New representations of Padé and Padé–type approximants

Claude Brezinski∗ Michela Redivo–Zaglia†

In memoriam nostri Pablo González Vera

Abstract

Padé approximants are rational functions whose series expansion match a given series as far as possible. These approximants are usually written under a rational form. In this paper, we will show how to write them also under two different barycentric forms, and under a partial fraction form, depending on free parameters. According to the choice of these parameters, Padé–type approximants can be obtained under a barycentric or a partial fraction form.

Keywords: Padé approximation, barycentric rational function, partial fraction.

1 Introduction

This paper describes new mathematical expressions for Padé approximants, and some of their variants. A Padé approximant is a rational function whose power series expansion in ascending powers of the variable matches a given formal power series as far as possible [1, 4]. Thus, it can be understood as a rational Hermite interpolant at zero, and it is usually written under the form of a rational fraction or as the convergent of a certain continued fraction. On the other hand, a rational interpolant can be given under the form of a rational fraction, or as the convergent of a continued fraction, or under a barycentric form.

In this paper, we will show that a Padé approximant can also be written under (at least) two different barycentric rational forms which depend on arbitrary parameters. Such an approximant will be called a barycentric Padé approximant (in short BPA). According to the choice of these free parameters, Padé–type approximants are also obtained under this form and we call them barycentric Padé–type approximant (in short BPTA). Then, we will show how to write a Padé approximant under a partial fraction form, called a partial fraction Padé approximant (in short PFPA). The case of partial Padé approximants [3], where some poles and/or zeros are imposed, could be treated similarly.

∗Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques, Université des Sciences et Technologies de Lille, 59655–Villeneuve d’Ascq cedex, France, E-mail: Claude.Brezinski@univ-lille1.fr.
†Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste 63, 35121–Padova, Italy. E-mail: Michela.RedivoZaglia@unipd.it.
2 Rational form

Let \(f \) be a formal power series
\[
 f(t) = c_0 + c_1 t + c_2 t^2 + \cdots
\]

We consider the rational function
\[
 R_{p,q}(t) = \frac{\sum_{i=0}^{p} a_i t^i}{\sum_{i=0}^{q} b_i t^i}
\]

If the \(b_i \)'s are arbitrarily chosen (with \(b_0 b_q \neq 0 \)), and if the \(a_i \)'s are computed by
\[
\begin{align*}
 a_0 &= c_0 b_0 \\
 a_1 &= c_1 b_0 + c_0 b_1 \\
 &\vdots \\
 a_p &= c_p b_0 + c_{p-1} b_1 + \cdots + c_{p-q} b_q
\end{align*}
\]
with the convention that \(c_i = 0 \) for \(i < 0 \), then \(R_{p,q} \) is the Padé-type approximant of \(f \), it is denoted by \((p/q)_f \), and it holds
\[
 (p/q)_f(t) - f(t) = O(t^{p+1}).
\]

This accuracy-through-order condition means that the first \(p + 1 \) coefficients of the power series expansion of \((p/q)_f \) in ascending powers of the variable \(t \) match those of the series \(f \).

Moreover, if the \(b_i \)'s are taken as the solution of the system
\[
\begin{align*}
 0 &= c_{p+1} b_0 + c_p b_1 + \cdots + c_{p-q+1} b_q \\
 &\vdots \\
 0 &= c_{p+q} b_0 + c_{p+q-1} b_1 + \cdots + c_p b_q,
\end{align*}
\]
with \(b_0 = 1 \) (a rational function is defined up to a multiplying factor), then \(R_{p,q} \) is the Padé approximant of \(f \), it is denoted by \([p/q]_f \), and it holds
\[
 [p/q]_f(t) - f(t) = O(t^{p+q+1}).
\]
Thus, the first \(p + q + 1 \) coefficients of the series expansion of \([p/q]_f \) are identical to those of \(f \).

Moreover, we have
\[
[p/q]_f(t) = \begin{vmatrix}
 t^q & t^{q-1} & \cdots & 1 \\
 c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_p & c_{p+1} & \cdots & c_{p+q}
\end{vmatrix}
\begin{vmatrix}
 t^q & t^{q-1} & \cdots & 1 \\
 c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_p & c_{p+1} & \cdots & c_{p+q}
\end{vmatrix}^{-1},
\]
with \(f_n(t) = c_0 + \cdots + c_n t^n \), the \(n \)th partial sum of the series \(f \) (\(f_n \) is identically zero for \(n < 0 \)).

In the case of a partial Padé approximant, a part of its numerator and/or its denominator is arbitrarily chosen, and the remaining part is taken so that its power series expansion matches \(f \) as far as possible \[5\].

3 Barycentric forms (BPA)

In this section, we consider rational functions written under two different barycentric forms

Form 1:

\[
\tilde{R}_{p,q}(t) = \sum_{i=0}^{p} \frac{\tilde{a}_i}{\tilde{p}_i - t} - \sum_{i=0}^{q} \frac{\tilde{b}_i}{\tilde{z}_i - t}
\]

Form 2:

\[
\hat{R}_{p,q}(t) = \sum_{i=0}^{p} \frac{\hat{a}_i}{1 - \hat{p}_i t} - \sum_{i=0}^{q} \frac{\hat{b}_i}{1 - \hat{z}_i t}
\]

where the \(\tilde{p}_i \)'s, the \(\tilde{z}_i \)'s, the \(\hat{p}_i \)'s, and the \(\hat{z}_i \)'s are given points in the complex plane. We assume that all the \(\tilde{p}_i \)'s are distinct, and also all the \(\tilde{z}_i \)'s, all the \(\hat{p}_i \)'s, and all the \(\hat{z}_i \)'s.

Obviously, the forms (5) and (6) can be deduced one from each other by setting \(\tilde{a}_i = \hat{a}_i / \hat{p}_i \), \(\tilde{b}_i = \hat{b}_i / \hat{z}_i \), \(\tilde{p}_i = 1 / \hat{p}_i \), and \(\tilde{z}_i = 1 / \hat{z}_i \), for all points different from zero. In the sequel, when it is not necessary to distinguish between the two forms and when it is possible to treat them simultaneously, any of them will be simply denoted by \(R_{p,q} \), and the parameters by \(a_i, b_i, p_i, \) and \(z_i \) respectively.

In both cases, we want to determine the coefficients \(a_i \) and \(b_i \) such that

\[
R_{p,q}(t) - f(t) = \mathcal{O}(t^{p+q+1}).
\]

Due to this property, and although \(R_{p,q} \) is not always identical to the Padé approximant \([p/q]_f\) of the series \(f \) as we will see below, such a rational function will be called a barycentric Padé approximant and denoted BPA.

Before explaining how to compute the coefficients of such an approximant, let us begin by some important remarks:

1. It is easy to see that, for (5), the \(\tilde{p}_i \)'s are poles of \(\tilde{R}_{p,q} \) and the \(\tilde{z}_i \)'s are zeros of it while, for (6), it is the \(1/\tilde{p}_i \)'s and the \(1/\tilde{z}_i \)'s which play these roles. Therefore, if some poles and zeros of \(f \) are known, they can be introduced into the construction of the approximant as in the case of partial Padé approximants \[5\]. For the form (5), we will assume that \(\forall i, \tilde{p}_i \neq 0, \tilde{z}_i \neq 0 \).
The reason for this condition will be clearly seen in Section 3.1.1. If, in (6), some \(\tilde{p}_i \)'s and/or some \(\tilde{z}_i \)'s are zero the degree of the numerator and/or the degree of the denominator reduces accordingly.

2. After reducing the sum in the numerator of (5) to its common denominator and also the sum in the denominator, \(\tilde{R}_{p,q} \) becomes

\[
\tilde{R}_{p,q}(t) = \frac{N_p(t) \prod_{i=0}^{q} (\tilde{z}_i - t)}{D_q(t) \prod_{i=0}^{p} (\tilde{p}_i - t)},
\]

where \(N_p \) is a polynomial of degree \(p \) and \(D_q \) a polynomial of degree \(q \).

If \(\forall i, \tilde{p}_i \neq \tilde{z}_i \), then \(\tilde{R}_{p,q} \) has a numerator and a denominator both of degree \(p + q + 1 \) at most. Thus, the order of approximation of \(\tilde{R}_{p,q} \) is one less than the order of approximation of the Padé–type approximant with the same degrees \([3] \). We will discuss below how to improve this order. The \(\tilde{p}_i \)'s and the \(\tilde{z}_i \)'s can be selected so that \(\tilde{R}_{p,q} \) possesses other interesting properties such as, for example, the preservation of as many moments of \(f \) as possible. However, they cannot be chosen after the \(\tilde{a}_i \)'s and the \(\tilde{b}_i \)'s have been computed since, as we will see below, these coefficients depend on them.

If some of the \(\tilde{p}_i \)'s coincide with some of the \(\tilde{z}_i \)'s, then a cancelation occurs and it lowers the degrees accordingly. If, when \(p < q \), \(p_i = \tilde{z}_i \) for \(i = 0, \ldots, p \), the product in the denominator disappears and the product in the numerator reduces to \(\prod_{i=p+1}^{q} (\tilde{z}_i - t) \). Thus \(\tilde{z}_{p+1}, \ldots, \tilde{z}_q \) are zeros of \(\tilde{R}_{p,q} \). When \(q < p \) and \(p_i = \tilde{z}_i \) for \(i = 0, \ldots, q \), it is the product in the numerator which disappears and the product in the denominator reduces to \(\prod_{i=q+1}^{p} (\tilde{p}_i - t) \). Thus \(\tilde{p}_{q+1}, \ldots, \tilde{p}_p \) are poles of \(\tilde{R}_{p,q} \).

Similar remarks hold for (6).

3. In both cases, if \(\forall i, p_i = z_i \) and \(p = q \), then \(R_{p,p} \) has a numerator and a denominator both of degree \(p \) at most. Thus, thanks to the condition (7), \(R_{p,p} \) is the usual Padé approximant \([p/p]_f \) of \(f \), and it is such that \(R_{p,p}(t) - f(t) = O(t^{2p+1}) \). Due to its uniqueness, this approximant is, in theory, independent of the choice of the \(p_i \)'s. However, in practice, the choice of the \(p_i \)'s can influence the stability of the approximant, an important issue yet to be studied.

Barycentric Padé approximants (which, in this case, are true Padé approximants) with arbitrary degrees in the numerator and in the denominator can be constructed as follows. Let us write \(f \) as

\[
f(t) = c_0 + \cdots + c_{n-1} t^{n-1} + t^n f^n(t) \quad \text{with} \quad f^n(t) = c_n + c_{n+1} t + \cdots
\]

The approximant

\[
R_{n+p,p}(t) = c_0 + \cdots + c_{n-1} t^{n-1} + t^n R_{p,p}(t),
\]

where \(R_{p,p}(t) \) is now the barycentric Padé approximant of the series \(f^n \), satisfies

\[
R_{n+p,p}(t) - f(t) = O(t^{n+2p+1}).
\]
Thus it is identical to the Padé approximant \([n + p/p]_f\) independently of the choice of the \(p_i\)'s. Similarly, write \(f\) as

\[
f(t) = t^{-n} f^{-n}(t) \quad \text{with} \quad f^{-n}(t) = 0 + 0t + \cdots + 0t^{n-1} + c_0 t^n + c_1 t^{n+1} + \cdots.
\]

The approximant

\[
R_{p,n+p}(t) = t^{-n} R_{p+n,p+n}(t),
\]

where \(R_{p+n,p+n}\) is the barycentric Padé approximant of the series \(f^{-n}\) satisfies

\[
R_{p,n+p}(t) - f(t) = O(t^{n+2p+1}).
\]

Thus it is identical to the Padé approximant \([p/n + p]_f\) independently of the choice of the \(p_i\)'s.

4. Let us remind that if, in (5), \(p = q\), \(\forall i, \tilde{p}_i = \tilde{z}_i\) and \(\tilde{a}_i = w_i f(\tilde{p}_i), \tilde{b}_i = w_i \neq 0\), then \(\tilde{R}_{p,p}(p_i) = f(\tilde{p}_i)\) independently of the choice of the \(w_i\) [15]. Thus, the \(w_i\)'s can be chosen so that, in addition, \(\tilde{R}_{p,p}\) matches the series \(f\) as far as possible as proposed in [8].

3.1 Computation of the coefficients

Since the accuracy–through–order condition (7) contains \(p + q + 1\) relations while \(R_{p,q}\) has \(p + q + 2\) coefficients to be determined, an additional condition needs to be imposed. It is the so–called normalization condition. Because \(R_{p,q}\) approximates \(f\) around zero, its denominator should not vanish at this point. Thus, since a rational function is determined apart a common multiplying factor in its numerator and its denominator, it is convenient to choose the normalization condition for (5) and (6) as

\[
\sum_{i=0}^{q} \tilde{b}_i / \tilde{z}_i = 1 \quad \text{for (5), and} \quad \sum_{i=0}^{q} \tilde{b}_i = 1 \quad \text{for (6).} \tag{8}
\]

3.1.1 Form 1

For the form (5), having chosen the \(\tilde{p}_i\)'s and the \(\tilde{z}_i\)'s, the accuracy–through–order condition (7) can be written

\[
\sum_{i=0}^{p} \frac{\tilde{a}_i / \tilde{p}_i}{1 - t / \tilde{p}_i} = \left(c_0 + c_1 t + c_2 t^2 + \cdots \right) \sum_{i=0}^{q} \frac{\tilde{b}_i / \tilde{z}_i}{1 - t / \tilde{z}_i}.
\]

But, we have \(1/(1 - t / \tilde{p}_i) = 1 + t / \tilde{p}_i + t^2 / \tilde{p}_i^2 + \cdots\), and a similar expansion for \(1/(1 - t / \tilde{z}_i)\). Thus, after replacement, the preceding relation becomes

\[
\sum_{i=0}^{p} \frac{\tilde{a}_i}{\tilde{p}_i} \left(1 + \frac{t}{\tilde{p}_i} + \frac{t^2}{\tilde{p}_i^2} + \cdots \right) = \left(c_0 + c_1 t + c_2 t^2 + \cdots \right) \sum_{i=0}^{q} \frac{\tilde{b}_i}{\tilde{z}_i} \left(1 + \frac{t}{\tilde{z}_i} + \frac{t^2}{\tilde{z}_i^2} + \cdots \right).
\]
Identifying the coefficients of the identical powers of t in both sides, and taking into account
the normalization condition leads to the system of equations for computing the coefficients \tilde{a}_i and
\tilde{b}_i
\[
\begin{aligned}
\sum_{i=0}^{q} \tilde{b}_i \tilde{z}_i &= 1 \\
\sum_{i=0}^{p} \frac{\tilde{a}_i}{p_{i+1}^k} - \sum_{i=0}^{q} \tilde{b}_i \sum_{j=0}^{k-1} \frac{c_j}{\tilde{z}_{i-j+1}} &= c_k, & k = 0, \ldots, p + q.
\end{aligned}
\]
\right\}
(9)

Obviously, the sum on j is empty for $k = 0$.

Thus, the coefficients of the series expansion of $\tilde{R}_{p,q}(t) = \tilde{d}_0 + \tilde{d}_1 t + \tilde{d}_2 t^2 + \cdots$ are given by
\[
\tilde{d}_k = c_k, \\
\tilde{d}_k &= \sum_{i=0}^{p} \tilde{a}_i \frac{1}{p_{i+1}^k} - \sum_{i=0}^{q} \tilde{b}_i \sum_{j=0}^{k-1} \frac{\tilde{d}_j}{\tilde{z}_{i-j+1}}, & k = p + q + 1, p + q + 2, \ldots
\]

In order to improve the order of approximation, it is possible, in theory, to choose the \tilde{a}_i's, \tilde{b}_i's,
\tilde{p}_i's and \tilde{z}_i's such that they satisfy the system of nonlinear equations
\[
c_k = \sum_{i=0}^{p} \frac{\tilde{a}_i}{p_{i+1}^k} \frac{1}{1 - \tilde{p}_i t} - \sum_{i=0}^{q} \tilde{b}_i \sum_{j=0}^{k-1} \frac{\tilde{d}_j}{\tilde{z}_{i-j+1}^k}, & k = 0, \ldots, 2(p + q + 1),
\]

in which case we have
\[
\tilde{R}_{p,q}(t) - f(t) = O(t^{2(p+q+1)+1}).
\]

Since $\tilde{R}_{p,q}$ has a numerator and a denominator both of degree $p + q + 1$, it will be identical to the
Padé approximant $[p + q + 1/p + q + 1]_f$. Obviously, in practice, the solution of this system is not
an easy task.

3.1.2 Form 2

For the form (6), the condition (7) is
\[
\sum_{i=0}^{p} \frac{\tilde{a}_i}{1 - \tilde{p}_i t} = (c_0 + c_1 t + c_2 t^2 + \cdots) \sum_{i=0}^{q} \frac{\tilde{b}_i}{1 - \tilde{z}_i t}.
\]
But, $1/(1 - \tilde{p}_i t) = 1 + \tilde{p}_i t + \tilde{p}_i^2 t^2 + \cdots$, and a similar expansion for $1/(1 - \tilde{z}_i t)$. Thus, after replacement,
the preceding relation becomes
\[
\sum_{i=0}^{p} \tilde{a}_i (1 + \tilde{p}_i t + \tilde{p}_i^2 t^2 + \cdots) = (c_0 + c_1 t + c_2 t^2 + \cdots) \sum_{i=0}^{q} \tilde{b}_i (1 + \tilde{z}_i t + \tilde{z}_i^2 t^2 + \cdots).
\]
Identifying the coefficients of the identical powers of t in both sides, and taking into account the normalization condition leads to the system of equations for determining the coefficients \hat{a}_i and \hat{b}_i

\[
\begin{align*}
\sum_{i=0}^{q} \hat{b}_i &= 1 \\
\sum_{i=0}^{p} \hat{a}_i \hat{p}_i^k - \sum_{i=0}^{q} \hat{b}_i \sum_{j=0}^{k-1} c_j \hat{z}_i^{k-j} &= c_k, \quad k = 0, \ldots, p + q.
\end{align*}
\] (10)

Again, the sum on j is empty for $k = 0$.

The coefficients of the series expansion of $\hat{R}_{p,q}(t) = \hat{d}_0 + \hat{d}_1 t + \hat{d}_2 t^2 + \cdots$ are given by

\[
\begin{align*}
\hat{d}_k &= c_k, \quad k = 0, \ldots, p + q, \\
\hat{d}_k &= \sum_{i=0}^{p} \hat{a}_i \hat{p}_i^k - \sum_{i=0}^{q} \hat{b}_i \sum_{j=0}^{k-1} \hat{d}_j \hat{z}_i^{k-j}, \quad k = p + q + 1, p + q + 2, \ldots
\end{align*}
\]

The order of approximation of $\hat{R}_{p,q}$ can be improved as explained for $\tilde{R}_{p,q}$.

3.2 Barycentric Padé–type approximants (BPTA)

Consider again the rational functions (5) and (6) and assume now that the coefficients b_i in their respective denominators are arbitrarily chosen. Then, the coefficients of their numerators can be computed by solving the system (11)

\[
\sum_{i=0}^{p} \tilde{a}_i \hat{p}_i^k + 1 = \sum_{i=0}^{q} \tilde{b}_i \sum_{j=0}^{k-1} c_j \hat{z}_i^{k-j}, \quad k = 0, \ldots, p
\] (11)

for (5), or the system (12) for (6)

\[
\sum_{i=0}^{p} \tilde{a}_i \hat{p}_i^k = \sum_{i=0}^{q} \tilde{b}_i \sum_{j=0}^{k-1} c_j \hat{z}_i^{k-j}, \quad k = 0, \ldots, p
\] (12)

In both cases, the rational function $R_{p,q}$ which is obtained satisfies

\[
R_{p,q}(t) - f(t) = O(t^{p+1}),
\]

and, thanks to this property, it is called a barycentric Padé–type approximant (see [3]) and denoted BPTA.

Similarly, a part of the numerator and/or a part of the denominator can be fixed thus leading to a barycentric partial Padé–type approximant in the style of [5].

The b_i’s could be chosen so that $R_{p,q}$ satisfies some additional properties as explained above.
Let us consider now the rational function

\[R_{k,k+1}(t) = \sum_{i=0}^{k} \frac{a_i}{1 - p_i t}. \]

(13)

It has a denominator of degree \(k + 1 \) and a numerator of degree \(k \). We want to compute the \(a_i \)'s and the \(p_i \)'s such that this rational function be identical to the Padé approximant \([k/k+1]_f \) of the series \(f \). Such an approximant will be called a partial fraction Padé approximant and denoted \(\text{PFPA} \). It can be obtained by a slight variation of a method due to the French mathematician and hydraulics engineer Gaspard Clair François Marie Riche, Baron de Prony (Chamelet, 22 July 1755 - Asnières-sur-Seine, 29 July 1839) for interpolation by a sum of exponential functions [14]. This method is used in signal analysis and recovery (see, for example, [10,11]). Applied to our case, this variant is as follows (see, for example, [6, pp. 141–142]).

We want to have

\[\sum_{i=0}^{k} a_i (1 + p_i t + p_i^2 t^2 + \cdots) = c_0 + c_1 t + c_2 t^2 + \cdots, \]

which leads, by identification of the powers of \(t \) on both sides, to

\[\sum_{i=0}^{k} a_i p_i^j = c_j, \quad j = 0, \ldots, 2k + 1. \]

(14)

The denominator of the rational function [13] is

\[Q(t) = (1 - p_0 t) \cdots (1 - p_k t) = b_0 + b_1 t + \cdots + b_{k+1} t^{k+1}, \]

where \(b_0 = 1 \). Let us first compute its coefficients. Multiply the first equation in (14) (that is the equation for \(j = 0 \)) by \(b_0 \), the second one (that is corresponding to \(j = 1 \)) by \(b_1 \), and so on up to the \((k+2)\)th equation (that is the equation for \(j = k + 1 \)) by \(b_{k+1} \), and sum them up. Begin again the same process starting from the second equation in (14) (that is for \(j = 1 \)) which is multiplied by \(b_0 \), multiply the third equation by \(b_1 \), and so on up to the \((k+3)\)th equation (that is the equation for \(j = k + 2 \)) by \(b_{k+1} \), and sum them up. Continue the process until all equations in (14) have been used. We finally obtain

\[\sum_{j=0}^{k+1} b_j c_j = \sum_{j=0}^{k+1} b_j \sum_{i=0}^{k} a_i p_i^{j+n}, \quad n = 0, \ldots, k, \]

which can be written as

\[\sum_{j=0}^{k+1} b_j c_j = \sum_{i=0}^{k} a_i \sum_{j=0}^{k+1} b_j p_i^j = \sum_{i=0}^{k} p_i^n Q(p_i) = 0, \quad n = 0, \ldots, k. \]
Since \(b_0 = 1 \), the other coefficients \(b_1, \ldots, b_{k+1} \) of the polynomial \(Q \) are solution of the linear system

\[
\sum_{j=1}^{k+1} b_j c_{j+n} = -c_n, \quad n = 0, \ldots, k.
\]

(15)

After solving this system, the zeros \(p_0, \ldots, p_k \) of \(Q \) can be computed (for example, by the \(QR \) algorithm as the eigenvalues of the companion matrix of the coefficients of the polynomial \(Q \)) and, finally, \(a_0, \ldots, a_k \) are obtained by solving the linear system consisting in the first \(k + 1 \) equations in (14). Notice that this system is singular if the \(p_i \)'s are not distinct and, in this case, \([k/k + 1] f \) cannot be written under the form (13) but, possibly, under a partial fraction form involving powers in its denominator. This case arises if the denominator of \([k/k + 1] f \) has multiple zeros. It is easy to see that the system (15) is identical to the system (4) when \(p = k \) and \(q = k + 1 \), and after reversing the numbering of its coefficients. There exist several procedures for improving the numerical stability of Prony’s method [12], and it is even possible to avoid the computation of the coefficients of \(Q \) [13].

Let \(c \) be the linear functional on the vector space of polynomials defined by

\[
c(x^i) = c_i, \quad i = 0, 1, \ldots
\]

Then, the system (15) can be written

\[
c(x^n Q(x)) = 0, \quad n = 0, \ldots, k.
\]

Thus, \(Q \) is the polynomial of degree \(k + 1 \) belonging to the family of formal orthogonal polynomials with respect to \(c \). Such polynomials, introduced by Wynn [18], play an important role in the algebraic and in the analytic theory of Padé approximation [3, 4, 16]. Via formal orthogonal polynomials, Padé approximants are also related to formal Gaussian quadrature procedures [7]. An interesting reference on the connection between these topics is [17].

Obviously, if the \(p_i \)'s all distincts, then \(a_i = -p_i P(1/p_i)/Q'(1/p_i) \) where \(P \) is the numerator of \([k/k + 1] f \).

If the \(p_i \)'s are arbitrary distinct points and if the \(a_i \)'s are solution of the first \(k + 1 \) equations in (14), then \(R_{k,k+1} \) is only a Padé-type approximant of \(f \). In this case, the \(p_i \)'s could be chosen so that \(R_{k,k+1} \) satisfies some additional properties.

Partial fraction Padé approximants can also be written as \(\sum_{i=0}^k a_i/(p_i-t) \), and treated similarly. Analogous forms can be derived for Partial Padé approximants [5].

4.1 Numerical examples

Let us now give some numerical examples showing the interest of the barycentric forms. Both forms give similar results as expected.
Figure 1: Error of Padé (solid) and barycentric Padé (dashed) approximants for $\tan(4t)/(4t)$.

Figure 2: Error of Padé (solid) and barycentric Padé (dashed) approximants for $\tan(4t)/(4t)$ with perturbed coefficients.
4.1.1 Example 1

We consider the following function, and its series expansion

\[f(t) = \tan(\omega t) = 1 + \frac{1}{3} \omega^2 t^2 + \frac{2}{15} \omega^4 t^4 + \frac{17}{315} \omega^6 t^6 + \frac{62}{2835} \omega^8 t^8 + \cdots \]

This function has poles at odd multiples of \(\pi/(2\omega) \), and zeros at odd multiples of \(\pi/\omega \), except at 0.

With \(\omega = 4 \), \(p = q = 4 \) and taking for the \(\tilde{p}_i \)'s \(\pm \pi/(2\omega) \), \(\pm 3\pi/(2\omega) \), \(5\pi/(2\omega) \) and the for \(\tilde{z}_i \)'s \(\pm \pi/\omega \), \(\pm 3\pi/\omega \), \(5\pi/\omega \), which are the five first poles and zeros of \(f \) respectively, we obtain the results of Figure 1.

Adding a uniformly distributed random perturbation between \([-0.0001, +0.0001]\) to the \(c_i \)'s leads to the results of Figure 2. For \(t \in [-1.5, +1.5] \), the error of the true Padé approximant is in the interval \([3.5528 \times 10^{-5}, 2.8663 \times 10^{4}]\), and for the barycentric Padé approximant computed either by the system (9) (form 1) or by the system (10) (form 2) it belongs to \([4.8921 \times 10^{-8}, 1.8136 \times 10^{3}]\).

![Figure 3](image-url)

Figure 3: Error of Padé (solid) and barycentric Padé (dashed) approximants for \(\log(1 + t)/t \).

4.1.2 Example 2

We consider the series

\[f(t) = \frac{\log(1 + t)}{t} = 1 - \frac{t}{2} + \frac{t^2}{3} - \frac{t^3}{4} + \cdots \]

which converges in the unit disk and on the unit circle except at the point \(-1\) since there is a cut from \(-1\) to \(-\infty\). For \(p = q = 4 \), the \(p_i \)'s equidistant in \([-10,-1]\) and the \(z_i \)'s equidistant in \([-10,-2]\), we obtain the results of Figure 3. The numerical results highly depend on these choices.
5 Conclusion

This paper is an addition to the vast literature on Padé approximation, and is only an introduction to these barycentric and partial fraction forms in order to show how to compute their coefficients. Their main features are discussed and some numerical experiments show the interest of these new representations. However, the main problem which remains to be studied is the influence of the choice of the free parameters involved in their construction, a choice related to the important issues of their robustness [9] and their stability [2].

References

[1] G.A. Baker Jr., P.R. Graves–Morris, Padé Approximants, 2nd edition, Cambridge University Press, Cambridge, 1996.

[2] B. Beckermann, A.C. Matos, Algebraic properties of robust Padé approximants, submitted, arXiv:1310.2438.

[3] C. Brezinski, Rational approximation to formal power series, J. Approx. Theory, 25 (1979) 295–317.

[4] C. Brezinski, Padé–Type Approximation and General Orthogonal Polynomials, ISNM, vol. 50, Birkhäuser–Verlag, Basel, 1980.

[5] C. Brezinski, Partial Padé approximation, J. Approx. Theory, 54 (1988) 210–233.

[6] C. Brezinski, Computational Aspects of Linear Control, Kluwer Academic Publishers, Dordrecht, 2002.

[7] C. Brezinski, From numerical quadrature to Padé approximation, Appl. Numer. Math., 60 (2010) 1209–1220.

[8] C. Brezinski, M. Redivo–Zaglia, Padé–type rational and barycentric interpolation, Numer. Math., 125 (2013) 89–113.

[9] P. Gonnet, S. Güttel, L. N. Trefethen, Robust Padé approximation via SVD, SIAM Review, 55 (2013) 101–117.

[10] T. Peter, G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems, 29 (2013) 025001.

[11] G. Plonka, M. Tasche, Prony methods for recovery of structured functions, Universität Göttingen, Institut für Numerische und Angewandte Mathematik, preprint, 2013.

[12] D. Potts, M. Tasche, Parameter estimation for exponential sums by approximate Prony method, Signal Process. 90 (2010) 1631–1642.
[13] D. Potts, M. Tasche, Parameter estimation for nonincreasing exponential sums by Prony–like methods, Linear Algebra Appl. 439 (2013) 1024–1039.

[14] G. de Prony, Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures, J. Éc. Polytechnique, 1 (2) (1795) 24–76.

[15] C. Schneider, W. Werner, Some new aspects of rational interpolation, Math. Comput., 47 (1986) 285–299.

[16] H. Stahl, V. Totik, *General Orthogonal Polynomials*, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992.

[17] L. Weiss, R.N. McDonough, Prony’s method, z–transforms, and Padé approximations, SIAM Rev., 5 (1963) 145–149.

[18] P. Wynn, The rational approximation of functions which are formally defined by a power series expansion, Math. Comput., 14 (1960) 147–186.