Planning of agricultural ecological scenery based on the concept of traditional rural culture

Hang Sun* and Shengxian Tang**

*Hospitality Institute of Sanya, Department of Economic Management, Sanya, Hainan, People’s Republic of China; **Sanya City Vocational College, Department of Economic Management, Sanya, Hainan

ABSTRACT
Traditional rural cultural heritage is not only the crystallisation of China’s long agricultural history but also can guide the development of modern agriculture to some extent. It has its values for scientific research, education, tourism and other aspects. About exploration on the value of agricultural cultural heritage, there are some problems such as landscape homogenisation as well as iconic landscape deficiency. This paper focuses on the concept of rural culture, studies the planning of ecological agricultural circular economy in combination with agricultural ecological scenery, analyses the actual situation of regional rural culture and its actual planning needs, and verifies it through practice. From the researching point of view, the planning method proposed in this paper can be effectively combined with the traditional agricultural culture concept and can promote the development of agriculture and tourism.

Introduction
Along with the deterioration of ecological environment, urban live has been putting further strain on and people are kept in a nervous state all the time. Urban residents become more and more eager for a place with a green environment and fresh air to relax. They gain the concept of green live. To embrace a green way of life, green live is the higher priority as compared to any other time. The specified little changes can assist with decreasing the contamination that undermines our well-being as well as current circumstance, while likewise ensuring our regular assets. Luckily, it has never been simpler to carry on with an economical way of life. The desire to return and get closer to nature rapidly gets stronger and stronger. The reason why green space has so many powerful attractions for people is that it has many functions, as tourism and entertainment. However, there are conflicts between urban construction land and public green spaces in many cities; the green land used to improve the urban ecological environment is very limited. Similar to all biological systems, urban ecosystems are made out of natural segments like creatures, different types of life & plants as well as actual parts like environment, soil, air, geology then water. The above-specified parts can interface with each other inside a predetermined region in entire environments.

When the urban green land cannot meet the basic need for people to relax, they start to look beyond the city, where the strong local flavour and human natural landscape remain. The rural regions are not far from cities, which possess a huge market and developing space. Benefit by which, people are not only provided with a place for short-term travel but also a warming welcome hug from nature; the urban green space area is increased, so that the green rate is brought up. The establishment of ecological civilisation plays a critical role in China’s transformation and development, and China’s new leading team also deeply recognises the necessity of ecological civilisation construction (Ray 2017).

At present, the development of leisure agriculture and rural tourism is in full swing, which is fond by more and more people; but at the same time, there are also some problems in the planning, design, construction and development of the sightseeing agricultural park, such as landscape homogenisation and iconic landscape deficiency. The projects based on sightseeing agricultural park are started more and more, but they are all the same without differences. Meanwhile, the research and construction of sightseeing agricultural park located at special areas with unique environments are rear, such as geopark, mountain areas, basin area, etc. In the process of construction, the destruction of
nature and chaos of management seriously restrict its healthy development. On the one hand, these problems are determined by the objective law of the development of the agricultural tourism park itself, which cannot be evaded; on the other hand, the development plan of the agricultural tourism park has not gained attention from designers and operators. The unique charm of agricultural tourism park is not fully grasped (Roopaei et al. 2017). The agricultural tourism park is also characterised by world tourism organisation such as it includes convenience being offered in the homestead house else in a different guesthouse, giving dinners as well as getting sorted out visitors’ exercises in the perception & support in the cultivating activities. The safeguard provincial ways of life as well as scene is aided by agritourism. Furthermore, it offers the chance to give manageable else greens the travel industry. A social advancement that discovers its beginnings in a tree hugger culture is termed natural farming. They have an extensive job later on the advancement of country regions.

With the rise of cultural, ecological and rural tourism, the agricultural landscape has become a critical field for tourism development and utilisation. For public approach which is fit for accomplishing both moderate as well as liberal objectives all the while is said to be as a win-win strategy. Some of the samples are provided from any field of individual approach like ecological, political arrangement, financial, legitimate as well as social. Agricultural landscape tourism is a travelling model developed on the basis of protecting the authenticity and inheritance of agricultural culture; it is a ‘win-win’ measure to achieve environmental and economic benefits when protection of the agricultural cultural landscape is taken as the internal tourism development requirements; and it keeps in line with the trend of tourism development. Agrarian scenes should be updated as well as to be more unneighborly towards natural life through giving more basically complex territory than is normal inside numerous contemporary rural scenes, which will in general use HILD frameworks, the most un-alluring for untamed life. At the same time, the particularities of agricultural activities endow the agricultural cultural landscape tourism with the outstanding characteristic of the combination of biodiversity and cultural diversity, thus making the agricultural cultural landscape particularly competitive. Tourism perception is what tourists gain during travelling towards the various elements of every destination. Through the research of tourism perception during agricultural landscape travelling, we can deeply understand the frequency, intensity, core connotation, value of tourists’ perception, so as to promote the sustainable development of agricultural cultural landscape. The development of information technology brings a breakthrough in the research method of tourist perception. Along with the development and popularisation of the Internet, the Internet has become an important source for the public (Steenwerth et al. 2014).

Based on the above analysis, this paper integrates the traditional rural cultural concept into the planning of agricultural ecological scenery and further improves the planning effect of agricultural ecological scenery.

Related work

The research of fusion patterns and fusion types of culture and tourism, Rameshaiah et al. (2015) and Gao et al. (2020) pointed out, the main trend of industry convergence is largely affected by the present economic construction, through which the advantages of each industry could be integrated, and at last achieve mutual benefit and win-win development of all industries. The tourism industry of the developed areas and developing areas both have huge developing potential. The cultural industry and tourism industry are coupled in nature and share the same needs, so the integration of culture and tourism is the general trend of local tourism development. The expected commitment of the travel industry to the prosperity of country networks in non-industrial nations includes the horticultural advancement of financial linkages. Agribusiness gives not just the travel industry for food utilisation yet, in addition, the foundation for attractions in provincial conditions. The travel industry’s potential for cross-sectoral complementarities, for example, its linkage with agribusiness is yet to be acknowledged in order to set out open doors for the vocation enhancement of the neighbourhood networks, consequently upgrading economical nearby turn of events. Newell and Taylor (2018) and Nguyen et al. (2019) bring up three main models of cultural and tourism industry integration, including extension, penetration and reorganisation. Channe et al. (2015) introduce the inevitability of the integration and development of culture and tourism, also pins out the common ground in the coordinated development of tourism industry and cultural industry shares. In his research, he also analyses the main problems during the development of integration of domestic tourism and cultural industry, such as dis-broadened cooperation areas, unscientific cooperation system and in-perfect policy support, etc. Scherer and Verburg (2017) mainly define the concept and boundary of integration of cultural and tourism industry; also it introduces the developing process in four aspects of
technology, products, enterprises, and market. Liu et al. (2018) provide research that mainly introduces several effective ways for the integrated development of cultural and tourism industry, especially the integration core mechanism by which the integration driving force, model and ways are formed.

Zougmore et al. (2018) and Afza et al. analyse the present state of the integration of culture and tourism, points out the problems during the developing process. Leading by the industrial chain theory and industrial integration theory, it summarised three main models of the integration of culture and tourism, including the marketing mode of industrial linkage, the product model of industrial integration, and the scenic attraction mode of industrial extension. Li et al. (2012) and Elijah et al. (2018) firstly analyse the concept, power and mechanism of cultural and tourism integration, it uses the developing model and strategy of the integration to develop agricultural tourism industry. Kimaro et al. (2016) introduce the integration model of the tourism industry at the market level, product level and technical level. To a business’ general blueprint for arriving at planned shoppers as well as transforming them into clients of their items else, administrations are said to be a marketing level strategy. It comprises of other significant level components, key brand informing, organisation’s offer, as well as information on track client socioeconomics. Product level illustrates four kinds such as guaranteed, expanded, unmistakable, besides center. To comprehend the address the client needs as well as offer the client a total encounter, the above specified 4 kinds of product level are used and every level is more critical. The technical level based on integration model of the tourism industry is artificial intelligence (AI). Maybe the clearest use inside the movement in addition to the travel industry is for client support purposes, with chatbots having the capacity towards conveying fast reaction times to issues else inquiries. It is likewise ready to constantly gain from cooperation with clients. Terdoo and Adekola (2014) and Balamurugan et al. mainly explore the measurement method to analyse its integration level, specifically introduces the positive influence of cultural and tourism industry integration on the tourism development through the economic model. Thakur and Uphoff (2017) introduce the main driving force of integration of cultural and tourism industry through the PEST model; it discovers the natural economy and social conditions of integrated culture and tourism through practical investigation; especially it summarises and evaluates the developing state, direction and model of the integration of cultural and tourism industry in the certain areas.

Under the background of rapid social and economic development and economic globalisation, the boundary of every industry becomes more and more blurry, there for industrial integration is a main trend of industrial development in the world (Chae and Cho 2016). The research theory of Ayal et al. (2020) and Manogaran et al. suggest that industrial integration is realised with the help of digital technology, and the previously separated industries can be held up as a new industry in the whole through digital technology, thus if an enterprise wants to achieve the real industrial integration, it must formulate an enterprise strategy and technical strategy in line with the development of industrial. Aliev et al. (2018) point out the CHESS model. The research of Chandra et al. (2016) mainly analyse the four classic models of industrial integration. In this research, the evolution of the industrial innovation system of the mobile communication industry is demonstrated and specifically analysed, Drawing from which, we conclude that the model of each industrial integration has different effects on its business strategy and industrial development. Faling et al. (2018) point out that development based on integration is a new opportunity for every industry. To seize this opportunity, every enterprise should adjust the original construction and organisation, so as to fit into the present developing model of integration. According to the research of Alipio et al. (2019) technology integration is the top priority in industrial integration and has broad development prospects.

Analysis of the concept of traditional culture

The concepts of culture heritage, agricultural culture heritage, global important agricultural culture heritage and China’s important agricultural culture heritage interconnect and differentiate from each other (shown in Figure 1). A statement of the methods of living created through a local area in addition to give from one age to another, including customs, rehearses, places, objects, imaginative articulations as well as qualities is said to be as culture heritage. It is frequently communicated as one else the other Intangible else Tangible Cultural Heritage (ICOMOS, 2002). The qualities as well as conventional practices embraced is meant by agricultural heritage which is more important for today’s framework. One ought to be pleased with our horticulture as it has part of acquired maintainable practices passed from one age to another age. The exceptional scenes of tasteful excellence that join farming biodiversity, tough environments as well as a significant social legacy are termed as all around the world important agricultural heritage systems (GIAHS). The features of agricultural culture heritage are given as food & occupation security,
Agricultural culture heritage, according to its elements and dual characteristics of material culture heritage and intangible culture heritage, has the following features: (1) Complexity: Compared with the uniqueness of other culture heritages, agricultural culture heritage is a compound system of plantation, forestry, husbandry, fishery and ecosystem conservation with various contents and wide ranges. (2) Variety: Complexity of agricultural culture heritage determines its variety in animals, plants and microorganisms in the system. (3) Co-existence: Harmonious living and gradual evolution of various organisms guarantee the existence and development of agricultural culture heritage system. (4) Living: Co-existence is a mode of living state instead of static state. The living of agricultural culture heritage mainly requires human’s involvement. Compared with other culture heritages that require less intervention from human, agricultural culture heritage must have human’s involvement so as to guarantee its succession of heritage culture and practice experience. (5) Strategy: The co-existence and living of agricultural culture heritage determine its unique humanistic and social attributes, which are expressed in heritage itself and related agricultural practice. Once the agricultural culture heritage gets destroyed, the related heritage value and actual value will disappear. So, the agricultural culture heritage has not only historical significance but also strategy for the development of future heritage. (6) Dynamicity: The variety, living and co-existence of agricultural culture heritage allow it to be dynamic. The heritage system has combined with realistic society, economy and ecosystem in the process of conservation and development to form new technology and culture and maintain the dynamic development. (7) Service: Agricultural culture heritage not only makes people feel happy but also serves food provision, economic society, ecology and culture and so on. (8) Endangerment: As one of heritage’s attributes, agricultural culture heritage also faces endangerment. The endangerment has more influence elements and more complex conditions compared with other culture heritage. The features mentioned above suggest that agricultural culture heritage is different from other culture heritages as it provides people with safeguard in clothing, food, housing and transportation besides promoting the development of traditional agricultural culture; plays an important role in ethnic evolution, social progress, political revolution and economic development; facilitates the advancement of humanistic culture (Verschuuren 2018).

The basic mode of information transmission is that the information source (source) is delivered to the information receiver (receiver) through the transmission channel (channel). But in the actual transmission process, the information is always influenced by many elements from the source to the receiver, so the information that the receiver gets may not be completely accurate.
correct. People use coding and decoding to reduce the intervention in the transmission process but still cannot avoid partial distortion (Hidayat 2017). The entropy method calculates all information in the system and the calculated values can confirm the influence that individual information has toward the system so as to calculate the authentic degree of the information. The entropy of a substance increments along with its sub-atomic weight as well as intricacy in addition to its temperature. The entropy likewise increments as the pressing factor or focus decreases. A regularly utilised weighting strategy that actions esteem scattering in dynamic is referred to as entropy weight technique (EWM). The more noteworthy the level of scattering, the more prominent the level of separation in addition to more data can be inferred. In the meantime, higher weight ought to be given to the list, besides the other way around. The more the information to transmit, the smaller the value and the uncertainty of information are, the lower the confusion of information becomes, the higher the effectiveness of information is, and the larger the weight of indicator in the system is. That is, the quantity of information is inversely proportional to value of information, uncertainty and confusion degree but proportional to the effectiveness of information and weight. Therefore, using the entropy method to calculate the weight of indicator is one of the important methods to comprehensively assess various indicators, which is an objective weighting form based on the mathematic calculation and has unique advantages than the subjective weighting method.

The agricultural culture heritage value assessment process is mainly made up of four steps: the first is to choose assessment indicator, the second is to invite experts to assess and score all heritage values, the third is to use the entropy method to analyse experts’ score and confirm the weight of heritage values, and the fourth is to analyse the weight of values and explore the key points and methods of planning of heritage conservation and development (shown in Figure 2).

Value refers to that the object can meet certain needs of the subject. Through the comparative analysis of cultural heritage value, combined with the characteristics of agricultural cultural heritage, agricultural cultural value mainly includes the following content: historical value, artistic value, ecological value, economic value, cultural value, technical value, Spiritual value, product value (see Table 1). (1) Historical value factor: Historical events include six elements: time, location, people, events, background, and influence. The historical value factors of agricultural cultural heritage can be divided into the following five aspects by analogy: time duration, which refers to the distance between the heritage and the current generation; location Historical value refers to the historical value of the heritage site itself in the historiography world; the relevance of important historical figures refers to the value status of the historical figures involved in the heritage site and the heritage ontology in the historiography world; the relevance to important historical events, Refers to whether the heritage site has had historically influential important events and the degree of relevance between the event and the

| Table 1. Statistics table of traditional rural culture. |
|---|---|---|---|---|---|
| Num | Scores | Num | Scores | Num | Scores |
| 1 | 84.6 | 31 | 80.3 | 61 | 86.8 |
| 2 | 89.6 | 32 | 85.3 | 62 | 83.9 |
| 3 | 87.9 | 33 | 89.8 | 63 | 80.5 |
| 4 | 83.4 | 34 | 90.1 | 64 | 87.2 |
| 5 | 82.8 | 35 | 79.9 | 65 | 88.7 |
| 6 | 87.8 | 36 | 84.7 | 66 | 87.4 |
| 7 | 79.7 | 37 | 86.9 | 67 | 82.1 |
| 8 | 79.3 | 38 | 90.4 | 68 | 91.8 |
| 9 | 84.3 | 39 | 86.3 | 69 | 86.8 |
| 10 | 84.9 | 40 | 83.0 | 70 | 89.2 |
| 11 | 82.1 | 41 | 91.7 | 71 | 91.6 |
| 12 | 89.9 | 42 | 86.5 | 72 | 81.6 |
| 13 | 79.2 | 43 | 91.6 | 73 | 82.0 |
| 14 | 82.2 | 44 | 82.4 | 74 | 83.5 |
| 15 | 79.4 | 45 | 88.0 | 75 | 82.3 |
| 16 | 79.8 | 46 | 83.3 | 76 | 87.1 |
| 17 | 87.1 | 47 | 79.7 | 77 | 87.6 |
| 18 | 80.3 | 48 | 83.0 | 78 | 89.0 |
| 19 | 80.8 | 49 | 89.4 | 79 | 79.1 |
| 20 | 90.5 | 50 | 83.1 | 80 | 90.9 |
| 21 | 86.1 | 51 | 86.5 | 81 | 90.9 |
| 22 | 80.0 | 52 | 82.3 | 82 | 89.2 |
| 23 | 87.7 | 53 | 83.4 | 83 | 90.5 |
| 24 | 87.6 | 54 | 79.8 | 84 | 84.5 |
| 25 | 85.5 | 55 | 87.6 | 85 | 84.8 |
| 26 | 80.7 | 56 | 82.7 | 86 | 90.0 |
| 27 | 82.5 | 57 | 82.7 | 87 | 81.3 |
| 28 | 79.4 | 58 | 85.0 | 88 | 85.9 |
| 29 | 90.8 | 59 | 90.4 | 89 | 83.1 |
| 30 | 82.9 | 60 | 84.3 | 90 | 82.2 |

Figure 2. Value assessment process of agricultural culture heritage.
heritage site; the historical impact on the local area, refers to the impact of the heritage system on local politics, economy, and culture during the generation and existence of the heritage system. (2) Artistic value factor: According to the general characteristics of artistic value, the artistic value of agricultural cultural heritage is mainly embodied in the following five aspects: the typicality of the heritage, that is, the heritage reflects the commonness of a certain kind of universal meaning with individual particularity; the aesthetic perception of the heritage is the heritage itself. The unique beauty of appearance, landscape, and style; uniqueness, that is, the unique artistic aesthetic value of the heritage itself; scarcity, that is, the scarcity, non-replicability, and non-renewability of the heritage; regional characteristics, that is, heritage energy. Represents the unique local humanities and regional characteristics. (3) Ecological value factor: The ecological value of agricultural cultural heritage is mainly considered from the following four aspects: environmental adaptability, which refers to the adaptability of the heritage to the surrounding environment to survive and develop, and to improve its adaptability with environmental changes to ensure the survival of the heritage ecosystem; ecological self-healing means that the heritage ecosystem can continue to improve and correct its own ecological defects, realise self-repair, and ensure the normal operation of the system; risk resistance means that the heritage ecosystem can be repaired in time to maintain the vitality of the ecosystem when encountering external man-made and natural risks; biodiversity refers to the heritage. There are a variety of biological species in the ecosystem, which coexist in harmony with each other and promote the continuous evolution of the ecosystem. (4) Economic value factor: Including the direct economic benefits of agricultural cultural heritage to the residents of the heritage site, such as the output of agricultural and sideline products, tourism income, etc.; it also includes the indirect economic value generated, such as the optimisation of industrial structure, the increase of employment rate, and the acceleration of urbanisation. (5) Cultural value factors: Mainly include the formation of cultural concepts, the richness of folk culture, the influence of cultural images and the uniqueness of regional culture. (6) Technical value factors: Technical factors are an indispensable part of agricultural cultural heritage, including genetic and symbiotic technologies between multiple organisms, the service function of heritage to the surrounding environment, the technical demonstration role of modern ecological agriculture, and the impact of agricultural culture. Contribution of heritage-based multi-disciplinary and cross-field research.

A proportion of the susceptibility related to an irregular variable is said to be as entropy hypothesis. The normal data content one is missing at the time if one doesn’t have the foggiest idea about the worth of the arbitrary variable is estimated by the entropy method. The frame of entropy method for value assessment is shown as in Figure 3.

Figure 3. Frame of entropy method for value assessment.
Analysis on planning problems of agricultural ecological scenery based on the concept of traditional rural culture

Agricultural culture heritage can create tremendous values in the tourism industry, allowing every tourist to have real experience on a narrower scale while benefiting establishment of the national cultural industry on a wider scale. It can bring values in economy, aesthetics, education, cultural development and heritage conservation and so on. Tourists can obtain higher tour satisfaction in the sightseeing process and learn a lot about agricultural culture heritage automatically. To break the current situation of agricultural heritage tourism is beneficial to the development of local tourism and construction of harmonious village. So the development of traditional culture heritage tourism in Fujian must be scientific and reasonable. We have to make researches into the current situation of the development and take measures to solve the problems found in the research process.

This paper is based on the field survey on the current situation of traditional village agricultural culture heritage in the region. Given the local agricultural culture heritage tourism has been in the initial stage of development, the city government has put forward numerous policies and rules to regulate the development of agricultural culture heritage tourism on the macro-scale, the agricultural culture heritage tourism develops steadily, kinds of agricultural culture heritages are exploited for tourism in different degrees; the key point of tourism development is featured agricultural culture; all villages improve the infrastructure to facilitate the development of agricultural culture heritage tourism. Of course, there are still some problems to stop the heritage tourism further improving: regulations and rules for agricultural culture heritage only are little at present; featured agricultural culture heritage faces shock; tourism projects lack experience; the engagement of villagers is comparatively low.

In the inheritance of traditional agricultural culture, the heritage suitable for the development of tourism has basically entered the state of tourism development, but the depth of tourism development is relatively weak. Among the more than one hundred agricultural cultural heritages we have counted, agricultural sites, agricultural landscapes, and agricultural folk-custom heritages are suitable for tourism development. Most tourists can visit and admire, and they can obtain satisfactory tourism experience and popular science. Many tourist attractions are developed in a single way, and some heritage sites are still under restoration. Tourists can only come into contact with sporadic and fragmented folk culture during the travel process. The agricultural technology heritage that can develop experiential tourism is also just ‘walking horses and flowers’, and tourists have not penetrated into technology and production and life itself.

The preservation of cultural connotation is the top priority of traditional agricultural culture and genetic tourism, and it is also the most attractive place for tourists. Judging from the current state of tourism development, the cultural connotations of ethnic minorities are very rich, but the development of agricultural cultural heritage tourism in these villages is still at a preliminary stage. Some folk activities are gradually suffering the impact of commercial civilisation. The cause of commercial civilisation is since the years 1000–1300, Europe’s populace almost multiplied. The specified segment development prompted urbanisation, which thus prompted the commercial revolution, as Europe became associated with exchanging all throughout the planet. Europe likewise fostered a more modern adaptation framework throughout the specified period. Among the highlights related with it were a flood in abroad exchange, the presence of the contracted organisation, acknowledgment of the standards of mercantilism, the production of a cash economy, expanded financial specialisation, in addition to the foundation of such new establishments as the state bank, the bourse, besides the prospects market. Folk activities are held at specific times for specific agricultural activities. In recent years, these ethnic minority traditional villages have gradually appeared specialising in performance activities.

At present, a minority of traditional villages do not have specific and detailed development plans and laws and regulations in the process of developing agricultural cultural heritage tourism, and they are only planning based on the protection and development direction of the entire traditional village. This is related to the time course of the development of heritage tourism. It has only been about 10 years since the rise of agricultural cultural heritage tourism, and many organisations and organisations have no awareness of this aspect. In addition, the tourism development of the entire village is also in the preliminary stage, and the focus is only on heritage protection and other aspects.

In order to allow tourists to enjoy a different style anytime and anywhere, the performance of the dance ceremony and the agricultural connotation are strongly separated. This actually destroys the cultural nature of agricultural heritage, because many buildings, costumes, and worship ceremonies are combined with agricultural production. Praying for the new year’s farming is only for
performances that have been separated from the essence of ‘agriculture’. This shows that when the agricultural cultural heritage is being developed for tourism, not only has it not been digging deeply but has incorporated some modern ‘impurities’. Therefore, the agricultural cultural heritage of ethnic minorities should integrate and optimise the development method in the process of tourism development. It should not only stimulate the sight of tourists but also stimulate the sense of touch and smell to promote agricultural culture. In addition, when developing agricultural cultural heritage tourism, we must put the protection in the first place, and the heritage should not have changed after many years.

Although agricultural technology is widely used in the daily application process as it covers aspects of agricultural life and amounts to one-fifth of the total, it is rarely used in tourism, which is nearly zero. On one hand, this kind of heritage has a demand on tourists’ tour needs; on the other, some technologies are not easy to rebuild in the application process. So agricultural technology heritage in tourism has developed slowly and generally faced inheriting problems. As for the value, with the influence of shock from modern production tools and huge demand of agriculture, some ancient constructions and species gradually distinguish; certain tourism development can better display the value, but the government did not combine the heritages according to their own features and mutual correlation, which caused the heritages to develop for tourism individually. This to some degree resulted in waste of tourism resource. Agricultural culture heritages serve the agricultural ecological system, so the heritages have a correlation in the process, which can be expanded and to expand the travel industry mechanical chain as well as vacationers’ movement period, approximately degree in the advancement of the travel industry is combined.

Application of planning of agricultural ecological scenery based on the entropy method

This paper discusses the application of the concept of traditional rural culture in the agricultural ecological scenery planning by the way of entropy method. First of all, conduct researches into planning of agricultural ecological scenery in some regions. Among the researches, the first step is to plan the agricultural ecological scenery based on the concept of traditional rural culture.

Agricultural customs and technologies cannot be fully applied to develop the tourism as they serve the whole village including production and living. Therefore they can be used to develop some tourism experience projects. In addition, modern technology combined with modern elements can be applied to make agricultural culture like lifestyle. Considering the timeliness of some agricultural culture heritages, ways such as VR and drama can be adopted to restore the scene so as to allow every tourist to feel the traditional agricultural culture customs in person, shown in Figure 4.

A scene unit that joins certain interrelated creatures in addition to plant networks with a specific social development as ecological condition as a component

Figure 4. Traditional agricultural culture experience.
of an incorporated framework. An agro-natural zone is a land asset planning unit, characterised as far as environment, additionally land cover, landform as well as soils, in addition to having a particular scope of possibilities & limitations intended for land utilisation. The traditional agricultural culture heritage, to retain its rich cultural meanings, can be divided into ecological zone and life zone. In the life zone, people can enjoy the convenience brought by modern culture. That is properly rebuild on the basis of their original construction, repair the roads in the village, and install modern sewage treatment system and irrigating system, shown in Figure 5. Basically, a sewage treatment plant works through flowing air to support the development of microbes to separate sewage. The objective is to convey a lot of cleaners, all the more harmless to the ecosystem emanating. A comparable cycle to an average septic tank however has some key contrasts is included in sewage treatment. Water system assists with developing rural yields, keep up with scenes, as well as revegetate upset soils in dry regions besides throughout times of not exactly normal precipitation.

Figure 5. Integrated design between agricultural traditional culture and concept of modern life.

Figure 6. Statistical map of the evaluation of traditional rural culture.
Table 2. Statistics table of evaluation of the planning of agricultural ecological scenery.

Num	Scores	Num	Scores	Num	Scores
1	74.6	31	90.0	61	86.7
2	89.8	32	82.0	62	90.2
3	77.4	33	90.9	63	87.9
4	80.7	34	84.2	64	81.9
5	81.2	35	86.7	65	75.8
6	84.7	36	83.1	66	75.5
7	79.4	37	75.5	67	88.9
8	84.2	38	76.2	68	80.7
9	89.7	39	76.1	69	76.9
10	90.3	40	87.0	70	89.0
11	87.0	41	80.1	71	78.2
12	81.4	42	74.5	72	90.2
13	77.9	43	81.2	73	76.4
14	79.8	44	80.3	74	79.8
15	88.7	45	86.3	75	86.3
16	80.2	46	79.0	76	75.4
17	90.6	47	75.9	77	78.6
18	86.4	48	85.7	78	90.3
19	89.6	49	82.3	79	87.4
20	77.1	50	88.7	80	83.3
21	83.3	51	74.2	81	91.0
22	89.2	52	90.4	82	78.8
23	87.6	53	86.3	83	76.9
24	74.1	54	90.0	84	86.5
25	79.6	55	88.8	85	81.9
26	89.9	56	88.9	86	84.8
27	89.1	57	90.4	87	83.6
28	90.1	58	78.4	88	90.5
29	85.2	59	75.5	89	85.8
30	82.9	60	85.7	90	84.5

After planning and designing the agricultural ecological scenery, and analyse the system by using the entropy method mentioned in this paper. First of all, score the travel value of agricultural traditional culture through the entropy method and compare the assessment results and experts’ assessment results. The results are shown in Figures 1 and 6, respectively.

According to the above analysis, the result shows that the entropy method and the planning of agricultural ecological scenery have scored some achievement; based on which, the evaluation of the planning of agricultural ecological scenery is carried out. Results are shown in Table 2 and Figure 7. Based on the entropy method as well as the planning of agricultural ecological scenery, Table 2 has scored some performance and by using the score values, the statistical map of the evaluation of the planning of agricultural ecological scenery is generated which is given in Figure 7.

According to the above analysis results, the planning of the agricultural ecological scenery proposed in this paper can be effectively combined with the traditional agricultural culture concept and can promote the development of agriculture and tourism.

Conclusion

This paper mainly focuses on the developing state, problem and strategy of traditional rural cultural heritage tourism. Through the method of case analysis, the

Figure 7. Statistical map of the evaluation of the planning of agricultural ecological scenery.
author specifically states the developing state of rural cultural heritage tourism, and the composition and characteristics of agricultural cultural heritage resources; and then benefited by field research, the author understands the tourism state of rural cultural heritage, and summarise the existing problems according to the research. Based on the overall summary, a detailed analysis is brought up on some aspects of rural humanities and geographical environment, characteristics of agricultural cultural heritage, developing state of rural cultural heritage tourism, and further, the author proposes specific planning and measures for agricultural cultural heritage tourism. Through case analysis and entropy method, the planning method can be effectively combined with the traditional agricultural culture concept and can promote the development of agriculture and tourism.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Hang Sun, a lecturer of Hospitality Institute of Sanya, graduated from Shenyang Agricultural University. Her main research direction is agricultural economic theory and policy. She has published 10 papers, researched 4 projects, and published 3 textbooks.

Shengxian Tang, a lecturer of Sanya city vocational college, graduated from Hainan university. Her main research direction is administration. She has published more than 10 papers, researched 8 projects, and published 3 textbooks.

References

Aliev K, Pasero E, Jawaid MM, et al. 2018. Internet of plants application for smart agriculture. Int J Adv Comput Sci Appl. 9(4):421–429.

Alipio MI, Cruz AEMD, Doria JDA, et al. 2019. On the design of nutrient film technique hydroponics farm for smart agriculture. Eng Agric Environ Food. 12(3):315–324.

Aryal JP, Sapkota TB, Rahut DB, Jat ML, et al. 2020. Agricultural sustainability under emerging climatic variability: the role of climate-smart agriculture and relevant policies in India. Int J Innov Sust Dev. 14(2):219–245.

Chae CJ, Cho HJ. 2016. Smart fusion agriculture based on internet of thing. J Korea Converg Soc. 7(6):49–54.

Chandra A, McNamara KE, Dargusch P, et al. 2016. Resolving the UNFCCC divide on climate-smart agriculture. Carbon Manage. 7(5-6):295–299.

Channe H, Kothari S, Kadam D. 2015. Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis. Int J Comput Technol Appl. 6(3):374–382.

Elijah O, Rahman TA, Orikumhi I, et al. 2018. An overview of internet of things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things J. 5(5):3758–3773.

Faling M, Biesbroek R, Karlsson-Vinkhuyzen S. 2018. The strategizing of policy entrepreneurs towards the global alliance for climate-smart agriculture. Global Policy. 9(3):408–419.

Gao J, Wang H, Shen H. 2020. Smartly handling renewable energy instability in supporting a cloud datacenter. IEEE International Parallel and Distributed Processing Symposium (IPDPS).

Hidayat T. 2018. Internet of things smart agriculture on ZigBee: A systematic review. J Telekom Kompu. 8(1):75–86.

Kimaro AA, Mpanda M, Rioux J, et al. 2016. Is conservation agriculture ‘climate-smart’ for maize farmers in the highlands of Tanzania?. Nutr Cycling Agroecosyst. 105(3):217–228.

Li L, Yan X, Wang N, et al. 2012. Meaningful image sharing threshold scheme based on error diffusion. Int J Digit Content Technol Its Appl. 6(1):275–284.

Liu J, Chai Y, Xiang Y, et al. 2018. Clean energy consumption of power systems towards smart agriculture: roadmap, bottlenecks and technologies. CSEE J Power Energy Syst. 4(3):273–282.

Mi Y, et al. 2010. Study on the effect of agricultural Non-point source pollution to water environment of the ebinur lake basin during high flow period. Arid Zone Res. 27(2):278–283.

Nguyen N, Liu B, Chu S, Weng H-Z. 2019. Challenges, designs, and performances of a distributed algorithm for minimum-latency of data-aggregation in multi-channel WSNs. IEEE Trans Netw Serv Manage. 16(1):192–205.

Newell P, Taylor O. 2018. Contested landscapes: the global political economy of climate-smart agriculture. J Peasant Stud. 45(1):108–129.

Rameshaiah GN, Pallavi J, Shabnam S. 2015. Nano fertilizers and nano sensors–an attempt for developing smart agriculture. Int J Eng Res Gen Sci. 3(1):314–320.

Ray PP. 2017. Internet of things for smart agriculture: technologies, practices and future direction. J Ambient Intell Smart Environ. 9(4):395–420.

Roopaei M, Rad P, Choo KKR. 2017. Cloud of things in smart agriculture: intelligent irrigation monitoring by thermal imaging. IEEE Cloud Comput. 4(1):10–15.

Scherer L, Verburg PH. 2017. Mapping and linking supply-and demand-side measures in climate-smart agriculture. A review. Agron Sustain Dev. 37(6):1–17.

Steenwerth KL, Hodson AK, Bloom AJ, et al. 2014. Climate-smart agriculture global research agenda: scientific basis for action. Agric Food Secur. 3(1):1–39.

Terdoo F, Adekola O. 2014. Assessing the role of climate-smart agriculture in combating climate change, desertification and improving rural livelihood in northern Nigeria. Afr J Agric Res. 9(15):1180–1191.

Thakur AK, Uphoff NT. 2017. How the system of rice intensification Can contribute to climate-smart agriculture. Agron J. 109(4):1163–1182.

Verschuuren J. 2018. Towards an EU regulatory framework for climate-smart agriculture: the example of soil carbon sequestration. Transnatl Environ Law. 7(2):301–322.

Zougmoré RB, Partey ST, Ouédraogo M, et al. 2018. Facing climate variability in sub-Saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cah Agric (TSI). 27(3):1–9.