In this review paper we explain the following gamma-ray emission features from the millisecond pulsars. (1) Why is the dipolar field of millisecond pulsars so weak but the magnetic pair creation process may still be able to control the size of the outergap? (2) A sub-GeV pulse component could occur in the vicinity of the radio pulse of millisecond pulsars. (3) Orbital modulated gamma-rays should exist in the black widow systems for large viewing angle.

Keywords: millisecond pulsars, gamma-rays

1. INTRODUCTION

Pulsars are known to be rapidly spinning and strongly magnetized neutron stars so they can behave like a unipolar inductor. Without the charge screening young pulsars can easily develop huge potential drop along the open field lines (cf. Manchester & Taylor 1977, Lyne & Graham-Smith 1998 or a general review). Such large potential drop can accelerate charged particles to extremely relativistic speed. Since the magnetic field in the open field lines are still sufficiently strong so charged particles are confined to move along the field lines, hence high energy curvature photons are emitted. It has been shown that pulsar magnetosphere is filled with charge separated plasma, whose charge distribution is given by the Goldreich-Julian charge density

\[p = \frac{\tilde{\Omega} \cdot \tilde{B}(r)}{2\pi c} \]

where \(\tilde{\Omega} \) is the angular velocity vector and \(\tilde{B}(r) \) is the local magnetic field vector (Goldreich & Julian 1969).

When \(\tilde{\Omega} \) is perpendicularly to \(\tilde{B}(r) \), the charge density is zero and such region is called null charge surface and charged carriers on two sides of the null charge surface are opposite. With this charge distribution the electric field along the magnetic field is screened out. However Cheng et al. (1986a) argued that when the current pass through the null charge surface, opposite charged carriers are removed from the vicinity of null charge surface and hence vacuum region will be formed. Charged particles in this vacuum region will be accelerated to extremely relativistic speed so this region is also called “Outergap” accelerator. The question is if the current continue to pass through the null charge region will the vacuum region to grow unlimitedly. The answer is “no” because the energy of the curvature photons is proportional to the size of vacuum region. When the energy of curvature photons is energetically enough, curvature photons and soft photons from the stellar surface can be converted into electron/positron pairs, which can limit the size of the Outergap. Zhang & Cheng (1997) argued that the soft photons from the surface should be dominated by thermal photons emitted by the hot polar cap, which is heated by the return current from the Outergap. In this particular model, the fractional size of the Outergap \(f_{pp} \) limited by the photon-photon pair creation process is completely determined by the global parameters of pulsars, i.e. rotation period \(P \) and the dipolar magnetic field \(B \), and it is given by

\[f_{pp} = 5.5P^{30/21}B_{12}^{-4.7} \]

where \(B_{12} \) is the dipolar magnetic field in units of \(10^{12} \) G and the total gamma-ray luminosity emitted by the Outergap is given by

\[L_{\gamma} = 5.5 \times 10^{32} f_{pp} \]

Received Nov 30, 2013 Revised Dec 25, 2012 Accepted Dec 31, 2012

Copyright © The Korean Space Science Society

http://www.janss.kr piSSN: 2093-5587 eISSN: 2093-1409
where \(f_{\text{gap}} \) is the fractional size of the Outergap and \(L_{\text{sd}} \) is the spin-down power of the pulsar.

It has been shown that many observed features from gamma-ray pulsars can be explained in terms of the Outergap models (e.g. Cheng et al. 1986b, 2000, Romani 1996, Zhang & Cheng 1997, Takata et al. 2004, Hirotani 2006, 2008, Wang et al. 2010)

2. OUTERGAP CLOSED BY MAGNETIC PAIR CREATION

Takata et al. (2010) suggest that if the surface multiple field is much stronger than the dipolar field near the stellar surface in particular they can bend those open field lines connecting to the Outergap sideward, then the curvature photons emitted by the return current from the Outergap can become pairs near the surface and their pitch angles can be larger than 90 degrees (cf. Fig. 2 of Takata et al. 2010).

In this situation, the magnetic pairs can stream back to the outer magnetosphere and restrict the size of the Outergap. The Outergap size restricted by the magnetic pair creation process is given by

\[
f_{\text{gap}} = 0.25K(B_s, s)P_\text{i}^{-1/2},
\]

where \(P_\text{i} \) is the rotation period in units of \(10^{-3} \) s, \(K(B_s, s) \) depends on the local multiple magnetic field \((B_s) \) and the local curvature radius (s). By fitting the first Fermi pulsar catalog (Abdo et al. 2010), they find that K is roughly a constant but the value is unity for canonical pulsars and is about 10 for millisecond pulsars respectively. These two values correspond to quadruple field strength \(B_s \sim 10^{13} \) G for canonical pulsars and \(B_s \sim 10^{11} \) G for millisecond pulsars respectively. They also show that the magnetic pair creation process is more important for pulsars with spin-down power lower than \(10^{35} \) erg/s. It is very important to note that this quadruple moment is located at the boundary between the core and the crust. The magnetic field produced by this quadruple moment on the surface of the neutron star is given by

\[
B_n = Q(a/l)^4 \left(B_s / 10^{13} G \right) \left(a / 3 \times 10^6 \text{cm} \right)^4 \left(l / 3 \times 10^6 \text{cm} \right)^4,
\]

where \(l \) is the thickness of the stellar crust.

3. SOFT GAMMA-RAY COMPONENT IN MILLISECOND PULSARS

Cheng et al. (2000) have shown that most pairs should be created around the null charge surface. In this Outergap model, the current flow inside the Outergap is dominated by the outflow current from the null charge surface toward the light cylinder whereas the inflow current dominates from the null charge surface toward the star. It has been shown...
by Hirotani (2005) that the inner boundary of the Outergap is not located at the null charge surface when the outergap current is not zero. Roughly speaking the location of the inner boundary can be estimated as

\[r_{in} \sim r_{null} \left(1 - \frac{J_{gap}}{J_{GJ}}\right) \]

(6)

where \(r_{in} \) and \(r_{null} \) are the distances to the inner boundary and null charge surface respectively, and \(J_{gap} \) and \(J_{GJ} \) are the gap current and the Goldreich-Julian Current respectively. The electric field between the null charge surface and the inner boundary can be approximated (Hirotani 2005, Tang et al. 2008) by

\[E_{\alpha}(r) = E(r_{null}) \left(\frac{r}{r_{null}}\right)^2 - E(r_{null}) \]

(7)

where \(E(r_{null}) \) is the electric field at the null charge surface. Since the electric field from the null charge surface to the light cylinder is roughly constant whereas the electric field from the null surface to the inner boundary decreases quadratically therefore the characteristic curvature photon energy and the radiation power by the inward current flow are weaker than those of the outflow. The average electric field in the inflow region is

\[E_\gamma(in) \sim 3^{-3/4} E_\gamma(out) \]

(8)

where \(E_\gamma(in) \) and \(E_\gamma(out) \) are the characteristic curvature photon energies emitted by the inflow and outflow charged particles respectively. We can also estimate the inflow radiation power as

\[L_\gamma(in) - L_\gamma(out) < \frac{E_\gamma > r_{null}}{E(r_{null})} \sim 0.15 / \tan^2 \alpha L_\gamma(out) \]

(9)

where \(r_{in} \) is the light cylinder radius and we have used \(\frac{r_{null}}{r_{in}} \approx \frac{4}{9 \tan^2 \alpha} \) where \(\alpha \) is the inclination angle. Since the caustic effect of inflow radiation is small, this soft gamma-ray component should occur very near the radio pulse emitted from the polar cap. Unlike in the case of millisecond pulsars this soft gamma-ray component is very difficult to be observed in canonical pulsars because most of inflow curvature photons will be converted into pairs by the strong magnetic field (cf. Cheng & Zhang 1999, Wang et al. 2013a). Unless the inclination angle and the viewing are both small most inflow curvature photons will be reprocessed into hard X-rays and PSR1509-58 is the representative example (Wang et al. 2013a). The detail fitting of energy dependent light curves of millisecond pulsars can be found in Wang et al. (2013b).

4. ORBITAL MODULATED GAMMA-RAY FROM BLACK WIDOW SYSTEMS

It is believed that most of pulsar spin-down power eventually will be converted from low frequency electromagnetic dipole radiation into the particle kinetic energy of the pulsar wind. However the exact conversion process from EM wave energy into particle energy is still unclear. In the Crab nebula in a distance \(\sim 3 \times 10^{17} \) from the pulsar almost all EM wave energy becomes particle kinetic energy (Kennel & Coroniti 1984ab). On the other hand, by fitting the pulsed TeV data of the Crab pulsar/nebula detected by MAGIC Aharonian et al. (2012) have argued that only a few times of the light cylinder radii from the star a good fraction of spin-down power has already been in the kinetic energy of particles. It is still controversial if the pulsed TeV gamma-rays from the direction of the Crab pulsar are emitted in the magnetosphere or outside the light cylinder. PSR B1259-63/LS 2883 is one of most studied gamma-ray binaries, which is a binary system in which a 48 ms pulsar orbits around a Be star in a high eccentric orbit with a long orbital period of about 3.4 yr. It is special for having asymmetric two-peak profiles in both the X-ray and TeV light curves (Johnston et al. 1994, 1996, 2005, Aharonian et al. 2005, 2009, Chernyakova et al. 2006, 2009, Uchiyama et al. 2009). Recently, an unexpected GeV flare has also been detected by the Fermi gamma-ray observatory several weeks after the last periastron passage (Abdo et al. 2011, Tam et al. 2011). Although X-rays and TeV gamma-rays are generally expected to be emitted from the shock region (Tavani & Arons 1997, Takata & Taam 2009), its asymmetric light curves are very difficult to be explained. In order to explain its asymmetric two-peak multi-wavelength light curves, Kong et al. (2011, 2012) argue that one of important factors to cause such asymmetric light curve result from the fact that the particle kinetic energy of the pulsar wind is position dependent. They argue that the particle kinetic energy of the pulsar wind should gradually increase and can be approximately described by a power law as

\[\sigma(r) = \sigma_0 \left(\frac{r}{r_{L}}\right)^\delta \]

(10)

where \(\sigma(r) \) is called the magnetization parameter and is defined as the ratio of the magnetic energy density and the particle kinetic energy density in the pulsar wind at position \(r \), \(\sigma_0 \) is the magnetization parameter at the light cylinder and
\(\beta \) is a fitting parameter of order of unity. They estimate the magnetization parameter at the light cylinder as

\[
\sigma = \frac{B_L^2}{8 \pi m_e c^2} \sim 4.68 \times 10^{-7} \left(\frac{B_L}{2.5 \times 10^8 \text{G}} \right)^2 \left(\frac{r_L}{2.3 \times 10^7 \text{cm}} \right) \left(\frac{N_e}{10^7} \right)^{1/2} \left(\frac{N_p}{5.26 \times 10^{-3} \text{s}^{-1}} \right)^{1/2},
\]

where \(B_L \) is the magnetic field at the light cylinder, \(r_L \) is the radius of the light cylinder, \(\tilde{N}_e = N_e N_p \), \(N_e \) is the \(e^\pm \) multiplicity and \(\tilde{N}_p = 5.26 \times 10^{10} (B / 3 \times 10^8 \text{G}) (P / 47.76 \text{ms}) \text{s}^{-1} \) is the Goldreich-Julian particle flow at the light cylinder. Replacing the characteristic values of PSR B1259-63 by the values of millisecond pulsars \(\sigma \) is roughly 10. Most black widow systems have an orbital radius of order of 10^11 cm and a light cylinder radius of order of 10^7 cm, which imply that a good fraction of pulsar spin-down energy has already been converted into the particle kinetic energy of the pulsar wind in a distance of 10^11 cm. The TeV gamma-rays of PSR B1259-63 are produced by inverse Compton scattering. Although the companion stars of black widow systems are white dwarfs, intense optical emission from the companion stars are observed and it is believed to result from the irradiation of pulsars. Therefore it is interesting to ask if high energy photons can be produced via inverse Compton (IC) process and such emission should exhibit orbital modulation. The characteristic energy of IC photons depends on the bulk Lorentz factor of the pulsar wind and the characteristic energy of the soft photons from the companion star.

Cheng et al. (2010) have estimated bulk Lorentz factor of the pulsar wind from millisecond pulsars \(\gamma_B \) which is given by

\[
\gamma_B = 2 \times 10^3 f_{\gamma}^{1/2} L_{\nu}\text{erg/s},
\]

where \(L_{\nu} \) is the pulsar spin-down power in units of 10^{44} \text{erg/s}, \(f_{\gamma} = 1 + \frac{m_e}{m_p} \) and \(\eta_q = \frac{N_p}{N_e} \) is number ratio between \(e^\pm \) pairs and protons. For the characteristic values of millisecond pulsars, i.e., \(P \sim 3 \text{ ms} \) and \(B \sim 3 \times 10^6 \text{ G} \), which gives \(\gamma_B \sim 3\times10^4 \). Takata et al. (2010, 2012) have suggested that the companion star in the black widow systems will emit optical due to the irradiation of gamma-rays from pulsar. The optical luminosity due to reprocessing the pulsar wind/gamma-rays is given by

\[
L_{\text{opt}} = L_{\nu} \left(\frac{\sigma R_{\nu}}{4 \pi R_{\nu}} \right) = 2 \times 10^{44} L_{\nu} \left[\frac{10 R_{\nu}}{R_{\nu}} \right]^2 \text{erg/s},
\]

where \(R_{\nu} \) and \(R_{\nu} \) are the radius of the Roche lobe and the binary system respectively. The effective temperature of the companion star is given by

\[
T_{\text{eff}} = \left(\frac{L_{\nu}}{4 \pi R_{\nu}^2 \sigma} \right)^{1/4} = 5 \times 10^8 \left(\frac{L_{\nu}}{3 \times 10^{44} \text{erg/s}} \right)^{1/4} \left(\frac{R_{\nu}}{10^9 \text{cm}} \right)^{1/2} \text{K}.
\]

The inverse Compton scattering between the optical photons from the companion star and the pulsar wind can produce high energy photons with the characteristic energy given by

\[
E_{\gamma} = \frac{\gamma_B^2 \sigma R_{\nu}}{3 \text{GeV}} \left\{ \frac{L_{\nu}}{3 \times 10^{44} \text{erg/s}} \right\} \left[\frac{R_{\nu}}{10^9 \text{cm}} \right]^{1/2}.
\]

The luminosity of the inverse Compton scattering is given by

\[
L_{\gamma} = \frac{\sigma R_{\nu}}{5 \times 10^5} \left(\frac{E_{\gamma}}{3 \text{GeV}} \right) \left[\frac{L_{\nu}}{3 \times 10^{44} \text{erg/s}} \right] \left[\frac{R_{\nu}}{10^9 \text{cm}} \right]^{1/2} L_{\nu}.
\]

where \(\sigma R_{\nu}^2 / kr \) is the optical photon density at distance \(r \) from the companion star. If the line of sight is sufficiently closed to the companion star, i.e., \(r < R_{\nu} \), the maximum inverse Compton luminosity occurs when the companion star is between the observer and the pulsar and it could be about a few percent of the spin-down power and this luminosity falls off as 1/r. This component sensitively depends on the viewing angle. Recently the first black widow system, PSR B1957+20 has been shown some evidence of an orbital modulated gamma-ray component at energy>3 GeV (Wu et al. 2012)

5. SUMMARY

We argue that the reason why millisecond pulsars can maintain a surface quadruple field with strength \(\sim 10^{11} \text{ G} \) results from interpinning of quantized flux tubes and quantized vortex lines. The magnetic flux tubes are dragged toward the spin-axis during the accretion spin-up phase. Consequently an extremely strong quadruple can be formed in the boundary between the inner crust and the core. This multiple field is very important to ensure the magnetic pair creation process can occur even in millisecond pulsars with dipolar field \(\sim 10^8 \text{ G} \). In the Outergap models we predict that a sub-GeV component should exist in the vicinity of radio pulse, which is emitted by the inflow current. But the characteristic energy and luminosity of this component are expected to be lower than the main outflow components. We also predict that an orbital modulated gamma-ray component could be produced by the inverse Compton scattering between the pulsar wind and the optical photons from the companion star.
ACKNOWLEDGMENTS

We thank D. Hui, A. Kong, M. Ruderman, J. Takata, T. Tam and Y. Wang for useful discussion. This work is supported by a GRF grant of Hong Kong Government under 700911P.

REFERENCES

Abdo AA, Ackermann M, Ajello M, Atwood WB, Axelsson M, et al., The First Fermi Large Area Telescope Catalog of Gamma-rays Pulsars, ApJS, 187, 460-494 (2010). http://dx.doi.org/10.1088/0067-0049/187/2/460

Abdo AA, Ackermann M, Ajello M, Atwood WB, Axelsson M, et al., Discovery of High-energy Gamma-ray Emission from the Binary System PSR B1259-63/LS 2883 around Periastron with Fermi, ApJ, 736, L11-L16 (2011). http://dx.doi.org/10.1088/2041-8205/736/1/L11

Aharonian F, Akhperjanian AG, Anton G, Barres de Almeida U, Bazer-Bachi AR, et al., Very high energy γ-ray observations of the binary PSR B1259-63/SS2883 around the 2007 Periastron, A&A, 507, 389-396 (2009). http://dx.doi.org/10.1051/0004-6361:200912339

Aharonian FA, Bogovalov SV, Khangulyan D, Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar, Nature, 482, 507-509 (2012). http://dx.doi.org/10.1038/nature10793

Cheng KS, Chernyshov DO, Dagiel VA, Hui CY, Kong AKH, The Origin of Gamma Rays from Globular Clusters, ApJ, 723, 1219-1230 (2010). http://dx.doi.org/10.1088/0004-637X/723/2/1219

Cheng KS, Ho C, Ruderman MA, Energetic radiation from rapidly spinning pulsars. I - Outer magnetosphere gaps. II - VELA and Crab, ApJ, 300, 500-539 (1986a). http://dx.doi.org/10.1086/163829

Cheng KS, Ho C, Ruderman MA, Energetic Radiation from Rapidly Spinning Pulsars. II. VELA and Crab, ApJ, 300, 522-539 (1986b). http://dx.doi.org/10.1086/163830

Cheng KS, Ruderman M, Zhang L, A Three-dimensional Outer Magnetospheric Gap Model for Gamma-Ray Pulsars: Geometry, Pair Production, Emission Morphologies, and Phase-resolved Spectra, ApJ, 537, 964-976 (2000). http://dx.doi.org/10.1086/309051

Cheng KS, Zhang L, Multicomponent X-Ray Emissions from Regions near or on the Pulsar Surface, ApJ, 515, 337-350 (1999). http://dx.doi.org/10.1086/307016

Chernyakova M, Neronov A, Aharonian F, Uchiyama Y, Takahashi T, X-ray observations of PSR B1259-63 near the 2007 periastron passage, MNRAS, 397, 2123-2132 (2009). http://dx.doi.org/10.1111/j.1365-2966.2009.15116.x

Chernyakova M, Neronov A, Lutovinov A, Rodriguez J, Johnston S, XMM-Newton observations of PSR B1259-63 near the 2004 periastron passage, MNRAS, 367, 1201-1208 (2006). http://dx.doi.org/10.1111/j.1365-2966.2005.10039.x

Goldreich P, Julian WH, Pulsar Electrodynamics, ApJ, 157, 869-880 (1969). http://dx.doi.org/10.1086/150119

Hirotani K, High energy emission from pulsars: Outer gap scenario, AdSpR, 35, 1085-1091 (2005). http://dx.doi.org/10.1016/j.asr.2005.05.063

Hirotani K, Particle Accelerator in Pulsar Magnetospheres: Super-Goldreich-Julian Current with Ion Emission from the Neutron Star Surface, ApJ, 652, 1475-1493 (2006). http://dx.doi.org/10.1086/508317

Hirotani K, Outer-Gap versus Slot-Gap Models for Pulsar High-Energy Emissions: The Case of the Crab Pulsar, ApJ, 688, L25-L28 (2008). http://dx.doi.org/10.1086/595000

Johnston S, Ball L, Wang N, Manchester RN, Radio observations of PSR B1259-63 through the 2004 periastron passage, MNRAS, 358, 1069-1075(2005). http://dx.doi.org/10.1111/j.1365-2966.2005.08854.x

Johnston S, Manchester RN, Lyne AG, Nicastro L, Spyromilio J, Radio and Optical Observations of the PSR:B1259-63 / SS:2883 Be-Star Binary System, MNRAS, 268, 430-436 (1994).

Johnston S, Manchester RN, Lyne AG, D’Amico N, Bailes M,et al., Radio observations of PSR B1259-63 around periastron , MNRAS, 279, 1026-1036 (1996).

Kennel CF, Coroniti FV, Confinement of the Crab pulsar’s wind by its supernova remnant, ApJ, 283, 694-709 (1984a). http://dx.doi.org/10.1086/162356

Kennel CF, Coroniti FV, Magnetohydrodynamic model of Crab nebula radiation, ApJ, 283, 710-730 (1984b). http://dx.doi.org/10.1086/162357

Kong SW, Cheng KS, Huang YF, Modeling the Multiwavelength Light Curves of PSR B1259-63/LS 2883. II. The Effects of Anisotropic Pulsar Wind and Doppler Boosting, ApJ, 753, 127-135 (2012). http://dx.doi.org/10.1088/0004-637X/753/2/127

Kong SW, Yu YW, Huang YF, Cheng KS, Modelling the multiwavelength light curves of PSR B1259-63/SS 2883, MNRAS, 416, 1067-1076 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.19103.x
Lyne AG, Graham-Smith F, Pulsar Astronomy (Cambridge University Press, 1998)
Manchester RN, Taylor JH, Pulsars (Freeman, San Francisco, 1997).
Romani RW, Gamma-Ray Pulsars: Radiation Processes in the Outer Magnetosphere, ApJ, 470, 469-478 (1996).
Takata J, Cheng KS, Taam R, On the Transition from Accretion-powered to Rotation-powered Millisecond Pulsars, ApJ, 723, L68-L72 (2010).
Takata J, Cheng KS, Taam R, X-Ray and Gamma-Ray Emissions from Rotation Powered Millisecond Pulsars, ApJ, 745, 100 (2012).
Takata J, Shibata S, Hirotani K, A pulsar outer gap model with trans-field structure, MNRAS, 354, 1120-1132 (2004).
Takata J, Taam R, Probing the Pulsar Wind in the γ-ray Binary System PSR B1259-63/SS 2883, ApJ, 702, 100-113 (2009).
Takata J, Wang Y, Cheng KS, Pulsar High Energy Emissions from Outer Gap Accelerator Closed by a Magnetic Pair-creation Process, ApJ, 715, 1318-1326 (2010).
Tam PHT, Huang RHH, Takata J, Hui CY, Kong AKH, et al., Discovery of GeV γ-ray Emission from PSR B1259-63/LS 2883, ApJ, 736, L10-L15 (2011).
Tavani M, Arons J, Theory of High-Energy Emission from the Pulsar/Be Star System PSR 1259-63. I. Radiation Mechanisms and Interaction Geometry, ApJ, 477, 439-464 (1997).
Uchiyama Y, Tanaka T, Takahashi T, Mori K, Nakazawa K, Suzaku Observations of PSR B1259-63: A New Manifestation of Relativistic Pulsar Wind, ApJ, 698, 911-921 (2009).
Wang Y, Takata J, Cheng KS, in preparation (2013b).
Wu EMH, Takata J, Cheng KS, Huang RHH, Hui CY, et al., Orbital-phase-dependent γ-Ray Emissions from the Black Widow Pulsar, ApJ, 761, 181-187 (2012).