The TMC2010 is a high-speed 16 x 16 bit parallel multiplier-accumulator which operates at a 160 nanosecond cycle time (more than 60 MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32-bit product. Products may be accumulated to a 35-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a three bit eXTended Product (XTP), a sixteen bit Most Significant Product (MSP), and a sixteen bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2010 is pin and function compatible with the industry standard TDC1010 and operates with the same speed at one-sixth or less power dissipation, depending on the multiply-accumulate rate.

Features
- Low Power Consumption CMOS Process
- Pin And Function Compatible With TRW TDC1010
- 160ns Multiply—Accumulate Time (Worst Case)
- 16 x 16 Bit Parallel Multiplication With Accumulation To 35-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68-Leaded Chip Carrier

Applications
- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram
Pin Assignments

Pin	Description
X9	1
X7	64
X8	53
X9	56
X10	55
X11	54
X12	53
X13	52
X14	51
X15	50
X16	49
X17	48
X18	47
X19	46
X20	45
X21	44
X22	43
X23	42
X24	41
X25	40
X26	39
X27	38
X28	37
X29	36
X30	35
X31	34
X32	33

64 Lead DIP - J3 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

LSI Products Division
TRW Electronic Components Group
Functional Description

General Information

The TMC2010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format (two’s complement or unsigned magnitude), output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two’s complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TMC2010 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TMC2010 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J3 Package	C1, L1 Package
vDD	Positive Supply Voltage	+5.0V	Pin 49	Pins 17, 18, 19, 20
GND	Ground	0.0V	Pin 16	Pins 53, 54

Data Inputs

The TMC2010 has two 16-bit two’s complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X15 and Y15, carry the sign information for the two’s complement notation. The remaining bits are denoted X14 through X0 and Y14 through Y0 (with X0 and Y0 the Least Significant Bits). Data present at the X and Y inputs is clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two’s complement notation, fractional unsigned magnitude notation, integer two’s complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X15	X Data MSB	TTL	Pin 56	Pin 10
X14		TTL	Pin 57	Pin 9
X13		TTL	Pin 58	Pin 8
X12		TTL	Pin 59	Pin 7
X11		TTL	Pin 60	Pin 6
X10		TTL	Pin 61	Pin 5
X9		TTL	Pin 62	Pin 4
X8		TTL	Pin 63	Pin 3
X7		TTL	Pin 64	Pin 2
X6		TTL	Pin 1	Pin 1
X5		TTL	Pin 2	Pin 68
X4		TTL	Pin 3	Pin 67
X3		TTL	Pin 4	Pin 66
X2		TTL	Pin 5	Pin 65
X1		TTL	Pin 6	Pin 64
X0	X Data LSB	TTL	Pin 7	Pin 63
Data Inputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
Y15	Y Data MSB	TTL	Pin 24	Pin 45
Y14	TTL	Pin 23	Pin 46	
Y13	TTL	Pin 22	Pin 47	
Y12	TTL	Pin 21	Pin 48	
Y11	TTL	Pin 20	Pin 49	
Y10	TTL	Pin 19	Pin 50	
Y9	TTL	Pin 18	Pin 51	
Y8	TTL	Pin 17	Pin 52	
Y7	TTL	Pin 15	Pin 55	
Y6	TTL	Pin 14	Pin 56	
Y5	TTL	Pin 13	Pin 57	
Y4	TTL	Pin 12	Pin 58	
Y3	TTL	Pin 11	Pin 59	
Y2	TTL	Pin 10	Pin 60	
Y1	TTL	Pin 9	Pin 61	
Y0	Y Data LSB	TTL	Pin 8	Pin 62

Data Outputs

The TMC2010 has a 35-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16-bit output words, the Most Significant Product (MSPI) and Least Significant Product (LSPI), and one 3-bit output word, the eXtended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
P34	Product MSB	TTL	Pin 43	Pin 26
P33	TTL	Pin 42	Pin 27	
P32	TTL	Pin 41	Pin 28	
P31	TTL	Pin 40	Pin 29	
P30	TTL	Pin 39	Pin 30	
P29	TTL	Pin 38	Pin 31	
P28	TTL	Pin 37	Pin 32	
P27	TTL	Pin 36	Pin 33	
P26	TTL	Pin 35	Pin 34	
P25	TTL	Pin 34	Pin 35	
P24	TTL	Pin 33	Pin 36	
P23	TTL	Pin 32	Pin 37	
P22	TTL	Pin 31	Pin 38	
P21	TTL	Pin 30	Pin 39	
P20	TTL	Pin 29	Pin 40	
P19	TTL	Pin 28	Pin 41	
P18	TTL	Pin 27	Pin 42	
P17	TTL	Pin 26	Pin 43	
P16	TTL	Pin 25	Pin 44	
Data Outputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
P15	TTL	Pin 24	Pin 45	
P14	TTL	Pin 23	Pin 46	
P13	TTL	Pin 22	Pin 47	
P12	TTL	Pin 21	Pin 48	
P11	TTL	Pin 20	Pin 49	
P10	TTL	Pin 19	Pin 50	
P9	TTL	Pin 18	Pin 51	
P8	TTL	Pin 17	Pin 52	
P7	TTL	Pin 16	Pin 53	
P6	TTL	Pin 15	Pin 54	
P5	TTL	Pin 14	Pin 55	
P4	TTL	Pin 13	Pin 56	
P3	TTL	Pin 12	Pin 57	
P2	TTL	Pin 11	Pin 58	
P1	TTL	Pin 10	Pin 59	
P0	TTL	Pin 9	Pin 60	
	Product LSB	TTL	Pin 8	Pin 61

Clocks

The TMC2010 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The Round (RND), Two's Complement (ITC), Accumulate (ACC), and Subtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLX	Clock Input Data X	TTL	Pin 51	Pin 15
CLX Y	Clock Input Data Y	TTL	Pin 50	Pin 16
CLX P	Clock Product Register	TTL	Pin 44	Pin 25
The TMC2010 has eight control lines: TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSL), and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	TTL	Pin 47	Pin 22
TSM	MSP Three-State Control	TTL	Pin 45	Pin 24
TSL	LSP Three-State Control	TTL	Pin 55	Pin 11
PREL	Preload Control	TTL	Pin 46	Pin 23
RND	Round Control Bit	TTL	Pin 54	Pin 12
TC	Two's Complement Control	TTL	Pin 48	Pin 21
ACC	Accumulate Control	TTL	Pin 52	Pin 14
SUB	Subtract Control	TTL	Pin 53	Pin 13
Absolute maximum ratings (beyond which the device will be damaged)

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Supply Voltage
- Min: -0.5 V
- Nom: 5.0 V
- Max: 5.25 V
- Units: V

Input Voltage
- Applied voltage: -0.5 V to (VDD + 0.5 V)
- Forced current: -1.0 mA to 6.0 mA
- Short-circuit duration (single output in high state to ground): 1 sec

Temperature
- Operating, case: -60°C to +120°C
- Junction: 175°C
- Lead, soldering (10 seconds): 300°C
- Storage: -65°C to +150°C

Notes:
1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.
Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range	Units	
		Standard		
		Min	Max	
I_{DD} Quiescent	$V_{DD} = 5.0V, V_{IN} = 0V$ TSL, TSM, TSX = 5.0V	1		mA
Supply Current	$V_{DD} = 5.0V, F = 6MHz$ TSL, TSM, TSX = 5.0V	40		mA
Supply Current	$V_{DD} = 5.0V, F = 6MHz$ TSL, TSM, TSX = 0V	120		mA
	Load = Load 1	1		µA
I_{IL} Input Current, Logic Low 1	$V_{DD} = MAX, V_{I} = 0.5V$	-75	+75	µA
I_{IH} Input Current, Logic High 1	$V_{DD} = MAX, V_{I} = 2.4V$	-75	+75	µA
I_{I} Input Current, Max Input V	$V_{DD} = MAX, V_{I} = V_{DD}$	200		µA
V_{OL} Output Voltage, Logic Low	$V_{DD} = MIN, I_{OL} = MAX$	0.4		V
V_{OH} Output Voltage, Logic High	$V_{DD} = MIN, I_{OH} = MAX$	2.4		V
I_{OS} Short-Circuit Output Current	$V_{DD} = MAX, Output high, one pin to ground, one second duration max$	-100		mA
C_{I} Input Capacitance	$T_{A} = 25^\circ C, F = 1MHz$	15		pF
C_{O} Output Capacitance	$T_{A} = 25^\circ C, F = 1MHz$	15		pF

Note:
1. These values are also valid for outputs in high-impedance state.

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range	Units	
		Standard		
		Min	Max	
t_{MA} Multiply–Accumulate Time	$V_{DD} = MIN, Load 1$	160		ns
t_{D} Output Delay	$V_{DD} = MIN, Load 1$	45		ns
t_{ENA} Three–State Output Enable Delay	$V_{DD} = MIN, Load 1$	40		ns
t_{DIS} Three–State Output Disable Delay	$V_{DD} = MIN, Load 2$	35		ns

LSI Products Division
TRW Electronic Components Group
Preload Truth Table 1

PREL	TSX	TSM	TSL	XTP	MSP	LSP
L	L	L	L	Register	Output pin	Register
L	L	L	H	Register	Output pin	Hi-Z
L	L	H	L	Register	Output pin	Hi-Z
L	H	L	L	Hi-Z		Register
L	H	L	H	Hi-Z		Hi-Z
L	H	H	H	Hi-Z		Hi-Z
H2	L	L	H	Hi-Z	Hi-Z Preload	Hi-Z
H2	L	H	L	Hi-Z	Hi-Z Preload	Hi-Z
H2	H	L	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H2	H	H	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H2	H	H	H	Hi-Z Preload	Hi-Z Preload	Hi-Z

Notes:
1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC2010 does not differentiate between this operation:

6 x 2 = 12

and this operation:

$6/8 \times 2/8 = 12/64$

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.
Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2010J3C	STD-\(T_A\) = 0°C to 70°C	Commercial	64 Lead DIP	2010J3C
TMC2010J3G	STD-\(T_A\) = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	2010J3G
TMC2010C1C	STD-\(T_A\) = 0°C to 70°C	Commercial	68 Contact Chip Carrier	2010C1C
TMC2010C1G	STD-\(T_A\) = 0°C to 70°C	Commercial With Burn-In	68 Contact Chip Carrier	2010C1G
TMC2010L1C	STD-\(T_A\) = 0°C to 70°C	Commercial	88 Leaded Chip Carrier	2010L1C
TMC2010L1G	STD-\(T_A\) = 0°C to 70°C	Commercial With Burn-In	88 Leaded Chip Carrier	2010L1G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.
TMC2010
· Use TMC2210 for New Design

CMOS Multiplier—Accumulator
16 x 16 Bit, 160ns

The TMC2010 is a high-speed 16 x 16 bit parallel multiplier-accumulator which operates at a 160 nanosecond cycle time (more than 6MHz multiply-accumulate rate). The input data may be specified as two’s complement or unsigned magnitude, yielding a full-precision 32-bit product. Products may be accumulated to a 35-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 16-bit Most Significant Product (MSP), and a 16-bit Least Significant Product (LSPI). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW’s state-of-the-art 2-micron CMOS process, the TMC2010 is pin and function compatible with the industry standard TDC1010 and operates with the same speed at one-sixth or less power dissipation, depending on the multiply-accumulate rate.

Features
• Low Power Consumption CMOS Process
• Pin And Function Compatible With TDC1010
• 160ns Multiply—Accumulate Time (Worst Case)
• 16 x 16 Bit Parallel Multiplication With Accumulation To 35-Bit Result
• Selectable Accumulation, Subtraction, Rounding, And Preloading
• All Inputs And Outputs Are Registered TTL Compatible
• Three-State Output
• Two’s Complement Or Unsigned Magnitude Operation
• Single +5V Power Supply
• Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications
• Array Processors
• Video Processors
• Radar Signal Processors
• FFT Processors
• General Purpose Digital Signal Processors
• Microcomputer/Minicomputer Accelerators
Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC2009 does not differentiate between this operation:

\[6 \times 2 = 12 \]

and this operation:

\[\frac{6}{8} \times \frac{2}{16} = \frac{12}{64} \]

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2009JC	STD – TA = 0°C to 70°C	Commercial	64 Lead DIP	2009JC
TMC2009JG	STD – TA = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	2009JG
TMC2009JGV	EXT – TC = -55°C to 125°C	MIL-STD-883	64 Lead DIP	2009JGV
TMC2009C1V	EXT – TC = -55°C to 125°C	MIL-STD-883	64 Contact Chip Carrier	2009C1V

Notes:
1. Contact factory for availability.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
TMC2110
· Use TMC2210 for New Design

CMOS Multiplier-Accumulator
16 x 16 Bit, 100ns

The TMC2110 is a high-speed 16 x 16 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time (10MHz multiply-accumulate rate). The input data may be specified as two's-complement or unsigned magnitude, yielding a full-precision 32-bit product. Products may be accumulated to a 35-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 16-bit Most Significant Product (MSP), and a 16-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 1-micron OMICRON-C™ CMOS process, the TMC2110 is pin and function compatible with the industry standard TDC1010, yet operates at more than 50% greater speed.

Features
- 100ns Multiply-Accumulate Time
- Pin And Function Compatible With TRW TDC1010 And TMC2010
- 16 x 16 Bit Parallel Multiplication With Accumulation To 35-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State TTL Compatible CMOS Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Low Power Consumption CMOS Process
- Single +5V Power Supply
- Available In A 64 Lead Ceramic DIP, 68 Contact Chip Carrier, Or 68 Leaded Chip Carrier

Applications
- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

TRW LSI Products Inc.
P.O. Box 2472
La Jolla, CA 92038

Phone: 619-457-1000
Telex: 697-957
TWX: 910-335-1571
©TRW Inc. 1988
40G01810 Rev. C-4/88
Printed in the U.S.A.
CMOS Multiplier–Accumulator
8 x 8 Bit, 40ns

The TMC2208 is a high-speed 8 x 8-bit parallel multiplier–accumulator which operates at a 40ns cycle time (25MHz multiply–accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 16-bit product. Products may be accumulated to a 19-bit result.

Individually clocked input and output registers are used to provide maximum system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), an 8-bit Most Significant Product (MSP), and an 8-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, MSP, and LSP. The output register can be preloaded directly via the output ports.

The TMC2208 is pin and function compatible with the TDC1008 in the 48-lead DIP. Built with TRW's OMICRON-C™ one micron CMOS process, power consumption is greatly reduced.

Features
- Function Compatible With The TDC1008 (Pin Compatible In 48 Lead Dip Package)
- 35ns Multiply–Accumulate Time (Worst Case Commercial)
- 8 x 8 Parallel Multiplication With Accumulation To 19-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Accumulator Preload
- All Inputs And Outputs Are Registered And TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Single +5V Power Supply
- Low Power CMOS Construction
- Available In 48 Lead Ceramic DIP Or 68 Lead Pin Grid Array

Applications
- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Micro/Mini-Computer Accelerators

Functional Block Diagram