First evidence of chitin in calcified coralline algae: new insights into the calcification process of *Clathromorphum compactum*

M. Azizur Rahman & Jochen Halfar

Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Ontario, Canada.

Interest in calcifying coralline algae has been increasing over the past years due to the discovery of extensive coralline algal dominated ecosystems in Arctic and Subarctic latitudes, their projected sensitivity to ocean acidification and their utility as palaeoenvironmental proxies. Thus, it is crucial to obtain a detailed understanding of their calcification process. We here extracted calcified skeletal organic matrix components including soluble and insoluble fractions from the widely-distributed Subarctic and Arctic coralline alga *Clathromorphum compactum*. The lyophilized skeletal organic matrix fractions showed comparatively high concentrations of soluble and insoluble organic matrices comprising 0.9% and 4.5% of skeletal weight, respectively. This is significantly higher than in other skeletal marine calcifiers. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-Ray Diffraction (XRD) results indicate that chitin is present in the skeletal organic matrices of *C. compactum*. This polymer exhibits similar hierarchical structural organizations with collagen present in the matrix and serves as a template for nucleation and controls the location and orientation of mineral phases. Chitin contributes to significantly increasing skeletal strength, making *C. compactum* highly adapted for living in a shallow high-latitude benthic environment. Furthermore, chitin containing polysaccharides can increase resistance of calcifiers to negative effects of ocean acidification.

The involvement of chitin and collagen in marine biomineralization has been described previously1–4. However, this is the first report on the identification of chitin in the skeletal structural system of coralline algae. After cellulose, chitin is the second most important natural polymer in the world. Its role in biomineralization is well described, especially in mollusc shells1,3, crustaceans3,5 and sponges3,4. Chitin can also be enzymatically deacetylated to chitosan, a more flexible and soluble polymer2,5,6. Both chitin and collagen are usually formed as extracellular secretions, which eventually deposit crystalline minerals1. In natural extracellular matrices, proteoglycans and glycosaminoglycans have important roles in linking with the fibrous structure of collagen to obtain mechanical stability and compressive strength7. Amino groups of chitosan function as binding sites with collagen to improve its stability, without significantly altering the chemical characteristics of both polymers3,7. Therefore, it might be important to develop collagen composites with chitosan to create more suitable biomimetic microenvironments for cells.

Chitin is the main component of cell walls found in plants, bacteria, fungi9,10, which is composed mostly of glycoprotein11. Like plants, algae have cell walls10,12. Algal cell walls contain either polysaccharides that we found in our present study or a variety of glycoproteins (unpublished observation) or both.

Coralline algae are among the calcifying organisms that appear to be the most sensitive to ocean acidification13–15 due to the solubility of their high magnesium calcite skeletons16. Coralline algae are used as palaeoenvironmental proxies because of their clearly defined growth information archived in annual growth bands16–27, widespread distribution, and multicycle-long life spans. Coralline algae are abundant from tropical to polar oceans, sometimes covering up to 100% of the shallow seafloor20–27. However, a great deal remains unknown about the CaCO3 formation in the algal skeletons and the mechanism of growth, especially regarding the key components of organic molecules in the biomineralization process. Therefore, we studied the coralline alga *Clathromorphum compactum* to understand the skeletal structural system and explore the functional molecules in the biomineralization process by which the skeletal minerals form in this species (see Fig. 1).
Methods

Experimental specimens. Samples of *C. compactum* were live collected in 2008 at 10 m depth near Quirpon, Newfoundland, Canada (51°35.135'N 25.490'W), and Bay Bulls, Newfoundland, Canada (47°18.496'N 47.354'W). Specimens from Bay Bulls were kept alive in a mesocosm with artificial seawater for one year before being flash frozen at −30°C. Frozen specimens were thawed immediately prior to processing. Algae were maintained in a mesocosm setting for calibration purposes using light and temperature conditions reflecting the natural environment at their site of collection before being frozen at −30°C. Freezing was done to prevent contamination by bacteria or fungi prior to analysis. For this study only portions of the algal skeleton that had formed prior to field collection were analyzed in order to avoid sampling skeletal material formed during the mesocosm experiment.

Preparation of skeletons. To avoid contamination by other associated tissues (e.g., fungus, bacteria etc.) and unwanted substances, the preparation of skeletons from the algal body must be performed carefully. To do so, we used a series of mechanical and chemical treatments: (1) The selected skeletons were finely ground; (2) All pieces were washed with 95% ethanol (five times) and distilled water (ten times) while stirring; (3) The skeletons were dried and examined using a microscope to determine whether they were completely free of unwanted tissues and other contaminants. We also confirmed via Scanning electron microscope (SEM) that all skeletons are completely contamination-free; (4) Skeletal powder was stirred with 1 M NaOH for 2 h; (5) To ensure again that the skeletons were tissue free (especially fungus and bacteria), they were stirred vigorously in a 10% sodium hypochlorite (NaOCl) bleaching solution for 1 h to remove fleshy tissues and debris. The treated samples were washed under distilled water until all chemicals were removed. Finally, the samples were washed with MilliQ water five times. All steps in the preparation of skeletons were conducted at room temperature, and the materials obtained were stored at 4°C until further analysis.

We also successfully purified algal proteins (paper in preparation) from the same samples used for the present study (both soluble and insoluble organic matrices),
which provides additional evidence that samples were contamination-free. In molecular studies, proteins can only be obtained from completely purified organisms.

Preparation of Soluble and Insoluble Organic Matrices. The mechanically and chemically cleaned alga (ca. 10 g) were decalcified in 0.5 M EDTA-4Na (pH 7.8) overnight. The decalcifying solution was centrifuged (Eppendorf-5430) at 4,000 rpm (15 minutes), and the soluble organic matrix (SOM) in the supernatant was filtered and collected for further purification. The insoluble organic matrix (IOM) in the precipitate was subsequently lyophilized and washed with distilled water (5 times). The solution was dialyzed prior to lyophilisation to remove EDTA completely and separate the soluble macromolecules, followed by passing through 10% acetonitrile (2 mL/three times). Finally, the absorbed macromolecules were eluted in 50% acetonitrile (2 mL/three times), frozen in a deep freezer and lyophilized.

Infrared (IR) Spectrometry. Fourier transform infrared spectroscopy (FTIR) analyses were directly performed on finely powdered *C. compactum* skeletal material. Powdered samples of skeletons and KBr (potassium bromide) were mixed (about 5% powdered samples in KBr) and loaded into the sample holder. A background spectrum was measured for KBr.

SOM (soluble organic matrix) and IOM (insoluble organic matrix) have different properties and were therefore prepared differently for analysis by ATR-FTIR to understand the details of structural and functional properties of the skeletal material. Both SOM and IOM were subjected to attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) using a FTIR spectrometer (Model Alpha, Bruker) equipped with a diamond ATR crystal cell (45° ZnSe; 80 mm long, 10 mm wide and 4 mm thick). For spectral analysis, the SOM and IOM lyophilized samples were placed onto the crystal cell and the cell was clamped into the mount of the FTIR.

Figure 2 | Observation of the algal skeletal structure. (A) Living specimen of crustose coralline alga *C. compactum* (B) SEM image of the structural shape of the cells with their cell walls (red arrows) and coarse CaCO₃ crystals. (C) SEM of an enlarged view of a cell in the skeleton. (D) SEM view of the cells from a fractured live-collected specimen. (E) SEM shows the CaCO₃ deposition and crystal faces on the fractured samples (enlarged view from D) (F) SEM of an enlarged view (from E) of fractured sample showing magnesium calcite crystals [rhombohedra (104)] with different faces in cell, cell wall and outside the wall (arrows).
spectrometer. Spectra in the range of 400–4000 cm\(^{-1}\) with automatic signal gain were collected in 32 scans at a resolution of 4 cm\(^{-1}\) and were rationed against a background spectrum recorded from the clean empty cell.

X-Ray Diffraction (XRD). The same finely ground skeletal powder samples as for FTIR were used for this analysis. The polymorphism of crystals in the skeletons was determined by an X-ray diffractometer (Phillips) with 30 kV and 40 mA Cu K\(\alpha\)
radiations. Sample analyses were carried out in the 20°–60° range of 20 angle, with step sizes of 0.02° and a point measurement time of 2 s.

Scanning Electron Microscopy (SEM). In order to understand skeletal structure, *C. compactum* samples were subjected to observation under SEM (JSM6610LV; JEOL operated at 15 kV, WD14 mm). Prior to that samples were treated to remove any contamination as mentioned above (see preparation of skeletons) and SEM observations were made prior to grinding. All specimens were placed in a sample holder and coated with a palladium–gold mixture.

Results

Skeletal structure of *C. compactum*. Scanning electron microscope (SEM) images of the studied species show the microstructural pattern of the cells in the skeletons and the orientation of CaCO₃ crystals structures (Fig. 2B–D), which were formed biologically by the polysaccharides contained in the organic matrices. As shown in Fig. 2B, SEM reveals the structural shape of the cell walls (red arrows) and coarse CaCO₃ crystals. An enlarged view of a cell in the skeleton demonstrates the architecture of the cell wall (red box in Fig. 2C) with its crystalline structure (arrows in Fig. 2C). The cells from a fractured piece of *C. compactum* are shown in Fig. 2D (red boxes).

IR analyses. *Soluble organic matrix (SOM)*. The structural and functional properties of the soluble organic matrix were analyzed by ATR-FTIR (Fig. 3A). In an analysis of lyophilized soluble organic matrix (0.9% weight of skeletons) the FTIR showed structural protein amide bands, amide A (3000–3500 cm⁻¹), amide B (2800–2990 cm⁻¹), amide I (1600–1700 cm⁻¹), amide II (1300–1590 cm⁻¹) and amide III (1200–1290 cm⁻¹). The amide bands in SOM also characterize as a collagen scaffold. The main band at 1660 cm⁻¹ is indicative of crystalline chitin formation in SOM. The other strong chitin bands at 3277 cm⁻¹ (amide A), 2920 cm⁻¹ (amide B), 1543, 1399 cm⁻¹ (amide II), 1233 cm⁻¹ were identified in the structural crystalline side of the SOM. A strong band at 1075 cm⁻¹ in the range 1030–1110 cm⁻¹ (stretching C–O) is also indicative of chitin. All FTIR spectra (833, 799, 698, 572 cm⁻¹) including strong bands at 459 cm⁻¹ in the fingerprint region (400–850 cm⁻¹) showed chitin formation. We divided four regions (A, B, C, D) of IR fractions to clearly understand the findings and axis labels indicating specific peaks for chitin and collagen (Fig. 4). FTIR spectra of chitins for the SOM fraction with each region were recorded separately (Fig. 4). The three bands resolved in the CH stretching region of the SOM IR spectra at 2955, 2920, 2851 cm⁻¹ are all characteristics of α-chitin (Fig. 4A) and a collagen scaffold. The fingerprint region of the IR spectrum at 698 cm⁻¹ also points to α-chitin (Fig. 4C).

Insoluble organic matrix (IOM). There is a very high concentration (4.5% weight of skeleton) of IOM. To analyse the IOM, ATR-FTIR...
spectra were recorded from the lyophilized samples (Fig. 3B). As shown in Figure 3B, the FTIR spectra of chitin exhibited doublet peaks at 3340 and 3295 cm$^{-1}$ which can be assigned to N-H stretching (amide A). The main chitin band in IOM is present at 1660 cm$^{-1}$. Another strong band attributed to chitin is visible in the range 1030–1110 cm$^{-1}$ (stretching C = O) at the doublet 1056 and 1034 cm$^{-1}$. All FTIR spectra (667, 559, 506, 459, 433, 409 cm$^{-1}$) in the fingerprint region (400–700 cm$^{-1}$) again showed crystalline chitin. However, the chitin of IOM in the fingerprint region is exhibiting a higher number of peaks with different wavenumbers positions. Like SOM, IOM attributed the same structural protein amide bands, amide A (3000–4000 cm$^{-1}$), amide B (2800–2990 cm$^{-1}$), amide I (1600–1700 cm$^{-1}$), amide II (1300–1590 cm$^{-1}$) and amide III (1200–1290 cm$^{-1}$). According to Fernandes et al., the amide bands in IOM showed similar characterization as collagen-chitosan scaffolds. The main chitin bands on the structural crystalline side were amide A (3340, 3295 cm$^{-1}$), amide B (2922 cm$^{-1}$), amide I (1660 cm$^{-1}$), amide II (1436 cm$^{-1}$), and the amide III (1231 cm$^{-1}$). As shown in Fig. 5, structural position and intensity, especially in the fingerprint region of the IOM spectra were different than for the SOM. To specify the chitin bands in the IOM fraction, FTIR spectra within each region were recorded separately (Fig. 5). One band in the CH stretching region of the IOM IR spectra at 2922 cm$^{-1}$ is characteristic of α-chitin (Fig. 5A)30. The fingerprint region of the IR spectrum at 559 cm$^{-1}$ is also characteristic of α-chitin (Fig. 5C)30.

Although spectral positions of chitins are similar in both fractions, the main differences of functional groups of detected chitin bands between SOM and IOM need to be understood. As mentioned above, the arrows in figure 6A, B indicate major differences between the two fractions. The three regions (Fig. 6A) define diagnostic regions of functional groups which might be mainly associated with the presence of proteins/lipids (R1), protein and polysaccharides (R2) and polysaccharides (R3).

Bulk calcified skeletal material. In order to understand the structural information of proteins and mineral composition in skeletal material of *C. compactum*, FTIR analysis was carried out. Figure 7 shows that the skeletons contain structural protein amide bands, named amide A (3000–3600 cm$^{-1}$), amide B (2800–2990 cm$^{-1}$), amide I & II (1300–1700 cm$^{-1}$), amide III (1200–1290 cm$^{-1}$). These bands

Figure 5 | ATR-FTIR spectra of chitins in the insoluble organic matrix (IOM) fraction.

Figure 6 | Comparison of detected chitin bands between SOM and IOM fractions. The arrows (A, B) indicate major differences between two fractions. Three regions (Fig. A) are diagnostic of functional groups showing the presence of proteins/lipids (R1), protein and polysaccharides (R2) and polysaccharides (R3).
contain both chitins and collagen and the crystallization of skeletal minerals might be controlled by these two polymers. The spectrum reveals two peaks at 2527 and 1799 cm$^{-1}$ which in shape and position are evidence for the presence of calcite. Two strong Mg-calcite bands at 718 cm$^{-1}$ (v_4) and 873 cm$^{-1}$ (v_2) were also identified by FTIR. The main chitin bands in the bulk skeletal structural crystalline side were amide A (3427 cm$^{-1}$), amide B (2982 cm$^{-1}$), amide I & II (1456 cm$^{-1}$), and the amide III (1262 cm$^{-1}$).

FTIR peaks in the SOM and IOM are at the same position in the bulk skeleton, which indicate two biopolymers (chitin and collagen) obtained in the purified organic matrices are significantly involved in the precipitation of CaCO$_3$ in the skeleton (Fig. 8). The points of FTIR spectra with different colored boxes indicate the chitin and collagen matrix molecules eventually influence the formation of the algal skeletal structure by nucleating the original minerals in the calcification system (Figs. 1, 8). Purified SOM and IOM show chitin and collagen peaks in the same position region as in the bulk sample, which clearly demonstrates that chitin and collagen are involved in the calcification process.

X-ray diffraction (XRD) of calcified skeletons. To detect the orientation of crystal structures and understand the functional properties of the organic matrix components in the calcified skeletons of *C. compactum*, the finely ground skeletal powder samples were analyzed by XRD. The XRD pattern of the skeleton is shown in Fig. 9. The X-ray diffractional analysis revealed that the crystalline form of calcium carbonate in the algal skeletons was polycrystalline calcite and the structures designed in the skeletons were controlled by the organic matrix molecules. The main diffraction face intensity is the rhombohedra calcite at (104) $2\theta = 29.5^\circ$ and the next to strongest faces are the calcites at [113], [110], [202], [116], [012], [122], [024], [211] and [006], respectively (Fig. 9). The diffraction angle, $2\theta = 29.5^\circ$ in the calcite (104) indicates the presence of Mg-calcite because the diffraction angle for pure calcite is at a maximum $2\theta = 29.3^\circ$–29.3$^\circ$. The crystalline components in the sample exhibited the characteristic chitin and collagen bands in the calcite planes. Figure 9 shows the XRD pattern of different chitins (α-chitin: 110,202, 012; β-chitin: 122) and collagen bands (110, 211, 202).

Discussion

Chitin, a naturally abundant polysaccharide and a supporting material of many marine calcifiers such as crustaceans, is reinforced by calcium carbonate in association with proteins in nature to provide structural strength. Our study on this biomineralization process indicates that the protein-polysaccharide of the organic matrices such as chitin and collagen in Subarctic coralline algal skeletons plays a key role in stabilizing calcite crystals (Fig. 1, 7, 8). The structural characterization of chitin can be easily distinguished using vibrational spectroscopy because this structure is spectroscopically distinct and well documented. To our knowledge, there are no published studies about the functions of chitin and collagen on the biomineralization of other coralline specimens; therefore, different marine organisms with different biominerals were used for comparison. In a recent review, the details of the elemental and organic influences (chitin and collagen) in carbonate systems were described. The presence of chitin in the biomineralization system has been discussed in detail for different calcifiers. One report indicated that the chitin is potentially involved in the formation of skeletons in calcifying marine sponges. Therefore, our data are consistent with the basic concepts of the relationship between the crystal nucleus and its base planes with the organic matrices produced in other calcifying marine organisms.

There are two principal skeletal systems which support the cellular structure of animal tissues: chitinous and collagenous frameworks. It has been suggested that collagen in fungi which normally contain chitin supports the cellular structure. The collagenous skeleton...
consists principally of the unique fibrous protein collagen I, together with different quantities of non-collagenous proteins, while the chitinous system contains amino-polysaccharide chitin together with proteins. The FTIR spectra of collagen in the range of 4000–400 cm$^{-1}$ show main absorption bands indicative of amide A (3333 cm$^{-1}$), amide B (2922 cm$^{-1}$), amide I (1653 cm$^{-1}$), amide II (1539 cm$^{-1}$), and the amide III (1238 cm$^{-1}$). A free N-H stretching vibration commonly occurs in the range of 3400–3440 cm$^{-1}$. The amide B peak of the collagens (2922 cm$^{-1}$) in IOM was attributed to the asymmetrical stretch of CH$_2$ (2920–2922 cm$^{-1}$) stretching vibration commonly occurs in the range of 3400–3440 cm$^{-1}$. The amide A peak of the collagens (2922 cm$^{-1}$) in IOM was attributed to the asymmetrical stretch of CH$_2$ (2920–2922 cm$^{-1}$) stretching vibration (Fig. 3).

The chitin is strongly involved in different invertebrates and it can be regarded as the substrate that binds other macromolecules, which in turn induce nucleation of the mineral phase. Chitin contributes the framework at the base of the biological hierarchy for calcification. An alignment between the orientation of chitin fibres and the crystallographic axes of the mineral phase was observed in brachiopod and mollusc shells as well. The chitin matrix was reported as the sole template for mineralization or in association with other molecules in the calcification system of several organisms. Hall et al. investigated the Mg-calcite in vivo in the Bryozoa skeletons, where chitin was the sole template in the calcification system.

The association of organic matrix components with biomineralized structures and their observed effect on crystallization kinetics strongly suggest that these compounds modify the growth stage of minerals. This conclusion is reinforced by observations of faceted crystal surfaces in a number of cases, including the calcite crystals reported by Mann. On the other hand, many biomineralized structures in nature suggest that organic components also control nucleation. Moreover, there is a substantial body of evidence to suggest that proteins and other organic molecules serve as "templates", providing preferential sites for nucleation and controlling the orientation of the resulting crystals.

Our studies on the biomineralization process of the algal skeletons indicated that the organic matrix components associated with the chitin and collagen molecules play a crucial role in promoting...
and organizing marine growth (Fig. 1). The purification of organic matrices and their complete spectroscopic analyses provide us with comprehensive data on the biomaterials contained within the skeletons of coralline algae. These results have revealed that the organic matrix of the alga C. compactum is composed of two important natural biopolymers, chitin and collagen, and these are mainly responsible for the formation of Mg-calcite in the algal skeletons. Nash et al. showed that a high magnesium mineral (dolomite) in some tropical coralline algae can protect them from ocean acidification. Therefore, the chitin containing polysaccharides described here might be key organic matrix molecules in the calcification process to make C. compactum less susceptible to the negative impacts of ocean acidification. Chitin provides additional strength to the calcified algal skeleton and therefore protection from the destructive actions of grazing or wave tool impacts. Grazing on coralline algae is a natural process, and in fact needed to provide a photosynthetic surface clear of fleshy algal overgrowth. C. compactum has developed a protective calcified surface layer, the so-called epithallium that shields the underlying skeleton from physical grazing damage. However, with increasing rates of ocean acidification and a declining ability to calcify, the algal skeleton might be weakened in the absence of the strengthening effect of chitin and become more susceptible to destruction by grazing. A deeply grazed Clathromorphum crust would quickly bioerode and lose its ecosystem function of harbouring a highly diverse species association. Given the fact that Clathromorphum corallines encrust a spatially significant portion of shallow rocky substrate throughout the entire Arctic and Subarctic a change in its abundance would affect a spatially significant portion of shallow rocky substrate throughout the entire Arctic and Subarctic. A change in its abundance would affect a spatially significant portion of shallow rocky substrate throughout the entire Arctic and Subarctic.

12. Adey, W. H., Halfar, J. & Williams, B. The coralline genus Clathromorphum flosicemend. adey: biological, physiological, and ecological factors controlling carbonate production in an arctic-subarctic climate archive. Smithsonian Contributions to the Marine Sciences 40, 1–41 (2013).

13. Kamenos, N. A. et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Chang Biol 19, 3621–3628, doi:10.1111/gcb.12353 (2013).

14. Nash et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat clim change 2, 268–272 (2015).

15. Kuffner, I. B., A., J. & JOKIEL, P. Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1, 114–117 (2008).

16. Ragazzola. Ocean acidification weakens the structural integrity of coralline algae. Glob Chang Biol 18, 2804–2812 (2012).

17. Martin, S. & Gattuso, J.-P. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15, 2089–2100 (2009).

18. Rubenstein, J., Riebesell, U. & Form, A. Calcification of the Arctic coralline red alga Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Series 441, 79–87 (2011).

19. Ries J. B. Aragonitic Algae in calcite seas: Effect of sea water Mg/Ca ratio on algal sediment production. J Sediment Res 76, 515–523 (2006).

20. Halfar, J. et al. Arctic sea-ice decline archived by multicalendary annual-resolution record from crustose coralline algal proxy. Proc Natl Acad Sci U S A 110, 19737–19741, doi:10.1073/pnas.1315775110 (2013).

21. Kamenos, N. A. North Atlantic summer has warmed more than winters since 1353, and the response of marine zooplankton. Proc Natl Acad Sci U S A 107, 22442–22447, doi:10.1073/pnas.1006411107 (2010).

22. Kamenos, N. A. et al. Coralline algae are global palaeeothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72, 771–789 (2008).

23. Kamenos, N. A. et al. Reconstructing Greenland ice sheet runoff using coralline algae. Geology 40, 1095–1098 (2012).

24. Darrenougue, N. et al. Growth and chronology of the rhodolith-forming, coralline red alga Sparolithon durum. Mar Ecol Prog Series 474, 105–119 (2013).

25. Wanamaker, A. D., Hetzinger, S. & Halfar, J. Reconstructing mid- to high-latitude marine climate and ocean variability using bivalves, coralline algae, and marine sediments from the Northern Hemisphere. Palaeogeogr, Palaeoclim, Palaeoecol 302, 1–9 (2011).

26. Teichert, S. et al. Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31’N in Nordkappbukta (Northeastlandet, Svalbard Archipelago, Norway). Physiologia 51, 371–390 (2012).

27. Adey, W. H. & Macintyre, I. C. Crustose coralline algae: A re-evaluation in the geological sciences. Geol Soc Am Bull 84, 883–904 (1973).

28. Rahman, M. A., Isay, A., Takemura, A. & Uehara, T. Analysis of proteinaceous components of the organic matrix of endoskeletal sclerites from the alcyonarian Lobophytum crassum. Calcif Tissue Int 78, 178–185, doi:10.1007/s00223-005-0253-y (2006).

29. Rahman, M. A., Oomori, T. & Warhodie, G. Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein. J Biol Chem 286, 31638–31649, doi:10.1074/jbc.M109.070185 (2011).

30. Mikkelsen, A., Engelsen, S. B., Hansen, H. C. B., Larsen, O. & Skibsted, L. H. Calcium carbonate crystallization in the alpha-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage. J Cryst Growth 177, 125–134 (1997).

31. Rahman, M. A. & Oomori, T. In Vitro Regulation of CaCO3 Crystal Growth by the Marine bivalve mollusk Mytilus galloprovincialis. Connect Tissue Res 39, S87–S93, doi:10.1080/09731296.2006.1088716 (2008).

32. Rahman, M. A. & Oomori, T. Calcification in the alpha-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage. J Cryst Growth 177, 125–134 (1997).

33. Rahman, M. A. & Oomori, T. In Vitro Regulaton of Calcium Carbonate Growth by the Highly Acidic Proteins of Calcitic Sclerites in Soft Coral, Sinularia Polyactyla. Connect Tissue Res 50, 285–293, doi:10.3109/0300802802741933 (2009).

34. Kamenos, N. A. et al. Coralline algal structure, crystallization and mineral composition of sclerites in the alcyonarian coral. J Cryst Growth 310, 3528–3534, doi:10.1016/j.jcrysgro.2008.04.056 (2006).

35. Zhang, Y., Xue, C., Xue, Y., Gao, R. & Zhang, X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340, 1914–1917, doi:10.1016/j.carres.2005.05.005 (2005).

36. Celerin, M. et al. Fungal fibrillae are composed of collagen. EMBO J 15, 4445–4453 (1996).

37. Friess, W. & Lee, G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials 17, 2289–2294 (1996).

38. Feng, W. et al. Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skin. Pharmacia mag 9, 53–57, doi:10.1039/0079-1296.117859 (2001).

39. Weiss, I. M. & Schonitzer, V. The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153, 264–277, doi:10.1016/j.jsb.2005.11.006 (2006).

40. Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite crystal habit by chitin. J Inorg Biochem 88, 410–419 (2002).

41. Falini, G., Ferrini, F. & Ripamonti, A. Oriented crystallization of octacalcium phosphate into beta-chitin scaffold. J Inorg Biochem 84, 255–258 (2001).

42. Falini, G., Ferrini, F. & Ripamonti, A. Characterization of calcium carbonate salts in the beta-chitin scaffold. J Inorg Biochem 91, 475–482 (2002).

43. Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorph by mollusk shell macromolecules. Science 271, 67–69 (1996).

44. Mann, S. Biomineralization: Principles and concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, New York, 2001).
Acknowledgments

Funding to J.H. was provided by the Natural Sciences and Engineering Research Council of Canada and a Canadian Foundation for Climate and Atmospheric Sciences Grant.

Author contributions

M.A.R. performed the experiments; J.H. and M.A.R. wrote the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Rahman, M.A. & Halfar, J. First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Sci. Rep. 4, 6162; DOI:10.1038/srep06162 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/