A Comparative Study of High-Fat Diet Containing Fish Oil or Lard on Blood Glucose in Genetically Diabetic (db/db) Mice

Toshihiro Miura,1,* Yasuhiro Ohnishi,1 Sayuki Takagi,2 Makoto Sawamura,2 Noriko Yasuda,3 Hitoshi Ishida,3 Keiichiro Tanigawa,1 Yukio Yamori2 and Yutaka Seino3

1Suzuka University of Medical Science and Technology, Suzuka, Mie 510-02, Japan
2Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
3Department of Metabolism and Clinical Nutrition, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606, Japan

(Received November 13, 1996)

Summary The effects of high-fat diets containing fish oil or lard on blood glucose and plasma insulin after oral glucose loading were compared in genetically diabetic (db/db) mice, one of the animal models of non-insulin-dependent diabetes mellitus (NIDDM) with hyperinsulinemia. The blood glucose levels were significantly decreased in 27% of the mice fed high-fat diets containing 20% fish oil 30 and 60 min after the oral administration of glucose (both; \(p<0.05\)). Conversely, the plasma insulin levels were significantly increased 30 min after the glucose loading as compared to 27% of the mice fed high-fat diets containing 20% lard (\(p<0.01\)). In addition, a significant hypoglycemic effect was observed 60 min after the subcutaneous administration of insulin to mice on the fish oil diet (\(p<0.05\)), whereas no effect was demonstrated in the case of those on the lard diet. The average body weight of the fish oil-treated mice was not significantly different from that of the lard-treated mice. The fish oil diet has a beneficial effect on glucose tolerance by increasing the insulin secretory capacity from pancreatic \(\beta\) cells and also ameliorating insulin resistance.

Key Words fish oil, lard, db/db mice, insulin secretion, insulin sensitivity

The ingestion of \(n\)-3 polyunsaturated fatty acids (\(n\)-3 PUFA), particularly eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA), found in cold-water fish seems to lower mortality from coronary artery disease (1). Such reduced

*To whom correspondence should be addressed.
incidence of ischemic cardiovascular diseases (2) has been reported to be due to reduced triglyceride concentrations (3). Moreover, n-3 PUFA seem to beneficially interfere with platelet aggregation (4), blood rheology (5), fibrinolysis (6) and blood-pressure regulation (7,8), thus counteracting possible risk factors of arteriosclerosis.

Furthermore, despite a fat-enriched diet (9), the incidence of diabetes mellitus among Eskimos is low (2,10), which may hint either at a genetic trait or at a preventive effect by the daily consumption of 6–10 g of n-3 PUFA (9). A potentially beneficial effect of dietary fish oil supplementation on peripheral insulin resistance, probably subsequent to a change in cell membrane composition (11,12), is supported by studies in animals (13) and patients with non-insulin-dependent diabetes mellitus (NIDDM) (14). Concerning insulin secretion, both augmentation (15) and reduction (16,17) by n-3 PUFA have been reported. Although diabetic patients carry a high risk for cardiovascular disease (18), dietary intervention by fish oil, although potentially helpful in reducing such risks, has yielded controversial results in both insulin-dependent diabetic (19,20) and NIDDM (21–24) patients, because improved lipid metabolism may be outweighed by deterioration in blood glucose control. Conversely, improvements in insulin sensitivity and glucose tolerance by fish oil have been shown in nondiabetic subjects (25).

Therefore, the therapeutic potential of n-3 PUFA in disorders of glucose metabolism is still unclear (26). The observed variability in metabolic responses to fish oil supplementation in NIDDM may, however, result from the disease's undefinable duration and its pathophysiological heterogeneity. Therefore, to better determine the impact of dietary control and the effect of n-3 PUFA on glycemic control and insulin action, we chose a genetical NIDDM mouse model, db/db mice (27).

MATERIALS AND METHODS

Fish oil (EPA 17.9%, DHA 10.7%, d-α-tocopherol 2.1 IU/g, peroxide value 4.3 meq/kg), generously donated by Johnson & Johnson K.K. (Tokyo, Japan), and lard (Miyoshi-Yushi, Japan) were used in this experiment.

Animals. db/db mice (Clea, Tokyo, Japan), 12 weeks of age, were used. The db/db mice with blood glucose levels above 300 mg/100 mL were considered to be diabetic and used in this study. The mice were housed in an air-conditioned room at 22±2°C with a 12 h light–12 h dark cycle. The animals were kept in the experimental animal room for 6 weeks with free access to food and water. For the determination of blood glucose levels, blood samples were withdrawn from the cavernous sinus with a capillary under unanesthesia. The composition of the experimental diets is indicated in Table 1. The energy and chemical compositions of the experimental diets were metabolic energy 504 kcal/100 g, moisture 2.8%, crude protein 20.4%, crude fat 27%, crude fiber 0.1%, ash 4.7% and soluble non-nitrogenous materials 45% (high-fat diet containing fish oil is the same
Comparison of Fish Oil or Lard on Blood Glucose in db/db Mice

Table 1. Composition of the experimental diets (%).

Ingredients	Lard	Fish oil
Casein	18	18
Sucrose	41	41
Yeast, beer	2	2
Beef fat	7	7
Lard	20	—
Fish oil	—	20
Soybean oil	1	1
White fish meal	5	5
Skim milk powder	1.5	1.5
CaHPO₄·2H₂O	1.5	1.5
USP*-Vitamin	1	1
USP*-Mineral	2	2

*USP: United States Pharmacopeia.

composition as that containing lard).

Oral glucose tolerance test. After overnight fasting (18 h), the glucose (2 g/kg body weight) solution was administered orally. Blood samples were collected before administration of the glucose and 30, 60 and 120 min thereafter. Blood samples for plasma insulin determination were also taken before the administration of glucose and 30 min thereafter.

Insulin tolerance test. After overnight fasting (18 h), the insulin (0.5 U/kg body weight) solution was administered subcutaneously. Blood samples were collected before administration of the insulin and at 30, 60 and 120 min thereafter. Oral glucose tolerance and insulin tolerance tests were two separate experiments.

Determination of blood glucose and insulin. The blood glucose levels in mice were determined by the glucose oxidase method (28), and plasma insulin was measured by the double-antibody method (29). All the data were expressed as M±SE, and Student’s paired or unpaired t-tests were used for the statistical analysis. The values were considered to be statistically different when the p value was less than 0.05.

RESULTS

Effects of fish oil and lard on body weight and blood glucose in genetically diabetic (db/db) mice

The average body weight of the fish oil-treated mice was not significantly different from that of the lard-treated mice (Fig. 1). The effect of fish oil on the blood glucose of db/db mice is shown in Fig. 2. The blood glucose levels in db/db mice fed high-fat diets containing fish oil tended to decrease 6 weeks after administration as compared to the mice fed high-fat diets containing lard, but there was no statistical difference found between them.
Fig. 1. Change in body weight. Each value represents the M±SE from 5 mice. ○, Lard; ●, fish oil.

Fig. 2. Effects of fish oil and lard on blood glucose in db/db mice. Each value represents the M±SE from 5 mice. ○, Lard; ●, fish oil.

Fig. 3. Effects of fish oil and lard on blood glucose by glucose tolerance test in db/db mice. Each value represents the M±SE from 5 mice. Significantly different from lard, *p<0.05. ○, Lard; ●, fish oil.

Oral glucose tolerance test
At 6 weeks, fish oil-treated mice showed a significant decrease in blood glucose levels 30 and 60 min after the loading of glucose (both p<0.05) (Fig. 3). The plasma insulin levels before and 30 min after loading are shown in Fig. 4. The plasma insulin level was found to be significantly increased 30 min after loading in
Comparison of Fish Oil or Lard on Blood Glucose in db/db Mice

Fig. 4. Effects of fish oil and lard on insulin by glucose tolerance test in db/db mice. Each value represents the M±SE from 5 mice. Significantly different from control, **p<0.01. ○, Lard; ●, fish oil.

Fig. 5. Effects of fish oil and lard by insulin tolerance test in db/db mice. Each value represents the M±SE from 5–6 mice. Significantly different from lard, *p<0.05. ○, Lard; ●, fish oil.

Insulin tolerance test
A significant decrease in blood glucose was observed in fish oil-treated mice 60 min after insulin administration as compared to the corresponding fasting blood glucose (p<0.05) (Fig. 5). In contrast, no differences in blood glucose were observed at any point after the administration of insulin in the case of lard-treated mice.

DISCUSSION
This study shows that a fish oil diet improved glucose tolerance after oral glucose loading as compared to a lard diet in db/db mice, one of the animal models of NIDDM. The improvement by the fish oil diet was accompanied by increased...
plasma insulin levels, supposedly indicating increased insulin secretory capacity from pancreatic β cells, as has been reported previously (15). These findings suggest that a fish oil diet has a beneficial effect on diet therapy in NIDDM. In addition, insulin administration resulted in a significant decrease in blood glucose levels only in mice on high-fat diets containing fish oil, and not in those on high-fat diets containing lard. This fact shows that fish oil can lessen the insulin resistance in NIDDM as compared to lard. These results support a previous report that fish oil improves insulin action in adipocyte and also the glucose metabolism in insulin-resistant mice (30).

We would like to thank Johnson & Johnson K.K. for the gift of fish oil.

REFERENCES

1) Kromhout P, Bosschieter EB, de Lezenne Coulander C. 1985. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. *N Engl J Med* 312: 1205–1209.

2) Kromann H, Green A. 1980. Epidemiological studies in the Upornavik district, Greenland: incidence of some chronic diseases, 1950–1974. *Acta Med Scand* 208: 401–406.

3) Nestel PJ. 1990. Effects of n-3 fatty acids on lipid metabolism. *Annu Rev Nutr* 10: 149–167.

4) Fisher S, Weber PC, Dyeberg J. 1986. The prostacyclin/thromboxane balance is favourably shifted in Greenland Eskimos. *Prostaglandins* 32: 235–241.

5) Ernst E. 1989. Effects of n-3 fatty acids on blood rheology. *J Intern Med* 225 (Suppl 1): 129–132.

6) Borcelli U, Glas-Greenwalt P, Pollack VE. 1985. Enhancing effect of dietary supplement with n-3 fatty acids on plasma fibrinolysis in normal subjects. *Thromb Res* 39: 307–312.

7) Lorenz R, Spenger U, Fischer S, Duhn J, Weber PC. 1983. Platelet function, thromboxane formation and blood pressure control during supplementation of the Western diet with cod liver oil. *Circulation* 67: 504–511.

8) Knappk HR, Fitzgerald GA. 1989. The antihypertensive effects of fish oil. *N Engl J Med* 320: 1037–1043.

9) Bang HO, Dyeberg J, Gericlair HM. 1980. The composition of the Eskimo food in northwestern Greenland. *Am J Clin Nutr* 33: 2657–2671.

10) Monratoff GJ, Scott EM. 1973. Diabetes mellitus in Eskimos after a decade. *JAMA* 226: 1345–1346.

11) Ginsberg BH, Brown TJ, Simon I, Spector AA. 1981. Effect of the membrane lipid environment on the properties of insulin receptors. *Diabetes* 30: 773–780.

12) Boydjen J, Storich GH, Lardinois CK. 1987. Dietary enrichment with omega-3 fatty acids leads to their incorporation into the pancreatic islet and skeletal muscle phospholipid membranes (Abstract). *Clin Res* 35: 164.

13) Storlien LH, Kraegen EW, Chrisholm PJ, Ford GL, Bruce PG, Pascoe WS. 1987. Fish oil prevents insulin resistance induced by high fat feeding in rats. *Science* 237: 885–887.

J Nutr Sci Vitaminol
Comparison of Fish Oil or Lard on Blood Glucose in db/db Mice

14) Prop-Snijders C, Schouten JA, Heine RJ, Van der Meer J, Van der Veen EA. 1987. Dietary supplementation of omega-3-polyunsaturated fatty acids improves insulin sensitivity in non-insulin dependent diabetes. *Diabetes Res* 4: 141-147.

15) Lardinois CK, Starich GH, Mazaferri EL, Delett A. 1987. Polyunsaturated fatty acids augment insulin secretion. *J Am Coll Nutr* 6: 507-515.

16) Stacpoole PW, Alig J, Kilgore J. 1988. Lipodystrophic diabetes mellitus: investigations of lipoprotein metabolism and the effects of omega-3 fatty acid administration in two patients. *Metabolism* 37: 944-951.

17) Glauber H, Wallace P, Geiser K, Brechtel G. 1988. Adverse metabolic effect of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. *Ann Intern Med* 108: 663-668.

18) Panzram G. 1987. Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. *Diabetologia* 30: 123-131.

19) Stacpoole PC, Alig J, Ammon L, Crockett SE. 1989. Dose-response effect of dietary marine oil on carbohydrate and lipid metabolism in normal subjects and patients with hypertriglyceridemia. *Metabolism* 38: 946-956.

20) Rillaerts EG, Engelmann GJ, Van Camp KM, De Leeuw I. 1989. Effect of omega 3 fatty acids in diet of type 1 diabetic subjects on lipid values and hemorheological parameters. *Diabetes* 38: 1412-1416.

21) Schectman G, Kaul S, Kisselbah AH. 1988. Effect of fish oil concentrate on lipoprotein composition in NIDDM. *Diabetes* 37: 1567-1573.

22) Kasim SE, Stern B, Khilnani S, McLin P, Baciowowski S, Jen KL. 1988. Effect of omega-3 fish oils on lipid metabolism, glycemic control, and blood pressure in type 2 diabetic patients. *J Clin Endocrinol Metab* 67: 1-5.

23) Friday KE, Childs MT, Tsunehara CH, Fujimoto WY, Bierman EL, Ensinc JW. 1989. Elevated plasma glucose and lowered triglyceride levels from omega-3 fatty acid supplementation in type 2 diabetes. *Diabetes Care* 12: 276-281.

24) Borkman M, Chisholm DJ, Furler SM, Storlien LH, Kraegen EW, Simon LA, Chesterman CN. 1989. Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. *Diabetes* 38: 1314-1319.

25) Waldhausl W, Ratheiser K, Komjati M, Nowotny P, Pirich K, Vierthapple H. 1989. Increase of insulin sensitivity and intravenous glucose tolerance by fish oil in healthy man. *In: Health Effects of Fish Oils* (Chandra RK, ed), p. 171-187. ARTS Biomedical, St. John's, Newfoundland.

26) Axelrod L. 1989. Omega-3 fatty acids in diabetes mellitus: gift from the sea. *Diabetes* 38: 539-543.

27) Hummel KP. 1966. Diabetes, a new mutation in the mouse. *Science* 153: 1127-1128.

28) Stevens JF. 1951. Determination of blood glucose by glucose oxidase method. *Clin Chim Acta* 32: 199-201.

29) Bailei CJ, Ahmed-Sorour H. 1980. Role of ovarian hormones in the long-term control of glucose homeostasis. *Diabetologia* 19: 475.

30) Luo J, Rizkalla SW, Boïllo J, Alamowitch C, Chaib H, Bruzzo F, Desplanque N, Dalix A, Durand G, Slama G. 1996. Dietary (n-3) polyunsaturated fatty acids improve adipocyte insulin action and glucose metabolism in insulin-resistant rats: Relation to membrane fatty acids. *J Nutr* 126: 1951-1958.

Vol 43, No 2, 1997