Audio-Visual Speech Inpainting with Deep Learning

Giovanni Morrone, Daniel Michelsanti, Zheng-Hua Tan, Jesper Jensen
Motivation

• In real life applications, audio signals are often corrupted by accidental distortions, such as impulsive noises, clicks and transmission errors.

• **Speech Inpainting**: the process of restoring the lost speech information from the audio context.

• In our paper, we address the problem of **Audio-Visual Speech Inpainting**: in addition to reliable audio-context, uncorrupted visual information is exploited.

• This approach is beneficial especially when the time gaps are large (> 400 ms).

• Visual information was successfully used in many speech-related tasks (e.g., speech recognition, speech enhancement, speech separation, etc.), but it has not adopted for speech inpainting yet.
AV Speech Inpainting

• We use a deep learning model based on Bi-directional Long-Short Term Memories (LSTM).

• The model works in the spectrogram domain and uses facial landmarks motion (Morrone et al., 2019) as visual features.

• As done in previous work, we assume to know a priori the location of uncorrupted and lost data. This information is used in the signal reconstruction stage.
System Architecture

Mask: uncorrupted/lost time-frequency bins \(\oplus \): element-wise sum \(\odot \): element-wise product
Multi-Task Learning Approach

- In addition, we propose a Multi-Task Learning (MTL) approach, which attempt to perform speech inpainting and phone recognition simultaneously.
- This strategy allows the distillation of phonetic information during training.
- The MTL training makes use of a Connectionist Temporal Classification (CTC) loss to compute the error between the phone posteriors and the ground-truth phone labels.
- The MTL loss, J_{MTL}, consists of a weighted sum between the inpainting loss, J_{MSE}, and the CTC loss, J_{CTC}:
 \[
 J_{MTL} = J_{MSE} + \lambda \cdot J_{CTC}, \lambda \in \mathbb{R}
 \]
MTL System Architecture

Mask: reliable/unreliable time-frequency bins
CTC: Connectionist Temporal Classification
⊕: element-wise sum
⊙: element-wise product

Audio Context

CTC: classifier

Restored Spectrogram

Inpainted Spectrogram

PHONE RECOGNITION SUBTASK

PHONE ME SEQUENCE
Experimental Setup

- **Dataset:** GRID corpus (Cooke et al., 2006). Speaker-independent setting:
 - Training set: 25 speakers, 1000 utterances per speaker.
 - Validation set: 4 speakers, 1000 utterances per speaker.
 - Test set: 4 speakers, 1000 utterances per speaker.

- We generate a corrupted version of the GRID corpus where random missing time gaps with different durations are introduced in audio speech signals.

- To assess the performance of the AV models, we devise an audio-only baseline models by simply removing the video input, leaving the rest unchanged.

- **Hyperparameters:**
 - BLSTM: 3 layers, 250 hidden units per layer
 - Optimizer: Adam
 - Learning rate: 0.001
 - Mini-batch size: 8
 - λ weight MTL loss: 0.001
Evaluation Results

We evaluate our systems with 4 metrics: L1 loss, PER\(^1\) (Phone Error Rate), and two perceptual metrics, STOI and PESQ.

A	V	MTL	L1 ▼	PER ▼	STOI ▲	PESQ ▲
			0.838	0.508	0.480	1.634
✗			0.482	0.228	0.794	2.458
✗	✗		0.452	0.151	0.811	2.506
✗	✗	✗	0.476	0.214	0.799	2.466
✗	✗	✗	0.445	0.137	0.817	2.525

A: Audio V: Video MTL: multi-task learning with CTC

- AV models outperform the audio-only counterparts on all metrics.
- The MTL strategy is beneficial.

\(^1\)PER is obtained with a phone recognizer trained on uncorrupted data. The PER score of uncorrupted speech is 0.069.
Time Gap Analysis

[Graphs showing L1, PER, STOI, and PESQ metrics for different gap sizes and processes, including UNPROCESSED, AUDIO, AUDIO-VISUAL, AUDIO+MTL, and AUDIO-VISUAL+MTL.]
Example - 800 ms Time Gap
Conclusion

• To the best of our knowledge, this is the first work that exploits vision for the speech inpainting task.

• Audio-visual models strongly outperform audio-only models.

• Audio-only approach degrades rapidly when missing time gaps get large.

• Audio-visual approach is still able to plausibly restore missing information for very long time gaps (> 400 ms).

• Learning a phone recognition task together with the inpainting task leads to better results, although its contribution to performance is lower compared to vision.
Thanks for your attention!

Contacts:

Giovanni Morrone (giovanni.morrone@unimore.it)
Daniel Michelsanti (danmi@es.aau.dk)
Zheng-Hua Tan (zt@es.aau.dk)
Jesper Jensen (jje@es.aau.dk)