Supplementary information

MetaRibo-Seq measures translation in microbiomes

Brayon J. Fremin¹, Hila Sberro¹,², and Ami S. Bhatt¹,²*
¹Department of Genetics, Stanford University, CA, 94305, USA
²Department of Medicine (Hematology & Blood and Marrow Transplantation), Stanford University, CA, 94305, USA
*Correspondence: asbhatt@stanford.edu
Supplementary Fig. 1

MetaRibo-Seq correlates to protein levels in an aerobic mock community.

(a) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF (Normalized Spectral Abundance Factor) log-scaled (n = 1055 proteins) in the aerobic mock community. Replicates reads were combined and treated as a single sample for this visualization.

(b) Pearson correlations for pairwise comparisons across technologies to metaproteomics in the aerobic mock community. These correlations to metaproteomics (n = 1055) include RNA-Seq (Pearson’s r = 0.45, p value < 2^{-16}), Ribo-Seq (Pearson’s r = 0.54, p value < 2^{-16}), and MetaRibo-Seq (Pearson’s r = 0.51, p value < 2^{-16}). MetaRibo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s 95% confidence interval between -0.1016 and -0.0187 (significance indicated as ***). Ribo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s 95% confidence interval between -0.1330 and -0.0474 (significance indicated as ***).

(c) Histogram showing the fold enrichment of signal across coding regions flanked by UTRs (n = 2263) compared to signal across known UTR regions for RNA-Seq, MetaRibo-Seq, and Ribo-Seq in E. coli.

(d) Pearson correlations for pairwise comparisons across technologies to metaproteomics in E. coli in the aerobic mock community. These correlations to metaproteomics (n = 917) include RNA-Seq (Pearson’s r = 0.51, p value < 2^{-16}), Ribo-Seq (Pearson’s r = 0.61, p value < 2^{-16}), and MetaRibo-Seq (Pearson’s r = 0.56, p value < 2^{-16}). MetaRibo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s 95% confidence interval between -0.0915 and -0.0089 (significance indicated as ***). Ribo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s 95% confidence interval between -0.1415 and -0.0593 (significance indicated as ***).
(a) Percent of Counts, Normalized

(b) RNA vs Mass
MetaRibo vs Mass

(c) log10(NSAF)

(d) RNA vs Mass
MetaRibo vs Mass

(e) log10(RPKM) MetaRibo-Seq

(f) Pearson Correlation

E. coli
B. theta
Supplementary Fig. 2

MetaRibo-Seq correlates to protein levels in an anaerobic mock community.

(a) Proportion of count data from transcriptomics, MetaRibo-Seq, and proteomics corresponding to *E. coli* (red) and *B. thetaiotaomicron* (blue) in a two member mock mixture.

(b) Pearson correlations for pairwise comparisons across technologies in the mixture. These correlations to metaproteomics (*n* = 1,590 proteins) include RNA-Seq (Pearson’s *r* = 0.34, *p* value < 2⁻¹⁶) and MetaRibo-Seq (Pearson’s *r* = 0.42, *p* value < 2⁻¹⁶). MetaRibo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s⁵⁴ 95% confidence interval between -0.0732 and -0.0327 (significance indicated as ***).

(c) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF log-scaled (*n*=596 proteins) in *B. thetaiotaomicron*. Replicates reads were combined and treated as a single sample for this visualization.

(d) Pearson correlations for pairwise comparisons across technologies in the *B. thetaiotaomicron*. These correlations to metaproteomics (*n* = 596) include RNA-Seq (Pearson’s *r* = 0.67, *p* value < 2⁻¹⁶) and MetaRibo-Seq (Pearson’s *r* = 0.71, *p* value < 2⁻¹⁶). MetaRibo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s⁵⁴ 95% confidence interval between -0.0602 and -0.0219 (significance indicated as ***).

(e) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF log-scaled (*n* = 994 proteins) in *E. coli*. Replicates reads were combined and treated as a single sample for this visualization.

(f) Pearson correlations for pairwise comparisons across technologies in *E. coli*. These correlations to metaproteomics (*n* = 994) include RNA-Seq (Pearson’s *r* = 0.53, *p* value < 2⁻¹⁶) and MetaRibo-Seq (Pearson’s *r* = 0.57, *p* value < 2⁻¹⁶). MetaRibo-Seq is a significantly better predictor of protein abundance than transcriptomics with Zou’s⁵⁴ 95% confidence interval between -0.0572 and -0.0237 (significance indicated as ***).
Supplementary Fig. 3

MetaRibo-Seq correlates to protein levels in a low diversity fecal sample.

(a) Pearson correlations for pairwise comparisons across technologies. Blue bars indicate Pearson correlations pertaining to all detected proteins (n = 1,503) in Sample E. Pearson’s r comparing metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, and MetaRibo-Seq vs. metaproteomics are 0.85, 0.39, and 0.46, respectively. All are significant (p value < 2^-16). MetaRibo-Seq is a significantly better predictor of protein abundance with Zou’s 95 % confidence interval between -0.0917 to -0.0487. Red bars indicate Pearson correlations pertaining only to *E. coli* in Sample E (n = 928 proteins). The correlations between metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, and MetaRibo-Seq vs. metaproteomics are 0.90, 0.53, and 0.64, respectively. All are significant (p value < 2^-16). MetaRibo-Seq is a significantly better predictor of protein abundance with Zou’s 95 % confidence interval between -0.1352 and -0.0868 (significance indicated as ***)).

(b) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF log-scaled (n = 1,503 proteins) detected by metaproteomics in Sample E. Replicates reads were combined and treated as a single sample for this visualization.

(c) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF log-scaled (n = 928 proteins) from *E. coli* in Sample E. Replicates reads were combined and treated as a single sample for this visualization.
Figure Legend

a, d Scatter plots showing the relationship between log10(RPKM) MetaRibo-Seq and log10(NSAF) for Sample A and Sample B, respectively. Each point represents a gene expression level.

b, e Bar plots depicting Pearson correlation coefficients for RNA vs RIBO, RNA vs Mass, and RIBO vs Mass across all samples and across Mass Spec samples.

c, f Box plots illustrating RPKM distribution for RNA, RIBO, RNA Mass Spec, and RIBO Mass Spec, with significant differences denoted by ***.
MetaRibo-Seq signal correlates to metaproteomics and is enriched for these proteins.

(a) For Sample A, scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF both log-scaled (n=497 proteins). Replicates reads were combined and treated as a single sample for this visualization.

(b) For Sample A, pairwise Pearson correlations between log-scaled metatranscriptomics RPKM, MetaRibo-Seq RPKM, and metaproteomics NSAF (n=497). Pearson’s r are 0.88, 0.26, and 0.32 for metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, and MetaRibo-Seq vs. metaproteomics, respectively. All are significant (p value < 2^{-16}). MetaRibo-Seq is a significantly better predictor of protein abundance than metatranscriptomics for these proteins in Sample A with a Zou’s 95 % confidence interval between -0.1322 and -0.0480 (significance indicated as ***).

(c) For Sample A, metatranscriptomics and MetaRibo-Seq RPKM for all predicted genes (n=223,630) compared to those detected by metaproteomics (n=497). For all predicted genes, median, mean, maximum, and minimum RNA-Seq RPKM values are 0, 10.95, 1102090, and 0, respectively. For all predicted genes, median, mean, maximum, and minimum MetaRibo-Seq RPKM values are 0, 10.54, 148426, and 0, respectively. For those genes detected by metaproteomics, median, mean, maximum, and minimum RNA-Seq RPKM values are 2.98, 22.30, 1031.33, and 0, respectively. For those genes detected by metaproteomics, median, mean, maximum, and minimum MetaRibo-Seq RPKM values are 8.41,45.52, 2417.14, and 0, respectively. Both metatranscriptomic and MetaRibo-Seq signal for proteomically-detected proteins are significantly enriched (two-sided Kolmogorov-Smirnov test p value < 2^{-16}) compared to all genes.

(d) For Sample B, scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF both log10-scaled (n=480 proteins). Replicates reads were combined and treated as a single sample for this visualization.

(e) For Sample B, pairwise Pearson correlations between log-scaled metatranscriptomics RPKM, MetaRibo-Seq RPKM, and metaproteomics NSAF (n=480). Pearson’s r are 0.89, 0.36, and 0.34 for metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, and MetaRibo-Seq vs. metaproteomics, respectively. All are significant (p value < 2^{-16}).

(f) For Sample B, metatranscriptomics and MetaRibo-Seq RPKM for all predicted genes (n=196,683) compared to those detected by metaproteomics (n=480). For all predicted genes, median, mean, maximum, and minimum RNA-Seq RPKM values are 0, 11.13, 82470.7, and 0, respectively. For all predicted genes, median, mean, maximum, and minimum MetaRibo-Seq RPKM values are 0.14, 11.28, 94225, and 0, respectively. For those genes detected by metaproteomics, median, mean, maximum, and minimum RNA-Seq RPKM values are 10.45, 47.6, 1527.54, and 0, respectively. For those genes detected by metaproteomics, median, mean, maximum, and minimum MetaRibo-Seq RPKM values are 15.48, 75.11, 3335.91, and 0, respectively. Both metatranscriptomic and MetaRibo-Seq signal for proteomically-detected proteins are significantly enriched (two-sided Kolmogorov-Smirnov test p value < 2^{-16}) compared to all genes.
Supplementary Fig. 5

RNA-Seq signal in fecal samples.

(a-d) Average RNA-Seq signal across genes and flanking regions for Sample A, B, C, and D, respectively. Every predicted open reading frame containing at least 10 reads is included in the analysis. Replicates reads are combined and treated as a single sample for this visualization.
(a) Sample A

(b) Sample B

(c) Sample C

(d) Sample D
Supplementary Fig. 6

MetaRibo-Seq demonstrates some weak signs of overall codon-resolution.

(a-d) Triplet periodicity across footprint lengths for Sample A, B, C, and D, respectively. Colors indicate which frame a read falls within.
a Bacteroides

b Faecalibacterium

c Alistipes

Footprint Size (bp)

Number of Reads

Sample A

Sample B

Frame 0
Frame 1
Frame 2
Supplementary Fig. 7

MetaRibo-Seq demonstrates stronger codon resolution in taxa-specific analyses.

(a) All contigs assigned to the genera Bacteroides are considered from Sample A and B, respectively. Only these contigs are considered in triplet periodicity analyses.

(b and c) The same triplet periodicity analysis for Faecalibacterium and Alistipes, respectively.
predicted genes significantly different (Ribo vs. RNA-Seq)

Number of sequences in cluster

Number of clusters with ≥ 5 sequences

Number of clusters

Number of genes

predicted genes significantly different

Number of clusters with ≥ 5 sequences

translational elongation

electron transport chain

transmembrane transport

metabolic process

protein folding

glycolytic process

Number of clusters with ≥ 5 sequences

Sample:

A

B

C

D

A

B

C

D

Translationally Regulated

Predicted genes

42,267 genes

42,267 proteins

translate to proteins

clustering

70 percent identity

607 clusters

≥ 5 proteins

32,277 clusters

42,267 genes

42,267 proteins

clustering

70 percent identity

607 clusters

≥ 5 proteins

32,277 clusters

translation

oxidation-reduction process

carbohydrate metabolic process

translational elongation

electron transport chain

transmembrane transport

metabolic process

protein folding

glycolytic process

Number of clusters with ≥ 5 sequences

0 50 100
Genes are reproducibly translated at different levels than transcribed.

(a) For Samples A, B, C, and D, we show the number of total gene predictions via prokka. We performed differential relative abundance analysis using DESeq2 on each of these samples individually, comparing metatranscriptomics to MetaRibo-Seq. We show the number of those genes identified as translated differently than transcribed (absolute value of log2 fold change) > 1 and FDR < 0.05. We predict 223630, 196683, 272895, and 173624 genes from Sample A, B, C, and D, respectively. Among these, 11872, 6580, 15188, and 8647, respectively, are translated at significantly different levels than transcribed.

(b) Genes translated at different levels than transcribed are converted, in silico, from nucleic acid sequences to protein sequences and are then clustered at 70 percent amino acid identity.

(c) The number of clusters with specific numbers of sequences combined across Samples A, B, C, and D.

(d) If the combined cluster contained at least 5 sequences, this gene is considered reproducibly translated differently than transcribed. 607 clusters met this requirement. For these clusters, the representative sequence (see Methods) is selected to represent the entire cluster. These representatives were input into Blast2GO to assign GO terms based on protein sequence.
Supplementary Fig. 9

Translational regulation in fecal samples changes over time.

(a) Heatmap of the top 15 most variable genes in Ribo-Seq and small transcriptomics between time points in Sample E. Sample E2 was obtained 6 days after Sample E.

(b) Heatmap of the top 10 most significantly translationally regulated genes between time points in Sample E. Specifically, these are the 10 genes that are most significantly regulated at the translational level, controlling for transcriptional changes.

(c) Heatmap of all small protein families that were significantly different over time in comparing either Ribo-Seq or RNA-Seq.

(d) Heatmap of all translationally regulated small protein families between time points in Sample E, in which transcriptional changes were controlled for.