Graph of \(uv\)-paths in 2-connected graphs \(^*\)

Eduardo Rivera-Campo

Departamento de Matemáticas
Universidad Autónoma Metropolitana - Iztapalapa
erc@xanum.uam.mx

Abstract

For a 2-connected graph \(G\) and vertices \(u, v\) of \(G\) we define an abstract graph \(P(G_{uv})\) whose vertices are the paths joining \(u\) and \(v\) in \(G\), where paths \(S\) and \(T\) are adjacent if \(T\) is obtained from \(S\) by replacing a subpath \(S_{xy}\) of \(S\) with an internally disjoint subpath \(T_{xy}\) of \(T\). We prove that \(P(G_{uv})\) is always connected and give a necessary and a sufficient condition for connectedness in cases where the cycles formed by the replacing subpaths are restricted to a specific family of cycles of \(G\).

1 Introduction

For any vertices \(x, y\) of a path \(L\), we denote by \(L_{xy}\) the subpath of \(L\) that joins \(x\) and \(y\). Let \(G\) be a 2-connected graph and \(u\) and \(v\) be vertices of \(G\). The \(uv\) path graph of \(G\) is the graph \(P(G_{uv})\) whose vertices are the paths joining \(u\) and \(v\) in \(G\), where two paths \(S\) and \(T\) are adjacent if \(T\) is obtained from \(S\) by replacing a subpath \(S_{xy}\) of \(S\) with an internally disjoint subpath \(T_{xy}\) of \(T\). The \(uv\) path graph \(P(G_{uv})\) is closely related to the graph \(G(P, f)\) of \(f\)-monotone paths on a polytope \(P\) (see C. A. Athanasiadis et al \(\Pi[1, 2]\)), whose vertices are the \(f\)-monotone paths on \(P\) and where two paths \(S\) and \(T\) are adjacent if there is a 2-dimensional face \(F\) of \(P\) such that \(T\) is obtained

\(^*\)Partially supported by Conacyt, México.
from S by replacing an f-monotone subpath of S contained in F with the complementary f-monotone subpath of T contained in F.

In Section 2 we show that the graphs $\mathcal{P}(G_{uv})$ are always connected as is the case for the graphs $G(P, f)$.

If S and T are adjacent paths in a uv-path graph $\mathcal{P}(G_{uv})$, then $S \cup T$ is a subgraph of G consisting of a unique cycle σ joined to u and v by disjoint paths P_u and P_v. See Figure 1.

![Figure 1: $S \cup T$](image)

Let \mathcal{C} be a set of of cycles of G; the uv-path graph of G defined by \mathcal{C} is the spanning subgraph $\mathcal{P}_C(G_{uv})$ of $\mathcal{P}(G_{uv})$ where two paths S and T are adjacent if and only if the unique cycle σ which is contained in $S \cup T$ lies in \mathcal{C}. A graph $\mathcal{P}_C(G_{uv})$ may be disconnected.

The uv path graph $\mathcal{P}(G_{uv})$ is also related to the well-known tree graph $\mathcal{T}(G)$ of a connected graph G, studied by R. L. Cummins [3], in which the vertices are the spanning trees of G and the edges correspond to pairs of trees S and R which are obtained from each other by a single edge exchange. As in the uv path graph, if two trees S and R are adjacent in $\mathcal{T}(G)$, then $S \cup R$ is a subgraph of G containing a unique cycle. X. Li et al [5] define, in an analogous way, a subgraph $\mathcal{T}_C(G)$ of $\mathcal{T}(G)$ for a set of cycles \mathcal{C} of G and give a necessary condition and a sufficient condition for $\mathcal{T}_C(G)$ to be connected. In sections 3 and 4 we show that the same conditions apply to uv path graphs $\mathcal{P}_C(G_{uv})$.

Similar results are obtained by A. P. Figueroa et al [4] with respect to the perfect matching graph $\mathcal{M}(G)$ of a graph G where the vertices are the perfect matchings of G and in which two matchings L and N are adjacent if their symmetric difference is a cycle of G. Again, if L and N are adjacent matchings in $\mathcal{M}(G)$, then $L \cup M$ contains a unique cycle of G.

For any subgraphs F and H of a graph G, we denote by $F \Delta H$ the subgraph of G induced by the set of edges $(E(F) \setminus E(H)) \cup (E(H) \setminus E(F))$.
2 Preliminary results

In this section we prove that the uv path graph is connected for any 2-connected graph G and give an upper bound for the diameter of a graph $\mathcal{P}(G_{uv})$.

Theorem 1. Let G be a 2-connected graph. The uv-path graph $\mathcal{P}(G_{uv})$ is connected for every pair of vertices u, v of G.

Proof. For any different uv paths Q and R in G denote by $n(Q, R)$ the number of consecutive initial edges Q and R have in common. Assume the result is false and choose two uv paths $S : u = x_0, x_1, \ldots, x_s = v$ and $T : u = y_0, y_1, \ldots, y_t = v$ in different components of $\mathcal{P}(G_{uv})$ for which $n^* = n(S, T)$ is maximum.

Since edges $x_{n^*}x_{n^*+1}$ and $y_{n^*}y_{n^*+1}$ are not equal, $x_{n^*+1} \neq y_{n^*+1}$. Let $j = \min\{i : x_{n^*+i} \in V(T)\}$ and $k = \min\{i : y_{n^*+i} \in V(S)\}$ and let l and m be integers such that $y_l = x_{n^*+j}$, $x_m = y_{n^*+k}$. Consider the path:

$$S' : u = x_0, x_1, \ldots, x_{n^*}, y_{n^*+1}, y_{n^*+2}, \ldots, y_{n^*+k}, x_{m+1}, x_{m+2}, \ldots, x_s = v$$

Paths S and S' are adjacent in $\mathcal{P}(G_{uv})$ since S' is obtained from S by replacing the subpath $x_{n^*}, x_{n^*+1}, \ldots, x_m$ of S with the subpath $y_{n^*}, y_{n^*+1}, \ldots, y_{n^*+k}$ of S'. Notice that $n(S', T) \geq n(S, T) + 1$ since $x_0x_1x_2, \ldots, x_{n^*}x_{n^*}$, $x_{n^*}y_{n^*+1} \in E(S') \cap E(T)$. By the choice of S, and T, paths S' and T are connected in $\mathcal{P}(G_{uv})$. This implies that S and T are also connected in $\mathcal{P}(G_{uv})$ which is a contradiction.

\[\square \]

For any two vertices u and v of a connected graph G we denote by $d_G(u, v)$ the distance between u and v in G, that is the length of a shortest uv path in G. The diameter of a connected graph G is the maximum distance among pairs of vertices of G. For a path P, we denote by $l(P)$ the length of P.

Theorem 2. Let u and v be vertices of a 2-connected graph G. The diameter of the graph $\mathcal{P}(G_{uv})$ is at most $2d_G(u, v)$.

Proof. Let S and T be uv paths in G and let P be a shortest uv path in G. From the proof of Theorem 1 one can see that there are two paths Q_S and Q_T in $\mathcal{P}(G_{uv})$ each with length at most $l(P)$, joining S to P and T to P, respectively. Clearly $Q_S \cup Q_T$ contains a path joining S and T in $\mathcal{P}(G_{uv})$ with length at most $2l(P) = 2d_G(u, v)$.

\[\square \]
In Figure 2 we show a 2-connected graph \(G^2 \) and paths \(S \) and \(T \) joining vertices \(u \) and \(v \) of \(G^2 \) such that \(d_{G^2}(u, v) = 2 \) and \(d_{P(G^2)}(S, T) = 4 \). For any positive integer \(k > 2 \) the graph \(G^2 \) can be extended to a graph \(G^k \) such that \(d_{G^k}(u, v) = k \) and that the diameter of \(P(G^k_{uv}) \) is \(2k \). This shows that Theorem 2 is tight.

![Graph G^2 and paths S and T.](image)

3 Necessory condition

Let \(u \) and \(v \) be vertices of a 2-connected graph \(G \) and \(S \) and \(T \) be two \(uv \) paths adjacent in \(P(G_{uv}) \). Since \(T \) is obtained from \(S \) by replacing a subpath \(S_{xy} \) of \(S \) with an internally disjoint subpath \(T_{xy} \) of \(T \), the graph \(S \Delta T \) is the cycle \(S_{xy} \cup T_{xy} \).

Theorem 3. Let \(G \) be a 2-connected graph, \(u \) and \(v \) be vertices of \(G \) and \(\mathcal{C} \) be a set of cycles of \(G \). If the graph \(\mathcal{P}_C(G_{uv}) \) is connected, then \(\mathcal{C} \) spans the cycle space of \(G \).

Proof. Let \(\sigma \) be a cycle of \(G \). Since \(G \) is 2-connected, there are two disjoint paths \(P_u \) and \(P_v \) joining, respectively, \(u \) and \(v \) to \(\sigma \). Denote by \(u' \) and \(v' \) the unique vertices of \(P_u \) and \(P_v \), respectively, that lie in \(\sigma \). Vertices \(u' \) and \(v' \) partition cycle \(\sigma \) into two internally disjoint paths \(Q \) and \(R \). Let \(S = P_u \cup Q \cup P_v \) and \(T = P_u \cup R \cup P_v \). Clearly \(S \) and \(T \) are two different \(uv \) paths in \(G \) such that \(S \Delta T = \sigma \).

Since \(\mathcal{P}_C(G_{uv}) \) is connected, there are \(uv \) paths \(S = W_0, W_1, \ldots, W_k = T \) such that for \(i = 1, 2, \ldots k \), paths \(W_{i-1} \) and \(W_i \) are adjacent in \(\mathcal{P}_C(G_{uv}) \). For
$i = 1, 2, \ldots, k$ let $\alpha_i = W_{i-1} \Delta W_i$. Then $\alpha_1, \alpha_2, \ldots, \alpha_k$ are cycles in C such that:

$$\alpha_1 \Delta \alpha_2 \Delta \cdots \Delta \alpha_k = (W_0 \Delta W_1) \Delta (W_1 \Delta W_2) \Delta \cdots \Delta (W_{k-1} \Delta W_k) = W_0 \Delta W_k = \sigma$$

Therefore C spans σ.

Let G be a complete graph with four vertices u, x, y, v and let $C = \{\alpha, \beta, \delta\}$, where $\alpha = uxv$, $\beta = uyv$ and $\delta = uxyv$. Set C spans the cycle space of G but the graph $P_C(G_{uv})$ is not connected since the uv path $uyxv$ is an isolated vertex of $P_C(G_{uv})$, see Fig 3. This shows that the condition in Theorem 3 is not sufficient for $P_C(G_{uv})$ to be connected.

Figure 3: Graph G, set $C = \{\alpha, \beta, \delta\}$ and graph $P_C(G_{uv})$.

4 Sufficient condition

A unicycle of a connected graph G is a spanning subgraph U of G that contains a unique cycle. Let u and v be vertices of a 2-connected graph G. A uv-monocle of G is a subgraph of G that consists of a cycle σ and two disjoint paths P_u and P_v that join, respectively u and v to σ, see Fig. 1. Clearly for each uv-monocle M of a 2-connected graph G, there is a unicycle U of G that contains M.

Let C be a set of cycles of G. A cycle σ of G has Property Δ^* with respect to C if for every unicycle U containing σ there is an edge e of G, not in U and two cycles $\alpha, \beta \in C$, contained in $U + e$, such that $\sigma = \alpha \Delta \beta$.

Lemma 1. Let G be a 2-connected graph and u and v be vertices of G. Also let C be a set of cycles of G and σ be a cycle having Property Δ^* with respect to \mathcal{C}. The graph $\mathcal{P}_{\mathcal{C} \cup \{\sigma\}}(G_{uv})$ is connected if and only if $\mathcal{P}_C(G_{uv})$ is connected.

Proof. If $\mathcal{P}_C(G_{uv})$ is connected, then $\mathcal{P}_{\mathcal{C} \cup \{\sigma\}}(G_{uv})$ is connected since the former is a subgraph of the latter.

Assume now $\mathcal{P}_{\mathcal{C} \cup \{\sigma\}}(G_{uv})$ is connected and let S and T be uv paths in G which are adjacent in $\mathcal{P}_{\mathcal{C} \cup \{\sigma\}}(G_{uv})$. We show next that S and T are connected in $\mathcal{P}_C(G_{uv})$ by a path of length at most 2.

If $\omega = S \Delta T \in \mathcal{C}$, then S and T are adjacent in $\mathcal{P}_C(G_{uv})$. For the case $\omega = \sigma$ denote by \mathcal{M} the uv-monocle given by $S \cup T$.

Let U be a unicycle of G containing \mathcal{M}. Since σ has Property Δ^* with respect to \mathcal{C}, there exists an edge $e = xy$ of G, not in U, and two cycles $\alpha, \beta \in \mathcal{C}$ contained in $U + e$ such that $\sigma = \alpha \Delta \beta$.

Let x' and y' denote the vertices in \mathcal{M} which are closest in U to x and y, respectively. Then there exists a path $R_{x'y'}$ in G, with edges in $E(U + e) \setminus E(\mathcal{M})$ joining x' and y' and such that cycles α and β are contained in $\mathcal{M} \cup R_{x'y'}$. We analyze several cases according to the location of x' and y' in \mathcal{M}.

Denote by P_u and P_v the unique paths, contained in \mathcal{M}, that join u and v to σ and by u' and v' the vertices where P_u and P_v, respectively, meet σ.

Case 1.- $x' \in V(P_u)$, $y' \in V(P_v)$. Without loss of generality we assume $\alpha = S_{x'y'} \cup R_{y'x'}$ and $\beta = T_{x'y'} \cup R_{y'x'}$, see Fig. 4.

![Figure 4: Left: $\mathcal{M} \cup R_{y'x'}$. Right: Cycles α and β.](image)

Let Q be the uv-path obtained from S by replacing $S_{x'y'}$ with $R_{x'y'}$. Notice that Q can also be obtained from T by replacing $T_{x'y'}$ with $R_{x'y'}$.

Case 2.- $x' \in V(P_u)$, $y' \in S \cap \sigma$. Without loss of generality we assume
$\alpha = S_{x'y'} \cup R_{y'x'}$ and $\beta = T_{x'v'} \cup S_{v'y'} \cup R_{y'x'}$, see Fig. 5.

Figure 5: Left: $\mathcal{M} \cup R_{y'x'}$. Right: Cycles α and β.

Again let Q be the uv-path obtained from S by replacing $S_{x'y'}$ with $R_{x'y'}$. In this case, Q can also be obtained from T by replacing $T_{x'v'}$ with $R_{x'y'} \cup S_{y'v'}$.

Case 3.- $x', y' \in S \cap \sigma$. Without loss of generality we assume $\alpha = S_{x'y'} \cup R_{y'x'}$ and $\beta = S_{u'x'} \cup R_{x'y'} \cup S_{v'y'} \cup T_{v'w'}$, see Fig. 6.

Figure 6: Left: $\mathcal{M} \cup R_{y'x'}$. Right: Cycles α and β.

Let Q be the uv-path obtained from S by replacing $S_{x'y'}$ with $R_{x'y'}$. Path Q is also obtained from T by replacing $T_{u'v'}$ with $S_{u'x'} \cup R_{x'y'} \cup S_{y'v'}$.

Case 4.- $x' \in S \cap \sigma$ and $y' \in T \cap \sigma$. Without loss of generality we assume $\alpha = S_{u'x'} \cup R_{x'y'} \cup T_{y'u'}$ and $\beta = T_{y'v'} \cup S_{v'x'} \cup R_{x'y'}$, see Fig. 7.

Let Q be the uv-path obtained from S by replacing $S_{u'x'}$ with $T_{u'y'} \cup R_{y'x'}$. Now Q can also be obtained from T by replacing $T_{y'v'}$ with $R_{y'x'} \cup S_{x'v'}$.
In each case $S\Delta Q = \alpha$ and $Q\Delta T = \beta$. Since $\alpha, \beta \in C$, path S is adjacent to Q and path Q is adjacent to T in $P_C(G_{uv})$. Therefore S and T are connected in $P_C(G_{uv})$ by a path with length at most 2.

All remaining cases are analogous to either Case 2 or to Case 3. \qed

Consider a 2-connected graph G with two specified vertices u and v and let C be a set of cycles of G. Construct a sequence of sets of cycles $C = C_0, C_1, \ldots, C_k$ as follows: If there is a cycle σ_1 not in C_0 that has Property Δ^* with respect to C_0 add σ_1 to C_0 to obtain C_1. At step t add to C_t a new cycle σ_{t+1} (if it exists) that has Property Δ^* with respect to C_t to obtain C_{t+1}. Stop at a step k where there are no cycles, not in C_k, having Property Δ^* with respect to C_k. We denote by $Cl(C)$ the final set obtained with this process. Li et al. [5] proved that the final set of cycles obtained is independent of which cycle σ_t is added at each step in the case of multiple possibilities.

A set of cycles of G is Δ^*-dense if $Cl(C)$ is the whole set of cycles of G.

Theorem 4. If C is Δ^*-dense, then $P_C(G_{uv})$ is connected.

Proof. Since C is Δ^*-dense, $Cl(C)$ is the set of cycles of G and therefore $P_{Cl(C)}(G_{uv}) = \mathcal{P}(G_{uv})$ which is connected by Theorem [1].

Let $C = C_0, C_1, \ldots, C_k = Cl(C)$ be a sequence of sets of cycles obtained from C as above. By Lemma [1] all graphs $P_{Cl(C)}(G_{uv}) = P_{C_k}(G_{uv}), P_{C_{k-1}}(G_{uv}), \ldots, P_{C_0}(G_{uv}) = P_C(G_{uv})$ are connected. \qed

Li et al. [5] proved the following:
Theorem 5. If G is a plane 2-connected graph and C is the set of internal faces of G, then C is Δ^*-dense.

Theorem 6. If G is a 2-connected graph and C is the set of cycles that contain a given edge e of G, then C is Δ^*-dense.

We end this section with the following immediate corollaries.

Corollary 1. Let u and v be vertices of a 2-connected plane graph G. If C is the set of internal faces of G, then $P_{C}(G_{uv})$ is connected.

Proof. By Theorem 5, C is Δ^*-dense and by Theorem 4, $P_{C}(G_{uv})$ is connected.

Corollary 2. Let u and v be vertices of a 2-connected graph G. If C is the set of cycles of G that contain a given edge e, then $P_{C}(G_{uv})$ is connected.

Proof. By Theorem 6, C is Δ^*-dense and by Theorem 4, $P_{C}(G_{uv})$ is connected.

Corollary 3. Let u and v be vertices of a 2-connected graph G. If C_u is the set of cycles of G that contain vertex u, then $P_{C_u}(G_{uv})$ is connected.

Proof. Let e be an edge of G incident with vertex u. Clearly the set $C(e)$ of cycles that contain edge e is a subset of the set C_u. Therefore $P_{C(e)}(G_{uv})$ is a subgraph of $P_{C_u}(G_{uv})$. By Corollary 2, the graph $P_{C(e)}(G_{uv})$ is connected.

References

[1] Athanasiadis, C.A.; de Loera, J. A.; Zhang, Z.; Enumerative problems for arborescences and monotone paths on polytopes, arXiv:2002.00999v1 [math.CO].

[2] Athanasiadis, C.A.; Edelman, P. H.; Reiner, V., Monotone paths on polytopes, Math. Z. 235 (2000), 315 – 334.

[3] Cummins, R. L., Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory, vol. CT-13 (1966), 82–90.

[4] Figueroa, A. P.; Fresán-Figueroa, J.; Rivera-Campo, E., On the perfect matching graph defined by a set of cycles, Bol. Soc. Mat. Mex. 23 Issue 2 (2017), 549 – 556.
[5] Li, X.; Neumann-Lara, V.; Rivera-Campo, E., On a tree graph defined by a set of cycles, Discrete Math. 271 (2003), 303–310.