In this study, we tried to investigate various risk factors for S1 screw loosening after lumbosacral fusion, including spinopelvic parameters and the degenerative changes of paraspinal muscles.

MATERIALS AND METHODS

Patients
Ten 196 patients underwent spinal fusion operations including L5–S1 level for degenerative lumbar diseases between 2005 and 2012 in our hospital. All the enrolled patients were followed up for more than 24 months after surgery. Seven cases of revision surgery, a known risk factor for screw loosening, were excluded from this study. Thirty-three patients received open pedicle screw fixation were also excluded. Finally, we conducted this study with 156 patients with 68 males and 88 females. The mean age at the time of surgery was 58.0±12.7 years. They were divided into two groups, loosening group with S1 screw loosening, which is 24.4% of total. The mean duration for S1 screw loosening was 7.3±4.1 months after surgery. Statistically significant risk factors were increased age, poor BMD, 3 or more fusion levels (p < 0.05). Among spinopelvic parameters, a high pelvic incidence (p < 0.01), a greater difference between pelvic incidence and lumbar lordotic angle preoperatively (p < 0.01) and postoperatively (p < 0.05). Smaller cross-sectional area and high T2 signal intensity in both multifidus and erector spinae muscles were also significant muscular risk factors (p < 0.05). Small converging angle (p < 0.001) and short intraosseous length (p < 0.05) of S1 screw were significant screw related risk factors (p < 0.05).

Conclusion: In addition to well known risk factors, spinopelvic parameters and the degeneration of paraspinal muscles also showed significant effects on the S1 screw loosening.

Key Words: Lumbosacral region, Pedicle screws, Instrumentation, Muscle, Spinal fusion, Risk factors.
screw loosening and non-loosening group without S1 screw loosening at 1 year after surgery.

Preoperative diagnosis consisted of spinal stenosis in 144, spondylolisthesis in 100, degenerative scoliosis in 4, and discogenic pain in 2. There was no patient with sagittal imbalance on whole spine radiographic exam. All the patients received transfemoral lumbar interbody fusion (TLIF) with unilateral single interbody cage filled with autologous bone chips obtained from laminectomy and facetectomy. Numbers of fusion levels were 1–4 levels. Two percutaneous pedicle screw systems (Sextant and Longitude Systems; Medtronics, Memphis, TN, USA) were used for fixation. The diameter of S1 screw ranged 6.0–8.5 mm, and the length 35–50 mm. Screw loosening was defined as a halo sign showing a radiolucent line of ≥1 mm around the screw in simple radiographic films in one or both sides during 1 year after the surgery (Fig. 1).

Risk factors and radiological evaluation

Patient’s factors, sex, age, body mass index (BMI), bone mineral density (BMD), hypertension, diabetes, alcohol, and smoking, were checked (Table 1). Numbers of fusion levels were 1 (L5–S1), 2 (L4–S1), 3 (L3–S1), and 4 (L2–S1) levels (Table 2). T-score of lumbar spine was checked by measuring BMD with dual-energy radiograph absorptiometry (Lunar Prodigy; General Electric, Madison, WI, USA). Spinopelvic parameters, pre- and postoperative lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), and difference between PI and LL (PI-LL) were measured with whole spine radiographic exam. As muscle related factors, cross sectional area (CSA) and mean signal intensity of paraspinal muscles were checked preoperatively at L5–S1 disc level with T2 weighted MRI axial images (Fig. 2). Axial and sagittal angles, diameter, length, and intraosseous length of S1 screws were checked with postoperative CT as screw related factors (Fig. 3).

Muscle factors were measured for 3 paraspinal muscle groups, multifidus, erector spinae, and psoas muscles. The erector spinae muscles include both longissimus muscle and iliocostalis muscles at L5–S1 level. The signal intensity of muscle on T2 weighted MRI mainly reflects the amount of intramuscular fat content which is known to be related with muscle degeneration.

Fig. 1. Halo sign around S1 screws (arrows) on simple radiograph (A) and CT (B).

Table 1. Patient profiles

	Loosening (+)	Loosening (-)	p-value
No. of patients	38 (24.4%)	118 (75.6%)	
Sex (male/female)	18/20	50/68	0.831
Age (mean)	62.6±7.1*	56.7±13.6	0.042
Body mass index	23.3±2.6	23.2±3.0	0.417
T-score	-1.6±1.6*	-0.8±1.5	0.024
Hypertension	13	67	0.665
Diabetes	3	33	0.051
Alcohol	4	32	0.051
Smoking	2	25	0.104

*p<0.05

Table 2. Number of fusion levels and S1 screw loosening

	Loosening (+), n (%)	Loosening (-), n
1 level (L5–S1)	1 (2.0)	50
2 levels (L4–S1)	18 (26.8)	49
3 levels (L3–S1)	12 (30.0)*	12
4 levels (L2–S1)	7 (50.0)*	7
Total	38 (24.4)	118

*p<0.05

Fig. 2. Paraspinal muscles at L5–S1 level, multifidus muscle (MF), erector spinae muscle (ES), and psoas muscle (PS).

Fig. 3. A: Sagittal angle of S1 screw between screw and upper end plate of S1 vertebra on simple lateral radiograph. B: Axial angle of S1 screw between screw and vertical line (a) and intraosseous length of S1 screw as the length of intraosseous portion of the screw on postoperative CT (b).
The mean duration for detection of screw loosening was 7.3±4.1 (2–15) months. The rate of S1 screw loosening according to the number of fusion levels were 2.0%, 26.8%, 50.0%, and 50.0% in 1, 2, 3, and 4 levels fusion groups. The rate of S1 screw loosening showed a significantly higher rate in 3 or 4 levels fusion comparing to 1 level fusion (p<0.05) (Table 2).

Mean pre- and postoperative LL values were 14.7±10.5° and 26.7±13.6° in the SL group, and 15.8±8.4° and 24.0±11.8° in the non SL group. Sacral slope angles were 29.0±9.4° and 28.9±8.6° in the loosening and non-loosening groups, respectively. The sacral slope, pre- and postoperative LL angles were not different between the two groups (Table 3). The change of LL angle after surgery was greater in the loosening group (11.9±7.4°) than non-loosening group (8.1±7.6°), but there was no statistical significance (Table 3). Mean PI was significantly higher in the loosening group (52.0±8.9°) than those of non-loosening group (45.8±9.3°) (p<0.01) (Table 3). Pre- and postoperative PI-LL's were significantly greater, 37.2±9.9° (p<0.01) and 25.3±10.6° (p<0.05) in the loosening group, comparing to those of non-loosening group, 29.9±8.1° and 21.8±8.9° (Table 3). The intraobserver ICC's were 0.97, 0.90, and 0.96 in LL, PI, and SS, respectively. The interobserver ICC's were 0.93, 0.84, and 0.94 in LL, PI, and SS, respectively.

Mean CSA's of multifidus muscle, erector spinae muscle, and psoas muscle, checked at L5–S1 disc level, were 380.7±251.5 mm², 803.2±200.2 mm², and 843.1±276.4 mm² in loosening group, and 905.7±271.1 mm², 674.4±150.4 mm², and 911.5±264.6 mm² in non-loosening group (Table 4). CSA's of multifidus muscle (p<0.05) and erector spinae muscle (p=0.001) were significantly smaller in loosening group than non-loosening group. Mean signal intensity values on T2 MRI of the respective muscles were 454.0±368.3, 436.6±350.2, and 335.6±166.9, 355.6±163.9, and 137.1±68.0 in loosening and non-loosening group, respectively. The muscle signal intensities of multifidus and erector spinae muscles were significantly higher in loosening group (p<0.05) (Table 4). But

Table 3. Comparison of spinopelvic parameters between the loosening and non-loosening groups

Parameter	Pre-op LL (°)	Post-op LL (°)	Change of LL (°)	PI (°)	SS (°)	Pre-op difference between PI and LL (°)	Post-op difference between PI and LL (°)
Loosening (+)	14.7±10.5	505.7±271.1	<0.05	52.0±9.8	29.0±9.4	37.2±9.9	25.3±10.6
Loosening (-)	15.8±8.4	24.0±11.8	4.0±3.6	45.8±9.3	28.9±8.6	29.9±8.1	21.8±8.9
p-value	0.282	0.151	0.072	0.001	0.474	<0.01	<0.05

LL: lumbar lordosis, **PI**: pelvic incidence, **SS**: sacral slope, **change of LL**: amount of LL corrected by surgery

Table 4. Comparison of the muscular factors between the loosening and non-loosening groups

Muscle	Cross section area (mm²)	Mean signal intensity	p-value
	Loosening (+)	Loosening (-)	
Multifidus m.	380.7±251.5	505.7±271.1	<0.05
	454.0±368.3	355.6±166.9	<0.05
Erector spinae m.	803.2±200.2	974.4±150.4	<0.001
	436.6±350.2	335.6±163.9	<0.05
Psoas m.	843.1±276.4	911.5±264.6	0.109
	134.2±92.8	137.1±68.0	0.422
Table 5. Pearson correlation coefficients between spinopelvic parameters and the degenerative changes of paraspinal muscles

	Cross section area (mm²)	Mean signal intensity	Post-op PI-LL					
	PI	Post-op PI-LL	PI	Post-op PI-LL				
	r	p-value	r	p-value				
	r	p-value	r	p-value				
Multifidus m.	0.095	0.274	-0.128	0.140	0.038	0.664	0.008	0.931
Erector spinae m.	-0.156	0.071	-0.114	0.190	0.102	0.240	-0.070	0.422
Psoas m.	-0.212	0.161	-0.068	0.438	-0.035	0.684	-0.051	0.555

PI-LL: difference between pelvic incidence and lumbar lordosis; r: Pearson correlation coefficients

Table 6. Comparison of S1 screw profile between the loosening and non-loosening groups

	Loosening (+)	Loosening (-)	p-value
Axial angle (°)	8.0±4.7	13.0±5.2	<0.001
Sagittal angle (°)	3.8±6.8	4.1±7.6	0.426
Diameter (°)	6.6±0.5	6.7±0.5	0.482
Length (mm)	40.7±2.3	40.7±2.3	0.178
Intra-osseous length (mm)	29.5±3.7	31.8±5.1	<0.05

The mean axial angle of S1 screw was 8.0±4.7° in loosening group, which was significantly lower than those of non-loosening group, 13.0±5.2° (p<0.001) (Table 6). Other screw related factors including sagittal angle, diameter, and length of S1 screw were similar between the two groups. Even though the whole length of S1 screw was not so meaningful, intraosseous length of S1 screw was significantly longer, 31.8±5.1 mm, in non-loosening group than loosening group, 29.5±3.7 mm (p=0.05) (Table 6). The intraobserver ICCs were 0.91, 0.90, and 0.94 in mean signal intensity values of MF, ES, and PS. The interobserver ICCs were 0.79, 0.85, and 0.90 in CSA of MF, ES, and PS. The intraobserver ICCs were 0.91, 0.90, and 0.94 in mean signal intensity values of MF, ES, and PS.

DISCUSSION

Among the patients underwent spinal fusion operation including S1, the loosening rate of S1 screw had been reported about 15.6–46.3%.[10,16,34] Screw loosening rate of lumbar spine was reported to be about 10–20%, which is, in general, lower than S1 screw loosening rate.[46] There is a tendency of decreased fusion rate at lumbosacral level due to increased pseudoarthrosis.[31] In our study, S1 screw loosening occurred in 24.4%, which was relatively high level comparable with other reports.

This is because the sacrum is composed primarily of cancellous bone, and receives a greater mechanical load than other segments.[50] The anatomical characteristics of the S1 pedicle, a larger diameter and shorter length than lumbar pedicles, indicate that S1 screw loosening occurs more frequently due to the structural weakness of the S1 body and pedicle.[51] Other factors that reportedly contribute to sacral screw failure include inappropriate direction or depth of screw insertion, and large cantilever bending moments loaded by long level instrumentation.[23,43] In relation to the fusion length there was no specified criteria for the use of S1 protective procedures according to the number of fusion levels. Our data showed 3 or more levels (L3–S1 or L2–S1) significantly increased the risk of the S1 screw loosening, which seemed to suggest the need for use of S1 protective procedures in the cases with 3 or more fusion levels.

There have been various techniques for the protection of S1 screw including sacropelvic fixation,[13,29,46] bicortical or tricortical insertion of S1 screw,[27,29], and cement augmentation.[13,50] We also used these techniques as preventive methods in selected patients with high risk of screw loosening, osteoporosis or old age, which were proved as risk factors for the S1 screw loosening, who were not enrolled in this study. Although the techniques must have a strong preventive effect for S1 screw loosening, we could not analyze their effects because of their selective use for high risk patients.

Differences in fusion methods also appear to influence screw loosening. Some reports indicated TLIF showed a lower screw loosening rate than posterior lumbar interbody fusion (PLIF).[14,47] Xu et al.[46] reported the mechanical difference between TLIF and PLIF by proving the difference in screw stress, which might be related with increased possibility of S1 screw loosening. However, we could not find a study directly reporting S1 screw loosening after TLIF operation. Considering the different biomechanical effect on pedicle screw between TLIF and PLIF, a separate study on risk factors of S1 screw loosening for both types of fusion seems to be necessary. In this study, we selected patients underwent TLIF for investigation of S1 screw loosening.

The importance of surgical recovery of lumbar lordosis has been reported in many papers, and insufficient lumbar lordotic angle seem to be associated with lower back pain and functional loss.[10,22,23] During spinal fusion, it is more important to correct lumbar lordotic angle within its physiological range, usually greater than PI.[16,48] Accordingly, larger preoperative PI demands greater lumbar lordotic angle during surgery.[46] Decreased lor-
tocotic angle can cause increased load to the adjacent segments7,21. According to our data, the preoperative PI difference between PI and lumbar lordotic angle was significantly greater in the screw loosening group compared to the non-loosening group. When the patients had high preoperative PI-LL difference, 37.2±9.9\textdegree, the risk S1 screw loosening increased significantly. This insufficient correction of a lordotic angle, still high postoperative PI-LL difference, 25.3±10.6\textdegree, seems to increase the risk of S1 screw loosening due to more bending moment and mechanical stress to the screw. Both pre- and postoperative PI-LLs seem to be important risk factors. But we think the postoperative PI-LL is a more important factor because it can be reduced by surgery.

Paraspinal muscles play an important role in maintaining segmental, regional, and global stability25. The indicators of degenerative change in the paraspinal muscles include cross-sectional area and fatty changes. Degeneration in the cross-sectional area appears as muscle atrophy15,26; fatty changes in muscles are also a form of degeneration, which is closely associated with functional decrease11,26,32,41. Lee et al.25 indicated that the fat content of the paraspinal muscles was the factor with the greatest influence on the result of lumbarosacral fusion operation. According to our results, smaller cross-sectional areas and greater fatty changes in multifidus and erector spinae muscles may affect clinical result of fusion operation by way of increasing S1 screw loosening.

The spinopelvic parameters with significant effect on S1 screw loosening, PI and postoperative PI-LL, were selected to test correlation with muscular degenerative indices, CSA and mean signal intensity. But, there was no significant correlation between the spinopelvic parameters and degenerative indices of paraspinal muscles. This suggests the two types of risk factors, spinopelvic parameters and muscular degeneration, may have their own effects on S1 screw loosening and can have synergistic effect. We didn’t analyze their synergistic effect, it seems to need further study investigating their independency or synergistic effect on the development of S1 screw loosening.

Screw angulation strengthens the resistance to straight pullout. Many studies have shown that two angulated screws have greater resistance to pullout than parallel ones3,7,42,43. Krag et al.21 performed biomechanical testing on pedicle screws, and indicated that angulated screws are stronger due to a ‘toe nail’ effect. Our results also confirmed that the S1 screw axial angle, not the sagittal angle, was important to protect S1 screw. In addition, the long intrasosseous length of screw, not the diameter or whole length of screw, was noted to reduce the risk of S1 screw loosening significantly.

A retrospective study with a small number of patients was a limitation of our study. Although a study on sacropelvic parameters was conducted, a direct relationship with sagittal balance was not fully investigated because our study didn’t enroll any patient with sagittal imbalance. The data of cross sectional area and fatty degeneration of paraspinal muscles could not explain actual muscle function. Moreover, our data were based on radiological findings, which did not reflect clinical outcomes directly. Therefore, additional studies related to these subjects are deemed to be necessary in the future.

CONCLUSION

Most of the risk factors for S1 screw loosening, including age, osteoporosis, number of fusion levels, toe nail effect of screw, were proved to be related with S1 screw loosening, which were comparable with other reports. But we focused on the additional two types of possible risk factors, spinopelvic parameters and back muscle degeneration. The high PI and high PI-LL were proved to be significant risk factors, suggesting the importance of making sagittal balance during surgery. Back muscle weakness represented by CSA and fat degeneration was also proved to be a risk factor, which shows the importance of preoperative evaluation for paraspinal muscles and postoperative back muscle rehabilitation program.

References

1. Allen BL Jr, Ferguson BL : The Galveston technique of pelvic fixation with L-rod instrumentation of the spine. Spine (Phila Pa 1976) 9 : 388-394, 1984
2. Balderston RA, Winter RB, Moe JH, Bradford DS, Lonstein JE : Fusion to the sacrum for nonparalytic scoliosis in the adult. Spine (Phila Pa 1976) 11 : 824-829, 1986
3. Barber JW, Boden SD, Ganey T, Hutton WC : Biomechanical study of lumbar pedicle screws : does convergence affect axial pullout strength? J Spinal Disord 11 : 215-220, 1998
4. Bernhardt M, Swartz DE, Clohisy JL, Crowell RR, White AA 3rd : Posterolateral lumbar and lumbarosacral fusion with and without pedicle screw internal fixation. Clin Orthop Relat Res (284) : 109-115, 1992
5. Cho W, Mason JR, Smith JS, Shimer AL, Wilson AS, Shaffrey CI, et al. : Failure of lambdovelvic fixation after long construct fusions in patients with adult spinal deformity : clinical and radiographic risk factors : clinical article. J Neurosurg Spine 19 : 445-453, 2013
6. Dulchil-Jerey F, Jodeha H, Cohen A, Shepperd JA : Inter-observer reliability of detecting Dynesys pedicle screw using plain X-rays : a study on 50 post-operative patients. Eur Spine J 18 : 1469-1473, 2009
7. Dukatioski MB, Schendel MJ, Ogilvie JW, Obewski J, Wallace LJ, Lewis JL : Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976) 19 : 1745-1751, 1994
8. Devlin VJ, Boachie-Adjei O, Bradford DS, Ogilvie JW, Transfeldt EE : Treatment of adult spinal deformity with fusion to the sacrum using CD instrumentation. J Spinal Disord 4 : 1-14, 1991
9. Emami A, Deviren V, Berven S, Smith JA, Hu SS, Bradford DS : Outcome and complications of long fusions to the sacrum in adult spine deformity : lumbar-galveston, combined iliac and sacral screws, and sacral fixation. Spine (Phila Pa 1976) 27 : 776-786, 2002
10. Finger T, Bayerl S, Onken J, Czabanka M, Wozniak J, Vajkoczy P : Sacropelvic fixation versus fusion to the sacrum for spondylosis in multilevel degenerative spine disease. Eur Spine J 23 : 1013-1020, 2014
11. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC : Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res (304) : 78-83, 1994
12. Herkowitz HN : Lumbar spinal stenosis : indications for arthrodesis and spinal instrumentation. Instr Course Lect 43 : 425-433, 1994
13. Huang Y, Majumdar S, Genant HK, Chan WP, Sharma KR, Yu P, et al. : Quantitative MR relaxometry study of muscle composition and function
PMMA versus a calcium triglyceride bone cement. Comparative assessment of sacral screw loosening augmented with crum in patients with neuromuscular spinal deformities. McCarthy RE, Bruffett WL, McCullough FL: S rod fixation to the sa force evaluation. through the s1 endplate: an in vitro cyclic loading and pull-out evaluation through the s1 endplate: an in vitro cyclic loading and pull-out evaluation. McCarthy RE, Bruffett WL, McCulloch FL: S rod fixation to the sacrum in patients with neuromuscular spinal deformities. Clin Orthop Relat Res (364): 26-31, 1999 McLaughlin SD, Al Sahel K, Gurr KR, Bailey SJ, Bailey CS, Dunning CE: Comparative assessment of sacral screw loosening augmented with PMMA versus a calcium triglyceride bone cement. Spine (Phila Pa 1976) 36: E699-E704, 2011 Mengiardi B, Schmid MR, Boos N, Pfirrmann CW, Brunner F, Elfering A, et al.: Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology 240: 786-792, 2006 Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA: Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine (Phila Pa 1976) 22: 1696-1705, 1997 Pihlajamaki H, Myllynen P, Rostman O: Complications of transpedicular lumbosacral fixation for non-traumatic disorders. J Bone Joint Surg Br 79: 183-189, 1997 Rechting GR, Sutterlin CE, Wood GW, Boyd RJ, Mansfield FL: The efficacy of pedicle screw/plate fixation on lumbar/lumbosacral autogenous bone graft fusion in adult patients with degenerative spondylolisthesis. J Spinal Disord 9: 382-391, 1996 Renner SM, Lim TH, Kim WJ, Katoik L, An HS, Andersson GB: Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine (Phila Pa 1976) 29: E212-E216, 2004 Roy-Camille R, Saillant G, Mace1 C: Internal fixation of the lumbosacral spine with pedicle screw plating. Clin Orthop Relat Res (203): 7-17, 1986 Ruland CM, McAfee PC, Warden KE, Cunningham BW: Triangulation of pedicular instrumentation. A biomechanical analysis. Spine (Phila Pa 1976) 16 (6 Suppl): S279-S276, 1991 Sande S, Olerud C, Petrén-Mallmin M, Johansson C, Larsson S: The significance of radionuclide zones surrounding pedicle screws. Definition of screw loosening in spinal instrumentation. J Bone Joint Surg Br 86 : 457-461, 2004 Schwab E, Lafage V, Patel A, Farcy JP: Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976) 34: 1828-1833, 2009 Seo JB, Yoo JS, Jang HS, Kim JS: Correlation of clinical symptoms and function with fatty degeneration of infraspinatus in rotator cuff tear. Knee Surg Sports Traumatol Arthrosc 23: 1481-1488, 2015 Skinner R, Maybeer J, Transfeldt E, Venter R, Chalmers W: Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine (Phila Pa 1976) 15: 195-201, 1990 Soini J, Laine T, Pohjolainen T, Hurri H, Alaranta H: Spondylodesis augmented by transpedicular fixation in the treatment of osteoarthritic and degenerative conditions of the lumbar spine. Clin Orthop Relat Res (297): 111-116, 1993 Winter RB, Pinto WC: Pelvic obliquity: Its causes and its treatment. Spine (Phila Pa 1976) 11: 225-234, 1986 Wu JC, Huang WC, Tsai HW, Ko CC, Wu CL, Tu TH, et al. : Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus 31: E9, 2011 Xu H, Tang H, Guan X, Jiang F, Xu N, Ju W, et al. : Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion by finite element analysis. Neurosurgery 72 (1 Suppl Operative): 21-26, 2013 Yan DL, Pei FX, Li J, Soo CL: Comparative study of PLIF and TLIF treatment in adult degenerative spondylolisthesis. Eur Spine J 17: 1311-1316, 2008 Zafi D, Vialle R, Abelil K, Mary P, Khouri N, Damsin JP: Spinopelvic fixation with iliosacral screws in neuromuscular spinal deformities: results in a prospective cohort of 62 patients. Childs Nerv Syst 26 : 81-86, 2010 Zindrick MR, Wiltes LL, Widell EH, Thomas JC, Holland WR, Field BT, et al.: A biomechanical study of intradiscal screw fixation in the lumbosacral spine. Clin Orthop Relat Res (203): 99-112, 1986