ABSTRACT

Aim: The aim of the present study was to investigate the association between hypothyroidism and non-alcoholic fatty liver disease (NAFLD).

Methods: In a prospective observational study, the hypothyroidism patients were evaluated for NAFLD using ultrasonography. The participant’s characteristics such as age, gender, thyroid profile, history of diabetes, hypertension, ischemic heart disease (IHD) were recorded using a data gathering form.

Results: A total of 51 participants were included in this study. From 51 participants, 47 (92.18%) individuals were females whereas 4 (7.82%) individuals were males. Out of 51 participants 27 individuals had NAFLD. There was statistically significant difference in FT4 levels with the participants with NAFLD.

Conclusion: Results from this study suggested that low FT4 concentration is associated with increased risk of NAFLD.

Keywords: Hypothyroidism, NAFLD, ultrasonography, FT4.
improved understanding and treatment of its risk factors (e.g., diabetes and dyslipidemia), prevalence of NAFLD has rapidly increased \[20\]. NAFLD has no definitive biochemical markers or peculiar clinical signs. A simple and effective screening approach for NAFLD should include inquiry into other common causes of fatty liver (alcohol, drugs, hepatitis C virus-related chronic hepatitis, hemochromatosis), an ultrasound scan of the liver and assessment of serum transaminase levels. All over the world, hypothyroidism is one of the most common disease. Thyroid hormones play a fundamental role in the lipid metabolism. Results of some of the reviewed studies showed that hypothyroidism play an important role in the development of NAFLD. This may lead us to find out the association between hypothyroidism and NAFLD. It is remains unclear that whether the hypothyroidism is the risk factor for the progression of NAFLD, or if it, then to what extent hypothyroidism affects the NAFLD. Studies confined to euthyroid subjects have been inconsistent as well, reporting that free T4 (FT3) alone (12), TSH alone (13), both (5), or neither of them (14) are linked with NAFLD. These discrepancies are mainly due to small sizes and cross-sectional design of previous studies. Hypothyroidism is a modifiable risk factor and can easily be treated with thyroid replacement therapy. In this study, we will rule out that whether the hypothyroidism is a risk factor for the progression of non-alcoholic fatty liver disease or not.

MATERIALS AND METHODS:

This prospective observational study was conducted at Shri Mahant Indiresh Hospital, Patel Nagar, Dehradun. From February 2019 to July 2019, patients coming to the medicine OPD department with the complaints of thyroid dysfunction (hypothyroidism) were enrolled in this study. Statics of results are show in table no\(|3|\). Association between thyroid dysfunction and NAFLD:

Association between thyroid dysfunction and NAFLD: T test was performed to check the accuracy of the data. Total 6 parameters were taken in the test and total 51 patients were investigated in this procedure. Statics of results are shown in the table no 1 and table no 2.

Table 1. Statistics using Student T-test

	N	Mean	Std. Deviation	Std. Error Mean
Age	51	39.24	10.792	1.511
Gender	51	1.92	.272	.038
FT3	51	4.7871	1.47901	2.0710
FT4	51	14.7853	5.33802	.74747
TSH	51	14.2778	31.14473	4.36114
USG	51	1.63	.692	.097

Table 2. Statistics using 2 tailed Student T-test

	t	df	Sig (2-tailed)	Mean Difference	Confidence Interval of the Difference
Age	25.964	50	.000	39.235	Lower 36.20
Gender	50.540	50	.000	1.922	Upper 4.227
FT3	23.114	50	.000	4.78706	Lower 4.3711
FT4	19.780	50	.000	14.78529	Upper 5.2030
TSH	3.274	50	.002	14.27784	Lower 5.5182
USG	16.803	50	.000	1.627	Upper 1.82

Correlation: To find out the strength of the association of FT3, FT4 and TSH with the ultrasonography, Karl Pearson’s correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant correlation was studied at the base line. A significant
DISCUSSION:

Hypothyroidism is a metabolic disorder in which the thyroid gland can’t produce the required amount of thyroid hormones (FT3 & FT4) which can be lead to the malfunctioning of the metabolism of the human body. This metabolic disorder causes decreased absorption of the carbohydrate, protein and lipid from the synthesis site that is hepatocytic cells. The inability of the lipid utilization causes storage of the lipid content in the hepatocytes that causes progression of NAFLD. In this study the relation of the Hypothyroidism was checked with the NAFLD. The patients of Hypothyroidism were investigated and diagnosed pathologically for the amount of serum TSH, FT4 and FT3 hormones in their body. And they were also tested for NAFLD by ultrasonography. The results showed that 51 patients were suffering from Hypothyroidism out of which 27 patients were also suffering from NAFLD. Results indicate that there is an association of NAFLD with the Hypothyroidism which may due to the malfunctioning of the metabolism caused by hyper production of serum TSH and insufficient amount of FT4 and FT3 hormones in the body. So it is important to control the level of FT3 and FT4 hormones in the body to prevent the risk of NAFLD and in the patients that are suffering from both Hypothyroidism and NAFLD, they should be first prioritized for the control of Hypothyroidism, that will support the proper function of the metabolic reactions leading to good health of the liver and reduction in the amount of fat in the hepatocytes. So control of Hypothyroidism is necessary for it. Hypothyroidism can be easily treated with the help of thyroid replacement therapy (LEVOTHYROXINE). There is no effective drug is yet discovered for the treatment of NAFLD but liver has regeneration ability, so maintaining good level of thyroid hormones by thyroid replacement therapy with good diet and proper exercise can help in NAFLD.

CONCLUSION:

Results from the study suggested that the lower concentration of the FT4 in the body have significant role in progression of the NAFLD. To treat NAFLD it is required to first control hypothyroidism with the significant use of Thyroid replacement therapy. It is also suggested that the control balanced diet and exercise is required to get rid from NAFLD.

REFERENCES:

1. Sharma KK, Sharma HL. Principles of pharmacology, Paras medical publisher Hyderabad, 2nd Edition, 2011; 610-11.
2. Okita M, Hayashi M, Sasagawa T, Takagi K, Suzuki K, Kinoyama S. Effect of a moderately energy-restricted diet on obese patients with fatty liver. Nutrition. 2001; 17(7–8):542–7.
3. Roberts CG, Ladenson PW. Hypothyroidism. Lancet- A Medical Journal. 2006; 363(9411): 791–803.
4. Hypothyroidism. National Institute of Diabetes and Digestive and Kidney Diseases. March 2013. Archived from the original on 5 March 2016. Retrieved 5 March 2016.
5. Freddy, Victor. Comprehensive Handbook of Iodine Nutritional, Biochemical, Pathological and Therapeutic Aspects. Burlington: Elsevier. 2009. p.616.
6. Bona G, Pndam F, Monzani A. Subclinical hypothyroidism in children: natural history and when to treat. Journal of Clinical Research in Pediatric Endocrinology (Review). 2013;5 Suppl 1 (4): 23–8. [PMID 23154159].
7. Fatoorechi V. Subclinical hypothyroidism: an update for primary care physicians. Mayo Clinic Proceedings. (Review). 2009;84 (1): 65–71. [PMID 19121255].
8. Baumgartner C, Blum MR, Rodondi N. Subclinical hypothyroidism: summary of evidence in 2014. Swiss Medical Weekly (Review). 144. [PMID 25536449].
9. Dons, Robert F, Frank HW. Endocrine and metabolic disorders clinical lab testing manu al(4th ed.). Boca Raton: CRC Press. 2009.
10. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment of Pharmacology and Therapeutics. 2011; 34:274–285.
11. Mlic S, Stimac D. Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Digestive Disease (Basel, Switzerland). 2012; 30:158–162.
12. Loomba R, Sanjay A. The global NAFLD epidemic. Nature Reviews Gastroenterology and Hepatology. 2013; 10:686–690.
13. Nascimbeni F, Pais R, Belintani S. From NAFLD in clinical practice to answers from guidelines. Journal of Hepatology. 2013; 59:859–71.
14. Bugianesi E, Leone N, Vanni E, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology. 2002; v 123:134–140.
15. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology (Baltimore, MD). 2003; 37:1202–1219.
16. Armstrong MJ, Adams LA, Canby A, Syn WK. “Extrahepatic complications of nonalcoholic fatty liver disease”. Journal of Hepatology. 2014; 59: 1174–97.
17. Mazi DF, Lima VM, Stefano OJ, Rabelo F, Faintuch J, Oliveira CP. Glucose-lipidic indices in treated hypothyroidism associated with non-alcoholic fatty liver disease. Arquivos de Gastroenterologia (Archives of Gastroenterology). 2011; 48:186–189.
18. Grattagliano I, Vendemiale G, Caraceni P, Domenicali M, Nardo B, Cavañari A, et al. Starvation impairs antioxidant defense in fatty livers of rats fed a choline-deficient diet. Journal of Nutrition. 2000; 130(9):2131–6.
19. James OF, Day CP. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. Journal of Hepatology. 1998; 29(3):495–501.
20. Armstrong MJ, Houlahan DD, Bentham L, et al. Presence and severity of non-alcoholic fatty liver disease in a large prospective primary care cohort. Journal of Hepatology. 2012; 56: 234–40.

Table No. 3. Correlation between thyroid functions and USG

	FT3	FT4	TSH	USG					
FT3	Pearson Correlation	Sig. (2-tailed)	N	.230	.105	-2.91*	.038	.668	51
FT4	Pearson Correlation	Sig. (2-tailed)	N	.291*	-1.403**	.003	.564	51	
TSH	Pearson Correlation	Sig. (2-tailed)	N	-1	-1	1	.083	51	
USG	Pearson Correlation	Sig. (2-tailed)	N	.062	.334*	.017	51		

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).