A fuzzy MCDM approach to determine the most influential logistic factors

En etkili lojistik faktörleri belirlemek için bulanık bir ÇKKV yaklaşımı

Yazar(lar) (Author(s)): Mehmet Burak ŞENOL¹, Aylin ADEM², Metin DAĞDEVİREN³

ORCID¹: 0000-0002-6418-2486
ORCID²: 0000-0003-4820-6684
ORCID³: 0000-0003-2121-5978

Önemli Not : Aylin ADEM’in soy ismi Cilt 22 Sayı 3’de sehven Aylin ERDEM yazıldığı için söz konusu makale bu sayıda tekrar yayınlanmıştır.
Important Note: Since Aylin ADEM’s surname was mistakenly written as Aylin ERDEM in previous issue (Vol. 22 Issue 3) of the journal, this article re-published in this issue.

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Şenol M.B., Adem A. and Dağdeviren M., “A fuzzy MCDM approach to determine the most influential logistic factors”, Politeknik Dergisi, 22(3): 793-800, (2019).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.586041
En Etkili Lojistik Faktörleri Belirlemek için Bulanık Bir ÇKKV Yaklaşımı**

Araştırma Makalesi / Research Article

Mehmet Burak ŞENOL*, Aylin ADEM, Metin DAĞDEVİREN
Department of Industrial Engineering, Gazi University

(Geliş/Received : 03.04.2018 ; Kabul/Accepted : 17.06.2018)

ÖZ

Malzeme yönetimi sanatı, lojistik işletmelerin etkinlik ve verimliliğinde önemli bir rol oynar. En etkili lojistik faktörleri belirlemek çok önemlidir; çünkü lojistik maliyetler toplam işletme maliyetinin %30’una tekabül etmektedir. Bu çalışmada lojistik firmaların başarısını etkileyen maliyet, hız, güvenilirlik, müşteri memnuniyeti, dağıtım kanalı, firma imajı, çevre dostu olma ve teknolojik yeniliklere bağlı olma gibi faktörler incelenmiş ve sıralanmıştır. Faktörleri sıralamak için Pisagor Bulanık (PF) kümeleri, üçgensel bulanık sayılar ve Analitik Hiyerarşi Prosesi (AHP) temelinde üç farklı yaklaşım önerilmiştir. Literatüre yeni girmesine rağmen, Pisagor bulanık kümeleri belirsizlik hesaplamasında yaygın olarak kullanılmaktadır. AHP, F-AHP ve PF-AHP yöntemlerini uygulanan en etkili lojistik faktörü maliyet, hız ve güvenilirlik olarak belirlenmiştir, ancak faktör ağırlıkları farklıdır. AHP, F-AHP ve PF-AHP sonuçları arasındaki farklılıkların değerlendirilmesi, dilsel ifadelerin kullanılmasıyla da uyelik derecesi koşulunun sağlanıp sağlanamamasından kaynaklandığı düşünülmektedir. Bunun yanında Türkiye’deki ilk 10 lojistik firma bu kriterlere göre puanlanarak sıralanmıştır. Lojistik firmaların faktörlerle göre yapılan sıraların ekonomik büyüklüklerinden farklı olduğu görülmüştür.

Anahtar Kelimeler: Lojistik, pisagor bulanık sayılar, AHP, bulanık-AHP, ÇKKV.

A Fuzzy MCDM Approach to Determine the Most Influential Logistic Factors

ABSTRACT

The art of managing materials; logistics play a crucial role in efficiency and productivity of companies. It is very significant to determine most influential logistic factors since logistic costs account for 30% of total company costs. The factors affecting success of logistic enterprises such as cost, speed, reliability, customer satisfaction, distribution channel, company image, environmental friendliness and technological innovations are investigated and ranked in this study. Three different approaches based on Pythagorean Fuzzy sets, triangular fuzzy numbers and Analytic Hierarchy Process are offered for ranking these factors. Although it has been introduced to literature recently, the pythagorean fuzzy sets are widely employed in calculating uncertainty. The three most influential logistic factors are revealed as cost, speed and reliability, respectively by employing AHP, Fuzzy AHP and Pythagorean Fuzzy AHP, however factor weights are different. We think that the differences with in the AHP, F-AHP and PF-AHP results may stem from expressing evaluations in exact values, linguistic terms or in some cases it may be related to fulfilling the condition of membership and non-membership. Furthermore, top 10 logistic firms in Turkey are scored and ranked to these factors. Logistics, Pythagorean fuzzy sets, AHP, Fuzzy AHP. MCDM.

Keywords: Logistics, pythagorean fuzzy sets, AHP, fuzzy AHP.

1. INTRODUCTION

Logistics provide the efficient movement of supplies to the customers and plays a vital role in satisfying customer demands in time and at the lowest possible cost. In logistics, transportation costs, occupying more than one-third of logistic costs, influence the efficiency of whole production processes from manufacturing to delivery to final consumers and returns.

A good transportation system brings benefits to service quality and company competitiveness. Logistic costs account for 30% of the total company costs. A management perspective on logistics activities is required [1]. For that reason, it is very significant to determine most influential logistic factors in company’s supply chain operations. Here, Multi Criteria Decision Making (MCDM) methods based on Pythagorean Fuzzy (PF) sets, triangular fuzzy numbers and Analytic Hierarchy Process (AHP) can be easily applied as a decision support tool to rank these factors and determine the most influential one. Utilization of PF sets in MCDM is not quite new. However, it is difficult to find a research in the literature focused on logistic factors using PF numbers, triangular fuzzy numbers and AHP. Kumru and Kumru [2] employed an AHP model in selecting the most suitable way of transportation between two given locations in Turkey for a logistic company.
Logistic activities have always enlisted interest of researchers and firms in order to improve services and reduce costs. Different approaches were offered for evaluating performance of logistic activities. Past performance records were frequently used as a single evaluation dimension, but it is not sufficient for a comprehensive evaluation [3-8]. A number of papers were determined significant logistic resources and examined their effects on logistic performance with respect to Resource-Based View (RBV) theory, which believes that the success of logistic activities is based on unique and valuable resources of companies [9-13]. The RBV theory considers company resources in two categories, which are tangible resources, e.g. technology and physical resources and intangible resources, e.g. management expertise, relational and structure resources. However, large number of conflicting criteria had to be considered and analyzed in all of the aforementioned studies. Determining the most influential factors for success of logistics enterprises can be handled as an MCDM problem. Making decisions in the presence of multiple, usually conflicting, logistic criteria and finding the best option from all of the feasible alternatives is only possible with MCDM tools [14].

The purpose of this paper is to present a fuzzy analytical approach for evaluating logistic factors and companies. This paper is one of a kind on considering logistic factors as an MCDM problem which employs pythagorean fuzzy numbers and presents a holistic view. Purpose and originality of the study are explained in this section. We also briefly present the literature here.

The rest of the paper is organized as follows. Methodology of the research is presented in Section-2. AHP, F-AHP and PF sets and PF-AHP steps are briefly explained in this section with general features and basic notions. Section-3 is devoted to evaluation of logistic factors and discussions of results. Illustrative examples for the decision models together with comparative step-by-step analysis are given. The most influential logistic factors are revealed as cost, speed and reliability, respectively. The sequence of factors varies in AHP, F-AHP and PF-AHP results. The conclusions are made in Section 5 and suggestions for future work are explained.

In logistics, main cost is the payments made for the transportation between two points that may be affected by site of the company. Another criterion to be considered for success of logistics is speed related to duration between two sites where materials are transported. Consistently meeting promised delivery times and fulfilling service requirements for shipper’s consignments determines the reliability of logistic services. Considering transportation modes, reliability is good for highway and railway and it is related to flexibility [15]. Offering convenient schedules or allowing to non-specific extra pick-up and deliveries, determines the flexibility of transportation modes and logistic enterprises.

Satisfying customer demands in time and at the lowest possible cost is one of the main objectives of logistics. Customer satisfaction is greatly affected by distribution channels, which are highway, railway, waterway, pipeline and airway. They have different advantages as well as disadvantages in terms of reduced cost, increased agility and service. Air quality, reducing greenhouse gas emissions, noise, waste are the issues concerned with environmental friendliness. Due to aforementioned explanations factors such as cost, speed, reliability, customer satisfaction, distribution channel, company image, environmental friendliness, being open-minded to technological innovations (industry 4.0 applications, etc.) are selected for evaluation. In this study a fuzzy MCDM approach based on PF sets, triangular fuzzy numbers and AHP is presented to evaluate logistic factors and rank logistic enterprises.

Yager introduced pythagorean fuzzy sets to the literature, since in some cases, intuitionistic fuzzy sets unable to capture the condition for degrees of membership and non-membership greater than 1 [16]. Pythagorean fuzzy sets are employed in many different applications. Yücesan and Kahraman (2019) employed PF-AHP for risk assessment in hydroelectric power plants [17]. Gül and Ak, (2018) calculated the importance levels of parameters by a 5×5 matrix method with the help of the PF-AHP [18].

Ilbahar et al. (2018), proposed an integrated risk assessment approach which includes Pythagorean Fuzzy Proportional Risk Assessment, Fine Kinney, PF-AHP and a fuzzy inference system [19]. They applied this approach to the risks of an excavation process in a construction yard. Karasan et al (2018) proposed a new PF-AHP for site selection [20]. Mete (2018) stated that pythagorean fuzzy sets cover vagueness in a more suitable way and proposed an FMEA-based AHP-MOORA integrated approach under pythagorean fuzzy sets for assessing occupational risks in a natural gas pipeline construction project [21]. Gül (2018) developed a two-phase approach for risk assessment which includes PF-AHP and Fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje (F-VIKOR) [22]. Gül (2018) evaluated a gun and rifle barrel external surface oxidation and colouring unit with this method [22]. PF numbers were integrated with various MCDM techniques, e.g. TOPSIS [23-25], VIKOR [26, 27] PROMETHEE [28] and CODAS [29] in the literature.
Table 1. Linguistic Scale [43]

Linguistic scale for importance	Triangular fuzzy scale
Just equal (JE)	(1, 1, 1)
Equally important (EI)	(1/2, 1, 3/2)
Weakly more important (WMI)	(1, 3/2, 2)
Strongly more important (SMI)	(3/2, 2, 5/2)
Very strongly more important (VSMI)	(2, 5/2, 3)
Absolutely more important (AMI)	(5/2, 3, 7/2)

2. MATERIAL and METHOD

2.1. AHP and Fuzzy AHP

AHP was developed by Thomas L. Saaty in 1977 to solve complex multi criteria decision making problems [30]. AHP was employed to problems in various areas, such as aviation [31-33], equipment and supplier selection [34-35], energy [36-38], investment [39], facility planning [40] and agriculture [41]. However, decision makers feel more comfortable when they express their evaluation in linguistic terms in place of exact values during decision-making [42]. Fuzzy numbers can be explained with the confidence interval and are defined over a fuzzy subset of real numbers. In this study, the triangular fuzzy numbers in Table 1 were used during the evaluations [43].

Factor weights were determined by taking geometric means and alpha-cut method was employed for the defuzzification of fuzzy numbers.

2.2. Pythagorean Fuzzy Sets and PF- AHP

Three basic representations for pythagorean membership grades are provided in the related literature [16]. The first representation of PF membership is (a, b), satisfying the conditions that $a \in [0, 1], b \in [0, 1]$ and $a^2 + b^2 \leq 1$.

The second one is the polar coordinates (r, θ) satisfying conditions that $r \in [0, 1]$ and $\theta \in \left[0, \frac{\pi}{2}\right]$. Finally, last representation of PF membership grade is (r, d) close to the second one satisfying the conditions that $r \in [0, 1], \theta \in \left[0, \frac{\pi}{2}\right]$ and $d = 1 - \frac{2\theta}{\pi}$. Their relationship is that $a^2 + b^2 = r^2, a = r \cos(\theta), b = \sin(\theta)$.

A fuzzy subset having these pythagorean membership grades referred as a PFS by Yager [16].

A PFS is defined as follows.

$$\bar{P} = \left\{x, P(\mu_x(x), \nu_x(x)) | x \in X\right\},$$

where the function $\mu_x : X \rightarrow [0, 1]$ defines the degree of membership and $\nu_x : X \rightarrow [0, 1]$ defines the degree of non-membership of the element $x \in X$ to P respectively and for every $x \in X$ it holds that

$$0 \leq (\mu_x(x))^2 + (\nu_x(x))^2 \leq 1$$

For any PFS and $\bar{P} x \in X, \pi_x(x) = \sqrt{1 - \mu_x(x)^2 - \nu_x(x)^2}$ is called the degree of indeterminacy of x to \bar{P}.

Given three PFNs $P_1 = P(\mu_{x_1}, \nu_{x_1}), P_2 = P(\mu_{x_2}, \nu_{x_2})$ and $P = P(\mu_x, \nu_x)$

Yager defined the basic operations on them which can be described as follows [16]:

$$P_1 \cap P_2 = P\left\{\max \left\{\mu_x, \mu_{x_1}\right\}, \min \left\{\nu_x, \nu_{x_1}\right\}\right\}.$$ (3)

$$P_1 \cap P_2 = P\left\{\min \left\{\mu_x, \mu_{x_1}\right\}, \max \left\{\nu_x, \nu_{x_1}\right\}\right\}.$$ (4)

Some mathematical operators for PFNs are defined as follows.

$$\bar{P} \oplus \bar{P} = P\left(\sqrt{\mu_x^2 + \mu_{x_1}^2 - \mu_x \mu_{x_1}}, \nu_x, \nu_{x_1}\right)$$

$$\bar{P} \oplus \bar{P} = P\left(\mu_x, \mu_{x_1}, \sqrt{\nu_x - \nu_{x_1}}, \sqrt{\nu_x - \nu_{x_1}}\right).$$ (6)

$$\lambda \bar{P} = P\left(\sqrt{1 - (1 - \mu_x^2)\lambda^2}, (\nu_x)^\lambda\right), \lambda \geq 0 \text{ and } \lambda \in R.$$ (7)

Zhang and Xu (2014) defined the Euclidean distance between two PFNs as in the following equation [44]:

$$d(\bar{P}_1, \bar{P}_2) = \frac{1}{2} \left[\left(\mu_{x_1} - \mu_x\right)^2 + \left(\nu_{x_1} - \nu_x\right)^2 + \left(\pi_{x_1} - \pi_x\right)^2\right].$$ (8)

The Taxicab distance between two PFSs is defined by equation below:

$$T(\bar{P}_1, \bar{P}_2) = \left|\mu_{x_1} - \mu_x\right| + \left|\nu_{x_1} - \nu_x\right| + \left|\pi_{x_1} - \pi_x\right|.$$ (9)

Let $p_i = (\mu_{x_i}, \nu_{x_i})$ and $p_j = (\mu_{x_j}, \nu_{x_j})$ be two Pythagorean fuzzy number and $\rho > 0$. The following operations are presented for Pythagorean fuzzy number [44, 45]
\[\hat{P} = P \left(\frac{\mu_i - \mu_j}{\sqrt{1 - \mu_i}} \right) \text{ if } \mu_i \geq \mu_j, v_i \leq \min \left\{ v_i, \frac{\mu_i}{\pi_i} \right\} \] (10)

\[\frac{P}{\hat{P}} = \left(\frac{\mu_i}{\mu_j} \right) \frac{\sqrt{1 - \mu_i}}{\sqrt{1 - v_i}} \text{ if } \mu_i \leq \min \left\{ \mu_i, \frac{\mu_i}{\pi_i}, v_i, v_j \right\} \] (11)

Pythagorean fuzzy sets can be defined as the general form of the intuitionistic fuzzy sets in which intuitionistic fuzzy sets cannot handle the ambiguity of data [31].

Definition (1) Let a set \(X \) be a universe of discourse. A Pythagorean fuzzy set \(P \) is an object having the form [22]:

\[P = \{ (x, \mu(x), \nu(x)) : x \in X \} \text{ where } \mu(x) : X \to [0,1] \text{ degree of membership} \]

\[\nu(x) : X \to [0,1] \text{ degree of non-membership} \]

of the element \(x \in X \) to \(P \). For every \(x \in X \), the following holds:

\[0 \leq \mu_p(x)^2 + \nu_p(x)^2 \leq 1 \]

Steps of PF-AHP: These steps are taken from Gül (2018)’s paper [22]:

Step 1. Pairwise comparison matrix \(A = (a_{ik})_{m \times m} \) is determined with respect to the linguistic evaluations of experts using the scale offered by Ilbahar et al [19].

Step 2. The difference matrixes \(D = (d_{ik})_{m \times m} \) between the lower and upper values of the membership and non-membership functions are revealed by employing Eq. (12) and (13).

\[d_{ikL} = \mu_{ikL}^2 - \nu_{ikL}^2 \] (12)

\[d_{ikU} = \mu_{ikU}^2 - \nu_{ikU}^2 \] (13)

Step 3. The interval multiplicative matrix \(S = (s_{ik})_{m \times m} \) is found with respect to Eq.(14) and Eq.(15):

\[S_{ikL} = \sqrt{1000d_{ikL}} \] (14)

\[S_{ikU} = \sqrt{1000d_{ikU}} \] (15)

Step 4. The determinacy value \(\tau = (\tau_{ik})_{m \times m} \) is determined with the help of Eq. (16).

\[\tau_{ik} = 1 - \left(\frac{\mu_{ikU}^2 - \mu_{ikL}^2}{\nu_{ikU}^2 - \nu_{ikL}^2} \right) \] (16)

Step 5. The determinacy degrees are multiplied with \(S = (s_{ik})_{m \times m} \) matrix weights \(T = (t_{ik})_{m \times m} \) using Eq.(17):

\[t_{ik} = \left(\frac{S_{ikL} + S_{ikU}}{2} \right) \tau_{ik} \] (17)

Step 6. Each normalized priority weight \(w_i \) is calculated by using Eq. 18.

\[w_i = \sum_{k=1}^{m} t_{ik} \sum_{i=1}^{m} \sum_{k=1}^{m} t_{ik} \] (18)

The readers who wants to learn more information about AHP, fuzzy AHP and Pythagorean fuzzy AHP can benefit from [19, 22] respectively.

3. RESULTS AND DISCUSSION

In this part of the study, evaluation matrices and results of the applied methods are given in Table 2, Table 3 and Table 4 respectively. The criteria handled in this study are cost (C1), speed (C2), reliability (C3), customer satisfaction (C4), distribution channel (C5), company image (C6), environmental friendliness (C7), technological innovations and logistic 4.0 (C8).

The method followed in F-AHP can be briefly defined as employing geometric means of the rows and the alpha-cut method for the defuzzification.

Results of Fuzzy AHP and weighst are presented in Table 2. The most important criterion is revealed to be reliability (C3) with respect to F-AHP results. The sequence of most influential logistic factors to F-AHP is presented in Table 2 as reliability (C3), speed (C2), cost (C1), customer satisfaction (C4), distribution channel (C5), company image (C6), technologival innovations and logistic 4.0 (C8) and environmentally friendliness (C7).
The logistic experts prepared PF-AHP decision matrix with respect to Ilbahar’s scale [19]. This table is required to employ PF-AHP steps. Pairwise comparisons between the criteria can be seen at the decision Matrix in Table 3, which is generated using the Ilbahar’s scale of PF AHP.

The PF-AHP results, which were gained by applying PF-AHP steps described in Section 2, are presented in Table 4. The most important criterion is revealed to be reliability (C3) with respect to PF-AHP results. The sequence of most influential logistic factors to PF-AHP is presented in Table 4 as reliability (C3), speed (C2), cost (C1), customer satisfaction (C4), technological innovations and logistic 4.0 (C8), distribution channel (C5), company image (C6) and environmentally friendliness (C7).

Table 2. Results of F-AHP

C1	C2	C3	C4	C5	C6	C7	C8	Weights
C1	(1,1,1)	(1/2,1.3/2)	(2/5,1/2,2/3)	(3/2,2.5/2)	(5/2,3,7/2)	(5/2,3,2.5/2)	(3/2,2.5/2)	0.176
C2	(1,1,1)	(1/2,1.3/2)	(1,1)	(5/2,3,7/2)	(5/2,3,2.5/2)	(3/2,2.5/2)	0.181	
C3	(1,1,1)	(5/2,3,7/2)	(2,5/1,2,2/3)	(5/2,3,7/2)	(3/2,2.5/2)	(3/2,2.5/2)	0.192	
C4	(1,1,1)	(1/2,1.3/2)	(1/2,1.3/2)	(3/2,2.5/2)	(3/2,2.5/2)	0.109		
C5	(1,1,1)	(3/2,2.5/2)	(1/2,1.3/2)	(1/2,1.3/2)	0.091			
C6	(1,1,1)	(1/2,1.3/2)	(1/2,1.3/2)	0.073				
C7	(1,1,1)	(1/2,1.3/2)	0.078					

AHP and PF-AHP. Table 5 illustrates the comparative results of three applied methods; e.g. AHP, F-AHP and PF-AHP. The first three criteria are the same in all methods: cost, speed, and reliability, though the orders of first and third criteria in AHP (cost, speed and reliability) are different from F-AHP and PF-AHP (reliability, speed and cost).

The sequence of most influential logistic factors to AHP is cost (C1), speed (C2), reliability (C3), customer satisfaction (C4), company image (C6), distribution channel (C5), technological innovations and logistic 4.0 (C8) and environmentally friendliness (C7) in Table 5. The sequence of most influential logistic factors to F-AHP is reliability (C3), speed (C2), cost (C1), customer satisfaction (C4), distribution channel (C5), company image (C6), technological innovation and logistic 4.0 (C8) and environmentally friendliness (C7) in Table 5.

Table 3. Decision Matrix for PF-AHP

C1	C2	C3	C4
C1 (0.196,0.196),(0.196,0.196)	(0.45,0.55),(0.45,0.55)	(0.20,0.35),(0.65,0.80)	(0.65,0.80),(0.20,0.35)
C2 (0.45,0.55),(0.45,0.55)	(0.196,0.196),(0.196,0.196)	(0.45,0.55),(0.45,0.55)	(0.55,0.65),(0.35,0.45)
C3 (0.65,0.80),(0.20,0.35)	(0.45,0.55),(0.45,0.55)	(0.196,0.196),(0.196,0.196)	(0.91),(0)
C4 (0.20,0.35),(0.65,0.80)	(0.45,0.55),(0.45,0.55)	(0.65,0.80),(0.20,0.35)	0.196,0.196)
C5 (0),(0),(0.91)	(0),(0.91)	(0),(0.91)	(0.45,0.55),(0.45,0.55)
C6 (0.10,0.20),(0.8,0.9)	(0),(0.91)	(0.35,0.45),(0.55,0.65)	(0.45,0.55),(0.45,0.55)
C7 (0.20,0.35),(0.65,0.80)	(0.20,0.35),(0.65,0.80)	(0),(0.91)	(0.20,0.35),(0.65,0.80)
C8 (0.20,0.35),(0.65,0.80)	(0.20,0.35),(0.65,0.80)	(0.35,0.45),(0.55,0.65)	(0.65,0.80),(0.20,0.35)

Results of three applied methods; including AHP, F-AHP and PF-AHP, are investigated. The logistic factors (e.g. C1-C8) are compared with respect to results of AHP, F-AHP, and PF-AHP. Table 4 shows the comparative image (C6), technological innovation and logistic 4.0 (C8) and environmentally friendliness (C7) in Table 5.

Table 4. Results of PF-AHP

C1	C2	C3	C4	C5	C6	C7	C8	Weights	
C1	1.000	0.848	0.161	3.766	19.448	9.512	3.766	3.766	0.213
C2	0.848	1.000	0.848	1.688	19.448	19.447	3.766	3.766	0.257
C3	3.766	0.848	1.000	19.448	19.448	1.408	19.448	1.688	0.339
C4	0.073	0.424	0.032	1.000	0.848	0.848	3.766	3.766	0.054
C5	0.032	0.032	0.032	0.848	1.000	3.766	3.766	0.161	0.049
C6	0.068	0.032	0.424	0.848	0.161	0.161	0.848	0.848	0.021
C7	0.161	0.161	0.308	0.161	0.161	0.848	1.000	0.161	0.015
C8	0.161	0.161	0.161	1.000	3.766	3.766	3.766	1.000	0.052
The sequence of most influential logistic factors to PF-AHP is reliability (C3), speed (C2), cost (C1), customer satisfaction (C4), technological innovation and logistic 4.0 (C8), distribution channel (C5), company image (C6) and environmentally friendliness (C7) in Table 5.

The top 10 logistic firms (A1-A10) in Turkey are scored, compared and ranked with respect to most influential logistic factors and PF-AHP weights. We employ the PF-AHP weights to rank the logistic firms, because PF-AHP captures the condition for degrees of membership and non-membership greater than 1.

Table 6 illustrates the comparison of logistic firms. We didn’t mention the name of logistic firms that are compared due to commercial reasons. Considering most influential logistic factors, rank of logistic firms are (e.g. A6, A7, A9, A4, A10, A2, A1, A8, A5 and A3) different than their economic magnitudes (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10).

4 CONCLUSION AND FUTURE REMARKS

Logistic activities have focused on improving services and reducing costs. Research results corroborate this since most significant three criteria are revealed as cost; speed and reliability are in line with this objective in all methods, which are AHP, F-AHP, PF-AHP. We think that the differences with in the AHP, F-AHP and PF-AHP results may stem from expressing evaluation in exact values, linguistic terms or in some cases it may be related to fulfilling the condition for degrees of membership and non-membership.

Our suggestions for future work is evaluating and comparing the same; e.g. top 10 logistic firms in Turkey with respect to each criterion with a F-MCDM approach based on Pythagorean fuzzy sets. After that F-MCDM evaluation results can be compared with the scoring results gathered in this study.

NOMENCLATURE

AHP: Analytic Hierarchy Process
F-AHP: Fuzzy Analytic Hierarchy Process
FMEA: Failure Mode Effect Analysis
MCDM: Multi Criteria Decision Making
MOORA: Multi-Objective Optimization on the basis of Ratio Analysis
PF: Pythagorean Fuzzy
PF: Pythagorean Fuzzy Numbers
PF-AHP: Pythagorean Fuzzy Analytic Hierarchy Process
PROMETHEE: The Preference Ranking Organization Method for Enrichment Evaluation
TOPSIS: Technique for Order Preference by Similarity to Ideal Solution

Table 5. Comparative Analysis of different linguistic scales

Weights	AHP	F-AHP	PF-AHP	Order	AHP	F-AHP	PF-AHP
W1 0.282	0.176	0.213	1	1	3	3	
W2 0.219	0.181	0.257	2	2	2	2	
W3 0.183	0.192	0.339	3	3	1	1	
W4 0.090	0.109	0.054	4	4	4	4	
W5 0.063	0.100	0.049	5	6	5	6	
W6 0.074	0.091	0.021	6	5	6	7	
W7 0.039	0.073	0.015	7	8	8	8	
W8 0.050	0.078	0.052	8	7	7	5	

Table 6. Comparative Analysis of different logistic firms

Criteria	Weights	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
C1	0.213	80	60	75	85	65	70	85	75	95	90
C2	0.257	75	90	85	65	60	75	80	50	60	70
C3	0.339	65	65	40	75	70	90	65	75	70	65
C4	0.054	50	45	50	85	80	75	70	65	60	50
C5	0.049	95	90	70	75	85	85	90	95	95	85
C6	0.021	50	55	60	55	45	60	50	70	50	60
C7	0.015	20	45	45	60	50	60	85	75	60	55
C8	0.052	30	50	40	30	60	50	45	55	65	50
Total	1	68.6	69.2	61.5	72.1	66.2	77.6	73.5	67.8	72.6	70.7
RBV: Resource-Based View

F-VIKOR: Fuzzy VlsE Kriterijumska Optimizacija I Kompromisno Resenje,

REFERENCES

[1] Hensher, D. and Brewer, A., “Transport: An Economics and Management Perspective”, Oxford University Press, UK (2000).

[2] Kumru, M. and Kumru, P.Y., “Analytic hierarchy process application in selecting the mode of transport for a logistics company”. J. Adv. Transp. 48: 974–999, (2014).

[3] Du, B., Guo, S., Huang, X., Li, Y. and Guo, J., A “Pareto supplier selection algorithm for minimum life cycle cost of complex product system”, Exp. Sys. with Appl., 42: 4253–4264, (2015).

[4] Lai, K.-H., Ngai, E. W. T. and Cheng, T. C. E., “Measures for evaluating supply chain performance in transport logistics”, Transp. Res. Part E Log. and Transp. Rev., 38:439–456, (2002).

[5] Liu, C.L. and Lyons, A. C., “An analysis of third-party logistics performance and service provision”, Transp. Res. Part E Log. and Transp. Rev., 47(4): 547–570, (2011).

[6] Moghaddam, K. S., “Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty”, Exp. Sys. with Appl., 42:6237–6254, (2015).

[7] Rezaei, J., Fahim, P. and Tavasszy, L., “Supplier selection in the airline retail industry using a funnel methodology: Conjunctive screening method and fuzzy AHP”, Exp. Sys. with Appl., 41:8165–8179, (2014).

[8] Straight, R. L., “Measuring contractors’ performance”, J. Supp. Chain Manag., 5(1):18–28, (1999).

[9] Wernerfelt, B., “A resource-based view of the firm”, Strat. Manag. J., 5: 171–180, (1984).

[10] Barney, J., “Firm resources and sustained competitive advantage”, J. Manag., 17(1): 99–120, (1991).

[11] Hartmann, E. and Grahl, A. D., “The flexibility of logistics service providers and its impact on customer loyalty: an empirical study”, J. Supp. Chain Manag., 47: 63–85, (2011)

[12] Hunt, S. D., “Commentary – a general theory of competition: Issues, answers and an invitation”, Euro. J. Market., 35: 524–548 (2001)

[13] Lai, F., Li, D., Wang, Q. and Zhao, X., “The information technology capability of third-party logistics providers: A resource-based view and empirical evidence from China”, J. Supp. Chain Manag., 44: 22–38, (2008)

[14] Karia, N. and Wong, C. Y., “The impact of logistics resources on the performance of Malaysian logistics service providers”, Manag. Oper., 24(7): 589–606 (2013)

[15] Churchman C.W., Ackoff R.L. and Arnoff E.L., “Introduction to Operations Research”, John Wiley & Sons: New York (USA), (1957)

[16] Yager, R., “Pythagorean membership grades in multi criteria decision making”, IEEE Transactions On Fuzzy Systems, 22(4): 958-965 (2014).

[17] Yucesan, M. and Kahraman, G., “Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP”, Energy Policy, 343-351, (2019)

[18] Gul, M. and Ak, M.F., “A comparative outline for quantifying risk ratings in occupational health and safety risk assessment”, J. Clean. Prod., 196: 653-664, (2018)

[19] Ilbalar, E., Karaslan, A., Cebi, S. and Kahraman, C., “A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system”, Safety Science, 103: 124-136, (2018)

[20] Karaslan, A., Ilbalar, E. and Kahraman, C. “A novel pythagorean fuzzy AHP and its application to landfill site selection problem”, Soft Comput, article in press, (2018)

[21] Mete, S., “Assessing occupational risks in pipeline construction using FMEA-based AHP-MOORA integrated approach under Pythagorean fuzzy environment”, Hum. Ecol. Risk Assess., article in press, (2018)

[22] Gul, M., “Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and coloring unit”, Int. J. Occup. Safety and Ergon., 1-15, (2018)

[23] Wang, L., Wang, H., Xu, Z. and Ren, Z., “The interval-valued hesitant Pythagorean fuzzy set and its applications with extended TOPSIS and Choquet integral-based method” Int. J. Intel. Syst., 34(6): 1063-1085, (2019)

[24] Liang, D. and Xu, Z. , “The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets”, Appl. Soft Comp. J., 60:167-179, (2017)

[25] Garg, H., “A new improved score function of an interval-valued pythagorean fuzzy set based topsis method” Int. J. Uncer. Quant.,7(5): 463-474, (2017)

[26] Liang, D., Zhang, Y., Xu, Z. and Jamaldeen, A., “Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry”, Appl. Soft Comp. J., 78: 583-594, (2019)

[27] Cui, F. B., You, X. Y., Shi, H. and Liu, H.C., “Optimal siting of electric vehicle charging stations using pythagorean fuzzy vikor approach”, Math. Prob. in Eng., (2018)

[28] Zhang, Z.X., Hao, W.N., Yu, X. H., Zhang, S. J. and Chen, J.Y., “Pythagorean fuzzy preference ranking organization method of enrichment evaluations”, Int. J. Intel. Sys., article in press, (2019)

[29] Bolturk, E., “Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm”, J. Enterp. Infor. Manag., 31(4): 550-564, (2018)

[30] Saaty, T. L., “How to make a decision: the analytic hierarchy process”, Euro. J. Oper. Res., 48: 9-26, (1970)

[31] Şenol, M.B., Dağdeviren, M., Kurt, M. and Çilingir, C., “Evaluation of cockpit design by using quantitative and qualitative tools”, IEEE Int. Conf. on Ind. Eng. and Eng. Manag., 847-851, (2009).

[32] Şenol, M.B., Dağdeviren, M., Kurt, M. and Çilingir, C., “Display panel design of a general utility helicopter by applying quantitative and qualitative approaches”, Hum. Fact. Ergon. in Manuf., 20 (1): 73-86, (2010).

[33] Şenol, M.B., Dağdeviren, M. and Kurt, M., “A multi criteria approach for aircraft cockpit interface evaluation”, J. Fac. Eng. Arch. Gazı Univ., 28 (4): 685-693, (2013)
[34] Dağdeviren, M., “Decision making in equipment selection: an integrated approach with AHP and PROMETHEE”, J. Intel. Manuf., 19: 397-406, (2008)

[35] Dağdeviren, M. Eren, T., “Analytic hierarchy process and use of 0-1 goal programming methods in selecting supplier firm”, J. Fac. Eng. Archit., Gazi Univ. Cilt 16, 41-52, (2001)

[36] Bozdağ, C.E., Kahraman, C. and Ruan, D., “Fuzzy group decision making for selection among computer integrated manufacturing systems”, Comp. Ind., 5: 13-29, (2003)

[37] Büyükozkan, G., Ertay, T., Kahraman, C. and Ruan, D., “Determining the importance weights for the design requirements in the house of quality using the fuzzy analytic network approach”, Int. J. Intel. Syst., 19: 443-461, (2004)

[38] Xiaohua, W. and Zhenmin, F., “Sustainable development of rural energy and its appraising system in Chine”, Renew. Sustain. Energ., 6: 395-404, (2002)

[39] Yedla, S. and Shresta, R.M., "Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi", Transp. Res., 37: 717-729, (2003)

[40] Aras, H., Erdogmus, S. and Koc, E., "Multi-criteria selection for a wind observation station location using analytic hierarchy process", Renew. Energ., 29: 1383-1392, (2004)

[41] Tolga, E, Demircan, M.L., and Kahraman, C., "Operating system selection using fuzzy replacement analysis and analytic hierarchy process", Int. J. Prod. Econ., 97: 89-117, (2005)

[42] Kim, P. P., Lee K. J. and Lee B.W., “Selection of an optimal nuclear fuel cycle scenario by goal programming & analytic hierarchy process”, Ann. of Nucl. Energy, 26: 449-460, (1999)

[43] Topraklı, A. Y., Kabak, M., Özceylan, E. and Adem, A., “Prioritization of mosque facility site selection criteria under fuzzy environment”, 13. Int. Conf. on Theory and Appl. of Fuzzy Sys. Soft Comp., (2018)

[44] Zhang, X. and Xu, Z., “Extension of topsis to multiple criteria decision making with pythagorean fuzzy sets” Int. J. Intel. Syst., 1061-1078, (2014)

[45] Peng, X. and Yong, Y., “Some results for pythagorean fuzzy sets” Int. J. Intel. Syst., 1133-1160, (2014)