Imaging the invasion of rice roots by the bakanae agent *Fusarium fujikuroi* using a GFP-tagged isolate

Maria Aragona¹, Lidia Campos-Soriano², Edoardo Piombo³,⁴, Elena Romano⁵, Blanca San Segundo²,⁶, Davide Spadaro³,⁴, Alessandro Infantino¹

¹Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Via C.G. Bertero 22, 00156 Rome, Italy.
²Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain.
³Dept. Agricultural, Forest and Food Sciences (DISAFA) and AGROINNOVA - Centre of Competence, University of Turin, Largo Braccini 2, 10095 Grugliasco (TO), Italy
⁴AGROINNOVA – Centre of Competence for the Innovation in the Agro-environmental Sector, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy.
⁵Centre of Advanced Microscopy “P. Albertano”, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy.
⁶Consejo Superior de Investigaciones Científicas, Barcelona, Spain

Corresponding author: Maria Aragona, maria.aragona@crea.gov.it

ID ORCID of the authors:

Maria Aragona: 0000-0002-1320-2141
Lidia Campos-Soriano: 0000-0002-0814-7934
Edoardo Piombo: 0000-0003-2830-1967
Elena Romano: 0000-0002-8501-2590
Blanca San Segundo: 0000-0001-7409-3172
Davide Spadaro: 0000-0001-5207-9345
Alessandro Infantino: 0000-0003-0048-1257

Concise title: Rice roots infection by gfp-tagged *Fusarium fujikuroi*

Acknowledgements

This work was supported by the AGER Foundation (grant 2010-2369), project RISINNOVA ‘Integrated genetic and genomic approaches for new Italian rice breeding strategies’; by the
Author contributions

Maria Aragona designed the project, performed the root infection and analysis and wrote the manuscript; Lidia Campos-Soriano performed the genetic transformation of *F. fujikuroi*; Edoardo Piombo performed the expression analyses and wrote the manuscript; Elena Romano performed LSCM analysis; Alessandro Infantino contributed to design the research work and cared the mycological part; Davide Spadaro and Blanca San Segundo contributed to design the research work and writing the manuscript. All authors commented on previous versions of the manuscript, read and approved the final manuscript.

ABSTRACT

Fusarium fujikuroi (teleomorph *Gibberella fujikuroi*) is the main seed-borne pathogen of rice, the causal agent of bakanae, a disease that in the last years has become of increasing economical concern in many Italian rice growing areas. A virulent *F. fujikuroi* isolate was tagged with the green fluorescent protein (GFP) gene, using *Agrobacterium tumefaciens* mediated transformation, and the virulence of the GFP isolate has been confirmed. Little is known about the early interaction of the pathogen with its host, in this work fungal development during the *F. fujikuroi*/*root* interaction was analysed by LASER scanning confocal microscopy (LSCM), by using the GFP isolate obtained. The infection of rice roots was investigated from 48 h to 8 days post-inoculation both in resistant and susceptible cultivars. Roots of resistant genotype seem to trigger a hypersensitive response at the infection site and LSCM analysis of root sections allowed the visualization of fungal growth within host tissues. Fungal growth occurred both in the resistant and the susceptible cultivar, even if it was less abundant in the resistant one. Expression analysis of *Chitinase1*, a gene involved in fungal
pathogenesis, was investigated by qPCR on the *F. fujikuroi* infected rice roots. *Chitinase1* expression increased greatly upon infection in the resistant cultivar Selenio,

Keywords: genetic transformation, *Agrobacterium tumefaciens*, confocal laser scanning
microscopic analysis, gene expression

INTRODUCTION
Bakanae is a rice disease caused by the hemibiotrophic fungal pathogen *Fusarium fujikuroi*. It was originally observed in Japan in 1928 (Ito and Kimura, 1931), but it is now present in several countries in America, Europe, Asia, Oceania and Africa (Amatulli et al. 2010; Carter et al. 2008; Chen et al. 2016; Desjardins et al. 2000; Jeon et al. 2013; Karov et al. 2005; Khan et al. 2000; Kim et al. 2015; Zainudin et al. 2008). The meaning of Bakanae is “foolish seedling”, and it is due to the main symptom of the disease: the elongation and thinning of internodes, inducing frail stems and abnormal height, thin leaves, and grains entirely or partially empty. The altered plant morphology is due to the production of gibberellic acids (GAs) by *F. fujikuroi*, the only Fusarium species capable of GAs biosynthesis (Ou 1985). GAs are not essential for fungal growth and development but, controlling jasmonic acid-mediated plant immune responses, they probably contribute to the virulence of *F. fujikuroi* (Wiemann et al. 2013; Siciliano et al. 2015). *Fusarium fujikuroi* is predominantly a seed borne pathogen, but also survives in soil and diseased plant debris (Ou 1985). Seeds can become infested when conidia, produced on diseased plants, use the wind and water splash to reach neighbouring panicles at flowering. In a recent work Sunani and colleagues (2019), studying the infectious structures, penetration and colonization of *F. fujikuroi* in seeds and seedlings of rice, showed that infection through floret is the dominant pathway to seed infection. The localization of the pathogen could be both inside and on the outside of the seed, being predominant in the lemma and palea, followed by embryo (Kumar et al. 2015). Seeds can also be contaminated by the fungus at
harvest, when they can be reached by conidia produced on diseased and dead plants. A third source of seedborne infection is represented by spores and mycelium contaminating the water used to stimulate germination in soaked seeds (Karov et al. 2009). Both ascospores and conidia can also infect seedlings through the roots and crown, colonising both the intracellular and intercellular spaces of the rice root: the fungus invades the plant without producing visible symptoms, so that \textit{F. fujikuroi} can be found in apparently healthy seeds. The potential for pathogenicity in soil rapidly decreases, going from 93\% of infection of rice planted immediately after artificial inoculation of the soil to 0.7\% for rice planted 90 days after soil inoculation, with no disease at all occurring after 180 days from the inoculation. However, the fungus can survive as hyphae on infested seeds for much longer, lasting 4-10 months at room temperature and more than 3 years at 7°C (Kanjanasoon 1965).

Bakanae disease is increasing in the main rice-producing areas worldwide. Losses in rice production caused by bakanae depend on climate, rice cultivars and pathogen strain, ranging from 3\% to 15\% in Thailand (Kanjanasoon 1965), 2\% - 20\% in Macedonia (Karov et al. 2005), 20\% - 50\% in Japan (Ito and Kimura, 1931), and up to 75\% in Iran (Saremi et al. 2008). The most common Bakanae management is based on thermal seed treatment and the use of fungicides, but \textit{F. fujikuroi} resistance to various fungicides has been reported (Chen et al., 2016). The need of developing new control measures is therefore increasing. The identification of new sources of resistance to \textit{F. fujikuroi} was based on the screening of large collections of rice germplasm and allowed to map several quantitative trait loci (QTLs) on rice chromosomes (Chen et al., 2019; Volante et al., 2017). The development of simple sequence repeat (SSR) markers and mating type analysis allowed to detect \textit{F. fujikuroi} genetic variability at population level (Valente et al., 2016), which is important for screening of resistance.

In this work we focused on the analysis of early stages of root infection by a fluorescent \textit{F. fujikuroi} isolate, with the aim to unravel the differences between the susceptible and the resistant rice cultivars facing pathogen infection and colonization. Interaction between pathogens and host plants have been extensively studied using fluorescent reporter proteins. Organisms that express genes encoding fluorescent reporter proteins are frequently used to monitor pathogen behaviours in plant tissues under
various physiological conditions (Lagopodi et al. 2002; Oren et al. 2003). The advantage of the Green Fluorescent Protein (GFP) as a reporter is that it allows in vivo imaging of fungal hyphae during its interaction with the host plant. Hyphae of gfp-expressing fungal strains can be visualized in living tissue in real time, using fluorescence microscopy without extensive manipulation. Compared to many fungal pathogens, such as Aspergillus spp. and other Fusarium species, the lack of efficient technologies for genetic manipulation has become a major obstacle for the development of *F. fujikuroi* molecular research (Cen et al. 2020). However, a polyethylene glycol (PEG)-mediated transformation of protoplasts has been used to introduce the gfp and the red fluorescent protein (rfp) gene into *F. fujikuroi* for visualizing interaction with biocontrol agents (Watanabe et al. 2007; Kato et al. 2012) and the early root colonization of a GA-producing wild-type and a GA-deficient mutant strain (Wiemann et al. 2013). Recently, a gfp-expressing *F. fujikuroi* isolate, obtained by PEG transformation, has been used to analyse rice infection at the basal stem level by confocal microscopy analysis (Lee et al. 2018).

No study so far, an *A. tumefaciens*-based method has been developed for transformation of *F. fujikuroi*. By this way we transformed four virulent *F. fujikuroi* strains by using a gfp-expressing vector, and one of the GFP-tagged isolates obtained was used to visualize and analyse the infection and colonization processes at root level in susceptible and resistant rice cultivars, by confocal microscopy. Quantification of expression in the rootlets of chitinase 1, a gene related to the response to bakanae disease, was also performed.

MATERIALS AND METHODS

Fungal strains and growth conditions

Four virulent *F. fujikuroi* strains were selected inside a collection of more than 300 isolates stocked at CREA-DC and previously used for a study of population structure analysis (Valente et al. 2016),
they were: Ff 192, Ff 297, Ff 364 and Ff 1550. After transformation by the gfp vector, as described below, four isolates named Ff 192-GFP, Ff 297-GFP, Ff 364-GFP and Ff 1550-GFP were obtained, and they are all listed in Online Resource 1. *Fusarium fujikuroi* isolates were grown on potato dextrose agar (PDA) or potato dextrose broth (PDB) at 23˚C, in the case of transformed isolates hygromycin (Hyg) at concentration of 100 µg ml⁻¹ was added to the media.

Pathogenicity assay

To test pathogenicity and virulence of GFP transformants, compared to the wild type isolates, they were grown on PDA or PDB at 23˚C for conidia production. Conidia were harvested and resuspended in water at the concentration of 10⁶ ml⁻¹. Thirty-two seeds of the susceptible rice cultivar Galileo were inoculated with each fungal isolate by adding 2 ml of the conidial suspension to each seed, before sowing in soil. The seeds of control plants (mock) were treated in the same way but inoculating them with sterile dH₂O. A complete randomized block design with three replicates was used. Plants were kept in the greenhouse at 25–28˚C under fluorescent lights, with a 12 h photoperiod. After 30 days, seedlings were evaluated for symptoms. Disease severity was evaluated using a scale from 0 to 4 as described by Zainudin et al. (2008) and modified by Valente et al. (2016). The scale includes 5 classes: 0 = no symptoms; 1 = normal growth but leaves beginning to show yellowish–green and/or small necrotic lesions localized at the crown level; 2 = abnormal growth, elongated, thin and yellowish-green leaves, stunted seedlings, necrotic lesions on main root and crown; 3 = abnormal growth, elongated stems, chlorotic, thin and brownish leaves, larger leaf angle, seedlings also shorter or taller than normal, reduced root system with necrotic lesions on secondary roots and on basal stem; 4 = dead plants before or after emergence. One or more of the described symptoms, for each class, could be present on the infected plants. Evaluation of virulence of the isolates was performed as described in Scherm et al. (2019) and infection severity was calculated by the McKinney index (McKinney, 1923), here named disease index (DI). Analysis of variance (ANOVA) was performed using COSTAT (version 6.311.; CoHort Software, Monterey, CA, USA) to evaluate the McKinney
index data. Data were arcsine-transformed prior to ANOVA analysis. The means were separated using Student–Newman–Keuls multiple-range tests (P < 0.05).

Generation of *F. fujikuroi* strains expressing the *gfp* gene

The four selected *F. fujikuroi* isolates were transformed with the plasmid pCAMgfp (kindly provided by A. Sesma, John Innes Center, UK) (Sesma and Osbourn, 2004). The pCAMgfp plasmid contains the *sgfp* gene (Chiu et al. 1996) under the control of the ToxA promoter from *Pyrenophora tritici-repens* (Lorang et al. 2001) and the hygromycin phosphotransferase (*hph*) gene as the selectable marker gene. The pCAMgfp plasmid was introduced into the *Agrobacterium tumefaciens* AGL-1 strain, the virulent strain required for fungal transformation. *F. fujikuroi* transformation was carried out using the *A. tumefaciens* AGL-1-transformed strain following the protocol previously described (Campos Soriano and San Segundo 2009; Campos-Soriano et al. 2013) with minor modifications.

Co-cultivation was performed at 25°C and selection was done at 28°C. PDA medium plus hygromycin B (250 µg ml⁻¹ final concentration) was used as selective medium to grow the *F. fujikuroi* transformed isolates. Fungal colonies were transferred to 24-well plates containing the selective medium to test the effective transformation. A stereomicroscope (Olympus SZX16) with 480-nm excitation and 500 to 550-nm emission filter block was used to verify GFP-transformed fungal colonies. The stability of transgene integration and *gfp* expression of transformants were tested by sub-culturing them for five generations on PDA medium and then transferring them again on selective PDA medium containing 100 µg ml⁻¹ hygromycin B. The number of pCAMgfp copies integrated into the genome of transformants has been assessed by qReal Time-PCR, using the primers Hyg588U and Hyg588L, listed in Online Resource 2. The PCR mix was composed of 10 µl of SensiMix 2x (Bioline), 2 µl of primer mix (forward and reverse, 5 µM of each primer) and 4 µl of nuclease free water. To each sample 2 µl of fungal genomic DNA and 2 µl of known amounts of the plasmid pAN7-1 were added. The thermal cycler protocol was the following: 95°C for 10 min and 40 cycles with the following steps: 95°C for 30 s; 55°C for 30 s and 72°C for 45 s.
Root infection assay

Two rice varieties, the bakanae disease resistant *japonica* variety Selenio and the susceptible *japonica* variety Galileo, were used in this study. Selenio was selected as one of the most resistant rice cultivar from 138 diverse Italian rice accessions screened for evaluation of rice bakanae disease resistance (Volante et al., 2017). Seeds of both cultivars were inoculated by the wild type isolate Ff 297 and the derived transformant Ff 297-GFP. Seeds were surface sterilized in 2% NaOCl for 2 min and rinsed in sterile H₂O before plating on sterile wet paper for germination. After 5 days at 30°C in the dark, young emerged roots were inoculated by applying 100 μl of a suspension at 10⁶ spores ml⁻¹ in the middle of the rootlets, seedlings were allowed continuing the growth at 30°C in the dark until confocal laser scanning microscopic (CLSM) analysis or chitinase expression analysis.

Epi-fluorescence microscopic analysis

GFP-labelled *F. fujikuroi* mycelium and spores, grown on PDA plates or inoculated roots, were photographed using an epifluorescence microscope (Axioscope, Zeiss) equipped with a GFP filter and a camera to capture images of GFP fluorescence (excitation at 455 to 490 nm and emission at 515 to 560 nm).

Confocal microscopy analysis of infected roots

After 48 hours after inoculation (hai), 72 hai and 8 days after inoculation (dai) by Ff 297-GFP strain, infected rice roots were stained with propidium iodide (0.2 μg ml⁻¹) for 3 min before microscope observation, both unaltered and hand-sectioned roots were analysed. Images of GFP-labelled *F. fujikuroi* strain in host roots were captured using a confocal laser scanning microscope FV1000 Olympus (Tokyo, Japan) equipped with inverted microscope IX 81. Images were acquired in z stack with objective 10x (N.A. 0.40), using 488nm (argon Ion, emission 520nm) for GFP fluorescence, and
543nm (HeNe, emission 570 nm) laser for propidium iodide staining of root bark. Subsequently they were processed using Imaris 6.2.1 software (Bitplane, Switzerland).

Expression analysis

Total RNA was extracted using the RNeasy kit (Qiagen, Germany) from root tissues (0.1 g) at 72 hai with the selected GFP-tagged *F. fujikuroi* strain Ff 297-GFP. RNA was treated with TURBO DNA-free kit to remove contaminating DNA (Ambion, Foster City, California, United States). The absence of DNA contamination in RNA samples was further assessed by PCR using the rice elongation factor 1-alpha gene (Manosalva et al. 2009). Total RNA was quantified by Nanodrop (Thermo Fisher Scientific, Waltham, Massachusetts, United States). Reverse transcription reaction was performed using the iScript cDNA synthesis kit (Biorad, Hercules, California, United States). cDNA was then used for expression analysis by quantitative PCR (Applied Biosystem StepOnePlus, Foster City, California, United States) using the specific primers CHIT1-FW (TACTCGTGGGGCTACTGCTT) and CHIT1-RV (CGGGCCGTAGTTGTAGTTGT) for the quantification of the *chitinase 1* rice gene. The primers were designed using the Primer3Plus software (Untergasser et al. 2007). The PCR mix was composed of 5 µl of SYBR Green Power Mix (Applied Biosystem), 2 µl of cDNA, 0.15 µl of each primer (10 µM) and 2.4 µl of nuclease free water. The thermal cycler protocol was the following: 95°C for 10 min, followed by 40 cycles (95°C for 15 s; 60°C for 60 s) and 95°C for 15 s. The rice elongation factor 1-alpha was used as housekeeping gene with primers EF1α1F and EF1α1R (Manosalva *et al.*, 2009), listed in Online Resource 2. The efficiency of the primers was tested with a standard curve built upon five serial dilutions (1:10) in three technical replicates. After calculating the fold change values, significant differential expression was evaluated with the Duncan’s Post Hoc test, using SPSS v.25.
RESULTS AND DISCUSSION

Development of gfp-expressing Fusarium fujikuroi isolates

Four different F. fujikuroi isolates (Ff 192, Ff 297, Ff 364 and Ff 1550) were transformed with the plasmid pCAMgfp containing the sgfp gene. The transformed isolates almost retained the colony morphology typical of the wild-type isolates indicating that gfp expression did not affect the growth phenotype, in online resource 3 is showed an image of the Ff297-GFP isolate and the parental Ff297, selected for microscope analyses, grown on PDA plates. Approximately, 80-85% of the transformants showed strong fluorescent signal, furthermore, strong fluorescence could be visualized in fungal spores and mycelium (Figure 1).

The fluorescence of GFP in transformed F. fujikuroi strains remained stable through subsequent cultivation onto PDA medium without antibiotic, indicating the stable integration of the transforming plasmid. The number of pCAMgfp copies integrated into the transformant genomes varied from 1 to 2 in the different isolates, Ff 297-GFP had only one copy (data not shown). Up to now, F. fujikuroi transformation methods have all been based on the use of protoplasts (Watanabe et al., 2007; Kato et al., 2012; Lee et al., 2018). However, protoplast production is time consuming and, even for the same isolates, strictly dependent on the batch of lysing enzymes used, so since several years, the Agrobacterium tumefaciens-mediated transformation (ATMT) systems successfully overcame the protoplast-based ones in fungi. Moreover, ATMT-based methods facilitate vector DNA integration in a single site of the recipient genome, and are applicable at different developmental stages, such as conidia, mycelium and fruiting bodies, but germinating conidia are preferred in most of cases, if available (Michielse et al. 2005; Lakshman et al. 2012). For the first time we transformed the conidia of four F. fujikuroi isolates by the pCAMgfp plasmid introduced into the A. tumefaciens AGL-1 strain. This was previously and successfully used for transforming the rice leaf blast pathogen M. oryzae (Sesma and Ousborn, 2004; Campos-Soriano and San Segundo, 2009). Among the F. fujikuroi transformants obtained one retained virulence similar to the parental strain, showed stable integration of the transforming vector into a single site of the genome and stable fluorescence after plant inoculation.

Pathogenicity of GFP transformants

All the four gfp-expressing isolates were found to be pathogenic in infection assays of seeds, but they showed different virulence (Table 1). Ff 192 WT was the most virulent (disease index, DI, = 68.0), but in the corresponding transformant, Ff 192-GFP, DI was 28.0, suggesting that, in this isolate, sgfp gene insertion affected fungal virulence, in a direct or indirect way. Ff 364-GFP and Ff 1550-GFP
showed virulence comparable to parental isolates, but the DI values were lower than Ff 297-GFP. Ff 297 WT strain showed to be highly virulent (DI=60) and its virulence was not significantly affected in the corresponding GFP-tagged isolate (Table 1), so that Ff 297-GFP was selected for root infection and subsequent microscopic analyses. In figure 2 is illustrated the phenotype of Ff 297-GFP and of the parental strain, in the middle and on the right, respectively. We already mentioned that *F. fujikuroi* causes different symptoms on rice, as pre-emergence seedling death, elongated and thinner leaves, chlorosis, stunting, crown rot and root rot and even death of seedlings (Ou 1985; Sunani et al. 2019; Piombo et al. 2020). In this figure more than one of these symptoms are visible in the seedlings inoculated by Ff 297-GFP and Ff 297: the number of plants is lower than in the mock test (T, on the left), indicating a pre-emergence seedling death; many leaves and stems are elongated and thinner than in the control and have a larger leaf angle; some of them show stunted growth.

Infection of susceptible and resistant rice cultivars with one gfp-expressing *F. fujikuroi* strain

The two cultivars, Galileo and Selenio, were previously tested for their response to *F. fujikuroi* inoculation, showing a susceptible and resistant profile, respectively (Matic et al. 2016; Siciliano et al. 2015; Volante et al, 2017). In this study a virulent *F. fujikuroi* strain constitutively expressing the *gfp* reporter gene was obtained, enabling us to study the early stages of *F. fujikuroi* infection of rice roots in the resistant and the susceptible cultivar. Until now, most studies on the rice-*F. fujikuroi* interaction have been carried out on the aerial part of plants and at several weeks after inoculation (Ji et al. 2016; Ji et al. 2019; Matić et al. 2016). The infection process in root tissues of the rice cultivars Galileo and Selenio was followed by using the GFP-tagged *F. fujikuroi* strain Ff 297-GFP, and visualized by confocal microscopy after 48 and 72 hai and 8 dai. Hyphae growing longitudinally along the root surface and in the root hairs were primarily observed (48 hai), and penetration into the epidermal root cells was clearly observed at 72 hai (Figure 4). By this time, most epidermal cells were invaded by the fungus in the susceptible cv Galileo. A similar pattern of hyphal colonization was observed in the roots of the resistant cultivar Selenio, although host cell colonization was much lower in Selenio than that on Galileo (Figure 4). Confocal imaging of transverse sections of the roots showed that the fungus penetrated the stele in both varieties, and was more abundant in the susceptible variety than in the resistant one (Figure 4, transverse sections). We cannot exclude that this evidence was due to the major amount of fungal biomass in the susceptible cultivar, however, in literature no significant differences of the amount of *F. fujikuroi*, when measured by qPCR, were reported between the roots of susceptible and resistant cultivars (Carneiro et al. 2017; Cheng et al. 2020). Confocal analysis of transverse sections also showed colonization of the xylem vessels in both genotypes, though the fluorescence is restricted to
the vessels in Selenio while in Galileo there is also a more generalized labelling around the vessels. At 8 dai the roots were completely covered by the fungal hyphae and the diffuse fluorescence didn’t allow any microscopic analysis (data not shown).

Another phytopathogenic *Fusarium* spp., such as a *Fusarium oxysporum* f.sp. *cubense* race 4 isolate tagged by GFP, showed the capacity of invading epidermal cells of host roots directly, and spores were produced in the root system. However, in this case, roots of susceptible banana plants were colonized, but not those of the resistant cultivar, probably due to the production of host exudates that inhibited the germination and growth of pathogenic isolate (Li et al., 2011). Similarly, in lettuce, the spread of a GFP transformed virulent isolate of *Verticillium dahliae* has been hampered in two resistant varieties, limiting the fungus to lateral roots and prevented systemic spread to the taproot (Vallad and Subbarao, 2008). In conclusion, fungal colonization occurred in both the resistant cultivar Selenio and the susceptible Galileo, though the fungal presence was less abundant in the former one. This suggests that *F. fujikuroi* is able to colonize the root tissues of both varieties, as previously shown by Carneiro et al. (2017) on the roots of six rice cultivars, though Selenio proves to be resistant when seeds are inoculated.

In our experience, *F. fujikuroi* was always detected in the basal roots, and we chose this tissue as the target for pathogen infection and investigation of direct interaction between *F. fujikuroi* and rice. We observed that the earliest infectious structures were represented by the infection hyphae, as recently reported by Sunani and colleagues (2019) by scanning electron microscope analysis. The infection hyphae penetrated the epidermal cells of rice roots after 48-72 hai, and at those times the mycelium was found intra and intercellularly and was able to colonize the vascular bundles. Intercellular and intracellular growth in roots has been documented for other phytopathogenic *Fusarium* spp., including *F. culmorum* on rye root tissue (Jaroszuk-Ściseł et al. 2008) and *F. oxysporum* f. sp. *radicis lycopersici* on tomato (Lagopodi et al. 2002).

Chitinase expression analysis

In this work, we tested the expression of *chitinase1* at root level upon *F. fujikuroi* infection. Chitinases are proteins involved in the plant defence against pathogens because of their ability to hydrolyse chitin in the cell wall of fungi (Sharma et al. 2011). We observed that Selenio and Galileo expressed *chitinase1* at similar levels in the not inoculated roots, but the expression increased greatly upon pathogen challenge in the resistant cultivar Selenio (Figure 3). It has been suggested that in filamentous fungi, chitinases may act during hyphal growth (Kumar et al., 2018), therefore, the induction of *chitinase1* in Selenio may be involved in the control of hyphal growth during the infection, and correlates well with the phenotype of resistance observed in this cultivar. Up-regulation
during incompatible interaction between rice and *M. oryzae* has also been reported (Kawahara et al., 2012). We cannot draw any conclusion regarding the susceptible cultivar Galileo because standard deviation (SD) values of the fold change were too high in Galileo inoculated sample. We repeated the assay three times and always observed that, after 72 hai, in Galileo many germinated seeds showed shorter root length than the same not inoculated cultivar. In conclusion, the Galileo inoculated sample was not homogeneous, and this could be a possible explanation of high SD when analyzing gene expression. We hypothesized that *F. fujikuroi* inoculation could have also effect on root growth of the susceptible cultivar, compared to the resistant one, but these preliminary observations need further studies.

CONCLUSIONS

Roots represent the first specialized tissue emerging from seeds upon germination, so it might represent an easy tool to study the early stages and the mechanisms performed for rice infection by a seedborne fungal pathogen as *F. fujikuroi*. We clarified that *F. fujikuroi* spreads both in the roots of resistant and susceptible rice plants, although there was a reduction in fungal colonization in the resistant variety. This suggests that *F. fujikuroi* is able to survive and grow inside root tissue even when not causing symptoms. Visualizing *F. fujikuroi* in roots will help in investigating the early stages of the infection process by this fungal pathogen in rice, while representing a useful tool for the screening of rice cultivars for resistance/susceptibility to *F. fujikuroi*. Further research is in progress to evaluate the behaviour of GFP-transformed *F. fujikuroi* isolates present within the seeds of susceptible and resistant varieties after artificially inoculations of floret, which represents the main route of entry of this pathogen.

Figure captions

Fig. 1 Morphological characteristics of transformed isolates of *F. fujikuroi*. (A) Typical growth of *gfp*-expressing *F. fujikuroi* isolates; (B,C,D,E) Fluorescent and transmission micrographs of *gfp*-expressing *F. fujikuroi* spores, bars: 20 µm (B, C, D and F) and 10 µm (E); (F) Confocal image of fluorescent mycelium on PDA plates; (G) Epifluorescent image of mycelium on the surface of a rice seed.

Fig. 2 Phenotype of the rice susceptible variety Galileo at 30 days post inoculation with the *gfp*-expressing *F. fujikuroi* isolate Ff 297-GFP (in the middle) and wild type Ff 297(on the right). T, in the left, represents the control mock-inoculated with dH₂O.
Fig. 3 Expression of Chitinase1 gene in the rootlets of resistant (Selenio) and susceptible (Galileo) rice cultivars. Data obtained by reverse transcriptase real time PCR. The error bar is the standard deviation, and the letters indicate groups not considered to be statistically different using the Duncan test.

Fig. 4 Rootlets of rice cv. Galileo (susceptible) and Selenio (resistant), inoculated with the gfp-expressing F. fujikuroi isolate Ff 297-GFP. Root surface and transverse sections at the indicated time after inoculation are shown. Bars:70 μm for transverse sections, 150 μm for the other pictures.

Electronic Supplementary Material

Online Resource 1. Fusarium fujikuroi strains used in this study.

Online Resource 2. Primers used in this study.

Online Resource 3. Phenotype of the GFP-tagged isolate Ff297-GFP selected for microscopical analyses and the parental strain Ff297, both grown on PDA plates.

Compliance with Ethical Standards:
There are no potential conflicts of interest.
This research is not involving human participants and/or animals, therefore, there is no informed consent needed.
All the authors have been informed and consent to publish this work.

REFERENCES

Amatulli, M. T., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2010). Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. *Plant Pathology*, 59(5), 839-844.

Campos-Soriano, L. & San Segundo, B. (2009). Assessment of blast disease resistance in transgenic PRms rice using a gfp-expressing Magnaporthe oryzae strain. *Plant Pathology*, 58, 677–689.

Campos-Soriano, L., Valè, G., Lupotto, E. & San Segundo, B. (2013). Investigation of rice blast development in susceptible and resistant rice cultivars using a gfp-expressing Magnaporthe oryzae isolate. *Plant Pathology* 62, 1030–1037.

Carneiro, A.G., Matic, S., Ortu, G., Garibaldi, A., Spadaro, D., & Gullino, M.L. (2017) Development and validation of a TaqMan real time PCR assay for the specific detection and quantification of Fusarium fujikuroi in rice plants and seeds. *Phytopathology* 107, 885-892.

Carter, L. L. A., Leslie, J. F., & Webster, R. K. (2008). Population structure of Fusarium fujikuroi from California rice and water grass. *Phytopathology*, 98(9), 992-998.
methods - - - -

ngus on rice in region of Kocani. (by nonpathogenic

Secale cereale –

470

469

468

467

466

465

464

463

462

461

460

459

458

457

456

455

454

453

452

451

450

449

448

447

446

445

444

443

442

441

440

439

438

437

436

435

434

433

432

431

430

429

428

427

426

425

424

423

422

421

420

419

418

417

416

415

414

413

412

411

410

409

408

407

406

405

404

403

402

401

400

399

398

397

396

395

394

393

392

391

390

389

388

387

386

385

384

383

382

381

380

379

378

377

376

375

374

373

372

371

370

369

368

367

366

365

364

363

362

361

360

359

358

357

356

355

354

353

352

351

350

349

348

347

346

345

344

343

342

341

340

339

338

337

336

335

334

333

332

331

330

329

328

327

326

325

324

323

322

321

320

319

318

317

316

315

314

313

312

311

310

309

308

307

306

305

304

303

302

301

300

299

298

297

296

295

294

293

292

291

290

289

288

287

286

285

284

283

282

281

280

279

278

277

276

275

274

273

272

271

270

269

268

267

266

265

264

263

262

261

260

259

258

257

256

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

239

238

237

236

235

234

233

232

231

230

229

228

227

226

225

224

223

222

221

220

219

218

217

216

215

214

213

212

211

210

209

208

207

206

205

204

203

202

201

200

199

198

197

196

195

194

193

192

191

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

157

156

155

154

153

152

151

150

149

148

147

146

145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

111

110

109

108

107

106

105

104

103

102

101

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

15
fungus on rice in the Republic of Macedonia. *Proceedings of National Science Matica Srpska Novi Sad*, (116), 175-182.

Kato, A., Miyake, T., Nishigata, K., Tateishi, H., Teraoka, T. & Arie, T. (2012). Use of fluorescent proteins to visualize interactions between the Bakanae disease pathogen *Gibberella fujikuroi* and the biocontrol agent *Talaromyces* sp. KNB-422. *Journal of General Plant Pathology* 78, 54–61.

Kawahara, Y., Oono, Y., Kanamori, H., Matsumoto, T., Itoh, T., & Minami, E. (2012). Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. *PLoS One*, 7:e49423.

Khan, J. A., Jamil, F. F., & Gill, M. A. (2000). Screening of rice varieties/lines against bakanae and bacterial leaf blight (BLB). *Pakistan Journal of Phytopathology*, 12(1), 6-11.

Kim, M. H., Hur, Y. J., Lee, S. B., Kwon, T. M., Hwang, U. H., Park, S. K., et al. (2014). Large scale screening analysis for the evaluation of bakanae disease in rice. *Journal of General Plant Pathology*, https://doi.org/10.1007/s10327-014-0528-0

Kim, B. R., Han, K. S., Hahn, S. S., Kwon, M. K., & Nam, Y. G. (2015). Occurrence of the rice bakanae disease in Chungnam province. *Research in Plant Disease*, 21, 154.

Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V. & Pareek, N. (2018). Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens. *Agriculture*, 8, 88.

Kumar, P., Sunder, S., & Singh, R. (2015) Survival of *Fusarium moniliforme* causing foot rot and bakanae disease in different parts of rice grains. *Indian Phytopathology*, 68, 454–455.

McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by *Helminthosporium sativum*. *Journal of Agricultural Research*, 26, 195-217

Lagopodi, A. L., Ram, A. F. J., Lamers, G. E. M., Punt, P. J., Van den Honde, C. A. M. J. J., Lugtenberg, B. J. J., & Bloemberg, G.V. (2002). Novel aspects of tomato root colonization and infection by *Fusarium oxysporum* f. sp. *radicis-lycopersici* revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. *Molecular Plant Microbe Interaction*, 15(2), 172–179.

Lakshman, D.K., Pandey, R., Kamo, K., Bauchan, G., & Mitra, A. (2012). Genetic transformation of *Fusarium oxysporum* f.sp. *gladioli* with *Agrobacterium* to study pathogenesis in Gladiolus. *European Journal of Plant Pathology*, 133, 729-738.

Lee, S-B., Hur, Y-J, Cho, J-H., Lee J-H., Kim, T-H., Cho, S-M., et al. (2018). Molecular mapping of qBK1WD, a major QTL for bakanae disease resistance in rice. *Rice*, https://doi 10.1186/s12284-017-0197-7

Li, C., Chen, S., Zuo, C. et al. (2011). The use of GFP-transformed isolates to study infection of banana with *Fusarium oxysporum* f. *sp. cubense* race 4. *European Journal of Plant Pathology* 131, 327–340. https://doi.org/10.1007/s10658-011-9811-5

Lorang, J. M., Tuori, R. P., Martinez, J. P., Sawyer, T. L., Redman, R. S., Rollinset, J. A. et al. (2001). Green Fluorescent Protein Is Lighting Up Fungal Biology. *Applied and Environmental Microbiology*, 67, 1987–1994.
Manosalva, P. M., Davidson, R. M., Liu, B., Zhu, X., Hulbert, S. H., Leung, H. & Leach, J. E. (2009). A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. *Plant Physiology*, 149, 286-296.

Matić, S., Bagnaresi, P., Biselli, C., Carneiro, G. A., Siciliano, I., Valè, G., et al. (2016). Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen *Fusarium fujikuroi*. *BMC Genomics*, 17, 608.

Michielse, C.B., Hooykaas, P. J. J., van den Hondel, C. A., & Ram, A. F. J. (2005). *Agrobacterium*-mediated transformation as a tool for functional genomics in fungi. *Current Genetics*, 48(1),1-17.

Oren, L., Ezrati, S., Cohen, D., & Sharon, A. (2003). Early events in the *Fusarium verticillioides*-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. *Applied and Environmental Microbiology*, 69,1695–701.

Ou, S.H. (1985). Bakanae disease and foot rot. In: Rice diseases survey. Kew: Commonwealth Mycological Institute, pp 262–272.

Piombo, E., Bosio, P., Acquadro, A., Abbruscato, P. & Spadaro, D. (2020). Different Phenotypes, Similar Genomes: Three Newly Sequenced *Fusarium fujikuroi* Strains Induce Different Symptoms in Rice Depending on Temperature. *Phytopathology* 110(3):656-665. doi: 10.1094/PHYTO-09-19-0359-R.

Saremi, H., Ammarellou, A., Marefat, A., & Okhovvat, S. M. (2008). Binam a rice cultivar, resistant for root rot disease on rice caused by *Fusarium moniliforme* in Northwest, Iran. *International Journal of Botany*,4, 383-389.

Scherm, B., Balmas, V., Infantino, A., Aragona, M., Valente, M., T., Desiderio, F., et al. (2019) Clonality, spatial structure, and pathogenic variation in *Fusarium fujikuroi* from rain-fed rice in southern Laos. *PLoS ONE*, 14(12): e0226556. https://doi.org/10.1371/journal.pone.0226556

Sesma, A. & Osbourn, A.E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. *Nature* 431, 582–586.

Sharma, N., Sharma, K. P., Gaur, R. K., & Gupta, V. K. (2011). Role of chitinase in plant defense. *Asian Journal of Biochemistry.*,6(1), 29-37.

Siciliano, I., Amaral Carneiro, A., Spadaro, D., Garibaldi, A., & Gullino, M.L. (2015). Jasmonic acid, abscisic acid and salicylic acid are involved in the phytoalexin responses of rice to *Fusarium fujikuroi*, a high gibberellin producer pathogen. *Journal of Agricultural and Food Chemistry* 63, 8134-8142.

Sunani, S. K., Bashyal, B. M., Kharayat, B. S., Prakash, G., Krishnan, S. G., & Aggarwal, R. (2019). Identification of rice seed infection routes of *Fusarium fujikuroi* inciting bakanae disease of rice. *Journal of Plant Pathology*, https://doi.org/10.1007/s42161-019-00390-8.

Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. *Nucleic acids research*, 35(suppl_2), W71-W74.

Valente, M. T., Desiderio, F., Infantino, A., Valè, G., Abbruscato, P. & Aragona, M. (2016). Genetic variability of *Fusarium fujikuroi* populations associated with Bakanae of rice in Italy. *Plant Pathology*, https://doi: 10.1111/ppa.12575.
Vallad, G. E., & Subbarao, K. V. (2008). Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of *Verticillium dahliae*. *Phytopathology*, 98, 871-885.

Watanabe, S., Kumakura, K., Izawa, N., Nagayama, K., Mitachi, T., Kanamori, M., et al. (2007). Mode of action of *Trichoderma asperellum* SKT-1, a biocontrol agent against *Gibberella fujikuroi*. *Journal of Pesticide Science*, 32(3), 222–228.

Zainudin, N. I. M., Razak, A., & Salleh, B. (2008). Bakanae disease of rice in Malaysia and Indonesia: etiology of the causal agent based on morphological, physiological and pathogenicity characteristics. *Journal of Plant Protection Research*, 48(4), 475-485.