Abstract

Consider a class \mathcal{H} of binary functions $h : X \to \{-1,+1\}$ on a finite interval $X = [0,B] \subset \mathbb{R}$. Define the sample width of h on a finite subset (a sample) $S \subset X$ as $\omega_S(h) \equiv \min_{x \in S} \omega_h(x)$ where $\omega_h(x) = h(x) \max \{a \geq 0 : h(z) = h(x), x-a \leq z \leq x+a\}$. Let \mathcal{S}_ℓ be the space of all samples in X of cardinality ℓ and consider sets of wide samples, i.e., hypersets which are defined as $A_{\beta,h} = \{S \in \mathcal{S}_\ell : \omega_S(h) \geq \beta\}$. Through an application of the Sauer-Shelah result on the density of sets an upper estimate is obtained on the growth function (or trace) of the class $\{A_{\beta,h} : h \in \mathcal{H}\}$, $\beta > 0, i.e., the number of possible dichotomies obtained by intersecting all hypersets with a fixed collection of samples $S \in \mathcal{S}_\ell$ of cardinality m. The estimate is $2 \sum_{i=0}^{\lceil B/2\beta \rceil} (m-\ell)^i$.

Keywords: Binary functions, density of sets, VC-dimension

AMS Subject Classification: 06E30, 68Q32, 68Q25, 03C13, 68R05

1 Overview

Let $B > 0$ and define the domain as $X = [0,B]$. In this paper we consider the class \mathcal{H} of all binary functions $h : X \to \{-1,+1\}$ which have only simple discontinuities, i.e., at any point x the limits $h(x^+) = \lim_{z \to x^+} h(z)$ from the right and similarly from the left $h(x^-)$ exist (but are not necessarily equal). A main theme of our recent work has been to characterize binary functions based on their behavior on a finite subset of X. In ? we showed that the problem of learning binary functions from a finite labeled sample can improve the generalization error-bounds if the learner obtains a hypothesis which in addition to minimizing the empirical sample-error is also 'smooth' around elements of the sample. This notion of smoothness (used also in ??) is based on the simple notion of width of h at x which is defined as

$$\omega_h(x) = h(x) \max \{a \geq 0 : h(z) = h(x), x-a \leq z \leq x+a\}.$$

For a finite subset (also called sample) $S \subset X$ the sample width of h denoted $\omega_S(h)$ is defined as

$$\omega_S(h) \equiv \min_{x \in S} |\omega_h(x)|.$$
This definition of width resembles the notion of sample margin of a real-valued function \(f \) (see for instance ?). We say that a sample \(S \) is wide for \(h \) if the width \(\omega_{S}(h) \) is large. Wide samples implicitly contain more side information for instance about a learning problem. The current paper aims at estimating the complexity of the class of wide samples for functions in \(\mathcal{H} \). This complexity is related to a notion of description complexity and knowing it enables to compute the efficiency of information that is implicit in samples for learning (see ?).

2 Introduction

For any logical expression \(A \) denote by \(\mathbb{I}\{A\} \) the indicator function which takes the value 1 or 0 whenever the statement \(A \) is true or false, respectively. Let \(\ell \) be any fixed positive integer and define the space \(S_\ell \) of all samples \(S \subset X \) of size \(\ell \). On \(S_\ell \) consider sets of wide samples, i.e.,

\[
A_{\beta,h} = \{ S \in S_\ell : \omega_{S}(h) \geq \beta \}, \quad \beta > 0.
\]

We refer to such sets as **hypersets**. It will be convenient to associate with these sets the indicator functions on \(S_\ell \) which are denoted as

\[
h'_{\beta,h}(S) = \mathbb{I}_{A_{\beta,h}}(S).
\]

These are referred to as **hyperconcepts** and we may write \(h' \) for brevity. For any fixed width parameter \(\gamma > 0 \) define the hyperclass

\[
\mathcal{H}'_{\gamma} = \{ h'_{\gamma,h} : h \in \mathcal{H} \}.
\]

In words, \(\mathcal{H}'_{\gamma} \) consists of all sets of subsets \(S \subset X \) of cardinality \(\ell \) on which the corresponding binary functions \(h \) are wide by at least \(\gamma \).

The aim of the paper is to compute the complexity of the hyperclass \(\mathcal{H}'_{\gamma} \) that corresponds to the class \(\mathcal{H} \). Since the domain \(X \) is infinite then so is \(\mathcal{H}'_{\gamma} \) hence one cannot simply measure its cardinality. Instead we apply a standard combinatorial measure of the complexity of a family of sets as follows: suppose \(Y \) is a general domain and \(\mathcal{G} \) is an infinite class of subsets of \(Y \). For any subset \(S = \{y_1, \ldots, y_n\} \subset Y \) let

\[
\Gamma_{\mathcal{G}}(S) = |\mathcal{G}|^{|S|} \quad (2)
\]

where \(\mathcal{G}|_S = \{\mathbb{I}_{G}(y_1), \ldots, \mathbb{I}_{G}(y_n) : G \in \mathcal{G}\} \). The *growth function* (see for instance ?) is defined as

\[
\Gamma_{\mathcal{G}}(n) = \max_{\{S : S \subset Y, |S| = n\}} \Gamma_{\mathcal{G}}(S).
\]

It measures the rate in which the number of dichotomies obtained by intersecting subsets \(G \) of \(\mathcal{G} \) with a finite set \(S \) increases as a function of the cardinality \(n \) of \(S \) in the maximal case (it is also called the trace of \(\mathcal{G} \) in ?).

Since we are interested in hypersets as opposed to simple sets \(G \) (as above) then we consider the trace on a finite collection \(\zeta \subset S_\ell \) of samples (instead of a finite sample \(S \) as above). It will be convenient to define the cardinality of such a collection as the cardinality of the union of its component sets, i.e., for any given finite collection \(\zeta \subset S_\ell \) let

\[
|\zeta| = \left| \bigcup_{S : S \in \zeta} S \right| \quad (3)
\]
and we use \(m \) to denote a possible value of \(|\zeta|\). As a measure of complexity of \(\mathcal{H}_\gamma \) we compute the growth as a function of \(m \), i.e.

\[
\Gamma_{\mathcal{H}_\gamma}(m) = \max_{\zeta \subseteq S_\ell, |\zeta| = m} \Gamma_{\mathcal{H}_\gamma}(\zeta).
\]

3 Main result

Let us state the main result of the paper.

Theorem 1 Let \(\ell, m > 0 \) be finite integers and \(B > 0 \) a finite real number. Let \(\mathcal{H} \) be the class of binary functions on \([0, B]\) (with only simple discontinuities). For a given width parameter value \(\gamma > 0 \), the corresponding hyperclass \(\mathcal{H}_\gamma \) on the space \(S_\ell \) has a growth which is bounded as

\[
\Gamma_{\mathcal{H}_\gamma}(m) \leq 2 \left(\frac{2[2^{B/(2\gamma)}]}{(m - \ell)} \right).
\]

Remark 1 For \(m > \ell + B/\gamma \), the following simpler bound holds

\[
\Gamma_{\mathcal{H}_\gamma}(m) \leq 2 \left(\frac{e\gamma(m - \ell)}{B} \right).
\]

Before proving this result we need some additional notation. We denote by \(\langle a, b \rangle \) a generalized interval set of the form \([a, b], (a, b), [a, b) \) or \((a, b]\). For a set \(R \) we write \(I_R(x) \) to represent the indicator function of the statement \(x \in R \). In case of an interval set \(R = \langle a, b \rangle \) we write \(I_{\langle a, b \rangle} \).

Proof: Any binary function \(h \) may be represented by thresholding a real-valued function \(f \) on \(X \), i.e., \(h(x) = \text{sgn}(f(x)) \) where for any \(a \in \mathbb{R} \), \(\text{sgn}(a) = +1 \) or \(-1\) if \(a > 0 \) or \(a \leq 0 \), respectively. The idea is to choose a class \(\mathcal{F} \) of real-valued functions \(f \) which is rich enough (it has to be infinite since there are infinitely many binary functions on \(X \)) but is as simple as we can find. This is important since, as we will show, the growth function of \(\mathcal{H}_\gamma \) is bounded from above by the complexity of a class that is a variant of \(\mathcal{F} \).

We start by constructing such an \(\mathcal{F} \). For a binary function \(h \) on \(X \) consider the corresponding set sequence \(\{R_i\}_{i=1,2,...} \) which satisfies the following properties: (a) \([0, B] = \bigcup_{i=1,2,...} R_i \) and for any \(i \neq j \), \(R_i \cap R_j = \emptyset \), (b) \(h \) alternates in sign over consecutive sets \(R_i, R_{i+1} \), (c) \(R_i \) is an interval set \(\langle a, b \rangle \) with possibly \(a = b \) (in which case \(R_i = \{a\} \)). Hence \(h \) has the following general form

\[
h(x) = \pm \sum_{i=1,2,...} (-1)^i I_{R_i}(x).
\]

Thus there are exactly two functions \(h \) corresponding uniquely to each sequence of sets \(R_i \), \(i = 1, 2, \ldots, \) unless explicitly specified, the end points of \(X = [0, B] \) are not considered roots of \(h \), i.e., the default behavior is that outside \(X \), i.e., \(x < 0 \) or \(x > B \), the function ‘continues’ with the same value it takes at the endpoint \(h(0) \) or \(h(B) \), respectively. Now,
associate with the set sequence \(R_1, R_2, \ldots \) the unique non-decreasing sequence of right-endpoints \(a_1, a_2, \ldots \) which define these sets (the sequence may have up to two consecutive repetitions except for 0 and \(B \)) according to

\[
R_i = (a_{i-1}, a_i), \quad i = 1, 2, \ldots \tag{5}
\]

with the first left end point being \(a_0 = 0 \). Note that different choices for \(\langle a, b \rangle \) (see earlier definition of a generalized interval \(\langle a, b \rangle \)) give different sets \(R_i \) and hence different functions \(h \). For instance, suppose \(X = [0, 7] \) then the following set sequence \(R_1 = [0, 2.4), R_2 = [2.4, 3.6), R_3 = [3.6, 3.6] = \{3.6\}, R_4 = (3.6, 7] \) has a corresponding end-point sequence \(a_1 = 2.4, a_2 = 3.6, a_3 = 3.6, a_4 = 7 \). Note that a singleton set introduces a repeated value in this sequence. As another example consider \(R_1 = [0, 0] = \{0\}, R_2 = (0, 4.1), R_3 = [4.1, 7] \) with \(a_1 = 0, a_2 = 4.1, a_3 = 7 \).

Next, define the corresponding sequence of midpoints

\[
\mu_i = \frac{a_i + a_{i+1}}{2}, \quad i = 1, 2, \ldots
\]

Define the continuous real-valued function \(f : X \to [-B, B] \) that corresponds to \(h \) (via the end-point sequence) as follows:

\[
f(x) = \pm \sum_{i=1,2,\ldots} (-1)^{i+1} (x - a_i) I_{[\mu_{i-1}, \mu_i]} \tag{6}
\]

where we take \(\mu_0 = 0 \) (see for instance, Figure 1). Clearly, the value \(f(x) \) equals the width \(\omega_h(x) \). Note that for a fixed sequence of endpoints \(a_i, i = 1, 2, \ldots \) the function \(f \) is invariant to the type of intervals \(R_i = (a_{i-1}, a_i) \) that \(h \) has, for instance, the set sequence \([0, a_1), [a_1, a_2), [a_2, a_3], [a_3, B] \) and the sequence \([0, a_1], (a_1, a_2], (a_2, a_3], (a_3, B] \) yield different binary functions \(h \) but the same width function \(f \). For convenience, when \(h \) has a finite

![Figure 1: \(h \) (solid) and its corresponding \(f \) (dashed) on \(X = [0, B] \) with \(B = 800 \)](image-url)
number \(n \) of interval sets \(R_i \), then the sum in (4) has an upper limit of \(n \) and we define \(a_n = B \). Similarly, the sum in (6) goes up to \(n-1 \) and we define \(\mu_{n-1} = B \). Let us denote by
\[
F_+ = \{|f| : f \in F\}.
\]
(7)
It follows that the hyperclass \(\mathcal{H}_\gamma' \) may be represented in terms of the class \(F_+ \) as follows: define the hypersets
\[
A_{\beta,f} = \{ S \in \mathcal{S}_\ell : f(x) \geq \beta, x \in S \}, \quad \beta > 0, f \in F_+
\]
with corresponding hyperconcepts \(f'_{\gamma,f} = \mathbb{I}_{A_{\beta,f}}(S) \), let
\[
F_\gamma' = \{ f'_{\gamma,f} : f \in F_+ \}
\]
and
\[
\mathcal{H}_\gamma' = F_\gamma'.
\]
(8)
Hence, it suffices to compute the growth function \(\Gamma_{F_\gamma'}(m) \).

Let us now begin to analyze the hyperclass \(F_\gamma' \). By definition, \(F_\gamma' \) is a class of indicator functions of subsets of \(\mathcal{S}_\ell \). Denote by \(\zeta_N \subset \mathcal{S}_\ell \) a collection of \(N \) such subsets. By a generalized collection we will mean a collection of subsets \(S \subset X \) with cardinality \(|S| \leq \ell\). Henceforth we fix a value \(m \) and consider only collections \(\zeta_N \) such that \(|\zeta_N| = m \)
(9)
where recall the definition of cardinality is according to (3). Let us denote the individual components of \(\zeta_N \) by \(S^{(j)} \in \mathcal{S}_\ell, 1 \leq j \leq N \) hence
\[
\zeta_N = \{ S^{(1)}, \ldots, S^{(N)} \}.
\]
The growth function may be expressed as
\[
\Gamma_{F_\gamma'}(m) = \max_{\zeta_N \subset \mathcal{S}_\ell, |\zeta_N| = m} \Gamma_{F_\gamma'}(\zeta_N) \equiv \max_{\zeta_N \subset \mathcal{S}_\ell, |\zeta_N| = m} \left| \left\{ [f'(S^{(1)}), \ldots, f'(S^{(N)})] : f' \in F_\gamma' \right\} \right|.
\]
(10)
Denote by \(S^{(j)}_i \) the \(i \)th element of the sample \(S^{(j)} \) based on the ordering of the elements of \(S^{(j)} \) (which is induced by the ordering on \(X \)). Then
\[
\Gamma_{F_\gamma'}(\zeta_N)
= \left| \left\{ \left[\mathbb{I} \left(\min_{x \in S^{(1)}} f(x) > \gamma \right), \ldots, \mathbb{I} \left(\min_{x \in S^{(N)}} f(x) > \gamma \right) \right] : f \in F_+ \right\} \right|
= \left| \left\{ \prod_{j=1}^{\ell} \mathbb{I} \left(f(S^{(1)}_j) > \gamma \right), \ldots, \prod_{j=1}^{\ell} \mathbb{I} \left(f(S^{(N)}_j) > \gamma \right) : f \in F_+ \right\} \right|.
\]
(11)
Order the elements in each component of \(\zeta_N \) by the underlying ordering on \(X \). Then put the sets in lexical ordering starting with the first up to the \(\ell \)th element. For instance, suppose \(m = 7, N = 3, \ell = 4 \) and
\[
\zeta_3 = \{ \{2, 8, 9, 10\}, \{2, 5, 8, 9\}, \{3, 8, 10, 13\} \}
\]
then the ordered version is
\[\{\{2, 5, 8, 9\}, \{2, 8, 9, 10\}, \{3, 8, 10, 13\}\}. \]

For any \(x \in X \) let
\[\theta f^j(x) \equiv \mathbb{I}(f(x) > \gamma) \] \hspace{1cm} (12)

(we will sometimes write \(\theta_f(x) \) for short). For any sample \(S^{(i)} \) of cardinality \(|S^{(i)}| \geq 1 \) let
\[e_{S^{(i)}}(f) = \prod_{j=1}^{|S^{(i)}|} \theta_f(S^{(i)}_j). \]

Then for \(\zeta_N \) we denote by
\[v_{\zeta_N}(f) \equiv [e_{S^{(1)}}(f), \ldots, e_{S^{(N)}}(f)] \]
where for brevity we sometimes write \(v(f) \). Let
\[V_{\mathcal{F}^+}(\zeta_N) = \{v_{\zeta_N}(f) : f \in \mathcal{F}^+\} \]
or simply \(V(\zeta_N) \). Then from (11) we have
\[\Gamma_{\mathcal{F}^+}(\zeta_N) = |V_{\mathcal{F}^+}(\zeta_N)|. \] \hspace{1cm} (13)

Denote by \(X' \) the union
\[\bigcup_{j=1}^N S^{(j)} = X' = \{x_i\}_{i=1}^m \subset X \] \hspace{1cm} (14)
and take the elements to be ordered as \(x_i < x_{i+1}, 1 \leq i \leq m - 1 \). The dependence of \(X' \) on \(\zeta_N \) is left implicit. We will need the following procedure which maps \(\zeta_N \) to a generalized collection.

Procedure G: Given \(\zeta_N \) construct \(\zeta_{\hat{N}} \) as follows: Let \(\hat{S}^{(1)} = S^{(1)} \). For any \(2 \leq i \leq N \), let
\[\hat{S}^{(i)} = S^{(i)} \setminus \bigcup_{k=1}^{i-1} \hat{S}^{(k)}. \]

Let \(\hat{N} \) be the number of non-empty sets \(\hat{S}^{(i)} \).

Note that \(\hat{N} \) may be smaller than \(N \) since there may be an element of \(\zeta_N \) which is contained in the union of other elements of \(\zeta_N \). It is easy to verify by induction that the sets of \(\zeta_{\hat{N}} \) are mutually exclusive and their union equals that of the original sets in \(\zeta_N \). We have the following:

Claim 1 \(|V_{\mathcal{F}^+}(\zeta_N)| \leq |V_{\mathcal{F}^+}(G(\zeta_N))| \).
For any Claim 2

We now have the following:

$$X$$ satisfies $$\ell$$ follows: let $$Q$$

Proof: Let $$\hat{G}$$ be the generic collection of sets in $$A$$.

The same argument holds also for multiple $$A_1, \ldots, A_k$$, $$B$$ and $$C = B \setminus \bigcup_{i=1}^k A_i$$. Let $$\hat{\zeta} = G(\hat{\zeta})$$. We now apply this to the following:

$$|\{|e_{S^{(1)}}, e_{S^{(2)}}, e_{S^{(3)}}, \ldots, e_{S^{(N)}} : f \in \mathcal{F}_+|\} = |\{|e_{S^{(1)}}, e_{S^{(2)}}, e_{S^{(3)}}, \ldots, e_{S^{(N)}} : f \in \mathcal{F}_+|\} = |\{|e_{S^{(1)}}, e_{S^{(2)}}, e_{S^{(3)}}, \ldots, e_{S^{(N)}} : f \in \mathcal{F}_+|\} = 15$$

where $\{15\}$ follows since using $$G$$ we have $$\hat{S}^{(1)} = S^{(1)}$$, $\{16\}$ follows by applying the above with $$A = \hat{S}^{(1)}$$, $$B = S^{(2)}$$ and $$C = \hat{S}^{(2)}$$. $\{17\}$ follows by letting $$A_1 = \hat{S}^{(1)}$$, $$A_2 = S^{(2)}$$, $$B = S^{(3)}$$, and $$C = \hat{S}^{(3)}$$. Finally, removing those sets $$\hat{S}^{(i)}$$ which are possibly empty leaves $$\hat{N}$$-dimensional vectors consisting only of the non-empty sets so $\{18\}$ becomes

$$\Gamma_G(\hat{\zeta}) \leq |V_{\mathcal{F}_+}(G(\hat{\zeta}))|.$$

Denote by $$N^* = m - \ell + 1$$ and define the following procedure which maps a generalized collection of sets in $$X$$ to another.

Procedure Q: Given a generalized collection $$\zeta_N = \{S^{(i)}\}_{i=1}^N \subset X$$. Construct $$\zeta_{N^*}$$ as follows: let $$Y = \bigcup_{i=2}^N S^{(i)}$$ and let the elements in $$Y$$ be ordered according to their ordering on $$X'$$ (we will refer to them as $$y_1, y_2, \ldots$$). Let $$S^{(1)} = S^{(1)}$$. For $$2 \leq i \leq m - \ell + 1$$, let $$S^{(i)} = \{y_{i-1}\}$$.

We now have the following:

Claim 2 For any $$\zeta_N \subset S_\ell$$ with $$|\zeta_N| = m$$, then

$$|V_{\mathcal{F}_+}(G(\zeta_N))| \leq |V_{\mathcal{F}_+}(Q(G(\zeta_N)))|.$$

Proof: Let $$\hat{\zeta} = Q(G(\zeta_N))$$ and as before $$\hat{\zeta} = G(\hat{\zeta})$$. Note that by definition of Procedure $$Q$$, it follows that $$\hat{\zeta}$$ consists of $$\hat{N} = N^*$$ non-overlapping sets, the first $$\hat{S}^{(1)}$$ having cardinality $$\ell$$ and $$\hat{S}^{(i)}$$, $$2 \leq i \leq \hat{N}$$, each having a single distinct element of $$X'$$. Their union satisfies $$\bigcup_{i=1}^{\hat{N}} S^{(i)} = X'$$.

7
Consider the sets $V_{\mathcal{F}_+}(\zeta_N)$, $V_{\mathcal{F}_+}(\zeta_N)$ and denote them simply by \hat{V} and $\hat{\hat{V}}$. For any $\hat{v} \in \hat{V}$ consider the following subset of \mathcal{F}_+,

$$
B(\hat{v}) = \{ f \in \mathcal{F}_+ : \hat{v}(f) = \hat{v} \}.
$$

We consider two types of $\hat{v} \in \hat{V}$. The first does not have the following property: there exist functions $f_\alpha, f_\beta \in B(\hat{v})$ with $\theta_f^\alpha(x) \neq \theta_f^\beta(x)$ for at least one element $x \in X'$. Denote by $\theta_f^\gamma \equiv [\theta_f^\gamma(x_1), \ldots, \theta_f^\gamma(x_m)]$. Then in this case all $f \in B(\hat{v})$ have the same $\theta_f^\gamma = \hat{\theta}$, where $\hat{\theta} \in \{0, 1\}^m$. This implies that

$$
eq \hat{v}_1$$

while for $2 \leq j \leq \hat{N}$ we have

$$
eq \hat{v}_k(j)$$

where $k : [N^*] \rightarrow [m]$ maps from the index of a (singleton) set $\hat{S}^{(j)}$ to the index of an element of X' and $\theta_{k(j)}$ denotes the $k(j)$th component of $\hat{\theta}$. Hence it follows that

$$
|\{B(\hat{v})\}(\zeta_N)| = |\{B(\hat{v})\}(\zeta_N)|.
$$

Let the second type of \hat{v} satisfy the complement condition, namely, there exist functions $f_\alpha, f_\beta \in B(\hat{v})$ with $\theta_f^\alpha(x) \neq \theta_f^\beta(x)$ for at least one point $x \in X'$. If such x is an element of $\hat{S}^{(i)}$ then the first part of the argument above holds and we still have

$$
|\{B(\hat{v})\}(\zeta_N)| = |\{B(\hat{v})\}(\zeta_N)|.
$$

If however there is also such an x in some set $\hat{S}^{(j)}$, $2 \leq j \leq \hat{N}$ then since the sets $\hat{S}^{(i)}$, $2 \leq i \leq \hat{N}$ are singletons then there exists some $\hat{S}^{(i)} \subseteq \hat{S}^{(j)}$ with

$$
eq \hat{v}_\alpha.$$

Hence for this second type of \hat{v} we have

$$
|\{B(\hat{v})\}(\zeta_N)| \geq |\{B(\hat{v})\}(\zeta_N)|.
$$

Combining the above, then (20) holds for any $\hat{v} \in \hat{V}$.

Now, consider any two distinct $\hat{v}_\alpha, \hat{v}_\beta \in \hat{V}$. Clearly, $B(\hat{v}_\alpha) \cap B(\hat{v}_\beta) = \emptyset$ since every f has a unique $\hat{v}(f)$. Moreover, for any $f_\alpha \in B(\hat{v}_\alpha)$ and $f_\beta \in B(\hat{v}_\beta)$ we have $\hat{v}(f_\alpha) \neq \hat{v}(f_\beta)$ for the following reason: there must exist some set $\hat{S}^{(i)}$ and a point $x \in \hat{S}^{(i)}$ such that $\theta_f^\alpha(x) \neq \theta_f^\beta(x)$ (since $\hat{v}_\alpha \neq \hat{v}_\beta$). If $i = 1$ then they must differ on $\hat{S}^{(1)}$, i.e., $e_{\hat{S}^{(1)}}(f_\alpha) \neq e_{\hat{S}^{(1)}}(f_\beta)$. If $2 \leq i \leq \hat{N}$, then such an x is in some set $\hat{S}^{(j)} \subseteq \hat{S}^{(i)}$ where $2 \leq j \leq \hat{N}$ and therefore $e_{\hat{S}^{(j)}}(f_\alpha) \neq e_{\hat{S}^{(j)}}(f_\beta)$. Hence no two distinct $\hat{v}_\alpha, \hat{v}_\beta$ map to the same \hat{v}. We therefore have

$$
|\{V_{\mathcal{F}_+}(\zeta_N)| = \sum_{\hat{v} \in \hat{V}} |\{B(\hat{v})\}(\zeta_N)|
\leq \sum_{\hat{v} \in \hat{V}} |\{B(\hat{v})\}(\zeta_N)|
= |\{V_{\mathcal{F}_+}(\zeta_N)|
$$

8

20
where (21) follows from (20) which proves the claim. \(\square\)

Note that by construction of Procedure \(Q\), the dimensionality of the elements of \(V_{\mathcal{F}^+}(Q(G(\zeta_N)))\) is \(N^*\), i.e., \(m - \ell + 1\), which holds for any \(\zeta_N\) (even maximally overlapping) and \(X'\) as defined in (9) and (14). Let us denote by \(\zeta_{N^*}\) any set obtained by applying Procedure \(G\) on any collection \(\zeta_N\) followed by Procedure \(Q\), i.e.,

\[
\zeta_{N^*} = \left\{ S^{(1)}, S^{(2)}, \ldots, S^{(N^*)} \right\}
\]

with a set \(S^{(1)} \subset X'\) of cardinality \(\ell\) and

\[
S^{(k)} = \{x_{ik}\}, \text{ where } x_{ik} \in X' \setminus S^{(1)}, \quad k = 2, \ldots, N^*.
\]

Hence we have

\[
\max_{\zeta_N \subseteq S, |\zeta_N| = m} \Gamma_{\mathcal{F}^+}(\zeta_N) \leq \max_{\zeta_{N^*} \subseteq S, |\zeta_{N^*}| = m} |V_{\mathcal{F}^+}(Q(G(\zeta_N)))| \leq \max_{\zeta_{N^*} \subseteq S, |\zeta_{N^*}| = m} |V_{\mathcal{F}^+}(\zeta_{N^*})| \tag{22}
\]

where (22) follows from (11), (13) and Claims 1 and 2 while (23) follows by definition of \(\zeta_{N^*}\). Now,

\[
|V_{\mathcal{F}^+}(\zeta_{N^*})| = |\{[e_{S^{(1)}(f)}, \ldots, e_{S^{(N^*)}}(f)] : f \in \mathcal{F}_+\}| \leq 2 |\{[e_{S^{(2)}(f)}, \ldots, e_{S^{(N^*)}}(f)] : f \in \mathcal{F}_+\}| \tag{24}
\]

where (24) follows trivially since \(e_{S^{(1)}}(f)\) is binary. So from (23) we have

\[
\max_{\zeta_N \subseteq S, |\zeta_N| = m} \Gamma_{\mathcal{F}^+}(\zeta_N) \leq 2 \max_{\zeta_{N^*} \subseteq S, |\zeta_{N^*}| = m} \left| \left\{ [\theta^+_f(x_1), \ldots, \theta^+_f(x_{m-\ell})] : f \in \mathcal{F}_+ \right\} \right| \tag{25}
\]

where \(x_1, \ldots, x_{m-\ell}\) run over any \(m - \ell\) points in \(X\). Define the following infinite class of binary functions on \(X\) by

\[
\Theta^+_{\mathcal{F}_+} = \{ \theta^+_f(x) : f \in \mathcal{F}_+ \}
\]

and for any finite subset

\[
X'' = \{x_1, \ldots, x_{m-\ell}\} \subset X
\]

let

\[
\theta^+_f(X'') = [\theta^+_f(x_1), \ldots, \theta^+_f(x_{m-\ell})]
\]

and

\[
\Theta^+_{\mathcal{F}_+}(X'') = \{ \theta^+_f(X'') : f \in \mathcal{F}_+ \}.
\]

We proceed to bound \(|\Theta^+_{\mathcal{F}_+}(X'')|\).

The class \(\Theta^+_{\mathcal{F}_+}\) is in one-to-one correspondence with a class \(C^+_f\) of sets \(C_f \subset X\) which are defined as

\[
C_f = \{ x : \theta^+_f(x) = 1 \}, \quad f \in \mathcal{F}_+.
\]
We claim that any such set C_f equals the union of at most $K \equiv \lfloor B/(2\gamma) \rfloor$ intervals. To see this, note that based on the general form of $f \in F_+$ (see (6) and (7)) in order for $f(x) > \gamma$ for every x in an interval set $\mathcal{I} \subset X$ then \mathcal{I} must be contained in an interval set of the form (5) and of length at least 2γ. Hence for any $f \in F_+$ the corresponding set C_f is comprised of no more than K distinct intervals as \mathcal{I}. Hence the class $C^f_{\mathcal{F}_+}$ is a subset of the class C_K of all sets that are comprised of the union of at most K subsets of X. A class H is said to \emph{shatter} A if $|\{h \upharpoonright A : h \in H\}| = 2^k$. The Vapnik-Chervonenkis dimension of H, denoted as $VC(H)$, is defined as the cardinality of the largest set shattered by \mathcal{H}. It is easy to show that the VC-dimension of C_K is $VC(C_K) = 2K$. Hence it follows from the Sauer-Shelah lemma (see ?) that the growth of $C^f_{\mathcal{F}_+}$ on any finite set $X'' \subset X$ of cardinality $m - \ell$ (see (2)) satisfies

$$\Gamma_{C^f_{\mathcal{F}_+}}(X'') \leq \sum_{i=0}^{2K} \binom{m - \ell}{i}.$$

Since $|\Theta^f_{\mathcal{F}_+}(X'')| = \Gamma_{C^f_{\mathcal{F}_+}}(X'')$ then from (8) and (25) it follows that

$$|\Gamma_{\mathcal{H}^*}(m)| \leq 2^{2\lfloor B/(2\gamma) \rfloor} \sum_{i=0}^{m - \ell} \binom{m - \ell}{i}$$

which proves the statement of the theorem.\hfill \square