Eficacia terapéutica de esquemas de Primaquina usados como alternativa al tratamiento estándar en la prevención de recaídas por *Plasmodium vivax*: Una revisión sistemática y meta-análisis

Lina Marcela Zuluaga-Idarraga1, María-Eulalia Tamayo Perez3,4, Daniel Camilo Aguirre-Acevedo3.

1 Grupo Malaria, Facultad de Medicina. Universidad de Antioquia. Medellín, Colombia.
2 Grupo Epidemiología y Bioestadística, Facultad de Medicina. Universidad CES. Medellín, Colombia.
3 Grupo Académico de Epidemiología Clínica, Facultad de Medicina. Universidad de Antioquia. Medellín, Colombia.
4 Departamento de Pediatría, Universidad de Antioquia, Hospital Universitario San Vicente Fundación, Medellín, Colombia.

Abstract

Objective: To compare efficacy and safety of primaquine regimens currently used to prevent relapses by *P. vivax*.

Methods: A systematic review was carried out to identify clinical trials evaluating efficacy and safety to prevent malaria recurrences by *P. vivax* of primaquine regimen 0.5 mg/kg/day for 7 or 14 days compared to standard regimen of 0.25 mg/kg/day for 14 days. Efficacy of primaquine according to cumulative incidence of recurrences after 28 days was determined. The overall relative risk with fixed-effects meta-analysis was estimated.

Results: For the regimen 0.5 mg/kg/day/7 days were identified 7 studies, which showed an incidence of recurrence between 0% and 20% with follow-up 60-210 days; only 4 studies comparing with the standard regimen 0.25 mg/kg/day/14 days and no difference in recurrences between both regimens (RR= 0.977, 95% CI= 0.670 to 1.423) were found. 3 clinical trials using regimen 0.5 mg/kg/day/14 days with an incidence of recurrences between 1.8% and 18.0% during 330-365 days were identified; only one study comparing with the standard regimen (RR= 0.846, 95% CI= 0.484 to 1.477). High risk of bias and differences in handling of included studies were found.

Conclusion: Available evidence is insufficient to determine whether currently PQ regimens used as alternative rather than standard treatment have better efficacy and safety in preventing relapse of *P. vivax*. Clinical trials are required to guide changes in treatment regimen of malaria vivax.

Introducción

La malaria causada por *Plasmodium vivax* es un problema importante de salud pública, se presentan cerca de 20 millones de casos de malaria en el mundo por esta especie, principalmente en Asia y América1,2. Esta especie se caracteriza por la formación de un estadio hepático conocido como hipnozoito que permanece latente en el hígado y puede reactivarse provocando una recaída después del tratamiento y la curación del episodio primario3. Se conocen diferentes patrones de recaídas para *P. vivax*, pero predominan dos: 1) El patrón de regiones tropicales que presenta una primera recaída tempranamente y posteriores recaídas en cortos intervalos de tiempo usualmente cada mes, este patrón predomina en Sur América, Sureste Asiático y Oceanía. 2) El patrón de regiones templadas predominantemente en Europa y Asia, presenta una primera recaída tardía usualmente entre 8 y 10 meses y posteriores episodios a corto plazo4,5. Aunque no está claro cuáles son las causas de reactivación de los hipnozoítos, este fenómeno es uno de los principales obstáculos para la eliminación de la malaria ya que mantienen activa su transmisión2,6.

Para el tratamiento de *P. vivax* se emplean la combinación de dos antimaláricos: Un esquizonticida sanguíneo que elimina las formas circulantes y un esquizonticida tisular que elimina las formas hepáticas7. Existen varios antimaláricos con acción contra las formas sanguíneas de *P. vivax*, tales como cloroquina, amodiaquina, artesunato, artemeter, lumefantrina, dihidroartemisinina, piperaquina, siendo la cloroquina el más empleado como primera línea de tratamiento para esta especie5,7. La primaquina (PQ) es el único antimalárico disponible para tratar las formas tisulares y prevenir las recaídas de *P. vivax*6.

Para evaluar la eficacia terapéutica de los esquemas de tratamiento para *P. vivax*, estos deben administrarse de manera supervisada y los pacientes deben ser monitoreados durante el primer mes post-tratamiento con el fin de asegurar la curación del ataque primario y posteriormente monitorear las recaídas8. usualmente estos estudios se llevan a cabo en regiones endémicas donde las recaídas y las reinfecciones (nueva infección desde la picadura del vector) pueden ser simultáneas y son indiferenciables por los métodos de diagnóstico convencionales, por este la evaluación de eficacia terapéutica de PQ se ha medido en función de las recurrencias que contempla tanto las recaídas como las reinfecciones9,10.

La Organización Mundial de la Salud (OMS) recomienda el uso de PQ bajo el esquema 0.25 mg/Kg/día durante 14 días (3.5 mg/Kg dosis total), para el cual se ha demostrado una mejor eficacia en 6 meses comparado con regímenes más cortos en 3 o 5 días de la misma dosis diaria (RR para desarrollo de recurrencias 3.18; IC 95%: 2.1 a 4.81 y RR= 10.05; IC 95%= 2.82 a 35.86; para los esquemas de 3 y 5 respectivamente con relación al esquema estándar)10,11. La incidencia de las recurrencias para el esquema convencional después de tratamiento supervisado varía desde 0% hasta 32% con un seguimiento entre 90 y 365 días11. Esta gran variación puede atribuirse a la complejidad de la evaluación de la eficacia terapéutica de este antimalárico, donde están implicados diversos factores tales como la eficacia del esquizonticida sanguíneo, duración del seguimiento, ajuste de la dosis por peso, absorción y metabolismo del medicamento, nivel de transmisión de malaria durante el estudio (en caso de ser zona endémica), patrón de recaídas de la cepa de *P. vivax*, origen de la cepa y método de diagnóstico para evaluar las recurrencias19.

Aunque la mayoría de los países endémicos siguen la recomendación de la OMS para el uso de PQ en el tratamiento de primera línea de la malaria por *P. vivax*, algunos países emplean actualmente regímenes alternativos tales como el doble de la dosis diaria convencional (0.5 mg/Kg/día) por 7 días (3.5 mg/Kg dosis total) o 14 días (7 mg/Kg dosis total)2, este último es recomendado por el Center for Disease Control and Prevention (CDC) de los Estados Unidos3. A pesar de que los cambios en los protocolos de tratamiento con PQ se han implementado con el fin de mejorar la adherencia y disminuir las recaídas, no se conoce la eficacia y seguridad de estos regímenes alternativos comparados con el régimen estándar.

El objetivo primario de esta revisión sistemática fue comparar la eficacia y seguridad de PQ 0.5 mg/Kg/día en 7 días con el régimen convencional de PQ 0.25 mg/Kg/día por 14 días en pacientes infectados con malaria por *P. vivax* no complicada. El objetivo secundario fue comparar el régimen PQ 0.5 mg/Kg/día en 14 días con el régimen convencional.

Materiales y Métodos

Se diseñó un protocolo (no publicado) siguiendo las recomendaciones de la colaboración Cochrane para revisiones sistemáticas y se siguió la guía PRISMA (preferred reporting items for systematic reviews and meta-analyses) para el reporte de los resultados13.

Criterios de elegibilidad

Se incluyeron ensayos clínicos con y sin asignación aleatoria que evaluaron el esquema 0.5 mg/Kg/día por 7 o 14 días en participantes con diagnóstico de malaria no complicada por *P. vivax* y un seguimiento mayor a 28 días. El desenlace principal fue la incidencia acumulada de recurrencias posterior a 28 días de seguimiento desde la primera dosis, definida como una infección por *P. vivax* en pacientes quienes previamente tuvieron una respuesta clínica adecuada al tratamiento. Como desenlace secundario se evaluaron los eventos adversos al tratamiento (erupción cutánea, vértigo, cefalea, dolor abdominal, náuseas, ictericia, hemoglobinemia, hemoglobunuria, agranulocitosis, leucopenia, cianosis, hipertensión, arritmia cardíaca).

Estrategia de búsqueda

Se realizaron búsquedas en las siguientes bases datos electrónicas: MEDLINE, EMBASE, LILACS, SCIELO, Registro Central de Ensayos Clínico Controlados del Grupo Cochrane y Clinical Trials. La búsqueda se hizo hasta Agosto 20 de 2015, sin restricciones de lenguaje o fecha de publicación. La estrategia de búsqueda en MEDLINE y EMBASE fue: “(malaria vivax) OR *Plasmodium vivax* AND (recurrence OR recurren* OR relapse) AND primaquine”.

Para la búsqueda en las demás bases de datos se emplearon las palabras clave “(malaria vivax) OR "vivax AND primaquine". Se revisaron las referencias de los artículos seleccionados en la búsqueda electrónica y de las revisiones sistemáticas y narrativas previamente publicadas. Se revisó la base de datos European Open Grey en búsqueda de estudios no publicados empleando...
el término “primaquine”. Finalmente se revisaron las memorias disponibles de los últimos eventos del ASTMH Annual Meeting, Congreso de la Asociación Latinoamericana de Parasitología y Congreso de la Asociación Colombiana de Parasitología y Medicina Tropical, para la búsqueda en estas memorias se empleó el término “primaquine”, o “primaquina” cuando la información solo estaba disponible en español.

Selección de los estudios
La elegibilidad de los estudios fue evaluada independientemente por dos de los tres autores de una forma estandarizada. Los desacuerdos se resolvieron por consenso entre los tres autores. En la fase de tamizaje se revisaron los títulos y resúmenes, en una segunda fase artículos completos y finalmente se llevó a cabo la extracción de información y evaluación de la calidad de los estudios incluidos.

Extracción de los datos
La información de cada estudio fue extraída por un autor y posteriormente confirmada por un segundo autor, esta incluyó el año de publicación, el lugar donde se realizó el estudio (país y región), número de brazos, intervención y grupo de comparación, ajuste de dosis de PQ de acuerdo al peso corporal, método empleado para el diagnóstico de recurrencias, si el seguimiento de los participantes se llevó a cabo en una zona endémica, tipo de población, si la parasitemia fue o no criterio de inclusión, realización de la prueba para deficiencia de glucosa 6-fosfato deshidrogenasa (G6PDH), administración o no simultánea de PQ con el esquizonticida sanguíneo, dosis diaria de PQ, tiempo de tratamiento, dosis total, supervisión del tratamiento, características basales (edad y género), número de participantes, tiempo de seguimiento, frecuencia absoluta de recurrencias, incidencia acumulada de recurrencias y eventos adversos asociados con el tratamiento con PQ.

Riesgo de sesgo en estudios individuales
Para evaluar la calidad de los estudios se siguió el acercamiento propuesto por el grupo GRADE (Grading of Recommendations Assessment, Development and Evaluation)14. Para ello se empleó la herramienta de Cochrane que incluye una lista de chequeo con la cual los autores de esta revisión sistemática evaluaron, la forma de aleatorización, el ocultamiento de la secuencia, el cegamiento de quien evaluó el desenlace, el manejo de datos incompletos y el sesgo de reporte selectivo de desenlaces.

Medidas de resumen y síntesis de resultados
La incidencia acumulada de recurrencias (número de eventos durante el periodo de seguimiento en el total de los participantes) se usó como medida resumen para los estudios individuales, además se calcularon los riesgos relativos (RR) y sus respectivos intervalos de confianza del 95% (IC 95%) para los estudios que compararon con el régimen estándar. Para el objetivo primario, comparar la eficacia y seguridad de PQ 0.5 mg/Kg/día en 7 días con el régimen convencional se realizó un meta-análisis de efectos fijos con el cual se estimó el RR global y su IC del 95%. Para el objetivo secundario, comparar el régimen PQ 0.5 mg/Kg/día en 14 días con el régimen convencional, no fue posible realizar un meta-análisis debido a que solo se encontró un estudio. La evaluación de la heterogeneidad de los resultados entre estudios se realizó con la prueba Chi Cuadrado con valor p <0.10 indicando heterogeneidad y con el estadístico I² asumiendo heterogeneidad importante si esta fue mayor a 20%.

Resultados
Selección de los estudios
Un total de 626 artículos fueron identificados en las bases de datos electrónicas, 213 en MEDLINE, 344 en EMBASE, 49 en LILACS, 28 en SCIELO, 103 en CENTRAL de Cochrane y 33 en Clinical Trials, adicionalmente se identificó un artículo en otras fuentes. 376 fueron duplicados y 251 artículos fueron tamiados, de los cuales se excluyeron 229. Veintitrés artículos fueron revisados en la segunda fase con lectura completa de los cuales 9 ensayos clínicos cumplieron con los criterios de elegibilidad; 7 estudios para la revisión sistemática cualitativa del objetivo primario15-21, de ellos 4 estudios compararon con el régimen estándar y se incluyeron en el meta-análisis15,17,19,20, los otros 3 no compararon con el régimen estándar16,18,21. Se identificaron 3 estudios para el objetivo secundario19,22,23 uno de los cuales también se incluyó en el objetivo primario; solo un estudio comparó con el régimen estándar19 y por lo tanto no se incluyeron estudios para la síntesis cuantitativa de este objetivo (Fig. 1).

Características de los estudios
En la Tabla 1 se presentan las principales características de los estudios. Tres estudios se llevaron a cabo en Brasil15,16,18, 2 en Perú19,20, uno en Colombia21, uno en India19, uno en Pakistán22 y uno en Indonesia23. Sólo un estudio fue llevado a cabo un una región no endémica donde la reinfección durante el seguimiento no era posible23. El tiempo de seguimiento fue variable con una media de 200 días (rango 60–365).

Figura 1. Flujograma de estudios incluidos. Se muestran los resultados del proceso de búsqueda y la selección de los estudios para su inclusión en esta revisión.
Región	País	Dosis ajustada por peso corporal en participantes con más de 60 kg de peso corporal	En el lugar donde se realizó hay transmisión de malaria	Tipo de población incluida	Parasitemia en el día de ingreso a criterio de inclusión (# parasites/µl)	Prueba para deficiencia de G6PDH antes de administrar PQ	Administración simultánea del esquizonticida sanguíneo y la PQ	Supervisión del tratamiento	Genotipificación para clasificación de recurrencias en recaídas y reinfecciones
América	Brasil	CQ 10 mg/kg dosis única + PQ 0.5 mg/kg/día 7 días	No aplicable	Población civil, niños entre 0 y 15 años	No	No	NE	NE	No
América	Brasil	CQ 25 mg/kg 3 días + PQ 0.25 mg/kg/día 14 días	NE	Población civil, mayores de 12 años	No	No	NE	Sí	No
América	Brasil	CQ 10 mg/kg dosis única + PQ 0.5 mg/kg/día 7 días	NE	Población civil, mayores de 12 años	No	No	NE	Sí	No
América	Perú	CQ 25 mg/Kg 3 días + PQ 0.25 mg/kg/día 14 días	No	Población civil, mayores de 14 años	No	No	NE	NE	No
América	Perú	CQ 25 mg/Kg 3 días + PQ 0.5 mg/kg/día 7 días	NE	Población civil, mayores de 12 años	No	No	NE	Sí	No
América	Brasil	CQ 50 mg 0 h y 12 h + PQ 30 mg/día 7 días	No	Población civil, mayores de 1 año	No	No	NE	Sí	No
América	Brasil	CQ 100 mg 0 h y 12 h + PQ 30 mg/día 7 días	No	Población civil, mayores de 14 años	No	No	NE	NE	No
América	Brasil	CQ 600 mg dosis única + PQ 30 mg/día 7 días	NE	Población civil, mayores de 12 años	No	No	NE	Sí	No
América	Colombia	CQ 25 mg/Kg 3 días + PQ 210 mg 7 días	NE	Población civil, niños menores de 18 años	S_i; mayor a 1,000 parásitos/µl	Si	Si	Si	No
América	Perú	CQ 25 mg/kg 3 días + PQ 0.5 mg/kg/día 7 días	NE	Población civil, mayores de 1 año	No	No	NE	NE	No
América	Perú	CQ 25 mg/kg 3 días + PQ 0.25 mg/kg/día 14 días	No	Población civil, mayores de 1 año	No	No	NE	Sí	No
Asia Oriental	Indonesia	Dihidroartesimina (120 mg) - piperquina (360 mg)/día 3 días + PQ después de día 28; 30 mg/día 14 días	No	Población militar	No	No	Si	Sí	No aplicable, todas las recurrencias son recaídas puesto que no hay posibilidad de reinfección
Asia Oriental	India	Quinina (10 mg/kg 3 veces al día 7 días) + PQ 30 mg/día 14 días	S_i; máximo 45 mg/día de PQ en participantes con más de 70 kg de peso corporal	No	S_i; entre 250 y 100,000 parásitos/µl	Si	Si	Sí	No
Asia Oriental	Pakistan	CQ 25 mg/kg 3 días + PQ 15 mg CQ 25 mg/kg/3 días + PQ 15 mg/día 14 días	No	Población civil, mayores de 18 años	No	No	NE	NE	No
Asia Oriental	India	CQ 25 mg/kg 3 días + PQ 30 mg/día 7 días	NE	Población civil, mayores de 18 años	No	No	Sí	No	No
Asia Oriental	India	CQ 25 mg/kg 3 días + PQ 30 mg/día 14 días	NE	Población civil, mayores de 3 años	No	No	Yes	Sí	No

G6PDH: Glucosa 6-fosfato deshidrogenasa. PQ: Primaquina. CQ: Cloroquina. AS: Artesunato. *Diagnóstico de recurrencia para todos los estudios se realizaron por microscopía
NE: no especificado
Los ensayos clínicos incluyeron un total de 1,996 participantes, 1,486 recibieron PQ 0.5 mg/Kg/día por 7 días y 510 participante PQ 0.5 mg/Kg/día por 14 días. Los participantes fueron captados de la población civil en ocho estudios15-22 y solo en uno fue población militar23. En cinco estudios realizaron la prueba de G6PDH antes de administrar la PQ23,19,21-23 mientras los otros no dieron información sobre esta prueba23,16,18,21. En todos los estudios se utilizó la microscopía como método de diagnóstico para detectar recurrencias de malaria por *P. vivax*. Solo dos estudios contemplaron una parasitemia mayor de 1,000 parásitos/µL como criterio de inclusión17.

Siete ensayos clínicos usaron PQ 0.5 mg/Kg/día por 7 días, combinado con cloroquina (CQ) 10 mg/Kg en una sola dosis15,16,18, o CQ 25 mg/Kg por 3 días17,19-21 o artesunato en dosis variables de 100, 150 y 200 mg por 7 días16. Tres estudios evaluaron PQ 0.5 mg/Kg/día por 14 días, combinada con quinina 10 mg/Kg 3 veces al día por 7 días23 o dihidroartemisinina (120 mg) más piperaquina (960 mg) diariamente por 3 días23 o CQ 25 mg/Kg por 3 días19,22. En todos los estudios la dosis máxima de PQ fue 30 mg por día, excepto en el estudio de Sutanto et al., donde un máximo de 45 mg por día fueron administrados a los participantes con peso corporal superior a los 70 Kg23.

Los regímenes usados para comparar la PQ 0.5 mg/Kg/día por 7 o 14 días fueron heterogéneos; tres estudios emplearon un brazo sin PQ para la comparación19,22,23, de ellos dos emplearon CQ 25 mg/Kg como esquizonticida sanguíneo19,22 y uno empleó artesunato23; cuatro estudios emplearon el régimen estándar de PQ para la comparación y ellos también usaron CQ15,17,19,20, otro usó PQ 0.75 mg/Kg/semana por 8 semanas22, mientras que el resto emplearon dosis más bajas de PQ con relación al régimen estándar16,18,21.

La proporción de incidencia acumulada de recurrencias de malaria por *P. vivax* fue el desenlace principal en todos los ensayos clínicos incluidos. Ocho estudios reportaron la evaluación de efectos adversos al tratamiento15,17,19-23 y solo en un estudio no fue claro si midió este desenlace18.

Riesgo de sesgo de los estudios

En la Figura 2a se presenta el juicio de los autores con relación a los ítems evaluados sobre calidad metodológica para cada uno de los estudios incluidos. En la Figura 2b se resume el riesgo de sesgo global para todos los ensayos clínicos, se representa para cada ítem el porcentaje de alto riesgo, bajo riesgo o no especificado en el estudio. Ninguno de los estudios incluidos fue ciego para los participantes ni tampoco consideraron el ocultamiento de la secuencia aleatoria, por lo tanto el riesgo de sesgo para estos ítems es alto. También se encontró un alto riesgo de sesgo en el cegamiento para quienes evaluaron el desenlace y en el manejo de las pérdidas durante el seguimiento. Los ítems evaluados con mejor calidad metodológica fueron la generación de la secuencia para asignación del tratamiento y el sesgo selectivo de reporte de resultados, la mayoría de los estudios generaron la secuencia a través de una tabla de número aleatorios y consideraron la evaluación de otros desenlaces tales como efectos adversos al tratamiento.

Resultados de estudios individuales.

En la Tabla 2 se presentan los resultados para cada estudio. Se encontró una media de incidencia acumulada de recurrencias de 8.41 % (rango 0% a 22.80%) para PQ 0.5 mg/Kg/día por 7 días15-21 en un periodo de seguimiento entre 90 y 210 días; y 8.38% (rango 1,90% a 19.40%) para PQ 0.5 mg/Kg/día por 14 días entre 180 y 365 días. Para los ensayos clínicos que compararon con el esquema estándar la media de recurrencias fue de 7.58% (rango 0 a 10.20%) para PQ en 7 días, 6.60% para PQ en 14 días y 8.32% (rango 5.00% a 13.50%) para el régimen estándar.

Síntesis de resultados.

Para el objetivo primario se realizó un meta-análisis, el cual mostró que el régimen de PQ 0.5 mg/Kg/día por 7 días no tiene una eficacia inferior al esquema estándar (RR= 0.977; IC 95%= 0.670–1.423) (Fig. 3). Aunque no se encontró heterogeneidad estadística entre los estudios incluidos en este análisis, los cuatro ensayos clínicos difieren en el tiempo de seguimiento15,17,19,20 y además presentaron alto riesgo de sesgo en varios de los ítems evaluados para calidad metodológica. No fue posible llevar a cabo los análisis de sensibilidad (según la asignación aleatoria de la intervención, tiempo de seguimiento y riesgo de sesgo) y el análisis de subgrupos (de acuerdo con esquizonticida sanguíneo empleado, grupo etario y tipo de población) que se plantearon debido al escaso número de estudios incluidos.

Para el objetivo secundario solo un estudio comparó PQ 0.5 mg/Kg/día por 14 días con el esquema estándar23, el RR de recurrencia a los 180 días de seguimiento fue 0.846 (IC 95%= 0.484–1.477). No fue posible realizar un meta-análisis.
Discusión

Una prioridad para el control y eliminación de la malaria en el mundo, es tener un tratamiento eficaz para prevenir recaídas de *P. vivax*24. Algunas revisiones sistemáticas previas han comparado la eficacia terapéutica del esquema estándar de PQ (0.25 mg/Kg/día por 14 días) más usado para prevenir las recurrencias de malaria por *P. vivax* con otros regímenes. Incluyendo estudios hasta el año 2012, han mostrado que las dosis totales inferiores al esquema estandar tienen menor eficacia10,11,25; sin embargo, ninguna de las revisiones sistemáticas previas se ha enfocado en evaluar la eficacia de los dos esquemas de PQ que actualmente se usan en el mundo como alternativa para mejorar la eficacia o adherencia del esquema estándar PQ (0.5 mg/Kg/día por 7 y PQ 0.5 mg/Kg/día por 14 días), por esto la presente revisión sistemática abordó esta comparación.

Nosotros sólo incluimos ensayos clínicos con un seguimiento superior a 28 días, identificamos cuatro ensayos clínicos que compararon el esquema estándar de PQ con 0.5 mg/Kg/día por 7, y solo un estudio que comparó con PQ 0.5 mg/Kg/día por 14 días. Adicionalmente identificamos cinco ensayos clínicos donde se evaluaron alguno de estos dos esquemas alternativos pero sin la comparación con el régimen estándar. Esta revisión sistemática pudo dejar por fuera otros estudios, puesto que aquí solo consideramos algunas de las fuentes de búsqueda diferentes a bases de datos electrónicas (European Open Grey, búsqueda de referencias, búsqueda en registro de ensayos clínicos y búsqueda en algunas memorias de eventos académicos), pero no se incluyó la búsqueda de resúmenes en otros congresos relacionados con...
malaria y el contacto con investigadores para tratar de identificar otros estudios no publicados o en curso.

Teniendo en cuenta que las recurrencias pueden presentarse en un tiempo inferior a 28 días después del episodio primario, es posible que hayan quedado por fuera algunos estudios, sin embargo, nosotros limitamos la revisión sistemática a estudios con seguimiento superior a 28 días puesto que la mayoría de esquemas de tratamiento empleados para el tratamiento de la malaria por *P. vivax* emplean al menos un esquizonticida sanguíneo de larga vida media como la cloroquina y generalmente se evalúa la respuesta terapéutica a ellos durante el primer mes pos-tratamiento, por lo que nosotros dejamos por fuera estos estudios con el fin de evitar una sobre estimación de la incidencia de recurrencias que podría ser causada por una recrudescencia de parásitos sanguíneos (falla terapéutica del esquizonticida sanguíneo) y no por falta de eficacia de la PQ.

Nosotros observamos una media de 8.38% de incidencia de recurrencias para el régimen que duplica la dosis total de PQ, es decir 0.5/mg/Kg/día por 14 días, este valor fue similar a la media para el régimen estándar según lo reportado en una revisión sistemática previa (9.9%) , e incluso es aparentemente igual a la media encontrada para el régimen PQ 0.5 mg/Kg/día por 7 días (8.41%). Nosotros atribuimos estos resultados a la heterogeneidad entre los estudios, aunque la prueba Chi² y estadístico I² no mostraron tal heterogeneidad posiblemente por falta de potencia; se encontraron diferencias importantes en los tiempos de seguimiento, el año de realización del estudio, los esquizonticidas sanguíneos empleados, además de las deficiencias en la conducción de los estudios que ponen en duda la validez de las comparaciones.

Otra fuente de heterogeneidad en los resultados podría ser la procedencia de los participantes, puesto que existen diferentes patrones de recaídas según la región geográfica; nosotros incluimos ensayos clínicos de tres regiones geográficas diferentes (Américas, Sureste Asiático y Mediterráneo Oriental) para las cuales se ha reportado que el patrón de recaídas más común es el de intervalos cortos, por esto consideramos que la incidencia de recurrencias encontrada para la PQ en esta revisión sistemática puede ser más alta de lo que podría encontrarse en otras regiones tales como Europa o África donde es más frecuente el patrón de recaídas tardío. Aunque no existe suficiente conocimiento acerca de la distribución de cepas de *P. vivax* de acuerdo al patrón de recaídas, hay alguna evidencia de la presencia simultánea de varios patrones en una misma región, lo que puede explicar la variabilidad encontrada para los estudios de la región de las Américas incluidos en esta revisión.

La evidencia encontrada en esta revisión sistemática se considera de baja calidad debido al alto riesgo de sesgo identificado en los ensayos clínicos incluidos o a la falta de claridad para los ítems considerados en la evaluación de la calidad metodológica, este es el principal aspecto que soporta la falta de evidencia para comparar los regímenes de PQ actualmente usados y elegir el mejor régimen para prevenir las recaídas de *P. vivax*. La mayoría de los estudios tuvieron limitaciones metodológicas en el ocultamiento de la secuencia aleatoria, el cegamiento de los participantes y del personal que evaluó el desenlace y en el manejo de datos incompletos; estas limitaciones pudieron sesgar los resultados favoreciendo la eficacia (menor incidencia de recurrencias) del régimen PQ 0.5 mg/Kg/día en 7 o 14 días con relación al esquema estándar.

Ocho de los nueve ensayos clínicos incluidos en esta revisión evaluaron efectos adversos al tratamiento, ellos consideraron principalmente el dolor abdominal, náuseas y vómito, prurito, mareo, epigastralgia, hemólisis y metahemoglobinemia, que son los principales efectos adversos descritos para la PQ. Es posible que algunos estudios no dieran mayores detalles de los eventos adversos al tratamiento debido a su baja frecuencia en pacientes con actividad normal de la enzima G6PDH, que fue uno de los criterios de inclusión para administrar la PQ en la mayoría de los estudios incluidos.

Durante la conducción de esta revisión sistemática nosotros identificamos cuatro estudios observacionales prospectivos que evaluaron los regímenes de PQ de nuestro interés. Un estudio evaluó la eficacia del régimen PQ 0.5 mg/Kg/día durante 14 días usando atovacuona-proguanil como esquizonticida sanguíneo; en este estudio se reportó una incidencia de recurrencias del 5% en 84 días, similar a lo que nosotros encontramos en los ensayos...
clínicos con este régimen de PQ. Se encontraron tres estudios observacionales para el esquema PQ 0.5/mg/Kg/día por 7 días más CQ 25 mg/Kg en 3 días28,30,31, que mostraron resultados contradictorios a los ensayos clínicos incluidos en esta revisión; la incidencia de recurrencias para ellos fue entre 26% y 76% con un seguimiento entre 180 y 720 días. Esta gran diferencia además de ser explicada por limitaciones metodológicas y falta de uniformidad en el tiempo de seguimiento, son explicadas por las diferencias en el método de detección de las recurrencias; dos estudios observacionales incluyeron un diagnóstico molecular (PCR) para evaluar el desenlace28,31, debido a que esta técnica tiene un límite de detección inferior a la microscopía22,33, ellos encontraron recurrencias sub-microscópicas y asintomáticas que evidenciaron una menor eficacia de la PQ.

Solo dos estudios consideraron la caracterización genética de las recurrencias para clasificarlas en recaídas o reinfecciones17,19, en ambos estudios menos del 50% de las recurrencias fueron clasificadas como recaídas. Aunque los métodos seleccionados para la genotipificación tienen limitaciones, se resalta este hallazgo para resaltar la importancia de incluir la caracterización genética de P. vivax en los estudios que pretendan evaluar recurrencias puesto que podría contribuir a una mejor aproximación de la eficacia terapéutica de la PQ.

Conclusión

El régimen de PQ 0.5 mg/Kg/día por 7 o 14 días es actualmente empleado en algunos países en lugar del tratamiento estándar para prevenir las recaídas por P. vivax, aunque aquí se encontró que aparentemente el régimen por 7 días no es inferior al estándar, esta revisión sistemática sugiere que debido al escaso número de ensayos clínicos reportados y a las limitaciones metodológicas de los mismos, no hay suficiente evidencia para determinar cuál de los regímenes de PQ usados como tratamiento de primera línea para P. vivax en el mundo tiene la mejor eficacia y seguridad para prevenir las recaídas. Es necesario llevar a cabo ensayos clínicos de alta calidad metodológica para comparar estos regímenes y tener así alternativas terapéuticas para prevenir las recaídas, que orienten los cambios en los protocolos de tratamiento para la malaria por P. vivax.

Conflicto de interés:

Los autores declaran que no existe conflicto de intereses.

Agradecimientos:

Los autores desean agradecer a los profesores de la Universidad de Antioquia Dr. Jorge Donado, Dr. Carlos Rojas y Dra. Silvia Blair por los comentarios al manuscrito.

Financiación:

Este trabajo fue financiado por la Universidad de Antioquia, Colombia a través de su Comité para el Desarrollo de la Investigación (CODI), Grupo Malaria, Facultad de Medicina y Grupo Epidemiología, Facultad Nacional de Salud Pública.

Referencias

1. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, et al. The international limits and population at risk of *Plasmodium vivax* transmission in 2009. PLoS Negl Trop Dis. 2010; 4(8): e774.

2. World Health Organization. World Malaria Report 2013. 2014. Disponible en: http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/.

3. White NJ. Determinants of relapse periodicity in *Plasmodium vivax* malaria. Malar J. 2011; 10: 297.

4. Garnham PC, Bray RS, Bruce-Chwatt LJ, Draper CC, Killick-Kendrick R, Sergiev PG, et al. A strain of *Plasmodium vivax* characterized by prolonged incubation: morphological and biological characteristics. Bull World Health Organ. 1975; 52(1): 21-32.

5. Krotoski WA, Garnham PC, Cogswell FB, Collins WE, Bray RS, Gwasz RW, et al. Observations on early and late post-sporozoite tissue stages in primate malaria. IV. Pre-erythrocytic schizonts and/or hypnozoites of Chesson and North Korean strains of *Plasmodium vivax* in the chimpanzee. Am J Trop Med Hyg. 1986; 35(2): 263-74.

6. Baird JK. Malaria caused by *Plasmodium vivax*: recurrent, difficult to treat, disabling, and threatening to life--the infectious bite preempts these hazards. Pathog Glob Health. 2013; 107(8): 475-9.

7. World Health Organization. Guidelines for the treatment of malaria. 2015. Available at: http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_eng.pdf.

8. World Health Organization. Methods for surveillance of antimalarial drug efficacy. 2009. Available at: http://www.who.int/malaria/publications/atoz/9789241597531/en/

9. Baird JK. Resistance to therapies for infection by *Plasmodium vivax*. Clin Microbiol Rev. 2009; 22(3): 508-34.

10. Galappaththy GN, Tharyan P, Kirubakaran R. Primaquine for preventing relapse in people with *Plasmodium vivax* malaria treated with chloroquine. Cochrane Database Syst Rev. 2013; 10: CD004389.

11. John GK, Douglas NM, von Seidlein L, Nosten F, Baird JK, White NJ, et al. Primaquine radical cure of *Plasmodium vivax*: a critical review of the literature. Malar J. 2012; 11: 280.

12. Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg. 2006; 75(3): 402-15.

13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151(4): 264-9, W64.

14. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol. 2011; 64(4): 407-15.

15. Abdon NP, Pinto AY, das Silva Rdo S, de Souza JM. Assessment of the response to reduced treatment schemes for vivax malaria. Rev Soc Bras Med Trop. 2001; 34(4): 343-8.
16. da Silva Rdo S, Pinto AY, Calvosa VS, de Souza JM. Short course schemes for vivax malaria treatment. Rev Soc Bras Med Trop. 2003; 36(2): 235-9.

17. Durand S, Cabezas C, Lescano AG, Galvez M, Gutierrez S, Arrospide N, et al. Efficacy of three different regimens of primaquine for the prevention of relapses of Plasmodium vivax malaria in the Amazon Basin of Peru. Am J Trop Med Hyg. 2014; 91(1):18-26.

18. Pinto AY, Ventura AM, Calvosa VS, Silva Filho MG, Santos MA, Silva RS, et al. Clinical efficacy of four schemes for vivax malaria treatment in children. J Pediatr (Rio J). 1998; 74(3): 222-7.

19. Rajgor DD, Gogtay NJ, Kadam VS, Kocharekar MM, Parulekar MS, Dalvi SS, et al. Antirelapse Efficacy of Various Primaquine Regimens for Plasmodium vivax. Malar Res Treat. 2014; 2014: 347018.

20. Solari-Soto L, Soto-Tarazona A, Mendoza-Requena D, Llanos-Cuentas A. Ensayo clínico del tratamiento de la malaria vivax con esquema acortado de primaquina comparado con el esquema tradicional. Rev Peruana Soc Med Interna. 2002; 15(4): 197–199.

21. Carmona-Fonseca J. Malaria vivax en niños: recurrencias con dosis total estándar de primaquina administrada durante 3 frente a 7 días. Iatreia. 2010; 23: 10-20.

22. Leslie T, Mayan I, Mohammed N, Erasmus P, Kolaczinski J, Whitty CJ, et al. A randomised trial of an eight-week, once weekly primaquine regimen to prevent relapse of Plasmodium vivax in Northwest Frontier Province, Pakistan. PloS One. 2008; 3(8): e2861.

23. Sutanto I, Tjahjono B, Basri H, Taylor WR, Putri FA, Meilia RA, et al. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother. 2013; 57(3): 1128-35.

24. Diagana TT. Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Discov Today. 2015; 20(10): 1265-70.

25. Carmona-Fonseca J. Primaquine and relapses of Plasmodium vivax. Meta analysis of controlled clinical trials. Rev Bras Epidemiol. 2015; 18(1): 174-93.

26. World Health Organization. Methods and techniques for assessing exposure to antimalarial drugs in clinical field studies. 2010. Disponible en: http://apps.who.int/iris/bitstream/10665/44653/1/9789241502061_eng.pdf.

27. Kim JR, Nandy A, Maji AK, Addy M, Dondorp AM, Day NP, et al. Genotyping of Plasmodium vivax reveals both short and long latency relapse patterns in Kolkata. PloS One. 2012; 7(7): e39645.

28. Delgado-Ratto C, Soto-Calle VE, Van den Eede P, Gamboa D, Rosas A, Abatih EN, et al. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar J. 2014; 13: 8.

29. Looareesuwan S, Wilairatana P, Glanarongran R, Indravijit KA, Supeeranontha L, Chinnapha S, et al. Atovaquone and proguanil hydrochloride followed by primaquine for treatment of Plasmodium vivax malaria in Thailand. Trans R Soc Trop Med Hyg. 1999; 93(6): 637-40.

30. Orjuela-Sanchez P, da Silva NS, da Silva-Nunes M, Ferreira MU. Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia. Am J Trop Med Hyg. 2009; 81(6): 961-8.

31. Van den Eede P, Soto-Calle VE, Delgado C, Gamboa D, Grande T, Rodriguez H, et al. Plasmodium vivax sub-patent infections after radical treatment are common in Peruvian patients: results of a 1-year prospective cohort study. PloS One. 2011; 6(1): e16257.

32. Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010; 9: 254.

33. Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012; 3: 1237.