Role of L-ascorbate in alleviating abiotic stresses in crop plants

Jelli Venkatesh and Se Won Park*

Abstract
L-ascorbic acid (vitamin C) is a major antioxidant in plants and plays a significant role in mitigation of excessive cellular reactive oxygen species activities caused by number of abiotic stresses. Plant ascorbate levels change differentially in response to varying environmental stress conditions, depending on the degree of stress and species sensitivity. Successful modulation of ascorbate biosynthesis through genetic manipulation of genes involved in biosynthesis, catabolism and recycling of ascorbate has been achieved. Recently, role of ascorbate in alleviating number of abiotic stresses has been highlighted in crop plants. In this article, we discuss the current understanding of ascorbate biosynthesis and its antioxidant role in order to increase our comprehension of how ascorbate helps plants to counteract or cope with various abiotic stresses.

Keywords: Abiotic stress; Antioxidant; L-ascorbate; Reactive oxygen species; Transgenics

Review
Introduction
Adverse environmental factors such as excessive cold, heat, drought and salinity stresses result in a considerable yield loss of crop plants all over the world. These abiotic stresses elicit complex cellular responses in the plant system, resulting in the production of excessive reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂), hydroxyperoxyl (HO₂⁻), superoxide (O₂⁻) and singlet oxygen (¹O₂) radicals. Excessive ROS generated in plant cells tends to interact with different macromolecules resulting in oxidation of proteins, membrane lipids and nucleic acids and causes cellular damage, ultimately affecting the growth and productivity of plants (Wang et al. 2003). To protect themselves from adverse conditions, plants have evolved a number of cellular defense mechanisms including antioxidants such as ascorbate, glutathione and tocopherols as well as ROS-detoxifying enzymes such as superoxide dismutases, peroxidases and catalases (Inzé and Van Montagu 1995; Noctor and Foyer 1998).

Among the plant antioxidants, L-ascorbate is a major antioxidant playing a vital role in the mitigation of excessive ROS activity through enzymatic as well as non-enzymatic detoxification (Mittler 2002). It also acts as a cell signaling modulator in numerous cellular processes including cell division, cell expansion and cell wall growth (Liso et al. 1984; Conklin and Barth 2004; Wolucka et al. 2005; Zhang et al. 2007). It is a cofactor for the number of enzymes such as violaxanthin de-epoxidase (VDE, xanthophyll cycle), 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ethylene biosynthesis) and 2-oxoacid-dependent dioxygenases (ABA and GA biosynthesis) (Eskling et al. 1997; Davey et al. 2000; Smirnoff 2000). Plants with low ascorbate biosynthesis are rather sensitive to various environmental stress conditions affecting their growth and development (Müller-Moulé et al. 2004; Huang et al. 2005; Alhagdow et al. 2007; Gao and Zhang 2008). Recently, it has been reported that ascorbate plays a crucial role in protection against various environmental stresses such as, drought (Hemavathi et al. 2011; Fotopoulos et al. 2008), salinity (Kwon et al. 2003; Huang et al. 2005; Wang et al. 2005; Sun et al. 2010a; Zhang et al. 2011; Venkatesh et al. 2012), ozone (Zheng et al. 2000; Sammartin et al. 2003; Feng et al. 2010), low/high temperatures (Kwon et al. 2003; Larkindale et al. 2005) and high light intensity (Müller-Moulé et al. 2004; Talla et al. 2011). These studies on mutant and/or transgenic plants summarized in the Table 1) with altered endogenous ASA levels proved that ascorbate plays a significant role in plant growth and development as well as abiotic stress tolerance. In this article, an attempt has been made to...
Enzyme/protein	Target plant	Gene	Gene source	Type of genetic manipulation	Ascorbate content	Phenotypic changes	Reference
GDP-mannose pyrophosphorylase	Tobacco	GMPase	Tomato	Overexpression	2.0–4.0-fold increase	Increased tolerance to temperature stress	Wang et al. 2011
Phosphomannose Isomerase	Arabidopsis	PMI	Arabidopsis	RNAi	0.47–0.65-fold decrease	No phenotypic changes under normal growth conditions in both mutants	Maruta et al. 2008
GDP-L-galactose phosphotransferase	Arabidopsis vtc5-1 and vtc5-2		Arabidopsis	T-DNA knockout	0.2-fold decrease	Plant growth retardation and bleaching of the cotyledons	Dowdle et al. 2007
L-Galactose dehydrogenase	Tobacco	L-GalLDH	Tobacco	Overexpression	1.5–2.0-fold increase	Reduced browning and cells death of cultures	Tokunaga et al. 2005
L-galactono-1,4-lactone dehydrogenase	Tobacco (BY–2 cells)	GLDH	Tobacco	Antisense downregulation	0.30-fold decrease	Adversely effected plant cell division, growth and structure of plant cell	Tabata et al. 2001
Monodehydroascorbate reductase	Tobacco	ReGalLDH	Rosa roxburghii	Overexpression	2.1-fold increase	Enhanced tolerance to salt stress	Liu et al. 2013a
Tobacco	AtMDAR1	Arabidopsis	Overexpression	Up to 2.2-fold increase	Enhanced tolerance to ozone, salt and PEG stresses	Eltayeb et al. 2007	
Tobacco	Am-MDAR	Avicennia marina	Overexpression	Up to 2.0-fold increase	Increased tolerance to salt stress	Kavitha et al. 2010	
Tobacco	MDAR-OX	Arabidopsis	Overexpression	Up to 1.1-fold increase	No change in Aluminium tolerance	Yin et al. 2010	
Tobacco	DHAR-OX	Arabidopsis	Overexpression	Up to 1.3-fold increase	Increased tolerance to Al stress	Yin et al. 2010	
Tobacco	DHAR	Arabidopsis	Overexpression	1.9–2.1-fold increase	Enhanced tolerance to ozone, drought and salinity	Eltayeb et al. 2006	
Tobacco	DHAR	Wheat	Overexpression	2.1-fold increase	Increased ozone tolerance and NPR	Chen and Gallie 2005	
Tobacco	DHAR	Tobacco	Antisense downregulation	0. 29-fold decrease	Substantially reduced stomatal area and low NPR		
Tobacco	DHAR	Human	Overexpression	No significant change	Enhanced tolerance to low temperature and NaCl	Kwon et al. 2003	
Ascorbate peroxidase	Species	Gene	Transformation	Effect	Reference		
---------------------	-----------------	--------	----------------	---	-----------------------		
Tobacco	tAPx	Tobacco	Overexpression	No change	Increased tolerance to MV and chilling stresses under light conditions	Yabuta et al. 2002	
		Tobacco			Plants failed to grow		
		Tobacco/ Spinach	Antisense downregulation				
Arabidopsis	HvAPX1	Barley	Overexpression	–	Increased tolerance to salt stress	Xu et al. 2008	
Arabidopsis	OsAPXa and OsAPXb	Rice	Overexpression	–	Increased tolerance to salt stress	Lu et al. 2007	
Tobacco	CAPOA1	Pepper	Overexpression	–	Increased plant growth	Sarowar et al. 2005	
Tobacco	cAPX	Arabidopsis	Antisense downregulation	No change	Increased tolerance against heat and salt stresses	Ishikawa et al. 2005	
Tobacco	StAPX	Tomato	Overexpression	–	Improved seed germination	Sun et al. 2010a	
Rice	Apx1/ Apx2	Rice	RNAi (Apx1+ Apx2)	Up to 1.5-fold decrease	No change in plant growth and development	Rosa et al. 2010	
			RNAi (Apx1 or Apx2)	–	Increased tolerance to aluminium		
Rice	OsAPx-R	Rice	RNAi	–	Produced semi-dwarf phenotype		
Rice	OsAPXa	Rice	Overexpression	–	Delayed plant development	Lazzarotto et al. 2011	
Rice	Osapx2	Rice	Overexpression	–	Increased spikelet fertility under cold stress	Sato et al. 2011	
					Enhanced stress tolerance	Zhang et al. 2013	
					Sensitive to abiotic stresses		
					Semi-dwarf seedlings, yellow-green leaves, leaf lesion-mimic and seed sterility		
Alfalfa	Osapx2	Rice	Overexpression	–	Increased salt resistance	Guan et al. 2012	
Tomato	cAPX	Pea	Overexpression	–	Enhanced tolerance to UV-B and heat stresses	Wang et al. 2006	
Tomato	cAPX	Pea	Overexpression	–	Enhanced tolerance to chilling and salt stresses	Wang et al. 2005	
Tomato	LetAPX	Tomato	Antisense downregulation	No significant change	Transgenic plants photosynthetically less efficient and sensitive to chilling stress	Duan et al. 2012b	
Ascorbate oxidase	AAO	Cucumber	Overexpression	No change	Plants become susceptible to ozone	Sanmartin et al. 2003	
Tobacco	AAO	Cucumber	Overexpression	No change	Increased drought tolerance due to reduced stomatal conductance	Fotopoulos et al. 2008	
Tobacco	AAO	Pumpkin	Overexpression	2.0-fold increase in apoplastic ASA	Number of smaller flowers significantly increased 6% to 14% reduction of in seed weight	Pignocchi et al. 2003	
Tobacco	AAO	Tobacco	Antisense downregulation	2.0-fold increase in apoplastic ASA	No significant changes		
Tobacco	AAO	Tobacco	Overexpression	–	Severe inhibition of germination and seed yield under high salinity	Yamaamoto et al. 2005	
Plant	Trait	Treatment	Effect	Reference			
----------	-------------	----------------------------------	---	-----------------			
Tobacco	AAO	Antisense downregulation	Increased tolerance to salt stress	Yamamoto et al. 2005			
Arabidopsis	AAO	T-DNA knockout	Increased tolerance to salt stress				
Myoxygenase	Rice	OsMIOX overexpression	No change				
ASA mannose pathway regulator 1	Arabidopsis	AMR1 T-DNA knockout	2.0-3.0-fold increase	Increased ozone tolerance	Zhang et al. 2009		

APx-R, APX-related; CAPOA1, Capsicum annuum ascorbate peroxidase-like 1 gene; MV, methyl viologen; NPR, net photosynthetic rate; PEG, polyethylene glycol; RNAi, RNA interference; VIGS, Virus-induced gene silencing; VVMEE, Viral-vector-mediated ectopic expression.
illustrate the role of ascorbate in various abiotic stresses in crop plants by exploring transgenic technology.

Overview: ascorbic acid biosynthesis, transportation, recycling and degradation processes in plants

In plants, the accumulation or steady level of ascorbate is maintained in homeostasis through the rate of synthesis, recycling and degradation, as well as intra- and inter-cellular transport (Horemans et al. 2000a; Pallanca and Smirnoff 2000; Green and Fry 2005).

Biosynthesis

Characterization of low ascorbate producing mutants (vtc) of *Arabidopsis* has helped us to better understand the essential role of enzymes involved in the biosynthesis of L-ascorbate (Conklin et al. 1996; Conklin et al. 2000; Huang et al. 2005; Conklin et al. 2006; Müller-Moulé 2008). Now it is well known that in higher plants, ascorbate biosynthesis occurs through well-characterized D-mannose/L-galactose pathway (Smirnoff-Wheeler pathway), where D-mannose is converted to L-galactose via GDP-sugar intermediates (Wheeler et al. 1998) (Figure 1). L-galactose is further oxidized to L-galactono-1,4-lactone, which is converted into ascorbate, by L-galactono-1,4-lactone dehydrogenase (L-GalLDH), located on the inner mitochondrial membrane (Siendones et al. 1999; Smirnoff 2001). All of the genes that are involved in this pathway have been well-characterized; these include genes encoding

![Figure 1](http://www.as-botanicalstudies.com/content/55/1/38)

Figure 1 L-ascorbic acid biosynthesis pathways in plants (modified after Hemavathi et al. 2010): (1) Smirnoff-Wheeler pathway, (2) L-gulose pathway, (3) Myo-inositol-based pathway, (4) D-galacturonic acid pathway.
GDP-D-mannose pyrophosphorylase (Conklin et al. 1999), GDP-D-mannose-3′,5′-epimerase (Wolucka and Van Montagu 2003; Watanabe et al. 2006), GDP-L-galactose phosphorylase (L-galactose guanylyltransferase) (Dowdle et al. 2007; Linster and Clarke 2008), L-galactose-1-phosphate phosphatase (Laing et al. 2000a), L-galactose dehydrogenase (Gatzek et al. 2002; Laing et al. 2004b) and L-GalLDH (Imai et al. 1998; Siendones et al. 1999; do Nascimento et al. 2005; Tokunaga et al. 2005; Alhagdow et al. 2007).

In addition to the Smirnoff-Wheeler pathway, three other potential pathways of ascorbate biosynthesis have been identified in plants. It was demonstrated that in addition to production of GDP-L-galactose, GDP-D-mannose-3′,5′-epimerase can also produce GDP-L-gulose (Davey et al. 1999; Wolucka and Van Montagu 2003). Moreover, exogenous L-gulose and L-gulono-1,4-lactone were shown to serve as direct precursors of ascorbate in Arabidopsis cell cultures (Davey et al. 1999). These observations led to a proposal for an alternative L-gulose pathway in which L-gulose and L-gulono-1,4-lactone are important intermediates (Wolucka and Van Montagu 2003). However, the intermediate steps in this pathway have not yet been characterized in plants. D-galacturonic acid pathway involves the conversion of D-galacturonic acid, a product of the degradation of cell wall pectins to L-ascorbate via L-galactono-1,4-lactone (Agius et al. 2003; Cruz-Rus et al. 2011; Badejo et al. 2012) (Figure 1). Following the cloning of Arabidopsis myoinositol oxygenase (MIOX) gene by Lorence et al. (2004), a myoinositol-based pathway (animal-like pathway) was proposed (Figure 1). MIOX converts myoinositol to D-glucuronate and plants can catalyze the conversion of D-glucuronate into L-gulonic acid. However, recently, Endres and Tenhaken (2009), proved that the MIOX is involved mainly in the modulation of the metabolite level of myoinositol and plays a negligible role in the plant ascorbate biosynthesis.

Ascorbate transport

Once the ascorbate is synthesized on the inner mitochondrial membrane, it is transported to different cellular compartments including the apoplasm. Both the ascorbate and DHA transport is mainly mediated by facilitated diffusion or active transport systems (Ishikawa et al. 2006). In contrast to ascorbate, DHA tends to be more efficiently transported across plant membranes with a higher affinity and capacity (Horemans et al. 1998; Szarka et al. 2004). It was proposed that specific plasma membrane transporters transport ASA or DHA in plants (Horemans et al. 2000b). However, either the protein or the gene associated with this transport and the nature of the mechanisms driving these carrier proteins are still inconclusive. Several other putative ascorbate transporters are associated with the plant plasma membrane (reviewed in Horemans et al. 2000a); however, the specific mechanisms by which they transport ASA or DHA have not been well elucidated.

Ascorbate biosynthesis occurs in almost all plant cells and tissues. However, its level is generally high in photosynthetic tissues, meristematic tissues, flowers, young fruits, root tips, and apices of stolons or tubers (Gest et al. 2013). In certain fruits, such as Ribes nigrum (by galactose pathway, Hancock et al. 2007) and strawberry (by D-galacturonic acid pathway, Agius et al. 2003), increased accumulation of ascorbate occurs by a combination of long-distance transport and in situ biosynthesis. High ascorbate demand in developing sink tissues is probably because it is critical for cell cycle and cell division/growth, which cannot be met entirely by sink tissue alone (Smirnoff 2000; Franceschi and Tarlyn 2002). Ascorbate accumulation in sink tissue is controlled to some extent by ascorbate biosynthesis in source tissues (Franceschi and Tarlyn 2002; Tedone et al. 2004). Franceschi and Tarlyn (2002), demonstrated that the long-distance transport of ASA in plants occurs via phloem, where L-ascorbate was found to be loaded into the phloem of source leaves and transported to sink tissues. In addition, ascorbate biosynthesis, which occurs in phloem tissue via the D-Man/L-Gal pathway could also contribute to ASA accumulation in plant storage organs (Hancock et al. 2003).

In mammals, sodium-dependent ascorbate transporters (SVCT1 and SVCT2), which belong to the nucleobase-ascorbate transporter (NAT) family, have been identified and well characterized as an active ascorbate transport system (Daruwala et al. 1999; Tsukaguchi et al. 1999; Ishikawa et al. 2006). Although numerous NATs have been identified in plants (Li and Schultes 2002; Maurino et al. 2006), their role in ASA transportation has not been established. Further studies are required to determine the definitive role in plant ascorbate transportation.

Ascorbate recycling

ASA pool in cells is maintained through synthesis, recycling and transportation, and plays an important role in adaptation of plant to various stresses (Stevens et al. 2008). Ascorbate takes part in several enzymatic and non-enzymatic mechanisms for elimination of deleterious ROS (Asada and Takahashi 1987), and as a result, MDHA and DHA accumulates in the cells. The two enzymes involved in the oxidation of ascorbate are ascorbate oxidase (AAO) and ascorbate peroxidase (APX). AAO is an apoplastic enzyme that catalyzes the oxidation of ASA to MDHA using oxygen and is associated with cell wall metabolism and cell expansion (Smirnoff 1996). Ascorbate peroxidase (APX) is a class I peroxidase catalyzes the conversion of H₂O₂ into H₂O, using ascorbate as a specific electron donor, thus resulting in the
accumulation of MDHA as a by-product (Teixeira et al. 2004).

The ASA pool size is dependent, on both the rate of synthesis and the rate of reduction of MDHA and DHA back to ascorbate. MDHA and DHA produced as a result of activities of APX and AAO, respectively, should be efficiently recycled to maintain the reduced pool of ASA. MDHA is reduced back to ASA by MDAR using NADH/NADPH as electron donors. In addition, plant PM cyt b 561 (plasma membrane b-type cytochrome c) is also associated with the recycling of ASA from MDHA on the cytoplasmic side of the plasma membrane (Trost et al. 2000; Asard et al. 2001; Pignocchi and Foyer 2003). DHA is reduced to ASA by dehydroascorbate reductase (DHAR) using reduced glutathione (GSH) as an electron donor or by the electron-transport chain (ETC.) electron carriers (Szarka et al. 2007). Thus, DHAR and MDAR are crucial components in the maintenance of the reduced pool of ASA and are of prime importance in oxidative stress tolerance (Eltayeb et al. 2006).

Ascorbate degradation

Although the pathway of ascorbate synthesis is distributed between the cytosol and the mitochondrion (Foyer 2004; Smirnoff et al. 2004), the ascorbate degradation pathway appears to reside in the apoplast (Green and Fry 2005). In most plants, ascorbate degradation can occur via dehydroascorbate, yielding oxalate (OxA) and L-threonate (ThrO). However, in some plants (Vitaceae eg. grape), ascorbate can also be degraded via L-idonate to L-threarate (L-tartrate) (Green and Fry 2005). A degradation pathway for ASA/DHA catabolism in plants has been reported recently (Simpson and Ortwether 2000; Parsons and Fry 2012). Ascorbate degradation pathway involves enzymic and/or non-enzymic oxidation to dehydroascorbic acid (DHA), which may irreversibly hydrolyze to 2,3-diketogulonate (DKG). However, many of the enzymes involved in the degradation pathway of ASA are not well characterized in plants. Both DHA and DKG prone to further oxidation under the same physiological conditions as that of apoplast (Parsons and Fry 2012). DHA can be oxidized by H₂O₂ non-enzymatically to a monoanion (cyclic-oxalyl-threonate; cOxT) and a dianion (oxalyl-threonate [OxT] isomers, 3-OxT and 4-OxT) independently through formation of a reactive intermediate cyclic-2,3-O-oxalyl-L-threonolactone (Parsons et al. 2011). In the absence of H₂O₂, DKG is relatively stable, however slowly generates a range of products, such as 2-carboxy-L-xylonolactone, 2-carboxy-L-lyxonolactone and 2-carboxy-L-threo-pentonate (Parsons et al. 2011). In the presence of apoplastic plant esterases or prolonged non-enzymatic incubations, substantial hydrolysis of cOxT to OxT and then OxT to OxA and ThrO would take place (Parsons et al. 2011).

Genetic modulation of plant ascorbate pathway has become feasible with advancements made in plant genomics and genetic engineering. Several possible strategies have been followed to increase ascorbate production in plants via genetic engineering of enzymes involved in the biosynthesis and recycling of ascorbate. Several transgenes, which are of plant and animal origins, have been successfully used for increasing biosynthesis of ascorbic acid. Mouse L-gulono-c-lactone oxidase (GLOase) gene in tobacco, lettuce and potato (Jain and Nessler 2000; Hemavathi et al. 2010), human dehydroascorbate (DHAR) gene in tobacco (Kwon et al. 2003), wheat DHAR gene in tobacco and maize (Chen et al. 2003; Naqvi et al. 2009), Arabidopsis MDAR gene (AtMDAR1) in tobacco, strawberry D-galacturonic acid reductase (GalUR) gene in Arabidopsis and potato (Agius et al. 2003; Hemavathi et al. 2009) and rice L-GalLDH gene in rice (Liu et al. 2011) have been successfully cloned and expressed (summarized in the Table 2).

Role of ascorbate in photosynthesis as a photoprotectant

A high concentration of ascorbate in chloroplasts would imply its central role in photosynthesis (Smirnoff 1996). Ascorbate plays a crucial roles in scavenging the deleterious ROS that are generated as by-products of photosynthesis and as a key component in excess photonic energy dissipation mechanisms, such as the water-water cycle (WWC) (Neubauer and Yamamoto 1992; Asada 1999) and the xanthophyll cycle (Müller-Moulé et al. 2002; Yabuta et al. 2007). WWC, which is also known as Mehler peroxidase reaction, is one of the most important detoxification systems functioning in intact chloroplasts (Asada 1994, 1999, 2006). It involves the photoreduction of O₂ by PSI to a superoxide radical, followed by the dismutation of superoxide radical by superoxide dismutase (SOD) to hydrogen peroxide and oxygen (Müller-Moulé et al. 2002). The hydrogen peroxide is reduced to water by ascorbate, catalyzed by ascorbate peroxidase (APX), and the resulting by-product monodehydroascorbate (MDA) is directly reduced to ascorbate either by reduced ferredoxin of PSI (Miyake and Asada 1992; Miyake and Asada 1994; Asada 1999) or by NAD(P)H-dependent chloroplastic MDHA reductase using NADH or NADPH as electron donor (Sano et al. 2005). MDHA can spontaneously disproportionate to ascorbate and dehydroascorbate (DHA) (Asada 1999). DHA is unstable at the physiological pH and irreversibly degrade to 2,3 diketo-1-gulonic acid if not recycled back to ascorbate. To preserve the ascorbate pool, DHA should be rapidly reduced back to ascorbate. DHA is recycled back to ascorbate via the ascorbate-glutathione cycle by reduced glutathione (GSH), catalyzed by DHAR (Shimaoka et al. 2003). Finally, glutathione reductase (GR) converts glutathione disulfide (GSSG) back
Table 2 Transgenic approaches for overproduction of L-ascorbate in plants

Enzyme	Target plant	Gene	Gene source	Type of genetic manipulation	Ascorbate content	Phenotypic change	Reference
GDP-l-galactose phosphokinases	Tomato	GGP/ VTC2	Actinidia chinensis	Overexpression	3.0–6.0-fold increase in fruits	–	Bulley et al. 2012
	Strawberry				2.0-fold increase in fruits	–	
	Potato				Up to 3.0-fold increase in tuber	–	
GDP-mannose pyrophosphorylase	Potato	GMPase	Potato/Arabidopsis	Antisense downregulation	0.88–1.44-fold reduction in leaves	Dark spots on leaf veins and stems	Keller et al. 1999
					0.56-fold reduction in tubers	Early senescence	
	Tomato	SIGME1	Tomato	Overexpression	Up to 1.42-fold increase in tubers	Improved tolerance to various abiotic stresses such as cold, salt and MV	Zhang et al. 2011
		SIGME2		Overexpression	Up to 1.60-fold increase in leaves	–	
					Up to 1.24-fold increase in fruits	–	
L-galactose guanylytransferase	Tobacco	GalT	Kiwifruit	Transient expression (leaves)	Up to 3.0-fold increase	–	Laing et al. 2007
L-Galactose dehydrogenase	Tobacco	L-GalDH	Arabidopsis	Overexpression	No change	–	Gatzek et al. 2002
	Arabidopsis			Antisense downregulation	0.7-fold decrease	–	
L-galactono-1,4-lactone dehydrogenase	Rice	L-GalLDH	Rice	RNAi	0.6–0.87-fold decrease	Slow plant growth rate and poor seed set	Liu et al. 2011
	Tomato	SGIgalLDH	Tomato	RNAi	Up to 1.48-fold increase	Increased NPR and higher seed set	Alhagdow et al. 2007
	Rice	L-GalLDH	Rice	RNAi	No change	Slow plant growth rate	
L-gulono-c-lactone oxidase	Arabidopsis	GLOase	Rat	Overexpression	Up to 2.0–3.0-fold increase	–	Radzio et al. 2003
	Lettuce	GLOase	Rat	Overexpression	4.0–7.0-fold increase	–	Jain and Nessler 2000
	Tobacco	GLOase	Rat	Overexpression	Up to 7.0-fold increase	–	
	Tomato	GLOase	Rat	Overexpression	1.5-fold increase in fruits	Enhanced tolerance to MV, NaCl, and mannitol	Lim et al. 2012
	Potato	GLOase	Rat	Overexpression	Up to 1.41-fold increase	Enhanced tolerance to MV, NaCl, and mannitol	Hemavathi et al. 2010
D-galacturonic acid reductase	Arabidopsis	GalUR	Strawberry	Overexpression	2.0–3.0-fold increase	–	Agius et al. 2003
	Potato	GalUR	Strawberry	Overexpression	1.6–2.0-fold increase	Enhanced tolerance to MV, NaCl, and mannitol	Hemavathi et al. 2009
	Tomato (Hairy Roots)	GalUR	Strawberry	Overexpression	2.5-fold increase	High growth rate	Wevar Oller et al. 2009
	Tomato	LeMIDAR	Tomato	Overexpression	Up to 1.18-fold increase	–	Li et al. 2010
Monodehydroascorbate reductase	Antisense downregulation	Up to 1.3-fold decrease	Enhanced tolerance to temperature (low/high) and MV stresses	High NPR	Susceptible to various abiotic stresses		
---------------------------------	--------------------------	-------------------------	---	---------	--		
Tomato MDAR Tomato	Overexpression	0.7-fold reduced in fruits	–	Haroldsen et al. 2011			
Dehydroascorbate reductase	Tomato DHAR Tomato	Overexpression	1.6-fold increase in fruits	–	Haroldsen et al. 2011		
Maize (Kernels) DHAR Wheat	Overexpression	6.0-fold increase	–	Naqvi et al. 2009			
Maize DHAR Wheat	Overexpression	Up to 1.8-fold (leaves) and 1.9-fold (kernels) increase	–	Chen et al. 2003			
Tobacco DHAR Wheat	Overexpression	2.2–3.9-fold increase	–	Chen et al. 2003			
Tobacco DHAR Rice	Overexpression	Up to 1.6-fold increase	Enhanced tolerance to salt and cold stresses	Le Martret et al. 2011			
Tobacco DHAR Human	Overexpression (chloroplasts)	1.1-fold increase	Increased SOD and APX activities in conjunction via triple gene construct	Lee et al. 2007			
Potato DHAR Sesame	Overexpression	1.1–1.3-fold increase in tuber with patatin promoter	–	Goo et al. 2008			
	Overexpression	1.5- and 1.6-fold increase in leaves and tuber respectively, with CaMV35S promoter	1.5- and 1.6-fold increase in leaves and tuber respectively, with CaMV35S promoter				
Potato StDHAR1 Potato	Overexpression (Cytosol)	Up to 0.69-fold increase in leaves	–	Qin et al. 2011			
	Overexpression	Up to 0.29-fold increase in tubers	–				
	Overexpression	Up to 0.50-fold increase in leaves	–				
StDHAR2	Overexpression (Chloroplast)	No significant change in tubers	–				
Arabidopsis DHAR1 Rice	Overexpression	> 1.4-fold increase	Enhanced tolerance to salt stress	Ushimaru et al. 2006			
Arabidopsis DHAR Arabidopsis	Overexpression	2.0–4.25-fold increase	Enhanced tolerance to high–light and high–temperature stress	Wang et al. 2010			
Myoinositol oxygenase	Arabidopsis miox4 Arabidopsis	Overexpression	2.0–3.0-fold increase	–	Lorence et al. 2004		

MV, methyl viologen; NPR, net photosynthetic rate; RNAi, RNA interference.
into GSH using NAD(P)H as a reducing agent (Figure 2). Recently, Huang et al. (2008), reported that thioredoxin h2 (Trx h2) having both DHA reductase (in the presence of glutathione) and MDA reductase (in the presence of NADH) activity may also involve in the regeneration of ascorbate from DHA and MDHA, respectively.

Increased biosynthesis of ascorbate in high light exposed plants and enhanced photoinhibition and oxidative damage in ascorbate-deficient plants would imply its role in excess light energy dissipation (Smirnoff 2000; Müller-Moulé et al. 2004; Yabuta et al. 2007). It was previously reported that high light stress results in the induction of the cytosolic APX and protects the cytosol and other cellular compartments from high light induced oxidative stress (Mittler 2002; Mullineaux and Karpinski 2002). Several isoforms of APX have been found in many plant species including both monocots and dicots, and are localized to various subcellular compartments. In Arabidopsis, nine APX genes were described (Panchuk et al. 2002; Mittler et al. 2004; Narendra et al. 2006; Koussevitzky et al. 2008): two cytosolic, two microsomal, three chloroplastic, one mitochondrial, and one dual-targeted to mitochondria and chloroplasts (Chew et al. 2003). In tomato, APX gene family comprises of seven genes encoding three cytosolic, two peroxisomal, and two chloroplastic APXs (Najami et al. 2008). Whereas, in rice, the APX gene family consists of eight genes encoding two cytosolic, two peroxisomal, and three chloroplastic isoforms and one is oxidative stress (Mittler 2002; Mullineaux and Karpinski 2002). Several isoforms of APX have been found in many plant species including both monocots and dicots, and are localized to various subcellular compartments. In Arabidopsis, nine APX genes were described (Panchuk et al. 2002; Mittler et al. 2004; Narendra et al. 2006; Koussevitzky et al. 2008): two cytosolic, two microsomal, three chloroplastic, one mitochondrial, and one dual-targeted to mitochondria and chloroplasts (Chew et al. 2003). In tomato, APX gene family comprises of seven genes encoding three cytosolic, two peroxisomal, and two chloroplastic APXs (Najami et al. 2008). Whereas, in rice, the APX gene family consists of eight genes encoding two cytosolic, two peroxisomal, and three chloroplastic isoforms and one is

Figure 2 Multiple functions of L-ascorbate in plants. During abiotic stress conditions, scavenging of ROS by APX increases MDA content in both apoplast and symplast. If the MDA is not rapidly reduced back to ascorbate by MDAR, spontaneously disproportionate into ascorbate and DHA. Cytoplasmic DHAR can reduce DHA back to ascorbate using GSH, and the resulting GSSG is regenerated back to GSH through the action of GR in a NADPH dependent reaction. Furthermore, during oxidative stress conditions, L-ascorbate acts as a cofactor for violaxanthin de-epoxidase for the formation of zeaxanthin and also involves in the regeneration of α-tocopherol from tocotrienoxyl radicals.
targeted to the mitochondria (Teixeira et al. 2004, 2006; Hong et al. 2007). Recently, Lazzarotto et al. (2011), characterized a new class of rice putative heme peroxidases, APX-R (APX-related), a dually localized protein, targeted to both chloroplasts and mitochondria, which is functionally associated with APX. APX genes have been partially characterized in some plant species such as spinach (Ishikawa et al. 1995, 1996, 1998), cowpea (D’Arcy-Lameta et al. 2006) and eggplant (Lin et al. 2007). The large functional diversity and subcellular localization of the APX genes suggest the degree of complementation and coordination of the antioxidant defences in different cellular compartments during development and abiotic stress (Teixeira et al. 2004, 2006).

APX is highly responsive to various abiotic stresses and plays an important role in the scavenging of ROS in plants. Mutant studies in Arabidopsis revealed that cytosolic APXs (APX1 and APX2) are critical for cellular H$_2$O$_2$ homeostasis and play an important role in growth, development and oxidative protection of chloroplasts under various abiotic stresses (Pnueli et al. 2003; Davletova et al. 2005; Koussevitzky et al. 2008; Zhang et al. 2013). In particular, Arabidopsis APX1 is important for plant growth and development (Pnueli et al. 2003), whereas APX2 is critical for drought tolerance (Rossel et al. 2006). Thylakoid-bound APXs (tAPX) are crucial for photosynthesis and photoprotection under photo-oxidative stress in Arabidopsis (Kangasjarvi et al. 2008). In rice, expressions of OsAPX genes are modulated by various abiotic stresses and exogenous ABA as well as by biotic stresses (Agrawal et al. 2003; Teixeira et al. 2006; Hong et al. 2007; Rosa et al. 2010). The expressions of two cytosolic APX genes, OsAPX1 and OsAPX2, are developmentally regulated (Agrawal et al. 2003) and the suppression of either of these genes resulted in strong effects on plant growth and development and produced semi-dwarf rice phenotypes (Rosa et al. 2010). Zhang et al. (2013), reported similar results wherein, downregulation of OsAPX2 gene affected the growth and development of rice seedlings, resulting in semi-dwarf and lesion-mimic seedlings, yellow-green leaves, and seed sterility. In contrast, the overexpression of OsAPX2 gene increased APX enzyme activity and thus resulted in enhanced stress tolerance.

Davletova et al. (2005), demonstrated the role of cytosolic APX1 in cross-compartment protection of thylakoid/stromal and mitochondrial APXs during light stress. Despite the protection of each individual cellular compartment by its own set of ROS-scavenging enzymes, APX1-deficient Arabidopsis plants exhibited the oxidation of chloroplastic, mitochondrial and membrane-bound proteins, suggesting the key role of cytosolic APX1 enzyme in the cross-compartment protection of adjacent compartments (Davletova et al. 2005). However, some early studies certainly suggest that thylakoid membrane-bound APX (tAPX) is a limiting factor of antioxidative systems under photo-oxidative stress in chloroplasts and that the enhanced activity of tAPX under stress is to maintain the redox status of ascorbate (Yabuta et al. 2002). Moreover, transgenic Arabidopsis plants overexpressing Suaeda salsa chloroplastic stromal APX (sAPX) and thylakoid-bound APX (tAPX) also showed an increased tolerance to high light oxidative stress by efficient detoxification of ROS (Pang et al. 2011).

Ascorbate also plays a significant role in formation of zeaxanthin during photo-oxidative stress (Figure 2). The excess excitation energy from the incidence of high light is invariably dissipated as heat by zeaxanthin in the light harvesting complex of the photosynthetic apparatus (Demmig-Adams and Adams 1996). Zeaxanthin is regenerated (via Xanthophyll cycle) in the successive de-epoxidation of violaxanthin and antheroxanthin by the enzyme VDE, which is located in the thylakoid lumen, and requires ascorbate as a cofactor (Neubauer and Yamamoto 1993; Müller-Moulé et al. 2002). Müller-Moulé et al. (2003), demonstrated the role of ascorbate in regeneration of zeaxanthin in ascorbate-deficient mutant of Arabidopsis, vtc2. These plants are characterized with an increased degree of lipid peroxidation and photoinhibition, and the regeneration of zeaxanthin from violaxanthin was slower due to insufficient ascorbate content.

Role of l-ascorbate in salinity and drought tolerance

In the cell, ROS is continuously produced during normal functioning of the photosynthesis, respiration and photosynthesis as well as in various enzyme-catalyzed redox reactions (Dat et al. 2000; Moller 2001). However, ROS activity increases several folds under stress conditions and can serve as a signal that activates defense responses by specific signal transduction pathway in which hydrogen peroxide acts as secondary messenger (Helena and de Carvalho 2008). However, an increased ROS activity for the prolonged period can cause oxidative stress in plants. If ROS is not efficiently scavenged and quenched, it can cause membrane lipid peroxidation, inactivation of cellular enzymes and degradation of nucleic acids, which may eventually lead to the death of plant cells.

Plants with higher ascorbate content can effectively scavenge the excessive ROS generated during stress conditions, and confer increased tolerance to abiotic stresses. Increased salt stress sensitivity of the Arabidopsis vtc mutant is attributed to the low intrinsic ascorbate levels and impaired ascorbate-glutathione cycle, which resulted in an enhanced ROS activity and a significant decrease in the CO$_2$ assimilatory capacity (Huang et al. 2005). Moreover, deficiency of ascorbate may limit the
recycling of α-tocopheroxyl radicals to α-tocopherol, which may, in turn, increase the oxidation of thylakoid membrane lipids under drought conditions (Munne-Bosch and Alegre 2002). Several transgenic plants overproducing ascorbate showed an enhanced salt and drought tolerance with reduced membrane lipid peroxidation and chlorophyll content loss. These plants also exhibited higher survival rate and a significantly higher seed germination rate, fresh weight and root length (Wang et al. 2005; Sun et al. 2010a; Zhang et al. 2011). Transgenic potato plants expressing strawberry GalUR gene and rat GLOase gene with several-fold increased biosynthesis of ascorbate also exhibited a better survival under salinity and drought stresses conditions including a reduction in the level of lipid peroxidation (Hemavathi et al. 2009; Hemavathi et al. 2011; Upadhyaya et al. 2011).

Regulation of plant ascorbate redox state by means of synthesis, degradation and transport plays an essential role in plant adaptation to the stress (Stevens et al. 2008; Yin et al. 2010). MDAR and DHAR are key enzymes involved in the regulation of the ascorbate redox state and are of vital importance in the oxidative stress tolerance. MDAR maintains higher redox state of ascorbate by recycling the oxidized MDHA. Several isoforms of MDAR have been found in different cellular compartments, such as chloroplasts (Miyake and Asada 1994; Sano et al. 2005), cytosol and mitochondria (De Leonardis et al. 1995; Jiménez et al. 1997; Mittova et al. 2003), peroxisomes (Mittova et al. 2003; Lettieri et al. 2005) and glyoxysomes (Bowditch and Donaldson 1990), to serve the specific physiological role in each cellular compartment. The level of MDAR expression increases in response to oxidative stress triggered by several stress conditions (Yoon et al. 2004; Lettieri et al. 2005; Kavitha et al. 2010). Transgenic tobacco plants overexpressing a salt-inducible chloroplastic MDAR from halophyte Avicennia marina survived better under conditions of salt stress compared with wild-type plants (Kavitha et al. 2010). Similarly, transgenic potato plants overexpressing the Arabidopsis DHAR gene in the cytosol exhibited enhanced DHAR activity with faster growth, even under drought and salt stress conditions (Eltayeb et al. 2011).

High salt and drought tolerances were also observed in transgenic plants overexpressing APX gene. Heterologous expression of OsAPX2 gene improved salt tolerance in transgenic Arabidopsis and alfalfa (Lu et al. 2007; Guan et al. 2012). Increased APX activity was observed in roots of etiolated rice seedlings in response to NaCl stress and was correlated with upregulation of chloroplastic OsAPX8 expression; however, no effect on the expression of the rest of the rice APX isoforms was observed (Hong et al. 2007). In contrast, Teixeira et al. (2006), reported the enhanced expression of OsAPX2 and OsAPX7, and severe downregulation of OsAPX8 in rice seedlings under NaCl stress. This observed discrepancy in the above results seemed to be differ with cultivars, plant age, tissues, and growing conditions (Hong et al. 2007).

It has been demonstrated that OsAPX gene expression and H$_2$O$_2$ production were increased in response to NaCl in roots of etiolated rice seedlings (Tsai et al. 2004, 2005). However, OsAPX8 expression and APX activity induced by NaCl are not mediated through H$_2$O$_2$ in rice roots (Tsai et al. 2005; Hong et al. 2007). In rice roots, accumulation of ABA in response to NaCl was correlated with upregulation of OsAPX8 expression (Hong et al. 2007). Moreover, exogenous application of ABA also specifically enhanced the expression of OsAPX8. Similarly, application of ABA increased the expression of APX genes in pea, rice, and sweet potato (Mittler and Zilinskas 1992; Agrawal et al. 2003; Park et al. 2004). These findings indicate that NaCl induced expression of APX is mediated through an accumulation of the ABA.

Transgenic plants overexpressing a heterologous cytosolic APX gene showed an enhanced tolerance to salt stress with lower ROS activity (Badawi et al. 2004; Wang et al. 2005; Lu et al. 2007; Faize et al. 2011). These transgenic plants exhibited lower electrolyte leakage and lipid peroxidation, higher water use efficiency, minimal leaf damage and better photosynthetic performance. Similar results were obtained in the transgenic tobacco overexpressing Solanum lycopersicum thylakoid-bound APX (tAPX) and showed a better performance in terms of photosynthetic efficiency, root lengths and fresh and dry weights of the plants with enhanced tolerance to salt and osmotic stresses (Sun et al. 2010a).

Yamamoto et al. (2005), demonstrated that downregulation of apoplastic AAO (ascorbate oxidase) confers higher salt tolerance in tobacco and Arabidopsis plants. It was suggested that under salt stress conditions, suppressed expression of apoplastic AAO led to a relatively low level of hydrogen peroxide accumulation and a high redox state of symplastic and apoplastic ascorbate, which, in turn, increased the salt tolerance. Interestingly, transgenic tobacco plants with elevated levels of hydrogen peroxide by overexpression of a cell wall-localized cucumber AAO conferred increased drought tolerance due to reduced stomatal conductance (Fotopoulos et al. 2008).

Control of the stomatal aperture is essential for the plant adaptation to changes in its ambient environment. Several mechanisms for the regulation of stomatal aperture have been proposed (Kim and Lee 2007; Araújo et al. 2011). It has been found that O$_2$ and other activated oxygen species are involved in the regulation of stomatal movement (Purohit et al. 1994). Zhang et al.
(2001), demonstrated that hydrogen peroxide may function as an intermediate in ABA signalling in guard cells. During stress conditions ABA causes an increase in hydrogen peroxide production and induces stomatal closure. Stomatal closure induced by hydrogen peroxide was reversed by exogenous application of ascorbate because of hydrogen peroxide detoxification activity of ascorbate (Zhang et al. 2001). Earlier, Chen and Gallie (2004), demonstrated that transgenic plants with DHAR overexpression exhibited an increase in the ascorbate redox state and reduced levels of hydrogen peroxide in guard cells and leaves showed greater stomatal opening, increased transpiration rate and stomatal conductance even under normal growth conditions. Whereas, plants with suppression of DHAR activity showed an elevated level of hydrogen peroxide and conferred increased drought tolerance with a decreased ascorbate redox state.

It has been known that the enzyme AAO, which catalyzes the oxidation of ASA to DHA exclusively located in the apoplast, plays an important role in the maintenance of the redox state of the apoplastic ascorbate levels (Pignocchi and Foyer 2003; Sammartin et al. 2003; Pignocchi et al. 2006). However, the mechanism of regulation of AAO gene expression and stomatal moments is not clearly understood. It has been suggested that the signal perception of stomatal closure is altered by AAO overexpression (Pignocchi and Foyer 2003; Fotopoulos et al. 2008). Transgenic tobacco leaves overexpressing a cell wall-localized cucumber AAO contained elevated levels of hydrogen peroxide and ABA content, thereby resulting in reduced stomatal conductance and reduced rates of water loss (Fotopoulos et al. 2008). Based on these results, it is predictable that either the suppression of DHAR expression or the overexpression of AAO would result in the decrease in the ascorbate redox state and causes increased accumulation of hydrogen peroxide levels resulting in stomatal closure, lower transpiration thus providing drought tolerance. However, in both, suppression of DHAR expression or overexpression of AAO would result in greater accumulation of apoplastic DHA levels which may play a key role in the regulation of stomatal aperture.

Ascorbate as an ozone protectant

An increasing concentration of ambient ozone was observed during recent decades in many industrial and rural regions of the world and poses a hazard for vegetation. The ozone exposure of plants causes extensive visible leaf damage and decreased rates of stomatal conductance and photosynthesis (Pell et al. 1997; Torsethaugen et al. 1997; Zheng et al. 2000; Sammartin et al. 2003). Ozone entered through stomata reacts with apoplastic and symplastic components of the cell (Long and Naidu 2002; Castagna and Ranieri 2009; Cho et al. 2011) resulting in a greater accumulation of ROS, which causes an oxidative damage to the photosynthetic membranes and finally leads to the death of photosynthetic mesophyll cells (Godde and Buchhold 1992; Ciompi et al. 1997; Chen et al. 2005). It was suggested that ozone exposure directly affects guard cells by inhibiting the ion channels (K⁺ channel) activity in the guard cell plasma membrane (Torsethaugen et al. 1999). Protection of crop plants from ozone damage could be accomplished by replacement of sensitive biotypes with more tolerant ones as well as by application of synthetic ozone protectants such as ethylene diurea, azoxystrobin, epoxiconazole and penconazole (Blum et al. 2011; Didyk and Blum 2011). However, application of synthetic ozone protectants will pollute the environment and may affect the crop production. Therefore, it is necessary to develop alternative ecofriendly strategies to minimize the ozone damage in plants by using plant-based natural antioxidants such as ascorbic acid.

Apoplastic ascorbate is assumed to represent the first line of defence against potentially damaging pollutants (Plöchl et al. 2000; Barnes et al. 2002). Apoplastic ascorbate can protect plants from ozone-induced damage by directly reacting with ozone (Chameides 1989; Plöchl et al. 2000) and ROS (D’Haese et al. 2005) or by serving as a substrate in ROS-scavenging enzymatic reactions (Chen and Gallie 2005). Plant species that are resistant to ozone showed an increased apoplastic ascorbate levels (Lee 1991; Turcsányi et al. 2000; Zheng et al. 2000; Burkey et al. 2006; Feng et al. 2010). Moreover, exogenous application of plants with ascorbate prevented the foliar injury and alleviated the decline in photosynthesis rate caused by ozone stress (Maddison et al. 2002; Zheng et al. 2000). The lower levels of apoplastic ascorbate content greatly enhanced foliage injury upon chronic ozone exposure in tobacco (Sammartin et al. 2003). Furthermore, *Arabidopsis* mutants (*vtc1*) with low foliar content of ascorbate exhibit hypersensitivity to ozone (Conklin and Barth 2004). Similarly, rice TOS17 insertion mutant (ND6172) for a GDP-D-mannose-3,5’-epimerase gene, which is characterized with 20–30% lower ascorbate level than the wild type, showed a higher level of visible leaf damage upon ozone exposure (Frei et al. 2012).

Maintenance of the apoplastic ascorbate redox state is crucial for ozone-induced oxidative stress tolerance of plants and is influenced by activities of enzymes such as AAO and APX. Altered expression of these enzymes was normally observed in plants exposed to ozone (Kubo et al. 1995; Sammartin et al. 2003; Pignocchi et al. 2006). Transgenic tobacco plants with overexpressing AAO (Sammartin et al. 2003) or downregulation of cytosolic APX (Orvar and Ellis 1997) resulted in the
increased susceptibility of tobacco plants to ozone-induced damage. However, transgenic tobacco plants overproducing chloroplastic APX could not protect from ozone injury (Torsøethaugen et al. 1997). The apoplastic ascorbate redox state also depends on the balance between oxidation of ascorbate to DHA in apoplast and reduction of MDA and DHA to ascorbate in cytoplasm. During the detoxification process, DHA produced in the apoplast diffuses into the cytoplasm and recycled back to ascorbate by cytDHAR (via ascorbate-glutathione cycle, Figure 2) on the plasma membrane. The regenerated ascorbate can be transported back into the apoplast for the detoxification of ozone (Luwe et al. 1993; Horemans et al. 2000a; Yoshida et al. 2006). Transgenic tobacco plants overexpressing MDAR gene conferred enhanced tolerance to ozone due to increased recycling of ascorbate from MDA (Eltayeb et al. 2007). Similarly, DHAR-overexpressing plants also showed an increased ozone tolerance with a higher level of photosynthetic activity despite exhibiting a larger stomatal area (Chen and Gallie 2005). In converse, plants with suppressed DHAR activity showed a substantially reduced stomatal area and lower level of photosynthetic activity. Yoshida et al. (2006), demonstrated that Arabidopsis mutant with completely lacking cytDHAR activity showed a significantly lower level of apoplastic ascorbate and was highly sensitive to ozone (Yoshida et al. 2006). Increased level of ascorbate through enhanced ascorbate recycling by DHAR overexpression offered greater protection against oxidative stress despite poor ability to respond to ozone through stomatal closure (Chen and Gallie 2005; Eltayeb et al. 2007).

Role of ascorbate in temperature stress tolerance
Temperature stress is one of the most important environmental factors affecting the crop yields and geographic distribution of plants. Temperature stresses such as heat, cold or freezing result in excessive ROS production and cause severe damage to cell membranes and proteins (O’Kane et al. 1996; Larkindale and Knight 2002; Suzuki and Mittler 2006; Hu et al. 2008; Yamashita et al. 2008) and also cause impairments in the chloroplast and mitochondrial metabolism (Salvucci and Crafts-Brandner 2004; Vacca et al. 2004; Barra et al. 2005; Nguyen et al. 2009; Barta et al. 2010; Tóth et al. 2011).

Several studies demonstrated that ROS-mitigating mechanisms play an important role in protecting crops against extreme temperature stresses (Iba 2002; Yoshimura et al. 2004; Hu et al. 2008). For instance, overexpression of cytosolic APX in transgenic tomato enhances heat and chilling stress tolerance (Wang et al. 2005, 2006). Similarly, transgenic potato plants overexpressing APX under the control of an oxidative stress inducible SWPA2 promoter showed increased tolerance to high temperature stress (Tang et al. 2006). In rice, overexpression of OsAPX1 enhanced tolerance to chilling stress at the booting stage (Sato et al. 2011). Increased temperature stress tolerance was also observed in transgenic tobacco plants overexpressing the thylakoid-bound APX gene from tomato. These transgenic tobacco lines, under stress condition, showed a higher APX activity and contained less hydrogen peroxide and malondialdehyde than wild-type plants (Sun et al. 2010b). Moreover, under chilling and heat stresses, the photochemical efficiency of PSII in the transgenic lines was distinctly higher than that of wild-type plants. Wang et al. (2011), reported the similar results in transgenic tobacco plants overproducing ascorbate through the expression of tomato GMPase and observed the reduced ROS activity in the transgenic plants under high or low temperature stress conditions.

L-ascorbate may also act as an alternative electron donor of PSII; in those cases electron transfer is inhibited due to inactivation of oxygen evolving complex (OEC) (Mano et al. 2004; Guiss’e et al. 1995; Strasser 1997; Tóth et al. 2009; Gururani et al. 2012). Heat-induced inactivation of PSII was strongly influenced by the ascorbate content of leaves (Tóth et al. 2011). Tóth et al. (2011), experimentally proved the physiological role of ascorbate as alternative PSII electron donor in heat-stressed leaves with inactive OEC. This result suggests that the role of ascorbate as an alternative PSII electron donor is to decelerate the processes of photoinactivation and minimize the ROS activity in the photosynthetic thylakoid membranes, and thus minimize the damage to the entire photosynthetic apparatus.

Conclusion
In higher plants, ascorbate biosynthesis occurs through D-mannose/L-galactose pathway, which is a most important source of ascorbate. Ascorbate plays a major role in cellular ROS-scavenging activity. It also influences many stress responsive enzyme activities through synergetic action with the other antioxidants such as glutathione and α-tocopherol and reduces the oxidative damage to cells. Recent studies suggest its role in photosynthesis as an alternative electron donor to PSII under abiotic stress conditions and play a major role in protection of photosynthetic apparatus in chloroplast by keeping the ROS activity under check.

Several ascorbate biosynthetic pathway transgenes have been introduced into plants through genetic engineering to elevate the ascorbate level. These transgenic plants also provided better stress tolerance to various abiotic stresses such as high light, low/high temperature, ozone, salinity and drought. The role of ascorbate goes beyond that of simply an antioxidant given its apparent
involvement in a complex signalling pathway that mediates responses to biotic and abiotic stresses as it is a co-factor for plant hormones such as ABA, GA and ethylene (Conklin and Barth 2004). However, role of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV surveyed the literature and drafted the manuscript. PSW provided guidelines for the review, modified and prepared the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This paper resulted from the Konkuk University research support program.

Received: 8 October 2012 Accepted: 16 December 2013
Published: 9 April 2014

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV surveyed the literature and drafted the manuscript. PSW provided guidelines for the review, modified and prepared the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This paper resulted from the Konkuk University research support program.

Received: 8 October 2012 Accepted: 16 December 2013
Published: 9 April 2014

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV surveyed the literature and drafted the manuscript. PSW provided guidelines for the review, modified and prepared the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This paper resulted from the Konkuk University research support program.

Received: 8 October 2012 Accepted: 16 December 2013
Published: 9 April 2014

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV surveyed the literature and drafted the manuscript. PSW provided guidelines for the review, modified and prepared the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This paper resulted from the Konkuk University research support program.

Received: 8 October 2012 Accepted: 16 December 2013
Published: 9 April 2014

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV surveyed the literature and drafted the manuscript. PSW provided guidelines for the review, modified and prepared the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This paper resulted from the Konkuk University research support program.

Received: 8 October 2012 Accepted: 16 December 2013
Published: 9 April 2014

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV surveyed the literature and drafted the manuscript. PSW provided guidelines for the review, modified and prepared the final version of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This paper resulted from the Konkuk University research support program.

Received: 8 October 2012 Accepted: 16 December 2013
Published: 9 April 2014

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate in signal transduction needs to be clarified further, particularly with respect to drought tolerance provided by altered stomatal movements.

Abbreviations
ABA: Abscisic acid; AGC: The ascorbate-glutathione cycle; AAO: Ascorbate oxidase; APX: Ascorbate peroxidase; DHA: Dehydroascorbate; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GalUR: D-galacturonic acid reductase; GLUase: L-gulono-1,4-lactone oxidase; GR: Glutathione reductase; GSH: Glutathione; GSSG: Glutathione disulfide; MDAR: Monodehydroascorbate reductase; MDHA: Monodehydroascorbate; MIOX: Myoinositol oxygenase; L-GalLDH: L-galactono-1,4-lactone dehydrogenase; OEC: Oxygen evolving complex; PSI: Photosystem I; PSII: Photosystem II; SOD: Superoxide dismutase; ROS: Reactive oxygen species; VDE: Violaxanthin de-epoxidase; WWC: The water-water cycle.
Dar J, Vandenabeele S, Vanrooy E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

Davie MW, Gilot C, Persiau G, Østergaard J, Han Y, Bauw GC, Van Montagu MC (1999) Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol 121:525–543

Davie MW, Van Montagu M, Inze D, Sammartin M, Kanellis A, Smirnoff N, Banerjee III, Stanis JI, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

Davletova S, Rzhykov L, Liang H, Sherggqiang Z, Oliver DJ, Coutu J, Shulava V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:266–281

De Leonardi S, De Lorenzo G, Bonaccorso G, Dieroppp S (1995) A specific ascorbate free radical reductase isozyme participates in the regeneration of ascorbate for scavenging toxic oxygen species in potato tuber mitochondria. Plant Physiol 109:847–851

Demming-Adams B, Adams WW III (1996) Xanthophyll cycle and light stress in Arabidopsis. Plant Physiol 112:816–823

Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z (2012a) OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L). Plant Sci 196:143–151

Duan M, Ma NN, Li D, Deng YS, Kong FY, Lu W, Meng QW (2011b) Anti-oxidative mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45

Eltaeye AB, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to oxygen and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

Eltaeye AB, Yamamoto S, Habara MEE, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AhDHAR showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61:13–20

Enders S, Tenhaken R (2009) Myo-inositol oxygenase controls the level of myo-inositol in Arabidopsis, but does not increase ascorbic acid production. Plant J 149:1042–1049

Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophyll cycle regulation, and components. Physiol Plant 100:806–816

Faike M, Burgos L, Faize L, Piqureras A, Nicolae E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

Feng Z, Peng J, Nochi I, Kobayashi K, Yamakawa T, Zhu J (2010) Altered stomatal responses. Cell Mol Life Sci 57:779–800

Goq Z, Zhang L (2008) UltraViolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148

Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated –L-ascorbate synthesis. Plant J 30:541–553

Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

Godde D, Buchholt J (1992) Effect of long-term fumigation with ozone on the turnover of the D1 reaction centre polypeptide of photosystem II in spruce (Picea abies). Physiol Plant 86:568–574

Goo YM, Hyun JC, Kim TW, Lee CH, Ahn MJ, Bae SC, Choi KJ, Chun JA, Chung CH, Lee SW (2008) Expression characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J Plant Biol 51:35–41

Green MA, Fran S (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of D-O-oxalyl-L-threonate. Nature 435:83–87

Guan Q, Takano T, Liu S (2012) Genetic transformation and analysis of rice OsAP2 gene in Medicago sativa. PLoS One 7:e41233

Guiss E, B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (O-K-J-P) in heat stressed leaves. Arch Sci Gen'ee 48:147–160

Gurunani MA, Upadhyaya CR, Strasser RJ, Wong YF, Park SW (2012) Physiological and biochemical responses of transgenic potato plants with altered expression of P35S manganese stabilizing protein. Plant Physiol Biochem 58:182–194

Hancock RD, McRae D, Haute S, Viola R (2003) Synthesis of L-ascorbic acid in the phloem. BMC Biol 3:7

Hancock RD, Wilson FG, CCTV, S B, Brennan RM, Viola R (2007) L-ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the l-ascorbate pathway. Funct Plant Biol 34:1080–1091

Hasegawa V, Chm-Harncl CJ, Kulkarni SS, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbic acid levels in tomato. Plant Physiol Biochem 49:1244–1249

Helena M, de Carvalho C (2008) Drought stress and reactive oxygen species. Production, scavenging and signalling. Plant Signal. Behav 3(15):165–169

Hemavathi CP, Upadhyaya KE, Young N, Akula HS, Kim JH, Heung WH, Oh AC, Reddy SC, Chun DHK, Park SW (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

Hemavathi CP, Upadhyaya KE, Young N, Akula KE, Young SC, Chun DHK, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

Hemavathi CP, Upadhyaya N, Akula HS, Kim JH, Jeon MH, Oh SC, Chun DHK, Park SW (2011) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing D-galacturonicacid reductase gene in response to various abiotic stresses. Mol Breed 28:105–115

Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ascorbate peroxidase 8 in roots of Oryza sativa L. seedlings in response to ionic stress. J Exp Bot 58:2723–2728

Horeman N, Asard H, Van Gestelen P, Caubergs RJ (1998) Facilitated diffusion drives transport of oxidised ascorbate molecules into purified plasma membrane vesicles of Phaseolus vulgaris. Physiol Plant 104:783–789

Horeman N, Foye CH, Asard H (2000a) Transport and action of ascorbate at the plasma membrane. Trends Plant Sci 5:263–267

Horeman N, Foye CH, Potters G, Assard H (2000b) Ascorbate function and associated transport systems in plants. Plant Physiol Biochem 38:511–540

Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate–deficient Arabidopsis mutant. J Exp Bot 56:3041–3049

Huang GJ, Chen HJ, Chang YS, Lu TL, Lin YH (2008) Sweet potato storage root thiosulfinic h2 with both dehydroascorbate reductase and monodehydroascorbate reductase activities. Bot Stud 49:1–7

Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

Imai T, Kaita S, Shiratori G, Hattori M, Nunome T, Oka K, Hiral M (1998) L-galactono-1,4-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:355–358

Imai T, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

Inoshita T, Sakai K, Takeda T, Shigeoka S (1995) Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett 367:28–32

Ishikawa T, Sakai K, Yoshimura T, Takeda T, Shigeoka S (1991) cDNA cloning and expression of rice (Oryza sativa L.) dehydroascorbate reductase. FEBS Lett 293:293–298

Ishikawa T, Sakai K, Yamakawa T, Shibahara T, Inanaga S, Tanaka K (1996) cDNAs encoding L-ascorbate peroxidase and Cu/Zn superoxide dismutase from rice (Oryza sativa L.). FEBS Lett 384:289–293
Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T, Shigeoka S (1998) Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol 39:23–34

Ishikawa T, Morimoto Y, Madhusudhan R, Sawa Y, Shibata H, Yabuta Y, Nishikawa A, Shigeoka S (2005) Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells. Plant Cell Physiol 46:104–127

Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

Kangasjärvi S, Lepistö A, Hännikäinen K, Pippola M, Luomalainen EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoidbound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285

Kavitha K, Georg S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:121–132

Keller R, Renz FSA, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

Kim DJ, Lee JS (2007) Current theories for mechanisms of stomatal opening. In: Bell JNB, Treshow M (eds) Air Pollution and Plant Life. John Wiley & Sons Ltd., Chichester, pp 69–88

Lorenz A, Chevone BI, Mendes P, Nessler CL (2004) Myoinositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

Liu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:900–917

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen species associated with plant growth and seed set. Acta Physiol Plant 33:1353–1363

Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–980

Naim J, Hideg E, Asada K (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch Biochem Biophys 429:71–80

Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, pyrophosphorylase reduces the ascorbate content in transgenic plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–357

Laing WA, Bulley S, Wright M, Cooney J, Dennis B, Barracough D, MacRae E (2004a) A highly specific L-ascorbate-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci U S A 101:16976–16981

Laing WA, Freanson N, Bulley S, MacRae E (2004b) Kiwifruit l-ascorbate dehydrogenase: molecular, biochemical and physiological aspects of the enzyme. Funct Plant Biol 31:1015–1025

Lee EH (1991) Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress. Chronobiol Int 8:93–102

Lim MY, Pulla RK, Park JM, Han CH, Jeong BR (2012) Over-expression of L-gulono-γ-lactone oxidase (GLOase) gene leads to ascobic acid accumulation with enhanced abiotic stress tolerance in tobacco. In Vitro Cell Dev Biol Plant 48:453–461

Lin KH, Lo HF, Lin CH, Chan MT (2007) Cloning and expression analysis of ascorbate peroxidase gene from eggplant under flooding stress. Bot Stud 48:25–34

Lüster CL, Clarke SG (2008) L-ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

Liu YH, Yu L, Wang RZ (2011) Level of ascorbic acid in transgenic rice for l-galactono-1,4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set. Acta Physiol Plant 33:1353–1363

Mittler R, Renz FSA, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

Kimbrough R (2010) Level of ascorbic acid in transgenic rice for l-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascobic acid accumulation and abiotic stress tolerance. Acta Physiol Plant, doi:10.1007/s11738-012-1204-7

Mittler R, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976

Mao J, Hideg E, Asada K (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch Biochem Biophys 429:71–80

Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate-deficient mutants of Arabidopsis thaliana (APX-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytol 191:234–244

Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis thaliana (APX-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytol 191:234–244

Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis thaliana (APX-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytol 191:234–244

Müller-Moulé P (2008) An expression analysis of the ascorbate biosynthesis enzyme VTC2. Trends Plant Sci 13:567–573

Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–987

Müller-Moulé P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133:748–760

Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photodamaging stress. Plant Physiol 134:1163–1172

Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48
Munné-Bosch S, Alegre L (2002) Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Lett. 524:145–148

Najami N, Janda T, Barilah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genomics 279:171–182

Nage S, Zhu S, Fan G, Ramensk K, Basie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

Narendra S, Venkataramani S, Shen GX, Wang J, Papasula V, Lin Y, Komyedev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3303–3304

Neubauer C, Yamamoto HY (1992) Mehler–peroxidase reaction mediates zeaxanthin formation and zeaxanthin–related fluorescence quenching in intact chloroplasts. Plant Physiol 99:1534–1561

Neubauer C, Yamamoto HY (1993) The role of ascorbate in the related ascorbate, peroxidase, violaxanthin de-epoxidase and non-photochemical fluorescence–quenching activities. In: Yamamoto HY, Smith CM (eds) Photosynthetic Responses to the Environment. American Society of Plant Physiologists Rockville, Maryland, pp 166–171

Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009)Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol. 149:1126–1137

Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: a cytosolic ascorbate peroxidase cDNA from cell cultures of sweet potato Callunus sativa L. Plant Physiol 116:129–132

Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–383

Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen E, Wang D (2007) Molecular and functional analysis of phosphomannomutase (PMA) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

Qin A, Sh Q, Yu X (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

Radzio JA, Lawrence A, Chevillot BI, Nessler CL (2003) L-Gulono 1,4-lactone oxidation expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53:837–844

Rosa SB, Cavernaz A, Teixeira FK, Lazzarotto F, Silva JA, Ferreira-Silva SL, Abreu-Neto J, Margis R, Margis-Pinheiro M (2010) Cytosolic APX knockdown indicates an ambiguous redox response in rice. Phytochemistry 71:548–558

Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Bogon BJ (2006) A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281

Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco active site in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

Sanmartín M, Drogoudi PA, Lyons T, Patraki I, Barnes J, Kennell AK (2003) Over-expression of ascorbate oxide in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Plant Cell Physiol 44:192–200

Sano S, Tao S, Endo Y, Inaba T, Hossian MA, Miyake C, Matsuo A, Aoki H, Asada K, Saito K (2003) Purification and CDNA cloning of chloroplastic monodehydroascorbate reductase from spinach. Biosci Biotechnol Biochem 67:762–772

Sarwar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Over-expression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63

Sato Y, Masuda Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene. OXrPAx Plant Cell Rep 30:399–406

Shimakaki T, Miyake Y, Yokota A (2003) Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts. Eur J Biochem. 270:921–928

Siendones E, Gonzalez-Reyes JA, Santos-Ocana C, Navas P, Cordoba F (1999) Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol 120:907–912

Simpson GL, Onwerth BI (2000) The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta 1501:12–24

Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci 355:1455–1464

Smirnoff N (2001) L–Ascorbic acid biosynthesis. Vitam Horm 61:241–266

Smirnoff N, Running JA, Gatzek S (2004) Ascorbate Biosynthesis: A Diversity of Pathways. In: Asard H, May JM, Smirnoff N (eds) Vitamin C. Bios Scientific Publishers, Oxford, UK, Functions and Biochemistry in Animals and Plants, pp 7–29

Stevens R, Page D, Goubbe B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010a) Over-expression of SfAPX in tobacco improves seed germination and increases early seedling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene. OXrPAx Plant Cell Rep 30:399–406

Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Involvement of superoxide radical in signal transduction regulating stomatal movements. Biochem Biophys Res Commun 395:30–37
Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic tomato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

Tenedo L, Hancock RD, Albimeno S, Haupt S, Viola R (2004) Long-distance transport of D-ascorbic acid in potato. BMC Plant Biol 171.1–16

Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro MJ (2004) Analysis of the molecular evolutional history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770

Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbate oxidase-null transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone–1,4-lactone dehydrogenase. Plant Bio 20:854–863

Toralbinejad, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTl4 is a bifunctional enzyme that affects myo-inositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

Torsethaugen C, Pitcher LH, Rinskils BA, Pell EJ (1997) Overproduction of Ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537

Torsethaugen C, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K1 channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582

Tóth SZ, Putthar JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate–dependent electron transport in leaves with inactive oxygen–evolving complexes. Plant Physiol 149:1568–1578

Tóth SZ, Nagy V, Putthar JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photooinactivation in heat-stressed leaves. Plant Physiol 156:382–392

Trost P, Berco A, Spalna F, Spona G, Marzadri B, Asad H, Pupillo P (2000) Purification of cytochrome b561 from bean hypocotyl plasma membrane. Evidence for the presence of two home centers. Biochim Biophys Acta 1468:1–5

Tai YC, Hong CY, Liu LF, Kao CH (2004) Relative importance of Na+ and Cl– in NaCl–induced antioxidative systems in roots of rice seedlings. Physiol Plant 122:864–94

Tai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:299–301

Tsugakuchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang YX, Brubaker RF, Yabuta Y, Mieda T, Takahashi J, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

Yaakub Y, Mietz D, Popovic A, Hendriksen H, Tóth SZ, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of Arabidopsis. J Exp Bot 58:2661–2671

Yamamoto A, Bhuyan MNH, Waditee R, Tanaka Y, Oba MEK, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salinity tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

Yamashita A, Nilo N, Popovic A, Manita T, Takenaka A, Aminaka R, Yamamoto Y, Yamamoto Y (2008) Quality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 283:28380–28391

Yin L, Wang S, Eltayeb AE, Uddin M, Yamamoto Y, Tsui W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Plant Cell 21:1694–2160

Yoon HS, Lee H, Lee IA, Kim KY, Jo J (2004) Molecular cloning of the monodehydroascorbate reductase gene from Brassica rapa and analysis of its mRNA level in response to oxidative stress. Biochim Biophys Acta 169181:1–18

Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kanada H, Inoue Y, Sag H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

Yoshimura A, Miyao K, Gobet A, Takeda K, Kanaocho H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytoplasm. Plant J 37:21–33

Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2003) Hydrogen peroxide is involved in ascorbic acid–induced stomatal closure in Vicia faba. Plant Physiol 126:1388–1448

Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant L–ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27:173–182

Zhang W, Lawrence A, Gruszewski HA, Chevone BI, Nestler CL (2009) AMR, an Arabidopsis gene that coordinately and negatively regulates the man/no-lactose ascorbic acid biosynthetic genes, is required for salt tolerance in Arabidopsis thaliana. Plant Physiol 149:942–950

Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Hydroxylation of L-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942

Wang HS, Yu C, Zhu Z, Yu XC (2011) Overexpression in tobacco of a tomato GMPlase gene improves tolerance to both low and high temperature stress by enhancing antioxidant capacity. Plant Cell Rep 30:1029–1040

Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-D-mannose 3′,5′-epimerase from rice. Physiochemistry 67:338–346

Wevar Oller AL, Agostini E, Miklas SR, Medina MI (2009) In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: A precursor feeding study. Plant Sci 172:28–34

Wheeler CL, Jones MA, Smirnoff N (1998) The biosynthesis pathway of vitamin C in higher plants. Nature 393:365–369

Wolukka BA, Van Montagu M (2003) GDP-D-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

Wolukka BA, Goossens A, Izé D (2005) Methyl ascorbate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56:2527–2538

Xu WF, Shi WM, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley, Pedioperis 18:486–495

Yabuta M, Tomoki T, Yoshimura A, Tanaka Y, Ischerche T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

Yabuta M, Mieda T, Popovic A, Makamura A, Morita T, Takamori M, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of Arabidopsis. J Exp Bot 58:2661–2671

Yamamoto A, Bhuyan MNH, Waditee R, Tanaka Y, Obek MEK, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

Venkatesh and Park: Plantago major – epimerase forms GDP-L-D-mannose 3′,5′-epimerase from rice. Physiochemistry 67:338–346

Venkatesh and Park: Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies. 2014 55:38.