Race, ethnicity, and support for climate policy

Salil Benegal①*, Flávio Azevedo① and Mirya R Holman①

① Political Science, DePauw University, Greencastle, IN, United States of America
② Cambridge’s Social Decision-Making Lab, University of Cambridge, Cambridge, United Kingdom
③ Political Science, Tulane University, New Orleans, LA, United States of America

* Author to whom any correspondence should be addressed.

E-mail: salilbenegal@depauw.edu

Keywords: climate change, public opinion, United States, race, ethnicity, policy attitudes

Abstract

Addressing the increasing temperatures of the globe requires society-wide adaptation and mitigation efforts. One central challenge to these efforts is the resistance of groups to support broad policy efforts to reduce global temperatures, with particular resistance in the United States. While scholars have established that partisanship, ideology, demographic, and socio-economic characteristics shape support for climate policy, we do not yet understand how these factors might vary within and across racial and ethnic groups. In this paper, we use pooled data from the Cooperative Election Study (N_total = 241 800) to examine differences in attitudes about climate policy between Asian, Black, Hispanic, and white Americans. Comparing across groups, we demonstrate that the many core findings of scholarship on support for climate policy apply nearly exclusively to white Americans, with varying correlational relationships for Asian, Black, and Hispanic Americans. Our efforts provide a much-needed examination of how racial identity shapes views on climate change and show that central, replicated results in scholarship on climate change apply largely to the views and behaviors of white Americans.

1. Introduction

Climate change poses severe threats and necessitates urgent mitigative and adaptive policy actions (IPCC 2022). Yet the United States has long struggled to advance effective policy measures, with over two decades of federal inaction until the recently passed Inflation Reduction Act, and increasingly partisan approaches to climate policy at the state level leading to policy retrenchment in several states (Bromley-Trujillo and Holman 2020, Mildenberger 2020). Addressing climate change requires both broad collective support for government policies (Stoutenborough et al 2014, Egan and Mullin 2017) and an understanding of the needs and policy preferences of communities and demographics worst affected by climate change. It is thus essential to understand how support for such policies varies significantly across individuals and groups.

A broad body of scholarship has established that younger Americans, Democrats, liberals, women, people with higher educational attainment, and more income are more supportive of climate action and various mitigative policies (e.g. Egan and Mullin 2017, Ross et al 2019, Bergquist et al 2020). Yet much of the work on views of climate change draw on disproportionately white survey samples, adversely centering white responses as universal in the published scholarship. In this letter, we argue that the central characteristics documented by scholars as indicative of support for climate policy do replicate—for white people. But a broader understanding of support for climate policy in the population demands that we consider that these mechanisms play alternative roles for Asian, Black, and Hispanic Americans. Within each of these groups, we examine the variation in relationships between established correlates and support for climate policies using pooled data from four years of the Cooperative Election Study (CES) (N = 241 800).

People and communities of color bear the costs of climate change disproportionately, including greater economic consequences, local environmental and health risks, and climate-related displacements (Jesdale et al 2013, Cushing et al 2015, Sultana 2021, Hernandez-Cortes et al 2022). Given these inequalities, Black, Hispanic, and Asian individuals in the United States might value climate action more
than white Americans, and may prioritize mitigative responses or adaptive responsibilities differently (Reckien and Petkova 2019). Indeed, gaps between racial and ethnic groups in their reported concerns over climate change are evident in survey data. For example, survey data from the past decade shows that Black and Hispanic Americans perceive greater risks from climate change than do white Americans (Schuldt and Pearson 2016, Ballew et al 2021).

Figure 1 presents aggregate levels of support for climate policy in the CES, which allow us to see how these trends extend to other dimensions of policy support. Here, we see differences both within and across race and ethnic groups. For each policy measure (CO2 regulation, state-level renewable mandates, and Environmental Protection Agency (EPA) enforcement of the Clean Water Act (CWA) and Clean Air Act (CAA)) and an aggregate measure of climate policy support, we see that support among Black, Hispanic, and Asian respondents exceeds white support, with smaller differences across these three groups.

But views about climate are not just driven by experiences with the consequences of climate change (Egan and Mullin 2012, Bergquist and Warshaw 2019, Bush and Clayton 2022, Howe et al 2019), but also because of social identities and sociodemographic characteristics (Fielding and Hornsey 2016, Ross et al 2019, Motta 2019), and different experiences with government services (Reckien and Petkova 2019). We find broad evidence for the importance of considering the ways that political, socio-economic, and demographic characteristics work in distinct ways across racial identities. While partisanship, ideology, and education are uniformly significant, all measures exert differing substantive effects. We also document variations in the direction and significance of socio-economic and demographic variables. The trend of older respondents being less supportive of climate action is limited to only white respondents. So too is the gender gap in environmental concern: white women are more supportive of climate policy, but Black men are more supportive than Black women.

2. Examining support for climate policy across racial and ethnic groups

To evaluate how support for climate policy varies across racial and ethnic groups, we use pooled data from the 2014, 2016, 2018, and 2020 Cooperative Election Study (N = 241 800). The large N of these datasets allow us to examine differences in attitudes about climate change policy across both race and ethnicity. We focus on four subgroups within our pooled sample: respondents who identify as Asian/Asian-American (N = 7077), non-Hispanic Black (N = 26 803), Hispanic (N = 27 109), or non-Hispanic white (N = 172 149). We use the terms Asian, Black, and white to refer to Asian or Asian-American or Pacific Islander, non-Hispanic Black, and non-Hispanic white respondents respectively throughout the rest of the paper. Hispanics in the paper are identified both through selecting Hispanic as a racial identity (i.e. from a set of racial categories) and as an ethnicity (i.e. as selecting it as an identity separate from the racial categories), given that Hispanics in the United States may define racial or ethnic identities in multiple ways (Masuoka 2008, Wong 2018).

We omit other groups from our analysis given smaller sample sizes for other demographics, or because other response categories for the CES' racial...
identity question combine multiple racial or ethnic groups into categories such as Mixed or Other. We recognize this omits respondents who may hold multiple and possibly cross-cutting identities. For example, those who respond to the racial identity question as 'Mixed' account for 1.5% of the pooled CES sample. We also recognize that some of these racial and ethnic identities may overlap: for example, 2.7% of respondents identify as both white and Hispanic, and 2.5% of respondents identify as both Black and Hispanic. As the subset of respondents who report 'Mixed' racial identity have varying and distinct political experiences and views (Merseth 2018, Lemi 2021), we do not analyze them in the main manuscript, but we do present these results in appendix B4.

The CES (formerly known as the CCES) is a nationally representative survey that samples from YouGov panels, advertisements, and other survey draws with sample sizes of over 50,000 in each survey wave. Samples are weighted post-collection to match the distributions of the most recent American Community Survey demographics on age, gender, race, education, and Hispanic origin with additional post-stratification measures based on previous national election votes, voter registration status, and to match state populations. See table 1 for information on the measures we use from the CES and the appendix for more information on the survey and sampling process.

We examine the average support across three climate policies as our dependent variable. In each survey wave, the CES asked respondents whether they support (1) or oppose (0) each of the following: (a) ‘Give the EPA power to regulate Carbon Dioxide emissions.’ (CO2 regulation); (b) ‘Require that each state use a minimum amount of renewable fuels (wind, solar, and hydroelectric) in the generation of electricity even if electricity prices increase.’ (Renewable mandate); (c) ‘Strength the EPA enforcement of the CAA and CWA even if it costs US jobs.’ (CAA/CWA enforcement). We average these three items into an aggregate indicator of climate policy support ($\alpha = 0.792$; average interitem covariance = .129).

For each of our models (see table 2), we estimate separate ordinary least squares (OLS) models for each racial or ethnic group with fixed effects for survey year and survey weights; separate models for each survey year are available in appendix B2, and models without survey weights are available in appendix B3. We also estimate separate models using the categorical version of the partisanship and ideology variables and the effects for partisanship and ideology in separate models, following recommendations from Kalmoe (2020) as ideology may overlap with and capture several aspects of partisanship. A model including measures of both partisanship and ideology is available in appendix B1. After presenting a central set of models, we examine the effects of individual independent variables and present those results visually to aid in interpretation.

2.1. Correlates of climate policy support
Three patterns emerge from our central results that demonstrate the need to examine how factors vary across and within racial and ethnic groups (see table 2). First, the models for white respondents have a higher explained variance compared to other groups, but especially Black respondents. Second, the statistical significance and direction of effects for some variables are similar, but the size of the coefficients vary substantially across racial and ethnic groups. For example, we find that Democrats and liberals across all racial and ethnic groups are more supportive of climate policy than Republicans or conservatives, consistent with scholarship (Egan and Mullin 2017, Guber 2017). However, the effect sizes vary considerably, with the largest effects among white respondents, and smallest among Black respondents. In comparison, while education is associated with more support across all groups, the effect sizes of increased educational attainment are higher among Black, Hispanic, and Asian respondents than white respondents. And third, some explanatory variables differ either in significance or direction across racial

N	Mean	SD	Values
Support EPA regulating CO2	232,385	0.68	0.46 (oppose) or 1 (support)
Support state-level mandate for renewable energy	232,547	0.63	0.48 (oppose) or 1 (support)
Stronger Clean Air/Clean Water Act enforcement	232,483	0.57	0.49 (oppose) or 1 (support)
Aggregate climate support	231,538	0.63	0.40 (oppose all policies) to 1 (support all policies)
Party ID	232,428	3.63	2.17 (strong Dem) to 7 (strong Rep)
Ideology	221,995	3.00	1.16 (very liberal) to 5 (very conservative)
Age	241,800	48.53	17.27 (18–99)
Educational attainment	241,800	2.67	1.45 (high school or less) to 5 (post-graduate degree)
Sex	241,800	0.56	0.50 (0) or 1 (women)
Income	216,519	6.30	3.36 (under $10,000) to 16 (more than $500,000)
and ethnic groups. While age is negatively associated with support for climate policies among white, Asian, and Hispanic respondents, we see the opposite effect among Black respondents. Similarly, white respondents’ income negatively correlates with climate policy support, but this relationship is positive among Black respondents, and non-significant among Asian and Hispanic respondents. We next engage in more detailed examinations of those variables where we find similar directional and significance effects but varying substantive effects, including partisanship, ideology, and education. We then examine those factors where significance or direction shifts across racial and ethnic groups, including age, gender, education, and income.

2.2. Partisanship

Partisanship exerts a much stronger influence on white respondents’ climate policy preferences than on policy support among Black, Hispanic, or Asian respondents. Figure 2 presents predicted support for our aggregate measure of policy support among each racial or ethnic group across partisanship. Bolded lines represent post-estimation predicted probabilities for each of the racial or ethnic groups in our analysis, and dashed lines represent 95% confidence intervals.

Partisanship is meaningfully different for each ethnicity, with a move from Strong Democrat to Independent or from Independent to Strong Republican associated with declines in predicted policy support. The slopes of these effects are similar for Black, Hispanic, and Asian respondents, with a far steeper incline for white respondents whose predicted policy support drops by nearly 50% when shifting from Strong Democrat to Strong Republican.

2.3. Ideology

Like partisanship, ideology is significantly correlated with environmental policy support for all groups, with stronger conservative identity associated with reduced policy support. And like partisanship, ideology’s effects are strongest among white respondents and smallest among Black respondents. We plot this in figure 3, with bolded lines representing post-estimation predicted probabilities for each of the racial or ethnic groups in our analysis, and dashed lines representing 95% confidence intervals. One possible reason this effect size may be so much smaller among Black Americans is that conceptualizations of labels like liberal and conservative vary greatly across racial and ethnic demographics, with Black Americans viewing these terms and concepts differently than white Americans (Jefferson 2020). In both figures 2 and 3, we see the largest divides between white respondents who identify as

Table 2. CES 2014–20: environmental policy support.

Party ID	White	Black	Hispanic	Asian
	−0.101∗	−0.031∗	−0.062∗	−0.063∗
	(0.001)	(0.003)	(0.003)	(0.004)
Ideology	−0.204∗	−0.046∗	−0.107∗	−0.113∗
	(0.001)	(0.004)	(0.005)	(0.007)
Age	−0.003∗	0.001∗	−0.001	−0.001
	(0.000)	(0.000)	(0.000)	(0.000)
Education	0.007∗	0.026∗	0.021∗	0.014∗
	(0.001)	(0.003)	(0.003)	(0.004)
Female	0.064∗	−0.055∗	−0.013	0.006
	(0.003)	(0.007)	(0.008)	(0.009)
Income	−0.002∗	0.005∗	0.000	−0.000
	(0.000)	(0.003)	(0.004)	(0.003)
Constant	1.070∗	0.651∗	0.861∗	0.931∗
	(0.007)	(0.017)	(0.018)	(0.020)
Observations	144 165	139 180	22 445	20 877
R²	0.322	0.330	0.051	0.049

Dependent variable is average measure of environmental policy support, combining the CES measures for support for CO2 regulation, EPA enforcement of Clean Air and Clean Water Acts, and state-level renewable energy mandates. Standard errors in parentheses, fixed effects for survey year included. Ordinary Least Squares regression with survey weights. ∗ p < .05.
Figure 2. Support for climate policies by partisanship within racial and ethnic groups.

Note: Post-hoc predicted probabilities from appendix A1. Solid lines are coefficients, dashed gray lines indicate confidence intervals. Year fixed effects, controls for age, education, gender, and income. Survey weights applied.
Figure 3. Support for climate policies by ideology within racial and ethnic groups. Note: Post-hoc predicted probabilities from appendix A2. Solid lines are coefficients, dashed gray lines indicate confidence intervals. Year fixed effects, control for age, education, gender, and income. Survey weights applied.
either Strongly Republican or extremely conservative and all other groups. Even compared to non-white respondents who share these political identities, white respondents have lower levels of support for climate policy.

2.4. Education
We next examine differences across educational groups, separating our ordinal measure of educational attainment into a set of categories. Recall the significant relationship for education across all models, but substantively larger effects for Black, Hispanic, and Asian respondents. We examine predicted probabilities (figure 4) for each of these groups. We see differences in the slope for the effects of education across racial and ethnic groups. For Black and Hispanic respondents, the effects of education are large, significant, and positive. For these respondents, we see significant increases in support for climate policies when comparing respondents with a high school degree or some college to those with a 4 year college or post-graduate degree. Trends are smaller among Asian respondents, where the only significant difference is between Asian respondents with post-graduate degrees and those with high school education. Among white respondents, we see extremely small increases in the likelihood of policy support with increasing educational attainment.

2.5. Age differences
We now turn to those variables in the models presented in table 2 where we found differences in significance and direction across racial and ethnic groups. We start with age, where we use the model from table 2 and break down age into six categories. Figure 5 presents predicted probabilities (represented as bars) for each of these age groups.

Age exerts different patterns on support across race and ethnic groups. Among white respondents, we see a linear, negative relationship as older respondents are less supportive of climate policies. This pattern reflects findings from other scholarship that highlights how younger generational cohorts report both stronger agreement with the scientific consensus on climate change and greater support for related policies, relative to older cohorts (Ross et al 2019, Milfont et al 2021). Among Asian and Hispanic respondents, age and climate policy support are not significantly correlated.

We see quite different patterns among Black respondents where age is positively correlated with support for climate policy, with the 65+ group supporting climate policy at the highest rate. There are several possible post-hoc explanations for this finding. One is that younger Black Americans may hold lower levels of concern for environmental and climate-related issues due to their prioritization of other policy issues relating to racialized economic
inequities, policing and criminal justice, and similar issues that they may see as more closely impacting the Black community (Jefferson et al. 2021, Peterson and Riley 2022). Alternatively, older Black Americans (who are strong Democratic voters) may be more receptive to party cues. Given both the ascendancy of climate change and increased prioritization of environmental issues within the Democratic Party in recent years (Egan et al. 2022), older Black voters may be more exposed to, and more receptive to, partisan messaging highlighting the urgency of climate change and mitigative action. The well documented pattern of older Americans opposing climate action should be limited to older white Americans.

2.6. Gender differences
In examining gender differences, we again see different patterns for white and non-white respondents (see figure 6). A gendered gap among white respondents follows the common finding (McCright and Dunlap 2011a, Swim et al. 2018): white men are significantly less likely to support environmental policies than white women. However, this pattern does not apply to other groups: Black men are more likely to express support for the policies surveyed than Black women and we see no gender differences between Asian or Hispanic men and women in their support for climate policies. This reinforces that the pattern of gendered differences in climate concern and policy support is a white male effect (e.g. McCright and Dunlap 2011b) and shaped by both the intersections of gender and race, rather than primarily gender.

2.7. Income
We finally examine differences by income category across racial and ethnic groups (see figure 7). Income is significantly associated with climate policy support for two groups—white and Black respondents, in opposite directions. While we see negative and significant effects for white respondents, Black respondents’ support for climate policies increases with higher levels of income. We find no relationship between income and policy support for either Hispanic or Asian respondents.

3. Discussion
In this note, we present an exploratory analysis of how the correlates associated with support for climate policy are highly dependent on the racial and ethnic group of an individual. We document several trends: both partisanship and ideology are correlated across groups, but that the substantive effects are much larger and consistent for white respondents. We also find that education, age, gender, and income all work in unique ways for different racial

4 While income is significant for both white and Black respondents, the effect sizes are smaller than the effects of partisanship, ideology, gender, age, and education.
Figure 6. Support for environmental policy across genders.
Note: Post-hoc predicted probabilities from table 1. Bars are coefficients, capped lines indicate confidence intervals. Year fixed effects, controls for partisanship, age, education, and income. Survey weights applied.

Figure 7. Support for environmental policy across quintiles of income.
Note: Post-hoc predicted probabilities from appendix A5. Bars are predicted probabilities of policy support, capped lines indicate confidence intervals. Year fixed effects, controls for partisanship, age, education, and gender. Survey weights applied.
and ethnic groups. Using data from four waves of the CES allows us to examine differences not just across racial and ethnic groups, but within these groups. This allows us to extend other work examining differences in environmental risk perceptions and beliefs across racial and ethnic groups (Schuldt and Pearson 2016, Ballew et al 2021) by not only examining differences between these groups, but systematically examining how different factors such as age, gender, and political identity may behave within large and generalizable samples of Black, Hispanic, and Asian American respondents.

Our results draw attention to the racialized nature of political life in the United States (Azevedo et al 2022) and the consequences for environmentalism and climate action. The spillover of racial attitudes into climate views has been the focus of some work (Benegal 2018, Chanin 2018, Benegal and Holman 2021b, Benegal and Motta 2022); here, we examine how racial identity itself shapes climate views. In doing so, we build on work that demonstrates the importance of considering how central race is to shaping political views (DeSante and Smith 2020) and the variations within and across racial groups (Mohamed 2015, Raychaudhuri 2018, Bunyasi and Smith 2019).

While we know that some forms of messaging and policy bundling are more effective among different racial and ethnic demographics (e.g. Bergquist et al 2020) and that political divides on climate change are lower among Black and Hispanic Americans (Schuldt and Pearson 2016, Ballew et al 2021), we still know much less about the factors that may underpin and may mobilize climate policy support among different racial and ethnic groups. Studies of public opinion in other policy arenas documents how variation occurs both across and within racial and ethnic subgroups (Lien 1998, Fraga 2018, Fraga et al 2020), as well as by intersectional groups (Brown 2014, Brown and Gershon 2017, Silva and Skulley 2019). The work we have produced here contributes to these conversations by documenting differences in the factors associated with support for climate policy both across and within racial and ethnic groups.

Most major surveys of American politics simply do not include a large enough sample of racial and ethnic groups to engage in this research. Even with more than 240,000 total respondents, we are constrained by a low n and are unable to examine patterns among Native Americans, Pacific Islanders, or individuals who identify as mixed race; these groups have distinct political experiences and policy views (Merseth 2018, Lemi 2021). We hope that future research might take advantage of specialized samples to evaluate patterns among these groups and may need to draw on alternate forms of sampling (e.g. respondent-driven or snowball sampling) to better understand public opinion among harder to reach populations that may be more underrepresented in national surveys. As surveys often overrepresent more politically engaged individuals (Keeter 2018), alternate sampling methods may be necessary to improve our understanding of environmental public opinion dynamics among different racial and ethnic demographics, particularly given how political efficacy and engagement may differ across these groups (Phoenix and Chan 2022). Previous studies document these trends using probability-based surveys (Schuldt and Pearson 2016, Ballew et al 2021); that we find consistent results using larger, non-probability survey data from the CES provides additional evidence of these patterns.

In this paper, we document differences by the common correlates from the scholarship: partisanship, ideology, education, income, gender, education, and age. Future research might also consider the ways that psychological mechanisms and patterns that undergird preferences for climate policy also may vary across and within racial and ethnic groups. For example, researchers document how both policy framing and bundling may affect policy preferences (Stokes and Warshaw 2017, Bergquist et al 2020). We also know that senses of group efficacy and their relationship to political behavior and engagement differ across racial and ethnic groups (Phoenix and Chan 2022), and understanding how different group-specific mechanisms of public opinion and efficacy are related may help us better understand environmental advocacy and engagement, particularly on environmental justice matters in Black and Hispanic communities. Others document how preferences for the status quo and system justification both correlate with climate views and policy preferences (Azevedo and Jost 2021, Benegal and Holman 2021a), and how underlying psychological mechanisms vary across racial groups (Friesen and Holman 2022, Holman 2016). Understanding how these patterns might overlap and intersections offers a myriad of opportunities for future research. And, given that public opinion on climate shapes climate policy (Bromley-Trujillo and Poe 2018), understanding how these patterns might produce varying cumulative effects across geographic areas would be worth evaluating.

Data availability statement

The data and replication code that support the findings of this study are openly available at the following URL/DOI: https://doi.org/10.7910/DVN/7HLK04.

Acknowledgment

We thank Kevin Banda, Becky Bromley-Trujillo, Erin Cassese, Nicholas Davis, Thomas Hayes, Masha Kruppenkin, Megan Mullin, members of the 2022 Weatherhead Climate Pipeline Project workshop, and our reviewers at Environmental Research Letters for their feedback and support in writing this paper.
Appendix A. Regression tables for plots in main manuscript

Table A1. Results with expanded (categorical) 7 point party ID measure.

	White	Black	Hispanic	Asian
Strong Democrat	0.339***	0.096***	0.185***	0.175***
	(0.005)	(0.014)	(0.014)	(0.020)
Not very strong Democrat	0.218***	0.068***	0.123***	0.099***
	(0.005)	(0.015)	(0.014)	(0.020)
Lean Democrat	0.304***	0.113***	0.167***	0.139***
	(0.005)	(0.016)	(0.016)	(0.023)
Lean Republican	-0.253***	-0.145***	-0.191***	-0.193***
	(0.006)	(0.030)	(0.020)	(0.037)
Not very strong Republican	-0.107***	-0.038	-0.036	-0.046
	(0.006)	(0.029)	(0.019)	(0.031)
Strong Republican	-0.243***	-0.090**	-0.198***	-0.245***
	(0.005)	(0.031)	(0.019)	(0.034)
Age	-0.002***	0.001***	-0.001***	-0.001***
	(0.000)	(0.000)	(0.000)	(0.000)
Educational attainment	0.005***	0.025***	0.020***	0.013***
	(0.001)	(0.003)	(0.003)	(0.005)
Female	0.055***	-0.053***	-0.014	0.008
	(0.003)	(0.007)	(0.008)	(0.013)
Income	-0.002***	0.005***	0.001	-0.000
	(0.000)	(0.001)	(0.001)	(0.002)
Survey year = 2016	0.024***	0.036***	0.031*	0.041*
	(0.004)	(0.010)	(0.012)	(0.018)
Survey year = 2018	0.020***	0.030**	0.057***	0.016
	(0.004)	(0.011)	(0.012)	(0.022)
Survey year = 2020	0.058***	0.058***	0.072***	0.030
	(0.004)	(0.010)	(0.012)	(0.019)
Constant	0.632***	0.513***	0.599***	0.688***
	(0.007)	(0.018)	(0.019)	(0.028)
Observations	144.165	22.445	22.084	5525
R^2	0.365	0.058	0.165	0.167

Standard errors in parentheses. Survey weights applied. Independent is base category for partisanship. 2014 is base year for year fixed effects. * $p<.05$, ** $p<.01$, *** $p<.001$.

S Benegal et al
Table A2. Results with expanded (categorical) 5 point ideology measure.

	White	Black	Hispanic	Asian
Very liberal	0.258***	0.072**	0.152***	0.148***
	(0.004)	(0.011)	(0.012)	(0.021)
Liberal	0.221***	0.059***	0.117***	0.100***
	(0.003)	(0.009)	(0.010)	(0.015)
Conservative	−0.306***	−0.070***	−0.150***	−0.144***
	(0.004)	(0.012)	(0.013)	(0.022)
Very conservative	−0.415***	−0.065***	−0.221***	−0.317***
	(0.004)	(0.019)	(0.022)	(0.038)
Age	−0.002***	0.002***	−0.001	−0.001
	(0.000)	(0.000)	(0.000)	(0.000)
Educational attainment	0.005***	0.022**	0.015***	0.013*
	(0.001)	(0.003)	(0.003)	(0.006)
Female	0.057***	−0.040***	−0.000	0.009
	(0.003)	(0.008)	(0.009)	(0.013)
Income	−0.003***	0.004**	−0.002	−0.001
	(0.000)	(0.001)	(0.001)	(0.002)
Survey year = 2016	0.025***	0.038***	0.045***	0.049**
	(0.004)	(0.011)	(0.013)	(0.019)
Survey year = 2018	0.011**	0.016	0.043***	0.011
	(0.004)	(0.011)	(0.013)	(0.022)
Survey year = 2020	0.037***	0.044***	0.060***	0.017
	(0.004)	(0.010)	(0.012)	(0.021)
Constant	0.698***	0.569***	0.668***	0.737***
	(0.007)	(0.016)	(0.018)	(0.028)
Observations	139 180	20 877	21 167	5435
R^2	0.349	0.051	0.122	0.127

Standard errors in parentheses. Survey weights applied. Moderate is base category for ideology. 2014 is base year for year fixed effects. * p < .05, ** p < .01, *** p < .001.

Table A3. Table with expanded (categorical) educational attainment measure.

	White	Black	Hispanic	Asian
7 point Party ID	−0.101***	−0.031***	−0.062***	−0.062***
	(0.001)	(0.003)	(0.002)	(0.004)
Age	−0.003***	0.001***	−0.001	−0.001
	(0.000)	(0.000)	(0.000)	(0.000)
Some college	−0.011**	0.039***	0.039**	0.024
	(0.004)	(0.009)	(0.010)	(0.026)
2 year deg	−0.010*	0.043***	0.039**	−0.048
	(0.005)	(0.011)	(0.012)	(0.032)
4 year deg	0.014***	0.078***	0.064***	0.029
	(0.004)	(0.010)	(0.010)	(0.023)
Post-grad	0.036***	0.109***	0.087***	0.068**
	(0.004)	(0.013)	(0.013)	(0.024)
Female	0.065***	−0.055***	−0.014	0.010
	(0.003)	(0.007)	(0.008)	(0.013)
Income	−0.002***	0.005***	0.001	−0.001
	(0.000)	(0.001)	(0.001)	(0.002)
Survey year = 2016	0.028***	0.036***	0.032**	0.048**
	(0.004)	(0.010)	(0.012)	(0.018)
Survey year = 2018	0.024***	0.029**	0.056***	0.022
	(0.004)	(0.011)	(0.012)	(0.022)
Survey year = 2020	0.062***	0.057***	0.070***	0.033
	(0.004)	(0.010)	(0.012)	(0.020)
Constant	1.087***	0.673***	0.876***	0.951***
	(0.007)	(0.017)	(0.018)	(0.036)
Observations	144 165	22 445	22 084	5525
R^2	0.323	0.051	0.145	0.146

Standard errors in parentheses. Survey weights applied. HS or less is base category for education. 2014 is base year for year fixed effects. * p < .05, ** p < .01, *** p < .001.
Table A4. Table with expanded (categorical) age demographics.

	White	Black	Hispanic	Asian
7 point Party ID	−0.101***	−0.031***	−0.062***	−0.063***
	(0.001)	(0.003)	(0.002)	(0.004)
25–30	−0.020**	−0.023	−0.007	−0.043
	(0.008)	(0.015)	(0.014)	(0.023)
31–40	−0.055***	−0.013	−0.008	−0.016
	(0.007)	(0.014)	(0.013)	(0.019)
41–50	−0.105***	−0.006	−0.035*	−0.046
	(0.007)	(0.014)	(0.015)	(0.024)
51–64	−0.129***	0.017	−0.060***	−0.047*
	(0.007)	(0.013)	(0.014)	(0.022)
65+	−0.146***	0.042**	−0.042*	−0.056
	(0.007)	(0.016)	(0.019)	(0.031)
Educational attainment	0.008***	0.027***	0.021***	0.015*
	(0.001)	(0.003)	(0.003)	(0.006)
Female	0.064***	−0.056***	−0.014	0.008
	(0.003)	(0.007)	(0.008)	(0.013)
Income	−0.002***	0.005***	0.001	−0.000
	(0.000)	(0.001)	(0.001)	(0.002)
Survey year = 2016	0.027***	0.036**	0.032*	0.049**
	(0.004)	(0.010)	(0.012)	(0.018)
Survey year = 2018	0.023***	0.030**	0.055***	0.022
	(0.004)	(0.011)	(0.012)	(0.022)
Survey year = 2020	0.061***	0.057***	0.068***	0.034
	(0.004)	(0.010)	(0.012)	(0.020)
Constant	1.026***	0.692***	0.832***	0.922***
	(0.008)	(0.016)	(0.016)	(0.029)
Observations	144 165	22 445	22 084	5525
R²	0.323	0.052	0.145	0.142

Standard errors in parentheses. Survey weights applied. 18–24 is base category for age. 2014 is base year for year fixed effects. * p < .05, ** p < .01, *** p < .001.

Table A5. Results with income quintiles.

	White	Black	Hispanic	Asian
7 point Party ID	−0.101***	−0.032***	−0.062***	−0.063***
	(0.001)	(0.003)	(0.002)	(0.004)
Age categories	−0.031***	0.010***	−0.013***	−0.010*
	(0.001)	(0.002)	(0.003)	(0.004)
Educational attainment	0.008***	0.026***	0.022***	0.015**
	(0.001)	(0.003)	(0.003)	(0.006)
Female	0.065***	−0.056***	−0.013	0.007
	(0.003)	(0.007)	(0.008)	(0.013)
Lowest quintile	0.014**	−0.016	0.001	0.046
	(0.004)	(0.011)	(0.014)	(0.024)
Second quintile	0.006	−0.000	−0.009	0.006
	(0.004)	(0.011)	(0.014)	(0.024)
Fourth quintile	−0.007	0.015	−0.003	0.037
	(0.004)	(0.013)	(0.014)	(0.021)
Top quintile	−0.000	0.032**	0.004	0.025
	(0.004)	(0.012)	(0.014)	(0.021)
Survey year = 2016	0.027***	0.036***	0.032*	0.050**
	(0.004)	(0.010)	(0.012)	(0.018)
Survey year = 2018	0.023***	0.030**	0.057***	0.024
	(0.004)	(0.011)	(0.012)	(0.022)
Survey year = 2020	0.061***	0.058***	0.069***	0.032
	(0.004)	(0.010)	(0.012)	(0.020)
Constant	1.046***	0.687***	0.853***	0.898***
	(0.007)	(0.017)	(0.019)	(0.035)
Observations	143 586	22 384	21 998	5490
R²	0.322	0.050	0.145	0.144

Standard errors in parentheses. Survey weights applied. Middle quintile is base category for income. 2014 is base year for year fixed effects. * p < .05, ** p < .01, *** p < .001.
Appendix B. Robustness checks

Table B1. Policy support using both partisanship and ideology measures.

	White	Black	Hispanic	Asian
7 point Party ID	-0.060***	-0.026***	-0.048***	-0.046***
	(0.001)	(0.003)	(0.002)	(0.005)
Ideology	-0.120***	-0.035***	-0.062***	-0.063***
	(0.002)	(0.004)	(0.005)	(0.009)
Age	-0.002***	0.001***	-0.001***	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)
Educational attainment	0.001	0.023**	0.015**	0.012*
	(0.000)	(0.003)	(0.003)	(0.006)
Female	0.059***	-0.050***	-0.006	0.006
	(0.003)	(0.008)	(0.008)	(0.013)
Income	-0.002***	0.004***	0.000	-0.000
	(0.000)	(0.001)	(0.001)	(0.002)
Survey year = 2016	0.025***	0.036***	0.032*	0.045*
	(0.004)	(0.011)	(0.013)	(0.018)
Survey year = 2018	0.017***	0.020	0.041***	0.009
	(0.004)	(0.011)	(0.013)	(0.022)
Survey year = 2020	0.049***	0.054***	0.058***	0.019
	(0.004)	(0.010)	(0.012)	(0.021)
Constant	1.269***	0.756***	1.004***	1.056***
	(0.007)	(0.019)	(0.020)	(0.035)
Observations	137,382	20,522	20,613	5266
R²	0.385	0.062	0.182	0.169

Standard errors in parentheses. Survey weights applied. 2014 is base year for year fixed effects. * $p < .05$, ** $p < .01$, *** $p < .001$.

Table B2. Results from table 2 for each survey year.

2014:

	White	Black	Hispanic	Asian
Party ID	-0.097***	-0.030***	-0.058***	-0.058***
	(0.001)	(0.006)	(0.004)	(0.008)
Ideology				-0.215***
				(0.002)
Age	-0.003***	0.000	-0.002**	-0.001***
	(0.000)	(0.001)	(0.001)	(0.001)
Education	0.009***	0.024***	0.027***	0.018
	(0.002)	(0.006)	(0.007)	(0.014)
Female	0.061***	-0.071***	-0.033	0.058***
	(0.006)	(0.015)	(0.018)	(0.030)
Income	-0.000	0.005	0.003	-0.003***
	(0.001)	(0.003)	(0.005)	(0.001)
Constant	1.029***	0.690***	0.853***	0.931***
	(0.013)	(0.033)	(0.033)	(0.066)
N	33,499	5730	4676	1011
R²	0.293	0.039	0.130	0.125

Standard errors in parentheses. * $p < .05$, ** $p < .01$, *** $p < .001$.

Table B2. (Continued.)

2016:

	White	Black	Hispanic	Asian	White	Black	Hispanic	Asian
Party ID	−0.095***	−0.026***	−0.066***	−0.052***	−0.201***	−0.037***	−0.106***	−0.093***
	(0.001)	(0.006)	(0.004)	(0.006)	(0.002)	(0.007)	(0.009)	(0.010)
Ideology	−0.003***	0.001	−0.002***	−0.001	−0.002***	0.001*	−0.001*	−0.001
	(0.000)	(0.000)	(0.001)	(0.001)	(0.000)	(0.000)	(0.001)	(0.001)
Age	0.010***	0.021***	0.028***	0.013	0.008***	0.019***	0.015*	0.002
	(0.002)	(0.005)	(0.006)	(0.008)	(0.002)	(0.005)	(0.006)	(0.008)
Education	0.053***	−0.037*	−0.020	−0.046*	0.051***	−0.031*	−0.011	−0.032
	(0.005)	(0.014)	(0.017)	(0.020)	(0.005)	(0.015)	(0.018)	(0.020)
Female	−0.002	0.008**	0.005	0.001	−0.002*	0.006*	0.003	−0.001
	(0.001)	(0.002)	(0.003)	(0.003)	(0.001)	(0.002)	(0.003)	(0.003)
Constant	1.092***	0.678***	0.902***	0.971***	1.309***	0.733***	1.020***	1.098***
	(0.012)	(0.030)	(0.033)	(0.037)	(0.013)	(0.033)	(0.041)	(0.039)
N	39.049	6879	6634	1849	37.616	6437	6336	1821
R^2	0.285	0.034	0.151	0.104	0.272	0.032	0.098	0.078

Standard errors in parentheses. * $p < .05$, ** $p < .01$, *** $p < .001$.

2018:

	White	Black	Hispanic	Asian	White	Black	Hispanic	Asian
Party ID	−0.107***	−0.033***	−0.065***	−0.070***	−0.204***	−0.045***	−0.111***	−0.126***
	(0.001)	(0.006)	(0.004)	(0.009)	(0.002)	(0.008)	(0.008)	(0.015)
Ideology	−0.003***	0.001	−0.001	−0.001	−0.002***	0.002**	−0.001	−0.000
	(0.000)	(0.001)	(0.001)	(0.001)	(0.000)	(0.000)	(0.001)	(0.001)
Age	0.008***	0.033***	0.024***	0.012	0.004*	0.032***	0.016**	0.022
	(0.002)	(0.006)	(0.006)	(0.013)	(0.002)	(0.007)	(0.006)	(0.014)
Education	0.069***	−0.056***	−0.011	0.045	0.064***	−0.043**	0.022	0.021
	(0.005)	(0.016)	(0.017)	(0.032)	(0.005)	(0.016)	(0.017)	(0.033)
Female	−0.002**	−0.001	−0.007	0.002	−0.003*	−0.001	−0.008**	0.000
	(0.001)	(0.003)	(0.003)	(0.005)	(0.001)	(0.003)	(0.003)	(0.005)
Income	1.114***	0.704***	0.939***	0.957***	1.276***	0.722***	1.048***	1.041***
	(0.012)	(0.037)	(0.033)	(0.064)	(0.012)	(0.042)	(0.039)	(0.069)
Constant	33.783	3982	4826	1182	32.774	3700	4629	1151
R^2	0.372	0.043	0.164	0.170	0.398	0.046	0.146	0.154

Standard errors in parentheses. * $p < .05$, ** $p < .01$, *** $p < .001$.
Table B2. (Continued.)

2020:

	White	Black	Hispanic	Asian	White	Black	Hispanic	Asian
Party ID	−0.106***	−0.036***	−0.061***	−0.068***				
	(0.001)	(0.005)	(0.004)	(0.007)				
Ideology	−0.002***	0.002***	−0.001*	−0.000	−0.001***	0.003***	0.000	0.000
	(0.000)	(0.000)	(0.001)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age	0.001	0.026***	0.011	0.012	0.003	0.022***	0.009	0.016
	(0.002)	(0.005)	(0.006)	(0.010)	(0.002)	(0.005)	(0.006)	(0.010)
Education	0.074***	−0.060***	0.060	0.020	0.070***	−0.034*	0.014	0.023
	(0.005)	(0.013)	(0.015)	(0.025)	(0.005)	(0.014)	(0.015)	(0.025)
Female	−0.004***	0.006**	−0.002	−0.003	−0.004***	0.005*	−0.003	−0.002
	(0.001)	(0.002)	(0.002)	(0.004)	(0.001)	(0.002)	(0.003)	(0.004)
Constant	1.159***	0.667***	0.913***	0.968***	1.270***	0.694***	1.003***	1.032***
	(0.012)	(0.028)	(0.029)	(0.069)	(0.012)	(0.030)	(0.029)	(0.075)
N	37,834	5854	5948	14,83	36,613	5432	5692	1,461
R^2	0.345	0.079	0.128	0.161	0.359	0.064	0.111	0.138

Standard errors in parentheses. * $p < .05$, ** $p < .01$, *** $p < .001$.

Table B3. Table 2 from main manuscript replicated without survey weights.

	White	Black	Hispanic	Asian
7 point Party ID	−0.103***	−0.032***	−0.065***	−0.057***
	(0.000)	(0.001)	(0.001)	(0.002)
Age	−0.002***	0.001***	−0.002***	−0.001***
	(0.000)	(0.000)	(0.000)	(0.000)
Educational attainment	0.010***	0.028***	0.020***	0.016***
	(0.001)	(0.002)	(0.002)	(0.003)
Female	0.061***	−0.058***	−0.000	0.007
	(0.002)	(0.004)	(0.005)	(0.008)
Income	−0.002***	0.006***	−0.000	0.001
	(0.000)	(0.001)	(0.001)	(0.001)
Survey year = 2016	0.026***	0.034***	0.029***	0.036***
	(0.003)	(0.006)	(0.006)	(0.012)
Survey year = 2018	0.024***	0.040***	0.034***	0.027*
	(0.003)	(0.006)	(0.007)	(0.013)
Survey year = 2020	0.069***	0.075***	0.054***	0.039**
	(0.003)	(0.006)	(0.007)	(0.012)
Constant	1.062***	0.625***	0.898***	0.924***
	(0.005)	(0.010)	(0.010)	(0.020)
Observations	144,165	22,445	22,084	5525
R^2	0.337	0.061	0.153	0.125

Standard errors in parentheses. * $p < .05$, ** $p < .01$, *** $p < .001$.

16
Table B3. (Continued.)

	White	Black	Hispanic	Asian
Ideology	-0.199^{***}	-0.049^{***}	-0.118^{***}	-0.110^{***}
	(0.001)	(0.002)	(0.002)	(0.004)
Age	-0.001^{***}	0.002^{***}	-0.001^{***}	-0.001^{**}
	(0.000)	(0.000)	(0.000)	(0.000)
Educational attainment	0.006^{***}	0.024^{***}	0.015^{***}	0.013^{***}
	(0.001)	(0.002)	(0.002)	(0.003)
Female	0.059^{***}	-0.041^{***}	0.012^{**}	0.010
	(0.002)	(0.005)	(0.005)	(0.008)
Income	-0.002^{***}	0.005^{***}	-0.002^{**}	0.001
	(0.000)	(0.001)	(0.001)	(0.001)
Survey year = 2016	0.019^{***}	0.035^{***}	0.029^{***}	0.032^{**}
	(0.003)	(0.006)	(0.007)	(0.012)
Survey year = 2018	0.008^{**}	0.028^{**}	0.020^{**}	0.016
	(0.003)	(0.007)	(0.007)	(0.013)
Survey year = 2020	0.047^{***}	0.062^{***}	0.037^{***}	0.029^{*}
	(0.003)	(0.006)	(0.007)	(0.013)
Constant	1.234^{***}	0.690^{***}	1.031^{***}	1.045^{***}
	(0.005)	(0.011)	(0.011)	(0.022)
Observations	139 180	20 877	21 167	5435
R^2	0.351	0.060	0.143	0.124

Standard errors in parentheses. * $p < .05$, $^{**}p < .01$, $^{***}p < .001$.

Table B4. Results for respondents who identify as Mixed (non-Hispanic).

	Mixed (non-Hispanic)	Mixed (non-Hispanic)
7 point Party ID	-0.094^{***}	-0.161^{***}
	(0.005)	(0.009)
Ideology		
Age	-0.003^{***}	-0.003^{***}
	(0.001)	(0.001)
Education	-0.001	-0.009
	(0.008)	(0.008)
Female	0.096^{***}	0.122^{***}
	(0.020)	(0.021)
Income	0.004	0.001
	(0.003)	(0.003)
Survey year = 2016	0.032	0.005
	(0.027)	(0.029)
Survey year = 2018	0.012	-0.028
	(0.029)	(0.030)
Survey year = 2020	0.046	0.012
	(0.029)	(0.032)
Constant	0.998^{***}	1.163^{***}
	(0.043)	(0.052)
Observations	2957	2787
R^2	0.249	0.257

Standard errors in parentheses. * $p < .05$, $^{**}p < .01$, $^{***}p < .001$.

ORCID iDs

Salil Benegal
https://orcid.org/0000-0001-7759-5725

Flávio Azevedo
https://orcid.org/0000-0001-9000-8513

Mirya R Holman
https://orcid.org/0000-0001-6648-4122

References

Azevedo F, Marques T and Micheli L 2022 In pursuit of racial equality: identifying the determinants of support for the Black lives matter movement with a systematic review and multiple meta-analyses Perspect. Politics 1–23

Azevedo F and Jost J T 2021 The ideological basis of antiscientific attitudes: effects of authoritarianism, conservatism, religiosity, social dominance, and system justification Group Process. Interg. Relat. 24 518–49
Ballew M T, Pearson A R, Schuld J P, Kotcher J E, Maibach E W, Rosenthal S A and Leiserowitz A 2021 Is the political divide on climate change divide narrower for people of color? Evidence from a decade of US polling J. Environ. Psychol. 77 101680

Benegal S D 2018 The spillover of race and racial attitudes into public opinion on climate change Environ. Politics 27 733–56

Benegal S and Holman M R 2021a Understanding the importance of sexism in shaping climate denial and policy opposition Clim. Change 167 1–19

Benegal S and Holman M R 2021b Racial prejudice, education, and views of climate change Soc. Sci. Q. 102 1907–19

Benegal S D and Motta M 2022 Overconfident, resentful, and misinformed: how racial animus motivates confidence in false beliefs Soc. Sci. Q. accepted (https://doi.org/10.1111/ssqi.13234)

Bergquist P, Mildenberger M and Stokes L C 2020 Combining climate, economic, and social policy builds public support for climate action in the US Environ. Res. Lett. 15 054019

Bergquist P and Warshaw C 2019 Does global warming increase public concern about climate change? J. Politics 81 686–91

Bromley-Trujillo R and Holman M R 2020 Climate change policymaking in the states: a view at 2020 Publius J. Federalism 50 466–72

Bromley-Trujillo R and Poe J 2018 The importance of salience: public opinion and state policy action on climate change J. Public Policy 40 280–304

Brown N E 2014 Political participation of women of color: an intersectional analysis J. Women Politics Policy 35 315–48

Brown N E and Gershon S A 2017 Examining intersectionality and symbolic representation Politics Group Identities 5 500–5

Bunyasi T L and Smith C W 2019 Do all black lives matter equally to Black people? Respectability politics and the limitations of linked fate J. Race Ethn. Politics 4 180–215

Bush S and Clayton A 2022 Facing change: identity and cross-national response to climate change Environ. Sociol. 457–69

Chanin J 2018 The effect of symbolic racism on environmental concern and environmental action Environ. Sociol. 4 457–69

Cluverius J, Banda K K and Daly H 2020 How the alt-right label informs political assessments Soc. Sci. Q. 105 1699–711

Cushing L, Morello-Frosch R, Wander M and Pastor M 2015 The relationship between social inequality and environmental haves, the have-nots, and the health of everyone: the linked fate J. Politics Relig. 270–90

DeSante C and Smith C W 2020 Racial Stasis (Chicago, IL: University of Chicago Press)

Egan P J, Konisky D M and Mullin M 2022 Ascendant public opinion: the rising influence of climate change on Americans’ attitudes about the environment Public Opin. Q. 86 134–48

Egan P J and Mullin M 2012 Turning personal experience into political attitudes: the effect of local weather on Americans’ perceptions about global warming J. Politics 74 796–809

Egan P J and Mullin M 2017 Climate change: US public opinion Annu. Rev. Politics Sci. 20 209–27

Fielding K S and Hornsey M J 2016 A social identity analysis of climate change and environmental attitudes and behaviors: insights and opportunities Front. Psychol. 7 121

Fraga B L 2018 The Turnout Gap: Race, Ethnicity, and Political Inequality in a Diversifying America (Cambridge: Cambridge University Press)

Fraga B L, Juenke E G and Shah P 2020 One run leads to another: minority incumbents and the emergence of lower ticket minority candidates J. Politics 82 771–5

Friesen A and Holman M P 2022 Racial limitations on the gender, risk, religion, and politics model Politics Relig. 15 270–90

Guber D L 2017 Partisan cueing and polarization in public opinion on climate change Oxford Research Encyclopedia of Climate Science (Oxford: Oxford University Press) (https://doi.org/10.1093/acrefore/9780190228862.013.306)

Gutierrez A, Campo A X, Barreto M A and Segura G 2019 Somos Más: how racial threat and anger mobilized Latino voters in the Trump era Politics Res. Q. 72 960–75

Hernandez-Cortes D, Meng K C and Weber P E 2022 Decomposing Trends in US Air Pollution: Disparities from Electricity (NBER Chapters)

Holman M R 2016 The differential effect of resources on political participation across gender and racial groups Distinct Identities: Minority Women in U.S. Politics ed N E Brown and S A Gershon (New York: Routledge) pp 29–44

Howe P D, Marlon J R, Mildenberger M and Shield B S 2019 How will climate change shape climate opinion? Environ. Res. Lett. 14 113001

Jefferson H, 2020 The curious case of Black conservatives: construct validity and the 7-point liberal-conservative scale Working Paper (https://doi.org/10.15252/embr.201949553)

Jefferson H, Neuner F G and Pasek J 2021 Seeing blue in black and white: race and perceptions of officer-involved shootings Perspect. Politics 19 1165–83

Jesdale B M, Morello-Frosch R and Cushing L 2013 The racial/ethnic distribution of heat risk–related land cover in relation to residential segregation Environ. Health Perspect. 121 811–7

Kalnok N P 2020 Uses and abuses of ideology in political psychology Politics Psychol. 41 771–93

Kecet S 2018 The impact of survey non-response on survey accuracy The Palgrave Handbook of Survey Research (Cham: Palgrave Macmillan) pp 373–81

Lee J and Ramakrishnan K 2020 Who counts as Asian Ethn. Stud. Rev. 43 1733–56

Lemi D C 2021 Do voters prefer just any descriptive representative? The case of multiracial candidates Perspect. Politics 19 1061–81

Lien P T 1998 Does the gender gap in political attitudes and behavior vary across racial groups? Politics Res. Q. 51 869–94

Masuoka N 2008 Defining the group: Latino identity and political participation Am. Politics Res. 36 33–61

McCright A M and Dunlap R E 2011a Cool dudes: the denial of climate change among conservative white males in the United States Glob. Environ. Change 21 1163–72

McCright A M and Dunlap R E 2011b The politicization of climate change and polarization in the American public’s views of global warming, 2001–2010 Soc. Q. 52 155–94

Merseth J L 2018 Race-ing solidarity: Asian Americans and support for Black lives matter Politics Group Identities 6 337–56

Mildenberger M 2020 Carbon captured: how business and labor control climate politics (MIT Press)

Milfont T L, Zubkевич E, Miklojep P and Sibley C G 2021 Ten-year panel data confirm generation gap but climate beliefs increase at similar rates across ages Nat. Commun. 12 4038

Mishra S K 2016 Desis Divided: The Political Lives of South Asian Americans (Minneapolis, MN: University of Minnesota Press)

Mohamed H S 2015 Americana or Latina? Gender and identity acquisition among Hispanics in the United States Politics Group Identities 3 40–58

Motta M 2019 Explaining science funding attitudes in the United States: the case for science interest Publius J. Fed. Federalism 686–91

Morrison J E 2017 Carbon captured: how business and labor control climate politics (MIT Press)

Peterson C and Riley E Y 2022 Racial Attitudes in America Today: One Nation, Still Divided (New York: Routledge)

Phoenix D L and Arora M 2018 From emotion to action among Asian Americans: assessing the roles of threat and identity in the age of Trump Publius Group Identities 6 357–72

Phoenix D L and Chan N K 2022 Clarifying the “people like me”; racial efficacy and political behavior Perspect. Politics 1–18

Pörnter D C Roberts, M Tignon, E S Poloczanska, K Mntenbeck, A Alegria, M Craig, S Langsdorf, S Löschke and V Möller 2022 IPCC Climate Change 2022: Impacts, Adaptation, and
Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ed B Rama (Cambridge: Cambridge University Press) p 3056
Raychaudhuri T 2018 The social roots of Asian American partisan attitudes Politics Group Identities 6 389–410
Reckien D and Petkova E P 2019 Who is responsible for climate change adaptation? Environ. Res. Lett. 14 014010
Ross A D, Rouse S M and Mobley W 2019 Polarization of climate change beliefs: the role of the millennial generation identity Soc. Sci. Q. 100 2625–40
Sadhwani S and Mendez M 2018 Candidate ethnicity and Latino voting in co-partisan elections Calif. J. Politics Policy 10
Schuldt J P and Pearson A R 2016 The role of race and ethnicity in climate change polarization: evidence from a US national survey experiment Clim. Change 136 495–505
Silva A and Skulley C 2019 Always running: candidate emergence among women of color over time Politics Res. Q. 72 342–59
Stokes L C 2020 Short circuiting policy: Interest groups and the battle over clean energy and climate policy in the American States (Oxford: Oxford University Press)
Stokes L C and Warshaw C 2017 Renewable energy policy design and framing influence public support in the United States Nat. Energy 2 1–6
Stoutenborough J W, Bromley-Trujillo R and Vedlitz A 2014 Public support for climate change policy: consistency in the influence of values and attitudes over time and across specific policy alternatives Rev. Policy Res. 31 555–83
Sultana F 2021 Climate change, COVID-19, and the co-production of injustices: a feminist reading of overlapping crises Soc. Cult. Geogr. 22 447–60
Swim J K, Vescio T K, Dahl J L and Zawadzki S J 2018 Gendered discourse about climate change policies Glob. Environ. Change 48 216–25
White I K and Laird C N 2020 Steadfast Democrats: How Social Forces Shape Black Political Behavior (Princeton, NJ: Princeton University Press)
Wong J S 2018 Immigrants, Evangelicals, and Politics in an Era of Demographic Change (New York: Russell Sage Foundation)