Nature-Inspired Optimization Algorithms: Research Direction and Survey

ROHIT KUMAR SACHAN, IIT Kanpur, India
DHARMENDER SINGH KUSHWAHA, MNNIT Allahabad, India

Nature-inspired algorithms are commonly used for solving the various optimization problems. In past few decades, various researchers have proposed a large number of nature-inspired algorithms. Some of these algorithms have proved to be very efficient as compared to other classical optimization methods. A young researcher attempting to undertake or solve a problem using nature-inspired algorithms is bogged down by a plethora of proposals that exist today. Not every algorithm is suited for all kinds of problem. Some score over others. In this paper, an attempt has been made to summarize various leading research proposals that shall pave way for any new entrant to easily understand the journey so far. Here, we classify the nature-inspired algorithms as natural evolution based, swarm intelligence based, biological based, science based and others. In this survey, widely acknowledged nature-inspired algorithms namely ACO, ABC, EAM, FA, FPA, GA, GSA, JAYA, PSO, SFLA, TLBO and WCA, have been studied. The purpose of this review is to present an exhaustive analysis of various nature-inspired algorithms based on its source of inspiration, basic operators, control parameters, features, variants and area of application where these algorithms have been successfully applied. It shall also assist in identifying and short listing the methodologies that are best suited for the problem.

CCS Concepts: • Computing methodologies → Bio-inspired approaches; Genetic algorithms; • Mathematics of computing → Evolutionary Algorithm;

KEYWORDS
Additional Key Words and Phrases: Ant Colony, Artificial Bee Colony, Environmental Adaption, Jaya Algorithm, Flower Pollination, Shuffled Frog Leaping, Swarm intelligence

Reference format:
Rohit Kumar Sachan, and Dharmender Singh Kushwaha. Feb 2021.
Nature-Inspired Optimization Algorithms: Research Direction and Survey. 35 pages.

1 INTRODUCTION

Recent past has witnessed a wide adoption of nature-inspired algorithms for diverse real-world optimization problems that include engineering experiments, scientific experiments and business decision making. These algorithms are based on randomization concept and draw inspiration from natural phenomenon. A few of the several nature inspired algorithms proposed till now, have proved to be very efficient. Many algorithms give adequate results, but no algorithm gives an admirable performance in solving of all the optimization problems. In other words, an algorithm may show good performance for some problems while it may perform poorly for other problems [219]. However, as compared to classical optimization techniques, nature-inspired algorithms obtain optimal solutions for a wider range of problem domains in a reasonably practical time.

In real world, optimization problem is categorized into two categories: single objective and multi-objective. In single objective problem, only one objective is optimized while, multi-objective problem focuses on more than one objective. Consequently, we have two types of optimization algorithms namely single objective optimization algorithms and multi-objective optimization algorithms. The term objective refers to an objective function which is a
mathematical formulation of the optimization criteria of a problem. The objective function produces a numerical result based on input variables. The result of the objective function is known as fitness (or cost) and the number of variables given as input to the objective function is referred to as the dimension of objective function.

The main characterizing features of a good nature-inspired algorithm are a higher convergence rate, less processing time, an unbiased exploration and exploitation and less number of algorithm-specific control parameters. Convergence rate is the speed in terms of the number of iterations beyond which a repeated sequence is produced by an algorithm. This repeated sequence is known as a convergent sequence and is closer to the desired solution. The time required for execution of an algorithm is known as processing time. Exploration and exploitation are the elementary parameters of any nature-inspired algorithm. In exploration, exclusive new region of a search space is visited. In exploitation, only the neighborhood region of previously visited points of a search space is visited [36]. A good algorithm requires equilibrium between exploration and exploitation.

Generally, all nature-inspired algorithms require two types of controlling parameters: common control parameters (or regular parameters) and algorithm-specific control parameters (or dependent parameters) [159]. Common control parameters are the problem independent parameters like population size, number of dimension, number of iterations, etc. On the other hand, algorithm-specific control parameters are the problem dependent parameters. In other words, the value of these parameters may differ from problem to problem like GA requires a mutation and a crossover probability; PSO requires inertia weight and learning factors, etc. These dependent parameters may influence the performance of the algorithm. So a good nature-inspired algorithm should use minimum number of the algorithm-specific control parameters.

This paper presents an extensive overview and exhaustive analysis of various nature-inspired algorithms. The organization of the paper is as follows: Section 2 highlights the past related work. Classification of the nature-inspired algorithms is discussed in Section 3. Section 4 provides a broad review of various nature-inspired algorithms with their variants and applications. Section 5 enlists the comparative study of discussed algorithms based on its source of inspiration, basic operators, control parameters and features in chronological order. Section 6 outlines general conclusion.

2 RELATED WORK

Recently, many researchers have made an attempt to compare various existing evolutionary and nature-inspired algorithms. In paper [55], Elbeltagi et al. presented a comparative study of five evolutionary algorithms for continuous and discrete optimization. These algorithms are ant-colony, genetic, memetic, particle swarm and shuffled frog leaping. In another work, Parpinelli et al. [147] have reviewed the recently proposed swarm intelligence algorithms which also include a comparative analysis of ten algorithms based on source of inspiration, exploitation, exploration and communication model. Newly introduced algorithms like bat, cuckoo search and firefly are discussed by Sureja [206] along with the comparative result analysis of bat, cuckoo search, firefly, genetic and particle swarm for ten continuous and discrete optimization problems. In another paper [27], Binitha et al. presented a detailed literature survey and a comparison of various bio-inspired algorithms based on their representation, operators, control parameters and area of application. In [223], Yang discussed various search strategies and new challenges of nature-inspired meta-heuristic algorithms. In a related work Agarwal et al. [8] carried out a comprehensive review of twelve nature-inspired algorithms based on input parameters, evolutionary mechanism and applied application area while Kaur et al. [102] presented a comparative study of bat, cuckoo search, firefly and krill herd on the basis of their corresponding behaviour, objective function, features and area of application. A detailed insight of ant colony,
artificial bee, evolutionary strategies, particle swarm, genetic algorithms and genetic programming has been outlined in the work of Dixit et al. [45].

3 CLASSIFICATION OF NATURE-INSPIRED ALGORITHMS

We categorize various Nature-Inspired Algorithms (NIAs) into five major categories based on the source of inspiration: natural evolution based, swarm intelligence based, biological based, science based and others. The natural evolution based algorithms are based on the basic principles of the theory of natural evolution. This theory is known as “Darwinism”. Swarm intelligence based algorithms are inspired by the collective behaviour of creatures like ants, bats, bees, cuckoos and fireflies. The biological based algorithms are motivated by the social behavioral pattern of biological systems. The science based algorithms are based on the scientific concepts. The algorithms that are inspired by any other natural phenomena fall into the category of others. Fig. 1 shows the classification of NIAs.

![Fig. 1. Classification of nature-inspired algorithms](image)

4 REVIEW OF NATURE-INSPIRED ALGORITHMS

The most prominent NIAs are Genetic Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Shuffled Frog Leaping Algorithm (SFLA), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat Algorithm (BA), Environmental Adaption Method (EAM), Teacher Learning based Algorithm (TLBO), Flower Pollination Algorithm (FPA), Water Cycle Algorithm (WCA) and Jaya Algorithm. These algorithms are used for finding the optimal solution. These algorithms start with the search of optimal solution within search space of a randomly initialized population [147]. In each iteration, current population is replaced by a newly generated population. Fig. 2 shows the evolution timeline of various nature-inspired algorithms. Some of the widely recognized NIAs are examined in the subsequent sections.
4.1 Natural Evolution based Algorithms

Natural evolution is one of the oldest and well-known concepts in the field of nature-inspired algorithms. These algorithms are inspired by the theory of natural evolution. In this, only the fittest individuals of the current population are selected for the next generation. The well-known natural evolution-based algorithms are elaborated in the following sections.

4.1.1 Genetic Algorithms (GA)

Holland et al. [80] proposed the genetic algorithms at the University of Michigan. The concept of GA is based on Darwin’s theory of biological evolution—“Survival of the fittest.” It states that only the fittest individuals shall survive during the next generation while the unfit individuals shall be eliminated.

Biological evolution is defined as a genetic change in population over time (or generations). Many times, these changes are very small and not noticeable. These changes occur at the gene level. The changes, which are fit for survival of genes, are only passed onto the next generation. During the biological evolution, various activities take place like—crossover and mutation of genes, selection of the fittest genes for the next generation.

XXX XXX XXX XXX, Vol. XX, No. XX, Article XX. Publication date: Feb 2021.
In simulation of GA, individual genes (or solutions) are expressed in string format, called “chromosome”. It uses three basic operators: crossover, mutation and selection [133]. In the evolution process, current population is replaced by new population, which has better average fitness than the previous generation. So the mean value of fitness of the next generation becomes fitter than its predecessor generation.

Various researchers have proposed different types of crossover, mutation and selection operators [193]. The principle behind the crossover and mutation is the same so as to modify or update the old chromosome and produce a new chromosome (or offspring). The main difference between crossover and mutation is that crossover operator is performed over two or more than two chromosomes, while the mutation operator is performed on a single chromosome. The fittest individuals are selected through selection operator.

The main parameters of GA are population size, number of generations, crossover probability, mutation probability and selection operator. The population size and number of generations are the common control parameters. The crossover probability, mutation probability and selection operator are the algorithm-specific control parameters. Length of chromosome and chromosome encoding method are also considered as algorithm-specific parameters. Due to crossover and mutation, GA has the ability of exploration and exploitation simultaneously.

The basic GA is sufficiently efficient. However variants of GA have been proposed to improve its effectiveness, efficiency and robustness. The comparative study of various existing variants is shown in Table 1. Numerous optimization problems have been successfully solved by GA. The recent applications are: software effort estimation [197], carpool service problem in cloud computing [84], VM placement in data centers [207], image enhancement and segmentation [151], water distribution system design [26], production ordering problem in an assembly process [188], medical image protection [145], wireless networks [142], vendor-managed inventory routing problem [146], parameter selection of photovoltaic panel [22] and QoS-aware service selection [44].

Table 1. Comparative study of GA variants

Reference	Algorithm	Algorithm/s compared with	Application
[40]	Non-dominated Sorting GA II (NSGA II)	Pareto-Archived ES (PAES) and Strength-Pareto EA (SPEA)	Multi-objective test problems
[152]	Adaptive GA (AGA)	Project Scheduling Problem Library (PSPLIB)	Resource Levelling Problem (RLP) in project management
[121]	Multi-objective GA (MOGA)	Maximum applications scheduling algorithm and random scheduling algorithm	Scheduling in cloud computing
[124]	Real-coded GA	Nelder–Mead simplex, PSO and Bacterial Foraging (BF)	Brain images segmentation
[65]	Binary-Real Coded GA	Lagrangian Relaxation GA (GA-LR), Integer-Coded GA (ICGA), Matrix Real-Coded GA (MRCGA), Enhanced Simulated Annealing (ESA), SFLA	Unit Commitment (UC) problem
[236]	Hybrid GA/PSO	Existing IPPS methods	Process planning and scheduling
[178]	Simplified GA	COCOMO model	Software effort estimation
[13]	Elitism GA (EGA)	GA	Extreme Learning

XXX XXX XXX XXX, Vol. XX, No. XX, Article XX. Publication date: Feb 2021.
4.1.2 Environmental Adaption Method (EAM)

Environmental adaption method was proposed by Mishra et al. [129] for solving different benchmark functions. EAM is based on an improved theory of Darwinism. This theory does not consider the impact of current environmental conditions on the individuals. Due to this, the fitness improvement is very slow. In improved theory, impact of environmental conditions is considered for improving the fitness of individuals. In EAM, an individual adapts to environmental conditions to survive in a changing environment. Various observations state that during the evolution, average fitness of current generation always improves from the average fitness of previous generation. EAM improves the requirement of time and storage in comparison of GA and PSO [129].

The EAM simulates the improved Darwin’s theory. For simulation, it uses three basic operators: adaption, mutation (or alteration) and selection [129]. Adaption operator is used to update the genome structure of individual. This modification depends on current fitness of individual and environmental fitness. For that, an exponential operator is used for damping the effect of change in the solution. As the solution moves towards the optimal solution, the ratio of fitness tends towards 1 as successive generation passes on. The mutation operator is applied on the individual to add the effect of environmental noise. The mutation operator just inverts the bits of individual genes with mutation probability. After this, best individuals are selected through a selection operator. During adaption, the new solution is calculated by equation 1.

$$\text{new}_\text{sol} = (a \times \text{current}_\text{sol}^{\text{fitness} \ (\text{current}_\text{sol})/\text{avg} _\text{fitness}} + \beta)/2^L - 1$$

where α and β are random numbers and L is the number of bits representing an individual.

The EAM requires three main control parameters. These are population size, number of generations and mutation probability. The population size and number of generations are the common control parameters. Mutation probability and size of an individual are the algorithm-specific control parameter. Due to adaption operator, fitness of individuals improves in a short duration of time. EAM has an unbiased exploration and exploitation [130]. The adaption operator exploits the neighborhoods of current solutions and simultaneously mutation operator explores the new solutions.

Some modified and updated versions of EAM are suggested by researchers. A comparative study of various existing variants of EAM is shown in Table 2. Limited number of applications of EAM have been found till date like- test case generation [130].

Reference	Algorithm	Algorithm/s compared with	Application
[129]	EAM	GA and PSO	Rastrigin and Schwefel function
[131]	Modified EAM (MEAM)	EAM and ePSO	Rosenbrock, Rastrigin, Griewank and Schwefel function

Table 2. Comparative study of EAM variants
[130]	Improved EAM (IEAM)	GA and EAM	Several benchmark functions and Test case generation
[140]	Non-dominated Sorting EAM (NS-EAM)	NSGA-II	Two multi-objective function (Vanneta and Schaffer)
[210]	EAM for Dynamic environment (EAMD)	EAM	BBOB-2009 benchmark functions
[211]	Hybrid GA-EAM	PSO Time Variant Acceleration Coefficient (PSO-TVAC), Self-Adaptive DE (SADE) and EAM	Rosenbrock and Rastrigin function
[212]	EAM with Real parameter encoding for Dynamic environment (EAMD-R)	Several state-of-the-art algorithms	BBOB-2009 benchmark functions

4.2 Swarm Intelligence based Algorithms

Swarm intelligence is a novel idea to inspire researchers to address optimization problem efficiently and effectively. These algorithms are based on the intelligent behaviour of the creatures like- ants, bees, birds, fishes, fireflies, bats and cuckoos. A large number of algorithms come under this category. The four widely used swarm intelligence based algorithms are described next.

4.2.1 Ant Colony Optimization (ACO)

ACO is an extended form of traditional construction heuristic [48]. The construction algorithms solve the problem in an incremental way. These start with an initial solution and iteratively a solution component is added randomly or greedily without backtracking. Greedy approach gives a better solution than the random approach, but it generates a limited number of solutions. The greediness is based on the profitability of the solution. The construction algorithms are the fastest approximation method, but often generate solutions that may be not optimal or high quality. With the help of the local search algorithms, solution can be improved. The local search algorithm explores the neighbors of the current solution and improves it. It finds the better neighbor solution if it exists.

In real life, the ants follow the stochastic construction approach and pheromone model for the search of the food. In this, new solution is generated by adding stochastic solution component in a particular solution. Stochastic component is a small random value which increases the randomness in search of optimal solution. Due to stochastic component, real ants discover a large number of solutions [48].

Dorigo [46] has proposed a new algorithm based on the ant’s cooperative behavior. This is known as ACO. The ants move randomly in search of food. On discovering the food source, ants leave pheromone trails on the way back to their colony. This is used as a communication channel by the other ants. During the search of food, if any ant finds the pheromone path, they stop wandering and start to follow the pheromone path. The pheromone path signifies the presence of a food source. Multiple ants follow the same path and leave down pheromone trails, thus increasing the pheromone strength on the path. After a period of time, evaporation of the pheromone trail starts. The evaporation reduces the attractive strength of the deposited pheromone. In a comparison between the shorter path and longer path, a longer path has lesser pheromone density because it has more time for pheromone evaporation than the shorter path implying that shorter paths have distinctly higher pheromone density [47].
The basic ant colony metaheuristic follows the three steps [46, 47].

1. In first step, initial solutions are constructed by all ants.
2. In second step, solutions are improved by the local search algorithm.
3. In third step, pheromones are updated.

In simulation of ACO, ants memorize the traversed path and deposited pheromone. Ants try to search a path with minimum distance between colonies and the food source through random movements. The movement depends on the probability of solution components. The probability depends on the pheromone values and heuristic information, which are associated with each path. The probability of searching shortest path is inversely proportional to the route’s distance. For each successive movement, the ants always choose the edge which has a higher probability of solution component. When all ants have completed their search, the pheromone amount of complete path is updated. The purpose of this is to improve the pheromone value of good solution and to reduce the pheromone value of bad solution. The worth of solution depends on the amount of pheromone levels on path associated with solutions. Different ACO variants may have different way to update pheromone.

The parameters required in ACO are number of ants, number of iterations, pheromone evaporation rate and amount of reinforcement. The number of ants and number of iterations are the common control parameters. The pheromone evaporation rate, heuristic information and amount of reinforcement are algorithm-specific control parameters. In ACO, a balanced exploration and exploitation can be achieved through the management of pheromone trails [49]. ACO is good for finding approximate solutions of hard optimization problems through graph or tree.

Dorigo et al. present recent advancement and application of ACO in paper [48] and recent advances in a successive paper [49]. Many customized and modified variants of ACO were proposed by various researchers. The comparative study of various existing variants of ACO is shown in Table 3. The recent applications of ACO are: software effort estimation [205], routing for mobile Ad-hoc network [31], spatial clustering algorithm [1], web service compositions in cloud computing [237], train routing selection problem [187], requirement selection in software development [41], energy-efficient networks [39], biometrics fusion [107], unsupervised probabilistic feature selection in pattern recognition [37] and blood vessel segmentation in retina diagnosis system [15].

Reference	Algorithm	Algorithm/s compared with	Application
[17]	Elitist Continuous ACO (ECACO)	ACO	Coastal aquifer management problem
[106]	Binary Ant System (BAS)	Continuous ACO (CACO), Continuous Interacting Ant Colony (CIAC), ACO and API algorithm	Unconstrained optimization problems
[235]	Continuous ACO (CnACO)	Benchmark functions	Structural Health Monitoring (SHM)
[221]	Multi-Objective ACO (MOACO)	Ranked Positional Weight Method (RPWM), GA Artificial Immune Algorithm (AIS)	Mixed-model Assembly Line Balancing Problem (MALBP)
[116]	Hybrid GA-ACO	GA, ClustalW, Central-star algorithm and Horng's GA	Multiple Sequence Alignment (MSA) problem

Table 3. Comparative study of ACO variants
4.2.2 Particle Swarm Optimization (PSO)

In particle swarm optimization, the word swarm signifies the bird’s flock or fish’s school and the word particle denotes a bird in a flock or a fish in the school. PSO was based on the social behaviour of particles in swarms. This includes synchronous movement, unpredictable and frequent direction change, scattering and regrouping etc. In a swarm, every particle learns from his current experience and shared experience of other particles of the swarm. Kennedy and Eberhart [103] proposed PSO based on this hypothesis.

The social behaviour of particles synchronizes a collision-free movement in the search space towards the roost. For that, each particle matches its velocity with the nearest neighbors and maintains inter-individual distance in swarms. For maintaining the unanimous and unchanging direction random variable craziness is added in velocity. A roost is a location in the search space that attracts the particles until they reached there. It may be a food source, wire or a tree. For optimizing the movement towards the roost, each particle remembers their best value and share global best value with other particles of the swarm. Each particle synchronizes its flying movement based on the remembered value.

In computer simulation of PSO, all particles have its own velocity and position. Each particle remembers the personal best position (pbest) and shares the global best position (gbest) among all the particles for finding quality solutions. The particle’s new position depends on the distance of its current position from pbest and gbest. The new velocity and new position of particles are calculated using equations 2 and 3. These equations have been developed after various development stages.

\[
\text{new_velocity} = \text{current_velocity} + c_1 r_1 \times (pbest - \text{current_position}) + c_2 r_2 \times (gbest - \text{current_position})
\]

\[
\text{new_position} = \text{current_position} + \text{new_velocity}
\]

where \(r_1, r_2 \) are two random variables with range \([0, 1]\) and \(c_1, c_2 \) are the learning factors.

The main control parameters in PSO are the number of particles, number of iterations and learning factors. Number of particles and number of iterations are the common control parameters. Learning factor and maximum velocity are algorithm-specific control parameters.

PSO is conceptually simple and computationally economical (in terms of speed and memory) and can be programmed with few lines code. It uses only few basic arithmetic operators. PSO does not use crossover or mutation operator like GA. The adjustment of pbest and gbest is conceptually similar to the crossover or mutation of GA.

There are more than two dozen PSO variants and its hybrid approach with other nature-inspired approaches like- GA, ABC has also been investigated [13, 227]. The different variants of PSO have different parameters like- inertia weight, learning factors, velocity clamping, acceleration constants and mutation operators [86]. The comparative study of various existing variants of PSO is shown in Table 4. In many problems, PSO gives better results than traditional optimization methods and even better than genetic algorithm. Some of the latest applications of PSO are:
software cost estimation [198], human motion tracking [186], data clustering [60], resource allocation in the cloud [135], online dictionary learning [217], capacitor placement problem in distribution system planning [115], vehicle routing problem [231], optimal power management based on driving condition for electric vehicles [32], robotic [137], inventory and location control in supply chain network [136], assembly line balancing [42] and brain MR image segmentation [113].

Reference	Algorithm	Algorithm/s compared with	Application
[104]	Binary PSO	-	De Jong’s-1975 test bed
[63]	Regrouping (RegPSO)	PSO	Ackley, Griewangk, Quadric, Rastrigin, Rosenbrock, Spherical and Weighted Sphere function
[240]	Cooperative Quantum-behaved PSO (CQPSO)	PSO and Quantum-behaved PSO (QPSO)	Distribution algorithms
[196]	Discrete PSO	Decimal Codification based GA (DCGA)	Transmission network expansion planning
[134]	Modified Binary PSO	PSO and BPSO	Cancer diagnoses
[199]	Personal Best Position PSO (PBPSO)	PSO	15 Scalable problems and 13 Non-scalable problems
[232]	Niche PSO	PSO	Target tracking
[233]	Neighborhood Search Barebones (NSBPSO)	Barebones PSO (BPSO)	Ship design
[93]	Immunity-Enhanced PSO (IEPSO)	DE and PSO	Structural damage detection
[220]	MOPSO	Well-known evolutionary multi-objective algorithms	Feature selection and classification
[109]	Guaranteed Convergence PSO (GCPSO)	Earlier reported approaches	Optimal power flows problem
[202]	Hybrid PSO-GA	GA and PSO	Closed-Loop Supply Chain (CLSC) network design
[218]	Hybrid GA-PSO	Basic GA and PSO	Welding robot path planning

4.2.3 Artificial Bee Colony (ABC)
Intelligent foraging behaviour of honey bee inspired Karaboga [94] to propose a new swarm based algorithm. This is known as ABC. ABC obtains the swarm intelligent behaviour by self-organizing and division of labour concepts. Self-organizing includes Positive feedback, negative feedback, fluctuation and multiple interactions. Division of labour means each task is performed by specialized individuals. The swarm of honey bee has three basic components- food source, employee foragers and unemployed foragers. The honey bee searches food sources in intelligent and well-organized manner. When any bee finds a good food source based on nectar value, it shares collected information with other bees and the rest of the bees follow the same food source.

In ABC [95], the hive has three types of bees namely: employed bees, onlooker bees and scout bees. These bees have distinct role in hive. Scout bees search the food locations in the vicinity of the hive randomly. It becomes employed once it finds the location of a food source. Employed
bees locate their food source; evaluate its amount of nectar and return to hive. It then starts
dancing near the hive. This dance is known as waggle dance. The information exchange between
the bees is an important process in ABC. The communication depends on the quality or richness of
food source. The quality information of current sources is present in dance floor and it is measured
by bee’s dance duration. Based on the probability (or profitability) of food source, onlooker bee
chooses a best food source.

During every search cycle, bees follow three basic steps [94, 97].

1. In first step, employed bees locate the food sources and measure the value of nectar.
2. In second step, employed bee shares the value of nectar with onlookers, and then a good
food source is selected by onlookers.
3. In third step, scout bees explore the search area for new food sources.

In simulation of ABC, possible solution of problem is represented by food source. One
employed bee is associated with every food source. The fitness of objective function is expressed
by the amount of nectar or quality of a food source. The onlooker bees search the food source
based on probability of source. The scouts explore the other food source without any guidance.

In ABC, employed bees find the new food source based on the neighboring food sources and
the probability of new sources is calculated. Based on these probabilities, the onlooker bees
compute the newly discovered food source position. The selection between new and current food
source is based on greedy approach, i.e. one that gives the best solution. Finally, scout bees
identify the abandoned food source and replace it by random food source. If successive iteration
does not improve the probability of a food source, then it is an abandoned food source. The new
solution position and probability are determined by equation 4 and equation 5 respectively.

\[
new_position = current_position + rand \times (current_position - current_position_k) \tag{4}
\]

where \(rand \) is a random number within range \([-1, 1]\) and random dimension index \(k \) is selected
between 1 to \(n \).

\[
Probability = \frac{fitness}{total_fitness} \tag{5}
\]

The control parameters of ABC are the number of food source which same to the number of
onlookers or employed bees, maximum number of cycles and the value of limit [97]. The number
of food source and value of limit are algorithm-specific parameters. Limit is a control parameter to
control the selection of food source, meaning that if the profitability of a food source is not
improved within prefix trails then the food source is converted into an abandoned source. ABC is
a simple, flexible and robust method. In ABC, exploration and exploitation process work in
parallel. Onlooker and employed bees exploit the search space, while the scout bees explore the
search space [94].

Many researchers have proposed various variants and modified ABC. A comparative study of
various existing variants of ABC is shown in Table 5. Some of the recent applications of ABC are:
travelling salesman problem [98], independent path and software test suite optimization [114],
software effort estimation [70], economic dispatch problem [191], mobile robot path planning
[34], load balancing in cloud [144], optimal placement problem in wireless sensor network [77],
optimal power flow [2], image segmentation [29], energy aware routing in WSN [110], crack
identification in beam [43] and FIR filter design [52].
Table 5. Comparative study of ABC variants

Reference	Algorithm	Algorithm/s compared with	Application
[12]	Chaotic ABC (CABC)	ABC algorithm	Rosenbrock, Griewangk and Rastrigin function
[241]	Cooperative ABC (CABC)	ABC, PSO and Cooperative PSO (CPSO)	Sphere, Rosenbrock, Griewank, Rastrigin, Ackley and Schwefel function
[89]	Hybrid GA-ABC	GA, ABC and Conventional Gradient Descent Method	Proportional Integral (PI) speed controller of Permanent Magnet Synchronous Motor (PMSM)
[76]	Discrete ABC (DABC)	GA and ABC	Blocking Flow Shop (BFS) scheduling problem
[96]	Constrained ABC	GA, PSO, ABC, Homomorphous Mapping (HM) and Adaptive Segregational Constraint Handling EA (ASCHEA)	13 linear, nonlinear and quadratic test functions
[53]	Hybrid ABC-SPSO	ABC and PSO	CEC05 benchmark functions
[9]	Multi-objective ABC (MOABC)	Multi-Objective EA based on Decomposition (MOEAD), Dynamical Multi-Objective EA (DMOEADD) and Multiple Trajectory Search (MTS)	Unconstrained and constrained test problems
[100]	Binary ABC (DisABC)	Binary DE (BinDE) and PSO	Uncapacitated Facility Location Problem (UFLP)
[18]	ABC with Levy Flight distribution (LFABC)	ACO, Standard ABC and Dynamic Harmony Search	Steel space frame design problem
[108]	Co-variance guided ABC (M-CABC)	MOABC	Portfolio optimization

4.2.4 Firefly Algorithm (FA)

The intelligent flashing behaviour of fireflies has worked as a source of inspiration in development of new algorithms. Each firefly has a unique flashing pattern. It works as a signaling and communication mechanism between them and to attract the prey. It also acts as a protective warning system. Generally, the male and female fireflies attracted each other with a unique pattern of flashing for mating. The intensity of flashing light depends on the attractiveness of fireflies, the distance between the fireflies and the degree of absorption of the medium.

Yang [227] associates the flashing behaviour of fireflies with the objective function and proposes a new algorithm based on that which is known as FA. The FA has conceptual similarity with BFA (Bacterial Foraging Algorithms). In BFA, attraction between bacteria partly depends on fitness value and partly on the distance between them. But in FA, attraction is based on objective function and monotonic decay of attraction with distance. FA explores search space more efficiently than BFA.
The computer simulation of firefly algorithm depends on the following flashing rules of firefly [224, 225]:

1. The first rule states that, all fireflies are unisexual. For sexual activity, they are attracted to other fireflies.
2. According to the second rule, attractiveness is proportional to their brightness. Both being inversely proportional to their mutual distance between the fireflies. A less brighter firefly moves towards the more brighter firefly. If a brighter firefly is not found, then they will move randomly. Attraction also depends on the degree of absorption.
3. The third rule states that, the brightness of a firefly is equal to the fitness of objective function.

In FA, the attractiveness is calculated by brightness which is calculated with the association of the encoded objective function. The light intensity fluctuates due to distance and absorption by the media. The calculation of attractiveness and fluctuation in light intensity is very important. In general, the brightness (I) and attractiveness (β) of a firefly are calculated using equations 6 and 7 respectively. The movement of a firefly i towards the brighter firefly j is calculated using equation 8.

$$I(r) = I_0 e^{-\gamma r^2} + \frac{I_0}{1 + \gamma r^2}$$

$$\beta(r) = \beta_0 e^{-\gamma r^2} + \frac{\beta_0}{1 + \gamma r^2}$$

where γ is the light absorption coefficient. I_0 and β_0 are the brightness and attractiveness at distance $r = 0$ respectively.

$$X_i = X_i + \beta_0 e^{-\gamma r^2_i}(X_j - X_i) + \alpha \epsilon_i$$

where the second and third term represents the attractiveness and randomization of α with randomization parameter ϵ_i respectively. For most implementations $\beta_0 = 1$, $\alpha \epsilon [0, 1]$ and $\gamma \epsilon [0, \infty)$, but normally it lies between 0.01 and 100.

In FA, the control parameters are number of fireflies, number of iterations, light absorption coefficient and attractiveness. Light absorption coefficient and attractiveness are the algorithm-specific control parameters. Number of fireflies and number of iterations are the common control parameters. Due to variation in attractiveness, FA explored the search space efficiently. FA is capable of finding local and global optima simultaneously. Thus, FA is appropriate for parallel execution. FA exploits the search space better than GA and PSO [227].

A comparative study of various existing variants of FA is shown in Table 6. Some of the popular applications of FA are: load dispatch problem in economic emissions [14], travelling salesman problem [88], clustering algorithm [192], feature selection [21], image compression [81], image registration [238], manufacturing cell formation [190], image watermarking [128] and software effort estimation [71].

Table 6. Comparative study of FA variants

Reference	Algorithm	Algorithm/s compared with	Application
[228]	Levy Flights FA (LFA)	GA and PSO	Michalewicz, Rosenbrock, De Jong, Schwefel, Ackley, Rastrigin, Easom, Griewank, Yang and Shubert function
[66]	Gaussian FA (GD-) PSO, FA and Time-varying	Sphere, Rosenbrock, Rastrigin	
4.3 Biological based Algorithms

The biological based algorithms are inspired by social behavioral pattern of biological sciences like botany and zoology. Botany includes the plant systems and zoology focuses in the living systems. Biological systems have many characteristics like robustness, adaptability and optimal decision. These characteristics work as motivational factor. The biologically inspired algorithms are described in detail next.

4.3.1 Shuffled Frog Leaping Algorithm (SFLA)

SFLA combines the principle of Shuffled Complex Evolution (SCE) and Particle Swarm Optimization (PSO) [62]. SFLA inherits the deterministic search approach from PSO and the random search approach from SCE. SFLA is inspired by the information sharing among the memetics of group.

Consider a swamp with frogs, in which stones are laid in different position on to which the frogs leap to find stone containing the maximum amount of food. During this process, frogs share the food information with others frogs, so that memes can be improved. The memes represent the traits of frog same as a genes in a GA [61]. The improvement of memes implies improvement in individual position of frogs. SFLA is based on this choreograph situation.

During the simulation of SFLA, the frogs are divided into several memeplexes (subgroups). Within the memeplexes, frogs share their experiences with the other members. This process is known as memetic evolution. This improves the quality of memes and improves the individual position of frogs towards the goal. Memetic evolution is repeated for a specific number of times. Later, frogs of memeplexes are reshuffled. This shuffling process improves the quality of memes by sharing the experience of frogs from different memeplexes.

SFLA was introduced by Eusuff and Lansey [61]. In SFLA, the population of virtual frogs is known as solutions and fitness value is known as performance. To begin with, all frogs are arranged according to their performance in decreasing order. After this, all frogs are partitioned into a number of memeplexes in such way that each memeplexes have an equal number of frogs.
Within each memplex a local evolution is performed to find a local optimal solution. After a definite number of memetic evolution steps, all frogs are reshuffled for a global evolution to find a globally optimal solution. This process is repeated until stopping criteria not met like - number of fixed iterations or the desired solution meets. During the memetic evolution, the new position of the frogs is calculated by the equations 9 and 10.

\[
\text{change_frog_position} = \text{rand} \times (\text{frog_best_fitness} - \text{frog_worst_fitness})
\]

\[
\text{new_frog_position} = \text{current_frog_position} + \text{change_frog_position}
\]

\[\text{where} - D_{\text{max}} \leq \text{change_frog_position} \leq D_{\text{max}}\]

where \text{rand} is a random number in the interval \([0, 1]\) and the value of change frog position is within the range of the maximum permissible change in frog’s position.

If new position of frog is better than previous frog position, then the worst frog replaced with new frog (solution). Otherwise, the same calculation is repeated with the global best frog (i.e. \text{frog_best_fitness} replace by \text{frog_global_best_fitness}). If there is no scope for improvement in the solution, then worst frog is replaced with a new randomly generated solution. The memetic evolution step is conceptually similar to PSO and the creation of memeplex and shuffling step is based on the SCE algorithm.

In SFLA, the control parameters are number of frogs and number of iterations, number of memeplexes, size of memeplex and number of evolution steps. The algorithm-specific control parameters are number of memeplexes, size of memeplex and number of evolution steps. The number of frogs and number of iterations are the common control parameters. SFLA is robust, fast for finding the solution and suitable for parallelization problem [62].

The comparative study of different existing variants of SFLA is shown in Table 7. The SFLA is applied in numerous applications. Some of the recent applications of SFLA include grid task scheduling [222], UAV flight controller problem [155], set covering problem [35], brain MR image segmentation [112], clustering in WSN [64], vehicle routing problem [122], resource scheduling in a cloud [126], manufacturing cell design problem [203], economic dispatch problem [185], job shop scheduling problem [117] and ground water calibration problem [61].

Reference	Algorithm	Algorithm/s compared with	Application
[54]	SFLA with search	SFLA and GA	Construction project management (time-cost trade-off)
	acceleration factor (MSFL)		
[153]	Modified SFL (MSFL) with	SFLA	Shubert, Hartmann-3, Shekel, Hartmann-6, Rosenbrock and Zakharov functions
	adaptive coefficient		
[19]	Discrete SFL (DSFL)	SFLA, Discrete PSO (DPSO) and Binary GA (BGA)	Nonlinear and multimodal functions
[170]	Chaotic SFL (CSFLA)	SFLA, Variants of GA and PSO	Sphere, Schwefel, Rosenbrock, Quadric, Rastrigin and Griewank function
[112]	MSFLA	3D-Otsu thresholding with SFLA and GA	MR brain image segmentation

Table 7. Comparative study of SFLA variants
4.3.2 Flower Pollination Algorithm (FPA)

Pollination is a natural process of biological evolution of plant. It is based on fertilization of seeds. Based on the pollination process, Yang [226] proposed a FPA. The main purpose of a flower in a plant is reproduction. The reproduction takes place via pollination process.

During pollination, the pollens are transferred from one flower to another flower with the help of pollinators like- birds, bees, insects, humans and others. Without pollinators pollination is not possible. Normally two forms of pollination take place- abiotic and biotic. During biotic pollination, pollens are transferred by pollinators like- birds, bees, insects and other animal. During abiotic pollination, there is no need of any pollinator. Wind and water helps in pollination. Pollination can also take place as self-pollination or cross-pollination. Self-pollination occurs in the same flower or different flower of the same plants while cross-pollination occurs between the flowers of different plant.

For simulation, FPA follows the basic considerations [226]:

1. Self-pollination and abiotic pollination comprise as local pollination.
2. Cross-pollination and biotic pollination comprise as global pollination.
3. Transition between the pollination is controlled by switching probability \(P \).
4. The reproduction probability of flower is measured as flower constancy. It depends on the similarity of two flowers.

In local pollination, flower pollens move in very short range. This movement happens due to the physical closeness and other factors like wind, water, etc. In global pollination, flower pollens can move a long distance over a long range. It can be made by animals, birds or humans. The pollination process ensures the reproduction of the fittest. Normally local pollination has a higher fraction in overall pollination process. Flower constancy of pollination is calculated by equations 11 and 12 respectively.

\[
\text{new pollen} = \text{current pollen} + L (\text{current pollen} - g_*)
\]

(11)

where \(g_* \) is the current fittest solution and parameter \(L \) is the strength of the pollination.

\[
\text{new pollen} = \text{current pollen} + \epsilon (\text{pollen}_j - \text{pollen}_k)
\]

(12)

where \(\epsilon \) is a uniform distribution in \([0, 1]\). Pollen is a mimic of the flower constancy.

In FPA, the control parameters are number of pollens and number of iterations, switching probability and strength of the pollination. Switching probability and strength of the pollination are algorithm-specific control parameters. Number of pollens and number of iterations are the common control parameters. Most of the applications work well at switching probability 0.8.

The comparative study of various existing variants of FPA is shown in Table 8. Paper [20] and [33] present a review of the FPA and its applications. FPA has numerous applications such as image compression [101], economic load dispatch problem [154], retinal vessel segmentation in medical [57], life time of a node optimization in WSNs [194], feature selection [174], solving Sudoku puzzles [5], photovoltaic parameter selection in renewable energy [11], optimal placement in distributed system [172], economic and emission dispatch problem [3] and capacitor placement problem in electric power distribution system [4].

Reference	Algorithm	Algorithm/s compared with	Application
[230]	Multi-objective FPA (MOFPA)	Non-dominated Sorting GA (NSGA-II), Vector Evaluated GA (VEGA), Multi-	Design of a disc brake

XXX XXX XXX XXX, Vol. XX, No. XX, Article XX. Publication date: Feb 2021.
objective DE (MODE), DE for Multi-objective optimization (DEMO), Strength Pareto EA (SPEA) and Multi-objective Bees algorithm (Bees)

[5] Hybrid FPA with Chaotic Harmony Search (FPCHS) Sudoku Puzzles

[90] Hybrid FPA with K-Means (FPAKM) Data Clustering

[174] Binary FPA PSO, FA and Harmony Search (HS) Feature selection

[138] Modified FPA FPA, Bat Algorithm, FA, GA and Simulated Annealing (SA) 23 well-known optimization benchmark functions

4.4 Science based Algorithms

Science based algorithms are based on a scientifically proven concept of physics or chemistry or mathematics. These concepts are the basic principles of the universe. The algorithms inspired by science are described next.

4.4.1 Gravitational Search Algorithm (GSA)

GSA is inspired by Newton’s law of gravity and motion. Three types of mass explained in physics theory: active mass, passive mass and inertia mass. Based on this concept of mass, the law of gravity and law of motion are rewritten as- “The gravitational force (Fij), acting on mass i by mass j, is proportional to the product of the active gravitational of mass j (Maj) and passive gravitational of mass i (Mpi), and inversely proportional to the square distance (R) between them. The acceleration (ai) is proportional to gravitational force (Fij) and inversely proportional to the inertia mass of i (Mii).”

Based on the above gravitational force theory, Rashedi et al. [168] proposed GSA. For simulation, each mass (agent) has four properties: position, inertial mass, active mass and passive mass. The position defines a solution of problem and masses are calculated by objective function. The heaviest mass is considered as an optimal solution [168]. Due to gravitational force, every agent attracts each other. Due to attraction all agents move towards the heavier agents (higher gravitational force). The movement produces acceleration in agents. The force between the agents depends on the product of their masses and distance between them instead of square of distance. Because, it gives better result than the square of distance. The force is calculated by equation 13. The acceleration is computed as proportion of total acting force on the agent and mass of the agent. The acceleration is calculated by equation 14. Due to acceleration, every agent has some velocity. Due to the velocity, the agents will update its position. The velocity and position of the agents are computed by equations 15 and 16.

\[
force = gravitational_const \times \frac{active_mass \times passive_mass}{distance} \tag{13}
\]

\[
acceleration = \frac{total_acting_force}{inertial_mass} \tag{14}
\]

\[
new_velocity = rand \times current_velocity + acceleration \tag{15}
\]

\[
new_position = current_position + new_velocity \tag{16}
\]

where \(rand\) is a uniform random variable in the interval \([0, 1]\).
GSA has improved performance capability in terms of the exploration and exploitation [177]. In GSA, number of masses and position of the agent are common control parameters and the gravitational constant is an algorithm-specific control parameter.

Since the development of GSA, lots of modified variants have been proposed. These modifications enhance the incremental performance of GSA. The comparative study of different variants of GSA is shown in Table 9. In paper [177], author disused variants and application of GSA. The GSA has a number of good applications in various areas. Some of them are: IIR and rational filter modelling [169], parameter optimization of sensor monitoring to minimize the energy [175], routing and wavelength assignment problem in optical networks [176], PID controller problem [51], optimal power flow problem [50], economic and emission dispatch problem of power systems [195], finding the near-optimal base station in WSNs [157], energy efficient WSNs [148], optimal IIR filter designing [183], gas synthesis production problem [68], data clustering and classification [111] and heat and power economic dispatch problem [24].

Table 9. Comparative study of GSA variants

Reference	Algorithm	Algorithm/s compared with	Application
[167]	Binary GSA (BGSA)	GA, Binary PSO (BPSO)	Seven unimodal, five multimodal, ten multimodal test functions with fix dimension
[78]	Multi-objective GSA with uniform mutation and elitist policy	MOPSO, MOGSA and Several Multi-objective EA (MOEAs)	Three multi-objective functions (MOP5, MOP6 and MOPCI)
[72]	Multi-Objective GSA (MO-GSA)	NSGA-II and Multi-objective GA for motif discovery (MOGAMOD)	Motif Discovery Problem (MDP) (DNA patterns)
[127]	Hybrid PSO and GSA (PSOGSA)	PSO and GSA	23 benchmark functions
[87]	Hybrid GSA and Fuzzy Logic (GSA-FL)	Fuzzy logic control and Harmonic distortion	Controlling if active power filter
[199]	Hybrid genetic gravitational algorithm	GSA	Gait for the hexapod robot
[141]	Non-dominated Sorting GSA (NSGSA)	NSGA-II, MOGSA and MOPSO	Multi-objective benchmark problems (SCH, FON, POL, KUR, and ZDT)
[16]	Intelligent GSA based classifier (IGSA-classifier)	Swarm intelligence based and evolutionary classifiers	Pattern recognition problem and different benchmarks
[118]	Chaotic GSA (CGSA)	GA, PSO and GSA	Identifying the parameters of Lorenz chaotic system
[74]	Hybrid GSA and ABC (GSA-ABC)	ABC and GSA	Five benchmark functions
[214]	Gravitational Particle Swarm (GPS)	PSO and GSA	Seven unimodal, five multimodal, ten multimodal test functions with fix dimension
[234]	Niche GSA (NGSA)	State-of-the-art Niching algorithms	Unconstrained and
4.4.2 Water Cycle Algorithm (WCA)

The water cycle process and flow of streams in the real world are the source of inspiration for the WCA. This is a natural phenomenon. This process includes various activities like evaporation, condensation, precipitation, transpiration, percolation and surface run-off [59].

In the real world, sources of water are rain, snow and groundwater. Open sources of water are created by rain. Stream and river originate in the mountain top where icy masses liquefy. The water absorbed by aquifer, is known as groundwater. Generally, streams and rivers move downhill on the surface. The streams combine into the river, rivers merge into the sea and finally, all streams and river become one into the sea. The water evaporates from open water bodies, like rivers, ponds and lakes. The evaporation and transpiration of water produce clouds and water then comes back in the form of rain and snow. This observation inspired Eskandar et al. [59] to propose a meta-heuristic algorithm named the WCA.

In simulation of WCA [59], the population is known as raindrops and fitness value is known as cost of raindrop. The best raindrop is selected as a sea and some good raindrops are selected as a river and the remaining raindrops are selected as a stream. The number of rivers is a user parameter. The river/or sea absorbs the water from the stream based on the magnitude / intensity of the flow. The intensity is calculated by the equation 17. Intensity represents the number of streams which flow into a river or sea. Normally, the stream flows into river or directly into sea and river flows into the sea. The new position of a stream and river is calculated by equations 18 and 19. Same calculation is repeated with exchange the position of stream and river; river and sea. The best position in between both calculated position is selected as a next position of stream and river. Water evaporation is an important process in a water cycle algorithm which avoid from the rapid convergence. In evaporation condition, the distance between the sea and river controls the search intensity near the sea. If distance is lesser than a fixed value, then the evaporation process starts. If evaporation condition is satisfied, then raining starts. During raining process, new raindrops and streams originate at different places. The new position of these new streams is calculated by equation 20 which is similar as mutation operator of GA. Again, same process in repeated with new raindrops.

\[\text{intensity}_\text{flow} = \text{round}\left(\frac{\text{cost}}{\text{total_cost}} \times \text{no_raindrop}\right)\]
\[\text{new_pos_stream} = \text{current_pos_stream} + \text{rand} \times C \times (\text{current_pos_river} - \text{current_pos_stream})\]
\[\text{new_pos_river} = \text{current_pos_river} + \text{rand} \times C \times (\text{current_pos_sea} - \text{current_pos_river})\]
\[\text{new_stream} = LB + \text{rand} \times (UB - LB)\]
where \(C \) is the random variable between 1 and 2; \(LB \) and \(UB \) are the lower and upper bounds of problem’s variable.

WCA always aims to find a globally optimal solution via effective exploration and exploitation [181]. WCA uses less number of insensitive user parameters, which means that WCA is capable of solving numerous optimization problems via fixed user defined parameters [181]. The number of rivers and evaporation condition are the algorithm-specific control parameters.

Over the last few years, various improved, modified and hybrid version of the WCA have been proposed by various authors. A comparative study of various existing variants of WCA is shown in Table 10. WCA has numerous applications in several varieties of optimization problems such as weight optimization problem of truss structure [58], optimal operation of reservoir system [75], water distribution system [182], power system stabilizer [69] and load frequency controller for power system [56].

Reference	Algorithm	Algorithm/s compared with	Application
[59]	WCA	GA, DE, HS, Hybrid PSO and TLBO	Three-bar truss problem, Speed reducer problem, Pressure vessel design problem, Tension/compression spring design problem, Welded beam design problem, Rolling element bearing design problem, Multiple disk clutch brake design problem
[180]	Multi-objective WCA (MOWCA)	NSGA-II, MOPSO, Micro-GA, Elitist-mutation Multi-objective PSO (EM-MOPSO), Hybrid Quantum Immune Algorithm (HQIA)	Four-bar truss design problem, Speed reducer problem, Disk brake design problem, Welded beam design problem, Spring design problem, Gear train design problem
[179]	WCA with Evaporation Rate (ER-WCA)	WCA, PSO, DE and BFO	Constrained and unconstrained optimization problems
[79]	Chaotic WCA	WCA, PSO and Variants of PSO	Several benchmark problems and training of NNs

4.5 Other Algorithms

Sometimes it is hard to categorize the some algorithms in the above discussed classification; because they are inspired by any other natural phenomena like teaching methodology, winning tendency, etc. In such case, these algorithms are put under in this category. Next section describes the teaching learning based optimization and Jaya algorithm.

4.5.1 Teaching Learning Based Optimization (TLBO)

The concept of TLBO is based on the teaching-learning methodology of class of learners. In this, various types of learning are possible like learning from teachers, self-learning of learners, group learning of learners, learning from other learner which has higher knowledge, learning from assignments and examination, etc. Rao [166] considers the learning from teachers and learning from other learner for the teacher learning based optimization. During teacher’s learning, the teacher teaches the learners and learner increases his or her knowledge from teacher. In learning from other learner, learners exchange their knowledge with other classmate which has higher knowledge.
knowledge, with the aim to increase his or her knowledge. The aim of this teaching-learning methodology is that learners should increase their knowledge and score higher grades.

For computer simulation, the TLBO process is performed in two phases [160, 164]: “Teacher phase” and “Learner phase”. In teacher phase, the best learner of the class is selected as a teacher. The teacher emphasizes to increase the mean result of the class. In the learner phase, every learner increases his knowledge by interacting with other learner of class. This interaction among the learners happens randomly for enhancing knowledge of learners.

In TLBO, class of learners is considered as a population, number of subjects is considered as a design variable and a result is considered as a fitness value. In the teacher phase, first the mean result of the class is computed and then the difference mean of the class is calculated by equation 21. The difference mean is the difference between the best learner’s results and mean of class result. The new solution depends on the current solution and the difference mean of the class. The new solution is calculated using equation 22. During the learner phase, two learners are selected randomly and then the new solution is calculated using equations 23 or 24.

\[
diff_{\text{mean}} = r \times (best_{\text{learner}} - T_T \times \text{mean}_{\text{result}})
\]

(21)

where \(T_T\) is the teaching factor either 1 or 2 and \(r\) is the random number in the range \([0, 1]\).

\[
new_{\text{sol}} = current_{\text{sol}} + \text{diff}_{\text{mean}}
\]

(22)

\[
new_{\text{sol}} = current_{\text{sol}} + rand \times (current_{\text{sol,P}} - current_{\text{sol,Q}}), \text{if} \ P > Q
\]

(23)

\[
new_{\text{sol}} = current_{\text{sol}} + rand \times (current_{\text{sol,Q}} - current_{\text{sol,P}}), \text{if} \ P < Q
\]

(24)

where \(P\) and \(Q\) are the randomly selected learners such that \(P \neq Q\).

At the end of both phases, the new solution is selected only when it gives better result. TLBO does not require any dependent parameters. It requires only regular parameters like- number of learners, number of subjects and number of iterations.

The comparative study of the various existing variants of TLBO is shown in Table 11. TLBO has been successfully functioning in various areas of engineering and science. A large number of applications were presented by various researchers in the recent past. Some of the well known applications of TLBO are: data clustering problem [189], electric power dispatch problem [123], machine process parameter optimization [113], IIR filter designing [200], optimal capacitor placement problem [204], flow shop and job shop scheduling problem [23], PID-controller [184], software effort estimation [105] and optimizing the order neural network [139].

Reference	Algorithm	Algorithm/s compared with	Application
[28]	Cooperative evolutionary Elitist TLBO (CC-TLBO)	Modified TLBO (m-TLBO)	High dimensional problems
[165]	Elitist TLBO	TLBO, DE and EP	Constrained benchmark functions and optimization problems of the industrial environment
[73]	Multi-objective TLBO (MO-TLBO)	Multi-objective EA	Motif Discovery Problem (MDP) in Bioinformatics
[125]	Multi-objective TLBO based on Decomposition	Multi-objective EA based on decomposition (MOEA/D)	Reactive power handling problem
After the wide acceptance and popularity of TLBO, Rao [159] proposed a comparatively simpler algorithm than the TLBO, which has lesser computational steps and equally powerful as other algorithms.

4.5.2 Jaya Algorithm

Jaya algorithm [159] is based on the concept in which a solution moves towards the best solution and discards the worst solution. It always tries to find an optimal solution therefore victorious. That’s why it is called Jaya algorithm because of the word ‘JAYA’ is derived from the word ‘victory’. It is simple yet powerful algorithm.

During the simulation of Jaya, first the best and worst solutions are computed, then the current solution is modified by the equation 25 and the new solution is produced.

\[
\text{new sol} = \text{current sol} + r1(\text{best sol} - |\text{current sol}|) - r2(\text{worst sol} - |\text{current sol}|) \tag{25}
\]

where \(r1 \) and \(r2 \) are the random number in the range [0,1].

Same as TLBO, Jaya does not have any dependent parameters. It has only regular parameters like- number of candidates (population size), number of design variable and number of iterations.

Jaya is a very recently introduced algorithm, so only limited variants have been found to date. The comparative study of existing variants of Jaya is shown in Table 12. The Jaya has been fruitfully applied in various areas of engineering and science like- micro-channel heat sink problem [161], surface grinding process optimization problem [163], nano-finishing process optimization [162], Tea Category Identification problem (TCI) [239], load dispatch problem [25],

Ref	Algorithm	Problem Description
[92]	Hybrid model of DE and TLBO (hDE-TLBO)	Non-dominated scheduling schemes for the MOSOHTS
[215]	Harmony Search Based Teaching Learning (HSTL)	Harmony Search (HS) and complex benchmark functions
[171]	Binary TLBO (BTLBO)	PMU placement methods
[10]	Hybrid of TLBO and Harmony search	Harmony Search (HS)
[119]	Discrete TLBO (DTLBO)	Different versions of DTLBO
[82]	Teaching-Learning based Cuckoo Search (TLCS)	Well-known constrained engineering design problems
[83]	TLCS with Lévy flight	TLCS
[216]	Hybridized TLBO with DE (TLBO–DE)	BAT, CS, Artificial Cooperative Search (ACS), Backtracking Search (BS), Melody Search (MS), Quantum behaved PSO (QPSO), and Intelligent Tuned HS (ITHS)
[150]	Multi-objective Improved TLBO (MO-ITLBO)	MO-TLBO
		CEC 2009 standard test problems
distributed energy resource distribution problem [213], Carbon Fibre-Reinforced Polymer (CFRP) [7], production scheduling problems [156] and photovoltaic parameter selection [132].

Table 12. Comparative study of Jaya variants

Reference	Algorithm	Algorithm/s compared with	Application
[159]	Jaya	Homomorphous Mapping (HM), Simple Multi-member Evolution Strategy (SMES), GA, DE, ABC, PSO, TLBO, Biogeography based Optimization (BBO) and Heat Transfer Search (HTS)	Constrained and unconstrained functions
[239]	Jaya and Fractional Fourier entropy	Various neural network based methods	Tea-Category Identification (TCI) problem
[156]	Multi-objective Jaya	GA and DE	Master Production Scheduling (MPS)

5 COMPARATIVE STUDY OF NATURE-INSPIRED ALGORITHMS

Table 13 illustrates a tabular study of all discussed nature-inspired algorithms in terms of source of inspiration, objective function or basic operators, common control parameters, algorithm-specific parameters and main features. All these algorithms are arranged in chronological order.

Table 13: Summary of various nature-inspired algorithms

S. No.	Algorithm and Develop by	Source of inspiration	Objective function / Basic operators	Common Control Parameters	Algorithm-Specific Control Parameters	Features
1	Genetic Algorithms (GA) – 1975 John H. Holland et al.	Darwin’s theory of biological evolution	Crossover, Mutation and Selection	Population size, Number of generation	Crossover probability, Mutation probability, Chromosome length and encoding technique	Ability of explore and exploit simultaneously, Powerful, Robust
2	Ant Colony Optimization (ACO) – 1992 Marco Dorigo	Cooperative behaviour of real ants	Pheromone amount, Trail evaporation	Number of ants, Number of iterations	Pheromone evaporation rate, Heuristic information, Amount of reinforcement	Finding good paths through graph or tree
3	Particle Swarm Optimization (PSO) – 1995	Social behaviour of creatures like-bird flocking or	Velocity and Position of particles new_velocity = current_velocity + c1*r1*r1 (pebest –			

XXX XXX XXX XXX, Vol. XX, No. XX, Article XX. Publication date: Feb 2021.
Algorithm	Year	Authors	Description	Parameters	Advantages
Shuffled Frog Leaping Algorithm (SFLA)	2003	Muzaffar Eusuff and Kevin Lansey	Leaping and shuffling behaviour of frogs	Number of frogs, Number of iterations, Size of memeplexes, Number of evolutionary steps	Simple method with less computation, Stable convergence and high quality solution
Artificial Bee Colony (ABC)	2005	Dr. Dervis Karaboga	Foraging behaviour of honey bee	Number of food source, Maximum cycle (MCN), Value of limit	Relatively fast, Robust search process, Simple and flexible
Firefly Algorithms (FA)	2007	Xin-She Yang	Intelligent flashing behaviour of fireflies	Number of fireflies, Attractiveness, Light absorption coefficient	High convergence rate, robust, Finds good optimum solutions in less number of iterations
Gravitational Search Algorithm (GSA)	2009	Esmat Rashedi et al.	Newton’s law of gravity	Number of masses, Position of agents, Number of iteration	High performance
Environmental Adaption Method (EAM)	2011	Dr. K. K.	Improved version of Darwin principle	Population size, Mutation probability, Number of bits for individual	Adapt environmental condition
6 CONCLUSION

Nature-inspired algorithms are the recent evolution from GA. These are highly efficient algorithms and produce a near optimal solution for real-world optimization problems. The monumental impact of these algorithms is attributed to their widespread use for solving a vast variety of problems. We have presented a systematic review of various nature-inspired algorithms. Given that no algorithm proves their excellency in solving all the optimization problems. It may provide superior performance for some problems while it may perform poorly for other problems.
Many times, the characteristic of the problem may affect the performance of algorithms. Among the multitude of known optimization techniques, GA and PSO are most widely used. PSO is much simpler than the GA because it does not use crossover/mutation operators. ACO is efficient for the graph-based and tree-based optimization problem. EAM is the technique that adapts to current environmental changes, thus giving better performance than other techniques for solving the constrained and unconstrained optimization problems. Both FA and FPA show higher convergence rate and they improve the timing and result performance in various fields. Less number of algorithm-specific parameters is the characterizing feature of TLBO. With this technique, an optimal solution can be obtained in a comparatively lesser number of iterations. TLBO requires less computational effort for large scale problems. WCA offers efficient solutions than others in terms of the computational cost. Jaya is a straightforward and equally capable technique as other techniques. Also, it is independent of algorithm-specific parameters. The algorithms that have been recently proposed are yet to be explored in their application area. This comprehensive review of all known optimization algorithms can be used as a source of information for further research. Our aim is to encourage and pave way for upcoming researchers in assisting them to identify or develop novel and efficient optimization algorithms for tackling large scale real-world problems.

REFERENCES

[1] Tülin Inkaya, Sinan Kayaligil, and Nur Ervin Özdemirel. 2015. Ant colony optimization based clustering methodology. *Appl. Soft Comput.* 28 (2015), 301–311.

[2] Kadir Abaci, Volkan Yamacli, and Ali AKDAGLI. 2016. Optimal power flow with SVC devices by using the artificial bee colony algorithm. *Turkish J. Electr. Eng. Comput. Sci.* 24, 1 (2016), 341–353.

[3] A.Y. Abdelaziz, E.S. Ali, and S.M. Abd Elazim. 2016. Combined economic and emission dispatch solution using Flower Pollination Algorithm. *Int. J. Electr. Power Energy Syst.* 80 (2016), 264–274.

[4] Almaotaz Y. Abdelaziz, Elah S. Ali, and Sahar M. Abd Elazim. 2016. Flower pollination algorithm for optimal capacitor placement and sizing in distribution systems. *Electr. Power Components Syst.* 44, 5 (2016), 544–555.

[5] Osama Abdel-Raouf, Ibrahim El-Henawy, and Mohamed Abdel-Baset. 2014. A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles. *Int. J. Mod. Educ. Comput. Sci.* 6, 3 (2014), 38.

[6] Afrozafizal Abdullah, Safaai Deris, Mohd Saberi Mohamad, and Siti Zaiton Mohd Hashim. 2012. A new hybrid firefly algorithm for complex and nonlinear problem. In *Distributed Computing and Artificial Intelligence*. Springer, 673–680.

[7] Kumar Abhishek, V. Rakesh Kumar, Saurav Datta, and Siba Sankar Mahapatra. 2016. Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA. *Eng. Comput.* (2016), 1–19.

[8] Parul Agarwal and Shikha Mehta. 2014. Nature-Inspired Algorithms: State-of-Art, Problems and Prospects. *Nature* 100, 14 (2014).

[9] Reza Akbari, Ramin Hedayatzadeh, Koorush Ziarati, and Bahareh Hassanizadeh. 2012. A multi-objective artificial bee colony algorithm. *Swarm Evol. Comput.* 2 (2012), 39–52.

[10] Ailper Akin and Ibrahim Aydogdu. 2015. Optimum design of steel space frames by hybrid teaching-learning based optimization and harmony search algorithms. *World Acad. Sci. Eng. Technol. Civ. Environ. Eng.* 2, 7 (2015), 739–745.

[11] D.F. Alam, D.A. Yousri, and M.B. Eteiba. 2015. Flower pollination algorithm based solar PV parameter estimation. *Energy Convers. Manag.* 101 (2015), 410–422.

[12] Bilal Alatas. 2010. Chaotic bee colony algorithms for global numerical optimization. *Expert Syst. Appl.* 37, 8 (2010), 5682–5687.

[13] Vimala Alexander and Pethalakshmi Annamalai. 2016. An Elitist Genetic Algorithm Based Extreme Learning Machine. In *Computational Intelligence, Cyber Security and Computational Models*. Springer, 301–309.

[14] Theofanis Apostolopoulos and Aristidis Vlachos. 2010. Application of the firefly algorithm for solving the economic emissions load dispatch problem. *Int. J. Comb.* 2011 (2010).

[15] Ahmed Hamza Asad, Ahmad Taher Azar, and Aboul Ella Hassanien. 2017. A new heuristic function of ant colony system for retinal vessel segmentation. In *Medical Imaging: Concepts, Methodologies, Tools, and Applications*. IGI Global, 2063–2081.

[16] Hossein Askari and Seyed-Hamid Zahiri. 2012. Decision function estimation using intelligent gravitational search algorithm. *Int. J. Mach. Learn. Cybern.* 3, 2 (2012), 163–172.

[17] Behzad Ataie-Ashtiani and Hamed Ketaebchi. 2011. Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifiers. *Water Resour. Manag.* 25, 1 (2011), 165–190.
[18] I Aydogdu, A. Akin, and Mehmet Polat Saka. 2016. Design optimization of real world steel space frames using artificial bee colony optimization with Levy flight distribution. *Adv. Eng. Softw.* 92 (2016), 1–14.

[19] M.T. Vakil Baghmisheh, Katayoun Madani, and Alireza Navar barf. 2011. A discrete shuffled frog optimization algorithm. *Artif. Intell. Rev.* 36, 4 (2011), 267.

[20] Kamalam Balasubramani and Karnan Marcus. 2014. A study on flower pollination algorithm and its applications. *Int. J. Appl. or Innov. Eng. Manag.* 3, 11 (2014), 230–235.

[21] Hema Banati and Monika Bajaj. 2011. Fire fly based feature selection approach. *IJCSI Int. J. Comput. Sci. Issues* 8, 4 (2011).

[22] J.D. Bastidas-Rodriguez, G. Petrone, C.A. Ramos-Paja, and G. Spagnuolo. 2017. A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. *Math. Comput. Simul.* 131 (2017), 38–54.

[23] Adil Baykasoglu, Alper Hamzadayi, and Singe Yelkenci Köse. 2014. Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases. *Inf. Sci. (Ny)* 276 (2014), 204–218.

[24] Soheil Derafsh Beigvand, Hamdi Abdi, and Massimo La Scala. 2016. Combined heat and power economic dispatch problem using gravitational search algorithm. *Electr. Power Syst. Res.* 133 (2016), 160–172.

[25] Motital Bhoye, M.H. Pandya, Sagar Valvi, Indrajit N. Trivedi, Pradeep Jangit, and Siddharth A. Parmar. 2016. An emission constraint economic load dispatch problem solution with microgrid using JAYA algorithm. In *Energy Efficient Technologies for Sustainability (ICEETS), 2016 International Conference on*. 497–502.

[26] W. Bi, Graeme C. Dandy, and Holger R. Maier. 2015. Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. *Environ. Model. Softw.* 69 (2015), 370–381.

[27] S. Binitha, S. Siva Sathya, and others. 2012. A survey of bio inspired optimization algorithms. *Int. J. Soft Comput. Eng.* 2, 2 (2012), 137–151.

[28] Subhodip Biswas, Souvik Kundu, Digbalay Bose, and Swagatam Das. 2012. Cooperative co-evolutionary teaching–learning based algorithm with a modified exploration strategy for large scale global optimization. In *International Conference on Swarm, Evolutionary, and Memetic Computing*. 467–475.

[29] Ankita Bose and Kalyani Mali. 2016. Fuzzy-based artificial bee colony optimization for gray image segmentation. *Signal, Image Video Process.* 10, 6 (2016), 1089–1096.

[30] K. Chandrasekaran and Sishaj P. Simon. 2012. Network and reliability constrained unit commitment problem using binary real coded firefly algorithm. *Int. J. Electr. Power Energy Syst.* 43, 1 (2012), 921–932.

[31] Shubhajeet Chatterjee and Swagatam Das. 2015. Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-hoc network. *Inf. Sci. (Ny)* 295 (2015), 67–90.

[32] Zeyu Chen, Rui Xiong, and Jiayi Cao. 2016. Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. *Energy* 96 (2016), 197–208.

[33] Haruna Chiroma, Nor Liyana Mohd Shuib, Sanah Abdullahi Muaz, Adamu I. Abubakar, Lubabatu Baballe Ila, and Jaafar Zubairu Maitama. 2015. A review of the applications of bio-inspired flower pollination algorithm. *Procedia Comput. Sci.* 62 (2015), 435–441.

[34] Marco A. Contreras-Cruz, Victor Ayala-Ramirez, and Uriel H. Hernandez-Belmonte. 2015. Mobile robot path planning using artificial bee colony and evolutionary programming. *Appl. Soft Comput.* 30 (2015), 319–328.

[35] Broderick Crawford, Ricardo Soto, Cristian Peña, Wenceslao Palma, Franklin Johnson, and Fernando Paredes. 2015. Solving the set covering problem with a shuffled frog leaping algorithm. In *Asian Conference on Intelligent Information and Database Systems*. 41–50.

[36] Matej Crepinek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and exploitation in evolutionary algorithms: A survey. *ACM Comput. Surv.* 45, 3 (2013), 35.

[37] Behrouz Zamani Dadaneh, Hossein Yeganeh Markid, and Ali Zakerolhosseini. 2016. Unsupervised probabilistic feature selection using ant colony optimization. *Expert Syst. Appl.* 53 (2016), 27–42.

[38] P.K. Das, Himansu Sekhar Behera, and Bijaya K. Panigrahi. 2016. A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. *Swarm Evol. Comput.* 28 (2016), 14–28.

[39] Mateus de Paula Marques, Fábio Renan Durand, and Taufik Abrão. 2016. WDM/OCDM energy-efficient networks based on heuristic ant colony optimization. *IEEE Syst. J.* 10, 4 (2016), 1482–1493.

[40] Kalyannoy Deb, Amit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Trans. Evol. Comput.* 6, 2 (2002), 182–197.

[41] José Del Sagrado and Isabel Maria del Águila Cano. 2016. Ant colony optimization for requirement selection in incremental software development. (2016).

[42] Yilmaz Delice, Emel Kizilkaya Aydogan, Ugur Özcan, and Mehmet Sitki Ilkay. 2017. A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. *J. Intelli. Manuf.* 28, 1 (2017), 23–36.

[43] Zhengzhao Ding, Zhongrong Lu, Min Huang, and Jike Liu. 2017. Improved artificial bee colony algorithm for crack identification in beams using natural frequencies only. *Inverse Probl. Sci. Eng.* 25, 2 (2017), 218–238.

[44] Zhijun Ding, Youqing Sun, Junjun Liu, Meiqin Pan, and Jiafen Liu. 2017. A genetic algorithm based approach to transactional and QoS-aware service selection. *Enterp. Inf. Syst.* 11, 3 (2017), 339–358.

[45] Manish Dixit, Nikita Upadhyay, and Sanjay Silakari. 2015. An Exhaustive Survey on Nature Inspired Optimization Algorithms. *Int. J. Softw. Eng. Its Appl.* 9, 4 (2015), 91–104.
Marco Dorigo. 1992. Optimization, learning and natural algorithms. *Ph. D. Thesis, Politec. di Milano, Italy* (1992).

Marco Dorigo and Christian Blum. 2005. Ant colony optimization theory: A survey. *Theor. Comput. Sci. 344*, 2 (2005), 243–278.

Marco Dorigo and Thomas Stützle. 2003. The ant colony optimization metaheuristic: Algorithms, applications, and advances. In *Handbook of metaheuristics*. Springer, 250–285.

Marco Dorigo and Thomas Stützle. 2010. Ant colony optimization: overview and recent advances. In *Handbook of metaheuristics*. Springer, 227–263.

Serhat Duman, Ugur Güvenç, Yusuf Sönmez, and Nuran Yörükeren. 2012. Optimal power flow using gravitational search algorithm. *Energy Convers. Manag.* 59 (2012), 86–95.

Serhat Duman, Dinçer Maden, and Ugur Güvenç. 2011. Determination of the PID controller parameters for speed and position control of DC motor using gravitational search algorithm. In *Electrical and Electronics Engineering (ELECO), 2011 7th International Conference on*, 1–225.

Atul Kumar Dwivedi, Subhojit Ghosh, and Narendra D. Londhe. 2017. Low-Power FIR Filter Design Using Hybrid Artificial Bee Colony Algorithm with Experimental Validation Over FPGA. *Circuits, Syst. Signal Process.* 36, 1 (2017), 156–180.

Mohammed El-Abd. 2011. A hybrid ABC-SPSO algorithm for continuous function optimization. In *Swarm Intelligence (SIS)*, 2011 IEEE Symposium on, 1–6.

Emad Elbeltagi, Tarek Hegazy, and Donald Grierson. 2007. A modified shuffled frog-leaping optimization algorithm: applications to project management. *Struct. Infrastruct. Eng.* 3, 1 (2007), 53–60.

Emad Elbeltagi, Tarek Hegazy, and Donald Grierson. 2005. Comparison among five evolutionary-based optimization algorithms. *Adv. Eng. informatics* 19, 1 (2005), 43–53.

Mohammed A. El-Hameed and Atia A. El-Fergany. 2016. Water cycle algorithm --A novel algorithm for interconnected power systems comprising non-linearity. *IET Gener. Transm. Distrib.* 10, 15 (2016), 3950–3961.

Eid Emary, Hossam M. Zawbaa, Aboul Ella Hassanien, Mohamed F. Tolba, and Václav Snášel. 2014. Retinal vessel segmentation based on flower pollination search algorithm. In *Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014*, 93–100.

Hadi Eskandar, A. Sadollah, and A. Bahreininejad. 2013. Weight optimization of truss structures using water cycle algorithm. *Iran. Univ. Sci. & Technol. Technol.* 3, 1 (2013), 115–129.

Hadi Eskandar, Ali Sadollah, Ardeshir Bahreininejad, and Mohd Handi. 2012. Water cycle algorithm--A novel metaheuristic optimization method for solving constrained engineering optimization problems. *Comput. Struct.* 110 (2012), 151–166.

Ahmed A.A. Esmin, Rodrigo A. Coelho, and Stan Matwin. 2015. A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. *Artif. Intell. Rev.* 44, 1 (2015), 23–45.

Muzaffar M. Eusuff and Kevin E. Lans ey. 2003. Optimization of water distribution network design using the shuffled frog leaping algorithm. *J. Water Resour. Plan. Manag.* 129, 3 (2003), 210–225.

Muzaffar Eusuff, Kevin Lansey, and Fayzul Pasha. 2006. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. *Eng. Optim.* 38, 2 (2006), 129–154.

George I. Evers and Mourin Ben Ghalia. 2009. Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. In *Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on*, 3901–3908.

Xunli Fan and Feifei Du. 2015. Shuffled frog leaping algorithm based unequal clustering strategy for wireless sensor networks. *Appl. Math. Inf. Sci.* 9, 3 (2015), 1415.

Mai A. Farag, M.A. El-Shobbagy, I.M. El-Desoky, A.A. El-Sawy, A.A. Mousa, and others. 2015. Binary-Real Coded Genetic Algorithm Based k-Means Clustering for Unit Commitment Problem. *Appl. Math. 6*, 11 (2015), 1873.

Sh M. Farahani, A.A. Abshouri, B. Nasiri, and MR2011 Meybodi. 2011. A Gaussian firefly algorithm. *Int. J. Mach. Learn. Comput.* 1, 5 (2011), 448.

A.H. Gandomi, X.S. Yang, S. Talatahari, and A.H. Alavi. 2013. Firefly algorithm with chaos. *Commun. Nonlinear Sci. Numer. Simul.* 18, 1 (2013), 89–98.

T. Ganesan, I. Elamvazuthi, Ku Zilati Ku Shaari, and P. Vasant. 2013. Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production. *Appl. Energy* 103 (2013), 368–374.

Navid Ghaffarzadeh. 2015. Water Cycle Algorithm Based Power System Stabilizer Robust Design for Power Systems. *J. Electr. Eng.* 66, 2 (2015), 91–96.

Farhad Soleimanian Gharehchopog, Isa Maleki, Amin Kamalinia, and Habibeh Mohammad Zadeh. 2014. Artificial bee colony based constructive cost model for software cost estimation. *J. Sci. Res. Dev.* 1, 2 (2014), 44–51.

Nazeer Ghatasheh, Hossam Faris, Ibrahim Aljarah, Rizik M.H. Al-Sayyed, and others. 2015. Optimizing Software Effort Estimation Models Using Firefly Algorithm. *J. Softw. Eng. Appl.* 8, 3 (2015), 133.

David L. González-Álvarez, Miguel A. Vega-Rodríguez, Juan A. Gómez-Pulido, and Juan M. Sánchez-Pérez. 2011. Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. In *International Work-Conference on Artificial Neural Networks*. 372–379.
Nature-Inspired Optimization Algorithms: Research Direction and Survey

[73] David L. González-Alvarez, Miguel A. Vega-Rodriguez, Juan A. Gómez-Pulido, and Juan M. Sánchez-Pérez. 2012. Multiobjective Teaching-Learning-Based Optimization (MO-TLBO) for Motif Finding. In Computational Intelligence and Informatics (CINTI), 2012 IEEE 13th International Symposium on. 141–146.

[74] Zhifeng Guo. 2012. A hybrid optimization algorithm based on artificial bee colony and gravitational search algorithm. Int. J. Digit. Content Technol. Its Appl. 6, 17 (2012), 620–626.

[75] Omid Bozorg Haddad, Mojtaba Moravej, and Hugo A. Loaiciga. 2014. Application of the water cycle algorithm to the optimal operation of reservoir systems. J. Irrig. Drain. Eng. 141, 5 (2014), 401–406.

[76] Yu-Yan Han, Jun-Hua Duan, and Min Zhang. 2011. Apply the discrete artificial bee colony algorithm to the blocking flow shop problem with makespan criterion. In Control and Decision Conference (CCDC), 2011 Chinese. 2131–2135.

[77] Hashim A. Hashim, Babajide Odunata Ayinde, and Mohamed A. Abido. 2016. Optimal placement of relay nodes in wireless sensor network using artificial bee colony algorithm. J. Netw. Comput. Appl. 64 (2016), 239–248.

[78] Hamid Reza Hassanzadeh and Modjtaba Rouhani. 2010. A multi-objective gravitational search algorithm. In Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second International Conference on. 7–12.

[79] Ali Asghar Heidari, Rahim Ali Abbaspour, and Ahmad Rezaee Jordehi. 2017. An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput. Appl. 28, 1 (2017), 57–85.

[80] John H. Holland. 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press.

[81] Ming-Hwu Hsng. 2012. Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39, 1 (2012), 1078–1091.

[82] Jida Huang, Liang Gao, and Xinyu Li. 2015. A teaching–learning-based cuckoo search for constrained engineering design problems. In Advances in Global Optimization. Springer, 375–386.

[83] Jida Huang, Liang Gao, and Xinyu Li. 2015. An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes. Appl. Soft Comput. 36 (2015), 349–356.

[84] Shihi-Chia Huang, Ming-Kai Jiau, and Chih-Hsiang Lin. 2015. A genetic-algorithm-based approach to solve carpool service problems in cloud computing. IEEE Trans. Intell. Transp. Syst. 16, 1 (2015), 352–364.

[85] Ahwyn Y Husselmann and K.A. Hawick. 2012. Parallel parametric optimisation with firefly algorithms on graphical processing units. In Proceedings of the International Conference on Genetic and Evolutionary Methods (GEM). 1.

[86] Muhammad Imran, Rathia Hashim, and Noor Elaiza Abd Khalid. 2013. An overview of particle swarm optimization variants. Procedia Eng. 53 (2013), 491–496.

[87] H.R. Imani Jajarmi, Azah Mohamed, and H. Shareef. 2011. GSA-FL controller for three phase active power filter to improve power quality. In Control, Instrumentation and Automation (ICICIA), 2011 2nd International Conference on. 417–422.

[88] Gilang Kusuma Jati and others. 2011. Evolutionary discrete firefly algorithm for travelling salesman problem, Springer.

[89] Ravi Kumar Jatoh and A. Rajasekhar. 2010. Speed control of pmsm by hybrid genetic artificial bee colony algorithm. In Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on. 241–246.

[90] R. Jensì and G. Wiselin Jìi. 2015. Hybrid data clustering approach using K-Means and Flower Pollination Algorithm. arXiv Prepr. arXiv1505.03236 (2015).

[91] Shanhe Jiang, Zhicheng Ji, and Yaxia Shen. 2014. A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int. J. Electr. Power Energy Syst. 55 (2014), 628–644.

[92] Xingwen Jiang and Jianzhong Zhou. 2013. Hybrid DE-TLBO algorithm for solving short term hydro-thermal optimal scheduling with incommensurable Objectives, In Control Conference (CxCC), 2013 32nd Chinese. 2474–2479.

[93] Fei Kang, Junjie Li, and Sheng Liu. 2013. Combined data with particle swarm optimization for structural damage detection. Math. Probl. Eng. 2013 (2013).

[94] Dervis Karaboga. 2005. An idea based on honey bee swarm for numerical optimization, Dervis Karaboga and Bahriye Akay. 2005. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 1 (2009), 108–132.

[95] Dervis Karaboga and Bahriye Akay. 2011. A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft Comput. 11, 3 (2011), 3021–3031.

[96] Dervis Karaboga and Bahriye Basturk. 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 3 (2007), 459–471.

[97] Dervis Karaboga and Beyza Gorkemli. 2011. A combinatorial artificial bee colony algorithm for traveling salesman problem. In Innovations in Intelligent Systems and Applications (INISTA), 2011 International Symposium on. 50–53.

[98] S. Karthikeyan, P. Asokan, S. Nickolas, and Tom Page. 2015. A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int. J. Bio-Inspired Comput. 7, 6 (2015), 386–401.

XXX XXX XXX XXX, Vol. XX, No. XX, Article XX. Publication date: Feb 2021.
[100] Mina Husineizadeh Kashan, Nasim Nahavandi, and Ali Husineizadeh Kashan. 2012. DisABC: a new artificial bee colony algorithm for binary optimization. *Appl. Soft Comput.*, 12, 1 (2012), 342–352.

[101] Gaganpreet Kaur, Dhurrendra Singh, and Manjinder Kaur. 2013. Robust and Efficient "RGB" based Fractal Image Compression: Flower Pollination based Optimization. *Int. J. Comput. Appl.*, 78, 10 (2013).

[102] Prabhneet Kaur and Taranjot Kaur. 2014. A Comparative Study of Various Metaheuristic Algorithms. *Int. J. Comput. Sci. Inf. Technol.*, 5, 5 (2014), 6701.

[103] James Kennedy and Russell Eberhart. 1995. Particle Swarm Optimization. In *International Conference on Neural Networks*, 1942–1948.

[104] James Kennedy and Russell C. Eberhart. 1997. A discrete binary version of the particle swarm algorithm. In *Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation.*, 1997 IEEE International Conference on, 4104–4108.

[105] Thanh Tung Khuat and My Hanh Le. 2016. A Novel Technique of Optimization for the COCOMO II Model Parameters using Teaching-Learning-Based Optimization Algorithm. *J. Telecommun. Inf. Technol.*, 1 (2016), 84.

[106] Min Kong and Peng Tian. 2005. A binary ant colony optimization for the unconstrained function optimization problem. In *International Conference on Computational and Information Science*. 682–687.

[107] Amiyo Kumar and Ajay Kumar. 2016. Adaptive management of multimodal biometrics fusion using ant colony optimization. *Inf. Fusion* 32 (2016), 49–63.

[108] Divya Kumar and K.K. Mishra. 2016. Portfolio optimization using novel co-variance guided Artificial Bee Colony algorithm. *Swarm Evol. Comput.* (2016).

[109] K. Ravi Kumar and M. Sydulu. 2014. Guaranteed Convergence based PSO approach for Optimal Power Flows with Security Constraints. *Majlesi J. Energy Manag.*, 3, 3 (2014).

[110] Rajeev Kumar and Dilip Kumar. 2016. Multi-objective fractional artificial bee colony algorithm to energy aware routing protocol in wireless sensor network. *Wirel. Networks* 22, 5 (2016), 1461–1474.

[111] Yugal Kumar and G. Sahoo. 2014. A review on gravitational search algorithm and its applications to data clustering & classification. *Int. J. Intell. Syst. Appl.* 6, 6 (2014), 79.

[112] Anis Ladgham, Faycal Hamdaoui, Anis Sakly, and Abdellatif Mthiba. 2015. Fast MR brain image segmentation based on modified Shuffled Frog Leaping Algorithm. *Signal, Image Video Process.* 9, 5 (2015), 1113–1120.

[113] Salim Lahmiri. 2017. Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. *Biomed. Signal Process. Control* 31 (2017), 148–155.

[114] Soma Sekhara Babu Lam, M.L. Hari Prasad Raju, Swaraj Ch, Praveen Ranjan Srivastav, and others. 2012. Automated generation of independent paths and test suite optimization using artificial bee colony. *Procedia Eng.* 27, 1 (2012), 191–200.

[115] Chu-Sheng Lee, Helon Vicente Hultmann Ayala, and Leandro dos Santos Coelho. 2015. Capacitor placement of distribution systems using particle swarm optimization approaches. *Int. J. Electr. Power Energy Syst.* 64 (2015), 839–851.

[116] Zne-Jung Lee, Shun-Feng Su, Chen-Chia Chuang, and Kuan-Hung Liu. 2008. Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. *Appl. Soft Comput.* 8, 1 (2008), 55–78.

[117] Deming Lei and Xiuping Guo. 2016. A shuffled frog-leaping algorithm for job shop scheduling with outsourcing options. *Int. J. Prod. Res.* 54, 16 (2016), 4793–4804.

[118] Chaoshun Li, Jianzhong Zhou, Jian Xiao, and Han Xiao. 2012. Parameters identification of chaotic system by chaotic gravitational search algorithm. *Chaos, Solitons & Fractals* 45, 4 (2012), 539–547.

[119] Jun-qing Li, Quan-ke Pan, and Kun Mao. 2015. A discrete teaching-learning-based optimisation algorithm for realistic flowsheet rescheduling problems. *Eng. Appl. Artif. Intell.* 37 (2015), 279–292.

[120] W.C.E. Lim, Ganesan Kanagaraj, and S.G. Ponnambalam. 2016. A hybrid cuckoo search-genetic algorithm for hole-making sequence optimization. *J. Intell. Manuf.* 27, 2 (2016), 417–429.

[121] Jing Liu, Xing-Guo Luo, Xing-Ming Zhang, Fan Zhang, and Bai-Nan Li. 2013. Job scheduling model for cloud computing based on multi-objective genetic algorithm. *IJCSI Int. J. Comput. Sci. Issues* 10, 1 (2013), 134–139.

[122] Jianping Luo, Xia Li, Min-Rong Chen, and Hongwei Liu. 2015. A novel hybrid shuffled frog leaping algorithm for vehicle routing problem with time windows. *Inf. Sci. (Ny).* 316 (2015), 266–292.

[123] Barun Mandal and Pravas Kumar Roy. 2013. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. *Int. J. Electr. Power Energy Syst.* 53 (2013), 123–134.

[124] S. Manikandan, K. Ramar, M. Willjuice Iruthayarajan, and K.G. Srinivasagan. 2014. Multilevel thresholding for medical brain images using real coded genetic algorithm. *Measurement* 47 (2014), 558–568.

[125] Miguel A. Medina, Carlos A. Coello Coello, and Juan M. Ramirez. 2013. Reactive power handling by a multi-objective teaching learning optimizer based on decomposition. *IEEE Trans. power Syst.* 28, 4 (2013), 3629–3637.

[126] Yue Miao, Fu Rao, and Luo Yu. 2015. Research on the Resource Scheduling of the Improved SFLA in Cloud Computing. *Int. J. Grid Distrib. Comput.* 8, 1 (2015), 101–108.

[127] Seyedali Mirjalili and Siti Zaiton Mohd Hashim. 2010. A new hybrid PSOGSA algorithm for function optimization. In *Computer and information application (ICCIA), 2010 international conference on*. 374–377.

[128] Anurag Mishra, Charu Agarwal, Arpita Sharma, and Punam Bedi. 2014. Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm. *Expert Syst. Appl.* 41, 17 (2014), 7858–7867.
[129] K.K. Mishra, Shailesh Tiwari, and A.K. Misra. 2011. A bio inspired algorithm for solving optimization problems. In Computer and Communication Technology (ICCCT), 2011 2nd International Conference on. 653–659.

[130] K.K. Mishra, Shailesh Tiwari, and Arun Kumar Misra. 2014. Improved environmental adaption method and its application in test case generation. J. Intell. Fuzzy Syst. 27, 5 (2014), 2305–2317.

[131] K.K. Mishra, Shailesh Tiwari, and Arun Kumar Misra. 2012. Improved environmental adaption method for solving optimization problems. In Computational Intelligence and Intelligent Systems. Springer, 300–313.

[132] Soumya Mishra and Pravat Kumar Ray. 2016. Power quality improvement using photovoltaic fed DSTATCOM based on JAYA optimization. IEEE Trans. Sustain. Energy 7, 4 (2016), 1672–1680.

[133] Melanie Mitchell, Stephanie Forrest, and John H. Holland. 1992. The royal road for genetic algorithms: Fitness landscapes and GA performance. In Proceedings of the first european conference on artificial life. 245–254.

[134] Mohd Saberi Mohamad, Sigeru Omatu, Safaai Deris, and Michifumi Yoshioka. 2011. A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data. IEEE Trans. Inf. Technol. Biomed. 15, 6 (2011), 813–822.

[135] S.S. Mohana. 2015. A position balanced parallel particle swarm optimization method for resource allocation in cloud. Indian J. Sci. Technol. 8, S3 (2015), 182–188.

[136] Seyed Mohsen Mousavi, Ardesteh Bahreininejad, S. Nurmarya Musa, and Farazila Yusof. 2017. A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network. J. Intell. Manuf. 28, 1 (2017), 191–206.

[137] J. Mukund Nilakantan and S.G. Ponnambalam. 2016. Robotic U-shaped assembly line balancing using particle swarm optimization. Eng. Optim. 48, 2 (2016), 231–252.

[138] Emad Nabil. 2016. A modified flower pollination algorithm for global optimization. Expert Syst. Appl. 57 (2016), 192–203.

[139] Jannenjoy Nayak, Bighnaraj Naik, and H.S. Behera. 2016. Optimizing a higher order neural network through teaching learning based optimization algorithm. In Computational Intelligence in Data Mining–Volume 1. Springer, 57–71.

[140] Ritu Nigam, Arjun Choudhary, and K.K. Mishra. 2014. Non-dominated sorting environmental adaptation method (NS-EAM). In Signal Processing and Integrated Networks (SPIN), 2014 International Conference on. 595–600.

[141] Hadi Nobahari, Mahdi Nikusokhan, and Patrick Siarry. 2011. Non-dominated sorting gravitational search algorithm. In Proc. of the 2011 International Conference on Swarm Intelligence. ICSI, 1–10.

[142] Tetuuya Oda, Donald Elmazi, Admir Barolli, Shinnji Sakamoto, Leonard Barolli, and Fatos Xhafa. 2016. A genetic algorithm-based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. Soft Comput. 20, 7 (2016), 2627–2640.

[143] Frederico Galaxe Paes, Artur Alves Pessoa, and Thibaut Vidal. 2017. A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem. Eur. J. Oper. Res. 256, 3 (2017), 742–756.

[144] Jeng-Shyang Pan, Haibin Wang, Hongnan Zhao, and Linlin Tang. 2015. Interaction artificial bee colony based load balance method in cloud computing. In Genetic and Evolutionary Computing. Springer, 49–57.

[145] Narendra K. Pareek and Vinod Patidar. 2016. Medical image protection using genetic algorithm operations. Soft Comput. 20, 2 (2016), 763–772.

[146] Yang-Buyong Park, Jun-Su Yoo, and Hae-Soo Park. 2016. A genetic algorithm for the vendor-managed inventory routing problem with lost sales. Expert Syst. Appl. 53 (2016), 149–159.

[147] Rafael S. Farpinelli and Heitor S. Lopes. 2011. New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3, 1 (2011), 1–16.

[148] Rejina Parvin and C. Vasanthanayaki. 2013. Gravitational search algorithm based mobile aggregator sink nodes for energy efficient wireless sensor networks. In Circuits, Power and Computing Technologies (ICCPCT), 2013 International Conference on. 1052–1058.

[149] Manoj Kumar Patel, Manas Ranjan Kabat, and Chita Ranjan Tripathy. 2014. A hybrid ACO/PSO based algorithm for QoS multicast routing problem. Ain Shams Eng. J. 5, 1 (2014), 113–120.

[150] Vivek K. Patel and Vimal J. Savsani. 2016. A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Inf. Sci. (Ny). 357 (2016), 182–200.

[151] Muntas Paulinas and Andrius Ušinskas. 2015. A survey of genetic algorithms applications for image enhancement and segmentation. Inf. Technol. Control 36, 3 (2015).

[152] Jose Luis Ponz-Tienda, Victor Yepes, Eugenio Pellicer, and Joaquin Moreno-Flores. 2013. The resource leveling problem with multiple resources using an adaptive genetic algorithm. Autom. Constr. 29 (2013), 161–172.

[153] Mohammad Pourmahmood, Mohammad Esmaeel Akbari, and Amin Mohammadpour. 2011. An efficient modified shuffled frog leaping optimization algorithm. Int. J. Comput. Appl. 32, 1 (2011), 975–8887.

[154] R. Prathiba, M. Balasingham Moses, and S. Sakhthivel. 2014. Flower pollination algorithm applied for different optimization problems. Int. J. Eng. Technol. 6, 2 (2014), 1009–1016.

[155] Huangzhong Pu, Ziyang Zhen, and Daobo Wang. 2011. Modified shuffled frog leaping algorithm for optimization of UAV flight controller. Int. J. Intell. Comput. Cybern. 4, 1 (2011), 25–39.

[156] S. Radhika, Srinivasa Rao Ch, Neha Krishna, and K. Kartteeka Pavan. 2016. Multi-Objective Optimization of Master Production Scheduling Problems using Jaya Algorithm. (2016).
Ali Sadollah, Do Guen Yoo, Jafar Yazdi, Joong Hoon Kim, and Younghwan Choi. 2014. Application of Water Cycle Algorithm For Optimal Cost Design Of Water Distribution Systems. (2014).

Douglas Rodrigues, Xin-She Yang, André Nunes De Souza, and João Paulo Papa. 2015. Binary flower pollination algorithm. In European Conference on the Applications of Evolutionary Computation. Springer, 817–830.

R. V Rao, K.C. More, J. Taler, and P. Ochoa. 2016. Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Appl. Therm. Eng. 103 (2016), 572–582.

R. Venkata Rao, Dhiraj P. Rai, and J. Balic. 2015. A new optimization algorithm for parameter optimization of nano-finishing processes. Int. J. Sci. Technol. (2015).

R. Venkata Rao, Dhiraj P. Rai, and Joze Balic. 2016. Surface Grinding Process Optimization Using Jaya Algorithm. In Computational Intelligence in Data Mining--Volume 2. Springer, 487–495.

R. Venkata Rao, Vimal J. Savsani, and D.P. Vakharia. 2011. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. (Ny). 183, 1 (2012), 1–15.

R. Rao and Vivek Patel. 2012. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 3, 4 (2012), 535–560.

Ravipudi V Rao, Vimal J. Savsani, and D.P. Vakharia. 2011. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Des. 43, 3 (2011), 303–315.

R. Rao. 2016. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis. Sci. Lett. 5, 1 (2016), 1–30.

R. Rao. 2016. Application of TLBO and DE algorithms to find the near-optimal base station location in two-tiered WSNs. Int. J. Mach. Learn. Comput. 2, 4 (2012), 377.

A. Rahmani and S.A. MirHassani. 2014. A hybrid firefly-genetic algorithm for the capacitated facility location problem. Inf. Sci. (Ny). 283 (2014), 70–78.

R. Rao. 2016. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 1 (2016), 19–34.

R. Rao. 2016. Application of Water Cycle Algorithm For Optimal Cost Design Of Water Distribution Systems. (2014).

Ali Sadollah, Hadi Eskandar, and D.S. Kushwaha. 2015. Application of Water Cycle Algorithm For Optimal Cost Design Of Water Distribution Systems. (2014).

Norlina Mohd Sabri, Mazidah Puteh, and Mohamad Rusop Mahmood. 2013. A review of gravitational search optimization method for continuous non-linear large scale problems. Inf. Sci. (Ny). 179, 13 (2009), 2232–2248.

Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi. 2010. BGSA: binary gravitational search algorithm. Nat. Comput. 9, 3 (2010), 727–745.

Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi. 2009. GSA: a gravitational search algorithm. Inf. Sci. (Ny). 179, 13 (2009), 2232–2248.

Esmat Rashedi, Hosssien Nezamabadi-Pour, and Saeid Saryazdi. 2011. Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24, 1 (2011), 117–122.

Vahid Rashtchi, Meisam Hatami, and Mahdi Sabouri. 2012. Chaotic Shuffled Frog Leaping Optimization Algorithm. (2012).

Abdelmajid Reciou, Hamid Bentarzi, and Abderrahame Ouadi. 2015. Application of a binary teaching-learning-based algorithm to the optimal placement of phasor measurement units. In Progress in Clean Energy, Volume 1. Springer, 817–830.

P. Dinakara Prasad Reddy, V.C. Vreca Reddy, and T. Gowri Manohar. 2016. Application of flower pollination algorithm for optimal placement and sizing of distributed generation in Distribution systems. J. Electr. Syst. Inf. Technol. (2016).

R.M. Rizk-Allah, Elsayed M. Zaki, and Ahmed Ahmed El-Sawy. 2013. Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems. Appl. Math. Comput. 224 (2013), 473–483.

Douglas Rodrigues, Xin-She Yang, André Nunes De Souza, and João Paulo Papa. 2015. Binary flower pollination algorithm and its application to feature selection. In Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer, 85–100.

R. Rao. 2016. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 1 (2016), 19–34.

R. V Rao, K.C. More, J. Taler, and P. Ochoa. 2016. Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Appl. Therm. Eng. 103 (2016), 572–582.

R. Venkata Rao, Dhiraj P. Rai, and J. Balic. 2015. A new optimization algorithm for parameter optimization of nano-finishing processes. Int. J. Sci. Technol. (2015).

R. Venkata Rao, Dhiraj P. Rai, and Joze Balic. 2016. Surface Grinding Process Optimization Using Jaya Algorithm. In Computational Intelligence in Data Mining--Volume 2. Springer, 487–495.

R. Venkata Rao, Vimal J. Savsani, and D.P. Vakharia. 2011. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. (Ny). 183, 1 (2012), 1–15.

R. Rao and Vivek Patel. 2012. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 3, 4 (2012), 535–560.

Ravipudi V Rao, Vimal J. Savsani, and D.P. Vakharia. 2011. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Des. 43, 3 (2011), 303–315.

Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi. 2010. BGSA: binary gravitational search algorithm. Nat. Comput. 9, 3 (2010), 727–745.

Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi. 2009. GSA: a gravitational search algorithm. Inf. Sci. (Ny). 179, 13 (2009), 2232–2248.

Esmat Rashedi, Hosssien Nezamabadi-Pour, and Saeid Saryazdi. 2011. Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24, 1 (2011), 117–122.

Vahid Rashtchi, Meisam Hatami, and Mahdi Sabouri. 2012. Chaotic Shuffled Frog Leaping Optimization Algorithm. (2012).

Abdelmajid Reciou, Hamid Bentarzi, and Abderrahame Ouadi. 2015. Application of a binary teaching-learning-based algorithm to the optimal placement of phasor measurement units. In Progress in Clean Energy, Volume 1. Springer, 817–830.

P. Dinakara Prasad Reddy, V.C. Vreca Reddy, and T. Gowri Manohar. 2016. Application of flower pollination algorithm for optimal placement and sizing of distributed generation in Distribution systems. J. Electr. Syst. Inf. Technol. (2016).

R.M. Rizk-Allah, Elsayed M. Zaki, and Ahmed Ahmed El-Sawy. 2013. Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems. Appl. Math. Comput. 224 (2013), 473–483.

Douglas Rodrigues, Xin-She Yang, André Nunes De Souza, and João Paulo Papa. 2015. Binary flower pollination algorithm and its application to feature selection. In Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer, 85–100.
[184] Binod Kumar Sahu, Swagat Pati, Pradeep Kumar Mohanty, and Sidhartha Panda. 2015. Teaching–learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. *Appl. Soft Comput.* 27 (2015), 240–249.

[185] Dina M. Said, Nabil M. Hamed, and Almoataz Y. Abdelaziz. 2016. Shuffled Frog Leaping Algorithm for Economic Dispatch with Valve Loading Effect. *Int. Electr. Eng. J.* 7, 5 (2016), 2240–2248.

[186] Sanjay Saini, Dayang Rohaya Bt Awang Rambi, M. Nordin B. Zakaria, and Suziah Bt Sulaiman. 2014. A review on particle swarm optimization algorithm and its variants to human motion tracking. *Math. Prob. Eng.* 2014 (2014).

[187] Marcella Samà, Paola Pellegrini, Andrea D Ariano, Joaquín Rodríguez, and Dario Pacciarelli. 2016. Ant colony optimization for the real-time train routing selection problem. *Transp. Res. Part B Methodol.* 85 (2016), 89–108.

[188] Nobuo Sannomiya and Hitoshi Lima. 2016. Genetic algorithm approach to a production ordering problem in an assembly process with buffers. *Sel. Pap. from 7* (2016), 403–408.

[189] Suresh Chandra Satapathy and Anima Naik. 2011. Data clustering based on teaching-learning-based optimization. In *International Conference on Swarm, Evolutionary, and Memetic Computing*. 148–156.

[189] Mohammad Kazem Sayadi, Ashkan Hafezalkotob, and Seyed Gholanreza Jalali Naini. 2013. Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation. *J. Manuf. Syst.* 32, 1 (2013), 78–84.

[191] Dinu Calin Secui. 2015. A new modified artificial bee colony algorithm for the economic dispatch problem. *Energy Convers. Manag.* 89 (2015), 43–62.

[192] J. Senthilnath, S.N. Omkar, and V. Mani. 2011. Clustering using firefly algorithm: performance study. *Swarm Evol. Comput.* 1, 3 (2011), 164–171.

[193] R.R. Sharavakr, 2007. *Genetic Algorithms: basic ideas, variants and analysis*, INTECH Open Access Publisher.

[194] Marwa Sharawi, E. Emary, Imane Aly Saroit, and Hesham El-Mahdy. 2014. Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. *Int. J. Soft Comput. Eng.* 4, 3 (2014), 54–59.

[195] Binod Shaw, V. Mukherjee, and S.P. Ghoshal. 2012. A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. *Int. J. Electr. Power Energy Syst.* 35, 1 (2012), 21–33.

[196] H. Shayeghi, M. Mahdavi, and A. Bagheri. 2010. Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem. *Energy Convers. Manag.* 51, 1 (2010), 112–121.

[197] Alaa F. Sheta. 2006. Estimation of the COCOMO model parameters using genetic algorithms for NASA software projects. *J. Comput. Sci.* 2, 2 (2006), 118–123.

[198] Alaa F. Sheta, Aladdin Ayesh, and David Rine. 2010. Evaluating software cost estimation models using particle swarm optimisation and fuzzy logic for NASA projects: a comparative study. *Int. J. Bio-Inspired Comput.* 2, 6 (2010), 365–373.

[199] Narinder Singh and S.B. Singh. 2012. Personal best position particle swarm optimization. *J. Appl. Comput. Sci. Math.* 12, 6 (2012), 69–76.

[200] R. Singh and H.K. Verma. 2013. Teaching–learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters. *J. Inst. Eng. Ser. B* 94, 4 (2013), 285–294.

[201] Rahul Karthik Sivagaminathan and Sreeram Ramakrishnan. 2007. A hybrid approach for feature subset selection using neural networks and ant colony optimization. *Expert Syst. Appl.* 33, 1 (2007), 49–60.

[202] Soleimani Hamed and Govindan Kannan. 2015. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. *Appl. Math. Model.* 39, 14 (2015), 3990–4012.

[203] Ricardo Sotoemail, Broderick Crawford, Emanuel Vega, Franklin Johnson, and Fernando Paredes. 2015. Solving Manufacturing Cell Design Problems Using a Shuffled Frog Leaping Algorithm. In *The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt*. 253–261.

[204] Sneha Sultana and Provas Kumar Roy. 2014. Optimal capacitor placement in radial distribution systems using teaching learning based optimization. *Int. J. Electr. Power Energy Syst.* 54 (2014), 387–398.

[205] Sehra Sumet Kaur and Nishu Dewan. 2014. Ant Colony Optimization Based Software Effort Estimation. *J. Comput. Sci. Technol.* 5, 3, 1 (2014), 67–90.

[206] Nitesh Sureja. 2012. New inspirations in nature: A survey. *Int. J. Comput. Appl. Inf. Technol.* 1, 3 (2012), 21–24.

[207] Maolin Tang and Shenchun Pan. 2015. A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers. *Neural Process. Lett.* 41, 2 (2015), 211–221.

[208] Dhananjay Thiruvady, Andreas T. Ernst, and Gaurav Singh. 2016. Parallel ant colony optimization for resource constrained job scheduling. *Ann. Oper. Res.* 242, 2 (2016), 355–372.

[209] Surafel Luleseged Tilahun and Hong Choon Ong. Modified firefly algorithm. *J. Appl. Math*. 2012.

[210] Ashish Tripathi, Prateek Garbyal, K.K. Mishra, and Arun Kumar Misra. 2014. Environmental adaption method for dynamic environment. *Math. Converg. Syst., Man and Cybernetics (SMC), 2014 IEEE International Conference on*. 216–221.

[211] Ashish Tripathi, Divya Kumar, Krishin Kumar Mishra, and Arun Kumar Misra. 2014. GA-EAM based hybrid algorithm. In *International Conference on Intelligent Computing*, 13–20.

[212] Ashish Tripathi, Nitin Saxena, Krishin Kumar Mishra, and Arun Kumar Misra. 2015. An Environmental Adaption Method with real parameter encoding for dynamic environment. *J. Intel. Fuzzy Syst.* 29, 5 (2015), 2003–2015.
[23] Indrajit N. Trivedi, Swati N. Purohit, Pradeep Jangir, and Motilal T. Bhoye. 2016. Environment dispatch of distributed energy resources in a microgrid using JAYA algorithm. In Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 2016 2nd International Conference on. 224–228.

[24] Hsing-Chih Tsai, Yaw-Yuan Tyan, Yun-Wu Wu, and Yong-Huang Lin. 2013. Gravitational particle swarm. Appl. Math. Comput. 219, 17 (2013), 9106–9117.

[25] Shouheng Tuo, Longquan Yong, and Tao Zhou. 2013. An improved harmony search based on teaching-learning strategy for unconstrained optimization problems. Math. Probl. Eng. 2013 (2013).

[26] Oguz Emrah Turgut and Mustafa Turhan Coban. 2016. Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization–Differential Evolution algorithm. Ain Shams Eng. J. 7, 1 (2016), 347–360.

[27] Lizzie Wang et al. 2015. Particle swarm optimization based dictionary learning for remote sensing big data. Knowledge-Based Syst. 79 (2015), 43–50.

[28] Xuewu Wang, Yingpan Shi, Dongyan Ding, and Xingsheng Gu. 2016. Double global optimum algorithm–particle swarm optimization-based welding robot path planning. Eng. Optim. 48, 2 (2016), 299–316.

[29] David H. Wolpert and William G. Macready. 1997. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 1 (1997), 67–82.

[30] Bing Xue, Mengjie Zhang, and Will N. Browne. 2013. Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Trans. Cybern. 43, 6 (2013), 1656–1671.

[31] Betul Yagmahan. 2011. Mixed-model assembly line balancing using a multi-objective ant colony optimization approach. Expert Syst. Appl. 38, 10 (2011), 12453–12461.

[32] Wu Yang and Yuanshu Sun. 2011. An Improved Shuffled Frog Leaping Algorithm for Grid Task Scheduling. In Network and Information Security (NCIS), 2011 International Conference on. 342–346.

[33] Xin-She Yang. 2012. Nature-inspired mateheuristic algorithms: Success and new challenges. arXiv Prepr. arXiv1211.6658 (2012).

[34] Xin-She Yang. 2010. Firefly algorithm. Eng. Optim. (2010), 221–230.

[35] Xin-She Yang. 2010. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2, 2 (2010), 78–84.

[36] Xin-She Yang. 2012. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation. 240–249.

[37] Xin-She Yang. 2009. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms. 169–178.

[38] Xin-She Yang. 2010. Firefly algorithm. Levy flights and global optimization. In Research and development in intelligent systems XXIV. Springer, 209–218.

[39] Xin-She Yang. 2013. Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29, 2 (2013), 175–184.

[40] Xin-She Yang, Mehmet Karamanoglu, and Xingshi He. 2013. Multi-objective flower algorithm for optimization. Procedia Comput. Sci. 18 (2013), 861–868.

[41] Baozhen Yao, Bin Yu, Ping Hu, Junjie Gao, and Mingheng Zhang. 2016. An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Ann. Oper. Res. 242, 2 (2016), 303–320.

[42] Hai Tao Yao, Hai Qiang Chen, and Yuan Fa Qin. 2013. Niche PSO particle filter with particles fusion for target tracking. In Applied Mechanics and Materials. 1368–1372.

[43] Jingzheng Yao and Duanfeng Han. 2013. Improved barebones particle swarm optimization with neighborhood search and its application on ship design. Math. Probl. Eng. 2013 (2013).

[44] Sajjad Yazdani, Hossein Nezamabadi-pour, and Shima Kamyab. 2014. A gravitational search algorithm for multimodal optimization. Swarm Evol. Comput. 14 (2014), 1–14.

[45] Ling Yu and Peng Xu. 2011. Structural health monitoring based on continuous ACO algorithm. Microelectron. Reliab. 51, 2 (2011), 270–278.

[46] Mingrang Yu, Yingjie Zhang, Kun Chen, and Ding Zhang. 2015. Integration of process planning and scheduling using a hybrid GA/PSO algorithm. Int. J. Adv. Manuf. Technol. 78, 1–4 (2015), 583–592.

[47] Qiang Yu, Ling Chen, and Bin Li. 2015. Ant colony optimization applied to web service compositions in cloud computing. Comput. Electr. Eng. 41 (2015), 18–27.

[48] Yudong Zhang and Lenan Wu. 2012. A novel method for rigid image registration based on firefly algorithm. Int. J. Res. Soft Intell. Comput. 2, 2 (2012).

[49] Yudong Zhang, Xiaojun Yang, Carlo Cattani, Ravipudi Venkata Rao, Shuhiua Wang, and Preetha Phillips. 2016. Tea category identification using a novel fractional Fourier entropy and Jaya algorithm. Entropy 18, 3 (2016), 77.

[50] Di Zhou, Jun Sun, and Wenbo Xu. 2010. An advanced quantum-behaved particle swarm optimization algorithm utilizing cooperative strategy. In Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on. 344–349.

[51] Wenping Zou, Yunlong Zhu, Hanning Chen, and Zhu Zhu. 2010. Cooperative approaches to artificial bee colony algorithm. In Computer Application and System Modeling (ICCASIM), 2010 International Conference on. V9–44.
Rohit Kumar Sachan received B.Tech in Computer Science and Engineering (2008) from Galgotias College of Engineering and Technology, Greater Noida, India and M.Tech in Computer Science and Engineering (2012) from Amity University, Noida, India. He received Ph.D degree (2021) from Motilal Nehru National Institute of Technology Allahabad, Allahabad, India. Currently he is working as Sr. Project Engineer in C3i Center, Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.

Dharmender Singh Kushwaha received B.E (Bachelor in Engineering) degree in Computer Science and Engineering from University of Pune, Maharashtra, India, in 1990. He was awarded Gold Medal in M.Tech. (Computer Science and Engineering) from Motilal Nehru National Institute of Technology Allahabad, Allahabad, India. He received Ph.D degree from Motilal Nehru National Institute of Technology Allahabad, Allahabad, India. Currently he is working as Professor in Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India.