BOLTZMANN-GIBBS ENTROPY IS SUFFICIENT BUT NOT NECESSARY FOR THE LIKELIHOOD FACTORIZATION REQUIRED BY EINSTEIN

Constantino Tsallis\(^1,2\) and Hans J. Haubold\(^3\)

\(^1\)Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ, Brazil
\(^2\)Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
\(^3\)Office for Outer Space Affairs, United Nations, P.O. Box 500, A-1400 Vienna, Austria

In 1910 Einstein published a crucial aspect of his understanding of Boltzmann entropy. He essentially argued that the likelihood function of any system composed by two probabilistically independent subsystems ought to be factorizable into the likelihood functions of each of the subsystems. Consistently he was satisfied by the fact that Boltzmann (additive) entropy fulfills this epistemologically fundamental requirement. We show here that entropies (e.g., the q-entropy on which nonextensive statistical mechanics is based) which generalize the BG one through violation of its well known additivity can also fulfill the same requirement. This fact sheds light on the very foundations of the connection between the microscopic and macroscopic worlds.

PACS numbers:

Einstein presented in 1910 \(^1\) an interesting argument of why he liked Boltzmann’s connection between the classical thermodynamic entropy introduced by Clausius and the probabilities of microscopic configurations. This argument is based on the factorization of the likelihood function of independent systems (A and B), namely

\[
W(A + B) = W(A)W(B)
\] (1)

This is a very powerful epistemological reason since it reflects the basic procedure of all sciences, namely that, in order to study any given natural, artificial and social system, we must start by ideally considering it isolated from the rest of the universe. In the present paper, we shall refer to Eq. (1), as Einstein likelihood principle (see \(^2\) for related aspects).

From Boltzmann celebrated principle

\[
S_{BG} = k \ln W,
\] (2)

where \(k\) is a conventional constant (we shall from now on use BG, standing for Boltzmann-Gibbs, instead of just B), we obtain, through Einstein’s well known reversal of Boltzmann formula, the likelihood function

\[
W \propto e^{S_{BG}/k},
\] (3)

with

\[
S_{BG} = k \sum_{i} p_i \ln \frac{1}{p_i} \left(\sum_{i} p_i = 1 \right),
\] (4)

where, for simplicity, we have used the case of discrete variables (instead of the continuous ones, that were of course used in the early times of statistical mechanics). This entropy is additive according to Penrose’s definition \(^3\). Indeed, if A and B are probabilistically independent systems (i.e., \(p_{ij}^{A+B} = p_i p_j^B\)), we straightforwardly verify that

\[
S_{BG}(A + B) = S_{BG}(A) + S_{BG}(B),
\] (5)

hence, by replacing this equality into Eq. (3), Eq. (1) is satisfied.

Let us exhibit now that entropic additivity is sufficient but not necessary for the Einstein principle (1) to be satisfied. Let us consider the following generalised functional \(^4\), basis of nonextensive statistical mechanics \(^4–7\),

\[
S_q = k \sum_{i=1}^{W} \frac{1 - \sum_{q=1}^{W} p_i^q}{q - 1} = k \sum_{i=1}^{W} p_i \ln_q \frac{1}{p_i} \quad \left(q \in \mathbb{R}; \sum_{i=1}^{W} p_i = 1; S_1 = S_{BG} \right),
\] (6)

with \(\ln_q z \equiv \frac{z^q - 1}{q} \) \((z > 0; \ln_1 z = \ln z)\). If A and B are two probabilistically independent systems (i.e., \(p_{ij}^{A+B} = p_i^A p_j^B, \forall (i,j)\)), definition (6) implies

\[
\frac{S_q(A + B)}{k} = \frac{S_q(A)}{k} + \frac{S_q(B)}{k} + (1 - q) \frac{S_q(A) S_q(B)}{k}.
\] (7)

Consequently, according to the definition of entropic additivity in \(^8\), \(S_q\) is additive if \(q = 1\), and nonadditive otherwise. If probabilities are all equal, we straightforwardly obtain from (6)

\[
S_q = k \ln_q W,
\] (8)
hence Eq. (3) is generalised into
\[W \propto e^{S_G/k}, \tag{9} \]
where \(e^z \) is the inverse function of \(\ln z \) (hence, \(e^z \equiv [1 \pm (1 - q)z]^{1/(1-q)}; e^z = e^z \)). If we take into account Eq. (7), and use \(e^{x+y} = e^{x}e^{y} \) [with \(x \oplus y = x + y + (1-q)xy, \) and \(\ln_q(xy) = (\ln_q x) \oplus_q (\ln_q y) \)], once again we easily verify Einstein’s principle (1), but now for arbitrary value of the index \(q \) ! This exhibits a most important fact, namely entropic additivity is not necessary for satisfying Einstein 1910 crucial requirement within the foundations of statistical mechanics.

In fact, this property is amazingly general. Indeed, let us consider a generalised trace-form entropic functional
\[S_G = k \sum_{i=1}^{W} p_i \ln_q \delta, \]
where \(\ln_q z \) is some well behaved generalization of the standard logarithmic function. Let us further assume that, for probabilistically independent systems \(A \) and \(B, \) \(S_G \) satisfies \(S_G(A + B) = \Phi(S_G(A), S_G(B)) \equiv S_G(A) \oplus_q S_G(B), \) where \(\Phi \) denotes some generic function, and \(\oplus_q \) generalises the standard sum. For equal probabilities (i.e., \(p_i = 1/W, \) \(S_{zG} \) takes a specific form, namely \(S_G(W) = k \ln G W. \) We shall note \(e_G^z \) the inverse function of \(\ln G^z. \) Then, following Einstein’s reversal, the likelihood function is given by
\[W \propto e^{S_G/k}, \tag{10} \]
and, once again, by using \(e^{x+y} = e^{x}e^{y} \), the Einstein principle (1) is satisfied, \(\forall G. \) Clearly, the additive \(S_{BG} \) and the nonadditive \(S_q \) are particular illustrations of this property. Another example which follows this path is the equal-probability case of another, recently introduced (to address black holes \[S_{10} \] and the so-called area law \[21 \]), nonadditive entropy, namely (footnote of page 69 in \[7 \]), and \[8 \]; see also \[21 \]),
\[S_\delta = k_B \sum_{i=1}^{W} p_i \left(\ln \frac{1}{p_i} \right)^\delta (\delta > 0; S_1 = S_{BG}). \tag{11} \]
For equal probabilities we have
\[S_\delta = k_B \ln^\delta W, \tag{12} \]
hence, for \(\delta > 0, \)
\[\frac{S_\delta(A + B)}{k_B} = \left\{ \left[\frac{S_\delta(A)}{k_B} \right]^{1/\delta} + \left[\frac{S_\delta(B)}{k_B} \right]^{1/\delta} \right\}^\delta \]
\[= \frac{S_\delta(A)}{k_B} \oplus_q \frac{S_\delta(B)}{k_B} \tag{13} \]

Let us note at this point a crucial issue, namely that entropies \(S_{BG}, S_q \) and \(S_1 \) are thermodynamically appropriate for systems constituted by \(N \) elements, such that the total number of admissible microscopic configurations are, in the \(N \to \infty \) limit, given respectively by \(C \mu^N (C > 0; \mu > 1), \) \(DN^\rho \) (\(D > 0; \rho > 0 \)) and \(\phi(N)N^\gamma \) (\(\nu > 1; 0 < \gamma < 1 \)) \(\phi(N) \) being any function satisfying \(\lim_{N \to \infty} \ln \phi(N) = 0; \) strictly speaking, \(C \) and \(D \) could also be sufficiently slowly varying functions of \(N. \) Notice that \(C \mu^N \gg \phi(N)N^\gamma \gg DN^\rho, \) which implies that the Lebesgue measure of the phase-space occupancy typically vanishes for the cases where nonadditive entropies are to be used, whereas it is nonzero in the standard BG case. In all cases, for special values of \(q \) (namely \(q = 1 - 1/\rho \) or \(\delta \) (namely \(\delta = 1/\gamma \)), the thermodynamical requirement that \(S(N) \propto N \) is satisfied!

It is possible to unify the entire discussion by defining
\[S_q(\delta) = k_B \sum_{i=1}^{W} p_i \ln_q \left(\frac{1}{p_i} \right)^\delta (q \in R; \delta > 0). \]
Indeed, \(S_{1,1} = S_{BG}; S_{q,1} = S_q, \) and \(S_{1,\delta} = S_\delta. \)

It is fundamental to stress that indices such as \(q \) and \(\delta \) are to be obtained from first principles, i.e., from mechanics (classical, quantum, relativistic). This is already seen by the fact that, in the two above illustrations, \(q \) (or \(\delta \)) is obtained directly from \(\rho \) (or \(\gamma \)). This means that, if we are dealing say with Hamiltonian systems, \(q \) and \(\delta \) are in principle determined directly from the Hamiltonian, more precisely from the universality class of the Hamiltonian. One paradigmatic nontrivial illustration is analytically available in the literature \[22 \]. It concerns the entropy of a thermodynamically large subsystem of a strongly quantum entangled one-dimensional many-body system which belongs to the universality class characterized by the central charge \(c. \) Indeed, at quantum criticality (i.e., at \(T = 0 \)), we have \(q = \frac{\sqrt{c+2}}{2} \), see Fig. \[1 \]. It is clear that, in contrast with this example, the analytical determination of \(q \) appears to be mathematically intractable for most systems. This is the only reason why we plethorically find in the literature papers where the indices \(q \) are determined through fitting procedures. In some examples, the fitting can nevertheless be amazingly precise: see \[21, 24, 25 \] and Fig. \[2 \].

Complexity frequently emerges in natural, artificial and social systems. It may be caused by various geometrical-dynamical ingredients, which include nonergodicity, long-term memory, multifractality, and other spatial-temporal long-range correlations between the elements of the system, which ultimately drastically restrict the total number of microscopically admissible possibilities. During the last two decades, many such phenomena have been successfully approached in the frame of nonadditive entropies and nonextensive statistical mechanics. Predictions, verifications and various applications have been performed in high-energy physics \[26 \], spin-glasses \[27 \], cold atoms in optical lattices \[28 \], trapped ions \[29 \], anomalous diffusion \[30 \], dusty plasmas \[31 \], solar physics \[32 \], long-range interactions \[33 \], relativistic and nonrelativistic nonlinear quantum mechanics \[34 \], among many others.

All this is totally consistent with the fact that, for all those systems for which the correlations between the microscopic degrees of freedom is generically weak, the thermodynamically admissible entropy is precisely the additive one, \(S_{BG}, \) as well known. If, however, strong corre-
FIG. 1: The index q has been determined \[22\] from first principles, namely from the universality class of the Hamiltonian. The values $c = 1/2$ and $c = 1$ respectively correspond to the Ising and XY ferromagnetic chains in the presence of transverse field at $T = 0$ criticality. For other models see \[24\]. In the $c \to \infty$ limit we recover the Boltzmann-Gibbs (BG) value, i.e., $q = 1$. For arbitrary value of c, the subsystem nonadditive entropy S_q is thermodynamically extensive for, and only for, $q = \frac{\sqrt{8 + 7c^2} - c}{c}$.

Acknowledgments

We have benefitted from interesting remarks by L.J.L. Cirto, A.M. Mathai, G. Wilk and C.Y. Wong. Partial financial support from CNPq, Faperj and Capes (Brazilian agencies) is acknowledged as well.

[1] A. Einstein, Theorie der Opaleszenz von homogenen Flussigkeiten und Flussigkeitsgemischen in der Nahe des kritischen Zustandes, Annalen der Physik 33, 1275 (1910): Daß die zwischen S und W in Gleichung (1) $S = \frac{\mu}{2} [\ln W + \text{konst.}]$ gegebene Beziehung die einzige mögliche ist, kann bekanntlich aus dem Satze abgeleitet werden, daß die Entropie eines aus Teilssystemen bestehenden Gesamtsystems gleich ist der Summe der Entropien der Teilssysteme. "The relation between S and W given in Eq. (1) is the only reasonable given the proposition that the entropy of a system consisting of subsystems is equal to the sum of entropies of the subsystems." (Free translation: Tobias Micklitz).
[2] E.G.D. Cohen, Statistics and dynamics, Physica A 305, 19-26 (2002). E.G.D. Cohen, Boltzmann and Einstein: Statistics and Dynamics – An Unsolved Problem, Boltzmann Award Lecture at Statphys-Bangalore-2004, Pramana 64, 635-643 (2005).
[3] O. Penrose Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, Oxford, 1970), p. 167.
[4] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Stat. Phys. 52, 479 (1988) [First appeared as preprint in 1987: CBPF-NF-062/87, ISSN 0029-3865, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro].
[5] M. Gell-Mann and C. Tsallis, eds., Noneextensive Entropy - Interdisciplinary Applications (Oxford University Press, New York, 2004).
[6] C. Tsallis, Introduction to Noneextensive Statistical Mechanics - Approaching a Complex World (Springer, New York, 2009).
[7] C. Tsallis, An introduction to nonadditive entropies and a thermostatistical approach of inanimate and living matters are generically present (e.g., of the type assumed in the q-generalization of the Central Limit and Lévy-Gnedenko Theorems \[35\]), we need to implement nonadditive entropies \[36,38\] and their associated statistical mechanics.

Summarizing, in order to satisfy classical thermodynamics, the thermostatistics of a wide class of systems whose elements are strongly correlated (for instance, through long-range interactions, or through strong quantum entanglement, or both, like possibly in quantum gravitational dense systems) are to be based on nonadditive entropies such as S_q \[39\], and not on the usual Boltzmann-Gibbs-von Neumann one. Nevertheless, and this is the main point of the present note, Einstein’s principle \[11\] is generically satisfied for a wide class of entropies (which includes S_q and others) and not only for the BG one.

[1] A. Einstein, Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes, Annalen der Physik 33, 1275 (1910): Daß die zwischen S und W in Gleichung (1) $S = \frac{\mu}{2} [\ln W + \text{konst.}]$ gegebene Beziehung die einzige mögliche ist, kann bekanntlich aus dem Satze abgeleitet werden, daß die Entropie eines aus Teilssystemen bestehenden Gesamtsystems gleich ist der Summe der Entropien der Teilssysteme. "The relation between S and W given in Eq. (1) is the only reasonable given the proposition that the entropy of a system consisting of subsystems is equal to the sum of entropies of the subsystems." (Free translation: Tobias Micklitz).
[2] E.G.D. Cohen, Statistics and dynamics, Physica A 305, 19-26 (2002). E.G.D. Cohen, Boltzmann and Einstein: Statistics and Dynamics – An Unsolved Problem, Boltzmann Award Lecture at Statphys-Bangalore-2004, Pramana 64, 635-643 (2005).
[3] O. Penrose Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, Oxford, 1970), p. 167.
[4] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Stat. Phys. 52, 479 (1988) [First appeared as preprint in 1987: CBPF-NF-062/87, ISSN 0029-3865, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro].
[5] M. Gell-Mann and C. Tsallis, eds., Noneextensive Entropy - Interdisciplinary Applications (Oxford University Press, New York, 2004).
[6] C. Tsallis, Introduction to Noneextensive Statistical Mechanics - Approaching a Complex World (Springer, New York, 2009).
[7] C. Tsallis, An introduction to nonadditive entropies and a thermostatistical approach of inanimate and living matters are generically present (e.g., of the type assumed in the q-generalization of the Central Limit and Lévy-Gnedenko Theorems \[35\]), we need to implement nonadditive entropies \[36,38\] and their associated statistical mechanics.

Summarizing, in order to satisfy classical thermodynamics, the thermostatistics of a wide class of systems whose elements are strongly correlated (for instance, through long-range interactions, or through strong quantum entanglement, or both, like possibly in quantum gravitational dense systems) are to be based on nonadditive entropies such as S_q \[39\], and not on the usual Boltzmann-Gibbs-von Neumann one. Nevertheless, and this is the main point of the present note, Einstein’s principle \[11\] is generically satisfied for a wide class of entropies (which includes S_q and others) and not only for the BG one.

Acknowledgments

We have benefitted from interesting remarks by L.J.L. Cirto, A.M. Mathai, G. Wilk and C.Y. Wong. Partial financial support from CNPq, Faperj and Capes (Brazilian agencies) is acknowledged as well.

[1] A. Einstein, Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes, Annalen der Physik 33, 1275 (1910): Daß die zwischen S und W in Gleichung (1) $S = \frac{\mu}{2} [\ln W + \text{konst.}]$ gegebene Beziehung die einzige mögliche ist, kann bekanntlich aus dem Satze abgeleitet werden, daß die Entropie eines aus Teilssystemen bestehenden Gesamtsystems gleich ist der Summe der Entropien der Teilssysteme. "The relation between S and W given in Eq. (1) is the only reasonable given the proposition that the entropy of a system consisting of subsystems is equal to the sum of entropies of the subsystems." (Free translation: Tobias Micklitz).
[2] E.G.D. Cohen, Statistics and dynamics, Physica A 305, 19-26 (2002). E.G.D. Cohen, Boltzmann and Einstein: Statistics and Dynamics – An Unsolved Problem, Boltzmann Award Lecture at Statphys-Bangalore-2004, Pramana 64, 635-643 (2005).
[3] O. Penrose Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, Oxford, 1970), p. 167.
[4] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Stat. Phys. 52, 479 (1988) [First appeared as preprint in 1987: CBPF-NF-062/87, ISSN 0029-3865, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro].
[5] M. Gell-Mann and C. Tsallis, eds., Noneextensive Entropy - Interdisciplinary Applications (Oxford University Press, New York, 2004).
[6] C. Tsallis, Introduction to Noneextensive Statistical Mechanics - Approaching a Complex World (Springer, New York, 2009).
[7] C. Tsallis, An introduction to nonadditive entropies and a thermostatistical approach of inanimate and living matters are generically present (e.g., of the type assumed in the q-generalization of the Central Limit and Lévy-Gnedenko Theorems \[35\]), we need to implement nonadditive entropies \[36,38\] and their associated statistical mechanics.

Summarizing, in order to satisfy classical thermodynamics, the thermostatistics of a wide class of systems whose elements are strongly correlated (for instance, through long-range interactions, or through strong quantum entanglement, or both, like possibly in quantum gravitational dense systems) are to be based on nonadditive entropies such as S_q \[39\], and not on the usual Boltzmann-Gibbs-von Neumann one. Nevertheless, and this is the main point of the present note, Einstein’s principle \[11\] is generically satisfied for a wide class of entropies (which includes S_q and others) and not only for the BG one.

Acknowledgments

We have benefitted from interesting remarks by L.J.L. Cirto, A.M. Mathai, G. Wilk and C.Y. Wong. Partial financial support from CNPq, Faperj and Capes (Brazilian agencies) is acknowledged as well.
The critical behaviour of self-dual spin systems: finite-size scaling and conformal invariance. Gen. 23, 737 (1997). Alcaraz and M.J. Martins, (2014), to be published.

Influence of the interaction range on the thermostatistics of a classical many-body system, Physica A 393, 286-296 (2014).

F.D. Nobre, M.A. Rego-Monteiro and C. Tsallis, Nonlinear generalizations of relativistic and quantum equations with a common type of solution, Phys. Rev. Lett. 106, 140601 (2011).

S. Umarov, C. Tsallis and S. Steinberg, On a q-central limit theorem consistent with nonextensive statistical mechanics, Milan J. Math. 76, 307 (2008); S. Umarov, C. Tsallis, M. Gell-Mann and S. Steinberg, Generalization of symmetric α-stable Lévy distributions for q > 1, J. Math. Phys. 51, 033502 (2010).

C. Tsallis, M. Gell-Mann and Y. Sato, Asymptotically scale-invariant occupancy of phase space makes the entropy S_q extensive, Natl. Acad. Sc. USA 102, 15377 (2005).

R. Hanel and S. Thurner, A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions, Europhys. Lett. 93, 20006 (2011). R. Hanel and S. Thurner, When do generalised entropies apply? How phase space volume determines entropy, EPL 96, 50003 (2011); R. Hanel, S. Thurner and M. Gell-Mann, How multiplicity determines entropy: derivation of the maximum entropy principle for complex systems, PNAS 111 (19), 6905-6910 (2014) (6 pages).

G. Ruiz and C. Tsallis, Towards a large deviation theory for strongly correlated systems, Phys. Lett. A 376, 2451-2454 (2012), H. Touchette, Comment on “Towards a large deviation theory for strongly correlated systems”, Phys. Lett. A 377 (5), 436-438 (2013). G. Ruiz and C. Tsallis, Reply to Comment on “Towards a large deviation theory for strongly correlated systems”, Phys. Lett. A 377, 491-495 (2013).
Several two-parameter entropic functionals different from $S_{q,\delta}$ are available in the literature (see, for instance, [37, 40, 41], and also [42]). Close connections among them are expected to exist, at least in the thermodynamic limit.

[40] E.P. Borges and I. Roditi, *A family of non-extensive entropies*, Phys. Lett. A 246, 399 (1998).