State generaings for Jones and Kauffman-Jones polynomials

Liangxia Wan

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

Abstract. A state generating is introduced to determine the Jones polynomial of a link. Formulae for two infinite families of knots are shown by applying this method, the second family of which are proved to be non-alternating. Moreover, the method is generalized to compute the Jones-Kauffman polynomial of a virtual link. As examples, formulae for one infinite family of virtual knots are given.

Keywords: Link; virtual link; state generating; embedding presentation

1. Introduction

Given a diagram \(L \) of a link in \(\mathbb{R}^3 \) (or \(S^3 \)), denote a crossing by a letter, regard \(e = (u^r, v^s) \) as an edge if no any other crossings along the line between \(u^r \) and \(v^s \), then an embedding presentation \(L = (V, E) \) with a rotation \(\mathcal{P} = \sum_{u \in V} \sigma_u \) is obtained [17]. Here, \(V \) is the set of all crossings and \(E \) is the set of edges. \(\sigma_u \) is an anticlockwise rotation of edges incident with \(u \). If \(e \) is an overcrossing at \(u \), then \(r = + \) (omitted for brevity), otherwise \(r = - \). Throughout this paper a link \(L \) (or a virtual link) is always a corresponding embedding presentation, also a marked diagram (or a marked virtual diagram) unless otherwise specified. The link equivalent class \([L]\) is the corresponding link in \(\mathbb{R}^3 \) (or \(S^3 \)) and the virtual link equivalent class \([L]\) is the corresponding virtual link in \(S \times I \).

The Jones polynomial is an invariant of \([L]\) which brought on major advances in knot theory [9]. The Kauffman bracket polynomial of a link was introduced, which is a simple definition to calculate the corresponding Jones polynomial [10]. Based on the Kauffman bracket polynomial, several methods were proposed to compute Jones polynomials of links via Tutte polynomials [16] [11] and Bollobás-Riordan polynomials [1] [2] for some graphs. A spanning tree expansion of Jones polynomial was first introduced by constructing a signed graph in [16]. This method was extended in [11]. The Jones polynomial of any link equivalent class can also be calculated from the Bollobás-Riordan polynomial of the ribbon graph via a certain oriented ribbon graph [7]. In addition, a matrix for calculating the Jones polynomial of a knot equivalent class was given [18]. However, since determining the Tutte polynomial of a graph is \#P-hard, it is still tough to calculate the Jones polynomial of a link equivalent class \([L]\) [8], especially a non-alternating link \(L \) with a large crossings.

A virtual link in \(S \times I \) and its Kauffman-Jones polynomial were introduced in [12], which are the generalizations of a link in \(\mathbb{R}^3 \) (or \(S^3 \)) and its Jones polynomial. Similarly, given a virtual diagram \(L \) of a virtual link in \(S \times I \), denote a crossing by a letter, regard \(e = (u^r, v^s) \) as an edge if no any other crossings along the line between \(u^r \) and \(v^s \), then an embedding presentation \(L = (V, E) \) with a rotation

\[\mathcal{P} = \sum_{u \in V} \sigma_u \]
Thus, the Jones polynomial of \([L]\) is given below as a polynomial of a virtual link.

Correspondingly, approaches for the Jones polynomial of a link equivalent class \([L]\) were extended to compute the Kauffman-Jones polynomial of a virtual link equivalent class. Firstly, the Kauffman-Jones polynomial of a checkerboard colorable virtual link \(L\) can be computed from the signed ribbon graph polynomial of its Seifert ribbon graph \([5]\). In fact, the Jones polynomial of the Tutte polynomial can be used to compute the Kauffman-Jones polynomials of some virtual links \([4]\). Secondly, a relative variant of the other generalization of links based on their bracket polynomials and generalizes this approach to calculate the Kauffman-Jones class can be computed from the signed ribbon graph polynomial of any of their signed ribbon graphs \([3]\).

This paper introduces a new method called a state generating to calculate Jones polynomials of links based on their bracket polynomials and generalizes this approach to calculate the Kauffman-Jones polynomial of a virtual link.

\[
\mathcal{P} = \sum_{u \in \mathcal{V}} \sigma_u \text{ is obtained} \quad [17]. \quad \text{Here,} \ \mathcal{V} \text{ is the set of all crossings and} \ E \text{ is the set of edges.} \ \sigma_u \text{ is an anticyclewise rotation of edges incident with} \ u. \ \text{If} \ u \ \text{is a classical crossing, then} \ u^+ \text{ (omitted for brevity) and} \ u^- \text{ represent an overcrossing and an undercrossing at} \ u \ \text{respectively, otherwise} \ u^+ \text{ and} \ u^- \text{ represent two occurrences of} \ u. \ \text{Throughout this paper a virtual link} \ L \ \text{is always a corresponding embedding presentation, also a marked virtual diagram unless otherwise specified. The virtual link equivalent class} \ [L] \ \text{is the corresponding virtual link in} \ S \times I. \]

Correspondingly, approaches for the Jones polynomial of a link equivalent class \([L]\) were extended to compute the Kauffman-Jones polynomial of a virtual link equivalent class. Firstly, the Kauffman-Jones polynomial of a checkerboard colorable virtual link \(L\) can be calculated via the Bollobás-Riordan polynomial of the corresponding ribbon graph \([4]\). Secondly, a relative variant of the other generalization of the Tutte polynomial can be used to compute the Kauffman-Jones polynomials of some virtual links equivalent classes \([6]\). Thirdly, the Kauffman-Jones polynomial of a virtual link equivalent class was computed via the the signed ribbon graph polynomial of its Seifert ribbon graph \([5]\). In fact, the Jones polynomial of a link equivalent class and the Kauffman-Jones polynomial of a virtual link equivalent class can be computed from the signed ribbon graph polynomial of any of their signed ribbon graphs \([3]\).

This paper introduces a new method called a state generating to calculate Jones polynomials of links based on their bracket polynomials and generalizes this approach to calculate the Kauffman-Jones polynomial of a virtual link.

![Fig.0: Splitting](image)

Given a link \(L\) with \(n\) crossings for \(n \geq 2\), let \(\sigma_u = (e_1, e_2, e_3, e_4)\) be the rotation at \(u \in V(L)\) where \(e_1 = (u, x_1^1), e_2 = (u^-, x_2^2), e_3 = (u, x_3^3), e_4 = (u^-, x_4^4)\), \(r_i \in \{+, -\}\) for \(1 \leq i \leq 4\). If one replaces passes \(x_1^1 u x_3^3, x_2^2 u x_4^4\) with passes \(x_1^1 u x_4^4, x_2^2 u x_3^3\) respectively, then gets a state \(A\) at \(u\) denoted by \(s_u = A\). Otherwise, if one replaces \(x_1^1 u x_3^3, x_2^2 u x_4^4\) with \(x_1^1 u^- x_2^2, x_3^3 u^- x_4^4\) respectively, then gets a state \(A^{-1}\) at \(u\) denoted by \(s_u = A^{-1}\) (See Fig.0). By assigning one and only one state of \(A\) and \(A^{-1}\) to each \(u \in V(L)\), one obtains a state \(s\) of \(L\) and a corresponding graph called the state graph \(G(s)\) of \(s\) which consists of loops. Two states \(s\) and \(s'\) of \(L\) are distinct if and only if there exists a crossing \(u\) such that \(s_u \neq s'_u\). Set \(S_L\) to be the set of all states of \(L\). It is obvious that \(S_L\) contains \(2^n\) elements. Let \(c(s), b(s)\) and \(l(s)\) denote the number of crossings, \(A^{-1}\) and loops in a state \(s\) of \(L\) respectively. Then \(a(s) = c(s) - b(s)\) is the number of state \(A\) in \(s\). Let \(p_i(L) = \sum_{s \in S_L, l(s) = i} A^{a(s) - b(s)}\). Then the Kauffman bracket polynomial is given below

\[
< L := \sum_{i \geq 1} p_i(L)(-A^2 - A^{-2})^{i-1}. \]

Thus, the Jones polynomial of \([L]\) is deduced as follow

\[
V_L(t) = (-A)^{-\Delta(L)} < L >
\]
where $\omega(L)$ is the writhe of L and $t = A^{-4}$. Let $\rho_i(V_L(t))$ and $\rho_i(V_L(t))$ denote the highest and lowest powers of t occurring in $V_L(t)$ respectively. Then the value $br(V_L(t)) = \rho_i(V_L(t)) - \rho_i(V_L(t))$ is called the \textit{breath of $V_L(t)$}. Obviously, it is enough to calculate $p_i(L)$ and $\omega(L)$ in order to obtain $V_L(t)$.

Similarly, set L to be a virtual link and set ΓL to be a set of its classical crossings with $|\Gamma L| = n$ for $n \geq 1$. Let $\sigma_u = (e_1,e_2,e_3,e_4)$ be the rotation at $u \in V(\Gamma L)$ where $e_1 = (u,x_1^r), e_2 = (u^-,x_2^r), e_3 = (u,x_3^r), e_4 = (u^-,x_4^r)$, $r_i \in \{+, -\}$ for $1 \leq i \leq 4$. If one replaces passes $x_1^rux_4^r, x_2^rux_3^r$ respectively, then gets a state A at u denoted by $s_u = A$. Otherwise, if one replaces $x_1^ru^rux_3^r, x_2^ru^-x_4^r$ with passes $x_1^rux_3^r, x_2^ru^-x_4^r$ respectively, then gets a state A^{-1} at u denoted by $s_u = A^{-1}$ (See Fig.0). By assigning one and only one state of states A and A^{-1} to each $u \in V(\Gamma L)$, one obtains a state s of L and then gets the corresponding state graph which consists of components. Two states s and s' of L are distinct if and only if there exists a crossing $u \in V(\Gamma L)$ such that $s_u \neq s_u'$. Set S_L to be the set of all states of L. It is obvious that S_L contains 2^n elements. Let $c(s), b(s)$ and $l(s)$ denote the number of classical crossings, A^{-1} and connected components in a state s of L respectively. Then $a(s) = c(s) - b(s)$ is the number of state A in a state s. Let $p_i(L) = \sum_{s \in S_L, l(s)=i} A^{a(s)-b(s)}$. So the Kauffman-Jones polynomial $f_L(A)$ for a virtual link is given below

$$f_L(A) = (-A)^{-3\omega(L)} \sum_{i \geq 1} p_i(L)(-A^2 - A^{-2})^{i-1}$$

where $\omega(L)$ is the writhe of L.

![Fig.1: Jones polynomial of the right handed trefoil RT_0](image)

Now we introduce a state generating to calculate the Jones polynomial of a link and the Kauffman-Jones polynomial for a virtual link. In order to calculate the Jones polynomial of a link L (or a Kauffman-Jones polynomial of a virtual link L), choose a link L_1 (or a virtual link L_1) with $|V(L_1)| < |V(L)|$ (or $|V(\Gamma L_1)| < |V(\Gamma L)|$) such that each state of L is generated by some state of L_1. This method is called a state generating. If a state s_1 of L_1 generates a state of s of L, then s_1 is called the parent of s denoted by $par(s)$.

For example, in order to calculate the Jones polynomial of the right handed trefoil RT_0, we choose the unknot O shown in Fig.1. O contains two distinct states s_j whose state graphs are $(x_1)(x_1)$ and
Theorem 1 obtained for shown in Fig. 2. The Jones polynomials of RT_ω sequence for $1 \leq j \leq 4$. The state s_1 generates four distinct states $s_j(0)$ of RT_0 for $1 \leq j \leq 4$. The state s_2 generates four distinct states $s_j(0)$ of RT_0 for $5 \leq j \leq 8$ (See Fig. 1). We show their loops of state graphs of $s_j(0)$ with loop number in brackets in sequences below for $1 \leq j \leq 8$

\[
(x_1 x_3 x_2)(x_1 x_2 x_3)\{2\} \quad (x_1 x_2 x_1 x_3 x_2 x_3)\{1\} \quad (x_1 x_2 x_3 x_2 x_1 x_3)\{1\} \\
(x_1 x_2 x_1 x_3)(x_2 x_3)\{2\} \quad (x_1 x_3 x_2 x_1 x_2)\{1\} \quad (x_1 x_3 x_2 x_3)(x_1 x_2)\{2\} \\
(x_1 x_3 x_2 x_3 x_2)\{2\} \quad (x_1 x_3 x_2)(x_1 x_2 x_3)\{3\}
\]

Obviously,

\[
\begin{align*}
p_1(RT_0) &= A^2 p_1(O) + 2 p_2(O) = A + 2A = 3A, \\
p_2(RT_0) &= 2 p_1(O) + (A^2 + A^{-2}) p_2(O) = 3A^{-1} + A^3, \\
p_3(RT_0) &= A^{-2} p_1(O) = A^{-3}.
\end{align*}
\]

Then

\[
< RT_0 > = 3A + (3A^{-1} + A^3)(-A^2 - A^{-2}) + A^{-3}(-A^2 - A^{-2})^2 = A^{-7} - A^{-3} - A^5.
\]

Since $\omega(RT_0) = 3$,

\[
V_{RT_0}(t) = (-A)^{-9}(A^{-7} - A^{-3} - A^5) = A^{-4} + A^{-12} - A^{-16} = t + t^3 - t^4.
\]

Consider RT_0. Add $2n$ crossings y_i on (x_1, x_2) in sequence and add $2n$ crossings z_i on (x_1, x_3) in sequence for $1 \leq i \leq 2n$, delete edges $(x_1, x_2), (x_1, x_2), (x_1, x_3)$, and then add edges $(x_2, y_{2n}), (x_2, z_{2n}), (x_3, z_{2n}), (y_{2k}, y_{2k-1}), (y_{2k}, y_{2k-1}), (z_{2k}, z_{2k-1}), (z_{2k}, z_{2k-1}), (y_{2k}, z_{2k+1}), (z_{2k}, z_{2k+1})$ and (y_{2k}, y_{2k+1}) for $1 \leq k \leq n$ where $y_{2n+1} = x_2, y_{2n+1} = x_2$ and $z_{2n+1} = x_3$. A type of knots RT_n are obtained for $n \geq 1$, which belong to the first type of knots called 2-string alternating knots. RT_3 is shown in Fig. 2. The Jones polynomials of RT_n are obtained for $n \geq 1$.

Theorem 1.1 For $n \geq 1$

\[
V_{RT_n}(t) = \frac{t^{3n}}{\alpha - \tilde{\alpha}}(t + t^3 - t^4)(\alpha^{n+1} - \tilde{\alpha}^{n+1}) - (1 + t - t^2)(\alpha^n - \tilde{\alpha}^n)
\]

where

\[
\begin{align*}
\alpha + \tilde{\alpha} &= t^{-2} - t^{-1} + 2 - t^2; \\
\alpha \cdot \tilde{\alpha} &= 1.
\end{align*}
\]

Given a knot KV_0 in Fig. 3, delete edges (x_1, x_2), add $2n$ crossings y_i on (x_2, x_3) in sequence, $2n$ crossings z_i on (x_6, x_4) in sequence for $1 \leq i \leq 2n$, add edges $(x_2, y_1), (x_6, y_1), (x_6, z_1), (y_{2k-1}, y_{2k}), (y_{2k-1}, y_{2k+1}), (y_{2k}, z_{2k-1}), (z_{2k-1}, z_{2k}), (z_{2k-1}, z_{2k}), (z_{2k}, z_{2k+1})$ for $1 \leq k \leq n$ where $y_{2n+1} = x_3, y_{2n+1} = x_3$ and $z_{2n+1} = x_4$. Then the second type of knots KV_n are given for $n \geq 1$. KV_1 is the knot 10_{152} [13]. Each KV_n is non-alternating and its Jones polynomial is shown for $n \geq 1$.

Theorem 1.2 KV_n are non-alternating knots for $n \geq 1$.

Theorem 1.3 For \(n \geq 1 \),

\[V_{KV_n}(A) = A^{(12n+18)} \sum_{i=1}^{3} g_i(n) \]

where

\[g_1(n) = (A^4 + 1 + A^{-4}) A^{-4n-6} + \sum_{i=0}^{n-1} A^{-4i} ((\alpha_n^{-i} - \bar{\alpha}_1^{-n-i}) - (2A^4 - A^{-4})(\alpha_1^{-n-1-i} - \bar{\alpha}_1^{-n-1-i})) \]

\[+ \ (A^{-2} - 2A^{-6} + A^{-10}) \sum_{i=0}^{n-1} A^{-4i} (\alpha_1^{-n-1-i} - \bar{\alpha}_1^{-n-1-i}) \]

\[+ \ (A^{-6} - A^{-10}) \sum_{j=0}^{n-1} A^{-4j} (1 + A^{8n-8j-4}) + \frac{A^2 - 2A^{-2} + A^{-6}}{1 - A^8} \sum_{j=0}^{n} A^{-4j} (1 - A^{8n-8j}), \]

\[g_2(n) = \frac{A^2 - A^{-2} + A^{-6}}{A^4 + 1} (1 - A^{8n}) + \frac{A^6 + A^{-6}}{A^4 + 1} (A^{8n+4} - 1), \]

\[g_3(n) = \frac{(A^2 + A^{-2})(A^4 - 1 + A^{-4})}{\alpha_2 - \bar{\alpha}_2} ((1 - A^{12} + A^6 - A^2)(\alpha_2^{n+1} - \bar{\alpha}_2^{n+1}) \]

\[+ (A^{12} - A^8 + A^4 - A^2)(\alpha_2^n - \bar{\alpha}_2^n)), \]

\[\left\{ \begin{array}{l}
\alpha + \bar{\alpha} = A^8 + 2A^4 + 1 - 2A^{-4}; \\
\alpha \cdot \bar{\alpha} = A^{12} + 2A^{8} - 2 - A^{-4} + A^{-8},
\end{array} \right. \]

\[\left\{ \begin{array}{l}
\alpha + \bar{\alpha} = A^8 + 4 - 1 - A^{-4}; \\
\alpha \cdot \bar{\alpha} = A^{12} - 2A^4 - 2A^{-4} - 2A^{-8}.
\end{array} \right. \]

Let \(x_1 \) be a virtual crossing in \(RT_n \) for \(n \geq 0 \). Then a type of virtual knots \(RT'_n \) are obtained. Their Kauffman-Jones polynomials are as follows for \(n \geq 1 \).

Theorem 1.4 For \(n \geq 1 \)

\[f_{RT'_n}(A) = \frac{A^{-12n}}{\alpha - \bar{\alpha}} ((2A^{-4} - A^{-10})(\alpha^{n+1} - \bar{\alpha}^{n+1}) - (1 - A^{-2} + A^{-6} + A^{-8} - A^{-10})(\alpha^n - \bar{\alpha}^n)) \]

where

\[\left\{ \begin{array}{l}
\alpha + \bar{\alpha} = A^8 - 4 + 2 - A^{-4} + A^{-8}; \\
\alpha \cdot \bar{\alpha} = 1.
\end{array} \right. \]

This paper is organized as follows. In Section 2, we use the state generating method introduced in Section 1 to study the properties of \(RT_n \), and then prove Theorem 1.1 for \(n \geq 1 \). In Section 3, we prove Theorems 1.2 and 1.3. In Section 4 we prove Theorem 1.4 by applying the state generating method for an infinite family of virtual links \(RT'_n \) for \(n \geq 1 \). Finally some open problems are given in Section 5.

2. Jones polynomials of \(RT_n \)

In this section, we divide the set \(S(RT_n) \) of all of states for \(RT_n \) into four set \(S_j(n) \) for \(j \in \{I, II, III, IV\} \) for \(n \geq 1 \). We study the recursive formulae for \(S_j(n) \) and then prove Theorem 1.1.
RT₀ has eight distinct states $s_j(0)$ shown in Fig.1 for $1 \leq j \leq 8$. Each state $s(0)$ of RT₀ generates sixteen distinct states of RT₁ according to distinct states of y_i and z_i for $1 \leq i \leq 2$. Generally, each state $s(n-1)$ of RTₙ₋₁ generates sixteen distinct states of RTₙ for $n \geq 1$ according to distinct states of y_i and z_i for $2n-1 \leq i \leq 2n$. Let $S(\text{RT}_n)$ denote the set of all of distinct states of RTₙ for $n \geq 0$ and set

$$S_I(n) = \{ s \in S(\text{RT}_n), s_{x_2} = s_{x_3} = A \mid \exists 1 \leq k \leq n \text{ such that } s_{y_2k-1}, s_{y_2k} \neq A^2, s_{y_i} = A, s_{z_{2k-1}} = s_{z_k} = A^- \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_1} = s_{z_i} = A^-, s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}$$

$$S_{II}(n) = \{ s \in S(\text{RT}_n), s_{x_2} = s_{x_3} = A \mid \exists 1 \leq k \leq n \text{ such that } s_{z_{2k-1}}, s_{z_{2k}} \neq A^2, s_{y_i} = A, s_{z_i} = A^- \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_1} = s_{z_i} = A^-, s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}$$

$$S_{III}(n) = \{ s \in S(\text{RT}_n), s_{z_{2k-1}} \cdot s_{z_{2k}} \neq A^2 \mid \exists 1 \leq k \leq n \text{ such that } s_{y_2k-1}, s_{y_2k} \neq A^2, s_{y_i} = A, s_{z_{2k-1}} = s_{z_k} = A^- \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_1} = s_{z_i} = A^-, s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}$$

$$S_{IV}(n) = \{ s \in S(\text{RT}_n), s_{x_2} \cdot s_{x_3} \neq A^2 \mid \exists 1 \leq k \leq n \text{ such that } s_{z_{2k-1}}, s_{z_{2k}} \neq A^2, s_{y_i} = A, s_{z_i} = A^- \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_1} = s_{z_i} = A^-, s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}$$

Obviously, there exists one and only one $j \in \{I, II, III, IV\}$ such that $s \in S_J(n)$ for each $s \in S(\text{RT}_n)$. Given $s(n-1) \in S(\text{RT}_{n-1})$, it generates sixteen distinct states $s_j(n)$ of $S(\text{RT}_n)$ as follows for $1 \leq j \leq 16$:

- $s_1(n)$ with $s_{y_{2n-1}} = s_{y_{2n}} = s_{z_{2n-1}} = s_{z_{2n}} = A$
- $s_2(n)$ with $s_{y_{2n-1}} = A^- \text{ and } s_{y_{2n}} = s_{z_{2n-1}} = s_{z_{2n}} = A$
- $s_3(n)$ with $s_{y_{2n}} = A^- \text{ and } s_{y_{2n-1}} = s_{z_{2n-1}} = s_{z_{2n}} = A$
- $s_4(n)$ with $s_{z_{2n-1}} = A^- \text{ and } s_{y_{2n-1}} = s_{y_{2n}} = s_{z_{2n}} = A$
- $s_5(n)$ with $s_{z_{2n}} = A^- \text{ and } s_{y_{2n-1}} = s_{y_{2n}} = s_{z_{2n-1}} = A$
- $s_6(n)$ with $s_{y_{2n-1}} = s_{y_{2n}} = A^- \text{ and } s_{z_{2n-1}} = s_{z_{2n}} = A$
- $s_7(n)$ with $s_{z_{2n-1}} = s_{z_{2n}} = A^- \text{ and } s_{y_{2n}} = s_{z_{2n}} = A$
- $s_8(n)$ with $s_{y_{2n-1}} = s_{z_{2n-1}} = A^- \text{ and } s_{y_{2n}} = s_{z_{2n}} = A$
- $s_9(n)$ with $s_{y_{2n}} = s_{z_{2n-1}} = A^- \text{ and } s_{y_{2n}} = s_{z_{2n}} = A$
- $s_{10}(n)$ with $s_{y_{2n}} = s_{z_{2n-1}} = A^- \text{ and } s_{y_{2n}} = s_{z_{2n}} = A$
- $s_{11}(n)$ with $s_{z_{2n-1}} = s_{z_{2n}} = A^- \text{ and } s_{y_{2n}} = s_{z_{2n}} = A$
- $s_{12}(n)$ with $s_{y_{2n-1}} = s_{y_{2n}} = s_{z_{2n-1}} = A^- \text{ and } s_{z_{2n}} = A$
Moreover, the state graph of \(s \leq 14 \) and \(s \leq 13 \) are states of \(j \) and \(y \) with loop number in brackets in sequence for \(1 \leq j \leq 16 \) and \(1 \leq i \leq 2n \) in \(s_{11}(n) \).

Because \(s_{22n-1} = s_{22n} = A^- \) and \(s_{y2n-1} \neq A^2 \) at \(s_j(n) \) for \(14 \leq j \leq 16 \),

\[s_j(n) \in S_{11} \]

Moreover, the state graph of \(s_j(n) \) has loops with loop number in brackets in sequence for \(1 \leq j \leq 14 \) and \(1 \leq i \leq 2n \):

\[
\begin{align*}
(x_1^2 x_3 x_2 y_2 y_{2n-1} y_{2n-2} A z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} z_{2n-2} B)C\{i\} \\
(y_{2n-1} y_{2n-2} A z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} B)C\{i+1\} \\
(y_{2n-1} z_{2n-2} A z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} z_{2n-2} B)C\{i+2\}
\end{align*}
\]

Thus the result is clear.

(2) Because \(s_{22n-1} \cdot s_{22n} \neq A^2 \) for \(1 \leq j \leq 10 \) and \(1 \leq i \leq 13 \),

\[s_j(n) \in S_{11} \]

Moreover, the state graph of \(s_j(n) \) has loops with loop number in brackets in sequence for \(1 \leq j \leq 12 \) and \(1 \leq i \leq 13 \):

\[
\begin{align*}
(z_{2n-1} z_{2n} y_{2n} x_{2n} x_{2n-1} z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} z_{2n-2} B)C\{i+2\} \\
(z_{2n-1} z_{2n-1} y_{2n-1} y_{2n-2} A z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} B)C\{i+3\} \\
(z_{2n-1} z_{2n-2} z_{2n-2} y_{2n-2} A z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} z_{2n-2} B)C\{i+1\} \\
(z_{2n-1} z_{2n-2} z_{2n-2} y_{2n-2} A z_{2n-2} y_{2n-1} z_{2n-1} z_{2n-2} z_{2n-2} B)C\{i+1\}
\end{align*}
\]
Moreover, the state graph of each \(s_j \) have i - 1 loops for 14 ≤ j ≤ 15 and the state graph of \(s_{16} \) has i loops.

(2) Otherwise \(s_j \) ∈ \(S_{II} \). Moreover, the state graph of each \(s_j \) has i loops for 7 ≤ j ≤ 11, the state graph of each \(s_j \) has i + 1 loops for each 2 ≤ j ≤ 5 and 12 ≤ j ≤ 13 and the state graph of \(s_j \) has i + 2 loops for j = 1, 6.

Proof. Set \(s(n - 1) \) ∈ \(S_{II}(n - 1) \). Without loss of generality, suppose that there exists some 1 ≤ k ≤ n - 1 such that \(s_{2k} = s_{yi} = A \), \(s_{2i} = A^{-} \) for 2k + 1 ≤ l ≤ 2n - 2. Other cases are left to readers to verify.

Assume that the state graph of \(s(n - 1) \) has the loops \((x_{1}x_{2}x_{y_{2n-2}}A)\{(z_{2n-2}x_{y_{2n-2}})B\}C(1)\) where \(A \) and \(B \) are linear sequences, \(C \) is the product of \(i - 2 \) loops and \(\epsilon \) ∈ \{ +, -, \}. (1) Because there exists a \(n \) such that \(s_{2n-1} = A^{-}, s_{2n-1} \neq A^{2} \) for 14 ≤ j ≤ 16, \(s_j(n) \) ∈ \(S_{I}(n) \).

Moreover, the state graph of \(s_j(n) \) has loops with loop number in brackets in sequence below for 14 ≤ j ≤ 16:

\[
\begin{align*}
&\{(z_{2n-2}x_{y_{2n-2}})B\}C(i - 1) \\
&\{(z_{2n-2}x_{y_{2n-2}})B\}C(i - 1) \\
&\{y_{2n-1}x_{y_{2n-2}}B\}C(i - 1) \\
&\{y_{2n-1}x_{y_{2n-2}}B\}C(i - 1)
\end{align*}
\]

(2) Because \(s_{2n-1} \neq A^{-} \) for 1 ≤ j ≤ 13 and \(j \neq 11\), \(s_j(n) \) ∈ \(S_{II}(n) \).

Because there exists a \(k \) such that \(s_{2k} = s_{yi} = A \) and that \(s_{2i} = A^{-} \) for 2k + 1 ≤ l ≤ 2n in \(s_{11}(n) \),

\(s_{11}(n) \) ∈ \(S_{II}(n) \).

Moreover, \(s_j(n) \) has loops with loop number in brackets in sequence below for 1 ≤ j ≤ 13:

\[
\begin{align*}
&(z_{2n-2}x_{y_{2n-2}})B\}C(i + 1) \\
&(z_{2n-2}x_{y_{2n-2}})B\}C(i + 1) \\
&(z_{2n-2}x_{y_{2n-2}})B\}C(i + 1)
\end{align*}
\]

Lemma 2.2 Let \(s(n - 1) \) ∈ \(S_{II}(n - 1) \) and its state graph with loops i for \(n \) ≥ 1 and \(i \) ≥ 2. Suppose that \(s_j(n) \) are states of \(RT_n \) above and that \(|s_j(n)| = s(n - 1) \) for 1 ≤ j ≤ 16.

(1) If 14 ≤ j ≤ 16, then \(s_j(n) \) ∈ \(S_{I}(n) \). Moreover, the state graph of \(s_{11}(n) \) has i loops, the state graph of each \(s_j \) have i - 1 loops for 14 ≤ j ≤ 15 and the state graph of \(s_{16}(n) \) has i loops.

(2) Otherwise \(s_j \) ∈ \(S_{II} \). Moreover, the state graph of each \(s_j \) has i loops for 7 ≤ j ≤ 11, the state graph of each \(s_j \) has i + 1 loops for each 2 ≤ j ≤ 5 and 12 ≤ j ≤ 13 and the state graph of \(s_j \) has i + 2 loops for j = 1, 6.
Lemma 2.3 Let $s(n - 1) \in S_{III}(n - 1)$ and let its state graph i loops for $n \geq 1$ and $i \geq 2$. Suppose that $s_j(n)$ are states of RT_n above and that $par(s_j(n)) = s(n - 1)$ for $1 \leq j \leq 16$.

1. If $j = 11$ and $14 \leq j \leq 16$, then $s_j \in S_{III}(n)$. Moreover, the state graph of $s_{11}(n)$ has i loops, the state graph of each $s_j(n)$ have $i + 1$ loops for $14 \leq j \leq 15$ and the state graph of $s_{16}(n)$ has $i + 2$ loops.

2. Otherwise $s_j(n) \in S_{IV}(n)$. Moreover, the state graph of each $s_j(n)$ has $i - 1$ loops for $4 \leq j \leq 5$, the state graph of each $s_j(n)$ has i loops for $j = 1$ and $7 \leq j \leq 10$, the state graph of each $s_j(n)$ has $i + 1$ loops for $2 \leq j \leq 3$ and $12 \leq j \leq 13$ and the state graph of $s_6(n)$ has $i + 2$ loops.

Lemma 2.4 Let $s(n - 1) \in S_{IV}(n - 1)$ with loops i for $n, i \geq 1$. Suppose that $s_j(n)$ are states of RT_n above and that $par(s_j(n)) = s(n - 1)$ for $1 \leq j \leq 16$.

1. If $14 \leq j \leq 16$, then $s_j(n) \in S_{III}(n)$. Moreover, the state graph of each $s_j(n)$ has $i + 1$ loops for $14 \leq j \leq 15$ and the state graph of $s_{16}(n)$ has $i + 2$ loops.

2. Otherwise $s_j(n) \in S_{IV}(n)$. Moreover, the state graph of each $s_j(n)$ has i loops for $7 \leq j \leq 11$, the state graph of each $s_j(n)$ has $i + 1$ loops for $2 \leq j \leq 5$ and $12 \leq j \leq 13$ and the state graph of $s_j(n)$ has $i + 2$ loops for $j = 1, 6$.

Recursive relations are given below.

Lemma 2.5 Let $p_{1, I}(RT_0) = A$, $p_{2, II}(RT_0) = A^3$, $p_{2, III}(RT_0) = 2A^2$, $p_{1, III}(RT_0) = A^{-3}$, $p_{1, IV}(RT_0) = 2A$ and $p_{2, IV}(RT_0) = A^{-1}$. Set $p_{1, I}(RT_n) = \sum_{s \in S_I(RT_n), l(s) = i} A^{u(s) - b(s)}$, $p_{1, II}(RT_n) = \sum_{s \in S_{II}(RT_n), l(s) = i} A^{u(s) - b(s)}$.

9
\[p_{i,III}(RT_n) = \sum_{s \in S_{III}(RT_n), l(s) = i} A^{a(s)-b(s)}, \quad p_{i,IV}(RT_n) = \sum_{s \in S_{IV}(RT_n), l(s) = i} A^{a(s)-b(s)}. \] Then for \(n \geq 1 \)

\[
\begin{align*}
 p_{i,1}(RT_n) &= p_{i,1}(RT_{n-1}) + 2A^{-2}p_{i-1,1}(RT_{n-1}) + A^{-4}p_{i-2,1}(RT_{n-1}) \\
 &\quad + 2A^{-2}p_{i+1,1}(RT_{n-1}) + A^{-4}p_{i,II}(RT_{n-1}); \\
 p_{i,II}(RT_n) &= 2A^2p_{i-1,1}(RT_{n-1}) + (A^4 + 4)p_{i,III}(RT_{n-1}) \\
 &\quad + 2(A^2 + 2A^{-2})p_{i-3,1}(RT_{n-1}) + p_{i-4,1}(RT_{n-1}) + 5p_{i,II}(RT_{n-1}) \\
 &\quad + (4A^2 + 2A^{-2})p_{i-1,II}(RT_{n-1}) + (A^4 + 1)p_{i-2,II}(RT_{n-1}); \\
 p_{i,III}(RT_n) &= p_{i,III}(RT_{n-1}) + 2A^{-2}p_{i-1,III}(RT_{n-1}) + A^{-4}p_{i-2,III}(RT_{n-1}) \\
 &\quad + 2A^{-2}p_{i-1,IV}(RT_{n-1}) + A^{-4}p_{i-2,IV}(RT_{n-1}); \\
 p_{i,IV}(RT_n) &= 2A^2p_{i+1,III}(RT_{n-1}) + (A^4 + 4)p_{i,IV}(RT_{n-1}) \\
 &\quad + (2A^2 + 2A^{-2})p_{i-1,III}(RT_{n-1}) + p_{i-2,III}(RT_{n-1}) + 5p_{i,IV}(RT_{n-1}) \\
 &\quad + (4A^2 + 2A^{-2})p_{i-1,IV}(RT_{n-1}) + (A^4 + 1)p_{i-2,IV}(RT_{n-1}).
\end{align*}
\]

Proof. Based on Lemmas 2.1 and 2.2, for \(n \geq 1 \),

Similarly, the following result is clear from Lemmas 2.3 and 2.4.

\[
\begin{align*}
 p_{i,III}(RT_n) &= p_{i,III}(RT_{n-1}) + 2A^{-2}p_{i-1,III}(RT_{n-1}) + A^{-4}p_{i-2,III}(RT_{n-1}) \\
 &\quad + 2A^{-2}p_{i-1,IV}(RT_{n-1}) + A^{-4}p_{i-2,IV}(RT_{n-1}); \\
 p_{i,IV}(RT_n) &= 2A^2p_{i+1,III}(RT_{n-1}) + (A^4 + 4)p_{i,IV}(RT_{n-1}) + 2(A^2 + 2A^{-2})p_{i-1,III}(RT_{n-1}) \\
 &\quad + p_{i-2,III}(RT_{n-1}) + 5p_{i,IV}(RT_{n-1}) + (4A^2 + 2A^{-2})p_{i-1,IV}(RT_{n-1}) \\
 &\quad + (A^4 + 1)p_{i-2,IV}(RT_{n-1}).
\end{align*}
\]

Proof of Theorem 1.1. Set

\[
F_1(x, y) = \sum_{i \geq 1, n \geq 0} p_{i,1}(RT_n)x^{i-1}y^n, \quad F_2(x, y) = \sum_{i \geq 1, n \geq 0} p_{i,II}(RT_n)x^{i-1}y^n, \quad F_3(x, y) = \sum_{i \geq 1, n \geq 0} p_{i,III}(RT_n)x^{i-1}y^n, \quad F_4(x, y) = \sum_{i \geq 1, n \geq 0} p_{i,IV}(RT_n)x^{i-1}y^n.
\]

Let \(f_1(x) = \sum_{i \geq 1} p_{i,1}(RT_n)x^{i-1} \), let \(f_2(x) = \sum_{i \geq 1} p_{i,II}(RT_n)x^{i-1} \), let \(f_3(x) = \sum_{i \geq 1} p_{i,III}(RT_n)x^{i-1} \) and let \(f_4(x) = \sum_{i \geq 1} p_{i,IV}(RT_n)x^{i-1} \). It fol-
lows from equations (1-2) that

\[
\begin{aligned}
\sum_{i \geq 1, n \geq 1} p_{1, i}(R T_n) x^i y^n &= \sum_{i \geq 1, n \geq 1} p_{1, i}(R T_{n - 1}) x^i y^n + 2 A^{-2} \sum_{i \geq 1, n \geq 1} p_{i - 1, i}(R T_{n - 1}) x^i y^n \\
&+ A^{-4} \sum_{i \geq 1, n \geq 1} p_{i - 1, i}(R T_{n - 1}) x^i y^n + 2 A^{-2} \sum_{i \geq 1, n \geq 1} p_{i + 1, i}(R T_{n - 1}) x^i y^n \\
&+ A^{-4} \sum_{i \geq 1, n \geq 1} p_{1, i}(R T_{n - 1}) x^i y^n;
\end{aligned}
\]

(5)

Since \(p_{1, 1}(R T_0) = A \) and \(p_{2, i1}(R T_0) = A^3 \), the set (5) of equations is reduced to the following set of equations

\[
\begin{aligned}
(x y + 2 A^{-2} x^2 y + A^{-4} x^3 y - x) F_1(x, y) + (2 A^{-2} y + A^{-4} x y) F_2(x, y) &= -A x; \\
(2 A^2 x y + (A^4 + 4) x^2 y + (2 A^2 + 2 A^{-2}) x^3 y + x^4 y) F_1(x, y) + ((5 y + 4 A^2 + 2 A^{-2}) x y + (A^4 + 1) x^2 y - 1) F_2(x, y) &= -A^3 x.
\end{aligned}
\]

Let

\[
D = \begin{vmatrix}
xy + 2 A^{-2} x^2 y + A^{-4} x^3 y - x & 2 A^{-2} y + A^{-4} x y \\
2 A^2 x y + (A^4 + 4) x^2 y + (2 A^2 + 2 A^{-2}) x^3 y + x^4 y & (5 y + 4 A^2 + 2 A^{-2}) x y + (A^4 + 1) x^2 y - 1
\end{vmatrix}
= -x + (6 x - 5 x^3 + x^5) y - x y^2.
\]

Then,

\[
F_1(x, y) = \frac{1}{D} \begin{vmatrix}
-A x & 2 A^{-2} y + A^{-4} x y \\
-A^3 x & (5 y + 4 A^2 + 2 A^{-2}) x y + (A^4 + 1) x^2 y - 1
\end{vmatrix} = \frac{A(1 - 3 y - A^{-2} x y - 4 A^2 x y - (A^4 + 1) x^2 y)}{1 - (6 - 5 x^2 + x^4) y + y^2}
\]

and

\[
F_2(x, y) = \frac{1}{D} \begin{vmatrix}
xy + 2 A^{-2} x^2 y + A^{-4} x^3 y - x & -A x \\
2 A^2 x y + (A^4 + 4) x^2 y + (2 A^2 + 2 A^{-2}) x^3 y + x^4 y & -A^3 x
\end{vmatrix} = \frac{A^2 x + A^2 x y + (A^4 + 2) x^2 y + (2 A^2 + A^{-2} x^3) y + x^4 y}{1 - (6 - 5 x^2 + x^4) y + y^2}
\]

Suppose that \(1 + (6 - 5 x^2 + x^4) y + y^2 = (1 - \alpha y)(1 - \alpha y) \) where

\[
\begin{aligned}
\alpha + \bar{\alpha} &= 6 - 5 x^2 + x^4; \\
\alpha \cdot \bar{\alpha} &= 1.
\end{aligned}
\]

The following equalities can be obtained

\[
F_1(x, y) = \frac{A(1 + (-3 - A^{-2} x - 4 A^2 x - (A^4 + 1) x^2) y)}{(1 - \alpha y)(1 - \alpha y)}
\]

\section*{11}
Thus, for

\[n \geq 0 \]

where

\[n \]

and combining with the equalities (6-9), we conclude the following results for

\[f \]

Since

\[RT \]

contains 4 crossings and

\[\omega(v) = 1 \]

for each

\[v \in V(RT) \]

by setting

\[x = -A^2 - A^{-2} \]

and combining with the equalities (6-9), we conclude the following results for

\[n \geq 1 \]

Thus, for

\[n \geq 1 \]

\[f_1(x) = \frac{A}{\alpha - \bar{\alpha}}((\alpha^{n+1} - \bar{\alpha}^{n+1}) + (3 + A^{-2} - A^{-2}x + (A^4 + 1)x^2)(\alpha^n - \bar{\alpha}^n)) \] (6)

and

\[f_2(x) = \frac{A^3x}{\alpha - \bar{\alpha}}((\alpha^{n+1} - \bar{\alpha}^{n+1}) + (1 + (A^2 + 2A^{-2})x + (2 + A^{-4})x^2 + A^{-2}x^3)(\alpha^n - \bar{\alpha}^n)) \] (7)

By a similar way, the following equalities can be concluded for

\[n \geq 1 \]

\[f_3(x) = \frac{2A^{-3}x + A^{-3}x^2}{\alpha - \bar{\alpha}}((\alpha^{n+1} - \bar{\alpha}^{n+1}) - (3 + (4A^2 + A^{-2})x + (A^4 + 1)x^2)(\alpha^n - \bar{\alpha}^n)) \] (8)

and

\[f_4(x) = \frac{2A + A^{-3}x}{\alpha - \bar{\alpha}}((\alpha^{n+1} - \bar{\alpha}^{n+1}) + (1 + (A^2 + 2A^{-2})x + (2 + A^{-4})x^2 + A^{-2}x^3)(\alpha^n - \bar{\alpha}^n)) \] (9)

Since

\[RT \]

contains 4n + 3 crossings and

\[\omega(v) = 1 \]

for each

\[v \in V(RT) \]

by setting

\[x = -A^2 - A^{-2} \]

and combining with the equalities (6-9), we conclude the following results for

\[n \geq 1 \]

\[V_{RT_n}(t) = (-A)^{-12n+9} \sum_{j=1}^{4} f_j(x) \]

\[= \frac{A^{-12n}}{\alpha - \bar{\alpha}}((A^{-4} + A^{-12} - A^{-16})(\alpha^{n+1} - \bar{\alpha}^{n+1}) - (1 + A^{-4} - A^{-8})(\alpha^n - \bar{\alpha}^n)) \]

\[= \frac{t^{12n}}{\alpha - \bar{\alpha}}((t + t^3 - t^4)(\alpha^{n+1} - \bar{\alpha}^{n+1}) - (1 + t - t^2)(\alpha^n - \bar{\alpha}^n)) \]

where

\[\begin{aligned}
\alpha + \bar{\alpha} &= t^{-2} - t^{-1} + 2 - t + t^2; \\
\alpha \cdot \bar{\alpha} &= 1.
\end{aligned} \]

\[\square \]

3. Jones polynomials of \(KV_n \)
In this section, for each KV_n with $n \geq 1$, we divide the set $S(KV_n)$ of all of its states into $S^{(i)}(n)$ for $1 \leq j \leq 3$ and obtain some recursive relations. Based on these relations, KV_n is proved to be non-alternating and Theorem 1.2 is concluded.

Let $S(KV_n)$ be the set of all of states of KV_n. Denote three sets below

$$S^{(1)}(n) = \{ s \in S(KV_n) | s_{x_i} = A^- \text{ for } 1 \leq i \leq 6 \}$$

$$S^{(2)}(n) = \{ s \in S(KV_n) | s_{x_i} = A^- \text{ for } 1 \leq i \leq 3, \text{ and } \prod_{i=4}^{6} s_{x_i} = A^3, \prod_{i=4}^{6} s_{x_i} = A \text{ or } \prod_{i=4}^{6} s_{x_i} = A^- \}$$

$$S^{(3)}(n) = S(KV_n) \setminus \bigcup_{i=1}^{2} S^{(i)}(n).$$

Set $p_i^{(j)}(n) = \sum_{s \in S^{(i)}(n), l(s) = i} A^{a(s) - b(s)}$ for $1 \leq j \leq 3$ and $i \geq 1$. Obviously,

$$p_i(KV_n) = \sum_{i=1}^{3} p_i^{(j)}(n).$$

Case 1. $s \in S^{(1)}(n)$.

Set

$$S_{II}^{(1)}(n) = \{ s | s_{y_l} = s_{z_i} = A^- \text{ for } 1 \leq i \leq 2n \},$$

$$S_{III}^{(1)}(n) = \{ s | \exists l \leq k_0 \leq k_1 \leq n \text{ such that } s_{z_{2k_1-1}} \cdot s_{z_{2k_0}} \neq A^{-2}, s_{z_{2k_1-1}} \cdot s_{z_{2k_1}} \neq A^{-2},$$

$$s_{y_{2k_0-1}} = s_{y_{2k_0}} = s_{y_l} = s_{z_l} = A^{-}, \text{ for } 1 \leq l \leq 2k_0 - 2 \text{ and } 2k_1 + 1 \leq l \leq 2n \},$$

$$S_{IV}^{(1)}(n) = \{ s | \exists l \leq k_0 \leq k_1 - 1 \leq n \text{ such that } s_{z_{2k_1-1}} \cdot s_{z_{2k_0}} \neq A^{-2}, s_{y_{2k_1-1}} \cdot s_{y_{2k_1}} \neq A^{-2},$$

$$s_{z_{2k_1-1}} = s_{z_{2k_1}} = s_{y_{2k_0-1}} = s_{y_{2k_0}} = s_{y_l} = s_{z_l} = A^{-}, \text{ for } 1 \leq l \leq 2k_0 - 2 \text{ and } 2k_1 + 1 \leq l \leq 2n \},$$

$$S_{V}^{(1)}(n) = \{ s | \exists l \leq k_0 \leq k_1 \leq n \text{ such that } s_{y_{2k_0-1}} \cdot s_{y_{2k_0}} \neq A^{-2}, s_{z_{2k_1-1}} \cdot s_{z_{2k_1}} \neq A^{-2},$$

$$s_{y_l} = s_{z_l} = A^{-}, \text{ for } 1 \leq l \leq 2k_0 - 2 \text{ and } 2k_1 + 1 \leq l \leq 2n \}. $$

By a similar way in the argument of the proof in Lemma 2.5, the following recursive relations are shown.
Lemma 3.1 Let \(p_{3,1}^{(1)}(0) = A^{-6} \). Set \(p_{I,1}^{(1)}(n) = \sum_{s \in S_1^{(1)}, l(s) = i} A^{a(s) - b(s)}, \)
\(p_{I,II}^{(1)}(n) = \sum_{s \in S_{II}^{(1)}, l(s) = i} A^{a(s) - b(s)}, \)
\(p_{I,III}^{(1)}(n) = \sum_{s \in S_{III}^{(1)}, l(s) = i} A^{a(s) - b(s)}, \)
\(p_{I,IV}^{(1)}(n) = \sum_{s \in S_{IV}^{(1)}, l(s) = i} A^{a(s) - b(s)}, \) and \(p_{I,V}^{(1)}(n) = \sum_{s \in S_{V}^{(1)}, l(s) = i} A^{a(s) - b(s)}. \)
Then
\[
\begin{align*}
p_{I}^{(1)}(n) &= p_{I,1}^{(1)}(n) + p_{I,II}^{(1)}(n) + p_{I,III}^{(1)}(n) + p_{I,IV}^{(1)}(n) + p_{I,V}^{(1)}(n)
\end{align*}
\]
where
\[
\begin{align*}
p_{I,1}^{(1)}(n) &= A^{-4} p_{I,1}^{(1)}(n - 1); \\
p_{I,II}^{(1)}(n) &= 2A^{-2} p_{I+1,II}^{(1)}(n - 1) + p_{I,II}^{(1)}(n - 1) \\
&\quad + (A^4 + 4)p_{I+1,II}^{(1)}(n - 1) + (4A^2 + 2A^{-2})p_{I-1,II}^{(1)}(n - 1) + (A^4 + 1)p_{I-2,II}^{(1)}(n - 1) \\
&\quad + 2A^{-2} p_{I-1,IV}^{(1)}(n - 1) + 5p_{I-2,IV}^{(1)}(n - 1) \\
&\quad + 4A^2 p_{I-3,IV}^{(1)}(n - 1) + A^4 p_{I-4,IV}^{(1)}(n - 1); \\
p_{I,III}^{(1)}(n) &= 2A^{-2} p_{I+1,III}^{(1)}(n - 1) + p_{I,III}^{(1)}(n - 1) + A^{-4} p_{I+1,III}^{(1)}(n - 1) \\
&\quad + 2A^{-2} p_{I-1,III}^{(1)}(n - 1) + p_{I-2,III}^{(1)}(n - 1) \\
&\quad + 2A^{-2} p_{I-1,IV}^{(1)}(n - 1) + p_{I-2,IV}^{(1)}(n - 1); \\
p_{I,IV}^{(1)}(n) &= 2A^{-2} p_{I+1,IV}^{(1)}(n - 1) + p_{I,IV}^{(1)}(n - 1) \\
&\quad + A^4 p_{I-1,IV}^{(1)}(n - 1) + 2A^2 p_{I-1,IV}^{(1)}(n - 1) + p_{I-2,IV}^{(1)}(n - 1); \\
p_{I,V}^{(1)}(n) &= 4p_{I+2,IV}^{(1)}(n - 1) + 4A^2 p_{I+1,IV}^{(1)}(n - 1) + A^4 p_{I-1,IV}^{(1)}(n - 1) + 2A^{-2} p_{I+1,III}^{(1)}(n - 1) \\
&\quad + 5p_{I-1,IV}^{(1)}(n - 1) + 4A^2 p_{I-1,III}^{(1)}(n - 1) + A^4 p_{I-2,III}^{(1)}(n - 1) + (4 + A^{-2}) p_{I-2,IV}^{(1)}(n - 1) \\
&\quad + (4A^2 + 2A^{-2}) p_{I-1,IV}^{(1)}(n - 1) + (A^4 + 1) p_{I-2,IV}^{(1)}(n - 1).
\end{align*}
\]

Case 2. \(s \in S^{(2)}(n) \).

Let
\[
S_1^{(2)}(n) = \{ s | \exists 1 \leq k \leq n \text{ such that } s_{2k+1} \cdot s_{2k} \neq A^{-2}, s_{2k-1} = s_{2k} = s_{2i} = s_{2i-1} = A^-, \text{ for } 2k + 1 \leq l \leq 2n \},
\]
\[
S_{II}^{(2)}(n) = \{ s | \text{ either } s_{yi} = s_{zi} = A^- \text{ or } \exists 1 \leq k \leq n \text{ such that } s_{2k-1} \cdot s_{2k} \neq A^{-2}, \text{ for } 1 \leq i \leq 2n, 2k + 1 \leq l \leq 2n \}.
\]

Lemma 3.2 Set \(p_{2,II}^{(2)}(0) = 3A^{-4}, p_{3,III}^{(2)}(0) = 3A^{-2}, p_{4,II}^{(2)}(0) = 1 \). Set \(p_{I,1}^{(2)}(n) = \sum_{s \in S_{I,1}^{(2)}, l(s) = i} A^{a(s) - b(s)}, \)
\(p_{I,II}^{(2)}(n) = \sum_{s \in S_{II,1}^{(2)}, l(s) = i} A^{a(s) - b(s)}, \) and \(p_{I,IV}^{(2)}(n) = \sum_{s \in S_{IV,1}^{(2)}, l(s) = i} A^{a(s) - b(s)}. \) Then
\[
\begin{align*}
p_{I}^{(2)}(n) &= p_{I,1}^{(2)}(n) + p_{I,II}^{(2)}(n)
\end{align*}
\]
where
\[
\begin{align*}
p_{I,1}^{(2)}(n) &= A^{-4} p_{I,1}^{(2)}(n - 1) + 2A^{-2} p_{I-1,1}^{(2)}(n - 1) + p_{I-2,1}^{(2)}(n - 1) \\
&\quad + 2A^{-2} p_{I+1,II}^{(2)}(n - 1) + p_{I,II}^{(2)}(n - 1); \\
p_{I,II}^{(2)}(n) &= 2A^{-2} p_{I+1,II}^{(2)}(n - 1) + 5p_{I-2,II}^{(2)}(n - 1) + 4A^2 p_{I-3,II}^{(2)}(n - 1) \\
&\quad + A^4 p_{I-4,II}^{(2)}(n - 1) + (4 + A^{-4}) p_{I-2,II}^{(2)}(n - 1) \\
&\quad + (4A^2 + 2A^{-2}) p_{I-1,II}^{(2)}(n - 1) + (A^4 + 1) p_{I-2,II}^{(2)}(n - 1).
\end{align*}
\]
Case 3. $s \in S(3)(n)$.

Let

$$S(3)_I(n) = \{s| \text{ either } s_{x_j} = A^{-3} \prod_{i=1}^{3} s_{x_i} \neq A^{-3} \text{ for } 4 \leq j \leq 6 \text{ or } \exists l \leq k \leq n \text{ such that}$$

$$s_{y_{2k-1}} \cdot s_{y_{2k}} \neq A^{-2}, s_{22k-1} = s_{22k} = s_{y_l} = s_{z_l} = A^{-1}, \text{ for } 2k + 1 \leq l \leq 2n\}$$

$$S(3)_II(n) = \{s| \text{ either } s_{y_i} = s_{z_i} = A^{-2} \prod_{i=1}^{3} s_{x_i} \neq A^{-3} \text{ or } \exists l \leq k \leq n \text{ such that}$$

$$s_{22k-1} \cdot s_{22k} \neq A^{-2}, s_{y_l} = s_{z_l} = A^{-1}, \text{ for } 1 \leq i \leq 2n, 2k + 1 \leq l \leq 2n\}$$

Lemma 3.3 Set $p_{2,1}^{(3)}(0) = 3A^{-4}$, $p_{3,1}^{(3)}(0) = 3A^{-2}$, $p_{4,1}^{(3)}(0) = 1$, $p_{1,1,II}^{(3)}(0) = 9A^{-2}$, $p_{2,II}^{(3)}(0) = 18$, $p_{3,II}^{(3)}(0) = 15A^{2}$, $p_{4,II}^{(3)}(0) = 6A^{4}$, $p_{5,II}^{(3)}(0) = A^{6}$. Set $p_{i,II}^{(3)}(n) = \sum_{s \in S(3)_II(n), l(s) = i} A^{a(s) - b(s)}$, $p_{i,II}^{(3)}(n) = \sum_{s \in S(3)_II(n), l(s) = i} A^{a(s) - b(s)}$. Then

$$p_{i,II}^{(3)}(n) = p_{i,1}^{(3)}(n) + p_{i,II}^{(3)}(n)$$

where

$$p_{1,II}^{(3)}(n) = A^{-4}p_{1,1}^{(3)}(n-1) + 2A^{-2}p_{1,1,II}^{(3)}(n-1) + p_{1,2,1}^{(3)}(n-1) + 2A^{-2}p_{1,II}^{(3)}(n-1) + p_{II}^{(3)}(n-1)$$

$$p_{i,II}^{(3)}(n) = 2A^{-2}p_{i,1,II}^{(3)}(n-1) + 5p_{i,1,II}^{(3)}(n-1) + 4A^{2}p_{i,1,II}^{(3)}(n-1)$$

As an example, we calculate the Jones polynomial of KV_1 (also 10_{152}). By Lemma 3.1, the following results are obtained

$$\begin{align*}
p_{3,1}^{(1)}(1) &= A^{-10}, p_{2,1}^{(1)}(1) = p_{1,1}^{(1)}(1) = 2A^{-8}, \\
p_{3,1}^{(1)}(1) &= p_{1,1}^{(1)}(1) = A^{-6}, p_{1,1,II}^{(1)}(1) = 4A^{-6}, \\
p_{2,II}^{(1)}(1) &= 4A^{-4}, p_{3,II}^{(1)}(1) = A^{-2}.
\end{align*}$$

(10)

By Lemma 3.2, the following conclusions are given

$$\begin{align*}
p_{1,1}^{(2)}(1) &= 6A^{-6}, p_{2,1}^{(2)}(1) = 9A^{-4}, p_{3,1}^{(2)}(1) = 5A^{-2}, p_{4,1}^{(2)}(1) = 1, \\
p_{2,II}^{(2)}(1) &= 12A^{-4} + 3A^{-8}, p_{3,II}^{(2)}(1) = 24A^{-2} + 9A^{-6}, p_{4,II}^{(2)}(1) = 19 + 10A^{-4}, \\
p_{2,II}^{(2)}(1) &= 7A^{2} + 5A^{-2}, p_{6,II}^{(2)}(1) = A^{4} + 1.
\end{align*}$$

(11)

By Lemma 3.3, we get

$$\begin{align*}
p_{2,II}^{(3)}(1) &= 18A^{-4} + 3A^{-8}, p_{3,1}^{(3)}(1) = 9A^{-6} + 45A^{-2}, p_{4,1}^{(3)}(1) = 48 + 10A^{-4}, \\
p_{5,II}^{(3)}(1) &= 27A^{2} + 5A^{-2}, p_{6,II}^{(3)}(1) = 8A^{4} + 1, p_{1,II}^{(3)}(1) = A^{6}, p_{4,II}^{(3)}(1) = 36A^{-2} + 15A^{-6}, \\
p_{2,II}^{(3)}(1) &= 108 + 57A^{-4}, p_{3,II}^{(3)}(1) = 141A^{2} + 89A^{-2}, p_{4,II}^{(3)}(1) = 74 + 102A^{4}, \\
p_{5,II}^{(3)}(1) &= 43A^{6} + 35A^{2}, p_{6,II}^{(3)}(1) = 10A^{8} + 9A^{4}, p_{7,II}^{(3)}(1) = A^{10} + A^{6}.
\end{align*}$$

(12)
By combining with the equalities (10 – 12), we have

\[
\begin{align*}
p_1(KV_1) &= 36A^{-2} + 25A^{-6}, \\
p_2(KV_1)(A^2 - A^{-2}) &= -108A^2 - 208A^{-2} - 10A^{-6} - 10A^{-10}, \\
p_3(KV_1)(A^2 - A^{-2})^2 &= 141A^6 + 446A^2 + 499A^{-2} + 205A^{-6} + 22A^{-10} + A^{-14}, \\
p_4(KV_1)(A^2 - A^{-2})^3 &= -102A^{10} - 448A^6 - 752A^2 - 588A^{-2} - 202A^{-6} - 20A^{-10}, \\
p_5(KV_1)(A^2 - A^{-2})^4 &= 43A^{14} + 241A^{10} + 337A^6 + 626A^2 + 379A^{-2} + 109A^{-6} + 10A^{-10}, \\
p_6(KV_1)(A^2 - A^{-2})^5 &= -10A^{18} - 68A^{14} - 192A^{10} - 290A^6 - 250A^2 \\
&- 120A^{-2} - 28A^{-6} - 2A^{-10}, \\
p_7(KV_1)(A^2 - A^{-2})^6 &= A^{22} + 8A^{18} + 27A^{14} + 50A^{10} + 55A^6 + 36A^2 + 14A^{-2} + 2A^{-6}
\end{align*}
\]

By applying the equalities (1) and (13), the Kauffman bracket polynomial of \(KV_1\) is

\[
<KV_1> = \sum_{i=1}^{p} p_i(KV_1)(A^2 - A^{-2})^{i-1} = A^{22} - 2A^{18} + 2A^{14} - 3A^{10} + 2A^6 - 2A^{-2} + A^{-6} + A^{-14}.
\]

Since \(\omega(KV_1) = -10\), the Jones polynomial of \(RV_1\) is deduced

\[
\begin{align*}
V_{KV_1}(t) &= A^{10}(A^{22} - 2A^{18} + 2A^{14} - 3A^{10} + 2A^6 - 2A^{-2} + A^{-6} + A^{-14}) \\
&= A^{22} - 2A^{18} + 2A^{14} - 3A^{10} + 2A^6 - 2A^{32} + A^{28} + A^{24} + A^{16} \\
&= t^{-13} - 2t^{-12} + 2t^{-11} - 3t^{-10} + 2t^{-9} - 2t^{-8} + t^{-7} + t^{-6} + t^{-4}.
\end{align*}
\]

It is obvious that \(RT_1\) is non-alternating. In order to prove that \(RT_n\) are non-alternating for \(n \geq 2\).

We consider the highest power and the lowest power of \(A\) in \(f_i(n) = p_i(KV_n)(A^2 - A^{-2})^{i-1}\) for \(i \geq 1\).

Lemma 3.4 Set \(f_i(n) = p_i(KV_n)(A^2 - A^{-2})^{i-1}\) for \(n, i \geq 1\). Let \(\rho_h(f_i(n))\) and \(\rho_l(f_i(n))\) denote the highest power and the lowest power of \(A\) in \(f_i(n)\) respectively. Then for \(n, i \geq 1\)

\[
\rho_h(f_i(n)) \leq 8k + 14.
\]

and

\[
\rho_l(f_i(n)) \geq -4k - 10.
\]

Proof. This conclusion will be verified by induction on \(n\). By equalities of (13), the result is obvious for \(n = 1\).

Assume that the result holds for the integer \(k(k \geq 2)\). That is for \(i \geq 1\)

\[
\rho_h(f_i(k)) \leq 8n + 14 \text{ and } \rho_l(f_i(k)) \geq -4n - 10.
\]

This implies for \(i \geq 1\)

\[
\rho_h(f_i^{(v)}(k)) \leq 8n + 14 \text{ and } \rho_l(f_i^{(v)}(k)) \geq -4n - 10 \quad (14)
\]
where \(f_{ij}^{(r)}(k) = p_i^{(r)}(KV_k)(-A^2 - A^{-2})^{i+1} \) for \(j \in \{I, II, III, IV\} \) and \(1 \leq r \leq 3 \). By Lemma 3.6,

\[
\begin{align*}
\left\{
\begin{array}{ll}
p_{i, I}^{(1)}(k + 1)(-A^2 - A^{-2})^{i-1} = A^{-4}p_{i, I}^{(1)}(k)(-A^2 - A^{-2})^{i-1}; \\
p_{i, II}^{(1)}(k + 1)(-A^2 - A^{-2})^{i-1} = (2A^2 - p_{i+1, I}^{(1)}(k) + p_{i, I}^{(1)}(k) + (4A^2 + 2A^{-2})p_{i-1, II}^{(1)}(k) + (A^4 + 1)p_{i-2, II}^{(1)}(k) + 2A^{-2}p_{i-1, I}^{(1)}(k) + 5p_{i-2, IV}^{(1)}(k) + 4A^2p_{i-3, IV}^{(1)}(k) + (A^2 - A^{-2})^{i-1}; \\
p_{i, III}^{(1)}(k + 1)(-A^2 - A^{-2})^{i-1} = (2A^2p_{i+1, III}^{(1)}(k) + p_{i, III}^{(1)}(k) + A^{-4}p_{i-1, III}^{(1)}(k) + 2A^2p_{i-1, III}^{(1)}(k) + p_{i-2, III}^{(1)}(k) + p_{i-2, IV}^{(1)}(k) + 4A^2p_{i-3, IV}^{(1)}(k) + (A^4 + 1)p_{i-2, V}^{(1)}(k)(-A^2 - A^{-2})^{i-1}; \\
p_{i, IV}^{(1)}(k + 1)(-A^2 - A^{-2})^{i-1} = (2A^2p_{i+1, IV}^{(1)}(k) + p_{i, IV}^{(1)}(k) + 4A^2p_{i+1, IV}^{(1)}(k) + (A^4 + 1)p_{i-2, V}^{(1)}(k)(-A^2 - A^{-2})^{i-1}; \\
p_{i, V}^{(1)}(k + 1)(-A^2 - A^{-2})^{i-1} = (4p_{i+1, V}^{(1)}(k) + 4A^2p_{i+1, V}^{(1)}(k) + A^4p_{i, V}^{(1)}(k) + 2A^2p_{i+1, III}^{(1)}(k) + 4A^2p_{i-1, V}^{(1)}(k) + A^4p_{i-2, III}^{(1)}(k) + 2A^2p_{i-1, IV}^{(1)}(k) + (A^4 + 1)p_{i-2, V}^{(1)}(k)(-A^2 - A^{-2})^{i-1}. \\
\end{array}
\right.
\end{align*}
\]

This implies the following equalities

\[
\begin{align*}
\left\{
\begin{array}{ll}
f_{i, I}^{(1)}(k + 1) = A^{-4}f_{i, I}^{(1)}(k); \\
f_{i, II}^{(1)}(k + 1) = (2A^2f_{i+1, II}^{(1)}(k)(-A^2 - A^{-2})^{i-1} + f_{i, II}^{(1)}(k) + (A^4 + 4)f_{i+1, II}^{(1)}(k) + 4A^2f_{i-1, II}^{(1)}(k)(-A^2 - A^{-2}) + 4A^2f_{i-2, II}^{(1)}(k)(-A^2 - A^{-2})^2 + 2A^2f_{i+1, II}^{(1)}(k)(-A^2 - A^{-2}) + 5f_{i-2, IV}^{(1)}(k)(-A^2 - A^{-2})^2 + 4A^2f_{i-3, IV}^{(1)}(k)(-A^2 - A^{-2})^3 + A^4f_{i-4, IV}^{(1)}(k)(-A^2 - A^{-2})^4; \\
f_{i, III}^{(1)}(k + 1) = 2A^{-2}f_{i+1, III}^{(1)}(k)(-A^2 - A^{-2})^{i-1} + f_{i, III}^{(1)}(k) + A^{-4}f_{i+1, III}^{(1)}(k) + 2A^{-2}f_{i+1, III}^{(1)}(k)(-A^2 - A^{-2}) + f_{i-2, IV}^{(1)}(k)(-A^2 - A^{-2})^2 + 2A^{-2}f_{i+1, IV}^{(1)}(k)(-A^2 - A^{-2}) + f_{i-2, V}^{(1)}(k)(-A^2 - A^{-2})^2; \\
f_{i, IV}^{(1)}(k + 1) = 2A^{-2}f_{i+1, IV}^{(1)}(k)(-A^2 - A^{-2})^{i-1} + f_{i, IV}^{(1)}(k) + A^4f_{i-1, IV}^{(1)}(k)(-A^2 - A^{-2}) + 2A^{-2}f_{i+1, IV}^{(1)}(k)(-A^2 - A^{-2})^2 + 4A^2f_{i-1, IV}^{(1)}(k)(-A^2 - A^{-2})^2; \\
f_{i, V}^{(1)}(k + 1) = 4f_{i+1, V}^{(1)}(k)(-A^2 - A^{-2})^{i-2} + 4A^2f_{i+1, V}^{(1)}(k)(-A^2 - A^{-2})^{i-1} + A^4f_{i, V}^{(1)}(k) + 2A^2f_{i+1, III}^{(1)}(k)(-A^2 - A^{-2}) + 5f_{i-2, IV}^{(1)}(k)(-A^2 - A^{-2})^2 + 4A^2f_{i-3, IV}^{(1)}(k)(-A^2 - A^{-2}) + A^4f_{i-2, IV}^{(1)}(k)(-A^2 - A^{-2})^2 + 4A^2f_{i-2, V}^{(1)}(k)(-A^2 - A^{-2}) + (A^4 + 1)f_{i-2, V}^{(1)}(k)(-A^2 - A^{-2})^2.
\end{array}
\right.
\end{align*}
\]

By combining with (14-15), we get for \(i \geq 1 \)

\[
\rho_i(f_{ij}^{(1)}(k + 1)) \leq 8n + 14 \quad \text{and} \quad \rho_i(f_{ij}^{(1)}(k + 1)) \geq -4n - 10 \tag{16}
\]

where \(j \in \{I, II, III, IV\} \). By applying Lemma 3.2 – 3 with a similar way in the argument of the proof of (16), we obtain for \(i \geq 1 \)

\[
\rho_i(f_{ij}^{(r)}(k + 1)) \leq 8n + 14 \quad \text{and} \quad \rho_i(f_{ij}^{(r)}(k + 1)) \geq -4n - 10 \tag{17}
\]
where \(j \in \{I, II, III, IV\} \) and \(2 \leq r \leq 3 \).

Thus, it is obvious by combining (16-17) that for \(i \geq 1 \)
\[
\rho_h(f_i(k+1)) \leq 8(k+1) + 14 \text{ and } \rho_l(f_i(k+1)) \geq -4(k+1) - 10.
\]

Hence, the conclusion is implied. \(\square \)

In 1987, Kauffman, Thistlethwaite and Murasugi independently proved the following result.

Lemma 3.5 ([15][10][13]) If \(L \) is connected, irreducible, alternating link, then the breadth of \(V_L(t) \) is precisely \(m \).

Proof of Theorem 1.2. Since
\[
< KV_n > = \sum_{i \geq 1} f_i(n),
\]
it is obvious by Lemma 3.4 that for \(i \geq 1 \)
\[
\rho_h(< KV_n >) \leq 8n + 14 \text{ and } \rho_l(< KV_n >) \geq -4n - 10.
\]

Thus,
\[
\rho_h(V_{KV_n}(t)) \leq \frac{-3\omega(KV_n) + 8n + 14}{4} \text{ and } \rho_l(V_{KV_n}(t)) \geq \frac{-3\omega(KV_n) - 4n - 10}{4}.
\]

Then
\[
br(V_{KV_n}(t)) = \rho_h(V_{KV_n}(t)) - \rho_l(V_{KV_n}(t)) \leq 3n + 6. \quad (18)
\]

Because \(KV_n \) is connected and irreducible with \(4n + 6 \) crossings, the result is implied by Lemma 3.5 and the inequality (18). \(\square \)

Proof Theorem 1.3. Since \(\omega(KV_n) = -4n - 6 \) and \(p_i(n) = \sum_{k=1}^{3} p_i^k(n) \), the result is implied by applying a similar way in the argument of the proof of Theorem 1.1. \(\square \)

4. Kauffman-Jones polynomials for a type of virtual links

Fig 4: A type of virtual knots \(RT_n' \)

![Fig 4: A type of virtual knots RTₙ'](image)
In this section, we calculate Kauffman-Jones polynomials of the infinite family of virtual knots RT'_n for $n \geq 1$. Set $S(RT'_n)$ to be the set of all states of RT'_n for $n \geq 0$. Denote the following set.

\[S_1(RT'_n) = \{ s \in S(RT'_n), s_{2\mathbf{k}} = A \} \text{ either } \exists 1 \leq k < n \text{ such that } s_{2k-1} \cdot s_{2k} \neq A^2, s_{y_i} = A, \]

\[s_{2k-1} = s_{2k} = s_{z_i} = A^* \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_i} = s_{z_i} = A^*, s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}, \]

\[S_II(RT'_n) = \{ s \in S(RT'_n), s_{2\mathbf{k}} = A \} \text{ either } \exists 1 \leq k < n \text{ such that } s_{2k-1} \cdot s_{2k} \neq A^2, s_{y_i} = A, \]

\[s_{2k-1} = s_{2k} = s_{z_i} = A^* \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_i} = s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}, \]

\[S_III(RT'_n) = \{ s \in S(RT'_n), s_{2\mathbf{k}} = A^* \} \text{ either } \exists 1 \leq k < n \text{ such that } s_{2k-1} \cdot s_{2k} \neq A^2, s_{y_i} = A, \]

\[s_{2k-1} = s_{2k} = s_{z_i} = A^* \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_i} = s_{z_i} = A^*, s_{y_i} = A \text{ for } 1 \leq i \leq 2n \}. \]

\[S_IV(RT'_n) = \{ s \in S(RT'_n), s_{2\mathbf{k}} = A^* \} \text{ either } \exists 1 \leq k < n \text{ such that } s_{2k-1} \cdot s_{2k} \neq A^2, s_{y_i} = A, \]

\[s_{2k-1} = A^* \text{ for } 2k + 1 \leq i \leq 2n \text{ or } s_{z_i} = s_{y_i} = A \text{ for } 1 \leq i \leq 2n \} \].

Lemma 4.1 Let $p_{1, II}(RT'_0) = 1$, $p_{1, III}(RT'_0) = A^2$, $p_{1, IV}(RT'_0) = A^{-2}$, $p_{1, IV}(RT'_0) = 1$. Set $p_{1, I}(RT'_n) = \sum_{s \in S_1(RT'_n), (l, s) = i} A^{a(s) - b(s)}$, $p_{1, II}(RT'_n) = \sum_{s \in S_{II}(RT'_n), (l, s) = i} A^{a(s) - b(s)}$, $p_{1, III}(RT'_n) = \sum_{s \in S_{III}(RT'_n), (l, s) = i} A^{a(s) - b(s)}$, $p_{1, IV}(RT'_n) = \sum_{s \in S_{IV}(RT'_n), (l, s) = i} A^{a(s) - b(s)}$. Then for $n \geq 1$

\[
\begin{align*}
 p_{1, I}(RT'_n) &= p_{1, I}(RT'_{n-1}) + 2A^{-2}p_{1-1, I}(RT'_{n-1}) + A^{-4}p_{-2, 1}(RT'_{n-1}) \\
 &\quad + 2A^{-2}p_{2, 1}(RT'_{n-1}) + A^{-4}p_{-1, II}(RT'_{n-1}); \\
 p_{1, II}(RT'_n) &= 2A^2p_{1, I}(RT'_{n-1}) + (A^4 + 4)p_{-1, I}(RT'_{n-1}) \\
 &\quad + (2A^2 + 2A^{-2})p_{-2-1, II}(RT'_{n-1}) + p_{-3, 1}(RT'_{n-1}) + 5p_{1, II}(RT'_{n-1}) \\
 &\quad + (4A^2 + 2A^{-2})p_{-2-1, II}(RT'_{n-1}) + (A^4 + 1)p_{-2, 1}(RT'_{n-1}); \\
 p_{1, III}(RT'_n) &= 2A^2p_{1, I}(RT'_{n-1}) + (A^4 + 4)p_{-1, III}(RT'_{n-1}) \\
 &\quad + (2A^2 + 2A^{-2})p_{-2-1, III}(RT'_{n-1}) + A^{-4}p_{-1-2, II}(RT'_{n-1}); \\
 p_{1, IV}(RT'_n) &= 2A^2p_{1, I}(RT'_{n-1}) + (A^4 + 4)p_{-1, IV}(RT'_{n-1}) \\
 &\quad + (2A^2 + 2A^{-2})p_{-2-1, IV}(RT'_{n-1}) + p_{-2, 1}(RT'_{n-1}) + 5p_{1, IV}(RT'_{n-1}) \\
 &\quad + (4A^2 + 2A^{-2})p_{-2-1, IV}(RT'_{n-1}) + (A^4 + 1)p_{-2, 1}(RT'_{n-1}).
\end{align*}
\]

Proof of Theorem 1.4 By a similar way in the argument of the proof of Theorem 1.1, the result holds. \(\square\)

5. Further study

In this section, we introduce general m-string alternating links (or virtual links) and m-string tangle links (or virtual links) for $m \geq 2$. Several problems are proposed.

Set n to be a positive integer in this section. Generally, given a link (or virtual link) L_0 with $m + 1$ parallel edges, denote one of them by e_0 and denote others by $e_i = (u^{r_i}_i, v^{r_i}_i)$ in sequence for $1 \leq i \leq m$. Here $r_i \in \{+, -\}$, $r_0 = r$. Assume that e_0 is the leftmost edge and leave other readers to get in a similar way. Add $2n$ crossings $x_{i,j}$ on e_i in sequence for $1 \leq i \leq m$ and $1 \leq j \leq 2n$ respectively. Let $(u^{r_1}_{x_{1,1}}, x^{r_1}_{x_{1,1}}, x^{r_1}_{x_{1,2}})$, $(x^{r_1}_{x_{1,2}}, x^{r_1}_{x_{1,3}})$, \cdots, $(x^{r_1}_{x_{2n-1}}, x^{r_1}_{x_{2n-2}})$, $(x^{r_1}_{x_{2n-2}}, v^{r_1}_1)$ be a subdivision of e_1 for odd $1 \leq i \leq m$ and let $(u^{r_1}_{x_{1,1}}, x^{r_1}_{x_{1,1}}, x^{r_1}_{x_{1,2}})$, $(x^{r_1}_{x_{1,2}}, x^{r_1}_{x_{1,3}})$, \cdots, $(x^{r_1}_{x_{2n-1}}, x^{r_1}_{x_{2n-2}})$, $(x^{r_1}_{x_{2n-2}}, v^{r_1}_1)$ be a subdivision of e_i for even $1 \leq i \leq m$.
Add edges \((u_i^r, x_{i,1}^{-r})\) and \((v_i^r, x_{i,2n}^r)\) for odd \(1 \leq i \leq m\), add edges \((u_i^r, x_{i,1}^r)\) and \((v_i^r, x_{i,2n}^{-r})\) for even \(1 \leq i \leq m\), add edges \((x_{i,l}^{-r}, x_{i+1,l}^r), (x_{i,l}^r, x_{i+1,l}^{-r})\) for odd \(1 \leq i \leq m\) and odd \(1 \leq l \leq 2n\), \((x_{i,l}^{-r}, x_{i+1,l}^{-r})\) for odd \(1 \leq i \leq m\) and even \(1 \leq l \leq 2n\), and then add edges \((x_{m,l}^r, x_{n,l+1}^{-r})\) for even \(m\) and odd \(1 \leq l \leq 2n\). A link (or a virtual link) \(AL_n\) is constructed which is called an \(m\)-string alternating link (or virtual link). Here, \(x_{m+1,l}^r = x_{m,l+1}^{-r}\) and \(x_{0,l}^r = x_{1,l+1}^{-r}\) for odd \(1 \leq l \leq 2n\), \(x_{0,1}^r = u_0^r, x_{0,2n+1}^{-r} = v_0^{-r}\). An example is shown in Fig.5 (b) for \(m = 3\) and \(n = 2\).

\[
\begin{array}{cccc}
 u_0^r & u_1^r & u_2^r & u_3^r \\
v_0^r & v_1^r & v_2^r & v_3^r \\
\end{array}
\]

(a) \(L_0\)
(b) \(AL_4\)
(c) \(TL_4\)

Fig.5: \(L_0\), \(AL_4\) and \(TL_4\)

Similarly, let \(L_0\) be a link (or virtual link) above. Add \(2n\) crossings \(x_{i,l}\) on \(e_i\) in sequence for \(1 \leq i \leq m\) and \(1 \leq l \leq 2n\) respectively. Let \((u_i^r, x_{i,1}^r), (x_{i,1}^r, x_{i,2}^{-r}), \ldots, (x_{i,2n-1}^r, x_{i,2n}^{-r}), (x_{i,2n}^r, v_i^r)\) be a subdivision of \(e_i\). Add edges \((u_i^r, x_{i,1}^r)\) and \((v_i^r, x_{i,2n}^{-r})\) for \(1 \leq i \leq l\), add edges \((x_{i,l}^r, x_{i+1,l}^{-r}), (x_{i,l}^r, x_{i+1,l}^r), (x_{i,l}^{-r}, x_{i+1,l}^{-r})\) for odd \(1 \leq i \leq m\) and odd \(1 \leq l \leq 2n\), \((x_{i,l}^{-r}, x_{i+1,l}^r)\) for odd \(1 \leq i \leq m\) and even \(1 \leq l \leq 2n\), and then add edges \((x_{m,l}^r, x_{n,l+1}^{-r})\) for even \(m\) and odd \(1 \leq l \leq 2n\). A link (or virtual link) \(TL_n\) is constructed which is called an \(m\)-string tangle link (or virtual link). Here, \(x_{m+1,l}^r = x_{m,l+1}^{-r}\) and \(x_{0,l}^r = x_{1,l-1}^{-r}\) for odd \(1 \leq l \leq 2n\), \(x_{m+1,l}^r = x_{m+1,l-1}^{-r}\) and \(x_{0,l}^r = x_{1,l+1}^{-r}\) for even \(1 \leq l \leq 2n\), \(x_{0,1}^r = u_0^r, x_{0,2n+1}^{-r} = v_0^{-r}\). An example is also shown in Fig.5 (c) for \(m = 3\) and \(n = 2\).

Problem 5.1. Given a link \(L_0\), let \(AL_n\) is an \(m\)-string alternating link constructed from \(L_0\) for \(m \geq 3\). Determine \(V_{AL_n}(t)\).

Problem 5.2. Given a link \(L_0\), let \(TL_n\) is an \(m\)-string tangle link constructed from \(L_0\) for \(m \geq 3\). Determine \(V_{TL_n}(t)\).

Conjecture 5.3. Suppose that \(L_0\) is connected and irreducible and that \(TL_n\) is an \(m\)-string tangle link constructed from \(L_0\) for \(m \geq 2\). If \(L_0\) is non-alternating, then \(TL_n\) is also non-alternating.

Conjecture 5.4. Suppose that a link \(L_0\) is prime and that \(L_n\) is an \(m\)-string alternating (or tangle) link constructed from \(L_0\) for \(m \geq 2\). Then \(L_n\) is prime.

References

[1] B. Bollobás, O. Riordan, A polynomial of graphs on orientable surfaces, *Proc. London Math. Soc.*, 83 (2001), 513-531.
21