gLaSDI: Parametric physics-informed greedy latent space dynamics identification

6th Annual Sandia MLDL Workshop

July 25th, 2022

Youngsoo Choi
Awesome reduced order model team and collaborators
Physical simulations play an important role in modern science

3D Direct energy deposition (40 minutes on 4 cores) ANSYS

2D Shockwave (1 hour on 40 cores) BLAST

3D shaped charge (23 hours on 96 GPUs) BLAST

Pore-collapse (1 week on 1024 cores) ALE3D

Digital Twin: source from thedigitalspeaker.com
How can you accelerate existing physical simulations with data?

1. Generate Simulation data

Permeability	Pressure
![Input](image1.png)	![Output](image2.png)

2. Get the relation between input and output, e.g., training a neural network

- Conditional Generative Adversarial Neural Network

*Kadeethum, O’Malley, Fuhg, Choi, Lee, Viswanathan, Bouklas. “A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks.” *Nature Computational Science*, 2021.*
How can we get an interpretability? LaSDI

Dynamic mode decomposition (DMD):
\[\frac{d\hat{u}}{dt} = \hat{A}(\mu)\hat{u} \]

Operator Inference (OpInf):
\[\frac{d\hat{u}}{dt} = \hat{A}(\mu)\hat{u} + \hat{H}(\hat{u} \otimes \hat{u}) \]

Radial advection:
\[\frac{\partial u}{\partial t} + v \cdot \nabla u \in \Omega = [-1, 1] \times [-1, 1], \quad t \in [0, 3], \quad v = \frac{\pi}{2}d[x_2, -x_1]^T, \quad d = (1 - x_1^2)^2(1 - x_2^2)^2 \]

Parameterized initial condition: \[u(x, 0; \mu) = \sin(w_1 x_1)\sin(w_2 x_2) \]

High dimensional simulation data

Latent space dynamics data with dimension of 3

Fit into ODE

Linear compression: POD, SVD, ...
Nonlinear compression: Autoencoder
Parameterized latent space dynamics identification (LaSDI)

\[\dot{\hat{u}} = \hat{A}(\mu_1)\Theta(\hat{u}) \]

\[\dot{\hat{u}} = \hat{A}(\mu_2)\Theta(\hat{u}) \]

\[\dot{\hat{u}} = \hat{A}(\mu_3)\Theta(\hat{u}) \]

\[\dot{\hat{u}} = \hat{A}(\mu_4)\Theta(\hat{u}) \]

\[\dot{\hat{u}} = \hat{A}(\mu_5)\Theta(\hat{u}) \]

Fries, He, Choi, “Lasdi: Parametric latent space dynamics identification.” arXiv:2203.02076, 2022.
Performance of LaSDI to radial advection problem

Radial advection:
\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{u} = 0 \quad \Omega = [-1, 1] \times [-1, 1], \quad t \in [0, 3],
\]
\[
\mathbf{v} = \frac{\pi}{2} d[x_2, -x_1]T, \quad d = (1 - x_1^2)^2(1 - x_2^2)^2
\]
\[
u(x, t; \mu) = 0 \quad \text{on} \quad \partial \Omega,
\]
Parameterized initial condition: \(u(x, 0; \mu) = \sin(w_1 x_1)\sin(w_2 x_2) \)

High dimensional simulation data

Latent space dynamics identification with a dimension of 3

Maximum relative error:
5.4% with 25 uniformly sampled training points

Speed-up of 200x
Is uniform sampling enough? No, so we need physics-informed greedy sampling!

Uniform sampling

Maximum relative error:

5.4% with 25 uniformly sampled training points

Physics-informed greedy sampling

Maximum relative error:

2.0% with 25 greedy sampling points

*He, Choi, Fries, Belof, Chen. "gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification." arXiv:2204.12005. 2022.
gLaSDI: physics-informed greedy latent space dynamics identification

*He, Choi, Fries, Belof, Chen. ”gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification.” arXiv:2204.12005. 2022
Curious about the physics-informed greedy procedure?

• Watch this YouTube video (less than 10 minutes): https://youtu.be/A5JIIXRHxrl
Does linear compression always work? No

Benefit of nonlinear compression

😊 Better projection error

2D Burgers

😊 Simpler latent space dynamics

radial advection

Linear compression vs. Nonlinear compression

LaSDI-LS Latent-Space Visualization

LaSDI-NM Latent-Space Visualization
Nonlinear compression outperforms!

Nonlinear manifold

Min Error: 0.77%, Max Error: 3.78%

Linear subspace

Min Error: 29.9%, Max Error: 44.0%

2D Burgers advection-dominated

Latent space dimension of three

Cubic ODE for latent space dynamics model

Latent space dimension of five

Linear ODE for latent space dynamics model

*Fries, He, Choi, “LaSDI: Parametric latent space dynamics identification.” arXiv:2203.02076, 2022.

*He, Choi, Fries, Belof, Chen. “gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification.” arXiv:2204.12005, 2022
Questions? Email choi15@llnl.gov
