RESUMO
Elaborar um protocolo de reabilitação pós-reconstrução do ligamento cruzado posterior (LCP) através de revisão da literatura. Foi realizada uma revisão da literatura em busca de dados referentes a conceitos e estudos biomecânicos relacionados com o ligamento cruzado posterior do joelho, utilizando-se os bancos de dados Medline e Embase. A estratégia de busca foi montada com a seguinte regra: problema ou lesão, associado a termos de localização anatômica, procedimento de intervenção cirúrgica associado a termos de reabilitação. Iniciamos o processo desta forma e posteriormente realizamos restrições a termos específicos para melhorar a especificidade da busca. Para confecção do protocolo, uma tabela foi construída para melhor direcionamento dos dados, com base no tempo decorrido do procedimento cirúrgico até o início da fisioterapia. Um protocolo de reabilitação foi criado para melhor controle da descarga de peso nas primeiras semanas com o auxílio de imobilizador de joelho. Objetivamos o ganho da amplitude de movimento total do joelho, que deve ser conseguido até o terceiro mês, evitando-se, assim, contraturas resultantes do processo de cicatrização tecidual. Os exercícios de fortalecimento e treino sensório-motor foram orientados de acordo, evitando-se sobrecarga sobre o enxerto e respeitando os períodos de cicatrização do mesmo. O protocolo proposto nesta revisão foi enquadrado dentro das evidências atuais sobre o assunto.

Descritores – Ligamento Cruzado Posterior; Joelho; Reabilitação

ABSTRACT
To create a rehabilitation protocol following reconstruction of the posterior cruciate ligament (PCL), through a literature review. The literature review was conducted in the Medline and Embase databases, to search for data on biomechanical concepts and analyses relating to the posterior cruciate ligament of the knee. The search strategy was set up using the following rules: problem or injury in association with anatomical location terms; or surgical intervention procedure in association with rehabilitation terms. We began the process in this manner and subsequently introduced restrictions on certain terms to improve the search specificity. To design the protocol, a table was created for better data assessment, based on the time that elapsed between surgery and the start of physiotherapy. A rehabilitation protocol was created to improve weight-bearing control in the initial weeks after surgery, with the aid of a knee brace. Our aim was to achieve gains in total range of motion of the knee, which should be attained by the third month, thereby avoiding contractures resulting from the tissue healing process. Strengthening exercises and sensory-motor training were guided accordingly, thus avoiding overload on the graft and respecting the healing phases. The protocol proposed through this review was based on the current evidence relating to this subject.

Keywords – Posterior Cruciate Ligament; Knee; Rehabilitation

Os autores declaram inexistência de conflito de interesses na realização deste trabalho / The authors declare that there was no conflict of interest in conducting this work

Este artigo está disponível online nas versões Português e Inglês nos sites: www.rbo.org.br e www.scielo.br/rbort
This article is available online in Portuguese and English at the websites: www.rbo.org.br and www.scielo.br/rbort
INTRODUÇÃO

A reabilitação do joelho na lesão do ligamento cruzado posterior (LCP) tratado de forma conservadora ou pós-reconstrução carece de estudos biomecânicos, histológicos e clínicos, e se baseia muitas vezes em aspectos de integração e reabilitação do ligamento cruzado anterior, que são transpostos para o LCP. O objetivo deste trabalho é revisar esses aspectos presentes na literatura atual e, juntamente com o conhecimento tácito dos últimos anos no nosso serviço, sugerir um protocolo de reabilitação.

MÉTODOS

A busca da literatura foi realizada na base de dados da Medline pelo site da Pubmed e a base de dados do Embase utilizando-se da estratégia Paciente, Intervenção, Comparação e Resultados (outcome) (PICO). A pesquisa foi dividida em estratégias de busca que enfatizavam a amplitude de movimento e em exercícios terapêuticos, utilizando-se as estratégias de pesquisa descritas a seguir.

Sobre a amplitude de movimento (ADM): Surgery, Reconstruction e Posterior cruciate ligament foram combinados e os termos Posteromedial corner, Posterolateral corner, Arthroplasty, Prosthesis e Total knee replacement foram utilizados para limpar a busca de artigos relacionados. Além disso, os termos Rehabilitation e Range of motion também foram combinados na tentativa de recuperar somente artigos relacionados ao ganho de amplitude de movimento (ADM). Desta forma, foram identificados 33 artigos; destes, 11 faziam relatos da amplitude de movimento (ADM). Desta forma, foram identificados 33 artigos; destes, 11 faziam relatos da amplitude de movimento (ADM). Desta forma, foram identificados 33 artigos; destes, 11 faziam relatos da amplitude de movimento (ADM). Desta forma, foram identificados 33 artigos; destes, 11 faziam relatos da amplitude de movimento (ADM).

Sobre o programa de exercícios: Posterocruciate ligament foi combinado com Physical therapy modalities, Rehabilitation, Exercise, Exercise therapy e Exercise test como estratégia, e foram identificados 19 artigos. Destes, seis tinham como objetivo analisar o protocolo de reabilitação.

Além disso, devido ao fato de poucos estudos in vivo estarem disponíveis, também utilizamos uma estratégia com maior sensibilidade, analisando os estudos de biomecânica in vitro e de modelos matemáticos sobre os exercícios relacionados ao joelho.

Quando utilizamos o filtro de meta-análise, os estudos clínicos controlados e randomizados, somente um estudo foi identificado, e este não abordava todos os aspectos da reabilitação. Sendo assim, a revisão (Tabela 1) foi feita principalmente sobre trabalhos de ciência de base, e em modelos de cadáveres, devido aos poucos ensaios clínicos controlados e randomizados encontrados. A construção

Tabela 1 – Revisão com busca sistematizada da literatura.

Autor e Ano	Brace em extensão	Descarga de peso	ADM	CCA	CCF	IQT
Fanelli et al (1994)[27]	6ª semana	Tolerância	0-90° sem prazo	0-70°		
Irland et Fitzgerald (2000)[25]	6ª a 8ª semanas	Tolerância	0-90° a 6 a 8 semanas			
Stähelin et al (2001)[15]	6ª semana	Tolerância				
Allen et al (2002)[19]	4ª semana	Tolerância			4ª a 6ª semanas	
Margheritini (2002)[18]	6ª semana	Parcial até a 6ª ou 8ª semana	Progressiva e lenta			
Botto e Parr (2003)[11]	Desbloqueia após o bom controle do quadriceps	Progressiva após a 8ª semana	0 a 70° de 4 a 6 semanas	X	X	
Noyes et al (2003)[16]	6ª semana	Parcial inicialmente e total após a 6ª semana	3°-0°-120°	X	0-70°	8ª semana
Wang et al (2003)[8]	6ª semana	Tolerância	Sem especificação	X	X	6ª semana
Chen et al (2007)[7]	6ª semana	Tolerância	0 a 60° até a 6ª semana e 90° até a 8ª semana	X	6ª semana	
Faustino (2003)[17]	6ª semana	Tolerância	Sem limite estipulado		12ª semana	
MacGillivray et al (2006)[12]	4ª semana	Parcial			0 a 90°	
Fanelli et al (2010)[21]	4ª a 6ª semanas	Sem carga até a 6ª, parcial entre 7a-10a e total na 11a semana	3ª a 6ª semanas sem ADM estipulada	X	X	
Fanelli (2008)[3]	3ª a 6ª semanas	Sem carga até a 6ª, parcial entre 7a-9a e total na 10a semana	Início progressivo na 4ª semana		0-45° na 11ª semana	Início na 24ª semana
McAllister e Hussain (2010)[20]	3ª semana	Sem carga até a 3ª-6ª, parcial entre 3ª-6ª e total na 6ª semana	Início entre a 3ª-6ª semanas	X	X	
Queirard et al (2010)[19]	6ª semana	Sem carga até a 10ª dia, parcial entre o 11 e a 6ª semana e total após a 6ª semana	0-60° até a 6ª semana, 0-95° até a 8ª semana e 0-120° após a 8ª semana	2ª semana	6ª semana	16ª semana
Fanelli et al (2010)[21]	5ª semana	Sem carga até a 5ª semana, parcial até a 10ª semana e total após a 10ª semana	5ª a 10ª semanas	X	11ª semana	
Edson et al (2010)[22]	5ª semana	Sem carga até a 5ª semana, parcial até a 10ª semana e total após a 10ª semana	5ª a 10ª semanas			

Rev Bras Ortop. 2012;47(4):420-6
do protocolo foi realizada em uma planilha com formato que acompanha a variável tempo de pós-operatório. Deste modo, o protocolo se torna de fácil visualização e consulta (Anexo 1).

RESULTADOS

O protocolo apresentado mostra o período de liberação da carga precoce nas primeiras semanas, sendo feita de forma parcial com uso de duas muletas e com um imobilizador longo bloqueado em extensão.

As mobilizações passivas para a melhora da amplitude de movimento (ADM) devem ser realizadas de forma precoce; para isso, preconizamos um ganho progressivo tendo como parâmetro 70° de flexão na quarta semana e 90° na sexta semana; e, depois, o ganho total da ADM deve ser conseguido até o terceiro mês para evitar contraturas resultantes do processo de cicatrização tecidual. Note que o movimento de flexão ativa do joelho deve ser retardado por dois meses.

O período pós-cirúrgico da reconstrução do LCP pode vir acompanhado de dor; neste caso, a analgésia realizada por recursos eletroterápicos é benéfica para o processo de reabilitação no sentido de comodidade para o paciente. O recurso da crioterapia deve ser utilizado sempre que o joelho apresentar quadro de dor ou edema.

A maior restrição da fisioterapia no processo de reabilitação do paciente está relacionada com os exercícios de fortalecimento. Em nosso protocolo, retardamos os exercícios de cadeia cinética aberta (CCA) para os flexores do joelho, para a oitava semana de pós-operatório, deixando os exercícios em cadeia cinética fechada (CCF) e aberta (CCA) dos extensores para a segunda semana.

O trabalho sensório-motor deve iniciar junto com a liberação dos exercícios de CCF para extensores, e a progressão de solos estáveis para instáveis deve ser realizada até, aproximadamente, o quarto mês junto aos estresses de deslocamento anteroposterior, laterolateral e rotacional, respectivamente. Neste período, iniciamos o processo de treino pliométrico que reservamos à população de atletas.

A previsão para a liberação de atividades gerais aos indivíduos não atletas gira em torno do sexto mês, prorrogada por mais dois meses para as atividades esportivas de nível competitivo.

DISCUSSÃO

O processo de reabilitação na lesão do LCP é avaliado como um ponto complementar, porém essencial na recuperação funcional do joelho. Os protocolos de reabilitação priorizam a proteção do ligamento reconstruído, evitando-se o estresse excessivo no enxerto durante a reabilitação, até que ocorra integração do mesmo; contudo, não se sabe ao certo quais são as tensões seguras e o que podem provocar durante os exercícios de reabilitação.

Pouco se conhece sobre as modificações estruturais do enxerto após a reconstrução ligamentar. Bosch e Kasperczyk estudaram as características histoquímicas e biomecânicas do enxerto do terço central do tendão patelar para reconstrução do ligamento cruzado anterior (LCA), em ovelhas, na intenção de entender o processo de integração, e encontraram uma fase necrótica e diminuição da resistência ao estresse principalmente na oitava semana pós-reconstrução. Dado interessante é que foi encontrada necrose do enxerto até a semana 104, isto é, dois anos pós-reconstrução.

Além disso, é uma tarefa difícil determinar o estresse que os ligamentos estão sujeitos durante o movimento passivo do joelho nas atividades de carga e de força muscular, e se essas são prejudiciais ao enxerto. Métodos de mensuração direta como a colocação de células de carga (dispositivos de medição) no ligamento são muito difíceis para serem realizados in vivo. Desta maneira, estudos em cadáveres e métodos indiretos de biomecânica como a dinâmica inversa, são os mais utilizados.

Aspectos relacionados à amplitude de movimento

Para evitar a perda da amplitude de movimento (ADM), Irrgang e Harner dividiram os cuidados com os joelhos reconstruídos em três fases: na pré-cirúrgica, deve ser focada a eliminação do edema, da dor e a restauração da ADM; na fase intraoperatória, a ADM parece estar intimamente relacionada ao posicionamento dos túneis ósseos e a técnica cirúrgica; na fase pós-cirúrgica, a mobilização precoce e o ganho de mobilidade com a extensão restaurada entre duas e três semanas e a flexão obtida até o terceiro mês são preconizados.

Restrições em relação ao limite de ganho de flexão do joelho são discutidas e controversas nos protocolos de reabilitação encontrados na literatura. Alguns autores priorizam limitar a angulação entre 0 e 60°, 0 e 70°, 0 e 90°, 0 e 120°, sem limite estimulado e conforme a tolerância do paciente. Quelard et al. preconizam um protocolo gradativo para o ganho da mobilidade passiva do joelho, realizando uma amplitude de 0-60° nas primeiras seis semanas, 0-90° da sexta a oitava semanas e de 0-120° a partir da oitava semana.

Alguns estudos utilizam um protocolo mais lento e não realizam a mobilização passiva do joelho nas primeiras semanas. McAllister e Hussain iniciam entre a terceira e a sexta semanas, Fanelli et al. entre a quinta e a 10ª semanas, Fanelli na quarta semana e Edson et al. na quinta semana.

Os critérios de progressão da ADM não são discuti-
dos nos protocolos encontrados e nenhuma explicação biomecânica justifica o motivo de se limitar o ganho passivo do movimento. Os protocolos adotados na literatura existente parecem estar baseados em experiências clínicas pessoais.

Estudos in situ sobre as tensões no LCP demonstraram que, com o aumento do grau de flexão passiva do joelho, há também aumento nas tensões no LCP e, além disso, o estresse em varo e o cisalhamento posterior da tíbia também podem gerar aumento de força sobre o LCP.

Devido a essas evidências, devemos ser cautelosos com o ganho de ADM passiva do joelho; por outro lado, a demora no ganho de movimento pode trazer consequências como a restrição de amplitude articular e perda funcional.

Um dos procedimentos práticos utilizados por diversos profissionais, durante a reabilitação, é a estabilização da tíbia com pressão anterior constante na região posterior da perna a fim de evitar tensões excessivas no ligamento. A diminuição da tensão no LCP com a anteriorização da tíbia é demonstrada em estudos em cadáveres e defendida por Irrgang e Fitzgerald em seu protocolo de reabilitação.

No nosso protocolo restrinhamos o ganho de ADM passiva até 70º por quatro semanas evoluindo a 90º por mais duas semanas. Após a sexta semana, o ganho de ADM passiva é progressivo conforme a tolerância do paciente, porém mantemos a força de anteriorização passiva aplicada à tíbia até a 10ª semana.

Liberação da descarga de peso (marcha)

A liberação de descarga de peso precoce nas reconstruções isoladas do LCP é uma prática comum entre os protocolos de reabilitação citados na literatura, porém não existe um consenso sobre o quanto poderia ser empregada sem causar efeitos deletérios ao enxerto em cicatrização. Muitos protocolos são favoráveis à descarga de peso precoce conforme tolerância do paciente; ou seja, a descarga poderá ser completa nas primeiras semanas de reconstrução.

Através de um trabalho com modelo matemático, Shelfburne e Pandy demonstraram que, devido às forças incidentes sobre o joelho durante a descarga de peso, a tíbia apresenta tendência ao cisalhamento anterior em relação ao fêmur, o que, teoricamente, não sobrecarregaria o LCP.

Bosch e Kasperczyk, em seu experimento com ovelhas, verificaram que o movimento e a descarga de peso precoce não geraram rupturas e nem aumento do comprimento do enxerto. Corroborando com esse conceito, Touongui et al. verificaram que o efeito de compressão axial tende a diminuir o cisalhamento femorotibial e, consequentemente, os estresses gerados nos ligamentos centrais.

No estudo de Noyes e Barber-Westin, que envolve a reconstrução do LCP, a descarga de peso foi realizada de forma progressiva, com órtese protetora bloqueia em extensão por quatro semanas, até a liberação da carga total por volta da quinta semana; porém, outros estudos são divergentes. Alguns autores preconizam que a descarga de peso deve ser conforme tolerância do paciente e iniciada já na primeira semana, um estudo restringe uma carga parcial até a sexta semana, outros até a oitava semana.

A descarga de peso, em alguns protocolos, não é preconizada nos primeiros dias pós-reconstrução. Quelard et al. realizam seu protocolo inicialmente sem descarga de peso nos 10 primeiros dias, evoluindo para descarga parcial no 11º dia até a quinta semana total após a sexta semana. McAllister e Hussain não utilizaram a descarga de peso por três semanas, evoluindo para descarga parcial na quarta e quinta semanas e total, na sexta semana. Edson et al. permanecem cinco semanas sem descarga de peso, evoluindo para parcial na sexta semana e total na 10ª semana. Outros autores têm protocolos diferentes.

Embasa nos estudos citados acima, no nosso grupo cada vez mais se sente seguro para recomendar descarga de peso parcial, com evolução para total, de acordo com a tolerância do paciente para as lesões isoladas do LCP.

Fortalecimento muscular

Para o processo de fortalecimento muscular, a utilização de exercícios de cadeia cinética aberta (CCA) ou fechada (CCF) geram controvérsias sobre a eficácia no ganho de força, controle dos músculos do joelho e estresse gerado nos ligamentos entre as duas opções de reabilitação. Há tendência de utilização dos exercícios em CCF no início dos protocolos e uma complementação com exercícios de CCA na fase mais avançada, pois os primeiros (CCF) geram forças de compressão axial sobre a articulação, o que diminuiria as forças de cisalhamento no joelho, além de levar à contração simultânea do quadríceps e isquiotibiais, desejáveis na fase inicial de reabilitação.

Nos protocolos de reabilitação citados em estudos prévios, a introdução dos exercícios em cadeias cinéticas aberta e fechada é realizada de forma arbitrária e sem respaldo de trabalhos que quantifiquem as tensões no LCP ou suas consequências em relação à lassidão ligamentar durante o processo de reabilitação. Quelard et al. recomendam o início da CCA para fortalecimento do quadríceps a partir da segunda semana, alguns estudos sugerem iniciar a CCA nas primeiras três semanas e outros introduzem somente entre a quarta e a sexta semana. Faneli só inicia o fortalecimento do

Rev Bras Ortop. 2012;47(4):420-6
quadriceps em CCA na 11ª semana em angulação de 0-45º.

Algumas angulações de proteção são preconizadas para os exercícios de fortalecimento do quadriceps em CCA. Variam entre 0 e 60º(9,13,14), enquanto outros autores recomendam esse fortalecimento de 0 a 70º(27).

Dürselen et al(23) demonstraram, em cadáveres, e outros autores(2,33,35), em modelos matemáticos, que nos exercícios em CCA o músculo quadriceps poderia diminuir o estresse sobre o LCP, principalmente no final da extensão do joelho, sendo este o exercício de escolha no início do processo de reabilitação.

Uma ressalva deve ser feita em relação aos exercícios em CCA para o quadriceps e suas implicações na reabilitação pós-reconstrução do ligamento cruzado posterior. Se considerarmos somente as angulações de proteção em relação ao enxerto do LCP, poderemos causar estresses demasiados na articulação femoropatelar e, consequentemente, lesão da cartilagem de revestimento sar estresses demasiados na articulação femoropatelar e, de acordo com o aumento da tensão sobre o LCP, devido à força de tração destes músculos sobre a tíbia(26). Shelburne e Pandy(26) demonstraram que os IQT são responsáveis por uma tensão posterior constante e, de acordo com o aumento de flexão do joelho, as forças que favorecem a posteriorização da tíbia são diminuídas.

Os protocolos de reabilitação por nós encontrados introduziram os exercícios em CCF para fortalecimento do quadriceps em diversos períodos do protocolo de reabilitação. Esses períodos variam entre a quarta(9,10), sexta(19,27), oitava(11,14), 10ª(22), 11ª(3,21) e 12ª semanas(17).

Em relação às angulações de proteção, três variantes foram encontradas em nossa pesquisa. Alguns autores começam com miniagachamentos de 0 a 45º(3,25), outros introduzem a CCF em uma angulação de 0 a 70º(16) e alguns estudos(19,22) iniciam de 0-60º.

Estudos in vivo(38-40) analisando o comprimento do LCP nativo através de mensurações realizadas com ressonância magnética demonstraram aumentos do comprimento das duas bandas do LCP em angulações maiores de flexão em CCF. Porém, este tipo de mensuração não é capaz de definir a quantidade de tensão gerada no LCP durante os exercícios ativos da reabilitação; portanto, somente mensurações diretas, através de células de carga, seriam capazes de definir essas tensões, mas a metodologia desse procedimento torna-se muito difícil para avaliar o LCP.

Em relação aos exercícios em CCF, estes ditos exercícios seguros em relação às forças de cisalhamento anterior da tíbia(26), devem ser realizados com cuidado na fase inicial do processo de reabilitação na cirurgia do LCP. Os fatores que podem influenciar sobre os estresses nos ligamentos cruzados são as forças geradas pelas contrações musculares, como as co-contrações e as forças de reação do solo(32).

Shelburne e Pandy(26) demonstraram que a partir dos 10º de flexão, nos exercícios de CCF, o LCP demonstra tensão aumentada, porém o pico de estresse ocorre em torno de 80º de flexão.

Em nosso protocolo, os exercícios em CCF são iniciados a partir da segunda semana e são realizados inicialmente em situações de sobrecarga controlada. Utilizamos exercícios em superfícies estáveis, como o leg press, os miniagachamentos e atividades funcionais como levantar e sentar em cadeiras altas.

A amplitude de movimento deve respeitar as angulações de 0 a 45º, pois o cisalhamento da tíbia se faz na direção anterior, o que pouparia o LCP de tensões exageradas, além de proteger a articulação femoropatelar(25). Após os 70-80º, as tensões aumentam consideravelmente, provocando estresses demasiados no LCP(26).

Já os músculos isquiotibiais (IQT), quando contraídos de forma isolada, portanto, em CCA, aumentam a tensão sobre o LCP, devido à força de tração destes músculos sobre a tíbia(2,26,34,35). Shelburne e Pandy(26) demonstraram que os IQT são responsáveis por uma tensão posterior constante e, de acordo com o aumento de flexão do joelho, as forças que favorecem a anteriorização da tíbia são diminuídas.

Os protocolos geralmente postergam a introdução dos exercícios direcionados aos isquiotibiais visando não tensionar demasiadamente o enxerto durante a fase inicial do pós-operatório. Os autores discordam em quando iniciar o trabalho muscular dos posteriores da coxa, variando entre a sexta semana(8), oitava semana(16), nona semana(13), 16ª semana(28), 24ª semana(3,19,22). Em nosso protocolo, os exercícios para isquiotibiais são postergados até oitava semana, visando poupar as forças de posteriorização da tíbia durante a fase inicial do protocolo de reabilitação.

Andersen et al(41) verificaram que após o período de 10 a 12 semanas da cirurgia do LCP, os pacientes com amplitude de movimento funcional, marcha normalizada e com pouca ou nenhuma queixa clínica importantes possuem menor preocupação em relação ao tipo de exercício, velocidade de realização e músculos a serem enfatizados para a normalização da força muscular e a restauração dos déficits funcionais remanescentes.
Treino sensório-motor

Uma das estruturas que auxiliam na propriocepção do joelho é o LCP(42), devido a uma enorme quantidade de proprioceptores encontrados neste ligamento. O efeito proprioceptivo do LCP é principalmente estudado e discutido em relação à preservação ou não deste ligamento nas cirurgias de prótese total de joelho. Os resultados são controversos ao comparar os joelhos com e sem o ligamento, quando avaliado o desfecho funcional do joelho(43).

Devido ao processo de lesão do LCP e de seu papel sobre a propriocepção, o treinamento sensório-motor sempre deve ser realizado e a evolução deve ser feita em solos estáveis e de exercícios estáticos para solos instáveis com exercícios dinâmicos e cada vez mais específicos ao objetivo funcional(43).

CONSIDERAÇÕES FINAIS

O protocolo proposto, em sua maior parte, foi enquadrado dentro das evidências atuais sobre o assunto e tem sido utilizado em nosso serviço com boa tolerância por parte dos pacientes. O estado atual de evidências nos permitiu analisar cada fase do processo de reabilitação; porém, mais estudos de cunho clínico com maior força de evidência devem ser realizados.

REFERÊNCIAS

1. Wilk KE. Rehabilitation of isolated and combined posterior cruciate ligament injuries. Sports Med. 1994;13(3):64-77.
2. Tontoungi DE, Lu TW, Learndin A, Catani F, O’Connor JJ. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech (Bristol,Avon). 2000;15(3):176-87.
3. Fanelli GC. Posterior cruciate ligament rehabilitation: how slow should we go? Arthroscopy. 2008;24(2):234-5.
4. Bosch U, Karsperczyk WJ. Healing of the patellar tendon autograft after posterior cruciate ligament reconstruction—a process of ligamentization? An experimental study in a sheep model. Am J Sports Med. 1992;20(5):558-66.
5. Irgang JJ, Harner CD. Loss of motion following knee ligament reconstruction. Sports Med. 1995;19(2):150-9.
6. Noyes FR, Barber-Westin SD. Reconstruction of the anterior and posterior cruciate ligaments after knee dislocation. Use of early protected postoperative motion to decrease arthrofibrosis. Am J Sports Med. 1997;25(6):769-78.
7. Chen CH, Chen WJ, Shih CH. Double-bundle posterior cruciate ligament reconstruction with quadriceps and semitendinosus tendon grafts. Arthroscopy. 2003;19(9):1023-6.
8. Wang CJ, Chen HS, Huang TW. Outcome of arthroscopic single bundle reconstruction for complete posterior cruciate ligament tear. Injury. 2003;34(10):747-51.
9. Leighton MM, Bach BR. Reabilitação das lesões dos ligamentos do joelho. In: Tria AJ. Lesões ligamentares do joelho. Rio de Janeiro: Revinter; 2002. p. 289-319.
10. Weber MD, Woodall WR. Reabilitação do joelho. In: Andrews JR, Harrelson GL, Wilk KE. Reabilitação física do atleta. Rio de Janeiro: Elsevier; 2005. p. 399-456.
11. Bottino CR, Parr RR. Double bundle arthroscopic posterior cruciate ligament reconstruction using a new medial femoral cortical bridge technique. Techniques in Knee Surgery. 2003;2(4):239-49. Available from: www.en.aspeart.com/mriitems/pdf/pdf%20op%20techs.pdf. Accessed in 2010 (Ago 11).
12. MacGillivray JD, Stein BE, Park M, Alien AA, Wickiewicz TL, Warren RF. Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy. 2006;22(3):320-8.
13. Kiser C, Colby LA, O’Joelho. In: Kiser C, Colby LA. Exercícios terapêuticos. São Paulo: Manole; 1998. p. 407-57.
14. Monteiro CG, Forge CS. Assistência fisioterapêutica nas lesões do ligamento cruzado posterior. In: Cohen M, Abdalla RJ. Lesões nos esportes. Rio de Janeiro: Revinter; 2003. p. 558-59.
15. Ståhelin AC, Sägdump NP, Weiler A. Anatomic double-bundle posterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy. 2001;17(1):88-97.
16. Noyes FR, Medvecky MJ, Bhargava M. Arthroscopically assisted quadriceps double-bundle tibial inlay posterior cruciate ligament reconstruction: An analysis of techniques and a safe operative approach to the popliteal fossa. Arthroscopy. 2003;19(9):950-955.
17. Faustino CAC. Reconstructão do ligamento cruzado posterior com os enxertos dos tendões dos músculos flexores do joelho. Acta Ortop Bras. 2003;11(2):95-101.
18. Margheritini F, Rihn J, Musahl V, Mani PP, Harner C. Posterior cruciate ligament injuries in the athlete: an anatomical, biomechanical and clinical review. Sports Med. 2002;32(6):393-408.
19. Querard B, Sonnery-Cottet B, Zayni R, Badet R, Fournier Y, Hager JP, et al. Isolated posterior cruciate ligament reconstruction: is non-aggressive reha-

Referências

1. Wilk KE. Rehabilitación de lesiones del ligamento cruzado posterior. In: Cohen M, Abdalla RJ. Lesiones de los deportes. Rio de Janeiro: Revinter; 1998. p. 407-57.
2. Edson CJ, Fanelli GC, Beck JD. Postoperative rehabilitation of the posterior cruciate ligament. Sports Med Arthrosc. 2010;18(4):275-8.
3. Dürselen L, Claes L, Kiefte H. The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med. 1995;23(1):129-36.
4. Markolf KL, O’Neill G, Jackson SR, McAllister DR. Effects of applied quadriceps and hamstrings muscles loads on forces in the anterior and posterior cruciate ligaments. Am J Sports Med. 2004;32(5):1144-9.
5. Irgang JJ, Fitzgerald GK. Rehabilitation of the multiple-ligament-injured knee. Clin Sports Med. 2000;19(3):545-71.
6. Shelburne KB, Pandy MG. Determinants of cruciate-ligament loading during rehabilitation exercise. Clin Biomech (Bristol, Avon). 1998;13(6):403-413.
7. Fanelli GC, Giannotti BF, Edson CJ. The posterior cruciate ligament arthroscopic evaluation and treatment. Arthroscopy. 1994;10(6):673-88.
8. Allen CR, Kaplan LD, Fluhme DJ, Harner CD. Posterior cruciate ligament injuries. Curr Opin Rheumatol. 2002;14(2):142-9.
9. Draganch LF, Vahey JW. An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res. 1990;8(1):57-63.
10. Escamilla RF, Fleisig GS, Zheng N, Barrette SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556-69.
11. Escamilla RF. Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc. 2001;33(1):127-41.
12. Palmier RA, An KN, Soo SG, Chao EY. Kinetic chain exercise in knee rehabilitation. Sports Med. 1991;11(6):402-15.
13. Lutz GE, Palmier RA, An KN, Chao EY. Comparison of tibiofemoral joint forces during open-kinetic-chain and closed-kinetic-chain exercises. J Bone Joint Surg Am. 1993;75(5):732-9.
14. Mesfar W, Shirazi-Adl A. Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction. Comput Methods Biomech Biomed Engin. 2006;9(4):201-3.
15. Zavatsky AB, Beard DJ, O’Connor JJ. Cruciate ligament loading during iso-

PROTOCOLO DE REABILITAÇÃO PARA AS RECONSTRUÇÕES ISOLADAS DO LIGAMENTO CRUZADO POSTERIOR

425

425
Anexo 1 – Protocolo reabilitação do ligamento cruzado posterior.

Protocolo de Reabilitação

Data cirurgia	SEMANA	MÊS						
AVD's	1 2 3 4 5 6 7 8	3 4 5 6 7 8						
CARGA PARCIAL	** •	** •	** •	** •	** •	** •	** •	** •
CARGA TOTAL	# •	# •	# •	# •	# •	# •	# •	# •
DIRIGIR	# •	# •	# •	# •	# •	# •	# •	# •
SUBIR E DESCER ESCADAS	# •	# •	# •	# •	# •	# •	# •	# •
CORRER	# •	# •	# •	# •	# •	# •	# •	# •

* 1 MULETA; 2 MULETAS; 3 ANDADOR

LIBERAÇÃO DA CARGA, SEGUNDO TOLERÂNCIA DO PACIENTE

* COM BRACE EXTENSÃO

* RETIRADA DO BRACE

ADM (Extensão-Flexão)

SEMANA	MÊS		
PASSIVA	1 2 3 4 5 6 7 8	3 4 5 6 7 8	
ATIVO LIVRE	0.70 **	0.90 **	† ganho progressivo
MOBILIZAÇÃO OPORTUNA	0-90	† ganho progressivo	

* OBS: (SANTIT MINIMO ESPERADO)

* ENFASE NA EXTENSÃO (6°)

* ESTABILIZAR VIÃA POSTERIORMENTE

ANALGESIA

SEMANA	MÊS	
ELETROANALGESIA (min. 30min)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
CRIOTERAPIA (20-30 MINUTOS)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
MOBILIZAÇÃO	1 2 3 4 5 6 7 8	3 4 5 6 7 8

* OBS: PODE SER REALIZADO A CADA 2 HORAS

CINESTETRAPIA

SEMANA	MÊS				
ALONGAMENTO (IQ’s e TS)	1 2 3 4 5 6 7 8	3 4 5 6 7 8			
ALONGAMENTO (QUAD)	# •	# •	# •	# •	# •
CCA (QUADRIL-FLEXÃO)	# •	# •	# •	# •	# •
CCA (QUADRIL-EXTENSÃO)	# •	# •	# •	# •	# •
CCA (QUADRIL-ADUÇÃO)	# •	# •	# •	# •	# •
CCA (JOELHO-FLEXÃO)	# •	# •	# •	# •	# •
CCA (JOELHO-EXTENSÃO)	# •	# •	# •	# •	# •
CCA (TORNOSTÉLO)	# •	# •	# •	# •	# •
CCF (Solo estável)	# •	# •	# •	# •	# •
CCF (Solo inestável, sem apoio)	# •	# •	# •	# •	# •
BICICLETA ERGÔMETRICA	# •	# •	# •	# •	# •

* OBS: PODE SER REALIZADO A CADA 2 HORAS

Senso-motor

SEMANA	MÊS	
SOLO ESTÁVEL (Bipodal)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SOLO ESTÁVEL (Unipodal)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SOLO INSTÁVEL (Bipodal)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SOLO INSTÁVEL (Unipodal)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
DESLOCAMENTO (A-P)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
DESLOCAMENTO (L-R)	1 2 3 4 5 6 7 8	3 4 5 6 7 8
EENM	Até desaparecer inibição muscular	

* LIBERAÇÃO SEGUNDO TOLERÂNCIA DO PACIENTE

* COM BRACE ARTICULADO

PLOIOMETRIA

SEMANA	MÊS	
BIPODAL	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SALTO VERTICAL	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SALTO HORIZONTAL	1 2 3 4 5 6 7 8	3 4 5 6 7 8
UNIPODAL	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SALTO VERTICAL	1 2 3 4 5 6 7 8	3 4 5 6 7 8
SALTO HORIZONTAL	1 2 3 4 5 6 7 8	3 4 5 6 7 8

* LIBERAÇÃO DA CARGA, SEGUNDO TOLERÂNCIA DO PACIENTE

RETORNO À ATIVIDADE ESPORTIVA

SEMANA	MÊS
1 2 3 4 5 6 7 8	3 4 5 6 7 8