The Study of the System “Van Vleck Paramagnet PrF₃ - Helium-3”

A.V. Egorov, D.S. Irisov, A.V. Klochkov, K. Kono, V.V. Kuzmin, K.R. Safiullin, M.S. Tagirov, D.A. Tayurskii, A.N. Yudin

a) Physics Department, Kazan State University, 18 Kremlyovskaya st., Kazan, 420008, Russia

b) Laboratoire Kastler-Brossel, Ecole Normale Superieure, 24 rue Lhomond, Paris, 75005, France

c) Low Temperature Physics Laboratory, RIKEN, Wako, 351-0198, Japan

kajum.safiullin@lkb.ens.fr

Abstract. Present paper is the result of experimental investigations of the system “Van Vleck paramagnet PrF₃ – liquid ³He”, where earlier cross-relaxation effect between liquid ³He nuclei and \(^{141}\)Pr nuclei was discovered. We report on \(^{141}\)Pr spin kinetics in Van Vleck paramagnet crystal powders PrF₃ with different paramagnet impurities. All experiments have been made by pulse NMR methods at temperature 1.5 K.

1. Introduction

Magnetic dipole interaction between the nuclear spins of liquid ³He and the nuclear spins of a solid substrate between ³He and \(^{19}\)F nuclei in adsorbed ³He-polytetrafluoroethylene (DLX-6000) system was discovered in 1981 [1]. Dominant relaxation channel of the \(^{19}\)F nuclei is their dipole interaction with the ³He nuclei [1,2]. Afterwards, the effect of cross-relaxation with the nuclei of liquid ³He was observed in several other systems [3-6]. Cross-relaxation effect between liquid ³He nuclei and \(^{141}\)Pr of PrF₃ crystal powder by authors was observed first time [7].

In our experiments, investigations of \(^{141}\)Pr and ³He nuclei magnetic properties were made by pulse NMR method at temperature 1.5 K and frequency 6.63 MHz. In experiments, the crystal powder PrF₃ with medium size 10-45 mkm was used as a sample. Field dependences of \(^{141}\)Pr nuclei relaxation times were studied in systems: “PrF₃ powder - liquid ³He” and “PrF₃ powder - liquid ³He”.

Effect of the resonance magnetic coupling is the following. Obtained field dependence of \(T₁\) of \(^{141}\)Pr nuclei is bell-shaped, with the centre in magnetic field that corresponds to the peak value of ³He nuclei NMR signal when longitudinal magnetic relaxation time of \(^{141}\)Pr nuclei becomes twice longer than on the wings. In this work we continue previous investigations of magnetic relaxation properties of nuclei in those systems with another PrF₃ crystal powder. Especially, we need to know information about mechanisms of \(^{141}\)Pr magnetization relaxation in PrF₃. Study of this process is additionally complicated because there is no theory for magnetisation relaxation of Van Vleck nuclei with nuclear spin \(I > 1/2\) [8].
2. Samples and Experiment
The PrF$_3$ crystal powder with medium size 10-45 mkm was used as a sample N1. The EPR data shows that the total quantity of paramagnetic admixture (Nd$^{3+}$, Gd$^{3+}$, Er$^{3+}$, Dy$^{3+}$) in PrF$_3$ was less than 0.02\% (see fig. 1). As a sample N2, PrF$_3$ crystal powder with same size and paramagnetic admixture less than 0.01\% was used (see fig. 2).

![EPR spectra of sample N1 at 77 K](image1)

![EPR spectra of sample N2 at 50 K](image2)

Fig. 1. EPR spectra of sample N1 at 77 K
Fig. 2. EPR spectra of sample N2 at 50 K

According to mass-spectroscopy measurements mole concentration of 4He in 3He was less than 0.05\%. Our investigations of 141Pr nuclei magnetic properties were made by pulse NMR method at temperature 1.5 K and frequency 6.65 MHz. The longitudinal magnetic relaxation time for the nuclei has been measured using the $\pi/2 - t - \pi/2 - t' - \pi$ pulse sequence (t is the delay between the saturating $\pi/2$ pulse and the readout pair, t’ is a constant during measurements).

![Relaxation of the 141Pr nuclei in the "PrF$_3$ powder–liquid 3He" system](image3)

Fig. 3. Relaxation of the 141Pr nuclei in the "PrF$_3$ powder–liquid 3He" system (filled circles) and "PrF$_3$ powder–liquid 4He" (opened circles) at 1.5 K at a frequency of 6.65 MHz for sample N1.
3. Results

As was mentioned before, in this system cross-relaxation was discovered first time (fig 3). The effect was in transfer of magnetization from 3He spins trough the surface to 141Pr spins. Spin lattice relaxation time for 141Pr has been increased in 2 times at cross relaxation conditions.

The spin-lattice relaxation of 141Pr is the matter of interest by itself, because there is no theory, explaining experimental results [8]. Further investigation on a new sample N2 shows different behaviour and mainly the spin kinetic of 141Pr changed. Longitudinal magnetization relaxation of 141Pr nuclei was measured in both samples in a magnetic field 195 mT (fig. 4).

For sample N1, relaxation easily approximates with function:

$$A(t) = A(\infty) \left(1 - B \cdot e^{-(t/T_1)^{0.5}}\right)$$

(1),

where parameters T_1 is longitudinal magnetic relaxation time of 141Pr nuclei, B determines saturation degree of 141Pr spin system due to the $\pi/2$ pulse, $A(t)$ is the amplitude of spin echo signal. Power 0.5 in an exponent corresponds to uniform 141Pr nuclei relaxation rates distribution in a powder sample [9].

The case of the sample N2 is more complicated. The longitudinal nuclear magnetization recovery is divided into 2 processes:

$$A(t) = A(\infty) \left(1 - A_1 \cdot e^{-(t/T_{11})^{0.5}} - A_2 \cdot e^{-t/T_{12}}\right)$$

(2),

where parameters A_1 and A_2 determines ratio between two relaxation processes, T_{11} and T_{12} are longitudinal magnetic relaxation times, $A(t)$ is the amplitude of spin echo signal of 141Pr nuclei.

![Fig. 4. Longitudinal magnetization relaxation of 141Pr nuclei in PrF$_3$ (sample N1 and sample N2) at 1.5 K at frequency of 6.65 MHz.](image)

Observed relaxation time of 141Pr nuclei in sample 1 is $T_1=7$ ms. In sample N2 with less paramagnetic impurities the same relaxation process is slower: $T_{11}=43.2\pm4.4$ ms and appears very slow relaxation component with $T_{12}=8.2\pm2.5$ s.

Very slow relaxation component T_{12} makes experiments very complicated for cross-relaxation effect detection in comparison with sample N1. Simultaneously, during T_1 measurements, we observe 3 types of contribution into the signal: 2 relaxation components of 141Pr nuclei and 1 relaxation...
component of 3He nuclei. In order to split them correctly we need several hours measurement and experiment conditions are unstable during such a long time. For this reasons, observation of the cross-relaxation effect between 141Pr and 3He nuclei in system “PrF$_3$ – liquid 3He” is difficult in case of sample N2.

In order to continue our research, knowledge of connection between paramagnet impurities and 141Pr is very important. For describing paramagnet impurities effect on 141Pr nuclei relaxation we suggest to carry out measurements on PrF$_3$ single crystal.

4. Conclusions

Relaxation process of 141Pr nuclei magnetization in PrF$_3$ qualitatively depends on the amount of paramagnetic impurities. In this work we used powders as samples, because large surface area was necessary for successful observation of cross-relaxation effect. For accurate determining the effect of paramagnetic centers on Van Vleck nuclei magnetization relaxation and paramagnetic impurity concentration we suggest to use single crystals PrF$_3$ for this purpose.

Systematic pulse NMR investigations of 141Pr nuclei in single crystal PrF$_3$ at various temperatures, fields and orientations are required for determining the mechanism of 141Pr nuclei magnetic relaxation.

This work is the first step in experimental and theoretical research of NMR in Van Vleck paramagnets with nuclear spin I > 1/2.

Authors are grateful to G.V. Mamin and A.A. Rodionov for EPR measurements.
This work is partially supported by RFBR (grant N 06-02-17241)

References

[1] L.J. Friedman, P.J. Millet, R.C. Richardson 1981 Phys. Rev. Lett. 47 1078
[2] L.J. Friedman, T.J. Gramila, R.C. Richardson 1984 J. Low Temp.Phys. 55 83
[3] I.S. Solodovnikov, N.V. Zavaritskii 1992 JETP Lett. 56 165
[4] I.S. Solodovnikov, N.V. Zavaritskii 1994 JETP 79 267
[5] R.W. Singerman, F.W. Van Keuls, R.C. Richardson 1994 Phys. Rev. Lett. 72 2789
[6] F.W. Van Keuls, R.W. Singerman, R.C. Richardson 1994 J. Low Temp.Phys. 96 103
[7] A.V. Egorov, D.S. Irisov, A.V. Klochkov, A.V. Savinkov, K.R. Safiullin, M.S. Tagirov, D.A. Tayurskii, A.N. Yudin 2007 JETP Letters. 86 N.6 416
[8] L.K. Aminov, A.A. Kudryashov, M.S. Tagirov, M.A. Teplov 1984 Zh.Eksp.Teor.Fiz 86 1791
[9] M.R. McHenry, B.G. Silbernagel, J.H. Wernick 1972 Phys.Rev.B 5(8) 2958