Soft-bottom tidepools within mixed reefs of native mussels and introduced oysters – refuge for associated species and parasites?

Eric Weniger¹, Annika Cornelius², Jens Rolff¹ and Christian Buschbaum²

¹Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany and ²Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, List 25992, Germany

Abstract

The introduction of Pacific oysters to the sedimentary south-eastern North Sea coast and their establishment on intertidal native blue mussel beds has caused the development of mixed reefs of mussels and oysters with extensive tidepools. Tidepools have been intensively studied at rocky shores where they show community structures, which usually differ from that of the surrounding emerging substrates. Tidepools at sedimentary coasts, however, have received less attention. We compared the community structure and species interactions inside and outside tidepools in oyster reefs by determining densities of snails, barnacles and amphipods. Snail densities were similar in and outside tidepools. Barnacle coverage on bivalve shells, however, was lower inside tidepools, which may be caused by higher predation pressure and increased snail grazing under permanently submerged conditions, as was revealed by field and laboratory experiments. Additionally, we studied the occurrence of copepod and trematode parasites in blue mussels inside and outside tidepools. Prevalence and intensity of parasitic copepods was higher in mussels inside tidepools. Trematode parasites, by contrast, showed a lower intensity in mussels inside tidepools. This can be explained by high amphipod densities found inside tidepools because trematode larvae represent a food source of amphipods. Our study suggests that the community structure of oyster reefs within tidepools is not a submerged equivalent to that of intertidal reefs. As their counterparts at rocky shores, they show their own species distribution patterns with particular species interactions and only provide refuge for specific species such as parasitic copepods.

Introduction

The zonation of organisms along the intertidal gradient is one of the most striking characteristics of communities on intertidal shores. Patterns of species distribution are strongly determined by tolerance to desiccation and freezing on emergent substrates (Metaxas & Scheibling, 1993). Intertidal zonation patterns can be modified by tidepools. These represent specific structural entities of the substrate, which provide submerged living conditions for organisms in the intertidal zone during low tide and, therefore, can extend the upper vertical limits of many organisms that are susceptible to desiccation (Firth et al., 2014). They are most commonly found on rocky intertidal shores, where they have been intensively studied and show specific species communities and interactions that differ from the emergent rock (Metaxas & Scheibling, 1993; Hunt & Scheibling, 1998; Araujo et al., 2006; Firth & Crowe, 2008, 2010; Firth et al., 2014).

However, tidepools also occur in intertidal soft-bottom coastal systems (Kunishima & Tachihara, 2020), where they are depressions in tidal flats that develop depending on local hydrography, bottom topography and sediment composition (Brenha-Nunes et al., 2016). Tidepools in sedimentary coastal ecosystems can also be formed by habitat-structuring epibenthic organisms on the sediment surface when seawater is retained by these structures at ebb-tide conditions or when these structures initiate morphological changes of the bottom, that indirectly lead to the development of tidepools. For example, Bouma et al. (2009) showed that changes in hydrodynamics around patches of the non-native cordgrass Spartina anglica C.E. Hubbard may cause erosion troughs around the tussocks in the high intertidal zone of the European Wadden Sea (North Sea, North-east Atlantic), which are filled with water during low tide. Further examples of habitat-altering and tidepool-forming species in the Wadden Sea are epibenthic native blue mussels Mytilus edulis L. and non-native Pacific oysters Magallana gigas (Thunberg, 1793) (Buschbaum et al., 2009; Reise et al., 2017). Since the introduction of the Pacific oyster and its successful establishment on native blue mussel beds in the area in the 1980s, both species co-occur in mixed reefs of mussels and oysters. The shift from blue mussel beds to mixed oyster reefs was accompanied by a strong increase in habitat heterogeneity because Pacific oysters reach much larger sizes than blue mussels and can achieve densities of more than 1000 individuals per m² with shells often partly fused to one another (Reise et al., 2017). This has caused the development of complex, towering reef structures on the sediment surface and also of an increasing formation of tidepools with a size of several m² within the reefs (Figure 1).
It is well known that intertidal mixed reefs of blue mussels and Pacific oysters in the Wadden Sea harbour a highly diverse species community (Kochmann et al., 2008; Markert et al., 2010). The newly developed tidepools represent a microhabitat within the reefs, that has the same structural components of blue mussels and Pacific oysters as the surrounding reef areas, but is permanently submerged. Therefore, this study explicitly asks whether tidepools show the same composition of key species and species relationships as surrounding oyster reefs. To compare tidepools and surrounding reef areas we selected species and their interactions, which are known for their ecological role in oyster reefs (e.g. epibionts and their consumers) and which have been intensively studied in former investigations.

Barnacles are the most abundant epibionts on the shells of blue mussels and Pacific oysters in the study area (Buschbaum, 2000; Buschbaum et al., 2016). However, barnacle recruitment success is strongly affected by predatory crabs and the grazing activity of snails Littorina littorea L., 1758, which may achieve densities of several hundreds of snails per m² oyster reef (Cornelius & Buschbaum, 2020). To compare the occurrence of barnacles and L. littorea, we quantified densities of both species inside and outside tidepools. In addition, we investigated the effects of predation and grazing on barnacle recruitment in both areas by conducting an exclusion experiment in the field and studied the snail grazing activity under emerged and submerged conditions in the laboratory.

Fig. 1. The study area with the sampling sites Oddewatt (A), Blidselbucht (B) and Diedrichsenbank (C) in the north of the island of Sylt in the south-eastern North Sea. Tidepools occur within mixed reefs of mussels and oysters (photo).
Besides investigating densities and interactions of species living on and between the habitat-structuring blue mussels and Pacific oysters, we additionally studied the occurrence of endoparasites living inside mussels. The relationship between parasites and their host is an often neglected, but important species interaction in coastal ecosystems (Minchella & Scott, 1991; Poulin, 1999; Mouritsen & Poulin, 2002; Lafferty & Harvell, 2014). Parasites can have strong direct effects on host populations by leading to increased mortality, as has been shown for blue mussels when being infected with parasitic copepods. They can also cause indirect effects on trophic interactions by altering prey preferences of predators. European shore crabs
Carcinus maenas L., 1785, for example, prefer blue mussels parasitized by shell-boring polychaetes. They weaken the shell structure of blue mussels and make them easier for crabs to prey on (Ambaryanto & Seed, 1991). In the Wadden Sea, parasites occur from primary producers to apex predators. Therefore, they can impact all trophic levels (Thieltges et al., 2013), and with their effects on host species and trophic interactions, they can also influence the food web as a whole. Due to their ecological importance, we included parasites in our study as another parameter in the comparison of species distribution patterns inside and outside of tidepools.

Parasitic trematodes and copepods belong to the most prevalent groups of metazoan parasites in coastal systems (Thieltges et al., 2006, 2013). A widely distributed trematode parasite species is *Renicola roscovitae* Stunkard, 1932, which has a complex life cycle utilizing snails as their first intermediate host, bivalves as second and birds as final host (Werding, 1969; Lauckner, 1984; Krakau et al., 2006). Another prevalent group of parasites are copepods of the genus *Mytilicola* spp., which shows a direct life cycle (no intermediate host, Goedknegt et al., 2020). Both the trematode *R. roscovitae* and the copepods *Mytilicola* spp. use blue mussels *M. edulis* as hosts (Pogoda et al., 2012; Goedknegt et al., 2017). Therefore, we determined the densities of *Mytilicola* spp. and *R. roscovitae* in blue mussels collected inside and outside of tidepools. Additionally, we quantified the occurrence of amphipods in both areas, which are well known to prey on free-living cercarial stages of *R. roscovitae* and may, therefore, affect the prevalence of this parasite in blue mussels (Welsh et al., 2014). We hypothesize that the density of selected organisms associated with an oyster reef, such as barnacles, amphipods, snails and parasites, differs between tidepools and surrounding oyster reefs. As a consequence, we assume that specific species interactions such as grazing activity of snails also differ inside and outside tidepools. Different distribution patterns of selected species inside and outside tidepools would indicate that they represent specific habitats within reefs of native mussels and oysters and do not only represent permanently submerged branches of surrounding reefs.

Materials and methods

Study area

All samples were taken and field experiments were performed along the north-east coast of the island Sylt in the northern Wadden Sea (Figure 1). In this area, the tides are semidiurnal (mean tidal range 2 m) with a relatively constant salinity close to 30 (Thieltges & Reise, 2006). More detailed information about biotic and abiotic factors in the study area can be found in Reise (1985), Reise et al. (1994) and Reise & Riethmüller (1998). For this study, tidepools were defined as follows: tidepools have a size of at least 2 m² surface area and a water depth of at least 15 cm during low tide and they must be situated within mixed reefs (Figure 1). Samples from the tidepool habitat are further labelled as ITP (inside tidepools) and compared with samples collected on the surrounding oyster reef outside tidepools labelled as OTP (outside tidepools, with a maximum of 1 m and a minimum of 15 cm distance to a tidepool). Three structurally very similar major mixed reefs with at least 10 tidepools per reef were selected as sampling areas for this study. Site A, called Oddeuwatt (55°01′54.5″N 8°26′44.8″E), is located between site B, called Bldselverbucht (54°59′19.7″N 8°22′51.5″E) and site C, called Diedrichsenbank (55°02′31.2″N 8°26′57.2″E). The distance between the sites is not more than 5 km (Figure 1).

Field observations

Density of barnacles, amphipods and Littorina littorea

The main barnacle species present in the study area in summer 2020 were the introduced Australian barnacle *Austrominius modestus* Darwin, 1854 and, at lower densities, the native balanid *Semibalanus balanoides* L., 1767. To determine the densities of barnacles, *Littorina littorea* and amphipods ITP and OTP, samples were taken from sites A and C, between 6 and 14 July 2020. At both sites, a total of six ITP and six OTP samples were taken.

A square sampling frame with a surface area of 200 cm² was randomly placed in the ITP and OTP areas. All biogenic hard substrate (living bivalves and dead shell material) inside the square was collected and transported to the laboratory, where samples were washed with fresh water over a 1000 μm sieve. All remaining individuals of *L. littorea* and all amphipods in the sieve were counted. Additionally, epibiotic barnacles attached to the shells were counted and after removing the barnacles, the biovolume of the bivalve shells (living bivalves and dead shell material) per sample was measured using calibrated beakers.

Parasite distribution

To investigate the prevalence (% infected individuals from total number of investigated hosts) and intensity (number of parasites per infected host) of parasitic copepods *Mytilicola* spp. and the parasitic trematode *R. roscovitae* ITP and OTP, blue mussels were collected at sites A and B in August 2020 as summer is the main time of prevalence for both parasite species (Grainger, 1951; Poulin, 2006; Thieltges & Rick, 2006). Each parasite species was collected at different sampling events. Per sampling site and parasite species, we randomly collected 12 blue mussels (5-6 cm shell length) ITP and 12 blue mussels OTP. To detect parasite infection and to count the number of parasites per infected blue mussel (intensity), the mussel flesh was dissected. Afterwards, the soft tissue was squeezed between two glass plates and investigated using a stereo microscope.

In the Wadden Sea, blue mussels are infected with the parasitic copepod species *Mytilicola orientalis* Mori, 1935, which was co-introduced with Pacific oysters and recently spilled over to blue mussels, and the congeneric *Mytilicola intestinalis* Steuer, 1902. In this study, we did not differentiate between both parasitic copepod species, because both species have a similar life cycle (Goedknegt et al., 2020).

Consumer exclusion experiment

To examine effects of predators and grazers on barnacle coverage ITP and OTP, a consumer exclusion experiment in the field was conducted using cages. Oyster spat collectors were used as settlement substrates for barnacle larvae. Oyster spat collectors are standardized plastic discs with a diameter of 15 cm. Two discs were stacked upon each other with a distance of 4 cm between them and then attached to an iron rod of 50 cm length, that was deeply (40 cm) anchored in the sediment. In total, 12
experimental units were placed ITP and OTP, respectively. Half of these were enclosed with cylindrical cages (20 cm in diameter, 22 cm height) made of a PVC net of 0.5 cm mesh size resulting in six caged and six non-caged ITP experimental units and six caged and non-caged OTP experimental units. The experiment was set up at site A (Oddewatt, Figure 1) and installed at six tidepools and surrounding oyster reefs. The maximum distance between experimental units ITP and OTP was 1 m. All grazers and predators were removed from the ‘treatment’ (caged) and ‘control’ (non-caged) plots before the beginning of the experiment, which was started on 17 July 2020 and finished after 14 days on 31 July 2020. During the course of the experiment, all experimental units were controlled daily to keep them free from e.g. floating macroalgae. Number of barnacles recruits attached to the spat collectors at the end of the experiment was extremely high and we decided to only count barnacles attached to the underside of the upper discs, that represented a well standardized settlement surface.

Snail mobility experiment

To examine the effect of submersion and emersion conditions on the movement activity of L. littorea, a laboratory experiment was conducted in August 2020. Snails of two size classes were collected from site A (Oddewatt), because we expected size dependent mobility differences. Littorina littorea between 9–15 mm were categorized as small, and snails between 18–24 mm as large (measured from base to apex of the shell). For the experiment, 10 aquaria (35 × 25 × 20 cm) were used and filled with a 1 cm layer of moistened sandy sediment, representing a low tide situation. For simulation of high tide conditions, the sediment in another 10 aquaria was additionally covered by a water layer of about 2 cm. We ensured that the snails in this treatment were completely below water during the experiment. We used this amount of water to test whether the mobility of the snails is already affected at low water coverage. The abiotic conditions for all aquaria during the experiment were kept constant by using a constant-temperature room, that also enabled constant light conditions. The snails were put into the aquaria (one snail per aquarium) and after 2 min of acclimation, the starting positions of L. littorea were marked. Snails leave a trail when moving on sediment and the length of the trail was measured with a measuring tape to the nearest mm after an experimental period of 5 min. In total, we measured the mobility of 10 small and 10 large snails at low tide and high tide conditions, respectively.

Statistical analysis

All data were processed and analysed with the statistical software R (version 3.6.3, R Core Team, 2017), and the predefined functions from the ’car’, ‘DHARMa’, ‘ggplot2’ and ‘lme4’ packages. Data are given as arithmetic means with standard error (SE). Effects were considered to be statistically significant if the P-value was <0.05.

Different numbers of barnacles, L. littorea and amphipods were each fitted with linear mixed models (LMM) and analysed with location (outside tidepools OTP and inside tidepools ITP) as fixed factor. We fitted the factor sampling site (A and C) as random intercept to account for possible differences between sampling sites. Data regarding the barnacle density were transformed logarithmically to achieve homoscedasticity. All model assumptions were checked using ‘DHARMa’ residuals diagnostics from the ‘DHARMa’ package.

Differences in prevalence and intensity of Mytilicola spp. and Renicola roscovita in Mytilus edulis

Prevalence and intensity of Mytilicola spp. in blue mussels differed between mussels collected OTP and ITP at both study sites. At site A prevalence of Mytilicola spp. was 17% OTP and significantly lower compared with ITP with 58% (Chi-square test; $\chi^2 = 4.4$, df = 1, $P = 0.035$, Figure 4A). The intensity (number of parasites per infected mussel) at site A was also lower OTP (1.0 ± 0.0 Mytilicola spp. mussel$^{-1}$) than ITP (2.7 ± 0.4 Mytilicola spp. mussel$^{-1}$; Figure 4B).

At site B we found the same pattern with a significantly lower prevalence of Mytilicola spp. OTP (25%) than ITP (100%, Figure 4A; Chi-square test: $\chi^2 = 14.4$, df = 1, $P < 0.001$) and also a lower intensity OTP (2.0 ± 0.6 Mytilicola spp. mussel$^{-1}$) than ITP (3.8 ± 0.5 Mytilicola spp. mussel$^{-1}$; Figure 4B). Due to the low number of blue mussels infected with Mytilicola spp. OTP by Chi-square tests (prevalence) and non-parametric Mann–Whitney U-tests (intensity).

Barnacle recruitment in the consumer exclusion experiment was analysed by a two-factor analysis of variance (ANOVA) with location (OTP and ITP) and cage (with and without) as experimental fixed factors. A non-constant Variance Score Test was used to test for homoscedasticity of variances. Variances of the data were heterogeneous and, therefore, data were transformed (Box–Cox transformation) to achieve homoscedasticity. We used Tukey’s Honest-Significant-Difference (HSD) multiple comparison test for pairwise comparisons between treatments.

To test snail mobility of the two snail size categories (small and large) at simulated low and high tide conditions, we used a two-factor analysis of variance (ANOVA) with snail size and water coverage as fixed experimental factors. Variances of the data were also heterogeneous in this experiment (Non-constant Variance Score Test) and transformed (Box–Cox transformation) to achieve homoscedasticity.

Results

Field observations

Density of barnacles

Barnacle densities were significantly higher OTP than ITP (estimate = −1.08 ± 0.11, df = 21, t-value = −9.61, $P < 0.001$; Figure 2). The highest number of barnacles on blue mussels and Pacific oysters was found OTP at site C with 1283 ± 107 barnacles 1$^{-1}$ bivalve biovolume, which was about three times higher than ITP with 417 ± 53 barnacles 1$^{-1}$ bivalve biovolume. At site A barnacle densities were also higher OTP with 815 ± 52 barnacles 1$^{-1}$ bivalve biovolume in comparison to 308 ± 37 barnacles 1$^{-1}$ bivalve biovolume ITP.

Density of Littorina littorea and amphipods

At site A, mean density of L. littorea OTP (589 ± 73 individuals m$^{-2}$) was similar to the mean snail density ITP (556 ± 76 individuals m$^{-2}$, Figure 3). At site C mean density of L. littorea was less similar with 481 ± 57 individuals m$^{-2}$ OTP and 340 ± 39 individuals m$^{-2}$ ITP. Densities of L. littorea were not significantly different OTP and ITP (estimate = −87.07 ± 62.82, df = 21, t-value = −1.39, $P = 0.180$). At site A, mean amphipod density OTP was 331 ± 94 individuals m$^{-2}$ and lower than ITP with 721 ± 163 individuals m$^{-2}$ and this was also the case at site C with 223 ± 45 individuals m$^{-2}$ OTP and 389 ± 100 individuals m$^{-2}$ ITP (Figure 3). Thus, mean numbers of amphipods showed a similar distribution pattern at site A and C, with overall significantly lower densities OTP than ITP (estimate = 277.78 ± 109.43, df = 21, t-value = 2.54, $P = 0.019$).

Prevalence and intensity of Mytilicola spp. and Renicola roscovita in Mytilus edulis

Prevalence and intensity of Mytilicola spp. in blue mussels differed between mussels collected OTP and ITP at both study sites. At site A prevalence of Mytilicola spp. was 17% OTP and significantly lower compared with ITP with 58% (Chi-square test; $\chi^2 = 4.4$, df = 1, $P = 0.035$, Figure 4A). The intensity (number of parasites per infected mussel) at site A was also lower OTP (1.0 ± 0.0 Mytilicola spp. mussel$^{-1}$) than ITP (2.7 ± 0.4 Mytilicola spp. mussel$^{-1}$; Figure 4B).
at both study sites (two individuals at site A and three individuals at site B), we analysed the pooled data from both sites (parasite intensity of 5 infected individuals OTP and of 19 infected individuals ITP), which revealed a significant difference between the intensity OTP and ITP (Mann–Whitney U-test: $U = 14.5$, $P = 0.018$).

At both study sites, the prevalence of *R. roscovita* was 100% OTP and 100% ITP (Figure 4C). The intensity of *R. roscovita* in infected blue mussels showed an opposite pattern to *Mytilicola* spp. and was higher OTP (603 ± 146 cercariae mussel$^{-1}$) than ITP (308 ± 121 cercariae mussel$^{-1}$) at site A (Figure 4D). However, this difference was marginally not significant, although the number of cercariae per blue mussel OTP was almost twice as high as ITP (Mann–Whitney U-test: $U = 39$, $P = 0.057$). At site B, intensity was also higher OTP (574 ± 139 cercariae mussel$^{-1}$) than ITP (233 ± 59 cercariae mussel$^{-1}$, Figure 4D). In this case the difference was significant (Mann–Whitney U-test: $U = 35$, $P = 0.033$). When the data of both sample sites were pooled, the
intensity of *R. roscovita* showed a significant difference between OTP and ITP (Mann–Whitney *U*-test: *U* = 146, *P* = 0.004).

Consumer exclusion experiment

The experimental exclusion of consumers by using cages significantly affected barnacle recruitment (two-way ANOVA, *df* = 1, *F* = 6.80, *P* = 0.017). Additionally, barnacle recruitment was significantly affected by the location OTP and ITP (two-way ANOVA, *df* = 1, *F* = 5.81, *P* = 0.026; Figure 5). Barnacle recruitment OTP was similar in the treatment with cages (55 ± 12 barnacles per spat collector) and without cages (46 ± 15 barnacles per spat collector). However, number of barnacle recruits was strongly different ITP with 196 ± 53 barnacles per spat collector, which was significantly higher than 57 ± 15 barnacles per spat collector in the treatment without cages (Tukey’s test: *P* = 0.033) and also significantly different from the treatments with cages (Tukey’s test: *P* = 0.044) and without cages OTP (Tukey’s test: *P* = 0.016).

There were no significant interactions between exclusion of consumers and location on barnacle recruitment (two-way ANOVA, *consumer exclusion × location*, *df* = 1; *F* = 5.81; *P* = 0.116).

Snail mobility

Water coverage in the aquaria significantly affected snail mobility (two-way ANOVA, *df* = 1, *F* = 63.1, *P* < 0.001, Figure 6) in the laboratory experiment, while mobility was not significantly different between large- and small-sized *L. littorea* (two-way ANOVA, *df* = 1, *F* = 2.65, *P* = 0.112, Figure 6).

Mean distance travelled by large snails (size of 18–24 mm shell height) in aquaria without water coverage (7 ± 3 mm 5 min⁻¹) was less than the distance travelled by large snails in aquaria with water coverage (97 ± 21 mm 5 min⁻¹). This pattern was also found for small snails (size of 9–15 mm shell height) with a distance travelled of 24 ± 10 mm 5 min⁻¹ in aquaria without water coverage in contrast to a distance travelled of 100 ± 10 mm 5 min⁻¹ in aquaria with water coverage. There were no significant interactions between water coverage and size of *L. littorea* on mobility (two-way ANOVA, *water coverage × snail size*, *df* = 1, *F* = 0.79, *P* = 0.379).

Discussion

The results of this study reveal that associated species of mixed reefs of mussels and oysters in the Wadden Sea do not show a uniform distribution pattern within a reef, which supports our hypothesis of different communities occurring inside tidepools (ITP) and outside tidepools (OTP). We found different densities of barnacles, amphipods as well as for parasitic copepods *Mytilicola* spp. and trematodes *R. roscovita* ITP and OTP, but also similar densities as for the snail *L. littorea*. The divergent distribution patterns may result from differences in abiotic conditions OTP. However, they may also be caused by species traits and species interactions in the respective areas as our consumer exclusion experiment revealed.
Densities of barnacles and snails

Our field investigations on the distribution pattern of barnacles *A. modestus* and *S. balanoides* attached to mussels and oysters showed that barnacle densities were lower ITP than OTP. This result is in contrast to our cage experiment with similar numbers of barnacles ITP and OTP in treatments without cages and much more barnacles on mussels and oysters ITP than OTP in treatments with cages, which prevented grazing and predation. This indicates that barnacle settlement is generally higher ITP, which may be caused by aggregation of barnacle larvae within tidepools during low-tide conditions, more settling time for barnacle larvae and less desiccation stress for just settled larvae. After the
settlement phase, however, it seems that post-settlement processes cause high barnacle mortality ITP, although in our experiment we did not find a significant interaction between consumer exclusion and location with respect to barnacle settlement. High barnacle post-settlement mortality within tidepools appears to be a common pattern because it is also known from many rocky shores (Singletary & Shadlow, 1983).

Barnacle survival rate OTP seems to be much higher, which finally results in higher barnacle densities OTP than ITP. The grazing and budding activity of L. littorea is an important factor affecting overgrowth of epibionts on mussel and oyster shells in the Wadden Sea, and high snail densities may keep barnacle coverage on mixed oyster reefs low (Buschbaum, 2000; Cornelius & Buschbaum, 2020). We did not find significant snail density differences ITP and OTP, but the snail mobility experiment indicated that L. littorea has an increased movement activity when submerged, which was also found by other studies (Haseman, 1911; Newell, 1958). Therefore, it is very likely that the permanent grazing activity ITP contributes to lower barnacle densities in comparison to OTP, where the snail activity is regularly reduced by low tide conditions. By using cages, we did not only exclude snails but also other consumers of barnacles such as predatory crabs and fish. They may also have contributed to the low barnacle recruitment ITP in treatments with consumer access. For example, native shore crabs C. maenas and introduced Asian shore crabs Hemigrapsus takanoi Asakura & Watanabe, 2005 and Hemigrapsus sanguineus De Haan, 1853 are very abundant on mixed reefs of mussels and oysters and cause strong predation pressure on barnacles (Cornelius et al., 2021).

The similar densities of barnacle recruits ITP and OTP found in treatments without cages may be due to the short time of the experiment. The experimental time period of two weeks within the settlement phase of A. modestus only allowed to detect settlement and early post-settlement effects of L. littorea and other consumers on barnacle densities. However, we suggest that in the long term, consumption pressure on barnacles is higher ITP than OTP, because predation on barnacles is not interrupted by low-tide conditions ITP. This would result in lower barnacle densities ITP and, therefore, the pattern we found in our descriptive field investigation.

Parasite distribution patterns

The copepod parasites (M. orientalis and M. intestinalis) and the trematode parasite (R. roscovita) showed different distribution patterns. Prevalence and intensity of Mytilicola spp. were higher in blue mussels ITP than OTP, while the intensity of R. roscovita was higher in blue mussels OTP (with the same prevalence of 100% ITP and OTP). This result was different from our assumptions. We expected higher prevalence and intensities of all parasite species ITP because of constant submergence and, therefore, permanent exposition of blue mussels to planktonic infectious parasite stages of trematodes and parasitic copepods. Thus, the distribution patterns of the investigated parasites seem to be affected by additional processes. These can comprise further abiotic factors but also species interactions and parasite species traits including their life cycles.

The parasite R. roscovita shows a complex life cycle and the infection process of blue mussels starts when free-living cercariae emerge from L. littorea, its first intermediate host. The lifespan of the emerged cercariae is quite short (<1 day) and the infective period is still shorter (<12 h, Thieltges & Rick, 2006). Therefore, trematode infections of blue mussels are usually highest in the close vicinity (within the range of metres) of high densities of L. littorea (Thieltges & Reise, 2006; Thieltges, 2007; Goedknegt et al., 2020). We suggest, however, that additional processes are responsible for the observed pattern of R. roscovita intensity in blue mussels because we did not find different densities of snails ITP and OTP. We only determined L. littorea densities in both areas at low tide conditions. However, the L. littorea distribution pattern may be different at high tide with perhaps much higher snail densities OTP, which crawl from the tidepools to the surrounding upper parts of the oyster reef. This would also have effects on the trematode infection levels in blue mussels. This cannot be answered by our investigation and should be considered in further studies.

Trematode infection processes are most intense at low tide conditions and this is explained by an accumulation of infective stages at the bottom of intertidal bivalve beds (Goedknegt et al., 2020). Here, they concentrate in remaining small puddles with a few centimetres of water depth, that maximizes contact with blue mussels and, therefore, increases transmission rates. This process may explain the high prevalence of R. roscovita OTP.

An enrichment of cercariae within tidepools at low tide is also very likely but this may be lower than OTP because of the larger water volume. It can also be masked by other factors, that may result in lower trematode occurrence ITP. For example, free-living parasite larvae are a food source for several consumers such as crabs and shrimps (Thieltges et al., 2008). This predation effect can strongly influence parasite population dynamics by interfering with transmission pathways because parasites are removed from the system preventing successful host infection. This process has been termed the ‘dilution effect’, and can result in a reduced infection risk in host species populations (Keesing et al., 2006; Prinz et al., 2009; Thieltges et al., 2009; Johnson & Thieltges, 2010; Goedknegt et al., 2016). In marine systems, dilution effects have been intensively investigated in trematode parasites. Welsh et al. (2014), for example, reveal that especially shrimps and amphipods strongly affect the number of planktonic free-living cercarial stages of the trematode parasite Himasthla elongata Mehlis, 1831. Cercariae of this species can be completely removed from the water column by amphipods over a 3-hour experimental period, and similar effects are also very likely for other trematode species (Welsh et al., 2014). In the study area, the amphipods Gammarus locusta L. 1758 and Echinogammarus marinus (Leach, 1815) represent the dominant amphipod species within oyster reefs. Both are omnivorous species with a diverse food spectrum and show predatory effects on smaller prey organisms (Costa & Costa, 1999; Dick et al., 2005; Alexander et al., 2015). Therefore, we suggest that a dilution effect caused the lower prevalence of cercarial stages of R. roscovita ITP, because here densities of amphipods and shrimps were higher, and consumption is not interrupted by low tide conditions.

In contrast to R. roscovita, the parasitic copepods Mytilicola spp. show higher prevalence and intensities ITP. Perhaps, predation pressure on the comparatively large larvae of Mytilicola spp. (about 1 mm) is lower than on the much smaller cercarial stages of trematodes (about 150 µm; Werding, 1969; Gee & Davey, 1986). Another explanation is that the concentration of Mytilicola larvae within the tidepools during low tide is so high that despite the presence of predators enough larvae survive to cause high infection levels in blue mussels. High larval densities OTP may be a consequence of the direct life cycle of Mytilicola spp. without any intermediate hosts. Female copepods release free-living planktonic nauplii larvae from their egg sacks. After metamorphosis to the infective first copepodid stage, the larvae can spend about 2–3 weeks in the water column before moving to the bottom by a photonegative response (Gee & Davey, 1986; Thieltges & Rick, 2006; Goedknegt et al., 2020). All further development stages of Mytilicola spp. (copepodid stages II–V) take place within the bivalve host (Gee & Davey, 1986). Thus, a single infective larva has a period of several tidal cycles to find and infect a suitable blue mussel host, because this process is not restricted to such a narrow time window as for larvae of R. roscovita. The
longer larval phase also implies that recruitment of infective stages of Mytilicola spp. is independent from production of larvae of the respective oyster reef where the tidepool is located. A combination of these factors could cause a high supply of infective larval stages of Mytilicola spp. and result in high infection rates of blue mussels within tidepools.

On the other hand, the lower prevalence and intensity of Mytilicola spp. OTP than ITP may result from the structure of mixed reefs of blue mussels and Pacific oysters in the Wadden Sea in combination with the significantly higher barnacle densities OTP. Oyster reefs represent multi-layered structures with most blue mussels occurring near the bottom underneath a canopy of oysters (Reise et al., 2017), to which most barnacles are attached (Buschbaum et al., 2020). Therefore, the top layer of Pacific oysters with barnacles OTP poses a barrier of filter feeders the planktonic Mytilicola larvae have to pass before reaching its blue mussel hosts (Goedknegt et al., 2020). This may result in a decreased exposure of blue mussels at the bottom of the reefs because barnacles can prey on Mytilicola larvae. Additionally, the Pacific oysters may be considered as suitable first hosts the planktonic parastise larvae encounter when reaching the oyster reef. Interestingly, Pacific oysters do not serve as host for both Mytilicola species. Pacific oysters are infected by M. orientalis as host, as this parasite-host relationship originates from the native range of both species (Mori, 1935; Goedknegt et al., 2020). For M. intestinalis, by contrast, the Pacific oyster does not seem to be a suitable host, because this parasite has not been reported from Pacific oysters in the Wadden Sea (Goedknegt et al., 2017; personal observations). Despite not being a suitable host, Pacific oysters may also contribute to lower infection levels of blue mussels positioned deep in the oyster matrix by filtering M. intestinalis larvae out of the water column but remaining uninfected. However, this process also occurs OTP, and we suggest that the cumulative effect of the filter activity of Pacific oysters and barnacles cause the lower infection levels of Mytilicola spp. in blue mussels OTP.

Conclusions
Tidepools in oyster reefs represent new habitats in the Wadden Sea and provide constant submersion to a species community that has otherwise to deal with emergence at low tide conditions. Our study shows that tidepools are not only submerged counterparts of intertidal oyster reefs with beneficial living conditions for the associated community but also finds that within the tidepools specific patterns of species densities and also species interactions emerge. Therefore, tidepools in oyster reefs have similar ecological characteristics to their counterparts on rocky shores with different community patterns compared with the surrounding emergent substrates (Metaxas & Scheibling, 1993). In general, tidepools are important structures, that increase habitat complexity and, therefore, contribute to community patterns compared with the surrounding emergent substrates. Pacific oysters are more important as nursery grounds for low barnacle occurrence on mussels in the subtidal zone due to low snail densities in this area (Buschbaum, 2002).

In summary, the introduction and establishment of Pacific oysters in the Wadden Sea caused the formation of new extensive tidepools within mixed reefs of blue mussels and Pacific oysters. This new habitat shows its own species density patterns and species interactions with potential effects on surrounding areas. This is exemplified with the increased prevalence of the parasite copepod Mytilicola spp. OTP, which can cause an increased production of parasite larvae and, thus, increased infection of mussels inside but also outside tidepools.

Our study is a first approach to get insights in this newly developed and expanding habitat in the intertidal zone of the Wadden Sea. We have only focused on selected species but our findings may be an initial impulse for further studies on the overall species composition, further species interactions and ecological function (e.g. nursery for fish, food source) of tidepools within oyster reefs. This would provide information on their importance for the entire Wadden Sea. It would also allow a more comprehensive comparison with comparatively well-studied tide pools on rocky coasts and, therefore, provide general insights into the ecological role of tidepools in different coastal systems.

Acknowledgements. We thank Eike Petersen, Cassandra Scheibel, Nele Scheuer and Eva Lammek for their help in the field, as well as Tobias Dolch for constructive comments on an earlier version of the manuscript. Mathias Wegner helped us a lot with statistical advice. We are extremely grateful to two reviewers for their valuable comments and suggestions, which have contributed to a considerable improvement of the manuscript. This study was funded by the German Environmental Foundation (DBU), grant no. 20018/530. We acknowledge support by the Open Access Publication Funds of Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

References
Alexander ME, Dick JTA and O’Connor NE (2015) Predation in the marine intertidal amphipod Echinogammarus marinus Leach: implications of inter-and intra-individual variation. Journal of Experimental Marine Biology and Ecology 462, 50–54.
AmbariJunto and Seed R (1991) The infestation of Mytilus edulis Linnaeus by Polydora ciliata (Johnston) in the Conwy Estuary, North Wales. Journal of Molluscan Studies 57, 413–424.
Araujo R, Sousa-Pinto I, Barbara I and Quintino V (2006) Macroalgal communities of intertidal rock pools in the northwest coast of Portugal. Acta Oecologica 30, 192–202.
Bouma TJ, Ortelis V and Ysebaert T (2009) Comparing biodiversity effects among ecosystem engineers of contrasting strength: macrofauna diversity in Zostera nolitii and Spartina anglica vegetation. Helgoland Marine Research 63, 3–18.
Brena-Nunes MR, Contente RF and Rossi-Wongtschowski CLDB (2016) A protocol for measuring spatial variables in soft-sediment tide pools. Zoologia (Curitiba) 33, e20150165.
Buschbaum C (2000) Direct and indirect effects of Littorina littorea (L.) on barnacles growing on mussel beds in the Wadden Sea. Hydrobiologia 440, 119–128.
Buschbaum C (2002) Predation on barnacles of intertidal and subtidal mussel beds in the Wadden Sea. Helgoland Marine Research 56, 37–43.
Buschbaum C, Cornelius A and Goedknegt MA (2016) Deeply hidden inside introduced biogenic structures – Pacific oyster reefs reduce detrimental barnacle overgrowth on native blue mussels. Journal of Sea Research 117, 20–26.
Buschbaum C, Dittmann S, Hong JS, Hwang JS, Strasser M, Thiel M, Valdivia N, Yoon SP and Reise K (2009) Mytilid mussels: global habitat engineers in coastal sediments. Helgoland Marine Research 63, 47–58.

Buschbaum C and Saier B (2001) Growth of the mussel Mytilus edulis L. in the Wadden Sea affected by tidal emergence and barnacle epibionts. Journal of Sea Research 45, 263–276.

Cornelius A and Buschbaum C (2020) Introduced marine ecosystem engineers change native biotic habitats but not necessarily associated species interactions. Estuarine, Coastal and Shelf Science 245, 106936.

Cornelius A, Wagner K and Buschbaum C (2021) Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in north-western Europe. Marine Biodiversity 51, 75.

Costa FO and Costa MH (1999) Life history of the amphipod Gammarus locusta in the Sado estuary (Portugal). Acta Oecologica 20, 305–314.

Dicta J, Johnson MP, McCambridge S, Johnson J, Carson VEE, Kelly DW and MacNeil C (2005) Predatory nature of the littoral amphipod Echinogammarus marinus: gut content analysis and effects of alternative food and substrate heterogeneity. Marine Ecology Progress Series 291, 151–158.

Firth LB and Crowe TP (2008) Large-scale coexistence and small-scale segregation of key species on rocky shores. Hydrobiologia 614, 233–241.

Firth LB and Crowe TP (2010) Competition and habitat suitability: small-scale segregation underpins large-scale coexistence of key species on temperate rocky shores. Journal of Experimental Marine Biology and Ecology 392, 163–174.

Firth LB, Schofield M, White FJ, Skov MW and Hawkins SJ (2014) Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment. Marine Environmental Research 102, 122–130.

Gee JM and Davey JT (1986) Stages in the life history of Mytilicola intestinalis Steuer, a copepod parasite of Mytilus edulis (L.), and the effect of temperature on their rates of development. ICES Journal of Marine Science 42, 254–264.

Goedknecht MA, Buschbaum C, van der Meer J, Wegner KM and Thieltges DW (2020) Introduced marine ecosystem engineer indirectly affects parasitism in native mussel hosts. Biological Invasions 22, 3223–3237.

Goedknecht MA, Feis ME, Wegner KM, Luttiukhuizen PC, Buschbaum C, Camphuysen KJC, van der Meer J and Thieltges DW (2016) Parasites and marine invasions: ecological and evolutionary perspectives. Journal of Sea Research 113, 11–27.

Goedknecht MA, Schuster AK, Buschbaum C, Gergo R, Jung AS, Luttiukhuizen PC, van der Meer J, Troost K, Wegner KM and Thieltges DW (2017) Spillover but no spillback of two invasive parasitic copepods from invasive Pacific oysters (Crassostrea gigas) to native bivalve hosts. Biological Invasions 19, 365–379.

Grainer JNR (1951) Notes on the biology of the copepod Mytilicola intestinalis Steuer. Parasitology 41, 135–142.

Haseman JD (1911) The rhythmical movements of Littorina littorea synchronous with ocean tides. Biological Bulletin 21, 113–121.

Hunt JL and Schloegel RE (1998) Effects of whelk (Nucella lapillus (L.)) predation on mussels (Mytilus trossulus (Gould)). M. edulis (L.)) assemblages in tide pools and on emergent rock on a wave-exposed rocky shore in Nova Scotia, Canada. Journal of Experimental Marine Biology and Ecology 226, 87–113.

Johnston PTJ and Thieltges DW (2010) Diversity, decays and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology 213, 961–970.

Keesing F, Holt RD and Ostfeld RS (2006) Effects of species diversity on disease risk. Ecology Letters 9, 485–498.

Kochmann J, Buschbaum C, Volkenborn N and Reise K (2008) Shift from native mussels to alien oysters: differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology 364, 1–10.

Kostylev VE, Saier B and Chichkina K (2020) What ecological role do soft-substrate tide pools play for fishes? Difference in community structures between estuarine and coastal tidal flats in subtropical Japan. Marine and Freshwater Research 71, 737–749.

Lafferty KD and Harvell CD (2014) The role of infectious diseases in marine communities. In Bertness MD, Bruno JF, Silliman BR and Stachowicz JJ (eds), Marine Community Ecology and Conservation. Sunderland, MA: Sinauer Associates, pp. 85–108.

Lauckner G (1984) Impact of trematode parasitism on the fauna of a North Sea tidal flat. Helgoländer Meeresuntersuchungen 37, 185–199.

Markert A, Wehrmann A and Kröncke I (2010) Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biological Invasions 12, 15–32.

Metaxas A and Scheibling R (1993) Community structure and organization of tidepools. Marine Ecology Progress Series 98, 187–198.

Minchella DJ and Scott ME (1991) Parasitism: a cryptic determinant of animal community structure. Trends in Ecology & Evolution 6, 250–254.

Mori T (1935) Mytilicola orientalis, a new species of parasitic Copepoda. Zoological Society of Japan 47, 687–693.

Mouritsen KN and Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124, 101–117.

Newell GE (1958) The behaviour of Littorina littorea (L.) under natural conditions and its relation to position on the shore. Journal of the Marine Biological Association of the United Kingdom 37, 229–239.

Pogoda B, Jungblut S, Buck BH and Hagen W (2012) Infestation of oysters and mussels by mytilcid copepods: differences between natural coastal habitats and two offshore cultivation sites in the German Bight. Journal of Applied Ichthyology 28, 756–765.

Poulin R (1999) The functional importance of parasites in animal communities: many roles at many levels! International Journal for Parasitology 29, 903–914.

Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151.

Prinz K, Kelly TC, O’Riordan RM and Culloty SC (2009) Non-host organisms affect transmission processes in two common trematode parasites of rocky shores. Marine Biology 156, 2303–2311.

R Core Team (2017) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Reise K (1985) Tidal Flat Ecology: An Experimental Approach to Species Interactions. Berlin: Springer Science & Business Media.

Reise K, Buschbaum C, Büttger H and Wegner KM (2017) Invading oysters and native mussels: from hostile takeover to compatible bedfellows. Ecosphere (Washington, D.C.) 8, e01949.

Reise K, Herre E and Sturm M (1994) Biomass and abundance of macrofauna in intertidal sediments of Königshafen in the northern Wadden Sea. Helgoland Meeresuntersuchungen 48, 201–215.

Reise K and Riethmüller R (1998) Die Sylt-Romo Wattenneubucht: Ein Überblick. In Gätje C and Reise K (eds), Ökosystem WattenneuThe Wadden Sea Ecosystem. Berlin: Springer, pp. 21–99.

Saier B (2000) Age-dependent zonation of the periwinkle Littorina littorea (L.) in the Wadden Sea. Helgoland Marine Research 54, 224–229.

Singletary RL and Shadlow R (1983) Balanus balanoides in tide-pools: a question of maladaptation? Crustacea 45, 53–69.

Thieltges DW (2007) Habitat and transmission: effect of tidal level and upstream host density on metacercarial load in an intertidal bivalve. Parasitology 134, 599–605.

Thieltges DW, Bordalo MD, Caballero Hernández A, Prinz K and Jensen KT (2008) Ambient fauna impairs parasite transmission in a marine parasite-host system. Parasitology 9, 1111–1116.

Thieltges D, Engelsma MY, Wending CC and Wegner KM (2013) Parasites in the Wadden Sea food web. Journal of Sea Research 82, 122–133.

Thieltges DW, Krakauf M, Andreasen H, Fottner S and Reise K (2006) Macroparasite community in molluscs of a tidal basin in the Wadden Sea. Helgoland Marine Research 60, 307–316.

Thieltges DW and Reise K (2006) Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia 150, 569–581.

Thieltges DW, Reise K, Prinz K and Jensen KT (2009) Invaders interfere with native parasite-host interactions. Biological Invasions 11, 1421–1429.

Thieltges DW and Rick J (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola rosterviti (Digenea: Renicolidae). Diseases of Aquatic Organisms 73, 63–68.

Welsh JE, van der Meer J, Brussaard CPD and Thieltges DW (2014) Inventory of organisms interfering with transmission of a marine trematode. Journal of the Marine Biological Association of the United Kingdom 94, 697–702.

Werding B (1969) Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Marine Biology 3, 306–333.