Polycystic Ovary Syndrome and Vitamin D, Where do We Stand?

Lucia De Vicente Montes*, Maria Rita Espejo Catena, Joana Caterina Vilaplana Faus
Department of Gynaecology and Obstetrics, Hospital Universitario de La Ribera (Spain)

ABSTRACT
In recent years, a correlation between vitamin D deficiency (VDD) and polycystic ovary syndrome (PCOS) has been suggested. Our attention has been drawn to vitamin D having effects other than those related to calcium homeostasis, specifically those concerning the reproductive process.

In this article we discuss the role of vitamin D on women with PCOS and the recommendations on vitamin D supplementation for these women.

Keywords: Vitamin D, Fertility, Polycystic Ovary Syndrome

Introduction
Vitamin D has been known to play an essential role in calcium-phosphorus homeostasis [1] but during the last years there is an increasing interest regarding its effects on the reproduction process.

The aim of this article is to review the current state of knowledge on vitamin D and Polycystic ovary syndrome (PCOS) and whether dietary supplementation in women suffering from PCOS should be provided.

A revision of the articles published in PubMed during the last five years was carried out, using the following search criteria: “vitamin D”, “polycystic ovary syndrome” and “fertility”. Twenty-two articles were found, of which three were excluded (one due to irrelevance to the topic, and the other two due to not having access to the full article).

Vitamin D
Vitamin D, conceptually, acts more as a hormone rather than a vitamin as it does not need dietary intake in order to be present in the organism and it carries out its actions in tissues that may be far away from its origin. It can therefore be described as a steroid hormone, which is mostly (80-90%) synthesized in the skin after sunlight exposure, and only 10-20% of total serum levels come from the diet. [2]

The endogenous synthesis of vitamin D starts after photolysis induced by ultraviolet light B (UV-B) on 7-dehydrocholesterol, located in dermis fibroblasts and epidermic keratinocytes, producing colecalciferol (also known as vitamin D3). [3]

Vitamin D coming from the diet is very efficiently absorbed in the intestine as colecalciferol (or vitamin D3) and ergosterol, a biological precursor of vitamin D2. Vitamin D3 is mostly from animal origin and it can be found in fatty fish (such as salmon, tuna, sardines and mackerel), eggs and veal liver, whereas ergosterol comes from vegetables such as yeast and mushrooms. Ergosterol requires UV-B for its conversion to vitamin D2. [4]

Both colecalciferol and ergosterol, regardless of their origin, act as pro-hormones and must be metabolized in the liver by 25-hydroxylase (CYP27A1) and transformed into 25-hydroxvitamin D (25-(OH)-D). It is then converted into its active form, 1,25-dihydroxvitamin D (1,25-(OH)-D) by the enzyme 1-alpha hydroxylase, present in the kidney. [5]

Vitamin D metabolites circulating in the blood stream have different kinetics. 25-(OH)-D has a 2-3 week half-life and thus its serum quantification is used to assess the vitamin D deposits in the body.

The biological actions of vitamin D and its metabolites are mediated through its union to a nuclear and cytoplasmic receptor that belongs to the same gene superfamily as steroid and thyroid hormones. [6,7]

Although its role in calcium-phosphorous metabolism is widely known [1], it is also known that its activity is important for a wide range of physiological functions such as cellular differentiation, inflammatory, apoptotic and antiproliferative phenomena, immunosuppression [8,9] and female fertility. [10]

The renal enzyme alpha-1-hydroxylase has been isolated in other tissues such as ovaries, brain, breast, prostate and colon, inferring that the active form of vitamin D can also be produced in these organs. Moreover, vitamin D receptor
(VDR) has been found in ovarian tissue, placenta, testes, hypothalamus and pituitary gland. [11, 12, 13, 14]

The relationship between vitamin D and fertility is relatively new and there are studies both in animal models and humans that sustain the importance of adequate serum levels of vitamin D and its metabolites in the reproductive physiology of both women and men.

As previously stated, the longer half-life (2-3 weeks) of 25-(OH)-D compared to that of 1,25-(OH)-D (4-6 hours) makes the first essential to evaluate vitamin D deposits in the organism. [15]

Vitamin D deficiency (VDD) is defined as 25-(OH)-D serum levels under 20ng/dL. Insufficiency is considered when serum levels are between 20 and 30ng/dL. [16]

Polycystic Ovary Syndrome

PCOS is amongst the most common causes of female infertility. [18]

It is the most frequent endocrine disorder in women, affecting 5-20% of women in reproductive age. It results in an excess of androgens, menstrual dysfunction and chronic anovulation. Women with PCOS are at greater risk of developing type 2 diabetes mellitus, cardiovascular diseases and endometrial adenocarcinoma. [19]

Regarding its etiology, an autosomal dominant mode of inheritance was first proposed, with a prevalence of 51-67% and a high penetrance of up to 90%. [20] However, later studies suggested an X-linked or polygenic inheritance, with more than 70% heritability. [21]

Even though its definition has been revised on multiple occasions, it was in a consensus meeting in 2012, sponsored by the National Institutes of Health (NIH), where the use of its broadest definition was suggested i.e. Rotterdam 2003 criterion (2 out of 3 of: 1. Oligo and/or anovulation, 2. Clinical and/or biochemical signs of hyperandrogenism, and/or 3. Polycystic ovaries in ultrasonography) [22], alongside stating the phenotype of the disorder (Phenotypes A through D) as the latter is associated with the risk for metabolic complications and long term morbidities [23]. Phenotype A presents with hirsutism/hyperandrogenism (HA), ovulatory dysfunction and polycystic ovaries; phenotype B presents hirsutism/HA and ovulatory dysfunction; phenotype C presents hirsutism/HA and polycystic ovaries; and Phenotype D presents ovulatory dysfunction and polycystic ovaries.

Despite its precise physiopathology being unknown, there are a number of theories, some of which are described below.

In a prospective study carried out by Irani et al in 2017, an increase in the circulating serum and follicular fluid levels of Vascular Endothelial Growth Factor (VEGF), an angiogenic growth factor, was observed in women with PCOS when compared with normal women. They proposed that the increase in VEGF would be responsible for the increased ovarian mass due characteristic of these patients due to an excessive neovascularization in stroma and theca of PCOS ovaries. Moreover, this could increase the risk of ovarian hyperstimulation syndrome. [24]

Irani et al. carried out another prospective study in 2015 where they observed an increase in serum Transforming Growth Factor TGF-B1 (TGF-B1), which stimulates angiogenesis and fibrosis. Furthermore, there was a decrease in serum endoglin (sENG) in women with PCOS. Serum endoglin decreases TGF-B1’s bioavailability by binding to it, thus improving fibrosis. They also observed that this imbalance was corrected when supplementation with vitamin D was given. [25]

Another theory which is being studied is that of Advanced Glication End products (AGEs). They are products of the non-enzymatic modification of proteins, lipids and nucleic acids by glucose. They are proinflammatory molecules which, when binded to their cell receptor, may be involved in abnormal follicle development. On the other hand, its soluble receptor (sRAGE) binds to AGEs, avoiding follicle damage. In 2014, Irani et al. observed an increase in AGEs levels in PCOS patients. Moreover, by treating PCOS patients and VDD with vitamin D during 16 weeks, the increase in 25-(OH)-D serum concentration was associated with a significant increase in sRAGE levels (p=0,03) and therefore a decrease in the inflammatory response, and a decrease in abnormally high levels of anti-Müllerian hormone present in these patients (p<0,001)). [26]

Vitamin D and PCOS

A higher prevalence of vitamin D deficiency (67-85%) has been observed in women with PCOS. [27] According to a series of meta-analysis, these women have a higher risk of insulin resistance and cardiovascular disease. [28]. Moreover, it has been suggested that VDD predicts more severe metabolic disturbances in these patients. [29]

Patients with VDD have been shown to have a greater prevalence of insulin resistance, obesity, inflammation and dyslipidemia. Therefore, it is postulated that, given that
women with PCOS also suffer from the above, VDD is implicated in PCOS’s physiopathology. However, there is a high prevalence of obesity in women with PCOS, which makes it difficult to decide whether VDD contributes to PCOS regardless of increased body mass index (BMI), or if the latter acts as a confusing factor. [30]

Regarding PCOS’s genetics, polymorphisms of the vitamin D receptor, especially single nucleotide polymorphisms (SNP), have not been associated with an increase in the risk of PCOS but there is a correlation with the severity of the pathology. [31]

A relationship between vitamin D levels and metabolic and hormonal dysfunction has been confirmed in PCOS women. [32] Even thought its mechanism remains unknown, it has been suggested that it may be because of loss in apoptotic mechanisms present in ovarian follicles. Moreover, due to the immunomodulatory role played by vitamin D, VDD may trigger the inflammatory responses that lead to insulin resistance.

Vitamin D and Ovarian Reserve Markers

Anti-müllerian hormone (AMH) is a glycoprotein produced by granulosa cells in antral follicles, where it modifies follicle response to follicle stimulating hormone (FSH). It is, alongside antral follicle count (AFC), the most studied ovarian reserve marker.

AMH prevents oocyte loss by inhibiting antral follicle recruitment and slowing down their growth. It is a serum protein with has a peak during puberty and slowly decreases with age. A wide range of literature has been published suggesting a possible relationship between vitamin D and AMH levels.

In a prospective study carried out by Drakopoulos in 2017, there was no positive correlation between 25-(OH)-D and AMH levels (Spearman’s r= 0.02, P value = 0.7) nor with follicle antral count (AFC) ((Spearman’s r= -0.02, P value = 0.7). [33]

However, confusion remains in literature regarding whether or not vitamin D has the capacity to influence AMH production. In Table 1 there is a summary of some of the latest studies regarding the latter. Authors agree that more prospective studies are required in order to establish the relationship between vitamin D and ovarian reserve markers.

Vitamin D Supplementation

It is much discussed whether or not women with VDD and PCOS should be treated with dietary supplements.

Wehr et al conducted a study in 57 PCOS women which received 20 000 IU of colecalciferol weekly during 24 weeks. They observed that treatment with vitamin D might improve glucose metabolism and menstrual frequency in these women. [34,35] Menstrual frequency was improved in 30% of these women after 12 weeks of treatment, and in 50% after 24 weeks. Moreover, 25% of women seeking pregnancy at baseline conceived during the study. [36]

Regarding metabolic disturbance, after treatment with 150 000 IU of vitamin D every 20 days during 2 years, there was a decrease in triglyceride serum levels, total cholesterol and very low density lipoproteins (VLDL). However, no changes were observed in high density lipoproteins (HDL), low density lipoproteins (LDL), apolipoprotein A1 nor high-sensitivity C-reactive protein (hs-CRP). [36]

Pal et al conducted a study where obese PCOS women with VDD were treated with a combination of vitamin D and calcium. A decrease in testosterone and androstenedione serum levels was observed. [37]

Given its beneficial effects on menstrual frequency and metabolic parameters (hence the decrease in cardiovascular risk), the Endocrine Society’s recommendations are to supplement women aged 18-70 with a daily dose of 1500-2000 IU of vitamin D in order to achieve adequate levels (>30 ng/dL). [16]

Conclusion

Even though further studies are required, there is scientific evidence supporting the beneficial effects of vitamin D supplementation of women with PCOS and VDD. The aim of this treatment would be to improve both metabolic health and reproductive outcomes in these women.

Table 1: Correlation between vitamin D and PCOS and vitamin D and AMH according to recent studies.

Study	VITAMIN D - PCOS	VD - AMH	Type of study
Pearce et al (2011)	No	No	Retrospective
Dennis et al (2012)	Not conclusive data	Yes, positive correlation	Prospective
Irani et al (2014)	No	No	Prospective
Lata et al (2017)	No	No	Prospective
Muscoguiri et al (2017)	Not conclusive data	Yes, positive	Systematic review
Drakoupoulos et al. (2017)	Not conclusive data	No	Prospective
Irani et al. (2017)	Not conclusive data	Si	Prospective

Annals of Advanced Medical Science, Vol. 2; Issue 1, January-March, 2018
Review Article R-4

Reference

1. Lips P, Bouillon R, Van Schoor NM, Vanderschueren D, Verschueren S, Kuchuk N, et al. Reducing fracture risk with calcium and vitamin D. Clin endocrinol (Oxf) 2010; 73: 277-85.
2. Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006; 92: 4-8.
3. Ashwell M, Stone EM, Stolte H, Cashman KD, Macdonald H, Lanham-New S, et al. UK Food Standards Agency Workshop Report: an investigation of the relative contributions of diet and sunlight to vitamin D status. Br J Nutr 2010;104:603–611.
4. Moore C, Murphy MM, Keast DR, Holick MF. Vitamin D intake in the United States. J Am Diet Assoc 2004;104:980–983.
5. Schuster I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta 2011;1814:186–199.
6. Christakos S, Dhawan P, Benn B, Porta A, Hediger M, Oh GT, et al. Vitamin D: molecular mechanism of action. Ann N Y Acad Sci 2007;1116:340–348.
7. Barsony J, Renyi I, McKoy W. Subcellular distribution of normal and mutant vitamin D receptors in living cells. Studies with a novel fluorescent ligand. J Biol Chem. 1997; 272: 5774-82.
8. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266–81;
9. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D–mediated human antimicrobial response. Science 2006;311:1770–3
10. Anagnostis P, Karras S, Goulis DG. Vitamin D in human reproduction: a narrative review. Int J Clin Pract 2013;67:225–235.
11. Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000;141:1317–24;
12. Hurley WL, Doane RM. Recent developments in the roles of vitamins and minerals in reproduction. J Dairy Sci 1989;72:784–804;
13. Halhali A, Acker GM, Garabedian M. 1,25-Dihydroxyvitamin D3 induces in vivo the decidualization of rat endometrial cells. J Reprod Fertil 1991; 91:59–64;
14. Harkness LS, Bonny AE. Calcium and vitamin D status in the adolescent: key roles for bone, body weight, glucose tolerance, and estrogen biosynthesis. J Pediatr Adolesc Gyneecol 2005; 18:305–11
15. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 1999;69:842–856
16. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96:1911–30.
17. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 2017
18. Muscogiuri G et al. Shedding new light on female fertility: The role of vitamin D. Reviews in Endocrine and Metabolic Disorders. 2017.
19. Azizz, R. et al. Polycystic ovary syndrome. Nat Rev Dis Primers, 2016. 2: p. 16057
20. Govind A., M.S. Obhrai, and R.N. Clayton. Polycystic ovaries are inherited as an autosomal dominant trait: analysis of 29 polycystic ovary syndrome and 10 control families. J Clin Endocrinol Metab, 1999. 84(1): p. 38-43.
21. Vink, J.M., et al., Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab, 2006. 91(6): p. 2100-4.
22. Rotterdam, E.A.-S.P.C.W.G., Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril, 2004. 81(1): p. 19-25.
23. Mykhalchenko K., Lizneva D., Trofimova T., Walker W., Suturina L., Diamond M.P., et al. Genetics of polycystic ovary syndrome. Expert Review of Molecular Diagnostics, 2017.
24. Irani M, Seifer DB et al. Vitamin D Decreases Serum VEGF Correlating with Clinical Improvement in Vitamin D-Deficient Women with PCOS: A Randomized Placebo-Controlled Trial. Nutrients. 2017 28;9
25. Irani M, Seifer D. et al. Vitamin D supplementation decreases TGF-ß1 bioavailability in PCOS: A randomized placebo controlled trial. J Clin Endocrinol Metab 2015; 100 (11): 4307-14.
26. Irani M, Minkoff H, Seifer DB, Merhi Z, Vitamin D. Increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab 2014;99:E886–90.
27. Wehr E, Pilz S, Schweighöfer N, Giuliani A, Kopena D, Pieber TR, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol / European Federation of Endocrine Societies. 2009;161(4):575–82.
28. Pittas AG, Chung M, Trikalinos T, Mitri J., Brendel M, Patel K, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152(5):307–14.
29. Patra SK, Nasrat H, Goswami B, Jain A. Vitamin D as predictor of insulin resistance in polycystic ovarian syndrome. Diabetes Metab Syndr 2012;6(1):307-14
30. Luk, Torrealday, et al. Relevance of vitamin D in reproduction. Human Reproduction. 2012; 27 (10): 3015-3027
31. Zadeh-Vakili A, Ramezani TF, Daneshpour MS, Zarkesh M, Saadat N, Azizi F. Genetic polymorphism of vitamin D receptor gene affects the phenotype of PCOS. Gene 2013;515:193–6.

http://www.aamsjournal.com
32. Thomson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2012;77(3):343-50

33. Drakopoulos P. Et al. The effect of serum vitamin D levelson ovarian reserve markers: a prospective cross-sectional study. Hum Reprod 2017; 32 (1): 208-214.

34. Wehr E, Pieber TR, Obermayer-Pietsch B. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J Endocrinol Invest 2011 34:757–763

35. Rondanelli et al. Focus on metabolic and nutritional correlates of polycystic ovary syndrome and update on nutritional management of these critical phenomena. Arch Gynecol Obstet 2014; 290:1079-1092

36. Lerchbaum E., Rabe T., Vitamin D and female fertility. Curr Opin Obstet Gynecol 2014, 26: 145-150.

37. Pal L, Zhang H. Et al. Vitamin D status relates to reproductive outcome in women with polycystic ovary syndrome: secondary analysis of a multicenter randomized controlled trial. J Clin Endocrinol Metab. 2016; 101(8): 3027-3035

*Corresponding author:
Lucia De Vicente Montes, Postal Address: Avenida de Aragón nº1 10 puerta 12. Postal code: 46021. Valencia (Spain)
Phone: +34 638492135
Email: luciadevicentemontes@gmail.com

Financial or other Competing Interests: None.