Finite automata for Schreier graphs of virtually free groups

Enric Ventura

Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya

Fribourg Weekend in Group Theory

May 19th, 2012

(Joint work with P. Silva, X. Soler-Escrivà)
1. The bijection between subgroups of F_A and Stallings automata

2. Many applications

3. Moving out of free groups

4. Stallings sections

5. Virtually free groups
Outline

1. The bijection between subgroups of F_A and Stallings automata
2. Many applications
3. Moving out of free groups
4. Stallings sections
5. Virtually free groups
Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- \tilde{A}^* the free monoid on \tilde{A} (words on $A^\pm 1$).
- 1 denotes the empty word, and $|\cdot|$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{\text{reduced words}\} \subset \tilde{A}^*$.
- \overline{w} is the reduced word for w.
- $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^\pm 1$ modulo \sim).
- $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- \tilde{A}^* the free monoid on \tilde{A} (words on $A^{\pm 1}$).
- 1 denotes the empty word, and $|\cdot|$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{\text{reduced words}\} \subseteq \tilde{A}^*$.
- \overline{w} is the reduced word for w.
- $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- \tilde{A}^* the free monoid on \tilde{A} (words on $A^{\pm 1}$).
- 1 denotes the empty word, and $|\cdot|$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{\text{reduced words}\} \subseteq \tilde{A}^*$.
- \overline{w} is the reduced word for w.
- $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
Notation

- \(A = \{a_1, \ldots, a_n\} \) is a finite alphabet (\(n \) letters).
- \(\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\} \).
- Usually, \(A = \{a, b, c\} \).
- \(\tilde{A}^* \) the free monoid on \(\tilde{A} \) (words on \(A^{\pm 1} \)).
- 1 denotes the empty word, and \(|\cdot|\) the length of words.
- \(\sim \) is the eq. rel. generated by \(a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1 \).
- \(R_A = \{ \text{reduced words} \} \subseteq \tilde{A}^* \).
- \(\overline{w} \) is the reduced word for \(w \).
- \(F_A = \tilde{A}^*/\sim \) is the free group on \(A \) (words on \(A^{\pm 1} \) modulo \(\sim \)).
- \(\pi: \tilde{A}^* \to F_A \) the natural projection (a morphisms of monoids).
- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{\mathcal{A}} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- $\tilde{\mathcal{A}}^*$ the free monoid on $\tilde{\mathcal{A}}$ (words on $A^{\pm 1}$).
- 1 denotes the empty word, and $|\cdot|$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{ \text{reduced words} \} \subseteq \tilde{\mathcal{A}}^*$.
- \overline{w} is the reduced word for w.
- $F_A = \tilde{\mathcal{A}}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- $\pi: \tilde{\mathcal{A}}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
• $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
• $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
• Usually, $A = \{a, b, c\}$.
• \tilde{A}^* the free monoid on \tilde{A} (words on $A^{\pm 1}$).
• 1 denotes the empty word, and $|\cdot|$ the length of words.
• \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
• $R_A = \{\text{reduced words}\} \subseteq \tilde{A}^*$.
• \overline{w} is the reduced word for w.
• $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
• $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- \tilde{A}^* the free monoid on \tilde{A} (words on $A^\pm 1$).
- 1 denotes the empty word, and $|\cdot|$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{\text{reduced words}\} \subseteq \tilde{A}^*$.
- \bar{w} is the reduced word for w.
- $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^\pm 1$ modulo \sim).
- $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
\begin{itemize}

 \item $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).

 \item $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.

 \item Usually, $A = \{a, b, c\}$.

 \item \tilde{A}^* the free monoid on \tilde{A} (words on $A^{\pm 1}$).

 \item 1 denotes the empty word, and $|\cdot|$ the length of words.

 \item \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.

 \item $R_A = \{ \text{reduced words} \} \subseteq \tilde{A}^*$.

 \item \overline{w} is the reduced word for w.

 \item $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).

 \item $\pi: \tilde{A}^* \to F_A$ the natural projection (a morphisms of monoids).

\end{itemize}
Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- \tilde{A}^* the free monoid on \tilde{A} (words on $A^{\pm 1}$).
- 1 denotes the empty word, and $|\cdot|$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{\text{reduced words}\} \subseteq \tilde{A}^*$.
- \overline{w} is the reduced word for w.
- $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (n letters).
- $\tilde{A} = A \cup A^{-1} = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$.
- Usually, $A = \{a, b, c\}$.
- \tilde{A}^* the free monoid on \tilde{A} (words on $A^{\pm 1}$).
- 1 denotes the empty word, and $| \cdot |$ the length of words.
- \sim is the eq. rel. generated by $a_i a_i^{-1} \sim a_i^{-1} a_i \sim 1$.
- $R_A = \{ \text{reduced words} \} \subseteq \tilde{A}^*$.
- \overline{w} is the reduced word for w.
- $F_A = \tilde{A}^*/\sim$ is the free group on A (words on $A^{\pm 1}$ modulo \sim).
- $\pi: \tilde{A}^* \rightarrow F_A$ the natural projection (a morphisms of monoids).
A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

1. X is connected,
2. no vertex of degree 1 except possibly v (X is a core-graph),
3. no two edges with the same label go out of (or in to) the same vertex.

NO:

```
• a ↙   ↙   • b ↙   ↙   • c ← ←
  ↘  ↘  ↗  ↗  ↘  ↘  ↗  ↗
```

YES:

```
• a ↙   ↙   • b ↙   ↙   • c ← ←
  ↘  ↘  ↗  ↗  ↘  ↘  ↗  ↗
```
A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, (X, v), such that:

1. X is connected,
2. no vertex of degree 1 except possibly v (X is a core-graph),
3. no two edges with the same label go out of (or in to) the same vertex.

NO:

- $a \xRightarrow{b} b \xRightarrow{a} a \xRightarrow{c} c \xRightarrow{b} b$

YES:

- $a \xRightarrow{b} b \xRightarrow{a} a \xRightarrow{c} c \xRightarrow{b} b$
A Stallings automata is a finite A-labeled oriented graph with a distinguished vertex, \((X, v)\), such that:

1. \(X\) is connected,
2. no vertex of degree 1 except possibly \(v\) (\(X\) is a core-graph),
3. no two edges with the same label go out of (or in to) the same vertex.
In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

\[
\{\text{f.g. subgroups of } F_A \} \leftrightarrow \{\text{Stallings automata}\},
\]

which is crucial for the modern understanding of the lattice of subgroups of F_A.
In the influential paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

$$\{\text{f.g. subgroups of } F_A\} \leftrightarrow \{\text{Stallings automata}\},$$

which is crucial for the modern understanding of the lattice of subgroups of F_A.
In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983), 551-565,

Stallings (building on previous works) gave a bijection between finitely generated subgroups of F_A and Stallings automata:

\[\{ \text{f.g. subgroups of } F_A \} \leftrightarrow \{ \text{Stallings automata} \}, \]

which is crucial for the modern understanding of the lattice of subgroups of F_A.
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton \((X, v)\), we associate its fundamental group:

\[\pi(X, v) = \{ \text{labels of closed paths at } v \} \leq F_A, \]

clearly, a subgroup of \(F_A\).

\[\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, \]
\[babab^{-1}cb^{-1}, \ldots\} \]

\[\pi(X, \bullet) \not\ni bc^{-1}bcaa \]

Membership problem in \(\pi(X, \bullet)\) is solvable.
Reading the subgroup from the automata

Definition

To any given (Stallings) automaton \((X, \nu)\), we associate its fundamental group:

\[
\pi(X, \nu) = \{ \text{labels of closed paths at } \nu \} \leq F_A,
\]

clearly, a subgroup of \(F_A\).

\[
\pi(X, \bullet) = \{1, a, a^{-1}, bab, bc^{-1}b, \newline\]
\[babab^{-1}cb^{-1}, \ldots\}\]

\[
\pi(X, \bullet) \not\ni bc^{-1}bcaa
\]

Membership problem in \(\pi(X, \bullet)\) is solvable.
In any automaton containing the following situation, for $x \in A^{\pm 1}$,

we can fold and identify vertices u and v to obtain

This operation, $(X, v) \sim (X', v)$, is called a Stallings folding.
In any automaton containing the following situation, for $x \in A^{\pm 1}$,

$$
\begin{align*}
\bullet & \xrightarrow{x} u \\
 & \xleftarrow{x} v
\end{align*}
$$

we can fold and identify vertices u and v to obtain

$$
\bullet \xrightarrow{x} u = v
$$

This operation, $(X, v) \sim (X', v)$, is called a Stallings folding.
In any automaton containing the following situation, for $x \in A^{\pm 1}$,

$$\bullet \xrightarrow{x} u \xleftarrow{x} v$$

we can fold and identify vertices u and v to obtain

$$\bullet \xrightarrow{x} u = v$$

This operation, $(X, \nu) \rightsquigarrow (X', \nu)$, is called a Stallings folding.
Constructing the automata from the subgroup

Lemma (Stallings)

If \((X, v) \rightsquigarrow (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots, w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1. Draw the flower automaton,
2. Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).

Well defined?
Need to see that the output does not depend on the process...
Lemma (Stallings)

If \((X, v) \rightsquigarrow (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots, w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1. Draw the flower automaton,
2. Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).

Well defined?
Need to see that the output does not depend on the process...
Constructing the automata from the subgroup

Lemma (Stallings)

If \((X, v) \leadsto (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots, w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1. Draw the flower automaton,
2. Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).

Well defined?

Need to see that the output does not depend on the process...
Constructing the automata from the subgroup

Lemma (Stallings)

If \((X, v) \rightsquigarrow (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots, w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1. **Draw the flower automaton,**
2. **Perform successive foldings until obtaining a Stallings automaton, denoted** \(\Gamma(H)\).

Well defined?

Need to see that the output does not depend on the process...
Constructing the automata from the subgroup

Lemma (Stallings)

If \((X, v) \leadsto (X', v')\) is a Stallings folding then \(\pi(X, v) = \pi(X', v')\).

Given a f.g. subgroup \(H = \langle w_1, \ldots, w_m \rangle \leq F_A\) (we assume \(w_i\) are reduced words), do the following:

1- Draw the flower automaton,

2- Perform successive foldings until obtaining a Stallings automaton, denoted \(\Gamma(H)\).

Well defined?

Need to see that the output does not depend on the process...
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: \(H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle \)

Flower(H)
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Folding #1.
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Folding #2.
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

Folding #2.
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

\[\Gamma(H) \]

Folding #3.

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$
Example: $H = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

By Stallings Lemma, $\pi(\Gamma(H), \bullet) = \langle baba^{-1}, aba^{-1}, aba^2 \rangle$

$= \langle b, aba^{-1}, a^3 \rangle$
The bijection

Lemma

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Lemma

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection between f.g subgroups and Stallings automata:

$$
\begin{align*}
\{ \text{f.g. subgroups of } F_A \} & \leftrightarrow \{ \text{Stallings automata} \} \\
H & \rightarrow \Gamma(H) \\
\pi(X, \nu) & \leftarrow (X, \nu)
\end{align*}
$$
The bijection

Lemma
The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Lemma
The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem
The following is a bijection between f.g subgroups and Stallings automata:

\[
\begin{align*}
\{ \text{f.g. subgroups of } F_A \} & \longleftrightarrow \{ \text{Stallings automata} \} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow (X, v)
\end{align*}
\]
The bijection

Lemma

The automaton $\Gamma(H)$ does not depend on the sequence of foldings.

Lemma

The automaton $\Gamma(H)$ does not depend on the generators of H.

Theorem

The following is a bijection between f.g subgroups and Stallings automata:

\[
\begin{align*}
\{ \text{f.g. subgroups of } F_A \} & \leftrightarrow \{ \text{Stallings automata} \} \\
H & \rightarrow \Gamma(H) \\
\pi(X, v) & \leftarrow (X, v)
\end{align*}
\]
1. The bijection between subgroups of F_A and Stallings automata

2. Many applications

3. Moving out of free groups

4. Stallings sections

5. Virtually free groups
Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- We have proved the finitely generated case, but everything extends easily to the general case.
- The original proof (1920’s) is combinatorial and much more technical.
- Everything now is nicely algorithmic.
Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- We have proved the finitely generated case, but everything extends easily to the general case.

- The original proof (1920’s) is combinatorial and much more technical.

- Everything now is nicely algorithmic.
Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of F_A is free.

- We have proved the finitely generated case, but everything extends easily to the general case.

- The original proof (1920’s) is combinatorial and much more technical.

- Everything now is nicely algorithmic.
Nielsen-Schreier Theorem

Corollary (Nielsen-Schreier)

Every subgroup of \(F_A \) is free.

- We have proved the finitely generated case, but everything extends easily to the general case.

- The original proof (1920’s) is combinatorial and much more technical.

- Everything now is nicely algorithmic.
Membership & containment

(Membership)

Does \(w \) belong to \(H = \langle w_1, \ldots, w_m \rangle \) ?

- Construct \(\Gamma(H) \),
- Check whether \(w \) is readable as a closed path in \(\Gamma(H) \) (at the basepoint).

(Containment)

Given \(H = \langle w_1, \ldots, w_m \rangle \) and \(K = \langle v_1, \ldots, v_n \rangle \), is \(H \leq K \) ?

- Construct \(\Gamma(K) \),
- Check whether all the \(w_i \)'s are readable as closed paths in \(\Gamma(H) \) (at the basepoint).
Membership & containment

(Membership)

Does \(w \) *belong to* \(H = \langle w_1, \ldots, w_m \rangle \)?

- Construct \(\Gamma(H) \),
- Check whether \(w \) is *readable* as a closed path in \(\Gamma(H) \) (at the basepoint).

(Containment)

Given \(H = \langle w_1, \ldots, w_m \rangle \) *and* \(K = \langle v_1, \ldots, v_n \rangle \), *is* \(H \leq K \)?

- Construct \(\Gamma(K) \),
- Check whether all the \(w_i \)'s are readable as closed paths in \(\Gamma(H) \) (at the basepoint).
Membership & containment

(Membership)

Does \(w \) belong to \(H = \langle w_1, \ldots, w_m \rangle \)?

- Construct \(\Gamma(H) \),
- Check whether \(w \) is readable as a closed path in \(\Gamma(H) \) (at the basepoint).

(Containment)

Given \(H = \langle w_1, \ldots, w_m \rangle \) and \(K = \langle v_1, \ldots, v_n \rangle \), is \(H \leq K \)?

- Construct \(\Gamma(K) \),
- Check whether all the \(w_i \)'s are readable as closed paths in \(\Gamma(H) \) (at the basepoint).
Membership & containment

(Membership)

Does \(w \) belong to \(H = \langle w_1, \ldots, w_m \rangle \)?

- Construct \(\Gamma(H) \),
- Check whether \(w \) is readable as a closed path in \(\Gamma(H) \) (at the basepoint).

(Containment)

Given \(H = \langle w_1, \ldots, w_m \rangle \) and \(K = \langle v_1, \ldots, v_n \rangle \), is \(H \leq K \)?

- Construct \(\Gamma(K) \),
- Check whether all the \(w_i \)'s are readable as closed paths in \(\Gamma(H) \) (at the basepoint).
(Computing a basis)

Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$)?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are “equal” up to the basepoint.
- Every path between the two basepoints spells a valid x.
Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

1. Construct $\Gamma(H)$,
2. Choose a maximal tree,
3. Read the corresponding basis.

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$)?

1. Construct $\Gamma(H)$ and $\Gamma(K)$,
2. Check whether they are "equal" up to the basepoint.
3. Every path between the two basepoints spells a valid x.
Basis & conjugacy

(Computing a basis)
Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)
Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$)?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether the are “equal” up to the basepoint.
- Every path between the two basepoints spells a valid x.
Basis & conjugacy

(Computing a basis)

Given $H = \langle w_1, \ldots, w_m \rangle$, find a basis for H.

- Construct $\Gamma(H)$,
- Choose a maximal tree,
- Read the corresponding basis.

(Conjugacy)

Given $H = \langle w_1, \ldots, w_m \rangle$ and $K = \langle v_1, \ldots, v_n \rangle$, are they conjugate (i.e. $H^x = K$ for some $x \in F_A$)?

- Construct $\Gamma(H)$ and $\Gamma(K)$,
- Check whether they are “equal” up to the basepoint.
- Every path between the two basepoints spells a valid x.

Enric Ventura (UPC) Finite automata for Schreier graphs of virtually free groups May 19th, 2012 22 / 40
Given $H = \langle w_1, \ldots, w_m \rangle$, we can decide whether $H \leq_{f.i.} F_A$; and, if yes, compute a set of coset representatives.

If $H \leq_{f.i.} F_A$ is of index $[F : H]$, then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Every f.g. subgroup $H \leq_{fg} F_A$ is a free factor of a finite index one, $H \leq_{ff} H * L \leq_{f.i.} F_A$.
Finite index subgroups

(Finite index)

Given \(H = \langle w_1, \ldots, w_m \rangle \), we can decide whether \(H \leq_{f.i.} F_A \); and, if yes, compute a set of coset representatives.

(Schreier index formula)

If \(H \leq_{f.i.} F_A \) is of index \([F : H]\), then
\[
r(H) = 1 + [F : H] \cdot (r(F_A) - 1).\]

Theorem (M. Hall)

Every f.g. subgroup \(H \leq_{fg} F_A \) is a free factor of a finite index one, \(H \leq_{ff} H \ast L \leq_{f.i.} F_A \).
Given $H = \langle w_1, \ldots, w_m \rangle$, we can decide whether $H \leq_{f.i.} F_A$; and, if yes, compute a set of coset representatives.

If $H \leq_{f.i.} F_A$ is of index $[F : H]$, then $r(H) = 1 + [F : H] \cdot (r(F_A) - 1)$.

Every f.g. subgroup $H \leq_{f.g.} F_A$ is a free factor of a finite index one, $H \leq_{f.f.} H \ast L \leq_{f.i.} F_A$.

Theorem (M. Hall)
Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

Theorem

We can effectively compute a basis for $H \cap K$ from a set of generators for H and from K.

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.
Intersection of subgroups

Theorem (Howson)

The intersection of finitely generated subgroups of \(F_A \) is again finitely generated.

Theorem

We can effectively compute a basis for \(H \cap K \) from a set of generators for \(H \) and from \(K \).

Theorem (H. Neumann)

\[
\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K), \text{ where } \tilde{r}(H) = \max\{0, r(H) - 1\}.
\]
Theorem (Howson)

The intersection of finitely generated subgroups of F_A is again finitely generated.

Theorem

We can effectively compute a basis for $H \cap K$ from a set of generators for H and from K.

Theorem (H. Neumann)

$\tilde{r}(H \cap K) \leq 2\tilde{r}(H)\tilde{r}(K)$, where $\tilde{r}(H) = \max\{0, r(H) - 1\}$.
Our goal

Can we extend this to other families of groups $G = \langle A \mid R \rangle$?

- f.g. subgroups $H \leq G$ are not free in general,
- there exist subgroups $H \leq F_2 \times F_2$ with unsolvable membership problem,
- ... for general G this is asking too much.

(Goal 1)

Put conditions to the presentation $G = \langle A \mid R \rangle$ to recreate the bijection with f.g. subgroups and the membership problem, algorithmically.

(Goal 2)

Identify which are the groups admitting such a presentation.
Our goal

Can we extend this to other families of groups $G = \langle A \mid R \rangle$?

- f.g. subgroups $H \leq G$ are not free in general,
- there exist subgroups $H \leq F_2 \times F_2$ with unsolvable membership problem,
- ... for general G this is asking too much.

(Goal 1)

Put conditions to the presentation $G = \langle A \mid R \rangle$ to recreate the bijection with f.g. subgroups and the membership problem, algorithmically.

(Goal 2)

Identify which are the groups admitting such a presentation.
Our goal

Can we extend this to other families of groups \(G = \langle A \mid R \rangle \)?

- f.g. subgroups \(H \leq G \) are not free in general,
- there exist subgroups \(H \leq F_2 \times F_2 \) with unsolvable membership problem,
- ... for general \(G \) this is asking too much.

(Goal 1)

Put conditions to the presentation \(G = \langle A \mid R \rangle \) to recreate the bijection with f.g. subgroups and the membership problem, algorithmically.

(Goal 2)

Identify which are the groups admitting such a presentation.
Our goal

Can we extend this to other families of groups \(G = \langle A \mid R \rangle \)?

- f.g. subgroups \(H \leq G \) are not free in general,
- there exist subgroups \(H \leq F_2 \times F_2 \) with unsolvable membership problem,
- ... for general \(G \) this is asking too much.

(Goal 1)

Put conditions to the presentation \(G = \langle A \mid R \rangle \) to recreate the bijection with f.g. subgroups and the membership problem, algorithmically.

(Goal 2)

Identify which are the groups admitting such a presentation.
Can we extend this to other families of groups $G = \langle A \mid R \rangle$?

- f.g. subgroups $H \leq G$ are not free in general,
- there exist subgroups $H \leq F_2 \times F_2$ with unsolvable membership problem,
- ... for general G this is asking too much.

(Goal 1)

Put conditions to the presentation $G = \langle A \mid R \rangle$ to recreate the bijection with f.g. subgroups and the membership problem, algorithmically.

(Goal 2)

Identify which are the groups admitting such a presentation.
Our goal

Can we extend this to other families of groups $G = \langle A \mid R \rangle$?

- f.g. subgroups $H \leq G$ are not free in general,
- there exist subgroups $H \leq F_2 \times F_2$ with unsolvable membership problem,
- ... for general G this is asking too much.

(Goal 1)

Put conditions to the presentation $G = \langle A \mid R \rangle$ to recreate the bijection with f.g. subgroups and the membership problem, algorithmically.

(Goal 2)

Identify which are the groups admitting such a presentation.
The Schreier graph

Definition

The Schreier graph \(\Gamma(G, H, A) \) of a subgroup \(H \leq G = \langle A \mid R \rangle \) w.r.t. \(A \) is:

- vertices: left cosets of \(G \) modulo \(H \), \(V = \{Hg \mid g \in G\} \),
- edges: \(Hg \xrightarrow{a} Hga \), for \(g \in G \) and \(a \in A \),
- basepoint: \(H \cdot 1 \).

Note that \(\Gamma(G, H, A) \) is finite if and only if \(H \leq_{f.i.} G \).

Definition

The core of a graph \((\Gamma, v)\) is the smallest subgraph containing \(v \) and having the same fundamental group; i.e. \(c(\Gamma) \) is \(\Gamma \) after deletion of all "pending trees".
The Schreier graph

Definition

The **Schreier graph** $\Gamma(G, H, A)$ of a subgroup $H \leq G = \langle A \mid R \rangle$ w.r.t. A is:

- **vertices**: left cosets of G modulo H, $V = \{Hg \mid g \in G\}$,
- **edges**: $Hg \xrightarrow{a} Hga$, for $g \in G$ and $a \in A$,
- **basepoint**: $H \cdot 1$.

Note that $\Gamma(G, H, A)$ is finite if and only if $H \leq f_i G$.

Definition

The **core** of a graph (Γ, v) is the smallest subgraph containing v and having the same fundamental group; i.e. $c(\Gamma)$ is Γ after deletion of all "pending trees".
The Schreier graph

Definition

The *Schreier graph* $\Gamma(G, H, A)$ of a subgroup $H \leq G = \langle A \mid R \rangle$ w.r.t. A is:

- **vertices**: left cosets of G modulo H, $V = \{Hg \mid g \in G\}$,
- **edges**: $Hg \xrightarrow{a} Hga$, for $g \in G$ and $a \in A$,
- **basepoint**: $H \cdot 1$.

Note that $\Gamma(G, H, A)$ is finite if and only if $H \leq_{f.i.} G$.

Definition

The *core* of a graph (Γ, v) is the smallest subgraph containing v and having the same fundamental group; i.e. $c(\Gamma)$ is Γ after deletion of all "pending trees".
The Schreier graph

Definition

The Schreier graph $\Gamma(G, H, A)$ of a subgroup $H \leq G = \langle A \mid R \rangle$ w.r.t. A is:

- **vertices**: left cosets of G modulo H, $V = \{Hg \mid g \in G\}$,
- **edges**: $Hg \xrightarrow{a} Hga$, for $g \in G$ and $a \in A$,
- **basepoint**: $H \cdot 1$.

Note that $\Gamma(G, H, A)$ is finite if and only if $H \leq_{f.i.} G$.

Definition

The core of a graph (Γ, v) is the smallest subgraph containing v and having the same fundamental group; i.e. $c(\Gamma)$ is Γ after deletion of all "pending trees".
The Schreier graph

Definition

The *Schreier graph* \(\Gamma(G, H, A) \) of a subgroup \(H \leq G = \langle A \mid R \rangle \) w.r.t. \(A \) is:

- **vertices**: left cosets of \(G \) modulo \(H \), \(V = \{ Hg \mid g \in G \} \),
- **edges**: \(Hg \xrightarrow{a} Hga \), for \(g \in G \) and \(a \in A \),
- **basepoint**: \(H \cdot 1 \).

Note that \(\Gamma(G, H, A) \) is finite if and only if \(H \trianglelefteq_{f.i.} G \).

Definition

The *core* of a graph \((\Gamma, v) \) is the *smallest* subgraph containing \(v \) and having the same fundamental group; i.e. \(c(\Gamma) \) is \(\Gamma \) after deletion of all "pending trees".
The key observation

Observation

$\Gamma(H)$ is the core of the Schreier graph $\Gamma(F_A, H, A)$, for $H \leq F_A$.

(Key observation)

In the free case, $\Gamma(H)$ is the "central" part of $\Gamma(F_A, H, A)$, i.e. it is a part of $\Gamma(F_A, H, A)$ such that

- it is finite,
- it is computable from a set of generators for H,
- it is big enough to remember H.

(Finite groups)

If $G = \langle A | R \rangle$ is finite and $H \leq G$, then we can take $\Gamma(H)$ to be the whole $\Gamma(G, H, A)$...
The key observation

Observation

Γ(H) is the core of the Schreier graph Γ(F_A, H, A), for H ≤ F_A.

(Key observation)

In the free case, Γ(H) is the "central" part of Γ(F_A, H, A), i.e. it is a part of Γ(F_A, H, A) such that

- it is finite,
- it is computable from a set of generators for H,
- it is big enough to remember H.

(Finite groups)

If G = ⟨A | R⟩ is finite and H ≤ G, then we can take Γ(H) to be the whole Γ(G, H, A)...
The key observation

Observation

$\Gamma(H)$ is the core of the Schreier graph $\Gamma(F_A, H, A)$, for $H \leq F_A$.

(Key observation)

In the free case, $\Gamma(H)$ is the "central" part of $\Gamma(F_A, H, A)$, i.e. it is a part of $\Gamma(F_A, H, A)$ such that

- it is finite,
- it is computable from a set of generators for H,
- it is big enough to remember H.

(Finite groups)

If $G = \langle A \mid R \rangle$ is finite and $H \leq G$, then we can take $\Gamma(H)$ to be the whole $\Gamma(G, H, A)$...
The key observation

Observation

Γ(H) is the core of the Schreier graph Γ(F_A, H, A), for H ≤ F_A.

(Key observation)

In the free case, Γ(H) is the "central" part of Γ(F_A, H, A), i.e. it is a part of Γ(F_A, H, A) such that

- it is finite,
- it is computable from a set of generators for H,
- it is big enough to remember H.

(Finite groups)

If G = ⟨A | R⟩ is finite and H ≤ G, then we can take Γ(H) to be the whole Γ(G, H, A)...
The key observation

Observation

\[\Gamma(H) \text{ is the core of the Schreier graph } \Gamma(F_A, H, A), \text{ for } H \leq F_A. \]

(Key observation)

In the free case, \(\Gamma(H) \) is the “central” part of \(\Gamma(F_A, H, A) \), i.e. it is a part of \(\Gamma(F_A, H, A) \) such that

- it is finite,
- it is computable from a set of generators for \(H \),
- it is big enough to remember \(H \).

(Finite groups)

If \(G = \langle A \mid R \rangle \) is finite and \(H \leq G \), then we can take \(\Gamma(H) \) to be the whole \(\Gamma(G, H, A) \)...
The key observation

Observation

Γ(H) is the core of the Schreier graph Γ(F_A, H, A), for H ≤ F_A.

(Key observation)

In the free case, Γ(H) is the "central" part of Γ(F_A, H, A), i.e. it is a part of Γ(F_A, H, A) such that

- it is finite,
- it is computable from a set of generators for H,
- it is big enough to remember H.

(Finite groups)

If G = ⟨A | R⟩ is finite and H ≤ G, then we can take Γ(H) to be the whole Γ(G, H, A)...
For all the talk, \(G = \langle A \mid R \rangle \) and \(\pi: \tilde{A}^* \rightarrow G \).

Definition

A section of \(\pi \) is a subset \(S \subseteq \tilde{A}^* \) such that \(S\pi = G \) and \(S^{-1} = S \).

Definition

Given a section \(S \subseteq \tilde{A}^* \) and \(H \leq_{f.g.} G \), define \(\Gamma(G, H, A) \cap S \) to be the smallest subgraph of \(\Gamma(G, H, A) \) where you can read all \(w \in S \) as closed paths at the basepoint.

Observation

In the free case, \(\pi: \tilde{A}^* \rightarrow F_A \), \(S = R_A \) is a section, and \(\Gamma(F_A, H, A) \cap S = \Gamma(H) \).
The key observation

For all the talk, \(G = \langle A | R \rangle \) and \(\pi : \tilde{A}^* \to G \).

Definition

A section of \(\pi \) is a subset \(S \subseteq \tilde{A}^* \) such that \(S\pi = G \) and \(S^{-1} = S \).

Definition

Given a section \(S \subseteq \tilde{A}^* \) and \(H \leq_{f.g.} G \), define \(\Gamma(G, H, A) \cap S \) to be the smallest subgraph of \(\Gamma(G, H, A) \) where you can read all \(w \in S \) as closed paths at the basepoint.

Observation

In the free case, \(\pi : \tilde{A}^* \to F_A, S = R_A \) is a section, and \(\Gamma(F_A, H, A) \cap S = \Gamma(H) \).
The key observation

For all the talk, \[G = \langle A \mid R \rangle \] and \[\pi : \tilde{A}^* \to G. \]

Definition

A section of \(\pi \) is a subset \(S \subseteq \tilde{A}^* \) such that \(S\pi = G \) and \(S^{-1} = S \).

Definition

Given a section \(S \subseteq \tilde{A}^* \) and \(H \leq_{f.g.} G \), define \(\Gamma(G, H, A) \cap S \) to be the smallest subgraph of \(\Gamma(G, H, A) \) where you can read all \(w \in S \) as closed paths at the basepoint.

Observation

In the free case, \(\pi : \tilde{A}^* \to F_A, S = R_A \) is a section, and \(\Gamma(F_A, H, A) \cap S = \Gamma(H) \).
The key observation

For all the talk, \(G = \langle A \mid R \rangle \) and \(\pi : \tilde{A}^* \rightarrow G \).

Definition

A section of \(\pi \) is a subset \(S \subseteq \tilde{A}^* \) such that \(S\pi = G \) and \(S^{-1} = S \).

Definition

Given a section \(S \subseteq \tilde{A}^* \) and \(H \leq_{f.g.} G \), define \(\Gamma(G, H, A) \cap S \) to be the smallest subgraph of \(\Gamma(G, H, A) \) where you can read all \(w \in S \) as closed paths at the basepoint.

Observation

In the free case, \(\pi : \tilde{A}^* \rightarrow F_A \), \(S = R_A \) is a section, and \(\Gamma(F_A, H, A) \cap S = \Gamma(H) \).
1. The bijection between subgroups of F_A and Stallings automata
2. Many applications
3. Moving out of free groups
4. Stallings sections
5. Virtually free groups
Stallings sections

Definition

A section \(S \subseteq \tilde{A}^* \) is a Stallings section if

(S0) \(S \) is a regular language and effectively computable,

(S1) \(\forall g \in G, \quad S_g = g\pi^{-1} \cap S \) is rational and effectively computable,

(S2) \(\forall g, h \in G, \quad S_{gh} \subseteq \overline{S_gS_h} \).

Observation

If \(A \) is an automaton and \(L \subseteq \tilde{A}^* \) is regular and effectively computable then \(A \cap L \) is regular and effectively computable.
Stallings sections

Definition

A section $S \subseteq \tilde{A}^*$ is a Stallings section if

(S0) S is a regular language and effectively computable,
(S1) $\forall g \in G, \quad S_g = g\pi^{-1} \cap S$ is rational and effectively computable,
(S2) $\forall g, h \in G, \quad S_{gh} \subseteq S_g S_h$.

Observation

If A is an automaton and $L \subseteq \tilde{A}^*$ is regular and effectively computable then $A \cap L$ is regular and effectively computable.
A section $S \subseteq \widetilde{A}^*$ is a Stallings section if

(S0) S is a regular language and effectively computable,

(S1) $\forall g \in G, \quad S_g = g\pi^{-1} \cap S$ is rational and effectively computable,

(S2) $\forall g, h \in G, \quad S_{gh} \subseteq S_g S_h$.

Observation

If A is an automaton and $L \subseteq \widetilde{A}^*$ is regular and effectively computable then $A \cap L$ is regular and effectively computable.
Stallings sections

Definition

A section $S \subseteq \tilde{A}^*$ is a Stallings section if

(S0) S is a regular language and effectively computable,

(S1) $\forall g \in G, \quad S_g = g\pi^{-1} \cap S$ is rational and effectively computable,

(S2) $\forall g, h \in G, \quad S_{gh} \subseteq \overline{S_g S_h}$.

Observation

If A is an automaton and $L \subseteq \tilde{A}^*$ is regular and effectively computable then $A \cap L$ is regular and effectively computable.
Proposition

For the free group $F_A = \langle A \mid - \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A \pi = F_A$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by

Theorem (Benois)

$L \subseteq \tilde{A}^*$ rational $\Rightarrow \overline{L} \subseteq \tilde{A}^*$ is rational and effectively computable.

(S1) $\forall g \in F_A$, $S_g = \{\overline{g}\}$ rational and effectively computable.

(S2) $S_{gh} = \{\overline{gh}\} = \{\overline{g} \overline{h}\} = \overline{S_g S_h}$. □
Proposition

For the free group $F_A = \langle A \mid - \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A \pi = F_A$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by

Theorem (Benois)

$L \subseteq \tilde{A}^*$ rational $\Rightarrow \bar{L} \subseteq \tilde{A}^*$ is rational and effectively computable.

(S1) $\forall g \in F_A$, $S_g = \{\bar{g}\}$ rational and effectively computable.

(S2) $S_{gh} = \{\bar{gh}\} = \{\bar{g} \bar{h}\} = S_g S_h$. □
Proposition

For the free group $F_A = \langle A \mid - \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A \pi = F_A$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by

Theorem (Benois)

$L \subseteq \tilde{A}^*$ rational $\Rightarrow \overline{L} \subseteq \tilde{A}^*$ is rational and effectively computable.

(S1) $\forall g \in F_A$, $S_g = \{\overline{g}\}$ rational and effectively computable.

(S2) $S_{gh} = \{gh\} = \{g\overline{h}\} = \overline{S_g S_h}$. □
Proposition

For the free group \(F_A = \langle A \mid - \rangle \), \(S = R_A \) is a Stallings section.

Proof. \(R_A \pi = F_A \) and \(R_A^{-1} = R_A \).

(S0) \(R_A \) is rational and effectively computable by

Theorem (Benois)

\(L \subseteq \tilde{A}^* \) rational \(\Rightarrow \tilde{L} \subseteq \tilde{A}^* \) is rational and effectively computable.

(S1) \(\forall g \in F_A, \ S_g = \{\overline{g}\} \) rational and effectively computable.

(S2) \(S_{gh} = \{\overline{gh}\} = \overline{S_g S_h} \). \(\square \)
Proposition

For the free group $F_A = \langle A \mid - \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A \pi = F_A$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by

Theorem (Benois)

$L \subseteq \widetilde{A}^*$ rational $\Rightarrow \overline{L} \subseteq \widetilde{A}^*$ is rational and effectively computable.

(S1) $\forall g \in F_A$, $S_g = \{ \overline{g} \}$ rational and effectively computable.

(S2) $S_{gh} = \{ \overline{gh} \} = \{ \overline{g} \overline{h} \} = S_g S_h$. □
Finite groups

Proposition

For a finite group $G = \langle A \mid R \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A\pi = G$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by Benois Theorem.

(S1) $\forall g \in F_A, S_g = g\pi^{-1} \cap R_A = \overline{g\pi^{-1}}$ is rational (because $|G| < \infty$) and effectively computable.

(S2) for $u \in S_{gh}$, take $v \in S_h$ and we have $u = \overline{uv^{-1}v} = \overline{uv^{-1}v} \in S_gS_h$. □
Proposition

For a finite group $G = \langle A \mid R \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A \pi = G$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by Benois Theorem.

(S1) $\forall g \in F_A, S_g = g \pi^{-1} \cap R_A = \overline{g \pi^{-1}}$ is rational (because $|G| < \infty$) and effectively computable.

(S2) for $u \in S_{gh}$, take $v \in S_h$ and we have $u = \overline{uv^{-1}} v = \overline{uv^{-1}} v \in S_g S_h$. □
Finite groups

Proposition

For a finite group \(G = \langle A \mid R \rangle \), \(S = R_A \) is a Stallings section.

Proof. \(R_A \pi = G \) and \(R_A^{-1} = R_A \).

(S0) \(R_A \) is rational and effectively computable by Benois Theorem.

(S1) \(\forall g \in F_A, S_g = g \pi^{-1} \cap R_A = \overline{g \pi^{-1}} \) is rational (because \(|G| < \infty \)) and effectively computable.

(S2) for \(u \in S_{gh} \), take \(v \in S_h \) and we have \(u = uv^{-1}v = uv^{-1}v \in S_gS_h \). \(\square \)
Proposition

For a finite group $G = \langle A \mid R \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A\pi = G$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by Benois Theorem.

(S1) $\forall g \in F_A$, $S_g = g\pi^{-1} \cap R_A = \overline{g\pi^{-1}}$ is rational (because $|G| < \infty$) and effectively computable.

(S2) for $u \in S_{gh}$, take $v \in S_h$ and we have $u = \overline{uv^{-1}v} = uv^{-1}v \in S_gS_h$. □
Proposition

For a finite group $G = \langle A \mid R \rangle$, $S = R_A$ is a Stallings section.

Proof. $R_A\pi = G$ and $R_A^{-1} = R_A$.

(S0) R_A is rational and effectively computable by Benois Theorem.

(S1) $\forall g \in F_A, S_g = g\pi^{-1} \cap R_A = g\pi^{-1}$ is rational (because $|G| < \infty$) and effectively computable.

(S2) for $u \in S_{gh}$, take $v \in S_h$ and we have $u = uv^{-1}v = uv^{-1}v \in S_gS_h$. \qed
Proposition

Suppose $\langle A \mid R \rangle \simeq G \simeq \langle A' \mid R' \rangle$. Then, there exists a Stallings section for $\pi : \tilde{A}^* \to G$ if and only if there exists a Stallings section for $\pi' : \tilde{A'}^* \to G$.

Proof. Take a monoid morphism $\varphi : \tilde{A}^* \to \tilde{A'}^*$ such that $\varphi \pi' = \pi$. If S is a Stallings section for $\pi : \tilde{A}^* \to G$, then $S\varphi$ will be a Stallings section for $\pi' : \tilde{A'}^* \to G$, and vice versa. □

So, existence of a Stallings section is a group property, independent of the presentation.
Independence of the presentation

Proposition

Suppose $\langle A \mid R \rangle \cong G \cong \langle A' \mid R' \rangle$. Then, there exists a Stallings section for $\pi : \tilde{A}^* \to G$ if and only if there exists a Stallings section for $\pi' : \tilde{A}'^* \to G$.

Proof. Take a monoid morphism $\varphi : \tilde{A}^* \to \tilde{A}'^*$ such that $\varphi \pi' = \pi$.

If S is a Stallings section for $\pi : \tilde{A}^* \to G$, then $S\varphi$ will be a Stallings section for $\pi' : \tilde{A}'^* \to G$, and viceversa. □

So, existence of a Stallings section is a group property, independent of the presentation.
Independence of the presentation

Proposition

Suppose $\langle A \mid R \rangle \simeq G \simeq \langle A' \mid R' \rangle$. Then, there exists a Stallings section for $\pi : \tilde{A}^* \to G$ if and only if there exists a Stallings section for $\pi' : \tilde{A}'^* \to G$.

Proof. Take a monoid morphism $\varphi : \tilde{A}^* \to \tilde{A}'^*$ such that $\varphi \pi' = \pi$. If S is a Stallings section for $\pi : \tilde{A}^* \to G$, then $S\varphi$ will be a Stallings section for $\pi' : \tilde{A}'^* \to G$, and viceversa. □

So, existence of a Stallings section is a group property, independent of the presentation.
Independence of the presentation

Proposition

Suppose $\langle A \mid R \rangle \simeq G \simeq \langle A' \mid R' \rangle$. Then, there exists a Stallings section for $\pi : \tilde{A}^* \to G$ if and only if there exists a Stallings section for $\pi' : \tilde{A}'^* \to G$.

Proof. Take a monoid morphism $\varphi : \tilde{A}^* \to \tilde{A}'^*$ such that $\varphi \pi' = \pi$. If S is a Stallings section for $\pi : \tilde{A}^* \to G$, then $S \varphi$ will be a Stallings section for $\pi' : \tilde{A}'^* \to G$, and viceversa. □

So, existence of a Stallings section is a group property, independent of the presentation.
Lemma

Let S be a Stallings section for $\pi : \tilde{A}^* \to G$, let $H \leq_{f.g.} G$, and let A be an inverse automata such that

- $S_H \subseteq L(A) \subseteq H\pi^{-1}$,
- there is no path $p \xrightarrow{w} q$ with $p \neq q$ and $w\pi = 1$.

Then, $\Gamma(G, H, A) \cap S = A \cap S$.

Theorem

Let S be a Stallings section for $\pi : \tilde{A}^* \to G$. For every $H \leq_{f.g.} G$, $\Gamma(G, H, A) \cap S$ is effectively computable and satisfies

$S_H \subseteq L(\Gamma(G, H, A) \cap S) \subseteq H\pi^{-1}$.
Constructing $\Gamma(G, H, A) \cap S$

Lemma

Let S be a Stallings section for $\pi: \widetilde{A}^* \to G$, let $H \leq_{f.g.} G$, and let A be an inverse automata such that

- $S_H \subseteq L(A) \subseteq H\pi^{-1}$,
- there is no path $p \xrightarrow{w} q$ with $p \neq q$ and $w\pi = 1$.

Then, $\Gamma(G, H, A) \cap S = A \cap S$.

Theorem

Let S be a Stallings section for $\pi: \widetilde{A}^* \to G$.

For every $H \leq_{f.g.} G$, $\Gamma(G, H, A) \cap S$ is effectively computable and satisfies $S_H \subseteq L(\Gamma(G, H, A) \cap S) \subseteq H\pi^{-1}$.
Corollary

Let S be a Stallings section for $\pi : \tilde{A}^* \to G$, $H \leq_{f.g.} G$, and $g \in G$. TFAE:

(a) $g \in H$,
(b) $S_g \subseteq L(\Gamma(G, H, A) \cap S)$,
(c) $S_g \cap L(\Gamma(G, H, A) \cap S) \neq \emptyset$.

Hence, the membership problem is solvable in G.

Proof.

(a) \Rightarrow (b). If $g \in H$ then $S_g \subseteq S_H \subseteq L(\Gamma(G, H, A) \cap S)$.
(b) \Rightarrow (c). $S_g \neq \emptyset$ because S is a section.
(c) \Rightarrow (a). Take $g \in S_g \cap L(\Gamma(G, H, A) \cap S)$ and we have $g = s_\pi \in H$.

The decidability comes from (S1) and the Theorem (and intersection of regular languages being regular and computable). □
Corollary

Let S be a Stallings section for $\pi: \tilde{A}^* \rightarrow G$, $H \leq_f G$, and $g \in G$. TFAE:

(a) $g \in H$,
(b) $S_g \subseteq L(\Gamma(G, H, A) \cap S)$,
(c) $S_g \cap L(\Gamma(G, H, A) \cap S) \neq \emptyset$.

Hence, the membership problem is solvable in G.

Proof.

(a) \Rightarrow (b). If $g \in H$ then $S_g \subseteq S_H \subseteq L(\Gamma(G, H, A) \cap S)$.

(b) \Rightarrow (c). $S_g \neq \emptyset$ because S is a section.

(c) \Rightarrow (a). Take $g \in S_g \cap L(\Gamma(G, H, A) \cap S)$ and we have $g = s\pi \in H$.

The decidability comes from (S1) and the Theorem (and intersection of regular languages being regular and computable). \square
Corollary

Let S be a Stallings section for $\pi : \tilde{A}^* \to G$, $H \leq_{f.g.} G$, and $g \in G$. TFAE:

(a) $g \in H$,
(b) $S_g \subseteq L(\Gamma(G, H, A) \cap S)$,
(c) $S_g \cap L(\Gamma(G, H, A) \cap S) \neq \emptyset$.

Hence, the membership problem is solvable in G.

Proof.

(a) \Rightarrow (b). If $g \in H$ then $S_g \subseteq S_H \subseteq L(\Gamma(G, H, A) \cap S)$.

(b) \Rightarrow (c). $S_g \neq \emptyset$ because S is a section.

(c) \Rightarrow (a). Take $g \in S_g \cap L(\Gamma(G, H, A) \cap S)$ and we have $g = s_\pi \in H$.

The decidability comes from (S1) and the Theorem (and intersection of regular languages being regular and computable). □
Corollary

Let S be a Stallings section for $\pi : \tilde{A}^* \to G$, $H \leq_{f.g.} G$, and $g \in G$. TFAE:

(a) $g \in H$,
(b) $S_g \subseteq L(\Gamma(G, H, A) \cap S)$,
(c) $S_g \cap L(\Gamma(G, H, A) \cap S) \neq \emptyset$.

Hence, the membership problem is solvable in G.

Proof.

(a) \Rightarrow (b). If $g \in H$ then $S_g \subseteq S_H \subseteq L(\Gamma(G, H, A) \cap S)$.
(b) \Rightarrow (c). $S_g \neq \emptyset$ because S is a section.
(c) \Rightarrow (a). Take $g \in S_g \cap L(\Gamma(G, H, A) \cap S)$ and we have $g = s\pi \in H$.

The decidability comes from (S1) and the Theorem (and intersection of regular languages being regular and computable). □
Corollary

Let S be a Stallings section for $\pi : \tilde{A}^* \to G$, $H \leq_{f.g.} G$, and $g \in G$. TFAE:

(a) $g \in H$,
(b) $S_g \subseteq L(\Gamma(G, H, A) \cap S)$,
(c) $S_g \cap L(\Gamma(G, H, A) \cap S) \neq \emptyset$.

Hence, the membership problem is solvable in G.

Proof.

(a) \Rightarrow (b). If $g \in H$ then $S_g \subseteq S_H \subseteq L(\Gamma(G, H, A) \cap S)$.
(b) \Rightarrow (c). $S_g \neq \emptyset$ because S is a section.
(c) \Rightarrow (a). Take $g \in S_g \cap L(\Gamma(G, H, A) \cap S)$ and we have $g = s\pi \in H$.

The decidability comes from (S1) and the Theorem (and intersection of regular languages being regular and computable). □
The bijection between subgroups of F_A and Stallings automata

Many applications

Moving out of free groups

Stallings sections

Virtually free groups
Theorem

If G_1 and G_2 are groups with Stallings sections, and H is a finite subgroup of both, then the amalgamated product $G_1 \ast_H G_2$ also admits a Stallings section.

Theorem

If G is a group with a Stallings section and K is a finite subgroup, then the HNN extension $G \ast_K$ also admits a Stallings section.

Corollary

Virtually free groups admit Stallings sections.
Amalgamation and HNN

After several quite technical computations...

Theorem

If G_1 and G_2 are groups with Stallings sections, and H is a finite subgroup of both, then the amalgamated product $G_1 \ast_H G_2$ also admits a Stallings section.

Theorem

If G is a group with a Stallings section and K is a finite subgroup, then the HNN extension $G \ast_K$ also admits a Stallings section.

Corollary

Virtually free groups admit Stallings sections.
After several quite technical computations...

Theorem

If G_1 and G_2 are groups with Stallings sections, and H is a finite subgroup of both, then the amalgamated product $G_1 \ast_H G_2$ also admits a Stallings section.

Theorem

If G is a group with a Stallings section and K is a finite subgroup, then the HNN extension $G \ast_K$ also admits a Stallings section.

Corollary

Virtually free groups admit Stallings sections.
After several quite technical computations...

Theorem

If G_1 and G_2 are groups with Stallings sections, and H is a finite subgroup of both, then the amalgamated product $G_1 \ast_H G_2$ also admits a Stallings section.

Theorem

If G is a group with a Stallings section and K is a finite subgroup, then the HNN extension $G \ast_K$ also admits a Stallings section.

Corollary

Virtually free groups admit Stallings sections.
Theorem

A finitely generated group G admits a Stallings section if and only if G is virtually free.

Proof.
Playing with a Stallings section we first prove that the word problem submonoid $1_{\pi^{-1}}$ is context-free.
And, by Muller-Schupp Theorem, G is virtually free. □
Theorem

A finitely generated group G admits a Stallings section if and only if G is virtually free.

Proof.
Playing with a Stallings section we first prove that the word problem submonoid $1_{\pi^{-1}}$ is context-free.
And, by Muller-Schupp Theorem, G is virtually free. □
Theorem

A finitely generated group G admits a Stallings section if and only if G is virtually free.

Proof.

Playing with a Stallings section we first prove that the word problem submonoid $1_{\pi^{-1}}$ is context-free.

And, by Muller-Schupp Theorem, G is virtually free. □
THANKS