Anisotropic flow measured from multi-particle azimuthal correlations

Ante Bilandzic (for the ALICE Collaboration)
“Niels Bohr Institute”, Copenhagen

Quark Matter, Washington D.C, 17/08/2012
Anisotropic flow

- For ideal geometry event anisotropy in momentum space is quantified solely with even cosine terms
- S. Voloshin and Y. Zhang, Z.Phys.C70,1996:
 \[v_n = \langle \cos(n(\varphi - \Psi_{\text{RP}})) \rangle \]
- There is only one ‘geometrical’ symmetry plane
- Harmonics \(v_n \) quantify anisotropic flow:
 - \(v_1 \) is directed flow, \(v_2 \) is elliptic flow, \(v_3 \) is triangular flow, etc.
Flow fluctuations

- Event-by-event fluctuations in the positions of participating nucleons result in non-zero odd harmonics:

\[\Psi_{RP} \Rightarrow \Psi_n \]

\[\nu_n = \langle \cos(n(\varphi - \Psi_n)) \rangle \]

- Each harmonic \(\nu_n \) has its own symmetry plane \(\Psi_n \)

- Experimental consequences of e-b-e flow fluctuations:
 - \(\langle \nu_n^k \rangle \) is not the same as \(\langle \nu_n \rangle^k \)

- What is the underlying probability density function (p.d.f.) of e-b-e flow fluctuations?

- What is the relation between different symmetry planes \(\Psi_n \)?
Analysis outline

- **Data sample:**
 - 2010 + 2011 Pb-Pb events at 2.76 TeV
 - Acceptance $|\eta| < 0.8$

- **Charged particle tracking:**
 - Time Projection Chamber (TPC)

- **Systematic uncertainties:**
 - Non-flow
 - Centrality determination
 - Inefficiencies in detectors azimuthal acceptance
 - Variation of track quality cuts
p.d.f. of flow fluctuations

- **Equivalence:** p.d.f. \Leftrightarrow moments \Leftrightarrow cumulants
 - Cumulants measure genuine multi-particle correlations
 - If for the 1^{st} ($\langle v \rangle$) and 2^{nd} (σ_v) moments $(\sigma_v/\langle v \rangle)^2 \ll 1$ is satisfied, then all multi-particle cumulants for any p.d.f. are the same
 - For v_2: $(\sigma_v/\langle v \rangle)^2 < 0.25$ for mid-central collisions (A. Hansen talk)
 - Odd harmonics originate from fluctuations and $(\sigma_v/\langle v \rangle)^2 \ll 1$ is never satisfied

- **Bessel-Gaussian p.d.f:** All higher moments degenerated
 \[v_n\{4\} = v_n\{6\} = v_n\{8\} = \ldots \]
 \[
 f(v) = \frac{v}{b^2} \exp \left(-\frac{v^2 + a^2}{2b^2} \right) I_0 \left(\frac{va}{b^2} \right)
 \]
 \[
 v\{2\} = \sqrt{a^2 + 2b^2}
 \]
 \[
 v\{4, 6, \ldots\} = a
 \]

Voloshin et al.: PLB 659, 537 (2008)
Directed flow vs centrality

\(v_1 \{4\} \) and \(v_1 \{6\} \) are similar within the uncertainties.
Triangular flow vs centrality

$v_3\{4\}$ and $v_3\{6\}$ are consistent for all centralities
What is the p.d.f. of flow fluctuations?

- Established experimentally that $v_n\{4\} \sim v_n\{6\} \Rightarrow$ p.d.f. of e-b-e flow fluctuations must have non-negligible 3rd/higher moments (when compared to the 1st/2nd moment)

- Bessel-Gaussian function is an example of p.d.f. with $v_n\{4\} = v_n\{6\}$
Strong centrality dependence of $v_2\{4\}$ - contribution from v_2 wrt. Ψ_{RP}

Weak centrality dependence of $v_3\{4\}$ typical for pure flow fluctuations
Correlation between symmetry planes

- Observables to probe correlation between symmetry planes:

\[\langle \cos(n_1 \varphi_1 + \cdots + n_k \varphi_k) \rangle = v_{n_1} \cdots v_{n_k} \cos(n_1 \Psi_1 + \cdots + n_k \Psi_k) \]

Bhalerao, Luzum, Ollitrault PRC 84 034910 (2011)

- Teaney & Yan proposed: \(\langle \cos(\varphi_a - 3 \varphi_b + 2\Psi_2) \rangle \)

- Experimentally, we measure:

\[
\begin{align*}
\langle \cos(\varphi_a - 3 \varphi_b + 2\varphi_c) \rangle &= \langle \cos(\varphi_a - 3 \varphi_b + 2\Psi_2) \rangle \langle \cos(2\varphi_c - 2\Psi_2) \rangle \\
&= \langle \cos(\varphi_a - 3 \varphi_b + 2\Psi_2) \rangle \times v_2
\end{align*}
\]

Teaney, Yan PRC 83, 064904 (2011)
\[\langle \cos(\varphi_a - 3\varphi_b + 2\varphi_c) \rangle = \langle \cos(\varphi_a - 3\varphi_b + 2\Psi_2) \rangle \times \nu_2 \]

Observe non-zero 3-particle correlation
\[\langle \cos(\varphi_a - 3\varphi_b + 2\varphi_c) \rangle = \langle \cos(\varphi_a - 3\varphi_b + 2\Psi_2) \rangle \times v_2 \]

- Measured correlations have different structure than expected from MC Glauber + ideal hydro model calculations

Teaney, Yan PRC 83, 064904 (2011)
5-particle mixed harmonic cumulants:

\[
\langle \cos(3\varphi_1 + 3\varphi_2 - 2\varphi_3 - 2\varphi_4 - 2\varphi_5) \rangle_c = \langle \cos(3\varphi_1 + 3\varphi_2 - 2\varphi_3 - 2\varphi_4 - 2\varphi_5) \rangle \\
\approx v_3^2 v_2^3 \cos[6(\Psi_3 - \Psi_2)]
\]

\[
\langle \cos(2\varphi_1 + 2\varphi_2 - 2\varphi_3 - \varphi_4 - \varphi_5) \rangle_c = \langle \cos(2\varphi_1 + 2\varphi_2 - 2\varphi_3 - \varphi_4 - \varphi_5) \rangle \\
- 2 \langle \cos(2\varphi_1 - \varphi_2 - \varphi_3) \rangle \langle \cos(2\varphi_1 - 2\varphi_2) \rangle \\
\approx -v_2^3 v_1^2 \cos[2(\Psi_2 - \Psi_1)]
\]

\[
\langle \cos(3\varphi_1 + 2\varphi_2 - 2\varphi_3 - 2\varphi_4 - \varphi_5) \rangle_c = \langle \cos(3\varphi_1 + 2\varphi_2 - 2\varphi_3 - 2\varphi_4 - \varphi_5) \rangle \\
- 2 \langle \cos(3\varphi_1 - 2\varphi_2 - \varphi_3) \rangle \langle \cos(2\varphi_1 - 2\varphi_2) \rangle \\
\approx -v_3 v_2^3 v_1^2 \cos[3\Psi_3 - 2\Psi_2 - \Psi_1]
\]

- All 5-particle cumulants which are sensitive to v_2^3
What is the relation between symmetry planes Ψ_n?

- Observe non-zero genuine 5-particle correlation
- Correlation strength is related to three-plane correlations
Established experimentally that $v_n\{4\} \sim v_n\{6\} \Rightarrow$ p.d.f. of e-b-e flow fluctuations must have non-negligible 3rd/higher moments when compared to the 1st/2nd moment

- Supports Bessel-Gaussian shape of the p.d.f.

- Weak centrality dependence of $v_3\{4\}$ vs p_T is consistent with its origin from flow fluctuations

- Mixed harmonic 3-particle correlation exhibits different structure than what is expected from MC Glauber + ideal-hydro model calculations (Teaney, Yan PRC 83, 064904 (2011))

- Observe non-zero 5-particle correlations
 - Probe 3-plane correlations
Thanks!
Transverse momentum dependence of $v_3\{4\}$