Investigation of the Resistance and Sensitivity of Infectious Bacteria to *Dendrostellera lessertii* and Chemical Composition Analysis

Mostafa Alamholo

Department of Biotechnology, Institute of Science and Modern Technology, Rojava University, Qamishlo, Syria

Abstract

Introduction: Herbal plants are important sources for finding new and rare products of medicinal value for drug development. The present research aimed to investigate the antibacterial properties of *Dendrostellera lessertii* against infectious bacteria and analyze its chemical composition.

Methods: The different organs comprising root, stem, and leaf of *D. lessertii* from Lorestan province, Iran, were tested. Antibacterial activity was assessed using the agar well-diffusion assay. The total phenolic content (TPC) and total flavonoid content (TFC) were assessed by the Folin Ciocalteu and aluminum chloride methods, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested by the serial dilution method, and chemical compositions were analyzed by gas chromatography-mass spectrometry (GC/MS).

Results: The chemical composition analysis showed the dominance of bergamotol (10.62%) and bis (2-ethylhexyl) phthalate (7.49%) in the stem extract. However, phytol (12.64%) and E-11-hexadecenal (12.53%) were major constituents in the root extract. Furthermore, major constituents in the leaf extract were phytol (19.658%) and hexadecanoic acid (7.151%). The methanolic extract of root exhibited the highest TPC as 109.1±2.2 mgGA/g and TFC as 2.1±0.33 mgQ/g. The root methanolic extract demonstrated a MIC of 3.125 mg/mL against *Enterococcus faecalis*. Accordingly, the highest sensitivity and resistance were observed on *E. faecalis* and *Pseudomonas aeruginosa*, respectively.

Conclusion: *Dendrostellera lessertii* extract is suggested as a source for antimicrobial drugs, especially to treat bacterial infections.

Keywords: *Dendrostellera lessertii*, GC/MS, Infectious bacteria, Secondary metabolites.

Introduction

Secondary metabolites of plants have been used to treat various infection diseases. Secondary metabolites are widely used for pharmaceutical, microbiology, and agricultural purposes, including as natural antibiotics against microbial growth and development. Children's mortality rate from 12.5 million in 1990 to 8.8 million in 2008 decreased due to the control of infectious diseases. Bacterial strains resistance against herbal drugs are slower compared to chemical drugs. The synthesis of chemical drugs and their widespread usage for treating diseases have been associated with side effects, including resistance against these drugs. Scientists have been attention to research on natural and herbal plants with medicinal properties. Antimicrobial, antioxidant, and anticancer properties of secondary metabolites including as phenol, flavonoid and tannin have been proven.

Dendrostellera lessertii is the only species of the genus *Denderostellera* (*Thymeleaceae*) with woody stems and 20-60 cm height, has been distributed in north and northwest of Iran. The species of this genus have been used for the treatment of diseases including as diabetes, skin diseases, rheumatism, and antihistamine. Antibacterial and antiradical properties of flower and root alcoholic extracts by Alamhulu and Nazeri, and the root, leaf and stem hydroalcoholic extracts of *D. lessertii* against some human pathogenic bacteria by Alamhulu and Nazeri have been reported in vitro. The important contributors have been attention to research on natural and herbal plants with medicinal properties.
compound as 3-hydrogenkwadaphnin from *D. lessertii* leaf inhibited the proliferation of acute myeloid leukemia KG1 cells at 5–30 nM concentrations after 24–96 hours treatment.

In accordance, the flavonoids of *Phaleria macrocarpa* exhibited antimicrobial activity and inhibited DNA synthesis, plasmalemma function, and energy transport. Secondary metabolites including alkaloids, anthraquinones, triterpenoids, and tannins have been reported from *Aquilaria agallocha* Roxb. extract. Phytochemical analysis by GC/MS in herbal plants represents a precise method for the identification and quantification of their chemical components. In this regard, chemical composition with therapeutic properties, including oleodaphnal, oleodaphnone, genkwadaphnin-20-palmitate, and gnidicin-20-palmitate, were reported from the stem methanolic extract of *Daphne oleoides*. Therefore, this research assessed the antibacterial properties of *D. lessertii* extracts against human infectious bacteria and divulged their chemical compositions for the first time.

Materials and Methods

Chemical Materials

Nutrient broth (NB), Mueller-Hinton agar (MHA), quercetin (Q), and gallic acid (GA) were prepared from Merck Company (Germany), and ciprofloxacin and gentamicin antibiotic discs were obtained from Paten Tab Company (Iran).

Plant Samples

The different organs of *D. lessertii* including root, stem, and leaf were collected from Lorestan province, Iran, in 2014. Organs were transferred to Bu-Ali Sina University, then dried and broken by a cylindrical crusher. A volume of 250 mL of methanol, ethanol, and aqueous solvents were added to 25 g of dried powder and shaken at 110 rpm for 48 hours, then filtered and centrifuged. Eventually, the final product was placed at 37°C for drying. The methanolic extract was used for chemical composition analysis.

Bacterial Strains

Bacteria were obtained from Tehran University of Medical Science, Tehran, Iran. Antibacterial activities of samples were checked against *Enterococcus faecalis* (PTCC-1385), *Proteus mirabilis* (PTCC-1287) *Neisseria meningitides* (PTCC-4578), *Acinetobacter baumannii* (PTCC-4413), *Staphylococcus aureus* (PTCC-1389), *Pseudomonas aeruginosa* (PTCC-1171), and *Klebsiella pneumoniae* (PTCC-2139) *in vitro*. Next, a bacterial colony was cultured on MHA and incubated at 37°C. Finally, to prepare 0.5 McFarland standard (1.5 × 10⁸ CFU/mL), a bacterial colony was mixed with 1 mL of the nutrient broth and then incubated.

Agar Well-Diffusion Assay

In this research, to determine antibacterial properties, the agar well-diffusion method was used. Next, different extracts including distilled water, ethanol, and methanol extracts (i.e., 50, 100 and 200 mg/mL) from the root, stem, and leaf of *D. lessertii* were created. Afterwards, a volume of 200 mL of the bacterial suspension (1.5 × 10⁹ CFU/mL) was spread on MHA broth. In addition, 50 μL of extract solution was transferred into wells and incubated at 37°C for 24 hours. Positive controls included gentamicin (10 μg) and ciprofloxacin (5 μg). Finally, the agar well-diffusion assay was performed by SAS software in three replications.

Total Phenolic and Total Flavonoid Content

The total phenolic content (TPC) and total flavonoid content (TFC) were calculated for the methanolic extract. The TPC was calculated by the Folin–Ciocalteu assay at 765 nm using a spectrophotometer (mgGA/g). Next, TFC was determined by the aluminum chloride assay at 415 nm by a spectrophotometer (mgQ/g).

Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured for different extracts by the serial dilution method. Different dilution series, including 3.125, 6.25, 12.5, 25, 50, and 100 mg/mL were used for calculating MIC. First, the nutrient broth (185 μL) was mixed with 200 μL of the extract, and then 200 μL of the solution was transferred to a second tube. Afterwards, 15 μL of the bacterial suspension (1.5 × 10⁹ CFU/mL) was added and incubated. For calculating MIC, the lowest dilution with no bacterial growth was determined. To determine MBC, 5 μL of the samples with no bacterial growth was cultured on MHA. All procedures were conducted in triplicate.

Gas Chromatography-Mass Spectrometry

Gas chromatography-mass spectrometry (GC/MS) was used to analyze the chemical composition of the methanolic extract (Razi University of Kermanshah, Iran). The GC/MS analysis was carried out using an Agilent 6890N coupled to Agilent 5973 mass detector, with HP-5, 30 m (length) × 0.25 mm (ID) × 0.25 µm column. The instrument was set to an initial temperature of 55°C, and maintained at this temperature for 2 minutes. Temperature was rose up to 120°C, and then to 200°C at the rate of 3.5°C/min. Injection port temperature was set as 350°C, and Helium flow rate as 0.9 mL/min. The samples were injected in the split/splitless mode. Solvent delay adjusted for 5 minutes with 0.5 µL volume injected.

Alamholo et al
Statistical Analysis
The data was analyzed by SAS software with Duncan test at the significance level of P<0.05.

Results
Antibacterial Activity
The inhibitory effect of *D. lessertii* extracts were tested against infectious bacteria (Table 1). The diameter of bacterial growth inhibition zone (as mm) was determined after incubation (Figure 1). In addition, the highest sensitivity was recorded for *E. faecalis* exposed to the root methanolic extract of the plant at the dose of 200 mg/mL. The methanolic extract exhibited more potent inhibitory effects than other extracts. Moreover, the highest resistance and the lowest inhibitory activity were observed for *K. pneumoniae* against the aqueous extract, respectively. Accordingly, the inhibitory effects of the root and stem methanolic extracts at 200 mg/mL were higher than that of gentamicin against *E. faecalis*. Finally, *E. faecalis* and *S. aureus* showed more sensitivity compared to other bacteria.

Determination of TPC and TFC

![Figure 1](image-url). The inhibitory effect of A: the stem methanolic extract against *P. aeruginosa*; B: the root ethanolic extract against *E. faecalis*; C: the leaf ethanolic extract against *S. aureus*.

| Table 1. The Antibacterial Activity of Methanolic, Ethanolic, and Aqueous Extracts of Different Organs of *D. lessertii* Against Pathogenic Bacteria |
|---|---|---|---|---|---|---|---|
Organ	Ex	Con	*E. faecalis*	*P. mirabilis*	*N. meningitides*	*A. baumannii*	*K. pneumoniae*	*S. aureus*	*P. aeruginosa*
Root	M	50	12±0.33	7.5±0.33	14±0.55	13±0.88	-	13±0.66	12±0.33
		100	16±0.33	7.5±0.33	15±0.33	15±0.33	-	14.5±0.33	12.5±0.66
		200	18.5±0.57	9±0.57	16±0.33	15.5±0.88	9±0.88	15±0.88	12±0.33
	E	50	13.5±0.88	8.5±0.88	12.5±0.57	11±0	-	12±0.66	10±0.66
		100	15±0.57	9±0.12	15±0.88	12.5±0.33	-	13±1.2	11±0.88
		200	16.5±0	12±0	16±0.33	13±0.88	-	13.5±0.33	13±0.33
	A	50	8±0.57	7.5±0.88	-	-	-	8±0.33	-
		100	10±0.57	9±0.33	-	8±0.33	-	9±0.66	-
		200	11±0.33	12±0.88	8±0.57	9.5±0.33	-	9±0.66	8±0.66
	M	50	14±0.33	9.3±0.33	12.2±0.88	-	-	12±0.66	8±0.88
		100	15±0.88	10±0.33	13.5±1.2	-	-	14.5±0.33	9±0.33
		200	17±0.33	12±0.57	15±0.57	12±0.57	13±0.33	16±0.66	10.3±0.88
		50	10±1.2	-	-	-	-	10±0.66	-
Stem	E	100	11±0.57	-	-	-	12.5±0.33	11±0.88	-
		200	13±0.57	-	11±0.33	-	14±0.57	12.5±0.88	10.5±0.33
	A	50	-	-	-	-	-	-	-
		100	-	-	-	-	-	-	-
		200	9±0.33	-	-	-	-	8±0.66	-
	M	50	10±0.33	-	-	-	-	11.5±0.33	13±0.66
		100	14±0.57	-	12.5±0.33	-	10±0.88	12.5±0.66	13.5±0.33
		200	17±0.88	12±0.88	13.6±0.88	9±0.33	12±0.33	13±0.88	14±0.33
		50	14±0.33	-	-	-	7.5±0.88	11±0.0	-
Leaf	E	100	15.5±0.33	-	10±0.88	-	9±0.33	12±0.33	-
		200	16±0.88	9.5±0.57	11±0.57	10±0.57	13.5±0.12	13.5±0.88	11.5±0.33
	A	50	-	-	-	-	-	-	-
		100	7.5±0.88	-	-	-	9±0.33	-	-
Gentamicin		200	9±0.33	-	8.6±0.33	-	11.5±0.88	-	-
Ciprofloxacin	16	15	19	17	18	19	21		
	17	19	20	20	22	21	25		

Note. Co: Concentration; Ex: Extract; M: Methanol; E: Ethanol; A: Aqueous
The results of TPC and TFC of *D. lessertii* extracts are represented in Table 2. The TPC of root, leaf, and stem was calculated as 109.1±2.2, 55.8±1.2, and 68.7±0.88 mgGA/g, respectively. Next, the TFC was calculated as 2.1±0.3, 1.9±0.2 and 1.3±0.88 (mgQ/g), respectively. Based on the findings, the methanolic extract of root contains more secondary metabolites compared to other parts of the plant.

Determination of MIC and MBC

MIC and MBC values of the extracts of *D. lessertii* against pathogenic bacteria have been noted in Table 3. The stem ethanolic extract against *E. faecalis* and the leaf methanolic extract against *P. mirabilis* showed the same MIC of 6.25 mg/mL. The root methanolic extract demonstrated the MIC of 3.125 mg/mL against *E. faecalis*. In addition, aqueous extracts demonstrated the MBC of 100 mg/mL against *S. aureus* and *E. faecalis*. Moreover, the most potent antibacterial activity was related to the methanolic extract. Accordingly, the highest sensitivity and resistance were observed against *E. faecalis* and *P. aeruginosa*, respectively.

GC-MS Analysis

The chemical compositions of different extracts (i.e., stem, leaf, and root) of *D. lessertii* were analyzed by GC-MS. Overall, 35, 24, and 35 compounds were identified in stem, root, and leaf, respectively. The major constituents including phytol (12.64%), e-11-hexadecenal (12.53%), hexadecanoic acid (10.9%), and n-heneicosane (9.7%) in root methanolic extract. Finally, the most frequent compounds included phytol (19.658%) and hexadecanoic acid (7.151%) in leaf methanolic extract (Table 4).

Discussion

Plants are the richest sources of secondary metabolites with varying biological activity. Herbal plants with pharmaceutical properties, especially antimicrobial effects, are collected from the natural flora for the synthesis of rare and natural drugs. An increase in pathogenic microorganism resistance against chemical drugs has led researchers to seek for herbal plants with antimicrobial and antioxidant properties to produce natural drugs with less side effects and more medicinal properties. Multidrug-resistant pathogens, especially bacteria, pose a serious threat for human health.

Table 2. TPC and TFC of the Root, Stem and Leaf Methanolic Extracts of *D. lessertii*

Organ	Root	Leaf	Stem
Phenol (mgGA/g)	109.1±2.2^a	55.8±1.2^b	68.7±0.88^c
Flavonoid (mgQ/g)	2.1±0.33^a	1.9±0.2^a	1.3±0.88^b

Note: The similar letters are not significantly different.

Table 3. MIC and MBC (mg/mL) of Different Extracts of *D. lessertii* Against Pathogenic Bacteria

Bacteria	*E. faecalis*	*P. mirabilis*	*N. meningitides*	*A. baumannii*	*K. pneumoniae*	*S. aureus*	*P. aeruginosa*
Root M	3.125	12.5	100	3.125	100	-	-
MBC	6.25	50	-	6.25	-	-	-
E	MIC	25	50	100	50	-	25
MBC	100	100	100	100	-	100	-
A	MIC	100	100	-	100	-	100
MBC	-	-	-	-	-	-	-
Stem M	25	25	50	6.25	100	100	-
MBC	25	50	100	25	100	-	-
E	MIC	6.25	100	50	25	-	-
MBC	12.5	100	50	50	-	-	-
A	MIC	100	-	100	50	-	100
MBC	-	-	-	100	-	-	-
Leaf M	50	6.25	50	3.125	-	-	-
MBC	-	12.5	100	25	-	-	-
E	MIC	100	100	100	-	50	-
MBC	100	100	-	-	100	-	-
A	MIC	50	-	100	-	100	-
MBC	100	-	-	-	100	-	-

Note: M: Methanol; E: Ethanol; A: Aqueous; -: Lack of bacteria growth.
In the present study, the chemical compositions of *D. lessertii* were reported for the first time by GC/MS. The antimicrobial, anticancer, anti-inflammatory, antifungal, and antiradical properties of other genera of the family Thymelaeaceae and their constituents (phytol, thymol, and eugenol) have been reported. Secondary metabolites including flavonoid, tannin, and phenolic compounds have been shown to inhibit infectious bacteria growth.
and reduce the risk of cancer to potent antioxidant properties. The antioxidant activity of polyphenols is related to their redox properties that act as reducing agents. Based on the findings, GC-MS results exhibited various antibacterial compounds from leaf, root, and stem extracts of D. lessertii.

In one study, the highest sensitivity (21.33±0.66 mm) was reported for S. typhi against the root methanolic extract of D. lessertii in vitro. Accordingly, TPC and TFC of the root methanolic extract were measured as 111.8±2.69 mgGAE/g and 2.25±0.35 mgQ/g, respectively, which were different from those of the present study. These differences probably could be related to some factors including the type of the extract and bacteria, extract concentration, and the samples collected. Moreover, antibacterial and antioxidant properties of the leaf and stem extracts of D. lessertii against pathogenic bacteria have been reported.

In the recent study, the stem ethanolic extract showed the highest inhibition zone as 27.3±0.6 mm diameter against Micrococcus luteus. The TPC of the leaf and stem methanolic extracts were 69.1±3.2 and 79.4±0.5 5 mgGAE/g, and respective TFC were reported as 2.1±0.1 and 1.5±0.1 mgQ/g. The values of the recent study were slightly higher than ours.

Moreover, the antibacterial activity of the root, leaf, and stem hydroalcoholic extracts of D. lessertii against some human pathogenic bacteria have been reported. In the recent report, the highest sensitivity was related to Bacillus subtilis against the root extract with the TPC of 111.8±1±2.69 mgGAE/g. The difference compared to our study can be due to factors such as differences in species and genus, extract and solvent types, extraction methods, and the time and geographical location of collecting the samples, affecting the chemical composition and antimicrobial properties of plant extracts.

Conclusion

Overall, D. lessertii extracts due to the existence of drug metabolites including phenol, flavonoid, and chemical compositions and other antimicrobial activities exhibited antimicrobial properties. Considering the chemical compositions including anticancer and antimicrobial agents such as phytol and eugenol, D. lessertii extracts could be suggested to develop drugs with antimicrobial properties treat bacterial infections.

Authors’ Contribution

This research was performed by the corresponding author.

Ethical Approval

Not applicable

Competing Interests

None.

Acknowledgements

This research was done in the Biotechnology department of Bu-Ali Sina University, Hamadan, Iran.

References

1. Weinstein RA. Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. Emerg Infect Dis. 2001;7(2):188-192. doi:10.3201/eid0702.010206
2. Perumal Samy R, Gopakrishnakone P. Therapeutic potential of plants as anti-microbials for drug discovery. Evid Based Complement Alternat Med. 2010;7(3):283-294. doi:10.1093/ebc/nen036
3. Alamhulu M, Nazeri S. The in vitro antibacterial activity of different organs hydroalcoholic extract of Dendrostrella lessertii. J Plant Res. 2016;29(2):407-421. [Persian].
4. Sarker SD, Nahar L. An introduction to natural products isolation. Methods Mol Biol. 2012;864:1-25. doi:10.1007/978-1-61779-624-1_1
5. Nedeljko T, Pavle Z, Perica J, Ratomir M, Marina Z. HPLC analysis, antimicrobial and antioxidant activities of Daphne cneorum. L. Hem Ind. 2012; 66 (5): 709716. doi: 10.2298/HEMIND120114029M.
6. Yosie A, Effendy MA, Sifizul TM, Habshah M. Antibacterial, radical-scavenging activities and cytotoxicity properties of Phaleria macrocarpa (scheff.) Boerl. leaves in HepG2 cell lines. Int J Pharm Sci Res. 2011;2(7):1700-1706.
7. Alamhulu M, Nazeri S. Investigation of antibacterial and antioxidant activities of alcoholic extracts of flower and root of Dendrostrella lessertii on some human pathogenic bacteria. Sci J Hamadan Univ Med Sci. 2015;21(4):277-285. [Persian].
8. Alamhulu M, Nazeri S. Assessment of the antioxidant and antibacterial effects of stem and leaf alcoholic extracts of Dendrostrella lessertii. J Microbial World. 2015;7(4):289-298. [Persian].
9. Yazdanparast R, Meshkini A. 3-Hydrogenkwadaphamine, a novel diterpene ester from Dendrostrella lessertii, its role in differentiation and apoptosis of KG1 cells. Phytomedicine. 2009;16(2-3):206-214. doi:10.1016/j.phymed.2008.07.014
10. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343-356. doi:10.1016/j.ijantimicag.2005.09.002
11. Das H, Patra JK, Panda PP. Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb. Afr J Biotechnol. 2008;7(20):3331-3334.
12. Rukshana MS, Doss A, Kumari Pushpa Rani TP. Phytochemical screening and GC-MS analysis of leaf extract of Pergularia daemia (Forssk.) Chiov. Asian J Plant Sci Res. 2017;7(1):9-15.
13. Ronald Hites A. Gas chromatography mass spectroscopy. In: Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall; 1997:609-611.
14. Taninaka H, Takaishi Y, Honda G, Imakura Y, Sezik E, Yesilada E. Terpenoids and aromatic compounds from Daphne oledoide ssp. oledoide. Phytochemistry. 1999;52(8):1525-1529. doi:10.1016/s0031-9422(99)00305-2
15. Manojlovic NT, Mašković PZ, Vasiljević PJ, et al. HPLC Analysis, antimicrobial and antioxidant activities of Daphne cneorum L. Hem Ind. 2012;66(5):709-716. doi:10.2298/
16. Tayoub G, Abu Alnaser A, Shamma M. Microbial inhibitory of the *Daphne oleifolia* lam. ethanolic extract. Int J Med Aromat Plants. 2012;2(1):161-166.

17. Ayoola GA, Johnson OO, Adelowotan T, et al. Evaluation of the chemical constituents and the antimicrobial activity of the volatile oil of *Citrus reticulata* fruit (Tangerine fruit peel) from South West Nigeria. Afr J Biotechnol. 2008;7(13):2227-2231. doi:10.5897/abj08.391

18. Pourmorad F, Hosseinionmehr S, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol. 2006;5(11):1142-1145.

19. Choi CW, Kim SC, Hwang SS, et al. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002;163(6):1161-1168. doi:10.1016/s0168-9452(02)00332-1

20. Kala SC, Ammani K. GCMS analysis of bioactive compounds in wild leaf and callus extracts of *Biophytum sensitivum* (L.). Int J Res Pharm Chem. 2018;8(2):273-280.

21. Suerbaum S, Michetti P. *Helicobacter pylori* infection. N Engl J Med. 2002;347(15):1175-1186. doi:10.1056/NEJMra020542

22. Shojaemehr M, Alamhulu M. Antibacterial activity of alcoholic and aqueous extracts of various organs of *Citrus medica* on 10 human pathogenic in vitro. Iran J Med Microbiol. 2019;13(4):310-320. doi:10.30699/ijmm.13.4.310

23. Guimarães AG, Oliveira GF, Melo MS, et al. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol. 2010;107(6):949-957. doi:10.1111/j.1742-7843.2010.00609.x

24. Purushoth PT, Panneerselvam P, Suresh R, Clement AW, Balasubramanian S. GC-MS analysis of ethanolic extract of *Canthium parviflorum* Lamk Leaf. J Appl Pharm Sci. 2013;3(2):166-168. doi:10.7324/japs.2013.30229

25. Nickavar B, Mojab F, Dolat-Abadi R. Analysis of the essential oils of two *Thymus* species from Iran. Food Chem. 2005;90(4):609-611. doi:10.1016/j.foodchem.2004.04.020

26. Hakki Alma M, Ertas M, Nitz S, Kollmannsberger H. Chemical composition and content of essential oil from the bud of cultivated Turkish clove (*Syzygium aromaticum* L.). BioResources. 2007;2(2):265-269.

27. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8(9):950-988. doi:10.3390/i8090950

28. Gebicka L, Banasiak E. Flavonoids as reductants of ferryl hemoglobin. Acta Biochim Pol. 2009;56(3):509-513. doi:10.18388/abp.2009.2487

29. Číž M, Pavelková M, Gallová L, Králová J, Kubala L, Lojek A. The influence of wine polyphenols on reactive oxygen and nitrogen species production by murine macrophages RAW 264.7. Physiol Res. 2008;57(3):393–402. doi:10.33549/physiolres.931088