S-PI: A performance measurement system using an S-curve

José Eugenio Leal*, Fabio Krakovics, Valdilene do Nascimento Vieira

PUC-Rio, MRS, Petrobras, Brazil

ABSTRACT

This method is a tool for evaluating the performance of any production system. It is based on the work of (1), with an evaluation structure consisting of a three-level hierarchy. Evaluation groups are at the top level, below which groups of metrics or key performance indicators (KPIs) are located; performance indicators (PIs) are located below the KPIs. To consolidate several types of metrics, in a single evaluation, it is necessary to normalize the values. This study overcomes the deficiencies of the original method, which linearly normalizes the PIs between 0 and 1. For an indicator with a goal of 100%, a compliance of 70% would be evaluated as 70% of the desired value. In reality, the decision maker may consider 70% to be equivalent to 30% of the desired value. To more realistically simulate the evaluator’s preference scale, an S-shaped curve based on the Weibull distribution is adopted. This curve must be calibrated to reflect the preferences of the evaluator. This study shows all the steps of structuring an evaluation system, with details for the calibration of the S-curve parameters.

- Evaluation scales are not linear.
- The S-curve better reflects stakeholder preferences.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

ARTICLE INFO

Method name: S-PI Performance Measurement System

Keywords: Performance indicator system, Nonlinear utility function, Weibull distribution, General evaluation system

Article history: Received 23 November 2020; Accepted 19 February 2021; Available online 26 February 2021

DOI of original article: 10.1016/j.ijpe.2008.05.016

* Corresponding author.

E-mail address: jel@puc-rio.br (J.E. Leal).

https://doi.org/10.1016/j.mex.2021.101287

2215-0161/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications table

Subject Area:	Engineering
More specific subject area:	Industrial Engineering
Method name:	S-PI Performance Measurement System
Name and reference of original method:	Performance Measurement System.
	Lohman, C., Fortuin, L., Wouters, M., 2004. Designing a performance measurement system: A case study. European Journal of Operational Research 156, 267–286.

Introduction

Every organization faces the problem of evaluating the performance of its production system in its various aspects. A method established in recent years was proposed by [1] based on the balanced score card [2]. Other authors have addressed the challenge of building evaluation systems that monitor production systems and serve as a control and guidance instrument for better performance. The system must include all relevant aspects, must be measurable, and must be consistent with the objectives of the organization. The topic continues to arouse great interest in industry and academia. Since 1992, 110,226 articles have been published with the keyword “performance measurement system”. There were 767 articles in 1992, reaching 9498 articles in 2019 [3]. More recently, studies have been applied in various areas such as industry 4.0 [4,5,6], the environment [7,8,9,10] and aviation [11]. Studies continue to be produced in traditional areas such as supply chain management [12,13], the hotel industry [14], and civil construction [15,16].

This work details the main method presented in the original article KRAKOVICS, F., Leal, JE, Mendes, P. Jr., Santos, LR Defining and calibrating performance indicators of a 4PL in the chemical industry in Brazil. International Journal of Production Economics. 115, 2008, Vol. 2, pp. 502–514.

The structure of the performance system

This work assumes that the reader has basic knowledge about evaluation methods. Interested parties can consult the work of [17] for a better view of the basic concepts that guide the construction of a performance evaluation system. The hierarchical structure for the construction of the system can be seen in Fig. 1.

Hierarchy of indicators

The organization defines areas, or evaluation groups, within which it structures its hierarchy. This structure should be aligned with and reflect the objectives of the organization. At the second level, below each group, evaluation subgroups or KPIs are defined. Below each subgroup, performance indicators (PIs), which are calculated from the performance measurements (PMs), are defined. The indicators represent measurements of attributes or activities of different natures with different performance metrics. We differentiate the PMs, which measure the direct performance of the organization unit in a certain activity, and the PIs, which are the transformations of the measurements into comparable metrics for different activities. Therefore, for consolidation and comparison in the system, a normalization of the measurements for the PI values, in general, to a scale between 0 and 1 is first required.

Fig. 1. Hierarchy of metrics (adapted from [1]).
Table 1
Calculation of weights.

Row	Alternative	b = 1	2	3	4	Sum
2	b_j	1	3	9	7	
3	1/b_j	1	0.333	0.111	0.1428	1.5873

Weight of each element in the hierarchy

Each group in the hierarchy receives a weight indicating its importance to the immediate higher level. Thus, with the PIs and their weights in relation to the KPIs and with the KPIs and their weights in relation to the groups, the contribution of each PI to the evaluation of the cluster performance can be calculated, and the cluster performance can be determined.

Bases of calculation

Calculating the performance of each cluster

Each cluster i ($i = 1, \ldots, NC$) has NK_i KPIs at the second level of the system ($KPI_{ij} = 1, \ldots, NK_i$). Each KPI_{ij} has NI_{ij} PIs at the third level of the system ($PI_{ijl}, l = 1, \ldots, NI_{ij}$). Each KPI_{ij} is associated with a weight WK_{ij} representing the relative importance of the KPI of cluster i. Each PI_{ijl} is associated with a weight WI_{ijl} representing the relative importance of the PI to the corresponding KPI. The cluster value performance may be calculated as:

$$C_i = \sum_{j=1}^{NK_i} WK_{i,j} \cdot KPI_{i,j} = \sum_{j=1}^{NK_i} WK_{i,j} \cdot \left(\sum_{l=1}^{NI_{ij}} WI_{i,j,l} \cdot PI_{i,j,l} \right)$$ \hspace{1cm} (1)

If the evaluator wants a global evaluation for the organization, he or she can also define weights W_i for each of the NC clusters in relation to the global evaluation and arrive at the global performance G:

$$G = \sum_{i=1}^{NC} W_i \cdot C_i$$ \hspace{1cm} (2)

The contribution of each PI_{ijl} of KPI_{ij} to the performance of cluster i can be calculated with Eq. (3)

$$C_{il} = WK_{i,j} \cdot WI_{i,j,l} \cdot PI_{i,j,l}$$ \hspace{1cm} (3)

Defining the weights at each level

To obtain the weight w_i of each element j of a level in front of the element in the upper level, the AHP-express method can be used [18]. Given the alternatives for comparison against a given criterion (in this case the element of the higher level), the evaluator must first choose the base alternative that seems most important. This base alternative receives a value of 1, and the others a value between 2 and 9, according to [19], which expresses the dominance of the base alternative over each of the others. Eq. (4) is used:

$$w_j = \frac{1}{b_j} \cdot \frac{1}{\sum_{k=1}^{na} \frac{1}{b_k}}$$ \hspace{1cm} (4)

where w_{ij}: weight assigned to the alternative, or element j; na: number of alternatives; b_j: measure of dominance of the base alternative over alternative j.

The Table 1 is an example of a calculation using an Excel spreadsheet. Alternative 1 is chosen as the basis. In the second row, the alternatives are compared with the base alternative. The third
row contains the calculated inverse of the values of line 2. The Sum column contains the sum of the inverses. This sum is inverted, and the resulting value is fixed as absolute with the shortcut “F4”. Multiplying this value with each element in row 3 gives the weight w_j of each alternative in row 4.

Normalization using the S-curve

Normalization transforms direct measurements of attributes or activities into indicators that reflect the usefulness of the measurement for the decision maker. The evaluator should define his or her preference scale using a scale from 0 to 1. The S-curve is the form of a Weibull distribution function used to express this utility.

$$F_x(x) = 1 - e^{-\left(\frac{x}{\bar{x}}\right)^\gamma}$$ \hspace{1cm} (5)

This function ranges from 0 to 1, representing values with a minimum of 0 and increasing to 1. It therefore represents increasing functions in x and is used to represent the usefulness of the measurements, where the better the measurement evaluated, the higher its value. Examples include delivery punctuality and delivery accuracy. Other measurements are more useful the lower their value. This is the case for delivery delays and shipping errors. In this case, the S-curve is:

$$F_x(x) = e^{-\left(\frac{x}{\bar{x}}\right)^\gamma}$$ \hspace{1cm} (6)

where x is the measurement value of the activity or attribute. For increasing utility with the measurement value, the normalized value PI is:

$$PI(x) = 1 - e^{-\left(\frac{x}{\bar{x}}\right)^\gamma}$$ \hspace{1cm} (7)

For decreasing utility with the measurement value, the normalized PI value is:

$$PI(x) = e^{-\left(\frac{x}{\bar{x}}\right)^\gamma}$$ \hspace{1cm} (8)

In both cases, it is necessary to find the parameters θ (theta) and γ (gamma) for each function. These parameters can be calibrated by defining only two performance values and their corresponding normalized PI values. A bad value of performance measurement (BPM) is associated with the bad performance index (BPI) value of 0.1, and an acceptable performance measurement (APM) is associated with the acceptable performance measurement API value of 0.6 or 0.7 according to the evaluator’s criteria. The BPM and APM values already indicate whether the utility function is increasing or decreasing. If $APM > BPM$, the function is increasing; otherwise, the function is decreasing.

In the case of increasing utility functions, the value of the gamma parameter, γ, is calculated with Eq. (9):

$$\gamma = \frac{\ln(\ln(1 - BPI))/(\ln (1 - API))}{\ln\left(\frac{BPM}{APM}\right)}$$ \hspace{1cm} (9)

And the theta parameter, θ, is calculated with:

$$\theta = \frac{API}{(-\ln(1 - APM))^{1/\gamma}}$$ \hspace{1cm} (10)

In the case of decreasing utility functions, the parameters are respectively calculated with:

$$\gamma = \frac{\ln(\ln(BPI))/(\ln (API))}{\ln\left(\frac{BPM}{APM}\right)}$$ \hspace{1cm} (11)

$$\theta = \frac{API}{(-\ln(API))^{1/\gamma}}$$ \hspace{1cm} (12)
Table 2
Hierarchical structure of performance evaluation of a liquid bulk terminal.

Criteria	Key Performance Indicators	Regular performance indicators
Response to Clients	Flexibility	Types of modes for receiving/shipping
		Scheduling - offshore
		Scheduling - onshore
	Aggregated Services	Blending of products with additives
		Formulation
		Blending for classification
		Laboratory analyzes
Financial Aspects and Resources	Financial Factors	Total logistics costs
		Price of the service
	Resources	Cost of failures
	Use of Assets	Technology for scheduling/optimization
		Degree of automation in the process/Control
Environment and Safety	Atmospheric emissions	Turnover of fixed assets
	Leaks/spills	Total volumetric capacity
	Accident frequency rate	Location and accesses
Internal Processes	Service Quality	Compliance with logistical planning
		Product losses
	Productivity	Layover time - offshore mode
		Availability of storage facilities
		Availability of receiving/shipping facilities
		Layover time - onshore mode

Source. [20].

The calibration of the S-curve parameters follows the steps:

- Define the values of BPM and BPI and APM and API.
- Compute γ with Eq. (9) for ascending values or Eq. (11) for descending values.
- Compute θ with Eq. (10) for ascending values or Eq. (12) for descending values.
- With θ and γ, use Eq. (7) for ascending values or Eq. (8) for descending values to determine the value of a performance indicator PI given a performance measurement x.

Steps of the complete procedure:

I. Define the indicator hierarchy structure.
II. Define the weights of each element in the hierarchy.
III. Define the metrics for the performance measurements of each activity associated with the performance indicator.
IV. Calculate the normalized values of each performance indicator.
V. Calculate the performance values of each group or the entire evaluation system.

Example of the performance evaluation of a liquid bulk terminal

Vieira and Leal (2020) present a hierarchical structure for liquid bulk terminal evaluation, summarized in Table 2.

Let us take, for example, the group of internal process indicators. This group has two KPIs: service quality and productivity, each with its own PIs. The structure of this part of the hierarchy is represented in Fig. 2:

The performance indicators are shown in Table 3 for each PI.

Defining weights in the hierarchy.

Using AHP-express Eq. (4) and defining an alternative (b) as the best, the weights of the KPIs against the cluster can be obtained in Table 5.
Internal Processes

Service Quality

Product losses

Productivity

Compliance with logistical planning

Loading/Unloading time

Availability of receiving/shipping facilities

Availability of storage facilities

Layover time – onshore mode

Layover time – offshore mode

Fig. 2. Partial hierarchy of indicators for a bulk liquid terminal.

Table 3
KPIs and PIs for example criteria.

Criteria	Key Performance Indicators	Regular Performance Indicators
Internal Processes	Flexibility	Compliance with logistical planning
		Product losses
		Loading/Unloading time
		Availability of receiving/shipping facilities
		Availability of storage facilities
	Productivity	Layover time – onshore mode
		Layover time – offshore mode

Table 4
Formula and units of measure for each PI of the example.

Regular Performance Indicators	Formula	Unity
Compliance with logistical planning	m^3 fulfilled/m^3 scheduled	%
Product losses	m^3 dispatched/m^3 received	%
Loading/Unloading time	Loading (unloading) time/average time in the local market	dimensionless
Availability of receiving/shipping facilities	available capacity/installed capacity	%
Availability of storage facilities	m^3 available/m^3 installed	%
Layover time – offshore mode	Average overlay/average local market overlay	dimensionless
Layover time – onshore mode	Average overlay/average local market overlay	dimensionless

The same procedure is performed to estimate the weights of each PI against the respective KPI in Tables 6 and 7.

For each PI, two pairs of values are defined by the evaluator: a BPM with a BPI and an APM with an APL. Fig. 3 presents the values of the gamma and theta parameters using Eqs. (9) and (10) for ascending utility curves and Eqs. (11) and (12) for descending utility curves. The figure also gives the PI values for actual measures of the indicators using Eq. (7) for ascending curves and Eq. (8) for descending curves.

For the spreadsheet structure and the values shown in Fig. 3 the gamma calculation of row 2 is obtained with the formula:

$$= \text{IF} \left(\text{D2} > \text{B2}; \ln \left(\frac{\ln (1-C2)}{\ln (1-E2)} \right) \left/ \ln \left(\frac{\text{B2}}{\text{D2}} \right) \right; \ln \left(\frac{\ln (C2)}{\ln (E2)} \right) \left/ \ln \left(\frac{\text{B2}}{\text{D2}} \right) \right) \right)$$.
Table 5
KPI weights against the internal processes cluster.

bj	1	3	Sum
1/bj	1.000	0.333	1.333
wj	0.750	0.250	1.000

Table 6
Weights for the Pls of the KPI service quality.

Compliance with logistical planning	b = Product losses	Sum	
bj	5	1	1.200
1/bj	0.200	1.000	1.200
wj	0.167	0.833	1.000

Table 7
Weights for the Pls of the KPI productivity.

Indicator	BP	BPI	AP	API	alfa	teta	PM	PI	PMGoal	Pgoal
Compliance with logistical planning	90	0.1	95	0.6	40.005	95.208	98	0.958	99	0.992
Product losses	1.0	0.1	5	0.6	2.172	8.812	3	0.845	2	0.933
Loading/Unloading time	1.2	0.1	1	0.6	8.259	1.085	0.95	0.716	0.93	0.755
Availability of storage facilities	85	0.1	95	0.6	19.446	95.428	95	0.600	98	0.813
Availability of receiving/shipping facilities	90	0.1	96	0.6	33.534	96.951	93	0.271	98	0.898
Layover time – offshore mode	1.2	0.1	0.98	0.6	7.435	1.073	1	0.552	0.95	0.667
Layover time – onshore mode	1.1	0.1	0.95	0.6	10.271	1.014	0.9	0.746	0.9	0.746

Fig. 3. Parameter estimation and PI calculation.

The theta values of row 2 are obtained with the formula:
= IF (D2> B2; D2/((- LN (1-E2)) ^ (1/F2)); D2/((- LN (E2)) ^ (1/F2))).

The spreadsheet also calculates the PI values for the current PMs and the Plgoal values for target measurements of each indicator (PMgoal). In the spreadsheet, the PI values of row 2 are calculated with:
= IF (D2> B2; 1-EXP (- ((H2/G2) ^ F2)); EXP (- ((H2/G2) ^ F2))).

The PI target values are calculated with the formula:
= IF (D2> B2; 1-EXP (- ((J2/G2) ^ F2)); EXP (- ((J2/G2) ^ F2))).

Note that the logical comparison IF (D2> B2...) detects an ascending or descending curve so that the corresponding formulas can be applied.

Using the weights of the Pls related to the KPIs and the weights of the KPIs related to the clusters, the overall performance measures for the clusters are calculated and are presented in Table 8.

The same weights are now used to calculate the goal performance for the clusters in Table 9.

The columns “Pl to Cluster” in both tables give the contribution of the performance of each PI to the cluster performance. Influenced by the weights given by the evaluator, these “Pl to Cluster” values may be used to correct the performance of each activity in the cluster. The comparison of the current and the goal “Pl to Cluster” values may also help suggest actions to improve the service toward the goal values.
Table 8
Actual performance.

	PI	PI weight	KPI weight	PI to Cluster	KPI to Cluster	Cluster
Compliance with logistical planning	0.958	0.167	0.750	0.120	0.864	0.761
Product losses	0.845	0.833	0.750	0.528	0.018	0.450
Loading/Unloading time	0.716	0.100	0.250		0.023	0.071
Availability of storage facilities	0.600	0.166	0.250	0.025	0.013	
Availability of receiving/shipping facilities	0.271	0.498	0.250	0.034		
Layover time - offshore mode	0.552	0.166	0.250	0.023		
Layover time - onshore mode	0.746	0.071	0.250	0.013		

Table 9
Goal performance.

	PI	PI weight	KPI weight	PI to Cluster	KPI to Cluster	Cluster
Compliance with logistical planning	0.992	0.167	0.750	0.124	0.942	0.905
Product losses	0.933	0.833	0.750	0.583	0.019	0.791
Loading/Unloading time	0.755	0.100	0.250		0.010	
Availability of storage facilities	0.813	0.166	0.230	0.034	0.005	
Availability of receiving/shipping facilities	0.839	0.498	0.230	0.104		
Layover time - offshore mode	0.667	0.166	0.250	0.028		
Layover time - onshore mode	0.746	0.071	0.250	0.013		

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The first author thanks the National Council for Scientific and Technological Development (CNPq) for the financial support of this research. This study was also funded in part by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) – Brazil – Finance Code 001.

References

[1] C. Lohman, L. Fortuin, M. Wouters, Designing a performance measurement system: a case study, Eur. J. Oper. Res. 55 (2004) 267–286.
[2] R.S. Kaplan, D.P. Norton, The balanced scorecard—measures that drive performance, Harv. Bus. Rev 70 (1992) 71–79 Vol. 1.
[3] Scopus. Document Search. [Online] [Citado em: 19 de outubro de 2020.] https://www.scopus.com/term/analyzer.uri?sid=a67c912853c047b71f33d8bb5c5e8&origin=resultslist&srs=s&title=ABS-KEY%28Performance+Measurement+Systems%29&sort=plf&f&sd=cl&st=b&ssl=45&count=120285&analyzeResults=analyze+results&cluster=cossubtype%2C%22ar.
[4] S.S. Kamble, A. Gunasekaran, A. Ghadge, R. Raut, A performance measurement system for industry 4.0 enabled smart manufacturing system in SMEs- A review and empirical investigation, Int. J. Prod. Econ. 229 (2020) 1078 art. no.
[5] L. Klovienne, I. Uosyte, Development of performance measurement system in the context of industry 4.0: a case study, Eng. Econ. 30 (2019) 472–482 Vol. 4.
[6] G. Hwang, J. Lee, J. Park, T.W. Chang, Developing performance measurement system for internet of things and smart factory environment, Int. J. Prod. Res. 55 (2017) 2590–2602 Vol. 9.
[7] H. Pham, B.G. Sutton, P.J. Brown, D.A. Brown, Moving towards sustainability: a theoretical design of environmental performance measurement systems, J. Clean. Prod. 269 (2020) Vol.Art. no. 122273.
[8] E. Cagno, A. Neri, M. Howard, G. Brenna, A. Trianni, Industrial sustainability performance measurement systems: a novel framework, J. Clean. Prod. 230 (2019) 1354–1375.
[9] S.N. Morioka, D.R. Iritani, A.R. Ometto, M.M. De Carvalho, Systematic review of the literature on corporate sustainability performance measurement: a discussion of contributions and gaps, Gestao e Producao 25 (2018) 284–303 Vol. 2.
[10] Z. He, P. Chen, H. Liu, Z. Guo, Performance measurement system and strategies for developing low-carbon logistics: a case study in China, J. Clean. Prod. 156 (2017) 395–405.
[11] V.K. Kumar, V.V.S. Kesava Rao, Development of balanced scorecard framework for performance evaluation of airlines, Int. J. Manag. 10 (2019) 214–234 Vol. 6.
[12] K. Ahmad, S.M. Zahri, The deployment of performance measurement system under the supply chain management environment: the case of Malaysian manufacturing companies, Manag. Prod. Eng. Rev. 9 (2018) 3–12 Vol. 1.
J.E. Leal, F. Krakovics and V.d.N. Vieira / MethodsX 8 (2021) 101287

[13] T.F. Dos Santos, M.S.A. Leite, Performance measurement system in supply chain management: application in the service sector, Int. J. Serv. Oper. Manag. 23 (2016) 298–315 Vol. 3.

[14] B.M. Al Najdawi, Performance measurement system approaches in hotel industry: a comparative study, Int. J. Sci. Technol. Res. 9 (3) (2020) 3504–3507.

[15] K. Dziekoński, O.H.M.F. Ibrahim, A.M. Mahamud, P. Manu, Framework of performance measurement practices in construction companies in Egypt, Eng. Manag. Prod. Serv. 10 (2) (2018) 7–14.

[16] O. Okudan, C. Budayan, I. Dikmen, Development of a conceptual life cycle performance measurement system for build–operate–transfer (BOT) projects, Eng. Constr. Archit. Manag. (2020) Vol. ahead-of-print No. ahead-of-print, doi:10.1108/ECAM-01-2020-0071.

[17] F. Krakovics, J.E. Leal, P. Mendes Jr., L.R. Santos, Defining and calibrating performance indicators of a 4PL in the chemical industry in Brazil, Int. J. Prod. Econ. 115 (2) (2008) 502–514.

[18] Leal J.E., AHP-express: a simplified version of the analytical hierarchy process method, MethodsX 7 (2020) 100748.

[19] R.W. Saaty, The analytic hierarchy process—what it is and how it is used, Math. Model. 9 (3–5) (1987) 161–176.

[20] Vieira, V.N., Leal J.E. Performance Criteria for Liquid Bulk Storage Terminals (LBST), Using AHP González-Calderón C., De Brito Junior I., Villa S., Yoshizaki H., Leiras A. Rio de Janeiro: Springer, 2020.