Cell segmentation using deep learning: comparing label and label-free approaches using hyper-labeled image stacks

William D. Cameron1,2, Cindy V. Bui1,2, Alex M. Bennett1,2, Huntley H. Chang1,2, and Jonathan V. Rocheleau1,2,3

1Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
2Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
3Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada

Deep learning provides an opportunity to automatically segment and extract cellular features from high-throughput microscope images. Many segmentation strategies have been developed for this purpose, ranging from the use of fluorescent markers to label-free approaches. However, differences in the channels available to each respective training dataset make it difficult to directly compare the effectiveness of these strategies. Here we explore training models using subimage stacks composed of channels sampled from larger, 'hyper-labeled', image stacks (e.g. only the brightfield channels). This allows us to directly compare a variety of segmentation and training approaches on identical cells. This approach revealed that fluorescence-based strategies generally provide higher segmentation accuracies, but dipped below label-free models when labeling was inconsistent. The relative strengths of label and label-free techniques could be combined through the use of merging fluorescence channels and using out-of-focus brightfield images. Beyond comparing segmentation strategies, using subimage stacks for training was also found to provide a method of simulating a wide range of labeling conditions during training, increasing the ability of the final model to accommodate a fuller range of experimental setups.

I. INTRODUCTION

As high-content, high-spatiotemporal cellular imaging becomes more widespread, the ability to perform cellular segmentation both quickly and accurately becomes increasingly critical for efficient cellular analysis and feature extraction. Advances in deep learning have positioned neural networks as a powerful alternative to traditional approaches such as manual algorithmic segmentation [1], [2]. In particular, the development of the U-Net architecture provided a significant boost to segmentation performance [3], [4] and has now become the template for many modern segmentation models [5], [6], [7]. Advancements in our understanding of deep learning have also made the technique more accessible for smaller-scale operations. Techniques such as data augmentation have significantly reduced dataset size requirements, while improvements to training (e.g. transfer learning, initialization, dropout, hyperparameter schedulers, and optimizers) have reduced training times considerably [8], [9], [10], [11].

Approaches to machine-automated cell segmentation from microscope images generally fall into two main categories: fluorescence-based and label-free approaches. Fluorescence-based approaches often boast higher segmentation accuracies but require the addition of fluorescence markers. However, reliance on specific fluorescence markers confers some significant disadvantages as microscopy trends towards multiparametric, high-throughput imaging. Most notably, fluorescence-based segmentation limits multiparametric imaging by dedicating a portion of the fluorescence spectra for segmentation that might otherwise be used. Fluorescence markers can also induce stress on the cell, either directly or as a byproduct of imaging and are therefore best avoided when possible [12], [13], [14]. For genetically-encoded sensors, the successful co-expression of the desired sensors and markers in a single cell becomes increasingly difficult in hard-to-transfect cell lines, which limits the population of cells that can be both successfully segmented and analyzed. In contrast, label-free approaches (i.e. brightfield imaging) have the advantage of not requiring a fluorescent marker, but often struggle with reduced performance in high confluence when the boundaries between cells are not distinct [3].

Many experiments use fluorescence sensors or dyes for reasons extraneous to segmentation (e.g. as a source of data collection and localization), which represents a valuable opportunity to augment the data presented to a segmentation model and thereby improve performance. For instance, genetically-encoded sensors expressed in either the cytoplasm or the mitochondria may each be used to help demarcate and mask individual cells. However, the information provided by these signals are very different: cytoplasmic markers can clearly define cell boundaries in isolation, but may become indistinct across adjacent cells; mitochondrial markers do not reach the limits of cell boundaries, but provide a gap in fluorescence which can be used to more broadly separate adjacent cells. The primary challenge when using this information is that the combination of auxiliary fluorescence signals available to the segmentation model may vary from experiment to experiment, or cell to cell. This requires that a segmentation model be trained to maintain performance across a wide range of potential experimental labeling conditions, including the absence of fluorescence labels of any kind. This would be difficult under the traditional approach to training deep learning models, as accounting for all possible experimental configurations would require a prohibitively large and expensive dataset to collect and label. Fortunately, microscope images possess a unique property that may be exploited to substantially reduce this dataset requirement: the channels of microscope images exist as stacks of independent images. This means that a subset of channels from a larger image stack can be assembled to create

Corresponding author: J. Rocheleau (email: jon.rocheleau@utoronto.ca).
an entirely new, representative microscope image. For example, an image stack of a cell composed of channels capturing: a cytoplasmic marker, a membrane marker, a mitochondrial marker, and a brightfield image can be used to simulate a cellular image where only the cytoplasmic marker is present. The ability to create representative image substacks from a larger image stack is in stark contrast to other vision-based image modalities (e.g. object detection using camera footage), where removing a specific color channel would produce an image that is no longer representative of the target data. Here, we use source image stacks composed of three fluorescent labels and brightfield images imaged at seven different focal planes to simulate a wide range of expected experimental images (see Supplementary Fig. S1) to train a robust cell segmentation model. For simplicity, we henceforth refer to the source image stack as the hyper-labeled image stack and subsets of the images used during training as subimage stacks. Beyond reducing the dataset size, this approach to training confers some additional advantages, including the ability to compare different segmentation approaches on an identical dataset. In particular, we use this dataset to explore new approaches to cell segmentation including: the use of out-of-focus brightfield images and the concept of merging fluorescence channels into a single input channel. To keep the implementation practical, our approach uses fewer than 300 labeled cell examples and can be trained in less than a day on a modern GPU.

II. METHODS

A. Dataset Collection

Cells were labeled with three distinct subcellular markers for: the cytoplasm (Turquoise2-tagged Apollo-NADP+ [15]), the membrane (YFP-Mem), and the mitochondrial matrix (Mitotracker Deep-Red FM), and imaged using a three-colour widefield fluorescence microscope from ASI. Additionally, brightfield images were taken of each cell at 7 different focal depths (-10, -5, -3, 0, +3, +5, +10 µm), with 0 µm representing cells in manual focus. Together, these 10-channels were used to form our hyper-labeled image stacks. From these images, 275 fully-labeled cells (cells containing all three fluorescent markers) were manually isolated using a custom Fiji plugin to form our training and validation datasets. Ground-truth segmentation labels were created manually by alternating between the fluorescence and near-focus (-3 to 3 µm) brightfield channels to minimize biasing performance towards either imaging method. This final dataset represents a combination of 106 AD293 and 169 INS1E cells, with an additional 175 cell-free images added to the dataset as negative controls. Of the cellular images, approximately 26% represented isolated cells (i.e. no direct contact with other cells) while the remaining 74% had at least one neighboring cell in the field of view.

B. Model and Training Parameters

Training was performed on a variation of the U-Net model [3], which employs a descending arc (contracting path) to increase feature information followed by an ascending arc (expansion path) to combine feature and spatial information. The model used here was composed of a traditional ResNet34 [16] architecture for the descending arc path and a custom ascending arc that used pixel shuffling during upsampling to reduce checkerboard artifacts [17]. To make use of transfer learning, pretrained weights (provided by [18]) from the ResNet34 model were used for the descending arc while the ascending arc was randomly initialized.

The majority of the hyperparameters used represent best-practice recommendations as described in [18]. However, the learning rate, number of training epochs, and cross entropy weights were determined experimentally. Learning rate was scheduled as a variation of the 1cycle policy [11], [18] (Supplementary Fig. S2a,b). The maximum learning rate was chosen by training the model over 100 iterations while gradually increasing the learning rate from 1×10^{-7} to 1×10^{-1} and recording the training loss. The learning rate chosen was found in the area of the steepest downward slope before loss started to rapidly increase for any of the configurations tested (Supplementary Fig. S2c,d). Based on these results, the maximum learning rate was chosen conservatively as 2×10^{-4} for the first 5 epochs, then increased from 2×10^{-6} to 1×10^{-4} across the network’s parameter groups for the final 100 epochs.

Models were trained using a two-class weighted cross entropy loss:

$$\text{loss}(x, \text{cls}) = \text{weight}[\text{cls}] \left(-x[\text{cls}] + \log \left(\sum_j \exp(x[j]) \right) \right)$$

where \(\text{weight}[\text{cls}]\) and \(x[\text{cls}]\) are the weight and prediction for a particular class, and \(x[j]\) are the predictions for each individual class. The use of cross-entropy loss provides the opportunity to weigh the losses related to the cell or the background differently. Altering the background weight with respect to the cell weight produced conservative segmentations at low values and over-eager segmentations at high values (Supplementary Fig. S2e). Overall accuracy declined in either direction. As many cell masking applications would prefer falling slightly short of the cell boundary (false negative pixels) over surpassing the cell boundary (false positive pixels), a scaling factor between 1 and 0.1 (0.5) was chosen to discourage over-eager segmentation without significantly impacting overall accuracy.

Training and validation sets were divided using a randomized 80:20 split of the complete dataset. To determine how the split between the training and validation set may impact model accuracy, models were trained on all-black images using either a consistent (100 models) or a re-randomized (100 models) training-validation split (Supplemental Fig. S2f-g).

Significant, normally-distributed variability was found in the final training accuracy when the dataset was randomly split. When the dataset was consistently split, the accuracy did not vary. This indicates that it is critical to use identically-split training and validation datasets across each model tested during a single experimental replicate. This also suggests that the relative performance of each model is a more useful metric than an absolute segmentation accuracy percentage. Based on
these findings, splits were kept consistent across models during a run to reduce the impact of subset divisions on relative performance.

C. Data Augmentation

Significant data augmentation was used to keep the dataset relatively small. As outlined in Supplementary Fig. S3, examples of brightfield and fluorescence channels were passed through a variety of transforms including: brightness and contrast, dihedral transforms, image flipping, image jitter, perspective warping, image rotation, skew, and symmetric warping. Parameter ranges for each transform were chosen that produced realistic cell images for both fluorescence and brightfield images. Despite the unnatural appearance, zero-padding was used when necessary to avoid twin-cell artifacts in the ground-truth labels (i.e. the presence of two labeled cells). Data-augmentation beyond squaring using a resize and crop was not applied during validation.

D. Subimage Stack Generation

Training was performed on three-channel subimage stacks assembled from the 10-channel, hyper-labeled image stacks. Creation of these three-channel subimage stacks was performed during training using model-specific loading codes.
These loading codes provided independent, channel-specific instructions to a custom dataloader directing how each of the three channels would be assembled from the source dataset (see Figure 1). The use of loading codes permitted more complex interactions with the source image stack’s channels, providing the dataloader with the following abilities:

- **Simple Loading** – Load a specific channel from the 10-channel source image stack
- **Randomization** – Load a single random channel from a predefined subset of channels
- **Channel Dropout** – Perform a randomized test against a dropout percentage. Load the channel normally if passed; load a blank channel otherwise
- **Merge** – Merge the contents from multiple channels into a single channel before loading
- **Merge Dropout** – Perform a randomized test against a dropout percentage and only include that particular channel in the merge if passed

A complete representation of the loading combinations used can be found in Supplementary Fig. S1.

E. Plotting and Metrics

Accuracy of segmentation models was calculated as the percentage of pixels that were accurately classified as compared to the ground-truth label. Unless otherwise noted, line graphs were plotted using a 10-point moving average for clarity (with empty padding for early epochs) and error bars represent the standard error of the mean. Significance was assessed using a paired t-test.

F. Availability of Code and Dataset

Training code and links to download the dataset are available through Github at: https://github.com/RocheleauLab

III. RESULTS

A. Comparing the performance of common segmentation approaches

Segmentation models were trained using three-channel subimage stacks generated from the 10-channel hyper-labeled image stacks (Fig. 1a and Section II-D). This approach allows a direct comparison of segmentation strategies using a diverse set of source inputs (e.g. label-free segmentation using only brightfield images or fluorescence-based segmentation using a combination of cytoplasmic, membrane and mitochondrial markers; Fig. 1b, c). Generation of subimage stacks in this manner also permits more advanced features such as channel randomization, channel merge, and channel or merge dropout (Fig. 1d-f). In particular, adding a channel dropout rate can be used to simulate varying expression of a particular fluorescence channel across cells (e.g. cells that are variably labeled with a cytoplasmic tag; Fig. 1e). The ability to simulate variable expression is critical for training models where any fluorescence channel may vary across cells, experiment, or even channels. This is particularly true when auxiliary fluorescence signals are used for cell segmentation.

Using this approach, we compared the performance of segmentation models trained on distinct subimage stacks loaded with either: a single fluorescence marker (the cytoplasmic, membrane, mitochondria, and brightfield models), a combination of all three fluorescence markers (the fluorescence model), random channels (the random model), or black channels as a negative control (the ‘all black’ model). Supplementary Fig. S1 provides an example of each subimage stack. Training was performed for 105 epochs, which was sufficient for all models to reach at least 90% of their peak accuracy (Fig. 2a). Segmentation performance of the fluorescence, cytoplasmic and membrane models was significantly better than the other approaches (Fig. 2b). More generally, single-channel fluorescence images performed well when the fluorescence
touched the cell boundary (cytoplasm and membrane, >96%), but poorly when this was not the case (mitochondria, reaching ∼92%). The brightfield model performed only slightly better than the mitochondrial equivalent (reaching ∼93%), but is not influenced by labeling conditions as is the case for the models based on fluorescence markers. To determine how variability in labeling would affect the performance of fluorescence-based models, a channel dropout rate (as outlined in Fig. 1e) was added to each fluorescent channel ranging from 0% to 100% with the latter representing black input channels (Fig. 2c,d). As the level of dropout increased, performance converged to that of the all-black control in all models with the exception of brightfield. This was particularly devastating for models relying on a single fluorescent marker (cytoplasm, membrane, mitochondria), where brightfield performance began to surpass that of the cytoplasmic or membrane models at ∼20% and ∼30%, respectively. In contrast, the use of three distinct fluorescence markers in the fluorescence model allowed it to suffer a dropout rate of ∼50% before performance dipped below that of the brightfield model. These data highlight the value of using specific fluorescent signals to improve segmentation performance as compared to brightfield alone; however, relying exclusively on fluorescence may significantly impact performance when labeling is inconsistent. Furthermore, these data suggest that only certain fluorescent signals offer an improvement over label-free approaches (e.g. membrane and cytoplasmic markers), and that brightfield may be the more effective option in others (e.g. the mitochondria).

B. Improving brightfield performance using Out-of-Focus (OoF) brightfield imaging

Despite the aforementioned advantages of using label-free segmentation, the brightfield segmentation model performed significantly worse than the cytoplasmic, membrane, and three-marker fluorescence models. The brightfield model was particularly poor at distinguishing cell boundaries when cells were highly confluent (Fig. 2e). Examining intensity profiles reveals the likely cause: cell boundaries are much more difficult to discern using brightfield images than their fluorescence counterparts, especially when cells are in close proximity (Fig. 3a). This mirrors human performance, where segmentation of confluent cells was much less accurate in brightfield images than in either cytoplasmic or membrane images (Supplementary Fig S7). As the focal plane shifts creating an out-of-focus (OoF) brightfield image, diffraction patterns begin to occur near the cell boundary. These diffraction patterns serve to either highlight or darken these edges, producing an intensity pattern with either peaks or valleys at the cell boundary (Fig. 3a,b). Supplementing the in-focus brightfield channel with one OoF image above the plane of focus (+3, +5, or +10µm) and one below (-3, -5, or -10µm) slightly improved performance compared to in-focus brightfield model (Fig. 3c,d). However, it was found that the optimal focal distance was cell-type dependent (Supplementary Fig. S6), with thinner AD293 cells performing better at lower offsets and thicker INS1E cells performing best at higher offsets. To account for these differences, a segmentation model (RAND Br A+B) was trained using subimage stacks composed of: one of the lower OoF brightfield channels chosen at random, the in-focus brightfield image, and one of the higher OoF brightfield channels chosen at random. Although this did not result in the best overall performance of the models tested, it performed reasonably well on both cell types (Supplementary Fig S6) presenting a more robust approach to training cells of variable morphologies or heights. These data suggest that using OoF brightfield images provide a method of improving the baseline performance of label-free segmentation models, although care must be taken to account for the range of expected cell thicknesses and confluencies found across samples.

C. Fluorescence Merging as a solution to uneven labeling

Despite the performance advantage afforded by incorporating OoF imaging, peak brightfield performance alone was still significantly below that of the fluorescence, cytoplasm, and membrane models (comparing Fig. 2b to 3d). To combine the performance advantage of fluorescence with the reliability of brightfield under label-free conditions, we explored training segmentation models using combinations of fluorescence and brightfield channels (Fig. 4). For these models, subimages stacks were composed of: one fluorescence channel, one in-focus brightfield channel and one out-of-focus brightfield channel, with the fluorescence channel composed of either an individual channel, or a merge of all the fluorescent channels...
available (see Supplementary Fig. S1 and Fig. 1d-e). In all cases, the introduction of a fluorescence channel either maintained or improved the accuracy of brightfield alone (Fig. 4b), with the addition of a cytoplasmic, membrane, or merged fluorescence channel conferring the largest advantages. The performance of fluorescence-based models (cytoplasm, mitochondria, membrane, fluorescence) were previously found to substantially decrease under variable labeling conditions. To determine whether the inclusion of brightfield channels in the subimage stacks would guard against this effect, models were trained under a range of dropout rates as before. As the rate of dropout was increased, the fluorescence model dropped in performance significantly while the combination models each maintained or improved the accuracy of brightfield alone using low dropout rates had the greatest overall accuracy on well-labeled datasets, they quickly lost accuracy as labeling became more sparse (Fig. 4d). Similarly, the model trained without fluorescence (i.e. a merge dropout rate of 100%) lost performance as labeling was introduced, indicating the presence of novel information was disruptive to the model if not previously encountered. Instead, models trained using a merge dropout rate between 40-60% were the most consistent across the labeling spectrum (Fig. 4e). A closer examination of the segmentation outputs (Fig. 4f) from models trained using a dropout rate of 0%, 60% and 100% revealed that training a model using only one type of source input (i.e. 0% or 100%) obliterated its ability to segment cells when not presented with that same input. These data highlight the importance of maximizing the range of experimental conditions experienced by the model during training.

IV. Discussion

The unique nature of microscope images provides many exciting opportunities for innovation when applying deep learning to cell segmentation. Notable among them is the independence of channels within a microscope image stack, such that representative subimage stacks can be generated from a larger source, or hyper-labeled, image stack (Fig. 1a). Training segmentation models from these subimage stacks confers some key advantages, including the ability to: (i) directly compare segmentation approaches using identical cells (Figs. 1b: 2a,b), (ii) keep dataset requirements small, and (iii) simulate experimental conditions during training (i.e. variable fluorescence labeling, see Figs. 1e,f; 2c,d). Here, we demonstrate these advantages using a dataset comprised of image stacks constructed from three fluorescent tags (cytoplasmic, membrane, and mitochondrial) and seven brightfield images (each at different focal planes) to both compare the relative...
advantages of fluorescence and brightfield-based segmentation approaches, and explore novel strategies. Central to this comparison was the tradeoff between peak segmentation accuracy and consistency.

Fluorescence-based approaches boast strong accuracies for fully-labeled cells (Fig. 2a,b), but performed poorly as labeling became increasingly sparse (Fig. 2c,d). In contrast, brightfield approaches had lower peak accuracy scores, but were label-independent. Improving general performance was therefore accomplished using a two-pronged approach: first, by improving the base performance of brightfield images and second, to make use of fluorescence information when available without relying on it explicitly. Improvements to brightfield performance were accomplished by augmenting brightfield images with out-of-focus (OoF) brightfield channels (Fig. 3), while fluorescence information was added through a bulk merge of all fluorescence signals (Fig. 4). What resulted was a model (named Merge+Br) that maintained performance across a wide range of labeling conditions (Fig. 4a-c). The Merge+Br approach to cell segmentation is particularly appealing as merging all available fluorescence channels renders both training and prediction label-agnostic. In other words, source images with differing numbers of available fluorescence channels can be processed identically during either model training or predictive purposes. These results also serve to highlight the utility of using subimage stacks generated from the larger source image stacks to minimize dataset size requirements and compare approaches. To account for all of the possible labeling combinations tested here without using subimage stacks would not only have required a prohibitively large dataset, but also lost the statistical power gained by comparison strategies on identical cells.

The ability to simulate various labeling conditions using subimage stacks was found to be particularly important when training models that are required to segment a more diverse set of experimental setups. For instance, we found that models trained on perfectly labeled cells boasted the highest accuracies, but were also the quickest to lose performance as labeling became more inconsistent (Fig. 4c). In contrast, models trained on cells with varying degrees of fluorescence labeling (simulated using dropout rates between 40-60%) maintained a more consistent performance across the full range of labeling scenarios (Fig. 4d,e). Although training models in this manner may not produce the highest academic segmentation accuracies, it is critical for segmentation models used in image analysis pipelines where the set of available fluorescent labels may vary considerably across experiments.

A more subtle advantage of collecting hyper-labeled image stacks for training is that they expedite the creation of ground-truth labels. In certain cases, this may even allow ground-truth labeling to surpass human level performance. For instance, segmenting brightfield images of cells in close proximity is difficult for manual operators, but simple when a cytoplasmic or membrane marker is present (see Supplementary Fig. S7). Even if the final objective is to create a label-free segmentation model, imaging cells with a cytoplasmic or membrane marker in addition to the relevant brightfield channels allow more precise ground-truth labels to be created than through the brightfield channels alone. The label-free model can then be generated by training the model using subimage stacks containing only the relevant brightfield channels. By extension, combinations of markers may even be used in conjunction with other algorithmic or deep learning segmentation approaches to automate label generation for larger datasets, whether or not those specific markers will be used when generating the subimage stacks used to train the model.

Retraining segmentation models is necessary to optimize performance based on cell type and microscope setup. For instance, the unique hardware capabilities of a particular imaging setup limit what types of images may be collected; which may preclude specific imaging strategies (e.g. OoF brightfield imaging) while permitting others (e.g. a greater number of fluorescence channels). To that end, we have prepared an annotated Jupyter notebook (see section II-F) detailing the process of dataset collection, ground-truth labeling and model training that requires minimal knowledge of deep learning to implement. For simplicity, many of the parameters used during training (hyperparameters) have been pre-set to reflect current best practices [18] while the remaining hyperparameters (learning rate, data augmentation parameters, class weights) may be optimized using submodules provided within the notebook. When collecting your hyper-labeled image stacks, the major requirement is that the subimage stacks used in training be representative of the expected experimental images. As long as this requirement is met, cells do not need to be imaged under the same constraints as your experiment, opening up many possibilities for imaging that would be impractical from a physiological or a temporal perspective. We provide examples of alternative strategies for single-colour (using spectral separation), or multi-colour (using linear unmixing) imaging in Supplementary Fig. S8. Due to the combined effects of data augmentation and hyperparameter optimization, the dataset requirement to achieve acceptable performance is relatively low. All of our models were trained using a dataset of fewer than 300 cells, which can be manually segmented in fewer than 10 hours. Near-peak performance was achievable using a subset of only 30-60 cells (Supplementary Fig. S4), which is consistent with the datashape of the original U-Net [3]. However, it should be noted that the use of smaller datasets for training does require additional consideration when comparing model performance as segmentation accuracy can vary significantly depending on the training-validation split of the dataset (Supplementary Fig. S2f). Accurate comparisons between models therefore require that datasets be split consistently across all models within a single replicate.

Overall, generating subimage stacks from large, hyper-labeled image stacks provides an effective method of both training robust cell segmentation models and investigating novel segmentation strategies. Beyond what has been explored here, other areas of interest include: the use of larger subimages (i.e. more than three channels), the inclusion of a greater variety of relevant fluorescence markers (e.g. the nucleus, labeled granules, or autofluorescence), as well as other techniques such as channel shuffling and out-of-focus fluorescence imaging. Although we used hyper-labeled datasets to tackle the issue of cell masking, these principles may also be extended to
other cellular analysis tasks such as cell boxing. Future work will explore creating a fully-automated analysis pipeline using these principles (Supplementary Fig. S9).

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and Engineering Research Council of Canada through Discovery (RGPIN-2016-371705) and Research Tool and Instrumentation (RTI-2018-00846) grants, and the Canada Foundation for Innovation Leaders Opportunity Fund. Stipend support was provided to W.D.C. by the Banting and Best Diabetes Centre (BBDC) and the Natural Sciences and Engineering Research Council of Canada (PGSD3-489652-2016), and to A.M.B. by an Ontario Graduate Scholarship (OGS 2018). We thank V. Pal and C. McFaul for technical assistance on the project.

REFERENCES

[1] Fuyong Xing and Lin Yang. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE reviews in biomedical engineering, 9:234–263, 2016.

[2] Alden A Dima, John T Elliott, James J Filliben, Michael Halter, Adele Peskin, Javier Bernal, Marcin Kociokle, Mary C Brady, Hai C Tang, and Anne L Plant. Comparison of segmentation algorithms for fluorescence microscopy images of cells. Cytometry Part A, 79(7):545–559, 2011.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[4] Juan C Caicedo, Jonathan Roth, Allen Goodman, Tim Becker, Kyle W Karhohs, Matthieu Broisin, Molnar Csaba, Claire McQuin, Shantanu Singh, Fabian Theis, et al. Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. BioRxiv, page 335216, 2019.

[5] Yousef Al-Kofahi, Alla Zaltsman, Robert Graves, Will Marshall, and Mirabella Rusu. A deep learning-based algorithm for 2-d cell segmentation in microscopy images. BMC bioinformatics, 19(1):365, 2018.

[6] Thorsten Falk, Dominic Mai, Robert Bensch, Ozgur Cicek, Ahmed Abdulkadir, Yassine Marrakchi, Anton Bohm, Jan Deubner, Zoe Jaccel, Katharina Seiwald, et al. U-net: deep learning for cell counting, detection, and morphometry. Nature methods, 16(1):67, 2019.

[7] Shan E Ahmed Raza, Linda Cheung, David Epstein, Stella Pelengaris, Michael Khan, and Nasir M Rajpoot. Mimo-net: A multi-input multi-output convolutional neural network for cell segmentation in fluorescence microscopy images. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages 337–340. IEEE, 2017.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[11] Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

[12] Ellen C Jensen. Use of fluorescent probes: their effect on cell biology and limitations. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(12):2031–2036, 2012.

[13] Ram Dixit and Richard Cyr. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. The Plant Journal, 36(2):280–290, 2003.

[14] Raphael Alford, Haley M Simpson, Josh Duberman, G Craig Hill, Mikako Ogawa, Celeste Regino, Hisataka Kobayashi, and Peter L Choyke. Toxicity of organic fluorophores used in molecular imaging: literature review. Molecular imaging, 8(6):7290–2009, 2009.