Search for the decay $B^+ \rightarrow K^+ \tau^+ \mu^\pm$

B. Aubert,1 M. Bona,1 D. Boutigny,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 X. Prudent,1 V. Tisserand,1 A. Zghiche,1 J. Garra Tico,2 E. Grauges,2 L. Lopez,3 A. Palano,3 M. Pappagallo,3 G. Eigen,4 B. Stugu,4 L. Sun,4 G. S. Abrams,5 M. Battaglia,5 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,5 Y. Grosyman,5 R. G. Jacobsen,7 J. A. Kadyk,8 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 D. Lopes Pegna,7 G. Lynch,7 L. M. Mir,5 T. J. Orimoto,5 I. L. Osipenkova,5 M. T. Ruan,5 K. Tackmann,5 T. Tanabe,5 W. A. Wenzel,5 P. del Amo Sanchez,6 C. M. Hawkes,6 A. T. Watson,6 T. Held,7 H. Koch,7 M. Pelizaes,7 T. Schroeder,7 M. Steinke,7 D. Walker,8 D. J. Asgeirsson,9 T. Cuhadar-Donszelmann,9 B. G. Fulsom,9 C. Hearty,9 T. S. Mattison,9 J. A. McKenna,9 A. Khan,10 M. Saleem,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Bukin,11 V. P. Drzhavin,11 V. B. Golutv,11 A. P. Onuchic,11 S. I. Serednyakov,11 Yu. I. Skovpen,11 E. P. Solodov,11 K. Yu. Todyshev,11 M. Bondioli,12 S. Curry,12 I. Eschrich,12 D. Kirkby,12 A. J. Lankford,12 P. Lund,12 M. Mandelkern,12 E. C. Martin,12 D. P. Stoker,12 S. Abachi,13 C. Buchanan,13 S. D. Foulkes,14 J. W. Garry,14 F. Liu,14 O. Long,14 B. Chen,14 L. Zhang,14 H. P. Paar,15 S. Rahatlou,15 V. Sharma,15 J. W. Berryhill,16 C. Campagnoli,16 A. Cunha,16 B. Dahmes,16 T. M. Hong,16 D. Kovalskyi,16 J. D. Richman,16 T. W. Beck,17 A. M. Eiser,17 C. J. Flacco,17 C. A. Heusch,17 J. Kroseberg,17 W. S. Lockman,17 T. Schalk,17 B. A. Schumch,17 A. Seiden,17 M. G. Wilson,17 L. O. Winstrom,17 E. Chen,18 C. H. Cheng,18 F. Fang,18 D. G. Hitlin,18 I. Narsky,18 T. Pientka,18 F. C. Porter,18 R. Andressen,19 G. M. Tewards,19 K. Mishra,19 M. D. Sokoloff,19 F. Blan,20 P. C. Bloom,20 S. Chen,20 W. T. Ford,20 J. F. Hirschauer,20 A. Kreisel,20 M. Nagel,20 U. Nauenberg,20 A. Olivera,20 J. G. Smith,20 K. A. Ulmer,20 S. R. Wagner,20 J. Zhang,20 A. M. Gabareen,21 A. Soffer,21 W. H. Toki,21 R. J. Wilson,21 F. Winklmeier,21 D. D. Altenburg,22 E. Feltresi,22 A. Hauke,22 H. Jasper,22 J. Merkel,22 A. Peitzold,22 B. Spaan,22 K. Wacker,22 V. Kloos,23 M. J. Kobel,23 H. M. Lacker,23 W. F. Mader,23 R. Nogowski,23 J. Schubert,23 K. R. Schubert,23 R. Schwierz,23 E. J. Sundermann,23 A. Volk,23 D. Bernard,24 G. R. Bonneau,24 E. Latour,24 V. Lombardo,24 Ch. Thiebaux,24 M. Verderi,24 P. J. Clark,25 W. Gradl,25 F. Muheim,25 S. Playfer,25 A. I. Robertson,25 J. E. Watson,25 Y. Xie,25 M. Andreotti,26 D. Bettoni,26 C. Bozzi,26 R. Calabrese,26 A. Cerchi,26 G. Cibinetto,26 P. Franchini,26 E. Luppi,26 M. Negrini,26 A. Petrella,26 L. Piemontese,26 E. Preci,26 V. Santoro,26 F. Amuli,27 R. Baldini-Ferroli,27 A. Calcatta,27 R. de Sangro,27 G. Finocchiaro,27 S. Pacetti,27 P. Patteri,27 I. M. Peruzzi,27 M. Piccolo,27 M. Rama,27 A. Zallo,27 A. Buzzo,28 R. Contr,28 M. Lo Vetere,28 M. M. Macrì,28 M. R. Monge,28 S. Passaggio,28 C. Patrignani,28 E. Robutii,28 A. Santron,28 S. Tosi,28 K. S. Chaisang,29 M. Morii,29 J. W. Kuba,29 R. S. Dubitzky,29 J. Marks,30 S. Shench,30 U. Uwer,30 D. J. Bard,31 P. D. Dauncey,31 R. L. Flack,31 J. A. Nash,31 M. Panduro Vazquez,31 M. Tibbetts,31 P. K. Behera,32 X. Chai,32 M. J. Charles,32 U. Mallik,32 V. Ziegler,32 J. Cochran,33 H. B. Crawley,33 L. Dong,33 V. Eyges,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenber,33 A. E. Rubini,34 Y. Y. Gao,34 A. V. Gritsan,34 Z. J. Guo,34 C. K. Lai,34 A. G. Denig,35 M. Fritsch,35 G. Schott,35 N. Arnaud,36 J. Béquelieux,36 A. D’Orazio,36 M. Davier,36 G. Grosdidier,36 A. Höcker,36 V. Lepeltier,36 F. Le Diberder,36 M. Lutz,36 S. Pruvot,36 S. Rodier,36 P. Routen,36 M. H. Schune,36 J. Serrano,36 V. Sordini,36 A. Stochi,36 W. F. Fang,36 G. Wormser,36 D. J. Lange,37 D. M. Wright,37 I. Bingham,38 J. P. Burke,38 C. A. Chavez,38 I. J. Forster,38 J. R. Fry,38 E. Gabathuler,38 R. Gamet,38 I. E. Hutchcroft,38 D. J. Payne,38 K. C. Schofield,38 C. Touramanis,38 A. J. Bevan,39 K. A. George,39 F. Di Lodovico,39 W. Menges,39 R. Sacco,39 G. Cowan,40 H. U. Flecher,40 D. A. Hopkins,40 S. Paramesvaran,40 F. Salvatore,40 A. C. Wren,40 D. N. Brown,41 C. L. Davis,41 J. Allison,42 N. R. Barlow,42 R. J. Barlow,42 Y. M. Chia,42 C. L. Edgar,42 G. D. Lafferty,42 T. J. West,42 J. Yi,42 J. Anderson,43 C. Chen,43 A. Jawahery,43 D. A. Roberts,43 G. Simi,43 J. M. Tuggle,43 G. Blaylock,44 C. Dallapiccola,44 S. S. Hertzbach,44 X. Li,44 T. B. Moore,44 E. Salvati,44 S. Saremi,44 R. Cowan,45 D. Dujmic,45 P. H. Fisher,45 K. Koeneko,45 G. Sciolli,45 J. S. Sekula,45 M. Spitznagel,45 F. Taylor,45 R. K. Yamamoto,45 M. Zhao,45 Y. Zhong,45 S. E. Mclachlin,46 P. M. Patel,46 S. H. Robertson,46 A. Lazzaro,47 F. Palombo,47 J. M. Bau,48 L. Cremaldi,48 V. Eschenburg,48 R. Godang,48 R. Kroeger,48 D. A. Sanders,48 D. J. Summers,48 H. W. Zhao,49 S. Brunet,49 D. Côté,49 M. Simard,49 P. Taras,49 B. F. Vianud,49 H. Nicholson,50 G. De Nardo,51 F. Fabozzi,51 L. Lista,51 D. Monichon,51 C. Sciacc,51 M. A. Baak,52 G. Raven,52 H. L. Snoek,52 C. P. Jessop,53 K. J. Knoepfel,53 J. M. LoSecco,53 G. Benelli,54 L. A. Corwin,54 K. Honscheid,54

Phys. Rev. Lett. 99, 201801 (2007).
H. Kagan, R. Kass, J. P. Morris, A. M. Rahimi, J. J. Regensburger, Q. K. Wong, N. L. Blount, J. Braun, R. Frey, O. Igonkina, J. A. Kolb, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence, N. Gagliardi, A. Gaz, M. Margoni, M. Morandin, A. Pompili, M. Posocco, M. Rostono, F. Simonetto, R. Stroili, C. Voci, E. Ben-Haim, H. Briand, G. Calderini, J. Chauveau, P. David, L. Del Buono, Ch. de la Vaissière, O. Hamon, Ph. Leruste, J. Mäcelès, J. Ocariz, A. Perez, J. Prendi, L. Gladney, M. Biasini, R. Covarelli, E. Manoni, G. Batignani, S. Bettarini, M. Carpinelli, R. Cenci, A. Cervelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, M. A. Mazur, M. Morganti, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh, M. Haire, J. Biesiada, P. Elmer, Y. P. Lau, C. Lu, J. Olsen, A. J. S. Smith, A. V. Telnov, E. Baracchini, F. Bellini, G. Cavoto, D. del Re, E. Di Marco, R. Facchini, F. Ferrarotto, F. Ferroni, M. Gaspero, P. D. Jackson, L. Li Giori, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Renga, C. Voena, M. Ebert, T. Hartmann, H. Schröder, R. Waldi, T. Adye, G. Castelli, B. Franke, E. O. Olaiya, S. Ricciardi, W. Roethel, F. F. Wilson, S. Emery, M. Escalier, A. Gaidot, S. F. Ganzhur, G. Hamel de Monchenault, W. Kozanecki, G. Vasseur, Ch. Yèche, M. Zito, X. R. Chen, H. Liu, W. Park, M. V. Purohit, J. R. Wilson, M. T. Allen, D. Aston, R. Bartoldus, P. Bechtle, N. Berger, R. Claus, J. P. Coleman, M. R. Convery, J. C. Dingfelder, J. Dorfan, G. P. Dubois-Felsmann, W. Dunwoodie, R. C. Field, T. Glanzman, S. J. Gowdy, M. T. Graham, P. Grenier, C. Hast, T. Hryn’ova, W. R. Innes, J. Kaminski, M. H. Kelsey, H. Kim, P. Kim, M. L. Kocian, D. W. G. S. Leith, S. Li, S. Luitz, V. Luth, H. L. Lynch, D. B. MacFarlane, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, I. Ofte, A. Perazzo, M. Perl, T. Pillingham, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, J. Stelzer, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va’vra, N. van Bakel, A. P. Wagner, M. Weaver, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. A. Yarritu, K. Y. Yi, C. C. Young, P. R. Burchat, A. J. Edwards, S. A. Majewski, B. A. Petersen, L. Wilden, S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, V. Jain, B. Pan, M. A. Saeed, F. R. Wappler, S. B. Zain, M. Krishnamurthy, S. M. Spanier, R. Eckmann, J. L. Ritchie, A. M. Ruland, C. J. Schilling, R. F. Schwersitters, J. M. Izen, X. C. Lou, S. Ye, F. Bianchi, F. Gallo, D. Gamba, M. Pelliccioni, M. Bomben, L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, L. Lanceri, L. Vitale, V. Azzolini, N. Lopez-March, F. Martinez-Vidal, D. A. Milanes, A. Oyanguren, J. Albert, Sw. Banerjee, B. Bhuyan, K. Hamano, R. Kowalewski, I. M. Nugent, J. M. Roney, R. J. Sobie, P. F. Harrison, J. Ilic, T. E. Latham, G. B. Mohanty, H. R. Band, J. Chen, S. Dasu, K. T. Flood, J. J. Hollar, P. E. Kutter, Y. Pan, M. Pierini, R. Prepost, S. L. Wu, and H. Neal

(The BABAR Collaboration)

1 Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3 Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6 University of Birmingham, Birmingham, B15 2TT, United Kingdom
7 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8 University of Bristol, Bristol BS8 1TL, United Kingdom
9 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12 University of California at Irvine, Irvine, California 92697, USA
13 University of California at Los Angeles, Los Angeles, California 90024, USA
14 University of California at Riverside, Riverside, California 92521, USA
15 University of California at San Diego, La Jolla, California 92039, USA
16 University of California at Santa Barbara, Santa Barbara, California 93106, USA
17 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18 California Institute of Technology, Pasadena, California 91125, USA
19 University of Cincinnati, Cincinnati, Ohio 45221, USA
20 University of Colorado, Boulder, Colorado 80309, USA
21 Colorado State University, Fort Collins, Colorado 80523, USA
22 Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
23 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France

2
We present a search for the lepton flavor violating decay $B^+ \rightarrow K^+ \tau^- \mu^+$ using 383 million $B\bar{B}$ events collected by the BABAR experiment. The branching fraction for this decay can be substantially enhanced in new physics models. The kinematics of the tau from the signal B decay are inferred from
the K^+, μ, and other B in the event, which is fully reconstructed in one of a variety of hadronic decay modes, allowing the signal B candidate to be fully reconstructed. We observe no excess of events over the expected background and set a limit of $B(B^+ \to K^+\tau\mu) < 7.7 \times 10^{-5}$ at 90% confidence level, where the branching fraction is for the sum of the $K^+\tau^-\mu^+$ and $K^+\tau^+\mu^-$ final states. We use this result to improve a model-independent bound on the energy scale of flavor-changing new physics.

PACS numbers: 13.25.Hw, 14.40.Nd

Lepton flavor violation (LFV) thus far has only been observed in the neutrino sector \cite{Far,Cheng,Shindler}. Manifestations of LFV in B meson decays that have final states with charged leptons (e.g., $B^+ \to K\ell\ell'$) are allowed in standard model interactions, if massive neutrinos are included \cite{Jack}, but such processes occur only at the one-loop level and are extremely suppressed by powers of m^2/Λ^2. Branching fractions for lepton flavor violating B decays can be substantially enhanced in many extensions of the standard model \cite{Kob,Leung,Kob1,Cheng}. The semileptonic decay $B \to K\tau\mu$ is likely to have higher sensitivity to new physics, when compared to leptonic decays such as $B^0 \to \tau\ell\ell'$, since the latter is both helicity and Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM) suppressed by a factor of $[V_{td}/V_{cb}]^2$. Some new physics models require flavor changing neutral currents (FCNC’s) to occur at the one-loop level, as in the standard model. In other extensions, such as models with a Z' or additional Higgs doublets, FCNC’s occur naturally at the tree level, unless they are eliminated by imposing an ad hoc discrete symmetry.

A limit on the process $B \to K\tau\mu$, which involves the second and third generations of both quarks and leptons, would provide a unique and powerful constraint on model parameters of grand unified theories. Cheng, Sher, and Yuan \cite{Cheng,Shindler} propose that in models with an extended Higgs sector the most natural value of the FCNC Yukawa couplings connecting generations i and j are proportional to $\sqrt{m_im_j}/m_\tau$, which implies that FCNC’s in these theories should be largest in processes involving the second and third generations. An observation of $B \to K\tau\mu$ would be an unambiguous sign of physics beyond the standard model. In this paper, we present the results of a search for $B \to K\tau\mu$.

We use a data sample of 383 million $B\bar{B}$ pairs produced by the PEP-II asymmetric-energy e^+e^- collider, running at the $\Upsilon(4S)$ resonance, collected by the BaBar experiment \cite{babar} at SLAC. Charged particles are identified using a Cerenkov radiation detector and dE/dx measurements in the tracking system. Instrumentation embedded within the iron of the flux return for the 1.5 T solenoid aids in the identification of muons. An electromagnetic CsI(Tl) crystal calorimeter (EMC) is used to reconstruct photons and identify electrons.

The analysis strategy is to reconstruct the $\Upsilon(4S) \to B^+B^-$ in the search for $B^+ \to K^+\tau\mu$ \cite{babar}. One of the B mesons (B_{tag}) is fully reconstructed in one of a large number of hadronic final states, $B^- \to D^{(*)0}\pi^-\pi^0$. The X^- represents a system of charged and neutral hadrons with total charge -1 composed of $n_1\pi^+, n_2 K^+, n_3 K^0_S$, and $n_4 \pi^0$, with $n_1 + n_2 \leq 5$, $n_3 \leq 2$, and $n_4 \leq 2$. The D^{*0} is reconstructed in the $D^0\pi^0$ and $D^{0}\gamma$ channels, the D^0 in the $K^-\pi^+, K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$, and $K^0_S\pi^+\pi^-$ channels, and K^0_S in the $\pi^+\pi^-$ channel. We search for the decay $B^+ \to K^+\tau\mu$ using the remaining tracks in the event. The momentum vector of the signal B candidate, p_{tag}, must be equal in magnitude and opposite in direction to that of B_{tag} in the center-of-mass (CM) frame. The τ candidate kinematic variables, E_τ and p_τ, are fully constrained by p_{tag}, the measured momenta of the K^+ and μ tracks, and the constraint $E_\tau = E_{\text{beam}} - E_K - E_\mu$, where E_{beam} is the CM beam energy. The reconstructed τ invariant mass $m_\tau = \sqrt{E_\tau^2 - p_\tau^2}$ peaks sharply at the true τ mass for the signal.

Events are required to contain a B_{tag} candidate with $m_{\text{ES}} = \sqrt{E_{\text{beam}}^2 - p_{\text{tag}}^2} > 5.27$ GeV/c2 and E_{tag} consistent with E_{beam} within three standard deviations, where p_{tag} and E_{tag} are the momentum and energy of the B_{tag} candidate in the CM frame. A B_{tag} meson is fully reconstructed in about 0.2% of Monte Carlo events where one B^{\pm} decays to $K^+\tau\mu$. Even though the τ daughters are not needed to reconstruct m_τ, we require the τ in the signal B candidate to be consistent with a “one-prong” (i.e., one-charged-track) τ decay to reject combinatoric background. Therefore we require exactly three charged tracks in the event not associated with B_{tag} and with net charge opposite to that of B_{tag}. Among these three tracks, we require: a kaon candidate with charge opposite B_{tag}, a muon candidate, and a third track (the τ daughter) with charge opposite the muon candidate. The event is rejected if any of the three tracks is consistent with a proton hypothesis or if either of the two non-kaon tracks is consistent with a kaon hypothesis. Signal candidates are divided into three categories based on the properties of the τ-daughter track: electron, muon, and pion.

The kaon, muon, and electron particle identification criteria used in this analysis have momentum-dependent efficiencies and misidentification probabilities (fake rates). The kaon candidate must pass loose selection criteria, based on the measured Cerenkov angle and dE/dx in the tracking system. Muon candidates, either from the B decay or from the τ decay, must pass minimum selection criteria that are 85% efficient for muons above 1.5 GeV/c and less than 10% efficient for pions and
kaons. Tau daughter electrons must pass minimum electron selection criteria that are 95% efficient for electrons. More stringent electron and muon identification criteria for the tau daughter track are incorporated through a likelihood ratio described below. Tau daughters that do not pass either the electron or muon criteria fall into the pion category.

For muon channel signal B candidates, there are two muons in the final state: one from the B decay (primary muon) and one from a leptonic τ decay. Of the two possible track assignments for the primary muon, we use the one that gives m_τ closest to the known m mass. The bias in the background m_τ distribution for the muon channel from using this procedure is found to be negligible.

Semileptonic B decays can produce final states that appear identical to the signal. For example $B^+ \to D^0 \mu^+ \nu_\mu$ followed by $D^0 \to K^+ \pi^-$ produces a $K^+ \mu^+ \pi^- \nu_\mu$ final state. If the D^0 decays semileptonically, the final state is $K^+ \mu^+ e^- \nu_\mu$. These backgrounds are easily removed by requiring that the invariant mass, $m(K\pi)$, of the kaon candidate and the oppositely-charged, signal-track candidate, when this track is assumed to be a pion, be greater than 1.95 GeV/c2. This requirement is greater than 50% efficient for the signal and removes about 99% of the background from BB events.

The $B^+ \to D^0 \mu^+ \nu_\mu$ and $B^+ \to D^{*0} \mu^+ \nu_\mu$, with $D^0 \to K^+ \pi^-$, backgrounds also form the $D\mu\nu$ control sample, which we use to normalize the signal branching fraction. Events for the $D\mu\nu$ control sample are required to have $m(K\pi)$ in the range [1.845, 1.885] GeV/c2 (within about three standard deviations of the D^0 mass). The neutrino momentum is calculated from \vec{p}_{tag} and the three tracks in the $D\mu\nu$ final state. We then compute

$$\Delta E_{D\mu\nu} = E_K + E_\mu + E_\pi + p_\nu - E_{\text{beam}} = p_\nu - E_{\text{miss}}. \quad (1)$$

We use $\Delta E_{D\mu\nu}$ rather than $m_{\text{miss}} = \sqrt{E_{\text{miss}}^2 - p_\nu^2}$, similar to our m_τ reconstruction, because the expected $D^0\mu\nu$ missing mass is zero. The $\Delta E_{D\mu\nu}$ distribution for $D^0\mu\nu$ decays is centered at zero, while for $D^{*0}\mu\nu$ events, it is shifted by ~ 150 MeV and slightly asymmetric, due to the missing neutral particle from the $D^{*0} \to (\pi^0, \gamma)D^0$ decay. We determine the yield of $D^0\mu\nu$ and $D^{*0}\mu\nu$ events simultaneously in an unbinned maximum likelihood fit of $\Delta E_{D\mu\nu}$ (Figure I).

For the $K^+\tau\mu$ signal, a non-negligible source of BB background in the sample remaining after the $m(K\pi)$ requirement comes from $B^+ \to (c\bar{c})K^+$ with $(c\bar{c}) \to \mu^+ \mu^-$, where $(c\bar{c})$ is a charmonium resonance. This background mainly enters in the muon channel, but is also present in the pion channel. For the muon and pion channels this background is removed by requiring the invariant mass of the two non-kaon tracks, when both are assumed to be muons, to be outside of the ranges [3.03, 3.14] GeV/c2 and [3.60, 3.75] GeV/c2, which are centered on the J/ψ and $\psi(2S)$ resonances masses respectively.

At this stage in the selection, the background is dominated by continuum events ($e^+e^- \to q\bar{q}$ with $q = u, d, s, c$). We suppress this background using a likelihood ratio

$$L_R = \frac{\prod_i P_s(x_i)}{\prod_i P_b(x_i)} \quad (2)$$

where \vec{x} is a vector of four discriminating variables (see below) and $P_s(x_i)$ ($P_b(x_i)$) is the probability density function (PDF), which describes the signal (background) for variable x_i. The PDFs are separate for each of the three signal categories. The four discriminating variables are: $|\cos \theta_{\text{thr}}|$ the magnitude of the cosine of the CM angle between the B_{tag} thrust axis and the thrust axis of the rest of the event; $\sum E_{\text{cal}}$ the total neutral EM energy that is not associated with B_{tag}; the quality of the primary lepton identification; and the quality of the secondary lepton identification (for electron and muon channel candidates). We require a minimum E_{cal} energy of 50 MeV (100 MeV) for clusters in the barrel (forward endcap) to be included in $\sum E_{\text{cal}}$.

The $|\cos \theta_{\text{thr}}|$ distribution is flat for signal and peaks near one for continuum. The $\sum E_{\text{cal}}$ distribution peaks at zero for signal, while the background distribution is broad, peaking at around 1.5 GeV. The lepton quality is divided into four hierarchical, mutually-exclusive categories with fake rates decreasing with increasing quality rank. For the highest-quality muon candidate rank, the fake rates from pions and kaons are less than 2%. The highest-quality electron candidate rank has a fake rate of less than 0.1% for pions, as high as 3% for low-momentum kaons, and below 0.4% for kaons above 0.8 GeV/c. We fit signal and background Monte Carlo histograms of $|\cos \theta_{\text{thr}}|$ and $\sum E_{\text{cal}}$ to define $P_s(x_i)$ and $P_b(x_i)$ for those variables. We use the relative fractions in the four lepton quality categories in the Monte Carlo samples for $P_s(x_i)$ and $P_b(x_i)$ for the primary and secondary lepton variables.
We make a minimum \(L_R \) requirement for each of the three signal categories (electron, muon, and pion) which has been optimized to give the lowest signal branching fraction limit under the assumption of no signal in the data. The signal region in \(m_\tau \) is defined to be \([1.65, 1.90]\) GeV/c\(^2\), which contains 90% of the signal. The signal selection efficiency \((\epsilon_i)\), including the \(L_R \) requirements, in the \(m_\tau \) signal region is 3.17\%, 2.04\%, and 2.13\% for the electron, muon, and pion channels respectively. The denominator of these \(\epsilon_i \) is the same for all three and includes all tau decays. We have used a simple 3-body phase space decay model to generate our signal Monte Carlo sample. The systematic uncertainty on \(\epsilon_i \) is determined by varying the signal and background PDFs for each \(L_R \). Because the signal branching fraction is determined from the ratio of the signal and \(D\mu\nu \) yields in the data, many systematic uncertainties associated with tracking, particle identification, and the \(B_{\text{tag}} \) reconstruction cancel. The amount of background, \(b_i \), in the \(m_\tau \) signal region is estimated from the number of events outside the \(m_\tau \) signal region (the \(m_\tau \) sidebands) in the ranges \([0, 1.65]\) and \([1.9, 3.5]\) GeV/c\(^2\) and the signal-to-sideband ratio from the background Monte Carlo sample.

The signal branching fraction for each channel \((B_i)\) is estimated using the relation

\[
B_i = \frac{n_i - b_i}{(\epsilon_i)S_0},
\]

where \(n_i \) is the observed number of events in the \(m_\tau \) signal region, \(b_i \) is the expected background, \(\epsilon_i \) is the signal efficiency, and \(S_0 \) is a common sensitivity factor given by

\[
S_0 = \frac{N_{D\mu\nu}}{B_{D\mu\nu}} \left(\frac{1}{\epsilon_{D\mu\nu}} \right) \left(\frac{K_{\tau\mu}}{\epsilon_{\text{tag}}^{K_{\tau\mu}} D_{\mu\nu}^{\text{tag}}} \right),
\]

where \(N_{D\mu\nu}, B_{D\mu\nu}, \) and \(\epsilon_{D\mu\nu} \) are the fitted yield, total branching fraction, and selection efficiency for the \(D\mu\nu \) control sample and \(K_{\tau\mu}^{\text{tag}} \) and \(D_{\mu\nu}^{\text{tag}} \) are the \(B_{\text{tag}} \) efficiencies for the signal and \(D\mu\nu \) samples respectively. The last factor \((\epsilon_{\text{tag}}^{K_{\tau\mu}} D_{\mu\nu}^{\text{tag}})\) is determined from the Monte Carlo samples and close to one \((0.922 \pm 0.052)\) since the topology of the events in the signal and \(D\mu\nu \) samples is very similar. We find \(N_{D\mu\nu} = 867 \pm 52 \) with \(\epsilon_{D\mu\nu} = 0.345 \pm 0.008 \) and \(B_{D\mu\nu} = (3.29 \pm 0.22) \times 10^{-3} \) \([13]\), which gives \(S_0 = (7.0 \pm 0.7) \times 10^5 \).

The \(m_\tau \) signal region in the data was kept blind during the development of the analysis, to avoid experimenter’s bias. After all analysis decisions were made, we “opened the box” and found 1, 0, and 2 events in the \(m_\tau \) signal region for the electron, muon, and pion channels respectively. These totals are consistent with our expectations from background only, which are given in Table \(\text{I} \). Distributions of \(m_\tau \) for the data and for the signal Monte Carlo sample are shown in Figure \(\text{II} \). The numbers of background events in the \(m_\tau \) sidebands are consistent with our expectations from the Monte Carlo sample.

The central value for the signal branching fraction is \(B = (0.8 \pm 3.5 \pm 3.3) \times 10^{-5} \), where the uncertainties include both statistical and systematic sources. The three channels were combined by maximizing the likelihood, which is defined as the product of three Poisson probabilities in \(n_i \), where the mean is given by Equation \(\text{II} \). Uncertainties on the \(b_i, \epsilon_i, \) and \(S_0 \) parameters, which determine the Poisson mean for each channel, were included by convolving the Poisson PDFs with Gaussians in \(b_i, \epsilon_i, \) and \(S_0 \). The uncertainties on \(B \) correspond to the points where the log likelihood drops by 0.5 with respect to the maximum log likelihood value. We have verified, with a Monte Carlo study, that this maximum likelihood technique is unbiased and that the uncertainties are a reasonable estimate of one standard deviation. We find a 90% confidence level upper limit on the signal branching fraction of \(B < 7.7 \times 10^{-5} \) using the prescription of Feldman and Cousins \([14]\) for defining the confidence belt. The central value and upper limit on the signal branching fraction are both limited by statistical uncertainties.

In conclusion, we present the first search for the forbidden decay \(B^+ \rightarrow K^+ \tau\mu \) using 385 million \(B\bar{B} \) pairs collected by the \(\text{BaBar} \) experiment. The observed events are consistent with the background-only hypothesis. We set an upper limit of \(B < 7.7 \times 10^{-5} \) on the signal branching fraction at 90% confidence level. This result can be used to improve the model-independent bound on the energy scale of new physics in flavor-changing operators reported in \([13]\) from \(> 2.6 \) TeV to \(> 13 \) TeV.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support \(\text{BaBar} \). The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMDF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Rus-
TABLE I: The number of events in the m_{τ} sidebands, N_{sb}, for the Monte Carlo sample and the data; the ratio of background events, inside / outside the m_{τ} signal region, BG ratio; the expected number of background events, b_{i}, and number of observed data events, n_{i}, in the m_{τ} signal region; and the signal selection efficiency ϵ_{i} for each of the three channels. The first (second) uncertainty on ϵ_{i} is statistical (systematic).

Channel	N_{sb} (MC)	N_{sb} (data)	BG ratio	b_{i}	n_{i}	ϵ_{i} (%)
electron	5.2 ± 1.3	5	0.10 ± 0.05	0.5 ± 0.3	1	3.28 ± 0.13 ± 0.22
muon	0.7 ± 0.5	2	0.30 ± 0.15	0.6 ± 0.3	0	2.09 ± 0.10 ± 0.19
pion	6.9 ± 1.6	14	0.13 ± 0.04	1.8 ± 0.6	2	2.18 ± 0.11 ± 0.24

Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.