Research Article

Application of Intelligent Paradigm through Neural Networks for Numerical Solution of Multiorder Fractional Differential Equations

Naveed Ahmad Khan, Osamah Ibrahim Khalaf, Carlos Andrés Tavera Romero, Muhammad Sulaiman, and Maharani A. Bakar

1Department of Mathematics, Abdul Wali Khan University, Mardan, KP, Pakistan
2Al-Nahrain Nanorenewable Energy Research Center, Al-Nahrain University, Baghdad 10001, Iraq
3COMBA R&D Laboratory, Faculty of Engineering, Universidad Santiago de Cali, 76001 Cali, Colombia
4Special Interest Group Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21300, Malaysia

Correspondence should be addressed to Carlos Andrés Tavera Romero; carlos.tavera00@usc.edu.co

Received 17 August 2021; Revised 8 December 2021; Accepted 16 December 2021; Published 19 January 2022

Academic Editor: Daniele Bibbo

Copyright © 2022 Naveed Ahmad Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, the intelligent computational strength of neural networks (NNs) based on the backpropagated Levenberg-Marquardt (BLM) algorithm is utilized to investigate the numerical solution of nonlinear multiorder fractional differential equations (FDEs). The reference data set for the design of the BLM-NN algorithm for different examples of FDEs are generated by using the exact solutions. To obtain the numerical solutions, multiple operations based on training, validation, and testing on the reference data set are carried out by the design scheme for various orders of FDEs. The approximate solutions by the BLM-NN algorithm are compared with analytical solutions and performance based on mean square error (MSE), error histogram (EH), regression, and curve fitting. This further validates the accuracy, robustness, and efficiency of the proposed algorithm.

1. Introduction

Mathematicians have regarded the theory of fractional calculus as a branch of pure mathematics for nearly three centuries. However, several researchers have recently discovered that noninteger derivatives and integrals are more useful for modelling phenomena with inherited and memory properties than integer orders [1–4]. Fractional differential equations (FDEs) are used to model various problems in science, engineering, economics, biological sciences, and applied mathematics [5–8]. FDEs are more complex than their integer order since the fractional operators are nonlocal and have weakly singular kernels [9–13]. The complications in integer order introduce significant computational difficulties for numerical methods to obtain solutions for such equations.

Fractional differential equations have wide application in the fields of science and engineering. Some recent applications include fractional-order financial systems [14], electrical circuits [15], nuclear magnetic resonance [16], fractional-order Bloch system [17], fractional-order Lorenz system [18], hepatitis B disease in medicine [19], pollution levels in a lake [20], and fractional-order Chua’s system [21]. Due to the high usage of FDEs, several numerical and analytical methods have been proposed. Bhrawy [22–24] uses spectral methods based on Jacobi, Chebyshev, and Legendre polynomials over a bounded domain for an approximate solution of FDE’s. Atabakzadeh [25] and Tripathi [26] use the operational matrix of Caputo fractional-order derivatives for Chebyshev polynomials and fractional integration of the generalized hat basis functions to solve systems of FDEs. Baleanu [27] in 2013 uses modified generalized Laguerre collocation methods and the Tau method
Computational Intelligence and Neuroscience

based on semi-infinite interval to calculate the approximate solution for linear and nonlinear FDEs. Ahmadian [28, 29] applied the Jacobi operational matrix to study a class of linear fuzzy FDEs. The spectral approximation method is used by Li [30] to compute the fractional derivative and integral and also presents the pseudo-spectral approximation technique for some classes of FDEs. Esmaeili [31] developed a numerical technique in which the properties of the Caputo derivative were used to reduce the fractional differential equation into a Volterra integral equation.

Recently, the use of spectral methods to solve various types of differential and integral equations has gained interest due to their wide applicability in both finite and infinite domains [32–35]. These methods include Galerkin [33], collocation [36, 37], Tau [38], and Petrov Galerkin [39] classes. Researchers have widely used the Homotopy perturbation method (HPM) [40, 41], Legendre wavelets method (LWM) [42, 43], fractional-order Laguerre and Jacobi Tau methods [44, 45], Chebyshev Tau method (CTM) [45], variational iteration method (VIM) [46], differential transform method (DTM) [40], Bernoulli wavelets method (BWM) [47, 48], and Adomian decomposition method (ADM) [49] for the numerical solution of fractional differential equations.

In recent times, stochastic numerical techniques based on artificial intelligence have been developed to solve stiff nonlinear problems arising in various fields. Such stochastic computing techniques use artificial neural networks to model approximate solutions. These numerical solvers have wide applications in various fields including petroleum engineering [50], heat transfer [51], civil engineering [52], wire coating dynamics [53], and diabetic retinopathy classification [54]. The abovementioned techniques inspire the authors to explore and incorporate soft computing architectures as an alternative, precise, and feasible way for solving nonlinear multiorder fractional differential equations. The main purpose of this article is to obtain approximate solutions for FDEs using artificial neural networks based on the Levenberg–Marquardt algorithm. Some highlighted features of the given study are illustrated as follows:

(i) Novel applications of neuroheuristic techniques based on backpropagated Levenberg–Marquardt neural networks (BLM-NNs) are presented to obtain numerical solutions for different classes of nonlinear multi-order fractional differential equations.

(ii) The processes of training, validation, and testing are carried out by generating a reference solution or data set by using an analytical solution for different cases and examples of FDEs.

(iii) The performance of the proposed scheme is incorporated by fitting the approximate solutions with the reference solution. The absolute error between the targeted data and approximate solutions illustrates the worth and accuracy of the BLM-NN algorithm.

(iv) Convergence analysis based on mean square errors of the objective function, regression analysis, and histogram plots are employed to study the complexity, robustness, and correctness of the design scheme.

(v) The advantage of the proposed design is that it does not require any initial parameter settings. It has simple and smooth implementation with exhaustive applicability and stability.

2. Solution Methodology

In the field of artificial intelligence (AI), supervised machine learning refers to a collection of algorithms that describe a predictive model based on data set with known outcomes. The method is learned through the uses of an efficient teaching algorithm, such as artificial neural networks, which use optimization procedures to minimise the error function. The infrastructure of the proposed BLM-NN algorithm is based on two fundamental steps. In the first step, a data set of 1201 points is generated by using an analytical solution from 0 to 6 with a 0.005 step size. In the next step, the Levenberg–Marquardt framework of fitting tool “nftool” from the neural network toolbox of MATLAB R2018a is used to approximate the solutions with 75% training, 15% validation, and 15% testing. The suggested structure of the BLM-NN algorithm with 60 neurons is shown in Figure 1. A summary of the working procedure of the design scheme is presented through the flow chart in Figure 2.

The performance of a design scheme is measured through the performance indicators in terms of mean square error (MSE) of fitness function, regression R^2, error histograms, and absolute errors (AE). The mathematical formulation of the MSE, R^2, and AE is given as follows:

$$
MSE = \frac{1}{k} \sum_{j=1}^{k} (u_j(t) - \hat{u}_j(t))^2,
$$

$$
R^2 = 1 - \frac{\sum_{j=1}^{k} (\hat{u}_j(t) - \bar{u}_j(t))^2}{\sum_{j=1}^{k} (u_j(t) - \bar{u}_j(t))^2},
$$

and

$$
AE = |u_j(t) - \hat{u}_j(t)|, \quad j = 1, 2, \ldots, k.
$$

Example 1. Consider the following nonlinear fractional differential equation [55]:
A complete overview of the working procedure of the BLM-NN algorithm.

Figure 1: Structure of a supervised neural network.

Figure 2: A complete overview of the working procedure of the BLM-NN algorithm.

Design Methodology
MATLAB Setup using “NFtool”

Results
Fitting of Solutions Performance Error Histogram

Step II
Parameter Setting
Working

An artificial neural network (NN) based backpropagated Levenberg-Marquardt (BLM) algorithm is utilized for validation, testing and training of approximate solutions.
with the following equation:

$$u(0) = u'(0) = 0.$$ \hspace{1cm} (4)

The exact solution of (3) is $$u(x) = x^{\nu+1} + x^3$$. Four fractional orders are considered i.e., Case I $$\nu = 1.2$$, Case II $$\nu = 1.4$$, Case III $$\nu = 1.6$$, and Case IV $$\nu = 1.8$$.

In order to find approximate solutions for various orders of (3), the BLM-NN algorithm is executed using “nftool” in the MATLAB package. The performance and convergence of the mean square error (MSE) of the objective function are shown in Figure 3. It can be seen that the best validated performance for $$\nu = 1.2, 1.4, 1.6$$, and 1.8 are 1.0846e-10, 8.5718e-11, 9.7898e-11, and 1.7456e-10 which are attained at 1000 epoch. Table 1 demonstrates the approximate solution for each case of Example 1. Further, the fitting of approximate solutions with analytical solutions is plotted in Figure 4. The absolute errors between targeted data and obtained solutions for multiple orders of (3) are illustrated in Figures 4 and 5, respectively. The values of AE for each case lie around 10^{-5} to 10^{-6}, 10^{-5} to 10^{-7}, 10^{-5} to 10^{-7}, and 10^{-5} to 10^{-8}, respectively. Table 2 represents the measure of convergence for each testing, validation, training, gradient, mu, and complexity analysis in terms of time taken by the system to achieve the desired results. It can be seen that the values for the gradient for each case lie around 10^{-4} to 10^{-7}, while the maximum time taken by the system is 5 seconds. The training state of operators during the process of optimization for Example 1 is shown in Figure 6. The accuracy and efficiency of the proposed algorithm is shown by the results of regression as dictated in Figure 7.

Example 2. Consider the following nonlinear multiterm nonhomogenous fractional differential equation as [56]

$$D^\nu u(x) + u^2(x) = \Gamma(\nu + 2)x + \frac{6x^{3-\nu}}{\Gamma(4 - \nu)} + \left(x^{\nu+1} + x^3\right)^2, \quad 0 < \nu \leq 2,$$ \hspace{1cm} (3)

subjected to the following equation:

$$y(0) = y'(0) = y''(0) = 0,$$ \hspace{1cm} (5)

where $$\alpha_1$$ and $$\alpha_2$$ are 0.75 and 1.25, respectively. The exact solution of (5) is $$y(x) = x^{3/3}$$. The approximate solution obtained by the proposed algorithm for (5) is shown in Figure 8(a). In addition, Figure 8(b) shows the accuracy of the solutions in terms of residual errors. It shows the accuracy of the solutions as the errors are approaching zero.

Further, to validate the efficiency, absolute errors in solutions of BLM-NN are dictated through Table 3. It can be observed that the results of the design scheme overlap the exact solutions with minimum absolute errors as compared to the Haar wavelet collocation method [56] and the Bernoulli wavelet operational matrix method [57].

Example 3. Consider the following nonlinear multiterm fractional differential equation as follows:

$$aD^\alpha u(x) + b(x)D^\alpha u(x) + c(x)Du(x) + e(x)D^\alpha u(x) + k(x)u(x) = f(x), \quad x \in [0, T],$$ \hspace{1cm} (6)

where $$0 < \alpha_1 \leq 1, 1 < \alpha_2 \leq 2$$ and $$f(x)$$ are defined as follows:

$$f(x) = a - \frac{b(x)}{\Gamma(3 - \alpha_2)}x^{2-\alpha_2} - c(x)x - \frac{e(x)}{\Gamma(3 - \alpha_1)}x^{2-\alpha_1} + k(x)\left(2 - \frac{1}{2}x^2\right),$$ \hspace{1cm} (7)

with initial conditions as follows:

$$y(0) = 2,$$

$$y'(0) = 0.$$

$$f(x) = -a + \frac{b(x)}{\Gamma(3 - \alpha_2)}x^{2-\alpha_2} - c(x)x + k(x)\left(2 - \frac{1}{2}x^2\right).$$ \hspace{1cm} (8)

and numerical solutions obtained by the design algorithm for (7). The results calculated by the BLM-NN algorithm are compared with those obtained by the generalized block pulse operational matrix method [58] as shown in Table 4. The absolute errors lie around 10^{-7} to 10^{-8}. The values of the performance function in terms of mean square error are shown in Table 2. The results in terms of computational complexity and absolute errors show the accuracy of the
Figure 3: Performance analysis of design schemes based on MSE for different cases of Example 1. (a) Case I, (b) case II, (c) case III, and (d) case IV.

Table 1: Approximate solutions obtained by the proposed algorithm for different cases of multiorder fractional differential equations.

x	Case I	Case II	Case III	Case IV	Example 2	Example 3
0	0	0	0	0	0	2
0.5	0.342638	0.31465	0.289938	0.268587	0.041667	1.875
1	2	2	2	2	0.333333	1.5
1.5	5.815061	6.02178	6.244705	6.487114	1.125	0.875
2	12.59479	13.27803	14.06287	14.96444	2.666667	0
2.5	23.13203	24.64187	26.45539	28.63364	5.20833	−1.125
3	38.21158	40.96661	44.39864	48.67402	9	−2.5
3.5	58.61301	63.09417	68.85128	76.24764	14.29167	−4.125
4	85.11213	91.85762	100.7583	112.5029	21.33333	−6
4.5	118.4819	128.0831	141.054	158.577	30.375	−8.125
5	159.4932	172.5913	190.6632	215.5975	41.66667	−10.5
5.5	208.915	226.1983	250.5035	284.6834	55.45833	−13.125
6	267.5149	289.7162	321.4856	366.9467	72	−16
proposed algorithm in calculating solutions to fractional differential equations.

Example 4. Consider the following system of fractional differential equation:

\[D_C^\nu u_1(x) = u_2(x), \]

\[D_C^\nu u_2(x) = -u_1(x) - u_2(x) + x^{\nu+1} + \frac{\pi \csc (\pi \nu)x^{1-\nu}}{\Gamma(-\nu-1)\Gamma(2-\nu)} + \frac{\pi x \csc (\pi \nu)}{\Gamma(-\nu-1)}, \]

with the following equation:

\[\frac{\pi \csc (\pi \nu)x^{1-\nu}}{\Gamma(-\nu-1)\Gamma(2-\nu)} + \frac{\pi x \csc (\pi \nu)}{\Gamma(-\nu-1)}, \]
The exact solutions of (10) and (11) are given as follows:

\[
\begin{align*}
\mu_1(0) &= 0, \\
\mu_2(0) &= 0.
\end{align*}
\]

\[\mu_1(x) = x^{1+\nu},\]
\[\mu_2(x) = \frac{\pi\nu(\nu + 1)\csc(\pi\nu)}{\Gamma(1 - \nu)} x.\]
Figure 6: Training state of design scheme for all cases of Example 1. (a) Case I, (b) case II, (c) case III, and (d) case IV.

Figure 7: Continued.
We have solved this problem by considering different cases based on orders of derivative, i.e., Case I \(v = 1/4 \), Case II \(v = 1/2 \), Case III \(v = 2/3 \), and Case IV \(v = 9/10 \).

Approximate solutions obtained by the BLM-NN algorithm for \(u_1(x) \) and \(u_2(x) \) are dictated in Table 5. The comparison or fitting of analytical solutions with approximate solutions is plotted in Figure 10. It can be seen that high-overlapping solutions with a minimum absolute error are obtained. Figure 11 represents the error histograms for different cases. The values of absolute errors for each case of (10) and (11) lie around \(10^{-3} \) to \(10^{-6} \), \(10^{-2} \) to \(10^{-7} \), \(10^{-5} \) to \(10^{-8} \), and \(10^{-6} \) to \(10^{-10} \), respectively. The smoothness of the algorithm has been detected from the convergence of the mean square error of the objective function. Figure 12 dictates that validated performance for each case of \(u_1(x) \) and \(u_2(x) \) are 1.3684e-12, 1.4825e-12, 3.123e-12, 4.9879e-11, 3.1169e-12, 1.46e-12, 1.1018e-12, and 2.661e-12, respectively. Further, details of performance indices are provided in Table 5. The values of the gradient for each case are 1.84e-07, 3.49e-06, 1.28e-05, 1.43e-07, 2.02e-06, 4.23e-07, 8.03e-07, and 3.33e-07. From Table 6, it can be seen that the values of \(\mu \) for each case at 1000 epochs lie around \(10^{-11} \) to \(10^{-13} \). Regression analysis
Table 3: Comparison of absolute errors in solutions obtained by the BLM-NN algorithm with the Bernoulli wavelet operational matrix method and the Haar wavelet collocation method.

t	N = 08	N = 16	N = 32	N = 64	BLM-NN				
	HWCM	BWOM	HWCM	BWOM	HWCM	BWOM	HWCM	BWOM	BLM-NN
1.00E-01	2.27E-04	1.10E-03	6.55E-05	2.00E-04	1.83E-05	6.96E-05	5.05E-06	1.53E-05	6.40E-08
2.00E-01	4.76E-04	1.70E-03	1.33E-04	5.00E-04	3.69E-05	1.17E-04	1.02E-05	3.69E-05	4.82E-08
3.00E-01	6.92E-04	2.50E-03	1.93E-04	8.00E-04	5.34E-05	1.75E-04	1.48E-05	5.42E-05	2.64E-08
4.00E-01	8.72E-04	4.00E-03	2.43E-04	9.00E-04	6.73E-05	2.74E-04	1.87E-05	5.91E-05	3.02E-10
5.00E-01	1.02E-03	5.30E-03	2.83E-04	1.40E-03	7.88E-05	3.52E-04	2.20E-05	9.10E-05	2.98E-08
6.00E-01	1.13E-03	5.90E-03	3.15E-04	1.20E-03	8.79E-05	3.87E-04	2.46E-05	8.28E-05	5.82E-08
7.00E-01	1.21E-03	5.30E-03	3.38E-04	1.70E-03	9.48E-05	3.58E-04	2.66E-05	1.14E-04	2.01E-08
8.00E-01	1.26E-03	5.80E-03	3.54E-04	1.90E-03	9.96E-05	3.96E-04	2.81E-05	1.26E-04	5.93E-08
9.00E-01	1.28E-03	8.00E-03	3.63E-04	1.60E-03	1.03E-04	5.36E-04	2.91E-05	1.12E-04	2.10E-06

Figure 8: (a) Approximate solutions and (b) absolute errors in our solutions for Example 2.

Figure 9: (a) Approximate solutions and (b) absolute errors in our solutions for Example 3.
Table 4: Comparison of absolute errors in the solutions of the BLM-NN algorithm with the generalized block pulse operational matrix method for different step sizes.

x	h = 0.1	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625	
	BLM-NN	GBPOM	BLM-NN	GBPOM	BLM-NN	GBPOM
0.5	9.81E-08	2.40E-03	6.08E-04	1.52E-04	3.82E-05	9.55E-06
1.5	6.02E-07	2.00E-03	5.06E-04	1.27E-04	3.17E-05	7.95E-06
2.5	4.38E-07	1.60E-03	4.41E-04	1.10E-04	2.76E-05	6.46E-06
3.5	2.69E-07	1.60E-03	4.00E-04	1.03E-05	2.58E-05	6.25E-06
4.5	9.03E-07	1.60E-03	4.00E-05	9.99E-04	2.50E-05	6.25E-06

Table 5: Approximate solutions obtained by the proposed algorithm for different cases of the system of FDEs given in Example 4.

x	Case I	Case II	Case III	Case IV		
	$u_1(x)$	$u_2(x)$	$u_1(x)$	$u_2(x)$	$u_1(x)$	$u_2(x)$
0.0	0.420448	0.566502	0.353553	0.66467	0.31498	0.752288
0.5	0.66023	1.699505	1.837117	1.994011	1.965556	2.256863
1.0	2.378414	2.266006	2.828427	2.658681	3.174802	3.009151
1.5	3.143584	3.832508	3.952847	4.605039	3.761439	5.702772
2.0	3.94822	3.399009	5.196152	6.240251	4.513726	8.063626
2.5	4.787238	3.965511	6.5749	4.652691	8.068264	5.266014
3.0	5.656854	4.532012	6.18034	7.321323	6.547734	7.30942
3.5	6.55438E-07	5.098514	9.545942	5.982032	12.26557	6.77059
4.0	7.476744	5.665015	11.18034	7.311372	14.62009	8.275165
4.5	8.422739	6.231517	12.89864	7.976042	17.13712	10.8076
5.0	9.39507	6.798019	14.69694	8.976042	19.8156	13.9281
5.5	10.3905	7.365019	16.59694	9.976042	21.8256	17.42223
6.0	11.3905	7.965019	18.59694	10.976042	23.8256	21.05045

Figure 10: Continued.
Figure 10: Comparison of analytical solution with approximate solution for u_x (a) – (d) and u_t (e) – (h) for multiple orders of Example 4. (a) Case I, (b) case II, (c) case III, (d) case IV, (e) case I, (f) case II, (g) case III, and (h) case IV.

Figure 11: Error histogram between target values and approximated values for multiple orders of equations (10) and (11). (a) Case I, (b) case II, (c) case III, (d) case IV, (e) case I, (f) case II, (g) case III, and (h) case IV.
Table 6: Statistical analysis of performance measures including MSE, gradient, mu, number of iterations, and time taken by the system for obtaining the results of Example 4.

Performance measures	Case I	Case II	Case III	Case IV
Hidden neurons	60	60	60	60
Training	8.67E-12	1.04E-11	1.64E-11	9.39E-13
Validation	1.37E-12	3.12E-12	1.48E-12	1.46E-12
Testing	8.52E-13	4.94E-13	1.06E-11	1.37E-12
Gradient	1.84E-07	3.49E-06	1.28E-05	1.43E-07
Mu	1.00E-13	1.00E-13	1.00E-13	1.00E-13
Epochs	1000	1000	502	635
Regression	1	1	1	1
Time (s)	6s	5s	2s	5s

Figure 12: Convergence of performance in terms of mean square error for $u_1(x)$ (a–d) and $u_2(x)$ (e–h) for multiple orders of Example 4. (a) Case I, (b) case II, (c) case III, (d) case IV, (e) case I, (f) case II, (g) case III, and (h) case IV.
shown in Figure 13 further validates the efficiency and correctness of the technique.

4. Conclusion

In this paper, we have designed an integrated soft computing technique based on supervised learning. The computational strength of neural networks is utilized by the backpropagated Levenberg–Marquardt (BLM) algorithm to find approximate solutions for nonlinear multi-order fractional differential equations. The working procedure of BLM-NN algorithms is categorized into two steps in which the reference solution is generated by using analytical solutions. Furthermore, the dataset is used by the BLM algorithm for validation, testing, and training of approximate solutions. Multiple figures, in terms of approximate solutions, curve fitting of analytical solutions and output data, error histograms, and regression and convergence of performance, are plotted to validate the efficiency of the design scheme. The tabulated data and figures dictate the accuracy, efficiency, and robustness of the design paradigm.

In the future, the authors would like to extend the concept of soft computing based on neural networks to solve the mathematical models represented by partial differential equations and partial fractional differential equations.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research has been funded by Dirección General de Investigaciones de Universidad Santiago de Cali under call no. 01-2021.

References

[1] R. L. Bagley and P. J. Torvik, “On the fractional calculus model of viscoelastic behavior,” Journal of Rheology, vol. 30, no. 1, pp. 133–155, 1986.
[2] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, Amsterdam, Netherlands, 1998.
[3] A. Kilbas, A. Aleksandrovich, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204, Elsevier, Amsterdam, Netherlands, 2006.
[4] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer Science & Business Media, Berlin, Germany, 2010.
[5] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, Hoboken, NJ, USA, 1993.
[6] M. D. Ortigueira, ”Introduction to fractional linear systems. Part 1: continuous-time case,” IEE Proceedings - Vision, Image and Signal Processing, vol. 147, no. 1, pp. 62–70, 2000.
[7] D. Baleanu and S. I. Muslih, “About Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 47438, pp. 1457–1464, 2005.
[8] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Vol. 3, World Scientific Publishing, Singapore, 2012.
[9] A. H. Bhrawy and M. A. Zaky, “A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations,” Journal of Computational Physics, vol. 281, pp. 876–895, 2015.
[41] A. S. Bataineh, A. K. Alomari, M. S. M. Noorani, I. Hashim, and R. Nazar, "Series solutions of systems of nonlinear fractional differential equations," Acta Applicandae Mathematica, vol. 105, no. 2, pp. 189–198, 2009.

[42] Y. Chen, X. Ke, and Y. Wei, "Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis," Applied Mathematics and Computation, vol. 251, pp. 475–488, 2015.

[43] O. I. Khalaf and B. M. Sabbar, "An overview on wireless sensor networks and finding optimal location of nodes," Periodicals of Engineering and Natural Sciences, vol. 7, no. 3, pp. 1096–1101, 2019.

[44] A. Bhrawy, Y. Alhamed, D. Baleanu, and A. Al-Zahrani, "New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions," Fractional Calculus and Applied Analysis, vol. 17, no. 4, pp. 1137–1157, 2014.

[45] A. H. Bhrawy and M. A. Zaky, "Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations," Applied Mathematical Modelling, vol. 40, no. 2, pp. 832–845, 2016.

[46] N. H. Sweilam, M. M. Khader, and R. F. Al-Bar, "Numerical studies for a multi-order fractional differential equation," Physics Letters A, vol. 371, no. 1-2, pp. 26–33, 2007.

[47] J. Wang, T.-Z. Xu, Y.-Q. Wei, and J.-Q. Xie, "Numerical solutions for systems of fractional order differential equations with Bernoulli wavelets," International Journal of Computer Mathematics, vol. 96, no. 2, pp. 317–336, 2019.

[48] O. I. Khalaf, G. M. Abdulshahib, and M. Sadik, "A modified algorithm for improving lifetime WSN," Journal of Engineering and Applied Sciences, vol. 13, pp. 9277–9282, 2018.

[49] V. Daftardar-Gejji and H. Jafari, "Adomian decomposition: a tool for solving a system of fractional differential equations," Journal of Mathematical Analysis and Applications, vol. 301, no. 2, pp. 508–518, 2005.

[50] N. A. Khan, M. Sulaiman, A. J. Aljohani, P. Kumam, and H. Alrabaiah, "Analysis of multi-phase flow through porous media for imbibition phenomena by using the LeNN-WOA-NM algorithm," IEEE Access, vol. 8, pp. 196425–196458, 2020.

[51] A. Ahmad, M. Sulaiman, A. Alhindi, and A. J. Aljohani, "Analysis of temperature profiles in longitudinal fin designs by a novel neuroevolutionary approach," IEEE Access, vol. 8, pp. 113285–113308, 2020.

[52] W. Huang, T. Jiang, X. Zhang, N. A. Khan, and M. Sulaiman, "Analysis of beam-column designs by varying axial load with internal forces and bending rigidity using a new soft computing technique," Complexity, vol. 2021, Article ID 6639032, 19 pages, 2021.

[53] N. A. Khan, M. Sulaiman, P. Kumam, and A. J. Aljohani, "A new soft computing approach for studying the wire coating dynamics with Oldroyd 8-constant fluid," Physics of Fluids, vol. 33, no. 3, Article ID 036117, 2021.

[54] A. Ali, S. Qadri, W. Khan Mashwani et al., "Machine learning based automated segmentation and hybrid feature analysis for diabetic retinopathy classification using fundus image," Entropy, vol. 22, no. 5, p. 567, 2020.

[55] A. H. Bhrawy, D. Baleanu, L. M. Assas, and J. A. Tenreiro Machado, "On a generalized Laguerre operational matrix of fractional integration," Mathematical Problems in Engineering, vol. 2013, Article ID 569286, 7 pages, 2013.

[56] S. C. Shiralashetti and A. B. Deshi, "An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations," Nonlinear Dynamics, vol. 83, no. 1-2, pp. 293–303, 2016.