DISCOVERY OF VERY HIGH ENERGY γ-RAYS FROM 1ES 1011+496 AT Z = 0.212

J. Albert, E. Aliu, H. Anderhub, P. Antoran, Armada, C. Baixeras, J. A. Barrio, H. Bartko, D. Battist, K. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, J. A. Coarasa, S. Commichau, J. L. Contreras, J. Cortina, M. T. Costado, V. Curter, V. Danielyan, F. Dazzi, A. De Angelis, C. Delgado, R. De los Reyes, B. De Lotto, Domingo-Santamaría, D. Dorner, M. Doro, M. Errando, M. Fagioli, D. Ferenc, E. Fernández, R. Firpo, J. Flex, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, R. J. García-López, M. Garczarczyk, M. Gaug, M. Gilten, F. Goebel, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Höhne, J. Hose, C. C. Hsu, P. Jacon, T. Jochler, R. Kositya, D. Kranich, R. Kritzer, A. Laille, E. Lindfors, S. Lombardi, F. Longo, J. López, M. López, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheim, O. Mansutti, M. Mariotti, M. Martínez, D. Mazin, C. Mercá, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, D. Nieto, K. Nilsson, J. Ninkovic, E. Oña-Wilhelmi, N. Otte, I. Oya, D. Paneque, M. Pannelli, R. Paoletti, J. M. Paredes, M. Pasanen, D. Pascoli, F. Pauss, R. Pegna, E. Perlman, M. Persic, L. Peruzzo, A. Piccioli, E. Prandini, N. Puchades, A. Raymers, W. Rhode, M. Ribó, J. Rico, M. Rissi, A. Robert, S. Rügamer, A. Saggion, T. Saito, A. Sánchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shaydukh, K. Shinozaki, S. N. Shore, N. Sidro, A. Silanpää, D. Sobczynska, A. Stenmarra, L. S. Stark, L. Takalo, F. Tavecchio, P. Temnikov, D. Tescaro, M. Teshima, D. F. Torres, N. Turini, H. Vankov, V. Vitale, R. M. Wagner, T. Wiberg, W. Wittaker, F. Zandanel, R. Zaning, J. Zapatero

ABSTRACT

We report on the discovery of Very High Energy (VHE) γ-ray emission from the BL Lacertae object 1ES 1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for 18.7 hr, we find an excess of 6.2σ with an integrated flux above 200 GeV of $(1.58 \pm 0.32) \times 10^{-11}$ photons cm$^{-2}$ s$^{-1}$. The VHE γ-ray flux is $> 40\%$ higher than in March–April 2006 (reported elsewhere), indicating that the VHE emission state may be related to the optical emission state. We have also determined the redshift of 1ES 1011+496 based on an optical spectrum that reveals the absorption lines of the host galaxy. The redshift of $z = 0.212$ makes 1ES 1011+496 the most distant source observed to emit VHE γ-rays to date.

Subject headings: gamma rays; observations; quasars: individual (1ES 1011+496)

1. INTRODUCTION

Known Very High Energy (VHE defined as > 100 GeV) γ-ray emitting Active Galactic Nuclei (AGN) show variable flux in all wave bands. The relationship between the variability in different wave bands appears rather complicated. The MAGIC collaboration is performing Target of Opportunity (ToO) observations whenever alerted that sources are in a high flux state in the optical and/or X-ray bands. Previously, optically triggered observations resulted in the discovery of VHE γ-ray emission from Markarian 180 (Albert et al. 2006). Here we report the discovery of VHE γ-rays from 1ES 1011+496 triggered by an optical outburst in March 2007. Previous observations of the source with the MAGIC telescope did not show a clear signal (Albert et al. 2007a).

1ES 1011+496 is a high frequency peaked BL Lac (HBL) object for which we now determined a redshift of $z = 0.212 \pm 0.002$ (Fig. 1). Previously, this was uncertain since it was based on an assumed association with the cluster Abell 950 (Wisniewski et al. 1983). The redshift determination here makes 1ES 1011+496 the most distant VHE γ-ray source yet detected with the possible exception of PG 1553+113 (Aharonian et al. 2006a; Albert et al. 2007b) (for which the redshift is $0.09 < z < 0.42$ (Staruschi et al. 2006; Mazin & Goebel 2007).

The spectral energy distribution (SED) of BL Lac ob-

a Universität Würzburg, D-97074 Würzburg, Germany
b IFAE, Edifici Ca., E-08193 Bellaterra (Barcelona), Spain
c ETH Zurich, CH-8093 Switzerland
d Universidad Complutense, E-28040 Madrid, Spain
e Universität Autònoma de Barcelona, E-08193 Bellaterra, Spain
f Max-Planck-Institut für Physik, D-80805 München, Germany
g Universidade de Padova e INFN, I-35314 Padova, Italy
h Universität Dortmund, D-44227 Dortmund, Germany
i University of Lodz, PL-90236 Lodz, Poland
j Universität de Barcelona, E-08028 Barcelona, Spain
k Yerevan Physics Institute, AM-375036 Yerevan, Armenia
l Towra Observatory, Univ. of Turku, FI-21500 Piikkiö, Finland
m Inst. de Astrofísica de Canarias, E-38200 Tenerife, Spain
n Universidad de Udine, and INFN Trieste, I-33100 Udine, Italy
o University di Siena, and INFN Pisa, I-53100 Siena, Italy
p University of California, Davis, CA-95616-8677, USA
q Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
r Inst. für Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria
s INAF/Osserv. Astronomico e INFN, I-34134 Trieste, Italy
t Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy
u ICREA & Institut de Ciències de l’Espai (IEEC-CSIC), E-08193 Bellaterra, Spain
v Depto. de Astrofísica, Universidad, E-38206 Tenerife, Spain
w Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, USA
x INAF/Osservatorio Astronomico di Brera, Milano, Italy
y deceased
z Send offprint requests to: E. Lindfors elilin@utu.fi; D. Mazin mazin@ifae.es
seeds photons that are up scattered to several suggestions for the origin of the low-frequency scattering of ambient soft photons. There have been models have been proposed for the origin of the high-frequency peak is due to synchrotron radiation. Various models indicate a redshift of $z = 0.212 \pm 0.002$.

Two-bump structure. The lower frequency peak is due to synchrotron radiation. Various models have been proposed for the origin of the high-frequency peak; the most popular invoke inverse Compton scattering of ambient soft photons. There have been several suggestions for the origin of the low-frequency seed photons that are up scattered to γ-ray energies: the soft photons may be produced within the jet itself by synchrotron radiation (SSC, Maraschi et al. (1992)) or come from outside the jet, perhaps from the accretion disk (EC; Dermer & Schlickeiser (1993)). The high-energy peak may, instead, also have a hadronic origin (e.g. Mannheim et al. (1991)).

When the synchrotron emission peak is located in the low energy range from the sub-millimeter to optical, the objects are called low-frequency-peaked BL Lac objects. HBLs, on the other hand, have the peak synchrotron emission in the UV to X-ray energy range. The peak of the second bump is often not observable because of the low sensitivity above a few hundred MeV of satellite-borne detectors or a too high energy threshold of ground-based γ-ray detectors. With the exception of M87 (Aharonian et al. 2003, 2006b) and BL Lac (Albert et al. 2007d), all known blazar sources detected at TeV energies with Cherenkov telescopes show a synchrotron peak in the UV to X-ray energy range, suggesting that the intensity of the TeV emission is related to a synchrotron component extending to high frequencies.

2. OBSERVATIONS AND DATA ANALYSIS

The MAGIC telescope is located on the Canary Island La Palma (2200 m above sea level, 28°45’N, 17°54’W). The accessible energy range spans from 50-60 GeV (trigger threshold at small zenith angles) up to tens of TeV (Albert et al. 2007d).

The MAGIC observation was triggered by an observed high optical state of 1ES 1011+496 on 2007 March 12 (see light curve Fig. 2). The source has been monitored for more than 4 years in the optical with the KVA27 and Tuorla 1 m telescopes as a part of the Tuorla blazar monitoring program.28 In March 2007 the flux reached the highest level ever observed during the monitoring. The core flux, which is the host-galaxy-subtracted flux (the host galaxy flux is taken from Nilsson et al. (2005) and is 0.49 ± 0.02 mJy), increased more than 50% from the local minimum of the light curve. The high optical state with increasing flux was continuing throughout the MAGIC observations, despite an observation gap of 3 weeks due to bad weather.

1ES 1011+496 is monitored by RXTE ASM and Swift BAT, but the X-ray flux of the source is below the sensitivity of these instruments and the light curves show no indication of flaring. The source was also observed at Metsähovi Radio Observatory in May 2007. The source was not detected at 37 GHz, which indicates that it was not in a high state at millimeter wavelengths (A. Lähteennäki 2007, private communication).

After the alert, MAGIC observed 1ES 1011+496 in March–May 2007. The total observation time was 26.2 hr, and the observation was performed at zenith angles ranging from 20° to 37°. The observation was done in the so-called Wobble-mode (Daum et al. 1997). After removing runs with unusual trigger rates, mostly caused by bad weather conditions, the effective observational time amounts to 18.7 hr.

The data were analyzed using the standard analysis and calibration programs for the MAGIC telescope (Albert et al. 2007d). The analysis is based on image parameters (Hillas 1985), the Random Forest (Breiman 2001; Bock et al. 2004), and the DISP methods (Domingo-Santamaria et al. 2005). After cuts for γ/hadron separation, the distribution of the angle θ, which is the angular distance between the source position in the sky and the reconstructed shower origin, is used to determine the signal in the ON-source region. Three background (OFF) regions of the same size are chosen symmetrically to the ON-source region with respect to the camera center. The final cut $\theta^2 < 0.02$ deg² to determine the significance (Fig. 3) was optimized on nearly contemporaneous Crab data to determine the significance of the signal and the number of excess events. The energy threshold was about 160 GeV for this analysis, which, given the soft spectrum of the source, allowed for signal extraction down to 100 GeV. The data were also analyzed with an independent analysis. Within the statistical errors the same significance, flux, and differential spectrum were obtained.

3. RESULTS

The distribution of the θ^2-values, after all cuts, is shown in Fig. 3. The signal of 297 events over 1591 normalized background events corresponds to an excess with significance of 6.2σ using equation (17) in Li & Ma (1983).

To search for time variability the sample was divided into 14 subsamples, one for each observing night. Fig. 4 shows the integral flux for each night calculated for a photon flux above 200 GeV. The energy threshold has been chosen to reduce systematic effects arising from a rapidly decreasing effective area for γ-rays for lower energies. The flux is statistically constant at an emission level.
ergies and thus not providing new constraints on the EBL and the resulting attenuation of the VHE observed spectrum must be corrected. The optical depth, therefore, to obtain the intrinsic spectrum of the source, the observed spectrum must be corrected. The optical depth and the resulting attenuation of the VHE γ-rays from 1ES 1011+496 are calculated using the number density of the evolving EBL provided by the best-fit model of Kneiske et al. (2002). Within given model uncertainties, the model is in good agreement with alternative models (Primack et al. 2003; Stecker et al. 2006) and EBL upper limits (Aharonian et al. 2006c; Mazin & Raue 2007). Even after the correction, the slope of the spectrum is $\Gamma_{\text{int}} = 3.3 \pm 0.7$ (dashed brown line in Fig. 5). $\chi^2 / NDF = 2.55 / 2$, softer than observed for other HBLs in TeV energies and thus not providing new constraints on the EBL density.

We report the discovery of VHE γ-ray emission from BL Lac object 1ES 1011+496. With the redshift of $z = 0.212$, it is the most distant source detected to emit VHE γ-rays to date. The observed spectral properties (soft and no significant excess above ~ 800 GeV) are consistent with the state-of-the-art EBL models (Kneiske et al. 2002; Primack et al. 2003; Stecker et al. 2006) and confirm recently derived EBL limits (Aharonian et al. 2006c; Mazin & Raue 2007).

In Fig. 6 we show the SED of 1ES 1011+496 using historical data (open circles; Costamante & Ghisellini 2002 and references therein) and our nearly simultaneous optical R-band data (triangle), together with the MAGIC spectrum corrected for attenuation (filled circles). We also display (square) the EGRET flux of the source 3EG J1009+4855, which has been suggested to be associated with 1ES 1011+496 (Hartman et al. 1999), but see also Sowards-Emmerd et al. (2003) whose analysis disfavours the association.

We model the SED by using a one-zone synchrotron-SSC model (see Tavecchio et al. (2001) for a description). In brief, a spherical emission region is assumed with radius R, filled with a tangled magnetic field of mean intensity B. The relativistic electrons follow a broken-power-law energy distributions specified by the limits γ_{min} and γ_{max} and the break at γ_B. Relativistic effects are taken into account by the Doppler factor δ.

As discussed in Tavecchio et al. (1998), if the position and the luminosity of the synchrotron and SSC peaks are known and an estimate of the minimum variability timescale is available, it is possible to uniquely constrain the model parameters. Unfortunately, we do not have all the required information to accomplish this. In particular, we have fixed the synchrotron peak by requiring that it reproduces the optical flux and the historical X-ray spectrum and we assume the SSC peak to be close to the MAGIC threshold. These choices minimize the required emitted luminosity, since a lower SSC peak frequency would require a higher SSC luminosity.

We present two models. The first (solid line), assum-
ing an electron distribution extending down to $\gamma_{\text{min}} = 1$, clearly overpredicts the MeV-GeV flux measured by EGRET. In the second case (dashed line), which fixes the low energy limit at $\gamma_{\text{min}} = 3 \cdot 10^5$ (leading to a “narrowing” of both the synchrotron and SSC bump, see Katarzynski et al. (2006)) the model is compatible with the reported EGRET flux. It is evident that simultaneous GLAST-MAGIC observations of this source will provide important constraints on the model parameters.

In both cases, the energy output of the SSC component (reaching observed values of $L \sim 10^{46}$ erg/s) dominates over the synchrotron luminosity, implying a relatively low magnetic field, $B = 0.15$ G. In that case the source would be strongly electron dominated, since the magnetic energy density would be several orders of magnitude below that of the relativistic electrons. A larger synchrotron flux (limited by the non-detection by BAT and ASM) could alleviate the problem. Simultaneous X-ray and VHE observations are mandatory to further investigate this issue. We also note the fit Doppler factor ($\delta = 20$) is rather high and should be verified by Very Long Baseline Interferometric observations. The fitted parameters are similar to those derived for other TeV-emitting BL Lacs. We note however that adopting models where the jet has a velocity structure (e.g., models by Georganopoulos & Kazanas (2003); Ghisellini et al. (2003)) would considerably reduce the required Doppler factors.

1ES 1011+496 was previously observed with the HEGRA telescope array, resulting in an upper limit of $F(\text{E}>1 \text{ TeV}) \leq 1.8 \cdot 10^{-12}$ photons cm$^{-2}$s$^{-1}$ (Aharonian et al., 2004), which is well above the detected flux we found. The source was also observed by MAGIC, as part of a systematic scan of X-ray-bright HBLs, in March–April 2006. Being in a lower optical state (the core flux was $\sim 50\%$ lower than that in March–May 2007), the observations showed a marginal signal with 3.5σ significance corresponding to an integral flux of $F(>180 \text{ GeV})= (1.26 \pm 0.4) \cdot 10^{-11}$ photons cm$^{-2}$s$^{-1}$, i.e. $\sim 40\%$ (Albert et al. 2007a) lower than the detected flux in March–May 2007 (see also the inset in Fig. 4). A similar trend was also found for BL Lac (Albert et al. 2007b), where the observations during a lower optical state failed to detect VHE γ-rays. This seems to indicate that there is a connection between the optical high state and the higher flux of VHE γ-ray emission at least in some sources. To further investigate this possibility, follow-up observations of the detected objects as well as further observations of other AGNs during high optical states are required.

We thank the IAC for the excellent working conditions at the ORM. The support of the German BMBF and MPG, the Italian INFN, the Spanish CICYT, the ETH Research Grant TH 34/04 3 and the Polish MNiI Grant 1P03D01028 is gratefully acknowledged. We thank A. Berdyugin for performing the optical observations and A. Lähteenmäki (Metsähovi) for the radio observations.

REFERENCES

Aharonian, F. et al. (HEGRA). 2003, A&A, 403, 1
Aharonian, F. et al. (HEGRA). 2004, A&A, 421, 529
Aharonian, F. et al. (HE.S.S.), 2006a, A&A, 448, 19
Aharonian, F. et al. (HE.S.S.), 2006b, Science, 314, 1424
Aharonian, F. et al. (HE.S.S.), 2006c, Nature, 440, 1018
Albert, J. et al. (MAGIC), 2006, ApJ, 648, L105
Albert, J. et al. (MAGIC), 2007a, ApJ submitted, astro-ph/07064455
Albert, J. et al. (MAGIC), 2007b, ApJ, 654, L119
Albert, J. et al. (MAGIC), 2007c, ApJ, 666, L7
Albert, J. et al. (MAGIC), 2007d, ApJ accepted, astro-ph/07053241
Bock, K. K. et al., 2004, Nucl. Instrum. Methods A, 516, 511
Breiman, L., 2001, Machine Learning, 45, 5
Castamante, L. & Ghisellini, G., 2002, A&A, 384, 56
Daum, A. et al. (HEGRA), 1997, Astropart. Phys., 1, 1
Dermer, C. D. & Schlickeiser, R., 1993, ApJ, 416, 458
Domingo-Santamaria, E. et al. (MAGIC), 2005, Proc. 29th Int. Cosmic Ray Conf. (Pune), 5, 363.
Georganopoulos, M. & Kazanas, D., 2003, ApJ, 594, 27
Ghisellini, G., Tavecchio, F. & Chiaberge, M. 2005, ApJ, 632, 401
Hartman, R. C. et al., 1999, ApJSS, 123, 79.
Hillas, A. M., 1985, Proc. of the 19th ICRC (La Jolla), 3, 445
Katarzynski, K., et al., 52, MNRAS, 2006, 368
Kneiske, T. M., Mannheim, K. & Hartman, D. H. 2002, A&A, 380, 1
Li, T.-P., and Ma, Y.-Q., 1983, ApJ, 272, 317
Maraschi, L., Ghisellini, G. & Celotti, A., 1992, ApJ, 397, L5
Mazin, D. & Goebel, F., 2007, ApJ, 655, 13
Mazin, D. & Raue, M., 2007, A&A, 471, 439
Mannheim, K., et al., 1991, A&A, 251, 723
Nikishov, A.I., 1962, Sov. Phys. JETP, 14, 293.
Nilsson, K., Pasanen, M., Takalo, L. et al., 2007, A&A, submitted
Primack, J. et al., AIP Conf. Proc., 2005, 745, 23.
Sbarufatti, B., et al., 2006, A&A, 457, 35
Sowards-Emmerd, D. et al., 2003, ApJ, 590, 109
Stecker, F.W. et al., 1992, ApJ, 390, L49
Stecker, F.W., Malkan, M.A., & Scully, S.T., 2006, ApJ, 648, 774.
Tavecchio, F., Maraschi, L. & Ghisellini, G., 1998, ApJ, 509, 608
Tavecchio, F., Maraschi, L., Pian, E. et al. 2001, ApJ, 554, 725
Wisniewski, W. Z., et al., 1986, MNRAS, 219, 299

Albert et al.

Fig. 6.— Spectral energy distribution of 1ES 1011+496. The two different fits are done by varying the minimum electron energy γ_{min} (see text). The other fit parameters are: R (radius of sphere) = 1010 cm, δ (Doppler factor) = 20, B (magnetic field) = 0.15 G, γ_{max} (maximum electron Lorentz factor) = 2 • 107, γ_{0} (break electron Lorentz factor) = 5 • 104, and n_{ϵ} (normalization of the electron energy distribution) = 2 • 104 cm$^{-3}$. The model is not intended for describing the radio data, which is assumed to originate from a larger emitting volume to avoid an intrinsic absorption.