Abstract
Vehicle Routing Problem (VRP) facilitates on finding a set of trips, one for each vehicle and to deliver known quantities of goods from a single depot to a set of geographically dispersed customers. This paper proposes an effective hybrid approach that combines customer prioritization with the Clarke and Wright's savings algorithm to solve the capacitated vehicle routing problem. In this model, in addition to traditional objective of resolving vehicle routing problem, the customer satisfaction have been taken into account. Initially, all the customers have been clustered with the help of Clarke and Wright's saving algorithm and later the customers have been prioritized on assigning optimal route using Analytic Hierarchy Process (AHP) as a Multi Criteria Decision Making (MCDM) tool. The highlight of this research is to diminish the total transportation cost without violating the vehicle capacity and ultimately improve the customer satisfaction.

Keywords
Vehicle Routing Problem, Clarke and Wright's saving algorithm, customer prioritization, Analytic Hierarchy Process, Multi Criteria Decision Making

1 Introduction
Transportation has evolved as an important domain of human activity over ages. It supports and strengthens other social and economic activities including manufacturing. The Vehicle Routing Problem (VRP) is an important operational decision in the distribution network and has a significant role in cost reduction and service improvement which facilitates the routing and scheduling of deliveries. In VRP, a fixed fleet of delivery vehicles of uniform capacity is used to provide known customer demands for a single commodity from a common depot by travelling minimum distance with minimum transit cost. The VRP is a combinatorial optimization and integer programming problem seeking to serve a number of customers with a fleet of vehicles. Managers, on the other hand encounter problems in assessing optimal route and providing customer delivery at right locations and at right time to achieve desired level of customer satisfaction.

The success of VRP operation turns on its ability to decrease transportation and delivery cost while providing the promised level of responsiveness to the customer. Given a set of customer orders, the goal is to design route and schedule delivery vehicles such that costs incurred to meet delivery promises are as low as possible.

A classical route construction heuristic was the sequential insertion algorithm by Mole and Jameson (1976). The algorithm uses selection and insertion criterion were the evaluation of the extra distance resulting from the insertion of an unrouted customer k between two consecutive customers i and j of the current route had been attempted. After each insertion trial, the current route was possibly improved by using 3-opt procedure.

A general and effective two-step insertion heuristic was proposed by Christofides et al. (1979). In first step, a sequential insertion algorithm was used to determine a set of feasible routes while the second step was a parallel insertion approach. For each route determined in first step, an envoy customer was selected and a set of single-customer routes was initialized with these customers. The remaining unrouted customers were then inserted by using a regret criterion, where the difference between the best and the second-best insertion cost were
accounted, and partial routes were improved by means of 3-opt procedure. The resulting algorithm was superior to that of Mole and Jameson and symbolized a good compromise between effectiveness and efficiency.

The sweep algorithm, introduced by Wren (1971), Wren and Holliday (1972), and Gillett and Miller (1974), has often been referred to as the first example of cluster first-route second approach applied to planar VRP instances. The algorithm starts with an arbitrary customer and then sequentially assigns the remaining customers to the current vehicle by considering them in the order of increasing polar angle with respect to the depot and the initial customer. When the current customer cannot be feasibly assigned to the current vehicle, a new route was initialized accordingly. Once all customers were assigned to vehicles, each route was separately defined by solving a Travelling Salesman Problem (TSP).

The Fisher and Jaikumar (1981) algorithm unravels the clustering step by means of Generalized Assignment Problem (GAP) which calls for determination of a minimum cost assignment of items to a given set of bins of capacity Q, in which the items were characterized by a weight and an assignment cost for each bin. Each vehicle was assigned an envoy customer, called a seed, and assignment cost of a customer to a vehicle was considered equal to its distance to the seed. GAP was then solved, either optimally or heuristically, and final routes were determined by solving a TSP on each cluster.

Another two-phase method working with a fixed number of vehicles m was described by Bramel and Simchi-Levi (1995). This algorithm determined route seeds by solving a capacitated location problem, where “m” customers are selected by minimizing the total distance between each customer and its closest seed, and by imposing that the total demand associated with each seed be at most Q. Once seeds have been determined and the single-customer routes were initialized, the remaining customers were inserted in the current routes by minimizing insertion costs. Diverse techniques of approximating the insertion cost were proposed and analysed. It is worth noting that cluster-first-route second approaches just allow for a direct control of the number of routes in the final solution, whereas the sweep algorithm does not. The performance of these algorithms is generally comparable to that of route construction algorithms in terms of effectiveness.

A different family of two-phase methods is the class of so-called petal algorithms. These generate a large set of feasible routes, called petals, and select the final subset by solving a set partitioning model. Foster and Ryan (1976) and Ryan et al. (1993) have proposed heuristic rules for determining the set of routes to be selected, while Renaud et al. (1996) have described an extension that considers more involved configurations, called 2-petals, consisting of two embedded or intersecting routes. The overall performance of these algorithms is generally superior to that of the sweep algorithm.

Belatedly researchers realized that real time event information and multimodal planning can be massively required to operate within a short time period and at a wide spatial scale. Journey Planners have thought of a sustainable business model as the one by Vassilis Spitadakis and Maria Fostieri (2012). Their WISETRIP innovative journey planner provides multimodal trip information sourced from variant journey planners utilizing a challenging but simple communication interface to smoothen connection of heterogeneous planners without sacrificing functional sufficiency. Additionally, unique personalized services delivery was achieved wherein users could select their trips, build personal schedule of notifications, configure alerts that assist trip execution and enable continuous validation of trip data. Their study surfaces facts that daily predicaments in transportation like minor disruptions or even personal problems and preferences of individuals could surpass a wide and complex grid of changeable parameters for trip performance. Their journey planning engine highlights the neediness to accommodate variety of user groups, namely the elderly and disabled, the eco-sensitive users, the green route proposers, and travellers who often enroute urgent disruptions.

Recent academic literature regarding daily activity chain optimization stresses on topics like activity-based trip chaining, mode choice, travel demand management and flexible mobility options. Domokos Esztergár Kiss et al. (2016) in their recent paper deal with the optimization of daily activity chains as a series of activities during a certain time period for several parameters were user preferences for choosing the best set of activities lie upon practical quantifiable factors. Classification parameters connected to the user component type namely, age, gender, occupation, income, car ownership, family status had been deployed to categorize users into user groups as against weights of locations. The outcomes could be appreciated much as connectivity to the user, the chosen transportation mode and the location type of the activity was all mapped and a generalized weighting model for the optimization was created.

Development of adaptive traveller information systems based on Artificial Intelligence is still in its formative years. A fair attempt was made in this direction by Theo A. Arentze (2013) were a Multi modal routing model using Bayesian learning of preferences, defining the functional relationship between preference parameters and choice behaviour were focussed. Preferences represented parameters of network link cost functions in the routing system and the author had proposed a method to incorporate the learning of users preferences in a route recommendation system. Unlike conventional Bayesian methods, this paper intends reduction of computation time by assuming sequential processing of parameters and systematic sampling of the parameter space.

Conclusively, in route-first-cluster-second methods, a giant TSP tour over all customers is constructed in a first phase and later subdivided into feasible routes. Research trials of such
algorithms were proposed by Beasley (1983), Haimovich and RinnooyKan (1985), and Bertsimas and Simchi-Levi (1996).

2 Problem Formulation

The first and foremost famous heuristic of allied research was proposed by Clarke and Wright (1964), based on the concept of saving, which was an estimate of the cost reduction obtained by serving two customers sequentially on the same route, rather than in two separate ones. If i is the last customer of a route and j is the first customer of another route, the associated saving is defined as $s_{ij} = c_{ij0} - c_{ij}$. If s_{ij} is positive, then serving i and j consecutively in a route is profitable. The Clarke and Wright algorithm considered all customer pairs and sorted the savings in non-increasing order. Starting with a solution in which each customer appears separately in a route, the customer pair list was examined and two routes were merged whenever feasible. Generally, a route merge was accepted only if the associated saving was nonnegative but, if the number of vehicles is to be minimized, then negative saving merges were also considered.

A mathematical explanation of VRP as defined by Boonkleaw et al. (2009) can be applied for case under limelight. Let $G = (V, A)$ be a network where $V = \{0, 1, \ldots, n\}$ is the vertex set and $A \subseteq V \times V$ is the arc set. Vertex 0 is the depot and $V \setminus \{0\}$ is the set of locations on the road network. Associated with vertex $i \in V \setminus \{0\}$ is a non-negative demand d_i. The parameter c_{ij} represents a non-negative cost (traveling cost in this case) between vertices i and j. The parameters K and U_k are the number of vehicles and the capacity of vehicle k, respectively. A three-index integer programming formulation is presented here where binary variables y_{ik} denotes the number of times arc $(i,j) \in A$ is traversed by vehicle $k (k = 1,\ldots,K)$ in the optimal solution. In addition, there are binary variables x_{ijk} that take a value of 1 if vertex i is visited by vehicle k in the optimal solution and take a value of 0, otherwise. The mathematical formulation of the problem is as follows

$$\min \sum_{(i,j) \in A} c_{ij} \sum_{k=1}^{K} x_{ijk}.$$

Subject to

$$\sum_{k=1}^{K} y_{ik} = 1 \quad \forall i \in V \setminus \{0\}$$

$$\sum_{k=1}^{K} y_{0k} = K$$

$$\sum_{j \in V_{i\setminus\{0\}}} x_{ijk} = y_{ik} \quad \forall i \in V, k = 1,\ldots,K$$

$$\sum_{j \in V_{i\setminus\{0\}}} x_{ijk} = y_{ik} \quad \forall i \in V, k = 1,\ldots,K$$

Eq. (1) represents the objective function of this problem which is to minimize total travel time of the operations. Constraints (2), (3), (4), and (5) ensure that each customer is visited exactly once, that k vehicles leave the depot, and that the same vehicle enters and leaves a given customer vertex, respectively. Constraints (6) denotes the capacity restrictions for each vehicle k. Constraint (7) are sub-tour elimination constraints for each vehicle, where S is a subset of the stops that does not include the depot.

2.1 Problem Assumption and Constraints

Assumptions during problem formulation include:

1. Each route will start from Depot and end at the Depot.
2. Cost of a route is proportional to the distance travelled.
3. Travel distance between each customer is known and accurate.
4. Demands of each of the customers are known and certain.
5. Demand at each stop cannot be segmented.

Constraints of the problem include:

1. Maximum availability of 5 vehicles.
2. Maximum load for each vehicle is 80 packages.

3 About the Industry and its VRP

Athammal spinners was established in 1993 with a capacity of 12,000 spindles. The firm in located at Periyanaickenpalayam, Coimbatore, Tamil Nadu, India and produces 2 tons of cotton hanks per day. In the textile industry, a hank is a unit of yarn or twine in a coiled form. The potential list of customers of hanks in and around Coimbatore, concentrated near Tiruppur, Erode, Karur and Namakkal and their demand is exhibited. (Table 1)

The finished product is stored and delivered by means of packages (1 package = 94 kg of bundled cotton hanks). The firm owns 5 vehicles of maximum capacity of 80 packages which is used for distribution of their product from the firm to all their customers on weekly basis. The existing distribution route (Table 2) is based on driver's previous trials and experience. The company does not follow any scientific and organized method to deliver its products. Thus, the company faces high transportation cost and customer dissatisfaction which provokes the need for a structured methodology in its VRP.
An Application of Analytic Hierarchy Process in Vehicle Routing Problem

4 Customers Clustering

The Clarke and Wright algorithm is the most popular heuristic algorithm for clustering of customers in VRP. The algorithm calculates all the savings \(S_{ij} \) between customers \(i \) and \(j \).

Assuming that \(d_{i0} \) is the cost of travelling from the depot to customer \(i \) and \(d_{ij} \) is the cost of travelling from customer \(i \) to \(j \). The following is a description of the Clarke and Wright algorithm to solve the VRP:

Step 1: Compute the distance matrix with the help of google maps. (Fig. 1)

Step 2: Compute the savings \(S_{ij} = d_{i0} + d_{0j} - d_{ij} \) for \(i = 1, \ldots, 20 \) and \(i \neq j \). (Fig. 2)

Step 3: Rank the savings \(S_{ij} \) and list them in descending order. Create the savings list. Process the savings list beginning with the highest entry in the list (the largest \(S_{ij} \)). For the savings under consideration \(S_{ij} \), include link \((i, j) \) in a route if no route constraints will be violated through the inclusion of \((i, j) \). However, the following three cases need to be considered.

Case 1: If neither \(i \) nor \(j \) have already been assigned to a route, then a new route is initiated including both \(i \) and \(j \).

Case 2: If exactly one of the two points \((i \) or \(j) \) has already been included in an existing route and that point is not interior to that route (a point is interior to a route if it is not adjacent to the depot in the order of traversal of points), then the link \((i, j) \) is added to that same route. If the point is interior and not violating the capacity then add \((i, j) \) to the same route. If it is violating the capacity make a new route with the point \((customer) \) \(i \).

Case 3: If both \(i \) and \(j \) have already been included in two different existing routes and neither point is interior to its route, then the two routes are merged by connecting \(i \) and \(j \). If they are interior then the merge cannot be done.

Step 4: If the savings list \(S_{ij} \) has not been exhausted, return to Step 3 and continue the process until the clustering of customers into each vehicle is finalised (Table 3).

5 Customer Prioritizing using AHP:

Customer prioritization is a Multiple Criteria Decision-Making (MCDM) problem. A review of the literature shows that the AHP method to be one of the most commonly applied methods in practice. AHP is relatively simple to use and understand and
proves an ideal method for ranking alternatives when multiple criteria and sub criteria are present in the decision-making process.

AHP is often considered as a supplier selection method because it allows decision makers to rank suppliers based on the relative importance of the criteria and suitability of the suppliers. AHP offers a methodology to rank alternative courses of action based on the decision maker's judgments concerning the importance of the criteria and the extent to which they are met by each alternative.

5.1 Steps in AHP

Step1. List Decision Criteria (DC) for customer prioritization.

Step2. Pair wise comparison of each criteria to obtain the weight of each criteria.

Step3. Pair wise comparison of customers with respect to each criteria to obtain the weight.

Step4. Calculation of overall weight.

Step5. Prioritize the customer based on weight.

Table 3 Clustered list of customers

VEHICLE NO	LIST OF CUSTOMERS	TOTAL LOAD (packages)
V1	C6, C10, C11, C15	78
V2	C4, C16, C18, C19	77
V3	C1, C7, C14, C17	67
V4	C2, C5, C12, C20	79
V5	C3, C8, C9, C13	74

Fig. 1 Distance matrix

Fig. 2 Saving matrix
Step 1: List DC for customer prioritization:

i. Customer credit of future business opportunity. (DC1)
ii. The potential profit rate per unit of time. (DC2)
iii. The negotiability level of payment for the order. (DC3)
iv. The level of trust between customer and company. (DC4)

Step 2: Pair wise comparison of each criteria to obtain the weight of each criteria

The rating for each comparison was made a consultation with academic and industrial experts based on AHP rating scales (Table 4). The pairwise comparison between each criteria, thus obtained is portrayed (Table 5).

Table 4 AHP Rating Scales
Verbal judgment of preference
Extremely preferred
Very strongly preferred
Strong preferred
Moderately preferred
Equally preferred

Table 5 Rating of Each Criteria
DC1

DC1
DC2
DC3
DC4

Step 3: Pair wise comparison of customers with respect to each criteria to obtain the weight:

i. Customer credit of future business opportunity. (DC1)

Customer credit of future business opportunity has an important effect on the decision of accepting or rejecting an order. Rejecting an order may oblige the customer to contract with other suppliers and may result in getting no future orders from the customer. Hence, firms may sometimes accept an order with lower potential profit rate per unit of time comparing to the other possible orders to ascertain future business opportunities.

The pair wise comparison of customers with respect to customer credit of future business opportunity is exhibited (Fig. 3).

ii. The potential profit rate per unit of time. (DC2)

Profit maximization is a vital requirement and primary objective for all profit-making organizations to survive. But, an order with higher profit margin but a longer operation time may not be profitable compared to an order with lower profit margin but a shorter operation time. Thus, potential profit rate, which represents profit per unit of time is selected as a factor for the customer order selection problem. The pair wise comparison of customers with respect to potential profit rate per unit of time is exhibited (Fig. 4).

iii. The negotiability level of payment for the order. (DC3)

The tardiness and bargaining of price can be regarded as major functions of total profit. They are the important indicators of a successful cooperation between the firm and the customer as the primary objective is to maximize profit. The pair wise comparison of customers with respect to negotiability level of payment for the order is exhibited (Fig. 5).

iv. The level of trust between customer and company. (DC4)

Trust is defined as the willingness to be vulnerable. In business, trust involves honesty and dependability between partners. The level of trust between customer and company depends upon customer's financial status, past history of payment and backlog. The pair wise comparison of customers with respect to level of trust between customer and company is exhibited (Fig. 6).
Step 4: Calculation of overall weight:
Calculation the overall weight for each customer was done by multiplying the individual weights on each criteria with the weights of each criteria and adding them (Table 6).
For C1, overall weight = \((0.097*0.0185) + (0.555*0.0380) + (0.097*0.1258) + (0.251*0.0191) = 0.0401\).

Step 5: Prioritize the customers based on weight:
Once the weight for each customers were calculated, the weight were arranged in decreasing order and ranked accordingly for prioritization (Table 7).

6 Assign Customers to Route Based on Priority Rank:
This stage focuses on each customers being assigned routes based on priority rank.
For example, consider the clustered customers for vehicle V1. (Table 3). The set of customers are C6, C10, C11 and C15. Among the four customers, C11 has highest priority rank of 5 with weight 0.0887. Hence C11 is assigned first to the vehicle V1. Secondly, C6 has the second highest priority rank of 9 with weight of 0.0401. Thirdly, C10 has the third highest priority rank of 13 with weight 0.0328. At last, C15 has the least priority rank of 15 with weight 0.0213. Hence C15 is assigned last to the vehicle V1. Similarly assign all customers to the route based on priority rank and tabulate total distance and total load (Table 8).
An Application of Analytic Hierarchy Process in Vehicle Routing Problem

Fig. 6 Rating of customers with respect to the level of trust between customer and company

Table 6 Overall weight for each customer

s.no	DC1 0.097	DC2 0.555	DC3 0.007	DC4 0.251	Overall Weight
C1	0.0185	0.0380	0.1258	0.0191	0.0401
C2	0.0432	0.0391	0.0388	0.0597	0.0446
C3	0.0185	0.1305	0.0101	0.1262	0.1061
C4	0.0432	0.0111	0.0207	0.0361	0.0215
C5	0.1648	0.0194	0.0846	0.0105	0.0382
C6	0.0911	0.0391	0.0122	0.0684	0.0489
C7	0.0185	0.0093	0.0389	0.0159	0.0148
C8	0.0432	0.0203	0.0173	0.0093	0.0195
C9	0.0432	0.0398	0.1328	0.0654	0.0558
C10	0.0911	0.0175	0.0372	0.0414	0.0328
C11	0.0093	0.1282	0.0900	0.0657	0.0887
C12	0.0432	0.0096	0.0725	0.0174	0.0212
C13	0.0093	0.0095	0.0214	0.0088	0.0104
C14	0.0185	0.1368	0.0099	0.0682	0.0951
C15	0.0432	0.0104	0.0714	0.0168	0.0213
C16	0.0432	0.1344	0.0198	0.1241	0.1112
C17	0.0093	0.0738	0.0377	0.0346	0.0539
C18	0.1381	0.0408	0.1462	0.0628	0.0665
C19	0.0185	0.0202	0.0108	0.0148	0.0177
C20	0.0911	0.0711	0.0818	0.1338	0.0898

Table 7 Prioritized customer list based on weight

Rank	Customer	Weight
1	C16	0.1112
2	C3	0.1061
3	C14	0.0951
4	C20	0.0898
5	C11	0.0887
6	C18	0.0665
7	C9	0.0558
8	C17	0.0539
9	C6	0.0489
10	C2	0.0446
11	C1	0.0401
12	C5	0.0382
13	C10	0.0328
14	C4	0.0215
15	C15	0.0213
16	C12	0.0212
17	C8	0.0195
18	C19	0.0177
19	C7	0.0148
20	C13	0.0104

Table 8 Prioritized route

Vehicle no	Prioritized route	Total distance (Kms)	Total load (Packets)
V1	Depot-C11-C6-C10-C15-Depot	359	78
V2	Depot-C16-C18-C4-C19-Depot	254	77
V3	Depot-C14-C17-C1-C7-Depot	354	67
V4	Depot-C20-C2-C5-C12-Depot	227	80
V5	Depot-C3-C9-C8-C13-Depot	112	74
Total		1306	

7 Results and Discussion

i. Impact on Transportation Distance:

The implementation of the proposed model showed reduction in transportation distance dramatically. Even though the distance travelled by V3 is little higher on new route, the overall distance was reduced from 1518 kms to 1306 kms which showcased a savings of 13.97% (Table 9).

ii. Impact on Customer Satisfaction:

After successful implementation, a survey was conducted by the experts to identify the customer satisfaction level for both
old and prioritized routes. The customers were asked to rate their satisfaction levels before and after implementation amongst different levels namely highly dissatisfied, dissatisfied, neutral, satisfied and highly satisfied. Customer satisfaction results of old route portrayed counts of 4, 5, 3, 3, 5 customers in Highly dissatisfied, Dissatisfied, Neutral, Satisfied and Highly Satisfied zones respectively. In comparison, the customer satisfaction results of the new route exhibited better counts of 0, 3, 5, 206 and 6 customers in Highly dissatisfied, Dissatisfied, Neutral, Satisfied and Highly Satisfied zones respectively which proved a comprehensive rationalization of the research paper. (Table 10).

8 Conclusion
VRP forms an integral part of any supply chain and plays a significant role for productivity improvement in organisation through effective and efficient delivery of goods and services to customers. This research attempt has been exultant in terms of significant reduction in transportation distances and

Vehicle no	Old Route	Prioritized Route	Improvement in %
V1	Depot-C10-C7-C1-C9-depot	Depot-C11-C6-C10-C15-Depot	+10.47%
V2	Depot-C13-C15-C11-C12-C3-depot	Depot-C16-C18-C4-C19-Depot	+20.12%
V3	Depot-C19-C14-C6-depot	Depot-C14-C17-C1-C7-Depot	-1.69%
V4	Depot-C8-C4-C16-C18-depot	Depot-C20-C2-C5-C12-Depot	+13.36%
V5	Depot-C5-C2-C20-C17-depot	Depot-C3-C9-C8-C13-Depot	+15.75%
TOTAL	1518	1306	+13.97%

Table 10 Comparison of customer satisfaction level between old and new route

Customer	Highly dissatisfied	dissatisfied	neutral	satisfied	Highly satisfied	New Route
C1	⊗				⊗	
C2	⊗				⊗	
C3						
C4		⊗				
C5						
C6	⊗					
C7						
C8						
C9					⊗	
C10					⊗	
C11						
C12						
C13						
C14						
C15						
C16						
C17						
C18						
C19						
C20						
TOTAL	4	5	3	3	5	0

Period. Polytech. Transp. Eng. M. Balaji, S. Santhanakrishnan, S. N. Dinesh
simultaneously improved satisfaction levels of customers which will entice future researchers in this realm. When it comes to inimitability, the research initially encompasses the conventional Clarke and Wright's savings algorithm for customer clustering to solve the capacitated vehicle routing problem and later installs AHP for MCDM on assigning optimal routes to customers.

Nevertheless, it is apparent that companies are yet to leverage the vehicle routing for competitive advantage. In order to survive in this competitive market, firms should schedule the delivery of product based on scientific and optimised method. The consequence of poor planning are high transportation costs, delay in delivery leading to suppressed level of customer dissatisfaction. Effective routing and scheduling of vehicles are two important and difficult problems in transportation and logistics. Although minimizing total cost is an important criterion, for most logistic issues, criteria such as minimizing customer inconvenience and improving customer satisfaction plays a major role in long term success of any organisation involved in logistics.

References
Akyildiz, B., Kadaifci, C., Ilker Topcu, Y., Ulengin, B. (2014). Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm. *International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering*. 8(2), pp. 498-502.

Arentze, T. A. (2013). Adaptive Personalized Travel Information Systems: A Bayesian Method to Learn Users' Personal Preferences in Multimodal Transport Networks. *IEEE Transactions on Intelligent Transportation Systems*. 14(4), pp. 1957-1966. https://doi.org/10.1109/TITS.2013.2270358

Beasley, J. E. (1983). Route-first cluster-second methods for vehicle routing. *Omega*. 11(4), pp. 403-408. https://doi.org/10.1016/0305-0488(83)90033-6

Bertsimas, D. J., Simchi-Levi, D. (1996). A new generation of vehicle routing research: Robust algorithms addressing uncertainty. *Operations Research*. 44, pp. 286-304. https://doi.org/10.1287/opre.44.2.286

Borkleaw, A., Suthikarnnarunai, N., Srinon, R. (2009). Strategic Planning and Vehicle Routing Algorithm for Newspaper Delivery Problem: Case study of Morning Newspaper, Bangkok, Thailand. *Proceedings of the World Congress on Engineering and Computer Science*. (2).

Bramel, J., Simchi-Levi, D. (1995). A Location Based Heuristic for General Routing Problems. *Operations Research*. 43, pp. 649-660.

Christofides, N., Mingozzi, A., Toth, P. (1979). The vehicle routing problem. *Combinatorial optimization*. 11, pp. 315-338.

Clarke, G., Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. *Operations Research*. 12, pp. 368-381. https://doi.org/10.1287/opre.12.4.368

Esztergár-Kiss, D., Munkácsy, A., Velázquez, G. (2016). Definition and classification of parameters for daily activity chain optimization. In: Transportation Research Procedia, 3rd Conference on Sustainable Urban Mobility, 3rd CSUM 2016, Volos, Greece, May. 26-27, 2016. 24, pp. 9-16.

Fisher, M., Jaikumar, R. (1981). A generalized assignment heuristic for vehicle routing. *Networks*. 11(2), pp. 109-124. https://doi.org/10.1002/net.3230110205

Foster, B. A., Ryan, D. M. (1976). An integer programming approach to the vehicle scheduling problem. *Operational Research Quarterly*. 27(2), pp. 367-384. https://doi.org/10.2307/3009018

Gillett, B., Miller, L. (1974). A heuristic algorithm for the vehicle-dispatch problem. *Operations Research*. 22(2), pp. 340-349. https://doi.org/10.1287/opre.22.2.340

Haimovich, M., RinnooyKan, A. H. G. (1985). Bounds and heuristics for capacitated routing problems. *Mathematics of Operations Research*. 10, pp. 527-542. https://doi.org/10.1287/moor.10.4.527

Liu, F. H. F., Hai, H. L. (2005). The voting analytic hierarchy process method for selecting supplier. *International Journal of Production Economics*. 97(3), pp. 308-317. https://doi.org/10.1016/j.ijpe.2004.09.005

Mole, R. H., Jameson, S. R. (1976). A sequential route-building algorithm employing a generalized savings criterion. *Operations Research Quarterly*. 27, pp. 503-511. https://doi.org/10.2307/3008819

Renaud, J., Docter, F. F., Laporte, G. (1996). An improved petal heuristic for the vehicle routing problem. *Journal of the Operational Research Society*. 47, pp. 329-336. https://doi.org/10.2307/2584352

Ryan, D. M., Hjorring, C., Glover, F. (1993). Extensions of the petal method for vehicle routing. *The Journal of the Operational Research Society*. 44(3), pp. 289-296. https://doi.org/10.2307/2584199

Spitadakis, V., Fostieri, M. (2012). WISETRIP – International Multimodal Journey Planning and Delivery of Personalized Trip Information. *Procedia Social and Behavioral Sciences*. 48, pp. 1294–1303. https://doi.org/10.1016/j.sbspro.2012.06.1105

Wren, A. (1971). Computers in Transport Planning and Operation. *Transportation - Data processing*. pp. 144-149.

Wren, A., Holliday, A. (1972). Computer scheduling of vehicles from one or more depots to a number of delivery points. *Operational Research Quarterly*. 23(3), pp. 333-344. https://doi.org/10.2307/3007888

Yu, X., Jing, S. (2004). A Decision Model for Supplier Selection Considering Trust. *Chinese Business Review*. 3(6), pp. 15-20.