Optimization of Drilling Parameters of Carbon Fiber Composites Using RSM based Desirability Function

To cite this article: D. Vijayan et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 390 012076

View the article online for updates and enhancements.

Related content
- Optimization of Drilling Parameters for Reducing the Burr Height in Machining the Silicon Carbide Particle (SiCp) Coated with Multi Wall Carbon Nano Tubes (MWCNT) Reinforced in Aluminum Alloy (A 356) Using Meta Modeling Approach
 M. Sangeetha and S. Prakash
- Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites
 M. Ramesh and A. Gopinath
- Investigation of EDM Process parameters for Hybrid Metal Matrix Composites
 Kamalkishor G. Maniyar and Dr. Dilip S. Ingole
Optimization of Drilling Parameters of Carbon Fiber Composites Using RSM based Desirability Function

D.Vijayan1*, P. Abhishek2, Y.G. Manoj Kumar3, P. Balaji2, P. Siva kumar Reddy2

1Assistant Professor, Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Mahavidyalaya, Kanchipuram, Tamilnadu, India.
2Student, Department of Mechanical Engineering, Sri Chandrasekharendra Saraswathi Mahavidyalaya, Kanchipuram, Tamilnadu, India.

Corresponding author: 1*vijaian2012@gmail.com

Abstract. This paper deals with the drilling of Carbon Fiber Reinforced Polymer (CFRP) composite filled with Carbon Nano Tube (CNT) using Response Surface Method (RSM) based desirability function. In drilling of hybrid metal matrix CFRP composites, excess thrust force and burr height degrades the performance of composite. Therefore, thrust force and burr height of the composite to be minimized in order to improve the performance of the hybrid metal matrix composite. Hence, thrust force and burr height are factors being considered in the present investigation are the major responses to be minimized using RSM based Desirability function. Four important input factors are considered such as drilling speed, feed rate, percentage of CNT and cone angle of drill bit to analyze the performance of drilling process. The results showed that, feed rate is highly influential parameter which influences thrust force and burr height in hybrid metal matrix composites. During drilling operation, due to mutual rubbing of CNT abrasive particles causes extensive surface damages like voids, cracks and fiber pullouts. ANOVA result indicates experimental data are well correlated at 95% confidence interval and this technique can be very much useful and reliable for predicting the drilling parameters of hybrid CFRP metal matrix composite.

1. Introduction

Carbon fiber reinforced plastics (CFRPs) have been extensively used in various engineering applications due to their outstanding mechanical properties (1, 2). Therefore, it enables light weight products manufacturing and extend their service-life structures. In the past decades metallic materials have been widely replaced by CFRP. In view of growing engineering applications with composites requires a systematic study for their machining characteristics was envisaged. The efficient and economical machining parameters required for obtaining desired profile and dimensions of the composite. However, it is well known that the many factors affecting the mechanical properties of the CFRP during loading. Especially during manufacturing processes, the factors such as temperature, pressure and processing time may lead cracking, fiber delamination’s and breakages in the composites that affects the mechanical properties of fabricated composite (3). Hence composites can be considerably modified by resins, adding nano filler and method of fiber layups, etc. Therefore, numerous surface treatments have been developed to improve interfacial adhesion characteristics of the polymer composites namely electrochemical method, plasma treatment and high energy irradiation and oxidation method (4). Although homogeneous scattered nano particles are of great importance to enhance the surface strength and hardness of the composite. Thus, increase of addition amount of nano particles may lead poor surface finish, and increase thrust force which cause excess tool wear, exhibit numerous pits and burrs (5). Therefore, by selecting appropriate machining parameters can minimize thrust force and reduces burr and pits during composite machining. Therefore, in view of above a
detailed systematic study was conducted using RSM based Desirability function. The mathematical model was developed using RSM for modeling and analysis performance in the drilling of hybrid metal matrix composites.

2. Experimental setup

2.1. Materials and methods
Carbon fibers of single ply lamina having a diameter of 5-10µm was fabricated with a thickness of 5 mm sheet for conducting a drilling process. 60% resin and 40% hardener are mixed together in a required proportion, and the gel time is measured. In addition to that 5% of carbon nano tubes having the sizes of 50 – 80nm were added in a liquid epoxy resin based on weight fraction. The mixture stirred at room temperature for 48 hours under a seal condition to make homogeneous CNT filled epoxy solution. Carbon fiber reinforced polymers (CFRP) composites is made into laminas by 300 mm x 300 mm with 0, 90, 45 degrees of angle. Weights are added on the setup to remove the excess amount of resin and hardener mixture. The fabricated CNT filled CFRP composite plate as presented in Figure 1.

![Fabricated CNT filled CFRP composite](image)

Figure 1. Fabricated CNT filled CFRP composite

2.2. Experimental design
The experiment was conducted with 29 runs as per the RSM design matrix. The design matrix was selected as per the number of input factors planned for the drilling experiments. The input parameters and their corresponding range chosen in the experiment are presented in Table 1.

PARAMETERS	RANGE
Drilling speed (N)	500-1100 (rpm)
Feed rate (f)	0.4-0.8 (mm/min)
% of CNT	3-5
Point angle (θ)	110-120

3. Experimental procedure
Drilling experiment was conducted using a vertical CNC machining center. Each CFRP sample to be drilled was cut into the sizes of 100mm x 100mm. The solid carbide drill was used to conduct each run involved in the design matrix. The Point angle of the carbide drill tool 110°, 115° and 120° respectively was maintained according to the sequence of the experimental run in the design matrix. Two responses namely thrust force on z – axis and burr height were considered as a response in the present investigation. The schematic representation of drilling process is presented in Figure 2 and the design matrix and their corresponding response obtained is presented in Table 2.
Figure 2. Schematic representation of drilling process

Table 2. Design matrix and their corresponding responses

Std	Run	Rotational speed (N)	Feed rate (mm/min)	Percentage of CNT %	Point angle (θ)	Thrust force (N)	Burr height (mm)
1	10	500	4	4	115	15.75	0.02
2	9	1100	4	4	115	58.5	0.36
3	25	500	8	4	115	15.2	0.09
4	24	1100	8	4	115	104.33	0.3
5	11	800	6	3	110	33.17	0.12
6	18	800	6	5	110	22.14	0.06
7	8	800	6	3	120	18.16	0.26
8	4	800	6	5	120	45.85	0.2
9	17	500	6	4	110	12.36	0.02
10	19	1100	6	4	110	80.14	0.29
11	7	500	6	4	120	16.86	0.14
12	5	1100	6	4	120	95.5	0.41
13	21	800	4	3	115	15.4	0.12
14	14	800	8	3	115	35.68	0.21
15	2	800	4	5	115	23.18	0.16
16	26	800	8	5	115	44.68	0.05
17	12	500	6	3	115	14.33	0.08
18	20	1100	6	3	115	65.67	0.38
19	3	500	6	5	115	12.17	0.06
20	22	1100	6	5	115	90.3	0.29
21	29	800	4	4	110	21.17	0.09
22	27	800	8	4	110	42.94	0.09
23	6	800	4	4	120	22.63	0.22
24	1	800	8	4	120	46.75	0.21
25	15	800	6	4	115	42.48	0.26
26	16	800	6	4	115	42.18	0.27
27	13	800	6	4	115	41.63	0.29
28	23	800	6	4	115	41.84	0.28
29	28	800	6	4	115	44.94	0.28
4. Modeling the process parameters using RSM

Response Surface Methodology (RSM) is a statistical technique used for modeling, optimization, and to analyze the problems (6-10). It is also used to establish the relationship between the input drilling process parameters and the required responses. Usually, the goal is to estimate the values of input process parameters in the drilling process at which the responses are optimized. The optimum may be either minimum or maximum depends upon the user interest in the experiment. Hence RSM is widely used in many application areas in order to get an optimum values on their corresponding processes (11-13). The thrust force and burr height of the CRFP composites are related to rotational speed (N), feed rate (f), percentage of CNT (% CNT), and Point angle (G). The surface is represented by the following,

\[\text{Thrust force (T)} = f(N, f, \%\text{CNT}) \]
\[\text{Burr height (BH)} = f(N, f, \%\text{CNT}) \]

The second order polynomial response surface model used to evaluate the parametric effects of the drilling process parameters are as follows,

\[Y = \beta_o + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i<j} \beta_{ij} x_i x_j + \varepsilon \]

Where \(\beta_o \) is the average response, \(\beta_i \), \(\beta_{ii} \) and \(\beta_{ij} \) are the coefficients that depend on the major and interaction effects of the parameters and \(\varepsilon \) is the statistical error (14). A second order response surface for thrust force and burr height can be represented as below,

Thrust force (T)
\[+42.61 +33.98 A +11.08 B +4.66 C +2.82 D +11.60 A \times B +6.70 A \times C +2.72 A \times D +11.60 B \times C +6.70 B \times D +2.72 C \times D +11.63 A^2 -5.23 B^2 -8.42 C^2 -3.80 D^2 \]

Burr Height (BH)
\[+0.28 +0.13 A -1.667E-003 B -0.029 C +0.064 D -0.033 A \times B -0.018 A \times C -0.050 B \times C -2.500E-003 B \times D +9.250E-003 A^2 -0.074 B^2 -0.066 C^2 -0.051 D^2 \]

ANOVA is applied for estimating the significance of the model at 95% significance level. The main objective of conducting ANOVA is to estimate the interaction and significant effects on thrust force and burr height of drilling process. In ANOVA, adequacy of the developed model was conformed with R-Sq values. In the present investigation the R-Sq was obtained 0.9974 and 0.9953 for thrust force and Burr height.

![Normal Plot of Residuals for Thrust Force](image1)

![Normal Plot of Residuals for Burr Height](image2)

Figure 3. Experimental vs. predicted values of thrust force

Figure 4. Experimental vs. predicted values of Burr height
burr height respectively. The larger R-Sq values is desirable. Therefore, the present R-Sq value is indicates high correlation between experimental and predicted values. Also, the aforementioned experimental and predicted values are plotted in Figure 3 and Figure 4. Hence the predicted mathematical model is very useful and effectively predict the thrust force and burr height of CFRP composite filled with CNT nano particles in drilling process within the limits of factors studied.

5. Optimization using RSM based desirability function

Derringer and Suich (1980) proposed a multi-response optimization technique namely desirability function. The overall desirability function of the multi-response system can be estimated by combining the individual desirability function. The desirability function can be represented as \(D = d_1^{w_1} d_2^{w_2} \ldots d_n^{w_n} \) where \(w_j (0<w_j<1) \) is the weight value given for the importance of \(j^{th} \) response variable and \(\sum_{j=1}^{n} w_j = 1 \). The parameter settings with maximum overall desirability is considered for optimum parameter combination. In the present investigation the goal is to minimize the thrust force and burr height of the drilling process of CFRP composite. The optimization analysis was performed using Design Expert software. The goal sets and targets of input parameters namely \(N, f, \% \) of CNT and \(\Theta \) and the response are presented in Table 3.

Drilling parameters	Goal	Lower limit	Upper limit	Lower weight	Upper weight	Importance
Drilling Speed (N)	is in range	500	1100	1	1	3
Feed rate (f)	is in range	4	8	1	1	3
% of CNT	is in range	3	5	1	1	3
Point angle (\(\Theta \))	is in range	110	120	1	1	3
Thrust force (T)	minimize	12.17	104.33	1	1	3
Burr height (h)	minimize	0.02	0.41	1	1	3

The solution with high desirability is preferred. Therefore, the best three combination of obtained desirability values and their corresponding suggested input process parameters are presented in Table 4.

Number	Drilling Speed (N)	Feed rate (f)	% of CNT	Point angle (\(\Theta \))	Thrust force (T)	Burr height (h)	Desirability
1	511.56	4.11	4.74	113.48	7.55313	0.00867	Selected
2	538.44	4.57	4.99	111.1	7.0906	0.0308	1
3	551.72	8	4.55	112.58	11.7932	0.01169	1
4	502.25	4	4.98	116.68	7.85585	0.01972	1

6. Results and discussion

The contour plots for drilling speed, feed rate, % of CNT and Point angle on thrust force and burr height are presented in Figure 5. Increasing feed rate increasing thrust force of drilling process and vice versa. Therefore, the increase in thrust force bends the materials larger to the extent interfacial bond cracking progresses, resulting larger burr formation. The increase in weight percentage of CNT increases thrust force. The presence of addition of CNT in the metal matrix composited increases tensile strength, hardness and heat resistance of the composite (15, 16). This can be attributed increasing brittleness of the composite that reduce built-up edge in the drilling of hybrid composites. Increasing point angle of drill increases thrust force of drilling process whereas the burr height of the composite is
decreases. As the drill advances it forms a pivot point thereby it decrease the burr height of the metal matrix composite. This results are in good agreement with Basavarajappa et al (17).

Figure 5. Contour plots for Thrust force
Low feed rate encourages less thrust force therefore exist poor plastic deformation on the metal matrix composite. Due to low interfacial strength CNT particles smears before bending the material during the plastic deformation in the drilling process. Increasing feed rate increase temperature at the tool-work surface therefore softening plastic deformation. Hence, burr height predominantly increases with increase in spindle speed. SEM was used to analyze the machined surface. During drilling operation, due to mutual rubbing of CNT abrasive particles causes extensive surface damages like voids, cracks and fiber pullouts.

7. Conclusions

The mathematical models were developed for estimating the thrust force and burr height in drilling of hybrid carbon fiber composites. Response surface modeling-based desirability-based optimization was carried out to minimize the thrust force and burr height in drilling process. Based on the experimentation the following conclusions can be drawn,

1. Response surface method-based desirability is very useful in predicting the thrust force and burr height of the hybrid metal matrix composites.
2. The result indicates feed rate is highly influential parameter which influences thrust force and burr height in hybrid metal matrix composites.
3. SEM analysis of the drilled hole surface indicates higher feed rate and spindle speed increase voids, cracks and fiber pullouts.
4. The ANOVA result indicates that the experimental data are well correlated with the predicted data at 95% confidence interval; hence, this technique can be very much useful for a reliable prediction of different performances.

8. References

1. Xu B, Du Y, Wang P, Yan L, Sun B, Du B, et al. Microstructure, surface emissivity and ablation resistance of multilayer coating for lightweight and porous carbon–bonded carbon fiber composites. Journal of Alloys and Compounds. 2016;685:799-805.
2. Carvalho O, Buciumeanu M, Soares D, Silva FS, Miranda G. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite. Journal of Materials Engineering and Performance. 2015;24(6):2535-45.
3. Ma Y, Ueda M, Yokozeki T, Sugahara T, Yang Y, Hamada H. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Composite Structures. 2017;160:89-99.
4. Jiang B, Zhang T, Zhao L, Huang Y. Interfacially reinforced carbon fiber composites by grafting modified methylsilicone resin. Composites Science and Technology. 2017;140:39-45.
5. Gopalakrishnan S, Murugan N. Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite. Materials & Design. 2011;32(1):462-7.
6. Rajakumar S, Balasubramanian V. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints. Journal of Materials Engineering and Performance. 2011.
7. Rajakumar S, Balasubramanian V. Diffusion bonding of titanium and AA 7075 aluminum alloy dissimilar joints—process modeling and optimization using desirability approach. The International Journal of Advanced Manufacturing Technology. 2016.
8. Vijayan D, Rao V. Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA. Journal of The Institution of Engineers (India): Series C. 2014;95(2):127-41.
9. D Vijayan V Sr. Tensile Properties Improvement on Friction Stir Welded Age-Hardenable Aluminum Alloys: An Evolutionary Approach using RSM based GA and SA. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia. 2016;39(1):55 - 70.
10. Vijayan D, Seshagiri Rao V. Parametric optimization of friction stir welding process of age hardenable aluminum alloys—ANFIS modeling. Journal of Central South University. 2016;23(8):1847-57.
11. Mm IW, Azmi AI, Lee CC, Mansor AF. Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining. The International Journal of Advanced Manufacturing Technology. 2016;94(5-8):1727-44.
12. Wang H, Qin X, Wu D, Song A. Optimization of Cutting Parameters in Helical Milling of Carbon Fiber Reinforced Polymer. Transactions of Tianjin University. 2017;24(1):91-100.
13. Vijayan D, Seshagiri Rao V. A parametric optimization of FSW process using RSM based grey relational analysis approach. International Review of Mechanical Engineering (IREME). 2014;8(2):328-37.
14. Palanikumar K, Muthukrishnan N, Hariprasad KS. Surface roughness parameters optimization in machining A356/ SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Machining Science and Technology. 2008;12(4):529-45.
15. Palanikumar K, Karthikeyan R. Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites. Materials & Design. 2007;28(5):1584-91.
16. Rajmohan T, Palanikumar K. Modeling and analysis of performances in drilling hybrid metal matrix composites using D-optimal design. The International Journal of Advanced Manufacturing Technology. 2012;64(9-12):1249-61.
17. Basavarajappa S, Chandramohan G, Davim JP, Prabu M, Mukund K, Ashwin M, et al. Drilling of hybrid aluminium matrix composites. The International Journal of Advanced Manufacturing Technology. 2006;35(11-12):1244-50.