Properties of θ-super positive graphs

Cheng Yeaw Ku * K.B. Wong †

December 21, 2009

Abstract

Let the matching polynomial of a graph G be denoted by $\mu(G, x)$. A graph G is said to be θ-super positive if $\mu(G, \theta) \neq 0$ and $\mu(G \setminus v, \theta) = 0$ for all $v \in V(G)$. In particular, G is 0-super positive if and only if G has a perfect matching. While much is known about 0-super positive graphs, almost nothing is known about θ-super positive graphs for $\theta \neq 0$. This motivates us to investigate the structure of θ-super positive graphs in this paper. Though a 0-super positive graph may not contain any cycle, we show that a θ-super positive graph with $\theta \neq 0$ must contain a cycle. We introduce two important types of θ-super positive graphs, namely θ-elementary and θ-base graphs. One of our main results is that any θ-super positive graph G can be constructed by adding certain type of edges to a disjoint union of θ-base graphs; moreover, these θ-base graphs are uniquely determined by G. We also give a characterization of θ-elementary graphs: a graph G is θ-elementary if and only if the set of all its θ-barrier sets form a partition of $V(G)$. Here, θ-elementary graphs and θ-barrier sets can be regarded as θ-analogue of elementary graphs and Tutte sets in classical matching theory.

KEYWORDS: matching polynomial, Gallai-Edmonds decomposition, elementary graph, barrier sets, extreme sets

1 Introduction

We begin by introducing matching polynomials with an interest in the multiplicities of their roots. This will lead us to a recent extension of the celebrated Gallai-Edmonds Structure Theorem by Chen and Ku [1] which will be useful later in our study of θ-super positive graphs.

All the graphs in this paper are simple and finite. The vertex set and edge set of a graph G will be denoted by $V(G)$ and $E(G)$, respectively.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of r-matchings in G will be denoted by $p(G, r)$. We set $p(G, 0) = 1$ and define the matching polynomial of G by

$$
\mu(G, x) = \sum_{r=0}^{[n/2]} (-1)^r p(G, r) x^{n-2r}.
$$

*Department of Mathematics, National University of Singapore, Singapore 117543. E-mail: matkcy@nus.edu.sg
†Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: kb-wong@um.edu.my.
We denote the multiplicity of θ as a root of $\mu(G, x)$ by $\text{mult}(\theta, G)$. Let $u \in V(G)$, the graph obtained from G by deleting the vertex u and all edges that contain u is denoted by $G \setminus u$. Inductively if $u_1, \ldots, u_k \in V(G)$, $G \setminus u_1 \cdots u_k = (G \setminus u_1 \cdots u_{k-1}) \setminus u_k$. Note that the order in which the vertices are being deleted is not important, that is, if i_1, \ldots, i_k is a permutation of $1, \ldots, k$, we have $G \setminus u_1 \cdots u_k = G \setminus u_{i_1} \cdots u_{i_k}$. Furthermore, if $X = \{u_1, \ldots, u_k\}$, we set $G \setminus X = G \setminus u_1 \cdots u_k$. If H is a subgraph of G, by an abuse of notation, we have $G \setminus H = G \setminus V(H)$. For example, if $p = v_1 v_2 \cdots v_n$ is a path in G then $G \setminus p = G \setminus v_1 v_2 \cdots v_n$. If e is an edge of G, let $G - e$ denote the graph obtained from G by deleting the edge e from G. Inductively, if $e_1, \ldots, e_k \in E(G)$, $G - e_1 \cdots e_k = (G - e_1 \cdots e_{k-1}) - e_k$.

A graph G is said to have a perfect matching if it has a $n/2$-matching (n must be even). This is equivalent to $\text{mult}(0, G) = 0$, that is, 0 is not a root of $\mu(G, x)$. Recall that in the literature $\text{mult}(0, G)$ is also known as the deficiency of G which is the number of vertices of G missed by some maximum matching.

The following are some basic properties of $\mu(G, x)$.

Theorem 1.2. [2] Theorem 1.1 on p. 2]

(a) $\mu(G \cup H, x) = \mu(G, x)\mu(H, x)$ where G and H are disjoint graphs,

(b) $\mu(G, x) = \mu(G - e, x) - \mu(G \setminus uv, x)$ if $e = (u, v)$ is an edge of G,

(c) $\mu(G, x) = x\mu(G \setminus u, x) - \sum_{i \sim u} \mu(G \setminus ui, x)$ where $i \sim u$ means i is adjacent to u,

(d) $\frac{d}{dx} \mu(G, x) = \sum_{i \in V(G)} \mu(G \setminus i, x)$ where $V(G)$ is the vertex set of G.

It is well known that all roots of $\mu(G, x)$ are real. Throughout, let θ be a real number. The multiplicity of a matching polynomial root satisfies the following interlacing property:

Lemma 1.3. [2] Corollary 1.3 on p. 97] (Interlacing) Let G be a graph and $u \in V(G)$. Let θ be a real number. Then

$$\text{mult}(\theta, G) - 1 \leq \text{mult}(\theta, G \setminus u) \leq \text{mult}(\theta, G) + 1.$$

Lemma 1.3 suggests that given any real number θ, we can classify the vertices of a graph according to an increase of 1 or a decrease of 1 or no change in the multiplicity of θ upon deletion of a vertex.

Definition 1.4. [3] Section 3] For any $u \in V(G)$,

(a) u is θ-essential if $\text{mult}(\theta, G \setminus u) = \text{mult}(\theta, G) - 1$,

(b) u is θ-neutral if $\text{mult}(\theta, G \setminus u) = \text{mult}(\theta, G)$,

(c) u is θ-positive if $\text{mult}(\theta, G \setminus u) = \text{mult}(\theta, G) + 1$.

Furthermore, if u is not θ-essential but it is adjacent to some θ-essential vertex, we say u is θ-special.
It turns out that θ-special vertices play an important role in the Gallai-Edmonds Decomposition of a graph (see [1]). Godsil [3, Corollary 4.3] proved that a θ-special vertex must be θ-positive. Note that if $\text{mult}(\theta, G) = 0$ then for any $u \in V(G)$, u is either θ-neutral or θ-positive and no vertices in G can be θ-special. Now $V(G)$ can be partitioned into the following sets:

$$V(G) = D_{\theta}(G) \cup A_{\theta}(G) \cup P_{\theta}(G) \cup N_{\theta}(G),$$

where

- $D_{\theta}(G)$ is the set of all θ-essential vertices in G,
- $A_{\theta}(G)$ is the set of all θ-special vertices in G,
- $N_{\theta}(G)$ is the set of all θ-neutral vertices in G,
- $P_{\theta}(G) = Q_{\theta}(G) \setminus A_{\theta}(G)$, where $Q_{\theta}(G)$ is the set of all θ-positive vertices in G.

Note that there are no θ-neutral vertices. So $N_{\theta}(G) = \emptyset$ and $V(G) = D_{\theta}(G) \cup A_{\theta}(G) \cup P_{\theta}(G)$.

Definition 1.5. [3, Section 3] A graph G is said to be θ-critical if all vertices in G are θ-essential and $\text{mult}(\theta, G) = 1$.

The celebrated Gallai-Edmonds Structure Theorem describes the stability of a certain canonical decomposition of $V(G)$ with respect to the zero root of $\mu(G, x)$. In [1], Chen and Ku extended the Gallai-Edmonds Structure Theorem to any root $\theta \neq 0$, which consists of the following two theorems:

Theorem 1.6. [1, Theorem 1.5] (θ-Stability Lemma) Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_{\theta}(G)$ then

(i) $D_{\theta}(G \setminus u) = D_{\theta}(G)$,
(ii) $P_{\theta}(G \setminus u) = P_{\theta}(G)$,
(iii) $N_{\theta}(G \setminus u) = N_{\theta}(G)$,
(iv) $A_{\theta}(G \setminus u) = A_{\theta}(G) \setminus \{u\}$.

Theorem 1.7. [1, Theorem 1.7] (θ-Gallai’s Lemma) If G is connected and every vertex of G is θ-essential then $\text{mult}(\theta, G) = 1$.

Theorem 1.6 asserts that the decomposition of $V(G)$ into $D_{\theta}(G)$, $P_{\theta}(G)$, $N_{\theta}(G)$ and $A_{\theta}(G)$ is stable upon deleting a θ-special vertex of G. We may delete every such vertex one by one until there are no θ-special vertices left. Together with Theorem 1.7 it is not hard to deduce the following whose proof is omitted.

Corollary 1.8.

(i) $A_{\theta}(G \setminus A_{\theta}(G)) = \emptyset$, $D_{\theta}(G \setminus A_{\theta}(G)) = D_{\theta}(G)$, $P_{\theta}(G \setminus A_{\theta}(G)) = P_{\theta}(G)$, and $N_{\theta}(G \setminus A_{\theta}(G)) = N_{\theta}(G)$.

(ii) $G \setminus A_{\theta}(G)$ has exactly $|A_{\theta}(G)| + \text{mult}(\theta, G)$ θ-critical components.
(iii) If \(H \) is a component of \(G \setminus A_\theta(G) \) then either \(H \) is \(\theta \)-critical or \(\text{mult}(\theta, H) = 0 \).

(iv) The subgraph induced by \(D_\theta(G) \) consists of all the \(\theta \)-critical components in \(G \setminus A_\theta(G) \).

This paper is devoted to the study of \(\theta \)-super positive graphs. A graph is \(\theta \)-super positive if \(\theta \) is not a root of \(\mu(G, x) \) but is a root of \(\mu(G \setminus v, x) \) for every \(v \in V(G) \). It is worth noting that \(G \) is \(0 \)-super positive if and only if \(G \) has a perfect matching. While much is known about graphs with a perfect matching, almost nothing is known about \(\theta \)-super positive graphs for \(\theta \neq 0 \). This gives us a motivation to investigate the structure of these graphs.

The outline of this paper is as follows:

In Section 2, we show how to construct \(\theta \)-super positive graphs from smaller \(\theta \)-super positive graphs (see Theorem 2.2). We prove that a tree is \(\theta \)-super positive if and only if \(\theta = 0 \) and it has a perfect matching (see Theorem 2.4). Consequently, a \(\theta \)-super positive graph must contain a cycle when \(\theta \neq 0 \). For a connected vertex transitive graph \(G \), we prove that it is \(\theta \)-super positive for any root \(\theta \) of \(\mu(G \setminus v, x) \) where \(v \in V(G) \) (see Theorem 2.8). Finally we prove that if \(G \) is \(\theta \)-super positive, then \(N_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \) (see Theorem 2.9).

In Section 3, we introduce \(\theta \)-elementary graphs. These are \(\theta \)-super positive graphs with \(P_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \). We prove a characterization of \(\theta \)-elementary graphs: a graph \(G \) is \(\theta \)-elementary if and only if the set of all \(\theta \)-barrier sets forms a partition of \(V(G) \) (see Theorem 3.3).

In Section 4, we apply our results in Section 3 to prove that an \(n \)-cycle \(C_n \) is 1-elementary if and only if \(n = 3k \) for some \(k \in \mathbb{N} \) (see Theorem 4.3). Furthermore, we prove that \(C_{3k} \) has exactly 3 1-barrier sets (see Corollary 4.5).

In Section 5, we introduce \(\theta \)-base graphs which can be regarded as building blocks of \(\theta \)-super positive graphs. We prove a characterization of \(\theta \)-super positive graphs, namely a \(\theta \)-super positive graph can be constructed from a disjoint union of \(\theta \)-base graphs by adding certain type of edges; moreover, these \(\theta \)-base graphs are uniquely determined by \(G \) (see Theorem 5.7 and Corollary 5.9).

2 \(\theta \)-super positive graphs

Definition 2.1. A graph \(G \) is \(\theta \)-super positive if \(\theta \) is not a root of \(\mu(G, x) \) and every vertex of \(G \) is \(\theta \)-positive.

By Lemma 1.3 this is equivalent to \(\text{mult}(\theta, G) = 0 \) and \(\text{mult}(\theta, G \setminus v) = 1 \) for all \(v \in V(G) \). There are a lot of \(\theta \)-super positive graphs. For instance the three cycle, \(C_3 \) and the six cycle, \(C_6 \) are 1-super positive. In the next theorem, we will show how to construct \(\theta \)-super positive graphs from smaller \(\theta \)-super positive graphs.

Theorem 2.2. Let \(G_1 \) and \(G_2 \) be two \(\theta \)-super positive graphs and \(v_i \in V(G_i) \) for \(i = 1, 2 \). Let \(G \) be the graph obtained by adding the edge \((v_1, v_2) \) to the union of \(G_1 \) and \(G_2 \). Then \(G \) is \(\theta \)-super positive.

Proof. Let \(e = (v_1, v_2) \). First we prove that \(\mu(G, \theta) \neq 0 \). By part (b) of Theorem 1.2 we have \(\mu(G, x) = \mu(G - e, x) - \mu(G \setminus v_1v_2, x) \). It then follows from part (a) of Theorem 1.2 that \(\mu(G, x) = \mu(G_1, x)\mu(G_2, x) - \mu(G_1 \setminus v_1, x)\mu(G_2 \setminus v_2, x) \). Since \(G_1 \) and \(G_2 \) are \(\theta \)-super positive, \(\mu(G, \theta) = \mu(G_1, \theta)\mu(G_2, \theta) \neq 0 \).
It is left to prove that $\mu(G \setminus v, \theta) = 0$ for all $v \in V(G)$. Let $v \in V(G_1)$. Suppose $v = v_1$. Then by part (a) of Theorem 1.2 $\mu(G \setminus v, x) = \mu(G_1 \setminus v_1, x)\mu(G_2, x)$, and thus $\mu(G \setminus v, \theta) = 0$. Suppose $v \neq v_1$. By part (b) of Theorem 1.2 $\mu(G \setminus v, x) = \mu((G \setminus v) - e, x) - \mu((G \setminus v) \setminus v_1v_2, x)$. Note that $(G \setminus v) - e = (G_1 \setminus v) \cup G_2$ and $(G \setminus v) \setminus v_1v_2 = (G_1 \setminus vv_1) \cup (G_2 \setminus v_2)$. Hence $\mu(G \setminus v, \theta) = \mu(G_1 \setminus v, \theta)\mu(G_2, \theta) - \mu(G_1 \setminus vv_1, \theta)\mu(G_2 \setminus v_2, \theta) = 0$ (part (a) of Theorem 1.2).

The case $v \in V(G_2)$ is proved similarly.

The graph G in Figure 1 is constructed by using Theorem 2.2 with $G_1 = C_6$ and $G_2 = C_3$. Therefore it is 1-super positive graph.

It is clear that a 0-super positive may or may not contain any cycle. However, we will show later that if G is θ-super positive and $\theta \neq 0$, then it must contain a cycle (see Corollary 2.5). Note that any tree T with at least three vertices can be represented in the following form (see Figure 2), where u is a vertex with $n + 1$ neighbors v_1, \ldots, v_{n+1} such that all of them except possibly v_1 have degree 1 and T_1 is a subtree of T that contains v_1. Such a representation of T is denoted by $(T_1, u; v_1, \ldots, v_{n+1})$.

Lemma 2.3. Let T be a tree with at least three vertices. Suppose T has a representation $(T_1, u; v_1, \ldots, v_{n+1})$. Then θ is a root of $\mu(T, x)$ if and only if

$$(n - \theta^2)\theta^{n-1} \mu(T_1, \theta) + \theta^n \mu(T_1 \setminus v_1, \theta) = 0.$$

Proof. By part (c) of Theorem 1.2 $\mu(T, \theta) = \theta \mu(T \setminus u, \theta) - \sum_{i=1}^{n+1} \mu(T \setminus uv_i, \theta)$ (see Figure 2), which implies (using part (a) of Theorem 1.2),

$$\mu(T, \theta) = (\theta^2 - n)\theta^{n-1} \mu(T_1, \theta) - \theta^n \mu(T_1 \setminus v, \theta).$$

Hence the lemma holds
Theorem 2.4. Let T be a tree. Then T is θ-super positive if and only if $\theta = 0$ and it has a perfect matching.

Proof. Suppose T is θ-super positive and $\theta \neq 0$. Then T must have at least three vertices. By Lemma 2.3,

$$(n - \theta^2)\theta^{n-1}\mu(T_1, \theta) + \theta^n\mu(T_1 \setminus v_1, \theta) \neq 0.$$

By part (a) of Theorem 1.2, $0 = \mu(T \setminus u, \theta) = \theta^n\mu(T_1, \theta)$ (see Figure 2). Therefore $\mu(T_1, \theta) = 0$ and $\mu(T_1 \setminus v_1, \theta) \neq 0$. Now $\mu(T \setminus v_{n+1}, \theta) = 0$. By part (c) of Theorem 1.2, $\mu(T \setminus v_{n+1}, \theta) = \theta\mu(T \setminus uv_{n+1}, \theta) - \sum_{i=1}^{n} \mu(T \setminus uv_{i+1}, \theta) = \theta^n\mu(T_1, \theta) - (n-1)\theta^{n-2}\mu(T_1, \theta) - \theta^{n-1}\mu(T_1 \setminus v_1, \theta)$. This implies that $\mu(T_1 \setminus v_1, \theta) = 0$, a contradiction. Hence $\theta = 0$. Since 0 is not a root of $\mu(T, x)$, T must have a perfect matching.

The converse is obvious.

A consequence of Theorem 2.3 is the following corollary.

Corollary 2.5. If G is θ-super positive for some $\theta \neq 0$, then G must contain a cycle.

We shall need the following lemmas.

Lemma 2.6. [4] Theorem 6.3 (Heilmann-Lieb Identity) Let $u, v \in V(G)$. Then

$$\mu(G \setminus u, x)\mu(G \setminus v, x) - \mu(G, x)\mu(G \setminus uv) = \sum_{p \in \mathcal{P}(u,v)} \mu(G \setminus p, x)^2,$$

where $\mathcal{P}(u, v)$ is the set of all the paths from u to v in G.

Lemma 2.7. [3] Lemma 3.1] Suppose $\text{mult}(\theta, G) > 0$. Then G contains at least one θ-essential vertex.

Theorem 2.8. Let G be connected, vertex transitive and $z \in V(G)$. If θ is a root of $\mu(G \setminus z, x)$ then G is θ-super positive.

Proof. Since $G \setminus z$ is isomorphic to $G \setminus y$ for all $y \in V(G)$, $\mu(G \setminus z, x) = \mu(G \setminus y, x)$ for all $y \in V(G)$. So $\text{mult}(\theta, G \setminus z) = \text{mult}(\theta, G \setminus y)$. This implies that θ is a root of $\mu(G \setminus y, x)$ for all y.

Now it remains to show that $\mu(G, \theta) \neq 0$. Suppose the contrary. Then by Lemma 2.7, G has at least one θ-essential vertex. Since G is vertex transitive, all vertices in G are θ-essential. By Theorem 1.7, $\text{mult}(\theta, G) = 1$. But then $\text{mult}(\theta, G \setminus z) = 0$, a contradiction. Hence $\mu(G, \theta) \neq 0$ and G is θ-super positive.

However, a θ-super positive graph is not necessarily vertex transitive (see Figure 1). Furthermore a θ-super positive graph is not necessary connected, for the union of two C_3 is 1-super positive.

Theorem 2.9. Let G be θ-super positive. Then $N_\theta(G \setminus v) = \emptyset$ for all $v \in V(G)$.

Proof. Suppose $N_\theta(G \setminus v) \neq \emptyset$ for some $v \in V(G)$. Let $u \in N_\theta(G \setminus v)$. By Lemma 2.6,

$$\mu(G \setminus u, x)\mu(G \setminus v, x) - \mu(G, x)\mu(G \setminus uv) = \sum_{p \in \mathcal{P}(u,v)} \mu(G \setminus p, x)^2.$$

Note that the multiplicity of \(\theta \) as a root of \(\mu(G \setminus u, x)\mu(G \setminus v, x) \) is 2, while the multiplicity of \(\theta \) as a root of \(\mu(G, x)\mu(G \setminus vu, x) \) is 1 since \(u \) is \(\theta \)-neutral in \(G \setminus v \). Therefore the multiplicity of \(\theta \) as a root of the polynomial on the left-hand side of the equation is at least 1. But the multiplicity of \(\theta \) as a root of the polynomial on the right-hand side of the equation is even and so, in comparison with the left-hand side, it must be at least 2. This forces the multiplicity of \(\theta \) as a root of \(\mu(G, x)\mu(G \setminus vu, x) \) to be at least 2, a contradiction. Hence \(N_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \).

Now we know that for a \(\theta \)-super positive graph \(G \), \(N_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \). So it is quite natural to ask whether \(P_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \). Well, this is not true in general (see Figure 1). This motivates us to study the \(\theta \)-super positive graph \(G \), for which \(P_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \). We proceed to do this in the next section.

3 \(\theta \)-elementary graphs

Definition 3.1. A graph \(G \) is said to be \(\theta \)-elementary if it is \(\theta \)-super positive and \(P_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \).

The graph \(G \) in Figure 3 is 1-elementary. Not every \(\theta \)-positive graph is \(\theta \)-elementary. For instance, the graph in Figure 1 is not 1-elementary.

![Figure 3](image)

Theorem 3.2. A graph \(G \) is \(\theta \)-elementary if and only if \(\text{mult}(\theta, G) = 0 \) and \(P_\theta(G \setminus v) \cup N_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \).

Proof. Suppose \(\text{mult}(\theta, G) = 0 \) and \(P_\theta(G \setminus v) \cup N_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \). Then for each \(v \in V(G) \), \(\text{mult}(\theta, G \setminus v) = 1 \), for otherwise \(G \setminus v \) would only consist of \(\theta \)-neutral and \(\theta \)-positive vertices whence \(P_\theta(G \setminus v) \cup N_\theta(G \setminus v) \neq \emptyset \). Therefore \(G \) is \(\theta \)-super positive and it is \(\theta \)-elementary.

The other implication follows from Theorem 2.9.

It turns out that the notion of a \(\theta \)-elementary graph coincide with the classical notion of an elementary graph. Properties of elementary graphs can be found in Section 5.1 on p. 145 of [7].

The number of \(\theta \)-critical components in \(G \) is denoted by \(c_\theta(G) \).

Definition 3.3. A \(\theta \)-barrier set is defined to be a set \(X \subseteq V(G) \) for which \(\text{mult}(\theta, G) = c_\theta(G \setminus X) - |X| \).

A \(\theta \)-extreme set is defined to be a set \(X \subseteq V(G) \) for which \(\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X| \).
\(\theta\)-barrier sets and \(\theta\)-extreme sets can be regarded as \(\theta\)-analogue of Tutte sets and extreme sets in classical matching theory. Properties of \(\theta\)-barrier sets and \(\theta\)-extreme sets have been studied by Ku and Wong [5]. In particular, the following results are needed.

Lemma 3.4. [5] Lemma 2.5] A subset of a \(\theta\)-extreme set is a \(\theta\)-extreme set.

Lemma 3.5. [5] Lemma 2.6] If \(X\) is a \(\theta\)-barrier set and \(Y \subseteq X\) then \(X \setminus Y\) is a \(\theta\)-barrier set in \(G \setminus Y\).

Lemma 3.6. [5] Lemma 2.7] Every \(\theta\)-extreme set of \(G\) lies in a \(\theta\)-barrier set.

Lemma 3.7. [5] Lemma 2.8] Let \(X\) be a \(\theta\)-barrier set. Then \(X\) is a \(\theta\)-extreme set.

Lemma 3.8. [5] Lemma 3.1] If \(X\) is a \(\theta\)-barrier set then \(X \subseteq A_\theta(G) \cup P_\theta(G)\).

Lemma 3.9. [5] Theorem 3.5] Let \(X\) be a \(\theta\)-barrier set in \(G\). Then \(A_\theta(G) \subseteq X\).

Lemma 3.10. Let \(G\) be a graph. If \(X\) is a \(\theta\)-barrier set in \(G\), \(x \in X\) and \(P_\theta(G \setminus x) = \emptyset\), then \(A_\theta(G \setminus x) = X \setminus x\).

Proof. By Lemma 3.5, \(X \setminus x\) is a \(\theta\)-barrier set in \(G \setminus x\). By Lemma 3.8, \(X \setminus x \subseteq A_\theta(G \setminus x) \cup P_\theta(G \setminus x)\). Therefore, \(X \setminus x \subseteq A_\theta(G \setminus x)\). It then follows from Lemma 3.9 that \(A_\theta(G \setminus x) = X \setminus x\).

Definition 3.11. We define \(\mathcal{P}(\theta, G)\) to be the set of all the \(\theta\)-barrier sets in \(G\).

Note that in Figure 3, \(\mathcal{P}(1, G) = \{\{u_1\}, \{u_2\}, \{u_3, u_4\}, \{u_5\}, \{u_6\}\}\). Now Lemma 3.12 follows from part (c) of Theorem 1.2.

Lemma 3.12. Suppose \(G\) is \(\theta\)-super positive. Then for each \(v \in V(G)\) there is a \(u \in V(G)\) with \((u, v) \in E(G)\) and \(\text{mult}(\theta, G \setminus uv) = 0\).

Theorem 3.13. A graph \(G\) is \(\theta\)-elementary if and only if \(\mathcal{P}(\theta, G)\) is a partition of \(V(G)\).

Proof. Let \(\mathcal{P}(\theta, G) = \{S_1, \ldots, S_k\}\).

(\(\Rightarrow\)) Suppose \(G\) is \(\theta\)-elementary. Then for each \(v \in V(G)\), \(\{v\}\) is a \(\theta\)-extreme set. By Lemma 3.6, it is contained in some \(\theta\)-barrier set. Therefore \(V(G) = S_1 \cup \cdots \cup S_k\). It remains to prove that \(S_i \cap S_j = \emptyset\) for \(i \neq j\). Suppose the contrary. Let \(x \in S_i \cap S_j\). By Lemma 3.10, \(S_i \setminus \{x\} = A_\theta(G \setminus x) = S_j \setminus \{x\}\) and so \(S_i = S_j\), a contradiction. Hence \(S_i \cap S_j = \emptyset\) for \(i \neq j\) and \(\mathcal{P}(\theta, G)\) is a partition of \(V(G)\).

(\(\Leftarrow\)) Suppose \(\mathcal{P}(\theta, G)\) is a partition of \(V(G)\). Let \(v \in V(G)\). Then \(v \in S_i\) for some \(\theta\)-barrier set \(S_i\). By Lemma 3.8, \(v \in A_\theta(G) \cup P_\theta(G)\). Therefore \(V(G) \subseteq A_\theta(G) \cup P_\theta(G)\). This implies that \(\text{mult}(\theta, G) = 0\), for otherwise \(D_\theta(G) \neq \emptyset\) by Lemma 2.7. Hence \(A_\theta(G) = \emptyset\) and \(V(G) = P_\theta(G)\), i.e., \(G\) is \(\theta\)-super positive. It remains to show that \(P_\theta(G \setminus v) = \emptyset\) for all \(v \in V(G)\). Suppose the contrary. Then \(P_\theta(G \setminus v) \neq \emptyset\) for some \(v_0 \in V(G)\). We may assume \(v_0 \in S_1\). By Corollary 1.8, \((G \setminus v_0) \setminus A_\theta(G \setminus v_0)\) has a component \(H\) for which \(\text{mult}(\theta, H) = 0\). By Theorem 2.9, \(N_\theta(G \setminus v_0) = \emptyset\). So we conclude that \(H\) is \(\theta\)-super positive. Let \(w \in H\). By Lemma 3.12, there is a \(z \in V(H)\) with \((w, z) \in E(H)\) and \(\text{mult}(\theta, H \setminus wz) = 0\). By part (a) of Theorem 1.2 and, (ii) and (iii) of Corollary 1.8, \(\text{mult}(\theta, (G \setminus v_0) \setminus A_\theta(G \setminus v_0)) \setminus wz) = 1 + |A_\theta(G \setminus v_0)|\).

On the other hand, by Lemma 3.5, \(S_1 \setminus \{v_0\}\) is a \(\theta\)-barrier set in \(G \setminus v_0\). So by Lemma 3.9, \(A_\theta(G \setminus v_0) \subseteq S_1 \setminus \{v_0\}\). By Lemma 3.5 again, \(S_1 \setminus (\{v_0\} \cup A_\theta(G \setminus v_0))\) is a \(\theta\)-barrier set in \((G \setminus v_0) \setminus A_\theta(G \setminus v_0)\). Note
that \(w \) is \(\theta \)-positive in \(G \setminus v_0 \) (by Corollary 1.8). Therefore \(\{ w, v_0 \} \) is an \(\theta \)-extreme set. By Lemma 3.6 \(\{ w, v_0 \} \) is contained in some \(\theta \)-barrier set. Since \(\mathfrak{P}(\theta, G) \) is a partition of \(V(G) \) and \(v_0 \in S_1 \), we must have \(\{ w, v_0 \} \subseteq S_1 \). Note also \(z \) is \(\theta \)-positive in \(G \setminus v_0 \) (recall that \(H \) is \(\theta \)-super positive). Using a similar argument, we can show that \(\{ z, v_0 \} \subseteq S_1 \). By Lemma 3.4 and Lemma 3.7 we conclude that \(\{ w, z \} \subseteq S_1 \setminus (\{ v_0 \} \cup A_\theta(G \setminus v_0)) \) is a \(\theta \)-extreme set in \((G \setminus v_0) \setminus A_\theta(G \setminus v_0) \). This implies that \(\mu(\theta, ((G \setminus v_0) \setminus A_\theta(G \setminus v_0)) \setminus wz) = 3 + |A_\theta(G \setminus v_0)| \), contradicting the last sentence of the preceding paragraph. Hence \(P_\theta(G \setminus v) = \emptyset \) for all \(v \in V(G) \) and \(G \) is \(\theta \)-elementary.

\section*{Lemma 3.14}
Suppose \(G \) is \(\theta \)-elementary. Then for each \(\emptyset \neq X \subseteq S \in \mathfrak{P}(\theta, G) \), \(A_\theta(G \setminus X) = S \setminus X \) and \(P_\theta(G \setminus X) \cup N_\theta(G \setminus X) = \emptyset \).

\textbf{Proof.} Let \(x \in X \). Then \(P_\theta(G \setminus x) = \emptyset \). By Theorem 2.9 \(N_\theta(G \setminus x) = \emptyset \). Now by Lemma 3.10 \(S \setminus \{ x \} = A_\theta(G \setminus x) \) so that \(X \setminus \{ x \} \subseteq S \setminus \{ x \} = A_\theta(G \setminus x) \). By Theorem 1.6 we conclude that \(A_\theta(G \setminus X) = S \setminus X \) and \(P_\theta(G \setminus X) \cup N_\theta(G \setminus X) = \emptyset \).

\section*{Corollary 3.15}
Suppose \(G \) is \(\theta \)-elementary. Let \(S \subseteq V(G) \). Then \(S \in \mathfrak{P}(\theta, G) \) if and only if \(G \setminus S \) has exactly \(|S| \) components and each is \(\theta \)-critical.

\textbf{Proof.} Suppose \(G \setminus S \) has exactly \(|S| \) components and each is \(\theta \)-critical. Then \(c_\theta(G \setminus S) = |S| \) and \(S \) is a barrier set. Hence \(S \in \mathfrak{P}(\theta, G) \).

The other implication follows from Lemma 3.14 and Corollary 1.8.

\section*{4 1-elementary cycles}
We shall need the following lemmas.

\textbf{Lemma 4.1.} [6] Corollary 4.4| Suppose \(G \) has a Hamiltonian path \(P \) and \(\theta \) is a root of \(\mu(G, x) \). Then every vertex of \(G \) which is not \(\theta \)-essential must be \(\theta \)-special.

\textbf{Lemma 4.2.} Let \(p_0 \) be a path with \(n \geq 1 \) vertices. Then
\[
\mu(p_0, 1) = \begin{cases}
1, & \text{if } n \equiv 0 \text{ or } 1 \pmod{6}; \\
-1, & \text{if } n \equiv 3 \text{ or } 4 \pmod{6}; \\
0, & \text{otherwise}.
\end{cases}
\]

\textbf{Proof.} Note that for \(t \geq 2 \), \(\mu(p_t, x) = x \mu(p_{t-1}, x) - \mu(p_{t-2}, x) \) (part (c) of Theorem 1.2), where we define \(\mu(p_0, x) = 1 \). Therefore \(\mu(p_t, 1) = \mu(p_{t-1}, 1) - \mu(p_{t-2}, 1) \). Now \(\mu(p_1, 1) = 1 \). So, \(\mu(p_2, 1) = 0 \), and recursively we have \(\mu(p_3, 1) = -1 \), \(\mu(p_4, 1) = -1 \) and \(\mu(p_5, 1) = 0 \). By induction the lemma holds.

\textbf{Lemma 4.3.} Let \(C_n \) be a cycle with \(n \geq 3 \) vertices. Then
\[
\mu(C_n, 1) = \begin{cases}
1, & \text{if } n \equiv 1 \text{ or } 5 \pmod{6}; \\
-1, & \text{if } n \equiv 2 \text{ or } 4 \pmod{6}; \\
2, & \text{if } n \equiv 0 \pmod{6}; \\
-2, & \text{if } n \equiv 3 \pmod{6}.
\end{cases}
\]
Proof. By part (c) of Theorem 4.2 \(\mu(C_n, 1) = \mu(p_{n-1}, 1) - 2\mu(p_{n-2}, 1) \). The lemma follows from Lemma 4.2. \(\square \)

Theorem 4.4. A cycle \(C_n \) is 1-elementary if and only if \(n = 3k \) for some \(k \in \mathbb{N} \).

Proof. (\(\Rightarrow \)) Suppose \(C_n \) is 1-elementary. Then for any \(v \in V(C_n) \), \(C_n \setminus v = p_{n-1} \). By Lemma 4.2 \(\text{mult}(1, p_{n-1}) > 0 \) if and only if \(n - 1 \equiv 2 \) or 5 \(\mod 6 \). Thus \(n = 3k \) for some \(k \in \mathbb{N} \).

(\(\Leftarrow \)) Suppose \(n = 3k \) for some \(k \in \mathbb{N} \). By Lemma 4.3 \(\text{mult}(1, C_n) = 0 \). Note that \(3k \equiv 3 \) or 6 \(\mod 6 \). Therefore \(3k - 1 \equiv 2 \) or 5 \(\mod 6 \), and by Lemma 4.2 and Lemma 4.3 \(\text{mult}(1, C_n \setminus v) = \text{mult}(1, p_{n-1}) = 1 \) for all \(v \in V(C_n) \). Thus \(C_n \) is 1-super positive. By Lemma 4.1 \(P_1(C_n \setminus v) = \emptyset \) for all \(v \in V(C_n) \). Hence \(C_n \) is 1-elementary. \(\square \)

For our next result, let us denote the vertices of \(C_{3k} \) by \(1, 2, 3, \ldots, 3k \) (see Figure 4).

![Figure 4](image_url)

Corollary 4.5. \(C_{3k} \) has exactly 3 1-barrier sets, that is

\[\mathcal{P}(1, C_{3k}) = \{\{1, 4, 7, \ldots, 3k - 2\}, \{2, 5, 8, \ldots, 3k - 1\}, \{3, 6, 9, \ldots, 3k\}\}. \]

Proof. Note that \(C_{3k} \setminus \{1, 4, 7, \ldots, 3k - 2\} \) is a disjoint union of \(k \) number of \(K_2 \) and \(K_2 \) is 1-critical. So \(\{1, 4, 7, \ldots, 3k - 2\} \) is a 1-barrier set. Similarly \(\{2, 5, 8, \ldots, 3k - 1\} \) and \(\{3, 6, 9, \ldots, 3k\} \) are 1-barrier sets. It then follows from Theorem 4.3 and Theorem 5.13 that these are the only 1-barrier sets. \(\square \)

5 Decomposition of \(\theta \)-super positive graphs

Definition 5.1. A set \(X \subseteq V(G) \) with \(|X| > 1 \) is said to be independent in \(G \) if for all \(u, v \in X \), \(u \) and \(v \) are not adjacent to each other. A graph \(G \) is said to be \(\theta \)-base if it is \(\theta \)-super positive and for all \(S \in \mathcal{P}(\theta, G) \), \(S \) is independent.

Note that the cycle \(C_{3k} \) is \(\theta \)-base. In fact a connected \(\theta \)-base graph is \(\theta \)-elementary.

Theorem 5.2. A connected \(\theta \)-base graph is \(\theta \)-elementary.

Proof. Let \(G \) be \(\theta \)-base. Suppose it is not \(\theta \)-elementary. Then \(P_\theta(G \setminus v) \neq \emptyset \) for some \(v \in V(G) \). By Lemma 2.7 \(G \setminus v \) has at least one \(\theta \)-essential vertex.

If \(v \) is not a cut vertex of \(G \), then \(A_\theta(G \setminus v) \neq \emptyset \). By Theorem 2.9 and Corollary 1.13 \((G \setminus v)A_\theta(G \setminus v) \) has a \(\theta \)-super positive component, say \(H \). Since \(G \setminus v \) is connected, there exists \(h \in V(H) \) that is adjacent to some element \(w \in A_\theta(G \setminus v) \). Note that \(\{h, w, v\} \) is a \(\theta \)-extreme set in \(G \). By Lemma 3.4...
\{h, w\} is a \(\theta\)-extreme set in \(G\). By Lemma 3.6, \(\{h, w\}\) is contained in some \(S \in \mathcal{P}(\theta, G)\), a contrary to the fact that \(S\) is independent.

If \(v\) is a cut vertex of \(G\), then \(G \setminus v\) contains a \(\theta\)-super positive component (for \(N_\theta(G \setminus v) = \emptyset\) by Theorem 2.4). Clearly, some vertex in this component, say \(u\), is joined to \(v\) and \(\{u, v\}\) is a \(\theta\)-extreme set in \(G\). Again, by Lemma 3.6 \(\{u, v\}\) is contained in some \(S \in \mathcal{P}(\theta, G)\), a contrary to the fact that \(S\) is independent.

Hence \(P_\theta(G \setminus v) = \emptyset\) for all \(v \in V(G)\) and \(G\) is \(\theta\)-elementary. \(\square\)

Note that the converse of Theorem 5.2 is not true. Let \(G\) be the graph in Figure 3. Note that \(\{u_3, u_4\} \in \mathcal{P}(1, G)\) but it is not independent.

Lemma 5.3. Let \(G\) be \(\theta\)-super positive and \(e = (u, v) \in E(G)\) such that \(\{u, v\}\) is a \(\theta\)-extreme set in \(G\). Let \(G'\) be the graph obtained by removing the edge \(e\) from \(G\). Then \(G'\) is \(\theta\)-super positive.

Proof. Now \(\text{mult}(\theta, G \setminus uv) = 2\). By part (b) of Theorem 1.2 \(\mu(G, x) = \mu(G', x) - \mu(G \setminus uv, x)\). This implies that \(\mu(G', \theta) = \mu(G, \theta) \neq 0\).

It is left to show that \(\mu(G' \setminus w, \theta) = 0\) for all \(w \in V(G')\). Clearly if \(w = u\) or \(v\) then \(\mu(G' \setminus w, \theta) = \mu(G \setminus w, \theta) = 0\). Suppose \(w \neq u, v\). By part (b) of Theorem 1.2 again, \(\mu(G' \setminus w, x) = \mu(G \setminus w, x) - \mu(G \setminus uvw, x)\). By Lemma 1.3 \(\text{mult}(\theta, G \setminus uvw) \geq 1\). Therefore \(\mu(G' \setminus w, \theta) = \mu(G \setminus w, \theta) = 0\). Hence \(G'\) is \(\theta\)-super positive. \(\square\)

Note that after removing an edge from \(G\) as in Lemma 5.3 \(\mathcal{P}(\theta, G') \neq \mathcal{P}(\theta, G)\) in general. In Figure 5, \(\mathcal{P}(1, G) = \{\{1, 4, 7\}, \{5, 8\}, \{6, 9\}, \{2\}, \{3\}\}\). After removing the edge \((1, 4)\) from \(G\), the resulting graph \(G' = C_9\). By Corollary 3.5 \(\mathcal{P}(1, G') = \{\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}\}\).

![Figure 5](image)

We shall need the following lemma.

Lemma 5.4. Corollary 2.5] For any root \(\theta\) of \(\mu(G, x)\) and a path \(p\) in \(G\),

\[
\text{mult}(\theta, G \setminus p) \geq \text{mult}(\theta, G) - 1.
\]

Lemma 5.5. Let \(G\) be \(\theta\)-super positive and \(e_1 = (u, v) \in E(G)\) with \(\{u, v\}\) is a \(\theta\)-extreme set. Let \(G' = G - e_1\) and \(e_2 = (w, z) \in E(G')\). Then \(\{w, z\}\) is a \(\theta\)-extreme set in \(G'\) if and only if it is a \(\theta\)-extreme set in \(G\).

Proof. **Case 1.** Suppose \(e_1\) and \(e_2\) have a vertex in common, say \(w = u\). Then \(G' \setminus wz = G \setminus wz\).

(\(\Rightarrow\)) Suppose \(\{w, z\}\) is a \(\theta\)-extreme set in \(G'\). By Lemma 5.3 \(\text{mult}(\theta, G') = 0\). Therefore \(\text{mult}(\theta, G' \setminus wz) = \text{mult}(\theta, G \setminus wz) = 2\) and \(\{w, z\}\) is a \(\theta\)-extreme set in \(G\).
\(\Leftrightarrow \) The converse is proved similarly.

Case 2. Suppose \(e_1 \) and \(e_2 \) have no vertex in common. By part (b) of Theorem 1.2,

\[
\mu(G \setminus wz, x) = \mu(G' \setminus wz, x) - \mu(G \setminus wzw, x).
\]

\((\Rightarrow)\) Suppose \(\{w, z\} \) is a \(\theta \)-extreme set in \(G' \). Then \(\text{mult}(\theta, G' \setminus wz) = 2 \). Now \(\text{mult}(\theta, G \setminus uv) = 2 \) and by Lemma 5.4, \(\text{mult}(\theta, G \setminus uvwz) \geq 1 \). So we conclude that \(\text{mult}(\theta, G \setminus wz) \geq 1 \). On the other hand, \(N_0(G \setminus w) = \emptyset \) (Theorem 2.9). Therefore either \(\text{mult}(\theta, G \setminus wz) = 0 \) or \(2 \). Hence the latter holds and \(\{w, z\} \) is a \(\theta \)-extreme set in \(G \).

\((\Leftarrow)\) Suppose \(\{w, z\} \) is a \(\theta \)-extreme set in \(G \). Then \(\text{mult}(\theta, G \setminus wz) = 2 \). As before we have \(\text{mult}(\theta, G \setminus uvwz) \geq 1 \). So we conclude that \(\text{mult}(\theta, G' \setminus wz) \geq 1 \). On the other hand, by Lemma 5.3, \(G' \) is \(\theta \)-super positive. Therefore \(N_0(G' \setminus w) = \emptyset \) (Theorem 2.9), and then either \(\text{mult}(\theta, G' \setminus wz) = 0 \) or \(2 \). Hence the latter holds and \(\{w, z\} \) is a \(\theta \)-extreme set in \(G' \).

Definition 5.6. Let \(G \) be \(\theta \)-super positive. An edge \(e = (u, v) \in E(G) \) is said to be \(\theta \)-extreme in \(G \) if \(\{u, v\} \) is a \(\theta \)-extreme set.

The process described in Lemma 5.3 can be iterated. Let \(Y_0 = \{e_1, e_2, \ldots, e_k\} \subseteq E(G) \) be the set of all \(\theta \)-extreme edges. Let \(G_1 = G - e_1 \). Then \(G_1 \) is \(\theta \)-super positive (Lemma 5.3). Let \(Y_1 \) be the set of all \(\theta \)-extreme edges in \(G_1 \). Then by Lemma 5.5, \(Y_1 = Y_0 \setminus \{e_1\} \). Now let \(G_2 = G_1 - e_2 \). By applying Lemma 5.3 and Lemma 5.5, we see that \(G_2 \) is \(\theta \)-super positive and the set of all \(\theta \)-extreme edges in \(G_2 \) is \(Y_2 = Y_0 \setminus \{e_1, e_2\} \). By continuing this process, after \(k \) steps, we see that \(G_k = G - e_1 e_2 \ldots e_k \) is \(\theta \)-super positive and the set of all \(\theta \)-extreme edges in \(G_k \) is \(Y_k = \emptyset \). We claim that \(G_k \) is a disjoint union of \(\theta \)-base graphs. Suppose the contrary. Let \(H \) be a component of \(G_k \) that is not \(\theta \)-base. Since \(G_k \) is \(\theta \)-super positive, by part (a) of Theorem 1.2, we deduce that \(H \) is \(\theta \)-super positive. Therefore there is a \(S \in \mathcal{F}(\theta, H) \) for which \(S \) is not independent. Let \(e = (u, v) \in E(H) \) with \(\{u, v\} \subseteq S \). By Lemma 3.7 and Lemma 3.3, \(\{u, v\} \) is a \(\theta \)-extreme set in \(H \). This means that \(e \) is \(\theta \)-extreme in \(H \), and by part (a) of Theorem 1.2, \(e \) is \(\theta \)-extreme in \(G_k \), a contrary to the fact that \(Y_k = \emptyset \). Hence \(H \) is \(\theta \)-base and we have proved the following theorem.

Theorem 5.7. Let \(G \) be \(\theta \)-super positive. Then \(G \) can be decomposed into a disjoint union of \(\theta \)-base graphs by deleting its \(\theta \)-extreme edges. Furthermore, the decomposition is unique, i.e. the \(\theta \)-base graphs are uniquely determined by \(G \).

The proof of the next lemma is similar to Lemma 5.3 and is thus omitted.

Lemma 5.8. Let \(G \) be \(\theta \)-super positive and \(\{u, v\} \) is a \(\theta \)-extreme set with \(e = (u, v) \notin E(G) \). Let \(G' \) be the graph obtained by adding the edge \(e \) to \(G \). Then \(G' \) is \(\theta \)-super positive.

Using the process described in Lemma 5.8, we can construct \(\theta \)-super positive graph from \(\theta \)-base graphs. Together with Theorem 5.7, we see that every \(\theta \)-super positive can be constructed from \(\theta \)-base graphs.

Corollary 5.9. A graph is \(\theta \)-super positive if and only if it can be constructed from \(\theta \)-base graphs.

In the next theorem, we shall extend Theorem 2.2.
Theorem 5.10. Let G_1 and G_2 be two θ-super positive graphs and $S_i \in \mathcal{P}(\theta, G_i)$ for $i = 1, 2$. Let G be the graph obtained by adding the edges e_1, e_2, \ldots, e_m to the union of G_1 and G_2, where each e_j contains a point in S_1 and S_2. Then G is θ-super positive.

Proof. We shall prove by induction on m. If $m = 1$, we are done by Theorem 2.2. Suppose $m \geq 2$. Assume that it is true for $m - 1$. Let G' be the graph obtained by adding the edges $e_1, e_2, \ldots, e_{m-1}$ to the union of G_1 and G_2. By induction G' is θ-super positive. Let $e_m = (v_1, v_2)$ where $v_i \in S_i$. Note that the number of θ-critical components in $G' \setminus (S_1 \cup S_2)$ is $c_\theta(G' \setminus (S_1 \cup S_2)) = c_\theta(G_1 \setminus S_1) + c_\theta(G_2 \setminus S_2) = |S_1| + |S_2|$. So $S_1 \cup S_2$ is a θ-barrier set in G'. By Lemma 3.7 and Lemma 3.4, \{v_1, v_2\} is a θ-extreme set in G'. Therefore by Lemma 5.8, G is θ-super positive.

In Figure 6, the graph G is obtained from two 1-base graphs by adding edges e_1 and e_2.

![Figure 6](image_url)

References

[1] W. Chen and C. Y. Ku, An analogue of the Gallai-Edmonds Structure Theorem for nonzero roots of the matching polynomial, Journal of Combinatorial Theory Series B, article in press.

[2] C. D. Godsil, *Algebraic Combinatorics*, Chapman and Hall, New York (1993).

[3] C. D. Godsil, *Algebraic matching theory*, The Electronic Journal of Combinatorics 2 (1995), #R8.

[4] O.J. Heilmann and E.H. Lieb, *Theory of monomer-dimer system*, Commun. Math. Physics, 25 (1972), 190-232.

[5] C.Y. Ku and K.B. Wong, *Extensions of Barrier Sets to Nonzero Roots of the Matching Polynomials*, preprint available at http://www.math.nus.edu.sg/~matkcy/barrier.pdf.

[6] C.Y. Ku and K.B. Wong, *Maximum Multiplicity of Matching Polynomial Roots and Minimum Path Cover in General Graph*, preprint available at http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf.

[7] L. Lovász and M.D. Plummer, *Matching Theory*, Elsevier Science Publishers, Budapest (1986).