Measurement of asthma control according to global initiative for asthma guidelines: a comparison with the asthma control questionnaire

José María Olaguibel1†, Santiago Quirce2†, Berta Juliá3*, Cristina Fernández4, Ana María Fortuna5, Jesús Molina6, Vicente Plaza7 on behalf of the MAGIC Study Group

Abstract

Introduction: Asthma Control Questionnaire (ACQ) is a validated tool to measure asthma control. Cut-off points that best discriminate “well-controlled” or “not well-controlled” asthma have been suggested from the analysis of a large randomized clinical trial but they may not be adequate for daily clinical practice.

Aims: To establish cut-off points of the ACQ that best discriminate the level of control according to Global Initiative for Asthma (GINA) 2006 guidelines in patients with asthma managed at Allergology and Pulmonology Departments as well as Primary Care Centers in Spain.

Patients and methods: An epidemiological descriptive study, with prospective data collection. Asthma control following GINA-2006 classification and 7-item ACQ was assessed. The study population was split in two parts: 2/3 for finding the cut-off points (development population) and 1/3 for validating the results (validation population).

Results: A total of 1,363 stable asthmatic patients were included (mean age 38 ± 14 years, 60.3% women; 69.1% non-smokers). Patient classification according to GINA-defined asthma control was: controlled 13.6%, partially controlled 34.2%, and uncontrolled 52.3%. The ACQ cut-off points that better agreed with GINA-defined asthma control categories were calculated using receiver operating curves (ROC). The analysis showed that ACQ < 0.5 was the optimal cut-off point for “controlled asthma” (sensitivity 74.1%, specificity 77.5%) and 1.00 for “uncontrolled asthma” (sensitivity 73%, specificity 88.2%). Kappa index between GINA categories and ACQ was 0.62 (p < 0.001).

Conclusion: The ACQ cut-off points associated with GINA-defined asthma control in a real-life setting were < 0.5 for controlled asthma and ≥ 1 for uncontrolled asthma.

Keywords: Asthma control, GINA guidelines, Asthma control questionnaire, Validation study

Introduction

Asthma is a global health problem that affects around 300 million individuals of all ages, ethnic groups, and countries [1]. It is estimated that 250,000 people die prematurely each year as a result of asthma [2]. Proper care of patients with asthma involves the triad of systematic chronic care plans, self-management support, and appropriate medical therapy [3,4].

The Global Initiative for Asthma (GINA), in the 2006 update proposed a new classification of asthma, based on the level of control rather than the previous classification based on the severity of the underlying disease process [5]. Thus, asthma treatment goal, regardless of patient’s asthma severity, should lead to achievement of complete disease control. In addition, prevention of future risks should also be intended [6,7].

The main limitation of GINA classification of asthma control is that it is based on an expert consensus, and has not yet been validated in real world practice [8]. Nevertheless and despite the availability of guidelines, a
substantial proportion of adults as well as children with asthma are not optimally controlled [9-12].

Standardized and validated questionnaires, such as the Asthma Control Questionnaire (ACQ), help us to assess the level of asthma control [13]. However, the ACQ cut-off points previously defined to discriminate between “well-controlled” and “not well controlled” asthma have been suggested from the analysis of a large randomized clinical trial (Gaining Optimal Asthma Control – GOAL study), and they may not be adequate for daily clinical practice [14]. In addition, several variables such as rhinitis, exposure to tobacco smoke, obesity and allergen exposure influence as well asthma control [15-17].

The primary aim of the present study was the establishment of the ACQ cut-off points that best discriminate the degree of asthma control according to 2006 GINA criteria in a population of patients with asthma from Allergy and Pulmonology Departments as well as Primary Care Centers. The secondary aim was to validate the results obtained from the development population in another sample population.

Patients and methods
Study design
Multicenter, epidemiological descriptive study, with prospective data collection. Patients with physician-diagnosed asthma were consecutively recruited from among those visiting Allergy and Pulmonology Departments as well as Primary Care Centers. Each participating physician selected the first eight patients who met the inclusion criteria during a six month period. Data were collected in a case report form completed by the physician. Patients were required to give written informed consent before inclusion in the study. The study protocol was approved by the institutional review board and the study was conducted in accordance with the principles of the Declaration of Helsinki.

Patients
Patients > 12 and < 65 years of age diagnosed with asthma and with a stable clinical condition* that attended one of the participant Allergy and Pulmonology Departments or Primary Care Centers during a six month period were eligible to participate in the study. Other inclusion criteria included administration of asthma treatment within the month prior to study inclusion, and absence of any psychological, psychical or language limitation that prevent the correct completion of the case report form.

Definition of asthma diagnosis
The medical record must contain description of symptoms consistent with asthma and objective evidence of variable airway obstruction, following the diagnostic criteria of GINA guidelines [5]. Additionally a demonstration of a positive bronchodilator test (increase in FEV₁ ≥12% and 200 mL) on at least one occasion within the previous year was required.

*Definition of stable clinical condition
Patient had not required hospital admissions, ER visits or timely use of oral corticosteroids within the last month.

Study aims
Primary aim
The primary aim of the study was the establishment of cut-off points to discriminate the level of asthma control (as defined in GINA 2006 guidelines) using the ACQ questionnaire, in asthmatic patients attending Allergy and Pulmonology Departments as well as Primary Care Centers.

GINA-defined asthma control: According to clinical characteristics that include daytime symptoms, limitations of activity, nocturnal symptoms/awakening, need for reliever/rescue treatment; lung function (PEF or FEV₁), asthma patients were classified as controlled, partially controlled or uncontrolled [5]. Thereafter, treatment management was based on the level of asthma control [5].

ACQ: Contains five items scoring symptoms, a question about frequency of β₂-agonists use and another about pre-bronchodilator FEV₁ (%) (total of seven questions) [13]. Patients are asked to score how their asthma has been in the previous 7 days and respond to each question on a 7-point scale (0 = no impairment; 6 = maximum impairment). Scores range between 0 (well controlled) and 6 (extremely poorly controlled). A validated Spanish version of the questionnaire was used [18]. In addition, a validated simplified version of the questionnaire (ACQ-5), in which FEV₁ and β₂-agonist use questions are excluded from the seven-item ACQ was also used for analysis [19].

Secondary aim
Validation of the primary aim of the study by performing the same analysis in a different sample of the patient population.

Variables analyzed
Patients completed two self-administered questionnaires (ACQ and Mini Asthma Quality of Life Questionnaire – MiniAQLQ [13,20]) and answered one question regarding his/her own asthma control perception (well controlled, partially controlled or uncontrolled asthma) before entering the physicians’ office. Physicians, who were blinded to the results of the previous tests, completed an electronic case report form which recorded the following patients’ epidemiological and clinical variables: age, gender, height, weight and BMI (kg/m²)
smoking status; place of residence (rural or urban); contact with animals; prior history of atopic disease, rhinitis, conjunctivitis, atopic dermatitis, urticaria, food allergy; family history of atopic disease; time since asthma diagnosis; maintenance asthma treatment; number of asthma exacerbations within the last year; asthma and rhinitis comorbidity; time since rhinitis diagnosis; severity of rhinitis according to ARIA classification [15]; treatment for rhinitis, and other data related to rhinitis, atopy, etc., that will be published elsewhere.

In the electronic data collection form, the 6 items included in the GINA classification of control [5] were included and analyzed to evaluate the category of control, which was the comparator or gold standard.

Physicians also gave their own perception of patient’s level of asthma control (well controlled, partially controlled or uncontrolled asthma).

Statistical analysis
Sample size
The sample size was calculated for a sensitivity and specificity of at least 75%, with a confidence level of 95% and a sampling error of 5%. This would require a sample size of 180 physicians and 8 consecutive medical patients (total sample: 1,440), with an estimated percentage of follow up loss of 20%. The results were validated in a subpopulation of 402 patients.

Statistical analysis
For the description of continuous variables, the mean and standard deviation, the median and the interquartile range in the case of asymmetry and the maximum and minimum values observed were used. For the description of categorical variables, the number and percentage of patients per response category were used. The qualitative variables were compared using the chi-squared test and the quantitative variables using the t-Student test or variance analysis after study of variance homogeneity. Intra questionnaire reliability was analyzed with the frequency for endorsement and the Cronbach’s alpha.

Eligible patients from the entire data base were randomized in a 2:1 manner to create a development and validation datasets, respectively. The development dataset was initially used for evaluating agreement and determining de cut-off points for the ACQ associations with GINA 2006 control classification. The result was tested in the validation dataset.

The inter-method reliability (asthma control questionnaire and GINA 2006 guidelines) was assessed using the kappa or weighted ordinal differing weights for ordinal scores. Receiver operating characteristic (ROC) curves were built to evaluate the discriminative power of the ACQ score over the GINA 2006 clinical guidelines. Both the area under the curve (AUC) and the hypothesis testing were calculated as well as the cut-off points that discriminated between control and no control. Once the cut-off point was selected, the convergent validity was assessed and subsequently compared with ACQ scale through the combination of sensitivity, specificity, and positive and negative likelihood ratios. The 95% confidence intervals were estimated for all the parameters.

For the statistical analysis, the SPSS version 15 for Windows statistical package was used. A level of statistical significance of $p < 0.05$ was be used for all statistical tests performed.

Results
Patients’ characteristics
From January 2009 to July 2009 a total of 1,392 patients from 180 Allergy (34.4%) and Pulmonology (45.2%) Departments from University Hospitals as well as Primary Care Centers (20.4%) were enrolled in the study. Of those, 29 did not fulfill the inclusion criteria and were excluded from the study. Reasons to be excluded were: lack of informed consent (n = 5); absence of asthma diagnosis (n = 1); age out of range (n = 1); has not required asthma medication within the last month (n = 20); unstable clinical condition (n = 1); recent asthma exacerbation (n = 1).

Thus, a total of 1,363 patients with asthma were included in the analysis (Figure 1). Baseline patients characteristics are depicted in Table 1. Mean age was 37.8 years, approximately 60% of the patients were women; 69% were non-smokers; 67% lived in an urban area and 63% had no contact with animals. The mean duration of asthma and rhinitis was 12.9 and 13.5 years, respectively. In addition, 72.7% of the patients were atopic. Of those, 91.6% presented with rhinitis, 41.9% conjunctivitis, 16.3% atopic dermatitis, 8.8% food allergy and 5.7% urticaria. With regards to rhinitis, most of the patients presented mild intermittent disease (39.4%).

Pulmonary function tests
Spirometry was conducted the day the patient was included in the study. Results of lung function tests are shown in Table 1. At inclusion, 64.5% of patients had a FEV1 ≥ 80% predicted. Mean FEV1 for controlled patient was 99.2% ± 13.8 and 95.8% ± 14.9 for partially controlled patients. Uncontrolled patient showed a mean FEV1 of 81.0% ± 19.0 that was significantly lower compared to controlled or partially controlled patients ($p < 0.01$).

Asthma treatment
Maintenance treatment was distributed as follows: Combination of inhaled corticosteroid and long-acting β2-agonist (75.7%), antileukotrienes (36.50%), inhaled corticosteroids (12.0%), allergen immunotherapy (13.0%), oral corticosteroids (2.3%), others (8%). Percentage of patients in each step of asthma treatment according to GINA were:
Step 1, 9.6%; Step 2, 11.6%; Step 3 + 4, 73%, and Step 5, 5.8%. Patients at step 3 and 4 were merged in one category, as we do not have data about the doses of inhaled corticosteroids.

Asthma control according to GINA 2006 guidelines and patients’ and physicians’ perceptions

More than half of the patients (51.4%) had uncontrolled asthma according to GINA 2006 classification (Figure 2a). Moreover, as shown in Figure 2b, approximately half of the patients in treatment steps 1 through 4 had uncontrolled asthma. Although most of both patients and physicians perceived the disease as controlled or partially controlled, the concordance among both groups was low (κ = 0.53) (Figure 3).

Establishment of cut-off points required to discriminate the level of asthma control (GINA definition) using the ACQ questionnaire

In the development population (n = 804) the cut-off point of the ACQ questionnaire that better discriminated the controlled asthma patients was 0.5, with a sensitivity of 74.1% (95%CI, 65.5-82.7) and a specificity of 77.5% (95%CI, 74.2-80.6) (Figure 4a). On the other hand,

Table 1 Baseline patients’ characteristics

Variables	Total population (n = 1,286)	Development population (n = 855)	Validation population (n = 431)	P value
Age in years, median, (IQR)	38 (27–50)	37 (27–48)	37 (26–50)	0.502
Women (%)	60.3	60.6	59.6	0.741
Smoking habit (%)				
Smoker	12.8	13.0	12.4	0.322
Non-smoker	69.1	67.9	71.7	
Ex-smoker	18.0	19.1	15.9	
Environment (%)				
Urban	67.4	68.8	64.8	0.154
Rural	32.6	31.2	35.2	
Years since asthma diagnosis, Median, (IQR)	10 (4.4 - 20)	10 (4.5-20)	10 (4–19)	0.830
Rhinitis (%) patients	91.7	93.2	90.1	0.780
Lung function				
FEV₁ mean% (SD)	88.3 (18.8)	88.5 (19)	88.0 (18.6)	0.642
FVC mean% (SD)	95.5 (19.02)	95.4 (19.4)	95.7 (18.3)	0.813
FEV₁/FVC mean% (SD)	76.7 (13.07)	77.2 (13.8)	75.9 (11.5)	0.08
the cut-off point that better discriminated the uncontrolled asthma patients was 1.00, with a sensitivity of 73% (95%CI, 68.7-77.5) and a specificity of 88.2% (95%CI, 84.9-91.6) (Figure 4b).

Validation study
These results were validated in a subpopulation of 402 patients (Figure 1). The results in the validated population showed a similar value for controlled asthma with a cut-off point of 0.5 with a sensitivity of 86.1% (95%CI, 74.5-97.6) and a specificity of 78% (95%CI, 73.6-82.4) (Figure 4a) and a cut-off point of 1.00 for uncontrolled asthma, with a sensitivity of 72.9% (95%CI, 66.9-78.9) and a specificity of 85.3 (95%CI, 79.8-90.8) (Figure 4b). The AUC in the development population for controlled and uncontrolled asthma were 0.85 (95%CI, 0.82-0.88) and 0.85 (95%CI, 0.85-0.90), respectively p < 0.0001. In the validated population, the AUC for controlled asthma was 0.87(95%CI, 0.82-0.93), and for uncontrolled asthma 0.86 (95%CI 0.83-0.90) (Figure 4 a and b). Similar results were obtained when the simplified questionnaire (ACQ-5) was used (Figure 4c).

Concordance between GINA 2006 guidelines and ACQ scores
Kappa index between GINA categories and ACQ cut-off points derived from the study was 0.62 (p < 0.001). As a theoretical exercise a low concordance was found between GINA-defined control categories and the former cut-off
Figure 4 ACQ cut-off points obtained in the development and validation population. 4a) Uncontrolled vs. controlled. 4b) Uncontrolled vs. partially controlled. 4c) ACQ-7 vs. ACQ-5.
points of the ACQ questionnaire suggested by Juniper et al. [14] (kappa index = 0.27).

Discussions

The recent changes in the management of asthma, based on disease control rather than degree of severity, have created the need for new evaluations of the current available tools for measuring asthma control. Among the validated and standardized questionnaires are the ACQ [13], the Asthma Control Test (ACT) [21] and Asthma Therapy Assessment questionnaire (ATAQ) [22]. The ACQ questionnaire was chosen in the present study because it has strong evaluative and discriminative properties, is short and easy to complete and can be used with confidence to measure asthma control in the past week, therefore reducing the recall bias.

The results of the present study show a poor correlation between the cut-off points described by Juniper et al. [14] and GINA 2006 control classification. It is worth remarking, however, that in the study of Juniper et al. [14] the definitions of control were based on the GOAL study [23], and these authors grouped well-controlled and total control as controlled, and did not attempt to distinguish between three categories. Juniper et al. adopted the conservative stance that “the crossover point between ‘well controlled’ and ‘not well controlled’ is close to 1.00 on the ACQ. However, to be confident that a patient has well-controlled asthma, the optimal cut-point is 0.75 (negative predictive value = 0.85). To be confident that the patient has inadequately controlled asthma, the optimal cut-point is 1.50 (positive predictive value = 0.88). In clinical practice, however, instead of the value 1, these authors advise that, to be confident that a patient has well-controlled asthma, the optimal cut-point is 0.75 (positive predictive value = 0.88). In clinical practice, however, instead of the value 1, these authors advise that, to be confident that a patient has well-controlled asthma, the optimal cut-point is 0.75 (positive predictive value = 0.88). In clinical practice, however, instead of the value 1, these authors advise that, to be confident that a patient has well-controlled asthma, the optimal cut-point is 0.75 (negative predictive value = 0.85). To be confident that the patient has inadequately controlled asthma, the optimal cut-point is 1.50 (positive predictive value = 0.88).

In the present study, the cut-off points of the ACQ questionnaire that best agree with the levels of control proposed by GINA 2006 are: < 0.5 for controlled asthma; 0.5 – 0.99 for partially controlled asthma, and ≥ 1 for uncontrolled asthma. Moreover, the same cut-off points were obtained with the simplified version of the ACQ questionnaire (ACQ-5), which is based exclusively in clinical evaluation, avoiding the FEV₁ measurement as well as β₂-agonists rescue use, which should facilitate its use in primary care setting. It should be emphasized, however, that ACQ cut-off points must be based on an understanding on how representative the study population is of the population intended to take the test. It is also worth underlining that ACQ, and control assessment in general, is intended for the maintenance of asthma control in the ongoing management of the disease.

Similar discrepancies have been observed in different studies where ACQ or ACT questionnaires have been used as a predictor of GINA-defined asthma control [8, 24]. Thus, the study by Alvarez-Gutiérrez et al. [24] found different cut-off points for ACT than previously described (≤ 18 for uncontrolled asthma), suggesting that a more complete assessment would require monitoring operating parameters and FeNO. In the study published by Thomas et al. [8], a multinational cross-sectional survey conducted in Primary Care, Pulmonology and Allergology settings from France, Germany, Italy, Spain and US, and in Primary Care and Pulmonology departments in UK, a total of 2,949 patients filled out the ACT and physician’s case report forms with questions related to GINA classification without spirometry. A score of ≥20 for the ACT score defined well controlled asthma (positive predictive value of 51.3%) while a score of ≤19 defined partially controlled and uncontrolled asthma (positive predictive value of 93.9%).

The study by Sastre et al. [25] also recommended the use of different cut-off points to define well-controlled asthma using three versions of ACQ. In addition, O’Byrne et al. [26], compared asthma control as assessed by the Asthma Control Questionnaire (5-item version; ACQ-5), Global Initiative for Asthma (GINA) or Gaining Optimal Asthma Control (GOAL) study criteria in a retrospective study. The results showed that patients with controlled, partly controlled and uncontrolled asthma according to GINA had mean ACQ-5 scores of 0.43, 0.75 and 1.62, respectively.

However, all these studies were retrospectively designed and not specifically developed for addressing such correlation and, therefore, have important limitations. Moreover, comparing a categorical with a continuous variable is bound to give some difficulty, especially for clinicians.

With regard to measurement of disease control, the results also show that ACQ questionnaire is a more accurate tool compared to the subjective perception of both physicians and patients. It is also noticeable the poor correlation found between physicians’ and patients’ perception of disease control as observed in prior studies [27]. The information efflux fact used in the present study, where patients completed the ACQ and mini-IACLQ before seeing the physician, is the best way to collect patients’ opinion avoiding the risk of physician opinion bias.

Asthma control achieved in the present study (conducted between February and July 2009) was suboptimal, with 51.3% of patients being uncontrolled according to GINA, despite the broad use of different treatments, as corroborated in prior studies. In addition, some of the prior studies have shown even worse control in winter season than in spring [9]. The present study did not take into
account seasonal variations, as the majority of the patients were included in the study during spring season and hence our results mainly reflect asthma control in the spring.

There is considerable room for improvement regarding management of the disease from the physician perspective through training interventions as shown in the study conducted by Mendez et al. [28]. In addition, patient information with regards to disease control could and should be enhanced by providing more information during the doctor’s visit. In primary care settings several studies show that ACQ seems to be a useful starting point for health care professionals in family practice to improve the level of asthma symptom control in their patient population [29].

When analyzing the asthma treatment prescribed to the patients in the present study, is surprising the high percentages of patients classified as having GINA-defined uncontrolled disease (52.3%), and those receiving combination treatment (78.8% were on step 3 or higher). The results confirm the low degree of asthma control in Spain, which may be due to several factors, including low degree of implementation and compliance with asthma management guidelines, poor adherence to asthma treatments [30], among others. However, it should also be considered that the GINA scale to identify controlled, partially controlled or uncontrolled asthma was developed based on expert opinion and is not validated. Controlled asthma, as defined in GINA, is quite similar to “totally controlled” asthma defined in the GOAL study [23], and this turns out to be a more therapeutic goal that is difficult to achieve for many patients. GINA-defined “partially controlled” is a more reasonable therapeutic goal. Interestingly, a retrospective analysis of three clinical trials with combination therapy showed that controlled and partly controlled asthma by GINA criteria are comparable to an ACQ-5 score of <1 [26]. Our study reinforces this finding, with the strength that it was analyzed prospectively in a clinical practice setting.

Although participant physicians were mainly in specialized settings (79.6% from Allergy and Pulmonology settings vs. 20.4% from primary care), the same results regarding asthma control were obtained when the analysis was stratified by this variable (data not shown). This homogeneity in the results is noticeable because the severity of the disease of the patients seen in the three physician groups is different, according to published epidemiological studies [31].

In conclusion, the results of the present study provide new cut-off points for ACQ questionnaire with a better agreement to the asthma control classification proposed by GINA 2006, which can be applied to asthmatic patients in clinical practice. Finally, the short version of the ACQ (ACQ-5), measures very easily the degree of asthma control in primary care as well other specialized settings.

Competing interest
Dr Juliá de Páramo is an MSD employee. The other authors have declared no conflicts of interest.

Authors’ contributions
JO and SQ initially proposed the idea and contributed equally to the design, data analysis and writing of the study. BJ participated in the design of the study, data analysis and writing. CF made the statistical design and analysis. AMF evaluated the initial draft and final protocol. JM evaluated the initial draft and final protocol. VP participated in the design of the study, final protocol and data analysis. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by a restricted grant from Merck & Co. Inc, Spain. Editorial support was provided by Pipeline Biomedical Resources and supported by Merck & Co. Inc, Spain. This work would not be possible without the contribution of all the investigators of the MAGIC study, who are listed in alphabetical order:

Aguir, María. Hospital General Castellón. Castellón
Aguero, Ramón. Hospital Universitario Marqués de Valdecilla. Santander
Alcántara, Dolores. C.S. Rafaelena. Castellón
Almela, Teresa. C.S. Salvador Pau. Valencia. Valencia
Almonacid, Carlos. Hospital Univ. Guadalajara. Guadalajara
Alonso, Alicia. Clínica Paracelsus Valladolid
Álvarez, Francisco. Hospital Virgen Rocío. Sevilla
Álvarez, Julio. Hospital Virgen de las Nieves. Granada
Álvarez, María. Hospital Virgen del Camino. Pamplona
Álvarez, Pedro. Complejo Hospitalario. Univ. Sog. Santiago de Compostela
Amaro, Javier. C.S. Sudope Bilbao
Antepara, Ignacio. Hospital Basurto. Bilbao
Armisen, Margarita. Complejo Hospitalario Universitario de Santiago. Santiago de Compostela
Arnedillo, Aurelio. Hospital Puerta del Mar. Cádiz
Azpiazu, Mikel. Hospital de Txagorritxu Vitoria
Barrío, Javier. Hospital Sierraalana. Torrelavega. Cantabria
Bazú, Teresa. Hospital Central de Asturias. Oviedo
Bello, Dolores. C.S. La Salud. Tenerife
Bertabol, Miguel. Hospital Vélez Vélez. Málaga
Beristain, Ana. Policlínica Begoña Gil. Gijón
Blanco, Carlos. Hospital de la Princesa. Madrid
Blanco, Rosa. Hospital Nuestra Sehora de Sonsoles. Ávila
Borderías, Luis. Hospital San Jorge. Huesca
Bustamante, Ana. Hospital Sierraalana. Torrelavega. Cantabria
Caballero, Pedro. C.S. Ángela Uriarte. Madrid
Cabrera, Pedro. Hospital Doctor Negrín. Las Palmas de gran Canaria
Cásero, Francisco. C.S. Cortés. Madrid
Calvo, Eduardo. C.S. Universitario Pozuelo. Alarcón. Madrid
Cantó, Gabriela. Hospital de Vallécas. Madrid
Cañete, Concepción. Hospital Cruz Roja. Hospitalet. Barcelona
Carballada, Francisco. Hospital Xeral-Calde. Lugo. Lugo
Cárdenas, Remedios. Hospital General de Guadalajara. Guadalajara
Carpintero, Manuel. Consultorio medico de Zubiri. Pamplona
Carretero, Pedro. Hospital General Yaquí. Burgos
Carillo, Teresa. Hospital Doctor Negrín. Las Palmas de gran Canaria
Casado, María. Hospital Virgen de la Luz. Cuenca
Casas, Francisco. Hospital Clinico San Cecilio. Guadalajara. Guadalajara
Clemente, Lourdes. C.S. Santo Grial. Huesca
Colás, Carlos. Hospital Clinico Universitario. Zaragoza
Compte, José. Centro Privado Huesca
Compere, Luis. Hospital La Fe. Valencia. Valencia
Cordobés, Concepción. Hospital de Mérida Badajoz
Dávila, Ignacio. Hospital Clinico Universitario Salamanca
De Diego, Alfredo. Hospital General. Valencia
De Higes, Eva. Fundación Hospital Alcorcón. Madrid
De la Hoz, Belén. Hospital Ramón y Cajal. Madrid
De León, Juan. C.S. Candelaria. Tenerife
Del Moral, Ángel. Hospital Virgen del Valle. Toledo
Delgado, Julio. Hospital V. Macarena. Sevilla

Contributions
Díaz, Carmen. Hospital Central de Asturias Oviedo
Diego, Carlos. C.S. Benjuarz Alicante
Dominíguez, Carmen. Hospital Virgen del Puerto Cáceres
Domínguez, Javier. Hospital de Getafe Madrid
Domínguez, Leopoldo. Hospital Ceuta. Ceuta
Entrenas, Luisina. Hospital Reina Sofía Córdoba
Escobar, Miguel. C.S.de Pueblonuevo del Guadiana Badajoz
Espigares, Manuel. C.S. La Paz de Badajoz Badajoz
Espinoza, María. Hospital de Toledo Toledo
Félix, Rubén. Hospital General, Feo
Fernández, Araceli. C.S. Delicias Sur Zaragoza
Fernández, Consuelo. Hospital 12 de Octubre Madrid
Fernández, Eduardo. Hospital Santiago Vitoria
Fernández, Francisco. C.S. Embajadores Madrid
Fernández, Mar. Fundación Jiménez-Díaz Madrid
Figueroa, Javier. Hospital Insular Las Palmas de Gran Canaria
Flor, Xavier. CAP Chafarinas Barcelona
García, Jesús. Hospital Infantia Cristina Badajoz
García, Jose. Complejo Hospitalario Ourense
García, Juan. Hospital Comarcal de Laredo Santander
García, Marimar. Complejo Hospitalario de Ourense Ourense
García, Rosa. C.S. de Culleredo Coruña
García-Costío. Borja Hospital Son Dureta Palma de Mallorca
García-Salmones. Mercedes Fundación Hospital Alcorcón Madrid
Gómez, Eisa. Hospital de Ciudad Real Ciudad Real
González, David. Hospital de Fuenlabrada Madrid
González, Francisco. Hospital Virgen de las Nieves Granada
González, Rupert. Hospital universitario Nuestra Señora de La Candelaria Tenerife
Gutiérrez, Valentina. Hospital Dr Peset Valencia
Henríquez, Aythamy. Hospital de Valdemoro Madrid
Henríquez, Alicia. C.S. Guímar Tenerife
Hernández, Dolores. Hospital La Fé, Valencia
Hernández, Elena. Fundación Jiménez-Díaz Madrid
Hernández, Francisco. Hospital San Pedro de Alcántara Cáceres
Hidalgo, Eduardo. Hospital Pozoblanco Córdoba
Ibañez, Paloma. Hospital del Niño Jesús Madrid
Iglesias, Fernando. POVISA (Vigo) Vigo
Iglesias, Javier. Hospital universitario Nuestra Señora de La Candelaria Tenerife
Ignacio, Jos. Hospital de la Serranía de Ronda Càdiz
Irisarri, María. C.S. Idiazabal Guipúzcoa
Izquierdo, José. Hospital Gral universitario Guadalajara
Jiménez, Jesús. Hospital Universitario Albacete
Jorba, Gemma. Hospital de la Ribera Valencia
Labarta, Natividad. Clínica Santiago Huesca
Lamban, Maite. C.S. de Culleredo Coruña
Larín, Ortensia. Hospital La Fe Valencia
Levy, Albert. Hospital V. Victoria Málaga
López, Antolin. Hospital Puerta de Hierro Madrid
Lumbrales, Gonzalo. C.S. Morzarzal Madrid.
Malek, Tamin. Hospital General de Castellón Castellón
Marcos, Carmen. Hospital Universitario de Vigo Vigo
Martín, Juanjo. Carlos Haya Málaga
Martínez, Agustín. C.S. La Paz (Crucer – Barakaldo) Guipúzcoa
Martínez, Carlos H. Germans Trias i Pujol Barcelona
Martínez, María. Hospital Insular Las Palmas de Gran Canaria
Martínez, Eva. Hospital Sagunto Sagunto
Martínez, José. Hospital G. Virgen de la Concha Zamora
Mas, Montse. CAP Chafarinas Barcelona
Medina, Juan. Hospital V. Rocio Sevilla
Melero, Carlos. Hospital 12 de Octubre Madrid
Méndez, Jorge. Hospital Rio Carrión Palencia
Minguez, Ascensión. C.S. San Fermín Madrid
Molero, Isabel. Hospital de la Ribera Valencia
Moreno, Alvaro. Hospital Nuestra Señora del Prado Toledo
Moreno, Carmen. Hospital Reina Sofia Córdoba
Moreno, Juan. C.S. Las Américas Madrid
Muñoz, Javier. Hospital V. Valme Sevilla
Muñoz, Rosa. Hospital Clinic Barcelona
Mur, Pilar. Hospital Santa Bárbara Ciudad Real
Navarro, Ana. Hospital El Tomillar, Sevilla
Navarro, José. Hospital de Donostia San Sebastián
Negro, José. Hospital Virgen de la Arrixaca, Murcia
Nieto, Antonio. Hospital La Fé, Valencia
Nuñez, María. C.S. Embajadores Madrid
Orellana, Alberto. Centro Privado, Palma de Mallorca
Ojeda, Pedro. Clínica Dres Ojeda Madrid
Pardina, Alicia. Hospital Costa del Sol Málaga
Parr, Antonio. Hospital Juan Canalejo Coruña
Pedrosa, María. Hospital La Paz Madrid
Peiró, María. Hospital Virgen de la Luz Cuenca
Pelegrín, Antonio. Hospital Clinic Vilaça
Penela, Pedro. Complejo Hospitalario Univ. Sgo. Santiago de Compostela
Peñas, José. Hospital Virgen de la Luz Cuenca
Pereira, Antonio. Hospital Juan Ramón Jiménez Huelva
Pérez de Llanos, Luis. Hospital General Calde Lugo
Pérez, Alvaro. Consultorio Matapomarquera Santander
Pérez, Gerardo. Hospital Infanta Cristina Badajoz
Ramos, Jacinto. Hospital Universitario Salamanca
Rivera, Marisa. Hospital Germans Trias Barcelona
Robledo, Teresa. Hospital Clínico San Carlos Madrid
Rodríguez, César. C.S. de Betanzos Coruña
Rodríguez, Fernando. Hospital Marqués de Valdecilla Santander
Rodríguez, Geneva. Hospital Clínico San Carlos Madrid
Rodríguez, Pablo. Hospital Clínico San Carlos Madrid
Rubio, Manuela. C.S. Zona Centro Cáceres
Sánchez, Alejandro. Hospital Rio Carrión Palencia
Sánchez, Angelina. Hospital Insular Las Palmas de Gran Canaria
Sánchez, Intramad. Hospital universitario Nuestra Señora de La Candelaria Tenerife
Sánchez, José. C.S. Fuente Sant Lluis. Valencia
Sánchez-Guerro, Intramad. Hospital Ginal Básico de Defensa (Santa María Rosell) Murcia
Senent, Carlos. Hospital Virgen del Valle Toledo
Serra, Juan. Hospital General de Vic Barcelona
Serrano, José. Hospital de Muro Palma de Mallorca
Simonet, Pep. CAP Viladecans-2 Barcelona
Soto, José. Hospital Jerez Cádiz
Subiza, Javier. Clínica Subiza Madrid
Tabar, Ana. Hospital Virgen del Camino Pamplona
Tiriricaos, Rosario. C.S. de Culleredo Coruña
Trillo, Cristóbal. C.S. Puerta Blanca Málaga
Urtúa, Isabel. Hospital de Galdakao Galdakao
Valdés, Luis. Complejo Hospitalario Univ. Sgo. Santiago de Compostela
Valdeperas, Joan. Hospital de Bellvitge Hospitala de Llobregat
Vargas, Rosario. Hospital Virgen de la Luz Cuenca
Vega, Arancha. Hospital General de Guadalajara Guadalajara
Vega, José. Hospital Carlos Haya Málaga
Vere, Héctor. Hospital Juan Canalejo Coruña
Vicente, Juan. C.S. Los Rosales Madrid
Vidal, Carmen. Complejo Hospitalario Universitario de Santiago de Compostela
Vigil, Laura. Hospital Parc Taulí Sabadell Sabadell
Vila, Concepcion. Fundación Hospital Alcorcón Madrid
Villafañsa, Rosa. CAP Viladecans-2 Barcelona
Villarreal, Carlos. Hospital La Paz Madrid
Zubeldia, José. HGU Gregorio Marañón Madrid

Author details
1Department of Allergy, Complejo Hospitalario de Navarra, Fundación Miguel Servet, Pamplona, Spain. 2Department of Allergy, Hospital La Paz Health Research Institute (IdiPAZ), Madrid, Spain. 3Medical Department, MSD, c/o Josefa Valcárcel, 38, Madrid, Spain. 4Epidemiology and Research Support Department, Hospital Clínico San Carlos, Madrid, Spain. 5Department of Pulmonology, Hospital Santa Creu i Sant Pau, Barcelona, Spain. 6Primary Care Center Francis, Fuenlabrada, Madrid, Spain. 7Department of Pulmonology, Hospital Santa Creu i Sant Pau, Barcelona, Spain.

Received: 6 February 2012 Accepted: 1 June 2012 Published: 22 June 2012
References

1. Bousquet J, Khaltaev AN: Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. Global Alliance against Chronic Respiratory Diseases. Geneva: World Health Organization; 2007.

2. Bousquet J, Riley J, Bateman ED, et al: Prioritised research agenda for prevention and control of chronic respiratory diseases. Eur Respir J 2010, 36:995–1001.

3. Elwood KS, Pollart SM: Medical Therapy for Asthma: Updates from the NAEP Guideline. Am Fam Physician 2010, 82:1242–1251.

4. Fredrickson DD, Molgaard CA, Dismuke SE, Schukman JS, Walling A: Understanding frequent emergency room use by Medicaid-insured children with asthma: a combined quantitative and qualitative study. J Am Board Fam Pract 2004, 17:96–100.

5. Bateman ED, Hurd SS, Barnes PJ, et al: Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 2008, 31:143–178.

6. GEMA: Spanish guide-lines for diagnosis and asthma management. Journal of Invest Allergol Clin Immunol 2010, 20:51.

7. Bateman ED, Reddel HK, Erikson G, et al: Overall asthma control: The relationship between current control and future risk. J Allergy Clin Immunol 2010, 125:600–608.

8. Thomas M, Kay S, Pike J, et al: The Asthma Control Test (ACT) as a predictor of GINA guideline-defined asthma control: analysis of a multinational cross-sectional survey. Prim Care Respir J 2009, 18:41–49.

9. Raber RF, Adachi M, Lai CK, et al: Worldwide severity and control of asthma in children and adults: the global asthma insights and reality surveys. J Allergy Clin Immunol 2004, 114:40–47.

10. FitzGerald JM, Boulet LP, McVor RA, Zimmerman S, Chapman KR: Asthma control in Canada remains suboptimal: the Reality of Asthma Control (TRAC) study. Can Respir J 2006, 13:253–259.

11. Demoly P, Paggiaro P, Piza V, et al: Prevalence of asthma control among adults in France, Germany, Italy, Spain and the UK. Eur Respir Rev 2009, 18:105–112.

12. Chapman KR, Boulet LP, Rea RM, Fransen E: Suboptimal asthma control: prevalence, detection and consequences in general practice. Eur Respir J 2008, 31:320–325.

13. Juniper EF, O’Byrne PM, Guyatt GH, Ferrie PJ, King DR: Development and validation of a questionnaire to measure asthma control. Eur Respir J 1999, 14:992–997.

14. Juniper EF, Bousquet J, Abetz L, Bateman ED: Identifying ‘well-controlled’ and ‘not well-controlled’ asthma using the Asthma Control Questionnaire. Respir Med 2006, 100:516–621.

15. Brozek JL, Bousquet J, Baena-Cagnani CE, et al: Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 2010, 126:466–476.

16. Chaudhuri R, Livingston E, McMahon AD, Thomson L, Borland W, Thomson NC: Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am J Respir Crit Care Med 2003, 168:308–1311.

17. Quinto KB, Zuraw BL, Poon KY, Chen W, Schatz M, Christiansen SC: The association of obesity and asthma severity and control in children. J Allergy Clin Immunol 2011, 128:964–969.

18. Picado C, Badiola C, Perulero N, et al: Validation of the Spanish version of the Asthma Control Questionnaire. Clin Ther 2008, 30:191B–1931.

19. Juniper EF, O’Byrne PM, Roberts JN: Measuring asthma control in group studies: do we need airway calibre and rescue beta2-agonist use? Respir Med 2001, 95:319–323.

20. Juniper EF, Guyatt GH, Cox FM, Ferrie PJ, King DR: Development and validation of the Mini Asthma Quality of Life Questionnaire. Eur Respir J 1999, 14:32–38.

21. Nathan RA, Sorkness CA, Kosinski M, et al: Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol 2004, 113:59–65.

22. Peters D, Chen C, Markson LE, Allen-Ramey FC, Vollmer WM: Using an asthma control questionnaire and administrative data to predict health-care utilization. Chest 2006, 129:918–924.

23. Bateman ED, Boulay HA, Bousquet J, et al: Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. Am J Respir Crit Care Med 2004, 170:836–844.

24. Alvarez-Gutierrez FJ, Medina-Gallardo JF, Perez-Navarro P, et al: Comparison of the Asthma Control Test (ACT) with lung function, levels of exhaled nitric oxide and control according to the Global Initiative for Asthma (GINA). Arch Bronconeumol 2010, 46:370–377.

25. Sastre J, Olaguibel J, Vega JM, Del Pozo V, Picado C, Lopez Vina A: Cut-off points for defining asthma control in three versions of the Asthma Control Questionnaire. J Asthma 2010, 47:865–870.

26. O’Byrne PM, Reddel HK, Erikson G, et al: Measuring asthma control: a comparison of three classification systems. Eur Respir J 2010, 36:269–276.

27. Greenblatt M, Galpin JS, Hill C, Feldman C, Green RJ: Comparison of doctor and patient assessments of asthma control. Respir Med 2010, 104:356–361.

28. Mendez NH, Velazquez AC, del Rivero HL, Hernandez VL, Espinola RG, Mondragon GR: Increased knowledge of ARIA and GINA guides 2006 to general physicians by an educational intervention. Rev Alerg Mex 2008, 55:201–205.

29. van den Nieuwenhof L, Schermer T, Eysink P, et al: Can the Asthma Control Questionnaire be used to differentiate between patients with controlled and uncontrolled asthma symptoms? A pilot study. Fam Pract 2006, 23:874–881.

30. Taeigmeyer AB, Steurer-Stey C, Price DB, Widdopaher JH, Spentini F, Leuppi JD: Predictors of asthma control in everyday clinical practice in Switzerland. Curr Med Res Opin 2009, 25:2549–2555.

31. Castillo JA, Navarro A, Quirce S, et al: Prevalence and characteristics of rhinitis in adult asthmatic patients attending allergist, primary care and pulmonologist settings in Spain (AIR study). Med Clin (Barc) 2011, 136:204–208.

Cite this article as: Olaguibel et al.: Measurement of asthma control according to global initiative for asthma guidelines: a comparison with the asthma control questionnaire. Respiratory Research 2012, 13:50.