Wheeler-Feynman Time-Symmetric study of effectiveness and efficiency of terbium nanoparticles delivery mechanism in human cancer cells, tissues and tumors under synchrotron radiation

Heidari A1,2,*, Schmitt K1, Henderson M1 and Besana E1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract
Terbium nanoparticles absorb energy of generation beam radiation and procreate some heat in the bit. The procreated heat transmitted to the circumbent environs and guides to enhance in temperature of adjoining dots to nanoparticles. Heat conversions can be established by heat transmission equation. When Terbium nanoparticles are subdued to generated beam radiation, a section of beam radiation distributed (transpiration procedure) and the other section absorbed (non-transpiration procedure). The value of energy waste in non-transpiration procedure for the most part has a rightful place to compound and mass of nanoparticles and it can be recognized by absorption cross section. On the other hand, however, transpiration procedure which its specifications are contingent on mass, configuration and plane specifications of nanoparticles illustrates by dispersion cross section. Aggregate of absorption and distribution procedure which guide to beam radiation waste is called overthrow cross section.

Introduction
Cancer is one of the malignant diseases and millions of people worldwide die from cancer annually. Breast cancer diagnosis requires the analysis of images and attributes as well as collecting many clinical and mammography variables. In diagnosis of breast cancer, it is important to determine whether a tumor is benign or malignant. The information about breast cancer risk prediction along with the type of tumor are crucial for patients and effective medical decision making. An ideal diagnostic system could effectively distinguish between benign and malignant cells; however, such a system has not been created yet. In this study, a model is developed to improve the prediction probability of breast cancer. It is necessary to have such a prediction model as the survival probability of breast cancer is high when patients are diagnosed at early stages. In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9,10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26,27]. Regarding the simplicity of ligands connection to Terbium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Terbium nanoparticles are investigated.

Materials and experimental methods
When Terbium nanoparticles are subdued to generated beam radiation, a section of beam radiation distributed (transpiration procedure) and the other section absorbed (non-transpiration procedure). The value of energy waste in non-transpiration procedure for the most part has a rightful place to compound and mass of nanoparticles and it can be recognized by absorption cross section. On the other hand, however, transpiration procedure which its specifications are contingent on mass, configuration and plane specifications of nanoparticles illustrates by dispersion cross section. Aggregate of absorption and distribution procedure which guide to beam radiation waste is called overthrow cross section [75-123].

*Correspondence to: Heidari A, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA and American International Standards Institute, Irvine, CA 3800, USA, E-Mail: Alireza.Heidari@calsu.us

Key words: terbium nanoparticles, scanning electron microscope (SEM), 3D finite element method (FEM), heat transfer equation, optothermal, heat distribution, thermoplasmonic, terbium nanorods, human cancer cells, tissues and tumors treatment, simulation, synchrotron radiation, emission, function, beam energy

Received: December 23, 2019; Accepted: January 06, 2020; Published: January 13, 2020
Terbium nanoparticles absorb energy of generation beam radiation and procreate some heat in the bit. The procreated heat transmitted to the circumambient environs and guides to enhance in temperature of adjoining dots to nanoparticles. Heat conversions can be established by heat transmission equation [124-202].

Results and discussion

The breast cancer is the leading cause for cancer-related deaths in women. Due to modern lifestyle, number of diagnosed patients with breast cancer in the developed countries are on the top of the list around the world [1-7]. The most common type of breast cancer is ductal carcinoma, which begins in the cells of the ducts. Breast cancer can also begin in the cells of the lobules and in other tissues in the breast [9-19]. In the U.S., breast cancer is the second most common cancer in women after skin cancer. It can occur in both men and women, but it is rare in men. Each year there are about 100 times more new cases of breast cancer in women than in men. In this project we applied several machine learning techniques on the Wisconsin Diagnostic Breast Cancer data set to classify the cancer based on the feature extracted from images as benign or malignant [20-25]. To calculate the generated heat in Terbium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Terbium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Terbium is dependent on particle size [284-321].

Firstly, calculations were made for Terbium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 nm nanoparticles (sphere with 50 nm radius), the maximum increase in temperature is 83 k. When nanoparticles size reaches to 150 nm, increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 nm nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Terbium.

In this section, core-shell structure of Terbium and silica is chosen. The core of a nanosphere with 45 nm radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Terbium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution Figure 5 shows that
temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Terbium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Figure 4. Maximum increase in temperature for core–shell Terbium nanospheres with various thicknesses of silica shell

Figure 5. Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm)

Figure 6. Extinction cross section area for Terbium nanorods with effective radius of 45 (nm) and various dimension ratios

Figure 7. Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios

Conclusion and summary

In the current age, pancreatic cancer is one of the worst forms of cancer. The complications of pancreatic include five types of pancreatitis, benign tumors, malignant tumors, benign cysts and malignant cysts. This cancer has a few clinical symptoms than other cancers. Also, if not treated in a timely manner, it also causes other organs of the body and the patient chance of survival is greatly reduced. One of the ways to detect this disease is to use CT scan images. But the appearance of pancreatic complications is very different in a similar category, and their tissue is very similar to healthy abdominal tissues. For this reason, it’s very difficult to identify the range of complications. In this study, the data contained 151 CT scan images. These images are divided into five classes of pancreatitis, malignant tumors, benign tumors, malignant cysts, benign cysts and a healthy class. The pancreatic complications are varied and different, if the diagnostic system is based on simple experts; the possibility of achieving high detection accuracy is not possible. According to the results of this study, lonely no classification can detect all diseases and combining these methods is the best option. Therefore, in this study we have achieved high accuracy in prediction by combining the perception, convolution and SVM neural networks. The calculations showed that in Terbium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Terbium nanospheres increases their...
temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT1201009373432. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS-II) under the merit-based proposal scheme.

References

1. Heidari A, Brown C (2015) Study of composition and morphology of cadmium oxide (CdO) nanoparticles for eliminating cancer cells. J Nanomed Res 2: 20
2. Heidari A, Brown C (2015) Study of surface morphological, phytochemical and structural characteristics of rhodium (III) oxide (Rh2O3) nanoparticles. International Journal of Pharmacology, Phytochemistry and Ethnomedicine 1: 15-19.
3. Heidari A (2016) An experimental biospectroscopic study on seminal plasma in determination of semen quality for evaluation of male infertility. Int J Adv Technol 7: e907.
4. Heidari A (2016) Extraction and preconcentration of n-toly-sulfonyl-phosphoramid-saeure-dichlorid as an anti-cancer drug from plants: A pharmacognosy study. J Pharmacogn Nat Prod 2: e103.
5. Heidari A (2016) A Thermodynamic study on hydration and dehydrogen of dna and rna–amphiphile complexes. J Biomed Sci 5: 006.
6. Heidari A (2016) Computational studies on molecular structures and carbonyl and ketene groups’ effects of singlet and triplet levels of azidoketene O=C=CH-NNN and hyocyanato-ketene O=C=CH-N=O=C. J Appl Computat Math 5: e142.
7. Heidari A (2016) Study of irradiations to enhance the inductions of hydrogen bonds between peptide chains and transition from helix structure to random coil structure using ATR-FTIR, Raman and 1HNMIR spectroscopies. J Biomol Res Ther 5: e146.
8. Heidari A (2016) Future prospects of point fluorescence spectroscopy, fluorescence imaging and fluorescence endoscopy in photodynamic therapy (PDT) for cancer cells. J Biocatal Biotransmid 8: e135.
9. Heidari A (2016) A Bio-Spectroscopic study of DNA density and color role as determining factor for absorbed irradiation in cancer cells. Adv Cancer Prev 1: e102.
10. Heidari A (2016) Manufacturing process of solar cells using cadmium oxide (CdO) and rhodium (III) oxide (Rh2O3) nanoparticles. J Biotechnol Biomater 6: e125.
11. Heidari A (2016) A Novel Experimental and computational approach to photobiosimulation of telomeric DNA/RNA: A biospectroscopic and photobiological study. J Res Development 4: 144.
12. Heidari A (2016) Biochemical and pharmacodynamical study of microporous molecularly imprinted polymer selective for vancomycin, teicoplanin, oritavancin, telavancin and dalbavancin binding. Biochem Physiol 5: e146.
13. Heidari A (2016) Anti-Cancer effect of uv irradiation at presence of cadmium oxide (CdO) nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study. Arch Cancer Res 4: 1.
14. Heidari A (2016) Biospectroscopic Study on multi-component reactions (MCRs) in two A-Type and B-Type conformations of nucleic acids to determine ligand binding modes, binding constant and stability of nucleic acids in cadmium oxide (CdO) nanoparticles-nucleic acids complexes as anti-cancer drugs. Arch Cancer Res 4: 2.
15. Heidari A (2016) Simulation of temperature distribution of DNA/RNA of human cancer cells using time-dependent bio-heat equation and Nd: YAG lasers. Arch Cancer Res 4: 2.
16. Heidari A (2016) Quantitative structure-activity relationship (QSAR) Approximation for cadmium oxide (CdO) and Rhodium (III) Oxide (Rh2O3) nanoparticles as anti-cancer drugs for the catalytic formation of propional dna from viral ma using multiple linear and non-linear correlation approach. Ann Clin Lab Res 4: 1.
17. Heidari A (2016) Biomedical study of cancer cells dna therapy using laser irradiations at presence of intelligent nanoparticles. J Biomedical Sci 5: 2.
18. Heidari A (2016) Measurement the amount of vitamin D2 (Ergocalciferol), vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO43-) and Zinc (Zn2+) in apricot using high-performance liquid chromatography (HPLC) and spectroscopic techniques. J Biom Biostat 7: 292.
19. Heidari A (2016) Spectroscopy and quantum mechanics of the helium dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Un2o2+) Molecular Cations. Chem Sci J 7: e112.
20. Heidari A (2016) Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a promising new sensor for the treatment of malignant tumors using bio-spectroscopic techniques. J Drug Metab Toxicol 7: e129.
21. Heidari A (2016) Novel and stable modifications of intelligent cadmium oxide (CdO) nanoparticles as anti-cancer drug in formation of nucleic acids complexes for human cancer cells’ treatment. Biochem Pharmacol 5: 207.
22. Heidari A (2016) A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage. Struct Chem Crystallogy Commun 2: 1.
23. Heidari A (2016) Pharmaceutical and analytical chemistry study of cadmium oxide (CdO) nanoparticles synthesis methods and properties as anti-cancer drug and its effect on human cancer cells. Pharm Anal Chem Open Access 2: 113.
24. Heidari A (2016) A Chemotherapeutic and biospectroscopic investigation of the interaction of double-standard dna/rna-binding molecules with cadmium oxide (CdO) and rhodium (III) oxide (Rh2O3) nanoparticles as anti-cancer drugs for cancer cells’ treatment. Chem Open Access 5: e129.
25. Heidari A (2016) Pharmacokinetics and experimental therapeutic study of dna and other biomolecules using lasers: Advantages and applications. J Pharmacinet Exp Ther 1: e005.
26. Heidari A (2016) Determination of ratio and stability constant of DNA/RNA in human cancer cells and cadmium oxide (CdO) nanoparticles complexes using analytical electrochemical and spectroscopic techniques. Insights Anal Electrochem 2: 1.
27. Heidari A (2016) Discriminate between antibacterial and non-antibacterial drugs artificial neural networks of a multilayer perceptron (MLP) type using a set of topological descriptors. J Heavy Met Toxicity Dis 1: 2.
28. Heidari A (2016) Combination theoretical and computational study of the belousov-zhabotinsky chaotic reaction and currits rearrangement for synthesis of mecloherethamine, cisplatin, streptonozotocin, cyclophosphamide, melphalan, busulphan and bcrn as anti-cancer drugs. Insights Med Phys 1: 2.
29. Heidari A (2016) A translational biomedical approach to structural arrangement of amino acids’ complexes: a combined theoretical and computational study. Transl Biomol 7: 2.
30. Heidari A (2016) Ab initio and density functional theory (DFT) studies of dynamic nmr shielding tensors and vibrational frequencies of DNA/RNA and cadmium oxide (CdO) nanoparticles complexes in human cancer cells. J Nanomedicine Biotechnological Discov 6: e144.
31. Heidari A (2016) Molecular dynamics and monte-carlo simulations for replacement sugars in insulin resistance, obesity, ldl cholesterol, triglycerides, metabolic syndrome, type 2 diabetes and cardiovascular disease: A glycobiological study. J Glycoceil 5: e111.
32. Heidari A (2016) Synthesis and Study of 5-[2-(Phenylylufonyl)Amino]-1,3,4-Thiadiazole-2-Sulfonamide as potential anti-pertussis drug using chromatography and spectroscopy techniques. Transl Med 6: e138.
33. Heidari A (2016) Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave-Redlich- Kwong (SRK) and Pang-Robinson (PR) Equations. Electronic J Bio 12: 4.
34. Heidari A (2016) An analytical and computational infrared spectroscopic review of vibrational modes in nucleic acids. Austin J Anal Pharm Chem 3: 1058.
35. Heidari A (2016) Brown C, phase, composition and morphology study and analysis of Os-Pd/HHC nanocomposites. Nano Res Appl 2: 1.
36. Heidari A (2016) Brown C, vibrational spectroscopic study of intensities and shifts of symmetric vibration modes of ozone diluted by cumene. International Journal of Advanced Chemistry 4: 5-9.
Heidari A (2020) Wheeler-Feynman Time-Symmetric study of effectiveness and efficiency of terbium nanoparticles delivery mechanism in human cancer cells, tissues and tumors under synchrotron radiation

37. Heidari A (2016) Study of the role of anti-cancer molecules with different sizes for decreasing corresponding bulk tumor multiple organs or tissues. Arch Can Res 4: 2.

38. Heidari A (2016) Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Ophrione and Abahfingin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs. J Data Mining Genomics & Proteomics 7: e125.

39. Heidari A (2016) Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells. J Pharmacogenomics Pharmacoproteomics 7: e153.

40. Heidari A (2016) Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach. Transl Biomed 7: 2.

41. Heidari A (2016) A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method. Arch Can Res 4: 2.

42. Heidari A (2016) Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Norcarboplatin, Carboplatin, Hepatoblast and Hepatoblast as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study. J Inform Data Min 1: 3.

43. Heidari A (2016) Linear and Non-Linear Quantitative Structure-Anti-Cancer-Activity Relationship (QSACAR) Study of Hydroxyl Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non-Nuclease Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs. J Integ Oncol 5: e110.

44. Heidari A (2016) Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method. J Nancis Curr Res 1: e101.

45. Heidari A (2016) Coplanarity and Collinearity of 4’-Dinonyl-2,2’-Bithiazole in One Domain of Bleomycin and Pongangymcin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug. Int J Drug Dev & Res 8: 007-008.

46. Heidari A (2016) A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations. J Pharmacovigil 4: e161.

47. Heidari A (2016) Nanotechnology in Preparation of Semi-permeable Polymers. J Adv Chem Eng 6: 157.

48. Heidari A (2016) A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for Analysis of Aminosilacylates and Nanoparticles as Digestive System Nano Drugs under Synchrotron Radiations. J Gastrointest Dig Syst 6: e119.

49. Heidari A (2016) DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphosphamide Nanoparticle Derivatives. Biomedical Data Mining 5: e102.

50. Heidari A (2016) A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm. J Mol Biol Biotechnol 1: 1.

51. Heidari A (2016) Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fullerene Nano Molecules under Synchrotron Radiations Using Fuzzy Logic. J Material Sci Eng 5: 282.

52. Heidari A (2016) Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Comput Math 5: e145.

53. Heidari A (2016) The impact of high resolution imaging on diagnosis. Int J Clin Med Imaging 3: 1000101.

54. Heidari A (2016) A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoid Acid) and Tretinoin (All-Trans Retinoid Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT) Methods. Insights in Biomed 1: 2.

55. Heidari A (2016) Advances in Logic, Operations and Computational Mathematics. J Appl Comput Math 5: 5.

56. Heidari A (2016) Mathematical Equations in Predicting Physical Behavior. J Appl Comput Math 5: 5.

57. Heidari A (2016) Chemotherapy a Last Resort for Cancer Treatment. Chem Open Access 5: 4.

58. Heidari A (2016) Separation and Pre-Concentration of Metal Cations-DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods. Mass Spectrom Purif Tech 2: e101, 2016.

59. Heidari A (2016) Vortosecond Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm. Insight Pharm Res 1: 1.

60. Heidari A (2016) Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies. Int J Clin Med Imaging 3: 516.

61. Heidari A (2016) A Novel Approach to Biology. Electronic J Biol 12: 4.

62. Heidari A (2016) Innovative Biomedical Equipment’s for Diagnosis and Treatment. J Bioengineer & Biomedical Sci 6: 2.

63. Heidari A (2016) Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Characteristics and the Practice of Oncology in Oncology Medicine and Practices. J Oncol Med & Pract 1: 2.

64. Heidari A (2016) Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Biengineering Perspectives. J Bioengineer & Biomedical Sci 6: 3.

65. Heidari A (2016) X-Ray Fluorescence and X-Ray Diffraction Analysis on Discrete Element Modeling of Nano Powder Metallurgy Processes in Optimal Container Design. J Powder Metall Min 6: 1.

66. Heidari A (2017) Biomolecular Spectroscopy and Dynamics of Nano-Sized Molecules and Clusters as Cross-Linking-Induced Anti-Cancer and Immune-Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells’ Membranes under Synchrotron Radiations: A Payload-Based Perspective. J Adv Chem Eng 6: 282.

67. Heidari A (2017) Deficiencies in Repair of Double-Standard DNA/RNA-Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer. J Appl Bioinformatics Comput Biol 6: 1.

68. Heidari A (2017) Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Quantum for Quantum Computing. Glob J Res Rev 4: 2.

69. Heidari A (2017) Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au_xAg_yCu_z(SbPb)_{1-3} to Au_xAg_yCu_z(SbPb)_{1-3} (x = 1-12) Nanomolecules for Synthesis of Au_xAg_yCu_z[SbPb]_1 (SC_1)_{3-x} (SC_1)_{3-x} (PET)_{12} (p-MBA)_{12} (F)_{12} (Cl)_{12} (Br)_{12} (OH)_{12} (Ath)_{12} (Ums)_{12} and (SC_1)_{3-x} Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol 6: 3.

70. Heidari A (2017) Biomedical resource oncology and data mining to enable resource discovery in medical, medicinal, clinical, pharmaceutical, chemical and translational research and their applications in cancer research. Int J Biomed Data Min 6: e103.

71. Heidari A (2017) Study of synthesis, pharmacokinetics, pharmacodynamics, dosing, stability, safety and efficacy of olympiadane nanomolecules as agent for cancer chemotherapy, immunotherapy, chemotherapy, radiotherapy, hormone therapy and targeted therapy under synchrotron radiation. J Dev Drugs e154.

72. Heidari A (2017) A Novel approach to future horizon of top seven biomedical research topics to watch in 2017: alzheimer’s, ebola, hypersonia, human immunodeficiency virus (hiv), tuberculosis (tb), microbiome/antibiotic resistance and endovascular stroke. J Bioengineer & Biomedical Sci 7: e127.

73. Heidari A (2017) Opinion on Computational Fluid Dynamics (CFD) Technique. Fluid Mech Open Access 4: 157.
Heidari A (2020) Wheeler-Feynman Time-Symmetric study of effectiveness and efficiency of terbium nanoparticles delivery mechanism in human cancer cells, tissues and tumors under synchrotron radiation

105. Heidari A (2017) Overview of the Role of Vitamins in Reducing Negative Effect of Decapetyl (Triptorelin Acetate or Pamoate Sals) on Prostate Cancer Cells and Tissues in Prostate Cancer Treatment Process through Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation. *Open J Anal Bioanal Chem* 1: 021-026.

106. Heidari A (2017) Electron Phenomenological Spectroscopy, Electron Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *Austin J Anal Pharm Chem* 4: 1091.

107. Heidari A (2017) Therapeutic Nanomedicine Different High-Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time Using Mathematica and MATLAB. *Madridge J Nano Tech. Sci.* 2: 77-83.

108. Heidari A (2017) A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy as Antibody-Drug Conjugate for the Treatment of Limited-Stage Small Cell Diverse Epithelial Cancers. *Cancer Clin Res Rep* 1: 2.

109. Heidari A (2017) A Novel and Modern Experimental Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White Synchrotron Radiation. *Cancer Sci* 2: 8-18.

110. Heidari A (2017) Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations. *J Oral Cancer Res* 1: 12-17.

111. Heidari A (2017) Vibrational Decahertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (µHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *International Journal of Biomedicine* 7: 335-340.

112. Heidari A (2017) Force Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *EC Cancer* 2: 239-246.

113. Heidari A (2017) Photoacoustic Spectroscopy, Photomission Spectroscopy and Photothermal Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *BAOJ Cancer Res Ther* 3: 045-052.

114. Heidari A (2017) J-Spectroscopy, Exchange Spectroscopy (EXSY), Nuclei Overhauser Effect Spectroscopy (NOEYS) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *EMS Eng Sci J* 1: 061-063.

115. Heidari A (2017) Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *Int J Biopharm Sci* 1: 103-107.

116. Heidari A (2017) Vibrational Decahertz (dHz), Hectorhertz (hHz), Kiloherz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *Madridge J Anal Sci Instrum* 2: 41-46.

117. Heidari A (2018) Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy and Non-Linear Two-Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. *J Mater Sci Nanotechnol* 6: 101.

118. Heidari A (2018) Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. *Int J Nanotechnol Nanochem Nanomed* 3: 1-6.

119. Heidari A (2018) Infrared Photo-Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. *Austin Pharmacol Pharm* 3: 1011.

120. Heidari A (2017) Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation. *Madridge J Nos Drug Res* 1: 18-24.

121. Heidari A (2018) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation., *Open Access J Trans Med Res Dev* 2: 00026-00032.

122. Gobato MRR, Gobato R, Heidari A (2018) Planting of Jaboticaba Trees for Landscape Repair of Degraded Area. *Landscape Architecture and Regional Planning* 3: 1-9.

123. Heidari A (2018) Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. *SM J Clin. Med. Imaging* 4: 1018.

124. Heidari A (2018) Nuclear Inelastic Scattering Spectroscopy (NISS) and Nuclear Inelastic Absorption Spectroscopy (NIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *Int J Pharm* 2: 1-14.

125. Heidari A (2018) X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EXDRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *Int J Oncol Res* 2: 1-14.

126. Heidari A (2018) Correlation Two-Dimensional Nuclear Magnetic Reso-nance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *EMS Can Sci* 1: 1-001.

127. Heidari A (2018) Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *SMJ Biometrics Biostat* 3: 1024.

128. Heidari A (2018) A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy. *Open Acc J Oncol Med* 1.

129. Heidari A (2018) Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. *J Endocrinol Thyroid Res* 3: 555603.

130. Heidari A (2018) Nuclear Resonance Vibrational Spectroscopy (NIRS), Nuclear Inelastic Scattering Spectroscopy (NIS), Nuclear Inelastic Absorption Spectroscopy (NIA) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *Int J Bioreg Chem Mol Biol* 6: 1-5.

131. Heidari A (2018) A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Monochromatic Spectroscopy. *Glob J Endocrinol Metab* 1: 00514.0006159.

132. Heidari A (2018) Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *EMS Pharma J* 1: 002-008.

133. Heidari A (2018) A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *J Anal Molec Techn* 3: 8.

134. Heidari A (2018) Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study. *European Modern Studies Journal* 2: 13-29.

135. Heidari A (2018) Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. *Imaging J Clin Medical Sci* 5: 001-007.

136. Heidari A (2018) Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. *Int J Bioreg Chem Mol Biol* 6: 1-6.
Heidari A (2018) Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD) or DEADCAT and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Biochimica et Biophysica Acta 1857: 501-510.

Heidari A (2018) Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations. Malaysian Journal of Chemistry 20: 1-23.

Heidari A (2018) Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part I). Malaysian Journal of Chemistry 20: 33-73.

Heidari A (2018) Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II). Malaysian Journal of Chemistry 20: 74-117.

Heidari A (2018) Uranocene ([C8H7Fe]), Bin-Cyclooctatetraene (Iron) (Fe(C8H7Fe)) or Fe(COT)2-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports 1: 1-16.

Heidari A (2018) Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation. Glob Imaging Insights 3: 1-7.

Heidari A (2018) Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Res Dev Material Sci 7.

Heidari A (2018) The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors. International Journal of Advanced Chemistry 6: 140-156.

Heidari A (2018) A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations Using Cyclotron versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncological Radiotherapy. European Journal of Advances in Engineering and Technology 5: 414-426.

Heidari A (2018) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. J Oncol Res 1: 1-20.

Heidari A (2018) Use of Molecular Enzymes in the Treatment of Chronic Disorders. Canc Oncol Open Access J 1: 12-15.

Heidari A (2018) Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polyamides Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation. International Journal of Advanced Chemistry 6: 167-189.

Heidari A (2018) Adamantane, Ircine, Naphthene and Pyridine-Enhanced Precatalyst Preparation Stabilization and Initiation (PEPPSI) Nano Molecules. Madridge J Nov Drug Res 2: 63-67.

Heidari A (2018) Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Madridge J Nov Drug Res 2: 68-74.

Heidari A, Gobato R (2018) Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ1-Tetrahydrocannabinol (THC) ([trans]-Δ1-Tetrahydrocannabinol), Theobromine (Xanthothein), Caffeine, Aspartame (APM) (Nutrasweet) and Zivodurine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Delivery of Nano Polymeric Modified Electrode (NPME) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells. Frontiers Drug Chemistry Clinical Res, 2020 doi: 10.15761/FDCCR.1000137 Volume 3: 9-13

Heidari A (2018) Fucitil, Perhydroxyladiene, DEAD or DEADCAT (Diethyl Azodicarboxylate) Skatol, the NanoPutamins, Thesbacin, Picakharin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume 3: 1-8.

Heidari A (2018) A Review on Separation Techniques of Graphene Oxide (GO)-Base on Hybrid Polymer Membranes for Eradication of Dyes and Oil Compounds-Recent Progress in Graphene Oxide (GO)-Base on Polymer Membranes-Related Nanotechnologies. Clin Med Rev Case Rep 5: 228.

Heidari A, Gobato R (2018) First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridinic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DONI)) (3a,7a,3,15-Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education 4: 46-67.

Heidari A (2018) Buckminsterfullerene (Fullerene), Bullevaine, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights 3: 1-7.

Heidari A (2018) Time Resolving of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education 4: 18-33.

Heidari A (2018) Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS) with the Passage of Time under Synchrotron Radiation. Parana Journal of Science and Education 4: 18-33.

Heidari A (2018) Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, C and H. ResearchGate, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326201181, 2018.

Heidari A (2018) Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, C and H. Nano Membrane. Arch Org Inorg Chem Sci 3: 000167.

Heidari A (2018) Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD) or DEADCAT and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education 4: 1-17.

Heidari A, Gobato R (2018) Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet-Visible (UV-Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Parana Journal of Science and Education 4: 18-33.
Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights 3: 1-10.

195. Heidari A (2018) Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) and Nuclear Resonance Vibrational Spectroscopy (NRVS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume 3 (5): 1-7, 2018.

196. Heidari A Small-Angle X-Ray Scattering (SAXS) and Ultra-Small-Angle X-Ray Scattering (USAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights 3: 1-7.

197. Heidari A (2018) Curious Chloride (CmCl3) and Titanium Chloride (TiCl4)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer Research and Therapeutic Interventions 1: 01-10.

198. Gobato R, Gobato MRR, Heidari A, Mitra A (2018) FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Glob Imaging Insights, 3: 1-8.

199. Heidari A (2018) C60 and C70-Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPMME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Int J Mol Med 5: 1-8.

200. Heidari A (2018) Two-Dimensional (2D) 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights 3: 1-8.

201. Heidari A (2018) FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Glob Imaging Insights, 3: 1-8.

202. Heidari A (2018) A Modern and Comprehensive Investigation of Inelastic Electron Tunneling Spectroscopy (IETS) and Scanning Tunneling Spectroscopy on Malignant and Benign Human Cancer Cells, Tissues and Tumors through Optimizing Synchrotron Microbeam Radiotherapy for Human Cancer Treatments and Diagnostics: An Experimental Biospectroscopic Comparative Study. Glob Imaging Insights 3: 1-8.

203. Heidari A (2018) A Hypertension Approach to Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights 3: 1-8.

204. Heidari A (2018) Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights 3: 1-8.

205. Heidari A (2018) 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights 3: 1-9.

206. Gobato R, Gobato MRR, Heidari A, Mitra A (2019) Raman Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree-Fock Methods in the Basis Set CC-pVTZ and 6-31G** (3df, 3pd). International Journal of Advanced Engineering and Science 7: 14-35.

207. Heidari A, Gobato R (2019) Evaluating the Effect of Anti-Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation. Trends in Res 2: 1-8.

208. Heidari A, Gobato R (2019) Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment. Trends in Res 2: 1-8.

209. Heidari A, Gobato R (2019) Pros and Cons Controversy on Malignant Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors. Trends in Res 2: 1-8.

210. Heidari A, Gobato R (2019) Three-Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti-Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation. Trends in Res 2: 1-8.

211. Heidari A, Gobato R (2019) Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trends. Trends in Res 2: 1-8.

212. Heidari A, Gobato R (2019) High-Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation. Trends in Res 2: 1-9.

213. Heidari A (2019) A Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and Techniques for Processing Cadmium Oxide (CdO) Nanoparticles Colloidal Solution. Glob Imaging Insights 4: 1-8.

214. Heidari A (2019) A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystal (AIN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenanthrene, Chrysene and Tetracene. Glob Imaging Insights 4: 1-8.

215. Heidari A (2019) Novel Experimental and Three-Dimensional (3D) Multiphysics Computational Framework of Michaelis-Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications. Glob Imaging Insights 4: 1-8.

216. Heidari A (2019) The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights 4: 1-8.

217. Heidari A (2019) Vibrational Biospectroscopic Study of Gomirous Virus-Sized Macromolecule and Polypeptide Macromolecule as Mega Macromolecules Using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Mathematica 11.3. Glob Imaging Insights 4: 1-8.

218. Heidari A (2019) Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Germ Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchrotron Radiation. Glob Imaging Insights 4: 1-9.

219. Gobato R, Gobato MRR, Heidari A (2019) Storm Vortex in the Center of Paraná State on June 6, 2017: A Case Study. Sumerian Journal of Scientific Research 2: 24-31.

220. Gobato R, Gobato MRR, Heidari A (2019) Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree-Fock Methods in the Basis Set RHF/CC-pVTZ and RHF/6-31G** (3df, 3pd): An Experimental Challenge to Chemistry. Chemistry Reports 2: 1-26.

221. Heidari A (2019) Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Germ Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchrocyclotron Radiation. Res Adv Biomed Sci Technol 1: 01-17.
262. Heidari A, Esposito J, Caissutti A (2019) Aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1), M2 (AFM2), Q1 (AFQ1) and P1 (AFP1) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Drug Delivery Research* 1: 25-32.

263. Heidari A, Esposito J, Caissutti A (2019) Mycotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Drug Delivery Research* 1: 13-18.

264. Heidari A, Esposito J, Caissutti A (2019) Bufotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Drug Delivery Research* 1: 19-24.

265. Heidari A, Esposito J, Caissutti A (2019) Kainite Acid (Kainite) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Journal of Neurology* 2: 02-07.

266. Heidari A, Esposito J, Caissutti A (2019) Nereistoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Journal of Neurology* 2: 19-24.

267. Heidari A, Esposito J, Caissutti A (2019) Spider Toxin and Raventoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Parana Journal of Science and Education* 1: 1-28.

268. Heidari A, Esposito J, Caissutti A (2019) Ochratoxin A, Ochratoxin B, Ochratoxin C, Ochratoxin α and Ochratoxin TA Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Drug Delivery Research* 2: 03-10.

269. Heidari A, Esposito J, Caissutti A (2019) Brevetoxin A and B Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Drug Delivery Research* 1: 11-16, 2019.

270. Heidari A, Esposito J, Caissutti A (2019) Lyngbyatoxin-a Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Drug Delivery Research* 2: 25-28.

271. Heidari A, Esposito J, Caissutti A (2019) Balaneratoxin (BTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Journal of Neurology* 3: 01-05.

272. Heidari A, Esposito J, Caissutti A (2019) Hanatoxin and Alpha-Hanatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Cancer Journal of Neurology* 3: 50-53.

273. Heidari A, Esposito J, Caissutti A (2019) Antilatoxin (ATX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure. *American Journal of Optics and Photonics* 7: 18-27.

274. Gobato R, Gobato MRR, Heidari A (2019) Calculation by UFF Method of Frequencies and Vibrational Temperatures of the Unit Cell of the Rhodochrosite Crystal. *International Journal of Advanced Chemistry* 7: 77-81.

275. Heidari A, Esposito J, Caissutti A (2019) Analysis of Vibronic-Mode Coupling Structure in Vibrational Spectra of Fuzone as a 36 Amino Acid Peptide for HIV Therapy beyond the Multi-Dimensional Franck-Condon Intervals Approximation. *International Journal of Advanced Chemistry* 7: 82-96.

276. Heidari A, Esposito J, Caissutti A (2019) Dibromopropylsaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Applied Chemistry* 2: 17-54.

277. Heidari A, Esposito J, Caissutti A (2019) Enterotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *JRL J Sci Technol* 2: 1-16.

278. Gobato R, Gobato MRR, Heidari A, Mitra A (2019) Rhodochrosite Optical Indicatrix. *Peer Rev Nest* 3: 1-2.

279. Heidari A, Esposito J, Caissutti A (2019) Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Research & Reviews: Journal of Computational Biology* 8: 23-51.

280. Heidari A, Esposito J, Caissutti A (2019) Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Can J Biomed Res & Tech* 2: 2-17.

281. Heidari A, Esposito J, Caissutti A (2019) Neosaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Clin Case Studie Rep* 2: 1-14.

282. Heidari A, Esposito J, Caissutti A (2019) 6-Methoxy-8-(6-Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-y1)(Oxy)-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-ol Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Clin Case Studie Rep* 2: 1-14.

283. Heidari A, Esposito J, Caissutti A (2019) Hartree-Fock Method Analysis. *Spectroscopic Study on an Anti-Cancer Drug.* *Clin Case Studie Rep* 2: 1-14.

284. Heidari A, Esposito J, Caissutti A (2019) Unrestricted Hartree-Fock Method Analysis. *Clin Case Studie Rep* 2: 1-14.

285. Heidari A, Esposito J, Caissutti A (2019) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. *Am J Exp Clin Res* 6: 364-377.

286. Gobato R, Gobato MRR, Heidari A (2019) Hartree-Fock Methods Analysis. *Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells through Synchrotron.* *Radiation* 5: 27-36.

287. Gobato R, Dosh IKK, Heidari A, Mitra A (2019) Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrotron Radiation, and Absorption the Tumoral and Non-Tumoral Tissues. *Arch Biomed Eng & Biotechnol* 3: 1-2.

288. Gobato R, Gobato MRR, Heidari A, Mitra A (2019) Unrestricted Hartree-Fock Computational Simulation in a Protonated Rhodochrosite Crystal. *Phys Astron Int J 3* 220-228.

289. Heidari A, Schmitt K, Henderson M (2019) Perspectives on Sub- Nanometer Level of Electronic Structure of the Synchrotron with Mendelevium Nanoparticles for Elimination of Human Cancer Cells, Tissues and Tumors Treatment Using Mathematica 12.0. *Journal of Energy Conservation* 1: 46-73.

290. Heidari A, Schmitt K, Henderson M, Besana E (2019) Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Bohrium Nanoparticles Using 3D Finite Element Method (FEM) as an Otothermal Human Cancer Cells, Tissues and Tumors Treatment. *Current Research in Biochemistry and Molecular Biology* 1: 17-44.

291. Heidari A, Schmitt K, Henderson M, Besana E (2019) Investigation of Interaction between Synchrotron Radiation and Thulium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment. *European Journal of Scientific Exploration* 2: 1-8.

292. Heidari A, Schmitt K, Henderson M, Besana E (2019) The Effectiveness of the Treatment Human Cancer Cells, Tissues and Tumors Using Darmstadtium Nanoparticles and Synchrotron Radiation. *International Journal of Advanced Engineering and Science* 9: 9-39.
Heidari A (2020) Wheeler-Feynman Time-Symmetric study of effectiveness and efficiency of terbium nanoparticles delivery mechanism in human cancer cells, tissues and tumors under synchrotron radiation