On the reliability of relative helicities deduced from nonlinear force-free coronal models

Julia K. Thalmann, X. Sun, K. Moraitis, and M. Gupta

1 University of Graz, Institute of Physics/IGAM, Universitätsplatz 5, 8010 Graz, Austria e-mail: julia.thalmann@uni-graz.at
2 Institute for Astronomy, University of Hawai`i at Manoa, Pukalani, HI 96768-8288, USA
3 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
4 University of Ioannina, Department of Physics, Section of Astrogeneophysics, Ioannina, Greece

Received July 15, 2020 / Accepted September 11, 2020

ABSTRACT

Aims: We study the relative helicity of active region (AR) NOAA 12673 during a ten-hour time interval centered around a preceding X2.2 flare (SOL.2017-09-06T08:57) and also including an eruptive X9.3 flare that occurred three hours later (SOL.2017-09-06T11:53). In particular, we aim for a reliable estimate of the normalized self-helicity of the current-carrying magnetic field, the so-called helicity ratio $[H_J]/[H_{PJ}]$, a promising candidate to quantify the eruptive potential of solar ARs.

Methods: Using SDO/HMI vector magnetic field data as an input, we employ nonlinear force-free (NLFF) coronal magnetic field models using an optimization approach. The corresponding relative helicity, and related quantities, are computed using a finite-volume method. From multiple time series of NLFF models based on different choices of free model parameters, we are able to assess the spread of $[H_J]/[H_{PJ}]$, and to estimate its uncertainty.

Results: In comparison to earlier works, we favor the non-solenoidal contribution to the free magnetic energy, $|E_{mix}|/E_{JS}$, as selection criterion regarding the required solenoidal quality of the NLFF models for subsequent relative helicity analysis. As a recipe for a reliable estimate of the relative magnetic helicity (and related quantities), we recommend to employ multiple NLFF model time series based on different combinations of free model parameters, to retain only those which satisfy $|E_{mix}|/E_{JS} \leq 0.2$ at a certain time instant, to subsequently compute mean estimates, and to use the spread of the individually contributing values as an indication for the uncertainty.

Key words. Sun: corona – Sun: flares – Sun: magnetic fields – Methods: data analysis – Methods: numerical

1. Introduction

Rooted in the Gauss linking number, magnetic helicity is a measure for the level of entanglement of magnetic field lines within a magnetized plasma (Moffatt 1969). It is strictly conserved within the ideal MHD paradigm (Woltjer 1958), and its dissipation is relatively weak even in non-ideal magneto-hydrodynamics (Taylor 1974), the latter even in the presence of strong nonideal effects (Pariat et al. 2015). In the context of solar eruptivity, this favorable property allows an explanation for the existence of plasma ejecta in order to prevent infinite accumulation within the solar atmosphere (Rusin 1994, Low 1996).

The basic formulation of magnetic helicity lacks gauge transform invariance for magnetically open systems, i.e., it is not directly applicable for studies of the solar corona since magnetic flux is continuously penetrating the coronal volume through the solar surface. To circumvent this limitation, Berger & Field (1984) and Finn & Antonsen (1984), defined the so-called relative magnetic helicity as

$$H_V = \int_V (A + A_0) \cdot (B - B_0) \, dV,$$

a gauge-invariant quantity related to the magnetic helicity within a volume, V, bounded by a surface, ∂V. Here B and B_0 are the 3D magnetic field under study and a reference field, respectively. A and A_0 are the vector potentials satisfying $B = \nabla \times A$ and $B_0 = \nabla \times A_0$, respectively.

As its name implies, the relative helicity allows it to express the helicity of a magnetic field with respect to a reference field, B_0, which shares the normal component of the studied field B on ∂V. Most often B_0 is chosen to be a potential (current-free) field (see Prior & Yeates 2014, for an alternative choice). For practical cases, Valori et al. (2012) demonstrated the validity and physical meaningfulness to compute (and track in time) H_V by evaluating Eq. (1) in order to characterize (the evolution of) a magnetic system.

Berger (1999), decomposed H_V into two separately gauge-invariant quantities

$$H_J = \int_V (A - A_0) \cdot (B - B_0) \, dV,$$

$$H_{PJ} = 2 \int_V A_0 \cdot (B - B_0) \, dV,$$

so that $H_V = H_J + H_{PJ}$. Here, H_J is the magnetic helicity in the volume associated to the electric current, and H_{PJ} is the helicity associated with the component of the field that is threading ∂V. Because B and B_0 are designed such that they share their normal component, B_n, on ∂V, not only H_V but also both, H_J and H_{PJ} are independently gauge invariant. For a pilot study of the time evolution of these quantities in the solar context see Moraitis et al. (2014). For completeness we note that, unlike magnetic helicity, H_J and H_{PJ} are not conserved quantities, as
a gauge-invariant transfer term between them dominates their dynamics (Lian et al. 2018).

Especially \mathbf{H}_1 in Eq. (2) attracts attention as it provides additional information compared to \mathbf{H}_V. More precisely, the so-called helicity ratio, $|\mathbf{H}_1|/|\mathbf{H}_V|$, appeared as a promising candidate in characterizing the eruptive potential of the underlying magnetic structure. This was noted not only based on numerical simulations (e.g., Pariat et al. 2017; Zuccarello et al. 2018; Lian et al. 2018), but also from application to solar observations (James et al. 2018; Moraitis et al. 2019; Thalmann et al. 2019b).

Magnetic helicity studies of solar observations are often performed based on nonlinear force-free (NLFF) coronal magnetic field extrapolations, i.e., the numerical solution of

$$\nabla \times \mathbf{B} = 0 \quad (4)$$

$$\nabla \cdot \mathbf{B} = 0 \quad (5)$$

where \mathbf{B} represents the 3D coronal magnetic field, subject to the measured surface magnetic field as a boundary condition (for a review see, e.g., Wiegelmann & Sakurai 2012). For instance, James et al. (2018) used a magneto-frictional method to solve Eqs. (4) and (5), while the works of Moraitis et al. (2019) and Thalmann et al. (2019b) were based on an optimization approach. Whatever method used, unavoidable numerical errors prevent the exact fulfillment of Eqs. (4) and (5). Especially the level of solenoidality of the obtained NLFF solution, however, is highly important for relative helicity computations (Valori et al. 2013) and see Sect. 2.3 for details.

1.1. Picturing the challenge

Recently, Moraitis et al. (2019) (M19, hereafter) studied the eruptivity of NOAA 12673 which produced the two strongest flares of Solar Cycle 24 on 6 September 2017. A confined X2.2 flare started at 08:57 UT (SOL2017-09-06T08:57), and an eruptive X9.3 flare followed three hours later, (start time 11:53 UT; SOL2017-09-06T11:53). In their study a ten-hour time interval centered around the X2.2 flare of 6 September that also includes the X9.3 flare was used. They based their analysis on a mix of NLFF solutions, based on the optimization method of Wiegelmann et al. (2012), a specialization of the method originally described in Wiegelmann & Inhester (2010) for the application to SDO/HMI data (W12, hereafter), as well as its original predecessor (Wiegelmann & Thompson 2004, W04, hereafter), using standard (free) model parameter settings. They argued that the employment of NLFF models based on different code versions allows it to optimize the final NLFF time series used to compute the coronal relative helicity, when retaining only those which perform best in terms of solenoidality. Thus, at each time instant within the studied time series, they checked the solenoidality of the W04 and W12 solutions, and used the particular NLFF solution of highest solenoidality quality, i.e., that with the smallest value of $\nabla \cdot \mathbf{B}$. Time instances where none of the employed models were providing an acceptably small level of solenoidality, were discarded entirely. The time evolution of $|\mathbf{H}_1|/|\mathbf{H}_V|$ that resulted based on this pre-selection of NLFF models depicts an increase of $|\mathbf{H}_1|/|\mathbf{H}_V|$ to values >0.15 prior to the X-class flares, as well as corresponding decreases in the course of the flares (see their Fig. 7).

Though as a side result, DeRosa et al. (2015) delivered the first comparative analysis of relative helicity computations based on different NLFF methods, picturing consistent relative helicity estimates as a challenging, yet achievable task. In that work, the W12-based NLFF solutions were found to deliver distinctly different values for the relative helicity, in comparison to those deduced from other NLFF methods (a magneto-frictional and three Grad-Rubin methods), which was explained by the insufficient solenoidal quality of the NLFF model. This issue was found as to be rooted in the usage of standard choices of (free) model parameters, as suggested in W12, which resulted in NLFF solutions with non-solenoidal errors on the order of the inherent free magnetic energy (see their Fig. 7b). It was also shown, however, that an alternative W12-based NLFF solution based on an adjusted set of model parameters resulted in a significant improvement of the solenoidal quality, and hence the corresponding relative helicity computation (see Appendix of their work).

The above works suggests that there is great potential for improving the accuracy of relative helicity estimates, based on different model parameter choices and/or particular versions of the optimization approach. Since it has been shown that the W12 method delivers NLFF solutions with a higher degree of force-freeness and lower solenoidal level in comparison to the W04 method (see Table 2 in Wiegelmann et al. 2012), we restrict ourselves to make use of the W12 method and employ a number of NLFF solutions based on different choices for the adjustable (free) model parameters. In order to make our results comparable to the previous study of M19, we use the same vector magnetic field data as input to NLFF modeling. We attempt to assess the resulting spread of the relative helicity and related quantities, most importantly that of $|\mathbf{H}_1|/|\mathbf{H}_V|$, for this particular AR and time interval in relation to the particular NLFF model parameters used. On that basis, we aim to provide a recipe for a realistic estimation of the relative helicity, including appropriate uncertainties.

2. Data and methods

2.1. Vector magnetic field data

In our study, we use the data set originally designed to study the eruptivity of NOAA AR 12673 in M19, originally based on the 1-min cadence hmi.sharp_720s data product, constructed from polarization measurements of the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI; Scherrer et al. 2012). A FOV covering 320 \times 320 pixels was extracted from the full-disk hmi.sharp_720s data, centered at the Carrington coordinates (118.4°, -9.2°). A cylindrical equal area (CEA) projection was applied to the chosen sub-field of the hmi.sharp_720s data vector field data, following the description in Sun (2013). The resulting CEA-remapped field vector (B_r,B_θ,B_ϕ) was binned by a factor of two to a resolution of 0.06 degree (~720 km at disk center).

In this way a total of 17 CEA vector magnetic field maps were constructed, covering the time span 2017-Sep-06 04:00 UT – 13:00 UT, around two major flares hosted by NOAA 12673 (an confined X2.2 flare that peaked at 09:10 UT; and an eruptive X9.3 flare that peaked at 12:02 UT).

2.2. NLFF modeling

Based on the vector magnetic field data, described in Sect. 2.1 we compute a series of NLFF equilibria for each of the 17 time instances. NLFF modeling involves one computational task at least (“optimization”; see Sect. 2.2.2), and two computational tasks at most (a “preprocessing” step first, followed by subsequent optimization; see Sect. 2.2.1). Preprocessing is necessary, because the vector magnetic field data deduced from polarization...
measurements at photospheric levels does not conform with the force-free criteria [Aly 1989].

2.2.1. Preprocessing

During preprocessing, the measured 2D vector magnetic field data is modified in order to obtain a vector field that is (more) force-free consistent. The preprocessing method of [Wiegelmann et al. 2006] minimizes a functional of the form

\[L_{pp} = \mu_1 L_{pp,1} + \mu_2 L_{pp,2} + \mu_3 L_{pp,3} + \mu_4 L_{pp,4}, \tag{6} \]

where the individual contributions \(L_{pp,i} \) are summed over all grid points of the two-dimensional (2D) photospheric grid, and are weighted individually by the corresponding pre-factors \(\mu_i \). In discretized form, \(L_{pp,1} \) is the square of the total magnetic force, and \(L_{pp,2} \) the square of the total magnetic torque. \(L_{pp,3} \) measures the difference between the preprocessed and original input field, and \(L_{pp,4} \) reduces small-scale variations in the measured field (applying a Laplacian smoothing).

In the solar context, preprocessing aims to approximate the chromospheric magnetic field, assumed to be more force-free consistent than the photospheric magnetic field. In [Wiegelmann et al. 2008], a realistic model active-region has been used to test the effect of preprocessing. Besides the original scope of that study, the preprocessing has been shown to remove non-magnetic forces in the model photosphere and to yield a chromospheric-like model field (see their Table 1 and Fig. 2). In particular, the smoothing term, \(L_{pp,4} \), in Eq. (6) is physically motivated by the desire to approximate the characteristic spatial scales at a chromospheric level, i.e., to remove all scales below super-granular diameter [Wiegelmann et al. 2006]. The smoothing term is naturally competing with the changes to the data due to the terms assigned to enforce force-free compatibility (\(L_{pp,1} \) and \(L_{pp,2} \)). Since the latter are weighted distinctly stronger (usually \(\mu_1 = \mu_2 = 1 \) and \(\mu_3 < \mu_1 \), \(L_{pp,5} \) may have only a limited effect so that on overall small scales might actually be enhanced (see corresponding remarks in Sect. 8.1 of [Valori et al. 2013]).

The application of preprocessing prior to optimization has the desired effect as to deliver NLFF solutions of higher quality, independent of the particular NLFF method used, but appeared advantageous especially for NLFF methods that rely on numerical differentiation (see Sect. 7.3 of [Metcalf et al. 2008]). It improves the final NLFF solution, both in terms of force- and divergence-freeness, naturally because of the more force-free consistent nature of the preprocessed data (see Table 2 in W12 and also Table 2 in [Wiegelmann et al. 2008]).

The recommended relative weights are \((\mu_1, \mu_2, \mu_3, \mu_4) = (1, 1, 10^{-3}, 10^{-2}) \), with the weightings \(\mu_1 \) and \(\mu_2 \) set several orders of magnitude larger than \(\mu_3 \) and \(\mu_4 \). This is because the (nearly) vanishing total magnetic force and torque are essential to be met, while the nearness to the actually observed data and its smoothness are desired (secondary) requirements. In our work, we use the suggested setting \(\mu_1 = \mu_2 = 1 \), and inspect separately the effect of enforcing nearness to the observed data (\(\mu_3 = 10^{-3} \) vs. \(\mu_3 = 0 \)) and that of smoothing (\(\mu_4 = 10^{-2} \) vs. \(\mu_4 = 0 \)). Though the advantageous effect of smoothing onto the quality of the resulting NLFF solution is known, its impact on relative helicity computation is yet unclear. Using the just presented extreme choices of corresponding relative weights, we are able to clarify the relative influences of the actually observed data and smoothing.

2.2.2. Optimization

In order to perform the NLFF optimization, we apply the method of [Wiegelmann et al. 2012], i.e., we combine the improved optimization scheme of [Wiegelmann & Inhester 2010] and a multiscale approach [Wiegelmann 2008]. In our work, we apply a three-level multiscale approach to the (un-) preprocessed vector magnetic field data. The optimization approach is designed such that the functional

\[L = \int_\Omega \left(w_f \left(\frac{|(\nabla \times B) \times B|^2}{B^2} + w_d |\nabla \cdot B|^2 \right) \right) \, dv + \nu \int_\mathcal{S} (B - B_m) \cdot W \cdot (B - B_m) \, ds, \tag{7} \]

is minimized such that the volume-integrated Lorentz force and divergence becomes small.

The surface term in Eq. (7) allows deviations between the NLFF solution, \(B \), and the magnetic field information at the lower boundary, \(B_m \), in order to find a more force-free solution. The deviation from \(B_m \) is controlled by the diagonal error matrix (i.e., the non-diagonal elements are zero), \(W \), which allows it to account for the uncertainties on each component of the magnetic field, and in each pixel, separately. Here, \(B_m \) may either be a directly measured and force-free consistent, or a preprocessed vector magnetic field. The model parameters that can be freely assigned in Eq. (7) are:

- Separate weightings of the volume-integrated force (\(w_f \)) and divergence (\(w_d \)). In the original notation of W12 they are set as \(w_f = w_d = 1 \).
- The injection speed of the lower boundary, i.e., the relative importance of the surface term in Eq. (7), is controlled by \(\nu \). W12 suggest \(\nu \) in the range \(10^{-2} - 10^{-3} \). The in-depth study of [Wiegelmann et al. 2012] revealed that \(\nu \approx 10^{-3} \) represents an optimal choice for the application to HMI data, as higher values yield a lower force-free and solenoidal quality of the resulting NLFF solution, while lower values yield little corresponding improvement, despite drastically increased computation times. Therefore, we use a value of \(\nu = 10^{-3} \) also in our study, as has also been used in as the work of M19.
- The components \(w_f \) (controlling the weighting of the horizontal field components \(B_x \) and \(B_y \)) and \(w_d \) (controlling the weighting of the vertical field component \(B_z \)) of the diagonal error matrix, \(W \), can be defined in different ways. Most sophisticated, each individual pixel may be weighted based on the actual HMI measurement uncertainties. Only recently such an attempt has been presented in M19, who chose

\[w_f = w_d = \begin{cases} 0.01 + 0.99 \exp \left(-\frac{\sigma_B}{0.03B} \right), & \text{if } B \geq 200 \, \text{G} \\ 0.01, & \text{if } B < 200 \, \text{G} \end{cases}, \tag{8} \]

where \(B \) denotes the magnetic field strength and \(\sigma_B \) is the total magnetic field variance from inversion fitting. Hereby, the authors assumed a typical noise threshold of 200 G and a typical value of 0.03 for \(\sigma_B/B \). This particular weighting was designed in order to compensate for low-quality inversion results, covering regions of strong magnetic field and spreading out in the later frames of the time series. Hereafter, we refer to this choice of parameters \(w_f \) and \(w_d \) as \(W_{\text{HMI}} \). In the case that measurement uncertainties are not known, a reasonable choice is to set

\[w = \begin{cases} w_f, & \text{if } w_{\perp} \leq 1.0 \end{cases}, \tag{9} \]
for each pixel separately. This choice was put forward by W12, based on a comparison of different definitions of W. With this particular choice, one addresses that, empirically, the vertical field is measured with highest accuracy, and that the accuracy of the measured horizontal field increases with its strength. Hereafter, we refer to this choice of parameters w_1 and w_2 as W_{EMP}. Until present, with the sole exception of M19, this setting has been often applied when performing coronal NLFF modeling with the W12 method. This motivates us to test the performance of this type of error matrix, by comparison to the corresponding application of W_{HMI}.

Successful NLFF modeling involves to find a combination of the free model parameters for the optimization functional L and, if applied, for the preprocessing step (μ_1, μ_2) that delivers optimized results, in terms of force- and divergence-freeness. In order to quantify the force-free consistency of the obtained NLFF solutions, for a certain choice of the free model parameters, a frequently used metric is the current-weighted angle between the modeled magnetic field and electric current density, θ_f, (Schrijver et al. 2006). Ideally, for an entirely force-free solution one would find $\theta_f = 0^\circ$.

As noted by Wregelmann et al. (2012), for the application to long-term HMI data series it is not practical to carry out NLFF modeling based on several different model parameter sets. For a short time span, as in our analysis, it is doable, and may be used to study the uncertainty of physical quantities based on the different model parameter choices.

2.3. Helicity computation

We use the finite-volume (FV) method of Thalmann et al. (2011) to compute the relative helicity based on Eqs. (1)–(3). It solves systems of partial differential equations to obtain the vector potentials A and A_0, using the Coulomb gauge, $\nabla \cdot A = \nabla \cdot A_0 = 0$. The method defines the reference field as $B_0 = \nabla \phi$, with ϕ being the scalar potential, subject to the constraint $\nabla \phi = B_0$ on ∂V, where ∇ denotes the normal component with respect to the boundaries of V.

The method has been tested in the framework of an extended proof-of-concept study on FV helicity computation methods (Valori et al. 2016), where it has been shown that for various test setups the methods deliver helicity values in line with each other, differing by a few percent only. It has also been used in Thalmann et al. (2019a) to show that the computed helicity is highly dependent on the level to which the underlying NLFF magnetic field solution satisfies the divergence-free condition. A metric for quantifying the divergence-free consistency of an obtained NLFF solution often used in literature is the fractional flux, $|\langle f \rangle|$, (Wheatland et al. 2000). Though not shown explicitly in our work, we note for completeness that in all studied NLFF models, we find $|\langle f \rangle| < 4 \times 10^{-4}$ (for an in-depth analysis of this measure see also Gilchrist et al. 2020).

Alternatively, in order to test the level of solenoidality of the magnetic field used as an input for helicity computation, the ratio E_{div}/E has been put forward by Valori et al. (2013) as a useful criterion. The value of E_{div}/E expresses the non-solenoidal fraction of the total (NLFF) energy. E_{div} is derived from the solenoidal and non-solenoidal parts of the potential field ($B_0 = B_{0,\text{s}} + B_{0,\text{ns}}$) and current-carrying field ($B_1 = B_{1,\text{s}} + B_{1,\text{ns}}$), which stem from the initial decomposition of the (NLFF) magnetic field into its potential (B_0) and current-carrying (B_1) component. Then, the total energy of a given magnetic field may be written as the sum of the corresponding energy budgets in the form

$$E = E_{0,\text{s}} + E_{0,\text{ns}} + E_{1,\text{s}} + E_{1,\text{ns}} + E_{\text{mix}},$$

with E_{mix} being the energy corresponding to all cross terms (see Eq. (8) in Valori et al. [2013] for details), and $E_{1,\text{s}}$, being a measure for the free energy. All contributions to E in (10), except of E_{mix}, being positive definite, and for a perfectly solenoidal input field one would find $E_{0,\text{s}} = E_{1,\text{s}} = E_{\text{mix}} = 0$, thus $E_{\text{div}} = 0$. The energy associated to all non-solenoidal component can then be defined as

$$E_{\text{div}} = E_{0,\text{ns}} + E_{1,\text{ns}} + |E_{\text{mix}}|,$$

representing an upper limit, as the absolute value of E_{mix} is involved. Usually, $E_{0,\text{s}} > E_{1,\text{s}} > E_{\text{mix}} > E_{\text{ns}}$ (see, e.g., DeRosa et al. 2015).

In the proof-of-concept study by Valori et al. (2016), based on solar-like numerical experiments, it was suggested that only for input fields sufficing $E_{\text{div}}/E \lesssim 0.08$ a reliable helicity computation may be expected. In a follow-up study, Thalmann et al. (2019a) suggested an even lower threshold ($E_{\text{div}}/E \lesssim 0.05$) for solar applications.

Based on the energy decomposition above, one may also use the non-solenoidal contribution to the free energy $|E_{\text{mix}}|/E_{1,\text{s}}$, to refine the quantification of the acceptable degree of non-solenoidality in an underlying NLFF model field. As shown in the comparative study of DeRosa et al. (2015), the application of the W12 method, using standard choices for the (free) model parameters, may result in NLFF solutions with non-solenoidal errors on the order of the inherent free magnetic energy ($|E_{\text{mix}}| \approx E_{1,\text{s}}$, see their Fig. 7b). It was also shown, however, that an alternative W12-based NLFF solution based on an adjusted set of model parameters (more precisely in setting $w_0 > w_2$; see Sect. 2.2.2) resulted in a significant improvement of the solenoidal quality (see Appendix of their work). A refined quantification of the solenoidal quality of the NLFF magnetic fields in context with relative helicity computation, based on $|E_{\text{mix}}|/E_{1,\text{s}}$ has not been attempted so far.

2.4. Choice of free model parameters

The solenoidality of a NLFF solution obtained by minimizing L in Eq. (7) naturally depends on B_{in} (thus, the free parameter choices of μ_1 and μ_2 in the preprocessing step, if applied), as well as the choice of the diagonal elements of W (either W_{HMI} or W_{EMP} in the present study).

For any choice of combination of the aforementioned quantities, the divergence-freeness of the obtained NLFF solution may be enhanced by assigning a stronger relative importance of the divergence term, i.e., by choosing $w_d > w_f$ (see explanation of the free model parameters of L in Sect. 2.2 for details). As a consequence, a NLFF solution based on a certain choice of the other free parameters may not qualify to be used as an input to helicity computation when choosing $w_d = 1$, but may do so when choosing an enhanced weight $w_d > w_f$, as has been demonstrated in DeRosa et al. (2015). The application of the standard setting $(w_f, w_d) = (1, 1)$ was found to deliver a NLFF solution, failing to have the solenoidal quality required for relative helicity computation, as the relative contribution of the mixed terms was comparable to that of the free energy ($|E_{\text{mix}}| \approx E_{1,\text{s}}$; see Fig. 7b in their work). The NLFF model solution based on the choice $(w_f, w_d) = (1, 1.5)$, however, resulted in a significant decrease of the contribution E_{mix} to the total energy, thus represented a valid input for relative helicity computation (with $|E_{\text{mix}}| < E_{1,\text{s}}$;
see Fig. 11 in the Appendix of their work). In order to test the effect of an improved solenoidal quality of the NLFF model on the relative helicity computation, we therefore use the choices \((w_f, w_d) = (1, 1)\) and \((w_f, w_d) = (1, 2)\) in our work.

Table I summarizes the tested NLFF time series regarding the specific parameter choices used to for their realization, their distribution only the inner “physical volume” was kept, and further cut in height at roughly two-thirds of the total height, yielding a size of the finally analyzed model coronal field of \(256 \times 256 \times 203\) pixels.

3. Results

3.1. The effect of preprocessing

In order to test the effect of preprocessing, we minimize Eq. (6) once using the standard relative weighting \((\mu_3 = 10^{-3}, \mu_4 = 10^{-2})\) “standard preprocessing” hereafter), once omitting smoothing \((\mu_3 = 10^{-1}, \mu_4 = 0)\), and once neglecting both \((\mu_3 = \mu_4 = 0)\). For the subsequent minimization of the surface term in Eq. (7), we apply the error matrix for optimization of the lower boundary as used in M19 \((W_{IM})\) and use standard settings for the remaining model parameters as suggested in W12 (see Sect. 2.2.2). As a kind of non-ideal reference we run the optimization also on the non-preprocessed data, and compare the resulting NLFF time series in the following. We remind the reader here that the (non-)preprocessed input magnetic field data necessarily differs from the (final) NLFF lower boundary data due to the effect of the surface term in Eq. (7).

From Fig. 11 it can be seen that the application of preprocessing clearly lowers the contribution of solenoidal errors. For the NLFF models based on non-preprocessed data (light blue circles) \(E_{div}/E\) and \(|E_{max}|/E_{div}\) are the largest at all considered times. Corresponding values are, on average, lowest for the NLFF solutions based on standard preprocessing (violet bullets). The effect

Table I. Synoptic view model parameters for the employed NLFF models and their appearance in the manuscript (plot symbol and figure or appearance), if applicable.

Case	Preprocessing	Model parameters	Optimization	Appearance	Symbol	Comment	
Sp1a	-	-	1	W_{IM}	1	(light blue circle)	No preprocessing applied. Input data is force-free inconsistent.
Sp1b	-	-	1	W_{EM}	-	Not explicitly shown. Similar in behavior as Sp1a.	
Sp1c	-	-	2	W_{IM}	-	“”	
Sp2a	0	0	1	W_{IM}	1	(light blue bullet)	Preprocessing applied. Input data is force-free consistent.
Sp2b	-	-	1	W_{IM}	-	“”	
Sp2c	-	-	1	W_{EM}	-	“”	
Sp2d	-	-	2	W_{EM}	-	“”	
Sp3a	0	10^{-2}	1	W_{IM}	-	“”	
Sp3b	-	-	2	W_{IM}	-	“”	
Sp3c	-	-	1	W_{EM}	-	“”	
Sp3d	-	-	2	W_{EM}	-	“”	
Sp4a	10^{-3}	0	1	W_{IM}	1, 3, 5a	(dark blue bullet)	Preprocessing applied, including nearness to observed data.
Sp4b	-	-	2	W_{IM}	1, 3, 5a	(dark blue square)	Same as Sp4a but \(w_d = 2\) used.
Sp4c	-	-	1	W_{EM}	4, 5b	(orange bullet)	Same as Sp4a but \(W = W_{EM} \) used.
Sp4d	-	-	2	W_{EM}	4, 5b	(orange square)	Same as Sp4c but \(w_d = 2\) used.
St1a	10^{-3}	10^{-4}	1	W_{IM}	1, 2, 3, 5a	(violet bullet)	Preprocessing applied, including smoothing and nearness to observed data.
St1b	-	-	2	W_{IM}	1, 2, 3, 5a	(violet square)	Same as St1a but \(w_d = 2\) used.
St1c	-	-	1	W_{EM}	4, 5b	(red bullet)	Same as St1a but \(W = W_{EM} \) used. (W12 default parameter set.)
St1d	-	-	2	W_{EM}	4, 5b	(red square)	Same as St1b but \(W = W_{EM} \) used.
of smoothing can be seen by comparison to the corresponding values of the “no smoothing” cases (dark and light blue bullets vs. violet ones). On overall, the application of smoothing causes a decrease of both, E_{div}/E and $|E_{\text{mix}}|/E_{1s}$, though more pronounced at larger instances of the considered time period. It also appears that there is no distinct difference for the non-smoothed cases, whether or not enforcing a certain degree of nearness to the actually observed data (compare light and dark blue bullets).

Noteworthy, all NLFF time series show a deteriorating quality as a function of time, i.e., the values of E_{div}/E and $|E_{\text{mix}}|/E_{1s}$ are increasing, supposedly due to the corresponding decrease of the inversion quality of the underlying vector magnetic field measurement (see Eq. (8) and corresponding notes), but is less pronounced for the NLFF solutions based on the standard preprocessed input.

In terms of θ_w, the volumetric parameter usually used to quantify the force-free consistency of a NLFF model, there is no distinct difference between the cases when preprocessing is applied or not. For completeness we note that θ_w is below 7° prior to the X2.2 flare and $7^\circ \leq \theta_w \leq 12^\circ$ afterwards. In order to be able to picture the effect of preprocessing more clearly, we therefore show the force-balance parameter, ϵ_{force}, in Fig. 13 which is normally used to quantify the force-free consistency of a given vector magnetogram prior to NLFF modeling (see explanation in Sect. 2 of [Wiegelmann et al., 2006]). Here we use ϵ_{force} not only to quantify how force-free consistent the input data is, but also how force-free the final 2D NLFF lower boundary is. It is known from previous studies that non-preprocessed vector magnetograph data is inconsistent with a force-free approach ($\epsilon_{\text{force}} \gtrsim 0.1$; gray circles) and should not be used for force-free modeling. If used nevertheless, the optimization procedure will still deliver a NLFF solution, with its 2D lower boundary being more force-free consistent ($\epsilon_{\text{force}} \gtrsim 0.08$; light blue circles). The application to preprocessed data clearly improves the NLFF model results ($\epsilon_{\text{force}} \lesssim 0.08$; bullets) without any obvious dependencies on the particular parameter setting for preprocessing.

The corresponding trends of $|H_1|/|H_V|$ (Figure 14) suggest a clear segregation between NLFF time series based on smoothed (violet bullets) or non-smoothed (other symbols) input data. For completeness, we note that for all of the considered cases the relative helicities, H_V, based on smoothed data are systematically higher, and also their individual contributions (more pronounced in H_1 than in H_0). We discuss possible reasons in Sect. 4.

For completeness we note that the above presented results also hol for the usage of W_{EMP} instead of W_{HMF}. For simplicity and motivated by the the similarity of performance of the special cases (μ_0, μ_\perp) and (μ_0, μ_\perp) labeled as Sp2/1 and Sp4/1 in Table 1 respectively, we do not explicitly show the Sp2 cases in the remaining analysis.

3.2. The effect of preferring solenoidality over force-freeness

As explained in Sect. 2.4 for any choice of combination of other model parameters, the divergence-freeness of the obtained NLFF solution may be enhanced by assigning a stronger relative importance of the divergence term, i.e., by choosing $w_d > w_f$. For simplicity, here we restrict ourselves to analyze the corresponding effect based on standard preprocessed data (using $\mu_0 = 10^{-3}$ and $\mu_\perp = 10^{-2}$ in Eq. (6)). For completeness, we note that the results presented in the following are similar for application to non-smoothed data ($\mu_0 = 0$; compare Sect. 3.3 and Fig. 3), and also in the cases that the empirical error matrix, W_{EMP}, is used (see Sect. 3.4 and Fig. 3).

In Fig. 2 we compare the results based on the standard setting, where the Lorentz force and divergence term in Eq. (7) are weighted equally ($w_f = w_d = 1$; bullets) to that with an enhanced enforcement of solenoidality ($w_d = 2$; squares). Naturally, the stronger enforcement of solenoidality leads to lower values of E_{div}/E and $|E_{\text{mix}}|/E_{1s}$ (Figs. 2a and 2b) respectively, and is on the expense of the force-freeness of the obtained NLFF solutions (compare θ_w in Fig. 2c). While for the standard weighting, $\theta_w \lesssim 10^\circ$ for the entire time series, the values are about a factor of two higher if $w_d = 2$ is applied.

Both NLFF time series satisfy $E_{\text{div}}/E < 0.08$ (Fig. 2d), i.e., qualify for subsequent relative helicity computation. Though the obtained trend of $|H_1|/|H_V|$ in Fig. 2d is similar for most of the time instances, the NLFF series based on the standard setting ($w_d = 1$; bullets) depicts a decrease of $|H_1|/|H_V|$ prior to and an increase during the confined X2.2 flare, while the solutions based on $w_d = 2$ (squares) indicate a pre-flare increase and subsequent helicity relaxation. Both time series agree on a helicity accumulation to values $|H_1|/|H_V| \gtrsim 0.15$ prior to the eruptive X9.3 flare,
and a pronounced helicity relaxation in correspondence to the eruptive flare.

3.3. Combined effects

Naturally, there is an interplay between particular choices of model parameters for the preprocessing and optimization, as individually discussed in Sects. 3.1 and 3.2, respectively. Therefore, we describe combined effects in the following.

The choice \(\omega_d = 2 \) (squares) during optimization has a similar effect on the final NLFF solution, regardless whether smoothed (violet symbols) or non-smoothed (blue symbols) input data is used. It, on average, lowers the non-solenoidal energy contributions (Figs. 3a and 3b) and simultaneously increases \(\theta_j \) (compare Fig. 3) to a comparable level. The effective increase in solenoidality, however, is stronger for the NLFF models based on non-smoothed data (blue symbols). Nevertheless, it appears that NLFF solutions that satisfy \(E_{\mathrm{div}}/E \leq 0.05 \) also satisfy \(|E_{\mathrm{max}}|/E_{\mathrm{JS}} \leq 0.2 \) (see horizontal dashed lines for reference).

It is also evident that NLFF series of comparable solenoidal quality do not necessarily deliver similar helicity ratios (compare, e.g., blue and violet squares in Figs. 3a and 3b). Instead, the values of \(|H|/|H_V|\) retrieved from non-smoothed boundaries (blue symbols) are found systematically lower for most time instances. Yet all of the tested solutions depict a decrease of \(|H|/|H_V|\) during both flares, with the sole exception of the NLFF solutions based on the standard preprocessed data (violet bullets) which suggest a decrease of \(|H|/|H_V|\) during the preceding confined X2.2 flare. All of the tested solutions show a rise of \(|H|/|H_V|\) prior to the X9.3 flare to values close to those prior to the X2.2 flare.

3.4. The effect of the particular choice of error matrix \(W \)

As noted by W12, a reasonable approximation of the accuracy of the measured vector magnetogram data may be such that it weights vertical magnetic field measurement strongest (based on its empirically known highest measurement accuracy), followed by strong horizontal field, and with weak horizontal fields being weighted least strong (see \(W_{\mathrm{EMP}} \) as defined in Eq. (9) in Sect. 2.2.2). In the following, we test the performance of this empirical weighting, and repeat the model experiments applied to the measurement-based error matrix \(W_{\mathrm{HMI}} \) as presented in Sect. 3.3.

Trends common to that presented in Sect. 3.3 for the \(W_{\mathrm{HMI}} \) based models include that the choice \(\omega_d = 2 \) (squares) during optimization on average lowers the non-solenoidal energy contributions (Figs. 4a and 4b), while \(\theta_j \) is systematically higher (Fig. 4c). Also, systematically lower values of \(|H|/|H_V|\) are found for all time instances from the NLFF models that are based on non-smoothed input data (orange symbols). Also for the \(W_{\mathrm{EMP}} \)-based models, the individual relative helicity contributions, \(H_{\mathrm{H}} \) and especially \(H_{\mathrm{T}} \), are systematically higher based on non-smoothed input data, and more pronounced than for the \(W_{\mathrm{HMI}} \)-based models. The increase in \(|H|/|H_V|\) between the two consecutive flares is less pronounced than for the \(W_{\mathrm{HMI}} \)-based models. Finally, all of the tested \(W_{\mathrm{EMP}} \)-based models consistently picture a decrease of \(|H|/|H_V|\) during both X-class flares as well as periods of helicity accumulation prior to both flares (though rather weak for most of the NLFF series).

Other findings are different from those of the \(W_{\mathrm{HMI}} \)-based models. For instance, the \(W_{\mathrm{EMP}} \)-based solutions show a deteriorating quality as a function of time, more pronounced than the \(W_{\mathrm{HMI}} \)-based solutions (compare Figs. 4a and 4b). Also, in contrast to the \(W_{\mathrm{HMI}} \)-based models, the simultaneous application of smoothing during preprocessing appears to cause also a systematic difference in terms of \(|E_{\mathrm{max}}|/E_{\mathrm{JS}}\) of the final NLFF solution. In particular, a lower value of \(E_{\mathrm{div}}/E \) does not necessarily imply a lower value of \(|E_{\mathrm{max}}|/E_{\mathrm{JS}}\) for the \(W_{\mathrm{EMP}} \)-based models, and thus, NLFF solutions which satisfy \(E_{\mathrm{div}}/E \leq 0.05 \) do not necessarily also satisfy \(|E_{\mathrm{max}}|/E_{\mathrm{JS}}\leq 0.2 \) (e.g., orange squares), and vice versa (e.g., red bullets). In contrast to the \(W_{\mathrm{HMI}} \)-based models, most of the \(W_{\mathrm{EMP}} \)-based solutions show a weak increase or even a decrease of \(|H|/|H_V|\) timely between the X-class flares (compare Figs. 4a and 4b).

3.5. Putting everything together – A recipe

The reader may keep in mind that all analyzed NLFF models presented in Sects. 3.3 and Sect. 3.4 satisfy the nominal threshold of \(E_{\mathrm{div}}/E < 0.08 \), as suggested by Valori et al. (2016), i.e., do qualify for relative helicity computation. Based on the time evolution of the relative helicity in NOAA 11158, computed

Fig. 3. Evolution of (a) \(E_{\mathrm{div}}/E \) and (b) \(|E_{\mathrm{max}}|/E_{\mathrm{JS}} \), and (c) \(\theta_j \) for different NLFF models based on differently preprocessed input data (including smoothing: violet symbols; omitting smoothing: blue symbols), and with different weighting of the volume-integrated divergence \(\omega_d = 1 \) (bullets; \(\omega_d = 2 \) (squares). (d) Corresponding time evolution of \(|H|/|H_V|\). Only contributions of NLFF solutions are shown that satisfy the nominal threshold of \(E_{\mathrm{div}}/E < 0.08 \). The horizontal dashed line in (a) marks the refined threshold of \(E_{\mathrm{div}}/E = 0.05 \), suggested as an upper limit for the accepted solenoidality of a NLFF model in solar applications in Thalmann et al. (2019a). The horizontal dashed line in (b) marks the proposed threshold of \(|E_{\mathrm{max}}|/E_{\mathrm{JS}} = 0.2 \), an upper limit for the accepted non-solenoidal error to the free magnetic energy. Vertical bars as in Fig. 1.

Fig. 4. Same as in Fig. 3 when using the empirical error matrix \(W_{\mathrm{EMP}} \).
with different FV helicity computation methods, however, [Thalmann et al. 2019a] argued to use a more restrictive threshold \((E_{\text{div}}/E \leq 0.05)\) to select NLFF models that qualify for relative helicity computation in solar applications. In the case of the \(W_{\text{HMI}}\)-based models this would be equivalent as choosing \(|E_{\text{mix}}|/E_{\text{mix}} = 0.2\) as an upper limit (compare Fig. 3(b)), the latter being motivated on the basis of using NLFF models with a small non-solenoidal contribution to the free magnetic energy.

For the \(W_{\text{EMP}}\)-based models, however, values of \(E_{\text{div}}/E \leq 0.05\) do not necessarily imply \(|E_{\text{mix}}|/E_{\text{mix}} \leq 0.2\) (compare Figs. 4(a) and 4(b)). Thus, NLFF solutions with high levels of non-solenoidal energy compared to their free energy would enter the relative helicity computation. As mentioned before, it appears crucial for applications of the W12 method to minimize the non-solenoidal contribution to the free magnetic energy (see corresponding remarks in Sect. 2.3). We thus suggest to keep from each NLFF solution only the best-performing snapshots, i.e., those that satisfy \(|E_{\text{mix}}|/E_{\text{mix}} \leq 0.2\). In order to place the contribution of \(E_{\text{mix}}\) into context, we note here that the free magnetic energy during the analyzed time interval is in the range 20–30% of the total magnetic energy, i.e., \(0.2 \leq E_{\text{mix}}/E \leq 0.3\). Since \(E_{\text{mix}}\) comprises a few percent of \(E\) only, we may safely assume that it is rooted in numerical reasons, and that a corresponding thresholding has the desired effect to sort out NLFF solutions with a related undesirably high contribution.

Based on the above reasoning, one can then compute a mean value, \(|\langle H_{\text{f}}\rangle/|H_{\chi}\rangle|\), from all of the accepted NLFF solutions at each time instant, and also deduce an uncertainty estimate based on the spread of the contributing solutions. Naturally, for time instances when only one contributing NLFF solution remains based on the above selection criteria, no mean value can be retrieved and the respective value of \(|H_{\text{f}}|/|H_{\chi}|\) has to be assumed as indicative for the true coronal relative helicity.

Figure 5 shows the time evolutions of \(|H_{\text{f}}|/|H_{\chi}|\), computed from all qualifying \(W_{\text{HMI}}\)-based NLFF models (colored symbols), together with the mean value \(|\langle H_{\text{f}}\rangle/|H_{\chi}\rangle|\) (black solid line) and the standard deviation as indication for the corresponding uncertainty (gray-shaded area). The corresponding time evolutions for the \(W_{\text{EMP}}\)-based NLFF models are shown in Fig. 6.

On overall, the \(W_{\text{HMI}}\)-based estimates show less variation of \(|\langle H_{\text{f}}\rangle/|H_{\chi}\rangle|\) as a function of time, though the trend is very similar to that of the \(W_{\text{EMP}}\)-based estimates. A period of rather monotonous helicity accumulation prior to the confined X2.2 flare terminates in values of \(|\langle H_{\text{f}}\rangle/|H_{\chi}\rangle|\) \(\approx 0.15\). The subsequent flare-related helicity relaxation (apparently more pronounced in the \(W_{\text{EMP}}\)-based estimates) is followed by a period of relative helicity replenishment between \(\sim 10:00\) UT and \(11:30\) UT, peaking shortly before the eruptive X9.3 flare (\(|\langle H_{\text{f}}\rangle/|H_{\chi}\rangle|\) \(\gtrsim 0.12\)). Finally, the X9.3 flare-related helicity relaxation shows a decrease to values \(|\langle H_{\text{f}}\rangle/|H_{\chi}\rangle|\) \(\lesssim 0.1\).

4. Summary

We studied the coronal magnetic field and helicity of AR 12673 a ten-hour time interval centered around a preceding X2.2 flare (SOL2017-09-06T08:57), that also includes an eruptive X9.3 flare that occurred three hours later (SOL2017-09-06T11:53). Our aim was to assess the spread of the relative helicities computed from Eqs. (1) and (3) using the finite-volume (FV) method of Thalmann et al. (2011) when based on different time series of NLFF coronal magnetic fields. The corresponding NLFF coronal magnetic fields were modeled using an optimization approach (Wiegelmann et al. 2012, “W12”) based on different choices of (free) model parameters, that differ for their solenoidal quality.

The latter is a highly important factor if one attempts a reliable relative helicity computation, and different thresholds have been suggested in the past (Valori et al. 2016, Thalmann et al. 2019a).

Our study aimed at gaining insight into the effects of particular choices of (free) model parameters onto the final W12 NLFF solutions and subsequent relative helicity computation. Based on the in-depth analysis of the solenoidal quality of the underlying NLFF solutions, in context with the subsequently computed relative helicity ratio, \(|H_{\text{f}}|/|H_{\chi}|\) (a promising indicator for the eruptivity of solar ARs; see Harra et al. (2017) for a pioneering work), our goal was to provide a recipe for successful and reliable relative helicity computation (including uncertainties).

The W12 method involves two computational tasks. In a first “preprocessing” step, individual weights can be assigned to the nearness to the actually observed data and the degree of smoothing applied to the 2D vector magnetic field data (controlled by \(\mu_1\) and \(\mu_2\), respectively, see Sect. 2.2.1 for details). In our work we tested, apart from the standard choices \(\mu_1 = 10^{-3}\) and \(\mu_2 = 10^{-2}\), also the limiting values \(\mu_1 = 0\) and \(\mu_2 = 0\). In a subsequent “optimization” step (see Sect. 2.2.2 for details), the volume-integrated Lorentz force and divergence can be weighted individually (via \(w_f\) and \(w_u\), respectively), as well as the handling of the (preprocessed) vector magnetic field data defined. The latter is realized by a diagonal error matrix, where we tested two options. Once, an error matrix defined using the actual measurement uncertainties of HMI and as originally defined in the study of M19 (\(W_{\text{HMI}}\) as defined in Eq. (8)), and once a commonly used empirical one (\(W_{\text{EMP}}\) as defined in Eq. (9)) which assumes that vertical fields are measured with highest accuracy, and that the reliability of the measured horizontal field decreases with decreasing strength.
The volumetric force-freeness of the realized NLFF models was estimated using the current-weighted angle between the modeled magnetic field and electric current density, \(\theta_j \) (Schrijver et al. 2006). For the quantification of their solenoidal quality, we used the normalized non-solenoidal energy ratio \(E_{\text{div}}/E \), as suggested by (Valori et al. 2013). Moreover, since it appears crucial to minimize the non-solenoidal contribution to the free magnetic energy (see corresponding remarks in Sect. 2.3), we analyzed the energy ratio \(|E_{\text{mix}}|/E_{1.5} \), in detail in our work, which has not been studied before.

Regarding the impact of particular choices of (free) model parameters, independent of the particular error matrix used (\(W_{\text{HMI}} \) or \(W_{\text{EMP}} \)), onto the solenoidal quality of the final NLFF solutions we found:

- The application of preprocessing prior to optimization considerably lowers the non-solenoidal contributions in the final NLFF solution, the latter being also more force-free (Fig. 1c).

 A crucial ingredient in lowering the solenoidal errors appears to be the application of smoothing (\(\mu_4 \neq 0 \)). Thus, the solenoidal quality of NLFF solutions based on the preprocessing as suggested in W12 (\(\mu_1 = \mu_2 = 1, \mu_3 = 10^{-3}, \mu_4 = 10^{-7} \)) is on overall highest and may be safely recommended as a standard setting.

- The enhanced weighting of the volume-integrated divergence over the force-freeness (\(\mu_2 > \mu_1 \)) also lowers the non-solenoidal contributions in the final NLFF solution (Figs. 2a and 2b), though on the expense of force-freeness (compare Fig. 2c).

 The effective increase in solenoidal quality is more drastic for the NLFF models based on non-smoothed data (blue and orange symbols in Figs. 3a,b and 4a,b respectively), underlining the corresponding desired effect of using smoothed data as input to NLFF modeling.

Different choices of the (free) model parameters during preprocessing and optimization allow the computation of multiple values for the relative helicities (\(H_1, H_2, H_3 \)) and consequently for the helicity ratio, \(|H_1|/|H_2| \), at a certain time instant for a particular error matrix (for \(W_{\text{HMI}} \) - and \(W_{\text{EMP}} \)-based models see Fig. 3 and Fig. 4 respectively). In this context, we found the following causal impacts:

- The usage of smoothed data as input to NLFF modeling yields systematically higher values of \(|H_1|/|H_2| \) (blue and orange symbols in Figs. 3a and 4a, respectively), and similarly for the individual contributions, \(H_1 \) and \(H_2 \), (independent of the error matrix used).

 Although \(H_1 \) has a clear physical meaning, namely the linking of the current-carrying field with itself, an enhanced level of \(H_1 \) does not necessarily imply the presence of systematically stronger electric currents (Regnier 2009). And indeed, we do not find a systematically higher total unsigned current in the NLFF models based on smoothed data. Instead, we find higher total magnetic energies, \(E \), and lower potential field energies, \(E_0 \), in those models. Thus, we suspect the origin of the on overall higher helicities for the NLFF models based on smoothed data in the systematically enhanced current-carrying magnetic field.

- Though all analyzed NLFF models satisfy the originally suggested threshold of \(E_{\text{div}}/E < 0.08 \), their non-solenoidal contributions to the free energy, \(|E_{\text{mix}}|/E_{1.5} \), are distinctly different. While the \(W_{\text{HMI}} \)-based NLFF solutions satisfying \(E_{\text{div}}/E \approx 0.05 \) (a refined threshold for solar applications suggested by Thalmann et al. 2019a) also satisfy \(|E_{\text{mix}}|/E_{1.5} < 0.2 \), this is not true for the \(W_{\text{EMP}} \)-based models.

 Therefore, and motivated by minimizing non-solenoidal errors in the free magnetic energy, a threshold based on \(|E_{\text{mix}}|/E_{1.5} \), appears useful in order to (dis-)qualify NLFF solutions for subsequent relative helicity computation.

- Using an upper limit of \(|E_{\text{mix}}|/E_{1.5} = 0.2 \), we obtain similar trends for the mean time evolution, \(\langle |H_1|/|H_2| \rangle \), from both types of NLFF series (based on either \(W_{\text{HMI}} \) or \(W_{\text{EMP}} \), see Fig. 5a and 5b respectively). Then, the empirical error matrix \(W_{\text{EMP}} \) may be validly used as an alternative to a measurement-based definition (such as \(W_{\text{HMI}} \)).

Based on the above findings, we are able to provide a recipe to obtain a reliable estimate of the coronal relative helicity together with a corresponding uncertainty estimate. In particular, we recommend to employ a mean estimate of the relative helicity (and of any related quantity such as \(\langle |H_1|/|H_2| \rangle \)) at any particular time instant, computed from a number of NLFF models based on different (free) model parameter choices that individually satisfy \(|E_{\text{mix}}|/E_{1.5} \approx 0.2 \). Using this approach, we found a consistent estimate of \(\langle |H_1|/|H_2| \rangle \) from the two types of NLFF model series (\(W_{\text{EMP}} \)- and \(W_{\text{HMI}} \)-based). This includes an increase of \(\langle |H_1|/|H_2| \rangle \) prior to the confined X2.2 flare as well as timely between the preceding X2.2 and following X9.3 flare, together with helicity (ratio) relaxation in correspondence to the flares’ occurrences.

However, the spread of the contributing values of \(|H_1|/|H_2| \) is quite variable over the time series, about \(\leq 0.04 \) timely before the occurrence of the X2.2 flare and \(\geq 0.06 \) prior to the eruptive flare. On overall it appears that the spread of \(|H_1|/|H_2| \) scales with the quality of the underlying NLFF time series. We remind the reader here that all of the employed NLFF time series show a deteriorating quality, i.e., the values of \(E_{\text{div}}/E \) and \(|E_{\text{mix}}|/E_{1.5} \), are increasing with time, supposedly due to the corresponding decrease of the inversion quality of the underlying vector magnetic field measurement (see corresponding notes in Sect. 2.2.2).

5. Discussion

Multiple attempts were made in order to model and interpret the coronal magnetic field configuration of AR 12673 and focused on the approximation of the self-helicity of a coronal model flux rope recovered from NLFF modeling. We note here for completeness that in all of your finally qualifying NLFF time series, a magnetic flux rope is present prior to the confined X2.2 flare, of differing morphology but in overall agreement with earlier model attempts. Therefore, we assume our NLFF model fields as to realistically picture the active-region corona of AR 12673. An in-depth comparison of the distinct model magnetic field configurations, including the extent of recovering a possibly existing double-decker system, is left for a future work.

Based on an magneto-hydrodynamic relaxation method, Zou et al. (2020) pictured the formation and gradual growing of a magnetic flux rope prior to the confined X2.2 flare, covering the time span 00:00 UT to 11:48 UT on 2017 September 6. The existing magnetic flux rope was found to grow in an accelerated manner after the confined flare’s occurrence, along with a (mild) increase in the flux rope’s twist (an approximation for its self-helicity). In agreement, though not explicitly shown, we note that all our tested NLFF model series depict rather monotonously increasing relative helicity \(H_3 \) (as well as its individual contributions \(H_1 \) and \(H_2 \)) before the X2.2 flare and show another increase timely between the preceding X2.2 and following X9.3 flare.
flares. Based on a series of optimization-based NLFF models, Liu et al. (2018) pictured the pre-X2.2 flare coronal magnetic field configuration in the form of a system of multiple flux ropes, overlying each other and composed of field of opposite handedness (“double-decker”; see also Hou et al., 2018). Noteworthy, using the twist number method, they pictured a considerable increase of the flux ropes’ twist during the confined flare. Based on the same method, Zou et al. (2020) pictured a rather weakly increasing self-helicity during the X2.2 flare (see their Fig. 4c). In this context, we note that only one of our tested NLFF model series depicts a weak increase of $|H_0|/|H_V|$ during the X2.2 flare (violet bullets in Fig. 2c). All other NLFF series, and consequently $(|H_0|/|H_V|)$, depict a corresponding relative helicity relaxation. This is not necessarily conflicting with a flare’s confined nature, since a corresponding variation in H_0 may be simply due to the exchange with H_V (Linan et al., 2018). Finally, all of our tested NLFF series suggest a relative helicity relaxation (and also of $(|H_0|/|H_V|)$) during the eruptive X9.3 flare. In agreement with, e.g., Liu et al. (2018), this is expected since the current-carrying magnetic structure, i.e., the coronal flux rope, was bodily ejected from the corona.

In M19, the relative helicity of NOAA 12673 was studied in detail, based on a mix of NLFF models computed using either the W04 or W12 method (using standard model parameter choices), depending on which of the NLFF fields had a lower value E_{div}/E, and necessarily $E_{div}/E < 0.08$ (see their Fig. 4). In particular, the W12 models at 08:36 UT and 08:48 UT were of lower solenoidal quality than the corresponding W04 solutions and thus dropped from analysis. For the remaining time instances the W12 solutions were retained due to their relatively lower solenoidal errors. The resulting time evolution of $|H_0|/|H_V|$ depicted an increase of $|H_0|/|H_V|$ to values ≥ 0.15 prior to the X-class flares, corresponding decreases in the course of the flares, as well as the replenishment of relative the helicity ratio before the X9.3 flare (see their Fig. 7). In comparison, we find a similar time evolution of $|H_0|/|H_V|$, though indicating lower characteristic pre-flare values of ≈ 0.13 (violet bullets in Fig. 2c). Only the pronounced pre-X2.2 flare peak of $|H_0|/|H_V| > 0.15$ found in M19 is not recovered in our NLFF solutions. Noteworthy, their estimates at 08:36 UT and 08:48 UT were based on two W04-based solutions with values of E_{div}/E marginally below the nominal threshold of $E_{div}/E = 0.08$. For NLFF models with $E_{div}/E > 0.05$, however, estimates of $|H_0|/|H_V|$ may vary considerably among different helicity computation methods, even when based on the same sequence of NLFF models (compare Figs. 2c and 4c in Thalmann et al., 2019a). We therefore may explain our lower pre-X2.2 flare values with the inherent uncertainty of relative helicity estimates for a solenoidal quality of the underlying NLFF models in the regime $0.05 \leq E_{div}/E \leq 0.08$.

6. Conclusion

In conclusion, reliable estimations of the relative helicity budget (and that of related quantities) based on NLFF coronal magnetic field models remains a challenging task. The extended analysis of the various NLFF model parameters in this work as well as the comparison with the analysis presented in M19 showed that finite-volume relative helicity computation is highly sensitive to the details of the underlying magnetic field modeling.

A way to compensate for related issues is to employ multiple NLFF time series based on different (free) model parameter choices and to employ mean estimates based on the subset of NLFF models that satisfy $|E_{max}|/E_{tot} \leq 0.2$ at a particular time instant. In that way, one may obtain reliable estimates of the relative helicity (and related quantities) along with corresponding uncertainty estimates. This of course involves a large computational effort and time but it increases substantially the understanding as well as reliability of the obtained results. As noted by W12, this might not be doable for long time series, but might be a favorable approach around the times of occurring flares.

Acknowledgements. We thank the anonymous referee for careful consideration of the manuscript and insightful comments. J. K. T. and M. G. were supported by the Austrian Science Fund (FWF): P31413-N27. X. S. is partially supported by NSF awards #1848250, #1854760, and NASA award #80NSSC190263. K. M. acknowledges support of the French Agence Nationale pour la Recherche through the HELISOL project ANR-15-CE31-0001. SDO data are courtesy of the NASA/SDO AIA and HMI science teams. This article profited from discussions during the meetings of the ISSI International Team Magnetic Helicity in Astrophysical Plasmas.

References

Aly, J. J. 1989, Sol. Phys., 120, 19
Berger, M. A. 1999, Plasma Physics and Controlled Fusion, 41, B167
Berger, M. A. & Field, G. B. 1984, Journal of Fluid Mechanics, 147, 133
DeRosa, M. L., Wheatland, M. S., Leka, K. D., et al. 2015, ApJ, 811, 107
Finn, J. & Antonsen, T. J. 1984, Comments Plasma Physics. Controlled Fusion, 9, 111
Gilchrist, S. A., Leka, K. D., Barnes, G., Wheatland, M. S., & DeRosa, M. L. 2020, arXiv e-prints, arXiv:2008.08863
Hou, Y. J., Zhang, J., Li, T., Yang, S. H., & Li, X. H. 2018, A&A, 619, A100
James, A. W., Valori, G., Green, L. M., et al. 2018, ApJ, 855, L16
Linan, L., Pariat, É., Moraitis, K., Valori, G., & Leake, J. 2018, ApJ, 865, 52
Liu, L., Cheng, X., Wang, Y., et al. 2018, ApJ, 867, L5
Low, B. C. 1996, Sol. Phys., 167, 217
Metcalf, T. R., De Rosa, M. L., Schrijver, C. J., et al. 2008, Sol. Phys., 247, 269
Moffatt, H. K. 1969, Journal of Fluid Mechanics, 35, 117
Moraitis, K., Sun, X., Pariat, É., & Linan, L. 2019, A&A, 628, A50
Moraitis, K., Tziotziou, K., Georgoulis, M. K., & Archontis, V. 2014, Sol. Phys., 289, 445
Pariat, É., Leake, J. E., Valori, G., et al. 2017, A&A, 601, A125
Pariat, É., Valori, G., Démoulin, P., & Dalmasse, K. 2015, A&A, 580, A128
Prior, C. & Yeates, A. R. 2014, ApJ, 787, 100
Régnier, S. 2009, A&A, 497, L17
Rust, D. M. 1994, Geophys. Res. Lett., 21, 241
Schréter, P. H., Schou, J., Bush, R. L., et al. 2012, Sol. Phys., 275, 207
Schrijver, C. J., De Rosa, M. L., Metcalf, T. R., et al. 2006, Sol. Phys., 235, 161
Sun, X. 2013, arXiv e-prints, arXiv:1309.2392
Taylor, J. 1974, Phys. Rev. Lett., 33, 1139
Thalmann, J. K., Inhester, B., & Wiegelmüller, T. 2011, Sol. Phys., 272, 243
Thalmann, J. K., Linan, L., Pariat, É., & Valori, G. 2019a, ApJ, 880, L6
Thalmann, J. K., Moraitis, K., Linan, L., et al. 2019b, ApJ, 887, 64
Valori, G., Démoulin, P., & Pariat, É. 2012, Sol. Phys., 278, 347
Valori, G., Démoulin, P., Pariat, É., & Masson, S. 2013, A&A, 553, A38
Valori, G., Pariat, É., Antinogentov, S., et al. 2016, Space Sci. Rev., 201, 147
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G. 2000, ApJ, 540, 1150
Wiegelmüller, T. 2004, Sol. Phys., 219, 87
Wiegelmüller, T. 2008, Journal of Geophysical Research (Space Physics), 113, A03S02
Wiegelmüller, T. & Inhester, B. 2010, A&A, 516, A107
Wiegelmüller, T., Inhester, B., & Sakurai, T. 2006, Sol. Phys., 233, 215
Wiegelmüller, T. & Sakurai, T. 2012, Living Reviews in Solar Physics, 9, 5
Wiegelmüller, T., Thalmann, J. K., Inhester, B., et al. 2012, Sol. Phys., 281, 37
Wiegelmüller, T., Thalmann, J. K., Schrijver, C. J., De Rosa, M. L., & Metcalf, T. R. 2008, Sol. Phys., 247, 249
Wolfer, L. 1958, Proceedings of the National Academy of Science, 44, 833
Zou, P., Jiang, C., Wei, F., et al. 2020, ApJ, 890, 10
Zuccarello, F. P., Pariat, É., Valori, G., & Linan, L. 2018, ApJ, 863, 41