The Effect of 3.2% and 3.8% Sodium Citrate on Specialized Coagulation Tests

Franz Ratzinger, MD; Mona Lang; Sabine Belik; Klaus G. Schmetterer, MD, PhD; Helmut Haslacher, MD; Thomas Perkmann, MD; Peter Quehenberger, MD

● Context.—Coagulation testing is challenging and depends on preanalytic factors, including the citrate buffer concentration used.

Objective.—To better estimate preanalytic effects of the citrate buffer concentration in use, the difference between results obtained by samples with 3.2% and 3.8% citrate was evaluated.

Design.—In a prospective observational study with 76 volunteers, differences related to the citrate concentration were evaluated. For both buffer concentrations, reference range intervals were established according to the recommendations of the C28-A3 guideline published by the Clinical and Laboratory Standards Institute.

Results.—In our reagent-analyzer settings, most parameters evaluated presented good comparability between citrated samples taken with 3.2% and 3.8% trisodium buffer. The ellagic acid containing activated partial thromboplastin time reagent (aPTT-FS) indicated a systemic and proportional difference between both buffer concentrations, leading to an alteration in its reference ranges. Further, a confirmation test for lupus anticoagulant assessment (Staclot LA) showed only a moderate correlation ($r_p = 0.511$) with a proportional deviation between both citrate concentrations. Further, a statistically significant difference was found in the diluted Russell viper venom time confirmation testing, coagulation factors V and VIII, and the protein C activity, which was found to be of minor clinical relevance.

Conclusions.—With caution regarding the potential impact of the reagent-analyzer combination, our findings demonstrate the comparability of data assessed with 3.2% and 3.8% buffered citrated plasma. As an exception, the aPTT-FS and the Staclot LA assay were considerably affected by the citrate concentration used. Further studies are required to confirm our finding using different reagent-analyzer combinations.

(Arch Pathol Lab Med. 2018;142:992–997; doi: 10.5858/arpa.2017-0200-OA)

Despite a high degree of standardization, coagulation tests largely depend on preanalytic factors. Apart from artifacts acquired during blood drawing and transportation, the in vitro anticoagulant used has a potential impact on the coagulation test result. Usually, a 9:1 blood to sodium citrate ratio is used with a buffer range between 3.2% and 3.8%. The 3.2% buffered sodium citrate binds less assay-added calcium than 3.8% buffered sodium citrate, therefore clotting times tend to be shorter in 3.2% than 3.8% buffered sodium citrate. Although there are no exact data available, today 3.2% buffered citrate is rather widely used. A survey conducted in 2001 revealed that 156 of 593 US hospitals (26%) used the 3.8% buffered citrate for prothrombin time (PT) analysis. The 3.8% sodium citrated plasma appears to alter the International Sensitivity Index (ISI) of some thromboplastin times but is still the preferred material for special platelet function tests. For practical reasons, each institution usually uses 1 citrate concentration level for both coagulation testing and platelet function testing. Most recommendations are based on studies evaluating various PT and activated partial thromboplastin time (aPTT) reagents. The buffer concentration might amplify the effect of preanalytic factors, including the hematocrit or underfilling or overfilling of collecting tubes. Here, 3.2% buffered citrate tubes might be less influenced by underfilling than 3.8% buffered tubes during assessment of the global assays aPTT or PT.

However, precise knowledge about their impact on specialized coagulation tests is lacking. Overwhelming amounts of studies were conducted with these 2 buffer concentration ranges. To provide comparative data, we conducted this observational study for estimating the effects on a broad panel of coagulation tests as well as on their reference value ranges.

MATERIALS AND METHODS

Subjects

This prospective observational study was conducted at the Medical University of Vienna (Vienna, Austria) between September 2015 and July 2016. After we obtained written informed consent, 76 apparently healthy adult volunteers were included in the study. Volunteers under-
Table 1. Overview of Methods Used for Assessment

Method	Unit	Analyzer	Reagents	Calibrators
Prothrombin time	s	STA-R Evolution	Thromborel S	Standard Human Plasma
Fibrinogen	mg/dL	STA-R Evolution	STA-Liquid Fib	NA
aPTT-LA	s	STA-R Evolution	STA-aPTT	NA
aPTT-FS	s	STA-R Evolution	PTT-LA	NA
dRVVT	s	STA-R Evolution	Dade Actin FS aPTTb	NA
dRVVTConfirm	s	STA-R Evolution	Staclot DRVV Screen	NA
aPTT-LAConfirm	s	MC10 PLUS	PTT-LA (with phospholipids)	Staclot LA
Antithrombin III	%	STA-R Evolution	Stachrom ATIII	STA Unicalibrator
VWF-antigen	%	STA-R Evolution	Stastest VWF Ag	VWF-Ag Calibrator
Factor II, factor V	%	Sysmex CA-7000a	Thromborel Sl, deficient plasma	STA Unicalibrator
Factor VII	%	Sysmex CA-7000b	Thromborel Sl, deficient plasma	Standard Human Plasma
Factor X	%	Sysmex CA-7000b	Thromborel Sl, deficient plasma	STA Unicalibrator
Factor VIII/factor IX	%	Sysmex CA-7000b	Dade Actin FS aPTTb, deficient plasma	STA Unicalibrator
Factor XI	%	Sysmex CA-7000b	Dade Actin FS aPTTb, deficient plasma	STA Unicalibrator
Factor XII	%	Sysmex CA-7000b	Dade Actin FS aPTTb, deficient plasma	Standard Human Plasma
Protein C activity	%	ACL-TOP	Biophen Protein C5	STA Unicalibrator
Protein S activity	%	STA-R Evolution	Staclot Protein S	STA Unicalibrator
Protein S antigen	%	ACL-TOP	Free Protein S	Hemosil Calibration Plasma

Abbreviations: aPTT-A, activated partial thromboplastin time; aPTT-FS, ellagic acid containing activated partial thromboplastin time reagent; aPTT-LA, lupus-sensitive activated partial thromboplastin time; aPTT-LAConfirm, lupus-sensitive activated partial thromboplastin time confirmation testing; dRVVT, diluted Russell viper venom time; dRVVTConfirm, diluted Russell viper venom time confirmation testing; NA, not applicable; VWF, von Willebrand factor antigen.

Methods

All analyses were executed under standardized conditions at the Department of Laboratory Medicine, which maintains a certified (according to ISO [International Organization for Standardization] 9001:2008) and accredited (according to ISO 15189:2008) quality management system. Using the same calibration settings, 3.2% and 3.8% buffered citrate samples were consecutively analyzed. Table I represents an overview of the analyzer platforms, reagents, calibrators, and controls used. The reagent-analyzer combinations were chosen with respect to measurement accuracy and validity, assays’ robustness and practicability during the parameters’ introduction phase at our laboratory. All assay procedures were performed according to the manufacturer’s recommendations. Automatic multidilution procedures were applied for factor testing. The aPTT-LA (lupus-sensitive reagent) for lupus anticoagulant (LAC) confirmation testing was analyzed by using plasma with and without a reagent containing phosphatidylethanolamine. Lupus anticoagulant confirmation testing was considered positive when the difference between both aPTT-LA clotting times was greater than 8 seconds (aPTT-LADifference, Staclot LA [Diagnostica Stago S.A.S, Asnières sur Seine, France]) or with the ratio between the neat diluted Russell viper venom time (dRVVT) and the dRVVTConfirm (dRVVTRatio, Staclot DRVV Screen/Staclot DRVV Confirm) was greater than 1.25.

Statistical Analysis

Numeric values are given as median with the interquartile range and are analyzed with the Wilcoxon rank sum test and the Spearman rank correlation test (r). The Passing-Bablok regression analysis was applied with bootstrapped confidence intervals. To ensure linearity between 2 tested parameters, a CuSum test was applied. Further, Bland-Altman plots are used to assess agreement between the 2 methods (3.2% and 3.8% citrate) and scatterplots are applied to assess the linearity between the 2 methods. To establish the reference interval, occurrence of Gaussian distribution (Shapiro-Wilk test) and the symmetry of skewness were assessed. Outliers were detected with the Tukey test. If necessary, a logarithm transformation or a Box-Cox transformation was performed. Reference intervals were calculated by using the robust method in accordance with the Clinical and Laboratory Standards Institute guideline C28-A3, which uses a bootstrapping approach. Statistical significance was defined as P values less than .05 (2-tailed). Where appropriate, the Bonferroni-Holm method was applied to adjust for an error related to multiple testing. Data were
Abbreviations: aPTT-A, activated partial thromboplastin time; aPTT-FS, ellagic acid containing activated partial thromboplastin time reagent; aPTT-LA, lupus sensitive activated partial thromboplastin time; aPTT-LADifference, lupus sensitive activated partial thromboplastin time confirmation testing difference; dRVVT, diluted Russell viper venom time; dRVVTConfirm, diluted Russell viper venom time confirmation testing; dRVVTRatio, diluted Russell viper venom time confirmation testing ratio.

...
Coagulation parameters tested showed good comparability between both citrate buffer concentrations. The aPTT-FS presented with a systematic and proportional deviation and therefore the citrate buffer concentration had a significant impact on this measurement. Further, the citrate buffer concentration significantly affected the upper reference range limit of the aPTT-FS. In comparison to the aPTT-A (activated partial thromboplastin time), a pronounced effect of the buffer concentration on the aPTT-FS was also found by Adcock et al.6

Figure 1. Bland-Altman plots of selected parameters using 3.2% and 3.8% citrate. a, aPTT-FS (ellagic acid containing activated partial thromboplastin time reagent). b, dRVVT\textsubscript{Confirm} (diluted Russell viper venom time confirmation testing). c, dRVVT\textsubscript{Ratio} (ratio between the neat dRVVT and the dRVVT\textsubscript{Confirm}). d, Factor V. e, Factor VIII. f, Protein C activity.
One might speculate that calculated coagulation parameters are more sensitive to alterations of the citrate buffer concentration, since 2 or more factors are used, each having a potential error itself. The aPTT-LADifference presented only a moderate correlation, with a systemic difference between both citrate concentrations. Therefore, we advise special caution when comparing data of aPTT-LA confirmation testing. Interestingly, this effect was not seen in dRVVT confirmation testing. However, the dRVVTConfirm clotting time was considerably shortened in the higher citrate buffer concentration, contrary to expectations. In none of the cases tested was a false-positive result detected in either dRVVT Ratio or aPTT-LADifference confirmatory testing. Furthermore, a statistically significant difference was found in dRVVTConfirm, dRVVT Ratio, factor V, factor VIII, and protein C activity, but their absolute difference was in a minor range and no deviation could be detected in regression analysis.

In the literature, there are several publications reporting a significant influence of the citrate concentration on the aPTT or PT, but also publications that do not find any alteration in regard to the citrate concentration used. Apart from the parameter of inherent susceptibility to alterations of the citrate concentration, this might indicate that different reagent-analyzer combinations have different sensibilities in regard to the citrate concentrations used. For 60 patients receiving oral anticoagulants, the relative difference of the PT between both buffer concentrations ranged from 3.7% to 20% when measured under similar conditions using different reagent-analyzer combinations. Aside from the sodium concentration, the amount of magnesium or other electrolytes within the buffer might also have a significant influence on the comparability of parameters. In this evaluation, we assessed a broad spectrum of coagulation parameters by using a single specific reagent-analyzer combination for each parameter (Table 1). The reagent-analyzer combination itself might have an impact on the measurement, and therefore our results are not generalizable for other settings. Since we evaluated healthy volunteers without any coagulation disorders or anticoagulant therapy, we are not able to estimate the potential difference in pathologic samples. The data regarding the influence of the citrate buffer concentration on monitoring anticoagulation are nebulous. Adcock et al found in 5% of examined samples a significant deviation in INR (international normalized ratio) determination, due to different citrate buffer concentrations. Further, Payne et al did not observe any statistically significant influence of the citrate concentration on low-molecular-weight heparin monitoring in patients with pulmonary embolism or deep vein thrombosis.

In conclusion, the alteration of 3.2% and 3.8% buffered sodium citrate on specialized coagulation tests in our setting was of limited relevance. As an exception, the aPTT-FS and aPTT-LADifference were significantly affected by the citrate concentration used. Our findings demonstrate the comparability of data assessed with these citrate concentration ranges.

Figure 2. Scatterplot of the aPTT-FS using 3.2% and 3.8% citrate. Abbreviation: aPTT-FS, ellagic acid containing activated partial thromboplastin time reagent.

Figure 3. Graphical assessment of the aPTT-LADifference using 3.2% and 3.8% citrate. a, Bland-Altman plot. b, Scatterplot. Abbreviations: aPTT-LA, activated partial thromboplastin time lupus-sensitive reagent; aPTT-LADifference, difference between clotting times of the aPTT-LA with and without a phosphatidylethanolamine-containing reagent.
Table 4. Reference Range (Lower and Upper Limit) of Assessed Parametersa,b

Parameter	N	3.2% Citrate	3.8% Citrate
Prothrombin time	76	12.1 (12.0–12.3)	12.1 (11.9–12.2)
Fibrinogen	78	162 (146–178)	164 (149–179)
Antithrombin III	77	89 (87–92)	89 (87–91)
vWF-antigen	73	57 (54–62)	56 (52–60)
aPTT-A	78	176 (157–196)	178 (158–201)
aPTT-FS	77	39.4 (38.5–40.3)	39.4 (38.5–40.2)
aPTT-LA	79	32.8 (32.1–33.7)	32.1 (31.2–33.0)
aPTT-LAConfirm	63	34.2 (33.1–35.5)	33.8 (32.7–35.0)
fVIIa	76	44.0 (43.0–44.9)	44.3 (43.2–45.3)
dRVVT 70	62	Not performed	Not performed
dRVVT 35.4	35.4 (34.3–36.6)	35.6 (34.4–36.8)	
dRVVT 35.6	35.7 (35.5–36.9)	35.8 (35.6–36.9)	
dRVVT 35.8	35.9 (35.7–36.9)	36.0 (35.8–36.9)	
dRVVT 36.0	36.0 (35.8–36.9)	36.1 (35.9–36.9)	
dRVVT 36.6	36.1 (36.0–36.9)	36.2 (36.1–36.9)	
Factor II	76	80 (75–85)	79 (74–84)
Factor V	76	76 (69–83)	75 (69–81)
Factor VII	76	58 (51–64)	57 (50–63)
Factor X	76	73 (66–79)	72 (65–75)
Factor VIII	76	71 (65–79)	72 (65–79)
Factor IX	76	169 (158–181)	163 (152–173)
Factor XI	76	65 (60–70)	68 (64–73)
Factor XII	76	63 (55–73)	66 (59–75)
Protein C activity	75	157 (150–166)	154 (148–162)
Protein S activity	73	136 (129–143)	137 (129–145)
Protein S antigen	76	63 (59–71)	64 (59–71)

Abbreviations: aPTT-A, activated partial thromboplastin time; aPTT-FS,ellanic acid containing activated partial thromboplastin time reagent; aPTT-LA, lupus-sensitive activated partial thromboplastin time; aPTT-LAConfirm, lupus-sensitive activated partial thromboplastin time confirmation testing; aPTT-LADifference, lupus-sensitive activated partial thromboplastin time confirmation testing difference; dRVVT, diluted Russell viper venom time; dRVVTConfirm, diluted Russell viper venom time confirmation testing; dRVVRTRatio, Diluted Russell viper venom time confirmation testing ratio; vWF, von Willebrand factor antigen.

a Lower limit/upper limit.
b Outliers were detected with the Tukey test.

We extend our thanks to John Heath for his attentive proofreading of our manuscript.

References

1. Bonar R, Favaloro EJ, Adcock DM. Quality in coagulation and haemostasis testing. Biochem Med (Zagreb). 2010;20(2):184–193.
2. Shahangian S, Stankovic AK, Lubin IM, Handsfield HJ, White MD. Results of a survey of hospital coagulation laboratories in the United States, 2001. Arch Pathol Lab Med. 2003;129(1):47–60.
3. Duncan EM, Casey CR, Duncan BM, Lloyd JV. Effect of concentration of trisodium citrate anticoagulant on calculation of the International Normalised Ratio and the International Sensitivity Index of thromboplastin. Thromb Haemost. 1994;72(1):84–88.
4. Elsenberg EH, van Werkum JW, van de Wal RM, et al. The influence of clinical characteristics, laboratory parameters and platelet reactivity. Thrombosis Res. 2000;20(4):719–727.
5. von Pape KW, Aland E, Bohner J. Platelet function analysis with PFA-100 in patients medicated with acetylsalicylic acid strongly depends on concentration of sodium citrate used for anticoagulation of blood sample. Thromb Res. 2000;98(4):295–299.
6. Adcock DM, Kressin DC, Marlar RA. Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing. Am J Clin Pathol. 1997;107(1):103–110.
7. Lippi G, Salvagno GL, Montagnana M, Guidi GC. Influence of two different buffered sodium citrate concentrations on coagulation testing. Blood Coagul Fibrinolysis. 2003;16(5):381–383.
8. Koeppke JA, Rodgers JL, Ollivier MJ. Pre-instrumental variables in coagulation testing. Am J Clin Pathol. 1975;64(5):591–596.
9. Reneke J, Etzell J, Leslie S, Ng VL, Gottfried EL. Prolonged thrombin time and activated partial thromboplastin time due to underfilled specimen tubes with 10 mL citrate/1.2% citrate anticoagulant. Am J Clin Pathol. 1998;109(6):754–757.
10. Adcock DM, Kressin DC, Marlar RA. Minimum specimen volume requirements for routine coagulation testing: dependence on citrate concentration. Am J Clin Pathol. 1998;109(5):590–594.
11. Blicz Zulle L. Comparison of methods: passing and Bablok regression. Biochem Med (Zagreb). 2011;21(1):49–52.
12. Passing H, Bablok. A new biometrical procedure for testing the equality of measurement methods: application of linear regression procedures for method comparison studies in clinical chemistry. Statistica. 1983;21(1):709–720.
13. Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2013;25(2):141–151.
14. Tukey JW. Exploratory Data Analysis. 1st ed. Boston: Addison-Wesley Publishing Company; 1977.
15. Sakia RM. The Box-Cox transformation technique: a review. Statistica. 1992;41(2):169–178.
16. Ozturk Y. Reference intervals: current status, recent developments and future considerations. Biochem Med (Zagreb). 2016;26(1):5–11.
17. Chantarangkul V, Tripodi A, Clerici M, Negri B, Mannucci PM. Assessment of the influence of citrate concentration on the International Normalized Ratio (INR) determined with twelve reagent-instrument combinations. Thromb Haemost. 1998;80(2):258–262.
18. Lottin L, Woodhams BJ, Saureau M, et al. The clinical relevance of the International Normalized Ratio determinations depends on the reagent and instrument combination used. Blood Coagul Fibrinolysis. 2001;12(5):399–404.
19. van den Besselaar AMHP, van Vlodrop IJH, Berendes PB, Cobbaut CM. A comparative study of conventional versus new, magnesium-poor Vacutainer® Sodium Citrate blood collection tubes for determination of prothrombin time and INR. Thromb Res. 2014;134(1):187–191.
20. van den Besselaar A, Hoekstra M, Witteveen E, Didden JH, van der Meer FJM. Influence of blood collection systems on the prothrombin time and international sensitivity index determined with human and rabbit thromboplastin reagents. Am J Clin Pathol. 2007;127(5):724–729.
21. Lima-Oliveira G, Lippi G, Salvagno GL, Montagnana M, Pichetth G, Guidi GC. Sodium citrate vacuum tubes validation: preventing preanalytical variability in routine coagulation testing. Blood Coagul Fibrinolysis. 2013;24(3):252–255.
22. Payne S, Mackinnon I, Komen M, Morrow B, Kovacs MJ. Effect of 3.2% vs. 3.8% sodium citrate concentration on anti-Xa levels for patients on therapeutic low molecular weight heparin. Clin Lab Haematol. 2003;25(5):317–319.