A Schwartz-Zippel Type Estimate for Homogenous Finite Field Polynomials

1Ghurumuruhan Ganesan

Institute of Mathematical Sciences, HBNI, Chennai, Chennai, India
1gganesan82@gmail.com

Received: Aug. 18, 2021; Accepted: Sept. 30, 2021

Abstract

In this paper, we obtain a Schwartz-Zippel type estimate for homogenous finite field polynomials. Specifically, we use a probabilistic recursion technique to find upper and lower bounds for the number of zeros of a homogenous polynomial and illustrate our result with two examples involving perfect matching in bipartite graphs and common zeros in a collection of polynomials, respectively.

MSC 2010 No.: 11T06

1. Introduction

The Schwartz-Zippel bound 5 and combinatorial nullstellensatz 1 are important tools from both theoretical and application perspectives. The Schwartz-Zippel bound provides an estimate on the number of zeros of a polynomial whose coefficients take values in a finite field and has applications in polynomial comparison, primality testing, perfect matching in graphs etc. The combinatorial nullstellensatz determines conditions under which a polynomial contains a non-zero in a given set whose cardinality is larger than the overall degree of the polynomial. We refer to Chapter 7, 3 for more material. Recently 2 have used algebraic techniques to obtain Schwartz-Zippel type bounds for intersection of algebraic varieties with Cartesian products of two-dimensional sets.

In this paper, we use probabilistic methods and recursive techniques to find upper and lower bounds the number of zeros of a homogenous polynomial. As an illustration of the upper bound, we apply our bounds to estimate the error probability in the randomized algorithm that determines the presence of a perfect matching in a bipartite graph. We use the lower bound on the number of zeros to determine the presence of common zeros in a set of polynomials.
Homogenous polynomials

For integers \(l \geq 1, q = p^l, p \text{ prime}, \) let \(\mathbb{F}_q \) be the finite field consisting of \(q \) elements with characteristic \(p \). A homogenous polynomial in \(\mathbb{F}_q \) in the variables \(x_1, \ldots, x_m \) and having degree \(k \leq m \) is of the form

\[
Q(x_1, \ldots, x_m) = \sum_{I: \#I = k} \delta_I \cdot \prod_{i \in I} x_i \tag{1.1}
\]

where \(\delta_I \in \mathbb{F}_q \) are not all zero and the sum is over all subsets \(I \subseteq \{1, 2, \ldots, m\} \) of cardinality \(\#I = k \).

We say that the \(m \)-tuple \((y_1, \ldots, y_m) \in \mathbb{F}_m^q \) is a zero for \(Q \) if

\[
Q(y_1, \ldots, y_m) = 0.
\]

Theorem 1 If \(Z \subseteq \mathbb{F}_q^m \) denotes the set of zeros of \(Q \), then

\[
q^{m-k}(q-1)^{k-1} \leq \#Z \leq q^{m-k}(q^k - (q-1)^k)
\]

where \(\#Z \) denotes the cardinality of the set \(Z \).

Using \((1+t)^k - t^k = \sum_{l=0}^{k-1} \binom{k}{l} t^l \leq k^{k-1}(2^k - 1) \) with \(t = q-1 \), we get from (1.2) that

\[
q^{m-k}(q-1)^{k-1} \leq \#Z \leq q^{m-k}(q-1)^{k-1}(2^k - 1).
\]

Thus the number of zeros is of the order of \(q^{m-k}(q-1)^{k-1} \).

We use recursion to prove Theorem 1 in the next Section. If \(k \leq q \), we use \(\left(1 - \frac{1}{q} \right)^k \geq 1 - \frac{k}{q} \) to get from (1.2) that \(\#Z \leq k \cdot q^{m-1} \), the Schwartz-Zippel bound (3). We remark that in Theorem 1, we can choose the field size \(q \) independent of the degree \(k \) of the polynomial and the number of variables \(m \). In Section 3, we describe applications for both the lower and the upper bounds.

The paper is organized as follows. In Section 2, we prove Theorem 1 and in Section 3, we describe applications that use the bounds in (1.2).

2. Proof of Theorem 1

We use the probabilistic method analogous to the proof of Schwartz-Zippel Lemma and obtain a recursion relation involving the probability that the set of randomly chosen values indeed form a zero of the polynomial. We then evaluate the recursive relation to obtain the desired bounds on the corresponding probability.

We begin with the upper bound in (1.2). Let \(r_1, \ldots, r_m \) be independently and uniformly randomly chosen from \(\mathbb{F}_q \) and let

\[
p_{k,m} := \max_{q} \mathbb{P}(Q(r_1, \ldots, r_m) = 0) \tag{2.1}
\]
where the maximum is over all homogenous polynomials in \(m \) variables and with degree \(k \). To prove the upper bound in (1.2) it suffices to see that

\[
p_{k,m} \leq 1 - \left(1 - \frac{1}{q} \right)^k.
\]

(2.2)

We first prove (2.2) for \(k = 1 \). Consider the polynomial

\[
Q(x_1, \ldots, x_m) = \sum_{i=1}^{m} \alpha_i \cdot x_i,
\]

where \(\alpha_1 \in \mathbb{F}_q \setminus \{0\} \) and \(\alpha_i \in \mathbb{F}_q \) for \(2 \leq i \leq m \). Letting \(Q_0 := Q(r_1, \ldots, r_m) \), we have

\[
P(Q_0 = 0) = \sum_{j=2}^{m} \sum_{a_j \in \mathbb{F}_q} P(Q_0 = 0 \mid r_2 = a_2, \ldots, r_m = a_m)P(r_2 = a_2, \ldots, r_m = a_m)
\]

where

\[
P(Q_0 = 0 \mid r_2 = a_2, \ldots, r_m = a_m) = P \left(r_1 = -\frac{1}{\alpha_1} \left(\sum_{i=2}^{m} \alpha_i \cdot a_i \right) \right) = \frac{1}{q}.
\]

This implies that \(P(Q_0 = 0) = \frac{1}{q} \) and consequently we get

\[
p_{1,m} = \frac{1}{q}
\]

(2.3)

proving (2.2) for \(k = 1 \).

To estimate \(p_{k,m} \) for larger values of \(k \), we obtain a recursive relation for \(p_{k,m} \) as follows. Let \(Q = Q(x_1, \ldots, x_m) \) be a homogenous polynomial of degree \(k \) and write

\[
Q = x_1 \cdot R + S,
\]

(2.4)

where \(R = R(x_2, \ldots, x_m) \) is a homogenous polynomial of degree \(k-1 \) in the variables \(x_2, \ldots, x_m \) and \(S = S(x_2, \ldots, x_m) \) is a homogenous polynomial of degree \(k \) in the variables \(x_2, \ldots, x_m \). If \(Q_0 := Q(r_1, \ldots, r_m) = 0 \) then either \(R_0 := R(r_2, \ldots, r_m) = 0 \) and \(S_0 := S(r_2, \ldots, r_m) = 0 \) or \(R_0 \neq 0 \) and so we have

\[
P(Q_0 = 0) = P(R_0 = 0, S_0 = 0) + P(R_0 \neq 0, Q_0 = 0).
\]

(2.5)

The term

\[
P(Q_0 = 0, R_0 \neq 0) = \sum_{a \in \mathbb{F}_q \setminus \{0\}} \sum_{b \in \mathbb{F}_q} P(Q_0 = 0 \mid R_0 = a, S_0 = b)P(R_0 = a, S_0 = b),
\]

(2.6)

and so for any \(a \in \mathbb{F}_q \setminus \{0\}, b \in \mathbb{F}_q \) we have from (2.4) that

\[
P(Q_0 = 0 \mid R_0 = a, S_0 = b) = P \left(r_1 = -\frac{b}{a} \right) = \frac{1}{q}.
\]

(2.7)

Consequently

\[
P(R_0 \neq 0, Q_0 = 0) = \frac{1}{q}P(R_0 \neq 0).
\]

(2.8)
To obtain the lower bound in (1.2), we use (2.5) and (2.8) to get that
\[
P(Q_0 = 0) \leq P(R_0 = 0) + \frac{1}{q} P(R_0 \neq 0)
\]
\[
= \frac{1}{q} + \left(1 - \frac{1}{q}\right) P(R_0 = 0)
\]
\[
\leq \frac{1}{q} + \left(1 - \frac{1}{q}\right) p_{k-1,m-1}.
\]

From (2.1) we therefore get that
\[
p_{k,m} \leq \frac{1}{q} + \left(1 - \frac{1}{q}\right) p_{k-1,m-1}.
\]

Letting \(\beta = 1 - \frac{1}{q}\) and applying the recursion (2.9) repeatedly \(i\) times, we get
\[
p_{k,m} \leq (1 - \beta)(1 + \beta + \beta^2 + \ldots + \beta^i) + \beta^{i+1} \cdot p_{k-1-i,m-1-i}
\]
\[
= (1 - \beta^{i+1}) + \beta^{i+1} \cdot p_{k-1-i,m-1-i} \tag{2.10}
\]

Setting \(i = k - 2\) in (2.10) and using (2.3) we then get (2.2). This obtains the upper bound in (1.2).

For the lower bound in (1.2), we again use (2.5) and get
\[
P(Q_0 = 0) \geq P(R_0 \neq 0, Q_0 = 0) = \frac{1}{q} P(R_0 \neq 0)
\]
by (2.8). Thus
\[
P(Q_0 = 0) \geq \frac{1}{q} (1 - p_{k-1,m-1}) \geq \frac{1}{q} \left(1 - \frac{1}{q}\right)^{k-1}
\]
by (2.2) and this proves the lower bound in (1.2).

3. Applications of Theorem 1

Perfect matching

In this subsection, we illustrate an application for the upper bound in (1.2). We recall the polynomial identity testing procedure to determine the presence of a perfect matching in a bipartite graph. Let \(G = (X \cup Y, E)\) be a bipartite graph where \(#X = #Y = k\). A matching in \(G\) is a set of edges that share no endpoint. A perfect matching in \(G\) is a set of edges \(M \subseteq E\) such that every vertex is contained in exactly one edge of \(M\).

Let \(A = [a_{i,j}]\) be a matrix whose rows are indexed by vertices in \(X\) and whose columns are indexed by vertices in \(Y\) with entries
\[
a_{u,v} := \begin{cases} x_{u,v} & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases} \tag{3.1}
\]
where \(\{x_{u,v}\} \) are distinct variables and \((u, v)\) denotes the edge with endvertices \(u \) and \(v \). It is well known (Theorem 7.3, (3)) that the determinant of \(A \) is zero if and only if the graph \(G \) does not have a perfect matching.

Suppose \(G \) has a perfect matching and we would like to use the above determinant criterion to devise a randomized algorithm for determining whether \(G \) has a perfect matching or not. The Schwartz-Zippel procedure is as follows. Assuming that \(\det(A) \) is a polynomial of degree \(k \), we first choose a field size \(q \geq k + 1 \). Fixing such a \(q \), we then choose \(\{x_{u,v}\} \) independent and identically distributed (i.i.d.) in \(\mathbb{F}_q \) and compute the random determinant \(\det(A) \). If \(\det(A) = 0 \) we say that \(G \) does not have a perfect matching else we say that \(G \) has a perfect matching.

From the Schwartz-Zippel lemma we get that the probability that \(\det(A) \) is zero is at most \(\frac{k}{q} < 1 \) strictly and so the probability that our decision is wrong is at most \(\frac{k}{q} \). To reduce the probability of a wrong decision, we run the above procedure \(n \) times using fresh independently random values for \(\{x_{u,v}\} \) each time. If we get \(\det(A) = 0 \) all the \(n \) times, we output “\(G \) has no perfect matching” else we output “\(G \) has a perfect matching”. The probability that our decision is wrong in this case is at most \(\left(\frac{k}{q} \right)^n \) which is small for all large \(n \), provided the field size \(q \geq k + 1 \).

Using Theorem 1 we now perform the above procedure using binary random variables. We first see that the determinant \(\det(A) \) of \(A \) is a homogenous polynomial of degree \(k \) in the variables \(\{x_{u,v}\} \). We then set \(x_{u,v} \) to be independent random binary values satisfying

\[
P(x_{u,v} = 0) = \frac{1}{2} = P(x_{u,v} = 1)
\]

and evaluate \(\det(A) \). If \(\det(A) = 0 \), we output the statement “\(G \) has no perfect matching”; else we output the statement “\(G \) has a perfect matching”. From (1.2), the probability that \(\det(A) \) equals zero is at most \(1 - \frac{1}{2^k} \) and so the probability that we output the wrong decision is at most \(1 - \frac{1}{2^k} \).

As before, to reduce the probability of a wrong decision, we run the above procedure \(n \) times using fresh independently random values for \(\{x_{u,v}\} \) each time. If we get \(\det(A) = 0 \) all the \(n \) times, we output “\(G \) has no perfect matching” else we output “\(G \) has a perfect matching”. Again using (1.2), we get that the probability that our decision is wrong is at most \(\left(1 - \frac{1}{2^k} \right)^n \), which decays exponentially with \(n \).

Of course the tradeoff involved in the above procedure is the running time: our algorithm requires \(n \times \text{poly}(k) \) running time since we need to compute \(n \) determinants, each of size \(k \times k \). It would be interesting to design algorithms that require lesser computation and this would be a potential direction for future study.

Common zeros

We illustrate the lower bound in (1.2) with an example involving common zeros of polynomials. We have the following result.
Proposition 1 Suppose Q_1, Q_2, \ldots, Q_N are N homogeneous polynomials in the variables x_1, \ldots, x_m, each with degree k. If $N \geq 1 + q \cdot \left(\frac{q}{q-1} \right)^{k-1}$, then there are indices $1 \leq i \neq j \leq N$ such that Q_i and Q_j have a common zero. \square

We remark here that the Chevalley-Warning theorem (4) is used to describe conditions under which a set polynomials whose sum degree is smaller than the number of variables, all have more than one common root. In Proposition 1 we require that the number of polynomials is sufficiently large in order that at least two of the polynomials have a common root.

Proof of Proposition 1 We use the lower bound in (1.2) and prove by contradiction. Let Z_i be the set of zeros of the polynomial Q_i. If the sets $\{ Z_i \}$ are all mutually disjoint, then by the lower bound in (1.2), the total number of elements in $\bigcup_{i=1}^{N} Z_i$ is at least $N \cdot q^{m-k} (q-1)^{k-1} > q^m$ strictly, a contradiction.

Acknowledgment:

I thank Professors V. Arvind, C. R. Subramanian and the referee for crucial comments that led to an improvement of the paper. I also thank IMSc for my fellowships.

REFERENCES

N. Alon, (1999). Combinatorial Nullstellensatz, Combinatorics, Probability and Computing, 8, pp. 7–29.
H. N. Mojarrad, T. Pham, C. Valculescu and F. de Zeeuw, (2017). Schwartz-Zippel Bounds for Two-Dimensional Products, Discrete Analysis, 20, Link: https://doi.org/10.19086/da.2750.
R. Motwani and P. Raghavan, (1995). Randomized Algorithms, Cambridge University Press.
W. M. Schmidt, (1976). Equations over Finite Fields, an Elementary Approach, Springer Verlag Lecture Notes in Mathematics.
J. Schwartz, (1980). Fast Probabilistic Algorithms for Verification of Polynomial Identities, Journal of ACM, 27, pp. 701–717.