Andreev Peaks and Massive Magnons in Cuprate SNS junctions

Assa Auerbach and Ehud Altman
Department of Physics, Technion, Haifa 32000, Israel.
(March 21, 2022)

The projected SO(5) theory (pSO(5)) is used to resolve the puzzle of two distinct energy gaps in high Tc Superconductor-Normal-Superconductor junctions. Counter to conventional theory of multiple Andreev reflections (MAR), the differential resistance peaks are associated with the antiferromagnetic resonance observed in neutron scattering, and not with Cooper pair breaking. The pSO(5) and MAR theories differ by the expected tunneling charges at the peaks. We propose that shot noise experiments could discriminate against the conventional interpretation.

PACS numbers: 74.20.-z, 74.65.+n

In current transport through high T_c superconductor junctions, there seem to be two energy scales\[1\]. The upper energy is seen in tunneling conductance\[1\] and is identified with the “pseudogap” Δ_p, which appears in magnetic resonance and photoemission\[1\]. A lower gap, which scales differently with hole doping, manifests as peaks in the differential resistance of Superconducting-Normal-Superconducting (SNS) Josephson junctions\[2\]. These peaks have been interpreted using the conventional theory of multiple Andreev reflections, following Klapwijk, Blonder, and Tinkham (KBT)\[3\]. KBT theory treats two conventional superconductors with a single s-wave BCS quasiparticle gap Δ, separated by a free electron metal. Electrons traversing the metal are Andreev reflected back as holes, gaining energy increments eV at each traversal (as depicted in Fig. 1). Peaks in the differential resistance appear at voltages $2\Delta/ne$, and are due to the $(E-\Delta)^{-1/2}$ singularity in the quasiparticles’ density of states.

However, in cuprate SNS junctions, such as YBa$_2$Cu$_3$O$_{6.6}$ - YBa$_2$Cu$_{2.5}$Fe$_{0.45}$O$_y$ - YBa$_2$Cu$_3$O$_{6.6}$ examined by Nesher and Koren\[4\], application of KBT theory is problematic. A naive fit to KBT expression faces the two gaps puzzle, i.e. an “Andreev gap” is of order $\Delta \approx 10 \text{meV}$, while the tunneling gap is about three times larger\[5\] and scales differently with T_c. Without perfect alignment of the interfaces, it is hard to understand the observed sharpness of peaks, since the d-wave gap is modulated for different directions. Moreover, the barrier is by no means a “normal” metal devoid of interactions: it is an underdoped cuprate with antiferromagnetic correlations and strong pairing interactions as evidenced by a large proximity effect\[6\].

The purpose of this Letter is to provide an alternative explanation for the differential resistance peaks series\[1\], which takes into account the strong correlations in the pseudogap regime. Our analysis resolves the two energy scales puzzle.

We employ the projected SO(5) (pSO(5)) model\[7\], which is a strong coupling effective Hamiltonian. It describes the dynamics and interactions of four primary bosonic modes of cuprates: preformed hole pairs and massive spin one magnons.

A differential resistance peaks series is found at bias voltages $V_n = \Delta_s / (en)$, $n = 1, 2, \ldots$ where Δ_s is the antiferromagnetic resonance energy. This resonance has been directly measured by inelastic neutron scattering. The peaks are thus associated with emission of magnon pairs at the resonance threshold, and not with pair breaking, as in KBT theory. We note that other predictions to observe magnons (also called π-modes) in various cuprate junctions were made\[8\], but await experimental confirmation.

We propose that measurement of the excess shot noise below the peaks, could discriminate against the latter interpretation. pSO(5) theory predicts tunneling charge $2ne$ below the n-th peak, while KBT theory expects charge ne.

Degrees of freedom: At energies below the pseudogap Δ_p, preformed hole pairs (with internal d-wave symmetry), describe the primary charge degrees of freedom in the underdoped regime\[9\]. The hole pairs are bosons, and their phase fluctuations are controlled by the two dimensional superconducting stiffness ρ_s, as measured by the London penetration depth. At T_c, the pairs Bose condense.

![FIG. 1. KBT Theory.](image-url) Differential resistance peaks of $n = 6$ (left diagram), and $n = 5$ (right diagram), involve a cascade of n Andreev reflected charges traversing the normal metal. Singular dissipation is due to emission of quasiparticles above the s-wave gap. Filled (empty) circles denote electrons (holes) in the normal barrier.

1. Auerbach, A. and Altman, E. (2022). Andreev Peaks and Massive Magnons in Cuprate SNS junctions. arXiv:cond-mat/0005420v2 [cond-mat.supr-con].
2. Klapwijk, T.M., Blonder, G.B., and Tinkham, M. (1980). Energy loss spectra in tunneling junctions. Phys. Rev. Lett. 44, 2057-2060.
3. Blonder, G.B., Nersesyan, S.K., and Tinkham, M. (1982). The tunneling characteristics of the superconducting-normal-superconducting system. Phys. Rev. B 25, 4515-4523.
4. Nesher, A. and Koren, I. (2000). Observation of Andreev-reflected quasiparticles in YBa$_2$Cu$_3$O$_{6.6}$. Phys. Rev. Lett. 85, 1532-1535.
5. Auerbach, A. and Altman, E. (2022). Andreev Peaks and Massive Magnons in Cuprate SNS junctions. arXiv:cond-mat/0005420v2 [cond-mat.supr-con].
6. Auerbach, A. and Altman, E. (2022). Andreev Peaks and Massive Magnons in Cuprate SNS junctions. arXiv:cond-mat/0005420v2 [cond-mat.supr-con].
7. Auerbach, A. and Altman, E. (2022). Andreev Peaks and Massive Magnons in Cuprate SNS junctions. arXiv:cond-mat/0005420v2 [cond-mat.supr-con].
8. Auerbach, A. and Altman, E. (2022). Andreev Peaks and Massive Magnons in Cuprate SNS junctions. arXiv:cond-mat/0005420v2 [cond-mat.supr-con].
9. Auerbach, A. and Altman, E. (2022). Andreev Peaks and Massive Magnons in Cuprate SNS junctions. arXiv:cond-mat/0005420v2 [cond-mat.supr-con].
and long range phase coherence is established. This scenario can explain the empirical relations $T_c \propto \rho_c$, which have been observed in cuprates at low doping concentrations. The other low energy charge excitations are fermionic quasiparticles near the d-wave nodes. These have a smooth density of states which decreases below Δ_g.

Additional bosonic excitations below the pseudogap energy scale, are antiferromagnetic spin fluctuations i.e. magnons. Massive spin one excitations have been observed in inelastic neutron scattering in YBa$_2$Cu$_3$O$_{6+\delta}$. They manifest as a sharp resonance in the spin correlation function $S_{\alpha\alpha'}$, which near the antiferromagnetic wavevector $\mathbf{q} \approx \pi$ has the form

$$S_{\alpha\alpha'}(\omega, \mathbf{q}) \approx s_0 \frac{\delta_{\alpha\alpha'}}{\omega^2 - c_\alpha^2 (\mathbf{q} - \pi)^2 - \Delta_s^2} \quad (1)$$

Here c is the spin wave velocity, and s_0 is a normalization factor. The doping dependent resonance energy $\Delta_s(\delta)$ increases between $\Delta_s(0.5) = 25$meV (with $T_c = 52^0K$), and $\Delta_s(1) = 40$meV, (at $T_c = 92^0K$). The projected $SO(5)$ theory. The large onsite Hubbard repulsion between electrons is imposed by an a priori projection of doubly occupied states from the Hilbert space. The undoped vacuum $|0\rangle$ is a half filled Mott insulator in a quantum spin liquid state. The $pSO(5)$ vacuum possesses short range antiferromagnetic correlations. A translationally invariant realization of $|0\rangle$ on the microscopic square lattice, is the short range resonating valence bonds state.

Out of this undoped vacuum, b_i^\dagger create charge $2e$ bosons (hole pairs) with internal d-wave symmetry under rotations, and b_i^\dagger, $\alpha = x, y, z$ create a triplet of antiferromagnetic, spin one magnons.

The lattice $pSO(5)$ Hamiltonian is

$$\mathcal{H}^{pSO(5)} = \mathcal{H}^{\text{charge}} + \mathcal{H}^{\text{spin}} + \mathcal{H}^{\text{int}} + \mathcal{H}^{\text{Coul}} + \mathcal{H}^{\text{ferm}}$$

$$\mathcal{H}^{\text{charge}} = (\varepsilon_c - 2\mu) \sum_i b_i^\dagger b_{hi} + \frac{J_c}{2} \sum_{\langle ij \rangle} b_{hi}^\dagger b_{hi} + \text{h.c.}$$

$$\mathcal{H}^{\text{spin}} = \Gamma \sum_{\alpha} \sum_i b_i^\dagger_{\alpha i} b_{\alpha i} - J_s \sum_{\alpha \langle ij \rangle} n_i^\alpha n_j^\alpha$$

$$\mathcal{H}^{\text{int}} = W \sum_i (b_{hi}^\dagger b_{hi} + \sum_{\alpha} b_{hi}^\dagger b_{\alpha i})^2, \quad (2)$$

where $():$ denotes normal ordering, and $n_i^\alpha = (b_{\alpha i}^\dagger + b_{\alpha i})/\sqrt{2}$ is the Néel spin field. \mathcal{H}^{int} describes short range interactions between bosons, and $\mathcal{H}^{\text{Coul}}$ describes the long range Coulomb interactions. $\mathcal{H}^{\text{ferm}}$ describes coupling to the nodal (fermionic) quasiparticles, which contribute to a large, but smooth, conductance background. Here we will concentrate on the conductance singularities, and will not compute the fermionic background.

The mean field approximation to Eq. (2) is straightforward. It amounts to replacing $b_{yi}^\dagger \rightarrow \langle b_{yi}^\dagger \rangle$, $\gamma = h, \alpha$, and minimizing $\mathcal{H}^{\text{charge}} + \mathcal{H}^{\text{spin}} + \mathcal{H}^{\text{int}}$ with respect to $\langle b_{yi}^\dagger \rangle$. There is a first order transition between the two primary mean field phases on the square lattice at $\mu = \mu_c$, where

$$\mu_c = \frac{1}{2} (\varepsilon_c - \varepsilon_s) - (J_c - 2J_s),$$

μ_c is of the order of the Hubbard interaction scale.

At $\mu < \mu_c$ we have an undoped Mott insulator with no hole pair bosons, and where the magnons Bose-condense. The condensate supports a finite staggered magnetization $|\langle n^\alpha \rangle|^2 = (2J_s - \frac{1}{2}\varepsilon_s)/W \quad \mu < \mu_c$ (4)

There are two linear spin wave modes $\omega = c|\mathbf{q}|$, with $c = \sqrt{2J_s}/\hbar$ is the semiclassical spinwave velocity of the Heisenberg antiferromagnet.

At $\mu > \mu_c$ the ground state becomes doped with hole pairs which Bose-condense into a superconducting phase with an order parameter

$$|\langle b_i^\dagger \rangle|^2 = (\mu - \mu_c + 2J_s - \varepsilon_s/2)/W \quad \mu > \mu_c$$

Long range interactions in H^{Coul}, frustrate the first order transition and create intermediate (possibly incommensurate) phases, which we shall not discuss here. The mean field phase stiffness is given by $\rho_c = J_c\langle b_i^\dagger \rangle^2$, and therefore Eq. (3) explains why ρ_c increases with chemical potential (and doping) in the underdoped superconducting regime, as observed experimentally.

Analysis of the linear quantum fluctuations about mean field theory determines the magnon dispersion i.e. the poles of Eq. (2). The mean field magnon gap is found to be

$$\Delta_s = 2\sqrt{(\mu - \mu_c)(\mu - \mu_c + 4J_s)}$$

which by Eq. (3) implies that $\Delta_g^2 \propto \rho_c, T_c$. Thus the $pSO(5)$ mean field theory can explain the systematic increase of Δ_s with T_c which is observed by Wong et. al.

The cuprate SNS junction. We consider a junction, where the barrier (N) has no superconducting or magnetic order ($b_{hi}^\dagger = 0, \langle n^\alpha \rangle = 0$. We derive on general grounds the form of the effective tunneling Hamiltonian between superconductors as follows. An integration of the barrier’s charged bosons b_{hi} out of the path integral results in an effective action S^{tun} which couples the charges of the two superconductors, $S^{\text{tun}}[b_{hi}, b_{he}, b_\alpha]$ explicitly depends on the hole pairs bosons on the left and right interfaces, and on the magnons in the barrier. By charge conservation, an expansion of S^{tun} as a power series leaves only terms with equal number of b_h’s and b_α’s. By spin conservation, the magnon terms are singlets and hence at least bilinear in n^α.

2
A right, generate a pair of magnons. At the antiferromagnetic SNS junctions interactions to the tunneling vertex the barrier is defined to have sizeable the details of the barrier and the interfaces. A “good” N (in H as modelled by the pSO(5) theory and magnons. The junction’s conductance is calculated in the standard H_b, we ignore superconducting condensate fluctuations \(b_R^\dagger \rightarrow (b_R^\dagger)^4n \) and \(b_L^\dagger \rightarrow e^{i2eV\ell}(b_L^\dagger) \) leads to

\[
I^{\text{sing}} = \sum_n 2ne \sum_{|q_x| \leq \pi/d, |q_y| \leq \pi/W} (b_h^\dagger)^4n |T_n[\{q\}]|^2 \\
\times \sum_{\omega} S(q_x, i\omega + 2neV + i0^+) S(-q_x, i\omega)
\]

where the barrier dimensions are \(d \times W \) (see Fig. 2), and \(\sum_{\omega} \) is a Matsubara sum.

For a nearly antiferromagnetic “N” barrier, \(T_n(x - x') \) in (0) decays slowly with the distance between magnons. Thus for a narrow barrier \(d << W \), the magnons are excited at \(q_y \approx 0 \), and the momentum sum reduces to a one dimensional sum over \(q_x \). At zero temperature we obtain

\[
I^{\text{sing}} = \sum_n 2ne (b_h^\dagger)^4n |T_n[0]|^2 \\
\times s_0^2 \int dq_x \delta(2neV - 2\sqrt{c^2q_x^2 + \Delta_s^2}) \\
\times \sum_{\omega} t_n \theta(neV - \Delta_s) \Delta_s^{3/2} \sqrt{\Delta_s^2 + c^2q_x^2}
\]

The last expression emphasizes the singular form of \(I^{\text{sing}}(V, \Delta_s) \) at the peaks. For a large background conductance \(dI/dV >> dI^{\text{sing}}/dV \), the inverse square root singularities in \(I^{\text{sing}} \) create peaks in the differential resistance \(dV/dI \) at voltages

\[
V_n = \Delta_s/(ne), \quad n = 1, 2, \ldots, \quad Q_n = 2ne
\]

where \(Q_n \) is the excess tunneling charge below the \(n \)-th peak. Note that \(Q_n \) changes in increments of \(2e \). The differential resistance peak series is depicted in Fig. 3, for weak broadening of the singularities and an arbitrary set of coefficients \(t_n \).

This expansion leads to a series of tunneling terms. For the Andreev peaks we retain only the leading order terms (in \(b_1^\dagger, b \)) which are

\[
\mathcal{H}^{\text{tun-mag}} = -\sum_n (A_n + A_n^\dagger) \\
A_n = \sum_{y_1 \ldots y_{2n}, x, x'} T_n b_{h_{L, 1}}^\dagger \cdots b_{h_{L, n}}^\dagger b_{h_{R, n+1}} \cdots b_{h_{R, 2n}} \\
\times \left(\sum_\alpha n^\alpha(x) n^{\alpha}(x') \right)
\]

\(A_n \) describes a simultaneous tunneling of \(n \) hole pairs from the left to the right superconductor, coupled to a magnon pair excitation. \(T_n \) is the tunneling vertex function, which depends on the bosons positions. The energy transfer mechanism is depicted diagrammatically in Fig. 2. We do not compute \(T_n \)’s which depend on the details of the barrier and the interfaces. A “good” N barrier is defined to have sizeable \(T_n \), if multiple pair tunneling terms are to be observed. This requires a thin barrier with slowly decaying spin and charge correlations.

It is important to note that multiple pair tunneling, i.e. the differential resistance peaks at \(n > 1 \), depends on strong anharmonic interactions between the hole pairs and magnons. These interactions are an essential part of the pSO(5) theory as modelled by \(\mathcal{H}^{\text{int}} \) in Eq. 2.

The junction’s conductance is calculated in the standard fashion, the bias voltage \(V \) transforms the left bosons \(b_{h_{R}} \rightarrow e^{i2eV\ell}b_{h_{L}} \), which yields time dependent operators \(A_n(t) \). The current is calculated by second order perturbation theory in \(\mathcal{H}^{\text{tun-mag}} \) yielding

\[
I = \sum_n 2ne X_n^{\text{ret}}(2eV) \\
X_n^{\text{ret}}(\omega) = i \int_0^\infty dt e^{i\omega t} \langle [A_n(t), A_n^\dagger] \rangle
\]

For singular contributions \(I^{\text{sing}} \), we ignore superconducting condensate fluctuations \(b_R^\dagger \rightarrow (b_R^\dagger)^4n \), which have a smooth spectrum. Similarly, we ignore the frequency dependence of \(T_n(\omega) \). Setting \(b_R^\dagger \rightarrow (b_R^\dagger) \) and \(b_L^\dagger \rightarrow e^{i2eV\ell}(b_L^\dagger) \) leads to

\[
I^{\text{sing}} = \sum_n 2ne \sum_{|q_x| \leq \pi/d, |q_y| \leq \pi/W} (b_h^\dagger)^4n |T_n[\{q\}]|^2 \\
\times \sum_{\omega} S(q_x, i\omega + 2neV + i0^+) S(-q_x, i\omega)
\]

\[\begin{align*}
I^{\text{sing}} &= \sum_n 2ne (b_h^\dagger)^4n |T_n[0]|^2 \\
&\times s_0^2 \int dq_x \delta(2neV - 2\sqrt{c^2q_x^2 + \Delta_s^2}) \\
&\times \sum_{\omega} t_n \theta(neV - \Delta_s) \Delta_s^{3/2} \sqrt{\Delta_s^2 + c^2q_x^2} \\
&= \sum_{\omega} t_n \theta(neV - \Delta_s) \Delta_s^{3/2} \sqrt{\Delta_s^2 + c^2q_x^2}
\end{align*}\]

\[V_n = \Delta_s/(ne), \quad n = 1, 2, \ldots, \quad Q_n = 2ne\]

where \(Q_n \) is the excess tunneling charge below the \(n \)-th peak. Note that \(Q_n \) changes in increments of \(2e \). The differential resistance peak series is depicted in Fig. 3, for weak broadening of the singularities and an arbitrary set of coefficients \(t_n \).
Discussion. We have seen that magnon pair creation induces peaks in the differential resistance which are similar in appearance to the Andreev peaks of the KBT mechanism. The crucial difference is that here the singular dissipative process does not involve Cooper pair breaking, but low energy antiferromagnetic excitations.

In KBT theory for two identical superconductors, the peaks appear at voltages \(V_{KBT} = 2\Delta/(ne) \), \(n = 1, 2, \ldots \) which are the upper threshold for tunneling of charges \(Q_n = ne \). Thus, KBT allows both even and odd number of electron charges to participate in the multiple Andreev reflection process, as depicted in Fig. 1. These charges change in increments of \(e \) at each peak. Therefore a decisive discrimination between the processes of Fig. 1 and Fig. 2 would be measurements of the excess tunneling charge increments at the peaks. A feasible method would perhaps be low temperature shot noise, which measures the tunneling charges via the relation \(S = 2Q_n I(V_n) \). We eagerly look forward to the results of such experiments.

Acknowledgements. We thank G. Deutscher, G. Koren, A. Mizel, O. Nesher and E. Polturak for useful discussions. Support from the Israel Science Foundation and the Fund for Promotion of Research at Technion is acknowledged.

1 G. Deutscher, Nature (London) 397, 40 (1999).
2 L. Ozyuzer, J. F. Zasadzinski, N. Miyakawa, Int. J. Mod. Phys. B 29-31, 3721 (1999).
3 H. Alloul, T. Ohno and P.Y. Mendels, Phys. Rev Lett. 63, (1989).
4 H. Ding et al., Nature (London) 382, 51054 (1996); A. G. Loeser et al., Science 273, 325 (1996).
5 O. Nesher and G. Koren, Phys. Rev. B 60, 1 (1999).
6 T.M. Klapwijk, G.E. Blonder and M. Tinkham, Physica B, 109& 110, 1657-1664 (1982); M. Octavio, M. Tinkham, G.E. Blonder and T.M. Klapwijk, Phys. Rev. B 27, 6739 (1983).
7 Racah, D. and G. Deutscher, Physica C2637, 218-224 (1996).
8 R.S. Decca, H.D. Drew, E. Osquiguil, B. Mairov and J. Guimpel, cond-mat/0003213
9 S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke and A. Auerbach, Phys. Rev. B60, 13070 (1999).
10 Y. Bazaliy, E. Demler and S. C. Zhang, Phys. Rev. Lett. 79, 1921-1925 (1997).
11 Ar. Abanov and A.V. Chubukov, Phys. Rev. B61, R9241 (2000).
12 Y.J. Uemura, Physica C 282-287, 194-197 (1997). 235, 1196 (1987).
13 V.J. Emery and S.A. Kivelson, Nature 374 434-437 (1995)
14 H.F. Fong et al., Phys. Rev. Lett. 78, 713 (1997); cond-mat/9910041
15 The projection breaks quantum SO(5) symmetry and eliminates the high energy charge modes. SO(5) symmetry is only retained in \(\mathcal{H}^{int} \) and emerges in the classical approximation. This is the crucial difference between the pSO(5) theory and the earlier weak coupling SO(5) theory of S.-C. Zhang, Science 275, 1089-1096 (1997).
16 P.W. Anderson, Science 235, 1196 (1987).
17 M. Havilio and A. Auerbach, Phys. Rev. Lett. 83, 4848-4851 (1999).
18 G. D. Mahan, Many-particle physics, Plenum (1986), Ch. 9.3.
19 P. Dieleman et al., Phys. Rev. Lett. 79, 3486 (1997).
20 J.C. Cuevas, A. Martin-Rodero and A. Levy Yeyati, Phys. Rev. Lett. 82, 4086 (1999), and references therein.