CASE REPORT

A multidisciplinary case report of multiple myeloma with renal and cardiac involvement: a look beyond amyloidosis

Samantha Innocenti1†, Beatrice Bacchi2†, Marco Allinovi1,3*, Federico Perfetto3, Elisabetta Antonioli4, Niccolo’ Marchionni5,6, Carlo Di Mario7, Leonardo Caroti1, Francesco Cappelli3,7 and Pierluigi Stefano2,6

Abstract

Background: Multiple myeloma (MM) is a malignant neoplasm associated with kidney involvement in nearly half of the patients. Cast nephropathy, monoclonal immunoglobulin deposition disease (MIDD), and light chain (AL) amyloidosis are the most common monoclonal immunoglobulin-mediated causes of renal injury. Cardiac involvement is also present in MM, characterized by restrictive cardiomyopathy generated by light chain deposit or amyloid. Thromboembolic complications such as deep vein thrombosis or pulmonary embolism are also described.

Case presentation: We present an unusual multidisciplinary case of a woman with a newly diagnosed MM associated with severe proteinuria and high natriuretic peptide. A renal and fat pad biopsy with Congo red staining was performed but amyloid deposition was not discovered. While immunofluorescence on fresh frozen unfixed tissue was not contributory, the immunofluorescence on fixed tissue and electron microscopy revealed the correct diagnosis. During subsequent investigations, two intracardiac right-sided masses and massive pulmonary embolism were also detected.

Conclusions: This case highlights that multiple organ involvement in patients with MM may result from a combination of paraprotein-dependent and -independent factors. Moreover, renal diseases induced by monoclonal gammapathies are a group of complex and heterogeneous disorders. Their subtle presentation and their potential multiorgan involvement require the expertise of a multidisciplinary team able to provide the most appropriate diagnostic and therapeutic assessment.

Keywords: Multiple myeloma, Amyloidosis, Light-chain deposition disease, Renal vein thrombosis, Intracardiac thrombi

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Table 1 Cardiac complications in multiple myeloma

Cardiac complications in multiple myeloma	Chemotherapeutic treatment related:
Amyloid or light chain deposition related	
Restrictive cardiomyopathy	Ischemic heart disease
Pericardial effusion	Congestive heart failure
Pericarditis	Pulmonary hypertension
Cardiac dysfunction	Cardiac dysfunction (irreversibly and dose-related or dose-independent)
Thromboembolism	Thromboembolism
Arrhythmia (atrial fibrillation)	Arrhythmia
Intramiocardial massess	
Table 2: Patient's laboratory values

	Normal range	Onset	Month 1	Admission (mo 2)	After surgery	After 1 month of CHT (mo 4)	After 3 months of CHT (mo 6)	After 6 months of CHT (mo 9)	1mo after ASCT (mo 11)
Serum creatinine (mg/dl)	0.50–1.10	1.5	19	2.36	1.99	1.31	1.34	1.33	1.28
eGFR (CKD-EPI) (ml/min/1.73m²)	90–140	40	298	22.9	28.2	46.7	46.4	46	48
urea (mg/dl)	10–50	N/A	80	80	80	110	N/A	50	50
Hb (g/dl)	12–16	13.2	12.1	13	10.3	11	10.7	12.3	10.5
WBC (10⁹/L)	40–100	8.10	72.4	95.5	12.70	560	995	503	325
PLT (10⁹/L)	140–440	168	127	70	131	117	171	21	
INR	0.8–12	N/A	N/A	N/A	2.7	2.1	2.6	3.0	2.5
aPTT (sec)	25.0–38.0	N/A	N/A	N/A	25.9	31	N/A	46.1	N/A
Serum immunofixation	Negative	N/A	Kappa FLC	Kappa FLC	Kappa FLC	Kappa FLC	Kappa FLC	Neg	Neg
Kappa light-chain (mg/L)	3.30–19.40	N/A	96000	93304	96256	364	17.5	18.76	0.75
Lambda light-chain (mg/L)	5.7–26.30	N/A	533	464	5.46	21.62	11.98	114	1.11
FLC ratio	0.26–1.65	N/A	18000	21277	17629	167	1.46	1.64	0.68
D-Dimer (ng/ml)	< 500	N/A	N/A	7541	4796	N/A	N/A	436	< 200
NT-Pro-BNP (pg/ml)	1–125	N/A	1242	722	N/A	N/A	N/A	1.566	N/A
Troponin T HS (pg/ml)	< 14	N/A	N/A	328	2298	N/A	N/A	288	N/A
Bence-Jones proteinuria (g/24 h)	Negative	N/A	1.71	0.65	1.61	Trace	Neg	Neg	Neg
Proteinuria (g/24 h)	< 0.15	70	65.8	28	N/A	12	3.15	1.07	1.1
β₂-microglobulin (mg/L)	1.2–2.5	102	133	146	133	58	4	N/A	N/A
IL-6 (pg/ml)	0.00–100	N/A	N/A	N/A	1135	74.2	24	N/A	N/A
Albumin (g/L)	35–50	N/A	40	35.6	40	27	36.5	45.9	40.0
Total serum protein (g/dL)	60–82	N/A	N/A	76	4.5	5	5.3	6.1	5.8
Total serum calcium (mg/dl)	86–102	93	N/A	99	8.8	76	9.2	96	83
IgG (g/L)	70–160	N/A	N/A	0.91	1.15	2.67	2.15	3.91	3.09
IgA (g/L)	0.7–4.00	N/A	N/A	< 0.07	0.09	0.56	0.55	0.61	< 0.07
IgM (g/L)	0.4–2.30	N/A	N/A	< 0.04	0.05	0.71	0.16	0.23	0.11
Gamma-globulin (%)	11.1–18.8	N/A	N/A	22.2	19.7	5.3	3.8	6.2	6.7
C3 (g/L)	0.90–1.80	N/A	N/A	13	N/A	5.3	N/A	1.12	N/A
C4 (g/L)	0.10–0.40	N/A	N/A	10	N/A	0.32	N/A	N/A	N/A

ASCT autologous stem cell transplantation, CHT chemotherapy, mo month, eGFR estimated Glomerular Filtration Ratio, FLC Free light chain, Hb Hemoglobin, IL-6 Interleukin 6; INR, International Standardized Ratio, N/A not available, Neg negative, PLT platelet, WBC white blood cell
showed segmentary “ground pepper-like” deposits in
the subendothelial space and the glomerular basement
membranes (GBM). Similar deposits were observed
along the tubular basement membrane (TBM). Extensive
podocyte foot process effacement was seen with
no sub-epithelial or mesangial electron-dense deposits
(Fig. 3E). The final diagnosis was “kappa light chain
deposition disease (LCDD)”.

The patient fully recovered from surgery. A new TTE
showed preserved function of both ventricles (EF 58%,
TAPSE 20 mm, RV-RA gradient 25 mmHg) or major val-
vular disease. No new intracardiac masses were detected
(video, Additional file 1).

A 3-months follow-up CT showed the persistence of
only a partially calcified thrombus in the right pulmonary
artery’s distal branches, warfarin was continued.
After 4 cycles of VTD protocol (Bortezomib, Thalidomide, Dexamethasone), the patient presented a very-good partial hematologic remission. Afterwards, she received autologous hematopoietic stem cell transplantation, with a stable complete hematologic remission and a progressive improvement of proteinuria and renal function (Table 2).

Discussion and conclusions

This case proves that a step-by-step diagnostic flow chart and a multidisciplinary clinical evaluation are crucial to obtain the right diagnosis.

At the time of admission, the worsening of renal function with nephrotic-range proteinuria, elevated kappa FLC, increase NT-proBNP and hs-cTnT strongly suggested AL systemic amyloidosis with both renal and cardiac involvement. However, Congo red staining negativity of two biopsies, made a mandatory reassessment of differential diagnosis for cardiac and renal involvement.

Nephrotic range proteinuria without the full-blown nephrotic syndrome could suggest secondary/maladaptive focal segmental glomerulosclerosis, in particular when one or more risk factors are present, such as for obesity and reduced renal parenchymal mass [3], as observed in our patient. Moreover, the left renal vein
thrombosis, observed on CT, could have explained at least in part the degree of proteinuria [4].

In the context of monoclonal gammopathies of renal significance, not all patients with high levels of paraprotein present with reduced renal function, although FLC levels > 800 mg/L are good predictors of severe renal failure [5]. However, despite the extremely high levels of kappa FLC, our patient showed only a mild-to-moderate worsening of kidney function and no histological signs of cast nephropathy. In fact, physico-chemical properties of the secreted paraprotein may determine pathological features, for which a variety of Ig-dependent and -independent mechanisms have been described [6].

Among patients with monoclonal gammopathies, those presenting with heavy proteinuria and milder renal impairment are more likely to have AL amyloidosis, LCDD or HCDD [7]. Excluding the first, patients with LCDD usually present with proteinuria (nephrotic-range proteinuria is seen in about 50% of cases), microscopic hematuria, hypertension, and variable degrees of renal insufficiency. Clinical presentation depends on several histopathological aspects: the site of the FLC deposition in renal compartments, the extent of chronic lesions, the degree of foot process effacement, and overlap with myeloma cast nephropathy [2].

The IF is essential for the definitive diagnosis of LCDD. However, there are rare cases (as in our patient) in which the immune deposits and paraproteins are ‘masked’ on routine IF, resulting in false-negative staining on fresh frozen tissue, and paraffin immunofluorescence can be used to unmask FLC deposits [8]. LCDD diagnosis via kidney biopsy permitted to establish an early and correct chemotherapy regimen that led to a complete hematologic response, which is mandatory to improve renal and global outcomes.

In patients with clinical suspicion of AL amyloidosis or LCDD, increased NT-proBNP and hs-cTnT represent sensitive markers to identify cardiac involvement [9]. Surprisingly, echocardiography showed no signs of cardiac dysfunction [10], in particular no increased wall thickness, or diastolic dysfunction while, it demonstrated multiple right-sided cardiac masses. According to the patient’s history and masses aspects, only a few hypotheses were acceptable: heart thrombi [11], mobilized deep venous thrombi, and, less likely, primary or metastatic tumors [12].

In our case, since both right chambers were involved, a metastasis from a primary neoplasm (renal-cell carcinoma or hepatocellular carcinoma) extended through the inferior vena cava to the right side of the heart should be also considered. However, no evidence of renal or hepatic lesions was appreciated on an abdominal CT.

Of note, the right atrium is probably the predominant location of plasmacytoma involving the heart but it is a rare presentation of MM [13].

In our patient, histological examination of the intracardiac masses confirmed the thrombotic nature.

Among different complications of MM a high risk of venous thrombosis has been previously described. The thrombophilic state is multifactorial and often divided in three categories: (i) malignancy-related: is potentially characterized by the hyperviscosity syndrome due to increased paraprotein content, the release of inflammatory cytokines (as IL-6), and several changes in coagulation (as an increased von Willebrand factor or factor VIII) [14]; (ii) patient-related: such as the presence of central venous access devices, hypoalbuminemia, renal failure, immobilization and obesity [15], and (iii) therapy-related: as during treatment with immunomodulatory drugs (thalidomide lenalidomide and pomalidomide) which have a prothrombotic effect. Current literature lacks of data about a possible direct pathogenetic role of paraproteins in venous thrombosis [16]. In some case reports, the monoclonal light chain is identified as an interfering factor in functional assays and coagulation tests causing dysfibrinogenemia [17]. In our case, a lot of contributory factors are involved in the development of the prothrombotic state, such as obesity, very high levels of free light chains and hypoalbuminemia.

Considering the extension of the thrombosis and the plausible chronic state, anticoagulant therapy alone was considered insufficient.

In case of acute pulmonary embolism with hemodynamic instability, thrombolysis is recommended while surgical embolectomy is considered as an alternative in patients not responsive to thrombolytic therapy or with acute hemodynamic deterioration. Surgical thrombectomy removal, instead, is the treatment of choice in chronic thrombosis of the pulmonary tree [18]. In our report, the operability of the patient was approved by a multidisciplinary team after evaluation of several parameters: NYHA class, the risk of rapid hemodynamic deterioration, and the patient’s quaod vitam prognosis. Therefore, surgical thrombectomy was considered the best option. Moreover, the heart surgical intervention was crucial in order to prevent acute RV dysfunction, recurrent pulmonary embolism and thus cardiogenic shock.

The natural history and prognosis of MIDD depend on the severity of renal failure at diagnosis, the presence of an underlying MM, and the delay in the hematologic response to chemotherapy. Additionally, LCDD patients with cardiac involvement have poorer survival and a significantly higher risk of treatment-related mortality after ASCT [19]. Moreover, our patient showed several parameters associated with unfavorable MM
outcome. Some negative prognostic factors are widely accepted, such as high-risk chromosomal abnormalities, high serum β2-microglobulin (≥5.5 mg/L), and low serum albumin [20]. Other prognostic factors are not widely validated, such as immunoparesis, which have a negative impact on the progression-free survival [21], high serum IL-6 levels [22], or extremely high levels of FLC [23], which have been shown to play a prominent role in the development of kidney damage.

Overall, both early diagnosis and prompt treatment with bortezomib and ASCT-based combinations can improve the prognosis of LCDD, by reducing circulating immunoglobulins, preserving renal function, and improving overall survival, even in patients with a severe disease at onset.

In conclusion, in patients with MM, multiple organ involvement may result from a combination of paraprotein-dependent and -independent factors, and the therapeutic success requires the early recognition of all the pathogenetic factors involved. This case reminds that sometimes, to reach the right diagnosis, looking beyond the surface is mandatory. Moreover, in patients with not acute massive pulmonary embolism and intracardiac right masses, surgical pulmonary embolectomy should be promptly performed to preserve RV function and prevent pulmonary hypertension development. This case also demonstrated that both early diagnosis and prompt treatment with bortezomib and ASCT-based combinations can improve the prognosis of LCDD, even in patients with a severe disease at onset.

Abbreviations
MMI: Multiple myeloma; FLC: Free light chains; TTE: Transthoracic echocardiogram; RV: Right ventricle; LV: Left ventricle; CT: Computed tomography; IF: Immunofluorescence; LCDD: Light chain deposition disease.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12882-022-02984-4.

Additional file 1. Intracardiac thrombi. The video shows echocardiography performed before and after surgery.

Acknowledgements
Special thanks to Fabio Pagni and Vincenzo L’Imperio from the Pathology Unit at University of Milano-Bicocca (Monza, Italy), and to Marco Delsante from the Nephrology Unit at Azienda-Ospedaliero Universitaria di Parma (Parma, Italy) for their help and support.

Authors’ contributions
The authors listed below have made substantial contributions to the intellectual content of the paper in the various sections described below. Conceptualization, M.A., S.I., B.B., F.P., F.C.; methodology, M.A., F.P., E.A., N.M., C.D.M., L.C., F.C., P.S.; writing—original draft preparation, M.A., S.I., B.B., F.C.; writing—review and editing, M.A., E.A., N.M., C.D.M., L.C., F.C., P.S.; supervision, M.A., F.P., C.D.M., P.S. All authors have read and agreed to the published version of the manuscript.

References
1. Joly F, Cohen C, Javauque V, Bender S, Belmouaz M, Arnulf B, Knebelmann B, Nouvier M, Audard V, Provot F, Gremimi V, Nochy D, Goujon JM, Jaccard A, Touchard G, Femand JP, Siai C, Bridoux F. Randall-type monoclonal immunoglobulin deposition disease: novel insights from a nationwide cohort study. Blood. 2019;133(6):576–87.
2. Lin J, Markowitz GS, Valeri AM, Kambham N, Sherman WH, Appel GB, D’Agati VD. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J Am Soc Nephrol. 2001;12(7):1482–92.
3. Kopp JB, Anders HJ, Susztak K, Podestà MA, Remuzzi G, Hildebrandt F, Romagnani P. Podocytopathies. Nat Rev Dis Primers. 2020;6(1):68.
4. Morrissey EC, McDonald BR, Rabetoy GM. Resolution of proteinuria secondary to bilateral renal vein thrombosis after treatment with systemic thrombolytic therapy. Am J Kidney Dis. 1997;29(4):615–9.
5. Yadav P, Cockwell P, Cook M, Pinney J, Giles H, Aung YS, Cairns D, Owen RG, Davies FE, Jackson GH, Child JA, Morgan GJ, Dayson MT. Serum free light chain levels and renal function at diagnosis in patients with multiple myeloma. BMC Nephrol. 2018;19(1):178.
6. Heher EC, Rennke HG, Laubach JP, Richardson PG. Kidney disease and multiple myeloma. Clin J Am Soc Nephrol. 2013;8:2007–17.
7. Montseny JJ, Kleinkecht D, Meyrier A, Vanhille P, Simon P, Pruna A, Eladari D. Long-term outcome according to renal histological lesions in 118 patients with monoclonal gammapathies. Nephrol Dial Transplant. 1998;13:1438–45.
8. Nasr SH, Fidler ME, Said SM. Paraffin immunofluorescence: a valuable ancillary technique in renal pathology. Kidney Int Rep. 2018;3(6):1260–6.
9. Palladini G, Barassi A, Kletsy C, Pacciora R, Milani P, Saragis G, Perlini S, Albertini R, Russo P, Follì A, Bragotti LZ, Obici I, Moratti R, Mezèd’Eril GV, Merlini G. The combination of high-sensitivity cardiac troponin T (hs-TnT) at presentation and changes in N-terminal probradykinin peptide type B (NT-proBNP) after chemotherapy best predict survival in AL amyloidosis. Blood. 2010;116(18):3426–30.
10. Buxbaum JN, Genega EM, Lazowski P, Kumar A, Tunick PA, Kronzon I, Gallo GR. Infiltrative nonamyloidotic monoclonal immunoglobulin light chain cardiomyopathy: an underappreciated manifestation of plasma cell dyscrasias. Cardiology. 2000;93(4):220–8.

11. Martínez-Naharro A, González-Lopez E, Corovic A, Mirelis JG, Baki A, Moon JC, Garcia-Pavia P, Gillmore JD, Hawkins PN, Fontana M. High Prevalence of intracardiac thrombi in cardiac amyloidosis. J Am Coll Cardiol. 2019;73(1):173–4.

12. Poterucha TJ, Kochav J, O’Connor DS, Rosner GF. Cardiac tumors: clinical presentation, diagnosis, and management. Curr Treat Options Oncol. 2019;20(8):66.

13. Fernandez LA, Cobian S, Sy R, Miller R. An unusual presentation of extramedullary plasmacytoma occurring sequentially in the testis, subcutaneous tissue, and heart. Am J Hematol. 2001;67(3):194–6.

14. Kwaan HC. Hyperviscosity in plasma cell dyscrasias. Clin Hemorheol Microcirc. 2013;53(1):75–83.

15. Leebeek FW. Update of thrombosis in multiple myeloma. Thromb Res. 2016;140 Suppl 1:S76-80.

16. Auwerda JJ, Sonneveld P, de Maat MP, Leebeek FW. Prothrombotic coagulation abnormalities in patients with paraprotein-producing B-cell disorders. Clin Lymphoma Myeloma. 2007;7(7):462–6.

17. Martini F, Cecconi N, Paolicchi A, et al. Interference of monoclonal gammopathy with fibrinogen assay producing spurious dysfibrinogenemia. TH Open. 2019;3(1):e64–6.

18. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, Huismans MV, Humbert M, Jennings CS, Jiménez D, Kucher N, Lang IM, Lankteit M, Lorusso R, Mazzolai L, Meeneau N, Niñéle F, Prandoni P, Pruszczyk P, Righini M, Torbicki A, Ville V, ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543–603.

19. Mohan M, Buros A, Mathur P, Goldien N, Singh M, Susanibar S, Jo Kamimoto J, Hoque S, Radhakrishnan M, Matin A, Davis C, Grazziutti M, Thanendrarajan S, van Rhee F, Zhang M, Davies F, Morgan G, Epstein J, Barlogie B, Schinkel C. Clinical characteristics and prognostic factors in multiple myeloma patients with light chain deposition disease. Am J Hematol. 2017;92(8):739–45.

20. Lonial S, Boise LH, Kaufman J. How I treat high-risk myeloma. Blood. 2015;126(13):1536–43.

21. Heaney JL, Campbell JP, Iqbal G, Cairns D, Richter A, Child JA, Gregory W, Jackson G, Kaiser M, Owen R, Davies F, Morgan G, Dunn J, Drayson MT. Characterisation of immunoparesis in newly diagnosed myeloma and its impact on progression-free and overall survival in both old and recent myeloma trials. Leukemia. 2018;32(8):1727–38.

22. Pellinemi TT, Irjala K, Mattila K, Pulliki K, Rajamäki A, Tienhaara A, Laakso M, Lahtinen R. Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood. 1995;85(3):765–71.

23. Chilkulwar A, Mewawalla P, Miller A, Bertiotti G, Sahovic E, Lister J. Serum free light chain concentration (>1000 mg/dl) at diagnosis and at relapse predicts for very poor prognosis in multiple myeloma. Blood. 2016;128:5698.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.