The NEXT experiment

J.J. Gomez Cadenas
Instituto de Física Corpuscular (CSIC & UVEG)
On behalf of the NEXT collaboration

DBD11 — November 2011
NEXT Collaboration

U. Girona • IFIC (Valencia) • U. Santiago de Compostela
• U. Politécnica Valencia • U. Zaragoza• U. A. Madrid

LBNL • Texas A&M• John Hopkins

CEA (Saclay)

U. Coimbra • U. Aveiro

JINR (Dubna)

UAN (Bogotá)
NEXT concept

HPGXe

SOFT

Energy resolution

Topological signature

NEXT concept

HPGXe
- Main Cylindrical Vessel
- Torispheric Heads
- Energy Plane, PMTs
- Cu Shield

SOFT
- EL mesh planes
- Cathode
- Tracking Plane, SiPM
- EL HV FT

Diagrams

Energy resolution

Topological signature

jueves 17 de noviembre de 2011
The SOFT concept

Readout Plane A
- **position**

Readout Plane B
- **energy**

Electroluminescent Layer
Intrinsic resolution (Fano factor) at $Q_{\beta\beta}$ (2458 keV): 3×10^{-3} FWHM.

Achieved in NEXT large prototypes: 5×10^{-3} FWHM.

NEXT target: 0.5% FWHM appears feasible.
Energy resolution

Energy resolution of 1 % FWHM at 662 keV measured by NEXT-DBDM

Full energy spectrum for a Cs-137 calibration source. Resolution is quite stable against pressure, drift field (0.3-2 kV/cm) and EL (2.0-3.5 kV/cm bar), but careful calibration and monitoring needed.
Electrons travel on average ~15 cm each. Clear topological signature. Electrons behave as MIPs except near the endpoints (blobs).
Topological signature

Tracks reconstructed at 662 keV by NEXT-DEMO

Single blobs clearly visible at the end of the track
Detection process

- Cylindrical TPC filled with highly enriched (>90%) 136Xe gas at 15 bar pressure.
- TPC walls lined with material highly reflective.
- Signals read by photosensors
- Baseline detector with ~100-150 kg mass (2 m3): NEXT-100.
A 136Xe isotope decays emitting the two electrons.

They propagate through the HPXe ionizing and exciting its atoms.
Detection process

- Prompt primary scintillation light emission in VUV (~175 nm). About 100 eV needed to create a primary scintillation photon.
- Detect faint signal via sensitive photo-detectors (PMTs) behind transparent cathode.
- Determine t_0 and therefore event position along drift.
Detection process

- Create ionization charge in Xe: ~25 eV to create one electron-ion pair.
- Electrons drift toward anode with velocity ~1 mm/us in a ~0.5 kV/cm electric drift.
- At 10 bar pressure, non-negligible diffusion: 9 mm/√m transverse, 4 mm/√m longitudinal.
Detection process

Additional grid in front of anode creates ~0.5 mm thick region of more intense field: $E/p \sim 4$ kV/cm/bar.

Secondary scintillation light (electroluminescence) created in between grids by atomic de-excitation, with very linear gain of order 10^3 and over a ~2us interval.

Finely segmented photo-detector plane (MPPCs) just behind anode performs “tracking”.

jueves 17 de noviembre de 2011
Detection process

Electroluminescence, emitted isotropically, also reaches cathode.

Same array of photo-detectors used for t_0 measurement is also used for accurate calorimetry.
The only relevant background for NEXT are gammas from Bi-214 and Ti-208.

3D reconstruction of event suppresses most background events including identification of 30 keV X-rays from Xe de-excitation.
Bi-214 line very close to Xe Qbb.

Energy resolution (and radiopurity) are essential to separate signal from background.

But extra handles become a must
Topological signature

Monte Carlo bkgrnd event from Bi-214

Xe 35 keV X-ray

Only one blob
Topological signature

NEXT-DEMO event from Na-22 with X-ray
EXTREME BLOB CUT

- Good rejection factor (1/10) with very high signal efficiency (>80%)

- Or higher rejection factors (1/50 or better) at higher efficiency cost (50% or lower)
Prototypes
EL prototypes

NEXT-DBDM
Energy resolution in HPXe
Possible application to DM searches

NEXT-DEMO
NEXT detector concept

jueves 17 de noviembre de 2011
NEXT-DBDM
Very clean waveforms. Both scintillation (S1) and ionization (S2) signals clearly visible.
Analysis corrections

Long electron lifetime (>4 ms) in the gas.

Radial dependence (solid angle) of collected light easily corrected.
NEXT-DBDM

Energy resolution of 1 % FWHM at 662 keV!

Full energy spectrum for a Cs-137 calibration source. Data taken at 15 bar, drift field of 0.7 kV/cm and EL gain of 2 kV/cm/bar.
• Mesh grids with 88% optical open area (gate and anode)
NEXT-DEMO

16 cm
Field Cage Breakdown – PMT Plane

PTFE Reflector

PEEK Support Plate
(Poly Ether Ether Ketone Plastic)

~ 6 mm
S1, S2 and S2 due to X ray clearly visible
Reconstructed electrons from Cs-137 source.
Figure ploqx Cathode HVFT used in NEXTkDEMOl

A sniffer port is placed between the seals to assure that xenon is not leaking. The feedthrough will be attached to a flange located on the energy plane end cap. A shielded cable will be connected to the feedthrough and placed through the PMT support plate. The unshielded portion of the cable, with an additional resistive coating, will then run along the inside of the buffer field rings and mate with the cathode via a spring loaded junction. This approach, with the exception of the resistive coating, has been used in NEXTkDEMO, where a cathode voltage of 100 kV has been achieved. A smaller prototype was tested to on kV in vacuum and on kV in nitrogen at 1 bar. It has been demonstrated to be leak tight at on bar xenon and on \text{-7} mbar vacuum.

2.3 Electroluminescent Grids

Figure plor shows the electroluminescent fELg grids built for the NEXTkDEMO prototype. The grids were constructed using a stainless steel mesh with pitch nls mm and wire diameter qn micronsj which results in an open area of vvcl. The grids are formed by clamping in a ring with a tongue and groove to hold the mesh and using a tensioning ring that is torqued with set screws to achieve the optimum tension. One important issue is that for the large diameter required in NEXTkon, preliminary estimates show that electrostatic attraction will cause the EL grids to bow more than acceptable to achieve the required energy resolution. The solutions are to use a slightly larger EL gap and more to use a larger gauge wire. For example, a wire mesh is available with wn micron pw
Field Cage

Figure 2.9: NEXT-100 Field Cage

Figure 2.10: Field Cage copper rings

Figure 2.11: Electric field lines (red vertical lines) and equipotential contours are shown in a 50 cm section of the drift region. The lines are fairly uniform starting from a distance of approx. 2 cm from the field cage inner wall surface.

Figure 2.12: Cathode high voltage feedthrough (HVFT) designed for up to 100 kV operating voltage.

Dual resistor Divider chain
EL Grids
NEXT-100 sensors

PMTs for calorimetry and start-of-event
- Excellent charge resolution and linearity, single-pe detection, large dynamic range, etc.
- Favorite candidate: Hamamatsu R1141MOD.
- No. channels ~60.

MPPCs for tracking:
- Fine pixelization (~1cm pitch), low cost, some energy information.
- No. channels ~7500
RI Level for R11410MOD

Estimated RI level

Materials	Weight (g)	40K	U	Th	Co60	Sub Total
Quartz Faceplate	35	0.0	0.2	0.4	0.1	0.7
Metal Bulb	95	5.7	2.9	1.0	3.5	13.1
Stem (ceramic)	25	0.0	0.0	0.7	5.5	6.2
Insulating Plates	16	0.0	0.1	0.2	0.0	0.3
Electrodes	31	0.0	0.1	0.0	0.0	0.1
Total	**202**	**5.7**	**3.3**	**2.3**	**9.1**	**20.4**

Expected RI level: 10~30 mBq/PMT

Typical QE Curve

In case of R11410, QE at 175 nm could be improved further.

In case of R11065, QE at 420 nm would be improved further.
PMT can

Figure 3.4: A PMT inside its enclosure.
PMT plane
Figure 3.7: Dice Board containing 16 s4 × 4t MPPCs

Figure 3.8: Left: Mother-Board with the front-end electronics on which center one of the Daughter-Boards is connected. Right: MPPCs DB arranged following the structure of NEXT-DEMO tracking plane.

Figure 3.9: Left: In NEXT-100 DB will be fixed to a light honeycomb structure made of teflon. Right: DB will connect directly to the FE electronics.

SiPM plane
Coating of sensors and reflectors with a WLS (TPB) to improve light collection.
NEXT-100: shielding

Shielding design completed.
Construction starts early January
100 kg of enriched xenon (and 100 of depleted) already procured, and waiting at the LSC.
NEXT-100 performance

	Signal	214Bi	208Tl
1 track cut	0.48	6.0×10^{-5}	2.4×10^{-3}
ROI	0.33	2.2×10^{-6}	1.9×10^{-6}
Topological cut	0.25	1.9×10^{-7}	1.8×10^{-7}

	~10^{-7}
Rejection Potential	

	2.0×10^{-4} counts/keV/kg/yr
Background	
EXO-200
GERDA-1
CUORE-0
KamLAND-Zen
SNO+
GERDA-2
CUORE
NEXT
SuperNEMO D. Majorana D.

Next-100 sensitivity

$\beta\beta$ (meV)

Fig. 30. – Sensitivity of the different experiments to the neutrino effective mass $m_{\beta\beta}$ computed assuming a 5 years exposure, the PMR intervals for the nuclear matrix elements (see sect. 4.3), and for both the optimistic and pessimistic experimental parameters of table IV. A statistical 90% CL is computed according to the Feldman-Cousins method [132], assuming a signal region of one FWHM and the corresponding efficiency. For each experiment, the sensitivities for the two experimental parameter sets are drawn as overlapping rectangles. A sensitivity line corresponding to a 10 years exposure, and to the most optimistic NM experiment parameter set, is also shown. The upper grey region represents the KK claim [66] while the lower grey region represents the inverted hierarchy region (see fig. 10).

On the other hand, several experiments appear to have a very good chance to reach a sensitivity of 100 meV or better, in particular CUORE, KamLAND-Zen, NEXT and EXO-200. In our most optimistic scenario concerning NME values and experimental performances, this target may also be reached by GERDA during its second phase.

Given our uncertainties, we cannot predict which, among these 4–5 different experimental proposals, will provide the best $m_{\beta\beta}$ sensitivity after a 5 years exposure. To this end, a better knowledge of the actual (as opposed to expected) values for the background rates, of the systematic uncertainties affecting the measurement, and of the NME values would be necessary for all experiments.

From figure 30, our expectation is that it will be almost impossible for the new-generation experiments discussed here to discover $\beta\beta$0ν after 5 years of exposure if the neutrino mass spectrum is hierarchical ($m_{\text{light}} \simeq 0$) rather than degenerate, since essentially no overlap exists between the experimental sensitivities and the 17–52 meV HM experiment.
NEXT-100 schedule

- TDR in December, 2011
- Construction and commissioning of shielding and gas system (January 2012—June 2012).
- Complete design of pressure vessel and manufacture (Sept 2011—Sept 2012).
- Construction and characterization of detector planes (Second half 2012).
- Construction of field cage and HV system (Second half 2012).
- Commissioning of the NEXT-100 detector at the LSC (early 2013).
- Running in 2014
Summary

- NEXT is a new-generation double beta decay experiments, lead by Spanish and American groups, and to be installed at the Laboratorio Subterráneo de Canfranc (Spain).
- Marries two old instrumental concepts (TPCs and EL) in a novel approach, providing very good energy resolution and tracking for background rejection.
- A crash R&D program has produced to EL prototypes which have already demonstrated the feasibility of the idea.
- Technical design of the NEXT-100 detector essentially completed.
- Pushing ahead on a very tight schedule to be running in 2014.
- Hoping to be there on time!
ありがとうございます