Meta-analysis of laparoscopic transcystic versus transcholedochal common bile duct exploration for choledocholithiasis

M. Bekheit1, R. Smith1, G. Ramsay1,2, F. Soggiu3, M. Ghazanfar1 and I. Ahmed1

1Department of Surgery, Aberdeen Royal Infirmary, and 2Scottish Clinical Research Excellence Development Scheme, Rowett Institute, University of Aberdeen, Aberdeen, and 3Department of Surgery, Royal Free Hospital, London, UK

Correspondence to: Dr M. Bekheit, HPB Surgery Unit, Department of Surgery, Aberdeen Royal Infirmary, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK (e-mail: dr_mohamedbekheit@hotmail.com)

Background: It is not clear whether laparoscopic transcystic exploration (LTCE) or laparoscopic choledochotomy (LCD) is superior in the management of choledocholithiasis. In this meta-analysis, the success of LTCE versus LCD was evaluated.

Methods: The Cochrane Central Register of Controlled Trials, Web of Science, Trip, PubMed, Ovid and Embase databases were searched systematically for relevant literature up to May 2017. Studies that compared the success rate of LTCE and LCD in patients with choledocholithiasis were included. PRISMA guidelines were followed. Multiple independent reviewers contributed on a cloud-based platform. A random-effects model was used to calculate odds ratios (ORs) or standardized mean differences (MDs) with 95 per cent confidence intervals. An a priori hypothesis was generated based on clinical experience that LTCE is as successful as LCD.

Results: Of 3533 screened articles, 25 studies comprising 4224 patients were included. LTCE achieved a lower duct clearance rate than LCD (OR 0.38, 95 per cent c.i. 0.24 to 0.59). It was associated with a shorter duration of surgery (MD 0.86, 95 per cent c.i. 0.97 to 0.77), lower rate of bile leak (OR 0.46, 0.23 to 0.93) and shorter hospital stay (MD 0.78, 1.14 to 0.42) than LCD. There was no statistically significant difference in conversion, stricture formation or reintervention rate.

Conclusion: LCD has a higher rate of successful duct clearance, but is associated with a longer duration of surgery and hospital stay, and a higher bile leak rate.

Funding information
No funding

Paper accepted 21 November 2018
Published online 23 January 2019 in Wiley Online Library (www.bjsopen.com). DOI: 10.1002/bjs.50132

Introduction

Concomitant common bile duct (CBD) stones are present in 3–15 per cent of patients with symptomatic cholelithiasis in the Western world1. In approximately 2 per cent of patients these stones are considered clinically significant2. These patients require CBD stone extraction for symptomatic relief and to prevent serious associated complications, including cholangitis, hepatic abscess and acute pancreatitis3.

Advances in preoperative imaging, endoscopic and laparoscopic surgical techniques have led to less invasive methods of extracting CBD stones4, and there is now a range of potential management options5. In the early era of laparoscopic cholecystectomy, patients with suspected CBD stones were commonly referred for endoscopic retrograde cholangiopancreatography (ERCP) and sphincterotomy. Although still a valid management option, this approach has the disadvantage of being a two-stage procedure with potential increased costs and morbidity6. With increased laparoscopic experience, single-stage laparoscopic cholecystectomy and CBD exploration have become an increasingly popular alternative7. There are two main approaches to laparoscopic common bile duct exploration (LCBDE): laparoscopic transcystic exploration (LTCE), reaching the CBD via the cystic duct, and laparoscopic choledochotomy (LCD), exploring the CBD directly via a choledochotomy.
Several high-quality comparisons between ERCP and LCBDE have been performed. With the trend of primary CBD closure and reduced morbidity of this procedure, as opposed to the resultant morbidity from ERCP, there is a movement towards single-stage surgical management of gallstone disease. Little attention, however, has been paid to comparing the two different approaches of LCBDE. Frequently, data for both approaches are reported together as combined figures, limiting direct comparison of success rate and safety. Moreover, patients undergoing either of the approaches are treated differently in the postoperative period. The standard surgical approach has been LCD. With increasing experience, a trend is observed towards LTCE with the assumption that it causes lower morbidity. Currently, evidence is limited on whether LTCE results in at least a similar clearance rate of the CBD stones. The aim of this study was to compare both approaches in terms of clearance rate and other relevant outcomes from the available literature.

Methods

This systematic review and meta-analysis was conducted according to PRISMA guidelines. The study protocol was registered with PROSPERO, the international prospective register of systematic reviews (registration number CRD42017079458).

Eligibility criteria and outcomes

The criteria for considering studies for inclusion in this review were defined using the Population, Intervention, Comparison and Outcome (PICO) strategy. The study population comprised adults who presented with CBD stones diagnosed via imaging, with no previous cholecystectomy. The type of intervention was LTCE for the treatment of CBD stones, and the comparator was the standard LCD approach. The primary outcome of the study was the success rate of the approach, identified by the rate of complete clearance without conversion from transcystic to transcholedochal or from either to an open approach. Secondary outcomes included duration of surgery, length of hospital stay, conversion to open procedure, and intraoperative or postoperative complications (early and late).

Interventional and observational studies comparing the LTCE approach with LCD were evaluated for inclusion. Studies were excluded if they did not meet the above criteria or if there was no statement in the article on ethical approval. Articles that did not report outcomes for both arms, review articles or meta-analyses, editorials and animal studies were excluded.

The search was primarily for articles in English. Studies presented in other languages were, however, considered for inclusion based on the inclusion and exclusion criteria and the presence of an abstract in English, French or Italian. There was no publication date restriction.

Literature search

The Cochrane Central Register of Controlled Trials, Web of Science, Trip, PubMed, Ovid and Embase databases were searched systematically to identify relevant articles published up to May 2017. Citation alerts were set up for potentially missed or recent articles published during the manuscript synthesis. Google and Google Scholar were used to find non-indexed publications, to reduce the risk of publications bias.

Study selection and data extraction

Four authors conducted their database search independently. They screened titles and abstracts first. Duplicates were handled in Mendeley® (Elsevier, London, UK). If more than one paper was published by the same group, their most recent publication was selected if the number included was larger than their earlier publication and there was no clear indication that the recent study did not include patients from the earlier publication. Articles found suitable for inclusion were then cross-referenced to ensure inclusion of all eligible studies. Articles that could not be obtained from the internet with multi-institutional access were sought via the library service. Detailed search strategies, Boolean operators, different search techniques, filters and limits were documented (Table S1, supporting information).

Platforms used for collaborative work

The independently short-listed search results from across the databases were exported to cloud-based shared tables (Google sheets: access https://docs.google.com/spreadsheets/d/1uswlPUdrrX9BQj_VpSEHpiOOrK91y6Gq1av4SGZAJYeg/edit?usp=sharing) for further selection and conflict resolution. Two authors decided on conflicts in inclusion or exclusion. Included studies were further exported to Mendeley® citation manager for citations. The initial manuscript draft was produced on Google Docs (Google, Mountain View, California, USA) for live collaborative editing, then exported to Word® processor (Microsoft, Redmond, Washington, USA) for final editing.
Quality assessment

The median quality score for the RCTs was judged based on the Cochrane Handbook. The quality assessment stratifies the current evidence and projects the need for further research on the topic based on the quality of the available evidence into: high-quality evidence where further research is not expected to change the current confidence in the estimate of the effect size, moderate-quality evidence if further research is likely to influence confidence in the estimated effect and may change it; low-quality evidence if further research is very likely to influence confidence in the estimate of
with the χ² test. An I^2 value above 30 per cent or $P < 0.050$ was considered an indicator of observed heterogeneity. In case of significant heterogeneity, the random-effects model was used rather than the fixed-effect model. Results for dichotomous data were stated as odds ratios (ORs), and those for continuous data as standardized mean differences (MDs). Both were provided with their 95 per cent confidence intervals. The random-effects model was applied for the estimated pooled effect size, given the observed heterogeneity and an adequate number of the included studies. When data were summarized as median (range) rather than mean(s.d.), these values were converted to mean(s.d.) when necessary, as described previously.

Fig. 2 Forest plot for successful duct clearance in patients with choledocholithiasis undergoing a laparoscopic transcystic or transcholedochal approach. Studies that had 100 per cent success in both arms were not included in the analysis, so calculation of an odds ratio was not possible in the pooled analysis. LTCE, laparoscopic transcystic exploration; LCD, laparoscopic choledochotomy; nRCT, non-randomized clinical trial. A random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent confidence intervals.
The mean age of patients in the studies ranged from 38 to 68 years. The majority of studies (18 of 25) did not provide a breakdown of mean age per treatment arm. Only two studies\(^{18,19}\) provided a breakdown of the male to female ratio for each treatment arm. None of the 25 studies reported mean BMI. Only one study\(^{20}\) reported the preoperative laboratory investigation (median (range) bilirubin concentration for LTCE 20 (6–74) μmol/l and

Reference	Mean(s.e.m.) MD	Sample size	LTCE	LCD	MD	Relative weight (%)
Millat et al.\(^{24}\)	-0.70(0.14) (–0.97, –0.43)	148	92			12.99
Gigot et al.\(^{23}\)	-1.13(0.23) (–1.58, –0.68)	76	30			4.62
Martin et al.\(^{33}\)	-1.36(0.13) (–1.62, –1.11)	173	124			14.27
Arvidsson et al.\(^{20}\)	-0.56(0.38) (–1.30, 0.18)	22	11			1.72
Lauter and Froines\(^{24}\)	-0.1(0.30) (–1.59, –0.43)	26	25			2.74
Tokumura et al.\(^{40}\)	-0.71(0.14) (–0.99, –0.44)	91	126			12.06
Waage et al.\(^{42}\)	-0.24(0.16) (–0.55, –0.07)	128	57			9.50
Jameel et al.\(^{22}\)	-1.59(0.38) (–2.34, –0.85)	9	62			1.67
Hongjun et al.\(^{18}\)	-0.13(0.13) (–0.39, 0.13)	80	209			14.00
Zhang et al.\(^{19}\)	-1.77(0.14) (–2.04, –1.49)	237	93			12.30
Aawaj et al.\(^{28}\)	-0.83(0.13) (–1.08, –0.57)	85	233			14.15
Overall	-0.86(0.05) (–0.97, –0.77)	1075	1062			

Heterogeneity: \(I^2 = 91\%, P < 0.05\)

a Duration of surgery

Reference	Odds ratio	Sample size	LTCE	LCD	Odds ratio	Relative weight (%)
Phillips et al.\(^{36}\)	0.79 (0.04, 15.71)	4 of 123	0 of 10		2.20	
Millat et al.\(^{24}\)	0.93 (0.36, 2.36)	12 of 148	8 of 92		13.94	
Gigot et al.\(^{23}\)	7.13 (0.90, 56.62)	15 of 76	1 of 30		4.28	
Rhodes et al.\(^{37}\)	0.14 (0.01, 3.55)	0 of 28	1 of 12		1.86	
Martin et al.\(^{33}\)	0.24 (0.01, 5.87)	0 of 173	1 of 124		1.93	
Arvidsson et al.\(^{20}\)	0.42 (0.07, 2.55)	3 of 22	3 of 11		5.43	
Berthou et al.\(^{29}\)	0.40 (0.02, 10.03)	0 of 112	1 of 137		1.93	
Cschier et al.\(^{30}\)	0.71 (0.23, 2.18)	6 of 56	8 of 55		11.00	
Michel et al.\(^{25}\)	2.39 (1.29, 4.41)	39 of 380	15 of 328		20.73	
Lauter and Froines\(^{24}\)	3.00 (0.12, 77.17)	1 of 26	0 of 25		1.89	
Tokumura et al.\(^{40}\)	0.46 (0.02, 11.35)	0 of 91	1 of 126		1.93	
Waage et al.\(^{42}\)	0.69 (0.22, 2.22)	8 of 128	5 of 57		10.58	
Tan et al.\(^{39}\)	1.17 (0.05, 29.94)	0 of 2	3 of 23		1.89	
Topai et al.\(^{41}\)	0.35 (0.05, 2.57)	2 of 83	2 of 30		4.52	
Santo et al.\(^{38}\)	0.16 (0.01, 3.40)	0 of 37	2 of 31		2.09	
Mohamed et al.\(^{36}\)	0.13 (0.01, 2.56)	0 of 51	3 of 49		2.20	
Zhang et al.\(^{19}\)	0.86 (0.09, 2.54)	11 of 237	5 of 93		11.61	
Overall	0.91 (0.57, 1.43)	101 of 1773	59 of 1233			

Heterogeneity: \(I^2 = 20.6\%, P > 0.05\)

b Conversion to open procedure

Fig. 3 Forest plots for duration of surgery, conversion to open procedure, length of hospital stay, bile leak, stricture and reintervention in patients with choledocholithiasis undergoing a laparoscopic transcystic or transcholedochal approach. **a** Duration of surgery, showing an approximately 45 min longer operating time in the laparoscopic choledochotomy (LCD) group; **b** conversion to open procedure; **c** length of hospital stay; **d** bile leak (as studies that had no leaks in either arm\(^{20,24–26}\) were not included in generation of the forest plot, the software did not permit calculation of the odds ratio); **e** stricture; **f** reintervention (studies that reported no reinterventions\(^{18,26,27}\) were not included in the analysis, so calculation of an odds ratio was not possible). Random-effects models were used for meta-analysis. LTCE, laparoscopic transcystic exploration. **a,** **c** Standardized mean differences (MDs) and **b,** **d–f** odds ratios are shown with 95 per cent confidence intervals
Laparoscopic transcystic versus transcholedochal approach for choledocholithiasis

Reference
Heterogeneity: $I^2 = 1.24\%$, $P > 0.05$

Reference	Mean(s.e.m.) MD	Sample size	Relative weight (%)
Phillips et al.36	–1.89(0.35) (–2.57, –1.20)	123 10	6.98
Gigot et al.31	–0.46(0.22) (–0.88, –0.03)	76 30	8.23
Martin et al.33	–0.29(0.12) (–0.52, 0.06)	173 124	8.96
Arvidsson et al.20	–0.12(0.37) (–0.85, 0.60)	22 11	6.77
Berthou et al.29	–0.38(0.13) (–0.63, –0.12)	112 137	8.90
Lauter and Froines24	0.00(0.28) (–0.55, 0.55)	26 25	7.66
Tokumura et al.40	–1.10(0.15) (–1.39, –0.81)	91 126	8.78
Waage et al.42	–0.26(0.16) (–0.57, 0.06)	128 57	8.70
Grubnik et al.32	–2.06(0.20) (–2.45, –1.67)	102 62	8.41
Hongjun et al.18	–0.19(0.13) (–0.47, 0.07)	80 209	8.88
Zhang et al.19	–1.32(0.13) (–1.56, –1.06)	237 93	8.88
Aawsaj et al.28	–1.35(0.14) (–1.62, –1.08)	85 233	8.85
Overall	–0.78(0.18) (–1.14, –0.42)	1255 1117	

Heterogeneity: $I^2 = 93.15\%$, $P < 0.05$

C Length of hospital stay

Reference	Odds ratio	No. with leak	Relative weight (%)
Phillips et al.36	0.26 (0.01, 6.71)	1 of 123 0 of 10	4.66
Millat et al.34	0.21 (0.01, 5.10)	0 of 148 1 of 92	4.80
Gigot et al.31	1.21 (0.05, 30.58)	1 of 76 0 of 30	4.76
Martin et al.33	0.36 (0.03, 3.96)	1 of 173 2 of 124	8.47
Berthou et al.29	1.23 (0.08, 19.81)	1 of 112 1 of 137	6.38
Tokumura et al.40	0.19 (0.02, 1.56)	1 of 91 7 of 126	10.98
Waage et al.42	1.35 (0.05, 33.72)	1 of 128 0 of 57	4.79
Tai et al.23	1.17 (0.05, 29.94)	0 of 2 3 of 23	4.72
Jameel et al.22	0.90 (0.04, 18.73)	0 of 9 3 of 62	5.35
Tan et al.39	3.63 (0.16, 80.10)	2 of 27 0 of 18	5.17
Hongjun et al.18	5.33 (0.48, 59.65)	2 of 80 1 of 209	8.45
Zhang et al.19	0.16 (0.04, 0.62)	3 of 237 7 of 93	25.31
Aawsaj et al.28	0.07 (0.01, 1.50)	0 of 85 14 of 233	6.17
Overall	0.46 (0.23, 0.93)	13 of 1291 39 of 1214	

Heterogeneity: $I^2 = 1.24\%$, $P > 0.05$

D Bile leak

Reference	Odds ratio	No. with stricture	Relative weight (%)
Gigot et al.31	1.21 (0.05, 30.58)	1 of 76 0 of 30	20.79
Martin et al.33	2.17 (0.09, 53.59)	1 of 173 0 of 124	21.04
Berthou et al.29	0.40 (0.02, 10.03)	0 of 112 1 of 137	21.02
Hongjun et al.18	5.33 (0.48, 59.65)	2 of 80 1 of 209	37.16
Overall	1.89 (0.43, 8.26)	4 of 441 2 of 500	

Heterogeneity: $I^2 = 0\%$, $P = 0.6$

E Stricture

Fig. 3 Continued
for LCD (7–89 μmol/l). Biliary colic was the most common patient presentation.

The median quality score for the RCTs was 8 (range 7–16) of 30, and that for the non-randomized studies13 was 15 (range 10–27) of 40. Details of the quality scorings are provided in Tables S3 and S4 (supporting information).

There was considerable heterogeneity regarding the primary outcome and the secondary outcomes of mean duration of surgery and hospital stay (Figs 2 and 3). The random-effects model was therefore used for these outcome measures. There was non-significant heterogeneity regarding conversion to an open procedure, stricture, bile leak and reintervention, yet, given the nature of the included studies, the random-effects model was used41.

Success rate

In all studies success was defined as complete duct clearance. The use of completion cholangiography to confirm duct clearance for both groups was clearly stated in eight of the 25 studies. One further study10 clearly stated that completion cholangiography was used in the LCD group but did not mention whether it was used in the LTCE group. Four other studies19,20,33,34 stated that postoperative cholangiography was performed in patients undergoing biliary drainage to confirm clearance before removal of the T-tube. Performance of completion cholangiography was not recorded in 11 studies. No significant association between instruments used and success was observed for either approach (Table S5, supporting information).

The odds of successful duct clearance were lower for LTCE than for LCD (OR 0.38, 95 per cent c.i. 0.24 to 0.59). No difference between the two approaches (OR 0.60, 0.15 to 2.37) was observed in RCTs, whereas the pooled estimate for non-randomized trials showed significantly higher odds in favour of LCD (OR 0.36, 0.22 to 0.58).

Cumulative analysis – temporal trend

The effect of time on outcome is shown in Fig. S1 (supporting information). From 1995 to 1999, no significant difference was observed between the two approaches. From 2000 onwards the studies consistently showed a higher rate of successful duct clearance with LCD compared with LTCE.

Surgical data and morbidity

A shorter mean(s.d.) duration of surgery for LTCE compared with LCD (129(59) versus 175(61) min respectively; MD −0.86, 95 per cent c.i. −0.97 to −0.77) was observed (Fig. 3a). No significant difference in conversion rate was found between the two approaches (Fig. 3b). A significantly shorter mean hospital stay was seen for LTCE compared with LCD (MD −0.78, −1.14 to −0.42 (Fig. 3c). LTCE resulted in significantly fewer bile leaks than LCD (OR 0.46, 95 per cent c.i. 0.23 to 0.93) (Fig. 3d). None of the RCTs reported on the incidence of bile leak in both arms. The incidence of biliary stricture did not significantly differ between the groups (Fig. 3e).

No difference was seen in the pooled effect estimate for reintervention following for LTCE compared with LCD (OR 0.80, 95 per cent c.i. 0.34 to 1.90) (Fig. 3f). Table S6 (supporting information) summarizes the types of procedure in each group after the primary intervention. From the aspect of patient selection, extracted data relating to the diameter of each duct, and the number and size of stones in each group were not informative (Table S7, supporting information).
Publication bias

The classical fail-safe N test of bias was significant (Z = −7.6, P < 0.001). The identified number of studies required for the P value to fall above α − α = 0.050 was 326 studies. A funnel plot demonstrating the distribution of standard error by the log odds ratio is shown in Fig. S2 (supporting information).

Discussion

Successful duct clearance occurred more often with LCD than with LTCE. LCD was, however, associated with a longer duration of surgery and hospital stay. This was probably a result of the additional time required for sutured closure of the CBD and the higher risk of bile leak respectively. Bile duct suturing is a challenging task and has a significant learning curve. Clipping the cystic duct stump is easier. No significant difference in conversion rate, bile duct stricture or reoperation was observed.

The included studies have recognized obstacles to successful LTCE, including an inability to negotiate the cystic duct (in particular due to long, tortuous cystic ducts with low insertions), multiple small stones in the non-dilated CBD, and some stones being too large to be removed by LTCE. It can be difficult and time-consuming to remove multiple small stones using LTCE, with a significant risk of displacing some stones into the proximal CBD that cannot then be retrieved.

A temporal trend was observed. Studies published from 2000 all showed consistently higher odds of successful duct clearance with LCD. This was probably associated with improved technology, including the widespread use of high-definition cameras and dedicated instruments. The refinement in surgical techniques and the learning curve could also have been a factor, yet none of the included studies reported this being an issue. Before 2000 completion cholangiography was typically reserved for patients requiring biliary drainage, whereas after 2000 completion cholangiography appears to have been used more liberally to confirm stone clearance. It is possible that this may, in part, help explain the observed temporal trend in clearance rates.

The temporal trend observed does not negate the need for further studies to address this issue. Most studies included were not of high quality, with only three RCTs with significant heterogeneity. Scrutinizing the types and combination of instruments used did not reveal any clear pattern or difference between the two arms that may have accounted for the temporal trend seen before and after 2000.

In a single previous meta-analysis on this subject, no significant differences between LTCE or LCD in the analysis of rates of stone clearance, conversion to open procedures, total morbidity, operating time or blood loss were observed. The authors observed a reduction in biliary complications in the LTCE group and concluded that this route was safer than the LCD approach. These results and conclusions are different to findings in the present study. This may be a result of the inclusion of studies with comparisons other than LCD versus LTCE and possible confusion in defining transcystic bile duct exploration.

Unfortunately, insufficient data were available in the included studies to make inferences about the impact on stricture formation of the relationship between duct diameter and the approach used. The authors are concerned, however, that there might be selection bias, with larger stones tending to be approached via the CBD. More recent trends towards primary closure without a T-tube are often limited by the diameter of the bile duct as a risk factor for the leak. The leak, however, is usually of little clinical importance compared with the added morbidity associated with T-tube or stent insertion.

There are limitations to this study. The full text of four relevant articles could not be obtained, and there was not enough information in the abstracts on the primary outcome. By design, this study was liable for publication bias. In an attempt to minimize this risk of bias, the inclusion of articles was not limited by language or date. In addition, the consistency of reporting of the secondary outcomes in the included papers was highly variable.

Acknowledgements

R.S. and M.B. contributed equally to this publication.

Disclosure: The authors declare no conflict of interest.

References

1. Winder JS, Pauli EM. Common bile duct stones: health care problem and incidence. In Multidisciplinary Management of Common Bile Duct Stones, Hazey JW, Conwell DL, Guy GE (eds). Springer: Cham, 2016, 5–15.
2. Lee DH, Ahn YI, Lee HW, Chung JK, Jung IM. Prevalence and characteristics of clinically significant retained common bile duct stones after laparoscopic cholecystectomy for symptomatic cholelithiasis. Ann Surg Treat Res 2016; 91: 239–246.
3. Working Party of the British Society of Gastroenterology; Association of Surgeons of Great Britain and Ireland; Pancreatic Society of Great Britain and Ireland; Association of Upper GI Surgeons of Great Britain and Ireland. UK guidelines for the management of acute pancreatitis. Gut 2005; 54(Suppl 3): iii1–iii9.
patients from three different hospitals are reviewed.]

Lakartidningen 1997; 94: 2724–2728.

21 Darrien JH, Connor K, Janezko A, Casey JJ, Paterson-Brown S. The surgical management of concomitant gallbladder and common bile duct stones. HPB Surg 2015; 2015: 165068.

22 Jameel M, Darmal B, Baker AL. Trend towards primary closure following laparoscopic exploration of the common bile duct. Ann R Coll Surg Engl 2008; 90: 29–35.

23 Tai CK, Tang CN, Ha JP, Chau CH, Siu WT, Li MK. Laparoscopic exploration of common bile duct in difficult choledocholithiasis. Surg Endosc 2004; 18: 910–914.

24 Lauter DM, Froines EJ. Laparoscopic common duct exploration in the management of choledocholithiasis. Am J Surg 2000; 179: 372–374.

25 Michel J, Navarro F, Montpeyroux F, Burget JS, Le Moine MC, Daures JP et al. [Treatment of common bile duct stones with laparoscopy. Retrospective multicenter study with 612 patients.] Gastroenterol Clin Biol 2000; 24: 404–408.

26 Dimow RS, Kanchev RI, Boeg BG, Ivanov TI, Apostolov IA, Hinov AG et al. Laparoscopic exploration of bile ducts in patients with calculosis. Indications, methods and first results. Folia Med (Plovdiv) 2013; 55: 33–38.

27 DePaula AL, Hashiba K, Bafutto M. Laparoscopic management of choledocholithiasis. Surg Endosc 1994; 8: 1399–1403.

28 Aawsaj Y, Light D, Horgan L. Laparoscopic common bile duct exploration: 15-year experience in a district general hospital. Surg Endosc 2016; 30: 2563–2566.

29 Berthou JC, Drouard F, Charbonneau P, Moussalier K. Evaluation of laparoscopic management of common bile duct stones in 220 patients. Surg Endosc 1998; 12: 16–22.

30 Cuschieri A, Lezoche E, Morino M, Croce E, Lacy A, Tootli J et al. E.A.E.S. multicenter prospective randomized trial comparing two-stage vs single-stage management of patients with gallstone disease and ductal calculi. Surg Endosc 1999; 13: 952–957.

31 Gigot JF, Navez B, Etienne J, Cambier B, Jadoul P, Guiot P et al. A stratified intraoperative surgical strategy is mandatory during laparoscopic common bile duct exploration for common bile duct stones. Lessons and limits from an initial experience of 92 patients. Surg Endosc 1997; 11: 722–728.

32 Grubnik VV, Tkachenko AI, Ilyashenko VV, Vorotyntseva KO. Laparoscopic common bile duct exploration versus open surgery: comparative prospective randomized trial. Surg Endosc 2012; 26: 2165–2171.

33 Martin IJ, Bailey IS, Rhodes M, O’Rourke N, Nathanson L, Fielding G. Towards T-tube free laparoscopic bile duct exploration: a methodologic evolution during 300 consecutive procedures. Ann Surg 1998; 228: 29–34.

34 Millat B, Atger J, Deleuze A, Briandet H, Fingerhut A, Guillon F et al. Laparoscopic treatment for choledocholithiasis: a prospective evaluation in 247 consecutive unselected patients. Hepatogastroenterology 1997; 44: 28–34.
35 Mohamed MA, Bahram MA, Ammar MS, Nassar AH. One-session laparoscopic management of combined common bile duct and gallbladder stones versus formal ERCP followed by laparoscopic cholecystectomy. J Laparoendosc Adv Surg Tech A 2015; 25: 482–485.

36 Phillips EH, Rosenthal RJ, Carroll BJ, Fallas MJ. Laparoscopic trans-cystic-duct common-bile-duct exploration. Surg Endosc 1994; 8: 1389–1393.

37 Rhodes M, Sussman L, Cohen L, Lewis MP. Randomised trial of laparoscopic exploration of common bile duct versus postoperative endoscopic retrograde cholangiography for common bile duct stones. Lancet 1998; 351: 159–161.

38 Santo MA, Domene CE, Riccioppo D, Barreira L, Takeda FR, Pinotti HW. Common bile duct stones: analysis of the videolaparoscopic surgical treatment. Arq Gastroenterol 2012; 49: 41–51.

39 Tan KK, Shelat VG, Liao KH, Chan CY, Ho CK. Laparoscopic common bile duct exploration: our first 50 cases. Ann Acad Med Singapore 2010; 39: 136–142.

40 Tokumura H, Umezawa A, Cao H, Sakamoto N, Imaoka Y, Ouchi A et al. Laparoscopic management of common bile duct stones: transcystic approach and choledochotomy. J Hepatobiliary Pancreat Surg 2002; 9: 206–212.

41 Topal B, Aerts R, Penninckx F. Laparoscopic common bile duct stone clearance with flexible choledochoscopy. Surg Endosc 2007; 21: 2317–2321.

42 Waage A, Strömberg C, Leijonmarck CE, Arvidsson D. Long-term results from laparoscopic common bile duct exploration. Surg Endosc 2003; 17: 1181–1185.

43 Clark TS, Linzer DA. Should I use fixed or random effects? Polit Sci Res Methods 2015; 3: 399–408.

44 Hong KM, Chai BD, Seo DB, Ku KB, Park KH. The learning curve for laparoscopic common bile duct exploration through a choledochotomy – report on 50 patients. J Minim Invasive Surg 2008; 11: 111–119.

45 Feng Q, Huang Y, Wang K, Yuan R, Xiong X, Wu L. Laparoscopic transcystic common bile duct exploration: advantages over laparoscopic choledochotomy. PLoS One 2016; 11: e0162885.

46 Hua J, Lin S, Qian D, He Z, Zhang T, Song Z. Primary closure and rate of bile leak following laparoscopic common bile duct exploration via choledochotomy. Dig Surg 2015; 32: 1–8.

47 Parra-Membrives P, Martínez-Baena D, Lorente-Herce J, Jiménez-Riera G. Comparative study of three bile duct closure methods following laparoscopic common bile duct exploration for choledocholithiasis. J Laparoendosc Adv Surg Tech A 2018; 28: 145–151.

48 Chen X, Ding Y, Wang W, Zhang A. The comparative study on two types of laparoscopic common bile duct exploration. J Clin Surg 2007; 17: 231–235.

49 Yongze T, Dexin C, Haibin L, Andong Z, Jin X. Comparison of transcystic with trans-duct incision in laparoscopic choledochotomy with primary ductal closure. Chin J Min Inv Surg 2013; 21: 869–872.

50 Wu S, Zhan S, Qiu H. The clinical study of treatment common bile duct stones by laparoscopic cystic duct approach. Anhui Med J 2014; 11: 685–686.

51 Huang S. Efficacy comparison of laparoscopic common bile duct through the cystic duct lithotomy and choledocholithotomy surgery. Mod Pract Med 2015; 27: 213–214.

52 Ahmed I, Sutton AJ, Riley RD. Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: a database survey. BMJ 2012; 344: d7762.