Decentralized list scheduling

Marc Tchiboukdjian · Nicolas Gast · Denis Trystram

Abstract Classical list scheduling is a very popular and efficient technique for scheduling jobs for parallel and distributed platforms. It is inherently centralized. However, with the increasing number of processors, the cost for managing a single centralized list becomes too prohibitive. A suitable approach to reduce the contention is to distribute the list among the computational units: each processor only has a local view of the work to execute. Thus, the scheduler is no longer greedy and standard performance guarantees are lost.

The objective of this work is to study the extra cost that must be paid when the list is distributed among the computational units. We first present a general methodology for computing the expected makespan based on the analysis of an adequate potential function which represents the load imbalance between the local lists. We obtain an equation giving the evolution of the potential by computing its expected decrease in one step of the schedule. Our main theorem shows how to solve such equations to bound the makespan. Then, we apply this method to several scheduling problems, namely, for unit independent tasks, for weighted independent tasks and for tasks with precedence constraints. More precisely, we prove that the time for scheduling a global workload W composed of independent unit tasks on m processors is equal to W/m plus an additional term proportional to $\log_2 W$. We provide a lower bound which shows that this is optimal up to a constant. This result is extended to the case of weighted independent tasks. In the last setting, precedence task graphs, our analysis leads to an improvement on the bound of Arora et al. (Theory Comput. Syst. 34(2):115–144, 2001). We end with some experiments using a simulator. The distribution of the makespan
is shown to fit existing probability laws. Moreover, the simulations give a better insight into the additive term whose value is shown to be around $3 \log_2 W$ confirming the precision of our analysis.

Keywords Scheduling · List algorithms · Work stealing

1 Introduction

1.1 Context and motivation

Scheduling is a crucial issue for designing efficient parallel algorithms on new multi-core platforms. The problem is to distribute the tasks of an application (that we will call the load) among available computational units and to determine at what time they will be executed. The most common objective is to minimize the completion time of the latest task to be executed (called the *makespan* and denoted by C_{max}). It is a challenging problem which received a lot of attention during the last decade (Leung 2004). Two new books have been published recently on the topic (Drozdowski 2009; Robert and Vivien 2009), which confirms how active this topic is.

List scheduling is one of the most popular techniques for scheduling the tasks of a parallel program. This algorithm has been introduced by Graham (1969) and was used successfully in many further applications (for instance the earliest task first heuristic which extends the analysis for communication delays in Hwang et al. 1989, for uniform machines in Chekuri and Bender 2001, or for parallel rigid jobs in Schwiegelshohn et al. 2008). Its principle is to build a list of ready tasks and schedule them as soon as there exist available resources. List scheduling algorithms are low-cost (greedy algorithms) whose performance are not too far from optimal solutions. Most proposed list scheduling algorithms differ in the way they treat the priority of the tasks for building the list, but they always consider a centralized management of the list. However, today the parallel and distributed platforms involve more and more processors. Thus, the time needed for managing such a centralized data structure can no longer be ignored. In practice, implementing such schedulers induces synchronization overhead when several processors access the list concurrently. Such overhead involve low-level synchronization mechanisms.

1.2 Related works

Most related work about scheduling deals with centralized list algorithms. However, at execution time, the cost for managing the list is neglected. To our knowledge, the only approach that takes into account this extra management cost is work stealing (Blumofe and Leiserson 1999) (denoted by WS in short).

Contrary to classical centralized scheduling techniques, WS is distributed by nature. Each processor manages its own list of tasks. When a processor becomes idle, it randomly chooses another processor and steals some work. To model contention overhead, processors that request work on the same remote list are in competition and only one can succeed. WS has been implemented in many languages and parallel libraries including Cilk (Frigo et al. 1998), TBB (Robison et al. 2008) and KAAPI (Gautier et al. 2007). It has been analyzed in a seminal paper of Blumofe and Leiserson (1999) where they show that the expected makespan of a series-parallel precedence graph with W unit tasks on m processors is bounded by $E[C_{\text{max}}] \leq W/m + O(D)$ where D is the critical path of the graph (its
depth). This analysis has been improved in Arora et al. (2001) using a proof based on a potential function. The case of varying processor speeds has been analyzed in Bender and Rabin (2002). The specific case of tree-shaped computations with a more accurate model has been analyzed in Sanders (1999). However, in all these previous analysis, the precedence graph is constrained to have only one source and out-degree at most 2 which does not easily model the basic case of independent tasks. Simulating independent tasks with a binary tree of precedences gives a bound of $W/m + O(\log W)$ as a complete binary tree of W nodes has a depth of $D \leq \log_2 W$. However, with this approach, the structure of the binary tree dictates which tasks are stolen. Our approach achieves a bound of the same order with a better constant and processors are free to choose which tasks to steal. Notice that there exist other results that study the steady state performance of work-stealing when the work generation is random (Berenbrink et al. 2003; Mitzenmacher 1998; Gast and Gaujal 2010; Lueling and Monien 1993; Rudolph et al. 1991).

Another related approach which deals with distributed load balancing is balls into bins games (Azar et al. 1999; Berenbrink et al. 2008). The principle is to study the maximum load when n balls are randomly thrown into m bins. This is a simple distributed algorithm that is different from the scheduling problems we are interested in. First, it seems hard to extend this kind of analysis for tasks with precedence constraints. Second, as the load balancing is done in one phase at the beginning, the cost of computing the schedule is not considered. Adler et al. (1995) study parallel allocations but still do not take into account contention on the bins. Our approach, like in WS, considers contention on the lists.

Our analysis is based on a potential function representing the load imbalance between the local queues. Potential functions have already been successfully used in other studies for the analysis of algorithms in data structures and combinatorial optimization (including variants of scheduling). It is used for example to analyze the convergence to Nash equilibria in game theory (Berenbrink et al. 2007), load diffusion on graphs (Berenbrink et al. 2009) and WS (Arora et al. 2007).

1.3 Contributions

List scheduling is centralized in nature. The purpose of this work is to study the effects of decentralization on list scheduling. The main result is a new framework for analyzing distributed list scheduling algorithms (DLS). Based on the analysis of the load balancing between two processors during a work request, it is possible to deduce the total expected number of work requests and then to derive a bound on the expected makespan.

This methodology is generic and it is applied in this paper on several relevant variants of the scheduling problem.

- We first show that the expected makespan of DLS applied on W unit independent tasks is equal to the absolute lower bound W/m plus an additive term in $3.65 \log_2 W$. We propose a lower bound which shows that the analysis is tight up to a constant factor. This analysis is refined and applied to several variants of the problem. In particular, a slight change on the potential function improves the multiplicative factor from 3.65 to 3.24. Then, we study the possibility of processors to cooperate while requesting some tasks in the same list. Finally, we study the initial distribution of the tasks and show that a balanced initial allocation induces fewer work requests.

- Second, the previous analysis is extended to the weighted case of any unknown processing times. The analysis achieves the same bound as before with an extra term involving p_{max} (the maximal value of the processing times).
Third, we provide a new analysis for the WS algorithm of Arora et al. (2001) for scheduling DAGs that improves the bound on the number of work requests from $32mD$ to $5.5mD$.

Fourth, we developed a complete experimental study that gives statistical evidence that the makespan of DLS follows a known probability distributions depending on the considered variant. Moreover, the experiments show that the theoretical analysis for independent tasks is almost tight: the overhead to W/m is less than 37% away from the exact value.

1.4 Content

We start by introducing the model. We recall the analysis for classical list scheduling and we present our new methodology in Sect. 2. Then, we apply this analysis on unit independent tasks in Sect. 3. Section 4 discusses variations on the unit tasks model: improvements on the potential function and cooperation among thieves. We extend the analysis to weighted independent tasks in Sect. 5 and for tasks with dependencies in Sect. 6. We give a proof of the technical part of our methodology in Sect. 7. We present and analyze simulation experiments in Sect. 8. Finally, we conclude by comparing bounds of centralized and decentralized list schedulers in Sect. 9.

2 Model and notations

2.1 Platform and workload characteristics

We consider a parallel platform composed of m identical processors and a workload of n tasks with processing times p_j. The total work of the computation is denoted by $W = \sum_{j=1}^{n} p_j$. The tasks can be independent or constrained by a directed acyclic graph (DAG) of precedences. In this case, we denote by D the critical path of the DAG (its depth). We consider an online model where the processing times and precedences are discovered during the computation. More precisely, we learn the processing time of a task when its execution is terminated and we discover new tasks in the DAG only when all their precedences have been satisfied. The problem is to study the maximum completion time (makespan denoted by C_{max}) taking into account the scheduling cost.

2.2 Centralized list scheduling

Let us recall briefly the principle of list scheduling as it was introduced by Graham (1969). The analysis states that the makespan of any list algorithm is not greater than twice the optimal makespan. One way of proving this bound is to use a geometric argument on the Gantt chart: $mC_{\text{max}} = W + S_{\text{idle}}$ where the last term is the surface of idle periods (represented in grey in Fig. 1).

Depending on the scheduling problem (with or without precedence constraints, unit tasks or not), there are several ways to compute S_{idle}. With precedence constraints, $S_{\text{idle}} \leq (m - 1)D$. For independent tasks, the results can be written as $S_{\text{idle}} \leq (m - 1)p_{\text{max}}$ where p_{max} is the maximum of the processing times. For unit independent tasks, it is straightforward to obtain an optimal algorithm where the load is evenly balanced. Thus $S_{\text{idle}} \leq m - 1$, i.e. at most one slot of the schedule contains idle times.
2.3 Decentralized list scheduling

When the list of ready tasks is distributed among the processors, the analysis is more complex even in the elementary case of unit independent tasks. In this case, the extra S_{idle} term is induced by the distributed nature of the problem. Processors can be idle even when ready tasks are available. Figure 1 is an example of a schedule obtained using distributed list scheduling which shows the complicated distribution of the idle times S_{idle}.

2.4 Model of the distributed list

We now describe precisely the behavior of the distributed list scheduling algorithm. Each processor i maintains its own local queue Q_i of tasks ready to execute. At the beginning of the execution, ready tasks can be arbitrarily spread among the queues. While Q_i is not empty, processor i picks a task and executes it. When this task has been executed, it is removed from the queue and another one starts being processed. When Q_i is empty, processor i sends a work request to another processor k chosen uniformly at random. If Q_k is empty or contains only one task (currently executed by processor k), then the request fails and processor i will send a new request at the next time step. If Q_k contains more than one task, then i is given half of the tasks and it will restart a normal execution at the next step. To model the contention on the queues, no more than one work request per processor can succeed in the same time slot. If several requests target the same processor, a random one succeeds and all the others fail. This assumption will be relaxed in Sect. 4.2. A work request is said successful if the target queue contains more than one task and the request is not aborted due to contention. In all the other cases, the work request is said unsuccessful.

This is a high level model of a distributed list scheduling algorithm, but it accurately models the case of independent tasks and the WS implementation of Arora et al. (2001). We justify here some choices of this model. There is no explicit communication cost since WS algorithms most often target shared memory platforms. In addition, a work request is done in constant time independently of the number of tasks transferred. This assumption is not restrictive as the description of a large number of tasks can be very short. In the case of independent tasks, a whole subpart of an array of tasks can be represented in a compact way by the range of the corresponding indices, each cell containing the effective description of a task (a STL transform in Traoré et al. 2008). For more general cases with precedence constraints, it is usually enough to transfer a task which represents a part of the DAG. More details on the DAG model are provided in Sect. 6. Finally, there is no contention between a processor executing a task from its own queue and a processor stealing in the same queue. Indeed, one can use queue data structures allowing these two operations to happen concurrently (Frigo et al. 1998).
2.5 Properties of the work

At time t, let $w_i(t)$ represent the amount of work in queue Q_i (cf. Fig. 2). $w_i(t)$ may be defined as the sum of processing times of all tasks in Q_i as in Sect. 3, but can differ as in Sects. 5 and 6. In all cases, the definition of $w_i(t)$ satisfies the following properties.

1. When $w_i(t) > 0$, processor i is active and executes some work: $w_i(t + 1) \leq w_i(t)$.
2. When $w_i(t) = 0$, processor i is idle and sends a work request to a random processor k. If the work request is successful, a certain amount of work is transferred from processor k to processor i and we have $\max\{w_i(t + 1), w_k(t + 1)\} < w_k(t)$.
3. The execution terminates when there is no more work in the system, i.e. $\forall i, w_i(t) = 0$.

We also denote the total amount of work on all processors by $w(t) = \sum_{i=1}^{m} w_i(t)$ and the number of processors sending work requests by $r_t \in [0, m - 1]$. Notice that when $r_t = m$, all queues are empty and thus the execution is complete.

2.6 Principle of the analysis

In this paper, we analyze the performance of a distributed list scheduling on different scenario. Each scenario will be analyzed using the same methodology that is composed of the following three steps:

1. **Definition of a potential function Φ_t**—Instead of studying directly the number of processors that run out of work and become idle, the main idea of our analysis is to study the decrease of a potential Φ_t. The potential represents how well the load is balanced between the processors. When the load is balanced, $\Phi_t \approx 0$ and when the load is highly unbalanced, $\Phi_t \gg 1$. Its precise definition depends on the scenario studied.\(^1\)

2. **Computation of the expected decrease of Φ_t in one unit of time**—For each scenario, we will show that there exists a function $h : \{0 \ldots m\} \rightarrow [0; 1]$ that depends on the number of idle processors at time t, r_t, such that the average value of the potential at time $t + 1$ is less than $h(r_t) \cdot \Phi_t$.

\(^1\)For example, the potential function used in Sect. 3 is $\Phi_t = \sum_{i=1}^{m} (w_i(t) - w(t)/m)^2$.

Fig. 2 Evolution of the workload of the different processors during a time step. At time t, processors 2 and 3 are idle and they both choose processor 1 to steal from. At time $t + 1$, only processor 2 succeeds in stealing some of the work of processor 1. The work is split between the two processors. Processors 1 and 4 both execute some work during this time step (represented by a shaded zone).
3. **Derivation of a bound on the number of work requests**—The most technical result is Theorem 1. It provides a bound on the number of work requests using the expected diminution of the potential. This theorem is used in the all scenario studied in this paper. Its proof can be found in Sect. 7.

We focus on the number of work requests as we can easily deduce an upper bound on the makespan C_{max} from an upper bound on the number of work requests as follows. During each unit of time, a processor is either processing one unit of work or sending a work request. Therefore, the total amount of work to be executed, W, plus the total number of work requests, R, is equal to mC_{max}. The makespan can be derived from the total number of work requests by the following equation

$$C_{\text{max}} = \frac{W}{m} + \frac{R}{m}. \quad (1)$$

Therefore, using the bound obtained in Step 3, we can deduce a bound on the makespan, both in expectation and in probability.

3 Unit independent tasks

We apply the analysis presented in the previous section to the case of independent unit tasks. In this case, each processor i maintains a local queue Q_i of tasks to execute. At every time slot, if the local queue Q_i is not empty, processor i picks a task and executes it. When Q_i is empty, processor i sends a work request to a random processor j. If Q_j is empty or contains only one task (currently executed by processor j), then the request fails and processor i will have to send a new request at the next slot. If Q_j contains more than one task, then i is given half of the tasks (after that the task executed at time t by processor j has been removed from Q_j). The amount of work on processor i at time t, $w_i(t)$, is the number of tasks in $Q_i(t)$.

At the beginning of the execution, $w(0) = W$ and tasks can be arbitrarily spread among the queues.

3.1 Potential function and expected decrease

Applying the method presented in Sect. 2.6, the first step of the analysis is to define the potential function and compute the potential decrease when a steal occurs. For this example, $\Phi(t)$ is defined by:

$$\Phi(t) = \sum_{i=1}^{m} \left(w_i(t) - \frac{w(t)}{m} \right)^2 = \sum_{i=1}^{m} w_i(t)^2 - \frac{w^2(t)}{m}. \quad (2)$$

This potential represents the load unbalance in the system. If all queues have the same load $w_i(t) = w(t)/m$, then $\Phi(t) = 0$. $\Phi(t) \leq 1$ implies that there is at most one processor with at most one more task than the others. In that case, there will be no steal until there is just one processor with 1 task and all others idle. Moreover, the potential function is maximal when all the work is contained in a single queue. That is $\Phi(t) \leq w(t)^2 - w(t)^2/m \leq (1 - 1/m)w^2(t)$.

Three events contribute to a variation of potential: successful steals, task executions and decrease of $w^2(t)/m$. They lead respectively to the following variation of potential:

\[\Delta \Phi^{\text{steal}} = \frac{1}{m} \sum_{i=1}^{m} \left(w_i(t) - w_i(t-1) \right)^2 \]

\[\Delta \Phi^{\text{execute}} = \frac{1}{m} \sum_{i=1}^{m} \left(w_i(t-1) - w_i(t) \right)^2 \]

\[\Delta \Phi^{\text{decrease}} = \frac{1}{m} \sum_{i=1}^{m} \left(w_i(t) - w_i(t-1) \right)^2 \]
Case 1 If the queue i has $w_i(t) \geq 1$ tasks and it receives one or more work requests, it chooses a processor j among the thieves. At time $t+1$, i has executed one task and the rest of the work is split between i and j. Therefore,

$$w_i(t+1) = \lceil (w_i(t) - 1)/2 \rceil \quad \text{and} \quad w_j(t+1) = \lfloor (w_i(t) - 1)/2 \rfloor.$$

Thus, we have:

$$w_i(t+1)^2 + w_j(t+1)^2 = \lceil (w_i(t) - 1)/2 \rceil^2 + \lfloor (w_i(t) - 1)/2 \rfloor^2 \leq w_i(t)^2/2 - w_i(t) + 1.$$

This generates a difference of potential of

$$\delta_i(t) = w_i(t)^2 + w_j(t)^2 - w_i(t+1)^2 - w_j(t+1)^2 \geq w_i(t)^2/2 + w_i(t) - 1.$$

Case 2 If i has $w_i(t) \geq 1$ tasks and receives zero work requests, its potential goes from $w_i(t)^2$ to $(w_i(t) - 1)^2$, generating a potential decrease of $2w_i(t) - 1$.

Case 3 As there are $m-r_t$ active processors, $w(t)$ decreases by $m-r_t$. Thus, the last term of Eq. (2), $-(\sum_{i=1}^{m} w_i(t))^2/m$ goes from $-w(t)^2/m$ to $-w(t+1)^2/m = -(w(t) - m + r_t)^2/m$. This generates an increase of potential of $2(m-r_t)w(t)/m - (m-r_t)^2/m$.

Recall that at time t, there are r_t processors that send work requests. A processor i receives zero work requests if the r_t thieves choose another processor. Each of these events is independent and happens with probability $(m-2)/(m-1)$. Therefore, the probability for one processor to receive one or more work requests is $q(r_t)$ where

$$q(r_t) = 1 - \left(1 - \frac{1}{m-1}\right)^{r_t}. \tag{3}$$

Using Eq. (3) and the three causes of potential variations detailed above, we obtain the following bound on the expected potential at time $t+1$:

Lemma 1 For all t, the expected potential at time $t+1$ given the knowledge\(^2\) at time t, \mathcal{F}_t, is bounded by:

$$\mathbb{E}[\Phi_{t+1} \mid \mathcal{F}_t] \leq \left(1 - \frac{q(r_t)}{2}\right)\Phi_t. \tag{4}$$

Proof We note $\Phi_t = \Phi$ and $r_t = r$. By summing the expected decrease on each active processor δ_i, the expected potential decrease is greater than:

$$\sum_{i/w_i(t) > 0} \left[q(r) \left(\frac{w_i(t)^2}{2} + w_i(t) - 1\right) + (1 - q(r)) (2w_i(t) - 1)\right] - 2w(t) \frac{m-r}{m} + \frac{(m-r)^2}{m}$$

$$= \left[\sum_{i/w_i(t) > 0} \frac{q(r)}{2} w_i(t)^2\right] - q(r) w(t) + 2w(t) - (m-r) - 2w(t) \frac{m-r}{m} + \frac{(m-r)^2}{m}.$$

Using that $2w(t) - 2w(t) \frac{m-r}{m} = 2w(t) \frac{m}{m}$, that $-(m-r) + \frac{(m-r)^2}{m} = -(m-r) \frac{m}{m}$ and that $\sum w_i(t)^2 = \Phi + w(t)^2/m$, this equals:

\[^2\mathbb{E}[\Phi_{t+1} \mid \mathcal{F}_t] \text{ denotes the expectation of } \Phi_{t+1} \text{ knowing all the events up to time } t.\]
\[
\frac{q(r)}{2} \Phi + \frac{q(r) w(t)}{2m} - q(r) w(t) + 2w(t) \frac{r}{m} - (m - r) \frac{r}{m} = \frac{q(r)}{2} \Phi + \frac{q(r) w(t)}{2m} - q(r) w(t) + \frac{r}{m} \left(2w(t) - m + r\right)
\]

By concavity of \(x \mapsto (1 - (1 - x)r)\), \((1 - (1 - x)r') \leq r\). This shows that \(q(r) = 1 - (1 - \frac{1}{m-1})r \leq r/(m-1)\). Thus, \(r/q(r) \geq m - 1\). Moreover, as \(m - r\) is the number of active processors, \(w \geq m - r\) (each processor has at least one task). This shows that the expected decrease of potential is greater than:

\[
\frac{q(r)}{2} \Phi + \frac{q(r) w(t)}{2m} \left(\frac{w(t)}{m} - 2 + \frac{m - 1}{m}\right) = \frac{q(r)}{2} \Phi + \frac{q(r) w(t)}{2m} \left(w(t) - 2\right).
\]

If \(w(t) \geq 2\), then the expected decrease of potential is greater than \(q(r) \Phi_t / 2\). If \(w(t) < 2\), this means that \(w(t) = 1\) and \(w(t + 1) = 0\) and therefore \(\Phi_{t+1} = 0\).

3.2 Bound on the number of work requests

Equation (4) provides a bound on the expected decrease of potential during one time step. The following theorem shows that this implies a bound on the total number of work requests. We state the theorem using a generic formulation since we will reuse it in the next sections.

Theorem 1 Assume that there exists a function \(h : \{0 \ldots m\} \to [0, 1]\) such that the expected potential at time \(t + 1\) given the knowledge at time \(t\), \(\mathcal{F}_t\), satisfies:

\[
\mathbb{E}[\Phi_{t+1} | \mathcal{F}_t] \leq h(r_t) \Phi_t.
\]

Let \(\Phi_0\) denote the potential at time 0 and \(\lambda\) be defined as:

\[
\lambda \overset{\text{def}}{=} \max_{1 \leq r \leq m} \frac{r}{-m \log_2(h(r))}.
\]

Let \(\tau\) be the first time that \(\Phi_t\) is less than 1, \(\tau \overset{\text{def}}{=} \min\{t : \Phi_t < 1\}\). The number of work requests until \(\tau\), \(R = \sum_{s=0}^{\tau-1} r_s\), satisfies:

- (i) \(\mathbb{P}\{R \geq m\lambda \log_2 \Phi_0 + m + u\} \leq 2^{-u/(m\lambda)}\),
- (ii) \(\mathbb{E}[R] \leq m\lambda \log_2 \Phi_0 + m(1 + \frac{\lambda}{\ln 2})\).

Proof A detailed proof of this theorem is given in Sect. 7. To give some insight into our analysis, we present an informal proof in which we assume that the variation of potential is deterministic, i.e. \(\Phi_{t+1} = \Phi_t h(r_t)\).

Using the previous assumption, the logarithm of the potential decreases by \(-\log h(r)\) during one time step if \(r\) is the number of work requests. Thus, the number of work requests per unit of logarithm of potential is \(r/(-\log h(r))\) which is less than \(\lambda m = \max_{1 \leq r \leq m} [r/(-\log h(r))]\). Since \(\log(\Phi_t)\) varies from \(\log(\Phi_0)\) to \(0\), this implies that the total number of work requests \(R\) is bounded by \(\max \{r/(-\log h(r))\} \log \Phi_0 = \lambda m \log \Phi_0\).

In the actual non-deterministic system, the number of work requests is indeed bounded by \(\lambda m \log \Phi_0\) plus an additive term due to the stochastic nature of \(\Phi_t\).
3.3 Bound on the makespan

Using the previous theorem, we obtain the following bound on the makespan and conclude the analysis.

Theorem 2 Let C_{max} be the makespan of $W = n$ unit independent tasks scheduled by DLS and $\Phi_0 \stackrel{\text{def}}{=} \sum_i (w_i - \frac{W}{m})^2$ the potential when the schedule starts. Then:

(i) $\mathbb{E}[C_{\text{max}}] \leq \frac{W}{m} + \frac{1}{1 - \log_2(1 + \frac{1}{\epsilon})} \left(\log_2 \Phi_0 + \frac{1}{\ln 2} \right) + 1$,

(ii) $\mathbb{P}\{C_{\text{max}} \geq \frac{W}{m} + \frac{1}{1 - \log_2(1 + \frac{1}{\epsilon})} \left(\log_2 \Phi_0 + \log_2 \frac{1}{\epsilon} \right) + 1 \} \leq \epsilon$.

In particular:

(iii) $\mathbb{E}[C_{\text{max}}] \leq \frac{W}{m} + 3.65 \log_2 W + 3.64$.

Proof When $m = 2$, the first work request is successful and shares the work evenly. Therefore, there are at most two work requests: one to share the work evenly and one if at the end a processor has one task to process while the other one requests some work. In this case, $C_{\text{max}} \leq W/2 + 1$ and the result is straightforward.

Let us assume that $m \geq 3$ and let us define $\Phi'_i = \Phi_i/(1 - 1/(m - 1))$. Equation (4) shows that $\mathbb{E}[\Phi'_{i+1}|\mathcal{F}_i] \leq h(r_i)\Phi'_i$ with $h(r) = 1 - q(r)/2$. Therefore, Φ'_i satisfies the conditions of Theorem 1. This shows that the number of work requests R until $\Phi'_i < 1$ satisfies

$$\mathbb{E}[R] \leq m\lambda \log_2(\Phi_0) + m \left(1 + \frac{\lambda}{\ln 2} \right),$$

with $\lambda = \max_{1 \leq r \leq m - 1} r/(-m \log_2 h(r))$. One can show that $r/(-m \log_2 h(r))$ is increasing in r (see Apx. B of Tchiboukdjian et al. 2010 for details). Thus its maximum is attained for $r = m$. This shows that

$$\lambda = \frac{m}{-m \log_2(1 - q(m)/2)} = \frac{1}{1 - \log_2(1 - (1 - \frac{1}{m-1})m)} \leq \frac{1}{1 - \log_2(1 + \frac{1}{\epsilon})}.$$

The minimal non zero-value for Φ_i is when one processor has one task and the others zero. In that case, $\Phi_i = 1 - 1/(m - 1)$. Therefore, when $\Phi'_i < 1$, this means that $\Phi_i = 0$ and the schedule is finished.

As pointed out in Eq. (1), at each time step of the schedule, a processor is either computing one task or stealing work. Thus, the number of work requests plus the number of tasks to be executed is equal to mC_{max}, i.e. $mC_{\text{max}} = W + R$. This shows that

$$\mathbb{E}[C_{\text{max}}] \leq \frac{W}{m} + \frac{1}{1 - \log_2(1 + \frac{1}{\epsilon})} \left(\log_2 \Phi_0 + \frac{1}{\ln 2} \right) + 1.$$

This concludes the proof of (i). The proof of the (i) applies *mutatis mutandis* to prove the bound in probability (ii) using Theorem 1 (ii). Moreover, by definition of the potential, $\Phi_0 \leq W^2$. This shows that $\log_2 \Phi_0 \leq 2 \log W$. As $2/(1 - \log_2(1 + 1/e)) < 3.65$ and $1/\ln 2 \cdot 1/(1 - \log_2(1 + 1/e)) + 1 < 3.64$, this concludes the proof of (iii). \hfill \Box

This theorem shows that the factor before $\log_2 W$ is bounded by 3.65. Simulations reported in Sect. 8 seem to indicate that the factor of $\log_2 W$ is around 2.37. This shows that the constant 3.65 obtained by our analysis is precise, only 50% off. Moreover, this constant will be improved using a different potential function in Sect. 4.1.
We now provide an example of initial repartition of tasks for which \(\mathbb{E}[C_{\text{max}}] \geq \frac{W}{m} + \log_2 W - 1 \). This show that the bounds given in Theorem 2 cannot be improved by more than a constant factor in \(\log W \). Consider \(W = 2^{i+1} \) tasks and \(m = 2^k \) processors, all the tasks are on the same processor at the beginning. In the best case, all work requests target processors with the highest loads. In this case the makespan is \(C_{\text{max}} = k + 2 \). After the first \(k = \log_2 m \) steps every processor has received some work; one step where all the processors are active; and one last step where only one processor remains active. Thus, for this initial distribution, \(\mathbb{E}[C_{\text{max}}] \geq \frac{W}{m} + \log_2 W - 1 \).

3.4 Influence of the initial distribution of tasks

In the worst case, all tasks are in the same queue at the beginning of the execution and \(\Phi_0 = (W - W/m)^2 \leq W^2 \). This leads to a bound on the number of work requests in \(3.65m \log_2 W \) (see the item (iii) of Theorem 2). However, using bounds in terms of \(\Phi_0 \), our analysis is able to capture the difference for the number of work requests if the initial distribution is more balanced. One can show that a more balanced initial distribution \((\Phi_0 \ll W^2) \) leads to fewer work requests on average.

Suppose for example that the initial distribution is a balls-and-bins assignment: each tasks is assigned to a processor at random. In this case, the initial number of tasks in queue \(i \), \(w_i(0) \), follows a binomial distribution \(B(W, 1/m) \). The expected value of \(\Phi_0 \) is:

\[
\mathbb{E}[\Phi_0] = \sum_i \mathbb{E}[w_i^2] - \frac{W^2}{m} = \sum_i (\text{Var}[w_i] + \mathbb{E}[w_i^2]) - \frac{W^2}{m} = \left(1 - \frac{1}{m}\right) W.
\]

Since the number of work requests is proportional to \(\log_2 \Phi_0 \), this initial distribution of tasks reduces the number of work requests by a factor of 2 on average. This leads to a better bound on the makespan in \(W/m + 1.83 \log_2 W + 3.63 \).

4 Going further with the unit tasks model

In this section, we provide two different analyzes of the model of unit tasks of the previous section. We first show how the use of a different potential function \(\Phi_t = \sum_i w_i(t)^\nu \) (for some \(\nu > 1 \)) leads to a better bound on the number of work requests. Then we show how cooperation among thieves leads to a reduction of the bound on the number of work requests by 12 %. The later is corroborated by our simulation that shows a decrease of the number of work requests between 10 % and 15 %.

4.1 Improving the analysis by changing the potential function

We consider the same model of unitary tasks as in Sect. 3. The potential function of our system is defined as

\[
\Phi_t = \sum_{i=1}^m w_i(t)^\nu,
\]

where \(\nu > 1 \) is a constant factor.

When an idle processor steals a processor with \(w_i(t) \) tasks, one processor will have \(\lfloor (w_i(t) - 1)/2 \rfloor \leq w_i/2 \) tasks and one will have \(\lceil (w_i(t) - 1)/2 \rceil \leq w_i/2 \) tasks. Therefore, the potential decreases by
\[\delta_i = w_i(t)^v - \left\lceil \frac{w_i(t) - 1}{2} \right\rceil^v - \left\lfloor \frac{w_i(t) - 1}{2} \right\rfloor^v \geq w_i(t)^v - 2\left(\frac{w_i(t)}{2} \right)^v \]

This shows that the expected value of the potential at time \(t + 1 \) is

\[\mathbb{E}[\Phi_{t+1}] \leq (1 - q(r)(1 - 2^{1-v})) \Phi_i, \]

where \(q(r) \) is the probability for a processor to receive at least one work request when \(r \) processors are stealing, \(q(r) = 1 - (1 - \frac{1}{m-1})^r \).

Following the analysis of the previous part, and as \(\Phi_0 \leq W^v \) the expected makespan is bounded by:

\[\frac{W}{m} + \lambda(v) \left(\log \Phi_0 + \frac{1}{\ln 2} \right) + 1 \leq \frac{W}{m} + v\lambda(v) \log W + \frac{\lambda(v)}{\ln 2} + 1, \]

where \(\lambda(v) \) is a constant depending on \(v \) equal to:

\[\lambda(v) \overset{\text{def}}{=} \max_r \left\{ \frac{r}{-m \log_2 [1 - q(r)(1 - 2^{1-v})]} \right\}. \] (6)

As for \(v = 2 \) of Sect. 3, the derivation of the right part of Eq. (6) with respect to \(r \) shows its maximum is attained for \(r = m \).

The constant factor in front of \(\log W \) is \(v\lambda(v) \). Numerically, the minimum of \(v\lambda(v) \) is for \(v \approx 2.94 \) and is less than 3.24. This gives the following theorem:

Theorem 3 Let \(C_{\max} \) be the makespan of \(W = n \) unit independent tasks scheduled DLS. Then:

\[\mathbb{E}[C_{\max}] \leq \frac{W}{m} + 3.24 \log_2 W + 2.59. \]

In Sect. 3, we have shown that the makespan was bounded by

\[\frac{W}{m} + 2\lambda(2) \log_2 W + \frac{\lambda(2)}{\ln 2} + 1 \leq \frac{W}{m} + 3.65 \log_2 W + 3.64. \]

Theorem 3 improves the constant factor in front of \(\log_2 W \). However, we lose the information of the initial distribution of tasks \(\Phi_0 \). With the result of Sect. 3, we can show that a more balanced initial distribution of tasks improves the makespan (see Sect. 3.4). We cannot show an analogous result with the new potential function.

4.2 Cooperation among thieves

In this section, we modify the protocol for managing the distributed list. Previously, when \(k > 1 \) work requests were sent on the same processor, only one of them could be served due to contention on the list. We now allow the \(k \) requests to be served in unit time (Gautier 2010). This model has been implemented in the middleware Kaapi (Gautier et al. 2007). When \(k \) work requests target the same processor, the work is divided into \(k + 1 \) pieces. In practice, allowing concurrent thieves increases the cost of a work request, but we neglect this additional cost here. We assume that the \(k \) concurrent work requests can be served in unit time. We study the influence of this new protocol on the number of work requests in the case of unit independent tasks.
Let \(n \in (\log_2(3); 3] \). We define the potential of the system at time \(t \) to be:

\[
\Phi(t) = \sum_{i=1}^{m} (w_i(t)^\nu - w_i(t)).
\]

Let us first compute the decrease of the potential when processor \(i \) receives \(k \geq 1 \) work requests. If \(w_i(t) > 0 \), it can be written \(w_i(t) = (k + 1)q + b \) with \(0 \leq b < k + 1 \). We neglect the decrease of potential due to the execution of tasks (\(\nu > 1 \) implies that execution of tasks decreases the potential).

After one time step and \(k \) work requests, the work will be divided into \(b \) parts with \(q + 1 \) tasks and \(k + 1 - b \) parts with \(q \) tasks. \(\sum_i w_i(t) \) does not vary during the stealing phase. Therefore, the difference of potential due to these \(k \) work requests is

\[
\delta_i^k = ((k + 1)q + b)^\nu - b(q + 1)^\nu - (k + 1 - b)q^\nu.
\]

Let us show that \(\delta_i^k \geq (1 - (k + 1)^{1-\nu})(w_i(t)^\nu - w_i(t)) \).

Let \(\alpha \equiv b/(k + 1) \in [0; k/(k + 1)] \) and let \(f(q) = (q + \alpha)^\nu - \alpha(q + 1)^\nu - (1 - \alpha)q^\nu + (q + \alpha)(1 - (k + 1)^{1-\nu}) \). The first derivative of \(f \) is \(f'(q) = \nu((q + \alpha)^{\nu-1} - \alpha(q + 1)^{\nu-1} - (1 - \alpha)q^{\nu-1}) + 1 - (k + 1)^{1-\nu} \) and the second derivative of \(f \) is \(f''(q) = \nu(\nu - 1)((q + \alpha)^{\nu-2} - \alpha(q + 1)^{\nu-2} - (1 - \alpha)q^{\nu-2}) \). As \(\nu \leq 3, q \mapsto q^{\nu-2} \) is concave. Thus, \(f''(q) \geq 0 \). This shows that \(f' \) is increasing. Since, \(f'(0) = \nu(\alpha^{\nu-1} - \alpha) + (1 - (k + 1)^{1-\nu}) \geq 0 \), for all \(q \geq 0 \), \(f'(q) \geq 0 \). This shows that \(f \) is increasing. The value of \(f \) in 0 is \(f(0) = \alpha^\nu - \alpha + (1 - (k + 1)^{1-\nu}) \). As \(\alpha \leq k/(k + 1) \), one has \(f(0) \geq 0 \) which implies that for all \(q \geq 0 \), \(f(q) \geq 0 \).

Recall that \(w_i(t) = (k + 1)q + b \) and \(\alpha = b/(k + 1) \). The decrease of potential \(\delta_i^k \) is:

\[
\delta_i^k = (1 - (k + 1)^{1-\nu})(w_i(t)^\nu - w_i(t)) + (k + 1)f(q)
\]

\[
\geq (1 - (k + 1)^{1-\nu})(w_i(t)^\nu - w_i(t)). \tag{7}
\]

Let \(q_k(r) \) be the probability for a processor to receive \(k \) work requests when \(r \) processors are stealing. \(q_k(r) \) is equal to:

\[
q_k(r) = \binom{r}{k} \frac{1}{(m - 1)^k} \left(\frac{m - 2}{m - 1} \right)^{r-k}.
\]

The expected decrease of the potential caused by the steals on processor \(i \) is equal to \(\sum_{k=0}^{r} \delta_i^k q_k(r) \). Using Eq. (7), we can bound the expected potential at time \(t + 1 \) by

\[
\mathbb{E} \left[\Phi_i - \Phi_{i+1} \mid \mathcal{F}_i \right] = \sum_{i=0}^{m} \sum_{k=0}^{r} \delta_i^k q_k(r_i),
\]

\[
\mathbb{E} \left[\Phi_{i+1} \mid \mathcal{F}_i \right] \leq \left(1 - \sum_{k=0}^{r} (1 - (k + 1)^{1-\nu}) q_k(r_i) \right) \Phi_i.
\]

Theorem 4 The makespan \(C_{\text{max}}^{\text{coop}} \) of \(W = n \) unit independent tasks scheduled with cooperative work stealing satisfies:

(i) \(\mathbb{E} [C_{\text{max}}^{\text{coop}}] \leq \frac{W}{m} + 2.88 \log_2 W + 3.4, \)

(ii) \(\mathbb{P} [C_{\text{max}}^{\text{coop}} \geq \frac{W}{m} + 2.88 \log_2 W + 2 + \log_2 \left(\frac{1}{\epsilon} \right)] \leq \epsilon. \)

Proof The proof is very similar to the one of Theorem 2.
Before using Theorem 1, we analyze what happens at the end of the schedule when \(\Phi_t < 1 \) (after time \(\tau \) in Theorem 1). We have \(\Phi_t = \sum_i w_i(t)^\nu - w_i(t) < 1 \). This implies that for all processor \(i \), \(w_i(t)^\nu - w_i(t) < 1 \). As \(\nu \geq \log_2(3) \) and \(w_i(t) \in \mathbb{N} \), this implies that \(w_i(t) \) equals 0 or 1. Therefore, when \(\Phi_t < 1 \), there remains at most one step of computation until the end of the schedule.

Using Theorem 1 with the following definitions of \(h \) and \(\lambda \)

\[
h(r) \overset{\text{def}}{=} 1 - \sum_{k=0}^{r} (1 - (k + 1)^{1-\nu}) q_k(r),
\]

\[
\lambda^{\text{coop}}(\nu) \overset{\text{def}}{=} \max_{1 \leq r \leq m} \frac{r}{-m \log_2 h(r)}
\]

and accounting for the last step of the schedule (after \(\tau \)), we obtain

\[
\mathbb{E}[C_{\text{max}}^{\text{coop}}] \leq \frac{W}{m} + \nu \lambda^{\text{coop}}(\nu) \log_2 W + \frac{\lambda(\nu)}{\ln 2} + 2.
\]

In the general case the exact computation of \(h(r) \) is intractable. However, by a numerical computation, one can show that \(3\lambda^{\text{coop}}(3) < 2.88 \). As \(\lambda(3)/\ln(2) + 2 = 3.4 \), we obtain the claimed bound. □

Compared to the situation with no cooperation among thieves, the bound on the number of work requests obtained by our analysis is reduced by a factor \(3.24/2.88 \approx 12\% \). We will see in Sect. 8 that this is close to the value obtained by simulation.

Remark 1 The exact computation can be accomplished for \(\nu = 2 \) (Tchiboukdjian et al. 2010) and leads to a constant factor of \(2\lambda^{\text{coop}}(2) \leq -2/\log_2(1 - \frac{1}{e}) < 3.02 \).

5 Weighted independent tasks

In this section, we analyze the number of work requests for weighted independent tasks. Each task \(j \) has a processing time \(p_j \) that is unknown. When an idle processor attempts to steal a processor, half of the tasks of the victim are transferred from the active processor to the idle one. A task that is currently executed by a processor cannot be stolen. If the victim has \(2^k + 1 \) tasks, the work is split in \(k + 1 \) and \(k \) tasks. If the victim has \(2^k \) tasks, the work is split in \(k \). In all this analysis, we consider that the scheduler does not know the weight of the different tasks \(p_j \). Therefore, when the work is split in two parts, we do not assume that the work is split fairly (see for example Fig. 3) but only that the number of tasks is split in two equal parts.

5.1 Definition of the potential function and expected decrease

As the processing times are unknown, the work cannot be shared evenly between both processors and can be as bad as one processor getting all the smallest tasks and one all the biggest tasks (see Fig. 3). Let us call \(w_i(t) \) the *number of tasks* possessed by the processor \(i \). Let \(\nu \in [\log_2(3); 3] \). The potential of the system at time \(t \) is defined as:

\[
\Phi_t \overset{\text{def}}{=} \sum_i \left(w_i(t)^\nu - w_i(t) \right).
\]
During a work request, half of the tasks are transferred from an active processor to the idle processor. If the processor \(j\) is stealing tasks from processor \(i\), the number of tasks possessed by \(i\) and \(j\) at time \(t+1\) are:

\[
\begin{align*}
wi(t+1) &= \left\lceil \frac{wi(t)}{2} \right\rceil \\
wj(t+1) &= \left\lfloor \frac{wi(t)}{2} \right\rfloor
\end{align*}
\]

Therefore, if there is at least one work request on processor \(i\), the decrease of potential is the same as the decrease due to cooperative steal given by Eq. (7) for \(k = 1\):

\[
\delta_i \geq (1 - 2^{1-v})(w_i(t)^v - w_i(t)).
\]

If there is no work request on processor \(i\), there is no decrease of potential due to the steals. Since \(v > 1\), the execution of work can only decrease the potential.

The probability for a processor to receive at least one work request when \(r\) processors are stealing is \(q(r) = 1 - (1 - \frac{1}{m-1})^r\). Thus, the expected potential at time \(t+1\) is:

\[
E[\Phi_{t+1} | \mathcal{F}_t] \leq (1 - (1 - 2^{1-v})q(r_i)) \Phi_t.
\] (9)

5.2 Bound on the makespan

Equation (9) allows us to apply Theorem 1 to derive a bound on the makespan of weighted tasks by the distributed list scheduling algorithm. This bound differs from the one for unit tasks only by an additive term of \(p_{\text{max}}\).

Theorem 5 Let \(p_{\text{max}} \stackrel{\text{def}}{=} \max p_j\) be the maximum processing times. The expected makespan to schedule \(n\) weighted tasks of total processing time \(W = \sum p_j\) by DLS is bounded by

\[
E[C_{\text{max}}] \leq \frac{W}{m} + \frac{m-1}{m} p_{\text{max}} + 3.24 \log_2 n + 2.59.
\]

Proof Let \(\Phi_i\) be the potential defined by Eq. (8). At time \(t = 0\), the potential of the system is bounded by \(W^v - W\). Therefore, by Theorem 1, the expected number of work requests before \(\Phi_i < 1\) is bounded by

\[
m\lambda \left(\log_2 \Phi_0 + \frac{1}{\ln 2} \right) + m \leq m v \lambda(v) \log_2 W + \frac{m \lambda(v)}{\ln 2} + m,
\]

where \(v \lambda(v) < 3.24\) is the same constant as the bound for the unit tasks with the potential function \(\sum w_i^v\) of Theorem 3.

As is the proof of Theorem 4, \(\Phi_i < 1\) implies that for all \(i\), \(w_i(t) \leq 1\). Therefore, once \(\Phi_i < 1\), there is at most one task per processor. This phase can last for at most \(p_{\text{max}}\) unit of time, generating at most \((m-1)p_{\text{max}}\) work requests. \(\square\)

Remark 2 If we were to use the cooperative stealing scheme of Sect. 4.2 to schedule weighted independent tasks, the same analysis could be applied, leading to the same improved bound in \(2.88 \log_2 n\) instead of \(3.24 \log_2 n\).
6 Tasks with precedences

In this section, we show how the well-known non-blocking work stealing of Arora et al. (2001) (denoted ABP in the sequel) can be analyzed with our method to provide tighter bounds for the makespan. We first recall the WS scheduler of ABP, then we show how to define the amount of work on a processor \(w_i(t)\), finally we apply the analysis of Sect. 2.6 to bound the makespan.

6.1 ABP work-stealing scheduler

Following Arora et al. (2001), a multithreaded computation is modeled as a directed acyclic graph \(G\) with \(W\) unit tasks where edges define precedence constraints. There is a single source task and the out-degree is at most 2. The critical path of \(G\) is denoted by \(D\). ABP schedules the DAG \(G\) as follows. Each processor \(i\) maintains a double-ended queue (called a deque) \(Q_i\) of ready tasks. At each slot, an active processor \(i\) with a nonempty deque executes the task at the bottom of its deque \(Q_i\); once its execution is completed, this task is popped from the bottom of the deque, enabling—i.e., making ready—0, 1 or 2 child tasks that are pushed at the bottom of \(Q_i\). At each top, an idle processor \(j\) with an empty deque \(Q_j\) becomes a thief: it performs a work request on another randomly chosen victim deque; if the victim deque contains ready tasks, then its top-most task is popped and pushed into the deque of one of its concurrent thieves. If \(j\) becomes active just after its work request, the work request is said to be successful. Otherwise, \(Q_j\) remains empty and the work request fails which may occur in the three following situations: either the victim deque \(Q_i\) is empty; or, \(Q_i\) contains only one task currently in execution on \(i\); or, due to contention, another thief performs a successful work request on \(i\) simultaneously.

6.2 Definition of \(w_i(t)\)

Let us first recall the definition of the enabling tree of Arora et al. (2001). If the execution of task \(u\) enables task \(v\), then the edge \((u, v)\) of \(G\) is an enabling edge. The sub-graph of \(G\) consisting of only enabling edges forms a rooted tree called the enabling tree. We denote by \(h(u)\) the height of a task \(u\) in the enabling tree. The root of the DAG has height \(D\). Moreover, it has been shown in Arora et al. (2001) that tasks in the deque have strictly decreasing height from top to bottom except for the two bottom most tasks which can have equal heights.

We now define \(w_i(t)\), the amount of work on processor \(i\) at time \(t\). Let \(h_i\) be the maximum height of all tasks in the deque. If the deque contains at least two tasks including the one currently executing we define \(w_i(t) = (2\sqrt{2})^{h_i}\). If the deque contains only one task currently executing we define \(w_i(t) = \frac{1}{2}(2\sqrt{2})^{h_i}\). The following lemma states that this definition of \(w_i(t)\) behaves in a similar way than the one used for the independent unit tasks analysis of Sect. 3.

Lemma 2 For any active processor \(i\), we have \(w_i(t+1) \leq w_i(t)\). Moreover, after any successful work request from a processor \(j\) on \(i\), \(w_i(t+1) \leq w_i(t)/2\) and \(w_i(t+1) \leq w_i(t)/2\) and if all work requests are unsuccessful we have \(w_i(t+1) \leq w_i(t)/\sqrt{2}\).

Proof We first analyze the execution of one task \(u\) at the bottom of the deque. Executing task \(u\) enables at most two tasks and these tasks are the children of \(u\) in the enabling tree. If the deque contains more than one task, the top most task has height \(h_i\) and this task is still in the deque at time \(t+1\). Thus the maximum height does not change and \(w_i(t) = w_i(t+1)\).
If the deque contains only one task, we have \(w_i(t) = \frac{1}{2} (2\sqrt{2})^{h_t} \) and \(w_i(t+1) \leq (2\sqrt{2})^{h_t-1} \). Thus \(w_i(t+1) \leq w_i(t) \).

We now analyze a successful steal from processor \(j \). In this case, the deque of processor \(i \) contains at least two tasks and \(w_i(t) = (2\sqrt{2})^{h_t} \). The stolen task is one with the maximum height and is the only task in the deque of processor \(j \) thus \(w_j(t+1) = \frac{1}{2} (2\sqrt{2})^{h_t} \leq w_i(t)/2 \).

For the processor \(i \), either its deque contains only one task after the steal with height at most \(h_t \) and \(w_i(t+1) \leq \frac{1}{2} (2\sqrt{2})^{h_t} = w_i(t)/2 \), or there are still more than 2 tasks and \(w_i(t+1) \leq (2\sqrt{2})^{h_t-1} < w_i(t)/2 \).

Finally, if all work requests are unsuccessful, the deque of processor \(i \) contains at most one task. If the deque is empty \(w_i(t+1) = w_i(t) = 0 \) and thus \(w_i(t+1) \leq w_i(t)/\sqrt{2} \). If the deque contains exactly one task, \(w_i(t) = \frac{1}{2} (2\sqrt{2})^{h_t} \) and \(w_i(t+1) \leq (2\sqrt{2})^{h_t-1} \) thus \(w_i(t+1) \leq w_i(t)/\sqrt{2} \). \(\square \)

6.3 Bound on the makespan

To study the number of steals, we follow the analysis presented in Sect. 2.6 with the potential function \(\Phi(t) = \sum_i w_i(t)^2 \). Using results from Lemma 2, we compute the decrease of the potential \(\delta_i(t) \) due to work requests on processor \(i \) by distinguishing two cases. If there is a successful steal from processor \(j \),

\[
\delta_i(t) = w_i(t)^2 - w_i(t+1)^2 - w_j(t+1)^2 \geq w_i(t)^2 - 2 \left(\frac{w_i(t)}{2} \right)^2 \geq \frac{1}{2} w_i(t)^2.
\]

If all steals are unsuccessful, the decrease of the potential is

\[
\delta_i(t) = w_i(t)^2 - w_i(t+1)^2 \geq w_i(t)^2 - \left(\frac{w_i(t)}{\sqrt{2}} \right)^2 \geq \frac{1}{2} w_i(t)^2.
\]

In all cases, \(\delta_i(t) \geq w_i(t)^2/2 \). We obtain the expected potential at time \(t+1 \) by summing the expected decrease on each active processor:

\[
\mathbb{E}[\Phi_{t+1} | \mathcal{F}_t] \leq \left(1 - \frac{q(r_t)}{2} \right) \Phi(t).
\]

Finally, we can state the following theorem.

Theorem 6 On a DAG composed of \(W \) unit tasks, with critical path \(D \), one source and out-degree at most 2, the makespan of ABP work stealing verifies:

(i) \(\mathbb{E}[C_{\text{max}}] \leq \frac{W}{m} + \frac{3}{\log_2(1+\frac{1}{e})} D + 1 < \frac{W}{m} + 5.5D + 1 \),

(ii) \(\mathbb{P}[C_{\text{max}} \geq \frac{W}{m} + \frac{3}{\log_2(1+\frac{1}{e})} (D + \log_2 \frac{1}{\epsilon}) + 1 \leq \epsilon \).

Proof The proof is a direct application of Theorem 1. As in the initial step there is only one non empty deque containing the root task with height \(D \), the initial potential is

\[
\Phi(0) = \left(\frac{1}{2} (2\sqrt{2})^D \right)^2.
\]

Thus the expected number of work requests before \(\Phi(t) < 1 \) is bounded by
\[\mathbb{E}[R] \leq \lambda m \log_2 \left(\left(\frac{1}{2} (2 \sqrt{2})^b \right)^2 \right) + m \left(1 + \frac{\lambda}{\ln(2)} \right) \]
\[\leq 2\lambda m D \log_2 (2 \sqrt{2}) + m \left(1 + \frac{\lambda}{\ln(2)} - 2\lambda \right) \]
\[\leq 3\lambda m D \quad \text{(as } 1 + \lambda / \ln(2) - 2\lambda < 0), \]

where \(\lambda = (1 - \log_2(1 + 1/e))^{-1} \) is the same constant as the bound for the unit tasks of Sect. 3.

Moreover, when \(\Phi(t) < 1 \), we have \(\forall i, w_i(t) < 1 \). There is at most one task of height 0 in each deque, *i.e.* a leaf of the enabling tree which cannot enable any other task. This last step generates at most \(m - 1 \) additional work requests. In total, the expected number of work requests is bounded by \(\mathbb{E}[R] \leq 3\lambda m D + m - 1 \). The bound on the makespan is obtained using the relation \(m C_{\text{max}} = W + R \).

The proof of (i) applies *mutatis mutandis* to prove the bound in probability (ii).

\[\square \]

Remark In Arora et al. (2001), the authors established the upper bounds:
\[\mathbb{E}[C_{\text{max}}] \leq \frac{W}{m} + 32D \quad \text{and} \quad \mathbb{P}\left\{ C_{\text{max}} \geq \frac{W}{m} + 64D + 16 \log_2 \frac{1}{\epsilon} \right\} \leq \epsilon \]

in Sect. 4.3, proof of Theorem 9. Our bounds greatly improve the constant factors of this previous result.

7 Proof of Theorem 1

This section is devoted to the proof of Theorem 1 that we recall here.

Theorem 1 Assume that there exists a function \(h : \{0 \ldots m\} \rightarrow [0, 1] \) such that the potential satisfies:
\[\mathbb{E}[\Phi_{t+1} | \mathcal{F}_t] \leq h(r_t)\Phi_t. \]

Let \(\Phi_0 \) denote the potential at time 0 and \(\lambda \) be defined as:
\[\lambda \overset{\text{def}}{=} \max_{1 \leq r \leq m} \frac{r}{-m \log_2(h(r))}. \]

Let \(\tau \) be the first time that \(\Phi_t \) is less than 1, \(\tau \overset{\text{def}}{=} \min\{t : \Phi_t < 1\} \). The number of work requests until \(\tau \), \(R = \sum_{s=0}^{t-1} r_s \), satisfies:

(i) \(\mathbb{P}\{R \geq m\lambda \log_2 \Phi_0 + m + u\} \leq 2^{-u/(m\lambda)} \),

(ii) \(\mathbb{E}[R] \leq m\lambda \log_2 \Phi_0 + m(1 + \frac{\lambda}{\ln 2}) \).

We use the following notations. \(\mathcal{F}_t \) denotes the knowledge of the system up to time \(t \) (namely, the filtration associated to the process \(w(t) \)). For a random variable \(X \), the conditional expectation of \(X \) knowing \(\mathcal{F}_t \) is denoted \(\mathbb{E}[X | \mathcal{F}_t] \). Finally for an event \(A \), \(1_A \) denotes the random variable equal to 1 if the event is true and 0 otherwise. This means that the probability of an event \(A \) at time \(t \) is the probability of \(A \) knowing \(\mathcal{F}_t \) and is denoted by \(\mathbb{E}[1_A | \mathcal{F}_t] \). The probability of an event \(A \) is \(\mathbb{P}\{A\} = \mathbb{E}[1_A] \).
Proof For two time steps \(t \leq T \), we call \(R^T_t \) the number of work requests between \(t \) and \(T \):

\[
R^T_t \overset{\text{def}}{=} \sum_{s=t}^{\min\{t, T\} - 1} r_s.
\]

The number of work requests until \(\Phi_t < 1 \) is \(R = \sum_{s=0}^{t-1} r_s = \lim_{T \to \infty} R^T_0 \).

We show by a backward induction on \(t \) that for all \(t \leq T \):

\[
\text{if } \Phi_t \geq 1, \quad \text{then } \forall u \in \mathbb{R}: \quad \mathbb{E}[1_{R^T_t \geq m \lambda \log_2 \Phi_t + m + u} \mid \mathcal{F}_t] \leq 2^{-u/(m \lambda)}.
\]

For \(t = T \), \(R^T_T = 0 \) and \(\mathbb{E}[1_{R^T_T \geq m \lambda \log_2 \Phi_t + m + u} \mid \mathcal{F}_t] = 0 \). Thus, (10) is true for \(t = T \).

Assume that (10) holds for some \(t + 1 \leq T \) and suppose that \(\Phi_t \geq 1 \). If \(u \leq 0 \), \(2^{-u/(m \lambda)} \geq 1 \) and (10) is verified since the left part of (10) is a probability and is less than 1. Let \(u > 0 \). Since \(R^T_t = r_t + R^T_{t+1} \), the probability \(\mathbb{P}[R^T_t \geq m \lambda \log_2 \Phi_t + m + u \mid \mathcal{F}_t] \) is equal to

\[
\mathbb{E}[1_{R^T_t \geq m \lambda \log_2 \Phi_t + m + u} \mid \mathcal{F}_t] = \mathbb{E}[1_{r_t + R^T_{t+1} \geq m \lambda \log_2 \Phi_t + m + u} \mid \mathcal{F}_t] \quad \text{(11)}
\]

\[
= \mathbb{E}[1_{r_t + R^T_{t+1} \geq m \lambda \log_2 \Phi_t + m + u} \mid \mathcal{F}_t] + \mathbb{E}[1_{r_t + R^T_{t+1} \geq m \lambda \log_2 \Phi_t + m + u} 1_{\Phi_{t+1} \geq 1} \mid \mathcal{F}_t] \quad \text{(12)}
\]

\[
+ \mathbb{E}[1_{r_t + R^T_{t+1} \geq m \lambda \log_2 \Phi_t + m + u} 1_{\Phi_{t+1} < 1} \mid \mathcal{F}_t]. \quad \text{(13)}
\]

If \(\Phi_{t+1} < 1 \), then \(R^T_{t+1} = 0 \). Since \(m \geq r_t \) and \(\Phi_t \geq 1 \), \(m \lambda \log_2 \Phi_t + m + u - r_t \geq 0 \). This shows that the term (13) is equal to zero. Equation (12) is the probability that \(R^T_{t+1} \) is greater or equal to

\[
m \lambda \log_2 \Phi_t + m + u - r_t = m \lambda \log_2 \Phi_{t+1} + m + (u - r_t - m \lambda \log_2(\Phi_{t+1}/\Phi_t)).
\]

Therefore, using the induction hypothesis, (12) is equal to

\[
\mathbb{E}[1_{R^T_{t+1} \geq m \lambda \log_2 \Phi_t + m + u - r_t} 1_{\Phi_{t+1} > 1} \mid \mathcal{F}_t] \leq \mathbb{E}[2^{-u - r_t - m \lambda \log_2(\Phi_{t+1}/\Phi_t)} 1_{\Phi_{t+1} > 1} \mid \mathcal{F}_t]
\]

\[
= 2^{-u - r_t} \mathbb{E}[\frac{\Phi_{t+1}}{\Phi_t} 1_{\Phi_{t+1} > 1} \mid \mathcal{F}_t]
\]

\[
\leq 2^{-u - r_t} \frac{h(r_t)}{m \lambda} h(r_t)
\]

\[
= 2^{-u - r_t} \frac{r_t}{m \lambda + \log_2(h(r_t))},
\]

where at the first line we used both the fact that for a random variable \(X \), \(\mathbb{E}[X \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t] \) and the induction hypothesis.

If \(r_t = 0 \), \(2^{r_t/(m \lambda + \log_2(h(r_t)))} \leq h(r_t) \leq 1 \). Otherwise, by definition of \(\lambda \), we have \(r_t/(m \lambda) + \log_2(h(r_t)) \leq 0 \) and \(2^{(r_t/(m \lambda) + \log_2(h(r_t)))} \leq 1 \). This shows that (10) holds for \(t \). Therefore, by induction on \(t \), this shows that (10) holds for \(t = 0 \): for all \(u \geq 0 \):

\[
\mathbb{E}[1_{R^T_0 \geq m \lambda \log_2 \Phi_t + m + u} \mid \mathcal{F}_0] \leq 2^{-u/(m \lambda)}.
\]

As \(r_t \geq 0 \), the sequence \((R^T_0)_T \) is increasing and converges to \(R \). Therefore, the sequence \(1_{R^T_0 \geq m \lambda \log_2 \Phi_0 + m + u} \) is increasing in \(T \) and converges to \(1_{R \geq m \lambda \log_2 \Phi_0 + m + u} \). Thus, by Lebesgue’s monotone convergence theorem, this shows that

\[
\mathbb{P}\{R \geq m \lambda \log_2 \Phi_0 + m + u\} = \lim_{T \to \infty} \mathbb{E}[1_{R^T_0 \geq m \lambda \log_2 \Phi_0 + m + u} \mid \mathcal{F}_0] \leq 2^{\frac{u}{m \lambda}}.
\]

The second part of the theorem (ii) is a direct consequence of (i). Indeed,
8 Experimental study

The theoretical analysis gives an upper bound on the expected value of the makespan and deviation from the mean for the various models we considered. In this section, we study experimentally the distribution of the makespan. Statistical tests give evidence that the makespan for independent tasks follows a generalized extreme value (gev) distribution (Kotz and Nadarajah 2001). This was expected since such a distribution arises when dealing with maximum of random variables. For tasks with dependencies, it depends on the structure of the graph: DAGs with short critical path still follow a gev distribution, but when the critical path grows, it tends to a Gaussian distribution. We also study in more details the overhead to W/m and show that it is approximately $2.37 \log_2 W$ for unit independent tasks, which is close to the theoretical result of $3.24 \log_2 W$ (cf. Sect. 4).

We developed a simulator that strictly follows our model. At the beginning, all the tasks are given to processor 0 in order to be in the worst case, i.e. when the initial potential Φ_0 is maximum. Each pair (m, W) is simulated 10000 times to get accurate results, with a coefficient of variation about 2%.

8.1 Distribution of the makespan

We consider here a fixed workload $W = 2^{17}$ on $m = 2^{10}$ processors for independent tasks and $m = 2^7$ processors for tasks with dependencies. For the weighted model, processing times were generated randomly and uniformly between 1 and 10. For the DAG model, graphs have been generated using a layer by layer method. We generated two types of DAGs, one with a short critical path (close to the minimum possible $\log_2 W$) and the other one with a long critical path (around $W/4m$ in order to keep enough tasks per processor per layer). Figure 4 presents histograms for $C_{max} - \lceil W/m \rceil$.

\[\mathbb{E}[R] = \int_0^\infty P\{R \geq u\} du \]
\[\leq m\lambda \log_2 \Phi_0 + m + \int_0^\infty P\{R \geq m\lambda \log_2 \Phi_0 + m + u\} du \]
\[\leq m\lambda \log_2 \Phi_0 + m + \int_0^\infty 2^{-\frac{u}{m\lambda}} du \]
\[\leq m\lambda \log_2 \Phi_0 + m \left(1 + \frac{\lambda}{\ln 2}\right). \]
The distributions of the first three models (a, b, c in Fig. 4) are clearly not Gaussian: they are asymmetrical with a heavier right tail. To fit these three models, we use the generalized extreme value (gev) distribution (Kotz and Nadarajah 2001). In the same way as the normal distribution arises when studying the sum of independent and identically distributed (iid) random variables, the gev distribution arises when studying the maximum of iid random variables. The extreme value theorem, an equivalent of the central limit theorem for maxima, states that the maximum of iid random variables converges in distribution to a gev distribution. In our setting, the random variables measuring the load of each processor are not independent, thus the extreme value theorem cannot apply directly. However, it is possible to fit the distribution of the makespan to a gev distribution. In Fig. 4, the fitted distributions (blue curve) closely follow the histograms. To confirm this graphical approach, we performed a goodness of fit test. The \(\chi^2 \) test is well suited to our data because the distribution of the makespan is discrete. We compared the results of the best fitted gev to the best fitted Gaussian. The \(\chi^2 \) test strongly rejects the Gaussian hypothesis, but does not reject the gev hypothesis with a p-value of more than 0.5. This confirms that the makespan follows a gev distribution. We fitted the last model, DAG with long critical path, with a Gaussian (red curve in Fig. 4(d)). In this last case, the completion time of each layer of the DAG should correspond to a gev distribution, but the total makespan, the sums of all layers, should tend to a Gaussian by the central limit theorem. Indeed, the \(\chi^2 \) test does not reject the Gaussian hypothesis with a p-value around 0.3.

8.2 Study of the \(\log_2 W \) term

We focus now on unit independent tasks as the other models rely on too many parameters (the choice of the processing times for weighted tasks and the structure of the DAG for tasks with dependencies). We want to show that the number of work requests is proportional to \(\log_2 W \) and study the proportionality constant. We first launch simulations with a fixed number of processors \(m \) and a wide range of work in successive powers of 10. A linear regression confirms the linear dependency in \(\log_2 W \) with a coefficient of determination (“r squared”) greater than 0.99993. Then, we obtain the slope of the regression for various number of processors. The value of the slope tends to a limit around 2.37 (cf. Fig. 5(left)). This shows that the theoretical analysis of Theorem 2 is almost accurate with a constant of approximately 3.24. We also study the constant factor of \(\log_2 W \) for the cooperative steal of Sect. 4. The theoretical value of 2.88 is again close to the value obtained by simulation 2.08 (cf. Fig. 5(left)). The difference between the theoretical and the practical values can be explained by the worst case analysis on the number of work requests per time step in Theorem 1.

3The closer to 1, the better.
Table 1 Bound on the makespan of the decentralized list scheduling compared to a centralized list scheduler that does not know the size of the tasks

	Centralized	Decentralized (WS)
Unit Tasks ($W = n$)	$\lceil \frac{W}{m} \rceil$	$\frac{W}{m} + 3.24 \log_2 W + 2.59$
Initial distribution	$-$	$\frac{W}{m} + 1.83 \log_2 \sum_{i=0}^{m} (w_i - \frac{W}{m})^2 + 3.63$
Cooperative	$-$	$\frac{W}{m} + 2.88 \log_2 W + 3.4$
Weighted Tasks	$\frac{W}{m} + \frac{m-1}{m} p_{\text{max}}$	$\frac{W}{m} + \frac{m-1}{m} p_{\text{max}} + 3.24 \log_2 n + 2.59$
Tasks with precedences	$\frac{W}{m} + \frac{m-1}{m} D$	$\frac{W}{m} + 5.5 D + 1$

Moreover, simulations in Fig. 5(right) show that the ratio of work requests between standard and cooperative steals goes asymptotically to 14 %. The ratio between the two corresponding theoretical bounds is about 12 %. This indicates that the bias introduced by our analysis is systematic and thus, our analysis may be used as a good prediction while using cooperation among thieves.

9 Concluding remarks

In this paper, we presented a complete analysis of the cost of distribution in list scheduling. We proposed a new framework, based on potential functions, for analyzing the complexity of distributed list scheduling algorithms. In all variants of the problem, we succeeded to characterize precisely the overhead due to the decentralization of the list. These results are summarized in Table 1 comparing makespans for standard (centralized) and decentralized list scheduling. In particular, in the case of independent tasks, the overhead due to the distribution is small and only depends on the number of tasks and not on their weights. In addition, this analysis improves the bounds for the classical work stealing algorithm of Arora et al. (2001) from $32D$ to $5.5D$. We believe that this work should help to clarify the links between classical list scheduling and work stealing.

Furthermore, the framework to analyze DLS algorithms described in this paper is more general than the method of Arora et al. (2001). Indeed, we do not assume a specific rule (e.g. depth first execution of tasks) to manage the local lists. Moreover, we do not refer to the structure of the DAG (e.g. the depth of a task in the enabling tree) but on the work contained in each list. Thus, we plan to extend this analysis to the case of general precedence graphs.

Acknowledgements

The authors would like to thank Julien Bernard and Jean-Louis Roch for fruitful discussions on the preliminary version of this work.

References

Adler, M., Chakrabarti, S., Mitzenmacher, M., & Rasmussen, L. (1995). Parallel randomized load balancing. In *Proceedings of STOC* (pp. 238–247).

Arora, N. S., Blumofe, R. D., & Plaxton, C. G. (2001). Thread scheduling for multiprogrammed multiprocessors. *Theory of Computing Systems, 34*(2), 115–144.

Azar, Y., Broder, A. Z., Karlin, A. R., & Upfal, E. (1999). Balanced allocations. *SIAM Journal on Computing, 29*(1), 180–200. doi:10.1137/S0097539795288490.
Bender, M. A., & Rabin, M. O. (2002). Online scheduling of parallel programs on heterogeneous systems with applications to Cilk. *Theory of Computing Systems, 35*, 289–304.

Berenbrink, P., Friedetzky, T., & Goldberg, L. A. (2003). The natural work-stealing algorithm is stable. *SIAM Journal on Computing, 32*(5), 1260–1279.

Berenbrink, P., Friedetzky, T., Goldberg, L. A., Goldberg, P. W., Hu, Z., & Martin, R. (2007). Distributed selfish load balancing. *SIAM Journal on Computing, 37*(4), 1163–1181. doi:10.1137/060660345.

Berenbrink, P., Friedetzky, T., Hu, Z., & Martin, R. (2008). On weighted balls-into-bins games. *Theoretical Computer Science, 409*(3), 511–520.

Berenbrink, P., Friedetzky, T., & Hu, Z. (2009). A new analytical method for parallel, diffusion-type load balancing. *Journal of Parallel and Distributed Computing, 69*(1), 54–61.

Blumofe, R. D., & Leiserson, C. E. (1999). Scheduling multithreaded computations by work stealing. *Journal of the ACM, 46*(5), 720–748.

Chekuri, C., & Bender, M. (2001). An efficient approximation algorithm for minimizing makespan on uniformly related machines. *Journal of Algorithms, 41*(2), 212–224.

Drozdowski, M. (2009). *Scheduling for parallel processing*. Berlin: Springer.

Frigo, M., Leiserson, C. E., & Randall, K. H. (1998). The implementation of the Cilk-5 multithreaded language. In *Proceedings of PLDI*.

Gast, N., & Gaujal, B. (2010). A mean field model of work stealing in large-scale systems. In *Proceedings of SIGMETRICS*.

Gautier, T. (2010). Personal communication.

Gautier, T., Besseron X., & Pigeon, L. (2007). KAAL: a thread scheduling runtime system for data flow computations on cluster of multi-processors. In *Proceedings of PASCO* (pp. 15–23).

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. *SIAM Journal on Applied Mathematics, 17*, 416–429.

Hwang, J. J., Chow, Y. C., Anger, F. D., & Lee, C. Y. (1989). Scheduling precedence graphs in systems with interprocessor communication times. *SIAM Journal on Computing, 18*(2), 244–257.

Kotz, S., & Nadarajah, S. (2001). *Extreme value distributions: theory and applications*. Singapore: World Scientific.

Leung, J. (2004). *Handbook of scheduling: algorithms, models, and performance analysis*. Boca Raton: CRC Press.

Lueling, R., & Monien, B (1993). A dynamic distributed load balancing algorithm with provable good performance. In *Proceedings of PADS* (pp. 1–8).

Mitzensmacher, M. (1998). Analyses of load stealing models based on differential equations. In *Proceedings of SPAA* (pp. 212–221).

Robert, Y., & Vivien, F. (2009). *Introduction to scheduling*. London/Boca Raton: Chapman & Hall/CRC Press.

Robison, A., Voss, M., & Kukanov, A. (2008). Optimization via reflection on work stealing in TBB. In *Proceedings of IPDPS* (pp. 1–8).

Rudolph, L., Slivkin-Allalouf, M., & Upfal, E. (1991). A simple load balancing scheme for task allocation in parallel machines. In *SPAA* (pp. 237–245).

Sanders, P. (1999). Asynchronous random polling dynamic load balancing. In A. Aggarwal & C. P. Rangan (Eds.), *Lecture notes in computer science: Vol. 1741. ISAAC* (pp. 37–48). Berlin: Springer.

Schwiegelshohn, U., Tchernykh, A., & Yahyapour, R. (2008). Online scheduling in grids. In *Proceedings of IPDPS*.

Tchiboukdjian, M., Gast, N., Trystram, D., Roch, J. L., & Bernard, J. (2010). A tighter analysis of work stealing. In *The 21st international symposium on algorithms and computation (ISAAC)*.

Traoré, D., Roch, J. L., Maillard, N., Gautier, T., & Bernard, J. (2008). Deque-free work-optimal parallel STL algorithms. In *Proceedings of Euro-Par* (pp. 887–897).