Study of cosmogenic activation in copper for rare event search experiments

Ze She1, Zhi Zeng1, Hao Ma1,a, Qian Yue1, Mingkun Jing1, Jianping Cheng1,2, Junli Li1, Hui Zhang1
1 Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Received: 15 June 2021 / Accepted: 13 November 2021 / Published online: 27 November 2021
© The Author(s) 2021, corrected publication 2021

Abstract Rare event search experiments using germanium detectors are performed in underground laboratories to minimize the background induced by cosmic rays. However, the cosmogenic activation of cupreous detector components on the ground generates long half-life radioisotopes and contributes to the background level. We measured cosmogenic activation with 142.50 kg of copper bricks after 504 days of exposure at an altitude of 2469.4 m outside the China Jinping Underground Laboratory (CJPL). The specific activities of the cosmogenic nuclides produced in the copper bricks were measured using a low-background germanium gamma-ray spectrometer at CJPL. The production rates at sea level, in units of nuclei/kg/day, were $18.6 \pm 2.0$ for $^{54}\text{Mn}$, $9.9 \pm 1.3$ for $^{56}\text{Co}$, $48.3 \pm 5.5$ for $^{57}\text{Co}$, $51.8 \pm 2.5$ for $^{58}\text{Co}$, and $39.7 \pm 5.7$ for $^{60}\text{Co}$. The measurement will help to constrain cosmogenic background estimation for rare event searches using copper as a detector structure and shielding material. Based on the measured production rates, the impact of the cosmogenic background in cupreous components of germanium detectors on the next generation CDEX-100 experiment was assessed with the expected exposure history above ground.

1 Introduction

Rare event search experiments, such as dark matter direct detection and neutrinoless double beta decay experiments, are conducted in deep underground laboratories with passive and active shields, and built with materials that are especially radiopure, to effectively reduce their intrinsic background [1–6]. Under ultra-low background conditions, the background induced in the detector’s materials on the surface could become even more prominent than that from the residual contamination of the primordial nuclides.

With high radiopurity and attractive mechanical properties, copper is widely used in the innermost shields or parts of detectors in rare event search experiments [3,4,7–10]. However, radioisotopes produced by cosmogenic activation during manufacturing, transport, and storage can increase the background level of copper. Among these cosmogenic nuclides, short-lived nuclides like $^{59}\text{Fe}$ and $^{48}\text{V}$ decay rapidly when stored in underground laboratories, while long-lived nuclides like $^{60}\text{Co}$ and $^{54}\text{Mn}$ remain and continue to contribute to the detector’s background level [11,12].

The China dark matter experiment (CDEX), aiming at direct dark matter detection and the study of neutrinoless double beta decay of $^{76}\text{Ge}$, operates p-type point-contact germanium detectors (PPCGe) at the China Jinping Underground Laboratory (CJPL) [7,13–16]. The copper used in the PPCGe detectors of the CDEX experiment leads to a crucial background contribution, which requires assessment due to cosmogenic activation in copper to establish the background model for the CDEX experiment. Although the production rates of cosmogenic activation in copper have been investigated via simulations and measurements, discrepancies exist among the results [17–21].

In this study, we present the measurements of the cosmogenic activation in copper samples after exposure to cosmic rays. Corresponding radionuclide production rates are also calculated by Monte Carlo simulations and compared with the measured results. Finally, we simulate the background spectra from cosmogenic radionuclides in the copper components of the PPCGe detector array used in the future CDEX experiment under the expected exposure history of detectors above the ground.

a e-mail: mahao@mail.tsinghua.edu.cn (corresponding author)
2 Experiment and methods

Sixteen oxygen-free high thermal conductivity (OFHC) copper bricks (their chemical purities are greater than 99.995% with natural isotope abundance) with a total mass of 142.50 kg, 20 × 10 × 5 cm in size, were exposed to cosmic rays and measured in this study. The cosmic-ray muon flux in the CJPL is suppressed by eight orders of magnitude compared to surface laboratories due to 2400 m rock overburden [22,23]. These OFHC copper bricks have been housed in the CJPL for more than four years. The OFHC copper samples were measured to evaluate the residual cosmogenic radioactivity before activation on the surface with a low-background germanium gamma-ray spectrometer GeTHU at CJPL, with a background rate between 100 and 2700 keV of 0.510±0.006 cts/kg/min [24]. To enhance the detection efficiency, the germanium detector of GeTHU was surrounded by these copper sample bricks, as shown in Fig. 1. The background spectrum was measured from 12 Aug 2019, to 28 Aug 2019, as depicted in Fig. 2; the characteristic gamma-ray peaks from cosmogenic radionuclides were not statistically significant and were lower than the minimum detectable activities (MDA) of GeTHU.

These copper bricks were exposed to cosmic rays for 504 days, from Aug. 31, 2019, to Jan. 16, 2021, at an altitude of 2469.4 m in the vicinity of CJPL. The specific activities of cosmogenic radionuclides inside these copper bricks were calculated by spectral analysis, where the net area of a peak was determined under the assumption of a linear background [25]. The detection efficiencies for concerned radionuclides were simulated by Geant4 with the physical list QGSP_INCLXX [27,28,33]. CRY−1.7 [34] provides the energy spectra of different cosmic-ray components (neutron, proton, muon, gamma, electron, and pion) at sea level for the Geant4 simulation. In this simulation, the cosmic particles, including the neutron, proton, muon, and gamma from CRY−1.7 were used by the event generator. We could count each product after interactions with the copper sample to calculate the production rate.

\[
R = \int \frac{d\Phi(E)}{dE} \sigma(E)dE \approx \Phi_{tot} \int \frac{d\phi(E)}{dE} \sigma(E)dE \propto \Phi_{tot}. \tag{2}
\]

where \(\frac{d\Phi(E)}{dE}\) is the energy spectrum of cosmic rays, \(\frac{d\phi(E)}{dE}\) is the energy spectrum normalized to an incident particle; \(\sigma(E)\) is the cross section of cosmogenic activation for cosmic rays, and \(\Phi_{tot}\) is the flux of cosmic rays. As the energy spectra of a neutron differs slightly by altitude within 20 km [29], its normalized energy spectra at different altitudes can be considered as a constant. Therefore, the cosmogenic production rates are directly proportional to the intensity of the cosmic-ray flux, which, at a given altitude, can be parametrized by an exponential [30],

\[
\Phi_{tot,H} = \Phi_{tot,0} e^{-\frac{p(H)-p(0)}{L}}, \tag{3}
\]

where \(\Phi_{tot,H}\) and \(\Phi_{tot,0}\) indicate the flux of certain particles in the cosmic ray at altitudes \(H\) and sea level, respectively; \(p(H)\) is the atmospheric pressure at altitude \(H\) [30,31], and \(L\) is the typical absorption length for a certain cosmic-ray component. It is generally considered that the production rates of cosmogenic activations are dominated by neutrons, so the absorption length of the neutron is a suitable choice [21,32]. Cosmogenic production rates are proportional to the neutron flux, and the same exponential correction can be applied to obtain the corresponding production rates at sea level,

\[
R(H) = R(0)e^{-\frac{p(H)-p(0)}{L}}. \tag{4}
\]

For comparison, the cosmogenic production rates were also simulated by Geant4 with the physical list QGSP_INCLXX [27,28,33]. CRY−1.7 [34] provides the energy spectra of different cosmic-ray components (neutron, proton, muon, gamma, electron, and pion) at sea level for the Geant4 simulation. In this simulation, the cosmic particles, including the neutron, proton, muon, and gamma from CRY−1.7 were used by the event generator. We could count each product after interactions with the copper sample to calculate the production rate.
Table 1 Measured specific activities of cosmogenic radionuclides (with 1σ uncertainty) in copper samples corresponding to the values on January 16, 2021. Gamma-ray peaks with better statistics were selected to determine specific activities when radionuclides had two or more gamma-ray peaks. Only statistical uncertainties are considered.

| Radionuclide | Half-life (day) | Peak energy (keV) | Specific activity (mBq/kg) |
|--------------|----------------|-------------------|---------------------------|
| $^{54}$Mn    | 312.20         | 834.8             | 0.87 ± 0.10               |
| $^{56}$Co    | 77.24          | 846.8             | 0.65 ± 0.08               |
| $^{57}$Co    | 271.74         | 122.1             | 2.42 ± 0.28               |
| $^{58}$Co    | 70.86          | 810.8             | 3.39 ± 0.17               |
| $^{60}$Co    | 1925.28        | 1173.2            | 0.46 ± 0.07               |

Table 2 compares the cosmogenic production rates (obtained from Eq. (1) with $A_0=0$ and Eq. (4)), after altitude correction, with results from previous studies. The results of our measurements are generally consistent with those of our simulation with Geant4 (as shown in Table 2) except for $^{56}$Co. The measured production rate of $^{57}$Co was about 3% less than simulated, while that of $^{56}$Co was 49% of the simulated result. Our measurements are relatively close to those of Ref. [19]. The discrepancies of production rates with the literature could be due to different cross-section databases, uncertainties of altitude correction, and the fluxes and energy spectra of cosmic rays at different experimental latitudes. Due to its short half-life, 77.2 days, $^{56}$Co will decay rapidly when stored underground, resulting in a negligible background contribution. Thus, the difference between simulation and measurement is not a prominent obstacle to the assessment of the cosmogenic background of the underground experiments. Previous Geant4 simulation results [20] differ from this work mainly due to the differences of the physics lists “shielding” and “QGSP_INCLXX” in these two simulations.

3 Cosmogenic activation in copper

The copper bricks were measured during Jan. 16–30, 2021. The spectrum after exposure is also shown in Fig. 2, where the selected gamma-ray peaks of cosmogenic radionuclides are marked. In addition to the characteristic gamma-ray peaks from cosmogenic radionuclides, there also exist several gamma-ray peaks related to the primordial radionuclides and the 511 keV annihilation peak. Compared with the pre-exposure spectrum, the background level worsens due to the breakdown of the low-radon air system of the laboratory when measuring these bricks after exposure. GeTHU has a radon mitigation system flushing its sample space with the low-radon air (with boil-off nitrogen gas previously) [24]. Without flushing, the concentrations of radon and its progenies in the sample space increase, and the background rate in the energy region from 238 to 609 keV is higher, as shown in Fig. 2. However, these cosmogenic gamma-ray peaks are still significant enough to warrant calculation of their specific activities. Following gamma-ray spectral analysis, the specific activities of these cosmogenic radionuclides were calculated, and are listed in Table 1.

4 Background assessment in PPCGe detector

The next phase of the CDEX experiment, CDEX-100, will operate about 100 kg of germanium detectors immersed in liquid nitrogen in a 1725-m$^3$ cryostat at Hall C of the second phase of CJPL. The specific activities of cosmogenic radionuclides are calculated following their production rates and expected exposure history. The total exposure period is a combination of manufacturing and transportation above ground and storage underground. Their specific activities can be calculated as

$$A = R(0)e^{(p(H_1)−p(0))/L}[(1−e^{−λ_{manu}})e^{−λ(t_{trans}+t_{cool})}]$$

$$+ F \times R(0)e^{(p(H_2)−p(0))/L}(1−e^{−λ_{trans}})e^{−λ_{cool}}, \quad (5)$$

where $R(0)$ is the measured production rate at sea level (Table 2); $H_1$ and $H_2$ are the altitudes of the factory and transportation above ground, respectively; $t_{manu}, t_{trans}$ and
Table 2  Production rates of cosmogenic radionuclides in copper at sea level (unit: nuclei kg\(^{-1}\) day\(^{-1}\)). Only statistical uncertainties are considered

| Method               | Nuclides | \(^{54}\)Mn | \(^{56}\)Co | \(^{57}\)Co | \(^{58}\)Co | \(^{60}\)Co |
|----------------------|----------|-------------|-------------|-------------|-------------|-------------|
| This work Measurement |          | 18.6 ± 2.0  | 9.9 ± 1.3   | 48.3 ± 5.5  | 51.8 ± 2.5  | 39.7 ± 5.7  |
| Geant4               |          | 21.1        | 20.4        | 49.6        | 70.9        | 44.1        |
| Breier et al. [21]   | CONUS [35]| 14          | 10          | 50          | 76          | 92          |
| Zhang et al. [20]    | Geant4   | 12.31       | 10.32       | 67.15       | 57.26       | 64.63       |
|                      | ACTIVIA  | 30.00       | 20.13       | 77.45       | 138.06      | 66.12       |
|                      | ACTIVIA\(^1\) | 14.32     | 8.74        | 32.44       | 56.61       | 26.28       |
| Cebrian et al. [18]  | MENDL+YIELDX\(^2\) | 32.5    | 22.9        | 88.3        | 159.6       | 97.4        |
|                      | MENDL+YIELDX\(^3\) | 27.7    | 20.0        | 74.1        | 123.0       | 55.4        |
| Baudis et al. [19]   | Measurement | 13.3\(\pm3.0\) | 9.3\(\pm1.2\) | 44.8\(\pm8.6\) | 68.9\(\pm5.4\) | 29.4\(\pm7.1\) |
| Laubenstein et al. [17] | Measurement | 8.85 ± 0.86 | 9.5 ± 1.2  | 73.8 ± 16.7 | 67.9 ± 3.7  | 86.2 ± 7.6  |

\(^1\)Calculation relies on cosmic neutron spectra from Gordon [36]  
\(^2\)Calculation relies on cosmic neutron spectra from Ziegler [37]  
\(^3\)Calculation relies on cosmic neutron spectra from Gordon [36]

(tc)\(_\text{cool}\) are the time of manufacture, transportation above ground and storage underground, respectively; and \(F\) describes the shielding effect for transportation with a steel or lead cover.

Each germanium detector unit has 0.96 kg of copper and a total of 91.4 kg of copper well be used for the germanium detector array, as shown in Fig. 3. For simplicity, we assume that the copper components followed the same exposure history as the detectors. The manufacturing time, transportation time and underground storage time are supposed to be three months, a half-month and one year, respectively. After three months of fabrication, the detectors will be transported with shielding, where cosmogenic activations could be reduced by a factor of 10 [9, 12], to the underground laboratory in a half-month. The manufacturing factory is selected to be at sea level, while the altitude of the whole transportation route is selected to be 1500 m, which is the average altitude of Liangshan Prefecture, where CJPL is located. The cuprous components will be stored in CJPL for preparation work, with the decay of cosmogenic nuclides, the so-called cooling time, lasting about one year.

Importing the measured production rates of the cosmogenic activations, the considered activities in the simulation were obtained using Eq. (5) and the background contributions from cuprous components were estimated with a Geant4-based Monte Carlo framework called Simulation and Analysis of Germanium Experiment (SAGE) [38]. In the simulation, these cosmogenic radionuclides were distributed uniformly across all cuprous components, as shown in Fig. 3. The energy spectra of the different cosmogenic nuclides and the total background contributions were simulated, as shown in Fig. 4.

Under the above assumptions, the simulated background rates in the low-energy range (2–4 keV for dark matter search) and around 2039 keV (energy of neutrinoless double beta decay of \(^{76}\)Ge) are \(7.17 \times 10^{-2}\) counts per keV per tonne per year (cpkty) and \(1.82 \times 10^{-3}\) cpkty, respectively. The CDEX-100 experiment aims at constructing a germanium detector array with ultra-low background rates, which should be less than 3650 and 0.1 cpkty for the 2–4 keV and around 2039 keV energy regions, respectively. The background contribution from copper can be ignored for dark matter search, while it is 2% of the total background budget for neutrinoless double beta decay research. The contribution of \(^{57}\)Co dom-
inates the cosmogenic background contributions less than 122 keV, and $^{54}$Mn is dominant below 830 keV, as shown in Fig. 4. $^{60}$Co prevails in the higher-energy region among these cosmogenic radionuclides, while only the cosmogenic background exists from $^{56}$Co over 2.5 MeV. Among these cosmogenic nuclides, only $^{60}$Co has a half-life over one year, which is difficult to significantly suppress through underground cooling. A feasible method to mitigate the contribution from $^{60}$Co is to reduce the exposure time above ground, or to electroform the copper underground.

5 Summary

We investigated the cosmogenic activation in OFHC copper bricks. The specific activities of cosmogenic radionuclides in the exposed copper bricks at the altitude of 2469.4 m were measured with a low-background germanium gamma-ray spectrometer. The production rates of several long-lived cosmogenic radionuclides were calculated and compared with those of previous studies. The production rates at sea level, in units of nuclei/kg/day are $18.6 \pm 2.0$ for $^{54}$Mn, $9.9 \pm 1.3$ for $^{56}$Co, $48.3 \pm 5.5$ for $^{57}$Co, $51.8 \pm 2.5$ for $^{58}$Co, and $39.7 \pm 5.7$ for $^{60}$Co, respectively. For comparison, we simulated their cosmogenic activation with Geant4, showing that the agreement between measurement and simulation was generally satisfactory. A general comparison with other published results is presented, showing discrepancies but also good agreement in some cases.

Based on the results of the production rates of cosmogenic radionuclides in copper, the cosmogenic background from copper components of detectors was simulated for the CDEX-100 experiment. The total background rates from cosmogenic nuclides are $7.2 \times 10^{-2}$ cckpt and $1.8 \times 10^{-3}$ cckpt for the 2–4 keV and around 2039 keV energy regions, respectively. The cosmogenic background is dominated by $^{57}$Co, $^{54}$Mn and $^{60}$Co after one year of cooling underground. Compared with the total background budget of CDEX-100, the cosmogenic contribution in copper components can be ignored for dark matter search in the region of 2–4 keV. Cosmogenic activation in germanium crystals, another crucial background source for CDEX-100, is being studied following the procedure established in CDEX-1B [12].

Acknowledgements This work was supported by the National Key Research and Development Program of China (No. 2017YFA0402201), National Natural Science Foundation of China (Nos. 12175112, 11675088, 11725522, U1865205), and Tsinghua University Initiative Scientific Research Program. Thanks to colleagues of CJPL for their help in copper sample measurements.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP³.

References

1. G. Heusser, Low-radioactivity background techniques. Annu. Rev. Nucl. Part. S. 45(1), 543–590 (1995)
2. N. Abgrall et al., The MAJORANA DEMONSTRATOR radioassay program. Nucl. Instrum. Methods A 828, 22–37 (2016)
3. D.S. Leonard et al., Trace radioactive impurities in final construction materials for EXO-200. Nucl. Instrum. Methods A 871, 169–179 (2017)
4. E. Aprile et al., Material radioassay and selection for the XENON1T dark matter experiment. Eur. Phys. J. C 77(12), 890 (2017)
5. D.S. Akerib et al., The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs. Eur. Phys. J. C 80(11) (2020)
6. H. Ma et al., In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory. Astropart. Phys. 128, 102560 (2021)
7. H. Jiang et al., Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg × day Data of the CDEX-10 Experiment. Phys. Rev. Lett. 120(24) (2018)
8. M. Agostini et al., Background-free search for neutrinoless double-\(\beta\) decay of \(^{76}\)Ge with GERDA. Nature 544(7648), 47–52 (2017)
9. N. Abgrall et al., The MAJORANA DEMONSTRATOR Neutrino-less Double–Beta decay experiment. Adv. High Energy Phys. 2014(4), 1–18 (2014)
10. C. Alduino et al., The projected background for the CUORE experiment. Eur. Phys. J. C 77, 543 (2017)
11. D.M. Mei, Z.B. Yin, S.R. Elliott, Cosmogenic production as a background in searching for rare physics processes. Astropart. Phys. 31(6), 417–420 (2009)
12. J.L. Ma et al., Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment. Sci. China Phys. Mech. 62, 08 (2018)
13. Z.Z. Liu et al. Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jinping Underground Laboratory. Phys. Rev. Lett. 123, 161301 (2019)
14. L.T. Yang et al., Search for light weakly-interacting-massive-particle dark matter by annual modulation analysis with a point-contact Germanium detector at the China Jinping Underground Laboratory. Phys. Rev. Lett. 123, 221301 (2019)
15. Z. She et al., Direct detection constraints on dark photons with the CDEX-10 experiment at the China Jinping Underground Laboratory. Phys. Rev. Lett. 124, 111301 (2020)
16. Y. Wang et al., Improved limits on solar axions and bosonic dark matter from the CDEX-1B experiment using the profile likelihood ratio method. Phys. Rev. D 101, 052003 (2020)
17. M. Laubenstein, G. Heusser, Cosmogenic radionuclides in metals as indicator for sea level exposure history. Appl. Radiat. Isot. 67(5), 750–754 (2009)
18. S. Cebrián et al., Cosmogenic activation in germanium and copper for rare event searches. Astropart. Phys. 33(5), 316–329 (2010)
19. L. Baudis et al., Cosmogenic activation of xenon and copper. Eur. Phys. J. C 75(10), 1–9 (2015)
20. C. Zhang et al., Cosmogenic activation of materials used in rare event search experiments. Astropart. Phys. 84, 62–69 (2016)
21. R. Breier et al., Monte–Carlo calculation of production rates of cosmogenic radionuclides in a HPGe detector operating in the Modane underground laboratory. Nucl. Instrum. Methods A 978, 164355 (2020)
22. Y.C. Wu et al., Measurement of Cosmic Ray Flux in China Jinping underground Laboratory. Chin. Phys. C 37(8), 45–49 (2013)
23. Z.Y. Guo et al., Muon flux measurement at China Jinping Underground Laboratory. Chin. Phys. C 45, 1 (2021)
24. Z. Zeng et al., The characteristics of a low background germanium gamma ray spectrometer at China Jinping underground laboratory. Appl. Radiat. Isot. 91(11), 165–170 (2014)
25. G.R. Gilmore, Practical Gamma-Ray Spectrometry, 2nd edn. (Wiley, New York, 2008)
26. S. Agostinelli et al., Geant4-A simulation toolkit. Nucl. Instrum. Methods A 506(3), 250–303 (2003)
27. J. Allison et al., Geant4 developments and applications. IEEE T. Nucl. Sci. 53(1), 270–278 (2006)
28. J. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods 835(11), 186–225 (2016)
29. P. Goldhagen et al., Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane. Nucl. Instrum. Methods A 476(1), 42–51 (2002)
30. N. Lipton, T. Sato, T.J. Dunai, Scaling cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386(1), 149–160 (2014)
31. J.F. Ziegler et al., IBM experiments in soft fails in computer electronics (1978–1994). IBM J. Res. Dev. 40(1), 3–18 (1996)
32. S. Cebrian, Cosmogenic activation in double beta decay experiments. Universe 6(10) (2020)
33. J. Apostolakis et al., Geometry and physics of the Geant4 toolkit for high and medium energy applications. Radiat. Phys. Chem. 78(10), 859–873 (2009)
34. C. Hagmann, D. Lange, D. Wright, Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nucl. Sci. Conf. R. 2, 1143–1146 (2007)
35. J. Masarik, J. Beer, Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. Atmos. 104(D10), 12099–12112 (1999)
36. M.S. Gordon et al., Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans. Nucl. Sci. 51(6), 3427–3434 (2004)
37. J.F. Ziegler, Terrestrial cosmic ray intensities. IBM J. Res. Dev. 42(1), 117–140 (1998)
38. Z. She et al., SAGE: a monte carlo simulation framework for experiments with germanium detectors. J. Instrum. 16(09), T09005 (2021)