A new boost switched capacitor seven-level grid-tied inverter

Yang Gao1 | Weichi Zhang2 | Yahya Naderi Zarnaghi3,4 | Naser Vosoughi Kurdkandi4 | Chenming Zhang2

1 School of Mechanical and Automotive Engineering, Yangzhou Polytechnic Institute, Yangzhou, China
2 School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
3 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
4 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Correspondence
Weichi Zhang, School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Email: weichi.zg@gmail.com

Abstract
In this paper, a new switched capacitor-based multilevel inverter structure is suggested. The proposed topology can generate seven-level output voltage waveform using ten power electronic switches and two floating capacitors. This structure has the ability to boost the input DC voltage, up to 1.5 times. Although this topology can generate an output waveform with large number of levels, it does not increase the voltage stress on the power electronic switches. There is no need for capacitor voltage balancing in this structure since the capacitors are balanced through charging and discharging modes of operation. In addition, the suggested switched capacitor inverter reduces the number of input dc power supplies and uses a single dc source such as a photovoltaic (PV) panel. Since the proposed inverter is an neutral point clamp based multilevel inverter topology, the leakage current is minimized and as a result the overall efficiency of the proposed system is increased. The operation modes and steady-state analysis of the proposed structure are explained in detail. In order to validate the feasibility of the proposed topology, some experimental results are presented in the grid connected mode of operation.

1 | INTRODUCTION
Multilevel inverters have been a popular division of inverters for power conversion systems since it has been introduced in early 80s [1]. Basically, the multilevel inverters can be classified to three categories of, cascaded H-bridge inverters (CHB), flying capacitors (FC) and neutral point clamped inverters (NPC). Multilevel inverters are more efficacious than the conventional two-level inverters in generating high voltages output using lower rating elements. These inverters by the way, have some drawbacks such as, the need for a greater number of power electronic switches and supply sources and complex control methods. Multilevel inverters generate a staircase output voltage waveform, similar to a sinusoidal waveform and has a higher power quality compared with conventional inverters [2–4]. Multilevel inverters have several merits, one of which is minimizing total harmonic distortion (THD) of the output voltage waveform which is performed without increasing the switching frequency or decreasing overall efficiency of the system. In multilevel inverter topologies, as the number of output voltage levels increase, the total harmonic distortion decreases. As the loads are getting more sensitive and the customers are getting more concerned about the quality of power, the power electronic devices should be prepared for the new conditions [5–8]. In simple, compared with the conventional bipolar inverters, multilevel inverters have lower amount of harmonics at the output voltage waveform and is one of the best solutions to improve the power quality of the inverters. Meanwhile, these kind of multilevel inverters have not prevented the interest of improved structures [2, 9], that seek higher efficiency, an enhanced number of generated output voltage levels, and optimized number of circuit components. It is worth mentioning that multilevel inverter structures mentioned above also have some disadvantages such as high voltage stress on power switches, capacitor voltage imbalance, absence of voltage boosting feature, and requirement of multiple power dc supplies. The CHB well visible in the literate, is a superior structure with increasing popularity for high and medium power applications because of its modular structure. On the other hand, new modules have been suggested to translocate only the H-bridge module to produce more output voltage levels with lower number of power electronic switches and derives
Recently, a symmetrical five-level sub module has been recommended in [11], which can produce several dc voltage levels with less number of power switches across H-bridge. Nevertheless, the same number of galvanically isolated sources was needed as in a conventional CHB. Accordingly, some presented papers support utilizing of asymmetrical structures in order to decrease the number of input dc sources. To address this issue, in [12] a new 15-level structure that uses four unequal dc power supplies is suggested. A module combining two T-type converters connected through four extra power switches, generating seven-level output voltage waveform is presented in [13]. Recently, several switched capacitor multilevel inverter topologies have been presented and attracted the attention of researchers [14–17]. This is due to their ability of boosting voltage by switching the utilized capacitors in series and parallel states with the input voltage dc sources instead of using a dc–dc boost converter or a bulky transformer. To maximize the output voltage level number, with lower count of power electronic elements, structures based on hybrid inverter have been presented. In hybrid structures, different conventional multilevel inverters are connected in series and parallel or cascaded connections. In general, the switched capacitor multilevel inverters use fewer number of circuit elements in comparison to conventional multilevel inverters. These topologies do not have the issues of capacitors voltage balancing through the periodically charging the capacitor to a reference value. This makes it possible to generate the higher number of output voltage levels using only one dc voltage input source. A new seven-level inverter structure with two asymmetrical dc power supplies has been suggested in [18]. This topology cannot guarantee the stability of the clamped capacitor voltage in steady-state and dynamic situations. A new single dc source cascaded seven-level inverter has been presented in [19], which needs complex control loops to balance the capacitors voltage is presented in. Another new structure of seven-level active neutral point clamped inverter has been presented in [20]. The disadvantage of this structure is that, it requires a large number of dc sources, to generate a higher number of output levels. Several modulation techniques such as carrier phase shift modulation, carrier disposition modulation, space vector modulation pulse width modulation (PWM) have been presented for multilevel inverter topologies [21, 22]. Although space vector PWM method enhances the output power quality by increasing the number of output voltage levels, it increases the number of basic vector. The increase in number of basic vectors, adds to the control complexity through introducing redundant switching states, which is not appropriate for seven-level inverters. The phase opposition disposition modulation technique is utilized in [23] to improve the operation of seven-level active neutral point clamped inverter. To have the modulation on mixed cascaded seven-level inverter, the SPWM technique with a single carrier is presented in [24]. In order to produce the gate pulse of the utilized power switches, two reference signals with opposite magnitude values are utilized in [25]. The total harmonic distortion (THD) of the output voltage waveform is lower and therefore the quality of output voltage waveform is higher, however the efficiency of the inverter is low. Recently, switched capacitor based multilevel inverters with ability to boost voltage and self-voltage balancing have been recommended in [26, 27]. These structures have two stages, combining a switched capacitor dc–dc converter with an H-bridge. Having the H-bridge in the structure, it present an inherent impropriety of cascaded multilevel inverters, i.e. the need for multiple isolated power dc supplies [14]. To overcome the mentioned disadvantage of multilevel inverters to have high voltage stress on the power electronic switches, in this paper a new multilevel inverter based on switched-capacitor topology is presented. This topology generates a seven-level output voltage waveform with voltage boosting capability having lower voltage stress across the power switches. The capacitor’s voltage can be balanced without any complex control loop (with capability to self-balance the voltage). In order to produce a seven-level output voltage waveform, a single dc source is used in this structure. Rest of this paper is organized as follows; the proposed boost switched capacitor seven-level inverter is fully described in Section 2, and its operation modes are presented in Section 3. Ripple of utilized capacitor voltage is determined in Section 4. Section 5 carries out a comprehensive comparison of proposed topology with other structures. To validate the accurate performance of the proposed switched capacitor inverter, some experimental results are obtained when it is tied to grid and these results will be presented in Section 6 of this paper, last but not the least is the conclusion drawn in final section.

2 Proposed Boost Switched Capacitor Seven Level Inverter

The proposed switched capacitor inverter is shown in Figure 1, in which ten power electronics switches are used to control two floating capacitors \(C_1 \) and \(C_2 \). It should be mentioned that all of the power switches are unidirectional except switches \(S_5 \) and \(S_8 \). The proposed structure can be applied to the photovoltaic systems where the PV panel is assumed as the input dc source of the inverter. It should be noted that the proposed inverter is based on NPC topology, thus the common mode voltage is limited to half of dc-link voltage. Therefore, the common mode voltage is fixed which leads to reduced leakage current. Regarding the mid-point of dc-link capacitors,
the suggested inverter administers to produce seven levels of output voltages with levels of $0.5V_{dc}$, V_{dc}, $1.5V_{dc}$, 0, $-0.5V_{dc}$, $-V_{dc}$, $-1.5V_{dc}$.

3 | OPERATION MODES OF PROPOSED SEVEN-LEVEL INVERTER

In this section, the operation modes of the proposed topology are described in detail. The states of the switches S_1 to S_8 are presented in Table 1 and the ideal seven-level output waveform is shown in Figure 2.

Regarding Figure 2, it can be seen that the capacitor C_{dc1}, is in the output current path and transfers the power to the output, therefore capacitor C_{dc2}, is being charged during and capacitor C_{dc2}, is being charged in this positive half-cycle. During the negative half cycle, capacitor C_{dc2}, is in the output current path and transfers the power to the grid while in the output current path and transfers the power, therefore capacitor C_{dc1}, is being charged in this half-cycle. Considering the mentioned facts, the charging time for capacitor C_{dc1} and capacitor C_{dc2} is the same which leads to natural balancing of capacitors. Similar to what is explained for capacitors C_{dc1} and C_{dc2}, from Figure 2, it can be seen that capacitors C_1 and C_2 are in the output current path for the same period of time. In other words, capacitor C_1 supports the generation of output voltages $+V_{PV}$ and $+1.5V_{PV}$ in the positive half-cycle while capacitor C_2 is being utilized in the same half cycle and is in the output current path while generating $+1.5V_{PV}$. As in the positive half-cycle, in the negative half-cycle, capacitor C_1 is utilized when generating $-1.5V_{PV}$ voltage and capacitor C_2 is being utilized for generating $-V_{PV}$ and $-1.5V_{PV}$. So it is clear that the capacitors C_1 and C_2 are in the output current path for the same amount of time which leads to natural balancing of these capacitors.

As a general note, it could be said that, since the operation of the circuit is symmetrical in the negative and positive half-cycle, the capacitor charging will be done in a balanced way naturally.

The equivalent electrical circuit of each operation mode is separately shown in Figures 3 and 4. In these figures, the blue and red paths indicate charging direction of the capacitors and injected current to power grid respectively. In this topology each utilized capacitors is charged to half of V_{PV}. The operation modes of this topology are classified as follow.

3.1 | Positive half-cycle

3.1.1 | First operation mode $0V_{PV}$

The equivalent circuit of this mode is indicated in Figure 3(a). Considering this figure, it can be understood that the switches S_1, S_3, S_5 and S_8 are in ON-state. Therefore, the output voltage of the proposed inverter is equal to zero ($V_{out} = 0$). It should be noted that during this mode, the capacitors C_1 and C_2 are in parallel with the input dc power supply. Each floating capacitor is charged to half of the input dc power supply ($V_{C_1} = V_{C_2} = V_{PV}/2$). This guarantees the self-balancing of capacitors voltages.

In this mode the switches S_2, S_4, S_6, and S_7 are in OFF-state. The standing voltage of these switches can be obtained as follows:

$$V_{S4} = V_{S2} = V_{PV}$$ \(1\)

$$V_{S6} = V_{C1} = 0.5V_{PV}$$ \(2\)

$$V_{S7} = V_{C2} = 0.5V_{PV}$$ \(3\)

Also, in this mode the generated output voltage of the proposed switched capacitor inverter is equal to zero.

3.1.2 | Second operation mode $0.5V_{PV}$

The electrical circuit of this mode is shown in Figure 3(b). In this mode, as in the previous mode, the capacitors are in parallel with the input source and are being charged to half of the input dc voltage ($V_{C1} = V_{C2} = V_{PV}/2$). Considering Figure 3(b), it can be seen that, the switches S_1, S_3, S_5 and S_8 are in ON-state and the amplitude of generated output voltage level of the inverter is equal to $0.5V_{PV}$. In this mode, the switches S_2, S_4, S_7, and S_8 are in OFF-state. The standing voltage of these switches can be calculated as follows:

$$V_{S2} = V_{S4} = V_{dc1} + V_{dc2}$$

$$V_{dc1} = V_{dc2} = 0.5V_{PV} \Rightarrow V_{S2} = V_{S4} = V_{PV}$$ \(4\)
3.1.3 Third operation mode $1V_{PV}$

Figure 3(c) indicates the equivalent electrical circuit of the third operation mode, where the produced output voltage level equals V_{PV}. The switches S_1, S_4, and S_8 should be turned on in this mode. So that the capacitor C_{dc1} and capacitor C_2 are connected in series and then discharged to the output. Therefore, the amplitude of produced output voltage level is equal to the sum of these mentioned capacitors voltage.
TABLE 2 Comparison of the proposed topology with other structures

Topologies	Number of switches	Number of diodes	Number of output levels	Number of floating capacitors	Voltage boosting capability	Stress voltage on switches are within V_{dc}
[28]	14	—	7	2	No	Yes
[29]	16	—	7	1	No	Yes
[26]	10	1	9	2	Yes	No
[27]	12	—	7	1	No	Yes
[30]	9	2	7	2	Yes	No
[31]	12	—	9	3	Yes	No
[32]	8	—	7	1	No	Yes
[33]	7	2	5	1	No	Yes
[23]	18	—	7	2	No	Yes
Proposed	10	—	7	2	Yes	Yes

TABLE 3 Details of utilized elements and prototype specifications

Circuit element	Type	Explanation
S1, S2, S3, S4, S5, S6, S7, S8	47N60C	650 V/47 A
Gate driver	TLP 250	IC
Current transducer	LA55P	Hall effect sensor
Microcontroller	Beagle Bone Black	ARM Cortex-A8
Grid frequency	50 Hz	
Sampling frequency	40 KHz	
C1, C2, Cdc1, Cdc2	Electrolytic	2200°F
Lf	Ferrite core	1.5 mH

The standing voltage of switches can be achieved as:

- $V_{S2} = V_{S3} = V_{S5} = V_{PV}$ (5)
- $V_{S6} = V_{C1} = 0.5V_{PV}$ (6)
- $V_{S7} = V_{C2} = 0.5V_{PV}$ (7)

3.1.4 Fourth operation mode $1.5V_{PV}$

Figure 3(d) depicts the equivalent circuit of the fourth operation mode with the capacitor charging path and the path of injected current to the grid. In this mode, the switches S_1, S_4, S_6 are in ON-state. Under this condition, the capacitors C_{dc1}, C_1, and C_2 are in series connection and the total energy of all three capacitors is transmitted to the output of the proposed inverter. In this mode, amplitude of the generated output voltage level is equal to $1.5V_{PV}$.

\[
(V_{out} = V_{C1} + V_{C2} + V_{dc1} = 1.5V_{PV}) \quad (8)
\]

The standing voltage of switches can be obtained as:

- $V_{S2} = V_{S5} = V_{dc1} + V_{dc2} = V_{PV}$ (9)
- $V_{S3} = V_{S7} = V_{C1} + V_{C2} = V_{PV}$ (10)

3.2 Negative half-cycle

3.2.1 Fifth operation mode $-0.5V_{PV}$

The electrical circuit of this mode is shown in Figure 4(a), in which switches S_1, S_3, S_5, and S_7 are in ON-state in order to generate first output level of output voltage waveform in the negative half cycle. When the switch S_1, S_3, and S_5 are in ON-state, the capacitors C_1 and C_2 are connected in parallel with the input dc source. Therefore, each of mentioned capacitor are charged to half of the input dc source ($V_{C1} = V_{C2} = V_{PV}/2$). By turning on the switch S_5 and S_7 the energy of capacitor C_{dc2} is discharged to the output of the inverter through the current path which is shown in red. In this mode the first level of the negative half cycle is generated. Also, the switches S_2, S_4, S_6, and S_8 are in OFF-state. Therefore, the standing voltage of these switches can be calculated as:

- $V_{S2} = V_{S4} = V_{dc1} + V_{dc2} = V_{PV}$ (11)
- $V_{S6} = V_{C1} + V_{C2} = V_{PV}$ (12)
- $V_{S8} = V_{C2} = 0.5V_{PV}$ (13)

3.2.2 Sixth operation mode $-1V_{PV}$

Figure 4(b) shows the electrical circuit of this mode, which is to generate second level of output voltage waveform in the negative half cycle. This is achieved through switching the power switches S_2, S_3, and S_8 to ON-state. By turning on of the S_2 and S_3, the capacitors C_1 and C_{dc2} are in series connection. Meanwhile, the switches S_1, S_4, S_5, S_6, and S_7 are turned off. The standing voltage of these switches can be written as follows:

- $V_{S1} = V_{dc1} + V_{dc2} = V_{PV}$ (14)
3.2.3 Seventh operation mode $-1.5V_{PV}$

Figure 4(c) shows the equivalent circuit of the seventh operation mode. This mode will generate the third level of the output voltage waveform in the negative half cycle. In order to obtain this output level, the switches $S_2, S_3,$ and S_7 are in ON-state, whilst other switches remain OFF-state as can be seen in this figure. Standing voltage of the switches can be calculated

\[V_{S6} = V_{C1} = 0.5V_{PV} \]
\[V_{S4} = V_{S5} = V_{C1} + V_{C2} = V_{PV} \]
\[V_{S7} = V_{C2} = 0.5V_{PV} \]
FIGURE 8 The voltage stress of (a) switch S1, (b) switch S2, (c) switch S3, (d) switch S4

4 | CALCULATION OF CAPACITOR VOLTAGE RIPPLE

The grid current in the proposed structure is divided into two dc-link capacitors with the same capacitance. This will lead to the same average voltage on the capacitors. Voltage ripple of the capacitors of dc-link (V_{ripple}) can be calculated as:

$$V_{\text{ripple}} = 2V_{\text{C,dc,p}}$$

(22)

Here, $V_{\text{C,dc,p}}$ is the peak voltage of the dc-link capacitors. Considering a sinusoidal grid current, the voltage ripple can be rewritten as follows:

$$V_{\text{ripple}} = \frac{I_p}{(100\pi) \times C_{\text{dc}}}$$

(23)

where I_p is the peak fundamental grid current. The capacitance of both utilized capacitors are the same.

$$C_{\text{dc}} = C_{\text{dc1}} = C_{\text{dc2}}$$

(24)

In the other words, in order to calculate the voltage ripple of utilized capacitors C_1 and C_2, longest continues discharging period of the utilized capacitors are considered. With respect to Figure 5, the integration of grid current from β_2 to $\pi - \beta_2$, electric charge flowing out from capacitor C_1 can be calculated as:

$$\Delta Q_{C_1} = \frac{1}{100\pi} \int_{\beta_2}^{\pi - \beta_2} I_p \sin(\omega t - \theta) d\omega t$$

(25)

Since the capacitor electric charge has a linear relation with capacitor voltage ($Q = CV$), the voltage ripple equation can be written as follows:

$$\Delta V_C = \frac{2I_p \cos(\beta_2)}{(100\pi) \times C_1 \cos(\theta)}$$

(26)

where, $\cos(\theta)$ indicates the power factor (PF). It should be noted that, the capacitance value of floating capacitors C_1 and C_2 are the same.

$$C_1 = C_2 = C$$

(27)

5 | COMPARISON RESULTS

The proposed switched capacitor boost inverter is compared with most recent topologies and the summary of this comparison is presented in Table 2. This comparison is made in terms of number of generated output voltage levels, utilized power switches, diodes, floating capacitors, voltage boosting
capability, and standing voltage of power switches. Multilevel inverter structures ensures low voltage stress on power electronic switches [26, 33], with lack of voltage boosting capability. Considering Table 2, in all of the presented topologies, voltage stress on power switches is equal to \(V_{dc} \) expect topologies [26, 31, 32]. Consequently, the proposed topology in this paper can offer benefits not only in voltage boosting capability, it also mitigates the standing voltage on the switches, thus improving the lifetime of the devices.

6 SIMULATION RESULTS

In this section, simulation results of MATLAB/Simulink are presented for the seven-level inverter, in this simulation, the peak input voltage magnitude is assumed to be 266 volts. Seven-level output voltage with a peak magnitude of 400 volts with sinusoidal grid injected current with unity power factor is presented in Figure 6(a). The proposed topology can also support the grid reactive power, therefore, grid injected current with output inverter voltage with different power factors are presented in Figure 6(b–d).

Voltage waveforms of capacitors \(C_{dc,1}, C_{dc,2}, C_1, C_2 \), are shown in Figure 7(a–d). Regarding the presented waveforms, it could be seen that the capacitor voltage is adjusted to half of the input voltage and the capacitor voltage ripples are in an acceptable range.

In addition, the voltage stress of the utilized switches \(S_1 \sim S_4 \) are presented in Figure 8(a–d), respectively. Also, the voltage stress of power switches \(S_5 \sim S_8 \) are indicated in Figure 9(a–d), respectively. Regarding the simulation results of voltage stress for switches \(S_5 \) and \(S_8 \), it could be understood that the voltage stress on the mentioned switches is bipolar, so for the accurate operating of the proposed topology, switches \(S_5 \) and \(S_8 \), should be composed of two back to back IGBTs.

7 EXPERIMENTAL RESULTS

Experimental results are presented to validate the performance of the proposed switched capacitor inverter. A photograph of the proposed inverter prototype is depicted in Figure 10. Details of used elements and prototype specifications are presented in Table 3. Since 2200 \(\mu \)F is a standard commercial capacitor, the voltage ripple for capacitors \(C_{dc,1} \) and \(C_{dc,2} \) could be calculated based on following equation:

\[
V_{ripple} = \frac{I_P (100\pi) \times C_{dc}}{100 (100\pi) \times C_{dc}} = \frac{5}{100 \times \pi \times 2200 \times 10^{-6}} \]

\[
= 7.24V
\]
So the voltage ripple for capacitors C_{dc1} and C_{dc2} could be calculated as 7.24 V, which is a reasonable value for the voltage ripple and could also be confirmed by the experimental results. Therefore, it could be said that 2200 μF is an appropriate value for the capacitors C_{dc1} and C_{dc2}.

In order to calculate the C_1 and C_2 capacitors value:

Since 2200 μF is a standard commercial capacitor, the voltage ripple for capacitors C_1 and C_2 could be calculated based on following equation:

$$
\Delta V_C = \frac{2I_P \times \cos(\beta_2)}{100\pi \times C} \times \cos(\theta)
$$

$$
= \frac{2 \times 5 \times 0.866}{100\pi \times 2200 \times 10^{-6}} \times 1 = 12.53 \text{V}
$$

So the voltage ripple for capacitors C_1 and C_2 could be calculated as 12.53 V which is a reasonable value for the voltage ripple and could also be confirmed by the experimental results. Therefore, it could be said that 2200 μF is an appropriate value for the capacitors C_1 and C_2.

To verify the feasibility of the proposed inverter for grid-connected applications, experimental results are obtained in grid-connected operating mode. It is worth mentioning that the current control technique in [9, 34, 35] is used to generate the gate pulses of switches. In single-phase grid-connected inverters which are connected to a grid with 220 V RMS voltage, it is recommended for inverter to have an output of 360–400 V. Since in this topology, the inverter output will be 1.5 times of input voltage, in order to have a 400 V output voltage, the input voltage should be 266 V. The input dc power supply used in the tests has an amplitude of 266 V. The seven-level output voltage waveform of the inverter with a peak value of 400 V and a sinusoidal output grid-injected current at the unity power factor ($PF = 1$) are shown in Figure 11(a). Regarding this figure, the grid injected power could be calculated from below equation,

$$
P = \frac{1}{2}V_{g,\text{max}}^2 \times I_{g,\text{max}} \times \cos(\theta)
$$

in which, $V_{g,\text{max}}$ and $I_{g,\text{max}}$ represent the maximum voltage and current of the grid, respectively, which are 220 $\sqrt{2}$V and 5 A for the proposed topology. Replacing the mentioned values in Equation (31), the grid injected power is calculated to be 0.77 kW. In order to verify the balanced voltage waveform of the utilized capacitors, the voltage across the capacitors C_{dc1}, C_{dc2} and C_1, C_2 are presented in Figure 11(b) and 11(c) respectively. Considering this figure, it is clear that the capacitors have been balanced to half of input dc power supply value ($V_{C_{dc1}} = V_{C_{dc2}} = 113$ V, $V_{C_1} = V_{C_2} = 113$ V). Also, the voltage ripple of the utilized capacitors has an acceptable value.

The proposed inverter will also provide the reactive power support to the grid. In other words, the current injected to the grid can be in phase with grid ($PF = 1$), or under conditions of leading PF and lagging PF. Figure 12 shows the results of grid voltage and injected current from proposed inverter. Injected current under different power factors from unity power factor ($PF = 1$), to leading PF and lagging PF, are indicated in Figure 12(a–c) respectively. Meanwhile, the standing voltage waveform of used power switches (S1–S8) are presented in Figure 13, in which Figure 13(a) shows the standing voltage of switches S1 and S2. It is clear that the peak voltage stress across switch S1 and S2 is limited to only V_{PV}. The voltage stress on the power switches S3 and S6 are indicated in Figure 13(b). With respect to this figure, it is clear that the peak value of standing voltage of mentioned switches are equal to V_{PV}.

Also, standing voltages of power switches S4 and S5 are presented in Figure 13(c). The peak voltage stress across the switches S4 and S5 was limited to V_{PV}. Figure 13(d) shows the standing voltage of switches S7 and S8 where the peak standing voltage value for these switches are equal to 0.5V_{PV}. With respect to this figure, the peak value of standing voltage of used power switches is about 266 V. Therefore, the utilized power switches withstand only friction of peak value of output voltage.
waveform in their OFF-state mode. Also, standing voltages of power switches S4 and S5 are presented in Figure 13(c).

The peak voltage stress across the switches S4 and S5 was limited to V_{PV}. Figure 13(d) shows the standing voltage of switches S7 and S8 where the peak standing voltage value for these switches are equal to 0.5 V_{PV}. With respect to this figure, the peak value of standing voltage of used power switches is about 266 V. Therefore, the utilized power switches withstand only friction of peak value of output voltage waveform in their OFF-state mode.

Finally, regarding presented experimental results, the accurate performance and feasibility of the recommended boost switched capacitor seven-level inverter for grid-connected applications is validated, which is also in good agreement with the provided mathematical analysis for the proposed topology.
Also, comparing the results confirms the similarity between simulation and experimental results.

8 | CONCLUSION

In this paper, a new switched capacitor seven-level inverter topology with voltage boosting and reactive power support capabilities is presented. This structure combines the benefits of different multilevel inverter structures. The suggested switched capacitor inverter produces seven-level output voltage waveform using only ten power switches and two floating capacitors. The presented topology is grid connected with a significant drop in the leakage current thanks to the NPC topology. The peak value of output voltage is 1.5 times the input dc voltage which validates the boosting capability of the converter. One of the interesting features of proposed switched capacitor multilevel inverter is self-voltage balancing of floating capacitors and single power supply requirement. Moreover, design consideration and standing voltage calculations of the involved power switches have been discussed in this paper. Last but not the least, the feasibility and superiorities of the proposed switched capacitor inverter are compared with most recently introduced switched capacitor structures. Also, to verify the performance of the proposed inverter, experimental results are presented for the grid-connected mode of operation.

ORCID

Weichi Zhang https://orcid.org/0000-0001-6273-4884
Zahya Naderi Zarnaghi https://orcid.org/0000-0003-1817-8117

REFERENCES

1. Nabae, A., et al.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)
2. Akagi, H.: Multilevel converters: Fundamental circuits and systems. Proc. IEEE 105(11), 2048–2065 (2017)
3. Naderi, Y., et al.: An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks. Renewable Sustainable Energy Rev. 93, 201–214 (2018)
4. Zhang, W., et al.: Dc injection suppression in transformer-less grid-connected inverter using a dc-link current sensing and active control approach. 34(1), 396–404 (2018)
5. Naderi, Y., et al.: A new strategy for harmonic minimization based on triple switching of multilevel converters. In: 21st Iranian Conference on Electrical Engineering (ICEE 2013). IEEE, Piscataway, New Jersey (2013)
6. Naderi, Y., et al.: An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks. Renewable Sustainable Energy Rev. 93, 201–214 (2018)
7. Naderi, Y., et al.: PSO algorithm applied to enhance power quality of multilevel inverter. International Conference on Theory and Applications of Fuzzy Systems and Soft Computing. Springer, Cham (2018)
8. Naderi, Y., et al.: Power quality issues of smart microgrids: applied techniques and decision making analysis. Decision Making Applications in Modern Power Systems. Academic Press, Cambridge, Massachusetts (2020)
9. Vossoughi, N., et al.: A new transformer-less five-level grid-tied inverter for photovoltaic applications. IEEE Trans. Energy Convers. 35(1), 106–118 (2020)
10. Vasu, R., et al.: Asymmetric cascaded H-bridge multilevel inverter with single dc source per phase. IEEE Trans. Ind. Electron. 67(7), 5398–5409 (2020)
11. Lee, S.S., et al.: Hybrid cascaded multilevel inverter (Hcmil) with improved symmetrical 4-level submodule. IEEE Trans. Power Electron. 33(2), 932–935 (2017)
12. Oskuee, M.R.J., et al.: A new multilevel voltage source inverter configuration with minimum number of circuit elements. J. Central South Univ. 24(4), 912–920 (2017)
13. Samadasi, E., et al.: A square T-type (St-type) module for asymmetrical multilevel inverters. IEEE Trans. Power Electron. 33(2), 987–996 (2017)
14. Liu, J., et al.: A cascaded multilevel inverter based on switched-capacitor for high-frequency ac power distribution system. IEEE Trans. Power Electron. 29(8), 4219–4230 (2013)
15. Raman, S.R., et al.: Multi-input switched-capacitor multilevel inverter for high-frequency ac power distribution. IEEE Trans. Power Electron. 33(7), 5937–5948 (2017).
16. Raman, S.R., et al.: Switched-capacitor multilevel inverters for high frequency ac microgrids. In: IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, Piscataway, New Jersey (2017)
17. Babaei, E., Gowgani, S.S.: Hybrid multilevel inverter using switched capacitor units. IEEE Trans. Ind. Electron. 61(9), 4614–4621 (2013)
18. Raman, S.R., et al.: A seven level switched capacitor multilevel inverter with asymmetric input sources for microgrids. In: 20th International Conference on Electrical Machines and Systems (ICEMS). IEEE, Piscataway, New Jersey (2017)
19. Sun, X., et al.: A single dc source cascaded seven-level inverter integrating switched-capacitor techniques. IEEE Trans. Ind. Electron. 63(11), 7184–7194 (2016)
20. Yipeng, J., Chen, G.: A novel three-phase seven-level active clamped converter using H-bridge as a level doubling network. In: IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). IEEE, Piscataway, New Jersey (2016)
21. Lim, Z., et al.: Modular-cell inverter employing reduced flying capacitors with hybrid phase-shifted carrier phase-disposition PWM. IEEE Trans. Ind. Electron. 62(7), 4086–4095 (2014)
22. Kim, K.-M., et al.: Novel carrier-based hybrid pulse width modulation method for cascaded capacitor-clamp multilevel inverter. IET Power Electron. 7(10), 2678–2686 (2014)
23. Sheng, W., Ge, Q.: A novel seven-level ANPC converter topology and its commutating strategies. IEEE Trans. Power Electron. 33(9), 7496–7509 (2018)
24. Yuan, J., et al.: Study of seven-level hybrid cascade Pvc grid-connected inverter. Trans. China Electrotech. Soc. 30(4), 1–7 (2015)
25. Wang, K., et al.: A capacitor voltage balancing strategy for a five-level hybrid-clamped inverter. In: IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, Piscataway, New Jersey (2015)
26. Barzegarkhooh, R., et al.: A new boost switched-capacitor multilevel converter with reduced circuit devices. IEEE Trans. Power Electron. 33(8), 6738–6754 (2017)
27. Tian, H., et al.: A novel seven-level hybrid-clamped (Hc) topology for medium-voltage motor drives. IEEE Trans. Power Electron. 33(7), 5543–5547 (2017)
28. Saeedifard, M., et al.: Operation and control of a hybrid seven-level converter. IEEE Trans. Power Electron. 27(2), 652–660 (2011)
29. Pulikanti, S.R., et al.: Hybrid seven-level cascaded active neutral-point-clamped-based multilevel converter under SHE-PWM. IEEE Trans. Ind. Electron. 60(11), 4794–4804 (2012).
30. Liu, J., et al.: A novel nine-level inverter employing one voltage source and reduced components as high-frequency ac power source. IEEE Trans. Power Electron. 32(4), 2939–2947 (2016)
31. Nakagawa, Y., Koizumi, H.: A boost-type nine-level switched capacitor inverter. IEEE Trans. Power Electron. 34(7), 6522–6532 (2018)
32. Yu, H., et al.: Hybrid seven-level converter based on T-type converter and H-bridge cascaded under SPWM and SVM. IEEE Trans. Power Electron. 33(1), 689–702 (2017)
33. Wang, H., et al.: A seven-switch five-level active-neutral-point-clamped converter and its optimal modulation strategy. IEEE Trans. Power Electron. 32(7), 5146–5161 (2016)

34. Vosoughi, N., et al.: Single-phase common-grounded transformerless grid-tied inverter for PV application. IET Power Electron. 13(1), 157–167 (2019)

35. Vosoughi, N., et al.: A new single phase transformerless grid connected inverter with boosting ability and common ground feature. IEEE Trans. Ind. Electron. 67(11), 9313–9325 (2019)