Discovering electrophysiology in photobiology
A brief overview of several photobiological processes with an emphasis on electrophysiology

Vadim Volkov*

Faculty of Life Sciences and Computing; London Metropolitan University; London, UK

Keywords: Photobiology, electrophysiology, polarized light, rod cells, dark noise, statistics of photons, optogenetics, quantum dots

The mini-review gives special attention to holistic approach and mechanisms of processes. The physical and chemical frames and background for visual perception and signaling are discussed. Perception of photons by retinal rod cells is described in more detail starting from photon absorption and culminating in ion currents. Dark noise and temperature-dependence of photocurrents in photoreceptor cells are analyzed. Perception of polarized light, its effects and informational importance are discussed based on underlying mechanisms and specialized morphological structures of biological organisms. Role of statistics of photons in photoreception is questioned. The review also pinpoints new and developing directions and raises questions for future research.

Introduction

Life has evolved, developed and is flourishing nowadays in the permanent fluctuating fluxes of electromagnetic radiation of different frequencies and amplitudes. The electromagnetic waves are bringing information about the world and provide energy for the existence of living organisms. From the wide range of electromagnetic waves life chose narrow band of 400–800 nm for vision, light perception and photosynthesis. The reasons are in energy of photons and nature of chemical bonds. Much higher energies are harmful and break molecules; much lower energies are not distinguished from the thermal noise (see examples below).

The short review is focused on physico-chemical mechanisms of photobiological processes, conversion of photons into ion currents for further processing and on more specific aspects including perception of polarized light and light with unusual statistics, their role for biological systems and implications for biological research. The general preface starts from storage of energy in photosynthesis moving to mechanisms of light perception and vision.

Basic Preface: Plants and Light

Quanta of light (photons) are caught by pigments in photosynthetic membranes of plants, algae and some bacteria. The photosensitive pigments are mostly represented by chlorophylls and bacteriochlorophylls absorbing photons; the spectral properties of the molecules are naturally selected for solar radiation reaching earth. Some algae live in deep waters with lower proportion of larger wavelengths, spectrum of radiation is shifted to green-blue side. The algae usually possess accessory pigments called phycobilins to absorb photons within the range outside spectrum of chlorophylls and to transfer the energy to chlorophylls.

The next sequence of fast picosecond photochemical reactions results in electric charge transfer between the sides of the membranes. The generated electric potential is used for downhill charge transfer; the energy is converted to energy of chemical bonds, mostly in ATP (adenosine triphosphate), so the energy can be stored for further biochemical reactions and membrane transport processes.1 The complex chain of reactions for ATP synthesis requires large protein macromolecular complexes. Usually protons are passing via subunits of ATP-synthase to change the conformation of protein complex; finally it is released in ATP synthesis from ADP and inorganic phosphate P_i.2,3

Energy E of photon (quantum of light) is determined by the equation:

\[E = h \nu = h c/\lambda \]

(1)

where \(\nu \) is the light wave frequency, which is reverse proportional to wavelength \(\lambda \), \(h \) is Planck’s constant (about 6.6 * 10^{-34} \text{ J s} \) and \(c \) is the speed of light in vacuum (about 3*10^8 m/s). The energies of single visible photons (400 – 700 nm, see below) will be then from 2.8 to 5 * 10^{-19} \text{ J} \) (reverse proportional to wavelength). The values correspond to 170–300 kJ per mole of photons. For comparison, the standard energy of ATP hydrolysis is -30 kJ/mole and up to around -60 kJ/mole depending on pH, ATP, ADP and ion concentrations.4,5 The energy of a single photon is quite large and sufficient to provide synthesis of ATP molecule or start the cascade of signaling events. Taking into account that 1) much less than 1% of photosynthetically active
membrane protein of some halobacteria (studied in detail for *Halobacterium halobium*); it pumps protons out of cell at the expenses of absorbed photons. Green unicellular algae *Chlamydomonas reinhardtii* and some others possess ion channels channelrhodopsins, which are directly regulated by light. Several channelrhodopsins were studied and characterized in detail (e.g., and reviewed in11-13) (Fig. 1 and see later).

Light responses in photosynthesis and by photoreceptor cascades are registered by many ways and methods, from picosecond changes in spectral properties of photosynthetic pigments, conformational transitions of proteins, migration of small molecules, signaling events within and between cells, slow changes in membrane potentials of cells (Fig. 2) etc. to accumulation of new pools of synthesized organic molecules-photoassimilates.

Simple Scheme of Photoinduced Events in Retinal Cells

Vertebrate animals, invertebrates and the other non-photosynthetic organisms get visual information using specialized organs. Eyes of vertebrates are very sensitive. The estimate for the lower limit of human eye sensitivity is about 100 photons, which will correspond to about 10–20 photons reaching photoreceptor cells due to absorption and reflection. Eyes contain retinal layer with photoreceptor cells, which includes 1) millions of more sensitive rods for lower illumination or night vision and may have 2) usually smaller number of less sensitive cones for color vision. Rods are oblong cells (Fig. 3) with numerous stacked disks at the outer (distal) part; the disks are formed by membranes with photosensitive pigment rhodopsin. The number of disks is quite large, for example about 1000 for a mouse rod; then about 10^5 rhodopsin molecules per disk will result in nearly hundred millions of rhodopsin molecules per a mouse rod (reviewed in17).

The structure of rhodopsin is well studied: the protein part is called opsin, which is 30–50 kDa seven transmembrane G-protein coupled receptor (e.g., reviewed in17,18); the chromophore is 11-cis-retinal, which photoisomerizes to all-trans-retinal after absorbing a photon. Photochemistry of rhodopsin isomerization with picosecond rate constants and several intermediates is also well known: isomerization has quantum yield of over 0.6 and the energy barrier is nearly 190 kJ/mole for primary reaction (energy difference is slightly over 130 kJ/mole between rhodopsin and the first photoproduct bathorhodopsin), quantum yield is about 0.1 for one of the later steps (reviewed in ref. 20). Smaller values for activation energy around 100–120 kJ/mole were also reported, though there are variations between species and experimental conditions (reviewed in ref. 21).

Most adult insects have compound eyes, which are composed of thousands similar units called ommatidia. Each ommatidium has generally eight photoreceptor cells with rhodopsin. Recently discovered plant receptor UVR8 for the range of UV-B light complements the earlier known receptors (reviewed in ref. 7).

An interesting phenomenon exhibited by some bacteria is direct transformation of light energy to electric fluxes of ions. Light-driven proton pump bacteriorhodopsin is an integral solar radiation is transformed to energy of photosynthetic products and 2) efficiency of photosynthesis is around 1–3%, plants are not ideal biochemical converters of light. Biosphere is rather wasting solar radiation and life is not limited by energy demands, having the other intrinsic and external (e.g., water resources, carbon and nitrogen availability, temperature etc.) regulators, limitations and reasons for development.

Apart from absorbing energy of light in photosynthesis, plants also have photoreceptor systems including several phytochromes, cryptochromes and phototropins, they respond to very low intensity of different light wavelengths and have regulatory functions. Recently discovered plant receptor UVR8 for the range of UV-B light complements the earlier known receptors (reviewed in ref. 7).

Figure 1. Channelrhodopsins are light-gated ion channels from green algae. After a flash of illumination the protein molecule of ion channel temporarily changes conformation due to isomerisation of molecule of retinal bound to lysine of the protein (compare with rhodopsin, see below). It allows selective passage of cations according toelectrochemical gradient (Na⁺ selectivity is depicted); within a short time (milliseconds to seconds depending on the protein structure) the channel returns to the initial conformation and ion current stops.

Figure 2. Typical recording of membrane potential in cells of the emerged blade of the growing leaf 3 of barley, and the response of membrane potential to changes in illumination and further addition of NaCl (100 mM) to the root medium. Several phases of responses with different kinetics were observed upon changes in illumination (18 experiments with 9 plants). Light was supplied using fiber optics from the cold light source at the background of dim illumination in the electrophysiological rig. The figure is from14 with permission from the Oxford University Press, extra information about the recordings is provided by V Volkov.

Figure 3
some insects, the sensitizing pigment can transfer the energy further to the primary photopigment.22

The sequence of events from a photon hitting a rod cell to the registered photocurrent of the cell is deciphered in vertebrates (reviewed in ref. 24) (Fig. 4). Rhodopsin absorbs a photon and isomerizes to metarhodopsin; both proteins were crystallized and resolved structurally (refs. 25 and 26 correspondingly). Metarhodopsin has a short life half-time, so special approaches were used to crystallize this G-protein coupled receptor.26 The next step is activation of transducin. Transducin is G-protein, which is composed of α, β and γ subunits. Transducin laterally diffuses on the surface of disk membrane, interacts with activated rhodopsin (the spectroscopic intermediate metarhodopsin II) and changes bound GDP for GTP (reviewed in refs. 24,27,28). Active form of transducin is α-subunit-GTP, two activated subunits bind to phosphodiesterase PDE and activate it. PDE hydrolyses cGMP to GMP and decreases concentration of the cyclic nucleotide in a cell. Sharp drop in cGMP closes cyclic nucleotide gated channels, which are regulated (gated) by bound cGMP. Under low cGMP the channels are closed, while they are in an open state in darkness with higher micromolar concentration of cGMP.29 Rod cell membrane hyperpolarizes having closed cyclic nucleotide gated channels, so the initial absorption of photon expresses finally in the change of the membrane potential and corresponding ion current, which is further passed to neurons (reviewed in refs. 24,27,28).

The amplification of signal in a rod cell is happening in the cascade: metarhodopsin R^* can activate up to hundreds of G-protein transducin molecules (G) molecules.24,30 Rate of activation is around 125 G* s-1 per R^* for amphibian rods at room temperature and about 3 times higher in mammalian rods at body temperature.28 Further on in darkness metarhodopsin, activated forms of transducin and phosphodiesterase are deactivated, concentration of cGMP is increasing and membrane depolarizes again; the processes add time components and kinetics to the development of the events (reviewed in ref. 31). Inactivation includes several steps, for R^* in mouse rods the activity is quenched with half-time about 50–80 ms22,31 by successive reactions of phosphorylation by rhodopsin kinase and binding of the protein arrestin (reviewed in ref. 31).

The kinetics of induced photocurrent in rods (Fig. 5) is reasonably modeled by several equations, which take into account kinetics of the reactions (rhodopsin to metarhodopsin, activation of transducin, phosphodiesterase, drop in cGMP and closure of ion channels), include diffusion, rod morphology and inactivation kinetics (e.g. refs. 31 and 35). Higher number of photons increases the photocurrent by activating more rhodopsin molecules; the response is nonlinear and reaches saturation at around eg 20,000 photons per light pulse for \textit{Xenopus} rod.36 Numerous mutations affecting components of the signal transduction chain for photon perception are known, some of them have an effect on photocurrent and its’ kinetics (reviewed in ref. 31). Surprisingly stable and reproducible kinetics of photocurrent upon a given number of photons provides robust and reliable information about the light source. The rod photoreceptor could be considered like a natural example of engineering with numerous feedbacks; inactivation components are especially important for ensuring reproducible responses.37 For example, C-terminus of rhodopsin has 6 phosphorylation sites, which are important for inactivation of activated R^* and reproducible kinetics of photocurrent;
decreasing the number of the sites in mouse mutants increased the duration of photocurrent and changed its shape.38

Invertebrates may have slightly different sequence of events during phototransduction. Fruitfly \textit{Drosophila} is a well-known model in genetics; numerous mutants are useful for deciphering the light perception in the ommatidia of the insect. The difference in phototransduction from vertebrates is that in \textit{Drosophila} 1) phospholipase C is present instead of phosphodiesterase, 2) signaling via inositol trisphosphate and diacylglycerol and probably polyunsaturated fatty acids without cGMP 3) results in opening of closed under darkness 4) transient receptor potential ion channels (reviewed in refs. 39 and 40). More differences could be revealed among species of numerous and strikingly unusual biological organisms.

\textbf{Artificial Receptors of Light and Means to Correct Impaired Vision}

Obviously, the ion current is presumably the only converted measure of light intensity and it is further transferred to neurons of the neural system. Artificial electronic light receptors were proposed instead of absent or damaged retinal cells under ophthalmological diseases; the electric response of the retinal prosthesis is passed to neurons restoring (at least partially) light sensing (reviewed in refs. 41 and 42). Compared with retinal photoreceptor cells, which are highly specialized and finely tuned systems, retinal prostheses are simpler. Another approach is to express light-sensitive proteins in neurons. Several genes from \textit{Drosophila} including rhodopsin rendered light sensitivity to hippocampal neurons in primary culture.43 Directly activated by light ion channel channelrhodopsin is also proposed for use in retinal prosthesis.44 Model experiments using mouse model with degenerated retinas demonstrated that being genetically targeted to inner retinal neurons channelrhodopsin-2 can restore basic visual function with, however, 6–9 orders of magnitude lower sensitivity44,45 (Fig. 6).

Here emerges an interesting area of discrimination between simple photic responses (difference light-dark and corresponding physiological reactions) and recognition of images derived from visual perception by specialized photoreceptor cells. The direction leads to neuroscience with different specialized types of neurons and is outside the scope of the present review. For example, photosensitive retinal ganglion cells were found in mice, the cells express melanopsin and confer simple photic responses in blind mice without photoreceptor rods and cones.46 Human melanopsin from intrinsically photosensitive retinal ganglion cells was heterologously expressed in mouse paraneuronal cell line Neuro-2a and rendered light-induced ion currents.47 Mouse melanopsin was heterologously expressed in \textit{Xenopus} oocytes48 and in human embryonic kidney HEK293 cells49 making them light-sensitive. Visual perception is much more complicated.

\textbf{Dark Noise and Temperature-Dependence of Photoreceptors}

Since each biological system is a physico-chemical system, it can be described in terms of energies, activation energies, kinetics of reactions and the other parameters. Numerous restrictions are implied by biological components (nature of interacting molecules; morphology of cells and tissues; pH, redox potential and chemical composition of cell medium). On the opposite, obvious predictions about behavior of biological systems could be done from the known parameters. The simplest prediction is about rhodopsin isomerization. High activation energy of photoisomerization for rhodopsin cannot prevent it from spontaneous isomerization without any photons, but due to temperature (around 300 K) and uneven distribution of energies of interacting molecules. One reason of so called dark noise of photoreceptor appears, it will depend (for the reason) on temperature and number of rhodopsin molecules in a rod cell. Dark noise of photoreceptor is expressed in spontaneous electric signals (voltage spikes or recorded ion currents), which are not distinguishable from the electric signals induced by photons. Indeed, dark noise of photoreceptor measured in events/(cell*s) (varied from 10 to 10) was linearly proportional to the number of rhodopsin molecules within the range of 10 – 10 rhodopsin molecules/cell (locust-human-toad-\textit{Limulus}),21 means around 10 events/
second per a rhodopsin molecule. However, the situation looks much more complicated taking into account the sequence of events from activated rhodopsin to closure of ion channels. Each element (spontaneous activation of transducin or phosphodies-therase, drop in cGMP or stochastic closure of ion channels) has to be assessed using activation energies and stoichiometry of reactions. More convoluted models could be also used; for example, it was suggested to apply Hinshelwood distribution for complex molecules with many vibrational modes to thermal activation of rhodopsin.50

An interesting observation was done for photoreceptor cells of horseshoe crab *Limulus*: dark noise was about one bump of voltage per 5 min during evening and 25 times higher during midday.51 On the opposite, the voltage response to illumination (gain) was much higher during night time. The model of two-step process for spontaneous temperature-dependent isomerization of rhodopsin was proposed.21,52 The first step is deprotonation of protein-bound chromophore (form of retinal) with activation energy around 100 kJ/mole. The second step is isomerization of the chromophore with activation energy around the remaining 100 kJ/mole. The first step depends on pH and geometry of protein-chromophore complex, so changes in pH and protein microenvironment can strongly influence the noise. Temperature-dependent isomerization of chromophore at the second step can account for the observed temperature dependence of noise, which was the same during daytime and during night. Indeed, for photoreceptor cells of horseshoe crab the noise increased about twice with temperature increase by 6 °C (from 12 events/s at 14 °C to 28 events at 20 °C during daytime and from 3 events/s at 20 °C to 6.5 events/s at 26 °C during night) giving the estimated energy activation of 90–100 kJ/mole.53

However, the origin of photoreceptor noise and temperature dependence of photoreception could be much more complex. Dependence of thermal noise on pH of external medium was found for photoreceptor cells of horseshoe crab,52 but not for cones of salamander53 or toad rods.54 Noise in salamander cones55 had different origin (due to pigment or due to transduc- tion channels) for different types of cones.

Finally, physiological mechanisms and biological peculiarities are important for temperature-dependence of visual perception. For example, in swordfish (*Xiphias gladius*) the temporal resolution of retinograms (electrical activity recorded from isolated retinal preparations) was measured by the flicker fusion frequency. The parameter determines the frequency of pulses,56 which are distinct in retinograms. The flicker fusion frequency. The parameter determines the frequency of pulses,56 which are distinct in retinograms. The flicker fusion frequency. The parameter determines the frequency of pulses,56 which are distinct in retinograms. The flicker fusion frequency.

Polarized Light, Occurrence in Nature and Mechanisms of Perception

Apart from wavelength and intensity electromagnetic waves have polarization. Electromagnetic wave consists of fluctuating electric and magnetic fields, which have perpendicular orientation to each other. Considering a single photon like a sort of wave packet and a pulse of light with thousands and millions of photons, which are not ordered and have random directions of individual vectors of electric field, it’s simple to understand unpolarized light. However, depending on the light source and passed medium the orientation of electric vector in the wave may become ordered, the electromagnetic wave is becoming polarized. If the orientation of electric vector fluctuates in one plane, then the wave is linearly polarized; alternatively the vector can rotate and the wave is circularly polarized then. The degree of polarization characterizes the extent of ordered orientation of the electric vector. Polarization of light occurs naturally in atmosphere.
Polarization of light is more important for invertebrates and fishes due to their habitat and size. Some insects are able to use polarization for behavioral signaling. The metallic green elytra of Japanese jewel beetle *Chrysochroa fulgidissima* reflects light, which is becoming highly polarized because of complex multi-layered surface of the elytra. South American sea lions possess electric sense. The picture is taken with the permission of staff of SeA LiFe London Aquarium.

The perception of polarized light, obviously, requires ordered spatial positioning of rhodopsin/visual pigments and specialized cells for perceiving the direction and degree of polarization (Fig. 7). Much more is known about behavioral reactions of different species to polarized light than about mechanisms of perception of the light, though a few detailed studies on the perception exist and multiply. In continuation of the earlier experiments describing polarization-dependent dances of bees, it was shown that bees possess receptors of polarized UV light, but not of the other wavelengths. Very high polarization sensitivity up to 18 (ratio of maximal to minimal voltage responses to several directions of electric vector of light) was found in UV-responsive cells lacking sensitivity to green light. In fish the perception of UV polarized light is associated with cones, while the polarized light of another part of spectrum is also sensed (according to electrical recordings from brain tectum).

The ultrastructure of photoreceptors for polarized light in arthropods is studied for many species (e.g., and reviews: 79–82). Usually the pigments are packed orderly in microvilli within a photoreceptor cell; in each ommatidium the direction of microvilli is orthogonal (at 90°) in the photoreceptor cells. So, the direction of electric vector of light can be detected by different cells, the signal is periodically sent to neurons, which process the information about polarization. Periodical signal from different cells helps to exclude effect of light intensity, while the initial polarization of light is often amplified within an ommatidium or an arthropod eye by reflecting surfaces (reviewed in refs. 80–82). New approaches including methods of molecular biology and genetics help in dissecting and understanding the components of the polarization vision.
It looks challenging (Fig. 8) to mix 1) perception of electric vector of polarized light with the electric sense of several sea inhabitants including sharks and rays and 2) magnetic vector of polarized light with magnetoreception of many living organisms (e.g. reviewed in ref. 87). The electric sense of sharks and rays has resolution below 5 nV/cm and seems comparable or even much lower than the electric field in light beams: e.g., sunlight has intensity of electric vector around 10 V/cm (88 p.10). Magnetic field vector of the light would correspond to about 3 mT (10 V/cm / c = 10 V/m / (3 * 10^8 m/s) = 3.3 * 10^-6 T), lower than the magnetic field of Earth (25–65 mT).

However, the distinct sensory informational channels are determined by:

1) range of measured values and frequencies of electromagnetic fields (hundreds of Hz for electric sense and around 10^-14 of polarized light with magnetoreception of many living organisms (e.g. reviewed in ref. 87). The electric sense of sharks and rays has resolution below 5 nV/cm and seems comparable or even much lower than the electric field in light beams: e.g., sunlight has intensity of electric vector around 10 V/cm (88 p.10). Magnetic field vector of the light would correspond to about 3 mT (10 V/cm / c = 10 V/m / (3 * 10^8 m/s) = 3.3 * 10^-6 T), lower than the magnetic field of Earth (25–65 mT).

Effects of Different Statistics of Photons on Light Perception

The main source of light existing in nature is solar radiation with properties of thermal light. Photons are emitted from numerous energy levels and the distribution of their number in a first approximation obeys Bose-Einstein statistics. The other well-known sources of light with different parameters are lasers. Distribution of photons emitted by lasers obeys Poisson statistics. Lasers provide a valuable tool for biological research and are widely used in technique due to their unique features (high possible power per a pulse, monochromatic light, high degree of polarization, low noise etc.). One of simple differences between the two statistics is that number of photons per unit of time is more uniform for lasers; functions for probabilities of distribution of photon number are different for thermal light and for lasers.97

Randomly occurring fluorescence, light from fires etc. usually are not discussed since having no known information/predictable effects for biological objects. Bioluminescence is widely spread (e.g., reviewed in ref. 98) though doesn’t look different from the point of photon statistics and polarization. There are reports about super-Poisson statistics (typical for thermal light) of bacterial (Photobacterium phosphoreum) bioluminescence99 and photon emission from cellular slime mold (Dictyostelium discoideum) during developmental processes,100 which, however, need further investigation and confirmation.

An interesting question appears whether different sources of light may have different effects on biological systems due to statistics of number of photons. Potentially the same number of photons with the same energy, but distributed differently within the same time of illumination pulse may result in different effects. For example, conformations of proteins are subject to fast reversible and irreversible fluctuations due to thermal noise, interactions, changing microenvironment (at the scale of a few nanometers). The estimated upper limit for frequency of protein conformational changes is around 10^6 Hz.101 Assuming just interaction of photons with one protein, it’s conceivable to imagine several conformational levels for a protein and different effects after a multiphoton pulse of thermal or laser illumination.

A few experimental papers describe comparison of different sorts of illumination on visual perception paying attention to the statistics of photons (e.g. 102,103). Interesting results were obtained with retinal rods of Xenopus: the slope of response to Nd:YAG laser at 532 nm was steeper than for pseudothermal (the same statistics like thermal) light.102 Photocurrent response of Xenopus rod cells was saturated by about 25,000 photons per a 30 ms pulse in the experiments; the difference between laser and pseudothermal light appeared after half-saturating amplitude of photocurrent. Relative photocurrent (normalized to saturating) was about 30–40% higher for laser source of photons in the range of illumination.106 The observation is most likely connected to transduction chain species (the life of activated rhodopsin...
is about 50–80 ms) and raises questions for most experiments with laser light. It might be possible that results with lasers and Poisson statistics require corrections when approximating for thermal sources of light.

Outlook and Novel Technical Opportunities

The future directions in photobiology are bright and spread far outside the scope of the small review. Evident progress of optogenetics is expressed nowadays in potential medical applications. Further and deeper understanding of photobiological processes including leap to spatial nanoscale and temporal femtoscale in combination with new approaches of molecular biology and genetics needs also integrative and synthetic way of tackling in combination with new approaches of molecular biology and genetics needs also integrative and synthetic way of seeing. The new and more detailed picture with higher resolution will rise. More knowledge is gained from different species, so details of phototransduction may vary and leave plenty of space for future research.

Emerging new sources of light with different statistics of photons (lasers), light-emitting diods with unusual spectral properties offer valuable tools for re-questioning old problems and posing new ones. Recent interest in quantum dots was rewarded by opportunity to get single photons using quantum dots. The source of single photons might be valuable for determining sensitivity of photoreception, for providing exact number of photons of certain energy (wavelength) and seems to be very promising for the future research.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Unfortunately, I cannot number and thank here all colleagues who participated in numerous discussions within over 20 years of my fluctuating interest in the area, who inspired some ideas and thoughts, so I can just apologize for not citing all the relevant literature sources.

Human and Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed.
31. Burns ME, Pugh EN Jr. Lessons from photoreceptors: turning on GFP signaling in living cells. Physiology (Bethesda) 2010; 25:72-84; PMID:20450592; http://dx.doi.org/10.1152/physiol.00100.2010.

32. Krişpel CM, Chen DS, Melling N, Chen YJ, Krispel CM, Chen D, Melling N, Chen YJ, Sim N, Bessarab D, Jones CM, Krivitsky L, Method for selective photostimulation of genetically charged rhodopsin restores visual responses in mice with retinal degeneration. Proc Natl Acad Sci U S A 2012; 109:15012-7; PMID:23005626; http://dx.doi.org/10.1073/pnas.1110521109.

33. Rieck F, Baylor DA. Origin of reproducibility in the responses of retinal rods to single photons. Biophys J 1998; 75:1836-57; PMID:9766525; http://dx.doi.org/10.1016/S0006-3495(98)77625-8.

34. Doan T, Mendez A, Derwiler PR, Chen J, Rieke F. Multiple phosphorylation sites confer reproducibility of the rod’s single-photon responses. Science 2006; 313:530-3; PMID:16873665; http://dx.doi.org/10.1126/science.1166121.

35. Montell C. Visual transduction in Drosophila. Annu Rev Cell Dev Biol 1999; 15:231-68; PMID:10619662; http://dx.doi.org/10.1146/annurev.cellbio.15.1.231.

36. Montell C. Drosophila visual transduction. Trends Neurosci 2012; 35:356-63; PMID:22498302; http://dx.doi.org/10.1016/j.tins.2012.03.004.

37. Chader GJ, Weiland J, Humayun MS. Artificial vision: Current status, limitations, and testing of a retinal electronic prosthesis. Prog Brain Res 2009; 174:317-32; PMID:19660665; http://dx.doi.org/10.1016/S0079-6123(09)05722-2.

38. Nirender S, Pandaranithi C. Retinal prosthetic strategies for restoration of normal vision. Proc Natl Acad Sci U S A 2012; 109:15012-7; PMID:22891310; http://dx.doi.org/10.1073/pnas.1207551109.

39. Zeinemel BV, Lee GA, Ng M, Miesenkop BC. Selective photostimulation of genetically chARGed neurons. Neuron 2002; 33:15-22; PMID:11779476; http://dx.doi.org/10.1016/S0896-6273(02)00574-8.

40. Bi A, Cui J, Ma YP, Oleschvágy E, Pu M, Dizhoo AM, Pan ZH, E-vector discrimination in air and water. Philos Trans R Soc Lond B Biol Sci 2010; 365:769-72; PMID:20827988; http://dx.doi.org/10.1098/rspb.2009.1834.

41. Könne GP. Polarisiationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

42. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenvogel: ein Ultraviolettensensor. Z Tierpsychol 1974; 34:3-47; http://dx.doi.org/10.1007/BF00601815.

43. Nakamura M, Okada R, Assumha H. Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Proc Biol Sci 2012; 279:535-42; PMID:21733901; http://dx.doi.org/10.1098/rspb.2011.0929.

44. Labhart T. Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1987; 161:645-58; http://dx.doi.org/10.1007/BF00611874.

45. Hans-Josefv, S. Polarised light in air and water. Philos Trans R Soc Lond B Biol Sci 2000; 355:1187-90; PMID:11079395; http://dx.doi.org/10.1098/rstb.2000.13207.

46. Fritsches KA, Brill RW, Warrant E. Warm eyes polarize light in Limulus photoreceptors. J Physiol 2002; 539:837-46; PMID:11897853; http://dx.doi.org/10.1111/j.1469-7793.2001.01307.x.

47. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

48. Montell C. Visual transduction in Drosophila. Trends Neurosci 2012; 35:356-63; PMID:22498302; http://dx.doi.org/10.1016/j.tins.2012.03.004.

49. Chader GJ, Weiland J, Humayun MS. Artificial vision: Current status, limitations, and testing of a retinal electronic prosthesis. Prog Brain Res 2009; 174:317-32; PMID:19660665; http://dx.doi.org/10.1016/S0079-6123(09)05722-2.

50. Nirender S, Pandaranithi C. Retinal prosthetic strategies for restoration of normal vision. Proc Natl Acad Sci U S A 2012; 109:15012-7; PMID:22891310; http://dx.doi.org/10.1073/pnas.1207551109.

51. Könne GP. Polarisiationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

52. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

53. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

54. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

55. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.

56. Frisch K, von Helversen O, Edrich W. Der Polarisationsempfänger im Bienenauge: ein orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 1949; 5:142-8; http://dx.doi.org/10.1007/bf00632308.
82. Roberts NW, Potter ML, Cronin TW. The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc Lond B Biol Sci 2011; 366:627-37; PMID:21282166; http://dx.doi.org/10.1098/rstb.2010.0266.

83. Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labbart T, Clandinin TR. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 2012; 22:12-20; PMID:22177904; http://dx.doi.org/10.1016/j.cub.2011.11.028.

84. Kalmin AJ. The electric sense of sharks and rays. J Exp Biol 1971; 55:371-83; http://jeb.biologists.org/content/55/2/371.long; PMID:5114029.

85. Antipin NP, Krylov BV, Cherepnov VL. Topography of the ampulla system of Raja clavata and its role in electroorientation. Neurophysiology 1984; 16:628-33; http://dx.doi.org/10.1007/BF01052682.

86. Gonzalez IF. The Electric Sense of the Thornback Ray, Platyrhinoidis triseriata: Linear Dynamic Range in Single-Unit Electrophysiological Recordings in vivo from the Afferent Nerve Fibers of the Ampullae of Lorenzini. Series: UC San Diego ETDs; 2005; 6:703-12; PMID:16100517; http://dx.doi.org/10.1016/j.physletb.2004.06.005.

87. Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 2010; 11:174-84; PMID:20305457; http://dx.doi.org/10.1038/nrn2733.

88. Singh J. Modern physics for engineers. John Wiley & Sons. 1999. 400.

89. Jenkins GI, Cove DJ. Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of the wild-type. Planta 1983a; 158:357-64; PMID:24264756; http://dx.doi.org/10.1007/BF00377338.

90. Jenkins GI, Cove DJ. Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 1983b; 159:432-8; PMID:24258296; http://dx.doi.org/10.1007/BF00392079.

91. Jenkins GI, Cove DJ. Phototropism and polarotropism of protonemata of the fern Adiantum capillus-veneris. Physiol Plant 1984; 61:327-30; http://dx.doi.org/10.1111/j.1399-3054.1984.tb0635x.x.

92. Jaedicke JK. Molekulare Charakterisierung der cytoplasmatischen Phytochrom Funktion in Physcomitrella patens. Inaugural Dissertation Zur Erlangung des akademischen Grades eines Doktor der Naturwissenschaft (Dr. rer. nat.). 2012. Giessen. 158 p. http://geb.uni-giessen.de/geb/volltexte/2012/8907/pdf/JaedickeKatharina_2012_05_04.pdf.

93. Skripnikov AYu, Shefer DD, Zrid Zh-P. Orientation of Cyto-Kinetic Apparatus of Moss Protoplasts PHYSCOMITRELLA PATENS under Direct Beam Influence of Plane-Polarized Light: New Model of Plant Development Biophysics. (In Russian, English abstract). Problems of Contemporary Science and Practice, Vernadsky University 2009; 6(20); http://vernadsky.tstu.ru/en/vjpusk/2009/vjpusk-06.tar.pdf; http://vernadsky.tstu.ru/en/vjpusk/2009/vjpusk-06.php; http://vernadsky.tstu.ru/pdf/2009/06/rus_02_2009_06.pdf.

94. Teich MC, Prucnal PR, Vannucci G, Breton ME, McGill WJ. Multiplication noise in the human visual system at threshold: 1. Quantum fluctuations and minimum detectable energy. J Opt Soc Am 1982a; 72:319-31; PMID:7077429; http://dx.doi.org/10.1364/JOSA.72.000344; http://dx.doi.org/10.1007/BF00344271.

95. Skripnikov AYu, Shefer DD, Zrid Zh-P. Orientation of Cyto-Kinetic Apparatus of Moss Protoplasts PHYSCOMITRELLA PATENS under Direct Beam Influence of Plane-Polarized Light: New Model of Plant Development Biophysics. (In Russian, English abstract). Problems of Contemporary Science and Practice, Vernadsky University 2009; 6(20); http://vernadsky.tstu.ru/en/vjpusk/2009/vjpusk-06.tar.pdf; http://vernadsky.tstu.ru/en/vjpusk/2009/vjpusk-06.php; http://vernadsky.tstu.ru/pdf/2009/06/rus_02_2009_06.pdf.

96. Jenkins GI, Cove DJ. Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of the wild-type. Planta 1983a; 158:357-64; PMID:24264756; http://dx.doi.org/10.1007/BF00377338.

97. Jenkins GI, Cove DJ. Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 1983b; 159:432-8; PMID:24258296; http://dx.doi.org/10.1007/BF00392079.

98. Haddock SH, Moline MA, Case JF. Bioluminescence in the sea. Ann Rev Mar Sci 2012; 2:443-93; PMID:22143672; http://dx.doi.org/10.1146/annurev-marine-120308-081028.

99. Kobayashi M, Devaraj B, Inaba H. Observation of super-Poisson statistics from bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1998; 64:2129-35; http://dx.doi.org/10.1103/PhysRevE.57.2129.

100. Kobayashi M, Inaba H. Photon statistics and correlation analysis of ultraweak light originating from living organisms for extraction of biological information. Appl Opt 2000; 39:183-92; PMID:18357887; http://dx.doi.org/10.1364/AO.39.001083.