A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2

Alexander Simonis1,2, Sebastian J Theobald1,2, Gerd Fätkenheuer1, Jan Rybniker1,2,3 & Jakob J Malin1,2,*

Abstract

The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent \textit{in vitro} activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven \textit{in vitro} activity against SARS-CoV-2.

Keywords antivirals; COVID-19; remdesivir; SARS-CoV-2

Subject Categories Microbiology, Virology & Host Pathogen Interaction; Pharmacology & Drug Discovery

DOI 10.15252/emmm.202013105 | Received 28 July 2020 | Revised 22 September 2020 | Accepted 25 September 2020 | Published online 3 November 2020

EMBO Mol Med (2021) 13: e13105

See the Glossary for abbreviations used in this article.

Introduction

Coronaviruses (CoV) are known to cause respiratory tract infections in humans and animals. Since the emergence and subsequent characterization of the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 (Drosten \textit{et al}, 2003; Ksiazek \textit{et al}, 2003; Peiris \textit{et al}, 2003) and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 (Corman \textit{et al}, 2012), coronaviruses have increasingly been recognized as potential source of epidemic diseases. Both pathogens seem to cause zoonotic infections that originate from viral reservoirs in bats (Guan \textit{et al}, 2003; Li \textit{et al}, 2005; Mohd \textit{et al}, 2016). In 2020, a novel coronavirus (SARS-CoV-2) emerged in China (Zhu \textit{et al}, 2020) and spread globally in a very short period of time. The rapid geographical extension of SARS-CoV-2 in comparison to previous outbreaks with SARS-CoV and MERS-CoV may be caused by an increased infectivity of the pathogen (Sigrist \textit{et al}, 2020; Wrapp \textit{et al}, 2020). As of September 22, the ongoing coronavirus disease 2019 (COVID-19) pandemic caused over 31 million detected SARS-CoV-2 infections and more than 950,000 deaths (Johns Hopkins University, 2020). The dramatic global implications of this pandemic stressed the urgent need for therapeutic agents that can quickly be applied in the clinic without a long-lasting preclinical development phase. Several therapeutic strategies were therefore investigated by repurposing of known antimicrobial or immunomodulatory substances that might be beneficial for patients with COVID-19. These agents can roughly be divided into compounds with a direct antiviral effect that impairs viral replication and host-directed drugs that may support recovery from COVID-19 by attenuating an excessive host immune response. In this article, we focus on repurposed drugs against COVID-19 with proven antiviral effects against SARS-CoV-2 in cell-based studies.

The most advanced developed antiviral of this type is the nucleoside analog remdesivir that was previously unsuccessfully tested against Ebolavirus disease in clinical trials (Mulangu \textit{et al}, 2019). Based on recent clinical and preclinical data on its efficacy against COVID-19, remdesivir received emergency use authorizations (EMA) in the United States and Japan and was recently approved by the European Medicines Agency (EMA) for the treatment of adult patients with severe COVID-19 that require supplemental oxygen. Although approval of this drug is a very encouraging signal, its clinical efficacy seems to be relatively modest based on available evidence (Beigel \textit{et al}, 2020; Goldman \textit{et al}, 2020; Grein \textit{et al}, 2020; Wang \textit{et al}, 2020c). We will review preclinical and clinical outcomes of repurposed antivirals and their molecular mechanism of action (MRA) to provide a comparative analysis of remdesivir with the ultimate aim to support a rational appraisal of its efficacy.

SARS-CoV-2 life cycle

The viral life cycle of SARS-CoV-2 provides several attractive molecular targets for viral inhibition that can be exploited by repurposed antiviral drugs. Like all \textit{Coronaviridae}, this β-coronavirus, is an enveloped, positive-sense, single-stranded RNA virus. It is composed of a core structure where the viral RNA is encapsulated by the nucleocapsid (N) protein and the envelope, a lipid bilayer in which the spike (S), membrane (M), and envelope (E) protein are...
Glossary

Antiviral drugs
Drugs that directly interfere with the ability of a virus to replicate in vivo or in cell-based models. Most antiviral drugs interfere with the host cell-dependent life cycle of the virus. Thus, mode of action of most antivirals is the inhibition of the viral entry into the host cell, blockage of viral proteases, or inhibition of viral RNA replicate.

Bioavailability
Used to describe the fraction of a drug or its active metabolite that reaches the systemic circulation and organ tissue after administration.

Cell-based assay
The term cell-based assay is commonly used to refer to any assay, where living cells are used as model to study physiologic or pathophysiologic processes under various conditions (e.g., exposure to an antiviral agent). Due to their cost efficiency and high standardization/reproducibility, cell-based assays are essential tools in preclinical drug discovery.

COVID-19 (coronavirus disease 2019)
The infectious disease caused by SARS-CoV-2 in humans.

Coronaviruses (CoV)
Coronaviruses are a group of RNA viruses that cause diseases in mammals and birds. Coronavirus-associated diseases in humans include severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19). In addition, there are endemic human CoVs that cause mild respiratory infections.

Drug repositioning or repurposing
A term that describes a drug discovery strategy based on the identification of new therapeutic approaches by using already known substances that may be at a preclinical or clinical development stage. This strategy offers a time- and cost-saving method to develop therapeutics against newly emerged or neglected diseases.

Half-maximal effective concentration (EC50)
The concentration of a substance which is required to obtain 50% of its maximal effect. It is used to determine potency of a drug. For some analyses (for example, antibacterial activity), the 50% inhibitory concentration (IC50) is used in analogy. Besides the half-maximal concentration, the 90% maximal effective concentration (EC90) can be determined.

MERS-CoV
Middle East respiratory syndrome-related coronavirus causes the Middle East respiratory syndrome (MERS) in humans which is associated with severe respiratory symptoms and high mortality. The first confirmed case of MERS was reported in 2012.

Nucleoside/nucleotide analogs
Nucleosides are endogenous compounds composed of a nucleobase and a five-carbon sugar (ribose or 2′-deoxyribose), while nucleotides contain one more phosphate group. Nucleosides/nucleotides are essential for the synthesis of DNA and RNA but are also involved in other cellular processes like signaling and metabolism. Nucleoside/nucleotide analogs are synthetic, chemically modified nucleosides/nucleotides that are able to mimic their physiological counterparts. Assembly of nucleoside/nucleotide analogs into the RNA/DNA leads to premature termination of the strand synthesis and inhibition of, e.g., viral replication.

Pseudovirions/pseudotyped particles
Pseudovirions are synthetic viral particles with modified genomes and/or envelope proteins in order to facilitate specific investigations. The particles usually lack genes essential for pathogenicity and cannot replicate. This is an advantage for experiments on highly pathogenic viruses like SARS-CoV-2. Pseudotyping is the combination of viral particles with foreign viral envelope proteins. Pseudotyping can be used to study the function of viral envelope proteins and mechanisms of viral entry.

SARS-CoV
The severe acute respiratory syndrome (SARS) coronavirus was first described in 2003. It causes a respiratory disease that accompanies a high rate of complications and mortality. After the epidemic outbreak in Asia in 2002-2003, sporadic cases have been observed in several countries until 2004.

SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2, initially described as 2019-nCoV, causes respiratory infections that can progress to viral pneumonia in COVID-19. It emerged in December 2019 in Wuhan, China, and rapidly developed to a pandemic which is still ongoing.

anchored (de Haan & Rottier, 2005). Upon viral transmission, mostly via droplet transmission, the life cycle of SARS-CoV-2 is initiated by the attachment of the virion to the host cell by the spike glycoprotein (S-protein) and its receptor. Several studies could show that entry, as shown for SARS-CoV before, depends on binding of the S-protein at the S1/S2 and S2′ site, which leads to fusion of the viral and cellular membrane mediated by the S2 subunit. Proteolytic cleavage of the S-protein is induced by the membranous serine protease TMPRSS2 of the host cell (Hoffmann et al., 2020a). Interestingly, a new furin cleavage site at the S1/S2 boundary could be found in SARS-CoV-2. The exact role of this site in pathogenesis is controversially discussed (Walls et al., 2020; Xia et al., 2020a). Cleavage of S-protein exposes the S2 subunit which contains an internal fusion peptide and two hydrophobic (heptad) repeat regions (HR1 and HR2). HR1 and HR2 self-assemble into a stable helical bundle that brings viral and cellular membranes in close proximity for fusion. Several bundles can form a fusion pore and finally release the viral genome into the cytoplasm (Bosch et al., 2003; Xia et al., 2020b). Moreover, several studies could show that virus entry is not only ensued by direct fusion with the plasma membrane, but rather by endosomal/lysosomal uptake and intra-lysosomal activation of the spike protein by cathepsin L followed by membrane fusion and...
intracellular release of genomic RNA (Wang et al., 2008; Burkard et al., 2014; Ou et al., 2020).

After release of viral RNA into the cytosol viral replication is initiated by the activity of the replicase gene encoded by two large ORFs (rep1a and rep1b), which express the two polyproteins pp1a and pp1ab. The polyproteins contain several non-structural proteins (nsp) (pp1a = nsp 1–11; pp1ab = 1–16) including a RNA-dependent RNA polymerase (RdRp) domain (nsp12) and proteases that cleave the polyproteins (initiated by the enzyme’s own autolytic cleavage from pp1a and pp1ab) (Anand et al., 2003; Pertussati et al., 2012). Most of the nsp forms the replicase–transcriptase complex (RTC). The RTC replicates the genomic RNA and subgenomic RNA, which encodes the structural proteins and other accessory proteins. While the nucleocapsid (N) protein remains in the cytosol and forms complexes with the genomic RNA, the viral structure proteins M, E, and S are translated, inserted into the membrane of the rough endoplasmic reticulum (ER) and subsequently transported to the ER-to-Golgi intermediate compartment (ERGIC) (Fehr & Perlman, 2015). Here, the genomic RNA–nucleocapsid complexes get enveloped by the virion precursors, are transported to the cell surface in vesicles, and are released by exocytosis. An overview of the life cycle of SARS-CoV-2 including targets that might be exploited for inhibition of viral replication is illustrated in Figure 1. Based on its MOA, repurposed drugs with anti-SARS-CoV-2 activity can be divided into substances that prevent viral entry into host cells (1–2) and inhibit viral proteases (3) and inhibitors of viral replicase (4). Other compounds elicit multiple effects, or its specific MOA in SARS-CoV-2 is unknown.

Prevention of viral entry into the host cell

Viral entry is initiated by the S2 subunit, which requires prior S-protein priming by proteolytic cleavage of the S1 subunit. As shown for other coronaviruses, viral entry in cell lines depends on the serine protease TMPRSS2 and the endosomal cysteine proteases cathepsin B and L (Kawase et al., 2012; Hoffmann et al., 2020a). However, several studies indicate that cell entry is driven preferentially via the cell surface or early endosomes by TMPRSS2 and that proteolytic cleavage of the S-protein by TMPRSS2 is crucial for infection of the host (Shirato et al., 2018; Iwata-Yoshikawa et al., 2019). Thus, inhibition of the TMPRSS2 and/or cathepsin B and L seems a promising target to prevent virus entry.

Camostat/Nafamostat

TMPRSS2 is a cell membrane-anchored serine protease and belongs to the family of type II transmembrane serine proteases. These proteases share a common catalytic mechanism involving a triad of three amino acids, serine, aspartate, and histidine present in highly conserved sequence motifs (Antalis et al., 2011). Serine proteases underlie a strict regulation by endogenous inhibitors (e.g., α1/α2-antitrypsin, and antithrombin III) and need a prior activation leading to hemostasis under physiological conditions. Thus, imbalance can cause several pathophysiological processes like thrombosis (Rau et al., 2007). However, the exact physiological functions of TMPRSS2 are still unknown. Synthetic protease inhibitors like camostat mesilate or nafamostat mesilate have been clinically tested in patients with acute or chronic pancreatitis, which is pathophysiologically related to an inappropriate activation of digestive enzymes inside the pancreas, including the serine protease trypsin (Chang et al., 2009; Ramsey et al., 2019). Due to their capability to inhibit TMPRSS2, serine protease inhibitors have been tested for their antiviral effects on SARS-CoV-2 and other coronaviruses. Camostat partially blocked the entry of vesicular stomatitis virus (VSV) pseudotyped particles harboring the SARS-CoV-2 spike protein (pseudovirions) into the human epithelial colorectal adenocarcinoma cell line Caco-2, Vero-TMPRSS2 “cells, and human airway epithelial (HAE). A complete inhibition of viral entry could only be reached when camostat was used in combination with E-64d, an inhibitor of cathepsin B/L, suggesting that SARS-CoV-2 can exploit both pathways for entry into the host cell (Hoffmann et al., 2020a). However, TMPRSS2 is essential for viral transmission and pathogenesis while CatB/L activity is dispensable so that inhibition of TMPRSS2 displays a rational antiviral strategy (Iwata-Yoshikawa et al., 2019).

Wang et al demonstrated inhibition of SARS-CoV-2 by nafamostat with a 50% effective inhibitory concentration (EC50) of 22.50 μM in Vero E6 cells (Wang et al., 2020a). A comparative assessment of the serine protease inhibitors gabexate mesilate, camostat mesilate, and nafamostat mesilate and their ability to inhibit viral entry was done by Hoffmann et al Efficiency of entry inhibition was determined 16 h post-inoculation by using Calu-3 cells infected with SARS-CoV-2-pseudovirions. Nafamostat demonstrated an almost 15-fold higher efficiency (EC50 5 nM) compared with camostat (87 nM), both superior to gabexate (EC50 1.2 M). Nafamostat also showed to inhibit SARS-CoV-2 infection of lung-derived human Calu-3 cells in vitro even at a low dose of 100 nM (Hoffmann et al., 2020b).

Although antiviral efficacy of TMPRSS2 inhibitors seems to be inferior to other strategies (table 1), entry inhibitors may be developed that are beneficial in COVID-19 when given alone or in combination with other antivirals. Three randomized controlled trials (RCT) are currently listed that evaluate nafamostat in patients with COVID-19 (NCT04418128, NCT04352400, NCT04473053), but currently no clinical data can be reported.

Umifenovir

Umifenovir is a broad-spectrum antiviral approved in Russia and China for the prophylaxis and treatment of human influenza A and B infections (Boriskin et al., 2008). Its antiviral mechanism of action is thought to be related to an impaired virus-mediated membrane fusion that is essential for viral entry. Umifenovir seems to modify the physicochemical properties of the host cell membrane by influencing the negatively charged phospholipids (Villalain, 2010). Furthermore, it has been shown that umifenovir interacts with hemagglutinin (HA) of the influenza virus by preventing the pH-induced transition of HA into its functional state (Leneva et al., 2009). In a recent study, the efficacy of six currently available and licensed anti-influenza drugs (umifenovir, baloxavir, laninamivir, oseltamivir, peramivir, and zanamivir) were tested against SARS-CoV-2 in Vero E6 cells. Among tested drugs, only umifenovir inhibited SARS-CoV-2 replication efficiently with an EC50 of 4.11 μM (Wang et al., 2020b). These results could be reproduced by another in vitro study with an EC50 of 3.5 μM (Pizzorno et al., 2020). Although umifenovir demonstrated anti-SARS-CoV-2 activity in vitro, a therapeutic role of umifenovir in COVID-19 is uncertain and results of qualitative clinical trials are lacking. Retrospective analyses currently indicate no significant impact on clinical outcomes (Huang et al., 2020).
A crucial step in SARS-CoV-2 replication is the proteolytic cleavage and release of functional polypeptides from the polyproteins pp1a/pp1ab by viral proteases. Subsequently, released non-structural proteins form the replicase–transcriptase complex, which initiates the viral RNA synthesis machinery. Translated viral structure proteins and replicated genomic RNA originate new infectious virus particles, which are released from the infected host cell. In coronaviruses, the main protease (Mpro) also known as 3C-like protease (3CLpro) cleaves the polyprotein at conserved sites between Leu-Gln and Ser-Ala-Gly. This well-
characterized enzyme represents an ideal antiviral target as its function is critical for viral replication (Anand et al, 2003; Zhang et al., 2020b). Due to its intrinsic proteolytic activity and the absence of homologous enzymes in humans, toxicity of specific inhibitors is expected to be limited. Of known protease inhibitors that were repurposed for SARS-CoV-2, the combination of lopinavir and ritonavir has been in focus of interest as other protease inhibitors (e.g., darunavir) showed no in vitro activity at applicable concentrations (De Meyer et al, 2020).

Lopinavir/ritonavir

Lopinavir/ritonavir is used as combination regimen in the treatment of infections with human immune deficiency virus 1 (HIV-1). Both lopinavir and ritonavir are inhibitors of HIV-1 protease, an enzyme that cleaves the HIV polyproteins Gag and Gag-Pol by bond hydrolysis. Since ritonavir also acts as inhibitor of cytochrome P450-3A4 (CYP3A4), an enzyme that normally metabolizes protease inhibitors, ritonavir is added to enhance the bioavailability of lopinavir (Sham et al, 1998). Lopinavir has been tested in vitro against SARS-CoV, MERS-CoV, and human coronavirus 229E (de Wilde et al, 2014). Here, the mean EC50 of lopinavir ranged from 6.6 µM (± 1.1) µM (HCoV-229E) and 8.0 µM (± 1.5) MERS-CoV to 17.1 µM (± 1.0) (SARS-CoV). Recent analysis demonstrated that lopinavir is also active against SARS-CoV-2 with an EC50 of 5.25–26.1 µM (Choy et al, 2020; Pizzorno et al, 2020) while ritonavir alone was not effective (Choy et al, 2020). In vivo efficacy of lopinavir/ritonavir has been assessed in mice and common marmosets for MERS-CoV with ambiguous results: In a study published in 2015, lopinavir/ritonavir-treated marmosets had improved clinical findings and reduced viral loads associated with a better outcome.

Table 1. **In vitro efficacy and drug targets of repurposed investigational compounds with proven anti-SARS-CoV-2 activity**

Antiviral target	Investigational drug	Isolate	EC50 in Vero E6 cells (µM)	References
Viral entry	Nafamostat	Wuhan/WIV04/2019	ND 22.50 ND	Wang et al (2020)
	Umifenovir (Arbidol)	Wuhan/WIV04/2019	ND 4.11 ND	Wang et al (2020b)
		France/ID0571/2020	ND 3.54 ND	Pizzorno et al (2020)
Viral protease	Lopinavir	Hong Kong/V20001061/2020	25a 26.10a 26.62a	Choy et al (2020)
		France/ID0571/2020	ND 5.25 ND	Pizzorno et al (2020)
RNA synthesis	Favipiravir	Wuhan/WIV04/2019	ND 61.88 ND	Wang et al (2020)
		Hong Kong/V20001061/2020	> 100 > 100 > 100	Choy et al (2020)
		France/ID0571/2020	ND > 100 ND	Pizzorno et al (2020)
	Penciclovir	Wuhan/WIV04/2019	ND 95.96 ND	Wang et al (2020)
	Remdesivir	Wuhan/WIV04/2019	ND 0.77 ND	Wang et al (2020)
	Australia/VIC01/2020	ND 4.9 ND	Ogando et al (2020)	
	Hong Kong/V20001061/2020	25a 26.9a 23.15a	Choy et al (2020)	
	France/ID0571/2020	ND 0.99 ND	Pizzorno et al (2020)	
	Ribavirin	Wuhan/WIV04/2019	ND 109.50 ND	Wang et al (2020)
	Hong Kong/V20001061/2020	500a > 500 > 500	Choy et al (2020)	
Miscellaneous	Berberine	France/ID0571/2020	ND 10.58 ND	Pizzorno et al (2020)
	Chloroquine	Wuhan/WIV04/2019	ND 1.13 ND	Wang et al (2020)
		France/ID0571/2020	ND 1.38 ND	Pizzorno et al (2020)
	Wuhan/WIV04/2019	ND 2.71-7.36b	Liu et al (2020)	
	Wuhan/IVDC-H8-01/2019	ND 5.47 ND	Yao et al (2020)	
	Hydroxychloroquine	Wuhan/WIV04/2019	ND 4.06-12.96b	Liu et al (2020)
	Wuhan/IVDC-H8-01/2019	ND 0.72 ND	Yao et al (2020)	
	France/ID0372/2020	ND 2.2-4.4c	Maisonnasse et al (2020)	
	Cyclosporine A	France/ID0571/2020	ND 3.05 ND	Pizzorno et al (2020)
	Emetine	Hong Kong/V20001061/2020	1.56a 0.50a 0.46a	Choy et al (2020)
	Homoharringtonine	Hong Kong/V20001061/2020	3.13a 2.14a 2.55a	Choy et al (2020)
	Nitazoxanide	Wuhan/WIV04/2019	ND 2.12 ND	Wang et al (2020)

EC50: 50% effective concentrations.
Assay types: CPE, cytopathologic effects; RT–PCR, real-time polymerase chain reaction; VY, virus yield assay.
*Calculation of EC50 based on viral loads fitted to log10 scale.
**Tested in different MOI (0.01, 0.02, 0.8).
Inhibition of viral RNA replicase

Once functional, non-structural proteins are released by proteolytic cleavage of the polyproteins, the replicase–transcriptase complex, which catalyzes the synthesis of the viral RNA, can be formed. Synthesis is initiated by binding of the RdRp at or near the 3' end of the RNA strand. Subsequently, the complementary RNA strand is generated in the elongation phase by repetitive nucleotidyl transfer reactions. Several drugs are able to interfere with the RNA synthesis machinery. Mainly, nucleoside/nucleotide analogs have been repurposed and tested against SARS-CoV-2. These drugs disrupt viral replication by competing with endogenous nucleosides during the elongation phase. After their insertion nucleoside analogs cause a chain termination followed by an abrogation of RNA synthesis, which is crucial to produce new viral particles.

Remdesivir

Remdesivir (GS-5734) is a prodrug of a monophosphoramidate nucleoside that is designed to easily pass the cell membrane and efficiently deliver its active metabolite (Jordheim et al., 2013). Upon entering the target cells, remdesivir monophosphate (RDV-MP) is rapidly converted into its active triphosphate form due to its ability to bypass an inefficient and rate-limiting first phosphorylation step (Murakami et al., 2008). In RNA viruses, the metabolically active remdesivir triphosphate (RDV-TP) acts as substrate for the viral replicase (RdRp) where it competes with endogenous adenosine-triphosphate (ATP) for incorporation in elongating RNA strands. After its incorporation, RDV-TP causes a synthesis arrest by inducing delayed chain termination as demonstrated for Ebola virus (EBOV) (Tchesnokov et al., 2019), MERS-CoV (Gordon et al., 2020a), SARS-CoV, and SARS-CoV-2 (Gordon et al., 2020b). In SARS-CoV-2, incorporation of RDV-TP causes termination of RNA synthesis after three additional nucleotide positions downstream (Gordon et al., 2020b). Although related analogs of RDV have been under investigation and pharmacological modification for many years (Cho et al., 2012; Seley-Radtké & Yates, 2018; Yates & Seley-Radtké, 2019), the current molecule as a candidate for the treatment of viral diseases was first described in 2016 based on preclinical data from cell-based assays and a macaque model of fatal EVD (Warren et al., 2016).

RDV has a very broad antiviral activity spectrum among RNA viruses. Along with efficacy against EBOV and Marburg virus that belong to the Filoviridae family, it was shown that RDV effectively inhibits RNA viruses of the Paramyxoviridae, Pneumoviridae, and Coronaviridae families with EC50 in the sub-micromolar range (Warren et al., 2016; Lo et al., 2017; Sheahan et al., 2017). Efficacy against SARS-CoV and MERS-CoV was mainly tested in human airway cells (HAE or Calu-3). Using RT–PCR or reporter gene-based assays, RDV yielded EC50 of 0.025–0.12 µM (MERS-CoV) and 0.069–0.07 µM (SARS-CoV) (Sheahan et al., 2017; Agostini et al., 2018; Sheahan et al., 2020). In addition, RDV inhibits zoonotic and epidemic human CoVs (Brown et al., 2019). Inhibitory effects on SARS-CoV-2 were evaluated in the African green monkey kidney cell line (Vero E6) that supports entry and replication of SARS-CoV-2 by a high expression of ACE2 (Banerjee et al., 2020; Hoffmann et al., 2020a). A clinical virus isolate from Wuhan (WIV04/2019) RDV was inhibited with an EC50 of 0.77 µM in a RT–PCR-based assay (Wang et al., 2020a). Another group assessed the reduction of cytopathology effects (CPE) by RDV using an Australian isolate (VIC01/2020). Here, the EC50 was significantly higher (4.9 µM) which might reflect methodological differences as this increased level was in the same order to a similarly tested SARS-CoV isolate (Ogando et al., 2020). Recently, another preclinical evaluation was done using a SARS-CoV-2 isolate from Hong Kong (20001061/2020). The investigators found EC50 between 23.12 µM and 25 µM in different assay formats. However, these results cannot be readily compared with previous findings because a logarithmic fitted calculation model was used (Choy et al., 2020).

RDV demonstrated beneficial therapeutic effects in several animal models of CoV infections including mouse models of SARS- and MERS-CoV infection and in MERS-CoV-infected non-human primates (Sheahan et al., 2017; de Wit et al., 2020; Sheahan et al., 2020). Here, it also had prophylactic properties when 5 mg/kg was administered 24 h before inoculation of rhesus macaques with MERS-CoV. Recently, RDV was evaluated in a macaque model of SARS-CoV-2 infection. Animals were treated 12 h post-infection with 10 mg/kg (day 1) followed by 5 mg/kg daily (day 2-6) which is an equivalent dose of that recommended for humans (Gilead_Sciences, 2020). In contrast to animals treated with placebo (n = 6), RDV diminished clinical signs of disease and reduced lung virus titers and tissue damage in all six animals treated (Williamson et al., 2020).

Clinically, RDV was evaluated in two randomized controlled clinical trials of which results have been published. The first trial conducted in China was unfortunately underpowered (nRDV = 158; nplacebo = 79) due to insufficient recruitment of patients and therefore remained inconclusive. However, in a subgroup of patients that were treated with RDV within 10 days of symptom onset there was a numerical reduction of five days in time to clinical improvement.
that was not yet significant (hazard ratio 1.52 [95% CI: 0.95–2.43])
(Wang et al., 2020c). The adaptive COVID-19 treatment trial was an
international double-blind RCT that included 1063 patients. An
interim analysis was performed after completion of enrollment, with
a total of 301 patients in follow-up (before day 29) that was made
public to make positive results quickly available. In this preliminary
evaluation, treatment with RDV was associated with a significant
reduction in time to recovery from median 15 to 11 days (recovery
rate ratio 1.32 [95% CI: 1.12–1.55; \(P = 0.001 \)]) which was most
pronounced in patients that require supplemental oxygen (RRR 1.47
[95% CI: 1.17–1.84]). Mortality rates by 14 days were reduced in
the treatment group (7.1% vs. 11.9%), which was not yet statisti-
cally significant (HR 0.7 [95% CI: 0.47–1.03, \(P = 0.06 \)) (Beigel et al.,
2020). Based on these findings, RDV was given an Emergency Use
Authorization (EUA) in the United States and Japan and was
recently approved by the European Medicines Agency for the treat-
ment of patients with COVID-19 that require supplemental oxygen.
A randomized open-label study sponsored by Gilead Sciences
(NCT04292730) found a significant better clinical status by day 11 (primary outcome) in
patients treated with a 5-day regimen of RDV compared with
placebo (odds ratio 1.65 [95% CI: 1.09–2.48, \(P = 0.02 \))]. However,
the clinical significance of this finding remains unclear because a
10-day course had no influence on this outcome and the effect was
inconsistent with another evaluation on day 28 (Spinner et al.,
2020). Of all results from clinical trials on RDV, only one publication
reports on its impact on SARS-CoV-2 viral load. Wang et al found
similar decreases in virus RNA of upper and lower respiratory tract
specimen of patients treated with either RDV or placebo. This
finding may be of limited significance as the study was generally
underpowered and only a limited number of patients was eligible
for this evaluation (67% had a PCR-positive upper respiratory speci-
men at baseline and expectorated sputa were obtained from 43% of
enrolled patients) (Wang et al., 2020c).
Safety data of RDV are available from 138 healthy volunteers
(phase I) and more than 1,500 patients treated within phase III trials
on COVID-19 or compassionate use programs (FDA, 2020).
In general, RDV was well tolerated and serious adverse events seem to
be rare. RDV is known to interfere with several hepatic drug-metab-
olizing enzymes like CYP2C8, CYP2D6, and CYP3A4 in vitro. In
healthy individuals, RDV increased the risk of transient transami-
nase elevations. However, in randomized clinical trials similar
elevations were observed in both RDV and placebo groups which
might be explained by COVID-19-associated liver injury (Fan et al.,
2020; Lei et al., 2020; Zhang et al., 2020a). A complete overview of
safety information for RDV can be reviewed elsewhere (FDA, 2020).

Favipiravir

Favipiravir (T-705) is an oral pyrazine derivate that inhibits RdRp of
several RNA viruses. For influenza, it was shown that the active
triphosphate form functions as a nucleotide analog that competes
with ATP and guanosine-triphosphate (GTP) for incorporation into
the nascent RNA strand, thereby causing chain termination (San-
gawa et al., 2013). In addition to its action as competitive inhibitor
of viral RdRp, favipiravir-TP triggers accumulation of random point
mutations that ultimately lead to lethal mutagenesis of the virus
(Vanderlinden et al., 2016; preprint: Shannon et al., 2020). The drug
has potent antiviral activity against influenza A and B in vitro and is
currently approved in Japan for the treatment of influenza infections
(Furuta et al., 2002; Furuta et al., 2013). Furthermore, it demon-
strated a broad antiviral spectrum against other RNA viruses like
paramyxoviruses, human metapneumovirus, respiratory syncytial
virus, human parainfluenza virus and measles virus (Jochmans
et al., 2016). However, cell-based assays that evaluated efficacy
against SARS-CoV-2 showed only low activity at a high micromolar
range (Wang et al., 2020a) or no activity at the highest concentration
tested (Choy et al., 2020; Pizzorno et al., 2020). Despite its poor in vitro efficacy, favipiravir was evaluated in an open-label non-
randomized trial which compared time to viral clearance and radio-
 logical improvement after 14 days treatment with either lopinavir/
ritonavir (400/100 mg twice daily; \(n = 45 \) historical controls) or
favipiravir (1600 mg d1, 600 mg d2-14, twice daily; \(n = 35 \) plus the
standard of care (SOC) in hospitalized patients with COVID-19. The
investigators found a significant shorter median time to viral clear-
ance (4 days, IQR: 2.5–9 vs. 11 days, IQR: 8–13; \(P < 0.001 \)) and a
higher rate of patients with improved chest imaging on day 14
(91.43% vs. 62.22%; \(P = 0.004 \)) in the group treated with favipi-
 ravir (Cai et al., 2020). However, these data are difficult to interpret
as there was no placebo control and all patients received additional
treatments with interferon (IFN)-\(\alpha \) 1b. Taken together, no convinc-
ing evidence for favipiravir as antiviral agent against SARS-CoV-2
can be reported. Based on its poor in vivo efficacy, it seems unlikely
that this drug will be assessed in another clinical trial.

Ribavirin

Ribavirin is a guanosine analog with structural similarities to favipi-
 ravir. Like other nucleoside or nucleotide analogs, it abrogates viral
RNA synthesis by incorporation into nascent RNA strands. How-
ever, additional processes may also contribute to its antiviral
activity. For influenza, for example it was shown that ribavirin
provides a mutagenic effect on the viral genome and decreases
clinical GMT pools by interfering with cellular inosinmonophosphat-
dehydrogenase (Streeter et al., 1973; Wray et al., 1985). Ribavirin is
an approved drug for the treatment of chronic infections with
hepatitis-C virus (HCV) in combination with other antiviral drugs.
Like other RdRp inhibitors, ribavirin has a broad activity among
RNA viruses, especially in those belonging to the flavivirus family
(Crance et al., 2003). Although virtual molecular docking studies do
suggest an interaction with to SARS-CoV-2 RdRp, its efficacy against
SARS-CoV-2 is very limited (Choy et al., 2020; Wang et al., 2020a).
This is not surprising as ribavirin also lacks activity against related
coronaviruses (Cinatl et al., 2003). Therefore, ribavirin was not eva-
 luated in vivo.

Penciclovir

Penciclovir is another guanosine analog that is an approved antivi-
ral for topical treatment of herpes simplex virus infections or reacti-
vations. It is closely related to acyclovir but has a very poor
bioavailability. Its prodrug form, famciclovir, has an optimized
bioavailability and is used as systemic treatment for herpes
infections including herpes zoster. Virtual binding studies based on an nsp12 homology model suggest that penciclovir binds to SARS-CoV-2 RdRp with an affinity even higher than that of RDV (preprint: Dey et al, 2020). Nevertheless, it demonstrated low efficacy against SARS-CoV-2 in vitro (EC₅₀ 96 μM) (Wang et al, 2020a). Additional preclinical or clinical studies with penciclovir or its prodrug famciclovir as treatment for COVID-19 have not been reported.

Miscellaneous or unknown MOA

Chloroquine/Hydroxychloroquine

Chloroquine (CQ) is a 9-aminoquinoline that has been used as anti-malarial drug for decades but its use steadily decreased because of emerging resistant Plasmodium falciparum (Wellems & Plowe, 2001). CQ and its derivate hydroxychloroquine (HCQ) however are still in clinical use to treat rheumatic diseases where it has beneficial immunomodulatory effects. Hydroxychloroquine demonstrated less toxicity in animal studies that tested high doses in mice, rats, and dogs (McChesney, 1983). In the past years, CQ/HCQ has gained attention for its potential use as therapeutic agent in the field of bacterial and viral infectious diseases because of its ability to inhibit several intracellular bacteria, viruses, and fungi (Savarino et al, 2004; Rolain et al, 2007).

The MOA of CQ/HCQ is not completely understood and varies among different pathogens to some extent. In general, non-protonated forms of CQ/HCQ enter the cell and subsequently become protonated according to the Henderson-Hasselbach law (Savarino et al, 2004). Consequently, CQ/HCQ accumulates in acidic organelles, such as endosomes, lysosomes, and Golgi vesicles. Within these organelles, CQ/HCQ increases the pH because of its biochemical behavior (O’Neill et al, 1998). Two main antiviral mechanisms have been identified: I) low-pH-dependent inhibition of viral conformational changes that are essential for responsible for viral fusion, penetration, and uncoating; and II) inhibition/modification of post-translational processing of viral glycoprotein’s in the trans-GOLGI compartment and within endolysosomal vesicles (Randolph et al, 1990; Sieczkarski & Whittaker, 2002; Rolain et al, 2007). A third mechanism has been proposed, which is based on the immunomodulatory and anti-inflammatory properties. Known effects related to this category include inhibition of intracellular Toll-like receptors (such as TLR9), inhibitory effects on the cyclic-AMP synthase pathway, and interference with major histocompatibility complex presentation (Rolain et al, 2007; Pal et al, 2020; Schrezenmeier & Dörner, 2020).

Antiviral activity of CQ/HCQ has been shown for viruses from several families and seems to cover a relatively broad spectrum (Rolain et al, 2007). Its antiviral mechanism is best explored in HIV where CQ induces modifications of the glycosylation pattern and amino acid charges from gp120 viral envelope protein, which may affect the immune escape mechanism of HIV (Savarino et al, 2004; Naarding et al, 2007). Although its clinical efficacy in HIV is not comparable to current antiretroviral drugs, several clinical studies have proven anti-HIV effects of HCQ in vivo (Paton et al, 2002; Paton & Aboulihab, 2005). In CoVs different antiviral mechanisms of CQ/HCQ have been proposed including modifications to the viral spike glycoprotein (Gallagher et al, 1991; Vincent et al, 2005) and terminal post-translational modification of ACE2 receptor glycosylation, which might interfere with virus binding and consequent fusion (Li et al, 2003; Vincent et al, 2005). However, CQ/HCQ seems to elicit multiple effects on virus and host cell that ultimately inhibit viral replication. In a time-of-addition experiment, Liu et al confirmed that CQ/HCQ affects the viral life cycle both at cell entry and post-entry stages. Intracellularly, CQ/HCQ showed to impair endosome maturation at intermediate stages of endocytosis, a crucial function for the transport of virions to its releasing site (Liu et al, 2020).

Activity against SARS-CoV was demonstrated in Vero E6 cells with an EC₅₀ of 8.8 μM (± 1.2) which approximates the plasma concentrations reached during treatment of acute malaria (Keyaerts et al, 2004). In SARS-CoV-2, CQ yielded EC₅₀ of 1.13–1.38 μM and HCQ yielded 0.72–4.4 μM in RT–PCR-based assays (Maisonnasse et al, 2020; Pizzorno et al, 2020; Wang et al, 2020a). Moreover, Liu et al directly compared in vitro efficacy of CQ with that of HCQ. By using Vero E6 cells that were exposed to SARS-CoV-2 with increasing multiplicities of infection (MOI), they found EC₅₀ of 2.71–7.36 μM (CQ) and 4.06–12.96 μM (HCQ), respectively, in RT–PCR-based assays (Liu et al, 2020). The authors concluded that HCQ is less potent compared with CQ. In contrast, Yao et al found lower EC₅₀ for HCQ (0.72 μM) compared with CQ (5.47 μM) when using an MOI of 0.01 (the lowest MOI used by Liu et al). They also included a physiologically based pharmacokinetic (PBPK) model of hydroxychloroquine concentrations in lung fluid. Based on this model, they predicted that an HCQ dose of 400 mg twice daily on day one followed by 200 mg twice daily seems to yield appropriate drug levels for treating COVID-19 (Yao et al, 2020). These simulations are in line with an early pharmacokinetic study in children with rheumatic disease where 6-6.5 mg/kg HCQ per day yielded serum levels of 1.4–1.5 μM in humans (Laaksonen et al, 1974). Chloroquine yielded plasma concentrations of 1–3 μM when applied with 3.6 mg/kg in another study (Wollheim et al, 1978). Tissue levels of both CQ and HCQ in animals were found to be 200–700 times higher than those in the plasma, including lung tissue (Popen, 1976). This suggests that sufficient drug concentrations may be reached at the site of infection in humans when using recommended doses but final evidence is lacking and pharmacokinetics can differ significantly in humans. However, based on these models, clinical trials have been conducted with maintenance doses of 400–600 HCQ mg daily.

Numerous clinical trials evaluating CQ/HCQ alone or in combination with additional drugs for the treatment of COVID-19 were conducted or are still ongoing. At the time of writing, clinicaltrials.gov has registered 326 trials of CQ/HCQ in association with COVID-19 treatment. However, most of the published results originate from observational studies or had a low enrollment size. Meanwhile, other trials have been halted due to emerging reports of HCQ-induced cardiovascular events (Kalra et al, 2020; Kamp et al, 2020). Consequently, there has been discussion in the media and scientific community (Colafrancesco et al, 2020; Lenzer, 2020; Sharma, 2020). Some debate leading clinical finding will be mentioned briefly.

Early reports from China suggested a breakthrough in COVID-19 treatment as results from more than 100 patients treated with CQ it could be concluded that it has a positive impact on disease course, viral clearance, lung images in contrast to control treatments (Gao et al, 2020). Although no clinical data were reported to support this hypothesis, HCQ was subsequently introduced in Chinese clinical guidelines. In a small Chinese randomized trial of 63 patients, HCQ seemed to reduce body temperature recovery time and the cough
remission time (preprint: Chen et al., 2020b) and another small analysis of 26 patients treated with HCQ suggested effects on viral load reduction without any clinical implication (Gautret et al., 2020). Nevertheless, other studies could not identify any significant beneficial effect of CQ/HCQ (Mahévas et al., 2020; Chen et al., 2020a) including one observational study with 1376 patients enrolled (Geleris et al., 2020). One placebo-controlled RCT sponsored by the NIH (NCT04332991) was recently halted after the forth interim analysis that included enrolled 479 patients suggested no beneficial effects of HCQ in COVID-19 (NIH, 2020). Meanwhile, HCQ with or without azithromycin was tested in a non-human primate model of SARS-CoV-2 infection where it showed no effects on viral load or clinical endpoints. In additional in vitro analyses published along with this animal study, anti-SARS-CoV-2 activity of HCQ evident in Vero E6 cells could not be reproduced in human airway epithelial (HAE) cells which might explain diminished effects of CQ/HCQ in vivo (Maisonnasse et al., 2020). In conclusion, CQ/HCQ seems to be a broadly active antimicrobial agent that elicits multiple antiviral mechanisms and has potent in vitro efficacy against SARS-CoV-2 when tested in a Vero E6 cell model. However, clinical studies that demonstrate beneficial effects are lacking and available data mainly point toward a neglectable role in the clinical management of COVID-19.

Others

Myriads of clinical approved drugs have been tested regarding their activity against SARS-CoV-2 in vitro. Although other potent inhibitors could be identified, the clinical significance of those compounds is currently uncertain. Moreover, in vivo efficacy and specific MOA are largely unknown. Thus, we do not provide a detailed review of those compounds.

Choy et al. reported on antiviral effects of homoharringtonine (omacetaxine mepesuccinate), a natural plant alkaloid used as a treatment of patients with chronic myeloid leukemia, and emetine, an antiprotozoal agent used in the treatment of amoebiasis. Both drugs block protein synthesis in eukaryotic cells (Gupta & Siminovitch, 1977; Gandhi et al., 2014). In a SARS-CoV-2 infection model with Vero E6 cells, the EC$_{50}$ was 2.14–3.13 µM for homoharringtonine and 0.46–1.56 µM for emetine depending on antiviral assay (Choy et al., 2020). Wang et al. found that nitazoxanide, a drug with broad-spectrum antiparasitic and broad-spectrum antiviral effects, inhibits SARS-CoV-2 at low-micromolar concentration (EC$_{50}$ = 2.12 µM) (Wang et al., 2020a). Recently, Pizzorno et al. evaluated cyclosporine A, a calcineurin inhibitor used as an immunosuppressant medication, and berberine, an alkaloid found in several plants for anti-SARS-CoV-2 activity. Cyclosporine has previously demonstrated antiviral activity against human coronavirus 29E (HCoV-229E) and mouse hepatitis virus (MHV) but not SARS-CoV (de Wilde et al., 2011). For berberine, inhibitory effects were shown against influenza, Chikungunya, and enterovirus 71 (Varghese et al., 2016). Both drugs were found to inhibit SARS-CoV-2 replication in Vero E6 cells significantly (EC$_{50}$: cyclosporine A 3.05 µM; berberine 10.58 µM). Further studies have to clarify their potential role in COVID-19 treatments.

Concluding remarks and interpretation

In this comparative review, we focus on repurposed drugs with antiviral effects against SARS-CoV-2 in cell-based assays as those substances offer great opportunities for a treatment early in the course of COVID-19 by inhibition of viral replication and might be even suitable for preventive strategies as shown for neumaminidase inhibitors in case of influenza (Jefferson et al., 2014). In contrast, immunomodulatory drugs may be more beneficial in a later phase of infection, when the peak of viral replication has been reached and inflammatory processes dominate the pathophysiological process. This hypothesis is supported by the fact that repurposed immunomodulatory drugs like glucocorticoids seems to be beneficial in severe or critical COVID-19 when used in a later phase after several days of symptomatic disease (preprint: Corral et al., 2020; Horby et al., 2020; Ramiro et al., 2020) but probably not within the first week after symptom onset (Horby et al., 2020).

Many substances were tested in vitro for their direct antiviral effects on SARS-CoV-2 replication or their ability to reduce cytopathologic effects in Vero E6 cells. However, to date only thirteen of them demonstrated any activity against SARS-CoV-2 (Table 1). Of repurposed entry and viral protease inhibitors, to date none has shown convincing evidence that support a clinical development as single agent against COVID-19. Besides remdesivir which inhibits viral replication with an EC$_{50}$ of 0.77–26.9 µM (depending on assay type, virus strain, and procedure of calculating), other nucleoside/nucleotide analogs that target the viral RdRp like favipiravir, penciclovir, or ribavirin were assessed but showed no or only weak activity against SARS-CoV-2. Inhibitors of viral protease were also investigated but only lopinavir had mentionable antiviral activity (EC$_{50}$ 5.25–26.62 µM). Unfortunately, the combination of lopinavir and ritonavir did not show any clinical effects in a randomized controlled trial (Cao et al., 2020). The anti-parasite drug CQ/HCQ was one of the most promising candidates against COVID-19 based on preclinical studies but a clinical benefit could not be proven and a recently published in vivo study demonstrated no beneficial effects in a non-human primate model of SARS-CoV-2 infection (Maisonnasse et al., 2020). Recent studies in vitro showed strong anti-SARS-CoV-2 properties of compounds with different and partly unknown modes of antiviral action like nitazoxanide, cyclosporine A, emetine, and homoharringtonine. However, of those agents none have been readily assessed in animal models or clinical trials (Table 2).

Therefore, remdesivir is the only antiviral drug that demonstrated efficacy in the preclinical and clinical setting. In the latter situation, it reduces time to recovery and may reduce mortality. A meta-analysis which is available as preprint identified a statistically significant reduction in mortality (relative risk 0.69; [95% CI 0.49–0.99]) when pooling data of the two available RCTs (preprint: Alexander et al., 2020). Final results of the ACTT-1 trial will provide more data to evaluate effects of RDV on mortality and virologic outcomes. In addition, a phase 1b/2a trial evaluating effects of RDV on viral load when administered by inhalation of an aerosolized solution is being planned (NCT04539262).

The relatively modest effect of the drug may be explainable by its virostatic mechanism of action and the fact that effects were studied after median 9 days of symptomatic disease (Beigel et al., 2020) while viral replication is dominating in the first week of infection (To et al., 2020; Wölfel et al., 2020; Zhou et al., 2020; He et al., 2020b). Early treatment with RDV was shown to be very effective in a rhesus macaque model of SARS-CoV-2 infection where it reduced clinical signs of infection, lung damage, and virus replication in lower respiratory tract specimens (Williamson et al., 2020). Based on
these considerations, we hypothesize that treatment with RDV should therefore start early after symptom onset in the patient population with treatment indication. In contrast to other antiviral drugs, RDV is not available as oral formulation because of its poor bioavailability that is inherent to its phosphonate-containing pro-nucleoside design (Murakami et al., 2008; Pertusati et al., 2012). This is a major disadvantage as it precludes an early treatment initiation out of hospital. However, a clinical study that aims to evaluate multiple intravenous doses of RDV in an outpatient setting (NCT04501952) may increase our knowledge on its efficacy in early stages of COVID-19.

The most successful antiviral therapies consist of combinations of antiviral drugs with different MOA’s as shown for HIV and HCV-therapy. Here, this approach is necessary to prevent development of antiviral resistance during long-term treatments. Nevertheless, combining of RDV with other antiviral or immunomodulatory agents may be a successful strategy to improve treatment outcomes.

Acknowledgements

This work received no specific financial support. J.J.M. receives funding from the German Center of Infection Research (DZIF) stipend Ti 07.001_Malin_00. A.S. is supported by a fellowship of the Cologne Clinician Scientist Program (CCSP), funded by the German Research Council (Fi 773/15-1). A.S. and S.T. receive funding from the Koeln Fortune Program/Faculty of Medicine, University of Cologne. J.R. receives funding from the DZIF Thematic Translational Unit Tuberculosis (TTU TB, grant number TTU 02.806 and 02.905)

Repurposed drug	SARS-CoV-2 animal model	RCTs on COVID-19 (identifier)	Main conclusions	References
Berberine	N/A	N/A	N/A	N/A
Chloroquine/ Hydroxychloroquine	N/A	N/A	N/A	N/A
NCT04332991*	No additional benefit compared with placebo control for the treatment of COVID-19 in hospitalized patients (n = 479; unpublished data)	N/A	N/A	
Cynomolgus macaque	No in vivo antiviral activity and no clinical efficacy, regardless of the timing of treatment initiation	N/A	N/A	
Cyclosporine A	N/A	N/A	N/A	N/A
Emetine	N/A	N/A	N/A	N/A
Favipiravir	N/A	N/A	N/A	N/A
Homoharringtonine	N/A	N/A	N/A	N/A
Lopinavir (plus ritonavir)	N/A	N/A	N/A	N/A
Nafamostat	N/A	N/A	N/A	N/A
Nitazoxanide	N/A	N/A	N/A	N/A
Penciclovir	N/A	N/A	N/A	N/A
Remdesivir	N/A	NCT04257656 Pre-term suspended (N = 237)	No significant clinical improvement (HR 1.23 [95% CI 0.87-1.75])	Wang et al (2020)
	NCT04280705 (ACTT trial)	10 day course of RDV (200 mg d1, 100 mg 2-10): 1. Reduction in time to recovery in adults hospitalized with COVID-19 (hazard ratio: 1.31 [95% CI 1.12-1.54]; P < 0.001). 2. Lower mortality rate in treatment group (8% vs. 11.6%; P = 0.059)	N/A	N/A
	NCT04292730* (SIMPLE II)	No difference in clinical status distribution to placebo at day 11 after a 10 day course of RDV but better clinical status after 5 day course of RDV (odds ratio, 1.65 [95% CI 1.09-2.48]; P = 0.02). The result is of unclear clinical significance.	N/A	N/A
Rhesus macaque	RDV treated animals (n = 6) showed no clinical signs of disease, had lower lung virus titers and less lung tissue damage compared with the placebo group (n = 6)	N/A	N/A	

Table 2. Published data from animal models and RCTs of repurposed drugs with proven anti-SARS-CoV-2 efficacy in vitro

SD, standard deviation; CI, 95% confidence interval.
*Preliminary (not peer-reviewed published) data.
*aRandomized controlled open-label trial (no blinding was performed).
Pending issues

- Effects of RDV on mortality and virologic outcomes need to be addressed in the final publication of data from the ACTT-1 trial and in subsequent meta-analyses to substantiate the full potential of this antiviral drug.
- Safety and efficacy studies of RDV in combination with other antivirals or immunomodulatory drugs (including systemic corticosteroids) are needed. Hereby, drug–drug interactions must be taken into account as RDV interferes with several hepatic drug-metabolizing enzymes.
- The optimal timing of RDV treatment is still unknown. Following studies should focus on patients in an early stage of COVID-19.
- The poor oral bioavailability of RDV has many disadvantages and precludes a timely use out of hospital or in remote areas. Additional pharmacological efforts should be put into the development of an antiviral against SARS-CoV-2, which is orally available.

and the German Research Foundation (DFG RY 159). The funders had no role in data collection, interpretation, or manuscript preparation and submission.

Author contributions
Conceptualization: JJM, AS; Original draft: JJM, AS, SJT; Visualization: AS; Project administration, Supervision of manuscript preparation, Validation: JJM; Review, Editing, Validation: JR, GF.

Conflict of interest
JJ.M, AS., SJ.T., and J.R. declare no potential conflicts of interest. G.F. has served as an advisor to Gilead Sciences and has conducted clinical research supported by Gilead Sciences.

For more information
- https://www.who.int/emergencies/diseases/novel-coronavirus-2019/globally-research-on-novel-coronavirus-2019-ncov
- https://clinicaltrialsgov/ct2/who_table
- https://www.covid19treatmentguidelines.nih.gov/
- iv https://www.bmj.com/content/370/bmj.m2980.

References

Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R et al (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-7734) is mediated by the viral polymerase and the proofreading exoribonuclease. Mbio 9: e00221–e218

Alexander PE, Pitsurka J, Lewis K, Aryal K, Thomas P, Szczeklik W, Frunczek J, Polok K, Alhazzani W, Mammen M (2020) Remdesivir use in patients with coronavirus COVID-19 disease: a systematic review and meta-analysis. medRxiv https://doi.org/10.1101/2020.05.23.20110932 [PREPRINT]

Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Coronavirus main proteinase (3Clpro) structure: basis for design of anti-SARS drugs. Science 300: 1763–1767

Antalis TM, Bugge TH, Wu Q (2011) Membrane-anchored serine proteases in health and disease. Prog Mol Biol Transl Sci 99: 1–50

Banerjee A, Nasir JA, Budylowski P, Yip L, Aftanas P, Christie N, Ghalami A, Baid K, Raphenya AR, Hirotta JA et al (2020) Isolation, sequence, infectivity, and replication kinetics of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26(9): 2054–2063

Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, ... Kline S et al (2020) Remdesivir for the treatment of covid-19 - preliminary report. N Engl J Med 383: 992–993

Boriskin YS, Leneva IA, Pécheur EI, Polvak SJ (2008) Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 15: 997–1005

Bosch BJ, van der Zee R, de Haan CA, Rottier PJ (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77: 8801–8811

Brown AJ, Won JJ, Graham RL, Dinnon KH, Sims AC, Feng JY, Cihlar T, Denison MR, Baric RS, Sheahan TP (2019) Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 169: 104541.

Burkard C, Verheije MH, Wicht O, van Kasteren SJ, van Kuppeveld FJ, Haagmans BL, Peikmans L, Rottier PJM, Bosch BJ, de Haan CAM (2014) Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10: e1004502.

Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y et al (2020) Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). https://doi.org/10.1016/j.eng.2020.03.007

Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M et al (2020) A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 382: 1787–1799

Chan JF-W, Yao Y, Yeung M-L, Deng W, Bao L, Jia L, Li F, Xiao C, Gao H, Yu P et al (2015) Treatment with Lopinavir/Ritonavir or interferon-b1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 212: 1904–1913

Chang JH, Lee IS, Kim HK, Cho YK, Park JM, Kim SW, Choi M-G, Chung IS (2009) Farnosamost for Prophylaxis against Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis Compared with Gabexate. Gut Liver 3: 205–210

Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D et al (2020a) A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban 49: 215–219

Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B, Zhang Z (2020b) Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv https://doi.org/10.1101/2020.03.22.20040758 [PREPRINT]

Cho A, Saunders OL, Butler T, Zhang L, Xu J, Vela JE, Feng JY, Ray AS, Kim CU (2012) Synthesis and antiviral activity of a series of 1'-substituted 4-aza-7,9-dideoxadenosine C-nucleosides. Bioorg Med Chem Lett 22: 2705–2707

Choy KT, Wong AY, Kaewpredeep P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X et al (2020) Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 178: 104786.

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361: 2045–2046
Colafraancesco S, Scivo R, Barbati C, Conti F, Prion R (2020) Targeting the immune system for pulmonary inflammation and cardiovascular complications in COVID-19 patients. Front Immunol 11: 1439.

Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, van Boheemen S, Gopal R, Balhause M, Bestebroer TM et al. (2012) Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill 17: 20285.

Corral L, Bahamonde A, Arnaiz delas Revillas F, Gomez-Barquero J, Abadia-Otero J, Garcia-Ibarbia C, Mora V, Cerezo-Hernandez A, Hernandez JL, Lopez-Muniz G et al. (2020) GLUCOCOVID: A controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. medRxiv https://doi.org/10.1101/2020.06.17.20133579 [PREPRINT]

Crance JM, Scaramozzino N, Jouan A, Garin D (2003) Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antiviral Res 58: 73–79.

de Haan CA, Rottier PJ (2005) Molecular interactions in the assembly of coronaviruses. Adv Virus Res 64: 165–230.

De Meyer S, Bojkova D, Cinatl J, Van Damme E, Buyck C, Van Loock M, Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau (2015) Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res 20: 1735–1740.

Gao J, Tian Z, Yang X (2020) Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioSici Trends 14: 72–73.

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 105949.

Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, Labella A, Manson DK, Kubin C, Barr RG et al. (2020) Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med 382: 2411–2418.

Gilead Sciences (2020) Remdesivir (GS-5734) Investigator’s Brochure Version 5.0. Foster City, CA, Gilead Sciences, Inc., 115–116.

Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galii A, Minh MY, Nahass RG et al. (2020) Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med https://doi.org/10.1056/NEJMoA2015301

Gordon CJ, Tcheshnovsk OP, Feng JY, Porter DP, Götte M (2020a) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 295: 4773–4779.

Gordon CJ, Tcheshnovsk OP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M (2020b) Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 295: 6785–6797.

Grein J, Ohmagara N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescurie FX et al. (2020) Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 382(24): 2327–2336.

Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang L, Guan Y et al. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302: 276–278.

Gupta RS, Simonvitch L (1977) The molecular basis of emetine resistance in Chinese hamster ovary cells: alteration in the 40S ribosomal subunit. Cell 10: 61–66.

He J, Hu L, Huang X, Wang C, Zhang Z, Wang Y, Zhang D, Ye W (2020a) Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int J Antimicrob Agents 56(2): 106055.

He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, Lau YM, Wong JY, Guan Y, Tan X et al. (2020b) Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 26: 672–675.

Hoffmann M, Kleine-Weber H, Schroder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A et al. (2020a) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271–280.

Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pühmann C (2020b) Nafamostat mesilate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother 64: e00754–20.

Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E et al. (2020) Dexamethasone in
hospitalized patients with Covid-19 – preliminary report. N Engl J Med https://doi.org/10.1056/NEJMoa21436
Huang D, Yu H, Wang T, Yang H, Yao R, Liang Z (2020) Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol 192: E734 – E744
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 93: e01815-18
Jefferson T, Jones MA, Doshi P, Del Mar CB, Hama R, Thompson MJ, Spencer EA, Onakpoya I, Mahtani KR, Nunan D et al (2014) Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst Rev 2014: Cd008965.
Jochmans D, van Nieuwkoop S, Smits SL, Neyts J, Fouchier RA, van den Hoogen BG (2016) Antiviral activity of favipiravir (T-705) against a broad range of paramyxoviruses in vitro and against human metapneumovirus in hamsters. Antimicrob Agents Chemother 60: 4620 – 4629
Johns Hopkins University (JHU) (2020). COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE). Available at: http://covid19.csse.umd.edu/. Accessed October 15, 2020.
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S (2020) Animal toxicity and pharmacokinetics of favipiravir (T-705) in non-human primates. Nature 585: 584 – 587
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Laaksonen AL, Koskiahde V, Juva K (2003) SARS-CoV-2: the origin and early transmission of a human coronavirus. Science 302: 266–269
Kumagai S, Kawaoka Y, Ishikawa H, Hasegawa T, Ohnishi K, Hayashi Y (2004) Amino acid substitutions in the SARS coronavirus 3CL protease that may be involved in pathogenesis. J Virol 78: 759–762
Kumar PS, Steinhauer DA, Ivanova E, Lau DCY, Cheung MT, Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450 – 454
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Cramer G, Hu Z, Zhang H et al (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676 – 679
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, … Wang M (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6: 16.
Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Rajan P, Hotard AL, Flint M, McMullan LK, Siegel D, Clarke MO et al (2017) GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep 7: 43395.
Mahévas M, Tran VT, Roumier M, Chabrol C, Paule R, Guillaud C, Fois E, Lepeule R, Szewbel TA, Lesure FX et al (2020) Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ 369: m1844.
Maisonasse P, Guedj J, Contreras V, Behlili S, Solas C, Marlin R, Naninck T, Pizzorno A, Lemaître J, Gonçalves A et al (2020) Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 585: 584 – 587
McChesney EW (1983) Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med 75: 11 – 18
Mohd HA, Al-Tawfiq JA, Memish ZA (2016) Middle east respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol J 13: 87.
Mulanugo S, Dodd LE, Davey Jr RT, Tshiani MBaya O, Proschan M, Mukadi D, Lusakabanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A et al (2019) A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med 381: 2293 – 2303
Murakami E, Niu C, Bao H, Micolochuck Steuer HM, Whitaker T, Nachman T, Sofia MA, Wang P, Otto MJ, Furman PA (2008) The mechanism of action of beta-D-2′-deoxy-2′-fluoro-2′-C-methylcytidine involves a second metabolic pathway leading to beta-D-2′-deoxy-2′-fluoro-2′-C-methyluridine 5′-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 52: 458 – 464
Naarding MA, Baan E, Pollakis G, Paxton WA (2007) Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology 4: 6.
National Institutes of Health (NIH) (2020). NIH halts clinical trial of hydroxychloroquine in patients with COVID-19. Press release available at: www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine. Accessed June, 28 2020.
O’Neill PM, Bray PG, Hawley SR, Ward SA, Park BK (1998) 4-Aminoquinolines—past, present, and future: a chemical perspective. Pharmacol Ther 77: 29 – 58
Ogando NS, Dalebout T, Zevenhoven-Dobbe JC, Limpens RIVAL, van der Meer Y, Cali L, Drucker J, de Vries JJC, Kikker M, Bárchen M et al (2020) SARS-CoV-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol 101: 925 – 940
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Comm 11: 1620.
Pal A, Pawar A, Goswami K, Sharma P, Prasad R (2020) Hydroxychloroquine and Covid-19: a cellular and molecular biology based update. Indian J Clin Biochem 35: 274 – 284
Paton NI, Abbott J (2005) Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks. HIV Med 6: 13 – 20
Paton NI, Abbott J, Karim F (2002) Hydroxychloroquine, hydroxycarbamide, and didanosine as effective treatment for HIV-1. Lancet 359: 1667 – 1668
Peris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319 – 1325

© 2020 The Authors. EMBO Molecular Medicine 13: e13105 | 2021 13 of 15
Pertusati F, Serpi M, McGuigan C (2012) Medicinal chemistry of nucleoside phosphonate prodrugs for antiviral therapy. *Antivir Chem Chemother* 22: 181 – 203

Pizzorno A, Padey B, Dubois J, Julien T, Traversier A, Dulière V, Brun P, Lina B, Rosa-Calatrava M, Ternier O (2020) In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. *Antiviral Res* 181: 104878.

Popert AJ (1976) Chloroquine: a review. *Rheumatol Rehabil* 15: 235 – 238

Ramiro S, Mostard RLM, Magro-Checa C, van Dongen CMP, Dormans T, Bujs J, Gronenschild M, de Kruijf MD, van Haren EHJ, van Kraaij T et al (2020) Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. *Ann Rheum Dis* 79: 1143 – 1151

Randolph VB, Winkler G, Stollar V (1990) Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. *Virology* 174: 450 – 458

Rau JC, Beaulieu LM, Huntington JA, Church FC (2007) Serpins in thrombosis, hemostasis and fibrinolysis. *J Thromb Haemost* 5: 102 – 115

Rolain JM, Colson P, Raoult D (2007) Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. *Int J Antimicrob Agents* 30: 297 – 308

Sangawa H, Komeno T, Nishikawa H, Yoshida A, Takahashi K, Nomura N, Furuta Y (2013) Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. *Antimicrob Agents Chemother* 57: 5202 – 5208

Savaino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, Tamburrini E, Perno CF, Boelaert JR, SPerer K et al (2004) Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. *J Acquir Immune Defic Syndr* 35: 223 – 232

Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxylchloroquine and chloroquine: implications for rheumatology. *Nat Rev Rheumatol* 16: 155 – 166

Seyler-Radkte KL, Yates MK (2018) The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. *Antiviral Res* 154: 66 – 86

Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen CM, Kati W, Stewart K, Lal R, Husa A et al (1998) ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. *Antimicrob Agents Chemother* 42: 3218 – 3224

Shannon A, Selisko B, Le N, Huchting J, Touret F, Piorkowski G, Fattorini V, Ferron F, Decroly E, Meier C et al (2020) Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase. *bioRxiv* https://doi.org/10.1101/2020.05.15.098731. [PREPRINT]

Sharma A (2020) Chloroquine paradox may cause more damage than help fight COVID-19. *Microbes Infect* 22: 154 – 156

Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrk C, Feng JY, Trantcheva I et al (2017) Broad-spectrum antiviral CS-5734 inhibits both epidemic and zoonotic coronaviruses. *Sci Transl Med* 9: eaal3653

Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO et al (2020) Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. *Nat Commun* 11: 222

Shirato K, Kawase M, Matsuyama S (2018) Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. *Virology* 517: 9 – 15

Sieczkowski SB, Whittaker GR (2020) Dissecting virus entry via endocytosis. *J Virol* 84: 1535 – 1545

Sigrist CJ, Bridge A, Le Mercier P (2020) A potential role for integrins in host cell entry by SARS-CoV-2. *Antiviral Res* 177: 104759.

Spinner CD, Gottlieb RL, Criner GJ, Cattelan AM, Soriano Villadomiu A, Oguagu O, Malhotra P, Mullane KM, Castagna A et al (2020) Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. *JAMA* 324: 1048.

Streeher DG, Witkowski JT, Khare GP, Sidwell RW, Bauer RJ, Robins RK, Simon LN (1973) Mechanism of action of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virezole), a new broad-spectrum antiviral agent. *Proc Natl Acad Sci USA* 70: 1174 – 1178

Sunagk W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaiozzi F et al (2020) SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. *Nat Med* 26: 681 – 687

Tchesnokov EP, Feng JY, Porter DP, Gottle M (2019) Mechanism of inhibition of ebola virus RNA-dependent RNA Polymerase by Remdesivir. *Viruses* 11: 326.

To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, Yip CC, Cai JP, Chan JM, Chik TS et al (2020) Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. *Lancet Infect Dis* 20: 565 – 574

van der Lugt J, Lange J, Avihingsanon A, Ananwaranich J, Sealoo S, Burger D, Gorowara M, Phanuphak P, Ruxrungtham K (2009) Plasma concentrations of generic lopinavir/ritonavir in HIV-type-1-infected individuals. *Antivir Ther* 14: 1001 – 1004

Vanderlinden E, Vrancken B, Van Houdt J, Rajwanshi VK, Gillemot S, Andrei G, Lemey P, Naens L (2016) Distinct effects of T-705 (Favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. *Antimicrob Agents Chemother* 60: 6679 – 6691

Varghese FS, Thaib A, Amrun SN, Simarmata D, Rausalu K, Nyman TA, Merits A, McNerney GM, Ng LFP, Ahola T (2016) The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. *J Virol* 90: 9743 – 9757

Villalain J (2010) Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes. *J Phys Chem B* 114: 8544 – 8554

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. *Virology* 32: 69

Walls AC, Park YJ, Torontic MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. *Cell* 181: 281 – 292

Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C (2008) SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. *Cell Res* 18: 290 – 301

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020a) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res* 30: 269 – 271

Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X (2020b) The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. *Cell Discov* 6: 28

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q et al (2020c) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. *Lancet* 395: 1569 – 1578
Warren TK, Jordan R, Lo MK, Ray AG, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC et al (2016) Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531: 381 – 385
Wellemes TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184: 770 – 776
Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP, Schulz J, van Doremalen N, Leighton I, Yinda CK, Pérez-Pérez L et al (2020) Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585: 273 – 276
Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C et al (2020) Virological assessment of hospitalized patients with COVID-19. Nature 581: 465 – 469
Wollheim FA, Hanson A, Laurell CB (1978) Chloroquine treatment in rheumatoid arthritis. Correlation of clinical response to plasma protein changes and chloroquine levels. Scand J Rheumatol 7: 171 – 176
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260 – 1263
Wray SK, Gilbert BE, Noall MW, Knight V (1985) Mode of action of ribavirin: effect of nucleotide pool alterations on influenza virus ribonucleoprotein synthesis. Antiviral Res 5: 29 – 37
Xia S, Lan Q, Su S, Wang X, Xu W, Liu Z, Zhu Y, Wang Q, Lu L, Jiang S (2020a) The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther 5: 92
Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S et al (2020b) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 17: 765 – 767
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C et al (2020) In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71(15): 732 – 739
Yates MK, Seley-Radtke KL (2019) The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res 162: 5 – 21
Zhang C, Shi L, Wang FS (2020a) Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 5: 428 – 430
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rix K, Hilgenfeld R (2020b) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368: 409 – 412
Zhou R, Li F, Chen F, Liu H, Zheng J, Lei C, Wu X (2020) Viral dynamics in asymptomatic patients with COVID-19. Int J Infect Dis 96: 288 – 290
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382: 727 – 733

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.