Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Potent inhibitors of SARS-CoV-2 3C-like protease derived from N-substituted isatin compounds

Pei Liu a,1, Hongbo Liu a,1, Qi Sun a,1, Hao Liang a, Chunmei Li b, Xiaobing Deng a, Ying Liu a, b, *, Luhua Lai a, b, c,*

a BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
b Center for Quantitative Biology, Peking University, Beijing, 100871, China
c Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China

ABSTRACT

SARS-CoV-2 3C-like protease is the main protease of SARS-CoV-2 and has been considered as one of the key targets for drug discovery against COVID-19. We identified several N-substituted isatin compounds as potent SARS-CoV-2 3C-like protease inhibitors. The three most potent compounds inhibit SARS-CoV-2 3C-like protease with IC50's of 45 nM, 47 nM and 53 nM, respectively. Our study indicates that N-substituted isatin compounds have the potential to be developed as broad-spectrum anti-coronavirus drugs.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

The coronavirus infectious disease 2019 (COVID-19) is a newly emerged infectious disease caused by a novel coronavirus, SARS-CoV-2 [1,2]. COVID-19 has been recognized as a global threat as it rapidly spreads and breaks out in many countries, causing significant health and economic impact. The SARS-CoV-2 is a positive-strand RNA virus that uses a complex set of enzymes to replicate its RNA genome [3,4]. Among these, the 3C-like protease (3CLpro), also known as the main protease (Mpro), is essential for processing the viral polyproteins that are translated from the viral RNA [5]. The active site of 3CLpro contains Cys145 and His41 to constitute a catalytic dyad, in which cysteine functions as the common nucleophile in the proteolytic process [6,7]. The catalytic domain of 3CLpro in CoVs is highly conserved [8]. Hence, 3CLpro has been considered as an attractive drug target for broad-spectrum anti-coronavirus therapy [4].

A variety of 3CLpro inhibitors have been reported in the literature over the past decade [4,9–12]. To date, several potential SARS-CoV-2 3CLpro inhibitors have been reported from compound library screening [8], rational design [8,13,14] and testing of ingredients from traditional Chinese medicine [15,16]. The chemical structures of the experimentally identified SARS-CoV-2 3CLpro inhibitors are diverse, including α-ketoamide analogues [13], peptidomimetics compounds [8,14], baicalein and its derivatives [15,16] and several repurposed approved drugs and drug candidates [9]. However, only a few candidates have high inhibition activity against SARS-CoV-2 3CLpro and no effective therapy has been developed so far.

Previously, we reported a series of N-substituted 5-carboxamide-isatin compounds as inhibitors of SARS CoV 3CLpro [12]. The best compound showed a sub-micromolar IC50 against SARS-CoV 3CLpro [12]. Apparently, the isatin scaffold with derivatization may also provide a good starting point for SARS-CoV-2 3CLpro inhibitor development, because the two proteases share high sequence identity and the same active site. In order to verify whether isatin compounds can inhibit SARS-CoV-2 3CLpro, we...
selected a series of isatin compounds from an in-house synthetic compound library, synthesized a few new compounds, tested their inhibitory effects against SARS-CoV-2 3CLpro, and analyzed their structure-activity relationship (SAR).

2. Results and discussion

2.1. Chemistry

The synthetic route used to prepare the test compounds 1-28 is shown in Scheme 1. Compound 26 was resynthesized by a simple and effective synthetic route within three steps. First, 2-((4-carbamoylphenyl)amino)-2-oxoacetimidic acid (I-26) was obtained by reaction of 4-aminobenzamide, hydroxylamine hydrochloride, and chloral hydrate. Then, I-26 was converted into 2,3-dioxoindoline-5-carboxamide (II-26) by treatment with concentrated sulfuric acid at 90 °C. Last, 26 was obtained by reaction of 2,3-dioxoindoline-5-carboxamide (II-26) with 2-(bromomethyl)naphthalene.

The synthetic route used to prepare compound 29 is shown in Scheme 2, which is different from other compounds. We started from 2-(4-aminophenyl)acetic acid using the general Sandmeyer synthetic route [12,17]. After got 2-(2,3-dioxoindolin-5-yl)acetic acid (II-29), additional carboxyl protection to change to methyl 2-(2,3-dioxoindolin-5-yl)acetate (III-29) with methyl group, followed by the introduction of naphthyl group at N1 position was subjected to afford methyl 2-{1-(naphthalen-2-ylmethyl)-2,3-dioxoindolin-5-yl}acetate (IV-29) and de-protection step to afford 2-{1-(naphthalen-2-ylmethyl)-2,3-dioxoindolin-5-yl}acetic acid (V-29). Then through activating the carboxyl group using phosphorus oxychloride, 29 was obtained by reaction of the activated V-29 and ammonium hydroxide. Compounds 1-25 were collected from our synthesized in-house library [12]. Compounds 27, 28 and 29 are new compounds that have not been reported before. The structures of the newly synthesized compounds 26, 27, 28 and 29 and the potent compound 23 were confirmed by 1H NMR, 13C NMR and HRMS.

2.2. Biological evaluation

The inhibition activity was measured following the previously published procedure using a synthetic peptide-pNA as substrate (Table 1) [12,18]. We used Tidegusib as a positive control for the enzyme assay. Our measured IC\textsubscript{50} value (1.91 \mu M) is in consistent with the reported one (1.55 \mu M, Fig. S1). Among all the 29 compounds that we tested, 12 showed inhibition activity over 50% at 50 \mu M. Hydrophobic groups at the R1 position are required to insure the inhibitory effect. The carboxamide group at R2 position (23-28) is essential for the high inhibition activity. Compounds 26 and 23 inhibit SARS-CoV-2 3CLpro with IC\textsubscript{50} values of 45 nM (Fig. 1) and 53 nM (Fig. S1), respectively. Further modifications at the 6-position of the naphthalene ring (27 and 28) were carried out to study the structure-activity relationship (SAR) of these compounds. Small substituents like 6-bromo in the naphthalene ring can be tolerated with a similar inhibition activity. Large substituents in the naphthalene ring is essential for the high inhibition activity. Large substituents in the naphthalene ring is essential for the high inhibition activity. Large substituents in the naphthalene ring is essential for the high inhibition activity.

3. Conclusion

In conclusion, we have tested the inhibition activity of 29 N-substituted isatin derivatives against SARS-CoV-2 3CLpro. The most potent compound, 26, demonstrated an IC\textsubscript{50} of 45 nM against SARS-CoV-2 3CLpro, which is among the most potent SARS-CoV-2 3CLpro inhibitors known so far. We found that isatin compounds with a carboxamide substitution at the C-5 position and aromatic substitution at N-1 position are strong inhibitors of SARS-CoV-2 3CLpro. As these compounds also inhibit SARS-CoV 3CLpro, other known SARS-CoV 3CLpro inhibitors can be further tested for their inhibition activity against SARS-CoV-2 3CLpro. The active compounds have relatively high cytotoxicity that hinder quantitative measurement of their anti-SARS-CoV-2 activity (as shown in Fig. S2). Further optimization to reduce the cytotoxicity and to increase the cellular activity is necessary to develop this series of compounds as broad-spectrum anti-coronavirus drugs.

Scheme 1. *Reagents and conditions: (a) Cl\textsubscript{3}CCH(OH)\textsubscript{2}, NH\textsubscript{2}OH\textsubscript{HCl}, Na\textsubscript{2}SO\textsubscript{4}, H\textsubscript{2}O; (b) H\textsubscript{2}SO\textsubscript{4}; (c) K\textsubscript{2}CO\textsubscript{3}, R1X, acetonitrile.
4. Experimental section

4.1. Synthesis

Melting points were obtained using an X4 apparatus and are uncorrected. Yields refer to isolated products. 1H NMR (400 MHz or 600 MHz) and 13C NMR (126 MHz or 151 MHz) spectra were measured on a Brucker APX 400 and Bruker-500 spectrometer using TMS as internal standard. The chemical shift values (δ) are reported in ppm relative to tetramethylsilane internal standard. 1H NMR spectra are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constant (J values) in Hz and integration. All reactions were monitored by thin layer chromatography (TLC), carried out on silica gel 60 F-254 aluminum sheets using UV, light (254 and 366 nm). The reagents and solvents were available commercially and purified according to conventional methods.

4.1.1. General procedure of the synthesis of compounds I–28

4.1.1.1. Synthesis of I–26

2-(4-carbamoylphenyl)amino)-2-oxoacetamidic acid (I-26). Solution A: A 500 mL, three-necked, round-bottomed flask fitted with a condenser and a thermometer was charged with 12.4 g (0.178 mol) of concentrated sulfuric acid. Solution B: 9.52 g (0.07 mol) of 4-aminobenzamide was added dropwise slowly into a 50-mL round-bottomed flask containing a vigorously stirred mixture of 15 mL of water and 7.5 mL of concentrated sulfuric acid. Solution B was added in one portion to solution A. The mixture was vigorously stirred and heated to reflux. After cooling to room temperature the precipitate was collected by filtration and washed with ice-cold water. 12.31 g (85%) of product was obtained. The crude product is sufficiently pure for the next step.

4.1.1.2. Synthesis of II-26. A 50-mL, two-necked, round-bottomed flask fitted with a thermometer was charged with 10 mL of concentrated sulfuric acid. After heating and stirring to 70 °C, 10 g (0.048 mol) of I-26 was added slowly to keep the temperature at 70 °C. The resulting deep red solution was heated to 90 °C for 30 min and then was cooled to room temperature (20 °C) over an ice bath. The mixture was then added rapidly to a vigorously stirred mixture of 100 mL of ice water and 20 mL of ethyl acetate. The organic phase was separated and the aqueous phase was extracted twice with 250 mL of ethyl acetate. The combined red organic phases were dried with sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified by column chromatography. 0.092 g (1%) of an orange powder was obtained.

4.1.1.3. Synthesis of 1–26

1-(naphthalen-2-ylmethyl)-2,3-dioxoindoline-5-carboxamide (26). A mixture of II-26 (0.092 g, 0.48 mmol), 2-(Bromomethyl)naphthalene (0.117 g, 0.53 mmol) and K$_2$CO$_3$ (0.166 g, 1.20 mmol) in 40 mL of acetone was heating to reflux for 10 h. After the reaction is completed monitored by TLC. The solution was evaporated and purified by column chromatography. 0.079 g (50%) of an orange powder is obtained. m.p.: 290–292 °C. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.10 (d, J = 1.8 Hz, 1H), 8.07 (dd, J = 8.2, 1.8 Hz, 1H), 8.03 (s, 1H), 8.01 (s, 1H), 7.91 (dd, J = 9.0, 4.8 Hz, 2H), 7.88–7.81 (m, 1H), 7.61–7.54 (m, 1H), 7.54–7.46 (m, 2H), 7.42 (s, 1H), 7.06 (d, J = 8.3 Hz, 1H), 5.11 (s, 2H). 13C NMR (126 MHz, DMSO-d$_6$) δ 183.08, 166.71, 152.83, 137.71, 133.35, 133.3, 132.82, 129.60, 129.78, 129.06, 128.62, 126.50, 125.96, 125.38, 125.29, 124.53, 124.15, 123.88, 122.98, 118.06, 111.19, 39.51. HRMS (ESI+) calcd for C$_{28}$H$_{16}$N$_2$O$_5$ [M + H]$^+$: 331.0104, found: 331.0177.

4.1.1.4. 1-(benzo[b]thiophen-2-ylmethyl)-2,3-dioxoindoline-5-carboxamide (23). An orange powder. m.p.: 210–212 °C. 1H NMR (600 MHz, DMSO-d$_6$) δ 8.16 (dd, J = 8.3, 1.8 Hz, 1H), 8.11 (d, J = 1.7 Hz, 1H), 8.05 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.80–7.74 (m, 1H), 7.59 (s, 1H), 7.43 (s, 1H), 7.34 (m, 3H), 5.25 (s, 2H). 13C NMR (151 MHz, DMSO-d$_6$) δ 182.74, 166.68, 158.83, 152.34, 139.66, 139.53, 139.03, 137.87, 129.83, 125.04, 124.05, 123.99, 123.88, 122.98, 118.06, 111.19, 39.51. HRMS (ESI+) calcd for C$_{18}$H$_{13}$N$_2$O$_5$ [M + H]$^+$: 337.0569, found: 337.0641.

4.1.1.5. 1-((6-Bromonaphthalen-2-yl)methyl)-2,3-dioxoindoline-5-carboxamide (27). An orange powder. m.p.: 269–271 °C. Yield: 35%. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.19 (d, J = 1.9 Hz, 1H), 8.11 (d, J = 1.8 Hz, 1H), 8.07 (dd, J = 8.3, 1.9 Hz, 1H), 8.03 (s, 2H), 7.91 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.62 (dd, J = 8.9, 1.9 Hz, 2H), 7.40 (s, 1H), 7.05 (d, J = 8.3 Hz, 1H), 5.10 (s, 2H). 13C NMR (101 MHz, DMSO-d$_6$) δ 183.02, 166.71, 159.37, 152.75, 137.70, 134.12, 133.99, 131.86, 130.32, 129.95, 129.79, 129.60, 128.03, 127.18, 126.13, 123.74, 119.62, 118.20, 111.11, 43.65. HRMS (ESI+) calcd for C$_{26}$H$_{18}$BrN$_2$O$_5$ [M + H]$^+$: 409.0110, found: 409.0182.

4.1.1.6. 2,3-Dioxo-1-((6-phenylnaphthalen-2-yl)methyl)indoline-5-carboxamide (28). An orange powder. m.p.: 263–265 °C. Yield: 12%. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.21 (d, J = 1.8 Hz, 1H), 8.11 (d, J = 1.9 Hz, 1H), 8.08 (dd, J = 8.2, 1.9 Hz, 1H), 8.05–7.92 (m, 4H), 7.83 (m, 3H), 7.60 (dd, J = 8.5, 1.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.40–7.32 (m, 7H), 7.30–7.22 (m, 3H), 7.15–7.05 (m, 3H), 5.10 (s, 2H).
Table 1
Inhibition activities of isatin derivatives against SARS-CoV-2 3CLpro.

Compds	R¹	R²	IC₅₀ or percentage (%) of inhibition at 50 μM^a
Tideglusib^b		H	1.91 ± 0.16
1		-CH₂OH	
2		F	
3		Cl	
4		NO₂	
5	CH₃		25% at 50 μM
6	CH₃	I	51% at 50 μM
7	n-C₄H₉	I	41.8 ± 8.0
8	CH₃CH₂CH₂		53% at 50 μM
9	CH₃	CO₂CH₃	53% at 50 μM
10	n-C₄H₉	CO₂CH₃	42% at 50 μM
11	CH₃CH₂CH₂	CO₂CH₃	32% at 50 μM
12	PhCH₂		45% at 50 μM
13	CH₃		45% at 50 μM
14	n-C₄H₉		47% at 50 μM
15	CH₃	CO₂CH₃	45% at 50 μM
16	PhCH₂	CO₂CH₃	45% at 50 μM
17	PhCH₂		15.5 ± 1.2
18	CH₃	CO₂H	
19	CH₃CH₂CH₂	CO₂H	
20	n-C₄H₉	CO₂H	
21	PhCH₂	CO₂H	
22	β-C₁₀H₈-CH₂	CO₂H	32% at 50 μM
23	β-C₁₀H₈-CH₂	CONH₂	0.053 ± 0.010
24	CH₃CH₂CH₂	CONH₂	10.2 ± 1.0
25	n-C₄H₉	CONH₂	17.8 ± 0.7
26	β-C₁₀H₈-CH₂	CONH₂	0.045 ± 0.007
27	β-(6-Br)-C₁₀H₈-CH₂	CONH₂	0.047 ± 0.007
28	β-(6-Ph)-C₁₀H₈-CH₂	CONH₂	24.9 ± 4.6
29	β-C₁₀H₈-CH₂	CH₃CONH₂	39.2 ± 10.5

^a Tideglusib was used as positive control. The reported IC₅₀ was 1.55 μM [⁸], which is in consistent with the value measured in the current study.

^b Dose-response curves of compounds Tideglusib, 9, 17, 23, 24, 25, 27, 28 and 29 are shown in Fig. S1.

^c Inhibition less than 25% at 50 μM.
was washed with brine, dried over Na2SO4, filtered, and concentrated. 1.46 g (70%) of product is obtained. The crude product is sufficiently pure for the next step.

4.1.2.2. Methyl 2-(1-(naphthalen-2-ylmethyl)-2,3-dioxoindolin-5-yl) acetate (IV-29). A mixture of III-29 (1 g, 4.6 mmol), 2-(Bromo-naphthalene (1.17 g, 5.3 mmol) and K2CO3 (1.63 g, 11.8 mmol) in 100 mL of acetonitrile was heating to reflux for 10 h. After the reaction was completed monitored by TLC. The solution was evaporated and purified by column chromatography. 1.062 g (63%) of a red powder is obtained. 1H NMR (400 MHz, DMSO-d6) δ 7.99 (s, 1H), 7.95–7.80 (m, 3H), 7.58–7.47 (m, 4H), 7.44 (dd, J = 8.0, 1.7 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 5.07 (s, 2H), 3.68 (s, 2H), 3.58 (s, 3H).

4.1.2.3. 2-(1-(naphthalen-2-ylmethyl)-2,3-dioxoindolin-5-yl)acetic acid (V-29). Methyl ester IV-29 (1g, 2.78 mmol) was dissolved in 100 mL methanol. NaOH (0.117 g, 2.92 mmol) was added to this solution. The mixture was stirred at 55–60 °C for 1 h. After cooling to the room temperature, 20 mL 3 N HCl was added. The precipitate was collected by filtration and washed with ice-cold water twice. 0.859 g (89%) of an orange power is obtained.

4.1.2.4. 2-(1-(naphthalen-2-ylmethyl)-2,3-dioxoindolin-5-yl)acetamide (29). To a stirred solution of EtOAc (5 mL) and THF (5 mL) added compound V-29 (30 mg, 0.08 mmol), POCI3 (110 mg, 0.71 mmol) over an ice bath. The mixture was stirred for additional 30 min. Then the resulting solution was added to another mixture containing 5 mL acetonitrile, 30% ammonium hydroxide (0.560 g, 10 mmol) and Et3N (1.01 g, 10 mmol). After the reaction completed, the mixture was extracted with EtOAc and the organic layer was washed with brine, dried over Na2SO4, filtered, and concentrated. The residue was purified by silica gel column chromatography to give the 29 (15 mg, 57%) as an orange powder. m.p.: 200–202 °C. 1H NMR (400 MHz, DMSO-d6) δ 7.98 (s, 1H), 7.96–7.81 (m, 3H), 7.60–7.44 (m, 5H), 7.40 (dd, J = 8.2, 1.9 Hz, 1H), 6.92 (d, J = 8.1 Hz, 2H), 5.07 (s, 2H), 3.34 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 172.94, 149.48, 139.48, 133.50, 133.35, 132.82, 130.85, 128.82, 128.08, 120.04, 128.61, 126.48, 126.22, 125.93, 118.16, 111.32, 43.65, 39.78. HRMS (ESI+) calcd for C21H17N2O3 [M + H]+: 345.1161, found: 345.1234.

4.2. Molecular docking

The crystal structure of SARS-CoV-2 3CLpro (PDB ID 6LU7) was used for molecular docking [5]. The structures of the protein and 26 were prepared by Protein Preparation Wizard and LigPrep module, respectively. The binding pocket was defined as a 20 Å cubic box centered to the centroid of Cys145. Flexible docking was conducted using the Induced Fit Docking module in GLIDE. Standard protocol and XP precision were used. Ten conformations were generated and scored by glide score. The best scored conformation was used for structural analysis. All the above mentioned modules were implemented in Schrödinger version 2015-4 (Schrödinger software suite, L. L. C. New York, NY (2015)).

4.3. Biology

4.3.1. Cloning, expression and purification of SARS-CoV-2 3CLpro
The full-length gene encoding SARS-CoV-2 3CLpro was synthesized for Escherichia coli (E. coli) expression (Henzym Biotech). The expression and purification of SARS-CoV-2 3CLpro were carried out using the reported protocol [15].
4.3.2. Enzyme assay

A colorimetric substrate Thr-Ser-Ala-Val-Leu-Gln-pNA (GL Biochemistry Ltd) and assay buffer (40 mM PBS, 100 mM NaCl, 1 mM EDTA, 0.1% Triton 100, pH 7.3) was used for the inhibition assay. To evaluate the effects of compounds on SARS-CoV-2 3CL protease activity, compounds were first pre-incubated with enzyme samples in the assay buffer for 30 min at room temperature. Then 10 µl of 2 mM substrate was added into the above system to the final concentration of 200 µM to initiate the reaction. Increase in absorbance at 390 nm was recorded for 20 min at an interval of 30 s with a kinetics mode program using a plate reader (Synergy, Biotek). IC50 values were fitted with Hill1 function.

Declaration of competing interest

The authors declare that they have no conflicts of interest to this work.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (21633001,21877003), and the Ministry of Science and Technology of China (2016YFA0502303).

Abbreviations

COVID-19 CoV infectious disease
3C.pro 3C-like protease
TLC thin layer chromatography

Appendix. Supplementary data

Supplementary data associated with this article can be found in the online version, at https://doi.org/10.1016/j.ejmech.2020.112702. These data include MOI files and InChiKeys of the most important compounds described in this article.

References

[1] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, I. China Novel Coronavirus, T. Research, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733, https://doi.org/10.1056/nejmoa2001017.

[2] P. Zhou, Y.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X.R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270–273, https://doi.org/10.1038/s41586-020-2223-y.

[3] A. Zumla, J.F. Chan, E.I. Azhar, D.S. Hui, K.Y. Yuen, Coronavirus - drug discovery and therapeutic options, Nat. Rev. Drug Discov. 15 (2016) 327–347, https://doi.org/10.1038/nrd.2015.37.

[4] T. Pillairey, M. Manickam, V. Nasasakayam, Y. Hayashi, S.H. Jung, An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy, J. Med. Chem. 59 (2016) 6959–6628, https://doi.org/10.1021/acs.jmedchem.5b01461.

[5] R. Hilgenfeld, From SARS to MERS: crystallographic studies on coronavirus proteases enable antiviral drug design, FEMS J. 281 (2014) 4085–4096, https://doi.org/10.1111/feb.12936.

[6] K. Anand, J. Ziebuhr, P. Wadhwani, J.R. Mesters, R. Hilgenfeld, Coronavirus main protease (3CLpro) structure: basis for design of anti-SARS drugs, Science 300 (2003) 1763–1767, https://doi.org/10.1126/science.1085658.

[7] Q.S. Du, S.Q. Wang, Y. Zhao, D.Q. Wei, H. Guo, S. Sirois, K.C. Chou, Polypeptide cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide, Peptides 25 (2004) 1857–1864, https://doi.org/10.1016/j.peptides.2004.06.018.

[8] Z. Jin, X. Xu, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Structure of Mpro from COVID-19 virus and discovery of its inhibitors, Nature 582 (2020) 289–293, https://doi.org/10.1038/s41586-020-2223-y.

[9] H. Konno, T. Onuma, I. Nitani, M. Wakabayashi, S. Yano, K. Teruya, K. Akaji, Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor, Bioorg. Med. Chem. Lett. 27 (2017) 2746–2751, https://doi.org/10.1016/j.bmcl.2017.04.056.

[10] K. Ohnishi, Y. Hattori, K. Kobayashi, K. Akaji, Evaluation of a non-prime site substituent and warheads combined with a decahydroisquinolin scaffold as a SARS 3CL protease inhibitor, Bioorg. Med. Chem. 28 (2020) 115273, https://doi.org/10.1016/j.bmc.2019.115273.

[11] S.I. Yoshizawa, Y. Hattori, K. Kobayashi, K. Akaji, Evaluation of an octahydroisochromene scaffold used as a novel SARS 3CL protease inhibitor, Bioorg. Med. Chem. 28 (2020) 115273, https://doi.org/10.1016/j.bmc.2019.115273.

[12] Z. Zhang, L. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors, Science 368 (2020) 409–412, https://doi.org/10.1126/science.abd3405.

[13] D. Dai, B. Zhang, H. Su, J. Li, Y. Zhao, X. Xie, Z. Jin, F. Liu, C. Li, Y. Li, F. Bai, H. Wang, X. Cheng, X. Cen, S. Hu, X. Yang, J. Wang, X. Liu, G. Xiao, H. Jiang, Z. Rao, L.-K. Zhang, Y. Xu, H. Yang, H. Liu, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science (2020) eabb4489, https://doi.org/10.1126/science.abd4489.

[14] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, R. Lu, B. Huang, W. Tan, L. Li, Extract and Baicalain Inhibit Replication of SARS-CoV-2 and its 3CL-like Protease, bioRxiv, 2020, https://doi.org/10.1101/2020.04.10.035824, 2020.2004.2010.035824.

[15] H. Su, S. Yao, W. Zhao, M. Li, J. Liu, W. Shang, H. Xie, L. Ke, M. Gao, K. Yu, H. Liu, J. Shen, W. Tang, L. Zhang, J. Zuo, H. Jiang, F. Bai, Y. Wu, Y. Ye, Y. Xu, Discovery of Baicalain and Baicalein as Novel, Natural Product Inhibitors of SARS-CoV-2 3C. Protease, bioRxiv, 2020, https://doi.org/10.1101/2020.04.03.038687.

[16] T. Sandmeyer, Über isonitrosoacetanilide und deren Kondensation zu Isatinen, Helv. Chim. Acta 45 (1962) 234–242, https://doi.org/10.1002/hchia.19620040302.

[17] C. Huang, P. Wei, K. Fan, Y. Liu, L. Ai, 3CL-like proteinase from SARS corona-virus catalyze substrate hydrolysis by a general base mechanism, Biochemistry 43 (2004) 4568–4574, https://doi.org/10.1021/bi036022q.