Complete Genome Sequences of *Mycobacterium smegmatis* Phages MelsMeow, Yorick, Virgeve, and Mikro

© Victoria J. Frost, a Jada E. Fogle, a Ryan N. Harris, a Brooke Jewell, a Kaylee E. Mills, a Jessica E. Morgan, a Precious T. Thompson, a Emi Umemoto, a Kristi M. Westover

aDepartment of Biology, Winthrop University, Rock Hill, South Carolina, USA

ABSTRACT *Mycobacterium* phages Mikro, Yorick, Virgeve, and MelsMeow were isolated from soil in Rock Hill, South Carolina. Mikro is a myovirus with a comparatively large genome of 157,166 bp. The remainder are siphoviruses with genome lengths ranging from 59,227 bp to 68,563 bp. All phages were isolated on *Mycobacterium smegmatis*.

Researchers have documented the use of phage therapy to treat multidrug-resistant *Mycobacterium* infections, with promising results (1, 2). Here, *Mycobacterium smegmatis* mc²155 was used to isolate mycobacteriophages from soil at Winthrop University, Rock Hill, SC. Mycobacteriophages Mikro, Yorick, and Virgeve were isolated from damp soil in a shaded flower bed, whereas MelsMeow was isolated from dry soil close to a tree root (see Table 1 for location coordinates [GPS]), using standard procedures (https://seaphages phagediscoveryguide.helpdocsonline.com/home). Soils samples were washed for 2 h using 7H9 broth containing 1 mM CaCl₂ and centrifuged at 4,000 rpm for 10 min, and the supernatant filtered (0.22 μm). A fraction of each filtrate was inoculated with *M. smegmatis* and shaken (250 rpm) at 37°C for 2 to 4 days to enrich for mycobacteriophages before being refiltered. Both enriched and unenriched filtrates were examined for phage by plating in soft agar with *M. smegmatis* and shaking (250 rpm) at 37°C. Mikro was isolated from unenriched filtrate and produced very small (<1 mm diameter) clear plaques. Yorick, Virgeve, and MelsMeow were isolated from enriched filtrates. Virgeve and MelsMeow produced clear plaques, while Yorick produced turbid plaques. Transmission electron microscopy revealed that Mikro has a *Myoviridae* morphotype with a short contractile tail. Phages Yorick, Virgeve, and MelsMeow have *Siphoviridae* morphologies with long flexible tails (Fig. 1).

Phage DNA was extracted using the Wizard DNA cleanup kit (Promega), and libraries were constructed using the NEBNext Ultra II FS DNA library prep kit before sequencing with the Illumina MiSeq v3 platform. Results of the 150-bp single-end raw reads were assembled using Newbler v2.9 and checked for accuracy, coverage, and genomic termini using Consed v29 as previously described (3, 4). Sequencing results and phage genome characteristics are listed in Table 1 and include genome size, GC content, predicted number of genes, and phage cluster designation based on gene content similarity (GCS) of at least 35% to phages within the Actinobacteriophage database (https://phagesdb.org/) using the GCS tool at phagesDB and previously described criteria (5, 6).

Default parameters were used for all bioinformatics analyses. Genome sequences were annotated using DNA Master v5.23.6 (7) embedded with Glimmer v3.02 (8) and GeneMark v2.5.2 (9), Starterator v7 (10), Phamerator v3 (11), HHpred v2.07 (12), and BLASTp v2.13.0 (12). Transfer RNAs were identified using Aragorn v1.1 integrated in DNA Master (7), Aragorn v1.2.38 (13), and tRNAscan-SE v2.0.6 (14).

Annotation revealed putative gene functions for each phage. MelsMeow and Virgeve genomes begin with rightward-transcribed genes that include a portal protein, capsid maturation protease, MuF-like fusion protein, two-tail assembly chaperones, and a tape-measure

Editor: John J. Dennehy, Queens College CUNY
Copyright © 2022 Frost et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Kristi M. Westover, westoverk@winthrop.edu.
The authors declare no conflict of interest.
Received: 26 July 2022
Accepted: 4 September 2022
Published: 26 September 2022
protein. The second portion of these genomes include DNA helicase, DNA Pol I, and HNH endonuclease genes that are transcribed leftwards. Neither genome contains identifiable integrases or immunity repressors, and are predicted to be lytic phages. Yorick’s genome, composed of mostly rightward-transcribed genes, includes an immunity repressor, tyrosine integrase, holin, Cro, and an antirepressor, and is therefore predicted to be temperate, consistent with the turbid plaques it produces. Mikro also contains mostly rightward-transcribed genes, as well as many (32) tRNAs.

Nucleotide sequence accession numbers. The complete genome sequences of phages Mikro, Yorick, Virgeve, and MelsMeow are available in GenBank (accession numbers ON456344, ON456356, ON456332, and ON456330, respectively). The raw sequencing reads are available in the NCBI SRA under accession numbers SRX15940724, SRX15940726, SRX14485102, and SRX14483218, respectively. The Actinobacteriophage sequencing BioProject accession number is PRJNA488469.

ACKNOWLEDGMENTS

We thank the Howard Hughes Medical Institute SEA-PHAGES program for their continued support (especially Dan Russell and Rebecca Garlena at the University of Pittsburgh).

Phage MelsMeow was collected by Melody Iacino in 2016. All other phages described here were collected and annotated by undergraduate students in the 2021–22 SEA-PHAGES program at Winthrop University, Rock Hill, SC. We also thank Julian Smith, the director of microscopy at Winthrop, for help in obtaining transmission electron microscopy (TEM) micrographs. V.J.F. acknowledges support by grant 5P20GM103499-21 (SC INBRE) from the National Institute of General Medical Sciences.

TABLE 1 Phage GenBank and SRA accession numbers and genome assembly results

Phage name	Location site (GPS)	Avg coverage (X)	Reads (K)	Cluster	Genome size (bp)	Genome ends	GC content (%)	No. of genes
Mikro	34.940074 N, 81.033099 W	1,503	1,661	C1	157,166	Circular permuted	64.8	260
Yorick	34.940113 N, 81.032921 W	933	385	F1	59,227	3’ single-stranded overhang (5’-CGGTAGGCCG-3’)	61.3	99
Virgeve	34.940113 N, 81.032921 W	630	658.8	B1	68,046	Circular permuted	66.5	99
MelsMeow	34.93712 N, 81.03197 W	646	620.8	B1	68,563	Circular permuted	66.4	100

FIG 1 Transmission electron micrographs of *Mycobacterium* phages MelsMeow (A), Yorick (B), Virgeve (C), and Mikro (D). Phage lysates were negatively stained with 1% uranyl acetate.
REFERENCES

1. Dedrick RM, Smith BE, Cristinziano M, Freeman KG, Jacobs-Sera D, Belessis Y, Whitney Brown A, Cohen KA, Davidson RM, van Duin D, Gainey A, Garcia CB, Robert George CR, Haidar G, Ip W, Iredell J, Khataami A, Little JS, Malviyaara K, McMullan BJ, Michalik DE, Moscatelli A, Nick JA, Tupayachi Ortiz MG, Polenakovic HM, Robinson PD, Skurnik M, Solomon DA, Soothill J, Spencer H, Wark P, Worth A, Schooley RT, Benson CA, Hatfull GF. 2022. Phage therapy of Mycobacterium infections: compassionate-use of phages in twenty patients with drug-resistant mycobacterial disease. Clinical Infectious Diseases ciac453. https://doi.org/10.1093/cid/ciac453.

2. Nick JA, Dedrick RM, Gray AL, Vladr EK, Smith BE, Freeman KG, Malcolm KC, Epperson LE, Hasan NA, Hendrix J, Callahan K, Walton K, Vestal B, Wheeler E, Rysavy NM, Poeh K, Caceres S, Lovell VK, Hise RB, de Moura VC, Chatterjee D, De P, Weakly N, Martiniano SL, Lynch DA, Daley CL, Strong M, Jia F, Hatfull GF, Davidson RM. 2022. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 185:1860–1874.e12. https://doi.org/10.1016/j.cell.2022.04.024.

3. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937. https://doi.org/10.1093/bioinformatics/btt515.

4. Miller JR, Koren S, Sutton G. 2010. Assembly algorithms for next-generation sequencing data. Genomics 95:315–327. https://doi.org/10.1016/j.ygeno.2010.03.001.

5. Russell DA, Hatfull GF. 2017. PhagesDB, the actinobacteriophage database. Bioinformatics 33:784–786. https://doi.org/10.1093/bioinformatics/btw711.

6. Pope WH, Jacobs-Sera D, Montgomery MT, Russell DA, Warner MH, Hatfull GF. 2017. Bacteriophages of Gordonia spp. display a spectrum of diversity and genetic relationships. mBio 8:e01069-17. https://doi.org/10.1128/mBio.01069-17.

7. Pope WH, Jacobs-Sera D. 2018. Annotation of bacteriophage genome sequences using DNA Master: an overview. Methods Mol Biol 1681:217–229. https://doi.org/10.1007/978-1-4939-7943-9_16.

8. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679. https://doi.org/10.1093/bioinformatics/btm009.

9. Beemer J, Borodovsky M. 2005. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454. https://doi.org/10.1093/nar/gki487.

10. Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12:395. https://doi.org/10.1186/1471-2105-12-395.

11. Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. https://doi.org/10.1093/nar/gki408.

12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

13. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152.

14. Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413.