Adsorption geometry of methyl chloride weakly interacting with Ag(111)

Kotaro Takeyasu© and Michio Okada
Institute for Radiation Sciences and Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka 560-0043, Japan
E-mail: takeyasu@ims.tsukuba.ac.jp

Abstract
The adsorption structure of CH₃Cl on Ag(111) was investigated by temperature programmed desorption (TPD), infrared reflection-absorption spectroscopy (IRAS), and density functional theory (DFT) calculation. The saturation coverage of CH₃Cl at the first layer was estimated to be 0.22 ML by TPD spectra. In the IRAS spectra before the first layer was completed, a CH₃ asymmetric deformation mode was observed, while a CH₃ symmetric deformation mode and a CH₃ symmetric stretching mode were not observed. This result suggests that CH₃Cl at the first layer is almost parallel to the surface, which was confirmed by DFT calculations. In contrast, a CH₃Cl at the second layer was concluded to be inclined from the surface parallel.

1. Introduction

Much attention has been paid to the chemical patterning via the control of molecular adsorption [1–3]. In the chemical patterning, molecules are molecularly and uniformly adsorbed on a surface in the first step. Then, the surface is locally irradiated with photon or electron by a laser, a focused electron beam source, or a scanning tunneling microscope tip. The irradiation induces the dissociative adsorption of the molecules, which are stabilized on the surface [4–6]. The adsorption sites of the dissociated products depend on the adsorption sites and the orientation of the molecularly adsorbed molecules in the first step [7, 8]. Therefore, the understanding of the geometry of the molecularly adsorbed molecules is efficient for the control of the patterning of the dissociated products.

Methyl chloride (CH₃Cl) adsorbed on metal is a well-known system in which CH₃Cl is dissociated into CH₃ and Cl by photon or electron irradiation [9]. In the case of the photodissociation of CH₃Cl on metal, the process has been understood to be promoted by a hot-electron transferred from the metal substrate to the CH₃Cl [10–12]. An adsorbed CH₃Cl capture a hot electron in the anti-bonding σ*(C–Cl) orbital [13], which causes the C–Cl bond to be weakened. As the bond start dissociating, the excess electron becomes localized on the Cl atom, which is repelled by CH₃ and attracted to its image charge in the substrate.

The adsorbed structures of CH₃Cl have not been clarified on most of metal systems but on Pd(100) and Cu(410). In the former system, CH₃Cl at the first layer was concluded to stand up on the surface by the observation of a CH₃ symmetry stretching peak in IR spectra and fitting TPD spectra with a static dipole-dipole interaction model [14]. In the latter system, on the other hand, CH₃Cl was evaluated to attached Cl to the surface in a parallel position based on IR spectra [15].

In the present paper, we focus on CH₃Cl/Ag(111) system and aim to evaluate the adsorbed structures, because CH₃Cl/Ag is a potential system for chemical patterning. For example, since Cl adsorbed on Ag locally forms insulating AgCl, the dissociation of CH₃Cl on a Ag thin film [16] by scanning tunneling microscope forms a nanoscale circuit or waveguide. In addition, if the positions of dissociated CH₃ and Cl are simultaneously controlled, digital information can be included on the surface structure as reported on Si(100) [1].
The adsorbed structure was investigated by temperature programmed desorption (TPD), infrared reflection-absorption spectroscopy (IRAS), and density functional theory (DFT) calculation. The saturation coverage of CH$_3$Cl at the first layer was estimated to be 0.22 ML by TPD spectra. In IR spectra for the first layer, a CH$_3$ symmetric deformation mode and a CH$_3$ symmetric stretching mode was not observed, on the other hand, the CH$_3$ asymmetric deformation modes were observed. This suggested that CH$_3$Cl at the first layer adsorbed on Ag(111) was in an almost parallel position. The adsorbed geometry was reproduced by DFT calculations. In contrast, an additionally adsorbed CH$_3$Cl on the first layer was concluded to be inclined from the surface.

2. Experimental

Experiments were performed in an ultrahigh-vacuum (UHV) chamber with a base pressure of 3 × 10$^{-8}$ Pa. The sample used in the present study was a Ag(111) surface (Surface Preparation Laboratory, 0.68 × 1.5 mm). The clean surface of Ag(111) was prepared by several cycle of Ne$^+$ sputtering (Ne 6.5 × 10$^{-3}$ Pa, 600 eV, 4 μA cm$^{-2}$, 30 min) and subsequent annealing at 720 K for 30 min. The sample cleanliness was confirmed by Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The surface was exposed to high purity CH$_3$Cl at a typical sample temperature of 86 K. The coverage of CH$_3$Cl was evaluated from the area of TPD spectra. IRAS measurements were carried out with a Fourier transform infrared spectrometer with a liquid-nitrogen cooled MCT (HgCdTe) detector. The spectral resolution was set to be 4 cm$^{-1}$ and typically 512 × 4 scans were collected in the present experiments.

Stable adsorption structures were estimated by DFT calculation with PHASE/0 package developed by National Institute for Material Science. In the calculation, the generalized gradient approximation with Perdew-Burke-Ernzerhof, plane waves (225 Ry cutoff energy), projector augmented wave method, and a dispersion force adjustment were used. Ag(111) was modeled using the slab approach, where seven Ag layers of 2 × 2 supercell and a vacuum layer of 21.7 angstroms are repeated alternately. Surface Brillouin zone integration was performed using the special k-point sampling technique of tetrahedral (3 × 3 × 1) sampling meshes.

3. Result and discussion

Figure 1(a) shows TPD spectra for Ag(111) exposed to CH$_3$Cl. The desorption peak position was defined as the center of the temperatures at the half maximums because the upper half of the desorption peaks were almost symmetrical. As shown in figure 1(b), a single desorption peak (β) for CH$_3$Cl was grown at 123 K by up to 1 L (1.33 × 10$^{-4}$ Pa s) exposure with a gradual shift of the peak position. Then the exposure above 2 L grew a second peak (α) at around 116 K. The β peak and the α peak were assigned to be a monolayer peak and a multilayer peak, respectively, based on a previous study [20]. The desorption energy (E_d) for the β peak and the α peak were calculated to be 31 kJ mol$^{-1}$ and 29 kJ mol$^{-1}$, respectively, by Redhead method with an assumed frequency factor of 1013 s$^{-1}$. As the exposure increased, the β peak grew and became saturated between the exposure of 1 L and 2 L. The saturated β peak was simulated by the spectrum for 1 L exposure, which was enlarged 1.5 times to fit the high-temperature side edge of the spectrum for 2 L exposure, as shown in the inset in figure 1(a). Next, the coverage of CH$_3$Cl at each exposure was estimated from the peak area of the TPD spectra as shown in figure 1(b).
The peak area was increased almost linearly as the increasing of the exposure. This suggests that the sticking probability of CH$_3$Cl is approximately constant on Ag$_{111}$ in spite of pre-adsorbed CH$_3$Cl. The saturation coverage of the β peak, which was 1.5 times larger than the coverage of 2.0×10^{14} cm$^{-2}$ for 1 L exposure, was then estimated to be 3.1×10^{14} cm$^{-2}$. This coverage corresponds to 0.22 ML per Ag atoms on the surface. LEED patterns at each exposure showed no clear superstructures for the CH$_3$Cl exposures below 5 L.

The CH$_3$Cl exposure dependence of the IRAS spectra on Ag$_{111}$ at a temperature of 86 K is shown in figure 2. No peaks were observed at between 2800 cm$^{-1}$ to 3100 cm$^{-1}$ below a exposure of 2.0 L, while a peak was observed at 1444 cm$^{-1}$. On the other hand, a peak probably appeared at 2958 cm$^{-1}$ for the exposure of 3 L in addition to the peaks at 1344 cm$^{-1}$ and 1437 cm$^{-1}$. These peaks are listed up in table 1 with vibration modes for CH$_3$Cl in a gas phase and for adsorbed CH$_3$Cl on Pd$_{100}$ [14]. The comparison in table 1 assigned peaks at 1344 cm$^{-1}$, 1437 \sim 1444 cm$^{-1}$, and 2958 cm$^{-1}$ to a CH$_3$ symmetric deformation mode δ_s(CH$_3$), a CH$_3$ asymmetric deformation mode δ_a(CH$_3$), and a CH$_3$ symmetric stretching mode ν_s(CH$_3$), respectively.

The change of the observed peaks as a function of the CH$_3$Cl exposure is explained as follows. In general, vibrational modes with a transition dipole moment parallel to a surface are not active for IR spectroscopy because the transition dipole moment is canceled by an induced dipole change on the surface. By contrast, if the transition dipole moment is inclined from the surface, the mode is active for IR spectroscopy. In observed IR spectra for 0.7 L, δ_a(CH$_3$) at 1444 cm$^{-1}$ was observed, though δ_s(CH$_3$) and ν_s(CH$_3$) were not observed. The missing of δ_s(CH$_3$) and ν_s(CH$_3$) means that at least molecular axis of CH$_3$Cl at the first layer is almost parallel to the surface (Note that, for an isolated CH$_3$Cl molecule, the direction of the transition dipole moment for δ_s(CH$_3$) and ν_s(CH$_3$) are parallel to the molecular axis and those for δ_a(CH$_3$) and ν_a(CH$_3$) are perpendicular to the molecular axis). When the surface was exposed to CH$_3$Cl of 3.0 L, δ_s(CH$_3$) and ν_a(CH$_3$) appeared. This suggests that the molecular axis of CH$_3$Cl at the second layer is inclined from the surface.

Table 1

Gas/Pd(100) 1st layer	Experimental 0.7 L	Experimental 1 L	Experimental 2 L	Experimental 3 L	DFT 0.25 ML 0.50 ML
δ_s(CH$_3$)	1355	1330	1344	1333	1327, 1333
δ_a(CH$_3$)	1455	1426	1444	1437	1420, 1425, 1432
ν_s(CH$_3$)	2966	2927	2958	2879	2873, 2878, 2886
ν_a(CH$_3$)	3042	2972	2972	2972	2979, 2982

(see supplementary S1 is available online at stacks.iop.org/JPCO/2/075017/mmedia). The peak area was increased almost linearly as the increasing of the exposure. This suggests that the sticking probability of CH$_3$Cl is approximately constant on Ag$_{111}$ in spite of pre-adsorbed CH$_3$Cl. The saturation coverage of the β peak, which was 1.5 times larger than the coverage of 2.0×10^{14} cm$^{-2}$ for 1 L exposure, was then estimated to be 3.1×10^{14} cm$^{-2}$. This coverage corresponds to 0.22 ML per Ag atoms on the surface. LEED patterns at each exposure showed no clear superstructures for the CH$_3$Cl exposures below 5 L.

The CH$_3$Cl exposure dependence of the IRAS spectra on Ag$_{111}$ at a temperature of 86 K is shown in figure 2. No peaks were observed at between 2800 cm$^{-1}$ to 3100 cm$^{-1}$ below a exposure of 2.0 L, while a peak was observed at 1444 cm$^{-1}$. On the other hand, a peak probably appeared at 2958 cm$^{-1}$ for the exposure of 3 L in addition to the peaks at 1344 cm$^{-1}$ and 1437 cm$^{-1}$. These peaks are listed up in table 1 with vibration modes for CH$_3$Cl in a gas phase and for adsorbed CH$_3$Cl on Pd$_{100}$ [18]. The comparison in table 1 assigned peaks at 1344 cm$^{-1}$, 1437 \sim 1444 cm$^{-1}$, and 2958 cm$^{-1}$ to a CH$_3$ symmetric deformation mode δ_s(CH$_3$), a CH$_3$ asymmetric deformation mode δ_a(CH$_3$), and a CH$_3$ symmetric stretching mode ν_s(CH$_3$), respectively.

The change of the observed peaks as a function of the CH$_3$Cl exposure is explained as follows. In general, vibrational modes with a transition dipole moment parallel to a surface are not active for IR spectroscopy because the transition dipole moment is canceled by an induced dipole change on the surface. By contrast, if the transition dipole moment is inclined from the surface, the mode is active for IR spectroscopy. In observed IR spectra for 0.7 L, δ_a(CH$_3$) at 1444 cm$^{-1}$ was observed, though δ_s(CH$_3$) and ν_s(CH$_3$) were not observed. The missing of δ_s(CH$_3$) and ν_s(CH$_3$) means that at least molecular axis of CH$_3$Cl at the first layer is almost parallel to the surface (Note that, for an isolated CH$_3$Cl molecule, the direction of the transition dipole moment for δ_s(CH$_3$) and ν_s(CH$_3$) are parallel to the molecular axis and those for δ_a(CH$_3$) and ν_a(CH$_3$) are perpendicular to the molecular axis). When the surface was exposed to CH$_3$Cl of 3.0 L, δ_s(CH$_3$) and ν_a(CH$_3$) appeared. This suggests that the molecular axis of CH$_3$Cl at the second layer is inclined from the surface.
Possible stable structures for CH$_3$Cl of 0.25 ML on Ag(111), which corresponds to the saturation coverage for the β peak in the TPD spectra, were calculated by the DFT method. A Cl atom in a CH$_3$Cl was put on an on-top site, a bridge site, and a follow site and the structure was then relaxed. There were found to be several metastable structures with a reference symmetry with respect to the molecular axis, in all of which CH$_3$Cl was almost parallel to the surface (see figure S2). At the experimental temperature of 86 K, an isolated adsorbed CH$_3$Cl can take all possible geometries above (see figure S2) by its rotations and diffusions on the surface. As a typical structure, we focus on the most stable one shown in figure 3(a). The distance between the Cl atom and the nearest neighbor Ag atom was 3.6 angstroms. The C atom was slightly farther away from the surface and the angles between the molecular axis and the surface plane were 10 degrees. The estimated adsorption energy (E_{ad}) was 30.66 kJ mol$^{-1}$, which was in good agreement with the E_d of 31 kJ mol$^{-1}$ for the β peak estimated from the TPD spectra.

E_{ad} for the adsorbed structure shown in figure 3(a) without a dispersion force adjustment was calculated so that the contribution in E_{ad} was evaluated. Without the dispersion force, E_{ad} for CH$_3$Cl was calculated to be 4.0 kJ mol$^{-1}$ with the distance between the C atom in CH$_3$Cl and the surface of 4.0 angstroms. The E_{ad} of 4.0 kJ mol$^{-1}$ was weak compared with E_{ad} of 31 kJ mol$^{-1}$ calculated with the dispersion force. This means that the dispersion force is the dominant component for the adsorption of CH$_3$Cl on Ag(111). In the case of a CH$_4$ molecule, it interacts with metal substrates mainly with dispersion force and without static dipole-induced-dipole interaction because of the high symmetricity. The desorption temperature for CH$_4$ of 1.6 ML adsorbed on Pt(111) was 73 K [22], which is converted to E_d of 19.4 kJ mol$^{-1}$ with the Redhead method. The difference in the E_{ad}’s calculated for 0.25 ML CH$_3$Cl with and without dispersion force was 26.66 kJ mol$^{-1}$, which is not far from the E_d for CH$_3$Cl on Pt(111). This is consistent with that CH$_3$Cl at the first layer preferred the parallel geometry, which can increase the dispersion force interaction with the substrate.

Next, an additional CH$_3$Cl, whose molecular axis was aligned to be parallel to the molecular axis of a CH$_3$Cl at the first layer, was set 6 angstroms above the gap between CH$_3$Cl at the first layer. Then, the additional CH$_3$Cl was approached to the surface and the structure was relaxed. The converged structure was shown in figure 3(b). The additional CH$_3$Cl was coordinated to the CH$_3$Cl at the first layer in the twisted conformation. Calculated E_{ad} for the additional CH$_3$Cl was 28.06 kJ mol$^{-1}$, which agreed with the experimental value of E_d of 29 kJ mol$^{-1}$ for the α peak in the TPD spectra.

Vibrational modes for the structures shown in figures 3(a) and (b) and CH$_3$Cl in a gas phase were calculated as listed up in table 1. While the wavenumbers for the stretching modes were underestimated, the wavenumbers for the deformation modes agree with the experimental values within 20 cm$^{-1}$. The red shifts of the wavenumbers by the adsorption were also represented. For 0.25 ML, degenerate $\delta_{as}(CH_3)$ and $\nu_{as}(CH_3)$ in a gas phase were solved into two modes depending on the direction of the transition dipole moment with respect to the surface. For 0.50 ML, symmetric modes and asymmetric modes were divided into two and four modes, respectively, due to the CH$_3$Cl at the first layer and the second layer.

CH$_3$Cl at the first layer in a stable geometry shown in figure 3(a) can take three orientations I, II, and III denoted as arrows in figure 4. When CH$_3$Cl at the orientation of I, II, or III is dissociated by photon or electron irradiation, the Cl atom is probably adsorbed on an on-top site of 1, 2, or 3 shown in figure 4, respectively. As the orientation of the molecularly-adsorbed CH$_3$Cl can be controlled by the electric field by a STM tip, the adsorption sites 1, 2, and 3 for the Cl atom can also be selectable. That is, three bits of information can be stably recorded per one CH$_3$Cl molecule on the surface.

Figure 3. A stable structure for CH$_3$Cl of (a) 0.25 ML and (b) 0.50 ML on Ag(111).
4. Conclusion

We have investigated adsorbed structure of CH₃Cl on a Ag(111) surface. In IRAS spectra, a CH₃ symmetric deformation mode was not observed for CH₃Cl at the first layer on Ag(111) but for CH₃Cl at the second layer. This indicates that the first layer adsorbed in an almost parallel position with respect to the surface and the second layer was inclined from the surface. DFT calculations confirmed the parallel and the inclined geometry of CH₃Cl at the first layer and the second layer, respectively. The inclined CH₃Cl at the second layer formed a twisted dimer with CH₃Cl at the first layer.

Acknowledgments

This work is supported by MEXT Grant-in-Aid for Scientific Research (JP15KT0062 and JP26248006). This work was also supported financially by Shin-Etsu Chemical Co., Ltd Japan. We are also grateful to Mr Tetsuya Inukai for his valuable discussions and to Dr Masato Oda at Wakayama Univ and at FCC60 for advices on DFT calculations.

ORCID iDs

Kotaro Takeyasu © https://orcid.org/0000-0001-7301-0072

References

[1] Lim T et al 2011 Surface-mediated chain reaction through dissociative attachment Nat. Chem. 3 85
[2] Harikumar K et al 2008 Dipole-directed assembly of lines of 1,3-dichloropentane on silicon substrates by displacement of surface change Nature Nano 3 522
[3] Harikumar K et al 2009 Cooperative molecular dynamics in surface reactions Nat. Chem. 1 716
[4] Maksymovych P et al 2008 Collective reactivity of molecular chains self-assembled on a surface Science 322 1664
[5] Dobrin S et al 2007 Maskless nanopatterning and formation of nano-corridors and switches, for haloalkanes at Si(111)−7 × 7" Nanotechnology 18 044012
[6] Harikumar K R et al 2010 Imprinting self-assembled patterns of lines at a semiconductor surface, using heat light or electrons Proc. Natl Acad. Sci. 108 950–5
[7] Maksymovych P et al 2006 Propagation of conformation in the surface-aligned dissociation of single CH₃SSCH₃ molecules on Au(111) J. Am. Chem. Soc. 128 10642
[8] Maksymovych P et al 2006 Methanethiolate adsorption site on Au(111): a Combined STM/DFT study at the single-molecule level J. Phys. Chem. B 110 211611
[9] Zhou X–L et al 1992 Low energy induced chemistry: C₃H₄Cl on Ag(111) Surf. Sci. 271 452
[10] Dixon–Warren S J et al 1993 Photochemistry of adsorbed molecules. XI. Charge-transfer photodissociation and photoreaction in chloromethanes on Ag(111) J. Chem. Phys. 98 5938
[11] Marsh E P et al 1988 Electron-transfer-mediated and direct surface photochemistry: CH₃Cl on Ni(111) Phys. Rev. Lett. 61 2725
[12] Solymosi F et al 1991 Surface photochemistry: adsorption and dissociation of CH₃Cl on clean and K-promoted Pd(100) surfaces J. Chem. Phys. 94 8510
[13] Jordan K D and Burrow P D 1987 Temporary anion states of polyatomic hydrocarbons Chem. Rev. 87 557
[14] Berkó A et al 1990 Layer growth mechanism and dipole–dipole interactions of CH₃Cl on Pd(100): an infrared and thermal desorption study J. Chem. Phys. 93 8300
[15] Makino T et al 2018 CH₃Cl/Cu(410): interaction and adsorption geometry J. Phys. Chem. C 122 11825
[16] Kim H C and Alford T J 2002 Thickness dependence on the thermal stability of silver thin films Appl. Phys. Lett. 81 4287
[17] Wilde M et al 2016 Quantification of hydrogen concentrations in surface and interface layers and bulk materials through depth profiling with nuclear reaction analysis J. Vis. Exp. 109 e53452
[18] Nakao F 1975 Determination of the ionization gauge sensitivity using the relative ionization cross-section Vacuum 25 431
[19] Vallance C et al 1997 Absolute electron impact ionization cross sections for CH$_3$X, where X = H, F, Cl, Br, and I J. Phys. B: At. Mol. Opt. Phys. 30 2465
[20] Zhou X-L et al 1989 Interaction of methyl halides (Cl, Br and I) with Ag(111) Surf. Sci. 219 291
[21] Heltzberg G 1945 Molecular spectra and molecular structure *Infrared and Raman Spectra of Polyatomic Molecules* vol 2 (New York: Van Nostrand-Reinhold) pp 312
[22] Gruzdkov Y A et al 1994 Photochemical C–H bond activation of methane on a Pt(111) surface Chem. Phys. Lett. 227 243