Critical appraisal of laparoscopic vs open rectal cancer surgery

Winson Jianhong Tan, Min Hoe Chew, Angela Renayanti Dharmawan, Manraj Singh, Sanchalika Acharyya, Carol Tien Tau Loi, Choong Leong Tang

AIM: To evaluate the long-term clinical and oncological outcomes of laparoscopic rectal resection (LRR) and the impact of conversion in patients with rectal cancer.

METHODS: An analysis was performed on a prospective database of 633 consecutive patients with rectal cancer who underwent surgical resection. Patients were compared in three groups: Open surgery (OP), laparoscopic surgery, and converted laparoscopic surgery. Short-term outcomes, long-term outcomes, and survival analysis were compared.

RESULTS: Among 633 patients studied, 200 patients had successful laparoscopic resections with a conversion rate of 11.1% (25 out of 225). Factors predictive of survival on univariate analysis include the laparoscopic approach (P = 0.016), together with factors such as age, ASA status, stage of disease, tumor grade, presence of perineural invasion and vascular emboli, circumferential resection margin < 2 mm, and postoperative adjuvant chemotherapy. The survival benefit of laparoscopic surgery was no longer significant on multivariate analysis.

Abstract

AIM: To evaluate the long-term clinical and oncological outcomes of laparoscopic rectal resection (LRR) and the impact of conversion in patients with rectal cancer.

METHODS: An analysis was performed on a prospective database of 633 consecutive patients with rectal cancer who underwent surgical resection. Patients were compared in three groups: Open surgery (OP), laparoscopic surgery, and converted laparoscopic surgery. Short-term outcomes, long-term outcomes, and survival analysis were compared.

RESULTS: Among 633 patients studied, 200 patients had successful laparoscopic resections with a conversion rate of 11.1% (25 out of 225). Factors predictive of survival on univariate analysis include the laparoscopic approach (P = 0.016), together with factors such as age, ASA status, stage of disease, tumor grade, presence of perineural invasion and vascular emboli, circumferential resection margin < 2 mm, and postoperative adjuvant chemotherapy. The survival benefit of laparoscopic surgery was no longer significant on multivariate analysis.
analysis ($P = 0.148$). Neither 5-year overall survival (70.5% vs 61.8%, $P = 0.217$) nor 5-year cancer free survival (64.3% vs 66.6%, $P = 0.854$) were significantly different between the laparoscopic group and the converted group.

CONCLUSION: LRR has equivalent long-term oncologic outcomes when compared to OP. Laparoscopic conversion does not confer a worse prognosis.

Key words: Rectal cancer; Laparoscopic; Outcomes; Conversion; Prognosis

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Laparoscopic rectal resection (LRR) remains controversial in view of concerns over its long term oncological outcome and the adverse impact conversion may have on survival. Our retrospective study has demonstrated that LRR has equivalent long-term oncologic outcomes when compared to open surgery. Conversion was also found not to confer a worse prognosis.

INTRODUCTION

Surgical management for rectal cancer remains challenging. With the advent of total mesorectal excision (TME) in rectal cancer surgery, local recurrence rates have improved significantly and there is an increasing rate of sphincter-saving surgery when technically and oncologically feasible. However, despite the use of pre- or post-operative adjuvant chemoradiotherapy, local and distant tumor recurrence remains a concern.

While laparoscopic colectomy has established its oncologic equivalence compared to open surgery (OP) in colon cancer, laparoscopic rectal resection (LRR) for rectal cancer remains controversial. Although LRR has been shown to confer short-term benefits, in terms of blood loss, length of stay, recovery of bowel function, and cosmesis, concerns about the long-term oncologic outcomes persist.$^{[1-9]}$. The necessity for a TME creates a more difficult learning curve for LRR compared to a laparoscopic colectomy. There is also the need to achieve a balance between sphincter preservation without compromising the adequacy of the distal resection margin.$^{[9]}$. These challenges induce a higher rate of conversion compared to colonic resection.$^{[2]}$ and a recent Cochrane review has noted that conversion rates in LRR can be as high as 35%.$^{[7]}$. This is an important concern as it has been suggested that conversion to OP after attempted LRR not only has higher morbidity, but may also adversely affect long-term oncologic outcomes.$^{[2,8-11]}$. Several publications have attempted to address this issue but the study populations often consisted of a mixture of patients with colon and rectal cancer.$^{[12-14]}$. This is suboptimal as the prognosis and recurrence pattern of colon and rectal cancer are distinctly different. There are few publications that address the long-term outcomes of laparoscopic conversion specifically in the context of rectal cancer.$^{[10,15,16]}$.

Therefore, the objective of this study is to evaluate the long-term clinical and oncological outcomes of LRR as well as the impact of laparoscopic conversion on the long-term oncological outcomes of patients with rectal cancer.

MATERIALS AND METHODS

An analysis of a prospectively maintained database of 633 consecutive patients with rectal cancer who underwent surgical resection from January 2005 to December 2009 in the Department of Colorectal Surgery at Singapore General Hospital was performed. Patients who presented with recurrent cancer, Inflammatory Bowel Disease, Familial Adenomatous Polyposis, or other polyposis syndromes were excluded. Data on patient demographics, pre-operative, operative, and post-operative course were collected prospectively and maintained in a database by a research assistant.

All cases were performed by consultant surgeons within the department. The decision for laparoscopic or open approach was left to the discretion of the individual surgeon.

For the laparoscopic approach, we preferred the medial approach with early mobilization, ligation and division of the inferior mesenteric artery at its origin after the ureter has been identified. The inferior mesenteric vein was ligated and divided at the inferior border of the pancreas. This was followed by mobilization of the left colon from the lateral sidewall, with mobilization of the splenic flexure if deemed necessary to achieve a tension free anastomosis. Total meso-rectal excision or wide meso-rectal excision up to at least 2 cm distal to the tumor was performed for all cases when feasible. Distal transection was performed using articulating staplers. The specimen is exteriorized via extension of the port sites with proximal transection performed extracorporeally. Pneumoperitoneum is then re-established and intra-corporeal circular stapled anastomosis performed under direct vision.

OP was performed via a midline laparotomy or left iliac fossa incision as described in a previous publication.$^{[17]}$.

Patients were compared in three groups: OP, laparoscopic surgery (LS), and converted laparoscopic surgery (CON) with their definitions as follows: (1) OP: Completion of surgical resection and anastomosis via
midline laparotomy or left iliac fossa incision; (2) LS: Surgery accomplished using the laparoscopic technique as described above. Patients analyzed under the LS group included patients who underwent laparoscopically assisted surgery as described in a previous publication by our department \(^{[18]}\). These were patients who had vascular ligation and the majority of bowel mobilization was accomplished intra-corporeally via the laparoscopic approach with the following modifications: (a) extension of one port site wound or the utilization of a new wound to complete colonic mobilization and bowel transection for reasons such as the presence of adhesions, excessive tumor fixation, or uncertain tumor location; (b) extracorporeal rectal anastomosis due to technical difficulties such as a narrow pelvis, bulky tumor, or defective equipment; and (c) extension of wounds to repair the anastomosis due to leaks on testing after completion of a pure laparoscopic resection; (3) CON: The laparoscopic approach is aborted after insertion of ports and initial bowel mobilization. This can be due to the presence of dense adhesions, undiagnosed tumor invasion of surrounding organs, or trouble-shooting complications such as uncontrolled bleeding, bowel perforation, or injury of adjacent viscera such as ureters or small bowel. Conversion is also defined if the anastomosis requires a complete takedown and revision.

**Pre-operative staging**

All cases were evaluated preoperatively by plain chest radiograph/computed tomography (CT) of the thorax and CT of the abdomen and pelvis. T-staging with an endo-rectal ultrasound was performed pre-operatively in clinical T1 and T2, mid and low rectal tumors. Magnetic resonance imaging (MRI) of the pelvis was performed for all lower rectum tumors. Upper rectum is defined as 11-15 cm, mid rectum as 6-10 cm, and lower rectum as 0-5 cm from the anal verge. These measurements were recorded by the consultant surgeon after digital rectal examination and endoscopy. Disease staging according to the American Joint Committee Cancer (AJCC) Cancer Staging Manual 7th Edition was adopted \(^{[19]}\).

**Neoadjuvant/adjuvant therapy**

In our institution, a selective neoadjuvant chemoradiation policy is adopted based on data from previous publications that have consistently shown low local recurrence rates with oncologically adequate surgery alone \(^{[20-22]}\). If sphincter preservation with good margins can be performed after initial evaluation, neoadjuvant treatment is usually not routinely recommended in our local population. Neoadjuvant treatment is mainly performed in patients who present with a threatened circumferential resection margin, defined as within 2 mm of the circumferential resection margin based on pre-operative staging.

The neoadjuvant regimen consisted of long-course preoperative radiotherapy (45-50 Gy in 25-28 daily fractions over 5 wk) combined with 5-fluorouracil or oral capecitabine. Patients proceeded with surgical resection 6 to 8 wk after completion of neoadjuvant chemoradiotherapy. Decision for adjuvant chemotherapy was decided after discussion at a multi-disciplinary tumor board meeting.

Perioperative care for all patients was standardized using existing clinical care pathways.

**Follow-up details**

Post-operatively, the patients were followed-up at three monthly intervals for the first two years, six monthly for the next three years, and then yearly thereafter. At each consultation, carcinoembryonic antigen (CEA) levels were measured and full history and physical examination (including digital rectal examination) were performed. Colonoscopy was performed within six months of surgery if initial complete evaluation was not possible pre-operatively due to tumor obstruction or stenosis. Those who had an initial complete evaluation underwent colonoscopy at the first year follow up, and again at 3-yearly intervals post-operatively. Patients with suspicious symptoms and signs of rising CEA trend on follow-up will be evaluated earlier with colonoscopy and/or radiological imaging (including computerized tomography of the chest, abdomen, and pelvis, bone scan, and positron emission tomography scans if applicable).

Local recurrence was defined as the first clinical, radiologic, and/or pathologic evident tumor of the same histological type, within the true pelvis, at the anastomosis or in the region of the anastomosis. Distant recurrence was defined as similar evidence of spread outside the primary tumor at sites including but not limited to the liver, lungs, bone, brain, and para-aortic region. Patients who were first diagnosed with local recurrence but later developed distant metastasis were classified under the local recurrence group. Mortality data and the cause of death were obtained from the Singapore Cancer Registry.

Short-term outcomes assessed included wound infections, post-operative ileus, anastomotic leaks, pneumonia, peri-operative cardiac events, duration of hospitalization, and 30-d mortality.

Long-term outcomes assessed included the occurrence of intestinal obstruction, incisional hernias, and the oncologic outcomes of local/distal recurrence.

Survival analysis was performed via the comparison of progression free survival and overall survival (OS).

**Statistical analysis**

All statistical analysis was performed by a qualified biostatistician. Demographic and clinicopathological characteristics of the patients were compared across the 3 groups using \( \chi^2 \) and \( t \) tests for categorical and continuous variables respectively. Distribution of selected short- and long-term outcomes among the patients.
undergoing surgery was compared using Fisher's exact test. Comparison of the median duration of hospitalization was performed using the Kruskal–Wallis nonparametric test as it deviates from the Normality assumption.

OS was calculated from the date of diagnosis to the date of death or last follow-up. Cancer-free survival (CFS) was calculated from the date of diagnosis to the date of disease progression (local or distant relapse) or last follow-up. The 5-year OS and CFS were estimated using Kaplan Meier method and the survival curves were compared using log-rank tests. Multivariate Cox proportional hazards models, using variables found to be significant on univariate analysis, were used to estimate hazard ratios with their 95%CI. A significance level of 0.05 was chosen throughout. All analyses were performed using R 3.1.1 (2014, Vienna, Austria).

RESULTS

Six hundred and thirty-three patients underwent surgical resection for primary rectal cancers during the study duration. The demographic characteristics of the study population are illustrated in Table 1. Two hundred and twenty-five patients (35.5%) underwent attempted laparoscopic resection of the rectal tumor. Among these, 200 patients had successful laparoscopic resection with 77 patients (34.2%) requiring a laparoscopic-assisted approach, predominantly due to anatomic difficulties during the LS (50 out of 77 patients). Patients in the OP group were older [66 years old (OP) vs 59 years (LS), \(P < 0.001\)] and had slightly higher proportion of patients with ASA 3 and 4 [13.5% (OP) vs 10% (LS), \(P = 0.002\)]. The proportion of patients who underwent neoadjuvant chemotherapy and radiotherapy was also higher among patients in the OP group compared to LS group [3.4% vs 2.5% (chemotherapy) and 2.9% vs 1.5% (radiotherapy) respectively]. The laparoscopic conversion rate was 11.1% (25 out of 225) with the reasons for conversion illustrated in Table 2. All conversions to OP were unplanned pre-operatively. Close to half (12 out of 25) of the patients were converted due to the presence of excessive adhesions. The Oncologic and peri-operative outcomes of the entire study cohort are presented in Table 3. Duration of surgery was significantly longer in the LS compared to the OP group [162 min (LS) vs 119 min (OP), \(P < 0.001\)]. Length of hospitalization was shorter in the LS group compared to OP group (7 d vs 8 d, \(P < 0.001\)).

Comparison of short-term and long-term outcomes between the 3 groups is illustrated in Table 4 and there were no significant differences between the 3 groups. The 5-year CFS and OS for the 3 group of patients is illustrated in Figure 1. Results of the univariate and multivariate analyses for predictive factors of survival are summarized in Table 5. Factors found to be predictive of survival on univariate analysis include the laparoscopic approach (\(P = 0.016\)), together with factors such as age, ASA status, stage of disease, tumor grade, presence of perineural invasion and vascular emboli, CRM < 2 mm, and postoperative adjuvant chemotherapy. The survival benefit of LS was no longer significant on multivariate analysis (\(P = 0.148\)) and only age, stage of disease, tumor grade, and CRM < 2 mm remained significant. After excluding open cases, neither 5-year OS (70.5% vs 61.8%, \(P = 0.217\)) nor 5-year CFS (64.3% vs 66.6%, \(P = 0.854\)) were

### Table 1 Demographic characteristics of study cohort

| Variables               | Lap (%) | Converted (%) | Open (%) | \(P\) value |
|-------------------------|---------|---------------|----------|-------------|
| Gender                  |         |               |          |             |
| Male                    | 128 (64)| 15 (60)       | 243 (60) | 0.570       |
| Female                  | 72 (36)| 10 (40)       | 165 (40) |             |
| Median age (yr)         |         |               |          |             |
|                         | 59      | 63            | 66       | < 0.001     |
| Ethnic group            |         |               |          |             |
| Chinese                 | 172 (86)| 22 (88)       | 352 (86) | 0.368       |
| Malay                   | 9 (4.5)| 0             | 19 (4.7) |             |
| Indian                  | 4 (2.0)| 2 (8)         | 18 (4.4) |             |
| Others                  | 15 (7.5)| 1 (4)        | 19 (4.7) |             |
| ASA                     |         |               |          |             |
| 1                       | 75 (37.5)| 4 (16)     | 84 (20.6)| 0.002       |
| 2                       | 105 (52.5)| 20 (80)   | 267 (65) |             |
| 3                       | 20 (10.0)| 1 (4)        | 55 (13.5)|             |
| 4                       | 0       | 0             | 2 (0.4)  |             |
| Location of tumor       |         |               |          |             |
| Lower rectum            | 68 (34) | 8 (32)        | 131 (32) | 0.381       |
| Middle rectum           | 90 (45) | 10 (40)       | 212 (52) |             |
| Upper rectum            | 42 (21)| 7 (28)        | 65 (15)  |             |
| Type of surgery         |         |               |          |             |
| LAR (w/o stoma)         | 30 (15)| 4 (16)        | 24 (5.9) | 0.007       |
| LAR (w/o stoma)         | 27 (13.5)| 4 (16)     | 82 (20.1)|             |
| ULAR                    | 32 (16)| 5 (20)        | 76 (18.6)|             |
| APR                     | 98 (49)| 12 (48)       | 193 (47.3)|             |
| Neo-adjuvant therapy    |         |               |          |             |
| Chemo-therapy           | 5 (2.5)| 0             | 14 (3.4) | < 0.001     |
| Radio-therapy           | 3 (1.5)| 0             | 12 (2.9) | < 0.001     |
| Adjuvant therapy        |         |               |          |             |
| Chemo-therapy           | 65 (32.5)| 15 (60)   | 134 (32.8)| 0.071      |
| Radio-therapy           | 28 (14)| 7 (28)        | 82 (20.1)| 0.271       |

LAR: Low anterior resection; ULAR: Ultra-low anterior resection; APR: Abdomino-perineal resection.

### Table 2 Reasons for laparoscopic conversion to open surgery

| Reason for conversion | No. of patients (% within converted patients) |
|-----------------------|--------------------------------------------|
| Excessive adhesions   | 12 (48)                                   |
| Advanced tumor or excessive fixation | 3 (12) |
| Difficult anatomy     | 3 (12)                                   |
| Intraoperative comp. (e.g., bleeding, ureteric/urinary tract injury, bowel perforation/injury) | 4 (16) |
| Intolerant of tilt and pneumoperitoneum | 3 (12) |

### Table 3 Oncologic and perioperative outcomes of the entire study cohort

| Variables                | # | Median (IQR) |
|--------------------------|---|--------------|
| Number of patients       | 595| 125 (88)     |
| Number of operations     | 197| 1 (4)        |
| Number of conversions    | 82 (20.1)| 19 (4.7)    |
| Number of deaths         | 10 (40)| 13 (6.5)    |
| Length of hospitalization | 139 (287)| 20 (80)     |
| Duration of surgery      | 162 (min) (LS) vs 119 min (OP), \(P < 0.001\)] |
| Duration of follow-up    | 8 (d)                   |
Table 3  Oncologic characteristics and perioperative outcomes of study cohort

| Variables                                      | Lap (%) | Converted (%) | Open (%) | P value |
|-----------------------------------------------|---------|---------------|----------|---------|
| Tumor grade                                   | n = 200 | n = 25        | n = 408  |         |
| Well-differentiated                           | 20 (10) | 3 (12)        | 38 (9.3) | 0.339   |
| Poorly-differentiated                         | 7 (3.5) | 1 (4)         | 21 (5.1) |         |
| Median lesion size (cm)                       | 3.9     | 4.1           | 4.3      | 0.275   |
| T stage                                       | T1      | 18 (9)        | 23 (5.6) | 0.151   |
|                                               | T2      | 43 (21.5)     | 73 (17.9)|         |
|                                               | T3      | 126 (63)      | 265 (65) |         |
|                                               | T4      | 13 (6.5)      | 47 (11.5)|         |
| Nodal status                                  | N0      | 95 (47.5)     | 188 (46.1)| 0.77   |
|                                               | N+      | 105 (52.5)    | 320 (53.9)|         |
| TNM stage                                     | Stage I | 47 (23.5)     | 69 (16.9) | 0.086   |
|                                               | Stage II| 51 (25.5)     | 111 (27.2)|         |
|                                               | Stage III| 75 (37.5)    | 162 (39.7)|         |
|                                               | Stage IV| 27 (13.5)     | 66 (16.2) |         |
| Perineural invasion                           | +       | 38 (19)       | 90 (22.1) | 0.652   |
|                                               | -       | 162 (81)      | 318 (77.9)|         |
| Vascular invasion                             | +       | 61 (30.5)     | 135 (33.1)| 0.617   |
|                                               | -       | 139 (69.5)    | 275 (66.9)|         |
| Median lymph nodes harvested (range)          | 14 (4-90)| 15 (4-55)    | 14 (3-56) | 0.447   |
| Proximal margin (cm)                          | 9.9 (0.30)| 10 (2-22)    | 12 (0-39) | 0.004   |
| Distal margin (cm)                            | 2.1 (1-15)| 1.8 (1-15)   | 2 (1-14)  | 0.55    |
| CRM < 2 mm                                    | 29 (14.5)| 5 (20)        | 75 (18.4) | 0.494   |
| Median duration of surgery (min)              | 162     | 147           | 119       | <0.001  |
| Length of hospitalization (days)              | 7 (3-159)| 7 (5-16)      | 8 (3-78)  | <0.001  |

CRM: Circumferential resection margin.

Table 4  Distribution of long-term and short-term outcomes across three surgery groups

| Variables                                      | Laparoscopic surgery (%) | Converted surgery (%) | Open surgery (%) | P value |
|-----------------------------------------------|--------------------------|-----------------------|-----------------|---------|
| Short-term outcomes                           | n = 200                  | n = 25                | n = 408         |         |
| Anastomotic leaks                             | 13 (6.5)                 | 0 (0)                 | 17 (4.2)        | 0.233   |
| Wound complications                           | 8 (4)                    | 2 (8.0)               | 31 (7.6)        | 0.227   |
| Bleeding complications                        | 5 (2.5)                  | 1 (4.0)               | 9 (2.2)         | 0.840   |
| Ileus                                         | 3 (1.5)                  | 2 (8.0)               | 18 (4.4)        | 0.097   |
| Pneumonia                                     | 1 (0.5)                  | 0 (0)                 | 8 (2.0)         | 0.298   |
| Cardiac events                                | 7 (3.5)                  | 2 (8.0)               | 17 (4.2)        | 0.562   |
| 30 d mortality                                | 2 (1)                    | 0 (0)                 | 8 (2.0)         | 0.545   |
| Intestinal obstruction                        | 23 (11.5)                | 5 (20)                | 59 (14.5)       | 0.396   |
| Incisional hernia                             | 9 (4.5)                  | 1 (4)                 | 33 (8.1)        | 0.218   |
| Local recurrence                              | 9 (4.5)                  | 1 (4.0)               | 36 (8.8)        | 0.126   |
| Distant recurrence                            | 45 (22.5)                | 6 (24)                | 106 (26)        | 0.644   |

As, such, the differences in survival were no longer significant when subjected to multivariate analysis. There was also no difference in the local or systemic recurrence rates between all groups. These results are in line with several published studies comparing at least 5-year survival data of laparoscopic against open rectal resections (Table 6)[4,6,23-30]. They are also congruent with the findings of two recent randomized trials comparing laparoscopic with open resection in rectal cancer[31,32]. However, conflicting results were seen when pathologic adequacy of surgical resection was used as the outcome of interest. Both the ALaCaRT and the ACOSOG Z6051 trial failed to demonstrate non inferiority in terms of oncologic adequacy of resection when LS was compared to OP[33,34]. These results have cast doubt on the role of LS in rectal cancer. Hopefully, the long term follow up data of the above two studies will help shed light on the contentious issue of LS in rectal cancer.

Studies assessing the impact of conversion on oncological outcomes have shown conflicting results and a recent meta-analysis found that conversion was associated with an adverse long-term oncological outcome[35]. Postulated mechanisms include the increased inflammatory response associated with conversion and requirement for blood transfusion in converted cases that may subsequently increase recurrence risks[36]. However, both colonic and rectal resections were included in the above meta-analysis, significantly different between the laparoscopic group and the converted group.

**DISCUSSION**

In our study, the 5-year OS was 70.5% in the LS group vs 52.7% in the OP group. While the laparoscopic technique appeared to confer survival benefit on univariate analysis, this is likely attributed to the inherent selection bias in the study as patients chosen for OP tend to be older and with more advanced ASA status. As such, the differences in survival were no longer significant when subjected to multivariate analysis. The findings of two recent randomized trials comparing laparoscopic with open resection in rectal cancer[31,32] are also congruent with the data of the above two studies will help shed light on the contentious issue of LS in rectal cancer.

In our study, the 5-year OS was 70.5% in the LS group vs 52.7% in the OP group. While the laparoscopic technique appeared to confer survival benefit on univariate analysis, this is likely attributed to the inherent selection bias in the study as patients chosen for OP tend to be older and with more advanced ASA status. As such, the differences in survival were no longer significant when subjected to multivariate analysis. The findings of two recent randomized trials comparing laparoscopic with open resection in rectal cancer[31,32]. However, conflicting results were seen when pathologic adequacy of surgical resection was used as the outcome of interest. Both the ALaCaRT and the ACOSOG Z6051 trial failed to demonstrate non inferiority in terms of oncologic adequacy of resection when LS was compared to OP[33,34]. These results have cast doubt on the role of LS in rectal cancer. Hopefully, the long term follow up data of the above two studies will help shed light on the contentious issue of LS in rectal cancer.

Studies assessing the impact of conversion on oncological outcomes have shown conflicting results and a recent meta-analysis found that conversion was associated with an adverse long-term oncological outcome[35]. Postulated mechanisms include the increased inflammatory response associated with conversion and requirement for blood transfusion in converted cases that may subsequently increase recurrence risks[36]. However, both colonic and rectal resections were included in the above meta-analysis,
While most studies had similar findings to ours, Rottoli et al. [15] concluded that conversion could have a negative impact on long-term overall recurrence rate. It is noted in this study, however, that 8 out of 26 (30.7%) patients with the former constituting the majority of the pooled patient population. Subset analysis of laparoscopic conversion in our study cohort revealed that conversion did not have an adverse impact on long-term oncologic outcomes in rectal cancer. Several studies have reported the impact of conversion in LRR for cancer [6, 8, 10, 15, 16, 37].

Table 5  Prognostic factors of overall survival: Univariate and multivariate analysis

| Variable                                         | 5 yr overall survival (%) | Univariate P value | Overall survival HR (95% CI) | Multivariate P value |
|--------------------------------------------------|---------------------------|--------------------|-----------------------------|----------------------|
| Age ≥ 65 vs < 65                                 | 50.9 vs 68.3              | < 0.001¹           | 1.4557 (1.083-1.9568)       | 0.003²               |
| Gender (male vs female)                          | 60.6 vs 60                | 0.921              | -                           | -                    |
| Lap vs converted vs open                         | 70.5 vs 61.8 vs 52.7      | 0.016¹             | -                           | 0.148                |
| ASA 1/2 vs 3/4                                   | 62.6 vs 45.7              | 0.016¹             | -                           | 0.131                |
| NeoadChemo (yes vs no)                           | 59.5 vs 60.4              | 0.36               | -                           | -                    |
| NeoadrrT (yes vs no)                             | 66.7 vs 60.2              | 0.654              | -                           | -                    |
| AdjChemo (yes vs no)                             | 40.8 vs 70.5              | < 0.001¹           | -                           | 0.06                 |
| AdjRT (yes vs no)                                | 53.2 vs 62.3              | 0.206              | -                           | -                    |
| TNM stage (I/IV)                                 |                           | < 0.001¹           | 5.80 (3.26-10.33)           | < 0.001¹             |
| Stage I                                          | 77.2                      | Referent           |                             |                      |
| Stage II                                         | 73.8                      | 1.04 (0.58-1.84)   | 0.907                       |
| Stage III                                        | 60.3                      | 1.52 (0.89-2.58)   | 0.124                       |
| Stage IV                                         | 13.9                      | 5.80 (3.26-10.33)  | < 0.001                     |
| Tumor grade                                      |                           | 0.002²             | Referent                    |
| Well differentiated                              | 75                        |                    |                             |
| Moderately differentiated                        | 60.1                      | 2.10 (1.00-4.40)   | 0.049                       |
| Poorly differentiated                            | 39.1                      | 1.18 (0.54-2.54)   | 0.682                       |
| CRM < 2 mm vs ≥ 2 mm                             | 40.1 vs 63.5              | < 0.001¹           | 1.66 (1.19-2.32)            | 0.003³               |
| No. of lymph nodes ≥ 12 vs < 12                  | 62.2 vs 56.1              | 0.08               | -                           |
| Perineural invasion                              | 36.2 vs 67.3              | < 0.001¹           | -                           | 0.276                |
| Vascular emboli                                  | 46.2 vs 68.5              | < 0.001¹           | -                           | 0.14                 |
| Clinical symptoms of obstruction at presentation (yes vs no) | 35.3 vs 64.6 | < 0.001¹    | 1.95 (1.39-2.74)            | < 0.001¹             |

¹Denotes statistically significant results on univariate analysis; ²Denotes statistically significant results on multivariate analysis.

![Figure 1  Kaplan-Meier curves comparing the three surgery groups for cancer free survival and overall survival.](image)

with the former constituting the majority of the pooled patient population. Subset analysis of laparoscopic conversion in our study cohort revealed that conversion did not have an adverse impact on long-term oncologic outcomes in rectal cancer. Several studies have reported the impact of conversion in LRR for cancer. While most studies had similar findings to ours, Rottoli et al. concluded that conversion could have a negative impact on long-term overall recurrence rate. It is noted in this study, however, that 8 out of 26 (30.7%) patients...
were converted due to advanced tumors and may thus explain poorer survival. In contrast, the majority of our conversions were due to adhesions (> 50%) and not advanced disease (12%) (Table 2). Thus it was not surprising that laparoscopic conversion had no impact on long-term oncologic outcomes.

The major limitation of our study lies in its retrospective nature which makes it susceptible to the effects of confounding and selection bias. While formal matching of the various groups of the study cohort was not performed due to numerical limitations, majority of the clinical demographics and tumor pathological characteristics between groups were similar, allowing for meaningful comparison. While we acknowledge the antecedent limitations of the retrospective nature of our study, it does have several strengths. Firstly, to the best of our knowledge, this is the largest study cohort assessing the impact of laparoscopic conversion in patients with rectal resection and the impact of conversion in patients with rectal cancer.

### Research frontiers

The impact of laparoscopic conversion in rectal cancer remains unknown. This study assesses the impact of laparoscopic conversion in patients with rectal cancer.

### Innovations and breakthroughs

Laparoscopic surgery for rectal cancer has equivalent long term oncological outcomes when compared with open surgery. Conversion in rectal cancer was not shown to be associated with an adverse outcome.

### Applications

Laparoscopic resection for rectal cancer is feasible with no adverse impact on long term oncological outcomes even in the event of conversion.

### Terminology

LRR: Laparoscopic rectal resection; OP: Open surgery; LS: Laparoscopic surgery; CON: Converted laparoscopic surgery.

### Peer-review

The paper describes a single-center experience on laparoscopic surgery for rectal cancer. It is well written and references are updated.

### REFERENCES

1. Braga M, Frasson M, Vignali A, Zuliani W, Capretti G, Di Carlo V. Laparoscopic resection in rectal cancer patients: outcome and cost-benefit analysis. Dis Colon Rectum 2007; 50: 464-471 [PMID: 17195085 DOI: 10.1007/s10350-006-0798-5]

2. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASSIC trial): multicentre, randomised controlled trial. Lancet 2005; 365: 1718-1726 [PMID: 15894098 DOI: 10.1016/S0140-6736(05)66545-2]

3. Kang SB, Park JW, Jeong SY, Nam BH, Choi HS, Kim DW, Lim SB, Lee TG, Kim DY, Kim JS, Chang HJ, Lee HS, Kim SY, Jung KH, Hong YS, Kim JH, Sohn DK, Kim DH, Oh JH. Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant...
Tan WJ et al. Lap vs open rectal cancer

34 Fleshman J, Branda M, Sargent DJ, Boller AM, George V, Abbas M, Peters WR, Maun D, Chang G, Herline A, Fichera A, Mutch M, Wexner S, Whiteford M, Marks J, Bimbbaum E, Margolin D, Larson D, Marcello P, Posner M, Read T, Monson J, Wren SM, Pisters PW, Nelson H. Effect of Laparoscopic-Assisted Resection vs Open Resection of Stage II or III Rectal Cancer on Pathologic Outcomes: The ACOSOG Z6051 Randomized Clinical Trial. JAMA 2015; 314: 1346-1355 [PMID: 26441179 DOI: 10.1001/jama.2015.10529]

35 Clancy C, O’Leary DP, Burke JP, Redmond HP, Coffey JC, Kerin MJ, Myers E. A meta-analysis to determine the oncological implications of conversion in laparoscopic colorectal cancer surgery. Colorectal Dis 2015; 17: 482-490 [PMID: 25524157 DOI: 10.1111/codi.12875]

36 Ghinea R, Greenberg R, White I, Sacham-Shmueli E, Mahagna H, Avital S. Perioperative blood transfusion in cancer patients undergoing laparoscopic colorectal resection: risk factors and impact on survival. Tech Coloproctol 2013; 17: 549-554 [PMID: 23605190 DOI: 10.1007/s10151-013-1014-y]

37 Ströhlein MA, Grützner KU, Jauch KW, Heiss MM. Comparison of laparoscopic vs. open access surgery in patients with rectal cancer: a prospective analysis. Dis Colon Rectum 2008; 51: 385-391 [PMID: 18219531 DOI: 10.1007/s10350-007-9178-z]

P- Reviewer: Carboni F, Sinagra E  S- Editor: Ji FF  L- Editor: Wu HL
