Measurement of Differential Branching Fractions of Inclusive $B \to X_u \ell^+ \nu_\ell$ Decays

L. Cao,¹,², * W. Sutcliffe,¹ R. Van Tonder,¹ F. U. Bernlochner,¹,† I. Adachi,¹,¹⁸,¹⁴ H. Aihara,¹³ D. M. Asner,⁴ T. Aushev,¹⁰ V. Babu,² S. Bahinipati,²⁴ P. Behera,²⁶ K. Belous,³⁰ J. Bennett,⁵⁴ M. Bessner,¹⁷ T. Bilka,⁶ J. Biswal,³⁵ A. Bobrov,⁵,⁶³ M. Braeck,⁵¹,³⁵ P. Branchini,³² T. E. Browder,¹ A. Budano,³² M. Campajola,³¹,³⁶ D. Červenkov,⁶ M.-C. Chang,¹⁰ P. Chang,⁵⁹ B. G. Cheon,¹⁶ K. Chilikin,⁴⁵ H. E. Cho,¹⁶ K. Cho,⁴⁰ S.-J. Cho,⁹⁰ Y. Choi,⁷⁶ S. Choudhury,²⁵ D. Cinabro,⁸⁸ S. Cunliffe,² T. Czank,³⁷ N. Dash,²⁶ G. De Pietro,³² R. Dhamija,²⁵ F. Di Capua,³¹,⁵⁶ J. Dingfelder,¹ Z. Doležal,¹⁶ T. V. Dong,¹¹ S. Dubey,¹⁷ D. Epifanov,⁵,⁶³ T. Ferber,² D. Ferlewicz,⁵³ A. Frey,¹³ B. G. Fulsom,⁶⁵ R. Garg,⁶⁶ V. Gaur,⁸⁷ N. Gabyshnev,⁵,⁶³ A. Garmash,⁵,⁶³ A. Giri,²⁵ P. Goldenzweig,³⁶ T. Gu,⁶⁸ K. Gudkova,⁵,⁶³ S. Halder,⁷⁸ T. Hara,¹⁸,¹⁴ O. Hartbrich,¹⁷ K. Hayasaka,²² M. Hernandez Villanueva,² W.-S. Hou,⁵⁹ C.-L. Hsu,⁷⁷ K. Inami,⁵⁵ A. Ishikawa,¹⁸,¹⁴ R. Itoh,¹⁸,¹⁴ M. Iwasaki,⁶⁴ W. W. Jacobs,²⁷ E.-J. Jiang,¹⁵ S. Jia,¹¹ Y. Jin,⁸³ K. K. Joo,⁷ J. Kahn,³⁶ K. H. Kang,⁴³ H. Kichimi,¹⁸ C. Kiesling,⁵² C. H. Li,⁸ H. Kishima,⁴⁵,¹⁰ Y. Kishimoto,¹¹ H. Kuno,⁸ K. Kurokawa,⁴⁵ T. Kuhr,⁴⁸ K. Kubota,⁵⁸ M. Kumar,⁵⁰ R. Kumar,⁶⁹ K. Kumara,⁸⁸ A. Kuzmin,⁵,⁶³ Y.-J. Kwon,⁹⁰ S. C. Lee,⁴³ C. H. Li,⁴⁶ J. Li,⁴³ L. K. Li,⁸ Y. B. Li,⁶⁷ L. Li Gioi,⁵² J. Libby,²⁶ K. Lieret,⁴⁸ D. Liventsev,⁸⁸,¹⁸ C. MacQueen,⁵³ M. Masuda,⁸²,⁷⁰ M. Merola,³¹,⁵⁶ F. Metzner,³⁶ K. Miyabayashi,⁵⁷ R. Mizuk,⁴⁵,²⁰ G. B. Mohanty,⁷⁸ S. Mohanty,⁷⁸,⁸⁶ M. Mrvar,²⁹ M. Nakao,¹⁸,¹⁴ A. Natochii,¹⁷ L. Nayak,²⁵ M. Niiyama,⁴² N. K. Nisar,⁴ S. Nishida,¹⁸,¹⁴ K. Nishimura,¹⁷ S. Ogawa,⁸⁰ H. Ono,⁶¹,⁶² Y. Onuki,⁸³ P. Oskin,⁴⁵ G. Pakhlova,²⁰,⁴⁵ S. Pardi,³¹ H. Park,⁴³ S.-H. Park,¹⁸ A. Passeri,³² S. Patra,²³ S. Paul,⁷⁹,⁵² T. K. Pedlar,⁴⁹ L. E. Piilonen,⁸⁷ T. Podobnik,⁴⁷,³⁵ V. Popov,²⁶ E. Prencipe,²¹ M. T. Prim,¹ M. Röhrken,² A. Rostomyan,² N. Rout,²⁶ M. Rozanska,⁴⁰ G. Russo,⁵⁰ D. Sahoo,⁷⁸ S. Sandilya,²⁵ A. Sangal,⁸ L. Santelj,⁴⁷,³⁵ T. Sanuki,⁸¹ V. Savinov,⁶⁸ G. Schnell,³² J. Schneuer,¹⁷ C. Schwanda,²⁹ A. J. Schwartz,⁸ Y. Seino,⁶² K. Senyo,⁸⁹ M. E. Sevior,⁵³ M. Shapkin,³⁰ C. Sharma,⁵⁰ C. P. Shen,¹¹ J.-G. Shiu,⁵⁹ B. Shwartz,⁵,⁶³ F. Simon,⁵² A. Sokolov,³⁰ E. Soloviev,⁴⁰ M. Starić,³⁵ J. F. Strube,⁵⁵ M. Sumihama,¹² T. Sumiyoshi,⁸⁵ M. Takizawa,⁷⁴,¹⁹,⁷¹ U.Tamponi,⁵³ K. Tanida,³⁴ Y. Tao,⁹ F. Tencini,² K. Trefels,⁴⁴ M. Uchida,⁸⁴ T. Ugly,⁴⁵,²⁰ S. Uno,¹⁸,¹⁴ P. Urquijo,⁵¹ S. E. Vahsen,¹⁷ G. Varner,¹⁷ K. E. Varvell,¹⁷ E. Waheed,¹⁸,¹⁷ C. H. Wang,⁵⁸ E. Wang,⁶⁸ M.-Z. Wang,⁵⁹ P. Wang,²⁸ X. L. Wang,¹¹ M. Watanabe,⁶² S. Watanuki,⁴⁴ O. Werbycka,⁶⁰ E. Won,⁴¹ B. D. Yabsley,⁷⁷ W. Yan,⁷² S. B. Yan,⁴¹ H. Ye,² J. H. Yin,⁴¹ Z. P. Zhang,⁷² V. Zhilich,⁵,⁶³ and V. Zhukova⁵⁵ (The Belle Collaboration)

¹University of Fribourg, 5011 Fribourg, Switzerland
²Deutsches Elektronen–Synchrotron, 22607 Hamburg, Germany
³Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
⁴Brookhaven National Laboratory, Upton, New York 11973
⁵Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
⁶Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
⁷Chonnam National University, Gwangju 61186
⁸University of Cincinnati, Cincinnati, Ohio 45221
⁹University of Florida, Gainesville, Florida 32611
¹⁰Department of Physics, Fu Jen Catholic University, Taipei 24205
¹¹Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
¹²Gifu University, Gifu 501-1193
¹³II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
¹⁴SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
¹⁵Gyeongsang National University, Jinju 52828
¹⁶Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
¹⁷University of Hawaii, Honolulu, Hawaii 96822
¹⁸High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
¹⁹J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
²⁰National Research University Higher School of Economics, Moscow 111454
²¹Forschungszentrum Jülich, 52425 Jülich
²²IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
²³Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
²⁴Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
²⁵Indian Institute of Technology Hyderabad, Telangana 502285
²⁶Indian Institute of Technology Madras, Chennai 600036
²⁷Indiana University, Bloomington, Indiana 47408
Dated: December 3, 2021

The first measurements of differential branching fractions of inclusive semileptonic $B \to X_u \ell^+ \nu_\ell$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. With the availability of these measurements, new avenues for future shape-function model-independent determinations of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{ub}|$ can be pursued to gain new insights in the existing tension with respect to exclusive determinations. The differential branching fractions are reported using an analysis technique relying on the full reconstruction of the second B meson of the $e^+ e^- \to \Upsilon(4S) \to BB$ process. This approach allows for the direct reconstruction of the four momentum of the hadronic X system of the $B \to X_u \ell^+ \nu_\ell$ process and other kinematic quantities of interest. The analysis strategy of the presented measurements follows Ref. [1], but more stringent selection criteria are applied to improve the resolution of key variables and further suppress backgrounds from $B \to X_c \ell^+ \nu_\ell$ decays and other processes. Charge conjugation is implied throughout this Letter and $B \to X_u \ell^+ \nu_\ell$ is defined as the average branching fraction of B^+ and B^0 meson decays.

Differential branching fractions are reported as a function of the lepton energy in the signal B rest frame E_ℓ^B, the invariant mass M_X and mass squared M_X^2 of the hadronic X system, the four-momentum-transfer squared $q^2 = (p_B - p_X)^2$ of the B to the lepton and neutrino system, and the two light-cone momenta $P_\pm = \left(E_X^B \pm |p_X^B| \right)$ with E_X^B and p_X^B in the signal B rest frame. Measurements of these distributions are of great interest as they allow for the study of nonperturbative shape functions [2]. Shape functions describe the Fermi motion of the b quark inside the B meson, and enter in the calculation of the dynamics of $B \to X_u \ell^+ \nu_\ell$ decays. Currently, properties of the leading-order Λ_{QCD}/m_b shape function can only be studied using the photon energy spectrum of $B \to X_u \gamma$ decays and moments of the lepton energy or hadronic invariant mass in charmed semileptonic B decays [3–5]. The modeling of both the leading and subleading shape functions introduce large theory uncertainties on predictions of the $B \to X_u \ell^+ \nu_\ell$ decay rate, and hence on the determination of $|V_{ub}|$. With the presented differential branching fractions, we provide the necessary experimental input for future model-independent approaches, whose aim is to reduce this model dependence by directly measuring the shape function [6, 7]. This will lead to more reliable determinations of $|V_{ub}|$ from inclusive processes and give new insights into the persistent tension with the values obtained from exclusive determinations [8] of about 3 standard deviations.

We analyze $(772 \pm 10) \times 10^6$ B meson pairs recorded at the $\Upsilon(4S)$ resonance energy and 79fb^{-1} of collision events recorded 60MeV below the $\Upsilon(4S)$ peak, which were both recorded at the KEKB e^+e^- collider [9] by the Belle detector. Belle is a large-solid-angle magnetic spectrometer and a detailed description of its subdetectors and performance can be found in Ref. [10]. Monte Carlo (MC) samples of B meson decays and continuum processes ($e^+e^- \to q\bar{q}$ with $q = u, d, s, c$) are simulated using the EvtGen generator [11] and a detailed description of all samples and models is given in Ref. [1]. The simulated samples are used for the background subtraction and to correct for detector resolution, selection, and acceptance effects. The sample sizes used correspond to approximately ten and five times, respectively, the Belle collision data for B meson production and continuum processes.

Semileptonic $B \to X_u \ell^+ \nu_\ell$ decays are modeled as a mixture of specific exclusive modes and nonresonant contributions using a so-called ”hybrid” approach [12], following closely the implementation of [13, 14]. In the hybrid approach, the triple differential rate of the inclusive and combined exclusive predictions are combined such that partial rates of the inclusive prediction are recovered. This is achieved by assigning three dimensional weights to the inclusive contribution as a function of the generator-level q^2, E_ℓ^B, and M_X. For the inclusive contribution, we use two different calculations, i.e. the De Fazio and Neubert (DFN) model [15] and the Bosch-Lange-Neubert-Paz (BLNP) model [16], and treat their difference as a systematic uncertainty. The simulated inclusive $B \to X_u \ell^+ \nu_\ell$ events are hadronized with the JETSET algorithm [17] into final states with two or
more mesons. A summary of the used \(B \to X_u \ell^+ \nu_\ell \) branching fractions and decay models is given in Table I. Semileptonic \(B \to X_c \ell^+ \nu_\ell \) decays dominated by \(B \to D \ell^+ \nu_\ell \) and \(B \to D^* \ell^+ \nu_\ell \), which are simulated with form factor parametrizations discussed in Refs. [18–20] and values determined by Refs. [21, 22]. The remaining \(B \to X_c \ell^+ \nu_\ell \) decays are simulated as a mix of resonant and nonresonant modes, using Ref. [23] for the modeling of \(B \to D^{* \ast} \ell^+ \nu_\ell \) form factors. The known difference between inclusive and the sum of measured exclusive \(B \to X_c \ell^+ \nu_\ell \) is filled with \(B \to D^{(\ast)} \eta \ell^+ \nu_\ell \) decays.

 Collision events are reconstructed using the multivariate algorithm of Ref. [34], in which one of the two \(B \) mesons is fully reconstructed in hadronic final states (labeled as \(B_{\text{tag}} \)). Signal candidates are reconstructed by identifying an electron or muon candidate with \(E_\ell^B = |p_\ell^B| > 1 \) GeV in the signal \(B \) rest frame, and by reconstructing the hadronic \(X \) system of the \(B \to X_u \ell^+ \nu_\ell \) semileptonic process using charged particles and neutral energy depositions of the collision event not used in the reconstruction of the \(B_{\text{tag}} \) candidate. The largest background after the reconstruction is from the CKM-favored \(B \to X_c \ell^+ \nu_\ell \) process, which possesses a very similar decay signature, completely dominating the selected candidate events. To identify \(B \to X_u \ell^+ \nu_\ell \) candidates, eleven distinguishing features are combined into a single discriminant using a multivariate classifier in the form of boosted decision trees (BDTs) using the implementation of Ref. [35]. The most discriminating variables are the reconstructed neutrino mass, \(M^2_{\text{miss}} \), the vertex fit probability of the \(X\ell \) decay vertex, and the number of identified \(K^\pm \) and \(K^0 \) in the \(X \) system. To improve the resolution on the reconstructed variables or the signal to background ratio, additional selections are applied. For the measurements involving the hadronic \(X \) system (\(M_X \), \(M^2_X \), \(q^2 \), \(P_\pm \)), we demand the missing energy, \(E_{\text{miss}} \), and the magnitude of the missing momentum \(p_{\text{miss}} \) of the collision to be consistent with each other by requiring \(|E_{\text{miss}} - |p_{\text{miss}}| < 0.1 \) GeV. This improves the resolution by 21%-37%, depending on the observable, and removes poorly reconstructed events. The signal efficiency after the BDT selection and this additional requirement is 8% while rejecting 99.5% of all \(B \to X_c \ell^+ \nu_\ell \) background events, as defined with respect to all selected signal or \(B \to X_c \ell^+ \nu_\ell \) events after successfully identifying a suitable \(B_{\text{tag}} \) candidate. To reduce the contamination of \(B \to X_c \ell^+ \nu_\ell \) and other backgrounds, for the measurements of \(q^2 \) and the light-cone momenta \(P_\pm \), an additional requirement of \(M_X < 2.4 \) GeV is imposed: this selection, mostly targeting poorly understood high-mass \(X_c \) states, removes in addition background from secondary leptons and reduces the \(B \to X_c \ell^+ \nu_\ell \) contamination by an additional 20%. The reconstruction resolu-

Table I. Semileptonic \(B \to X_u \ell^+ \nu_\ell \) decays are modeled as a mixture of specific exclusive modes and nonresonant contributions. The branching fractions are from the world averages from Ref. [24] and the models and form factors (FFs) used are listed. We use natural units \((h = c = 1)\).

\(B \)	Value \(B^+ \)	Value \(B^- \)
\(B \to \pi^+ \nu_\ell \) \(^a,a\)	\((7.8 \pm 0.3) \times 10^{-5} \)	\((1.5 \pm 0.06) \times 10^{-4} \)
\(B \to \eta' \ell^+ \nu_\ell \) \(^b,c\)	\((3.9 \pm 0.5) \times 10^{-5} \)	\(\ldots\)
\(B \to \eta' \ell^+ \nu_\ell \) \(^b,e\)	\((2.3 \pm 0.8) \times 10^{-5} \)	\((5.7 \pm 2.1) \times 10^{-5} \)
\(B \to \omega \ell^+ \nu_\ell \) \(^c,e\)	\((1.2 \pm 0.1) \times 10^{-4} \)	\((1.2 \pm 0.1) \times 10^{-4} \)
\(B \to \rho \ell^+ \nu_\ell \) \(^c,e\)	\((1.6 \pm 0.1) \times 10^{-4} \)	\((2.9 \pm 0.2) \times 10^{-4} \)
\(B \to X_u \ell^+ \nu_\ell \) \(^d,e\)	\((2.2 \pm 0.3) \times 10^{-3} \)	\((2.0 \pm 0.3) \times 10^{-3} \)

\(^a\) BCL FFs [25] from fit to LQCD [26] and Ref. [27].
\(^b\) Pole FFs from LCSR [28].
\(^c\) BSZ FFs fit [29] to LCSR [30] and Refs. [31–33].
\(^d\) DFN [15] \((m_{\pi}^K = (4.66 \pm 0.04) \text{ GeV}, m_{\eta_{c\pi}} = 1.3 \pm 0.5)\) or BLNP model [16] \((m_{\eta_{c\pi}} = 4.61 \text{ GeV}, m_{\eta_{c\pi}}^2 = 0.20 \text{ GeV}^2)\).
\(^e\) Inclusive and exclusive decays are mixed using hybrid approach [12].

FIG. 1. The reconstructed \(M_X \) distributions after the BDT selection without (top) and with (bottom) the requirement of \(|E_{\text{miss}} - |p_{\text{miss}}| \) \(< 0.1 \) GeV are shown. The arrows indicate the coarse binning used in the background subtraction fit for the different variables. Removing the \(M_X > 2.4 \) GeV events improves the signal to background ratio for \(E_\ell^B, q^2 \), and \(P_\pm \), but is not necessary for measurements of \(M_X \) and \(M_X^2 \).
...tion of the lepton energy is excellent, thus no requirement on the missing energy and the magnitude of the missing momentum of the event is imposed, but to reduce background contributions we also require $M_X < 2.4$ GeV. This results in a signal efficiency of 17% and 99% of $B \to X_u \ell^+ \nu_\ell$ background events are rejected as defined with respect to all events after the B_{tag} selection.

The differential branching fractions are extracted by subtracting the remaining background contributions from $B \to X_u \ell^+ \nu_\ell$ and other sources in the measured distributions. This is implemented in a four-step procedure: first a binned likelihood fit to the M_X distribution is carried out to estimate the number of background events. The M_X fit takes the shape of signal and background from MC simulations and includes as nuisance parameters systematic effects that can impact the template shapes. To reduce the dependence on the precise modeling of the $B \to X_u \ell^+ \nu_\ell$ process, a coarse binning is used. In particular, the resonance region ($M_X \in [0,1.5]$ GeV) is described by a single bin. The analyzed hadronic invariant mass spectra with and without the selection on $|E_{miss} - |p_{miss}|| < 0.1$ GeV and the used binning for the different fits are shown in Fig. 1.

In the second step, the background is subtracted using the estimated normalization from the corresponding M_X fit in the kinematic variable under study. The background shape is taken from MC simulation. The statistical uncertainty on the background-subtracted yields are determined using a bootstrapping procedure [36, 37] to properly incorporate the correlation from the M_X fit as the same data events are analyzed. The same method is used to determine the statistical correlations between all bins of all measured distributions. The systematic uncertainties associated with modeling the background shape and normalization are also propagated into the uncertainties of the estimated signal yields. In the third step, the signal yields are unfolded using the Singular Value Decomposition (SVD) algorithm from Ref. [38] with the implementation of Ref. [39]. The regularization parameter of the unfolding method was carefully tuned with simulated samples to minimize the dependence on m_b, the shape function modeling, and the composition of the $B \to X_u \ell^+ \nu_\ell$ signal. In the final step the unfolded yields are corrected for efficiency and acceptance effects to the partial phase space defined by $E_F^B > 1$ GeV, also correcting for QED final-state radiation. The full analysis procedure was validated with independent MC samples and ensembles of pseudoexperiments and no biases of central values or uncertainties were observed.

Systematic uncertainties from the background subtraction, the modeling of the detector response for $B \to X_u \ell^+ \nu_\ell$, and uncertainties entering the total normalization are consistently propagated through the background subtraction, unfolding, and efficiency correction procedure. For the background subtraction we evaluate $B \to X_u \ell^+ \nu_\ell$ and $B \to X_c \ell^+ \nu_\ell$ modeling (FFs, non-perturbative parameters and composition) and detector related systematic uncertainties. The largest systematic uncertainties are typically from the assumptions entering the modeling of the $B \to X_u \ell^+ \nu_\ell$ signal composition, but depending on the region of phase space also the background subtraction uncertainty can be a dominant source of uncertainty. Figure 2 shows the relative uncertainties on the unfolded differential branching fractions as a function of M_X and q^2. The total systematic uncertainties range from 9 to 130% in relative error, and the background uncertainty is the dominant source of error in regions of phase space that are enriched in $B \to X_u \ell^+ \nu_\ell$ (e.g. above $M_X \approx m_{D^{0}} = 1.86$ GeV). The exclusive $B \to X_u \ell^+ \nu_\ell$ modeling errors only contribute significantly in the resonance region at low M_X or high q^2. The full systematic and statistical correlations between all measured distributions are determined to allow for a future simultaneous analysis of all measured distributions, and are provided with the full systematic uncertainties of all measured distributions in Supplemental Material, Ref. [40].

The measured differential branching fractions as a function of E_F^B, q^2, M_X, M_{X_u}, P_-, and P_+ are shown in Fig. 3 and the numerical values with full correlations can be found in Supplemental Material, Ref. [40]. The distributions are compared to the $B \to X_u \ell^+ \nu_\ell$ hybrid MC and the fully inclusive DFN [15] and BLNP [16]...
predictions with model parameters listed in Table 1. All predictions are scaled to match the $B \to X_u \ell^+ \nu_\ell$ partial branching fraction (ΔB) with $E_\ell^B > 1$ GeV of $\Delta B = 1.59 \times 10^{-3}$ from Ref. [1]. The uncertainty band of the hybrid prediction includes variations on the composition, form factors, and the inclusive modeling, whose central value is based on the DFN prediction but includes the difference to BLNP as an additional uncertainty. The agreement between the measured and predicted distributions is fair overall, with differences occurring for the fully inclusive predictions in the resonance region of, e.g., low M_X, and near the end point of q^2 and E_ℓ^B. There the hybrid MC describes the $B \to X_u \ell^+ \nu_\ell$ process more adequately due to the explicit inclusion of resonant contributions. The largest discrepancy is observed in E_ℓ^B, but the data points in the range of $E_\ell^B \in [1 - 1.8]$ GeV exhibit strong correlations and are only weakly correlated or anticorrelated with the other bins of the spectrum. To quantify the agreement with the three displayed predictions we carry out a χ^2 test using the experimental covariance only. We find a good χ^2 of 13.5 for the measured E_ℓ^B spectrum and the hybrid prediction with 16 degrees of freedom. Similarly, we find for the DFN and BLNP predictions χ^2 values of 16.2 and 16.5, respectively.

In conclusion, this Letter presents the first measurements of differential branching fractions of inclusive semileptonic $B \to X_u \ell^+ \nu_\ell$ decays as a function of E_ℓ^B, q^2, M_X, M_X^2, P_-, and P_+ (a first preliminary measurement of the shape of the spectrum of M_X^2 was presented in Ref. [44] and Ref. [45] reported a differential branching fraction measurement as a function E_ℓ^B, but without providing the full experimental uncertainties). The measurements use the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $Y(4S)$ resonance and for $\ell = e, \mu$ in
which one of the two B mesons was fully reconstructed in hadronic modes. The differential branching fractions are obtained by subtracting $B\to X_c\ell^+\nu_\ell$ and other backgrounds with the normalization determined by a fit to the M_X distribution of the hadronic X system. The resulting distributions are corrected for detector resolution and efficiency effects and unfolded to the phase space of the lepton energy of $E_\ell^P > 1$ GeV in the rest frame of the signal B meson. The measurements are, depending on the region of phase space, statistically or systematically limited, and show fair agreement to hybrid and inclusive predictions of $B\to X_u\ell^+\nu_\ell$ decays. The measured distributions are sensitive to the shape function governing the nonperturbative dynamics of the $b\to u$ transition and will allow future direct determinations of the shape function and $|V_{ub}|$, as proposed by Refs. [6, 7]. These novel analyses will provide new insights into the persistent tensions on the value of $|V_{ub}|$ from inclusive and exclusive determinations [8].

We thank Kerstin Tackmann, Frank Tackmann, Zoltan Ligeti, and Dean Robinson for discussions about the content of this manuscript. L. C., W. S., R. vT., and F. B. were supported by the German Research Foundation (DFG) Emmy-Noether Grant No. BE 6075/1-1. L.C. was also supported by the Helmholtz W2/W3-116 grant.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), the Shanghai Science and Technology Committee (STCSM) under Grant No. 19ZR1403000; the CAS Center for Excellence in Particle Physics of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Shanghai Science and Technology Committee of the Shanghai Pujiang Program under Grant No. 19ZR1403000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B02012900, 2018R1A2B20030643, 2018R1A6A1A06024970, 2018R1D1A1B07047294, 2019K1A3A709033840, 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

* cao@physik.uni-bonn.de
† florian.bernlochner@uni-bonn.de
[1] L. Cao et al. (Belle), Phys. Rev. D 104, 012008 (2021), 2102.00020.
[2] M. Neubert, Phys. Rev. D 49, 3392 (1994), arXiv:hep-ph/9311325.
[3] P. Gambino and N. Uraltsev, Eur. Phys. J. C 34, 181 (2004), arXiv:hep-ph/0401063.
[4] C. W. Bauer, Z. Ligeti, M. Luke, A. V. Manohar, and M. Trott, Phys. Rev. D 70, 094017 (2004), arXiv:hep-ph/0408002.
[5] D. Benson, I. I. Bigi, and N. Uraltsev, Nucl. Phys. B 710, 371 (2005), arXiv:hep-ph/0410080.
[6] F. U. Bernlochner, H. Lacker, Z. Ligeti, I. W. Stewart, F. J. Tackmann, and K. Tackmann (SIMBA), Phys. Rev. Lett. 127, 102001 (2021), arXiv:2007.04320 [hep-ph].
[7] P. Gambino, K. J. Healey, and C. Mondino, Phys. Rev. D 94, 014031 (2016), arXiv:1604.07598 [hep-ph].
[8] Y. S. Amhis et al. (HFLAV), Eur. Phys. J. C 81, 226 (2021), arXiv:1909.12524 [hep-ex].
[9] S. Kurokawa and E. Kikutani, Nucl. Instr. and. Meth. A 499, 7 (2002), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
[10] A. Abashian et al., Nucl. Instrum. Meth. A 479, 117 (2002), also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 4D001 (2012).
[11] D. J. Lange, Nucl. Instr. and. Meth. A 462, 152 (2001).
[12] C. Ramirez, J. F. Donoghue, and G. Burdman, Phys.
[13] M. Prim et al. (Belle Collaboration), Phys. Rev. D 101, 032007 (2020), arXiv:1911.03186 [hep-ex].
[14] M. Prim, “b2-hive/effort v0.1.0,” (2020).
[15] F. De Fazio and M. Neubert, J. High Energy Phys. 06, 017 (1999), arXiv:hep-ph/9905351 [hep-ph].
[16] B. O. Lange, M. Neubert, and G. Paz, Phys. Rev. D 72, 073006 (2005), arXiv:hep-ph/0504071.
[17] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[18] G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. Lett. 74, 4603 (1995), arXiv:hep-ph/9412324 [hep-ph].
[19] B. Grinstein and A. Kobach, Phys. Lett. B 771, 359 (2017), arXiv:1703.08170 [hep-ph].
[20] D. Bigi, P. Gambino, and S. Schacht, Phys. Lett. B 769, 441 (2017), arXiv:1703.06124 [hep-ph].
[21] R. Glattauer et al. (Belle Collaboration), Phys. Rev. D 93, 032006 (2016), arXiv:1510.03657 [hep-ex].
[22] E. Waheed et al. (Belle Collaboration), Phys. Rev. D 100, 052007 (2019), arXiv:1809.03290 [hep-ex].
[23] F. U. Bernlochner and Z. Ligeti, Phys. Rev. D 95, 014022 (2017), arXiv:1606.09300 [hep-ph].
[24] P. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 083C01 (2020).
[25] C. Bourrely, I. Caprini, and L. Lellouch, Phys. Rev. D 79, 013008 (2009), Erratum: Phys. Rev. D 82, 099902 (2010), arXiv:0807.2722 [hep-ph].
[26] J. A. Bailey et al. (Fermilab Lattice and MILC Collaborations), Phys. Rev. D 92, 014024 (2015), arXiv:1503.07839 [hep-lat].
[27] Y. S. Ambhis et al. (HFLAV), Eur. Phys. J. C 81, 226 (2021), arXiv:1909.12524 [hep-ex].
[28] G. Duplancic and B. Melic, J. High Energy Phys. 11, 138 (2015), arXiv:1508.05287 [hep-ph].
[29] F. U. Bernlochner, M. T. Prim, and D. J. Robinson, (2021), arXiv:2104.05739 [hep-ph].
[30] A. Bharucha, J. High Energy Phys. 05, 092 (2012), arXiv:1203.1359 [hep-ph].
[31] A. Sibidanov et al. (Belle Collaboration), Phys. Rev. D 88, 032005 (2013), arXiv:1306.2781 [hep-ex].
[32] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 87, 032004 (2013), Erratum: Phys. Rev. D 87, 099904 (2013), arXiv:1205.6245 [hep-ex].
[33] P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. D 83, 032007 (2011), arXiv:1005.3288 [hep-ex].
[34] M. Feindt, F. Keller, M. Kreps, T. Kuhr, S. Neubauer, D. Zander, and A. Zupanc, Nucl. Instrum. Meth. A 654, 432 (2011), arXiv:1102.3876 [hep-ex].
[35] T. Chen and C. Guestrin, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’16, 785 (2016).
[36] B. Efron, The Annals of Statistics 7, 1 (1979).
[37] K. G. Hayes, M. L. Perl, and B. Efron, Phys. Rev. D 39, 274 (1989).
[38] A. Hocker and V. Kartvelishvili, Nucl. Instrum. Meth. A 372, 469 (1996), arXiv:hep-ph/9509307.
[39] T. Adye, in Proceedings of the PHYSSTAT 2011 (CERN, Geneva, 2011) arXiv:1105.1160 [physics.data-an].
[40] See the supplemental material at the end of the paper, which includes Ref.[41–43].
[41] O. Buchmüller and H. Flacher, Phys. Rev. D 73, 073008 (2006), arXiv:hep-ph/0507253.
[42] M. Althoff et al. (TASSO Collaboration), Z. Phys. C 27, 27 (1985).
[43] W. Bartel et al. (JADE Collaboration), Z. Phys. C 20, 187 (1983).
SUPPLEMENTAL MATERIAL

HEPDATA and Forward-Folding

The results will be made fully available in HEPData (https://www.hepdata.net), including the background-subtracted yields, migration matrices, and efficiency curves. This will allow interested parties to also forward-fold $B \to X_u \ell^+ \nu_\ell$ theory predictions and directly compare such with the background-subtracted Belle data. In addition, the first to third moments of each differential spectrum are provided.

Systematic Uncertainties

Figure 4 displays the systematic uncertainties of E^B_ℓ, M_X^2, P_\pm, shown as relative errors with respect to the measured differential branching fraction. The low E^B_ℓ region is dominated by uncertainties from the modeling of the inclusive $B \to X_u \ell^+ \nu_\ell$ and the background subtraction uncertainties. The endpoint of the E^B_ℓ spectrum is dominated by contributions from resonant $B \to X_u \ell^+ \nu_\ell$ decays. The systematic uncertainties for large M_X^2 are fully dominated by the background subtraction error. The systematic errors for P_- show three distinct regions: the intermediate region is dominated by the background subtraction uncertainties, whereas the low and high P_- regions are dominated by exclusive and inclusive $B \to X_u \ell^+ \nu_\ell$ modeling uncertainties. The uncertainties at large P_- values are fully dominated by the modeling of the inclusive parts of the $B \to X_u \ell^+ \nu_\ell$ hybrid.

Systematic uncertainties are consistently propagated through the entire analysis procedure, including the unfolding and efficiency correction. Tables II-VII provide a full summary of all the considered systematic uncertainties. A brief summary on the most significant uncertainties follows (note that they are evaluated in the same manner as described in Ref. [1]):

- The uncertainty on the tracking efficiency is evaluated by assigning an error of 0.35% per charged track on the $B \to X_u \ell^+ \nu_\ell$ signal side.

- The tagging calibration uncertainties are evaluated by producing different sets of calibration factors, which take into account the correlation structure from common systematic uncertainties and that individual channels and ranges of the output classifier are statistically independent. The uncertainty on the calibration factors is about 3.6% and only a negligible dependence on the studied kinematic distributions is observed.

- The uncertainties on the composition of the used $B \to X_u \ell^+ \nu_\ell$ MC is evaluated by variations of the $B \to \pi \ell^+ \nu_\ell$, $B \to \rho \ell^+ \nu_\ell$, $B \to \omega \ell^+ \nu_\ell$, $B \to \eta \ell^+ \nu_\ell$, $B \to \eta' \ell^+ \nu_\ell$ branching fractions and form factors. Semileptonic $B \to \pi \ell^+ \nu_\ell$ decays are simulated using the Bourrely-Caprini-Lellouch (BCL) parametrization [25] with form factor central values and uncertainties from the global fit carried out by Ref. [26]. The processes of $B \to \rho \ell^+ \nu_\ell$ and $B \to \omega \ell^+ \nu_\ell$ are modeled using the BCL form factor parametrization. We use the fit of Ref. [29], that combines the measurements of Refs. [31–33] with the light-cone sum rule predictions of Ref. [30] to determine a set of form factor central values and uncertainties. The processes of $B \to \eta \ell^+ \nu_\ell$ and $B \to \eta' \ell^+ \nu_\ell$ are modeled using the LCSR calculation of Ref. [28]. The uncertainty on non-resonant $B \to X_u \ell^+ \nu_\ell$ contributions in the used hybrid model is estimated by changing the underlying model from that of DFN [15] to that of BLNP [16]. In addition, the uncertainty on the used DFN parameters $m_K^{ KN} = (4.66 \pm 0.04)$ GeV and $a_K^{ KN} = 1.3 \pm 0.5$ from Ref. [41] are incorporated. For each of these variations, new hybrid weights are calculated to propagate the uncertainties into the full analysis procedure in a consistent way.

- The uncertainties of X_u fragmentation into $s\bar{s}$ quark pairs is evaluated by variations of the corresponding JETSET parameter γ_s [17]. We vary the $s\bar{s}$ production probability within $\gamma_s = 0.30 \pm 0.09$, with an uncertainty covering the range of the direct measurements of Refs. [42, 43] of $\gamma_s = 0.35 \pm 0.05$ and $\gamma_s = 0.27 \pm 0.06$.

- The X_u system of the non-resonant signal component is hadronized by JETSET into final states with two or more pions. We assign an uncertainty on the multiplicity modeling by changing the pion multiplicity of non-resonant $B \to X_u \ell^+ \nu_\ell$ to the distribution observed in data in the signal enriched region of $M_X < 1.7$ GeV, identical to the approach adopted in Ref. [1].

- The uncertainties on the modeling of $B \to D \ell^+ \nu_\ell$, $B \to D^* \ell^+ \nu_\ell$ and $B \to D^{**} \ell^+ \nu_\ell$ are evaluated by variations of the BGL parameters and heavy quark form factors within their uncertainties. The $B \to D \ell^+ \nu_\ell$ decays are modeled using the Boyd-Grinstein-Lebed (BGL) parametrization [18] with form factor central values.
and uncertainties taken from the fit in Ref. [21]. For $B \to D^* \ell^+ \nu_\ell$ we use the BGL implementation proposed by Refs. [19, 20] with form factor central values and uncertainties from the fit to the measurement of Ref. [22]. Both backgrounds are normalized to the average branching fraction of Ref. [27] assuming isospin symmetry. Semileptonic $B \to D^{**} \ell^+ \nu_\ell$ decays with $D^{**} = \{D_0^*, D_1^*, D_1, D_2^*\}$ denoting the four orbitally excited charmed mesons are modeled using the heavy-quark-symmetry-based form factors proposed in Ref. [23]. In addition, the branching fraction uncertainties are included and the uncertainties on the $B \to X_c \ell^+ \nu_\ell$ gap branching fractions are taken to be large enough to account for the difference between the sum of all exclusive branching fractions measured and the inclusive branching fraction measured.

- The impact on the efficiency of the lepton- and hadron-identification uncertainties is evaluated by producing replicas of the simulated samples with new corrections weights sampled from the measured corrections, that parametrize the difference between simulated and recorded collision event efficiencies on the identification efficiency as a function of the laboratory momentum and polar angle of the charged particle in question.

- The slow pion and K^0_S reconstruction efficiencies are also evaluated using replicas of simulated samples, by producing sets of new correction weights, that parametrize the difference in the reconstruction efficiency between simulated and recorded collision event efficiencies.

![Graphs showing systematic uncertainties on differential branching fractions](image)

FIG. 4. The systematic uncertainties on the differential $B \to X_u \ell^+ \nu_\ell$ branching fractions as a function of E^B_ℓ, M^2_X, and P_\pm are shown. They are separated into systematic uncertainties associated to the modeling of the inclusive and exclusive parts of the $B \to X_u \ell^+ \nu_\ell$ signal, the background subtraction, and other sources.
\(M_X \) [GeV]	0-0.3	0.3-0.6	0.6-0.9	0.9-1.2	1.2-1.5	1.5-1.8	1.8-2.1	2.1-4.0
Tracking efficiency	0.55	0.56	0.82	0.86	0.95	1.05	1.15	1.19
Tagging calibration	3.69	3.69	3.65	3.64	3.64	3.57	3.79	3.66
Slow pion efficiency	0.00	0.07	0.04	0.05	0.04	0.04	0.06	0.04
\(K_0^0 \)	0.04	0.05	0.04	0.02	0.04	0.03	0.02	0.05
\(\epsilon \)ID	0.72	0.83	0.74	0.69	0.73	0.74	0.94	1.22
\(\mu \)ID	1.59	1.25	1.34	1.29	1.44	1.35	1.09	0.70
\(K/\pi \) ID	0.39	0.67	0.68	0.74	0.81	1.02	1.27	1.24
\(B(B \to X_u \ell \nu) \)	0.18	0.44	0.07	0.59	0.82	0.69	0.73	0.46
\(B(B \to \pi \ell \nu) \)	0.42	0.45	0.45	0.14	0.05	0.04	0.05	0.05
\(B(B \to \rho \ell \nu) \)	0.42	1.00	0.61	0.56	0.33	0.16	0.22	0.15
\(B(B \to \omega \ell \nu) \)	0.42	0.39	0.65	0.12	0.11	0.06	0.11	0.10
\(B(B \to \eta \ell \nu) \)	0.41	1.16	0.46	0.11	0.06	0.03	0.03	0.14
\(B(B \to \eta' \ell \nu) \)	0.42	0.39	0.46	0.24	0.30	0.03	0.14	0.11
\(B \to \pi \ell \nu \) FF	0.98	3.08	1.52	0.53	1.05	0.37	0.36	0.38
\(B \to \rho \ell \nu \) FF	2.77	8.54	3.96	2.94	1.65	0.59	0.83	0.89
\(B \to \omega \ell \nu \) FF	2.40	9.71	1.10	0.90	1.41	0.70	0.65	1.32
\(B \to \eta \ell \nu \) FF	0.71	3.58	0.09	0.09	0.51	0.28	0.27	0.07
\(B \to \eta' \ell \nu \) FF	0.69	3.65	0.16	0.27	0.48	0.29	0.32	0.15
Hybrid model	0.21	5.86	5.08	4.01	0.50	1.97	2.02	6.13
DFN parameters	0.18	3.66	1.01	1.38	1.64	0.87	0.50	1.35
\(\gamma_s \)	0.47	4.17	2.36	3.98	3.08	4.10	9.31	3.60
\(\pi^+ \) multiplicity modeling	0.57	0.42	0.45	4.15	7.98	4.78	3.98	2.34
\(N_{\bar{B}B} \)	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Background subtraction	5.97	26.93	8.23	25.15	29.65	16.80	73.36	126.64
MC stat. (migration matrix)	4.04	11.22	3.54	6.85	4.30	4.71	6.85	8.22
Total syst. uncertainty	9.36	33.77	12.32	27.56	31.62	19.21	74.55	127.23
Total stat. uncertainty	11.11	32.64	10.77	24.99	21.88	16.54	46.24	66.76
Total uncertainty	14.53	46.97	16.36	37.20	38.45	25.35	87.73	143.68

TABLE II. The relative uncertainties (%) of the measured differential branching fraction of \(M_X \) are shown.
M_X^2 [GeV2]	0-1	1-2	2-3	3-4	4-14
Tracking efficiency	0.69	0.96	1.01	1.20	1.16
Tagging calibration	3.67	3.62	3.60	3.72	3.73
Slow pion efficiency	0.03	0.05	0.05	0.05	0.03
K_S^0	0.04	0.02	0.04	0.04	0.04
ϵID	0.74	0.70	0.74	0.96	1.12
μID	1.42	1.33	1.37	0.99	0.89
K/π ID	0.55	0.89	0.92	1.22	1.24
$B(B \to X_u \ell \nu)$	0.77	0.11	0.08	2.15	0.12
$B(B \to \pi \ell \nu)$	0.67	0.43	0.07	0.23	0.04
$B(B \to \rho \ell \nu)$	0.37	0.49	0.07	0.28	0.10
$B(B \to \omega \ell \nu)$	0.45	0.07	0.03	0.16	0.05
$B(B \to \eta \ell \nu)$	0.36	0.10	0.03	0.14	0.16
$B(B \to \eta' \ell \nu)$	0.56	0.47	0.18	0.09	0.06
$B \to \pi \ell \nu$ FF	1.24	1.87	0.09	1.08	0.95
$B \to \rho \ell \nu$ FF	2.14	3.03	0.41	1.03	1.01
$B \to \omega \ell \nu$ FF	2.88	3.10	0.38	1.08	1.08
$B \to \eta \ell \nu$ FF	0.88	1.18	0.02	0.54	0.36
$B \to \eta' \ell \nu$ FF	0.91	1.30	0.03	0.53	0.49
Hybrid model	6.25	0.37	1.95	3.16	6.71
DFN parameters	1.25	0.56	1.18	1.90	1.13
γ_s	0.90	3.76	2.63	9.53	7.82
π^+ multiplicity	0.24	8.89	6.56	7.71	1.98
$N_{B\bar{B}}$	1.25	1.25	1.25	1.25	1.25
Background subtraction	4.86	20.19	14.45	81.67	99.28
MC stat. (migration matrix)	2.12	4.29	3.99	8.41	7.19
Total syst. uncertainty	10.30	23.76	17.29	83.27	100.22
Total stat. uncertainty	5.66	15.88	14.97	58.02	46.97
Total uncertainty	11.75	28.58	22.88	101.49	110.68

TABLE III. The relative uncertainties (%) of the measured differential branching fraction of M_X^2 are shown.
q^2 [GeV2]	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-18	18-20	20-22	22-26.5
Tracking efficiency	0.93	0.95	0.94	0.90	0.89	0.87	0.82	0.75	0.72	0.67	0.55	0.57
Tagging calibration	3.58	3.69	3.71	3.69	3.65	3.63	3.64	3.64	3.73	3.86	3.76	
Slow pion efficiency	0.02	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.06	0.09	0.07
K_S^0	0.03	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.04
ϵID	0.79	0.77	0.77	0.75	0.74	0.66	0.69	0.83	0.87	0.83	0.82	0.79
μID	1.39	1.26	1.24	1.32	1.31	1.46	1.45	1.39	1.33	1.52	1.64	1.47
K/π ID	0.85	0.96	0.93	0.83	0.79	0.77	0.70	0.65	0.53	0.35	0.20	0.22
$B(B \to X_u \ell \nu)$	1.26	1.01	0.75	0.54	0.42	0.01	0.56	1.06	2.01	1.47	0.64	0.45
$B(B \to \pi \ell \nu)$	1.21	0.95	0.77	0.59	0.27	0.34	1.25	2.93	5.10	6.53	5.65	
$B(B \to \rho \ell \nu)$	1.14	0.96	0.89	0.64	0.39	0.59	1.37	3.06	5.13	6.55	5.64	
$B(B \to \omega \ell \nu)$	1.13	0.92	0.74	0.52	0.21	0.32	1.23	2.92	5.09	6.53	5.61	
$B(B \to \eta \ell \nu)$	1.14	0.93	0.74	0.54	0.26	0.35	1.23	2.91	5.09	6.53	5.61	
$B(B \to \eta' \ell \nu)$	1.13	0.94	0.74	0.53	0.22	0.33	1.23	2.92	5.08	6.53	5.61	
$B \to \pi \ell \nu$ FF	2.60	3.00	2.38	1.25	0.38	0.83	2.12	4.39	3.83	2.07	5.51	2.63
$B \to \rho \ell \nu$ FF	5.05	5.44	4.29	2.36	1.29	1.18	2.46	7.53	10.45	7.01	15.88	8.74
$B \to \omega \ell \nu$ FF	6.09	8.65	5.85	2.92	1.07	1.19	4.27	9.92	13.29	16.85	20.29	9.44
$B \to \eta \ell \nu$ FF	2.35	2.53	1.67	0.85	0.34	0.35	1.41	2.76	2.80	2.76	6.99	3.00
$B \to \eta' \ell \nu$ FF	2.42	2.62	1.74	0.92	0.38	0.39	1.34	2.78	3.20	2.90	6.53	3.30
Hybrid model	16.17	16.41	9.91	2.71	3.62	4.69	9.82	12.48	15.35	11.75	23.34	5.45
DFN parameters	6.01	6.43	4.78	3.86	4.12	3.19	2.03	1.44	1.10	1.01	3.26	1.01
γ_s	6.28	4.39	1.39	1.41	1.52	3.14	0.43	0.07	1.98	1.99	0.47	1.09
π^+ multiplicity	2.74	3.08	2.85	2.18	3.18	4.00	3.09	0.10	0.14	0.07	1.41	0.42
$N_{B \bar{B}}$	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	
Background subtraction	16.66	16.89	16.52	13.79	12.22	11.30	10.67	11.54	9.77	9.14	10.18	12.96
MC stat. (migration matrix)	2.94	3.15	2.37	2.29	2.56	2.87	2.69	3.62	3.40	3.81	7.33	7.81
Total syst. uncertainty	27.32	28.03	22.28	16.20	14.86	14.73	17.05	23.60	28.71	28.79	40.98	25.11
Total stat. uncertainty	16.71	13.67	13.05	11.61	12.26	12.87	12.45	13.30	11.96	12.12	15.69	19.97
Total uncertainty	32.02	31.19	25.82	19.93	19.26	19.56	21.11	27.09	31.10	31.23	43.88	32.08

| TABLE IV. | The relative uncertainties (%) of the measured differential branching fraction of q^2 are shown. |
E_B^B [GeV]	1.0-1.1	1.1-1.2	1.2-1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8	1.8-1.9	1.9-2.0	2.0-2.1	2.1-2.2	2.2-2.3	2.3-2.4	2.4-2.5	2.5-2.65
Tracking efficiency	0.39	0.39	0.39	0.39	0.39	0.38	0.39	0.39	0.39	0.39	0.38	0.38	0.38	0.38	0.38	
Tagging calibration	3.75	3.71	3.67	3.65	3.63	3.67	3.69	3.71	3.67	3.66	3.69	3.67	3.73	3.74	3.74	
Slow π efficiency	0.04	0.04	0.04	0.04	0.04	0.05	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.09	
K_S^0 efficiency	1.34	1.20	0.93	0.79	0.71	0.70	0.69	0.70	0.71	0.73	0.76	0.78	0.76	0.78	0.79	
$μ$ID	2.15	1.17	1.29	1.35	1.36	1.37	1.36	1.37	1.36	1.38	1.43	1.46	1.43	1.52	1.53	1.43
$K/π$ ID	0.90	0.91	0.83	0.83	0.87	0.88	0.95	0.91	0.85	0.82	0.75	0.71	0.67	0.66	0.57	0.56
$B(B \to X_ν ℓν)$	3.62	3.56	2.16	2.63	2.78	1.86	1.52	0.86	0.40	0.57	1.25	2.02	3.36	3.19	4.01	4.55
$B(B \to πℓν)$	5.29	5.52	3.01	3.38	3.32	1.94	1.73	1.00	0.58	1.20	1.38	2.65	4.57	4.97	6.55	6.29
$B(B \to ωℓν)$	1.69	1.62	0.92	1.10	1.17	0.77	0.61	0.28	0.12	0.21	0.37	0.83	1.31	1.06	1.79	2.09
$B(B \to ρℓν)$	1.56	1.58	0.95	1.16	1.20	0.80	0.65	0.33	0.09	0.23	0.33	0.77	1.21	0.93	1.41	2.22
Hybrid model	21.68	21.05	17.09	15.34	12.37	10.28	8.24	5.84	4.90	1.21	0.72	1.68	1.93	0.89	1.29	0.43
DFN parameters	5.74	5.52	5.69	5.31	4.41	5.12	4.26	3.88	3.55	3.20	2.50	2.92	1.30	1.67	1.45	0.66
$γ_s$	7.06	6.26	3.45	5.13	4.76	0.87	1.64	4.12	3.92	1.72	1.50	0.62	3.52	1.34	2.59	1.14
$π^+$ multiplicity	3.19	3.35	2.89	2.65	2.55	3.41	3.86	3.83	3.13	3.06	2.86	2.28	1.62	1.11	0.23	
N_{BB}	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	
Background subtraction	49.32	40.78	27.56	25.05	22.39	17.20	16.10	14.09	11.89	13.35	14.39	12.03	6.05	3.85	6.54	
MC stat. (migration matrix)	5.92	5.53	3.03	3.17	3.00	1.54	1.91	2.28	1.74	1.62	1.38	1.82	2.56	2.19	2.26	4.22
Total syst. uncertainty	55.70	47.86	33.93	31.26	27.48	21.73	19.82	17.48	15.15	15.05	15.83	14.06	11.34	10.26	12.01	12.70
Total stat. uncertainty	54.34	39.47	23.05	19.69	17.06	13.07	13.04	12.21	9.40	8.18	7.60	7.49	6.95	6.08	6.96	11.22
Total uncertainty	77.82	62.03	41.02	36.94	32.34	25.36	23.73	21.32	17.82	17.13	17.56	15.92	13.30	11.92	13.88	16.94

TABLE V. The relative uncertainties (%) of the measured differential branching fraction of E_B^B are shown.
P_τ [GeV]	0-0.2	0.2-0.4	0.4-0.6	0.6-0.8	0.8-1.0	1.0-1.2	1.2-1.4	1.4-1.6	1.6-4.0
Tracking efficiency	0.65	0.87	0.95	1.03	1.09	1.11	1.09	1.06	1.05
Tagging calibration	3.69	3.59	3.69	3.64	3.63	3.64	3.68	3.66	3.65
Slow pion efficiency	0.01	0.06	0.04	0.04	0.05	0.05	0.04	0.04	0.04
K_S^0	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.04	0.04
π^-ID	0.70	0.79	0.77	0.74	0.77	0.87	0.91	0.89	0.89
μID	1.48	1.29	1.29	1.35	1.34	1.24	1.22	1.21	1.19
$K\pi$ID	0.56	0.74	0.85	0.94	1.06	1.08	1.02	0.96	0.93
$B(B \to X_u \ell\nu)$	0.67	0.66	1.45	1.22	0.31	0.59	0.42	1.28	1.62
$B(B \to \pi\ell\nu)$	1.84	1.70	0.49	0.08	0.05	0.04	0.04	0.09	0.12
$B(B \to p\ell\nu)$	1.69	2.03	0.52	0.39	0.14	0.07	0.09	0.06	0.06
$B(B \to \omega\ell\nu)$	1.73	1.68	0.43	0.19	0.02	0.04	0.03	0.08	0.10
$B(B \to \eta\ell\nu)$	1.67	1.68	0.42	0.08	0.01	0.04	0.04	0.04	0.05
$B(B \to \eta'\ell\nu)$	1.68	1.68	0.41	0.12	0.05	0.02	0.03	0.04	0.05
$B \to \pi\ell\nu$ FF	0.73	0.32	1.54	0.55	1.23	0.74	0.03	0.36	0.54
$B \to p\ell\nu$ FF	2.40	2.19	5.04	2.14	1.33	1.32	0.28	0.58	0.93
$B \to \omega\ell\nu$ FF	1.96	2.66	3.29	0.75	1.40	0.87	0.12	0.67	0.93
$B \to \eta\ell\nu$ FF	0.69	0.19	0.62	0.31	0.59	0.33	0.01	0.18	0.26
$B \to \eta'\ell\nu$ FF	0.59	0.03	0.61	0.44	0.68	0.35	0.01	0.18	0.26
Hybrid model	4.74	2.04	1.68	0.84	7.24	3.10	25.53	43.81	55.28
DFN parameters	1.92	1.30	1.82	1.10	1.74	2.15	2.87	8.00	19.00
γ_s	1.69	2.79	3.23	2.81	4.60	8.56	5.83	7.64	4.77
π^+ multiplicity	0.24	2.94	5.47	4.58	2.04	0.23	0.57	1.40	1.74
$N_{B\bar{B}}$	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Background subtraction	4.68	10.27	14.48	21.22	27.32	29.13	30.15	31.37	32.57
MC stat. (migration matrix	2.42	4.01	3.60	3.06	3.33	4.07	4.95	5.24	5.53
Total syst. uncertainty	10.08	13.78	18.19	22.73	29.39	31.24	40.59	55.47	67.51
Total stat. uncertainty	6.86	10.89	13.64	16.39	16.51	16.77	22.05	25.67	27.62
Total uncertainty	12.20	17.56	22.74	28.03	33.71	35.46	46.19	61.12	72.94

TABLE VI. The relative uncertainties (%) of the measured differential branching fraction of P_τ are shown.
$P_−$ [GeV]	0-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5
Tracking efficiency	0.61	0.62	0.73	0.80	0.84	0.88	0.89	0.92	0.92	0.91
Tagging calibration	3.75	3.77	3.67	3.64	3.59	3.63	3.72	3.72	3.65	3.59
Slow pion efficiency	0.06	0.06	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.02
K_S^0 efficiency	0.03	0.03	0.03	0.04	0.03	0.03	0.03	0.04	0.03	0.03
eID	0.87	0.84	0.78	0.76	0.72	0.74	0.73	0.76	0.77	
µID	1.38	1.50	1.47	1.39	1.37	1.42	1.31	1.25	1.32	1.42
$K\pi$ ID	0.23	0.25	0.47	0.69	0.78	0.77	0.83	0.90	0.88	0.86
$B(B \rightarrow X_u \ell \nu)$	0.40	1.49	2.97	0.22	0.33	0.02	0.47	0.44	0.93	1.03
$B(B \rightarrow \pi \ell \nu)$	5.22	6.42	4.64	2.35	0.93	0.21	0.50	0.84	1.16	1.41
$B(B \rightarrow \rho \ell \nu)$	5.21	6.43	4.71	2.39	1.03	0.59	0.57	1.02	1.13	1.32
$B(B \rightarrow \omega \ell \nu)$	5.21	6.40	4.62	2.33	0.91	0.10	0.42	0.78	1.10	1.32
$B(B \rightarrow \eta \ell \nu)$	5.21	6.40	4.62	2.33	0.91	0.17	0.44	0.79	1.11	1.33
$B(B \rightarrow \eta' \ell \nu)$	5.21	6.39	4.62	2.33	0.91	0.10	0.42	0.79	1.11	1.32
$B \rightarrow \pi \ell \nu$ FF	3.65	4.49	5.03	2.13	1.59	0.58	0.68	2.55	2.88	2.75
$B \rightarrow \rho \ell \nu$ FF	12.44	13.45	11.09	4.09	1.85	1.10	1.64	4.65	5.04	5.86
$B \rightarrow \omega \ell \nu$ FF	16.21	23.12	14.35	7.37	3.15	0.62	1.49	6.77	7.79	7.59
$B \rightarrow \eta \ell \nu$ FF	3.44	4.69	3.99	1.87	1.02	0.23	0.39	1.94	2.35	2.65
$B \rightarrow \eta' \ell \nu$ FF	4.25	5.23	4.28	1.79	0.95	0.24	0.39	1.99	2.45	2.74
Hybrid model	3.03	21.43	23.71	9.77	3.11	1.27	3.35	9.53	14.19	13.85
DFN parameters	2.17	1.59	1.12	3.11	2.90	3.27	4.57	4.77	5.76	5.68
γ_s	2.60	4.18	3.11	0.56	0.90	0.31	1.03	1.01	6.43	4.42
$\pi^+\nu$ multiplicity	0.27	0.51	0.03	1.76	3.66	3.16	2.67	3.22	3.10	2.52
N_{BB}	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Background subtraction	13.11	10.18	8.43	9.12	11.20	13.27	14.29	15.73	14.29	17.77
MC stat. (migration matrix)	5.75	6.25	2.94	2.37	2.54	2.21	1.92	2.47	2.50	2.90
Total syst. uncertainty	29.00	40.42	34.30	18.05	14.30	14.98	16.56	21.98	25.06	26.78
Total stat. uncertainty	18.64	13.81	10.43	10.61	12.17	13.20	12.34	12.69	12.47	19.72
Total uncertainty	34.48	42.71	35.84	20.94	18.78	19.97	20.65	25.39	27.99	33.26

TABLE VII. The relative uncertainties (%) of the measured differential branching fraction of $P_−$ are shown.
Migration Matrices

The migration matrices of all studied distributions, defined as the conditional probability

\[M_{ij} = P(\text{event reconstructed in bin } i \mid \text{event generated in bin } j), \]

are shown in Fig. 5. The binning of the measured distributions was chosen, such that the purity \(M_{ii} \) is at least 50%. The statistical uncertainty of the migration matrices due to the limited MC size is considered as a systematic uncertainty, cf. Tables II-VII.

Efficiency Correction Factors

The unfolded signal yields \(\nu_i \) of a given bin \(i \) are corrected for selection efficiency, acceptance and phase-space effects, and normalized to the total number of recorded \(B \)-meson pairs, \(N_{B\bar{B}} = (771.58 \pm 9.78) \times 10^6 \), to obtain differential branching fractions:

\[\Delta B_i = \frac{1}{4N_{B\bar{B}}} \times \nu_i \times (\epsilon_{\text{tag}} \times \epsilon_{\text{sel}})^{-1} \times \epsilon_{\Delta B(E_B^{\ell} > 1 \text{ GeV})}. \]

The factor of 4 is due to \(N_{B\bar{B}} \) and that we average over electron and muon final states. Further, \(\epsilon_{\text{tag}} \) and \(\epsilon_{\text{sel}} \) denote the tagging and selection efficiencies, respectively, and \(\epsilon_{\Delta B(E_B^{\ell} > 1 \text{ GeV})} \) maps the branching fraction to the partial phase space with \(E_B^{\ell} > 1 \text{ GeV} \) in the \(B \) rest frame. Figure 6 shows the product of \((\epsilon_{\text{tag}} \times \epsilon_{\text{sel}})^{-1} \times \epsilon_{\Delta B(E_B^{\ell} > 1 \text{ GeV})} \) for all studied differential variables, including the full systematic uncertainties. The bottom panel shows the phase space acceptance \(\epsilon_{\Delta B(E_B^{\ell} > 1 \text{ GeV})} \).
FIG. 5. The migration matrices for all studied variables are shown.
FIG. 6. The correction factors \((\epsilon_{tag} \times \epsilon_{sel})^{-1} \times \epsilon_{\Delta \beta(E_{B}^{\ell} > 1 \text{ GeV})}\) (blue) and phase space acceptance factor \(\epsilon_{\Delta \beta(E_{B}^{\ell} > 1 \text{ GeV})}\) (red) are shown. The colored band of the total correction factor shows the full systematic uncertainty.
Experimental Correlations of the Differential Branching Fractions

The statistical and full experimental correlations of the measured distributions are shown in Fig. 7 and 8. The statistical correlations were obtained using a bootstrapping procedure: ensembles of the selected data events after the initial selection were created and the full analysis was repeated (binned likelihood fit in M_X, background subtraction in the variable of interest, unfolding, efficiency correction). From the obtained central values of these ensembles, the statistical correlations between observables were estimated using the Pearson correlation coefficient.

FIG. 7. The statistical correlations of the differential branching fractions are shown.

Total Partial Branching Fractions and Comparison to Ref. [1]

The left panel of Fig. 9 shows the partial branching fractions for $E^B_\ell > 1$ GeV as calculated when summing the individual bins of the differential measurements of M_X, M_X^2, E^B_ℓ, q^2, and P_\pm. The values agree with the value reported in Ref. [1], which uses the same analysis strategy but less strict selection criteria. To further study the compatibility, we evaluate the ratios of the partial branching fractions with respect to the partial branching fraction obtained from the M_X distribution, taking into account the full statistical and systematic correlations. We find good overall agreement and the largest discrepancy is from the ratio of P_\pm, which agrees with unity to within 0.9 standard deviation. The right panel of Fig. 9 shows the experimental correlation of the partial branching fractions obtained by summing the individually measured bins.
FIG. 8. The full experimental (statistical and systematical) correlations of the differential branching fractions are shown.

FIG. 9. Left: the total partial branching fraction with $E^R_\beta > 1\,\text{GeV}$ as calculated by each differential measurement is compared to the result of Ref. [1], which is based on the 2D fit of $M_X : q^2$ and obtained with a looser selection. The ratio compares the total partial branching fractions to the result obtained by summing the measured M_X distribution and the uncertainty takes into account the full statistical and systematic correlations between the different results. Right: the full experimental correlations between the total partial branching fractions from summing the individual bins are shown.
Quantitative comparison between measured spectra and various modelings

To quantify the agreement between the measured distributions and the three MC predictions (Hybrid, DFN [15], BLNP [16]), we carry out a χ^2 test. For this test the full experimental correlations are taken into account and the obtained χ^2 values are given in Table VIII. Note that no theory uncertainties were included. Overall the agreement with the hybrid MC is fair for all measured distributions, but the comparisons in M_X, M_X^2 and P_+ show poor agreement for DFN and BLNP. This is due to that in these measurements the $B \to X_u \ell^+ \nu_\ell$ resonance region is resolved, which is not adequately modelled by fully inclusive predictions.

χ^2	E^B_ℓ	M_X	M_X^2	q^2	P_+	P_-
n.d.f.	16	8	5	12	9	10
Hybrid	13.5	2.5	2.6	4.5	1.7	5.2
DFN	16.2	63.2	13.1	18.5	29.3	6.1
BLNP	16.5	61.0	6.3	20.6	23.6	13.7

TABLE VIII. The χ^2 of the measured differential branching fractions respect to various modelings. The number of degree of freedom (n.d.f.) is equal to the number of bins, which is also listed.

The first three moments in the phase space region of $E^B_\ell > 1$ GeV

Using the measured differential branching fractions, we determine the first to third moments of all measured kinematic observables. The moments are determined with a progression of the kinematic variable and defined for the partial phase-space with a selection of $E^B_\ell > 1$ GeV unless stated otherwise. As the moments are determined using binned information, we validate their accuracy using binned and unbinned $B \to X_u \ell^+ \nu_\ell$ MC events. The resulting biases from using binned information is negligible for all distributions, expect for the moments of the hadronic mass spectrum. There, the resonance region leads to strong changes in the line-shape, which are not well captured by the utilized binning. The resulting biases are still small in comparison to the experimental errors and for the hadronic mass spectrum, we include them into the total experimental uncertainty. Figures 10-12 shows the results for each measured kinematic variable, also showing the prediction from binned and unbinned $B \to X_u \ell^+ \nu_\ell$ hybrid MC.

FIG. 10. The first (left), second (middle) and third (right) moment of the measured differential branching fraction of E^B_ℓ. The full experimental uncertainty is included and shown for the extracted moments. The moments based on binned hybrid MC (blue and including full modelling uncertainty) are compared to measured data and the event-wise treatment of generator-level hybrid events (red dotted) in a ratio, respectively.
FIG. 11. The first (left), second (middle) and third (right) moment of the measured differential branching fraction of q^2 (top row), M_X (middle row) and P_+ (bottom row) in the phase space region of $E_T > 1$ GeV. The full experimental uncertainty is included and shown for the extracted moments. The moments based on binned hybrid MC (blue and including full modelling uncertainty) are compared to measured data and the event-wise treatment of generator-level hybrid events (red dotted) in a ratio, respectively.
FIG. 12. The first (left), second (middle) and third (right) moment of the measured differential branching fraction of P_- in the phase space region of $E_B^{\ell} > 1$ GeV. The full experimental uncertainty is included and shown for the extracted moments. The moments based on binned hybrid MC (blue and including full modelling uncertainty) are compared to measured data and the event-wise treatment of generator-level hybrid events (red dotted) in a ratio, respectively.