Estimation of response from longitudinal binary data with nonignorable missing values in migraine trials

Fang Fang a, *, Xiaoyn Fan b, Ying Zhang c

a East China Normal University, Shanghai, 200241, China
b Novartis Pharmaceuticals, 45 Sidney Street, Cambridge, MA, 02139, USA
c Merck Research Laboratories, 351 North Sumneytown Pike, North Wales, PA, 19454, USA

A R T I C L E I N F O

Article history:
Received 12 September 2015
Received in revised form 10 June 2016
Accepted 17 June 2016
Available online 16 July 2016

Keywords:
Longitudinal binary data
Nonignorable missing
Complete-case analysis
Imputation
Bootstrap

A B S T R A C T

In migraine trials pain relief responses from a headache at specific time points and sustained pain relief response over a period of time are important efficacy measures. When there are missing records of individual time point pain scores and/or headache recurrences during a migraine trial, the common approach used in practice to estimate the sustained response is statistically inconsistent even if the data are missing completely at random. Methods dealing with nonignorable longitudinal missing data usually assume certain models for the missing mechanism which can not be checked as they involve unobserved data. Taking advantage of the specific definition of the ‘sustained pain relief’ response, we propose two estimating methods based on intuitive imputation, which do not require model assumptions on the missing probability or specification of the correlation structure among the longitudinal observations. The consistency of the proposed methods is discussed in theory and their empirical performances are assessed through intensive simulation studies. The simulation results show that the proposed methods perform well in terms of reducing bias and mean square error except in several extreme cases which are unlikely to happen in real trials. The application of the proposed methods is illustrated in a real data analysis.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper was motivated by a dose-finding clinical trial [9], in which different doses of an investigational drug were studied to treat patients with moderate or severe migraine headaches. Patients were required to report their headache severities at baseline and a few specific time points, typically 0.5, 1, 1.5, 2, 3, 4, and 24 h post initial dose. The headache severity was measured on a 4-point scale: 0 = none, 1 = mild, 2 = moderate, 3 = severe. Headache recurrence, defined as moderate or severe headache at any time during the 2–24 h after an initial pain relief (PR, defined as none or mild headache) at 2 h postdose, was also reported. It needs to be noted that the recurrence covers the continuous time period so it is possible for a patient to report PR at all specific time points while still having a recurrence. Patients were allowed to take an optional 2nd dose and/or rescue medication at 2 h postdose or later. One of the secondary endpoint in the study is the 2–24 h sustained PR (SPR), defined as PR at 2 h, no need for the optional 2nd dose or rescue medication and no moderate or severe headache recurrence during the 2–24 h postdose. 2–24 h SPR is generally considered as a more clinically meaningful measurement of the treatment than the 2 h PR. In this paper, we are mainly interested in the estimation of the proportion of patients having SPR for each treatment group and the difference between two groups. If there is no missing data, the 2–24 SPR variable is easily derived and the analysis is straightforward. But if any time point data or the recurrence measure is missing, which is common in real trials, the estimation and analysis become nontrivial.

Using the terminology of Little and Rubin [17]; data are missing completely at random (MCAR) if the missing probability does not depend on both observed and unobserved responses, and data are missing at random (MAR) if the missing probability only depends on the observed responses. These two missing mechanisms are called ignorable in the sense that the likelihood inference may ignore the missing mechanism. A nonignorable missing mechanism (NI) depends on unobserved responses. In our case, the
missing probability of the recurrence is considered to be related with the values of headache severities at time points which may be missed. So the missing mechanism is typically NI, which is a big challenge to the analysis.

A common approach when there is not a significant amount of missing data is to simply ignore the patients with missed responses, and focus on patients with completely observed data (i.e., complete-case, CC analysis). This simple approach is valid under MCAR. Generalized estimation equation (GEE) proposed by Liang and Zeger [16] is statistically consistent for MCAR longitudinal data. For MAR data, maximum likelihood based approaches [7,13,18]; among others, weighted generalized estimation equation (WGEE) approaches [3,4,20], a complicated imputation method [19], and an alternative multiple imputation approach [15] have been proposed. In general, these methods are biased under nonignorable missing data and some of them also require proper specification of the missing probability model. Much work has also been done to address the nonignorable missing data problems. Available methods include maximum likelihood [2,6,23,27], weighted estimation equations [21,22] and mixed effects models [1,5,8,11,24–26,28,29]. Recent reviews of methods handling non-ignorable missing data in longitudinal data can be found in Hogan, Laird, and Korn [10] and Ibrahim and Molenberghs [12]. The common challenge with these approaches for nonignorable missing data is that they usually depend on certain models for the missing probability, e.g., logistic models, which can not be checked because unobserved data are involved. Their analysis may also be sensitive to the model assumptions on the missing probability.

The migraine data has a special feature in the sense that the patient will have a definitively negative 2–24 h SPR if one of the observed headache severities at 2, 3, 4, and 24 h postdose is moderate or severe. By taking advantage of this feature plus some reasonable assumptions on the missing mechanism, we propose two imputation based methods to deal with nonignorable missing data without model assumptions on the missing probability and the correlation structure among the longitudinal observations. These methods are easy to implement and very efficient as shown in the simulation results.

The rest of this paper is organized as follows. Section 2 introduces the notation and assumptions on the missing mechanism. Two imputation based estimation methods are proposed in Section 3. Results of a simulation study and a real data analysis are represented in Sections 4 and 5 respectively. Several concluding remarks are provided in Section 6. Some proofs are shown in an Appendix.

2. Notation and missing mechanism

For simplicity we start with a single treatment group. Let Yi0 be the PR indicator at the ith patient at time point t, where i = 1, . . . , n and t = 1, . . . , T, i.e., Yi0 = 1 if the ith patient has PR at time point t; Yi0 = 0, otherwise. Since the definition of 2–24 h SPR does not involve data prior to the 2 h postdose, for simplicity, in this paper we will ignore data before 2 h postdose and let Yi1 be the PR indicator at 2 h postdose, Yi2 be the PR indicator at 3 h postdose, etc. Let (Yi0, t = T + 1, . . . , T + L) denote the additional binary responses other than PR and recurrence, e.g., ‘no optional 2nd dose’ indicator and ‘no rescue medication’ indicator. Let Xi be the ‘no recurrence’ indicator of the ith patient, i.e., Xi = 1 if the ith patient reports no headache recurrence; Xi = 0 if the ith patient reports recurrence. Xi = 1 if and only if the patient does not have moderate or severe headache at any time (including the specific time points t = 1, . . . , T) during the 2–24 h post initial dose. Note that by definition Xi = 0 if Yi0 = 0, i.e., the patient definitely has a recurrence if he/she doesn’t have PR at any specific time point. Let Yi = Xi Yi0 Yi1 Yi2 be the SPR indicator. A patient has 2–24 h SPR if and only if Yi = 1. Our main goal is to estimate p = P(Yi = 1) and calculate its confidence interval. The point estimation and variance estimation methods can be directly extended to two treatment groups for comparison purpose. Table 1 shows a hypothetical data set with T = 4, L = 2 and two treatment groups for illustration.

Let δi be the non-missing indicator for Yi0, i.e., δi = 1 if Yi0 is not missing; δi = 0, otherwise. In the real trial, patients are asked to check a box for whether the 2nd dose or rescue medication was taken. If the boxes are not checked then the answers are recorded as ‘no 2nd dose’ and ‘no rescue medication’. So we can assume that δi always equals 1 for t = T + 1, . . . , T + L, i.e., (Yi0, t = T + 1, . . . , T + L) are always observed. Let δi be the non-missing indicator of Xi. It should be noted that δi still could be 0 even if all the δi = 1 (e.g., the patients 6A, 2B and 10B in Table 1) and vice versa (e.g., the patients 1A and 5B in Table 1). Since (Yi0, t = T + 1, . . . , T + L) are always observed and Yi = Xi Yi0 Yi1 Yi2 i δi is also the non-missing indicator of Yi. Denote (t = 1, t ≤ T + L). A special feature of the data is that when we analyze the real data. So we still consider Yi as missing in the data set (e.g., the patients 6A, 14A and 10B in Table 1) but will impute it as 0 later. To address this special feature, we define an alternative non-missing indicator δi for Yi as: if δi = 1 then δi = 1 (e.g., patient 1A in Table 1); if δi = 0 and Yi = 0, then Yi must be 0 and we define δi = 1 (e.g., patients 6A, 14A and 10B); if δi = 0 and Yi = 0, then we still don’t know Yi should be 0 or 1 and we define δi = 1 (e.g., patients 4A, 10A and 2B).

We adopt the following two assumptions on the missing mechanism:

(a1) the missing probability of Yi0 is independent of the response values and the missing-ignoring probability of Yi, i.e., (δi, t = 1, . . . , T) are independent of (Yi0, Xi, Yi, δi), although (δi, t = 1, . . . , T) may be correlated with each other, e.g., in a monotone missing mechanism. This assumes that whether the headache scores are missing at individual time points is not affected by the actual headache scores, recurrence response, 2–24 h SPR or whether recurrence is missing or not.

(a2) the missing probability of Yi (or Xi) depends on (Yi0, Xi, Yi, δi, t = 1, . . . , T + L) only through the values of Yi0 = 1, . . . , T + L, i.e., P (δi = 1|Yi0, Xi, Yi, δi, t = 1, . . . , T + L) = P(δi = 1|Yi0 = 1, . . . , T + L). This assumes that only individual headache scores and whether 2nd dose or rescue medication is taken have direct affects on the recurrence missing. Since Yi0 may not be observed, the missing mechanism of Yi is nonignorable. To discuss the applicability of different methods in different situations, we consider the following three mechanisms under (a2):
Table 1
A hypothetical data set with T = 4 and L = 2 for illustration.

Treatment group A	Treatment group B
Time points	Time points
Patient	Patient
Y₁	Y₁
Y₂	Y₂
Y₃	Y₃
Y₄	Y₄
Y₅	Y₅
Y₆	Y₆
X	X
Y	Y
1A	1A
1	1
.	.
1	1
1	1
0	0
0	0
1	0
0	0
1	1
0	0
1	1
0	0
1	1
0	0
1	1
0	0
1	1
0	0
1	1
0	0
1	1
0	0
1	1
0	0
0	0
0	0
0	0
0	0

Note: Y₁, ..., Y₆: PR indicator at time point t; Y₇: ‘no 2nd dose’ indicator, Y₈: ‘no rescue medication’ indicator, X: ‘no recurrence’ indicator, Y: SPR. . . : missing value.

Finally, we estimate p by \(\sum_{i=1}^{n} \tilde{Y}_i / n \). This method has quite intuitive explanations. Table 2 further explains how the imputations are done using an illustrative example with some hypothetical data. In this example, we have a single treatment group with 7 patients. Similar to a real trial, we let T = 4 and L = 2. The 1st and 2nd patient have missing SPR.

Step 1: For the 1st patient, since he/she doesn’t have PR at time point 2 (Y₁₂ = 0), we know for sure he/she doesn’t have SPR (i.e., \(\tilde{Y}_1 = 1 \)). Therefore we impute Y₁ by 0.

Step 2: For the 2nd patient, since all the non-missing \(\{Y_{2t}, t = 1, \ldots, 6\} \) are 1 (i.e., \(\tilde{Y}_2 = 0 \)), he/she may or may not have SPR. Notice that \(R_2 = \{1, 2, 4, 5, 6\} \). Take all the patients with non-missing SPR and have exactly the same \(Y_t \) values as \(\{Y_{2t}, t \in R_2\} \) and no matter \(\{Y_t, t \in R_2\} \) are missing or not, i.e., patients 3 to 7. Calculate the proportion of SPR of these patients, which is 2/5 in this case. Therefore we impute Y₂ by 2/5. Finally \(\bar{p} = \sum_{i=1}^{n} \tilde{Y}_i / n = (2/5 + 1)/7 = 12/35 \).

We can show that (2) is a consistent estimator of \(p(Y = 1|\delta = 0, \forall t \in R) = 1 \). The basic idea of this method is to use \(p(Y = 1|\delta = 0, \forall t \in R) = Y_t \) to estimate \(p(Y = 1|\delta = 0, \forall t \in R) = 1 \), which equals to \(p(Y = 1|\delta = 0, \forall t \in R) = 1 \) when the assumption (a1) on the missing mechanism holds.

Theoretically, this imputation estimator is not consistent under M2 and M3. How ever, as discussed in Appendix A.2, pragmatically positive and negative biases of imputed responses with different patterns of \(R \) often offset much against each other. Hence the estimator performs reasonably well except in several extreme cases as shown in the simulation study.

3. Proposed estimation methods based on imputation

3.1. Proposed imputation method 1 (IM₁)

An intuitive approach to impute the missing \(Y_t \) is to use the proportion of SPR in the patients that have non-missing SPR responses and similar \(\{Y_t\} \) pattern with \(\{Y_{t \in R} \} \). We denote this method as IM₁, which is described as follows.

Let \(Y_t \) be the imputed value of \(Y_t \), \(Y_t = Y_t \) when \(\tilde{Y}_t = 1 \), \(Y_t = 0 \) when \(\tilde{Y}_t = 0 \) and \(\tilde{Y}_t = 1 \). This is similar to method CC. But instead of ignoring the remaining patients with \(\tilde{Y}_t = 0 \), we impute them by

\[
\tilde{Y}_t = \frac{\sum_{i=1}^{n} \tilde{Y}_i \prod_{t \in R} \delta_i Y_t Y_{t'} = 1}{\sum_{i=1}^{n} \tilde{Y}_i \prod_{t \in R} \delta_i Y_{t'} = 1},
\]

where \(\delta_i = 1 \) when \(\tilde{Y}_i = 1 \) and \(\delta_i = 0 \) when \(\tilde{Y}_i = 0 \). This is analogous to the method described in Appendix A.1.

3.2. Proposed imputation method 2 (IM₂)

The proposed imputation method 1 is not consistent theoretically. In this subsection, we propose a consistent estimation method. The key point is to find a consistent estimator for \(p(Y = 1|\delta = 0, \forall t \in R) = Y_t \) when the assumption (a1) on the missing mechanism holds. By Bayes’ formula, we have
Since the proposed imputation estimators above do not have explicit variance expression, we apply the bootstrap method to estimate their variances, which is conducted in the following steps.

1. From each data set, draw a simple random sample of size n with replacement from the set of patients (respondents or nonrespondents). For each patient in the bootstrap sample, the bootstrap data consist of the Y_t and Y_r values. If the Y_t or Y_r is missing, the bootstrap datum is also treated as missing.

2. Apply the same imputation methods as described in the previous two subsections to the bootstrap sample generated in (1), and get the estimator \hat{p}^*.

3. Repeat the previous steps in dependently for B times and obtain $\hat{p}^{*, 1}, \ldots, \hat{p}^{*, B}$. Estimate the variance of \hat{p} by the sample variance of $\hat{p}^{*, 1}, \ldots, \hat{p}^{*, B}$.

3.3. Variance estimation and confidence interval

So we can compute Y_i with $\hat{d}_i = 0$ by

$$Y_i = \frac{\sum_{j=1}^n \{\delta_j Y_j = 1, \prod_{t \in R} \delta_t Y_{tj} = 1\}}{\sum_{j=1}^n \{\delta_j Y_j = 0, \prod_{t \in R} \delta_t Y_{tj} = 1\}} \frac{1}{\prod_{t \in R} \delta_t Y_{tj} = 1}$$

(7) to obtain a consistent estimator of p. This method is consistent under M1, M2 and M3.

Table 2

Illustration of proposed imputation method 1.

Patient	Time points	Step 1: Impute Y_i with $\hat{d}_i = 1$.	Step 2: Impute Y_i with $\hat{d}_i = 0$ by observed responses with similar $[Y_i, t \in R]$ pattern.
1	$Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7$	$P\left(Y = 1 \mid \delta = 0, \prod_{t \in R} Y_t = 1\right)$	$P\left(\delta = 0 \mid Y = 1, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$
2	$Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7$	$P\left(\delta = 0 \mid Y = 0, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$	$P\left(\delta = 0 \mid Y = 0, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$
3	$Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7$	$P\left(\delta = 0 \mid Y = 1, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$	$P\left(\delta = 0 \mid Y = 0, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$
4	$Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7$	$P\left(\delta = 0 \mid Y = 1, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$	$P\left(\delta = 0 \mid Y = 0, \prod_{t \in R} Y_t = 1\right) = \frac{\prod_{t \in R} Y_t = 1}{\prod_{t \in R} Y_t = 1}$

Note: Y_{t1}, \ldots, Y_{t6}: PR indicator at time point t, Y_{t7}: ‘no 2nd dose’ indicator, Y_{t8}: ‘no rescue medication’ indicator, X_t: ‘no recurrence’ indicator, Y_t: SPR. ‘.’: missing value.
The 100(1 − α)% confidence interval is given by
point estimate \(\pm z_{\alpha/2} \sqrt{\text{bootstrap variance estimator}} \),
where \(z_{\alpha/2} \) is the 100(1−α/2)% percentile of the standard normal distribution.

4. A simulation study

We conducted a simulation study to compare the empirical performances of the CC, CC and the proposed methods in a wide range of scenarios. We focused on a single treatment group scenario in this Section. In Section 5.2 we will show some simulation results for two treatment groups. We simulated data sets with similar pattern to the data in the motivating trial. Let \(X_t, t = 1, \ldots, 8 \) denote the headache severity at baseline and 0.5, 1, 1.5, 2, 3, 4, 24 h postdose, respectively. We generate \(X_t \) as follows: \(X_1 = 2 \) with probability 2/3, \(X_1 = 3 \) with probability 1/3. \(X_{t+1} \) is generated from a multinomial distribution conditional on the value of \(X_t \). The conditional probabilities of \(P(X_{t+1}|X_t) \) are similar to what we observed from the motivating trial. Then we define \(Y_1 = I(X_5 < 2), Y_2 = I(X_5 < 2), Y_3 = I(X_7 < 2), \) and \(Y_4 = I(X_9 < 2) \). ‘No recurrence’ indicator \(X = 0 \) if \(\bigcap_{t=1}^{6} Y_t = 0; X = 1 \) with probability 0.95 if \(\bigcap_{t=1}^{6} Y_t = 1 \) and \(X = 5; X = 1 \) with probability 0.91 if \(\bigcap_{t=1}^{6} Y_t = 1 \) and \(X = 3 \). ‘No 2nd dose’ indicator \(Y_5 \) and ‘no rescue medication’ indicator \(Y_6 \) are generated from binomial distributions conditional on \(X_6 \). Values of \(P(\text{no 2nd dose}|X_6) \) and \(P(\text{no rescue medication}|X_6) \) are also similar to the motivating trial. Then SIR indicator \(Y = X_Y Y_6 \). We consider the scenario with the following PR rate profile (see Table 3).

The non-missing probabilities are determined by the following parameters, \(r_1 = P(\delta = 1), t = 1, \ldots, 6, r = P(\delta = 1) \), \(s = P(\delta = 1) \). Notice that \(r_5 = r_6 = 1 \) and \(s \) is determined by \(s_1 = P(\delta = 1) Y_1 Y_2 Y_3 = 1, Y_4 = 0, s_2 = P(\delta = 1) Y_1 Y_2 Y_3 Y_4 = 0, s_3 = P(\delta = 1) Y_1 Y_2 Y_3 Y_4 Y_5 = 1, Y_5 Y_6 = 0 \). We conduct simulations under all the three missing mechanisms M1, M2, and M3.

M1: \(r = s = s_1 = s_2 = s_3 = s_4 \).

Time points	No 2nd dose	No rescue medication	SPR
0	0.23	0.59	0.66
0.5	0.42	0.66	0.66
1	0.54	0.66	0.66
1.5	0.61	0.66	0.59
2	0.61	0.57	0.57
3	0.64	0.34	0.34

Table 3
The PR rates and SPR rate in the simulation.

Table 4
The non-missing parameters in each missing mechanism and different cases.

For each missing mechanism, we consider several cases with different non-missing parameters which are given in Table 4. In the simulation study, we set the missing probabilities much higher than which in the reality in order to distinguish the performances of different methods.

For each missing mechanism and each case, we run the simulation 1000 times. The sample size \(n = 400 \). The bootstrap round \(B \) is 200. The relative bias, mean square error (MSE), and the coverage probability (CP) of the 95% confidence interval are reported in Table 5.

The simulation results in Table 5 can be summarized as follows:

1. The CC method performs well under M1 and M2 in terms of relative bias and MSE. But it has large bias under M3. The CC method only works well when the missing probability is small (e.g., Case 1 of M1). Otherwise it underestimates noticeably as expected.

2. The proposed imputation method 1 performs well in most of the cases except Case 5/6 of M2 and M3. In these 4 cases, we set \(r_1 = r_2 = r_3 = 1 \) and \(r_4 = 0.3 \), thus the only possible \(R_t \) is \{1, 2, 3, 4, 5, 6\} or \{1, 2, 3, 4, 5, 6\}. As discussed in Appendix A.2, when the pattern of \(R_t \) is not diversified, the proposed method 1 may have large bias, which is verified by the simulation results.

3. The proposed imputation method 2 performs best in terms of the robustness. The only concern of this method is when \(P(\delta = 1, \bigcap_{t=1}^{6} Y_t = 1) \) is extremely small. For example, in Case 6 of M3, \(P(\delta = 1, \bigcap_{t=1}^{6} Y_t = 1) = 0.028 \). The relative bias and MSE are relatively large compared to other cases. But it is still better than all the other methods. Since in reality the probability \(P(\delta = 1, \bigcap_{t=1}^{6} Y_t = 1) \) usually is not that small, the proposed imputation method 2 is an ideal method to deal with missing data problem in migraine trials and in other similar situations.
respectively. Using completer case (sample sizes of the two groups are 333 and 348 respectively. The purpose, we only choose the one active dose and placebo here. The methods in a real migraine trial data. The trial is a phase 3 con

5.1. Data analysis results

Table 5
The simulation results for one treatment group.

Case	Relative bias%	MSE*1000	CP%										
	CC	CC	IM1	IM2	CC	CC	IM1	IM2	CC	CC	IM1	IM2	
M1	1	-0.0	-1.3	0.0	-0.2	0.570	0.585	0.557	0.561	95.5	94.5	94.6	94.5
	2	-0.8	-7.4	-1.0	-1.4	0.581	1.179	0.538	0.546	94.5	83.0	94.5	95.3
	3	-1.1	-14.6	-0.8	-1.1	0.738	3.178	0.566	0.577	93.5	41.0	94.5	95.0
	4	0.3	-59.3	0.3	0.1	1.970	43.050	0.781	0.812	95.5	0.0	93.0	93.5
M2	1	0.9	-64.3	-1.5	-0.3	2.507	50.358	0.806	0.786	93.5	0.0	94.5	94.0
	2	-0.1	-18.2	0.4	-0.5	0.748	4.561	0.554	0.558	95.5	25.5	94.8	96.4
	3	0.3	-35.9	-0.5	-0.6	1.114	16.106	0.674	0.681	95.5	0.0	95.0	95.0
	4	-0.7	-41.4	0.5	-0.1	1.144	21.995	0.574	0.594	96.0	0.0	95.0	94.5
M3	5	0.5	-35.7	-2.3	0.6	1.082	15.928	0.601	1.446	96.0	0.0	96.5	95.5
	6	-0.1	-17.3	3.1	0.0	0.778	4.233	0.726	0.967	94.5	33.0	90.3	94.0
	5	-55.9	-59.5	-5.8	0.4	38.136	43.333	1.242	3.453	0.0	0.0	87.5	95.5
	6	-61.7	-65.0	-6.9	3.6	46.524	51.176	1.434	5.420	0.0	0.0	86.2	95.1

(4) As for the efficiency, the two proposed imputation methods have comparable MSEs, and they both outperform the CC and CC methods.

(5) The bootstrap variance estimators work well for both imputation methods. The coverage probabilities of the confidence intervals are all around 95% except in the cases when the proposed imputation method 1 has relatively large bias in the extreme cases.

5. A real data analysis

5.1. Data analysis results

In this section we illustrate the application of our proposed methods in a real migraine trial data. The trial is a phase 3 confirmatory study to test the efficacy and safety of a calcitonin-gene related peptide (CGRP) antagonist. There are 3 active doses plus a placebo control arm in the study. For simplicity and demonstration purpose, we only choose the one active dose and placebo here. The sample sizes of the two groups are 333 and 348 respectively. The complete case (CC) proportions, i.e., \(P(\delta = 1) \), are 82.9% and 75.6% respectively. Using CC method the non-missing rates of SPR, i.e., \(P(\delta = 1) \), are 96.1% and 96.8% in the two groups.

The analysis results based on CC, CC and the two proposed imputation methods (IM1 and IM2) are reported in Table 6. As expected and also demonstrated in simulation (case 1 from Table 9), the CC approach overestimates the individual treatment effect and the CC method underestimates. Both IM1 and IM2 make adjustment to those estimates in the correct directions. For the treatment effect \((p_1 - p_0) \) estimate, both CC and CC approaches underestimate the treatment difference while IM1 and IM2 also appear to have made adjustment in the correct direction. Note that because the CC missing data proportion is low, the adjustment is thus also minor. But potentially the adjustment may be more significant when the missing data rate is high (as seen in the case 2 from Table 9).

5.2. Simulation based on the real data

We conducted an additional simulation based on the real data to evaluate the empirical performances of our proposed methods for two treatment groups. For each treatment group (sample size of 333 and 348 respectively), we generate \(X_i, Y_i, S_i \) and \(X \) in a similar way to the simulation study in Section 4. The conditional probabilities needed for data generation are calculated from the real data with all available samples. The PR rate profile for the two treatment groups is given in Table 7. Due to the effects of missing data when calculating the conditional probabilities for data generation, the calculated PR rates and SPR rates in the simulation are different from what have been observed in the real trial.

We consider two cases for the non-missing probabilities. In the first case, the missing probability parameters \(r_1, r_2 \) and \(s_1 \) are calculated from the real trial based on all available samples. In the second case, we adjust the parameters to make the missing probabilities a little bit larger in order to distinguish the

Table 6
Analysis results of the real migraine trial data using different methods.

Statistics	Method of analysis	CC	CC	IM1	IM2
\(p_{A} \)	0.3406	0.2938	0.3175	0.3061	
se\((p_{A}) \)	0.0285	0.0255	0.0203	0.0262	
95% CI	(0.2846,0.3965)	(0.2438,0.3436)	(0.2658,0.3691)	(0.2546,0.3575)	
\(p_{B} \)	0.2053	0.1574	0.1667	0.1597	
se\((p_{B}) \)	0.0249	0.0197	0.0205	0.0202	
95% CI	(0.1565,0.2541)	(0.1189,0.1960)	(0.1265,0.2069)	(0.1202,0.1992)	
\(p_{A-B} \)	0.1353	0.1363	0.1508	0.1464	
se\((p_{A-B}) \)	0.0379	0.0322	0.0334	0.0331	
95% CI	(0.0661,0.2095)	(0.07326,0.1994)	(0.0853,0.2162)	(0.0815,0.2112)	
performances of different methods. The parameters in the two cases are listed in Table 8.

For each case, we run the simulation 1000 times. The bootstrap round \(B \) is 200. The relative bias (RB), standard deviation (SD), mean square error (MSE), standard error (the estimated standard deviation, SE), and the coverage probability (CP) of the 95% confidence interval are reported in Table 9.

The simulation results are summarized as follows. First, the CC method has large bias as expected since the two cases considered here are both M3. The CC method underestimates especially when the missing probability is relatively large in Case 2. Second, our proposed methods \(\text{IM}_1 \) and \(\text{IM}_2 \) work quite well in terms of negligible relative biases and comparable or smaller mean square errors compared with CC and CC. Third, the bootstrap method produces nearly unbiased estimator for standard deviation. The coverage probabilities of the confidence intervals based on our proposed methods and bootstrap variance estimators are close to 95%. These results are also consistent with the observations from the M3 cases in the previous more general simulation study.

6. Concluding remarks

We proposed two imputation based estimation methods to deal with the nonignorable missing data in migraine trials with longitudinal binary responses by leveraging the special data feature of the sustained response. We illustrated the application of our proposed methods by analyzing data from a real migraine clinical trial, and compared their performances to the complete-case method (CC) and the current method used in real trials (CC) in comprehensive simulation studies. The CC method has large bias unless the missing probability is small. The CC method is consistent only in some special missing mechanisms. The proposed methods generally perform very well even in nonignorable missingness except in several extreme cases which are unlikely to happen in real trials. Also they are more efficient than the CC method in terms of smaller SMEs. The proposed methods do not need any specific model assumptions on the missing probabilities (e.g., logistic models) or the correlation structure among the longitudinal observations. They are direct estimation methods in the sense that the nuisance longitudinal missing data do not need to be estimated first.

The proposed imputation methods can be easily extended when stratification is needed. For example, we could split the patients into several strata by their headache severities at baseline and conduct the imputation within each stratum. The overall estimation will be a weighted average.

The bootstrap was applied to obtain the variance estimation and to conduct confidence interval. It worked quite well in the simulation study. However, we also realize that it may have some difficulty when \(n^* P_i (\delta = 1) \prod_{t=1}^{4} q_t Y_t = 1 \) is very small. In this situation, when we draw a bootstrap sample from the original data, the simulation results are summarized as follows. First, the CC method has large bias as expected since the two cases considered here are both M3. The CC method underestimates especially when the missing probability is relatively large in Case 2. Second, our proposed methods \(\text{IM}_1 \) and \(\text{IM}_2 \) work quite well in terms of negligible relative biases and comparable or smaller mean square errors compared with CC and CC. Third, the bootstrap method produces nearly unbiased estimator for standard deviation. The coverage probabilities of the confidence intervals based on our proposed methods and bootstrap variance estimators are close to 95%. These results are also consistent with the observations from the M3 cases in the previous more general simulation study.

6. Concluding remarks

We proposed two imputation based estimation methods to deal with the nonignorable missing data in migraine trials with longitudinal binary responses by leveraging the special data feature of the sustained response. We illustrated the application of our proposed methods by analyzing data from a real migraine clinical trial, and compared their performances to the complete-case method (CC) and the current method used in real trials (CC) in comprehensive simulation studies. The CC method has large bias unless the missing probability is small. The CC method is consistent only in some special missing mechanisms. The proposed methods generally perform very well even in nonignorable missingness except in several extreme cases which are unlikely to happen in real trials. Also they are more efficient than the CC method in terms of smaller SMEs. The proposed methods do not need any specific model assumptions on the missing probabilities (e.g., logistic models) or the correlation structure among the longitudinal observations. They are direct estimation methods in the sense that the nuisance longitudinal missing data do not need to be estimated first.

The proposed imputation methods can be easily extended when stratification is needed. For example, we could split the patients into several strata by their headache severities at baseline and conduct the imputation within each stratum. The overall estimation will be a weighted average.

The bootstrap was applied to obtain the variance estimation and to conduct confidence interval. It worked quite well in the simulation study. However, we also realize that it may have some difficulty when \(n^* P_i (\delta = 1) \prod_{t=1}^{4} q_t Y_t = 1 \) is very small. In this situation, when we draw a bootstrap sample from the original data,
it may happen that $\sum_{i=1}^{n} \mathbb{1}(Y_i = 1, \prod_{t \in R} Y_t = 1) = 0$. Then our proposed methods are not applicable in the bootstrap sample. So the variance estimation in small sample needs to be further addressed. If we allow the modeling on the missing probability and take the correlation structure among the binary responses into account, the comparison among our methods and some other methods such as GEE, maximum likelihood and weighted GEE is an interesting research topic, although we conjecture that our proposed methods should be the most robust approaches since they are free of many model assumptions. How to address all these issues will remain as our future research topics.

Acknowledgements

The authors would like to thank the editor and two anonymous reviewers for their valuable comments and suggestions which improved the presentation of this paper. Fang Fang’s research was partially supported by Shanghai Nature Science Foundation 15ZR140300, Shanghai Rising Star Program (16QA1401700), Program of Shanghai Subject Chief Scientist (14XD1401600), and the 111 Project (B14019).

Appendix A

A.1. Discussion of the consistency of CC method

The p^{CC} is a consistent estimator of $P(Y = 1| \delta = 1)$. When assumption (a2) holds, we have

$$P(Y = 1| \delta = 1) = \frac{P(X = 1, \prod_{t \in R} Y_t = 1, \delta = 1)}{P(\delta = 1)}$$

$$= \frac{P(X = 1, \delta = 1 | \prod_{t \in R} Y_t = 1) P(\prod_{t \in R} Y_t = 1)}{P(\delta = 1)}$$

$$= \frac{P(\delta = 1 | \prod_{t \in R} Y_t = 1) P(\prod_{t \in R} Y_t = 1)}{P(\delta = 1)}$$

$$= \frac{P(\delta = 1 | \prod_{t \in R} Y_t = 1) P(Y = 1)}{P(\delta = 1)}.$$

Hence p^{CC} is consistent for $P(Y = 1)$ if and only if $P(Y = 1| \delta = 1, \prod_{t \in R} Y_t = 1) = P(\delta = 1)$, which is equivalent to M2.

A.2. Discussion of the consistency of proposed imputation method 1

The basic idea of proposed method 1 is using $P(Y = 1| \delta = 1, \prod_{t \in R} Y_t = 1)$ to estimate $P(Y = 1| \delta = 0, \prod_{t \in R} Y_t = 1, \delta_{t \in R} = 0)$, which equals to $P(Y = 1| \delta = 0, \prod_{t \in R} Y_t = 1)$ when the assumption (a1) on the missing mechanism holds, where R could be any fixed subs-ct of $\{1, \ldots, T + 1\}$. When the assumption (a2) also holds, these two probabilities are equal if and only if $A = B$, where

$$A = P(\delta = 1 | \prod_{t \in R} Y_t = 1) \quad \text{and} \quad B = P(\delta = 0 | \prod_{t \in R} Y_t = 1).$$

Under M1, $A = B = 1$, so proposed method 1 is consistent. But when M1 doesn’t hold, A and B are not necessarily equal. Here is a simple example:

For simplicity, take $T = 2, L = 0$. Then R could be $\{1, 2\}, \{1\}, \{2\}$, or \emptyset. We assume Y_1 and Y_2 are independent. Denote $p_1 = P(Y_1 = 1)$, $p_2 = P(Y_2 = 1)$, $s = P(\delta = 1 | Y_2 = 0)$, $s_1 = P(\delta = 1 | Y_1 = 1, Y_2 = 0)$, $s_2 = P(\delta = 1 | Y_1 = 0, Y_2 = 1)$, $s_3 = P(\delta = 1 | Y_1 = 0, Y_2 = 0)$. Then s, s_1, s_2, s_3 should satisfy

$$s = \frac{s_1 p_1 (1 - p_2) + s_2 p_2 (1 - p_1) + s_3 (1 - p_1) (1 - p_2)}{1 - p_1 p_2}.$$

When $R = \{1, 2\}, A = B = 1$, then there is no problem with the imputation method. When $R = \emptyset$, $A = B$ if and only if M2 holds. The A and B values in the other two cases are listed in the following table. The last column lists the probability of the corresponding R will occur when we conduct the imputation.

R	A(imputed)	B(true)	$P(R, \delta = 1)$
(1)	$\frac{p_1}{p_1 + p_2}$	$\frac{s_1}{s_1 + s}$	$r_1 (1 - r_2) p_1 [1 - s (1 - p_1) - s p_2]$
(2)	$\frac{p_2}{p_1 + p_2}$	$\frac{s_2}{s_1 + s_2}$	$r_2 (1 - r_1) p_2 [1 - s (1 - p_1) - s p_1]$

As we can see from the table, the imputed value and the true value are not always the same. To be more specific, let $p_1 = 0.8$, $p_2 = 0.5$, $f = s = 0.3$, $s_1 = 0.4$, $s_2 = 0$, $s_3 = 0.2$. Then when $R = \{1\}, A = 0.857, B = 1.076$, so the imputed value is smaller than the true value. When $R = \{2\}, A = 1.25, B = 0.92$, so the imputed value is larger than the true value. If we take $r_1 = 1, r_2 = 0$, then only possible $R = \{1\}$. Then the imputed value will always be smaller than the true value. The imputation method underestimates. On the other hand, if we take $r_1 = 0, r_2 = 1$ then the imputed value will always be larger than the true value. The imputation method overestimates. Notice that in this example, M2 holds. So it illustrates that even in M2, this imputation method may have bias.

But we should notice that the imputation overestimates missing values for some R, and underestimates for some other R. The biases may be cancelled each other if the pattern of R is diversified. So overall speaking, the bias of this imputation method may not be a problem. Actually this is verified in the simulation study in Section 4.

References

[1] P.S. Albert, D.A. Follmann, Modeling repeated count data subject to informative dropout, Biometrics 56 (2000) 667–677.
[2] S.G. Becker, Marginal regression for repeated binary data with outcome subject to non-ignorable non-response, Biometrics 51 (1995) 1042–1052.
[3] B. Chen, G.Y. Yi, R.J. Cook, Weighted generalized estimating functions for longitudinal response and covariate data which are missing at random, J. Am. Stat. Assoc. 105 (2010) 336–353.
[4] B. Chen, X. Zhou, Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates, Biometrics 67 (2011) 830–842.
[5] M.R. Conaway, The analysis of repeated categorical measurements subject to non-ignorable nonresponse, J. Am. Stat. Assoc. 87 (1992) 817–824.
[6] G.M. Fitzmaurice, N.M. Laird, G.E.P. Zahner, Multivariate logistic models for incomplete binary responses, J. Am. Stat. Assoc. 91 (1996) 99–108.
[7] G.M. Fitzmaurice, G. Molenberghs, S.R. Lipsitz, Regression models for longitudinal binary responses with informative drop-outs, J. R. Stat. Soc. Ser. B 57 (1995) 691–704.
[8] D. Follmann, M. Wu, An approximate generalized linear model with random effects for informative missing data, Biometrics 51 (1995) 151–168.
[9] T.W. Ho, L.K. Mannix, X. Fan, et al., Randomized controlled trial of an oral CGRP receptor antagonist,MK-0974,inacute treatmentofmigraine, Neurology
[10] J.W. Hogan, J. Roy, C. Korkontzelou, Handling dropout in longitudinal studies, Stat. Med. 23 (2004) 1455–1497.
[11] J.G. Ibrahim, M. Chen, S.R. Lipsitz, Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable, Biometrika 88 (2001) 551–564.
[12] J.G. Ibrahim, G. Molenberghs, Missing data methods in longitudinal studies: a review, TEST 18 (2009) 1–43.
[13] R.L. Jennrich, M.D. Schluchter, Unbalanced repeated-measures models with structured covariance matrices, Biometrics 42 (1986) 805–820.
[14] J.K. Kim, C.L. Yu, A semiparametric estimation of mean functionals with nonignorable missing data, J. Am. Stat. Assoc. 106 (2011) 157–165.
[15] X. Li, D. Mehrotra, J. Barnard, Analysis of incomplete longitudinal binary data using multiple imputation, Stat. Med. 25 (2006) 2107–2124.
[16] K. Liang, S.L. Zeger, Longitudinal data analysis using generalized linear models, Biometrika 73 (1986) 13–22.
[17] R.J. Little, D.B. Rubin, Statistical Analysis with Missing Data (2nd Edition), Wiley, New York, 2002.
[18] G. Molenberghs, M.G. Kenward, E. Lesaffre, The analysis of longitudinal ordinal data with nonrandom drop-out, Biometrika 84 (1997) 33–44.
[19] M.C. Paik, The generalized estimating equation approach when data are not missing completely at random, J. Am. Stat. Assoc. 92 (1997) 1320–1329.
[20] J.M. Robins, A. Rotnitzky, L.P. Zhao, Analysis of semiparametric regression models for repeated outcome in the presence of missing data, J. Am. Stat. Assoc. 90 (1995) 106–121.
[21] A. Rotnitzky, J.M. Robins, D.O. Scharfstein, Semiparametric regression for repeated outcomes with nonignorable nonresponse, J. Am. Stat. Assoc. 93 (1998) 1321–1339.
[22] D.O. Scharfstein, A. Rotnitzky, J.M. Robins, Adjusting for nonignorable dropout using semiparametric nonresponse models, J. Am. Stat. Assoc. 94 (1999) 1096–1120.
[23] S.K. Sinha, Robust analysis of longitudinal data with nonignorable missing responses, Metrika 75 (2012) 913–938.
[24] A.L. Stubbendick, J.G. Ibrahim, Maximum likelihood methods for nonignorable missing responses and covariates in random effects models, Biometrics 59 (2003) 1140–1150.
[25] A.L. Stubbendick, J.G. Ibrahim, Likelihood based inference with nonignorable missing responses and covariates in models for discrete longitudinal data, Stat. Sin. 16 (2006) 1143–1167.
[26] T.R. Ten Have, A.R. Kunselman, E.P. Pulkstenis, et al., Mixed effects logistic regression models for longitudinal binary response data with informative drop-out, Biometrics 54 (1998) 367–383.
[27] A.B. Troxel, S.R. Lipsitz, D.P. Harrington, Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data, Biometrika 85 (1998) 661–672.
[28] M.C. Wu, R.J. Carroll, Estimating and comparison of changes in the presence of informative right censoring by modeling the censoring process, Biometrics 44 (1988) 175–186.
[29] M. Yuan, R.J.A. Little, Mixed-effect hybrid models for longitudinal data with nonignorable dropout, Biometrics 65 (2009) 478–486.