Single-photon oxidation of C_{60} by self-sensitized singlet oxygen

C_{60} is regarded as the most efficient singlet oxygen (1O_{2}) photosensitizer. Yet, its oxidation by self-sensitized 1O_{2} remains unclear. The literature hints both oxygen and C_{60} must be at excited states to react, implying a two-photon process: first, oxygen is photosensitized (1C_{60}•1O_{2}); second, C_{60} is photoexcited (1C_{60}•1O_{2}). However, this scheme is not plausible in a solvent, which would quench 1O_{2} rapidly before the second photon is absorbed. Here, we uncover a single-photon oxidation mechanism via self-sensitized 1O_{2} in solvents above an excitation energy of 3.7 eV. Using excitation spectroscopies and kinetics analysis, we deduce photoexcitation of a higher energy transient, 3C_{60}•3O_{2}, converting to 1C_{60}•1O_{2}. Such triplet-triplet annihilation, yielding two simultaneously-excited singlets, is unique. Additionally, rate constants derived from this study allow us to predict a C_{60} half-life of about a minute in the atmosphere, possibly explaining the scarceness of C_{60} in the environment.
Buckminsterfullerene (C_{60}), the most abundant fullerene as well as the most symmetric molecule in nature, has been studied extensively since its discovery in 1985. Among the outstanding properties of C_{60} are ability to accept up to six electrons, high intersystem crossing (ISC) quantum yield, and long-lived triplet states, which have stimulated a thriving research effort for applications in photovoltaics, photocatalysis, and molecular probes. Additionally, the latter two attributes make C_{60} an efficient singlet oxygen (1O_{2}) sensitizer, particularly promising for photodynamic therapy and environmental remediation.

However, C_{60} is subject to photodegradation in these applications at ambient temperature (while thermal oxidation of C_{60} occurs at 370 K and above). The initial work on photooxidation (PO) of C_{60} credited it to ozonation, which however is limited to excitation wavelengths shorter than 240 nm for photogeneration of O_{3}. Later, however, another reactive oxygen species became the suspect, 1O_{2}. To this end, the most seminal findings have been: (i) unless photoexcited, C_{60} does not react with externally-produced 1O_{2}; (ii) PO can occur under UV excitation (308 nm) in O_{2} ambient (albeit formation of 1O_{2} was not corroborated); and (iii) C_{60}O is the major photo-product. Thus, the PO reaction is anticipated as C_{60} + 1O_{2} → C_{60}O + 1/2O_{2}, where both C_{60} and O_{2} must be photoexcited. However, the mechanistic details of the photo-chemistry remain unelucidated. A historical review of the C_{60} PO literature is provided in Supplementary Note 1.

C_{60} has long been known to be an efficient 1O_{2} sensitizer. Yet, no evidence has been shown that 1O_{2} reacts with its original C_{60} sensitizer, which we refer to as “oxidation with self-sensitized 1O_{2}”. Here, we present experimental evidence for this phenomenon. Although the lifetime of 1O_{2}, τ, in air is exceptionally long (i.e., 45 min), it shortens to microseconds to nanoseconds in solvents. Inspired by this broad range of τ, we investigated PO of C_{60} in hexane (C_{6}H_{14}), chloroform (CHCl_{3}), and carbon tetrachloride (CCl_{4}), where τ is 30, 207 and 87,000 μs, respectively.

Our kinetics study reveals C_{60} concentration decays exponentially under UV excitation and the decay rate increases with τ. We also show the decay dominantly occurs as a single-photon process above the photon energy (hv) threshold of 3.7 eV, being the onset of 1^1A_{g} → 2^1H_{u} transition in C_{60}.

Results and discussion

Absorption spectroscopy. Figure 1a, b shows time series optical absorption spectra for our slowest and fastest PO kinetics, which occur in C_{6}H_{14} and CCl_{4}, respectively. The major C_{60} absorption peaks at 256 and 328 nm are seen to decrease systematically, while the baseline rises indicative of a photoproduct, which is also evident from yellowing of the solution (Fig. 1b, inset). The spectrum of the excitation source (Fig. 1c) consists of a major narrow band peaking at 310 nm with no emissions below 250 nm. Hence, the possibility of O_{2} gas formation is ruled out. In Fig. 1b, the noise below 255 nm is due to the high absorption of CCl_{4} attenuating the optical beam. However, it does not deteriorate the accuracy of the absorption peak of C_{60} at 260 nm in CCl_{4} (see Supplementary Discussion).

Phosphorescence spectroscopy. In Fig. 2a, the phosphorescence peak at 1273 nm substantiates photosensitization of 1O_{2} by C_{60} in the three solvents in our study. Figure 2b plots the measured phosphorescence peak intensity versus quenching rate constant (k_q = 1/τ). Here, values of τ for the three solvents are borrowed from ref. as listed above. The experimental data points match with the theoretical trend (Supplementary Eq. (48)). Hence, we confidently adopt the τ values from the literature.

Vibrational spectroscopy. PO of C_{60} is also characterized by the Fourier-transform infrared (FTIR) spectra in Fig. 3a, where C–O, C≡O, and O–H stretching vibrations are indicative of C_{60} oxidation. We anticipate the O–H groups result from the Norrish type II reaction. The evolution of C–H vibrational peaks suggest fragmentation of the C_{60} cage subsequent to PO. The peak frequencies and important assignments are shown in Fig. 3b. Detailed peak assignments are given in Supplementary Table 1.

Mechanism of C_{60} photooxidation in solvents. At first, we are inclined to explain the oxidation of C_{60} by its reaction with free
In this model, $^{1}\text{O}_2$ is released to the solvent after photosensitization by C$_{60}$. Subsequently, it collides and reacts with a C$_{60}$ unless quenched by the solvent. This straightforward model (detailed in Supplementary Information; Kinetics Model) is consistent with our observation that PO rate increases with τ. Additionally, its rate is quadratic in [C$_{60}$] as well as radiation intensity. On the contrary, the kinetics of C$_{60}$, as monitored from optical absorption (Fig. 4a) suggests exponential decay, i.e.,

$$\frac{d}{dt} C_{60} = \frac{k_{pd}}{C_{138}} C_{60}$$

where k_{pd} is the C$_{60}$ photodecay rate. Additionally, Fig. 4b establishes a linear dependence of k_{pd} on excitation intensity, and hence a single-photon process. Thus, we rule out "oxidation with free $^{1}\text{O}_2$" as the dominant PO mechanism. Instead, consistent with the observed exponential decay, we propose "oxidation with self-sensitized $^{1}\text{O}_2$" where a C$_{60}$ molecule photosensitizes a $^{1}\text{O}_2$ and reacts with that same $^{1}\text{O}_2$ in a collision complex:

$$C_{60} + ^{3}\text{O}_2 \rightarrow C_{60} \cdot ^{3}\text{O}_2 \rightarrow C_{60} \cdot ^{3}\text{O}_2 \text{ sensitization} \rightarrow C_{60} \cdot ^{1}\text{O}_2 \text{ oxidation} \rightarrow C_{60}$$

Yet, Scheme (1) has a flaw with the oxidation step, where C$_{60}$ and $^{1}\text{O}_2$ will not react, because C$_{60}$ must be excited to C$_{60}^*$. To meet this condition, a two-photon process could be proposed, where the first photon excites C$_{60}$ to sensitize $^{1}\text{O}_2$ and the second one excites C$_{60}$ to a high energy singlet state, which thereafter reacts with $^{1}\text{O}_2$:

$$C_{60} + ^{3}\text{O}_2 \rightarrow C_{60} \cdot ^{3}\text{O}_2 \rightarrow C_{60} \cdot ^{3}\text{O}_2 \text{ sensitzation} \rightarrow C_{60} \cdot ^{1}\text{O}_2 \text{ oxidation}$$

However, a two-photon process is already excluded by our results (i.e., Fig. 4b). Additionally, Scheme (2) can be ruled out by fundamental considerations. Even the longest τ (0.087 s in CCl$_4$) is significantly shorter than the period between two subsequent excitations of C$_{60}$, being 3.7 s (see Supplementary Information; Kinetics Model). Therefore, before the second photon absorption occurs in Scheme (2), C$_{60}$$^{1}\text{O}_2$ will relax to C$_{60}$$^{3}\text{O}_2$ with a high probability. In other words, the excited O$_2$ and excited singlet C$_{60}$ will hardly coincide in time.

Accordingly, we are urged to consider a scheme, which allows simultaneous excitation of O$_2$ and C$_{60}$, after which they coexist and react. Scheme (1) considers the most basic photosensitization event, where C$_{60}$ returns to its ground singlet state after imparting its energy to O$_2$. On the other hand, it is possible that C$_{60}$ returns to an excited singlet state, C$_{60}^*$, if it is photoexcited to a sufficiently high energy singlet state, C$_{60}^*$. Accordingly, Scheme
(1) may be modified to:

\[
C_{60} + 3\text{O}_2 \rightarrow C_{60}\text{•}^3\text{O}_2 \xrightarrow{\text{h}v} C_{60}\text{•}^1\text{O}_2 \rightarrow C_{60}\text{O}
\]

The lowest energy \(^1C_{60}\) is 2.33 eV above the ground state. Additionally, \(^1\text{O}_2\) sensitization requires 0.98 eV while 0.37 eV is lost to exchange interaction during singlet-to-triplet conversion\(^24\). Therefore, a minimum excitation energy \((\text{h}v)\) of 3.68 eV is needed for Scheme (3) (Supplementary Fig. 4) to succeed. Consistently, our investigation using 455 and 395 nm LED excitations (2.73 and 3.14 eV) with similar photon-count exposures as in Fig. 1 yielded no detectable PO, although we confirmed \(^1\text{O}_2\) sensitization for these excitations from the 1273 nm phosphorescence (Supplementary Fig. 1). In the below two paragraphs, we experimentally corroborate \(^{11}\text{Ag} \rightarrow {21}\text{Hu}\) is the major driver of \(C_{60}\) PO in the solvents. Interestingly, \(^{11}\text{Ag} \rightarrow {21}\text{Hu}\) starts at 3.72 eV\(^25\), being very close to the threshold energy for PO (Scheme (3)).

In Fig. 5a, excitation spectrum for \(^1\text{O}_2\) phosphorescence (sensitization) closely follows \(C_{60}\) absorption spectrum from 700 nm down to 370 nm. This trend is consistent with constant and near-unity \(^1\text{O}_2\) photosensitization quantum yield by \(C_{60}\), \(\Phi_s\), as established in the literature\(^24\). Figure 5b shows the deconvolution of the excitation spectrum to Gaussians below 400 nm. Each band marks an optical transition. Although these transitions may also be resolved from optical absorption, their deconvolution is more facile from our excitation spectrum.

Below 370 nm, however, \(\Phi_s\) diverges from the absorption spectrum and drops significantly. On the other hand, the excitation spectrum for oxidation (i.e., \(k_{pd}\)) in Fig. 5c (“Methods”) exhibits a reverse trend. The PO rate, \(k_{pd}\), is essentially zero for
the spectral range, where Φ_i is at its maximum value of unity, but it is activated at the threshold of about 335 nm (3.70 eV), at which Φ_i is reduced to 0.37. Hence, the excitation trends in Fig. 5a, c, being spectrally different, underscore the fact that sensitization of 1O_2 is not sufficient for the oxidation of C$_{60}$. Specifically, as seen in Fig. 5c, the k_{pd} spectrum matches the 2H_u band. These findings validate Scheme (3) as well as $^1A_g \rightarrow ^2H_u$ being the major driver of PO. Here, the normalized k_{pd} values were derived from the 1O_2 phosphorescence intensity (i.e., counts proportional to [C$_{60}$]) kinetics (Supplementary Fig. 3).

While $^1A_g \rightarrow ^2H_u$ is the major driver of C$_{60}$ PO (Scheme (3)), 1G_u, $^1T_{1g}$, and 2G_u states can also be excited to their vibronic levels higher than 3.7 eV (from 1A_g), as inferred from their deconvoluted bands in Fig. 5b. However, vibrational relaxation (VR) is the fastest process, quickly quenching 1G_u, $^1T_{1g}$, and 2G_u to their ground vibrational levels at 3.12, 3.40, and 3.43 eV, respectively (Fig. 6). Hence, ISC from these singlet states at above 3.7 eV is expected to be outcompeted by VR. Alternatively, PO (Scheme (3)) is possible from 1G_u, $^1T_{1g}$, and 2G_u vibronic states, if they transition to 2H_u by internal conversion (IC) before VR to below 3.7 eV. Because both IC and ISC are slower than VR by an order of magnitude or more, PO from 1G_u, $^1T_{1g}$, and 2G_u vibronic states will be minor, but may not be negligible. In conclusion, the major PO is expected to be through direct excitation of 2H_u. Accordingly, k_{pd} spectrum (data points) in Fig. 5c follows the 2H_u band. However, some deviation is seen, being highest for the 3.88 eV (320 nm) data point and over the 2H_u Gaussian, suggestive of additional excitations contributing, possibly through 1G_u, $^1T_{1g}$, and 2G_u as discussed above.

We illustrate Scheme (3) with the gray arrows in the Jablonski diagram of Fig. 6. First, C$_{60}$ is photoexcited through $^1A_g(1C_{60}) \rightarrow ^2H_u(1C_{60}^{**})$. Then, $1C_{60}^{**}$ transitions to $^3C_{60}^{**}$ ($^2H_u \rightarrow ^2H_u$) via ISC. Subsequently, triplet–triplet annihilation (TTA)26 occurs with sensitization of 1O_2:23H_u*$^1O_2 \rightarrow ^1T_{1g}$*1O_2. TTA also leaves C$_{60}$ at an excited singlet state ($^1T_{1g}$), which can readily react with 1O_2:1$^1T_{1g}$*$^1O_2 \rightarrow C_{60}$O. Hence, both $^1T_{1g}$ and 1O_2, two energetic species, are created at the same time and same place (in collision complex) and have a higher chance to react. Another useful interpretation is that a single photon’s energy (hv) is partially utilized in sensitizing 1O_2 while the excess energy leaves C$_{60}$ at an excited state, which can react with 1O_2. Scheme (3) may be expressed in more detail as:

$$1C_{60} + ^3O_2 \rightarrow 1C_{60}^{**} \rightarrow ^1C_{60}^{**} \rightarrow ^1C_{60}^{**}$$

We provide a mathematical analysis of PO kinetics for Scheme (3), which considers all the steps as well as reverse/competing processes, such as 1O_2 quenching, relaxation of C$_{60}^{**}$ and complex dissociations (see Supplementary Information; Kinetics Model). Despite the full complexity of this model, it predicts simply an exponential decay for $[C_{60}]$, being consistent with the measured kinetics. The model allows us to write k_{pd} as a function of 1O_2 quenching rate, $k_q = 1/t$. Fitting of this function to experimental data (Fig. 7) reveals the rate constants, k_{ax} and k_r, associated with C_{60}*$^1O_2 \rightarrow C_{60}$O and C_{60}^{**}*$^1O_2 \rightarrow C_{60}$ respectively, which has an interesting implication, as discussed below.

Mechanism of C$_{60}$ photooxidation in the atmosphere. PO of C$_{60}$ is expected to be significantly accelerated in the atmosphere thanks to dramatically prolonged τ in the air (i.e., tens of minutes). Indeed, PO can dominantly occur as a two-photon process (Scheme (2), illustrated in Supplementary Fig. 5) driven by visible and UVA photons, being abundant in solar radiation. Unlike in solvents, it is challenging to monitor PO of C$_{60}$ in air, since C$_{60}$ being at detectable concentrations in air, would quickly undergo aggregation as well as adsorption to enclosure walls. However, k_{pd} can be predicted from the rate constants, k_{ax} and k_r, which are already captured in the present work from C$_{60}$ dispersions in solvents. As such, we compute $k_{pd} = 0.011 s^{-1}$ for AM 1.5 solar radiation, suggesting a half-life of 63 s (see Supplementary Information; Kinetics Model). This rapid PO of C$_{60}$ in the atmosphere potentially explains its scarcreness in the environment.27

![Fig. 6 Jablonski diagram illustrating photooxidation of C$_{60}$](image-url)
Two excited singlets by triplet–triplet annihilation. By its description in the literature, TTA involves Dexter energy transfer from a triplet to another, after which the acceptor transitions to a higher energy state (singlet), while the donor returns to its ground singlet state. On the other hand, Scheme (3) engages a unique TTA, which produces two excited singlets simultaneously and thereby enables an efficient photochemistry. This scheme is stimulating for the conception of novel efficient photochemical processes, implemented with \(\text{C}_{60} \) or other photosensitizers.

Methods

C60 solution preparation. A stock solution of \(\text{C}_{60} \) was first prepared by dissolving 1 mg of \(\text{C}_{60} \) (Thermo Fisher Scientific, >99.9%) in 10 mL of solvent via ultrasonication for 30 min. Next, the solution was kept undisturbed in the dark for 30 min to let insoluble aggregates (e.g., \(\text{C}_{60} \text{O} \)) settle down. Subsequently, the supernatant was transferred by a pipette to a spectrophotometer cell (optical path length of 10 mm) and excited at selected wavelengths (from 250 to 420 nm, at 10 nm intervals) using a bandpass of 3 nm. The emission \(\text{O}_2 \) phosphorescence was parked at 1270 nm with a bandpass of 30 nm. At each excitation wavelength, the acquisition was performed 3 times and an unexposed sample was employed at each acquisition. The time-series phosphorescence intensity was collected in situ at every 2 s with detector integration time of 2 s. Hence, the monochromatic optical beam of the spectrometer served as a dual probe simultaneously for measurement and exposure. For each excitation wavelength, \(h_{\text{kd}} \) was derived from the exponential decay rate of the phosphorescence intensity, quantifying the decay rate of \(\text{C}_{60} \) concentration (see Supplementary Fig. 3).

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Received: 28 October 2019; Accepted: 7 May 2020;
Published online: 04 June 2020

References

1. Acquah, S. F. A. et al. Review—The beautiful molecule: 30 years of \(\text{C}_{60} \) and its derivatives. *ECS J. Solid State Sci. Technol.* 6, M3155–M3162 (2017).
2. Guldi, D. M. & Kamat, P. V. In Fullerenes: Chemistry, Physics, and Technology (eds Kadish, K. M. & Ruoff, R. S.) 225 (John Wiley & Sons, Inc., 2000).
3. Hatakeyama, R., Li, Y. F., Kato, T. Y. & Kaneko, T. Infrared photovoltaic solar cells based on \(\text{C}_{60} \) fullerene encapsulated single-walled carbon nanotubes. *Appl. Phys. Lett.* 97, 013104 (2010).
4. Vorobiev, A. K. et al. Fullerene as photocatalyst: visible-light induced reaction of perfluorinated \(\text{a}_2\text{a-diolefinol} \) with \(\text{C}_{60} \). *J. Phys. Chem. A* 121, 113–121 (2017).
5. Da Ros, T. et al. Synthesis and molecular modeling studies of fullerene-5,6,7-trimethoxyindoligo-nucleotide conjugates as possible probes for study of photochemical reactions in DNA triple helices. *Eur. J. Org. Chem.* 2002, 405–413 (2002).
6. Mroz, P. et al. Photodynamic therapy with fullerences. *Photochem. Photobiol. Sci.* 6, 1139–1149 (2007).
7. Hamblin, M. R. Fullerences as photosensitizers in photodynamic therapy: pros and cons. *Photochem. Photobiol. Sci.* 17, 1515–1533 (2018).
8. Hou, W. & Jafvert, C. T. Photochemistry of aqueous \(\text{C}_{60} \) clusters: evidence of \(\text{O}_2 \) formation and its role in mediating \(\text{C}_{60} \) photoinduced reactions. *Environ. Sci. Technol.* 43, 5257–5262 (2009).
9. Wohlers, M. et al. The dark reaction of \(\text{C}_{60} \) and of \(\text{C}_{70} \) with molecular oxygen at atmospheric pressure and temperatures between 300 K and 800 K. *Fuller. Sci. Technol.* 5, 49–83 (1997).
10. Wohlers, M. et al. Reaction of \(\text{C}_{60} \) and \(\text{C}_{70} \) with molecular oxygen. *Synth. Met.* 77, 299–302 (1996).
11. Chibante, L. P. F. & Heymann, D. On the geochemistry of fullerenes: stability of \(\text{C}_{60} \) in ambient air and the role of the ozone. *Geochim. Cosmochim. Acta* 57, 1879–1881 (1993).
12. Heymann, D. & Chibante, L. P. F. Photo-transformations of \(\text{C}_{60} \), \(\text{C}_{70} \), \(\text{C}_{60} \text{O}_2 \), and \(\text{C}_{60} \text{O}_2 \). *Chem. Phys. Lett.* 207, 339–342 (1993).
13. Taylor, R. et al. Degradation of \(\text{C}_{60} \) by light. *Nature* 351, 277–277 (1991).
14. Bennett, C. J. & Kaiser, R. J. Laboratory studies on the formation of ozone (\(\text{O}_3 \)) on icy satellites and on interstellar and cometary ices. *Astrophys. J.* 635, 1362–1369 (2005).
15. Taliani, C. et al. Light-induced oxygen incision of \(\text{C}_{60} \). *J. Chem. Soc., Chem. Commun.* 24, 220–222 (1993).
16. Schuster, D. I., Baran, P. S., Hatch, R. K., Khan, A. U. & Wilson, S. R. The role of singlet oxygen in the photochemical formation of \(\text{C}_{60} \text{O}_2 \). *Chem. Commun.* 21, 2437–2438 (1994).
17. Juhás, L., Hamplová, V., Kodymová, J. & Spálek, O. Reactivity of fullerenes with chemically generated singlet oxygen. *J. Chem. Soc., Chem. Commun.* 21, 1362–1369 (2005).
18. Creggan, K. M. et al. Synthesis and characterization of \(\text{C}_{60} \text{O}_2 \), the first fullerene epoxide. *J. Am. Chem. Soc.* 114, 1103–1105 (1992).
19. DelRosa, M. C. & Crutchley, R. J. Photonsensitized singlet oxygen and its applications. *Coord. Chem. Rev.* 233–234, 351–371 (2002).
20. Turro, N. J., Ramamurthy, V. & Scaino, J. C. Molecular oxygen and organic photochemistry. *In Principles of Molecular Photochemistry: An Introduction 1001–1042 (University Science Books, 2009).
21. Trozzolo, A. M. & Wissel, F. H. A mechanism for the oxidative photodegradation of polyethylene. *Macromolecules* 1, 98–100 (1968).
22. Samuel, E. J. J. & Mohan, S. FTIR and FT Raman spectra and analysis of poly (4-methyl-1-pentene). *Spectrochim. Acta A* 60, 19–24 (2004).
23. Wang, J. et al. Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. *PloS ONE* 8, e72475 (2013).
24. Arlogast, J. W. et al. Photophysical properties of \(\text{C}_{60} \). *J. Phys. Chem.* 95, 11–12 (1991).
25. Negri, F., Orlandi, G. & Zerbetto, F. Interpretation of the vibrational structure of the emission and absorption spectra of \(\text{C}_{60} \). *J. Chem. Phys.* 97, 6496–6503 (1992).
26. Okutan, E. Fullerene as spin converter. In *Fullerenes and Relative Materials Properties and Application* (ed Natalia, K.) 127–143 (IntechOpen, 2018).
27. Encinas, D. & Gómez-de-Balugera, Z. Fullerene \(\text{C}_{60} \) in atmospheric aerosol and its relationship to combustion processes. *Arch. Environ. Contam. Toxicol.* 75, 616–624 (2018).

Acknowledgements

The authors are indebted to Dr. David Jacob for his help with the Fluorolog Spectrometer in the Chemistry Undergraduate Teaching Laboratory. The authors also thank Dr. Steve Hartson of OSU Genomics and Proteomics Center for his assistance with mass spectrometry. A.K.K. acknowledges the funding by National Science Foundation (Award #1707008). J.B. acknowledges the support of Robert A. Welch Foundation (E-1728).

Author contributions

L.Z. discovered the unexpectedly rapid photooxidation of \(\text{C}_{60} \) in polystyrene. L.Z. and A.K.K. suspected the role of \(\text{O}_2 \) and decided to explore photooxidation of \(\text{C}_{60} \) in solvents. A.K.K. hypothesized models, formulated the kinetics equations, and designed the experiments to explain the photooxidation mechanism. L.Z. prepared all the samples, performed all the experiments, acquired all the reported data, and prepared all the figures. C.W. and J.B. repeated and confirmed the phosphorescence measurements (Fig. 2) with their custom-designed emission spectroscopy setup. L.Z. led the literature search. L.Z. and A.K.K. performed the data analysis. A.K.K. wrote the manuscript. A.K.K. and L.Z. wrote the Supplementary Information. The manuscript was checked and approved by all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42004-020-0318-x.

Correspondence and requests for materials should be addressed to A.K.K.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
