Research Article

Evaluation of MT Family Isoforms as Potential Biomarker for Predicting Progression and Prognosis in Gastric Cancer

Mingfu Tong, Wenquan Lu, Hao Liu, Jian Wu, Mingzuo Jiang, Xin Wang, Jianyu Hao, and Daiming Fan

1Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
2Department of Gastroenterology, First Affiliated Hospital, Zhengzhou University, Henan, Zhengzhou 450000, China
3State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China

Correspondence should be addressed to Jianyu Hao; haojianyu@ccmu.edu.cn and Daiming Fan; fandaim@fmmu.edu.cn

Received 18 April 2019; Accepted 25 June 2019; Published 17 July 2019

Guest Editor: Xiao-Jie Lu

Copyright © 2019 Mingfu Tong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Metallothioneins (MTs) family comprises many isoforms, most of which are frequently dysregulated in a wide range of cancers. However, the expression pattern and exact role of each distinct MT family isoform which contributes to tumorigenesis, progression, and drug resistance of gastric cancer (GC) are still unclear. Methods. Publicly available databases including Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, SurvExpress, MethHC, cBioportal, and GeneMANIA were accessed to perform an integrated bioinformatic analysis and try to detect fundamental relationships between each MT family member and GC. Results. Bioinformatic data indicated that the mRNA expression of all MT family members was almost lowly expressed in GC compared with normal gastric tissue (P < 0.05), and patients with reduced mRNA expression of each individual MT member had inconsistent prognostic value (OS, FP, PPS), which depended on the individual isoform of MT. A negative correlation between the methylation in promoter region of majority of MT members and their mRNA expression was detected from MethHC database (p < 0.001). Data downloaded from TCGA revealed that MTs were rarely mutated in GC patients and MT2A was frequently regulated by other three genes (FOS, JUN, SPI) in GC patients. Conclusion. MTs were nearly downregulated, and distinct type of MT harbored different prognostic role in GC patients. Methylation in gene promoter region of MTs partially contributed to their reduced expression in GC. Our comprehensive analyses from multiple independent databases may further lead researches to explore MT-targeting reagents or potential diagnostic and prognostic markers for GC patients.

1. Introduction

Epidemiological data from the WHO suggested that gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer related death throughout the world, with 1,033,701 new cases and 782,685 deaths in 2018 [1]. Despite a decline rate in incidence and important advances in understanding of the epidemiology, pathology, molecular mechanisms, and treatment options made, the disease was still among the poorest of all solid-organ tumors, predominately due to the frequent presence of advanced stage of the cancer once at first diagnosis [2]. In order to improve the survival of advanced GC patients, based on palliative surgery and chemotherapy, targeted therapy had been introduced and was expected to be an important supplementary treatment for gastric cancer [3]. Furthermore, exploring new highly specific and sensitive biomarkers and new molecular targets can not only improve the prognosis of GC patients, but also help to elucidate the molecular mechanism of GC.

Metallothioneins (MTs) are a group of high conserved, low molecular metal-binding proteins with a high content of cysteinyl residues that had been found in bacteria, plants, invertebrates, and vertebrates [4]. In mammals, MTs are clustered on chromosome 16 and encode four protein isoforms whose amino acids varying from 61 to 68, labelled...
by numbers: MT1, MT2, MT3, and MT4 [5]. Despite the physical and chemical similarity of MT isoforms, their roles and presence in tissues vary significantly. MTI comprises eight functional paralogs, named MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MTX, present almost in all types of soft tissue [6]. MT2 gene only encodes one isoform, called MT2A, also existing prevalently like MT1. MT3 and MT4 are both encoded by one single gene, whereas they are expressed respectively in brain tissues and epithelial cells [6]. Although abundant researches appeared, the proper functions of MTs are still illusive. Nevertheless, MTs had been implicated in a wide range of properties like homeostasis maintenance, detoxification, DNA damage protection, redox pool maintenance, inflammation, and cancer regulation [7].

It is not surprising that MTs are involved in many cancer processes, but the expression and role of MTs is not uniform in kinds of malignancy [8–11]. Discordant results regarding the expression of MT and its association with clinicopathological parameters and prognosis were observed in gastric cancer tissue compared to normal tissue in different studies [12–20]. In addition, the change of MT1/2 protein expression differs from the change of single MT isoform in malignant melanoma tumor, like MT1E and MT1G [21–23]. As such, it is urgent to systematically investigate the expression and role of each isoform of MTs in gastric cancer. In the present study, we accessed into some available databases, like Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, SurvExpress, MethHC, cBioportal, and GeneMANIA to systematically evaluate MT family isoforms in gastric cancer, which may be able to pave the way to well-understand the expression and role of MTs in gastric cancer.

2. Materials and Methods

All datasets obtained from various public databases were analyzed to predict MTs mRNA expression levels, prognostic values, methylation and mutation of metallothionein in tumor tissue compared to normal gastric mucosa.

2.1. Comparison of MTs Gene Expression between Tumor and Normal Samples. The cancer related public databases Oncomine (https://www.oncomine.org/) was used to investigate the mRNA expression level of MTs in tumor and normal tissue [24]. In the Oncomine database, all members of MT family were retrieved and the differential gene analysis (GC versus normal) combined with mRNA data type were chosen. In this study, the Student’s t-test was used to generate \(p \) values of comparison. The cutoff \(p \) value and fold change were defined as 0.01 and 2.

The expression of MTs between tumor and normal gastric tissue was also studied using the GEPIA browser (http://gepia.cancer-pku.cn/), which is an online tool for estimating mRNA expression based on The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects [25]. Box and stage plotting analyses were processed on this database. The cutoff \(p \) value was defined as 0.01.

2.2. Analysis of Prognostic Values of MT Members in GC Patients. The association among MTs expression and the overall survival (OS), first progression (FP), and postprogression survival (PPS) in GC was analyzed by data mining in the Kaplan-Meier plotter database (http://kmplot.com), which is an online database that enables assessment of survival related biomarkers download from Gene Expression Omnibus (GEO) [26]. In this study, clinical data including subtypes, stage, differentiation, HER2 status, and treatment was collected.

SurvExpress (http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp), a large online database that enables comparison and validation of survival related biomarkers for cancer outcomes was used when the survival data of some MT family members were not available in Kaplan-Meier plotter [27]. The parameters chosen for survival analysis were as follows: larger stomach adenocarcinoma (STAD) sample size (>200 patient), dataset from TCGA, duplicated geneshow all, data-uniformized. The median MTs expression was used as the cutoff. Hazard ratios with 95% CI and log-rank \(p \) value were calculated.

2.3. Comparison of MTs Gene Methylation between Tumor versus Nontumor Tissues and Analysis of Relationship between Methylation and mRNA Expression in GC from MethHC. DNA methylation of MTs between tumor and normal tissue was compared through the human pan-cancer methylation database-MethHC (http://methhc.mbc.nctu.edu.tw/), which is a database focused on the DNA methylation of human diseases from TCGA [28]. In addition, the correlation between MTs methylation and its mRNA expression in GC patients was also analyzed using MethHC. In this study, the gene region was chosen as promoter and the methylation level evaluation method was defined as average.

2.4. Analysis of MTs Gene Mutations and Associated Network in GC from TCGA. Clinical data from TCGA database for GC patients were downloaded and processed in Microsoft Excel and manually checked on the base of the primary site of tumor onset in a bid to exclude non-GC patients. Meanwhile, the information of GC downloaded in the cBioPortal for Cancer Genomics (http://www.cbioportal.org) was processed to analyze the presence of mutations, EBV infection rate, and explore the associated network of MTs in GC [29, 30]. GeneMANIA, a flexible, accurate database that can generate network information based on genes inputted including protein and genetic interactions, pathways, coexpression, colocalization, and protein domain similarity [31], was used to find additional genes or proteins related to MTs.

3. Results

3.1. Downregulation of MTs mRNA in Patients with GC. Oncomine and GEPIA databases data was used to examine differential levels of MTs mRNA between gastric cancer and normal gastric tissue. In addition to GC, difference of MTs mRNA in other cancers and their paired normal tissue was also assessed in Oncomine database. Among
these cancer datasets, the expression of all MT isoforms was downregulated significantly in 8 out of 20 cancer types compared to paired normal tissue, including four digestive system cancer types: gastric, colorectal, liver, and pancreatic cancer (Figure 1). Apart from MT1B, MT1F, and MT4, other MT isoforms in tumor tissue were both downregulated significantly in Oncomine and GEPIA databases (Figures 1 and 2). The elaborating details of MTs expression in all GC datasets in Oncomine database could be seen in Table 1. In addition, the expression of MT family members in different stages of GC was also analyzed using GEPIA, and none of them varied with statistical significance in different stages of GC (Supplementary Figure 1).

3.2. Prognostic Features of MTs in Patients with GC. Prognostic features of MTs mRNA for GC patients including OS, FP, and PPS were investigated, respectively, through data mining in Kaplan-Meier plotter. It could be seen that almost all MT isoforms were significantly associated with OS, FP, and PPS for GC patients, respectively (Figure 3 A1–A3). The data from the respective probes showed reduced OS with low MT1F, MT1H, and MT1X (Figure 3(b)) and reduced FP with low MT1E, MT1F, MT1H, MT1M, and MT1X (Figure 3(c)). Positive correlation was found between PPS and MT1X, while reversed relationship was shown between PPS and MT1G, MT2A, MT3, and MT4 (Figure 3(d)). High MT1G, MT3, and MT4 mRNA expression led to reduced OS, FP, and PPS in GC patients. Notably, increased MT2A transcript level only correlated significantly with reduced PPS, not correlated significantly with OS and FP (Figures 3(b)–3(d)). The details of these isoforms whose mRNA expression was not correlated with survival time (OS, FP, PPS) were listed in supplementary materials (Supplementary Figures 2(A)–2(D)).

As per the Lauren’s classification of stomach adenocarcinoma, GC was classified into three subtypes: intestinal type, diffuse type, and mixed type. As such, prognostic value of MTs isoforms was also determined in different GC subtypes using Kaplan-Meier plotter online tool. The data from individual probe indicated that 8 out of 9 available MT members mRNA expression were correlated with OS in GC intestinal type ($P < 0.05$; Table 2). Furthermore, the majority of them (5/8) were with better prognosis (OS) (data was not shown). In addition, other survival analysis revealed that clinicopathological features including clinical stage, differentiation, HER2 status, and treatment were significant

Analysis Type by Cancer	Cancer Vs. Normal											
Bladder Cancer	MT1A	MT1B	MT1E	MT1F	MT1G	MT1H	MT1M	MT1X	MT2A	MT3	MT4	
Brain and CNS Cancer												
Breast Cancer												
Cervical Cancer												
Colorectal Cancer												
Esophageal Cancer												
Gastric Cancer												
Head and Neck Cancer												
Kidney Cancer												
Leukemia												
Liver Cancer												
Lung Cancer												
Lymphoma												
Melanoma												
Medullary												
Other Cancer												
Ovarian Cancer												
Pancreatic Cancer												
Prostate Cancer												
Sarcoma												

Figure 1: Transcript levels of MT isoforms in different types of cancer (Oncomine). Notes: This figure indicates the numbers of datasets with statistically significant MTs mRNA upregulation (red) or downregulation (blue) (different types of cancer versus corresponding normal tissues) (threshold setting: p value, 0.05; fold change, 2; gene rank, top 10%). The numbers in the colored cell represent the numbers of datasets meeting the threshold.
3.3. DNA Methylation of MTs and Its Correlation with mRNA Expression in GC Patients. To identify the role of methylation in regulating MTs expression in patients with GC, MethHC was utilized to explore the level of methylation in promoter region and its relationship with mRNA expression of MT genes. Among all types of MT, the difference of methylation level between cancer and normal samples was statistically significant except gene MT1E (P<0.05, Figure 4). The majority of MTs (8/11) in cancer exhibited extraordinarily methylated variation in promoter region compared to normal tissue (P<0.005, Figure 4). Notably, DNA methylation of some MT isoforms in gastric cancer, like MT1A, MT1B, MT1H, MT1M, MT3, and MT4, was higher than their paired normal tissue except remaining isoforms (Figure 4). Additionally, an inverse correlation between DNA methylation and mRNA expression of most isoforms of MT in GC was observed other than MT1A and MT4 isoforms (P<0.001, Table 4).
MT family members	Types of GC vs. normal	Fold change	t-Test	P value	Reporter
MT1A	Gastric Intestinal Type Adenocarcinoma vs. Normal	-2.939	-5.52	1.48E-06	ILMN-1691156
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.151	-6.36	1.04E-07	ILMN-1691156
	Gastric Mixed Adenocarcinoma vs. Normal	-3.053	-3.47	2.00E-03	ILMN-1691156
	Gastric Adenocarcinoma vs. Normal	-2.255	-0.99	0.196	ILMN-1691156
MT1B	Gastric Intestinal Type Adenocarcinoma vs. Normal	-2.496	-7.43	3.42E-09	IMAGE:232772
	Diffuse Gastric Adenocarcinoma vs. Normal	-2.037	-4.43	5.52E-05	IMAGE:232772
	Gastric Mixed Adenocarcinoma vs. Normal	-2.321	-4.43	2.26E-04	IMAGE:232772
MT1E	Gastric Intestinal Type Adenocarcinoma vs. Normal	-3.006	-7.8	1.16E-08	ILMN-1718968
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.042	-8.23	6.09E-10	ILMN-1718968
	Gastric Mixed Adenocarcinoma vs. Normal	-2.524	-4.05	0.005	ILMN-1718968
MT1F	Gastric Intestinal Type Adenocarcinoma vs. Normal	-5.011	-10.9	7.66E-14	IMAGE:78353
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.821	-6.8	6.50E-08	IMAGE:78353
	Gastric Mixed Adenocarcinoma vs. Normal	-4.273	-4.69	3.35E-04	IMAGE:245990
MT1H	Gastric Intestinal Type Adenocarcinoma vs. Normal	-4.137	-9.59	1.06E-12	IMAGE:214162
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.314	-5.99	1.13E-06	IMAGE:214162
	Gastric Mixed Adenocarcinoma vs. Normal	-4.151	-4.5	8.45E-04	IMAGE:214162
	Gastric Adenocarcinoma vs. Normal	-3.076	-5.1	4.59E-04	206461-x-at
	Gastric Mixed Adenocarcinoma vs. Normal	-4.261	-7.53	1.72E-04	206461-x-at

Table 1: The transcription levels of MT family isoforms between different types of GC and normal tissues (ONCOMINE).
Table I: Continued.

MT family members	Types of GC vs. normal	Fold change	t-Test	P value	Reporter
	Gastric Cancer vs. Normal	-4.451	-7.56	1.68E-12	3662150
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-5.442	-11.2	8.37E-17	IMAGE:126458
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.75	-6.3	9.03E-07	IMAGE:126458
	Gastric Mixed Adenocarcinoma vs. Normal	-6.244	-16.4	1.15E-04	IMAGE:126458
	Diffuse Gastric Adenocarcinoma vs. Normal	-8.169	-9	7.18E-10	ILMN-1657435
MT1M	Gastric Intestinal Type Adenocarcinoma vs. Normal	-5.42	-6.12	2.48E-07	IMAGE:126458
	Gastric Mixed Adenocarcinoma vs. Normal	-3.749	-3.03	0.004	ILMN-1657435
	Diffuse Gastric Adenocarcinoma vs. Normal	-4.402	-3.57	0.006	ILMN-1657435
	Gastric Cancer vs. Normal	-10.35	-3.32	0.003	ILMN-1657435
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-5.088	-6.1	2.23E-07	ILMN-1657435
	Diffuse Gastric Adenocarcinoma vs. Normal	-8.169	-9	7.18E-10	ILMN-1657435
	Gastric Mixed Adenocarcinoma vs. Normal	-3.749	-3.03	0.004	ILMN-1657435
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-5.42	-6.12	2.48E-07	ILMN-1657435
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.749	-3.03	0.004	ILMN-1657435
	Gastric Cancer vs. Normal	-10.35	-3.32	0.003	ILMN-1657435
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-5.088	-6.1	2.23E-07	ILMN-1657435
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.749	-3.03	0.004	ILMN-1657435
	Gastric Mixed Adenocarcinoma vs. Normal	-3.1	-4.86	0.004	ILMN-1657435
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-4.098	-6.29	1.63E-07	ILMN-1775170
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.782	-6.42	1.60E-07	ILMN-1775170
	Gastric Mixed Adenocinoma vs. Normal	-3.827	-4.26	6.15E-04	ILMN-1775170
	Diffuse Gastric Adenocarcinoma vs. Normal	-3.749	-3.03	0.004	ILMN-1775170
	Gastric Cancer vs. Normal	-10.35	-3.32	0.003	ILMN-1775170
	Gastric Mixed Adenocinoma vs. Normal	-3.11	-4.86	0.004	ILMN-1775170
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-1.55	-2.95	0.002	208581-x-at
	Gastric Cancer vs. Normal	-1.99	-2.18	0.021	208581-x-at
	Diffuse Gastric Adenocarcinoma vs. Normal	-2.117	-4.32	0.001	ILMN-1686664
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-2.308	-4.56	2.50E-05	ILMN-1686664
	Gastric Mixed Adenocinoma vs. Normal	-2.85	-4.56	2.50E-05	ILMN-1686664
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-1.42	-2.7	0.005	ILMN-1686664
	Gastric Cancer vs. Normal	-1.89	-2.33	0.015	212185-x-at
	Gastric Mixed Adenocinoma vs. Normal	-1.21	-3.71	0.004	ILMN-1686664
	Gastric Intestinal Type Adenocarcinoma vs. Normal	-1.14	-1.89	0.034	ILMN-1686664
	Gastric Cancer vs. Normal	-1.11	-0.77	0.229	ILMN-1686664
	Gastric Mixed Adenocinoma vs. Normal	1.02	0.673	0.744	ILMN-1743545
	Gastric Intestinal Type Adenocarcinoma vs. Normal	1.032	1.191	0.879	ILMN-1743545
	Gastric Cancer vs. Normal	1.461	1.104	0.825	ILMN-1743545

Notes: P value was analyzed using the t-test. The bold font indicates that the difference was not statistically significant between the GC and normal tissue group. The bold font with symbol "*" indicates the fold change was no more than 2 folds. The bold font with symbol "**" indicates the transcription level of MTs in gastric cancer was slightly higher than normal tissue.

3.4. MTs Mutations and Associated Network in GC Patients

Genetic mutations of MT family members were analyzed through cBioPortal online tool for GC patients. A total of 1443 patients from seven datasets of stomach adenocarcinoma were analyzed. Among these seven datasets, mutation rate of MTs calculated in three datasets was 1.36% (6/440), 2.51% (12/478), and 3.39% (10/295), respectively, and no statistically significant difference was observed for OS and DFS between
Figure 3: Continued.
cases with and without MT mutation in gastric cancer (data was not showed). The percentage of genetic mutation in MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, MT3, and MT4 was 0.6% (deep deletion), 0.9% (0.21% missense mutation, 0.62% deep deletion), 0.6% (deep deletion), 0.6% (deep deletion), 0.9% (0.28% missense mutation, 0.62% deep deletion), 0.6% (deep deletion), 1.1% (0.42% missense mutation, 0.62% Deep Deletion), 0.6% (deep deletion), 0.8% (0.14% missense mutation, 0.62% deep deple- tion), 0.7% (0.07% truncating mutation, 0.62% deep depletion), and 0.9% (0.27% truncating mutation, 0.62 deep depletion) (Figure 5(a)). Data from in situ hybridization (ISH) revealed that 20% (40/200) were EBV positive. In addition, crossing data of primary site showed that 37.1% (161/434) of these tumors were located at the antrum, followed by fundus/body (35%), cardia/proximal (14.3%), gastroesophageal junction (10.6%), and the unknowable site (3%) (Figure 5(a)).

The network established in cBioPortal demonstrated that FOS, JUN, and SPI control the expression of MT2A, whereas HLA-DRA and HLA-DRB1 control the expression of FOS. FOS controls the expression of JUN; meanwhile, B2M and HLA-B control the state change of JUN (Figure 5(b)). Furthermore, another network for MTs with the structure or function of neighboring genes constructed from GeneMA-NIA showed that other 20 genes—MT1H1, BBS2, AAMDC, CD160, MARC2, TMEM51, IYD, LGALS2, NEURL3, ASPA, PTGDR, C11orf52, TMEM14C, SPP1, SYMM, ZSWIM5, TNN, SORBS3, ACPP, and TLR3—were associated closely with MTs. The result showed that all MTs protein shared protein domains with each other and particularly shared protein domains even with another protein named MT1H1 (Figure 5(c)).

4. Discussion

Up to date, accumulating studies were emerging to investigate MTs expression and their roles in malignant tumors, but only a minority of MT isoforms were evaluated in gastric cancer and no unanimous agreement was reached. In an immunohistochemical analysis, Ebert and his colleagues showed overexpression of MT in GC tissues, independent of tumor stage, differentiation, or tumor type [14]. Similar outcome of MT in GC was also reported by other groups [17, 32]. On the contrary, several studies reported a lower MT expression in GC specimens than normal mucosae [15, 16, 18]. Until now, a minority of individual isoform of MTs...
Table 2: The prognostic values of MT isoforms in different pathological subtypes of GC patients (Kaplan-Meier plotter).

MT family	Laurenclassification	cases	HR	95% CI	P value	cases	HR	95% CI	P value
MT1E	intestinal	320	0.67	0.49-0.92	**0.013**	192	1.39	0.92-2.1	0.12
	diffuse	241	0.55	0.38-0.79	**0.0011**	176	0.53	0.34-0.83	**0.0045**
	mixed	32	5.92	0.77-45.35	0.053	16	-	-	-
MT1F	intestinal	320	0.63	0.46-0.88	**0.0056**	192	0.7	0.45-1.09	0.11
	diffuse	241	0.62	0.44-0.88	**0.0063**	176	0.48	0.3-0.77	**0.0019**
	mixed	32	2.02	0.68-5.99	0.2	16	-	-	-
MT1G	intestinal	320	1.99	1.42-2.8	**0.0005**	192	2.6	1.7-3.97	**4.3E-05**
	diffuse	241	1.83	1.18-2.82	**0.006**	176	1.53	1.03-2.28	**0.034**
	mixed	32	3.32	1.3-9.82	**0.021**	16	-	-	-
MT1H	intestinal	320	0.7	0.5-1	**0.046**	192	0.63	0.4-1.0	**0.047**
	diffuse	241	0.55	0.39-0.77	**0.0053**	176	0.54	0.36-0.79	**0.0015**
	mixed	32	0.33	0.07-1.47	0.13	16	-	-	-
MT1M	intestinal	320	0.59	0.42-0.84	**0.0027**	192	1.48	0.98-2.25	0.061
	diffuse	241	0.59	0.39-0.89	**0.011**	176	0.54	0.34-0.84	**0.0051**
	mixed	32	1.57	0.57-4.36	0.38	16	-	-	-
MT1X	intestinal	320	0.58	0.42-0.82	**0.0015**	192	0.65	0.42-0.99	**0.041**
	diffuse	241	0.57	0.4-0.79	**0.00087**	176	0.56	0.38-0.83	**0.0029**
	mixed	32	0.49	0.14-1.75	0.26	16	-	-	-
MT2A	intestinal	320	1.27	0.93-1.75	0.13	192	1.49	0.99-2.25	0.055
	diffuse	241	0.59	0.41-0.86	**0.0047**	176	0.65	0.44-0.97	**0.035**
	mixed	32	0.52	0.18-1.51	0.22	16	-	-	-
MT3	intestinal	320	2.34	1.69-3.26	**1.8E-06**	192	1.79	1.18-2.7	**0.0051**
	diffuse	241	1.24	0.83-1.86	0.29	176	1.23	0.78-1.94	0.37
	mixed	32	1.43	0.49-4.2	0.51	16	-	-	-
MT4	intestinal	320	2.58	1.87-3.56	**1.8E-08**	192	2.48	1.4-4.4	**0.0013**
	diffuse	241	0.72	0.52-1.02	0.06	176	1.5	0.96-2.33	0.07
	mixed	32	2.8	1.01-7.77	**0.038**	16	-	-	-

Notes: P value was analyzed using the survival analysis test. The fold indicates that the difference was statically significant. The P value was set up at 0.05.

Abbreviations: GC: gastric cancer; OS: overall survival; PPS: postprogression survival; HR: hazard ratio.
Table 3: The prognostic values of MT isoforms in GC patients with different clinical stage (Kaplan-Meier plotter).

MT family	clinical stage	cases	HR	95%CI	P value	cases	HR	95%CI	P value
MT1E	I	67	0.43	0.16-1.16	0.085	31	0.1	0.02-0.71	0.007
	II	140	0.63	0.32-1.23	0.17	105	0.6	0.26-1.35	0.21
	III	305	0.72	0.54-0.96	0.026	142	0.7	0.45-1.1	0.12
	IV	148	0.72	0.46-1.14	1.14	104	1.3	0.84-2.07	0.22
MT1F	I	67	0.27	0.1-0.72	0.005	31	0.1	0.02-0.69	0.006
	II	140	0.54	0.27-1.08	0.075	105	0.6	0.27-1.41	0.25
	III	305	0.66	0.49-0.88	0.004	142	0.7	0.44-1.03	0.068
	IV	148	0.7	0.44-1.11	1.12	104	1.3	0.77-2.25	0.31
MT1G	I	67	2.87	0.92-8.96	0.058	31	6.6	6.25-34.15	0.011
	II	140	1.69	0.88-3.23	0.11	105	2	0.79-5.24	0.13
	III	305	1.68	1.26-2.23	4E-04	142	2	1.29-3.02	0.001
	IV	148	1.78	1.16-2.73	4E-04	104	2.4	1.46-3.97	0.041
MT1H	I	67	2	0.71-5.57	0.18	31	0.2	0.02-1.79	0.12
	II	140	0.82	0.44-1.52	0.52	105	0.5	0.37-1.42	0.07
	III	305	0.75	0.57-1.01	0.054	142	0.7	0.45-1.04	0.076
	IV	148	0.62	0.41-0.95	0.027	104	1.3	0.74-2.1	0.41
MT1M	I	67	2.34	0.67-8.23	0.17	31	2.8	0.55-14.39	0.2
	II	140	0.82	0.44-1.52	0.52	105	0.5	0.37-1.42	0.07
	III	305	0.73	0.52-1.02	0.067	142	0.7	0.45-1.11	0.13
	IV	148	0.73	0.46-1.15	0.17	104	1.5	0.92-2.32	0.11
MT1X	I	67	0.29	0.1-0.8	0.011	31	0	—	0.002
	II	140	0.49	0.22-1.11	0.081	105	0.6	0.29-1.33	0.22
	III	305	0.61	0.46-0.81	7E-04	142	0.6	0.39-0.92	0.017
	IV	148	0.66	0.45-0.99	0.041	104	1.4	0.79-2.35	0.27
MT2A	I	67	0.35	0.13-0.93	0.028	31	0.1	0.02-0.67	0.005
	II	140	0.57	0.28-1.16	0.12	105	0.6	0.27-1.43	0.26
	III	305	0.79	0.59-1.05	0.11	142	0.7	0.47-1.16	0.19
	IV	148	0.78	0.51-1.18	0.24	104	1.5	0.93-2.27	0.095
MT3	I	67	1.79	0.61-5.21	0.28	31	3.5	0.76-16.1	0.089
	II	140	2.07	1.4-7.47	0.014	105	2	0.99-3.8	0.049
	III	305	2.05	1.48-2.83	1E-05	142	2.1	1.35-3.22	7E-04
	IV	148	1.38	0.89-2.14	0.14	104	0.6	0.35-0.93	0.023
MT4	I	67	1.87	0.69-5.04	0.21	31	2.7	0.32-23.29	0.34
	II	140	1.3	0.62-2.71	0.49	105	1.7	0.81-3.7	0.15
	III	305	1.88	1.41-2.52	2E-05	142	1.9	1.21-2.95	0.004
	IV	148	1.29	0.89-1.91	0.19	104	1.3	0.81-2.04	0.29

Notes: P value was analyzed using the survival analysis test. The fold indicates that the difference was statistically significant. The P value was set up at 0.05.
Abbreviations: GC: gastric cancer; OS: overall survival; PPS: postprogression survival; HR: hazard ratio.

Table 4: The correlation between DNA methylation and mRNA expression in the MT gene members of GC patients (MethHC).

Variable	Methylation	MT1A	MT1B	MT1E	MT1F	MT1G	MT1H	MT1M	MT1X	MT2A	MT3	MT4
mRNA expression	r=0.007	r=-0.123	r=-0.279	r=-0.116	r=-0.158	r=-0.230	r=-0.187	r=-0.010	r=-0.160	r=-0.248	r=-0.02	p=4.44
p value	p<0.001	p=0.59										

Notes: ** indicates statistical significance with P<0.001. Abbreviation: GC: gastric cancer.
phenomenon mentioned above that the change in MT1/2 protein expression was different from single MT isoforms and different MT isoform plays distinct function in cell activities [38, 39]. Although the antibodies specific to MT1A, MT1G, and MT3 were available in market [9, 40], distinguishing of MTs by using antibodies is even more tricky.

DNA methylation is an important epigenetic modification in cancer formation by silencing tumor suppressor genes. A wide range of studies investigated MTs promoter methylation in some cancer types, but limiting studies about MTs methylation in gastric cancer were published up to now [21, 41–43]. In line with MT3 hypermethylation in gastric...
Figure 5: Alteration frequency of MT isoforms and neighbor genes network in GC patients (cBioPortal). Notes: (a) OncoPrint visual summary of alteration in MT family members. (b) Network involved in the expression of MTs gene constructed in cBioPortal. Green lines represent gene controlling the expression of those genes to which the arrows are pointing, while blue lines represent genes controlling the state change of those genes to which the arrows are pointing, brown lines represent genes in complex with other genes. (c) Network for MTs with the structure or neighboring genes constructed in GeneMANIA. Yellow lines represent shared protein domains between these genes; violet lines represent coexpression between these genes.
cancer showed by Deng et al., our study also showed that MT3 was highly hypermethylated compared with normal gastric tissue [33]. In the present study, we demonstrated that half of MT isoforms in GC were highly methylated in the promoter region except MT1E and that there was an inverse correlation between DNA methylation and mRNA expression of most isoforms of MT other than MTIA and MT4 isoforms. Therefore, it is not difficult to conclude that methylation in MTs gene promoter region partially contributed to their reduced expression in GC. In addition, our study revealed that MT genes are very rarely mutated and no statistically significant difference was observed for OS and disease-free survival (DFS) between cases with and without alteration of MTs in gastric cancer. The Epstein-Barr Virus (EBV), the second pathogen associated with GC, was found in approximately 20% of the samples in the present study, which was similar to previous studies [44–46]. Meanwhile, the outcomes in our study that GC located most frequently at the antrum are in line with previous studies [47–49]. Moreover, we established networks related to MT family to explore other genes involved in regulatory relationship between them.

In summary, all these findings indicated that MTs were nearly downregulated in GC tissue and their prognostic values in GC were dependent on single isoform of MT, which need to be determined further in de facto cohort studies. As such, our study offered comprehensive evidences to evaluate the possible regulating function of MTs in GC which may help for further discovering MTs as potential diagnostic or prognostic biomarkers and therapeutic target for GC in the future.

5. Study Limitations

However, the present study was not without limitations. First, all the data analyzed in our study was obtained from different online databases, which might cause background heterogeneity. Additionally, the study did not conduct experiments to validate the results obtained from silicobioinformatic analysis based on online databases. Therefore, more elaborate studies with focus on various MT isoforms expression and prognostic value in GC need to be performed in the future.

Data Availability

All data like figures and tables used to support the findings of this study are included within the article. All data like supplementary figures and tables used to support the findings of this study are included within the supplementary information materials. All unavailable data used to support the findings of this study can be seen on related database online. We did not release them not because we did not give the original data but we gave it in another form which could not reflect it directly.

Conflicts of Interest

The authors report no conflicts of interest in this work.

Authors’ Contributions

Mingfu Tong and Wenquan Lu contributed equally to this work.

Acknowledgments

The work was funded by the National Science Foundation of China (No. 81430072, to Daiming Fan), the Scientific Fund for Innovative Research Groups of the National Natural Science Foundation of China (No. 81421003, to Daiming Fan), and Fundamental Research Funds for National Center for Clinical Medicine of Digestive Diseases (No. 2015BAI13B07, to Daiming Fan).

Supplementary Materials

Supplementary Figure 1: the correlation between the expression of MTs and tumor stages in GC patients (GEPIA). Supplementary Figure 2: the prognostic values with no significance of mRNA level of MTs in all GC patients (SurvExpress, Kaplan-Meier plotter). Supplementary Tables 1–3: the prognostic values of MT isoforms in GC patients with different differentiation, HER2 status, and treatment (Kaplan-Meier plotter). (Supplementary Materials)

References

[1] International Agency for Research on Cancer, “World Health Organization: The Global Cancer Observatory (GCO),” 2019, http://globocan.iarc.fr/Default.aspx.

[2] S. G. Thrumurthy, M. A. Chaudry, I. Chau, and W. Allum, “Does surgery have a role in managing incurable gastric cancer?” Nature Reviews Clinical Oncology, vol. 12, no. 11, pp. 676–682, 2015.

[3] M. A. Shah, R.-H. Xu, Y.-J. Bang et al., “HELOISE: Phase IIIb randomized multicenter study comparing standard-of-care and higher-dose trastuzumab regimens combined with chemotherapy as first-line therapy in patients with human epidermal growth factor receptor 2–positive metastatic gastric or gastroesophageal junction adenocarcinoma,” Journal of Clinical Oncology, vol. 35, no. 22, pp. 2558–2567, 2017.

[4] C. D. Klaassen, J. Liu, and B. A. Diwan, “Metallothionein protection of cadmium toxicity,” Toxicology and Applied Pharmacology, vol. 238, no. 3, pp. 215–220, 2009.

[5] A. West, R. Stallings, C. Hildebrand, R. Chia, M. Karin, and R. Richards, “Human metallothionein genes: structure of the functional locus at 16q13,” Genomics, vol. 8, no. 3, pp. 513–518, 1990.

[6] A. Moleirinho, J. Carneiro, R. Matthiesen et al., “Gains, losses and changes of function after gene duplication: study of the metallothionein family,” PLoS ONE, vol. 6, no. 4, p. e18487, 2011.

[7] M. Ryvola, V. Adam, and R. Kizek, “Analysis of metallothionein by capillary electrophoresis,” Journal of Chromatography A, vol. 1226, pp. 31–42, 2012.

[8] J. C. Mougeot, Z. Bahrani-Mostafavi, J. C. Vachris et al., “Gene expression profiling of ovarian tissues for determination of molecular pathways reflective of tumorigenesis,” Journal of Molecular Biology, vol. 358, no. 1, pp. 310–329, 2006.
[41] Y. Nobeyama and H. Nakagawa, “Silencing of metallothionein 1A gene in melanoma,” *Journal of Dermatological Science*, vol. 88, no. 2, pp. 232–237, 2017.

[42] J. Fu, H. Lv, H. Guan et al., “Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway,” *BMC Cancer*, vol. 13, no. 1, pp. 462–475, 2013.

[43] X. Ji, Y. C. Fan, S. Gao et al., “MT1M and MT1G promoter methylation as biomarkers for hepatocellular carcinoma,” *World Journal of Gastroenterology*, vol. 20, no. 16, pp. 4723–4729, 2014.

[44] C. R. Souza, M. C. Almeida, A. S. Khayat et al., “Association between *Helicobacter pylori*, Epstein-Barr virus, human papillomavirus and gastric adenocarcinomas,” *World Journal of Gastroenterology*, vol. 24, no. 43, pp. 4928–4938, 2018.

[45] D. Salyakina and N. F. Tsinoremas, “Viral expression associated with gastrointestinal adenocarcinomas in TCGA high-throughput sequencing data,” *Human Genomics*, vol. 7, no. 1, pp. 23–30, 2013.

[46] K. Takada, “Epstein-Barr virus and gastric carcinoma,” *Molecular Pathology*, vol. 53, no. 5, pp. 255–261, 2000.

[47] Q. Huang, C. Fang, J. Shi et al., “Differences in clinicopathology of early gastric carcinoma between proximal and distal location in 438 chinese patients,” *Scientific Reports*, vol. 5, no. 1, article 13439, 2015.

[48] N. Amini, G. Spolverato, Y. Kim et al., “Clinicopathological features and prognosis of gastric cardia adenocarcinoma: A multi-institutional U.S. study,” *Journal of Surgical Oncology*, vol. 111, no. 3, pp. 285–292, 2015.

[49] S. J. Crane, G. Richard Locke, W. S. Harmsen et al., “The changing incidence of oesophageal and gastric adenocarcinoma by anatomic sub-site,” *Alimentary Pharmacology & Therapeutics*, vol. 25, no. 4, pp. 447–453, 2007.