On the semi-scalar equivalence of polynomial matrices

https://doi.org/10.31713/MCIT.2021.25

Volodymyr Prokip
IAPMM, 3b Naukova Str., L’viv, Ukraine, 79601

Abstract — Polynomial matrices $A(\lambda)$ and $B(\lambda)$ of size $n \times n$ over a field F are semi-scalar equivalent if there exist a nonsingular $n \times n$ matrix P over F and an invertible $n \times n$ matrix $Q(\lambda)$ over $F[\lambda]$ such that $A(\lambda) = PB(\lambda)Q(\lambda)$. The aim of the present report is to present a triangular form of some nonsingular polynomial matrices with respect to semi-scalar equivalence.

Keywords — Polynomial matrix; Equivalence of matrices; Smith normal form.

I. INTRODUCTION

Let F be a field. Denote by $M_{n,n}(F)$ the set of $n \times n$ matrices over F and by $M_{n,n}(F[\lambda])$ the set of $n \times n$ matrices over the polynomial ring $F[\lambda]$. In what follows, I_n is the identity $n \times n$ matrix and O_n is the zero $n \times n$ matrix. A polynomial $a(\lambda) = a_0 + a_1 \lambda + \cdots + a_k \lambda^k \in F[\lambda]$ is said to be monic if the first non-zero term $a_k = 1$.

Let $A(\lambda) \in M_{n,n}(F[\lambda])$ be a nonzero matrix and rank $A(\lambda) = r$. For the matrix $A(\lambda)$ there exist matrices $U(\lambda), V(\lambda) \in GL(n, F[\lambda])$ such that $U(\lambda)A(\lambda)V(\lambda) = S_A(\lambda) = \text{diag}(s_1(\lambda), s_2(\lambda), \ldots, s_r(\lambda), 0, \ldots, 0)$, where $s_i(\lambda)$ are monic polynomials for all $i = 1, 2, \ldots, r$ and $s_1(\lambda)|s_2(\lambda)|\ldots|s_r(\lambda)$ (divides) are the invariant factors of $A(\lambda)$. The diagonal matrix $S_A(\lambda)$ is called the Smith normal form of $A(\lambda)$.

Matrices $A(\lambda), B(\lambda) \in M_{n,n}(F[\lambda])$ are said to be semi-scalar equivalent if there exist matrices $P \in GL(n, F)$ and $Q(\lambda) \in GL(n, F[\lambda])$ such that $A(\lambda) = PB(\lambda)Q(\lambda)$ (see [1], Chapter 4).

Let $A(\lambda) \in M_{n,n}(F[\lambda])$ be nonsingular matrix over an infinite field F. Then $A(\lambda)$ is semi-scalar equivalent to the lower triangular matrix $[1]$ with the following properties:

- $s_i(\lambda)$, $i = 1, 2, \ldots, n$; are the invariant factors of $A(\lambda)$;
- $s_j(\lambda)$ divides $s_j(\lambda)$ for all $1 \leq i < j \leq n$.

Let $F = \{0, 1\}$ be a field of two elements. It is easily verified that the polynomial matrix

$$A(\lambda) = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^2 + 1 \end{bmatrix}$$

over the field F is not semi-scalar equivalent to the lower triangular matrix $S_A(\lambda) = \begin{bmatrix} 1 & 0 \\ \lambda(\lambda^2 + 1)(\lambda^2 + \lambda + 1) & 1 \end{bmatrix}$.

Thus, the triangular form $S_A(\lambda)$ for nonsingular matrices over a finite field not always exists. It may be noted that for a singular matrix $A(\lambda)$ the matrix $S_A(\lambda)$ does not always exist.

Example. Let $F = R$ be the field of real numbers. For 2×2 matrices

$$A(\lambda) = \begin{bmatrix} \lambda & 0 \\ \lambda^3 - 3\lambda^2 - \lambda & \lambda^2 - 1(\lambda^2 - 2\lambda) \end{bmatrix}$$

and

$$B(\lambda) = \begin{bmatrix} \lambda & 0 \\ \lambda^3 - \lambda^2 - \lambda & \lambda^2 - 1(\lambda^2 - 2\lambda) \end{bmatrix}$$

with entries from $R[\lambda]$ there exist matrices

$$Q(\lambda) = \begin{bmatrix} 2\lambda^3 - 6\lambda^2 - 2\lambda + 9 \\ -2\lambda^2 + 4\lambda + 4 \end{bmatrix}$$

and $P = \begin{bmatrix} 1/9 & -2/9 \\ 0 & 1 \end{bmatrix} \in GL(2, R)$ such that $A(\lambda) = PB(\lambda)Q(\lambda)$.

From this example it follows, that the triangular form $S_A(\lambda)$ is not uniquely determined for a nonsingular polynomial matrix $A(\lambda)$ with respect to semi-scalar equivalence.
Dias da Silva J.A. and Laffey T.J. studied polynomial matrices up to PS-equivalence [2]. Matrices $A(\lambda), B(\lambda) \in M_{n,n}(F[\lambda])$ are PS-equivalent if $A(\lambda) = P(\lambda)B(\lambda)Q$ for some $P(\lambda) \in GL(n, F[\lambda])$ and $Q \in GL(n, F)$.

Let F be an infinite field. A nonsingular matrix $A(\lambda) \in M_{n,n}(F[\lambda])$ is PS-equivalent to the upper triangular matrix (see [2], Proposition 2)

$$S_n(\lambda) = \begin{bmatrix} s_1(\lambda) & s_2(\lambda) & s_3(\lambda) & \cdots & s_n(\lambda) \\ 0 & s_2(\lambda) & s_3(\lambda) & \cdots & s_n(\lambda) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{bmatrix}$$

with the following properties:

1. $s_i(\lambda), i = 1, 2, \ldots, n$, are the invariant factors of $A(\lambda)$;
2. $s_1(\lambda)$ divides $s_2(\lambda)$ for all $1 \leq i < j \leq n$;
3. if $i \neq j$ and $s_i(\lambda) \neq 0$ then $s_j(\lambda)$ is a monic polynomial and $\deg s_i(\lambda) < \deg s_j(\lambda) < \deg s_1(\lambda)$.

The matrix $S_n(\lambda)$ is called a near canonical form of the matrix $A(\lambda)$ with respect to PS-equivalence. We note that conditions (1) and (2) for semi-scalar equivalence were proved in [1]. It is evident that matrices $A(\lambda), B(\lambda) \in M_{n,n}(F[\lambda])$ are PS-equivalent if and only if the transpose matrices $A^T(\lambda)$ and $B^T(\lambda)$ are semi-scalar equivalent. It is clear that semi-scalar equivalence and PS-equivalence represent an equivalence relation on $M_{n,n}(F[\lambda])$. On the basis of the semi-scalar equivalence of polynomial matrices in [1] algebraic methods for factorization of matrix polynomials were developed. We note that these equivalences were used in the study of the controllability of linear systems (see [3], [4]).

The semi-scalar equivalence and PS-equivalence of matrices over a field F contain the problem of similarity between two families of matrices ([1], [2], [5–7]). In most cases, these problems are involved with the classic unsolvable problem of a canonical form of a pair of matrices over a field with respect to simultaneous similarity. At present, such problems are called wild [5].

The semi-scalar equivalence of matrices includes the following two tasks: (1) the determination of a complete system of invariants and (2) the construction of a canonical form for a matrix with respect to semi-scalar equivalence. But these tasks have satisfactory solutions only in isolated cases. The canonical and normal forms with respect to semi-scalar equivalence for a matrix pencil $A(\lambda) = A_0 + A_1 \lambda \in M_{n,n}(F[\lambda])$ over arbitrary field F, where A_0 is nonsingular, were investigated in [8] and [9]. A canonical form with respect to semi-scalar equivalence for a polynomial matrix over a field is unknown in general case.

II. MAIN RESULTS

In this part we present main results of this report.

Theorem. Let $A(\lambda) \in M_{n,n}(F[\lambda])$ be a nonsingular matrix with the Smith normal form $U(\lambda)A(\lambda)V(\lambda) = S_n(\lambda) = \text{diag}(1, s(\lambda), \ldots, s(\lambda))$, where $s(\lambda)$ is a monic polynomial and $\deg s(\lambda) = n$.

The matrix $A(\lambda)$ is semi-scalar to the matrix

$$S_n(\lambda) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \lambda & s(\lambda) & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \lambda^{n-2} & 0 & \cdots & 0 & s(\lambda) \\ \lambda^{n-1} & 0 & \cdots & 0 & 0 \end{bmatrix}$$

if and only if the matrix $A(\lambda)$ admits the representation $B(\lambda) = W(\lambda)A(\lambda)C(\lambda)$,

where $W(\lambda) \in GL(n, F[\lambda])$ and $B(\lambda) = I_n + B_1 \lambda^{-1} + \cdots + B_{n-1} \lambda^{n-1}$, is a monic polynomial matrix of degree $n - 1$. The matrix $S_n(\lambda)$ is uniquely defined for the matrix $A(\lambda)$.

Let $B(\lambda) \in M_{n,n}(F[\lambda])$. The matrix $B(\lambda)$ we write in the form $B(\lambda) = B_0 \lambda^{r_0} + B_1 \lambda^{r_1} + \cdots + B_r \lambda^{r_r}$, where $B_i \in M_{n,n}(F)$, $i = 1, 2, \ldots, n$. It is well known that a matrix polynomial equation $X^{r_0}B_0 + X^{r_1}B_1 + \cdots + XB_r + B_0 = O_n$ is solvable if and only if the matrix $B(\lambda)$ admits the representation $B(\lambda) = (I_n - D\lambda)C(\lambda)$, where $D \in M_{n,n}(F)$ [10]. The problem of solvability of matrix polynomial equations was investigated by many authors (see [1], [11–14] and references therein).

Following propositions gives a complete answer to the question of solvability of a matrix polynomial equation of second order over an infinite field (see also [14]).

Let $A(\lambda) = \sum_{i=-1}^{s} A_i \lambda^{r_i} \in M_{2,2}(F[\lambda])$ be a nonsingular matrix. Further, let

$$S_1(\lambda) = \begin{bmatrix} s_1(\lambda) & 0 \\ s_2(\lambda) & s_2(\lambda) \end{bmatrix}$$

be a near canonical form of the matrix $A(\lambda)$ with respect to semi-scalar equivalence. By [9] and based on the above, we get the following statements.

Proposition 1. Let $s_1(\lambda) = (\lambda - \alpha_1)c_1(\lambda)$ and $s_2(\lambda) = (\lambda - \alpha_2)c_2(\lambda)$, where $\alpha_i \in F$. A matrix...
polynomial equation

\[X^r A_0 + X^{r-1} A_1 + \ldots + X A_{r-1} + A_r = O_2 \] is solvable over a field \(F \) if and only if there exists \(\beta \in F \) such that the matrix

\[
D_\beta (\lambda) = \begin{bmatrix}
\lambda - \alpha_1 & 0 \\
\beta & \lambda - \alpha_2
\end{bmatrix}
\]
is a left divisor of \(S_\delta (\lambda) \), i.e., \(S_\delta (\lambda) = D_\beta (\lambda) C(\lambda) \).

Proposition 2. Let \(S_\delta (\lambda) = (\lambda^2 + \lambda \alpha_1 + \alpha_2)c_2(\lambda) \), where \(\lambda^2 + \lambda \alpha_1 + \alpha_2 \in F[\lambda] \). A matrix polynomial equation

\[X^r A_0 + X^{r-1} A_1 + \ldots + X A_{r-1} + A_r = O_2 \]
is solvable over a field \(F \) if and only if there exists \(\delta_\delta, \delta_1, \delta_2 \in F \) and \(\delta_0 \neq 0 \) such that the matrix

\[
D_{\delta_\delta}(\lambda) = \begin{bmatrix}
1 & 0 \\
\delta_0 \lambda + \delta_1 & \lambda^2 + \lambda \alpha_1 + \alpha_2
\end{bmatrix}
\]
is a left divisor of \(S_\delta (\lambda) \), i.e., \(S_\delta (\lambda) = D_{\delta_\delta}(\lambda) C(\lambda) \).

III. ACKNOWLEDGEMENTS

I am thanks to Drozd Yu.A. for support and long-term scientific cooperation. I am thank to Sergeichuk V.V. for useful discussions on the topic of this study. I would like to thank my friends also. Last, but certainly not least, I would like to thank referees for comments and suggestions.

REFERENCES

[1] P. S. Kazimirs’kyi. Decomposition of Matrix Polynomials into factors. Naukova Dumka, Kyiv; 1981 (in Ukrainian).
[2] J.A. Dias da Silva and T.J. Laffey. On simultaneous similarity of matrices and related questions. Linear Algebra and its applications, 291 (1999) 167–184. doi.org/10.1016/S0024-3795(98)10247-1.
[3] M. Dodig. Controllability of series connections. Electron. J. Linear Algebra, 16 (2007) 135–156. doi.org/10.13001/1081-3810.1189.
[4] M. Dodig. Eigenvalues of partially prescribed matrices. Electron. J. Linear Algebra, 17 (2008) 316–332. doi.org/10.13001/1081-3810.1266.
[5] Yu.A. Drozd. Tame and wild matrix problems. Lecture Notes in Math. 832 (1980) 242–258. doi.org/10.1007/BFb0088467.
[6] S. Friedland. Matrices: Algebra, Analysis and Applications. World Scientific; 2015.
[7] V.V. Sergeichuk. Canonical matrices for linear matrix problems. Linear algebra and its applications, 317 (2000) 53–102. doi.org/10.1016/S0024-3795(00)00150-6.
[8] V.M. Prokip. Canonical form with respect to semi-scalar equivalence for a matrix pencil with nonsingular first matrix. Ukrainian Mathematical Journal, 63(2012) 1314–1320. doi.org/10.1007/s11253-012-0580-x.
[9] V.M. Prokip. On the normal form with respect to the semi-scalar equivalence of polynomial matrices over the field. J. Math. Sciences, 194 (2013) 149–155. DOI:10.1007/s10958-013-1515-2.
[10] P. Lancaster and M. Tismenetsky. The theory of matrices. Second edition with applications. Academic Press, New York, 1985.
[11] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials. Academic Press, New York, 1982.