Effects of Egg Weight on Egg Quality Traits of Potchefstroom Koekoek Chicken Genotype

Thobela Louis Tyasi1,*, Lebo Trudy Rashijane1, Kweneng Mokoena1, Kagisho Madikadike Molabe1, Madumetja Cyril Mathapo1, Victoria Rankotsan Hlokoe1, Lebelo Joyceline Selala1, Masixole Maswana1 and Lubabalo Bila2

1School of Agricultural and Environmental Sciences, Department of Agricultural Economics and Animal Production, University of Limpopo, Private Bag X1106, Sovenga 0727, Limpopo, South Africa.
2Potchefstroom College of Agriculture, Department of Animal Production, Private Bag X1292, Potchefstroom, 2520, South Africa.

ABSTRACT

An egg is a reproduction tool in chickens and a valuable food source for humans. The objective of this study was to examine the effect of egg weight (EW) on egg quality traits such as egg length (EL), egg diameter (ED), yolk weight (YW), albumen weight (AW), shell weight (SW), shell index (SI), yolk ratio (YR), albumen ratio (AR) and shell ratio (SR). Potchefstroom Koekoek layer genotype eggs (n = 200) were used. Pearson correlation and analysis of variance (ANOVA) were used for analysis. Correlation results indicated that egg weight had a statistical significant correlation (P < 0.05) with egg quality traits. Egg weight displayed a positive highly significant correlation with EL (0.82), AW (0.67) and SW (0.62), respectively. The findings suggest that EL, AW and SW might be used in selection to improve EW of Potchefstroom Koekoek chicken genotype. ANOVA results showed that egg weight had a statistical significant difference (P < 0.05) with egg quality traits except for albumen ratio and yolk ratio (P > 0.05). Moreover, the findings revealed that small eggs weight had a longer egg length, yolk weight, shell weight, shell ratio and albumen weight than medium and large eggs. While large eggs had a higher egg diameter and shell index.

ABSTRACT

Chicken egg is the cheapest source of protein which also contains vitamins and carbohydrates (Ukwu et al., 2017). In egg production enterprise, egg weight is one of the economically important traits which require serious attention to the egg producers (Ahmadi and Rahimi, 2011). Egg weight is affected by several egg quality traits such as egg length, egg diameter, yolk weight, albumen weight, shell weight, shell index, yolk ratio, albumen ratio and shell ratio and other factors including genetic, age, breed or strain of the chicken and nutrition (Alkan et al., 2010). The transportability of an egg is dependent on its shell thickness since eggs with thin shells are liable to break on transit and thus constitute a great loss to the layer farmer (Ukwu et al., 2017). Hence, the effects of egg weight on egg quality traits and chicken genotype are imperative to the egg industry worldwide (Ukwu et al., 2017). There are also reports on the relationship between egg size and egg quality parameters (Sarica et al., 2012). However, to the best of our knowledge studies on the effects of egg weight on egg quality traits in South African Potchefstroom Koekoek chicken genotype has not yet been reported on literature. Hence, the objective of this study was to examine the effect of egg weight on egg quality traits such as egg length, egg diameter, yolk weight, albumen weight, shell weight, shell index, yolk ratio, albumen ratio and shell ratio. Thus, this study was designed to examine the effects of egg weight on egg quality traits of Potchefstroom Koekoek layer chicken genotype.

Materials and methods

This study was conducted at the University of Limpopo which is in the Capricorn District Municipality in the Limpopo province of South Africa. Annually, an average temperature of about 24.6 °C is received with a minimum average of 18.9 °C in June, and a maximum average of 28.2 °C in January. In the study area, January is mostly the wettest month with about 420 mm annual rainfall. July is the driest month with only about 2 mm. An average annual relative humidity of about 77.4% (Tyasi et al., 2020).
Two hundred eggs used in the study were collected from Potchefstroom Koekoek chicken genotype hens which were raised in a traditional cage system. The hens were thirty-three (33) weeks old and six (6) hens were kept per cage (60 × 60 × 45.5 cm). The average relative humidity was 56% and air temperature was 14.3°C during egg collection period. Moreover, feed and water were given unlimited. Hens were fed by the layers’ mash containing 16% crude protein. The eggs were weighed and grouped into the following categories: small weight (< 60 g), medium weight (60 to 69 g) and large weight (> 69 g). Egg weight was measured using a sensitive digital weighing balance (Mettler Toledo, PL203 CE) with accuracy of 0.001 g. Egg length and egg width were taken using a Vernier calliper. Egg length, egg weight diameter, yolk weight, albumen weight, shell weight, shell index, shell ratio and albumen ratio were measured and computed as described by Ukwu et al. (2017).

Statistical Package for Social Sciences (IBM SPSS, 2019) version 26 was used for data analysis. Pearson’s correlation was used to determine the correlation coefficient between measured traits. Analysis of Variance (ANOVA) was used to determine the effect of egg weight group on egg quality traits. The following model was used for ANOVA.

\[Y_{ij} = \mu + T_i + e_{ij} \]

where; \(Y_{ij} \) is the \(i \)th observation in the \(j \)th egg weight group, \(\mu \) is overall mean, \(T_i \) is effect of the \(i \)th egg weight group (small, medium and large) and \(e_{ij} \) is residual error.

Results and discussion

The descriptive statistics of egg quality traits (egg length, egg diameter, yolk weight, albumen weight, shell weight, shell index, yolk ratio, albumen ratio and shell ratio) in different egg weight groups (small, medium and large) are presented in Table I. It appears that small egg group had a higher mean numerical value of yolk ratio (3.02) than the other egg weight groups, medium egg group had a higher mean numerical value of egg weight diameter (4.44 cm), yolk weight (1.85 g), albumen weight (3.50 g), shell weight (0.90 g), shell ratio (1.44) and albumen ratio (5.60) while large egg group had a longer numerical value of egg length (5.73 cm) than the other egg weight groups. These findings are similar to the study of Abanikannda et al. (2007) on Harco chicken layer genotype. However, these results are higher than of Ukwu et al. (2017) on Isa Brown layer genotype of Nigeria. This variation might be due to genotype differences between Potchefstroom Koekoek layer and Isa Brown layer.

Table II shows the relationships between egg weight and egg quality traits of Potchefstroom Koekoek layer genotype. The results indicated that EW had a highly statistical significant positive correlation (\(P < 0.01 \)) with EL (\(r = 0.82 \)), AW (\(r = 0.67 \)) and SW (\(r = 0.62 \)) while EW had a statistically positive significant correlation (\(P < 0.05 \)) with EWD (\(r = 0.40 \)), YW (\(r = 0.33 \)), SR (\(r = 0.27 \)) and AR (\(r = 0.31 \)) while negatively statistical correlation with SI (\(r = -0.44 \)) and YR (\(r = -0.48 \)), respectively. Positive significant (\(P < 0.01 \)) correlation were found between egg weight diameter and albumen weight and albumen ratio, while a positive significant (\(P < 0.05 \)) correlation was observed between egg weight diameter and yolk weight, shell weight and shell index. However, high negative significant (\(P < 0.01 \)) correlation observed between egg

![Table I. Descriptive statistics of egg quality traits in different egg weight groups.](attachment:image.png)

Traits	Egg weight group	N	Min	Max	Mean	Std. error	SD	CV (%)
Egg length (cm)	Small	60	5.26	5.54	5.41	0.11	0.89	79
	Medium	60	5.26	5.54	5.41	0.11	0.89	79
	Large	23	5.47	5.73	5.69	0.10	0.48	23
Egg weight diameter (cm)	Small	60	4.11	4.51	4.31	0.15	1.19	143
	Medium	60	4.29	4.50	4.44	0.05	0.44	20
	Large	23	4.23	4.40	4.24	0.07	0.36	13
Yolk weight (g)	Small	60	15.10	17.90	16.75	0.10	0.84	71
	Medium	60	17.80	19.10	18.52	0.06	0.54	29
	Large	23	17.60	19.10	17.67	0.06	0.31	10
Albumen weight (g)	Small	60	26.90	36.40	31.81	0.42	3.28	10.77
	Medium	60	30.80	36.90	34.99	0.17	1.38	190
	Large	23	30.80	34.30	33.32	0.12	0.58	33
Shell weight (g)	Small	60	6.70	8.30	7.37	0.07	0.55	30
	Medium	60	7.80	9.40	8.98	0.05	0.39	16
	Large	23	7.80	9.40	8.14	0.05	0.28	07
Shell index (%)	Small	60	78.16	83.57	79.63	0.24	1.85	345
	Medium	60	76.82	80.04	77.96	0.18	1.44	208
	Large	23	74.26	78.43	74.55	0.20	0.99	99
Shell ratio (%)	Small	60	11.39	13.97	13.18	0.11	0.85	72
	Medium	60	13.45	14.97	14.37	0.08	0.65	43
	Large	23	13.71	14.97	13.76	0.05	0.26	06
Alumen ratio (%)	Small	60	53.16	60.97	56.66	0.36	2.85	813
	Medium	60	54.51	58.39	55.97	0.21	1.66	278
	Large	23	54.51	56.51	56.34	0.11	0.56	31
Yolk ratio	Small	60	26.09	33.60	30.15	0.32	2.54	649
	Medium	60	28.16	31.68	29.64	0.13	1.04	108
	Large	23	29.78	31.68	29.89	0.08	0.41	16

SD, standard deviation; Std. Error, Standard error of means; CV, coefficient of variation.
Online First Article

weight diameter and yolk ratio. Positive correlations were found between yolk weight and shell weight, shell ratio (P < 0.01) and yolk ratio (P < 0.05). Moreover, moderate negative significant (P < 0.05) correlation was observed between yolk weight and shell index, albumen ratio. The correlation between albumen weight and shell weight, albumen ratio was highly positive significant (P < 0.01) and low significant (P < 0.05) with shell index in the study. However, high negative significant (P < 0.05) between albumen weight and yolk ratio was found. This revealed that as albumen weight increases the yolk ratio decreases. Negative significant correlation between shell weight and shell index (P < 0.05) and yolk ratio (P < 0.01) was found in the study, although high positive correlation was observed between shell weight and shell ratio (P < 0.01). The correlation between shell index and shell ratio (P < 0.01), yolk ratio (P < 0.05) were negative significant in the study. Even though, positive significant (P < 0.01) correlation was found between shell index and albumen ratio. A negative significant (P < 0.01) correlation between shell ratio and albumen ratio was observed in the study, while low positive significant (P < 0.05) was found between shell ratio and yolk ratio. Moreover, a negative significant (P < 0.01) correlation was observed between albumen ratio and yolk ratio. These findings are in agreement with the report of Ukwu et al. (2017) who reported that egg weight had a highly statistical significant correlation (P < 0.01) with egg length (r = 0.773), egg diameter (r = 0.888) and shell weight (r = 0.680), and concluded that increasing egg length, egg diameter and shell weight might increase egg weight of Isa Brown layer genotype of Nigeria. Aktan (2004) and Alkan et al. (2013) reported that egg weight has a statistical positive correlation with albumen weight. However, Alkan et al. (2010) reported that egg weight has a statistical significant correlation with shell weight, yolk weight and albumen weight. Our findings suggest that increasing egg length, albumen weight and shell weight might also improve egg weight of Potchefstroom Koekoek. Therefore, egg length, albumen weight and shell weight might be employed in the selection criteria during breeding to improve egg weight.

The current study also focused on the effect of egg weight into egg quality traits (Table III). The egg length of small, medium and large egg weight groups was significantly (P > 0.05) different. Numerically, the large egg weight group had the highest egg length (5.70 cm) while small had the lowest egg length (5.41 cm). Egg weight diameter of the different egg weight groups differ significantly (P < 0.05). However, the medium egg weight group had the highest egg weight diameter (4.44 cm) while, large weight group had the lowest egg weight diameter (4.24 cm). Yolk weight for small, medium and large egg weight groups were 16.74, 18.52 and 17.67 g respectively. Egg yolk weight from the three groups differ significantly (P < 0.05). However, medium egg weight group had the better yolk weight (18.52 g) than eggs in the other groups. Mean albumen weight indices were 31.76, 34.99 and 33.32 g for small, medium and large egg weight groups respectively. Albumen indices among the different egg weight groups differ significantly (P < 0.05). However, the small egg weight group had the lowest albumen weight (31.76 g) compared to other groups. The egg shell weight of small, medium and large egg weight groups was significantly (P < 0.05) different and were observed to be 31.76, 34.99 and 33.32 g respectively. The egg shell index indices of small, medium and large egg weight groups were significantly (P < 0.05) different. The small egg weight group had the highest shell index (79.59 %) while the large weight group had the lowest index (74.55 %), but statistically significant.

Table II. Phenotypic correlations between egg weight and egg quality traits.

Egg traits	EW	EL	EWD	YW	AW	SW	SI	SR	AR
EL	0.82**								
EWD	0.40*	0.47*							
YW	0.33*	0.57**	0.13*						
AW	0.67**	0.60**	0.89**	-0.02*					
SW	0.62**	0.92**	0.46*	0.57**	0.52**				
SI	-0.44*	-0.56**	0.47*	-0.44*	0.24*	-0.50**			
SR	0.27*	0.67**	-0.07*	0.54*	-0.03*	0.83*	-0.74**		
AR	0.31*	0.04*	0.65**	-0.59*	0.78*	-0.07*	0.57**	-0.525**	
YR	-0.48*	-0.34*	-0.72**	0.45*	-0.89*	-0.28*	-0.34*	0.17*	-0.93**

*, Correlation is significant at the 0.05 level; **, Correlation is significant at the 0.01 level; EL, Egg length; EWD, Egg weight diameter; YW, Yolk weight; AW, Albumen weight; SW, Shell weight; Shell index; SR, Shell ratio; AR, Albumen ratio; YR, Yolk ratio.
The shell ratio of the egg weight groups was significantly \((P < 0.05) \) different, with numerical values of 13.19, 14.37 and 13.76 for small, medium and large respectively. The medium egg weight group had the lowest shell ratio (13.19). The albumen ratio of small, medium and large egg weight groups did not differ significantly \((P > 0.05) \). Numerically, the small egg weight group had the highest albumen ratio (56.62) while medium had the lowest mean albumen ratio (55.97) but statistical insignificant. The yolk ratio indices for small, medium and large egg weight groups were 30.18, 13.76 and 13.39 respectively. Egg from the three groups small, medium and large egg weight groups did not statistically significant difference among egg weight groups viz small, medium, and large on all measured egg quality traits except albumen ratio and yolk ratio. The study might be helpful to chicken farmers focusing on egg production during selection to improve egg weight inbreeding. Further studies need to be done on the effect of egg weight on egg quality traits in a bigger sample size of Potchefstroom Koekoek eggs or different chicken layer breeds.

Conclusions

The study was carried out to investigate the effect of egg weight on egg quality traits of Potchefstroom Koekoek as indigenous chicken layer chicken. Our study firstly determined the relationship between egg weight and egg quality traits and indicated that egg weight is statistically significant correlated with egg length, albumen weight and shell weight. ANOVA findings recognised that there is a statistically significant difference among egg weight groups viz small, medium, and large on all measured egg quality traits except albumen ratio and yolk ratio. The study might be helpful to chicken farmers focusing on egg production during selection to improve egg weight inbreeding. Further studies need to be done on the effect of egg weight on egg quality traits in a bigger sample size of Potchefstroom Koekoek eggs or different chicken layer breeds.

Acknowledgements

The authors express appreciation to the University of Limpopo Experimental Farmworkers for their assistance during data collection.

Statement of conflict of interest

The authors have declared no conflict of interest.

References

Abanikannda, O.O., Olutogun, A.O., Leigh, L.A., and Ajayi, L., 2007. *Int. J. Poult. Sci.*, 6: 59–63.
Ahmadi, F. and Rahimi, F., 2011. *World appl. Sci. J.*, 12: 372-384.
Alkan, S., 2004. *S. Afr. J. Anim. Sci.*, 34. https://doi.org/10.4314/sajas.v34i2.3808
Alkan, S.K., Kemal, G., Askin, K., Taki, B. and Murat, K., 2010. *Kafkas Univ. Vet. Fak. Derg.*, 16: 239-244.
Alkan, S., Karsli, T., Galiç, A. and Karabağ, K., 2013. *Kafkas Univ. Vet. Fak. Derg.*, 19: 861-867.
Alkan, S., Askgın, G., Taki, K. and Karabag, K., 2015. *J. Appl. Anim. Res.*, 43: 450-456. https://doi.org/10.1080/09712119.2014.980419
IBM SPSS., 2019. *SPSS Release 26.0 Statistical packet program, SPSS for Windows*. SPSS Inc., Chicago, IL, USA.
Khan, M., Khattun, M. and Khibria, A., 2004. *Pak. J. biol. Sci.*, 7: 2163-2166.
Sarica, M., Önder, H. and Yamak, U., 2012. *Int. J. Agric. Biol.*, 14: 235-240.
Sekeroğlu, A. and Altuntas, E., 2009. *J. Sci. Fd. Agric.*, 89: 379-383. https://doi.org/10.1002/jsfa.3454
Tyasi, T.L., Mathye, N.D., danguru, L.W., rashjane, L.T., Mokoen, K., Magkowo, K.M., Mathapo, M.C., molabe, K.M., Bopape, P.M. and Maluleke, D., 2020. *J. Adv. Vet. Anim. Res.*, 7: 148-155. https://doi.org/10.5455/javar.2020.g404
Ukwu, H.O., Ezihe, C.O., Asaa, S.K. and Anyogo, M.E., 2017. *J. Anim. Sci. Vet. Med.*, 2: 126-132. https://doi.org/10.31248/JASVM2017.051