Objectively Measured Physical Activity Patterns in Children with Overweight and (Morbid) Obesity Across Different Weight Categories, Age Groups and Gender

Gabrielle ten Velde (✉ gabrielle.ten.velde@mumc.nl)
Maastricht Universitair Medisch Centrum+ https://orcid.org/0000-0001-6389-6762

Guy Plasqui
Universiteit Maastricht

Elke Dorenbos
Universiteit Maastricht

Bjorn Winkens
Universiteit Maastricht

Anita Vreugdenhil
Maastricht Universitair Medisch Centrum+

Research article

Keywords: Childhood obesity, morbid obesity, physical activity, accelerometer

DOI: https://doi.org/10.21203/rs.3.rs-65557/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Reduced physical activity (PA) is associated with childhood obesity and is a target for intervention. This study aimed to assess objectively measured PA patterns in Dutch children across weight categories, age groups and gender at the start of a lifestyle intervention.

Methods: 202 children with overweight and (morbid) obesity (55% girls, 12±3y of age, BMI z-score +3.15±0.73), referred to the Centre for Overweight Adolescents and Children's Healthcare (COACH, Maastricht UMC+) were included. Children were categorized as overweight, obese or morbidly obese according to their BMI z-score. PA patterns (total PA, sedentary time (ST), light PA and moderate to vigorous intensity PA (MVPA)) were measured with the GT3X Actigraph accelerometer. Wear time validation was set on four days, 480 min/day, including one weekend day.

Results: PA levels in children with morbid obesity were higher compared to children with obesity, also after correction for age and gender (corrected difference (B) 118 counts per minute (cpm), p=.006). Sedentary behaviour (STB) was lower in children with morbid obesity compared to children with obesity (B -51 min/day, p=.018). Girls performed significantly less moderate to vigorous MVPA than boys (B -11 min/day, p<.001) and for each year increase of age with increasing age, children performed less PA (B -46 cpm, p<.001) and STB increased (B 18 min/day, p<.001).

Conclusion: Weight category morbid obesity, younger age and male gender were positively associated with PA and negatively with SB. PA and ST is different in subgroups of children with overweight and (morbid) obesity, depending on gender, age and overweight severity. In particular in older girls in the weight category 'obesity', levels of PA and ST are worrisome. These findings highlight the need for tailored PA promotion.

Trial registration: The trial is registered with Clinicaltrials.gov NCT02091544

Background

Over the last few decades, childhood overweight and obesity rates have increased globally. In the Netherlands, the prevalence of overweight in primary school children (4–12 year-old) and adolescents (12–16 year-old) is 11.9% and 11.6% respectively, and of obesity 3.4% and 1.6% (1). The prevalence of Dutch children with morbid obesity was 0.59% in boys and 0.53% in girls in 2009 (2). Alarmingly, morbid obesity is the fastest growing subcategory of childhood obesity worldwide (2, 3). The shift towards more severe forms of childhood obesity is associated with an increased health risk for developing life-threatening chronic diseases, psychological disorders and premature death (2, 4, 5). A generally accepted premise is that treating obesity in its earliest stage is of great importance (6–8). As such, more knowledge is required for the development of tailored treatment options for children having overweight, obesity and morbid obesity, which might be different for each of these subgroups.

Low levels of physical activity (PA) play an important role in the development of childhood overweight and progression to more severe obesity (9). Guidelines have been developed to promote PA and to foster its health benefits (10). The World Health Organization, as well as the Dutch government, recommends that children and adolescents spend a minimum of 60 minutes of moderate to vigorous physical activity (MVPA) each day, preferably including more vigorous intensity activities and sedentary time (ST) should be minimalized (10, 11). Subjectively measured data indicates that 45% of Dutch children (4–11 year-old) and 69% of adolescents (aged 12–18 years) do not meet these public health guidelines (1). Even though these guidelines have been developed internationally, the evaluation of PA levels specifically among children with overweight and (morbid) obesity is lacking. Therefore, the prevalence of children that meet the recommendations in these subgroups and the room for improvement as a target for intervention remains unclear.

The study of Salawi et al. (2014) included children with morbid obesity and showed that these children self-reported to perform on average 18 min less MVPA compared to children with overweight or obesity (51 vs 69 min/day respectively) (12). However, subjective methods, such as the questionnaires used in the study of Salawi et al. (2014), tend to overestimate levels of PA. Objective measurements, such as accelerometry, are more accurate to determine the amount of PA, as well as the
intensity (13). A review of Elmesmari et al. (2018) included studies that used accelerometry to measure PA and reported that these studies in general showed that children and adolescents with obesity are slightly less physically active and more sedentary compared to children without obesity (14). Though, in all of these studies PA was not compared between children with different degrees of overweight and obesity. Furthermore, influencing factors such as age and gender should be considered when investigating PA between weight categories, since it has been shown that boys are generally more physically active than girls and PA declines with aging (15, 16). Only a few PA studies that used accelerometry included children with overweight and obesity and also investigated the effect of age and gender (17–19). For instance, the study of Jago et al. (2019) showed that in the age range 6–11 years PA decreases with increasing age in children with overweight and obesity (17). However, inclusion of narrow age ranges as in the study of Jago et al. (2019) and small samples sizes impair strong conclusions from these studies on PA in children in different weight categories, taking age and gender into consideration (17).

In summary, although it is generally accepted that promotion of PA is important in the treatment of children with overweight and (morbid) obesity, to date, no studies have evaluated the differences between objectively measured PA levels in children with different overweight categories and the influence of age and gender. Insight in PA patterns in different subgroups is needed to develop or improve tailored childhood obesity interventions. Therefore, the current study aimed to assess objectively measured PA patterns including light PA, MVPA and ST across different weight categories, age groups, and gender in Dutch children with overweight and (morbid) obesity. We hypothesized that PA decreases with increasing overweight severity, with a gender difference in favor for boys and a negative effect of an older age in all groups.

Methods

Setting and participants

This study was designed and conducted within the setting of the Centre for Overweight Adolescent and Children’s Health Care (COACH) at the Maastricht University Medical Centre (Maastricht, the Netherlands). Children were referred to COACH by the youth healthcare division and general practitioners. Children and their families are referred to COACH for evaluation of their physical condition and lifestyle and for individual guidance with focus on lifestyle changes as published previously (18). The present study involves a cross-sectional analysis of PA data before intervention onset (baseline measurements). Data collection was performed from November 2013 until April 2019 with the exception of one year (October 2015 until December 2016) due to logistical reasons. The ActiGraph GT3X (Actigraph, Corp, USA) accelerometer was provided to 286 participants aged 4–18 years (89% of the total population) before the start of the lifestyle intervention. Children suffering from any musculoskeletal condition that would prevent the subject from performing PA or children that were wheelchair dependent did not receive an accelerometer. Figure 1 provides an overview of the inclusion procedure of the study. Subsequently, both parents of all children gave written informed consent. Informed consent was also obtained from children aged ≥ 12 years. The study is registered at ClinicalTrial.gov (registration number: NCT02091544).

Measurements

Accelerometry

The Actigraph GT3X is a triaxial accelerometer. Accelerometry currently represents the most accurate, inexpensive, and reliable method for objectively measuring both the amount and intensity of PA, also in children and adolescents (19, 20). The participants were asked to wear the accelerometer attached via a waistband on the right hip bone for seven consecutive days during waking hours, except during water activities (e.g. showering, swimming) and intensive contact sports (e.g. judo). For other sports (i.e. running, ball sports etc.) participants were instructed to wear the accelerometer. Accelerometry data were downloaded using 10 s epochs using Actilife software (Actigraph, Corp, USA). Valid wear time was defined as a minimum of 4 days, consisting of at least 480 minutes per day of recording, including one weekend day. Derived data was expressed as mean counts per minute (cpm). To establish time spent in different intensity categories, the cut-off points developed by Evenson et al. (2008) were used; i.e. ST = 0–99 cpm, light intensity PA (LPA) = 100–2295 cpm, and MVPA ≥ 2296 cpm (21).
Anthropometrics

Anthropometric data were collected in the morning after an overnight fast, barefoot and wearing only underwear. Body mass was determined using digital scales (Seca, Chino, CA, USA) to the nearest 0.1 kg and height was measured to the nearest 0.1 cm using a digital stadiometer (De Grood Metaaltechniek, Nijmegen, The Netherlands). BMI (weight [kg]/ height [m]^2) was calculated and BMI z-scores were obtained using a growth analyzer (Growth Analyzer VE, Rotterdam, The Netherlands (22)), to adjust for age and gender. Children were categorized as overweight, obese or morbidly obese based on International Obesity Task Force (IOTF) criteria (23), corresponding to the 90th, 99th and 99.8th percentile respectively. (24) All anthropometric measurements were performed by trained health care personnel.

Statistical analysis

Differences between groups (weight categories: overweight, obesity, morbid obesity; gender: boys, girls; age: <12, ≥ 12 years) were assessed using ANOVA (with Fisher’s Least Significant Difference method for pair-wise comparisons if the overall test was significant) or independent-samples t-tests for numerical variables and chi-square tests for categorical variables. Multivariable linear regression analyses were used to evaluate the associations between the dependent variable, i.e. one of the different PA intensities (total PA (cpm), light PA, MVPA and ST min/day) and the independent variables, i.e. weight categories (2 dummy variables), gender (1 dummy variable), and age (numerical). As additional analyses, age was also dichotomized to distinguish primary school children (4–12 y) and secondary school children (≥ 12 y). Assumptions were checked using plots (scatterplots for linearity, P-P-plots and histograms for normality, residual plots for homoscedasticity), where Cook's distance > 1 was used to define influential outliers. As sensitivity analyses, the multivariable linear regression analyses were repeated for weekend- and weekdays separately. No missing data were expected as the present study only involved baseline data and all measurements were performed on the same day, while an inclusion criterion was valid wear time, implying that PA patterns are not missing. A p-value ≤ .05 was considered statistically significant. All analyses were performed using IBM SPSS Statistics for Windows version 25.0 (IBM Corp., Armonk, NY, USA).

Results

A total of 202 children were eligible for this study, of which 29% presented with overweight, 46% with obesity and 25% with morbid obesity (Table 1). The wear-time of the accelerometer was on average (± SD) 851 ± 132 min/day. There were no significant differences in wear-time between the different weight categories. Children spent on average 589 ± 142 min/day in ST which corresponds to 69% of the day (based on wear-time). In addition, children spent on average 221 ± 63 min/day of LPA per day and 41 ± 19 min/day of MVPA. Sixteen percent (n = 32) of the children reached the PA guideline of a minimum 60 minutes of MVPA per day.
Table 1
Participant characteristics and PA patterns for the total sample as well as for the different weight categories, gender and age group

Demographics	Total	OV	OB	MO	P	B	G	P	Secondary school age (< 12 y)	N = 202	N = 58	N = 93	N = 51	N = 90	N = 112	N = 98	N = 104	P
Age, years	12 ± 3	12 ± 3	12 ± 3	12 ± 4	.729	12 ± 3	12 ± 3	.222	9 ± 2	15 ± 2	< .001							
Gender, M/F	45/55	50/50	43/57	41/59	.604	47/53	42/58	.530										
Anthropometry																		
BMI z-score	3.15 ± .73	2.39 ± .33	3.16 ± .44	4.00 ± .53	< .001	3.3 ± .8	3.0 ± .7	.010	3.13 ± .73	3.17 ± .74	.701							
PA																		
Total PA, CPM	768 ± 298	780 ± 281	715 ± 263	851 ± 357	.030	861 ± 330	698 ± 253	< .001	910 ± 300	634 ± 227	< .001							
ST, min/day	589 ± 142	601 ± 130	606 ± 138	547 ± 154	.046	572 ± 151	602 ± 134	.170	536 ± 133	640 ± 131	< .001							
ST, %/day	69	69	70	66	.033	67	70	.010	64	73	< .001							
LPA, min/day	221 ± 63	223 ± 63	214 ± 62	230 ± 65	.300	230 ± 68	213 ± 59	.073	248 ± 58	195 ± 57	< .001							
LPA, %/day	26	26	25	29	.048	28	36	.056	30	23	< .001							
MVPA, min/day	41 ± 19	44 ± 18	38 ± 18	43 ± 20	.106	47 ± 20	36 ± 16	< .001	44 ± 19	38 ± 18	.025							
MVPA, %/day	5	5	4	5	.056	6	4	< .001	5	4	.008							
Wear-time min/day	851 ± 132	868 ± 118	857 ± 137	820 ± 134	.139	851 ± 135	851 ± 130	.998	827 ± 126	873 ± 133	.013							

Abbreviations: OB Obesity, OV Overweight, MO Morbid Obesity, B Boys, G Girls, BMI Body mass index, PA Physical activity, CPM Counts Per Minute, ST Sedentary time, LPA Light physical activity, MVPA Moderate-to-vigorous physical activity.

Physical activity intensities are presented as mean minutes per day ± standard deviation or as percentage of wear time. a Statistical difference between overweight and obese children
b Statistical difference between obese and morbidly obese children c Statistical difference between overweight and morbidly obese children

Physical activity patterns across weight categories, age and gender

Children with morbid obesity were significantly more physically active (851 ± 357 cpm vs 715 ± 263 cpm, p = .009) and less sedentary (547 ± 154 min/day vs 606 ± 138 min/day p = .018) compared to children with obesity (Table 1). Multiple linear regression (Table 2) shows that after correcting for age and gender, children with morbid obesity performed more total PA (cpm) (corrected difference (B) = 188, p = .006) and less ST (B=-51 p = .024) compared to children with obesity. Boys were significantly more physically active (861 ± 330 cpm versus 698 ± 253 cpm, p = < .001) and performed more MVPA (47 ± 20 versus 36 ± 16 min/day, p = < .001) compared to girls. In addition, for each year increase of age, PA decreased on average with 46 cpm (p = < .001) and ST increased with 18 min/day (p = < .001). As additional analyses, primary school children (4–12 y)
and secondary school children were distinguished (≥12 y). Primary school children were more physically active compared to secondary school children (910 ± 300 cpm versus 634 ± 227 cpm, p < .001).

Table 2
Results of the multiple linear regression analysis with PA patterns as the dependent variables and weight categories, age and gender as independent variables.

	Overall p value between weight categories	OB vs OV B (95% CI) P	MO vs OV B (95% CI) P	MO vs OB B (95% CI) P	Gender (B vs G) B (95% CI) P	Age (per year) B (95% CI) P
Total PA, CPM	.022	-53 (-134, 28) .195	65 (-28, 158) .170	118 (34, 202) .006	132 (63, 201) < .001	-46 (-57, -35) < .001
ST, min/day	.057	2 (-40, 45) .917	-49 (-98, 0) .050	-51 (-95, -7) .024	-20 (-56, 17) .287	18 (12, 23) < .001
ST % per day	.029	1 (-1, 4) .385	-3 (-6, 0) .095	-4 (-7, -1) .008	-3 (-5, -1) .016	2 (1, 2) < .001
LPA, min/day	.376	-9 (-27, 10) .353	4 (-17, 25) .702	13 (-6, 32) .190	11 (-5, 26) .164	-10 (-12, -7) < .001
LPA % per day	.044	-1 (-3, 2) .604	2 (0, 5) .074	3 (1, 5) .014	2 (0, 3) .104	-1 (2, -1) < .001
MVPA, min/day	.128	-5 (-11, 1) .085	-1 (-7, 7) .980	5 (1, 11) .104	11 (6, 16) < .001	-1 (2, 0) .041
MVPA % per day	.062	-1 (-1, 0) .125	0 (-1, 1) .489	1 (0, 2) .026	1 (1, 2) < .001	0 (-0.2, -0.04) .008
Wear-time min/day	.175	-11 (-54, 31) .599	-45 (-94, 4) .073	-34 (-78, 11) .140	2 (-34, 39) .910	7 (1,13) .014

Abbreviations: B unstandardized regression coefficient (corrected effect), OB Obesity, OV Overweight, MO Morbid Obesity, B Boys, G Girls, PA Physical activity, CPM Counts Per Minute, ST Sedentary time, LPA Light physical activity, MVPA Moderate-to-vigorous physical activity. Physical activity intensities are presented as mean minutes per day ± standard deviation or as percentages.

Physical activity behavior on week- and weekend day

Table 3 shows that after correcting for age and gender, children with morbid obesity perform more total PA (cpm) during weekdays (B = 122, p = .005) as well as during weekend days (B = 130, p = .030) compared to children with obesity. In addition, for each year increase in age PA decreases both on weekdays (B = -45, p = < .001) and weekend days (B = -50, p = < .001).
Table 3
Results of the multiple linear regression analysis with PA patterns during week- and weekend days as dependent variables and weight categories, age and gender as independent variables.

Comparison	Overall p value between weight categories	OB vs OV B (95% CI) P	MO vs OV B (95% CI) P	MO vs OB B (95% CI) P	Gender (B vs G) B (95% CI) P	Age (per year) B (95% CI) P
Total PA on weekday (CPM)	.020	-41 (-123, 40) .319	81 (-13, 175) .091	122 (37, 208) .005	150 (80, 219) <.001	-45 (-56, -34) <.001
Total PA on weekend day (CPM)	.094	-46 (-159, 66) .419	84 (-46, 213) .203	130 (13, 247) .030	94 (-2, 190) .054	-50 (-65, -35) <.001
ST on weekday (min/day)	.006	10 (-34, 53) .663	-62 (-112, -13) .014	-72 (-117, -27) .002	-22 (-58, 15) .246	19 (13, 24) <.001
ST on weekend day (min/day)	.393	19 (-37, 75) .501	-21 (-86, 44) .521	-40 (-99, 18) .176	3 (-45, 51) .895	17 (10, 25) <.001
LPA on weekday (min/day)	.154	-9 (-28, 10) .375	11 (-11, 33) .329	19 (-.378, 39) .054	13 (-3, 30) .102	-10 (-13, -8) <.001
LPA on weekend day (min/day)	0.982	-1 (-25, 23) .919	1 (-26, 29) .936	2 (-23, 27) .853	8 (-13, 28) .456	-9 (-12, -6) <.001
MVPA on weekday (min/day)	.331	-4 (-10, 2) .205	-1 (-7, 7) .981	4 (-3, 10) .294	11 (6, 16) <.001	-1 (-2, -0.4) .063
MVPA on weekend day (min/day)	.136	-6 (-14, 2) .117	1 (-8, 10) .837	-34 (-78, 11) .140	9 (3, 16) .006	-1 (-2, 0.07) .068

Abbreviations: B unstandardized regression coefficient (corrected effect), OB Obesity, OV Overweight, MO Morbid Obesity, B Boys, G Girls, PA Physical activity, CPM Counts Per Minute, ST Sedentary time, LPA Light physical activity, MVPA Moderate-to-vigorous physical activity. Physical activity intensities are presented as mean minutes per day ± standard deviation or as percentages.

Discussion

To our knowledge, this is the first study that evaluated objectively measured PA patterns using accelerometry in children across the different weight categories overweight, obesity and morbid obesity, and also evaluated the modifying effect of age and gender. The present study shows that children with morbid obesity performed in total more PA (cpm) than children with obesity. In addition, children with obesity spent a lower percentage of time being sedentary and a higher percentage of time in LPA. The difference in total PA (cpm) between these two weight categories exists during both weekdays and weekend days. In addition, children with morbid obesity spent less ST during a week day compared to children with obesity. These results are in contrast with our hypothesis that PA decreases with increasing overweight severity.

Previous studies showed that children with obesity were less physically active compared to children with normal weight (25, 26). Extension of these results to the assumption that children with morbid obesity are less physically active than children with obesity was refuted by the results of the present study. Several explanations for this remarkable finding can be considered. First, children with morbid obesity might be more aware of a healthy and active lifestyle than children with less morbid obesity.
after being referred to the obesity centre for treatment and might be more motivated to improve PA already before the start of the intervention. In addition, the development of overweight or obesity is multifactorial and complex. Not only PA, but also nutrition, metabolic, environmental, psychosocial, and cultural factors are considered to play a key role in obesity development and maintenance. For example, according to Nemet et al. (2010) food consumption increased after moderate intensity PA in children with overweight. However, food intake decreased after moderate intensity PA in children with normal weight (27). Based on these findings, it could be suggested that even though children with morbid obesity were more physically active, they may compensate higher PA with a higher calorie intake. One could also question whether the degree of obesity may somehow affect the accuracy of the accelerometer to assess PA. However, the Actigraph accelerometer, which was used in the present study, was shown before to measure activity counts equally accurate across different weight categories (28).

In agreement with previous studies, the present study shows that boys are more physically active compared to girls and PA levels increase with age, up to an age of 10–11 years old, and then decrease at > 11 years when children head into puberty (29, 30). Specifically, primary school-aged children (< 12 years) showed higher total PA compared to secondary school-aged children (≥ 12 years). The higher level of total PA in boys could be explained by a higher intrinsic motivation and experiencing more pleasure from exercise compared to girls (31). Furthermore, previous studies found gender differences concerning different PA types (32, 33). The results of the study of Reimers et al. (2018) showed that boys were more likely to engage in sports and active games, while girls prefer walking and/running or to play in a playground (33). It is recommended to provide tailored PA types in order to stimulate and improve PA. Additionally, the negative association between PA and age highlights the importance of early PA promotion since the presence of comorbidities is already evident in primary school children with obesity (34). A methodological strength of this study is the use of objectively measured PA using accelerometry to measure PA in children across different weight categories (overweight, obesity and morbid obesity). Previous studies used self-reported PA or used objectively measured PA but did not differentiate between weight categories. The present study also evaluated differences between PA patterns in boys and girls and in different age categories in children with overweight and (morbid) obesity. Limitations were the cross-sectional design of the study and the absence of a power-calculation. In addition, children were instructed to remove the accelerometer during water activities and some contact sports, which may have impacted the accelerometry data. This is common for accelerometer-derived data. However, the time spent on these activities is generally very small compared to the entire observation interval.

The results of the current study provide new insights for medical specialists, health professionals, sport coaches and physical educational teachers, who can stimulate and motivate children to perform PA. Extra attention is needed for children with obesity, female gender and children from > 12 years. Consequently, interventions which include the school environment and parents are needed to increase PA during school as well in the home environment during weekends and after school hours. More insight in the specific needs and possibilities to increase PA and decrease ST in this subgroup is warranted.

Follow-up data of children participating in the COACH program are continuously being collected to determine the effect of the lifestyle intervention on PA across overweight categories including age and gender. The evaluation of PA and ST over time during this intervention will demonstrate whether PA can be changed in the different subgroups.

Conclusion

In conclusion, this cross-sectional study showed that there are differences in PA patterns between children with overweight, obesity and morbid obesity and that age and gender are modifying factors. These findings highlight the need for tailored interventions that promote PA and reduce ST.

Abbreviations

COACH Centre for Overweight Adolescent and Children’s Health Care

cpm Counts Per Minute
FM Fat mass
FFM Fat free mass
LPA Light physical activity
MVPA Moderate to vigorous physical activity
PA Physical activity
ST Sedentary time

Declarations

Ethics approval and consent to participate

The current study was conducted according to the Declaration of Helsinki and approved by the medical ethical committee of the azM and Maastricht University (METC azM/UM). Subsequently written informed consent was obtained from children aged >12 years and their parents.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Author contributions

AV designed the study. GTV and ED carried out the measurements. GTV and BW performed statistical analyses. GTV, GP and AV wrote the paper. All authors were involved in revision and final approval of the submitted version.

Acknowledgements

We are very grateful to the children and families that have participated in the COACH

References

1. CBS. Lengte en gewicht van personen https://opendata.cbs.nl/statline/#/CBS/nl/dataset/81565NED/table?dl=1BB3A2020 .
2. Van Dommelen P, Schönbeck Y, Van Buuren S, HiraSing RA. Trends in a life threatening condition: morbid obesity in Dutch, Turkish and Moroccan children in The Netherlands. PloS one. 2014;9(4):e94299.
3. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Morbid obesity in children and adolescents: identification, associated health risks, and treatment approaches: a scientific statement from the American Heart Association. Circulation. 2013;128(15):1689–712.
4. Bass R, Eneli I. Morbid childhood obesity: an under-recognised and growing health problem. Postgraduate medical journal. 2015;91(1081):639–45.

5. Collaboration PS. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. The Lancet. 2009;373(9669):1083–96.

6. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–7. e2.

7. Li C, Ford ES, Zhao G, Mokdad AH. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among US adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care. 2009;32(2):342–7.

8. Singh AS, Mulder C, Twisk JW, Van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obesity reviews. 2008;9(5):474–88.

9. Schwarzscher P, Gruszfeld D, Stolarczyk A, Ferre N, Escribano J, Rousseaux D, et al. Physical Activity and Sedentary Behavior From 6 to 11 Years. Pediatrics. 2018.

10. Organization WH. Global recommendations on physical activity for health: World Health Organization; 2010.

11. RIVM. https://www.rivm.nl/leefstijlmonitor/bewegen 2018 [1].

12. Salawi HA, Ambler KA, Padwal RS, Mager DR, Chan CB, Ball GD. Characterizing morbid obesity in children and youth referred for weight management. BMC Pediatr. 2014;14(1):154.

13. Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ. Practical guide to measuring physical activity. Journal of the Academy of Nutrition Dietetics. 2014;114(2):199–208.

14. Elmesmari R, Martin A, Reilly JJ, Paton JY. Comparison of accelerometer measured levels of physical activity and sedentary time between obese and non-obese children and adolescents: a systematic review. BMC Pediatr. 2018;18(1):106.

15. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). The Lancet. 2006;368(9532):299–304.

16. Whitt-Glover MC, Taylor WC, Floyd MF, Yore MM, Yancey AK, Matthews CE. Disparities in physical activity and sedentary behaviors among US children and adolescents: prevalence, correlates, and intervention implications. Journal of public health policy. 2009;30(1):309-S34.

17. Jago R, Salway R, Emm-Collison L, Sebire SJ, Thompson JL, Lawlor DA. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: A longitudinal study. International Journal of Obesity. 2019;1–10.

18. Rijks JM, Plat J, Mensink RP, Dorenbos E, Buurman WA, Vreugdenhil AC. Children with morbid obesity benefit equally as children with overweight and obesity from an ongoing care program. The Journal of Clinical Endocrinology Metabolism. 2015;100(9):3572–80.

19. Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY. Objective measurement of physical activity and sedentary behaviour: review with new data. Arch Dis Child. 2008;93(7):614–9.

20. Trost SG. State of the art reviews: measurement of physical activity in children and adolescents. American Journal of lifestyle medicine. 2007;1(4):299–314.

21. Evenson KR, Catellier DJ, Gill K, Ondrak KS, Mc Murray RG. Calibration of two objective measures of physical activity for children. Journal of sports sciences. 2008;26(14):1557–65.

22. Groeistudie TFRVL. TNO. Leiden: TNO. 2010.

23. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric obesity. 2012;7(4):284–94.

24. Lohman TG, Hinge M, Going SB. Body composition in children. Pediatric exercise science. 2013;25(4):573–90.
25. Page A, Cooper A, Stamatakis E, Foster L, Crowne E, Sabin M, et al. Physical activity patterns in nonobese and obese children assessed using minute-by-minute accelerometry. International Journal of Obesity. 2005;29(9):1070.

26. Cooper A, Page A, Fox K, Misson J. Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Eur J Clin Nutr. 2000;54(12):887.

27. Nemet D, Arieli R, Meckel Y, Eliakim A. Immediate post-exercise energy intake and macronutrient preferences in normal weight and overweight pre-pubertal children. International Journal of Pediatric Obesity. 2010;5(3):221–9.

28. Feito Y, Bassett DR, Tyo B, Thompson DL. Effects of body mass index and tilt angle on output of two wearable activity monitors. Med Sci Sports Exerc. 2011;43(5):861–6.

29. Sallis JF, Prochaska JJ, Taylor WC. A review of correlates of physical activity of children and adolescents. Med Sci sports Exerc. 2000;32(5):963–75.

30. Ishii K, Shibata A, Adachi M, Nonoue K, Oka K. Gender and grade differences in objectively measured physical activity and sedentary behavior patterns among Japanese children and adolescents: a cross-sectional study. BMC Public Health. 2015;15(1):1254.

31. Labbrozzi D, Robazza C, Bertollo M, Bucci I, Bortoli L. Pubertal development, physical self-perception, and motivation toward physical activity in girls. Journal of adolescence. 2013;36(4):759–65.

32. Willenberg LJ, Ashbolt R, Holland D, Gibbs L, MacDougall C, Garrard J, et al. Increasing school playground physical activity: a mixed methods study combining environmental measures and children's perspectives. J Sci Med Sport. 2010;13(2):210–6.

33. Reimers AK, Schoeppe S, Demetriou Y, Knapp G. Physical Activity and Outdoor Play of Children in Public Playgrounds-Do Gender and Social Environment Matter? Int J Environ Res Public Health. 2018;15(7).

34. Karnebeek K, Thapar S, Willeboordse M, van Schayck OC, Vreugdenhil AC. Comorbidities in primary versus secondary school children with obesity and responsiveness to lifestyle intervention. The Journal of Clinical Endocrinology & Metabolism. 2019.