Joule-Thomson expansion of the lower-dimensional black hole in rainbow gravity

Siyuan Huia,b *, Benrong Mua,b † and Jun Taob ‡

aPhysics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
bCenter for Theoretical Physics, College of Physics, Sichuan University, Chengdu, 610064, PR China

Abstract

In this paper, we extend Joule-Thomson expansion to the low-dimensional regime in rainbow gravity by considering the rainbow rotating BTZ metric in the (2+1)-dimensional spacetime. After the metric of the black hole is obtained, we get the Joule-Thomson expansion of the black hole, including the Joule-Thomson coefficient, inversion curves, and isenthalpic curves. We find that a rainbow rotating BTZ black hole does not have $P - V$ critical behavior. The effects of rainbow gravity are to slow down the trend of the increase of the Joule-Thomson coefficient and make its zero point larger. Moreover, the rainbow gravity slows down the inverse temperature of the black hole, meaning that a rainbow rotating BTZ black hole tends to change its heating or cooling action at a lower temperature, which can be attributed to the topology of the black hole.

*Electronic address: huisiyuan@stu.scu.edu.cn
†Electronic address: benrongmu@cdutcm.edu.cn
‡Electronic address: taojun@scu.edu.cn
I. INTRODUCTION

In 1974, Stephen Hawking found that the Schwarzschild black hole emits radiation at a temperature just like an ordinary blackbody. Named as the Hawking radiation, it was a very remarkable prediction of the theory about thermodynamics of black holes. Since then, black hole thermodynamics has been an area of great interest, where various thermodynamic properties of black holes have been extensively investigated. In 1982, Hawking and Page first obtained the thermodynamics of AdS black holes, and they found that there is a phase transition between a Schwarzschild AdS black hole and a thermal AdS space. Later, Hawking radiation and phase transition in different black holes attracted more attention.

After investigating the phase transition, Hawking and Page found that a black hole in AdS space has similar thermodynamic properties as a general thermodynamic system. This similarity is further enhanced in extended phase space, which has been supported by the $P - V$ criticality studied in extended phase space. In extended phase space, the cosmological constant is considered as thermodynamic pressure

$$P = -\frac{\Lambda}{8\pi} = \frac{(d-1)(d-2)}{16\pi l^2},$$

where l is the AdS space radius and the mass of black hole M is considered as the black hole enthalpy. Various interesting studies have been carried out on thermodynamic aspects of black holes in extended phase space, such as the phase transition, critical
phenomenon\cite{24,26} and generalized Smarr relation\cite{27,31}. Ökçü and Aydiner first studied the Joule-Thomson expansion of black holes\cite{32}. It was soon extended to many other black holes, such as d-dimensional charged AdS black holes\cite{33}, RN-AdS black holes in $f(r)$ gravity\cite{34}, quintessence RN-AdS black holes\cite{35}, regular (Bardeen)-AdS black holes\cite{36}, Bardeen-AdS black holes\cite{37}, Kerr-AdS black holes\cite{38} and others\cite{39–62}.

On the other hand, DSR theory makes the Planck length a new invariant scale and gives out the nonlinear Lorentz transformations in momentum spacetime\cite{63–66}. Specifically, the modified energy-momentum dispersion relation of particle energy E and momentum p can take the following form

$$E^2 f\left(\frac{E}{E_p}\right)^2 - p^2 g\left(\frac{E}{E_p}\right)^2 = m^2,$$

(2)

where E_p is the Planck energy. Amelino-Camelia\cite{67,68} proposed a popular choice of solution, which gives

$$f(x) = 1, g(x) = \sqrt{1 - \eta x^n}.$$

(3)

It is compatible with some results obtained in the loop quantum gravity method and reflects those obtained in κ-Minkowski spacetime and other noncommutative spacetimes. The phenomenological meaning of this ”Amelino-Camelia (AC) dispersion relation” was also reviewed\cite{68}. Subsequently, Magueijo and Smolin proposed that the spacetime background felt by a test particle depends on the test particle’s energy\cite{69}. Thus, the energy of the test particle deforms the background geometry and eventually leads to modified dispersion relations. According to the modified dispersion relations under the generalized uncertainty principle, the second law of black hole thermodynamics is proved to be valid by modifying a relation between the mass and the temperature of the black hole\cite{70}. Many studies have been done to explore various aspects of black holes and cosmology\cite{40,71–85}.

There have been some studies focused on thermodynamics of various black holes in rainbow gravity, but few of them study the effects of rainbow gravity have on Joule-Thomson expansion. Joule-Thomson expansion of charged AdS black holes in rainbow gravity has been studied and some novel physical phenomena have been found\cite{40}, but it is focused on the spacetime with dimension $d \geq 4$, whereas the case of $d < 4$ remains to be explored. Three-dimensional Einstein gravity is topological, which means that all geometries sourced by the same matter are locally identical, with difference lying in the topology. And the rotating BTZ black hole is one solution of the Einstein field equation in the (2+1)-dimensional.
spacetime, with its Joule-Thomson expansion being discussed. However, to date, the effects of rainbow gravity to Joule-Thomson expansion of the rotating BTZ black hole has not been explored. In this study, we investigated the Joule-Thomson expansion of a rainbow rotating BTZ black hole, trying to clarify the role of topology in Joule-Thomson expansion under rainbow gravity.

In this paper, we study the Joule-Thomson expansion of a rotating BTZ black hole in rainbow gravity. The remainder of our article is summarized as follow. In Section II, the metric of the rotating BTZ black hole in rainbow gravity is obtained. In Section III, the Joule-Thomson expansion of the black hole, including the Joule-Thomson coefficient, inversion curves, and isenthalpic curves, is discussed. In Section IV, the discussion and conclusion is given. Throughout the paper we take geometrized units $c = G = k_b = 1$.

II. ROTATING BTZ BLACK HOLE IN RAINBOW GRAVITY

There are two functions called rainbow function $f(x)$ and $g(x)$ with the following properties

$$\lim_{x \to 0} f(x) = 1, \quad \lim_{x \to 0} g(x) = 1. \quad (4)$$

Specifically, the modified energy-momentum dispersion relation of particle energy E and momentum p can take the following form:

$$E^2 f\left(\frac{E}{E_p}\right)^2 - p^2 g\left(\frac{E}{E_p}\right)^2 = m^2, \quad (5)$$

where E_p is the Planck energy, and we set

$$\frac{E}{E_p} \equiv x. \quad (6)$$

The modified dispersion relation (MDR) might play an important role in astronomical and cosmological observations, such as the threshold anomalies of ultra-high energy cosmic rays and TeV photons. In phenomenological physics, ground observations and astrophysical experiments have tested the predictions of MDR theory. One of the most popular choices for the functions $f(x)$ and $g(x)$ has been proposed by Amelino-Camelia, which gives

$$f(x) = 1, g(x) = \sqrt{1 - \eta x^2}. \quad (7)$$
The metric of the rotating BTZ black hole in rainbow gravity is

\[ds^2 = -\frac{h(r)}{f(x)^2}dt^2 + \frac{1}{g(x)^2h(r)}dr^2 + \frac{r^2}{g(x)^2}\left(d\phi^2 - \frac{J^2}{2r^2}dt^2\right), \] (8)

where

\[h(r) = -8M + \frac{r^2}{l^2} + \frac{J^2}{4r^2}. \] (9)

Here, \(J \) is the angular momentum. The solution of the equation \(h(r) = 0 \) represents the event horizon, located at \(r = r_+ \).

In extended phase space, the function with the cosmological constant \(\Lambda \) is considered as the pressure of the black hole\[19, 20\]

\[P = -\frac{\Lambda}{8\pi} = \frac{(d-1)(d-2)}{8\pi l^2} = \frac{1}{8\pi l^2}, \] (10)

and the corresponding thermodynamic quantities are as follow

\[H \equiv M = \frac{r_+^2}{8l^2} + \frac{J^2}{32r_+^2}, \quad V = \pi r_+^2, \quad \Omega = \frac{J}{16r_+^2}, \quad T = \left(\frac{r_+}{2\pi l^2} - \frac{J^2}{8\pi r_+^3}\right)g(x). \] (11)

In the extended phase space, the first law of thermodynamics is given by\[86\]

\[dM = TdS + VdP + \Omega dJ, \] (12)

and the corresponding Smarr formula is

\[2PV = TS + \Omega J. \] (13)

III. JOULE-THOMSON EXPANSION

In Joule-Thomson expansion, gas passes through a porous plug or a small valve from high-pressure section to low-pressure section, and the enthalpy remains constant during the process. Therefore, the Joule–Thomson expansion of a black hole is an isenthalpic process in the extended phase space. The Joule–Thomson coefficient \(\mu \) describes the temperature variation with respect to pressure and characterizes the expansion process, which is given by

\[\mu = \left(\frac{\partial T}{\partial P}\right)_H. \] (14)

The Joule-Thomson coefficient is an important physical quantity to study the Joule-Thomson expansion. The expansion is characterized by the change of temperature relative
to pressure, and its sign can be used to determine whether heating or cooling occurs. The change of pressure during expansion is negative, as the pressure is always decreasing. However, the change of temperature is uncertain. When the temperature change is negative, the coefficient μ will be positive, which means that the cooling occurs. Conversely, when the temperature change is positive, the coefficient μ will be negative, which means that the heating occurs.

The entropy of a BTZ black hole in rainbow gravity has been given in [85]. From equation (11), (12) and (13), the heat capacity at constant pressure is

$$C_P = T \left(\frac{\partial S}{\partial T} \right)_{P,J} = \frac{\pi r_+ (\eta + r_+^2) \left(32\pi P r_+^4 - J^2 \right)}{2 \sqrt{\frac{r_+^2 (1-\eta m^2)}{\eta + r_+^2}} \left(J^2 \left(2\eta + 3r_+^2 \right) + 32\pi P r_+^4 \left(2\eta + r_+^2 \right) \right)},$$

(15)

and we can obtain

$$\mu = \left(\frac{\partial T}{\partial P} \right)_H = \frac{1}{C_P} \left[T \left(\frac{\partial V}{\partial T} \right)_P - V \right] = 2r_+ \sqrt{\frac{r_+^2 (1-\eta m^2)}{\eta + r_+^2}} \left(J^2 \left(4\eta + 5r_+^2 \right) - 32\pi P r_+^4 \eta / \eta + r_+^2 \right) \left(J^2 - 32\pi P r_+^4 \right).$$

(16)

Fig.1 shows the Joule–Thomson coefficient μ and Hawking temperature in relation to the event horizon r_+ in rainbow gravity. Here, we fix the pressure $P = 1$ and the angular momentum J as 0.5, 1, and 2. For different η, the divergence point of the Joule-Thomson coefficient exists, remains the same value and corresponds to the zero point of the Hawking temperature, which reveals the relevant information of the extremal black hole. However, as the value of η increases, the effects of rainbow gravity are to slow down the speed of the increase of the Joule–Thomson coefficient and make its zero point larger.

In rainbow gravity, the Hawking temperature of the rotating BTZ black hole can be written as [85]

$$T = \left(\frac{r_+}{2\pi l^2} - \frac{J^2}{8\pi r_+^3} \right) \sqrt{1 - \eta \frac{m^2 r_+^2 + 1}{\eta + r_+^2}} \left(4\pi P r_+ - \frac{J^2}{8\pi r_+^2} \right) \sqrt{1 - \eta \frac{m^2 r_+^2 + 1}{\eta + r_+^2}}.$$

(17)

Then, the inversion temperature can be obtained as follow

$$T_i = V \left(\frac{\partial T}{\partial V} \right)_P = \frac{\sqrt{\frac{r_+^2 (1-\eta m^2)}{\eta + r_+^2}} \left(J^2 \left(2\eta + 3r_+^2 \right) + 32\pi P r_+^4 \left(2\eta + r_+^2 \right) \right)}{16\pi r_+^3 \left(\eta + r_+^2 \right)}.$$

(18)
FIG. 1: Plots of the Joule-Thomson coefficient (left) and Hawking temperature T (right) in relation to the event horizon r_+ with different η. Here, we set $P = 1$ and $J = 0.5, 1, 2$.
FIG. 2: Plots of inversion curves for a BTZ black hole in rainbow gravity with different η.

Subtracting equation (18) from equation (17) yields

$$\sqrt{\frac{r_+^4 (1-\eta m^2)}{\eta + r_+^2}} \left(-J^2 \left(4\eta + 5r_+^2 \right) + 32\pi P_i r_+^6 \right) \frac{16\pi r_+^3 (\eta + r_+^2)}{16\pi r_+^3 (\eta + r_+^2)} = 0.$$ \hspace{1cm} (19)

Solving this equation for r_+, the positive and real root is

$$r_+ = \frac{\sqrt{4M + \sqrt{16M^2 - 2\pi J^2 P_i}}}{2\sqrt{2\pi P_i}}.$$ \hspace{1cm} (20)

Substituting this root into equation (18) at $P = P_i$, we can get the inversion temperature with parameters J and P_i. Set $P_i = 0$, and the minimum of inversion temperature is given by

$$T_i^{\text{min}} = 0,$$ \hspace{1cm} (21)

which means the black hole becomes an extremal black hole.

A rotating BTZ black hole does not have $P - V$ critical behavior, which means that P_c, T_c, and V_c do not exist. Therefore, the black hole is always thermodynamically stable, and
FIG. 3: Plots of inversion curves for a BTZ black hole in rainbow gravity with different J.

the ratio between the minimum inversion temperature T_{i}^{min} and T_c also do not exist. This is different from some other black holes. To better investigate the effects of rainbow gravity acting on the Joule-Thomson expansion in a rotating BTZ black hole, the inversion curves of the black hole with different η are shown in Fig.2 and 3, and the isoenthalpic curves are shown in Fig.4, 5, 6 and 7.

From Fig.2, it is obvious that the inversion temperature increases monotonically with the increase of the inversion pressure, while the slope of the curve decreases with the increase of the inversion pressure. Meanwhile, the inversion curves are not closed, which means it does not terminate at any point. This is similar to the result of rotating BTZ black holes without rainbow gravity. From Fig.3, we can find that the inversion temperature drops with the increase of η. And when J becomes lager, the effect of rainbow gravity to the inversion temperature becomes smaller.
FIG. 4: Plots of inversion and isenthalpic curves for a BTZ black hole in rainbow gravity with $J = 1$. The black lines are the inversion curves.

Joule-Thomson expansion is an isenthalpic process. For a rainbow rotating BTZ black hole, the enthalpy is equal to the mass M. Therefore, we can obtain the isenthalpic curves in $T \times P$ plane by fixing the mass of the black hole. As shown in Fig.4, 5, 6 and 7, the inversion curve divides the $T \times P$ plane into two regions. The region above the inversion curve represents the cooling region, with the positive slope. On the other hand, when J and M are fixed, it is found that with the increase of η, the start point and end point of isenthalpic curve do not change, but its maximum value decreases. This is consistent with the decrease of inversion curve when η increases because the inversion curve acts as a boundary between the heating and cooling regions. Thus, the effect of rainbow gravity is to slow down the inverse temperature, meaning that a rainbow rotating BTZ black hole tends to change its heating or cooling action at a lower temperature.
in rainbow gravity with $J = 2$. The black lines are the inversion curves.

IV. DISCUSSION AND CONCLUSION

In this paper, the Joule–Thomson expansion of a rotating BTZ black hole in rainbow gravity is investigated. Considering the cosmological constant Λ as the pressure of the black hole, the Joule–Thomson expansion can describe the expansion of the gas passing through a porous plug or a small valve from high-pressure section to low-pressure section. The enthalpy, which is equal to the mass of the black hole, remains constant during the process. Then, the inversion curves and isenthalpic curves are drawn to determine the heating and cooling regions, which are useful to investigate the effects of rainbow gravity.

We compare the rainbow rotating BTZ black hole and the rotating BTZ black hole without rainbow gravity. The Joule–Thomson expansion of a rotating BTZ black hole has been discussed in [62]. To a rotating BTZ black hole without rainbow gravity, $P - V$ critical behavior does not exist. The Joule–Thomson coefficient increases rapidly with a small zero point, and the inversion temperature is high with a large inversion point of isenthalpic curve.

However, to a rainbow rotating BTZ black hole, the rainbow gravity has some influence...
FIG. 6: Plots of inversion and isenthalpic curves for a BTZ black hole in rainbow gravity with $J = 10$. The black lines are the inversion curves.

FIG. 7: Plots of inversion and isenthalpic curves for a BTZ black hole in rainbow gravity with $J = 20$. The black lines are the inversion curves.
TABLE I: Existence of critical behavior and the ratio of the minimum inversion in Van der Waals fluid and various black holes.

Type	Critical behavior	T_{i}^{min}	T_c	Ratio	Literature
Van der Waals fluid	Exist	Exist	Exist	0.75	[32]
Kerr-AdS BH	Exist	Exist	Exist	0.504622	[38]
d-dimensional AdS BH	Exist	Exist	Exist	0.5	[33]
Gauss-Bonnet AdS BH	Exist	Exist	Exist	0.4765	[42]
Toruslike BH	Not exist	Exist	Not exist	Not exist	[60]
RN-AdS BH	Exist	Exist	Exist	0.5	[32]
Quintessence RN-AdS BH	Exist	Exist	Exist	0.5	[35]
Cloud of strings RN-AdS BH	Exist	Exist	Exist	0.5	[61]
Cloud of strings and quintessence-RN-AdS BH	Exist	Exist	Exist	0.5	[61]
f(r)-gravity AdS BH	Exist	Exist	Exist	0.5	[53]
Global-monopole AdS BH	Exist	Exist	Exist	0.5	[39]
Bardeen AdS BH	Exist	Exist	Exist	0.536622	[36]
Born–Infeld AdS BH	Exist	Exist	Exist	\approx0.5	[45]
Rotating BTZ BH	Not exist	Exist	Not exist	Not exist	[62]
Rainbow charged AdS BH	Exist	Exist	Exist	\approx0.5	[40]
Rainbow rotating BTZ BH	Not exist	Exist	Not exist	Not exist	

on Joule–Thomson expansion. The divergence point of the Joule-Thomson coefficient still exists, remains the same value of the black hole without rainbow gravity, and corresponds to the zero point of the Hawking temperature. However, as the value of η increases, the effects of rainbow gravity are to slow down the speed of the increase of the Joule–Thomson coefficient and make its zero point larger. Meanwhile, the black hole does not have $P - V$ critical behavior, which is similar to rotating BTZ black holes without rainbow gravity. Moreover, the inversion temperature drops with the increase of η. And when J becomes lager, the effect of rainbow gravity to the inversion temperature becomes smaller. In addition, when J and M are fixed, it is found that with the increase of η, the start point and end point...
TABLE II: Results and difference between a rainbow rotating BTZ black hole and a rotating BTZ black hole.

	Rotating BTZ BH	Rotating BTZ BH in rainbow gravity
Joule-Thomson coeff.-	The speed of increase of the Joule-Thomson coefficient is high with a small zero point.	The effects of rainbow gravity are to slow down the speed of the increase of the Joule-Thomson coefficient and make its zero point larger.
Inversion temperature	The inversion temperature is high.	The effect of rainbow gravity is to slow down the inversion temperature.
Isenthalpic curve	The maximum value of the isenthalpic curve is high.	The effect of rainbow gravity is to reduce the maximum value of the isenthalpic curve.

of isenthalpic curve do not change, but its maximum value decreases. This is consistent with the decrease of inversion curve when η increases because the inversion curve acts as a boundary between the heating and cooling regions. Thus, the effect of rainbow gravity is to slow down the inverse temperature, meaning that a rainbow rotating BTZ black hole tends to change its heating or cooling action at a lower temperature, which can be attributed to the topology of black holes.

Herein, we focus on the Joule-Thomson expansion of rotating BTZ black holes. The results show that there are still many other interesting problems worth investigating. Moreover, we compare the existence of critical behavior and the ratio of the minimum inversion in Van der Waals fluid and various black holes, and the results are shown in TABLE I and TABLE II. In future studies, we would further explore the deep relationship between topology and thermodynamics of black holes in rainbow gravity, which might be useful to explore more remarkable effects of the rainbow gravity.

Acknowledgement

We are grateful to Yuzhou Tao, Haitang Yang and Peng Wang for useful discussions. This work is supported in part by National Science Foundation of China (Grant No. 11747171) and Discipline Talent Promotion Program of Xinglin Scholars of Chengdu University of
Traditional Chinese Medicine (Grant No. QNXZ2018050). The authors contributed equally to this work.

[1] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 199-220 (1975) [erratum: Commun. Math. Phys. 46, 206 (1976)] doi:10.1007/BF02345020

[2] J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4, 737-740 (1972) doi:10.1007/BF02757029

[3] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7, 2333-2346 (1973) doi:10.1103/PhysRevD.7.2333

[4] J. M. Bardeen, B. Carter and S. W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31, 161-170 (1973) doi:10.1007/BF01645742

[5] J. D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9, 3292-3300 (1974) doi:10.1103/PhysRevD.9.3292

[6] S. W. Hawking, Black hole explosions, Nature 248, 30-31 (1974) doi:10.1038/248030a0

[7] S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in anti-De Sitter Space, Commun. Math. Phys. 87, 577 (1983) doi:10.1007/BF01208266

[8] Q. Q. Jiang, S. Q. Wu and X. Cai, Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes, Phys. Rev. D 73, 064003 (2006) [erratum: Phys. Rev. D 73, 069902 (2006)] doi:10.1103/PhysRevD.73.064003 [arXiv:hep-th/0512351 [hep-th]].

[9] M. R. Setare, Gauge and gravitational anomalies and Hawking radiation of rotating BTZ black holes, Eur. Phys. J. C 49, 865-868 (2007) doi:10.1140/epjc/s10052-006-0148-8 [arXiv:hep-th/0608080 [hep-th]].

[10] Q. Q. Jiang, S. Q. Wu and X. Cai, Hawking radiation from the (2+1)-dimensional BTZ black holes, Phys. Lett. B 651, 58-64 (2007) doi:10.1016/j.physletb.2007.05.058 [arXiv:hep-th/0701048 [hep-th]].

[11] Y. S. Myung, Phase transition between the BTZ black hole and AdS space, Phys. Lett. B 638, 515-518 (2006) doi:10.1016/j.physletb.2006.04.024 [arXiv:gr-qc/0603051 [gr-qc]].

[12] Q. Q. Jiang, S. Q. Wu and X. Cai, Hawking radiation from the dilatonic black holes via anomalies, Phys. Rev. D 75, 064029 (2007) [erratum: Phys. Rev. D 76, 029904 (2007)] doi:10.1103/PhysRevD.76.029904 [arXiv:hep-th/0701235 [hep-th]].
[13] D. Kubiznak and R. B. Mann, P-V criticality of charged AdS black holes, JHEP 07, 033 (2012) doi:10.1007/JHEP07(2012)033 [arXiv:1205.0559 [hep-th]].

[14] M. S. Ma and R. H. Wang, Peculiar $P-V$ criticality of topological Hořava-Lifshitz black holes, Phys. Rev. D 96, no.2, 024052 (2017) doi:10.1103/PhysRevD.96.024052 [arXiv:1707.09156 [gr-qc]].

[15] S. H. Hendi and M. H. Vahidinia, Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source, Phys. Rev. D 88, no.8, 084045 (2013) doi:10.1103/PhysRevD.88.084045 [arXiv:1212.6128 [hep-th]].

[16] S. W. Wei, P. Cheng and Y. X. Liu, Analytical and exact critical phenomena of d-dimensional singly spinning Kerr-AdS black holes, Phys. Rev. D 93, no.8, 084015 (2016) doi:10.1103/PhysRevD.93.084015 [arXiv:1510.00085 [gr-qc]].

[17] J. Xu, L. M. Cao and Y. P. Hu, P-V criticality in the extended phase space of black holes in massive gravity, Phys. Rev. D 91, no.12, 124033 (2015) doi:10.1103/PhysRevD.91.124033 [arXiv:1506.03578 [gr-qc]].

[18] J. X. Mo and W. B. Liu, Ehrenfest scheme for $P-V$ criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes, Phys. Rev. D 89, no.8, 084057 (2014) doi:10.1103/PhysRevD.89.084057 [arXiv:1404.3872 [gr-qc]].

[19] D. Kastor, S. Ray and J. Traschen, Class. Quant. Grav. 26, 195011 (2009) doi:10.1088/0264-9381/26/19/195011 [arXiv:0904.2765 [hep-th]].

[20] D. Kubiznak, R. B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda, Class. Quant. Grav. 34, no.6, 063001 (2017) doi:10.1088/1361-6382/aa5c69 [arXiv:1608.06147 [hep-th]].

[21] N. Altamirano, D. Kubizňák, R. B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition, Class. Quant. Grav. 31, 042001 (2014) doi:10.1088/0264-9381/31/4/042001 [arXiv:1308.2672 [hep-th]].

[22] S. W. Wei and Y. X. Liu, Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 90, no.4, 044057 (2014) doi:10.1103/PhysRevD.90.044057 [arXiv:1402.2837 [hep-th]].

[23] S. H. Hendi, R. B. Mann, S. Panahiyan and B. Eslam Panah, Van der Waals like behavior of topological AdS black holes in massive gravity, Phys. Rev. D 95, no.2, 021501 (2017) doi:10.1103/PhysRevD.95.021501 [arXiv:1702.00432 [gr-qc]].
[24] S. W. Wei and Y. X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D **87**, no.4, 044014 (2013) doi:10.1103/PhysRevD.87.044014 [arXiv:1209.1707 [gr-qc]].

[25] R. Banerjee and D. Roychowdhury, Critical phenomena in Born-Infeld AdS black holes, Phys. Rev. D **85**, 044040 (2012) doi:10.1103/PhysRevD.85.044040 [arXiv:1111.0147 [gr-qc]].

[26] C. Niu, Y. Tian and X. N. Wu, Critical Phenomena and Thermodynamic Geometry of RN-AdS Black Holes, Phys. Rev. D **85**, 024017 (2012) doi:10.1103/PhysRevD.85.024017 [arXiv:1104.3066 [hep-th]].

[27] L. Smarr, Mass formula for Kerr black holes, Phys. Rev. Lett. **30**, 71-73 (1973) [erratum: Phys. Rev. Lett. **30**, 521-521 (1973)] doi:10.1103/PhysRevLett.30.71.

[28] D. Rasheed, The Rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B **454**, 379-401 (1995) doi:10.1016/0550-3213(95)00396-A [arXiv:hep-th/9505038 [hep-th]].

[29] Y. Sekiwa, Thermodynamics of de Sitter black holes: Thermal cosmological constant, Phys. Rev. D **73**, 084009 (2006) doi:10.1103/PhysRevD.73.084009 [arXiv:hep-th/0602269 [hep-th]].

[30] D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. **27**, 235014 (2010) doi:10.1088/0264-9381/27/23/235014 [arXiv:1005.5053 [hep-th]].

[31] D. Kastor, S. Ray and J. Traschen, Mass and Free Energy of Lovelock Black Holes, Class. Quant. Grav. **28**, 195022 (2011) doi:10.1088/0264-9381/28/19/195022 [arXiv:1106.2764 [hep-th]].

[32] Ö. Ökcü and E. Aydmer, Joule–Thomson expansion of the charged AdS black holes, Eur. Phys. J. C **77**, no.1, 24 (2017) doi:10.1140/epjc/s10052-017-4598-y [arXiv:1611.06327 [gr-qc]].

[33] J. X. Mo, G. Q. Li, S. Q. Lan and X. B. Xu, Joule-Thomson expansion of d-dimensional charged AdS black holes, Phys. Rev. D **98**, no.12, 124032 (2018) doi:10.1103/PhysRevD.98.124032 [arXiv:1804.02650 [gr-qc]].

[34] M. Chabab, H. El Moumni, S. Iraoui, K. Masmar and S. Zhizeh, Joule-Thomson Expansion of RN-AdS Black Holes in $f(R)$ gravity, LHEP **02**, 05 (2018) doi:10.31526/LHEP.2.2018.02 [arXiv:1804.10042 [gr-qc]].

[35] H. Ghaffarnejad, E. Yaraie and M. Farsam, Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson effect, Int. J. Theor. Phys. **57**, no.6, 1671-1682 (2018) doi:10.1007/s10773-018-3693-7 [arXiv:1802.08749 [gr-qc]].
[36] J. Pu, S. Guo, Q. Q. Jiang and X. T. Zu, Joule-Thomson expansion of the regular (Bardeen)-AdS black hole, Chin. Phys. C 44, no.3, 035102 (2020) doi:10.1088/1674-1137/44/3/035102 arXiv:1905.02318 [gr-qc].

[37] C. Li, P. He, P. Li and J. B. Deng, Joule-Thomson expansion of the Bardeen-AdS black holes, Gen. Rel. Grav. 52, no.5, 50 (2020) doi:10.1007/s10714-020-02704-z arXiv:1904.09548 [gr-qc].

[38] Ö. Ökcü and E. Aydner, Joule–Thomson expansion of Kerr–AdS black holes, Eur. Phys. J. C 78, no.2, 123 (2018) doi:10.1140/epjc/s10052-018-5602-x arXiv:1709.06426 [gr-qc].

[39] A. Rizwan C.L., N. Kumara A., D. Vaid and K. M. Ajith, Joule-Thomson expansion in AdS black hole with a global monopole, Int. J. Mod. Phys. A 33, no.35, 1850210 (2019) doi:10.1142/S0217751X1850210X arXiv:1805.11053 [gr-qc].

[40] D. Mahdavian Yekta, A. Hadikhani and Ö. Ökcü, Joule-Thomson expansion of charged AdS black holes in Rainbow gravity, Phys. Lett. B 795, 521-527 (2019) doi:10.1016/j.physletb.2019.06.049 arXiv:1905.03057 [hep-th].

[41] A. Cisterna, S. Q. Hu and X. M. Kuang, Joule-Thomson expansion in AdS black holes with momentum relaxation, Phys. Lett. B 797, 134883 (2019) doi:10.1016/j.physletb.2019.134883 arXiv:1808.07392 [gr-qc].

[42] S. Q. Lan, Joule-Thomson expansion of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 98, no.8, 084014 (2018) doi:10.1103/PhysRevD.98.084014 arXiv:1805.05817 [gr-qc].

[43] Y. Cao, H. Feng, W. Hong and J. Tao, Joule–Thomson expansion of RN-AdS black hole immersed in perfect fluid dark matter, Commun. Theor. Phys. 73, no.9, 095403 (2021) doi:10.1088/1572-9494/ac1066 arXiv:2101.08199 [gr-qc].

[44] Y. Meng, J. Pu and Q. Q. Jiang, P-V criticality and Joule-Thomson expansion of charged AdS black holes in the Rastall gravity, Chin. Phys. C 44, no.6, 065105 (2020) doi:10.1088/1674-1137/44/6/065105

[45] S. Bi, M. Du, J. Tao and F. Yao, Joule-Thomson expansion of Born-Infeld AdS black holes, Chin. Phys. C 45, no.2, 025109 (2021) doi:10.1088/1674-1137/abcf23 arXiv:2006.08920 [gr-qc].

[46] S. Guo, Y. Han and G. P. Li, Thermodynamic of the charged AdS black holes in Rastall gravity: P – V critical and Joule–Thomson expansion, Mod. Phys. Lett. A 35, no.14, 2050113 (2020) doi:10.1142/S0217732320501138

[47] M. Rostami, J. Sadeghi, S. Miraboutalebi, A. A. Masoudi and B. Pourhassan, Charged accel-
erating AdS black hole of $f(R)$ gravity and the Joule–Thomson expansion, Int. J. Geom. Meth. Mod. Phys. 17, no.09, 09 (2020) doi:10.1142/S0219887820501364 [arXiv:1908.08410 [gr-qc]].

[48] A. Haldar and R. Biswas, Joule-Thomson expansion of five-dimensional Einstein-Maxwell-Gauss-Bonnet-AdS black holes, EPL 123, no.4, 40005 (2018) doi:10.1209/0295-5075/123/40005

[49] J. X. Mo and G. Q. Li, Effects of Lovelock gravity on the Joule–Thomson expansion, Class. Quant. Grav. 37, no.4, 045009 (2020) doi:10.1088/1361-6382/ab0b9 [arXiv:1805.04327 [gr-qc]].

[50] C. H. Nam, Heat engine efficiency and Joule–Thomson expansion of nonlinear charged AdS black hole in massive gravity, Gen. Rel. Grav. 53, no.3, 30 (2021) doi:10.1007/s10714-021-02787-2 [arXiv:1906.05557 [gr-qc]].

[51] H. Ghaffarnejad and E. Yaraie, Effects of a cloud of strings on the extended phase space of Einstein–Gauss–Bonnet AdS black holes, Phys. Lett. B 785, 105-111 (2018) doi:10.1016/j.physletb.2018.08.017 [arXiv:1806.06687 [gr-qc]].

[52] X. M. Kuang, B. Liu and A. Övgün, Nonlinear electrodynamics AdS black hole and related phenomena in the extended thermodynamics, Eur. Phys. J. C 78, no.10, 840 (2018) doi:10.1140/epjc/s10052-018-6320-0 [arXiv:1807.10447 [gr-qc]].

[53] Z. W. Zhao, Y. H. Xiu and N. Li, Throttling process of the Kerr–Newman–anti-de Sitter black holes in the extended phase space, Phys. Rev. D 98, no.12, 124003 (2018) doi:10.1103/PhysRevD.98.124003 [arXiv:1805.04861 [gr-qc]].

[54] S. Q. Lan, Joule-Thomson expansion of neutral AdS black holes in massive gravity, Nucl. Phys. B 948, 114787 (2019) doi:10.1016/j.nuclphysb.2019.114787

[55] A. Belhaj and H. El Moumni, Entanglement entropy and phase portrait of f(R)-AdS black holes in the grand canonical ensemble, Nucl. Phys. B 938, 200-211 (2019) doi:10.1016/j.nuclphysb.2018.11.010 [arXiv:1812.07962 [hep-th]].

[56] S. Guo, Y. Han and G. P. Li, Joule-Thomson expansion of a specific black hole in different dimensions, [arXiv:1912.09590 [hep-th]].

[57] H. Ranjbari, M. Sadeghi, M. Ghanaatian and G. Forozani, Critical behavior of AdS Gauss–Bonnet massive black holes in the presence of external string cloud, Eur. Phys. J. C 80, no.1, 17 (2020) doi:10.1140/epjc/s10052-019-7592-8 [arXiv:1911.10803 [hep-th]].

[58] J. Sadeghi and R. Toorandaz, Joule-Thomson expansion of hyperscaling violating black
holes with spherical and hyperbolic horizons, Nucl. Phys. B 951, 114902 (2020) doi:10.1016/j.nuclphysb.2019.114902

[59] M. Farsam, E. Yaraie, H. Ghaffarnejad and E. Ghasami, Cooling-heating phase transition for dS/AdS Bardeen Black Holes with consistent 4D Gauss-Bonnet gravity theory, [arXiv:2010.05697 [hep-th]].

[60] J. Liang, W. Lin and B. Mu, Joule–Thomson expansion of the torus-like black hole, Eur. Phys. J. Plus 136, no.11, 1169 (2021) doi:10.1140/epjp/s13360-021-02119-y [arXiv:2103.03119 [gr-qc]].

[61] R. Yin, J. Liang and B. Mu, Joule–Thomson expansion of Reissner–Nordström-Anti-de Sitter black holes with cloud of strings and quintessence, Phys. Dark Univ. 34, 100884 (2021) doi:10.1016/j.dark.2021.100884 [arXiv:2105.09173 [gr-qc]].

[62] J. Liang, B. Mu and P. Wang, Joule-Thomson expansion of lower-dimensional black holes, Phys. Rev. D 104, no.12, 124003 (2021) doi:10.1103/PhysRevD.104.124003 [arXiv:2104.08841 [gr-qc]].

[63] J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67, 044017 (2003) doi:10.1103/PhysRevD.67.044017 [arXiv:gr-qc/0207085 [gr-qc]].

[64] G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510, 255-263 (2001) doi:10.1016/S0370-2693(01)00506-8 [arXiv:hep-th/0012238 [hep-th]].

[65] G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11, 35-60 (2002) doi:10.1142/S0218271802001330 [arXiv:gr-qc/0012051 [gr-qc]].

[66] J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88, 190403 (2002) doi:10.1103/PhysRevLett.88.190403 [arXiv:hep-th/0112090 [hep-th]].

[67] G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Distance measurement and wave dispersion in a Liouville string approach to quantum gravity, Int. J. Mod. Phys. A 12, 607-624 (1997) doi:10.1142/S0217751X97000566 [arXiv:hep-th/9605211 [hep-th]].

[68] G. Amelino-Camelia, Quantum-Spacetime Phenomenology, Living Rev. Rel. 16, 5 (2013) doi:10.12942/lrr-2013-5 [arXiv:0806.0339 [gr-qc]].

[69] J. Magueijo and L. Smolin, Gravity’s rainbow, Class. Quant. Grav. 21, 1725-1736 (2004) doi:10.1088/0264-9381/21/7/001 [arXiv:gr-qc/0305055 [gr-qc]].
[70] G. Amelino-Camelia, M. Arzano, Y. Ling and G. Mandanici, Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles, Class. Quant. Grav. 23, 2585-2606 (2006) doi:10.1088/0264-9381/23/7/022 [arXiv:gr-qc/0506110 [gr-qc]].

[71] P. Galan and G. A. Mena Marugan, Quantum time uncertainty in a gravity’s rainbow formalism, Phys. Rev. D 70, 124003 (2004) doi:10.1103/PhysRevD.70.124003 [arXiv:gr-qc/0411089 [gr-qc]].

[72] J. Hackett, Asymptotic flatness in rainbow gravity, Class. Quant. Grav. 23, 3833-3842 (2006) doi:10.1088/0264-9381/23/11/010 [arXiv:gr-qc/0509103 [gr-qc]].

[73] R. Aloisio, A. Galante, A. Grillo, S. Liberati, E. Luzio and F. Mendez, Deformed special relativity as an effective theory of measurements on quantum gravitational backgrounds, Phys. Rev. D 73, 045020 (2006) doi:10.1103/PhysRevD.73.045020 [arXiv:gr-qc/0511031 [gr-qc]].

[74] Y. Ling, X. Li and H. b. Zhang, Thermodynamics of modified black holes from gravity’s rainbow, Mod. Phys. Lett. A 22, 2749-2756 (2007) doi:10.1142/S0217732307022931 [arXiv:gr-qc/0512084 [gr-qc]].

[75] R. Garattini and G. Mandanici, Particle propagation and effective space-time in Gravity’s Rainbow, Phys. Rev. D 85, 023507 (2012) doi:10.1103/PhysRevD.85.023507 [arXiv:1109.6563 [gr-qc]].

[76] R. Garattini and F. S. N. Lobo, Self-sustained wormholes in modified dispersion relations, Phys. Rev. D 85, 024043 (2012) doi:10.1103/PhysRevD.85.024043 [arXiv:1111.5729 [gr-qc]].

[77] G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo, Rainbow gravity and scale-invariant fluctuations, Phys. Rev. D 88, no.4, 041303 (2013) doi:10.1103/PhysRevD.88.041303 [arXiv:1307.0745 [gr-qc]].

[78] J. D. Barrow and J. Magueijo, Intermediate inflation from rainbow gravity, Phys. Rev. D 88, no.10, 103525 (2013) doi:10.1103/PhysRevD.88.103525 [arXiv:1310.2072 [astro-ph.CO]].

[79] R. Garattini and E. N. Saridakis, Gravity’s Rainbow: a bridge towards Hořava–Lifshitz gravity, Eur. Phys. J. C 75, no.7, 343 (2015) doi:10.1140/epjc/s10052-015-3562-5 [arXiv:1411.7257 [gr-qc]].

[80] B. Mu, P. Wang and H. Yang, Thermodynamics and Luminosities of Rainbow Black Holes, JCAP 11, 045 (2015) doi:10.1088/1475-7516/2015/11/045 [arXiv:1507.03768 [gr-qc]].

[81] A. F. Ali, M. Faizal and M. M. Khalil, Remnant for all Black Objects due to Gravity’s Rainbow, Nucl. Phys. B 894, 341-360 (2015) doi:10.1016/j.nuclphysb.2015.03.014 [arXiv:1410.5706]
[82] S. Gangopadhyay and A. Dutta, Constraints on rainbow gravity functions from black hole thermodynamics, EPL 115, no.5, 50005 (2016) doi:10.1209/0295-5075/115/50005 [arXiv:1606.08295 [gr-qc]].

[83] Y. Gim and W. Kim, Hawking, fiducial, and free-fall temperature of black hole on gravity’s rainbow, Eur. Phys. J. C 76, 166 (2016) doi:10.1140/epjc/s10052-016-4025-9 [arXiv:1509.06846 [gr-qc]].

[84] Y. W. Kim, S. K. Kim and Y. J. Park, Thermodynamic stability of modified Schwarzschild–AdS black hole in rainbow gravity, Eur. Phys. J. C 76, no.10, 557 (2016) doi:10.1140/epjc/s10052-016-4393-1 [arXiv:1607.06185 [gr-qc]].

[85] B. Mu, J. Tao and P. Wang, Free-fall Rainbow BTZ Black Hole, Phys. Lett. B 800, 135098 (2020) doi:10.1016/j.physletb.2019.135098 [arXiv:1906.11703 [gr-qc]].

[86] S. Wang, S. Q. Wu, F. Xie and L. Dan, The First laws of thermodynamics of the (2+1)-dimensional BTZ black holes and Kerr-de Sitter spacetimes, Chin. Phys. Lett. 23, 1096-1098 (2006) doi:10.1088/0256-307X/23/5/009 [arXiv:hep-th/0601147 [hep-th]].