++ [10], etc. However, for educational and research purposes, it is often required to search through a number of Runge–Kutta methods to select the optimal one for a particular problem [11–13]. In addition, the efficiency of a particular numerical scheme also significantly depends on a problem to be solved.

To reliably compare different numerical schemes, we need a universal code that implements embedded methods for any set of coefficients. In this case, all implementations must be unified and differ only in their sets of coefficients.

To solve this problem, we propose a library for Julia [14–16] that consists of two parts: a computation part that implements algorithms of the Runge–Kutta type and a construction part that uses symbolic computations to generate specific versions of the Runge–Kutta algorithm and features automatic generation of function code from several ready-made templates. Initially, we considered implementing the construction part by using a universal computer algebra system, e.g., SymPy [17]. However, in the process of implementation, it turned out that the main requirement for the computer algebra system was the support of template comparison. That is why we decided to use a lighter tool for symbolic manipulations. More specifically, instead of a full-featured computer algebra system, we use a template substitution tool. This approach, although somewhat exotic, is justified by a higher performance of the functions generated. For code generation, we use Python [18] and Jinja2 template engine [19].

A. Paper structure

Section II briefly discusses embedded Runge–Kutta methods and step-size control strategy. Section III describes the developed library for Julia. Section IV presents the results of testing the functions generated automatically using the proposed library for the numerical solution of systems of ODEs. In particular, that section considers in detail the solution of the restricted three-body problem.
II. RUNGE–KUTTA METHODS

In this paper, the Runge–Kutta methods are applied to a Cauchy problem formulated for a system of ODEs. The theory of Runge–Kutta methods is well known and described in detail in [1, 2, 20]. Thus, in this section, we confine ourselves only to the basic formulas while briefly discussing the step-size control strategy implemented in our library.

A. Problem statement

Suppose that we have two smooth functions: \(y^\alpha(t) : [t_0, T] \rightarrow \mathbb{R}^N \) an unknown function and a known function \(f^\alpha(t, y^\beta(t)) : \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R}^N \), where \([t_0, T] \in \mathbb{R}\) and \(\alpha = 1, \ldots, N \). Suppose also that the value of the function at the initial instant is known: \(y_0^\alpha = y^\alpha(t_0) \). Then, the Cauchy problem for a system of ODEs is formulated as follows:

\[
\begin{align*}
\dot{y}^\alpha(t) &= f^\alpha(t, y^\beta(t)), \\
y^\alpha(t_0) &= y_0^\alpha, \quad \alpha, \beta = 1, \ldots, N.
\end{align*}
\]

System (1) can be written component by component:

\[
\begin{align*}
\dot{y}^1(t) &= f^1(t, y^1(t), \ldots, y^N(t)), \\
\vdots \\
\dot{y}^N(t) &= f^N(t, y^1(t), \ldots, y^N(t)), \\
y^\alpha(t_0) &= y_0^\alpha.
\end{align*}
\]

On a segment \([t_0, T]\), we define a grid from a set of points \(t_0 < t_1 < t_2 < \ldots < t_k < \ldots < t_N = T \) with a grid step \(h_{k+1} = t_{k+1} - t_k \). Based on a certain rule called a numerical scheme, each point of the grid is associated with a certain value \(y_k^\alpha \) that approximates (with desired accuracy) the solution of the system of ODEs at this point, i.e., \(y_k^\alpha \approx y^\alpha(t_k) \). To estimate approximation error, we use the norm \(\|y^\alpha(t_k) - y_k^\alpha\| \).

B. Embedded explicit Runge–Kutta methods

The error of the Runge–Kutta method can also be estimated in other way. The idea is that, in addition to the main solution \(y_m^\alpha \) at a certain point, we also consider an auxiliary solution \(\tilde{y}_m^\alpha \) found by a Runge–Kutta method of an adjacent order. The difference between these solutions serves as an estimate for the local error of the lower-order method. This estimate facilitates the selection of a variable integration step. The methods that use the local error estimate are called embedded Runge–Kutta methods [1]. In this case, the method \(y_m^\alpha \) is called main, while the method \(\tilde{y}_m^\alpha \) is called embedded.

An embedded explicit Runge–Kutta method for Cauchy problem (2) is given by the following formulas:

\[
\begin{align*}
k_1^\alpha &= f^\alpha(t_m, y_m^\beta), \\
k_i^\alpha &= f^\alpha(t_m + c_i h_m, y_m^\beta + h \sum_{j=1}^{i-1} a_{ij} k_j^\beta), \quad i = 2, \ldots, s, \\
y_{m+1}^\alpha &= y_m^\alpha + h(b_1 k_1^\alpha + b_2 k_2^\alpha + \\
&\quad \ldots + b_s k_s^\alpha),
\end{align*}
\]

where \(N \) is the number of equations in the system of ODEs and \(s \) is the number of stages in the numerical method. The Latin indices \(i, j, l = 1, \ldots, s \) are associated with the numerical scheme, the Greek indices \(\alpha \) and \(\beta \) are associated with the system of ODEs, while the subscript \(m \) indicates the number of a step.

The orders of approximation by the grid functions \(y_m^\alpha \) and \(\tilde{y}_m^\alpha \) are different, which makes it possible to compute approximation error at each step. Thus, to specify the order of the embedded method, we use the notation \(p(\tilde{p}) \), where \(p \) and \(\tilde{p} \) are the orders of the main and embedded Runge–Kutta methods, respectively.

The values \(c_i, a_{ij}^\alpha, b_j, \tilde{b}_j \) completely define the numerical scheme and are called coefficients of the method; they are usually grouped in a Butcher table (named after John C. Butcher):

\[
\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & a_2^\alpha & 0 & 0 & \ldots & 0 \\
0 & a_1^\alpha & a_2^\alpha & 0 & \ldots & 0 \\
& \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & a_1^{s-1} & a_2^{s-1} & \ldots & a_s^{s-1} & 0 \\
\tilde{b}_1 & \tilde{b}_2 & \ldots & \tilde{b}_{s-1} & \tilde{b}_s
\end{array}
\]

Finding the coefficients of the Runge–Kutta method for orders higher than fourth is a separate complex problem, which falls outside the scope of this paper and is described in detail in [1]. It should be noted, however, that it is common practice to impose the following additional conditions on the coefficients \(c_i \) and \(a_{ij}^\alpha \): \(c_i = a_1^\alpha + \ldots + a_i^\alpha \).

To date, the coefficients for many embedded Runge–Kutta methods up to the tenth order of accuracy have been found. The most popular methods are those found by J.R. Dormann and P.J. Prince [4, 5, 21], E. Fehlberg [22, 23], and J.R. Cash and A.H. Karp [24].

C. Step-size control strategy

There are various strategies for step-size (h) control depending on the local error. The choice of a particular
strategy generally depends on a problem to be solved. Here, we employ the classical algorithm proposed by E. Hairer [2], which is based on ideas borrowed from control theory and works well for most nonrigid problems.

Suppose that $y_m^α$ and $\dot{y}_m^α$ are two numerical solutions of different approximation orders that are computed at the step m of the algorithm. It is required that, where the desired scale $sc^α$ is found by the formula

$$
sc^α = A_{tot} + \max(|y_m^α|, |\dot{y}_m^α|)R_{tot},
$$

where A_{tot} and R_{tot} are the desired absolute and relative tolerances, respectively. The permissible error at the step m is found as a root mean square:

$$
E_m = \sqrt{\frac{1}{N} \sum_{\alpha=1}^{3} \left(\frac{y_m^α - y_m^α}{sc^α} \right)^2}.
$$

A new step size is computed by the formula

$$
h_{m+1} = \frac{h_m}{\min \left(f_{\min}, \min \left(f_{\max}, \frac{E_m^α}{E_{m-1}^α} \right) \right)},
$$

where E_{m-1} is the error found at the previous step. The factor f_s (used to prevent a sharp increase in the step size) is generally 0.9 or 0.8. The exponents a and b are selected depending on a problem. In [2], the following universal values were recommended: $a = 0.7/p - 0.75b$ and $b = 0.4/p$, where p is the order of approximation. The factors f_{\min} and f_{\max} set the step-size variation boundaries and also depend on a problem to be solved. In practice, the values $f_{\min} = 0.1$ and $f_{\max} = 5.0$ are generally selected.

In the case of $E_m < 1$, the computed values $y_m^α$ are considered satisfactory and the method goes to the next step. If $E_m > 1$, then the results are considered unsatisfactory and the current step is repeated with a new value of h_m:

$$
h_m \leftarrow \frac{h_m}{\min \left(f_{\max}, \frac{E_m^α}{E_{m-1}^α} \right)}.
$$

At the next step $m + 1$, as the initial value $y_m^α$, we can use either directly $y_m^α$ or the value yielded by the embedded method $\dot{y}_m^α$.

III. DESCRIPTION OF THE ROUTINE

A. Motivation to use code generation

Universal implementation of an embedded explicit Runge–Kutta method implies that, as parameters, the routine must receive arrays of coefficients from Butcher tables, which are then used in computations. Arrays seem to be a natural way to store these coefficients. However, a_j^i is a lower-diagonal matrix and, when storing it as an $s \times s$ array, more than half of the memory allocated for the array is spent on storing zeros. The coefficients c^i, b_j, and \dot{b}_j also often contain zeros, storing which is unreasonable.

That is why most codes that implement embedded explicit Runge–Kutta methods use a set of named constants (rather than arrays) to store the coefficients. Moreover, in most languages, scalar operations are faster than array operations.

In Julia, standard arrays are dynamic, which is why the overhead of storing a two-dimensional $s \times s$ array exceeds the overhead of storing $s \times s$ named constants.

To preserve the requirement for universality of the generated code while speeding up computations and reducing memory consumption, we decided to use automatic code generation based on one template for each individual method.

In addition to gaining in performance, automatic code generation allows us to add or modify all functions at once (rather than each function individually) by editing only one template. This also makes it possible to reduce the number of errors and generate different variants of functions for different purposes.

B. Description of the Runge–Kutta Generator

As a language for code generation, we chose Python because it supports various means for text manipulation. In addition, the standard Python library contains the Fraction data type, which allows us to set the Runge–Kutta coefficients as rational fractions and then convert them to real-valued form with desired order of accuracy.

In addition to Python, we also employ the Jinja2 template processing library [19]. This template engine was originally designed for generating HTML pages. However, it has a very flexible syntax and can be used as a universal tool for generating text files of any kind, including source codes in any programming language. In combination with Jinja2, we use the numpy library [8] to process arrays of coefficients.

The templates for generating functions are stored in the files rk_method.jl and erk_method.jl, which are Julia source codes with Jinja2 instructions. The template engine allows us to place the entire code generation logic in a template and input only the data associated with the method.

Information about numerical schemes is stored in a JSON file, where each method is a JSON object similar to the following one:

```
{"name": "Name (one word)",
"description": "Brief description",
"stage": ,
"order": ,
"extrapolation_order": ,
"a": [["0" , "0" , "0" ] , ["1" , "0" , "0" ] , ["0" , "1/4" , "1/4" , "0" ]],
"b": ["1/2" , "1/2" , "0" ],
"b_hat": ["1/6" , "1/6" , "2/3 " ],
"c": ["0" , "1" , "1/2"]}
```

The name of the JSON object is used as a name of a subsequently generated function. The arrays a, b, b^hat, and c can have either numeric or string type. If the
method’s coefficients are set as rational fractions, then we can define them as “m/n”.
Further, they are converted to a Fraction object of the Python standard library; in the body of a function generated, they are represented as double-precision decimal fractions with 17 significant digits.

The list of these objects is sequentially processed by the scripts erk_generator.py and rk_generator.py. By using the information about the methods, the scripts generate codes of several functions (in Julia) for each method.

These scripts generate functions for 16 embedded Runge–Kutta methods. Low-order methods are borrowed from [1]. For the methods of the fifth order and higher, we use the coefficients from [4, 5, 21] and [22, 23]. The method from [24] is implemented separately as it supports order switching and has a complex step-size control algorithm. To add user methods, it is required to create a JSON object (see above) and run the scripts to generate the corresponding functions for these methods.

C. Description of the functions generated

The developed library has a structure typical for Julia modules. The entire source code is stored in the src directory. The subdirectory src/generated contains files with automatically generated functions, which, in turn, are included in the main module file src/RungeKutta.jl by using the include directive. The code responsible for step-size control is stored in the file StepControl.jl and is common to all methods.

For each of the embedded Runge–Kutta methods, three functions are generated, two of which have the following form:

ERK(func, A_tol, R_tol, x_0, t_start, t_stop) ← --> (T, X)
ERK(func, A_tol, R_tol, x_0, t_start, t_stop, ← last) --> (t, x)

The functions have the same name and their lists of arguments differ only in the last argument. With Julia supporting multiple dispatch (function overloading), the compiler by itself determines which implementation needs to be called in each case.

In the functions described above,
- func::Function is the right-hand side of the system of ODEs \(\dot{x}(t) = f^\alpha(t, x^\beta) \): func(t, x), where t::Float64 is time and x::Vector{Float64} is the value of the function \(x(t) \); the argument \(t \) must always be included in the function call, even if the system is autonomous and obviously does not depend on time;
- the arguments A_tol and R_tol are the absolute and relative accuracies of the methods, respectively; they must have the type Float64;
- \(x_0::\text{Vector}\{\text{Float64}\} \) is the initial value of the function \(x_0^\alpha = x^\alpha(t_0) \);
- t_start and t_stop are the start and end points of the integration interval, respectively; they have the type Float64;
- if the argument last::Bool is specified, then the end point of the integration interval \(t_n \) and vector \(x_n^\alpha \approx x^\alpha(t_n) \) are returned; otherwise, the arrays T::Vector{Float64} and Matrix{Float64} are returned.

For the Runge–Kutta methods without step-size control, similar functions are generated with their only difference being the absence of the arguments A_tol and R_tol. Instead of them, the argument h, which specifies a step size used for computation, is passed.

To implement the step-size control algorithm, another function is generated:

ERK_info(func, A_tol, R_tol, x_0, t_start, ← t_stop) --> (accepted_t, accepted_h, ← rejected_t, rejected_h)

This function returns the following arrays:
- accepted_t: all grid points at which the computation error is considered satisfactory;
- accepted_h: all accepted step sizes;
- rejected_t: all grid points at which the computation error is considered unsatisfactory;
- rejected_h: all rejected step sizes;
- errors: values of the local error \(E_n \).

All returned values have the type Vector{Float64}.

IV. TESTING THE CODES GENERATED FOR THE NUMERICAL SCHEMES

To test the methods, we use three systems of differential equations considered in [2]. The first system is a system of van der Pol equations

\[
\frac{d^2x}{dt^2} - \mu (1 - x^2) \frac{dx}{dt} + x = 0,
\]

\[
\begin{cases}
\dot{x}_1(t) = x_2(t), \\
\dot{x}_2(t) = \mu (1 - x_1^2(t))x_2(t) - x_1(t),
\end{cases}
\]

with the initial values

\[\mu = 1, \quad x = (0, \sqrt{3})^T, \quad 0 \leq t \leq 12, \]

where the coefficient \(\mu \) characterizes the nonlinearity and decay of oscillations.
The second system is a system of equations for a rigid body without external forces, i.e., a system of Euler’s equations for a rigid body:

\[
\begin{align*}
\dot{x}_1(t) &= I_1 x_2(t)x_3(t), \\
\dot{x}_2(t) &= I_2 x_1(t)x_3(t), \\
\dot{x}_3(t) &= I_3 x_1(t)x_2(t), \\
I_1 &= -2, \ I_2 = 1.25, \ I_3 = -0.5, \\
x &= (0, 1, 1)^T, \ t = [0, 12].
\end{align*}
\]

To test the step-size control algorithm, we apply the numerical scheme of the embedded Runge-Kutta method with \(p = 4 \) and \(\bar{p} = 3 \) to a system of Brusselator equations

\[
\begin{align*}
\dot{x}_1(t) &= 1 + x_1^2 x_2 - 4x_1, \\
\dot{x}_2(t) &= 3x_1 - x_1^2 x_2.
\end{align*}
\]

Under the initial conditions \(x_1(0) = 1.5 \) and \(x_2(0) = 3 \), the Brusselator equation is numerically integrated by the ERK43b method on a segment \(0 \leq t \leq 20 \) with the absolute and relative tolerances \(A_{tol} = R_{tol} = 10^{-4} \). The corresponding graphs, which are identical to those from [1, p. 170, Fig. 4.1], are constructed. When comparing the results from [1] (see Fig. 1) and our results (see Figs. 2 and 3), it can be seen that our method performs almost identically to that from [1]; however, our method selects step size more accurately.

The orbits of the bodies are assumed to be on the same plane.

In the Arenstorf problem, different stable orbits can be obtained depending on initial values [1]. In dimensionless synodic coordinates, three groups of initial values, which provide three different orbits, have the following form:

\[
p_y = -1.00758510637908238, \quad p_x = 0.0, \quad q_x = 0.994, \quad q_y = 0.0;
\]

\[
p_y = -1.03773262955733680, \quad p_x = 0.0, \quad q_x = 0.994, \quad q_y = 0.0;
\]

\[
p_y = 0.15064248999999985, \quad p_x = 0.0, \quad q_x = 1.2, \quad q_y = 0.0.
\]

Here, \(p_x \) and \(p_y \) are generalized momenta of the system, while \(q_x \) and \(q_y \) are generalized coordinates of the system.

It should be noted that the initial values are purposefully set with high accuracy because the small body very closely approaches the medium body and even a small
computational error can lead to an incorrect physical interpretation (fall of the small body on the medium body). This makes the Arenstorf problem well suitable for testing implementations of numerical schemes.

The Hamilton function in synodic coordinates is written as follows:

\[H(p_x, p_y, q^x, q^y) = \frac{1}{2} (p_x^2 + p_y^2) + p_x q^y - p_y q^x - F(q^x, q^y), \]

where

\[F(q^x, q^y) = \frac{\mu_1}{r_1} + \frac{\mu_2}{r_2}, \quad \mu_1 + \mu_2 = 1, \]

\[r_1 = \sqrt{(q^x - \mu_2)^2 + (q^y)^2}, \]

\[r_2 = \sqrt{(q^x + \mu_1)^2 + (q^y)^2}; \]

\[\frac{\partial F}{\partial q^x} = -\frac{\mu_1(q^x - \mu_2)}{r_1^3} - \frac{\mu_2(q^x + \mu_1)}{r_2^3}, \]

\[\frac{\partial F}{\partial q^y} = -\frac{\mu_1 q^y}{r_1^3} - \frac{\mu_2 q^y}{r_2^3}. \]

The canonical equations to which the numerical scheme is applied have the following form:

\[
\begin{align*}
\dot{p}_x &= +p_y + \frac{\partial F}{\partial q^x} \dot{q}^x = p_x + q^y, \\
\dot{p}_y &= -p_x + \frac{\partial F}{\partial q^y} \dot{q}^y = p_y - q^x.
\end{align*}
\]

Numerical solution is carried out for \(0 \leq t \leq 17.065216560157962558 \) with the absolute and relative tolerances \(\text{Atol} = 10^{-17} \) and \(\text{Rtol} = 0 \) and average mass \(\mu_1 = 0.012277471 \). As a result, we find Arenstorf orbits (see Figs. 4, 5, and 6) for initial values (4), (5), and (6), respectively.

To estimate the error, the system is solved numerically for a time interval equal to one period. At the end point of the interval, the small body must return to the start point, i.e., \((q^x(0), q^y(0)) = (q^x(T), q^y(T)) \), which is why the error \(\|q_0 - q_n\| \) corresponds to the global error of the method. The errors for the first group of initial values are shown in Table I.

\[\begin{array}{|c|c|c|}
\hline
\text{Method} & \text{Tol} & \text{Error} \\
\hline
\text{Runge-Kutta} & 10^{-6} & 1.23456789 \\
\text{Rosenbrock} & 10^{-6} & 1.23456789 \\
\text{BDF} & 10^{-6} & 1.23456789 \\
\hline
\end{array} \]

V. CONCLUSIONS

Thus, the main contribution of this work is as follows.

1. The language of the Jinja2 template engine has been used as a specialized symbolic computation system. As compared to a universal symbolic computation system, this approach has allowed us to make the software package simpler and more compact, as well as improve its portability.

2. A set of Python scripts has been created using the Jinja2 language; these scripts generate Julia codes that implement numerical schemes of Runge-Kutta methods without step-size control, embedded methods with step-size control, and Rosenbrock methods with step-size control (all the routines are available at https://bitbucket.org/mngev/rungekutta_generator).

3. The generated functions have been tested by solving several typical problems (in this paper, we have considered in detail the Arenstorf problem as it depends more heavily on the accuracy of a numerical scheme); the module for the Julia
Table I. Global errors of the numerical methods for one orbital revolution for the first group of initial values

Method	Error
DPK546S	$1.84566 \cdot 10^{-12}$
DPK547S	$2.93634 \cdot 10^{-12}$
DPK658M	$4.22771 \cdot 10^{-12}$
Fehlberg45	$7.42775 \cdot 10^{-12}$
DOPRI5	$1.95463 \cdot 10^{-13}$
DVERK65	$1.67304 \cdot 10^{-12}$
Fehlberg78B	$5.45348 \cdot 10^{-12}$
DOPRI8	$1.06343 \cdot 10^{-11}$

ACKNOWLEDGMENTS

The publication has been prepared with the support of the “RUDN University Program 5-100” and funded by Russian Foundation for Basic Research (RFBR) according to the research project No 19-01-00645.
Использование шаблонизатора как инструментария компьютерной алгебры

М. Н. Геворкян, 1, А. В. Королькова, 1, и Д. С. Кулябов, 1, 2, 9

1 Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2 Лаборатория информационных технологий
Объединенный институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

В исследовательских задачах, требующих применения численных методов решения системы обыкновенных дифференциальных уравнений, часто возникает необходимость выбора наиболее эффективного и оптимального для конкретной задачи численного метода. В частности, для решения задачи Коши, сформулированной для системы обыкновенных дифференциальных уравнений, применяются методы Рунге–Кутты (явные или неявные, с управлением шагом сетки или без и т.д.). При этом приходится перебирать множество реализаций численного метода, подбирать коэффициенты или другие параметры численной схемы. В данной статье предложено описание разработанной авторами библиотеки и скриптов автоматизации генерации функций программного кода на языке Julia для набора численных схем методов Рунге–Кутты. При этом для символьных манипуляций использовано программное средство подстановки по шаблону. Предлагаемый подход к автоматизации генерации программного кода позволяет вносить изменения не в каждую подлежащую сравнению функцию по отдельности, а использовать для редактирования единый шаблон, что с одной стороны дает универсальность в реализации численной схемы, а с другой позволяет свести к минимуму число ошибок в процессе внесения изменений в сравниваемые реализации численного метода. Рассмотрены методы Рунге–Кутты без управления шагом, вложенные методы с управлением шагом и методы Розенброка также с управлением шагом. Полученные автоматически с помощью разработанной библиотеки программные коды численных схем протестированы при численном решении нескольких известных задач.

I. ВВЕДЕНИЕ

Методы Рунге–Кутты являются основными численными методами для решения нелинейных систем обыкновенных дифференциальных уравнений. Известны численные схемы высоких порядков (10 и выше) с управлением шагом и плотной выдачей. Для многих языков программирования разработаны библиотеки, реализующие наиболее эффективные из построенных численных схем. Наиболее отлаженные коды были созданы для языка Fortran 77 Э. Хайрером (Ernst Hairer) и его коллегами, они описаны в книгах [1, 2] и доступны для скачивания на сайте [3]. Эти программы реализуют методы DOPR5 [4] и DOPRI853 [5], которые обеспечивают управление шагом и плотную выдачу. Второй из этих методов также поддерживает переключение порядка метода между 8 и 5 для обеспечения большего быстродействия при решении гладких задач. Подпрограммы DOPR5 и DOPRI853 очень хорошо оптимизированы и доступны для использования во многих библиотеках и математических пакетах, таких как Matlab [6], Octave [7], SciPy [8], SciLab [9], Boost C++ [10] и т.д. Однако часто для учебных и исследовательских целей возникает необходимость перебора нескольких методов Рунге–Кутты для выбора оптимального для конкретной задачи [11–13]. Кроме того, эффективность той или иной численной схемы также существенно зависит от решаемой задачи.

Чтобы можно было достоверно сравнить разные численные схемы между собой, необходимо иметь универсальный код, который реализует вложенные методы для любого набора коэффициентов. При этом все реализации должны быть унифицированы и отличаться лишь набором коэффициентов.

С целью решения поставленной задачи нами разработана библиотека для языка программирования Julia [14–16], описание которой и приводится в данной статье. Библиотека состоит из двух частей: числительной части, реализующей алгоритмы типа Рунге–Кутты, и конструирующей части, создающей с помощью символьных вычислений конкретный вариант алгоритма Рунге–Кутты. Отличительной особенностью конструирующей части является автоматическая генерация кода функций из нескольких готовых шаблонов. Первоначально рассматривался вариант реализации конструирующей части с помощью символьного вычислений. Однако в ходе реализации выяснилось, что нам нужно от системы компьютерной алгебры в основном операции сопоставления по образцу. В результате было принято решение использовать более легковесное средство символьных манипуляций. Фактически, для символьных манипуляций мы используем не развитую систему компьютерной алгебры, а программное средство подстановки по шаблону. Такой

* gevorkyan-mn@rudn.ru
† korolkova-av@rudn.ru
‡ kulyabov-ds@rudn.ru

arXiv:2107.07461v1 [math.NA] 15 Jul 2021
А. Структура статьи

В разделе II работы дается краткое описание вложен-ных методов Рунге–Кутты и стратегии управления шагом. Раздел III посвящен описанию разработанной библиотеки для языка программирования Julia. В разделе IV приведены результаты тестирования стемной лингвистической функции для численного решения задач для систем обыкновенных дифференциальных уравне-ний. В частности в этом разделе подробно рассмотрено решение ограниченной задачи трех тел (задачи по вычислению орбит Аристарха).

II. МЕТОДЫ РУНГЕ–КУТТЫ

Методы Рунге–Кутты применяются к задаче Коши, сформулированной для системы обыкновенных дифференциальных урав-нений (ОДУ). Теория методов Рунге–Кутты хорошо известна и обстоятельно изложена в книгах [1, 2, 20]. Поэтому в данном разделе мы приведем лишь основные формулы и кратко остано-вимся на используемой в разработанной программной библиотеке стратегии управления шагом.

A. Постановка задачи

Пусть даны две гладкие функции: неизвестная функция \(y^\alpha(t) : [t_0, T] \to \mathbb{R}^N \) и известная функция \(f^\alpha(t, y^\beta(t)) : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N \), где \([t_0, T] \in \mathbb{R}, \alpha = 1, \ldots, N\). Пусть также известно значение функции в начальный момент времени \(y^0 = y^\alpha(t_0) \). Тогда задача Коши для системы из \(N \) обыкновенных дифференциальных уравнений формулируется следующим образом:

\[
\begin{align*}
\dot{y}^\alpha(t) &= f^\alpha(t, y^\beta(t)), \\
y^\alpha(t_0) &= y^0, \quad \alpha, \beta = 1, \ldots, N.
\end{align*}
\]

Систему (1) можно записать покомпонентно:

\[
\begin{align*}
\dot{y}^1(t) &= f^1(t, y^1(t), \ldots, y^N(t)), \\
\vdots \\
\dot{y}^N(t) &= f^N(t, y^1(t), \ldots, y^N(t)), \\
y^\alpha(t_0) &= y^0.
\end{align*}
\]

Зададим на отрезке \([t_0, T]\) сетку из набора точек \(t_0 < t_1 < t_2 < \ldots < t_k < \ldots < t_N = T \) с шагом сетки \(h_{k+1} = t_{k+1} - t_k \). Каждой точке сетки по некоторому правилу, называемому численной схемой, ставится в соответствие некоторая величина \(y^\alpha_k \), которая должна с необходимой точностью аппроксимировать решение системы ОДУ в точках сетки, т.е. \(y^\alpha_k \approx y^\alpha(t_k) \). Для оценки погрешности аппроксимации используют норму \(||y^\alpha(t_k) - y^\alpha_k|| \).

B. Явные вложенные методы Рунге–Кутты

Погрешность метода Рунге–Кутты может оцениваться и другим образом. Идея состоит в том, что кроме основного решения \(y^\alpha_m \) в точке рассматривается также вспомогательное решение \(\tilde{y}^\alpha_m \), выполненное с помощью метода Рунге–Кутты смещенной порядка. Разность этих решений может служить оценкой локальной погрешности метода меньшего порядка. Полученная оценка локальной погрешности помогает выбрать переменный шаг интегрирования. Методы, использующие данный способ оценки локальной погрешности, называются вложенными методами Рунге–Кутты [1]. При этом метод \(y^\alpha_m \) называется основным, а метод \(\tilde{y}^\alpha_m \) — вложенным.

Явный вложенный численный метод Рунге–Кутты для задачи Коши (2) задается следующими формулами:

\[
\begin{align*}
k_1^\alpha &= f^\alpha(t_m, y^\beta_m), \\
k_i^\alpha &= f^\alpha(t_m + c_i h_m, y^\alpha_{m+1} + h \sum_{j=1}^{i-1} a_{ij} k^j), \\
y^\alpha_{m+1} &= y^\alpha_m + h_m (b_1 k_1^\alpha + b_2 k_2^\alpha + \ldots + b_s k_s^\alpha), \\
\tilde{y}^\alpha_{m+1} &= \tilde{y}^\alpha_m + h_m (\tilde{b}_1 k_1^\alpha + \tilde{b}_2 k_2^\alpha + \ldots + \tilde{b}_s k_s^\alpha),
\end{align*}
\]

где \(N \) — число уравнений в системе ОДУ, \(s \) — число компонент численного метода. Латинские индексы \(i, j, l = 1, \ldots, s \) относятся к численной схеме, греческие \(\alpha, \beta \) — к системе ОДУ, а индексом \(m \) обозначен номер шага.

Порядок аппроксимции решения сеточными функци-ями \(y^\alpha_m \) и \(\tilde{y}^\alpha_m \) различен, что позволяет на каждом шаге вычислять погрешность аппроксимации, поэтому при указании порядка вложенного метода используют обозначение \(p(\tilde{p}) \), где \(p \) и \(\tilde{p} \) — порядки основного и вложенного метода Рунге–Кутты соответственно.

Величины \(c_i, a_{ij}, b_j, \tilde{b}_j \) полностью определяют числен-ную схему и называются коэффициентами метода, их принято группировать в виде таблицы Бутчера, на-
званной так в честь Дж. Ч. Бутчера (John C. Butcher):

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
c_1^2 & a_1^2 & 0 & 0 & 0 \\
c_1^3 & a_1^3 & a_2^3 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{s-1}^s & a_{s-1}^s & a_s^s & 0 & 0 \\
c_s^s & a_1^s & a_2^s & \ldots & a_{s-1}^s & 0 \\
\end{array}
\]

Нахождение коэффициентов метода Рунге–Кутты для порядков выше 4 является отдельной сложной задачей, которой мы здесь не будем касаться и которая подробно раскрыта в книге [1]. Заметим только, что на коэффициенты \(c^i\) и \(a_j^i\) также принято налагать дополнительные условия следующего вида: \(c^i = a_1^i + \ldots + a_k^i\).

Явный метод Рунге-Кутты наиболее прост для реализации в программном виде, так как на каждом шаге решения необходимо последовательно вычислять элементы двухмерного массива \(k[1:s, 1:N]\) в цикле по первому измерению \(i=1:s\). Элемент \(k[1,1:N]\) требует только значений \(f_{im}, y_{im}\), вычисленных на предыдущем шаге. Элемент \(k[2,1:N]\) требует элементы \(k[1,1:N]\) и \(k[3,1:N]\), элемент \(k[3,1:N]\) требует элементы \(k[1,1:N]\) и \(k[2,1:N]\) и т.д. Заметим, что индексация элементов массива в языке Julia начинается с 1, также как и в языке Fortran.

К настоящему времени найдены коэффициенты для множества вложенных методов Рунге–Кутты вплоть до 10-го порядка точности. Наиболее часто используются методы, найденные Дж. Р. Дорманом в соавторстве с П. Дж. Пришем (J.R. Dormian, P.J. Prince) [4, 5, 21], Э. Фельбергом (E. Fehlberg) [22, 23] и Дж. Р. Кэшем в соавторстве с А. Х. Кэрном (J.R. Cash, A.H. Karp) [24].

C. Стратегии управления длиной шага

Существуют различные стратегии управления величиной шага \(h\) в зависимости от локальной погрешности. Выбор той или иной стратегии чаще всего диктуется характером решаемой задачи. Здесь мы изложим классический алгоритм, предложенный в книге Э. Хайрера [2], который основан на идеях из теории управления и хорошо работает для большинства нестационарных задач.

Пусть \(y_m^a\) и \(\hat{y}_m^a\) — два численных решения разного порядка аппроксимации, вычисленные на шаг \(m\) работы алгоритма. Пусть \(|y_m^a - \hat{y}_m^a| \leq se^\alpha\), где величина \(se^\alpha\) является локальной погрешности \(se^\alpha\) (scale) вычисляется по формуле

\[
se^\alpha = A_{tot} + \max|y_m^a - \hat{y}_m^a| R_{tot},
\]

где \(A_{tot}\) и \(R_{tot}\) — желаемая величина абсолютной и относительной погрешности соответственно. Допустимая ошибка на шаге \(m\) находится как среднее квадратичное:

\[
E_m = \sqrt{\frac{1}{N} \sum_{\alpha=1}^{N} \left(\frac{y_m^\alpha - \hat{y}_m^\alpha}{se^\alpha}\right)^2}.
\]

Новая величина шага вычисляется по формуле

\[
h_{m+1} = h_m / \max\left(f_{min}, \min\left(f_{max}, E_m^{b-h}/f_s\right)\right),
\]

где \(E_m^{b-h}\) — величина ошибки, вычисленная на предыдущем шаге, \(f_s\) обычно равен 0.9 или 0.8 и предназначен для предотвращения слишком резкого увеличения величины шага. Показатели степени \(a\) и \(b\) подбираются исходя из задачи. В книге [2] рекомендуются следующие универсальные значения \(a = 0.7/p - 0.75b\) и \(b = 0.4/p\), где \(p\) — порядок аппроксимации используемого метода. Факторы \(f_{min}\) и \(f_{max}\) позволяют ограничить границы изменения размера шага и также зависят от решаемой задачи. На практике хорошо зарекомендовали себя значения \(f_{min} = 0.1\) и \(f_{max} = 5.0\).

В случае \(E_m < 1\) вычисленные значения \(y_m^a\) считаются удовлетворительными и метод переходит к следующему шагу вычислений. Если же \(E_m > 1\), то вычисления считаются неудовлетворительными и текущий шаг повторяется с новым значением величины \(h_m\).

В качестве начального значения \(y_m^a\) на следующем шаге \(m + 1\) можно использовать как непосредственно \(y_m^a\), так и значение вложенного метода \(\hat{y}_m^a\).

III. ОПИСАНИЕ ПРОГРАММЫ

A. Мотивация использования генерации кода

Универсальная реализация явного вложенного метода Рунге–Кутты подразумевает, что программы в качестве параметров должны передаваться массивы коэффициентов из таблиц Бутчера, которые она будет использовать для проведения расчетов. Очевидным способом хранения данных коэффициентов является использование массивов. Однако матрица \(a_j^i\) является нижне-диагональной и хранение ее в виде массива \(s \times s\) приводит к тому, что более чем половина выделенной для массива памяти тратится на хранение нулей. Коэффициенты \(c^i, b_j\) и \(\hat{b}_j\) также часто имеют в своем составе нули, хранение которых неразумно.

В связи с этим большинство кодов, реализующих явные вложенные методы Рунге–Кутты, используют для хранения коэффициентов набор именованных контейнеров, а не массивы. Это вызвано также и тем, что операции со скалярными величинами в большинстве языков проводятся быстрее, чем операции с массивами.

В языке Julia стандартные массивы являются динамическими, поэтому накладные расходы на хранение
двумерного массива \(s \times s \) больше, чем на расходы на
хранение \(s \times s \) именованных констант.
При сохранении требования универсальности созда-ваемого кода и вместе с тем желание увеличить скоро-сти вычислений и уменьшить расход памяти, привели нас к решению использовать автоматическую генера-цию кода по одному шаблону для каждого отдельного метода.

Кроме выигрыша в производительности, автомати-ческая генерация кода позволяет добиваться или изме-нять не каждую функцию по отдельности, а все функ-ции совокупно путём редактирования одного лишь шаблона. Это позволяет как уменьшить количество ошибок, так и генерировать различные варианты функций для разных целей.

B. Описание реализации генератора методов Рунге–Кутты

В качестве языка для генерации кода нами был выбран язык Python, так как он поддерживает разнооб-разные средства для работы с текстом. Также в стан-дартной библиотеке Python присутствуют тип данных `Fraction`, который позволяет задать коэффициенты Рунге–Кутты в виде рациональных дробей, а потом уже преобразовывать их в вещественный вид с нуж-ным порядком точности.

Кроме самого языка Python была использована биб-лиотека для обработки шаблонов Jinja2 [19]. Данный шаблонизатор (template engine) разрабатывался изначально для генерации HTML-страниц, однако он обладает очень гибким синтаксисом и может исполь-зоваться как универсальное средство для генерации текстовых файлов любого вида, в том числе и исход-ных кодов на любых языках программирования. Кро-ме Jinja2 мы использовали библиотеку `numpy` [8] для работы с массивами коэффициентов.

Шаблоны для генерации функций хранятся в фай-лах `rk_method.jl` и `erk_method.jl`, которые представля-ют собой исходный код на языке Julia с инструкци-ями Jinja2. Шаблонизатор позволяет поместить всю логику генерации кода в шаблон и передавать извне только данные о методе.

Информация о численных схемах хранится в виде JSON-файла, где каждый метод представляет собой JSON-объект примерно следующего вида:

```json
{
  "name": "Название (одним словом)",
  "description": "Краткое описание",
  "stage": \[\]
  "extrapolation_order": b_hat,
  "a": \[
    ["0", "0", "0"],
    ["1/4", "1/4", "0"],
    ["1/6", "1/6", "0"],
    ["0", "1", "1/2"]
  
  "b": ["1/2", "1/2", "0"],
  "b_hat": ["1/6", "1/6", "2/3"],
  "c": ["0", "1", "1/2"]
}
```

Название JSON-объекта используется в качестве имени сгенерированной в последствии функции. Массивы `a`, `b`, `b_hat`, `c` могут быть как числового, так и строкового типа. Если коэффициенты метода заданы в виде рациональных дробей, то можно указать их в виде "m/n", затем они будут преобразованы в объект `Fraction` стандартной библиотеки Python, а в теле сгенерированной функции будут представлены десятичной дробью двойной точности с 17 значащими знаками.

Список объектов указанного выше вида последовательно обрабатывается скриптами `erk_generator.py` и `rk_generator.py`. Скрипты, используя переданную им информацию о методах, генерируют для каждого метода код нескольких функций языка Julia.

Скрипты позволяют сгенерировать функции для 16 вложенных методов Рунге–Кутты. Методы пятого порядка взяты из книги Хайрера [1]. Из методов ниже пятого порядка и выше заданы коэффициенты из раб-бот [4, 5, 21] и [22, 23]. Метод из работы [24] реализо-ван отдельно, так как предусматривает переключение порядка точности и сложный алгоритм управления шагом. Для добавления своих методов следует задать JSON-объект указанного выше формата и запустить скрипты вновь. Для добавленных методов будут сге-нерированы соответствующие функции.

C. Описание сгенерированных функций

Разработанная нами библиотека имеет стандарт-ную для модулей языка Julia структуру. Вся исход-ный код находится в каталоге `src`. В подкаталоге `src/generated` располагаются файлы с автоматиче-ски генерируемыми функциями, которые, в свою оче-редь, с помощью директивы `include` включаются в главный файл модуля `src/RungeKutta.jl`. Код, ответ-ственный за управление шагом, находится в файле `StepControl.jl` и является общим для всех методов.

Для каждого из вложенных методов Рунге–Кутты генерируются три функции, две из которых имеют следующий вид:

```
ERK(func, A_tol, R_tol, x_0, t_start, t_stop) -> (T, X)
ERK(func, A_tol, R_tol, x_0, t_start, t_stop, last) -> (t, x)
```

Функции имеют одинаковое имя, а список их аргу-ментов различается лишь последним аргументом. Благодаря поддержке языком Julia множественной диспетчеризации (перегрузка функции), компилятор сам определяет в каком случае какую из реализаций вызывать.

В указанных выше функциях:

- `func::Function` — правая часть системы ОДУ
- \(\ddot{x}(t) = f(t, x) \): `func(t, x)` — где `t::Float64` — время, `x::Vector{Float64}` — значение функции
Аргумент t должен всегда присутствовать в вызове функции, даже если система автономная и явно от времени не зависит;

- аргументы A_tol и R_tol должны иметь тип Float64 и обозначают абсолютную и относительную точность метода соответственно;
- x_0::Vector{Float64} — начальное значение функции \(x_0^\alpha = x^\alpha(t_0) \);
- t_start и t_stop имеют тип Float64 и обозначают начальную и конечную точки промежутка интегрирования;
- если указан аргумент last::Bool, то будут возвращены последняя точка промежутка интегрирования \(t_n \) и вектор \(x_n^\alpha \approx x^\alpha(t_n) \), в противном случае возвращаются массивы Т::Vector{Float64} и Matrix{Float64}.

Для методов Рунге–Кутты без управления шагом генерируются аналогичные функции, единственное отличие которых заключается в отсутствии аргументов A_tol и R_tol. Вместо них следует передавать аргумент h, который задает размер шага, используемого для вычислений.

Для реализации алгоритма управления шагом генерируется еще одна функция:

\[
\text{ERK_info}(\text{func}, \text{A_tol}, \text{R_tol}, \text{x_0}, \text{t_start}, \text{t_stop}) \rightarrow (\text{accepted_t}, \text{accepted_h}, \text{rejected_t}, \text{rejected_h})
\]

Эта функция возвращает следующие массивы:

- accepted_t: все точки сетки, в которых погрешность вычислений была признана удовлетворительной;
- accepted_h: все принятые размеры шагов;
- rejected_t: все точки сетки, в которых погрешность вычислений была признана недопустимой;
- rejected_h: все отброшенные размеры шага;
- errors: значения локальной ошибки \(E_n \).

Все возвращаемые значения имеют тип Vector{Float64}.

IV. ТЕСТИРОВАНИЕ СГЕНЕРИРОВАННЫХ ПРОГРАММНЫХ КОДОВ ЧИСЛЕННЫХ СХЕМ

Для тестирования созданных методов были использованы три системы дифференциальных уравнений, рассмотренные в [2]. Первая система — уравнения ван дер Полля:

\[
\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0,
\]

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t), \\
\dot{x}_2(t) &= \mu(1 - x_1^2(t))x_2(t) - x_1(t),
\end{align*}
\]

заданные со следующими начальными значениями:

\[
\mu = 1, \quad x = (0, \sqrt{3})^T, \quad 0 \leq t \leq 12,
\]

где коэффициент \(\mu \) характеризует нелинейность и силу затухания колебаний.

Вторая система — уравнения твёрдого тела без внешних сил, или иначе, уравнения Эйлера твёрдого тела:

\[
\begin{align*}
\dot{x}_1(t) &= I_2x_2(t)x_3(t), \\
\dot{x}_2(t) &= I_1x_1(t)x_3(t), \\
\dot{x}_3(t) &= I_3x_1(t)x_2(t),
\end{align*}
\]

\[
\begin{align*}
I_1 &= -2, \quad I_2 = 1.25, \quad I_3 = -0.5, \\
x &= (0, 1, 1)^T, \quad t = [0, 12].
\end{align*}
\]

Для проверки работы алгоритма управления шагом применялась численная схема вложенного метода Рунге–Кутты с p = 4 и \(\bar{p} = 3 \) к системе уравнений брусселатора:

\[
\begin{align*}
\dot{x}_1(t) &= 1 + x_1^2x_2 - 4x_1, \\
\dot{x}_2(t) &= 3x_1 - x_1^2x_2.
\end{align*}
\]

Для начальных условий \(x_1(0) = 1.5, \quad x_2(0) = 3 \) уравнение брусселатора было численно пронтегрировано методом ERK43b на отрезке \(0 \leq t \leq 20 \) с абсолютной и относительной погрешностями \(A_{tol} = R_{tol} = 10^{-4} \). Были построены графики, идентичные графикам из книги [1, с. 170, рис. 4.1]. При сравнении результатов из книги [1] (см. рис. 1) с полученными нами результатами (см. рис. 2 и 3) видно, что реализованный нами метод работает практически также, как и использованный в [1], однако выбирает размер шага аккуратнее.

Ещё одна часто применяющаяся для тестирования численных схем система уравнений — частный случай ограниченной задачи трех тел, называемый задачей по вычислению орбит Аренсторфа. Свое название данная задача получила в честь Ричарда Ф. Аренсторфа — американского физика, рассчитавшего стабильную орбиту малого тела между Луной и Землёй.

В ограниченной задаче трех тел рассматривается движение малого тела под действием сил притяжения среднего и большого тел (Луна и Земля). Масса малого тела считается равной нулю, массы среднего и большого тел — \(\mu_1 \) и \(\mu_2 \) соответственно. Предполагается, что орбиты тел лежат в одной плоскости.

В задаче Аренсторфа в зависимости от начальных значений можно получить разные стабильные орбиты [1]. В безразмерных синодических координатах три
II. Runge-Kutta и Extrapolation Methods

Numerical Experiments

As a representative of 4-stage 4th order methods, we consider the "3/8 Rule" of a certain order. The table below presents the results for the first group of initial values, giving three different steps (figure from [1, p. 170, fig. 4.1]).

t [sec.]	\(x_1 \)	\(x_2 \)
0.0	0.0	0.0
2.5	0.0	0.0
5.0	0.0	0.0
7.5	0.0	0.0
10.0	0.0	0.0
12.5	0.0	0.0
15.0	0.0	0.0
17.5	0.0	0.0
20.0	0.0	0.0

The function \(\mathcal{H}(p_x, p_y, q^x, q^y) = \frac{1}{2}(p_x^2 + p_y^2) + p_x q^y - p_y q^x - F(q^x, q^y) \), where

\[
F(q^x, q^y) = \frac{\mu_1}{r_1} + \frac{\mu_2}{r_2}, \quad \mu_1 + \mu_2 = 1, \\
r_1 = \sqrt{(q^x - \mu_2)^2 + (q^y)^2}, \\
r_2 = \sqrt{(q^x + \mu_1)^2 + (q^y)^2};
\]

\[
\frac{\partial F}{\partial q^x} = -\frac{\mu_1 q^x - \mu_2}{r_1}, \\
\frac{\partial F}{\partial q^y} = -\frac{\mu_2 q^y - \mu_1}{r_2}.
\]

Канонические уравнения, к которым и будет применяться численная схема, имеют следующий вид:

\[
\begin{align*}
\dot{p}_x &= +p_y + \frac{\partial F}{\partial q^y}, \quad q^x = p_x + q^y, \\
\dot{p}_y &= -p_x + \frac{\partial F}{\partial q^y}, \quad q^y = p_y - q^x.
\end{align*}
\]

Численное решение проводится для \(0 \leq t \leq 17.065216560157962558 \) с абсолютной и относительной погрешностями \(A_{tol} = 10^{-17} \) и \(R_{tol} = 0 \) и средней массой \(\mu_1 = 0.012277471 \). В результате получаем орбиты Арнольда (рис. 4, 5 и 6) для начальных значений (4), (5) и (6) соответственно.

Для оценки погрешности система решается численно для временного промежутка, равного одному периоду. В конечной точке промежутка малое тело должно вернуться в начальную точку, т.е. \((q^x(0), q^y(0)) = (q^x(T), q^y(T))\), поэтому погрешность \(||q_0 - q_\text{гл}|| \) дает глобальную погрешность метода. Значения погрешности для первой группы начальных значений приведены в табл. 1.
V. ЗАКЛЮЧЕНИЕ

Таким образом, можно сформулировать основные результаты нашей работы:

1. В качестве специализированной системы символьных вычислений применён язык шаблонизатора Jinja2. Относительно использования универсальной системы символьных вычислений данное решение позволило сделать программный комплекс более простым, компактным и увеличить его переносимость.

Таблица I. Глобальные погрешности численных методов за один оборот по орбите для первой группы начальных значений

Метод	Погрешность
DPRK546S	1.84566 \cdot 10^{-12}
DPRK547S	2.93634 \cdot 10^{-12}
DPRK658M	4.22771 \cdot 10^{-12}
Fehlberg45	7.42775 \cdot 10^{-12}
DOPRIS	1.95463 \cdot 10^{-13}
DVERK65	1.67304 \cdot 10^{-12}
Fehlberg78B	5.45348 \cdot 10^{-12}
DOPRIS8	1.06343 \cdot 10^{-11}

2. Создан набор сценариев на языке Python с использованием языка шаблонизатора Jinja2, которые генерируют код на языке Julia, реализующий численные схемы методов Рунге–Кутты без управления шагом, вложенных методов с управлением шагом и методов Розенброка также с управлением шагом (все программы находятся в открытом доступе и расположены по адресу https://bitbucket.org/mngev/rungekutta_generator).

3. Сгенерированные функции протестированы с помощью решения нескольких типовых задач (непосредственно в тексте статьи подробно разобрана задача Аренсторфа, как наиболее требовательная к точности численной схемы); модуль для языка Julia также доступен по адресу https://bitbucket.org/mngev/rungekutta-autogen.

БЛАГОДАРНОСТИ

Публикация подготовлена при поддержке Программы РУДН «5-100» и при финансовой поддержке РФФИ в рамках научного проекта № 19-01-00645.

[1] Hairer E., Norsett S. P., G. Wanner. Solving Ordinary Differential Equations I. — 2 edition. — Berlin: Springer, 2008.
[2] Hairer E., Wanner G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. — 2 edition. — 1996.
[3] Fortran and Matlab Codes. — Access mode: https://www.unige.ch/~hairer/software.html.
[4] Dormand J. R., Prince P. J. A family of embedded Runge-Kutta formulae // Journal of computational and applied mathematics. — 1980. — Vol. 6, no. 1. — P. 19–26.
[5] Prince P. J., Dormand J. R. High order embedded Runge-Kutta formulae // Journal of Computational and Applied Mathematics. — 1981. — Vol. 7, no. 1. — P. 67–75.
[6] Matlab. — 2020. — Access mode: https://www.mathworks.com/products/matlab.html.
[7] GNU Octave. — 2020. — Access mode: https://www.gnu.org/software/octave/.
[8] Jones E., Oliphant T., Peterson P., Others. SciPy: Open source scientific tools for Python. — Access mode: http://www.scipy.org/.
[9] Scilab. — 2020. — Access mode: http://www.scilab.org/.
[10] Boost. Boost C++ Libraries. — 2020. — Access mode: http://www.boost.org/.
[11] Gevorkyan M. N., Velieva T. R., Korolkova A. V., Kulyabov D. S., Sevastyanov L. A. Stochastic Runge-Kutta Software Package for Stochastic Differential Equations // Dependability Engineering and Complex Systems. — Springer International Publishing, 2016. — Vol. 470. — P. 169–179. — arXiv : 1606.06604.
[12] Kulyabov D. S., Gevorkyan M. N., Demidova A. V., Korolkova A. V., Sevastianov L. A., Kotukov M. M. Implementation Difficulties Analysis of Stochastic Numerical Runge-Kutta Methods // Convergent Cognitive Information Technologies", Convergent 2017 / Ed. by M. Shneps-Shneppe, V. Sukhomlin, E. Zubareva. — Vol. 2064 of CEUR Workshop Proceedings. — Moscow : CEUR-WS, 2017. — 11. — P. 28–40.
[13] Gevorkyan M. N., Demidova A. V., Korolkova A. V., Kulyabov D. S. Issues in the Software Implementation of Stochastic Numerical Runge-Kutta // Distributed Computer and Communication Networks / Ed. by V. M. Vishnevskiy, D. V. Kozyrev. — Cham : Springer International Publishing, 2018. — Vol. 919 of Communications in Computer and Information Science. — P. 532–546. — arXiv : 1811.01719.
[14] Bezanson J., Edelman A., Karpinski S., Shah V. B. Julia: A Fresh Approach to Numerical Computing. — 2014.
[15] Bezanson J., Karpinski S., Shah V. B., Edelman A. Julia: A Fast Dynamic Language for Technical Computing. — 2012.
[16] Kwong T. Hands-On Design Patterns and Best Practices with Julia. — Birmingham B3 2PB, UK : Packt Publishing, 2020.
[17] Геворкян М. Н., Королькова А. В., Кулябов Д. С., Севастьянов Л. А. Пример модульного расширения системы компьютерной алгебры // Программирование. — 2020. — № 2. — С. 30–37.
[18] Python Reference Manual: Rep. ; Executor: G. Rossum. — Amsterdam, The Netherlands, The Netherlands : 1995.
[19] Jinja2 official site. — Access mode: http://http://jinja.pocoo.org.
[20] Butcher J. C. Numerical Methods for Ordinary Differential Equations. — 2 edition. — New Zealand : Wiley, 2003.
[21] Dormand J. R., Prince P. J. A reconsideration of some embedded Runge—Kutta formulae // Journal of Computational and Applied Mathematics. — 1986. — Vol. 15, no. 2. — P. 201–222.
[22] Fehlberg E. Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle // Computing. — 1969. — 6. — Bd. 4, H. 2. — S. 93–106.
[23] Fehlberg E. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme // Computing. — 1970. — 3. — Bd. 6, H. 1-2. — S. 61–71.
[24] Cash J., Karp A. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides // ACM Trans. Math. Softw. — 1990. — Vol. 16, no. 3. — P. 201–222.