Prognostic Value of T-wave Positivity in Lead aVR in COVID-19 Pneumonia

Fatih Sivri1*, Burcu Özdemir2, Mehmet Murat Çelik3, Fatih Aksoy4, Burakhan Akçay3

SUMMARY
OBJECTIVE: T-wave positivity in the lead aVR is a marker of ventricular repolarization abnormality and provides information on short- and long-term cardiovascular mortality in heart failure patients, those with anterior myocardial infarction, and patients who underwent hemodialysis for various reasons. The aim of this study was to investigate the relationship between T-wave positivity in the lead aVR on superficial electrocardiogram and mortality from COVID-19 pneumonia.

METHODS: This study retrospectively included 130 patients who were diagnosed with COVID-19 and treated as an outpatient or in the thoracic diseases ward in a single center between January 2021 and June 2021. All patients included in the study had clinical and radiological features and signs of COVID-19 pneumonia. The COVID-19 diagnosis of all patients was confirmed by polymerase chain reaction detected from an oropharyngeal swab.

RESULTS: A total of 130 patients were included in this study. Patients were divided into two groups: survived and deceased. There were 55 patients (mean age: 64.76–14.93 years, 58.18 male, 41.12% female) in the survived group and 75 patients (mean age: 65–15 years, 58.67 male, 41.33% female) in the deceased group. The univariate and multivariate regression analyses showed that positive transcatheter aortic valve replacement (OR 5.151; 95%CI 1.001–26.504; p=0.0012), lactate dehydrogenase (OR 1.006; 95%CI 1.001–1.010; p=0.012), and d-dimer (OR 1.436; 95%CI 1.115–1.848; p=0.005) were independent risk factors for mortality.

CONCLUSION: A positive transcatheter aortic valve replacement is useful in risk stratification for mortality from COVID-19 pneumonia.

KEYWORDS: Electrocardiographic. SARS-CoV-2. Mortality

INTRODUCTION
Although the novel coronavirus 2019 (COVID-19) infection primarily affects the lungs and causes pneumonia, acute respiratory distress syndrome, and even death, various cardiovascular complications are also the leading causes of mortality1. Numerous studies and case series have reported that COVID-19 causes myocarditis2-4, tamponade5, acute heart failure6, arrhythmia (tachycardia or bradycardia)7, Brugada-like electrocardiographic (ECG) pattern8, transient ST elevation, and sudden cardiac death9,10.

Cardiac involvement is associated with a poor prognostic outcome, independent of other causes, with an incidence rate of 22–44% in cases of advanced and severe COVID-19 infection11,12. Cardiovascular damage can occur through a diverse range of pathways. In addition to the direct cardiotoxic effect, cardiovascular damage may be caused by inhibition of ACE-2 receptors, cytokine storm, coronary plaque rupture, coronary spasm, and microthromboembolism13,14.

On a superficial ECG, the lead aVR is usually neglected. However, it provides prognostic information on many cardiovascular diseases. A positive T-wave amplitude in the lead aVR gives prognostic information on repolarization abnormality and provides diagnostic and prognostic information on many cardiovascular diseases such as in heart failure15-17. However, there is no information regarding its relationship with COVID-19 pneumonia. The aim of this study was to investigate the relationship between T-wave positivity in the lead aVR on superficial ECG and mortality from COVID-19 pneumonia.

METHODS
This study retrospectively included 130 patients who were diagnosed with COVID-19 and treated as an outpatient or in the thoracic diseases ward in a single center between January 2021 and June 2021 after the approval of the local ethics committee (permission dated October 21, 2021, and numbered
2021/67) and the Ministry of Health of the Republic of Turkey. The study was conducted in accordance with the principles of the Declaration of Helsinki.

All patients included in the study had clinical and radiological features and signs of COVID-19 pneumonia. The COVID-19 diagnosis of all patients was confirmed by polymerase chain reaction (PCR) detected from an oropharyngeal swab. All patients were treated with hydroxychloroquine, azithromycin, and favipiravir. Patients with chronic kidney or liver failure; those with history of anti-arrhythmic drugs use; those living with pacemaker; and those with atrial fibrillation, coronary artery disease, heart failure (with preserved systolic function or systolic heart failure), and abnormal serum electrolyte values were not included in the study.

All patients were questioned in detail for hypertension, hyperlipidemia, diabetes mellitus, tobacco use, asthma, COPD (chronic obstructive pulmonary disease), and the drugs used. Hematological, biochemical, and serological values were obtained from the peripheral blood samples taken following 12 h of fasting and recorded. A troponin value above the 99th percentile upper reference limit value or newly developed ECG and echocardiographic change was considered myocardial damage. Chronic renal failure was defined as a glomerular filtration rate less than 60 mL/min/1.73 m², persisting for 3 days. Dialysis damage. Chronic renal failure was defined as a glomerular filtration rate less than 60 mL/min/1.73 m², persisting for 3 months. The diagnosis of hypertension was defined as receiving antihypertensive therapy or having a systolic blood pressure above 160 mmHg and diastolic blood pressure above 90 mmHg in at least three measurements. Diabetes was defined as the use of anti-diabetic drugs and having at least two post-prandial blood glucose measurements above 126 mg/dL or an HbA1c level >6.5. The diagnosis of hyperlipidemia was considered as having a low-density lipoprotein (LDL) level >160 mg/dL or the use of statins.

Electrocardiographic evaluation
Superficial 12-lead ECGs of all patients (Nihon Kohden Cardiofix V Model ECG-1550K device 25 mm/s and standard 1 mV/10 mm) were recorded before the treatment of COVID-19 infection and were evaluated by two independent cardiologists who were blinded to the characteristics of the patients. Heart rate, P-R interval, QT and QTc intervals, and QRS duration were recorded. The P-R interval was measured as the time from the beginning of the P wave to the beginning of the QRS complex in milliseconds. The QRS duration was measured from the beginning of the Q or R wave to the end of the R or S wave in milliseconds. The QT interval was measured from the beginning of the QRS complex to the end of the T wave in milliseconds. The QT-corrected distance was measured using Bazett’s formula. The depression or elevation of the ST segment in the lead aVR from the isoelectric line was measured numerically (STaVR). According to the T-wave amplitude in the lead aVR, patients with a positive peak (>0 mV) from the isoelectric line were recorded as positive (positive TAVR), while patients with a negative peak (<0 mV) from the isovolumetric line were recorded as negative (negative TAVR). The amplitude of the T wave (TPaVR) was recorded by calculating its negative or positive deflection from the isoelectric line. The TPaVR/STaVR ratio was obtained by dividing whichever value is greater by the other (large value/small value).

Statistical analysis
The study data were evaluated using the SPSS version 21.0 statistical software. Normality distribution of continuous variables was investigated using visual (histogram and probability charts) and analytical methods (Kolmogorov-Smirnov/Shapiro-Wilk tests). The descriptive statistics of the study were presented as mean and standard deviation for normally distributed data and as median, minimum, and maximum for non-normally distributed data. The chi-square test was used to show whether there was a difference between categorical variables. The Student’s t-test was used to compare the continuous variables with parametric properties in independent groups, while the Mann-Whitney U test was used to compare continuous variables with non-parametric properties in independent groups. The level of statistical significance was set at a p-value less than 0.05. There was no study that could be referenced in the sample calculation when the literature was searched; medium-effect size of the chi-square test was taken in the calculation and it was decided to recruit 117 participants in 90% power, 0.05 margin of error, 1 degree of freedom, and 129 participants with 10% reserve.

RESULTS
A total of 130 patients were included in this study. Patients were divided into two groups: survived and deceased. There were 55 patients (mean age 64.76–14.93 years, 58.18 male, 41.12% female) in the survived group and 75 patients (mean age 65–15 years, 58.67 male, 41.33% female) in the deceased group. There was no difference between the groups in terms of age and gender. The baseline clinical and laboratory characteristics of the groups are shown in Table 1.

The comparison of laboratory characteristics showed that the deceased group had higher CK-MB (60.88±46.99 vs. 30.55±21.77, p=0.000), troponin (106±64.02 vs. 39.87±14.36, p=0.000), lactate dehydrogenase (LDH) (554.61±209.22 vs. 365.2±155.47 p=0.000), C-reactive protein (CRP) (127±75.32 vs. 87.4±68.24,
COVID-19 Pneumonia, mortality, T-wave Positivity in Lead aVR

The laboratory, ECG, and echocardiographic characteristics are shown in Table 2. Positive TAVR (p=0.000) and STaVR (0.15±0.6 vs. 0.19±0.12, p=0.002) were statistically significant in the deceased group. The univariate and multivariate regression analyses showed that positive TAVR (OR 5.151; 95%CI 1.001–26.504, p=0.0012), LDH (OR 1.006; 95%CI 1.001–1.010, p=0.012), and d-dimer (OR=1.436, 95%CI 1.115–1.848, p=0.005) were independent risk factors for mortality (Table 3).

DISCUSSION
This study has examined the effects of superficial ECG and laboratory findings on mortality in patients with SARS-CoV-2 infection and found several important results. First, the positive T wave in lead aVR is an independent risk factor for mortality. Second, d-dimer and LDH values are also independent risk factors for mortality.

Although SARS-CoV-2 infection primarily affects the lungs and causes pneumonia and/or acute respiratory distress syndrome, it leads to complications such as myocarditis, cardiac tamponade, transit ST elevation, acute heart failure, arrhythmia (tachycardia or bradycardia), and sudden cardiac death18.

Cardiac damage can occur through a diverse range of pathways. While it may be directly related to cardiac damage, it may cause myocardial inflammation and edema by inhibiting ACE-2 receptors and impairing the cellular defense mechanism. Another mechanism of action is the cytokine storm, which results from excessive cytokine release from type 1 and type 2 T-helper cells and leads to immunopathological events. These factors may cause direct myocyte damage as well as coronary spasm, plaque rupture, and microthromboembolism, leading to vascular inflammation and hypercoagulopathy19.

Although the lead aVR is often neglected on a superficial 12-lead ECG, it provides diagnostic and prognostic information for many cardiovascular diseases. Lead aVR is a unique superficial ECG lead derived from near leads V1 and D1, providing information about right heart upper basal and viewing the left ventricle from the full brow. Since the lead aVR is a unipolar right extremity lead, represents the cavity of the heart, and is the opposite of the main cardiac vector, all positive deflection waves are negative in the lead aVR. A positive T wave in the lead aVR is usually an uncommon finding. According to the most common and valid hypothesis, the T wave is thought to be positive after vectorial deviation caused by damage to the left ventricular apical, inferior and inferior lateral wall due to various reasons. In another study, in patients with anterior myocardial infarction, positive T wave in lead aVR showed global left ventricular ischemia. Recent

Table 1. Baseline characteristics and electrocardiographic findings.

Group	Deceased	Living	p		
Sex					
Male	44	58.67	32	58.18	0.956
Female	31	41.33	23	41.82	
Hypertension					
No	28	37.33	15	27.27	0.228
Yes	47	62.67	40	72.73	
DM					
No	52	69.33	38	69.09	0.976
Yes	23	30.67	17	30.91	
Cerebrovascular disease					
No	75	100.00	52	94.55	0.073
Yes	0	0.00	3	5.45	
COPD					
No	41	54.67	44	80.00	0.003
Yes	34	45.33	11	20.00	
TAVR positive					
No	47	62.67	50	90.91	0.000
Yes	28	37.33	5	9.09	
TAVR negative					
No	29	38.67	18	32.73	0.486
Yes	46	61.33	37	67.27	

DM: diabetes mellitus; COPD: chronic obstructive pulmonary disease; TAVR: T-wave amplitude in the lead aVR.
Table 2. Basic laboratory parameters and electrocardiographic findings to deceased and living groups.

Parameter	Deceased (n=75)	Living (n=55)	p							
Mean		**Mean**	**Median**	**Minimum**	**Maximum**	**Mean**	**Median**	**Minimum**	**Maximum**	**p**
AGE	64.76	64.31	16.93	14.00	98.00	65.00	16.00	20.00	95.00	0.930*
CREATININE	1.35	1.30	0.87	0.20	4.30	1.50	0.90	0.38	9.00	0.066*
CK-MB	60.88	30.50	46.49	14.00	300.00	21.76	23.00	11.00	121.00	0.000*
LDH	554.61	365.24	209.02	172.00	950.00	155.47	321.00	152.00	1052.00	0.000*
SODIUM	136.25	131.33	6.73	5.60	140.00	134.00	116.00	142.00	0.12	
POTASSIUM	4.21	4.34	0.94	0.68	4.10	3.40	8.40	0.14		
CRP	127.09	87.21	75.32	68.24	36.00	77.60	2.30	270.00	0.001*	
WBC	13.01	8.82	4.87	4.84	13.20	8.83	2.30	26.10	0.000*	
Hg	11.47	3.38	2.10	4.38	12.10	12.28	8.20	15.40	0.062	
D-DIMER	25.29	1.18	23.09	1.16	9.33	0.18	0.14	8.60	0.000*	
TROPONIN	106.28	112.15	64.02	136.00	5.00	1031.00	14.36	12.60	0.000*	
TPaVR	-0.07	-0.16	0.26	-0.41	0.29	-0.12	-0.04	0.22	0.06	
StaVR	0.15	0.19	0.06	0.12	0.10	0.39	0.12	0.01	0.50	0.002*
HR	83.21	86.51	19.10	17.06	88.00	90.00	19.10	55.00	125.00	0.290*
PR INTERVAL	107.51	109.56	7.30	23.42	110.00	102.00	45.00	80.00	200.00	0.173*
QRS INTERVAL	110.52	112.15	5.71	9.42	111.00	112.00	95.00	160.00	0.333*	
LVEF	64.77	64.73	1.58	60.00	65.00	65.00	65.00	65.00	0.147*	
QT INT	393.73	382.22	42.85	27.63	398.00	386.00	27.63	440.00	0.101*	
QTC INT	439.79	429.47	46.14	43.69	427.00	430.00	43.69	513.00	0.388*	
TPaVR/StaVR	1.58	1.38	0.79	0.62	1.60	0.38	0.62	3.20	0.739*	

CK-MB: lactate dehydrogenase; CRP: C-reactive protein; WBC: white blood cell; Hg: hemoglobin; TPaVR: amplitude of the T wave; StaVR: The depression or elevation of the ST segment in the lead aVR from the isoelectric line; HR: heart rate; LVEF: left ventricular ejection fraction; QT INT: QT interval; QTC INT: corrected QT interval.

Table 3. Effects of various variables on COVID-19 mortality in univariate and multivariate logistic regression analyses.

Parameter	Unadjusted OR	95%CI	p-value	Adjusted OR	95%CI	p-value
TAVR positive	5.957	2.124-16.713	0.001	5.151	1.001-26.504	0.0012
COPD	3.317	1.487-7.397	0.003	1.431	0.306-6.969	0.649
Troponin	1.009	1.002-1.016	0.014	1.005	0.997-1.014	0.221
CK-MB	1.040	1.020-1.059	0.000	1.021	0.996-1.047	0.104
LDH	1.066	1.003-1.109	0.000	1.006	1.001-1.100	0.012
CRP	1.008	1.003-1.104	0.004	1.006	0.996-1.107	0.210
WBC	1.211	1.108-1.324	0.000	1.155	0.958-1.392	0.131
D-Dimer	1.647	1.254-2.163	0.000	1.436	1.115-1.848	0.005
StaVR	0.005	0.000-0.422	0.019	0.000	0.000-8.308	0.092

TAVR: T-wave amplitude in the lead aVR; COPD: chronic obstructive pulmonary disease; CK-MB: Creatine kinase and its MB isoenzyme; LDH: lactate dehydrogenase; CRP: C-reactive protein; WBC: white blood cell. StaVR: The depression or elevation of the ST segment in the lead aVR from the isoelectric line. Bold indicates significant p-value.
studies have shown that the T-wave positivity in the lead aVR is a marker of ventricular repolarization abnormality and provides information on short- and long-term cardiovascular mortality in patients with heart failure, patients with anterior myocardial infarction, and those who receive hemodialysis for various reasons13-17. In their long-term follow-up study of male individuals, Tan et al. showed that the T-wave positivity is an independent risk factor for cardiovascular events29. The 33-month follow-up study of 93 patients with heart failure and narrow QRS ECG by Okuda et al. showed that the T-wave positivity provided long-term prognostic information, independent of other causes31. The 31-month follow-up study of 93 patients with ICD (implantable cardioverter defibrillation) and ischemic and non-ischemic cardiomyopathy by Tanaka et al. showed that a positive T wave in the lead aVR was an independent risk factor for long-term mortality22. The study of 86 cases by Donmez et al. showed that the occurrence of the T-wave positivity in the lead aVR after transcatheter aortic valve implantation (TAVI) procedure was an independent risk factor for postoperative short- and long-term mortality23. In our study, the examination of the ECG findings of the lead aVR in patients with COVID-19 infection revealed that positive TAVR alone was an independent indicator for mortality. This suggests that a positive TAVR wave provides information on the entire myocardial tissue rather than the apical, inferior, and inferior lateral wall. Even if ejection fraction is same in the two groups, univariate analysis has showed that troponin values are significantly higher in the deceased group. Thus, there is marked subclinical ischemia of global left ventricle without any effect of ejection fraction. For this reason, T-wave positivity in the lead aVR may occur in the deceased group.

In our study, higher LDH and d-dimer value are independent risk factors of mortality, as shown in previous study. Recent studies and meta-analysis showed that D-dimer value higher 3–4 times in the early stage of COVID-19 infection associated with independent risk for mortality and higher vascular complications. High LDH levels were found to be 6 times more related to the progression of COVID-19 pneumonia and 16 times to mortality compared to patients with normal LDH levels24,25.

Limitations of the study
This study has several limitations. First, the sample size was small, and the study had a retrospective design. Second, the values such as CRP and troponin, which are associated with subclinical myocardial damage, were not followed up. Third, ECGs of the patients at initial diagnosis were examined, while positive or negative T wave changes on ECGs were not examined. Finally, the medical treatments of the patients were not questioned in detail and their post-treatment ECG changes were not investigated. A prospective study with a large number of patients is needed to validate the results of this study.

CONCLUSION
This study demonstrated that positive T wave in the lead aVR was a significant and independent risk factor for mortality from COVID-19 infection. This unique ECG parameter, which is often overlooked, provides information on the mortality of patients even when other ECG parameters are normal. We recommend that a positive TAVR wave not be neglected when evaluating high-risk patients.

AUTHORS’ CONTRIBUTIONS
FS: Conceptualization, Data curation, Formal Analysis, Writing – original draft. BÖ: Formal Analysis. MMÇ: Formal Analysis. FA: Formal Analysis. BA: Formal Analysis.

REFERENCES
1. Mai F, Del Pinto R, Ferri C. COVID-19 and cardiovascular diseases. J Cardiol. 2020;76(5):453-8. https://doi.org/10.1016/j.jcc.2020.07.013
2. Doyen D, Moceri P, Ducrues D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. https://doi.org/10.1016/S0140-6736(20)30912-0
3. Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J. 2020;41(19):1859. https://doi.org/10.1093/eurheartj/ehaa288
4. Cizgici AY, Zencirkiran Agus H, Yildiz M. COVID-19 myopericarditis: It should be kept in mind in today’s conditions. Am J Emerg Med. 2020;38(7):1547.e5-6. https://doi.org/10.1016/j.ajem.2020.04.080
5. Dabbagh MF, Aurora L, D’Souza P, Weinmann AJ, Bhargava P, Basir MB. Cardiac tamponade secondary to COVID-19. JACC Case Rep. 2020;2(9):1326-30. https://doi.org/10.1016/j.jaccas.2020.04.009
6. Inciardi RM, Lupi L, Zacccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. https://doi.org/10.1001/jamacardio.2020.1096
7. Wang Y, Wang Z, Tse G, Zhang L, Wan EY, Guo Y, et al. Cardiac arrhythmias in patients with COVID-19. J Arrhythm. 2020;36(5):827-36. https://doi.org/10.1002/joa3.12405
8. Vidovich MI. Transient brugada-like electrocardiographic pattern in a patient with COVID-19. JACC Case Rep. 2020;2(9):1245-9. https://doi.org/10.1016/j.jaccas.2020.04.007
9. Yenerçaş M, Arslan U, Dogduş M, Günel O, Öztürk ÇE, Aksan G, et al. Evaluation of electrocardiographic ventricular repolarization variables in patients with newly diagnosed COVID-
19. J Electrocardiol. 2020;62:5-9. https://doi.org/10.1016/j.jelectrocard.2020.07.005
10. Kochi AN, Tagliaferro GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol. 2020;31(5):1003-8. https://doi.org/10.1111/jce.14479
11. Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020;38(7):1504-7. https://doi.org/10.1016/j.ajem.2020.04.048
12. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. https://doi.org/10.1001/jamacardio.2020.0950
13. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. https://doi.org/10.1111/j.1365-2362.2009.02153.x
14. Pan SF, Zhang HY, Li CS, Wang C. Cardiac arrest in severe acute respiratory syndrome: analysis of 15 cases. Zhonghua Jie He Hu Xi Za Zhi. 2003;26(10):602-5. PMID: 14633442
15. İçen YK, Urgun OD, Dönmez Y, Demirtaş AO, Koç M. Lead aVR is a predictor for mortality in heart failure with preserved ejection fraction. Indian Heart J. 2018;70(6):816-21. https://doi.org/10.1016/j.ihj.2018.07.001
16. İçen YK, Koç M. ST segment change and T wave amplitude ratio in lead aVR associated with coronary artery disease severity in patients with non-ST elevation myocardial infarction: A retrospective study. Medicine (Baltimore). 2017;96(49):e9062. https://doi.org/10.1097/MD.00000000000009062
17. İçen YK, Dönmez Y, Demirtaş AO, Koça H, Ardiç ML, Koç AS et al. Ischemic changes in lead aVR is associated with left ventricular thrombus or high-grade spontaneous echocontrast in patients with acute anterior myocardial infarction. Turk Kardiyol Dern Ars. 2019;47(3):168-6. https://doi.org/10.5543/tkda.2018.57296
18. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. https://doi.org/10.1111/j.1365-2362.2009.02153.x
19. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8. https://doi.org/10.1001/jamacardio.2020.1017
20. Tan SY, Engel G, Myers J, Sandri M, Froelicher VF. The prognostic value of T wave amplitude in lead aVR in males. Ann Noninvasive Electrocardiol. 2008;13(2):113-9. https://doi.org/10.1111/j.1542-474X.2008.00210.x
21. Okuda K, Watanabe E, Sano K, Arakawa T, Yamamoto M, Sobue Y et al. Prognostic significance of T-wave amplitude in lead aVR in heart failure patients with narrow QRS complexes. Ann Noninvasive Electrocardiol. 2011;16(3):250-7. https://doi.org/10.1111/j.1542-474X.2011.00439.x
22. Tanaka Y, Kanno T, Tamura Y, Tsuda T, Furusho H, Takamura M et al. Impact of T wave amplitude in lead aVR on predicting cardiac events in ischemic and nonischemic cardiomyopathy patients with an implantable cardioverter defibrillator. Ann Noninvasive Electrocardiol. 2017;22(6):e12452. https://doi.org/10.1111/anec.12452
23. Dönmez Y, Urgun ÖD, Kurt IH. T wave positivity in lead aVR is associated with mortality after transcatheter aortic valve implantation. Arch Med Sci Atheroscler Dis. 2019;4:e55-62. https://doi.org/10.5114/amssad.2019.84449
24. Hayroğlu M, Çınar T, Tekkeşin A. Fibrinogen and D-dimer variances and anticoagulation recommendations in Covid-19: current literature review. Rev Assoc Med Bras (1992). 2020;66(6):842-848. https://doi.org/10.1590/1806-9282.66.6.842
25. Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am J Emerg Med. 2020;38(9):1722-1726. https://doi.org/10.1016/j.ajem.2020.05.073