Clinicopathologic Factors Related to the Histological Tumor Grade of Breast Cancer in Western China: An Epidemiological Multicenter Study of 8619 Female Patients

Ke Zheng*, Jin-Xiang Tan*, Fan Li*, Hong-Yuan Li*, Xiao-Hua Zeng‡, Bin-Lin Ma§, Jiang-Hua Ou¶, Hui Li#, Sui-Sheng Yang**, Ai-Mei Jiang††, Qing Ni‡‡, Jian-Lun Liu##, Jin-Ping Liu###, Hong Zheng##, Yue-Yang***, Rui Ling†††, Jian-Jun He‡‡‡, Zhi-Gang Li§§§, Jian Zeng¶¶¶, Tian-Ning Zou###, Jun Jiang*****, Zhang-Jun Song††††, Qi-Lun Liu‡‡‡‡, and Guo-Sheng Ren*†

*Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; †Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; ‡Department of Breast Surgery, Chongqing Cancer Institute, Chongqing, China; §Department of Breast and Neck Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China; ¶Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China; #Department of Breast Surgery, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan Province, China; **Department of Breast Surgery, Gan Su Province Tumor Hospital, Gansu Province, China; ††Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China; †‡Department of Breast Surgery, Guizhou People’s Hospital, Guizhou Province, China; †§Department of Breast Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Province, China; †‖Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Sichuan Province, China; †¶Department of Breast Surgery, West China Hospital of Sichuan University, Sichuan Province, China; †‖‖Breast Surgery, The First Hospital of Kunming, Yunnan Province, China; †‖‖‖Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fouth Military Medical University, Xī’ān, Shaanxi Province, China; †‖‖‖Department of Breast Surgery, The First Affiliated Hospital of Xī’ān Jiaotong University, Shaanxi Province, China; §§§Department of General Surgery, The First Affiliated Hospital of The Medical College, Shihezi University, Xinjiang Province, China; §§§Department of Gastrointestinal/Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Province, China; ###Breast Surgery, Yunnan Cancer Hospital & Third Affiliated Hospital of Kunming Medical University, Yunnan Province, China; ####Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China; ††††Mammary Department, The Third People’s Hospital of Shaanxi Province, China; ††††Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia Province, China.
Breast cancer is the most common type of cancer among females worldwide, comprising almost 25% of all cancer cases among females [1]. Breast cancer is also the second leading cause of cancer-related mortality in women worldwide [1,2]. In recent years, many risk factors for breast cancer have been explored extensively among females in developed countries [3,4]. However, little is known about the risk factors that affect the biological behavior of breast cancer among females in Western China. Due to the less developed social and economic background in Western China, limited information is available regarding the epidemiology, diagnosis, and treatment of breast cancer in this region. Thus, there is an urgent need for epidemiological and clinical studies that identify risk factors associated with the biological characteristics of breast carcinomas in Western China.

Western China refers to the western part of China, which includes 12 provinces. It accounts for 71% of the land area and 29% of the population of China. This region used to be described as “barren, remote and poor.” Compared with people living in Eastern China, people living in Western China might have different lifestyles, such as eating habits and health awareness. Our previous study showed that there were significant differences in the clinicopathologic features, risk factors, and treatment modes between younger and older female breast cancer patients in Western China [5]. Therefore, it is reasonable to assume that breast cancer patients with different histological tumor grades might have specific epidemiological and clinicopathologic characteristics.

Histological tumor grade is widely recognized as a marker for aggressive biological behavior of breast cancer carcinomas [6]. Moreover, it is generally acknowledged that a higher tumor grade is directly related to poorer prognosis of breast cancer patients [7]. Previous studies have shown that pathologic factors, such as human epidermal growth factor receptor 2 (HER-2), estrogen receptor (PR), and progesterone receptor (PR), may be related to the tumor grade of breast carcinomas [8,9]. A higher tumor grade leads to more aggressive breast carcinomas and poor survival, likely due to hormone receptor negativity, HER-2 positivity, and a larger tumor size of breast carcinomas [10,11]. In addition to the pathologic characteristics of breast tumors, host factors, such as age, race/ethnicity, menopausal status, and parity, may also correlate with tumor grade and influence the aggressive characteristics of breast carcinomas [8,12–15]. However, Somasegar et al. [16] reported that reproductive factors, such as the number of pregnancies, number of births, and age at first period, were not associated with tumor grade. Given that breast cancer is a clinically and genetically heterogeneous disease, traditional clinicopathologic factors were no longer sufficient to evaluate the tumor biology of the general Chinese population, especially for patients in the less developed region of Western China. The identification of the risk factors associated with tumor grade is restricted by the absence of data on large populations in Western China.

Previous studies on specific subtypes of breast carcinoma suggest that the clinicopathologic features of Chinese patients might be distinct from the typical features of breast carcinomas in developed countries [17,18]. However, the potential association between clinicopathologic characteristics (such as menopausal status, ER, PR, HER-2, and tumor size) and the histological tumor grade of breast cancer patients in Western China is not well understood.

Address all correspondence to: Zhang-Jun Song, Mammary Department, The Third People’s Hospital of Shaanxi Province, No.309 West Yanta Road, Xi’an, 710061, Shaanxi, China.

E-mail: 723253884@qq.com or Qi-Lun Liu, Oncological Surgery, General Hospital of Ningxia Medical University Tumor Hospital, No.804 Shengli South Street, Xingping District, Yinchuan, Ningxia, 750004, China.

E-mail: Liuqf6311@hotmail.com or Guo-Sheng Ren, Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.

E-mail: rengs726@126.com

Received 25 April 2018; Revised 11 June 2018; Accepted 12 June 2018

© 2018 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1936-5233/18

https://doi.org/10.1016/j.tranon.2018.06.005
Table 1. Clinical Variables and Reproductive Factors of Breast Cancer Patients

Characteristics	Total (N = 8619)	Group I (N = 6504)	Group II (N = 2115)	P Value		
	n	%	n	%		
Age at diagnosis (years)						
Mean ± SD	50.2 ± 11.0	50.3 ± 11.1	49.7 ± 10.8	0.0217		
Range	17-95	19-95	17-89			
≤40	1593	18.48	1161	17.85	0.0066	
41-45	1601	18.58	1245	19.14	0.356	
46-50	1644	19.07	1243	19.11	0.401	
51-55	1231	14.28	912	14.02	0.319	
56-60	1097	12.73	815	12.53	0.282	
≥61	1453	16.86	1128	17.34	0.325	0.1537
Race/ethnicity						
Han	8288	96.16	6278	96.53	0.0042	
Uighur	97	1.13	65	1.00	0.32	
Hui	95	1.10	62	0.95	0.33	
Zang	27	0.31	15	0.23	0.12	0.57
Others	112	1.30	84	1.29	0.28	1.32
Method of breast tumor discovery						
Symptoms	2135	24.77	1656	25.46	0.0001	
Screening	35	0.41	32	0.49	3	0.14
Physical examination	439	5.09	360	5.54	79	3.74
Self-examination	5760	66.83	4242	65.22	1518	71.77
Others	242	2.81	209	3.21	33	1.56
Missing data	8	0.09	5	0.08	3	0.14
Age at menarche (years)						
≤10	21	0.24	18	0.28	3	0.14
11-12	1074	12.46	840	12.92	234	11.06
13-14	83	1.13	62	0.95	33	1.56
15-16	2229	25.86	1652	25.40	577	27.28
17-18	716	8.31	516	7.93	200	9.46
≥19	135	1.57	102	1.57	33	1.56
Missing data	16	0.19	14	0.22	2	0.09
Age at menopause						
≤40	152	1.76	117	1.80	35	1.65
41-45	492	5.71	357	5.49	135	6.38
46-50	1998	23.18	1498	23.03	500	23.64
51-55	1063	12.83	819	12.59	244	11.54
56-60	87	1.01	66	1.01	21	0.99
Missing data	4827	56.00	3647	56.07	1180	55.79
Marital status						
Married	8408	97.55	6334	97.39	2074	98.06
Never married/Single	64	0.74	50	0.77	14	0.66
Divorced/Widowed	140	1.62	114	1.75	26	1.23
Missing data	7	0.08	6	0.09	1	0.05
Menopausal status						
Premenopausal	4050	46.99	2968	45.63	1082	51.16
Postmenopausal	3888	45.11	2930	45.05	958	45.30
Missing data	681	7.90	606	9.32	75	3.55
Age at first birth (years)						
Mean ± SD	24.25 ± 3.08	24.26 ± 3.06	24.23 ± 3.14	0.8101		
Range	16-48	16-48	17-43			
≤20	236	2.74	178	2.74	58	2.74
21-25	1495	17.35	1121	17.24	374	17.68
26-30	683	7.92	527	8.10	156	7.38
31-35	55	0.64	39	0.60	16	0.76
36-40	11	0.13	8	0.12	3	0.14
≥41	2	0.02	1	0.02	1	0.05
Missing data	6137	71.20	4630	71.19	1507	71.25
Number of pregnancies						
0	2050	23.82	1203	18.50	847	40.05
1	2639	30.62	2172	33.39	467	22.08
2	1729	20.06	1394	21.43	335	15.84
3	1035	12.01	806	12.39	229	10.83
4	597	6.93	470	7.23	127	6.00
≥5	558	6.47	451	6.93	107	5.06
Missing data	11	0.13	8	0.12	3	0.14
Number of births						
0	1854	21.51	1124	17.28	730	34.52
1	4018	46.62	3283	50.48	755	34.75
2	1806	20.95	1406	21.62	400	18.91

(continued on next page)
China is still not clear. The purpose of current study was to investigate whether epidemiological and clinicopathologic characteristics were associated with the histological tumor grade of female breast cancer patients in Western China.

Patients and Methods

Study Population and Data Collection

The current study was a multicenter joint study conducted by the Western China Clinical Cooperation Group (WCCCG). Cases of breast cancer diagnosed between January 1, 2006, and April 30, 2017, were selected from the WCCCG database, including 23 breast cancer centers in 9 provinces in Western China (i.e., Ganshu, Ningxia, Xinjiang, Chongqing, Sichuan, Yunnan, Guizhou, Shaanxi, and Guangxi). This study was approved by the relevant Institutional Review Boards of each center. Data from the WCCCG were extracted from the clinical medical records of breast cancer patients. This database contains the clinicopathologic information and treatment characteristics of nearly 19,000 breast cancer patients. Patients were excluded if they did not have pathology reports, if they did not have records on their histological tumor grade, if they had a high amount of missing data related to clinicopathologic and treatment characteristics, if the patients were younger than 16 years or older than 100 years of age, or if they were male breast cancer patients. Finally, a total of 8619 female breast cancer patients were included in this study. Eligible patients were categorized into two groups according to their histological tumor grade: Group I (tumor grade I and tumor grade II) with 6504 patients and Group II (tumor grade III) with 2115 patients.

Clinicopathologic Characteristics and Treatment

The WCCCG database provided clinical and reproductive information, such as age at diagnosis, race/ethnicity, age at menarche, age at menopause, marital status, menopausal status, age at first birth, number of pregnancies, number of births, breast feeding history, tumor location, axillary lymph node status, tumor size, and initial disease symptoms and signs. Treatment characteristics and imaging tests were also extracted from the database. Four common initial disease symptoms and signs were evaluated, including breast lumps, breast pain, nipple discharge, and nipple inversion. Histological tumor grade was evaluated by the Nottingham grading system and described by the following categories: grade I, grade II, and grade III. These grades were obtained from the database from the short summary of the pathology report. Pathological factors, such as tumor grade, tumor histology, positive axillary lymph nodes, lymphovascular invasion, P53, Ki67, ER/PR/HER-2 status, and histological types of invasive breast carcinoma, were abstracted from the pathology results in patients’ medical records.

The cutoff for PR positivity and ER positivity was >3% positive tumor cells with nuclear staining. Tumors were subsequently categorized into four ER/PR subgroups according to their joint ER/PR status: ER+/PR+, ER-/PR+, ER+/PR−, and ER−/PR−. HER-2 status was determined by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). HER-2 positivity was either IHC 3+ or FISH amplified. Tumors with no (0) or weak (1+) staining were considered HER-2-negative, while tumors with strong (3+) staining were defined as HER-2-positive. FISH was used to confirm HER-2 status if IHC staining yielded 2+ results. If IHC staining was 2+ but FISH was positive, the tumors were considered HER-2 positive. If IHC staining was 2+ and FISH was negative, the tumors were classified as HER-2 negative. If IHC staining was 2+ and FISH was missing, the tumors were classified as borderline. Triple-negative subtype was defined as ER negative, PR negative, and HER-2 negative.

Tumor location was determined by the results of ultrasound or magnetic resonance imaging (MRI) of the breast in patients’ medical records. Tumor location was classified as follows: lateral location (upper outer quadrant, lower outer quadrant, 3 o’clock of the left breast, and 9 o’clock of the right breast), medial location (upper inner quadrant, lower inner quadrant, 9 o’clock of the left breast, and 3 o’clock of the right breast) and central location (periareolar, 12 o’clock of the breast, and 6 o’clock of the breast).

Five commonly used imaging tests were used, including ultrasound, mammography, computed tomography (CT), MRI, and bone scanning. Additionally, adjuvant systemic treatment was assessed, including adjuvant chemotherapy, radiotherapy, anti–HER-2 therapy, endocrine therapy, types of adjuvant chemotherapy, types of surgery, axillary lymph node dissection, and level of axillary lymph node dissection. The three most common types of adjuvant chemotherapy regimens, including TEC, TAC, and CEF, were selected for analysis.

Statistical Analysis

The associations between histological tumor grade and different clinicopathologic variables were examined using Student’s t tests, chi-square tests, or Fisher’s exact tests. Statistically significant variables (P < .05) in univariate analysis were entered into the multivariate analysis.
using logistic regression models. Multivariate logistic regression models were performed to estimate ORs and 95% CIs as measures of the relative risk associated with exposure variables. Missing data were excluded from all models estimated. The statistical software SAS (version 9.4, SAS Institute Inc., Cary, NC) was used to perform all analyses. P values less than .05 were considered statistically significant.

Results

Relationship between Clinical Variables and Reproductive Factors and Histological Tumor Grade

Clinical variables and reproductive factors of breast cancer patients are shown in Table 1. Of the entire sample of 8619 cases, 6504 cases (75%) were in grade I/II and 2115 cases (25%) were in grade III. The mean age for the entire sample of patients was 50.2 ± 11.0 years (range 17-95 years). Younger patients (≤ 40 years) were more likely to be in tumor grade III, whereas older patients (≥ 61 years) were more likely to be in tumor grade I/II (P = .0066). With respect to the method of breast tumor discovery, the most common method was breast self-examination. Compared with grade I/II tumors, grade III tumors were more frequently discovered by breast self-examination and were less likely to be discovered through symptoms (P < .0001). Although the majority of patients in Group I and Group II were Han, Group II had more minority patients from the Uighur (1.51%), Hui (1.56%), and Zang (0.57%) groups (P = .0042). Among the 8619 patients, the most common age of menarche ranged from 13 to 14 years. A later age of menarche (range 15-18 years) was associated with an increased risk of grade III tumors. Compared to those with a later age at menarche (≥15 years), patients with age at menarche (≤14 years) were at a slightly increased risk of grade I/II tumors (P = .0261). Compared with postmenopausal patients, premenopausal patients were more likely to have grade III tumors (51.16% vs. 45.63%) (P = .0343). Patients who had never given birth were more likely to have grade III tumors, while patients who had given birth one or two times were more likely to have grade I/II tumors (P < .0001). Compared to patients who had never been pregnant were more likely to have an increased risk of grade III tumors (P < .0001). With respect to marital status, age at first birth, menopausal age and breastfeeding history, no significant associations were found between Group I and Group II.

Relationship between Clinical Characteristics and Histological Tumor Grade

Table 2. Relationships between Clinical Characteristics and Histological Tumor Grade

Characteristics	Total (N = 8619)	Group I (N = 6504)	Group II (N = 2115)	P Value
Laterality				
Right	4088 (47.43)	3110 (47.82)	978 (46.24)	
Left	4437 (51.48)	3316 (50.98)	1121 (53.00)	
Bilateral	77 (0.89)	63 (0.97)	14 (0.66)	
Missing data	17 (0.20)	15 (0.23)	2 (0.09)	
Tumor location in breast				
Lateral	4394 (50.98)	3323 (51.09)	1071 (50.64)	
Medial	1789 (20.76)	1409 (21.66)	380 (17.97)	
Central	966 (11.21)	700 (10.76)	266 (12.58)	
Missing data	1470 (17.06)	1072 (16.48)	398 (18.82)	
Clinical axillary lymph nodal status				
Positive	2198 (25.50)	1545 (23.75)	653 (30.87)	
Negative	6364 (73.84)	4913 (75.54)	1451 (68.61)	
Missing data	57 (0.66)	46 (0.71)	11 (0.52)	
Clinical supraclavicular lymph node status				
Positive	123 (1.43)	89 (1.37)	34 (1.61)	
Negative	8447 (98.00)	6378 (98.06)	2069 (97.83)	
Missing data	49 (0.57)	37 (0.57)	12 (0.57)	
Tumor size (cm)				
≤ 1 cm	347 (4.03)	288 (4.43)	59 (2.79)	
>1, ≤ 2 cm	2856 (33.14)	2271 (34.92)	585 (27.66)	
>2, ≤ 5 cm	3603 (41.80)	2655 (40.82)	948 (44.82)	
>5 cm	256 (2.97)	167 (2.57)	89 (4.21)	
Missing data	1557 (18.06)	1123 (17.27)	436 (20.52)	
Primary breast carcinoma				
Yes	8183 (94.94)	6253 (96.14)	1930 (91.25)	
No	114 (1.32)	81 (1.25)	33 (1.56)	
Missing data	322 (3.74)	170 (2.61)	152 (7.19)	
Distant metastasis				
Positive	8404 (97.51)	6349 (97.62)	2055 (97.16)	
Negative	54 (0.63)	33 (0.51)	21 (0.99)	
Missing data	161 (1.87)	122 (1.88)	39 (1.84)	

* Chi-square test.
metastasis, the proportion of positive distant metastasis was slightly higher in Group II than in Group I (0.99% vs. 0.51%, \(P = .0140 \)). Interestingly, the proportion of patients with a medial tumor was higher in Group I than in Group II (21.66% vs. 17.97%, \(P = .0007 \)), whereas the proportion of patients with a central tumor was lower in the former group than in the latter group (10.76% vs. 12.58%, \(P = .0007 \)). There were no significant differences in laterality, clinical supraclavicular lymph node status and primary breast carcinoma between Group I and Group II (Table 2).

We also evaluated the differences in initial disease symptoms and signs between Group I and Group II (Table 3). The majority of patients in both Group I and Group II presented with complaints of breast lumps. Compared with patients in Group I, patients in Group II were more likely to present with breast lumps (97.45% vs. 95.80%, \(P = .0006 \)) and breast pain (12.39% vs. 10.81%, \(P = .0454 \)). There was no significant difference in nipple discharge (\(P = .7641 \)) between Group I and Group II.

Relationship between Pathological Characteristics and Histological Tumor Grade

The pathological characteristics of the tumors are shown in Table 4. Group I had more patients receiving tumor biopsies before operation (52.26% vs. 37.64%, \(P < .0001 \)) and sentinel lymph node biopsies (18.31% vs. 11.91%, \(P < .0001 \)) than Group II. Grade I/II tumors were strongly associated with lymph node negativity (42.30% vs. 27.61%, \(P < .0001 \)), whereas grade III tumors were significantly associated with at least five positive lymph nodes (5-10: 9.50% vs. 9.23%, \(P < .0001 \); >10: 28.46% vs. 12.88%, \(P < .0001 \)).

Although the majority of tumors did not present with lymphovascular invasion, grade III tumors were more frequently associated with lymphovascular invasion than grade I/II tumors (2.55% vs. 1.86%, \(P < .0001 \)). Compared with grade I/II tumors, grade III tumors more likely to be ER negative (46.48% vs. 29.47%, \(P < .0001 \)), PR negative (52.96% vs. 37.93%, \(P < .0001 \)), ER−/PR− (42.84% vs. 25.95%, \(P < .0001 \)), and HER-2 positive (16.60% vs. 11.93%, \(P < .0001 \)) and less likely ER+/PR+ (46.17% vs. 56.26%, \(P < .0001 \)) and triple negativity (21.56% vs. 10.05%, \(P < .0001 \)). Compared with grade I/II tumors, grade III tumors displayed more Ki67 positivity (60.05% vs. 45.11%, \(P = .0307 \)) and triple negativity (21.56% vs. 10.05%, \(P < .0001 \)).

In addition, the histological types of invasive breast carcinoma were also evaluated in Group I and Group II (Table 5). Patients with grade III tumors were somewhat more likely to have invasive ductal carcinoma (84.78% vs. 80.95%, \(P < .0001 \)) and medullary carcinoma (1.56% vs. 0.32%, \(P < .0001 \)).

Imaging Tests for the Breast

Imaging test results performed particularly for the breast are shown in Table 6. For all cases, the majority of patients had received ultrasonad and mammography for the breast, and fewer patients had received CT and MRI. The proportion of patients receiving ultrasonad (98.00% vs. 95.79%, \(P < .0001 \)), mammography (92.60% vs. 88.65%, \(P < .0001 \)), and MRI (5.15% vs. 3.55%, \(P = .0026 \)) was higher in Group I than in Group II. However, patients in Group II were more likely to receive CT (3.45% vs. 2.60%, \(P = .0391 \)). No significant differences were observed in records of mammograms (\(P = .9102 \)) and bone scanning (\(P = .2984 \)).

Treatment Characteristics of Breast Cancer Patients

Treatment characteristics of breast cancer patients are shown in Table 7. Patients in Group I were more likely to receive endocrine therapy (24.06% vs. 14.56%, \(P < .0001 \)) and less likely to receive adjuvant chemotherapy (86.25% vs. 87.66%, \(P = .0098 \)) and anti–HER-2 therapy (0.95% vs. 1.47%, \(P = .0436 \)). TEC was the most common type of adjuvant chemotherapy and was more frequently performed in Group II than in Group I (24.59% vs. 22.91%, \(P < .0001 \)). However, TAC was more frequently performed in Group I than in Group II (15.96% vs. 10.21%, \(P < .0001 \)). In terms of type of surgery, patients in Group II were more likely to be treated with a mastectomy (88.61% vs. 84.62%, \(P < .0001 \)) and less likely to receive breast reconstruction (0.33% vs. 1.80%, \(P < .0001 \)) and breast-conserving surgery (8.27% vs. 10.75%, \(P < .0001 \)). Regarding the level of axillary lymph node dissection, the proportion of level I/II was higher (69.42% vs. 64.21%, \(P = .0015 \)) and that of level III was lower (13.79% vs. 15.98%, \(P = .0140 \)). TAC was the most common type of adjuvant chemotherapy and was more frequently performed in Group II than in Group I (24.59% vs. 22.91%, \(P < .0001 \)). However, TAC was more frequently performed in Group I than in Group II (15.96% vs. 10.21%, \(P < .0001 \)). In terms of type of surgery, patients in Group II were more likely to be treated with a mastectomy (88.61% vs. 84.62%, \(P < .0001 \)) and less likely to receive breast reconstruction (0.33% vs. 1.80%, \(P < .0001 \)) and breast-conserving surgery (8.27% vs. 10.75%, \(P < .0001 \)). Regarding the level of axillary lymph node dissection, the proportion of level I/II was higher (69.42% vs. 64.21%, \(P = .0015 \)) and that of level III was lower (13.79% vs. 15.98%, \(P = .0140 \)).

Table 3. Initial Disease Symptoms and Signs

Characteristics	Total (\(N = 8619 \))	Group I (\(N = 6504 \))	Group II (\(N = 2115 \))	\(P \) Value		
	\(n \)	\(% \)	\(n \)	\(% \)		
Breast lump						
Yes	8292	96.21	6231	95.80	2061	97.45
No	327	3.79	273	4.20	54	2.55
Breast pain						
Yes	965	11.2	703	10.81	262	12.39
No	7654	88.8	5801	89.19	1853	87.61
Nipple discharge						
Yes	161	1.87	121	1.86	40	1.89
No	8458	98.13	6383	98.14	2075	98.11
Nipple inversion						
Yes	149	1.73	114	1.75	35	1.65
No	8470	98.27	6390	98.25	2080	98.35

\(* \) Chi-square test.
Multivariate logistic regression analysis was performed to evaluate the clinicopathologic factors associated with the risk of a high tumor grade (Table 8). ER−/PR− [odds ratio (OR) = 1.841; 95% confidence interval (CI): 1.428-2.374], lymphovascular invasion (OR = 1.657; 95% CI: 1.045-2.629), at least 10 of the positive axillary lymph nodes (OR = 1.813; 95% CI: 1.361-2.414), and triple negativity (OR = 1.810; 95% CI: 1.349-2.427) were positively associated with the risk of a high tumor grade. In addition, larger

Characteristics	Total (N = 8619)	Group I (N = 6504)	Group II (N = 2115)	P Value
Tumor biopsy before operation				
Yes	4195	3399	796	<.0001
No	4346	3040	1306	
Missing data	78	65	13	
No. of positive axillary lymph nodes				<.0001
0	3335	2751	584	
1	829	658	171	
2	521	398	123	
3	310	235	75	
4	234	187	47	
5-10	801	600	201	
>10	1440	838	602	
Missing data	1149	837	312	
Sentinel lymph node biopsy				<.0001
Yes	1443	1191	252	
No	6826	5042	1784	
Missing data	350	271	79	
Lymphovascular invasion				<.0001
Yes	175	121	54	
No	5062	4150	912	
Missing data	3382	2233	1149	
ER status				<.0001
Positive	5507	4421	1086	
Negative	2900	1917	983	
Missing data	212	166	56	
PR status				<.0001
Positive	4823	3875	948	
Negative	3587	2467	1120	
Missing data	209	162	47	
ER+/PR−				<.0001
Yes	4510	3640	870	
No	3873	2679	1194	
Missing data	236	185	51	
ER−/PR−				<.0001
Yes	2594	1688	906	
No	5789	4631	1158	
Missing data	236	185	51	
HER-2 status				<.0001
Positive	1127	776	351	
Negative	4397	3328	1069	
Borderline(HC++)	2022	1650	372	
Missing data	1073	750	323	
Triple negative				<.0001
Yes	1175	719	456	
No	6318	4989	1329	
Missing data	1126	796	330	
Ki67				<.0001
Positive	3742	2934	808	
Negative	248	211	37	
Missing data	4629	3359	1270	

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2.

* Chi-square test.

Suspected Clinicopathologic Risk Factors for Histological Tumor Grade

Multivariate logistic regression analysis was performed to evaluate the clinicopathologic factors associated with the risk of a high tumor grade (Table 8). ER−/PR− [odds ratio (OR) = 1.841; 95% confidence interval (CI): 1.428-2.374], lymphovascular invasion (OR = 1.657; 95% CI: 1.045-2.629), at least 10 of the positive axillary lymph nodes (OR = 1.813; 95% CI: 1.361-2.414), and triple negativity (OR = 1.810; 95% CI: 1.349-2.427) were positively associated with the risk of a high tumor grade. In addition, larger
tumor size also increased the risk of a high tumor grade (≥2, ≤5 cm: OR = 1.804, 95% CI: 1.020-3.192; N ≥ 5 cm: OR = 2.428; 95% CI: 1.163-5.068). Relative to patients who had never been pregnant, patients who had experienced one or more pregnancies had a significantly lower risk of a high tumor grade (1: OR = 0.326; 95% CI: 0.250-0.423; 2: OR = 0.355; 95% CI: 0.265-0.476; 3: OR = 0.436; 95% CI: 0.308-0.617; 4: OR = 0.441; 95% CI: 0.284-0.685; ≥5: OR = 0.221; 95% CI: 0.128-0.379).

Discussion

Western China has some of the largest environmental, economic, and health disparities in the nation, and the most obvious of these disparities are associated with poor strategies for the diagnosis and treatment of cancer patients. Breast cancer patients in Western China are an important population that is still understudied compared with patients in developed regions. In this retrospective epidemiological study, we collected information on 8619 female breast cancer patients, which make this study the largest multicenter program related to histological tumor grades.

Although screening mammography is widely considered the gold standard for the early detection of breast cancer in high-income countries, it is not routinely used for women in Western China because of their low socioeconomic circumstances [19,20]. We observed that the majority of patients discovered breast tumors by accident. Patients in Group II more frequently discovered tumors by self-examination, which might be due to a larger tumor size (≥2 cm).

Interestingly, we observed that high-grade tumors tended to present with a central tumor location, whereas low-grade tumors tended to present with lateral and medial tumor locations, findings that have not been previously reported.

Table 5. Histological Types of Invasive Breast Carcinoma

Characteristics	Total (N = 8619)	Group I (N = 6504)	Group II (N = 2115)	P Value			
	n	%	n	%	n	%	
Ductal carcinoma							
Yes	7058	81.89	5265	80.95	1793	84.78	<.0001
No	1561	18.11	1239	19.05	322	15.22	
Mucinous carcinoma							.2185
Yes	85	0.99	69	1.06	16	0.76	
No	8534	99.01	6435	98.94	2099	99.24	
Lobular carcinoma							.0716
Yes	124	1.44	85	1.31	39	1.84	
No	8495	98.56	6419	98.69	2076	98.16	
Medullary carcinoma							<.0001
Yes	54	0.63	21	0.32	33	1.56	
No	8565	99.37	6483	99.68	2082	98.44	

* Chi-square test.

Table 6. Imaging Tests for Breast

Characteristics	Total (N = 8619)	Group I (N = 6504)	Group II (N = 2115)	P Value			
	n	%	n	%	n	%	
Ultrasound							
Yes	8400	97.46	6374	98.00	2026	95.79	<.0001
No	219	2.54	130	2.00	34	1.91	
Mammography							<.0001
Yes	7898	91.63	6023	92.60	1875	88.65	
No	721	8.37	481	7.40	240	11.35	
Record of mammogram							.9102
Malignant calcification	318	3.69	254	3.91	64	3.03	
Mass	2788	32.35	2204	33.89	584	27.61	
Mass combined with calcification	1988	23.07	1567	24.09	421	19.91	
Missing data	3525	40.90	2479	38.12	1046	49.46	
CT							
Yes	242	2.81	169	2.60	73	3.45	.0391
No	8337	97.19	6335	97.40	2042	96.55	
MRI							.0026
Yes	410	4.76	335	5.15	75	3.55	
No	8209	95.24	6169	94.85	2040	96.45	
Bone scanning							.2984
Yes	673	7.81	519	7.98	154	7.28	
No	7946	92.19	5985	92.02	1961	92.72	

* Chi-square test.

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging.
The present study, similar to other previous studies [21,22], showed a significantly higher proportion of grade III tumors in patients ≤ 40 years of age. Given the lack of routine screening mammography guidelines for women ≤ 40 years of age in Western China, it is possible that these patients more frequently present with a palpable mass and that their tumors tend to be larger and have more axillary lymph node involvement than breast cancers detected by screening. In addition, our results showed that patients who presented with high-grade tumors were more likely to be positive for pathological lymphovascular invasion and distant metastasis. These data may directly indicate that high-grade tumors of breast cancer have more aggressive behavior and poorer prognosis in patients in Western China.

In this multiethnic study in Western China, in which nearly 97% of the sample were Han, significant racial disparities were found for different tumor grades. The minorities (Uighur, Hui, and Zang) were more likely to present with grade III tumors than Han. It is possible that minority races in Western China have different lifestyles and a less developed awareness of health issues. Taking into consideration that minorities in Western China have higher tumor grades, interventions are needed that provide socioeconomic and health-related support that enables minorities to detect breast carcinomas in their early stages.

Previous studies have shown that reproductive factors, such as parity, number of pregnancies, age at menarche, and age at first birth, were related to the risk of breast cancer subtypes [23,24], but the association between these variables and tumor grade was still controversial [13,16]. In the current study, we investigated the influence of reproductive factors, such as the number of births, number of pregnancies, and age at menarche, on tumor grade. We found that reproductive factors affected the histological tumor grade of breast cancer differently. For example, patients with an earlier age at menarche (≤ 12 years) were more likely to be diagnosed with grade I/II tumors, whereas patients with a later age at menarche (15-18 years) were more likely to be diagnosed with grade III tumors. We further found that premenopausal patients were at a significantly increased risk of high tumor grades. Breast cancer is most common among postmenopausal patients; however, the number of premenopausal patients with breast cancers is increasing around the world [25–27]. Postmenopausal status is associated with decreased levels of progesterone and estrogen and was hypothesized to be

Table 7. Treatment Characteristics of Breast Cancer Patients
Characteristics
Adjuvant chemotherapy
Yes
No
Missing data
Radiotherapy
Yes
No
Missing data
Anti-HER2 therapy
Yes
No
Missing data
Endocrine therapy
Yes
No
Missing data
Types of adjuvant chemotherapy
TEC
TAC
CEF
Others
Missing data
Surgery
Yes
No
Missing data
Type of surgery
Mastectomy
Breast reconstruction
Breast-conserving surgery
Others
Missing data
Axillary lymph node dissection
Yes
No
Missing data
Level of axillary lymph node dissection
I, II
III
Missing data

* Chi-square test.
associated with low tumor grade and less aggressive tumors. Taken together, these results suggest that premenopausal patients may be more likely to have elevated exposure to estrogen or progesterone, which may influence the aggressive behavior of breast cancer in patients in Western China. We also observed that parity was a protective factor and was associated with a decreased risk of high tumor grade. The number of pregnancies and number of births were inversely associated with the risk of high tumor grade. Compared with parous women with one or more births/pregnancies, nulliparous patients were more likely to be diagnosed with high-grade tumors. Based on these results, the fact that reproductive factors, including age at menarche, number of pregnancies, number of births, and menopausal status, were all associated with a risk of high tumor grade provides possible evidence that these reproductive factors may influence the risk of breast cancer through hormonal mechanisms. There were other potential mediators, including hormonal and lifestyle risk factors (such as education, cigarette smoking, alcohol consumption, and oral contraceptives) that might affect tumor grade. Because data on these factors were not collected in our database, we were unable to investigate their association to the between clinical factors and tumor grade in current study.

We found that high-grade tumors were significantly associated with large tumor size (>2 cm) and clinicopathologic positive axillary lymph nodes (especially >5 lymph nodes), which supported findings from previous studies [7,28]. Previous studies have shown that high-grade tumors were significantly associated with hormone receptor negativity [29] and HER-2 positivity [30] in breast cancer patients. Consistent with these studies, our study has shown that ER-negative or PR-negative tumors were strongly associated with an increased risk of a high tumor grade. In addition, we expanded the analysis of hormone receptors and further evaluated the association between joint ER/PR status and tumor grade. We observed that ER+/PR+ and ER+/PR− tumors had an increased risk of a high tumor grade, whereas ER−/PR− tumors had an increased risk of a high tumor grade. Furthermore, we found that tumors with HER-2 or Ki67 positivity and triple negativity had an increased risk of a high tumor grade. Taken together, these results suggest that the abovementioned pathological factors might affect the tumor grade and ultimately cause more aggressive breast cancer among breast cancer patients in Western China. Although medullary carcinomas are rare, we observed that medullary carcinomas tend to be high grade. This finding was similar to those of previous studies showing that breast cancer patients presenting with medullary carcinomas showed a poorer grade than patients with other histological subtype carcinomas [31,32].

In the present study, tumor grade was also associated with different treatment patterns, and patients with high-grade tumors appeared to receive more aggressive treatments, such as adjuvant chemotherapy, anti–HER-2 therapy, mastectomy, and level III axillary lymph node dissection. However, patients with low-grade tumors tended to receive endocrine therapy, breast reconstruction, breast-conserving surgery, and level I/II axillary lymph node dissection. This finding might be explained by the fact that high-grade tumors were more likely to be large in size, HER-2 positive, and hormone receptor negative and to have positive axillary lymph nodal status.

To the best of our knowledge, to date, there have been no studies that have investigated the relationship between clinicopathologic factors and the histological tumor grades of breast cancer patients in Western China. The identification of factors associated with the histological tumor grade of breast cancer is hampered by the absence of data on large populations in Western China. The main strength of our study is that our study population was large and spanned many centers in Western China, in contrast to previous reports performed within single institutions or geographic regions. The present study also has potential limitations, including a retrospective design using a database from the WCCCG. First, because follow-up data were not available in our database, we were unable to address the question of whether a high tumor grade was associated with the poor prognosis of breast cancer patients in Western China. Further studies are needed to assess the true association between histological tumor grade and the prognosis of breast cancer patients in Western China. Second, mammography screening is not routinely performed for women in Western China, and we are unable to obtain data regarding mammography screening program participation. Therefore, we cannot assess whether mammography screening programs could decrease the risk of high tumor grades. Third, pathological variables, such as ER, PR, HER-2, P53, and Ki67 status, were not assessed centrally since the data were abstracted from clinical medical records. Several patients did not have available data on the pathological details of lymphovascular invasion and P53 and Ki67 status because these were not routinely recorded in earlier pathology reports in Western China. Finally, there was also a large amount of missing data regarding age at first birth and breastfeeding history. Therefore, it is possible that the true association between these clinicopathologic variables and the histological tumor grade of breast cancer patients in Western China was not fully elucidated. In addition, data on several of the lifestyle and reproductive risk factors that we did not collect may also influence the histological tumor grade of breast cancer.

Table 8. Adjusted ORs and 95% CIs for the Association between Suspected Clinicopathologic Risk Factors and Risk of Histological Tumor Grade

Factors	P Value	OR (95%CI)
Number of pregnancies		
0 *	<.0001	0.326(0.250-0.423)
1	<.0001	0.353(0.265-0.476)
2	<.0001	0.436(0.308-0.617)
3	.0003	0.441(0.284-0.685)
≥4	<.0001	0.221(0.128-0.379)
Tumor size (cm)		
≤1 cm	.2108	1.466(0.812-2.575)
>1 cm, ≤2 cm	.0427	1.804(1.020-3.192)
>2 cm	.0182	2.428(1.163-5.068)
No. of positive axillary lymph nodes		
0 *	<.0001	1.810(1.349-2.427)
Lymphovascular invasion		
No *	.1859	1.242(0.901-1.711)
Yes	.2542	1.232(0.860-1.765)
ER−/PR+	.6689	0.899(0.523-1.516)
ER−/PR−	.4113	1.247(0.736-2.113)
Lympohvascular invasion	.2676	1.203(0.868-1.668)
No *	<.0001	1.813(1.361-2.414)
Yes	.0318	1.657(1.045-2.629)

Non-significant (P > .05) data were not listed.

* Referent.
Conclusion
Our results support the hypothesis that clinicopathologic factors have different influences on histological tumor grade and highlight the need to identify specific risk factors for the tumor grade of breast cancer among patients in Western China. In the current study, it was reasonable to speculate that the events associated with increases in estrogen/progesterone levels in young and premenopausal patients may influence the progression of breast tumors, resulting in a more rapid growth of tumors that present with large size, high grade, axillary lymph nodes metastasis, and lymphovascular invasion and ultimately lead to distant metastasis and poorer prognosis.

Routine screening mammography is not currently performed due to the less developed socioeconomic background in Western China, which is possibly one of the factors leading to a greater number of later-stage tumors characterized as high-grade and large in size. Our results indicated that patients who had never been pregnant or given birth were at a high risk of high-grade tumors. Although there were still no final conclusions about the role of reproductive factors in histological tumor grade, we suggested that these patients should be given more attention. Positive axillary lymph nodes, large tumor size (>2 cm), lymphovascular invasion, ER negativity/PR negativity, and triple negativity were risk factors for high tumor grades in breast cancer patients in Western China.

Taken together, our results support the hypothesis that breast cancer patients with high-grade tumors may be clinically and biologically distinct from breast cancer patients with low-grade tumors in Western China.

Acknowledgements
We thank the personnel at each center in our study. This work was supported by a grant from the National Natural Science Foundation of China (NSFC grant no. 81202090 to Ke Zheng).

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References
[1] Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, and Rowland JH, et al (2016). Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66, 271–289.
[2] Siegel RL, Miller KD, and Jemal A (2016). Cancer statistics, 2016. CA Cancer J Clin 66, 7–30.
[3] Weigel B and Reis-Filho JS (2009). Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6, 718–730.
[4] Dawson SJ, Rueda OM, Aparicio S, and Caldas C (2013). A new genome-driven integrated classification of breast cancer and its implications. EMBO J 32, 617–628.
[5] Wang K, Ren Y, Li H, Zheng K, Jiang J, and Zou T, et al (2016). Comparison of clinicopathological features and treatments between young (<40 years) and older (≥40 years) female breast cancer patients in West China: a retrospective, epidemiological, multicenter, case only study. PlaS One 11:e0152312.
[6] Rahba EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, and Eusebi V, et al (2010). Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res Treat 207, 1–7.
[7] Rahba EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, and Hodi Z, et al (2008). Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol 26, 3153–3158.
[8] Veneroso C, Siegel R, and Levine PH (2008). Early age at first childbirth associated with advanced tumor grade in breast cancer. Cancer Detect Prev 32, 215–223.
[9] Li J, Chen Z, Su K, and Zeng J (2015). Clinicopathological classification and traditional prognostic indicators of breast cancer. Int J Clin Exp Pathol 8, 8500–8505.
[10] Dunnwald LK, Rossing MA, and Li CI (2007). Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res 9, 1–10 R6.
[11] Gyozdy B, Haritz C, Santf T, Hofstetter E, Aktras B, and Pusztai L (2015). Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res Treat 17, 1–7.
[12] Agresti R, Meneghini E, Balli P, Finnozzi P, Turco A, and Cavallo I, et al (2016). Association of adiposity, dysmetabolisms, and inflammation with aggressive breast cancer subtypes: a cross-sectional study. Breast Cancer Res Treat 157, 179–189.
[13] Albreksten G, Heuch I, and Thoresen SO (2010). Histological type and grade of breast cancer tumors by parity, age at birth, and time since birth: a register-based study in Norway. BMC Cancer 10, 1–11.
[14] Largent JA, Ziegas A, and Anton-Culver H (2005). Effect of reproductive factors on stage, grade and hormone receptor status in early-onset breast cancer. Breast Cancer Res Treat 7, R541–554.
[15] Livaudais JC, Hershman DL, Habel L, Kushli L, Gomez SL, and Li CI, et al (2012). Racial/ethnic differences in initiation of adjuvant hormonal therapy among women with hormone receptor-positive breast cancer. Breast Cancer Res Treat 131, 607–617.
[16] Somasegar S, Li L, and Thompson CL (2016). No association of reproductive risk factors with breast cancer tumor grade. Eur J Cancer Prev 27(2), 140–143.
[17] Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, and Yu KD, et al (2014). Breast cancer in China. Lancet Oncol 15, e279–e289.
[18] Cao W, Wang X, and Li JC (2013). Hereditary breast cancer in the Han Chinese population. J Epidemiol 23, 75–84.
[19] Shen S, Zhou Y, Xu Y, Zhang B, Duan X, and Huang R, et al (2015). A multi-centre randomised trial comparing ultrasound vs mammography for screening breast cancer in high-risk Chinese women. Br J Cancer 112, 998–1004.
[20] Centers for Disease C, Prevention (2007). Use of mammograms among women aged > or = 40 years--United States, 2000–2005. MMWR Morb Mortal Wkly Rep 56, 49–51.
[21] Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, and Margenthaler JA (2009). Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am Coll Surg 208, 341–347.
[22] Kheirelseid EH, Boggs JM, Curran C, Glynn RW, Dooley C, and Sweeney KJ, et al (2011). Younger age as a prognostic indicator in breast cancer: a cohort study. BMC Cancer 11, 1–7.
[23] Ellingjord-Dale M, Vos L, Tretli S, Hofvind S, Dos-Santos-Silva I, and Ursin G (2017). Parity, hormones and breast cancer subtypes — results from a large nested case-control study in a national screening program. Breast Cancer Res Treat 19, 1–21.
[24] Ma H, Ursin G, Xu X, Lee E, Towgawa K, and Duan L, et al (2017). Reproductive factors and the risk of triple-negative breast cancer in white women and African-American women: a pooled analysis. Breast Cancer Res 19, 1–14.
[25] Bernhard J, Luo W, Rihi K, Colleoni M, Burstin HJ, and Tondini C, et al (2015). Patient-reported outcomes with adjuvant exemestane versus tamoxifen in premenopausal women with early breast cancer undergoing ovarian suppression (TEXT and SOFT): a combined analysis of two phase 3 randomised trials. Lancet Oncol 16, 848–858.
[26] Colleoni M, Rombouts N, Robertson C, Orlando L, Viale G, and Renne G, et al (2002). Very young women (<35 years) with operable breast cancer: features of disease at presentation. Ann Oncol 13, 273–279.
[27] Azim Jr HA and Partridge AH (2014). Biology of breast cancer in young women. Breast Cancer Res 16, 1–9.
[28] Anderson TJ, Alexander FE, Lamb J, Smith A, and Forrest AP (2000). Pathology characteristics that optimize outcome prediction of a breast screening trial. Br J Cancer 83, 487–492.
[29] McCormack VA, Joffe M, van den Berg E, Broeze N, Silva Idos S, and Romieu I, et al (2011). Younger age as a prognostic indicator in breast cancer: a cohort study in Norway. Breast Cancer Res Treat 129, 13 R84.
[30] Huang HJ, Neven P, Drijkoningen M, Paridaens R, Wildiers H, and Van Poppel H (2012). Racial/ethnic differences in initiation of adjuvant hormonal therapy among women with breast cancer in the United States. J Breast Cancer 15, 156–165.