The Verlinde formula for PGL_p

Arnaud Beauville

To the memory of
Claude Itzykson

Introduction

The Verlinde formula expresses the number of linearly independent conformal blocks in any rational conformal field theory. I am concerned here with a quite particular case, the Wess-Zumino-Witten model associated to a complex semi-simple group G. In this case the space of conformal blocks can be interpreted as the space of holomorphic sections of a line bundle on a particular projective variety, the moduli space M_G of holomorphic G-bundles on the given Riemann surface. The fact that the dimension of this space of sections can be explicitly computed is of great interest for mathematicians, and a number of rigorous proofs of that formula (usually called by mathematicians, somewhat incorrectly, the “Verlinde formula”) have been recently given (see e.g. [F], [B-L], [L-S]).

These proofs deal only with simply-connected groups. In this paper we treat the case of the projective group PGL_r when r is prime.

Our approach is to relate to the case of SL_r, using standard algebro-geometric methods. The components $M^d_{\text{PGL}_r}$ ($0 \leq d < r$) of the moduli space M_{PGL_r} can be identified with the quotients M^d_r/J_r, where M^d_r is the moduli space of vector bundles on X of rank r and fixed determinant of degree d, and J_r the finite group of holomorphic line bundles α on X such that $\alpha^{\otimes r}$ is trivial. The space we are looking for is the space of J_r-invariant global sections of a line bundle L on M^d_r; its dimension can be expressed in terms of the character of the representation of J_r on $H^0(M^d_r, L)$. This is given by the Lefschetz trace formula, with a subtlety for $d = 0$, since M^0_r is not smooth. The key point (already used in [N-R]) which makes the computation quite easy is that the fixed point set of any non-zero element of J_r is an abelian variety – this is where the assumption on the group is essential. Extending the method to other cases would require a Chern classes computation on the moduli space M_H for some semi-simple subgroups H of G; this may be feasible, but goes far beyond the scope of the present paper. Note that the case of $M^1_{\text{PGL}_2}$ has been previously worked out in [P] (with an unfortunate misprint in the formula).

1 Partially supported by the European HCM project “Algebraic Geometry in Europe” (AGE).
2 This group is the complexification of the compact semi-simple group considered by physicists.
In the last section we check that our formulas agree with the predictions of Conformal Field Theory, as they appear for instance in [F-S-S]. Note that our results are slightly more precise (in this particular case): we get a formula for \(\dim H^0(M_{\text{PGL}}^d, \mathcal{L}) \) for every \(d \), while CFT only predicts the sum of these dimensions (see Remark 4.3).

1. The moduli space \(M_{\text{PGL}}^r \)

(1.1) Throughout the paper we denote by \(X \) a compact (connected) Riemann surface, of genus \(g \geq 2 \); we fix a point \(p \) of \(X \). Principal \(\text{PGL}_r \)-bundles on \(X \) correspond in a one-to-one way to projective bundles of rank \(r-1 \) on \(X \), i.e. bundles of the form \(\mathbf{P}(E) \), where \(E \) is a rank \(r \) vector bundle on \(X \); we say that \(\mathbf{P}(E) \) is semi-stable if the vector bundle \(E \) is semi-stable. The semi-stable projective bundles of rank \(r-1 \) on \(X \) are parameterized by a projective variety, the moduli space \(M_{\text{PGL}}^r \).

Two vector bundles \(E, F \) give rise to isomorphic projective bundles if and only if \(F \) is isomorphic to \(E \otimes \alpha \) for some line bundle \(\alpha \) on \(X \). Thus a projective bundle can always be written as \(\mathbf{P}(E) \) with \(\det E = \mathcal{O}_X(dp) \), \(0 \leq d < r \); the vector bundle \(E \) is then determined up to tensor product by a line bundle \(\alpha \) with \(\alpha^r = \mathcal{O}_X \). In particular, the moduli space \(M_{\text{PGL}}^r \) has \(r \) connected components \(M_{\text{PGL}}^d \) \((0 \leq d < r)\). Let us denote by \(M_{\text{r}}^d \) the moduli space of semi-stable vector bundles on \(X \) of rank \(r \) and determinant \(\mathcal{O}_X(dp) \), and by \(J_r \) the kernel of the multiplication by \(r \) in the Jacobian \(J_X \) of \(X \); it is a finite group, canonically isomorphic to \(H^1(X, \mathbb{Z}/(r)) \). The group \(J_r \) acts on \(M_{\text{r}}^d \), by the rule \((\alpha, E) \mapsto E \otimes \alpha \); it follows from the above remarks that the component \(M_{\text{PGL}}^d \) is isomorphic to the quotient \(M_{\text{r}}^d/J_r \).

(1.2) We will need a precise description of the line bundles on \(M_{\text{PGL}}^r \). Let me first recall how one describes line bundles on \(M_{\text{r}}^d \) [D-N]: a simple way is to mimic the classical definition of the theta divisor on the Jacobian of \(X \) (i.e. in the rank 1 case). Put \(\delta = (r, d) \); let \(A \) be a vector bundle on \(X \) of rank \(r/\delta \) and degree \((r(g-1)-d)/\delta \). These conditions imply \(\chi(E \otimes A) = 0 \) for all \(E \) in \(M_{\text{r}}^d \); if \(A \) is general enough, it follows that the condition \(H^0(X, E \otimes A) \neq 0 \) defines a (Cartier) divisor \(\Theta_A \) in \(M_{\text{r}}^d \). The corresponding line bundle \(\mathcal{L}_d := \mathcal{O}(\Theta_A) \) does not depend on the choice of \(A \), and generates the Picard group \(\text{Pic}(M_{\text{r}}^d) \).

(1.3) The quotient map \(q : \mathcal{M}_{\text{r}}^d \to \mathcal{M}_{\text{PGL}}^d \) induces a homomorphism \(q^* : \text{Pic}(\mathcal{M}_{\text{PGL}}^d) \to \text{Pic}(\mathcal{M}_{\text{r}}^d) \), which is easily seen to be injective. Its image is determined in [B-L-S]: it is generated by \(\mathcal{L}^\delta_d \) if \(r \) is odd, by \(\mathcal{L}^\delta_d \) if \(r \) is even.

(1.4) Let \(\mathcal{L}' \) be a line bundle on \(\mathcal{M}_{\text{PGL}}^d \). The line bundle \(\mathcal{L} := q^* \mathcal{L}' \) on
M_d' admits a natural action of J_r, compatible with the action of J_r on M_d' (this is often called a J_r-linearization of \mathcal{L}). This action is characterized by the property that every element α of J_r acts trivially on the fibre of \mathcal{L} at a point of M_d' fixed by α. In the sequel we will always consider line bundles on M_d' of the form $q^*\mathcal{L}'$, and endow them with the above J_r-linearization.

This linearization defines a representation of J_r on the space of global sections; essentially by definition, the global sections of \mathcal{L}' correspond to the J_r-invariant sections of \mathcal{L}. Therefore our task will be to compute the dimension of the space of invariant sections; as indicated in the introduction, we will do that by computing, for any $\alpha \in J_r$ of order r, the trace of α acting on $H^0(\text{M}_d', \mathcal{L})$.

2. The action of J_r on $H^0(\text{M}_d', \mathcal{L}_d^k)$

We start with the case when r and d are coprime, which is easier to deal with because the moduli space is smooth.

Proposition 2.1. Assume r and d are coprime. Let k be an integer; if r is even we assume that k is even. Let α be an element of order r in JX. Then the trace of α acting on $H^0(\text{M}_d', \mathcal{L}_d^k)$ is $(k + 1)(r - 1)(g - 1)$.

Proof: The Lefschetz trace formula reads [A-S]

$$\text{Tr}(\alpha \mid H^0(\text{M}_d', \mathcal{L}_d^k)) = \int_P \text{Todd}(T_P) \lambda(N_P/M_d', \alpha)^{-1} \tilde{\text{ch}}(\mathcal{L}_d^k_{|P}, \alpha).$$

Here P is the fixed subvariety of α; whenever F is a vector bundle on P and φ a diagonalizable endomorphism of F, so that F is the direct sum of its eigen-subbundles F_λ for $\lambda \in \mathbb{C}$, we put

$$\tilde{\text{ch}}(F, \varphi) = \sum \lambda \text{ch}(F_\lambda); \quad \lambda(F, \varphi) = \prod_{\lambda, p \geq 0} (-\lambda)^p \text{ch}(\Lambda^p F_\lambda^*) .$$

We have a number of informations on the right hand side thanks to [N-R]:

(2.1 a) Let $\pi: \tilde{X} \to X$ be the étale r-sheeted covering associated to α; put $\xi = \alpha^{r(r-1)/2} \in JX$. The map $L \mapsto \pi_*(L)$ identifies any component of the fibre of the norm map $Nm: J^d\tilde{X} \to J^dX$ over $\xi(dp)$ with P. In particular, P is isomorphic to an abelian variety, hence the term $\text{Todd}(T_P)$ is trivial.

(2.1 b) Let $\theta \in H^2(P, \mathbb{Z})$ be the restriction to P of the class of the principal polarization of $J^d\tilde{X}$. The term $\lambda(N_P/M_d', \alpha)$ is equal to $r^{r(g-1)}e^{-r\theta}$.

(2.1 c) The dimension of P is $N = (r - 1)(g - 1)$, and one has $\int_P \frac{q^N}{N!} = r^{g-1}$.

With our convention the action of α on $\mathcal{L}_d^k_{|P}$ is trivial. The class $c_1(\mathcal{L}_d_{|P})$ is equal to $r\theta$: the pull back to P of the theta divisor Θ_Λ (1.2) is the divisor of
line bundles L in P with $H^0(L \otimes \pi^*A) \neq 0$; to compute its cohomology class we may replace π^*A by any vector bundle with the same rank and degree, in particular by a direct sum of r line bundles of degree $r(g-1)-d$, which gives the required formula.

Putting things together, we find

$$\text{Tr}(\alpha | H^0(M_r^d, \mathcal{L}_d^k)) = \int_P r^{-r(g-1)} e^{r\theta} e^{k\theta} = (k+1)^{(r-1)(g-1)} .$$

We now consider the degree 0 case:

Proposition 2.2. Let k be a multiple of r, and of $2r$ if r is even; let α be an element of order r in JX. Then the trace of α acting on $H^0(M_r^0, \mathcal{L}_0^k)$ is $(k/r + 1)^{(r-1)(g-1)}$.

Proof: We cannot apply directly the Lefschetz trace formula since it is manageable only for smooth projective varieties; instead we use another well-known tool, the Hecke correspondence (this idea appears for instance in [B-S]). For simplicity we write M_d instead of M_r^d. There exists a Poincaré bundle E on $X \times M_1$, i.e. a vector bundle whose restriction to $X \times \{E\}$, for each point E of M_1, is isomorphic to E. Such a bundle is determined up to tensor product by a line bundle coming from M_1; we will see later how to normalize it. We denote by E_p the restriction of E to $\{p\} \times M_1$, and by \mathcal{P} the projective bundle $\mathbb{P}(\mathcal{E}_p^*)$ on M_1. A point of \mathcal{P} is a pair (E, φ) where E is a vector bundle in M_1 and $\varphi : E \rightarrow \mathbb{C}_p$ a non-zero homomorphism, defined up to a scalar; the kernel of φ is then a vector bundle $F \in M_1$, and we can view equivalently a point of \mathcal{P} as a pair of vector bundles (F, E) with $F \in M_0$, $E \in M_1$ and $F \subset E$. The projections p_d on M_d $(d = 0, 1)$ give rise to the “Hecke diagram”

$$\begin{array}{ccc}
M_1 & \xleftarrow{p_1} & \mathcal{P} & \xrightarrow{p_0} & M_0
\end{array}$$

Lemma 2.3. The Poincaré bundle \mathcal{E} can be normalized (in a unique way) so that $\det \mathcal{E}_p = \mathcal{L}_1$; then $\mathcal{O}_\mathcal{P}(1) \cong p_0^* \mathcal{L}_0$.

Proof: Let $E \in M_1$. The fibre $p_1^{-1}(E)$ is the projective space of non-zero linear forms $\ell : E_p \rightarrow \mathbb{C}$, up to a scalar. The restriction of $p_0^* \mathcal{L}_0$ to this projective space is $\mathcal{O}(1)$ (choose a line bundle L of degree $g-1$ on X; if E is general enough, $H^0(X, E \otimes L)$ is spanned by a section s with $s(p) \neq 0$, and the condition that the bundle F corresponding to ℓ belongs to Θ_L is the vanishing of $\ell(s(p))$). Therefore
$p_0^*\mathcal{L}_0$ is of the form $\mathcal{O}_P(1) \otimes p_1^*\mathcal{N}$ for some line bundle \mathcal{N} on M_1. Replacing \mathcal{E} by $\mathcal{E} \otimes \mathcal{N}$ we ensure $\mathcal{O}_P(1) \cong p_0^*\mathcal{L}_0$.

An easy computation gives $K_P = p_1^*\mathcal{L}_1^{-1} \otimes p_0^*\mathcal{L}_0^{-r}$ ([B-L-S], Lemma 10.3). On the other hand, since $\mathcal{P} = \mathcal{P}(\mathcal{E}_p)$, one has $K_P = p_1^*(K_{M_1} \otimes \det \mathcal{E}_p) \otimes \mathcal{O}_P(-r)$; using $K_{M_1} = \mathcal{L}_1^{-2}$ [D-N], we get $\det \mathcal{E}_p = \mathcal{L}_1$.

We normalize \mathcal{E} as in the lemma; this gives for each $k \geq 0$ a canonical isomorphism $p_1*p_0^*\mathcal{L}_0^k \cong S^k\mathcal{E}_p$. Let α be an element of order r of JX. It acts on the various moduli spaces in sight; with a slight abuse of language, I will still denote by α the corresponding automorphism. There exists an isomorphism $\alpha^*\mathcal{E} \cong \mathcal{E} \otimes \alpha$, unique up to a scalar ([N-R], lemma 4.7); the induced isomorphism $u : \alpha^*\mathcal{E} \cong \mathcal{E}$ induces the action of α on \mathcal{P}. Imposing $\alpha^r = \text{Id}$ determines u up to a r-th root of unity, hence determines completely $S^k u$ when k is a multiple of r. Since the Hecke diagram is equivariant with respect to α, it gives rise to a diagram of isomorphisms

$$
\begin{array}{ccc}
\text{H}^0(\mathcal{P}, p_0^*\mathcal{L}_0^k) & \xrightarrow{p_1^*} & \text{H}^0(\mathcal{M}_1, S^k\mathcal{E}_p) \\
\xrightarrow{p_0^*} & & \xleftarrow{\text{H}^0(\mathcal{M}_0, \mathcal{L}_0^k)}
\end{array}
$$

which is compatible with the action of α; in particular, the trace we are looking for is equal to the trace of α on $\text{H}^0(\mathcal{M}_1, S^k\mathcal{E}_p)$.

We are now in the situation of Prop. 2.1, and the Lefschetz trace formula gives:

$$
\text{Tr}(\alpha | \text{H}^0(\mathcal{M}_1, S^k\mathcal{E}_p)) = \int_P \text{Todd}(T_P) \lambda(N_{P/M_1}, \alpha)^{-1} \tilde{\chi}(S^k\mathcal{E}_p|_P, \alpha).
$$

The only term we need to compute is $\tilde{\chi}(S^k\mathcal{E}_p|_P, \alpha)$. Let \mathcal{N} be the restriction to $\hat{X} \times P$ of a Poincaré line bundle on $\hat{X} \times \text{JX}$; let us still denote by $\pi : \hat{X} \times P \to X \times P$ the map $\pi \times \text{Id}_P$. The vector bundles $\pi_*(\mathcal{N})$ and $\mathcal{E}|_{X \times P}$ have the same restriction to $X \times \{\gamma\}$ for all $\gamma \in P$, hence after tensoring \mathcal{N} by a line bundle on P we may assume they are isomorphic ([R], lemma 2.5). Restricting to $\{p\} \times P$ we get $\mathcal{E}_{p|_P} = \bigoplus_{\pi(q)=p} \mathcal{N}_q$, with $\mathcal{N}_q = \mathcal{N}|_{\{q\} \times P}$.

We claim that the \mathcal{N}_q’s are the eigen-sub-bundles of $\mathcal{E}_{p|_P}$ relative to α. By (2.1 a), a pair $(E, F) \in \mathcal{P}$ is fixed by α if and only if $E = \pi_*L$, $F = \pi_*L'$, with $\text{Nm}(L) = \xi(p)$, $\text{Nm}(L') = \xi$; because of the inclusion $F \subset E$ we may take L' of the form $L(-q)$, for some point $q \in \pi^{-1}(p)$. In other words, the fixed locus of α acting on \mathcal{P} is the disjoint union of the sections $(\sigma_q |_{\pi^{-1}(p)})$ of the fibration $p_1^{-1}(P) \to P$ characterized by $\sigma_q(\pi_*L) = (\pi_*L, \pi_*(L(-q)))$. Viewing \mathcal{P} as $\mathcal{P}(\mathcal{E}_p|_P)$, the section σ_q corresponds to the exact sequence

$$
0 \to \pi_*(\mathcal{N}(-q))|_{\{p\} \times P} \to \pi_*(\mathcal{N})|_{\{p\} \times P} \cong \mathcal{E}|_{\{p\} \times P} \to \mathcal{N}_q \to 0.
$$
Therefore on each fibre $P(E_p)$, for $E \in P$, the automorphism α has exactly r fixed points, corresponding to the r sub-spaces $N_{(q,E)}$ for $q \in \pi^{-1}(p)$; this proves our claim.

The line bundles N_q for $q \in \tilde{X}$ are algebraically equivalent, and therefore have the same Chern class. We thus have $c_1(E_p|_P) = r c_1(N_q)$. On the other hand we know that $\det E_p = L_1$ (lemma 2.3), and that $c_1(L_1|_P) = r \theta$ (proof of Prop. 2.1). By comparison we get $c_1(N_q) = \theta$. Putting things together we obtain

$$\tilde{\text{ch}}(S^k E_p|_P, \alpha) = \int_P \text{Tr} S^k D_r \ e^{k \theta} r^{-r(g-1)} e^{r \theta}$$

where D_r is the diagonal r-by-r matrix with entries the r distinct r-th roots of unity.

Lemma 2.4. The trace of $S^k D_r$ is 1 if r divides k and 0 otherwise.

Consider the formal series $s(T) := \sum_{i \geq 0} T^i \text{Tr} S^i u$ and $\lambda(T) := \sum_{i \geq 0} T^i \text{Tr} \Lambda^i u$. The formula $s(T)\lambda(-T) = 1$ is well-known (see e.g. [Bo], § 9, formula (11)). But

$$\lambda(-T) = \sum_{i=0}^r (-T)^i \text{Tr} \Lambda^i u = \prod_{\zeta^r = 1} (1 - \zeta T) = 1 - T^r,$$

hence the lemma. Using (2.1 c) the Proposition follows. ■

3. Formulas

In this section I will apply the above results to compute the dimension of the space of sections of the line bundle L^k_d on the moduli space $M^d_{\text{PGL}_r}$. Let me first recall the corresponding Verlinde formula for the moduli spaces M^d_r. Let $\delta = (r,d)$; we write $L_d = D^{r/\delta}$, with the convention that we only consider powers of D which are multiple of r/δ (the line bundle D actually makes sense on the moduli stack M^d_r, and generates its Picard group). We denote by μ_r the center of SL_r, i.e. the group of scalar matrices ζI_r with $\zeta^r = 1$.

Proposition 3.1. Let T_k be the set of diagonal matrices $t = \text{diag}(t_1, \ldots, t_r)$ in $\text{SL}_r(\mathbb{C})$ with $t_i \neq t_j$ for $i \neq j$, and $k^{r+1} \in \mu_r$; for $t \in T_k$, let $\delta(t) = \prod_{i<j} (t_i - t_j)$.

Then

$$\dim H^0(M^d_r, D^k) = r^{g-1}(k + r)^{(r-1)(g-1)} \sum_{t \in T_k/\mu_r} \frac{((-1)^{r-1/r} k^{r+1})^d}{|\delta(t)|^{2g-2}}.$$
Proof: According to [B-L], Thm. 9.1, the space $H^0(M_r^d, D^k)$ for $0 < d < r$ is canonically isomorphic to the space of conformal blocks in genus g with the representation $V_{k \varpi_{r-d}}$ of SL_r with highest weight $k \varpi_{r-d}$ inserted at one point. The Verlinde formula gives therefore (see [B], Cor. 9.8\(^1\)):

$$\dim H^0(M_r^d, D^k) = r^{g-1}(k+r)^{(r-1)(g-1)} \sum_{t \in T_k / \mathfrak{S}_r} \frac{\text{Tr}_{V_{k \varpi_{r-d}}}(t)}{|\delta(t)|^{2g-2}};$$

this is still valid for $d = 0$ with the convention $\varpi_r = 0$.

The character of the representation $V_{k \varpi_{r-d}}$ is given by the Schur formula (see e.g. [F-H], Thm. 6.3):

$$\text{Tr}_{V_{k \varpi_{r-d}}}(t) = \frac{1}{\delta(t)} \begin{vmatrix} t_1^{k+r-1} & t_1^{k+r-2} & \ldots & t_1^2 & t_1^1 \\ t_2^{k+r-1} & t_2^{k+r-2} & \ldots & t_2^2 & t_2^1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ t_r^{k+r-1} & t_r^{k+r-2} & \ldots & t_r^2 & t_r^1 \\ 1 & 1 & \ldots & 1 & 1 \end{vmatrix}.$$

Writing $t^{k+r} = \zeta I_r \in \mu_r$, the big determinant reduces to $\zeta^{r-d}(-1)^{(d-r)} \det(t_{j-i}^{d-i})$, and finally, since $\prod t_i = 1$, to $((-1)^{r-1}\zeta)^{-d}\delta(t)$, which gives the required formula. ■

Corollary 3.2.-- Let T'_k be the set of matrices $t = \text{diag}(t_1, \ldots, t_r)$ in $\text{SL}_r(\mathbb{C})$ with $t_i \neq t_j$ if $i \neq j$, and $t^{k+r} = (-1)^{r-1}I_r$. Then

$$\sum_{d=0}^{r-1} \dim H^0(M_r^d, D^k) = r^g(k+r)^{(r-1)(g-1)} \sum_{t \in T'_k / \mathfrak{S}_r} \frac{1}{|\delta(t)|^{2g-2}} .$$ ■

We now consider the moduli space M_{PGL_r}. We know that the line bundle \mathcal{D}^k on M_r^d descends to $M_{\text{PGL}_r}^d = M_r^d / J_r$ exactly when k is a multiple of r if r is odd, or of $2r$ if r is even (1.3). When this is the case we obtain a line bundle on $M_{\text{PGL}_r}^d$, that we will still denote by \mathcal{D}^k; its global sections correspond to the J_r-invariant sections of $H^0(M_r^d, D^k)$.

We will assume that r is prime, so that every non-zero element α of J_r has order r. Then Prop. 2.1 and 2.2 lead immediately to a formula for the dimension of the J_r-invariant subspace of $H^0(M_r^d, D^k)$ as the average of the numbers $\text{Tr}(\alpha)$ for α in J_r. Using Prop. 3.1 we conclude:

\(^1\) There is a misprint in the first equality of that corollary, where one should read T_ℓ^{reg} / W instead of T_ℓ^{reg}; the second equality (and the proof!) are correct.
Proposition 3.3. Assume that r is prime. Let k be a multiple of r; if $r = 2$ assume $4 \mid k$. Then

$$\dim H^0(M_{PGL_r}, D^k) = r^{-2g} \dim H^0(M_d, D^k) + (1 - r^{-2g}) \left(\frac{k}{r} + 1 \right)^{(r-1)(g-1)}$$

$$= r^{-2g} \left(\frac{k}{r} + 1 \right)^{(r-1)(g-1)} \sum_{t \in T_k/\mathbb{S}_r} \frac{1}{\delta(t)^{2g-2}} + r^{2g} - 1.$$

Summing over d and plugging in Cor. 3.2 gives the following rather complicated formula:

Corollary 3.4. The dimension is given by

$$\dim H^0(M_{PGL_r}, D^k) = r^{1-2g} \left(\frac{k}{r} + 1 \right)^{(r-1)(g-1)} \sum_{t \in T_k/\mathbb{S}_r} \frac{1}{\delta(t)^{2g-2}} + r^{2g} - 1.$$

As an example, if k is an integer divisible by 4, we get

$$(3.5) \quad \dim H^0(M_{PGL_2}, D^k) = 2^{1-2g} \left(\frac{k}{2} + 1 \right)^{g-1} \left(\sum_{0 < i < k+2} \frac{1}{\left(\sin \frac{i\pi}{k+2} \right)^{2g-2}} + 2^{2g} - 1 \right).$$

4. Relations with Conformal Field Theory

(4.1) According to Conformal Field Theory, the space $H^0(M_{PGL_r}, D^k)$ should be canonically isomorphic to the space of conformal blocks for a certain Conformal Field Theory, the WZW model associated to the projective group. This implies in particular that its dimension should be equal to $\sum_{j} |S_{0j}|^{2-2g}$, where (S_{ij}) is a unitary symmetric matrix. For instance in the case of the WZW model associated to SL_2, one has

$$S_{0j} = \frac{\sin \left(\frac{(j+1)\pi}{k+2} \right)}{\sqrt{\frac{k+2}{2} + 1}}, \quad \text{with} \quad 0 \leq j \leq k,$$

where the index j can be thought as running through the set of irreducible representations S^1, \ldots, S^k of SL_2 (or equivalently SU_2), with $S^j := S^j(C^2)$.

We deduce from (3.5) an analogous expression for PGL_2: we restrict ourselves to even indices and write

$$S'_{0j} = 2S_{0j} \quad \text{for} \quad j \text{ even } < k/2; \quad S'_{0,j/2}^{(1)} = S'_{0,j/2}^{(2)} = S_{0k/2}.$$

In other words, we consider only those representations of SL_2 which factor through PGL_2 and we identify the representation S^{2j} with S^{k-2j}, doubling the coefficient
when these two representations are distinct, and counting twice the representation which is fixed by the involution (this process is well-known, see e.g. [M-S]).

(4.2) The case of SL_r is completely analogous; we only need a few more terminology from representation theory (we follow the notation of [B]). The primary fields are indexed by the set P_k of dominant weights λ with $\lambda(H_{\theta}) \leq k$, where H_{θ} is the matrix $\text{diag}(1,0,\ldots,0,-1)$. For $\lambda \in P_k$, we put $t_\lambda = \exp 2\pi i \frac{\lambda + \rho}{k + r}$ (we identify the Cartan algebra of diagonal matrices with its dual using the standard bilinear form); the map $\lambda \mapsto t_\lambda$ induces a bijection of P_k onto T_k/\mathcal{S}_r ([B], lemma 9.3 c)). In view of Prop. 3.1, the coefficient $S_{0\lambda}$ for $\lambda \in P_k$ is given by

$$S_{0\lambda} = \frac{\delta(t_\lambda)}{\sqrt{r(k + r)^{(r-1)/2}}}.$$

Passing to PGL_r, we first restrict the indices to the subset P'_k of elements $\lambda \in P_k$ such that t_λ belongs to T'_k; this means that λ belongs to the root lattice, i.e. that the representation V_λ factors through PGL_r. The center μ_r acts on T_k by multiplication; this action preserves T'_k, and commutes with the action of \mathcal{S}_r. The corresponding action on P_k is deduced, via the bijection $\lambda \mapsto \frac{\lambda + \rho}{k + r}$, from the standard action of μ_r on the fundamental alcove A with vertices $\{0, \varpi_1, \ldots, \varpi_{r-1}\}$.

We identify two elements of P'_k if they are in the same orbit with respect to this action. The action has a unique fixed point, the weight $\frac{k}{r}\rho$, which corresponds to the diagonal matrix D_r (2.4); we associate to this weight r indices $\nu^{(1)}, \ldots, \nu^{(r)}$, and put

$$S'_{0\lambda} = rS_{0\lambda} \quad \text{for } \lambda \in P'_k/\mu_r \; , \; \lambda \neq \frac{k}{r}\rho \; ; \quad S'_{0, \nu^{(i)}} = S_{0, \frac{k}{r}\rho} \quad \text{for } i = 1, \ldots, r \; .$$

One deduces easily from Cor. 3.4 the formula

$$\text{dim} \, H^0(M_{\text{PGL}_r}, D^k) = \sum |S'_{0\lambda}|^2 - 2g \; ,$$

where λ runs over $P'_k/\mu_r \cup \{\nu^{(1)}, \ldots, \nu^{(r)}\}$.

Remark 4.3. It is not clear to me what is the physical meaning of the space $H^0(M^d_{\text{PGL}_r}, D^k)$, in particular if its dimension can be predicted in terms of the S-matrix. It is interesting to observe that the number $N(g)$ given by Prop. 3.3, which is equal to $\text{dim} \, H^0(M^d_{\text{PGL}_r}, D^k)$ for $g \geq 2$, is not necessarily an integer for $g = 1$: for $d = 0$ one finds $N(1) = 1 + \frac{(k + 1)r^{r-1} - 1}{r^2}$, which is not an integer unless $r^2 | k$.

1 The element $\exp \varpi_1$ of the center gives the rotation of A which maps 0 to ϖ_1, ϖ_1 to ϖ_2, ..., and ϖ_{r-1} to 0.
REFERENCES

[A-S] M.F. Atiyah, I.M. Singer: The index of elliptic operators III. Ann. of Math. **87**, 546-604 (1968).

[B] A. Beauville: Conformal blocks, Fusion rings and the Verlinde formula. Proc. of the Hirzebruch 65 Conf. on Algebraic Geometry, Israel Math. Conf. Proc. **9**, 75-96 (1996).

[B-L] A. Beauville, Y. Laszlo: Conformal blocks and generalized theta functions. Comm. Math. Phys. **164**, 385-419 (1994).

[B-L-S] A. Beauville, Y. Laszlo, Ch. Sorger: The Picard group of the moduli of G-bundles on a curve. Preprint [alg-geom/9608002](http://arxiv.org/abs/alg-geom/9608002).

[B-S] A. Bertram, A. Szend: Hilbert polynomials of moduli spaces of rank 2 vector bundles II. Topology **32**, 599-609 (1993).

[Bo] N. Bourbaki: Algèbre, Chap. X (Algèbre homologique). Masson, Paris (1980).

[D-N] J.M. Drezet, M.S. Narasimhan: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. math. **97**, 53-94 (1989).

[F] G. Faltings: A proof for the Verlinde formula. J. Algebraic Geometry **3**, 347-374 (1994).

[F-S-S] J. Fuchs, B. Schellekens, Ch. Schweigert: From Dynkin diagram symmetries to fixed point structures. Preprint [hep-th/9506135](http://arxiv.org/abs/hep-th/9506135).

[F-H] W. Fulton, J. Harris: Representation theory. GTM **129**, Springer-Verlag, New York Berlin Heidelberg (1991).

[L-S] Y. Laszlo, Ch. Sorger: The line bundles on the moduli of parabolic G-bundles over curves and their sections. Annales de l’ENS, to appear; preprint [alg-geom/9507002](http://arxiv.org/abs/alg-geom/9507002).

[M-S] G. Moore, N. Seiberg: Taming the conformal zoo. Phys. Letters B **220**, 422-430 (1989).

[N-R] M.S. Narasimhan, S. Ramanan: Generalized Prym varieties as fixed points. J. of the Indian Math. Soc. **39**, 1-19 (1975).

[P] T. Pantev: Comparison of generalized theta functions. Duke Math. J. **76**, 509-539 (1994).

[R] S. Ramanan: The moduli spaces of vector bundles over an algebraic curve. Math. Ann. **200**, 69-84 (1973).