Azam Hokmabadi · Behrooz Mashayekhy · Fahimeh Mohammadzadeh

Polynilpotent Multipliers of Some Nilpotent Products of Cyclic Groups

Received: 12 November 2009 / Accepted: 5 October 2010 / Published online: 3 May 2011
© King Fahd University of Petroleum and Minerals 2011

Abstract In this article, we present an explicit formula for the cth nilpotent multiplier (the Baer invariant with respect to the variety of nilpotent groups of class at most $c \geq 1$) of the nth nilpotent product of some cyclic groups $G = \mathbb{Z}^n \ast \cdots \ast \mathbb{Z}^n \ast \mathbb{Z}_{r_1} \ast \cdots \ast \mathbb{Z}_{r_t}$, $(m$-copies of $\mathbb{Z})$, where $r_{i+1} | r_i$ for $1 \leq i \leq t-1$ and $c \geq n$ such that $(p, r_1) = 1$ for all primes p less than or equal to n. Also, we compute the polynilpotent multiplier of the group G with respect to the polynilpotent variety $N_{c_1, c_2, \ldots, c_t}$, where $c_1 \geq n$.

Keywords Polynilpotent multiplier · Nilpotent product · Cyclic group

Mathematics Subject Classification (2010) 20E10 · 20E34 · 20F12 · 20F18

B. Mashayekhy’s research was in part supported by a grant from IPM (No. 85200037).

A. Hokmabadi (✉) · F. Mohammadzadeh
Department of Pure Mathematics, Ferdowsi University of Mashhad,
P.O. Box 1159-91775, Mashhad, Iran
E-mail: hokmabadi.ah@yahoo.com

F. Mohammadzadeh
E-mail: fa36407@yahoo.com

B. Mashayekhy
Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures,
Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran

B. Mashayekhy
Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran
E-mail: bmashf@um.ac.ir
1 Introduction and Motivation

Let G be any group with a free presentation $G \cong F/R$, where F is a free group. Then the Baer invariant of G with respect to the variety of groups \mathcal{V}, denoted by $VM(G)$, is defined to be

$$VM(G) = \frac{R \cap V(F)}{|RV^*F|};$$

where V is the set of laws of the variety \mathcal{V}, $V(F)$ is the verbal subgroup of F and

$$[RV^*F] = \langle v(f_1, \ldots, f_{i-1}, f_ir, f_{i+1}, \ldots, f_k)v(f_1, \ldots, f_i, \ldots, f_k)^{-1} | r \in R, f_i \in F, v \in V, 1 \leq i \leq k, k \in \mathbb{N} \rangle.$$

For example, if \mathcal{V} is the variety of abelian groups \mathcal{A}, then the Baer invariant of the group G will be $(R \cap F')/[R, F]$, which is isomorphic to $M(G)$, the Schur multiplier of G (see [5]). If \mathcal{V} is the variety of polynilpotent groups of class row (c_1, \ldots, c_t), $\mathcal{N}_{c_1, c_2, \ldots, c_t}$, then the Baer invariant of a group G with respect to this variety, which we call a polynilpotent multiplier, is as follows:

$$\mathcal{N}_{c_1, c_2, \ldots, c_t}M(G) = \frac{R \cap \gamma_{c_1+1} \circ \cdots \circ \gamma_{c_t+1}(F)}{[R, c_1F, c_2\gamma_{c_1+1}(F), \ldots, c_t \gamma_{c_1+1} \circ \cdots \circ \gamma_{c_t+1}(F)]},$$

where $\gamma_{c_1+1} \circ \cdots \circ \gamma_{c_t+1}(F) = \gamma_{c_1+1}(\gamma_{c_1+1}(\cdots(\gamma_{c_t+1}(F)\cdots)))$ is the group which is attained from the iterated terms of the lower central series of F. See [4] for the equality

$$[RN^*_{c_1, c_2, \ldots, c_t}F] = [R, c_1F, c_2\gamma_{c_1+1}(F), \ldots, c_t \gamma_{c_1+1} \circ \cdots \circ \gamma_{c_t+1}(F)].$$

Note that the Baer invariant of G is always abelian and independent of the choice of the free presentation for G with respect to a variety \mathcal{V} (see [5]). In particular, if $t = 1$ and $c_1 = c$, then the Baer invariant of G with respect to the variety \mathcal{N}_c is called the c-nilpotent multiplier and given by

$$\mathcal{N}_cM(G) = \frac{R \cap \gamma_{c+1}(F)}{[R, cF]}.$$

Determining these Baer invariants of groups is known to be very useful for classification of groups into isologism classes with respect to the chosen varieties (see [5]). In 1979, Moghaddam [8] gave a formula for the c-nilpotent multiplier of a direct product of two groups, where $c + 1$ is a prime number or 4. Also, in 1998, Ellis [1] presented the formula for all $c \geq 1$. In 1997, Moghaddam and Mashayekhy [7] presented an explicit formula for the c-nilpotent multiplier of a finite abelian group for every $c \geq 1$.

It is known that the nilpotent product is a generalization of the direct product. In 1992, Gupta and Moghaddam [2] calculated the c-nilpotent multiplier of the nilpotent dihedral group of class $n, G_n = \langle x, y | x^2, y^2, [x, y]^{2n-1} \rangle$. It is routine to verify that $G_n \cong \mathbb{Z}_n \ast \mathbb{Z}_2$. In 2003, Moghaddam et al. [9] extended the previous result and calculated the c-nilpotent multiplier of nth nilpotent products of two cyclic groups for $n = 2, 3$ and 4 under some conditions. Also, the second author [6] gave an implicit formula for the c-nilpotent multiplier of a nilpotent product of cyclic groups.

In this paper, we first obtain an explicit formula for the c-nilpotent multiplier of the nth nilpotent product of some cyclic groups $G = \mathbb{Z}_{r_1} \ast \cdots \ast \mathbb{Z}_{r_t} \ast \cdots \ast \mathbb{Z}_{r_1}$, where $r_i+1 \mid r_i$ for $1 \leq i \leq t-1$ and $c \geq n$ such that $(p, r_1) = 1$ for all primes p less than or equal to n. This result extends the works of Moghaddam and Mashayekhy [7] and Moghaddam et al. [9]. Second, we present an explicit formula for the polynilpotent multiplier of such a group G with respect to the polynilpotent variety $\mathcal{N}_{c_1, c_2, \ldots, c_t}$, where $c_1 \geq n$.

2 Notation and Preliminaries

Definition 2.1 ([3, §11.1 and §12.3]). The basic commutators on the letters $x_1, x_2, \ldots, x_n, \ldots$ are defined as follows:

(i) The letters $x_1, x_2, \ldots, x_n, \ldots$ are basic commutators of weight one, ordered by setting $x_i < x_j$, if $i < j$.

 Springer
(ii) Having defined the basic commutators of weight less than \(n \), the basic commutators of weight \(n \) are defined as \(c_k = [c_i, c_j] \), where

(a) \(c_i \) and \(c_j \) are basic commutators and \(w(c_i) + w(c_j) = n \), where \(w(c) \) is the weight of \(c \) and

(b) \(c_i > c_j \), and if \(c_i = [c_j, c_l] \), then \(c_j \geq c_l \).

(iii) The basic commutators of weight \(n \) follow those of weights less than \(n \). The basic commutators of weight \(n \) are ordered among themselves lexicographically; that is, if \([b_1, a_1] \) and \([b_2, a_2] \) are basic commutators of weight \(n \), then \([b_1, a_1] < [b_2, a_2] \) if and only if \(b_1 < b_2 \) or \(b_1 = b_2 \) and \(a_1 < a_2 \).

Basic commutators are special cases of outer commutators. Outer commutators on the letters \(x_1, x_2, \ldots, x_n, \ldots \) are defined inductively as follows:

The letter \(x_i \) is an outer commutator word of weight one. If \(u = u(x_1, \ldots, x_s) \) and \(v = v(x_{s+1}, \ldots, x_{s+t}) \) are outer commutator words of weights \(s \) and \(t \), then \(w(x_1, \ldots, x_{s+t}) = [u(x_1, \ldots, x_s), v(x_{s+1}, \ldots, x_{s+t})] \) is an outer commutator word of weight \(s + t \) and will be written \(w = [u, v] \).

Theorem 2.2 ([3, §11.2]). Let \(F \) be the free group on \(x_1, x_2, \ldots, x_d \); then for all \(1 \leq i \leq n \),

\[
\gamma_n(F) = \frac{1}{\gamma_{n+1}(F)}
\]

is the free abelian group, and freely generated by the basic commutators of weights \(n, n + 1, \ldots, n + i - 1 \) on \(d \) letters.

Theorem 2.3 ([3, §11.2]). The number of basic commutators of weight \(n \) on \(d \) generators is given by the following formula:

\[
\chi_n(d) = \frac{1}{n} \sum_{m|n} \mu(m) d^\frac{n}{m},
\]

where \(\mu(m) \) is the Möbius function, which is defined to be

\[
\mu(m) = \begin{cases}
1 & \text{if } m = 1, \\
0 & \text{if } m = p_1^{a_1} \cdots p_k^{a_k} \quad \exists a_i > 1, \\
(-1)^s & \text{if } m = p_1 \cdots p_s,
\end{cases}
\]

where \(p_i \)'s are distinct prime numbers.

Let \(G_i = \langle x_i \rangle_{x_i}^{k_i} \), for \(i \in I \), be the cyclic group of order \(k_i \) if \(k_i > 1 \), and the infinite cyclic group if \(k_i = 0 \). The \(n \)th nilpotent product of the family \(\{G_i\}_{i \in I} \) is defined as follows (see [10]):

\[
\prod_{i \in I}^n G_i = \frac{\prod_{i \in I} G_i}{\gamma_{n+1}(\prod_{i \in I} G_i)},
\]

where \(\prod_{i \in I} G_i \) is the free product of the family \(\{G_i\}_{i \in I} \).

Let

\[
1 \to R_i = \langle x_i \rangle \to F_i = \langle x_i \rangle \to G_i \to 1
\]

be a free presentation for \(G_i \). It is routine to check that a free presentation for the \(n \)th nilpotent product of \(\prod_{i \in I}^n G_i \) is as follows (see [9]):

\[
1 \to R = S\gamma_{n+1}(F) \to F = \prod_{i \in I}^n F_i \to \prod_{i \in I}^n G_i \to 1,
\]

where \(S = \langle x_i \rangle_{i \in I}^F \). Therefore, if \(c \geq n \), then the \(c \)-nilpotent multiplier of \(\prod_{i \in I}^n G_i \) is

\[
\mathcal{N}_c M \left(\prod_{i \in I}^n G_i \right) = \frac{R \cap \gamma_{c+1}(F)}{|R, c F|} = \frac{\gamma_{c+1}(F)}{[S, c F]\gamma_{c+n+1}(F)} = \frac{\gamma_{c+1}(F)}{\rho_{c+1}(S)\gamma_{c+n+1}(F)},
\]

where \(\rho_k(S) \) is defined inductively by \(\rho_1(S) = S \) and \(\rho_{c+1}(S) = [\rho_c(S), F] \).
Lemma 2.4 If $1 \leq i < r$ and $(p, r) = 1$ for all primes p less than or equal to i, then r divides $\binom{r}{i}$.

Proof Clearly $\binom{r}{i} = \frac{(r-1)\cdots(r-i+1)}{i! \cdot (r-i)!}$ is an integer. For any prime $p \leq i$, $p|(r-1)\cdots(r-i+1)$, since $p \not| r$. Thus, $1 \times 2 \times \cdots \times i|(r-1)\cdots(r-i+1)$ and, hence, the result holds. \hfill \Box

The following consequences of the collecting process are vital in the proof of our main result:

Lemma 2.5 ([10]). Let x, y be any elements of a given group and let c_1, c_2, \ldots be the sequence of basic commutators of weights at least two in x and $[x, y]$, in ascending order. Then

$$[x^n, y] = [x, y]^n c_1^{f_1(n)} c_2^{f_2(n)} \cdots c_i^{f_i(n)} \cdots ,$$

where

$$f_i(n) = a_1 \binom{n}{1} + a_2 \binom{n}{2} + \cdots + a_{w_i} \binom{n}{w_i} ,$$

with $a_i \in \mathbb{Z}$ and w_i being the weight of c_i in x and $[x, y]$. If the group is nilpotent, then the expression in (2) gives an identity, and the sequence of commutators terminates.

Lemma 2.6 ([10]). Let α be a fixed integer and G a nilpotent group of class at most n. If $b_j \in G$ and $r < n$, then

$$[b_1, \ldots, b_{l-1}, b_j^n, b_{l+1}, \ldots, b_r] = [b_1, \ldots, b_r]^n c_1^{f_1(n)} c_2^{f_2(n)} \cdots ,$$

where the c_i’s are commutators in b_1, \ldots, b_r of weight strictly greater than r, and every b_j, $1 \leq j \leq r$ appears in each commutator c_i, the c_i’s listed in ascending order. The f_i’s are of the form (3), with $a_j \in \mathbb{Z}$ and $w_i = (\text{the weight of } c_i \text{ on the } b_i) - (r - 1)$.

3 Main Results

Keeping the previous notation, let $k_i = 0$, for $1 \leq i \leq m$, and $k_{m+j} = r_j > 1$ such that $r_{j+1} | r_j$, for $1 \leq j \leq t$; then $\prod_{i \in I} G_i = \bigoplus_{m \text{-copies}} \mathbb{Z} * \cdots * \mathbb{Z} * \mathbb{Z} r_1 \cdots * \mathbb{Z} r_t$. In order to compute the c-nilpotent multiplier of the above group, we need two technical lemmas.

Lemma 3.1 With the above notation and assumption, if $(p, r_1) = 1$, for all primes p less than or equal to $l - i$, then $\rho_{c+i}(S)\gamma_{c+i}(F)/\rho_{c+i+1}(S)\gamma_{c+i}(F)$ is the free abelian group with a basis $D_{i,j} \cup \cdots \cup D_{i,t}$, where

$$D_{i,j} = \{ b_j^{r_j} \rho_{c+i+1}(S)\gamma_{c+i}(F) \mid b \text{ is a basic commutator of weight } c+i \text{ on } x_1, \ldots, x_m, \ldots, x_{m+j} \text{ such that } x_{m+j} \text{ appears in } b \} ,$$

for $1 \leq i \leq l - 1$ and $1 \leq j \leq t$.

Proof Using the collecting process (see [3, §11.1]), one can easily check that $\rho_{c+i}(S)\gamma_{c+i}(F)/\rho_{c+i+1}(S)\gamma_{c+i}(F)$ is generated by all $b' \rho_{c+i+1}(S)\gamma_{c+i}(F)$, where b' belongs to the set of basic commutators of weight $c+i$, $\ldots, c+i+l-1$ on letters $x_1, \ldots, x_m, \ldots, x_{m+t}$ such that one of the $x_m^{r_j} \cdots x_{m+t}^{r_j}$ appears in them. It is easy to check that all the above commutators of weight greater than $c+i$ belong to $\rho_{c+i+1}(S)$. Now, we show that if b' is one of the above commutators of weight $c+i$ such that $x_m^{r_j}$ appears in it, then

$$b' \equiv b^{r_j} \pmod{\rho_{c+i+1}(S)\gamma_{c+i}(F)} ,$$

where b is a basic commutator of weight $c+i$ on $x_1, \ldots, x_m, \ldots, x_{m+t}$ such that x_{m+j} appears in it. (Note that b is actually a basic commutator according to the definition, and b' is the same as b, but the letter x_{m+j} with exponent r_j.) In order to prove the above claim, first we use reverse induction on k ($i+1 \leq k \leq l-1$) to show that if u is an outer commutator of weight $c+k$ on $x_1, \ldots, x_m, \ldots, x_{m+t}$ such that x_{m+j} appears in u, then

$$u^{r_j} \in \rho_{c+i+1}(S) \pmod{\gamma_{c+i}(F)} .$$
Let \(k = l - 1 \) and \(u = [\ldots, x_{m+j}, \ldots] \); then clearly \(u^{r_j} \equiv [\ldots, x_{m+j}^{r_j}, \ldots] \in \rho_{c+i+1}(S) \) (mod \(\gamma_{c+l}(F) \)).

Now, suppose the above property holds for every \(k > k' \). We will show that the property (5) holds for \(k' \).

Let \(u = [u_1, u_2] \) be an outer commutator of weight \(c + k' \) on \(x_1, \ldots, x_{m+t} \), where \(x_{m+j} \) appears in \(u_1 \). Then, by Lemma 2.5, we have

\[
u^{r_j} \equiv [u_1^{r_j}, u_2](v_1^{f_1(r_j)} \cdots v_h^{f_h(r_j)})^{-1} \pmod {\gamma_{c+l}(F)},
\]

where \(v_s \) is a basic commutator of weight \(w_s \) in \(u_1 \) and \([u_1, u_2] \), \(1 \leq s \leq h \). Thus, \(v_s \) is an outer commutator of weight greater than \(c + k' \) and less than \(c + l \) on \(x_1, \ldots, x_{m+t} \) such that \(x_{m+j} \) appears in it. By the hypothesis, since \(r_j | r_1 \), we have \((p, r_j) = 1 \) for all primes \(p \) less than or equal to \(l - 1 \). Also, it is easy to see that \(w_s \leq (c + l) - (c + k' - 1) = l - k' + 1 \leq l - 1 \). Therefore, by Lemma 2.4, \(r_j | f_i(r_j) \), and so, by induction hypothesis, \(v_s^{f_i(r_j)} \in \rho_{c+i+1}(S) \) (mod \(\gamma_{c+l}(F) \)). Hence, by repeating the above process, if \(u = [\ldots, x_{m+j}, \ldots] \), then \(u^{r_j} \equiv [\ldots, x_{m+j}^{r_j}, \ldots]v_1^{f_1(r_j)} \cdots v_h^{f_h(r_j)} \in \rho_{c+i+1}(S) \) (mod \(\gamma_{c+l}(F) \)). Now using (5), Lemma 2.6, and some commutator manipulations, the congruence (4) holds. Therefore, the set \(\bigcup_{j=1}^{l-1} D_{i,j} \) is a generating set for \(\rho_{c+i+1}(S) \gamma_{c+l}(F) / \rho_{c+i+1}(S) \gamma_{c+l}(F) \). On the other hand, by Theorem 2.2, distinct basic commutators are linearly independent, and hence, distinct powers of these basic commutators are also linearly independent. Therefore, the set \(\bigcup_{j=1}^{l-1} D_{i,j} \) is a basis. \(\square \)

Lemma 3.2 With the notation and assumption of the previous lemma, if \((p, r_1) = 1 \) for all primes \(p \) less than or equal to \(l - 1 \), then

\[
\rho_{c+i+1}(S) \gamma_{c+l}(F) / \gamma_{c+l}(F)
\]

is the free abelian group with a basis \(\bigcup_{i=1}^{l-1} (\bigcup_{j=1}^{l} D_{i,j}) \).

Proof Put

\[
A_j = \frac{\rho_{c+i}(S) \gamma_{c+l}(F)}{\rho_{c+i+1}(S) \gamma_{c+l}(F)}, \quad B_j = \frac{\rho_{c+i+1}(S) \gamma_{c+l}(F)}{\rho_{c+i+1}(S) \gamma_{c+l}(F)}.
\]

Then, clearly the following exact sequence exists for \(1 \leq i \leq l - 1 \)

\[
0 \to A_i \to B_i \to B_{i-1} \to 0.
\]

By Lemma 3.1, \(B_1 \) is a free abelian group, so the following exact sequence

\[
0 \to A_2 \to B_2 \to B_1 \to 0
\]

splits, and hence, \(B_2 \cong A_2 \oplus B_1 \). Also, by Lemma 3.1 every \(A_i \) is free abelian, so by induction, every \(B_i \) is free abelian and

\[
\frac{\rho_{c+i}(S) \gamma_{c+l}(F)}{\gamma_{c+l}(F)} = B_{i-1} \cong A_{i-1} \oplus A_{i-2} \oplus \cdots \oplus A_2 \oplus A_1.
\]

Now, using the basis for \(A_i \) presented in Lemma 3.1, the result holds. \(\square \)

Now, we are in a position to state and prove the first main result of the paper.

Theorem 3.3 Let \(G = \mathbb{Z}_n \ast \cdots \ast \mathbb{Z}_n \ast \mathbb{Z}_{r_1} \ast \cdots \ast \mathbb{Z}_{r_t} \) be the \(m \)-th nilpotent product of some cyclic groups, where \(r_{i+1} \) divides \(r_i \) for \(1 \leq i \leq t \). If \(c \geq n \) and \((p, r_1) = 1 \) for all primes \(p \) less than or equal to \(n \), then the \(c \)-nilpotent multiplier of \(G \) is isomorphic to

\[
\mathbb{Z}^{(d_m)} \oplus \mathbb{Z}^{(d_{m+1}-d_m)}_{r_1} \oplus \cdots \oplus \mathbb{Z}^{(d_{m+t}-d_{m+t-1})}_{r_t},
\]

where \(d_m = \sum_{i=1}^{n} \chi_{c+i}(m) \) and \(\mathbb{Z}^{(d)}_{r_i} \) denotes the direct sum of \(d \) copies of the cyclic group \(\mathbb{Z}_{r_i} \).
Proof Using the previous notation and assumption, we have
\[N_{c_1}M(G) = \frac{\gamma_{c+1}(F)}{\rho_{c+1}(S)\gamma_{c+n+1}(F)} \approx \frac{\gamma_{c+1}(F)/\gamma_{c+n+1}(F)}{\rho_{c+1}(S)/\gamma_{c+n+1}(F)}. \]

Also, by Theorem 2.2, \(\gamma_{c+1}(F)/\gamma_{c+n+1}(F) \) is a free abelian group with the basis consisting of all basic commutators of weight \(c + 1, \ldots, c + n \) on the letters \(x_1, \ldots, x_{m+t} \).

Now, by considering the basis presented for \(\rho_{c+1}(S)/\gamma_{c+n+1}(F)/\gamma_{c+n+1}(F) \) in Lemma 3.2 and note the points that \(D_{i,j} \)'s are mutually disjoint and the number of elements of \(D_{i,j} \) is equal to \(x_{c+i}(m+j) - x_{c+i}(m+j-1) \), the result holds. \(\square \)

Now the second main result of the paper, which is in turn an extension of the first one, is as follows:

Theorem 3.4 Let \(G = \mathbb{Z}^n \oplus \cdots \oplus \mathbb{Z}^n \oplus \mathbb{Z}^n \oplus \cdots \oplus \mathbb{Z}^n \) be the \(n \)th nilpotent product of some cyclic groups, where \(r_i+1 \) divides \(r_i \), for \(1 \leq i \leq t \). If \((p, r_1) = 1 \) for all primes \(p \) less than or equal to \(n \), then the poly-nilpotent multiplier with class row \(c_1, c_2, \ldots, c_\ell \) of \(G \) is
\[N_{c_1,c_2,\ldots,c_\ell}M(G) = \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_{r_1}} \oplus \cdots \oplus \mathbb{Z}_{d_{r_t}}, \]
where \(d_i = x_{c_i+1} \left(\cdots \left(x_{c_{2i}+1} \left(\sum_{n=1}^{n} x_{c_{n+i}(m)} \right) \right) \right), \) for \(c_1 \geq n \) and \(c_2, \ldots, c_\ell \geq 1 \) and \(1 \leq i \leq t \).

Proof Let \(G \) be a nilpotent group of class \(n \leq c_1 \) with a free presentation \(G = F/R \). Since \(\gamma_{c+1}(F) \leq \gamma_{n+1}(F) \leq R \), it gives \(N_{c_1}M(G) = \gamma_{c+1}(F)/[R, c_1 F] \). Now, we can consider \(\gamma_{c+1}(F)/[R, c_1 F] \) as a free presentation for \(N_{c_1}M(G) \) and, hence,
\[N_{c_1,c_2}M(N_{c_1}M(G)) = \frac{\gamma_{c+1}(\gamma_{c+1}(F))}{[R, c_1 F]}. \]

Therefore, by (1) we have
\[N_{c_1,c_2}M(G) = N_{c_1,c_2}M(N_{c_1}M(G)). \]

By continuing the above process, we can show that
\[N_{c_1,c_2,\ldots,c_\ell}M(G) = N_{c_1}M(\cdots N_{c_1}M(N_{c_1}M(G)) \cdots). \]

Using Theorem 3.3, \(N_{c_1}M(G) \) is a finitely generated abelian group of the following form:
\[\mathbb{Z}^n(\sum_{1}^{n} x_{c_{1+i}(m)}) \oplus \mathbb{Z}_{d_{r_1}}^{\sum_{1}^{n} x_{c_{1+(m+1)}}-x_{c_{1+i}(m)}} \oplus \cdots \oplus \mathbb{Z}_{d_{r_t}}^{\sum_{1}^{n} x_{c_{(m+t)}}-x_{c_{1+i}(m+t-1)}}. \]

Now applying Theorem 3.3 with \(n = 1 \), the result holds. \(\square \)

Remark 3.5 Let \(G = \mathbb{Z}^n \oplus \cdots \oplus \mathbb{Z}^n \oplus \mathbb{Z}^n \oplus \cdots \oplus \mathbb{Z}^n \) be the \(n \)th nilpotent product of some cyclic groups, where \(s_i \) are arbitrary natural numbers, for \(1 \leq i \leq t \). If \(c \geq n \) and \((p, s_i) = 1 \) for all primes \(p \) less than or equal to \(n \) and \(1 \leq i \leq t \), then by a similar proof to Lemmas 3.1 and 3.2 and Theorem 3.3, one can compute the \(c \)-nilpotent multiplier of \(G \), but the formula is certainly more complicated than the one in Theorem 3.3. For example, if \(G = \mathbb{Z}_{s_1}^n \oplus \cdots \oplus \mathbb{Z}_{s_t}^n \oplus \mathbb{Z}_{s_t}^n \), then \(N_{c_1}M(G) \) is as follows:
\[\mathbb{Z}^n(\sum_{1}^{n} x_{c_{1+i}(2)}) \oplus \mathbb{Z}_{d_1}^{\sum_{1}^{n} x_{c_{1+i}(2)}} \oplus \cdots \oplus \mathbb{Z}_{d_{r_t}}^{\sum_{1}^{n} x_{c_{1+i}(2)}} \oplus \mathbb{Z}^{\sum_{1}^{n} x_{c_{1+i}(3)-3} \sum_{1}^{n} x_{c_{1+i}(2)}}. \]

Moreover, using the proof of Theorem 3.4 and the above formula twice, we can compute the poly-nilpotent multiplier with class row \(c_1, c_2 \) of \(G \) as follows:
\[N_{c_1,c_2}M(G) = \mathbb{Z}^{(e_1)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_2)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_3)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_4)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_5)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_6)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_7)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_8)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_9)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_10)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_11)}_{(a,\beta)} \oplus \mathbb{Z}^{(e_12)}_{(a,\beta)}. \]
where

\[e_1 = x_{c_2+1} \left(\sum_{i=1}^{n} x_{c_1+i}(2) \right), \quad e_2 = x_{c_2+1} \left(\sum_{i=1}^{n} x_{c+i}(3) - 3 \sum_{i=1}^{n} x_{c+i}(2) \right), \]

\[e_3 = x_{c_2+1} \left(2 \sum_{i=1}^{n} x_{c_1+i}(2) \right) - 2e_1, \quad e_4 = x_{c_2+1} \left(\sum_{i=1}^{n} x_{c+i}(3) - 2 \sum_{i=1}^{n} x_{c+i}(2) \right) - e_1 - e_2, \]

\[e_5 = x_{c_2+1} \left(3 \sum_{i=1}^{n} x_{c_1+i}(2) \right) - 3x_{c_2+1} \left(2 \sum_{i=1}^{n} x_{c_1+i}(2) \right), \]

\[e_6 = x_{c_2+1} \left(\sum_{i=1}^{n} x_{c_1+i}(3) - \sum_{i=1}^{n} x_{c+i}(2) \right) - x_{c_2+1} \left(2 \sum_{i=1}^{n} x_{c_1+i}(2) \right) \]

\[-x_{c_2+1} \left(\sum_{i=1}^{n} x_{c+i}(3) - 2 \sum_{i=1}^{n} x_{c+i}(2) \right). \]

It seems that the general formula in this case is more complicated than to write!

References

1. Ellis, G.: On groups with a finite nilpotent upper central quotient. Arch. Math. 70, 89–96 (1998)
2. Gupta, N.D.; Moghaddam, M.R.R.: Higher Schur multiplications of nilpotent dihedral groups. C. R. Math. Rep. Acad. Sci. Canada XIV 5, 225–230 (1992)
3. Hall, M.: The Theory of Groups. Macmillan, New York (1959)
4. Hekster, N.S.: Varieties of groups and isologisms. J. Austral. Math. Soc. (Ser. A) 46, 22–60 (1989)
5. Leedham-Green, C.R.; Mckay, S.: Baer-invariants, isologism, varietal laws and homology. Acta Math. 137, 99–150 (1976)
6. Mashayekhy, B.: Some notes on the Baer-invariant of a nilpotent product of groups. J. Algebra 235, 15–26 (2001)
7. Mogaddam, M.R.R.; Mashayekhy, B.: Higher Schur multiplicator of a finite abelian group. Algebra Colloq. 4(3), 317–322 (1997)
8. Moghaddam, M.R.R.: The Baer-invariant of a direct product. Arch. Math. 33, 504–511 (1979)
9. Moghaddam, M.R.R.; Mashayekhy, B.; Kayvanfar, S.: The higher Schur multiplicator of certain class of groups. Southeast Asian Bull. Math. 27, 121–128 (2003)
10. Struik, R.R.: On nilpotent products of cyclic groups. Can. J. Math. 12, 447–462 (1960)