Demographic variation in active consumer behaviour: On-line search for retail broadband services

Philip Carthy a,b, Peter D. Lunn a,b, Sean Lyons a,b,*

a Economic and Social Research Institute, Whitaker Square, Sir John Rogerson’s Quay, Dublin 2, Ireland
b Trinity College Dublin, College Green, Dublin 2, Ireland

ARTICLE INFO
Keywords:
Broadband services
Consumer search behaviour
Socio-economic effects
Ireland, behavioural economics
Microeconomics
Technology management
Consumer attitude
Consumer psychology, psychology, business, economics

ABSTRACT
Consumers who actively search for better broadband deals may benefit from lower prices or improved service quality compared to those who do not. If, however, consumers differ in their propensity to engage with the market and actively search, these potential benefits may not accrue equally. This paper investigates differences in consumer search activity for telecommunications services across small geographic areas. We exploit rich and novel data from a commercial price comparison site to explore the dispersion of consumer search in the Irish retail broadband market, while controlling for supply-side variations. By linking geo-coded searches to census data on small area socio-economic characteristics, we identify the areas where most search originates and can thus characterise the socio-economic groups to whom the benefits of search are most likely to accrue. We find evidence that areas populated by many highly educated, married people, commuters, mortgage holders, and retirees are among the most active in search. In contrast, those areas in which many older people, farmers, low-skilled workers and students reside give rise to significantly fewer consumer searches.

1. Introduction

Liberalisation of retail broadband markets has allowed competition to develop in this sector. Competition provides well-known societal benefits by putting pressure on suppliers to offer better combinations of price and quality. It has potential to boost the penetration of broadband services (Distaso et al., 2006; Bouckaert et al., 2010; Daunin and Grzybowski, 2014) and thus may also offer benefits of greater variety and choice of services to more consumers. Even so, consumer choice and the benefits it offers to consumers are not uniformly spread. This is partly due to variations in factors affecting the supply of services. In particular, the extent of choice in broadband services is not spread evenly across geography. Due to the possibility of economies of density in telecommunications markets, some places have many more suppliers and service offerings than others. Even across national or regional markets where price-setting is relatively uniform and thus the price/quality benefits of competition are shared widely, the societal benefits arising from choice of services are not likely to be spread as evenly.

Independent of supply-side factors, the population of users may vary in the extent to which they exploit the possibilities of retail competition through searching and switching within and between suppliers’ offerings. Even in areas served by many suppliers, the expected gains from searching and switching as well as the perceived or actual costs of doing so may vary across individuals and groups. There may also be variations in ability to engage with the market actively.

Consumer search and switching actions can be viewed as sequential steps that a consumer may take to optimise their purchasing of a service that is subject to repeat purchase, such as telecoms. By search we mean the activities involved in obtaining information about alternative packages, whether offered by an existing supplier or by competing suppliers. Optimally, search would only be undertaken if the expected transaction costs of searching (termed search costs in the literature) outweigh the expected benefits, but a range of behavioural biases may also

* Corresponding author at: Economic and Social Research Institute, Whitaker Square, Sir John Rogerson’s Quay, Dublin 2, Ireland.
E-mail address: sean.lyons@esri.ie (S. Lyons).

1 Falch (1997, p. 119) notes that network costs per connection decrease as the density of connections increases. In high-density areas, shorter access lines are required and capacity utilisation is higher. Riding et al. (2009) estimate the overall cost of deploying various cable technologies in Victoria, Australia and find that they decrease monotonically as household density increases. Grubesic and Murray (2002) highlight that during DSL roll-out in Ohio, service providers were selective about the markets in which they deployed the technology and prioritised geographical areas where there were high densities of potential customers. Grubesic (2006) highlights the extent of the spatial variation in broadband availability that arose across the United States.

https://doi.org/10.1016/j.heliyon.2020.e04478
Received 22 August 2019; Received in revised form 20 January 2020; Accepted 10 July 2020

2405-8440/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
influence this decision. Consumers who choose not to search remain with their original supplier and package. Those that have searched can use the information they acquired to choose whether to switch services, again either to another package offered by their original supplier or to a new provider. The decision as to whether to switch also involves trading off benefits and costs of switching, and again it may be affected by behavioural characteristics and the choice environment. Both search and switching costs may be monetary, such as switching costs paid to a supplier to exit from an existing contract, but they may also take the form of opportunity costs such as time spent searching for a new service online or filling in documentation to change supplier. Often switching costs are higher for those switching to a different supplier than those switching package but staying with their original supplier.

The literature on behavioural industrial organisation suggests that consumers who are not proactive in seeking out their own optimal packages may be disadvantaged relative to their active counterparts. Firms may adjust their behaviour to exploit myopia. This can result in inefficient market equilibria which disadvantage the unaware consumers. (Gabaix and Laibson, 2006; Grubb, 2015). While some consumers who search may not find better offerings, and others may make poor choices, in general the benefits offered by competition are likely to accrue to groups that engage in search rather than those that do not.

This paper undertakes an exploratory analysis of multiple relationships. We combine data on search intensity with demographic information to explore where, and by whom, consumer search activity for broadband services is most prevalent. Our approach is to infer the characteristics of individuals that are engaged in search for telecommunications services from the socio-economic attributes of the areas in which they live. To look at the distribution of search intensity, data on consumer searches from a commercial price comparison website in Ireland, Bonkers.ie, are linked to Census data on local socio-economic characteristics of the areas where searches originate. Regression analysis is used to unpack the correlated effects on search behaviour of a range of socio-economic characteristics and supply-side factors.

Price comparison websites have particular policy relevance. These sites, also termed “digital comparison tools”, play an increasingly important role in retail markets. A study by the UK Competition and Markets Authority highlights two main benefits: saving time for those searching for better deals, which is particularly important in markets for complex household services; and encouraging service providers to compete more intensely, which is also of key importance for services where consumers tend not to shop around (Competition & Markets Authority, 2017). Recognising the potential benefits from these tools, some regulators provide price comparison websites directly (e.g. the Compare Value2 service maintained by the Commission for Communications Regulation in Ireland). Others have acted to regulate commercial price comparison websites, typically via kitemarking schemes, to ensure that they act in the interests of consumers.

We contribute to the existing literature in three distinct ways. First, we contribute a direct analysis of the propensity of different types of consumers to search for electronic communications services. This explicit focus is uncommon in the existing literature of consumer activity in telecommunications, which, to date, has principally been concerned with consumer switching. Second, our analysis explores a novel dataset originating from a commercial price comparison site. These data offer a new perspective to the literature as they are based on actual online search behaviour of consumers and are not reliant on survey-style or self-reported measures. Our analysis can be seen as a valuable complement to existing survey-based studies. Where our results coincide with those obtained from alternative methodologies, the evidence that true effects are being observed may be regarded as more persuasive. Finally, and perhaps most importantly, by profiling the average users of a commercial price comparison site for broadband services, we provide insight on the socioeconomic gradient of the site’s usage. Given calls for simplification of the consumer switching process (Giulietti et al., 2005; Gärling et al., 2008; Gamble et al., 2009), it is important from a policy perspective to understand to whom the potential benefits of an online simplification tool, and, ultimately of consumer search, are most likely to accrue. Due to limitations in the available data, our study does not attempt to explicitly disentangle the individual mechanisms that may induce a consumer to search more or less.

The paper is structured as follows: The remainder of this section provides background information and an overview of relevant existing literature. Section 2 describes our data and methodology. Section 3 presents the empirical findings and Section 4 concludes.

1.1. Background and previous literature

Many factors can affect individual decisions about whether (and how actively) to search for better telecoms deals. A belief that there might be gains from switching should encourage search behaviour. However, even among those who think there are gains to be made, expected gains may be weighed against the actual or perceived cost of engaging in search activities. As a result, variations in the observed aggregate distribution of searches are likely attributable to a complex combination of cost, benefit, and owing to the potential complexity of the decision, psychological factors. In framing our analysis, we draw upon various streams of existing literature.

One important strand of prior research explores consumer decision making when choices are made in the face of actual or perceived costs of searching. The concept of a search cost was introduced to economic discourse through the seminal work of Stigler (1961) which posited that information can reduce uncertainty in consumer decision making but only where the cost of its acquisition is incurred. The now substantial subsequent literature has highlighted the importance of search costs in both theoretical and empirical settings. Indeed, in contemporary work, search costs often emerge as more important than actual or perceived switching costs. For example, Wilson (2012) suggests that the anticipation of search costs may have greater influence in deterring a potential switcher from doing so than switching costs. This is because engaging in an investigation about new products and services incurs a cost with certainty whereas any costs associated with the switching process itself are only incurred conditional on finding a better deal and deciding to act upon it. This relative importance of search costs is confirmed in empirical applications across various markets. In a study of the U.S. car insurance market, Honka (2014) shows that estimated search costs are relatively more important drivers of customer retention when compared to switching costs and customer satisfaction. Similarly, Giulietti et al. (2005) model the probability of switching suppliers in the U.K. residential gas market and find that proxies for search costs are more important than consumers’ perceptions of the cost of switching. The perceived cost of information search is also shown to be an important driver of a positive attitude to switching in Gamble et al.’s (2009) multi-market study of Swedish consumers, which included the market for landline telecoms. Gärling et al. (2008) provide further experimental evidence that improving the quality of information provided to consumers increases switching activity in a fictitious electricity market. Such findings have prompted suggestions among their authors that policy interventions amounting to reductions in search costs could be used as a means to increase switching activity (Giulietti et al., 2005; Gärling et al., 2008; Gamble et al., 2009).

Of particular interest to the current work is the possibility of systematic heterogeneity in search costs across different socio-economic and demographic groups. Indeed, it is plausible that search costs may affect certain individuals differently. A selection of existing studies test for such variation across a number of market contexts. Most do so as a secondary analysis following estimates of a theoretically grounded search cost distribution. For example, De los Santos (2018) uses both consumer search data and information on transaction prices to model
the search cost distribution for online book sales. The author then explores heterogeneity by regressing search duration and the number of firms visited by a searcher on selected demographic variables. In this market context, broadband users, those aged between 30-34 or 55-64 and Asians appear to search across more firms. Conversely, those in the highest income category (and consequently those with the highest opportunity cost of time) exhibit a decreased propensity to engage in search. Similarly, Yilmazkuday (2017) uses zip code level price data to estimate the search cost distribution for gasoline in the US. Estimates are based on a theoretical non-sequential search model. A second stage analysis regresses the expected number of searches from the theoretical model on various zip code level characteristics. Along with some market specific results, the study finds that more searches are expected to originate from areas which on average have lower income, higher population density, short average daily commutes, or more female, African Americans or Asian workers.

A parallel stream of existing literature could provide insight as to why the benefits accrued to individuals as a result of searching could differ, particularly in the case of broadband and telecommunications. Certain regions, groups or individuals may use the internet and other telecoms services in fundamentally different ways and with different intensities. A heavy service user likely to exhibit a higher propensity to search than a consumer who only has occasional need for it since his/her potential payoff from doing so is likely greater. Existing literature has established such fundamental differences in usage patterns in the case of broadband internet. In particular, education and income are commonly found to be positive correlates of internet adoption and use (Horrigan et al., 2006; Montagnier and Wirthmann, 2011; Roycroft, 2013). Horrigan et al. (2006) also find that being a parent, married or employed can predict internet access in certain circumstances. Even beyond demographics, the same work notes that the economic and population structures of a locality can be confounding factors in the prevalence of internet use. Furthermore, there is evidence that a minority of consumers have not and do not intend to adopt broadband services at all. In a survey of such non-adopters in Carare et al. (2015), almost two-thirds of respondents assert that they have no intentions of adopting at a subjectively acceptable price point. Among this group, however, the stated likelihood of adopting in the future does vary, again, by demographic group. For example, households whose heads are under the age of 40 and those with children under 18 exhibit slight increases in willingness to subscribe in the data. In contrast, retirees are, on average, less likely to report that they would consider a subscription.

Supply-side considerations could also provide explanations for systematic differences in the benefits of searching across geography. Broadband diffusion has not occurred uniformly across space. Indeed, its pattern may be related to various regional factors such as the presence of local loop unbundling, population density, education levels, income, (Lee et al., 2011) or the existence of local competition (Distaso et al., 2006; Bouckaert et al., 2010). As a result, the set of services available to the consumer will vary purely based on the location from which one is searching. Data on the pattern of broadband penetration (outlined in Section 2 below) highlight that this is, indeed, the case in Ireland. If consumers become cognisant of poor service quality in a local area, expectations of gains from searching may be revised downward and the propensity to search may decrease accordingly.

Even where the costs or benefits of search do not objectively differ across groups or individuals, the perception of their existence or severity may still vary. For this reason, many existing empirical analyses of consumer interactions with various markets turn to attitudinal measures and subjective proxies of costs and benefits in attempt to gain an understanding of consumers' trade-offs. In a particularly relevant example, Waddams Price and Zhu (2016) make use of specially commissioned survey responses as subjective measures of the costs and benefits of both searching and switching. The paper models the probabilities of having searched and/or switched in eight UK markets (three of which are directly related to telecoms) in the three years previous to the survey. Searching and switching are first modelled separately since the underlying motivations for each process may be fundamentally different. Nevertheless, a further model with a combined “searched and switched” outcome is also reported for contrast. Respondents’ expectations of gains from searching/switching and their expected time commitment required to engage in either activity are used, along with demographic information, as key explanatory variables. Expected gains are found to be positively associated with both searching and switching while the expected time to switch has a negative association with both activities. Interestingly, the expected time taken to search does not appear to affect the probability of doing so. In terms of demographic factors, a U shaped relationship is identified between age and the probability of searching/switching, with younger and older respondents engaging more than those of middle age. The authors do, however, recognise some uncertainty over this functional form because of potential selection issues. Those on higher incomes are found to switch less, a result which is consistent with an established hypothesis in the literature that such individuals should be deterred from activity due to a high opportunity cost of time (e.g. Stigler, 1961). Search shows a similar negative association with income, but with only marginal statistical significance. Males are also shown to be less likely to search and/or switch than females, but no direct association with educational attainment is identified. The authors further note significant variation in their results across market contexts and individuals. For example, search activity is less likely in the fixed line phone and call markets than it is in the market for electricity.

More broadly, the literature that seeks to understand consumer activity in regulated markets (most notably telecommunications and energy sectors) is growing. However, to date the predominant focus of empirical work in this area has been directed at consumer switching. While the above discussion serves to highlight the importance of analysing consumer searching directly, insights from studies of consumer switching can provide context to the analysis that follows here. In particular, it is noteworthy that socio-demographic variables have frequently featured as potential drivers of switching activity. If differences in switching behaviour are shown to be systematic across these variables, then it is possible that some of the same group-wide patterns will partially drive differences in search behaviour in the analysis of this paper (since consumers may engage in search before a switch). Consensus, however, has not been reached on the effect of many such variables since the results have an apparent sensitivity to context. For example, Gamble et al. (2009) find that males tend to have more positive attitudes to switching than females across a number of markets and the results of Ranganathan et al. (2006) suggest that they are also more likely to switch in the mobile telecoms market. Other studies, however, find no such gender differences in propensity to switch in telecoms or energy (Burnett, 2014; He and Reiner, 2017) and, as noted previously, Waddams Price and Zhu (2016) find the opposite relationship in their multi-market study. Similarly, the relationship between switching and income differs across studies with negative (Waddams Price and Zhu, 2016), inverted U (Giulietti et al., 2005), small positive (Ek and Söderholm, 2008) and insignificant (He and Reiner, 2017) relationships identified in different contexts. The relationship between switching and age is perhaps a little more stable with a number of studies identifying a negative association (Burnett, 2014; Ranganathan et al., 2006; Lopez et al., 2006). Educational attainment also appears not to have a direct relationship with switching (Waddams Price and Zhu, 2016; Giulietti et al., 2005) albeit that Gamble et al. (2009) find that those with higher levels of education tend to have more negative attitudes to switching. Lunn and Lyons (2018) note similar inconsistency in the effects of background characteristics on switching intentions in telecoms and suggest that it results from the complexity and content specificity of the individual switching decision.
Table 1. Descriptive statistics: continuous variables.

Variable	N	Mean	St. Dev	Min	Max
Search intensity (Searches/100 HHI)	18,641	4.15	4.07	0	50
Number of searches	18,641	3.87	3.97	0	43
Persons	18,641	255	88.2	50	1,629
Households	18,641	91.1	24.1	22	536
Area (Sq. Km)	18,641	3.77	7.17	0.0108	163
Population density (Persons/Sq. Km)	18,641	3,465	6,225	.557	273,698

Source: Bonkers.ie & Census Small Area Population Statistics 2016.

2. Materials and methods

This section describes our dependent variable, including the source of data and transformations applied to it, before describing the econometric methods employed in the study. We then discuss the conceptual framework and hypotheses informing the choice of explanatory variables, discussing the rationale for including each factor in our models of consumer search and indicating expected signs on coefficients where relevant. Finally, we comment on the representativeness of the data and provide tables of descriptive statistics.

2.1. Dependent variable

Our analysis focuses on modelling consumer searches for retail broadband services in Ireland. The management team at the commercial price comparison website Bonkers.ie provided us with data from the site’s administrative records. This website was launched in 2010 and was the first price comparison site accredited by Ireland’s energy regulator (Bonkers.ie, 2020). Additional comparison facilities were added over time, including broadband, phone and TV; insurance; banking and other financial services. Searches on the site are free of charge and are delivered in real time through a web-based interface.

The dataset includes searches that were initiated during the 314 days from 17 August 2016 to 27 June 2017. Only search entries accompanied by valid spatial locations are included in our analysis (72,113 searches out of a total of 171,889). This spatial information takes the form of Eircodes, building-specific postcodes recently introduced in Ireland. In order to search for broadband services, users of the Bonkers.ie service were asked to enter their Eircode to allow the service to identify which broadband plans were available in their locality. For the analysis in this paper, we map each building location into its relevant Small Area, an administrative unit of which there are 18,641 in Ireland. The Small Area is a convenient unit of analysis since it is the most spatially dis-aggregated level at which many socio-demographic variables are available from Ireland’s national statistical agency, the Central Statistics Office (CSO). The exact data we use are drawn from the Small Area Population Statistics (SAPS) which were collected as part of a national census in April 2016.

Our primary outcome of interest is search intensity, which we calculate as the number of searches per 100 households in each Small Area. Our models seek to explain local search intensity as a function of many socio-economic factors, and we use regression analysis to measure the relative importance of these factors. Search intensity is expressed as a ratio of searches to the local number of households to enhance comparability. Small Areas vary significantly in size, and larger places are likely to have more searches simply because the pool of potential searchers is larger. Table 1 shows descriptive statistics for this variable, its components and other continuous variables used in our analysis.

Fig. 1 shows how search intensity is distributed. Many Small Areas had no searches in the sample period, giving rise to zero values for the search intensity. While many others did have searches, the frequency declines steadily across positive values and tends towards minimal values above about 10 searches per 100 households.

2.2. Econometric methods

As noted, the dependent variable of interest has a zero-lower bound. We use a Tobit estimator to account for the censored distribution of the data. It seems likely that many places had a low aggregate propensity for searches, but due to the discreteness of search behaviour, it was not possible to register search intensities below zero. The Tobit estimator allows for the possibility that individuals (and hence groups) have a latent propensity to search that only leads to an observable search event if the propensity exceeds some threshold level. The model is specified as follows:

\[S_j^* = I_j^* \beta_1 + x_j^* \beta_2 + \epsilon_j \quad j = 1, \ldots, 18,641 \] \hspace{1cm} (1)

\[S_j = \begin{cases} S_j^* : & \text{if } S_j^* > 0 \\ 0 & \text{if } S_j^* \leq 0 \end{cases} \] \hspace{1cm} (2)

where \(S_j \) is the observed number of searches per 100 households in Small Area \(j \), \(I_j \) measures the share of households with various types of internet access in Small Area \(j \), \(x_j \) contains a range of socio-economic and demographic characteristics of Small Area \(j \) and \(\epsilon_j \sim \text{IID}(0, \sigma^2) \).

Because coefficients of the latent variable model do not necessarily have a direct and meaningful interpretation, we instead report marginal effects. Specifically, we present the unconditional marginal effect on the expected value of \(S_j^* \) of a change in any particular \(x_{jk} \), calculated at the means of the independent variables. Formally:

\[\mathbb{E}(S_j) = x_j^* \beta \Phi \left(\frac{x_j^* \beta}{\sigma} \right) + \sigma \phi \left(\frac{x_j^* \beta}{\sigma} \right) \] \hspace{1cm} (3)

\[\frac{\partial \mathbb{E}(S_j)}{\partial x_{jk}} = \beta_k \Phi \left(\frac{x_j^* \beta}{\sigma} \right) \] \hspace{1cm} (4)

where \(\phi(.) \) and \(\Phi(.) \) are the cumulative distribution and probability density functions of the standard normal distribution respectively.

2.3. Explanatory variables: descriptions and prior expectations

The variables we use to model search intensity can be grouped into three categories for convenience. The first contains proxy variables for local broadband service availability and take-up, which should have a direct effect on incentives to search for better service. The other two categories include socioeconomic variables drawn from SAPS. We
divide these variables into two groups because the Census reports socioeconomic information using two units of analysis: households and individuals. For example, the proportion of owner-occupiers in a Small Area is based on the number of households reporting this characteristic, whereas the proportion of students is based on the number of individuals with the relevant status. It is not obvious a priori which unit of analysis is more appropriate for modelling search intensity, and not all of the socioeconomic characteristics captured by the two groups are mutually exclusive. For example, there is an individual-level indicator for the share of retired people in a given area, but there is also a household-level family profile indicator that includes a category of “retired” households. There are also some pairs of variables across the two groups that are not the same but that are correlated to some extent, e.g. household-level social class and individual-level educational attainment.

To explore the stability of coefficients on socioeconomic variables at both units of analysis, we first estimate separate models including variables at 1) household-level and 2) individual-level, then we estimate 3) a combined model with all variables. In all econometric models we include a dummy variable for county of residence (in case there are unobserved regional factors that drive propensity to switch), as well as proxies for availability and take-up of internet services.

Each of the variables taken from SAPS is expressed as a proportion: the number of persons or households in a Small Area reporting the relevant characteristic divided by the total number of persons or households in the area. In general, we chose the most prevalent category in each variable as the reference group. Where categories were of equal size (i.e. population density quintiles), we chose the middle category. In the case of educational attainment, we chose Upper Secondary as the reference category because this level broadly represents the middle of the attainment spectrum.

Broadband availability and take-up variables

Availability is proxied by a spatial dataset collected at the end of Quarter 2, 2017 as part of the preparation of Ireland’s National Broadband Plan (NBP), a long-term government initiative to bring broadband at speeds of over 30 Mbps to homes and businesses across the country. The dataset divides the country into three colour-coded regions. The ‘Dark Blue’ region indicates places where commercial operators already provided high-speed broadband. The ‘Light blue’ region denotes areas where this standard of service is not yet available but where operators had committed to provide it over a specified time-frame.\(^{4}\) The ‘Amber’ regions are those expected to require state intervention to attract high-speed broadband network provision. They tend to have poorer quality broadband provision.

Our second set of explanatory variables included in all models focuses on the rate of broadband take-up by households in each Census Small Area. This is based on a census question that asked whether or not households had access to the internet, either through a broadband connection or otherwise.

We also calculate the population density in each Small Area in persons per square kilometre. As well as impacting on broadband network availability and the number of services likely to be offered (Lee et al., 2011), in principle population density might have some influence on local residents’ average propensity to search. It is included across the models as a five-level categorical variable.

Variables based on household characteristics

The CSO’s social class variable is based on occupation, ranging from professionals and managers to unskilled labourers. Social class may affect search propensity directly, e.g. through skills and behaviours acquired at work, but it may also do so indirectly as an indicator of income level. As highlighted, the literature suggests that a measure of income could play a key role in our analysis, although the expected direction of any income effect remains ambiguous. Those in higher income groups have an increased propensity to take out broadband subscriptions and thus are likely to benefit from search. Equally, however, they may have a high opportunity cost of time and thus be disinclined to engage with the market. Since income information is not available at Small Area level, proxies like social class and educational attainment are used in attempt to capture any income-related effects.

Family composition is a set of categorical variables sorting families by whether children are present in the household and by the ages of other household members. The propensity to search could vary across these family structures since usage intensity likely does. It is possible that the presence of children in the household could lead to increased use of broadband for entertainment purposes. Younger families may also be more price sensitive and thus have relatively more to gain from active search.

Housing tenure, including whether people own their residences or rent them, could well have implications for whether they are able to switch service provider and how much stake they feel they have in choosing the best option. Perhaps having a long-term tenure encourages attention to putting more optimal services in place, or perhaps experiencing more turnover in residences induces people to look more often at which would be the best service provider. Housing status, which characterises the physical structure of residential dwellings may equally have implications on the occupants’ ability and propensity to switch provider.

Variables based on individual characteristics

Age groups may have differing propensities to search for broadband services both because they may use these services in different ways due to varying habits, skills, and life experiences and because they may have differing attitudes towards consumer search generally. The census data allows us to proxy the prevalence of different age groups making broadband search decisions with the local prevalence of each of seven age categories in a given area.

Employment and education, like social class, may partly serve as proxies for income. However, each may also have direct effects on switching propensity by conferring information and skills relevant to consumer decision making.

Most Irish residents are Irish-born, but all Small Areas have at least some foreign-born residents. It is possible that foreign-born residents use the internet differently due to their international links or have different past experiences of consumer switching. We thus include the shares in each area of residents from several other jurisdictions.

While there is little information in the Census on the time pressures households face (i.e. whether the time available for activities such as consumer search is limited), we try the time spent commuting as a proxy for this. The likely direction of impact for this variable is uncertain since there is also a possibility that commuters taking public transport could use their commuting time for search activities (i.e. using mobile devices).

If consumers have recently moved into an area they may be more likely to actively search for a new broadband offering. We test this possibility by including a variable that captures the share of census respondents in each Small Area that also resided there one year prior to the census.

2.4. Representativeness of the sample

Given the available data, it is not possible to test whether the searchers captured in our data are representative of searchers in Ireland generally. Being drawn from one price comparison website provider, our data do not achieve universal coverage of online searches for broadband packages over the study period. During this period, there were a small number of other price comparison sites that could have been

\(^{4}\) These improvement works had not commenced during our period of analysis.
used by searchers. Some consumers doubtless carried out searches by going directly to the websites of broadband providers or (for some services) by visiting physical retail outlets. We also capture only the subset of searches on Bonkers.ie that had valid location information (see section 2.1 above). Finally, it is possible that Bonkers.ie attracted systematically different types of searchers than other websites or channels due to its branding or promotional activity.

It should be noted, however, that bonkers.ie is one of the two largest price comparison websites in the Irish market. It has also held accredited status by a regulator in one of the markets it serves in Ireland for longer than any of its competitors, giving it a longer time-frame than any other site to build its brand. Furthermore, communications with Bonkers.ie management suggest its marketing activities are unlikely to create a selection issue. Given the company’s prominence among online search providers, the limited set of alternative search options in the Irish market and the volume of searches observed, it is likely that the findings we report are reflective of systematic variation in the propensity to search rather than variation in the channel via which search takes place.

2.5. Descriptive statistics and preliminary check for multicollinearity

Tables 2 and 3 set out descriptive statistics for the categorical variables relating to households and individuals used in the models. These data capture the share of each Small Area’s population (a count of either households or individuals) in a given category. We do not observe the characteristics of each individual searcher, so any associations identified by our empirical analysis are inferred from local area averages.

As a preliminary test of where we might encounter multicollinearity among explanatory variables, Tables A1 and A2 in the Appendix use a produced dataset, which is not available here.
reports a variance inflation factor (VIF) for each variable included in the household and individual-level models respectively. The household-level variables do not exhibit high VIFs. Among the individual-level variables, there are factors above 10 for the three youngest age categories and the oldest; retired status; and educational attainment to degree level or higher. It is intuitive that the oldest age group and retirement would be correlated, but the other drivers of collinearity are not as obvious. Some caution is required when interpreting hypothesis tests on these variables.

3. Results and discussion

As outlined in the previous section, we report the results from three regression specifications focusing on 1) household-level socioeconomic characteristics, 2) individual-level socioeconomic characteristics and 3) both sets of characteristics included together. The common dependent variable in all models is our measure of Small Area search intensity. In addition, all regressions include county dummy variables and proxy variables for broadband availability, internet usage and population density. Since all independent variables are measured in shares and so must, by construction, lie on the interval [0, 1], the reported coefficients in all models should be interpreted as marginal effects arising from a change from 0 to 1 in the share of the relevant explanatory variable ceteris paribus. Based on pseudo-R² statistics, there is little difference between these models in terms of goodness of fit.

Across the models (Tables 4, 5, and 6), search intensity is lower in areas with less broadband availability and take-up. In terms of our access proxy, being in an area where high-speed broadband is not (yet) available is associated with fewer searches. This makes intuitive sense as, by definition, these areas have a narrower range of options for domestic broadband and so there is less need to engage in search to find better deals. The magnitude of this effect is relatively small. The range of coefficients on the NBP variables suggests that the expected decrease in searches is, on average, less than 1.1 per 100 HH. With regard to usage, areas where fewer people have broadband or other forms of internet access also experience fewer searches. This is equally sensible since the need to search for better deals is understandably diminished in areas where many residents have not yet adopted broadband services (and possibly do not intend to). The effect magnitude is also more substantial here, with about 4.5-5 fewer searches per 100 HH (or roughly 1 standard deviation in the observed distribution of search) expected in an area where all households have “other” forms of internet access versus one where all households have broadband. While areas that are poorly served by the NBP likely have some overlap with those in which usage is lower, the fact that the coefficients on both sets of variables are statistically significant suggests that they may be capturing two distinct effects.

The categorical measure of population density also exhibits a consistent pattern across all of the models. Using the third quintile as a reference category, one sees that there are statistically fewer searches both in the areas with lower density and, indeed, in the top category. However, the magnitudes of these effects are small. The result in the lower quintiles could be a further manifestation of some of the mechanisms noted above. For example, sparsely populated areas may be those with few commercial broadband options, limiting the likely gains from search. The finding that areas with the highest population density have slightly lower search intensity than those with intermediate density is more surprising. These are likely to be the areas with the best coverage and range of services. There may be some influence of the specific mix of network technologies used in these areas. For instance, cable broadband is likely to be more important in these areas than elsewhere, and our broadband availability variable does not pick up variations in local availability of network types.

3.1. Results for model using household-level characteristics

The focus of the regression reported in Table 4 is on explanatory variables at the household unit of analysis. The model treats Small Area search intensity as a function of average family structure, social class, housing status and housing tenure in the area. The common internet and population density variables are also included. A number of noteworthy associations emerge:

First, the model suggests that an area populated fully by young family structures would expect to make about 1-3 additional searches per 100 households (depending on exact family classification) than one populated by the reference adult families. This is consistent with our prior expectations: younger members of a household may be among the heaviest users of domestic broadband for recreational purposes and so this result may indicate a generational effect. Indeed, it is probable that

Dependent Variable: Searches/100 HH (1)	β/βs	Robust SE
Broadband: NBP		
NBP Dark Blue	[ref]	
NBP Light Blue	-0.638*** (0.141)	
NBP Amber	-0.698*** (0.185)	
Broadband: SAPS		
Broadband Access	[ref]	
Other Access	-4.465*** (0.397)	
None	-2.876*** (0.625)	
Population Density		
Quintile 1	-0.252 (0.150)	
Quintile 2	-0.174** (0.0856)	
Quintile 3	[ref]	
Quintile 4	-0.136 (0.0901)	
Quintile 5	-0.631*** (0.0963)	
Family Structure		
Pre-family	3.344*** (0.462)	
Pre-School	3.407*** (0.701)	
Early School	2.067*** (0.533)	
Pre-Adolescent	1.061** (0.441)	
Adolescent	-0.101 (0.487)	
Adult	[ref]	
Empty Next	0.666 (0.679)	
Retired	-0.423 (0.689)	
Social Class		
A (Employers/Managers)	2.257*** (0.701)	
B (Higher Prof.)	3.550*** (1.292)	
C (Lower Prof.)	3.149*** (1.008)	
D (Non-manual)	[ref]	
E (Manual skilled)	-3.249*** (0.917)	
F (Semi-skilled)	-3.282*** (0.843)	
G (Unskilled)	-2.739** (1.135)	
H (Own A/c Workers)	-1.421* (0.860)	
I (Farmers)	-5.769*** (0.805)	
Other	-3.087*** (0.516)	
Housing Status		
House/Bungalow	[ref]	
Flat/Apartment	-0.714** (0.280)	
Caravan/Mobile home	1.028 (1.964)	
Not Stated	0.986 (1.283)	
Housing Tenure		
Owned Outright	[ref]	
Owner with Mortgage	1.671*** (0.522)	
Private Rental	-0.995** (0.474)	
Local Auth. Rental	-1.557*** (0.367)	
Voluntary Body Rental	0.00985 (0.555)	
Free of Rent	-2.268 (1.442)	
N.S.	-0.313 (0.724)	

(continued on next page)
the parents in such households are also younger and could also be heavier than households of older family structure.

Second, high social class has a strong positive association with the intensity of search for broadband packages. The results indicate that a Small Area populated entirely by social class A to C households would also be expected to make 2.26-3.55 additional searches per 100 households than one with all social class D (non-manual) households. The converse is true in an area populated entirely by E (manual skilled) to G (unskilled) households, where about 2.7-3.3 fewer searches per 100 households are expected. Farming communities are also expected to search significantly less (5.77 fewer searches per 100 HH). These results are particularly interesting.

Recall from the discussion in Section 1.1 that as a proxy for income the anticipated effect of social class was ambiguous. In other market contexts, higher income groups were found to search less (Yilmazkuday, 2017; De los Santos, 2018; Waddams Price and Zhu, 2016). At the same time, however, income and educational attainment are positive correlates of broadband adoption (Horrigan et al., 2006; Montagnier and Wirthmann, 2011; Roycroft, 2013). It appears that the latter effect is that which plays out in our model. It may also be possible that given the likely correlation between social class and education, those among the higher social classes are more aware of the possible gains from switching and are generally better equipped to navigate the market.

Third, in comparison to an area where the population lives in houses or bungalows, one in which people reside in flats or apartments is expected to see 0.71 fewer searches per 100 HH. We suggest that this may reflect the fact that many flats and apartments are privately rented rather than owner-occupied. Tenants may have less scope to influence selection of utility suppliers, reducing their need to engage in search. Equally, if those inhabiting apartments intend to remain in their current accommodation over shorter periods, then the longer-term savings accrued from finding a better broadband deal may be less relevant to them.

Indeed, the results from the housing tenure variables hint at similar mechanisms. 1-1.6 fewer searches are expected in a fully rental area than one where homes are all owned outright. There is also a statistically significant difference between this reference category and areas where resident households are all mortgage holders. The model suggests an increase in expected searches in the latter. Mortgage holders may be somewhat credit constrained and have an increased incentive to search for better internet deals.

In addition to the above, we include a set of county dummy variables, aimed at capturing broad geographical patterns in search intensity across the country. Such differences at the county level appear limited in scale but some tendencies towards more intensive search in more urban counties are observed.

3.2. Results for model using individual-level characteristics

Table 5 shifts the focus from households to a set of explanatory variables that relate to the characteristics of individuals in each Small Area. We include variables describing age, marital status, place of birth, daily commute, employment and education. The age coefficients suggest an intuitive result: areas populated by older people show significantly less search intensity. A hypothetical area inhabited entirely by over 65s would be expected to average 8.6 fewer searches per 100 households than the one populated entirely by the reference group of 35-44 year-olds. Indeed, areas with high shares of people in the reference group are the most active in search, although there is no statistically significant difference in search intensity between them and the two youngest age categories (the lack of significance may have to do with multicollinearity, as noted in the subsection on descriptive statistics above). One can draw some parallels between this result and that of the family structure variables in the previous regression. We thus postulate that a similar generational mechanism might be at play here. This result stands in contrast to the U-shaped age relationship found by Waddams Price and Zhu (2016), whereby the oldest and youngest groups engaged in more searching/switching behaviour, but it is more consistent with the pattern found in other studies focused on switching (Burnett, 2014; Ranganathan et al., 2006; Lopez et al., 2006).

There is some evidence that areas with high shares of married people have more searches than those with more single people, whereas areas with many people originally from outside Ireland have significantly fewer searches than areas where most residents were born in the country. This latter association appears counter-intuitive given that foreign-born internet users might be expected to use these services at least as intensively as Irish-born residents to gain access to content and communications links abroad. Since the greatest differences appear among those originating from non-English speaking countries, the lower search rates could be attributable, at least in part, to actual or perceived linguistic barriers to effective product search via a price comparison site operating in English. The coefficients on the “residence 2015” variables would also seem to support this hypothesis. While the model expects that an increase in the share of residents who have moved to a given Small Area from elsewhere in the country in the previous year leads to an increase in searches, the converse is true if those new residents have moved to the area from outside of Ireland.
The availability of time to search may be a factor driving the associations seen in the commuting variables. Commuting areas search more than those with more residents that do not commute. A 60–90 minute commuting duration is also associated with a greater increase in searches than shorter journeys. This is consistent with our hypothesis that the commuting duration for those using public transport may offer an individual time to go online and engage in search activity.

While we might also have expected time constraints to drive differences in search intensity across employment status, with areas where most individuals are employed having less time to search, this does not seem to be the case. In fact, areas with most employed residents are

Dependent Variable: Searches/100 HH	(2)	δy/δx	Robust SE
Broadband: NBP			
NBP Dark Blue	[ref]		
NBP Light Blue	0.855***	0.149	
NBP Amber	-1.073***	0.182	
Broadband: SAPS			
Broadband Access	[ref]		
Other Access	-4.955***	0.404	
None	-3.862**	0.616	
Population Density			
Quintile 1	0.872***	0.157	
Quintile 2	0.363**	0.0903	
Quintile 3	[ref]		
Quintile 4	-0.112	0.0827	
Quintile 5	-0.565***	0.0837	
Age Category			
Under 18	-1.296	1.219	
18-24	-0.909	0.982	
25-34	-2.340**	0.958	
35-44	[ref]		
45-54	0.803	1.015	
55-64	-4.832***	1.351	
65+	-8.575***	1.485	
Marital Status			
Single	[ref]		
Married	3.789***	0.660	
Separated	-1.187	2.188	
Divorced	2.232	2.339	
Widowed	6.802***	1.816	
Place of Birth			
Ireland	[ref]		
UK	-2.252	1.420	
Poland	-3.368***	0.740	
Lithuania	-5.882***	1.695	
Other	0.217	0.879	
ROW	-3.508***	0.783	
Commute Duration			
None	[ref]		
15-30 mins	1.429***	0.505	
30-45 mins	1.439**	0.576	
45-60 mins	0.755	0.897	
60-90 mins	3.547***	1.333	
90+ mins	0.858	1.519	
N.S.	1.975***	0.799	
Employment Tenure			
Employed	[ref]		
Searching: First Job	7.529***	2.300	
Unemployed	-2.817**	1.345	
Student	-3.525***	0.690	
Homemaker	-2.729**	1.063	
Retired	3.643***	1.290	
Disabled	2.900**	1.622	
Other	1.297	1.617	

Table 5. Marginal effects from Tobit model regressing search intensity on variables describing individual-specific characteristics (Small Area shares).

Table 5 (continued)

Dependent Variable: Searches/100 HH	(2)	δy/δx	Robust SE
Educational Attainment			
None/N.S.	-1.514	0.982	
Primary	-2.808***	0.716	
Lower Secondary	-2.702**	1.094	
Upper Secondary	[ref]		
Certificate	1.493**	0.885	
Degree+	4.204***	0.682	
Residence 2015			
At Same Address	[ref]		
Elsewhere in County	5.707***	1.264	
Elsewhere in Ireland	3.895**	1.915	
Outside Ireland	-3.258**	1.374	
County of Residence			
Carlow	-0.199	0.136	
Dublin City	[ref]		
South Dublin	0.0408	0.0670	
Fingal	0.631***	0.107	
Dun Laoghaire-Rathdown	0.371***	0.0718	
Kildare	0.177	0.125	
Kilkenny	0.231**	0.118	
Laois	-0.102	0.132	
Longford	0.143	0.158	
Louth	0.186	0.137	
Meath	0.606***	0.160	
Offaly	0.224	0.143	
Westmeath	0.0586	0.139	
Wexford	0.194	0.134	
Wicklow	0.540***	0.159	
Clare	0.153	0.152	
Cork City	0.208**	0.0869	
Cork	0.181	0.113	
Kerry	-0.423**	0.180	
Limerick City	-0.403**	0.112	
Limerick	0.194	0.117	
Tipperary North	-0.295**	0.145	
Tipperary South	0.0825	0.147	
Waterford City	0.369***	0.125	
Waterford	-0.295**	0.131	
Galway City	-0.461***	0.0925	
Galway	-0.0131	0.142	
Leitrim	0.128	0.197	
Mayo	0.0785	0.193	
Roscommon	0.523***	0.175	
Sligo	0.445***	0.155	
Cavan	-0.115	0.163	
Donegal	0.220	0.263	
Monaghan	-0.226	0.176	
Observations	18.641		
Log-likelihood	-46.198		
Pseudo-R²	0.0633		

Notes: Standard errors allow for clustering at the county level.
*p<.1; **p<.05; ***p<.01.

those with the most searches expected by the model. It is worth noting, however, that this result may reflect as much about the categories to which the employed are being compared as it does about the employed themselves. Specifically, areas with many students, unemployed, home-workers or those searching for their first job may also be those who are not directly taking out broadband contracts and thus may naturally have a lower propensity to search.

Perhaps surprisingly, given the finding mentioned earlier that the oldest groups search less than younger groups, being retired is strongly associated with higher search intensity. Such apparently paradoxical results have been previously identified in the literature. Aguiar and Hurst (2005), for example, find that at retirement individuals reduce food
expenditures while maintaining both the quality and quantity of consumption. The difference is attributable to an increased engagement with search. De los Santos (2018) further supports the result in his model of search cost heterogeneity. In our model, the effect of being retired offsets the age effect by almost half. A similar reduction in search costs might also explain the coefficient on areas inhabited by widowed individuals, where increased searches are expected by the model.

According to the model, higher local average educational attainment is strongly associated with more searches. An area where all residents are degree holders is expected to make about 4.2 additional searches per 100 HH in comparison to one where all residents have an upper secondary qualification. In light of the previously identified association between social class and search, as well as the likely correlations between education, income, and social class, this result now seems intuitive. Indeed, the pattern of coefficients here closely reflects that of the social class result in the previous model. One could, thus, posit similar underlying mechanisms. For example, the highly educated are more aware of the potential benefits from and are better equipped to navigate the complexities of the market.

As before, county dummy variables are included in the model of individual characteristics. The scale of the marginal effects is limited among these variables and statistical significance is sporadic. Overall there is little evidence of noteworthy geographic patterns in search intensity.

3.3. Results with all variables and extra tests of robustness

The most general model that one can construct using our data includes both the set of variables which describes household characteristics as well as that which describes individuals. Such a model is reported in Table 6. By combining the two previous model specifications, we explore whether or not previously identified relationships are diminished by the presence of potentially correlated variables. Collinearity among some regressors makes several of the previously noted associations statistically weaker, but the overall results are broadly unchanged. For example, some of the social class, employment tenure and education coefficients lose statistical significance. This is likely due to area level correlations in these variables. It is noteworthy, however, that the coefficient on “Degree +” in the education variable remains statistically significant and areas predominantly populated by social classes E, F, and I are still statistically expected to search less. This implies that some independent mechanisms are likely at play. The same may be posited of a relationship between age and family structure. In this model, one still expects, at the 95% confidence level, that areas populated by the over 65s will have fewer searches. However, the magnitude of the association is more than halved in comparison to the previous model. It is likely that when both sets of variables are included, the estimated coefficients are partly capturing the same variation in search intensity. Overall, however, the estimates do not give rise to a narrative that significantly deviates from that of the discussions earlier in this section.

Since all specifications presented are based on spatially-structured data, we need to consider the possibility that spatial dependence might affect the models. Some unobserved determinants of search behaviour may affect Small Areas in proximity to one another or the socioeconomic characteristics of a given Small Area could spill over in some way to closely neighbouring regions. We carry out robustness tests to check whether such spatial dependence might have a material effect on the levels of significance of coefficients and find little evidence that this is the case.6 We estimate three models allowing for different types of spatial dependence between a Small Area and its five nearest neighbours, assuming uncensored data: a spatial autoregressive model (including spatial lags of the dependent variable), a spatial error model (allowing for spatial lags in the error term) and a spatial Durbin model (including spatial lags of both dependent and explanatory variables). The patterns of coefficients and significance levels were very similar to those from the comparable non-spatial specification.

4. Conclusions

We contribute to the literature by exploiting geographic variation in consumer search activity to gain a better understanding of the socio-economic characteristics of those who search for retail broadband services in Ireland. A novel dataset from a commercial price comparison website, Bonkers.ie, provides a rich source of actual online search information on which we can base our analysis. By linking this geo-coded search intensity to spatially dis-aggregated census data we are able to

Dependent Variable: Searches/100 HH
Broadband: NBP
NBP Dark Blue
NBP Light Blue
NBP Amber
Broadband: SAPS
Broadband Access
Other Access
None
Population Density
Quintile 1
Quintile 2
Quintile 3
Quintile 4
Quintile 5
Age Category
Under 18
18-24
25-34
35-44
45-54
55-64
65+
Marital Status
Single
Married
Separated
Divorced
Widowed
Place of Birth
Ireland
UK
Poland
Lithuania
Other
ROW
Family Structure
Pre-family
Pre-School
Early School
Pre-Adolescent
Adolescent
Adult
Empty Nest
Retired
Housing Status
House/Bungalow
Flat/Apartment
Caravan/Mobile home
Not Stated

6 Regression results for these additional models are available from the authors on request.
Our main finding is that search intensity varies significantly across socioeconomic and demographic groups. We find that the frequency of search is significantly higher in areas with many highly educated, married people, commuters, mortgage holders, and retirees. In contrast, the frequency of search is lower in areas with many older residents, farmers, low-skilled workers and students. For policymakers trying to encourage consumer search activity to intensify competition and obtain better value for consumers, our results suggest that price comparison tools are achieving better engagement among some groups than others. Perhaps information about the availability of these tools or the benefits of search needs to be targeted better at low-adopting groups. Ultimately, if consumer segments such as these engage in consistently lower levels of search activity, this could lead to firms exploiting these consumers’ inertia by offering less favourable levels of price, choice or quality of service.

The main limitation of this analysis stems from the lack of individual-level data on the socio-economic and demographic characteristics of searchers. This limits the scope for exploring the effects of interactions among individual or household characteristics. Data limitations also prevent us from examining the relationship between search and household income directly. Nevertheless, the pattern of effects is suggestive of a positive relationship between economic means and search intensity. If more advantaged groups in society participate more actively in search and switching behaviour, price discrimination by suppliers in favour of more active consumers compared to inert ones could lead to a further source of disadvantage for vulnerable groups.

It remains for further work to establish whether this pattern of effects is common across jurisdictions and how stable it is over time as retail telecoms markets evolve. Further work is also needed to identify the mechanisms that drive consumer search for telecoms services and to consider what potential informational or behavioural interventions may have to increase the engagement of disadvantaged groups in consumer search activities. In particular, a growing literature in behavioural economics has offered alternative mechanisms which may influence search behaviour. This research area, which is rooted in the field of psychology and studies systematic behavioural deviations from traditional economic models of rationality, arguably has broad implications across various market contexts, not least the market for telecommunications products and services (Lunn, 2012). The propensity to engage in active search may be affected by behavioural biases observed in relation to other economic decisions. For example, the endowment effect (Knetsch, 1989; Kahneman et al., 1990) implies that some consumers may be disinclined to search despite net gains from doing so, because they tend to place greater weight on what they give up relative to what they might gain. Similarly, behavioural models of procrastination (O’Donoghue and Rabin, 2001) imply that some consumers may intend to search, because they recognise that potential gains are above a threshold that makes search worthwhile, yet nevertheless fail to get around actually to doing so. Work on default options (Madrian and Shea, 2001) also suggests that where a current contract ends but there exists a passive default to continue on the same deal, a substantial proportion of consumers are likely to stick with it rather than to engage in active search for something better. While these and many other behavioural findings have plausible impacts on individual propensities to search, there is a lack of evidence suggesting socio-demographic differences in their influence. Since the relationship between our results and behavioural economics cannot be stated with certainty, an exploration of this type is left for future work.

Declarations

Author contribution statement

Sean Lyons, Peter D. Lunn: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Philip Carthy: Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by the ESRI Programme of Research in Communications which is in turn supported by the Commission for Communications Regulation and the Department of Communications, Climate Action and Environment.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2020.e04478.

Acknowledgements

The authors are grateful to Bonkers.ie for access to data and to Stephen Garavan for research assistance. We also thank two anonymous referees, Leonie Allen and seminar participants at the ESRI, Commission for Communications Regulation, Bonkers.ie and National University of Ireland, Galway for helpful comments on earlier drafts. The usual disclaimer applies.

References

Aguair, M., Hurst, E., 2005. Consumption versus expenditure. J. Polit. Econ. 113, 919–948.

Bonkers.ie, 2020. Our history. https://www.bonkers.ie/about/. (Accessed 7 January 2020).

Bouckaert, J., van Dijk, T., Verboven, F., 2010. Access regulation, competition, and broadband penetration: an international study. Telecommun. Policy 34, 661–671.

Burnett, T., 2014. The Impact of Service Bundling on Consumer Switching Behaviour: Evidence from UK Communication Markets. Working Paper 14/321 Centre for Market and Public Organisation. University of Bristol.

Carare, O., McGovern, C., Noriega, R., Schwarz, J., 2015. The willingness to pay for broadband of non-adopters in the U.S.: estimates from a multi-state survey. Inf. Econ. Policy 30, 19–35.

Competition & Markets Authority, 2017. Digital comparison tools market study: final report. https://www.gov.uk/cma-cases/digital-comparison-tools-market-study. (Accessed 7 January 2020).

Dauvin, M., Grzybowski, L., 2014. Estimating broadband diffusion in the EU using NUTS 1 regional data. Telecommun. Policy 38, 96–104.

De los Santos, B., 2018. Consumer search on the Internet. Int. J. Ind. Organ. 58, 66–105.

Dittano, W., Lapi, P., Manenti, F.M., 2006. Platform competition and broadband uptake: theory and empirical evidence from the European Union. Inf. Econ. Policy 18, 87–106.

Ek, K., Söderholm, P., 2008. Households’ switching behavior between electricity suppliers in Sweden. Util. Policy 16, 254–261.

Falch, M., 1997. Cost and demand characteristics of telecom networks. In: Melody, W.H. (Ed.), Telecom Reform. Den Private Ingeniørfond, pp. 119–120.

Gabaix, X., Laibson, D., 2006. Shrouded attributes, consumer myopia, and information suppression in competitive markets. Q. J. Econ. 121, 505–540.

Gamble, A., Juliusson, E.A., Gärting, T., 2009. Consumer attitudes towards switching suppliers in three deregulated markets. J. Socio-Econ. 38, 814–819.

Gärting, T., Gamble, A., Juliusson, E.A., 2008. Consumers’ switching inertia in a fictitious electricity market. Int. J. Consum. Stud. 32, 613–618.

Giulietti, M., Price, C.W., Waterson, M., 2005. Consumer choice and competition policy: a study of UK energy markets. Econ. J. 115, 949–968.

Grubb, M.D., 2015. Behavioral consumers in industrial organization: an overview. Rev. Ind. Organ. 47, 247–258.

Grubesic, T.H., 2006. A spatial taxonomy of broadband regions in the United States. Inf. Econ. Policy 18, 423–448.

Grubesic, T.H., Murray, A.T., 2002. Constructing the divide: spatial disparities in broadband access. Pap. Reg. Sci. 81, 197–223.

He, X., Reiner, D., 2017. Why consumers switch energy suppliers: the role of individual attitudes. Energy J. 38, 25–53.

Honka, E., 2014. Quantifying search and switching costs in the US auto insurance industry. Rand J. Econ. 45, 847–884.

Horrigan, J.B., Stolp, C., Wilson, R.H., 2006. Broadband utilization in space: effects of population and economic structure. Inf. Soc. 22, 341–354.

Kahnean, D., Knoetch, J.L., Thaler, R.H., 1990. Experimental tests of the endowment effect and the Coase theorem. J. Polit. Econ. 98, 1325–1348.

Knoetch, J.L., 1989. The endowment effect and evidence of nonreversible indifference curves. Am. Econ. Rev. 79, 1277–1284. http://www.jstor.org/stable/1931454.

Lee, S., Marcu, M., Lee, S., 2011. An empirical analysis of fixed and mobile broadband diffusion. Inf. Econ. Policy 23, 227–233.

Lopez, J.P.M., Redondo, Y.P., Olivan, F.J.S., 2006. The impact of customer relationship characteristics on customer switching behavior. Manag. Serv. Qual. Int. J. 16, 556–574.

Lunn, P.D., 2012. Telecommunications consumers: a behavioral economic analysis. J. Consum. Aff. 47, 167–189.

Lunn, P.D., Lyons, S., 2018. Consumer switching intentions for telecoms services: evidence from Ireland. Heliyon 4, e00618.

Madrian, B.C., Shea, D.F., 2001. The power of suggestion: inertia in 401(k) participation and savings behavior. Q. J. Econ. 116, 1149–1187.

Montaguier, P., Wirthmann, A., 2011. Digital divide: from computer access to online activities – a micro data analysis. OECD Digital Economy Papers. https://www.oecd-ilibrary.org/content/paper/5kg0k6t8r30-en.

O’Donoghue, T., Rabin, M., 2001. Choice and procrastination. Q. J. Econ. 116, 121–160.

Ranganathan, C., Seo, D., Babad, Y., 2006. Switching behavior of mobile users: do users’ relational investments and demographics matter? Eur. J. Inf. Syst. 15, 269–276.

Riding, J.L., Ellershaw, J.C., Tran, A.V., Guan, L.-J., Smith, T., 2009. Economics of broadband access technologies for rural areas. In: Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. OSA.

Roycroft, T.R., 2013. Empirical study of broadband adoption using data from the 2009 residential energy consumption survey. J. Regul. Econ. 43, 214–228.

Stigler, G.J., 1961. The economics of information. J. Polit. Econ. 69, 213–225.

Waddams Price, C., Zhu, M., 2016. Empirical evidence of consumer responses in regulated markets. J. Compt. Law Econ. 12, 113–149.

Wilson, C.M., 2012. Market frictions: a unified model of search costs and switching costs. Eur. Econ. Rev. 56, 1070–1086.

Yilmazkuday, H., 2017. Geographical dispersion of consumer search behaviour. Appl. Econ. 49, 5740–5752.