Data Article

An open and georeferenced dataset of forest structural attributes and microhabitats in central and southern Apennines (Italy)

Francesco Parisia, Saverio Francinia,b,*, Costanza Borghia, Gherardo Chiricia,b

aDepartment of Agriculture, GeoLAB - Laboratory of Forest Geomatics Food, Environment and Forestry, Università degli Studi di Firenze, Firenze, Italy
bFondazione Per il Futuro delle Città, Firenze, Italy

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 28 March 2022
Revised 15 June 2022
Accepted 1 July 2022
Available online 8 July 2022

\textbf{Keywords:}
Forest ecosystems
Mediterranean mountains
Ecological indicators
Broadleaved mixed forest
Silver fir
Beech
Chestnut

\textbf{A B S T R A C T}

Forests cover 30% of the Earth’s landmass, host 80% of the biodiversity on land, and represent one of the main sinks of carbon. Studying forest ecosystems and dynamics is more crucial than ever now that the climate is changing. On the other hand, forest structural attributes and microhabitats data acquisition is challenging, and require huge efforts.
Here we provide a georeferenced dataset of living trees, deadwood, and microhabitats referring to 199 plots (13 m radius), collected between 2012 and 2018, and located over six Apennine mountainous forest types across Italy. The dataset we provide promotes collaboration among researchers and improves the possibilities to analyze the evolution of forest ecosystems.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Agricultural science: Forestry
Specific subject area	Dendrometric measurement; Living trees, deadwood, and microhabitats survey
Type of data	Geospatial point vector (shapefile) Table
How the data were acquired	The dataset was constructed through field measurements of 199 sample plots (radius 13 m) distributed in six Italian forests (Table 1. Living trees, deadwood, and microhabitats data were acquired through the application of specific protocols. The instruments we used to acquire data include a tree caliper, GPS systems, hypsometry, and a vertex.
Data format	Raw
Description of data collection	Fieldwork was performed for each of the 199 georeferenced sites to acquire data related to (i) the number and the volume of living trees, (ii) the volume of deadwood, and (iii) types and abundance of tree-related microhabitats on living and deadwood. The information is provided both at site and tree levels.
Data source location	Four Italian administrative regions (NUT2): Abruzzo, Molise, Campania and Calabria
Data accessibility	Repository name: Mendeley Data
Data identification number	10.17632/nwsw7hv5t.1
Direct URL to data	https://data.mendeley.com/datasets/nwsw7hv5t/1

Value of the Data

- This dataset can be used to analyze forest stand structures and microhabitat typologies in different Apennine mountainous forest types.
- We want to promote collaboration among researchers by making datasets available, this dataset will assist forest researchers to collaborate as well as to combine and extend their data for further analysis.
- This dataset will improve the possibility for forest researchers and managers of analyzing the evolution of forest ecosystems for long-term studies.
- We encourage repeating forest assessments in the same localities to evaluate the trends in ecological indicators over time and space.
- If integrated with the dataset we provided in Campanaro and Parisi [1], these data can be used to investigate the relationship between saproxylic and non-saproxylic beetle communities and forest structural attributes.

1. Data Description

We provide two different datasets: one at the plot level (both .xlsx and .shp formats) and one at the tree level (xlsx format). While the coordinates of each plot are available - and that is why we provide a shapefile for plots – the coordinates of each tree were not acquired. The description and the measuring unit of all the attributes included in the dataset are provided in Table 1. Furthermore, in some sites specific projects are underway, and not all the forest attributes are available (e.g., forest structure in the Matese area). Table 1 also includes information regarding the availability of data. The plot-level dataset contains 199 rows, one row for each of 199 sample plots located in central and southern Italy over six different regions, for which a detailed description is provided in the next section.

Tables 2 and 3 describe the dataset related to single-tree data, acquired in the six forest sites reported above. In particular, Table 2 provides information on the structural attributes, while Table 3 defines the tree-related microhabitat acquired at the plot level.
Table 1
Forest attributes and tree-related microhabitats per site description.

Variable	Description	Measure unit	Site availability
site	name of the site	-	GS, AS, BP, MT, CI, AM
acronym	acronym of the site	-	GS, AS, BP, MT, CI, AM
GS: Gran Sasso			
AS: Abeti Sopranì			
BP: Bosco Pennataro			
MT: Matease			
CI: Cliento			
AM: Aspromonte			
plot_ID	identification number for each plot, per site. It is composed as "acronym_number of the plot"	-	GS, AS, BP, MT, CI, AM
elevation	elevation of the plot	m a.s.l.	GS, AS, BP, MT, CI, AM
x	Coordinates of the plot centre, longitude	Standard UTM coordinates (WGS 84 33N - EPSG: 32633)	GS, AS, BP, MT, CI, AM
y	Coordinates of the plot centre, latitude	Standard UTM coordinates (WGS 84 33N - EPSG: 32633)	GS, AS, BP, MT, CI, AM
management	managed/unmanaged/orchard	-	GS, AS, BP, MT, CI, AM
canopy_cover	canopy cover for each plot	%	GS, AS, BP, CI, AM
n_trees	number of living trees per hectare	-	GS, AS, BP, CI, AM
V_trees	volume of living trees per hectare	m³/ha	GS, AS, BP, CI, AM
BA	basal area per hectare	m²/ha	GS, AS, BP, CI, AM
n_CWD	number of coarse woody debris per hectare	-	GS, AS, BP, MT, CI, AM
V_CWD	volume of coarse woody debris per hectare	m³/ha	GS, AS, BP, MT, CI, AM
n_SDT	number of standing dead trees per hectare	-	GS, AS, BP, MT, CI, AM
V_SDT	volume of standing dead trees per hectare	m³/ha	GS, AS, BP, MT, CI, AM
n_Stumps	number of stumps per hectare	-	GS, AS, BP, MT, CI, AM
V_Stumps	volume of stumps per hectare	m³/ha	GS, AS, BP, MT, CI, AM
n_Snags	number of snags per hectare	-	GS, AS, BP, MT, CI, AM
V_Snags	volume of snags per hectare	m³/ha	GS, AS, BP, MT, CI, AM
n_DDT	number of dead downed trees per hectare	-	GS, AS, BP, MT, CI, AM
V_DDT	volume of dead downed trees per hectare	m³/ha	GS, AS, BP, MT, CI, AM
n_mh_alive	Per plot number of per hectare typologies of tree-related microhabitats sampled on living trees.	-	AS, BP, AM*
n_mh_dead	Per plot number of per hectare typologies of tree-related microhabitats sampled on dead trees.	-	AS, BP, MT, AM*
n_mh_tot	sum of n_mh_alive and n_mh_dead	-	GS**, AS, BP, MT, CI**, AM*

Note:
* in AM, data on tree-related microhabitats is available only per “orchard” management.
* in GS and CI, data on tree-related microhabitats is not distinguished between living and dead trees.
Table 2
Tree-level database description.

Head	Description
site	Name of the site
acronym	Acronym of the site
N2k_CDDA	Natura 2000 or Nationally designated areas (CDDA) code
plot_ID	Number of the plot, per each site
man_type	type of forest management
man_regime	regime of forest management
EEA_type	forest type according to European classification
ID_tree	Identification number per CWD in each plot
sp_tree	Tree species (latin name)
dbh_tree (cm)	diameter at breast height
h_tree (m)	Tree height
V_tree (m3)	Tree volume
BA_tree (m2)	Tree basal area

Head	Description
acronym	Acronym of the site
plot_ID	Number of the plot, per each site
ID_stump	Identification number per each SDT in each plot
Origin (N/A)	Origin of the stump, Natural or Artificial
Dbase_stump (cm)	base diameter of each stump
Dtop_stump (cm)	top diameter of each stump
h_stump(m)	height of each stump
Sp_stump	Species of the stumps
decay_stump	decay stage [3]
V_stump(m3)	volume of each stump in each plot

Head	Description
acronym	Acronym of the site
plot_ID	Number of the plot, per each site
ID_snag	Identification number per each snag in each plot
Dtop_snag(cm)	top diameter of each snag in each plot
Dbase_snag(cm)	top diameter of each snag in each plot
h_snag(m)	height of each snag in each plot
Sp_snag	specie of each snag in each plot
decay_snag	decay stage [3]
V_snag(m3)	volume of each snag in each plot

Head	Description
acronym	Acronym of the site
plot_ID	Number of the plot, per each site
ID_DDT	identification number of each DDT in each plot
dbh_DDT (cm)	diameter at breast height of each DDT in each plot
lenght_DDT (cm)	Length of each DDT in each plot
Sp_DDT	specie of each DDT in each plot
decay_DDT	decay stage [3]
V_DDT (m3)	volume of each DDT in each plot
Table 3
Tree-related microhabitat definitions.

Head	Definition	Head	Definition
MW_1	Occurrence of fruiting bodies of Fomes fomentarius	ML_1	Woodpecker breeding cavities
MW_2	Occurrence of fruiting bodies of Fomitopsis pinicola	ML_2	Rot holes
MW_3	Occurrence of other fungal infection	ML_3	Concavities
MW_4	Crown broken < 50% of the crown broken	ML_4	Insect galleries and bore holes
MW_5	Several main branches are broken: >50% of the crown broken	ML_5	Exposed sapwood only
MW_6	Broken fork: complete fracture of one of the two forking branches	ML_6	Exposed sapwood and heartwood
MW_7	Broken stem: the crown is totally absent and very small living twigs have remained	ML_7	Crown deadwood
MW_8	Substitute or secondary crown	ML_8	Twig tangles
MW_9	Lightning scar at least 3 m long and reaching the sapwood	ML_9	Burrs and cankers
MW_10	Crack: cleft into the sapwood >50 cm long along the stem and at least 2 cm deep	ML_10	Perennial fungal fruiting bodies (life span >1 y)
MW_11	Splintered stem: the split-up results in numerous scales of wood >50 cm long	ML_11	Ephemeral fungal fruiting bodies and slime moulds
MW_12	Cavities with >5 cm aperture	ML_12	Epiphytic or parasitic crypto- and phanerogams
MW_13	Cavity string: at least three woodpecker cavities	ML_13	Nests
MW_14	Deep stem cavities: a tubular cavity with little or without mould	ML_14	Fresh exudates
MW_15	Cavities with mould of at least 8000 cm³	ML_15	Microsoils
MW_16	Mould pockets: space between loose bark and the sapwood		
MW_17	Bark pockets: same structure as M16, but without mould		
MW_18	Canker: proliferation of cell growth at least 10 cm in diameter		
MW_19	Bark loss: patches with bark loss of at least 5 cm caused by natural falling of trees		
MW_20	Uprooted stump, with a minimum height of 1.20 m of the vertical root plate		
MW_21	System of gallery of Scolytidae insects		
MW_22	Saproxylic insect holes		
MW_23	Water filled rot hole on stump		

2. Experimental Design, Materials and Methods

2.1. Forest Landscapes in the Dataset

This dataset refers to six study areas, characterized by forest landscapes with different characteristics in terms of both geomorphological conditions (Table 4) and management (Fig. 2). Detailed information on these study areas is reported in Campanaro and Parisi [1], for which a summary is provided below.

From North to South, the first site is the Gran Sasso (about 70 ha), which is located in the central Apennines. It is representative of the European forest type 6.7.3, “Apennine-Corsican moun-
Table 4
Details of the six forest sites in the dataset.

Site	Acronym	Municipality (study area)	Coordinates N (decimals)	Coordinates E (decimals)	Altitude (m a.s.l.)	Number of sampling plots	European forest type [2]	Management regime
Gran Sasso	GS	Pietracamela (TE)	42.5096 N	13.5679 E	1500	19	Apennine-Corsican mountainous beech forest (6.7.3)	old high forest
Abeti Soprani	AS	Pescopennataro (IS)	41.860833 N	14.293611 E	1450	50	Apennine-Corsican mountainous beech forest (6.7.3)	old high forest
Bosco Pennataro	BP	Vastogirardi (IS)	41.748889 N	14.197222 E	1100	50	Sessile oak-hornbeam forest (6.5.2)	high forest on old coppice
Matese	MT	Roccamandolfi (IS)	41.452222 N	14.350278 E	1700	60	Apennine-Corsican mountainous beech forest (6.7.3)	mature coppice with standard; group system (high forest)
Cilento	Cl	Corleto Monforte (SA)	40.4705 N	15.4317 E	1250	14	Apennine-Corsican mountainous beech forest (6.7.3)	mature coppice with standard; orchard; young coppice with standards
Aspromonte	AM	Santo Stefano (RC)	38.18 N	15.784167 E	1059	6	Chestnut forest (6.8.7)	
tainous beech forest” [2], with a dominant height of 27.73 m. Data collection in Gran Sasso was carried out in 2013.

Second, the Abeti Soprani experimental area covers 240 ha. This forest is an almost pure *A. alba* stand, associated with *Fagus sylvatica* L. at the highest altitudes, and with *Quercus cerris* L. at the lowest altitudes. The dominant height of the sampled stands is 25.38 m, while the average age is 120–130 years; the data was collected in 2012.

Third, the Bosco Pennataro is a broadleaved mixed forest (European forest type 6.5.2) located in the Molise administrative region, covering a surface of almost 300 ha (data collection year 2014). With a dominant height of 29.20 m, the forest is characterized by a mixture of old coppices, and patches of mature forest stands grown mainly from seeds. Further, the Bosco Pennataro forest is dominated by large and tall mature trees with a closed canopy.

Fourth, the Matese forest is an Apennine beech forest with *Taxus* and *Ilex* (European forest type 6.7.3). Data collection in Matese forest was carried out in 2018. As Bosco Pennataro, Matese forest is located in the Molise administrative region and covers almost 400 ha of the Roccamadolphi forests, which is included within the Special Areas of Conservation (SAC) (http://natura2000.eea.europa.eu) "La Gallinola - Monte Miletto - Monti del Matese" (Cod. IT 7222287), within the National Park of Matese.

Then, the Cilento site (about 70 ha), which is located in the southern Apennines, is representative of montane coniferous forests (prevalent European forest type 6.7.3); the dominant height of the forest is 25.75 m, and the data was collected in 2013.

Last, the Aspromonte site includes three different agroforestry systems dominated by chestnuts (European forest type 6.8.7), i.e., (i) young (2 years) and (ii) mature (11 years) coppices stands, and (iii) traditional fruit orchard (older than 80 years). These agroforestry systems are characterized by a dominant height of 11.34 m. Each of the analyzed management types extend for about 12 ha. In this site, data collection was carried out in 2017 (Fig. 1).
2.2. Data Acquisition

In each site, data were acquired on circular plots of 13 m of radius, located throughout different landscapes with diverse forest types. All sites followed a systematic aligned sampling scheme except for Gran Sasso and Cilento, where a systematic non-aligned sampling method was applied. For each sampling station, UTM datum WGS84 33N (EPGS 32633) coordinates and altitude were recorded using the Juno SB Global Positioning System. Living trees (minimum diameter at breast height, DBH, ≥ 10 cm) and deadwood (minimum diameter ≥ 5 cm) were measured, marked, and numbered. The information recorded on the plots comprised tree DBH and height, canopy cover (through visual estimation), and tree species (both for living and dead trees). Furthermore, dead downed trees, snags, coarse woody debris, and stumps were included in the survey, measuring their lengths, heights, and minimum and maximum diameters. Snags were
defined as standing dead trees, without crowns, with a minimum height of 1.3 m [3], while standing dead trees were characterized by the presence of crowns (dead branches and twigs) [3]. The volume of living trees, standing, and dead downed trees were calculated by the double-entry volume equation [7], while the volumes of snags, coarse woody debris, and stumps were calculated through the cone trunk formula [8]. The sampling protocol used refers to the one proposed in Burrascano et al. [9].

Ethics Statements

The authors declare that the present work did not include experiments on human subjects and/or animals.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT Author Statement

Francesco Parisi: Data curation, Conceptualization, Methodology, Writing – review & editing; Saverio Francini: Conceptualization, Methodology, Writing – review & editing; Costanza Borghi: Writing – original draft; Gherardo Chirici: Conceptualization, Methodology, Writing – review & editing.

Acknowledgments

We are grateful to Marco Marchetti, Roberto Tognetti, Bruno Lasserre (Università degli Studi del Molise, Italy) and Fabio Lombardi (Università Mediterranea di Reggio Calabria, Italy) for scientific and technical support.

Founding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1] A. Campanaro, F. Parisi, Open datasets wanted for tracking the insect decline: let’s start from saproxylic beetles, Biodivers. Data J. 9 (2021), doi: 10.3897/BDJ.9.e72741.
[2] European Environment AgencyEuropean Forest Types. Categories and Types for Sustainable Forest Management Reporting and Policy, 2nd ed., EEA, 2006.
[3] M.L. Hunter, Wildlife, forest and forestry; principles of managing forests for biological diversity, Prentice Hall, Englewood Cliffs (US, 1990).
[4] S. Winter, G.C. Möller, Microhabitats in lowland beech forests as monitoring tool for nature conservation, For. Ecol. Manag. 255 (2008) 1251–1261, doi: 10.1016/j.foreco.2007.10.029.
[5] P. Marziliano, S. Antonucci, R. Tognetti, M. Marchetti, G. Chirici, P. Corona, F. Lombardi, Factors affecting the quantity and type of tree-related microhabitats in Mediterranean mountain forests of high nature value, iForest Biogeosci. For. 14 (2021) 250–259, doi: 10.3832/ifor3568-014.
[6] L. Larrieu, Y. Paillet, S. Winter, R. Büttler, D. Kraus, F. Krumm, T. Lachat, A.K. Michel, B. Regnery, K. Vandekerkhove, Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization, Ecol. Indic. 84 (2018) 194–207, doi: 10.1016/j.ecolind.2017.08.051.
[7] G. Tabacchi, L. Di Cosmo, P. Gasparini, Aboveground tree volume and phytomass prediction equations for forest species in Italy, Eur. J. For. Res. 130 (2011) 911–934.
[8] F. Lombardi, B. Lasserre, G. Chirici, R. Tognetti, M. Marchetti, Deadwood occurrence and forest structure as indicators of old-growth forest conditions in Mediterranean mountainous ecosystems, Ecoscience 19 (2012) 344–355.

[9] S. Burrascano, G. Trentanovi, Y. Paillet, J. Heilmann-Clausen, P. Giordani, S. Bagella, A. Bravo-Oviedo, T. Campagnaro, A. Campanaro, F. Chianucci, P. De Smedt, G.M. Itziar, D. Matošević, T. Sitzia, R. Aszalós, G. Brazaitis, C. Andrea, D.A. Etitore, I. Doerfler, J. Hofmeister, J. Hošek, P. Janssen, S. Kepfer Rojas, N. Korboulewska, D. Kozák, T. Lachat, A. Löhmus, R. Lopez, A. Márell, R. Matula, M. Mikoláš, S. Munzi, B. Nordén, M. Pártel, J. Penner, K. Runnel, P. Schall, M. Svo–boda, F. Tinya, M. Ujházyová, K. Vandekerkhove, K. Verheyen, F. Xystrakis, P. Ódor, Handbook of field sampling for multi-taxon biodiversity studies in European forests, Ecol. Indic. 132 (2021), doi:10.1016/j.ecolind.2021.108266.