CO EMISSION IN LOW-LUMINOSITY, H I–RICH GALAXIES

CHRISTOPHER L. TAYLOR
Ruhr-Universität Bochum, Astronomisches Institut, Universitätsstraße 150, D-44870 Bochum, Germany; taylorc@astro.ruhr-uni-bochum.de

HENRY A. KOBUKNICKY
University of California, Santa Cruz, Lick Observatory/Board of Studies in Astronomy, Santa Cruz, CA 95064; chip@ucolick.org

AND

EVAN D. SKILLMAN
University of Minnesota, Department of Astronomy, 116 Church Street, SE, Minneapolis, MN 55455; skillman@zon.spa.umn.edu

Received 1998 July 17; revised 1998 August 18

ABSTRACT

We present ^{12}CO 1 → 0 observations of 11 low-luminosity ($M_b > -18$), H I–rich dwarf galaxies. Only the three most metal-rich galaxies, with $12 + \log (\text{O}/\text{H}) \approx 8.2$, are detected. Very deep CO spectra of six extremely metal-poor systems [$12 + \log (\text{O}/\text{H}) \leq 7.5$] yield only low upper limits on the CO surface brightness, $I_{\text{CO}} < 0.1 \text{ K km s}^{-1}$. Three of these six have never before been observed in a CO line, while the others now have much more stringent upper limits. For the very low metallicity galaxy Leo A, we do not confirm a previously reported detection in CO, and the limits are consistent with another recent nondetection.

We combine these new observations with data from the literature to form a sample of dwarf galaxies that all have CO observations and measured oxygen abundances. No known galaxies with $12 + \log (\text{O}/\text{H}) < 7.9$ ($Z < 0.1 Z_\odot$) have been detected in CO. Most of the star-forming galaxies with higher [$12 + \log (\text{O}/\text{H}) > 8.1$] metallicities are detected at similar or higher I_{CO} surface brightnesses. The data are consistent with a strong dependence of the $I_{\text{CO}}/M_{\text{H}_2} \equiv X_{\text{CO}}$ conversion factor on ambient metallicity. The strikingly low upper limits on some metal-poor galaxies lead us to predict that the conversion factor is nonlinear, increasing sharply below $\sim 1/10$ of the solar metallicity [$12 + \log (\text{O}/\text{H}) \leq 7.9$].

Key words: galaxies: dwarf — galaxies: ISM

1. INTRODUCTION

Carbon monoxide (CO) is commonly used as a tracer of cool molecular gas, because molecular hydrogen (H$_2$), the dominant species in the molecular phase, has no strong emission lines from which the column density of H$_2$ may easily be determined. Since the rotational transitions of CO in the millimeter and submillimeter regime are relatively easy to excite, it is possible to use the luminosity in one of these lines to estimate the column density and mass of molecular gas, provided one knows the correct conversion. The conversion factor, X_{CO}, from I_{CO} to N_{H_2} has been determined for the Milky Way galaxy to be $\sim 3 \times 10^{20} \text{ cm}^{-2} (\text{K km s}^{-1})^{-1}$ for the ^{12}CO 1 → 0 transition (Strong et al. 1988; Scoville & Sanders 1987). The application of this Milky Way value to external galaxies has been controversial, as the value may depend on the physical conditions in those galaxies which are difficult to determine observationally and may differ greatly from those in our own galaxy (Dickman, Snell, & Schloerb 1986; Israel et al. 1986; Maloney & Black 1988, hereafter MB88).

One of the characteristics of a galaxy that may affect the relation between CO luminosity and H$_2$ gas mass is its metal abundance. If the abundance of the CO molecule is low, the column density of CO may not be great enough to allow self shielding from dissociating radiation. In this case, the size of the CO emitting region within a given molecular cloud will shrink, while the H$_2$ is unaffected. Thus, the filling factor will decrease, reducing the CO luminosity for a given molecular gas mass (MB88). Rubio, Lequeux, & Boulanger (1993) have found observational evidence of this effect in the SMC. Their data for a number of molecular clouds show a correlation between cloud size and the CO-to-H$_2$ conversion factor. They suggest that the smaller clouds are the dense cores of larger clouds in which the diffuse CO outside the cores has been dissociated (cf. MB88).

Observational studies have led to conflicting conclusions concerning the presence of molecular clouds in actively star-forming dwarf galaxies. Since the pioneering work of Elmegreen, Elmegreen, & Morris (1980), it has been clear that the CO molecule is difficult to detect in dIs and therefore, that the CO surface brightnesses are much lower in dIs than in spiral galaxies. Under the assumption that the CO/H$_2$ ratio is constant everywhere, this implied that the molecular gas content of dwarf galaxies must be very low (Young, Gallagher, & Hunter 1984; Tacconi & Young 1987).

On the other hand, studies by Wilson (1995, hereafter W95) and Verter & Hodge (1995) have provided strong evidence that the conversion factor depends on the metal abundance of the galaxy. By measuring molecular cloud virial masses and comparing them to their CO luminosities, W95 showed that the CO-to-H$_2$ conversion increases as the metallicity of the host galaxy decreases over the range of $8 \leq 12 + \log (\text{O}/\text{H}) \leq 9$. This supported the conclusions made by Cohen et al. (1988) and Rubio et al. (1991) based on observations of the Magellanic Clouds. Verter & Hodge (1995) added very deep CO 2 → 1 observations of the extreme dwarf galaxy GR 8 and were unable to detect any
The proximity of GR 8 (2.2 Mpc; Tolstoy et al. 1995) allows very low upper limits on \(L(\text{CO})\). Combined with an inference of the minimal molecular mass present to support the current star formation in GR 8, this was also interpreted as an indication of a metallicity dependence of the CO-to-\(H_2\) conversion factor.

Studies of this type have been limited primarily to galaxies of relatively high metallicities in order to detect CO emission. Indeed, the nondetection of GR 8 by Verter & Hodge (1995), with an oxygen abundance of 12 + log (O/H) = 7.47 (Skillman, Kennicutt, & Hodge 1989) illustrates this difficulty. In fact, the only low-metallicity dwarf irregular galaxy to have been detected in CO is Leo A, observed by Tacconi & Young (1987), at 12 + log (O/H) = 7.3. A recent observation of Leo A by L. Young (1997, private communication) failed to confirm the detection of CO in Leo A. We decided to try to confirm this important result ourselves and to supplement the understanding of CO emission in low-metallicity environments by observing additional metal poor dwarf galaxies.

Here we present \(^{12}\text{CO} \, 1 \to 0\) observations of 11 galaxies covering a range of oxygen abundances from 7.3 \(\geq 12 + \log (O/H) \geq 8.2\). Some of these galaxies have been previously observed in CO. We confirm previous detections for several galaxies, and we obtain very deep upper limits for others. We present the first published CO data on three galaxies, UGC 4483, DDO 187, and UM 422. Section 2 contains a description of the observations and data reduction, while § 3 describes the results. In § 4 we combine the new observations with a thorough search of the literature to examine
the relationship between CO surface brightness and metal abundance in these low-mass systems.

2. 12CO OBSERVATIONS AND DATA REDUCTION

2.1. Observations

We observed five galaxies with the NRAO 2 12 m telescope at Kitt Peak, in the $1 \rightarrow 0$ (115 GHz) transition of 12CO on 1998 January 5–11: Leo A, Sextans A, DDO 210, DDO 187, and Pegasus. Three galaxies (UM 422, Mrk 178, and UGC 4483) were observed on 1994 March 10–13 and three more (NGC 1569, NGC 4214, and NGC 5253) on 1995 June 18–21. The 3 mm SIS receiver was used with the filterbank spectrometer and a 1 MHz filter, yielding 256 channels per spectrum, and a channel width of 2.6 km s$^{-1}$.

The receiver was tuned to the central velocity of the H I distribution in each galaxy. Operating at 115 GHz, the half-power beam width is 55$''$. System temperatures varied from between ~300 and 500 K during the course of the observations, infrequently rising higher during the 1998 January run due to weather conditions. The pointing was checked about every 2 hours by observing Venus or Mars. The observations were conducted in beam switching mode, with a beam throw of 2$'$ at 1.25 Hz, except for Leo A and Sextans A, which have too large an angular extent. For these galaxies, the absolute position switching mode was used to ensure a reference beam uncontaminated by emission from the galaxy. For comparison, one position in Leo A was also observed in beam switching mode.

2.2. Observing Strategy

Part of the motivation for our observations was to reobserve Leo A to confirm the detection of Tacconi & Young.

2 The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
3. RESULTS: CO DETECTIONS AND UPPER LIMITS

3.1. Individual Galaxies

Table 1 gives the positions, optical diameters, H I heliocentric central velocities, and velocity widths from the literature for each of the newly observed galaxies, as well as the central velocities, velocity widths (full widths at 50% max), the rms noise, and the integrated intensities ($I_{CO} = \int T_K dv$) of the CO line or the upper limits. Reported errors on I_{CO} are computed from $N^{1/2} \times \sigma_{rms} \times \delta v_{chan}$, where N is the number of channels in which CO was detected, σ_{rms} is the noise in the spectrum, and δv_{chan} is the channel width in km s$^{-1}$.

Leo A.—Leo A is a dwarf irregular galaxy for which Tacconi & Young (1987) claim a CO detection. We observed three positions in this galaxy, two corresponding to the locations of the cold H I component discovered by Young & Lo (1996) and the third at the same position observed by Tacconi & Young (1987). Comparing this position with the H I map of Young & Lo (1996) shows that the claimed CO detection arises in a large depression in the H I column density. We detected CO at none of the three positions, including that observed by Tacconi & Young. The nondetection of CO is in accord with the low metallicity of Leo A and the nondetection of other systems with similarly low metallicities. The rms noise for the spectra we have obtained in Leo A range from 2.7 to 5.5 mK when smoothed to 5.2 km s$^{-1}$ velocity resolution. For a resolution of 20.8 km s$^{-1}$ the range is 1.3–2.6 mK. In comparison, the detection from Tacconi & Young is 19 mK with a velocity width of 25 km s$^{-1}$.

Sextans A.—The dwarf irregular galaxy Sextans A was most recently observed in CO (prior to our own observations) by Ohta et al. (1993). They observed a single

TABLE 1

VELOCITIES AND LINE WIDTHS

Galaxy Name	α(1950)	δ(1950)	D_{LS} (arcmin)	v_0(H I) (km s$^{-1}$)	Δv_{LS}(H I) (km s$^{-1}$)	I_{CO} (K km s$^{-1}$)	$\sigma(T_K)$ (K)
NGC 1569	04 26 05	+64 44 23	3.1	-89	74	0.685 ± 0.104	
UGC 4483	08 32 07	+69 57 16	1.1	156	49	0.007	<0.195
Leo A	5.0	20	33	0.002	...
Leo A-1(ABS)	09 56 38	+30 58 50	0.004	<0.101
Leo A-2	09 56 21	+30 59 29	0.006	<0.143
Leo A-3	09 56 32	+30 59 12	0.004	<0.075
Leo A-1(BPS)	09 56 38	+30 58 50	0.003	<0.070
Sextans	10 08 36	-04 27 34	0.004	<0.088
Sextans A-1	10 08 32	-04 27 34	0.006	<0.143
Sextans A-2	10 08 21	-04 26 40	0.006	<0.143
Sextans A-3	0.006	<0.225
UM 422	11 17 40	+02 47 58	2.3	1600	90	0.002	<0.120
Mrk 178	11 30 45	+49 30 46	1.4	250	30	0.002	<0.225
NGC 4214	9.6	290	62	0.005	0.542 ± 0.078
NGC 4214a	12 13 09	+36 36 16	294	0.005	<0.069
NGC 4214b	12 13 11	+36 35 44	0.013	<0.044
NGC 4214d	12 13 11	+36 36 48	0.005	<0.225
NGC 5253	13 37 05	-31 23 30	4.5	408	60	0.009	0.725 ± 0.148
DDO 187	14 13 38	+23 17 10	1.9	154	33	0.003	<0.070
DDO 210	20 44 06	-13 01 55	2.3	-137	21	0.005	<0.125
Pegasus	23 26 04	+14 27 15	4.6	-183	23	0.005	<0.132

Note:—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

References:—(H82) Hunter et al. 1982; (MI) Melisse & Israel 1994; (Se88) Skillman et al. 1988; (TBGS) Taylor et al. 1995; (TM81) Thuan & Martin 1981; (KS95) Kobulnicky & Skillman 1995.
position coinciding with the peak H\textsc{\i} column density determined from the map of Skillman et al. (1988), attaining an rms noise in their spectrum of 48 mK for a velocity resolution of 2.6 km s-1. We have observed two positions in Sextans A, the main peak in the H\textsc{\i} column density, as well as a secondary peak. These two peaks are positioned on either side of a depression in the H\textsc{\i} column density that coincides with the center of the optical galaxy. In our observations of the secondary H\textsc{\i} peak (labeled as position 3 in Table 1) we used the H\textsc{\i} hole as the position for the reference beam. Thus, emission at that location would appear as an absorption feature in the spectrum of Figure 1. The velocity difference between the gas at these two locations due to the rotation of the galaxy is large enough (~10 km s-1) that an apparent absorption feature would not cancel out emission at position 3. The rms noise in our spectra span the range 3.4–5.5 mK at 5.2 km s-1 velocity resolution, and 1.3–24 mK for 20.8 km s-1 resolution.

DDO 210.—DDO 210, another gas-rich dwarf irregular galaxy, is among those observed in CO by Tacconi & Young (1987), who did not detect it. They give a 2 \sigma upper limit on the integrated CO intensity, I_{CO} of 0.41 K km s-1, compared to our 5 \sigma upper limit of 0.12 K km s-1. We used the H\textsc{\i} maps by Lo, Sargent, & Young (1993) to direct our single pointing observation at the peak of the H\textsc{\i} column density. The Tacconi & Young (1987) position falls approximately one beam width to the east of ours, although still on an area of high H\textsc{\i} column density. We note that the oxygen abundance we use for DDO 210 is derived from its absolute density. The & Young position falls approximately 20 km s-1 to the east of ours, although still on an area of high H\textsc{\i} column density.

DDO 187.—DDO 187 is also a dwarf irregular, but it has not been previously observed in CO. We obtained a spectrum from a single position in the galaxy, centered on the peak of the H\textsc{\i} column density as determined from the data of Lo, Sargent, & Young (1993). Smoothing the spectrum to 5.2 km s-1, we reach an rms noise of 2.7 mK, while for 20.8 km s-1 the noise is 1.6 mK.

Pegasus.—The Pegasus dwarf irregular galaxy has also been observed in CO by Tacconi & Young (1987), who do not detect it, giving a 2 \sigma upper limit on the integrated CO intensity of 0.38 K km s-1. This compares to our 5 \sigma upper limit of 0.08 K km s-1. The position observed by Tacconi & Young (1987) is ~1’ north of the position we have observed and is on the edge of the dense region of H\textsc{\i} for which our observed position is the H\textsc{\i} peak.

NGC 5253.—The amorphous galaxy NGC 5253 is a 4 \sigma detection in the smooth spectrum, with a peak intensity at roughly 400 km s-1, the systemic velocity of the H\textsc{\i} distribution. Turner, Beck, & Hurt (1997) also obtained a detection (14 Jy km s-1 = 6–8 \sigma) of NGC 5253 at the velocity of the H\textsc{\i} using the Owens Valley Radio Observatory millimeter array. Using the SEST telescope, Wiklind & Henkel (1989) find an integrated CO intensity of 1.3 K km s-1, which corresponds to 27.3 Jy km s-1 assuming a gain of 21 Jy K-1 at 115 GHz. For the 12 m telescope, we adopt a gain of 34 Jy K-1 (NRAO 12 m user’s guide), which yields 24.6 ± 5.0 Jy km s-1, consistent with the SEST value, and roughly twice the OVRO interferometer value. The discrepancy between single dish and interferometer measurements is to be expected if the interferometer resolves out CO emission on large angular scales. NGC 5253 was also observed by Jackson et al. (1989), who did not detect it with the NRAO 12 m telescope, with an rms noise of 0.10 K in their spectrum, a value slightly higher than in our own spectrum.

NGC 1569.—NGC 1569 has been classified as a Magellanic irregular. Israel & de Bruyn (1988) have found evidence that it is in a poststarburst phase, in which the massive star formation has recently ceased. For this galaxy we find an integrated CO intensity of 0.685 ± 0.104 K km s-1. The CO spectrum shows an absorption signature near 0 km s-1 due to Galactic foreground CO emission in the reference beam. Rogstad, Rogoor, & Whiteoak (1967) obtained an H\textsc{\i} spectrum toward NGC 1569 that shows H\textsc{\i} emission at ~ −90 km s-1, and also detected a narrow emission feature at ~0 km s-1 from the Galaxy. The two features are well separated, so there should not be any contamination from the off-beam reference position affecting the line profile.

NGC 4214.—NGC 4214 is classified as SBm III and is one of the most luminous of the observed galaxies. Four positions separated by 45", were observed. These are designated a, b, d, and e. CO is detected at two of the four positions, with an integrated CO intensity of 0.900 ± 0.105 K km s-1. A direct comparison of these results to other CO observations of NGC 4214 is problematic because of different beam sizes (IRAM; Becker et al. 1995) or overlapping beams (Thronson et al. 1988). Our results are at least consistent with the center position 3 \sigma detections reported by Thronson et al. ($I_{\text{CO}} = 1.0 ± 0.35$ K km s-1) and Tacconi & Young (1985; $I_{\text{CO}} = 0.94 ± 0.22$ K km s-1). Becker et al. (1995) have mapped this galaxy in the 12CO 2 → 1 transition, finding the emission to be confined to a region roughly thirty arcseconds in diameter. Our observations cover this area and should detect all the 12CO 1 → 0 emission.

Mrk 178.—Mrk 178 is a low-luminosity dwarf with an abundance of 12 + log (O/H) = 8.0 (Kobulnicky & Skillman, in preparation) Mrk 178 has been observed in CO previously but has only a high upper limit (rms noise = 20 mK; Morris & Lo 1978). Our spectrum shows no emission down to a limit of $I_{\text{CO}} < 0.2$ K km s-1. The rms noise in the final averaged spectra is 2 mK, a factor of 10 lower than that obtained by Morris & Lo (1978).

UGC 4483.—UGC 4483 is a very low abundance dwarf galaxy [12 + log (O/H) = 7.5] in the nearby M81 group (Skillman et al. 1994). Its appearance is dominated by a single giant star-forming complex. It has no previous CO observations in the literature, and no CO emission was detected in our spectrum, which has an rms noise of 2 mK. The upper limit on I_{CO} is less than 0.195 K km s-1.

UM 422.—The H\textsc{\i} galaxy UM 422 (UGC 6345) is an emission line galaxy from the sample of Salzer, MacAlpine, & Boroson (1989) and was included in the VLA H\textsc{\i} survey of H\textsc{\i} galaxies of Taylor et al. (1995). It is the most distant galaxy in this paper and was included in our sample because
of its low metal abundance. This galaxy has not been previously observed in CO. The rms noise in our spectrum is 2 mK, with an upper limit on I_{CO} of 0.120 K km s$^{-1}$.

Table 2 gives distances, optical luminosities, oxygen abundances, integrated CO intensities and CO "luminosities" for galaxies we have observed. L_{CO} is determined using the relation: $L_{CO} = I_{CO}A_S$, where A_S is the source area (see, e.g., Sanders, Scoville, & Soifer 1991).

In the case of UM 422, the most distant galaxy we observed, the star-forming region traced by Hα emission is approximately the size of the telescope beam. Thus, our assumption of extended emission is adequate, as long as spatially extended star formation can be taken as indicating the presence of spatially extended molecular gas. Without knowledge of the true CO spatial distribution, our assumption will at least provide reasonable relative estimates for the CO luminosities and H$_2$ masses among galaxies in our sample.

4. DISCUSSION

4.1. The Dependence of CO Emission on Metal Abundance

We have carried out these observations with the goal of better understanding the relationship of CO emission to metal abundance in dwarf galaxies. Because all of these galaxies (with the exception of DDO 210) are currently experiencing at least some massive star formation, we can infer the presence of molecular gas. Even dwarf irregular galaxies with relatively low rates of massive star formation can be detected in CO, especially if they are nearby. To supplement our 11 galaxies we have searched the literature for low-luminosity dwarfs, which have been observed in the 12CO 1 \rightarrow 0 line. These previous works include Morris & Lo (1978), Rowan-Robinson, Phillips, & White (1980), Elmegreen et al. (1980), Israel & Burton (1986), Tacconi & Young (1987), Thronson & Bally (1987), Arnault et al. (1988), Sage et al. (1992), Wilson (1992), Hunter & Sage (1993), Brinks & Taylor (1997), Israel et al. (1995), Young et al. (1995), and Gondhalekar et al. (1998). In an effort to keep the galaxy sample as homogeneous as possible, we selected only those galaxies with $M_B \geq -18$. For CO data, we are careful to convert I_{CO} from the published temperature units (usually T_{d*} or T_{mb}) into the units used here, T_{mb}. Since most galaxies have not been mapped in CO with an interferometer, we use the telescope beam size at the distance of the galaxy as a consistent first order estimate the source diameter. The data we have collected from the literature are presented in Table 3. Unfortunately, only a small fraction of these galaxies have published chemical abundances from optical spectroscopy.

Our primary objective is to study the dependence of CO emission on ambient metal abundance, independent of variations in galaxy size, distance, and optical luminosity. Verter & Hodge (1995) and Wilson (1995) use observations of individual molecular clouds in nearby galaxies to characterize the variation of X_{CO} with metallicity. Our data do not allow us to determine this conversion factor. Instead, our approach is to study a larger sample of extremely metal-poor galaxies using very sensitive CO observations obtained with a telescope beam that is comparable to the size of the target galaxies. Since the galaxies lie at different distances up to 20 Mpc, the telescope beam samples an ensemble average of many molecular clouds in the target galaxies. In most cases, the size of the CO emitting region is not known. Thus, the spectra for each pointing represent a mean CO surface brightness for the nearby resolved galaxies, and a lower limit on the CO surface brightness for the most distant objects, where the emitting region may be much smaller than the beam. It is not immediately apparent which physical properties (e.g., I_{CO}, X_{CO}, M_H) derived from the spectra make for the best analysis.

We first examined the CO luminosity, L_{CO}, as a function of metal abundance as indicated by $12 + \log O/H$. However, because metallicity correlates strongly with optical luminosity in galaxies of all types (see, e.g., Lequeux et al. 1979; Skillman et al. 1989) we find that more metal-rich, and thus the most luminous, galaxies have larger L_{CO}. This result is not especially informative. Larger galaxies contain more matter, and not surprisingly, they should have more CO as well, even if the I_{CO}/N_H conversion factor is identical to smaller, more metal-poor galaxies. Next, we considered normalizing the CO luminosity of each galaxy by some fiducial indicator of its mass, such as optical luminosity or H I mass. This has the advantage of producing distance-independent quantities like L_{CO}/M_{H_I} or L_{CO}/L_B. However, we find that for a given metal abundance, the scatter in each of these exceeds an order of magnitude. This scatter results, in part, because the CO, H I and optical data

TABLE 2

PROPERTIES OF OBSERVED DWARF GALAXIES

Galaxy Name	Distance (Mpc)	M_B	Reference	Abundance 12 + log O/H	Reference	I_{CO} (K km s$^{-1}$)	L_{CO} (106 K km s$^{-1}$ pc2)
NGC 1569	V Zw 16	2.2	IvD	-16.9	T88	8.19 \pm 0.02	KS97 0.685 \pm 0.104
NGC 4214	UGC 7278	4.1	MI	-17.9	T88	8.20 \pm 0.05	KS96 0.900 \pm 0.105
NGC 5253	UGC A369	4.1	KS95	-17.2	T88	8.20 \pm 0.06	Ke97 0.725 \pm 0.148
UM 422	UGC 6345B	21.3	TBGS	-13.7	SMB	8.0 \pm 0.2	Te95 $<$0.120 $<$3.0
Mer 178	UGC 6541B	4.2	TMB1	-14.4	T88	8.0 \pm 0.02	KS96 $<$0.225 $<$0.22
Pegasus	DDO 216	0.76	Ge98	-12.3	T88	7.93 \pm 0.11	Se97 $<$0.0044 $<$0.132
UGC 4883		4.0	MI	-13.4	T88	7.50 \pm 0.03	Se94 $<$0.195 $<$0.18
Sextans A	DDO 75	1.4	De97	-14.1	T88	7.5 \pm 0.2	SKH $<$0.017 $<$0.143
DDO 210		4	Ge93	-13.4	MI	7.4 \pm 1.3	... $<$0.11 $<$0.125
DDO 187	UGC 9128	4.4	AGM	-13.9	T88	7.75 \pm 0.05	vZ97 $<$0.076 $<$0.070
Leo A	DDO 69	0.69	Te98	-11.7	T88	7.3 \pm 0.2	SKH $<$0.0357 $<$0.143

* Estimated from the magnitude/abundance relation from Skillman et al. 1989.

REFERENCES.—(IvD) Israel & van Driel 1990; (MI) Melli & Israel 1994; (KS95) Kobulnicky & Skillman 1995; (TBGS) Taylor et al. 1995; (TMB1) Thuan & Martin 1981; (Ge98) Gallagher et al. 1998; (De97) Dohn-Palmer et al. 1997; (Ge93) Greggio et al. 1993; (AGM) Aparicio et al. 1988; (Te98) Tolstoy et al. 1998; (T88) Tully 1988; (SMB) Salzer et al. 1989; (K97) Kobulnicky & Skillman 1997; (KS96) Kobulnicky & Skillman 1996; (Ke97) Kobulnicky et al. 1997; (Te97) Terlevich et al. 1991; (Se97) Skillman et al. 1997; (Se94) Skillman et al. 1994; (SKH) Skillman et al. 1989; (vZ97) van Zee et al. 1997.
Galaxy Name	Galaxy Name	Distance (Mpc)	Reference	M_n	Reference	$12 + \log O/H$	Reference	I_{CO} (K km s$^{-1}$)	Reference	I_{CO} (104 K km s$^{-1}$ pc2)
NGC 1156	VV 531	6.4	T88	−17.5	T88	8.29(0.20)	T80	<1.2	HS93	<2.7
UGC A372	Mrk 67	22.4	T88	−16.0	TMB1	8.21(0.08)	KS96	<0.62	S92	<2.8
NGC 6822	DDO 209	0.7	T88	−15.6	T88	8.19(0.07)	KS96	>1.81(0.25)	W92	0.05 (0.01)
II Zw 40	UGC A116	10.3	T88	−17.2	T88	8.06(0.02)	KeUP	0.46(0.10)	Ye95	1.82 (0.40)
II Zw 70	Mrk 829	23.1	T88	−17.1	T88	8.06(0.08)	KS96	<0.38	Ye95	<7.6
UM 439	UGC 06578	14.7	vZ95	−15.8	SMB	8.05(0.02)	KS96	<0.48	S92	5.79
I Zw 123	Mrk 487	15.0	T88	−16.1	T88	8.02(0.09)	KS96	<1.06	Aae88	<2.13
SMC	...	0.06	BW97	−16.3	BT	7.98(0.02)	Pe78	<1.00(0.5)	Ie93	<5200(2600)
UM 462	Mrk 1307	13.9	TBGS	−15.7	S92	7.96(0.02)	KS96	<0.28	BT	<3.02
I Zw 36	UGC A281	4.7	T88	−13.9	T88	7.93(0.07)	VT83	0.45(0.10)	Ye95	0.37 (0.08)
NGC 2366	DDO 42	2.9	T88	−16.7	T88	7.89(0.02)	GDe94	<0.60	HS93	<0.28
UGC 3974	DDO 47	2.1	T88	−13.2	T88	7.85(0.01)	SKH	<0.46	Ye95	<0.076
UM 461	...	11.7	S92	−14.1	S92	7.76(0.02)	KS96	<0.78	S92	5.96
NGC 4789A	DDO 154	4.0	T88	−14.1	T88	7.67(0.06)	vZ97	<2.6	ML78	<2.32
GR8	DDO 155	1.7	T88	−11.6	T88	7.47(0.02)	SKH	<0.09	VH95	<0.015
I Zw 18	Mrk 116	14.3	T88	−14.8	TM81	7.21(0.05)	SK93	<0.27	Ge98	1.26
Arp 4	DDO 14	19.8	T88	−17.9	T88	<1.38	IB86	<30.1
NGC 3353	Haro 3	16.8	T88	−17.9	T88	1.46(0.21)	S92	3.68 (0.53)
UM 549	...	78.7	SMB	−17.9	SMB	<0.27	Ge98	<37.8
UGC 12632	DDO 217	9.2	T88	−17.7	T88	<0.99	IB86	<4.68
NGC 2537	Mrk 86	9.0	T88	−17.6	T88	0.83(0.12)	S92	0.60(0.09)
UGC 10310	DDO 204	15.8	T88	−17.5	T88	3.2	ML78	<44.6
UM 471	...	146.6	SMB	−17.5	SMB	<0.46	Ge98	<220
NGC 4605	UGC 07831	4.0	T88	−17.4	T88	1.30(0.3)	TB87	3.39 (0.78)
HoII	DDO 50	4.5	T88	−17.3	T88	<0.46	Ye95	0.35
UM 465	UGC 6877	15.4	T88	−17.3	T88	0.63(0.18)	S92	8.3(2.3)
UGC 05478	DDO 73	23.4	T88	−17.2	T88	0.30	Ie95	<9.17
NGC 4670	Haro 9	11.0	T88	−17.2	T88	2.62	Aae88	<2.83
UM 286	...	21.6	T88	−17.0	T88	0.73	Ge98	<7.70
UM 334	...	69.5	SMB	−17.0	SMB	0.36	Ge98	<39.3
UM 454	...	50.1	SMB	−17.0	SMB	0.73	Ge98	<41.4
NGC 4144	UGC 7151	4.1	T88	−16.9	T88	<4.0	RR80	<3.75
UM 351	...	104.2	SMB	−16.9	SMB	<0.27	Ge98	<66.3
NGC 4523	DDO 135	16.8	T88	−16.8	T88	<0.57	Ye95	<6.01
UM 374	...	79.1	SMB	−16.8	SMB	<0.46	Ge98	<65.1
NGC 7077	Mrk 900	13.3	T88	−16.7	T88	0.50(0.09)	S92	0.79(0.14)
UGC A441	Mrk 328	19.6	T88	−16.6	T88	<1.04	S92	<3.57
UM 483	Mrk 1313	30.8	TBGS	−16.5	SMB	<0.73	Ge98	<15.7
IC 2574	DDO 81	2.7	T88	−16.4	T88	<1.8	Es80	<0.73
Galaxy Name	Galaxy Name	Distance (Mpc)	Reference	M_B	Reference	Abundance	Reference	I_{CO} (K km s$^{-1}$)	Reference	L_{CO} (106 K km s$^{-1}$ pc2)
-------------	-------------	----------------	-----------	-------	-----------	-----------	-----------	-------------------------	-----------	----------------------------------
NGC 1560	UGC 03060	3.0	T88	-16.4	T88	<4.0	RR80	<2.01
UM 491		26.3	TBGS	-16.3	SMB	<0.73	Ge98	11.4
UM 456		23.3	TBGS	-16.1	S92	<0.64	Ge98	7.86
NGC 4707	DDO 150	8.0	T88	-16.1	T88	1.59(0.26)	Ye95	0.26(0.04)
NGC 3738	UGC 06565	4.3	T88	-16.1	T88	0.37(0.10)	Ye95	0.26(0.07)
NGC 2976	UGC 05221	2.1	T88	-16.1	T88	1.0(0.2)	TB87	0.86(0.14)
NGC 3274	UGC 05721	5.9	T88	-16.0	T88	<0.1	TB87	0.6
UM 323		25.5	TBGS	-15.9	SMB	<0.55	Ge98	8.09
UM 452		19.2	TBGS	-15.9	SMB	<0.64	Ge98	5.34
UGC 09366	DDO 168	7.4	T88	-15.5	T88	<4.0	RR80	12.2
UGC 08320	DDO 168	3.6	T88	-15.5	T88	<4.0	RR80	2.89
UGC 0333	UGC 08105	10.4	S92	-15.3	S92	<0.87	S92	5.25
UGC 09405	DDO 194	5.7	T88	-15.2	M1	<4.0	RR80	7.26
Hol	DDO 63	4.4	T88	-15.2	T88	<4.0	RR80	4.32
UGC 05272	DDO 64	6.5	T88	-15.1	T88	<0.75	i95	1.77
UGC 02014	DDO 22	9.4	T88	-14.9	M1	<0.95	IB86	5.20
UGC 05764	DDO 83	6.9	T88	-14.9	T88	0.57(0.20)	i95	1.52(0.53)
UGC 07698	DDO 133	3.8	T88	-14.9	T88	<4.0	RR80	3.23
UGC 03860	DDO 43	7.2	T88	-14.6	T88	<0.32	i95	0.93
UGC 07577	DDO 125	3.0	T88	-14.6	T88	<4.0	RR80	2.01
VII Zw 499	DDO 165	2.8	T88	-14.6	T88	<4.0	RR80	1.75
I Zw 87	DDO 190	3.7	T88	-14.5	T88	<0.46	i95	0.35
UGC 05340	DDO 68	5.9	T88	-14.4	T88	0.30(0.15)	i95	0.58(0.29)
UGC 06817	DDO 99	3.1	T88	-14.3	T88	<4.0	RR80	2.15
IC 1574	DDO 226	4.5	T88	-14.3	T88	<4.0	RR80	4.52
UGC 06900	DDO 101	5.9	T88	-14.3	T88	<0.75	i95	1.46
UGC 04426	DDO 52	6.3	T88	-14.2	T88	<0.63	i95	1.40
UGC 08760	DDO 183	3.3	T88	-13.9	T88	<0.30	i95	0.18
UGC 07559	DDO 126	2.8	T88	-13.2	T88	<4.0	RR80	1.75
UGC 07599	DDO 127	3.5	T88	-13.0	T88	<4.0	RR80	2.74
M81 DwA		4.3	T88	-12.3	PT	<0.27	Ye95	0.19

References.—(T88) Tully 1988; (vZ95) van Zee et al. 1995; (TBGS) Taylor et al. 1995; (SMB) Salzer et al. 1989; (TM81) Thuan & Martin 1981; (BT88) Bothun & Thompson 1988; (K96) Kobulnicky & Skillman 1996; (KeUP) Kobulnicky et al. 1998; (KS95) Kobulnicky & Skillman 1995; (Pe78) Pagel et al. 1978; (VT83) Viallefon & Thuan 1983; (GDe94) Gonzalez-Delgado et al. 1994; (SKH) Skillman et al. 1989; (vZ97) van Zee et al. 1997; (SK93) Skillman & Kennicutt 1993; (HS93) Hunter & Sage 1993; (W92) Wilson 1992; (Ye95) Young et al. 1995; (Ae88) Arnault et al. 1988; (BT) Brinks & Taylor 1997; (ML78) Morris & Lo 1978; (VH95) Verter & Hodge 1995; (Ge98) Gallagher et al. 1998; (IB86) Israel & Burton 1986; (TB87) Thronson & Bally 1987; (Ie95) Israel et al. 1995; (RR80) Rowan-Robinson et al. 1980; (Ee80) Elmegreen et al. 1980; (FT) Patterson & Thuan 1996.
sample different regions of the galaxy. The H I and optical measurements refer to the global properties of a galaxy, including material at large radii, while, in all but the most distant targets, the CO data represent relatively localized measurements that cover only the central star-forming regions. Furthermore, extinction and the recent star formation history strongly influences the measured optical luminosity. Ideally, such a normalization by optical luminosity or H I mass should be made using optical imaging or aperture synthesis H I mapping, which is spatially matched to the single-dish CO beam.

We finally decided to use the integrated CO intensity, \(I_{\text{CO}} \), as the unit of comparison between galaxies of different metallicity. \(I_{\text{CO}} \) is a measure of the mean CO surface brightness (K km s\(^{-1}\) beam\(^{-1}\)) and is roughly independent of distance as long as the CO beam is not much larger than the emitting region. Since \(I_{\text{CO}} \) measures the amount of CO emission per unit beam area, the major problem with this quantity is that the CO beam subtends larger areas with increasing galaxy distance. For more distant galaxies, which are smaller than the beam area, the measured quantity represents only a lower limit on the CO surface brightness. In an effort to make a robust comparison between galaxies, we exclude from further analysis all objects more distant than 10 Mpc. At 10 Mpc, the 55° FWHM beam of the NRAO 12 m telescope used in most of these observations subtends 2.7 kpc. This is approximately the size of CO emitting central regions of Magellanic irregular galaxies such as NGC 4214 (Becker et al. 1995). CO detections with 55° resolution in dwarf galaxies significantly more distant than 10 Mpc will yield probable lower limits on the CO surface brightness, \(I_{\text{CO}} \). The opposite problem exists for very nearby galaxies, where the telescope beam resolves individual giant molecular clouds. The CO data of Israel et al. (1993) in the LMC and SMC show a larger scatter in \(I_{\text{CO}} \), which probably reflects the real brightness variations between molecular clouds centers and intercloud regions. We include the LMC in the plot for comparison purposes, although it violates our absolute magnitude limit. For the LMC and SMC we adopt the mean \(I_{\text{CO}} \) values. Since Israel et al. (1993) chose locations in the LMC and SMC to contain molecular clouds and star-forming regions, this mean represents an upper limit on the true mean \(I_{\text{CO}} \) that would be observed from a distance of 2–5 Mpc, which is typical of the dwarf galaxies under consideration. The rest of the galaxies in the sample (except NGC 6822) are more distant than 1 Mpc, so that these smaller scale brightness variations are smoothed out by the relatively larger beam area.

In Figure 2 we plot \(\log I_{\text{CO}} \) versus the oxygen abundance \([12 + \log (\text{O/H})]\) for dwarf galaxies less than 10 Mpc away. Galaxies with CO detections appear as filled circles, while undetected objects appear as upper limits. We plot I Zw 36 with an open circle since it represents a less secure (4 \(\sigma \)) detection (Tacconi & Young 1987; Young et al. 1995) and it has not been subsequently reobserved. We show only the brightest position for NGC 6822 reported by Wilson (1992). We plot the mean \(I_{\text{CO}} \) for the LMC and SMC reported by Israel et al. (1993).

Figure 2 reveals a clear dichotomy between systems with \(12 + \log (\text{O/H}) > 8.0 \) and the very metal-poor systems. All of the galaxies with CO detections have higher metallicities; the only one detected below \(12 + \log (\text{O/H}) = 8.0 \) is I Zw 36 (Tacconi & Young 1987). All galaxies with lower metallicities are nondetections with very low limits. The nondetections at low metallicities are consistent with a strong dependence of the CO surface brightness on metallicity. To test this visual impression of the data quantitatively, we randomly redistributed the \(x \) - and \(y \) -values of the 19 objects in Figure 2 \([I_{\text{CO}}]\) and \([12 + \log (\text{O/H})]\) 100,000 times. In only 97 of these 100,000 tests did all eight detected objects in Figure 2 fall above an oxygen abundance of 7.9. The chance of obtaining the result randomly is only 0.1%, strongly suggesting that metal-poor dwarfs have markedly lower CO surface brightnesses.

In previous works there has also been a clear trend for high-metallicity galaxies to have a high CO emission, while most of the low-abundance galaxies were undetected. Tacconi & Young (1985) noted a dependence of \(L_{\text{CO}} \) on metal abundance, although their sample of galaxies contained relatively massive, metal-rich objects and only one object with \(12 + \log (\text{O/H}) < 8.5 \). They presented a plot similar to our Figure 2, showing a clear correlation of \(L_{\text{CO}} \) with O/H for irregular and spiral galaxies, albeit with considerable scatter. Gondhalekar et al. (1998) also find a similar result. Part of this correlation was undoubtedly due to the underlying luminosity—metal abundance correlation among galaxies (see, e.g., Lequeux et al. 1979; Skillman et al. 1989). Arnault et al. (1988) made a similar plot using \(L_{\text{CO}}/M_{\text{HI}} \), which shows a correlation between \(L_{\text{CO}}/M_{\text{HI}} \) and oxygen abundance. They include spiral galaxies, while we specifically excluded spiral galaxies from our plot, both because the physical conditions of the molecular gas are likely to be different from dwarf galaxies, and because the concept of a global metal abundance is ill defined. Spiral galaxies often show large abundance gradients (see, e.g., Zaritsky, Kennicutt, & Huchra 1994), whereas dwarf and irregular galaxies have very uniform abundances (Pagel, Edmunds, & Smith 1980; Kobulnicky & Skillman 1996,
1997; Devost, Roy, & Drissen 1997). Sage et al. (1992) present much the same plot (their Fig. 4a) from which they concluded that there is no correlation between L_{CO}/M_{H_2} and metal abundance. Our restricted sample includes none of the Sage et al. galaxies, which are all more distant than 10 Mpc or more luminous than dwarf galaxies.

Figure 2 should be free from all of these biases due to differing distances, galaxy sizes, metallicities, and luminosities. We plot CO surface brightness rather than luminosity, and we include only dwarf galaxies that are chemically homogeneous. We also extend the metallicity baseline to much lower values of O/H in order to place stronger constraints on the role of metallicity in determining the CO surface brightness. Unfortunately, Figure 2 is relatively sparse because so few dwarf galaxies have sensitive CO observations, and few of those have accurate metallicity determinations.

To increase the sample size using more of the galaxies from Table 3, we plot I_{CO} versus L_B in Figure 3. Given the metallicity-luminosity relationship for dwarf irregular galaxies, the luminosity can serve as a metallicity and size indicator. Mindful of the historical problems with false CO detections at low signal-to-noise (e.g., Leo A) we further impose the restriction that the CO detection must be at the 4 σ level or better. This excludes three objects, NGC 3738, DDO 83, and DDO 68, from Table 3. Labels and filled circles or large arrows denote galaxies with measured metallicities that appear in Figure 2. Filled triangles denote additional CO detections in objects without measured metallicities. Small arrows mark additional upper limits for galaxies that have been observed in CO. The addition of these 34 galaxies reinforces the striking trend seen in Figure 2. Galaxies detected in CO cluster near log $I_{\text{CO}} = 0$ and have M_B brighter than -15.5. No galaxies fainter than $M_B = -15$ are detected, with the exception of the 4 σ I Zw 36. Because I Zw 36 stands out in this way in Figures 2 and 3, it would be worthwhile to reobserve it for confirmation of the detection. The CO upper limits of the additional data from the literature do not constrain the behavior of I_{CO} at low metallicities as strongly as the new observations presented here.

Since CO emission is considered a tracer of the molecular gas, it might be expected from the above result that low-abundance galaxies would also be deficient in molecular gas compared to the amount of atomic gas. However, the conversion rate from CO to H_2 depends on abundance, in the sense that the lower the abundance, the higher the conversion rate. Therefore, the low-abundance galaxies will have the highest conversion rates (e.g., MB88), and thus may not necessarily have lower H_2 masses. The best evidence for a metallicity-dependent conversion factor dependent comes from CO observations of giant molecular clouds in metal poor systems in nearby galaxies (Verter & Hodge 1995; W95). The new, very sensitive data we present here further strengthen their conclusions, and even suggest a rapid (nonlinear) increase in X_{CO} below $12 + \log (O/H) = 8.0$. Spaans et al. (1998) find such a sharp change in X_{CO} approximately this same metallicity in their models of the multiphase galactic medium. Even more sensitive observations with the next generation of millimeter-wave telescopes may be able to confirm this prediction of a steep decline in CO surface brightness, and a steep increase in the I_{CO}/H_2 conversion factor in very metal-deficient environments.

5. SUMMARY

12CO 1 \rightarrow 0 observations of 11 galaxies with oxygen abundances $12 + \log (O/H)$ in the range 8.4–7.3 yield the most sensitive data yet on very metal-deficient galaxies. The six objects that have low abundances $[12 + \log (O/H) < 8.0]$ are not detected to upper limits of 0.1 K km s$^{-1}$. Three of these six have never before been observed in a CO line, while the others now have much more stringent upper limits. For the very low-metallicity galaxy Leo A, we do not confirm a previously reported detection in CO, but the upper limit is consistent with an unpublished nondetection by L. Young (1997, private communication).

We combine these new observations with data from the literature to form a sample of dwarf galaxies that all have CO observations and measured oxygen abundances. None of the galaxies with $12 + \log (O/H) < 7.9$ are detected. Most of the galaxies with higher metallicities are detected at a similar CO surface brightness, $log I_{\text{CO}} \approx -0.1$ K km s$^{-1}$. These data are consistent with a strong dependence of the $I_{\text{CO}}/M_{H_2} = X_{\text{CO}}$ conversion factor on ambient metallicity. The low upper limits on some galaxies, together with the molecular gas implied by the presence of star formation, are consistent with hypothesis that the conversion factor is nonlinear, increasing sharply around 1/10 of the solar metallicity $[12 + \log (O/H) \approx 8.0]$.

We thank U. Klein for helpful comments on the paper, and C. Wilson for commenting on an earlier version of this paper. We thank the referee for a thorough review of the paper and useful comments. We are also grateful to the staff of NRAO-Tucson for their assistance with the observations. C. L. T. acknowledges support from the Deutsche Forschungsgemeinschaft under the framework of the Grad-
uiertenkolleg “The Magellanic System and Other Dwarf Galaxies.” H. A. K. is grateful for assistance from a NASA Graduate Student Researchers Program fellowship and from HF-01094.01-97A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract NAS 5-26555. E. D. S. acknowledges support from NASA LTSARP grant NAGW-3189.

REFERENCES

Aparicio, A., Garcia-Pelayo, J. M., & Moles, M. 1988, A&AS, 74, 367
Arnault, P., Casoli, F., Combes, F., & Kunth, D. 1988, A&A, 205, 41
Becker, R., Henkel, C., Bomans, D. J., & Wilson, T. L. 1995, A&A, 295, 302
Bothun, G. D., & Thompson, L. B. 1988, AJ, 96, 877
Brinks, E., & Taylor, C. L. 1997, poster paper presented at IAU Symp. 170
Cohen, R. S., Dame, T. M., Garay, G., Montani, J., Rubio, M., & Thaddeus, P. 1988, ApJ, 331, L95
Devost, D., Roy, J.-R., & Drissen, L. 1997, ApJ, 482, 765
Dickman, R. L., Snell, R. L., & Schloerb, F. P. 1986, ApJ, 331, L95
Dohm-Palmer, R. C., et al. 1997, AJ, 114, 2514
Elmegreen, B. G., Elmegreen, D. M., & Morris, M. 1980, ApJ, 240, 455
Gallagher, J. S., Tolstoy, E., Dohm-Palmer, R. C., Skillman, E. D., Cole, A. A., Hoessel, J. G., Saha, A., & Mateo, M. 1998, AJ, 115, 1869
Gondhalekar, P. M., Johansson, L. E. B., Brosch, N., Glass, I. S., & Brinks, E. 1998, A&A, 335, 152
Greggio, L., Marconi, G., Tosi, M., & Focardi, P. 1993, AJ, 105, 894
Greve, A., Becker, R., Johansson, L. E. B., & McKee, C. D. 1996, A&A, 312, 391
Hunter, D. A., Gallagher, J. S., & Rautenkranz, D. 1982, ApJS, 49, 53
Hunter, D. A., & Sage, L. J. 1993, PASP, 105, 374
Israel, F. P., & Burton, W. B. 1986, A&A, 168, 369
Israel, F. P., & de Bruyn, A. G. 1988, A&A, 198, 115
Israel, F. P., De Graauw, Th., van de Stadt, H., & De Vries, C. P. 1986, ApJ, 303, 186
Israel, F. P., et al. 1993, A&A, 276, 25
Israel, F. P., & van Driel, W. 1990, A&A, 236, 323
Jackson, J. M., Snell, R. L., Ho, P. T. P., & Barrett, A. H. 1989, ApJ, 337, 680
Kobulnicky, H. A., & Skillman, E. D. 1995, ApJ, 454, L121
Kobulnicky, H. A., & Skillman, E. D., in preparation
Kobulnicky, H. A., & Skillman, E. D. 1995, ApJ, 454, L121
Kobulnicky, H. A., Skillman, E. D., Roy, J.-R., Walsh, J. R., & Rosa, M. R. 1997, ApJ, 477, 679
Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A., & Torres-Peimbert, S. 1979, A&A, 80, 155
Lo, K. Y., Sargent, W. L. W., & Young, K. 1993, AJ, 106, 507
Maloney, P., & Black, J. H. 1988, ApJ, 325, 389
Melisse, J. P. M., & Israel, F. P. 1994, A&A, 285, 51
Morris, M., & Lo, K. Y. 1978, ApJ, 223, 803
Obita, K., Tomita, A., Saio, M., Suzuki, M., & Nakai, N. 1993, PASJ, 45, L21
Pagel, B. E. J., Edmunds, M. G., Fosbury, R. A. E., & Webster, B. L. 1978, MNRAS, 184, 569
Pagel, B. E. J., Edmunds, M. G., & Smith, G. 1980, MNRAS, 193, 219
Patterson, R. J., & Thuan, T. X. 1996, ApJS, 107, 103
Rogstad, D. H., Rougoor, G. W., & Whiteoak, J. B. 1967, ApJ, 150, 9
Rowan-Robinson, M., Phillips, T. G., & White, G. 1988, A&A, 82, 381
Rubio, M., Garay, G., Montani, J., & Thaddeus, P. 1991, ApJ, 368, 173
Rubio, M., Lequeux, J., & Boulanger, F. 1993, A&A, 271, 9
Salzer, J. J., Salzer, J. J., Loose, H.-H., & Henkel, C. 1992, A&A, 265, 19
Salzer, J. J., MacAlpine, G. M., & Boroson, T. A. 1989, ApJS, 70, 447
Sanders, D. B., Scoville, N. Z., & Soifer, B. T. 1991, ApJ, 370, 158
Scoville, N. Z., & Sanders, D. B. 1987, in Interstellar Processes, ed. D. J. Hollenbach & H. A. Thronson (Dordrecht: Reidel), 21
Skillman, E. D., Bomans, D. J., & Kobulnicky, H. A. 1997, ApJ, 474, 205
Skillman, E. D., & Kennicutt, R. C. 1993, ApJ, 411, 655
Skillman, E. D., Kennicutt, R. C., & Hodge, P. W. 1989, ApJ, 347, 875
Skillman, E. D., Terlevich, R. J., Kennicutt, R. C., Garnett, D. R., & Terlevich, E. 1994, ApJ, 431, 172
Skillman, E. D., Terlevich, R., Teuben, P. J., & van Woerden, H. 1988, A&A, 198, 33
Spaans, M., et al. 1998, in preparation
Strong, A. W., et al. 1988, A&A, 207, 1
Tacconi, L., & Taylor, C. L. 1997, poster paper presented at IAU Symp. 170
Taylor, C. L., Brinks, E., Grashuis, R. M., & Skillman, E. D. 1995, ApJS, 99, 427
Terlevich, R., Melnick, J., Masegosa, J., Moles, M., & Copetti, M. V. F. 1991, A&AS, 91, 285
Thronson, H. A., & Bally, J. 1987, in Star Formation in Galaxies, ed. C. J. Lonsdale Persson (Washington: NASA), 267
Thronson, H. A., Hunter, D. A., Telesco, C. M., Greenhouse, M., & Harper, D. A. 1988, ApJ, 334, 605
Thuan, T. X., & Martin, G. E. 1981, ApJ, 247, 823
Tolstoy, E., Saha, A., Hoessel, J. G., & Danielson, G. E. 1995, AJ, 109, 579
Tolstoy, E., et al. 1998, AJ, 116, 1244
Tully, B. R. 1988, Nearby Galaxies Catalog (Cambridge: Cambridge Univ. Press)
Turner, J. L., Beck, S. C., & Hurt, R. L. 1997, ApJ, 474, L11
van Zee, L., Haynes, M. P., & Giovanelli, R. 1995, AJ, 109, 990
van Zee, L., Haynes, M. P., & Salzer, J. J. 1997, AJ, 114, 2479
Verter, F., & Hodge, P. 1995, ApJ, 446, 616
Viallefond, F., & Thuan, T. X. 1983, ApJ, 269, 444
Wiklind, T., & Henkel, C. 1989, A&A, 225, 1
Wilson, C. D. 1992, ApJ, 391, 144
Wrobel, J. M., et al. 1995, ApJ, 448, L97 (W95)
Young, J. S., et al. 1995, ApJS, 98, 219
Young, J. S., Gallagher, J. H., & Hunter, D. A. 1984, ApJ, 276, 476
Young, L. M., & Lo, K. Y. 1996, ApJ, 462, 203
Zaritsky, D., Kennicutt, R. C., & Huchra, J. P. 1994, ApJ, 420, 87