Plasma CTGF is independently related to an increased risk of cardiovascular events and mortality in patients with atherosclerotic disease: the SMART study

Karin G. Gerritsen1,2, Lucas L. Falke1, Stefan H. van Vuuren1, Jan W. Leeuwis1, Roel Broekhuizen1, Tri Q. Nguyen1, Gert Jan de Borst3, Hendrik M. Nathoe4, Marianne C. Verhaar2, Robbert J. Kok5, Roel Goldschmeding1, and Frank L. Visseren6; for the SMART Study Group

1Department of Pathology, 2Department of Nephrology and Hypertension, 3Department of Vascular Surgery and 4Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands, 5Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands, and 6Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

Aims: Connective tissue growth factor (CTGF) plays a key role in tissue fibrogenesis and growing evidence indicates a pathogenic role in cardiovascular disease. Aim of this study is to investigate the association of connective tissue growth factor (CTGF/CCN2) with cardiovascular risk and mortality in patients with manifest vascular disease.

Methods and results: Plasma CTGF was measured by ELISA in a prospective cohort study of 1227 patients with manifest vascular disease (mean age 59.0 ± 9.9 years). Linear regression analysis was performed to quantify the association between CTGF and cardiovascular risk factors. Results are expressed as beta (β) regression coefficients with 95% confidence intervals (CI). The relation between CTGF and the occurrence of new cardiovascular events and mortality was assessed with Cox proportional hazard analysis. Adjustments were made for potential confounding factors. Plasma CTGF was positively related to total cholesterol (β 0.040; 95%CI 0.013–0.067) and LDL cholesterol (β 0.031; 95%CI 0.000–0.062) and inversely to glomerular filtration rate (β /GFR 0.004; 95%CI /GFR 0.005 to /GFR 0.002). CTGF was significantly lower in patients with cerebrovascular disease. During a median follow-up of 6.5 years (IQR 5.3–7.4) 131 subjects died, 92 experienced an ischemic cardiac complication and 45 an ischemic stroke. CTGF was associated with an increased risk of new vascular events (HR 1.21; 95%CI 1.04–1.42), ischemic cardiac events (HR 1.41; 95%CI 1.18–1.67) and all-cause mortality (HR 1.18; 95%CI 1.00–1.38) for every 1 nmol/L increase in CTGF. No relation was observed between CTGF and the occurrence of ischemic stroke. Conclusions: In patients with manifest vascular disease, elevated plasma CTGF confers an increased risk of new cardiovascular events and all-cause mortality.

Keywords

CTGF, cardiovascular disease, atherosclerosis, myocardial infarction, mortality

History

Received 16 March 2016
Revised 25 May 2016
Accepted 28 June 2016
Published online 29 July 2016

Introduction

Cardiovascular risk is a growing concern and major health burden. Several management strategies exist, but healthcare could benefit from additional interventional strategies.

Connective tissue growth factor (CTGF/CCN2) is a key mediator of tissue fibrogenesis in various chronic diseases (Dendooven et al., 2011). Many cell types express CTGF, including endothelial cells, vascular smooth muscle cells, fibroblasts and cardiac myocytes (Ohnishi et al., 1998; Van Geest et al., 2014; Yan et al., 2014). CTGF is upregulated by stimuli involved in cardiovascular damage, including angiotensin II, oxidative stress, endothelin-1, hyperglycemia, advanced glycation end products, transforming growth factor β and mechanical stretch (Cicha & Goppelt-Streebe, 2009; Daniels et al., 2009; Lan et al., 2013; Ruiz-Ortega et al., 2007). Depending on the cell type and pathological context, CTGF is involved in various biological processes, including extracellular matrix production, proliferation, apoptosis, chemotaxis and angiogenesis.

Plasma CTGF is elevated in patients with type 1 diabetes mellitus (DM), chronic kidney disease and chronic heart failure (Cheng et al., 2006; Ito et al., 2011; Koitabashi et al., 2008; Nguyen et al., 2008; Roestenberg et al., 2004; Slagman et al., 2011). In patients with type 1 diabetes, plasma CTGF is associated with increased urinary albumin excretion, hypertension and increased carotid intima media thickness (cIMT) and in macroalbuminuric patients also with progression to end
stage renal disease and increased mortality (Jaffa et al., 2008; Nguyen et al., 2008; Roestenberg et al., 2004). Reduction of vascular stiffness in hypertensive patients is associated with a reduction in CTGF expression levels (Gomez-Garre et al., 2006). In patients with both acute and chronic heart failure plasma CTGF is related to brain natriuretic peptide, NYHA class and echocardiographic parameters of diastolic dysfunction (Behnes et al., 2014; Koitabashi et al., 2008). Emerging evidence also indicates a role of CTGF in the pathogenesis of cardiovascular disease. While being minimally expressed in healthy tissue, CTGF is strongly upregulated in atherosclerotic plaques, in cardiac tissue after myocardial infarction, in cardiac fibrosis and in vascular and cardiac tissues in experimental hypertension (Daniels et al., 2009; Koitabashi et al., 2008; Leeuwis et al., 2010; Ponticos, 2013; Rickard et al., 2014).

Thus far, however, plasma CTGF has not been studied in patients with clinically manifest vascular disease. Considering the role of CTGF in the pathogenesis of cardiovascular fibrosis, we hypothesized that baseline plasma CTGF may reflect cardiovascular disease burden and may identify vascular patients at the highest risk of recurrent cardiovascular events. Therefore, in the present study we aimed to investigate the association of baseline plasma CTGF with future cardiovascular risk and mortality in a high-risk population of patients with manifest atherosclerotic vascular disease.

Methods

Study design and patients

We used data from patients enrolled in the Second Manifestations of ARTerial disease (SMART) study, an ongoing prospective single-center cohort study in patients with manifest atherosclerotic disease or cardiovascular risk factors that started in September 1996 (Simons et al., 1999). Patients aged 18–80 years, newly referred to the University Medical Center (UMC) Utrecht with manifest atherosclerotic disease or cardiovascular risk factors that started in September 1996 (Simons et al., 1999). Medical history, use of current medication and current and past cigarette smoking behavior were derived from a standardized questionnaire described previously (Simons et al., 1999). Height, weight and blood pressure were measured. Glomerular filtration rate (GFR) was estimated by the abbreviated Modification of Diet in Renal Disease equation (Levey et al., 2006). The Framingham 10-year cardiovascular risk score (%) was calculated using gender, age, smoking behavior, blood levels of HDL and total cholesterol, and systolic blood pressure as parameters as described (Wilson et al., 1998). Ultrasound measurements of cIMT and abdominal adipose tissue were performed as described (Simons et al., 1999; Stolk et al., 2003).

Electrocardiographic left ventricular hypertrophy (LVH) was assessed by the Sokolow–Lyon voltage criterion (SV1 + RV5R > 3.5 mV) (Sokolow & Lyon, 2001) and the Cornell voltage criterion (RaVL + SV3 > 2.0 mV in women and > 2.8 mV in men) (Casale et al., 1985). The patients meeting either criterion were considered to have LVH. For 46 patients no valid electrocardiogram was available.

Blood samples were collected after an overnight fast. Plasma total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, triglycerides, homocysteine and creatinine were determined as described (Simons et al., 1999). High sensitivity C-reactive protein (hsCRP) was measured by immunonephelometry (Nephelometer Analyzer BN II, Dade-Behring, Marburg, Germany). HsCRP measurements below the lower limit of detection of 0.2 mg/L were set at 0.2 mg/L.

Plasma CTGF levels were determined by sandwich ELISA, using two humanized monoclonal antibodies, one for capture and one for detection (FibroGen Inc., San Francisco, CA) against two distinct epitopes on the aminoterminal part of CTGF, detecting both full length CTGF and the N-fragment, as described (Roestenberg et al., 2004). The detection limit of the assay was 0.02 nmol/L and intra- and interassay variations were < 1% and 10%, respectively.

Urine albumin and creatinine were determined as described (Simons et al., 1999). The albumin-to-creatinine ratio (ACR) was used to estimate albuminuria. Microalbuminuria was defined as ACR ≥ 3.5 and < 25 mg/mmol (female) or ≥ 2.5 and < 25 mg/mmol (male) and macroalbuminuria as ACR ≥ 25 mg/mmol (Tapp et al., 2004).

Follow-up

Patients received a questionnaire every 6 months to provide information on hospitalization and outpatient clinic visits. Outcomes of interest for this study were a composite endpoint of vascular death, ischemic stroke and ischemic cardiac complications (Table 1). All-cause mortality was recorded as well. If a possible event was reported, original source documents were retrieved and reviewed. All possible events were audited by three independent physicians of the End Point Committee. If a patient had multiple events, the first event was used for analysis. Follow-up duration (years) was defined as the period between study inclusion and date of first cardiovascular event, date of death, date of loss to follow-up or the preselected date of 1 March 2010. From 1996 until 1 March 2010, 52 (4%) patients were lost to follow-up due to migration or discontinuation of the study.

Data acquisition

Baseline measurements were performed on a single day at the UMC Utrecht. Medical history, use of current medication and
Table 1. Definition of study outcome events.

Outcome Event	Definition
Ischemic cardiac complication	Myocardial infarction, sudden death or fatal congestive heart failure
Ischemic stroke	Relevant clinical features that caused an increase in impairment of at least one grade on the modified Rankin scale, with or without a new relevant ischemic lesion at brain imaging
Vascular death	Death caused by myocardial infarction, stroke, sudden death (unexpected cardiac death occurring within 1 hour after onset of symptoms, or within 24 hours given convincing circumstantial evidence), congestive heart failure, rupture of abdominal aortic aneurysm or death from another vascular cause.
Composite vascular outcome event/Vascular event	A composite of stroke, ischemic cardiac complication, vascular mortality, retinal infarction or bleeding or fatal rupture of abdominal aortic aneurysm
Other vascular event	A composite of hemorrhagic stroke, retinal infarction or bleeding, sudden death, fatal rupture of abdominal aortic aneurysm and other vascular complications or death.
Nonvascular death	Death caused by infection, cancer, unnatural death, or death from another nonvascular cause.
All-cause mortality	Death of a vascular or non-vascular cause

Data analysis

Continuous variables are expressed as mean ± standard deviation (SD) when normal distributed or as median (interquartile range (IQR)) in case of skewed distribution. Categorical variables are expressed as numbers (percentage).

The relation between various patient characteristics and plasma CTGF was quantified with linear regression analysis with CTGF as the dependent variable, and adjustments were made for age, gender and estimated GFR (eGFR). The natural logarithm of CTGF was used to get a normal distribution that allowed parametric analysis. Results are expressed as beta (β) regression coefficients with 95% confidence intervals (95%CI) denoting the change in plasma CTGF for every change in each individual patient characteristic.

Cox proportional hazards analysis was performed to estimate hazard ratios (HRs) with 95% confidence intervals for the occurrence of a new vascular event and all-cause mortality associated with every 1 nmol/L increase in plasma CTGF. Three models were used. In model 1 the unadjusted association between plasma CTGF, cardiovascular events and mortality was examined. In model 2 adjustments were made for age, gender and eGFR, since eGFR was independently associated with plasma CTGF and is also related to cardiovascular outcome. In model 3 additional adjustments were made for the Framingham risk score (%), diabetes mellitus, systolic and diastolic blood pressure, total cholesterol, LDL cholesterol, use of renin angiotensin aldosterone system (RAAS) blockers and use of statins, which are all considered as potentially confounding factors in the relation between CTGF and vascular events. To investigate whether the relation between CTGF and new vascular events and between CTGF and all-cause mortality was modified by gender, we included these interaction terms in the Cox model. If the p-value of the interaction term was <0.05 effect-modification was considered to be present. Next, the study population was divided into tertiles of plasma CTGF and HRs for the occurrence of cardiovascular events and mortality were estimated for each tertile using the lowest plasma CTGF tertile as reference. In addition, one minus survival plots based on Cox regression analysis were made for each CTGF tertile with adjustment for the same confounding variables as included in model 3 (gender, age, eGFR, DM, blood pressure, total cholesterol, use of RAAS blockers and use of statins).

Single imputation methods were used to reduce missing covariate data for smoking (n = 8 (<1%)), use of statins (n = 48 (4%)), systolic blood pressure (n = 1 (<1%)), diastolic blood pressure (n = 1 (<1%)), body mass index (n = 1 (<1%)), abdominal adipose tissue (n = 8 (<1%)), intima media thickness (n = 25 (2%)), eGFR (n = 14 (1%)), total cholesterol (n = 16 (1%)), LDL-cholesterol (n = 21 (2%)), HDL-cholesterol (n = 21 (2%)), triglycerides (n = 19 (2%)), homocysteine (n = 18 (1%)) and albuminuria (n = 107 (9%)), since incomplete case analysis leads to loss of statistical power and possibly bias. p < 0.05 was considered significant (two-tailed). All the analyses were performed with SPSS software (version 16.0; SPSS Inc., Chicago, IL).

Results

Baseline characteristics

In Table 2 the baseline characteristics of the study population are presented. Mean age was 59.0 ± 9.9 years and 80% was male. The majority of the patients had an eGFR >60 mL/min/1.73m² (n = 1074 (88%)). Median plasma CTGF was 1.18 nmol/L with a range of 0.18–6.47 nmol/L.

Relationship between plasma CTGF and patient characteristics

Compared to patients with other vascular disease localizations, plasma CTGF was lowest in patients with cerebrovascular disease. Plasma CTGF was inversely related to eGFR, adjusted for age and gender (β = −0.004 using the natural logarithm of CTGF; 95%CI −0.005 to −0.002), which implies that for every 1 mL/min/1.73 m² increase in eGFR plasma CTGF decreased with 0.4% (95%CI 0.2 to 0.5) (Table 3). Univariate analysis revealed that plasma CTGF relates to total cholesterol and LDL cholesterol (R²=0.0061, p <0.01 and R²=0.0031, p <0.01 respectively; Supplementary Figure 1). After the adjustment for age, gender and eGFR, plasma CTGF remained positively associated with total cholesterol (β = 0.040; 95%CI 0.013 to 0.067) and LDL cholesterol (β = 0.031; 95%CI 0.000 to 0.062). Plasma CTGF was not related to DM, blood pressure or pulse pressure, BMI or abdominal adipose tissue, left ventricular hypertrophy, cIMT, smoking, use of RAAS blockers, hsCRP or albuminuria. There were no
indications for presence of a J-shaped relationship between these variables and plasma CTGF.

CTGF and risk of cardiovascular events and mortality

During a median follow-up of 6.5 years (IQR 5.3–7.4) (total number of follow-up years 7637), 131 subjects died (of whom 73 due to a cardiovascular cause), 92 experienced an ischemic cardiac complication and 45 an ischemic stroke. After adjustment for age, gender and eGFR, every 1 mmol/L increase in plasma CTGF was associated with an increased risk of all vascular events (HR 1.21; 95%CI 1.04–1.41), ischemic cardiac events (HR 1.39; 95%CI 1.17–1.65) and all-cause mortality (HR 1.19; 95%CI 1.02–1.39) (Table 4). RAAS activation, diabetes mellitus and changes in cholesterol metabolism are phenomena known to influence plasma CTGF levels (Watts & Spiteri, 2004; Wolf, 2006; Yang et al., 2013). Therefore, additional adjustment for DM, blood pressure, total cholesterol, LDL cholesterol, use of RAAS blockers and use of statins were made. However, none substantially changed the relation between CTGF and cardiovascular events (model 3). Additional analyses adjusting for factors that were possibly in the causal pathway (Framingham risk score, cIMT, pulse pressure, hsCRP, left ventricular hypertrophy, LDL and albuminuria) also did not markedly alter the HRs (data not shown). The risk of ischemic stroke associated with plasma CTGF was not significantly increased (HR 0.88; 95%CI 0.61–1.27). The relation between CTGF and subsequent vascular events and between CTGF and all-cause mortality was not modified by gender (p-values for interaction 0.335 for all vascular events and 0.223 for all-cause mortality).

We further assessed the relationship between plasma CTGF and cardiovascular events and mortality by dividing the study population into tertiles of plasma CTGF (Figure 1, Table 5). Compared to the patients in the lowest tertile of plasma CTGF, patients in the highest tertile had a 61% higher risk of developing a new cardiovascular event and a 75% higher risk of dying from any cause, after adjustment for age, gender and eGFR (Table 5). HR for nonvascular death in the highest tertile did not reach significance when the lowest tertile was used as reference, but was significantly higher when the lowest and middle tertile were combined into a single reference group (HR 1.79; 95%CI 1.06–3.03).

Discussion

The main finding of the present study is that baseline plasma CTGF is associated with an increased risk of new cardiovascular events and mortality in patients with clinically manifest atherosclerotic vascular disease in a large population of patients with manifest vascular disease. This was independent of established cardiovascular risk factors.

Plasma CTGF has been studied in patients with type I DM and was found to be an independent predictor of all-cause mortality in patients with diabetic nephropathy (Nguyen et al., 2008). We recently found a positive association between plasma CTGF and risk of all-cause mortality in end stage renal disease patients on hemodialysis (Den Hoedt et al., 2012). In line with these findings, we observed a robust relationship between plasma CTGF and risk of death in the current study population of patients with manifest vascular disease. CTGF was associated with both vascular and nonvascular death. This might be explained by CTGF as a key determinant of activity of tissue fibrogenesis, and fibrosis as the common final pathway of chronic diseases of diverse etiology. Besides fibrosis, CTGF has been implicated in various other pathological processes, such as ischemia, inflammation and metabolic derangements (Ohnishi et al., 1998; Roestenberg et al., 2006; Sanchez-Lopez et al., 2009).

In addition to the association with mortality, we found a clear association between CTGF and risk of new cardiovascular events and, in particular, of ischemic cardiac complications. This finding raises the question whether CTGF has a causal role in atherosclerosis and ischemic heart disease or merely reflects a large cardiovascular disease burden.
In atherosclerotic plaques and fibrotic myocardium CTGF expression is strongly upregulated (Daniels et al., 2009) and high plasma CTGF levels may result from high CTGF release into the circulation. In the current study, however, plasma CTGF was not associated with surrogate markers of atherosclerotic burden such as cIMT (Poredos, 2004) and pulse pressure (Syeda et al., 2003), nor with left ventricular hypertrophy which is linked to cardiac fibrosis (Weber &
Brilla, 1993). Pre-clinical studies suggest a role for CTGF in atherogenesis. In vitro, CTGF increases vascular smooth muscle cell (VSMC) proliferation, migration and extracellular matrix production, which may contribute to neointima formation (Fan et al., 2000). In vitro it has been shown that CTGF stimulates osteogenic differentiation of VSMC (Huang et al., 2013). Furthermore, CTGF promoted adherence and migration of monocytes and activated platelets to VSMCs (Cicha et al., 2005; Jedsadayanmata et al., 1999; Schober et al., 2002). Mesenchymal stem cells (MSCs) are circulating
cells involved in arterial repair by mesenchymal to endothelial transdifferentiation (Wan et al., 2012). Stimulation of MSCs with CTGF leads to fibroblastic differentiation and increased extracellular matrix production (Lee et al., 2010; Li et al., 2016). Pericytes are the major vascular supportive cell type involved in the maintenance of vascular homeostasis and integrity. Under pathological conditions pericytes transdifferentiate to myofibroblasts, thus compromising their role in vascular support (Humphreys et al., 2010; van Dijk et al., 2016). Culturing pericytes with CTGF under pathological conditions increased expression of extracellular matrix genes Col1α2 and Fibronectin as well as myofibroblast associated gene αSmooth Muscle Actin (Supplementary Figure 2), which are all markers associated with neointima hyperplasia and myofibroblast accumulation. Additionally, CTGF-mediated modulation results in reduced VEGF-A signaling (Inoki et al., 2002). Taken together, this suggests a major role for CTGF in vascular disease by switching angiogenesis and vascular repair towards neointima formation and atherogenesis.

In a murine model, CTGF injection leads to increased oxidative stress and a vascular inflammatory response associated with endothelial dysfunction (Rodrigues-Diez et al., 2015). CTGF has been implicated in hypertension induced organ damage via mechanical stress induced CTGF gene expression in endothelial cells, vascular smooth muscle cells and cardiomyocytes (Finckenberg, 2003; Lee et al., 2005; Yoshisue et al., 2002). The role of CTGF in the etiology of cardiomyopathy is controversial. Cardiac CTGF expression is increased after ischemic-reperfusion injury and is associated with replacement and reactive fibrosis following myocardial infarction (Daniels et al., 2009). Myocardial overexpression of CTGF in transgenic mice promoted age-dependent development of cardiac hypertrophy (Panek et al., 2009) and enhanced pressure-overload-induced cardiac fibrosis (Yoon et al., 2010). In line with this, dilating cardiomyopathy appears to be CTGF regulated (Koshman et al., 2015), and CTGF reduction attenuates left ventricular remodeling and dysfunction in models of pressure overload (Szabo et al., 2014). However, in other animal models of chronic pressure overload it has been reported that alteration of CTGF levels are of little consequence to the phenotype (Accornero et al., 2015; Fontes et al., 2015). In stark contrast, it has also been reported that CTGF exerts protective effects during experimental cardiac pressure overload (Gravning et al., 2013). Additional evidence for a pathogenic role of CTGF in cardiovascular disease comes from a study in experimental diabetes, which showed that neutralizing anti-CTGF antibody therapy prevented and reversed arterial stiffening, cardiac dysfunction and hypertension (Langsetmo et al., 2006). Future studies should clarify the role of CTGF in the pathogenesis of cardiovascular disease and should evaluate whether anti-CTGF therapies are beneficial.

An interesting question is what the source is of increased plasma CTGF in patients with manifest cardiovascular disease. The N-terminal CTGF cleavage fragment is the predominant form of CTGF in plasma which is largely cleared by the kidney (Gerritsen et al., 2012). Indeed in our study,
plasma CTGF was negatively related to eGFR. However, multivariable survival analysis adjusting for eGFR showed CTGF to be independent of renal clearance, indicating an additional contribution of locoregional de novo production. Under physiological circumstances CTGF is produced at low levels. As discussed above, increased CTGF expression has been shown in many tissues and cells, including atherosclerotic plaques and fibrotic myocardium (Daniels et al., 2009; Ponticos, 2013), cardiomyocytes and fibroblasts upon myocardial infarction (Daniels et al., 2009) and endothelial cells, vascular smooth muscle cells and cardiomyocytes exposed to mechanical stress as in hypertension (Finckenberg, 2003; Lee et al., 2005; Yoshihise et al., 2002). However, given the wide variety of tissues that overexpress CTGF during disease that are also involved in cardiovascular disease, the source of the excessive plasma CTGF is probably even more diverse.

Our finding that CTGF is associated with total and LDL cholesterol may suggest that CTGF is involved in the pathway through which lipoproteins promote the development of atherosclerotic vascular disease. This is supported by previous observations that treatment of human aortic endothelial cells with LDL induced CTGF gene expression (Sohn et al., 2006) and that HMG-CoA reductase inhibitors inhibited CTGF induction in human umbilical cord endothelial cells exposed to non-uniform shear stress (Cicha et al., 2008). Remarkably, while the association with the composite endpoint of vascular events was evident, we did not observe an increased risk of ischemic stroke in patients with higher baseline plasma CTGF. Plasma CTGF was lower in patients with previous cerebrovascular disease, but stratification for prior cerebrovascular disease did not substantially change the results. Although our study provides no proper explanation for the discrepancy between cerebrovascular and other vascular events, it is interesting to note that in a previous study we observed an association between CTGF levels in carotid plaques from patients undergoing carotid endarterectomy and stable plaque characteristics (Leeuwis et al., 2010).

Study limitations

We acknowledge several limitations of this study. First, we measured CTGF only once at baseline. However, it is not known to what extent CTGF levels vary over time in the individual patient. Second, recruitment was conducted at a single center and the study population included mainly Caucasian patients. Both facts limit the generalization of our results to a wider-ranging population with manifest vascular disease.

Strengths of the present study are the large number of well-described patients with various manifestations of atherosclerotic vascular disease and the virtually complete follow-up.

Conclusions

Elevated plasma CTGF increases the risk of cardiovascular events and all-cause mortality in patients with manifest vascular disease. CTGF may therefore be regarded as a novel marker to identify vascular patients at the highest risk of recurrent cardiovascular events and mortality.

Acknowledgments

We gratefully acknowledge the contribution of the SMART research nurses, R. van Petersen (data-manager), A. G. Pijl (vascular manager), Danny Kanhai (research physician) and the participants of the SMART Study Group (A. Algra, Julius Center for Health Sciences and Primary Care and Rudolph Magnus Institute of Neuroscience, Department of Neurology; Y. van der Graaf, G.E.H.M. Rutten, D.E. Grobbee, Julius Center for Health Sciences and Primary Care; F.L.J. Visseren, Department of Vascular Medicine; P.A. Doevendans, Department of Cardiology; F.L. Moll, Department of Vascular Surgery; L.J. Kappelle, Department of Neurology; W.P.Th.M. Mali, Department of Radiology).

Declaration of interest

This work was supported the University Medical Center Utrecht, Utrecht, The Netherlands. LLF was funded by the Netherlands Institute of Regenerative Medicine (NIRM, FE80908).

References

Accornero F, van Berlo JH, Correll RN, Elrod JW, Sargent MA, York A, Rabinowitz JE, et al. 2015. Genetic analysis of connective tissue growth factor as an effector of transforming growth factor beta signaling and cardiac remodeling, Mol Cell Biol 35:2154–2164.

Behnes M, Brueckmann M, Lang S, Weiss C, Ahmad-Nejad P, Neuhauser M, Borggreve M, Hoffmann U. 2014. Connective tissue growth factor (CTGF/CCN2): Diagnostic and prognostic value in acute heart failure. Clin Res Cardiol 105:107–116.

Casale PN, Devereux RB, Kliffigard P, Eisenberg RR, Miller DH, Chaudhary BS, Phillips MC. 1985. Electrocardiographic detection of left ventricular hypertrophy: Development and prospective validation of improved criteria, J Am Coll Cardiol 6:572–580.

Cheng O, Thullier R, Sampson E, Schulz G, Ruiz P, Zhang X, Yuen PS, Mannon RB. 2006. Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis, Am J Transplant 6:2292–2306.

Cicha I, Goppelt-Streube M. 2009. Connective tissue growth factor: Context-dependent functions and mechanisms of regulation, Biofactors 35:200–208.

Cicha I, Goppelt-Streube M, Muehlich S, Yilmaz A, Raaz D, Daniel WG, Garличs CD. 2008. Pharmacological inhibition of RhoA signaling prevents connective tissue growth factor induction in endothelial cells exposed to non-uniform shear stress, Atherosclerosis 196:136–145.

Cicha I, Yilmaz A, Klein M, Raithel D, Briggstock DR, Daniel WG, Goppelt-Streube M, Garlichs CD. 2005. Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro, Arterioscler Thromb Vasc Biol 25:1008–1013.

Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. 2009. Connective tissue growth factor and cardiac fibrosis, Acta Physiol (Oxf) 195:321–338.

Den Hoedt CH, Gerritsen KG, Grooten MP, Penne EL, Van der Weerd NC, Mazaricah AH, Ter Wee PM, et al. 2012. Connective tissue growth factor is related to all cause mortality in hemodialysis patients and is lowered by on-line hemodiarefiltration, Results from the CONective TRAnsport STudy, In: Gerritsen K, Editor, Pharmacokinetics of connective tissue growth factor, Chapter 8.

Dendooven A, Gerritsen KG, Nguyen TQ, Kok RJ, Goldschmeding R. 2011. Connective tissue growth factor (CTGF/CCN2) ELISA: A novel tool for monitoring fibrosis, Biomarkers 16:289–301.

Fan WH, Pech M, Kavernsky MJ. 2000. Connective tissue growth factor (CTGF) stimulates vascular smooth muscle cell growth and migration in vitro, Eur J Cell Biol 79:915–923.
Finkenberq P. 2003. Regulation of Connective Tissue Growth Factor (CTGF) in hypertension-induced end organ damage [E-Thesis]. University of Helsinki, 1–75.

Fontes MS, Kessler EL, van Stuijvenberg L, Brans MA, Falke LL, Kok B, Leask A, et al. 2015. CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload. J Mol Cell Cardiol 88:82–90.

Gerritsen KG, Abrahms AC, Peters HP, Nguyen TQ, Koemers MP, den Hoedt CH, Denouden A, et al. 2012. Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations. Am J Kidney Dis 59:618–627.

Gomez-Garre D, Martin-Ventura JL, Granados R, Sancho T, Torres R, Ruano M, Garcia-Puig J, Eguio J. 2006. Losartan improves resistance artery lesions and prevents CTGF and TGF-beta production in mild hypertensive patients. Kidney Int 69:1237–1244.

Gravning J, Ahmed MS, von Lueder TG, Edvardsen T, Atturamadal H. 2013. CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. Int J Cardiol 168:2049–2056.

Huang J, Huang H, Wu M, Li J, Xie H, Zhou H, Liao E, Peng Y. 2013. Connective tissue growth factor induces osteogenic differentiation of vascular smooth muscle cells through ERK signaling. Int J Mol Med 32:423–429.

Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, et al. 2010. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97.

Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, et al. 2002. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Faseb J 16:219–221.

Ito Y, Aten J, Nguyen TQ, Joles JA, Matsuo S, Weening JJ, Goldschmeding R. 2011. Involvement of connective tissue growth factor in human and experimental hypertension nephrosclerosis. Nephron Exp Nephrol 117:e9–e20.

Jaffa AA, Usinger WR, McHenry MB, Jaffa MA, Lipstiz SR, Lackland D, Lopes-Virella M, et al. 2008. Connective tissue growth factor and susceptibility to renal and vascular disease risk in type 1 diabetes. J Clin Endocrinol Metab 93:1893–1900.

Jedsadayamata A, Chen CC, Kireeva ML, Lau LF, Lam SC. 1999. Activation-dependent adhesion of human platelets to C1r61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem 274:24321–24327.

Koitabashi N, Arai M, Niwano K, Watanabe A, Endoh M, Suguta M, Jedsadayanmata A, Chen CC, Kireeva ML, Kuroki Y, et al. 2006. Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur J Heart Fail 10:373–379.

Koshman YE, Sternlicht MD, Kim T, O’Hara CP, Koczor CA, Lewis W, Seeley TW, et al. 2015. Connective tissue growth factor regulates cardiac function and tissue remodeling in a mouse model of dilated cardiomyopathy. J Mol Cell Cardiol 89:214–222.

Lan TH, Huang XQ, Tan HM. 2013. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol 22:401–407.

Lanstoneme J, Jacob CT, Zhang W, Oliver N, Lin A, Coker G, Liu DY. 2013. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol 22:401–407.

Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F. 2002. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254.

Li C, Zhen G, Chai Y, Xie L, Crane JL, Farber E, Farber CR, et al. 2016. Rhoa determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun 7:11455.

Nguyen TQ, Tarnow L, Jorsal A, Oliver N, Roestenberg P, Ito Y, Parving HH, et al. 2008. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31:1177–1182.

Ohtsuki H, Oka T, Kusachi S, Nakashima T, Takeda K, Nakahama M, Doi M, et al. 1998. Increased expression of connective tissue growth factor in the infantile zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol 30:2411–2422.

Panek AN, Poschi M, Akena N, Ghadde SK, Erdmann B, Popova E, Perrot A, et al. 2009. Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS One 4:e6743.

Poncios M. 2013. Connective tissue growth factor (CCN2) in blood vessels. Vasc Pharmacol 58:189–193.

Poredos P. 2004. Intima-media thickness: Indicator of cardiovascular risk and measure of the extent of atherosclerosis. Vasc Med 9:46–54.

Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ. 2014. Endothelial cell mineralocorticoid receptors regulate deoxycoctiterosine/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension 63:1033–1040.

Rodriguez-Diez RR, Garcia-Redondo AB, Oregado M, Rodrigues-Diez R, Briones AM, Bosch-Panadero E, Kery G, et al. 2015. The C-terminal module IV of connective tissue growth factor, through EGFR/Nox1 signaling, activates the NF-kappaB pathway and proinflammatory factors in vascular smooth muscle cells. Antioxid Redox Signal 22:29–47.

Roestenberg P, van Nieuwenhoven FA, Joles JA, Trischberger C, Martens PP, Oliver N, Aten J, Wiersinga WM, et al. 2006. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol 290:F1344–F1354.

Roestenberg P, van Nieuwenhoven FA, Wieten L, Boer P, Diekman T, Tiller AM, et al. 2004. Connective tissue growth factor is increased in plasma of type 1 diabetic patients with nephropathy. Diabetes Care 27:1164–1170.

Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. 2007. TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206.

Sanchez-Lopez E, Rayego S, Rodrigues-Diez R, Rodriguez JS, Rodriguez-Vita J, Carvajal G, Areoiea LS, et al. 2009. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB. J Am Soc Nephrol 20:1513–1526.

Schauer TM, Chen N, Grzeszkiewicz TM, Jovanovic I, Emeson EE, Ugurova TP, Ye RD, et al. 2002. Identification of integrin alpha(M)beta(2) as an adhesion receptor on peripheral blood monocytes for C1r61 and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 99:4457–4465.

Simons PC, Algra A, van de Laak MF, Grobbe DE, van der Graaf Y. 1999. Second manifestations of ARterial disease (SMART) study: Rationale and design. Eur J Epidemiol 15:773–781.

Slagman MC, Nguyen TQ, Waanders F, Vogt L, Hennmeller MH, Laverman GD, Goldschmeding R, Navis G. 2011. Effects of antiproteinuric intervention on elevated connective tissue growth factor (CTGF/CCN-2) plasma and urine levels in nondiabetic nephropathy. Clin J Am Soc Nephrol 6:1845–1850.

Sohn M, Tan Y, Wang B, Klein RL, Trojanowska M, Jaffa AA. 2006. Mechanisms of low-density lipoprotein-induced expression of connective tissue growth factor in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 290:H1624–H1634.

Sokolow M, Lyon TP. 2001. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. 1949. Ann Noninvasive Electrocardiol 6:343–368.

Stolk RP, Meijer R, Mali WP, Grobbe DE, van der Graaf Y. 2003. Ultrasound measurements of intraabdominal fat estimate the metabolic syndrome better than do measurements of waist circumference. Am J Clin Nutr 77:857–860.

Syeda B, Gottsau-Wolf M, Denk S, Pichler P, Khorsand A, Glogar D. 2011. Involvement of connective tissue growth factor (CTGF) in hypertension-induced end organ damage [E-Thesis]. University of Helsinki, 1–75.

Tarnow L, Jorsal A, Oliver N, Roestenberg P, Ito Y, Parving HH, et al. 2008. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31:1177–1182.

van Nieuwenhoven FA, Joles JA, Trischberger C, Martens PP, Oliver N, Aten J, Wiersinga WM, et al. 2006. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol 290:F1344–F1354.

Voors AA, Pambuccian SE, van Nieuwenhoven FA, Ito Y, Parving HH, et al. 2008. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31:1177–1182.
left ventricular remodeling and dysfunction in pressure overload-induced heart failure. Hypertension 63:1235–1240.

Tapp RJ, Shaw JE, Zimmet PZ, Balkau B, Chadban SJ, Tonkin AM, Welborn TA, Atkins RC. 2004. Albuminuria is evident in the early stages of diabetes onset: Results from the Australian diabetes, obesity, and lifestyle study (AusDiab). Am J Kidney Dis 44:792–798.

van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, et al. 2015. The complex mural cell: Pericyte function in health and disease. Int J Cardiol 190:75–89.

Van Geest RJ, Leeuwis JW, Dendooven A, Pfister F, Bosch K, Hoeben KA, Vogels IM, et al. 2014. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes. J Histochem Cytochem 62:109–118.

Wan M, Li C, Zhen G, Jiao K, He W, Jia X, Wang W, et al. 2012. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 30: 2498–2511.

Watts KL, Spiteri MA. 2004. Connective tissue growth factor expression and induction by transforming growth factor-beta is abrogated by simvastatin via a Rho signaling mechanism. Am J Physiol Lung Cell Mol Physiol 287:L1323–L1332.

Weber KT, Brilla CG. 1993. Structural basis for pathologic left ventricular hypertrophy. Clin Cardiol 16:II10–II14.

Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. 1998. Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847.

Wolf G. 2006. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 70:1914–1919.

Yan LF, Wei YN, Nan HY, Yin Q, Qin Y, Zhao X, Chen BY, et al. 2014. Proliferative phenotype of pulmonary microvascular endothelial cells plays a critical role in the overexpression of CTGF in the bleomycin-injured rat. Exp Toxicol Pathol 66:61–71.

Yang B, Hodgkinson AD, Shaw NA, Millward BA, Demaine AG. 2013. Protective effect of statin therapy on connective tissue growth factor induction by diabetes in vivo and high glucose in vitro. Growth Factors 31:199–208.

Yoon PO, Lee MA, Cha H, Jeong MH, Kim J, Jang SP, Choi BY, et al. 2010. The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 49:294–303.

Yoshisue H, Suzuki K, Kawabata A, Ohyta T, Zhao H, Sakurada K, Tabay Y, et al. 2002. Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis 162: 323–334.

Supplementary material available online

Supplementary Figures 1 and 2