See reference page for full text.
expertise, and available experience to carry out this test, which greatly supports our clinical practice.

Our friends and mentors Drs. Andy Bush and Clair Hogg best described our position long ago: "It is simply not good enough to dismiss videomicroscopy as 'difficult and limited in availability'; if it is the best test, it should be made available. No one would advocate abandoning the sweat test because unskilled use leads to false positives and negatives, nor should functional ciliary studies be displaced because they are not easy and the equipment is sophisticated." (12).

Figure 1. Suggested diagnostic algorithm for evaluating patients with suspected primary ciliary dyskinesia. Additional corroborative testing may provide information on clinical prognosis, further understanding of the disease, and suggest potential future therapeutic considerations. Reprinted from Reference 10. For a complete list of footnote symbols, see Figure 1 in Reference 10. CF = cystic fibrosis; nNO = nasal nitric oxide; PCD = primary ciliary dyskinesia; TEM = transmission electron microscopy.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Israel Amirav, M.D.
Moran Lavie, M.D.*
Tel-Aviv Sourasky Medical Center
Tel Aviv, Israel

References

1. Lavie M, Amirav I. In defense of high-speed video microscopy in evaluating patients with suspected primary ciliary dyskinesia. *Am J Respir Crit Care Med* 2019;200:1181–1183.

2. Fauman MA. Do physicians use practice guidelines? *Psychiatr Times* 2006;23:13.

3. Amirav I, Wallmeier J, Loges NT, Menchen T, Pennekamp P, Mussaffi H, et al.; Israeli PCD Consortium Investigators. Systematic analysis of CCNO variants in a defined population: implications for clinical phenotype and differential diagnosis. *Hum Mutat* 2016;37:396–405.

4. Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. *Eur Respir J* 2014;44:1579–1588.

5. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al.; UK10K Consortium. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. *Am J Hum Genet* 2012;91:672–684.

6. Chioccioli M, Feriani L, Nguyen Q, Kotar J, Dell SD, Mennella V, et al. Quantitative high-speed video profiling discriminates between DNAH11 and HYDIN variants of primary ciliary dyskinesia. *Am J Respir Crit Care Med* 2019;199:1436–1438.

7. Fassad MR, Shoemark A, Legendre M, Hirst RA, Koll F, le Borgne P, et al. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. *Am J Hum Genet* 2018;103:984–994.

8. Loges NT, Antony D, Mauer A, Deardorff MA, Güleç EY, Gezdirici A, et al. Recessive DNAH9 loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects. *Am J Hum Genet* 2018;103:995–1008.

9. Jeanson L, Thomas L, Copin B, Coste A, Sermet-Gaudelus I, Dastot-Le Moal F, et al. Mutations in GAS8, a gene encoding a nexin-dynein regulatory complex subunit, cause primary ciliary dyskinesia with axonemal disorganization. *Hum Mutat* 2016;37:776–785.

10. Shapiro AJ, Davis SD, Polineni D, Manion M, Rosenfeld M, Dell SD, et al.; American Thoracic Society Assembly on Pediatrics. Diagnosis of primary ciliary dyskinesia: an official American Thoracic Society clinical practice guideline. *Am J Respir Crit Care Med* 2018;197:e24–e39.

11. Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. *Eur Respir J* 2017;49:1601090.

12. Hogg C, Bush A. Genotyping in primary ciliary dyskinesia: ready for prime time, or a fringe benefit? *Thorax* 2012;67:377–378.

Copyright © 2020 by the American Thoracic Society