Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

T Shiva Prakasha, K B Rajaa, K R Venugopala, S S Iyengarb, L M Patnaikc

aDepartment of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bangalore 560 001 India, Contact: spt@ieee.org

bFlorida International University, Miami, Florida, USA

cHonorary Professor, Indian Institute of Science, Bangalore 560 012, India

This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differentiation for traffic with different priorities.

Keywords : End-to-end Delay, Packet Reception Ratio (PRR), Quality-of-Service (QoS), Wireless Sensor Networks (WSNs), Traffic-differentiation, Two-hop Neighbors.

1. Introduction

Wireless Sensor Networks (WSNs) form a framework to accumulate and analyze real time data in smart environment applications. WSNs are composed of inexpensive low-powered micro sensing devices called motes\cite{1}, having limited computational capability, memory size, radio transmission range and energy supply. These sensors are spread in an environment without any predetermined infrastructure and cooperate to accomplish common monitoring tasks which usually involves sensing environmental data. With WSNs, it is possible to assimilate a variety of physical and environmental information in near real time from inaccessible and hostile locations.

WSNs have a set of stringent QoS requirements that include timeliness, high reliability, availability and integrity. Various performance metrics that can be used to justify the quality of service include, packet reception ratio (PRR), defined as the probability of successful delivery should be maximized. The end-to-end delay which is influenced by the queuing delay at the intermediate nodes and the number of hops traversed by the data flows of the session from the source to the receiver. Sensor nodes typically use batteries for energy supply. Hence, energy efficiency and load balancing form important objectives while designing protocols for WSNs. Therefore, providing corresponding traffic differentiated QoS in such scenarios pose a great challenge. Our proposed protocol is motivated primarily by the deficiencies of the previous works (explained in the Section 2) and aims to provide better Quality of Service.

This paper explores the idea of incorporating QoS parameters in making routing decisions the protocol proposes the following features.

1. Data traffic is split into regular traffic with no specific QoS requirement, reliability-responsive traffic; which should be transmitted without loss but can tolerate some delay, delay-responsive traffic; which should be delivered within
Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

In TDTHR, the two-hop based routing will ensure shorter paths between source and sink, by selecting links providing higher PRR on the route to the sink, the energy consumption of the forwarding nodes can be minimized, due to lower number of collisions and re-transmissions and help in traffic balancing. Furthermore, in the proposed protocol the link delay and packet delivery ratios are updated by piggybacking the information in ACK, this will help in reducing the number of feedback packets and hence reduce the total energy consumed. The impact of efficient energy utilization and traffic balancing on network lifetime is depicted in Figure 6. TDTHR and LOCALMOR show good performance compared to DARA and MMSPEED.

Last, we study the performance of TDTHR and LOCALMOR with respect to delay-responsive and reliability-responsive traffic. The QoS traffic is varied in the same way as critical packets were varied in the earlier simulations, i.e., each QoS traffic varies from 0.1 to 1. Figure 7 and Figure 8 examines the results. This comparison is important because we need to ascertain the positive effect of two-hop delay incorporated in TDTHR over the one-hop delay used in the LOCALMOR. The delay-responsive traffic are routed through more delay efficient links, while reliability-responsive traffic, considers only reliable links. From Figure 7 and Figure 8 it is clear that the performance of TDTHR is better than LOCALMOR for delay-responsive traffic due to two-hop information and has similar performance for reliability-responsive traffic.

6. Conclusions

In this paper, we propose a Traffic-Differentiated Two-Hop Routing protocol for quality of service (QoS) in WSNs, it provides a differentiation routing using different quality of service metrics. Data traffic has been sequenced into different classes according to the required QoS, where different routing metrics and techniques are used for each class. The protocol is able to augment real-time delivery by an able integration of multi-queue priority policy, link reliability, two-hop information and dynamic velocity. The protocol is able to increase the PRR, end-to-end delay and improve the energy efficiency throughout the network. This makes the protocol suitable for WSNs with varied traffic, such as medical and vehicular applications.

REFERENCES

1. F L Lewis, D J Cook, S K Dasm and John Wiley. Wireless Sensor Networks, in Proc. Smart Environment Technologies, Protocols and Applications, New York, pages 1–18. 2004.
2. E Felemban, C G Lee and E Ekici. MMSPEED: Multipath Multi-Speed Protocol for QoS Quar-
antee of Reliability and Timeliness in Wireless Sensor Network, in IEEE Transactions on Mobile Computing, 5(6): 738–754, 2006.

3. M M Or-Rashid, Md. Abdur Razzaque, M M Alam and C S Hong. Multi-Constrained QoS Geographic Routing for Heterogeneous Traffic in Sensor Networks, in IEICE Transactions on Communications, 91B(8):2589–2601, 2008.

4. Y Li, C S Chen and Y Q Song. Enhancing Real-Time Delivery In Wireless Sensor Networks With Two-Hop Information, in IEEE Transactions On Industrial Informatics, 5(2):113–122, 2009.

5. Djamel Djenouri and Ilango Balasingham. Traffic-Differentiation-Based Modular QoS Localized Routing for Wireless Sensor Networks, in IEEE Transactions on Mobile Computing, 6(10):797–809, 2011.

6. Tian He, John A Stankovic, Chenyang Lu and Tarek F Abdelzaher. A Spatiotemporal Protocol for Wireless Sensor Network, in IEEE Transactions on Parallel and Distributed Systems, 16(10):995–1006, 2005.

7. B Karp and Kung H T. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks, in Proc. 6th Annual International Conference on Mobile Computing and Networking (MobiCom), pages 243–254, 2000.

8. Prosenjit Bose, Pat Morin, Ivan Stojmenovi and Jorge Urrutia, Routing with Guaranteed Delivery in Ad hoc Wireless Networks, in Proc. of 3rd ACM Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications DIALM’99, pages 48–55, Aug. 1999.

9. A Sharif, V Potdar and A J D Rathnayaka. Prioritizing Information for Achieving QoS Control in WSN, in Proc. IEEE International Conference on Advanced Information Networking and Applications, pages 835–842, 2010.

10. M E Rusli, R Harris and A Punchihewa. Markov Chain-based analytical model of Opportunistic Routing protocol for wireless sensor networks, in Proc. TENCON IEEE Region 10 Conference, pages 257–262, 2010.

11. M Kouali, A Kobbane, M El Koutbi and M Azizi. QDGRP: A Hybrid QoS Distributed Genetic Routing Protocol for Wireless Sensor Networks, in Proc. International Conference on Multimedia Computing and Systems, pages 47–52, 2012.

12. Yunbo Wang, M C Vuran and S Goddard. Cross-Layer Analysis of the End-to-End Delay Distribution in Wireless Sensor Networks, in IEEE Transactions on Networking, 20(1):305–318, 2012.

13. S Elsah, B Hamdaoui and M Guizani, Radio and Medium Access Contention Aware Routing for Lifetime Maximization in Multichannel Sensor Networks, in IEEE Transactions on Wireless Communication, 11(9):3058–3067, 2012.

14. K Zeng, K Ren, W Lou and P J Moran. Energy Aware Efficient Geographic Routing in Lossy Wireless Sensor Networks with Environmental Energy Supply, in Wireless Networks, 15(1):39–51, 2009.

15. M Chen, V Leung, S Mao, Y Xiao, and I Chlamtac. Hybrid Geographical Routing for Flexible Energy-Delay Trade-Offs, in IEEE Transactions on Vehicular Technology, 58(9):4976–4988, 2009.

16. T L Lim and M Gurusamy. Energy Aware Geographical Routing and Topology Control to Improve Network Lifetime in Wireless Sensor Networks, in Proc. IEEE International Conference on Broadband Networks (BROADNETS05), pages 829–831, 2005.

17. C S Chen, Y Li and Y Q Song. An Exploration of Geographic Routing with K-hop Based Searching in Wireless Sensor Networks, in Proc. CHINACOM, pages 376–381, 2008.

18. T Shiva Prakash, K B Raja, K R Venugopal, S S Iyengar, L M Patnaik. Link-Reliability Based Two-Hop Routing for QoS Guarantee in Wireless Sensor Networks, in IEEE Proc. of the 16th International Symposium on Wireless Personal Multimedia Communications, 2013.

19. T He, C Huang, B M Blum, J A Stankovic and T F Abdelzaher, Range-Free Localization and Its Impact on Large Scale Sensor Networks, in ACM Trans. Embedded Computer Systems, 4(4): 877–906, 2000.

20. A Woo and Culler. Evaluation of Efficient Link Reliability Estimators for Low-Power Wireless Networks, University of California, Tech. Rep., 2003.

21. O Chipara, Z He, G Xing, Q Chen, X Wang, C Lu, J Stankovic and T Abdelzaher, Real-Time Power-Aware Routing in Sensor Network, in Proc. IWQoS, , pages 83–92, Jun. 2006.

22. NS-2, [Online]. Available: http://www.isi.edu/nsnam/ns/.

23. Crossbow Motes, [Online]. Available: http://www.xbow.com.
Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

T Shiv Prakash is an Assistant Professor in the Department of Computer Science and Engineering at Vijaya Vittala Institute of Technology, Bangalore, India. He obtained his B.E and M.S Degrees in Computer Science and Engineering from Bangalore University, Bangalore. He is presently pursuing his Ph.D programme in the area of Wireless Sensor Networks in Bangalore University. His research interest is in the area of Sensor Networks, Embedded Systems and Digital Multimedia.

K B Raja is an Associate Professor, Dept. of Electronics and Communication Engg, University Visvesvaraya college of Engg, Bangalore University, Bangalore. He obtained his Bachelor of Engineering and Master of Engineering in Electronics and Communication Engineering from University Visvesvaraya College of Engineering, Bangalore. He was awarded Ph.D in Computer Science and Engineering from Bangalore University. He has over 100 research publications in refereed International Journals and Conference Proceedings. His research interests include Image Processing, Biometrics, VLSI Signal Processing, Computer Networks.

Venugopal K R is currently the Principal, University Visvesvaraya College of Engineering, Bangalore University, Bangalore. He obtained his Bachelor of Engineering from University Visvesvaraya College of Engineering. He received his Masters degree in Computer Science and Automation from Indian Institute of Science Bangalore. He was awarded Ph.D in Economics from Bangalore University and Ph.D in Computer Science from Indian Institute of Technology, Madras. He has a distinguished academic career and has degrees in Electronics, Economics, Law, Business Finance, Public Relations, Communications, Industrial Relations, Computer Science and Journalism. He has authored and edited 39 books on Computer Science and Economics, which include Petrodollar and the World Economy, C Aptitude, Mastering C, Microprocessor Programming, Mastering C++ and Digital Circuits and Systems etc.. During his three decades of service at UVCE he has over 400 research papers to his credit. His research interests include Computer Networks, Wireless Sensor Networks, Parallel and Distributed Systems, Digital Signal Processing and Data Mining.

S S Iyengar is currently the Roy Paul Daniels Professor and Chairman of the Computer Science Department at Louisiana State University. He heads the Wireless Sensor Networks Laboratory and the Robotics Research Laboratory at LSU. He has been involved with research in High Performance Algorithms, Data Structures, Sensor Fusion and Intelligent Systems, since receiving his Ph.D degree in 1974 from MSU, USA. He is Fellow of IEEE and ACM. He has directed over 40 Ph.D students and 100 Post Graduate students, many of whom are faculty at Major Universities worldwide or Scientists or Engineers at National Labs/Industries around the world. He has published more than 500 research papers and has authored/co-authored 6 books and edited 7 books. His books are published by John Wiley & Sons, CRC Press, Prentice Hall, Springer Verlag, IEEE Computer Society Press etc.. One of his books titled Introduction to Parallel Algorithms has been translated to Chinese.

L M Patnaik is currently Honorary Professor, Indian Institute of Science, Bangalore, India. He was a Vice Chancellor, Defense Institute of Advanced Technology, Pune, India and was a Professor since 1986 with the Department of Computer Science and Automation, Indian Institute of Science, Bangalore. During the past 35 years of his service at the Institute he has over 700 research publications in refereed International Journals and refereed International Conference
Proceedings. He is a Fellow of all the four leading Science and Engineering Academies in India; Fellow of the IEEE and the Academy of Science for the Developing World. He has received twenty national and international awards; notable among them is the IEEE Technical Achievement Award for his significant contributions to High Performance Computing and Soft Computing. His areas of research interest have been Parallel and Distributed Computing, Mobile Computing, CAD for VLSI circuits, Soft Computing and Computational Neuroscience.