Prosody-Based Unsupervised Speech Summarization with Two-Layer Mutually Reinforced Random Walk

Sujay Kumar Jauhar
Yun-Nung (Vivian) Chen
Florian Metze

{sjauhar, yvchen, fmetze}@cs.cmu.edu

The 6th International Joint Conference on Natural Language Processing – Oct. 14-18, 2013

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Outline

- Motivation
- Extractive Summarization
Outline

Motivation

Extractive Summarization
Motivation

- Speech Summarization
 - Spoken documents are more difficult to browse than texts
 - easy to browse, save time, easily get the key points

- Prosodic Features
 - Speakers may use prosody to implicitly convey the importance of the speech
Outline

- Introduction
- Approach
- Experiments
- Conclusion

- Motivation
- Extractive Summarization
Extractive Summarization (1/2)

- Extractive Speech Summarization
 - Select the indicative utterances in a spoken document
 - Cascade the utterances to form a summary

How to select indicative utterances?
Extractive Summarization (2/2)

- Selection of Indicative Utterances

 - Each utterance U in a spoken document d is given an importance score $I(U, d)$
 - Select the indicative utterances based on $I(U,d)$
 - The number of utterances selected as summary is decided by a predefined ratio

\[
I(U, d) = \sum_{i=1}^{n} [s(t_i, d)] + \cdots
\]

where

- $U = t_1 t_2 \ldots t_i \ldots t_n$
- $I(U, d)$ is the importance score of utterance U in document d
- $s(t_i, d)$ is the term statistical measure (ex. TF-IDF) of term t_i in document d
Outline

- Prosodic Feature Extraction
- Graph Construction
- Two-Layer Mutually Reinforced Random Walk
Outline

- Prosodic Feature Extraction
- Graph Construction
- Two-Layer Mutually Reinforced Random Walk
Prosodic Feature Extraction

- For each pre-segmented audio file, we extract
 - number of syllables
 - number of pauses
 - duration time: speaking time including pauses
 - phonation time: speaking time excluding pauses
 - speaking rate: \#syllable / duration time
 - articulation rate: \#syllable / phonation time
 - fundamental frequency measured in Hz: avg, max, min
 - energy measured in Pa2/sec
 - intensity measured in dB
Outline

- Prosodic Feature Extraction
- Graph Construction
- Two-Layer Mutually Reinforced Random Walk
Graph Construction (1/3)

- Utterance-Layer
 - Each node is the utterance in the meeting document
Graph Construction (2/3)

- Utterance-Layer
 - Each node is the utterance in the meeting document

- Prosody-Layer
 - Each node is a prosodic feature
Graph Construction (3/3)

- **Utterance-Layer**
 - Each node is the utterance in the meeting document

- **Prosody-Layer**
 - Each node is a prosodic feature

- **Between-Layer Relation**
 - The weight of the edge is the normalized value of the prosodic feature extracted from the utterance
Outline

- Prosodic Feature Extraction
- Graph Construction
- Two-Layer Mutually Reinforced Random Walk
Two-Layer Mutual Reinforced Random Walk (1/2)

* Mathematical Formulation

Utterance scores at (t+1)-th iteration

\[
\begin{align*}
F_U^{(t+1)} &= (1 - \alpha) F_U^{(0)} + \alpha \cdot L_{UP} F_P^{(t)} \\
F_P^{(t+1)} &= (1 - \alpha) F_P^{(0)} + \alpha \cdot L_{PU} F_U^{(t)}
\end{align*}
\]
Two-Layer Mutual Reinforced Random Walk (1/2)

- Mathematical Formulation

\[
\begin{align*}
F_U^{(t+1)} &= (1 - \alpha)F_U^{(0)} + \alpha \cdot L_{UP} F_P^{(t)} \\
F_P^{(t+1)} &= (1 - \alpha)F_P^{(0)} + \alpha \cdot L_{PU} F_U^{(t)}
\end{align*}
\]

- Original importance
 - Utterance: equal weight
Two-Layer Mutual Reinforced Random Walk (1/2)

Mathematical Formulation

\[
\begin{align*}
F_U^{(t+1)} &= (1 - \alpha)F_U^{(0)} + \alpha \cdot L_{UP}F_P^{(t)} \\
F_P^{(t+1)} &= (1 - \alpha)F_P^{(0)} + \alpha \cdot L_{PU}F_U^{(t)}
\end{align*}
\]

Original importance

- Utterance: equal weight
Two-Layer Mutual Reinforced Random Walk (1/2)

Mathematical Formulation

\[
\begin{cases}
F_U^{(t+1)} = (1 - \alpha)F_U^{(0)} + \alpha \cdot L_{UP}F_P^{(t)} \\
F_P^{(t+1)} = (1 - \alpha)F_P^{(0)} + \alpha \cdot L_{PU}F_U^{(t)}
\end{cases}
\]

Prosody scores at (t+1)-th iteration

Original importance

- Utterance: equal weight
Two-Layer Mutual Reinforced Random Walk (1/2)

- Mathematical Formulation

\[
\begin{align*}
F_U^{(t+1)} &= (1 - \alpha) F_U^{(0)} + \alpha \cdot L_{UP} F_P^{(t)} \\
F_P^{(t+1)} &= (1 - \alpha) F_P^{(0)} + \alpha \cdot L_{PU} F_U^{(t)}
\end{align*}
\]

- Original importance
 - Utterance: equal weight
 - Prosody: equal weight
Two-Layer Mutual Reinforced Random Walk (1/2)

Mathematical Formulation

\[
\begin{align*}
F_U^{(t+1)} &= (1 - \alpha)F_U^{(0)} + \alpha \cdot L_{UP}F_P^{(t)} \\
F_P^{(t+1)} &= (1 - \alpha)F_P^{(0)} + \alpha \cdot L_{PU}F_U^{(t)}
\end{align*}
\]

Original importance

- Utterance: equal weight
- Prosody: equal weight
Two-Layer Mutual Reinforced Random Walk (2/2)

Mathematical Formulation

\[
\begin{align*}
F_U^{(t+1)} &= (1 - \alpha) F_U^{(0)} + \alpha \cdot L_{UP} F_P^{(t)} \\
F_P^{(t+1)} &= (1 - \alpha) F_P^{(0)} + \alpha \cdot L_{PU} F_U^{(t)}
\end{align*}
\]

Utterance node U can get higher score when

- More important prosodic features with higher weights corresponding to utterance U
Two-Layer Mutual Reinforced Random Walk (2/2)

Mathematical Formulation

\[
\begin{align*}
 F_U^{(t+1)} &= (1 - \alpha) F_U^{(0)} + \alpha \cdot L_{UP} F_P^{(t)} \\
 F_P^{(t+1)} &= (1 - \alpha) F_P^{(0)} + \alpha \cdot L_{PU} F_U^{(t)}
\end{align*}
\]

Utterance node U can get higher score when
• More important prosodic features with higher weights corresponding to utterance U

Prosody node P can get higher score when
• More important utterances have higher weights corresponding to the prosodic feature P

→ Unsupervised learn important utterances/prosodic features
Outline

- Experimental Setup
- Evaluation Metrics
- Results
- Analysis
Outline

- Introduction
- Approach
- Experiments
- Conclusion

- Experimental Setup
- Evaluation Metrics
- Results
- Analysis
Experimental Setup

- CMU Speech Meeting Corpus
 - 10 meetings from 2006/04 – 2006/06
 - #Speaker: 6 (total), 2-4 (each meeting)
 - WER = 44%

- Reference Summaries
 - Manually labeled by two annotators as three “noteworthiness” level (1-3)
 - Extract utterances with level 3 as reference summaries

- Parameter Setting
 - \(\alpha = 0.9 \)
 - Extractive summary ratio = 10%, 20%, 30%
Outline

- Introduction
- Approach
- Experiments
- Conclusion

- Experimental Setup
- Evaluation Metrics
- Results
- Analysis
Evaluation Metrics

- **ROUGE**
 - **ROUGE-1**
 - F-measure of matched unigram between extracted summary and reference summary
 - **ROUGE-L** (Longest Common Subsequence)
 - F-measure of matched LCS between extracted summary and reference summary
- **Average Relevance Score**
 - Average noteworthiness scores for the extracted utterances
Outline

- Introduction
- Approach
- Experiments
- Conclusion

- Experimental Setup
- Evaluation Metrics
- Results
- Analysis
Baseline

- **Longest**
 - the longest utterances based on #tokens

- **Begin**
 - the utterances that appear in the beginning

- **Latent Topic Entropy (LTE)**
 - Estimate the “focus” of an utterance
 - Lower topic entropy represents more topically informative

- **TFIDF**
 - Average TFIDF scores of all words in the utterances
For 10% summaries, Begin performs best and proposed performs comparable results.
10% & 20% Results

For 20% summaries, proposed approach outperforms all of the baselines.
10% & 20% & 30%

Results

For 30% summaries, proposed approach outperforms all of the baselines
Outline

- Experimental Setup
- Evaluation Metrics
- Results
- Analysis
Analysis

- Based on converged scores for prosodic features
 - Predictive features
 - number of pauses
 - min pitch
 - avg pitch
 - intensity
 - Least predictive features
 - the duration time
 - the number of syllables
 - the energy
Two-layer mutually reinforced random walk integrates prosodic knowledge into an unsupervised model for speech summarization.

We show the first attempt at performing unsupervised speech summarization without using lexical information.

Compared to some lexically derived baselines, the proposed approach outperforms all of them but one scenario.
Thanks for your attention! 🌟

Q & A