Influence of high-frequency cyclic loading on mechanical and structural characteristics of rail steel under extreme conditions

A A Loktev¹, V V Korolev¹, E A Gridasova²

¹Department of Transport construction, Russian University of Transport (MIIT), 22/2, Chasovaya str., Moscow 125190, Russia
²Department Engineering school, Far Eastern Federal University, 8, Sukhanova str., Vladivostok 690950, Russia

E-mail: shishkinaira@inbox.ru

Abstract. In this paper topical issues of change of a microstructure and microhardness in steel at high-frequency vibration influence which is observed in technological pipelines, connected to the pump and compressor equipment. To study the micro-structures of samples after influence of high-frequency loading, the authors used optical microscopy and microhardness testing. Relevant and timely is the task of modelling and subsequent design and construction of railways, taking into account a wide range of geometric and mechanical characteristics, which is most in demand in the construction of artificial structures in the Arctic, due to the large temperature difference and differences in temperature coefficients of materials. The purpose of this work is to study the mechanical and structural characteristics of 40X steel under high-frequency loading conditions. For mechanical and structural studies the authors prepared the samples from a rod of 40X steel with a diameter of 12 mm. The strength properties of steel was evaluated by tension testing, fatigue testing, then structural analysis (metallographic studies) and microhardness testing.

1. Introduction

Railway transport systems widely used in almost all sectors of the modern economy. They are transporters of explosive and flammable environment at different pressures and temperatures, so ensuring the reliability of these systems is necessary for the effective and safe operation of both: the technological equipment and the enterprise. Relevant and timely is the task of modeling and subsequent design and construction of railways, taking into account a wide range of geometric and mechanical characteristics, which is most in demand in the construction of artificial structures in the Arctic, due to the large temperature difference and differences in temperature coefficients of materials.

The proposed solutions will allow achieving the best transportation parameters, as well as ensuring the necessary compliance of the structure with external dynamic, including seismic effects, allowing not to violate the overall integrity of the structure and operate the railway in seismically active regions and in the Arctic, or artificial structures experiencing dynamic effects transmitted to the ground base, and through it.

An important issue is the compatibility of deformations of the connecting elements of the path under different operating conditions and vehicle speeds. It is important to understand the behavior and condition of the railway track as a multi-element transport system, as well as the condition and...
possible changes in the structure of the materials used in the manufacture of individual parts of the structure.

Due to the fact that the railway track, especially on artificial structures, contains a lot of structural elements made of different materials [1,2], in the places of joining of elements of these systems and in the course of a certain length of the path, vibrations of individual units and structures arise, and under certain conditions (at coincidence of frequencies of forced oscillations, when changing the geometry of the elements, etc.) these values reach the region of ultrasound to frequencies of 20,000 Hz [1,3]. In this regard, for an accurate assessment of the resource of railway transport systems, it is necessary to study the processes of influence of high-frequency vibrations on the structural and mechanical characteristics of the material elements of these systems.

The purpose of this work is to study the mechanical and structural characteristics of 40X steel under high-frequency loading conditions.

2. Research technique
For mechanical and structural studies was prepared the samples from a rod of 40X steel (GOST 4543-2016) with a diameter of 12 mm. The strength properties of steel was evaluated by tension testing, fatigue testing, then structural analysis (metallographic studies) and microhardness testing.

Mechanical tensile testing was carried out in according with GOST 1497-84 to determine the tensile strength σ_b and yield strength σ_t of experimental samples with working part in the form of a cylinder on AG-X-plus-100kN test machine (Shimadzu, Japan). As a result of tensile tests, the following values were obtained: $\sigma_b = 924$ MPa, $\sigma_t = 604$ MPa.

High-frequency cyclic tests was carried out with a symmetrical cycle loading $R = -1$ by a USF-2000 on an ultrasound unit USF-2000 (Shimadzu, Japan). The experimental samples that had the shape of a body of revolution with cylindrical ends: The generator of the middle part is an arc of a sufficiently large radius. Feature USF-2000 is a method of cyclic loading: enter of the sample into resonant vibrations with a frequency of 20 kHz. The test is completed when the sample is out of resonance due to structural changes.

3. Results and discussion

3.1. Optical metallography
Sample 1 was loaded with amplitude of stress of $\sigma_a = 800$ MPa, the number of cycles N was $\sim 10^4$ (the exact number could not be fixed). Visual analysis of the sample after the test showed the presence of a distortion neck. On the surface and adjacent areas with a width of 1-2 mm (equal to about 5 mm), was observe heat colors up to blue (which corresponds to a temperature of $\sim 300 ^\circ C$).

Metallographic studies of sample 1 showed that neck had different structure from neighboring (less loading) areas. Structure is:

- homogeneous, it is impossible to divide into ferrite and perlite;
- dispersed: elements are practically indistinguishable with magnification 500×.

The neck corresponds to the structure "white layer", which appears on the surface of details undergo high contact loads [4].This layer is characterized by a high density of structure defects, so the maximum solubility of carbon is much higher than in the original ferrite [5]. Due to this, the "white layer" also differs strongly from the ferrite in terms of mechanical and physicochemical properties. In particular, they have a different nature of etching: the neck is etched much more slowly than the neighboring area [6].

Thus, only samples 3 and 6 have not noticeable structural changes. Sample 6 (the only one of all) was tested at a stress amplitude below the static yield strength of 40X steel. As for sample 3, absence of visible changes in structure can be associated with a small number of cycles - 1.0813×10^4 (0.54 s
in time) [7]. Perhaps the output from the resonance was due to some internal defect that could not be detected, and the sample just did not have time to heat above 210 °C (the appearance of heat colors).

It is interesting that sample 1 worked a close number of cycles to sample 3 (~ 10^4) with an insignificantly higher amplitude of stresses (800 MPa instead of 780 MPa). But sample 1 differs most from sample 3 after loading (heat color, neck). Samples 2, 4 and 5 occupy an intermediate position and are close in structure to sample 1 outside the deformation neck.

Such a strong difference between samples 1 and 3 can be explained in the following way:
1. the obtaining of a particular structure is determined by the amount of energy not input to the sample, but the energy scattered in it, that is, the dissipation of energy. The dissipation of energy depends on random factors, including the singularities of the structure of the sample. If the sample has several volume defects (for example, nonmetallic inclusions or microcracks) interference of ultrasonic waves scattered on them can occur [8]. Because of this, local maximum (leading to the formation of a deformation neck or a crack) or minimum (in this case, the structure can locally remain practically unchanged) can arise in the amplitude of stresses in the sample;
2. as a consequence of section 1, the change in amplitude of the stresses in used range of values only changes the probability of achieving a result, rather than making it the only possible or impossible.

3.2. Microhardness

After metallographic research of the samples, was measured their micro-hardness. Center ("0 μm" mark) was the middle of the sample’s neck (for sample 1) or the section with the smallest diameter where to be formed the neck (for the remaining samples). The measurement was carried out with a step of 200 μm separately for perlite and ferrite (or "white layer" in the case of sample 1).

The results of measuring the microhardness of samples 1-4 illustrated in Tables 1-4.

Structural component	Distance from center of the neck	0um	200um	400um	600um	800um	1000um
Ferrite							
845	480	376	284	293	335		
833	583	347	354	318	297		
924	705	354	324	292	293		
616	734	318	333	275	288		
833	786	355	303	336	293		
Average value		810	656	350	319	303	301
Perlite							
–	504	331	332	307	349		
–	467	393	336	302	347		
–	620	341	336	339	318		
–	354	378	389	359	331		
–	412	355	313	350	305		
Average value		471	360	341	331	330	

Note: In the neck zone of this sample (from 0 μm to 200 μm from the center of the neck), a "white layer" was detected which is characterized by a high defect density. As a result, the limiting content of carbon in it and its properties are very different from the original ferrite [9].

Table 2 shows that in the neck zone on sample 1 the average microhardness is HV 810, which corresponds to HRC 61 (hardness of hardened high-carbon steel) [10]. In fact, at a distance of 200 μm from the center of the neck, when the structure can be divided into ferrite and perlite, the microhardness of ferrite (average HV 656, or approximately HRC 55) exceeds the microhardness of perlite (average HV 471, or approximately HRC 46). At a distance of 400 μm or more from the center of the neck, the microhardness values of ferrite and perlite are close [11].
Table 2. The results of measurements microhardness of sample 2.

Structural component	Distance from center of the neck					
	0um	200um	400um	600um	800um	1000um
Ferrite						
	338	264	292	301	308	299
	312	315	285	333	316	312
	302	309	294	320	318	318
	347	313	298	302	308	324
	338	323	309	309	299	324
Average value	328	309	296	313	310	315
Perlite						
	295	299	330	285	322	322
	322	332	329	301	299	335
	327	322	329	301	310	308
	308	317	331	285	316	278
	331	320	322	307	302	301
Average value	317	318	328	295	310	309

The microhardness of sample 2 (Table 3) is approximately the same at all points (for ferrite and for perlite it is at the level of 300-320HV). Thus, microhardness this sample corresponds to sample 1 at a distance of 600-1000 μm from the center of the neck.

Table 3. The results of measurements microhardness of sample 3.

Structural component	Distance from center of the neck					
	0um	200um	400um	600um	800um	1000um
Ferrite						
	154	174	211	175	150	178
	163	176	186	209	188	188
	181	178	181	199	153	160
	143	180	184	171	155	179
	150	175	200	188	163	180
Average value	158	176	192	188	162	177
Perlite						
	226	261	225	316	301	312
	319	259	269	240	277	235
	267	212	253	265	213	259
	262	270	301	211	222	210
	254	258	238	224	201	214
Average value	266	252	257	251	243	246

The microhardness values of sample 3 (Table 4) generally correspond to the level characteristic for perlite-class steel: the microhardness of ferrite does not exceed 200HV, and perlite is at the level of ~ 250HV. The only thing that goes beyond the standard picture is that the microhardness of ferrite is maximum not in the thinnest part of the sample, but at a distance of 400-600 microns from it. One of the reasons for this phenomenon could be certain features of the microstructure (for example, volume defects - microcracks, nonmetallic inclusions), which positively influenced accumulation of defects in this area.

In general, sample 4 (Table 5) for microhardness is similar to sample 1 in the 400 μm from the center of the neck (slightly harder than sample 2). However, it has feature: in the center of the neck some grains of ferrite have microhardness below 200 HV [12,13]. This indicates that the accumulation of defects even in the most stressed zone happen unevenly: some grains harden faster, others can
remain in the initial state for a long time (sample 4 passed 3,4889·108 loading cycles). This can be due to both the factors already mentioned (the presence of volume defects) and the different orientation of atomic planes in grains, including slip planes [14,15].

Table 4. The results of measurements microhardness of sample 4.

Structural component	Distance from center of the neck					
	0um	200um	400um	600um	800um	1000um
Ferrite						
295	339	316	314	337	341	
273	316	330	328	343	348	
332	326	316	340	367	339	
293	288	332	328	377	399	
306	310	343	346	341	312	
195	128					
Average value	300/260*	316	327	331	353	347
Perlite						
341	322	357	393	393	350	
343	326	339	339	388	370	
365	332	346	365	324	365	
399	372	388	330	365	343	
324	295	357	357	357	370	
Average value	354	329	357	357	365	359

Note: in the thinnest part of this sample, the ferrite grains have different micro-hardness: either about 300HV or less than 200HV. Accordingly, 300HV is the aver-age microhardness of ferrite at the first five points (without taking into account soft grains), 260HV is the average value for all grains of ferrite in this zone.

4. Conclusions

Based on the results obtained, the following conclusions can be drawn:

3. The influence on the steel 40X high-frequency cyclic loading with a stress amplitude above the static yield strength can’t cause visible plastic deformation, but leads to the accumulation of defects in the structure. This is reflected in the change in the microhardness of the structural components and in the change nature of the influence etchant on steel;

4. The influence of high-frequency cyclic loads with a high amplitude of stresses on 40X steel leads to homogenization and an increase in the dispersion of its structure. Presumably, the result is a ferrite-based phase having a high defect density and a high microhardness. This phase is analogous to the so-called "white layer" formed on the surface of parts experiencing high contact loadings;

5. Short-term influence high-frequency cyclic loadings with stress amplitude exceeding the static yield strength can't cause noticeable changes in the structure and properties of 40X steel [16-18]. Nevertheless, the accumulation of structure defects at high-frequency cyclic loading is a self-accelerating process, and therefore the effect of high-frequency loads on structural materials needs further study;

6. The accumulation of defects occurs unevenly in grains even in one section of the sample. This can be due to factors such as the presence of volume defects in the initial sample (microcracks, nonmetallic inclusions) and different orientation of the slip planes in the grains;

7. In general, the studies have allowed a better understanding of the nature of changes in the internal state of steel under dynamic load, which will more accurately calculate the residual life of the entire railway track, its separate elements and structures, taking into account the extreme conditions of the Arctic;

8. The results of studies may affect the extension of the service life of individual elements and structures of the transport system, as well as to identify the most dangerous places, in terms of violations of the integrity of the upper structure of the track, welded joints and fastening units.
References

[1] Berestovitsky E G, Golovanov V I, Frantov A A and Chernyaeva V S Vibration characteristics of some elements of pipeline systems p 3

[2] Fick A S 2008 Diagnostics of wave processes of gas flow causing low-frequency oscillations in pipeline networks of compressor stations: the author's abstract. diss. Cand. tech. sciences. (Krasnodar: KSTU Publishing House) p 28

[3] Bashirov I V 2012 Destruction of technological pipelines with simultaneous action of cyclic and vibrational loads at resonant frequency Nefte-gazovodelo 4 p 10

[4] Ivanisenko Yu V, Baumann B, Feht G, Knote K, Safarov I M, Korznikov V A and Valiev R Z 1997 Nanostructure and hardness of the "white layer" on the surface of the railway rails FMM 3 pp 104–111

[5] Gridasova E A, Nikiforov P A, Loktev A A, Grishin A V and Sukhorada A E 2017 The Influence of high-frequency cyclic loading on the structure of low-carbon steel Science and technology of transport 2 pp 82–91

[6] Gridasova E A, Nikiforov P A, Nisaev I P, Grishin A V, Sukhorad A E, Talskikh K Y and Tkachev V V 2017 Changing the structure of low-carbon steel at high-frequency cyclic loading Instr. of modern structures and advanced technologies in track economy 11 30–36

[7] Gridasova E A, Nikiforov P A, Grishin A V, Talskikh K Yu and Suhorada A E 2017 Influence of high-frequency loading on the structure of low-carbon steel Bulletin of the Engineering School of the FEFU 1(30) 22–28

[8] Loktev A A, Gridasova E A and Kramchaninov V V 2015 The Method of Determining the locations of reinforcing elements in a composite orthotropic plate undergoing dynamic impact. Part 1. Wave problem. Applied Mathematical Sciences 9(71) 3533–3540

[9] Loktev A A, Gridasova E A and Zapol’nova E V 2015 Simulation of the Railway under Dynamic Loading Part 1 Ray Method for Dynamic Problem. Contemporary Engineering Sciences 8(18) 799–807

[10] Loktev A A, Gridasova E A, Sycheva A V and Stepanov R N 2015 Simulation of the Railway under Dynamic Loading Part 2 Splicing Method of the Wave and Contact Solutions, Contemporary Engineering Sciences 8(21) 955–962

[11] Gridasova E A, Nikiforov P A, Loktev A A et al 2017 Science and tech. of transport 2 82–91

[12] Loktev A A 2007 Udar vyazkouprugogo tela po uprugoi izotropnoi plastinke Mehanika kompozitsionnykh materialov i konstruktsii 13(3) 417–425

[13] Loktev A A 2007 Uprugoplasticheskaya model’ vzaimodeistviya tselindricheskogo udarnika i plastinki Pis’ma v zhurnal tehnicheskoi fiziki 33(16) 77–77

[14] Loktev A A, Zaletdinov A V 2010 Oprimeleniye tochek vzaimodeistviya Pryamih i otrahennih voln v plastinke Vestnik MGSU 3 303–308

[15] Loktev Alexey A, Korolev Vadim V, Shishkina Irina V, Basovsky Dmitriy A 2017 Modeling the dynamic behavior of the upper structure of the railway track Transportation Geotechnics and Geoeology. Russia Procedia Engineering (Saint Petersburg) 189 133–137

[16] Glusberg B, Korolev V, Shishkina I, Loktev A, Shukurov J, Geluh P 2018 Calculation of track component failure caused by the most dangerous defects on change of their design and operational conditions MATEC Web of Conferences 239 01054 DOI: 10.1051/matecconf/201823901054

[17] Loktev A A, Korolev V V, Shishkina I V 2018 High frequency vibrations in the rolling stock on the railway bridges IOP Conf. Series: Materials Science and Engineering 463 032019 DOI:10.1088/1757-899X/463/3/032019

[18] Loktev A A, Korolev V V, Poddaeva O I, Chernikov I Yu 2018 Mathematical modeling of antennamast Structures with aerodynamic effects IOP Conf. Series: Materials Science and Engineering 463 032018 DOI:10.1088/1757-899X/463/3/032018