Original Title of Article:
The influence of activities based on GEMS with the theme of earth crust on the fourth grade students’ conceptual understanding and scientific process skills

Turkish Title of Article:
Yerkabuğu temalı GEMS yaklaşımına dayalı etkinliklerin 4. sınıf öğrencilerinin kavramsal anlama ve bilimsel süreç becerilerine etkisi

Author(s):
Mustafa ÇELİK, Ahmet TEKBİYIK

For Cite in:
Çelik, M. & Tekbıyık, A. (2016). The influence of activities based on GEMS with the theme of earth crust on the fourth grade students’ conceptual understanding and scientific process skills. Pegem Eğitim ve Öğretim Dergisi, 6(3), 303-332, http://dx.doi.org/10.14527/pegegog.2016.016.

Orijinal Makale Başlığı:
The influence of activities based on GEMS with the theme of earth crust on the fourth grade students’ conceptual understanding and scientific process skills

Makalenin Türkçe Başlığı:
Yerkabuğu temalı GEMS yaklaşımına dayalı etkinliklerin 4. sınıf öğrencilerinin kavramsal anlama ve bilimsel süreç becerilerine etkisi

Yazar(lar):
Mustafa ÇELİK, Ahmet TEKBİYIK

Kaynak Gösterimi İçin:
Çelik, M. & Tekbıyık, A. (2016). The influence of activities based on GEMS with the theme of earth crust on the fourth grade students’ conceptual understanding and scientific process skills. Pegem Eğitim ve Öğretim Dergisi, 6(3), 303-332, http://dx.doi.org/10.14527/pegegog.2016.016.
The Influence of Activities Based on GEMS with the Theme of Earth Crust on the Fourth Grade Students’ Conceptual Understanding and Scientific Process Skills

Mustafa ÇELİK*a, Ahmet TEKBIYIK*b

aThe Büyükköy Primary School, Rize /Turkey
bRecep Tayyip Erdoğan University, Faculty of Education, Rize/Turkey

Abstract

This study aimed to determine the influence of the activities developed based on GEMS on students’ conceptual understanding and scientific process skills on the subject of “Earth Crust”. Mixed method, which includes the collective use of qualitative and quantitative research methods, was employed in this study. The study was carried out in a public village school located in the Eastern Black Sea Region of Turkey. The research sample consisted of the 4th grade students of this school. 13 students participated in the study. Data were collected by Scientific Process Skills Test, Conceptual Understanding Test, and semi-structured interviews. Six successive activities were conducted. These activities are as follows: Field Trip, Let’s Examine the Rocks, Factors Influential on Soil Formation (Parental Involvement), Erosion, Fossils and Rocks with an Economic Value, and Mathematical Modeling. The research findings show that an improvement occurred in the understanding levels of the students regarding the concepts of rock, metal, fossil, soil formation, and erosion as a result of the activities conducted. In addition, they had an opportunity to make observations, collect, record, and analyze data. Moreover, the activities were supported by mathematical skills such as measuring, modeling, and creating graphs.

Keywords:
GEMS, Active learning, Earth Crust subject.
Introduction

Today’s innovative teaching approaches aim to educate individuals through interactive practices where knowledge is concretized as much as possible; the active participation of students is ensured; their scientific and social skills are developed; and obtained knowledge is applied to daily life (Tekbıyık, Birinci-Konur & Şeyihoğlu, 2014). In this way, the aim is to improve scientific and social skills. GEMS (Great Exploration in Math and Science) is considered one such modern curriculum involving the above-mentioned characteristics within its scope. GEMS activities, which are created by guided discovery based on scientific inquiry, aim to enable students to learn independently, think critically, understand basic scientific and mathematical concepts, acquire scientific skills, and have positive attitudes towards science and mathematics (Barrett et al., 1999). GEMS, which aims to endear science and mathematics to children in early ages via amusing activities, is based on interdisciplinary ties and testable real-life practices and allows learners to experience all scientific processes by putting them at the center (Barrett et al., 1999).

The review of the contemporary national (Turkish) and international science education literature shows that more importance is attached to those approaches which enable children to understand and use scientific processes in comparison to those which allow them to learn basic scientific concepts, scientific generalizations, scientific theories, and scientific laws (Batı, 2013). In this regard, GEMS aims to create awareness among children that they can do science by encouraging scientific thinking and adopts students’ direct participation in teaching (Yalçın & Tekbıyık, 2013). GEMS activities allow students to discover things by themselves. This approach provides a practical way of teaching both concepts and scientific process skills within a limited time period (Barrett et al., 1999).

The Characteristics of GEMS Activities

GEMS activities start with action. Those students, who get involved in an action, query the situation they work on constantly. These activities contribute to students’ motivation and encourage critical thinking among them by providing them with experiences that they need in order to understand concepts and ideas better. GEMS activities make use of materials that are cheap and easy to use and access. In addition, they do not require any special scientific or mathematical skill for teachers. These activities are based on practices which are motivating, open to transfer, and more realistic than course books (Barrett et al., 1999).

Recently, the importance attached to interdisciplinary relations and multi-dimensional approaches towards problems have been on the rise to achieve meaningful learning, and integration of various disciplines to teaching has been brought to the agenda (Taşkın Can, Cantürk Günhan & Öngel Erdal, 2005). In interdisciplinary teaching, a certain concept, problem, or subject is taken as basis, and the knowledge and skills that may shed a light on this concept from various aspects are drawn and integrated from relevant fields. Hence, students are allowed to make sense of the concepts from other disciplines and acquire analysis and synthesis skills (Demirel, Tuncel, Demirhan & Demir, 2008). Thanks to an interdisciplinary organization, it is possible to acquire knowledge and skills belonging to certain disciplines and integrate them meaningfully (Aydın & Güney Balm, 2005). GEMS is considered as an internationally accepted interdisciplinary teaching process that involves the integration of science and mathematics (Czemiak, Weber, Sandmann & Ahern, 1999; Çam, 2013; Hurley, 2001).

The Science Curriculum in Turkey adopts similar approaches to GEMS. It features an inquiry-based learning strategy allowing students to acquire scientific knowledge meaningfully and permanently in an environment, where students are active and teachers are guiding in the process of planning and conducting lessons (MEB, 2013). Besides incorporating these features of the science curriculum in Turkey, GEMS also includes activities for introducing the life skills prescribed in the curriculum (e.g. critical thinking, creative thinking, problem-solving). Moreover, it is seen that purposes such as feeling the need to discover their environment, believing in the value of science, and seeking the meaning of
the world through learning by experience like a scientist, which are all expected to be acquired by students within the scope of the science curriculum, are in line with the objectives of GEMS.

International literature includes longitudinal studies in which GEMS approach is implemented on various groups (Bevis, Granger, Saka & Southerland, 2009a; Bevis et al., 2009b). These studies revealed that GEMS activities are effective in developing positive attitudes (Sağlam, 2012), facilitating conceptual development (Yalçın & Tekbıyık, 2013), and acquiring new concepts (Sarıtaş, 2010). In addition, the activity-based structure of GEMS is reported to be more effective in increasing student achievement than traditional teaching practices (Olsen & Slater, 2009).

The aforementioned limited numbers of studies in Turkey are mainly at pre-school level (Sarıtaş, 2010; Yalçın & Tekbıyık, 2013) or have been conducted in private schools where there is a high level of access to opportunities (Sağlam, 2012). However, conducting GEMS activities at primary school level with limited environmental opportunities allows designing activities that are suitable for the environment. In this sense, analyzing the practicability of GEMS activities in a rural area with integration into regional opportunities is of importance.

Especially the international mathematics and science assessments show that the target acquisitions of today's curricula cannot be taught enough through the current approaches adopted in Turkey (MEB, 2014). The results of TIMSS 2011 indicate that Turkey ranks 36th among 50 countries taking part in the 4th grade science assessment (MEB, 2014; Yıldırım, Yıldırım, Ceylan & Yetişir, 2013). Science content in TIMSS is divided into 3 domains, which are Life Science, Physical Science, and Earth Science. According to the distribution on the basis of content domains, mean achievement is 45% for Physical Sciences, 43% for Life Science, and 40% for Earth Science. Earth science is seen to be the subject area in which the 4th grade students have the lowest achievement in TIMSS. Previous research demonstrates that students do not have adequate conceptual levels on earth science subjects. Literature review indicates that studies focusing on earth science are mainly based on the analysis of the influence of a technique or instruction method on achievement, knowledge level, and attitude (Akkuş, 2009; Aksoy & Gürbüz, 2012; Kocaoğlu, 2012; Aktaş, 2012). In addition, studies have mostly been conducted with middle school students and pre-service teachers while there are only a few studies at primary school level (Bozkurt, Akın & Uşak, 2004; Özgen, 2012; Özgen, 2013; Altıntaş, 2014).

Thus, activities with the theme of “earth crust” were developed in the present study within the scope of the acquisitions of the unit “Secret of the Earth”. An attempt was made to integrate GEMS activities into the current curriculum rather than creating an alternative to it based on GEMS. Accordingly, this study aimed to determine the influence of the developed activities on the 4th grade students’ conceptual understanding and scientific process skills on the theme of earth crust. To this end, the sub-problems below were tried to be answered:

1. What is the influence of the curriculum based on GEMS activities on students’ conceptual development?
2. What is the influence of the curriculum based on GEMS activities on students’ scientific process skills?
3. What are the views of students regarding the curriculum based on GEMS activities?

Method

Research Design

Mixed method was employed in the study. Mixed method studies are not simple mixtures of qualitative and quantitative approaches; rather they are integration studies in which these approaches support one another (Fırat, Kabakçı-Yurdakul & Ersoy, 2014). The collective use of qualitative and quantitative data provides a better insight into research problems compared to studies employing any single method and is recommended for multi-disciplinary studies (Creswell & Plano Clark, 2011).
Convergent parallel, which is a mixed method design, was employed in the study. This design deals with the qualitative and quantitative dimensions of the study simultaneously. However, they are separated from one another in the data analysis process. The results are combined while making general interpretations (Creswell & Plano Clark, 2011).

Participants

The study was carried out in a public primary school located in a rural area of the Eastern Black Sea Region of Turkey. The study sample consisted of the 4th grade students of this school. 13 students (7 females and 6 males) participated in the study. The study was conducted in a school located in a rural area because it was thought that the flexible and easy-to-apply nature of GEMS would provide an advantage for such schools which apparently differ from city schools in terms of resources, equipment, and success. These differences between the schools in rural areas and urban areas manifest themselves in national and international exams, too. Mean mathematics and science achievement scores obtained from TIMSS 2011 indicate that the disadvantages of the schools in rural areas also have a negative influence on achievement. In other words, students studying in urban areas have higher achievements than those studying in rural areas (MEB YEĞİTEK, 2014).

In addition, students establishing a bond with their environment should be directed to educational activities that allow them to show sensitivity towards social, economic, ecological, etc. problems of their environment (Senge et al., 2000). Realistic learning environments which represent the world where children live, study, and play to a great degree allow them to use their high-level skills (Borich, 2013). In this sense, the rural area, where the study was conducted, was estimated to be quite a convenient area for the implementation of the learning activities requiring the direct use of the environment one lives in rather than being a representation of the real life.

Instruments

Scientific Process Skills Test:

A scientific process skills test was prepared based on the scope of the GEMS activities about “earth crust” developed in the study and the levels of the primary school 4th grade students. The test contained questions addressing the skills of deducing, determining the variables, observing, processing data and creating models, and interpreting and inducing. Taking into account the acquisitions associated with the developed activities, a table of specifications was prepared for scientific process skills to ensure content validity. Afterwards, expert views were taken, and the test was finalized. The test-retest method was used to ensure the reliability of the test. The developed test was administered to the 4th grade students attending a different village school twice (the second test administered one week later following the first test). The coefficient of correlation between two tests was found to be 0.96. Therefore, the test had high-level reliability in terms of stability. The developed test was administered to the participants before and after the study as pretest and posttest respectively. Sample questions from Scientific Process Skills Test are given in Appendix 1.

Conceptual Understanding Test (CUT):

Conceptual Understanding Test (CUT) test composed of open-ended questions, which were prepared based on the scope of GEMS activities about “earth crust” developed in the study and the acquisitions of the unit “Secret of the Earth” included in the Science Curriculum (2013) in order to measure conceptual understanding among the students. There are 11 items in CUT to reveal ideas regarding the concepts of rocks, minerals, mines, factors influential on soil formation, erosion, and fossil. Expert views were taken before implementing the test. In this sense, the views of a science and geography (earth science)
educator/academician and a primary school teacher were taken to organize the items in the test. In addition, a pilot study of CUTF was performed in a different rural school with characteristics similar to those of the target group. The test was finalized following this implementation. The form was administered to the participant group in written form as pretest and posttest.

Interview:

Semi-structured interviews were conducted with 3 female students and 3 male students who were selected via convenience sampling method among the participants in order to reveal student views about GEMS-based teaching practices. Focus group discussion was preferred in order to allow the participants to express themselves better and ensure a holistic evaluation of the study. Group interviews can be employed after experiences such as implementation of a certain policy or a curriculum in order to allow participants to evaluate the practice from multiple perspectives (Büyüköztürk, 2007; Glesne, 2013). The interviews were carried out by use of the interview forms prepared. In the interviews, the students were asked whether activities were interesting and fun. They also explained what kind of knowledge and skills they acquired thanks to the activities and for which type of courses and subjects such activities would be beneficial. Previous studies focusing on similar characteristics (Birinci-Konur, Şeyihoğlu, Sezen & Tekbıyık, 2011; Marulcu, Saylan & Güven, 2014; Tekbıyık, Şeyihoğlu, Sezen-Vekli & Birinci-Konur, 2013) were used to form the questions in the interview form. In addition, items of the interview form were simplified by taking into account the views of a science expert and a social sciences expert.

Data Analysis

Qualitative and quantitative analysis methods were used together. The quantitative data obtained from Scientific Process Skills Test were analyzed through Wilcoxon test via IBM SPSS Statistics 20. The qualitative data obtained from Conceptual Understanding Test were analyzed through descriptive analysis. The data obtained through the interviews, on the other hand, were analyzed through content analysis. Encoding was performed by identifying common views via content analysis. Based on these codes, the themes which could represent the data in general were created. On the other hand, the same set of data was encoded by two different researchers in order to ensure reliability. Decisions were made on the inconsistent codes through consensus.

Implementation Process

GEMS-based activities require an effective planning. The research was planned by considering the subject of the GEMS-based work, the way the activities would pay regard to environmental conditions, the way parental involvement would be ensured, the way scientific process skills and conceptual understanding levels would be determined, and so on. Accordingly, a set of activities complying with the nature of GEMS were developed. A meeting was held with the 4th grade students constituting the sample of the study prior to the implementation process. They were informed about what the study involved and why and how the process would be conducted. The activities deal with rocks, factors influential on soil formation, the influence of erosion, fossil formation, and the contribution of mines to the country’s economy.

Activities

This section presents brief information regarding the focus of successive activities. The details regarding the acquisitions and scientific process skills of each activity are given in Appendix 2.
Activity 1-Field Trip: The students made examinations under the guidance of the teacher in a field close to the school, where they observed the structures of rocks. The students observed the structures of rocks, collected various rock samples from the field, and placed them in bags. They put tags on the bags and wrote short notes about the field and the structure of rocks on these tags (e.g. field is a dip slope; rock samples are square, hard, and brown; date).

Activity 2-Let’s examine the rocks: The students brought the rocks they collected during field trip to the class and examined them. In these examinations, they classified the rocks according to their colors, shapes, brightness, and hardness. Thus, they understood the role of minerals in the structure of rocks.

Activity 3- Factors Influential on Soil Formation (Parental Involvement): In order to make students understand the role of plants in soil formation, some biscuits and toothpicks were brought to the classroom. Biscuits represented rocks while toothpicks represented the roots of plants. The toothpicks dug into various parts of the biscuits led them to break into pieces. Thus, the students understood the role of the plants in breaking rocks into pieces and soil formation. In order to make the students understand the role of change in temperature for soil formation, the brickbats in a pot were left in the school, where they waited in water for 4 or 5 hours. Afterwards, the brickbats, to which water was thoroughly penetrated, were placed into plastic bags, and the students took them their homes. Informative bulletins were sent to parents regarding the activities. Thus, they were informed about the content of the activities. The students placed the brickbats which absorbed water in the freezer with the bags they were in for a night. They checked what happened the next day. With the discussion questions in the bulletin, they inquired what the reason was for the change in the brickbats. They wrote their observations on the charts and shared them with their friends. It was seen in the activity that the water, whose volume expanded upon being frozen, created cracks in the brickbats.

Activity 4-Erosion: An activity was prepared to reveal the relationship between erosion and soil loss. A comparative observation was made between the environment with trees and the environment without trees. Two bottles filled with two different surfaces were put under water until they got thoroughly watered. The water flowing down the slopes accumulated in the glasses. The water in the glasses was filtered, and the amount of remaining soil was measured. The students tried to find out “Why did one of the glasses have more soil than the other glass?”. They shared their opinions about the precautions that can be taken to prevent erosion.

Activity 5-Fossils: In order to construct the concepts of fossil formation, fossil science, and fossil scientist in the students’ minds, ready fossil molds were brought to the class, and the students were asked to dig. They worked in groups of three. The students who worked like a fossil scientist during the excavation felt more curious in each part. They formed the skeleton of the fossil by combining all the excavated parts.

Activity 6- Rocks with an Economic Value and Mathematical Modeling: An informative video was played explaining where and how mines are processed, how they are used, and in which areas they are used. After drawing attention to the concept of mine, two different mathematical modeling activities were conducted. Both activities were constructed on a problem situation. In one of the mathematical modeling activities, the students tried to find out when the mine in a reservoir would deplete. In the other mathematical modeling activity, the students analyzed the relationships between the humidity rates and heat amounts of three different coal types. In both activities, the students used skills such as interpreting a table, converting data into tables and graphs, and interpreting graphics.
Results

Findings from Conceptual Understanding Test

Conceptual Understanding Test consisting of open-ended questions was administered to the students as a pretest and posttest in order to determine the influence of the activities on their conceptual development. The test contained items in the following four sub-dimensions: rocks, mines, soil, and fossils.

Table 1 shows the students’ views on rocks. It is seen that the students’ definitions of rocks and explanations as to what they are made of improved following the activity. Prior to the activity, only one student selected the option “Of minerals”. It is seen that half of the students (f=7) included this option in their responses following the activity. In addition, the expression “Rocks are colorful because they contain different minerals” was stated by only one student before the activity while nearly all the students (f=12) selected this option after the activity.

Items	Student Views on Rocks	Pretest (f)	Posttest (f)
What is a rock?	A term referring to stones or rocks.	2	3
Define.	It is a big part of a stone.	5	7
	Big stones in the world.	1	4
	Stones in various colors.	1	-
	Stones shining from the bottom of the sea.	1	-
What are the rocks made of?	Of stones.	4	2
	Of sand.	2	2
	Of hills.	1	1
	Of mines.	1	-
	Of certain hard structures.	1	-
	Of soil.	-	1
	Of pebbles.	-	1
	Of minerals.	1	7
Why are there so many and lots of colorful rocks in the nature?	Because they mix with soil.	1	-
	Because they have different characteristics.	1	-
	Because sand is colorful.	1	1
	Because of avalanches and earthquakes	1	-
	Because they contain different minerals	1	12

Table 2 shows student views on the concept of mine. The variety in the student’ views on defining mines and their contribution to economy and technology were not observable prior to the activity while they became prominent following the activity. Moreover, the number of the students associating the concepts of mine and economy with one another increased. Following the activity, 12 students regarded the rocks with economic value as mine; 8 students stated that mines contribute to economy; and 6 students pointed out that mines contribute to technology though their use for tools and instruments.

Table 3 shows student views regarding the factors influential on soil formation and erosion. Student views regarding the factors influential on soil formation significantly changed following the activity. In addition, plants and mushrooms, which were not mentioned among the factors influential on soil formation prior to the activity, were mentioned by the students following the activity. The concept of erosion was accurately defined by 4 students prior to the activity whereas this number increased up to 9 following the activity. Moreover, 4 student responses included misconceptions regarding erosion before the activity. The same students kept their misconceptions following the activity. However, one of the
students did not use this problematic expression after the activity. Furthermore, the solutions proposed by the students regarding struggle against erosion did not change in terms of variety; however, there was an increase in their frequencies. As a recommendation for struggle against erosion, 7 students mentioned “planting trees” prior to the activity. However, this precaution was mentioned by 12 students following the activity.

Table 2
Student Views on Mines.

Items	Student Views on Mines	Pretest (f)	Posttest (f)
What is mine? Define.	Things like oil and coal.	2	1
	Valuable stuff dug from the underground.	3	-
	A place where there are coals inside.	2	1
	Substances excavated from the underground.	2	-
	Stones with economic value.	-	12
What are the contributions of mines to economy?	They make money.	1	-
	They are used for knickknacks.	1	3
	They are sold for money.	-	1
	Mines have a big contribution to economy.	-	8
What is the influence of mines on technology?	They have an influence on technology.	1	1
	They are used for making knickknacks.	1	-
	Mines do not have much influence on technology.	1	1
	Mines have different influences on technology.	1	-
	They are used for making stuff, tools, and instruments.	-	6

Table 3
Student Views on Soil Formation and Erosion.

Items	Student Views on Soil Formation and Erosion	Pretest (f)	Posttest (f)
Explain the factors influential on soil formation	Earthquake	2	-
	People	2	1
	Animals	2	2
	Temperature difference	2	5
	Rain	4	4
	Water	-	7
	Wind	4	7
	Plants	-	3
	Mushrooms	-	1
What is erosion? Define.	Transportation of soil via water	4	9
	*Landslide	4	3
	Perishing of soil	1	-
	Soil loss	-	2
What kinds of measurements can be taken against erosion?	We should plant trees.	7	12
	We should make steps in the slopes.	3	4
	We should plough the land in the direction contrary to the slope.	2	2

*Expression with misconception
Table 4 shows student views on the concept of fossils. The table indicates that the students did not know the concept of fossils prior to the activity. They did not know what fossils mean for the world we live in. Following the activity, 5 students used the term fossilization. An increase was observed in student answers to the question “Which methods should be used to discover the past secrets of the world we live in?” following the activity. 5 students mentioned “excavation studies”, which was not stated prior to the activity, after the activity.

Table 4
Student Views on Fossils

Items	Student Views on Fossils	Pretest (f)	Posttest (f)
Are there any living beings that used to live in the past but not now? Explain with examples.	Dinosaurs do not live today.	5	5
	Kangaroos used to live in the past, but they currently do not.	1	1
	Yes, there.	1	-
	I read that somewhere but I do not remember.	1	-
	No, there are not. This is because dinosaurs fossilized.	-	5
Which resources or methods should be used to discover the past secrets of the world we live in?	Pictures and things	1	1
	Inscriptions	1	-
	People who used to live in the past and live in the present	2	3
	Fossils	1	3
	Bones	2	4
	Excavation studies	-	5

Findings Regarding Scientific Process Skills Test

Scientific Process Skills Test composed of open-ended questions was administered as a pretest and as a posttest in order to determine the influence of the GEMS-based activities on the scientific process skills of the students. The test contained questions addressing the skills of deducing, determining the variables, observing, processing data and creating models, and interpreting and inducing.

Table 5 shows the analysis results of the students’ pretest and posttest scores obtained from Scientific Process Skills Test. The data in the table indicate significant differences in favor of the posttest scores in terms of the skills of deducing ($z=-2.81$, $p<.05$), determining the variables ($z=-2.97$, $p<.05$), observing ($z=-2.97$, $p<.05$), processing data and creating models ($z=-2.43$, $p<.05$), and interpreting and inducing ($z=-2.96$, $p<.05$).
Table 5
The Wilcoxon Signed-Rank Test Comparison of the Pretest and Posttest Scores Obtained from Scientific Process Skills Test.

Scientific Process Skills	Posttest-pretest	N	Mean rank	Rank Sum	z	p
Deducing	Negative rank	0	.00	.00	-2.81	.005
	Positive rank	9	5.00	45.00	-2.97	.003
	Equal	4	-			
Determining the variables	Negative rank	0	.00	.00	-2.97	.003
	Positive rank	11	6.00	66.00	-2.97	.003
	Equal	2	-	-		
Observing	Negative rank	0	.00	.00	-2.97	.003
	Positive rank	11	6.00	66.00	-2.97	.003
	Equal	2	-	-		
Processing data and creating models	Negative rank	0	.00	.00	-2.43	.015
	Positive rank	7	4.00	28.00	-2.43	.015
	Equal	6	-	-		
Interpreting and inducing	Negative rank	0	.00	.00	-2.96	.003
	Positive rank	11	6.00	66.00	-2.96	.003
	Equal	2	-	-		

Findings Obtained from Interviews

Semi-structured interviews were conducted with 3 female students and 3 male students in order to reveal the students’ views about the activity process. Table 6 shows the findings obtained from the analysis of the interviews in the form of themes and codes. Direct quotations are presented in this paper in order to show the data from which the results were obtained.

Table 6
Content Analysis Regarding the Interviews Conducted with the Students on Activities

Themes	Codes	Students
The feelings aroused by the activities	Nice	S1, S2, S3, S5, S6
	Fun	S3, S4, S5, S6
	Interesting	S1, S2, S3, S4, S5
	Good	S4, S6
The practicability of the activities	Understandable	S1, S2, S3, S4, S5, S6
	Easy	S1, S2, S3, S4, S5, S6
Their contributions to learning	New knowledge	S1, S2, S3, S4, S5
	The will to make research	S1, S3, S4, S5, S6
	Exam	S6
In physical sciences	Useful	S1, S2, S3, S4, S5, S6
	New learning	S1, S2, S6
	Permanent learning	S2, S5
	Exam	S5
At certain times of the week	Satisfaction	S1, S2, S4, S5, S6
	Fun	S1, S2, S4, S5, S6
	New knowledge	S1, S2
In various courses	Social sciences	S1, S3, S4, S6
	Mathematics	S5
	Turkish	S2, S3
Table 6 shows student views on GEMS-based activities. Based on these views, the themes of feelings, practicability, contribution to learning, and use were determined. According to the results of the interviews, the students found the activities nice, fun, interesting, and good. They expressed that the activities were understandable and easy to perform. They believed that the activities helped them to acquire new knowledge and improved their motivation to make a research. Students further stated that GEMS practices can be employed in social sciences, mathematics, and Turkish language courses as well.

In response to the question “What do you think of the activities?” the students stated that they were nice, fun, and interesting. They also noted that they really enjoyed the activities and would love to carry them out once again. Some of the student responses regarding this issue are as follows:

S3 “I think it was real fun. I liked both studying with you and entertaining activities.”; S2 “I really liked the biscuit and toothpick activity. It was interesting.”; S6 “It was very good. We found bones. I really liked the excavation. The excavation and revelation of bones were fun.”

In response to the question “Were the activities understandable and easy to perform?” the students stated that the activities were understandable and easy to perform. Some of the student responses regarding this issue are as follows:

S3 “They were easy and understandable. They were both fun and simple. They were the stuff we were able to do.”; S5 “They were understandable and easy to perform.”

In response to the question “What were the contributions of the activities to your learning?” the students stated that the activities helped them to acquire new knowledge, aroused their will to make research, and enabled their knowledge to be permanent. Some of the student responses regarding this issue are as follows:

S1 “For instance, I learnt that plants break rocks into pieces after long periods of time.”; S4 “I learnt what fossilization means, that rocks are made of minerals, and that minerals color the rocks.” S3 “Yes. Having made such activities, I tried to make my own excavations at home. I found metals, various stones, worms, various insects, and animals near the pond. I examined the stones. I looked at their colors. I tried to find out which animals live in water. I saw something similar to a millipede. I want to make research about fossils.” S6 “The bones and excavations made me want to make research.”

In response to the question “Would you be happy to engage in such activities once or a couple of times a week?” the students stated that they considered these activities useful and would love to engage in such activities on certain days and at certain times in a week. They expressed that the activities were fun and contributed to their learning. Some of the student responses regarding this issue are as follows: S1 “I would be happy because it is fun. We would learn many new things.” S5 “I would be happy because such activities are entertaining.” S4 “It would be good. It would be useful since they are easy and fun.”

In response to the question “How do you think these activities can be conducted in other courses?” the students stated that they can be conducted in social sciences, mathematics, and Turkish language courses. Some of the student responses regarding this issue are as follows:

S1 “I think it can be employed in the social sciences course because there are similar subjects in the social sciences course such as the layers of our world.” S2 “I think it can be employed in the Turkish course because there are reading texts in relation to these subjects. We learn similar things from similar stories in the texts.” S5 “I think it can be employed in the Mathematics course because we make calculations such as addition and subtraction. The activities involve addition and subtraction operations, which is why I believe it can be employed in Mathematics.”
Discussion

In this study, the effectiveness of the implementation of a curriculum prepared based on the GEMS-based activities in a village school was examined. Initially, the study sought an answer to the question “What is the influence of the curriculum based on GEMS activities on students’ conceptual development?”. The study results indicated that the conceptual understanding of the students regarding the concepts of rocks, mines, fossils, soil formation, and erosion improved. The activities particularly activated cognitive processes such as defining and associating the concepts. Hence, it is possible to say that conceptual variety improved as well. This may be because the activities were prepared in an interdisciplinary structure and the students took active roles based on daily life experiences. While the students were constructing the concept of rocks in the activities, they examined rocks in a field close to their school. They collected rock samples, observed natural factors influential on soil formation, took notes in the field like a scientist, and sorted the rock samples they brought to the class. In regard to erosion, they engaged in activities such as comparing soil loss, observing, and reaching a result by measuring the amount of lost soil. The concepts of fossils and fossilization were studied on a model similar to the real situation. An attempt was made to provide the students with the knowledge of the contribution of mines to the country’s economy and the idea of sustainability through a mathematical modeling dealing with the depletion process of reservoir in a mining area. It is seen that all the mentioned practices offered important and rich learning experiences to the students. The results are consistent with the results of previous studies in terms of conceptual understanding (Sarıtaş, 2010) and conceptual variety (Yalçın & Tekbıyık, 2013).

CUT administered as a pretest indicated that the students had misconceptions regarding erosion. The students defined erosion as “landslide”. Previous studies report that this is a common misconception among students from primary school to university (Pınar & Akdağ, 2012; Özgen, 2013; Turan & Kartal, 2012). Since no particular attention was paid to eliminate the misconceptions of the students during the activities, three students kept their misconceptions in the posttest as well.

The second sub-problem of the study is “What is the influence of the curriculum based on GEMS activities on students’ scientific process skills?”. The results of the study indicated a significant difference in the posttest results in regard to the skills of deducing, determining the variables, observing, processing data and creating models, and interpreting and inducing. Acting like a scientist, the students had the opportunity to make observations, collect data, record them, and make analyses. In addition, the activities were supported with mathematical skills such as measuring, modeling, and graphing. Hence, the students had the opportunity to exhibit both scientific and mathematical skills simultaneously. Previous studies support these data, too. In other words, GEMS-based activities make positive contributions to students’ scientific process skills (Bevis, Granger, Saka, & Southerland, 2009; Yalçın & Tekbıyık, 2013). Previous studies report that instruction practices based on active learning, research, and inquiry yield effective results in the matter of scientific process skills, raising the awareness of scientific process skills and making more importance be attached to science (Kula, 2009; Günel, Kabataş-Memiş & Büyükkasap, 2010; Tekbıyık et al., 2013).

The third sub-problem of the study is “What are the views of students regarding the curriculum based on GEMS activities?”. The results obtained from the student interviews indicated that the students found the activities fun, interesting, and easy to perform and understand. They also stated that the activities made them eager to make research, helped them to make research, and ensured the permanency of what they learnt. Previous studies support this result. It is reported that GEMS-based practices are welcomed by students, teachers, and parents (Sağlam, 2012).

Another remarkable point mentioned by students in the interviews is that GEMS activities aroused a will to make analysis and research among them. The students denoted that they started to use the skills they learnt at school via activities in their daily lives. The students with higher sensitivity towards the incidents taking place around them started to engage in exploring their environment through various analyses. GEMS aims at making curiosity a permanent part of the daily life. Curiosity, the skills of getting
into action, the skill of inquiry during the action, and the skill of reflection are the skills intended for the students’ acquisition through GEMS activities.

Parental involvement is of importance in GEMS activities. Getting involved in activities, being informed about the learning experiences at school, and learning with children make parents an active part of education. Such support and trust a student receives from his/her close environment increases his/her belief in learning and integrates school with life. The present study included parental involvement and made them a part of the process. Bringing what they learnt at school their homes, they got the opportunity to transform their close environments into learning environments.

Conclusion and Recommendations

This study was carried out based on the GEMS approach through activities with the theme of earth crust in a primary school located in a rural area. It contributed much to the development of the students’ conceptual understanding regarding rocks and rock formation, mines, soil formation, erosion, and fossils. In addition, the study was influential on the skills of deducing, determining variables, observing, processing data and creating models, and interpreting and inducing. Furthermore, the students found the GEMS activities interesting, fun, easy, understandable, and contributive to learning.

Taking all three dimensions of the study into account, it can be said that the study based on the GEMS approach yielded effective results in a school located in a rural area of Turkey. GEMS has an active, fun, easy to practice, and interdisciplinary structure that keeps the curiosity alive, which allows an instruction based on this approach to make a holistic contribution in cognitive, affective, and psychomotor terms. The activities within the scope of the study were implemented in a school located in a rural area, allowing the natural development of learning. Through successive activities that complemented one another, inquiry was maintained ceaselessly.

The following recommendations are put forward in the light of the results obtained from the study:

This study, which was carried out at 4th grade level in a rural area, revealed the practicability of the GEMS-based activities. The activity design is like a guide for teachers. In other words, it can be employed by teachers to conduct similar practices in their classes.

- Various activities can be developed regarding various subjects and acquisitions based on the GEMS approach and their efficiency can be analyzed.
- A spiral curriculum module can be created based on GEMS within the scope of a subject or a unit, and longitudinal studies covering certain grade levels (e.g. 1-4, 5-8.) can be carried out.
- Courses, seminars, and in-service training activities introducing GEMS can be held for parents and educators in order to increase the common influence of the GEMS approach.
Giriş

Günümüzün yenilikçi öğretim yaklaşımlarıyla; bilginin somutlaştırılması, öğrencilerin aktif katılımı ve öğrenilen bilgilerin günlük yaşama aktarılması sağlama çabası bulunmaktadır (Tekbıyık, Birinci-Konur & Şeyihoğlu, 2014). Bu sayede bilimsel ve sosyal becerilerinin geliştirilmesi amaçlanmaktadır. GEMS (Great Exploration in Math and Science- Matematik ve Fende Büyük Buluşlar) programı, bu tür özellikleri kavşadığı modern eğitim programlarından biridir. Bilimsel sorgulamaya (scientific inquiry) dayalı rehberli keşif (guided discovery) yaklaşımını benimseyen GEMS etkinlikleri; öğrencilerin bağımsız öğrenmelerini, eleştirel düşünmelerini, fen ve matematik temalı konuları anlamalarını, bilimsel beceriler kazanması, bilimsel becerileri doğrudan öğrenme çabasını benimsenmesini amaçlar (Barrett et al., 1999). Fen ve matematik biliminin temel kavramlarını, genellemelerini, teorilerini ve yasalarını öğrendikleri yerine, bilimsel süreçleri anlamalarını ve kullanlarını sağlayacak yaklaşımların daha çok önem taşıdığı görülmektedir (Batı, 2013). Bu bağlamda GEMS bilimsel süreçleri teşvik ederek, öğrencilerin bilimsel düşünceye doğru çabalarını benimsenmesini amaçlar (Yalçın & Tekbıyık, 2013). GEMS etkinlikleri öğrencilerin kendi başlarına bir şeyler keşfetmelerine imkan tanmaktadır. Bu yaklaşım, sınırlı zaman içerisinde hem kavramları hem de bilimsel süreç becerilerini öğrencilerin öğrenme süreçlerine olabildiğince pratik bir yol sağlamaktadır (Barrett et al., 1999).

GEMS Etkinliklerinin Özellikleri

GEMS etkinlikleri eylemle başlanmaktadır. Eylemin içerisinde yer alan öğrenciler, üzerinde çalışılan durumu sürekli olarak sorgulamaktadırlar. Bu etkinlikler, öğrencilerin kavram ve fikirleri daha iyi anlamaları için ihtiyaç duydukları deneyimler sağlayarak, onların motive olmalarını yardımcı olmaktadır. GEMS etkinliklerinde öğrencilerin motive edici, transfere açık ve tek başına bir ders kitabından daha gerçekçi uygulamaları yaratmaktadır (Barrett et al., 1999).

Son yıllarda anlamlı öğrenmenin gerçekleşebilmesi için disiplinler arası ilişkilerin ve problemlere değil boyutlu yaklaşmanın önemi giderek artmış ve öğretimde farklı disiplinlerin entegrasyonu gündeme gelmiştir (Taşkin Can, Cantürk Günhan & Öngel Erdal, 2005). Disiplinler arası öğretmen, belirli bir kavram, problem ya da konu temel alınarak, bu kavrama değişik yönlerden ışık tutabilecek bilgi ve beceriler ilgili alanlardan alınarak bütünleştirilmektedir. Bu sayede öğrencilerin farklı disiplinlere deki kavramları anlamalarının, analiz ve sentez becerilerine ulaşmalarını mümkün kılmaktadır (Demirel, Tuncel, Demirhan & Demir, 2008). Disiplinler arasi bir düzenleme sayesinde hem belirli disiplinlere ait bilgi ve becerilerin öğrenilmesini, hem de bunların anlamlı bir şekilde bütünleştirilmesini mümkün kılmaktadır (Aydın & Güney Balım, 2005). GEMS yaklaşımı, fen ve matematik biliminin entegrasyonunun içeren uluslararası alanda kabul görmüş disiplinler arası öğretim süreçlerinden biri olarak değerlendirilmektedir (Czemiat, Weber, Sandmann & Ahern, 1999; Çam, 2013; Hurley, 2001).

Ülkemizde Fen Bilimleri Dersi Öğretim Programında benimsenen yaklaşımlar GEMS’le benzerlik gösterdiği görülmektedir. Fen Bilimleri Dersi Öğretim Programında derslerin planlanması ve uygulanmasında öğrencinin aktif, öğretmenin ise rehber ve yönlendirici olabileceği öğrenme ortamları temel
alınarak, öğrencilerin fen bilimleri alandındaki bilgiyi anlamlı ve kalıcı olarak öğrenebilmeleri sağlayacak araştırma-sorgulamaya dayalı öğrenme stratejisine vurgu yapılmıştır (MEB, 2013). Bu özellikleri kapsamında bulundurmasının yanı sıra, GEMS’te öğretim programında öngörülen yaşam becerilerini (eleştirel düşünce, yaratıcı düşünce, problem çözme vb.) kazandırma yönündeki etkinliklere de yer verilmektedir. Ayrıca Fen Bilimleri Dersi öğretim programında öğrencilerle kazandırılmaya çalışılan; yaşanan çevreyi keşfeme ve deyimi, bilimin değeri inanma, bir bilim insanı gibi yaparak yaşayarak dünyanın bilmaya çalışma gibi amaçların GEMS’ın hedefleriyle uyumlu olduğu görülmektedir.

Uluslararası alanda GEMS yaklaşımlının farklı gruplarda uygulandığı boylamsal araştırmaların yapıldığı görülmektedir (Bevis, Granger, Saka & Southerland, 2009a; Bevis et al., 2009b). Bu çalışmalarla olumlu tutumlar geliştirme (Sağlam, 2012), kavramsal gelişime yardımcı olma (Yalçın & Tekbıyık, 2013) ve yeni kavramlar edinme (Saritas, 2010) konusunda GEMS etkinliklerinin etkiliğine ortaya konulmuştur. Ayrıca GEMS’in aktiviteye dayalı öğretim yapısının, öğrenci başarısını artırmada geleneksel öğretim uygulamalarına göre daha etkili olduğu görülmüştür (Olsen & Slater, 2009).

Yukarıda belirtilen sınırlı sayıdaki çalışmaların Türkiye’de çoğunlukla okul öncesi düzeyde (Saritas, 2010; Yalçın & Tekbıyık, 2013) veya olanaklara erişilebilirlikin yüksek olduğu özel okullarda (private school) gerçekleşmiştir (Saritas, 2012) ve sınırlı kasteytlerin eğitimdeki etkisi (Özgen, 2013; Altıntaş, 2014). Özellikle Matematik ve Fen bilimlerindeki uluslararası değerlendirmelerde, mevcut öğretim uygulamalarının öğretim programlarında hedeflenen becerilerin kazandırılmada yetersiz kaldığı görülmektedir (MEB, 2014). TIMSS 2011 sonuçlarına göre Türkiye 4. sınıf düzeyinde fen bilimleri alanında değerlendirilme katılan 50 ülke arasında 36. sırada yer almaktadır (MEB, 2014; Yildirim, Yildirim, Ceylan & Yetishir, 2013). TIMSS’de Fen bilimleri alanları; Canlı Bilimi, Fiziksel Bilimler ve Yer Bilimleri olmak üzere 3 konu alanı先进技术maktadır. Konu alanlarına göre dağılım incelediğinde başarı ortalaması Fiziksel Bilimler %45, Canlı Bilimi %43 ve Yer Bilimleri %40 olarak gerçekleşmiştir. Buna göre 4. sınıf öğrencilerinin en başarılı konu alanı fen bilimleri olarak tanımlanabilir. Yapılan çalışmalardan da öğrencilerin yerbilimleri konularında ya bir tekrar, ya da öğretim yönteminin etkinlikteki incelenmesine dayalı olarak başarı duyarlı, bilgi düzeyi ve tutum üzerine odaklandığı görülmektedir (Akkus, 2009; Aksoy & Gurbuz, 2012; Kocaoğlu, 2012; Aktas, 2012). Bunun yanında çalışmalardan daha çok ortaokul öğrencileri ve öğretmen adaylarıyla yürütüldüğü, ilkokul düzeyinde yapılan çalışmalardan az sayıda olduğu görülmektedir (Bozkurt, Akin & Usak, 2004; Özgen, 2012; Özgen, 2013; Altintas, 2014).

Bu bağlamda çalışmadı ağırlıklı olarak Yer Kabuğunun Gizemi ünitesinin kazanımları kapsamında “Yerkabuğu” temali etkinlikler geliştirilmistir. GEMS’in yapısına uygun olarak mevcut öğretim proğramında alternatif oluşturmak yerine, etkinlikler öğretim proğramına entegre edilmeye çalışılmıştır. Buna göre çalışmanın amacı, öğrencilerin GEMS’te kazandırdığı becerilerin, GEMS etkinliklerinin etkisini belirlemektedir. Bu amaç doğrultusunda çalışmadı aşağıdaki alt problemlere cevap aranmıştır:

1. GEMS yaklaştıma dayalı etkinliklerle hazırlanan bir programın öğrencilerin kavramsal anlamalarına etkisi nasıldır?
2. GEMS yaklaştıma dayalı etkinliklerle hazırlanan bir programın öğrencilerin bilimsel süreç becerilerine etkisi nasıldır?
3. Öğrencilerin GEMS yaklaştıma dayalı etkinliklerle hazırlanmış bir programa yönelik görüşleri nasıldır?
Yöntem

Araştırma Modeli

Arapçturmada karma yöntemi kullanılmıştır. Karma yöntemi araştırmaların nitel ve nicel yaklaşımlarının basit bir birlemesi olmayıp, bunların güçlü yanlarının birbirini desteklediği kapsamlı entegrasyon çalışmalardır (Fırat, Kabakçı-Yurdakul & Ersoy, 2014). Araştırmada nitel ve nicel verilerin birlikte kullanılımı, araştırma probleminin tek başına kullanılamayış bir yöntemden çok daha iyi bir şekilde analiz edilmiş ve çok disiplinli çalışmalarda önerilmektedir (Creswell & Plano Clark, 2011). Araştırmada karma yöntem desenlerinden yakсыsın paralel desen kullanılmıştır. Bu desende araştırmının nitel ve nicel boyutları birbirini tamamlayıcı bir şekilde anlayışını sağlamakta ve çok disiplinli çalışmalarda önerilmişdir (Creswell & Plano Clark, 2011).

Katılımcılar

Çalışma Doğu Karadeniz Bölgesinde Milli Eğitim Bakanlığı’na bağlı kırsal bölgesinde gerçekleştirilmiş, çalışmanın örneklemini bu ilkokulda 4. sınıf öğrencileri oluşturmış, çalışmaya 7 kız 6 erkek olmak üzere toplam 13 öğrenci katılmıştır. Araştırmanın kırsal bölgesindeki bir okulda gerçekleştiğini düşünmektedir. Ülkemizdeki kırsal bölge okulları, şehirdeki okullarla kaynak, donanım ve başarı yönünden belirgin şekilde farklılıklarında, bu durumun yerel okulların avantajını sağlayacağı düşüncesidir. Türkiye’deki kırsal bölgelerde bu fark, ulusal ve uluslararası sınavlara yansı⌨tir (MEB YEĞİTEK, 2014). Bununla birlikte, yaşadığı ortamla bir bağ kuran öğrencilerin; bu yerin sosyal, ekonomik, ekolojik vb. sorunlarına hassasiyet göstermelerine yönlendirilmesi ve etkinliklerin uygulanmasına oldukça elverişli bir zemin hazırlayabileceği öngörülmektedir.

Veri Toplama Araçları

Bilimsel Süreç Becerileri Testi:

Çalışmada geliştirilen GEMS tabanlı “Yerkabuğu” temalı etkinliklerin kapsamı ve ilkokul 4. sınıf öğrencileri seviyesi dikkate alınarak bilimsel süreç becerileri testi hazırlanmıştır. Testte; çıkarım yapma, değişkenleri belirleme, gözlem, veri işleme ve model oluşturma, yorumlama ve sonuç çıkarma becerileri sorulara yer almıştır. Geliştirilen etkinliklerle ilgili kazanımlar göz önüne alınarak, Bilimsel Süreç Becerileri belirtece tablosu oluşturuldu testin kapsam seçilmiştir. Bu aşamadan sonra uzman görüşüne başvurularak teste nihai şekeli verilmiştir. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntemi kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirliğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirğini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvernirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yöntem kullanılmıştır. Testin güvenirini sağlamak için test-tekrar test yönt
Kavramsal Anlamayı Belirleme Formu (KABEF):

Çalışmada geliştirilen GEMS tabanlı "Yerkabuğu" temalı etkinliklerin kapsamı ve Fen Bilimleri Dersi Öğretim Programı (2013) Yer Kabuğunun Gizemi adlı ünite kazanımları göz önüne alınarak, açık uçlu sorulardan oluşan Kavramsal Anlamayı Belirleme Formu (KABEF) hazırlanmıştır. KABEF’te kayaç, mineral, maden, toprak oluşumuna etki eden faktörler, erozyon ve fosil kavramlarına yönelik düşünceleri belirlemeye amaçlayan 11 madde yer almıştır. Form uygulandıktan önce uzman görüşüne sunulmuştur. Bu amaçla bir fen bilimleri ve bir coğrafya (yer bilimleri) eğitimcisi akademisyen ve bir sınıf öğretmeninin görüşleri alınarak form maddeleri düzenlenmiştir. Ayrıca hedef kitleyle benzer özellikler taşıyan kısral bölgedeki farklı bir okulda KABEF’in deneme uygulaması gerçekleştirilmiştir ve uygulamanın ardından formun son şekli oluşturulmuştur. Hazırlanan form ön test-son test şeklinde katılımcı gruba yazılı olarak uygulanmıştır.

Görüşme:

Öğrencilerin GEMS tabanlı öğretim uygulamaları hakkındaki görüşlerini ortaya koymak amacıyla katılımcıdan kolay ulaşılabilir durum örneklemesi yöntemiyle seçilen 3 kız 3 erkek öğrenciyle yarı yapılandırılmış görüşmeler gerçekleştirilmiştir. Katılımcıların kendini daha iyi ifade edebilmesi ve çalışmanın bütünsellik degerlendirilmesinin sağlanmasına amaçla odak grup görüşmesi tercih edilmiştir. Grup görüşmeleri, belirli bir politika ya da bir eğitim programının uygulanması gibi deneyimlerin ardından katılımcıların kapsamlı bakış açısıyla uygulamaları değerlendirmeleri amacıyla kullanılmaktadır (Büyüköztürk, 2007; Glesne, 2013). Görüşmeler, hazırlanan görüşme formu yardımıyla yürütüldü. Görüşmede öğrencilere etkinliklerin ilgi çekici ve eğlenceli olup olmadığı, ne tür bilgi ve becerileri kendilerine kazandırdığı, hangi ders ve konularda bu tarz etkinliklerin faydalı demek olup olmadığı sorular yöneltilmiştir. Görüşme formunda yer alan soruların uygulanmasında benzer özelliklerin araştırıldığı literatürdeki çalışmalarından (Birinci-Konur, Şeyihoğlu, Sezen & Tekbiyık, 2011; Marulcu, Selay & Güven, 2014; Tekbiyık, Şeyihoğlu, Sezen-Vekli & Birinci-Konur, 2013) yararlanılmıştır. Ayrıca bir fen bilimleri uzmanı ve bir sosyal bilimler uzmanının görüşleri alınarak görüşme formunun maddeleri sadeleştirilmiştir.

Veri Analizi

Çalışmada nitel ve nicel analiz yöntemleri birlikte kullanılmıştır. Araştırmada Bilimsel Süreç Becerileri Testinden elde edilen nicel verilerin analizinde IBM SPSS Statistics 20 programı kullanılarak Wilcoxon testi ile analiz gerçekleştirilmiştir. Araştırma ile ilgili nitel belgelerin incelenmesi ve analiz oluşturulması amacıyla veri toplama çalışması planlanmıştır. Çalışmanın nitel sonuçlarını incelerken GEMS etkinliklerine dayalı çalışma planı hazırlanmıştır. Bu plana göre GEMS’ın doğasına uygun olarak uygulanarak bir dizi etkinlik geliştirilmişdir. Öğrencilerin etkinliklerdeki öğrenme ve öğrenme etkileri nicel ve nitel analiz yöntemleri ile değerlendirilmiştir. Diğer taraftan, analizin güvenilirliğini sağlamak için aynı veriler, iki araştırmacı tarafından ayrı ayrı kodlanmıştır. Uyumlu olmayan kodlamalar ortak görüş doğrultusunda karara bağlanmıştır.

Uygulama Süreci

GEMS etkinlikleri etkili bir planlama gerektirmektedir. GEMS yaklaşımasına dayalı bir çalışmanın; hangi konuda yapılacağı, etkinliklerin çevresel şartları nasıl çözüleceğini, aile katılımının nasıl sağlanacağı, bilimsel süreç becerileri ve kavramsal anlama düzeyinin nasıl tespit edileceğini gibi hususlar ele alınarak araştırmanın planı hazırlanmıştır. Bu plana göre GEMS’in doğasına uygun olarak uygulanarak bir dizi etkinlik geliştirilmişdir. Uygulama sırasında öğretmenin öncelikli çalıştırılan ilkökule 4. sınıf öğrencilerine bir toplanti yapılmış, yapılacak etkinliklerin neler olacağını, etkinliklerin nerede ve nasıl gerçekleştireceğini hakkında öğrencilerle bilgi verilmiştir. Öğrencilerle kıyafetler, topların sağlandığı etkinlik eden faktörler, erozyonun etkileri, fosil oluşumu ve madenlerin ülke ekonomisine katkıları ele alınmıştır.
Etkinlikler:

Bu kısımda uygulanan ardışık etkinliklerin odağını yansıyan yüzey bilgileri sunulmuştur. Her bir etkinliğin ilişkili olduğu kazanım ve bilimsel süreç becerisine ilişkin bilgiler Ek 2'de yer almaktadır.

Etkinlik 1-Alan Gezisi: Öğrenciler, kayaçların yapısının gözleneceği, okula yakın bir alanda öğretmen rehberliğinde incelemelerde bulunmuşlardır. Öğrenciler, alanda kayaçların yapısını gözlemlemiş, gezideki örnekler poşetlere yerleştirilmiş, poşetlere etiketler eklenmiştir. Etkinlik 1'deki alanın eğimli bir yamaç, kayaç parçaları kare şeklinde, sert ve kahverengi, tarih verilmiş (Örneğin; *gezi alanı eğimli bir yamaç, kayaç parçaları kare şeklinde, sert ve kahverengi, tarih*).

Etkinlik 2-Kayaçları inceleyelim: Öğrenciler alan gezisinde topladıkları kayaçları sınıf ortamına getirerek incelemelerde bulunmuşlardır. Bu incelemelerde kayaçları; renk, şekil, parlaklık, sertlik gibi özelliklerine göre sınıflandırmaları ve minerallerin kayaçların yapısında oynadığı rolü kavramışlardır.

Etkinlik 3-Toprak oluşumuna etki eden faktörler (aile katımlı): Toprak oluşumunda bitkilerin rolünü kavramak için sınıf çözeltileri bisküvi ve kürdan getirilmiştir. Bisküviler kayaçları temsil ederken, kürdanlar da bitki köklerini temsil etmiştir. Bisküvilerin farklı bölgelerine geçirilen kürdanlar bisküvilerin parçalanmasına neden olmuş, yapılan çalışmayla öğrenciler kayaçların yapısında rolü kavramışlardır. Toprak oluşumunda sıkılaşma, zonasyonla incelemelerdeki çöküşün farklı Bölgeden, eğimli yüzeylerden akan suyun bardaklarda birikmesi sağlanmıştır. Öğrenciler çöküşün etkisi ve eğimli yüzeylerden akan suyun bardaklarda birikmesi deneyi takip etmiş, çöküşün etkisi ve eğimli yüzeylerden akan suyun bardaklarda birikmesi ile ilgili çalışma üstüne çalışmalar yapmıştır. Bu çalışmalarda öğrenciler, eğimli yüzeylerden akan suyun bardaklarda birikmesi ile ilgili çalışma üstüne çalışmalar yapmıştır.

Etkinlik 4-Erozyon: Erozyonla toprak kaybı arasındaki ilişkiye yönelik hazırlanan etkinlikte, ağaçlı alan temsil eden ortam, ağaçsız bölgeyi temsil eden ortam arasında karşılaştırmalı gözlem yapılmıştır. İcercisinde iki farklı yüzey bulunan şişeleri üzerine aynı miktarlı su akıtarak yüzeyleri iyice sulanmıştır. İçerisindeki suyun erozyonu farklı yöntemlerle ve farklı soğukluk seviyelerinde birikmeleri sağlanmışdır. Öğrenciler tarafından barajlardaki suların birikmesi, barajlardan suyun erozyonu farklı yöntemlerle ve farklı soğukluk seviyelerinde birikmeleri sağlanmıştır. Öğrenciler, *Niçin barajların birinde daha fazla toprak biriktiri?* sorusunun cevabını aramış ve erozyonu önlenecek önlemler konusunda fikirlerini açıklamışlardır.

Etkinlik 5-Fosiller: Fosil oluşumu, fosil bilimi ve fosil bilimci kavramlarını oluşturmak için hazırlık ve öğrencilerden kazı yapmaları istenmiştir. Öğrenciler eğilimi gösteren gruplar halinde kazı çalışmalardır. Kazı esnasında bir fosil bilimci gibi çalışan öğrenciler, kazını bir parçada daha çok meraklı duymuş ve kazayı sona erdirmeden her bir parçayı birleştirerek fosil iskeletini oluşturmuştur.

Etkinlik 6-Ekonomik değeri olan kayaçlar ve matematiksel modelleme: Madenlerin nerelerde, nasıl işlendiği ve kullanılıldığı, hangi alanlarda değerlendirildiğine yönelik tanıtıcı video izletilmiştir. Maden kavramına dikkat çekildikten sonra iki farklı matematiksel modelleme çalışması yapılmıştır. Çalışmanın her ikisi de bir problem durumu üzerine kurgulanmıştır. Matematiksel modellemler arasında öğrencilerin birde, bir rezerv alanındaki maden miktarının ne kadar süre sonra tükenmesini bulmaya yönelik bir
Mustafa ÇELİK, Ahmet TEKBİYIK – Pegem Eğitim ve Öğretim Dergisi, 6(3), 2016, 303-332

çalışma gerçekleştirmişler. Diğer matematiksel modelleme çalışmasında ise öğrenciler üç farklı kömür türünün sahip olduğu nem miktarı ile sıcaklık değeri arasındaki ilişkiyi incelemişlerdir. Her iki çalışmada öğrenciler tablo yorumlama, verileri tablo ve grafiğe dönüştürme ve grafik yorumlama gibi beceriler kullanmışlardır.

Bulgular

Kavramsal Anlamayı Belirleme Formundan Elde Edilen Bulgular

Çalışmada etkinliklerin öğrencilerin kavramsal anlamalarına etkisini belirlemek amacıyla, açık uçlu sorulardan oluşan KABEF ön-test-son-test olarak uygulanmıştır. Testte kayaçlar, madenler, toprak ve fosiller olmak üzere dört alt boyutta maddeler yer almaktadır.

Tablo 1
Öğrencilerin Kayaçlar Konusundaki Düşünceleri.

Sorular	Öğrencilerin Kayaçlar Konusundaki Düşünceleri	Ön test (f)	Son test (f)
Kayalık nedir?	Büyük kaya parçasıdır	5	7
Tanımlayınız	Taş ya da kayalara denir	2	3
	Dünya üzerindeki büyük taşlardır	1	4
	Farklı renklerden taşlardır	1	-
	Denizin dibinde parlayan kayaçlardır	1	-
Kayalık nelerden oluşur?	Taşlardan oluşur	4	2
	Kumdan oluşur	2	2
	Tepelerden oluşur	1	1
	Madenlerden oluşur	1	-
	Bazi sert yapıldan oluşur	1	-
	Toprakdan oluşur	-	1
	Çakıllardan oluşur	-	1
	Minerallerden oluşur	1	7
Neden dağılada farklı renklerde bu kadar?	Toprakla karıştığı için	1	-
Çok kayalık vardır?	Farklı özelliklere sahip oldukları için	1	-
	Kumlarının renkli olmasından dolayı	1	1
	Çiğ veya depremleden dolayı	1	-
	İçerisindeki mineraller farklı olduğu için	1	12

Tablo 1’de öğrencilerin kayaçlar konusundaki düşünceleri yer almaktadır. Tablo incelendiğinde öğrencilerin kayaçları tanımlama ve kayaçları nelerden oluştuğuna ilişkin görüşlerinin etkinlik sonrasında geliştiği görülmektedir. Etkinlikler öncesinde ‘kayaçlar minerallerden oluşur’ görüşü sadece 1 öğrenci tarafından belirtilirken, etkinlik sonrası öğrencilerin sayısı (f=7) cevaplarında bu ifadeye yer verdikleri görülmektedir. Ayrıca ‘kayaçlar içerisindeki mineraller farklı renkli olur’ ifadesini etkinlikler öncesinde 1 öğrenci belirtirken, etkinlik sonrası son derece öğrencilerin tamamının (f=12) belirttikleri görülmektedir.

Tablo 2’de öğrencilerin maden kavramına yönelik düşünceleri yer almaktadır. Öğrencilerin maden kavramını tanımlama, madenlerin ekonomi ve teknolojiye katkılarına yönelik düşüncelerinde etkinlikler öncesinde görülmeyen çeşitlilik, etkinlik sonrası belirgin şekilde görülmektedir. Ayrıca, etkinlikler sonrası maden ve ekonomi kavramlarını ilişkilendirebilen öğrencilerin sayısı artmış olduğu gözlemlimiştir. Etkinlik sonrası 12 öğrenci ekonomik değeri olan kayaçları maden olarak nitelendirirken, 8 öğrenci madenlerin ekonomiye katkıının olduğunu, 6 öğrenci madenlerin eşya ve araç-gereç yapımında kullanılarak teknolojiye katkı sağladığı belirtmiştir.
Tablo 2
Öğrencilerin Maden Konusundaki Düşünceleri.

Sorular	Öğrencilerin Maden Konusundaki Düşünceleri	Öntest (f)	Sontest (f)
Maden nedir?	Petrol, kömür gibi şeylerdir	2	1
Tanımlayıniz	Yer altından çıkarılan değerli şeylerdir	3	-
	İçinde kömür gibi şeyler olan yer	2	1
	Yerin altından çıkarılan maddelerdir	2	-
	Ekonomik değeri olan taşlardır	-	12
Madenlerin ekonomiye etkisi nasıldır?	Para kazandır	1	-
	Süs eşyası yapımında kullanılır	1	3
	Parayla satılır	-	1
	Madenlerin ekonomiye etkisi fazzadır	-	8
Madenleri teknolojiye etkisi nasıldır?	Teknolojiye etkisi vardır	1	1
	Süs ve taki eşyaları yapılır	1	-
	Madenlerin teknolojiye etkisi azdır	1	1
	Madenlerin teknolojiye etkisi farklıdır	1	-
	Eşya ve araç-gereç yapımında kullanılarlar	-	6

Tablo 3’te öğrencilerin toprak oluşumuna etki eden faktörler ve erozyon konusundaki düşünceleri yer almaktadır. Öğrencilerin toprak oluşumuna etki eden faktörler hakkındaki görüşlerinin etkinlik sonrasında belirlenir bir şekilde geliştiği belirlenmiştir. Ayrıca, etkinlik öncesinde toprak oluşumuna etki eden faktörler arasında belirtilmemiş bitki ve mantar değişkenlerinin etkinlik sonrasında öğrenci ifadelerinde yer aldığı görülmüştür. Erozyon kavramını etkinlik öncesinde 4 öğrenci doğru bir şekilde tanımlarken etkinlik sonrasında 9 öğrencinin bu tanımlaymayı doğru bir şekilde gerçekleştirdiği görülmüştür. Ayrıca etkinlik öncesinde 4 öğrencinin ifadelerinde erozyon kavramına ait yanlışlı ifade yeralırken, etkinlik sonrasıda aynı öğrencilerin yanlışlı ifadelerini sürdürdüğü, buna karşın bu öğrencinin cevaplarında bu yanlışlı ifadeyi kullanmadığı görülmüştür. Bunun yanında öğrencilerin erozyonla mücadele konusunda sunduğu çözüm önerilerinin çeşitliliğinin etkinlik sonrasında değişmediği, ancak frekanslarında artış olduğu görülmüştür. Erozyonla mücadele önerisi olarak “ağaç dikilmeli” ifadesini etkinlik öncesinde 7 öğrenci belirtirken, etkinlik sonrasında 12 öğrenci bu öneriyi sunmuştur.
Tablo 3
Öğrencilerin Toprak Oluşumu ve Erozyon Konusundaki Düşünceleri.

Sorular	Öğrencilerin Toprak Oluşumu ve Erozyon Konusundaki Düşünceleri	Ön test (f)	Son test (f)
Toprağın oluşumuna etki eden faktörleri açıklayınız	Deprem 2 -		
	İnsanlar 2 1		
	Hayvanlar 2 2		
	Sıcaklık farkı 2 5		
	Yağmur 4 4		
	Su - 7		
	Rüzgar 4 7		
	Bitkiler - 3		
	Mantarlar - 1		
Erozyon nedir?	Toprağın su ile taşınmasıdır 4 9		
Tanımlayınız	*Toprağın kaymasıdır 4 3		
	Toprağın yok olmasıdır 1 -		
	Toprağın kayıdır - 2		
Erozyona karşı ne tür önlemler alabiliriz?	Ağaç dikmeliyiz 7 12		
	Yamaçları teraslamalıyız 3 4		
	Tarlaları eğime ters yönde sürmeliyiz 2 2		

* Kavram yanlışlığı taşıyan ifade

Tablo 4 öğrencilerin fosil kavramına yönelik düşüncelerini göstermektedir. Tablo incelendiğinde öğrencilerin etkinlik öncesinde fosil kavramını tanımadıkları, fosillerin yaşadığımız dünya için ne anlam ifade ettiği bilmediğimiz görülürken, etkinlik sonrasında 5 öğrencinin ifadelerinde fosilleşme kavramını kullandığı görülmüştür. ‘Yaşadığımız dünyanın geçmişteki sırlarını ortaya çıkarmada hangi yöntemlerden yararlanabiliriz’ sorusuna öğrencilerin verdiği cevapların etkinlik sonrasında artış gösterdiği, etkinlik öncesinde öğrencilerin ifadelerinde yer almayan ‘kazı çalışmasına’ etkinlik sonrasında 5 öğrencinin cevapları arasında yer verdiğini göstermiştir.

Tablo 4
Öğrencilerin Fosiller Konusundaki Düşünceleri.

Sorular	Öğrencilerin Fosiller Konusundaki Düşünceleri	Ön test (f)	Son test (f)
Geçmişte yaşamış, fakat günümüzde yaşamayan canlılar var mıdır?	Dinozorlar bugün yaşamıyor 5 5		
Örnekle açıklayınız	Kanguru geçmiş zamanlarda yaşamış ama günümüzde yaşamıyor 1 1		
	Evet yaşiyor 1 -		
	Okumuştu ama hatırlamıyorum 1 -		
	Hayır, yaşayıyorlar. Çünkü dinozorlar fosilleşmeye uğradı - 5		
Yaşadığımız dünyanın geçmişteki sırlarını öğrenebilme için hangi kaynağı var?	Resimler ve eşyalar 1 1		
	Yaztlar 1 -		
	Eski zamanda yaşamış günümüzde de yaşayan insanlar 2 3		
	Fosiller 1 3		
	Kemikler 2 4		
	Kazi çalışmaları - 5		
Mustafa ÇELİK, Ahmet TEKBIYIK – Pegem Eğitim ve Öğretim Dergisi, 6(3), 2016, 303-332

Bilimsel Süreç Becerileri Testinden Elde Edilen Bulgular

GEMS tabanlı etkinliklerin öğrencilerin bilimsel süreç becerilerine etkisini belirlemek amacıyla, açık uçlu sorulardan oluşan Bilimsel Süreç Becerileri Testi ön test-son test olarak uygulanmıştır. Testte çıkarım yapma, değişkenleri belirleme, gözlem, veri işleme ve model oluşturma, yorumlama ve sonuç çıkarma becerilerini ölçmeye yönelik maddeler yer almaktadır.

Tablo 5’te öğrencilerin bilimsel süreç becerileri testinden aldığı ön test-son test puanlarının analiz sonuçları yer almaktadır. Tablodaki veriler incelendiğinde, öğrencilerin, çıkarım yapma (z=-2.81, p<.05), değişkenleri belirleme (z=-2.97, p<.05), gözlem (z=-2.97, p<.05), veri işleme ve model oluşturma (z=-2.43, p<.05), yorumlama ve sonuç çıkarma (z=-2.96, p<.05) becerilerinde son test lehine anlamlı bir farklılık görülmektedir.

Tablo 5
Bilimsel Süreç Becerileri Ön test- Son test Puanlarının Wilcoxon İşaretli Sıralar Testi (Wilcoxon-Signed-Rank Test) ile Karşıştırılması.

Bilimsel Süreç Becerileri	Son test- Ön test	N	Sıra Ortalaması	Sıra Toplamı	z	p
Çıkarım Yapma	Negatif Sıra	0	.00	.00	-2.81	.005
	Pozitif Sıra	9	5.00	45.00		
	Eşit	4	-	-		
Değişkenleri Belirleme	Negatif Sıra	0	.00	.00		
	Pozitif Sıra	11	6.00	66.00	-2.97	.003
	Eşit	2	-	-		
Gözlem	Negatif Sıra	0	.00	.00		
	Pozitif Sıra	11	6.00	66.00	-2.97	.003
	Eşit	2	-	-		
Veri İşleme ve Model Oluşturma	Negatif Sıra	0	.00	.00		
	Pozitif Sıra	7	4.00	28.00	-2.43	.015
	Eşit	6	-	-		
Yorumlama ve Sonuç Çıkarma	Negatif Sıra	0	.00	.00		
	Pozitif Sıra	11	6.00	66.00	-2.96	.003
	Eşit	2	-	-		

Görüşmelerden Elde Edilen Bulgular

Öğrencilerin etkinlik süreci hakkındaki görüşlerini belirlemek amacıyla 3 kız 3 erkek öğrenciyle yarı yapılandırılmış görüşmeler gerçekleştirilmiştir. Tablo 6’da bu görüşmelerin analizinden elde edilen bulgular, tema ve kodlar şeklinde ifade edilerek gösterilmiştir. Bulguların hangi verilerden elde edildiğini göstermek amacıyla öğrenci görüşlerinden doğrudan alıntılar sunulmuştur.
Tablo 6
Öğrencilerle Etkinlikler Hakkındaki Yürütülen Görüşmelere İlişkin İçerik Analizi

Tema	Kod
Hissettirdikleri	Ö1, Ö2, Ö3, Ö5, Ö6
Eğlenceli	Ö3, Ö4, Ö5, Ö6
İlgî çekici	Ö1, Ö2, Ö3, Ö4, Ö5
İyi	Ö4, Ö6
Yapılabilirliği	Ö1, Ö2, Ö3, Ö4, Ö5, Ö6
Anlaşırlı	Ö1, Ö2, Ö3, Ö4, Ö6
Kolay	Ö1, Ö2, Ö3, Ö4, Ö5, Ö6
Öğrenmeye Katkısı	Ö1, Ö3, Ö4, Ö5
Yeni bilgi	Ö1, Ö2, Ö3, Ö4, Ö5
Araştırma истeği	Ö1, Ö2, Ö3, Ö4, Ö5, Ö6
Sınav	Ö6
Kullanımı	Ö1, Ö2, Ö3, Ö4, Ö5, Ö6
Yararlı	Ö1, Ö2, Ö3, Ö4, Ö5, Ö6
Yeni öğrenme	Ö1, Ö2, Ö6
Kalıcı öğrenme	Ö2, Ö5
Sınav	Ö5
Haftanın Bellirli	Ö1, Ö2, Ö4, Ö5, Ö6
Saatlerinde	Ö1, Ö2
Memnuniyet	Ö1, Ö2, Ö4, Ö5, Ö6
Eğlenceli	Ö1, Ö2
Yeni Bilgi	Ö1, Ö2
Farklı Derslerde	Ö1, Ö3, Ö4, Ö6
Sosyal Bilgiler	Ö5
Matematik	Ö2, Ö3
Türkçe	Ö2, Ö3

Öğrenci görüşleri doğrultusunda etkinliklere yönelik hissetme, yapılabilirlik, öğrenmeye katkı ve kullanım temalari belirlenmiştir. Görüşmelerden elde edilen bulgulara göre öğrenciler etkinliklerin güzel, eğlenceli, ilgi çekici ve iyi olduğunu hissetmişlerdir. Öğrenciler etkinliklerin anlaşılır olduğunu ve kolaylıkla yapılabilğini ifade etmişler; yeni bilgi edinmelerine ve araştırma motivasyonu gelişirmelerine katkıda bulunuduklarını belirtmişlerdir. Ayrıca öğrenciler Sosyal Bilgiler, Matematik ve Türkçe derslerinde GEMS uygulamalarının yapılabileceğini ifade etmişlerdir.

Görüşmeye katılan öğrenciler “Etkinlikleri nasıl buldunuz?” sorusunda etkinliklerin güzel, eğlenceli ve ilgi çekici olduğunu belirtmişlerdir. Öğrencilerde çok eğlenceliği, tekrar aynı etkinlikleri yapmak istediklerini söylemişlerdir. Bu konudaki öğrenci ifadelerinden bazıları şöyledir:

Ö3 “Bence çok eğlenceliydi, hem sizinle çalışma yapmaktan, hem de eğlenceli olmasından çok hoşuma gitti.” ; Ö2 “Bisküvi ve kürdan etkinliği çok关键是, ilgimi çekti.” ; Ö6 “Çok iyi, kemik bulduk, kazı çalışmalarını çok sevdim, kazi işi, kemiklerin ortaya çıkaranması zevkliydi.”

Görüşmeye katılan öğrenciler “Etkinlikler anlaşılır mıydı, kolaylıkla yapılabilir miydi?” sorusunda etkinliklerin kolay ve anlaşılır olduğunu, kendilerinin rahatlıkla bu etkinlikleri gerçekleştirerek istediklerini söylemişlerdir. Bu konudaki öğrenci ifadelerinden bazıları şöyledir:

Ö3 “Kolay ve anlaşılırdı; hem eğlenceli hem basıtı bizim yapabileceğimiz şeylerdi.” ;
Ö5 “Anlaşırlı, kolaylıkla yapılabiliriyordu.”

Görüşmeye katılan öğrenciler “Etkinlikler öğrenmenize ne gibi katkı sağladı?” sorusunda etkinliklerin yeni bilgiler öğrenmelerine katkı sağladığı, kendilerinde araştırma isteği uyandırıldığı, öğrencileri bilgilere daha kalıcı olmasını sağladığı belirtmişlerdir. Bu konudaki öğrenci ifadelerinden bazıları şöyledir:

Ö1 “Mesela bitkilerin kayıtları parçalamasını, uzun süre sonra kayıtları parçaladığını öğrendim” ;
Ö4 “Fosilleşmenin ne olduğunu, kayıtlarının minerallerden oluştuğunu, kayıtlara minerallerin renk
verdiğini öğrendim.** Ö3 **Evet, hem böyle çalışmalar yapınca ben de böyle evde kaza çalışması yaptım, hep metal buldum, değişik taşlar, solucan buldum, su renklerinde değişik böcekler ve hayvanlar bulundum. Taşları inceledim, nasıl renkleri olduğunu baktım, suyun içinde hangi hayvanlar yaşadığını inceledim. Bir tane kırkayak gibi bir şey gördüm, fosil konusunda araştırma yapmak istiyorum.** Ö6 **Kemik ve kaza çalışmaları bende araştırma isteği uyandırdı.**

“Haftada bir ya da birkaç ders saatinin bu tarz etkinliklere ayrılaması sizi memnun eder mi?” sorusuna, öğrenciler haftanın belirli gün ve saatlerinde bu tarz etkinliklerin kullanılmasıın yararlı olduğunu, çalışmaların eğlenceli olacağını d İlnotlularını ve öğrenmelerine katkı sağlayacağını belirtmişlerdir. Bu konudaki öğrenci ifadelerinden bazıları şöyledir:

Ö1 “Memnun eder, çünkü daha eğlenceli vakit geçirmiş oluruz, birçok yeni bilgi öğreniriz.” **Ö5** “Memnun eder, bu tarz etkinlikler çok eğlenceli.” **Ö4** “İyi olur, kolay ve zevkli olduğu için yararlı olur.”

“Sizce yapılan bu çalışma ya da buna benzer çalışmalar başka hangi ders ya da derslerde nasıl kullanılabilir?” sorusuna öğrencıliler Sosyal Bilgiler, Matematik ve Türkçe derslerinde bu tarz etkinliklerin kullanılabilmeceğini belirtmişlerdir. Bu konudaki öğrenci ifadelerinden bazıları şöyledir:

Ö1 “Sosyal bilgiler, sosyalde de benzer konular var, dünyamızın katmaları mesela.” **Ö2** “Türkçe, çünkü bu konularla ilgili okuma parçaları var, hikâyelederde benzer olaydan böyle bilgiler öğrenebilibiz.”

Ö5 “Matematik, bazen toplama çikarma oyunlar. Yapılan etkinliklerde toplama çikarma olduğu için Matematiğe uygulanabilir.”

Tartışma

Çalışmada; GEMS yaklaşımına dayalı etkinliklerle hazırlanmış bir programın ülkemizde kursal bölgedeki bir okulda uygulanmasını etkiliğine incelenmiştir. Araştırma ilk olarak “GEMS yaklaşımına dayalı etkinliklerle hazırlanmış bir programın öğrencilerin kavramsal anlamalarına etkisi nasıldır?” sorusuna cevap aranmıştır. Çalışmadan elde edilen bulgulara göre öğrencilerin, kayaç, maden, fosil, toprak oluşumu ve erozyon kavramlarına yönelik kavramsal anlamalarının geliştiği gözlenmiştir. Etkinliklerin, Özellikle kavramları tanımlama ve ilişkilendirme gibi bilişsel süreçleri harekete geçirdiği, bu sayede kavramsal çeniltlerin de geliştiği belirtilmiştir. Bu durumun; etkinliklerin disiplinler arası bir yapıda tasarlanması ve öğrencilerin günlük yaşam deneyimlerine dayalı aktif roller üstlenmesinden kaynaklandığı söylenebilir. Öğrenciler etkinliklerde kayaç kavramını yapılandırmak için okula yakın bir sahada kayaçları incelemiş, kayaç örnekleri toplamış, toprak oluşumuna etki eden doğal faktörleri gözelemmiş, bir bilim insanı gibi saha içerisinde notlar tutmuş ve sinifa girildikleri kayaç örnekleriini ayrıtırılmışlardır. Erozyon kavramına yönelik etkinlikte yelpazeler arasındaki toprak kaybı karşılaştırma, toprak kaybı miktarlarını ölçmek, toprak kavramını ölçücek sonucu arayan öğrencilerin toplama çikarma faaliyetleri gerçekleştirilmiştir. Fosil ve fosilleşme kavramları gerçek durumunda yakının bir model üzerinde çalıştıklar, modellerin ülkesine ekonomisine katkı ve sürdürülebilirlik düşüncesi ise bir maden alanındaki rezervin tükenme miktarını konu edinen matematiksel modelde yoluyla kazandırılmaya çalışılmıştır. Sıralanan tüm uygulamaların öğrencilerin zengin öğrenme yaşantıları geçirmelerine önemli katkı sunduguna göre etkilendiştirildir. Sonuçların, hem kavramsal anlama (Sarıtaş, 2010) hem de kavram çeşitliliği kazarımla (Yalçın & Tekbıyık, 2013) bakımından alan yazının uyumu olduğu belirlenmiştir.

Çalışmada KABEF’in on testinde erozyon kavramına yönelik öğrencilerin yanılış görüşlere sahip olduklarını görülmektedir. Öğrenciler, erozyonu “toprak kayması” olarak tanımlamışlardır. Bu yanılışın, ilkokulden üniversite düzeyine kadar benzer şekilde öğrencilerde görüleceği alan yazında ortaya konmuştur (Pinar & Akdağ, 2012; Özen, 2013; Turan & Kartal, 2012). Etkinlik sürecinde öğrencilerin yanılışlarını gidermeye yönelik özel bir önem verilmemesi nedeniyle üç öğrencinin yanılış görüşleri son testlerde de görülmüştür.
Çalışmanın ikinci alt probleminde "GEMS yaklaşımına dayalı etkinliklerle hazırlanmış bir programın öğrencilerin bilimsel süreç becerilerine etkisi nasıldır?" sorusunun cevabı aranmıştır. Çalışmadan elde edilen bulgulara bakıldığında; son testlerde çıkarım yapma, değişikleri belirleme, gözlem, veri işleme ve model oluşturma, yorumlama ve sonuç çikarma becerilerinde anlamlı bir farklılık görülmüştür. Ayrıca etkinlikler ölçe, modelleme, grafik oluşturma gibi matematiksel becerilerde de desteklenmiş, öğrenciler fen ve matematiksel becerileri aynı anda sergileme imkânına kavuşmuşlardır. Aynı şekilde daha önceki çalışmaların bu sonuçlarını desteklediği, GEMS yaklaşımına dayalı etkinliklerin öğrencilerin bilimsel süreç becerilerine olumlu katkı sağladığı ortaya çıkmıştır (Bevis, Granger, Saka, & Southerland, 2009; Yalçın & Tekbıyık, 2013). Alan yazında aktif öğrenme, araştırma ve sorgulama dayalı öğretim uygulamalarının öğrencilerin bilimsel süreç becerilerinde, bilimsel süreçin farklılaşlarını kazanmada ve bilime değer vermede etkili sonuçlar verdiği görülmektedir (Kula, 2009; Günel, Kabataş-Memiş & Büyükkasap, 2010; Tekbıyık et al., 2013).Çalışmanın üçüncü alt probleminde "GEMS yaklaşımına dayalı etkinliklerle hazırlanmış bir programa yönelik öğrenci görüşleri nasıldır?" sorusunun cevabı aranmıştır. Öğrencilerle yapılan görüşmelerden elde edilen bulgulara bakıldığında; öğrenciler, etkinliklerin eğlenceli ve ilgi çekici olduğunu, etkinliklerin kolaylıkla yapılabilidğini, anlaşılır olduğunu, kendilerinde araştırma isteği uyandırdığını, yeni bilgiler öğrenmelerine yardımcı olduğunu ve öğrendikleri bilgilerin daha kalıcı olmasını sağladığını belirtmişlerdir. Alan yazısındaki araştırmaların bu durumu desteklediği, GEMS yaklaşımına dayalı uygulamaların öğretmen, öğrencisi ve veliler tarafından olumlu karşılandığı görülmüştür (Sağlam, 2012). Öğrencilerin gerçekleştirilen görüşmelerde dikkati çeken bir başka durum ise GEMS etkinliklerinin kendilerinde araştırma-sorgulama sistemi uçtuğu ve becerilerini belirterek, etkinliklerin kendi yaşamada herhangi bir parçası haline gelmesini hedeflemekteydi. GEMS etkinlikleri aracılığıyla merak uyandırma, eyleme geçme, eylem içerisinde sorgulama ve yansıtma becerileri öğrencilere kazandırılmaya çalışılmaktadır. GEMS etkinliklerinde aile katılımına önem verilmektedir. Ailelerin etkinliklere katılımını sağlamak için ailelere, etkinliklerdeki öğrenme ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye katkı sağlayacak bilgi verilmektedir. Ailelere etkinliklere katılma ve öğrenmeye碘

Sonuç ve Öneriler
Kırsal bölgedeki bir İlkokulda yerel kavram temalı etkinliklerle gerçekleştirilen GEMS yaklaşımına dayalı bu çalışma, öğrencilerin kayaç ve kayaç oluşumu, maden, toprak oluşumu, erozyon ve fosil kavramlarına yönelik kavramsal anlamının gelişime önemi katkısını sağlamıştır. Ayrıca çalışma; çıkarım yapma, değişikleri belirleme, gözlem, veri işleme ve model oluşturma, yorumlama ve sonuç çikarma becerileri üzerinde de etkili olmuştur. Bunun yanı sıra GEMS uygulamaları öğrenciler tarafından ilgi çekici, eğlenceli, kolay, anlaşılabilecek, öğrenebilecekкатılış לעיתיםine katılma ve öğrenmeye katkı sağlayıcı bulunmuştur.

Araştırmanın her üç boyutu birlikte ele alındığında GEMS yaklaşımına dayalı bir çalışmanın Türkiye’de kırsal bölgede yer alan bir okulda etkili sonuçlar verdiği görülmüştür. GEMS’in; merak öğesi canlı tutan, aktif, eğlenceli, kolay uygulanabilir ve disiplinlendirici yapısı, bu çalışmacı dayalı bir öğretimin bilimsel, duyuşsal ve devinsel anlamda bütünleştirmek için katkısı sağlayıcı bulunmaktadır. Kısır bölgedeki bir
ilkokulda gerçekleştirilen uygulama, öğrenmenin doğal bir zeminde gelişmesine fırsat oluşturmuş, birbirinin devamı niteliğindeki etkinliklerle sorgulamanın sürekliliğ arz etmesi sağlanmıştır.

Çalışmada ortaya çıkan sonuçlar ışığında aşağıda bazı öneriler sunulmuştur;

- Kırsal bölgede yer alan bir ilkokulun 4. sınıf seviyesinde gerçekleştirilen bu çalışmada GEMS yaklaşımlına dayalı olarak geliştirilen etkinliklerin uygulanabilirliği ortaya konulmuştur. Etkinlik tasarımının bir öğretmen kilavuzu niteliğinde olup, öğretmenlerin kendi sınıflarında benzer şekilde uygulamalar yapması için örnek oluşturabilir.
- GEMS yaklaşımlı esas alınarak farklı konu ve kazanımlara yönelik etkinlikler geliştirilebilir ve uygulamaların etkiliği incelenebilir.
- Bir konu ya da ünite ekseninde GEMS yaklaşımlı dayalı sarmal bir program modülü geliştirilerek belirli aralıktaki sınıf seviyelerini gözeten (1-4, 5-8 vb.) boylamsal çalışmaları gerçekleştirilebilir.
- GEMS yaklaşımanın yaygın etkisini artırmak için ailelere ve eğitimcilere GEMS’i tanıtan kurs, seminer ve hizmet içi eğitim faaliyetler gerçekleştirilir.

Teşekkür ve Bilgilendirme

Bu çalışma ilk yazarın, ikinci yazar danışmanlığında yürütülen yüksek lisans tezi kapsamında hazırlanmıştır.
References

Akkuş, A. (2009). *Yer kabuğu nelerden oluşur ünitesinin kavranmasında görsel zekânın başarıya etkisi*. Unpublished master’s thesis, Kafkas Üniversitesi, Kars.

Aksoy, G., & Gürbüz, F. (2012). İşbirliğin öğrenme yönteminin 6. sınıf fen ve teknoloji dersinde öğrencilerin akademik başarılarnına etkisi. *Eğitim ve Öğretim Araştırmaları Dergisi*, 1(1), 24-31.

Aktaş, Ö. (2012). İlköğretimde kavram ve zihin haritaları ile desteklenmiş fen ve teknoloji eğitiminin öğrenme ürünlerinde etkileri. Unpublished master’s thesis, Dokuz Eylül Üniversitesi, İzmir.

Altıntaş, F. (2014). *Doğa ve toprağa yönelik hazırlanmak informal öğrenme ortamının ilköğretim öğrencileri üzerine etkileri*. Unpublished master’s thesis, Hacettepe Üniversitesi, Ankara.

Akkuş, A. (2009). *Yer kabuğu nelerden oluşur ünitesinin kavranmasında görsel zekânın başarıya etkisi*. Unpublished master’s thesis, Kafkas Üniversitesi, Kars.

Aksoy, G., & Gürbüz, F. (2012). İşbirliğin öğrenme yönteminin 6. sınıf fen ve teknoloji dersinde öğrencilerin akademik başarılarnına etkisi. *Eğitim ve Öğretim Araştırmaları Dergisi*, 1(1), 24-31.

Aktaş, Ö. (2012). İlköğretimde kavram ve zihin haritaları ile desteklenmiş fen ve teknoloji eğitiminin öğrenme ürünlerinde etkileri. Unpublished master’s thesis, Dokuz Eylül Üniversitesi, İzmir.

Altıntaş, F. (2014). *Doğa ve toprağa yönelik hazırlanmak informal öğrenme ortamının ilköğretim öğrencileri üzerine etkileri*. Unpublished master’s thesis, Hacettepe Üniversitesi, Ankara.

Aydın, G., & Balım, A. G. (2005). *İlköğretimde kavram ve zihin haritaları ile desteklenmiş fen ve teknoloji eğitiminin öğrenme ürünlerine üzerindeki etkileri*. Unpublished master’s thesis, Dokuz Eylül Üniversitesi, İzmir.

Barrett, K., Blinderman E., Boffen, B., Échos J., House, P. A., Hosoume, K. & Kopp, J. (1999). *Science and math explorations for young children*. Lawrence Hall of Science of California at Berkeley.

Batı, K. (2013). *Fen eğitiminde bilimsel yöntem süreci öğretimi üzerine bir inceleme: pozitivizmden anarşizm bilgi kuramına*. Pamukkale Üniversitesisi *Eğitim Fakültesi Dergisi*, 34, 211-226.

Bevis, T.H., Granger, E. M., Saka, Y., & Southerland, S. A. (2009a). Comparing the efficacy of reform-based and traditional/verification curricula to support student learning about space science. Paper presented at the *annual meeting of the National Association for Research in Science Teaching*, Garden Grove, CA.

Bevis, T.H., Granger, E. M., Saka, Y., & Southerland, S. A. (2009b). Learning about space science: Comparing the efficacy of reform-based teaching with a traditional/verification approach. Paper presented at the *annual meeting of the American Educationa Research Association*, San Diego, CA.

Birinci Konur, K., Şeyihoglu, A., Sezen, G., & Tekbıyık, A. (2011). Evaluation of a science camp: enjoyable discovery of mysterious world. *Eğitim ve Öğretim Araştırmaları Dergisi*, 11(3), 1602-1607.

Borich, G. D. (2013). *Effective teaching methods: Research-based practice*. Pearson Higher Ed.

Bozkurt, O., Salman Akın, B., & Uşak, M. (2004). İlköğretim 6., 7. ve 8. sınıf öğrencilerinin erozyon hakkındaki ön bilgilerinin ve kavram yanılgılarının tespiti. *Gazi Üniversitesi Kirşehir Eğitim Fakültesi Dergisi*, 5(2), 277-285.

Büyüköztürk, Ş. (2007). *Sosyal bilimler için veri analizi el kitabı*. Ankara: Pegem Akademi.

Creswell, J. W., & Plano Clark, V. L. (2011). *Designing and conducting mixed methods research*. (2nd ed.). Thousand Oaks, CA: Sage.

Czerniak, C. M., Weber, W. B., Sandmann, A., & Ahern, J. (1999). A literature review of science and mathematics integration. *School Science and Mathematics*, 99(8), 421-430.

Çam, Ş. S. (2013). *GEMS programı – Matematik ve fende büyük buluşlar*. *Eğitim ve Öğretim Araştırmaları Dergisi*, 2(2), 148-154.

Demirel, Ö., Tuncel, İ., Demirhan, C., & Demir, K. (2008). Çoklu zekâ kuramı ile disiplinlerarası yaklaşımın temel alan uygulamalarında ilişkin öğretmen-öğrenci görüşleri. *Eğitim ve Bilim*, 33(147), 14-25.

Frat, M., Kabakçı Yurdakul, I., & Ersoy, A. (2014). Bir eğitim teknolojisi araştırmasına dayalı olarak karma yöntem araştırması dayenimi. *Eğitimde Nitel Araştırma Dergisi*, 2(1), 65-86.

Glesne, C. (2011). *Becoming qualitative researchers* (4th Edition). Boston: Pearson Education.

Günel, M., Kabataş-Memiş, E., & Büyükkasap, E. (2010). Yaprak yazarlık bilim öğrenme-YYBÖ yaklaşımının ilköğretim öğrencilerinin fen akademik başarısına ve fen ve teknoloji dersine yönelik tutumuna etkisi. *Eğitim ve Bilim*, 35(155), 49-62.

Hurley, M. M. (2001). Reviewing integrated science and mathematics: The search for evidence and definitions from new perspectives. *School Science and Mathematics*, 101(5), 259-268.
Kocaoğlu, G.A. (2012) Web tabanlı yazılım olan vitamin programının öğrencilere fen ve teknoloji dersindeki başarılarına ve tutumlara etkisi. Unpublished master’s thesis, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale.

Kula, Ş. G. (2009). Araştırma çözmeye dayalı fakültelerin öğrencilere bilimsel süreç becerileri, başlarmak, kavram öğrenmeleri ve tutumlara etkisi. Unpublished master’s thesis, Marmara Üniversitesi, İstanbul.

Marulcu, İ., Sıaylan, A., & Güven, E. (2104). 6. ve 7. sınıf öğrenciler için gerçekleştirilen “Küçük Bilginler Bilim Okulu” nun değerlendirme. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 11(25), 341-352.

MEB (2014). Yenilik ve Eğitim Teknolojileri Genel Müdürlüğü TIMSS 2011 ulusal matematik ve fen raporu: 4. Sınıflar. İşkur Matbaacılık.

MEB (2013). Talim ve Terbiye Kurulu Başkanlığı İlköğretim Kurumları Fen Bilimleri (3-8. Sınıflar) Öğretim Programı, Ankara.

Olsen, J.K., & Slater, F.T. (2009). Impact of modifying activity-based instructional materials for special needs students in middle school astronomy. The Astronomy Education Review, 2(7), 40-56.

Özgen, N. (2012). Öğretmen adaylarının erozyon konusuna yönelik genel akademik bilgi düzeylerinin incelenmesi: Gazi üniversitesi örneği. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18, 82-105.

Özgen, N. (2013). Öğretmen adaylarının erozyon kavramına yönelik algıları: Fenomenografik bir araştırma. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(2), 321-334.

Pınar, A., & Akdağ, H. (2012). Sosyal bilgiler öğretmen adaylarının iklim, rüzgar, sıcaklık, yağış, erozyon, ekoloji ve harita kavramlarının anlama düzeyi. İlköğretim Online, 11(2), 530-542.

Sağlam, K. (2012). Fen ve Matematikte Büyük Buluşlar Programı’nın etkililiğinin incelenmesi: bir özel okul örneği. Unpublished master’s thesis, Marmara Üniversitesi, İstanbul.

Sarıtaş, R. (2012). Milli Eğitim Bakanlığı Okul Öncesi Eğitim Programına uyarlanmış GEMS (Great Explorations in Math and Science) Fen ve Matematik Programının anaokulu devam eden altı yaş grubu çocukların kavram edinimleri ve okula hazırlanış düzeyleri üzerindeki etkisini incelenmesi. Unpublished master’s thesis, Gazi Üniversitesi, Ankara.

Senge, P., Cambron-McCabe, N., Lucas, T., Smith, B., Dutton, J. & Kleiner, A. (2000) Schools that learn: a fifth discipline fieldbook for education, parents, and everyone who cares about education. New York: Doubleday.

Taşkın Can, B., Cantürk Günhan, B., & Öngel Erdal, S. (2005). Fen bilgisi öğretmen adaylarının fen derslerinde matematiğin kullanımına yönelik öz yeterlik ön inançlarının incelenmesi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 23.

Tekbıyık, A, Birinci Konur, K. & Şeyihoğlu, A. (2014) GEMS tabanlı yenilikçi öğretim uygulamaları projesinden yansımlar. XI. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, 11-14 Eylül 2014, Çukurova Üniversitesi, Adana.

Tekbıyık, A., Şeyihoğlu, A., Sezen Vekli, G., & Birinci Konur, K. (2013). Aktif öğrenmeye dayalı bir yaz bilim kampının öğrenciler üzerindeki etkilerinin incelenmesi. The Journal of Academic Social Science Studies (JASSS), 6(1), 1383-1406.

Turan, İ., & Kartal, A. (2012). İlköğretim 5. sınıf öğrencinin doğal afetler konulu bilgilerine ilgili kavram yanıtlarını. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 13(3), 67-81.

Yalçın, F. & Tekbıyık, A.(2013) GEMS tabanlı etkinliklerle desteklenen proje yaklaşımının okul öncesi eğitimde kavramsal gelişime etkisi. Turkish Studies-International Periodical For The Languages, Literature and History of Turkish or Turkic, 8/9, 2375-2399.

Yıldırım, H. H., Yıldırım, S., Ceylan, E., & Yetişir, M. İ. (2013). Türkiye perspektifinden TIMSS 2011 sonuçları. Ankara: Pelin Offset Tipo Matbaacılık
Appendices

Appendix 1.

Scientific Process Skills Test Sample Question

The table below shows the humidity rates and heat amounts of various types of coal used by different apartments. The table also shows the views of the residents from these apartments regarding the warmness in their houses as well as coal prices per ton. Based on this information, please answer the following questions:

Apartments	The type of the coal	Humidity rate of the coal	The amount of heat emitted from the coal	The views of the apartment residents	Coal price per ton
1st Apartment	Peat coal	75%	Low	*Our house is hardly warm. We are always cold. We need to use 5 tons of coal to feel warm.*	₺ 200
2nd Apartment	Brown coal	50%	Medium	*Our house is warm to some extent. We sometimes feel cold. We need to use 2 tons of coal to feel warm.*	₺ 400
3rd Apartment	Hard coal	5%	High	*Our house is very hot. We never feel cold. We need to use 1 ton of coal to feel warm.*	₺ 600

a) According to the table above, what may be the reason for that hard coal is capable of heating more than peat?

b) Considering the amount of the coal used by apartments for heating, which ones is more efficient and cost-efficient? Why?
Appendix 2.

The Acquisitions and Scientific Process Skills Associated with Activities

Activity no.	Activity name	Acquisitions	Scientific process skills	Duration (min.)				
1	Field Trip	Knows that earth crust’s land layer is formed of rocks (MEB Science Course Curriculum, 2013).	Observation	40				
2	Let’s Examine the Rocks	Knows that rocks are made of minerals (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005).	Observation	40	Comparison	Classification	Deduction	Recording Data
3	Factors Influential on Soil Formation (Parental Involvement)	Explains how soil is formed (Leans the role of plants and temperature changes on soil formation) (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005).	Observation	40+40	Communication	Recording Data	Induction	
4	Erosion	Established a relationship between erosion and soil loss (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005). Offers solutions to prevent soil from the negative influence of erosion. (MEB Science Course Curriculum, 2013).	Observation	40	Comparison	Measurement	Recording Data	Induction
5	Fossils	Researches and presents the formation of fossils and fossil types (MEB Science Course Curriculum, 2013). Feels proud of his/her country’s museums, archaeological sites, historical artifacts, monuments, and so on (Knows that fossils are displayed in natural history museums) (MEB Visual Arts Course [1st and 8th Grades] Curriculum, 2005).	Observation	40	Recording Data	Induction		
6	Rocks with an Economic Value and Mathematical Modeling	Describes minerals or rocks with an economic value as mines (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005). Interprets and evaluates the information, events, and ideas presented in visuals (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005). Solves and poses problems requiring subtraction with natural numbers. Divides the three-digit natural numbers by at most two-digit natural numbers. Predicts the result of a division and compares his/her prediction with the operation result. Makes a bar chart. Interprets a bar chart (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005). Associates his/her needs with available resources (MEB Science and Technology Course [4th and 5th Grades] Curriculum, 2005).	Observation	40+ 40	Prediction	Induction	Measurement	Recording Data