Fluoride ion encapsulation by Mg\(^{2+}\) ions and phosphates in a fluoride riboswitch

Aiming Ren\(^1\), Kanagalaghatta R. Rajashankar\(^{2,3}\) & Dinshaw J. Patel\(^1\)

Significant advances in our understanding of RNA architecture, folding and recognition have emerged from structure–function studies on riboswitches, non-coding RNAs whose sensing domains bind small ligands and whose adjacent expression platforms contain RNA elements involved in the control of gene regulation. We now report on the ligand–bound structure of the *Thermotoga petrophila* fluoride riboswitch, which adopts a higher–order RNA architecture stabilized by pseudoknot and long–range reversed Watson–Crick and Hoogsteen A–U pair formation. The bound fluoride ion is encapsulated within the junctional architecture, anchored in place through direct coordination to three Mg\(^{2+}\) ions, which in turn are octahedrally coordinated to water molecules and five inwardly pointing backbone phosphates. Our structure of the fluoride riboswitch in the bound state shows how RNA can form a binding pocket selective for fluoride, while discriminating against larger halide ions. The *T. petrophila* fluoride riboswitch probably functions in gene regulation through a transcription termination mechanism.

The field of RNA structure, folding and recognition has been propelled forward by the discovery of metabolite-sensing bacterial non-coding RNA elements, termed riboswitches, which have been shown to affect RNA-mediated gene regulation\(^1,2\). Most riboswitches are positioned within 5’-untranslated regions of genes associated with transport and metabolism of their cognate metabolites. Riboswitches interconvert between metabolite-free and metabolite-bound conformations, depending on metabolite concentration, with the sensing domain involved in metabolite recognition, whereas the adjacent expression platform contains RNA elements that control translational initiation, transcription termination or ribozyme-mediated cleavage.

So far, structure–function studies have been undertaken on riboswitches that target purines and their analogues, amino acids, coenzymes and phosphates in a fluoride riboswitch\(^9,10\). Similar structural principles involving a bridging diphosphates of TPP and guanine base edges (rather than backbone phosphates) of the RNA\(^7,8\). This structural information was critical for guiding subsequent studies on ligand-induced folding of the TPP riboswitch\(^9,10\). Similar structural principles involving a bridging hydrated Mg\(^{2+}\) ion were also used for recognition of the monophosphate of flavin mononucleotide (FMN) by its riboswitch\(^11,12\).

Recently, a riboswitch associated with *crcB* motif non-coding RNAs from *Pseudomonas syringae* has been identified that targets fluoride ion with a \(K_d\) of approximately 60 \(\mu\)M and discriminates against other halogen ions\(^3,4\). This riboswitch is common to bacterial and archaeal species and was found to activate the expression of genes that encode putative fluoride transporters. Given the small size and negative charge of the fluoride ion, it seems remarkable that RNA can form a small enough pocket to target it and discriminate against larger halide ions.

Structure of fluoride–bound riboswitch

The conserved secondary fold of *crcB* RNA motif fluoride-sensing riboswitches was deduced following sequence conservation and covariational analysis among bacterial and archaeal species, as well as in-line probing and mutational studies\(^3,4\). The resulting analysis identified two helical stems connected by a large asymmetric internal loop, with the overhang at the 5’-end capable of adopting pseudoknot-like higher–order interactions.

We used isothermal titration calorimetry (ITC) to establish that the 52-mer RNA sequence corresponding to the sensing domain of the *T. petrophila* fluoride riboswitch (Fig. 1a) bound fluoride ion (on addition of KF) with a \(K_d\) of 135 ± 9 \(\mu\)M under 5 mM Mg\(^{2+}\) conditions (Fig. 1b). The stoichiometry of binding approaches 1:1 \((N = 0.87)\), with estimated thermodynamic parameters of \(\Delta H = -2.5 \pm 0.1\) kcal mol\(^{-1}\) and \(\Delta S = 9.3\) cal mol\(^{-1}\) K\(^{-1}\). Similar binding parameters were observed under 1 mM Mg\(^{2+}\) conditions, but no binding was observed in the absence of Mg\(^{2+}\) ion (Supplementary Fig. 1a, b, respectively).

The sensing domain of the *T. petrophila* fluoride riboswitch (Fig. 1a) yielded crystals in the presence of fluoride ion that diffracted to 2.3 Å resolution. We solved the structure of this fluoride riboswitch by co-crystallizing it with Ir(NH\(_3\))\(_6\)Cl\(_3\) and capitalizing on the anomalous properties of iridium to solve the phase problem (Supplementary Fig. 2). The three-dimensional structure in the bound state is shown in Fig. 1c with different elements colour-coded as shown in Fig. 1a. The most striking feature is that the bound fluoride ion (red ball, Fig. 1c), positioned within the centre of the riboswitch fold, is surrounded and directly coordinated by three metal ions (cyan balls, Fig. 1c; metal–fluoride distances of 1.8-2.0 Å). A close–up stereo view of the ligand-binding pocket in the same perspective as in Fig. 1c, with the emphasis on the fluoride ion (in red), three coordinating metal ions (in cyan) and five inwardly pointing backbone phosphates (non–bridging oxygens in pink and phosphorus atoms in yellow) is shown in stereo in Fig. 1d.

\(^{1,2}\)Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. \(^{3}\)NE-CAT, Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois 60439, USA. \(^{4}\)Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
Fluoride coordinated to three Mg$^{2+}$ ions

We have identified the fluoride ion binding site in the $F_o - F_c$ omit map for fluoride ion (Fig. 1e) and assign all three metal ions coordinated to the fluoride ion, to Mg$^{2+}$ ions, based on observation of anomalous signals following soaking of the crystals in 50 mM Mn$^{2+}$-containing solution (Fig. 1f and Supplementary Fig. 3). The additional metal ion (in orange, Fig. 1c) positioned close by but not coordinated to the fluoride ion (metal–fluoride distance of 4.0 Å), is assigned to a K$^+$ cation (buffer contained K-acetate), on the basis of the observed anomalous signal at its position following soaking of crystals in Cs$^+$-containing solution (Supplementary Fig. 4a) and Tl$^+$-containing solution (Supplementary Fig. 4b) solutions.

Riboswitch adopts pseudoknot scaffold

The higher-order fold of the fluoride-bound riboswitch is stabilized by pseudoknot formation involving residues G2-G3-C4-G5 of the 5′-overhang segment and residues C14-G15-C16-C17 of the internal loop, thereby forming a regular duplex composed of four stacked Watson–Crick G-C base pairs (in magenta, Fig. 2a). This validates the prediction of pseudoknot formation amongst the same residues, though our crystal structure shows stabilization by four rather than the postulated five base pairs anticipated in solution. In this regard, 5′-terminal G1 and 3′-terminal U51 and G52 are involved in crystal packing contacts in our structure of the fluoride riboswitch (Supplementary Fig. 5). None of the residues in the C18 to U23 segment of the internal loop are involved in pairing interactions, but rather C18 stacks on terminal Watson–Crick G2-C17 pair, with a sharp turn at the C18–A19 step, followed by continuous stacking within the A19-A20-A21 and C22-U23 steps (Fig. 2a). The junctional architecture in the vicinity of the fluoride-binding site is additionally stabilized by formation of long-range single-base pseudoknot-like pairing between A6 and U38 (predicted previously) and between A40 and U48 (Fig. 2b). Both form non-canonical pairs, with A6•U38 pairing through a reversed Watson–Crick alignment (Fig. 2c) and A40•U48 pairing through a reversed Hoogsteen alignment (Fig. 2d). Note that unpaired U7 and G39 are mutually interdigitated (Fig. 2b) and contribute to the formation of the junctional architecture. The tracing of these RNA segments in the $2F_o - F_c$ electron density maps of the fluoride riboswitch are shown in Supplementary Fig. 6a, b.

Coordination of Mg$^{2+}$ ions by phosphates

The negatively charged fluoride ion (in red) is directly coordinated to three Mg$^{2+}$ ions (in cyan) labelled M1, M2 and M3 (stereo view in Fig. 3a), with the fluoride ion positioned somewhat out of the plane.
inwardly pointing non-bridging phosphate oxygens (in pink; phosphorus in yellow), with three of these phosphates involved in bidentate coordination (pA6, pU7 and pG42), and two others involved in monodentate coordination (pG8 and pU41) (Fig. 3a). Stereo views of the corresponding $F_a - F_c$ omit electron density maps for the five nucleotides with inwardly pointing phosphates are shown in Supplementary Fig. 7c (contoured at 3σ) and d (contoured at 5σ).

In essence, our structure identifies a unique solution for how a negatively charged RNA scaffold can target a negatively charged fluoride ligand. The fluoride ion is surrounded by and coordinated to an inner shell of three Mg$^{2+}$ ions, which in turn are surrounded and coordinated to an outer shell of five backbone phosphates and water molecules. Notably, the five participating phosphates are located within two distinct segments of the sequence, with three of them residing within the 5’-overhang segment G5pA6pU7pG8, while two other reside within the A40pU41pG42 internal loop segment, as labelled in Fig. 1a by red asterisks. Because of the unique orientation of these five inwardly directing backbone phosphates, 8 of the 14 internal loop residues are stacked but not involved in hydrogen-bond pairing, and differ from large internal loops of other structurally characterized riboswitches, where ligand binding results in a compaction mediated by maximal hydrogen-bond pairing and stacking of loop residues$^{14-19}$.

Metal ions and their coordinated water molecules were identified on the basis of $2F_a - F_c$ and $F_a - F_c$ maps guided by the coordination geometries. The positioning of the fluoride ion, the non-bridging phosphate oxygens and the water molecules that constitute the three Mg$^{2+}$ ion cluster that is coordinated to the fluoride ion is shown in stereo in Fig. 3c, with individual Mg$^{2+}$ ions adopting the anticipated octahedral-like alignments as shown in Fig. 3d. Mg$^{2+}$ coordination within the square-planar arrangements are shown by dashed blue lines, whereas coordination in apical positions are shown by dashed red lines, together with distances listed in Å in Fig. 3d. Notably, the fluoride riboswitch does not bind chloride ion (added KCl) in the presence of 20 mM Mg$^{2+}$ as monitored by ITC (Supplementary Fig. 1c). In addition, it does not bind fluoride ion (added KF) in the presence of 20 mM Li$^{+}$ ions (Supplementary Fig. 1d), in contrast to the observed binding under Mg$^{2+}$ ion conditions (Fig. 1b).

Fluoride–metal ion coordination in proteins

Of additional note, the fluoride ion adopts an apical position in the octahedral coordination geometries for all three Mg$^{2+}$ ions (Fig. 3d). Mg$^{2+}$ ion M1 is coordinated by four non-bridging phosphate oxygens aligned in a square planar arrangement, whereas Mg$^{2+}$ ions M2 and M3 are coordinated by two non-bridging phosphate oxygens (Fig. 3d). Additional support for our model of the coordination geometry of three Mg$^{2+}$ ions around fluoride in the fluoride riboswitch comes from the highly similar coordination geometry observed in the 1.9 Å structure of fluoride-inhibited pyrophosphatase (crystals grown from 1 mM MnCl$_2$ and 5 mM NaF-containing buffer)20. Here, a fluoride ion is coordinated by a similar three-metal ion arrangement in the pyrophosphatase system (Supplementary Fig. 8). In the fluoride-inhibited pyrophosphatase structure, two Mn$^{2+}$ ions and one Na$^+$ ion are coordinated by oxygens atoms from one pyrophosphate (POP) molecule and from four aspartate carboxy groups, and water molecules (Supplementary Fig. 8a).

We are aware that fluoride anion is a potent hydrogen bond acceptor1,21, but currently have no evidence in support of direct F$^-\cdot$H hydrogen bonding in the structure of the fluoride riboswitch, nor was such hydrogen bonding reported for the fluoride-inhibited pyrophosphatase system20.

Previous studies of metals in RNA folding, stability and catalysis have focused on monovalent and divalent cations22, including Mg$^{2+}$ clusters bridging closely positioned phosphates in 5S RNA23, P4-P5-P6 fragment of group I introns24 and Mg$^{2+}$-sensing riboswitches25,26. Our current contribution, based on the discovery of a fluoride riboswitch13,

Figure 2 | Details of long-range interactions within the structure of the *T. petrophila* fluoride riboswitch in the ligand-bound state. a. An expanded region of the structure highlighting pseudoknot formation involving residues G2-G3-C4-G5 of the 5’-overhang segment and residues C14-G15-C16-C17 of the large internal loop (in magenta), as well as continuous stacking within the A19-A20-A21 and C22-U23 steps. b. An expanded region of the structure highlighting long-range single-base pseudoknot-like pairing between A6 and U38, and between A40 and U48. Note the mutual interdigitation between unpaired U7 and G39 that contribute to formation of the junctional architecture. c. Long-range reversed Watson–Crick A6-U38 pair formation. d. Long-range reversed Hoogsteen A40-U48 pair formation. (0.49 Å) formed by the three Mg$^{2+}$ ions (Fig. 3b). Stereo views of the corresponding $F_a - F_c$ omit electron density maps for fluoride ion, three Mg$^{2+}$ ions and bound water molecules are shown in Supplementary Fig. 7a (contoured at 3σ) and b (contoured at 7σ). The three Mg$^{2+}$ ions in turn are coordinated by water molecules and five

©2012 Macmillan Publishers Limited. All rights reserved
has defined how a RNA scaffold combines an inner shell of metal ions and an outer shell of phosphates to completely encapsulate a fluoride ion.

Folding and mechanism of action

We have recorded 900 MHz imino proton NMR spectra of the fluoride riboswitch in the free and fluoride bound states, which establish a conformational transition (chemical shift changes) and compaction (additional peaks) through higher-order structure generation on complex formation, with slow exchange between the free and bound forms (Supplementary Fig. 9). We have not been able to crystallize the ligand-free fluoride riboswitch in the presence of Mg$^{2+}$ (Supplementary Fig. 9). We have not been able to crystallize the ligand-free fluoride riboswitch in the presence of Mg$^{2+}$ (Supplementary Fig. 9).

METHODS SUMMARY

Details of RNA preparation, purification and complex formation, as well as crystallization, X-ray data collection and refinement are described in detail in Methods.

Received 8 March; accepted 23 April 2012.

Published online 13 May 2012.

1. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. *Cell* **111**, 747–756 (2002).
2. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. *Nature* **419**, 952–956 (2002).

3. Nudler, E. & Mironov, A. S. The riboswitch control of bacterial metabolism. *Trends Biochem. Sci.* **29**, 11–17 (2004).

4. Winkler, W. C. & Breaker, R. R. Regulation of bacterial gene expression by riboswitches. *Annu. Rev. Microbiol.* **59**, 487–517 (2005).

5. Serganov, A. & Patel, D. J. Riboswitches and beyond: regulation of gene expression without proteins. *Nature Rev. Genet.* **8**, 776–790 (2007).

6. Montange, R. K. & Batey, R. T. Riboswitches: emerging themes in RNA structure and function. *Annu. Rev. Biophys.* **37**, 117–133 (2008).

7. Serganov, A. et al. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. *Nature* **441**, 1167–1171 (2006).

8. Toone, S., Leinungdut, M. & Ban, N. Structure of the thiamine pyrophosphate riboswitch. *Science* **312**, 1208–1211 (2006).

9. Lang, K., Rieder, R. & Micura, R. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach. *Nucleic Acids Res.* **35**, 5370–5378 (2007).

10. Anthony, P. C., Perez, C. F., Garcia-Garcia, C. & Block, S. M. Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer. *Proc. Natl Acad. Sci. USA* **109**, 1485–1489 (2012).

11. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. *Cell* **111**, 747–756 (2002).

12. Serganov, A., Huang, L. & Patel, D. J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. *Chem. Biol.* **17**, 774–786 (2010).

13. Correll, C. C., Freeborn, B., Moore, P. B. & Steitz, T. A. Metals, motifs and recognition in the crystal structure of a 5S RNA domain. *Cell* **91**, 705–712 (1997).

14. Cate, J. H., Hanna, R. L. & Doudna, J. A. A magnesium ion core at the heart of a ribozyme domain. *Nature Struct. Biol.* **4**, 553–558 (1997).

15. Kronmiller, M. J., Shi, Y., Latifi, T. & Groisman, E. A. An RNA sensor for intracellular Mg²⁺. *Cell* **125**, 71–84 (2006).

16. Dann, C. E. III et al. Structure and mechanism of a metal-sensing regulatory RNA. *Cell* **130**, 878–892 (2007).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank J. Goldberg and C. Lima for discussion and insights, Y. Liu for recording imino proton NMR spectra, and the personnel of the synchrotron beamlines 24-ID-C/E at the Advanced Photon Source, Argonne National Laboratory for their assistance. This research was funded by NIH grant GM34504 to D.J.P.

Author Contributions A.R. generated and purified RNA constructs, grew diffraction quality crystals, collected synchrotron data sets and solved the structure of the fluoride riboswitch in the bound state under the supervision of D.J.P.; K.R.R. assisted in crystallographic aspects of the structure determination, including finding unique solutions to the positioning of the Mg and fluoride ions. D.J.P. wrote the manuscript with the assistance of the other authors, all of whom discussed the results and commented on the manuscript.

Author Information Atomic coordinates of the structure of the fluoride riboswitch in the bound state have been deposited in the RCSB Protein Data Bank under the accession code 4ENC for the native structure and 4ENB for the (lr(NH)₂C₆)[–]-containing structure of the fluoride-bound riboswitch, as well as 3VRS, 4ENA and 4EN5 for crystals of the complex soaked in Mg²⁺, Cs⁺ and T¹⁺-containing solutions. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to D.J.P. (pateld@mskcc.org).
METHODS
RNA preparation, purification and complex formation. The crcB motif of the *T. petrophila* fluoride riboswitch followed by the HDV ribozyme was transcribed in vitro using T7 RNA polymerase. The transcribed RNA was purified by denaturing polyacrylamide gel electrophoresis (PAGE), followed by anion-exchange chromatography and ethanol precipitation. To generate the complex of the sensing domain of the *T. petrophila* fluoride riboswitch with fluoride ion, 10 mM KF was added to the buffer consisting of 100 mM potassium-acetate, pH 6.8 and 5 mM MgCl₂. After annealing at 60 °C for 10 min, the complex was purified by gel-filtration chromatography, before setting up crystallization trials.

Crystallization. Crystals of the fluoride anion-bound *T. petrophila* fluoride riboswitch grew at 20 °C over a period of 1 week using the sitting-drop vapour diffusion approach after mixing the complex at an equimolar ratio with the reservoir solution which grew at 20 °C. For heavy atom and cation soaking, crystals grown from 0.1 M sodium-cacodylate, pH 7.0, 20 mM spermine, 0.2 M strontium chloride and 20% MPD over a period of 4 days. For isothermal titration calorimetry, all experiments were performed on a MicroCal ITC200 calorimeter at 20 °C. Prior to titration, 0.3–0.5 mM RNA samples of the fluoride-bound riboswitch were dialysed overnight at 4 °C against experimental buffer containing 50 mM potassium acetate, pH 6.8, and 0 to 20 mM MgSO₄ or other cations to remove bound fluoride. RNAs were refolded by heating at 60 °C for 10 min and followed by cooling on ice. For measurements, KF dissolved in the dialysis buffer at 10 mM concentration was typically titrated into the RNA in the sample cell (v = 207 μl) by 20 serial injections of 2 μl each, with a 0.5 μl·s⁻¹ rate, 180 s intervals between injections, and a reference power of 6 μcal·s⁻¹. The thermograms were integrated and analysed by using Origin 7.0 software (MicroCal).

NMR spectra. Imino proton NMR spectra (10 to 15 ppm) of the fluoride riboswitch in the free and bound state were recorded on a 900 MHz Bruker NMR spectrometer with cryoprobe using a jump-and-return pulse for H₂O solvent suppression. NMR spectra were recorded in buffer containing 50 mM K-acetate-d₃, 5 mM Mg-sulphate, 90%H₂O/10%D₂O, pH 6.8 at 25 °C.

Stage-based on the experimental and refined maps, coupled with electrostatic analysis. The X-ray statistics of the native and iridium-containing crystals are listed in Supplementary Table 1. Anomalous data sets of Mn²⁺, Cs⁺ and Tl⁺ were collected at the wavelength of 1.7712 Å. The X-ray statistics of the complex crystals soaked in Mn²⁺-, Cs⁺- and Tl⁺-containing solutions are listed in Supplementary Table 1. Mn²⁺-, Cs⁺- and Tl⁺-cations were positioned on the basis of the anomalous electron density maps (Supplementary Figs 3 and 4a, b). Cations were interpreted as Mg²⁺ or K⁺ on the basis of the anomalous maps of their mimics, coordination geometry and distances.

X-ray data collection and refinement. X-ray diffraction data were collected on flash-frozen crystals of the fluoride anion-bound *T. petrophila* fluoride riboswitch at NE-CAT beamlines at the Advanced Photon Source, Argonne National Laboratory and processed using the HKL2000 program (HKL Research). The structure (space group: *P2₁2₁2₁*) was determined using single wavelength anomalous dispersion (SAD) technique using anomalous signal from four iridium atoms with the HKL20M program and PHENIX suite. The RNA model was built in COOT and refined in PHENIX and REFMAC using 2.3 Å native data set of the ligand-bound fluoride riboswitch. Metal ions and their coordinated water molecules were identified on the basis of 2Fo - Fc and Fo - Fc maps guided by the coordination geometries. Fluoride ion was added to the model at the last stage based on the experimental and refined maps, coupled with electrostatic analysis. The X-ray statistics of the native and iridium-containing crystals are listed in Supplementary Table 1. Anomalous data sets of Mn²⁺, Cs⁺ and Tl⁺ were collected at the wavelength of 1.7712 Å. The X-ray statistics of the complex crystals soaked in Mn²⁺-, Cs⁺- and Tl⁺-containing solutions are listed in Supplementary Table 1. Mn²⁺-, Cs⁺- and Tl⁺-cations were positioned on the basis of the anomalous electron density maps (Supplementary Figs 3 and 4a, b). Cations were interpreted as Mg²⁺ or K⁺ on the basis of the anomalous maps of their mimics, coordination geometry and distances.

27. Pikovskaya, O. et al. Preparation and crystallization of riboswitch-ligand complexes. Methods Mol. Biol. 540, 115–128 (2009).
28. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELYX programs. J. Appl. Cryst. 37, 843–844 (2004).
29. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002).
30. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
31. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
32. Feig, A. L. & Uhlenbeck, O. C. in *The RNA World* 2nd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 287–319 (Cold Spring Harbor Laboratory Press, 1999).