Calculating Particle Correlators with the Account of Detector Efficiency

A. A. Gusev, Yu. A. Kulchitsky, R. Lednicky, F. Rimondi, N. A. Russakovich, and P. V. Tsiareshka

 methods of physical experiment

Abstract — The formulae for \(m \)-order correlators \(K_m \) of a given particle observable (e.g., energy, transverse momentum or a conserved discrete quantum number) accounting for the track reconstruction efficiencies in a real detector are presented. The calculation of second- to fourth-order correlators is considered in some detail. Similar to the case of an ideal detector, the correlators can be expressed through the event-by-event fluctuation measures of the observable single event mean, the pseudocorrelators (determined by the pseudo-central moments of the observable distribution) and their cross terms. It allows one to avoid the combinatorics and essentially reduce the computer time when calculating the higher-order correlators in high multiplicity events. Compared with the case of ideal detector, this reduction is somewhat smaller due to the increased number of pseudocorrelators and additional calculations of the moments of the distribution of the track weights. For a constant track reconstruction efficiency, the correlator formulae reduce to those for an ideal detector. However, in real experiments the efficiencies are usually essentially dependent on particle momenta and may lead to substantial corrections of momentum correlators on the level of tens of percent.

DOI: 10.1134/S1547477113060113

INTRODUCTION

The investigation of correlations is very important for hadron physics [1–4]. The integral correlation characteristics — the correlators of particle energies, transverse momenta or rapidities — have been suggested [5, 6] to study the production mechanism of very high multiplicity events. It was shown [7] that the correlators are closely related with the event-by-event fluctuations of the event mean particle observables.

It should be noted that the higher-order fluctuation measures or the higher, non-Gaussian, moments of the event-by-event distribution of the observable mean (related with skewness and kurtosis for the orders \(m = 3 \) and \(4 \), respectively) are more sensitive signatures of the critical phenomena in multiparticle production (e.g., in the case of particle freeze-out near the critical endpoint) since they increase as powers \(\xi^{5m/2–3} \) of the correlation length \(\xi \) [4].

In the case of an ideal 100% efficient detector, a fast and simple procedure to calculate the correlators with the help of the fluctuation measures and so-called event-wise pseudocorrelators has been suggested [7], exploiting the expressions of pseudocorrelators through the central moments of the observable distribution [8]. Using the PYTHIA generator, the multiplicity dependence of second- and third-order pseudocorrelators and their ratio have been studied in [9]. The correction terms generated in the correlator analysis due to the multiplicity-dependent observable mean have been investigated in [10]. The two-particle transverse momentum correlators have been used as a correlation measure and studied as a function of event centrality in \(\text{Au} + \text{Au} \) collisions at RHIC [11]. Both the analyses in [10] and [11] are valid on the assumption of a constant detector efficiency.

In this paper, we formulate a fast decomposition procedure to calculate the correlators, avoiding the combinatorics in the case of observable-dependent track reconstruction efficiencies.

1. PARTICLE CORRELATORS IN THE CASE OF IDEAL DETECTOR

In the case of an ideal detector, the \(m \)th order correlator in the events with a given charged hadron multiplicity \(n \) is defined as

\[
K_m(n) = \left\{ \frac{1}{C_m} \sum_{i_1 = 1}^{n-(m-1)} \ldots \sum_{i_m = i_{m-1} + 1}^{n} \Delta \xi_{i_1}^{(l)} \ldots \Delta \xi_{i_m}^{(l)} \right\},
\]

\[
\Delta \xi_{i_k}^{(l)} = \xi_{i_k}^{(l)} - \langle \xi \rangle.
\]

The article is published in the original.
CALCULATING PARTICLE CORRELATORS

Here $C_m^\nu = \frac{n!}{m!(n-m)!}$ is the normalization factor equal to the number of combinations; $\varepsilon^{(l)}_{ij}$ is the observable (e.g., energy, momentum, strangeness, electric or baryon charge) of the i_{th} charged hadron ($i_1 < ... < i_n$) in the lth event; n is the charged hadron multiplicity in an event. The observable mean

$$\langle \varepsilon \rangle = \langle \varepsilon^{(l)} \rangle, \quad (3)$$

where $\varepsilon^{(l)}$ is the observable average in the lth event:

$$\varepsilon^{(l)} = \frac{1}{n} \sum_{i=1}^{n} \varepsilon^{(l)}_i, \quad (4)$$

and

$$\langle \rangle = \frac{1}{N(n)} \sum_{l=1}^{N(n)} \quad (5)$$

stands for the averaging over the $N(n)$ events with the charged hadron multiplicity n. Note that the correlator formula (1), when formally applied to one particle, yields $K_1(n) = 0$ according to definition of the observable means in (3) and (4).

Defining

$$\Delta \varepsilon^{(l)} = \varepsilon^{(l)} - \langle \varepsilon \rangle, \quad (6)$$

$$\Delta \varepsilon^{(l)}_{ij} = \varepsilon^{(l)}_{ij} - \varepsilon^{(l)} \quad (7)$$

and using the equality $\Delta \varepsilon^{(l)}_{ij} = \Delta \varepsilon^{(l)}_{ij} + \Delta \varepsilon^{(l)}_{ij}$, one can decompose the correlator on the event-by-event fluctuations of the event mean observable $\Delta \varepsilon^{(l)}$, event-wise pseudocorrelators $k^{(l)}(n)$ and the corresponding cross terms [7]:

$$K_m(n) = \left\{ \sum_{\lambda=0}^{m} C^m_\lambda \Delta \varepsilon^{(l) \lambda} \cdot k^{(l)}_{\lambda}(n) \right\}, \quad (8)$$

where $k^{(l)}_{0}(n) = 1$. The event-wise pseudocorrelators are defined similarly to (1) up to the substitution $\Delta \varepsilon^{(l)} \rightarrow \Delta \varepsilon^{(l)}_{ij}$:

$$k^{(l)}(n) = \frac{1}{C^m_\lambda} \sum_{i_1=1}^{n-(m-1)} \ldots \sum_{i_n=1}^{n} \Delta \varepsilon^{(l)}_{i_1} \ldots \Delta \varepsilon^{(l)}_{i_n}. \quad (9)$$

Similar to the correlator, the first-order pseudocorrelator also vanishes by definition: $k^{(l)}_{0}(n) = 0$. It is remarkable that one can avoid the combinatorics in (9), expressing the pseudocorrelators through the central moments of the observable distribution [7, 8] (see also Section 3).

2. ACCOUNTING FOR TRACK RECONSTRUCTION EFFICIENCIES

In the case of a nonideal detector, one has to account for the track reconstruction efficiencies with the help of the weighting function

$$w^{(l)}_i = \frac{f^{(l)}_i}{\omega^{(l)}_i}, \quad (10)$$

where $\omega^{(l)}_i$ is the track reconstruction efficiency depending on particle pseudorapidity η and transverse momentum p_T associated with ith track in lth event, and $f^{(l)}_i$ is a function correcting for fake tracks, secondary and out of kinematic region particles.

The efficiency corrected average observable in the lth event is

$$\tilde{\varepsilon}^{(l)} = \frac{\sum_{i=1}^{n} \varepsilon^{(l)}_i w^{(l)}_i}{\sum_{i=1}^{n} w^{(l)}_i}. \quad (11)$$

For the efficiency corrected m-particle correlator, we have

$$K_m(n) = \left\{ \sum_{i_1=1}^{n-(m-1)} \ldots \sum_{i_n=1}^{n} w^{(l)}_{i_1} \ldots w^{(l)}_{i_n} \Delta \varepsilon^{(l)}_{i_1} \ldots \Delta \varepsilon^{(l)}_{i_n} \right\} \quad (12)$$

The decomposition similar to (8) now takes the form

$$K_m(n) = \sum_{\lambda=0}^{m} C^m_\lambda \Delta \varepsilon^{(l) \lambda} \cdot k^{(l,m)}_{\lambda}(n), \quad (13)$$

where $k^{(l,m)}_{0}(n) = 1$. Note that now the pseudocorrelators $k^{(l,m)}_{\lambda}(n)$ depend also on the correlator order m:

$$k^{(l,m)}_{\lambda}(n) = \left\{ \sum_{i_1=1}^{n-(m-1)} \ldots \sum_{i_n=1}^{n} w^{(l)}_{i_1} \ldots w^{(l)}_{i_n} \Delta \varepsilon^{(l)}_{i_1} \ldots \Delta \varepsilon^{(l)}_{i_n} \right\} \quad (14)$$

Obviously, such a pseudocorrelator coincides with the true one for $\lambda = m$ only: $k^{(l,m)}_{m} = k^{(l)}_{\lambda}$. Again, $K_1 = k^{(l)}_{1} = 0$.
by definition. Note, however, that the pseudocorrelators $k^{(l,m)}_1$ do not vanish for $m > 1$.

Particularly, the second-order correlator can be decomposed as

$$K_2(n) = \langle \Delta \tilde{e}^{(l,2)} \rangle + 2 \langle \Delta \tilde{e}^{(l)} k^{(l,2)}_1(n) \rangle + k^{(l,2)}_2(n).$$ \hspace{1cm} (15)

Here the first term $\langle \Delta \tilde{e}^{(l,2)} \rangle$ is a quadratic measure of the fluctuation of the observable event-wise mean around the sample mean. The second term is a cross term which vanishes in the ideal case of unit reconstruction weights $w_i^{(l)}$ since the first-order event-wise pseudocorrelator for ideal detector $k^{(l)}_1$ vanishes by definition.

Similarly, the three-particle correlator is decomposed into four terms:

$$K_3(n) = \langle \Delta \tilde{e}^{(l,2)} \rangle + 3 \langle \Delta \tilde{e}^{(l)} k^{(l,3)}_1(n) \rangle + 3 \langle \Delta \tilde{e}^{(l)} k^{(l,2)}_2(n) \rangle + k^{(l,3)}_3(n).$$ \hspace{1cm} (16)

Here the first term $\langle \Delta \tilde{e}^{(l,3)} \rangle$ is a cubic measure of the fluctuation of the observable event-wise mean around the sample mean. The second and third terms are cross terms, the first of them vanishing in the case of an ideal detector due to vanishing of the first-order event-wise pseudocorrelator $k^{(l)}_1$.

Using the identity

$$\sum_{i=1}^n w_i^{(l)} \Delta \tilde{e}_i^{(l)} = 0,$$

$$\sum_{i=1}^n (w_i^{(l)}) \Delta \tilde{e}_i^{(l)} = 0,$$

and substituting the sums over the ordered m-plets $\{i_1 < \ldots < i_m\}$ in the pseudocorrelator definitions by the sums over the m-plets $\{i_1 \neq \ldots \neq i_m\}$, one gets for the first- and second-order pseudocorrelators contributing to the second-order correlator:

$$k^{(l,2)}_1(n) = -\frac{\sum_{i=1}^n w_i^{(l)} \Delta \tilde{e}_i^{(l)}}{n(nw^{(l,2)} - w^{(l,2)})},$$

$$k^{(l,2)}_2(n) \equiv k^{(l)}_2(n) = -\frac{\sum_{i=1}^n w_i^{(l,2)} \Delta \tilde{e}_i^{(l)}}{n(nw^{(l,2)} - w^{(l,2)})},$$

where

$$w^{(l,\lambda)} = \frac{1}{n} \sum_{i=1}^n w_i^{(l,\lambda)}.$$ \hspace{1cm} (26)

Formula (25) shows that the pseudocorrelator $k^{(l)}_2$ is negatively defined and does not explicitly depend on correlations of the observables of different particles.

Note that it can be rewritten as

$$k^{(l,2)}_2(n) = -\frac{\overline{w}^{(l)} S^{(l,2)}}{n \overline{w}^{(l,2)} - w^{(l,2)}},$$

where $S^{(l,2)}$ is the event-wise second pseudocentral moment:

$$S^{(l,2)}(n) = \sum_{i=1}^n w_i^{(l)} \Delta \tilde{e}_i^{(l)}.$$ \hspace{1cm} (28)
We use the prefix “pseudo” because of the quadratic weights in (28) for \(S_2^{(l,3)} \) contrary to the linear weights in the true efficiency corrected \(\lambda \)th central moment:

\[
S_\lambda^{(n)} = \sum_{i=1}^{n} w_i^{(l)} \Delta \xi_i^{(l,\lambda)}. \tag{29}
\]

Generally, the \(\lambda \)-order pseudocorrelators contributing to \(m \)-order correlator \((\lambda \leq m)\) can be expressed through the \(\lambda \)th pseudocentral moments calculated with the powers \(\mu \leq m \) of the weights:

\[
S_\lambda^{(l,\mu)} (n) = \sum_{i=1}^{n} w_i^{(l)} \Delta \xi_i^{(l,\mu)}. \tag{30}
\]

Of course, \(S_\lambda^{(l,\mu)} = S_\lambda \) in case of an ideal detector.

Thus, the first-order pseudocorrelator in (24) can be rewritten as

\[
k_1^{(l,2)} (n) = \frac{\tilde{w}^{(l)} S_2^{(l,2)}}{n \tilde{w}^{(l)2} - \tilde{w}^{(l)^2}}. \tag{31}
\]

As for the pseudocorrelators contributing to the third-order correlator, using in addition the identity valid for arbitrary functions \(f_{ij} \):

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} w_i^{(l)} w_j^{(l)} w_k^{(l)} f_{ijk} = \sum_{i=1}^{n} w_i^{(l)} \left[\sum_{j=1}^{n} w_j^{(l)} f_{ijk} - w_j^{(l)} f_{jii} - w_j^{(l)} f_{iji} \right] \tag{32}
\]

and the third power of identity (22):

\[
k_1^{(l,3)} (n) = -2 \frac{\tilde{w}^{(l)} (n \tilde{w}^{(l)} S_1^{(l,2)} - S_1^{(l,3)})}{n \tilde{w}^{(l)3} - 3 n \tilde{w}^{(l)} \tilde{w}^{(l)2} + 2 \tilde{w}^{(l)3}}, \tag{37}
\]

\[
k_2^{(l,3)} (n) = - \frac{\tilde{w}^{(l)} (n \tilde{w}^{(l)} S_1^{(l,2)} - 2 S_2^{(l,3)})}{n \tilde{w}^{(l)3} - 3 n \tilde{w}^{(l)} \tilde{w}^{(l)2} + 2 \tilde{w}^{(l)3}}, \tag{38}
\]

\[
k_3^{(l,3)} (n) = \frac{\tilde{w}^{(l)} S_3^{(l,3)}}{n \tilde{w}^{(l)3} - 3 n \tilde{w}^{(l)} \tilde{w}^{(l)2} + 2 \tilde{w}^{(l)3}}. \tag{39}
\]

The generalization of the expressions for the efficiency corrected pseudocorrelators \(k_{\lambda}^{(l,m)} (n) \) for \(m \geq 3 \) is straightforward. To perform the corresponding rather lengthy analytical calculations, we have written a Maple [12] code, which is available under the request. Here we present only the results for \(m = 4 \):

\[
k_1^{(l,4)} = \frac{-3 \tilde{w}^{(l)} (n^2 \tilde{w}^{(l)2} S_2^{(l,2)} - n \tilde{w}^{(l)2} S_1^{(l,2)} - 2 n \tilde{w}^{(l)} S_1^{(l,3)} + 2 S_1^{(l,4)})}{n^3 \tilde{w}^{(l)4} - 6 n^2 \tilde{w}^{(l)} \tilde{w}^{(l)2} + 3 n \tilde{w}^{(l)2} S_2^{(l,2)} - n \tilde{w}^{(l)} S_1^{(l,3)} - 6 \tilde{w}^{(l)3}}, \tag{40}
\]

\[
k_2^{(l,4)} = \frac{\tilde{w}^{(l)} (4 n \tilde{w}^{(l)} S_2^{(l,3)} + 2 n \tilde{w}^{(l)} S_1^{(l,3)} - n \tilde{w}^{(l)} S_1^{(l,2)} + 2 S_1^{(l,4)})}{n^3 \tilde{w}^{(l)4} - 6 n^2 \tilde{w}^{(l)} \tilde{w}^{(l)2} + 3 n \tilde{w}^{(l)2} S_2^{(l,2)} - n \tilde{w}^{(l)} S_1^{(l,3)} - 6 \tilde{w}^{(l)3}}, \tag{41}
\]
\[k^{(4)}_3 = \frac{\bar{w}^{(l)}(2n\bar{w}^{(l)}S_3^{(l,3)} + 3n\bar{w}^{(l)}S_1^{(l,2)}S_2^{(l,2)} - 6S_3^{(l,4)})}{n^3 \bar{w}^{(l)} - 6n^2 \bar{w}^{(l)}\bar{w}^{(l)} + 3nw^{(l)}2^2 + 8n\bar{w}^{(l)}\bar{w}^{(l)} - 6w^{(l)}4}, \]

\[k^{(4)}_4 = \frac{3\bar{w}^{(l)}(n\bar{w}^{(l)}S_2^{(l,2)} - 2S_4^{(l,4)})}{n^3 \bar{w}^{(l)} - 6n^2 \bar{w}^{(l)}\bar{w}^{(l)} + 3nw^{(l)}2^2 + 8n\bar{w}^{(l)}\bar{w}^{(l)} - 6w^{(l)}4}. \]

It should be noted that all the formulae used to calculate correlators of a given observable \(\epsilon \) reduce to those for an ideal detector in the case of \(\epsilon \)-independent track reconstruction efficiencies.

4. CALCULATING CORRELATORS FOR MONTE-CARLO EVENTS

To estimate the computing time of the correlator calculations as well as the corrections of momentum correlators due to realistic momentum dependence of the track reconstruction efficiency, we have used the Monte-Carlo generator PYTHIA [13] to simulate events of \(pp \) interactions at 7 TeV with charged hadron multiplicity \(n \geq 5 \). The reconstructed tracks have been simulated with the help of the rejection method [14] assuming a similar \(p_T \) and \(\eta \)-dependence of the track reconstruction efficiency as in the ATLAS experiment [15]: it depends only weakly on \(\eta \) and rapidly increases with \(p_T \) from \(-10\%\) at \(p_T = 0.1 \) GeV/c and achieves a level of \(-80\%\) at \(p_T = 0.8 \) GeV/c. Such a dependence is typical for high-energy multiparticle production experiments [16–19].

To estimate the acceleration of the correlator calculations, when substituting the direct formula (12) by the decomposition formula (13), we have used the Processor AMD Phenom(tm) II X6 1100T with CPU 3.3 GHz. We have found that the computation time of the correlator \(K_m \) according to (12) behaves in accordance with the corresponding combinatorics:

\[T_m(n, N) = 1.9 \frac{n^m}{m!} N(n) \text{ [ps]}, \]

while the computation time according to the decomposition formula (13) is strongly reduced and depends on the multiplicity only linearly:

\[T_m(n, N) = \left\{ 0.5 \right\left[m + \frac{1}{2} m(m + 1) \right] n + 300 \} \times N(n) \text{ [ps]}. \]

The \(m \)-dependence in square brackets corresponds to the calculation of \(m \) average \(\bar{w}, w^2, \ldots, w^m \) and \(1 + 2 + \ldots + m \) terms \(\bar{\epsilon}, S_1^{(2)}, S_2^{(2)}, \ldots, S_1^{(m)}, S_2^{(m)}, \ldots, S_1^{(m)}, S_2^{(m)}, \ldots, S_1^{(m)} \). This reduction is somewhat smaller than in the case of a constant track reconstruction efficiency, when the square bracket in (45) reduces to \([m + 1]\) in correspondence with the calculation of \(m + 1 \) terms \(\bar{\epsilon}, S_1, S_2, \ldots, S_m \).

The reduction of the computation time is not critical for moderate multiplicities and not too high orders of the correlators. Thus, for the multiplicity \(n = 100 \), the computation time according to the direct formula (12) is reasonable even for the fifth-order correlator and for \(N = 10^6 \) events it comprises about 160 s. The decomposition formula (13) becomes of principle importance for calculation of higher-order correlators in central heavy-ion collisions at high energies. Thus, for a typical charged hadron multiplicity \(n = 1000 \) the computation time of the fifth-order correlator in \(N = 10^6 \) events comprises half a year according to the direct formula (12), compared with 10 ms when using the decomposition formula (13).

As for the corrections of the momentum correlators \(K_m \) or the fluctuation measures \(\Delta \epsilon^m \) due to a typical momentum-dependent track reconstruction efficiency, for \(m \leq 4 \) they amount up to several tens of percent.

We have not considered here the corrections due to possible multiplicity dependence of the observable mean which may be on the level of several tens of percent [10].

CONCLUSIONS

The formulae for the \(m \)-order correlators \(K_m \) of a given particle observable \(\epsilon \) (e.g., energy, transverse momentum, rapidity or a conserved discrete quantum number) accounting for the track reconstruction efficiencies are presented with some calculation details for \(m = 2, 3, 4 \). Similar to the case of an ideal detector, one can reduce the computation time by avoiding the combinatorics and expressing the correlators through the event-by-event fluctuation measures of the observable single event mean, the pseudocorrelators (determined by the pseudocentral moments of the observable distribution) and their cross terms. The number of the terms to be calculated is however higher due to increased number of pseudocorrelators and additional calculations of the moments of the distribution of the track weights. The correlators are affected by detector inefficiency in the case of substantial \(\epsilon \)-dependence of track reconstruction efficiencies. The reduction of the
correlator computation time with the help of the decomposition formula as well as the corrections of momentum correlators due to a typical momentum-dependent track reconstruction efficiency have been estimated with the help of Monte-Carlo events of pp collisions at 7 TeV for particles with $p_T > 0.1$ GeV/c. It was found that the reduction of the computation time is of principle importance for calculation of the higher-order ($m > 4$) correlators in the events with charged hadron multiplicities of the order of several hundreds or higher. The estimated corrections of the momentum correlators K_m or the fluctuation measures $\langle \Delta \epsilon^m \rangle$ for $m \leq 4$ are up to several tens of percent and should be taken into account.

ACKNOWLEDGMENTS

We are grateful to J.A. Budagov, J.D. Manjavidze and E. Sarkisyan-Grinbaum for useful discussions and comments. We are also thankful to V.P. Gerdt for the help with the Maple analytical calculations.

REFERENCES

1. W. Kittel and E. A. De Wolf, Soft Multihadron Dynamics (World Sci., USA, Hackensack, 2005), p. 652.
2. E. A. De Wolf, I. M. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996); hep-ph/9508325.
3. I. M. Dremin and J. W. Gary, Phys. Rep. 349, 301 (2001); hep-ph/0004215.
4. C. Athanasiou, K. Rajagopal, and M. Stephanov, Phys. Rev., Ser. D 82, 074008 (2010); arXiv:1006.4636 [hep-ph].
5. J. Manjavidze and A. Sissakian, Phys. Rep. 346, 1–88; arXiv:hep-ph/0105245.
6. A. Sissakian, “On the status of very high multiplicity physics,” in The 32nd Int. Symp. on Multiparticle Dynamics (ISMD 2002), Alushta, Ukraine, 2002, pp. 353–357; Phys. At. Nucl. 67, 2 (2004); Yad. Fiz. 67, 4 (2004).
7. N. Amelin et al., Phys. Part. Nucl. Lett. 4, 461 (2007); arXiv:nucl-th/0504007.
8. A. V. Stadnik, N. I. Chernov, and S. S. Shimanskiy, JINR Commun. P11-2003-143 (Dubna, 2003); S. S. Shimanskiy, in Proc. of the Sixth Int. Workshop “Very High Multiplicity”, Dubna, 2005, pp. 328–346.
9. J. Budagov et al., “On correlators for high multiplicity events,” in The 32nd Int. Symp. on Multiparticle Dynamics (ISMD 2002), Alushta, Ukraine, 2002; Phys. At. Nucl. 67, 69 (2004); Yad. Fiz. 67, 70 (2004).
10. P. Filip, “Corrections to correlators in p_T fluctuation measurements,” Phys. Rev., Ser. C 78, 034912 (2008); arXiv:0711.0608 [nucl-th].
11. J. Adams et al. (STAR Collab.), “Incident energy dependence of p_T correlations at RHIC,” Phys. Rev., Ser. C. 72, 044902 (2005); arXiv:nucl-ex/0504031.
12. Maplesoft, Maple: Computer Algebra System; http://www.maplesoft.com/; http://en.wikipedia.org/wiki/Maple (software).
13. T. Sjostrand et al., “PYTHIA 6.4 physics and manual,” JHEP 05, 026 (2006).
14. J. Von Neumann, Various Techniques Used in Connection with Random Digits, Monte Carlo Methods, National Bureau Standards (1951), Vol. 12, pp. 36–38.
15. G. Aad et al. (ATLAS Collab.), Expected Performance of the ATLAS Experiment—Detector, Trigger and Physics, 2009, p. 1852; SLAC-R-980, CERN-OPEN-2008-020; arXiv:0901.0512 [hep-ex].
16. S. Chatrchyan et al. (CMS Collab.), “The CMS experiment at the CERN LHC,” JINST 3, S08004 (2008).
17. K. A. Bloom et al. (CDF Collab.), Track Reconstruction for the CDF Silicon Tracking System, FERMILAB-CONF-98-370-E.
18. T. Allmendinger et al., Nucl. Instr. Meth., Ser. A 704, 44 (2013); arXiv:1207.2849 [hep-ex].
19. Z. Xu et al., LBNL-PUB-5509, 2006, p. 84.