How To Build a Successful Urgent-Start Peritoneal Dialysis Program

Nilum Rajora,1 Shani Shastri,1 Gulzar Pirwani,2 and Ramesh Saxena1

Abstract
In-center hemodialysis (HD) remains the predominant dialysis therapy in patients with ESKD. Many patients with ESKD present in late stage, requiring urgent dialysis initiation, and the majority start HD with central venous catheters (CVCs), which are associated with poor outcomes and high cost of care. Peritoneal dialysis (PD) catheters can be safely placed in such patients with late-presenting ESKD, obviating the need for CVCs. PD can begin almost immediately in the recumbent position, using low fill volumes. Such PD initiations, commencing within 2 weeks of the catheter placement, are termed urgent-start PD (USPD). Most patients with an intact peritoneal cavity and stable home situation are eligible for USPD. Although there is a small risk of PD catheter–related mechanical complications, most can be managed conservatively. Moreover, overall outcomes of USPD are comparable to those with planned PD initiations, in contrast to the high rate of catheter-related infections and bacteremia associated with urgent-start HD. The ongoing coronavirus disease 2019 pandemic has further exposed the vulnerability of patients with ESKD getting in-center HD. PD can mitigate the risk of infection by reducing environmental exposure to the virus. Thus, USPD is a safe and cost-effective option for unplanned dialysis initiation in patients with late-presenting ESKD. To develop a successful USPD program, a strong infrastructure with clear pathways is essential. Coordination of care between nephrologists, surgeons or interventionalists, and hospital and PD center staff is imperative so that patient education, home visits, PD catheter placements, and urgent PD initiations are accomplished expeditiously. Implementation of urgent-start PD will help to increase PD use, reduce cost, and improve patient outcomes, and will be a step forward in fostering the goal set by the Advancing American Kidney Health initiative.

KIDNEY360 1: 1165–1177, 2020. doi: https://doi.org/10.34067/KID.0002392020

Introduction
With the increased global burden of ESKD, there is a need for optimal RRT (1). Although most cost effective, timely transplant is challenging due to logistics and scarcity of organs. Therefore, most patients with ESKD need dialysis to sustain their lives. Given the progressive upsurge of the ESKD population, equitable growth of various dialysis modalities is expected. However, the default RRT in ESKD remains in-center hemodialysis (HD) (2,3). In 2017, 87% of the US patients with incident ESKD began RRT with HD, and only 10% started with peritoneal dialysis (PD) (3).

Large numbers of patients do not get pre-ESKD education or access planning due to inadequate or lack of kidney care (4). For instance, 33% of patients with incident ESKD received little or no pre-ESKD nephrology care in 2017 (3). Consequently, such patients present to hospitals with advanced ESKD, requiring urgent dialysis initiation. In addition, some patients with advanced kidney disease and established nephrology care may develop unanticipated accelerated progression of kidney disease. The majority of such patients start HD with central venous catheters (CVCs), because most physicians and hospital staff are more comfortable with HD than PD initiation (2,5,6). In 2017, 80% of patients initiated HD with a CVC (3). Most patients who begin dialysis in the inpatient setting stay on the same dialysis modality as outpatients (2).

Individuals initiating HD with CVCs have much higher mortality, morbidity, length of stay, and cost of care compared with those initiating PD or HD with appropriate vascular access (7–10). The reported 1-year risk of catheter-related bloodstream infections is quite variable, ranging from as low as 9% to as high as 79% (8). In an observational study of all Medicare facilities that provided outpatient HD in New England throughout 2015 and 2016, mean bloodstream infection rate per 100 patient-months was 2.15±6.5 and 0.23±0.8 for patients with and without catheters, respectively (11). Put differently, the mean catheter-associated bloodstream infection rate was 0.71 per 1000 catheter days. The relative risk of a bloodstream infection in patients with a catheter compared with those without a catheter was 7.5 (95% CI, 6.3 to 8.9) (11).

PD is more cost effective and provides similar or superior outcomes compared with HD (9,10). PD can commence almost immediately after PD catheter implantation. Thus, urgent-start PD avoids the need for temporary vascular access and a repeat vascular procedure to establish a permanent access. In addition, it allows for the better preservation of residual kidney

1Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
2University of Texas Southwestern/DaVita Peritoneal Dialysis Center, Irving, Texas

Correspondence: Dr. Ramesh Saxena, Division of Nephrology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, H5: 122, Dallas, TX 75390-8856. Email: Ramesh.saxena@utsouthwestern.edu
function and offers the lifestyle benefits that can be achieved with a home-based therapy (12). Therefore, initiation of urgent-start PD is an attractive option in patients with late-presenting ESKD. This review will focus on strategies, logistics, challenges, and benefits to develop a successful urgent-start PD program.

Economic Cost of Dialysis Modalities

Although ESKD comprises 1% of the US Medicare population, it consumes >7% of the annual Medicare expenditure at $35.9 billion (3). In the landscape of rising healthcare expenditure, cost of HD is 1.25–2.35 times higher than that of PD in most developed countries (13). Likewise, annual per patient cost of HD in the United States is $13,000 higher than that of PD (3). This makes PD a more cost-effective dialysis modality than HD. In January 2011, in an attempt to control costs, the US Centers for Medicare and Medicaid Services (CMS) instituted a single, bundled, prospective payment system for all dialysis modalities, making PD financially more attractive (14). However, despite financial incentive from the CMS prospective payment system, the growth of PD has been modest so far (15). One reason for slow PD growth is low utilization of urgent-start PD in the United States. In reality, urgent-start PD should be a valuable option among patients requiring unplanned dialysis initiation. A recent study found the first 90-day cost of urgent-start PD to be $3000 lower than that of urgent-start HD (16). Indeed, urgent-start PD can be a step toward achieving the goal of 80% incident patients on dialysis initiating home dialysis by 2025, as stated in the Advancing American Kidney Health initiative (17).

Defining Urgent-Start PD

The major goal in the management of patients who crash in with advanced ESKD and needing urgent dialysis initiation is to avoid CVC placement and the associated complications. PD catheters can be safely placed in such patients, averting the need for CVCs. Typically, a 2-week break-in period is recommended after placement of the catheter to facilitate healing, prevent catheter complications, and allow patients and family members to get trained in the PD technique (18–20). However, if needed, PD can be initiated almost immediately using a modified protocol (21). By definition, all PD initiations that begin within 2 weeks of the catheter placement are considered urgent-start PD (20,22).

Logistics and Infrastructure of Urgent-Start PD

Barriers to Urgent-Start PD

Numerous barriers, at multiple levels, impede the initiation of urgent-start PD (Table 1). Lack of awareness of home dialysis options among patients is a major barrier that can be surmounted with implementation of in-hospital educational interventions (2). Inadequate knowledge and experience and misperceptions about urgent-start PD is another

Table 1. Barriers to urgent-start peritoneal dialysis
Barriers
Provider-related factors
Lack of knowledge and experience among clinicians
Misconceptions or biases about PD
Timely PD catheter insertion
Infrastructure-related factors
In hospital
Delay in PD catheter insertion
Lack of effective communication between hospital and
outpatient PD center staff
Outpatient PD unit
Unable to accommodate urgent initiation due to lack
of individual rooms for training or trained staff
Patient-related factors
Lack of patient awareness about home modalities
Patient refusal
Physical
Reduced physical strength to lift PD bags
Reduced dexterity to make connections
Reduced vision/hearing
Cognitive impairment such as dementia or learning
disabilities
PD, peritoneal dialysis.
important barrier that limits clinicians’ use of PD (23). Nearly 50% of US nephrologists feel uncomfortable in caring for patients on PD (5, 24). Education of trainee nephrologists on all aspects of PD can help overcome this barrier (25). Similarly, the training of US surgeons in insertion of PD catheters is inadequate (26). Improvement in training and increasing availability of other operators (such as interventional radiologists and nephrologists) for PD catheter placement, and providing financial incentives to surgeons and other operators, may help improve utilization of urgent-start PD (27). The lack of infrastructure at hospitals or dialysis centers is yet another major barrier, because the inability to train and dialyze patients who need urgent-start dialysis may discourage physicians to consider home dialysis therapy for such patients (28). Developing sound infrastructure to overcome the aforesaid and additional barriers is the main goal for a successful urgent-start PD program, as discussed below.

Components of Successful Urgent-Start PD Programs

Only well-organized PD programs with a robust infrastructure are successful, safe, and feasible for unplanned PD initiations (20, 21). Support from the hospital administration is essential to establish a successful urgent-PD program. Not only should the hospital ensure there is adequate surgical or interventional staff who are familiar in urgent placement of PD catheters, but also adequate space, PD equipment, and sufficient nursing staff (adequately trained in performing urgent PD) should be provided. A delay in PD catheter placement and PD initiation can increase the length of hospitalization, thereby increasing the cost of inpatient care. A structured urgent-start PD program can streamline an expeditious PD initiation process and can offer an efficient and cost-saving approach for dialysis initiation (16).

It is crucial that the selection process of dialysis modality should be taken jointly with patients, nephrologists, surgeons, and the dialysis center. Interdisciplinary coordination and efficiency of care are essential and include prompt patient selection, expedited dialysis modality education and home evaluation, urgent PD catheter placement, and nursing and hospital administration support (Table 2).

Furthermore, clear protocols should be developed and standardized for urgent-start PD to ensure smooth transition from hospital to outpatient PD center. The key elements for a successful urgent-start PD include:

1. dialysis modality education,
2. patient selection process,
3. home evaluation,
4. urgent placement of PD catheters,
5. urgent initiation of PD in hospital, and
6. urgent-start PD and training in an outpatient PD center.

Dialysis-Modality Education

Most patients who crash in with advanced ESKD have not had formal predialysis education (2, 3). In any case, the demands from an educational program in unplanned settings are different from those in predialysis settings, because the ability of many patients to comprehend and make quick decisions about dialysis modality may be impaired due to their sickness and uremic state. Nonetheless, expedited dialysis-modality education should be provided and, if possible, family members should be involved in the decision-making process. Providing dialysis education considerably increases the use of PD in unplanned dialysis initiation (2, 29). In a retrospective study, patients starting urgent home dialysis increased from 13% to 35% after implementation of an in-hospital education program (2). Having a dedicated dialysis educator to offer individual guidance, and providing printed materials and educational videos, will immensely help patients and families in choosing the appropriate dialysis modality to fit their lifestyles (Table 3). Translators and, if feasible, printed materials in the patient’s native language should be available for patients who are non-English speaking.

Table 2. Logistics and infrastructure requirements for urgent-start peritoneal dialysis program
Hospital support
Multidisciplinary patient selection approach
Expedited patient education process
Prompt communication with PD center to expedite home visit
Easy availability of surgeons or interventionalists (radiology or nephrology) to urgently place PD catheter
Provision of nursing staff trained in urgent-start PD
Providing equipment and supplies to conduct PD
Clear protocols to standardize urgent-start PD
Coordination of care with outpatient PD center for seamless discharge process
Dialysis center support
Prompt conduction of home visit
Ability to evaluate patient within 1–2 d after hospital discharge
Provision of ample space and equipment to conduct urgent-start PD
Availability of adequate nursing staff trained in urgent-start PD
Providing education and training to the patient about urgent-start PD
Administrative support for smooth transition of care from hospital to PD center

PD, peritoneal dialysis.
Patients Selection

Selection of appropriate candidates is central in developing a thriving urgent-start PD program (30). The selection process should include evaluation of medical, psychosocial, and surgical barriers to PD. Screening questionnaires may help in facilitating patient selection and can be developed in collaboration with staff from hospitals, CKD clinics, and PD centers (21). Patient preferences and life goals should be reviewed, and home situation, living environment, and family and social support should be assessed. Visual acuity and manual dexterity should be examined, and the abdomen should be inspected for presence of extensive scars from previous abdominal surgeries or large hernias (Figure 1).

There are very few contraindications to urgent-start PD. Most patients with an intact peritoneal cavity, stable home situation, and desire to do PD are eligible for urgent-start PD. Patients with recent abdominal surgery compromising the peritoneal membrane, acute bowel inflammation, colostomies, and uncorrected hernias are not candidates for urgent-start PD. Previous abdominal surgeries, however, should not be absolute contraindications for PD. Some patients do develop peritoneal adhesions after abdominal surgeries, but the extent of adhesions is difficult to predict without laparoscopic exploration (31–33). Direct visualization of the peritoneum and placement of the PD catheter by advanced laparoscopic exploration has been very successful in most instances (34,35). Frailty, advanced age, poor vision, psychiatric or memory issues, and lack of motor skills are not contraindications to PD but mere barriers that can be overcome with assisted PD, either provided by the family members at home or by trained personnel at home or nursing facilities (36–40). Assisted PD programs have been successful in other countries such as Canada, Denmark, and France (38,41–43). The CMS does not fund assisted PD programs in the United States. Similarly, poor literacy should not be considered a barrier to PD. A vigorous, thorough, and simplified training process to accommodate patients with limited health literacy can lead to successful PD in such patients (44).

Some patients may present with severe hyperkalemia, metabolic acidosis, volume overload, or uremic pericarditis and need emergent dialysis. Such patients should not be excluded from urgent-start PD. They should be initially managed with emergent HD using a temporary CVC. Once stabilized, the patients should be reevaluated for urgent-start PD, as discussed above (Figure 1).

Home Visit

If possible, an expedited home visit, either virtual or in person, should be considered within 24–48 hours of patient selection (Table 4). Typically conducted by a licensed PD nurse, home evaluation entails an overall assessment to determine if home conditions are safe and supportive of PD (Table 4). The patient should have a clean and adequate, enclosed space to perform PD. In addition, a sufficiently temperature-controlled space should be available to store PD supplies. The home should have proper plumbing and supply of running water. Moreover, an appropriate electric supply, including grounded three-prong outlets, is needed, particularly for patients choosing automated PD (APD). Because APD is usually performed at night, the patient should have easy access to the toilet. During the visit, the nurse documents the number of households and pets living in the house, identifies any barriers, and recommends appropriate changes.

Urgent Placement of PD Catheters

A crucial step in the success of an urgent-start PD program is prompt and timely placement of the PD catheter. Currently, there are no evidence-based recommendations for preferred catheter design or optimal insertion technique for urgent-start PD. Catheters can be placed surgically by open-surgical or laparoscopic techniques. Alternatively, a percutaneous approach using peritoneoscopic (Y-Tec) or fluoroscopic guidance can be used (34,45). To minimize postoperative risk of percutaneous leaks, purse-string sutures can be placed around the deep cuff in the posterior rectus

Table 3. Patient education about dialysis modalities
Patient Education
Discuss dialysis options for treatment for ESKD
In-center and home hemodialysis
PD
Discuss pros and cons of dialysis modalities
Pros of PD
Self-therapy: improves self-esteem
Needleless
Flexible schedules
No frequent travel to the dialysis center
Provides more even dialysis, with minimal fluctuation of BP
Less fluid and dietary restrictions
Greater freedom to travel
Patient can remain in workforce while dialyzing at night
Better quality of life compared with HD
Lower morbidity and mortality compared with HD
Better transplant outcomes compared with HD
Lower cost
Cons of PD
Daily therapy
Body image issues
May cause abdominal pain and discomfort
Risk of hernias
Restriction on lifting weight
Restriction on certain types of exercises
Can be associated with infection of catheter if not careful
Pros of in-center HD
Therapy is only three times a week
Treatment performed by trained staff
No catheter placed in abdomen
No restriction on lifting weight
No restriction on exercises
Cons of in-center HD
Need to travel three times a week to dialysis center
Two large needles placed on every treatment (unless patient has catheter)
Fluctuation in BP during HD treatment
Less freedom to travel (need to find a dialysis center when traveling)
More dietary and fluid restrictions
More expensive than PD
Lower quality of life compared with HD
Discuss home requirement for PD
Require sufficient clean and enclosed space for treatment
Indoor space for storage of supplies
Water and electric supply

PD, peritoneal dialysis; HD, hemodialysis.
sheath to obtain a watertight seal (38,46–50). The advantages and disadvantages of various techniques are outlined in Table 5. Successful placement of PD catheters by laparoscopic, open-surgical, and percutaneous approaches has been accomplished in various urgent-start PD programs (Table 6) (41,46,50–56).

There are no studies comparing outcomes of various operative techniques in urgent-start PD. Conversely, investigators have observed comparable outcomes from various PD catheter-implantation methods in planned PD (PPD) settings (51–57). However, a recent meta-analysis comparing open dissection, basic laparoscopic, and advanced laparoscopic procedures demonstrated significantly superior outcomes for advanced laparoscopy over the other two approaches (58). It is quite likely that the advanced laparoscopic technique allows for adjunctive procedures such as lysis of adhesions, omentopexy, and identification and repair of previously unsuspected hernias, which can further improve catheter outcomes (32,59).

Although current guidelines do not recommend a specific procedure for catheter placement, the choice of operator (surgeon, nephrologist, or interventional radiologist) and the technique (open surgical, laparoscopic, or percutaneous) should be dictated by the local experience and resources at the individual site. Hospitals should encourage training of interventional radiologists and nephrologists in urgent-PD catheter placement. Although many interventionalists are not familiar with PD catheter placement techniques, workshops and training courses to obtain necessary skills are readily available (information available at www.ispd.org). One advantage of interventionalists placing the urgent-PD catheter is eliminating the need for general anesthesia and scheduling an operating room. This can expedite the entire process of urgent-start PD. Some patients, such as those with prior major abdominal surgeries or obesity, may not be suitable for percutaneous techniques and should instead have laparoscopic or open-surgical implantation (32,54).

Table 4. Home evaluation for PD candidacy

Home Evaluation	Home evaluation for PD candidacy
Environment	Proper plumbing and running water
	Cleanliness
	Electricity supply with grounded three-pong outlets
	Temperature-controlled storage place
	Enclosed space for PD
Other occupants	Pets
	House members

PD, peritoneal dialysis.

Figure 1. An algorithm describing steps involved in evaluation and selection of late presenting ESKD patients for urgent-start PD. **AVG**, arteriovenous graft; **AVF**, arteriovenous fistula; **CVC**, central venous catheter; **HD**, hemodialysis; **PD**, peritoneal dialysis.
catheter and the presence of any pericatheter leak (Figure 2).

If successful, further exchanges of low FV (500–750 ml) in the supine position can be performed, either manually or by APD with a cycler, if available (Figure 3). APD may reduce the burden of frequent manual exchanges on the staff and facilitate accurate delivery of the prescribed FV. The number of exchanges and the toxicity of the dialysate is determined by the extent of uremic symptoms and volume status, respectively, as discussed in more details in the next section.

Unlike an outpatient center, the inpatient setting gives more flexibility in terms of time to perform exchanges. Therefore, if needed, frequent exchanges over a longer time period can be performed, as dictated by the clinical status of the patient.

Urgent-Start PD and Training in an Outpatient PD Center

Upon discharge, the patient should be seen in the PD center within 24–48 hours. Initial evaluation includes assessment of volume status and uremic symptoms to determine the urgency of initiating PD (Figure 4). If there is no immediate need to start PD, the patient can wait a few days to promote healing and reduce the risks of catheter complications (19). However, if needed, PD can be initiated immediately after admission (19,38,60,61). Successful initiations of PD within 2–6 days have been reported in many studies (47,48,50,62–65). As discussed in the above section, PD catheter patency and presence of any leaks should be assessed upon admission (Figure 2).

Because higher FV and an upright position raise the intraperitoneal pressure along with the associated risks of mechanical complications, urgent-start PD should be initiated using low FV with the patient in the supine position (66,67). There is no consensus on the initial FV. FVs of 0.5–1 L, based on patient weight, were used in 17 patients who were initiated on a cycler in one study (68). In a randomized controlled trial, patients started PD with a larger FV of 1 L, which was rapidly up-titrated to 2 L by 5 days (19). In contrast, a recent study from Brazil started with a high FV (30 ml/kg) right from the outset (69). More individualized prescription based upon body surface area has been used by other groups (21). In general, the FV should be determined based on the size and comfort of the patient. A typical starting volume is 500–750 ml. The FV should be slowly increased every 3–4 days, as tolerated, while monitoring for catheter leaks and overfill, until the patient reaches a maximum FV of 1.5–3 L, typically in 2–4 weeks.

The toxicity of the dialysate and the number and frequency of PD exchanges are determined by the extent of symptoms and volume status. Depending on clinical judgment, three to five exchanges over 4–8 hours a day are performed by the PD nurse, three to five times a week. The PD prescription should be evaluated and adjusted frequently, depending on the clinical status of the patient. PD fluid should be completely drained when breaks in treatment are needed.

In addition to PD exchanges, diuretics should be prescribed in patients with good residual kidney function. A bowel regimen should be included to avoid constipation. Heparin (500 U/L) is usually added to dialysate as long as the effluent is bloody (Table 7).

The PD center requires a specific setup to support urgent-start PD. The clinic should have two or more rooms. The training room should be large enough to lodge the reclining

Table 5. Advantages and disadvantages of PD catheter-placement techniques

Technique	Operator	Advantages	Disadvantages
Open surgical	Surgeons	Can be done under local anesthesia	Requires operating room facilities and staff
		Preferred in patient with prior abdominal surgeries but high risk for general anesthesia	
Laparoscopic	Surgeons	Catheter inserted under direct vision	Needs general anesthesia
		Preferred in patients with prior abdominal surgeries because it allows visualization of the peritoneal cavity	Higher cost
		Allows adjunctive procedures to be done simultaneously^a	Requires operating-room facilities and staff
Peritoneoscopic	Nephrologist	Performed under local sedation	Break-in period preferred
		Less invasive	Does not allow for adjunctive procedures
		Allows immediate use of the catheter	Risk of bowel perforation
Percutaneous-needle guidewire	Interventional	Less invasive	Blind insertion
technique	radiologist	Performed under local anesthesia	Risk of bowel perforation^b
		Can be done at bedside or procedure room	Not preferred in those with prior abdominal surgeries
		Allows immediate use of the catheter	Does not allow for adjunctive procedures

PD, peritoneal dialysis.
^aOmentopexy, identification and repair of previously unsuspected abdominal wall hernias, adhesiolysis.
^bCan be minimized using real-time ultrasound guidance.
Table 6. Clinical outcomes in some urgent-start PD studies

Author	Year	Number of Patients and Additional Details	Study	Insertion Technique/Operator	Time of PD Initiation	Leak (%)	Catheter Migration (%)	Exit-Site Infection	Peritonitis Rate	Technique Survival (%)
Song et al.	2000	21; gradual increase in fill volume	Prospective randomized	Percutaneous	Day 0	10^a	10	10%	24%	86 (1 yr)
		38; full exchange volume (2 L)			Day 0	11^a	8	5%	16%	84 (1 yr)
Banli et al.	2005	41	Prospective observational	Open surgical	Day 6	5^b	2	—	—	—
Jo et al.	2007	51	Prospective observational	Percutaneous (nephrologist)	Day 0	2^a	6	4%	4%	—
Casaretto et al. (74)	2012	11		Percutaneous	0–2 d	0	9	0%	0^a	—
Alkatheeri et al. (72)	2016	30	Prospective	Percutaneous (nephrologist) or laparoscopy (surgeon)	0–13 d (median 6 d)	10^c	20	7%	3%	93 (3 mo)
Javaid et al.	2016	17		82% percutaneous (nephrologist) or laparoscopy (surgeon)	1–3 d	0^d	11	—	—	88 (6 mo)
Dias et al. (80)	2017	51	Prospective	Percutaneous (nephrology)	0–3 d	8	16	17%	0.5^f	86 (6 mo)
Ye et al. (70)	2019	2059	Retrospective	Percutaneous (nephrologist)	0–3 d (median 2 d)	0.9^b	4	0.3%	1%	97 (1 yr)
Povlsen et al. (75)	2006	52; acute start 88; planned start	Retrospective, unmatched control	Open surgical	Day 0	8^g	15	4%	15%	87 (3 mo)
Yang et al. (50)	2011	226; incremental PD 84; late start 18; acute start	Retrospective	Open surgical	Day 1	2^d	3	1%	4%	36 (823 d)
Ghaffari (21)	2012	18	Quality improvement project	Percutaneous (interventional radiology)	—	33^i	11	1/55^h	1/110^h	—
Liu et al. (71)	2014	9; planned start 344 (<7 d) 137 (8–14 d) 176 (>14 d)	Retrospective	Percutaneous (nephrologist)	—	11^d	22	1/42^b	1/42^b	—
Ranganathan et al. (19)	2017	39 (1 wk) 42 (2 wk) 41 (4 wk)	Randomized control trial	Surgical	28^g	2	—	—	97 (6 mo)	

PD, peritoneal dialysis.
^a1 mo.
^b<2 wk.
^c<1 wk.
^d6 mo.
^eUsed high-volume PD.
^fEpisode/patient-year.
^g3 mo.
^hPer patient-month.
^i60 d.
Chair and equipment and supplies for dialysis. PD centers with more than one nurse are more suitable for urgent-start PD so that, while one nurse is busy with the urgent-start PD, the other can address issues of the established patients. Although one/nursing is not required for the entire treatment, the patient should have a call light or bell to obtain assistance from a nurse when required.

The time spent in the center during urgent-start PD provides an opportunity to commence training for the patient and the family members. Depending on the uremic state of the patient, the training process can start right away or after a gap of 1-2 weeks. PD training should preferably involve printed materials, videos, verbal instructions, and several days of hands-on training. Initially, patients get a basic understanding of PD by observing the PD nurse on the basic technique and concept of PD. The training is then advanced, at a pace determined by the comprehension of the patient and the family members involved in patient care, until the training is complete and the patient is ready to be discharged home, usually by 2-4 weeks.

Outcomes of Urgent-Start PD

Urgent-start PD may be associated with an increase in catheter-associated mechanical complications as compared with PPD.

In a large, retrospective, single-center study enrolling 2059 patients on urgent-start PD, 4% of patients developed catheter malfunction and 2% of patients experienced abdominal wall complications, including hernia, hydrothorax, hydrocele, and leakage, within the first month after catheter insertion. The rates of early peritonitis and exit-site infections were 0.28 and 0.08 per patient-year, respectively (70). However, the study did not compare patients on urgent-start PD and PPD. In the only randomized controlled trial comparing urgent-start PD with PPD, in 122 patients, a significantly higher rate of pericatheter leaks was observed in patients who initiated PD at 1 week compared with those who commenced at 2 weeks or 4 weeks after surgical catheter implantation (19). The risks of infection were similar in the three groups. Most leaks were conservatively managed without surgical intervention, yet a significantly
A stepwise approach to initiate urgent-start PD in hospital settings. If possible, the patient should be promptly discharged from the hospital after placement of the PD catheter. However, if the patient needs to stay in the hospital and requires dialysis, PD can be initiated in hospital. Low fill volumes of 500–750 ml should be used to begin with. Patient should be in a recumbent position throughout the exchanges. PD exchanges can be performed either manually or by automated PD (APD) with a cycler. APD is preferred over manual exchanges, because using a cycler reduces the burden of frequent manual exchanges on the staff and facilitates accurate delivery of the prescribed fill volume, thus minimizing errors. The number of exchanges and the tonicity of the dialysate are determined by the extent of uremic symptoms and volume status, respectively. Inpatient settings provide more flexibility with time and number of exchanges performed compared with the outpatient settings. More exchanges over a longer period of time, including nighttime PD, can be performed in hospital.

higher number of patients in the 1-week group required temporary HD than in the other two groups (19). Similar results have been observed in several observational and retrospective studies. In a single-center, matched, case-control study of 104 patients, patients on urgent-start PD experienced more frequent mechanical complications, but similar technique survival or peritonitis episodes, compared with subjects on PPD (61). In a large, retrospective study from China, patients initiating PD within 7 days more frequently experienced mechanical complications than those commencing PD between 8 and ≥14 days after open-surgical PD catheter insertion (71). Outcomes and complications associated with urgent-start PD are summarized in Table 6 (21,48,50,54,68–75). Altogether, the studies report higher catheter-related mechanical complications with urgent-start PD, but no significant differences in risk of infection, PD-technique survival, hospitalizations, or mortality between urgent-start PD and PPD (20,21,50,61,76,77). Importantly, most catheter-related complications can be managed conservatively, without the need for catheter removal or change in dialysis modality (61,72).

Data comparing complications associated with urgent-start PD and unplanned HD (UHD) are limited and shown in Table 8. A retrospective, observational study in 176 patients from China observed a significantly higher rate of bacteremia and all-cause infectious complications in patients receiving UHD than in those initiating urgent-start PD (78). Similarly, a significant increase in catheter-related bacteremia in the first 6 months was observed in patients on UHD compared with those receiving urgent-start PD in an observational cohort study of 123 patients from Germany (63). In another retrospective study from China involving 94 patients, the incidence of composite infectious and noninfectious dialysis–related complications during the first 30 days was significantly lower in patients on urgent-start PD than in those initiating urgent-start PD compared with those on UHD (79). In contrast, a recent, nonrandomized, prospective study from Brazil showed no significant difference in bacteremia but a significantly higher rate of catheter exit-site infections in patients on UHD than in those on urgent-start PD (80). Despite higher dialysis-related complications associated with UHD, no difference in overall mortality between the two groups has been reported (20,63,78–80). A systemic review comparing outcomes between UHD and urgent-start PD was recently concluded (81). The preliminary results suggest a lower risk of bacteremia and catheter malfunction, but no difference in mortality among patients on urgent-start PD compared with those on UHD (82).

In nutshell, based upon available evidence, the risks of higher morbidity associated with initiating urgent-start HD with a CVC are far higher than the perceived risks of early
mechanical complications, making a strong case for initiating PD in patients with late-presenting ESKD.

Urgent-Start PD in the Midst of the Coronavirus Disease 2019 Pandemic

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the highly infectious severe acute respiratory syndrome coronavirus 2, has a mortality rate of 1%–4%, mainly due to life-threatening respiratory infections (83–87). Patients with chronic medical illnesses, including CKD, are at increased risk of serious complications from COVID-19 (88). In fact, the first US COVID-19-related death was reported in a patient with ESKD on HD (89). COVID-19 infection is associated with fatality rates of 24%–31% among patients with ESKD (90,91) In the midst of the pandemic, ESKD poses unique challenges in management, both in in-hospital and outpatient settings. Patients on HD, who are visiting dialysis centers three times a week, are highly susceptible to environmental exposures that greatly increase the risk of transmission of infection to themselves, other patients, staff, family members, and other individuals who would be exposed during transit. Patients with ESKD who are suspected of having COVID-19 are commonly sent to the hospital, stretching emergency rooms and hospitals to their limits. With an increasing burden of hospitalized patients requiring RRT, hospitals are experiencing acute shortages of supplies and staff to perform dialysis procedures, and are rationing HD and continuous RRT for patients with ESKD and AKI (92,93). In this unprecedented, resource-constrained crisis, urgent-start PD in patients acutely ill with ESKD and AKI can be an invaluable option (94–97).

Figure 4. A stepwise approach to initiate urgent-start PD in the out-patient PD center. Upon discharge from hospital, the patient is evaluated at the PD center in 1–2 days. Depending on the urgency of the need for dialysis, in-center PD may be initiated within 14 days of the catheter placement, using low fill volumes in a recumbent position. PD prescription is adjusted as tolerated. While getting in-center PD, the education process begins at a pace determined by the learning ability of the patient and the family. Once the education is complete, and target fill volumes are achieved, the patient is ready to be discharged home. FV, fill volume.

Table 7. Considerations for urgent-start peritoneal dialysis prescription

Considerations
Initiate peritoneal dialysis in recumbent position
Use of low fill volumes (500–750 ml) upon initiation
Slowly increase the fill volume, as tolerated, every 3–4 d
Adjust dextrose concentration based on ultrafiltration requirement
1.5% dextrose dialysate if no evidence of volume overload
2.5% dextrose dialysate if mild-to-moderate volume overload
4.25% dextrose dialysate if severe volume overload
Bowel preparation to avoid constipation before and after surgery
Cough suppressants if needed
Add heparin to the dialysate bag; 500 U/L of solution
High-dose diuretics to aid with volume management when appropriate

1174 KIDNEY360
Table 8. Studies comparing unplanned peritoneal dialysis and hemodialysis in patients with ESKD

Author	Year	Number of Patients	Follow-Up	Mortality (%)	Bacteremia	Peritonitis
Lobbedez et al. (20)	2008	34 PD	12 mo	Actuarial patient survival at 1yr: 83 for PD	—	—
			79 for HD			
Koch et al. (63)	2011	26 HD	6 mo	50	3%	2%
			57 HD	42	21%*	2%
Jin et al. (79)	2016	96 PD	1 mo	92	3 (3%)	2%
			82 HD	93	11 (13%)b	0%
Dias et al. (80)	2020	93 PD	6 mo-2yr	0.11 episodes/patient per yr	0.36 episodes/patient per yr	
			91 HD	0.58 episodes/patient per yr	Not reported	

PD, peritoneal dialysis; HD, hemodialysis.

*P<0.01.

Summary

Urgent-start PD is a safe and cost-effective option for unplanned dialysis initiation in patients with late-presenting ESKD. A robust infrastructure with clear pathways is paramount in developing a successful urgent-start PD program. The ongoing COVID-19 pandemic has exposed the fragility of patients with ESKD, particularly those undergoing in-center HD, and underscores the need for urgent-start PD in this highly vulnerable population. Implementation of urgent-start PD will help to increase PD utilization, reduce cost, and improve patient outcomes, bolstering the goal set by the Advancing American Kidney Health initiative.

Disclosures

All authors have nothing to disclose.

Funding

None.

Acknowledgments

We thank Ms. Olivia Rodriguez for secretarial assistance.

Author Contributions

G. Pirwani, N. Rajora, and S. Shastri wrote the original draft; and R. Saxena conceptualized the study and edited and reviewed the manuscript.

References

1. Sloan CE, Coffman CJ, Sanders LL, Maciejewski ML, Lee SD, Hirth RA, Wang V: Trends in peritoneal dialysis use in the United States after Medicare payment reform. Clin J Am Soc Nephrol 14: 1763–1772, 2019
2. Rioux JP, Cheema H, Bargman JM, Watson D, Chan CT: Effect of an in-hospital chronic kidney disease education program among patients with unplanned urgent-start dialysis. Clin J Am Soc Nephrol 6: 799–804, 2011
3. United States Renal Data System: USRDS Annual Data Report. Available at: www.usrds.org. Accessed February 20, 2020
4. Hassain R, Akbari A, Brown PA, Hiremath S, Brimble KS, Melnar AO: Risk factors for unplanned dialysis initiation: A systematic review of the literature [published online ahead of print March 13, 2019]. Can J Kidney Health Dis 10.1177/2054358119831684
5. Berns JS: A survey-based evaluation of self-perceived competencies after nephrology fellowship training. Clin J Am Soc Nephrol 5: 490–496, 2010
6. Tennankore KK, Hingwala J, Watson D, Bargman JM, Chan CT: Attitudes and perceptions of nephrology nurses towards dialysis modality selection: A survey study. BMC Nephrol 14: 192, 2013
7. Poinen K, Quinn RR, Clarke A, Ravani P, Hiremath S, Miller LM, Blake PG, Oliver MJ: Complications from tunneled hemodialysis catheters: A Canadian observational cohort study. Am J Kidney Dis 73: 467–475, 2019
8. Allon M: Quantification of complications of tunneled hemodialysis catheters. Am J Kidney Dis 73: 462–464, 2019
9. Perl J, Wald R, McFarlane P, Bargman JM, Vonesh E, Na Y, Jassal SV, Most L: Hemodialysis vascular access modifies the association between dialysis modality and survival. J Am Soc Nephrol 22: 1113–1121, 2011
10. Artunc F, Rueb S, Thiel K, Thiel C, Linder K, Baumann D, Bunz H, Muehlbacher T, Mahling M, Sayer M, Petsch M, Guthoff M,Heyne N: Implementation of urgent start peritoneal dialysis reduces hemodialysis catheter use and hospital stay in patients with unplanned dialysis start. Kidney Blood Press Res 44: 1383–1391, 2019
11. Brown RS, Brickel K, Davis RB: Two-year observational study of bloodstream infection rates in hemodialysis facility patients with and without catheters. Clin J Am Soc Nephrol 13: 1381–1388, 2018
12. Saxena R: Peritoneal dialysis: A viable renal replacement therapy option. Am J Med Sci 330: 36–47, 2005
13. Karopadi AN, Mason G, Rettore E, Ronco C: Cost of peritoneal dialysis and haemodialysis across the world. Nephrol Dial Transplant 28: 2553–2569, 2013
14. Centers for Medicare & Medicaid Services: End Stage Renal Disease (ESRD) Prospective Payment System (PPS), 2018. Available at: https://www.cms.gov/Medicare/Medicare-Fee-For-Service-Payment/ESRDPayment. Accessed February 11, 2020
15. Wang V, Coffman CJ, Sanders LL, Lee SD, Hirth RA, Maciejewski ML: Medicare’s New prospective payment system on facility provision of peritoneal dialysis. Clin J Am Soc Nephrol 13: 1833–1841, 2018
16. Liu FX, Ghaffari A, Dhatt H, Kumar V, Balsera C, Wallace E, Khairullah Q, Lesher B, Gao X, Henderson H, LaFleur P, Delgado EM, Alvarez MM, Hartley J, McClernon M, Walton S, Guest S: Economic evaluation of urgent-start peritoneal dialysis versus urgent-start hemodialysis in the United States. Medicine (Baltimore) 93: e293, 2014
17. US Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation: Advancing American kidney health, 2019. Available at: https://aspe.hhs.gov/pdf-report/advancing-american-kidney-health. Accessed April 21, 2020
18. Crabtree JH, Burchette RJ: Effect of prior abdominal surgery, peritonitis, and adhesions on catheter function and long-term outcome on peritoneal dialysis. Am Surg 75: 140–147, 2009

19. Ranganathan D, John GT, Yeoh E, Williams N, O’Loughlin B, Han T, Jeyaseelan L, Ranganathan K, Healy H: A randomized controlled trial to determine the appropriate time to initiate peritoneal dialysis after insertion of catheter (Timely PD study). Perit Dial Int 37: 420–428, 2017

20. Lobbedez T, Lecouf A, Ficheux M, Henri P, Hurault de Ligny B, Ryckelynnck JP: Is rapid initiation of peritoneal dialysis feasible in unplanned dialysis patients: A single-centre experience. Nephrol Dial Transplant 23: 3290–3294, 2008

21. Ghafari A: Urgent-start peritoneal dialysis: A quality improvement report. Am J Kidney Dis 59: 400–408, 2012

22. Ghafari A, Kalantar-Zadeh K, Lee J, Maddux F, Moran J, Nissenson A: PD first: Peritoneal dialysis as the default transition to dialysis therapy. Semin Dial 26: 706–713, 2013

23. Saxena R: Peritoneal dialysis: Misperceptions and reality. Am J Med Sci 348: 250–261, 2014

24. Mehrotra R, Blake P, Berman N, Nolph KD: An analysis of dialysis training in the United States and Canada. Am J Kidney Dis 40: 152–160, 2002

25. Lameire N, Van Biesen W: Epidemiology of peritoneal dialysis: A story of believers and nonbelievers. Nat Rev Nephrol 6: 75–82, 2010

26. Wong LP, Liebman SE, Wakefield KA, Messing S: Training of surgeons in peritoneal dialysis catheter placement in the United States: A national survey. Clin J Am Soc Nephrol 5: 1439–1446, 2010

27. Wallace EL, Allon M: ESKD treatment choices model: Revisited. Am J Kidney Dis 51: 424–427, 2008

28. Colper TA, Saxena AB, Piraino B, Teitelbaum I, Burkart J, Finkelstein FO, Abu-Alfa A: Systematic barriers to the effective delivery of home dialysis in the United States: A report from the public–private advocacy/committee of the North American Chapter of the International Society for peritoneal dialysis. Am J Kidney Dis 58: 879–885, 2011

29. Schanz M, Ketteler M, Heck M, Dippion J, Alschier MD, Kimmel M: Impact of an in-hospital patient education program on choice of renal replacement modality in unplanned dialysis initiation. Kidney Blood Press Res 42: 865–876, 2017

30. Li PK, Chow KM: Peritoneal dialysis patient selection: Characteristics for success. Adv Chronic Kidney Dis 16: 160–168, 2009

31. Haggerty S, Roth S, Walsh D, Stefanidis D, Price R, Fanelli RD, Penner T, Richardson W; SAGES Guidelines Committee: Guidelines for laparoscopic peritoneal dialysis access surgery. Surg Endosc: 30: 3016–3045, 2014

32. Hwang C, Davidson I, Santarelli S, Zeiler M, Ceraudo E, Pedone C: Is peritonitis risk increased in elderly patients on peritoneal dialysis? Report from the French Language Peritoneal Dialysis Registry (RDPLF). Perit Dial Int 36: 291–296, 2016

33. Bechade C, Lobbedez T, Iversen P, Povlsen JV: Assisted peritoneal dialysis for older people with end-stage renal disease: The French and Danish experience. Perit Dial Int 35: 663–666, 2015

34. Doquenney S, Bechade C, Verger C, Ficheux M, Ryckelynnck JP, Lobbedez T: Is peritonitis risk increased in elderly patients on peritoneal dialysis? Report from the French Language Peritoneal Dialysis Registry (RDPLF). Perit Dial Int 36: 291–296, 2016

35. Povlsen J, Iversen P: Assisted peritoneal dialysis: Also for the later referred elderly patient. Perit Dial Int 28: 461–467, 2008

36. Jain D, Sheth H, Green JA, Bender H, Weisdorf SD: Health literacy in patients on maintenance peritoneal dialysis: Prevalence and outcomes. Perit Dial Int 35: 96–98, 2015

37. Crabtree JH, Chow KM: Peritoneal dialysis catheter insertion. Semin Nephrol 37: 17–29, 2017

38. Hequet E, Bonamy C, Levesque C, Béchade C, Ficheux M, Lobbedez T: [Peritoneal dialysis catheter insertion under TAP block procedure: A pilot study]. Nephrol Ther 11: 164–168, 2015

39. Nayak KS, Subhmanayan SV, Pawankumar N, Antony S, Sarafaz Khan MA: Emergent start peritoneal dialysis for end-stage renal disease: Outcomes and advantages. Blood Purif 45: 313–319, 2018

40. Song JH, Kim GA, Lee SW, Kim MJ: Clinical outcomes of immediate full-volume exchange one year after peritoneal catheter implantation for CAPD. Perit Dial Int 20: 194–199, 2000

41. Stegmayr BC: Three purse-string sutures allow immediate start of peritoneal dialysis with a low incidence of leakage. Semin Dial 16: 346–348, 2003

42. Yang YF, Wang HJ, Yeh CC, Lin HH, Huang CC: Early initiation of continuous ambulatory peritoneal dialysis in patients undergoing surgical implantation of Tenckhoff catheters. Perit Dial Int 31: 551–557, 2011

43. Al Azzi Y, Zeldis E, Nadkarni GN, Schanzer H, Uribarri J: Outcomes of dialysis catheters placed by the Y-TECT peritoneoscopie technique: A single-center surgical experience. Clin Kidney J 9: 158–161, 2016

44. Alvarez AC, Salman L: Peritoneal dialysis catheter insertion by interventional nephrologists. Adv Chronic Kidney Dis 16: 378–385, 2009

45. Gadallah MF, Pervez A, El-Shahawy MA, Sorrells D, Zibari G, McDonald J, Work J: Peritoneoscopic versus surgical placement of peritoneal dialysis catheters: A prospective randomized study on outcome. Am J Kidney Dis 33: 118–122, 1999

46. Jo YI, Shin SK, Lee JH, Song JO, Park JH: Immediate initiation of CAPD following percutaneous catheter placement without break-in procedure. Perit Dial Int 27: 179–183, 2007

47. van Laanen JHH, Cornelis T, Mees BM, Litjens EJ, van Loon MM, Tordoir JHM, Peppelenbosch AG: Randomized controlled trial comparing open versus laparoscopic placement of a peritoneal dialysis catheter and outcomes: The CAPD Trial. Perit Dial Int 38: 104–112, 2018

48. Voss D, Hawkins S, Poole G, Marshall M: Radiological versus surgical implantation of first catheter for peritoneal dialysis: A randomized non-inferiority trial. Nephrol Dial Transplant 27: 4196–4204, 2012

49. Pastan S, Gassensmith C, Manatunga AK, Copley JB, Smith EJ, Hamburger RJ: Prospective comparison of peritoneoscopie and surgical implantation of CAPD catheters. ASAIO Trans 37: M135–M136, 1991

50. Shrestha BM, Shrestha D, Kumar A, Shrestha A, Boyes SA, Wilkie ME: Advanced laparoscopic peritoneal dialysis catheter insertion: Systematic review and meta-analysis. Perit Dial Int 38: 163–171, 2018

51. Crabtree JH, Burchette RJ: Effective use of laparoscopy for long-term peritoneal dialysis access. Am J Surg 198: 135–141, 2009
60. Liu SF, Yang JY, Chen HY, Hsu SP, Chiu YL, Wu HY, Tsai WC, Peng YS: Comparing long-term outcomes between early and delayed initiation of peritoneal dialysis following catheter implantation. Ren Fail 38: 875–881, 2016

61. See EJ, Cho Y, Hawley CM, Jaffrey LR, Johnson DW: Early and late patient outcomes in urgent-start peritoneal dialysis. Perit Dial Int 37: 414–419, 2017

62. Kim K, Son YK, Lee SM, Kim SE, An WS: Early technical complications and long-term survival of urgent peritoneal dialysis according to break-in periods. PLoS One 13: e0206426, 2018

63. Koch M, Kohnle M, Trapp R, Haastert B, Rump LC, Aker S: Outcomes of adult unplanned peritoneal dialysis and haemodialysis. Nephrol Dial Transplant 27: 375–380, 2012

64. Liu S, Zhuang X, Zhan M, Wu Y, Liu M, Guan S, Liu S, Miao L, Cui W: Application of automated peritoneal dialysis in urgent-start peritoneal dialysis patients during the break-in period. Int Urol Nephrol 50: 541–549, 2018

65. Xu D, Liu T, Dong J: Urgent-start peritoneal dialysis complications: Prevalence and risk factors. Am J Kidney Dis 70: 102–110, 2017

66. Dejardin A, Robert A, Coffin E: Intrapерitoneal pressure in PD patients: Relationship to intraperitoneal volume, body size and PD-related complications. Nephrol Dial Transplant 22: 1437–1444, 2007

67. Pérez Díaz V, Sanz Ballesteros S, Hernández García E, Dascalzo Casado E, Herguedas Callejo I, Ferrer Perales C: Intrapерitoneal pressure in peritoneal dialysis. Nefrologia 37: 579–586, 2017

68. Javaid MM, Lee E, Khan BA, Subramanian S: Description of an acute unplanned peritoneal dialysis and haemodialysis patient: Comparable outcome of acute unplanned peritoneal dialysis and haemodialysis. Nephrol Dial Transplant 38: 125–130, 2018

69. Casaretto A, Rosario R, Kotzker WR, Pagan-Rosario Y, Groenhoff RJ, Abensur H, Elias RM: Early start peritoneal dialysis: Technique complications and outcomes. Nephrol Dial Transplant 31[Suppl 2]: ii56–ii59, 2006

70. Silva BC, Adelina E, Pereira BJ, Cordeiro L, Rodrigues CE, Duarte DC, Cui W: Application of automated peritoneal dialysis in urgent-start peritoneal dialysis in Singapore. Perit Dial Int 37: 500–502, 2017

71. Bitencourt Dias D, Mendes ML, Burguji Banin V, Barrettti P, Ponce D: Urgent-start peritoneal dialysis: The first year of Brazilian experience. Blood Purif 44: 283–287, 2017

72. Ye H, Yang X, Yi C, Guo Q, Li Y, Yang Q, Chen W, Mao H, Li J, Qiu Y, Zheng X, Zhang D, Lin J, Li Z, Jiang Z, Huang F, Yu X: Urgent start peritoneal dialysis for patients with end-stage renal disease: A 10-year retrospective study. BMC Nephrol 20: 238, 2019

73. Liu Y, Zhang L, Lin A, Ni Z, Qian J, Fang W: Impact of break-in period on the short-term outcomes of patients started on peritoneal dialysis. Perit Dial Int 34: 49–56, 2014

74. Alkatheeri AM, Blake PG, Gray D, Jain AK: Success of urgent-start peritoneal dialysis in a large Canadian renal program. Perit Dial Int 36: 171–176, 2016

75. Bandi O, Altun H, Oztemel A: Early start of CAPD with the Seldinger technique. Perit Dial Int 25: 556–559, 2005

76. Casaretto A, Rosario R, Kotzker WR, Pagan-Rosario Y, Groenhoff RJ, Abensur H, Elias RM: Early start peritoneal dialysis: Report from a U.S. private nephrology practice. Adv Perit Dial 28: 102–105, 2012

77. Povlsen JV, Ivarsen P: How to start the late referred ESRD patient according to break-in periods. Perit Dial Int 35: 496, 2020

78. Silva BC, Adelina E, Pereira BJ, Cordeiro L, Rodrigues CE, Duarte DC, Cui W: Application of automated peritoneal dialysis in urgent-start peritoneal dialysis in Singapore. Perit Dial Int 37: 500–502, 2017

79. Ivarsen P, Povlsen JV: Can peritoneal dialysis be applied for people with chronic kidney disease. Cochrane Database Syst Rev 2017: 10.1002/14651858.CD012913, 2017

80. Tunbridge M, Cho Y, Johnson DW: Urgent-start peritoneal dialysis: Is it ready for prime time? Curr Opin Nephrol Hypertens 28: 631–640, 2019

81. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G: Real estimates of mortality following COVID-19 infection. Lancet Infect Dis 20: 773, 2020

82. Dias DB, Mendes ML, Caramori JT, Falbo Dos Reis P, Ponce D: Urgent-start peritoneal dialysis: The first year of Brazilian experience. Adv Perit Dial 31: 126–130, 2018

83. Cui W: Application of automated peritoneal dialysis in urgent-start peritoneal dialysis patients. Diabetes Metab 15: 20–23, 1999

84. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li Z, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhi SY, Zhong NS: China Medical Treatment Expert Group for Covid-19: Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382: 1708–1720, 2020

85. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie Y, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet 395: 507–508, 2020]. Lancet 395: 507–508, 2020

86. Zhou F, Yu T, Du R, Fan G, Liu Y, Zie J, Wang J, Yang S, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B: Clinical course and risk factors for mortality of adult patients with COVID-19 in Wuhan, China: A retrospective cohort study [published correction appears in Lancet 395: 1038, 2020]. Lancet 395: 1045–1062, 2020

87. CDC COVID-19 Response Team: Severe outcomes among patients with coronavirus disease 2019 (COVID-19) – United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep 69: 343–346, 2020

88. Valeri AM, Robbins-Juarez SY, Stevens JS, Ahn W, Rao MK, Radhakrishnan J, Gharavi AG, Mohan S, Husain SA: Presentation and outcomes of patients with ESKD and COVID-19. J Am Soc Nephrol 31: 1409–1415, 2020

89. Burgner A, Izkizer TA, Dwyer JP: COVID-19 and the inpatient dialysis unit: Managing resources during contingency planning for pericrisis. Clin J Am Soc Nephrol 15: 720–722, 2020

90. Kliger AS, Silberzweig J: Mitigating risk of COVID-19 in dialysis facilities. Clin J Am Soc Nephrol 15: 707–709, 2020

91. Chionh CY, Soni SS, Finkelstein FO, Ronco C, Cruz DN: Use of peritoneal dialysis in AKI: A systematic review. Clin J Am Soc Nephrol 8: 1649–1660, 2013

92. Cullis B, Abdelrahem M, Abrahams G, Balli A, Cruz DN, Frishberg Y, Koch V, McCulloch M,umanoglu A, Nourse P, Meleth-Billoo R, Ponce D, Warady B, Yeates K, Finkelstein FO: Peritoneal dialysis for acute kidney injury. Perit Dial Int 34: 494–517, 2014

93. El Shamy OF, Fetel N, Abdelbasat MH, Chenet L, Tokota J, Lookein K, Lee DS, Cohen NA, Sharma S, Uribarri J: Acute start peritoneal dialysis during the COVID-19 pandemic: Outcomes and experiences. J Am Soc Nephrol 31: 1680–1682, 2020

94. Sourial MY, Sourial MH, Dalsan R, Graham J, Ross M, Chen W, Golestanlehn L: Urgent start peritoneal dialysis in patients with COVID-19 and acute kidney injury: A single-center experience in a time of crisis in the United States [published online ahead of print June 11, 2020]. Am J Kidney Dis 10.1053/j.ajkd.2020.06.001

95. Cho JH, Do JY, Kim SH, Kim JY, Seo JY, Choi JY, Park SH, Kim CD, Jung SY, Cho KH, Park JW, Lee DH, Song KE, Kim YL: Impact of dialysis modality on the incidence of 2009 pandemic H1N1 influenza in end-stage renal disease patients. Perit Dial Int 31: 347–350, 2011

Received: April 27, 2020 Accepted: August 7, 2020

Urgent-Start Peritoneal Dialysis, Rajora et al. 1177