THE EINSTEIN-HILBERT ACTION WITH COSMOLOGICAL CONSTANT AS A FUNCTIONAL OF GENERIC FORM

JÜRGEN TOLKSDORF

JULY 15, 2014

Abstract. The geometrical underpinnings of a specific class of Dirac operators is discussed. It is demonstrated how this class of Dirac operators allow to relate various geometrical functionals like, for example, the Yang-Mills action and the functional of non-linear $\sigma-$models (i.e. of (Dirac) harmonic maps). These functionals are shown to be similar to the Einstein-Hilbert action with cosmological constant (EHC). The EHC may thus be regarded as a “generic functional”. As a byproduct, the geometrical setup presented also allows to avoid the issue of “fermion doubling” as usually encountered, for instance, in the geometrical discussion of the Standard Model in terms of Dirac operators. Furthermore, it is demonstrated how the geometrical setup presented allows to derive the cosmological constant term of the EHC from the Einstein-Hilbert functional and the action of a purely gauge coupling Higgs field.

CONTENTS

1. Introduction 1
2. The geometrical setup and basic definitions 3
3. The EHC action as a generic functional 6
4. The functional of non-linear $\sigma-$models 8
4.1. Geodesics as an example 10
5. The Yang-Mills action 11
6. The Dirac-Harmonic-Yang-Mills action 13
7. Conclusion 16
References 16

PACS Classification: 04.30.-w, 12.10.-g, 12.15.-y, 02.65.-pm
MSC Classification: 14D21, 15A66, 53C07, 81T13, 83Cxx
Keywords: Clifford Modules, Dirac Operators, Einstein-Hilbert Functional, Yang-Mills Action, Dirac-Harmonic Maps, Cosmological Constant

1. Introduction

The Einstein-Hilbert action with a cosmological constant (EHC), see (22) below, is known to be the most general functional whose Euler-Lagrange equation yields a

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 267087.
(geometrically) divergency free tensor field that can be build from the metric and its first and second derivatives, only (see Section 3). In contrast to the pure Einstein-Hilbert action:

\[I_{EH}(g_M) := \int_M *\text{scal}(g_M), \]

which can be expressed in terms of “quantized Clifford connections” (for the notation and terminology used, please see the next section), the EHC can be expressed in terms of “Dirac operators of simple type”. This class of Dirac operators provides a natural generalization of quantized Clifford connections in the sense that the Bochner-Laplacian associated with a Dirac operator is still defined in terms of a Clifford connection. We demonstrate that the EHC has a “generic form” when expressed in terms of Dirac operators of simple type. We discuss the functional of non-linear \(\sigma \)-models and the Yang-Mills action from this point of view. Though these functionals yield rather different Euler-Lagrange equations, both functionals may nonetheless be recast into a form similar to the EHC. For this a certain class of Clifford module bundles is introduced. This class of bundles also allows to avoid the “doubling of fermions” needed to geometrically describe the Standard Model action in terms of Dirac operators (see [11] and the References cited therein).

Dirac operators of simple type describe the dynamics of the Standard Model fermions. In loc site it has been shown that also the bosonic functional of the Standard Model can be described by Dirac operators of simple type. As a premise for this, however, it is necessary to assume a specific bi-module structure of the underlying Clifford module bundle. Moreover, one has to double the Clifford module bundle to introduce curvature terms into Dirac operators. In the Standard Model fermions are described in terms of spinors. But twisted spinor bundles as discussed, for instance, in [11] do not permit a bi-module structure necessary to describe the Standard Model action in terms of Dirac operators of simple type. Without a bi-module structure, however, the pure “kinetic term” of the Higgs sector of the Standard Model cannot be described in terms of the setup introduced in loc. site. For the same reason the geometrical setup discussed in [11] cannot be used to describe functionals like the functional of Dirac harmonic maps (non-linear \(\sigma \)-models). Also, in order to describe Yang-Mills gauge theory within the geometrical scheme presented in loc site one has to use a class of Dirac operators (of “Pauli type”), which do not form a distinguished subset of the set of all Dirac operators. This is different to the case of simple type Dirac operators.

The main motivation of the present paper is to remedy these flaws and to demonstrate that Dirac operators of simple type actually provide a “generic root” of a variety of various seemingly different functionals, including non-linear \(\sigma \)-models and the Yang-Mills action, as well as the purely gauge coupling Higgs field. All of these functionals can be re-cast into the form of Einstein’s “biggest blunder”\footnote{Actually, there seems no written text in which Einstein himself called his introduction of the cosmological constant “the biggest blunder of my life”. See, however, Ref. [4].} [8]. We also demonstrate how the geometrical scheme of Dirac operators of simple type provides a purely geometrical relation between the cosmological constant and the kinetic term of the Higgs action.
2. The geometrical setup and basic definitions

In this section we introduce the basic geometrical setup and fix the notation used. For sake of self-consistency we recapitulate some basic facts about Dirac operators acting on sections of general Clifford module bundles.

In the sequel, \((M, g_M)\) always denotes a smooth orientable (semi-)Riemannian manifold of finite dimension \(n \equiv p + q\). The index of the (semi-)Riemannian metric \(g_M\) is \(s \equiv p - q \not\equiv 1 \mod 4\). The bundle of exterior forms of degree \(k \geq 0\) is denoted by \(\Lambda^k T^* M \to M\) with its canonical projection. Accordingly, the Grassmann bundle is given by \(\Lambda T^* M \equiv \bigoplus_{k>0} \Lambda^k T^* M \to M\). It naturally inherits a metric denoted by \(g_{AM}\), such that the direct sum is orthogonal and the restriction of \(g_{AM}\) to degree one equals to the fiber metric \(g^*_M\) of the cotangent bundle \(T^* M \to M\).

The bundle of (complexified) Clifford algebras is denoted by \(\text{Cl}_M \to M\), where, again, we do not explicitly mention its canonical projection. As a vector bundle the Clifford bundle is canonically isomorphic to the Grassmann bundle (see below). Accordingly, the Clifford bundle also inherits a natural metric structure, such that its restriction to the generating sub-space \(T^* M \subset \text{Cl}_M\) again reduces to \(g^*_M\). In what follows, the Grassmann and the Clifford bundle are mainly regarded as complex bundles, though we do not explicitly indicate their complexification. Accordingly, all (linear) maps are understood as complex linear extensions of the underlaying real linear maps.

The mutually inverse “musical isomorphisms” in terms of \(g_M\) (resp. \(g^*_M\)) are denoted by \(b^2 : TM \simeq T^* M\), such that, for instance, \(g_M(u, v) = g^*_M(u^b, v^b)\) for all \(u, v \in TM\).

A smooth complex vector bundle \(\pi_E : E \to M\) is called a Clifford module bundle, provided there is a Clifford map. That is, there is a smooth linear (bundle) map (over the identity on \(M\))

\[
\gamma_E : \quad T^* M \longrightarrow \text{End}(E) \quad \quad \alpha \mapsto \gamma_E(\alpha),
\]

satisfying \(\gamma_E(\alpha)^2 = \epsilon g^*_M(\alpha, \alpha)\text{Id}_E\). Here, \(\epsilon \in \{\pm 1\}\) depends on how the Clifford product is defined. That is, \(\alpha^2 := \pm g^*_M(\alpha, \alpha)1_{\text{Cl}} \in \text{Cl}_M\), for all \(\alpha \in T^* M \subset \text{Cl}_M\) and \(1_{\text{Cl}} \in \text{Cl}_M\) denotes the unit element.

A Clifford map (2) is known to induce a unique homomorphism \(\Gamma_E : \text{Cl}_M \to \text{End}(E)\) of associative algebras with unit, such that \(\Gamma_E(\alpha) = \gamma_E(\alpha)\), for all \(\alpha \in T^* M \subset \text{Cl}_M\). To explicitly mention the underlying structure we denote a Clifford module bundle also by

\[
\pi_E : \quad (E, \gamma_E) \longrightarrow (M, g_M) \quad \quad z \mapsto x = \pi_E(z).
\]

If the Clifford module bundle is \(\mathbb{Z}_2\)-graded, with grading involution being given by \(\tau_E \in \text{End}(E)\), then the Clifford map \(\gamma_E\) is assumed to be odd: \(\gamma_E(\alpha)\tau_E = -\tau_E \gamma_E(\alpha)\), for all \(\alpha \in T^* M\). Furthermore, if the vector bundle is supposed to be hermitian, with the hermitian product being denoted by \(\langle \cdot, \cdot \rangle_E\), then the Clifford map and the grading involution are supposed to be either hermitian or anti-hermitian. In this case, we call \(\text{Cl}_M\) an odd hermitian Clifford module bundle. Notice that in the sequel the term “hermitian” does not necessarily imply that \(\langle \cdot, \cdot \rangle_E\) is supposed to be positive definite. In fact, the signature of the fiber metric may depend on the signature of \(g_M\) as, for example, in the case of the Clifford bundle associated to \((M, g_M)\).

The sheaf of sections of any bundle \(\pi_W : W \to M\) is denoted by \(\mathcal{S}ec(M, W)\). In the particular case of the cotangent bundle, however, we follow the common notation
and denote the corresponding sheaf of sections by $\Omega(M) \equiv \mathcal{S}ec(M, \Lambda^*TM)$. Accordingly, $\Omega^k(M, \text{End}(\mathcal{E})) \equiv \mathcal{S}ec(M, \Lambda^kTM \otimes_M \text{End}(\mathcal{E}))$ are the “End(\mathcal{E})—valued forms” of degree $k \geq 0$.

From the Wedderburn structure theorems about invariant algebras one infers that (see [1], [2] and [5])

$$\text{End}(\mathcal{E}) \simeq Cl_M \otimes_M \text{End}_\gamma(\mathcal{E}),$$

where $\text{End}_\gamma(\mathcal{E}) \subset \text{End}(\mathcal{E})$ denotes the sub-algebra of endomorphisms on \mathcal{E} which commute with the Clifford action provided by $\gamma_{\mathcal{E}}$.

As a consequence,

$$\Omega^0(M, \text{End}(\mathcal{E})) \simeq \Omega(M, \text{End}_\gamma(\mathcal{E}) \equiv \bigoplus_{k \geq 0} \Omega^k(M, \text{End}_\gamma(\mathcal{E})).$$

(5)

The linear map

$$\delta_\gamma : \Omega(M, \text{End}(\mathcal{E})) \rightarrow \Omega^0(M, \text{End}(\mathcal{E}))$$

$$\alpha \otimes \mathfrak{B} \mapsto \vartheta \mathfrak{B} = \gamma_{\mathcal{E}}(\sigma_{\text{Ch}}^{-1}(\alpha)) \mathfrak{B}$$

is called the “quantization map”. It is determined by the linear isomorphism called symbol map:

$$\sigma_{\text{Ch}} : Cl_M \rightarrow \Lambda^*TM$$

$$a \mapsto \Gamma_{\text{Ch}}(a)1_{\Lambda},$$

(7)

Here, $1_{\Lambda} \in \Lambda^*TM$ is the unit element. The homomorphism $\Gamma_{\text{Ch}} : Cl_M \rightarrow \text{End}(\Lambda^*TM)$ is given by the canonical Clifford map:

$$\gamma_{\text{Cl}} : T^*M \rightarrow \text{End}(\Lambda^*TM)$$

$$v \mapsto \left\{ \begin{array}{ll}
\Lambda^*TM & \rightarrow \Lambda^*TM \\
\omega & \mapsto \epsilon \text{int}(v)\omega + \epsilon \text{ext}(v^\flat)\omega,
\end{array} \right.$$

(8)

where, respectively, “int” and “ext” indicate “interior” and “exterior” multiplication.

Definition 2.1. A Clifford module bundle $\pi_{\mathcal{E}' : (\mathcal{E}', \gamma_{\mathcal{E}'}) \rightarrow (M, g_M)}$ is called an “extension” of the Clifford module bundle \mathcal{E}, provided there is a bundle embedding $\iota : \mathcal{E} \hookrightarrow \mathcal{E}'$ (over the identity on M), such that for all $\alpha \in T^*M$ and $z \in \mathcal{E}$:

$$\gamma_{\mathcal{E}'}(\alpha)\iota(z) = \iota(\gamma_{\mathcal{E}}(\alpha)z).$$

(9)

Furthermore, in the case of odd hermitian Clifford module bundles one assumes that

$$\tau_{\mathcal{E}'}\iota(z) = \iota(\tau_{\mathcal{E}}z),$$

$$\langle \iota(z_1), \iota(z_2) \rangle_{\mathcal{E}'} = \langle z_1, z_2 \rangle_{\mathcal{E}},$$

(10)

for all $z, z_1, z_2 \in \mathcal{E}$.

Definition 2.2. A smooth vector bundle $\pi_{\mathcal{E}} : \mathcal{E} \rightarrow (M, g_M)$ is called a “Clifford bimodule bundle”, if there are Clifford maps: $\gamma_{\mathcal{E}}, \gamma_{\mathcal{E}' : T^*M \rightarrow \text{End}(\mathcal{E})}$, such that for all $\alpha, \beta \in T^*M$:

$$\gamma_{\mathcal{E}}(\alpha)\gamma_{\mathcal{E}'}(\beta) = \gamma_{\mathcal{E}'}(\beta)\gamma_{\mathcal{E}}(\alpha).$$

(11)

Every Clifford module bundle \mathcal{E} possesses a natural extension to a Clifford bimodule bundle, which is given by

$$\iota : \mathcal{E} \hookrightarrow \mathcal{E}' := \mathcal{E} \otimes_M Cl_M$$

$$z \mapsto z \equiv z \otimes 1_{Cl_1}.$$
The extension (12) also provides an extension of odd hermitian Clifford module bundles with respect to the grading involution and hermitian structure, respectively
\[
\tau_{\mathcal{E}} := \tau_{\mathcal{E}} \otimes \text{Id}_{\text{Cl}} ,
\]
\[
\langle \cdot, \cdot \rangle_{\mathcal{E}} := \langle \cdot, \cdot \rangle_{\mathcal{E}} \langle \cdot, \cdot \rangle_{\text{Cl}} .
\] (13)
Here, \(\langle \cdot, \cdot \rangle_{\mathcal{E}}\) denotes the hermitian structure that is defined in terms of the symbol map (7) and the canonical extension of \(g_{\mathcal{M}}\) to the Grassmann bundle.

Notice that the extension (12) completely fixes the Clifford action to be given by \(\gamma_{\mathcal{E}} = \gamma_{\mathcal{E}} \otimes \text{Id}_{\text{Cl}}\). We call the canonical bi-module extension (12) the Clifford twist of the Clifford module bundle (3).

Similar to (4), one has
\[
\text{End}(\mathcal{E}) \simeq \text{Cl}_{\mathcal{M}} \otimes_{\mathcal{M}} \text{End}_{\gamma}(\mathcal{E}) \otimes_{\mathcal{M}} \left(\text{Cl}_{\mathcal{M}} \otimes_{\mathcal{M}} \text{Cl}^{\text{op}}_{\mathcal{M}}\right) ,
\] (14)
where \(\text{Cl}^{\text{op}}_{\mathcal{M}} \to M\) is the bundle of opposite Clifford algebras.

We call in mind that a Dirac operator \(\mathcal{D}\) is a first order differential operator acting on sections \(\psi \in \text{Sec}(M, \mathcal{E})\), such that \([\mathcal{D}, f] \psi = \gamma_{\mathcal{E}}(df) \psi\) for all smooth functions \(f \in C^\infty(M)\). The set of all Dirac operators on (3) is denoted by \(\text{Dir}(\mathcal{E}, \gamma_{\mathcal{E}})\). It provides an affine space over the vector space \(\Omega^0(M, \text{End}(\mathcal{E}))\). Moreover, on odd Clifford module bundles Dirac operators are odd operators, i.e. \(\mathcal{D} \tau_{\mathcal{E}} = -\tau_{\mathcal{E}} \mathcal{D}\).

We call the Dirac operator \(\nabla^\mathcal{E} \equiv \delta_\gamma(\nabla^\mathcal{E})\) the “quantization” of a connection \(\nabla^\mathcal{E}\) on (3). Let \(e_1, \ldots, e_n \in \text{Sec}(U, TM)\) be a local frame and \(e^1, \ldots, e^n \in \text{Sec}(U, T^*M)\) its dual frame. For \(\psi \in \text{Sec}(M, \mathcal{E})\) one obtains
\[
\nabla^\mathcal{E}\psi := \sum_{k=1}^n \delta_\gamma(e_k) \nabla^\mathcal{E}_{e_k} \psi = \sum_{k=1}^n \gamma_{\mathcal{E}}(e_k) \nabla^\mathcal{E}_{e_k} \psi ,
\]
(15)
where the natural embedding \(\Omega(M) \hookrightarrow \Omega(M, \text{End}(\mathcal{E}))\), \(\omega \mapsto \omega \equiv \omega \otimes \text{Id}_{\mathcal{E}}\) is taken into account.

Every Dirac operator has a canonical first-order decomposition:
\[
\mathcal{D} = \partial_B + \Phi_{\mathcal{D}} .
\]
(16)
Here, \(\partial_B\) denotes the Bochner connection on (3), that is defined by \(\mathcal{D}\) as
\[
2 \epsilon v_g(df, \partial_B \psi) := \epsilon([\mathcal{D}^2, f] - \delta_g df) \psi \quad (\psi \in \text{Sec}(M, \mathcal{E})) ,
\]
(17)
with \(\epsilon v_g\) being the evaluation map with respect to \(g_{\mathcal{M}}\) and \(\delta_g\) the dual of the exterior derivative (see [2]).

The zero-order section \(\Phi_{\mathcal{D}} := \mathcal{D} - \partial_B \in \text{Sec}(M, \text{End}(\mathcal{E}))\) is thus uniquely determined by \(\mathcal{D}\). We call the Dirac operator \(\partial_B\) the “quantized Bochner connection”.

A (linear) connection on (3) is called a Clifford connection if the corresponding covariant derivative \(\nabla^\mathcal{E}\) “commutes” with the Clifford map \(\gamma_{\mathcal{E}}\) in the following sense:
\[
[\nabla^\mathcal{E}_X, \gamma_{\mathcal{E}}(\alpha)] = \gamma_{\mathcal{E}}(\nabla^\mathcal{E} X^T M \alpha) \quad (X \in \text{Sec}(M, TM), \alpha \in \text{Sec}(M, T^*M)) ,
\]
(18)
where \(\nabla^\mathcal{E} X^T M\) denotes the Levi-Civita connection on the co-tangent bundle of \(M\) with respect to \(g_{\mathcal{M}}\).

We denote Clifford connections as \(\partial_A\) since a Clifford connection is seen to be parametrized by a family of locally defined forms \(A \in \Omega^1(U, \text{End}_{\gamma}(\mathcal{E}))\). This basically follows from (4). Therefore, Clifford connections certainly provide a distinguished class of connections on a Clifford module bundle.
Since $\text{Dir}(\mathcal{E}, \gamma_\mathcal{E})$ is an affine space, every Dirac operator can be written as
\[\mathcal{D} = \partial_A + \Phi. \] (19)
However, this decomposition is far from being unique, as opposed to the first-order decomposition (16). In particular, the section $\Phi \in \text{Sec}(M, \text{End}(\mathcal{E}))$ depends on the chosen Clifford connection ∂_A. In general, a Dirac operator does not uniquely determine a Clifford connection.

Definition 2.3. A Dirac operator is said to be of “simple type” provided that Φ_D anti-commutes with the Clifford action:
\[\Phi_D \gamma_\mathcal{E}(\alpha) = -\gamma_\mathcal{E}(\alpha)\Phi_D \quad (\alpha \in T^*M). \] (20)
It follows that a Dirac operator of simple type uniquely determines a Clifford connection ∂_A together with a zero-order operator $\phi_D \in \text{Sec}(M, \text{End}_\gamma(\mathcal{E}))$, such that (c.f. [11])
\[\mathcal{D} = \partial_A + \tau_\mathcal{E}\phi_D. \] (21)
These Dirac operators play a basic role in the geometrical description of the Standard Model (c.f. [11]). They are also used in the context of the family index theorem (see, for instance, [2]).

Apparently, Dirac operators of simple type provide a natural generalization of quantized Clifford connections. They are distinguished (and fully characterized!) by the fact that they build the most general class of Dirac operators with the property that their Bochner connections (17) are also Clifford connections (see the next section).

Notice that $\phi_D \in \text{Sec}(M, \text{End}_\gamma(\mathcal{E}))$ in the case of odd Clifford module bundles, with $\text{End}^\pm(\mathcal{E}) \subset \text{End}(\mathcal{E})$ denoting the sub-algebras of even and odd endomorphisms.

3. The EHC Action as a Generic Functional

In appropriate physical units, the *Einstein-Hilbert functional* (action of gravity) with a cosmological constant added is given by
\[I_{\text{EHC}} := \int_M * (\text{scal}(g_M) + \Lambda). \] (22)
Here, “*” denotes the Hodge map with respect to g_M and a chosen orientation of M. The smooth function $\text{scal}(g_M) \in C^\infty(M)$ is the scalar curvature and $\Lambda \in \mathbb{R}$ denotes the cosmological constant.

In fact, due to *Lovelock’s Theorem*, the structure of the functional I_{EHC} is basically unique (for $\text{dim}(M) = 4$) if one requires that the Euler-Lagrange equations for the metric are of second order, tensorial and have vanishing divergency (c.f. [7] and the editors remark H2 on page 285 in [10]; for a refinement of this statement in terms of “natural geometry” we refer to [9]).

We demonstrate that the functional I_{EHC} has a generic form in the sense that several other geometrical functionals may be recast into the form similar to (22). As an example, we present in this vein the functional of non-linear σ–models (Dirac harmonic maps) and the Yang-Mills action.

On a given Clifford module bundle (3) every Dirac operator naturally defines two connections: The Bochner connection (17) and the “Dirac connection”
\[\partial_D := \partial_B + \omega_D. \] (23)
Here, $\omega_D \equiv \Theta \Phi_D \in \Omega^1(M, \End(\mathcal{E}))$ is the “Dirac form”, with $\Theta(v) := \frac{\epsilon}{n} \gamma_E(v^b)$ being the canonical one-form for all $v \in TM$. It is the right-inverse of the quantization map (6) restricted to $\Omega^1(M, \End(\mathcal{E}))$. The canonical one-form also plays a basic role in the construction of twister operators. In terms of the canonical one-form Clifford connections may be characterized as follows: A connection on a Clifford module bundle (3) is a Clifford connection if and only if it leaves the canonical one-form covariantly constant:

$$\nabla_X^{TM \otimes \End(\mathcal{E})} \Theta \equiv 0 \quad (X \in \Sec(M, TM)).$$

(24)

On a Clifford module bundle with a chosen Dirac operator:

$$\pi_{\mathcal{E}} : (\mathcal{E}, \gamma_\mathcal{E}, \partial) \longrightarrow (M, g_M),$$

the Dirac connection is distinguished for it is uniquely determined by $\gamma_\mathcal{E}$. Also, the Dirac connection has the property that $\delta_\partial \equiv \delta_\gamma(\partial_\mathcal{E}) = \partial$. Notice that neither $\partial_\partial = \partial$, nor are ∂_∂ and $\partial_\mathcal{E}$ are Clifford connections, in general.

Every Dirac operator is known to have a unique second order decomposition

$$\partial^2 = \triangle_B + V_D,$$

(26)

where the Bochner-Laplacian (or “trace Laplacian”) is given in terms of the Bochner connection as $\triangle_B := ee\text{vol} \left(\partial_B^{TM \otimes \mathcal{E}} \circ \partial_\mathcal{E} \right)$. The trace of the zero-order operator $V_D \in \Sec(M, \End(\mathcal{E}))$ explicitly reads (c.f. [11]):

$$\text{tr}_\mathcal{E} V_D = \text{tr} \left(\text{curv}(\partial) - e \text{ev}_g(\omega_D^2) \right) - \epsilon \delta_g \left(\text{tr}_\mathcal{E} \omega_D \right),$$

(27)

where $\text{curv}(\partial) \in \Omega^2(M, \End(\mathcal{E}))$ denotes the curvature of the Dirac connection of $\partial \in \Dir(\mathcal{E}, \gamma_\mathcal{E})$ and $\text{tr}_\gamma := \text{tr}_\gamma \circ \delta_\gamma$ the quantized trace$.$

Let M be closed compact. We call the functional

$$I_D : \Dir(\mathcal{E}, \gamma_\mathcal{E}) \rightarrow \mathbb{C}$$

$$\partial \mapsto \int_M \text{tr}_\mathcal{E} V_D$$

(28)

the “universal Dirac action” and

$$I_{D_{\text{tot}}} : \Dir(\mathcal{E}, \gamma_\mathcal{E}) \times \Sec(M, \mathcal{E}) \rightarrow \mathbb{C}$$

$$(\partial, \psi) \mapsto \int_M \text{tr}_\mathcal{E} V_D$$

(29)

the “total Dirac action”. Here, “\ast” is the Hodge map with respect to g_M and a chosen orientation of M.

If the Dirac connection of ∂ is a Clifford connection, then $\partial_\partial = \partial_\mathcal{E}$. In this case, the Dirac action (28) reduces to the Einstein-Hilbert functional (1).

In contrast, for Dirac operators of simple type the Dirac action becomes

$$I_D(\partial_\mathcal{A} + \tau_\mathcal{E} \phi_D) = \int_M \text{tr} \left(- \epsilon \text{ev}_g(\text{scal}(g_M)) + \text{tr}_\mathcal{E} \phi_D^2 \right),$$

(30)

with $\text{rk}(\mathcal{E}) \geq 1$ being the rank of (3). This is a direct consequence of Lemma 4.1 and the Corollary 4.1 of Ref. [11] (see also Sec. 6 in loc site).

Apparently, the restriction of the Dirac action (28) to Dirac operators of simple type (21) formally coincides with the Einstein-Hilbert action (22) with a cosmological constant, where (up to numerical factors)

$$\Lambda = tr_\mathcal{E} \phi_D^2 \equiv \pm \|\phi_D\|^2.$$

(31)
Similar to (22), the Einstein equation of (30) yields $\|\phi_D\| = \text{const.}$ as long as the section $\phi_D \in \Sec(M, \End^{-}_\gamma(\mathcal{E}))$ does not depend on g_M. In the case of a transitive action, this reduces the gauge group $\mathcal{G} \equiv \Sec(M, \Aut_\gamma(\mathcal{E}))$ to the stabilizer group of a chosen point on the (hyper) sphere $\|\phi_D\| = \text{const.}$ and therefore spontaneously breaks the (gauge) symmetry that is provided by the structure of the underlying Clifford module bundle (3). This reduction of the gauge group is in complete analogy to the symmetry breaking induced by the Higgs potential of the Standard Model (we refer to [11], for a more thorough discussion of this point).

To proceed let $\chi \in \Omega(M, End^{-}_\gamma(\mathcal{E}'))$. With respect to a local (oriented) orthonormal basis $e^1, \ldots, e^n \in \Sec(U, TM)$ we may write ($U \subset M$, open):

$$\chi^{loc.} = \sum_{k=0}^{n} \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} e^{i_1} \wedge e^{i_2} \wedge \cdots \wedge e^{i_k} \otimes \chi_{i_1 i_2 \cdots i_k} \equiv \sum_I e^I \otimes \chi_I. \quad (32)$$

We put

$$\phi_D := \sum_I \chi_I e^I \in \Sec(M, \End^{-}_\gamma(\mathcal{E}')), \quad (33)$$

where for $\chi_I = \sum_{J,K} \varphi_{IJK} \otimes a_J \otimes b_K \in \End(\mathcal{E}) = \End^{-}_\gamma(\mathcal{E}) \otimes Cl_M \otimes Cl_{M}^{\text{op}}$:

$$\chi_I e^I \equiv \sum_{J,K} \varphi_{IJK} \otimes a_J \sigma_{\gamma}^{-1}(e^I) \otimes b_K. \quad (34)$$

The explicit form of the coefficients $\varphi_{IJK} \in \End(\mathcal{E})$ is related to the structure of the Clifford module bundle (3). This structure may yield a metric dependent “cosmological constant”

$$\Lambda = \pm \|\phi_D\|^2. \quad (35)$$

The EHC then gives rise to additional first order constraints on the fields φ_{IJK} via the condition of a vanishing divergency of the associated energy-momentum current.

As an application we discuss the functional of Dirac harmonic maps, the Yang-Mills action and a combination of both as special cases of (30).

4. The functional of non-linear $\sigma-$models

In this section we specify the Clifford module bundle (3) and Dirac operators of simple type, such that the total Dirac action reduces to the functional of Dirac-Harmonic maps. We also discuss the ”energy functional” of geodesics within this geometrical setup.

For $k = 1, 2$ let $\pi_k : (\mathcal{E}_k, \gamma_k) \to (M_k, g_k)$ be odd hermitian Clifford module bundles of rank $N_k \geq 1$ over smooth orientable (semi-)Riemannian manifolds of dimensions $n_k = p_k + q_k \equiv \dim(M_k)$ and signatures $s_k = p_k - q_k \in \mathbb{Z}$. The corresponding Clifford bundles are denoted by $Cl_k \to (M_k, g_k)$. The grading involution and hermitian products read τ_k and $\langle \cdot, \cdot \rangle_k$, respectively. In the sequel we assume M_1 to be closed compact.

Let $\varphi : M_1 \to M_2$ be a smooth map. We set

$$\pi_\mathcal{E} : \mathcal{E} := \mathcal{E}_1 \otimes_{M_1} \varphi^* \mathcal{E}_2 \to (M_1, g_1), \quad (36)$$
as well as
\[\gamma_\varepsilon := \gamma_1 \otimes \text{Id}_{\varphi^*\varepsilon_2}, \]
\[\tau_\varepsilon := \tau_1 \otimes \tau_2 |_{\varphi}, \]
\[\langle \cdot, \cdot \rangle_\varepsilon := \langle \cdot, \cdot \rangle_1 \langle \cdot, \cdot \rangle_2 |_{\varphi}. \] (37)

That is, in the case considered the Clifford module bundle is a \textit{twisted Clifford module bundle} with the twisting provided by the pull-back of the odd hermitian vector bundle
\[\pi_2 : \varepsilon_2 \to M_2 \] with respect to the smooth map \(\varphi \).

Finally, we set
\[\pi_{\varepsilon'} : \varepsilon' := \varepsilon \otimes_{M_1} \text{Cl}_1 \to (M_1, g_1) \] (38)
and
\[\gamma_{\varepsilon'} := \gamma_\varepsilon \otimes \text{Id}_{\text{Cl}_1}, \]
\[\tau_{\varepsilon'} := \tau_\varepsilon \otimes \text{Id}_{\text{Cl}_1}, \]
\[\langle \cdot, \cdot \rangle_{\varepsilon'} := \langle \cdot, \cdot \rangle_\varepsilon \langle \cdot, \cdot \rangle_{\text{Cl}_1}. \] (39)

That is, the odd hermitian Clifford module bundle \(\pi_{\varepsilon'} : (\varepsilon', \gamma_{\varepsilon'}) \to (M_1, g_1) \) is the Clifford twist of the odd hermitian Clifford module bundle \(\pi_\varepsilon : (\varepsilon, \gamma_\varepsilon) \to (M_1, g_1) \).

Likewise, the bundle may be regarded as a twisted Clifford module bundle with the twisting given by the twisted Clifford module bundle \(\varphi^*\varepsilon_2 \otimes_{M_1} \text{Cl}_1 \to (M_1, g_1) \).

A Clifford connection on \(\pi_{\varepsilon'} \) reads
\[\partial_{\varepsilon'} = \partial_{\varepsilon} \otimes \text{Id}_{\text{Cl}_1} + \text{Id}_\varepsilon \otimes \nabla_{\text{Cl}_1}. \] (40)

Here,
\[\partial_{\varepsilon} = \partial_{\varepsilon_1} \otimes \text{Id}_{\varepsilon_2} + \text{Id}_{\varepsilon_1} \otimes \nabla_{\varepsilon^*\varepsilon_2} \] (41)
denotes a general Clifford connection on \(\pi_{\varepsilon} \), where, respectively, \(\nabla_{\text{Cl}_1} \) and \(\nabla_{\varepsilon_2} \) are general (Clifford) connections on the Clifford module bundles \(\text{Cl}_1 \to (M_1, g_1) \) and \(\pi_2 : (\varepsilon_2, g_2) \to (M_2, g_2) \). Clearly, on \(\text{Cl}_1 \to (M_1, g_1) \) there is a canonical choice provided by the Levi-Civita connection with respect to \(g_1 \).

Note that for all sections \(\psi \in \text{Sec}(M_1, \varepsilon) \):
\[\partial_{\varepsilon'}(\psi \otimes 1) = \partial_{\varepsilon} \psi \otimes 1. \] (42)

Let \(e_1, e_2, \ldots, e_n \in \text{Sec}(U_1, T^*M_1) \) be a local (oriented orthonormal) frame on the open subset \(U_1 \subset M_1 \) with the dual frame denoted as \(e^1, e^2, \ldots, e^n \in \text{Sec}(U_1, T^*M_1) \).

The quantization of then reads
\[\bar{\partial}_{\varepsilon'} = \partial_{\varepsilon} \otimes \text{Id}_{\text{Cl}_1} + \sum_{\alpha=1}^{n_1} \gamma_\varepsilon(e^\alpha) \otimes \nabla_{e_{\alpha}} \text{Cl}_1. \] (43)

It follows that \(\bar{\partial}_{\varepsilon'}(\psi \otimes 1) = \bar{\partial}_{\varepsilon} \psi \otimes 1. \)

The Jacobi map of \(\varphi \) can be identified with the section \(d\varphi \in \Omega^1(M_1, \varphi^*T^*M_2) \). We set for all \(t \in U_1 : \varphi_a(t) = d\varphi(t)e_a(t) \in T_{\varphi(t)}M_2 \), such that \(d\varphi = \sum_{\alpha=1}^{n_1} e^a \otimes \varphi_a \) and consider
\[\chi = \sum_{\alpha=1}^{n_1} e^a \otimes \chi_\alpha \in \Omega^1(M_1, \text{End}^{-}_\gamma(\varepsilon)), \]
\[\chi_\alpha := (\text{Id}_\varepsilon \otimes \gamma_2)(\text{Id}_\varepsilon \otimes \varphi_a^\beta) \]
\[= \text{Id}_\varepsilon \otimes \gamma_2(\varphi_a^\beta) \in C^\infty(U_1, \text{End}^{-}_\gamma(\varepsilon)). \] (44)
Accordingly, we set
\[\phi_D^{loc} := \sum_{a=1}^{n_1} \text{Id}_{E_a} \otimes \gamma_2(\varphi_a^\ast) \otimes e^a \in \Omega^0(M_1, \text{End}_{\gamma^0}(E')) \quad (45) \]
and consider the following Dirac operator of simple type, which acts on sections of (35):
\[\mathcal{D} := \partial_{\gamma^0} + \tau \phi_D. \quad (46) \]
For sections \(\psi \equiv \psi \otimes 1 \in \mathcal{S}ec(M_1, E') \) one gets
\[\langle \psi, \mathcal{D} \psi \rangle_{E'} = \langle \psi, \partial_{\gamma^0} \psi \rangle_{E'} . \quad (47) \]
Furthermore,
\[\| \phi_D \|^2 \equiv \epsilon_1 \sum_{a,b=1}^{n_1} g^1_e(e^a, e^b) \text{tr}_E \chi^\dagger_a \chi_b \]
\[\quad = \pm \epsilon_1 \epsilon_2 N \| d\varphi \|^2 , \]
where \(\| d\varphi \|^2 \equiv \sum_{a,b=1}^{n_1} g^1_e(e^a, e^b) g_2(\varphi, \varphi^\ast) = \sum_{a,b=1}^{n_1} g^1_e(e^a, e^b) \varphi^\ast g_2(e_a, e_b) \) and \(N \equiv N_1 + N_2 \) is the rank of the bundle (35).

We thus proved the following

Proposition 4.1. The total Dirac action (29) with respect to the simple type Dirac operators (46) reads
\[I_{D,tot}(\mathcal{D}, \psi) = \int_{M_1} \left(\langle \psi, \mathcal{D} \psi \rangle_{E'} + \text{tr}_E \text{curv}(\partial_{\gamma^0}) \pm \| \phi_D \|^2 \right) d\text{vol}(g_1) \]
\[= \int_{M_1} \left(- \epsilon_1 r^{1/2} \text{scal}(g_1) + \langle \psi, \partial_{\gamma^0} \psi \rangle_{E'} \pm \epsilon_1 \epsilon_2 N \| d\varphi \|^2 \right) d\text{vol}(g_1) . \quad (49) \]

Therefore, up to the Einstein-Hilbert action (e.g. for fixed metric on \(M_1 \)), the Dirac action basically coincides with the functional of non-linear \(\sigma \)-models (Dirac harmonic maps). This holds true, especially, in the case \(\text{dim}(M_1) = 2 \).

4.1. **Geodesics as an example.** To present the archetype of a non-linear \(\sigma \)-model, let \((M_2, g_2) \equiv (M, g_M) \) be an arbitrary \(n \)-dimensional smooth Riemannian manifold and \((M_1, g_1) := [0,1] \subset \mathbb{R}^{1,0} \). For \((E_1, \gamma_1) \) we set \(E_1 := [0,1] \times 2\mathbb{R} \) and consider the canonical Clifford map
\[\gamma_1 : \mathbb{R} \rightarrow 2\mathbb{R} \]
\[dt \mapsto e \equiv (1, -1) . \quad (50) \]

Here, \(2\mathbb{R} \simeq Cl_{1,0} \) denotes the two-dimensional real algebra of Study numbers and \(Cl_{1,0} \) is the Clifford algebra of the one-dimensional Euclidean space \(\mathbb{R}^{1,0} \). All trivial bundles are identified with their typical fibers, such that, for instance, \(T^*M_1 \) is identified with \(\mathbb{R} \) etc..

We call in mind that the real algebra of Study numbers equals the two-dimensional real vector space \(\mathbb{R}^2 \) with component wise multiplication. The unit is given by \(1 \equiv (1,1) \), such that \(\mathbb{R} \leftrightarrow 2\mathbb{R} \) is contained as a canonical sub-algebra. Furthermore, \(e \equiv (1,-1) \in 2\mathbb{R} \) is analogues to \(i \equiv (1,-1) \in \mathbb{C} \). It follows that \(2\mathbb{R} \simeq \text{End}(S \oplus \bar{S}) \), where \(S := \{(u,0) \mid u \in \mathbb{R} \} \subset 2\mathbb{R} \simeq Cl_{1,0} \) and \(\bar{S} := \{(0,v) \mid v \in \mathbb{R} \} \subset 2\mathbb{R} \simeq Cl_{1,0} \) are the spinor modules with respect to the primitive idempotents \((1 \pm e)/2 \in 2\mathbb{R} \).
We put \((E_2, \gamma_2) := (\Lambda T^* M, \gamma_{\text{Ch}})\), such that
\[
E = [0,1] \times (\mathbb{R}^2 \otimes \varphi^* \Lambda T^* M) \simeq \varphi^* \Lambda T^* M \oplus \varphi^* \Lambda T^* M.
\] (51)

Any section \(\psi \in \mathcal{S}\text{ec}([0,1], E)\) thus corresponds to a pair of sections of the (trivial) algebra bundle \(\varphi^* \Lambda T^* M \simeq [0,1] \times \mathbb{R}^n \to [0,1]\).

Let again \(I_k = (i_1, \ldots, i_k)\) be a multi-index for all \(1 \leq k \leq n = \dim(M)\) and \(i_l = 1, \ldots, n (l = 1, \ldots, k)\). We make again usage of the shorthand \(\sum_I \sigma_I = \sum_{k=1}^n \sum_{I_k} \sigma_{I_k}\).

Then, \(\psi(t) = \sum_I \psi_I(t) \otimes e_I\), whereby \(e_{I_k} : [0,1] \to \varphi^* \Lambda T^* M, ~ t \mapsto (t, e_{I_k})\) are the canonical sections with \(e_{I_1}, \ldots, e_{I_n} \in \Lambda \mathbb{R}^n\) being the standard basis. Furthermore, \(\psi_{I_k}(t) = (\alpha_{I_k}(t), \beta_{I_k}(t)) \in \mathbb{R}^2\) for all \(k = 1, \ldots, n\).

We choose the trivial connection to define \(\nabla^{\xi_i}\), such that for all smooth sections \(\chi = (\chi_1, \chi_2) \in \mathcal{S}\text{ec}([0,1], E_1) \simeq \mathcal{C}^\infty([0,1], \mathbb{R}^2)\) the action of the corresponding Dirac operator \(D\) explicitly reads:
\[
\bar{\partial}_t \chi(t) = \left(\bar{\chi}'_1(t), -\bar{\chi}'_2(t)\right) \in \mathbb{R}^2.
\] Here, \(\chi_k(t) := d\chi_k(t)\partial_{x_k}\), whereby \(\partial_{x_k} : [0,1] \to [0,1] \times \mathbb{R}, ~ t \mapsto (t, 1)\) is the canonical tangent vector field on \(M_i = [0,1]\).

On the Clifford module bundle \(\Lambda T^* M \to M\) we take the induced Levi-Civita connection of \((M, g_M)\).

With respect to our notation the action of the Dirac operator \(\bar{\partial}\) explicitly reads:
\[
\bar{\partial}_t \psi(t) = \sum_I \left(\dot{\alpha}_I(t) + \sum_{I'} \Gamma_{I'I} |_{\varphi(t)}(\dot{\varphi}(t)) \alpha_{I'}(t), -\dot{\beta}_I(t) - \sum_{I'} \Gamma_{I'I} |_{\varphi(t)}(\dot{\varphi}(t)) \beta_{I'}(t)\right) \otimes e_I,
\] (52)
where for all \(k = 1, \ldots, n:\)
\[
\sum_{l=1}^n \sum_{I_k} \Gamma_{I_k l_k} |_{\varphi(t)}(\dot{\varphi}(t)) e_{I_k}(t) := \nabla^{\psi^* \Lambda T^* M}_{\dot{\varphi}_{I_k}} e_{I_k}(t),
\] (53)
defines the induced Levi-Civita connection coefficients of the pull-back connection and \(\dot{\varphi}(t) := d\varphi(t)\partial_{x_k} \in T_{\varphi(t)} M\) is the velocity vector of the smooth curve \(\varphi : [0,1] \to M\).

After appropriate normalization, the total Dirac action (29) simplifies to
\[
I_{D, \text{tot}}(\bar{\partial}, \psi) = \int_0^1 \left(\langle \psi, \bar{\partial}_t \psi \rangle_E + \|d\varphi\|^2\right) dt.
\] (54)
In particular, the universal Dirac action (30) reduces to what is referred to as the energy functional of the curve \(\varphi:\)
\[
I_D(\bar{\partial} + \tau^\varphi \phi_D) = \int_0^1 g_M |_{\varphi(t)}(\dot{\varphi}(t), \dot{\varphi}(t)) dt,
\] (55)
where \(d\varphi = dt \otimes \dot{\varphi} \in \Omega^1([0,1], \varphi^* TM)\).

For fixed metric, the minima of (55) are known to be given by the geodesics on \((M, g_M)\).

5. THE YANG-MILLS ACTION

A Dirac operator of simple type on an arbitrary Clifford module bundle (3) is uniquely defined in terms of a Clifford connection \(\partial_h\) together with a section \(\phi_D \in \mathcal{S}\text{ec}(M, \text{End}_{\gamma}(E))\). It is thus natural to consider Dirac operators of simple type, which are fully determined by Clifford connections. Of course, quantized Clifford connections \(\bar{\partial} := \partial_h\) are special cases thereof. In this case, the universal Dirac action (28) reduces to the Einstein-Hilbert action. In this section we specify to Dirac operators of simple
type which are fully determined by Clifford connections but \(D \neq \partial_A \). The restriction of the universal Dirac action to these Dirac operators becomes the Yang-Mills functional.

Let \(M_1 = M_2 \equiv M \) be a smooth orientable manifold of dimension \(n \geq 1 \). We assume \(M \) to be closed compact. Also, let \(g_1 = g_2 \equiv g_M \) be a (semi-)Riemannian metric of arbitrary signature. For \(\varphi = \text{Id}_M \) we denote by

\[
F_A = F_{A_1} \otimes \text{Id}_{E_2} + \text{Id}_{E_1} \otimes F_{A_2} \in \Omega^2(M, \text{End}^+_1(E)) \tag{56}
\]

the twisting (relative) curvature on \(M \) of the hermitian Clifford connection

\[
\partial_A := \partial_{A_1} \otimes \text{Id}_{E_2} + \text{Id}_{E_1} \otimes \partial_{A_2}. \tag{57}
\]

Let again \(e_1, \ldots, e_n \in \text{Sec}(U, TM) \) be a local (oriented orthonormal) frame with dual frame \(e^1, \ldots, e^n \in \text{Sec}(U, T^*M) \). We set

\[
\chi = \sum_{a=1}^n e^a \otimes \chi_a \in \Omega^1(M, \text{End}^+_1(E)),
\]

\[
\chi_a := (\text{Id}_{E_1} \otimes \gamma_2)(\text{int}(e_a) F_A)
\]

\[
= \sum_{b=1}^{n_1} F_{A_1}(e_a, e_b) \otimes \gamma_2(e_b) + \text{Id}_{E_1} \otimes F_{A_2}(e_a, e_b) \in C^\infty(U, \text{End}^+_1(E)). \tag{58}
\]

The reader may compare this with the case \([44]\) of non-linear \(\sigma \)-models, whereby the correspondence is given by \(\varphi^\phi(v) \mapsto F_A(e_a, v) \), for all \(v \in TU \). In contrast to the case \([44]\), however, the choice \([55]\) is most natural, as already mentioned, for it allows in a canonical way to also define the zero-order part \(\phi_D \) of a simple type Dirac operator \(D \) in terms of the Clifford connection of \(D \). In this case one has

\[
\| \phi_D \|^2 = \epsilon_1 \epsilon_2 \| F_A \|^2, \tag{59}
\]

where

\[
\| F_A \|^2 \equiv - \sum_{a,b=1}^{n_1} g_M^*(e^a, e^c) g_M^*(e^b, e^d) \text{ tr}_E \left(F_A(e_a, e_b) F_A(e_c, e_d) \right)
\]

\[
\equiv - \sum_{a,b=1}^{n_1} \text{ tr}_E F_{ab} F_{ab} \in C^\infty(M). \tag{60}
\]

We thus proved the following

Proposition 5.1. When restricted to the class of simple type Dirac operators considered, the universal Dirac action reads

\[
\mathcal{I}_D = \int_M * \left(- \epsilon_1 \frac{\kappa_4(\varphi)}{4} \text{ scal}(g_M) + \epsilon_1 \epsilon_2 \| F_A \|^2 \right). \tag{61}
\]

We finally discuss the case of twisted spinor bundles, usually encountered in the literature dealing with twisted spin Dirac operators. To this end let \(M \) be a spin manifold and \(\pi_S : S \to M \) be a spinor bundle. Moreover, let \(\pi_E : E \to M \) be a smooth (odd) hermitian vector bundle. In this particular case, we set \(E_1 := C^1 \). The canonical embedding \(E_1 \hookrightarrow E \), \(z \mapsto z \otimes 1 \) then yields \(\partial_A (\psi \otimes 1) = \partial_A \psi \otimes 1 \). The Clifford connection \(\partial_{A_1} \equiv \nabla^S \otimes E \) is but the twisted spin connection with the twisting curvature being given by \(F_{A_1} = \text{Id}_S \otimes F^E \), where \(F^E \in \Omega^2(M, \text{End}^+_1(E)) \) denotes the curvature of some (even) hermitian connection \(\nabla^E \) on \(\pi_E : E \to M \).
When restricted to the sub-bundle $\pi_1 : E_1 \subset E \to M$ the twisting curvature (56) reduces to

$$F_A = \text{Id}_S \otimes F_E \otimes \text{Id}_{\Cl} = F_{\lambda_1} \otimes \text{Id}_{\Cl}.$$

(62)

Therefore, in the case of twisted spinor bundles the total Dirac action decomposes into the sum of the Dirac, the Einstein-Hilbert and the Yang-Mills action:

$$I_{D,\text{tot}} = \int_M * \left(\langle \psi, \partial A \rangle_{E_1} - \epsilon_1 \frac{rk(E')}{4} \text{scal}(g_M) + 2^n rk(S) \epsilon_1 \epsilon_2 \| F_E \|^2 \right)$$

$$= \int_M * \langle \psi, \partial A \rangle_{E_1} - \epsilon_1 \frac{rk(E')}{4} \int_M \text{scal}(g_M) + 2^n \epsilon_1 \epsilon_2 \int_M tr_{E_1}(F_{\lambda_1} \wedge * F_{\lambda_1}).$$

(63)

6. THE DIRAC-HARMONIC-YANG-MILLS ACTION

For further discussions, especially in the context of the Standard Model and gravity with torsion, we eventually present the setup that allows to combine the actions (49) and (63).

For this let us consider the geometrical situation encountered in the case of non-linear $\sigma-$models. We also assume that (M_1, g_1) is a (closed compact) (semi-)Riemannian spin manifold of even dimension $n_1 \geq 2$ and

$$\pi_W : W \to M_1$$

(64)
a smooth (odd) hermitian vector bundle with grading involution $\tau_W \in \text{End}(W)$ and hermitian product $\langle \cdot, \cdot \rangle_W$.

With respect to a chosen spin structure we consider the twisted spinor bundle:

$$\pi_1 : E_1 := S \otimes E_1 \to M_1$$

(65)

where $\pi_S : S \to M_1$ is a corresponding (complex) spinor bundle and

$$\pi_{E_1} : E_1 := \Cl_1 \otimes W \to M_1$$

(66)
is the $W-$twist of the canonical Clifford module bundle $\pi_{\Cl_1} : (\Cl_1, \gamma_{\Cl_1}) \to (M_1, g_1)$.

The Clifford action, grading involution and hermitian structure are denoted by

$$\gamma_{E_1} := \gamma_{\Cl_1} \otimes \text{Id}_W,$$

$$\tau_{E_1} := \tau_{\Cl_1} \otimes \tau_W,$$

$$\langle \cdot, \cdot \rangle_{E_1} = \langle \cdot, \cdot \rangle_{\Cl_1} \langle \cdot, \cdot \rangle_W.$$

(67)

Accordingly, the Clifford action, grading involution and hermitian product of (65) are given by

$$\gamma_1 := \gamma_S \otimes \text{Id}_{E_1},$$

$$\tau_1 := \tau_S \otimes \tau_{E_1},$$

$$\langle \cdot, \cdot \rangle_{E_1} = \langle \cdot, \cdot \rangle_S \langle \cdot, \cdot \rangle_{E_1}.$$

(68)

For a given connection ∇^W on (64) let $\nabla^E_1 = \nabla^\Cl_1 \otimes W$ be the induced Clifford connection on the $W-$twist (66). The twisting curvature reads

$$F^E_1 \equiv \text{Id}_{\Cl_1} \otimes F^W \in \Omega^2(M_1, \text{End}_+(E_1)),$$

(69)

with $F^W \in \Omega^2(M_1, \text{End}(W))$ being the curvature of ∇^W.

On the Clifford extension $\pi_{E'} : (E', \gamma') \to (M_1, g_1)$ of the twisted Clifford module bundle

$$\pi_E : E \equiv E_1 \otimes \varphi^* E_2 \to M_1$$

(70)
we consider the section
\[\phi_D := \phi_1 + \phi_2 \in \mathfrak{Sec}(M_1, \text{End}_\gamma^{-}(\mathcal{E}')) , \]
where
\[\phi_1 := \sum_{b=1}^{n_1} \text{Id}_{\mathcal{E}_1} \otimes \gamma_2(\varphi_b^e) \otimes \gamma_{\mathcal{C}_1}(e^b) \in \mathfrak{Sec}(M_1, \text{End}_\gamma^{-}(\mathcal{E}')) \]
\[\phi_2 := \sum_{a,b=1}^{n_1} \text{Id}_{\mathcal{S}} \otimes \gamma_{\mathcal{C}_1}(e^a) \otimes F^W(e_a, e_b) \otimes \text{Id}_{\mathcal{S}} \otimes \gamma_{\mathcal{C}_1}(e^b) \]
\[+ \sum_{a,b=1}^{n_1} \text{Id}_{\mathcal{S}} \otimes \gamma_E(e^a) \otimes \varphi^*F^{\mathcal{E}_2}(e_a, e_b) \otimes \gamma_{\mathcal{C}_1}(e^b) \]
\[\equiv \sum_{a,b=1}^{n_1} \text{Id}_{\mathcal{S}} \otimes \gamma_{\mathcal{C}_1}(e^a) \otimes F^{W \otimes \varphi \mathcal{E}_2}(e_a, e_b) \otimes \gamma_{\mathcal{C}_1}(e^b) \in \mathfrak{Sec}(M_1, \text{End}_\gamma^{-}(\mathcal{E}')) . \]

Here, \(F^{\mathcal{E}_2} \in \Omega^2(M_2, \text{End}_\gamma^{+}(\mathcal{E}_2)) \) is the curvature of some chosen Clifford connection \(\nabla^{\mathcal{E}_2} \) of the Clifford module bundle \(\pi_{\mathcal{E}_2} : (\mathcal{E}_2, \gamma_2) \to (M_2, g_2) \).

On the Clifford extension of the twisted Clifford module bundle \(\mathcal{E}_1 \) we consider the Dirac operator of simple type
\[\mathcal{D} := \nabla^{\mathcal{E}_2} + \tau^{\mathcal{E}_2} \phi_D . \]
Here,
\[\nabla^{\mathcal{E}_2} := \nabla^{\mathcal{E} \otimes \mathcal{C}_1} \]
\[\nabla^{\mathcal{E}} := \nabla^{\mathcal{E}_1 \otimes \varphi \mathcal{E}_2} , \]
\[\nabla^{\mathcal{C}_1} := \nabla^{\mathcal{S} \otimes \mathcal{E}_1} . \]

When the embedding of Clifford module bundles (over the identity on \(M_1 \)) is taken into account:
\[S \otimes E \equiv S \otimes W \otimes \varphi^* \mathcal{E}_2 \hookrightarrow \mathcal{E} \]
\[s \otimes w \otimes z \mapsto s \otimes 1_{\mathcal{C}_1} \otimes w \otimes z , \]
one gets the following

Proposition 6.1. By an appropriate re-definition of \(\phi_1, \phi_2 \in \mathfrak{Sec}(M_1, \text{End}_\gamma^{-}(\mathcal{E}')) \) and of \(\psi \in \mathfrak{Sec}(M_1, S \otimes E) \subset \mathfrak{Sec}(M_1, \mathcal{E}') \) the total Dirac action with respect to the Dirac operator \(\mathcal{D} \) reads:
\[\mathcal{I}_{D, \text{tot}}(\mathcal{D}, \psi) \sim \int_{M_1}^* \left(\langle \psi, \nabla^{S \otimes E} \psi \rangle_{S \otimes E} + \frac{1}{2} g_1^* \otimes g_2^|_{\varphi}(d \varphi, d \varphi) \right) \]
\[- \int_{M_1} (\epsilon_1*\text{scal}(g_1) - tr(F^E \wedge *F^E)) . \]

The first integral is but the Dirac harmonic action functional, where for all homogeneous elements \(\alpha \otimes u, \beta \otimes v \in T^*_t M_1 \otimes T_{\varphi(t)} M_2 \) and \(t \in M_1 ; \)
\[g_1^* \otimes g_2^|_{\varphi}(\alpha \otimes u, \beta \otimes v)|_t := g_1^*|_{\varphi}(\alpha, \beta) g_2^|_{\varphi(t)}(u, v) . \]
That is,
\[
g_1^* \otimes g_2 |_{\varphi}(d\varphi, d\varphi) = \sum_{a,b=1}^{n_1} g_1^*|_t(e^a, e^b) g_2|_{\varphi(t)}(\varphi_a(t), \varphi_b(t))
\]
\[
= \sum_{a,b=1}^{n_1} g_1^*|_t(e^a, e^b) (\varphi^* g_2)|_t(e_a, e_b).
\]
(79)

The second integral on the right-hand side of (77) is of Einstein-Hilbert-Yang-Mills type. The functional (77) thus combines the previously discussed examples of non-linear \(\sigma\)-model and of Yang-Mills gauge theory.

Proof. Similar to the previous examples the proof of the Proposition (6.1) basically rests on the general form (30) the Dirac action takes with respect to Dirac operators of simple type and because of the decomposition
\[
\text{tr}_{\mathbf{E}} \phi_D^2 = \text{tr}_{\mathbf{E}} \phi_1^2 + \text{tr}_{\mathbf{E}} \phi_2^2,
\]
which is straightforward to verify.

We close with a remark on how the geometrical description of the “Higgs field” fits with the presented scheme. A more thorough discussion of this issue will be given in a forthcoming work when the Standard Model action is revisited within the geometrical setup of simple type Dirac operators as discussed here.

To geometrically interpret the smooth mapping \(\varphi : M_1 \to M_2\) of non-linear \(\sigma\)-models as a Higgs field, we assume that
\[
\pi : M_2 \longrightarrow M_1
\]
\[
x \mapsto t
\]
(81)
is a smooth hermitian vector bundle with the fiber metric denoted by \(\langle \cdot, \cdot \rangle_{M_2}\). Accordingly, \(\varphi \in \text{Sec}(M_1, M_2)\) is supposed to be a section of (81). In the sequel we consider (81) as a (real) vector bundle that is associated to a principal \(G\)-bundle \(\pi_Q : Q \to M_1\). Here, the Lie group \(G\) is supposed to be compact and semi-simple. Furthermore, we identify (64) with an associated (odd) hermitian vector bundle that carries a representation of \(G\).

To define the Clifford module bundle \((\mathbf{E}_2, \gamma_2) \to (M_2, g_2)\) we remark that a (hermitian) connection \(\nabla^{M_2}\) on (81) together with the metric \(g_1\) on \(M_1\) yields a metric \(g_2\) on \(M_2\). We then put \(\mathbf{E}_2 := \text{Cl} \equiv \text{Cl}(TM_2, g_2)\), whereby \(\gamma_2\) denotes the left regular representation of the Clifford algebra with respect to \(g_2\) onto itself.

Due to the construction of \(g_2\), it follows that for all \(v \in TM_1\)
\[
g_2\left(d\varphi(v), d\varphi(v)\right) = \langle \nabla_{v}^{M_2} \varphi, \nabla_{v}^{M_2} \varphi \rangle_{M_2} + g_1(v, v)
\]
\[
= g_2\left(\nabla_{v}^{M_2} \varphi, \nabla_{v}^{M_2} \varphi \right) + g_1(v, v).
\]
(82)

Therefore,
\[
\|d\varphi\|^2 = \|\nabla^{M_2} \varphi\|^2 + \text{dim}(M_1).
\]
(83)

Notice that \(\|\nabla^{M_2} \varphi\|^2\) is purely quadratic in the section \(\varphi \in \text{Sec}(M_1, M_2)\). Hence, by appropriate re-scaling of the sections \(\phi_1\) and \(\varphi\) on the right-hand side of (83) one ends up with
\[
\|d\varphi\|^2 = \|\nabla^{M_2} \varphi\|^2 + \Lambda,
\]
(84)
where \(\Lambda > 0\) is a “true” cosmological constant.
When (84) is taken into account together with the canonical embedding

$$S \otimes W \hookrightarrow \mathcal{E} = \mathcal{E}_1 \otimes \varphi^* \mathcal{E}_2$$

$$s \otimes z \mapsto s \otimes 1 \otimes z \otimes 1 \quad (85)$$

and the section ϕ_2 is replaced by

$$\phi_2 := \sum_{a,b=1}^{n_1} \text{Id}_S \otimes \gamma_{Cl_1}(e^a) \otimes F^W(e_a, e_b) \otimes \text{Id}_S \otimes \gamma_{Cl_2} \otimes \varphi^* \mathcal{E}_2,$$

(86)

the total Dirac functional (77) becomes (again, after proper re-scaling)

$$I_{D,\text{tot}}(\mathcal{D}, \psi) \sim \int_{M_1} \star \left(\langle \psi, \nabla^{S \otimes W} \psi \rangle_{S \otimes W} + \| \nabla^{M_2} \varphi \|^2 + \| F^W \|^2 \right)$$

$$+ \int_{M_1} \star \left(- \epsilon_1 \text{scal}(g_1) + \Lambda \right).$$

(87)

The total Dirac action thus describes a purely gauge coupled fermion and Higgs field similar to the Standard Model of particle physics including the natural appearance of the cosmological constant. In fact, the setup presented allows a geometrical interpretation of the cosmological constant in terms of the kinetic term of the Higgs (c.f. (84)), which thereby turns the Einstein-Hilbert action (1) into (22).

7. Conclusion

The Yang-Mills action and the functional of non-linear σ-models can be both described by Dirac operators of simple type. In this way one may say that they have the same “square root” and the underlying generic form of these actions is provided by the functional (30) generalizing the Einstein-Hilbert action with a cosmological constant (22). Indeed, the EHC is shown to be induced from Dirac operators of simple type of the form (16), where the mapping φ is geometrically interpreted as a section of an hermitian vector bundle (81).

The decomposition of the universal Dirac action in terms of the fields defining a Dirac operator is similar to the decomposition of manifest supersymmetric actions in terms of the fields defining the underlying super-field. From this point of view one may argue that certain classes of Dirac operators will give rise to supersymmetric actions. Indeed, the functional of Proposition (4.1) is known to have a supersymmetric interpretation (for a survey of supergravity, we refer to [3]). Especially for $\text{dim}(M_1) = 2$, the supersymmetric interpretation of the functional of Dirac harmonic maps plays a basic role in the discussion of (super) Riemann surfaces (for an appreciable mathematical survey of this issue we refer to Sec. 2.4 in [6]). This will be discussed in some detail within the context of geometrical torsion in a forthcoming work.

References

1. M.F. Atiyah, R. Bott, A. Shapiro: *Clifford modules*, Topology 3, suppl. 1 (1964).
2. N. Berline, E. Getzler, M. Vergne: *Heat Kernels and Dirac Operators*, Springer, Berlin, (1992).
3. D. Z. Freedman, A. Van Proeyen: *Supergravity*, Cambridge University Press, UK, (2012).
4. G. Gamov: *My World Line*, Viking Press, New York, p. 44, (1970).
5. W.H. Greub: *Multilinear Algebra, 2nd Edition*, Springer-Verlag Berlin Heidelberg, (2009).
6. J. Jost: *Geometry and Physics*, Springer-Verlag Berlin Heidelberg, (2009).
7. D. Lovelock: *The Einstein tensor and its generalizations*, J. of Math. Phys. (12), 498 – 501, (1971).
8. Ch. W. Misner, K. S. Thorne, J. A. Wheeler: Citation taken from *Gravitation*, W. H. Freeman and Company, New York, p. 411, (1973).
9. A. Navarro, J. Navarro: Lovelock's Theorem revisited, J. Geom. Phys. 61, 1950 – 1956, (2011).
10. W. Pauli: Relativitätstheorie, Hrsg.: D. Guilini, Springer-Verlag Berlin Heidelberg, (2000).
11. J. Tolksdorf: Real $\mathbb{Z}(2)$-Bi-Gradings, Majorana Modules and the Standard Model Action, J. Math. Phys. 053525 (2010).

MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES, LEIPZIG, GERMANY
E-mail address: Juergen.Tolksdorf@mis.mpg.de