RAPID COMMUNICATION

Measuring small longitudinal phase shifts via weak measurement amplification

Kai Xu(徐凯)1,2, Xiao-Min Hu(胡晓敏)1,2,3, Meng-Jun Hu(胡孟军)4,1, Ning-Ning Wang(王宁宁)1,2,3, Chao Zhang(张超)1,2,3, Yun-Feng Huang(黄运锋)1,2,3, Bi-Heng Liu(柳必恒)1,2,3,1, Chuan-Feng Li(李传锋)1,2,3,4, Guang-Can Guo(郭光灿)1,2,3, and Yong-Sheng Zhang(张永生)1,2,3,1

1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4Beijing Academy of Quantum Information Sciences, Beijing 100193, China

(Received 22 November 2023; revised manuscript received 7 January 2024; accepted manuscript online 9 January 2024)

Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities estimations. Since many physical quantities can be converted into phase signals, it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement. Here, we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation, which is suitable for polarization interferometry. We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference. Besides, we analyze the effect of magnification error which is never considered in the previous works, and find the constraint on the magnification. Our results may find important applications in high-precision measurements, e.g., gravitational wave detection.

Keywords: weak measurement, phase estimation, quantum optics

PACS: 06.20.–f, 42.50.–p

DOI: 10.1088/1674-1056/ad1c5a

1. Introduction

Weak measurement, which was first proposed by Aharonov, Albert, and Vaidman,[1] has attracted a lot of attention in the last decades.[2] In the theoretical framework of weak measurements, the system with a pre-selected state interacts weakly with the pointer first and then followed by a post-selection on its state. When the interaction is weak enough so that only the first-order approximation needs to be considered, the so-called weak value of observable \hat{A}, defined as $\langle A \rangle_w = \langle |\psi_i\rangle |\hat{A}| |\psi_i\rangle / \langle |\psi_i\rangle |\psi_i\rangle$ with $|\psi_i\rangle$ and $|\psi_f\rangle$ being the pre-selected state and post-selected state of the system, respectively, emerges naturally in the framework of weak measurements.[1] The weak value is generally complex, with its real part and imaginary part being obtained separately by performing measurement of non-commuting observables on the pointer,[3] and can be arbitrarily large when $|\psi_i\rangle$ and $|\psi_f\rangle$ are almost orthogonal. Although the weak value has been intensively investigated since its birth,[4–7] the debate on its physical meaning continues.[8–13] Regardless of these arguments, the method of weak measurement has been shown powerful in solving quantum paradox,[14–16] reconstructing quantum state,[17–20] amplifying small effects[21–25] and investigating foundations of the quantum world.[26–31] Among the above applications, weak value amplification (WVA) is particularly intriguing and has been rapidly developed in high-precision measurements. In order to realize WVA, the tiny quantity to be measured needs to be converted into the coupling coefficient of a von Neumann-type interaction Hamiltonian, which is small enough so that the condition of weak measurements is satisfied. The magnification of WVA is directly determined by the weak value of the system observable appearing in the interaction Hamiltonian. When the pre-selected state $|\psi_i\rangle$ and the post-selected state $|\psi_f\rangle$ of the system are properly chosen, the weak value can be arbitrarily large. However, the magnification is limited when all orders of evolution are taken into consideration.[32–35] While the potential application of the weak value in signal amplification was pointed out as early as 1990,[36] it has drawn no particular attention until the first report on the observation of the spin Hall effect of light via WVA.[21] Since then, many kinds of signal measurements via WVA have been reported, such as geometric phase,[37] angular rotation,[38,39] spin Hall effect,[21,40–42] single-photon nonlinearity,[43–46] frequency,[47,48] etc.

Despite those progresses in experiments, WMA obtains
the large weak value at the price of low detection probability by post-selection, which may cause greater overall error. Therefore, the controversy on whether or not WVA outperforms conventional measurements (CM) arises. Several theoretical articles reveal that the post-selection process loses some information, which can reduce the quantum Fisher information (QFI) and result in poorer overall precision than the CM. However, advantages arise when practical experiments are taken into consideration. There are some works showing that WMA has the robustness to technical noise.

In the experiment, the signal is amplified while the technical noise remains constant. The error of experiment results. In the experiment, the signal is amplified while the technical noise remains constant. Therefore, the signal-to-noise ratio is boosted by a factor determined by the weak value. There were many attempts of WVA-based proposals for further improvement of the precision, including optimization of pointer states such as squeezing and entanglement utilization of the recycling technique and iterative interactions, and the almost-balanced weak-value amplification technique.

Since many physical quantities can be converted into phase measurements, using WVA to realize small phase measurement, especially longitudinal phase, has been developed rapidly. However, previous schemes are still not suitable for practical applications because of their severe requirements on the preparation of the initial state of the probe with the continuous degree of freedom and detections on time or frequency domain. The direct amplification of the phase shift in optical interferometry with weak measurement has been experimentally studied by Li et al. The final phase shifts are calculated by scanning the oscillation patterns without and with weak measurement. However, the amplified phase cannot be obtained quickly and their scheme does not apply to the longitudinal phase. Here we propose a different scheme of small longitudinal phase amplification measurement within the framework of weak measurements. Compared with the Sagnac interferometer scheme in Ref. [82], it is universal and can be used in other interferometers like the Michelson interferometer suggested in Refs. [83,84].

In this article, we experimentally demonstrate this new scheme by measuring a small longitudinal phase caused by the liquid crystal variable retarder and realizing one order of magnitude amplification. Besides, the previous theoretical and experimental works do not consider the effect of magnification errors when doing error analysis. In this paper, we add this part and find that the magnification error gradually increases and becomes dominant as the weak value increases. We obtain the trade-off between the weak value magnification and measurement accuracy.

2. Weak measurements based phase amplification

The key idea of weak measurements based small phase amplification (WMPA) is to transform the small longitudinal phase to be measured into a larger rotation along the latitude of the Bloch sphere of the meter qubit, e.g., larger rotation of a photon’s polarization. To explicitly see how it works, consider a two-level system initially prepared in the state of superposition \(|\psi\rangle_S = \alpha|0\rangle + \beta|1\rangle \) with \(|\alpha|^2 + |\beta|^2 = 1 \). Contrary to most discussions of WVA in which continuous pointer is used, we adopt discrete pointer \(|\phi\rangle_P = \mu|\uparrow\rangle + \nu|\downarrow\rangle \) with \(|\mu|^2 + |\nu|^2 = 1 \). The pointer can be another two-level system or a different degree of freedom of the same system. We consider a unitary control-rotation evolution of the system-pointer interaction

\[
U = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes (|\uparrow\rangle\langle \uparrow| + e^{i\theta} |\downarrow\rangle\langle \downarrow|),
\]

where \(\theta \) is the small phase signal to be measured. After the evolution of the composite system, a post-selection measurement is performed on the system that collapses it into the state \(|\psi\rangle_S = \gamma|0\rangle + \eta|1\rangle \) with \(|\gamma|^2 + |\eta|^2 = 1 \). The state of the pointer, after the post-selection of the system, becomes (unnormalized)

\[
|\phi\rangle_P = S(|\psi\rangle_S \otimes |\phi\rangle_P) = \mu(\alpha \gamma + \beta \eta)|\uparrow\rangle + \nu(\alpha \gamma + \beta \eta e^{i\theta})|\downarrow\rangle.
\]

with the successful probability \(P_s = \text{Tr}(|\phi\rangle_P \langle \phi|) \), where \(\alpha, \beta, \gamma, \eta \) are all taken to be real numbers without loss of generality. Since \(\theta \ll 1 \), \(\alpha \gamma + \beta \eta e^{i\theta} \approx (\alpha \gamma + \beta \eta) e^{i\kappa} \) in the first order approximation with

\[
\tan(\kappa) = \frac{\sin \theta}{\cos \theta + (\alpha \gamma)/(\beta \eta)}.
\]

Since our pointer state is discrete and we do not use the weak interaction approximation \(\exp(-iA \otimes P) \approx 1 - iA \otimes P \) (the operators \(A \) and \(P \) act on the system and the pointer, respectively), no definite weak value is needed in our case and the magnification is nonlinear. In the traditional standard WVA, the pointer is a wave packet, such as a Gaussian wave packet, which is slightly deformed after coupling. Only through the first-order approximation of the coupling, the shift of the wave packet can be accurately defined. Our scheme uses the polarization as a pointer, and the shift of the pointer angle can be calculated using exact values in theory. Phase signal amplification is realized when the post-selected state is properly chosen such that \(S(|\psi\rangle_S) = \alpha \gamma + \beta \eta \to 0 \). The normalized pointer state is

\[
|\phi\rangle_P = \mu|\uparrow\rangle + \nu e^{i\kappa}|\downarrow\rangle
\]
in the first-order approximation. Figure 1 shows the schematic diagram of our scheme. Analogous to the micrometer, which transforms small displacement into a larger rotation of the circle, our protocol transforms the small phase into a larger rotation of the pointer along the latitude of the Bloch sphere. The amplified phase information κ can be easily extracted by performing proper basis measurement on the pointer. It is intriguing to note that the WMPA seems to work even when $s\langle\psi|\psi\rangle_s = 0$, but the approximation of Eq. (3) should be replaced by an accurate one.

3. Experimental realization

In the experimental demonstration shown in Fig. 2, we take the path state of photons as the system and its polarization degree of freedom as the pointer and perform a measurement of the small longitudinal phase introduced by the liquid crystal variable retarder (LCVR). We choose α, β, μ, $\nu = 1/\sqrt{2}$ in our experiment such that the polarization of the post-selected photons is $\langle[H] + e^{i\kappa}|V\rangle/\sqrt{2}$ with $|H\rangle$ and $|V\rangle$ representing horizontal and vertical polarizations, respectively. The amplified phase κ is extracted by performing measurement with the basis $\{\{+,\}-\}$ on the post-selected photons, which gives the expected value of the observable $\hat{\sigma}_c \equiv |+,\rangle\langle+,\rangle - |-,\rangle\langle-,\rangle$ as $\langle \hat{\sigma}_c \rangle = \cos(\kappa)$, where $|\pm\rangle = (|H\rangle \pm |V\rangle)/\sqrt{2}$.

The whole experimental setup consists of four parts, i.e., the initial state preparation, small phase signal θ collection, phase signal amplification via the post-selection, and extraction of the amplified phase signal κ. The small phase θ is derived by substituting the measured κ into the approximation formula of Eq. (3), where $\alpha\gamma/(\beta\eta)$ is the predetermined experimental parameter.

As shown in Fig. 2, the 775 nm laser beam is emitted from the laser. The laser beam has been attenuated before passing through the optical path (it is not drawn in Fig. 2), which results in the final counting rate of approximate 8×10^3 s$^{-1}$. The light beam passes through a polarizing beam splitter (PBS) and a half-wave plate (HWP1) rotated at 22.5° such that the polarization of photons is prepared in the state $|+\rangle$. Preparation of the initial state of photons is completed by passing through a calcite beam displacer (BD) and two HWPs (HWP2 and HWP3) placed in the two paths separately. The BD is approximately 39.70 mm long and photons with horizontal polarization $|H\rangle$ can transmit through it without change of their path while photons with vertical polarization $|V\rangle$ suffer a 4.21 mm shift away from their original path. The HWP2 and HWP3 are rotated at 22.5° and -22.5°, respectively, which gives the initial state of photons as $\langle(0) + |1\rangle)/\sqrt{2} \otimes |+\rangle$, where $|0\rangle$ represents the state of down path and $|1\rangle$ represents the state of up path. In fact, the initial state of the system, i.e., path degree of freedom, and the pointer, i.e., polarization degree of...
freedom, can be prepared into an arbitrary state via rotating HWP1, HWP2, and HWP3.

The small longitudinal phase signal θ to be measured is produced by LCVR1 (Thorlabs LCC1411-B) placed in the up path. The LCVR causes a phase shift between the horizontal and vertical polarization states of photons when the voltage is introduced by a liquid crystal controller (Thorlabs LCC25), the calibration of LCVR is shown in Appendix B. Another LCVR placed in the down path without introducing voltage is used for phase compensation. The LCVRs fulfill the unitary operation of a controlled rotation and the state of photons, after passing through the LCVRs, becomes

$$\Psi_{\text{SP}} = \frac{1}{\sqrt{2}} \left[|0\rangle \otimes |+\rangle + |1\rangle \otimes (|H\rangle + e^{i\theta}|V\rangle) \right]/\sqrt{2}. \tag{5}$$

The amplification of the small phase signal θ is completed via HWP4, HWP5, and BD2, where the post-selected photons come out from the middle path of the BD toward HWP6. To see explicitly how post-selection works, we can recast Eq. (5) as

$$\Psi_{\text{SP}} = \frac{1}{\sqrt{2}} \left[|H\rangle \otimes (|0\rangle + |1\rangle) \right]/\sqrt{2}$$

$$+ |V\rangle \otimes (|0\rangle + e^{i\theta}|1\rangle) \right]/\sqrt{2}, \tag{6}$$

which implies the exchange of the path degree of freedom and the polarization degree of freedom of photons. Since the polarization degree of freedom of photons represents the system now, post-selection of the system can be readily realized by an HWP combined with a PBS. Suppose that the HWP is rotated at 22.5° − δ with δ being a small angle, then the post-selected state of photons coming out from the reflection port of the PBS is $|\Psi_\text{HWP}\rangle = \sin(45^\circ - \delta)|H\rangle - \cos(45^\circ - \delta)|V\rangle$. After the post-selection, we exchange back the system and the pointer to the original degrees of freedom by using an HWP rotated at 45° in one of the outgoing paths and a BD to recombine the light beam. The above process of post-selection can be equivalently realized via HWP4 rotated at 22.5° − δ, HWP5 rotated at 67.5° − δ and BD2 as shown in Fig. 2.

The post-selected photons, which come from the middle part of the second BD, are in the polarization state of $|\Psi_\text{p}\rangle = (|H\rangle + e^{ik}|V\rangle)/\sqrt{2}$, where κ is the amplified phase signal determined by Eq. (3) with $\alpha = \beta = 1/\sqrt{2}$ and $\gamma = \sin(45^\circ - \delta)$, $\eta = -\cos(45^\circ - 2\delta)$. The amplified phase κ can be extracted by performing a measurement with the basis $\{|+, |\rangle\}$ and calculating the expected value of Pauli observable σ_x, which is realized by HWP6 rotated at 22.5°, a PBS and two avalanche photodiode single-photon detectors (SPD). Once κ is obtained, the small phase θ can be easily derived from Eq. (3).

4. Results

Figure 3 shows the relationship between the amplified phase κ and the small phase θ, in which lines are theoretical predictions and dots are measured data. When the phase signal to be measured is small enough, according to Eq. (3), the factor of amplification is mainly determined by the parameter $(\alpha \gamma)/(\beta \eta)$. Two different values of $(\alpha \gamma)/(\beta \eta)$ are considered in our experiment corresponding to the magnification factors about 4 and 10 with success probabilities $p = 0.0204$ ($\delta = 0.0716$) and $p = 0.0026$ ($\delta = 0.0255$) respectively in the linear amplification region. For each case, four small phases are chosen in the range between 0.03 rad and 0.08 rad, which are produced by LCVR1 and are measured in advance.

As an important experimental parameter, $(\alpha \gamma)/(\beta \eta)$ needs to be determined before the amplification measurement. This is done by measuring the successful probability of post-selection, i.e., $p = |\langle \psi | \psi \rangle|^2 = (\alpha \gamma + \beta \eta)^2$ without introducing any small phase. In the case of our experiment, $(\alpha \gamma)/(\beta \eta) = -\tan(45^\circ - 2\delta)$ and $\sin(2\delta) = \sqrt{p}$, which gives

$$\frac{\alpha \gamma}{\beta \eta} = \sqrt{p} - \sqrt{1 - p} \tag{7}.$$

Once the parameter $(\alpha \gamma)/(\beta \eta)$ is settled, the voltage can be added to LCVR to produce a small phase and the amplification measurement can be realized. The small phase θ is immediately estimated by conventional measurement methods after the amplification measurement, which is done by blocking the down path between BDs, replacing HWP4 with an HWP rotated at 67.5° and rotating HWP6 to 45°. Two different values of $(\alpha \gamma)/(\beta \eta)$ are obtained by adjusting the small angle δ and four small phases are measured within 30 s counting for each value. Considering the relevant statistical errors, random errors, and imperfections of optical elements, our results fit well with the theoretical predictions.
As the key part of the experimental setup, the performance of the BD-type Mach–Zehnder interferometer directly determines the precision of phase estimation. Suppose \(\theta \) is the phase signal to be measured, and the random phase error \(\varphi \), which comes from the inherent randomness of quantum mechanics, follows a Gaussian distribution \(D(\varphi) \propto \exp(-\frac{\varphi^2}{2\rho^2}) \), where \(\rho \) is the standard deviation which is related to the polarization extinction ratio (PER) of the interferometer. The total sample number is \(N \), so the phase uncertainty of the conventional measurement is (see details in Ref. [82])

\[
\Delta \theta = \sqrt{\rho^2 + \frac{1}{N}}. \tag{8}
\]

When we consider our WMPA scheme, the total phase uncertainty in this scenario is (see Eq. (A5) in Appendix A)

\[
\Delta \theta_w = \sqrt{16\delta^2 \rho^2 + \frac{4}{N} + \left(\frac{\theta}{\delta}\right)^2 \Delta^2 \delta}, \tag{9}
\]

where \(\Delta^2 \delta \) is determined by the experimental device’s precision. In our WMPA experiment, all the HWP’s are mounted on stepper electric motors, whose accuracy \(\Delta \alpha \) can reach as low as 0.44 mrad. \(\Delta^2 \delta \) has the same order of magnitude as \(\Delta^2 \alpha \sim 10^{-7} \text{ rad}^2 \). And \(\theta/\delta \) has the same order of magnitude as \(\kappa \sim 10^{-1} \). With the help of weak measurement, the phase resolution of the interferometer can be improved by a factor of \(1/(4\delta) \) (the same as the amplification factor) when \(\rho \gg \sqrt{\frac{4}{N} + \left(\frac{\theta}{\delta}\right)^2 \Delta^2 \delta} \). However, \(\delta \) can not be infinitely small, in which case the third part of Eq. (A5) will play a major role, and the total phase uncertainty will get out of hand. The constraint on the magnification factor is dependent on the accuracy of the factor itself.

5. Conclusion

Although we only experimentally demonstrated the amplification of a polarization-dependent longitudinal phase, the general tasks of phase amplification can be readily realized by using Michelson interferometer suggested in Refs. [83,84]. This realization indicates that WMPA is capable of measuring any small phase signal with higher precision and sensitivity than the CM in practice.

In conclusion, we have described and demonstrated a weak measurements amplification protocol, i.e., WMPA that is capable of measuring any small longitudinal phase signal. The small phase introduced by LCVR is measured and one order of magnitude of amplification is realized. In our measurement, the effect of magnification error is considered and we find that there is a trade-off between magnification and error. Larger amplification is possible if we consider cascading scenarios. The WMPA would have higher precision and sensitivity than the CM if the quantum noise limitation is negligible, which is usually the case in practice. In addition, the precision of our scheme has the potential to achieve the Heisenberg-limited precision scaling by using quantum resources such as squeezing states.[35] Our results significantly broaden the area of applications of weak measurements and may play a crucial role in high-precision measurements.

Appendix A: Phase uncertainty

Here we calculate the phase uncertainty of our scheme. Considering a realistic interferometer, the detection probability is

\[
p = \frac{1}{2}(1 + \cos(\theta + \varphi)), \tag{A1}
\]

where \(\theta \) is the phase to be measured, and the random phase error \(\varphi \) satisfies Gaussian distribution: \(D(\varphi) \propto \exp(-\frac{\varphi^2}{2\rho^2}) \) with the standard derivation \(\rho \). Given the total sample of \(N \), the minimum uncertainty of the phase can be simplified as (see details in Ref. [82])

\[
\Delta \theta = \sqrt{\rho^2 + \frac{1}{N}}. \tag{A2}
\]

Our weak measurement scheme The detection probability is

\[
p_w = \frac{1}{2}(1 + \cos(\kappa + \varphi)), \tag{A3}
\]

where \(\kappa \) can be calculated by Eq. (3) with \(\alpha = \beta = 1/\sqrt{2} \) and \(\gamma = \sin(45^\circ - 2\delta) \), \(\eta = -\cos(45^\circ - 2\delta) \). Suppose \(\theta \ll 1 \) and \(\delta \) is a small quantity, the amplified phase \(\kappa \) can be simplified with approximations as \(\kappa = \theta/(4\delta) \). Because of the post-selection, the sample size has to multiply the success probability. So the total sample is changed from \(N \) to \(N' = 4\delta^2 N \). The phase uncertainty can be calculated as

\[
\Delta \theta_w = \sqrt{16\delta^2 \rho^2 + \frac{4}{N} + \left(\frac{\theta}{\delta}\right)^2 \Delta^2 \delta} \tag{A4}
\]

However, Ref. [82] does not consider the uncertainty of magnification factors. As previously mentioned, the factor of amplification is mainly determined by the post-selection probability which is related to \(\delta \). The phase \(\theta \sim 4\delta \kappa \). According to the error transfer function, the phase uncertainty becomes

\[
\Delta \theta_w = \sqrt{\left(\frac{\partial \theta}{\partial \kappa}\right)^2 \times \Delta^2 \kappa + \left(\frac{\partial \theta}{\partial \delta}\right)^2 \times \Delta^2 \delta} = \sqrt{16\delta^2 \rho^2 + \frac{4}{N} + (4\kappa)^2 \Delta^2 \delta} \tag{A5}
\]
Appendix B: The calibration of the liquid crystal variable retarder

The LCVR causes a phase shift between the horizontal and vertical polarization states of photons when the voltage is introduced by a liquid crystal controller (Thorlabs LCC25). Here we give the calibration curve of the liquid crystal variable retarder (Thorlabs LCC1411-B) in Fig. B1. The phase shift of LCVR is linear with the voltage. However, the error bar of the phase shift θ gradually increases, which causes the error bar of the κ to become longer with the increase of the phase θ to be measured, see Fig. 3.

![Fig. B1. The calibration curve of the LCVR.](image)

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367) and the National Key Research and Development Program of China (Grant No. 2021YFE0113100). Meng-Jun Hu is supported by Beijing Academy of Quantum Information Sciences.

References

[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[2] Dressel J, Malik M, Miatto F M, Jordan A N and Boyd R W 2014 Rev. Mod. Phys. 86 307
[3] Joza R 2007 Phys. Rev. A 76 044103
[4] Ritchie N W M, Story J G and Hulet R G 1991 Phys. Rev. Lett. 66 1107
[5] Pyde G J, O’Brien J L, White A G, Ralph T C and Wiseman H M 2005 Phys. Rev. Lett. 94 220405
[6] Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401
[7] Pasey M F 2014 Phys. Rev. Lett. 113 200401
[8] Leggett A J 1989 Phys. Rev. Lett. 62 2325
[9] Aharonov Y and Vaidman L 1989 Phys. Rev. Lett. 62 2327
[10] Ferré C and Combes J 2014 Phys. Rev. Lett. 113 120404
[11] Brodutch A 2015 Phys. Rev. Lett. 114 118901
[12] Cohen E 2017 Found. Phys. 47 1261
[13] Kastner R 2017 Found. Phys. 47 697
[14] Aharonov Y, Botero A, Popescu S, Reznik B and Tollaksen J 2009 Phys. Lett. A 301 130
[15] Aharonov Y, Botero A, Popescu S, Reznik B and Tollaksen J 2009 New J. Phys. 11 033011
[16] Pan A K 2020 Phys. Rev. A 102 032206
[17] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[18] Kim Y, Kim Y S, Lee S Y, Han S W, Moon S, Kim Y H and Cho Y W 2018 Nat. Commun. 9 192
[19] Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F and Guo G C 2019 Phys. Rev. Lett. 123 150402
[20] Xu L, Xu H, Jiang T, Xu P, Zheng K, Wang B, Zhang A and Zhang L 2021 Phys. Rev. Lett. 127 180401
[21] Hosten O and Kwiat P 2008 Science 319 787
[22] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[23] Tang T, Li J, Luo L, Shen J, Li C, Qin J, Bi L and Hou J 2019 Opt. Express 27 17638
[24] Li S, Chen Z, Xie L, Liao Q, Zhou X, Chen Y and Lin X 2021 Opt. Express 29 8777
[25] Huang J H, He F F, Duan X Y, Wang G J and Hu X Y 2022 Phys. Rev. A 105 013718
[26] Goggin M, Almeida M, Barbieri M, Lanyon B, O’Brien J, White A and Pryde G 2011 Proc. Natl. Acad. Sci. USA 108 1256
[27] Koceis S, Braverman B, Ravets S, Stevens M, Mirin R, Shalm L and Steinberg A 2011 Science 332 1170
[28] Yu S, Meng Y, Tang J S, Xu X Y, Wang Y T, Yin P, Ke Z J, Liu W, Li Z P, Yang Y Z, Chen G, Han Y J, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 240506
[29] Li Z P, Wang Y T, Yu S, Liu W, Meng Y, Yang Y Z, Wang Z A, Guo N J, Zeng X D, Tang J S, Li C F and Guo G C 2022 Phys. Rev. A 106 012606
[30] Liu W T, Martínez-Rincón J and Howell J C 2019 Phys. Rev. A 100 012125
[31] Monroe J T, Yungur Halpern N, Lee T and Murch K W 2021 Phys. Rev. Lett. 126 100403
[32] Wu S and Li Y 2011 Phys. Rev. A 83 052106
[33] Zhu X, Zhang Y, Pang S, Qiao C, Liu Q and Wu S 2011 Phys. Rev. A 84 052111
[34] Nakamura K, Nishizawa A and Fujimoto M K 2012 Phys. Rev. A 85 012113
[35] Kofman A, Ashhab S and Nori F 2012 Phys. Rep. 520 43
[36] Aharonov Y and Vaidman L 1990 Phys. Rev. Lett. 64 11
[37] Pal M, Salta S, B S A, Dutta Gupta S and Ghosh N 2019 Phys. Rev. A 99 032123
[38] Magaña Loaiza O S, Mirhosseini M, Rodenburg B and Boyd R W 2014 Phys. Rev. Lett. 112 200401
[39] Zhou C, Zhong S, Ma K, Xu Y, Shi L and He Y 2020 Phys. Rev. A 102 063717
[40] Bai X, Liu Y, Tang L, Zhang Q, Li J, Lu W, Shi H, Sun X and Lu Y 2020 Opt. Express 28 152824
[41] Luo L, He Y, Liu X, Li Z, Duan P and Zhang Z 2020 Opt. Express 28 6408
[42] Wu Y, Liu S, Chen S, Luo H and Wen S 2022 Opt. Lett. 47 846
[43] Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
[44] Hallaji M, Feizpour A, Dmochowski G, Sinclair J and Steinberg A 2011 Phys. Rev. Lett. 106 193601
[45] Zhou C, Zhong S, Ma K, Xu Y, Shi L and He Y 2020 Phys. Rev. A 102 063717
[46] Bai X, Liu Y, Tang L, Zhang Q, Li J, Lu W, Shi H, Sun X and Lu Y 2020 Opt. Express 28 152824
[47] Luo L, He Y, Liu X, Li Z, Duan P and Zhang Z 2020 Opt. Express 28 6408
[48] Wu Y, Liu S, Chen S, Luo H and Wen S 2022 Opt. Lett. 47 846
[49] Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
[50] Hallaji M, Feizpour A, Dmochowski G, Sinclair J and Steinberg A 2011 Nat. Phys. 13 540
[51] Chen G, Aharon N, Sun Y N, Zhang Z, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F and Guo G C 2018 Nat. Commun. 9 93
[52] Chen G, Aharon N, Sun Y N, Zhang Z, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F and Guo G C 2018 Phys. Rev. Lett. 121 015006
[53] Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822
[54] Steinmetz J, Lyons K, Song M, Cardenas J and Jordan A N 2022 Opt. Express 30 3700
[55] Combes J, Ferrie C, Jiang Z and Caves C M 2014 Phys. Rev. A 89 052117
[56] Ferrie C and Combes J 2014 Phys. Rev. Lett. 112 040406
[57] Vaidman L 2014 arXiv:1402.0199 [quant-ph]
[58] Kedem Y 2014 arXiv:1402.1352 [quant-ph]
[59] Ferré C and Combes J 2014 arXiv:1402.2954 [quant-ph]
[60] Knee G C and Gauger E M 2014 Phys. Rev. A 88 011032
[61] Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401
[62] Combes J, Ferrie C, Jiang Z and Caves C M 2014 Phys. Rev. A 89 052117
[63] Tanaka S and Yamamoto N 2013 Phys. Rev. A 88 042116
[64] Zhang L, Datta A and Walmsley I A 2015 Phys. Rev. Lett. 114 210801
[65] Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
