Macroscopic random Paschen-Back effect in ultracold atomic gases

M. Modugno,1,2 E. Ya. Sherman,3,2 and V. V. Konotop4

1Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
2IKERBASQUE Basque Foundation for Science, Bilbao, Spain
3Department of Physical Chemistry, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
4Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 2, Edifício CS, Lisboa 1749-016, Portugal

(Dated: June 1, 2017)

We consider spin- and density-related properties of single-particle states in a one-dimensional system with random spin-orbit coupling. We show that the presence of an additional Zeeman field Δ induces both nonlinear spin polarization and delocalization of states localized at $\Delta = 0$, corresponding to a random macroscopic analogue of the Paschen-Back effect. While the conventional Paschen-Back effect corresponds to a saturated Δ--dependence of the spin polarization, here the gradual suppression of the spin-orbit coupling effects by the Zeeman field is responsible both for the spin saturation and delocalization of the particles.

I. INTRODUCTION

Spin and mass dynamics caused by spin-orbit coupling (SOC) constitute one of the most important and interesting topics in modern solid-state and condensed-matter physics [1–3]. Recent experiments with ultracold atomic gases have greatly extended the frontiers of this field, by realizing tunable artificial SOC, as well Zeeman fields, for Bose-Einstein condensates [4] and Fermi gases [5, 6]. The possibility of studying the effects of strong SOC both experimentally and theoretically has revealed a rich phenomenology of these systems (see e.g. [7–11]). In one-dimensional settings this phenomenology has been enhanced by the presence of additional potentials, such as lattices [12–14] or artificial defects in the SOC [15].

A key topic in low-dimensional solid state [16, 17] and cold atomic [18–21] systems is the localization of particles by disorder. In the presence of SOC, the localization was studied in Ref. [22] and in a quasi-periodic potential in Ref. [23], where a mobility edge was observed. Short-term spin and density dynamics were considered in Ref. [24]. Yet another type of SOC - the random one - is naturally present in solids [25–27]. It can also be designed in cold atomic matter by randomizing the field producing the SOC.

The combined effect of spin-independent disorder and random SOC on the localization in two-dimensional lattices has been studied in Refs. [28, 29] and the orbital effect of the magnetic field in these systems was addressed in Ref. [30]. In this paper we consider a continuous one-dimensional system with randomness solely in the SOC realization, and investigate the effect of the Zeeman field on the particle spins and localization. We show that similarly to the conventional random potentials, SOC can lead to localization, here strongly dependent on the Zeeman field. In particular, we show that as the Zeeman splitting increases, the spin expectation values change strongly and, more importantly, the fraction of the localized states rapidly decreases. This offers the ability to localize or delocalize the states solely by acting at the particle spin. The weakening of the SOC effects in sufficiently strong Zeeman fields is known in atomic physics as the Paschen-Back (alias nonlinear Zeeman) effect [31–33]. Here we study the appearance of the Paschen-Back effect in a random macroscopic system, where, along with the spin dependence, the SOC effective weakening manifests itself as the delocalization of the states under increasing Zeeman splitting.

This paper is organized as follows. In Sec. II we introduce the random SOC field and present its main characteristics. In Sec. III we describe a general picture of the macroscopic random Paschen-Back effect. In Sec. IV this approach will be applied to the ground state of the system. Section V provides conclusions and outlook for future research. Some details of calculations and additional information are given in the Appendices.

II. HAMILTONIAN, RANDOM FIELDS, AND THEIR CORRELATORS

We consider a system described by the following Hamiltonian with a spatially random SOC $\alpha(x)$:

$$H_0 = \frac{k^2}{2} + \frac{1}{2} \left(\alpha(x)k + k\alpha(x) \right) \sigma_z + \Delta \sigma_x,$$ \hspace{1cm} (1)

where $k = -i\partial/\partial x$, 2Δ is the Zeeman splitting, and $\sigma_{x,z}$ are the Pauli matrices [34]. We use units $\hbar = 1$ and particle mass $\equiv 1$, so that from now on all the quantities are expressed in dimensionless units. Since our results will be based on the probability and the spin density distributions, they are independent of the Zeeman field direction, provided that it is orthogonal to the z--axis.

To emphasize the physical mechanism of the delocalization in the Paschen-Back effect, we use unitary transformation [35] $H_{tr} = S^{-1}H_0 S$ with $S = \exp(-iA(x)\sigma_z)$, to reduce the Hamiltonian to the form

$$H_{tr} = \frac{k^2}{2} - \frac{1}{2} \alpha^2(x) + \Delta \left[\sigma_x \cos 2A(x) - \sigma_y \sin 2A(x) \right],$$ \hspace{1cm} (2)
of the order of $\langle \alpha^2 \rangle^{1/2} l_x \ll 1$ at the length scale of l_x. In this way we obtain (see Appendix A)

$$l_m = \frac{1}{4 \langle \alpha^2 \rangle l_x}. \quad (5)$$

III. ZEEMAN FIELD-DEPENDENCE: A GENERAL PICTURE

For $\Delta \neq 0$ the eigenstates of the Hamiltonian (1) are nondegenerate (except for accidental events). Such states are characterized by spinors $\psi_n(x) = [\psi_{n1}(x), \psi_{n2}(x)]^T$, where the number $n = 0, 1, \cdots$ labels their energies E_n. The spatial extension of state n is characterized by the inverse participation ratio (IPR) [42]:

$$\zeta_n = \int_{-L}^{L} \left[|\psi_{n1}(x)|^2 + |\psi_{n2}(x)|^2 \right]^2 dx. \quad (6)$$

The symmetry of the Hamiltonian (1) implies that the only nonzero mean spin component is given by

$$\langle \sigma_x \rangle_n = 2 \text{Re} \int_{-L}^{L} \psi_{n1}^*(x) \psi_{n2}(x) dx. \quad (7)$$

Note that the eigenfunctions of (1) and (2) are mixed states in the spin subspace resulting in $\langle \sigma_x \rangle_n^2 \leq 1$ with $\langle \sigma_x \rangle_n^2 = 1$ for a pure and $\langle \sigma_x \rangle_n^2 = 0$ for the maximally mixed state, respectively.

Figure 2 presents the spin (a) and the IPR (b) as a function of n, for a single realization of the random potential, which is shown in Fig. 2(c). In Fig. 2(a) we observe that at small Δ most of the states are strongly mixed in spin subspace with $|\langle \sigma_x \rangle| \ll 1$. By increasing Δ, high-purity states appear at energies close to $\pm\Delta$ with $\langle \sigma_x \rangle \approx 1$ increasing from approximately -1 to 1 with the energy increase from $-\Delta$ to Δ. The IPR of well-localized states, namely those with $\zeta_n \gtrsim 0.7$, strongly varies as a function of the state number [43] and reaches the disorder-free value $\zeta_L = 3/4L$ at sufficiently large n. For nonzero Δ, the n-dependence of the IPR becomes more narrow, corresponding to the delocalization.

Figure 3 shows the disorder-averaged spin (a), the IPR (b), and the density of states (c) as a function of the energy. The IPR shows an effective mobility edge [44], which sharpens and shifts approximately to $-\Delta$ as Δ increases. As shown in the panel (c), at $\Delta = 0$ one observes a strong low-energy tail in the density of localized states. By increasing Δ, the number of the states in the tail decreases, demonstrating the delocalization, as clearly seen also in the inset of the panel (b).

To understand qualitatively the effect of the Zeeman field on delocalization, let us denote by l_x the distance that a particle can travel under the influence of the random magnetic field before its spin becomes uncorrelated with the initial one. By using again the random-walk approach, now in the coordinate-spin space, for a semiclassical particle moving with the velocity v, we obtain that
dom Zeeman field can destroy the localization

where ∆ is seen in Figs. 2(a) and 3(b). Here, the states

so that it is natural to define

\[l_s \equiv \frac{v^2}{\Delta^2 l_m} = 4 \frac{\langle \sigma^2 \rangle l_m}{\Delta^2}, \]

with \(\zeta_n \gtrsim l^{-1} \) are still localized, while the higher-energy states are already delocalized, leading to the observed sharpening of the effective mobility edge and shifting it to lower energies.

Since Hamiltonian (1) depends on spin randomly, in addition to the above argument based on comparison of the scales of \(\zeta_n^{-1} \) and \(l_s \), the delocalization and the dependence of \(\langle \sigma_x \rangle_n \) on \(\Delta \) can be obtained as follows. Let us consider the matrix form \(\mathcal{H}_{pq} \) of Hamiltonian (1) in the representation of the degenerate basis states at \(\Delta = 0 \) defined as

\[\bar{\psi}_{2m} \equiv \begin{bmatrix} \phi_m(x) \\ 0 \end{bmatrix} e^{-iA(x)}, \quad \bar{\psi}_{2m+1} \equiv \begin{bmatrix} 0 \\ \phi_m(x) \end{bmatrix} e^{iA(x)}, \]

where \(\phi_m(x) \) \((m = 0, 1, \ldots)\) are the real eigenfunctions with \(\phi'_m(x) = -\binx{2}{m} + 2\epsilon_m \phi_m(x) \), and eigenenergies \(\epsilon_m \). In this basis the diagonal components are:

\[\mathcal{H}_{2m,2m} = H_{2m+1,2m+1} = \epsilon_m \] and the off-diagonal ones

FIG. 2. (a) Spin component \(\langle \sigma_x \rangle_n \) and (b) log-scale of the IPR as a function of the state number for different Zeeman fields (the legend is shown in (b)). To avoid degeneracy, we use here \(0^+ = 10^{-3} \). The horizontal dash-dotted line corresponds to \(\zeta_L = 3/4L \) value. (c) Actual realization of the random potential (solid line) and three densities corresponding to the energies \(E_n = E_0, -1, \) and 0. Here \(\alpha_0 = 4, d = \xi = 0.5 \), and \(L = 40 \).

FIG. 3. Disorder-averaged quantities as a function of the state energy for different Zeeman \(\Delta \)'s (the legend is shown in (a)). (a) Expectation value \(\langle \sigma_x \rangle_n \), (b) the IPR, where the inset shows the fraction \(f \) of localized states (out of 300 lowest eigenstates) with the \(\zeta_n > 2L \) (dash-dot horizontal line), and (c) the density of states. The averaging is performed over \(10^3 \) \(\alpha(x) \) realizations with the parameters same as in Fig. 2.
are expressed as:

\[H^r_{2m+1,2l} = H_{2m,2l+1} \equiv \Delta \int_{-L}^{L} \phi_m(x)\phi_l(x)e^{2iAx(x)}dx. \]

A broad Fourier spectrum of random \(A(x) \) leads to appreciable transition coefficients \(H_{pq}/\Delta \) for localized states, which would be negligibly small otherwise even if such states have a considerable spatial overlap. This possibility of particle transfer between different states leads to delocalization at sufficiently strong \(\Delta \).

Now we can consider strong Zeeman field in more detail by addressing the source of suppression of the spin-conserving backscattering with the increase in \(\Delta \). At sufficiently large \(\Delta \), neglecting the SOC, the single particle states can be presented as \(|k, \langle \sigma_x \rangle \rangle \), with \(\langle \sigma_x \rangle = \pm 1 \), corresponding to the eigenstates of \(\sigma_x \) in Eq. (1), momentum \(k \), and energy \(k^2/2 + \langle \sigma_x \rangle \Delta \). We consider the random SOC as a perturbation, which, however, prohibits the spin-conserving backscattering as the first-order process. Here this scattering \(|k, -1 \rangle \rightarrow | -k, -1 \rangle \) occurs only by involving intermediate \(|k', 1 \rangle \) states with the opposite spin, as schematically illustrated in Fig. 4. The corresponding spin-conserving backscattering matrix element behaves for \(k^2 \ll 4\Delta \) as \(1/\Delta \), strongly decreasing the scattering probability for low-energy states (see Appendix B) with the increase in \(\Delta \) and, thus, leading to the delocalization.

\[\langle \sigma_x \rangle = 1 \]

\[\langle \sigma_x \rangle = -1 \]

\[k' \]

\[-k \]

\[-\Delta \]

\[\Delta \]

\[k \]

\[\langle \sigma_x \rangle \]

\[\langle \sigma_x \rangle \]

FIG. 4. Schematic illustration of the spin-conserving backscattering caused by the random SOC. Lower and upper parabolas correspond to \(k^2/2 - \Delta \) and \(k^2/2 + \Delta \) branches, respectively, with the virtual transitions shown by dashed lines.

\[\langle \sigma_x \rangle = 1 \]

\[\langle \sigma_x \rangle = -1 \]

\[k' \]

\[-k \]

\[-\Delta \]

\[\Delta \]

\[k \]

\[\langle \sigma_x \rangle \]

\[\langle \sigma_x \rangle \]

FIG. 5. Dependence of the ground-state \(|\sigma_x(\Delta)\rangle \) (main plot) and the IPR (inset) for two typical realizations of the random potential (see Appendix C for more details). As expected for low purity spin states, \(|\sigma_x(0)\rangle \) \(\ll 1 \), corresponding to typical \(l_0/\alpha(x_0) \geq 1 \) for the chosen parameters of disorder, here the same as in Fig. 2.

IV. GROUND STATE DEPENDENCE ON THE ZEEMAN FIELD

Now we consider how the developed approach can be applied to the properties of the ground state. According to the Hellmann-Feynman theorem [46], the expectation value of the spin of the ground state can be written as:

\[\langle \sigma_x(\Delta = 0) \rangle_0 = (\partial E_0/\partial \Delta)_{\Delta = 0} \]

and, therefore obtained by the \(\Delta \)-perturbation theory for the ground state energy.

We begin by assuming that the Zeeman field is sufficiently weak such that the ground state spin can be written as:

\[|\sigma_x(\Delta)\rangle_0 = |\sigma_x(0)\rangle_0 + \Delta \partial |\sigma_x(\Delta)\rangle_0/\partial \Delta \]

where the derivative is calculated at \(\Delta = 0 \). Here the spin-split ground state forms a doublet well-separated from the rest of the states. By using perturbation theory for degenerate states [32] in the basis of Eq. (9) we obtain the ground state:

\[\psi_0(x) = \frac{1}{\sqrt{2}} \phi_0(x) \left[\exp[-i(A(x) - \chi_0/2)] - \exp[i(A(x) - \chi_0/2)] \right], \]

where the phase \(\chi_0 \) is defined by \(H_{01} = [H_{01}(x) \exp(i\chi_0) \]. The condition of this weak-field approximation is \(\max(|H_{01,2m+1}|/(\epsilon_m - \epsilon_0)) \ll 1 \) for \(m \geq 1 \).

To find \(|\sigma_x(0)\rangle_0 \), we assume that the ground state wave function is localized near a point \(x_0 \) and can be approximated by a Gaussian of width \(l_0 \) as:

\[\phi_0^r(x) \approx \exp\left[-(x - x_0)^2/l_0^2\right] \]

Next, by using \(\psi_0(x) \) in Eq. (11) and approximating \(A(x) \approx A(x_0) + \alpha(x) (x - x_0) \) we obtain by Eq. (7):

\[|\sigma_x(0)\rangle_0 = -\exp(-\alpha^2(x_0)l_0^2) \]

This value, being exponentially dependent on the ground state parameters, strongly varies from realization to realization (see Fig. 5). To get an order-of-magnitude estimate of \(|\sigma_x(0)\rangle_0 \) we consider a model ground state in the potential characterized by \(\gamma_j = r_j = 0.5 \) and \(\gamma_{j+1} = -r_j = 0.5 \). This state has the width \(l_0 = \sqrt{\xi/\alpha_0} \) yielding \(|\sigma_x(0)\rangle_0 = -\exp(-\alpha_0\xi) \). Next, we calculate the inverse participation ratio for this state as:

\[\zeta_0(0) = \frac{\alpha_0}{2\pi\xi} \]

For given system parameters this yields \(\zeta_0(0) \approx 1.12 \), similar to the numerical results in the inset of Fig. 5.
Next, by means of the second-order perturbation theory and the Hellmann-Feynman theorem, one can obtain the linear term in \(\langle \sigma_x (\Delta) \rangle_0 \). To this end, we calculate \(\Delta^2 \) correction to the energy by summing up over all transitions to the higher-energy states in the Eq. (9) basis. The maximal contribution to the energy correction is achieved at the states with energies \(2\alpha^2(x_0) \), lying high above the effective mobility edge. Such states can be accurately approximated as \(\sin(kx+d)/\sqrt{E} \), extended to the total length of the system with a slowly varying phase \(\delta \). The energy calculation can be done analytically by using the steepest descent method \[17\] (provided that \(2\alpha(x_0) l_0 \gg 1 \)) resulting in

\[
d(\sigma_x (\Delta))_0 = -\frac{2}{|\epsilon_0| + 2\alpha^2(x_0)}. \quad (14)
\]

This value is less sensitive to the disorder realization than \(\langle \sigma_z (0) \rangle_0 \), as can be seen from the slope of \(\langle \sigma_x (\Delta) \rangle_0 \) in Fig. 5, presenting the numerical evidence for the random Paschen-Back effect. As it is seen in the main plot, \(\langle \sigma_x (\Delta) \rangle_0 \) tends to \(-1\) at sufficiently large \(\Delta \), as expected for the conventional Paschen-Back effect \[31\]. Note that even at rather small \(\Delta \), the linear term greatly exceeds \(\langle \sigma_x (0) \rangle_0 \). The IPR shown in the inset initially increases (see Appendix), corresponding to a stronger localization, and then decreases to the values \(\sim \zeta_L \), demonstrating the delocalization.

V. CONCLUSIONS AND OUTLOOK

We have studied the dependence of single-particle states on the Zeeman field in a one-dimensional system with random spin-orbit coupling. The observed dependence of the spin is nonlinear with the saturation at a sufficiently strong field, corresponding to a macroscopic random Paschen-Back effect. In such a system, the spin saturation is accompanied by particle delocalization as both effects are due to suppression of the role of the random spin-orbit coupling. These effect could be engineered in a broad range of parameters in experimental setups for cold atomic gases, therefore permitting a variety of studies of this fundamental quantum effect at a macroscopic level. Although the calculated quantities are based on a particular model of disorder, our main estimates and qualitative results, being obtained by means of general arguments, are not restricted to the chosen model.

ACKNOWLEDGMENTS

M.M. and E.Y.S. acknowledge the support by the Grant FIS2015-67161-P (MINECO of Spain/FEDER) and Grupos Consolidados UPV/EHU del Gobierno Vasco (IT-986-16). V.V.K. acknowledges the support of the FCT (Portugal) under the grant UID/FIS/00618/2013.

E.Y.S. is grateful to V.K. Dugaev and M.M. Glazov for valuable discussions.

Appendix A: Correlator of the random magnetic field

We present the correlator of the directions of the random magnetic field \(K_{mm}(x', x) \equiv \langle \langle m(x') m(x) \rangle \rangle \) as

\[
K_{mm}(x', x) = \langle \langle \cos (2 (A(x') - A(x))) \rangle \rangle \\
= \text{Re} \left\langle \left\langle \prod_j \exp \left(2i \int_{x_j}^{x_j+d} \alpha(y)dy \right) \right\rangle \right\rangle,
\]

(A1)

using the product over single-impurity intervals \((X_j, X_j + d) \) (as shown in Fig. 1), located between points \(x' \) and \(x \) and note that the distribution in Eq. (4) allows one to separate calculations of products and averaging. Taking a single interval and assuming for simplicity \(\xi \ll d \) with

\[
J_j \equiv 2 \int_{X_j}^{X_j+d} \alpha(y)dy = 2\sqrt{2\pi\gamma_j\alpha_0}\xi,
\]

(A2)

yields

\[
e^{iJ_j} = \cos \left(2\sqrt{2\pi\gamma_j\alpha_0}\xi \right) + i \sin \left(2\sqrt{2\pi\gamma_j\alpha_0}\xi \right).
\]

(A3)

Since in the model of disorder we are considering, the expectation value \(\langle \gamma_j \rangle = 0 \), one obtains \(\langle \langle \sin(2\sqrt{2\pi\gamma_j\alpha_0}\xi) \rangle \rangle = 0 \). Employing a “small change” approximation \(\alpha_0 \xi \ll 1 \) we obtain

\[
\left\langle \langle \cos(2\sqrt{2\pi\gamma_j\alpha_0}\xi) \rangle \right\rangle = 1 - 4\pi \langle \langle \gamma_j^2 \rangle \rangle (\alpha_0\xi)^2 + O \left((\alpha_0\xi)^4 \right).
\]

(A4)

Making \(\gamma_j \)–averaging with \(\langle \gamma_j^2 \rangle = 1/12 \) and taking into account that \(\langle \langle \alpha^2 \rangle \rangle = \sqrt{\pi}/12 \times \alpha_0^2\xi/d \) yields with the same accuracy:

\[
\left\langle \langle \cos(2\sqrt{2\pi\gamma_j\alpha_0}\xi) \rangle \right\rangle = 1 - 4\sqrt{\pi} \langle \langle \alpha^2 \rangle \rangle \xi d.
\]

(A5)

Next, we build the product over the intervals and obtain for \(x' = 0 \) and \(d \ll |x| \ll L \) (2L is the total system length):

\[
K_{mm}(0, x) = (1 - 4\sqrt{\pi} \langle \langle \alpha^2 \rangle \rangle \xi d)^{|x|/d} \approx \exp(-\beta |x|),
\]

(A6)

where \(\beta = 4\sqrt{\pi} \langle \langle \alpha^2 \rangle \rangle \xi \). The corresponding correlation length can be defined as:

\[
l_m = \int_0^\infty K_{mm}(0, x)dx = \frac{1}{4\sqrt{\pi} \langle \langle \alpha^2 \rangle \rangle \xi},
\]

(A7)

where we put the upper integration limit to infinity and the lower limit to zero since we assume that \(l_m \ll l^m \).
we have a correlation length of the spin-orbit coupling $l_\alpha = \sqrt{\pi \xi}$, we arrive at Eq. (5). While the coefficient $4\sqrt{\pi}$ in Eq. (A7) depends on the details of the model of disorder, the $l_{\text{m}} \sim 1/\langle\langle\alpha^2\rangle\rangle \xi$ scaling is model-independent. The numerical results are presented in Fig. 6 for two different sets of parameters. Note that at these values of α_0, ξ, and d one obtains $\beta \approx 0.033$ in agreement with the best fit of $K_{mm}(0,x)$ (see caption of Fig. 6).

Having established the long-range behavior of the correlator, it would be of interest to obtain its short-distance behavior at $|x-x'| \ll l_{\alpha}$. Taking into account that at these short distances $A(x)-A(x') \approx \alpha(x)(x-x')$, we obtain after averaging of $\langle \cos[2(A(x')-A(x))]\rangle$ in Eq. (A1)

$$K_{mm}(x',x) = 1 - 2\langle\langle\alpha^2\rangle\rangle (x-x')^2.$$ \hspace{1cm} (A8)

Note that short- and long-range behavior of $K_{mm}(x,x')$ is due to different spatial scales. The long-range behavior is determined by l_{m} in Eq. (A7) while the short-range one (A8) is determined by the length $1/\langle\langle\alpha^2\rangle\rangle^{1/2}$. For the choice of parameters in Fig. 6 we have $l_{\text{m}} \gg 1/\langle\langle\alpha^2\rangle\rangle^{1/2}$, leading to a cusp-like dependence presented in this Figure.

Appendix B: Spin-conserving backscattering matrix element: spin-orbit coupling as a perturbation

Here we illustrate the Δ-dependence of the spin-conserving backscattering in the random spin-orbit coupling field and demonstrate that its probability rapidly decreases with the increase in Δ. We assume strong Zeeman field limit, which determines the spin states and the scattering due to the random spin-orbit coupling.

We consider spin-conserving transition $|k,\sigma_x = -1\rangle \rightarrow |-k,\sigma_x = 1\rangle$, which occurs at $k' < 4\Delta$ via virtual transitions to intermediate $|k',\sigma_x = 1\rangle$ states, as shown in Fig. 4. Using second-order perturbation theory we obtain for the spin-conserving backscattering matrix element M_k resulting from interactions with random spin-orbit coupling impurities:

$$M_k = \frac{1}{4} \int_{-\infty}^{\infty} \alpha_q \alpha_{2k+q} \frac{(2k+q)q}{2\Delta + (k+q)^2/2 - k^2/2} dq,$$ \hspace{1cm} (B1)

where $q = k' - k$, and we have taken into account that the single spin-flip scattering matrix element between k and k' states is equal to $\alpha_{k' - k} (k + k')^2$ [48], with the Fourier-component

$$\alpha_p \equiv \int_{-\infty}^{\infty} \alpha(x)e^{-ipx} dx.$$ \hspace{1cm} (B2)

The impurities have a Gaussian shape with the amplitude $|\gamma_j| = 1$ resulting in: $\alpha_{pq} = \sqrt{2\pi\alpha_0\xi}e^{-p^2/2\xi^2}$ with $\alpha_q\alpha_{2k+q} = 2\pi\alpha_0^2\xi e^{-(q^2+(2k+q)^2)\xi^2/2}$. Assuming a sufficiently large width ξ such that $\exp(-\Delta^2\xi^2) \ll 1$, we can use the steepest descent method to calculate the integral in Eq. (B1), where the maximum backscattering probability is due the "symmetric" transition with the momentum of the intermediate state $k+q = 0$. As a result, we obtain for the matrix element for the states near the bottom of the $-\Delta$ subband

$$M_k = -\frac{\sqrt{\pi}}{8} \frac{\alpha_0^2 \xi}{\Delta} k^2 e^{-k^2\xi^2}.$$ \hspace{1cm} (B3)

This value of $|M_k|^2$ rapidly decreases with the increase in Δ leading to delocalization by the Zeeman field.

Appendix C: Δ-dependence of the inverse participation ratio

We begin with the study of the Δ-dependence of the ground state inverse participation ratio (IPR) in the limit of weak Zeeman field, where the analysis can be done perturbatively. We seek for the ground state $\psi_0(x)$ in the form:

$$\bar{\psi}_0(x) = \frac{\sqrt{1-\nu}}{\sqrt{2}} \begin{bmatrix} \psi_0(x)e^{i\nu x_0/2} \\ -\psi_0^*(x)e^{-i\nu x_0/2} \end{bmatrix} + \frac{1}{\sqrt{2}} \sum_k \begin{bmatrix} p_k \psi_k(x)e^{ikx_0/2} \\ -p_k^* \psi_k^*(x)e^{-ikx_0/2} \end{bmatrix},$$ \hspace{1cm} (C1)

where ψ_0 is the ground state wave function in the $\Delta = 0$ limit with the energy ϵ_0 (cf. Eq. (9)) and the functions $\psi_k(x)$ are extended over the system length $2L$ wave functions of the quasi-continuous spectrum with $\epsilon_k = k^2/2$. Small coefficients p_k can be obtained by perturbation theory as:

$$p_k = \frac{\Delta}{\epsilon_k - \epsilon_0} \eta_k,$$ \hspace{1cm} (C2)
where
\[\eta_k = e^{-i(x_0 + x_k)/2} \int_{-L}^{L} \psi_0^*(x)\psi_k^*(x)dx. \] (C3)

The parameter \(\nu \) is a small probability to find the particle in a delocalized state:
\[\nu = \sum_k |p_k^2| = \frac{L}{\pi} \int_{-\infty}^{\infty} |p_k^2| dk, \] (C4)

to conserve the total norm of the wavefunction. The probability \(\nu \) can be calculated by the steepest descent method similarly to the second-order correction to the ground state energy assuming the Gaussian ground state with the maximum probability density at \(x_0 \) point as:
\[\nu = \frac{\Delta^2}{(|\epsilon_0| + 2\alpha^2(x_0))^2}. \] (C5)

Function \(|\tilde{\psi}_0(x)|^4 \) has a complex structure, with, however, only two terms giving finite contribution to the IPR in the \(L \to \infty \) limit, as can be seen by counting the powers of \(L \) in the corresponding terms. The relevant contributions can be presented in the form:
\[|\tilde{\psi}_0(x)|^4 = (1 - \nu)^2 |\psi_0(x)|^4 + 2 |\psi_0(x)|^2 \left(\psi_0^*(x)\psi_k(x)e^{-i\epsilon_0/2}e^{i\epsilon_k/2}p_k^* + \text{c.c.} \right). \] (C6)

Here we concentrate on these terms, having different orders in \(\Delta \) and present the inverse participation ratio in the form of the \(\Delta \)-expansion:
\[\zeta_0(\Delta) = \zeta_0(0) + \zeta_0''(0)\Delta + \frac{1}{2}\zeta_0''(0)\Delta^2. \] (C7)

By using Eq. (C6), the term quadratic in \(\Delta \) can be rewritten as:
\[\frac{1}{2}\zeta_0''(0)\Delta^2 = -2\zeta_0(0)\nu, \] (C8)

leading to a decrease in \(\zeta_0(\Delta) \) with the increase in the Zeeman field, as expected in delocalization scenario.

The term linear in \(\Delta \) has the form:
\[\zeta_0'(0)\Delta = 2 \times \sum_k \int_{-L}^{L} |\psi_0(x)|^2 \left(\psi_0^*(x)\psi_k(x)e^{-i(x_0 - x_k)/2}p_k^* + \text{c.c.} \right) dx. \] (C9)

Note that while \(\psi_0(x) \) and \(\psi_k(x) \) are orthogonal, \(|\psi_0(x)|^2 \psi_0^*(x) \) and \(\psi_k(x) \) are, in general, not. As a result we obtain the linear correction to the IPR in the form:
\[\zeta_0'(0) = 4\text{Re} \sum_k \int_{-L}^{L} \psi_0^*(x)\psi_k^*(x)dx \times \] (C10)
\[\int_{-L}^{L} |\psi_0(x)|^2 \psi_0^*(x)\psi_k(x)dx, \]
demonstrating that IPR can behave linearly with \(\Delta \), as presented in Fig. 7, due to change in the shape of the ground state wave function by adding strongly \(x \)-dependent functions varying on the spatial scale less than the spatial scale of \(\psi_0(x) \).

One more point on the importance of disorder deserves to be mentioned here. To demonstrate its role, we have chosen a realization of \(\alpha(x) \) and performed a calculation of the \(\Delta \)-dependent IPR of the ground state with the Hamiltonian
\[H = \frac{k^2}{2} + V(x) + \alpha(x_0)k\sigma_z + \Delta\sigma_z, \] (C11)

where \(V(x) = -\alpha^2(x)/2 \) and \(x_0 \) is the position of the maximum of the ground state density in this potential. Note that Hamiltonian (C11) resembles the Hamiltonian (1), but has a constant SOC. At sufficiently small \(\Delta \) the properties of the ground state are determined mostly by local SOC \(\alpha(x_0) \). The effect of the randomness becomes visible only at relatively large \(\Delta \), where the ground state is already modified by a contribution of the extended states. Although in both cases the value of spin saturates at \(\langle \sigma_z \rangle = -1 \), as expected in the conventional Paschen-Back effect, the localization is restored for a constant SOC and disappears for a random one, as can be seen in Fig. 7. This is due to different properties of the interstate transition matrix elements (see Eq. (10)), where the broad Fourier spectrum of random \(A(x) \) extends the set of transitions while for a regular coupling this set is strongly restricted and delocalization does not occur.

FIG. 7. Dependence of the ground state spin on the Zeeman \(\Delta \) for random (solid line) and regular (as in Eq. (C11), dashed line) SOC. These dependences are very similar for both types of coupling. Inset shows the qualitative difference between the IPR for the random and the regular realizations. While at small \(\Delta \) the behavior of the IPR is the same, their large \(\Delta \)-dependences are different: the IPR rapidly decreases for the random SOC and returns to its value at \(\Delta = 0 \) for the regular one.
[1] Spin Physics in Semiconductors (Springer Series in Solid-State Sciences, Ed. by M. I. Dyakonov, Springer (2008)).
[2] T. D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A 78, 023616 (2008); V. Galitski and I. B. Spielman, Nature 494, 49 (2013).
[3] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[4] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Nature 471, 83 (2011).
[5] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).
[6] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012).
[7] J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012).
[8] Ch. Qu, Ch. Hanner, M. Gong, Ch. Zhang, and P. Engels, Phys. Rev. A 88, 021604 (2013).
[9] G. I. Martone, Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 86, 063621 (2012).
[10] Y. Zhang, L. Mao, and Ch. Zhang, Phys. Rev. Lett. 108, 035302 (2012).
[11] Q.-Q. Li and D. E. Sheehy, Phys. Rev. A 88, 043645 (2013).
[12] J. Larson, J. P. Martikainen, A. Collin, and E. Sjögqvist, Phys. Rev. A, 82, 043620; Y. Zhang and C. Zhang, Phys. Rev. A 87, 023611 (2013); M. Salerno and F. Kh. Abdullaev, Phys. Lett. A 379, 2252 (2015); M. Salerno, F. Kh. Abdullaev, A. Gammal, and L. Tomio, Phys. Rev. A 94, 043602 (2016).
[13] Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, and L. Torner, Phys. Rev. Lett. 117, 215301 (2016).
[14] Y. V. Kartashov, V. V. Konotop, and F. K. Abdullaev, Phys. Rev. Lett. 111, 060402 (2013); V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Phys. Rev. Lett. 112, 180403 (2014).
[15] Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, Phys. Rev. A 90, 063621 (2014).
[16] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[17] V. L. Berezinskii, Sov. Phys. JETP 38, 620 (1974); L.P. Gor’kov, in: Electron-electron interactions in disordered systems, pp. 619, Eds. A.L. Efros and M. Pollak, North-Holland, Amsterdam (1985).
[18] Ch. Skokos, D. O. Kramer, S. Komineas, and S. Flach, Phys. Rev. E 79, 056211 (2009).
[19] A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008).
[20] M. Larcher, F. Dalfovo, and M. Modugno, Phys. Rev. A 80, 053606 (2009).
[21] I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys. 6, 900 (2010).
[22] For one-dimensional systems see: L. Zhou, H. Pu, and W. Zhang, Phys. Rev. A 87, 023625 (2013) and for two-dimensional speckles: G. Orso, Phys. Rev. Lett. 118, 105301 (2017).
[23] C. Li, F. Ye, Y. V. Kartashov, V. V. Konotop, and X. Chen, Sc. Rep. 6, 31700 (2016).
[24] Sh. Mardonov, M. Modugno, and E. Ya. Sherman, Phys. Rev. Lett. 115, 180402 (2015).
[25] M. M. Glazov, E. Ya. Sherman, and V. K. Dugaev, Physica E 42, 2157 (2010).
[26] M. M. Glazov and E. Ya. Sherman, Phys. Rev. Lett. 107, 156602 (2011).
[27] J. R. Bindel, M. Pezzotta, J. Ulrich, M. Liebmann, E. Ya. Sherman, and M. Morgenstern, Nat. Phys. 12, 920 (2016).
[28] S. N. Evangelou, Phys. Rev. Lett. 75, 2550 (1995).
[29] Y. Asada, K. Slevin, and T. Ohtsuki, Phys. Rev. Lett. 89, 256601 (2002).
[30] C. Wang, Y. Su, Y. Avishai, Y. Meir, and X.R. Wang, Phys. Rev. Lett. 114, 096803 (2015).
[31] F. Paschen and E. Back, Ann. der Physik 39, 897 (1912); F. Paschen and E. Back, Ann. der Physik 40, 960 (1913).
[32] L. D. Landau and E. M. Lifshitz, Quantum Mechanics Butterworth-Heinemann Publ., Oxford, UK (1981).
[33] B.H. Bransden and C.J. Joachain Physics of atoms and molecules Longman Publ., New York, USA (1982).
[34] Note that although the spatial motion is strictly one-dimensional, spin-related features are fully three-dimensional.
[35] L. S. Levitov and E. I. Rashba, Phys. Rev. B 67, 115324 (2003).
[36] The size of the system should be sufficiently larger than the disorder-induced localization length in the energy interval of interest. A practical check for a length choice is based on comparing systems of size L, 2L, and 4L, verifying that finite-L effects and boundary conditions are not substantial.
[37] D. Sánchez and L. Serra, Phys. Rev. B 74, 153313 (2006); D. Sánchez, L. Serra, and M.-S. Choi, Phys. Rev. B 77, 035315 (2008).
[38] M. Valfn-Rodriguez, A. Puente, and L. Serra, Phys. Rev. B 69, 085306 (2004).
[39] J. Cserti, A. Csordás, and U. Zülicke, Phys. Rev. B 70, 233307 (2004).
[40] G. M. Falco, A. A. Fedorenko, J. Giacomelli, and M. Modugno, Phys. Rev. A 82, 053405 (2010).
[41] J. R. Norris Markov chains (Cambridge series on statistical and probabilistic mathematics) Cambridge University Press (1998).
[42] In contrast to lattice models [20, 28–30], in a continuous one-dimensional system, the IPR has units of inverse length being not limited by 1 from above. The IPR of the order of 1/2L corresponds to delocalized states in terms of the present model.
[43] F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000).
[44] The occurrence of an effective mobility edge is typical of speckle-like potentials, see e.g. L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett. 98, 210401 (2007). For special shapes of correlated potentials demonstrating the mobility edge see: F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999).
[45] S. Hikami, A.I. Larkin, and Y. Nagaoka, Progr. of Theor. Phys. 63, 707 (1980).
[46] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[47] J. Mathews and R.L. Walker Mathematical methods of physics W.A. Benjamin Inc., New York-Amsredam (1964).
[48] V. K. Dugaev, E. Ya. Sherman, V. I. Ivanov, and J. Barnai, Phys. Rev. B 80, 081301 (2009).