Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea

Carrie A. Whittle* and Cassandra G. Extavour*†,1

*Department of Organismic and Evolutionary Biology and †Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138

ORCID ID: 0000-0003-2922-5855 (C.G.E.)

ABSTRACT In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods.

KEYWORDS Gryllus bimaculatus Oncopeltus fasciatus Parhyale hawaiensis optimal codons translational selection

The arthropods comprise more than 80% of animal species currently living and are a highly diverse phylum of exoskeleton organisms that includes terrestrial insects and aquatic crustaceans (Akam 2000; Odegaard 2000; Regier et al. 2010). Despite the diversity of this phylum, research in genome evolution in arthropods remains focused either on species of flies and mosquitoes, primarily Drosophila and Anopheles (Diptera) (Neafsey et al. 2015; Stark et al. 2007; Wiegmann and Yeates 2005), or on a few other holometabolous insects (those with complete metamorphosis; the so-called “higher” insects) such as beetles (Coleoptera) or wasps (Hymenoptera) (Brown et al. 2008; Group et al. 2010; Weinstock et al. 2006). Much remains unknown outside those insects, and a broader understanding of how arthropod genomes evolve requires expanding studies to include nontraditional models (Zuk et al. 2014). Emerging arthropod model systems for genomics research include two basally branching hemimetabolous insects, namely a cricket (Gryllus bimaculatus, Orthoptera) and the milkweed bug (Oncopeltus fasciatus, Hemiptera), as well as the amphipod crustacean Parhyale hawaiensis (Amphipoda) (Liu and Kaufman 2009a; Mito and Noji 2009; Rehm et al. 2008). Each of these arthropods has recently acquired genome-wide transcriptome data from ovaries, multistage embryos, and/or postembryonic tissues (Ewen-Campen et al. 2011; Zeng et al. 2011, 2013; Zeng and Extavour 2012), allowing investigation of evolutionary dynamics of protein-coding genes.

Copyright © 2015 Whittle and Extavour
doi: 10.1534/g3.115.021402
Manuscript received June 15, 2015; accepted for publication August 28, 2015; published Early Online September 17, 2015.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Supporting information is available online at www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.021402/-/DC1
Identification numbers of RNA-seq data at the National Center for Biotechnology Information: SRR060816, SRR057570, SRR060813.
1Corresponding author: Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge MA 02138. E-mail: extavour@oeb.harvard.edu
Crickets have historically been key systems for research in functional genetics, neurobiology, and developmental biology but have more recently emerged as an important model for evolutionary biology, including topics in sexual selection and speciation (Garcia-Gonzalez and Simmons 2010; Huber et al. 1989; Zák et al. 2014). The two-spotted cricket *G. bimaculatus*, like other crickets, branches basally to the Diptera, Hymenoptera, and Coleoptera and has a large genome (~1.7 Gb) predicted to contain more than 19,000 unique gene sequences (Zeng et al. 2013). An additional basally branching hemimetabolous insect, the milkweed bug *O. fasciatus*, provides further opportunities for molecular evolutionary research (Butt 1949; Liu and Kaufman 2009a,b). Specifically, more than 10,000 unique genes, including those involved in an array of developmental, signaling, and housekeeping functions, have been identified, allowing comparative genomics in this taxon (Ewen-Campen et al. 2011). The amphipod crustacean *P. hawaiensis* belongs to the crustacean class Malacostraca, which is one of the crustacean groups most closely related to the Hexapods (Insecta, Collembola, Protura, and Diplura) (Regier et al. 2010) and is common in intertidal habitats worldwide. It has extensive genetic and developmental tools available (Kontarakis et al. 2011; Pavlopoulos and Averof 2005; Rehm et al. 2008), yet remarkably is one of the only crustaceans besides *Daphnia pulex*, with whole genome or transcriptome datasets available (Colbourne et al. 2011; Zeng and Extavour 2012; Zeng et al. 2011). Currently, few studies are available regarding the genomic traits and evolution in nontraditional arthropod models, including the evolution of synonymous codon usage and amino acid composition in protein-coding DNA.

Synonymous codons are not used randomly in the genome. Biases in synonymous codon usage may arise from mutational pressure (Osawa et al. 1988; Sharp et al. 1995; Sueoka 1988) or from selective forces favoring efficient and accurate translation (Duret 2000; Duret and Mouchiroud 1999; Stolestki and Eyre-Walker 2007). Findings that codon usage biases are correlated with transfer RNA (tRNA) abundance and/or gene copy number (Duret 2000; Ikemura 1981; Ikemura 1985) and with gene expression levels in numerous taxonomic groups (*e.g.*, *Escherichia coli*, *Saccharomyces*, *Caenorhabditis*, *Drosophila*, *Arabidopsis*, *Silene*, *Populus*) support the theory that selection favors specific codons that promote efficient and accurate translation of genes that are expressed at high levels (Cutter et al. 2006; Duret and Mouchiroud 1999; Ingvarsson 2008; Qiu et al. 2011; Sharp and Li 1986; Sharp et al. 1986). Thus, an effective method to identify codons favored by selection (optimal codons) is to compare codon usage per amino acid in highly expressed genes and lowly expressed genes (Cutter et al. 2006; Duret and Mouchiroud 1999; Ingvarsson 2008; Wang et al. 2011; Whittle et al. 2007). In this regard, the presence/absence of optimal codons and factors linked to their usage may reveal whether selection for translational efficiency and/or accuracy plays a major role in an organism’s genome evolution.

In arthropods, nearly all information to date about optimal codons is from higher insects: optimal codons have been identified in species of *Drosophila* and *Anopheles*, and other taxa such as *Tribolium castaneum*, *Apis mellifera*, and *Nasonia vitripennis* (Behura and Severson 2012, 2013; Duret and Mouchiroud 1999; Williford and Demuth 2012; C. A. Whittle et al., unpublished data), although no or weak genome-wide trends were evident in *Bombyx mori* (Jia et al. 2015; C. A. Whittle et al., unpublished data). The bias favors GC3 codons in some organisms, including *D. melanogaster* (Duret and Mouchiroud 1999), but AT3 is favored in others (Behura and Severson 2012; C. A. Whittle et al., unpublished data), indicating marked divergence in the presence/absence of optimal codons and types of optimal codons among these insects. Nevertheless, further data are needed about the dynamics of codon usage in arthropods outside of the higher insects, such as hemimetabolous insects and crustaceans, to answer a number of outstanding questions, including, for example whether optimal codons exist in these organisms, and if so, how they are related to traits such as amino acid composition (Akashi 2003; Cutter et al. 2006; Williford and Demuth 2012).

The amino acid composition of proteins also appears to change with increasing expression levels (Akashi 2003; Cutter et al. 2006; Duret 2000; Williford and Demuth 2012). Several reports have indicated that amino acid frequency in proteins encoded by highly expressed genes correlates to the most abundant tRNA in an organism, consistent with a bias in selection for speed and accuracy of translation (Akashi 2003; Duret 2000). Further, studies in some euakaryotes, including yeast, *T. castaneum*, and *Caenorhabditis elegans*, have indicated that amino acids in highly expressed genes tend to be less metabolically costly (Cutter et al. 2006; Raiford et al. 2008; Williford and Demuth 2012). For instance, highly transcribed genes contain fewer amino acids of large size and complexity (S/C scores; Dufon 1997), and favor low cost amino acids (Akashi 2003; Cutter et al. 2006; Williford and Demuth 2012). Thus, in those studies, abundant proteins, presumably encoded by highly transcribed genes, tended to be comprised of smaller less complex amino acids, which is not only predicted to minimize the biochemical energy costs of synthesis, but might also contribute to the stability of the protein structure and its conformation (Cutter et al. 2006; Dufon 1997; Williford and Demuth 2012). Expanding this molecular evolutionary research to non-traditional model organisms will help elucidate the breadth of this phenomenon and the role of evolution of amino acid preferences in promoting translational efficiency.

In the present investigation, we study optimal codon and amino acid usage based on recently available large-scale RNA-seq data from three emerging models of arthropods, *G. bimaculatus*, *O. fasciatus*, and *P. hawaiensis*. The RNA-seq data are available at the Assembled Searchable Giant Arthropod Read Database (*i.e.*, ASGARD) (Ewen-Campen et al. 2011; Zeng et al. 2011; Zeng and Extavour 2012; Zeng et al. 2013). Using these data, we provide strong evidence that codon usage and amino acid frequency has been optimized in highly expressed genes of each of these organisms, with the strongest signals observed in *G. bimaculatus* and *O. fasciatus*, and weaker, yet significant effects detected in *P. hawaiensis*. Further, using *D. melanogaster* as a reference, we show that highly expressed coding sequence (CDS) are shorter, consistent with translational selection, and are enriched for genes involved in cell-cycle processes and protein synthesis in all three organisms. Together, the results are consistent with a history of selection on synonymous codon usage and on amino acid frequency in highly transcribed genes to promote translational efficiency and accuracy across Pancrustacean genome evolution.

MATERIALS AND METHODS

Transcriptomes Under Study

Here, we studied RNA-seq data from ASGARD derived from ovaries, multi-stage embryos and/or postembryonic tissues for *G. bimaculatus*, *O. fasciatus*, and *P. hawaiensis* (Supporting Information, Table S1) (Ewen-Campen et al. 2011; Zeng et al. 2011; Zeng and Extavour 2012; Zeng et al. 2013). Multistage embryos and ovaries comprise highly complex tissues, expressing a large component of genes in the genome (Li et al. 2014); thus, genes highly transcribed in these tissues are apt to be an effective tool to reveal genome-wide optimization of codon usage and amino acids in an organism (*c.f.* Subramanian and Kumar 2004). The next-generation sequencing data are described in Table S1. We identified all assembled transcripts (Zeng and Extavour...
without isoforms, to allow accurate mapping of reads to a specific single CDS to quantify expression. For this gene set, we extracted all coding regions with a start codon, and lacking any unknown sites or internal stop codons. To quantify expression levels, we mapped reads to the CDS and calculated reads per million (RPM) using the non-normalized libraries that comprise the largest (or only) dataset per species (Table S1; where read number directly reflects abundance; average read length was 349, 297, and 400 bp per species, respectively) (Zeng and Extavour 2012). RPM was defined as the number of read matches to a CDS/Total number of reads matching all CDS x 1,000,000; see Identification of optimal codons for reads per kilobase million, RPKM). Tools and software for measuring expression and codon and amino acid usage in the various datasets are described in File S3.

Data availability

Data are available at ASGARD (Ewen-Campen et al. 2011; Zeng et al. 2011; Zeng and Extavour 2012; Zeng et al. 2013). Details are provided in Table S1.

RESULTS

For our analyses, the number of CDS examined after excluding genes with isoforms, unknown sites, or internal stop codons for G. bimaculatus, O. fasciatus, and P. hawaiensis was 5284, 6161, and 6731, which spanned 1,680,067, 1,667,783, and 1,326,896 codons, respectively. The nucleotide composition varied across all CDS among organisms: it was AT-rich for G. bimaculatus (AT = 0.6177 ± 0.006; with similar levels of A and T) and O. fasciatus (0.6520 ± 0.006; similar levels of A and T) and AT was mildly higher than GC content in P. hawaiensis (0.5529 ± 0.0417).

We first asked whether we could detect differences in codon usage relative to expression levels in all three study species. To study synonymous codon usage, we first determined the GC3 content among the 5% highest and lowest expressed CDS and detected striking differences consistent with selection on codon usage among these two categories. A highly effective method to identify codon preferences is to compare these preferences between genes expressed at extremely high or extremely low levels (Cutter et al. 2006; Duret and Mouchiroud 1999; Ingarvarson 2008; Wang et al. 2011; Whittle et al. 2007, 2011a). As shown in Figure 1, we found that GC3 was statistically significantly lower in CDS with the 5% highest RPM (mean = 0.307 ± 0.003) than in the 5% of CDS with the lowest RPM (mean = 0.334 ± 0.006) in G. bimaculatus (t-test $P = 2.0 \times 10^{-7}$) and O. fasciatus (mean 5% highest = 0.306 ± 0.004 and mean 5% lowest = 0.349 ± 0.007, respectively, $P = 1.5 \times 10^{-7}$). These trends indicate that AT3 codons are more common under high transcription in these insects. For P. hawaiensis, GC3 was significantly elevated in highly expressed genes compared with lowly expressed genes (mean 5% highest = 0.507 ± 0.005 and mean 5% lowest = 0.473 ± 0.005 respectively, $P = 6.8 \times 10^{-7}$) suggesting selection for GC3 codons in highly expressed genes in this crustacean. For all genes per species, we then assessed the effective number of codons (ENC), wherein values range from 20 (when one codon is exclusively used to code for a given amino acid) to 61 (all codons used equally), and lower values denote greater biases in codon usage in a gene (Wright 1990). We found that AT3 was strongly negatively correlated with ENC in G. bimaculatus (Spearman’s Rank $R = -0.65$, $P = 2.0 \times 10^{-6}$) and O. fasciatus ($R = -0.68$, $P = 2.0 \times 10^{-7}$), thus concurring with AT3 codon preferences in those species. In contrast, no correlation was evident for GC3 and ENC across all genes from P. hawaiensis. ($P > 0.05$), but a negative correlation evident in the uppermost expressed gene set ($R = -0.20$, $P < 2.0 \times 10^{-4}$, for the uppermost 5%), implying marked GC3 favoritism within this dataset. Given these findings, we next assessed synonymous codon usage in every amino acid of the analyzed CDS, to test the hypothesis that AT3 in the insects, and GC3 in the amphipod, were optimal codons in these species.

Identification of optimal codons

Although there is some variation in approaches to identify optimal codons (Hershberg and Petrov 2009, 2012; Wang et al. 2011), here we identified the optimal codon list in each amino acid in G. bimaculatus, O. fasciatus, and P. hawaiensis using relative synonymous codon usage (RSCU) relative to gene expression (Cutter et al. 2006; Duret and Mouchiroud 1999; Ingarvarson 2008; Qiu et al. 2011; Wang et al. 2011; Whittle et al. 2007; Whittle et al. 2011a). RSCU measures the observed frequency of a particular codon relative to the expected frequency if all synonymous codons were used equally. RSCU values greater than 1 indicate preferential usage, and higher values among codons within a synonymous codon family denote increased usage (Sharp and Li 1986). Optimal codons were defined as those having a statistically significant and positive ΔRSCU = RSCU_Mean_Highly_Expressed_CDS - RSCU_Mean_Low_Expressed_CDS when more than one codon matched this criterion per amino acid, the codon with the largest ΔRSCU amino acid was defined as the primary optimal codon (Cutter et al. 2006; Duret and Mouchiroud 1999; Ingarvarson 2008; Whittle et al. 2011a). The ΔRSCU for all amino acids is shown in Table 1, and the mean RSCU and standard errors per expression class are shown in Table S2. We report that 17 of the 18 amino acids with synonymous codons had an optimal codon with a statistically significant and positive ΔRSCU in G. bimaculatus. For O. fasciatus, we identified a total of 16 optimal codons. Both species favored AT3 codons in highly expressed genes. For instance, in G. bimaculatus, 15 of 17 optimal codons ended in AT, whereas 16 of 16 optimal codons ended in AT for O. fasciatus. In fact, for each of the eight amino acids encoded by four or more codons (e.g., Ala, Arg, Gly, Leu, Pro, Ser, Thr, and Val), the optimal codon always ended in T in O. fasciatus, whereas six of eight (the two exceptions being Leu and Pro) ended in T for G. bimaculatus. Thus, there are marked preferences toward specific types of codons (T3) even for amino acids wherein an assortment of synonymous codons exist. The bias toward optimal codons ending in AT was also observed for amino acids with two or three synonymous codons (Table 1). As G. bimaculatus and O. fasciatus each have inherently AT rich transcriptomes (see first paragraph of the Results section), codon
usage is likely partly influenced by the inherent genome composition, which might be expected to contain AT-rich codons. Despite this, our data show that the usage of AT3 codons is enhanced markedly in highly expressed genes (not expected under mutational pressure; see also Optimal codon usage is shaped by selection), and thus is consistent with selection favoring these optimal codons in genes that experience high rates of transcription.

For *P. hawaiensis*, 13 amino acids also were found to have an optimal codon that was favored in highly expressed genes (Table 1). However, in contrast to *G. bimaculatus* and *O. fasciatus*, the majority (12 of 13) of optimal codons were GC3 codons (Table 1). Notably, the absolute value of ΔRSCU was of markedly lower magnitude for *P. hawaiensis* (mean and standard error, 0.0729 ± 0.0062) than for *G. bimaculatus* (0.1060 ± 0.0110) and *O. fasciatus* (0.1158 ± 0.0111) (*P < 0.016 for t-tests*). This finding may indicate that selective forces acting on optimal codons are weaker in the amphibian than in the two insects. Nevertheless, collectively the transcript data for all three invertebrate species show evidence of favoritism toward specific synonymous codons in highly expressed genes.

It is worth noting that genes with longer assembled CDS in the aforementioned analyses could have a greater RPM using next-generation sequencing data due to their greater size, and thus not solely result from high expression. Accordingly, as described in File S1, we repeated our analyses of RSCU, Optimal codon usage is shaped by selection, and found that the usage of AT3 codons to that obtained from RPM, with the exception that P-values were weaker. In sum, we show that RPM provides the most rigorous method to identify optimal codons (File S1), and thus use these codon lists for all analyses.

Another complementary method used to further confirm optimal codon lists is to compare codon usage between ribosomal protein genes (RPGs), which typically are highly expressed, and lowly expressed genes (Heger and Ponting 2007; Wang et al. 2011). Thus, we repeated our analyses using RSCU values at or slightly above 0.1. Asterisks indicate P values using t-tests where *P < 0.05,* ***P < 0.001. Codons with *0.05 > P > 0.1 are also indicated and considered putative optimal codons. The means and standard errors for highly and for lowly expressed CDS are provided in Table S2. Species are abbreviated using their genus name.

Table 1, continued

Amino acid	Codon	RSCU	GC3	AT3	P*	
Val	GTC	−0.141	***	−0.100	**	+0.081
Val	GTA	−0.126	***	−0.108	*	−0.121
Val	GTG	+0.037	–	−0.041	+0.069	

The codon identified as the primary optimal codon for each amino acid is in boldface. RSCU, relative synonymous codon usage.

Amino acid	Codon	RSCU	GC3	AT3	P*	
Arg	AGT	+0.279	**	+0.370	**	+0.048
Arg	GCC	−0.060	–	−0.081	+0.028	
Arg	GCA	−0.055	***	−0.120	**	+0.012
Arg	GCG	−0.123	***	−0.101	**	+0.079
Arg	CGT	+0.277	**	+0.098	**	+0.060
Arg	CGC	+0.013	–	−0.101	**	−0.001
Arg	CGA	+0.081	–	−0.019	–	−0.051
Arg	CCG	+0.029	–	−0.047	−0.163	
Arg	AGA	−0.259	–	+0.050	+0.122	
Arg	AGG	−0.019	–	+0.117	+0.064	
Asn	AAT	+0.074	−0.126	−0.054	**	
Asn	AAC	−0.060	–	−0.110	+0.078	
Asp	GAT	+0.132	−0.129	+0.078		
Asp	GAC	−0.091	–	−0.113	**	
Cys	TGT	+0.170	−0.216	−0.167		
Cys	TGC	−0.033	–	+0.003	−0.013	
Gin	CAA	−0.070	–	+0.063	−0.064	
Gin	CAG	+0.097	−0.013	+0.078		
Glu	GAA	+0.063	−0.107	−0.005		
Glu	GAG	−0.021	–	−0.091	+0.030	
Gly	GGT	+0.180	−0.317	+0.021		
Gly	GGC	−0.018	−0.183	+0.017		
Gly	GGA	+0.011	–	+0.026	+0.096	
Gly	GGG	−0.133	−0.074	−0.127		
His	CAT	+0.129	+0.102	+0.013		
His	CAC	−0.034	–	−0.029	−0.035	
Ile	ATT	+0.311	+0.167	−0.027		
Ile	ATC	−0.135	−0.033	+0.136		
Ile	ATG	−0.125	−0.100	−0.112		
Leu	TTA	−0.034	+0.073	−0.226		
Leu	TGG	+0.300	+0.017	+0.053		
Leu	CCT	+0.068	+0.346	+0.004		
Leu	CTC	−0.217	−0.147	+0.146		
Leu	CTA	−0.075	−0.112	−0.064		
Leu	CGT	−0.021	−0.177	+0.087		
Lys	AAA	−0.032	+0.019	−0.100		
Lys	AAG	+0.059	−0.002	+0.110		
Phe	TTT	+0.062	+0.118	−0.075		
Phe	TTC	−0.015	−0.078	+0.091		
Pro	CCA	+0.158	−0.019	−0.164		
Pro	CCA	+0.190	−0.052	+0.063		
Pro	CCA	+0.139	+0.009	−0.108		
Pro	CGG	−0.038	−0.124	−0.129		
Ser	TCT	+0.297	+0.359	+0.015		
Ser	TCC	−0.200	−0.142	−0.023		
Ser	TCA	−0.024	+0.123	+0.038		
Ser	TCG	−0.007	−0.127	+0.089		
Ser	AGT	+0.024	−0.081	−0.079		
Ser	AGC	−0.090	−0.131	−0.040		
Thr	ACT	+0.163	+0.244	+0.033		
Thr	ACC	−0.104	−0.122	+0.114		
Thr	ACA	+0.040	−0.033	−0.091		
Thr	ACG	−0.114	−0.080	−0.052		
Tyr	TAT	+0.081	+0.176	+0.026		
Tyr	TAC	+0.061	−0.140	+0.086		
Val	GTT	+0.243	+0.261	−0.031		

(continued)
The strength of bias in codon usage varied among amino acids. Specifically, the degree of biased codon usage in the 5% most highly and least highly expressed genes was strongest for the highly degenerate amino acids. For *G. bimaculatus*, the three amino acids with six synonymous codons tended to have the highest ΔRSCU among highly and lowly expressed genes: Arg (+0.277), Leu (+0.300), and Ser (+0.297) (Table 1; see Table S2 for means and standard errors per expression category), whereas three- and four-fold degenerate amino acids (Ala, Gly, Ile, Pro, Thr, and Val) ranged between mean ΔRSCU values of +0.163 and +0.311 (Table 1). In contrast, for amino acids with two-fold degeneracy (Asn, Asp, Cys, Gin, Glu, His, Phe, and Tyr) the ΔRSCU values ranged between +0.062 to +0.170 (Table 1). Thus, it appears the selective pressure favoring the use of optimal codons increases with greater degeneracy. Similarly, for *O. fasciatus*, the highest ΔRSCU values were found for the six-fold degenerate amino acids Leu (+0.346) and Ser (+0.359) and the four-fold degenerate amino acid Ala (+0.370), whereas the lowest values included the two-fold amino acids His (+0.102) and Phe (+0.118). Thus, as found for *G. bimaculatus*, these milkweed bug data are consistent with a tendency for greater selective pressure on use of optimal codons for more degenerate amino acids. However, this relationship is not universal in *O. fasciatus*, as ΔRSCU for Arg was +0.098 in this taxon (Table 1). The trends in these two
fact ranged from +0.139 to +0.279 for G. bimaculatus, and from +0.194 to +0.370 for O. fasciatus (Table 1). Second, the very large positive ΔRSCU values for four- and six-fold degenerate amino acids (as compared to two-fold) are consistent with selection (McVean and Vieira 2001; Cutter et al. 2006) rather than mutational bias. Third, for the six-fold degenerate amino acid Ser, which has two codons ending in T (TCT, AGT), we only observed a strong signal of optimal codons for TCT and not AGT in G. bimaculatus; this was also the case for O. fasciatus. The presence of a C to T mutational bias would be expected to result in both TCT (from TCC to TCT mutations) and AGT (from AGC to AGT mutations) having a statistically significant and positive ΔRSCU. However, we observed no such effect at the AGT codon (+0.024 for G. bimaculatus and −0.081 for O. fasciatus, neither of which were significant; Table 1). We note that the caveat for this particular finding for Ser is that it excludes solely a C to T mutational bias in these species. Collectively the aforementioned results are suggestive that factors other than mutational bias, namely selective pressures, contribute toward shaping the optimal codons for G. bimaculatus and O. fasciatus. Nonetheless, we do not exclude that some mutational pressures, such as neighboring-nucleotide effects, could contribute to nucleotide composition (Hodgkinson and Eyre-Walker 2011). Finally, for P. hawaiensis, where the majority of optimal codons ended in GC, the ΔRSCU for the optimal codon identified for amino acids with four synonymous codons varied extensively (+0.028 to +0.114), whereas one ended in A. Both of these observations are inconsistent with mutational bias as an underlying cause of optimal codons. In sum, our data point toward selection as a factor shaping codon usage in all three arthropods.

Optimal codon usage correlates to amino acid size and complexity

We assessed the cost of protein synthesis using the Dufton (1997) methodology, wherein each amino acid is assigned a size complexity score (S/C) based on its molecular weight and complexity. The S/C score reflects the chemical energy investment, as well as the costs of stability in the protein’s final conformation (Dufton 1997; Williford and Demuth 2012). The S/C scores are listed in Table S3. For each species, we calculated the proportion of amino acids per protein with high S/C (≥40, PrHigh S/C), which include Cys, Phe, His, Met, Arg, Trp, and Tyr. We found that PrHigh S/C was inversely correlated with Fop for G. bimaculatus (Spearman $\rho = -0.09, P < 10^{-13}$) and O. fasciatus (Spearman $\rho = -0.12, P < 10^{-13}$) (see below in this section for P. hawaiensis). Given that codon adaptation indices, such as Fop, correlate with expression and can be used as a proxy to measure expression levels of genes across the genome (Coghlan and Wolfe 2000; Drummond et al. 2005; Popescu et al. 2006; Wall et al. 2005; Williford and Demuth 2012), we can infer that higher gene expression is linked to reduced S/C score in these insects. The R values are similar to those reported for expression and mean S/C in the flour beetle T. castaneum (Williford and Demuth 2012) and suggest that selection for reduced S/C is not exclusive to highly expressed genes but rather exhibits a gradual decline with reduced transcription rates. Nonetheless, our data show that the relationship is not particularly strong as revealed by the absolute value of $R \approx 0.12$, possibly indicating that the selection pressure on optimal codon usage relative to S/C varies among genes. In other words, S/C may be under relatively greater selective pressure in some genes than Fop and vice-versa.

We further studied the relationship between expression and the frequency of each of the individual 20 amino acids. For this, we used Fop as a proxy for the relative expression level at the genome-wide level (Coghlan and Wolfe 2000; Drummond et al. 2005; Popescu et al. 2006; Wall et al. 2005), which is apt to be less noisy than RPM or RPKM at intermediate expression levels (outside the upper and lower 5%; see Identification of optimal codons). In addition, we wished to assess the relationship between Fop and amino acid in and of itself. The Spearman rank correlations between Fop and amino acid frequency per CDS at the genome-wide level are shown in Table 2. The results showed that for G. bimaculatus, 15 amino acids exhibited a statistically significant correlation. The negative R values, which indicate amino acids used rarely in genes with high Fop/expression level, include four of the six amino acids with high S/C scores (≥40, Table S3) namely Arg, Met, His, and Trp (the latter two are nonsignificant), consistent both with the inverse relationship described above between PrHigh S/C and Fop (see Optimal codon usage correlates to amino acid size and complexity), and suggest selection against these amino acids in highly expressed genes. The positive correlations indicate that the more frequently an amino acid appeared in a CDS sequence, the more likely it was to display elevated optimal codon usage. Accordingly, the amino acids most favored under high expression (with $R > 0.269, P < 10^{-15}$) included Glu and Asp, which have moderate S/C scores (between 32.7 and 36.5, Table S3). The amino acids Asn, Lys and Ile also exhibited substantial positive correlations with frequency in CDS and expression levels ($R = 0.169, 0.151$, and 0.115, respectively, $P < 10^{-15}$), and have moderate or low S/C scores (33.7, 30.1, and 16.0, respectively, Table S3). The two amino acids with the largest positive R values with respect to Fop, namely Glu and Asp, and those with the most negative values, Arg and Thr, are illustrated in Figure 3A (Fop values are binned into four distinct categories: Fop < 0.3, ≥3 Fop < 0.4, ≥0.4 Fop < 0.5, and Fop ≥0.5). These results further confirm the striking shifts in amino acid frequency under high Fop/expression. In summary, it is evident that specific amino acids are preferred under high expression in G. bimaculatus, and these tend to be of moderate or low size and complexity.

In O. fasciatus, 16 amino acids exhibited a statistically significant change in frequency with Fop/expression level (Table 2). The two amino acids with the strongest negative (Arg, Gly) and strongest positive (Asn, Lys) R values are illustrated in Figure 3B. The strongest negative correlation was for Arg ($R = -0.252, P = 10^{-15}$), which also has among the largest S/C scores (56.3), implying losses of this metabolically expensive amino acid in CDS expressed at high levels (Table 2, Figure 3B). However, Gly and Ala also exhibited substantial inverse correlations (between -0.188 and $-0.183, P < 10^{-13}$) and have low S/C scores (between 1 and 4.8), implying reduced frequency of these amino acids despite their very low metabolic costs. The amino acids exhibiting the strongest positive correlations with Fop/expression levels were Asn, Lys, Asp, and Glu (R between 0.211 and 0.287, $P < 10^{-15}$, Table 2, Figure 3B). Remarkably, each of these amino acids has S/C scores within a narrow range from 30.1 to 36.5. Thus, similar to G. bimaculatus, genes expressed at high levels appear to favor not amino acids with the lowest S/C scores, but rather a narrow range of moderately sized amino acids, potentially indicating an advantage to maintaining an intermediate protein size under high expression, rather than the smallest possible size. This, thus explains the negative association between PrHigh S/C and Fop reported previously (see preceding paragraph in this section), i.e., an average decline in use of amino acids with extreme S/C in highly expressed genes, while indicating this decline does not necessarily favor the lowest S/C amino acids in these invertebrates. Notably, eight of the nine amino acids with positive R in G. bimaculatus also had positive R in O. fasciatus, implying similar preferences for specific amino acids among these divergent insects from different orders (Orthoptera and Hemiptera, respectively). Furthermore, the four amino acids with strongest positive R values (Lys, Asn, Asp and Glu) were identical among these two arthropods.
Glu 0.270, Asp 0.269, Met 0.169, Asn 0.169, Lys 0.151, Leu 0.115, Ile 0.115, Ala 0.115, Val 0.040, 0.003, Cys 0.035, 0.006, Trp 0.089, 2, Ser 2, Pro 2, His 2, Trp 2.

Fop/expression level was inversely correlated with the frequency of expression level and amino acid frequencies per gene. Specifically, Fop/expression level and amino acid usage. Rather, our data suggest that the reduced usage of expensive amino acids is primarily caused by a greater frequency of moderate cost amino acids under high expression.

Together, these results from individual amino acids in G. bimaculatus and O. fasciatus indicate that the moderate negative correlation between PrHigh SC and Fop is due to a shift toward increased usage of intermediate cost amino acids, coupled with a decline in both very high and low cost amino acids under high expression. It is worth noting that degeneracy was sometimes lower for higher cost amino acids (e.g., Phe vs. Ser, Table S3), which could conceivably contribute to an inverse correlation between PrHigh SC and Fop (since codon bias was reduced for low degeneracy amino acids, Table 1). However, our results in Table 2 show that degeneracy effects on Fop did not underlie the PrHigh SC and Fop negative correlation. For example, for G. bimaculatus, the two-fold degenerate amino acids Phe (S/C score 44.0) and Cys (57.2) exhibited positive (rather than negative) correlations with expression while highly degenerate amino acids such as Ser (S/C score of 17.8) exhibited a large negative correlation (rather than positive) with transcription/Fop level (Table 2). We therefore propose that our findings with respect to PrHigh SC cannot result from an artificial relationship between Fop and amino acid usage. Rather, our data suggest that the reduced usage of expensive amino acids is primarily caused by a greater frequency of moderate cost amino acids under high expression.

For P. hawaiensis, the relationship between Fop and PrHigh SC was weakly positive (Spearman’s R = 0.050, P < 10^-15), consistent with a mild tendency for higher protein size under high expression, and implying a more complex dynamic between expression and protein size in this taxon. This is supported by the relationships between Fop/expression level and amino acid frequencies per gene. Specifically, Fop/expression level was inversely correlated with the frequency of several amino acids per CDS, including Ser, Cys, Thr, and Leu (R between -0.377 and -0.102, P < 10^-15). In turn, the strongest positive correlations were found for Asp, Tyr, Gly, Lys, Glu and Met (R between 0.103 and 0.195, P < 10^-15). Thus, high Fop/expression level in P. hawaiensis genes favors use of a distinct set of amino acids as compared to G. bimaculatus and O. fasciatus. As shown in Figure 3C, when binned into four distinct classes of Fop values, the amino acids with the most positive (Asp) and negative (Ser) R values exhibited a clear link to Fop/expression level, but those with the second largest value (Tyr and Cys, respectively) exhibited a much weaker effect. Further, some amino acids that were more frequent under high Fop/expression level showed no clear trend in S/C score. For example, Tyr (with positive R) has among the highest S/C scores (57), whereas Gly (also with positive R) exhibits the lowest S/C score (1) (Table 2 and Table S3). This might indicate that a balance of large and small amino acids are preferred under elevated expression in P. hawaiensis, that codon and amino acid usage are subject to much weaker selection outside the highest expressed gene set (see Genome-wide optimal codon usage), or that factors other than protein size play a predominant role in shaping amino acid frequency in this organism.

Table 2 The Spearman rank correlations between the frequency of each amino acid per CDS and the Fop

Amino acida	Gryllus, R	P	Oncopeltus, R	P	Parhyale, R	P		
Arg	-0.198	<0.001	Arg	-0.252	<0.001	Ser	-0.377	<0.001
Thr	-0.123	<0.001	Gly	-0.188	<0.001	Cys	-0.132	<0.001
Pro	-0.122	<0.001	Ala	-0.183	<0.001	Thr	-0.119	<0.001
Ser	-0.110	<0.001	Pro	-0.161	<0.001	Leu	-0.102	<0.001
Ala	-0.093	<0.001	Leu	-0.183	<0.001	Arg	-0.021	0.085
Leu	-0.083	<0.001	Thr	-0.099	<0.001	Pro	-0.021	0.079
Gly	-0.061	<0.001	Met	-0.061	<0.001	Val	-0.011	0.347
Met	-0.049	<0.001	Trp	-0.059	<0.001	Asn	-0.008	0.512
Gln	-0.019	0.155	Val	-0.054	<0.001	His	-0.003	0.778
Trp	-0.008	0.571	Ser	-0.038	0.003	Ile	0.034	0.005
His	-0.003	0.850	Gln	-0.032	0.012	Ala	0.060	<0.001
Cys	0.029	0.033	His	-0.020	0.110	Gln	0.065	<0.001
Val	0.040	0.003	Cys	0.035	0.006	Trp	0.089	<0.001
Phe	0.050	<0.001	Tyr	0.059	<0.001	Phe	0.090	<0.001
Tyr	0.079	<0.001	Phe	0.085	<0.001	Met	0.103	<0.001
Ile	0.115	<0.001	Ile	0.198	<0.001	Glu	0.114	<0.001
Lys	0.151	<0.001	Glu	0.211	<0.001	Lys	0.121	<0.001
Asn	0.169	<0.001	Asp	0.226	<0.001	Gly	0.141	<0.001
Asp	0.269	<0.001	Lys	0.272	<0.001	Tyr	0.158	<0.001
Glu	0.270	<0.001	Asn	0.287	<0.001	Asp	0.195	<0.001

Species are abbreviated using their genus name. CDS, coding sequence; Fop, frequency of optimal codons. a Amino acids are listed from the most negative to positive R values for each species.
detection thresholds, assembly methods, or true gene loss, thereby minimizing gene sets; this ambiguity would not occur in *D. melanogaster*, which has a complete annotated gene list. Thus, we independently contrasted each gene set to their orthologs in *D. melanogaster*. The goal of this analysis was to determine whether orthologs to highly expressed genes in each of the three species under study, also

Figure 3 The two amino acids with the largest positive (left) and negative (right) correlation to Fop/expression level in (A) *G. bimaculatus*; (B) *O. fasciatus*; and (C) *P. hawaiensis*. Fop was binned into four categories as shown. Spearman R correlations in Table 2 were calculated with the use of all (unbinned) data points.
exhibited elevated optimal codon usage in a divergent taxon. The number of *D. melanogaster* orthologs matching the CDS list from *G. bimaculatus*, *O. fasciatus* and *P. hawaiensis* was 3960 (74.9% of the CDS set under study), 4190 (68.0%) and 2822 (41.9%), respectively. Using the *D. melanogaster* orthologs of those CDS from the low (lowest 5% RPM), moderate (≥5% RPM < 95%), and high (highest 5% RPM) categories in each of our three study species, we measured the ENC. We then evaluated the ENCs and GC3 (optimal codon) values across the three expression level categories. As shown in Figure 4A, the *D. melanogaster* orthologs of the *G. bimaculatus* genes in the highest expression category showed markedly lower ENC and higher GC3 than those from the low or moderate categories (P-value ranked analysis of variance [ANOVA] were 2.2 × 10^{-15} and 2.2 × 10^{-15}, respectively, Dunn’s post hoc tests P < 0.05). This confirms optimization of codon usage in the highly expressed gene set across these divergent organisms, bias toward AT3 codons in *G. bimaculatus* and GC3 in *D. melanogaster* (note: higher expression in *D. melanogaster* is evident based on elevated optimal codon usage (defined here as GC3), (Coghlan and Wolfe 2000; Drummond et al. 2005; Popescu et al. 2006; Wall et al. 2005; Williford and Demuth 2012). For *O. fasciatus*, identical trends were detected (Figure 4B), wherein *D. melanogaster* orthologs of the high expression dataset had lower ENC and higher GC3 than those from the low and moderate classes (P-ranked ANOVA = 4.2 × 10^{-11} and 6.9 × 10^{-11}, respectively, Dunn’s post hoc tests P < 0.05). Finally, for *P. hawaiensis*, lower ENC and higher GC3 was also observed for orthologs matching the high expression category genes, than for the low and moderate expression categories (P = 5.8 × 10^{-7} and 3.3 × 10^{-4}, respectively; Dunn’s post hoc tests P < 0.05) (Figure 4C), indicating a GC3 bias in each of these arthropods. Collectively, these results demonstrate that enhanced optimal codon usage in the high expression CDS dataset of *G. bimaculatus*, *O. fasciatus* and of *P. hawaiensis* is shared with their orthologs from the divergent relative *D. melanogaster*.

We next evaluated the relationship between CDS length and gene expression level for each arthropod under study, using lengths obtained from *D. melanogaster* orthologs. This is an effective approach as protein lengths tend to be highly conserved in eukaryotes (Wang et al. 2007). Selection based on elevated optional codon usage (de CDS from *G. bimaculatus* orthologs from the low (lowest 500 codons) from the high expression category showed markedly lower ENC and higher GC3 than those from the low and moderate classes (P-ranked ANOVA = 4.2 × 10^{-11} and 6.9 × 10^{-11}, respectively, Dunn’s post hoc tests P < 0.05). This confirms optimization of codon usage in the highly expressed gene set across these divergent organisms, bias toward AT3 codons in *G. bimaculatus* and GC3 in *D. melanogaster* (note: higher expression in *D. melanogaster* is evident based on elevated optimal codon usage (defined here as GC3), (Coghlan and Wolfe 2000; Drummond et al. 2005; Popescu et al. 2006; Wall et al. 2005; Williford and Demuth 2012). For *O. fasciatus*, identical trends were detected (Figure 4B), wherein *D. melanogaster* orthologs of the high expression dataset had lower ENC and higher GC3 than those from the low and moderate classes (P-ranked ANOVA = 4.2 × 10^{-11} and 6.9 × 10^{-11}, respectively, Dunn’s post hoc tests P < 0.05). Finally, for *P. hawaiensis*, lower ENC and higher GC3 was also observed for orthologs matching the high expression category genes, than for the low and moderate expression categories (P = 5.8 × 10^{-7} and 3.3 × 10^{-4}, respectively; Dunn’s post hoc tests P < 0.05) (Figure 4C), indicating a GC3 bias in each of these arthropods. Collectively, these results demonstrate that enhanced optimal codon usage in the high expression CDS dataset of *G. bimaculatus*, *O. fasciatus* and of *P. hawaiensis* is shared with their orthologs from the divergent relative *D. melanogaster*.

We wished to determine whether highly expressed genes with elevated optimal codon usage were preferentially associated with particular functions, biological processes or cellular components. To this end, we used *D. melanogaster* orthologs to assess GO annotation (Ashburner et al. 2000) of the CDS in all three arthropods under study. We clustered genes from the highest expression category (above the 95th percentile) in each species into functional groups using the procedures in DAVID (Huang da et al. 2009a, b). The results in Table 3 show that high expression was associated with enrichment of genes involved in cell cycle processes (e.g., spindle organization, microtubule organization, proteomes), translation (ribosome synthesis, RPGs) and DNA/RNA binding in all three arthropods under study, consistent with roles in rapid cell divisions in the embryo and/or reproductive tissues. Thus, the optimization of codon and amino acid usage observed in these organisms could be instrumental in minimizing the protein biosynthetic costs of cell division and protein turnover in the embryo and sexual tissues (Table S1). Remarkably, translational efficiency includes optimization of codons and amino acids not only in genes involved in cell division, but also in genes controlling protein synthesis itself (RPGs). This latter finding is concordant with extensive literature showing that protein synthesis genes are typically among the highest expressed in an organism (see for example Sharp and Li 1987; Wang et al. 2011).

For the CDS pooled from the moderate and low expression categories, we found enrichment of certain DNA/RNA and protein synthesis genes, primarily from the upper expression levels in the moderate class. However, the CDS with moderate and low expression levels spanned a vast range of functionalities rather than showing significant enrichment for any specific GO category compared with the high expression category (Table S4). Such a distribution of GO categories is expected for highly complex eukaryotic embryo/sexual tissues, which are typically comprised of an array of distinct cell types and transcripts (Combs and Eisen 2013; Diez-Roux et al. 2011; Donougue and Extavour 2015; Ewen-Campen et al. 2011; Gilboa 2015; Jankovics et al. 2014). Although the moderate/low expressed genes are clearly biologically relevant, our data indicate they are less apt to influence codon or amino acid optimization (Figure 2, Figure 3, and Table 2) and have longer CDS lengths (Figure S2), likely due to their reduced transcriptional and translational levels, and thus biosynthetic costs. Together, the consistency in functionalities of the highly expressed dataset in all three arthropods studied herein reveals that optimization of codon and
amino acid usage is a shared feature of highly expressed genes, particularly those involved in cell division and translation, in these divergent arthropods.

DISCUSSION

Optimal codon and amino acid usage

Major codon and amino acid preferences under high expression point toward adaptation for translational accuracy and/or efficiency (Akashi 2001; Akashi 2003). Here, we identified clear preferences in codon usage and in amino acid frequency relative to expression in three emerging models of arthropods, *G. bimaculatus*, *O. fasciatus*, and *P. hawaiensis*. With respect to optimal codons, preferences have been previously reported in bacteria, fungi such as yeast and Neurospora, and some animals including *D. melanogaster* and *C. elegans*, but remain rare in arthropods outside of the higher insects (Akashi 2003; Duret and Mouchiroud 1999; Whittle et al. 2011a). Our results revealed AT3 optimal codons across the vast majority of amino acids in *G. bimaculatus* and *O. fasciatus*, whereas weaker yet significant GC3 preferences were observed in *P. hawaiensis*. Optimal codons have been linked to rapid and accurate translation, the efficient use of ribosomes and a reduced cost of proofreading (Akashi 2001, 2003) and may also improve transcription (Trotta 2011). Thus, the stronger bias in codon usage in highly expressed genes here (Table 1) likely reflects the fitness effects of a higher number of transcription and translation events, and in this regard is similar to other invertebrates including *D. melanogaster*, *C. elegans*, and *T. castaneum* (Akashi 2001, 2003; Duret 2000; Williford and Demuth 2012). Given that selection coefficients among synonymous codons are believed to be small, optimal codons may not be as prevalent in organisms with smaller population sizes (Comeron 2004). Thus, our results are consistent with sufficiently large population sizes in each of these three arthropods such that Nes > 1, allowing optimization of codon usage in each organism (Comeron 2004; Cutter et al. 2006; Duret and Mouchiroud 1999).

Both mutation and selection can contribute to codon usage. For example, in some organisms such as humans, GC3 content is correlated to GC of adjacent noncoding DNA, suggesting mutational pressures, in addition to selection, play a significant role in its codon usage profiles (Clay et al. 1996; Comeron 2004). It is also conceivable that AT3 or GC3 biases correlate to expression because highly transcribed genes are localized to regions that are inherently AT- or GC-rich, respectively. Our present results revealed substantial variation in codon bias among amino acids with the same degeneracy, which combined with the fact that amino acids are likely arbitrarily distributed throughout the genome, supports a role of selection herein. Further, the finding that higher degeneracy is connected to greater biases in codon usage is also consistent with selection, and might indicate that the presence of multiple tRNAs leads to greater pressure for optimization. Nonetheless, future sequence data for introns or other noncoding DNA from all three species under study will help further elucidate the precise role of selection relative to mutation in shaping codon usage in these models of the Pancrustacea.

Selective pressure on amino acids for efficient protein synthesis is much less well studied than codon usage. Revealing preferences for specific amino acids in a range of organisms could play a major role in advancing our understanding of the dynamics underlying protein evolution, and thus warrants greater attention. Although some amino acid changes might individually have minor effects on cell physiology or fitness, collectively these effects could explain proteome-wide patterns of amino acid composition and evolution (Akashi 2003). Indeed, amino acid size and complexity has been linked to expression in the invertebrates *D. melanogaster*, *C. elegans* and *T. castaneum* as well as yeast.
Table 3: Functional clustering of the most highly expressed CDS (above the 95th percentile) for each of three arthropod species under study using their orthologs in Drosophila melanogaster and the gene ontology system DAVID (Huang da et al. 2009a,b)

Species	Enrichment Score	Orientation	Value*	Species	Enrichment Score	Orientation	Value*
Gryllus bimaculatus	3.91	Pro tease	6.20E-5	Oncopeltus fasciatus	13.46	Pro tease	5.70E-18
		complex	8.00E-5			complex	2.70E-17
		complex	3.70E-4			complex	3.80E-17
	3.9						
Spindle organization	2.40E-6			Ribosomal subunit	2.50E-11		
Chaperonin Cpn60/TCP-1				Ribosome	7.40E-8		
Ribosomal subunit				Structure constituent of ribosome	7.90E-11		
Cell-cycle phase	1.20E-4						
Cell-cycle phase					2.00E-11		
Microtubule cytoskelton					2.50E-11		
organization							
Cell-cycle process							
Nucleotide-binding	7.10E-5			Ribosome	5.40E-6		
Mitotic spindle							
organization							
M phase	9.30E-4			Ribosome	4.10E-8		
Cell-cycle phase							
M phase							
Enrichment Score: 3.64							
Proteasome	1.00E-5						
Spinule							
organization							
Cytosolic ribosome							
Ribosome							
Structural constituent of ribosome							
Ribosome							
Structural molecule							
activity							

*CDS, coding sequence.
*P values represent a modified Fisher’s test, wherein lower values indicate greater enrichment.
*Functional categories with enrichment values >2.5 are shown.
(Akashi 2003; Cutter et al. 2006; Williford and Demuth 2012). Our findings extend these conclusions to include G. bimaculatus and O. fasciatus. However, our results differ from those of other eukaryotes in that we report that highly expressed genes exhibit a prevalence of amino acids with moderate size and complexity, which does not include the smallest classes, suggesting a benefit to utilizing mid-range amino acids, rather than using the smallest in these insects. It is feasible that these amino acids with moderate size/complexity, while more metabolically costly than the smallest, confer an advantage to protein stability or activity.

For P. hawaiensis, the dynamic between Fop/expression level and amino acid biosynthesis costs is less straightforward, as amino acids with both high and low S/C scores exhibited statistically significant positive correlations to Fop (Table 2 and Figure 3). This suggests that there is a selective advantage of a mixture of large and small amino acids on protein stability or function in this taxon. However, another interpretation is that only a few amino acids are optimized in this taxon. For instance, the strong positive correlation between Fop/expression and frequency of Asp, and the strong negative correlation for Ser (Table 2 and Figure 3), each demonstrate unambiguous signals of amino acid optimization. However, the weaker signals from the other amino acids (Figure 3) might indicate that the main or strongest effects of expression are limited to Asp and Ser. In addition, the weaker signal of optimal codon usage in P. hawaiensis, which is very mild outside the highest expression class, suggests that a more complex dynamic underlies this phenomenon for this taxon. Further studies will be needed to ascertain the dynamics of codon and amino acid usage in this crustacean. Nevertheless, taken together, our data provides evidence of optimization of codon and amino acid usage in highly transcribed genes across all three of these distinct arthropods.

The fact that D. melanogaster orthologs to CDS from the high expression category of G. bimaculatus and of O. fasciatus each had higher GC3 frequencies than orthologs from lower expression classes (Figure 4, A and B), confirms that optimal codon usage is retained across the same gene sets among divergent insects. Thus, despite the fact these various insects have evolved distinct sets of optimal codons, selection for a subset of codons that promote translational efficiency of highly expressed CDS appears to be a conserved trait. Further, our findings showing elevated usage of GC3 optimal codons in highly transcribed CDS of P. hawaiensis and their orthologs in D. melanogaster (Figure 2 and Figure 4) reveals similar evolution traits across the Pan-crustacea. Functional categorization (GO) analyses indicate that for all three species studied herein, the CDS from the highest Fop/expression category primarily included genes involved in cell-cycling and protein synthesis, such as RP5s (which are typically highly expressed) (Wang et al. 2011) (Table 3), suggesting that such fundamental processes are especially prone to selection to reduce biosynthetic costs (Seligmann 2003; Swire 2007; Williford and Demuth 2012). Given that transcripts of cell-cycling and translation genes are known to be prevalent throughout embryogenesis and in later developmental phases in arthropods such as D. melanogaster and other invertebrates including C. elegans (Li et al. 2014), optimization of codons and amino acids in these gene sets could potentially markedly reduce lifetime biosynthetic costs (Duret 2000; Seligmann 2003; Swire 2007; Williford and Demuth 2012) and enhance fitness in these organisms.

Our finding that highly expressed CDS encoded short proteins in G. bimaculatus, O. fasciatus, and in P. hawaiensis (Figure S2) concurs with previous studies in eukaryotes such as D. melanogaster, T. castaneum, humans, yeast, and some plants (Akashi 2001, 2003; Comeron 2004; Ingvason 2007; Lemos et al. 2005; Moriyama and Powell 1998; Urrutia and Hurst 2001; Whittle et al. 2007; Williford and Demuth 2012). The phenomenon of shorter CDS in highly expressed genes might reflect the action of selection to minimize the protein length, which combined with high optimal codon usage and preferential amino acid usage observed herein (Figure 2 and Table 2), potentially reduces the costs of transcription, translation, and cellular transport, in these arthropods (Akashi 2001, 2003). With respect to translational costs, reductions in protein length of highly transcribed genes should have similar advantages to the usage of optimal codons and of reduced-cost amino acids in terms of biosynthesis, suggesting potential for co-evolution of these traits (Akashi 2001, 2003).

The fact that long CDS under high transcription had elevated Fop compared with their lowly transcribed counterparts supports the hypothesis that expression level, rather than genetic-linkage, is the primary factor shaping Fop differences among expression classes. Nevertheless, it is formally possible that genetic linkage may contribute toward the observed reduced Fop in the lower expression level datasets, as longer genes appear most prone to fixation of non-optimal codons (Betancourt and Presgraves 2002; Comeron et al. 1999; Loewe and Charlesworth 2007; Whittle and Johannesson 2013). This linkage phenomenon might be most common in genes with weak expression levels, which would be expected to experience lower purifying selection pressures (Subramanian and Kumar 2004). Future data on amino acid substitutions and linked fixations of nonoptimal codons with respect to CDS length among related species in each taxonomic group (Gryllus, Oncopeltus, and Parhyale) will help further discern the role of genetic-interference on Fop (Betancourt and Presgraves 2002; Kim 2004; Whittle and Johannesson 2013). In addition, when available in the future, genomic data for all three of these arthropods will allow precise measures of CDS lengths in all genes under study (not only those with orthologs in D. melanogaster), providing a means to test fine-scale gene-length effects on codon usage within expression classes, which to date have typically shown higher codon bias in shorter genes in eukaryotes (Akashi 2001, 2003; Cutter 2008; Duret and Mouchirioud 1999; Moriyama and Powell 1998; Whittle et al. 2007, 2011a).

Together, it is evident that at a genome-wide level, high transcription is accompanied by a marked shift toward short protein lengths (Figure S2) and this shift co-occurs with increased usage of optimal codons (Figure 2) and specific amino acids (Table 2 and Figure 3). This points toward multifaceted aspects of translational selection, which affect several genic traits (codons, amino acids, and CDS length) to yield efficient protein synthesis in these arthropods.

Fop as a predictor of expression
While Fop, or other codon adaptation indices, have been shown to reliably reflect the expression level in an organism (Coglan and Wolfe 2000; Drummond et al. 2005; Popescu et al. 2006; Wall et al. 2005), it is worthwhile to note that selection at the protein level can influence optimal codon usage. For instance, at the interspecies level, proteins that evolve rapidly (displaying high nonsynonymous to synonymous substitution rates, dN/dS) (Comeron et al. 1999; Loewe and Charlesworth 2007; Whittle and Johannesson 2013; Yang 2007) often exhibit reductions in optimal codon usage. Adaptive evolution at the protein level may cause selective sweeps that fix linked non-optimal codon mutations, and relaxed selection on proteins often correlates to losses in optimal codons (Betancourt and Presgraves 2002; Kim 2004; Sella et al. 2009; Whittle et al. 2011b). Relaxed selection on proteins or synonymous codons may arise from factors such as reduced population size or lowered recombination rates over an organism’s evolutionary history (Betancourt and Presgraves 2002; Comeron and Kreitman 1998; Haddrill et al. 2011; Sella et al. 2009; Whittle et al. 2011b). However, the relationship between Fop and expression
should not be uncoupled by these processes, but rather is likely maintained due to the fact that rates of protein evolution appear to be inversely correlated to expression level in various organisms including mice, fruit fly, and yeast (see for example Drummond et al. 2005; Lemos et al. 2005; Pal et al. 2001; Subramanian and Kumar 2004). The conservation of highly expressed genes at the protein sequence level may be explained by their essentiality, or indispensability, to fitness (Mank and Ellegren 2009). In addition, highly expressed genes might also exhibit signatures of selection on (otherwise) neutral amino acids if such residues are needed to promote translational efficiency, for example because they promote a small size or specific conformation (Akashi 2003). In this regard, Fop and expression level likely remain connected even for genes with rapid rates of protein evolution, such that Fop would decrease under rapid protein evolution, which is more apt to occur in genes with lowered expression. Given that we observed clear relationships between Fop and RPM, and between Fop and the S/C score and amino acid composition (Table 2 and Figure 3), we suggest that in these arthropods, optimal codon usage reflects expression level on a genome-wide level, and that optimal codon use has evolved to promote efficient translation. In this regard, the relationships observed between Fop and amino acid composition would directly reflect adaptation for fast and accurate translation in genes with high expression.

We conclude that highly expressed genes, in particular those involved in cell-cycling and protein synthesis (Table 3), exhibit a history of coevolution of optimal codons (Table 1 and Figure 2), the usage of specific amino acids (Table 2 and Figure 3) and shorter CDS length (Figure S2), which act in concert to promote accurate and cost efficient translation in these divergent arthropods. Our findings indicate that selection favors specific optimal codons and amino acids in three emerging models of arthropods, G. bimaculatus, O. fasciatus, and P. hawaiensis. For both insects, a particularly strong signal of optimal selection adap-

ACKNOWLEDGMENTS

We thank the anonymous reviewers for valuable comments on the manuscript.

LITERATURE CITED

Akashi, H., and S.W. Schaeffer, 1997 Natural selection and the frequency distributions of “silent” DNA polymorphism in Drosophila. Genetics 146: 295–307.

Akashi, H., 2001 Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11: 660–666.

Akashi, H., 2003 Translational selection and yeast proteome evolution. Genetics 164: 1291–1303.

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., 2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25–29.

Bachtrog, D., 2007 Reduced selection for codon usage bias in Drosophila miranda. J. Mol. Evol. 64: 586–590.

Behura, S., and D. W. Severson, 2012 Comparative analysis of codon usage bias and codon context patterns between Dipteran and Hymenopteran sequenced genomes. PLoS One 7: e31111.

Behura, S., K., and D. W. Severson, 2013 Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol. Rev. Camb. Philos. Soc. 88: 49–61.

Beletskii, A., and A. S. Bhagwat, 1996 Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc. Natl. Acad. Sci. USA 93: 13919–13924.

Beletskii, A., and A. S. Bhagwat, 1998 Correlation between transcription and C to T mutations in the non-transcribed strand DNA. Biol. Chem. 379: 549–551.

Betancourt, A. J., and D. C. Presgraves, 2002 Linkage limits the power of natural selection in Drosophila. Proc. Natl. Acad. Sci. USA 99: 13616–13620.

Brown, S. J., R. Denell, R. Gibbs, M. Klingler, M. Lorenzen et al., 2008 The genome of the model beetle and pest Tribolium castaneum. Nature 452: 949–955.

Butt, F. H., 1949 Embryology of the Milkweed Bug, Oncopeltus fasciatus (Hemiptera). Cornell Experiment Station Memoir 283: 2–43.

Clay, O., S. Caccio, S. Zoubak, D. Mouchiroud, and G. Bernardi, 1996 Human coding and noncoding DNA: compositional correlations. Mol. Phyloge net. Evol. 5: 2–12.

Coghlan, A., and K. H. Wolfe, 2000 Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16: 1131–1145.

Colbourne, J. K., M. E. Pfrender, D. Gilbert, W. K. Thomas, A. Tucker et al., 2011 The ecoresponsive genome of Daphnia pulex. Science 331: 555–561.

Combs, P. A., and M. B. Eisen, 2013 Sequencing mRNA from cryo-sliced Drosophila embryos to determine genome-wide spatial patterns of gene expression. PLoS One 8: e71820.

Comeron, J. M., 2004 Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 167: 1293–1304.

Comeron, J. M., and M. Kreitman, 1998 The correlation between synonymous and nonsynonymous substitutions in Drosophila: mutation, selection or relaxed constraints? Genetics 150: 767–775.

Comeron, J. M., M. Kreitman, and M. Aguade, 1999 Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151: 239–249.

Cutter, A. D., 2008 Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate. Mol. Biol. Evol. 25: 778–786.

Cutter, A. D., J. D. Wasmuth, and M. L. Blaxter, 2006 The evolution of biased codon and amino acid usage in nematode genomes. Mol. Biol. Evol. 23: 2303–2315.

Diez-Roux, G., S. Banfi, M. Sultan, L. Geffers, S. Anand et al., 2011 A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 9: e1000582.

Donougué, S., and C. G. Exastoura, 2015 Embryonic development of the cricket Gryllus bimaculatus. Dev. Biol. DOI: 10.1016/j.ydbio.2015.04.009.

Drummond, D. A., J. D. Bloom, C. Adami, C. O. Wilke, and F. H. Arnold, 2005 Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102: 14338–14343.

Akam, M., 2000 Arthropods: development diversity within a (super) phylum. Proc. Natl. Acad. Sci. USA 9: 4438–4441.

Akashi, H., 2001 Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 11: 660–666.

Akashi, H., 2003 Translational selection and yeast proteome evolution. Genetics 164: 1291–1303.
Dufour, M. J., 1997 Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? J. Theor. Biol. 187: 165–173.

Duret, L., 2000 tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16: 287–289.

Duret, L., and D. Mouchiroud, 1999 Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 4482–4487.

Ewen-Campen, B., N. Shaner, K. A. Panfilio, Y. Suzuki, S. Roth et al., 2011 The maternal and embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics 12: 61.

Garcia-Gonzalez, F., and L. W. Simmons, 2010 Male-induced costs of mating for females compensated by offspring viability benefits in an insect. J. Evol. Biol. 23: 2066–2075.

Gilboa, L., 2015 Organizing stem cell units in the Drosophila ovary. Curr. Opin. Genet. Dev. 32C: 31–36.

Graveley, B. R., A. N. Brooks, J. W. Carlson, M. O. Duff, J. M. Landolin et al., 2011 The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479.

Heger, A., and C. P. Ponting, 2007 Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res. 17: 1837–1849.

Hershberg, R., and D. A. Petrov, 2009 General rules for optimal codon choice. PLoS Genet. 5: e1000556.

Hershberg, R., and D. A. Petrov, 2012 On the limitations of using ribosomal genes as references for the study of codon usage: a rebuttal. PLoS One 7: e9060.

Hodgkinson, A., and A. Eyre-Walker, 2011 Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12: 756–766.

Huang da, W., B. T. Sherman, and, and R. A. Lempicki, 2009a Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37: 1–13.

Huang da, W., B. T. Sherman, and R. A. Lempicki, 2009b Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44–57.

Huber, F., T. E. Moore, and W. Loher (Editors), 1989 Cricket Behavior and Neurobiology. Cornell University Press, Ithaca, NY.

Ikemura, T., 1981 Correlation between the abundance of transfer RNAs and the occurrence of the respective codons in its protein genome are co-adapted for optimal translation of highly expressed genes. Mol. Biol. Evol. 28: 1731–1743.

Lemos, B., B. R. Bettencourt, C. D. Meiklejohn, and, D. L. Hartl, 2005 Evolution of proteins and gene expression levels are coupled in Drosophila and are independently associated with mRNA abundance, protein length, and number of protein-protein interactions. Mol. Biol. Evol. 22: 1345–1354.

Liu, J., M. Huang, P. J. Bickel, and S. E. Brenner, 2014 Comparison of D. melanogaster and C. elegans developmental stages, tissues, and cells by modENCODE RNA-seq data. Genome Res. 24: 1086–1101.

Liu, P., and T. C. Kaufman, 2009a Morphology and husbandry of the large milkweed bug, Oncopeltus fasciatus. Cold Spring Harb. Protoc. 2009: pdb:emo127.

Liu, P., and T. C. Kaufman, 2009b Dissection and fixation of large milkweed bug (Oncopeltus) embryos. Cold Spring Harb. Protoc. 2009: pdb.prot5261.

Loewe, L., and B. Charlesworth, 2007 Background selection in single genes may explain patterns of codon bias. Genetics 175: 1381–1393.

Mank, J. E., and H. Ellegren, 2009 Are sex-biased genes more dispensable? Biol. Lett. 5: 409–412.

McVean, G. A. T., and J. Vieira, 1999 The evolution of codon preferences in Drosophila: a maximum-likelihood approach to parameter estimation and hypothesis testing. J Mol Evol. 49: 63–75.

McVean, G. A. T., and J. Vieira, 2001 Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics 157: 245–257.

Mito, T., and S. Noji, 2009 The two-spotted cricket Gryllus bimaculatus: an emerging model for developmental and regeneration studies, pp. 331–346 in Emerging Model Organisms: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Moriyama, E. N., and J. R. Powell, 1998 Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res. 26: 3188–3193.

Nealsey, D. E., R. M. Waterhouse, M. R. Abai, S. S. Aganezov, M. A. Alekseyev et al., 2015 Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347: 1258522.

Odegard, F., 2000 How many species of arthropods? Erwin’s estimate revised. Biol. J. Linn. Soc. Lond. 71: 583–597.

Osawa, S., T. Ohama, F. Yamao, A. Muto, T. H. Jukes et al., 1988 Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets. Proc. Natl. Acad. Sci. USA 85: 1124–1128.

Pal, C., B. Papp, and L. D. Hurst, 2001 Highly expressed genes in yeast evolve slowly. Genetics 158: 927–931.

Pavlopoulos, A., and M. Averof, 2005 Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc. Natl. Acad. Sci. USA 102: 7888–7893.

Popescu, C. E., T. Borza, J. P. Bielawski, and R. W. Lee, 2006 Evolutionary rates and expression level in Chlamydomonas. Genetics 172: 1567–1576.

Qiu, S., R. Bergero, K. Zeng, and D. Charlesworth, 2011 Patterns of codon usage bias in Silene latifolia. Mol. Biol. Evol. 28: 771–780.

Raiford, D. W., E. M. Heizer, Jr, R. V. Miller, H. Akashi, M. L. Raymer et al., 2008 Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae? I. Mol. Evol. 67: 621–630.

Regier, J. C., J. W. Shultz, A. Zwick, A. Hussey, B. Ball et al., 2010 Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463: 1079–1083.

Rehm, E. J., R. L. Hannibal, R. C. Chaw, M. A. Vargas-Vila, and N. H. Patel, 2008 The crustacean Parhyale hawaiensis, a new model for arthropod development, pp. 373–404 in Emerging Model Organisms: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Seligmann, H., 2003 Cost-minimization of amino acid usage. J. Mol. Evol. 56: 151–161.

Sella, G., D. A. Petrov, M. Przeworski, and P. Andolfatto, 2009 Pervasive natural selection in the Drosophila genome! PLoS Genet. 5: e1000495.

Sharp, P. M., and W.-H. Li, 1986 An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24: 28–38.
Wang, B., Z. W. Shao, Y. Xu, J. Liu, Y. Liu, 2007 Selection on synthesis cost affects interprotein amino acid
Sharp, D., M. Hsieh, and W. H. Li, 2005 A general tendency for conser-
Urrutia, A. O., and L. D. Hurst, 2001 Codon usage bias covaries with
Subramanian, S., and S. Kumar, 2004 Gene expression intensity shapes
Stark, A., M. F. Lin, P. Kheradpour, J. S. Pedersen, L. Parts et al.,
St Pierre, S. E., L. Ponting, R. Stefancik, and P. McQuilton, 2014 FlyBase
Sharp, P. M., and W. H. Li, 1987 The codon adaptation Index—a measure of
directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Res. 15: 1281–1295.
Sharp, P. M., T. M. Tuohy, and K. R. Mosurski, 1986 Codon usage in yeast:
cluster analysis clearly differentiates highly and lowly expressed genes.
Nucleic Acids Res. 14: 5125–5143.
Sharp, P. M., M. Averof, A. T. Lloyd, G. Matassi, and J. F. Peden,
1995 DNA sequence evolution: the sounds of silence. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 349: 241–247.
St Pierre, S. E., L. Ponting, R. Stefancik, and P. McQuilton, 2014 FlyBase
102–advanced approaches to interrogating FlyBase. Nucleic Acids Res.
42: D780–D788.
Stark, A., M. F. Lin, P. Kheradpour, J. S. Pedersen, L. Parts et al.,
2007 Discovery of functional elements in 12 Drosophila genomes using
evolutionary signatures. Nature 450: 219–232.
Stoletzki, N., and A. Eyre-Walker, 2007 Synonymous codon usage in
Escherichia coli: selection for translational accuracy. Mol. Biol. Evol. 24: 374–381.
Subramanian, S., and S. Kumar, 2004 Gene expression intensity shapes
evolutionary rates of the proteins encoded by the vertebrate genome.
Genetics 168: 373–381.
Sueoka, N., 1988 Directional mutation pressure and neutral molecular
evolution. Proc. Natl. Acad. Sci. USA 85: 2653–2657.
Swire, J., 2007 Selection on synthesis cost affects interprotein amino acid
usage in all three domains of life. J. Mol. Evol. 64: 558–571.
Trotta, E., 2011 The 3-base periodicity and codon usage of coding se-
quencies are correlated with gene expression at the level of transcription
elongation. PLoS One 6: e21590.
Urutiuia, A. O., and L. D. Hurst, 2001 Codon usage bias covaries with
expression breadth and the rate of synonymous evolution in humans, but
this is not evidence for selection. Genetics 159: 1191–1199.
Wall, D. P., A. E. Hirsh, H. B. Fraser, J. Kumm, G. Giaever et al.,
2005 Functional genomic analysis of the rates of protein evolution.
Proc. Natl. Acad. Sci. USA 102: 5483–5488.
Wang, B., Z. W. Shao, Y. Xu, J. Liu, Y. Liu et al., 2011 Optimal codon
identities in bacteria: implications from the conflicting results of two
different methods. PLoS One 6: e22714.
Wang, D., M. Hsieh, and W. H. Li, 2005 A general tendency for conserv-
ation of protein length across eukaryotic kingdoms. Mol. Biol. Evol. 22:
142–147.
Weinstock, G. M., G. E. Robinson, R. A. Gibbs, K. C. Worley, J. D. Evans
et al., 2006 Insights into social insects from the genome of the honeybee
Apis mellifera. Nature 443: 931–949.
Whittle, C. A., and H. Johannesson, 2013 Evolutionary dynamics of sex-
biased genes in a hermaphrodite fungus. Mol. Biol. Evol. 30: 2435–2446.
Whittle, C. A., M. R. Malik, and J. E. Krochko, 2007 Gender-specific se-
lection on codon usage in plant genomes. BMC Genomics 8: 169–179.
Whittle, C. A., Y. Sun, and H. Johannesson, 2011a Evolution of synony-
mous codon usage in Neurospora tetrasperma and Neurospora discreta.
Genome Biol. Evol. 3: 332–343.
Whittle, C. A., Y. Sun, and H. Johannesson, 2011b Degeneration in codon
usage within the region of suppressed recombination in the mating-type
chromosomes of Neurospora tetrasperma. Eukaryot. Cell 10: 594–603.
Wiegmann, B., and D. K. Yeates, 2005 The Evolutionary Biology of Flies.
Columbia University Press, New York.
Williford, A., and J. P. Demuth, 2012 Gene expression levels are correlated
with synonymous codon usage, amino acid composition, and gene ar-
chitecture in the red flour beetle, Tribolium castaneum. Mol. Biol. Evol.
29: 3755–3766.
Wright, F., 1990 The “effective number of codons” used in a gene. Gene 87:
23–29.
Yang, Z., 2007 PAML 4: phylogenetic analysis by maximum likelihood.
Mol. Biol. Evol. 24: 1586–1591.
Zeng, V., and C. G. Extavour, 2012 ASGARD: an open-access database of
annotated transcriptomes for emerging model arthropod species. Data-
basis 2012: bas048.
Zeng, V., K. E. Villanueva, B. Ewen-Campen, F. Alwes, W. E. Browne et al.,
2011 De novo assembly and characterization of a maternal and develop-
mental transcriptome for the emerging model crustacean Parhyale hawaiensis.
BMC Genomics 12: 581.
Zeng, V., B. Ewen-Campen, H. W. Horch, S. Roth, T. Mito et al.,
2013 Developmental gene discovery in a hemimetabolous insect: de
novo assembly and annotation of a transcriptome for the cricket Gryllus
bimaculatus. PLoS One 8: e61479.
Zuk, M., F. Garcia-Gonzalez, M. E. Herberstein, and L. W. Simmons,
2014 Model systems, taxonomic bias, and sexual selection: beyond
Drosophila. Annu. Rev. Entomol. 59: 321–338.

Communicating editor: S. I. Wright