Diversity of the Bambusicolous Fungus *Apiospora* in Korea: Discovery of New *Apiospora* Species

Sun Lul Kwon\(^a\), Minseo Cho\(^a\), Young Min Lee\(^a\), Hanbyul Lee\(^b\), Changmu Kim\(^c\), Gyu-Hyeok Kim\(^a\) and Jae-Jin Kim\(^a\)

\(^a\)Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, South Korea; \(^b\)Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea; \(^c\)Division of Biological & Genetic Resources Assessment, National Institute of Biological Resources, Incheon, South Korea

ABSTRACT

Many *Apiospora* species have been isolated from bamboo plants – to date, 34 bambusicolous *Apiospora* species have been recorded. They are known as saprophytes, endophytes, and plant pathogens. In this study, 242 bambusicolous *Apiospora* were isolated from various bamboo materials (branches, culms, leaves, roots, and shoots) and examined using DNA sequence similarity based on the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions. Nine *Apiospora* species (*Ap. arundinis*, *Ap. camelliae-sinensis*, *Ap. hysterina*, *Ap. lageniformis* sp. nov., *Ap. paraphaeosperma*, *Ap. pseudophyphopodi* sp. nov., *Ap. raskravindrae*, *Ap. saccharicola*, and *Ap. sar-gassi*) were identified via molecular analysis. Moreover, the highest diversity of *Apiospora* was found in culms, and the most abundant species was *Ap. arundinis*. Among the nine *Apiospora* species, two (*Ap. hysterina* and *Ap. paraphaeosperma*) were unrecorded in Korea, and the other two species (*Ap. lageniformis* sp. nov. and *Ap. pseudophyphopodi* sp. nov.) were potentially novel species. Here, we describe the diversity of bambusicolous *Apiospora* species in bamboo organs, construct a multi-locus phylogenetic tree, and delineate morphological features of new bambusicolous *Apiospora* in Korea.

1. Introduction

Apiospora Sacc. (*Apiosporaceae, Sordariomycetes, Ascomycota*) was recognized and established with *Ap. montagnei* by Saccardo (1875), and 145 epithets of *Apiospora* have been listed in Index Fungorum (2022) [1,2]. *Apiospora* is a cosmopolitan fungus, reported from various sources such as plants, soil, air, and marine samples in tropical, subtropical, Mediterranean, temperate, and even cold regions [3]. Moreover, they have been characterized as endophytes, saprobes, and plant pathogens (especially in Poaceae) [4–7]. Morphologically, *Apiospora* is characterized by globose, subglobose to ellipsoid, oval, and obovoid conidia when observed in face view, lenticular in side view, and basauxic conidiogenous cells [3]. The genus *Apiospora* has been observed to have *Arthrinium*-like morphs in the asexual state and is thus synonymized under *Arthrinium* species [4,8,9]. However, differences in genetic, morphological, and ecological characteristics between the two genera were found by Pintos et al. [3]; 76 species of *Arthrinium* have been synonymized under *Apiospora*, and the two genera have been completely separated [3,6,10].

Bamboo plays a crucial role in global carbon cycling. It absorbs wastewater, and it is used in human economic activities, such as construction, furniture, food, and even medicine [11]. Bamboo is also known as a good host, and more than 1300 bamboo ascomycetes (more than 120 families and 400 genera) have been described or recorded [12]. Most bambusicolous fungi have been reported in bamboo organs, such as culms (665 species), leaves (216 species), sheaths (19 species), and branches (14 species), and the least number of fungi have been recorded in shoots, roots, and inflorescences [12,13]. According to previous research, the most commonly detected endophytic fungus in bamboo (*Yushania brevipaniculata*) is *Arthrinium* species (now including the genus *Apiospora*), comprising almost 50% of isolates, and it is also found in healthy bamboo leaves [14]. Kim et al. [15] isolated fungi (93

CONTACT Jae-Jin Kim
jae-jinkim@korea.ac.kr

KEYWORDS Bambusicolous *Apiospora*; diversity; multi-locus phylogeny; morphology; novel species

ARTICLE HISTORY
Received 24 August 2022
Revised 22 September 2022
Accepted 5 October 2022
ascomycetes and 14 basidiomycetes) from bamboo chips with decayed parts and used them for the fungal decay test against bamboo [15]. In the study, Ap. arundinis (=Ar. arundinis) was isolated as the second dominant species comprising 19.7% of the ascomycetes, and it contributed to the highest rate of weight loss (17.9%) against giant bamboo (Phyllostachys bambusoides) [15]. However, a study of Apiospora diversity according to bamboo organs has not been conducted.

Approximately 70 bamboo species are distributed naturally or artificially in Korea, and the distribution area is estimated to occupy approximately 22,067 ha [16]. However, studies on the diversity of bambusicolous fungi (including the bambusicolous Apiospora) in Korea are lacking. Currently, 17 Apiospora species have been reported in Korea. Among these, 14 Apiospora species were collected from marine environments (Ap. agari, Ap. arctoscripi, Ap. arundinis, Ap. fermenti, Ap. koreana, Ap. marii, Ap. marina, Ap. piptatheri, Ap. pusillisperma, Ap. rasiakrivandrae, Ap. sacchari, Ap. saccharicola, Ap. sargassi, and Ap. taeanaensis). Three Apiospora species (Apiospora arundinis, Ap. camelliae-sinensis, and Ap. minutispora) have been collected from terrestrial environments, and only two Apiospora species have been reported in bamboo (Ap. arundinis and Ap. camelliae-sinensis) [5,6,15,17,18].

This study aimed to investigate the bambusicolous Apiospora diversity in Korea with bamboo organ specificity and to report new Apiospora species (with unrecorded Apiospora) in Korea. To accurately identify the Apiospora species, four DNA molecular datasets of the internal transcribed spacer (ITS), 28S large subunit ribosomal RNA gene (LSU), translation elongation factor 1-alpha (TEF), and beta-tubulin (TUB) were used for phylogenetic analysis. Furthermore, a detailed analysis of cultural and microscopic characteristics was conducted.

2. Material and methods

2.1. Sampling and isolation

Bamboo materials (branches, culms, leaves, roots, and shoots) were collected from various bamboo forests in Korea (Figure 1S). A small piece of bamboo material was placed on a 2% malt extract agar (MEA) medium containing 0.01% streptomycin. Apiospora-like hyphae and spores were isolated continuously until they were pure isolates. The pure strains were stocked in glycerol 10% stock and stored at −20°C in the Korea University Fungus Collection (KUC), Seoul, Korea. The strains examined in this study, including the type strains of novel Apiospora species candidates, were deposited at the National Institute of Biological Resources, Incheon, Korea (NIBR).

2.2. DNA extraction, polymerase chain reaction (PCR), and sequencing

Bambusicolous Apiospora strains were used for molecular identification. Genomic DNA was extracted from fungal mycelia using an AccuPrep Genomic DNA extraction kit (Bioneer, Daejeon, Korea) according to the manufacturer’s protocol. The AccuPower® PCR PreMix Kit (Bioneer) was used for PCR. PCR targeting ITS, LSU, TEF, and TUB regions. For the ITS region, ITS1F (or ITS5)/LR3 (or ITS4) primer sets were used [19,20]. For the LSU region, we used the LR0R/LR7 primer [21]. To amplify the TEF region, 728F (or 983F)/1567R primer sets were used [22,23]. For TUB region, Bt2a (or T1)/Bt2b (or T2) primer sets were used [24,25]. All PCR products were checked by electrophoresis on a 1% agarose gel and purified using the AccuPrep DNA Purification Kit (Bioneer). DNA sequencing was conducted by Cosmo Genetech (Seoul, Korea). All new sequences have been deposited in GenBank.

2.3. Phylogenetic analysis

All obtained sequences were assembled, proofread, and edited using Geneious Prime 2022.1.1 (Biomatter, Ltd., Auckland, New Zealand). The edited sequences were aligned with reference sequences of Apiospora, Arthrinium, and related genera downloaded from the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) using MAFFT 7.450 [26,27]. The ambiguous alignments were manually adjusted, and maximum likelihood (ML) analysis was performed using RAxML v. 8 with the GTR + G model with 1000 bootstrap replicates [28]. MrBayes (MB) analysis was carried out using MrBayes v. 3.2.6, with the best model selected for each ITS, LSU, TEF, and TUB dataset using jModeltest v. 2.1.10 [29,30]. To achieve stationary equilibrium, five million trees were generated, and the trees were sampled every 1000th generation. Posterior probabilities (PP) were calculated in the majority rule consensus tree after discarding the first 25% of the trees as burn-in. All analyses were performed using Geneious Prime software 2022.1.1 (https://www.geneious.com/prime/).

2.4. Morphological observation

The culture characteristics and growth rates of Apiospora were observed on the potato dextrose agar (PDA, Difco, Detroit, USA), MEA, and oatmeal
agar (OA, Difco) media at 15°C, 20°C, and 25°C in darkness for 2 weeks. The colony form, elevation, margin, presence of aerial mycelia, the color of mycelia and medium, and sporulation were recorded. Color-corresponding codes were determined according to the Munsell color chart (Munsell Color, 2009). Growth rates were measured every 24 h, and each measurement was performed in triplicates. Microscopic characteristics were observed on water agar medium (WA, Bacto agar (Difco) 15 g, distilled water 1000 mL) using an Olympus BX51 light microscope (Olympus, Tokyo, Japan) with a DP20 microscope camera (Olympus). The shape, size, and color of the conidiophores, conidia, and hyphae were observed and recorded. Ultra-high-resolution scanning electron microscopy (UHR SEM, Hitachi SU-70, Hitachi, Tokyo, Japan) was used to observe the detailed morphological characteristics.

3. Results

3.1. Diversity of bambusicolous Apiospora in Korea

A total of 108 bamboo samples were collected from 20 bamboo forests in Korea (Figure 1S). The collected bamboo materials were composed of 33 branches, 44 culms, 14 leaves, 13 roots, and four shoots, and were used as fungal isolation sources. As a result, 242 bambusicolous Apiospora strains were isolated and identified based on the DNA sequence similarity of ITS, LSU, TEF, and TUB regions against the NCBI database (http://www.ncbi.nlm.nih.gov/blast). Based on sequence similarity, the Apiospora strains were identified as nine Apiospora species (Ap. arundinis (181 strains), Ap. camelliae-sinensis (17 strains), Ap. hysterina (two strains), Ap. rasikravindrae (31 strains), Ap. saccharicola (two strains), Ap. sargassi (one strain), Ap. paraphaeosperma (two strains), Ap. lageniformis sp. nov. (four strains), and Ap. pseudohyphopodii sp. nov. (two strains)). Figure 2S shows that the diversity of Apiospora was the highest in the culm, followed by the branch, and the most abundant species was Ap. arundinis, which accounted for >74% of the total isolates, followed by Ap. rasikravindrae (13%) and Ap. camelliae-sinensis (7%), respectively. The portion of Ap. camelliae-sinensis and Ap. rasikravindrae was higher in the bamboo branch but lower in the culm (Figure 2S). A few Apiospora species have been isolated from leaves, roots, and shoots. Apiospora arundinis was isolated from the highest proportion of bamboo tissues. Apiospora sargassi has only been isolated from the shoot tissues.

Apiospora hysterina strains were isolated from bamboo branches and Ap. paraphaeosperma strains were isolated from culms. The strains of Ap. pseudohyphopodii sp. nov. was isolated from bamboo culms, and Ap. lageniformis sp. nov. was isolated from the branches and culms. According to the present study, two species (Ap. hysterina and Ap. paraphaeosperma) and two novel species (Ap. lageniformis sp. nov. and Ap. pseudohyphopodii sp. nov.) have been recognized as new candidate species in Korea. Thus, phylogenetic and morphological analyses were performed for accurate taxonomic evaluation.

3.2. Phylogenetic analysis

The multigene alignments (ITS, LSU, TEF, and TUB combined datasets) contained 151 reference strains, and 10 new isolated strains in this study with 3717 characters, including gaps, were analyzed using ML and MB methods. The multigene alignments (ITS, LSU, TEF, and TUB combined datasets) contained 151 reference strains, and 10 new isolated strains in this study with 3717 characters, including gaps, were analyzed using ML and MB methods (Table 1). In MB analysis, ITS and LSU sequence alignments were assigned as GTR +I+G to the best-fit model, and TEF and TUB were assigned as GTR +G and HKY +I+G, respectively. Both ML and MB trees showed similar tree topologies, and the ML tree is represented. Two new Apiospora species (Ap. lageniformis sp. nov. and Ap. pseudohyphopodii sp. nov.) were distinct from other Apiospora clades and were clustered as monophyletic groups, respectively with high support (1/100, PP/bootstrap value (BS)) (Figure 1). Although Ap. hysterina KUC21437 and KUC21438 formed a monophyletic group with Ap. hysterina ICPM 6889 and Ap. hysterina AP29717, they were not distinguished from Apiospora sasae CPC 38165 and Ap. yunnana MFLUCC 18-1102. Furthermore, Ap. paraphaeosperma KUC21488 and KUC21688 were grouped together with Ap. paraphaeosperma GUCC 10126 and MFLUCC 13-06044, but the resolution was low in the concatenated tree (Figure 1). A morphoanatomical analysis is needed to interpret the low resolution of the two unrecorded Apiospora species.

3.3. Taxonomy

Apiospora lageniformis S.L. Kwon & J.J. Kim, sp. nov. (Figure 2)

Mycobank: MB845439

Type: KOREA, Jeollabuk-do, Damyang-gun, 32°34’27.4”N, 124°52’17.8”E, isolated from the culm of Phyllostachys nigra var. henonis, Apr. 2021, S.L. Kwon (NIBRFGC000509393 = KUC21686).
Species	Strain no.	Isolation source	Country	ITS Accession no.	LSU Accession no.	TEF Accession no.	TUB Accession no.
Apispora acutipica	KUCC 20-0209	Clump of Bambusa bambos	China	MT94342	MT94338	MT947359	MT947365
Apispora acutipica	KUCC 20-0210	Clump of Bambusa bambos	China	MT94343	MT94339	MT947360	MT947366
Apispora agari	KUC21333	Agarum criniforme	Korea	MH948520	MH948440	MH544663	MH948478
Apispora agari	KUC21361	Agarum criniforme	Korea	MH948519	MH948449	MH868914	MH948477
Apispora aquatica	S-642	Submerged wood	China	MK028608	MK035806	–	–
Apispora arctoscopi	KUC21333	Egg masses of Arctosporus japonicus	Korea	MH948529	MH948449	MH868918	MH948487
Apispora arundinis	CBS 124788	Lives of Fagus sylvatica	Switzerland	KF144885	KF144929	KF145017	KF144975
Apispora aurea	CBS 133509	Sclerotium buried in sandy field	USA	KF144886	KF144930	KF145018	KF144976
Apispora aurae	CBS 244.83	–	Air	AB220251	AB220435	–	–
Apispora balearica	AP24118	Undetermined Poaceae	Spain	MK014869	MK014836	MK017975	MK017946
Apispora bambusicolor	MFLUCC 20-0144	Dead culms of bamboo	Thailand	MW173030	MW173087	MW183262	–
Apispora biseriale	CGMC3.20135	Dead culms of bamboo	China	MW1841708	MW1847885	MWS22938	MWS22955
Apispora camelliae-sinensis	LCS5007c	Camellia sinensis	China	KY494970	KY494970	KY705103	KY705173
Apispora camelliae-sinensis	LCS181c	Brassica rapa subsp. oleifera	China	KY494971	KY494987	KY705157	KY705229
Apispora chianghienesi	MFLUCC 17-1505	Dead culms of bamboo	Thailand	MZ54250	MZ54252	–	MZ546409
Apispora chromolaena	MFLUCC 17-1505	Dead culms of Chromospora odorata	Thailand	MT21434	MT214436	–	–
Apispora cordoyles	GUCC 10026	Cordyline fruticosa	China	MT040105	–	MT040126	MT040147
Apispora cyclobalanopisi	CGMC3.20136	Leaf of Cyclobalanopsis glauca (Thunb.) Oerst	China	MW1841713	MW1847892	MWS22945	MWS22962
Apispora descalii	AP31118c	–	Spain	MK014870	MK014837	MK017947	MK017976
Apispora dichotomanti	LC4590c	Dichotomanthes tristisardica	China	KY494697	KY494773	KY705096	KY705167
Apispora espenfeldii	AP16717c	Phyllostachys aurea	Spain	MK014878	MK014845	MK017954	MK017983
Apispora euphorbiae	IMI 285638b	Bambusa sp.	Bangladesh	AB220241	AB220345	–	AB220288
Apispora fermenti	KUC21288	Seaweed	Korea	MF615230	MF615217	MH544668	MF615235
Apispora gaoyouensis	KUC21289	Seaweed	Korea	MF615226	MF615213	MH544667	MF615231
Apispora garethnense	CFCC 52301	Pherogetes aurantiacis	China	MH197124	–	MH236793	MH236796
Apispora gelatinosa	JHB004c	Bamboo	China	KY356080	KY356091	–	–
Apispora gyangensis	KUC14785c	Dead branch of bamboo	China	MW1841706	MW1847888	MWS22941	MWS22958
Apispora guangensis	HMAS 102403	Dead culm of bamboo	China	MW204667	MW204577	MW575935	MW755604
Apispora guangensis	HMAS 102403	Unidentified grass	China	KY494708	KY494784	KY705107	KY705177
Apispora guangensis	HMAS 102403	–	China	KY494709	KY494785	KY705108	KY705178
Apispora guangensis	HMAS 102403	–	Spain	AB220242	AB220336	–	AB220289
Apispora hydei	CBS 114990c	Culms of Bambusa tuludoides	Hong Kong	KF144880	KF144936	KF145024	KF144982
Apispora hyphopodi	JHB003c	Bamboo	China	KY356088	KY356093	–	–
Apispora hystera	MFLUCC 15-003	Bamboo	Thailand	KR069110	–	–	–
Apispora jiangdongensis	AP29577	Phyllostachys aurea	Spain	MK014875	MK014842	MK017952	MK017981
Apispora kogelbergensis	ICMP 6806c	Bamboo	New Zealand	MK014874	MK014841	MK017951	MK017980
Apispora kogelbergensis	KUC21437	Branch of Phyllostachys bambusoides	Korea	ON764018	ON787757	ON806622	ON806632
Apispora kogelbergensis	KUC21437	Branch of Phyllostachys bambusoides	Korea	ON764019	ON787758	ON806623	ON806633
Apispora indica	AP10118c	Arundinaria donax	Portugal	MK014879	MK014846	MK017955	MK017984
Apispora koreana	KUC21332c	Egg masses of Arctosporus japonicus	Korea	MH948524	MH948444	MH544664	MH948482
Apispora koreana	KUC21348	Egg masses of Arctosporus japonicus	Korea	MH948523	MH948443	MH868927	MH948481

(continued)
Species	Strain no.	Isolation source	Country	GenBank accession nos.
Ap. lageniformis sp. nov	KUC21685	Branch of Phyllostachys pubescens	Korea	ON764020 ON787759 ON806624 ON806634
Ap. lageniformis sp. nov	KUC21686	Top of culm of	Korea	ON764021 ON787760 ON806625 ON806635
Ap. lageniformis sp. nov	KUC21687	Top of culm of Phyllostachys nigra var. henonis	Korea	ON764023 ON787762 ON806626 ON806636
Ap. locuta-pollinisa	LC11683	Bee bread	China	MF393959 – MF393961 MF393962
Ap. longistroma	MFLUCC 11-0481	Bamboo	Thailand	KU940141 KU863129 – –
Ap. malaysiana	CBS 251.29	Culm base of Cinnamomum camphora	Malaysia	KF144897 KF144943 KF145031 KF144989
Ap. marii	CBS 102053	Macaranga hulittii	Malaysia	KF144896 KF144942 KF145030 KF144988
Ap. mari	CBS 497.90	Beach sand	Spain	AB202252 AB204497 KF145035 KF144993
Ap. marina	CBS 114803	Pseudeosa hindsii	Hong Kong	KF144899 KF144945 KF145033 KF144991
Ap. marina	CUB 102052	Seaweed	Korea	MH498537 MH498457 MH869293 MH498495
Ap. mediterranea	IMI 326875	Air	Spain	AB202243 AB202337 – AB202290
Ap. minutispora	1.70E-41	Soil	Korea	LC17882 – LCI88883 LC518888
Ap. myxillophora	DAOI 214595	Andropogon sp.	India	KF144965 – – –
Ap. neobambusae	LC7106	Leaf of bamboo	China	KY494818 KY494794 KY860204 KY705186
Ap. neochinense	FCC 53036	Fargesia qinlingensis	China	MK192921 – MK818545 MK818547
Ap. neoregenetoides	HKAS 102408	Bamboo	China	NR_171943 MK708989 – –
Ap. nesuglaboba	JHB007	Bamboo	China	KY365095 KY365096 KY365097 KY365098
Ap. obovata	LC4940	Lithocarpus sp.	China	KY494696 KY494772 KY705059 KY705166
Ap. ovata	CBS 115042	Pseudeosa hindsii	Hong Kong	KF144903 KF144950 KF145037 KF144995
Ap. paraphaeosperma	GUCC 10126	Dead culms of bamboo	Thailand	KX822128 KX822124 – –
Ap. phragmites	MFLUCC 13-0644	Culm of bamboo	Korea	ON764024 ON787763 ON806628 ON806638
Ap. phyllostachydias	MFLUCC 18-1101	Culms of Phyllostachys heteroclada	Italy	KF144909 KF144956 KF145043 KF145001
Ap. piptatheri	AP4817A	Piptatheri milileum	Spain	MK014893 MK014860 MK017969 –
Ap. pterosperma	KUC2122	Sargassum sp.	Korea	KT207736 KT207686 MF615223 KT207636
Ap. pseudagazzinii	KUC2127	Sargassum sp.	Korea	MF615229 MF615216 MF615221 MF615234
Ap. pseudapetrenymphita	LC7234	Leaf of bamboo	China	KY494743 KY494819 KY705139 KY705211
Ap. pseudosasa	KUMCC 20-0208	Sheath of Bambara dolicholacca	China	MT946343 – MT947361 MT947367
Ap. pseudosinensis	CPC 18900	Culms of Phragmites australis	China	MK351842 – MK340918 MK291949
Ap. pseudosinensis	MFLUCC 18-1101	Culms of Phyllostachys heteroclada	China	MK351842 – MK340918 MK291949
Ap. pterosperma	CPC 20193	Leaf of Lepidosperma gladiatum	Australia	KF144913 KF144960 KF145046 KF145004
Ap. pulcherrimia	KUC2132	Seaweed	Korea	MH498533 MH498453 MH869300 MH498491
Ap. qinlingensis	FCC 52303	Fargesia qinlingensis	China	MH197120 – MH236795 MH236791
Ap. rafikvarum	FCC 52304	Fargesia qinlingensis	China	MH197121 – MH236796 MH236792
Ap. saracenica	LC5497	Soil	China	KY494713 – KY705112 KY705182
Ap. saracenica	LC7115	Leaf of bamboo	China	KY494721 KY494797 KY705118 KY705189
Ap. sacchari	CBS 301.41	Bamboo	Indonesia	KF144917 – KF145048 KF145006
Ap. sacchari	CBS 372.67	Air	Korea	KF144918 KF144964 KF145049 KF145007
Ap. saccharcola	CBS 191.73	Air	Netherlands	KF144920 KF144966 KF145051 KF145009
Ap. saccharcola	CBS 463.63	Dead culms of Phragmites australis	Netherlands	KF144921 KF144968 KF145053 KF145011
Ap. sargentii	KUC21226	Sargassum sp.	Korea	KT207746 KT207696 MH544677 KT207644
Ap. sae	KUC2123	Seaweed	Korea	MH498532 MH498452 MH869310 MH498490
Ap. septata	CPC 38165	Dead culms of Sasa veitchii	Netherlands	MW883402 MW883797 MW890104 MW890120
Ap. septrata	CGMCC 33134	Dead branch of bamboo	China	MW481711 MW478890 MW522943 MW522960
Ap. setosa	MG2220-0109	Dead branch of bamboo	China	MW481712 MW478891 MW522944 MW522961
Ap. setosa	IMI 326869	Excipients, atmosphere and home dust	Spain	AB202205 AB202244 – AB202297
Ap. setosa	MG2220-0109	Dead branch of bamboo	China	MW481711 MW478891 MW522944 MW522961
Ap. setosum	KUMCC 19-0217	Dead branches of bamboo	China	MN528012 MN528011 MN527357 –
Ap. sibua	HKAS 107008	Dead culm of Paeaceae	China	MW240648 MW240578 MW759536 MW775605
Ap. stipa	CPC 38101	Dead culm of Celtis gigantea	Spain	MW883403 MW883798 MW890105 MW890121
Ap. subglobosa	MFLUCC 11-0397	Bamboo	Thailand	KB069112 KB069113 – –
Ap. subhirsuta	LC7292	Leaf of bamboo	China	KY494752 KY494606 KY705148 KY705220

(continued)
Table 1. Continued.

Species	Strain no.	Isolation source	Country	ITS	LSU	TEF	TUB
Ap. toeanensis	KUC21322	Seaweed	Korea	MH498515	MH498435	MH544662	MH498473
Ap. thailandica	KUC21359	Seaweed	Korea	MH498513	MH498433	MN869835	MH498471
Ar. sporophleum	MFLUCC 15-0202	Dead culms of bamboo	Thailand	KUS10145	KUB63133	–	–
Ar. sphaerospermum	IMI 99670	Citrus sinensis	Vietnam	KX986096	KX986111	KY019466	–
Ar. sphaerospermum	CBS 478.86	Soil from roadway	Zimbabwe	KF144925	KF144970	KF145055	KF145013
Ar. sorghi	CBS 595.66	Soil	Austria	KF144926	–	–	–
Ar. thailandica	MFLUCC 18-1102	Dead or nearly dead culms of Phyllostachys heteroclada	China	MK351843	KUB63135	MK349019	MK291950
Ar. pseudophytopodi sp. nov	KUC21680	Culm of Phyllostachys pubescens	Korea	ON764026	ON777765	ON806630	ON806640
Ar. austriacum	KUC21684	Culm of Phyllostachys pubescens	Korea	ON764027	ON777766	ON806631	ON806641
Ar. japonicum	Sp. nov	–	Japan	AB220262	AB220356	–	AB220309
Ar. luzulæ	AP7619-3	Dead leaves of Luzula sylvatica	Spain	MW208937	MW208863	–	–
Ar. morthieri	GZU 345043	Carex digitata	Austria	MW208938	MW208864	–	–
Ar. poaeospermum	CBS 114317	Leaf of Hordeum vulgare	Iran	KF144906	KF144953	KF145040	KF144998
Ar. carinocola	AP23518	Carex ericetorum	Germany	K014871	K014838	K017948	K017977
Ar. puccinioides	AG19066	Pectobacteria	France	MW208931	MW208861	–	–
Ar. curvatum	AP25418	Leaves of Carex sp.	Germany	K014872	K014839	K017947	K017978
Ar. japonicum	IFO 30500	–	Japan	AB220262	AB220356	–	AB220309
Ar. luzulæ	AP7619-3	–	Spain	MW208937	MW208863	–	–

Etymology: “lageniformis” refer to the lageniform shape of the conidiogenous cell.

Culture characteristics: PDA, colonies irregular form, flat, mycelium moderate, concentrically spreading, margin filiform; mycelia white; sporulation observed after 7 days at 15°C on hyphae; pigment not observed. MEA, colonies circular form, flat, mycelium low, concentrically spreading with sparse aerial mycelium, margin entire; mycelia hyaline to white colored; sporulation observed after 7 days at all temperatures on hyphae; pigment absent. OA, colonies circular form, mycelium abundant, fluffy, downy, crateriform, thick, concentrically spreading with abundant aerial mycelium, margin entire; mycelia white; sporulation not observed; pigment absent.

Colony diameters – 15°C PDA 6.4–7 cm/14 days, MEA 6.5–6.6 cm/14 days, OA 5.1–5.5 cm/14 days; 20°C PDA 7 cm/13 days, MEA 7 cm/12 days, OA 7 cm/13–14 days; 25°C PDA 7 cm/13 days, MEA 7 cm/9 days, OA 7 cm/12–13 days.

Asexual morphology: Conidiophores are reduced to conidiogenous cells. Conidiogenous cells aggregated in

*AG, Alain Gardiennet; AP, Ángel Pintos; CBS, Westerdijk Fungal Biodiversity Institute (WU), Utrecht, The Netherlands; CFC, China Forestry Culture Collection Center, Beijing, China; CGMCC, China General Microbiological Culture Collection Center, Beijing, China; CPC, Culture collection of Pedro Crous, housed at the Westerdijk Fungal Biodiversity Institute; DAOM, Canadian Collection of Fungal Cultures, Ottawa, Canada; GUCC, Guizhou culture collection, Guizhou, China; GZU, arl-Franzens-Universität Graz, Austria; HKAS, Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China; IFO, Institute for Fermentation in Osaka, Japan; IMI, CABI Bioscience, Eggham, UK; JHB, H.B. Jiang; KUC, the Korea University Fungus Collection, Seoul, Korea; KUMCC, Kunming Institute of Botany Culture Collection, Kunming, China; LC, Personal culture collection, Guizhou, China; MFLUCC, Mae Fah Luang University Culture Collection, Thailand; NFCCI, National Fungal Culture Collection of India; and URM, URMC culture collection in Brazil.

The sequences generated in this study are shown in bold.

Indicate the type materials.

GenBank accession no.:
a cluster on hyphae, basauxic, polyblastic, hyaline, lageniform, 8.0–10.5(–12) × 4.0–5.0 μm, apical neck 3.5–5.5 μm long, basal part 2.8–7.2 μm long. Conidia green to dark brown, surface smooth, globose to ellipsoid in surface view, (7.8–)8.1–9.0(–9.5) × (6.8–)7.5–8.5(–9.0) μm (X = 8.6 × 8.0 μm, n = 30); lenticular in side view, with equatorial slit, (7.0–)8.0–9.5(–9.5) × (5.3–)6.0–7.0(–7.5) μm (X = 8.6 × 6.4 μm, n = 30). Mycelium smooth, hyaline, branched, septate, 2.0–4.0 μm diam.

Additional materials examined: KOREA, Jeollabuk-do, Damyang-gun, 32°34'27.4"N, 124°52'17.8"E,
isolated from the culm of *Phyllostachys nigra* var. *henonis*, Apr. 2021, S.L. Kwon (NIBRFGC000509394 = KUC21687); KOREA, Jeollabuk-do, Gochang-gun, 35°25’50.9”N, 126°42’16.9”E, isolated from a branch of *Phyllostachys pubescens*, Mar. 2021, S.L. Kwon (NIBRFGC000509391 = KUC21681 and NIBRFGC000509392 = KUC21685).

Remarks: The *Ap. lageniformis* sp. nov. is characterized by a lageniform conidiogenous cell. This species is closely related to *Apispora jiangxiensis* LC4577 (M. Wang & L. Cai) Pintos & P. Alvarado (over 100% similarity in the ITS region, 100% in the LSU region, 99.77% in the TEF region, and 97.92% in the TUB region). However, they can be distinguished by phylogenetic analysis with high bootstrap values (1/100, PP/BS). In the original description, *Ap. jiangxiensis* LC4577 had luteous to sienna pigments on colonies and media [7]. However, no pigments were observed in the *Ap. lageniformis* sp. nov. Furthermore, the growth rate of *Ap. jiangxiensis* LC4577 (9 cm/10 days, at 25°C on PDA) was faster than *Ap. lageniformis* sp. nov. KUC21686 at 25°C on PDA (7 cm/13 days) [7].

Apispora lageniformis sp. nov. also is closely related to *Apispora obovata* (M. Wang & L. Cai) Pintos & P. Alvarado, and *Ap. arctoscopi* (S.L. Kwon, S. Jang & J.J. Kim) S.L. Kwon & J.J. Kim in concatenate phylogeny (Figure 1). However, *Ap. obovata* has obovoid, elongated to ellipsoidal conidia (size 16–31 × 9–16 µm), and *A. arctoscopi* has globose to elongated ellipsoid (in surface view, 9.5–13 × 7.5–12 µm) conidia (in lenticular side view, 5.5–7.5 µm) [5,7], which are different conidia characteristics of *Ap. lageniformis*. *Apispora arctoscopi* also has different conidiogenous cell shapes (cylindrical, sometimes ampulliform) [5].

Apispora pseudohyphopodii S.L. Kwon & J.J. Kim, sp. nov. (Figure 3)

MycoBank: MB845440

Type: KOREA, Jeollabuk-do, Gochang-gun, 35°25’50.9”N, 126°42’16.9”E, isolated from a branch of *Phyllostachys pubescens*, Mar. 2021, S.L. Kwon (NIBRFGC000509202 = KUC21680)

Etymology: Named after its morphological similarity to *Apispora hyphopodii*.

Culture characteristics: PDA, colonies circular form, flat, mycelium dense around the center and become sparse at the margin, concentrically
spreading with abundant aerial mycelium, margin filiform; mycelia white around the center, fading to hyaline at the margin; sporulation observed after 7 days at 15°C on hyphae; yellow (2.5Y, 7/8) pigment diffused after 5 days, and becoming converted to dark olive gray (5Y, 3/2) pigment from the center in reverse. MEA, colonies circular form, flat, mycelium low, concentrically spreading with sparse aerial mycelium, margin filiform; mycelia white colored; sporulation observed around plug after 7–8 days at 15°C; pigment absent. OA, colonies circular form, flat, mycelium abundant, dense, concentrically spreading with sparse aerial mycelium, margin entire; mycelia white; sporulation not observed; pigment absent.

Colony diameters – 15°C PDA 3.2–3.5 cm/14 days, MEA 1.9–2.2 cm/14 days, OA 7 cm/12–13 days; 20°C PDA 5.2–6.2 cm/14 days, MEA 4–4.3 cm/14 days, OA 7 cm/5–6 days; 25°C PDA 7 cm/9 days, MEA 7 cm/11–12 days, OA 7 cm/5 days.

Asexual morphology: Conidiophores are reduced to conidiogenous cells. Conidiogenous cells solitary on hyphae, hyaline, cylindrical, 9.5–13(–24) × 4.5–5.5 μm. Conidia were brown, smooth, globose to ellipsoid, sometimes polygonal or irregular, 20–25(–26) × 18–23 μm (x = 22.4 × 21.1 μm, n = 37). Elongated conidia brown, smooth, obovoid, clavate, (25–)27–40(–44) × 12–20(–22) μm in size. Hyphopodia blackish, lobed, irregular in shape, resembling coral and sea squirt, 20–35(–42) × 5–35 μm. Mycelium smooth, hyaline, branched, and septate.

Additional material examined: KOREA, Jeollabuk-do, Gochang-gun, 35°25′50.9″N, 126°42′16.9″E, isolated from a branch of Phyllostachys pubescens, Mar. 2021, S.L. Kwon (NIBRFGC000509389 = KUC21684).

Remarks: The Apiospora pseudohyphopodii sp. nov. is closely related to Apiospora pseudoparenchymatica LC7234 (over 96.2% similarity in the ITS region, 99.52% in the LSU region, 92.92% in the TEF region, and 93.62% in the TUB region) and Ap. hyphopodii MFLUCC 15-003 (over 98.68% similarity in the ITS region) in the phylogenetic analysis (Figure 1). This species is characterized by blackish-lobed hyphopodia and large and elongated conidia. Hyphopodia have also been observed in Ap. hyphopodii MFLU 15-0383 [31]. However, Ap. pseudohyphopodii sp. nov. KUC21680 has larger conidia (20–25(–26) × 18–22.5 μm (x = 22.5 × 21.2 μm, n = 37)) than Ap. hyphopodii MFLU 15-0383.
The conidia of *Ap. pseudoparenchymatica* are similar in size to those of *Ap. pseudohyphopodii* sp. nov. KUC21680. However, they were clearly distinguished based on their phylogenies. Also, the growth rate of *Ap. pseudohyphopodii* sp. nov. KUC21680 (7 cm/9 days at 25°C on PDA) is slower than *Ap. pseudoparenchymatica* (9 cm/8 days at 25°C on PDA) [7].

Apiospora hysterina (Sacc.) Pintos & P. Alvarado, Fungal Systematics and Evolution 7:206 (2021) [MB837743] (Figure 4).

Culture characteristics: PDA, colonies circular form, flat, mycelium moderate, concentrically spreading with abundant aerial mycelium, margin entire; mycelia white; sporulation observed after 7–10 days at 15°C and 20°C on hyphae; reddish yellow (5YR, 7/8) pigment partially observed after 11 days. MEA, colonies circular form, flat, mycelium low, concentrically spreading with aerial mycelium, margin entire; mycelia hyaline to white colored; sporulation observed after 7–10 days at all temperatures on hyphae; pigment absent. OA, colonies circular form, flat, mycelium concentrically spreading with abundant aerial mycelium, margin entire; mycelia white; sporulation observed after 7–10 days at 20–25°C on hyphae; pigment absent.

Colony diameters – 15°C PDA 5.4–5.8 cm/14 days, MEA 4.8–4.9 cm/14 days, OA 5.5–6.8 cm/14 days; 20°C PDA 7 cm/9–10 days, MEA 7 cm/11–12 days, OA 7 cm/9–10 days; 25°C PDA 7 cm/7 days, MEA 7 cm/8 days, OA 7 cm/7 days.

Asexual morphology: Conidiophores basauxic, polyblastic, hyaline to pale brown, septate or not, smooth or finely roughened with granular pigments, cylindrical, straight or flexuous, 10–25 × 2–3.5 μm, sometimes exceeding 98 μm long. Conidia brown to dark brown, surface smooth, finely roughened, globose to subglobose in surface view, 15.0–18.0 × (13.2–)14.0–16.5(–17.5) μm (x̄ = 16.3 × 15.7 μm, n = 30); obvoid with a horizontal scar at the edge in side view, 15.0–18.0 × (11.5–)13.0–16(–17.5) μm (x̄ = 16.7 × 14.9 μm, n = 50).

Specimen examined: KOREA, Chungcheongnam-do, Taean-gun, 36°29’51.0”N, 126°21’41.5”E, isolated from the branch of *Phyllostachys bambusoides*.

Figure 4. *Apiospora hysterina* (KUC21437). (A) PDA; (B) MEA; (C) OA; (D) conidia; (E, G) conidiogenous cell with conidia; (F, H, I) conidia under UHR-SEM.
Feb. 2020, S.L. Kwon (NIBRFGC000506558 = KUC21437 and NIBRFGC000509388 = KUC21438).

Remarks: The microscopic morphologies of Ap. hysterina KUC21437 and KUC21438 are well-matched with the original description. The former has longer conidiophores exceeding 98 μm and obovoid conidia with a horizontal scar resembling Ap. hysterina ICMP 6889 [32]. The diffused pigment of Ap. hysterina ICMP 6889 was observed on MEA [32]. However, the pigment of Ap. hysterina KUC21437 was not observed on the MEA medium but was observed on the PDA medium. The obovoid shape of conidia of Ap. hysterina are similar to those of Apiospora yunnana (D. Q. Dai & K.D. Hyde) Pintos & P. Alvarado, and Ap. sasae Crous & R.K. Schumach, and they are closely related in the concatenated phylogenetic tree (Figure 1). However, the long conidiophores and small conidia of Ap. hysterina KUC21437 differs from Ap. yunnana [33]. In the case of Apiospora sasae, it is morphologically similar to Ap. hysterina by producing subglobose, polygonal to urceolate (uniform) conidia ((16–17–18–20) × (15–)16–17–19 μm) [34]. However, this species can be distinguished by the septate and long conidiophores of Ap. hysterina KUC21437.

Apiospora paraphaeosperma (Senan. & K.D. Hyde) Pintos & P. Alvarado, Fungal Systematics and Evolution 7:206 (2021) [MB837705] (Figure 5)

Culture characteristics: PDA, colonies circular form, mycelium thick, fluffy, concentrically spreading, margin entire; mycelia white, partially yellow; sporulation not observed; pigment absent. MEA, colonies circular form, flat, mycelium low, margin entire; mycelia hyaline to white colored; sporulation observed after 8–10 days at 20–25 °C on hyphae; pigment absent. OA, colonies circular form, flat, mycelium thick, fluffy, concentrically spreading with abundant aerial mycelium, margin entire; mycelia white, partially yellow; sporulation not observed; Yellow (2.5Y, 8/8) pigment partially diffused in media.

Colony diameters – 15 °C PDA 5.2–5.3 cm/14 days, MEA 4.3–4.5 cm/14 days, OA 4.0–4.2 cm/14 days; 20 °C PDA 7.0 cm/13 days, MEA 5.3–5.8 cm/14 days, OA 5.5–6.0 cm/14 days; 25 °C PDA 7.0 cm/11–12 days, MEA 7.0 cm/12–13 days, OA 6.5–7.0 cm/14 days.

Asexual morphology: Conidiophores are reduced to conidiogenous cells. Conidiogenous cells aggregated in clusters on hyphae, basauxic, polyblastic, hyaline, cylindrical, and ampulliform, 3.0–5.1(–8.7) × 1.5–3.0 μm, elongated conidiogenous cells length

Figure 5. Apiospora paraphaeosperma (KUC21488). (A) PDA; (B) MEA; (C) OA; (D, E) conidiogenous cell with conidia; (F) conidia generated on WA medium under light microscope; (G–I) conidiogenous cell with conidia under UHR-SEM.
(11–)15–25(–34) μm. Conidia green to brown, surface smooth, globose to subglobose, 9.5–12.0 × 8.0–11.0 μm (x = 10.9 × 9.8 μm, n = 47) in surface view; lenticular in side view, with equatorial slit, 7.5–9.0 μm wide (x = 8.12 μm, n = 37) in side view, a slightly elongated cell was observed. Mycelium smooth, hyaline, branched, septate, 1.5–2.5 μm diam.

Specimen examined: KOREA, Jeju-do, Seogwipo-si, 33°15′26.4″N, 126°21′11.2″E, isolated from a culm of bamboo, 2018, J.J. Kim, (NIBRFGC00059203 = KUC21488 and NIBRFGC000509390 = KUC21688).

Remarks: In the original description, Ap. paraphaeosperma MFLUCC 13-0644 had a long conidiogenous cell (25–30 × 4–6 μm) [35]. Although the conidiogenous cells of Ap. paraphaeosperma KUC21488 usually were observed at an average of 3.0–5.1 (–8.7) μm long, sometimes the elongated conidiogenous cells are also observed ((11–)15–25(–34) μm long). This species is closely related to Apiospora rasikravindrae (Shiv M. Singh et al.) Pintos & P. Alvarado, and Apiospora marina (S.L. Kwon, S. Jang & J.J. Kim) S.L. Kwon & J.J. Kim in the concatenated phylogenetic analysis. However, they could be distinguished by the presence or absence of elongated conidiogenous cells in Ap. paraphaeosperma.

4. Discussion

In this study, 242 bambusicolous Apiospora strains were isolated from various bamboo organs and identified based on their DNA similarity against the NCBI database. As a result, in the bamboo organs, the highest Apiospora diversity was detected on the culms (seven species), followed by branches (six species), leaves (two species), shoots epidermis (two species), and roots (one species) (Figure 25). The finding that the most diverse Apiospora were found in bamboo culms is consistent with the previously reported result that most bambusicolous Apiospora species have been isolated from bamboo culms (23 species/34 species of total bambusicolous Apiospora) (Table 2) [4,10,31–33,35–45].

So far, only Ap. rasikravindrae species have been reported in bamboo shoots by Majeedano et al. [46]. In addition, no studies have reported on the isolation of Apiospora species from bamboo roots (Table 2). However, in this study, Ap. arundinis was isolated from all organs, including shoots and roots. In addition, this species had the highest abundance (74% of the total isolates) among the bambusicolous Apiospora species (Table 1S).

New records were identified based on morphological and phylogenetic analyses. The DNA barcode set (ITS, LSU, TEF, and TUB regions) was used in the phylogenetic analysis to distinguish them from cryptic species. In the case of Ap. pseudohyphopodii sp. nov., it is difficult to distinguish between them using only morphology. However, they were clearly distinguished in the phylogenetic analysis, with high bootstrap values (Figure 1). The Ap. pseudohyphopodii sp. nov. is morphologically noted to have hyphopodia and large conidia (Figure 3). Hyphopodia structures were also observed in the species Ap. hyphopodii within the genus Apiospora [31]. However, Ap. hyphopodii could be distinguished by having smaller conidia than Ap. pseudohyphopodii sp. nov. The conidia size of Ap. pseudohyphopodii sp. nov. (globose to ellipsoid, sometimes polygonal or irregular, 20–25(–26) × 18–22.5 μm (x = 22.5 × 21.2 μm, n = 37)) is similar to Ap. neogarethjonesii (globose to subglobose, 20–35 × 15–30 μm), Ap. pseudoparenchymatica (globose to subglobose, 13.5–27 × 12–23.5 μm), and Ap. yunnana (globose to obovoid, 17.5–26.5 × 15.5–25 μm) [7,33,42]. However, they could be distinguished by the shape of the conidia, the presence or absence of hyphopodia, and phylogeny. The Ap. lageniformis sp. nov. is closely related to Ap. jiangxiense (M. Wang & L. Cai) Pintos & P. Alvarado, Ap. ovbata (M. Wang & L. Cai) Pintos & P. Alvarado, and Ap. arctoscopi (S.L. Kwon, S. Jang & J.J. Kim) S.L. Kwon & J.J. Kim in concatenate phylogeny (Figure 1). However, they could be distinguished by culture characteristics, growth rates, conidia size, and conidiogenous cell shape. The Ap. lageniformis sp. nov. is characterized by basauxic, polyblastic, and lageniform conidiogenous cells. The other two unrecorded species, Ap. hysterina and Ap. paraphaeosperma, could also be distinguished from cryptic species and identified as a new record species in this study, but both morphological and phylogenetic analyses are needed.

To date, 34 Apiospora species have been reported in bamboo materials worldwide (Table 2). In contrast, only two bambusicolous Apiospora species have been reported in Korea (Ap. arundinis and Ap. camelliae-sinensis) [15,17]. In the present study, nine Apiospora species contained two unrecorded species (Ap. hysterina and Ap. paraphaeosperma), five recorded species (Ap. arundinis, Ap. camelliae-sinensis, Ap. rasikravindrae, Ap. sargassi, and Ap. saccharicola), and two novel species (Ap. pseudohyphopodii sp. nov. and Ap. lageniformis sp. nov.) were found in bamboo forests. Two previously unrecorded species have been reported from bamboo materials in New Zealand (Ap. hysterina), Spain (Ap. hysterina), and Thailand (Ap. paraphaeosperma) [32,35]. Moreover, one recorded species, Ap. rasikravindrae has been reported in bamboo in China [7]. However, the other two recorded species...
Table 2. List of bambusicolous *Apiospora* in worldwide.

Species	Bamboo species	Organs	Country	Reference
Ap. acutipica	*Ba. bambos*	Clump, leaf	China, Canada, China, Korea	Senanayake et al. [36]
Ap. arundinis	*Sasa sp.*	Culm, leaf	China	Crous and Groenewald. [4], Wang et al. [7], Kim et al. [15]
Ap. bambusicola	Unidentified	Dead culm	Thailand	Tang et al. [37]
Ap. biseriale	*Ph. bambusoides*	Leaf	Korea	Feng et al. [38]
Ap. camelliae-sinensis	Unidentified	Dead culm	Thailand	Tian et al. [10]
Ap. chiangrains	*Ph. aurea*	Dead culm	Spain	Pintos et al. [32]
Ap. euphorbiae	Unidentified	Dead culm	China	Jayasiri et al. [39]
Ap. garetnjonesii	Unidentified	Dead culm and branch	China	Dai et al. [40], Feng et al. [38]
Ap. gelatinosa	Unidentified	Dead culm and branch	China	Senanayake et al. [36]
Ap. guizhouensis	*Ba. multiplex*	Branch	China	Crous and Groenewald. [4]
Ap. hydei	*Ba. tuldoides*, unidentified	Culm, leaf	Hong Kong, China	Senanayake et al. [31]
Ap. hyphopodi	*Ba. tuldoides*	Culm	Thailand	Senanayake et al. [31]
Ap. hysterina	*Bambusa sp.*, *Ph. aurea*	Dead culm	New Zealand, Spain	Pintos et al. [32]
Ap. jiangxiensis	*Phyllostachys sp.*, unidentified	Leaf	China	Wang et al. [7]
Ap. longistroma	Unidentified	Decaying culm	Thailand	Dai et al. [33]
Ap. neobambusae	Unidentified	Leaf	China	Wang et al. [7]
Ap. neochinensis	*Fa. qinlingensis*	Culm	China	Jang et al. [41]
Ap. neogaretnjonesii	Unidentified	Dead culm	China	Hyde et al. [42]
Ap. neoubiglobosa	Unidentified	Dead culm	China	Dai et al. [40]
Ap. multiloculata	Unidentified	Dead culm	Thailand	Bhunjjan et al. [43]
Ap. paraphaeosperma	*Bambusa sp.*	Dead clumps	Thailand	Hyde et al. [35]
Ap. phyllostachydis	*Ph. heterocladia*	Dead culm	China	Yang et al. [44]
Ap. pseudoparenchymatica	Unidentified	Leaf	China	Wang et al. [7]
Ap. pseudosubglobosa	*Ba. dolichocladia*	Sheath	China	Senanayake et al. [36]
Ap. pseudosinensis	Unidentified	Leaf	Netherlands	Crous and Groenewald. [4]
Ap. qinlingensis	*Fa. qinlingensis*	Culm	China	Jang et al. [45]
Ap. rasikarvindraceae	Unidentified, *L. intermedia*	Dead culm, Leaf Shoot	China, Thailand	Wang et al. [7], Tian et al. [10], Majeedano et al. [46]
Ap. sacchari	Unidentified	Dead culm	Indonesia	Crous and Groenewald. [4]
Ap. septata	Unidentified	Dead culm	China	Feng et al. [38]
Ap. subglobosa	Unidentified	Culm	Thailand	Senanayake et al. [31]
Ap. subrostrum	Unidentified	Leaf	China	Wang et al. [7]
Ap. thailandica	Unidentified	Culm	Thailand	Dai et al. [33]
Ap. yunnana	Unidentified	Culm	China	Dai et al. [33]

*The genus names of bamboo were abbreviated as: *Ba., Bambusa; *Ph., Phyllostachys; *Fa., Fargesia; and *L., Lignania.*

(Ap. sargassi and Ap. saccharicola) have not been reported in bamboo until now; thus, this is the first report of these species isolated from bamboo materials.

Research on bambusicolous fungi may provide opportunities to control bamboo pathogens and promote bamboo cultivation [47]. However, the ecological roles of most of the *Apiospora* remain unknown. Therefore, *Apiospora* diversity and their ecological roles need to be explored further. This study will serve as a basis for the taxonomic study of *Apiospora* and is expected to be the groundwork for potentially determining the diversity of *Apiospora* in the bamboo forests of Korea.

Acknowledgment

The authors are grateful to Dr. Songjin Lee (Bamboo Resource Research Institute, Damyang-gun, Korea) for help in collecting and identifying the bamboo materials.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) [2021R1A2C1011894]; the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea [NIBR202102107 and NIBR202203112].

ORCID

Jae-Jin Kim http://orcid.org/0000-0001-8990-2139

References

[1] Saccardo P. Conspectus generum pyrenomycetum italicorum additis speciebus fungorum venetorum novis vel criticis, systemate carpologico dispositorum. Atti della societa Veneziana-Trentina-Istriana di. Scienze Naturali. 1875;4:77–100.

[2] Index Fungorum. 2022. http://www.indexfungorum.org/Names/Names.asp

[3] Pintos A, Alvarado P. Phylogenetic delimitation of *Apiospora* and *Arthrinium*. Fungal Syst Evol. 2021; 7:197–221.

[4] Crous PW, Groenewald JZ. A phylogenetic re-evaluation of *Arthrinium*. IMA Fungus. 2013;4(1):133–154.
[40] Dai D-Q, Jiang H-B, Tang L-Z, et al. Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere. 2016;7(9):1332–1345.

[41] Jiang N, Liang YM, Tian CM. A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales). Sydowia. 2020;72:77–83.

[42] Hyde KD. Refined families of Sordariomycetes. Mycosphere. 2020;11(1):305–1059.

[43] Bhunjun CS, Niskanen T, Suwannarach N, et al. The numbers of fungi: are the most speciose genera truly diverse? Fungal Divers. 2022;114(1):387–462.

[44] Yang C-L, Xu X-L, Dong W, et al. Introducing Arthrinium phyllostachium sp. nov. (Apiosporaceae, Xylariales) on Phyllostachys heteroclada from Sichuan province, China. Phytotaxa. 2019;406(2):91–110.

[45] Jiang N, Li J, Tian C. Arthrinium species associated with bamboo and reed plants in China. Fungal Syst Evol. 2018;2(1):1–9.

[46] Majeedano AQ, Chen J, Zhu T, et al. The first whole genome sequence discovery of the devastating fungus Arthrinium rasikravindrae. J Fungi. 2022;8(3):255.

[47] Hino I, Katumoto K. Illustrations fungorum bambusicolorum VIII. Bull Fac Agric Yamaguchi Univ. 1960;11:9–34.