内容の要旨

【目的】
2016年にWHO classificationが改訂され、遺伝子診断を伴う新しい腫瘍概念としてdiffuse midline glioma, H3K27M mutant（びまん性正中膠腫）が導入された。これは視床・脳幹・脊髄に発生したdiffuse gliomaで、組織学的gradeにかかわらず予後不良とされており、診断にはH3K27M mutationの同定が必要となる。主に小児に発生するが、成人にも発生する。H3K27M mutationはコアヒストンH3のN末端から27番目のリジンがメチオニンに変わる変異であり、polycomb repressive complex 2（PRC2）に含まれるEZH2によるH3K27のメチル化（H3K27me3）を阻害し、腫瘍増殖に関連するとされていている。H3K27Mに関連する因子として、EZH2、H3K27me3の他にp16遺伝子もあり、これらはgliomaの予後と関連すると報告されている。

これまで小児例のmidline gliomaについての報告は多数見られるが、成人のmidline gliomaについての検討は少ない。本研究では成人のmidline gliomaについて、H3K27Mとそれに関連するEZH2, H3K27me3の発現やp16の欠失及び組織学的gradingと予後と
の関連を検討した。また、既報告を使用したメタアナリシスを行い、成人 midline glioma における、組織学的 grading、H3K27M と予後との関連を検討した。

【対象と方法】
1998年から2017年の当院の18歳以上のmidline glioma 23例を検討した。H3K27M・EZH2・H3K27me3・p16は免疫染色を用いて解析した。p16のホモ接合性欠失についてはfluorescence in situ hybridization (FISH)にて検討したが、ホルマリンの過固定によりシグナルが得られなかった。我々はそこで、9p21 FISHによるp16ホモ欠失検出の代替法としてmethylthioadenosine phosphorylase (MTAP)免疫染色を行った。
また2014年から2019年の英文original articleで用いられた症例についてメタアナリシスを行った。当院症例を含めて、187例で検討を行った。その際に18歳から39歳までのyoung adult group、40歳以上のolder age groupに分類して、組織学的grade、H3K27M mutantと予後との関連を検討した。

【結果】
当院症例は男性13例、女性10例で、その局在は視床12例、視床-中脳2例、中脳2例、橋5例、延髄1例、頚髄1例であった。組織学的grade II11例、grade III10例、grade IV2例だった。
組織学的grade、H3K27 status、及び免疫染色でのEZH2・H3K27me3・p16・MTAP発現と予後との関係を検討した。生存期間中央値はgrade II78か月、grade III12か月、grade IV9か月であり、有意差がみられた(p=0.001)。H3K27 statusではH3K27M-mutant17か月、H3K27-wildtype78か月であったが統計学的有意差はなかった(p=0.187)。EZH2免疫染色では高発現29か月、低発現9か月、H3K27me3は高発現78か月、低発現17か月と共に有意差がみられた(EZH2 p=0.048, H3K27me3 p=0.047)。組織
学的 high grade、EZH2 高発現、H3K27me3 低発現では予後不良であったが、H3K27M-mutant は必ずしも予後不良とはならなかった。p16 と MTAP の発現と予後は相関しなかった。

当院症例と文献症例合わせて 187 例で、予後の記載がある症例を 18 歳から 39 歳の young adult group と 40 歳以上の older age group に分け、組織学的 grade、H3K27 mutation status で予後に検討した。young adult group では K27M mutant 症例で予後不良だったが (p=0.001)、older age group では H3K27 status で有意差はなかった (p=0.141)。組織学的 grade は、18 歳以上の全年齢、young adults group、older age group のいずれにおいても有意差をもって予後に影響した。

【結論】

Diffuse midline glioma において、小児では組織学的 grade と関係なく、H3K27M-mutant の有無で予後が確定するとされているが、成人例では、H3K27M-mutant は必ずしも予後不良因子とならなかった。成人 midline glioma ではいずれの年齢でも組織学的 grade は予後と相関し、EZH2 と H3K27me3 の免疫染色も予後評価の補助的手段として有用であった。今後成人の midline glioma の予後の判断には H3K27 status だけでなく、組織学的 grade に加え、EZH2 や H3K27me3 の免疫染色の併用が推奨される。

審査の結果の要旨

本論文は成人の diffuse midline glioma における組織学的 grade と予後との相関を示し、免疫組織化学的 EZH2 と H3K27me3 の発現の有用性を示したものである。現在の脳腫瘍の分類では視床・脳幹・脊髄といった正中構造に発生した diffuse glioma は、小児に好発し、組織学的 grade にかかわらず H3K27M mutant があるものは予後不良といわれている。本研究では成人における diffuse midline glioma では、H3K27M mutant の予後への影響は 40 歳以上は wildtype と比較して有意差が無いか、組織学的 grade はいずれの年齢でも予後と相関することを meta-analysis と single center analysis で示し
た。また、EZH2 と H3K27me3 の免疫染色での発現も予後の判定に有用であることを示した。

1. 新進気
Diffuse midline glioma は小児に好発し、これまでの報告は小児を中心としたものとなっている。小児の midline glioma では組織学的 grade より、H3K27M mutant の有無が重視されるが、本研究では成人に焦点を当て、成人の midline glioma では H3K27M より組織学的 grade が予後と相関していることを示した。Single center analysis, meta-analysis 両方で同じ結果を示したのは新しい着眼点である。さらに成人の diffuse midline glioma では EZH2, H3K27me3 の発現が予後と相関することを示しており、より正確な予後予測が可能となる。

2. 重要性
現在の脳腫瘍の WHO 分類においては、midline glioma は H3K27M mutant を有した場合に組織学的 grade にかかわらず予後不良とされており、遺伝子診断が組織学的評価より優先されている。しかし、成人の midline glioma では従来の histology が重要であることを示した。また、EZH2 と H3K27me3 の免疫染色の有用性を示せたのは、今後の新たな予後評価因子になり得ると期待できる。

3. 研究方法の正確性
H3K27M, EZH2, H3K27me3 の免疫染色は既に文献的に報告されている確立された方法である。それぞれの免疫染色はコントロール検体と共に施行されており、染色方法に問題はない。染色方法のカットオフ値は過去の文献に基づき設定しており、妥当と判断される。メタアナリシスにおける文献は当初に複数の成人例を報告していた 2014 年から、検討を行った 2019 年までの範囲で行っており、適切なキーワードをもとに文献を検索している。文献は予後と H3K27 status、もしくは組織学的 grade のいずれかが記載されているものを利用しており、主観的なバイアスなく文献選択しており、妥当と判断される。

4. 表現の明確さ
本論文は英語論文であり、既に Neurologia medico-chirurgica に掲載された。本雑誌による専門性の高い複数の査読者による厳密な査読を経て、目的、方法、結果、考察が簡潔かつ明瞭に記載されている。

5. 主な質疑応答
Q1: この論文での一番の新規性は？
A1: 2016 年の WHO の脳腫瘍分類で、midline glioma H3K27M mutant が定められ、mutation があれば組織学的に low grade でも予後が悪いといわれているが、成人においては必ずしもそうではないということが分かった点。組織学的診断の重要性を示すことができた。

Q2: 組織は剖検症例が多いのか。
A2: すべて手術検体である。
Q3: この腫瘍は手術でとることが主流なのか
A3: 脳幹・脊髄病変はほとんどとれない。視床については多くは取れないため、手術はほぼ生検となっている。そのためいずれの標本も極小。

Q4: こういう症例はほぼ全例生検をしているのか。
A4: 視床病変はほとんど組織診断を付けていますが、脳幹病変は画像上明らかにグリオーマといえるものであれば無理に組織診断はつけていない。

Q5: 生検もリスクはあるということだが、研究で得られた結果が、生検するかどうかという方針に影響を与える因子はあるのか
A5: 生検を行うかどうかというところには影響しない。しかし、今後 EZH2 阻害薬や H3K27me3 demethylation 阻害薬などの治療が出てきた際に、予後や治療の有効性の判断のために組織を見るというのは必要となってくる可能性がある。

Q6: EZH2 が悪いものの印象はあるが、メチル化はどう影響しているのか。
A6: メチル化低下が遺伝子発現の major driver となって腫瘍増殖の要因となっているが、まだ不明な点も多い。

Q7: 小児および若年でのみ差がある mutation ということだがそれはなぜか。
A7: そもそも older age であれば midline glioma では mutation の有無にかかわらず予後が悪かった。そのため older age で差が出なかった。

Q8: young adult の群で、wildtype の中で予後の良し悪しがあるが、何かの因子で差があるか解析したのか。
A8: 行えていない。

Q9: これを踏まえてどのように発展させていきたいか
A9: 今後 EZH2 阻害薬や H3K27me3 demethylation 阻害薬が出てきたときには免疫染色が有用となってくると思われる。現時点では診断に必須ではないが、今後治療のターゲットを見出すのに必要となってくると考えている。

Q10: 免疫染色はクリアカットに結果が出るものなのか
A10: EZH2 はクリアカットに high expression は high となる。H3K27me3 は 70%がカットオフだが、これについては十分にカウントしないと判断できない。

Q11: H3K27M と EZH2 と H3K27me3 は病態としてリンクしているのか
A11: リンクしている部分としていない部分がある。今回提示した pathway 以外で EZH2 や H3K27me3 の発現を変化させている要素があるため、一元的には説明ができない。

Q12: H3K27 wildtype でも EZH2 が高発現で予後が悪いものがあるがそれはどういう
理由になってくるか。
A12: EZH2 が高発現となっているものは組織学的な high grade のものが多いことが考えられる。組織学的 high grade だから予後が悪いのか、EZH2 high expression だから予後が悪かったのか、については判断が難しい。

Q13: 40 歳で年齢を区切っているが、これは決まった年齢なのか
A13: 初当、H3K27M mutant がみられるのが小児から 20 代 30 代の若年成人までであった。しかし、最近になって、中年以降にもこの mutation がみられることが分かってきたため、当初から見られるとされていた若年成人と違いがあるのか分けて検討した。

Q14: 年齢で層別化すると、単純に予後が悪いということはあるのか
A14: ある

Q15: H3K27M は腫瘍の形成にかかわっているのか、増殖にかかわっているのか
A15: 形成にかかわっている。EZH2 については腫瘍形成のなり早い段階でかかわっている。しかし増殖するにも必要な要素であることが言われていて、EZH2 は腫瘍の発生と増殖両方に必要。

Q16: メチル化が起きてその後どのように腫瘍化にかかわっているのか。P16 とどのように関与しているのか
A16: p16 は EZH2 に関わっている。EZH2 の high expression 症例で、CDKN2A の欠失を伴わなくても p16 タンパクが loss することが言われている。EZH2 の発現を検討した際に、p16 も関与している可能性が考えられたため今回の検討に入れた。トリメチル化の腫瘍増殖の機構についてはトリメチル化減少により遺伝子発現が活性化していくことが言われている。

Q17: Table 3 で、組織学的 grade で分けていっているところは p=0.037 となっているが、H3K27M mutant では有意差が出なくなっている。生存期間が 17 month と 78 month だから一緒なるが。Anaplastic は生存期間が短かったのか。
A17: median survival では同じになるが、全体的な生存期間としては差が出ている。Anaplastic astrocytoma は生存期間は短かった。

Q18: 当院症例でも 40 歳で分けると差が出るのか
A18: 当院のものでも分けて検討はしたが、症例数が少なく有意差には至らなかった。

その他質問やコメントがあったが、発表者はいずれについても的確に応答した。
以上、内容の斬新さ、重要性、研究方法の正確性、表現の明瞭性及び質疑応答の結果を踏まえて、審査員全員での討議の結果、本論文は学位論文に値すると評価された。