RNA sequencing dataset characterizing transcriptomic responses to dietary changes in *Caenorhabditis elegans*

Scott T. Schumacker \(^{b}\), Chloe A.M. Chidester \(^{a}\), Raymond A. Enke \(^{b,c}\), Matthew R. Marcello \(^{a,*}\)

\(^{a}\) Department of Biology, Pace University, USA
\(^{b}\) Department of Biology, James Madison University, USA
\(^{c}\) Center for Genome & Metagenome Studies, James Madison University, USA

Article info

Article history:
Received 24 April 2019
Accepted 9 May 2019
Available online 24 May 2019

Abstract

Transcriptome analysis using next generation sequencing (NGS) technology provides the capability to understand global changes in gene expression throughout a range of tissue samples. The nematode *Caenorhabditis elegans* (*C. elegans*) is a well-established genetic system used for analyzing a number of biological processes. *C. elegans* are a bacteria-eating soil nematode, and changes in bacterial diet have been shown to cause a number of physiological and molecular changes. Here we used Illumina RNA sequencing (RNA-seq) analysis to characterize the mRNA transcriptome of mixed *C. elegans* populations fed differing strains of bacteria to further understand dietary changes at the molecular level. Raw FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA) and have been assigned BioProject accession PRJNA412551.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

Changes in diet can have profound effects on gene expression, especially genes encoding metabolic enzymes in the nematode Caenorhabditis elegans [1]. C. elegans is a well-established genetic system used for analyzing a number of biological processes. C. elegans are bacteria-eating soil nematodes, and changes in bacterial diet have been shown to cause a number of physiological and molecular changes [2]. Lifespan, fertility, and developmental rate have all been reported to change in response to diet [1–4]. The data reported here analyze the transcriptional response after C. elegans are switched from a diet of E. coli OP50 to a high carbohydrate diet of E. coli HB101 [5]. Similar experiments have been conducted comparing animals fed E. coli HT115 and Comamonas DA187 [2]. To the author’s knowledge, this is the first published data set detailing the transcriptome-wide expression changes comparing E. coli OP50 and HB101 diets. These analyses were conducted using Illumina mRNA-seq in tandem with a bioinformatics alignment-free pipeline exclusively using open access tools to ensure sequence quality and robust eukaryotic transcriptome analysis (Fig. 1). The experiment described here is part of an on going NSF-funded project hosted by the Cold Spring Harbor Laboratory, DNA Learning Center (CSHL DNALC) focused on incorporating RNA-seq analysis into undergraduate education (http://www.rnaseqforthegeneration.org).

2. Experimental design, materials, and methods

2.1. C. elegans feeding

Recently starved C. elegans populations fed E. coli OP50 were transferred to either a fresh E. coli OP50 (control) or E. coli HB101 (experimental) diet. Four plates per condition were cultured for five days at 20 °C. Mixed C. elegans populations from each plate were collected, combined, and packed via centrifugation into a 15 ml polypropylene tube for RNA extraction.
2.2. RNA preparation and sequencing

Total RNA was extracted from mixed C. elegans populations using TRIzol reagent per the manufacturer’s instructions (Invitrogen) [6]. Samples chosen for characterization of global mRNA expression were submitted to the CSHL DNA Sequencing Center for Bioanalyzer quality control analysis using a 2100 Bioanalyzer (Agilent). All submitted samples had RNA integrity number (RIN) > 8. Illumina stranded TrueSeq cDNA libraries were constructed using poly dT enrichment for each of the four samples in biological duplicate according to the manufacturer’s protocol. The resulting average size of the cDNA libraries was approximately 300 bp. Libraries for the eight cDNA samples were sequenced using the Illumina NextSeq 500 sequencing platform yielding 9.1–10.8 million 75 bp paired end sequence reads per sample (Fig. 2c).

2.3. Sequence QC, filtering, and alignment

Fig. 1a demonstrates our experimental overview including the bioinformatics pipeline applied to our sequencing reads. Quality of individual FASTQ sequence files was evaluated using FastQC analysis (see Code Availability 1), Each FASTQ file was filtered using Trimmomatic [7] to remove minority truncated and low-quality reads (see Code Availability 2). Following Trimmomatic, filtered files were rerun through FastQC and summary per sequence and per base quality plots were created using the MultiQC program (see Code Availability 3). Fig. 2a–b demonstrates that all FASTQ sequencing files have an average per base and per sequence Phred score >28, a conventional threshold denoting high quality.
base calls. Fig. 2c and Table 1 demonstrate that the vast majority of sequencing reads were of suitable quality for downstream analysis. High quality reads were pseudo-aligned to the *C. elegans* WBcel235 reference transcriptome index using Kallisto [7] (see Code Availability 4). The percentage of aligned reads ranged from 96.8 to 97.7% (Table 1; Fig. 1b). Further quality validation of the data set was assessed using mapped reads from each sample. FastQC, Trimmomatic, MultiQC, and Kallisto transcript indexing and quantification were completed using applications hosted within the CyVerse Discovery Environment, a freely available cyberinfrastructure (https://www.cyverse.org/; see Code Availability 1–4).

2.4. Transcriptome data analysis

Statistical analysis and visualization of global expression data between samples was quantified at the transcript level using the RStudio package Sleuth [8] (see Code Availability 5). Sleuth builds on traditional count-based methods of transcript quantification by applying improved estimates of transcripts and gene abundances [8]. In this analysis, Sleuth was used to assess variance between sample groups and sample replicates using principle component analysis (PCA) and distance matrix analysis. These experiments demonstrate the overall quality of our sample collection, library preparation, and sequencing (Fig. 1c–d).

2.5. Code availability

The following software and versions were used for quality control and data analysis as described in the main text:
1. FastQC, version 0.11.5 application was used within CyVerse Discovery Environment for quality analysis of raw FASTQ NGS data: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2. Trimmmatic, version programmable-0.36 application was used within CyVerse Discovery Environment for trimming and filtering raw reads assuring read length and quality. Trim settings were SLIDINGWINDOW:4:20, LEADING:20, TRAILING:20, MINLEN:50: http://www.usadellab.org/cms/?page=trimmomatic

3. The MultiQC application was used within CyVerse Discovery Environment to create data plots summarizing FastQC, Trimmomatic, and Kallisto outputs: https://multiqc.info/

4. Kallisto, version 0.42.3 application was used within CyVerse Discovery Environment to create a reference transcriptome index and for the pseudo-alignment process: https://pachterlab.github.io/kallisto/.

5. Sleuth, a statistical model and RStudio package was used for sample quality analysis as well as normalization and visualization of differential gene expression analysis output: https://pachterlab.github.io/sleuth/about.

All walkthroughs and scripts used for quality assessment and data analysis in this analysis are available at: https://github.com/enkera/Enkera-Marcello-scidata2018-Celegans-rnaseq-diet.

3. Technical validation

3.1. Quality control—RNA integrity

Quality of total RNA fractions was assessed using an Agilent 2100 Bioanalyzer to calculate a RIN. The RIN algorithm determines the RNA quality of the samples with the highest quality having a score of 10. Conventional to NGS analysis, only RNA samples with a RIN >8 were used for sequencing analysis.

3.2. RNA-seq raw data quality

FastQC and MultiQC per base and per sequence quality analysis demonstrates mean Phred quality scores are well within the acceptable range for downstream analysis (Fig. 2a–b). After Trimmmomatic filtering, FASTQ files contained 7.5–8.9 million high quality reads (Fig. 2c). 96.8–97.7% of these trimmed reads were successfully mapped to the C. elegans WBcel235 transcriptome assembly (Fig. 1b, Table 1).

3.3. Usage notes

The bioinformatics pipeline applied to our data set outlined in Fig. 1a uses a specific collection of freely available, open access research grade tools. FastQC, Trimmmomatic, MultiQC, and Kallisto transcript indexing and quantification were completed using applications hosted within the CyVerse Discovery Environment and do not require any scripting. Statistical analysis and data visualization of transcript expression among samples was quantified at the transcript level using the RStudio package Sleuth [8]. These analyses however, are interchangeable with many other currently available tools. Our raw FASTQ data can be aligned to any available C. elegans reference genome or transcriptome using a variety of aligners. Aligned reads in the form of bam files can be viewed as intuitive BigWig density plots using popular genome browser such as the UCSC Genome Browser [9], the Ensembl Browser [10], or the Broad Institute’s Integrative Genome Viewer (IGV) [11,12]. Our transcript expression analysis was

Sample name	Sequencer	Read length (bp)	psuedoaligned reads (in millions)	Uniquely mapped reads (%)
OP50 1	Illumina NextSeq 500	2 x 75	7.6	96.8
OP50 2	Illumina NextSeq 500	2 x 75	7.7	97.2
HB101 1	Illumina NextSeq 500	2 x 75	8.7	97.7
HB101 2	Illumina NextSeq 500	2 x 75	7.3	97.6
carried out using the Sleuth statistical model and RStudio data visualization package; however other
publicly available packages such as edgeR [13] or Ballgown [14] can be used assuming that the reads
were mapped to a reference genome rather than a reference transcriptome. Our currently presented
alignment-free pipeline reduces the time of analysis as well as required computing power which may
be beneficial for some users, particularly in an undergraduate course setting [7,8].

Our data set will be useful for a variety of studies investigating transcriptional response to envi-
ronmental changes in C. elegans. The simplicity of our experimental design set as well as the materials
required for reproduction and/or further experimentation makes these data particularly useful for
exposure of undergraduate students to RNA-seq transcriptome analysis; however, the further analysis
would be strengthened by additional samples. It is possible that the exposure to dietary changes could
modify the life cycle of the C. elegans and affect the age distribution of the population, thus con-
 founding data analysis. In this case most of the detected changes could be due to this difference in life
cycle and not due to the diet specifically. Additional data analysis modules available on the RNA-seq for
the Next Generation website hosted by the Cold Spring Harbor Laboratory DNA Learning Center can be
applied to further study the data set presented here as well as data gathered from other RNA-seq for
the Next Generation and derivative studies [15–20].

There are several considerations that must be accounted for when using these data for downstream
analysis. First, RNAs were extracted from a mixed population of C. elegans. Therefore, resulting
downstream analysis will be representative of heterogeneous mixtures of different aged animals.
Second, cDNA libraries were prepared using a poly dT primer, thus the data set is representative of only
polyadenylated mRNA transcripts and does not represent a subset of non-coding RNA or other non-
polyadenylated cellular transcripts. Additionally, usage of poly dT priming introduces a bias towards
overrepresentation of 3’ ends of transcripts, particularly in the case of large transcripts. Finally, the
quantity of sequenced and mapped reads per sample in this analysis (Table 1; Fig. 2c) is sufficient for
robust differential expression analysis, however, is below the conventional threshold for thorough
differential mRNA isoform analysis [21]. Taking these considerations into account, these data will be a
useful resource for the C. elegans research community to investigate changes in gene expression that
take place environmental and dietary changes.

Funding

This work was supported by the National Institutes of Health [#1 R15 EY028725-01A]; the National
Science Foundation [#1821657]; the Burroughs Wellcome Fund [#1017506]; and the JMU 4-VA Office.

Acknowledgments

The authors would like to thank David Micklos at the Cold Spring Harbor Laboratory DNA Learning
Center for providing sequencing services and bioinformatics training as part of a project funded by the
National Science Foundation (DUE: 1323522). The authors would also like to thank Jason Williams for
providing CyVerse cyberinfrastructure training and support.

Transparency document

Transparency document associated with this article can be found in the online version at https://
doi.org/10.1016/j.dib.2019.104006.

References

[1] J.D. Coolon, K.L. Jones, T.C. Todd, B.C. Carr, M.A. Herman, Caenorhabditis elegans genomic response to soil bacteria predicts
environment-specific genetic effects on life history traits, PLoS Genet. 5 (2009) e1000503, https://doi.org/10.1371/journal.
pge.1000503.
[2] L.T. MacNeil, E. Watson, H.E. Arda, L.J. Zhu, A.J.M. Walhout, Diet-induced developmental acceleration independent of TOR
and insulin in C. elegans, Cell 153 (2013) 240–252, https://doi.org/10.1016/j.cell.2013.02.049.
[3] L. Avery, B.B. Shintonda, Food transport in the C. elegans pharynx, J. Exp. Biol. 206 (2003) 2441–2457.
