Supporting Information

New 1,2,3-Triazole-genipin Analogues and Their Anti-Alzheimer’s Activity

Patamawadee Silalai, Suwichada Jaipea, Jiraporn Tocharus, Anan Athipornchai, Apichart Suksamrarn, Rungnapha Saeeng

Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND).

*Corresponding author: E-mail: rungnaph@buu.ac.th

Table of Contents

Figure	Description	Pages
Figure S1	Proposed binding mode of compound 8a-10 compared with 8a-10'	S4
Figure S2	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-1	S6
Figure S3	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-1	S7
Figure S4	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-2	S8
Figure S5	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-2	S9
Figure S6	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-3	S10
Figure S7	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-3	S11
Figure S8	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-4	S12
Figure S9	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-4	S13
Figure S10	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-5	S14
Figure S11	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-5	S15
Figure S12	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-6	S16
Figure S13	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-6	S17
Figure S14	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-7	S18
Figure S15	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-7	S19
Figure S16	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-8	S20
Figure S17	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-8	S21
Figure S18	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-9	S22
Figure S19	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-9	S23
Figure	Description	Page
--------	-------------	------
S20	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-10**	S24
S21	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-10**	S25
S22	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-11**	S26
S23	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-11**	S27
S24	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-12**	S28
S25	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-12**	S29
S26	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-13**	S30
S27	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-13**	S31
S28	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-14**	S32
S29	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-14**	S33
S30	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-15**	S34
S31	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-15**	S35
S32	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-16**	S36
S33	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-16**	S37
S34	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-17**	S38
S35	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-17**	S39
S36	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-18**	S40
S37	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-18**	S41
S38	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-19**	S42
S39	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-19**	S43
S40	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-20**	S44
S41	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-20**	S45
S42	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-21**	S46
S43	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-21**	S47
S44	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-22**	S48
S45	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-22**	S49
S46	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-23**	S50
S47	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-23**	S51
S48	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-24**	S52
S49	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-24**	S53
S50	1H NMR spectrum (400 MHz, CDCl$_3$) of compound **8a-25**	S54
S51	13C NMR spectrum (100 MHz, CDCl$_3$) of compound **8a-25**	S55
Figure	Description	Page
--------	-------------	------
Figure S52.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-26	S56
Figure S53.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-26	S57
Figure S54.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-1	S58
Figure S55.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-1	S59
Figure S56.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-2	S60
Figure S57.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-2	S61
Figure S58.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-3	S62
Figure S59.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-3	S63
Figure S60.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-4	S64
Figure S61.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-4	S65
Figure S62.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-5	S66
Figure S63.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-5	S67
Figure S64.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-6	S68
Figure S65.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-6	S69
Figure S66.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-7	S70
Figure S67.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-7	S71
Figure S68.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-8	S72
Figure S69.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-8	S73
Figure S70.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-9	S74
Figure S71.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-9	S75
Figure S72.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-10	S76
Figure S73.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-10	S77
Figure S74.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-11	S78
Figure S75.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-11	S79
Figure S76.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-12	S80
Figure S77.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-12	S81
Figure S78.	1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-13	S82
Figure S79.	13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-13	S83
Molecular docking

To perform the docking of the compounds, saved in pdb format and the energy was minimized using AutoDock 4.2. The molecular docking was performed using AutoDock 4.2. To rationalize the observed structure–activity relationship and identify the binding interactions between the synthesized compound with the target enzymes BuChE (PDB code: 4BDS). The water molecules were removed from these structures and the addition of hydrogen atoms. The target enzymes BuChE were docked to experimentally synthesized compounds using AutoDockTools-1.5.7. The search space of 60 x 60 x 60 in x, y, and z dimensions was used for enzymes BuChE centered on the binding site of protein. The docking results were then visualized using Discovery Studio Visualizer.

Commonly, the docking configuration of the target compound was basically consistent with that of the target enzyme. 1,4-Disubstituted genipin-triazole (8a-10) showed a good fit in the pocket site of the enzyme by interaction with important amino acid residues and exhibited a binding free energy of -9.77 kcal/mol with BuChE. In the binding mode, the carbonyl group of acetoxy formed hydrogen bonds with the Trp82 (a key residue in the CAS of BuChE) and the triazole group also formed a hydrogen bond interaction with the Tyr332 as a key residue in the PAS region. On the other hand, the binding of 1,5-disubstituted genipin-triazole (8a-10′) to target enzyme BuChE formed only hydrogen bonds at key residue in the CAS region but was not binding at key residue in the PAS region (Figure S1). Also, 1,5-disubstituted genipin-triazole (8a-10′) showed binding energy higher than 1,4-disubstituted (8a-10) and was calculated as -7.15 kcal/mol. Therefore, 1,4-disubstituted genipin-triazole (8a-10) is a suitable regioisomer for interaction with the target enzyme BuChE.

Figure S1 Proposed binding mode of compound 8a-10 compared with 8a-10′ in the active site of BuChE (PDB code: 4BDS).
Measurement of cell viability using MTT assays

To investigate the neuroprotective activity of all 1,2,3-triazolegenipin based compounds 8a and 8b, we used an MTT assay to explore cell viability. SK-N-SH cells were cultured in a 96-well plate at a density of 5 x 10^5 cells/mL for 24 h at 37 °C in a CO₂ incubator. The cells were pretreated with 0.075, 0.15, 0.3 or 0.6 µM of 1,2,3-triazole-genipins 8a and 8b for 2 h and then treated in the presence or absence of 250 µM H₂O₂. After 24 h of incubation, 100 µL of MTT solution (10 mg/mL) was added to each well and incubated at 37 °C for 2 h. The medium was aspirated and 100 µL dimethylsulfoxide (DMSO) was then added to dissolve the formazan crystals. The absorbance was measured at 570 nm using a microplate reader (Bio-tek, Instruments, Winoaski, VT, USA).
1H and 13C NMR spectra of 10-triazolyl-genipin analogues

Figure S2. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-1
Figure S3. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-1
Figure S4. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-2
Figure S5. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-2
Figure S6. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-3
Figure S7. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-3
Figure S8. \(^1\)H NMR spectrum (400 MHz, CDCl\textsubscript{3}) of compound 8a-4
Figure S9. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-4
Figure S10. 1H NMR spectrum (400 MHz, CDCl3) of compound 8a-5
Figure S11. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-5
Figure S12. 1H NMR spectrum (400 MHz, CDCl3) of compound 8a-6
Figure S13. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-6
Figure S14. 1H NMR spectrum (400 MHz, CDCl₃) of compound 8a-7
Figure S15. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-7
Figure S16. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-8
Figure S17. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-8
Figure S18. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-9
Figure S19. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-9
Figure S20. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-10
Figure S21. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-10
Figure S22. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-11
Figure S23. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-11
Figure S24. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-12
Figure S25. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-12.
Figure S26. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-13
Figure S27. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-13
Figure S28. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-14
Figure S29. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-14
Figure S30. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-15
Figure S31. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-15
Figure S32. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-16
Figure S33. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-16
Figure S34. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-17
Figure S35. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-17
Figure S36. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-18
Figure S37. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-18
Figure S38. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-19
Figure S39. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-19
Figure S40. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-20
Figure S41. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-20
Figure S42. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-21
Figure S43. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-21
Figure S44. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-22
Figure S45. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-22
Figure S46. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-23
Figure S47. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-23
Figure S48. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-24
Figure S49. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-24
Figure S50. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-25
Figure S51. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-25
Figure S52. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8a-26
Figure S53. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8a-26
Figure S54. 1H NMR spectrum (400 MHz, CDCl₃) of compound 8b-1
Figure S55. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-1
Figure S56. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-2
Figure S57. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-2
Figure S58. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-3
Figure S59. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-3
Figure S60. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-4.
Figure S61. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-4
Figure S62. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-5
Figure S63. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-5
Figure S64. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-6
Figure S65. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-6
Figure S66. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-7
Figure S67. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-7
Figure S68. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-8
Figure S69. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-8
Figure S70. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-9
Figure S71. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-9
Figure S72. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-10
Figure S73. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-10
Figure S74. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-11
Figure S75. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-11
Figure S76. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-12
Figure S77. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-12
Figure S78. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8b-13
Figure S79. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 8b-13