1 Introduction. Let X be an irreducible smooth projective curve of genus g over an algebraically closed field k of characteristic $p > 0$, and $F : X \to X$ the absolute Frobenius morphism on X. It is known that pulling back a stable vector bundle on X by F may destroy stability. One may measure the failure of (semi-)stability by the Harder-Narasimhan polygons of vector bundles.

In more formal language, let $n \geq 2$ be an integer, \mathcal{M} the coarse moduli space of stable vector bundles of rank n and a fixed degree on X. Applying a theorem of Shatz (an analogue of the Grothendieck specialization theorem for F-isocrystals) to the pull-back by F of the universal bundle (assuming the existence) on \mathcal{M}, we see that \mathcal{M} has a canonical stratification by Harder-Narasimhan polygons ([S]). This interesting extra structure on \mathcal{M} is a feature of characteristic p. However, very little is known about these strata. Scattered constructions of points outside of the largest (semi-stable) stratum can be found in [G], [RR], [R], and [JX].

This paper deals exclusively with $p = 2$ and $n = 2$. On any curve X of genus ≥ 2, we provide a complete classification of rank-2 semi-stable vector bundles V with F^*V not semi-stable. We also obtain fairly good information about the locus destabilized by Frobenius in the moduli space, including the irreducibility and the dimension of each non-empty Harder-Narasimhan stratum. This shows that the bound in [Su, Theorem 3.1] is sharp. A very interesting consequence of our classification is that high unstability of F^*V implies high stability of V.

We conclude this introduction by remarking that the problem studied here can be cast in the generality of principal G-bundles over X, where G is a connected reductive group over k. More precisely, consider the pull-back by F of the universal object on the moduli stack of semi-stable principal G-bundles on X. Atiyah-Bott’s generalization of the Harder-Narasimhan filtration should then give a canonical stratification of the moduli stack ([AB], see also [C]). In this context, our paper treats the case of $p = 2$, $G = \text{GL}_2$.

We benefited from discussions with C.-L. Chai and K. Joshi. Both authors thank the hospitality of the National Center for Theoretical Sciences, Hsinchu, Taiwan, where most of this work was done during our visits in 2000-2001.

\[\text{partially supported a Sloan Foundation Fellowship and by grant DMS 0100678 from the National Science Foundation}\]
2 A measure of stability. In this paper, “a vector bundle” always means “a vector bundle over X”. Following [LN], for a rank-2 vector bundle V, we put

$$s(V) = \deg(V) - 2 \max\{|\deg(L) : L \hookrightarrow V|\},$$

where the maximum is taken over all rank-1 sub-module of V. By definition, $s(V) > 0$ (resp. $s(V) \geq 0$) if and only if V is stable (resp. semi-stable). When $s(V) \leq 0$, the information of $(s(V), \deg(V))$ is the same as that of the Harder-Narasimhan polygon of V. Therefore, one may regard s as a measure of stability extrapolating the Harder-Narasimhan polygons, though it is only for the rank-2 case (for possible variants for the higher rank case, see [BL]; for general reductive group, see [HN]).

3 Raynaud’s distinguished theta characteristic. From now on, $p = 2$ and $g \geq 2$. Following Raynaud [R, §4], we have a distinguished line bundle B on X defined by the exact sequence

$$0 \to \mathcal{O}_X \to F_s \mathcal{O}_X \to B \to 0.$$

Raynaud shows that $B^2 \simeq \Omega_X$, i.e. B is a theta characteristic.

Proposition. Let ξ be a line bundle on X and put $V = F_s(\xi \otimes B^{-1})$. Then V is a vector bundle of rank 2 such that $\det(V) = \xi$, V is stable, and F^sV is not semi-stable. In fact,

$$s(V) \geq g - 1 \text{ and } s(F^sV) = -(2g - 2).$$

If M is the sub-bundle of F^sV of rank 1 such that $\deg M > \deg(F^sV)/2$, then $M \simeq \xi B$.

Proof. Write $L = \xi \otimes B^{-1}$. On an affine open set U on which $F_s\mathcal{O}_X$, B, L are trivial, choose a section $s \in (F_s\mathcal{O}_X)(U)$ such that the image of s generates $B = F_s(\mathcal{O}_X)/\mathcal{O}_X$ on U, and a section $t \in L(U)$ generating $L|U$. Then (t, st) generates $(F_sL)|U$ and $t \wedge (st) \mapsto t \otimes s$ is an isomorphism $\det(F_sL)|U \to (L \otimes B)|U$. One can check that this isomorphism is independent of the choices of s, t; hence, we obtain an isomorphism $\det(F_sL) \to L \otimes B$ by gluing these isomorphisms over various U’s.

Write $L = \xi \otimes B^{-1}$ and $d = \deg L$. Notice that $\deg V = d + g - 1$. Suppose that $M \hookrightarrow V$ is a sub-bundle of rank 1. By adjunction, there is a non-zero morphism $F^sM \to L$. Therefore, $\deg(F^sM) \leq \deg(L)$. Thus $\deg M \leq d/2 < (d + g - 1)/2 = \deg(V)/2$. Therefore, V is stable and $s(V) \geq g - 1$.

Now consider the identity morphism $F_sL \to F_sL$. By adjunction, this gives a non-zero morphism $F^sV \to L$, which is surjective by a local calculation. The kernel of this morphism is a line bundle of degree $2(d + g - 1) - d = d + 2g - 2 > d + g - 1 = \deg(F^sV)/2$. So F^sV is not semi-stable and $s(F^sV) = -(2g - 2)$.

Remark. Let $V = F_s(\xi \otimes B^{-1})$. The extension

$$(*) \quad 0 \to \xi \otimes B \to F^sV \to \xi \otimes B^{-1} \to 0$$

2
defines a class in \(\operatorname{Ext}^1(\xi \otimes B^{-1}, \xi \otimes B) \simeq H^1(X, B^2) \simeq k \). This class is trivial precisely when \(\deg(\xi \otimes B^{-1}) \) is even.

Proof. Suppose that \(\deg(\xi \otimes B^{-1}) \) is even. Then we can write \(L = \xi \otimes B^{-1} = M^2 \). By [JX, §2], there is an exact sequence \(0 \to M \to V \to M \otimes B \to 0 \). Pulling back by \(F \), we get \(0 \to L \to F^*V \to L \otimes B^2 \to 0 \). This shows that \((*)\) is split.

Suppose that \(L = \xi \otimes B^{-1} \) has odd degree \(2n+1 \). By a theorem of Nagata ([LN], Cf. 8) and the above proposition, there is an exact sequence \(0 \to M_1 \to V \to M_2 \to 0 \), where \(M_1, M_2 \) are line bundles with degrees \(n \) and \(n+g \) respectively. From the exact sequence \(0 \to M_1 \to F^*V \to M_2 \to 0 \), we deduce that \(\dim \operatorname{Hom}(L, F^*V) \leq \dim \operatorname{Hom}(L, M_1) + \dim \operatorname{Hom}(L, M_2) = 0 + g = g \) by the Riemann-Roch formula. Since \(\operatorname{Hom}(L, \xi \otimes B) = H^0(X, B^2) \) has dimension \(g \), any morphism \(L \to F^*V \) factors through the sub-module \(\xi \otimes B \) in (\(*)\). Therefore, (\(*\)) is not split. [\(\blacksquare \)]

4 **The basic construction.** Henceforth, fix an integer \(d \). For an injection \(V' \hookrightarrow V'' \) of vector bundles of the same rank, define the \emph{co-length} \(l \) of \(V' \) in \(V'' \) to be the length of the torsion \(\mathcal{O}_X \)-module \(V''/V' \). Clearly, \(s(V') \geq s(V'') - l \).

We now give a basic construction of stable vector bundles \(V \) of rank \(2 \) with \(F^*V \) not semi-stable. Let \(l \leq g - 2 \) be a non-negative integer, \(L \) a line bundle of degree \(d - 1 - (g - 2 - l) \), and \(V \) a sub-module of \(F_2L \) of co-length \(l \), then \(\deg V = d \) and \(s(V) \geq (g - 1) - l > 0 \) by Proposition 3. Therefore, \(V \) is stable.

On the other hand, by adjunction, there is a morphism \(F^*V \to L \), and the kernel is a line bundle of degree \(g - 2 + (g - 2 - l) > d = \deg(F^*V)/2 \). Therefore, \(F^*V \) is not semi-stable.

5 **Exhaustion.** Suppose that \(V \) is semi-stable of rank \(2 \) and \(F^*V \) is not semi-stable.

Let \(\xi = \det(V) \) and \(d = \deg \xi = \deg V \). Since \(F^*V \) is not semi-stable and of degree \(2d \), there are line bundles \(L, L' \) and an exact sequence \(0 \to L' \to F^*V \to L \to 0 \) with \(\deg L' \geq d + 1 \), \(\deg L \leq d - 1 \). By adjunction, this provides a non-zero morphism \(V \to F_2L \).

If the image is a line bundle \(M \), we have \(\deg M \geq d/2 \) by semi-stability of \(V \), and \(\deg M \leq (d - 1 + g - 1)/2 - (g - 1)/2 = (d - 1)/2 \) by Proposition 3. This is a contradiction.

Thus the image is of rank \(2 \). Since \(\deg V = d \) and \(\deg(F_2L) \leq d + (g - 2) \), \(V \) is a sub-module of \(F_2L \) of co-length \(l \leq g - 2 \), and \(\deg L = d - 1 - (g - 2 - l) \).

Thus the basic construction yields all semi-stable vector bundles \(V \) of rank \(2 \), with \(F^*V \) not semi-stable.

5.1 **Corollary.** If \(V \) is semi-stable of rank \(2 \) with \(F^*V \) not semi-stable, then \(V \) is actually stable. [\(\blacksquare \)]

5.2 **Corollary.** The basic construction with \(l = g - 2 \) already yields all semi-stable vector bundles \(V \) of rank \(2 \), with \(F^*V \) not semi-stable.
6 Classification. Let \(L \) be a line bundle and let \(Q = Q_1 = Q_{1,L} = \text{Quot}_t(F_s L/X/k) \) be the scheme classifying sub-modules of \(F_s L \) of co-length \(l \). Thus \(V \) arises from the basic construction with \((l', L')\) playing the role of \((l, L)\).

Proposition. The basic construction gives a bijection
\[
\bigcup_{0 \leq l \leq g - 2} Q_{l,L}(k) \rightarrow \mathcal{M}_1(k),
\]
where the disjoint union is taken over all \(l \in [0, g - 2] \) and a set of representatives of all isomorphism classes of line bundles \(L \) of degree \(d - 1 - (g - 2 - l) \).

Proof. By 5, the map is a surjection. Now suppose that \((l, L, V \subset F_s L)\) and \((l', L', V' \subset F_s L')\) give the same point in \(\mathcal{M}_1(k) \), i.e. \(V \simeq V' \). Since the unstable bundle \(F^*V \) has a unique quotient line bundle of degree \(< \deg(V)/2 \) (i.e. the second graded piece of the Harder-Narasimhan filtration), which is isomorphic to \(L \), we must have \(L = L' \). Consider the diagram
\[
\begin{array}{ccc}
F^*V & \longrightarrow & L \\
\downarrow & & \downarrow \\
F^*V' & \longrightarrow & L',
\end{array}
\]
where the vertical arrow is induced from an isomorphism \(V \simeq V' \) and the horizontal arrows are the unique quotient maps. This diagram is commutative up to a multiplicative scalar in \(k^* \).

By adjunction, \(V \hookrightarrow F_s L \) and \(V' \hookrightarrow F_s L \) have the same image. In other words, \(V = V' \) as sub-modules of \(F_s L \). This proves the injectivity of the map. \(\blacksquare \)
7 Moduli space. To ease the notation, let \(d_i = d - 1 - (g - 2 - l) \). Let \(\text{Pic}^d_i X \) be the moduli space of line bundles of degree \(d_i \) on \(X \), and \(L \to \text{Pic}^d_i(X) \times X \) the universal line bundle.

By [FGA, 3.2], there is a scheme \(\Omega = \Omega_l = \text{Quot}_l((\text{id} \times F)_* L / (\text{Pic}^d_i(X) \times X) / \text{Pic}^d_i X) \to \text{Pic}^d_i X \) such that \(\Omega_x \) (the fiber at \(x \)) is \(Q_{\mathcal{L}_x} \) for all \(x \in (\text{Pic}^d_i(X))(k) \). By the same argument as before, there is an open sub-scheme \(\Omega^* \subset \Omega \) such that \(\Omega^*_x = Q_{\mathcal{L}_x}^\prime \) for all \(x \in \text{Pic}^d_i(X)(k) \). The scheme \(\Omega \) is projective over \(\text{Pic}^d_i(X) \) ([FGA, 3.2]), hence is proper over \(k \). By checking the condition of formal smoothness (cf. [L, 8.2.1]), it can be shown that \(\Omega \) is smooth over \(\text{Pic}^d_i(X) \), hence is smooth over \(k \).

The coarse moduli scheme \(\overline{M} \) is canonically stratified by Harder-Narasimhan polygons. Concretely, for \(j \geq 0 \), let \(P_j \) be the polygon from \((0, 0) \) to \((1, d + j) \) to \((0, 2d) \). Let \(\overline{M}_0 = \overline{M} \), and for \(j \geq 1 \), let \(\overline{M}_j(k) \) be the subset of \(\overline{M}(k) \) parametrizing those \(V \)'s such that the Harder-Narasimhan polygons ([S]) of \(F^* V \) lie above or are equal to \(P_j \). Notice that \(\overline{M}_1(k) \) agrees with the one defined in 6.

As mentioned in the introduction, the existence of a universal bundle on \(\overline{M} \) would imply that each \(\overline{M}_j(k) \) is Zariski closed by Shat's theorem [S]. In general, one can show that \(\overline{M}_j(k) \) is closed in \(\text{GIT} \) (geometric invariant theory) construction of \(\overline{M} \). This fact also follows from our basic construction:

Theorem. The subset \(\overline{M}_j(k) \) is Zariski closed in \(\overline{M}(k) \), hence underlies a reduced closed sub-scheme \(\overline{M}_j \) of \(\overline{M} \). The scheme \(\overline{M}_j \) is proper. The Harder-Narasimhan stratum \(\overline{M}_j \setminus \overline{M}_{j+1} \) is non-empty precisely when \(0 \leq j \leq g - 1 \). For \(1 \leq j \leq g - 1 \), write \(l = g - 1 - j \). Then there is a canonical morphism

\[
\Omega_l \to \overline{M}
\]

which has scheme-theoretic image \(\overline{M}_j \) and induces a bijection from \(\Omega^*_l(k) \) to \(\overline{M}_j(k) \setminus \overline{M}_{j+1}(k) \).

Proof. Suppose \(0 \leq l \leq g - 2 \) and \(j + l = g - 1 \). The universal object \(V \to \Omega_l \times X \) is a family of stable vector bundles on \(X \). This induces a canonical morphism \(\Omega_l \to \overline{M} \). The image of \(\Omega_j(k) \) is precisely \(\overline{M}_j(k) \) by (the proof of) Corollary 5.2. Since \(\Omega_l \) is proper, \(\overline{M}_j \) is proper and closed in \(\overline{M} \). The rest of the proposition follows from 6 and 5, and the fact that \(\Omega^*_l(k) \) is non-empty for \(0 \leq l \leq g - 2 \) (see Lemma 9.3).

8 Remark. By a theorem of Nagata ([LN], [HN]), \(s(V) \leq g \) for all \(V \). Therefore, \(s(V) \leq g \) if \(\deg V \equiv g \) (mod 2), and \(s(V) \leq g - 1 \) if \(\deg V \not\equiv g \) (mod 2). By Proposition 3, \(V = F_s L \) achieves the maximum value of \(s \) among rank-2 vector bundles of the same degree.

By the preceding theorem, vector bundles of the form \(V = F_s L \) are precisely members of the smallest non-empty Harder-Narasimhan stratum \(\text{M}_{g-1} \). Therefore, in a sense \(V \) is most stable yet \(F^* V \) is most unstable. More generally, for \(1 \leq j \leq g - 1 \), we have (from 4)

\[
s(M_j(k)) \geq \begin{cases} j & \text{if } d \equiv j \pmod{2}, \\ j + 1 & \text{if } d \not\equiv j \pmod{2}. \end{cases}
\]
Therefore, high unstability of F^*V implies high stability of V.

9 Irreducibility. We will make use of the following simple lemma.

9.1 Lemma. Let Y be a proper scheme over k, S an irreducible scheme of finite type over k of dimension s, r an integer ≥ 0, and $f : Y \to S$ a surjective morphism. Suppose that all fibers of f are irreducible of dimension r. Then Y is irreducible of dimension $s + r$. ■

9.2 Lemma. The scheme $Q = Q_l$ is irreducible of dimension $2l + g$.

PROOF. There is a surjective morphism ([FGA, §6])

$$\delta : Q \to \text{Div}^l(X) = \text{Sym}^l(X), \quad q \mapsto \sum_{P \in X/k} \text{length}_{\mathcal{O}_P}((F_*\mathcal{L}_{\mathcal{P}(q)})/\mathcal{V}_q) \cdot P.$$

The morphism $Q \to \text{Div}^l(X) \times \text{Pic}^{d_1}(X)$ is again a surjection. The fibers are irreducible schemes of dimension l according to the last lemma of [MX]. Since Q is proper, the result follows from Lemma 9.1. ■

9.3 Lemma. Q^* is open and dense in Q.

PROOF. By the construction in 6 and 7, Q^* is open in Q. Since Q is irreducible of dimension $2l + g$, it suffices to show that Q^* is non-empty. We will do more by exhibiting an open subset of Q^* of dimension $2l + g$.

Indeed, let $B(X, l) \subset \text{Div}^l(X)$ be the open sub-scheme parametrizing multiplicity-free divisors of degree l, also known as the configuration space of unordered l points in X. Let U be the inverse image of $B(X, l) \times \text{Pic}^{d_1}(X)$ under $Q^* \to \text{Div}^l(X) \times \text{Pic}^{d_1}(X)$. A quick calculation shows that each fiber of $U \to B(X, l) \times \text{Pic}^{d_1}(X)$ is isomorphic to \mathbb{A}^l. Therefore, U is an open subset of Q^* of dimension $2l + g$. ■

9.4 Theorem. For $1 \leq j \leq g - 1$, M_j is proper, irreducible, and of dimension $g + 2(g - 1 - j)$. In particular, M_1 is irreducible and of dimension $3g - 4$. ■

10 Fixing the determinant. Fix a line bundle ξ of degree d. Let $\overline{M}(\xi) \subset \overline{M}$ be the closed sub-scheme of \overline{M} parametrizing those V’s with $\text{det}(V) = \xi$. Let $M_j(\xi) = \overline{M}(\xi) \cap M_j$ for $j \geq 0$.

Remark. For $1 \leq j \leq g - 1$, $\dim M_j(\xi) = 2(g - 1 - j)$. In particular, $\dim M_1(\xi) = 2(g - 2)$.

PROOF. Since $M_j(\xi)$ is nothing but the fiber of the surjective morphism $\text{det} : M_j \to \text{Pic}^d(X)$, it has dimension $2(g - 1 - j)$ for a dense open set of $\xi \in \text{Pic}^d(X)(k)$. However, $M_j(\xi_1)$ is isomorphic to $M_j(\xi_2)$ for all $\xi_1, \xi_2 \in \text{Pic}^d(X)(k)$, via $V \mapsto V \otimes L$, where $L^2 \simeq \xi_2 \otimes \xi_1^{-1}$. Thus the remark is clear. ■
A slight variation of the above argument shows that $M_j(\xi)$ is irreducible. Alternatively, assume $1 \leq j \leq g - 1$. Let $l = g - 1 - j$ and let $Q(\xi) = Q_l(\xi)$ be the inverse image of ξ under $Q \to \text{Pic}^d(X)$, $q \mapsto \det(V_q)$. Since $\det(V_q) = B \otimes L_{\pi(q)} \otimes \mathcal{O}(\delta(q))$, the morphism $\det: Q \to \text{Pic}^d(X)$ factors as

$$Q \to \text{Div}^l(X) \times \text{Pic}^{d_l}(X) \xrightarrow{\psi} \text{Pic}^d(X),$$

where ψ is $(D, L) \mapsto B \otimes L \otimes \mathcal{O}(-D)$. It is clear that $\psi^{-1}(\xi)$ is isomorphic to $\text{Div}^l(X)$, and hence is an irreducible variety.

The fibers of $Q(\xi) \to \psi^{-1}(\xi)$ are just some fibers of $Q \to \text{Div}^l(X) \times \text{Pic}^{d_l}(X)$; hence they are irreducible of dimension l as in the proof of Lemma 9.2. Being a closed sub-scheme of Q, $Q(\xi)$ is proper, thus, irreducible by Lemma 9.1. Now it is easy to deduce

Theorem. The scheme $\overline{M}(\xi)$ admits a canonical stratification by Harder-Narasimhan polygons

$$\emptyset = M_g(\xi) \subset M_{g-1}(\xi) \subset \cdots \subset M_0(\xi) = \overline{M}(\xi),$$

with $M_j(\xi)$ non-empty, proper, irreducible, and of dimension $2(g - 1 - j)$ for $1 \leq j \leq g - 1$. $lacksquare$

11 A variant. Let $M'(k)$ be the subset of $\overline{M}(k)$ consisting of those V such that F^*V is not stable. Clearly, $M'(k) \supset M_1(k)$.

By Corollary 5.1, the closed subset $M_{sa}(k) = \overline{M}(k) \setminus M(k)$ is contained in $M'(k) \setminus M_1(k)$. On the other hand, if $V \in M'(k) \setminus M_{sa}(k)$, the argument of 5 shows that there is a line bundle L of degree d such that $V \hookrightarrow F_*L$ is a sub-module of co-length $\leq g - 1$. Conversely, the argument of 4 shows that if V is of co-length $\leq g - 1$ in F_*L for some L of degree d, then $V \in M'(k)$.

Thus we conclude that $M'(k)$ is the union of $M_{sa}(k)$ and the image $M'_0(k)$ of $Q_{g-1}(k)$ for a suitable morphism $Q_{g-1} \to \overline{M}$, where Q_{g-1} is defined in 7. It follows that $M'_0(k)$ and $M'(k)$ are Zariski closed in $\overline{M}(k)$, hence are sets of k-points of reduced closed sub-scheme M'_0 and M' of \overline{M}.

Theorem. The scheme M'_0 is irreducible of dimension $3g - 2$. It contains two disjoint closed subsets: $M'_0 \cap M_{sa}$, which is irreducible of dimension $2g - 1$ when d is even and empty when d is odd, and M_1, which is irreducible of dimension $3g - 4$.

Remark. $M' \setminus M_1$ is the first stratum in the s-stratification ([LN]) which is not a Harder-Narasimhan stratum. The other s-stratas are more complicated and not pursued here.

Proof. Since Q_{g-1} is irreducible, M'_0 is irreducible. We now analyze $M'_0 \cap M_{sa}$. Suppose that $V \in M'_0(k) \cap M_{sa}(k)$. Then $d = \deg V$ is even and there exists L of degree d such that V is a sub-module of F_*L of co-length $g - 1$. By assumption, there is a sub-bundle M of V of degree $d/2$. Adjunction applied to the composition $M \hookrightarrow V \hookrightarrow F_*L$ provides a non-zero
morphism $F^*(M) = M^2 \to L$. This implies that $M^2 \simeq L$. We may assume that $L = M^2$. Since there is only one (modulo k^*) non-zero morphism $M^2 \to L$, there is only one non-zero morphism $M \to F_*(F^*M)$. By [JX, §2], this morphism is part of an exact sequence $0 \to M \to F_*(F^*M) \to M \otimes B \to 0$. Thus to have V is to have a sub-module of $M \otimes B$ of co-length $g-1$. Conversely, starting with a sub-module of $M \otimes B$ of co-length $g-1$, we obtain a vector bundle $V \in \mathcal{M}_g(k) \cap \mathcal{M}^h(k)$ as the inverse image of that sub-module in $F_*(F^*M)$.

The sub-modules of $M \otimes B$ of co-length $g-1$ are of the form $M \otimes B \otimes \mathcal{O}(-D)$ for $D \in \text{Div}^{g-1}(X)(k)$. Thus there is a morphism $\pi' : \mathcal{Q} = \text{Div}^{g-1}(X) \times \text{Pic}^{d/2}(X) \to \overline{M}$ inducing a surjection $\mathcal{Q}(k) \to \mathcal{M}_g(k) \cap \mathcal{M}^h(k)$. We claim that this morphism is generically finite of separable degree at most 2. This claim implies that $\mathcal{M}_g \cap \mathcal{M}^h$ is irreducible of dimension $2g-1$.

Indeed, there is an open subset U of $\text{Div}^{g-1}(X)(k)$ such that if $D, D' \in U$ are distinct, then $D \neq D'$. We now show that $\pi'(U \times \text{Pic}^{d/2}(X)(k))$ is at most 2-to-1. Suppose that $D \in U$, $M \in \text{Pic}^{d/2}(X)(k)$, and $\pi'(D, M) = V$. Then V has at most two isomorphism classes of rank-1 sub-bundles of degree $d/2$, and M is one of them. After obtaining M, one can determine D uniquely by the condition $\det(V) \simeq M^2 \otimes B \otimes \mathcal{O}(-D)$. This proves the claim.

Next, we consider the morphism $\mathcal{Q}_{g-1} \to \mathcal{M}_g$. It induces a surjection $\mathcal{Q}_{g-1}^*(k) \to \mathcal{M}_g(k) \cap \mathcal{M}_1(k)$. Again the claim is that the morphism is generically finite of separable degree at most 2. This claim implies that \mathcal{M}_g is irreducible of dimension $3g-2$.

Indeed, let U be the open subset of $\mathcal{Q}_{g-1}^*(k)$ consisting of those q’s such that $\mathcal{O}(2\delta(q)) \not\simeq \Omega_X$. Now assume that $q \in U$ gives rise to $V \in \mathcal{M}_g(k)$. Then there is an exact sequence $0 \to L \otimes B^2 \otimes \mathcal{O}(-2\delta(q)) \to F^*V \to L \to 0$, where $L = L_{\pi(q)}$. The assumption on q implies that F^*V has at most 2 quotient line bundles of degree d, say $F^*V \to L_1$ and $F^*V \to L_2$. Then q must be one of the two data $V \leftrightarrow F_2L_1$ or $V \leftrightarrow F_2L_2$ provided by adjunction. This proves the claim.

12 Example. When $g = 2$, $\mathcal{M}_1(\xi)$ is a single point, corresponding to the vector bundle $F_*(\xi \otimes B^{-1})$.

When $\xi = B$, this refines a result of Joshi and one of us [JX, 1.1], which says that $\mathcal{M}_1(\xi)$ is a single $\text{Pic}(X)[2]$-orbit.

When $\xi = \mathcal{O}_X$, this extends a theorem of Mehta [JX, 3.2], which states that there are only finitely many rank-2 semi-stable vector bundles V’s on X with $\det(V) = \mathcal{O}_X$ and F^*V not semi-stable when $p \geq 3, g = 2$. We now have this result for $p = 2, g = 2$ with the stronger conclusion of uniqueness.

13 Erratum for [JX]. We correct a minor error in the statement of [JX, Theorem 1.1]. The expression “$V_1 \in \text{Ext}^1(L_\theta, \mathcal{O}_X)$” should be replaced by “$V_1 \in S_\theta$” (the original version is valid when $L_\theta = B$). Also, Ω should be replaced by L_θ.

14 References.

[AB] Atiyah, M.F. and Bott, R.: The Yang Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London. Ser. A 308, 523–615 (1982).
[BL] Brambila-Paz, L. and Lange, H.: A stratification of the moduli space of vector bundles on curves, J. Reine Angew. Math. 494, 173–187 (1998).

[C] Chai, Ching-Li: Newton polygons as lattice points, Amer. J. Math. 122, 967–990 (2000).

[FGA] Grothendieck, A.: Fondements de la géométrie algébrique: Technique de descente et théorèmes d'existence en géométrie algébrique IV, Les schémas de Hilbert, Seminaire Bourbaki n° 221 (1960/1961).

[G] Gieseker, D.: Stable vector bundles and the Frobenius morphism, Ann. Scient. Éc. Norm. Sup., 4e série, 6, 95–101 (1973).

[H] Hartshorne, R.: Algebraic geometry, Grad. Texts in Math. 52, Springer-Verlag, New York (1977).

[HN] Holla, Y.I. and Narasimhan, M.S.: A generalisation of Nagata's theorem on ruled surfaces, Compositio Math. 127, 321–332 (2001).

[JX] Joshi, K. and Xia, E.: Moduli of vector bundles on curves in positive characteristic, Compositio Math. 122, No. 3, 315–321 (2000).

[L] Le Potier, J.: Lectures on vector bundles, Cambridge Studies in Advanced Math. 54, Cambridge Univ. Press (1997).

[LN] Lange, H. and Narasimhan, M.S.: Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266, 55–72 (1983).

[MX] Markman, E. and Xia, E.: The moduli of flat PU(p, p)-structures with large Toledo invariants, Math. Z., to appear.

[RR] Ramanan, S. and Ramanathan, A.: Some remarks on the instability flag, Tohoku Math. J. 36, 269–291 (1984).

[R] Raynaud, M.: Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110, 103–125 (1982).

[S] Shatz, S.: The decomposition and specialization of algebraic families of vector bundles, Compositio Math. 35, 163–187 (1977).

[Su] Sun, Xiaotao: Remarks on semistability of G-bundles in positive characteristic. Compositio Math. 119 41–52 (1999).

Current addresses:

Jiu-Kang Yu
Department of Mathematics
University of Maryland
College Park, MD 20740
U.S.A.
Email: yu@math.umd.edu

Eugene Z. Xia
Department of Mathematics & Statistics
University of Massachusetts
Amherst, MA 01003
U.S.A.
Email: xia@math.umass.edu