Supporting Information

Macrocyclic Donor–Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges
Kevin Bold, Matthias Stolte, Kazutaka Shoyama, Marco Holzapfel, Alexander Schmiedel, Christoph Lambert, and Frank Würthner*

anie_202113598_sm_miscellaneous_information.pdf
anie_202113598_sm_cif.zip
Table of Contents

Experimental Section ... S2
Synthetic Procedure ... S5
1H NMR Spectra Comparison .. S15
Single Crystal X-ray Analysis .. S16
DFT Calculations ... S18
Electrochemistry ... S21
Molecular Orbital DFT Calculations ... S22
Spectroscopy in CH$_2$Cl$_2$.. S22
Spectroscopy in Cyclohexane ... S23
Transient Absorption ... S23
NMR Spectra ... S25
Mass Spectra ... S35
Cartesian Coordinates Received from DFT Calculations .. S40
Supporting References .. S53
Experimental Section

General Methods

All reactions were performed in standard glass equipment. All used chemicals were purchased from commercial suppliers (*abcr/carbolution chemicals, Acros Organics, Alfa Aesar, Merck, Sigma Aldrich, TCI and VWR*) and applied without further purification. CH$_2$Cl$_2$, THF and toluene were purified and dried with the commercial purification system PureSolv MD from *Innovative Technology*. Preparative column chromatography was performed with self-packed glass columns of several sizes filled with silica gel 60 M (particle size 0.040-0.063 mm, *Merck*). The solvents CH$_2$Cl$_2$ and methanol were freshly distilled prior to use.

Flash column chromatography was performed on a PuriFLash XS-420 from *Interchim* using columns of the sizes 0012, 0025 and 0040. Silica gel deactivation was achieved by flushing the columns with a solvent mixture of cyclohexane/trimethylamine = 20:1 for two column volumes and subsequent purging with pure cyclohexane for five to ten column volumes prior to the actual purification method.

High-resolution MALDI-TOF mass spectra were measured with an ultrafleXtreme mass spectrometer from *Bruker Daltonics GmbH* using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as a matrix material. High-resolution ESI-TOF mass spectroscopy was carried out using a microTOF focus instrument from *Bruker Daltonics GmbH*. For melting point measurements an *Olympus BX41* polarisation microscope with a temperature regulator TP84 from *Linkam Scientific* was used. The reported values are uncorrected. The purification by gel permeation chromatography was performed on a *Shimadzu* instrument (LC-20AD Prominence Pump, SPD-MA20A Prominence Diode Array Detector) with two preparative columns (*Japan Analytical Industries Co., Ltd*). Ethanol stabilized CHCl$_3$ (Chromasolv®, *Sigma Aldrich*) was used as eluent.

1H and 13C NMR spectra were recorded on *Bruker Avance III HD 400* or *600 MHz instruments* using deuterated solvents. 13C NMR spectra are broad band proton decoupled. Chemical shifts (δ) are listed in parts per million (ppm). Coupling constants (J) are stated in Hertz (Hz). The spectra are referenced internally to residual proton
solvent resonances or natural abundance carbon resonances. Multiplicities are reported as s = singlet, brs = broad singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, q = quartet, quin = quintet, sex = sextet, m = multiplet with the chemical shift in the center of the signal.

UV/Vis absorption spectra were recorded for solutions in cuvettes (SUPRASIL®, Hellma® Analytics) on a Jasco V-670 or V-770 spectrometer and fluorescence spectra on a FLS980-D2D2-ST fluorescence spectrometer (Edinburgh Instruments) and were corrected against the photomultiplier sensitivity and the lamp intensity.

CV and DPV experiments were carried out with a BASi Epsilon potentiostat connected to a microcell apparatus from rhd instruments involving a 1.6 mL sample container, a platinum counter- and pseudo-reference electrode as well as a glassy carbon working electrode.

Single crystal X-ray diffraction data were collected at the P11 beamline at DESY. The diffraction data were collected by a single 360° scan ϕ sweep at 100 K. The diffraction data were indexed, integrated, and scaled using the XDS program package.[S1] In order to compensate low completeness due to single-axis measurement, two data sets were merged using the XPREP program from Bruker.[S2] The structures were solved using SHELXT, expanded with Fourier techniques and refined using the SHELX software package.[S3] Hydrogen atoms were assigned at idealized positions and were included in the calculation of structure factors. All non-hydrogen atoms in the major disorder part of main residues were refined anisotropically. In the crystal structures some of the side chains were disordered and modelled with restraints and constraints using standard SHELX commands RIGU, DELU, ISOR, SADI, SAME, DFIX, DANG, FLAT, SIMU, CHIV and EADP. The solvent molecules in the solvent accessible voids also had disorder and were restrained and/or constrained by a similar set of instructions.

The transient absorption spectrometer setup is based on a femtosecond laser "Solstice" from Newport-Spectra Physics with a fundamental wavelength of 800 nm which provides 100 fs long pulses with a repetition rate of 1 kHz. This laser source was used to pump a NOPA to generate the excitation pulses at 530 nm with a pulse length of around 50 fs. The FWHM-bandwidth of the excitation pulse was 8.5 nm and the pulse energy was set to 20 nJ ((5T)$_2$-PBI) and 15 nJ (5T-PBI). Wire grid polarizers
were used to set the pump pulse polarization to 54.7° in relation to the horizontal polarized white light continuum to achieve magic angle conditions. Another part of the laser beam was guided to a TOPAS-C from Light-Conversion to obtain a wavelength from 1260 nm \((5T)_2\text{-PBI}\) and 1000 nm \(5T\text{-PBI}\) which was used to generate the probing white light continuum within a moving CaF\(_2\) \((5T)_2\text{-PBI}\) or sapphire crystal \(5T\text{-PBI}\). To achieve the probe range from 450 nm to 915 nm a dielectrically coated quartz glass short pass filter with 950 nm, thickness 3 mm, from Edmund-Optics were used. The sample was dissolved in spectroscopic grade dichloromethane from ACROS organics and the solution was filled in a quartz glass cuvette with an optical path length of 0.2 mm \((5T)_2\text{-PBI}\) and 2 mm \(5T\text{-PBI}\). The optical density at the excitation wavelength was set to 0.055 for \((5T)_2\text{-PBI}\) and 0.50 for \(5T\text{-PBI}\). The IRF was ca. 80 fs as measured for stimulated Raman signals of the solvent. Further details on this spectrometer setup are provided in ref\(^{[S4]}\).

Spectroelectrochemical experiments were performed on a Cary 5000 UV/Vis/NIR Spectrometer from Agilent in combination with a sample compartment consisting of a custom-made cylindrical PTFE cell with a sapphire window and an adjustable three in one electrode (6 mm platinum disc working electrode, 1 mm platinum counter and Ag/AgCl leak free reference electrode) in reflection mode. The optical path was adjusted to 100 μm with a micrometer screw. Potentials were applied with a reference potentiostat PAR 283 from Princeton Applied Research. Upon applying a new potential to the solution an equilibration time of 20 seconds between each measurement was employed.

DFT and TD-DFT calculations were performed by Gaussian 16\(^{[S5]}\) using B3LYP/6-31G(d) level of theory.

Stannylated precursor compound \(10\)\(^{[S6]}\) and Ref-PBI\(^{[S7]}\) were synthesized according to literature known procedures. The synthesis of \(5T\) was recently reported.\(^{[S8]}\)
Synthetic Procedure

4-Hexyl-2-(thiophen-2-yl)aniline (2)

A solution of 2-bromo-4-hexylanil ine (3.71 g, 14.5 mmol, 1.00 eq.), 2-thienylboronic acid (5.00 g, 39.1 mmol, 2.70 eq.) and Pd(PPh₃)₂Cl₂ (1.52 g, 2.17 mmol, 15 mol%) in degassed dioxane (50 mL) was stirred for 30 min at room temperature. Subsequently, 20 mL of aqueous K₂CO₃ (1 M) was added and the reaction mixture was refluxed overnight. The suspension was allowed to cool down to room temperature and water (20 mL) was added. The aqueous layer was extracted three times with CH₂Cl₂ (50 mL each) and the combined organic fractions were washed with brine, dried over MgSO₄ and the solvent was removed under reduced pressure. The crude compound was purified by column chromatography (CH₂Cl₂/n-hexane = 1:1) to give compound 2.

Yield: 3.56 g, 13.7 mmol, 95%, yellow oil.

¹H NMR (400 MHz, CD₂Cl₂): δ/ppm = 7.35 (dd, ³J = 5.2 Hz, ⁴J = 1.2 Hz, 1H), 7.20 (dd, ³J = 3.5 Hz, ⁴J = 1.2 Hz, 1H), 7.12 (q, ³J = 3.6 Hz, 1H), 7.08 (dd, ⁴J = 2.1 Hz, ⁵J = 0.4 Hz, 1H), 6.95 (dd, ³J = 8.1 Hz, ⁴J = 2.0 Hz, 1H), 6.69 (d, ³J = 8.1 Hz, 1H), 3.92 (brs, 2H), 2.50 (t, ³J = 7.8 Hz, 2H), 1.60-1.51 (m, 2H), 1.38 - 1.26 (m, 6H), 0.88 (t, ³J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 141.8, 141.5, 133.3, 130.8, 129.1, 127.6, 125.8, 125.2, 120.0, 116.1, 35.1, 31.9, 31.8, 29.1, 22.8, 14.3.

HRMS (ESI-TOF, positive mode, MeCN/CHCl₃ 1:1): m/z calculated for C₁₆H₂₂NS [M+H]⁺: 260.1467, found: 260.1465.

Rf: 0.63 using CH₂Cl₂/n-hexane = 1:1 as eluent.
4-Hexyl-2,6-di(thiophen-2-yl)aniline (3)

A solution of 4-hexylaniline (2.47 g, 7.38 mmol, 1.00 eq.), 2-thienyl boronic acid (2.83 g, 22.1 mmol, 3.00 eq.) and Pd(PPh_3)_2Cl_2 (777 mg, 1.11 mmol, 15 mol%) in degassed dioxane (40 mL) was stirred for 30 min at room temperature. Subsequently, 20 mL of aqueous K_2CO_3 (1 M) was added and the reaction mixture was heated to reflux for three days. The suspension was allowed to cool down to room temperature and water (20 mL) was added. The aqueous layer was extracted three times with CH_2Cl_2 (50 mL each) and the combined organic fractions were washed with brine, dried over MgSO_4 and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (gradient of n-hexane/CH_2Cl_2 = 4:1 to 3:1) to give the title compound 3.

Yield: 1.93 g, 5.67 mmol, 77%, brown oil.

1H NMR (400 MHz, CD_2Cl_2): δ/ppm = 7.38 (dd, 3J = 5.2 Hz, 4J = 1.2 Hz, 2H), 7.24 (dd, 3J = 3.5 Hz, 4J = 1.2 Hz, 2H), 7.14 (dd, 3J = 5.2 Hz, 4J = 3.5 Hz, 2H), 7.08 (s, 2H), 4.28 (brs, 2H), 2.52 (t, 3J = 7.6 Hz, 2H), 1.69 (quin, 3J = 7.3 Hz, 2H), 1.40 - 1.25 (m, 6H), 0.88 (t, 3J = 6.9 Hz, 3H).

13C NMR (101 MHz, CDCl_3): δ/ppm = 141.3, 140.0, 132.5, 131.0, 127.7, 126.3, 125.5, 120.6, 35.0, 31.9, 31.8, 29.2, 22.8, 14.3.

HRMS (ESI-TOF, positive mode, MeCN/CHCl_3 1:1): m/z calculated for C_{20}H_{24}NS_2 [M+H]^+: 342.1345, found: 342.1348.

Rf: 0.46 using CH_2Cl_2/n-hexane = 1:1 as eluent.
N,N'-Di(4-hexyl-2-(thiophen-2-yl)phenyl)-3,4:9,10-tetracarboxylic acid bisimide (4)

A suspension of perylene-3,4:9,10-tetracarboxylic dianhydride (300 mg, 765 μmol, 1.00 eq.), aniline derivate 2 (794 mg, 3.06 mmol, 4.00 eq.) and Zn(OAc)$_2$ (42.0 g, 229 μmol, 0.30 eq) in imidazole (3.0 g, 44.1 mmol) was stirred for 4 h at 120 °C under microwave irradiation. The crude solid was collected with CH$_2$Cl$_2$, adsorbed on celite and the solvent was removed under reduced pressure. The crude product-celite mixture was purified by flash column chromatography (gradient of CH$_2$Cl$_2$/n-hexane = 0:1 to 1:0) to give compound 4.

Yield: 492 mg, 562 μmol, 74%, red solid.

1H NMR (400 MHz, CD$_2$Cl$_2$): δ/ppm = 8.73 (d, 3J = 8.0 Hz, 4H), 8.69 (d, 3J = 8.0 Hz, 4H), 7.60 (d, 4J = 2.0 Hz, 2H), 7.38 (dd, 3J = 8.0 Hz, 4J = 2.1 Hz, 2H), 7.26 (d, 3J = 7.9 Hz, 2H), 7.15 (dd, 3J = 3.6 Hz, 4J = 1.2 Hz, 2H), 7.12 (dd, 3J = 5.1 Hz, 4J = 1.2 Hz, 2H), 6.90 (q, 3J = 3.6 Hz, 2H), 2.77 (t, 3J = 7.6 Hz, 4H), 1.76 (quin, 3J = 7.5 Hz, 4H), 1.41 - 1.34 (m, 12H), 0.93 (t, 3J = 7.0 Hz, 6H).

13C NMR (101 MHz, CDCl$_3$): δ/ppm = 163.9, 144.6, 139.7, 135.1, 133.2, 132.1, 131.0, 130.2, 129.6, 129.3, 127.3, 126.1, 126.0, 123.5, 123.4, 35.9, 31.9, 31.3, 29.3, 22.8, 14.3.

HRMS (ESI-TOF, positive mode, MeCN/CHCl$_3$ 1:1): m/z calculated for C$_{56}$H$_{46}$N$_2$NaO$_4$S$_2$ [M+Na]$^+$: 897.2791, found: 897.2736.

M.p.: >300 °C.

R$_f$: 0.32 using CH$_2$Cl$_2$ as eluent.
N,N'-Tetra(4-hexyl-2-(thiophen-2-yl)phenyl)-3,4:9,10-tetracarboxylic acid bisimide (5)

A suspension of perylene-3,4:9,10-tetracarboxylic dianhydride (50.0 mg, 127 μmol, 1.00 eq.), aniline derivate 3 (348 mg, 1.02 mmol, 8.00 eq.) and Zn(OAc)_{2}·2H_{2}O (42.0 mg, 229 μmol, 1.30 eq) in imidazole (600 mg, 8.81 mmol) was stirred for 14 h at 135 °C under microwave irradiation. The crude solid was collected with CH_{2}Cl_{2}, ultrasonicated, adsorbed on celite and the solvent was removed under reduced pressure. The crude product-celite mixture was purified by flash column chromatography (gradient of CH_{2}Cl_{2}/n-hexane = 1:1, CH_{2}Cl_{2}) to give compound 5.

Yield: 14.6 mg, 14.1 μmol, 11%, red solid.

1H NMR (400 MHz, CD_{2}Cl_{2}): δ/ppm = 8.57 (d, 3J = 8.1 Hz, 4H), 8.69 (d, 3J = 8.1 Hz, 4H), 7.55 (s, 4H), 7.13 (dd, 3J = 3.6 Hz, 4J = 1.1 Hz, 8H), 6.89 (dd, 3J = 3.6 Hz, 4H), 2.80 (t, 3J = 7.8 Hz, 4H), 1.80 (quin, 3J = 7.1 Hz, 4H), 1.50 - 1.35 (m, 12H), 0.93 (t, 3J = 7.0 Hz, 6H).

13C NMR (101 MHz, CD_{2}Cl_{2}): δ/ppm = 164.0, 144.9, 139.8, 135.0, 134.6, 132.0, 131.4, 130.0, 129.0, 127.5, 127.0, 126.8, 126.5, 123.5, 123.2, 36.0, 32.1, 31.6, 29.6, 23.0, 14.3.

HRMS (MALDI-TOF, positive mode, DCTB in CHCl_{3}): m/z calculated for C_{64}H_{50}N_{2}O_{4}S_{4} [M]^+: 1038.2653, found: 1038.2648.

M.p.: >300 °C.

Rf: 0.40 using CH_{2}Cl_{2} as eluent.
To a solution of perylene bisimide 4 (480 mg, 549 μmol, 1.00 eq.) in dry THF (100 mL) n-butyllithium (5.14 mL, 1.6 M in n-hexane, 15.0 eq.) was added dropwise under stirring at room temperature and the solution was further stirred for 2 h. Subsequently, Sn(C₄H₉)₃Cl (2.53 mL, 9.32 mmol, 17.0 eq.) was added dropwise at room temperature and the solution was further stirred overnight. The reaction was quenched with water (50 mL), extracted three times with CH₂Cl₂ (50 mL each), and the combined organic layers were washed with brine, dried over MgSO₄ and the solvent was removed under reduced pressure. The crude residue was purified via flash column chromatography (deactivated silica gel, gradient of CH₂Cl₂/n-hexane = 0:1 to 1:0) to give the desired compound 6.

Yield: 355 mg, 244 μmol, 45%, deep red solid.

¹H NMR (400 MHz, CD₂Cl₂): δ/ppm = 8.73 (d, ³J = 8.0 Hz, 4H), 8.69 (d, ³J = 8.0 Hz, 4H), 7.52 (d, ⁴J = 2.0 Hz, 2H), 7.38 (dd, ³J = 8.0 Hz, ⁴J = 2.1 Hz, 2H), 7.32 (d, ³J = 3.5 Hz, 2H), 1.77 (quin, ³J = 7.8 Hz, 4H), 1.42 - 1.35 (m, 12H), 1.04 (sex, ³J = 7.4 Hz, 12H), 0.93 (t, ³J = 7.0 Hz, 6H), 0.80 (t, ³J = 8.1 Hz, 12H), 0.64 (t, ³J = 7.4 Hz, 18H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 164.0, 145.3, 144.9, 138.4, 135.8, 135.1, 133.5, 131.8, 130.3 (2 signals), 130.0, 128.9, 127.4, 126.8, 123.8, 123.7, 36.1, 32.2, 31.7, 29.6, 29.0, 27.4, 23.1, 14.3, 13.6, 10.9.

HRMS (ESI-TOF, positive mode, MeCN/CHCl₃ 1:1): m/z calculated C₆₀H₆₈N₂NaO₄S₂Sn₂ [M+Na]⁺: 1477.4904, found: 1477.4821.

M.p.: 116-118 °C.

Rr: 0.55 using CH₂Cl₂ as eluent.
N,N'-Tetra(4-hexyl-2-(5-(tributylstannyl)thiophen-2-yl)phenyl)-3,4:9,10-tetracarboxylic acid bisimide (7)

To a solution of perylene bisimide 5 (108 mg, 104 μmol, 1.00 eq.) in dry THF (22 mL) n-butyllithium (1.30 mL, 1.6 M in n-hexane, 20.0 eq.) was added dropwise under stirring at room temperature and the solution was further stirred for 1 h. Subsequently, Sn(C$_4$H$_9$)$_3$Cl (676 μL, 2.49 mmol, 24.0 eq.) was added dropwise at room temperature and the solution was further stirred overnight. The reaction was quenched with water (15 mL), extracted three times with CH$_2$Cl$_2$ (50 mL each), and the combined organic layers were washed with brine, dried over MgSO$_4$ and the solvent was removed under reduced pressure. The crude residue was purified via flash column chromatography (deactivated silica gel, gradient of n-hexane/ CH$_2$Cl$_2$ = 1:0 to 1:1) to yield the desired compound 7.

Yield: 45.1 mg, 20.5 μmol, 20%, deep red solid.

1H NMR (400 MHz, CD$_2$Cl$_2$): δ/ppm = 8.65 (d, 3J = 7.9 Hz, 4H), 8.62 (d, 3J = 7.9 Hz, 4H), 7.55 (s, 4H), 7.27 (d, 3J = 3.4 Hz, 4H), 6.94 (d, 3J = 3.4 Hz, 4H), 2.79 (t, 3J = 7.7 Hz, 4H), 1.79 (quin, 3J = 7.2 Hz, 4H), 1.52-1.46 (m, 4H), 1.41-1.36 (m, 8H), 1.32 - 1.24 (m, 24H), 1.06 (sex, 3J = 7.4 Hz, 24H), 0.93 (t, 3J = 7.0 Hz, 6H), 0.82 (t, 3J = 8.1 Hz, 24H), 0.67 (t, 3J = 7.2 Hz, 36H).

13C NMR (150 MHz, CD$_2$Cl$_2$): δ/ppm = 164.2, 145.3, 144.8, 138.5, 135.7, 135.3, 134.8, 132.1, 130.2, 130.1, 128.1, 127.9, 127.0, 123.8, 123.6, 36.1, 32.2, 31.6, 29.7, 29.0, 27.4, 23.0, 14.3, 13.7, 11.0.

HRMS (MALDI-TOF, positive mode, DCTB in CHCl$_3$): m/z calculated C$_{112}$H$_{154}$N$_2$NaO$_4$S$_4$Sn$_4$ [M+Na]$^+$: 2221.6772, found: 2221.6771.

M.p.: 183-185 °C.

R: 0.73 using CH$_2$Cl$_2$/cyclohexane = 2:1 as eluent.
N,N'-Di(4-hexyl-2-(5-chloro(1,5-cyclooctadiene)platinum)thiophen-2-yl)phenyl)-3,4:9,10-tetracarboxylic acid bisimide (8)

A solution of 6 (50.0 mg, 34.4 μmol, 1.0 eq.) and Pt(COD)Cl$_2$ (28.3 mg, 75.5 μmol, 2.2 eq.) in degassed toluene (10 mL) was stirred for 2 h at 95 °C. The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (gradient of CH$_2$Cl$_2$/acetone = 1:0 to 20:1) to yield compound 8.

Yield: 31.0 mg, 20.0 μmol, 58%, deep red solid.

1H NMR (400 MHz, C$_2$D$_2$Cl$_4$): δ/ppm = 8.70 (brs, 8H), 7.59 (d, 3J = 1.9 Hz, 2H), 7.32 (dd, 3J = 1.9 Hz, 3J = 8.0 Hz, 2H), 7.24 (3J = 8.0 Hz), 7.08 (d, 3J = 3.7 Hz, 2H), 6.77 (d, 3J = 3.7 Hz, 2H), 5.60-5.52 (m, 4H), 4.96-4.89 (m, 4H), 2.75 (t, 3J = 7.7 Hz, 4H), 2.47-2.12 (m, 16H), 1.74 (quin, 3J = 7.3 Hz, 4H), 1.38-1.26 (m, 12H), 0.93 (t, 3J = 7.0 Hz, 6H).

13C NMR (101 MHz, C$_2$D$_2$Cl$_4$): δ/ppm = 163.6, 144.3, 141.1, 138.5, 134.7, 133.3, 131.9, 130.3, 129.7, 129.4, 129.2, 128.1, 126.3, 126.0, 123.2, 120.2, 112.9, 90.1, 35.7, 31.6, 31.5, 31.2, 30.8, 29.1, 28.3, 22.6, 14.2.

HRMS (MALDI-TOF, positive mode, DCTB in CHCl$_3$): m/z calculated for C$_{72}$H$_{68}$Cl$_2$N$_2$O$_4$Pt$_2$S$_4$ [M]$^+$: 1548.3293, found: 1548.3288.

M.p.: >300 °C.

Rf: 0.29 using CH$_2$Cl$_2$/acetone = 20:1 as eluent.
A solution of 7 (49.6 mg, 22.6 μmol, 1.0 eq.) and Pt(cod)Cl₂ (169 mg, 452 μmol, 20.0 eq.) in degassed toluene (25 mL) was stirred overnight at 80 °C. The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (gradient of CH₂Cl₂/MeOH = 1:0 to 99:1) to yield compound 9.

Yield: 44.4 mg, 217 μmol, 82%, deep red solid.

¹H NMR (400 MHz, C₂D₂Cl₄): \(\delta / \text{ppm} = 8.66 \) (brs, 8H), 7.48 (brs, 4H), 7.10 (brs, 4H), 6.77 (brs, 4H), 5.55 (brs, 8H), 4.85 (brs, 8H), 2.77-2.70 (m, 4H), 2.44-2.36 (m, 8H), 2.32-2.24 (m, 4H), 2.15-2.10 (m, 4H), 1.78-1.71 (m, 4H), 1.39-1.34 (m, 12H), 0.96-0.91 (m, 6H).

¹³C NMR (150 MHz, C₂D₂Cl₄): \(\delta / \text{ppm} = 163.7, 141.2, 138.4, 134.5, 134.2, 132.1, 130.2, 126.5, 123.4, 120.2, 116.7, 116.5, 116.3, 112.9, 100.3, 99.4, 90.0, 35.7, 31.5, 30.8, 29.6, 29.2, 28.3, 22.6, 14.2.

HRMS (MALDI-TOF, positive mode, DCTB in CHCl₃): \(m/z \) calculated C₉₆H₉₄Cl₄N₂O₄Pt₄S₄ [M]+: 2386.3441, found: 2386.3437.

M.p.: >300 °C.

Rf: 0.44 using CH₂Cl₂/MeOH = 20:1 as eluent.
To a stirred solution of 8 (31.0 mg, 20.0 μmol, 1.00 eq.) in degassed toluene (40 mL) was added dropwise the stannylated oligothiophene 10 (21.9 mg, 37.8 μmol, 1.10 eq.) in degassed toluene (1.0 mL) via a syringe pump over 15 h and the reaction mixture was stirred overnight at 75 °C. The solvent was removed in vacuo and the crude residue was washed with n-hexane. The crude product was redissolved in degassed CH₂Cl₂ (40 mL) and 1,1'-bis(diphenylphosphino)ferrocene (24.4 mg, 75.5 μmol, 2.20 eq.) was added. The solution was stirred for 6 h at room temperature. The solvent was removed in vacuo and the residue was dissolved in degassed m-xylene (40 mL) and stirred overnight at 120 °C. The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (CH₂Cl₂/cyclohexane = 1:1 to 1:0) and gel permeation chromatography (CHCl₃) to give the desired compound.

Yield: 7.71 mg, 5.99 μmol, 30%, red orange solid.

¹H NMR (600 MHz, CD₂Cl₂): δ/ppm = 8.70 (s, 8H), 7.79 (d, 4J = 1.8 Hz, 2H), 7.45 (d, 3J = 4.0 Hz, 2H), 7.36 (dd, 3J = 8.0 Hz, 4J = 1.8 Hz, 2H), 7.30 (d, 3J = 8.0 Hz, 2H), 7.19 (d, 3J = 4.0 Hz, 2H), 7.03 (s, 2H), 6.88 (s, 2H), 2.80 (t, 3J = 7.7 Hz, 4H), 2.58 (t, 3J = 7.9 Hz, 4H), 1.79 (quin, 3J = 7.6 Hz, 4H), 1.35-1.42 (m, 8H), 1.22-1.31 (m, 20H), 0.94 (t, 3J = 7.0 Hz, 6H), 0.83 (t, 3J = 7.0 Hz 6H).

¹³C NMR (150 MHz, CD₂Cl₂): δ/ppm = 164.2, 145.0, 141.5, 138.1, 137.8, 135.7, 135.5, 135.1, 132.2, 132.0, 130.7, 130.1, 129.5, 129.3, 129.2, 128.6, 127.7, 127.0, 126.9, 126.8, 124.1, 123.8, 123.6, 36.2, 32.2, 32.0, 31.7, 30.7, 29.6, 29.5, 23.1, 22.9, 14.3, 14.2.

HRMS (MALDI-TOF, positive mode, DCTB in CHCl₃): m/z calculated C₈₀H₇₄N₂O₄S₅ [M]+: 1286.4252, found: 1286.4247.

UV/Vis \(λ_{\text{max}}\) (ε\(\text{max}\)): CH₂Cl₂: 531 nm (64.8 × 10³ L mol⁻¹ cm⁻¹).

Fluorescence \(λ_{\text{max}}\) (λ\(\text{ex}\)): Cyclohexane: 528 nm (480 nm). \(Φ_{\text{f}}\) = < 0.1%.

Rf: 0.32 using CH₂Cl₂ as eluent.
To a stirred solution of 9 (44.4 mg, 18.5 μmol, 1.00 eq.) in degassed toluene (25 mL) was added dropwise the stannylated oligothiophene 10 (40.7 mg, 40.9 μmol, 2.20 eq.) in degassed toluene (1.0 mL) via a syringe pump over 15 h and the reaction mixture was stirred overnight at 75 °C. The solvent was removed in vacuo and the crude residue was washed with n-hexane. The crude product was redissolved in degassed CH2Cl2 (25 mL) and 1,1’-bis(diphenylphosphino)ferrocene (45.3 mg, 81.7 μmol, 4.40 eq.) was added. The solution was stirred for 6 h at room temperature. The solvent was removed in vacuo and the residue was dissolved in degassed m-xylene (25 mL) and stirred overnight at 120 °C. The solvent was removed under reduced pressure and the crude product was purified via flash column chromatography (cyclohexane / CH2Cl2 = 1:0 to 1:1) and gel permeation chromatography (CHCl3) to give the desired compound.

Yield: 1.26 mg, 676 nmol, 4%, red orange solid.

1H NMR (400 MHz, CD2Cl2): δ/ppm = 8.84 (d, 3J = 8.4 Hz, 4H), 8.74 (d, 3J = 7.9 Hz, 4H), 7.73 (s, 4H), 7.43 (d, 3J = 3.9 Hz, 4H), 7.20 (d, 3J = 3.9 Hz, 4H), 7.04 (s, 4H), 6.90 (s, 4H), 2.85 (t, 3J = 7.8 Hz, 4H), 2.60 (t, 3J = 7.6 Hz, 8H), 1.84 (quin, 3J = 7.3 Hz, 4H), 1.50-1.27 (m, 44H), 0.95 (t, 3J = 7.1 Hz, 6H), 0.88 (t, 3J = 6.7 Hz, 12H).

13C NMR (150 MHz, CD2Cl2): δ/ppm = 164.6, 145.1, 141.3, 138.3, 138.1, 135.9, 135.7, 134.0, 132.3, 130.3, 129.7, 129.2, 128.9, 127.2, 127.1, 126.5, 125.8, 124.5, 123.8, 123.7, 36.2, 32.2, 32.0, 31.6, 30.7, 30.1, 29.7, 29.5, 23.1, 23.0, 14.3, 14.2.

HRMS (MALDI-TOF, positive mode, DCTB in CHCl3): m/z calculated for C112H106N2O4S10 [M+H]+: 1862.5360, found: 1862.5354.

UV/Vis λmax (εmax): CH2Cl2: 380 nm (93.9 × 10³ L mol⁻¹ cm⁻¹).

Fluorescence λmax (λex): Cyclohexane: 528 nm (480 nm). Φf = <0.1%

Rf: 0.81 using CH2Cl2/cyclohexane = 2:1 as eluent.
Figure S1. Aromatic region of the 1H NMR spectra (400 MHz) of Ref-PBI, 5T, 5T-PBI and (5T)$_2$-PBI (from bottom to top) in CD$_2$Cl$_2$ at 298 K.
Single Crystal X-ray Analysis

Table S1. Crystal data and structure refinement for (5T)$_2$-PBI

Property	Value
CCDC Number	2102595
Empirical formula	C$_{120.64}$H$_{113.21}$Cl$_{1.44}$N$_2$O$_4$S$_{10}$
Formula weight	2026.55
Temperature	100(2) K
Wavelength	0.61992 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	
\(a \)	15.385(10) Å
\(\alpha \)	74.973(5)°
\(b \)	17.342(3) Å
\(\beta \)	89.82(2)°
\(c \)	31.216(5) Å
\(y \)	85.158(16)°
Volume	8014(5) Å\(^3\)
\(Z \)	3
Density (calculated)	1.260 mg/m\(^3\)
Absorption coefficient	0.203 mm\(^{-1}\)
\(F(000) \)	3202.4
Crystal size	0.100 x 0.100 x 0.100 mm\(^3\)
Theta range for data collection	0.589 to 27.653°
Index ranges	22 ≤ \(h \) ≤ 22, 25 ≤ \(k \) ≤ 24, 45 ≤ \(l \) ≤ 46
Reflections collected	264918
Independent reflections	43791 \([R_{\text{int}} = 0.0914]\)
Completeness to theta = 21.836°	98.8\%
Absorption correction	None
Refinement method	Full-matrix least-squares on \(F^2 \)
Data / restraints / parameters	43791 / 4155 / 2852
Goodness-of-fit on \(F^2 \)	1.109
Final R indices \([I > 2\sigma(I)]\)	\(R_1 = 0.0848, wR_2 = 0.2698 \)
R indices (all data)	\(R_1 = 0.1117, wR_2 = 0.3036 \)
Extinction coefficient	n/a
Largest diff. peak and hole	0.624 and −0.664 e·Å\(^{-3}\)
Figure S2. a) Front view of a single (5T)$_2$-PBI centrosymmetric molecule A (ORTEP drawing in 50% probability for thermal ellipsoids). PBI chromophore is coloured in red, macrocycle in blue and solubilizing alkyl chains in grey. Crystal packing seen approximately along the a-, c-, and b-axes for b), c) and d), respectively. Heavily disordered aliphatic chains as well as solvent molecules were omitted for clarity.

Figure S3. a) Front, b) side and c) top view onto the unsymmetric molecule B of (5T)$_2$-PBI. Heavily disordered aliphatic chains as well as solvent molecules were omitted for clarity. d) Unit cell including all structural disorder (violet) and aliphatic chains (grey). The ellipsoids are set to 50% probability.
DFT Calculations

Rotational Barrier:
To estimate the rotational barrier (Figure S4) of the imide substituent of 8, calculations were conducted only on one half-segment, namely the naphthalene imide part (Figure S4b). In order to estimate the energy cost of this rotation a dihedral angle scan of α in 0.5° intervals was performed (Figure S4a). Here, the change of the total energies ΔE depending on the torsion angle α is plotted. This angle α, which was modified during the scan, is highlighted in Figure S4c. The initial α of 90° between the phenyl substituent and the naphthalene monoimide core was readily reduced until complete rotation of the substituent. In the starting geometry (Figure S4c) the sulphur atom points away from the naphthalene imide core, whereas during the rotation this subunit undergoes a conformational change at $\alpha = 59°$ (Figure S4d) towards the core due to the repulsive hydrogen-core interaction. Further rotation up to $-26°$ leads to an outer plane uplifting of the nitrogen atom (Figure S4e) and an almost perpendicular angle between the thiophene and the phenyl group. This geometry also resembles the structure with the highest total energy level during the entire rotation process and therefore the closest structure to the "real" transition state (TS). This geometry was the basis for the TS calculation of which the result is shown in Figure S4f. The energy difference between this TS geometry and the fully relaxed monoimide is 114 kJ mol$^{-1}$ and can therefore be considered as the rotational barrier or the Gibbs free energy of activation ΔG^\ddagger. To determine the half life time of the rotation event the reaction rate k_{rot} according to Eyring has to be determined first (Eq. 1)

$$k_{rot} = \frac{k_B T}{h} \cdot e^{-\frac{\Delta G^\ddagger}{RT}}.$$ \hspace{1cm} (1)

Here k_B is the Boltzmann constant, T the temperature R and h the Planck constant. For $T = 298.15$ K (room temperature) and 348.15 K (macrocyclization reaction temperature) the resulting k_{rot} values are $6.60 \cdot 10^{-8}$ s$^{-1}$ and $5.70 \cdot 10^{-5}$ s$^{-1}$, respectively. The half life time $t_{1/2}$ (Eq. 2) can be calculated by the following equation:

$$t_{1/2} = \frac{ln(2)}{4 k_{rot}}.$$ \hspace{1cm} (2)

The results of $t_{1/2} = 30$ days at room temperature (25 °C) and around 51 min at 75 °C show the importance of elevated temperatures during the final macrocyclization reaction towards 5T-PBI.$^{[S9]}$
Figure S4. a) Plot of the change in total energy ΔE against the dihedral angle α. b) Chemical structure of the molecular fragment used for the calculations. c) Geometry optimized structure of the starting geometry for the rotational scan and the starting angle α incorporated by the planes of the naphthalene (red) and phenylene (blue) subunit. d) Geometry with $\alpha = 59^\circ$. e) Highest energy geometry with $\alpha = -26^\circ$. f) Geometry of the TS. All calculations were conducted with DFT at the B3LYP/6-31G(d) level of theory.

Figure S5. Side view (a), view along the N,N'-axis (b) and top view (c) onto the PBI π-surface of geometry optimized structures of 5T-PBI and (5T)$_2$-PBI (from top to bottom). The quantum mechanics calculations were carried out on the level of B3LYP density functional with the 6-31G(d) basis set as implemented in with Gaussian 16. Aliphatic chains were replaced by methyl groups. Color code: carbon = light grey, hydrogen = white, nitrogen = blue, oxygen = red, sulfur = yellow.

Strain energies:
The strain energies of the macrocycles (5T)$_2$-PBI and 5T-PBI were calculated as follows: The connecting C-C bonds between two thiophene units of the bridges were removed virtually from the optimized geometries of (5T)$_2$-PBI and 5T-PBI and the obtained radicals were saturated by thiophene capping molecules to retain the local
environment of the two ends. Geometry optimization leads to the lowest energy conformation of the resulting structures and complete macrocyclic induced strain release of both subunits. Figure S6 shows the optimized geometries of these open macrocycles 11 and 12 as well as capping bithiophene 13.

![Figure S6](image)

Figure S6. Front view of the optimized geometries of the non-cyclic structures 11 and 12 as well as bithiophene 13. The quantum mechanics calculations were carried out on the level of B3LYP density functional with the 6-31G(d) basis set as implemented in with Gaussian 16. Aliphatic chains were replaced by methyl groups. Color code: carbon = light grey, hydrogen = white, nitrogen = blue, oxygen = red, sulfur = yellow.

The strain energies of the respective macrocycles (\(E_{\text{Strain}}\)) were determined by comparing the lowest energy conformation of the respective macrocycles (\(E_{\text{5T-PBI}}\) or \(E_{(5T)_2-PBI}\)) to the homodesmic reaction product\(^{[S10]}\) of the linear structures 11 and 12 (\(E_{11}\) or \(E_{12}\)) and the bithiophene cap 13 (\(E_{13}\)):

\[
E_{\text{Strain}, (5T)_2-PBI} = (E_{5T2-PBI} + 2E_{13}) - E_{11} = 30.6 \text{ kJ mol}^{-1} \quad (3)
\]

\[
E_{\text{Strain}, 5T-PBI} = (E_{5T-PBI} + E_{13}) - E_{12} = 13.9 \text{ kJ mol}^{-1} \quad (4)
\]

Table S2: First excited state (S1) energy predictions of 5T-PBI and (5T)_2-PBI with TDDFT at the B3LYP/6-31G(d) level of theory (H = HOMO, L = LUMO).

Compound	Excitation Energy / eV	Wavelength / nm	Osc. Strength	Contribution
5T-PBI	1.18	1051	0.0000	H → L (100%)
(5T)_2-PBI	1.32	937	0.0001	H → L (100%)
Electrochemistry

Figure S7 Cyclic voltammogram (solid line) initiated in the forward (positive-going) scan direction (marked by an arrow) at a scan rate of 100 mV s\(^{-1}\) and differential pulse voltammogram (dashed line) of **Ref-PBI** in CH\(_2\)Cl\(_2\) with Bu\(_4\)NPF\(_6\) at room temperature (c\(_0\) = 10\(^{-4}\) M).

In order to demonstrate the involvement of four electrons in the entire oxidation process of (5T\(_2\)-PBI we decided to utilize the baseline (recorded prior to the actual measurement) corrected DPV data which was compared to those of 5T-PBI. It is evident that for respective reduction of both macrocyclic PBI subunits two electrons are transferred. By comparing the PBI’s DPV reduction to the oligothiophene’s oxidation wave integrals the relative amount of transported charges can be assigned (Figure S8).

Figure S8. DPV measurements of a) (5T\(_2\)-PBI and b) 5T-PBI in CH\(_2\)Cl\(_2\) solutions with Bu\(_4\)NPF\(_6\) at room temperature (c\(_0\) = 10\(^{-4}\) M). The wave integrals for PBI reduction and oligothiophene oxidation are highlighted in red and blue, respectively. The straight black lines mark the integration limits and the values above the waves represent the absolute integral in arbitrary units. The graphs are baseline corrected to ease the integration.
The ratio of both signals in reduction and oxidation determined by integration for 5T-PBI is 1.62/1.59 = 1.02 ≈ 1 and for (5T)₂-PBI 3.41/1.56 = 2.19 ≈ 2, respectively. The ratios prove that approximately double the amount of charges was transferred in the oxidation process of (5T)₂-PBI in comparison to the reduction. For 5T-PBI an equal amount of charges are involved in reduction and oxidation.

Molecular Orbital DFT Calculations

![Figure S9. a) LUMO and b) HOMO of 5T-PBI based on geometry optimized structures from DFT calculations. The quantum mechanics calculations were carried out on the level of B3LYP density functional with the 6-31G(d) basis set as implemented in with Gaussian 16.](image)

Spectroscopy in CH₂Cl₂

![Figure S10. Normalized UV/Vis spectra (black lines) and emission spectra with the excitation wavelengths λₑₓ = 400 nm (maroon lines) and λₑₓ = 480 nm (red lines) of a) a 1:1 mixture of Ref-PBI + 5T, b) 5T-PBI and c) (5T)₂-PBI. All UV/Vis and emission (c₀ = 10⁻⁷ M) measurements were carried out in CH₂Cl₂ at room temperature. d) Photograph of Ref-PBI, 5T, 5T-PBI and (5T)₂-PBI (from left to right) in CH₂Cl₂ under 365 nm UV light irradiation.](image)
Spectroscopy in Cyclohexane

Figure S11. Normalized UV/Vis absorption (black solid) and emission (red: $\lambda_{ex} = 480$ nm, maroon: $\lambda_{ex} = 340/310$ nm) spectra of 5T-PBI (bottom) and (5T)$_2$-PBI (top) in cyclohexane at room temperature ($c_0 = 10^{-7}$ M). The wavelengths for excitation to obtain the fluorescence spectra are highlighted by arrows.

Table S3. Spectroscopic properties of 5T-PBI and (5T)$_2$-PBI in cyclohexane at room temperature.

	$\lambda_{abs,max}$ \[^a\] / nm	$\lambda_{em,max}$ \[^a,\^[b]\] / nm	$\lambda_{em,max}$ \[^a,\^[c]\] / nm	$\Delta\bar{\nu}_{\text{Stokes}}$ (PBI) \[^a\] / cm$^{-1}$	Φ_{fl} \[^a,\^[d]\] / %
5T-PBI	519	531	528	329	<< 0.1
(5T)$_2$-PBI	374	536	528	145	<< 0.1

[^a]: $c_0 = 10^{-7}$ M. \[^b\]: $\lambda_{ex} = 340/310$ nm. \[^c\]: $\lambda_{ex} = 480$ nm \[^d\]: The fluorescence quantum yields of the PBI were measured relative to N,N'-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-perylenebis(dicarboximide) \[^51\] (96% in CHCl$_3$) as a reference at four different excitation wavelengths in the spectral region of the PBI absorption band.

Transient Absorption

Figure S12. a) Transient absorption spectra of 5T-PBI in CH$_2$Cl$_2$ after excitation at 530 nm and b) time scans and fit (red line) at selected wavelengths.
Figure S13. a) Transient absorption spectra of (5T)\textsubscript{2}-PBI in CH\textsubscript{2}Cl\textsubscript{2} after excitation at 530 nm and b) time scans and fit (red line) at selected wavelengths.

Figure S14. a) Normalized UV/Vis/NIR absorption spectra of 5T-PBI (black line) upon electrochemical reduction to 5T-PBI•− (red line) and electrochemical oxidation to 5T•+-PBI (blue line) in CH\textsubscript{2}Cl\textsubscript{2} solutions with Bu\textsubscript{4}NPF\textsubscript{6} at room temperature (c\textsubscript{0} = 10−4 M). b) Evolution associated difference spectra (EADS) and lifetimes from a global fit analysis of the transient spectra of 5T-PBI obtained by excitation at 530 nm in CH\textsubscript{2}Cl\textsubscript{2} (c\textsubscript{0} = 10−4 M) at room temperature.
NMR Spectra

Figure S15. 1H NMR spectrum of 2 in CD$_2$Cl$_2$ at 298 K.

Figure S16. 13C NMR spectrum of 2 in CDCl$_3$ at 298 K.
Figure S17. 1H NMR spectrum of 3 in CD$_2$Cl$_2$ at 298 K.

Figure S18. 13C NMR spectrum of 3 in CDCl$_3$ at 298 K.
Figure S19. 1H NMR spectrum of 4 in CD$_2$Cl$_2$ at 298 K.

Figure S20. 13C NMR spectrum of 4 in CDCl$_3$ at 298 K.
Figure S21. 1H NMR spectrum of 5 in CD$_2$Cl$_2$ at 298 K.

Figure S22. 13C NMR spectrum of 5 in CD$_2$Cl$_2$ at 298 K.
Figure S23. 1H NMR spectrum of 6 in CD$_2$Cl$_2$ at 298 K.

Figure S24. 13C NMR spectrum of 6 in CD$_2$Cl$_2$ at 298 K.
Figure S25. 1H NMR spectrum of 7 in CD$_2$Cl$_2$ at 298 K.

Figure S26. 13C NMR spectrum of 7 in CD$_2$Cl$_2$ at 298 K.
Figure S27. 1H NMR spectrum of 8 in C$_2$D$_2$Cl$_4$ at 298 K.

Figure S28. 13H NMR spectrum of 8 in C$_2$D$_2$Cl$_4$ at 298 K.
Figure S29. 1H NMR spectrum of 9 in C$_2$D$_2$Cl$_4$ at 298 K.

Figure S30. 13C NMR spectrum of 9 in C$_2$D$_2$Cl$_4$ at 298 K. Residual signals of CHCl$_3$ (79.5 ppm), H-grease (31.1 pm) and cyclohexane (26.8 ppm).
Figure S31. 1H NMR spectrum of 5T-PBI in CD$_2$Cl$_2$ at 298 K.

Figure S32. 13C NMR spectrum of 5T-PBI in CD$_2$Cl$_2$ at 298 K.
Figure S33. 1H NMR spectrum of (5T)$_2$-PBI in CD$_2$Cl$_2$ at 298 K.

Figure S34. 13C NMR spectrum of (5T)$_2$-PBI in CD$_2$Cl$_2$ at 298 K.
Mass Spectra

Figure S35. HRMS (ESI-TOF, pos. mode, acetonitrile/chloroform 1/1) spectra of 2.

Figure S36. HRMS (ESI-TOF, pos. mode, acetonitrile/chloroform 1/1) spectra of 3.

Figure S37. HRMS (ESI-TOF, pos. mode, acetonitrile/chloroform 1/1) spectra of 4.
Figure S38. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of 5.

Figure S39. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of 6.
Figure S40. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of 7.

Figure S41. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of 8.
Figure S42. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of 9.

Figure S43. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of 5T-PBI.
Figure S44. HRMS (MALDI-TOF, pos. mode, DCTB in CHCl₃) spectra of (5T)₂-PBI.
Cartesian Coordinates Received from DFT Calculations

Final geometry:

Total energy: -4708.34654570 Hartrees

Atom	X	Y	Z	Coordinates
C1	3.0379300	-2.5972200	2.2171600	
C2	1.6430100	-2.5910200	2.3218800	
C3	0.8187400	-2.5326100	1.1964300	
C4	1.4289000	-2.5046600	-0.0976600	
C5	2.8550800	-2.4869600	-0.1948300	
C6	3.6491100	-2.5346100	0.9767800	
C7	0.6476300	-2.4889500	-1.2965900	
C8	1.3097700	-2.4262600	-2.5242200	
C9	2.7053000	-2.3863200	-2.6099900	
C10	3.4804400	-2.4197700	-1.4635800	
C11	5.1297100	-2.5217600	0.9018100	
C12	4.9560900	-2.3587000	-1.5897800	
C13	-0.6476200	-2.4888000	1.2968900	
C14	-0.8187400	-2.5327500	-1.1961300	
C15	-1.4288900	-2.5046500	0.0979600	
C16	-2.8550700	-2.4869400	0.1951300	
C17	-3.6491100	-2.5347200	-0.9764800	
C18	-3.0379300	-2.5974800	-2.1685000	
C19	-1.6430100	-2.5912900	-2.3215700	
C20	-1.3097700	-2.4259700	2.5245100	
C21	-2.7053000	-2.3860100	2.6102800	
C22	-3.4804400	-2.4196000	1.4638700	
C23	-4.9560900	-2.3582000	1.5900700	
C24	-5.1297000	-2.5218700	-0.9015100	
N25	5.6928700	-2.3926100	-0.3869500	
N26	-5.6928700	-2.3925600	0.3872300	
O27	-5.8410700	-2.6076100	-1.8887600	
O28	-5.5217400	-2.2728500	2.6687400	
O29	5.5217400	-2.2731600	-2.6684700	
O30	5.8410700	-2.6073900	1.8890700	
C31	-7.1342600	-2.3364100	0.4818700	
C32	7.1342700	-2.3364700	-0.4815900	
C33	-7.8123600	-3.4770100	0.9076600	
C34	-9.1998400	-3.4902300	0.9894600	
C35	-9.9424400	-2.3543600	0.6397000	
C36	-9.2496200	-1.2176800	0.2228900	
C37	-7.8453900	-1.1737600	0.1305100	
C38	7.8453900	-1.1737800	-0.1303600	
C39	9.2496200	-1.2177000	-0.2227400	
C40	9.9424500	-2.3544300	-0.6394200	
C41 9.1998500 -3.4903400 -0.9890400
C42 7.8123600 -3.4771100 -0.9072400
C43 -1.2445200 4.8224300 -0.2615100
C44 -0.6942000 6.0856000 -0.1413600
C45 0.6942000 6.0856100 0.1406200
C46 1.2445100 4.8224700 0.2609200
S47 -0.0000020 3.6072400 -0.0002190
S48 3.1870500 2.8454200 0.0661100
C49 2.6052000 4.4302100 0.5582600
C50 -3.5979700 5.1285600 1.2354700
C51 4.8031100 4.3826800 1.3429500
C52 4.7596400 3.1238100 0.7819600
S53 -5.7834400 0.7714300 -0.3502600
C54 -5.7921200 2.1094100 0.7823500
C55 6.8759700 2.0051100 1.6310700
C56 7.6772200 0.8626000 1.3869600
C57 7.2203200 0.0635900 0.3611200
C58 -4.8031200 4.3825200 -1.3434800
C59 -3.5979700 5.1284100 -1.2360900
C60 -2.6052100 4.4301500 -0.5588000
S61 -3.1870500 2.8454200 -0.0664600
C62 -4.7596400 3.1237100 -0.7814300
C63 -7.6772300 0.8624300 -1.3870600
C64 -6.8759800 2.0049200 -1.6313000
C65 -5.7921300 2.1093200 -0.7826000
S66 -5.7834400 0.7714700 0.3501600
C67 -7.2203200 0.0635500 -0.3611300
C68 11.4512200 -2.3627100 -0.7163300
C69 -11.4512100 -2.3626400 0.7166200
C70 -3.4443900 6.5053400 -1.8253500
C71 3.4443900 6.5055500 1.8245700
H72 3.6621800 -2.6416200 3.1031900
H73 1.2096400 -2.6331000 3.3140400
H74 0.7446200 -2.3939900 -3.4480400
H75 -3.2019800 -2.3250900 -3.5724300
H76 -3.6621800 -2.6419800 -3.1028800
H77 -1.2096400 -2.6334900 -3.3137200
H78 -0.7446200 -2.3935800 3.4483200
H79 -3.2019700 -2.3246700 3.5727100
H80 -9.7093400 -4.3884700 1.3294000
H81 -9.8062600 -0.3175300 -0.0218800
H82 9.8062600 -0.3175200 0.0219200
H83 9.7093400 -4.3886200 -1.3288800
H84 -1.2768500 6.9938100 -0.2300500
H85 -1.2768500 6.9938400 0.2292000
H86 5.6904800 4.7735900 1.8303300
H87 7.0608600 2.7068400 2.4368700
H88 8.5440500 0.6004700 1.9836000
H89 -5.6904900 4.7733700 -1.8308900
H90 -8.5440600 0.6002400 -1.9836600
H91 -7.0608700 2.7065500 -2.4371800
H92 11.8663000 -1.3632600 -0.5542300
H93 11.8831300 -3.0292000 0.0412000
H94 11.7992200 -2.7176600 -1.6935100
H95 -11.8831200 -3.0292100 -0.0408300
H96 -11.7992100 -2.7174700 1.6938400
H97 -11.8663000 -1.3632000 0.5544100
H98 -4.1968100 6.6777100 -2.6014600
H99 -3.5711300 7.2918800 -1.0693100
H100 -2.4547000 6.6412500 -2.2745000
H101 2.4546800 6.6415200 2.2736900
H102 3.5711300 7.2920100 1.0684400
H103 4.1967900 6.6780200 2.6006700
H104 7.2379700 -4.3591700 -1.1720700
H105 -7.2379700 -4.3591700 1.1720700

Final geometry:

Total energy: −7544.84772028 Hartrees
C1 -2.8754100 -0.1459000 -2.4185000
C2 -1.4773400 -0.1128900 -2.4281000
C3 -0.7341900 -0.0306600 -1.2490700
C4 -1.4317400 -0.0009190 -0.0001740
C5 -2.8607500 -0.0008510 -0.0003510
C6 -3.5706500 -0.0803700 -1.2232800
C7 -0.7344900 0.0287800 1.2488900
C8 -1.4779100 0.1110600 2.4277400
C9 -2.8759800 0.1442100 2.4178000
C10 -3.5709200 0.0787600 1.2224100
C11 -5.0501900 -0.1201900 -1.2474300
C12 -5.0504600 0.1188600 1.2462100
C13 0.7344800 0.0285200 -1.2488900
C14 0.7341800 -0.0304000 1.2490800
C15 1.4317400 -0.0009200 0.0001770
C16 2.8607400 -0.0008530 0.0003540
C17 3.5706400 -0.0801200 1.2233000
C18 2.8754100 -0.1454000 2.4185300
C19 1.4779100 -0.1123800 2.4277700
C20 1.4779100 0.1105500 -2.4277700
C21 2.8759700 0.1437100 -2.4178300
C22 3.5709200 0.0785000 -1.2224200
C23 5.0504500 0.1186100 -1.2462300
C24 5.0501900 -0.1199400 1.2474600
N25 -5.7018600 -0.0006340 -0.0007020
N26 5.7018600 -0.0006390 0.0007050
O27 5.6947500 -0.2537200 2.2753800
O28 5.6952200 0.2526100 -2.2739700
O29 -5.6952300 0.2518000 2.2753200
C31 7.1450100 -0.0009150 0.0011800
C32 -7.1450100 -0.0009070 -0.0011700
C33 7.8400100 -1.1625100 -0.3883500
C34 9.2437300 -1.1357700 -0.3823900
C35 9.9604500 -0.0009390 -0.0007000
C36 9.2442500 1.1356500 0.3766100
C37 7.8403900 1.1615300 0.3873500
C38 -7.8403900 1.1614600 -0.3875900
C39 -9.2442500 1.1355800 -0.3768500
C40 -9.9604500 -0.0009300 0.0006940
C41 -9.2437300 -1.1356900 0.3826100
C42 -7.8400100 -1.1624300 0.3885800
C43 1.2247100 7.1553700 0.3419900
C44 0.6834800 8.4183500 0.1856500
C45 -0.6834800 8.4183100 -0.1872800
C46 -1.2247000 7.1553000 -0.3433900
S47 0.0000060 5.9400300 -0.0005890
S48 -3.1850700 5.1863100 -0.2682000
C49 -2.5633500 6.7643000 -0.7319500
C50 -3.5024100 7.4597600 -1.4844600
C51 -4.7002200 6.7168100 -1.6711100
C52 -4.7017800 5.4634900 -1.0962100
S53 -5.8346700 3.1473900 0.0022900
C54 -5.7305300 4.4467500 -1.1691900
C55 -6.7179000 4.3061200 -2.1233700
C56 -7.5318300 3.1619700 -1.9292000
C57 -7.1778400 2.3986800 -0.8381800
C58 4.7002200 6.7171300 1.6698000
C59 3.5024100 7.4600500 1.4830100
C60 2.5633600 6.7644400 0.7306300
S61 3.1850800 5.1863700 0.2671700
C62 4.7017900 5.4637000 1.0951300
C63 7.5318400 3.1623500 1.9285700
C64 6.7179100 4.3065400 2.1225100
C65 5.7305400 4.4469800 1.1683100
S66 5.8346700 3.1473900 -0.0029100
C67 7.1778400 2.3988500 0.8376900
C68 -11.4710000 -0.0108100 -0.0276300
C69 11.4710000 -0.0108200 0.0276700
C70 3.3014400 8.8310100 2.0719800
C71 -3.3014400 8.8306100 -2.0736900
H72 -3.4366800 -0.2197800 -3.3437800
H73 -0.9753500 -0.1628400 -3.3869500

S43
H74 -0.9761500 0.1609700 3.3867200
H75 -3.4374700 0.2174800 -3.3429800
H76 3.4366700 -0.2190800 3.3438300
H77 0.9753500 -0.1621300 3.3869900
H78 0.9761500 0.1602600 -3.3867500
H79 -3.4374700 0.2174800 -3.3429800
H80 9.7779900 -2.0373700 -0.6680200
H81 9.7788500 2.0398800 0.6529900
H82 -9.7788500 2.0397500 -0.6534200
H83 -9.7779900 -2.0372300 0.6684200
H84 1.2592400 9.3265100 0.3125200
H85 -1.2592400 9.3264400 -0.3143200
H86 -5.5492200 7.1054300 -2.2243200
H87 -6.8188500 4.9788000 -2.9679200
H88 -8.3274800 2.8705300 -2.6061600
H89 5.5492200 7.1058600 2.2229400
H90 8.3275000 2.8710500 2.6055800
H91 6.8188700 4.9793900 2.9669200
H92 -11.8803000 0.9894800 0.1475700
H93 -11.8454300 -0.3516300 -1.0019200
H94 -11.8814700 -0.6838200 0.7322900
H95 11.8453900 -0.3511700 1.0021400
H96 11.8814800 -0.6842100 -0.7319100
H97 11.8803200 0.9893800 -0.1480000
H98 3.9897900 8.9957000 2.9070300
H99 3.4872200 9.6251000 1.3362700
H100 2.2790900 8.9623100 2.4422800
H101 -2.2790800 8.9618500 -2.4440200
H102 -3.9897800 8.9951400 -2.9087800
H103 -3.4872200 9.6248300 -1.3381300
C104 -7.1761600 -2.3975400 0.8434600
S105 -5.8372800 -3.1504100 -0.0000470
C106 -7.5251800 -3.1554900 1.9396700
C107 -5.7278300 -4.4443600 1.1770100
C108 -6.7105100 -4.2990000 2.1352400
H109 -8.3174900 -2.8605900 2.6190500
C110 -4.6994700 -5.4615000 1.1036500
H111 -6.8074500 -4.9677000 2.9834200
S112 -3.1848600 -5.1858500 0.2713000
C113 -4.6964300 -6.7136400 1.6810500
C114 -2.5619100 -6.7628500 0.7366400
C115 -3.4989800 -7.4569000 1.4928400
H116 -5.5440900 -7.1011900 2.2370800
C117 -1.2240300 -7.1542100 0.3456500
C118 -3.2962900 -8.8266200 2.0841000
C119 -0.6831600 -8.4172200 0.1885800
S120 -0.0000000 -5.9389400 0.0005770
H121 -2.2724800 -8.9575700 2.4504900
H122 -3.9813000 -8.9891300 2.9232300
H123 -3.4854400 -9.6222600 1.3509200
C124 0.6831500 -8.4172600 -0.1869400
H125 -1.2587700 -9.3253100 0.3167400
C126 1.2240200 -7.1542800 -0.7353200
H127 -1.2587600 -9.3253700 -0.3149200
C128 2.5619000 -6.7630000 -0.3442600
C129 3.4989800 -7.4572000 -1.4913800
S130 3.1848600 -5.1859100 -0.2702900
C131 4.6964300 -6.7139800 -1.6797300
C132 3.2962800 -8.8270400 -2.0823700
C133 4.6994700 -5.4617200 -1.1025800
H134 5.5440900 -7.1016400 -2.2356800
H135 3.9813000 -9.39897100 -2.9205500
H136 3.4854300 -9.6225300 -1.3490300
H137 2.2724800 -8.9580600 -2.4487400
C138 5.7278300 -4.4446000 -1.1761400
C139 6.7105200 -4.2994400 -2.1343800
S140 5.8372600 -3.1504000 0.0006570
C141 7.5251900 -3.1558900 -1.9390300
H142 6.8074800 -4.9683100 -2.9824200
C143 7.1761500 -2.3977100 -2.6184700
H144 8.3175100 -2.8611400 -2.6184700

Final geometry:

![Chemical structure]

Total energy: -9754.49276862 Hartrees

C1 0.95871 -2.71421 -2.56024
C2 0.51661 -1.38751 -2.56859
C3 0.24216 -0.69402 -1.3882
C4 0.4409 -1.36277 -0.1387
C5 0.87715 -2.72411 -0.13926
C6 1.1322 -3.38817 -1.36398
C7 0.21252 -0.70384 1.11108
C8 0.40472 -1.42547 2.29081
C9 0.81396 -2.76296 2.28128
C10 1.05364 -3.41505 1.08438
C11 1.58437 -4.79821 -1.39089
C12 1.46155 -4.8392 1.10759
C13 -0.24255 0.69396 -1.3882
C14 -0.21281 0.70382 1.11108
C15 -0.44122 1.36274 -0.13871
C16	-0.87741	2.7241	-0.13927	
C17	-1.0538	3.41507	1.08437	
C18	-0.81411	2.76299	2.28127	
C19	-0.40493	1.42548	2.29081	
C20	-0.51706	1.38743	-2.56858	
C21	-0.9591	2.71415	-2.56024	
C22	-1.1325	3.38814	-1.36399	
C23	-1.58457	4.79822	-1.39089	
C24	-1.46159	4.83925	1.10758	
N25	1.70772	-5.44122	-0.14375	
N26	-1.70777	5.44126	-0.14377	
O27	-1.57246	5.48079	2.13996	
O28	-1.84329	5.39108	-2.42724	
O29	1.57249	-5.48071	2.13999	
O30	1.84306	-5.39107	-2.42724	
C31	-2.03734	6.84718	-0.14897	
C32	2.03742	-6.8471	-0.14899	
C33	-1.00602	7.7706	-0.39203	
C34	-1.29934	9.13746	-0.38794	
C35	-2.59432	9.60371	-0.13747	
C36	-3.59832	8.66518	0.09794	
C37	-3.35116	7.28051	0.09949	
C38	1.06619	-7.77062	-0.39214	
C39	1.29968	-9.13744	-0.38829	
C40	2.59475	-9.60357	-0.13795	
C41	3.59862	-8.66496	0.09763	
C42	3.35128	-7.28031	0.0994	
C43	-9.56894	-2.65015	-0.16738	
C44	-9.14967	-3.03108	-1.4309	
C45	-7.99508	-3.84264	-1.43564	
C46	-7.48542	-4.10944	-0.17662	
S47	-8.48308	-3.32469	1.04094	
S48	-5.06813	-5.05809	-1.1052	
C49	-6.2809	-4.83962	0.15355	
C50	-5.86642	-5.43159	1.34004	
C51	-4.60028	-6.06716	1.21144	
C52	-4.03002	-5.98035	-0.03904	
S53	-1.45717	-6.82406	0.62588	
C54	-2.75963	-6.49492	-0.50441	
C55	-2.35039	-6.75894	-1.79412	
C56	-1.00953	-7.22358	-1.88072	
C57	-0.37949	-7.31839	-0.66523	
C58	-12.32501	-0.51891	1.22699	
C59	-11.06539	-1.17284	1.33167	
C60	-10.74404	-1.88072	0.17949	
S61	-12.03979	-1.75496	-1.00756	
C62	-5.42538	6.55805	1.37624	
C63	-6.43032	5.55739	1.39935	
S64	-4.86363	4.95543	-0.55699	
C65	-4.47902	6.3794	0.39232	
C66	2.89148	-11.08473	-0.11626	
C67	-2.89088	11.08491	-0.11536	
C68	-10.20018	-1.05286	2.55991	
C69	-6.64122	-5.44927	2.63239	
H70	1.16789	-3.23723	-3.48728	
H71	0.39292	-0.90131	-3.52885	
H72	0.94793	-3.31063	3.20801	
H73	-0.948	3.31068	3.208	
H74	-0.23048	0.9568	3.25192	
H75	-0.39344	0.9012	-3.52884	
H77	-1.16832	3.23715	-3.48728	
H78	-0.49585	9.84259	-0.58281	
H79	-4.61693	9.00367	0.26397	
H80	0.49628	-9.84265	-0.58319	
H81	4.61727	-9.00334	0.26362	
H82	-9.66794	-2.72943	-2.33492	
H83	-7.54371	-4.22903	-2.34315	
H84	-4.1323	-6.60533	2.02995	
H85	-2.99969	-6.63404	-2.65442	
H86	-0.50912	-7.46306	-2.81222	
H87	-12.7242	0.1038	2.02177	
H88	-5.37169	7.37131	2.09184	
H89	-7.22762	5.52323	2.13422	
H90	2.54746	-11.54272	0.82023	
H91	2.38488	-11.606	-0.93604	
H92	3.96499	-11.27884	-0.20335	
H93	-2.54828	11.54226	0.82197	
H94	-2.3829	11.6066	-0.93401	
H95	-3.96423	11.27922	-0.20399	
H96	-10.58985	0.27564	3.22445	
H97	-10.16968	-1.98803	3.13314	
H98	-9.16748	-0.78914	2.30662	
H99	-7.69823	-5.68883	2.4736	
H100	-6.22605	-6.19808	3.31406	
H101	-6.60138	-4.48086	3.14771	
C102	4.47904	-6.37912	0.39237	
S103	4.8634	-4.95483	-0.55655	
C104	5.4255	-6.55791	1.37619	
C105	6.4303	-5.55712	1.3995	
H106	5.37196	-7.37136	2.09158	
H107	7.22765	-5.52308	2.13432	
S108	12.03952	1.75412	-1.00799	
C109	12.32566	0.5195	1.22724	
C110	10.74416	1.88044	0.17943	
C111	11.06599	1.17332	1.33193	
H112	12.72519	-0.10265	2.02228	
C113	9.56885	2.6495	-0.16754	
C114	10.20118	1.05398	2.56052	
C115	9.1488	3.02909	-1.4312	
Atom	X	Y	Z	Element
------	----	----	----	---------
S116	8.48375	3.32533	1.04074	
H117	9.16831	0.79055	2.30769	
H118	10.59084	0.27683	3.22515	
H119	10.17122	1.98934	3.13348	
C120	7.99418	3.84061	-1.43609	
H121	9.6665	2.72647	-2.33522	
C122	7.48528	4.10873	-0.17703	
H123	7.54223	4.226	-2.34374	
C124	6.28096	4.83926	0.1531	
C125	5.8669	5.4319	1.3394	
S126	5.06784	5.05724	-1.10541	
C127	5.00081	6.06757	1.21084	
C128	6.64206	5.45013	2.63153	
C129	4.03016	5.98018	-0.03942	
H130	4.13313	6.6062	2.02922	
H131	6.22671	6.19884	3.31321	
H132	6.60284	4.48178	3.147	
C133	7.99891	5.69019	2.47241	
C124	2.75969	6.49463	-0.50469	
C135	2.35011	6.75795	-1.79443	
S136	1.45757	6.82449	0.62578	
C137	1.00926	7.22264	-1.88093	
H138	2.99917	6.63254	-2.65484	
C139	0.37957	7.31819	-0.66532	
H140	0.50861	7.46162	-2.81243	
C141	-14.2592	-0.18225	-0.4033	
C142	-14.77335	-0.09534	-1.68033	
S143	-15.41243	0.4595	0.75702	
C144	-16.07116	0.4863	-1.73296	
H145	-14.22464	-0.42141	-2.55759	
C146	-16.54515	0.8429	-0.50036	
H147	-16.62456	0.6399	-2.65295	
H148	-17.49017	1.30623	-0.25098	
C149	-7.09219	3.43258	0.14921	
C150	-6.74985	2.25473	-0.47981	
S151	-8.77987	3.38925	0.63507	
C152	-7.8214	1.31988	-0.56121	
H153	-5.74932	2.05814	-0.85046	
C154	-8.97783	1.78498	0.00314	
H155	-7.73402	0.33675	-1.01094	
H156	-9.93316	1.28411	0.0865	
C157	7.09187	-3.43193	0.14986	
C158	6.74945	-2.25402	-0.479	
S159	8.77952	-3.38849	0.63583	
C160	7.82091	-1.31904	-0.5602	
H161	5.74892	-2.05748	-0.8497	
C162	8.97735	-1.78411	0.00416	
H163	7.73347	-0.33586	-1.00981	
H164	9.93261	-1.28315	0.08767	
C165	6.27316	-4.59751	0.42265	
C166 -6.27337 4.59802 0.42223
C167 -12.98258 -0.70718 0.03077
C168 14.25936 0.18208 -0.40348
C169 14.77352 0.09539 -1.68053
S170 15.41245 -0.46018 0.7567
C171 16.07123 -0.48646 -1.73328
H172 14.22492 0.42181 -2.55772
C173 16.54514 -0.84345 -0.50076
H174 16.62463 -0.6399 -2.6533
H175 17.49007 -1.307 -0.25146
C176 12.98282 0.70714 0.03068

Final geometry:

Total energy: -5813.16854119 Hartrees

Atom	X	Y	Z
C1	0.21155	5.03336	2.21321
C2	1.42403	4.3359	2.22778
C3	2.0176	3.86163	1.05631
C4	1.35849	4.10387	-0.1908
C5	0.11958	4.81776	-0.19664
C6	-0.44424	5.27602	1.01895
C7	1.90607	3.6475	-1.43197
C8	1.20926	3.9224	-2.61034
C9	-0.00184	4.62223	-2.60752
C10	-0.55118	5.06888	-1.41836
C11	-1.72666	6.0215	1.03876
C12	-1.841	5.79954	-1.44974
C13	3.28697	3.11894	1.06327
C14	3.17326	2.90128	-1.42458
C15	3.82789	2.65121	-0.1766
C16	5.0511	1.91085	-0.1679
C17	5.60316	1.43389	-1.38161
C18	4.95879	1.69592	-2.57805
C19	3.7619	2.41939	-2.59539
C20	3.98478	2.84527	2.2414
C21	5.18015	2.11902	2.24136
C22	5.71477	1.64724	1.05511
C23	6.96356	0.84936	1.09407
C24	6.85936	0.64647	-1.39696
N25	-2.35424	6.22396	-0.20857
N26	7.44781	0.37892	-0.14211
O27	7.36814	0.23635	-2.42707
O28	7.54641	0.58686	2.13497
---	---	---	---
O29	-2.44515	6.02502	-2.48681
O30	-2.22478	6.44743	2.06756
C31	8.6396	-0.43938	-0.13325
C32	-3.59053	6.97454	-0.21385
C33	9.88077	0.18714	-0.05074
C34	11.05342	-0.59958	-0.09127
C35	11.00642	-1.95356	-0.22507
C36	9.75415	-2.56705	-0.29641
C37	8.5529	-1.83822	-0.25025
C38	-4.8202	6.36513	0.09139
C39	-5.96416	7.18511	0.11192
C40	-5.91534	8.55409	-0.15391
C41	-4.6737	9.12323	-0.46657
C42	-3.52652	8.33858	-0.49216
C43	-0.08954	-5.10065	0.33072
C44	-0.40973	-6.06761	-0.60532
C45	-1.79094	-6.34613	-0.69512
C46	-2.57609	-5.59999	0.16703
S47	-1.55614	-4.51321	1.10046
S48	-4.95993	-6.31628	-1.01777
C49	-4.01626	-5.62925	0.30212
C50	-4.85019	-5.19765	1.32704
C51	-6.22224	-5.45155	1.04622
S52	-4.31141	3.6417	-0.55495
S53	-5.76734	2.99678	1.47194
C54	-5.74329	4.41494	1.4386
S55	-4.98482	4.93834	0.41593
C56	3.07108	-3.57779	1.65875
C57	1.71112	-3.97014	1.79506
C58	1.21604	-4.55588	0.63765
S59	2.44593	-4.58372	-0.62241
C60	3.6336	-3.8418	0.42892
C61	6.94679	-3.52268	-1.2948
C62	5.65099	-4.07457	-1.1208
C63	4.97143	-3.55382	-0.03913
S64	5.9607	-2.35792	0.77846
C65	7.27767	-2.56862	-0.36002
C66	-7.16559	9.40098	-0.10837
C67	12.27721	-2.76794	-0.29075
C68	0.94795	-3.77677	3.08035
C69	-4.40575	-4.5542	2.61568
H70	-0.23502	5.39283	3.13415
H71	1.89801	4.16683	3.18726
H72	1.59838	3.58987	-3.5652
H73	-0.53109	4.82287	-3.53296
H74	5.39752	1.32374	-3.49768
H75	3.29151	2.5948	-3.55544
H76	3.60335	3.19085	3.19476
H77	5.7026	1.90716	3.16819
H78	12.0136	-0.05443	-0.02079
---	-----	-----	-----
H79	9.69342	-3.64926	-0.37128
H80	-6.92213	6.71874	0.32363
H81	-4.60403	10.18466	-0.69135
H82	0.3429	-6.58438	-1.19108
H83	-2.20337	-7.10041	-1.35668
H84	-7.0128	-5.21296	1.75115
H85	-6.28506	2.42199	2.2326
H86	-6.24043	5.04186	2.17084
H87	3.63232	-3.12977	2.47304
H88	7.61429	-3.79672	-2.1045
H89	5.23052	-4.83559	-1.76987
H90	-8.06577	8.783	-0.03602
H91	-7.15561	10.07583	0.75726
H92	-7.25694	10.02679	-1.00375
H93	12.80193	-2.60718	-1.24134
H94	12.97116	-2.49086	0.51127
H95	12.07162	-3.83918	-0.20335
H96	1.64092	-3.63127	3.91512
H97	0.29539	-2.89495	3.04075
H98	0.31486	-4.63877	3.31385
H99	-4.09834	-3.51132	2.46583
H100	-5.22573	-4.55195	3.34057
H101	-3.55968	-5.08281	3.06759
H102	-2.56255	8.78133	-0.72349
H103	9.91891	1.26833	0.03849
C104	-7.72916	-6.46649	-0.74549
C105	-7.96477	-7.33151	-1.79389
S106	-9.24963	-5.83759	-0.12837
C107	-9.3456	-7.49723	-2.09577
H108	-7.16852	-7.84793	-2.31954
C109	-10.16093	-6.76199	-1.27984
H110	-9.71559	-8.1437	-2.88408
H111	-11.24095	-6.70331	-1.28355
C112	-4.82908	1.00199	0.18352
C113	-3.79324	0.388	-0.48724
S114	-6.0057	-0.19485	0.70245
C115	-3.93059	-1.02678	-0.57539
H116	-2.94695	0.93729	-0.88609
C117	-5.06873	-1.49043	0.02613
H118	-3.20742	-1.67441	-1.05885
H119	-5.41881	-2.51124	0.10583
C120	-6.46746	-6.06139	-0.16475
C121	-5.03165	2.41035	0.46483
Final geometry:

![Chemical structure](image)

Total energy: -1104.81669881 Hartrees

Atom	X	Y	Z
C1	0	3.21057	-0.05036
C2	-1.26892	2.7657	0.19851
C3	-1.35485	1.34567	0.26702
S4	1.11645	1.89317	-0.22313
H5	0.3497	4.22987	-0.14378
H6	-2.11707	3.42706	0.33872
H7	-2.27318	0.80799	0.4783
C8	0.14867	-0.71017	0.06763
C9	1.35485	-1.34567	0.26702
S10	-1.11645	-1.89317	-0.22313
C11	1.26892	-2.7657	0.19851
H12	2.27318	-0.80799	0.4783
C13	0	-3.21057	-0.05036
H14	2.11707	-3.42706	0.33872
H15	-0.3497	-4.22987	-0.14378
C16	-0.14867	0.71017	0.06763
Supporting References

[S1] W. Kabsch, Acta Crystallogr. D 2010, 66, 125-132.
[S2] Bruker, 2014, XPREP Version 2014/2, Bruker AXS Inc., Madison.
[S3] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.
[S4] N. Auerhammer, A. Schulz, A. Schmiedel, M. Holzapfel, J. Hoche, M. I. S. Röhr, R. Mitric, C. Lambert, Phys. Chem. Chem. Phys. 2019, 21, 9013-9025.
[S5] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparrini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinhe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[S6] M.-A. Sato, K. Fukui, Synth. Met. 2007, 157, 619-626.
[S7] W. E. Benjamin, D. R. Veit, M. J. Perkins, E. Bain, K. Scharnhorst, S. McDowall, D. L. Patrick, J. D. Gilbertson, Chem. Mater. 2014, 26, 1291-1293.
[S8] K. Bold, M. Stolte, F. Würthner, Organic Materials 2021, 03, 119-127.
[S9] For a similar half-life time determination of two rotamers see: F. Yang, C. Liu, D. Yin, Y. Xu, M. Wu, W. Wei, Chem. Commun. 2019, 55, 14335-14338.
[S10] For a similar determination of strain energies see: M. Ball, B. Fowler, P. Li, L. A. Joyce, F. Li, T. Liu, D. Paley, Y. Zhong, H. Li, S. Xiao, F. Ng, M. L. Steigerwald, C. Nuckolls, J. Am. Chem. Soc. 2015, 137, 9982-9987.
[S11] A. M. Brouwer, Pure Appl. Chem. 2011, 83, 2213-2228.