L_2- and $S_{p,q}^r B$-discrepancy of (order 2) digital nets

Lev Markhasin

Preprint 2014/004
L₂- and $S^r_{p,q}B$-discrepancy of (order 2) digital nets

Lev Markhasin

Institut für Stochastik und Anwendungen, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

email: lev.markhasin@mathematik.uni-stuttgart.de

March 10, 2014

Dick proved that all order 2 digital nets satisfy optimal upper bounds of the L_2-discrepancy. We give an alternative proof for this fact using Haar bases. Furthermore, we prove that all digital nets satisfy optimal upper bounds of the $S^r_{p,q}B$-discrepancy for a certain parameter range and enlarge that range for order 2 digital nets. L_p, $S^r_{p,q}F$- and $S^r_{p}H$-discrepancy is considered as well.

2010 Mathematics Subject Classification. Primary 11K06, 11K38, 42C10, 46E35, 65C05.

Key words and phrases. L_2-discrepancy, order 2 digital nets, dominating mixed smoothness, quasi-Monte Carlo, Haar system, Walsh system.

1 Introduction and results

Let N be some positive integer and let \mathcal{P} be a point set in the unit cube $[0,1)^d$ with N points. Then the discrepancy function D_P is defined as

$$D_P(x) = \frac{1}{N} \sum_{z \in \mathcal{P}} \chi_{[0,x)}(z) - x_1 \cdot \ldots \cdot x_d,$$

for any $x = (x_1, \ldots, x_d) \in [0,1)^d$. By $\chi_{[0,x)}$ we mean the characteristic function of the interval $[0,x) = [0, x_1) \times \ldots \times [0, x_d)$, so the term $\sum_z \chi_{[0,x)}(z)$ is equal to $\#(\mathcal{P} \cap [0,x))$.
This means that D_P measures the deviation of the number of points of P in $[0,x)$ from the fair number of points $N[0,x) = N x_1 \cdots x_d$ which would be achieved by a (practically impossible) perfectly uniform distribution of the points of P, normalized by the total number of points.

Usually one is interested in calculating the norm of the discrepancy function in some normed space of functions on $[0,1)^d$ to which the discrepancy function belongs. A well known result concerns $L_p([0,1)^d)$-spaces for $1 < p < \infty$. There exists a constant $c_{p,d} > 0$ such that for every positive integer N and all point sets P in $[0,1)^d$ with N points, we have

$$\|D_P\|_{L_p([0,1)^d)} \geq c_{p,d} \frac{(\log N)^{(d-1)/2}}{N}. \quad (2)$$

It was proved by Roth [R54] for $p = 2$ and by Schmidt [S77] for arbitrary $1 < p < \infty$. The best value for $c_{2,d}$ can be found in [HM11]. Furthermore, there exists a constant $C_{p,d} > 0$ such that for every positive integer N, there exists a point set P in $[0,1)^d$ with N points such that

$$\|D_P\|_{L_p(\mathbb{Q}^d)} \leq C_{p,d} \frac{(\log N)^{(d-1)/2}}{N}. \quad (3)$$

It was proved by Davenport [D56] for $p = 2, d = 2$, by Roth [R80] for $p = 2$ and arbitrary d and finally by Chen [C80] in the general case. The best value for $C_{2,d}$ can be found in [DP10] and [FPPS10].

There are results for $L_1([0,1)^d)$- and star ($L_\infty([0,1)^d)$-) discrepancy though there are still gaps between lower and upper bounds, see [HS1], [S72], [BLV08]. As general references for studies of the discrepancy function we refer to the monographs [DP10], [NW10], [M99], [KN74] and surveys [B11], [Hi14], [M13c].

Roth’s and Chen’s original proofs of (3) were probabilistic. Explicit constructions of point sets with good L_p-discrepancy in arbitrary dimension have not been known for a long time. Chen and Skriganov [CS02] (see also [CS08] and [DP10]) gave constructions with optimal bound of the L_2-discrepancy and Skriganov [S06] later proved the L_p bound. The constructions of Chen and Skriganov were order 1 digital nets with large Hamming weight. Dick and Pillichshammer [DP14a] (see also [DP14b]) gave alternative constructions. Their constructions are order 3 digital nets. Dick [D14] proved then the following result.

Theorem 1.1. There exists a constant $C_{d,b,v} > 0$ such that for every positive integer n
and every order 2 digital \((v, n, d)\)-net \(P_n^b\) in base \(b\) we have
\[
\left\|D_{P_n^b}|L_2([0, 1]^d)\right\| \leq C_{d, b, v} \frac{n^{(d-1)/2}}{b^{n}}.
\]

In this work we give an alternative proof for this fact.

Furthermore, there are results for the discrepancy in other function spaces, like Hardy spaces, logarithmic and exponential Orlicz spaces, weighted \(L_p\)-spaces, BMO (see [B11] for results and further literature).

Here, we are interested in Besov \((S^r_{p, q}, B([0, 1]^d))\), Triebel-Lizorkin \((S^r_{p, q}, F([0, 1]^d))\) and Sobolev \((S^r_p H([0, 1]^d))\) spaces with dominating mixed smoothness. Triebel [T10] proved that for all \(1 \leq p, q \leq \infty\) with \(q < \infty\) if \(p = \infty\) and all \(r \in \mathbb{R}\) satisfying \(1/p - 1 < r < 1/p\), there exists a constant \(c_{p, q, r, d} > 0\) such that for every integer \(N \geq 2\) and all point sets \(P\) in \([0, 1]^d\) with \(N\) points, we have
\[
\left\|D_P|S^r_{p, q} B([0, 1]^d)\right\| \geq c_{p, q, r, d} N^{r-1} (\log N)^{(d-1)/q} \tag{4}
\]

and with the additional condition that \(q > 1\) if \(p = \infty\) there exists a constant \(C_{p, q, r, d} > 0\) such that for every positive integer \(N\), there exists a point set \(P\) in \([0, 1]^d\) with \(N\) points and we have
\[
\left\|D_P|S^r_{p, q} B([0, 1]^d)\right\| \leq C_{p, q, r, d} N^{r-1} (\log N)^{(d-1)(1/q + 1 - r)}.
\]

Hinrichs [Hi10] proved for \(d = 2\) that for all \(1 \leq p, q \leq \infty\) and all \(0 \leq r < 1/p\) there exists a constant \(C_{p, q, r} > 0\) such that for every integer \(N \geq 2\) there exists a point set \(P\) in \([0, 1]^2\) with \(N\) points such that
\[
\left\|D_P|S^r_{p, q} B([0, 1]^2)\right\| \leq C_{p, q, r} N^{r-1} (\log N)^{1/q}.
\]

Markhasin [M13b] proved that for all \(1 \leq p, q \leq \infty\) and all \(0 < r < 1/p\) there exists a constant \(C_{p, q, r, d} > 0\) such that for every integer \(N \geq 2\) there exists a point set \(P\) in \([0, 1]^d\) with \(N\) points such that
\[
\left\|D_P|S^r_{p, q} B([0, 1]^d)\right\| \leq C_{p, q, r, d} N^{r-1} (\log N)^{(d-1)/q}. \tag{5}
\]

Explicit point sets with optimal bounds of \(S^r_{p, q} B\)-discrepancy used in [M13b] are the already mentioned point sets by Chen and Skriganov. In \(d = 2\) also (generalized) Hammersley point sets can be used (see [Hi10], [M13a]). Our goal is to prove that there are way more point sets with optimal bounds of the \(S^r_{p, q} B\)-discrepancy. Furthermore
there are results for spaces $S^r_{p,q} F([0,1)^d)$ and $S^r_p H([0,1)^d)$ in [M13c].

Theorem 1.2. Let $1 \leq p < \infty$, $1 \leq q \leq \infty$ and $0 < r < 1/p$. There exists a constant $C_{p,q,r,d,b,v} > 0$ such that for every integer n and every order 1 digital (v,n,d)-net \mathcal{P}_n^b in base b we have

$$\| D_{\mathcal{P}_n^b} |S^r_{p,q} F([0,1)^d)]\| \leq C_{p,q,r,d,b,v} b^{\nu(r-1) n^{(d-1)/q}}.$$

Theorem 1.3. Let $1 \leq p, q \leq \infty$, $(q > 1$ if $p = \infty$) and $0 \leq r < 1/p$. There exists a constant $C_{p,q,r,d,b,v} > 0$ such that for every positive integer n and every order 2 digital (v,n,d)-net \mathcal{P}_n^b in base b we have

$$\| D_{\mathcal{P}_n^b} |S^r_{p,q} B([0,1)^d)]\| \leq C_{p,q,r,d,b,v} b^{\nu(r-1) n^{(d-1)/q}}.$$

Corollary 1.4. Let $1 \leq p, q < \infty$ and $0 < r < 1/\max(p, q)$. There exists a constant $C_{p,q,r,d,b,v} > 0$ such that for every positive integer n and every order 1 digital (v,n,d)-net \mathcal{P}_n^b in base b we have

$$\| D_{\mathcal{P}_n^b} |S^r_{p,q} F([0,1)^d)]\| \leq C_{p,q,r,d,b,v} b^{\nu(r-1) n^{(d-1)/q}}.$$

Corollary 1.5. Let $1 \leq p, q < \infty$ and $0 \leq r < 1/\max(p, q)$. There exists a constant $C_{p,q,r,d,b,v} > 0$ such that for every positive integer n and every order 2 digital (v,n,d)-net \mathcal{P}_n^b in base b we have

$$\| D_{\mathcal{P}_n^b} |S^r_{p,q} F([0,1)^d)]\| \leq C_{p,q,r,d,b,v} b^{\nu(r-1) n^{(d-1)/q}}.$$

Corollary 1.6. Let $1 \leq p < \infty$ and $0 < r < 1/\max(p,2)$. There exists a constant $C_{p,r,d,b,v} > 0$ such that for every positive integer n and every order 1 digital (v,n,d)-net \mathcal{P}_n^b in base b we have

$$\| D_{\mathcal{P}_n^b} |S^r_p H([0,1)^d)]\| \leq C_{p,r,d,b,v} b^{\nu(r-1) n^{(d-1)/2}}.$$

Corollary 1.7. Let $1 \leq p < \infty$ and $0 \leq r < 1/\max(p,2)$. There exists a constant $C_{p,r,d,b,v} > 0$ such that for every positive integer n and every order 2 digital (v,n,d)-net \mathcal{P}_n^b in base b we have

$$\| D_{\mathcal{P}_n^b} |S^r_p H([0,1)^d)]\| \leq C_{p,r,d,b,v} b^{\nu(r-1) n^{(d-1)/2}}.$$

Theorem 1.8. Let $1 \leq p < \infty$. There exists a constant $C_{p,d,b,v} > 0$ such that for every
positive integer n and every order 2 digital (v, n, d)-net P^h_n in base b we have

$$\left\| D_{P^h_n} L_p([0, 1]^d) \right\| \leq C_{p, d, b, v} \frac{n^{(d-1)/2}}{b^n}. $$

We point out that obviously Theorem 1.1 is a consequence of Theorem 1.8. Nevertheless, we will prove them independently, so that readers without a background in function spaces with dominating mixed smoothness (which is required for the proof of Theorem 1.8) will be able to understand the proof of the L_2 bound.

Theorems 1.2 and 1.3 are consistent with older results. Chen-Skriganov point sets are order 1 digital (v, n, d)-nets while (generalized) Hammersley point sets are order 2 digital $(0, n, 2)$-nets.

2 Function spaces with dominating mixed smoothness

We define the spaces $S'_{p, q} B([0, 1]^d)$, $S'_{p, q} F([0, 1]^d)$ and $S'_{p, q} H([0, 1]^d)$ according to [10]. Let $S(R^d)$ denote the Schwartz space and $S'(R^d)$ the space of tempered distributions on R^d. Let $\varphi_0 \in S(R)$ satisfy $\varphi_0(x) = 1$ for $|x| \leq 1$ and $\varphi_0(x) = 0$ for $|x| > \frac{3}{2}$. Let $\varphi_k(x) = \varphi_0(2^{-k} x) - \varphi_0(2^{-k+1} x)$ where $x \in R$, $k \in N$ and $\varphi_k(x) = \varphi_{k_1}(x_1) \ldots \varphi_{k_d}(x_d)$ where $k = (k_1, \ldots, k_d) \in N_0^d$, $x = (x_1, \ldots, x_d) \in R^d$. The functions φ_k are a dyadic resolution of unity since

$$\sum_{k \in N_0^d} \varphi_k(x) = 1$$

for all $x \in R^d$. The functions $F^{-1}(\varphi_k F f)$ are entire analytic functions for every $f \in S'(R^d)$.

Let $0 < p, q \leq \infty$ and $r \in R$. The Besov space with dominating mixed smoothness $S'_{p, q} B(R^d)$ consists of all $f \in S'(R^d)$ with finite quasi-norm

$$\left\| f | S'_{p, q} B(R^d) \right\| = \left(\sum_{k \in N_0^d} 2^{r(k_1+\ldots+k_d)q} \left\| F^{-1}(\varphi_k F f) | L_p(R^d) \right\|^q \right)^{\frac{1}{q}}$$ (6)

with the usual modification if $q = \infty$.

Let $0 < p < \infty$, $0 < q \leq \infty$ and $r \in R$. The Triebel-Lizorkin space with dominating
mixed smoothness $S_{pq}^r F(\mathbb{R}^d)$ consists of all $f \in S'(\mathbb{R}^d)$ with finite quasi-norm

$$\|f|S_{pq}^r F(\mathbb{R}^d)\| = \left\| \left(\sum_{k \in \mathbb{N}_0^d} 2^{r(k_1 + \ldots + k_d)q} \left| \mathcal{F}^{-1}(\varphi_k \mathcal{F} f)(\cdot) \right|^q \right)^{\frac{1}{q}} \|L_p(\mathbb{R}^d) \right\|$$

(7)

with the usual modification if $q = \infty$.

Let $\mathcal{D}([0,1)^d)$ consist of all complex-valued infinitely differentiable functions on \mathbb{R}^d with compact support in the interior of $[0,1)^d$ and let $\mathcal{D}'([0,1)^d)$ be its dual space of all distributions in $[0,1)^d$. The Besov space with dominating mixed smoothness $S_{pq}^r B([0,1)^d)$ consists of all $f \in \mathcal{D}'([0,1)^d)$ with finite quasi-norm

$$\|f|S_{pq}^r B([0,1)^d)\| = \inf \left\{ \left\| g|S_{pq}^r B(\mathbb{R}^d) \right\| : g \in S_{pq}^r B(\mathbb{R}^d), g|_{[0,1)^d} = f \right\}.$$

(8)

The Triebel-Lizorkin space with dominating mixed smoothness $S_{pq}^r F([0,1)^d)$ consists of all $f \in \mathcal{D}'([0,1)^d)$ with finite quasi-norm

$$\|f|S_{pq}^r F([0,1)^d)\| = \inf \left\{ \left\| g|S_{pq}^r F(\mathbb{R}^d) \right\| : g \in S_{pq}^r F(\mathbb{R}^d), g|_{[0,1)^d} = f \right\}.$$

(9)

The spaces $S_{pq}^r B(\mathbb{R}^d)$, $S_{pq}^r F(\mathbb{R}^d)$, $S_{pq}^r B([0,1)^d)$ and $S_{pq}^r F([0,1)^d)$ are quasi-Banach spaces. We define the Sobolev space with dominating mixed smoothness as

$$S_{p}^r H([0,1)^d) = S_{pq}^r F([0,1)^d).$$

(10)

If $r \in \mathbb{N}_0$ then it is denoted by $S_{pq}^r W([0,1)^d)$ and is called classical Sobolev space with dominating mixed smoothness. An equivalent norm for $S_{pq}^r W([0,1)^d)$ is

$$\sum_{\alpha \in \mathbb{N}_0^d; 0 \leq \alpha \leq r} \left\| D^{\alpha} f|L_p([0,1)^d) \right\|.$$

Of special interest is the case $r = 0$ since

$$S_{pq}^0 H([0,1)^d) = L_p([0,1)^d).$$

The Besov and Triebel-Lizorkin spaces can be embedded in each other (see [T10] or [M13c, Corollary 1.13]). We point out that the following embedding is a combination of well known results and might look odd at the first glance.
Lemma 2.1. Let $0 < p, q < \infty$ and $r \in \mathbb{R}$. Then we have

\[S_{\text{max}(p,q),q}^r B([0,1]^d) \hookrightarrow S_{pq}^r F([0,1]^d) \hookrightarrow S_{\text{min}(p,q),q}^r B([0,1]^d). \]

3 Haar and Walsh bases

We denote $\mathbb{N}_{-1} = \mathbb{N}_0 \cup \{-1\}$. Let $b \geq 2$ be an integer. We denote $\mathbb{D}_j = \{0,1,\ldots,b^j-1\}$ and $\mathbb{B}_j = \{1,\ldots,b-1\}$ for $j \in \mathbb{N}_0$ and $\mathbb{D}_{-1} = \{0\}$ and $\mathbb{B}_{-1} = \{1\}$. For $j = (j_1,\ldots,j_d) \in \mathbb{N}_{-1}^d$ let $\mathbb{D}_j = \mathbb{D}_{j_1} \times \cdots \times \mathbb{D}_{j_d}$ and $\mathbb{B}_j = \mathbb{B}_{j_1} \times \cdots \times \mathbb{B}_{j_d}$. For a real a we write $a_+ = \max(a,0)$ and for $j \in \mathbb{N}_-$ we write $|j|_+ = j_1 + \ldots + j_d$.

For $j \in \mathbb{N}_0$ and $m \in \mathbb{D}_j$ we call the interval

\[I_{j,m} = [b^{-j}m, b^{-j}(m+1)) \]

the m-th b-adic interval in $[0,1)$ on level j. We put $I_{-1,0} = [0,1)$ and call it the 0-th b-adic interval in $[0,1)$ on level -1. For any $k = 0,\ldots,b-1$ let $I_{j,m}^k = I_{j+1,km+k}$. We put $I_{-1,0}^1 = I_{-1,0} = [0,1)$. For $j \in \mathbb{N}_{-1}^d$ and $m = (m_1,\ldots,m_d) \in \mathbb{D}_j$ we call

\[I_{j,m} = I_{j_1,m_1} \times \cdots \times I_{j_d,m_d} \]

the m-th b-adic interval in $[0,1]^d$ on level j. We call the number $|j|_+$ the order of the b-adic interval $I_{j,m}$. Its volume is $b^{-|j|_+}$.

Let $j \in \mathbb{N}_0$, $m \in \mathbb{D}_j$ and $l \in \mathbb{B}_j$. Let $h_{j,m,l}$ be the function on $[0,1)$ with support in $I_{j,m}$ and the constant value $e^{2\pi ik}$ on $I_{j,m}^k$ for any $k = 0,\ldots,b-1$. We put $h_{-1,0,1} = \chi_{I_{-1,0}}$ on $[0,1)$.

Let $j \in \mathbb{N}_{-1}^d$, $m \in \mathbb{D}_j$ and $l = (l_1,\ldots,l_d) \in \mathbb{B}_j$. The function $h_{j,m,l}$ given as the tensor product

\[h_{j,m,l}(x) = h_{j_1,m_1,l_1}(x_1) \cdots h_{j_d,m_d,l_d}(x_d) \]

for $x = (x_1,\ldots,x_d) \in [0,1)^d$ is called a b-adic Haar function on $[0,1)^d$. The functions $h_{j,m,l}$, $j \in \mathbb{N}_{-1}^d$, $m \in \mathbb{D}_j$, $l \in \mathbb{B}_j$ are called b-adic Haar basis on $[0,1)^d$.

The following result is [ML3c] Theorem 2.1.

Theorem 3.1. The system

\[\left\{ b^{-|j|_+} h_{j,m,l} : j \in \mathbb{N}_{-1}^d, m \in \mathbb{D}_j, l \in \mathbb{B}_j \right\} \]

is an orthonormal basis of $L_2([0,1)^d)$, an unconditional basis of $L_p([0,1)^d)$ for $1 < p < \infty$.
and a conditional basis of $L_1([0,1)^d)$. For any function $f \in L_2([0,1)^d)$ we have
\[
\|f\|_{L_2([0,1)^d)}^2 = \sum_{j \in \mathbb{N}^d} b^{j|j|} \sum_{m \in \mathbb{B}_j, l \in \mathbb{B}_j} |\langle f, h_{j,m,l} \rangle|^2.
\]

The following result is [M13c, Theorem 2.11].

Theorem 3.2. Let $0 < p, q \leq \infty$, $(q > 1$ if $p = \infty$) and $1/p - 1 < r < \min(1/p, 1)$. Let $f \in D'([0,1)^d)$. Then $f \in S_{pq}^\sigma B([0,1)^d)$ if and only if it can be represented as
\[
f = \sum_{j \in \mathbb{N}^d} b^{j|j|} \sum_{m \in \mathbb{B}_j, l \in \mathbb{B}_j} \mu_{j,m,l} h_{j,m,l}
\]
for some sequence $(\mu_{j,m,l})$ satisfying
\[
\left(\sum_{j \in \mathbb{N}^d} b^{j|j| (r-1/p+1)q} \left(\sum_{m \in \mathbb{B}_j, l \in \mathbb{B}_j} |\mu_{j,m,l}|^p \right)^{q/p} \right)^{1/q} < \infty.
\]

The convergence of (11) is unconditional in $D'([0,1)^d)$ and in any $S_{pq}^\sigma B([0,1)^d)$ with $\rho < r$. The representation (11) of f is unique with the b-adic Haar coefficients $\mu_{j,m,l} = \langle f, h_{j,m,l} \rangle$. The expression (12) is an equivalent quasi-norm on $S_{pq}^\sigma B([0,1)^d)$.

For $\alpha \in \mathbb{N}$ with the b-adic expansion $\alpha = \beta_{a_1-1} b^{a_1-1} + \cdots + \beta_{a_\nu-1} b^{a_\nu-1}$ with $0 < a_1 < a_2 < \cdots < a_\nu$ and digits $\beta_{a_1-1}, \ldots, \beta_{a_\nu-1} \in \{1, \ldots, b-1\}$, the NRT weight of order $\sigma \in \mathbb{N}$ is given by
\[
\varrho_\sigma(\alpha) = a_\nu + a_{\nu-1} + \cdots + a_{\max(\nu-\sigma+1,1)}.
\]
Furthermore, $\varrho_\sigma(0) = 0$.

For $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$, the NRT weight of order σ is given by
\[
\varrho_\sigma(\alpha) = \varrho_\sigma(\alpha_1) + \cdots + \varrho_\sigma(\alpha_d).
\]

Let $\alpha \in \mathbb{N}$. The α-th b-adic Walsh function $\text{wal}_\alpha : [0,1) \to \mathbb{C}$ is given by
\[
\text{wal}_\alpha(x) = e^{2\pi i (\beta_{a_1-1} x_{a_1} + \cdots + \beta_{a_\nu-1} x_{a_\nu})}
\]
for $x \in [0,1)$ with b-adic expansion $x = x_1 b^{-1} + x_2 b^{-2} + \cdots$. Furthermore, $\text{wal}_0 = \chi_{[0,1]}$.

Let $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$. Then the α-th b-adic Walsh function wal_α on $[0,1)^d$ is
given as the tensor product

\[\text{wal}_\alpha(x) = \text{wal}_{\alpha_1}(x^1) \ldots \text{wal}_{\alpha_d}(x^d) \]

for \(x = (x^1, \ldots, x^d) \in [0,1)^d \). The functions \(\text{wal}_\alpha, \alpha \in \mathbb{N}^d_0 \) are called \(b \)-adic Walsh basis on \([0,1)^d\).

The \(b \)-adic Walsh function \(\text{wal}_\alpha \) is constant on \(b \)-adic intervals \(I_{\{\varrho_1(\alpha_1), \ldots, \varrho_1(\alpha_d)\}, m} \) for every \(m \in \mathbb{D}_{\{\varrho_1(\alpha_1), \ldots, \varrho_1(\alpha_d)\}} \). The following result is [DP10, Theorem A.11].

Lemma 3.3. The system

\[\{ \text{wal}_\alpha : \alpha \in \mathbb{N}^d_0 \} \]

is an orthonormal basis of \(L_2([0,1)^d) \).

4 Digital \((v,n,d)\)-nets

We quote from [DP14a] and [D07] to describe the digital construction method and properties of resulting digital nets. We also refer to [N87] and [NP01].

For an integer \(b \geq 2 \) let \(\mathbb{Z}_b \) denote the commutative ring of integers modulo \(b \). For \(s, n \in \mathbb{N} \) with \(s \geq n \) let \(C_1, \ldots, C_d \) be \(s \times n \) matrices with entries from \(\mathbb{Z}_b \). For \(\nu \in \{0, 1, \ldots, b^n - 1\} \) with the \(b \)-adic expansion \(\nu = \nu_0 + \nu_1 b + \ldots + \nu_{n-1} b^{n-1} \) with digits \(\nu_0, \nu_1, \ldots, \nu_{n-1} \in \{0, 1, \ldots, b-1\} \) the \(b \)-adic digit vector \(\bar{\nu} \) is given as \(\bar{\nu} = (\nu_0, \nu_1, \ldots, \nu_{n-1})^{\top} \in \mathbb{Z}_b^n \). Then we compute \(C_i \bar{\nu} = (x_{i,\nu,1}, x_{i,\nu,2}, \ldots, x_{i,\nu,s})^{\top} \in \mathbb{Z}_b^s \) for \(1 \leq i \leq d \). Finally we define

\[x_{i,\nu} = x_{i,\nu,1} b^{-1} + x_{i,\nu,2} b^{-2} + \ldots + x_{i,\nu,s} b^{-s} \in [0,1) \]

and \(x_\nu = (x_{1,\nu}, \ldots, x_{d,\nu}) \). We call the point set \(\mathcal{P}_n^b = \{x_0, x_1, \ldots, x_{b^n-1}\} \) a digital net in base \(b \).

Now let \(\sigma \in \mathbb{N} \) and suppose \(s \geq \sigma n \). Let \(0 \leq v \leq \sigma n \) be an integer. For every \(1 \leq i \leq d \) we write \(C_i = (c_{i,1}, \ldots, c_{i,s})^{\top} \) where \(c_{i,1}, \ldots, c_{i,s} \in \mathcal{P}_n^a \) are the row vectors of \(C_i \). If for all \(1 \leq \lambda_{i,1} < \ldots < \lambda_{i,\eta_i} \leq s, 1 \leq i \leq d \) with

\[\lambda_{1,1} + \ldots + \lambda_{1,\min(\eta_1,\sigma)} + \ldots + \lambda_{d,1} + \ldots + \lambda_{d,\min(\eta_d,\sigma)} \leq \sigma n - v \]

the vectors \(c_1, c_{1,1}, \ldots, c_{1,\eta_1}, \ldots, c_d, c_{d,1}, \ldots, c_{d,\eta_d} \) are linearly independet over \(\mathbb{Z}_b \), then \(\mathcal{P}_n^b \) is called an order \(\sigma \) digital \((v,n,d)\)-net in base \(b \).

Lemma 4.1.
(i) Let $v < \sigma n$. Then every order σ digital (v, n, d)-net in base b is an order σ digital $(v+1, n, d)$-net in base b. In particular every point set P_n^b constructed with the digital method is at least an order σ digital $(\sigma n, n, d)$-net in base b.

(ii) Let $1 \leq \sigma_1 \leq \sigma_2$. Then every order σ_2 digital (v, n, d)-net in base b is an order σ_1 digital $(\lceil v \sigma_1 / \sigma_2 \rceil, n, d)$-net in base b.

Lemma 4.2. Let P_n^b be an order σ digital (v, n, d)-net in base b then every b-adic interval of order $n - v$ contains exactly b^v points of P_n^b.

Let $t \in \mathbb{N}_0$ with b-adic expansion $t = \tau_0 + \tau_1 b + \tau_2 b^2 + \ldots$. We put $\bar{t} = (\tau_0, \tau_1, \ldots, \tau_{s-1})^\top \in \mathbb{Z}_b^s$ and define

$$D(\mathcal{C}) = \{ t = (t_1, \ldots, t_d) \in \mathbb{N}_0^d \setminus \{(0, \ldots, 0)\} : C_1^\top \bar{t}_1 + \ldots + C_d^\top \bar{t}_d = (0, \ldots, 0) \in \mathbb{Z}_b^s \}.$$

Lemma 4.3. P_n^b is an order σ digital (v, n, d)-net in base b if and only if $\varrho_\sigma(t) > \sigma n - v$ for all $t \in D(\mathcal{C})$.

Lemma 4.4. Let P_n^b be an order σ digital (v, n, d)-net in base b with generating matrices C_1, \ldots, C_d. Then

$$\sum_{z \in P_n^b} \text{wal}_t(z) = \begin{cases} b^v & \text{if } t \in D(\mathcal{C}), \\ 0 & \text{otherwise.} \end{cases}$$

We consider the Walsh series expansion of the function $\chi_{[0,x]}$,

$$\chi_{[0,x)}(y) = \sum_{t=0}^{\infty} \hat{\chi}_{[0,x)}(t) \text{wal}_t(y), \quad (13)$$

where for $t \in \mathbb{N}_0$ the t-th Walsh coefficient is given by

$$\hat{\chi}_{[0,x)}(t) = \int_0^1 \chi_{[0,x)}(y) \overline{\text{wal}_t(y)} dy = \int_0^x \overline{\text{wal}_t(y)} dy.$$

Lemma 4.5. Let P_n^b be an order σ digital (v, n, d)-net in base b with generating matrices C_1, \ldots, C_d. Then

$$D_{P_n^b}(x) = \sum_{t \in D(\mathcal{C})} \hat{\chi}_{[0,x]}(t).$$

Proof. For $t = (t_1, \ldots, t_d) \in \mathbb{N}_0^d$ and $x = (x_1, \ldots, x_d) \in [0,1]^d$, we have

$$\hat{\chi}_{[0,x)}(t) = \hat{\chi}_{[0,x_1)}(t_1) \cdot \ldots \cdot \hat{\chi}_{[0,x_d)}(t_d).$$
Applying Lemma 4.4 we get
\[D_P(x) = \frac{1}{b^n} \sum_{z \in P^n} \sum_{t_1, \ldots, t_d=0}^{\infty} \hat{\chi}_{[0,x)}(t) \text{wal}_t(z) - \hat{\chi}_{[0,x)}((0, \ldots, 0)) \]
\[= \sum_{t \in D(C)} \hat{\chi}_{[0,x)}(t). \]
\[= \sum_{t \in D(C)} \hat{\chi}_{[0,x)}(t). \]
\[\square \]

Several constructions of order \(\sigma \) digital \((v,n,d)\)-nets are known. For details, examples and further literature we refer to [DPT14b]. There are especially constructions with a good quality parameter \(v \), e. g. we can construct order 2 digital \((d,n,d)\)-nets in base \(b \) as well as order 1 digital \((0,n,d)\)-nets.

5 Proofs of the results

For two sequences \(a_n \) and \(b_n \) we will write \(a_n \preceq b_n \) if there exists a constant \(c > 0 \) such that \(a_n \leq cb_n \) for all \(n \). For \(t > 0 \) with \(b \)-adic expansion \(t = \tau_0 + \tau_1 b + \ldots + \tau_{\rho_1(t)-1} b^{\rho_1(t)-1} \), we put \(t = t' + \tau_{\rho_1(t)-1} b^{\rho_1(t)-1} \).

The following result is [M13b] Lemma 5.1.

Lemma 5.1. Let \(f(x) = x_1 \cdot \ldots \cdot x_d \) for \(x = (x_1, \ldots, x_d) \in [0,1)^d \). Let \(j \in \mathbb{N}_d, m \in \mathbb{D}_j, l \in \mathbb{B}_j \). Then \(|\langle f, h_j, m, l \rangle| \leq b^{-|j|+} \).

The following result is [M13b] Lemma 5.2.

Lemma 5.2. Let \(z = (z_1, \ldots, z_d) \in [0,1)^d \) and \(g(x) = \chi_{[0,x)}(z) \) for \(x = (x_1, \ldots, x_d) \in [0,1)^d \). Let \(j \in \mathbb{N}_d, m \in \mathbb{D}_j, l \in \mathbb{B}_j \). Then \(\langle g, h_j, m, l \rangle = 0 \) if \(z \) is not contained in the interior of the \(b \)-adic interval \(I_j,m \). If \(z \) is contained in the interior of \(I_j,m \) then \(|\langle g, h_j, m, l \rangle| \leq b^{-|j|+} \).

The following result is [M13b] Lemma 5.9.

Lemma 5.3. Let \(j \in \mathbb{N}_d, m \in \mathbb{D}_j, l \in \mathbb{B}_j \) and \(\alpha \in \mathbb{N}_0^d \). Then
\[|\langle h_j, m, l, \text{wal}_\alpha \rangle| \leq b^{-|j|+}. \]
If \(q_1(\alpha_i) \neq j_i + 1 \) for some \(1 \leq i \leq d \) then

\[
\langle h_{j,m,t}, \text{wal}_\alpha \rangle = 0.
\]

The following result is [M13b, Lemma 5.10].

Lemma 5.4. Let \(t, \alpha \in \mathbb{N}_0 \). Then

\[
|\langle \hat{\chi}_{[0,\cdot)}(t), \text{wal}_\alpha \rangle| \leq b^{-\max(q_1(t),q_1(\alpha))}.
\]

If \(\alpha \neq t' \) and \(\alpha \neq t \) and \(\alpha' \neq t \) then

\[
\langle \hat{\chi}_{[0,\cdot)}(t), \text{wal}_\alpha \rangle = 0.
\]

Lemma 5.5. Let \(C_1, \ldots, C_d \in \mathbb{Z}_b^{\times n} \) generate an order 1 digital \((v, n, d)\)-net in base \(b \).

Let \(\lambda_1, \ldots, \lambda_d, \gamma_1, \ldots, \gamma_d \in \mathbb{N}_0 \). Let \(\omega_{\gamma_1, \ldots, \gamma_d}^{\lambda_1, \ldots, \lambda_d}(\mathcal{C}) \) denote the cardinality of such \(t \in \mathcal{D}(\mathcal{C}) \) with \(q_1(t_i) = \gamma_i \) for all \(1 \leq i \leq d \) that either \(\gamma_i \leq \lambda_i \) or \(q_1(t'_i) = \lambda_i \). If \(\lambda_1, \ldots, \lambda_d \leq s \) then

\[
\omega_{\gamma_1, \ldots, \gamma_d}^{\lambda_1, \ldots, \lambda_d}(\mathcal{C}) \leq (b - 1)^d b^{(\min(\lambda_1, \gamma_1) - 1) + \cdots + \min(\lambda_d, \gamma_d) - 1 - n + v + s}. \]

Proof. Let \(t = (t_1, \ldots, t_d) \in \mathcal{D}(\mathcal{C}) \) with \(q_1(t_i) = \gamma_i \) for all \(1 \leq i \leq d \) and either \(\gamma_i \leq \lambda_i \) or \(q_1(t'_i) = \lambda_i \). Let \(t_i \) have \(b \)-adic expansion \(t_i = \tau_{i,0} + \tau_{i,1}b + \tau_{i,2}b^2 + \cdots \). Let \(\lambda_i = (c_i,1, \ldots, c_i,s) \), put \(\lambda_i^* = \min(\lambda_i, \gamma_i - 1) \) and \(c_{i,\gamma_i} = (0, \ldots, 0) \) if \(\gamma_i > s, 1 \leq i \leq d \). Then we have

\[
\begin{align*}
&c_{1,\lambda_1^*}^\top \tau_{1,0} + \cdots + c_{1,\lambda_1^*}^\top \tau_{1,\lambda_1^*-1} + c_{1,\gamma_1}^\top \tau_{1,\gamma_1-1} + \\
&\vdots \\
&+ c_{d,\lambda_d^*}^\top \tau_{d,0} + \cdots + c_{d,\lambda_d^*}^\top \tau_{d,\lambda_d^*-1} + c_{d,\gamma_d}^\top \tau_{d,\gamma_d-1} = (0, \ldots, 0)^\top \in \mathbb{Z}_b^n.
\end{align*}
\]

We put

\[
A = (c_{1,1}^\top, \ldots, c_{1,\lambda_1^*}^\top, \ldots, c_{d,1}^\top, \ldots, c_{d,\lambda_d^*}^\top) \in \mathbb{Z}_b^{n \times (\lambda_1^* + \cdots + \lambda_d^*)},
\]

\[
y = (\tau_{1,0}, \ldots, \tau_{1,\lambda_1^*-1}, \ldots, \tau_{d,0}, \ldots, \tau_{d,\lambda_d^*-1})^\top \in \mathbb{Z}_b^{(\lambda_1^* + \cdots + \lambda_d^*) \times 1}
\]

and

\[
w = -c_{1,\gamma_1}^\top \tau_{1,\gamma_1-1} - \cdots - c_{d,\gamma_d}^\top \tau_{d,\gamma_d-1} \in \mathbb{Z}_b^{n \times 1}.
\]

Then \((14)\) corresponds to \(Ay = w \) and we have

\[
\omega_{\gamma_1, \ldots, \gamma_d}^{\lambda_1, \ldots, \lambda_d}(\mathcal{C}) = \#\{ y \in \mathbb{Z}_b^{\lambda_1^* + \cdots + \lambda_d^*} : Ay = w \}.
\]
Since C_1, \ldots, C_d generate an order 1 digital (v, n, d)-net, the rank of A is $\lambda_1^* + \ldots + \lambda_d^*$ if $\lambda_1^* + \ldots + \lambda_d^* = n - v$. In this case the solution space of the homogeneous system $Ay = (0, \ldots, 0)$ has dimension 0. If $\lambda_1^* + \ldots + \lambda_d^* > n - v$ then $\text{rank}(A) \geq n - v$ and the dimension of the solution space of the homogeneous system is $\lambda_1^* + \ldots + \lambda_d^* - \text{rank}(A) \leq \lambda_1 + \ldots + \lambda_d - n + v$. This means that for a given w the system $Ay = w$ has at most 1 solution if $\lambda_1^* + \ldots + \lambda_d^* \leq n - v$ and at most $b^{\lambda_1^*+\ldots+\lambda_d^*-n+v}$ otherwise. Finally, there are $(b - 1)^d$ possible choices for w since none of the numbers $\tau_{1, \gamma_1-1}, \ldots, \tau_{d, \gamma_d-1}$ can be 0.

We point out that the condition $\lambda_1, \ldots, \lambda_d \leq s$ is not necessary. It just reduces the technicalities but the results would be the same without it. One would have to define $\lambda_i^* = \min(\lambda_i, s)$ and in the case where $\lambda_i^* > s$ we would get an additional factor $b^{\lambda_i^*-s}$ compensating the restriction.

Proposition 5.6. Let \mathcal{P}_n^b be an order 1 digital (v, n, d)-net in base b. Let $j \in \mathbb{N}_{-1}, m \in \mathbb{D}_j, l \in \mathbb{B}_j$.

1. If $|j|_+ \geq n - v$ then $|\langle D_{\mathcal{P}_n^b}, h_{j,m,l} \rangle| \leq b^{-|j|_+-n+v}$ and $|\langle D_{\mathcal{P}_n^b}, h_{j,m,l} \rangle| \leq b^{-|j|_+}$ for all but at most b^n values of m.
2. If $|j|_+ < n - v$ then $|\langle D_{\mathcal{P}_n^b}, h_{j,m,l} \rangle| \leq b^{-|j|_+-n+v} (n - v - |j|_+)^{d-1}$.

Proof. For (i), let $|j|_+ \geq n - v$. Since \mathcal{P}_n^b contains exactly b^n points, there are no more than b^n such m for which $I_{j,m}$ contains a point of \mathcal{P}_n^b meaning that at least all but b^n intervals contain no points at all. Thus the second statement follows from Lemma 5.1. The remaining intervals contain at most b^n points of \mathcal{P}_n^b (Lemma 4.2) so the first statement follows from Lemmas 5.1 and 5.2.

We now prove (ii) so let $|j|_+ < n - v$ and $m \in \mathbb{D}_j$, $l \in \mathbb{B}_j$. The function $h_{j,m,l}$ can be given (Lemma 3.3) as

\[
h_{j,m,l} = \sum_{\alpha \in \mathbb{N}_0^d} \langle h_{j,m,l}, \text{wal}_\alpha \rangle \text{wal}_\alpha.
\]

We apply Lemmas 4.5, 5.3 and 5.4 and get

\[
|\langle D_{\mathcal{P}_n^b}, h_{j,m,l} \rangle| = \left| \sum_{t \in \mathbb{D}(\mathcal{C})} \sum_{\alpha \in \mathbb{N}_0^d} \langle \hat{\chi}_{[0,\cdot)}(t), \langle h_{j,m,l}, \text{wal}_\alpha \rangle \text{wal}_\alpha \rangle \right|
\]

\[
\leq \sum_{t \in \mathbb{D}(\mathcal{C})} \sum_{\alpha \in \mathbb{N}_0^d} \left| \langle \hat{\chi}_{[0,\cdot)}(t), \text{wal}_\alpha \rangle \right| |\langle h_{j,m,l}, \text{wal}_\alpha \rangle|
\]
By Lemma 5.5 we get since

$$\sum_{t \in \mathcal{D}(\mathcal{C})} \sum_{\alpha \in \mathbb{N}_0^d} b_{\max(g_1(\alpha_1), g_1(t_1)) - \ldots - \max(g_1(\alpha_1), g_1(t_d))}$$

$$\leq b^{-|j|+} \sum_{t \in \mathcal{D}(\mathcal{C})} \sum_{\alpha \in \mathbb{N}_0^d} b_{\max(g_1(\alpha_1), g_1(t_1)) - \ldots - \max(g_1(\alpha_1), g_1(t_d))}$$

$$= b^{-|j|+} \sum_{t \in \mathcal{D}(\mathcal{C})} b_{\max(j+1, t_1)} - \ldots - \max(j+1, t_d)}$$

$$= b^{-|j|+} \sum_{\gamma_1, \ldots, \gamma_d = 0}^{\infty} b_{\max(j+1, \gamma_1) - \ldots - \max(j+1, \gamma_d)} \omega_{\gamma_1, \ldots, \gamma_d}^{j+1, \ldots, j+1}(\mathcal{C}). \quad (15)$$

By Lemma 5.5 we get

$$\omega_{\gamma_1, \ldots, \gamma_d}^{j+1, \ldots, j+1}(\mathcal{C}) \leq (b-1)^d b^d$$

since \(j_1 + 1, \ldots, j_d + 1 \leq n - v \leq s \) and \(j_1 + 1 + \ldots + j_d + 1 \leq |j| + d < n - v + d \).

We recall that we have \(g_1(t) > n-v \) for all \(t \in \mathcal{D}(\mathcal{C}) \). This means that \(\omega_{\gamma_1, \ldots, \gamma_d}^{j+1, \ldots, j+1}(\mathcal{C}) = 0 \) whenever \(\gamma_1 + \ldots + \gamma_d \leq n - v \). Therefore \(\omega_{\gamma_1, \ldots, \gamma_d}^{j+1, \ldots, j+1}(\mathcal{C}) = 0 \) if \(\gamma_i \leq j_i \) for all \(1 \leq i \leq d \).

For any \(I \subset \{1, \ldots, d\} \) let \(I^c = \{1, \ldots, d\} \setminus I \). We perform an index shift to get

$$|\langle D_{p_n}, h_{j,m,l} \rangle| \leq b^{-|j|+} \sum_{I \subseteq \{1, \ldots, d\}} b_{\max(j_1+1, \gamma_1) - \ldots - \max(j_d+1, \gamma_d)}$$

$$= b^{-|j|+} \sum_{I \subseteq \{1, \ldots, d\}} b_{\sum_{\gamma_1, \ldots, \gamma_d = 0}^{\infty} \sum_{\gamma_1 \leq j_1}^{\gamma_1 \geq j_2+1} \sum_{\gamma_2 \geq j_2+1}^{\gamma_2 \geq j_3+1 \ldots} b_{\sum_{\gamma_2 \in I^c} \gamma_{n_2}}$$

$$= b^{-|j|+} \sum_{I \subseteq \{1, \ldots, d\}} b_{\sum_{\gamma_1, \ldots, \gamma_d = 0}^{\infty} \sum_{\gamma_1 \leq j_1}^{\gamma_1 \geq j_2+1} \sum_{\gamma_2 \geq j_2+1}^{\gamma_2 \geq j_3+1 \ldots} b_{\sum_{\gamma_2 \in I^c} \gamma_{n_2}}$$

$$\leq b^{-|j|+} \sum_{I \subseteq \{1, \ldots, d\}} b_{\sum_{\gamma_1, \ldots, \gamma_d = 0}^{\infty} \sum_{\gamma_1 \leq j_1}^{\gamma_1 \geq j_2+1} \sum_{\gamma_2 \geq j_2+1}^{\gamma_2 \geq j_3+1 \ldots} b_{\sum_{\gamma_2 \in I^c} \gamma_{n_2}}$$

$$\leq b^{-|j|+} \sum_{I \subseteq \{1, \ldots, d\}} b_{\sum_{\gamma_1, \ldots, \gamma_d = 0}^{\infty} \sum_{\gamma_1 \leq j_1}^{\gamma_1 \geq j_2+1} \sum_{\gamma_2 \geq j_2+1}^{\gamma_2 \geq j_3+1 \ldots} b_{\sum_{\gamma_2 \in I^c} \gamma_{n_2}}$$
Proof. According to Lemma 4.1, recall that we have D
\text{Proposition} 5.7.

\[\begin{align*}
\ldots \sum_{0 \leq j_1 \leq j_1} b^{-r} (r + 1)^{d-1-\#I} \\
\leq b^{-|j|} \sum_{I \subseteq \{1, \ldots, d\}} b^{-|j_1|} - \sum_{\kappa_1 \in I} \frac{(j_{k_1})}{(j_{k_2}+1)} \sum_{\kappa_2 \in I_c} \gamma_{\kappa_1} - \sum_{\kappa_3 \in I_c} (j_{k_2} + 1) \times \\
\leq b^{-|j| - n + v} \sum_{I \subseteq \{1, \ldots, d\}} b^{-|j_1|} - \sum_{\kappa_1 \in I} \frac{(j_{k_1})}{(j_{k_2}+1)} \sum_{\kappa_2 \in I_c} \gamma_{\kappa_1} - \sum_{\kappa_3 \in I_c} (j_{k_2} + 1) \times \\
\leq b^{-|j| - n + v} (n - |j|)^{d-1}.
\end{align*} \]

\[\square \]

Proposition 5.7. Let \(\mathcal{P}_n^b \) be an order 2 digital \((v, n, d)\)-net in base \(b \). Let \(j \in \mathbb{N}_-^d \), \(m \in \mathbb{D}_j \), \(l \in \mathbb{B}_j \).

(i) If \(|j|_+ \geq n - \lfloor v/2 \rfloor \) then \(\|D_{p_n^b, h_{j,m,l}}\| \leq b^{-|j|+ - n + v/2} \) and \(\|\mu_{j,m,l}(D_{p_n^b})\| \leq b^{-2|j|+} \) for all but \(b^n \) values of \(m \).

(ii) If \(|j|_+ < n - \lfloor v/2 \rfloor \) then \(\|D_{p_n^b, h_{j,m,l}}\| \leq b^{-2n + v} (2n - v - 2|j|)_+^{d-1} \).

Proof. According to Lemma 4.1, \(\mathcal{P}_n^b \) is an order 1 digital \([\lfloor v/2 \rfloor, n, d] \)-net. Hence (i) follows from Proposition 5.6.

We now prove (ii) so let \(|j|_+ < n - \lfloor v/2 \rfloor \) and \(m \in \mathbb{D}_j \), \(l \in \mathbb{B}_j \). We start at (15) and recall that we have \(g_2(t) > 2n - v \) for all \(t \in \mathcal{O}(\mathcal{C}) \). This means that \(\omega_{j_1+1, \ldots, j_d+1}(\mathcal{C}) = 0 \) whenever \(\gamma_1 + \min(\gamma_1, j_1 + 1) + \ldots + \gamma_d + \min(\gamma_d, j_d + 1) \leq 2n - v \). We argue similarly.
to the proof of Proposition 5.6 to get

\[
|\langle D_{\gamma_1}, h_{j_m} \rangle| \leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)} \omega_{j_1, \ldots, j_d + 1}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]

\[
\leq b^{-|j|} + \sum_{\gamma_1, \ldots, \gamma_d = 0}^\infty b^{-\max(j_1 + 1, \gamma_1) - \ldots - \max(j_d + 1, \gamma_d)}
\]
\[\times \left(2n - v - 2 \sum_{\kappa_1 \in I} \gamma_{\kappa_1} - 2 \sum_{\kappa_2 \in I^c} (j_{\kappa_2} + 1) + 1 \right)^{d-1} \]

\[\leq b^{-|j|+2n+v} \sum_{I\subseteq\{1,\ldots,d\}} b^{\kappa_2+1} \\times \]

\[\times \left(2n - v - 2 \sum_{\kappa_1 \in I} (j_{\kappa_1} + 1) - 2 \sum_{\kappa_2 \in I^c} (j_{\kappa_2} + 1) + 1 \right)^{d-1} \]

\[\leq b^{-2n+v} (2n - v - 2|j|)^{d-1}. \]

\[\square \]

We are now ready to prove the theorems.

Proof of Theorem 1. Let \(D_{P_n^k} \) be an order 2 digital \((v,n,d)\)-net in base \(b \). We apply Theorem 3.1 hence we need to prove

\[\sum_{j \in \mathbb{N}_0^d} b^{|j|+n} \sum_{m \in \mathbb{B}_j, l \in \mathbb{B}_j} |\langle D_{P_n^k}, h_{j,m,l} \rangle|^2 \leq b^{-2n+v} n^{d-1} v. \]

We recall that \(\#\mathbb{D}_j = b^{|j|+} \), \(\#\mathbb{B}_j = b - 1 \). We split the sum and apply Proposition 5.7 to get

\[\sum_{j \in \mathbb{N}_0^d} b^{|j|+} \sum_{|j|+ < n - \lfloor v/2 \rfloor} |\langle D_{P_n^k}, h_{j,m,l} \rangle|^2 \]

\[\leq b^{|j|+} b^{|j|+} b^{-4n+2v} (2n - v - 2|j|)^{2(d-1)} \]

\[\leq b^{2n-v} (2n - v - 2|j|)^{2(d-1)} \]

\[\leq b^{2n-v} (2n - v - 2n + v)^{2(d-1)} \]

\[\leq b^{2n-v} n^{d-1} \]

for big intervals,

\[\sum_{j \in \mathbb{N}_0^d} b^{|j|+} \sum_{|j|+ \geq n - \lfloor v/2 \rfloor} \sum_{m \in \mathbb{B}_j, l \in \mathbb{B}_j} |\langle D_{P_n^k}, h_{j,m,l} \rangle|^2 \]
for middle intervals and
\[
\sum_{j \in \mathbb{N}_d^{-1}} b^{\|j\|} \sum_{m \in D_j, l \in B_j} |\langle D_{P_n}^o, h_j, m, l \rangle| \leq \sum_{j \in \mathbb{N}_d^{-1}} b^{\|j\|} b^{n} b^{-2\|j\|+2n+v} + \sum_{j \in \mathbb{N}_d^{-1}} b^{\|j\|} (b^{\|j\|} - b^n) b^{-4\|j\|}
\]
\[
\leq b^{n-v} \sum_{\kappa=n}^{\infty} b^{-\kappa} (\kappa + 1)^{d-1} + \sum_{\kappa=n}^{\infty} b^{-2\kappa} (\kappa + 1)^{d-1}
\]
\[
\leq b^{-2n+v} n^{d-1} v
\]
for small intervals. □

Proof of Theorem 1.2. Let D_{P_n} be an order 1 digital (v, n, d)-net in base b. We apply Theorem 3.2 hence we need to prove
\[
\sum_{j \in \mathbb{N}_d^{-1}} b^{\|j\|+ (r-1/p+1)q} \left(\sum_{m \in D_j, l \in B_j} |\langle D_{P_n}^o, h_j, m, l \rangle|^{p} \right)^{q/p} \leq b^{n(r-1)q} n^{(d-1)q} b^{vq}.
\]

We recall that $|D_j| = b^{\|j\|}$, $|B_j| = b - 1$. We split the sum and apply Minkowski’s inequality and Proposition 5.6 to get
\[
\sum_{j \in \mathbb{N}_d^{-1}} b^{\|j\|+ (r-1/p+1)q} \left(\sum_{m \in D_j, l \in B_j} |\langle D_{P_n}^o, h_j, m, l \rangle|^{p} \right)^{q/p} \leq b^{n(r-1)q} n^{(d-1)q} b^{vq}.
\]
\[\leq b^{-(n+v)} q b^{(n-v) r q} (n - v + 1)^{d-1} \]
\[\leq b^{n(r-1)} q n^{d-1} b^{v(1-r) q} \]

for big intervals,

\[\sum_{j \in \mathbb{N}} \sum_{n > |j| + |n - v|} b^{|j| + (r-1/p+1)q} \left(\sum_{m \in D_j, l \in B_j} |\langle D_{p_n}, h_{j,m,l} \rangle|^p \right)^{q/p} \]
\[\leq \sum_{j \in \mathbb{N}} b^{|j| + (r-1/p+1)q} b^{|j| + q/p} b^{(-|j| - n + v)q} \]
\[\leq b^{-(n+v)q} \sum_{\kappa = n-v}^{n-1} b^{\kappa r q} (\kappa + 1)^{d-1} \]
\[\leq b^{-(n+v)q} b^{n d-1} \]
\[\leq b^{n(r-1) q n^{d-1}} b^v \]

for middle intervals and considering the range of \(r \)

\[\sum_{j \in \mathbb{N}} b^{|j| + (r-1/p+1)q} \left(\sum_{m \in D_j, l \in B_j} |\langle D_{p_n}, h_{j,m,l} \rangle|^p \right)^{q/p} \]
\[\leq \sum_{j \in \mathbb{N}} b^{|j| + (r-1/p+1)q} b^{n q/p} b^{(-|j| - n + v)q} + \sum_{j \in \mathbb{N}} b^{|j| + (r-1/p+1)q} b^{|j| - b^n q/p} b^{-2|j| - q} \]
\[\leq b^{n q/p} b^{-(n+v)q} \sum_{\kappa = n}^{\infty} b^{c(r-1/p)q} (\kappa + 1)^{d-1} + \sum_{\kappa = n}^{\infty} b^{c(r-1)q} (\kappa + 1)^{d-1} \]
\[\leq b^{n q/p} b^{-(n+v)q} b^{n(r-1)/q} n^{d-1} + b^{n(r-1) q n^{d-1}} \]
\[\leq b^{n(r-1) q n^{d-1}} b^v \]

for small intervals. \(\square \)

Proof of Theorem 1.3. Let \(D_{p_n} \) be an order 2 digital \((v, n, d)\)-net in base \(b \). The proof is similar to the proof of Theorem 1.2. We apply Proposition 5.7 instead of 5.6 to get

\[\sum_{j \in \mathbb{N}} b^{|j| + (r-1/p+1)q} \left(\sum_{m \in D_j, l \in B_j} |\langle D_{p_n}, h_{j,m,l} \rangle|^p \right)^{q/p} \]
\[\leq \sum_{j \in \mathbb{N}^d_1} b^{\|j\|_{(r-1/p+1)q} \|j\|_{q/p} b^{-2n+v}q} (2n - v - 2\|j\| + (d-1)q)
\]

\[\leq b^{(-2n+v)q} \sum_{\kappa=0}^{n-v/2-1} b^{\kappa(r+1)q} (2n - v - 2\kappa)(d-1)q (\kappa + 1)^{d-1}
\]

\[\leq b^{(-2n+v)q} b^{(n-v/2)(r+1)q} (n - v/2 + 1)^{d-1}
\]

\[\leq b^{n(r-1)q} n^{d-1} b^{v/2(1-r)q}
\]

and analogous results for the other subsums.

\[\square \]

Proof of Corollaries 1.4, 1.5, 1.6 and 1.7. The results for the Triebel-Lizorkin spaces follow from Theorem 2.1 and Theorems 1.2 and 1.3, respectively. The results for the Sobolev spaces then follow in the case \(q = 2 \).

\[\square \]

Proof of Theorem 1.8. The result follows from Corollary 1.7 in the case \(r = 0 \).

\[\square \]

References

[B11] D. Bilyk, *On Roth’s orthogonal function method in discrepancy theory*. Unif. Distrib. Theory 6 (2011), 143–184.

[BLV08] D. Bilyk, M. T. Lacey, A. Vagharshakyan, *On the small ball inequality in all dimensions*. J. Funct. Anal. 254 (2008), 2470–2502.

[BTY12] D. Bilyk, V. N. Temlyakov, R. Yu, *Fibonacci sets and symmetrization in discrepancy theory*. J. Complexity 28 (2012), 18–36.

[C80] W. W. L. Chen, *On irregularities of distribution*. Mathematika 27 (1981), 153–170.

[CS02] W. W. L. Chen, M. M. Skriganov, *Explicit constructions in the classical mean squares problem in irregularities of point distribution*. J. Reine Angew. Math. 545 (2002), 67–95.

[CS08] W. W. L. Chen, M. M. Skriganov, *Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution*. In: Diophantine approximation, 141–159, Dev. Math., 16, Springer, Vienna, 2008.
[D56] H. Davenport, *Note on irregularities of distribution*. Mathematika 3 (1956), 131–135.

[D07] J. Dick, *Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions*. SIAM J. Numer. Anal. 45 (2007), 2141–2176.

[D14] J. Dick, *Discrepancy bounds for infinite-dimensional order two digital sequences over F_2*. J. Number Theory 136 (2014), 204–232.

[DP10] J. Dick, F. Pillichshammer, Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, 2010.

[DP14a] J. Dick, F. Pillichshammer, *Optimal L_2 discrepancy bounds for higher order digital sequences over the finite field F_2*. Acta Arith. 162 (2014), 65–99.

[DP14b] J. Dick, F. Pillichshammer, *Explicit constructions of point sets and sequences with low discrepancy*. To appear in P. Kritzer, H. Niederreiter, F. Pillichshammer, A. Winterhof, Uniform distribution and quasi-Monte Carlo methods - Discrepancy, Integration and Applications (2014).

[FPPS10] H. Faure, F. Pillichshammer, G. Pirsic, W. Ch. Schmid, *L_2 discrepancy of generalized two-dimensional Hammersley point sets scrambled with arbitrary permutations*. Acta Arith. 141 (2010), 395–418.

[H81] G. Halász, *On Roth’s method in the theory of irregularities of point distributions*. Recent progress in analytic number theory, Vol. 2, 79–94. Academic Press, London-New York, 1981.

[Hi10] A. Hinrichs, *Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness*. Math. Nachr. 283 (2010), 478–488.

[Hi14] A. Hinrichs, *Discrepancy, Integration and Tractability*. In J. Dick, F. Y. Kuo, G. W. Peters, I. H. Sloan, Monte Carlo and Quasi-Monte Carlo Methods 2012 (2014).

[HM11] A. Hinrichs, L. Markhasin, *On lower bounds for the L_2-discrepancy*. J. Complexity 27 (2011), 127–132.

[KN74] L. Kuipers, H. Niederreiter, Uniform distribution of sequences. John Wiley & Sons, Ltd., New York, 1974.
[M13a] L. Markhasin, *Discrepancy of generalized Hammersley type point sets in Besov spaces with dominating mixed smoothness*. Unif. Distrib. Theory 8 (2013), 135–164.

[M13b] L. Markhasin, *Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension*. J. Complexity 29 (2013), 370–388.

[M13c] L. Markhasin, *Discrepancy and integration in function spaces with dominating mixed smoothness*. Dissertationes Math. 494 (2013), 1–81.

[M99] J. Matoušek, Geometric discrepancy. An illustrated guide. Springer-Verlag, Berlin, 1999.

[N87] H. Niederreiter, G. Pirsic, *Duality for digital nets and its applications*. Acta Arith. 97 (2001), 173–182.

[NP01] H. Niederreiter, *Point sets and sequences with small discrepancy*. Monatsh. Math. 104 (1987), 273–337.

[NW10] E. Novak, H. Woźniakowski, Tractability of multivariate problems. Volume II: Standard information for functionals. European Mathematical Society Publishing House, Zürich, 2010.

[R54] K. F. Roth, *On irregularities of distribution*. Mathematika 1 (1954), 73–79.

[R80] K. F. Roth, *On irregularities of distribution. IV*. Acta Arith. 37 (1980), 67–75.

[S72] W. M. Schmidt, *Irregularities of distribution. VII*. Acta Arith. 21 (1972), 45–50.

[S77] W. M. Schmidt, Irregularities of distribution X. Number Theory and Algebra, 311–329. Academic Press, New York, 1977.

[S06] M. M. Skriganov, *Harmonic analysis on totally disconnected groups and irregularities of point distributions*. J. Reine Angew. Math. 600 (2006), 25–49.

[T10] H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration. European Mathematical Society Publishing House, Zürich, 2010.
Erschienene Preprints ab Nummer 2007/2007-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2014-005 Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution Equations

2014-004 Markhasin, L.: L_2- and $S_{p,q}$-discrepancy of (order 2) digital nets

2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness

2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs

2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity

2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering

2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods

2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension

2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killing spinors on Einstein manifolds

2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres

2013-011 Kohls, K.; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems

2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations

2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau’s Algorithm on Manifolds

2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups

2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras

2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes

2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure

2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields

2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces

2013-002 Devroye, L.; Ferrario, P.G.; Győrfi, L.; Walk, H.: Strong universal consistent estimate of the minimum mean squared error

2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control Problems with Control Constraints

2012-018 Kimmerle, W.; Konovalov, A.: On the Prime Graph of the Unit Group of Integral Group Rings of Finite Groups II

2012-017 Stroppel, B.; Stroppel, M.: Desargues, Doily, Dualities, and Exceptional Isomorphisms

2012-016 Moroianu, A.; Pilca, M.; Semmelmann, U.: Homogeneous almost quaternion-Hermitian manifolds

2012-015 Steinke, G.F.; Stroppel, M.J.: Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane

2012-014 Steinke, G.F.; Stroppel, M.J.: Finite elation Laguerre planes admitting a two-transitive group on their set of generators
2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex hyperbolic spaces
2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitalis admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
2011-027 Griesemer, M.; Hantsch, F.; Wellig, D.: On the Magnetic Pekar Functional and the Existence of Bipolarons
2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
2011-025 Felber, T.; Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time series
2011-023 Győrfi, L.; Walk, H.: Strongly consistent nonparametric tests of conditional independence
2011-022 Ferrario, P.G.; Walk, H.: Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator
2011-019 Frank, R.L.; Geisinger, L.: Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
2011-015 Ferrario, P.: Nonparametric Local Averaging Estimation of the Local Variance Function
2011-014 Müller, S.; Dippon, J.: k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
2011-012 Knarr, N.; Stroppel, M.: Baer involutions and polarities in Moufang planes of characteristic two
2011-011 Knarr, N.; Stroppel, M.: Polarity and planar collineations of Moufang planes
2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
2011-009 Wirth, J.: Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
2011-007 Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
2011-006 Solanes, G.; Teufel, E.: Horo-tightness and total (absolute) curvatures in hyperbolic spaces
2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
2011-004 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part II — Gain-Scheduled Control
2011-003 Scherer, C.W.; Köse, I.E.: Control Synthesis using Dynamic D-Scales: Part I — Robust Control
2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G_2-structures
2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds
2010-015 Gratareend, E.W.; Kühnel, W.: A minimal atlas for the rotation group $SO(3)$
2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010-011 Györgyi, L.; Walk, H.: Empirical portfolio selection strategies with proportional transaction costs
2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
2010-009 Geisinger, L.; Laptev, A.; Weidl, T.: Geometrical Versions of improved Berezin-Li-Yau Inequalities
2010-008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
2010-007 Grundhöfer, T.; Krinn, B.; Stroppel, M.: Non-existence of isomorphisms between certain unitals
2010-006 Höllig, K.; Hörner, J.; Hoffacker, A.: Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
2010-005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010-003 Kohler, M.; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010-002 Güde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010-001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
2009-007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009-006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigenvalues of quantum graphs
2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009-001 Brehm, U.; Kühnel, W.: Lattice triangulations of \mathbb{E}^3 and of the 3-torus
2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008-005 Kaltenbacher, B.; Schöpfer, F.; Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
2008-004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2,q)$
2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term
2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant magnetic field
2007-004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators on metric trees
2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions