研究成果の概要（和文）：本研究では、環境調和型・持続性エレクトロニクスの実現に向けて、樹木ナノセルロースの電子材料化に取り組んだ。まず、元は絶縁体であるナノセルロースの段階的炭化技術により、その電気特性を絶縁体〜半導体〜性質導体の広範囲で細かく制御（電気抵抗率：ノーモのノーモ〜ノーモのモノ〜モノのモダン）することに成功した。さらに、非蒸気選択センシング機能と飛沫モニタリング応用（半導体）から、バイオ燃料電池発電機能とガルコースセンシング応用〜点灯（導体）まで、幅広い用途における有用性を確認できた。以上の様に、次世代グリーン・サステナブルエレクトロニクスに先鞭をつけようとする成果を得た。

研究成果の学術的意義や社会的意義：近年、全世界の電子デバイス生産量が急増し、枯渇性資源の消費が益々加速している。また、大量の電子ゴミが発生し、人や環境への悪影響を招いている。そのため、持続可能資源由来で、人と環境に優しい電子デバイスの創出が求められている。本研究の成果は、持続生産可能な樹木ナノセルロースを新規電子材料に変換し、さらに、デバイス素材（特に、今後益々需要が高まるセンサデバイス）としての有用性を実証したものである。すなわち、人と環境に調和する電子デバイスの創出に貢献するもので、学術的にも社会的にも意義深い成果と言える。

研究分野：複合材料、セルロースナノファイバー、機能紙、ペーパーエレクトロニクス

キーワード：ナノセルロース ナノペーパー ナノカーボン 半導体 炭化 グリーンエレクトロニクス センサー

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等については、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。
様 式 C-19、F-19-1、Z-19（共通）

1. 研究開始当初の背景
電子デバイスは、ナノテクノロジーの発展により一層高性能化が進み、我々の生活に欠かせないものとなっている。その一方で、全世界の電子デバイス生産量・使用量が急増し、金属や石油等、枯渇性資源の消費が加速している。また、大量の電子ゴミ（E-waste）が発生し、特に発展途上国において人体への悪影響や環境破壊を招いている（The Global E-waste Monitor 2020）。そのため、持続生産可能な資源由来で、人にも環境にも優しい電子デバイスの創出が希求されている。

2. 研究の目的
地球上で最も豊富に存在する持続可能な生物資源はセルロースである。我々はこれまで、樹木細胞壁から得られる幅3-15 nm・長さ数μmのナノセルロースで作る紙「ナノセルロースペーパー」と様々な電子ナノ材料を複合する独自技術を確立し、透明導電膜[1]、電子ペーパー[2]、トランジスタ[3]、アンテナ[4]、メモリ[5, 6]、蓄電デバイス[7]、センサー[8]等のペーパー電子デバイス「ペーパー・エレクトロニクス」を世界に先駆けて創出した（図1）。特筆すべきは、これらがいずれも最先端レベルの高いデバイス性能を有しながら、指に載る軽量性・折り畳めるフレキシブル性・使い捨ても容易なディスポーザブル性・土に還る生分解性を示すことである。

しかし、ナノセルロースは電気を通さない絶縁体（電気抵抗値：10^{14} Ω以上）であり[6]、絶縁基材や誘電材料としての有用性は実証できたものの、電子デバイスとして動作させるために、現在、枯渇性資源である金属や石油由来の電子ナノ材料を利用せざるを得なかった。
そこで本研究では、持続生産可能なナノセルロース自体を電子ナノ材料に変換することに取り組んだ。すなわち、絶縁性ナノセルロースの電気特性を機能・用途に合わせて幅広くかつ段階的に制御する技術の確立、特に、今後益々需要が高まっていく半導体化とセンサー機能創出を目指した。

3. 研究の方法
(1) ナノセルロースペーパーの調製と炭化処理、および、電気特性分析
針葉樹漂白クラフトパルプ由来のナノセルロース水分散液をPTFEフィルター上で吸引濾過し、t-ブチルアルコールを加えてさらに吸引濾過後、凍結乾燥することでナノセルロースペーパーを調製した。ナノセルロースペーパーの炭化処理は、窒素ガス雰囲気下、300〜1100℃・1 hの条件で行った。電気抵抗率や光学バンドギャップ等の電気特性は、4端子法およびUV-vis分析によって分析した。

(2) 炭化ナノセルロースペーパーのセンサー機能評価
所定濃度の水蒸気、二酸化炭素、酸素、水素、エタノールをターゲットとして、炭化ナノセルロースペーパー表面にそれぞれを導入したときの電気抵抗値変化を測定（測定温度 30℃）することで、センサーとしての機能を評価した。

(3) 炭化ナノセルロースペーパーのグルコースバイオ燃料電池電極性能評価
炭化ナノセルロースペーパーを電極として、グルコース酸化酵素を吸着させた後、グルコース燃料を導入した。その際の発電量（パワー密度）を測定することで、グルコースバイオ燃料電池としての性能を評価した。
4. 研究成果

本研究では、絶縁性ナノセルロースの段階的炭化戦略によって、その電気抵抗率を10^{13}～10^{2}Ω cm、光学バンドギャップを5.34～0 eVの広い範囲で細かく制御することに成功した（図2）。すなわち、ナノセルロースの電気特性を絶縁体～半導体～準導体まで作り分けることができた。さらに、赤外分光分析、固体核磁気共鳴分析、ラマン分光分析、X線回折解析、透過型電子顕微鏡観察等を行い、高絶縁性ナノセルロース(sp^{3}炭素ベースの分子構造)の内部で高導電性グラフェンフラグメント(sp^{2}炭素)が徐々に成長することにより、その電気特性が大幅かつ段階的に変調していることを明らかにした。また、分子吸着等の外部刺激による電荷キャリア密度変調機能も確認している。これらの結果は広い機能設計性を示唆している。実際に、本研究において、水蒸気選択的センシングと飛沫モニタリング応用から、グルコースバイオ燃料電池発電(パワー密度:約140 µW cm^{-2}、市販グラファイト電極の約15倍)やグルコースセンシング機能まで、広範な用途において優れた電子デバイス機能を見出し得た。本研究で開発した炭化ナノセルロースは、絶縁体～半導体～準導体までの幅広い機能と用途を有する新たな電子ナノ材料として、環境調和型・持続性の次世代グリーンエレクトロニクスの実現に向け、今後のさらなる研究開発に期待が持たれる。

＜引用文献＞
1. H. Koga, M. Nogi, N. Komoda, T. T. Nge, T. Sugahara, K. Suganuma, Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics, NPG Asia Materials, 6, e93 (2014)
2. H. Koga, M. Nogi, A. Isogai, Ionic liquid-mediated dispersion and support of functional molecules on cellulose fibers for stimuli-responsive chromic paper devices, ACS Applied Materials & Interfaces, 9, 40914-40920 (2017)
3. Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, T. Kurita, M. Nogi, N. Shimizu, Transparent nanopaper-based flexible organic thin-film transistor array, Advanced Functional Materials, 24, 1657-1663 (2014)
4. T. Inui, H. Koga, M. Nogi, N. Komoda, K. Suganuma, A Miniaturized flexible antenna printed on a high dielectric constant nanopaper composite, Advanced Materials, 27, 1112-1116 (2015)
5. K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. D. Boeck, M. Jurczak, W. Vandervorst, T. Kitaoka, M. Nogi, T. Yanagida, Cellulose nanofiber paper as an ultra flexible nonvolatile memory, Scientific Reports, 4, 5532 (2014)
6. U. Celano, K. Nagashima, H. Koga, M. Nogi, F. Zhuge, G. Meng, Y. He, J. D. Boeck, M. Jurczak, W. Vandervorst, T. Yanagida, All nanocellulose nonvolatile resistive memory, NPG Asia Materials, 8, e310 (2016)
7. H. Koga, H. Tomomura, M. Nogi, K. Suganuma, Y. Nishina, Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode, Green Chemistry, 18, 1117-1124 (2016)
8. H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, A. Isogai, Transparent, conductive and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube, Biomacromolecules, 14, 1160-1165 (2013)
| 5. 主な発表論文等 | | | | | | |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1. 著者名 | 高橋 甲, 田中 乙, 田中 丙, 佐藤 丁, 佐藤 丁 | 4. 巻 | | | | |
| 2. 論文標題 | 高速セルロースナノペーパーの製造における湿度制御多段乾燥法の適用 | 5. 発行年 | | | | |
| 3. 雑誌名 | | 6. 最初と最後の頁 | | | | |
| 掲載論文のDOI(デジタルオブジェクト識別子) | | | | | | |
| | | | | | | |
| オープンアクセス | | | | | | |

オープンアクセスではない、又はオープンアクセスが困難

国際共著 -
著者名	テンプレート	表 4．巻	5．発行年	6．最初と最後の頁
論文標題	詳細な文章			
雑誌名	クリアランス			

オープンアクセス オープンアクセスとしている（また、その予定である） 国際共著 -
1. 著者名	古賀大尚
2. 論文標題	ナノセルロースと電子材料の融合によるグリーン・ペーパーエレクトロニクスの創出
3. 雑誌名	日本印刷学会誌
4. 巻	
5. 発行年	2018年
6. 最初と最後の頁	101-106

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	上谷幸治郎、古賀大尚、能木雅也
2. 論文標題	セルロースナノファイバーの構造・特性および材料への展開状況
3. 雑誌名	高分子
4. 巻	
5. 発行年	2019年
6. 最初と最後の頁	25(3)

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	H. Koga, K. Nagashima, Y. Huang, G. Zhang, C. Wang, T. Takahashi, A. Inoue, H. Yan, M. Kanai, Y. He, K. Uetani, M. Nogi, T. Yanagida
2. 論文標題	Paper-Based Disposable Molecular Sensor Constructed from Oxide Nanowires, Cellulose Nanofibers, and Pencil-Drawn Electrodes
3. 雑誌名	ACS Applied Materials & Interfaces
4. 巻	
5. 発行年	in press
6. 最初と最後の頁	

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	
2. 論文標題	
3. 雑誌名	
4. 巻	
5. 発行年	2019年
6. 最初と最後の頁	

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	
2. 論文標題	
3. 雑誌名	
4. 巻	
5. 発行年	2020年
6. 最初と最後の頁	

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	
2. 論文標題	
3. 雑誌名	
4. 巻	
5. 発行年	2020年
6. 最初と最後の頁	

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	
2. 論文標題	
3. 雑誌名	
4. 巻	
5. 発行年	2020年
6. 最初と最後の頁	

オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難
1. 著者名	古賀大尚	4. 巻
2. 論文題目	紙のリノベーション戦略とデバイス・リアクター応用展開	5. 発行年
3. 雑誌名	紙パルプ技術タイムス	6. 最初と最後の頁

掲載論文のзо(デジタルオブジェクト識別子) なし
オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

1. 著者名	古賀大尚、長島一樹、仁科勇太	4. 巻
2. 論文題目	異分野融合による紙のリノベーション研究	5. 発行年
3. 雑誌名	セラミックス	6. 最初と最後の頁

掲載論文のzo(デジタルオブジェクト識別子) なし
オープンアクセス
オープンアクセスではない、又はオープンアクセスが困難

（学会発表）計□件（うち招待講演 □件/うち国際学会 □件）

1. 発表者名 | 古賀大尚 |

2. 発表題目 | ナノセルロース半導体の創出と機能開拓 |

3. 学会等名 | アライアンス合同ウェブ分科会 |

4. 発表年 | 2018年 |

1. 発表者名 | 古賀大尚 |

2. 発表題目 | ナノセルロースでつくる新しい紙の材料・構造設計と機能創発 |

3. 学会等名 | 高分子学会、エコマテリアル研究会（招待講演） |

4. 発表年 | 2021年 |
| 1. 発表者名 | 森下哲孝、黄醸トン、上谷幸治郎、能木雅也、古賀大尚 |
| 2. 発表標題 | 炭素ナノセルロースペーパーのメソ孔構造設計とエネルギー変換機能 |
| 3. 学会等名 | 第34回日本木材学会年次大会 |
| 4. 発表年 | 2020年 |

1. 発表者名	古賀大尚、長島一樹、高橋綾己、仁科勇太
2. 発表標題	ナノセルロースと電子材料の融合によるグリーン・フレキシブルエレクトロニクスの創出
3. 学会等名	電子情報通信学会 有機エレクトロニクス研究会
4. 発表年	2020年

1. 発表者名	焼結ナノセルロース、石墨ナノフォーム、石墨ナノスラリー、石墨ナノ管
2. 発表標題	燃焼プロセスにおけるナノ材を用いた燃料効率と環境性能の評価
3. 学会等名	電子情報通信学会 有機エレクトロニクス研究会
4. 発表年	2020年

1. 発表者名	森下哲孝、上谷幸治郎、能木雅也、古賀大尚
2. 発表標題	樹木ナノセルロースを用いたナノカーボンの調製と光熱変換機能
3. 学会等名	第34回炭素材料学会年会
4. 発表年	2020年
1. 発表者名	楠生直子，古賀大尚
2. 発表標題	Luting Zhu, Yuki Yoshida, Kojiro Uetani, Masaya Nogi, Hirotaka Koga
3. 学会等名	第3回発素材学会年会
4. 発表年	2019年

1. 発表者名	楠生直子，古賀大尚
2. 発表標題	Carbonized Bionanofiber Paper for Electronic Applications
3. 学会等名	第3回発素材学会年会
4. 発表年	2019年

1. 発表者名	楠生直子，古賀大尚
2. 発表標題	Structure and Electronic Properties of Carbonized Nanocellulose and Nanochitin Papers
3. 学会等名	第3回発素材学会年会
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	ナノセルロース材料の新機能・用途開拓
3. 学会等名	第1回アライアンス分科会
4. 発表年	2019年
1. 発表者名	古賀大尚、長島一樹、高橋綱己、仁科勇太
2. 発表標題	樹木ナノセルロース由来・ナノポーラスカーボンの新機能開拓
3. 学会等名	第10回アライアンス若手研究交流会
4. 発表年	2019年

1. 発表者名	古賀大尚、吉田由紀、上谷幸治郎、能木雅也、長島一樹、高橋綱己、柳田剛、仁科勇太
2. 発表標題	樹木ナノセルロースの電子機能創発
3. 学会等名	第10回物質・デバイス領域共同研究拠点活動報告会・平成29年度ダイナミックアライアンス成果報告会
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	セルロースナノファイバーによる高機能材料の創出とその方向へのポテンシャル
3. 学会等名	ナノテクノロジーの社会実装がもたらす課題への貢献（招待講演）
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	ナノセルロースによる紙の再構築と機能創発
3. 学会等名	高分子学会関西支部、第10回高分子若手研究会（招待講演）
4. 発表年	2019年
1. 発表者名	古賀大尚
---	---
2. 発表標題	農と工、伝統と先端の融合による紙のリノベーション
3. 学会等名	産研テクノサロン 農と食の産業科学（招待講演）
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	セルロースナノファイバーによる紙の再構築と機能開拓
3. 学会等名	セルロースナノファイバーの最前線 スペシャル Ⅱ 大阪（招待講演）
4. 発表年	2019年

1. 発表者名	福島大喜、吉田由紀、上谷幸治郎、能妻也、古賀大尚、仁科勇太、高橋綾子、長島一樹、柳田剛
2. 発表標題	木材ナノセルロースペーパーの炭素化と電気特性遷移
3. 学会等名	第四回日本木材学会大会
4. 発表年	2019年
1. 発表者名	古賀大尚、長島一樹、柳田剛、能木雅也
2. 発表題目	ナノセルロースと酸化亜鉛ナノワイヤの融合による使い捨てペーパーセンサの創出
3. 学会等名	第Ⅲ回高分子討論会（招待講演）
4. 発表年	2018年

1. 発表者名	福島大喜、上谷幸治郎、能木雅也、古賀大尚
2. 発表題目	炭化ナノセルロースペーパーの細孔構造設計とスーパーキャパシタ電極応用
3. 学会等名	第Ⅲ回高分子討論会
4. 発表年	2018年

1. 発表者名	前賢銘、李万里、李財富、福島大喜、古賀大尚、長尾至成、何鶴、菅沼克昭
2. 発表題目	全固体柔軟性引張スーパーキャパシタの作製
3. 学会等名	
4. 発表年	2018年

1. 発表者名	古賀大尚
2. 発表題目	紙と無機ナノ材料の融合と構造設計による触媒・電子機能創発
3. 学会等名	平成Ⅲ年度繊維学会年次大会（招待講演）
4. 発表年	2018年
1. 発表者名	古賀大尚
2. 発表標題	業木ナノセルロースの電子機能創発
3. 学会等名	第1回アライアンス若手研究交流会（招待講演）
4. 発表年	2018年

1. 発表者名	古賀大尚
2. 発表標題	ナノセルロースによる紙のリノベーション ～ 生け方に向けた機能革新～
3. 学会等名	高知大学研究拠点プロジェクト 革新的な水・バイオマス循環システムの構築 公開シンポジウム（招待講演）
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	ナノセルロースとナノ技術が拓く紙の機能イノベーション
3. 学会等名	生産技術振興協会アライアンス委員会 ナノ技術応用分科会講演会（招待講演）
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	セルロースナノファイバーと有機・無機ナノ材料の融合とデバイス応用展開
3. 学会等名	（招待講演）
4. 発表年	2018年
1. 発表者名	古賀大尚
-------------	----------
2. 発表標題	紙のフレキシブル電子ペーパー向けた要素技術開発
3. 学会等名	2019年度 第1回 日本画像学会技術研究会（招待講演）
4. 発表年	2019年

1. 発表者名	古賀大尚
2. 発表標題	セルロースナノファイバーを用いた紙のリネーション機能と応用展開
3. 学会等名	繊維学会夏季セミナー（招待講演）
4. 発表年	2019年

1. 著者名	古賀大尚 (分担執筆)
2. 出版社	シーエムシー出版
3. 書名	エレクトロクロミックデバイスの開発最前線 (第3編・第Ⅱ章)
4. 発行年	2019年
5. 総ページ数	300

(図書) 計1件
1. 著者名
能木雅也、古賀大尚
2. 出版社
株式会社 化学同人
3. 書名
持続可能社会をつくるバイオプラスチック
4. 発行年
5. 総ページ数

（産業財産権）

（その他）

阪大セルロースナノファイバー研究 公募開催

6. 研究組織

氏名（ローマ字氏名）	所属研究機関・部局・職	備考
長島 一樹	東京大学・大学院工学系研究科工学部工学研究科	
連携研究者	東京大学・大学院工学系研究科工学部工学研究科	
仁科 勇太	岡山大学・農芸化学研究所研究科学部	
連携研究者	岡山大学・農芸化学研究所研究科学部	

7. 科研費を使用して開催した国際研究集会

（国際研究集会） 計件

8. 本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関

http://kogahirotaka.com/