Magnon edge states in the hardcore-Bose–Hubbard model

S A Owerre¹,²

¹ Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada
² African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa

E-mail: solomon@aims.ac.za

Received 26 May 2016, revised 18 July 2016
Accepted for publication 27 July 2016
Published 7 September 2016

Abstract
Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose–Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose–Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.

Keywords: hardcore bosons, Berry curvatures, edge state modes

(Some figures may appear in colour only in the online journal)

1. Introduction
We are used to the topological properties of fermion band theory in electronic systems, which have been studied extensively over the past decade [1–12]. Recently, the study of topological band theory has been extended to bosonic systems. A natural extension of topological properties of fermionic systems to bosonic systems can be achieved by replacing the lattice sites of fermions with bosons [13, 14]. Hence, the fermionic operators can be regarded as bosonic operators obeying a different commutation relation.

In the hardcore limit, the bosonic systems map to spin-1/2 quantum magnets [15]. This correspondence is very crucial as it paves the way to interpret results in terms of bosons as well as spin variables. It also means that the excitations of hard-core bosons must be the underlying spin wave excitations (magnons) of the corresponding quantum spin model. Therefore, the topological properties of the bosonic excitations must be similar to those of spin wave excitations. In this regard, the Haldane spin–orbit coupling [10] in the hardcore limit maps to an out-of-plane Dzyaloshinskii–Moriya interaction (DMI), which induces a nonzero Berry curvature and thermal Hall effect of magnetic spin excitations [16–25]. However, in contrast to fermionic systems, there is neither a Fermi energy nor a filled band in bosonic systems. This means that the topological invariant quantity usually called the Chern number must be independent of the statistical nature of the particles. It simply predicts the existence of edge state modes in the vicinity of the bulk energy gap as a result of the bulk-edge correspondence. This leads to edge states in bosonic systems.

Unfortunately, many topological bosonic models have a numerical sign problem that hinders an explicit quantum Monte Carlo (QMC) simulation due to an imaginary statistical average. In a recent study, Guo et al [26] have investigated the Bose–Hubbard model on the honeycomb lattice using QMC. This model is devoid of the debilitating QMC sign problem as there is no imaginary phase amplitude. It is analogous to the fermionic graphene model without spin–orbit coupling in the presence of a biased potential [11, 12]. The authors have explicitly mapped out the bosonic quantum phase diagram, the Berry curvature and edge states characterizing the
topological properties of the system induced by a staggered on-site potential.

In this paper, we present another perspective of their QMC results using a semiclassical approach. The QMC results presented in [26] utilized the electronic analogue of the Bose–Hubbard model. Here, we show that the entire QMC analysis can be understood semi-classically. This is due to the fact that the hardcore-Bose–Hubbard model is merely a spin-1/2 quantum XY model with competing sublattice magnetic fields, thus the results can also be interpreted in terms of magnetic spins and the semiclassical approach is known to be suitable for such models [27, 28]. We find that the quantum phase diagram uncovered by QMC can actually be understood by mean-field theory. We uncover the same three insulating phases: superfluid (SF), Mott insulator phase and charge-density-wave (CDW) insulator. The latter insulating phase is a consequence of the competing sublattice magnetic fields.

As mentioned above, the correspondence between hardcore bosons and quantum spin systems suggests that the spin wave excitations correspond to the bosonic excitations. As QMC showed, the topological properties of this system is manifested by a nonzero Berry curvature. We show that the Berry curvature of the magnon excitations in the ρ = 1/2 CDW insulator has the same trend as the one obtain by QMC simulation [26]. In contrast to DMI induced edge states with nonzero Chern number [16–26], the Chern number of the present model vanishes. Nevertheless, we observe zigzag bosonic magnon edge states which do not have the same origin as those in the DMI system [24]. It is noted that nontrivial topology has been realized in two-dimensional (2D) optical fermionic [30] and bosonic [31, 32] atoms. Thus, our results are applicable to these systems.

2. Hardcore-Bose–Hubbard model

A recent QMC simulation by Guo et al [26] studied the topological properties of the extended hardcore-Bose–Hubbard model governed by the Hamiltonian

\[H = -t \sum_{\langle ij \rangle} (b_i^\dagger b_j + h.c.) + \sum_i U_i n_i - \mu \sum_i n_i, \]

where, \(t > 0 \) denotes NN hopping, \(\mu \) is the chemical potential, and \(U_i \) is a staggered on-site potential, with \(U_i = \Delta \) on sublattice \(A \), and \(U_i = -\Delta \) on sublattice \(B \) of the honeycomb lattice shown in figure 1. \(n_i = b_i^\dagger b_i \) and \(b_i \) are the bosonic creation and annihilation operators, respectively. They obey the algebra \([b_i, b_j^\dagger] = 0 \) for \(i \neq j \) and \([b_i, b_j^\dagger] = 1 \).

For fermionic systems, the momentum space Hamiltonian for \(\mu = 0 \) is given by

\[\mathcal{H}(k) = \begin{pmatrix} \Delta & -t_{k}^B \\ -t_{k}^A & -\Delta \end{pmatrix}, \]

where \(t_{k}^A = e^{i\vec{k}\cdot\vec{a}/2} (2 \cos(\sqrt{3}k_xa/2) + e^{-3i\vec{k}\cdot\vec{a}/2}) \). The corresponding eigenvalues are

\[\epsilon_{\pm}(k) = \pm \sqrt{\Delta^2 + t_{k}^2}. \]

In the bosonic version, the energy does not have this simple symmetric form as we will show later. In this case, we adopt the quantum spin analogue of the Bose–Hubbard Hamiltonian (1) via the Matsubara–Matsuda transformation [15], \(S_i^+ \rightarrow b_i^\dagger, S_i^- \rightarrow b_i, S_i^z \rightarrow n_i - 1/2 \). The resulting quantum spin Hamiltonian is given by

\[H = -J \sum_i (S_i^x S_j^x + S_i^y S_j^y) - \sum_i (\mu - U_i)S_i^z, \]

where \(S_i^\pm = S_i^x \pm iS_i^y \). The last term is basically a competing magnetic field on the two sublattices. Throughout the analysis in this paper we fix \(J = 1/2 \), which corresponds to \(t = 1 \) in the hard-core bosons.

3. Mean-field phase diagram

In this section, we present the mean-field phase diagram of the Bose–Hubbard model (1). The mean-field approximation is implemented by approximating the spins as classical vectors parameterized by a unit vector: \(\vec{S}_i = S(\sin \theta_i \cos \phi_i, \sin \theta_i \sin \phi_i, \cos \theta_i) \). We adopt the customary two-sublattice honeycomb lattice depicted in figure 1. Since the spins lie on the same plane we take \(\phi_i = 0 \), then the classical energy is parameterized by \(\theta_i \) given by

\[\epsilon_{\theta} = -\Delta \sin \theta_i \sin \theta_B - (\mu - \Delta) \cos \theta_i - (\mu + \Delta) \cos \theta_B, \]

where \(\epsilon_{\theta} = \epsilon_i/NS, \Delta_i = 2JzS, S = 1/2, N \) is the number of unit cells, and \(z = 3 \) is the coordination number of the lattice. The filling factor is given by \(\rho = 1/2 \pm S(\cos \theta_A + \cos \theta_B)/2 \). There are three phases in this model uncovered by QMC [26]. In the mean-field approximation they are characterized by the polar angles. In the SF phase \(\theta_A = \theta_B = 0, \pi \), the Mott phase

![Figure 1](image-url)
The simplest way to study spin wave excitations is via the
standard Holstein–Primakoff transformation. This approach
is frequently used in the study of hard-core bosons in two-
dimensional lattices [27, 28]. In term of topological properties
of quantum magnets, the Holstein–Primakoff transformation
has also been utilized effectively in this regard [16, 17, 19–21,
25], and considered to be a good experimental predictor [23].
In this section, we utilize this semiclassical formalism in the
study of the Bose–Hubbard model. The starting point of spin
wave expansion is the rotation of the coordinate axes such that
the z-axis coincides with the local direction of the classical
polarization. This is implemented by a rotation about the y-
axis on the two sublattices

\[S_i^{\alpha} = S_i^{\alpha} \cos \theta_i + S_i^{\alpha} \sin \theta_i, \]
\[S_i^{\beta} = S_i^{\beta} \cos \theta_i - S_i^{\beta} \sin \theta_i, \]
\[S_i^{\epsilon} = -S_i^{\alpha} \sin \theta_i + S_i^{\beta} \cos \theta_i, \]

where \(\alpha = A, B \) label the sublattices.

We then introduce the linearized Holstein–Primakoff
transformation, \(S_i^{\alpha} = S - c_{iA}^\dagger c_{iA} - c_{iB}^\dagger c_{iB} \), \(S_i^{\alpha} = i\sqrt{\Delta} (c_{iA}^\dagger - c_{iB}) \). The bosonic tight binding Hamiltonian
becomes

\[H = -\sum_i [v_1 (c_{iA}^\dagger c_{iB} + \text{h.c.}) + v_2 (c_{iA}^\dagger c_{iB} + \text{h.c.})] \]
\[+ (v_4 - m_A) \sum_i c_{iA}^\dagger c_{iA} + (v_4 + m_B) \sum_j c_{iB}^\dagger c_{iB}, \]

where \(v_{1,2} = JS(\cos \theta_i \cos \theta_j \pm 1) \), \(v_{4A/4B} = \Delta_c \sin \theta_i \sin \theta_j + \mu \cos \theta_A \pm \mu \cos \theta_B \) and \(m_{A/B} = \Delta_c \cos \theta_A \pm \mu \cos \theta_B \). Apart from the off-diagonal
terms with coefficient \(v_2 \), equation (9) is similar to a graphene
model with a staggered potential. The energy bands are given
in appendix A. Figure 3(a) shows the magnon bands in the
\(\rho = 1/2 \) CDW insulator and figure 3(b) shows the magnon
bands in the SF phase. We see that the lower band in the SF
phase has a Goldstone mode at \(k = 0 \) (see appendix C) in
contrast to the CDW insulator. A special limit of the CDW
insulator is analyzed in appendix B. It is noted that there are
two SF phases in this model—gap SF phase for \(\Delta = 0 \) and
gapless SF phase for \(\Delta = 0 \) (see appendix C).
5. Magnon edge states

To study the topological properties of this model we use the results in appendix A. For $\Delta = 0$, we have $m_A = m_B = 0$, then equations (6) and (7) simply give $\theta_A = \theta_B = \theta$, hence $v_A = v_B$ and the system reduces to the usual hard-core bosons or XY model. In this limit, the system exhibits Dirac nodes at $\pi = \pm \theta a$ and a Goldstone mode at $\Gamma = 0$. As QMC demonstrated [26], the topological properties of this system is induced by a nonzero Δ which plays the role of a gap as shown in appendix A. This implies that $m_A \neq 0$ and $m_B \neq 0$.

We are interested in the Berry curvature associated with the magnon bulk gap. It is given by

$$\Omega_b(k) = -\sum_{\lambda = \pm} \frac{2\text{Im}[\langle \lambda \downarrow \rangle \langle \lambda \uparrow \rangle \langle \lambda \uparrow \rangle \langle \lambda \downarrow \rangle]}{(\epsilon_{\lambda \uparrow} - \epsilon_{\lambda \downarrow})^2},$$

(10)

where $v_i = \partial H(k) / \partial k_i$ defines the velocity operators, $\lambda \downarrow$ denotes the columns of the matrix that diagonalizes $H(k)$ (see appendix A), and $\lambda = \pm$ denotes the two positive magnon bands. The CDW and the SF phases are the nontrivial phase in this model. Figure 4 shows the Berry curvatures for the top and the bottom bands in the $\rho = 1/2$ CDW insulator and figure 5 shows the Berry curvatures in the SF phase. The Berry curvatures show minima and maxima peaks at the corners of the Brillouin zone (see appendix B). This is in good agreement with QMC simulation [26].

6. Conclusion

We have complemented the QMC simulation of Guo et al [26] using a semiclassical approach. The main result of our study is that the topological properties of hard-core bosons correspond to the topological properties of the magnon bulk bands of the corresponding quantum spin model. In the hard-core-Bose-Hubbard model, competing sublattice magnetic fields lead to a nontrivial charge-density-wave insulator with a filling factor of $\rho = 1/2$, in addition to the superfluid phase and Mott insulator. We have uncovered the mean-field phase diagram, which is consistent with the QMC phase diagram. We also derived the magnon energy bands of each phase and show that the corresponding Berry curvatures and edge states are consistent with QMC simulations. This basic idea we have presented here can also be generalized to bilayer honeycomb lattice. These results will be useful in experimental set up of ultracold bosonic atoms in honeycomb optical lattice.

Acknowledgments

The author would like to thank African Institute for Mathematical Sciences (AIMS). Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

3 Also notice that this system cannot possesses a magnon Hall effect [16–26] because of the vanishing integrated Berry curvatures for each band.
Appendix A. General diagonalization

In this appendix, we show step-by-step diagonalization of the Hamiltonian in the text above. In momentum space, we introduce the Nambu operators $\Psi^\dagger_k = (\psi^+_k, \psi^0_k, \psi^-_k)$ with $\psi^\dagger_k = (c^+_k, c^0_k, c^-_k)$ and write equation (9) as $H = \frac{1}{2} \sum_k \Psi^\dagger_k \mathcal{H}(k) \Psi_k + \text{const.}$, where

$$\mathcal{H}(k) = \begin{pmatrix}
 v_A - m_A & -v_f k & 0 \\
 -v_f k & v_B + m_B & -v_f k \\
 0 & -v_f k & v_A - m_A
\end{pmatrix}, \quad (A.1)$$

which can be written in compact form as

$$\mathcal{H}(k) = [(v_A - m_A)\tau_3^0 + (v_B + m_B)\tau_1^0] \otimes \sigma_0 - v_1(\tau_2 \sigma_k + \text{h.c.}) \otimes \sigma_0 - v_2(\tau_3 \sigma_k + \text{h.c.}) \otimes \sigma_0. \quad (A.2)$$

We have introduced two Pauli matrices σ and τ, where $\tau_\pm = (\tau_\mp + i\tau_0)/2$, while σ_0 is an identity 2×2 matrix in the σ-space. We also introduce other matrices for simplification, $\tau_\pm^0 = \text{diag}(1, 0), \tau_0^0 = \text{diag}(0, 1)$.

The spin wave Hamiltonian is Hermitian but it is not diagonal. To diagonalize this Hamiltonian, we make a transformation $\Psi^\dagger_k \rightarrow U_k \Psi^\dagger_k$, which satisfies the relation

$$U_k^\dagger \mathcal{H}(k) U_k = \epsilon_k; \quad U_k^\dagger \sigma U_k = \eta,$$ \quad (A.3)

with $\eta = \sigma_0 \otimes I$. The matrix Ψ^\dagger_k contains the Bogoliubov operators (α_k, β_k), U_k is a $2N \times 2N$ matrix (N is the number of sublattice), $\epsilon(k) = \text{diag}[\epsilon_1(k), \epsilon_2(-k)]$ and $\epsilon_\sigma(k)$ are the eigenvalues. Using the fact that $U_k^\dagger \eta = \eta U_k^\dagger$ and $U_k U_k^\dagger = I$, we have

$$\eta \mathcal{H}(k) U_k = U_k \eta \epsilon_k. \quad (A.4)$$

Thus, we need to diagonalize a non-Hermitian Bogoliubov Hamiltonian $\mathcal{H}_B(k) = \eta \mathcal{H}(k)$, whose eigenvalues are $\eta \epsilon(k)$ and the corresponding eigenvectors are the columns of U_k.

The explicit form of U_k is given by

$$U_k = \begin{pmatrix}
 u_k & -v_k \\
 -v_k^* & u_k^*
\end{pmatrix}, \quad (A.5)$$

where u_k, v_k are $N \times N$ matrices that satisfy $|u_k|^2 - |v_k|^2 = 1.$ \quad (A.6)

The positive eigenvalues of

$$\mathcal{H}_B(k) = [(v_A - m_A)\tau_3^0 + (v_B + m_B)\tau_1^0] \otimes \sigma_0 - v_1(\tau_2 \sigma_k + \text{h.c.}) \otimes \sigma_0 - v_2(\tau_3 \sigma_k + \text{h.c.}) \otimes \sigma_0. \quad (A.7)$$

are given by

$$\epsilon_\sigma(k) = \epsilon_\sigma(-k) = \sqrt{\frac{\alpha_k + \lambda_k}{2}}, \quad (A.8)$$

where

$$\alpha_k = (m_A - v_A)^2 + (m_B + v_B)^2 + 2(v_1^2 - v_2^2)|\tilde{f}_k|^2, \quad (A.9)$$

$$\lambda_k = \frac{1}{2}(m_A - m_B)^2 + \frac{1}{2}(v_1^2 - v_2^2)|\tilde{f}_k|^2 + \frac{1}{2}(v_1^2 - v_2^2)|\tilde{f}_k|^2. \quad (A.10)$$

with $\alpha_- = (m_B + v_B) - (m_A - v_A)$ and $\alpha_+ = (m_A - v_A) + (m_B + v_B)$. At the Dirac points K_\pm, the structure factor vanishes $f_k = 0$, we find that the gap is given by

$$\Delta_{gap} = \epsilon_+(K_+) - \epsilon_-(K_-) = |m_B - v_B| - |m_A + v_A|. \quad (A.11)$$

Appendix B. Charge density wave insulator

In this appendix, we study one of the phases of the model—the charge density wave (CDW) insulator. The CDW insulator can be captured by setting $\mu = 0$. Minimizing the classical energy we find $\theta_A = \text{arccos}(\Delta/\Delta_\sigma)$ and $\theta_B = \text{arccos}(-\Delta/\Delta_\sigma)$.

A special case of CDW insulator is the fully polarized N é Charlie wave state which occurs at $\Delta = \Delta_\sigma$. Hence $\theta_A = 0$ and $\theta_B = \pi$ with $m_A = \Delta_\sigma, m_B = -\Delta_\sigma, v_A = v_B = 0$, and $v_1 = 1, v_2 = -2JS$. The Hamiltonian possesses an explicit analytical diagonalization. In the basis $\Psi^\dagger_k = (c^+_k, c^-_k, c^0_k, c^0_k)$, equation (A.1) takes the form

$$\mathcal{H}(k) = \begin{pmatrix}
 -\Delta_c & -v_f k & 0 & 0 \\
 -v_f k & -\Delta_c & 0 & 0 \\
 0 & 0 & -\Delta_c & -v_f k \\
 0 & 0 & -v_f k^* & -\Delta_c
\end{pmatrix}. \quad (B.1)$$

This is exactly the Heisenberg antiferromagnet on the honeycomb lattice. Since each block is doubly degenerate, we consider only block I, given by

$$\mathcal{H}_I(k) = \begin{pmatrix}
 -\Delta_c & -v_f k \\
 -v_f k^* & -\Delta_c
\end{pmatrix}. \quad (B.2)$$

The matrix to be diagonalized is $\mathcal{H}_I^\dagger(k) = \eta \mathcal{H}_I(k)$. For magnon the eigenvalues are positive definite given by

$$\epsilon_\sigma(k) = \sqrt{\frac{\Delta_c^2 - v_f^2 |\tilde{f}_k|^2}{2}}, \quad (B.3)$$

The band structure is depicted in figure B1(a). By solving the eigenvalue equation $\mathcal{H}_I^\dagger(k) \begin{pmatrix} \psi_k \\ \psi_k^* \end{pmatrix} = \epsilon(k) \begin{pmatrix} \psi_k \\ \psi_k^* \end{pmatrix}$, we find

$$u_k = e^{i\psi_k} \cos \left(\frac{\theta_k}{2} \right), \quad v_k = \sinh \left(\frac{\theta_k}{2} \right), \quad (B.4)$$

where

$$\cos \theta_k = \frac{\Delta_c}{\epsilon_\eta(k)}; \quad \sinh \theta_k = \frac{|v_f|}{\epsilon_\eta(k)} \tan \phi(k) = \frac{\text{Im} \tilde{f}_k}{\text{Re} \tilde{f}_k}. \quad (B.5)$$

The matrix U_k is given by

$$U_k = \begin{pmatrix}
 e^{i\psi_k} \cos \left(\frac{\theta_k}{2} \right) & -\sin \left(\frac{\theta_k}{2} \right) \\
 -\sin \left(\frac{\theta_k}{2} \right) & e^{-i\psi_k} \cos \left(\frac{\theta_k}{2} \right)
\end{pmatrix}. \quad (B.6)$$
generates a nonzero Berry curvature defined in equation (10), which can be reduced to a compact form

\[\Omega_{1\mu} (k) = -2 \text{Im} [\sigma_i (\partial_k U k^\dagger) \sigma_i (\partial_k U k)]. \]

(B.7)

The diagonal elements are given by

\[\Omega_{11}^{\mu\mu} (k) = -2 \text{Im} \left[\partial_{k_x} \left(e^{i\phi k} \frac{\theta k}{2} \right) \times \partial_{k_x} \left(e^{-i\phi k} \frac{\theta k}{2} \right) \right] \]

(B.8)

\[\Omega_{22}^{\mu\mu} (k) = -2 \text{Im} \left[\partial_{k_x} \left(e^{i\phi k} \frac{\theta k}{2} \right) \times \partial_{k_x} \left(e^{-i\phi k} \frac{\theta k}{2} \right) \right] \]

(B.9)

These expressions can be reduced to

\[\Omega_{11}^{\mu\mu} (k) = -\frac{\sin \theta k}{2} [\partial_{k_x} \phi k \partial_{k_x} \theta k - \partial_{k_x} \phi k \partial_{k_x} \theta k] \]

(B.10)

\[= -\Omega_{22}^{\mu\mu} (k). \]

The partial derivatives can be simplified further, we obtain

\[\partial_{k_x} \phi k = \frac{1}{|k^\mu|} [\text{Re} \ k^\mu \partial_{k_x} \text{Im} k^\mu - \text{Im} k^\mu \partial_{k_x} \text{Re} k^\mu]. \]

(B.11)

\[\partial_{k_x} \theta k = \frac{|v_2|^2 [\Delta \partial_{k_x} |k^\mu|]}{|k^\mu|^2}. \]

(B.12)

Further simplification yields

\[\Omega_{11}^{\mu\mu} (k) = \frac{3}{4} \sqrt{3} \left[\cos \left(\frac{3}{2} k_x \right) - \cos \left(\frac{1}{2} k_x \right) \right] \sin \left(\frac{3}{2} k_x \right) \]

(B.13)

The Berry curvatures at the corner of the Brillouin zone are given by

\[\Omega_{11}^{\mu\mu} (K \pm) = \mp \frac{1}{8}. \]

(B.14)

The phase factor \(\phi k \) generates a nonzero Berry curvature as shown in figure B2(a).

The eigenvalues equation (A.8) yields \(\theta \) is not necessarily equal to \(\theta_0 \), corresponding to the gapless SF phase.

These expressions can be reduced to

\[\Omega_{11}^{\mu\mu} (k) = -\frac{1}{2} \frac{\sin \theta k}{2} [\partial_{k_x} \phi k \partial_{k_x} \theta k - \partial_{k_x} \phi k \partial_{k_x} \theta k] \]

(B.10)

\[= -\Omega_{22}^{\mu\mu} (k). \]

The partial derivatives can be simplified further, we obtain

\[\partial_{k_x} \phi k = \frac{1}{|k^\mu|} [\text{Re} \ k^\mu \partial_{k_x} \text{Im} k^\mu - \text{Im} k^\mu \partial_{k_x} \text{Re} k^\mu]. \]

(B.11)

\[\partial_{k_x} \theta k = \frac{|v_2|^2 [\Delta \partial_{k_x} |k^\mu|]}{|k^\mu|^2}. \]

(B.12)

Further simplification yields

\[\Omega_{11}^{\mu\mu} (k) = \frac{3}{4} \sqrt{3} \left[\cos \left(\frac{3}{2} k_x \right) - \cos \left(\frac{1}{2} k_x \right) \right] \sin \left(\frac{3}{2} k_x \right) \]

(B.13)

The Berry curvatures at the corner of the Brillouin zone are given by

\[\Omega_{11}^{\mu\mu} (K \pm) = \mp \frac{1}{8}. \]

(B.14)

This is consistent with the maxima and minima peaks of the positive Berry curvature shown above. It can be easily shown that the integration of the Berry curvature vanishes, hence the Chern number. However, there is an edge state propagating on the boundary of the system as shown in figure B1(b).

Appendix C. Superfluid phase

In this appendix, we address the superfluid phase. As mentioned above, there are two superfluid phases for \(\mu < \Delta_c \), \(\Delta = 0 \) (gapless) and \(\mu < \Delta_c \), \(\Delta > 0 \) (gap). For the former, we have \(\theta_0 = \theta_0 = \theta = \arccos(\mu/\Delta_c) \) and for the latter \(\theta_0 \) is not necessarily equal to \(\theta_0 \) leading to a gap \(\Delta \) at \(K \pm \) as shown above in figure B2(b). In the former case, \(\eta_1 = m = 0 \), \(\nu_1 = \nu_0 = \Delta, \sin^2 \theta + \mu \cos \theta = \Delta_e \) and \(v_{1,2} = JS(\cos^2 \theta \pm 1) \). The eigenvalues equation (A.8) yields

\[\epsilon_{\pm}(k) = \sqrt{[\Delta_e \pm v_1|/|k|^2 - v_2|/|k|^2]} \]

\[= 2JS^2 \left((\pm |/|k|^2) + (\pm |/|k|^2) \cos^2 \theta \right). \]

(C.1)

At the Dirac points \(K \pm \), we have \(\epsilon_{\pm}(k) = |/|k|^2 - 6JS \) and the system is gapless \(\Delta = 0 \) as shown in figure B2(a). However, there exist an edge state connecting the two Dirac points as shown in figure B2(b). The spectrum disperses linearly at two points in the Brillouin zone, \(K \pm \) and \(\Gamma \). The former is the usual Dirac points, i.e. linear touching of two bands \(\epsilon_{\pm}(q) = 6JS(1 + q/|/8(3 + \cos 2\theta) + O(|/q|^2) (q = k - K \pm) \), and the latter occur at the lower band \(\epsilon(q) = JS \sin \theta |/q| + O(|/q|^2) (q = k - \Gamma) \). It corresponds to a Goldstone mode associated with breaking of U(1) symmetry.

References

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X-L and Zhang S-C 2011 Rev. Mod. Phys. 83 1057
[3] Yu R et al 2010 Science 329 61
[4] Chen Y L et al 2010 Science 329 659
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[6] Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[7] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[8] Hsieh D et al 2008 Nature 452 970
[9] Zhang H et al 2009 Nat. Phys. 5 438
[10] Haldane F D M 1998 Phys. Rev. Lett. 61 2015
[11] Semenoff G W, Semenoff V and Zhou F 2008 Phys. Rev. Lett. 101 087204
[12] Yao W, Yang S A and Niu Q 2009 Phys. Rev. Lett. 102 096801
[13] Varney C N et al 2010 Phys. Rev. B 82 115125
[14] Vasić I et al 2015 Phys. Rev. B 91 094502
[15] Matsubara T and Matsuda H 1956 Prog. Theor. Phys. 16 569
[16] Katsura H, Nagaosa N and Lee P A 2010 Phys. Rev. Lett. 104 066403
[17] Onose S Y et al 2010 Science 329 297
[18] Wang Y F et al 2011 Phys. Rev. Lett. 107 146803
[19] Matsumoto R and Murakami S 2011 Phys. Rev. Lett. 106 197202
[20] Mook A, Henk J and Mertig I 2014 Phys. Rev. B 89 044412
[21] Lee H, Han J H and Lee P A 2015 Phys. Rev. B 91 125413
[22] Chisnell R et al 2015 Phys. Rev. Lett. 115 107201
[23] Hirschberger M et al 2015 Phys. Rev. Lett. 115 106603
[24] Owerre S A 2016 J. Phys.: Condens. Matter 28 386001
[25] Owerre S A 2016 J. Appl. Phys. 120 043903
[26] Guo H et al 2016 Phys. Rev. B 93 124401
[27] Bernardet K et al 2002 Phys. Rev. B 65 104519
[28] Coletta T, Laflorencie N and Mila F 2012 Phys. Rev. B 85 104421
[29] Murthy G, Arovas D and Auerbach A 1997 Phys. Rev. B 55 3104
[30] Jotzu G et al 2014 Nature 515 237
[31] Zheng W and Zhai H 2014 Phys. Rev. A 89 061603
[32] Miao J 2015 Phys. Rev. A 92 023632