ORIGINAL ARTICLE

Frailty among chronic kidney disease patients on the kidney transplant waiting list: the sex–frailty paradox

María José Pérez-Sáez¹, Carlos E. Arias-Cabrales¹, Vanesa Dávalos-Yerovi², Dolores Redondo¹, Anna Faura¹, María Vera¹, Anna Bach¹, Guillermo Pedreira¹, Ernestina Junyent¹, Marta Crespo¹, Ester Marco², Leocadio Rodríguez-Mañas³ and Julio Pascual¹, for the FRAIL-MAR Study Group

¹Nephrology Department, Hospital del Mar, Barcelona, Spain, ²Physical Medicine and Rehabilitation Department, Parc de Salut Mar (Hospital del Mar–Hospital de l’Esperança), Rehabilitation Research Group, Hospital del Mar Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain and ³Geriatrics Department, Hospital Universitario de Getafe, Madrid, Spain

Correspondence to: Julio Pascual; E-mail: julpascual@gmail.com

ABSTRACT

Background. Frailty is defined as decreased physiologic reserve and resistance to stressors that predisposes patients towards poor health results. Its prevalence in chronic kidney disease (CKD) patients who are kidney transplant (KT) candidates is high. Frailty is associated with a higher rate of complications and mortality after transplant. It is unknown whether frailty phenotype differs depending on sex in this population.

Methods. This was a prospective longitudinal study of 455 KT candidates evaluated for frailty by physical frailty phenotype at the time of inclusion on the KT waiting list. Pre-frailty was defined as the presence of two criteria and frailty as three or more criteria. Univariate and multivariate analyses searched for associations of frailty status, frailty components and gender differences.

Results. Thirty percent of the total cohort resulted to be pre-frail (20%) or frail (10.3%), but disparities were observed between sexes, with 22.5% of men and 47.2% of women falling into one of these categories. Among frailty criteria, women presented with a higher percentage of exhaustion (39.6% versus 17%) and slowness (22.2% versus 9.6%) compared with men. Comorbidity burden was higher among frail men, whereas social factors were poorer between frail women. Disability was common among those patients who were frail, both men and women.

Conclusions. Frailty is twice as frequent in advanced CKD women as men. Frailty criteria distribution and phenotype seem to differ among sexes, which might have implications in terms of specific and individualized interventions to improve their status before transplantation.
INTRODUCTION

Frailty is characterized by decreased physiologic resistance to stressors and was first studied in the community-dwelling aged population [1]. It is a frequent condition among chronic kidney disease (CKD) patients, representing between 15% and 21% of those in whom advanced CKD is present [2]. In the setting of haemodialysis, up to 70% of patients have been reported to have some degree of frailty [3, 4] and this is related to poorer outcomes, including poor cognitive function, falls, hospitalizations and mortality [5–8]. Access to the kidney transplantation (KT) waiting list may also be diminished in frail CKD patients, and even when they reach the KT waiting list, the probability of getting a transplant is lower [9, 10]. In the end, around 20% of KT recipients are frail [11], and these patients present with a higher rate of complications and mortality after KT [11–16].

In Spain, <25% of dialysis patients have access to transplantation [17], and despite the well-known weight of frailty in KT outcomes, clinicians often struggle with frailty measurement at the outpatient clinic. However, identifying patients at risk for poor outcomes is of crucial importance to assess prognosis, establish prevention strategies and implement therapeutic approaches like prehabilitation. A complete frail profile characterization, added to information about both social and medical variables, might help to mitigate or reverse some of them, and, therefore, improve frailty in candidates for transplantation [18].

In recent years, many medical disciplines have shown increasing awareness of how diseases manifest differently between men and women. CKD is no exception, and, despite more women than men suffering advanced CKD, a higher percentage of men initiate dialysis or undergo transplantation [19–21]. This discrepancy may be attributed to biological (sex) differences, such as the CKD progression rates [20, 22], or to sociocultural (gender) differences, including access to care or attitudes towards disease [20, 23].

Mortality is also different among women and men with CKD: while men present higher rates within non-dialysis CKD stages, they become equal among sexes once renal replacement therapy (RRT) is started [20, 22].

Frailty studies of community-dwelling populations have found that females have higher frailty prevalence than males [24]. However, the so-called male–female health-survival paradox shows a higher survival rate in women than in men, resulting in longer times with disability and poor health status in women compared with men [24–26]. In contrast, among liver transplant candidates, women have higher frailty scores but also higher mortality while listed [27]. In the CKD setting, frailty seems also to be more frequent in women [4, 5, 28–31], but their mortality rates on the KT waiting list are lower than that observed in men [30, 31]. On the other hand, not only prevalence but also frailty components and characteristics between male and female frail patients may differ [27, 28, 32]. This may be of importance to identify frailty sex-specific factors to take into account.
consideration and intervene on if possible before KT. Assessing
sex differences in frailty among CKD patients waiting for KT
may improve risk stratification before transplant and help tar-
get specific interventions. Furthermore, it will allow future re-
search about the sex-related impact of frailty on outcomes and
mortality both in patients on dialysis and after transplant.

The aim of this study was to analyse the frailty phenotype in
a cohort of CKD transplant candidates from a sex perspective
point of view.

MATERIALS AND METHODS

Study design

This is a prospective longitudinal clinical cohort study analy-
sing baseline frailty status in advanced CKD patients who were
being studied for transplantation at Hospital del Mar, Barcelona,
Spain. Clinical and epidemiological information were collected
from our local database. The Institutional Review Board of
Hospital del Mar approved this study and all enrolled partici-
pants provided written informed consent. The study was under-
taken following the principles of the declaration of Helsinki,
only relying on the official centre database.

Patient cohort and frailty measurement

Between June 2016 and June 2020, 455 KT candidates were
prospectively evaluated for frailty at the time of inclusion on
the KT waiting list. Physical frailty phenotype defined by Fried
et al. [1] was used. The frailty phenotype has been validated
before in CKD patients [5, 7–9, 33] and comprises five compo-
nents: shrinking (self-report of unintentional weight loss of
4.5 kg during the past year), weakness (grip strength below an
established cut-off on the basis of sex and body mass index
(BMI)), exhaustion (self-report), low activity (kilocalories per
week below an established cut-off) and slowed walking speed
(walking time of 4.5 m below an established cut-off by sex and
height) [1]. Frailty assessment was performed at the trans-
plantation outpatient clinic. Supplementary data, Table S1
shows the specifics regarding methods for Fried criteria
assessment.

Each of the five components was scored as 0 or 1, represent-
ing the absence or presence of that component. The aggregate
frailty score was calculated as the sum of the component scores
(range 0–5). Robust patients were defined as a score 0–1, pre-
frail as those who ranked 2 and frail patients were defined by a
score ≥3 as previously described by other groups [9, 11, 34, 35].
The cut points for robust and pre-frail patients differed from the
standard Fried physical frailty phenotype classification because
there are too few adults with advanced CKD who had none of
the frailty components. To increase the power of the study, pre-
frail and frail categories (score ≥2) were joined for the analysis
[36, 37]; we refer to this group as frail throughout the rest of this
article.

Study variables

Study variables were retrieved from our local database. We in-
cluded demographics (age, sex, ethnicity); social (education de-
finite by four categories: no, primary education, secondary
education and tertiary education; family or social support,
defined by its presence or absence; economic incomes,
defined by three categories: non-regular incomes, retired with
pension and active worker with salary) and clinical data (comor-
bidities such as hypertension, diabetes mellitus, chronic cardiac
and pulmonary diseases, type of RRT, etc.). In addition, we
assessed self-reported pharmacological treatment adherence by
four-item Morisky-Green–Levine Medication Adherence Scale
[38], considering the patient adherent if none of the items
were present, basic activities of daily living by Barthel scale
(disability if score ≤90) [39, 40], and instrumental activities of daily
living by Lawton–Brody scale (disability if ≤8 in women and ≤5 in
men) [41]. Nutritional evaluation included bioimpedance spec-
troscopy (BIS) by Body Composition Monitor (Fresenius Medical
Care, Bad Homburg, Germany) at the time of inclusion; Simplified
Nutritional Appetite Questionnaire (SNAQ) questionnaire for risk
of malnutrition, positive if ≤14 [42], and albumin levels at the
time of inclusion. Unfortunately, BIS was assessed at the time the
patient attended to the transplantation clinic, regardless of hae-
modialysis session, so we could not adjust for this variable. For
inflammation information, we also collected C-reactive protein
(CRP) levels at the time of inclusion. To evaluate access to trans-
plantation, pre-dialysis waitlisting and time to transplantation
were analysed.

Statistics

Continuous variables are expressed as mean ± standard devia-
tion (SD) or median and interquartile range (IQR) according to
their normal distribution. Categorical data are expressed as per-
centages. Comparisons of baseline characteristics between two
groups were made using Chi-square or Fisher’s exact tests to
analyse categorical variables, Student’s t-test for continuous
variables with normal distribution and Mann–Whitney test for
non-parametric variables. Logistic regression was used to esti-
mate the odds ratio (OR) for frailty status. All variables with ob-
served differences between groups (P < 0.10) were included in
the analysis for adjustment except for SNAQ test as it may have
collinearity with one of the Fried criteria for frailty (shrinking).
Statistical analysis was performed using SPSS version 21 soft-
ware (IBM, Armonk, NY, USA). P-values <0.05 were considered
statistically significant.

RESULTS

Characteristics of frail and robust patients

During the study period, 455 KT candidates were evaluated for
frailty phenotype at the time of KT waiting list inclusion. Of
them, 317 (69.7%) resulted to be robust, 91 (20%) pre-frail and 47
(10.3%) were frail patients. Frailty phenotype total score and cri-
teria distribution are presented in Figure 1. For frail patients
(score ≥3), the majority scored 3, eight patients scored 4 and
one patient scored 5 (Figure 1A). Regarding criteria distribution,
weakness was the most prevalent frailty criterion among candi-
dates, present in 50% of candidates (Figure 1B).

Merging pre-frail and frail patients in a unique category of frail
patients (score ≥2), the comparison between robust and frail
patients is summarized in Table 1. Frail patients had a similar
age to robust ones. Among women, the percentage of patients
with a frail phenotype was much higher than among men (47.2% vs
22.5%, P < 0.001). Similarly, among frail patients, the per-
centage of women was much higher than the percentage of men
(49.3% vs 24.0%, P < 0.001). Frail patients had lower self-
reported pharmacological adherence, poorer family support and
lower economic incomes. They had also higher comorbidity bur-
den and disability rates and presented with less lean mass and
more fat mass in their body composition. The multivariate analy-
sis for frailty status demonstrated that women were more likely
FIGURE 1: Frailty phenotype prevalence and criteria distribution among 455 kidney transplant candidates. A: Number of patients who scored positive 0 to 5 criteria. B: Percentage of patients who presented each different criteria.

Table 1. Baseline characteristics of 455 KT candidates stratified by frailty status (two categories)

	All n = 455	Robust n = 317	Frail (Fried ≥ 2) n = 138	P-value^a
Sociodemographics				
Age, years (mean ± SD)	60.6 ± 12.4	60.5 ± 12.6	61.2 ± 11.3	0.380
Caucasian, n (%)	144 (31.6)	76 (24.0)	68 (49.3)	-0.001
Medical treatment adherence^b, n (%)	412 (95.8)	284 (95.9)	128 (95.5)	0.922
Education, no/primary, n (%)	273 (62.4)	184 (58.0)	89 (64.5)	0.363
Deficient family support, n (%)	64 (14.4)	35 (11.3)	29 (21.0)	0.017
Socioeconomic status, no incomes, n (%)	41 (9.4)	23 (7.3)	18 (13.0)	0.047
Comorbidities				
Hypertension, n (%)	438 (96.5)	305 (96.5)	133 (96.4)	0.940
DM, n (%)	168 (37.0)	110 (34.8)	58 (42.0)	0.143
Heart failure, n (%)	26 (5.7)	13 (4.1)	13 (9.4)	0.025
Ischaemic coronary disease, n (%)	75 (16.5)	52 (16.4)	23 (16.7)	0.945
LV ejection fraction, %, median (IQR)	63.0 (59.0–67.0)	63.0 (58.5–66.2)	64.0 (59.0–69.0)	0.103
Peripheral vasculopathy, n (%)	43 (9.5)	26 (8.2)	17 (12.3)	0.168
Cerebral vasculopathy, n (%)	35 (7.7)	15 (4.7)	20 (14.5)	-0.001
COPD, n (%)	35 (7.7)	26 (8.2)	9 (6.5)	0.536
RRT modality, n (%)	257 (59.4)	171 (57.2)	86 (64.2)	0.194
Haemodialysis	93 (21.5)	64 (21.4)	29 (21.6)	
Peritoneal dialysis				
Disability status				
Disability for activities of daily living^c, n (%)	91 (20.0)	52 (16.4)	39 (28.3)	-0.001
Disability for instrumental activities of daily living^d, n (%)	136 (29.9)	75 (23.6)	64 (46.4)	-0.001
Nutrition and inflammation status				
BMI, kg/m² (mean ± SD)	27.8 ± 12.4	27.7 ± 5.4	28.1 ± 5.7	0.538
Risk for malnutrition^e, n (%)	111 (24.4)	64.0 (23.3)	47.0 (37.3)	0.003
Lean mass, kg/m², median (IQR)	13.9 (11.6–16.5)	14.5 (12.5–16.9)	12.2 (10.8–14.8)	-0.001
Fat mass, kg/m², median (IQR)	12.7 (9.1–16.5)	11.9 (8.5–16.4)	13.6 (11.0–18.2)	0.031
Overhydration, L, median (IQR)	1.0 (0.1–2.1)	1.0 (0.0–2.0)	1.1 (0.2–2.5)	0.486
Albumin, g/dL, mean ± SD	4.2 ± 0.5	4.2 ± 0.5	4.1 ± 0.6	0.123
CRP, mg/dL, median (IQR)	0.3 (0.1–0.8)	0.3 (0.1–0.7)	0.3 (0.1–0.9)	0.932
Access to transplantation				
Pre-dialysis waitlisted, n (%)	83 (19.2)	64 (21.4)	19 (14.2)	0.087
Time to transplantation, months, median (IQR)	22.2 (10.5–32.1)	19.7 (9.3–30.2)	23.0 (12.5–34.2)	0.125

^aComparisons were made among robust and frail patients.

^bMorisky–Green = 0.

^cBarthel ≤ 90.

^dLawton–Brody < 8 if women and < 5 if men.

^eSNAQ ≥ 14. DM, diabetes mellitus; LV, left ventricular; COPD, chronic obstructive pulmonary disease.
to be frail [OR 1.91; 95% confidence interval (CI) 1.00–3.60] (Table 2). Other factors associated with frailty were deficient family support (OR 2.57; 95% CI 1.28–5.13), comorbidities such as heart failure (OR 2.97; 95% CI 1.03–8.54) or cerebrovascular disease (OR 3.95; 95% CI 1.35–11.6) and disability for activities of daily living, both basic (OR 2.67; 95% CI 1.05–6.81) and instrumental (OR 2.55; 95% CI 1.34–4.85) (Table 2).

Table 2. Multivariate analysis for factors associated with frailty in the whole cohort

Factor	OR (95% CI)	P-value
Female sex	1.91 (1.00–3.60)	0.047
Deficient family support	2.57 (1.28–5.13)	0.008
Heart failure	2.97 (1.03–8.54)	0.043
Cerebral vasculopathy	3.96 (1.35–11.6)	0.012
Daily living activities disability	2.67 (1.05–6.81)	0.039
Instrumental daily living activities disability	2.55 (1.34–4.85)	0.003
Medical treatment adherence (yes)	1.46 (0.75–2.86)	0.266
Socioeconomic status (no incomes)	1.48 (0.60–3.69)	0.391
Lean mass (kg/m2)	0.93 (0.85–1.02)	0.116
Fat mass (kg/m2)	1.00 (0.96–1.04)	0.966

Table 3. Comparison between male and female frail (Fried ≥2) KT candidates

Sociodemographics	Female $n = 68$	Male $n = 70$	P-value
Age, years, mean ± SD	62.7 ± 11.3	60.1 ± 11.6	0.208
Caucasian, n (%)	65 (95.6)	67 (95.7)	0.999
Medical treatment adherence*, n (%)	42 (61.7)	53 (75.7)	0.066
Education, no/primary, n (%)	49 (72.1)	40 (57.1)	0.008
Deficient family support, n (%)	14 (20.6)	15 (21.4)	0.800
Socioeconomic status, no incomes, n (%)	14 (20.6)	4 (5.7)	0.018
Comorbidities			
Hypertension, n (%)	64 (94.1)	69 (98.6)	0.162
DM, n (%)	27 (39.7)	31 (44.3)	0.586
Heart failure, n (%)	5 (7.3)	8 (11.4)	0.413
Ischaemic coronary disease, n (%)	5 (7.3)	18 (25.7)	0.004
LV ejection fraction, %, median (IQR)	64.0 (58.0–69.5)	63.0 (59.0–67.7)	0.959
Peripheral vasculopathy, n (%)	3 (4.4)	14 (20.0)	0.005
Cerebral vasculopathy, n (%)	5 (7.3)	15 (21.4)	0.019
COPD, n (%)	1 (1.5)	8 (11.4)	0.018
Haemodialysis as RRT modality, n (%)	36 (52.9)	50 (71.4)	0.022
Dependency status			
Disability for activities of daily living¹	20 (29.4)	19 (27.1)	0.487
Disability for instrumental activities of daily living²	44 (64.7)	20 (28.6)	<0.001
Nutrition and inflammation status			
BMI, kg/m2, median (IQR)	27.8 (23.7–32.6)	27.6 (25.0–31.4)	0.858
Risk for malnutrition³, n (%)	30 (44.1)	17 (24.3)	0.055
Lean mass, kg/m2, median (IQR)	11.4 (10.3–12.3)	14.6 (11.3–16.8)	<0.001
Fat mass, kg/m2, median (IQR)	15.2 (11.9–20.5)	13 (9.5–16.2)	0.012
Overhydration, L, median (IQR)	0.5 (0.1–1.9)	1.5 (0.3–3.2)	0.025
Albumin, g/dL, mean ± SD	4.1 ± 0.63	4.12 ± 0.49	0.583
CRP, mg/dL, median (IQR)	0.4 (0.2–1.1)	0.3 (0.2–0.8)	0.925

Table 4. Comparison between robust and frail male KT candidates, showing a higher percentage of comorbidities (peripheral and cerebral vasculopathy) and disability among those who were frail. In addition, more male frail patients were on haemodialysis as RRT modality compared with robust patients (73.5% versus 52.8%, respectively). Factors associated with frailty in male patients included deficient family support (OR 3.35; 95% CI 1.37–8.23), cerebral vasculopathy (OR 3.28; 95% CI 1.01–10.62), haemodialysis as RRT modality (OR 2.51; 95% CI 1.34–4.85) (Table 2).

Sex differences in frailty phenotypes

Considering the higher risk for women to be frail, we aimed to analyse male ($n = 70$, 22.5%) and female ($n = 68$, 47.2%) frailty phenotypes separately (Table 3). Frail women had poorer results in social variables like level of education (72.1% with low level of education versus 57.1% of men) or economic incomes (20.6% with no incomes versus 5.7% of men). On the other hand, frail men had a stronger presence of comorbidities like ischaemic coronary disease, peripheral and cerebral vasculopathy, or pulmonary disease (Table 3). In terms of disability, both frail women and men presented similar rates of disability for activities of daily living (29.4% versus 27.2%, respectively), but frail women had more difficulties with instrumental activities than frail men, with 64.7% of them presenting with disability (Table 3).

Table 3 shows all differences between robust and frail male KT candidates, showing a higher percentage of comorbidities (peripheral and cerebral vasculopathy) and disability among those who were frail. In addition, more male frail patients were on haemodialysis as RRT modality compared with robust patients (73.5% versus 52.8%, respectively). Factors associated with frailty in male patients included deficient family support (OR 3.35; 95% CI 1.37–8.23), cerebral vasculopathy (OR 3.28; 95% CI 1.01–10.62), haemodialysis as RRT modality (OR 2.51; 95% CI 1.34–4.85) (Table 2).
1.13–5.57) and disability for instrumental activities of daily living (OR 5.32; 95% CI 1.82–15.15) (Table 5). In contrast to men, frail women did not present a higher comorbidity burden, but they had more disability and less lean mass in their body composition (11.4 versus 12.0 kg/m^2, Table 6). The multivariate analysis showed that women were more frequently non-adherent to pharmacological treatment (OR 2.75; 95% CI 1.1–7.47) and showed an increased disability in basic (not instrumental, like in men) activities (Table 7).

Although all frailty criteria were more frequent in women than in men, self-reported exhaustion (39.6 versus 17.0%, respectively) and slowness in walking speed (22.2% versus 9.2%) were the two of them more differently distributed among sexes (Figure 2).

DISCUSSION

This prospective study describes the frail profile characterization in a Spanish cohort of advanced CKD patients waiting for KT. Pre-frailty (score 2, 20%) and frailty (score ≥ 3, 10.3%) were common, but were much more frequent in women (47.2%). Sex-related differences in frailty phenotype are relevant: first, in terms of frailty criteria, with women experiencing more exhaustion and slowness than men; and secondly, regarding frailty characteristics, with more burden of disease associated with men and more social factors associated with women.

Frailty is a common condition among CKD patients. It ranges from 15% to 21% [2] of CKD non-dialysis patients to >70% of haemodialysis patients [3]. In Spain, only two studies with reduced sample sizes have analysed frailty in haemodialysis patients, reporting disparities from 6% to >40% of patients [29, 43] presenting three or more Fried criteria [1]. Regarding KT candidates, studies have reported lower incidence of frailty—around 14%—but this percentage increases up to 18–20% when KT recipients are considered [11, 35]. We report a 30%

Table 4. Baseline characteristics of 311 KT male candidates stratified by frailty status (two categories)
Sociodemographics
Age, years, mean ± SD
Caucasian, n (%)
Medical treatment adherence\(^a\), n (%)
Education, no/primary, n (%)
Deficient family support, n (%)
Socioeconomic status, no incomes, n (%)
Comorbidities
Hypertension, n (%)
DM, n (%)
Heart failure, n (%)
Ischaemic coronary disease, n (%)
LV ejection fraction, %, median (IQR)
Peripheral vasculopathy, n (%)
Cerebral vasculopathy, n (%)
COPD, n (%)
Haemodialysis as RRT modality, n (%)
Dependency status
Disability for activities of daily living\(^b\), n (%)
Disability for instrumental activities of daily living\(^c\), n (%)
Nutrition and inflammation status
BMI, kg/m\(^2\), median (IQR)
Risk for malnutrition\(^d\), n (%)
Lean mass, kg/m\(^2\), median (IQR)
Fat mass, kg/m\(^2\), median (IQR)
Overhydration, L, median (IQR)
Albumin, g/dL, mean ± SD
CRP, mg/dL, median (IQR)
Access to transplantation
Pre-dialysis waitlisted, n (%)
Time to transplantation, months, median (IQR)

\(^a\)Morisky-Green = 0.
\(^b\)Barthel ≤90.
\(^c\)Lawton-Brody <8 if women and <5 if men.
\(^d\)SNAQ ≤14. DM, diabetes mellitus; LV, left ventricular; COPD, chronic obstructive pulmonary disease.

Table 5. Multivariate analysis for factors associated with frailty in male patients
OR (95% CI)
Deficient family support
Instrumental activities disability
Haemodialysis as RRT (yes)
Cerebral vasculopathy
Heart failure
Peripheral vasculopathy
Basic activities disability

M.J. Pérez-Sáez et al. 114
Sex differences in frailty among KT candidates

Table 6. Baseline characteristics of 144 KT female candidates stratified by frailty status (two categories)

Sociodemographics	Robust (n = 70)	Frail (fried ≥2) (n = 68)	P-value
Age, years, mean ± SD	61.3 ± 12.1	63.2 ± 11.3	0.318
Caucasian, n (%)	71 (95.9)	63 (95.5)	0.994
Medical treatment adherence^a, n (%)	59 (85.5)	42 (66.7)	0.031
Education, no/primary, n (%)	52 (74.4)	49 (72.1)	0.634
Deficient family support, n (%)	11 (15.1)	14 (20.6)	0.432
Socioeconomic status, no incomes, n (%)	11 (15.1)	14 (20.6)	0.334
Comorbidities			
Hypertension, n (%)	74 (97.4)	64 (94.1)	0.330
DM, n (%)	23 (30.5)	27 (39.7)	0.235
Heart failure, n (%)	2 (2.6)	5 (7.4)	0.188
Ischaemic coronary disease, n (%)	9 (11.8)	5 (7.4)	0.364
LV ejection fraction, median (IQR)	65.0 (60.0–68.0)	64.0 (58.0–69.0)	0.398
Peripheral vasculopathy, n (%)	4 (5.3)	3 (4.4)	0.813
Cerebral vasculopathy, n (%)	4 (5.3)	5 (7.4)	0.605
COPD, n (%)	4 (5.3)	1 (1.5)	0.215
Haemodialysis as RRT modality, n (%)	50 (71.4)	36 (54.5)	0.041
Dependency status			
Disability for activities of daily living^b, n (%)	2 (2.8)	20 (29.4)	<0.001
Disability for instrumental activities of daily living^c, n (%)	24 (34.3)	24 (64.7)	<0.001
Nutrition and inflammation status			
BMI, kg/m², median (IQR)	26.2 (22.2–31.4)	28.1 (24.3–33.1)	0.216
Risk for malnutrition^d, n (%)	27 (35.5)	30 (44.1)	0.354
Lean mass, kg/m², median (IQR)	12.9 (10.0–13.0)	11.4 (10.3–12.0)	0.046
Fat mass, kg/m², median (IQR)	14.5 (10.0–19.2)	15.2 (11.9–20.5)	0.115
Over hydration, L, median (IQR)	0.6 (0.1–2.0)	0.6 (0.1–2.0)	0.118
Albumin, g/dL, mean ± SD	4.2 ± 0.4	4.1 ± 0.6	0.558
CRP, mg/dL, median (IQR)	0.4 (0.1–0.8)	0.4 (0.2–1.1)	0.833
Access to transplantation			
Pre-dialysis waitlisted, n (%)	8 (11.4)	16 (24.2)	0.050
Time to transplantation, months, median (IQR)	17.2 (9.1–25.0)	29.2 (15.1–40.0)	0.017

^aMorrisky–Green = 0.

^bBarthel ≤90.

^cLawton–Brody ≤8 if women and <5 if men.

^dSNAQ ≤14. DM, diabetes mellitus; LV, left ventricular; COPD, chronic obstructive pulmonary disease.

Table 7. Multivariate analysis for factors associated with frailty in female patients

Factors	OR (95% CI)	P-value
Medical treatment adherence (no)	2.75 (1.1–7.47)	0.046
Basic activities disability	8.80 (1.00–77.21)	0.050
Haemodialysis as RRT (yes)	2.22 (0.91–5.42)	0.079
Instrumental activities disability	1.91 (0.82–4.46)	0.132
Lean mass (kg/m²)	0.86 (0.7–1.06)	0.166

establishes that comorbidity burden is associated with frailty status only in men, while social factors were present in both sexes.

Female sex was associated with frailty in our cohort, women being 2-fold more inclined to be frail than men. This difference has been analysed in the general population [24]. In a systematic review, Gordon et al. [24] found that females presented with higher frailty index scores [47] than males at all ages. The specific role of sex in frailty status has also been explored in the setting of some clusters of chronic disease patients, such as the human immunodeficiency virus (HIV) population [32] or liver transplant candidates [27], with a higher percentage of women among frail patients in both settings. Therefore, the logic sequence is likely to be as follows: women have higher rates of frailty, frailty is associated with poorer health results and women have higher mortality rates than men. However, the concept of the male–female health-survival paradox refers to the marked discrepancy between the health and survival of the sexes: females have greater levels of disability, more comorbidities and poorer self-rated health, but longer life expectancy [25, 48]. Narrowing down to the point, the sex–frailty paradox also arises from the higher rate of frailty among women, but the lower mortality that they present compared with men in the general population [24, 26]. In a similar setting to CKD, Lai et al.

prevalence of frailty among KT candidates, although not only patients with ≥3 Fried criteria [1], but also patients with ≥2 criteria were considered. This consideration has been previously reported in other studies [36, 37], where outcomes have been found similar if two or three of frailty criteria were present. This frailty status has been related to comorbidity burden and disability [44], and its presence implies poorer outcomes after transplantation [11–16]. Our data show that frail patients had a greater number of comorbidities such as heart failure or cerebral vasculopathy, and higher disability for activities of daily living. Other social aspects like family support or economic incomes were worse among frail patients, as has been previously described [45, 46]. However, the multivariate analysis
Frailty is very frequent among CKD patients on the KT waiting list. Prevalence, criteria distribution and associated factors are different between men and women. Further studies are needed to elucidate if this frailty has similar impact on outcomes between different sexes.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.

FUNDING

The Frail-MAR project is currently supported by a FIS-FEDER grant PI19/00037 (ISCIII) and a ‘Proyecto Estrella de Mejora de la Calidad’, Parc de Salut Mar, Barcelona, Spain. M.J.P.-S. has support from a Spanish Society of Transplant scholarship. V.D.-Y. is supported by a Jordi Gras contract from the Institut Mar for Medical Research (IMIM).

CONFLICT OF INTEREST STATEMENT

The authors of this study declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

APPENDIX

FRAIL-MAR Study Group members

María José Pérez-Sáez, Carlos E. Arias-Cabrales, Dolores Redondo, Francesc Barbosa, Higini Cao, Silvia Collado, Maria Dolores Arenas, Anna Buxeda, Carla Burballa, Marta Crespo, Julio Pascual, Anna Faura, María Vera, Anna Bach, Guillermo Pedreira, Ernestina Junyent, Montserrat Folgueiras, Yolanda Castillo, Aida Martínez, Marisol Fernández, Eva Barbero, Rosa Causadias (Department of Nephrology, Hospital del Mar), Alicia [27] evaluated 1405 candidates for liver transplantation and found higher frailty scores in women than men. However, in this case, waitlisted mortality was also higher among women and frailty could explain part of that excess of mortality [27]. In CKD patients, frailty has been reported to be more frequent in women [4, 5, 28–31], but this issue has not been precisely addressed and requires further investigation. Some sex differences have been well established in CKD epidemiology and evolution. Women present with advanced stages of CKD more frequently than men, perhaps due to the longer life expectancy they have and possibly because glomerular filtration rate equations tend to overdiagnose CKD in female patients [19, 20, 49]. In addition, kidney function declines faster in men and they more often need RRT. The potential protective effects of estrogens or the damaging effects of testosterone may also play a role [20, 22].

In terms of transplantation, women have reduced access to the KT waiting list compared with men and fewer chances to receive a transplant from a deceased donor [20, 21, 50, 51]. This might be partly explained by sex itself and the biological effect of pregnancy sensitization, but also by gender and therefore social factors, such as lower probability of having a KT discussion with their nephrologist [23]. More importantly, mortality is higher among men at all levels of advanced CKD, whereas mortality among individuals on dialysis or after transplant is similar in both sexes [20, 22]. In the setting of frailty, two studies have shown that CKD women who were KT candidates had longer hospitalizations than men while listed. Hospitalization was a marker of reduced survival on dialysis, decreased likelihood of transplantation, readmissions after transplant and diminished patient survival. However, although readmissions after transplant were more frequent between women, they did not experience higher rates of graft loss or mortality [30, 31]. So far, the consequences of sex disparities in frailty prevalence among CKD patients remain uncertain.

Regarding frailty criteria distribution, women have shown a different frailty phenotype than men among HIV patients [32], liver transplant candidates [27] and KT candidates [28, 50], with poorer results also in the Short Physical Performance Battery test in the latter study. Our study describes frailty criteria distribution between sexes and frail patients’ characteristics depending on sex. CKD women experienced a higher percentage of exhaustion and slowness than men. These two criteria can be the result of the lower lean mass that women had compared with men and might translate a higher level of sarcopenia among women [52]. In addition, comorbidities were more related to frail men, whereas social factors were more related to frail women. Again, whether this difference in frailty criteria distribution between sexes has an impact on CKD and transplant outcomes requires further investigation.

This study has the inherent limitations of a descriptive one-centre study, so external validation may not be assumed. In addition, the study was designed based on previous reports from other groups, assuming similarity among US and European populations, and classifying as robust patients those with 0–1 frailty criterion. We also merged pre-frail (≥2 criteria) and frail patients (≥3 criteria) due to the low number of patients with ≥3 criteria (only 10.3%), which might have an impact on the results. However, to our knowledge, this is the first study to disaggregate frailty data between men and women in a cohort of KT candidates. This may have implications for the detection of patients at risk, and for specific and targeted interventional approaches to improve frailty before transplantation.

Prevalence, criteria distribution and associated factors are different between men and women. Further studies are needed to elucidate if this frailty has similar impact on outcomes between different sexes.

![FIGURE 2: Frailty phenotype prevalence and criteria distribution differences between male and female kidney transplant candidates.](image-url)
Sex differences in frailty among KT candidates

Calvo (Department of Cardiology, Hospital del Mar), Jesús Carazo (Department of Anesthesiology, Hospital del Mar), Albert Frances, Lluis Cecchini (Department of Urology, Hospital del Mar), Vanesa Dávalos, Ester Marco, Delky Meza de Valderrama, Andrea Morgado, Elena Munoz (Department of Rehabilitation and Physical Medicine, Hospital del Mar), Xavier Nogués (Department of Internal Medicine, Hospital del Mar), Leocadio Rodriguez-Mañas (Department of Geriatrics, Hospital Universitario de Getafe, Madrid), Olga Vázquez (Department of Geriatrics, Hospital del Mar), Maria Dolores Muns (Dietary Unit, Department of Endocrinology and Nutrition, Hospital del Mar), Miguel Gárriz, María Polo Gómez (Psychology Department, Neuropsychiatric Institute, Hospital del Mar), Sara Hurtado, Maite López (Diagonal Hemodialysis Center, Fresenius Medical Care), Laura Ribera, Margarita Guino (Glories Hemodialysis Center, Fresenius Medical Care), Ramón Roca, Jordi Calls, Alicia Rovira (Department of Nephrology, Hospital de Mollet), Josep Mora, Omar Ibrik, Florentina Liria (Granollers Hemodialysis Center, Fresenius Medical Care), Thais López, Jaume Almirall, Carmen Moya (Department of Nephrology, Hospital Parc Taulí), Fátima Moreno, Manel Ramírez de Arellano, Sandra Rubio (Department of Nephrology, Consorci Sanitari de Terrassa), Ignacio Cidraque, Carlota Fajardo (Cetisra Terrassa Hemodialysis Center, Fresenius Medical Care), Núria Garra, Josep Galcerán, Marina Fenollar (Department of Nephrology, Hospital de Manresa), Sara Oútón, Fabiola Dapena, Josep Jara (Department of Nephrology, Consorci Sanitari del Garraf), Rosa García, Mónica Manresa (Department of Nephrology, Hospital de Palamós).

REFERENCES

1. Fried LP, Tangen CM, Walston J et al. Frailty in older adults: Evidence for a phenotype. *J Geront A Biol Sci Med Sci* 2001; 56: M146–M157
2. Chowdhury R, Peel NM, Krosch M et al. Frailty and chronic kidney disease: A systematic review. *Arch Gerontol Geriatr* 2017; 68: 135–142
3. Bao Y, Dalrymple L, Chertow GM et al. Frailty, dialysis initiation, and mortality in end-stage renal disease. *Arch Intern Med* 2012; 172: 1071–1077
4. Harhay MN, Rao MK, Woodside KJ et al. An overview of frailty in kidney transplantation: Measurement, management and future considerations. *Nephrol Dial Transplant* 2020; 35: 1099–1112
5. Johansen KL, Chertow GM, Jin C et al. Significance of frailty among dialysis patients. *J Am Soc Nephrol* 2007; 18: 2960–2967
6. McAdams-Demarco MA, Tan J, Salter ML et al. Frailty and cognitive function in incident hemodialysis patients. *Clin J Am Soc Nephrol* 2015; 10: 2181–2189
7. McAdams-Demarco MA, Suresh S, Law A et al. Frailty and falls among adult patients undergoing chronic hemodialysis: A prospective cohort study. *BMC Nephrol* 2013; 14: 224
8. McAdams-Demarco MA, Law A, Salter ML et al. Frailty as a novel predictor of mortality and hospitalization in individuals of all ages undergoing hemodialysis. *J Am Geriatr Soc* 2013; 61: 896–901
9. Haugen CE, Chu NM, Ying H et al. Frailty and access to kidney transplantation. *Clin J Am Soc Nephrol* 2019; 14: 576–582
10. Bayat S, Macher MA, Coughoud C et al.; REIN Registry. Individual and regional factors of access to the renal transplant waiting list in France in a cohort of dialyzed patients. *Am J Transplant* 2015; 15: 1050–1060
11. McAdams-DeMarco MA, Ying H, Olorundare I et al. Individual frailty components and mortality in kidney transplant recipients. *Transplantation* 2017; 101: 2126–2132
12. Goldfarb DA. Re: Frailty and early hospital readmission after kidney transplantation. *J Urol* 2014; 191: 1366–1367
13. McAdams-Demarco MA, Law A, King E et al. Frailty and mortality in kidney transplant recipients. *Am J Transplant* 2015; 15: 149–154
14. McAdams-Demarco MA, King EA, Luo X et al. Frailty, length of stay, and mortality in kidney transplant recipients. *Ann Surg* 2017; 268: 1084–1090
15. McAdams-Demarco MA, Chu NM, Segev DL. Frailty and long-term post-kidney transplant outcomes. *Curr Transplant Rep* 2019; 6: 45–51
16. Garonzik-Wang JM, Govindan P, Grinnan JW et al. Frailty and delayed graft function in kidney transplant recipients. *Arch Surg* 2012; 147: 190–193
17. ONT. Actividad de Donación y Trasplante Renal. España. Vol XII, 2018
18. Puts MTE, Toubasi S, Andrew MK et al. Interventions to prevent or reduce the level of frailty in community-dwelling older adults: A scoping review of the literature and international policies. *Age Ageing* 2017; 46: 383–392
19. Murphy D, McCulloch CE, Lin F et al.; Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. Trends in prevalence of chronic kidney disease in the United States. *Ann Intern Med* 2016; 165: 473–481
20. Carrero JJ, Hecking M, Chesnaye NC et al. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. *Nat Rev Nephrol* 2018; 14: 151–164
21. Carrero JJ, Hecking M, Ulasli I et al. Chronic kidney disease, gender, and access to care: A global perspective. *Semin Nephrol* 2017; 37: 296–308
22. Swartling O, Rydell H, Stendahl M et al. CKD progression and mortality among men and women: A nationwide study in Sweden. *Am J Kidney Dis* 2021
23. Salter ML, McAdams-Demarco MA, Law A et al. Age and sex disparities in discussions about kidney transplantation in adults undergoing dialysis. *J Am Geriatr Soc* 2014; 62: 843–849
24. Gordon EH, Peel NM, Samanta M et al. Sex differences in frailty: A systematic review and meta-analysis. *Exp Gerontol* 2017; 89: 30–40
25. Oksuzyan A, Juel K, Vaupel JW et al. Men: Good health and high mortality. Sex differences in health and aging. *Aging Clin Exp Res* 2008; 20: 91–102
26. Arosio B, Guerini FR, Costa AS et al. Vitamin D receptor polymorphisms in sex–frailty paradox. *Nutrients* 2020; 12: 2714
27. Lai JC, Ganger DR, Volk ML et al. Association of frailty and sex with wait list mortality in liver transplant candidates in the multicenter functional assessment in liver transplantation (FrAILT) study. *JAMA Surg* 2021; 156: 256
28. Lorenz EC, Cosio FG, Bernard SL et al. The relationship between frailty and decreased physical performance with death on the kidney transplant waiting list. *Prog Transplant* 2019; 29: 108–114
29. García-Cantón C, Ródenas Gálvez A, Lopez Aperador C et al. Prevalencia de fragilidad y factores asociados en pacientes en programa de hemodialisis. Frailty prevalence and associated factors in hemodialysis patients. *Nefrologia (Engl Ed)* 2019; 39: 204–206
30. Lynch RJ, Rebecca Z, Patzer RE et al. Waitlist hospital admissions predict resource utilization and survival after renal transplantation. Ann Surg 2016; 264: 1168–1173
31. Lynch RJ, Zhang R, Patzer RE et al. First-year waitlist hospitalization and subsequent waitlist and transplant outcome. Am J Transplant 2017; 17: 1031–1041
32. Blanco JR, Barrio I, Ramalle-Gomara E et al. Gender differences for frailty in HIV-infected patients on stable antiretroviral therapy and with an undetectable viral load. PLoS ONE 2019; 14: e0215764
33. Roshanravan B, Khatri M, Robinson-Cohen C et al. A prospective study of frailty in nephrology-referred patients with CKD. Am J Kidney Dis 2012; 60: 912–921
34. Chu NM, Deng A, Ying H et al. Dynamic frailty before kidney transplantation: Time of measurement matters. Transplantation 2019; 103: 1700–1704
35. Haugen CE, Thomas AG, Chu NM et al. Prevalence of frailty among kidney transplant candidates and recipients in the United States: Estimates from a National Registry and Multicenter Cohort Study. Am J Transplant 2020; 20: 1170–1180
36. McAdams-DeMarco MA, Olorundare IO, Ying H et al. Frailty and postkidney transplant health-related quality of life. Transplantation 2018; 102: 291–299
37. McAdams-Demarco MA, Law A, Tan J et al. Frailty, mycophenolate reduction, and graft loss in kidney transplant recipients. Transplantation 2015; 99: 805–810
38. Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care 1986; 24: 67–74
39. Mahoney F, Barthel D. Functional evaluation: The Barthel index. Md State Med J 1965; 14: 61–65
40. Shah S, Vancly F, Cooper B. Improving the sensitivity of the Barthel index for stroke rehabilitation. J Clin Epidemiol 1989; 42: 703–709
41. Lawton M, Brody E. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969; 9: 179–186
42. Wilson MMG, Thomas DR, Rubenstein LZ et al. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am J Clin Nutr 2005; 82: 1074–1081
43. Bancu I, Graterol F, Bonal J et al. Frail patient in hemodialysis—a new challenge in nephrology—incidence in our area, Barcelonés Nord and Maresme. J Aging Res 2017; 2017: 1–5
44. Pérez Fernández M, Martínez Miguel P, Ying H et al. Comorbidity, frailty, and waitlist mortality among kidney transplant candidates of all ages. Am J Nephrol 2019; 49: 103–110
45. Gomes C dos S, Guerra RO, Wu YY et al. Social and economic predictors of worse frailty status occurrence across selected countries in North and South America and Europe. Innov Aging 2018; 2: igy037
46. Gale CR, Westbury L, Cooper C. Social isolation and loneliness as risk factors for the progression of frailty: The English Longitudinal Study of Ageing. Age Ageing 2018; 47: 392–397
47. Rockwood K, Song X, MacKnight C et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173: 489–495
48. Hubbard RE, Rockwood K. Frailty in older women. Maturitas 2011; 69: 203–207
49. Wetzels JFM, Willems HL, Heijer MD. Age- and gender-specific reference values of estimated glomerular filtration rate in a Caucasian population: Results of the Nijmegen Biomedical Study. Kidney Int 2008; 73: 657–658
50. Garg PP, Furth SL, Fivush BA et al. Impact of gender on access to the renal transplant waiting list for pediatric and adult patients. J Am Soc Nephrol 2000; 11: 958–964
51. Pippias M, Stel VS, Kramer A et al. Access to kidney transplantation in European adults aged 75–84 years and related outcomes: An analysis of the European Renal Association-European Dialysis and Transplant Association Registry. Transpl Int 2018; 31: 540–553
52. Xu L, Zhang J, Shen S et al. Association between body composition and frailty in older inpatients. Clin Iterv Aging 2020; 15: 313–320