Rapid microbial methanogenesis during CO₂ storage in hydrocarbon reservoirs

Carbon capture and storage (CCS) is a key technology to mitigate the environmental impact of carbon dioxide (CO₂) emissions. An understanding of the potential trapping and storage mechanisms is required to provide confidence in safe and secure CO₂ geological sequestration. Depleted hydrocarbon reservoirs have substantial CO₂ storage potential, and numerous hydrocarbon reservoirs have undergone CO₂ injection as a means of enhanced oil recovery (CO₂-EOR), providing an opportunity to evaluate the (bio)geochemical behaviour of injected carbon. Here we present noble gas, stable isotope, clumped isotope and gene-sequencing analyses from a CO₂-EOR project in the Olla Field (Louisiana, USA). We show that microbial methanogenesis converted as much as 13–19% of the injected CO₂ to methane (CH₄) and up to an additional 74% of CO₂ was dissolved in the groundwater. We calculate an in situ microbial methanogenesis rate from within a natural system of 73–109 millimoles of CH₄ per cubic metre (standard temperature and pressure) per year for the Olla Field. Similar geochemical trends in both injected and natural CO₂ fields suggest that microbial methanogenesis may be an important subsurface sink of CO₂ globally. For CO₂ sequestration sites within the environmental window for microbial methanogenesis, conversion to CH₄ should be considered in site selection.

A possible method for reducing current greenhouse gas emission rates is carbon capture and storage (CCS). Long-term carbon dioxide (CO₂) trapping mechanisms include structural or stratigraphic trapping in stable geological configurations, dissolution into pore fluids (solubility trapping), carbonate mineralization (precipitation and mineral trapping) or adsorption (for example, onto coal). Typically, during CO₂-enhanced oil recovery (CO₂-EOR), a proportion of the injected CO₂ remains within the reservoir post-injection, providing an analogue for investigating and quantifying processes within CCS sites, over decadal timescales.

Here we investigate the behaviour of CO₂ within the Olla Oil Field, Louisiana, USA (Fig. 1), which was CO₂-EOR flooded in the 1980s, and compare its (bio)geochemical composition with the adjacent Nebo-Hemphill Oil Field, which was never subjected to CO₂-EOR (Methods). Approximately 9 × 10⁷ m³ (standard temperature and pressure (STP)) of injected CO₂ has been retained in the Olla reservoirs post-injection. The injected CO₂ was sourced from the Black Lake Oil Field, which is located adjacent to the Sabine Island Complex, a basement high and likely conduit for mantle-derived fluids. Although the Olla Oil Field has been geochemically characterized by several previous studies (Methods), this study integrates noble gas and clumped isotope data with stable isotope and microbiological data to investigate the fate of the injected CO₂. Previous studies have suggested that microbial hydrocarbon degradation and methanogenesis may occur within both the Olla and Nebo-Hemphill oil fields. Microbial methanogenesis takes acetate, methylated compounds, or hydrogen and CO₂ (hydrogenotrophic methanogenesis, equation (1)) as its starting point; the latter mechanism is most relevant to this study. Hydrogenotrophic methanogenesis results in 13C enrichment of residual CO₂ and the formation of methane (CH₄) initially 13C depleted compared with the source CO₂, which increases to the value of the consumed CO₂.

CO₂ + 4H₂ → CH₄ + 2H₂O

Given their proximity and comparable geological histories (including hydrocarbon production from similar reservoirs; Methods), we assume that the Nebo-Hemphill and Olla oil fields initially had comparable geochemical compositions, before CO₂-EOR at Olla. For example, the Olla and Nebo-Hemphill oil fields have broadly overlapping pH, temperatures, salinities and ion chemistry (Extended Data Table 1). Despite CO₂ injection ceasing in 1986, CO₂ concentrations within the Olla Oil Field (18 ± 12 mol% (STP) across all reservoirs) are greater than breakthrough concentrations limits (10%) and significantly greater than those measured at Nebo-Hemphill (1.02 ± 0.69 mol% (STP)). We observe a higher δ¹³CVPDB of CO₂ at Olla (13.5 ± 3.4‰) compared with both Nebo-Hemphill (4.8 ± 4.9‰) and the injected CO₂ (0.85 ± 0.92‰) (Extended Data Table 2), where δ¹³C = [¹³C/¹²C]sample/[¹³C/¹²C]standard − 1 and VPDB is Vienna PeeDee Belemnite. Injection alone cannot account for 13C enrichment of residual CO₂; this must have occurred post-injection during the hydrocarbon production phase of the Nebo-Hemphill and Olla Oil Fields (Methods). Previous studies have suggested that microbial hydrocarbon degradation and methanogenesis may occur within both the Olla and Nebo-Hemphill oil fields.
for the higher δ13C of CO2 values at Olla; therefore, the integration of complementary datasets is required to evaluate additional in situ processes.

Owing to their inert nature, noble gases provide a powerful tool for tracing and quantifying physiochemical processes associated with CO2 injection4,8,12–19. The average air-corrected helium isotope (3He/4He) ratio relative to the atmospheric ratio (3He/4Heair) was determined for the Olla and Nebo-Hemphill oil fields to be 1.76 ± 0.31 R, respectively (Extended Data Fig. 1, Methods), associated with injected CO2, which were sourced from the Black Lake Oil Field.

In addition to characterizing fluid origin, a combined noble gas and CO2 isotope approach provides insight into processes associated with CO2 trapping (for example, ref. 4) or methanogenesis following injection. 4He is inert and insoluble, with no significant sources within the crust. Thus, variations in CO2/3He post-injection are directly attributable to the addition or removal of CO2 within the system4,20. Although removal (M:D = 0.26) than microbial methanogenesis. The lines labelled ‘consumption’ show the portion of original injected CO2 that has been removed by net microbial methanogenesis. b, The δ13C of CO2 as a function of the δ13C of CH4. The shaded region represents the CO2 isotopic composition of the injectate from the Black Lake Oil Field into the Olla system. The Olla data are consistent with thermal re-equilibration with both reservoir temperatures (solid lines) and microbial methanogenesis (dotted lines). The 1σ level of uncertainty is within the symbol size.
two samples at Olla (samples O5 and O6) have CO$_2$/He within the mantle range (2 ± 1 × 10$^{-6}$), consistent with the injection of mantle-derived fluids, the majority of the ratios are lower and indicate CO$_2$ removal (Fig. 2a, Extended Data Table 2). The difference between the highest CO$_2$/He (O5, considered the most pristine sample) and the remaining samples provides a conservative estimate of post-injection CO$_2$ trapping/consumption of between 39% and 89%.

A decrease in the CO$_2$/He alongside increasing 4He and 20Ne concentrations is observed within the Olla Oil Field (Extended Data Fig. 2, Methods). In the subsurface, 4He is produced via radiogenic decay of uranium and thorium and accumulates in formation water, which also contains atmosphere-derived 20Ne. An anticorrelation between CO$_2$/He and 4He and 20Ne is observed in natural CCS analogues globally, and indicates that the extent of water contact controls the magnitude of CO$_2$ trapping via dissolution or precipitation of CO$_2$ (refs. 4, 10). Within the observed pH range (7.0 ± 0.5) at Olla, dissolution will dominate over CO$_2$ trapping via dissolution or precipitation of CO$_2$ (refs. 4, 15). Within and 4He and 20Ne is observed in natural CCS analogues globally (Fig. 2a, Extended Data Table 2). The difference between the highest fluids, the majority of the ratios are lower and indicate CO$_2$ removal (13.6 ± 3.2‰) and CH$_4$ (−47.7 ± 1.7‰) at Olla compared with those observed at Nebo-Hemphill (3.5 ± 3.6‰ and −56.4 ± 3.6‰ for CO$_2$ and CH$_4$, respectively) (Fig. 2b, Extended Data Fig. 3a, Extended Data Table 2). The higher δ13C of CH$_4$ at Olla could be interpreted as evidence that the Olla Oil Field contains a higher proportion of thermogenic gas, or thermogenic gas of higher thermal maturity, whereas the Nebo-Hemphill Oil Field contains more microbial gas or thermogenic gas of lower thermal maturity. Using our multi-isotope approach, we present a model that is consistent with the observed higher δ13C values of CH$_4$ and an increase in the δ13C of residual CO$_2$.

Independent of the source of the injected CO$_2$, such positive δ13C values suggest significant modification from a starting composition that is unlikely to be heavier than 2‰ (refs. 21, 22). Notably, sorption to coal, hydrocarbon biodegradation to CO$_2$, and subsequent consumption and mixing processes could result in an increase in the δ13C of CO$_2$ (Methods). However, even from the most pristine sample (O5), it is unlikely that any of these processes could generate a fluid with the elevated concentrations of the isotopically enriched CO$_2$ observed at Olla.

Further constraints on the origins and processes affecting these gases are provided by the molecular-average and clumped isotope compositions of the associated CH$_4$. We observe a relatively high δ13C of CO$_2$ (13.6 ± 3.2‰) and CH$_4$ (−47.7 ± 1.7‰) at Olla compared with those observed at Nebo-Hemphill (3.5 ± 3.6‰ and −56.4 ± 3.6‰ for CO$_2$ and CH$_4$, respectively). Two samples at Olla (O5 and O6) have CO$_2$/3He within the mantle range (2 ± 1 × 10$^{-6}$), consistent with the injection of mantle-derived CO$_2$ (Fig. 2a).

Figure 3 illustrates the theoretical trends for pure thermogenic CH$_4$ (Methods), consistent with in situ microbial methanogenesis and AOM. The arrows represent the theoretical trends for methanogenesis (dark grey) and AOM (light grey) 14. The 1σ level of uncertainty is shown on the measured samples.
Fourth, small subunit (SSU) ribosomal RNA gene sequencing of microbial communities identifies the presence of hydrogenotrophic methanogens, methanol and methylotrophic methanogens, and anaerobic methanotrophs (ANME) assigned sequences (Extended Data Fig. 5). These were sampled from the formation water in two wells within each field alongside previous microbiology analysis of these fields. Co-occurrence of both methanogenic and methanotrophic Archaea shows the potential for conversion of CO_2 to CH_4 and vice versa, consistent with isotopic signatures at intramolecular and intermolecular equilibrium. However, equilibration is probably rate limited by AOM, consistent with isotopic signatures at intramolecular and intermolecular equilibrium.

To quantify the impact of these microbial processes at the Olla Oil Field, we have constructed a model that considers both dissolution and microbial methanogenesis (Fig. 2a, Methods). From our most pristine sample (05, highest CO_2/He), we find that to match the isotopic composition of CO_2 with its corresponding CO_2/He, dissolution must account for 3.1 ± 1.1 times more CO_2 removal than hydrogenotrophic methanogenesis. From this model, net microbial methanogenesis is estimated to have consumed a minimum of between 13% and 19% of the post-injection CO_2, depending on sample location, whereas dissolution is responsible for removal of as much as 74% more CO_2. This estimate is independently confirmed when CO_2 concentrations are compared with the δ^{13}C of CO_2 values (Extended Data Fig. 6). On the basis of the elevated δ^{13}C of CO_2, we recognize that our most pristine sample has probably also undergone a significant degree of modification, consistent with our estimate being conservative, and that CO_2 concentrations post-injection were likely to be higher and variable across the field.

Our combined noble gas and stable isotope approach allows estimates of in situ net microbial methanogenesis rates from within a natural system to be calculated. By extrapolating our results over the 29 years between the cessation of injection (1986) and sampling (2015), and assuming 13–19% microbial consumption of CO_2 since injection (from the hybrid methanogenesis—dissolution model, Fig. 2) with the remaining injected CO_2 volume, we calculate that a minimum of 1.15 × 10^{22}–1.72 × 10^{22} STP of microbial CH_4 has been produced at a minimum rate of 73–109 mmol CH_4 m^{-3} (STP) yr^{-1}. Previous estimates for CO_2 reduction following methanogenic oil degasification by hydrogenotrophic methanogens in lab microcosm incubations at similar temperatures are significantly lower (about 0.01–0.15 mmol CH_4 m^{-3} (STP) yr^{-1}) by comparison.

This identification and quantification of CO_2-EOR-related microbial methanogenesis at Olla has significant implications, and warrants reconsideration of reservoir processes at similar sites worldwide. The fate of injected CO_2 in other oil fields (for example, Belridge Diatomite Formation, Lost Hills Oil Field, California, USA) has never been systematically explored using this integrated approach. Similarly to Olla, the Lost Hills Field has an elevated δ^{13}C of dissolved inorganic carbon (DIC) (20.16–23.61‰) compared with the injected δ^{13}C of CO_2 (−30.1‰). The fractionation between δ^{13}C of DIC and CH_4 suggests that the Lost Hills system is approaching equilibrium with current reservoir conditions and the inverse correlation between the δ^{13}C of the post-injection residual CO_2 and concentration is consistent with microbial methanogenesis. Furthermore, data from Nebo-Hempill, as well as naturally CO_2-rich hydrocarbon systems in the Pannonian Basin, Hungary, are also consistent with significant microbial methanogenesis based on the CO_2/He and the δ^{13}C of CO_2 (Extended Data Fig. 7, Methods). These examples suggest that hydrogenotrophic methanogenesis probably occurs in both natural and injection-perturbed systems when reservoirs have favourable physiochemical conditions.

We conclude that although methanogenesis is not the dominant CO_2 sink, it can represent a substantial process within both natural and perturbed CO_2 fields and may be significantly more prevalent than previously considered. Even with the most conservative estimates of CO_2 conversion by methanogenesis in the Olla Oil Field, we find that, so far, as much as 13% to 19% of the emplaced CO_2 in sampled sections of the field has been consumed by methanogens. This is less than the amount of CO_2 that has been dissolved into water, but similarly occurs at significant rates on engineering timescales. CH_4 is less soluble and more mobile than CO_2 and therefore there is an enhanced risk of gas loss associated with CH_4 production due to microbial methanogenesis. Deppleted hydrocarbon reservoirs have the second-largest CO_2 storage potential after deep saline aquifers. If physicochemical and environmental conditions within these reservoirs (for example, low temperature, low salinity and high substrate availability) are conducive to microbial methanogenesis, we suggest that these microbial processes should be considered as criteria for future CCS site selection to ensure low-risk long-term storage. In addition, integrated studies like this may prove essential to effectively monitor CO_2 storage and the biogeochemical processes that result as a consequence of it.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-021-04153-3.
19. Gilfillan, S. M. V. et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim. Cosmochim. Acta 72, 1174–1198 (2008).
20. Sherwood Lollar, B., Ballentine, C. J. & Onions, R. K. The fate of mantle-derived carbon in a continental sedimentary basin: integration of C-He relationships and stable isotope signatures. Geochim. Cosmochim. Acta 61, 2295–2307 (1997).
21. Clark, I. D. & Fritz, P. Environmental isotopes in Hydrogeology (CRC Press/Lewis Publishers, 1997).
22. Stolper, D. A. et al. The utility of methane clumped isotopes to constrain the origins of mature natural gases. Geochim. Cosmochim. Acta 117, 3989–3995 (2020).
23. Stolper, D. A. et al. Formation temperatures of thermogenic and biogenic methane. Science 344, 1500–1503 (2014).
24. Douglas, P. M. J. et al. Methane clumped isotopes: progress and potential for a new isotopic tracer. Org. Geochem. 113, 262–282 (2017).
25. Stolper, D. A. et al. The utility of methane clumped isotopes to constrain the origins of methane in natural gas accumulations. Geol. Soc. Lond. Spec. Publ. 468, 23–52 (2018).
26. Giunta, T. et al. Methane sources and sinks in continental sedimentary systems: new insights from paired clumped isotopologues Δ^1CH2D2 and Δ^1CH3D. Geochim. Cosmochim. Acta 245, 327–351 (2019).
27. Young, E. D. et al. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochim. Cosmochim. Acta 161, 219–247 (2015).
28. Wang, D. T. et al. Nonequilibrium clumped isotope signals in microbial methane. Science 348, 428–431 (2015).
29. Guen, D. S. et al. Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane. Geochim. Cosmochim. Acta 237, 339–356 (2018).
30. Cao, X., Bao, H. & Peng, Y. A kinetic model for isotopologue signatures of methane generated by biotic and abiotic CO2 methanation. Geochim. Cosmochim. Acta 249, 59–75 (2019).
31. Wang, D. T. et al. Nonequilibrium clumped isotope signals in microbial methane. Science 348, 428–431 (2015).
32. Guen, D. S. et al. Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane. Geochim. Cosmochim. Acta 237, 339–356 (2018).
33. Cao, X., Bao, H. & Peng, Y. A kinetic model for isotopologue signatures of methane generated by biotic and abiotic CO2 methanation. Geochim. Cosmochim. Acta 249, 59–75 (2019).
34. Ono, S. et al. Clumped isotopologue fractionation by microbial cultures performing the anaerobic oxidation of methane. Geochim. Cosmochim. Acta 293, 70–85 (2021).
35. Sweeney, J. J. & Burnham, A. K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990).
36. Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003).
37. Stolper, D. A. et al. Microbial community composition of a hydrocarbon reservoir 40 years after a CO2 enhanced oil recovery flood. PLoS Microbiol. 94, e1001353 (2018).
38. Gray, N. D. et al. Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13, 511–519 (2009).
39. Perri, P. R. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California’s Monterey Siliceous Shales Annual Report (Chevron USA Production Company, 2003).
40. Gannon, R. S. et al. Produced Water Chemistry Data for the Lost Hills and Fruitvale Study Areas, Southern San Joaquin Valley, California, 2016 (US Geological Survey, 2020), https://doi.org/10.5066/F7X929H9.
41. Young, E. D. et al. The relative abundances of resolved Δ^1CH2D2 and Δ^1CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta 203, 235–264 (2017).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Methods

Modelling

Here we provide extra details of the $^{8}{^{13}}$C-CO$_2$ fractionation modelling of methanogenesis and dissolution. In our models (Fig. 2a, Extended Data Fig. 6), we use the sample with the highest measured CO$_2$/3He of methanogenesis and dissolution. In our models (Fig. 2a, Extended Data Fig. 6), we use the sample with the highest measured CO$_2$/3He of methanogenesis and dissolution. We assume there is no He loss from the gas phase by dissolution or methanogenesis and therefore changes in the fraction of the CO$_2$ cause changes in the CO$_2$/He.

Dissolution is modelled as open-system Rayleigh fractionation1.

\[
\delta^{13} C_{\text{CO}_2} = \delta^{13} C_{\text{CO}_2}^i x f^{(1-f)} \times 1,000
\]

(2)

where f is the fraction of the original CO$_2$ remaining in the reservoir, $\delta^{13} C_{\text{CO}_2}$ and $\delta^{13} C_{\text{CO}_2}^i$ are the carbon isotopic composition of the CO$_2$ for post-dissolution and in the initial CO$_2$, respectively, and α is the fractionation factor. The fractionation factor for dissolution ($\alpha_d = 1.0038 \pm 0.0012$) was calculated based on the average measured pH20. Precipitation curves (Fig. 2a) can be modelled in the same way using fractionation factors ($\alpha_p = 1.0086 \pm 0.0002$) calculated for the current reservoir temperature3.

From consideration of the carbon isotopes, which appear to be approaching equilibrium under current reservoir conditions, net methanogenesis has been modelled as a closed-system equilibrium process (equation (2), Fig. 2a). The fractionating result from this cycling, $\alpha_m = 0.9363 \pm 0.003$, which is consistent with thermal equilibrium at current reservoir temperatures5.

\[
\delta^{13} C_{\text{CO}_2} = \delta^{13} C_{\text{CO}_2}^i x (1-\alpha_m) \times 1,000
\]

(3)

Within the Olla Oil Field, it is likely that there is a combination of both microbial cycling and dissolution. As a result, the net effect of microbial methanogenesis and dissolution can be described using equation (3).

\[
\delta^{13} C_{\text{CO}_2} = \delta^{13} C_{\text{CO}_2}^i x f^{(1-f)} x (1-\alpha_m) \times 1,000
\]

(4)

where f is the fraction of CO$_2$ remaining after trapping/consumption and α_m is the apparent fractionation factor for the system. α_m depends on the degree of dissolution compared with methanogenesis and is described as21:

\[
\alpha_m = F_d \alpha_d + (1-F_d) \alpha_m
\]

(5)

where F_d is the fraction of CO$_2$ of the total CO$_2$ trapped/consumed due to dissolution.

Sample collection and analysis

Samples for bulk gas composition, stable isotope, noble gas and clumped isotope analysis were collected directly from the wellhead using standard techniques following methods from refs. 8,17,18,24. Noble gas isotopic determination was conducted in the Noble Laboratory at the University of Oxford, where the analysis of hydrocarbon gases is well established20.17,18,24. For bulk composition and C and H stable isotope analysis, gas cylinders were shipped to Isotech in Champaign, Illinois, USA. The standard procedures for these are described in ref. 24. CH$_4$ clumped isotope analogues were determined at the California Institute of Technology following the procedures described in ref. 24. Microbiological analysis was conducted at an internal ExxonMobil Research and Engineering Company Facility. The produced water samples were collected and filtered immediately from wells O1, O4, NHH3 and NHH6. Water was passed through 0.22-μm Spectrum GC filters (EMD Millipore) until filters clogged in the following amounts: O1, 1,350 ml; O4, 1,350 ml; NHH3, 1,750 ml; NHH4, 300 ml. Filters were stored on ice immediately and stored at −80°C until DNA extraction. DNA was extracted from the Sterivex filters using the DNeasy PowerWater Sterivex Kit (Qiagen). The SSU rRNA gene was amplified with V4V5 specific primers (https://vamps2.mbl.edu/) targeting Bacteria. The SSU rRNA gene was amplified with specific primers targeting Bacteria: forward primers (96F) TCAACGGAGAACCTYACC, CNACCGGAAGAACCTTANC, CAACCGGMAARAACTTACC and ATACGCGAGAACCTT ACC; reverse primer (1064R) GCAGCRRCATGACANTCCT. A second set of amplifications was performed using specific primers targeting Archaea: (Arch2A519F) CAGCMGCGCCGCTAA and (Arch1017R) GGCC ATGCCACWCCTCCTC. Illumina MiSeq 2x300bp paired-end sequencing was performed by Mr. DNA. Microbiome bioinformatics were performed with QIME 224. Raw sequence data were demultiplexed and quality filtered using the q2-demux plugin followed by denoising with DADA248. Amplicon sequence variants were aligned with mafft and used to construct a phylogeny with fasttree249. Taxonomy was assigned to amplicon sequence variants using the q2-feature-classifier46 classify-skelearn Naïve Bayes taxonomy classifier against the Greengenes 13_8 99% operational taxonomic unit (OTU) reference sequences52.

Geological and production history

The Olla Oil Field is located in La Salle Parish, Louisiana, in the northern Gulf of Mexico and was CO$_2$ injected between 1983 and 1986 for enhanced oil recovery (CO$_2$-EOR). The Nebo-Hemphill Oil Field lies 20 km to the southeast of the Olla Oil Field and provides a control field for this study, having had no CO$_2$ injected (Fig. 1). Both fields are producing from the Palaeocene–Eocene Wilcox Group, which in northern Louisiana is composed of 600–1,500 m of shallow marine clastic sediments to fluvial deltaic deposits and up to 6-m-thick coal beds34,35. The group is bound either side by the Palaeocene Midway Group and the Eocene Clairborne Group confining units45. Typically, the Wilcox Group is subdivided into the lower (sandstone with coal beds), middle (sandstone, lignite and clay) and upper (deltaic deposits) intervals, with the ‘Big Shale’ informal unit separating the middle and upper groups31,33.35 Late Cretaceous intrusive igneous bodies in northern Louisiana, west-central Mississippi and southeastern Arkansas are thought to have affected the regional heat flow, which may have caused an increase in the thermal maturity of the Wilcox Group during the early Palaeocene36.52.

Gas/oil ratios are variable within the field, and do not seem to be associated with proximity to the known gas cap and higher gas/oil ratios may instead reflect gas coming out of solution as bottom hole pressure increases.

CO$_2$ is present in low concentrations (1.02 ± 0.69 mol%) within the Nebo-Hemphill Oil Field, which suggests that there is some natural background CO$_2$ present in both fields. Between March 1983 and April 1986, the 2,800-ft sandstone (within the middle Wilcox Group) in the Olla Oil Field underwent a pilot project for CO$_2$ flooding. The CO$_2$ injected into the field was immiscible and injected in the gas phase (that is, not supercritical). It is assumed that a negligible amount of CH$_4$ was injected alongside the CO$_2$. Previous studies on the Olla Oil Field have assumed that all the injected CO$_2$ was retained within the 2,800-ft sandstone50. However, the initial CO$_2$ injection report states that “mole percentages in excess of 10% more than likely indicate production of injected CO$_2$.” Only 1 sample outside of the 2,800-ft sandstone has CO$_2$ concentrations less than 10% (that is, all other CO$_2$ concentrations are greater than 10%). Notably, concentrations greater than 10% in other producing zones have previously been reported10.

These signatures are consistent with injected CO$_2$ migration across the different reservoirs and remaining within the formations upon sampling. If such high concentrations of CO$_2$ were present in this field before injection, CO$_2$ would not have been extracted and transported from the Black Lake Oil Field and would have instead been extracted from the producing fluids of CO$_2$ rich fluids at Olla. In addition, we see a clear mantle-derived noble gas signature (see below),
which is most evident in the He and neon (Ne) isotopes (Extended Data Fig. 1), in the Olla Oil Field, which shows a clear incursion of injection CO₂ into the proximal lithologies.

A total of 2.2 × 10⁶ m³ of CO₂ was injected into the Olla Oil Field and was sourced from the nearby Black Lake Oil Field (produced from the Lower Cretaceous carbonates of the Petit Formation) in Natchitoches Parish, Louisiana (Fig. 1). Approximately one-third of the injected CO₂ remained within the reservoir after the cessation of the EOR project. It is important to note that during the lifetime of this CO₂-EOR project, we were unable to obtain constraints such as the ratio of injected CO₂ to reservoir pore volume that are sometimes cited to quantify the scale of the EOR project and the distribution it achieves within the subsurface. Further, we anticipate that the injected CO₂ is not uniformly distributed within the pore volume of the Olla Oil Field due to different phases of EOR and gas cycling.

In 1984, water flooding also started within the field. In contrast, Nebo-Hemphill has never undergone any type of EOR.

Molecular geochemistry

Whole-oil gas chromatography (WOGC) was performed to provide a hydrocarbon fingerprint of each oil, and open-column liquid chromatography was utilized to separate and quantify the saturated, aromatic, resins and asphaltene fractions of each oil. In general, we see similar fluid compositions between the two fields. The WOGC shows evidence of marine-sourced oils with a smooth distribution of n-alkanes, pristane/phytane ratios of approximately 2 and low wax content. The notable differences are probably due to varying levels of biodegradation illustrated by the loss of n-alkanes in some samples and American Petroleum Institute (API) gravity ranging from 21 to 42. The similarities in the geochemical signatures of these oils provide a basis to use the Nebo-Hemphill Oil Field as a control site for any biogeochemical differences that may arise as a result of the injection of CO₂ at Olla.

Source facies

Gas chromatography mass spectroscopy (GC/MS) was utilized to analyse the saturate and aromatic fractions to provide the biomarker distributions of each oil. The interpretation of a dominantly marine source is based on the following evidence: (1) a smooth distribution of tricyclic terpanes with C₂₃ being the maximum along with extended hopanes (C₃₅ – C₃₅) decreasing in order is a classic marine source signature; (2) the high presence of C₂₃ hopane compared with C₂₉ hopane is indicative of a marine clastic source; (3) a higher abundance of C₂₈ bisnorhopane compared with oleanane suggest a higher marine input compared with the above source; (4) a greater abundance of C₃₀ tricyclic terpane as compared to C₂₅ tricyclic terpane provides evidence of some terrigenous input. Consistent with previous interpretations, we consider this source to be a part of the Wilcox Group oils, more specifically Wilcox Group I as originally described by refs. 58,60.

Thermal maturity

We adopted standard saturate and aromatic biomarker ratios to develop apparent thermal maturity estimates for each of the oil samples analysed. We discuss these in the context of apparent thermal maturities that may arise as a result of the injection of CO₂ at Olla.

Alteration

The use of WOGC and GC/MS analyses help provide a picture of the alteration history of these oils. The shallow Nebo-Hemphill NHH13 fluid is the most biodegraded end member of the samples tested, based on the apparent lack of n-alkanes, an API gravity of 21 and the presence of demethylated hopanes. This sample would be classified as severely biodegraded based on the classification of ref. 63.

The remaining Nebo-Hemphill samples have API’s of 32–41 and are classified as unbiodegraded to slightly biodegraded61. The Olla Oil Field fluids show evidence of reduced light n-alkanes, display similar n-alkane-to-isoprenoid ratios and have API’s of 33 to 37, suggesting similar levels of biodegradation between the fluids. Therefore, the Olla fluids would be classified as having very slight biodegradation61.

Summary of previous findings

The formation water geochemistry, molecular oil composition and produced gas composition (including δ¹³C) in the Olla and Nebo-Hemphill oil fields have been previously characterized6–13. Microbial methanogenesis was first hypothesised for the Olla Oil Field based on its enriched δ¹³C of CO₂ (ref. 14). However, owing to the differences in the isotopic composition between the 2,800-ft sandstone and the other producing formations with the injected material, they concluded that the injected CO₂ was not present in the producing zones6 and consequently any microbial methanogenesis was independent of injection and is probably associated with microbial oxidation of hydrocarbons. The enhanced methanogenesis within the Olla Oil Field compared with other fields produced from the Wilcox Group was thought to be due to the ideal geochemical conditions (that is, suitable range of pH, temperature and salinity, and lack of alternative electron acceptors)10. They conclude that the injected CO₂ was most likely dissolved and trapped in a gas phase15. Further investigation of microbial methanogenesis found that there was little correlation between crude oil biodegradation and methanogenesis; however, the extent of oil biodegradation was correlated with the temperature, salinity and depth of samples16. In addition, there has also been an investigation of the microbial community composition within the Olla reservoir22, which found methanogens present within the system, and no significant difference in microbial communities between the 2,800-ft sandstone and other producing zones23. With the addition of the inert noble gas isotopes and clumped isotopes, we are able to re-investigate the fate of CO₂ within the Olla reservoirs.

Formation water chemistry in the Olla Oil Field

The pH and alkalinity of the formation waters within the Olla Oil Field are between 6.5 and 7.5 and between 16.3 meq kg⁻¹ and 57.7 meq kg⁻¹, respectively10. The most dominant anion was Cl⁻ (1,122–1,621 mmol l⁻¹) and the most dominant cation measured was Na⁺ (1,108–1,630 mmol l⁻¹) (Extended Data Table 1), which are typical of basinal brines64 and in agreement with previous measurements65. Other cations present include: Mg²⁺ (119–329 ppm), Ca²⁺ (80–500 ppm), K⁺ (223–524 ppm), Ba²⁺ (95–165 ppm), Si⁴⁺ (10.1–12.5 ppm) and Sr²⁺ (77–215 ppm). Measured iron concentrations are less than 0.1 ppm. With the exception of sample O1 where SO₄²⁻ concentrations are 62 ppm, SO₄²⁻ concentrations are less than 2 ppm. Both the iron and SO₄²⁻ concentrations are in agreement with those previously reported66.

Identification of injected material

CO₂ concentrations in the injected Olla Oil Field (18 ± 2 mol%) are significantly greater than the Nebo-Hemphill Oil Field (1.02 ± 0.69 mol%). CH₄ concentrations at Olla are 77 ± 13 mol% (STP) compared with 92.6 ± 8.2 mol% (STP) at Nebo-Hemphill. However, the δ¹³C of CO₂ of the injected material (0.85 ± 0.91‰) is isotopically distinct from the δ¹³C of CO₂ now within Olla (13.6 ± 3.2‰) (Fig. 2b). The injected CO₂ was sourced from the Black Lake Oil Field, which is located close to the
Sabine Island Complex. The Sabine Island Complex forms part of the Sabine Uplift basement high and has been suggested to be a conduit for mantle-derived fluids. However, the measured δ13C of CO2 values at Black Lake (0.85 ± 0.91‰) are elevated relative to mantle CO2 (−2‰ to −5‰; refs. 21,22), probably reflecting some degree of biological modification when the reservoir was shallower and at temperatures favourable to microbial activity. An alternative interpretation for the elevated δ13C of CO2 at Black Lake is that it is a mixture of mantle-derived and crustal-derived CO2; however, this would increase the CO2/He above that expected in the mantle, which is not observed in the Olla samples. As the stable isotopes of carbon are frequently modified by chemical or biological processes, the inert nature of noble gases means that they are ideal tracers for injected CO2 in such scenarios. As injectate samples were not collected during CO2-EOR, we do not have access to the noble gas compositions of the material injected into the Olla Oil Field. Nevertheless, it is reasonable that the noble gases record pre-injection conditions at the nearby Nebo-Hemphill Oil Field, and that these are subsequently modified at the Olla Oil Field through mixing of the injected material during the CO2 injection.

The 3He/20Ne ratio is between 3.210 and 20.900 in both fields, which is significantly greater than the atmospheric value of 0.32 and there is no significant atmospheric contribution to these samples. The air-corrected He isotopic ratio (3He/4He), reported relative to the atmospheric ratio (R/4He, where air is 13R), in the Olla Oil Field is 1.84 ± 0.10R, and 0.46 ± 0.08R at Nebo-Hemphill (Extended Data Table 2). These are both higher than a typical hydrocarbon system where the majority of He is derived from crustal radiogenic production (3He/4He = 0.02RK; ref. 23), and higher than other fields within the Gulf of Mexico region24,25. The elevated 3He/4He values are the result of a resolvable mantle contribution. Using a simple two endmember mixing model, with subcontinental lithospheric mantle (3He/4He = 6.1; ref. 26) and crustal endmembers, we resolve an average 7.8% mantle contribution to mantle He in Nebo-Hemphill Oil Field. It is likely that the mantle fluid contribution is coming from the Little Creek collapse structure, which is situated between the two fields26. At Olla, the average mantle contribution to 3He is 30%, which suggests that there is an additional source of mantle fluids to this field, which is reasonably explained by the injectate sourced from the Black Lake Oil Field. Ne isotope ratios are elevated at Olla (22Ne/20Ne 10.3 ± 0.2 and 22Ne/20Ne 0.0399 ± 0.002) compared with Nebo-Hemphill (9.85 ± 0.09 and 0.0335 ± 0.001, respectively) and air (9.8 and 0.029) (Extended Data Fig. 1, Extended Data Table 3). Again suggesting that the injected material contains mantle-derived fluids.

The 40Ar/36Ar values at Nebo-Hemphill are significantly greater than the atmospheric value (298.56; ref. 27), with measured ratios of 370 ± 3 to 604 ± 5. The Olla Oil Field has a higher 40Ar/36Ar (1.476 ± 13 to 2.766 ± 24) (Extended Data Table 3). Elevated 40Ar/36Ar ratios can be a result of an excess of radiogenic 40Ar and mantle-derived fluids12,13. The difference in the 40Ar/36Ar ratios could be due to variable amounts of radiogenic production or fundamental differences in the extent of contact with formation waters between the two fields. However, as all the wells sampled are within the same geological formation, the two fields are in relatively close proximity and they have indistinguishable 4He concentrations, it seems unlikely that this would be the case. Thus, the difference is probably a result of the injected CO2, which probably had mantle-derived 40Ar/36Ar excesses, concordant with the observed mantle-derived He and Ne isotopes. Finally, whereas xenon (Xe) isotope ratios at Nebo-Hemphill are indistinguishable from air, the Olla Oil Field showed excesses in some Xe isotope ratios relative to air. For example, the 125Xe/132Xe ratio is 6.59 ± 0.01 compared with an atmospheric value of 6.49 (Extended Data Table 3); this excess in 125Xe relative to 132Xe is consistent with a contribution from mantle fluids with an end member 129Xe/132Xe value of 8.2 (ref. 28). The Olla Oil Field therefore shows a clear mantle component that is not present within the Nebo-Hemphill control field.

The detection of injected fluids within the Olla Oil Field using the conservative noble gas tracers differs from the findings of the previous studies that used the δ13C of CO2 to conclude that injected CO2 is no longer or never was present in the majority of the sampled wells (for example, ref. 29). The subsurface behaviour of the injected CO2 within the system can therefore be re-examined using a combination of noble gases and stable isotopes.

Dissolution within the Olla Oil Field

CO2 is highly soluble in water under reservoir conditions. The most likely trapping mechanisms for free-phase subsurface CO2 are dissolution or precipitation as carbonate minerals mediated by dissolution21. A decrease in the 4He/3He correlates with increasing 4He and 3He concentrations within the Olla Oil Field (Extended Data Fig. 2). 20Ne (and often 4He) are derived from the formation water, suggesting that CO2 trapping in the Olla Oil Field is also proportional to the amount of formation water that has been contacted and degassed, consistent with dissolution within the field4. Dissolution (solubility trapping) has previously been found to be a major sink for CO2 (ref. 7) and imparts a slight pH-dependent fractionation towards a light isotope composition11. However, this fractionation effect is marginal compared with the amount of CO2 that can be trapped and the fractionation that can be imparted by methanogenesis—AOM cycling (Fig. 2a).

Given the presence of discontinuous coal beds within the Wilcox Group72–75, it is possible that some of the injected CO2 may have been sorbed onto these coal beds as CO2 has a much greater affinity to coal than CH4 (ref. 21). The resulting isotopic fractionation imparted by this process remains poorly constrained, with some studies suggesting a greater than 5% shift72,73 whereas others suggest negligible effects75–77 on the δ13C of CO2. Coal sorption would cause fractionation in the opposite direction of the CH4 isotopic signature. Given the heavier δ13C of CO2 and δ13C of CH4 isotopic signatures in the injected Olla Oil Field, it is unlikely that CO2 sorption to coal is a major CO2 sink in the field, in agreement with previous findings75.

Subsurface behaviour of carbon at Olla

The Olla samples are enriched in both the δ13C of CO2 and the δ13C of CH4 compared with Nebo-Hemphill and the injected CO2 values. The offset between the δ13C of CH4 and the δ13C of CO2 in the Olla Oil Field are close to those expected under thermally driven isotope exchange equilibrium for the observed temperatures (Fig. 2b). Carbon isotopes of CO2 and CH4 approaching equilibrium in hydrocarbon systems with current reservoir conditions have previously been observed24. However, the thermal equilibrium of CO2 and CH4 is kinetically limited at the current temperatures (29.2–50.7 °C) in the Olla reservoirs and would not occur on the timescale of injection, without a process to enhance the reaction rate28. A combination of both microbial methanogenesis and AOM active within the field would allow for the system to be approaching equilibrium under the current thermal conditions within the reservoir. Further observations detailed below provide evidence for this conclusion and allow for the net microbial methanogenesis to be quantified.

The clumped isotope compositions of CH4 (Δ13CH3D) and Δ12CH3D can provide independent constraints on its origin within petroleum systems29–32. Thermogenic CH4 is expected to have a composition consistent with the source-rock maturation temperature, which is typically at or above 157 °C (ref. 35). At Olla, we expect CH4 generation to have occurred at 163 ± 18 °C (based on biomarker maturity estimates following ref. 36). Microbial CH4 is variable in its clumped isotope compositions with both non-equilibrium28,29 and apparent equilibrium signatures reported in samples obtained from the deep subsurface30,31. Microbial methanogenesis forms CH4 characterized by low Δ13CH3D and extremely low Δ12CH3D (refs. 28,29), whereas AOM tends to drive the isotope composition of CH4 towards equilibrium, with equilibrium expected to be reached at a faster rate in Δ13CH3D compared
with in Δ12CH2D2 (refs. 79–81). In the Olla Oil Field, we see Δ12CH2D2 of 3.45–5.62‰ (apparent temperature of 29.6–46 °C) and Δ12CH2D2 of 3.91 (apparent temperature of 68–112 °C) (Fig. 3, Extended Data Table 2); these temperatures preclude a thermogenic origin for the CH4 and are instead consistent with a microbial contribution. Samples O4 and O6 are in internal clumped isotopologue equilibrium at temperatures lower than expected for the thermogenic CH4, and appear to be approaching equilibrium with current reservoir conditions. The remaining samples from Olla have already reached apparent equilibrium with the current reservoir conditions in Δ12CH2D2 but have yet to reach apparent equilibrium in Δ12CH2D2 probably due to kinetic effects. The clumped isotopologues at Olla are approaching equilibrium at reservoir temperatures, which would be accounted for by active AOM within the Olla Oil Field. This supports the conclusion that there is active microbial methanogenesis and AOM driving the carbon isotopes to approach equilibrium under current thermal conditions in the Olla reservoirs.

There is microbial degradation of the higher alkane gases (Extended Data Fig. 3) within the Olla Oil Field. Propane is preferentially consumed during microbial degradation and thus in biodegraded gases, propane will be seen the most pronounced δ13C enrichment10. This δ13C enrichment is clear within the Olla gases (Extended Data Table 3) and supports active microbial hydrocarbon degradation within the field. The presence of methanogenic activity and the idea of a methanogenic ‘hotspot’ in the Olla reservoir has been previously suggested10. The environmental conditions for which methanogenesis can occur are relatively well defined. Within nutrient-poor environments such as oil reservoirs or coal beds, methanogens can survive at temperatures up to 80 °C, with the largest growth rates and thus greatest amount of methanogenic activity between 40 °C and 50 °C (refs. 82–84). Methanogenic activity is greatest at near neutral pH and is inhibited at pH <4 and >9 (ref. 84). Formation water salinity can also inhibit methanogenesis above Cl concentrations of 1,500 mM, with greatest growth between 200 mM and 600 mM (refs. 83,84). The presence of ferric iron and sulfate at concentrations greater than 1 mM can also limit methanogenesis (as a result of the dominance of other bacteria)85–90. Notably, the Olla Oil Field exhibits ideal environmental conditions for methanogenesis, in terms of pH (6.5–7.5), temperature (29.2–50.7 °C), salinity (1,094–1,622 mM), sulfate (<0.6 mM17) and iron concentrations (<0.1 mM17) (Methods).

In addition, geochemical and isotopic parameters associated with microbial methanogenesis in organic-rich settings are also well established90–99. Traditionally, carbon isotopes of CH4 have been used to determine the presence of biogenic CH4 (typically less than −60‰)90 (Extended Data Fig. 3a). However, methanogenesis can result in heavy biogenic CH4, as the residual CO2 pool gets increasingly elevated, consistent with observations at Olla (Fig. 2b). In addition, where methanogenesis has occurred, formation water alkalinity is greater than 10 meq kg⁻¹, the acetate concentrations are lower than 1 mM, the Ca/Mg ratios are less than 1.5 and the δ613C-DIC is greater than +20‰ (refs. 93,95,96). Within the Olla Oil Field, the alkalinity ranges between 21.4 meq kg⁻¹ and 57.7 meq kg⁻¹, the average Ca/Mg ratio is 0.2 and the δ613C-DIC is 14.2–28.7‰, again indicating that methanogenesis has occurred within the field.

SSU rRNA gene-sequencing analysis of the microbial communities within the Olla Oil Field (samples O1 and O4) indicate that within the archaeal sequences, hydrogonotrophic methanogens, methanol and methylotrophic methanogens, and ANME assigned sequences are present (Extended Data Fig. 5). This microbial array would facilitate both microbial methanogenesis and AOM within the field.

During the cycling of carbon between methanogenesis and AOM, we would not expect a change in the isotopic composition of hydrogen. It is possible that as a result of microbial activity or the reaction kinetics that extracellular hydrogen is added to the system. This hydrogen could be sourced from the water and free hydrogen from the degradation of the higher hydrocarbon gases or from the oil. As a result, we are unable to determine whether the hydrogen isotopes within the system are also approaching equilibrium under current reservoir temperatures.

It is possible that the CO2 and CH4 isotopes in the Olla system are reflecting purely the kinetic process of methanogenesis. The difference in the δ813C-CO2 and the δ813C-CH4 at Olla (53.7–64.4‰) is consistent with that expected from microbial methanogenesis (about 58‰; ref. 44). In such a scenario, all the CH4 at Olla would be microbial in origin, thus requiring any thermogenic CH4 component originally in the system to be overwhelmed. The high concentration and mixed thermogenic–microbial composition of CH4 within the Nebo-Hemphill Oil Field (Fig. 3, Methods) is inconsistent with such a scenario. In addition, the clumped isotopologues at Olla show a clear need for AOM within the field and 16S rRNA gene sequencing shows active methanotrophs, which is not compatible with a scenario of purely microbial methanogenesis dominating the system. Therefore, future studies investigating the processes affecting CO2 in potential CCS storage targets will benefit from a complete geological, geochemical and microbiological characterization of the field study site.

Subsurface behaviour of carbon in the Nebo-Hemphill Oil Field

The carbon isotopic composition of CO2 and CH4 at Nebo-Hemphill is depleted compared with the Olla Oil Field (Fig. 2b). Despite this, the difference in the δ813C-CO2 and the δ813C-CH4 at Nebo-Hemphill overlaps with that of Olla (50.6–68.1‰ and 53.7–64.4‰, respectively). The degree of isotopic fractionation at Nebo-Hemphill is consistent with thermal equilibrium at 29.8–55.3°C, in agreement with present-day reservoir temperatures (29.7–57.1°C). In addition, the δ813C-CO2 at Nebo-Hemphill is enriched compared with that typically expected for crustal or mantle-sourced CO2 (less than 2‰)12,22, consistent with a small amount of microbial methanogenesis within the field. We propose that there is also microbial methanogenesis (in agreement with previous studies10) and AOM within the Nebo-Hemphill Oil Field; however, unlike at Olla, this has not been enhanced by any injection to the field.

Microbiological analysis of NHH3 and NHH6 show that hydrogennonrophic methanogens, methanol and methylotrophic methanogens, and ANME assigned sequences are present within Nebo-Hemphill, in agreement with both active methanogenesis and AOM within the field (Extended Data Fig. 5). Clumped isotopologues of CH4 within the Nebo-Hemphill Oil Field give apparent temperatures for Δ412CH2D2 of 78–124 °C and apparent temperatures for Δ412CH2D2 that are greater than expected for thermogenic CH4 in the field (163 ± 18 °C, Fig. 3). They suggest that the CH4 is likely to be dominantly thermogenic with some microbial contributions. Samples NHH1, NHH2 and NHH8 have apparent temperatures below that expected for thermogenic CH4 and appear to be approaching low-temperature equilibrium in Δ412CH2D2 consistent with active methanogenesis and AOM cycling within the field.

Modelling of the Pannonian Basin

The unequivocal identification and quantification of CO2-related microbial methanogenesis at Olla has globally significant implications, and warrants the reconsideration of reservoir processes at other sites worldwide. Re-examination of previously published datasets allows the elucidation of the significance of methanogenesis in different reservoir environments, especially in systems that have or had naturally high CO2 concentrations, such as the Pannonian Basin. A significant proportion of the CO2 found in natural gas fields within the Pannonian Basin is of mantle origin19. The initial, CO2/3He in the Szegholm North, Szegholm South, Ebes and Hajduszoboszlo gas fields was estimated to be 7.9 ± 5.4 × 109, consistent with the European subcontinental lithospheric mantle range (0.6–40 × 109) and the mid-ocean ridge basal mantle range (2 ± 1 × 109)97 (Extended Data Fig. 7a). Since emplacement, significant CO2 trapping in many fields was identified from lower observed CO2/3He ratios (for example, the Szegholm North and South, Ebes and Hajduszoboszlo gas fields) and speculation that some of the
CO₂ may have been converted into CH₄ (ref. 20), although no viable mechanism was identified.

Using an average geothermal gradient of 45 °C km⁻¹, the temperature within these fields is predicted to be between 40 °C and 105 °C (with temperatures being up to 20 °C cooler at the time of CO₂ emplacement) 36, and thus within the range of microbially driven methanogenesis. In addition, the presence of thermogenic hydrocarbons would also ensure H₂ availability, similar to the Olla and Nebo-Hemphill oil fields. From our work in Olla, we surmise that the Pannonian Basin may be analogous to Olla and that hydrogenotrophic microbial methanogenesis active within the field may provide the missing mechanism for CO₂ removal, which was previously unidentified, and point to this mechanism as an important subsurface process operating on systems naturally enriched in CO₂ as well as anthropogenically CO₂ injected oil and gas fields.

In the absence of supporting clumped isotope data, if we assume that the system is methanogenesis driven we can nevertheless construct similar methanogenesis–dissolution models using published data from the Sziget South Gas Field (where multiple CO₂ isotope data are available). By comparing the observed CO₂/He ratios against the CO₂ concentration, a clear correlation emerges (Extended Data Fig. 7a). Attributing this to the effect of dissolution (a pre-requisite for microbial methanogenesis), it is possible to extrapolate back to an initial CO₂/He end member value of 13.3 ± 0.7, consistent with previous estimates.

Our model assumes mantle-derived CO₂ in the field with a typical isotopic composition of δ¹³C of CO₂ = −5‰ (Extended Data Fig. 7b). Taking this as a starting point, 16.4 ± 0.8 times more dissolution than methanogenesis is required in the Sziget South Gas Field to produce the measured δ¹³C of CO₂. As such, proportionally less methanogenesis, relative to the Olla Oil Field, would be expected here as the gas fields are not being constantly perturbed via water injection and therefore nutrient availability is probably much more limited. The presence of biogenic CH₄ (through CO₂ conversion) can also be clearly identified from the measured C/C₈ in the Sziget South Gas Field (0.946 ± 0.004), which is greater than what would be expected in a purely thermogenic system (0.909). Using the excess in the C/C₈ ratios, we determine that 41 ± 5% of the CH₄ currently present in the Sziget South Gas Field part of the basin is biogenic. Similar C/C₈ excesses are seen in the other gas fields in the Pannonian Basin 36. In addition, other fields such as Sziget North 36, Ebes36,201, Hajduszoboszlo36,201, Kismarja36,201, Répcelak100 and Permian Basin show geochemical signatures consistent with the occurrence of methanogenesis. Thus, we conclude that although methanogenesis is not the dominant CO₂ loss mechanism, it may play a substantial role that has not previously been considered in many natural systems.

Data availability

The geochemical data that support the findings of this study are available in the NERC EDS National Geoscience Data Centre at https://doi.org/10.5285/a4070f5d-2064-4caf-a82c-79a786d6a9fe. The microbial SRA and biosample data can be found at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA744568. Source data are provided with this paper.

42. Van Breukelen, B. M. Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ. Sci. Technol. 41, 4004–4010 (2007).
43. Byrne, D. J., Barry, P. H., Lawson, M. & Ballentine, C. J. Determining gas expulsion vs retention during hydrocarbon generation in the Eagle Ford Shale using noble gases. Geochim. Cosmochim. Acta 194, 291–309 (2016).
44. Tyne, R. L. et al. A novel method for the extraction, purification, and characterization of noble gases in produced fluids. Geochim. Geophys. Geosyst. 20, 5988–5997 (2019).
45. Thijssen, N. et al. Identifying thermogenic and microbial methane in deep water Gulf of Mexico reservoirs. Geochim. Cosmochim. Acta 275, 188–208 (2020).
88. Rice, D. D. & Claypool, G. E. Generation, accumulation, and resource potential of biogenic gas. AAPG Bull. 65, 5–25 (1981).

89. van Bodegom, P. M., Scholten, J. C. M. & Stams, A. J. M. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol. Ecol. 49, 261–268 (2004).

90. McIntosh, J. C. & Martini, A. M. Hydrogeochemical indicators for microbial methane in fractured organic-rich shales: case studies of the Antrim, New Albany, and Ohio shales. Org. Geochem. 13, 162–174 (2008).

91. Etope, G. & Lollar, B. S. Abiotic methane on Earth. Rev. Geophys. 15, 1908–1923 (2011).

92. Chung, H. M., Gormly, J. R. & Squires, R. M. Origin of gaseous hydrocarbons in subsurface sediments: contrasts in anaerobic carbon catabolism. Limnol. Oceanogr. 33, 725–749 (1988).

93. Lovley, D. R. & Klug, M. J. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 61, 187–192 (1993).

94. Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739–752 (2005).

95. Capone, D. G. & Kiene, R. P. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnol. Oceanogr. 33, 725–749 (1988).

96. Holland, G. & Gilfillan, S. in The Noble Gases as Geochemical Tracers (ed. Burnard, P.) 177–223 (Springer, 2013).

97. Kämpf, H., Geissler, W. H. & Bäuer, K. in Mantle Plumes: A Multidisciplinary Approach (eds Ritter J.R.R. & Christensen U.R.) 127–158 (Springer, 2007).

98. Royden, L., Horváth, F., Nagymarosy, A. & Stegena, L. Evolution of the Pannonian Basin system: 2. Subsidence and thermal history. Tectonics 2, 91–137 (1983).

99. Sherwood Lollar, B., O’Nions, R. K. & Ballentine, C. J. Helium and neon isotope signatures: a review and a proposal. Geochim. Cosmochim. Acta 68, 5279–5290 (1994).

100. Palcsu, L. et al. In-reservoir mixing of mantle-derived CO2 and metasedimentary CH4–N2 fluids—noble gas and stable isotope study of two multistacked fields (Pannonian Basin System, W-Hungary). Mar. Pet. Geol. 54, 216–227 (2014).
Extended Data Fig. 1 | Relationship between noble gas isotopic ratios in the Olla (blue circles) and Nebo-Hemphill (orange triangles) oil fields. Both fields show a resolvable mantle component that is significantly greater in the Olla Oil Field. One standard deviation error bars are within symbol size. a, He isotopic ratios versus \(^{4}\text{He}/^{20}\text{Ne}\) ratio. Air-corrected He isotopes are reported relative to air \(R_A = 1.38 \times 10^{-6}\) (ref. 69). All samples are in excess of typical radiogenic production \(0.02R_A\), requiring a mantle contribution. High \(^{4}\text{He}/^{20}\text{Ne}\) indicates negligible air contamination in the samples. b, Three neon isotope plot. The crustal production line\(^{68}\) reflects the observed trend in typical crustal fluids. The mantle-air line represents mixing between air and a MORB-like endmember\(^{69}\). Data are consistent with mixing between air and a mantle-rich component. In both He and Ne isotopes, the mantle signal is stronger in the Olla Oil Field.
Extended Data Fig. 2 | CO₂/³He variation vs. a, b. ³He (a) and ²⁰Ne (b) abundances in the Olla (blue circles) and Nebo-Hemphill (orange triangles) oil fields. 1σ level of uncertainty is shown on the measured samples. A negative correlation between ⁴He, which accumulates in formation waters as a function of time and ²⁰Ne (which is groundwater derived) and CO₂/³He, has been interpreted in other CO₂-rich natural gas fields to support the importance of the formation water in controlling CO₂ removal.
Extended Data Fig. 3 | Hydrocarbon isotopic composition in the Olla (blue circles) and Nebo-Hemphill (orange triangles) oil fields.

a, Comparison of $\delta^{13}C$-CH$_4$ and δD-CH$_4$, with typical CH$_4$ provenances after Whiticar93. One standard deviation error bars are within symbol size. In isolation, the Olla samples (blue circles, this study; unfilled circles, from ref. 10) are consistent with a mainly thermogenic origin, whereas Nebo-Hemphill (orange triangles, this study; unfilled triangles, from ref. 10) appears to be a microbial-thermogenic mix. Clumped isotopologues nevertheless provide clear evidence that the Olla CH$_4$ is microbial in origin (Fig. 3).

b, Plot of $\delta^{13}C$ of C$_n$ versus 1/C$_n$ variation in natural gases92. One standard deviation error bars are within symbol size. Both the Olla (blue circles) and Nebo-Hemphill (orange triangles) fields show an enrichment in their isotopic signature especially in propane; however, this is most pronounced within the Olla Oil Field.
Extended Data Fig. 4 | Schematic of the processes occurring within the Olla Oil Field and resulting changes in the isotopic composition within the field. The first panel shows CO₂ injection into the 2,800-ft sandstone (sst) and subsequent lateral and vertical migration (yellow arrows) to all the producing formations within the field. The middle panel demonstrate the different processes (microbial methanogenesis, AOM and dissolution), which are occurring in the field and their effects on the isotopic composition. Yellow circles represent CO₂ dissolution and green circles are the net CH₄ production from microbial activity. Hydrogen for microbial methanogenesis is sourced from the hydrocarbons and water. The final panel shows the current state of the reservoir.
Extended Data Fig. 5 | Microbial community analysis of most abundant taxa from the SSU rRNA gene-sequence region. Bar charts represent the most resolved taxa from amplicon sequence variants generated in QIIME 249, 50, 51 for archaeal primers (a) and bacterial primers (b). Hydrogenotrophic methanogenesis-capable taxa are represented with bold red font.
Extended Data Fig. 6 | Carbon isotopic composition of the Olla samples as a function of CO₂ concentration for data from this study (dark blue circles) and those collected without ³He analysis\(^{10}\) (unfilled circles). One standard deviation error bars are within symbol size. Dashed lines show endmember methanogenesis and dissolution fractionation (at pH 7) trajectories. Tick marks represent the total amount of CO₂ trapping within the system, relative to sample O₅. The shaded region represents trapping by the combination of both microbial methanogenesis and dissolution. The same combination of dissolution and microbial methanogenesis has been modelled (grey region, cf. Fig. 2). Lines labelled ‘consumption’ at 5%, 13% and 19% show the proportion of original CO₂ that has been removed by net microbial methanogenesis. One sample from ref. \(^{10}\) has a CO₂ concentration greater than our ‘most pristine’ CO₂/³He sample (O₅). This illustrates that by using sample O₅ as our least altered composition we calculate a conservative (minimum) amount of CO₂ consumption, and that initial CO₂ concentrations were probably greater.
Extended Data Fig. 7 | Carbon composition of the Pannonian Basin samples. a, Szegholm South 20,99 (red circles), Szegholm North 20,99 (purple triangles), Ebes 20,99 (blue diamonds) and Hajduszoboszlo 20,99 (grey squares) gas field samples as a function of their CO$_2$ concentrations and CO$_2$/He. Dashed lines represent the projection of CO$_2$ trapping in the fields. b, The Szegholm South field had multiple CO$_2$ isotope data and this field has been used to investigate the processes controlling this pattern using the carbon isotopic composition as a function of CO$_2$/He. Dashed lines show endmember methanogenesis and dissolution fractionation (at pH 7) trajectories. Tick marks represent the total amount of CO$_2$ trapping within the system. The shaded region represents trapping by the combination of both microbial methanogenesis and dissolution. The upper and lower methanogenesis: dissolution ratios (M:D) are 0.050 and 0.060, respectively, showing dissolution accounts for approximately 16 times (M:D = 0.055) more CO$_2$ removal than microbial methanogenesis. Lines labelled ‘consumption’ show the proportion of original CO$_2$ that has been removed by net microbial methanogenesis.
Extended Data Table 1 | Geochemistry and isotopic composition of the formation waters

Sample	Latitude, Longitude	Producing zone	Depth (m)	Cl (mmol/l)	Na (mmol/l)	Mg (ppm)	Ca (ppm)	K (ppm)	Ba (ppm)	Si (ppm)	Sr (ppm)	Fe (ppm)	SO4 (ppm)	Bicarbonate (ppm)
O1	31.83128, -92.2096	L Cent	677	1435	1409	222	181	223	11.3	83	N.D.	62	3655	
O2	31.83015, -92.2093	L Cent	656											
O3	31.82453, -92.2137	2800 ft	835											
O4	31.80099, -92.2297	U Cent	663	1122	1108	329	80.2	228	95	10.1	77	N.D.	<1	3912
O5	31.80119, -92.2224	2800 ft	842	1357	1340	305	500	420	165	10.6	215	N.D.	<1	3164
O6	31.76926, -92.2133	H2-SD	1051	1621	1630	119	343	524	158	12.5	207	N.D.	2	3486
NHH1	31.60037, -92.1668	Wilcox B2	1211	1538	1502	581	761	212	198	12.0	265	N.D.	<1	812
NHH2	31.59793, -92.1468	Wilcox A2	1027											
NHH3	31.58830, -92.1752	T Wilcox	753	1497	1452	495	924	157	188	7.2	267	2.1	<1	108
NHH4	31.58995, -92.1775	Wilcox C3	1099	1579	1507	548	862	188	210	10.4	266	2.3	<1	300
NHH5	31.58907, -92.1666	Wilcox F3a & F3b	1244											
NHH6	31.58238, -92.1487	Wilcox F2	1202	1633	1562	474	1122	195	216	10.4	270	7.5	<1	38
NHH7	31.57380, -92.1512	Wilcox H2	1273	1786	1662	481	1618	242	203	10.4	324	20.2	<1	162
NHH8	31.56586, -92.1557	Wilcox A1	1023											
Extended Data Table 2 | Sample location, reservoir temperature, major gas species, carbon isotopes and clumped isotope data

Sample	Reservoir temp°	CO₂ mol %	CH₄ mol %	δ¹³C-CO₂	δ¹³C-CH₄	δ¹³C-CO₂ – CH₄	CO₂/He	He²⁰/He	Δ¹³C-CHD	Apparent Δ¹³CCHD Temperature °C	Δ¹⁰CH₃D	Apparent Δ¹⁰CH₃D Temperature °C	
O1	39.1	11	86	16.4	-47.6	64	2.77 ± 0.06	1.78 ± 0.04	23.7 ± 0.2	4.89 ± 0.36	56.0°	12.41 ± 1.29	
O2	39.7	6.7	89	13.7	-49.3	63	1.92 ± 0.04	1.79 ± 0.04	20.7 ± 0.2	4.47 ± 0.34	74.0°	9.13 ± 1.60	
O3	44.4	9.4	88	15.1	-49.3	64	2.47 ± 0.06	1.93 ± 0.04	20.9 ± 0.2	5.62 ± 0.31	30.0°	132.3°	
O4	39.4	18	73	15.8	-48.2	64	6.60 ± 0.15	1.72 ± 0.04	16.0 ± 0.2	3.93 ± 0.52	100.0°	12.19 ± 1.39	
O5	44.5	38	57	7.6	-46.7	53.7	17.3 ± 0.4	1.98 ± 0.04	11.8 ± 0.1	5.66 ± 0.39	19.0°	87.1°	
O6	50.7	27	67	13.3	-44.8	58.1	10.6 ± 0.2	1.81 ± 0.04	15.1 ± 0.2	3.45 ± 0.26	128.0°	9.82 ± 1.53	
NHH1	51	1.9	97	13.9	-46	59.9	3.77 ± 0.37		109.2°	4.27 ± 1.29	252.3°		
NHH2	50	0.28	96	0.33	-49.8	49.5	1.44 ± 0.06	0.38 ± 0.04	5.41 ± 0.04	4.38 ± 0.28	78.0°	3.85 ± 1.81	279.0°
NHH3	41.9	0.77	98	7.1	-61	68.1	1.79 ± 0.05	0.39 ± 0.01	11.8 ± 0.1	3.17 ± 0.35	146.0°	5.03 ± 1.24	224.2°
NHH4	52.1	1.7	94	9.4	-54.5	63.9	9.97 ± 0.12	0.52 ± 0.01	2.92 ± 0.03	2.16 ± 0.54	147.0°	1.56 ± 1.67	443.2°
NHH5	56	1.8	76	3.08	-57	60.0	12.2 ± 0.3	0.58 ± 0.01	2.74 ± 0.03	3.28 ± 0.40	139.0°	2.09 ± 1.33	413.2°
NHH6	55	0.99	84	2.52	-57.5	60.0	2.57 ± 0.6	0.46 ± 0.01	8.93 ± 0.07	2.99 ± 0.42	166.0°	0.01 ± 1.63	1278.3°
NHH7	57.1	0.39	99	0.93	-59.1	58.1	0.53 ± 0.02	0.50 ± 0.01	15.6 ± 0.2	3.33 ± 0.57	135.0°	2.02 ± 1.38	399.3°
NHH8	49.8	0.35	97	3.31	-56.2	59.5	0.84 ± 0.03	0.39 ± 0.01	9.64 ± 0.10	3.64 ± 0.35	116.0°	5.14 ± 1.10	211.3°

σ errors are given. Location is given as latitude and longitude in decimal degrees. The ³⁷He/²⁰He ratio, R, is shown relative to the ³⁷He/²⁰He ratio in air, Rₐ. *Adiabatic corrected. †Air corrected. ‡Corrected δ₁⁸ from prototype Ultra.)
Extended Data Table 3 | Noble gas concentrations and ratios for the sampled wells (with 1σ errors), as well as measured carbon isotopic compositions of alkanes

Sample	22Ne (x10^6 cm³/cm³ (STP))	22Ar (x10^6 cm³/cm³ (STP))	36Kr (x10^6 cm³/cm³ (STP))	85Xe (x10^18 cm³/cm³ (STP))	21Ne/22Ne	85Kr/86Kr	85Xe/86Xe	13C-C₃	13C-C₄	13C-C₅	
	O₁	26.8 ± 0.5	84.9 ± 0.8	3.21 ± 0.09	3.46 ± 0.04	10.25 ± 0.03	0.304 ± 0.0004	1919 ± 17	0.302 ± 0.002	6.59 ± 0.04	
	O₂	26.9 ± 0.5	80.6 ± 0.8	3.66 ± 0.10	3.78 ± 0.05	10.18 ± 0.03	0.371 ± 0.0003	1797 ± 16	0.302 ± 0.002	6.61 ± 0.04	
	O₃	20.6 ± 0.4	83.3 ± 0.8	1.81 ± 0.05	2.04 ± 0.03	10.42 ± 0.03	0.405 ± 0.0004	2344 ± 20	0.302 ± 0.002	6.60 ± 0.04	-27.3 -17.4 -22.54
	O₄	10.5 ± 0.2	66.0 ± 0.6	3.20 ± 0.09	9.04 ± 0.10	10.19 ± 0.03	0.386 ± 0.0003	1475 ± 13	0.302 ± 0.002	6.57 ± 0.04	
	O₅	10.1 ± 0.2	45.6 ± 0.4	2.07 ± 0.06	2.77 ± 0.03	10.42 ± 0.03	0.409 ± 0.0004	2484 ± 22	0.302 ± 0.002	6.61 ± 0.04	
	O₆	8.83 ± 0.17	46.0 ± 0.4	2.17 ± 0.05	2.83 ± 0.03	10.64 ± 0.03	0.459 ± 0.0004	2766 ± 24	0.302 ± 0.002	6.59 ± 0.04	-20.14 -20.22 -21.58
	NHH2	10.3 ± 0.2	44.5 ± 0.4	2.42 ± 0.06	2.12 ± 0.03	9.93 ± 0.03	0.330 ± 0.0003	4357 ± 3.8	0.303 ± 0.002	6.51 ± 0.04	-24.19 -25.87 -26.00
	NHH3	36.7 ± 0.7	176 ± 2	5.95 ± 0.16	7.39 ± 0.09	9.83 ± 0.03	0.310 ± 0.0003	3697 ± 3.2	0.302 ± 0.002	6.52 ± 0.04	
	NHH4	3.90 ± 0.07	60.0 ± 0.7	4.09 ± 0.11	6.04 ± 0.07	9.76 ± 0.03	0.342 ± 0.0003	398.6 ± 3.5	0.302 ± 0.002	6.50 ± 0.04	-35.37 -26.52 -27.58
	NHH5	3.49 ± 0.07	47.2 ± 0.4	5.23 ± 0.13	10.53 ± 0.11	9.87 ± 0.03	0.353 ± 0.0003	573 ± 5.0	0.304 ± 0.002	6.47 ± 0.04	-36.96 -28.08 -26.62
	NHH6	14.9 ± 0.3	79.1 ± 0.7	8.14 ± 0.22	6.15 ± 0.08	9.84 ± 0.03	0.335 ± 0.0003	494.6 ± 4.3	0.304 ± 0.002	6.50 ± 0.04	
	NHH7	21.6 ± 0.4	112 ± 1	4.70 ± 0.12	3.99 ± 0.05	10.02 ± 0.03	0.333 ± 0.0003	603.8 ± 5.3	0.304 ± 0.002	6.47 ± 0.04	
	NHH8	7.08 ± 0.13	78.6 ± 0.8	2.32 ± 0.06	4.81 ± 0.06	9.77 ± 0.03	0.308 ± 0.0003	379.4 ± 3.3	0.303 ± 0.002	6.51 ± 0.04	

| Air | | | | | | | | 9.81 | 0.6290 | 298.56 | 0.303 | 6.49 |