Abstract

Digitaria exilis L. is an under-utilized crop with high nutritional and medicinal values. It thrives in and is well-adapted to arid areas with low soil nutrients. Using biochemical markers, this study investigates the mechanisms by which D. exilis responds to osmotic stress. Three accessions Dinat Iburua (DIN), Jakah Iburua (JAK) and Jiw Iburua (JIW) were collected from National Cereal Research Institute, Niger State. Two accessions, NG/11/JD/061 and NG/11/JD/062 were also collected from National Centre for Genetic Resources and Biotechnology, Ibadan. Murashige and Skoog medium of approximately 1.2 L was supplemented with polyethylene glycol 6000 to create osmotic pressures of -9.29, -13.93, -20.13, -26.32, -32.51, and 0 MPa (control). Sterilized seeds were inoculated in the medium and placed in the growth room for 4 weeks. Proline accumulation was significantly high in all JAK plants under osmotic stress. Proline and ascorbate peroxidase (p<0.05) activities were directly correlated, thus reinforcing the survivability of JAK during stress. Catalase (CAT) activity was also significantly induced in JAK under osmotic stress, which synergistically improved its tolerability. As a result, >50% of OH, H₂O₂, and NO radicals were scavenged. However, other accessions including DIN, NG061, NG062, and JIW showed variations in their responses to different levels of osmotic stress, although not significant. Therefore, JAK possesses a well-equipped free radical quenching system that is protected by the accumulation of the osmolyte proline; therefore, accession JAK is considered osmotolerant. CAT and superoxide dismutase activities were osmostabilized against oxidative stress by proline.

Keywords free radicals, D. exilis, antioxidant enzymes, proline accumulation, lipid peroxidation

Introduction

Digitaria exilis possesses many nutritional, economic and phytochemical benefits to mankind. Gwete soup is an African delicacy that is locally prepared from D. exilis to treat diabetes⁴. It yields and survives well in relatively poor climatic conditions such as arid areas. D. exilis is very important among other grains due to its high nutritional composition. D. exilis show generally mineral contents that are in the range of other cereals. However, it contains much more protein that other cereals like millets, maize, sorghum etc. and the protein is mainly concentrated in the grain and not in the husk⁴. Methionine, which builds up sulphur, is accumulated in D. exilis twice the amount compared to corn or millet and three times compared to rice.

In vitro culture techniques minimize environmental variation due to defined nutrient controlled conditions and homogeneity of stress application. The simplicity of such manipulation enables to study large plant production and stress treatments in a limited space and short period of time. Simulation of drought stress under in vitro conditions during the regeneration process constitutes a convenient way to study the effect of drought stress on the plant. Application of osmotic stress to plants at juvenile stage is an effective method of selecting plants with drought tolerant traits. This will of course make the mature plants cope with the drought stress conditions during growth and reproductive periods. This will confer the potential in screening for drought tolerance. Polyethylene glycol 6000 had been used to simulate drought stress in plant as non
penetrating osmotic agent lowering the water potential in a way similar to soil drying. It is frequently assumed that plant water relations are similar whether the plants are growing in soil or in a PEG solution having an equal water potential. Larger polyethylene glycol molecules such as poly-ethylene glycol 6000 are more useful for simulating soil drying. The study therefore aimed at the biochemical mechanisms undertaken by *D. exilis* to survive osmotic stress.

Materials and Methods

Plant material

Five accessions of *D. exilis* were used in the studies, which were Dinat Iburua (DIN), Jakah Iburua (JAK), Jiw Iburua (JIW), NG/JD/06/11/062 (NG062) and NG/JD/06/11/061 (NG061). Three accessions DID, JAK and JIW were obtained from National Cereal Research Institute, Badeggi, Niger State, Nigeria, while the other two accessions NG061 and NG062 were obtained from National Centre for Genetic Resources and Biotechnology (NACRAB), Moor Plantation Ibadan, Nigeria.

Media preparation

To prepare 1.2 litre of MS (Murashige and Skoog, 1962) media, 60ml of macronutrients, 6 ml stock micro-nutrients, 36 g of sucrose, 0.12 g of inositol, 6 ml of vitamins, 0.04476 g of Sodium (Di) Ethylenediamine Tetraacetate Dihydrate (Na EDTA. 2H2O) and 0.0278 g of Ferrous sulphate were added to 600 ml of deionized water. The mixture was divided equally into 6 sterilized jars. Polyethylene glycol PEG 6000 of 30 g/l, 45 g/l, 65 g/l, 85 g/l and 105 g/l and 0 g/l were added to create an osmotic condition of -9.29 MPa, -13.93 MPa, -20.13 MPa, -26.32 MPa, -32.51 MPa and 0 MPa (control) to represent A, B, C, D, E and F. Deionized water was added to make up to 200 ml in each jar. The hydrogen ion concentration i.e. pH of 5.7 ± 0.3 was taken using pH meter. About 0.46 g of phytagel (Agar) was added to each jar. All the media were solubilized for 15 minutes in an oven. Five millilitres (5 ml) were dispensed into an autoclaved test-tube. Five sterilized seeds were inoculated on the media inside the laminar airflow, sealed with paraffin and placed inside growth room.

Quantification of chlorophyll contents

Chlorophyll was extracted from the leaves. The extraction of leaf pigments was performed with 75% ethanol, and the absorbance at 663 and 645 nm were measured with a spectrophotometer. The chlorophyll a, chlorophyll b, and total chlorophyll quantities were calculated according to the method of Arnon. The pigment concentrations were expressed as µg/ml. Chlorophyll contents were calculated using the formula stated below.

\[\text{Chl a} = 15.65A_{663} - 7.340A_{645} \]
\[\text{Chl b} = 27.05 A_{645} - 11.21 A_{663} \]

Determination of proline contents

All experiments were performed at 4°C. Leaf samples were homogenized in ice cold 50 mM sodium phosphate buffer (pH 7.8) for the proline extraction. The buffer contained 1 mM disodium EDTA and 2% (w/v) polyvinylipid peroxidationlypyrrolidone (PVPP). Supernatants collected after centrifugation at 13,000 × g for 40 min were used to determine the proline contents. The free proline content was determined according to Bates.

Determination of radical scavenging activity

DPPH (2, 2-diphenyl-1-picrylhydrazyl hydrate) Assay was determined using the stable radical DPPH (2, 2-diphenyl-1-picrylhydrazyl hydrate) as described by Brand-Williams. Nitric oxide radical activity of the extract was carried out according to the method of Green as described by Marccoci. The hydroxyl radical scavenging activity was measured by studying the competition between deoxyribose and the fractions for hydroxyl radicals generated from the Fe3+/ascorbate /EDTA/H2O2 system according to the method of Halliwell. The ability of plant extracts to scavenge hydrogen peroxide was determined according to the method of Ruch.

Determination of antioxidant enzyme

Superoxide dismutase (SOD) was described by Mccord and Fridovich. Catalase (CAT) activity was measured according to the method of Aebi. Ascorbate Peroxidase (APX) activity was measured according to the methods of Nakano and Asada.

Determination of lipid peroxidation

Total amount of lipid peroxidation products present in the plant samples was estimated by the thiobarbituric acid
(TBA) method which measures the malondialdehyde (MDA) reactive products according to the method of Ohkawa.

Results

Chlorophyll contents of accessions JAK, NG062 and DIN were significantly high at osmotic stress D. Accessions DIN and NG062 had the highest chlorophyll content at osmotic level D, whereas, accessions NG061 and JIW had their highest total chlorophyll contents at osmotic level C. Furthermore, accession JAK had the overall highest Chl A and B at osmotic level D (Table 1). Proline contents in osmotic stressed JAK, DIN and JIW were significantly higher than those without osmotic stress (control) except for accessions NG061 AND NG062 (Table 2). CAT activities of accessions NG061, NG062, JAK and DIN were significantly high at osmotic level A (Table 3). Accession JAK had high APX and CAT at all levels of osmotic when compared to control. Accession JIW had the lowest CAT activities. Though accession JAK had the highest SOD nevertheless, no significant different in the SOD activities was recorded in all levels of osmotic stress and Accessions. APX was significantly reduced in accessions NG061 and DIN but not significant in accession NG062. Highest APX was found in accession JAK with highest level osmotic stress E (Table 3). Percentage inhibition of OH-, H2O2, NO and DPPH radicals during an osmotic stress in accession

| Table 1 Chlorophyll content (µg/mL) of *Digitaria exilis* accessions under different osmotic potentials+ |
|---|---|-------------------|-------------------|
| ACCESSION | ψs | CHL a | CHL b | TOTAL CHL |
| NG061 | A | 14.93e | 34.97cd | 49.90d |
| | B | 32.91ab| 77.14b | 110.04b |
| | C | 42.12a | 107.91b | 150.04a |
| | D | 19.17d | 28.27e | 47.43d |
| | E | 19.13d | 29.47de | 48.6d |
| | F | 24.24c | 39.93c | 64.17c |
| NG062 | A | 20.30b | 46.06b | 66.36bc |
| | B | 20.42b | 24.16d | 44.58d |
| | C | 7.24d | 13.89e | 21.13e |
| | D | 32.82a | 81.12a | 113.94a |
| | E | 16.97c | 41.40bc | 58.37c |
| | F | 30.12a | 48.35b | 78.47b |
| JAK | A | 25.72c | 78.16b | 103.88b |
| | B | 23.84c | 55.71bc | 79.54e |
| | C | 25.79e | 41.35c | 67.13d |
| | D | 87.54a | 211.07a | 298.6a |
| | E | 16.54d | 17.87e | 34.41e |
| | F | 34.20b | 38.39cd | 72.6cd |
| DIN | A | 18.86de| 47.14e | 65.99c |
| | B | 29.21c | 66.8b | 96.01b |
| | C | 37.93a | 78.41ab | 116.34ab |
| | D | 33.65b | 87.89a | 121.54a |
| | E | 19.77d | 20.04d | 39.8d |
| | F | 33.44b | 65.21b | 98.65b |
| JIW | A | 24.12ab| 58.29ab | 82.41b |
| | B | 28.34ab| 42.55b | 70.89bc |
| | C | 31.63a | 78.30a | 109.94a |
| | D | 15.38c | 37.65bc | 53.03d |
| | E | 18.13b | 42.85b | 60.99c |
| | F | 34.00a | 67.82a | 101.82a |

Values with the same letters in each column are not significantly different from each other at Duncan’s multiple range test of P < 0.05. ψs = osmotic potential, CHL = chlorophyll
NG061 was significantly reduced as compared with the control (Table 4). On the contrary, osmotic stressed JAK scavenged above 50% OH-, H\textsubscript{2}O\textsubscript{2} and NO radicals significantly at different osmotic levels. It is important to state that osmotic stressed DIN and NG062 significantly scavenged OH-. Lipid peroxidation of osmotic stressed accession NG061 was not significant with the control (Table 4). Osmotic stressed accessions NG062, DIN and JIW had their lipid peroxidation significantly higher when compared to the control. Accession JAK under all osmotic levels had their lipid peroxidation significantly low compared to the control (Table 5). Nitric acid NO was positively correlated to SOD. Hydrogen peroxide was positively correlated to the activities of APX and Proline. Proline was positively correlated to CAT. MDA is negatively correlated to OH, H\textsubscript{2}O\textsubscript{2} and NO (Table 6). Accession JAK had 85% osmotic tolerant level which was higher than the other accessions followed by NG061 (65%), DIN (55%), NG061 (48%) and JIW (47%). Tolerant level of D. exilis to osmotic stress ranged from 85% ~ 47% (Table 7).

Discussion

Accession JAK had a significant high level of proline during osmotic stress. It appeared that accumulation of proline protected plants against oxidative stress through stabilization of antioxidant enzymes. High levels of proline enabled the plant to maintain low water potentials. Due to

| Table 2: Proline content of *Digitaria exilis* under different osmotic potentials |
|-----------------|-----------------|-----------------|
| ACCESSION | \(\psi_s \) | PROLINE (mg/mL) |
| NG061 | A | 0.044b |
| | B | 0.038c |
| | C | 0.043b |
| | D | 0.034d |
| | E | 0.038c |
| | F | 0.050a |
| NG062 | A | 0.016c |
| | B | 0.036a |
| | C | 0.018e |
| | D | 0.030c |
| | E | 0.020d |
| | F | 0.036b |
| JAK | A | 0.052a |
| | B | 0.019b |
| | C | 0.013c |
| | D | 0.014c |
| | E | 0.015c |
| | F | 0.009d |
| DIN | A | 0.014d |
| | B | 0.023ab |
| | C | 0.025a |
| | D | 0.015d |
| | E | 0.020b |
| | F | 0.017c |
| JIW | A | 0.014a |
| | B | 0.013a |
| | C | 0.014a |
| | D | 0.009d |
| | E | 0.010cd |
| | F | 0.010c |
| LSD (0.05) | | 0.009 |

Values with the same letters in each column are not significantly different from each other at Duncan’s multiple range test of \(P < 0.05 \). \(\psi_s \) = osmotic potential, LSD = least significant difference

| Table 3: Enzyme activities of *Digitaria exilis* under osmotic potentials |
|-----------------|-----------------|-----------------|-----------------|
| ACCESSION | \(\psi_s \) | APX (mmol/mL/min) | SOD (units/mg protein) | CAT (units/mg protein) |
| NG061 | A | 0.010b | 1.373a | 2.155a |
| | B | 0.003f | 1.129b | 0.451d |
| | C | 0.007d | 1.324a | 1.937b |
| | D | 0.008c | 1.361a | 0.682c |
| | E | 0.005e | ND | ND |
| | F | 0.020a | 1.341a | 1.608c |
| NG062 | A | 0.002c | 1.412a | 3.301a |
| | B | 0.004a | 1.406a | 0.657f |
| | C | 0.005a | 1.119b | 1.528d |
| | D | 0.003b | 0.054e | 2.005c |
| | E | 0.004b | 0.589d | 1.003e |
| | F | 0.004b | 0.765c | 2.649b |
| JAK | A | 0.010b | 1.634a | 3.628a |
| | B | 0.005e | 1.536b | 1.477d |
| | C | 0.008c | 1.560b | 2.330c |
| | D | 0.006d | 1.659a | 2.344c |
| | E | 0.016a | 1.651a | 2.710b |
| | F | 0.003f | 1.648a | 1.146e |
| DIN | A | 0.002e | 0.874b | 2.190a |
| | B | 0.003d | 0.723c | 1.745b |
| | C | 0.005c | 0.810b | 2.341a |
| | D | 0.014a | 0.852b | 1.801b |
| | E | 0.002e | 1.615a | 1.201c |
| | F | 0.006b | 1.476a | 1.745b |
| JIW | A | 0.002d | 1.500ab | 0.801d |
| | B | 0.003c | 1.563a | 0.375e |
| | C | 0.004b | 1.556a | 0.222f |
| | D | 0.005a | 1.395ab | 1.246c |
| | E | 0.005a | 1.392b | 1.948b |
| | F | 0.002d | 0.770c | 2.328a |

Values with the same letters in each column are not significantly different from each other at Duncan’s multiple range test of \(P < 0.05 \). \(\psi_s \) = osmotic potential, ND = not determined, APX = ascorbate peroxidase, SOD = superoxide dismutase, CAT = catalase
low water potentials, accumulated compatible solutes osmo-regulated the effect of the stress by allowing additional water to be taken up from the environment thus, buffering the immediate effect of water shortages within the organism. With the accumulation of solutes in JAK, the osmotic potential of the cell may have been lowered, which attracts water into the cell hence, provide and support turgor maintenance of the plant tissues. Osmotic adjustment helps to maintain the cell water balance with the active accumulation of solutes in the cytoplasm, thereby minimized the harmful effects of drought stress. The maintenance of turgor despite a decrease in leaf water may have permitted photosynthesis to go on unabated hence; high plant growth was recorded in osmotic-stressed JAK than their unstressed counterparts. Osmotic adjustment is an important trait in delaying dehydration damage in water-limited environments by continued maintenance of cell turgor and physiological processes. The activity of SOD, CAT and APX varies with the level of drought/osmotic stress. Enzyme SOD was higher in osmotic stressed JAK which played a major role in quenching reactive oxygen. It works as a catalyzer which dismutated singlet \(\text{O}_2^- \) into \(\text{H}_2\text{O}_2 \) that are later eliminated by CAT and other antioxidant enzymes. Enzyme APX and CAT was high in osmotic stressed JAK than control. Accession JAK had good and consistent high value of APX when subjected to severe osmotic stress. Consequently, the singlet oxygen dismutated by SOD to hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) was later converted to water (\(\text{H}_2\text{O} \)) and oxygen (\(\text{O}_2 \)) by CAT in accession JAK which actually made it drought tolerant. Osmotic stressed accession JAK could scavenge above 50% of \(\text{OH}^- \), \(\text{H}_2\text{O}_2 \), NO radicals. This could be as a result

ACCESSION	\(\psi_s \)	OH	\(\text{H}_2\text{O}_2 \)	NO	DPPH
NG061					
A	52.61b	35.67c	17.50e	21.99e	
B	55.02b	31.58d	27.13c	24.81d	
C	53.61b	45.61b	21.76d	21.75e	
D	46.59c	44.44b	25.37c	28.63c	
E	40.36d	50.88a	33.15b	40.07b	
F	62.27a	53.85a	57.64a	63.59a	
NG062					
A	49.60a	38.60d	38.24b	26.11b	
B	41.77b	45.61c	34.17c	15.99d	
C	50.20a	45.61c	42.13ab	18.21c	
D	51.00a	43.86c	41.20b	37.11a	
E	52.81a	50.88b	39.35b	16.91ed	
F	42.31b	60.07a	45.72a	27.06b	
JAK					
A	63.86b	ND	13.15e	19.33d	
B	65.26b	54.39a	20.00d	20.93d	
C	46.18d	59.65ab	12.04f	78.29a	
D	53.61c	19.30d	50.65a	49.13c	
E	80.22a	36.84c	29.54e	56.07b	
F	62.25b	51.28b	43.78b	10.17c	
DIN					
A	59.84a	45.61b	16.57cd	16.91d	
B	62.45a	28.65e	10.06e	26.89b	
C	60.04a	36.84c	17.59c	30.28a	
D	56.63a	32 .16d	15.83d	31.15a	
E	60.24a	36.84c	26.39b	18.31d	
F	41.76b	62.27a	31.81a	24.15e	
JIW					
A	36.55e	31.58c	41.02b	23.69c	
B	43.98d	50.88a	38.61bc	14.34d	
C	56.83b	41.52b	31.02d	29.99a	
D	46.59c	40.35b	31.20d	26.55b	
E	40.36d	53.22a	49.72a	31.44a	
F	62.27a	52.38a	36.87c	26.58b	

Values with the same letters in each column are not significantly different from each other at Duncan’s multiple range test of \(P < 0.05 \). \(\psi_s = \) osmotic potential, ND = not determined, DPPH = 2, 2-diphenyl-1-picrylhydrazyl hydrate
of positive correlation between APX and proline. Also, high SOD and CAT found in this accession must have directly caused the inhibition. Ascorbate peroxidase (APX), CAT and SOD were practically stabilized by osmo-regulator proline by removal of superoxide ions which was converted to \(\text{OH}^- \) and later to \(\text{H}_2\text{O}_2 \). Consequently, low lipid peroxidation was observed in osmotic stressed JAK. Lipid peroxidation, in both cellular and organelle membranes, takes place when above-threshold ROS levels are reached, thereby not only directly affecting normal cellular functioning, but also aggravating the oxidative stress through production of lipid-derived radicals. Osmotic stressed DIN, JIW and NG062 had a high lipid peroxidation. It has also been reported that water stress increased the lipid peroxidation, membrane injury index, \(\text{H}_2\text{O}_2 \) and \(\text{OH}^- \) production in leaves of stressed \textit{Phaleolus vulgaris} plants.

Also, the positive correlation between APX and proline could have activated the activity of APX. The high accumulations of proline in JAK under osmotic stress could be responsible for high activities of antioxidant enzymes. These results suggested that accession JAK had higher capacity for osmotic adjustment in terms of accumulating proline, which could maintain water absorption under such harsh conditions. Proline stabilized the activities of CAT thus, low lipid peroxidation with high scavenging activities in accessions JAK were recorded. Osmotic tolerant scoring therefore explained that accession JAK is an osmotic tolerant accession, NG061 and DIN are might mild osmotic tolerant accessions and NG062 and JIW are susceptible to osmotic stress.

Conclusion

Osmotic tolerant ability of accession JAK was due to the accumulation of proline which helps to stabilize activities of enzymes CAT and APX consequently, approximately 50% of hydroxyl, hydrogen peroxide and nitric oxide

Table 5 Lipid peroxidation in \textit{Digitaria exilis} under different osmotic potentials

ACCESSION	\(\psi_s \)	MDA (Molarity M)
NG061 A	7.84E-07b	
B	8.99E-07a	
C	8.39E-07ab	
D	8.65E-07c	
E	8.74E-07a	
F	8.42E-07ab	
NG062 A	5.96E-07b	
B	5.96E-07b	
C	5.47E-07c	
D	6.59E-07a	
E	6.54E-07a	
F	4.74E-07d	
JAK A	5.07E-07c	
B	4.58E-07e	
C	3.79E-07d	
D	6.18E-07b	
E	5.86E-07b	
F	7.80E-07a	
DIN A	1.58E-06a	
B	1.25E-06b	
C	7.76E-07cd	
D	7.52E-07d	
E	8.50E-07c	
F	6.66E-07e	
JIW A	1.41E-06c	
B	9.04E-07d	
C	2.03E-06a	
D	1.81E-06b	
E	6.94E-07e	
F	5.56E-07f	
LSD (0.05)	3.98 \times 10^{-7}	

Values with the same letters in each column are not significantly different from each other at Duncan’s multiple range test of \(P < 0.05 \). \(\psi_s = \) osmotic potential, LSD = least significant difference, MDA = Malondialdehyde

Table 6 Correlation among the different assays

	APX	CAT	SOD	PROLINE	MDA	NO	OH	\(\text{H}_2\text{O}_2 \)
APX	0.15	-0.07	0.16	0.49	-0.24	-0.05	-0.25	0.02
CAT	-0.16	0.48	-0.07	-0.07	-0.12	-0.26	-0.04	-0.37
SOD	-0.16	0.04	0.12	0.07	-0.40	0.01	0.01	-0.25
PROLINE	-0.24	-0.38	0.04	-0.25	-0.09	-0.09	-0.09	0.18
MDA	-0.05	-0.13	0.01	-0.13	-0.06	-0.04	-0.31	0.18
NO	0.25	0.27	-0.04	-0.03	-0.31	0.01	0.18	-0.04
OH	0.02	-0.00	-0.02	0.06	0.05	0.28	0.05	-0.24
\(\text{H}_2\text{O}_2 \)	-0.00	-0.04	-0.02	0.05	0.28	0.18	0.24	-0.24
radicals were successfully scavenged during osmotic stress. Hence, lipid peroxidation was drastically reduced during the stress.

References

Adoukonou-Sagbadja H, Wagner C, Dansi A, Ahlemeyer J, Daïnou O, Akpagana K and Friedt, W 2007 Genetic diversity and population differentiation of traditional D. exilis millet (Digitaria spp.) accessions from different agro-ecological zones of West Africa. Theoretical and Applied Genetics, 115(7):917-931

Kaufmann MR and Eckard AN 1971 Evaluation of water stress control with polyethilene glycols by analysis of guttation. Plant Physiol 47:453-456

Coelho DLM, Agostini EAT, Guaberto LM, Machado Neto, NB and Custódio CC 2010 Differential Protein Expression during Germination as a Result of a Water Deficit Associated with Variable Osmotic Pressure in Snap-Beans. Acta Scientiarum Agronomy, 32:491-499

Ferreira GS, Torres SB and Costa ARFC 2007 Germination and Initial Development Stage of Melon Seedlings at Different Levels of Salinity of Irrigation Water. Caatinga, 20:181-185

Custódio CC, Salomão GR and Machado Neto NB 2009 Water Deficiency during Bean Seed Germination Induced by Different Osmotic Solutions. Revista Ciência Agronômica, 40:617-623

Aron, D.I. (1949). Copper enzymes in isolated chloroplasts, polyphenoloxidases in Beta vulgaris. Plant Physiology 24:1-15

Bates, L.S., Waldren, R.P., Teare, I.D., (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207

Brand-Williams W, Cuvelier ME and Beset C 1995 Use of free radical method to evaluate antioxidant activity. LWT Food Sci Technol, 28:25-30

Green LC, Wagner DA and Glogowski J 1982. Analysis of nitrate, nitrite and 15N in biological fluids. Anal Biochem, 126:131-6

Marcocci L, Packer L. and Droy-Lefai, M.T. 1994 Antioxidant action of Ginkgo biloba extracts. Methods Enzymol, 234:462-75

Halliwell B 1990. How to characterize a biological antioxidant. Free Radical Res. Commun, 9:1-32

Ruch RJ, Cheng SJ and Klaunig JE 1989 Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogen. 10:1003-1008

McCord JM and Fridovich I 1969 Superoxide dismutase, an enzymic function for erythrocuprein (Hemocuprein). J. Biol. Chem. 244:6049-6055

Aebi H 1984 Catalase in vitro. Methods in enzymology 105:121-126

Nakano Y and Asada K 1981 Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22:867-880

Okawa. H., Onishi, V. and Yagi, K. (1979). Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction Anal Biochem, 95:351-8

Kumar J and Abbo S 2001 Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments. Adv. Agron. 72:107-138

Morgan PW 1990. Effects of abiotic stresses on plant hormone systems, in: Stress Responses in plants: adaptation and acclimation mechanisms, Wiley-Liss, Inc., pp 113-146

Taiz L and Zeiger E 2006 Plant Physiology, 4th Ed., Sinauer Associates Inc. Publishers, Massachusetts

Montillet JL, Chammongol S, Rustérucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inzé D, Van Breusegem F and Triantaphylides C 2005 Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves, Plant Physiol, 138:1516-1526

Zlatev ZS, Lidon FC, Ramalho JC and Yordanov IT 2006 Comparison of resistance to drought of three bean accessions, Biol. Plant, 50:389-394

Chaves MM, Maroco JP and Pereira JS 2003 Understanding plant responses to drought from genes to the whole plant. Funct. Plant Biol. 30:239-264