Thrombectomy in a severe case of iliofemoral venous thrombosis involving the deep femoral vein via a single percutaneous access from the jugular vein: case report and description of the technique

Trombectomia em caso grave de trombose venosa iliofemoral afetando a veia femoral profunda pela técnica de punção e sessão única realizada pela veia jugular: relato de caso e descrição da técnica

Fabio Henrique Rossi

Abstract
Iliac vein thrombectomy is usually performed via access through veins located in the lower limbs, which makes it impossible to treat the deep femoral vein, which in turn is an important inflow route to the iliac vein stent. We describe a clinical case and the previously unpublished technique of percutaneous thrombectomy, angioplasty, and stent implantation performed in a single session and with a single access, obtained via the internal jugular vein.

Keywords: angioplasty; thrombectomy; iliac vein; thrombosis.

Resumo
A trombectomia mecânica venosa ilíaca geralmente é realizada por acesso em veias localizadas nos membros inferiores, o que impossibilita o tratamento da veia femoral profunda, que, por sua vez, é uma importante via de influxo ao stent venoso ilíaco. Descrevemos um caso clínico em que foi aplicada a técnica inédita de trombectomia percutânea, angioplastia e implante de stent, realizada por sessão e acesso único, obtido na veia jugular interna.

Palavras-chave: angioplastia; trombectomia; veia ilíaca; trombose.

How to cite: Rossi FH. Thrombectomy in a severe case of iliofemoral venous thrombosis involving the deep femoral vein via a single percutaneous access from the jugular vein: case report and description of the technique. J Vasc Bras. 2022;21:e20210192. https://doi.org/10.1590/1677-5449.202101922

1 Instituto Dante Pazzanese de Cardiologia – IDPC, São Paulo, SP, Brasil.
2 Instituto de Excelência em Doenças Venosas – IEDV, São Paulo, SP, Brasil.
Financial support: Projeto regular de pesquisa FAPESP: 2019/23994-8.
Conflicts of interest: No conflicts of interest declared concerning the publication of this article.
Submitted: October 28, 2021. Accepted: February 10, 2022.

The study was carried out at Instituto Dante Pazzanese de Cardiologia (IDPC), São Paulo, SP, Brazil.
INTRODUCTION

Mechanical thrombectomy can be used to treat iliofemoral deep venous thrombosis (DVT) in a single session. Access is conventionally obtained via veins located in the lower limbs, primarily the popliteal vein, preventing access to the ipsilateral deep femoral vein, which, in turn, is consistently involved in severe cases. Although contralateral puncture enables access to the deep femoral vein, it prevents angioplasty and stent deployment in the great majority of cases, when there is an obstruction in the iliocaval segment. We describe a clinical case treated using a technique comprising percutaneous thrombectomy, angioplasty, and stenting performed in a single session and via a single access, obtained via the internal jugular vein.

CLINICAL CASE

A 16-year-old female student presented complaining of pain and edema of the left lower limb with onset 1 day before. She stated that she had no history of similar occurrences or of previous surgery, but reported that she had put on weight and had been taking oral contraception for the last 4 months. Physical examination revealed considerable edema of the thigh and left leg and reversible cyanosis of the toes. All pulses were present. Vascular echography showed a large deep vein thrombosis (DVT) involving the popliteal, femoral, and iliac veins of the left leg. She was admitted and given full anticoagulation with low molecular weight heparin and maintained at rest, in the Trendelenburg position. After 48 hours in hospital, her clinical status was unchanged and she had difficulty walking, even in the hospital room.

DESCRIPTION OF THE TECHNIQUE

Angiotomography was used to identify and classify the obstructed venous segments (Figures 1 and 2). The technique employed comprised the following steps: 1) ultrasound-guided puncture of the right internal jugular vein (RIJV), systemic heparinization and selective catheterization of the popliteal vein (11F x 11 cm introducer, 5F x 110 cm multipurpose catheter, 0.035” x 260 cm Terumo stiff hydrophilic guidewire (Terumo Medical, Tokyo, Japan), and 0.035” x 260 cm super stiff Amplatz guidewire (Boston Scientific, Marlborough, USA), positioning of an Angiojet Zelante catheter (Boston Scientific, Marlborough, United States) over the Amplatz guidewire and retrograde venography via the catheter, with identification of the obstructed segment (Figure 3); 2) preparation of the Alteplase 10 mg solution in 100 mL of saline 0.9%, infusion of 20 mL of this solution using the “pulse spray” technique into the thrombus interior up to the common femoral vein, a 20-minute wait, aspiration of the thrombus via the Angiojet catheter (Boston Scientific, Marlborough, USA), confirmation of the result by venography performed with the same catheter (Figure 4); 3) repositioning of the catheter tip in the common femoral vein, substitution of the Amplatz guidewire with the stiff hydrophilic wire and positioning of the tip of the stiff guidewire, repositioning of the Angiojet catheter at the caudal...
extremity of the deep femoral vein and repetition of step 2 in this segment (Figure 5); 4) venography performed with the Angiojet catheter placed in the common femoral vein, observing the characteristics of the obstruction in this iliofemoral segment, repetition of step 2, taking the site of greatest compression observed on angiotomography as the cranial limit, without yet penetrating the lumen of the inferior vena cava to avoid release of remnants of the macerated thrombus into the bloodstream (Figure 6); 5) crossing the entire treated segment with the intravascular ultrasonography (IVUS) catheter (Vision PV.035 – Philips, Holland), with the objective of identifying residual thrombi and points of compression and/or obstruction (Figure 7); 6) angioplasty with a balloon catheter (XXL, 14 to 20 x 40 mm – Boston Scientific or Atlas Gold 14 to 20 x 40 mm – BD; Mustang 8 to 12 x 60mm – Boston Scientific) of obstructed segments identified with IVUS; 7) deployment of a 14 to 20 x 90 mm self-expanding stent (Wallstent – Boston Scientific; Venovo – BD; Zilver Vena – Cook; Abre – Medtronic) in the obstructed iliofemoral

Figure 2. Angiotomography demonstrating presence of thrombus filling the entire lumen of the left common femoral, femoral, and deep femoral vein (*). A) Coronal axis; B) Sagittal axis; C) Transverse axis.

Figure 3. Digital subtraction venography. A) Tip of the SF PM catheter positioned at the confluence of the common iliac veins, showing the site of compression by the right iliac artery; B) initial venography conducted with the Angiojet Zelante thrombectomy catheter, positioned in the left popliteal vein; note the presence of collateral flow between this vein and the deep femoral vein, which is obstructed by thrombi; C and D) presence of a large volume of thrombi in the left femoral and deep femoral veins.
segment; 8) post-ballooning of the stent with the same balloon catheter (Figure 8); 9) final passage of the IVUS catheter and final control venography (Figure 9); and 10) closure of the puncture site with a Perclose vascular closure device (Abbott Medical, MS, USA).

POSTOPERATIVE COURSE

During the immediate postoperative period, the patient’s symptoms and edema improved and she was discharged from hospital on the second day after the procedure. Recently, one and a half years after hospital
Figure 6. Digital subtraction venography of the cavo-ilio-femoral axis: A and B) initial venography demonstrating occlusion of the iliofemoral axis; C) venographic appearance after infusion of thrombolytic with the “pulse spray” technique and mechanical aspiration. At the arrow, we can observe the anatomic obstruction that occurs at the “mouth” of the left common iliac vein, provoking compression by the right common iliac artery and used as the cranial limit of advancement of the thrombectomy catheter, with the objective of preventing fragments of thrombus entering the inferior vena cava.

Figure 7. Image acquired when crossing the entire treated segment with the intravascular ultrasonography catheter (Vision PV035 – Philips) with the objective of identifying remnant thrombi and residual points of compression and/or obstruction: A) left femoral vein; B) left common femoral vein below the inguinal ligament; C) mid third of the left common iliac vein; D and E) severe compression and obstruction (>80%) at the confluence of the iliac veins and the caudal extremity of the inferior vena cava; D) inferior vena cava in mid infrarenal third.
discharge, she remained asymptomatic and control vascular echography showed total recanalization of the treated segment, stent patency, and no points of obstruction (Figure 10). This innovative technique was developed as part of a research project on diagnosis and treatment of iliac venous obstructions, approved by the Ethics Committee (4101/2012), and financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2012/01021-9).

DISCUSSION

Invasive and percutaneous treatment for iliofemoral DVT is becoming increasingly popular for severe
symptomatic patients, defined as those needing to be admitted for pain, edema, cyanosis, and difficulty walking and whose symptoms do not improve despite full anticoagulation and limb elevation. In this situation, there is a high risk of occurrence of severe postthrombotic syndrome, with considerable loss of quality of life, relapse of thrombosis, and high economic and social costs.2 The development of mechanical thrombectomy devices and improvements to the technique have enabled treatment to be completed in a single session, using minimal quantities of thrombolytics, delivering shorter procedure times, shorter hospital stays, and lower treatment costs.1,3,6 Thrombosis of the deep femoral vein is linked to the severity of symptoms in both the acute and chronic phases, with a higher incidence of postthrombotic syndrome, and with worse treatment patency outcomes after angioplasty and placement of the stent in the iliofemoral axis.1,7

In the standard technique used for percutaneous treatment, access is conventionally obtained by puncture of veins located in the lower limbs, primarily the popliteal vein, which prevents access to the ipsilateral deep femoral vein. Although contralateral puncture does allow access to this vein, it does not permit angioplasty and stent deployment when there is obstruction of the iliacaval axis, which is present in the great majority of cases.

The hitherto unpublished technique described here enables use of a single access, obtained via the internal jugular vein, and treatment in a single session of the entire iliofemoral axis, including the whole length of the deep femoral vein. The characteristics of the Angiojet device enable perioperative venographic control, thrombolysis with the “pulse spray” technique, and mechanical aspiration to be performed with the same catheter and access. Early extraction of the thrombus from the common and deep femoral veins is very important, because it immediately restores adequate blood flow to the iliac segment subjected to angioplasty and stenting, ensuring its short and long term patency. Use of IVUS is very important for success of the technique, because we know that venography can fail to identify points of compression and residual thrombi, and only this method is capable of identifying possible residual obstructions. Another important factor that should be considered is that presence of the thrombus in the vessel lumen can trigger an inflammatory process in its walls within the first hours, provoking phlebosclerosis and elastic recoil, in a process first recognized by Rokitansky,8 which can make angioplasty difficult because of intense fibrotic retraction when performed in the chronic phase.

Figure 10. Postoperative control Doppler ultrasonography demonstrating (A) patency of the inferior vena cava (VCI), the stent venous positioned in the left common iliac vein (VICE), from its cranial segment over the right common iliac artery (AICD), and in the left external iliac vein (VIEE), and the right common iliac vein (VICD); B) Venous flow in phase with respiratory movements in the left (VFCE) and right (VFCD) common femoral veins; C) diameters of the stent in the VCI, VICE, and VIEE.
CONCLUSIONS

Mechanical thrombectomy of iliac DVT performed using the single-session, single-puncture technique enables immediate treatment of the deep femoral vein, improving the patient’s clinical status, guaranteeing adequate flux and possibly improving short and long term stent patency outcomes.

REFERENCES

1. Park SI, Lee M, Lee MS, Kim MD, Won JY, Lee DY. Single-session aspiration thrombectomy of lower extremity deep vein thrombosis using large-size catheter without pharmacologic thrombolysis. Cardiovasc Intervent Radiol. 2014;37(2):412-9. http://dx.doi.org/10.1007/s00270-013-0676-1. PMID:23793745.

2. Kakkos SK, Gohel M, Baekgaard N, et al. Editor’s Choice: European Society for Vascular Surgery (ESVS) 2021 clinical practice guidelines on the management of venous thrombosis. Eur J Vasc Endovasc. 2021;61(1):9-82. http://dx.doi.org/10.1016/j.ejvs.2020.09.023. PMID:33334670.

3. Ascher E, Chait J, Pavalonis A, Marks N, Hingorani A, Kibrik P. Fast-track thrombolysis protocol: a single-session approach for acute iliofemoral deep venous thrombosis. J Vasc Surg Venous Lymphat Disord. 2019;7(6):773-80. http://dx.doi.org/10.1016/j.jvsv.2019.06.018. PMID:31471279.

4. Rossi FH, Gama CAR, Fonseca IYI, et al. Computed Tomography Venography diagnosis of iliocaval venous obstruction in advanced chronic venous insufficiency. J Vasc Bras. 2014;13(4):306-11. http://dx.doi.org/10.1590/1677-5449.0067.

5. Rossi FH, Kambara AM, Rodrigues TO, et al. Comparison of computed tomography venography and intravascular ultrasound in screening and classification of iliac vein obstruction in patients with chronic venous disease. J Vasc Surg Venous Lymphat Disord. 2020;8(3):413-22. http://dx.doi.org/10.1016/j.jvsv.2019.09.015. PMID:32197952.

6. Kim BJ, Chung HH, Lee SH, et al. Single-session endovascular treatment for symptomatic lower extremity deep vein thrombosis: a feasibility study. Acta Radiol. 2010;51(3):248-55. http://dx.doi.org/10.3109/02841850903536078. PMID:20201636.

7. Raju S, Fountain T, Neglén P, Devidas M. Axial transformation of the profunda femoris vein. J Vasc Surg. 1998;27(4):651-9. http://dx.doi.org/10.1016/S0741-5214(98)70230-7. PMID:9576078.

8. Raju S, Davis M. Anomalous features of iliac vein stenosis that affect diagnosis and treatment. J Vasc Surg Venous Lymphat Disord. 2014;2(3):260-7. http://dx.doi.org/10.1016/j.jvsv.2013.12.004. PMID:26993384.

Correspondence
Fabio Henrique Rossi
Av. Dr. Amâncio de Carvalho, 182, conjunto 511 - Vila Mariana
CEP: 04012-080 - São Paulo (SP) – Brazil
Tel.: +55 (11) 3368-2975
E-mail: vascular369@hotmail.com

Author information
FHR - PhD e postdoctoral, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Instituto Dante Pazzanese de Cardiologia (IDPC).
Trombectomia em caso grave de trombose venosa iliofemoral afetando a veia femoral profunda pela técnica de punção e sessão única realizada pela veia jugular: relato de caso e descrição da técnica

Thrombectomy in a severe case of iliofemoral venous thrombosis involving the deep femoral vein via a single percutaneous access from the jugular vein: case report and description of the technique

Fabio Henrique Rossi

Resumo
A trombectomia mecânica venosa ilíaca geralmente é realizada por acesso em veias localizadas nos membros inferiores, o que impossibilita o tratamento da veia femoral profunda, que, por sua vez, é uma importante via de influxo ao stent venoso ilíaco. Descrevemos um caso clínico em que foi aplicada a técnica inédita de trombectomia percutânea, angioplastia e implante de stent, realizada por sessão e acesso único, obtido na veia jugular interna.

Palavras-chave: angioplastia; trombectomia; veia ilíaca; trombose.

Abstract
Iliac vein thrombectomy is usually performed via access through veins located in the lower limbs, which makes it impossible to treat the deep femoral vein, which in turn is an important inflow route to the iliac vein stent. We describe a clinical case and the previously unpublished technique of percutaneous thrombectomy, angioplasty, and stent implantation performed in a single session and with a single access, obtained via the internal jugular vein.

Keywords: angioplasty; thrombectomy; iliac vein; thrombosis.

Como citar: Rossi FH. Trombectomia em caso grave de trombose venosa iliofemoral afetando a veia femoral profunda pela técnica de punção e sessão única realizada pela veia jugular: relato de caso e descrição da técnica. J Vasc Bras. 2022;21:e20210192. https://doi.org/10.1590/1677-5449.202101921
INTRODUÇÃO

A trombectomia mecânica permite o tratamento da trombose venosa profunda (TVP) iliaco-femoral em uma única sessão1-3. O acesso convencionalmente é obtido em veias localizadas nos membros inferiores, principalmente na veia poplitea, o que impede o acesso à veia femoral profunda ipsilateral, que, por sua vez, é constantemente envolvida nos casos graves. A punção contralateral, apesar de possibilitar o acesso a essa veia, impossibilita a angioplastia e a liberação do stent na grande maioria dos casos, quando existe obstrução no eixo iliaco-cavo. Descrevemos um caso clínico em que foi aplicada a técnica de trombectomia percutânea, angioplastia e implante de stent, realizada por sessão e acesso único, obtido na veia jugular interna.

CASO CLÍNICO

Uma paciente de 16 anos, do sexo feminino e estudante apresentou como queixas dor e edema em membro inferior esquerdo há 1 dia. Negou história clínica semelhante ou cirurgia prévia e relatou que havia ganhado peso e vinha fazendo uso de anticoncepcional oral nos últimos 4 meses. Ao exame físico, apresentava edema volumoso em coxa e perna esquerda e cianose não fixa de pododáctilos. Todos os pulsos eram presentes. A ecografia vascular revelou extensa TVP envolvendo as veias da perna, poplitea, femorais e ilíacas esquerda. A paciente foi internada, submetida a anticoagulação plena com heparina de baixo peso molecular e mantida em repouso, em posição de Trendelenburg. Após 48 horas de internação, a paciente manteve o quadro clínico e havia restrição para a locomoção, mesmo dentro do quarto.

DESCRIÇÃO DA TÉCNICA

Foram realizadas a identificação e a classificação angiotomográfica4,5 (Figura 1 e 2) do segmento venoso obstruído. A técnica empregada seguiu estas etapas: 1) punção ecoguiada da veia jugular interna direita (VJID), heparinização sistêmica e cateterização seletiva da veia poplitea (introdutor 11F x 11 cm, cateter MP 5F x 110 cm, guia hidrofílico Terumo stiff (Terumo Medical, Tóquio, Japão) de 0,035” x 260 cm e Amplatz super stiff 0,035” x 260 cm (Boston Scientific, Marlborough, EUA), posicionamento de cateter Angiojet Zelante (Boston Scientific, Marlborough, EUA) sobre o fio guia Amplatz, venografia retrógrada pelo mesmo, com identificação do segmento obstruído (Figura 3); 2) preparo de solução de Alteplase 10 mg em 100 mL de soro fisiológico a 0,9%, infusão de 20 mL dessa solução no interior do trombo até a veia femoral comum, espera de 20 minutos, aspiração do trombo pelo cateter Angiojet (Boston Scientific, Marlborough, EUA), verificação do resultado por venografia realizada pelo próprio cateter (Figura 4); 3) reposicionamento de sua ponta na veia femoral comum, substituição do guia Amplatz pelo hidrofílico stiff e posicionamento da ponta desse

![Figura 1. Angiotomografia abdomino-pélvica demonstrando presença e extensão da trombose e classificação angiotomográfica de ponto de maior compressão (*) no segmento cav ilíaco-femoral. A) Eixo coronal; B) eixo sagital; C) eixo transverso.](attachment:figura1.png)
Trombectomia venosa por sessão e punção única

Rossi J Vasc Bras. 2022;21:e20210192. https://doi.org/10.1590/1677-5449.20210192

guia, substituição do cateter Angiojet na extremidade caudal da veia femoral profunda e repetição da etapa 2 nesse segmento (Figura 5); 4) venografia realizada pelo cateter Angiojet estacionado na veia femoral comum, observando as características da obstrução no segmento ilíaco-cavo, repetição da etapa 2, tendo por limite cranial o local de maior compressão observado na angiotomografia, sem nesse momento penetrar a luz da veia cava inferior para que não haja liberação dos resquícios do trombo macerado na corrente sanguínea (Figura 6); 5) passagem de cateter de ultrassonografia intravascular (IVUS) (Vision PV.035 – Philips, Holanda) em todo segmento tratado, com o objetivo de identificar trombos resíduais e pontos de compressão e/ou obstrução (Figura 7); 6) angioplastia com cateter balão (XXL, 14 a 20 x 40 mm – Boston Scientific ou Atlas Gold 14 a 20 x 40 mm – BD; Mustang 8 a 12 x 60mm – Boston

Figura 2. Angiotomografia demonstrando presença de trombo preenchendo toda a luz da veia femoral, comum, femoral e profunda esquerda (*). A) Eixo coronal; B) eixo sagital; C) eixo transverso.

Figura 3. Venografia por subtração digital. A) Ponta de cateter MP 5F posicionado em confluência de veias ilíacas comuns, demonstrando o local de compressão pela artéria ilíaca direita; B) venografia inicial realizada pelo próprio cateter de trombectomia Angiojet Zelante, posicionado em veia poplítea esquerda; notar a presença de colateral entre essa veia e a veia femoral profunda que se encontra obstruída por trombos; C e D) presença de grande volume de trombos em veia femoral e femoral profunda esquerda.
Trombectomia venosa por sessão e punção única

Scientific) dos segmentos obstrutivos identificados pelo IVUS; 7) implante de stent autoexpansível 14 a 20 x 90 mm (Wallstent – Boston Scientific; Venovo – BD; Zilver Vena – Cook; Abre – Medtronic) no segmento cavo-iliaco obstruído; 8) pós-balonamento do stent com o mesmo cateter balão (Figura 8); 9) passagem final do cateter de IVUS e venografia final de controle (Figura 9); e 10) fechamento de sítio de punção com oclusor vascular tipo Perclose (Abbott Medical, MN, EUA).

Figura 4. Venografia por subtração digital demonstrando A) presença inicial de obstrução de veia femoral e femoral profunda esquerda por trombos; em B, C e D) venografia de controle intraoperatoria após realização de infusão de agente trombolítico pela técnica “pulse spray” e aspiração mecânica no segmento femoropopliteo esquerdo.

Figura 5. Venografia por subtração digital demonstrando a técnica de reposicionamento da ponta do cateter Angiojet em extremidade caudal da veia femoral comum profunda esquerda: A) ponta do cateter estacionada em veia femoral comum esquerda sem o fio guia; B e C) posicionamento da ponta do mesmo cateter sobre guia hidrofílica em extremidade caudal de veia femoral profunda esquerda.
Trombectomia venosa por sessão e punção única

Figura 6. Venografía por subtração digital de eixo cavo-iliaco-femoral. A e B) venografía inicial demonstrando oclusão em eixo ilíaco-femoral; C) aspecto venográfico após infusão de trombolítico pela técnica “pulse spray” e trombectomia mecânica. Na seta, podemos notar a obstrução anatômica que ocorre na “boca” da veia ilíaca comum esquerda, provocada pela compressão da mesma pela artéria ilíaca comum direita, usada como limite cranial da passagem do cateter de trombectomia, com objetivo de evitar que fragmentos de trombo invadam a veia cava inferior.

Figura 7. Imagem obtida durante a passagem do cateter de ultrassonografia intravascular (Vision PV035 – Philips) em todo segmento tratado, com o objetivo de identificar trombos residuais e pontos residuais de compressão e/ou obstrução: A) veia femoral esquerda; B) veia femoral comum esquerda abaixo do ligamento inguinal; C) terço médio da veia ilíaca comum esquerda; D e E) compressão e obstrução severa (>80%) em confluência de veias ilíacas e em extremidade caudal da veia cava inferior; D) veia cava inferior em terço médio infrarenal.
EVLUÇÃO PÓS-OPERATÓRIA

No pós-operatório imediato, a paciente evoluiu com melhora dos sintomas e do edema e obteve alta hospitalar no segundo dia após a realização do procedimento. Recentemente, após 1 ano e meio da alta hospitalar, mantém-se assintomática, e a ecografia vascular de controle revelou recanalização total do segmento tratado, perviedade do stent e ausência de pontos de obstrução (Figura 10). Essa inovação técnica foi desenvolvida como parte de um projeto de pesquisa sobre o diagnóstico e tratamento de obstruções venosas ilíacas, aprovado pelo Comitê de Ética (4101/2012) e financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2012/01021-9).

Figura 8. A) Venografia por subtração digital demonstrando liberação controlada de Wallstent 18 x 90 mm; e B) pós-balonamento do stent com cateter balão XXL 18 x 40 mm.

Figura 9. Venografia por subtração digital e passagem de cateter de ultrassonografia intravascular de controle final em segmento femoral (A), ilíaco-femoral (B) e cavo (C), demonstrando fluxo adequado e recuperação da área de seção transversa dos segmentos tratados.
DISCUSSÃO

O tratamento invasivo e percutâneo da TVP ilíaco-femoral vem ganhando popularidade em pacientes sintomáticos graves, considerados aqueles que necessitam de internação por dor, edema, cianose, dificuldade de deambulação e que não melhoram dos sintomas apesar da anticoagulação plena e elevação do membro. Nessa situação, existe alto risco de que ocorra síndrome pós-trombótica grave, com perda considerável da qualidade de vida, recidiva de trombose e alto custo econômico e social. O desenvolvimento de dispositivos de trombectomia mecânica e o aprimoramento da técnica vêm permitindo que o tratamento seja feito em uma única sessão, com o uso de quantidades mínimas de agentes trombolíticos, permitindo menor tempo de procedimento e de internação e menor custo econômico e social. O desenvolvimento de dispositivos de trombectomia mecânica e o aprimoramento da técnica têm permitido que o tratamento seja feito em uma única sessão, com o uso de quantidades mínimas de agentes trombolíticos, permitindo menor tempo de procedimento e de internação e menor custo de tratamento. A trombose da veia femoral profunda está relacionada com a gravidade dos sintomas nas fases aguda e crônica, com uma maior incidência de síndrome pós-trombótica e com piores resultados de perviedade do tratamento após a angioplastia e implante de stent. As características do dispositivo Angiojet permitem que o controle venográfico perioperatorio, a trombólise pela técnica “pulse spray” e a aspiração mecânica sejam feitos pelo mesmo cateter e via de acesso. A extração precoce do trombo na veia femoral comum e profunda é muito importante, pois permite afluxo sanguíneo adequado e imediato ao segmento ilíaco submetido a angioplastia e implante de stent, assegurando sua perviedade a curto e longo prazo. O uso do IVUS é muito importante para o sucesso da técnica, pois permite a identificação dos pontos de compressão e trombos residuais, e apenas esse método é capaz de identificar possíveis obstruções residuais. Um outro fator importante que deve ser considerado é que a permanência de trombo na luz do vaso pode provocar obstruções arteriais que impossibilitam a perfusão adequada.
processo inflamatório em sua parede já nas primeiras horas, podendo provocar flebosclerose e recolhimento elástico, processo primeiramente reconhecido por Rokitansky\(^8\), que pode dificultar a angioplastia pela presença de intensa retração fibrótica quando realizada na fase crônica.

CONCLUSÃO

A técnica de trombectomia mecânica da TVP ilíaca realizada pela técnica de sessão e punção única permite o tratamento imediato da veta femoral profunda, melhorando o estado clínico do paciente, garantindo afluxo adequado e possivelmente melhorando o resultado da perviedade do stent implantado a curto e longo prazo.

REFERÊNCIAS

1. Park SI, Lee M, Lee MS, Kim MD, Won JY, Lee DY. Single-session aspiration thrombectomy of lower extremity deep vein thrombosis using large-size catheter without pharmacologic thrombolysis. Cardiovasc Intervent Radiol. 2014;37(2):412-9. http://dx.doi.org/10.1007/s00270-013-0676-1. PMid:23793745.

2. Kakkos SK, Gohel M, Baekgaard N, et al. Editor’s Choice: European Society for Vascular Surgery (ESVS) 2021 clinical practice guidelines on the management of venous thrombosis. Eur J Vasc Endovasc. 2021;61(1):9-82. http://dx.doi.org/10.1016/j.ejvs.2020.09.023. PMid:33334670.

3. Ascher E, Chait J, Pavalonis A, Marks N, Hingorani A, Kibrik P. Fast-track thrombolysis protocol: a single-session approach for acute iliofemoral deep venous thrombosis. J Vasc Surg Venous Lymphat Disord. 2019;7(6):773-80. http://dx.doi.org/10.1016/j.jvs.2019.06.018. PMid:31471279.

4. Rossi FH, Gama CAR, Fonseca IYL, et al. Computed Tomography Venography diagnosis of iliocaval venous obstruction in advanced chronic venous insufficiency. J Vasc Bras. 2014;13(4):306-11. http://dx.doi.org/10.1590/1677-5449.0067.

5. Rossi FH, Kambara AM, Rodrigues TO, et al. Comparison of computed tomography venography and intravascular ultrasound in screening and classification of iliac vein obstruction in patients with chronic venous disease. J Vasc Surg Venous Lymphat Disord. 2020;8(3):413-22. http://dx.doi.org/10.1016/j.jvsv.2019.09.015. PMid:32197952.

6. Kim BJ, Chung HH, Lee SH, et al. Single-session endovascular treatment for symptomatic lower extremity deep vein thrombosis: a feasibility study. Acta Radiol. 2010;51(3):248-55. http://dx.doi.org/10.3109/0284185903536078. PMid:20201636.

7. Raju S, Fountain T, Neglèn P, Devidas M. Axial transformation of the profunda femoris vein. J Vasc Surg. 1998;27(4):651-9. http://dx.doi.org/10.1016/S0741-5214(98)70230-7. PMid:9576078.

8. Raju S, Davis M. Anomalous features of iliac vein stenosis that affect diagnosis and treatment. J Vasc Surg Venous Lymphat Disord. 2014;2(3):260-7. http://dx.doi.org/10.1016/j.jvsv.2013.12.004. PMid:26993384.

Correspondência

Fabio Henrique Rossi
Av. Dr. Amâncio de Carvalho, 182, conjunto 511 - Vila Mariana
CEP: 04012-080 - São Paulo (SP), Brasil
Tel.: (11) 3368-2975
E-mail: vascular369@hotmail.com

Informações sobre o autor

FHR - Doutor e Pós-Doutor, Faculdade de Medicina da Universidade de São Paulo (FMUSP); Instituto Dante Pazzanese de Cardiologia (IDPC).