On the empirical verification of the black hole no-hair conjecture from gravitational-wave observations

Gregorio Carullo
Laura van der Schaar
Lionel London
Peter T. H. Pang
Ka Wa Tsang
Otto A. Hannuksela
Jeroen Meidam
Michalis Agathos
Anuradha Samajdar
Archisman Ghosh
Tjonne G. F. Li
Walter Del Pozzo
Chris Van Den Broeck

Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Pisa I-56127, Italy
Nikhef – National Institute for Subatomic Physics, Science Park, 1098 XG Amsterdam, The Netherlands
School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
INFN sezione di Pisa, Pisa I-56127, Italy
Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Dated: May 15, 2018)

We show that second-generation gravitational-wave detectors at their design sensitivity will allow us to directly probe the ringdown phase of binary black hole coalescences. This opens the possibility to test the so-called black hole no-hair conjecture in a statistically rigorous way. Using state-of-the-art numerical relativity-tuned waveform models and dedicated methods to effectively isolate the quasi-stationary perturbative regime where a ringdown description is valid, we demonstrate the capability of measuring the physical parameters of the remnant black hole, and subsequently determining parameterized deviations from the ringdown of Kerr black holes. By combining information from \(\mathcal{O}(5) \) binary black hole mergers with realistic signal-to-noise ratios achievable with the current generation of detectors, the validity of the no-hair conjecture can be verified with an accuracy of \(\sim 1.5\% \) at 90\% confidence.

Introduction – The detection of gravitational waves (GWs) by the LIGO and Virgo Collaborations [1, 2] has opened up a variety of avenues for the observational exploration of the dynamics of gravity and of the nature of black holes. GW150914 [3] and subsequent detections [4–9] have enabled unique tests of general relativity (GR) [5, 6, 8, 10]. Among the several detections, GW150914 still holds a special place, not only because it was the first and the loudest binary black hole event detected, but also because it was the kind of textbook signal that allowed measurements of the frequency and damping time of what has been interpreted as the least damped quasinormal mode (QNM) of the presumed remnant black hole (BH) resulting from a binary black hole merger [10]. This sparked considerable interest in the community, since it opened up the prospect of more in-depth empirical studies of quasi-stationary Kerr black holes [11, 12] in the near future, as the sensitivity of the Advanced LIGO and Advanced Virgo detectors is progressively improved [1, 13]. Consistency with the prediction of GR hinted that the end result of GW150914 was indeed a Kerr black hole [14], but inability to detect more than one QNM did not yet allow tests of some key GR predictions for these objects. As first predicted by Vishveshwara [15] and further investigated by Press [16], and Chandrasekhar and Detweiler [17], in the regime where linearized general relativity is valid, the strain of the emitted gravitational-wave signal, at large distances from the BH and neglecting subdominant power-law tail contributions, takes the form:

\[
h(t) = \sum_{lmn} A_{lmn} e^{-t/\tau_{lmn}} \cos(\omega_{lmn} t + \phi_{lmn}). \tag{1}
\]

For black holes in GR, all frequencies \(\omega_{lmn} \) and damping times \(\tau_{lmn} \) are completely determined by the black hole’s mass and spin.\(^1\) This can be viewed as a manifestation of the black hole no-hair conjecture, which essentially states that in GR, a stationary axisymmetric black hole is determined uniquely by its mass, intrinsic angular momentum, and electric charge (with the latter expected to be zero for astrophysical objects) [19–26]; see [27] for a review. This connection is key to several tests that have been proposed in the literature [28–36]. So far the possibility to verify (or refute) experimentally the no-hair conjecture has been explored mostly in the context of third-generation ground-based [37, 38] or space-based [39] gravitational-wave detectors. In this Letter, we show that the existing advanced interferometric detector network, when operating at design sensitivity, will be capable of testing the no-hair conjecture with an accuracy of a few percent with the observation of the ringdown signal already for \(\mathcal{O}(5) \) GW events.

\(^1\) BH perturbation theory alone cannot predict the amplitudes \(A_{lmn} \) and relative phases \(\phi_{lmn} \); in the case of black holes resulting from a binary merger, these are set by the properties of the parent binary black hole system; see e.g. [18].
Ringdown model – Our ringdown waveform model is that of Ref. [18], where a robust method was developed to characterize QNMs up to \(l = 5 \), including overtones (labelled by the \(n \) index), by making use of numerical relativity (NR) waveforms. The Weyl scalar \(\psi_4 \) can be expanded as:

\[
\psi_4(t, \varphi, r, t) \simeq \frac{M}{r} \sum_{l,m,n} \psi_{lmn}(t) \left[-2S_{lm}(a_f \tilde{\omega}_{lmn}, t, \varphi) \right],
\]

with

\[
\psi_{lmn}(t) \equiv A_{lmn} e^{i \tilde{\omega}_{lmn} t}.
\]

In the above, \(r \) is the distance from source to detector, \((t, \varphi)\) give the orientation of the ringing black hole with respect to the line of sight and \(-2S_{lm}\) are spin-weighted spheroidal harmonics. For the dependence of the complex mode frequencies \(\tilde{\omega} \equiv \omega_{lmn} + i/\gamma_{lmn} \) on the mass \(M_f \) and dimensionless spin \(a_f \) of the final black hole one can use the expressions from [31]. The amplitudes \(A_{lmn} \) of the various modes are set by the properties of the initial black holes that gave rise to the remnant object.

As shown in [18], in the case of non-spinning progenitor black holes that gave rise to the remnant object, the individual masses. The coefficients in these expansions are obtained by fitting against NR waveforms starting from a time \(t = 10M \) after the peak luminosity of the \((2,2)\) component of \(\psi_4^{NR} \), with \(M = m_1 + m_2 \); for details of the fitting procedure we refer to [18]. In this setup, the \(A_{lmn} \) are complex, so that they include relative phases between the modes, which were neglected in previous models [40] and subsequent Bayesian analyses that were based on them [29, 32]; their inclusion leads to a significant improvement in faithfulness against NR waveforms [41]. At large distances from the source, the gravitational-wave polarizations \(h_+, h_\times \) are obtained from Eq. (2) through \(\psi_4 \simeq h_+ - i h_\times \). The waveform model has recently been extended to the case of initial black holes with non-zero but aligned spins [41]. In this *Letter* we want to provide a proof of concept that linearized general relativity around a Kerr background can be directly probed with gravitational-wave observations with the current interferometric network, and the non-spinning model of [18] suffices to demonstrate this.

Simulations – Both to establish the effective ringdown start time and in subsequent simulations of no-hair conjecture tests, Bayesian parameter estimation is performed. The simulated signals are numerical inspiral-merger-ringdown waveforms taken from the publicly available SXS catalog [42], with mass ratio \(q = m_1/m_2 \) in the interval \([1, 3]\), and negligible initial spins as well as negligible residual eccentricity. These are coherently injected into synthetic, stationary, Gaussian noise for a network of Advanced LIGO and Advanced Virgo detectors at design sensitivity [1, 13]. The injected total mass is uniformly distributed in the interval \([50, 90]\) \(M_\odot \), and the sky position as well as the orientation of the orbital plane at some reference time are uniformly distributed on the sphere. Luminosity distances \(D_L \) are chosen such that the total signal-to-noise ratio (SNR) in the inspiral-merger-ringdown signal approximately equals 100, which is a plausible value for signals similar to GW150914 [3] assuming the Advanced LIGO-Virgo network at full sensitivity. This sets the average SNR contained just in the ringdown phase of our dataset to 15, if the start time is chosen to be \(16M \) after the time at which the GW strain peaks (as will be demonstrated below, this is indeed a reasonable choice). By comparison, with the same choice of start time, the SNR in the ringdown of GW150914 with detectors at design sensitivity would have been \(SNR_{ring} \simeq 17 \) [10].

The template waveforms used in our Bayesian analyses follow the aforementioned ringdown model, augmented with a windowing procedure for the start time, as explained below. Sampling is done over 10 parameters:\n
\[
\{ M_f, a_f, q, \alpha, \delta, \iota, \psi, D_L, t_c, \varphi_c \},
\]

where \((\alpha, \delta) \) determine the sky location, \(\psi \) is the polarization angle and \(t_c, \varphi_c \), respectively are a reference time and phase. Hence only parameters associated with the ringdown waveform are sampled over, with the mass ratio \(q \) determining the mode amplitudes. Bayesian inference is done using the *LALInference* library [43]. Priors are chosen to be uniform in \([5, 200]\) \(M_\odot \) for \(M_f \), uniform in \([-1, 1]\) for \(a_f \), and uniform in \([1, 15]\) for \(q \). A constant number density in comoving volume sets the prior for the sky location angles and the distance, with a distance range of \([1, 1000]\) Mpc. The time of coalescence is uniformly distributed within \([t_c - 0.1s, t_c + 0.1s]\), where \(t_c \) is a reference time at which the signal is detected. The priors on angles in the source frame are chosen to be uniform on the sphere.

When does the ringdown start? – The time at which the transition between the non-linear to the linear regime happens is not well defined. For instance, Ref. [10] shows how the inference on the QNM central frequency and characteristic time changes quite dramatically depending on the assumed time at which the transition occurs. Therefore it is critical to make a reasonable choice for the time at which the remnant black hole can be treated perturbatively and assess the effectiveness of such a choice.

We choose the start time for the ringdown \(t_{start} \) from the analysis of numerical inspiral-merger-ringdown waveforms added to stationary Gaussian noise with a power spectral density as expected for Advanced LIGO and Virgo at design sensitivity [44]. To isolate the ringdown, we apply to the data a Planck [45] window whose starting time is varied in discrete steps over a range \([10, 20]\) \(M \) after the peak time of the strain in each detector, with
M the total mass for the simulated signal. The peak time t_{peak} itself can be estimated using analysis methods that can measure amplitudes and arrival times of a signal inside a detector, without relying on specific GR waveform models, such as BayesWave \[46\]. We choose a rise time for the Planck window of 1 ms, as we find that this choice gives a good compromise between the need to preserve the signal-to-noise-ratio and to avoid Gibbs phenomena. Consider a simulated signal with total mass M and mass ratio q, and a choice of window start time, e.g. $t_{\text{start}} = t_{\text{peak}} + \kappa M$ for some $\kappa \in [10, 20]$. We then apply a similar window on the ringdown template waveforms, letting them start at $\kappa M'$ after the peak strain, where the mass M' is obtained from the sampled values M'_f and q' through fitting formulae \[47\]. This leads to posterior density functions for all parameters, and in particular for M_f and a_f. Our criterion to select the start time for the ringdown is built by minimizing the bias in the recovered parameters of the final object, while avoiding to select an arbitrarily large start time. Although large start times would ensure the validity of the linearized approximation employed in the waveform template, they would also drastically reduce the signal SNR, thus resulting in a poor estimation of the final parameters. The equilibrium point in this trade-off, arrived at as explained below, will ensure the analysis to take place in the linearized regime where our model is valid, while still allowing a precise estimation of the measured parameters. By looking at the covariance between M_f and a_f and at the distance (induced by the covariance metric) between the true values M'_f, a'_f and the mean values $\bar{M}'_f(\kappa)$ and $\bar{a}'_f(\kappa)$, for each simulated signal I, we define the functions:

$$
\mathcal{B}(\kappa, I) \equiv \sqrt{D^2_k(\kappa) + \det C(\kappa)_I}
$$

$$
D^2_k(\kappa) \equiv \langle \Delta \bar{x}(\kappa)_I \rangle C^{-1}(\kappa)_I \Delta \bar{x}(\kappa)_I
$$

where $C(\kappa)_I$ is the two-dimensional covariance matrix between the posterior samples for M_f and a_f, $D(\kappa)$ is the (covariance induced) distance between the mean and the injected values and we defined the vector $\langle \Delta \bar{x}(\kappa)_I \rangle = \left((\bar{M}'_f(\kappa) - M'_f) / M_\odot, \bar{a}'_f(\kappa) - a'_f \right)$. The statistical uncertainty (larger for large start times), quantified by $\det C(\kappa)_I$, is controlled by the signal-to-noise left in the ringdown part of the signal when the preceding stages are cut from the analysis. The distance $D(\kappa)$ quantifies the systematic uncertainty in the recovered parameters and is a proxy for the mismatch between the linear ringdown model and the non-linear signal. We thus let the effective ringdown start time be the one that minimizes $\mathcal{B}(\kappa)$ (thus minimizing the combination of statistical and systematic uncertainties), defined as the average of $\mathcal{B}(\kappa, I)$ over all simulated signals. The dataset consisted of 12 simulations at 11 different, equally spaced, values of $\kappa \in [10, 20]$, thus employing a total of 132 simulations. Figure 1 illustrates the procedure by showing 90% credible regions for M_f and a_f, together with the value of the averaged $\mathcal{B}(\kappa)$ as a function of the ringdown start time, for a particular system which had initial total mass $M = 72 M_\odot$ and mass ratio $q = 1$. The value of κ minimizing $\mathcal{B}(\kappa)$ is $\kappa = 16$, which implies an effective ringdown start time of $t_{\text{start}} = t_{\text{peak}} + 16 M_f$ after the peak strain of the signal. This is consistent with what was found in a separate analysis for a single GW150914-like numerical signal \[11\]. The selection of the ringdown start time at $t_{\text{start}} = t_{\text{peak}} + 16 M_f$ uniquely determines the placement of the time-domain Planck window. When dealing with real signals, the window is initially applied once to the data with $t_{\text{start}} = t_{\text{peak}} + 16 M_{\text{IMR}}$, with t_{peak} from a model-independent reconstruction as explained above, and M_{IMR} from a routine estimate (before performing our ringdown-only analysis) using an inspiral-merger-ringdown model\[9\]. While the posterior distribution for M (obtained from the sampled values of M_f and q through fitting formulae) is being explored, the window on the template model is instead recalculated and reapplied at each step, with its starting time set to the proposed value $16 M_f$ after the peak strain.

![Graph](attachment:image.png)

FIG. 1. Estimated median values and 90% credible regions for final mass M_f (top panel) and spin a_f (central panel) as a function of the start time of the ringdown with respect to the strain peak time t_{peak} for a simulation with $M_f = 68.5 M_\odot$ and $a_f = 0.686$ (corresponding to $q = 1$). The bottom panel reports the value of the function $\mathcal{B}(\kappa)$, averaged over all simulations. The gray box highlights the value of $t_{\text{start}} - t_{\text{peak}} = 16 M_f$ for which $\mathcal{B}(\kappa)$ is at a minimum.

\[2\] By studying a set of numerical simulations, we verified that different definitions of the fixed start time of the data window have negligible impact on our results, since this choice just sets the amount of SNR being excluded from the analysis.
and damping times as predicted by GR as:

\[
\delta \omega_{lmn} (M_f, a_f) \rightarrow (1 + \delta \omega_{lmn}) \omega_{lmn} (M_f, a_f) \\
\tau_{mn} (M_f, a_f) \rightarrow (1 + \delta \tau_{mn}) \tau_{mn} (M_f, a_f)
\] (7)

where \(\delta \omega_{lmn}\) and \(\delta \tau_{mn}\) are relative deviations that we include as additional degrees of freedom in our inference. The parameterization in (7) has the advantages of being agnostic to specific families of violations and, most importantly, to be uniquely defined in GR, \(\delta \omega_{lmn} = \delta \tau_{mn} \equiv 0 \forall l, m, n\). The no-hair conjecture constrains the number of independent degrees of freedom of an axisymmetric black hole in GR to be two; therefore, the conjecture is tested by measuring at least three independent parameters characterizing the remnant geometry, which we chose to be \(M_f, a_f, \delta \omega_{220}\). In addition, the algorithm also samples all the other parameters as specified above. The priors are unchanged except on \(M_f, a_f\) where we restrict to values contained in the 90% credible intervals obtained from a earlier analysis including inspiral and merger. The prior on \(\delta \omega_{220}\) is chosen to be uniform in \([-1, 1]\). We consider GR signals with mass ratio \(q \leq 3\), for which the best QNM determined parameter is the frequency for the least-damped (2, 2, 0) mode. We thus focus on the accuracy of the measurement of \(\delta \omega_{220}\). Figure 2 shows the results of an analysis performed on a set of inspiral-merger-ringdown signals added to stationary Gaussian noise as described above. Upper bounds on the departures from the predictions of GR for \(\omega_{220}\) are smaller than \(\sim 1.5\%\) at the 90\% credible level already with six sources, while upper bounds on deviations from \(\tau_{220}\) predictions are smaller than \(\mathcal{O}(10\%)\). On the selected dataset higher modes deviations on both frequency and damping time are essentially unconstrained.

Conclusions – In this Letter, we demonstrated that observationally testing the black hole no-hair conjecture is possible within the next few years, once the LIGO-Virgo detector network reaches its design sensitivity. The ability to isolate the quasi-linear ringdown regime from the non-linear merger stage of the coalescence process enables estimating the parameters characterizing the ringdown. This also allows the identification of the time of the transition to be \(16M\) after the peak strain, \(M\) being the total mass of the merging system. Following our procedure, we showed that, with just \(\mathcal{O}(5)\) plausible signals, violations from the no-hair conjecture, seen as changes in the dominant QNM frequency and damping time, can be constrained to be smaller than, respectively, \(\sim 1.5\%\) and \(\sim 10\%\) at 90\% confidence. The results presented in this Letter can be extended to the recent spin-aligned ringdown model from Ref. [41]. This and results for actual signals in LIGO/Virgo data are deferred to a later publication.

Addendum – While this Letter was being finalized, a study by Brito and collaborators [36] appeared as a preprint. Although the method proposed is substantially different, their conclusions are similar to ours.

Acknowledgments G.C. would like to thank Alessandro Nagar for helpful discussions. The authors would like to thank Maria Haney for a critical reading of the manuscript and for valuable suggestions towards its improvement. L.v.d.S., K.W.T., J.M., A.S., A.G. and C.V.D.B. are supported by the research program of the Netherlands Organisation for Scientific Research (NWO). P.T.H.P., O.A.H., T.G.F.L. are partially supported by a grant from the Research Grants Council of the Hong Kong (Project No. CUHK 24304317) and the Direct Grant for Research from the Research Committee of the Chinese University of Hong Kong O.A.H. is also supported by the the Hong Kong PhD Fellowship Scheme (HKPFS) issued by the Research Grants Council (RGC) of Hong Kong. M.A. acknowledges NWO-Rubicon Grant No. RG86688. W.D.P. is funded by the “Rientro dei Cervelli Rita Levi Montalcini” Grant of the Italian MIUR. We are grateful for computational resources provided by Cardiff University, and funded by an STFC grant supporting UK Involvement in the Operation of Advanced LIGO. This work greatly benefited from discussions within the strong-field working group of the LIGO/Virgo collaboration.

gregorio.carullo@ligo.org

[1] F. Acernese et al. (Virgo), Class. Quant. Grav. 32, 024001 (2015), 1408.3978.

[2] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Living Reviews in
Advanced LIGO anticipated sensitivity curves, R. P. Kerr, Phys. Rev. Lett. 11, B. P. Abbott et al. (VIRGO, LIGO Scientific) (2013), D. C. Robinson, Phys. Rev. Lett. 116, 241103 (2016), URL https://link.aps.org/doi/10.1103/PhysRevLett.116.241103.

A. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), URL https://link.aps.org/doi/10.1103/PhysRevLett.116.061102.

A. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016), URL https://link.aps.org/doi/10.1103/PhysRevLett.116.241103.

B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. X6, 041015 (2016), 1606.04856.

B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys. Rev. Lett. 118, 221101 (2017), 1706.01812.

B. P. Abbott et al. (Virgo, LIGO Scientific), Astrophys. J. 851, L35 (2017), 1711.05579.

A. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.141101.

A. et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.161101.

A. et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 221101 (2016), URL https://link.aps.org/doi/10.1103/PhysRevLett.116.221101.

S. Bhagwat, M. Okounkova, S. W. Ballmer, D. A. Brown, M. Giesler, M. A. Scheel, and S. A. Teukolsky (2017), 1711.00926.

M. Cabrera, C. D. Capano, O. Fischer-Birnholtz, B. Krishnan, A. B. Nielsen, and A. H. Nitz (2017), 1711.09073.

B. P. Abbott et al. (VIRGO, LIGO Scientific) (2013), [Living Rev. Rel.19,1(2016)], 1304.0670.

R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).

C. V. Vishveshwara, Phys. Rev. D 1, 2870 (1970), URL https://link.aps.org/doi/10.1103/PhysRevD.1.2870.

W. H. Press, Astrophys. J. 170, L105 (1971).

S. Chandrasekhar and S. L. Detweiler, Proc. Roy. Soc. Lond. A344, 441 (1975).

J. Meidam, D. Shoemaker, and J. Healy, Phys. Rev. D 90, 124032 (2014), URL https://link.aps.org/doi/10.1103/PhysRevD.90.124032.

V. Ginzburg and L. Ozernoy, Zh. Eksp. Teor. Fiz. 147, 1030 (1964).

A. Doroshkevich, Y. B. Zeldovich, and I. Novikov, Sov. Phys. JETP 36 1 (7) (1965).

W. Israel, Phys. Rev. 164, 1776 (1967), URL https://link.aps.org/doi/10.1103/PhysRev.164.1776.

B. Carter, Phys. Rev. Lett. 26, 331 (1971), URL https://link.aps.org/doi/10.1103/PhysRevLett.26.331.

S. W. Hawking, Communications in Mathematical Physics 25, 152 (1972), ISSN 1432-0916, URL https://doi.org/10.1007/BF01877517.

D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975), URL https://link.aps.org/doi/10.1103/PhysRevLett.34.905.