Antimycobacterial Strategies to Evade Antimicrobial Resistance in the Nontuberculous Mycobacteria

Beverley Cherie Millar1,2,3, John Edmund Moore1,2,3

1Department of Bacteriology, Northern Ireland Public Health Laboratory, Belfast City Hospital, 2Centre for Experimental Medicine, Queen’s University, 3School of Biomedical Sciences, Ulster University, Northern Ireland, UK

Abstract

The nontuberculous mycobacteria (NTM) have recently emerged as important bacterial pathogens of both animals and humans. Of particular concern is the high level of antimicrobial resistance (AMR) displayed by these organisms, which complicates treatment and potential successful outcomes. This review, therefore, wishes to examine novel compounds and approaches to combating AMR in the NTMs, specifically examining antimycobacterial (NTM) compounds from plants and venoms, as well as examining synergistic and combination effects with other antimicrobials. Novel and modified drugs including new inhaled drugs are examined, as well as the repurposing of existing drugs for antimycobacterial activity. Many of these novel interventions are at various stages of development, from initial concept through to licensed intervention. The challenge remains to translate these interventions from \textit{in vitro} laboratory models to effective \textit{in vivo} interactions. When these are realized, then we will have the opportunity of overcoming NTM AMR, to the benefit of medicine, society, and humanity.

Keywords: Antibiotic resistance, antimicrobial resistance, cystic fibrosis, nitric oxide, non-tuberculous mycobacteria, nontuberculous mycobacteria

Introduction

Recently, the nontuberculous mycobacteria (NTMs) have emerged as important human and veterinary pathogens, particularly in respiratory disease. These organisms, sometimes referred to as the atypical mycobacteria or “Mycobacteria Other Than Tuberculosis”, are usually found in water, soil, and other environmental sources and are those mycobacteria which do neither belong to the \textit{Mycobacterium tuberculosis} complex nor are \textit{Mycobacterium leprae}. At present, there are 198 species (including synonyms) of \textit{Mycobacterium}, with standing in nomenclature (http://www.bacterio.net/mycobacterium.html), of which the majority belong to the NTMs. Several key seminal review publications describing NTMs have comprehensively reviewed various aspects of NTM disease pathophysiology, epidemiology, diagnosis, treatment, and clinical management and we guide readers to these sources of information.[1-3]

To date, none of these recent review publications have addressed novel strategies to overcome antimicrobial resistance (AMR) among the NTM organisms, and hence, it was the aim of this review to examine recent developments in overcoming AMR in NTM organisms.

Antimicrobial Resistance

One aspect to emerge from these publications is that of AMR with the NTM organisms. AMR has now emerged as a global public health crisis, with a variety of organisms, namely the \textit{Enterobacteriaceae},[4] \textit{Pseudomonas aeruginosa}[5] and the mycobacteria, particularly TB.[6,7] AMR in bacteria may be manifested through several mechanisms, including alteration in cell wall permeability to antibiotics, enzymic degradation of antibiotics, efflux pump mechanisms, mutation in protein synthesis and the organism’s ability to uncoil its nucleic acid.
Table 1 summarizes the resistance mechanisms that NTM organisms adopt to evade attack from conventional antibiotic agents.

Given that the NTM organisms are environmental, it is not surprising that they have developed highly elaborate mechanisms of AMR. The environment, particularly the rhizosphere, is a harsh environment for NTMs to survive, due to highly complex inter-strain, inter-species, and inter-genus competition for habitat and nutrition. Therefore, it is advantageous that any organism can ideally perform two important functions in such a scenario, namely (i) evolve AMR mechanisms to evade natural antibiotics being excreted as secondary metabolites by neighboring bacteria, as well as (ii) having the ability to excrete novel natural antibiotic and/or antibiotic-like compounds, to suppress the growth and proliferation of neighbor bacterial organisms. While the NTMs are highly evolved in relation to developing AMR mechanisms, their ability to produce novel antimicrobial compounds is limited whereas paradoxically, another soil organisms, *Streptomyces* spp., are highly developed in producing novel antimicrobial compounds, but lack sophisticated AMR mechanisms, to evade natural antimicrobials from their neighbors in the soil.

Mechanisms To Combat Antimicrobial Resistance in Nontuberculous Mycobacteria

The aim of this review is to highlight recent developments which have appeared in the scientific literature within the last 2 years (2017–2018), examining a variety of approaches targeting NTMs.\[7-10\]

Medicinal plants are a source of bioactive compounds that can be effective treatments of various diseases globally. Many countries, particularly Mexico, India, Iran, Turkey, and Africa, have a wealth of medicinal plant species which have had a long standing in traditional medicine approaches to the treatment and management of diseases including tuberculosis.\[11\] Ethnobotanical/pharmacological studies relating of the use of such plants in conjunction with polyherbal medicines,\[12\] traditionally used for the treatment of tuberculosis are forming the foundations for

Table 1: Action and resistance mechanisms of major classes of conventional antibiotics used to treat nontuberculous mycobacteria

Drug	Action	Target	Resistance mechanism
Aminoglycosides	Inhibition of protein synthesis	30S ribosomal unit (16S rRNA)	Steric hindrance by the addition of acyl and phosphate groups
	Differing mode of action depending on chemical structure of drug		Enzymatic drug inactivation of drug by aminoglycoside modifying enzymes AAC[2'] and Eis2
	-Inhibition of translocation of tRNA-mRNA		Altered target binding Phosphotransferase (APH[33'])
	-Protein mistranslation		Low-cell permeability
	-Interference with the delivery of aminoacylated tRNA to the A-site		Efflux pumps (tetV , tap, P55)
			Mutated gene involvement 16S rRNA
Beta-lactams	Inhibition of cell wall synthesis	Penicillin-binding protein	Enzymatic drug degradation
			Hydrolytic β-lactamase enzyme (Bla_{mp})
			Low-membrane permeability
Fluoroquinolones/	Inhibition of DNA synthesis	DNA gyrase	Polymorphisms in target gene gyr A, gyr B
Macrolides	Inhibition of protein synthesis by preventing the elongated polypeptide chain from vacating the peptidyltransferase center of the ribosome	Nascent polypeptide tunnel within the 50S ribosomal subunit (23S rRNA)	Efflux pumps (MAY₁₄₀₆, MAY₃₃₀₆, MAY₁₆₉₅)
Oxazolidinone	Inhibition of protein synthesis	50S ribosomal subunit (23S rRNA)	Erythromycin ribosome methylase (Erm) enzyme methylates A2058 nucleotide (23S rRNA gene) lowering macrolide binding by preventing the elongated affinity for exit tunnel
Rifampicin/ rifabutin	Inhibition of transcription	β-subunit of RNA polymerase	Acquired resistance due to mutation in the 23SrRNA gene, a base change at either position 2058 or 2059, critical rRNA residues involved in the binding of macrolides to ribosome
			Mutated gene involvement 23S rRNA
Tetracycline	Inhibition of protein synthesis by interference with the delivery of aminoacylated tRNA to the A-site	30S ribosomal unit	Drug efflux
			Ribosome protection
			Enzymatic inactivation and decomposition
			-Tetracycline-degrading flavin monoxygenase (MabTetX)

Information taken from References\[7-10\]
the identification and in vitro examination of antibacterial properties against NTMs [Table 2].

Animal venoms from snakes (terrestrial and sea), scorpions, spiders, honey bees, wasps, and snails, have been investigated and found to be a rich source of natural antimicrobial substances including proteins, amines, bioactive peptides, antimicrobial peptide (AMP), toxins and enzymes, showing activity, by a number of different mechanisms, against many pathogens and more recently, NTMs [Table 3].

Of particular, clinical interest has been the AMPs which are short (10–15 amino acid residues), due to the fact that they are structurally stable, do not easily induce AMR compared to conventional antimicrobials and have shown potent potential in killing bacteria, fungi, viruses, and parasites. AMPs are currently a source of therapeutic potential particularly as they are devoid of hemolytic properties, not toxic to host cells and may be readily synthesized and modified.

Owing to the intrinsic resistance of NTMs to most commonly used antibiotics, such infections are treated by a multidrug regimen as highlighted in the recent “British Thoracic Society Guidelines for the management of non-tuberculous mycobacterial pulmonary disease,” however, treatment issues are further complicated by the ability of Mycobacterium abscessus to develop macrolide resistance on exposure to sub-inhibitory concentrations of the drug or where other members of the macrolides are used, such as in the case of low-dose azithromycin in the management of patients with cystic fibrosis (CF). Currently, screening for synergistic interactions of approved drugs is an approach which has identified novel in vitro synergistic combinations, with one of the largest studies totaling 180 dual drug combinations against M. abscessus, reported recently by Aziz et al. 2018. Table 4 summarize several studies which report on potential synergistic and combination effects with other antimicrobials.

Of interest, has been a recent publication examining the interaction between spices and antibiotic resistance in M. abscessus. In this study, M. abscessus isolates (n = 9 multidrug-resistant clinical isolates from CF patients + 1 reference strain) were examined for their direct susceptibility to 27 spices, as well as the interactive effect of this spice combination to their susceptibility to amikacin and linezolid antibiotic, with standard disk diffusion assay. Five isolates of M. abscessus (5/10; 50%) failed to grow on the spice enriched medium, which included four clinical isolates and the National Culture Type Collection Reference Strain. Of the remaining five isolates which grew on the spice medium, no cultural phenotypic differences were observed, compared to unsupplemented controls. In the case of both amikacin and linezolid, the zone of inhibition increased with the inclusion of the spices. Initially, all isolates of M. abscessus were fully resistant to linezolid (mean zone of inhibition = 0 mm), and growth was to the edge of the antibiotic disk, whereas when in the presence of spices, large zones of inhibition were observed (mean zone of inhibition = 33.3 mm). With amikacin, the mean zone of inhibition increased from 23.2 mm to 32.0 mm, in the presence of spices. These data suggest that the spices were interacting synergistically with the antibiotics, thus making the antibiotic more potent against the bacteria tested. This study is significant as it demonstrates a positive interaction between spices and the conventional antimycobacterial antibiotics, amikacin, and linezolid. Given the burden of AMR to M. abscessus, particularly in a patient with chronic disease such as CF, any food-related innovation that can help maximize the potency of existing antimycobacterial antibiotics is to be encouraged and developed. The specific mechanism as to how spices increase the potency of such antibiotics with M. abscessus now needs to be elucidated, as well as novel food (spice) delivery modalities developed, including novel medicinal foodstuffs or functional foods, that can harness this beneficial effect in vivo.

Due to the urgent need to address the AMR of NTMs, it is important to discover new antimycobacterials, however to date, such drug discovery has been limited, particularly in relation to progression of such novel drugs to clinical trials [Table 5].

Of particular, interest has been the development of a novel inhaled nonantibiotic therapy, nitric oxide gas formulation, Thiolanox® (Novoteris, Garden Grove, CA, USA), for the treatment of CF and which is currently in Phase II development (NCT02498535). Interestingly, in Phase I of the clinical study, with CF patients, 160ppm NO inhaled for 30 min, three times daily for five days over two consecutive weeks, indicated that this therapy was safe and significantly reduced the number of various bacteria including M. abscessus, which consequently reduced pulmonary inflammation and increased lung function to levels not commonly observed after antibiotic therapy (Table 6). It has been suggested that NO has a multiplicity of targets that are non-organism specific, attributed to its oxidative and nitrosylating effects. NO eradicates microbes by nitrosylating their heme-or thiol-containing essential metabolic proteins which interfere with RNA replication and DNA repair mechanisms, which in turn damages cellular structure and function and modulates the host immune response. Subsequently, an interventional clinical trial is currently in progress to investigate if NO therapy can reduce the NTM bacterial load in the lungs of adults and adolescents with NTM infection (NCT03331445), the preliminary results of which are summarized in Table 6. Furthermore, the antibacterial efficacy of a biopolymer, NO-donor BIOC51 (Vast Therapeutics, Chapel Hill, NC, USA) has been demonstrated against NTMs in a mouse in vitro and in vivo model.

It is important to consider the fact that NTM can exist both extracellularly in biofilms and intracellularly within macrophages and other host cells, where they can replicate intracellularly. This promotes a challenge when delivering antimicrobial therapy at concentrations which would be effective against NTMs persisting either within biofilms or intracellularly within host cells. Of significant interest has been the development of a liposomal amikacin formulation.
Table 2: Pharmacognosy relating to the antimycobacterial activity of plant extracts

Natural product	Study findings	Species used
EOs from medicinal plants- Lamiaceae family (Satureja rechingeri, Satureja khuzestanica, Zataria multiflora)[13]	M. tuberculosis was completely inhibited by Z. multiflora at 78 μg/ml. Hexane, CHCl₃, EtOAc, and ethanol extracts had antibacterial activity against M. tuberculosis H37Rv. Ethanol extract subjected to fractionation by selective extractions, purified compound of phenolic nature obtained (MIC: 3.125 μg/ml against M. tuberculosis).	M. tuberculosis, M. kansasii, M. fortuitum, M. smegmatis, M. aurum, M. tuberculosis
Bidens odorata Cavanilles, a medicinal and edible plant[14]	Hexane and dichloromethane extracts were effective against M. smegmatis. Aqueous crude extract did not display antimycobacterial activity, but following fractionation, isolation of 3,5- hydroxybenzoic acid, showed biological activity against M. tuberculosis.	M. smegmatis
Medicinal herbal plants (Senegal) (Combretum aculeatum and Guiera senegalensis)[15]	Aqueous extracts demonstrated significant antimycobacterial activities. IC₅₀ G. senegalensis (0.098±0.009 mg/ml) and C. aculeatum (0.074±0.006 mg/ml), compared to Rifampin (0.007±0.0004 mg/ml).	M. marinum
Medicinal plants (Datura stramonium, Boswellia serrata, Lavandula stoechas, Rosmarinus officinalis, Thymus vulgaris)[16]	Crude ethanol extract showed antimycobacterial activity (MIC: 125-500 μg/ml). Hexane and butanol sub-fractions of A. dimidiata exhibited potent anti-mycobacteria activity.	M. bovis
Combined crude extracts of medicinal plants (Limpopo Province, South Africa) Combretum hereroense, Citrus lemon Apodytes dimidiata[17]	MICs; crude extracts (0.1-3 mg/ml), average synergistic effect of the plants (0.04 mg/ml-1.25 mg/ml). Hexane and butanol sub-fractions of A. dimidiata exhibited potent anti-mycobacteria activity.	M. smegmatis
Alkaloid extracts from Combretum zeyheri[18]	MIC value of 125 μg/ml. Other Combretum species examined were not as potent.	M. smegmatis
Curcumin, a phenolic compound extracted from Curcuma longa[19]	MIC=128 mg/L. Synergic effect of curcumin with AMK, clarithromycin, ciprofloxacin and LZD (strain initially showed resistance/intermediate susceptibility). Curcumin (1/8×MIC) significantly reduced motility and 4 × MIC, complete inhibition of 4- and 8-day mature biofilms. Synergistic combinations of curcumin and AMK induced a reduction in microbial aggregates and substantial loss in cell viability.	M. abscessus
Nanoemulsions of Cymbopogon flexuosus[20]	Nanoemulsion exhibited significant antimicrobial activity with MICs lower than those of the free EO, against strains in the planktonic state.	M. fortuitum, M. massiliense, M. abscessus, M. smegmatis
Phytochemicals from Parinari curatellifolia leaf extracts[21]	MICs; 6.2 μg/ml for the acetone extract, 12.5 μg/ml for both the ethanol and the total extract and 50 μg/ml for both the methanol and ethyl acetate extracts.	M. smegmatis
Stem bark of Tetracera potatoria Afzel. Exg. Don (Dilleniaceae) medicinal plant used traditionally in Africa[22]	Tetraceranoate exhibited the best activity against M. smegmatis with a minimum MIC of 7.8 μg/mL. β-stigmasterol, betulinic acid and betulin showed appreciable anti-mycobacterial activity against both strains (MIC 15 μg/mL).	M. smegmatis, M. aurum
Persimmon (Ebenaceae Diospyros kaki Thunb.) derived tannin[23]	Soluble tannin hydrolysate exhibited high bacteriostatic activity against MAC in vitro. MAC infected mice fed a soluble tannin-containing diet showed significantly higher anti-bacterial activity against MAC than control fed animals. Levels of pro-inflammatory cytokines and iNOS were significantly reduced by treatment with soluble tannin hydrolysate.	MAC
Rhynchosia precatoria (Humb. and Bonpl. ex Willd.) (Fabaceae) DC. Medicinal plant[24]	New isoflavonones identified. Antimycobacterial and synergistic antimycobacterial activity noted.	M. tuberculosis, M. smegmatis

Contd...
to address these issues and in particular liposomal inhalation suspension which can be delivered by to target NTM lung diseases. Such delivery mechanisms ensure the delivery of high concentrations of antibiotic directly to the lung along with low systemic concentration in an attempt to prevent cytotoxicity.[83] In vitro and in vivo animal models have shown the ability which this liposomal inhalation suspension has in penetrating NTM biofilms, as well as enhancing amikacin uptake into macrophages.[81] Of major clinical interest has been a multi-centered clinical trial (NCT02344004) which concluded that a single daily nebulization of amikacin liposome inhalation suspension (590 mg), when added to standard guideline-based therapy (GBT) in patients with refractory Mycobacterium avium complex (MAC) lung disease, achieved significantly greater culture conversion by month 6 (defined as three MAC-negative sputum cultures) than GBT alone, along with comparable rates of serious adverse events.[82] These findings further highlight the importance of novel inhaled therapeutic approaches for the treatment of MAC lung disease.

Another approach to tackle the challenge posed by NTM AMR has been the repurposing of existing drugs, namely those that had been approved previously for the treatment of tuberculosis, such as bedaquiline, clofazimine, rifabutin and skin infections, such as tedizolid [Table 7]. Of concern, however, is that fact the resistance mechanisms associated with the MmpL family of proteins have been identified in M. abscessus, in the case of clofazimine and bedaquiline, where clofazimine-resistant strains demonstrated cross resistance to bedaquiline.[90,91,97]

In addition, in vitro, the antimicrobial effect on NTMs as a result of polypharmacy for the treatment of noninfective conditions has been noted and opens up another avenue to peruse [Table 7].

Table 8 highlights a number of other approaches which have been investigated in the search for antimycobacterial drugs for NTMs including the examination of existing screening libraries and the examination of bacterial virulence and pathogenic mechanisms with the potential to develop antivirulence therapies and bacteriophage therapy.

Bacteriophage therapy is an interesting approach to consider in the fight against AMR, however to date research in the potential use of such therapy in the case of NTM has been limited with recent focus associated with M. tuberculosis.[105] Indeed, phage therapy although extensively used in Eastern Europe in relation

Table 2: Contd...

Natural product	Study findings	Species used
Berries		
Juniper (EO)[25]	MEC 1.6 mg/mL Significant reduction in cell viability of *M. intracellulare* and *M. gordonae* at MEC and of *M. avium* at 2 × MEC Microscopic analysis confirmed inhibitory effect, revealing significant morphological changes in the cell membrane and cytoplasm of all bacteria Mode of action on the cell membrane confirmed by marked leakage of intracellular material	*M. avium* spp. *avium*

| **Fungi/mushroom** | | |
| Lentinus citrinus Walley and Rammeloo DPUA 1535 Neolentinus lepideus (Fr.) Redhead and Gims DPUA 1536 Pleurotus ostreatus (Jacq.; Fr.) Kumm. (DPUA 1533) P. ostreatus (Jacq.; Fr.) Kumm. cv. Florida (DPUA 1534)[21] | Organic mycelial extracts of *Lentinus* and *Pleurotus* species exhibited potential antibacterial and antifungal activity | *M. smegmatis* |

Marine sources		
Bioactive Pyridone Alkaloids from Deep-Sea-Derived Fungus Arthrinium spp. UJNMF000[27]	Eight new 4-hydroxy-2-pyridone alkaloids arthpyrones and two known analogs (apiosporamide and arthpyrone B) were studied	*M. smegmatis*
Dimeric 3-alkyl pyridinium alkaloids (halicycloclamelines) and analogs (cyclolesteltettamines) from Indonesian marine sponge Halicloina spp.[29]	Anti-mycobacterial activity noted	*M. smegmatis*
Bisfunctionalized sphingolipid (leucettamol A) from Indonesian marine sponge Agelas spp.[29]	Leucettamol A- moderate anti-mycobacterial activity (50 µg/disk, 20 µg/disk and 10 µg/disk inhibition zones: 12, 9 and 7 mm, respectively) Free amino groups were important for anti-mycobacterial activity	*M. smegmatis*

M. smegmatis: Mycobacterium smegmatis, *M. kansasii*: Mycobacterium kansasii, *M. gordonae*: Mycobacterium gordonae, *M. tuberculosis*: Mycobacterium tuberculosis, *M. fortuitum*: Mycobacterium fortuitum, *M. intracellulare*: Mycobacterium intracellulare, *M. aurum*: Mycobacterium aurum, *M. abscessus*: Mycobacterium abscessus, *M. massilense*: Mycobacterium massilense, *M. bovis*: Mycobacterium bovis, MICs: Minimum inhibitory concentrations, MAC: Mycobacterium avium complex, MEC: Minimal effective concentration, EO: Essential oil, FICI: Fractional inhibitory concentration index, *A. dimidiata*: Apodytes dimidiata, *Mycobacterium avium*, *M. marinum*: Mycobacterium marinum, AMK: Amikacin, LZD: Linezolid, iNOS: Inducible nitric oxide synthase
Table 3: Venom-derived antimicrobial peptides

Antimicrobial Peptide	Study findings	Species used
ToAP2 (derived from scorpion *Tityus obscurus*)[^31]	ToAP2 inhibited the growth of *M. massiliense* at a MBC of 200 μM. MBC concentration used to treat infected macrophages was able to inhibit 50% of the bacterial growth of all strains. ToAP2 treatment of infected mice with bacilli reduced the bacterial load in the liver, lung, and spleen, similar to clarithromycin levels (90%). The *in vitro* antimicrobial activity of ToAP2 is improved *in vivo* due to chemotactic activity.	*M. massiliense*
NDBP-5.5 (derived from scorpion *Hadrurus gertschi*)[^32]	MBC 200 μM which did not induce hemolysis of red blood cells. NDBP-5.5 had a low toxicity and therefore good clinical potential (*therapeutic index 3.05*). Treatment of infected macrophages with NDBP-5.5 or clarithromycin presented similar results, reducing the bacterial load in *M. abscessus subsp. massiliense*-infected animals showed a decrease in the bacterial load of up to 70% when treated with NDBP-5.5.	*M. abscessus subsp. massiliense*
AMPs developed from CTX-1 of the Chinese cobra (*Naja atra*)[^33]	Potent antimicrobial activity was demonstrated	*M. smegmatis*
Polybia-MPII, a mastoparan peptide from the female Neotropical social wasp *Pseudopolybia vespiceps testacea* (Vespidae, Hymenoptera)[^34]	The mastoparan reduced *in vitro* and *ex vivo* (macrophage murine model) mycobacterial growth by 80% at 12.5 μM in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 μM). Polybia-MPII as a therapeutic alternative demonstrated remarkable potential to inhibit mycobacteria and to penetrate the cell wall to kill bacteria from inside the cytoplasm.	*M. abscessus subsp. massiliense*
Polydim-I, from the female Neotropical wasp *Polybia dimorpha*[^35]	Polydim-I iv. treatment of with *M. abscessus subsp. massiliense* induced 0.8-1 log reduction of the bacterial load in the lungs, spleen and liver. Noncytoxotoxicity toward mammalian cells. Polydim-I acted on the *M. abscessus subsp. massiliense* cell wall and reduced 40%-90% of the bacterial load both *in vitro* and *in vivo*.	*M. abscessus subsp. massiliense*

M. massiliense: *Mycobacterium massiliense*, MBC: Minimal bactericidal concentration, AMP: Antimicrobial peptide, NDBP: Non-disulphide bridge peptide, CTX-1: Cardiotoxin 1, IV: Intravenous, *M. abscessus*: *Mycobacterium abscessus*, *M. smegmatis*: *Mycobacterium smegmatis*, *M. fortuitum*: *Mycobacterium fortuitum*

Table 4: Potential synergistic and combination effects with other antimicrobials

Combinations	Study findings	Species used
Synergistic antibiotic combinations capable of overcoming drug resistance *in vitro*[^36]	*In vitro* activity of several antibiotics against a selection of drug-resistant NTM clinical isolates from CF patients and paired combinations of antibiotics against a subset of *M. abscessus* strains. Clofazimine and clarithromycin exhibited 100% synergy for all combinations tested, as did AMK, with the exception of one isolate.	*M. abscessus*
Synergistic effect of LZD with AMK, MOX, CFX and TGC[^38]	LZD and AMK most potent synergistic activity. Frequent synergism in LZD-AMK and LZD-TGC. LZD rarely exhibited *in vitro* synergy with MOX and CFX when tested against MABC. LZD-CFX and LZD-MOX combinations antagonistic for half of the isolates.	*M. abscessus*
Clarithromycin-vancomycin[^40]	Strong synergy was found with a FICI score of ≤0.5 and a 4-to-10-fold decrease in MIC.	MABC (subspecies)
Thioridazine/MOX -based combination regimen[^41]	Rapid microbial kill could be achieved within 7 days	*M. avium-intracellulare complex*
Ceftazidime/avibactam, rifabutin, TZD and MOX[^42]	Kill rates better than standard therapy	*M. avium subsp. hominisuis*
Ceftazidime/avibactam[^41]	Ceftazidime in combination with the non-β-lactam β-lactamase inhibitor avibactam kills MAC. Microbial kill was better than that of standard therapy drugs at currently recommended doses	MAC

Contd...
Table 4: Contd...

Combinations	Study findings	Species used
Avibactam and various carbapenems[^44]	The addition of avibactam to various carbapenem antibiotics effectively reduced the MICs of carbapenem-resistant *M. abscessus* isolates to within therapeutically achievable levels *in vitro*	*M. abscessus*
Clarithromycin, rifampin, rifabutin, and ethambutol in combination with ATP[^45]	*In vitro* anti-*Mycobacterium* complex activity of combination therapies was expressed in a strain-dependent manner *In vitro* regrowth of drug-treated bacteria was delayed by combined use of ATP	MAC
Synergistic effect of Clarithromycin with LZD, MOX , AMK, and tigecycline[^46]	*In vitro*, synergistic activity was noted with clarithromycin and various other drugs	*M. abscessus*
Rifampicin with hydroperoxides[^47]	Increased membrane permeability owing to the presence of the oxidant, led to higher uptake of the drug Additive effect was noted	*M. bovis* *M. massiliense* *M. tuberculosis*
Interaction of South Asian spices with conventional antibiotics[^48]	Synergistic antimicrobial activity noted *in vitro* between spice extracts and AMK and LZD	*M. abscessus*
Teicoplanin - Tigecycline combination[^49]	*In vitro* checkerboard titration assay Synergistic activity observed	*M. abscessus Bamboo* *M. abscessus subsp. abscessus, massiliense, bolletii*

NTM: Non-tuberculous mycobacteria, LZD: Linezolid, AMK: Amikacin, MOX: Moxifloxacin, CFX: Cefoxitin, TGC: Tigecycline, ATP: Adenosine 5′-triphosphate, FICI: Fractional inhibitory concentration index, *M. abscessus*: *Mycobacterium abscessus*, *M. smegmatis*: *Mycobacterium smegmatis*, *M. tuberculosis*: *Mycobacterium tuberculosis*, *M. chelonae*: *Mycobacterium chelonae*, *M. bovis*: *Mycobacterium bovis*, *M. massiliense*: *Mycobacterium massiliense*, MAC: *Mycobacterium avium* complex, MICS: Minimum inhibitory concentration, CF: Cystic fibrosis, TZD: TzDizolid

Table 5: The antimycobacterial activity of novel drugs/compounds and modified drugs

Novel drugs/compounds	Study findings	Species used
Nitrogen heterocycles derivatives: 7-(pyridine-4-yl)-indolizine derivatives[^49]	Potent derivatives against both replicating and non-replicating *M. tuberculosis* Bactericidal mechanism of action Active against drug-resistant MTB strains Moderate to good activity against NTMs Good intracellular activity Moderate to high cytotoxicity	*M. tuberculosis* *M. abscessus* *M. avium*
Potential new 3-phenylquinolone efflux pump inhibitors based on natural isoflavone biochanin A[^50]	3-phenylquinolones inhibited *M. avium* efflux pumps A protonable N-1 aminoalkyl chain was very important, with a tertiary cyclic amine to give the best inhibitory efflux pump activity Synergistic activity was noted with reference to macrolides and fluoroquinolones	*M. smegmatis* *M. avium*
Diphenyleneiodonium chloride (DPIC), an NADPH/NADH oxidase inhibitor[^51]	MIC of 0.125-0.25 mg/L Concentration-dependent bactericidal activity against *M. fortuitum* was comparable to AMK but outcompeted meropenem No regrowth after treatment with DPIC (10× MIC) Greater ability to eradicate intracellular mycobacteria as compared with AMK DPIC synergistic effect with all the tested drugs (AMK, ceftriaxone, ceftazidime, and meropenem) against *M. fortuitum*	*M. fortuitum, M. avium, M. chelonae, M. abscessus*
Indole-2-carboxamides[^52]	Act by inhibition of MmpL3, an essential transporter required for the translocation of mycolic acids to the mycobacterial cell envelope Pan anti-mycobacterial activity Selective for mycobacteria Minimal in vitro cytotoxicity	*M. abscessus* *M. massiliense*, *M. bolletii, M. chelonae*, *M. tuberculosis, M. avium*, *M. xenopi, M. smegmatis*
Synthetic antimicrobial polymers derived from a biocompatible polyamide backbone with quaternary amine pendants of varied hydrophobicity[^53]	Bactericidal activity toward drug-sensitive and drug-resistant mycobacteria High specificity targeting both intracellular and biofilm forms of mycobacteria	*M. smegmatis M. bovis* (BCG) *M. tuberculosis* Drug resistant *MTb* clinical isolates

Contd...
Table 5: Contd...

Novel drugs/compounds	Study findings	Species used
TZD - a new oxazolidinone (Target 50S ribosome)	**MIC**< sub>< sub> and **MIC**< sub>< super> of TZD (2 and 8 μg/mL, respectively); 2-16-fold lower than LZD	
No difference between the MAC subspecies		
Time-kill assays did not show any bactericidal activity at 4- and 8-fold the MIC		
Combination of TZD with clarithromycin was synergistic (1 out of 6 isolates), while indifferent interactions for TZD combined with tigecycline, ciprofloxacin, and AMK	*M. abscessus* subsp. (*abscessus, massiliense, bolletii*)	
TZD, a next-generation oxazolidinone	**In vitro** kill time analysis using 130 isolates	*M. abscessus*
	TZD exhibited a bacteriostatic effect that was more pronounced in *M. bolletii* and *M. massiliense* than *M. abscessus*	*M. massiliense*
	TZD exhibited little concentration-dependent killing and no significant bactericidal activity	*M. bolletii*
TZD, 50S ribosome target	**Susceptibility breakpoint for TZD (200 mg/day) was 1 mg/L, above which patients were likely to fail therapy; 2 mg/L was a susceptible-dose-dependent breakpoint**	*M. avium subsp.* *hominissuis*
Inhibitors Against Mycobacterial Protein Kinase G (PknG)	PknG is a eukaryotic-like serine/threonine kinase that is expressed by *Mycobacterium tuberculosis* and promotes survival of mycobacteria in host macrophages by suppressing phagosome-lysosome fusion	
PknG inhibitors identified	*M. bovis*	
Novel Oxazolidinone with a cyclic amidrazide (LCB01-0371, LegoChem BioSciences, Inc. (Daejeon, Republic of Korea))	LCB01-0371 was effective against several *M. abscessus* strains	
in **in vitro** and in a macrophage model of infection		
LCB01-0371 inhibited the growth of AMK-, CFX - and clarithromycin-resistant strains	*M. abscessus*	
LZD, 50S ribosome target	The clinical dose of 600 mg/day achieved or exceeded the bacteriostasis exposure in 98.73% of patients	
The proportion of 10000 patients Monte Carlo simulations treated with the standard 1200 mg/day who achieved the exposure for 1.0 log10 cfu/mL kill was 70.64%, and 90% for 1800 mg/day		
MIC for the laboratory strain was 4.0 mg/L		
The proposed MIC breakpoint for LZD is 16 mg/L, with which 49%-80% of clinical isolates would be considered resistant	*M. avium Chester*	
Sulfamethoxazole ureas and oxalamide	**MIC values starting from 2 μM**	
Several derivatives exhibited an antimycobacterial activity comparable or superior to sulfamethoxazole and isoniazid		
Methyl, cyclopropyl and 4-(N-(5-methylisoxazole-3-yl) sulfamoyl) phenyl were favored as the 3-ureido substituents of sulfamethoxazole-based urea	*M. tuberculosis*	
Rhodamine-3-acetic acid derivatives	All of the derivatives were active against mycobacteria even isoniazid-resistant atypical mycobacteria	*M. avium*
Piperidinol derivatives	The piperidinyld and the bis-Mannich base analog were found to be selective for mycobacteria and rapidly kill this organism with a cytotoxicity selectivity index for mycobacteria of >30-fold	*M. smegmatis*
Thiosemicarbazide Derivatives	Most of the compounds showed good activity against the test organism	*M. bovis*
Fluorene Bisamide Derivatives	Most active compound (MIC of 1.95 μg/mL) against *M. bovis*	*M. tuberculosis*
Sesamol (Ses) a natural phenolic compound	MIC 6mM	
Results indicated that Ses is involved in the disruption of the membrane integrity of Mycobacteria and also induces reactive oxygen species | *M. smegmatis* |

Contd...
to other pathogenic organisms, is limited elsewhere globally. In
general clinical trials, in relation to phage therapy, have been
sparse, primarily due to safety concerns relating to the sterility
and purity of phages and the potential onset of toxic shock due
to the bactericidal effect of phages. Furthermore, regulatory
guidelines relating to their therapeutic use require clarification.[106]

Table 5: Contd...

Novel drugs/compounds	Study findings	Species used	
NO-donor modified from a natural biopolymer that releases NO spontaneously in solution (BIOC51; Vast Therapeutics, USA)[66]	In vitro MIC and MBC assays, In vivo mouse model. BIOC51 killed NTMs investigated. In vitro BIOC51 significantly reduced \textit{M. abscessus} levels (by 2.4 logs). BIOC5 was fast acting with no adverse effects	\textit{M. abscessus}, \textit{M. avium}, \textit{M. intracellular}	
Diaryltriazene derivatives[67]	FOR \textit{M. avium} and \textit{M. abscessus} under iron-free conditions. Ga\textsubscript{3}O\textsubscript{4} (MICs: 8 μg/mL (31 μM) and 32 μg/mL (125 μM), respectively) Ga\textsubscript{3}O\textsubscript{4} inhibited the growth (1–8μg/mL and 4–8μg/mL, except the UNMC1374 strain. Traphenylporphyrin alone did not inhibit the growth of NTMs in iron-free media. Ga\textsubscript{3}O\textsubscript{4} was more effective than GaNP in inhibiting the growth. GaNP inhibited the growth of either NTM under iron-rich conditions. GaNP had better and more prolonged (up to 15 days) activity against NTMs growing within the THP-1 macrophage cell line. Ga\textsubscript{3}O\textsubscript{4} and GaNP exhibited inhibitory activities via interruption of iron acquisition during intracellular and extracellular infection.	\textit{M. smegmatis}	
Free and Nanoparticle Formulations of Gallium (III) meso-Tetraphenylporphyrin (Ga(NO\textsubscript{3})\textsubscript{3}), GaCl\textsubscript{3}, gallium meso-tetraphenyl porphyrin (GaTP), and gallium nanoparticles (GaNP)[68]	MIC 0.03 μg/mL for \textit{M. avium} and \textit{M. abscessus} under iron-free conditions. Ga\textsubscript{3}O\textsubscript{4} (MICs: 8 μg/mL (31 μM) and 32 μg/mL (125 μM), respectively) Ga\textsubscript{3}O\textsubscript{4} inhibited the growth (1–8μg/mL and 4–8μg/mL, except the UNMC1374 strain. Traphenylporphyrin alone did not inhibit the growth of NTMs in iron-free media. Ga\textsubscript{3}O\textsubscript{4} was more effective than GaNP in inhibiting the growth. GaNP inhibited the growth of either NTM under iron-rich conditions. GaNP had better and more prolonged (up to 15 days) activity against NTMs growing within the THP-1 macrophage cell line. Ga\textsubscript{3}O\textsubscript{4} and GaNP exhibited inhibitory activities via interruption of iron acquisition during intracellular and extracellular infection.	\textit{M. smegmatis}, \textit{M. avium}, \textit{M. abscessus}	
Diaryltriazene derivatives[67]	Compound, isolated from the fermentation broth of a locust-associated \textit{Streptomycyes} spp. showed weak antibacterial activity, 85.6 μg/mL	\textit{M. smegmatis}	
Diaryltriazene derivatives[67]	Most active carboxamides were substituted by short n-alkyl (MICs against \textit{Mtb}. of 0.5-2 μM). Cyclization did not increase activity. 2-isonicotinoylhydrazine-1-carboxamides mechanism of action described as inhibition of enoyl-ACP reductase (InhA), similar to INH, which blocks the biosynthesis of mycolic acids. N-Dodecyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine was the most efficacious oxadiazole inhibiting growth of \textit{Mtb} (susceptible and drug-resistant) with MIC values of 4-8 μM.	\textit{M. tuberculosis} (sensitive, MDR and XDR), \textit{M. avium}, \textit{M. kansasii}	
Diaryltriazene derivatives[67]	N-acetylated fluorophenylalanine-based aromatic amides and esters[73]	The amidic derivatives showed no significant antimycobacterial properties. The majority of the esters exhibited a mild antimycobacterial activity.	\textit{M. tuberculosis}, \textit{M. avium}, \textit{M. kansasii}
Diaryltriazene derivatives[67]	Isoniazid-based hydrazones[74]	Characterization and evaluation of antibacterial, antifungal, antimycobacterial, cytotoxic and cytostatic action.	\textit{M. tuberculosis}, \textit{M. avium}, \textit{M. kansasii}
Diaryltriazene derivatives[67]	Schiff bases derived from the sulfa drug sulfadiazine and various salicylaldehydes-4-(2-hydroxybenzylidene)aminol-N-(pyrimidin-2-yl) benzene-sulfonamides[75]	\textit{M. tuberculosis} and \textit{M. kansasii} were inhibited within the range of 8-250 μM.	\textit{M. tuberculosis}, \textit{M. avium}, \textit{M. kansasii}

CFX: Cefoxitin, DPIC: Diphenyleneiodonium chloride, \textit{M. tuberculosis}: \textit{Mycobacterium tuberculosis}, \textit{M. chelonae}: \textit{Mycobacterium chelonae}, \textit{M. avium}: \textit{Mycobacterium avium}, \textit{M. kansasii}: \textit{Mycobacterium kansasii}, \textit{M. bovis}: \textit{Mycobacterium bovis}, TZD: Tedizolid, \textit{M. smegmatis}: \textit{Mycobacterium smegmatis}, \textit{M. intracellular}: \textit{Mycobacterium intracellular}, \textit{M. marinum}: \textit{Mycobacterium marinum}, MICs: Minimum inhibitory concentrations, MBC: Minimal bactericidal concentration, LZD: Linezolid, AMK: Amikacin
In conclusion, AMR in NTM organisms presents significant clinical treatment dilemmas and challenges, for a range of infections associated with NTMs. This review presents a synthesis of novel and innovative approaches, as described in Tables 2-8, in an attempt to circumvent such AMR problems. These approaches are at various stages of development, from initial concept through to licensed intervention. The challenge remains to translate these interventions from in vitro laboratory models to effective in vivo interactions. When these are realized, then we will have the opportunity of overcoming NTM AMR, to the benefit of medicine, society, and humanity.

Table 6: Novel Inhaled therapies examined for treatment of nontuberculous mycobacteria

Inhaled therapy	Study findings	Species used
NO^[78]	Prospective compassionate adjunctive inhaled NO therapy (160 ppm) in 2 CF patients with persistent *M. abscessus* infection Significant reduction of *M. abscessus* load (7000-550 cfu and 3000-0 cfu)	*M. abscessus*
NO^[78]	*In vitro* study on planktonic and immobilized (agar) bacterial cultures treated with NO (250 ppm/400 ppm) for up to 10 h Antibacterial activity was noted which was independent of pH changes	*M. abscessus* (Multi drug resistant)
NO (Novoteris, USA)^[79]	8 subjects completed study (2 CF, 3 non-CF bronchiectasis, 3 NTM pulmonary disease) Treatment 160 ppm gNO for 50 min, TID during 5 weekdays for 3 consecutive NTM NTM bacterial loads weeks reduced in 50% of subjects (4/8) by at least two log₁₀ cfu/gm sputum Complete eradication of NTM in 3/4 subjects and 1/3 had regrowth week 8 post study Preliminary results indicate well tolerated but compared to *in vitro* results, may require a longer regimen to achieve eradication of NTM	*M. abscessus*
Orphan drug QRM-003 (Qrumpharma) novel nebulized antibiotic which utilises which utilizes clofazimine as the active pharmaceutical ingredient^[80]	Models used included in vitro macrophage uptake assay, *in vitro* antibiotic susceptibility testing, and two *in vitro* mouse models of NTM infection - *SCID* mouse infection with *M. abscessus* (MABSC), and Beige mouse infection with *M. avium* (MAC) Potent antimycobacterial activity in vitro *In vivo* administration significantly reduced bacterial recovery in both acute MABSC and MAC infection models Activity was significantly greater than oral administration of the clofazimine alone, despite higher clofazimine dosing via oral administration	*M. abscessus*
ALIS^[81]	Biofilm and *in vitro* rat model ALIS effectively penetrated NTM biofilms, enhanced AMK uptake into macrophages, both *in vitro* and *in vivo*, and AMK was retained within airways and lung tissue	*M. avium* biofilms
ALIS^[82]	A prospective, open-label, randomized study ALIS in addition to guideline-based therapy for treatment-refractory MAC lung disease achieved significantly greater culture conversion by month 6 than guideline-based therapy alone	Bronchiectasis, COPD patients with MAC
LAI^[83]	Treatment of 5 patients (590 mg of LAI (70 mg/mL), single daily dose every day for 3 months and then every other month with clarithromycin continuous treatment) 3 patients completed treatment and did not have any respiratory exacerbation, showed negative sputum cultures for *M. abscessus* and stabilized their spirometric functions	*M. abscessus*
LAI^[84]	Phase II randomized trial Addition of LAI may be an effective treatment option for NTM lung disease that is refractory to available multidrug treatment regimens	Patients with MAC or *M. abscessus* disease

SCID: Severe combined immunodeficient, **COPD:** Chronic Obstructive Pulmonary Disease, *M. abscessus:* *Mycobacterium abscessus,* AMK: Amikacin, LAI: Liposomal amikacin for inhalation, LAM: Liposomal amikacin for inhalation, ALIS: Amikacin liposome inhalation suspension, NO: Nitric oxide, MAC: *Mycobacterium avium* complex, NTM: Nontuberculous mycobacteria, MABSC: *Mycobacterium abscessus* complex, *M. avium:* *Mycobacterium avium,* INH: Isoniazid
Table 7: Repurposing of drugs

Repurposed drug	Study findings	Species used
Bedaquiline (ATP synthase inhibitor) [85]	Zebrafish model	M. abscessus
Bedaquiline [86]	Antimycobacterial activity observed	M. smegmatis
	MIC ranged from 0.015 to >2 ug/ml	M. phlei
	Bedaquiline had a significantly higher MBC compared to the respective MIC, suggesting a bacteriostatic effect	M. duvalii
	M. flavescens is naturally resistant to bedaquiline and a high MIC correlates with the mutation found at amino acid 63 in AtpE (alanine replaced by methionine)	M. cosmeticicum
		M. mucogenicum
		M. neoaurum
		M. peregrinum
		M. parafortuitum
		M. flavescens
		M. fortuitum
		M. mageritense
		M. wolinskyi
		M. abscessus
		M. cheloneae
		M. franklinii
Bedaquiline [87]	Isolates from patients with pulmonary NTM	M. avium
	M. avium (MIC=0.06-0.12 μg/mL)	M. intracellulare
	M. intracellulare (MIC=0.06-0.25 μg/mL)	M. kansasii
	Moderate in vitro activity was noted	M. abscessus
	M. abscessus and M. massiliense were more susceptible to bedaquiline than	M. intracellulare
	M. fortuitum, with MIC50 and MIC90 values of 0.13 and >16 mg/L, respectively	M. kansasii
		M. abscessus
		M. massiliense
		M. fortuitum
Bedaquiline [88]	In vitro broth microdilution susceptibility testing of 103 respiratory isolates	MAC
	MICs ≤0.008 μg/ml (90% of isolates)	M. abscessus
	102/103 isolates had MICs of ≤0.015 μg/ml	M. intracellulare
Bedaquiline [89]	In vitro susceptibility study of 197 clinical isolates form sputum and bronchoalveolar fluid	M. abscessus
	MIC50 of 0.062 and an MIC90 of 0.125 mg/L	Decreased associated with mutations in mab_4384, the gene encoding the repressor of efflux pump MmpS5/MmpL5
Clofazimine [90]	In vitro susceptibility study of 209 clinical and reference isolates	M. abcessus
	Single-direction cross-resistance between bedaquiline- and clofazimine (Cfz)-resistant isolates was observed	M. fortuitum
		M. kansasii
		M. avium
		M. intracellulare
Clofazimine [91]	Observational-cohort study assessed clofazimine as used for paediatric and adult CF and non-CF patients with pulmonary and extrapulmonary NTM infection (112 patients)	MABSBC
	Safe oral drug with antimycobacterial activity	MAC
Rifabutin [92]	MICs 3±2 μM (3 μg/ml)	M. abscessus Bamboo
	Active against clarithromycin-resistant strains	M. abscessus subsp. (abscessus, bolletii, massiliense)
Apramycin, Framycetin (Veterinary antibiotics) [93]	In vitro antibiotic susceptibility analysis	M. abscessus
	Sensitivity to apramycin and framycetin noted	M. abscessus
	Resistant to other veterinary antibiotics (cefovecin, ceftiofur, lincomycin, pirlimycin, and spectinomycin)	M. abscessus
Non-antibiotic medicines used commonly in CF therapy [94]	In vitro analysis of clinical isolates	M. abscessus
	Antimycobacterial activity with chlorphenamine, cyclidine, ibuprofen, and lamisoprazole	M. abscessus
Zafirlukast, a leukotriene receptor antagonist [95]	Zafirlukast (100 μg/ml) reduced M. abscessus free and total growth in THP-1 derived macrophages by 62% and 94%, respectively and reduced interleukin-8 concentration in supernatants from infected THP-1 derived macrophages by 99%	M. abscessus

M. massiliense: Mycobacterium massiliense, M. smegmatis: Mycobacterium smegmatis, M. phlei: Mycobacterium phlei, M. abscessus: Mycobacterium abscessus, M. intracellulare: Mycobacterium intracellulare, M. smegmatis: Mycobacterium smegmatis, M. duvalii: Mycobacterium duvalii, M. cosmeticum: Mycobacterium cosmeticum, M. mucogenicum: Mycobacterium mucogenicum, M. neoaurum: Mycobacterium neoaurum, M. peregrinum: Mycobacterium peregrinum, M. parafortuitum: Mycobacterium parafortuitum, M. flavescens: Mycobacterium flavescens, M. fortuitum: Mycobacterium fortuitum, M. mageritense: Mycobacterium mageritense, M. wolinskyi: Mycobacterium wolinskyi, M. cheloneae: Mycobacterium cheloneae, M. franklinii: Mycobacterium franklinii, M. avium: Mycobacterium avium, MICs: Minimum inhibitory concentrations, CF: Cystic fibrosis, MBC: Minimal bactericidal concentration, NTM: Nontuberculous mycobacteria
Millar and Moore: Novel antibacterial approaches to the NTMs

Approach	Study findings	Species used
Screening libraries		
Natural products from different geographical regions in Africa (AfroDB)⁹⁹	In silico screening, 3D-modeling, bioactivity and pharmacological profiling identifying novel anti-buruli ulcer substances	M. ulcerans
The Pathogen Box (http://www.pathogenbox.org/) and GSK’s small-molecule M. tuberculosis leads⁹⁹	17/568 compounds identified a hit³⁷³	M. abscessus
	11/17 novel compounds against M. abscessus: GW623128X (target MmpL3) GSK2200160A, GSK2200157A (target CTP synthetase/MmpL3) MMV687807 (target proton gradient) MMV688978 (target thiol-redox homeostasis) BRL-7940SA, BRL-10988SA, BRL-8903SA, BRL-10143SA, BRL-51091AM (target DHFR inhibitor) GSK1812410A (target unknown)	
	Developed a phenotype-based fluorescence assay for rapid screening of compound libraries against M. abscessus	
	MIC values and dose-dependent killing curves were determined using the broth microdilution	
	Effective compounds identified using a screening assay with isolates grown in the mid-log phase followed by resazurin reduction assays	M. abscessus
	Inhibition of growth was confirmed using a dose-response experiments	
	MMV688844 showed the best in vitro activity	
	High hits noted amongst TB active compounds	M. abscessus
	Most of the top hits had a MIC<10 μM Derivatives included: Oxazolidinone derivatives targeting the ribosome: sutezolid (MMV688756), radezolid (MMV688327) and a synthesis intermediate MMV687146 (an indole-2-carboxamide) and MMV688846 (a piperidinyl), targets of the trehalose monomycolate transporter MmpL3 and disrupt mycolic acid synthesis MMV687730, a benzimidazole that inhibits the assembly of FtsZ in M. tuberculosis by enhancing the GTase activity and destabilizing FtsZ polymer which is essential for growth in NTMs MMV687812 is an aminopyrazinamide which binds specifically to mycobacterial GyrB at its ATPase domain MMV675968, an anti-cryptosporidiosis compound that inhibits dihydrofolate reductase in Pneumocystis carinii and Toxoplasma gondii MMV688845 (GSK1729177A) which target RNA polymerase in M. tuberculosis MMV688844 has been predicted, based on in silico analyses, to target ABC transporters (Rv0194) in M. tuberculosis	M. avium
Drug delivery		
Silver nanoparticles (AgNPs)¹⁰²	AgNP-VAM conjugate (Silver nano particle/vancomycin conjugate) enhanced internalization of conjugate in M. smegmatis cells compared to bare AGNPs or free VAM	M. smegmatis
Anti-virulence compounds		
Screening of chemical compound collections¹⁰³	Dictyostelium discoideum host model	M. marinum
Activation of antibacterial autophagy		
Cyclic peptides ohmyungsamycins¹⁰⁴	Drosophila melanogaster- M. marinum model Activation of antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation was demonstrated	M. marinum
Bacteriophages		
Novel antimycobacterial phages¹⁰⁵	Detailed analysis a mycobacteriophage PDRPv	M. smegmatis M. tuberculosis

DHFR: Dihydrofolate reductase, MmpL3: Mycobacterial membrane protein Large 3, M. abscessus: Mycobacterium abscessus, M. smegmatis: Mycobacterium smegmatis, M. avium: Mycobacterium avium, M. marinum: Mycobacterium marinum, MICS: Minimum inhibitory concentrations, GSK: GlaxoSmithKline, MMV: Medicines for Malaria Venture, M. tuberculosis: Mycobacterium tuberculosis, M. ulcerans: Mycobacterium ulcerans, NTM: Nontuberculous mycobacteria, 3D: Three-dimensional, AMPK: Adenosine monophosphate-activated protein kinase, AGNPs: Silver nano particles, VAM: Vancomycin. GSK:
Millar and Moore: Novel antibacterial approaches to the NTMs

Pulmonary disease by non-tuberculous mycobacteria – Clinical

References

1. Larsson LO, Polverino E, Hoefsloot W, Codacsaa LR, Diel R, Jenkins SG, et al. Pulmonary disease by non-tuberculous mycobacteria – Clinical management, unmet needs and future perspectives. Expert Rev Respir Med 2017;11:977-89.

2. Primm TP, Lucero CA, Falkinham JO 3rd. Health impacts of environmental mycobacteria. Clin Microbiol Rev 2004;17:98-106.

3. Porvaznik I, Solovič I, Mokry J. Non-tuberculous mycobacteria: Classification, diagnostics, and therapy. Adv Exp Med Biol 2017;944:19-25.

4. Sheu CC, Lin SY, Chang YT, Lee CY, Chen YH, Hseuh PR, et al. Management of infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: Current evidence and future prospects. Expert Rev Anti Infect Ther 2018;16:205-18.

5. Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug-resistant Pseudomas infections: Hard to treat, but hope on the horizon? Curr Infect Dis Rep 2018;20:23.

6. Saravanan M, Niguse S, Abdulkader M, Tsegay E, Hailekiros H, Gebrekidan A, et al. Review on emergence of drug-resistant tuberculosis (MDR and XDR-TB) and its molecular diagnosis in Ethiopia. Microb Pathog 2018;117:237-42.

7. van Ingen J, Boeree MJ, van Sooilingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 2012;15:149-61.

8. Huh JJ, Kim SY, Juhn BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infect Genet Evol 2018. pii: S1567-1348(18)30784-6.

9. Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol 2018;9:2179.

10. Wu ML, Azie DB, Dartois V, Dick T. NTM drug discovery: Status, gaps and the way forward. Drug Discov Today 2018;23:1502-19.

11. Gupta VK, Kaushik A, Chauhan DS, Ahirwar RK, Sharma S, Bisht D, et al. Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms. J Ethnopharmacol 2018;227:113-20.

12. Famewo EB, Clarke AM, Afolayan AJ. Ethno-medicinal documentation of polyherbal medicines used for the treatment of tuberculosis in Amathole district municipality of the Eastern Cape Province, South Africa. Pharm Biol 2017;55:696-700.

13. Kazemian H, Heidari H, Yamchi JK, Zandi H, Taji A, Yazdani F, et al. Familial multidrug-resistant Mycobacterium tuberculosis (TB) and assessment of their antimycobacterial activity. BMC Complement Altern Med 2017;17:977.

14. Henričes-Sánchez KM, Garduno-Siciliano L, Luna-Herrera J, Zepeda-Vallejo LG, Lagunas-Rivera S, García-Gutiérrez GE, et al. Antimycobacterial and hypolipemiant activities of Bidens odorata (Cavanilles). J Ethnopharmacol 2018;222:159-64.

15. Diop EA, Queiroz EF, Kicksa S, Rudsza S, Diop T, Soldati T, et al. Survey on medicinal plants traditionally used in Senegal for the treatment of tuberculosis (TB) and assessment of their antimycobacterial activity. J Ethnopharmacol 2018;216:71-8.

16. Rahgozar N, Bakhshi Khanki G, Sardari S. Evaluation of antimycobacterial and synergistic activity of plants selected based on cheminformatic parameters Iran Biomed J 2018;22:401-7.

17. Komape NP, Bagla VP, Kabongo-Kayoka P, Masoko P. Anti-mycobacteria potential and synergistic effects of combined crude extracts of selected medicinal plants used by Bapedi traditional healers to treat tuberculosis related symptoms in Limpopo Province, South Africa. BMC Complement Altern Med 2017;17:128.

18. Nyambuya T, Mautsa R, Mukanganyama S. Alkaloid extracts from Combretum zeyheri inhibit the growth of Mycobacterium smegmatis. BMC Complement Altern Med 2017;17:124.

19. Marini E, Di Giulio G, Magi G, Di Lodovico S, Cimarelli ME, Benciani A, et al. Curcumin, an antibiotic resistance breaker against a multiresistant clinical isolate of Mycobacterium abscessus. Phytother Res 2018;32:488-95.

20. Rossi GG, Guterres KB, Bonez PC, da Silva Gundel S, Aggert VA, Siqueira FS, et al. Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog 2017;113:335-41.

21. Bhunu B, Mautsa R, Mukanganyama S. Inhibition of biofilm formation in mycobacterium smegmatis by Parinari curatellifolia leaf extracts. BMC Complement Altern Med 2017;17:285.

22. Fogonog-Fodjo MC, Ndinteh DT, Olivier DK, Kempgens P, van Vuuren S, Krause RW, et al. Secondary metabolites from Tetraeca potatoria stem bark with anti-mycobacterial activity. J Ethnopharmacol 2017;195:238-45.

23. Matsumura Y, Kitabatake M, Ouji-Sageshima N, Yasui S, Mochida N, Nakano R, et al. Persimmon-derived tannin has bacteriostatic and anti-inflammatory activity in a murine model of Mycobacterium avium complex (MAC) disease. PLoS One 2017;12:e0183489.

24. Coronado-Aceves EW, Gigliarelli G, Garrabey-Escoar A, Zepeda RE, Curini M, López Cervantes I, et al. New isoflavonoids from the extract of Rhynchocoris precatoria (Humb. and Bonpl. Ex willd.) DC. and their antimycobacterial activity. J Ethnopharmacol 2017;206:92-100.

25. Peré D, Gobin I, Abram M, Brozníč D, Svalina T, Štífer S, et al. Antimycobacterial potential of the juniper berry essential oil in tap water. Arh Hig Rada Toksikol 2018;69:46-54.

26. Castillo TA, Lemos RA, Pereira JR, Alves JM, Teixeira MF. Mycelial growth and antimicrobial activity of Pleurotus species (Agaricomycetes). Int J Med Mushrooms 2018;20:191-200.

27. Bao J, Zhai H, Zhu K, Yu JH, Zhang Y, Yang Y, et al. Bioactive pyridone alkaloids from a deep-sea-derived fungus Arthrinium sp. UNIMF0008. Mar Drugs 2018;16: pii: E174.

28. Maarisit W, Abdjul DB, Yamazaki H, Kato H, Rotinsulu H, Wewengkang DS, et al. Anti-mycobacterial alkaloids, cyclic 3-alkyl pyridinium dimers, from the Indonesian marine sponge Haliclona sp. Bioorg Med Chem Lett 2017;27:3503-6.

29. Abdjul DB, Yamazaki H, Kanno S, Tomizawa A, Rotinsulu H, Wewengkang DS, et al. An anti-mycobacterial biofunctionalized sphyngolipid and new bromopyrrole alkaloid from the Indonesian marine sponge Aegela sp. J Nat Med 2017;71:531-6.

30. Perunmal Samy R, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimicrobial agents. Biochem Pharmacol 2017;134:127-38.

31. Marques-Neto LM, Trentini MM, das Neves RC, Resende DP, Procopio VO, da Costa AC, et al. Antimicrobial and chemotactic activity of scorpion-derived peptide, TpAP2, against Mycobacterium massiliensis. Toxins (Basel) 2018;10. pii: E219.

32. Trentini MM, das Neves RC, Santos BP, DaSilva RA, de Souza AC, Mortari MR, et al. Non-disulphide-bridge peptide 5.5 from the scorpion Hadurus gertschi inhibits the growth of Mycobacterium abscessus subsp. massiliensis. Front Microbiol 2017;8:273.

33. Sala A, Cabassi CS, Cantospierto D, Polverini E, Flisi S, Caviriani S, et al. Novel Naja atrox cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. PLoS One 2018;13:e0190778.

34. Silva JC, Neto LM, Neves RC, Goncalves JC, Trentini MM, Mucury-Filho R, et al. Evaluation of the antimicrobial activity of the mastoparan polybia-MPPI isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int J Antimicrob Agents 2017;49:167-75.

35. das Neves RC, Trentini MM, de Castro e Silva J, Simon KS, Bocca AL, Silva LP, et al. Antimycobacterial activity of a new peptide polydine-1 isolated from neutrophilic social wasp Polybia dimorpha. PLoS One 2016;11:e0149729.

36. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British thoracic society guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir Res 2017;4:e000242.

37. Aziz DB, Teo JW, Dartois V, Dick T, Teicoplanin – Tigecycline combination shows synergy against Mycobacterium abscessus. Front Microbiol 2018;9:392.
The discovery of ceftazidime/avibactam

Mycobacterium avium

Identification of the anti-mycobacterial functional properties of avibactam in vitro. Antimicrob Agents Chemother 2017;61: pii: e02198-17.

Srivastava S, Deshpande D, Sherman CM, Gumbo T. A ‘shock and awe’ dichloromethane and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium-intracellulare complex disease. J Antimicrob Chemother 2017;72:43-47.

Deshpande D, Srivastava S, Pasipanodya JG, Lee PS, Gumbo T. A novel cefazidime/avibactam, rifabutin, telodizole and moxifloxacin (CARTM) regimen for pulmonary Mycobacterium avium disease. J Antimicrob Chemother 2017;72:485-54.

Deshpande D, Srivastava S, Chapagain ML, Lee PS, Cirrincione KN, Pasipanodya JG, et al. Discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J Antimicrob Chemother 2017;72:636-42.

Kaushik A, Gupta C, Fisher S, Story-Roller E, Galanis C, Parrish N. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant Mycobacterium abscessus. Future Microbiol 2017;12:473-80.

Tatano Y, Yamabe S, Sano C, Tomioka H. Anti-Mycobacterium avium complex activity of clarithromycin, rifampin, rifabutin, and ethambutol in combination with adenosine 5′-triphosphate. Diagn Microbiol Infect Dis 2017;88:241-6.

Zhang Z, Lu J, Liu M, Wang Y, Zhao Y, Pang Y, et al. In vitro activity of clarithromycin in combination with other antimicrobial agents against Mycobacterium avium and Mycobacterium massiliense. Int J Antimicrob Agents 2019;43:399-406.

Patel YS, Mehra S. Synergistic response of rifampicin with hydroperoxides on Mycobacterium: A Mechanistic study. Front Microbiol 2017;8:2075.

Moore RE, Millar BC, Panickar JR, Moore JE. Interaction of South Asian spices with conventional antibiotics: Implications for antimicrobial resistance for Mycobacterium abscessus and cystic fibrosis. Int J Mycobacteriol 2018;7:257-60.

Olaru AM, Vasilescu V, Danuc R, Mangalagiu I. Antimycobacterial activity of nitrogen heterocyclic derivatives: 7-(pyridine-4-yl)-indolizine derivatives. Part VII8-12. J Enzyme Inhib Med Chem 2017;32:1291-8.

Cannalire R, Machado D, Felicietti T, Santos Costa S, Massari S, Manfroni G, et al. Natural isoavonoid biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. Eur J Med Chem 2017;140:320-31.

Singh AK, Thakare R, Karaulia P, Das S, Soni I, Pandey M, et al. Biological evaluation of diphenylethenedione chloride (DPIC) as a potential drug candidate for treatment of non-tuberculous mycobacterial infections. J Antimicrob Chemother 2017;72:3117-21.

Franz ND, Belardinielli JM, Kaminski MA, Dunn LC, Calado Nogueira de Moura V, Blaha MA, et al. Design, synthesis and evaluation of indole-2-carboxamides with pan anti-mycobacterial activity. Bioorg Med Chem 2017;25:3746-55.

Yavvari PS, Gupta S, Arora D, Nandicoori VK, Srivastava A, Bajaj A, et al. Clathrin-independent killing of intracellular mycobacteria and biofilm disruptions using synthetic antimicrobial polymers. Biomacromolecules 2017;18:2024-33.

Compain F, Soroka D, Heym B, Gaillard JL, Herrmann JL, Dorchêne D, et al. In vitro activity of telodizole against the Mycobacterium abscessus complex. Diagn Microbiol Infect Dis 2018;90:186-9.

Tang YW, Cheng B, Yeoh SF, Lin RTP, Teo JWP. Telodizole activity against clinical Mycobacterium abscessus complex isolates—an in vitro characterization study. Front Microbiol 2018;9:2095.

Deshpande D, Srivastava S, Pasipanodya JG, Lee PS, Gumbo T. Telodizole is highly bactericidal in the treatment of pulmonary Mycobacterium avium complex disease. J Antimicrob Chemother 2017;72:230-5.
et al. Compassionate nitric oxide adjuvant treatment of persistent Mycobacterium infection in cystic fibrosis patients. Pediatr Infect Dis J 2018;37:336-8.

78. Bogdanovski K, Ghaffari A, da Silva JL, Zelazny AM, Olivier KN. High-dose inhaled nitric oxide as a potential therapy against Mycobacterium abscessus lung infection in cystic fibrosis. Pediatr Pulmonol 2018;53(S2):99.

79. Miller CC, McMullin B, Martins J, Quon BS. Inhaled gaseous nitric oxide as a treatment for nontuberculous mycobacteria lung infection study. Pediatr Pulmonol 2018;53(S2):88.

80. Banaschewski B, Verma D, Stapleton M, Hittinger M, Knoth K, Lehr C, et al. Development of QRM-003, a novel nebulized antibiotic for the treatment of nontuberculous mycobacterial infections in cystic fibrosis. Pediatr Pulmonol 2018;53(S2):73-4.

81. Zhang J, Leifer F, Rose S, Chun DY, Thaiss J, Herr T, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol 2018;9:915.

82. Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT): A Prospective, open-label, randomized study. Am J Respir Crit Care Med 2018. doi: 10.2173/1548491X13666180626170155.

83. Caimmi D, Martocq N, Triolleyre D, Guinet C, Godreuil S, Daniel T, et al. Positive effect of liposomal amikacin for inhalation on Mycobacterium abscessus in cystic fibrosis patients. Open Forum Infect Dis 2018;5:ofy034.

84. Olivier KN, Griffith DE, Eagle G, McGinnis JP 2nd, Micioni L, Liu K, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017;195:814-23.

85. Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann JL, Pethé K, et al. Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected Zebrafish. Antimicrob Agents Chemother 2017;61. pii: e01225-17.

86. Aguilar-Ayala DA, Cnockaert M, Andrè E, Andries K, Gonzalez-Y-Merchand JA, Vandamme P, et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol 2017;66:1140-3.

87. Vesenbeck S, Schönfeld N, Krieger D, Bettermann G, Bauer TT, Rüssmann H, et al. Bedaquiline as a potential agent in the treatment of M. intracellulare and M. avium infections. Eur Respir J 2017;49. pii: 1601969.

88. Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother 2017;61. pii: e02627-16.

89. Brown-Elliott BA, Philley JV, Griffith DE, Thakkar F, Wallace RJ Jr. In vitro susceptibility testing of bedaquiline against Mycobacterium avium complex. Antimicrob Agents Chemother 2017;61. pii: e01798-16.

90. Li B, Ye M, Guo Q, Zhang Z, Yang S, Ma W, et al. Determination of MIC distribution and mechanisms of decreased susceptibility to bedaquiline among clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother 2018;62. pii: e00175-18.

91. Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL, et al. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest 2017;152:800-9.

92. Luo J, Yu X, Jiang G, Fu Y, Huo F, Ma Y, et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob Agents Chemother 2018;62. pii: e00072-18.

93. Aziz DB, Low JL, Wu ML, Gengenbacher M, Teo JWP, Dartois V, et al. Rifabutin is active against Mycobacterium abscessus complex. Antimicrob Agents Chemother 2017;61. pii: e00155-17.

94. Moore JE, Koulianos G, Hardy M, Misawa N, Millar BC. Antimycobacterial activity of veterinary antibiotics (Amprenavir and framycetin) against Mycobacterium abscessus: Implication for patients with cystic fibrosis. Int J Myco bacteriol 2018;7:265-7.

95. Kirkwood ZI, Millar BC, Downey DG, Moore JE. Anti-mycobacterial activity of non-antibiotics associated with the polypharmacy of cystic fibrosis against Mycobacterium abscessus. Int J Mycobacteriol 2018;7:358-60.

96. Johnston DN, O’Kane CM. Investigating the effect of zafirlukast on Mycobacterium abscessus. Ir J Med Sci 2018;187 Suppl 8:S298.

97. Richard M, Gutiérrez AV, Viljoen A, Rodriguez-Rincon D, Roquet-Baneres F, Blaise M, et al. Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2018. pii: AAC.01316-18.

98. Kwofie SK, Dankwa B, Odame EA, Agamah FE, Doe LPA, Teye J, et al. In silico screening of isocitrate lyase for novel anti-buruli ulcer natural products originating from Africa. Molecules 2018;23. pii: E1550.

99. Richter A, Strauch A, Chao J, Ko M, Av-Gay Y. Screening of preselected libraries targeting Mycobacterium abscessus for drug discovery. Antimicrob Agents Chemother 2018;62. pii: e00828-18.

100. Jeong J, Kim G, Moon C, Kim HJ, Kim TH, Jang J, et al. Pathogen box screening for hit identification against Mycobacterium abscessus. PLoS One 2018;13:e0195595.

101. Low JL, Wu ML, Aziz DB, Laleu B, Dick T. Screening of TB actives with cystic fibrosis against Mycobacterium abscessus. Molecules 2018;23. pii: E1550.

102. Luo J, Yu X, Jiang G, Fu Y, Huo F, Ma Y, et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob Agents Chemother 2018;62. pii: e00072-18.

103. Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL, et al. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest 2017;152:800-9.

104. Kim TS, Shin YH, Lee HM, Kim JK, Choe JH, Jang JC, et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob Agents Chemother 2018;62. pii: e00072-18.

105. Bajpai U, Mehta AK, Eniyan K, Sinha A, Ray A, Virdi S, et al. Development of QRM-003, a novel nebulized antibiotic for the treatment of nontuberculous mycobacterial infections in cystic fibrosis. Pediatr Pulmonol 2018;53(S2):99.

106. Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front Cell Infect Microbiol 2018;8:376.