Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Sequence of Mouse Hepatitis Virus A59 mRNA 2: Indications for RNA Recombination between Coronaviruses and Influenza C Virus

WILLEM LUYTJES, PETER J. BREDENBEEK, ANS F. H. NOTEN, MARIAN C. HORZINFEK, AND WILLY J. M. SPAAN

Institute of Virology, Veterinary Faculty, State University of Utrecht, P.O. Box 80.165, Utrecht, The Netherlands

Received January 27, 1988; accepted May 30, 1988

The nucleotide sequence of the unique region of coronavirus MHV-A59 mRNA 2 has been determined. Two open reading frames (ORF) are predicted: ORF1 potentially encodes a protein of 261 amino acids; its amino acid sequence contains elements which indicate nucleotide binding properties. ORF2 predicts a 413 amino acids protein; it lacks a translation initiation codon and is therefore probably a pseudogene. The amino acid sequence of ORF2 shares 30% homology with the HA1 hemagglutinin sequence of influenza C virus. A short stretch of nucleotides immediately upstream of ORF2 shares 83% homology with the MHC class I nucleotide sequences. We discuss the possibility that both similarities are the result of recombinations and present a model for the acquisition and the subsequent inactivation of ORF2; the model applies also to MHV-A59-related coronaviruses in which we expect ORF2 to be still functional.

INTRODUCTION

Murine hepatitis virus (MHV) is the most widely studied member of the Coronaviridae. This family of enveloped, single-stranded RNA viruses causes considerable economic loss, since coronavirus infections can severely affect cattle, poultry, and pets. Human coronavirus OC43 causes the common cold in man. Murine coronaviruses are of particular interest because several strains can cause a (chronic) demyelinating disease in rats and mice. For this reason the pathogenesis of MHV infections is studied as an animal model for virus-induced demyelination (Wege et al., 1982). MHV-A59 virions contain an infectious RNA genome, about 30 kb in length, associated with a nucleocapsid protein (N). Two membrane proteins have been identified: the transmembrane glycoprotein E1 and the large surface glycoprotein E2 (Siddell et al., 1982). The MHV-A59 genome is composed of seven different regions (A to G), separated by short, very similar junction sequences (Bredenbeek et al., 1987). The messenger RNAs that are synthesized during infection are 3'-coterminal, and each extends to a different junction sequence in the 5'-direction. This results in a nested set of mRNAs, including the genome, in which each has a different "unique" region at its 5'-end (Leibowitz et al., 1981; Lai et al., 1981; Spaan et al., 1982). All mRNAs share a leader sequence of about 72 nucleotides (Spaan et al., 1983; Lai et al., 1984). In vitro translated MHV mRNAs encoding the structural proteins N, E1, and E2 and the 14.5K nonstructural protein are functionally monocistronic (Rottier et al., 1981; Siddell, 1983), and sequence analyses have shown that the coding regions are located at the 5'-end of these individual mRNAs (Siddell, 1987). There is one possible exception: sequence analysis of the 5'-end of mRNA 5 (region E) revealed two open reading frames (Skinner et al., 1985; Budzilowicz and Weiss, 1987). Whether both reading frames are used is not known.

The coronaviruses studied to date show an identical order of the genes encoding the structural proteins: 5'-E2-E1-N-3' (De Groot et al., 1987). Between coronaviruses these genes are highly homologous. In contrast, differences are found in the structure and number of the genes encoding the nonstructural proteins, which is reflected in the number of subgenomic mRNAs that is synthesized by each coronavirus. In infectious bronchitis virus (IBV), feline infectious peritonitis virus (FIPV), and its close relative transmissible gastroenteritis virus (TGEV), members of different antigenic clusters from MHV, the largest subgenomic mRNA encodes the peplomer protein E2 or S (Binns et al., 1985; Niesters et al., 1986; De Groot et al., 1987; Rasschaert and Laude, 1987; Jacobs et al., 1987). In contrast, in MHV-infected cells an additional, larger RNA (mRNA 2) has been identified (Spaan et al., 1981; Weiss and Leibowitz, 1983). In vitro translation of this mRNA yields a 30K-35K protein (Leibowitz et al., 1982; Siddell, 1983). In MHV-JHM-infected cells, small amounts of a 30K protein can be detected (Siddell et al., 1981). However, the size of the unique region of mRNA 2, approximately 2 kb, indicates a larger coding capacity.

In order to study the function of mRNA 2 we have cloned and sequenced region B of MHV-A59. Here we...
present its primary structure and show that it contains two open reading frames (ORF). The predicted amino acid sequence of the second ORF is remarkably similar to the HA1 sequence of the hemagglutinin protein of influenza C virus. We discuss the possibility that this ORF has been acquired by a recombination event.

MATERIALS AND METHODS

cDNA synthesis and cloning

A MHV-A59-specific cDNA library was created using random primers on purified genomic RNA. Procedures were identical to those described previously (Luytjes et al., 1987). Full details will be presented elsewhere (P. J. Bredenbeek et al., manuscript in preparation).

Selection and analysis of cDNA clones

Recombinant cDNA clones were selected by hybridization (Meinkoth and Wahl, 1984) to oligonucleotide probes specific for the viral mRNAs (P. J. Bredenbeek et al., manuscript in preparation). Plasmid DNA from recombinant clones was prepared according to Birnboim and Doly (1979). Inserts were subcloned into M13 vectors (Messing, 1983). Selection of M13 subclones specific for the unique region of mRNA 2 was performed by hybridizing phage supernatant to pentamer primed probes (Feinburg and Vogelstein, 1983; Roberts and Wilson, 1985) from previously oligonucleotide-selected cDNA clones.

DNA sequence analysis

Sequence analysis was essentially done according to Sanger et al. (1977). Computer assembly of sequence data was performed using the Staden program set (1986).

Similarity search of protein sequences

The predicted amino acid sequences were compared to the National Biomedical Research Foundation (NBRF) Protein Library (release 11) using the FASTP program set created by Lipman and Pearson (1985). Additional analysis of similarities was carried out with the DIAGON program of Staden (1982).

RESULTS

Isolation of region B specific cDNA clones

We have recently constructed an almost complete random-primed cDNA library of the MHV-A59 genome. A set of oligonucleotides was synthesized, based upon the sequence of previously obtained MHV-A59-specific cDNA clones which had been mapped on the viral mRNAs (P. J. Bredenbeek, manuscript in preparation). Oligonucleotides OL 4 (specific for mRNA 1), OL 6 (mRNA 2), and OL 7 (mRNA 3, see Luytjes et al., 1987) were used to screen the cDNA library for clones covering region B. Two completely overlapping clones (30, 96) and several clones with partial overlaps (4D, 35, F71, 95, 918) were isolated. Clone 96 was digested with Sau3A and subsequently ligated into the BamHI site of M13mp9. The other selected cDNA clones were subcloned using restriction enzymes as indicated in Fig. 1. Each nucleotide of region B was determined on at least two different cDNA clones and selected regions on three or more cDNA clones.

Identification of the unique region of mRNA 2

The 3'-end of region B has already been identified at the junction sequence 5'-UAAUCUAAAC-3', which separates it from the peplomer coding sequence (Luytjes et al., 1987). The only other potential junction sequence within the consensus sequence of the region B-specific cDNA clones was found at position −9589 (Fig. 1) from the start of the poly(A)-tail of the genome: 5'-AAAUCUAUAC-3' (Fig. 2). Immediately upstream of this sequence an ORF terminates, the primary structure of which shows a high similarity to the 3'-terminal sequence of the unique region of IBV mRNA F (Boursnell et al., 1987, and data not shown). This strongly suggests that the junction sequence at position −9580 corresponds to the 5'-end of the unique region of mRNA 2.

Nucleotide and amino acid sequence

The consensus nucleotide sequence of region B is 2176 residues long (Fig. 2). It contains two open reading frames. The first open reading frame (ORF1) starts 18 nucleotides downstream from the junction sequence and is 261 amino acids (aa) long. The second ORF (ORF2) starts 903 nucleotides downstream and is 413 aa long. It terminates 23 nucleotides upstream from the junction sequence that separates regions B and C (the peplomer gene). Between ORF1 and ORF2 lies a stretch of 92 nucleotides with several termination codons in each reading frame (see Fig. 2).

Analysis of ORF1

In ORF1 three potential translation initiation codons can be found. The first AUG is in a strong context (Kozak, 1986) and is therefore most probably used. The coding capacity of ORF1 is 30K, which is in agreement with the products obtained after in vitro translation of mRNA 2. There are no membrane protein sequence characteristics, such as a signal sequence, a transmembrane anchor sequence, or potential N-glycosylation sites. Diagon comparison (Staden, 1982) of the
ORF1 amino acid sequence with available sequences of other coronaviruses did not reveal any similarities. A FASTP similarity search (Lipman and Pearson, 1985) of the NBRF protein library produced an alignment to several proteins with nucleotide binding properties (data not shown). Recently, consensus sequence elements have been published, for which an involvement in nucleotide binding is proposed (Dever et al., 1987; Fry et al., 1986). Three regions in the ORF1 sequence match to these elements (Fig. 3).

Analysis of ORF2

ORF2 does not start with an AUG codon; the first potential initiation codon within ORF2 is found at position 110. Interestingly, in the region upstream of ORF2 an AUG codon (position 879) is found in a favorable context, which precedes a short reading frame, separated from ORF2 by only one opal termination codon (Fig. 2). This short reading frame is 90% homologous (83% at the nucleotide level) to the N-terminus of the signal sequence of several MHC class I genes (Fig. 4; Schepart et al., 1986). There is no other significant similarity between class I sequences and any MHV sequence. The region overlapping the end of ORF1 and the beginning of ORF2 has been sequenced on three independent cDNA clones. The sequences are identical, excluding the possibility that the presence of the termination codon is a cloning or sequencing artifact.

The sequence of ORF2 shows characteristics of a membrane protein sequence: the C-terminal hydrophobic residues (underlined in Fig. 2) could provide a membrane anchor and 10 potential N-glycosylation sites are present.

The most remarkable aspect of the ORF2 sequence came from FASTP analysis of the NBRF protein library: the predicted amino acid sequence encoded by ORF2 shows a 30% homology with the HA1 sequence of the hemagglutinin protein of influenza C virus (Nakada et al., 1984; Pfeiffer and Compans, 1984). The alignment presented in Fig. 5 shows that several regions are completely identical and that many conservative substitutions (Dayhoff et al., 1983) are present.

We could not detect similarities between the predicted ORF2 amino acid sequence and other influenza C (or A or B) virus sequences, nor was there any similarity to available coronavirus sequences.

DISCUSSION

In this paper we present the primary structure of the unique region of MHV-A59 mRNA 2. Sequence analysis revealed two ORFs. ORF1 has a coding capacity of 30K. In vitro translation of mRNA 2 of MHV-JHM (Siddell, 1983) and MHV-A59 (Leibowitz et al., 1982) yielded a 30K protein. Also in MHV-JHM-infected cells small amounts of a 30K protein have been detected (Siddell et al., 1981). This suggests that this protein is encoded by ORF1 from mRNA 2. We assume that the ORF1 translation product is initiated at the 5'-proximal AUG since this codon is in a preferred context (Kozak, 1986). The presence of three consensus elements in
FIG. 2. Nucleotide sequence of the MHV-A59 region B and predicted amino acid sequence of the open reading frames ORF1 and ORF2. Junction sequences (see text) are boxed. The start of the open reading frames is indicated by the arrows below the sequence. The region between ORF1 and ORF2 is translated in three reading frames. The hydrophobic C-terminus of ORF2 is underlined. ORF1 is numbered 1 (M)-261 (C), ORF2 is numbered 1 (C)-413 (G). Nucleotide numbering starts at relative position −9589 from the start of the poly(A)-tail. Single letter amino acid code is used.
the sequence of ORF1 with possible nucleotide binding and phosphorylating properties (Dever et al., 1987; Fry et al., 1986) suggests a role for its product in virus replication or phosphorylation of the nucleocapsid protein (Siddell et al., 1982). Experiments are in progress to establish whether the ORF1 product is essential for MHV, in view of the fact that a mRNA 2 is absent in cells infected with coronaviruses from other antigenic clusters.

Unexpected was the presence of a second open reading frame, ORF2, located between ORF1 and the peplomer gene, without a translation initiation codon, showing a remarkable amino acid similarity to the HA1 sequence of influenza C virus. The percentage of identity is high enough to rule out convergent evolution (Dayhoff et al., 1983; Doolittle, 1981). We believe that this similarity is the result of a recombination between coronaviruses and influenza C virus. Recent studies have indicated that coronaviruses are indeed capable of recombination. Makino et al. (1986) described homologous recombination between coronaviruses in mixed infections; the stretch of 267 nucleotides that we have found in the MHV-A59 peplomer gene and that is absent in MHV-JHM (Luytjes et al., 1987) could indicate a nonhomologous recombination.

In MHV-A59-infected cells a protein that can be assigned to ORF2 has never been detected (Siddell et al., 1982). Since nonfunctional reading frames of RNA viruses show a high rate of mutation (Holland et al., 1982) ORF2 must be either functional or the result of recent genetic changes. In the first case, possible ways of translating ORF2 would be either internal initiation at AUG codons in suboptimal contexts (which is unlikely) or protein initiation at an upstream AUG codon at position -33 from the start of ORF2 and read-through of the opal termination codon at position -3. Opal suppression has been reported for RNA viruses (Strauss et al., 1983; Morch et al., 1987) and can be an important feature of the viral translation strategy. Internal initiation combined with read-through of an opal termination codon would probably lead to undetectable amounts of protein in infected cells. The number and location of termination codons in the region between ORF1 and ORF2 excludes the possibility of frame shifting.

In the second case ORF2 could have been acquired recently by recombination between MHV and influenza C virus. However, there is considerable evolutionary distance between both viruses: the nucleotide sequences of ORF2 and the HA1 gene are not similar and the codon usage in both reading frames is different (data not shown). Therefore, recombination must have taken place between ancestors of these viruses. This means that closely related coronaviruses should exist in which ORF2 is still expressed and that ORF2 in MHV-A59 must have been recently inactivated by genetic changes. An ORF2 product would range in size from 45K (unglycosylated) to 65K (N-glycosylated) and several coronaviruses containing additional proteins in this range have been reported. MHV-JHM, which shares at least 87% homology with MHV-A59 in the nucleotide sequences from the peplomer gene down to the poly(A)-tail (Luytjes et al., 1987) encodes one additional glycoprotein: gp 65 (Siddell, 1982). Sequence data indicate that the corresponding gene must be located upstream of the peplomer protein gene. Taguchi et al. (1985, 1986) described a JHM variant (CNS) which shows a high expression level of a 65K protein.

Fig. 4. Alignment of the MHV-A59 sequence around the start of ORF2 from region B and a MHC class I mRNA: H2-Dp. The MHV A60 oocoece number is numbered according to Fig. 2. The H2 sequence is taken from Schepart et al. (1988). The H2-Dp amino acid sequence depicted represents the signal sequence. Identical nucleotides are marked with lines and identical amino acids are boxed.
Fig. 5. Alignment of the MHV-A59 ORF2 sequence from region B and the influenza C hemagglutinin HA1 sequence and part of the HA2 sequence. Identical residues are boxed, substitutions scoring 0 or positive according to Dayhoff et al. (1983) are indicated by colons. Dashes represent gaps which were inserted to maximize similarity. The sequence was taken from Nakada et al. (1986).

Fig. 6. Schematic representation of the recombination and mutation events that could have led to the situation in MHV-A59 region 6. Drawn lines indicate recombination between the regions marked by dark horizontal bars. POL, polymerase; ORF1 and ORF2 are the reading frames of MHV-A59 region B; E2, peplomer protein gene; HA, hemagglutinin; E3, putative membrane protein (gp 65 of MHV-JHM, hemagglutinin of BCV and OC43); MHC, class I MHC mRNA.

The suggested homology between ORF2 of MHV-A59 and the BCV E3 gene leads us to propose a model for the relation between several coronaviruses in the antigenic cluster of MHV. Human coronavirus OC43 is closely related to BCV (Lapps and Brian, 1985) and shows sequence similarity to MHV-A59 (Hogue et al., 1984; Weiss, 1983). Since OC43 and influenza C virus cause a similar infection in humans (McIntosh et al., 1969; Katagiri et al., 1983) OC43 could have acquired its hemagglutinin gene in a mixed infection. More likely, coinfection of another coronavirus with influenza C virus followed by recombination gave rise to the new coronavirus OC43. The hemagglutinin gene of OC43 and BCV would then be the evolutionary intermediate between influenza C virus HA and MHV ORF2 (see Fig. 6).
It has been suggested that virus evolution is a modular event, in which viral genomes are the result of the assembly of a set of primitive genes (see Gould, 1987). This mechanism can offer an alternative explanation for the relation between MHV and influenza C virus. However, the similarity with MHC RNA and the previously reported extra stretch of nucleotides in the A59 peplomer gene (Luytjes et al., 1987) indicate that coronaviruses are probably capable of nonhomologous recombination during replication. To date nonhomologous recombination at the RNA level in animal RNA viruses has been reported only for defective interfering RNA (see King et al., 1987). Coronaviruses are the first example of nontumor RNA viruses being able to take up directly into their genome genetic material from the host cell. This may be a strong force in generating strains with new host spectra and tissue tropisms and could have important implications for the prevention of coronavirus infections.

ACKNOWLEDGMENTS

The authors thank Dr. J. A. Lenstra for stimulating discussions, Drs. B. A. M. van der Zeijst and P. Rottier for critical reading of the manuscript, and Dr. A. Maagdenberg of the Duphar B. V. computer facility for setting up the computer programs. Part of the computer analyses have been performed using the CAOS-CAMM system of the University of Nijmegen, The Netherlands. W.L. was supported by a grant from Duphar B. V., Weesp, The Netherlands. P.B. was supported by a grant from the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

REFERENCES

Binnis, M. M., Boursnell, M. E. G., Cavanagh, D., Pappin, D. J. C., and Brown, T. D. K. (1985). Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 66, 719–726.

Birnboim, H. C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523.

BoursoSnell, M. E. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M., and Binnis, M. (1987). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 68, 57–77.

Bredenbeek, P. J., Charite, J., Noten, J. P. H., Luytjes, W., Horzinek, M. C., Van der Zeijst, B. A. M., and Spaan, W. J. M. (1987). Sequences involved in the replication of coronaviruses. In "Coronaviruses" (M. C. Lai, and S. A. Stohlman, Eds.), Vol. 218, pp. 65–72. Plenum, New York/London.

Budzlowicz, C. J., and Weiss, S. R. (1987). In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A59. Virology 157, 509–515.

Dayhoff, M. O., Barker, W. C., and Hunt, L. T. (1983). Establishing homologies in protein sequences. In "Methods in Enzymology" (C. H. W. Hirs and S. N. Timasheff, Eds.), Vol. 91, pp. 524–545, Academic Press, New York.

De Groote, R. J., Maduro, J., Lenstra, J. A., Horzinek, M. C., Van der Zeijst, B. A. M., and Spaan, W. J. M. (1987). cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 68, 2639–2646.

De Groote, R. J., Ten Haar, R. J., Horzinek, M. C., and Van der Zeijst, B. A. M. (1987). Intracellular RNAs of feline infectious peritonitis coronavirus strain 79-1146. J. Gen. Virol. 68, 995–1002.

Dereqot, D., Sabara, M., and Badke, L. A. (1987). Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 68, 2863–2877.

Dever, T. E., Glynas, M. J., and Merrick, W. C. (1987). GTP-binding domain: Three conserved sequence elements with distinct spacing. Proc. Natl. Acad. Sci. USA 84, 1814–1818.

Doolittle, R. F. (1981). Similar amino acid sequences: Chance or common ancestry? Science 214, 149–159.

Feinberg, A. P., and Vogelstein, B. (1983). DNA probes by random priming with Klenow synthesis. Anal. Biochem. 132, 6–13.

Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986). ATP-binding site of adenylate kinase: Mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc. Natl. Acad. Sci. USA 83, 907–911.

Golbach, H. (1987). Genomic similarities between plant and animal RNA viruses. Microbiol. Sci. 4, 197–202.

Hogue, B. G., King, B., and Brian, D. A. (1984). Antigenic relationship among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. J. Virol. 51, 384–388.

Holland, J., Spindler, K., Horodyiski, F., Grabau, E., Nichol, S., and Van de Pol, S. (1982). Rapid evolution of RNA genome. Science 215, 1577–1585.

Jacq, B., de Groote, R., Van der Zeijst, R. A. M., Horzinek, M. C., and Spaan, W. W. (1987). The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): Comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Res. 8, 363–371.

Katagiri, S., Ohizumi, A., and Homma, M. (1983). An outbreak of influenza C in a children’s home. J. Infect. Dis. 148, 51–55.

Keck, J. G., Hogue, B. G., Brian, D. A., and Lai, M. C. M. (1987). Temporal regulation of RNA synthesis of bovine coronavirus. In "Coronaviruses" (M. C. Lai, and S. A. Stohlman, Eds.), Vol. 218, pp. 57–158. Plenum, New York/London.

King, A. M. Q., Ortlepp, S. A., Newman, J. W. I., and McCahon, D. (1987). Genetic recombination in RNA viruses. In "The Molecular Biology of the Positive Strand RNA Viruses" (D. J. Rowlands, M. A. Mayo, and B. W. J. Mahy, Eds.), pp. 129–152. Academic Press, New York/London.

King, B., Potts, B. J., and Brian, D. A. (1985). Bovine coronavirus hemagglutinin protein. Virus Res. 2, 59–69.

Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiation codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.

Lai, M. C., Baric, R. S., Brayton, P. R., and Stohlman, S. A. (1984). Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc. Natl. Acad. Sci. USA 81, 3626–3630.

Lai, M. C., Brayton, P. R., Armen, R. C., Patton, C. D., Pugh, C., and Stohlman, S. A. (1981). Mouse hepatitis virus A59: mRNA sequence of MHV-A59 mRNA 421...
structure and genetic localization of the differences from hepatotropic strain MHV-3. J. Virol. 39, 823–834.

LAPPIS, W., and BIAN, D. A. (1985). Oligonucleotide fingerprints of antigenically related bovine coronavirus and human coronavirus OC43. Arch. Virol. 66, 101–108.

LAPPIS, W., HOGUE, B. G., and BIAN, D. A. (1987). Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 157, 47–57.

LEIBOWITZ, J. L., WEISS, S. R., PAAVOLA, E., and BOND, C. W. (1982). Cell-free translation of mRNA from coronavirus RNA. J. Virol. 43, 905–913.

LEIBOWITZ, J. L., WILHELMSEN, K. C., and BOND, C. W. (1981). The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology 114, 39–51.

LIPMAN, D. J., and PEARSON, W. R. (1988). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.

LUYTJES, W., STURMAN, L. S., BREDENBEEK, P. J., CHARITE, J., VAN DER PRIEST, W., HOGUE, B. G., and BRIAN, D. A. (1987). Sequence analysis of translation of viral mRNAs. In "The Molecular Biology of the Positive Strand RNA Viruses" (D. J. Rowlands, M. A. Mayo, and B. W. J. Mahy, Eds.), pp. 117–128. Academic Press, New York/London.

MORCH, M.-D., VALLE, R. P. C., and HAENNI, A.-L. (1987). Regulation of translation of viral mRNAs. In "The Molecular Basis of Viral Reproduction" (R. P. Bercoff, Ed.), pp. 113–162. Plenum, New York/London.

NASAKA, S., CREAGER, R. S., KRISTAL, M., AARONSON, R. P., and PALSE, P. (1984). Influenza C virus hemagglutinin. Comparison with influenza A and B virus hemagglutinins. J. Virol. 60, 118–124.

NEISTERS, H. G. M., LENSTRA, J. A., SPAAN, W. J. M., ZUIDERFELD, A. J., BLEUMINK-PLOYM, N. M. C., HONG, F., VAN SCHARBENBURG, G. J. M., HORDZIEK, M. C., and VAN DER ZEIJST, B. A. M. (1986). The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Virus Res. 5, 253–263.

PFEIFER, L. B., and COMPANS, R. W. (1984). Structure and genetic localization of the differences from hepatotropic strain MHV-3. J. Virol. 39, 823–834.

ROBERTS, C., and WILSON, G. L. (1985). DNA probes by random priming with Klenow synthesis. Focus 7-3, 16.

ROTTIER, P. J. M., SPAAN, W. J. M., HORDZIEK, M. C., and VAN DER ZEIJST, B. A. M. (1981). Translation of three murine hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 38, 20–26.

SANGER, F., NICKLEN, S., and COULSON, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

SCHAEFFER, B. S., TAKASHI, H., COZAD, K. M., MURRAY, R., OZATO, K., ARPEL, E., and FREILING, J. A. (1986). The nucleotide sequence and comparative analysis of the N-2Dp class I H-2 gene. J. Immunol. 136, 3489–3495.

SIDDELL, S. (1982). Coronavirus JHM: Tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. J. Gen. Virol. 62, 259–269.

SIDDELL, S. (1983). Coronavirus JHM: Coding assignments of subgenomic mRNAs. J. Gen. Virol. 64, 113–129.

SIDDELL, S. (1987). The organization and expression of coronavirus genomes. In "The Molecular Biology of the Positive Strand RNA Viruses" (D. J. Rowlands, M. A. Mayo, and B. W. J. Mahy, Eds.), pp. 117–128. Academic Press, New York/London.

WEISS, S. R., and LEIBOWITZ, J. L. (1983). Characterization of murine coronavirus RNA by hybridization with virus-specific cDNA probes. J. Gen. Virol. 64, 127–133.