ON RICKART MODULES

Mohammed Qader Rahman, Bahar hamad Al-Bahrani

Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 14/4/ 2019 Accepted: 17/7/2019

Abstract

Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules. The main purpose of this paper is to develop the properties of Rickart modules. We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.

Keywords: Endomorphism ring, Direct summand, Kernel of endomorphism, Rickart modules and modules with the summand intersection property.

1 INTRODUCTION

A module M is called a Rickart module if for every $\varphi \in S = \text{End}(M)$, then $\ker \varphi = eM$ for some $e^2 = e \in S$. Equivalently a module is a Rickart module if and only if for every $\varphi \in S = \text{End}(M)$, then $\ker \varphi$ is a direct summand of M, See [1, 2].

In this paper, we give some results on the Rickart modules.

In §2, we give characterization of the Rickart modules. Also we study the direct sum of Rickart modules. For example we prove that an R-module M is Rickart if and only if $A_M \cap T_f \leq M \oplus M$, for every endomorphism $f : M \rightarrow M$, see Theorem (2.2).

In section 3, we give characterizations of certain classes of rings in term of the Rickart modules. For example we prove that a ring R is semisimple if and only if all injective R-module is Rickart, see Theorem (3.12).

Throughout this article, R is a ring with identity and M is a unital left R-module. For a left module M, $S = \text{End}_R(M)$ will denote the endomorphism ring of M. The notations $N \leq M, N \leq M$ mean that N is a submodule, a direct summand of M.

2 CHARACTERIZATIONS OF RICKART MODULES

In this section, we give a characterizations for the Rickart modules. Following [1], A module M is called a Rickart module if for every $\varphi \in S = \text{End}(M)$, $\ker \varphi = eM$, for some $e^2 = e \in S$. It’s known that every direct summand of a Rickart module is a Rickart module.

Remark 2.1: Let M be an R-module and $f : M \rightarrow M$ be an R-homomorphism.
Let $A_M = M \oplus 0$, $B_M = 0 \oplus M$ and $\bar{f}: A_M \to B_M$ be a map defined by
$\bar{f}(m, 0) = (0, f(m))$, for every $m \in M$. It is clear that $M \oplus M = A_M \oplus B_M$. \bar{f} is an R-homomorphism and $\text{ker}\bar{f} = \text{ker}f \oplus 0$. Let $T_f = \{x + \bar{f}(x), x \in A_M\}$. Clearly that T_f is a submodule of $M \oplus M$.

In this paper by A_M, B_M, \bar{f}, T_f we mean the same concepts in the previous above Remark.

Theorem 2.2: An R-module M is Rickart module if and only if for every R-homomorphism $f: M \to A_M \cap T_f$ is a direct summand of $M \oplus M$.

Proof: Let M is Rickart module and $f: M \to M$ be an R-homomorphism. Then $\text{ker}f$ is a direct summand of M and hence $\text{ker}\bar{f} = \text{ker}f \oplus 0$ is a direct summand of $M \oplus M$. Claim that $\text{ker}\bar{f} = A_M \cap T_f$. To show that, let $(m, 0) \in \text{ker}\bar{f}$. Then $(m, 0) = (m, 0) + \bar{f}(m, 0) \in A_M \cap T_f$. Now let $(m, 0) \in A_M \cap T_f$. So there exists $m_1 \in M$ such that $(m, 0) = (m_1, 0) + \bar{f}(m_1, 0) = (m_1, 0) + (0, f(m_1)) = (m_1, f(m_1))$. Hence $m = m_1$ and $f(m_1) = 0$. Thus $(m, 0) \in \text{ker}\bar{f}$.

For the converse, since $A_M \cap T_f = \text{ker}\bar{f} \leq M \oplus M$ and $\text{ker}\bar{f} \leq A_M$. Then $\text{ker}\bar{f} = A_M \cap T_f \leq M \oplus M$. Thus M is a Rickart module.

Recall that An R-module M is called a prime R-module if $\text{ann}(x) = \text{ann}(y)$, for every non zero elements x and y in M [3].

In the following proposition we give conditions under which an R-module M can be Rickart.

Propositions 2.3: Let M be an injective and prime R-module, then M is a Rickart module.

Proof: Let $f: M \to M$ be an R-homomorphism. Since M is injective and prime. Then $M \oplus M$ is injective and prime. Since $A_M \leq M \oplus M$, then A_M is injective. First claim that $M \oplus M = T_f \oplus B_M$. To show that $(x, y) \in M \oplus M$. Hence $(x, y) = (x, 0) + (0, f(x)) - (0, f(x)) + (0, y)$. It is clear that $(x, 0) + (0, f(x)) \in T_f$ and $-(0, f(x)) + (0, y) \in B_M$. So $M \oplus M = T_f + B_M$.

Now let $(m, 0) + \bar{f}(m, 0) \in T_f \cap B_M$. $(m, f(m)) \in B_M = 0 \oplus M$ and hence $m = 0$. Thus $M \oplus M = T_f + B_M$. Thus T_f is injective.

Let I be an ideal of R and $g: I \to A_M \cap T_f$ be a non zero homomorphism. Let $i_1: A_M \cap T_f \to A_M$ and $i_2: A_M \cap T_f \to T_f$ be the inclusion homomorphisms. Thus $i_1 \circ g: I \to A_M$ and $i_2 \circ g: I \to T_f$. By Baer’s Criterion [4, Th(7.1.7)P.13] there exists $a \in A_M$ and $b \in T_f$, such that $g(w) = wa$ and $g(w) = wb$ for each $w \in I$. Thus $w(a - b) = 0$. Assume that $a \neq b$. Since $w \in \text{ann}(a - b)$ and M is prime, then $w \in \text{ann}(a)$. Thus $g = 0$, which is a contradiction, therefore $a = b \in A_M \cap T_f$ and hence $A_M \cap T_f$ is injective.

Now consider the short exact sequence
$$0 \to A_M \cap T_f \to A_M \to \frac{A_M \oplus M}{A_M \cap T_f} \to 0$$

Where i is the inclusion map and π be the natural epimorphism. The sequence splits, as shown by [4]. Hence $A_M \cap T_f \leq M \oplus M$. By theorem (2.2), M is a Rickart module.

The converse of the above proposition is not always true. For example. Consider Z_6 as Z-module. Z_6 is semisimple and hence Z_6 is Rickart. But Z_6 is neither injective nor prime.

Propositions 2.4: Let M be an R-module such that for every homomorphism $f: M \to M$, $A_M + T_f$ is projective, then M is Rickart module.

Proof: Let $f: M \to M$ be an R-homomorphism, consider the following short exact sequences
$$0 \to A_M \cap T_f \to A_M \xrightarrow{i_1} A_M \to \frac{A_M}{A_M \cap T_f} \to 0$$
$$0 \to T_f \to A_M + T_f \xrightarrow{i_2} \frac{A_M + T_f}{T_f} \to 0$$

Where i_1, i_2 are the inclusion homomorphisms and f_1, f_2 are the natural epimorphisms.

By the second isomorphism theorem, $\frac{A_M}{A_M \cap T_f} = \frac{A_M + T_f}{T_f}$. Since T_f is a direct summand of $M \oplus M$ and $T_f \leq A_M + T_f$, then T_f is a summand of $A_M + T_f$. Thus the second sequence splits. But $A_M + T_f$ is...
projective, thus \(\frac{A_M}{A_M \cap T_f} \cong \frac{A_M + \kappa f}{T_f} \) is projective. Hence the first sequence splits. Thus \(A_M \cap T_f \) is a summand of \(A_M \). Since \(A_M \) is a summand of \(M \oplus M \), then \(A_M \cap T_f \) is a summand of \(M \oplus M \). By the same argument of the prove of theorem 2.2, \(\ker f \oplus 0 = \ker f = T_f \cap A_M \), therefor \(\ker f \oplus 0 \) is a summand of \(M \oplus M \). Since \(\ker f \oplus 0 \subseteq A_M \), Then \(\ker f \oplus 0 \) is a summand of \(A_M \) and hence \(\ker f \) is a summand of \(M \). Thus \(M \) is a Rickart module.

The converse is not true as the following example shows:

Consider \(Z_6 \) as \(Z \)-module, \(Z_6 \) is semisimple and hence is a Rickart. It’s is known that \(Z_6 \) is not projective. Let \(f: Z \to Z \) be an \(R \)-homomorphism. One can easily show that \(A_{Z_6} + T_f = A_{Z_6} \oplus \text{Im} f \).

Now assume that \(A_{Z_6} + T_f \) is projective, then \(A_{Z_6} \cong Z_6 \) is projective which is a contradiction.

However, we have the following

Theorem 2.5: Let \(M \) be a projective \(R \)-module, Then \(M \) is a Rickart module if and only if for every \(R \)-homomorphism \(f: M \to A_M + T_f \) is a projective \(R \)-module.

Proof: Suppose that \(M \) is a Rickart module and let \(f: M \to A_M + T_f \) be an \(R \)-homomorphism. Now consider the following short exact sequences

\[
0 \to A_M \cap T_f \xrightarrow{i_1} A_M \xrightarrow{\pi_1} A_M / A_M \cap T_f \to 0
\]

\[
0 \to T_f \xrightarrow{i_2} A_M + T_f \xrightarrow{\pi_2} A_M / T_f \to 0
\]

Where \(i_1, i_2 \) are the inclusion homomorphisms and \(\pi_1, \pi_2 \) are the natural epimorphisms. Since \(M \) is a Rickart module, then \(\ker f \) is a summand of \(M \). By the same argument of the prove of theorem 2.2 \(\ker f \oplus 0 = \ker f \cap T_f = T_f \cap A_M \), hence \(A_M / T_f \cap A_M \) is a summand of \(A_M \). Thus the first sequence splits. But \(A_M = M \oplus 0 = M \) and \(M \) is projective, there for \(A_M \) is projective. Then \(A_M / T_f \cap A_M \) is projective. By the second isomorphism theorem

\[
A_M / T_f \cap A_M \cong \frac{A_M + T_f}{T_f}
\]

Thus \(\frac{A_M + T_f}{T_f} \) is projective. Hence the second sequence splits. But \(M \oplus M = T_f \oplus B_M \), therefor \(T_f \) is projective. Thus \(A_M + T_f \) is projective, (where \(A_M + T_f = T_f \oplus \frac{A_M + T_f}{T_f} \)).

Let \(M \) and \(N \) be two \(R \)-modules. Recall that \(M \) is called \(N \)-Rickart (or relatively Rickart to \(N \)) if, for every \(R \)-homomorphism \(f: M \to N \), \(\ker f \) is a summand of \(M \) [1].

Before giving our next result, we need the following.

Propositions 2.6.1: The following are equivalent for a module \(M \)

1. \(M \) is a Rickart module;
2. For every submodule \(N \) of \(M \), every direct summand \(L \) of \(M \) is \(N \)-Rickart.

Propositions 2.7: Let \(M \) be an indecomposable \(R \)-module and let \(N \) be any \(R \)-module if \(M \) is \(N \)-Rickart, then either

1. \(\text{Hom}(M,N) = 0 \) or
2. Every nonzero \(R \)-homomorphism from \(M \) to \(N \) is a monomorphism.

Proof: Assume that \(\text{Hom}(M,N) \neq 0 \) and let \(f: M \to M \) be a nonzero \(R \)-homomorphism. Since \(M \) is \(N \)-Rickart, then \(\ker f \) is a summand of \(M \). But \(M \) is indecomposable. So \(\ker f = \{0\} \) and \(f \) is a monomorphism.

Recall that an \(R \)-module \(M \) is called a Quasi-Dedekind \(R \)-module if every nonzero endomorphism of \(M \) is a monomorphism [6, Th(1.5), CH2].

Corollary 2.8: Let \(M \) be an indecomposable \(R \)-module and let \(N \) be any \(R \)-module such that \(\text{Hom}(M,N) \neq 0 \). If \(M \) is \(N \)-Rickart, then \(M \) is Quasi-Dedekind. In particular if \(M \) is Rickart, then \(M \) is Quasi-Dedekind.

Proof: By Prop.2.7, there is a monomorphism \(f: M \to N \). Assume \(M \) is not Quasi-Dedekind \(R \)-module, therefore there exists a nonzero endomorphism \(g: M \to M \) such that \(\ker g \neq 0 \). Since \(f \) is a monomorphism, then \(\ker(f \circ g) = \ker g = 0 \). Since \(M \) is \(N \)-Rickart, then \(\ker g \subseteq \text{Hom}(M,N) \) and hence \(\ker g = \text{Hom}(M,N) \). Thus \(g = 0 \), which is a contradiction. Thus \(M \) is a Quasi-Dedekind \(R \)-module.
3 CHARACTERIZATIONS OF RINGS BY MEANS OF RICKART MODULES

It’s known the direct sum of the Rickart modules need not be a Rickart module, see [1], [2].

In this section, we give a conditions under which a direct sum of Rickart modules is a Rickart module.

Proposition 3.1: Let M be an R-module, If R is M-Rickart, then every cyclic submodule of M is projective. In particular if R is an R-Rickart module, then every Principale ideal is projective ideal, i.e. R is a p.p. ring.

Proof: Let $m \in M$, consider the following short exact sequence

$$0 \to ker f \to R \to Rm \to 0$$

where i is the inclusion homomorphism and f is defined as follows $f(r) = rm, \forall r \in R$.

Let $i_2: Rm \to M$ be the inclusion homomorphism. Now consider $i_2 \circ f: R \to M$. Since R is M-Rickart. Then $ker(i_2 \circ f)$ is a summand of R. But i_2 is a monomorphism, therefore $ker f = ker(i_2 \circ f) = 0$. Thus the sequence is split and hence Rm is summand of R, since R is a projective R-module. Then Rm is projective.

Recall that an R-module M is called dualizable if $Hom(M, R) \neq 0$, [5]

Corollary 3.2: Let M be a dualizable indecomposable R-module and M is R-Rickart, then M is isomorphic to an ideal of R. Hence if R has no nonzero nilpotent elements, then $E(M)$ is commutative, where $E(M)$ is the ring of R-endomorphism of M.

Proof: Since $Hom(M, R) \neq 0$, then by Prop (2.7) M is isomorphic to an ideal I of R and hence $E(M) \cong E(I)$. For the second part, since R has no nilpotent elements I is an ideal in R, Then $E(I)$ is commutative[7,prop (2.1)CH1]. Thus $E(M)$ is commutative

Corollary 3.3: Let M be a projective indecomposable R-module and R has no nonzero nilpotent element. If M is an R-Rickart module and $Hom(M, R) \neq 0$, then M is a multiplication module.

Proof: By the same argument of the proof of Cor (3.2), $E(M)$ is a commutative and hence M is multiplication $[8]$

Recall that an R-module M is called an SIP module if the intersection of any two direct summands of M is also a direct summand of M [9]. It is known that every Rickart module is an SIP module [1].

Before we give our next result, we need the following

Theorem 3.4, [9]: Let R be a Noetherian domain and let M be an injective R-module. If M has the SIP, then either

1. M is torsion free or
2. M is torsion and for any two distinct indecomposable summands A and B of M, $Hom(A, B) = 0$

Now, we prove that

Theorem 3.5: Let R be a Noetherian domain and let M be an injective R-module, then the following are equivalent

1. $M \oplus M$ is a Rickart module.
2. M is torsion free.
3. $\bigoplus_\Lambda M$ is Rickart module, for every index set Λ.

Proof: (1)\Rightarrow(2) Since M is a summand of $M \oplus M$, then M is Rickart and hence M has the SIP. By Th (3.4) M is either torsion or torsion free. Suppose M is torsion, so $M \oplus M$ is torsion. Since R is noetherian domain, then by [4, Th(6.6.2), p.162], $M = \bigoplus_{\alpha \in \Lambda} M_\alpha$ where M_α is an indecomposable submodule of M, now let $\alpha, \beta \in \Lambda$ and hence

$$M \oplus M \cong M_\alpha \oplus M_\beta \oplus \bigoplus_{\alpha \neq \beta} M_\alpha \oplus \bigoplus_{\alpha \neq \beta} M_\beta$$

$mnmnmNm_\alpha \oplus M_\alpha$ is Rickart and injective, thus by Cor (2.8) M_α is Quasi-Dedekind and hence M_α is prime by [6, prop (1.7), p.26] which is a contradiction. To verify this suppose M_α is prime. Since M is torsion, then M_α is torsion. But M_α is injective over integral domain, therefore M_α is divisible. Now let $0 \neq x \in M_\alpha$, and let $0 \neq y \in M_\alpha$. Since M_α is divisible, then $x = ry$ for some $y \in M_\alpha$. Thus M_α is not prime.

(2)\Rightarrow(1) since M is torsion free, then $M \oplus M$ is torsion free. Hence $M \oplus M$ is prime and injective. Thus $M \oplus M$ is a Rickart module, by Prop (2.3).
(2)⇒ (3) Since M is torsion free, then M is prime and hence $\bigoplus \lambda M$ is prime for every index set λ. But $\bigoplus \lambda M$ is injective, then by Prop (2.3), $\bigoplus \lambda M$ is a Rickart module.
Recall that A ring R is a left semihereditary if every finitely generated left ideal is projective[10].
Befor we give our next result, we need the following

Theorem 3.6: A ring R is a left semihereditary if and only if every finitely generated projective (free) R-module is a Rickart module.

Theorem 3.7: The following statements are equivalent for a commutative ring R
(1) R is a semihereditary ring.
(2) $\bigoplus I R$ is Rickart for every finite index set I.
(3) $R \bigoplus R \bigoplus R$ is a Rickart R-module.

Proof: (1)⇒(2) Clear by Th 3.6.
(2)⇒ (3) Clear.
(3)⇒(1) Let $I = Ra + Rb$ be two generated ideal in R.
Define $f: R \bigoplus R \rightarrow Ra + Rb$ by $f(r_1, r_2) = r_1a + r_2b$. It is clear that f is an epimorphism. Let $i: Ra + Rb \rightarrow R$ be the inclusion map. Since $i \circ f: R \bigoplus R \rightarrow R$ and $R \bigoplus R \bigoplus R$ is Rickart, then $\ker(i \circ f)$ is a summand by Prop(2.6). It is clear that i is a monomorphism, therefore $\ker(i \circ f) = \ker f$ is a summand of R. Thus $Ra + Rb$ is a projective R-module. One can show that R is semihereditary[11].

We end this section by the following

Theorem 3.8: The following conditions are equivalent for a ring R
(1) R is semisimple.
(2) All R-modules are Rickart.
(3) All injective R-modules are Rickart.

Proof: (1)⇒(2)⇒(3) It is clear.
(3)⇒(1) Let M be any R-module, there is an injective R-module E_1 and a monomorphism $g_1: M \rightarrow E_1$, by [4] Likewise, there is an a monomorphism $g_2: \frac{E_1}{\text{Im} g_1} \rightarrow E_2$, for some injective R-module E_2. Let $f: E_1 \rightarrow \frac{E_1}{\text{Im} g_1}$ be the natural epimorphism. Now consider $g_2 \circ f: E_1 \rightarrow E_2$. Note that $E_1 \bigoplus E_2$ is injective and hence by assumption $E_1 \bigoplus E_2$ is Rickart, then by Prop(2.6) E_1 is E_2-Rickart. Thus $\ker g_2 \circ f$ is a summand of E_1. But g_2 is a monomorphism, then $\ker (g_2 \circ f) = \ker f = \text{Im} g_1$ is summand of E_1. Thus $\text{Im} g_1$ is injective. Since $M \cong \text{Im} g_1$. Then M is injective. Then by [4, cor(8.2.2)] R is semisimple.

References

1. Lee, G., SRiziv, S. and Roman, C.S. 2010. Rickart modules , Comm in Algebra, 38: 4005-4027.
2. Lee, G., Riziv, S.T. and Roman, C.S. 2012. Direct sum of Rickart modules , Journal of Algebra, 353: 62-78.
3. Desale, G. and Nicholson, W.K. 1981. Endoprimitive rings , J. Algebra, 70: 548-560
4. Kasch, F. 1982. Modules and Rings, Acad. press, London.
5. Hamdouni, A. and Harmanci, A. 2005. Characterization of modules and rings by the summand intersection property and the summand sum property, JP Journal of Algebra, Number Theory and applications.
6. Ghawi, Th.Y. 2010. Some Generalizations of Quasi-Dedekind Modules, M.Sc. Thesis, Collage of Education Ibn AL-Haim, University of Baghdad.
7. AL-Aubaidy, W.K. 1993. The ring of endomorphism of multiplications modules , M.SC. Thesis, University of Baghdad.
8. Naoum, A.G. 1991. A note on projective module and multiplications modules , Beitrage Zur Algebra and Geometry, 32: 27-32.
9. Wilson, G.V. 1986. Modules with the summand intersection property, Comm.Algebra. 14: 21-38.
10. Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R. 2006. Lifting modules, Frontiers in Mathematics Birkhauser.
11. Naoum, G. 1985. On finitely generated projective and flat ideals on commutative rings , Periodica Mathematica ,251-260.