Beers Criteria versus Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions in evaluation of drug-prescribing practice in an Indian hospital

Dominic Benjamin¹, MRCP(Geriatrics), CCT(Geriatrics), FRCP(Lon), Manisha Thankachen², Dip Clinical Pharm, R Saranya² Dip Clinical Pharm

ABSTRACT

Purpose. To compare the Beers Criteria and Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions (STOPP) in identifying potentially inappropriate medication (PIM) and adverse drug reaction (ADR) among Indian geriatric inpatients.

Methods. Patients aged ≥60 years who were admitted to the geriatric medicine ward of Bangalore Baptist Hospital between January 2016 and July 2016 were observed throughout the hospital stay. Medical records of patients were reviewed to determine PIM and ADR. The Beers Criteria and STOPP were used to identify PIM.

Results. 226 male and 124 female geriatric patients aged 60 to 92 (median, 68) years were included. The median number of medications was 12 (range, 0-26), the median number of comorbidities was 2 (range, 1-6), and the median length of hospital stay was 5 (range, 1-23) days. Respectively for the Beers Criteria and STOPP, 97 (27.7%) and 86 (24.6%) patients were identified to have 136 (38.9%) and 108 (30.9%) PIMs and 11 (3.1%) and 7 (2.0%) ADRs. Beers Criteria was more likely to identify PIM than STOPP (0.2 vs. 0.1 per patient, χ²=43.21, p<0.001). The Beers Criteria was more sensitive (0.59 vs. 0.52) but less specific (0.60 vs. 0.65) than STOPP in identifying PIMs.

Conclusion. The Beers Criteria was more sensitive but less specific than STOPP in identifying PIMs. The prevalence of PIMs was high among elderly patients in our geriatric medicine ward. The use of the Beers Criteria or STOPP may help reduce PIM and ADR.

INTRODUCTION

Potentially inappropriate medication (PIM) is a major health care concern in elderly patients. It increases the risk of adverse drug reaction (ADR), drug-drug interaction, hospital admission, and health care cost. Among hospitalised patients, ADR is the fifth most common cause of death.¹ Ageing results in changes in pharmacodynamics that alter body sensitivity to different classes of drugs (anticoagulants, psychotropic, and cardiovascular) and pharmacokinetics that prolong elimination half-life owing to reduced renal and hepatic clearance and increased volume distribution of lipid soluble drugs.²
PIM is assumed when the adverse effect outweighs the clinical outcome and a more effective and safer therapy is available for the same problem.3-5 There are various criteria to identify PIM in elderly patients.6 Although the Beers Criteria are commonly used in large-scale epidemiological studies, some of the Beers Criteria are controversial and almost half of PIMs in the Beers Criteria are unavailable in European formularies.7,8 The Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions (STOPP) and the Screening Tool to Alert Doctors to Right Treatment (START) are evidence-based criteria. The STOPP comprises 65 criteria to systematically identify PIMs.

India’s geriatric population is expected to increase from 8.3% to 10.7% by 2021.9 This study aimed to compare the Beers Criteria and STOPP in identifying PIM and ADR among Indian geriatric inpatients. This may help health care professionals to make drug-prescribing decisions according to risk-benefit assessment.10

METHODS

This prospective study was approved by the ethics committee of the Bangalore Baptist Hospital and conducted in compliance with the Declaration of Helsinki. Informed consent was obtained from each patient. Patients aged ≥60 years who were admitted to the geriatric medicine ward of Bangalore Baptist Hospital between January 2016 and July 2016 were observed throughout the hospital stay. Patients presenting to the outpatient, gynaecology, chemotherapy, or emergency department were excluded due to difficulty in follow-up.

Medical records of patients were reviewed to determine PIM and ADR. The Beers Criteria and STOPP were used to identify PIM. Causality of the ADR was assessed using the Naranjo algorithm11 and World Health Organization Adverse Drug Reaction Probability Scale.12 Severity of ADR was assessed using the Modified Hartwig and Siegel Scale. Causality, severity, and preventability of ADR were re-checked by a senior geriatric consultant.

Continuous variables of the Beers Criteria and STOPP were compared using the Mann-Whitney U test. The number of patients with PIM was the endpoint for assessment of sensitivity and specificity, using a 2x2 contingency table. Predictors of PIM were identified in the bivariate analysis using the Pearson Chi-squared test. Variables assessed in the bivariate analysis were age, number of comorbidities, number of medications, and length of hospital stay. A multivariate logistic regression model was used to evaluate the influence of predictors on PIM. A p value of <0.05 was considered statistically significant.

RESULTS

226 male and 124 female geriatric patients aged 60 to 92 (median, 68) years were included. The median number of medications was 12 (range, 0-26), the median number of comorbidities was 2 (range, 1-6), and the median length of hospital stay was 5 (range, 1-23) days (Table 1).

Predictor	Beers Criteria	STOPP
Number of medications	12 (range, 0-26)	12 (range, 0-26)
Number of comorbidities	2 (range, 1-6)	2 (range, 1-6)
Length of hospital stay	5 (range, 1-23 days)	5 (range, 1-23 days)

Among patients with PIM, the Beers Criteria and STOPP were comparable in the percentage of male and female patients (58.8% male vs. 62.8% female, $\chi^2=0.31$, p = 0.575), the age of patients (70 vs. 68 years, Mann-Whitney Z=0.955, p = 0.328), the number of medications (12 vs. 12, Mann-Whitney Z= -0.09864, p = 0.928), the number of comorbidities (2 vs. 2, Mann-Whitney Z=0.60, p = 0.5485), and the length of hospital stay (6 vs. 6 days, Mann-Whitney Z= -0.1771, p = 0.8572).

The Beers Criteria was more likely to identify PIMs than STOPP (0.2 [0-3] vs. 0.1 [0-2] per patient,
χ²=43.21, p<0.001). The Beers Criteria was more sensitive (0.59 [95% confidence interval (CI)=0.50-0.67] vs. 0.52 [95% CI=0.42-0.62]) but less specific (0.60 [95% CI=0.55-0.64] vs. 0.65 [95% CI=0.62-0.68]) than STOPP in identifying PIMs.

In bivariate analysis, predictors of PIM identified by the Beers Criteria were the number of comorbidities of 1, length of hospital stay of ≥10 days, and patient age of 60-74 years. Whereas predictors of PIM identified by the STOPP were patient age of 65-69 years and length of hospital stay of 1-4 days (Table 3).

In the logistic regression model, predictors of PIM identified by the Beers Criteria (R2=0.05, Model χ²(8)=666, p<0.001) were the number of comorbidities of 1 (odds ratio [OR]=1.97, 95% CI=1.00-3.89, p=0.05), length of hospital stay of ≥10 days (OR=0.183, 95% CI=0.009-3.54, p=0.26), and patient age of 60-74 years (OR=0.52, 95% CI=0.276-0.967, p=0.04). Whereas predictors of PIM identified by the STOPP (R2=0.03, Model χ²(8)=11141, p<0.001) were patient age of 65-69 years (OR=0.43, 95% CI=0.23-0.83, p=0.01), patient age of 70-74 years (OR=0.43, 95% CI=0.21-0.87, p=0.02), and length of hospital stay of 1-4 days (OR=0.76, 95% CI=0.48-1.18, p=0.22).

DISCUSSION

In India, the age of retirement and senior citizenship
Benjamin et al.

is 60 years and life expectancy is 66 years, compared with life expectancy of 79 years in the United States and 81 years in the United Kingdom. In our study, there were more male than female patients (64.6% vs. 35.4%), which is consistent with one study, but is in contrast with another study reporting more female than male patients (61.9% vs. 38.1%). In our patients, an average of 10 drugs were prescribed, which is more than that reported in other studies with an average of 5 and 9 drugs per prescription.

Limiting the number of drugs per prescription is recommended because of the risk of drug-drug interaction, drug-food interaction, ADR, increased hospital cost, errors of prescribing, unwanted side effects, and prescribing and dispensing errors. Many elderly patients require polypharmacy for various co-morbidities; this is of concern as the chance of drug interactions increases.

In our study, the number of PIMs identified by

Table 2

Potentially inappropriate medication (PIM) and adverse drug reaction (ADR) identified by Beers Criteria and Screening Tool of Older Persons' Potentially Inappropriate Prescriptions (STOPP)

Drug	Beers Criteria	STOPP				
	No. of PIMs	No. of ADRs		No. of PIMs	No. of ADRs	
	independent	independent			independent	independent
	of diagnosis	of diagnosis			of diagnosis	of diagnosis
Chlorpheniramine maleate	9	1 (dry mouth)		Chlorpheniramine maleate	9	1 (dry mouth)
Aspirin	2	2 (gastrointestinal ulcer)		Aspirin	2	2 (gastrointestinal ulcer)
Chlordiazepoxide	4	-		Chlordiazepoxide	4	-
Digoxin	4	-		Digoxin	4	-
Promethazine	22	1 (confusion)		Promethazine	22	1 (confusion)
Amitriptyline	6	4 (2 confusion, 2 constipation)		Amitriptyline	6	4 (2 confusion, 2 constipation)
Clonazepam	1	-		Clonazepam	1	-
Amiodarone	5	-		Amiodarone	5	-
Clonidine	2	-		Clonidine	2	-
Dabigatran	1	-		Dabigatran	1	-
Spironolactone	13	1 (hyperkalaemia)		Spironolactone	13	1 (hyperkalaemia)
Hydroxyzine hydrochloride	3	1 (constipation)		Hydroxyzine hydrochloride	3	1 (constipation)
Metoclopramide	19	-		Metoclopramide	19	-
Prazosin	4	1 (orthostatic hypotension)		Prazosin	4	1 (orthostatic hypotension)
Zolpidem	10	-		Zolpidem	10	-
Meperidine	8	-		Meperidine	8	-
Glyburide	2	-		Glyburide	2	-
Hyoscine butylbromide	2	-		Hyoscine butylbromide	2	-
Diclofenac	8	-		Diclofenac	8	-
Diltiazem	8	-		Diltiazem	8	-
Ranitidine	1	-		Ranitidine	1	-
Tramadol	1	-		Tramadol	1	-
Lorazepam	1	-		Lorazepam	1	-
-	-	-		-	-	-
Sertraline	4	1 (hypotension)		Sertraline	4	1 (hypotension)
Amlodipine	4	-		Amlodipine	4	-
The Beers Criteria was more sensitive but less specific than STOPP in identifying PIMs. The prevalence of PIMs was high among elderly patients in our geriatric medicine ward. The use of the Beers Criteria or STOPP may help reduce PIM and ADR.

ACKNOWLEDGMENTS

The authors would like to thank the physicians, pharmacists, and nursing staff of Bangalore Baptist Hospital and teaching staff of the Pharmacy Practice Department of Karnataka Collage of Pharmacy and Dr. Carolin Elizabeth George and Dr. Tatarao M of Bangalore Baptist Hospital.

REFERENCES

1. Fialova D, Topinkova E, Gambassi G, Finne-Soveri H, Jónsson PV, Carpenter I et al. Potentially inappropriate medication use among

Predictor	Beers Criteria OR (95% CI)	p Value	STOPP OR (95% CI)	p Value
Sex				
Male	0.78 (0.52-1.17)	0.231	0.99 (0.65-1.52)	0.98
Female	1	-	1	-
Age (years)				
60-64	0.51 (0.27-0.96)	0.039	0.73 (0.40-1.33)	0.316
65-69	0.33 (0.17-0.63)	0.009	0.43 (0.22-0.82)	0.011
70-74	0.43 (0.22-0.87)	0.019	0.42 (0.21-0.86)	0.018
75-79	0.49 (0.23-1.05)	0.069	0.44 (0.20-0.94)	0.03
≥80	1	-	1	-
No. of comorbidities				
1	1.97 (1.0-3.88)	0.049	1.39 (0.69-2.81)	0.34
2	0.83 (0.40-1.71)	0.621	0.86 (0.40-1.85)	0.7
3	1.43 (0.67-3.05)	0.353	1.54 (0.70-3.38)	0.27
≥4	1	-	1	-
No. of medications				
1-4	-	-	-	-
5-9	-	-	-	-
10-14	1.13 (0.71-1.80)	0.584	1.06 (0.65-1.71)	0.81
15	1	-	1	-
Length of hospital stay (days)				
1-4	0.97 (0.63-1.51)	0.919	0.75 (0.48-1.18)	0.22
5-9	1	-	1	-
10-14	0.18 (0.009-3.54)	0.261	-	-
≥15	0.16 (0.008-2.89)	0.215	-	-
1. Benjamin et al. Elderly home care patients in Europe. *JAMA* 2005;293:1348-58.

2. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. *Br J Clin Pharmacol* 2004;57:6-14.

3. Ubeda A, Ferrandiz I, Maicas N, Gomez C, Bonet M, Peris JE. Potentially inappropriate prescribing in institutionalised older patients in Spain: the STOPP-START criteria compared with the Beers criteria. *Pharm Pract (Granada)* 2012;10:83-91.

4. Verdoorn S, Kwint HF, Faber A, Gussekloo J, Bouvy ML. Majority of drug-related problems identified during medication review are not associated with STOPP/START criteria. *Eur J Clin Pharmacol* 2015;71:1255-62.

5. Brown JD, Hutchison LC, Li C, Painter JT, Martin BC. Predictive validity of the Beers and Screening Tool of Older Persons’ Potentially Inappropriate Prescriptions (STOPP) Criteria to detect adverse drug events, hospitalizations, and emergency department visits in the United States. *J Am Geriatr Soc* 2016;64:22-30.

6. Hamano J, Ozone S, Tokuda Y. A comparison of estimated drug costs of potentially inappropriate medications between older patients receiving nurse home visit services and patients receiving pharmacist home visit services: a cross-sectional and propensity score analysis. *BMC Health Serv Res* 2015;15:73.

7. Gallagher P, O’Mahony D. STOPP (Screening Tool of Older Persons’ potentially inappropriate Prescriptions): application to acutely ill elderly patients and comparison with Beers’ criteria. *Age Ageing* 2008;37:673-9.

8. Gallagher P, Ryan C, Byrne S, Kennedy J, O’Mahony D. STOPP (Screening Tool of Older Person’s Prescriptions) and START (Screening Tool to Alert doctors to Right Treatment). Consensus validation. *Int J Clin Pharmacol Ther* 2008;46:72-83.

9. Momin TG, Pandya RN, Rana DA, Patel VJ. Use of potentially inappropriate medications in hospitalized elderly at a teaching hospital: a comparison between Beers 2003 and 2012 criteria. *Indian J Pharmacol* 2013;45:603-7.

10. Oliveira MG, Amorim WW, de Jesus SR, Heine JM, Coqueiro HL, Passos LC. A comparison of the Beers and STOPP criteria for identifying the use of potentially inappropriate medications among elderly patients in primary care. *J Eval Clin Pract* 2015;21:320-5.

11. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. *Clin Pharmacol Ther* 1981;30:239-45.

12. Parthasarathi G, Nyfort-Hansen K, Nahata MC. *A text book of clinical pharmacy practice: essential concepts and skills*. 2nd ed. Hyderabad: Orient Longman; 2004.

13. Maintenance and Welfare of Parents and Senior Citizens Act, 2007. Ministry of Social Justice and Empowerment. Government of India. Available from: http://socialjustice.nic.in/oldageact.php. Accessed 11 September 2016.

14. World Health Statistics 2005. Available from: http://apps.who.int/iris/bitstream/10665/170250/1/9789240694439_eng.pdf?ua=1. Accessed 11 September 2016.

15. Vishwas HN, Harugeri A, Parthasarathi G, Ramesh M. Potentially inappropriate medication use in Indian elderly: comparison of Beers’ criteria and Screening Tool of Older Persons’ potentially inappropriate Prescriptions. *Geriatr Gerontol Int* 2012;12:506-14.

16. Linnakumpu T, Hartikainen S, Klaucka T, Veijola J, Kivelä SL, Isoaho R. Use of medications and polypharmacy are increasing among the elderly. *J Clin Epidemiol* 2002;55:809-17.

17. Flaherty JH, Perry HM 3rd, Lynchard GS, Morley JE. Polypharmacy and hospitalization among older home care patients. *J Gerontol A Biol Sci Med Sci* 2000;55:M55-9.

18. Gallagher P, Barry P, O’Mahony D. Inappropriate prescribing in the elderly. *J Clin Pharm Ther* 2007;32:113-21.