Reduced lung function predicts risk of incident type 2 diabetes: insights from a meta-analysis of prospective studies

Yunping Zhou1, Fei Meng1, Min Wang1, Linlin Li2, Pengli Yu1 and Yunxia Jiang1

1) School of Nursing, Qingdao University, Qingdao, Shandong, China
2) Zibo Center for Disease Control and Prevention, Zibo, Shandong, China

Abstract. Epidemiological studies have repeatedly investigated the association between reduced pulmonary function and incident type 2 diabetes mellitus (T2DM). However, the results have been inconsistent. This meta-analysis aimed to clarify this association with prospective cohort studies. We searched PubMed, Web of Science (ISI), and Google Scholar for all studies (in English) reporting reduced lung function with a risk of T2DM. The measures of lung function included percentage of forced vital capacity for predicted values (FVC%pre), percentage of forced expiratory volume in the first second after expiration for predicted values (FEV1%pre) and FEV1/FVC ratio%. Summary risk ratios (RRs) and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects meta-analyses. A total of 5,480 incident T2DM patients among 88,799 individuals were identified from nine prospective cohort studies. Compared to the highest category of FVC%pre and FEV1%pre, the lowest category of FVC%pre and FEV1%pre were significantly associated with increased incident T2DM risk (FVC%pre: RR = 1.49, 95% CI: 1.39–1.59; FEV1%pre: RR = 1.52, 95% CI: 1.42–1.62). However, no significant relationship was found between the FEV1/FVC ratio and incident T2DM risk (RR = 1.01, 95% CI: 0.91–1.13). Current evidence suggests that restrictive rather than obstructive impairment of lung function is significantly associated with the incidence of T2DM. Further research is warranted to explore potential mediators of this relationship.

Key words: Type 2 diabetes, Pulmonary function, Prospective studies

TYPE 2 DIABETES MELLITUS (T2DM) is a major public health concern that has reached epidemic levels worldwide, affecting 463 million people and accounting for 4.2 million deaths in 2019 [1]. Accumulating evidence [2, 3] suggests that reduced lung function might act as a predictor of T2DM incidence. However, the causal direction between reduced lung function and diabetes, as well as the underlying mechanism to explain this association, remains unclear [4–6]. Despite this ambiguous nature, the relationship between T2DM and lung function remains important because of potential epidemiological and clinical implications.

Prior meta-analyses and reviews [7, 8] have reported the association of T2DM and the risk of reduced pulmonary function but have not evaluated the association of impaired lung function with incident T2DM risk. Thus, in this meta-analysis, we aimed to systematically review the observational evidence available on the relationship between impairment of lung function and incident T2DM with prospective cohort studies.

Methods

Data sources and searches

A comprehensive search was performed for relevant English language articles through August 2020 using the following databases: (1) PubMed; (2) Web of Science (ISI); and (3) Google Scholar. The following search terms were used in combination: (“diabet*”) AND [“(FVC” OR “FVC%pre” OR “FEV1” OR “FEV1%pre” OR “FEV1-to-FVC ratio%” OR “lung function” OR “spirometry”) NOT (“cystic fibrosis” OR “COPD” OR “cancer”)] AND (“prospective” OR “cohort” OR “cohorts” OR “longitudinal” OR “follow-up”). In addition, we manually scanned and examined the reference lists in relevant articles. We followed standard criteria for conducting meta-analyses and reporting the results [9]. This meta-analysis was registered on PROSPERO (registration number CRD42021257570).
Study selection
Each identified study was independently reviewed by two investigators to determine whether an individual study was eligible for inclusion in this meta-analysis. The inclusion criteria were as follows: (1) prospective cohort studies; (2) the exposure of interest was FVC_{%pre} and/or FEV_{1%pre} and/or FEV_{1-to-FVC ratio}%; (3) the outcome of interest was incident T2DM; and (4) adjusted risk estimate with their 95% CI for two or more quantitative categories of FVC_{%pre} and/or FEV_{1%pre} and/or FEV_{1-to-FVC ratio}%. The highest categories were used as reference groups. In addition, case reports, editorials, reviews, animal studies or in-vitro researches were excluded. Besides, studies lacking relevant data also were excluded. When data from several publications were overlapping, we selected the publication with the most comprehensive data for inclusion in the meta-analysis.

Data extraction
Two authors (YP.Z. and M.W.) independently reviewed titles and abstracts of the potentially eligible articles and extracted the following information from the studies: the first author’s name, year of publication, country where the study was performed, sex, number of participants and incident cases, variables adjusted for in the analysis, as well as multivariate adjusted RRs and 95% CIs for measurements of T2DM. For studies that reported results from various covariates analyses, we abstracted the estimates based on the model that included the most potential confounders.

Quality assessment
The quality of the studies was evaluated with the Newcastle Ottawa Scale (NOS). This scale included eight items that judge three dimensions as follows: selection (score of 0–4), comparability (score of 0–2) and ascertainment of exposure or outcome (score of 0–3). The maximum score was nine stars, and studies with seven or more stars were considered as having a low risk of bias [10]. We chose this tool because it allowed us to appropriately adapt its domains for our exposure and outcome, it was validated for longitudinal studies [11], and the score of each study would be used to assess risk of bias as a potential moderator in meta-regression analyses [12, 13]. Two assessors independently rated each study, and consensus discussion was used to resolve any disagreement.

Statistical analysis
Pooled measure was calculated as the inverse variance-weighted mean of the natural logarithm of multivariate adjusted RRs with 95% CIs to assess the association of lung function and T2DM. The F was used to assess heterogeneity among studies [14], and described the proportion of total variation attributable to between-study heterogeneity as opposed to random error or chance. In the presence of substantial heterogeneity (I^2 > 50%) [15], the DerSimonian and Laird random effect model (REM) was adopted as the pooling method; otherwise, the fixed effect model (FEM) was used as the pooling method. Publication bias was estimated using Egger’s regression asymmetry test [16].

All statistical analyses were performed with STATA version 15 (Stata Corporation, College Station, Texas, USA). All reported probabilities (p values) were two-sided, with p < 0.05 considered statistically significant.

Results
A total of 1,597 studies were identified through the literature search. After review of the titles and abstracts, 1,555 studies were excluded and 42 studies were reviewed with the full texts. A total of nine studies [5, 17-24] were included in the final meta-analysis, comprising 88,799 individuals and 5,480 incident T2DM patients (Fig. 1).

Characteristics of the studies
The characteristics of the selected studies are outlined in Supplemental Table 1. The nine prospective studies, one study [21] was conducted in the United States, two in Europe [20, 22], and six in Asia [5, 17-19, 23, 24]. The sample sizes ranged from 2,967 to 27,711 and the mean age of the participants ranged from 41 to 60 years. Among the prospective studies, four [19, 21, 22, 24] reported two separate outcomes (men and women) on the association of reduced lung function and incident T2DM. All studies were assessed using the NOS with low risk of bias and high methodological quality. The quality criteria ranged from 7 to 8 stars in our study.

Reduced lung function and incident T2DM
Forced vital capacity (FVC) (% predicted)
Seven studies [5, 18, 19, 21-24] had 11 outcomes on the association of FVC_{%pre} with the risk of T2DM. Compared to the highest category of FVC_{%pre}, the lowest category of FVC_{%pre} was significantly associated with T2DM risk (RR = 1.49, 95% CI: 1.39–1.59, F = 0.0%, p_{heterogeneity} = 0.80) with no evidence of heterogeneity (Fig. 2). Egger’s test showed no evidence of publication bias (p = 0.77).

Forced expiratory volume in 1 second (FEV_{1}) (% predicted)
Six studies [5, 18, 21-24] had nine outcomes on the association of percent-predicted FEV_{1%pre} with risk of
T2DM. Compared to the highest category of FEV\(_{1%}\)pre, the lowest category of FEV\(_{1%}\)pre was significantly associated with T2DM risk (RR = 1.52, 95% CI: 1.42–1.62, \(I^2 = 0.0\%\), \(p_{\text{heterogeneity}} = 0.97\)) with no evidence of heterogeneity (Fig. 3). Egger’s test showed no evidence of publication bias (\(p = 0.09\)).

Forced expiratory volume in 1 second/forced vital capacity (FEV\(_1\)-to-FVC ratio%)

Five studies [5, 17, 19, 20, 22] with seven outcomes on the association of FEV\(_1\)-to-FVC ratio% with risk of T2DM. Compared to the highest category of FEV\(_1\)-to-FVC ratio%, the lowest category of FEV\(_1\)-to-FVC ratio%
was not significantly associated with T2DM risk (RR = 1.01, 95% CI: 0.91–1.13, \(I^2 = 15.9\% \), \(p_{\text{heterogeneity}} = 0.31 \), Fig. 4). Egger’s test showed no evidence of publication bias (\(p = 0.64 \)).

Discussion

We systematically reviewed and synthesized the available evidence on the association between reduced lung function and the risk of incident T2DM. Based on our results, reduced lung function measured with the percentage of FVC for predicted values (FVC\(_{\%}\text{pre} \)) and the percentage of FEV\(_1\) for predicted values (FEV\(_{1\%}\text{pre} \)) were significant risk factors for the development of T2DM. However, no significant relationship was found between the FEV\(_1\)-to-FVC ratio and the incident T2DM risk.

FVC, the total volume of air exhaled with maximally forced effort from a maximal inspiration, reflects the total compliance from both the lung and chest wall [25]. In most of the individual studies, reduced FVC and FVC\(_{\%}\text{pre} \) were significantly associated with increased incident T2DM risk. Compared with control participants, significantly higher increased odds of developing diabetes were observed in studies where participants were all males [5, 18, 26]. FEV\(_1\), the most frequently used spirometric index, is a function of airway resistance and total lung compliance [25]. Similar to FVC, a significant association was observed between lower FEV\(_1\) and FEV\(_{1\%}\text{pre} \) and incident T2DM in the overall meta-analysis.

The spirometric measurements of FVC\(_{\%}\text{pre} \) and FEV\(_{1\%}\text{pre} \) were used as markers of restrictive lung dysfunction. In addition, the FEV\(_1\)-to-FVC ratio\% is a marker of obstructive lung dysfunction [27]. In brief, this study suggests that restrictive rather than obstructive impairment of lung function is associated with T2DM, which is consistent with previous studies [17, 20]. Early detection and management of incident T2DM among patients with reduced lung function is needed. Recommendations to improve glycemic status and to control lipid metabolism in people with pulmonary dysfunction, e.g., low-intensity exercise and diet restriction, might be important in preventing T2DM incidence.

The interplay between T2DM and lung function was likely to be mediated through multiple mechanisms. Possible explanations for the association might include hypoxia-induced insulin resistance [28], chronic inflammation [29, 30], and lower levels of physical activity [22]. Chronic low-grade inflammation in the lungs might affect systemic inflammation through inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-a) and IL-6, into the systemic circulation [31], thereby contributing to an increase in insulin resistance. Taken together, the potential mechanisms are complex and might involve several shared physiological pathways, such
as obesity and inflammation. Certainly, more studies are needed to explore the mechanisms underlying this relationship, which would be crucial for the prevention and treatment of T2DM.

The strength of this study was that this meta-analysis explicitly examined the relationship of lung function and T2DM on the basis of a comprehensive literature search. The large number of participants and T2DM cases could provide higher statistical power with which to quantitatively assess the relationship of reduced lung function and T2DM compared with individual studies [32]. However, as a meta-analysis of published observational studies, several potential limitations should also be considered. First, all studies included had no experimental manipulation, and consequently this research was unable to address the causal relationship between lower lung function and T2DM. Nonetheless, the present data is important because they might be among the strongest forms of evidence ethically possible. Second, misclassification of T2DM status (fasting glucose level, a self-reported medical history of type 2 diabetes, or oral glucose tolerance tests) might also lead to an underestimation of the true magnitude of the associations. Third, the categories of the indicators of lung function might slightly differ between studies, which might complicate the interpretation of the pooled results across study populations with different categories. A dose-response analysis between lung function and T2DM would provide a more robust method to combine results from individual studies and better quantify the relationship between lung function and T2DM. Thus, further prospective studies eligible for the dose-response meta-analysis are warranted.

Despite these limitations, our results still have important implications for both clinical care and public health. The existing literature indicates that restrictive rather than obstructive impairment of lung function confers an increased risk of T2DM outcomes, which should inform guidelines and practice. In addition, more studies are needed to evaluate whether early screening and collaborative care for patients with reduced lung function could reduce the future risk of T2DM.

Key Messages

- Previous epidemiology studies have shown inconsistent associations between lung dysfunction and the risk of T2DM.
- The study indicated a significant association between reduced lung function and T2DM. These results support early detection and management of incident T2DM among patients with reduced lung function.
Funding

This study was sponsored by a grant from the Program of Natural Science Foundation of Shandong Province (ZR2020QG059).

Conflicts of Interest

None.

References

1. (2019) IDF Diabetes Atlas, 9th edition [Internet]. International Diabetes Federation. Brussels, Belgium. http://www.diabetesatlas.org/ accessed on January 5, 2021.
2. Ford ES, Mannino DM, National Health and Nutrition Examination Survey Epidemiologic Follow-up Study (2004) Prospective association between lung function and the incidence of diabetes: findings from the National Health and Nutrition Examination Survey. Epidemiologic Follow-up Study. Diabetes Care 27: 2966–2970.
3. McKeever TM, Weston PJ, Hubbard R, Fogarty A (2005) Lung function and glucose metabolism: an analysis of data from the Third National Health and Nutrition Examination Survey. Am J Epidemiol 161: 546–556.
4. Engstrom G, Hedblad B, Nilsson P, Wollmer P, Berglund G, et al. (2003) Lung function, insulin resistance and incidence of cardiovascular disease: a longitudinal cohort study. J Intern Med 253: 574–581.
5. Heianza Y, Arase Y, Tsuji H, Saito K, Amakawa K, et al. (2012) Low lung function and risk of type 2 diabetes in Japanese men: the Toranomon Hospital Health Management Center Study 9 (TOPICS 9). Mayo Clin Proc 87: 853–861.
6. Lin CS, Liu CC, Yeh CC, Chang YC, Chung CL, et al. (2017) Diabetes risks and outcomes in chronic obstructive pulmonary disease patients: two nationwide population-based retrospective cohort studies. PloS One 12: e0181815.
7. Klein OL, Krishnan JA, Glick S, Smith LJ (2010) Systematic review of the association between lung function and type 2 diabetes mellitus. Diabet Med 27: 977–987.
8. van den Borst B, Gosker HR, Zeegers MP, Schols AM (2010) Pulmonary function in diabetes: a metaanalysis. Chest 138: 393–406.
9. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283: 2008–2012.
10. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of non-randomized studies in meta-analyses. Eur J Epidemiol 25: 603–605.
11. (2012) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, et al. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp accessed on May 20, 2021.
12. Verone N, Cereda E, Solmi M, Fowler SA, Manzato E, et al. (2015) Inverse relationship between body mass index and mortality in older nursing home residents: a meta-analysis of 19,538 elderly subjects. Obes Rev 16: 1001–1015.
13. Zhou Y, Wang T, Song D, Wang A (2018) Dietary intake of flavonoid subclasses and risk of type 2 diabetes in prospective cohort studies: a dose-response meta-analysis. Clin Nutr 37: 2294–2298.
14. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1558.
15. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.
16. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
17. Kim CH, Kim HK, Kim EH, Bae SJ, Jung YJ, et al. (2015) Association of restrictive ventilatory dysfunction with the development of prediabetes and type 2 diabetes in Koreans. Acta Diabetol 52: 357–363.
18. Kwon CH, Rhee EJ, Song JU, Kim JT, Kwag HJ, et al. (2012) Reduced lung function is independently associated with increased risk of type 2 diabetes in Korean men. Cardiovasc Diabetol 11: 38.
19. Oda E (2016) Low vital capacity was associated with incident diabetes in a Japanese health screening population in whom obesity was not prevalent. Can J Diabetes 40: 143–148.
20. Wannamethee SG, Shaper AG, Rumley A, Sattar N, Whincup PH, et al. (2010) Lung function and risk of type 2 diabetes and fatal and nonfatal major coronary heart disease events: possible associations with inflammation. Diabetes Care 33: 1990–1996.
21. Yeh HC, Punjabi NM, Wang NY, Pankow JS, Duncan BB, et al. (2005) Vital capacity as a predictor of incident type 2 diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care 28: 1472–1479.
22. Zaigham S, Nilsson PM, Wollmer P, Engstrom G (2016) The temporal relationship between poor lung function and the risk of diabetes. BMC Pulm Med 16: 75.
23. Choi HS, Lee SW, Kim JT, Lee HK (2020) The Association between pulmonary functions and incident diabetes: longitudinal analysis from the Ansung cohort in Korea. Diabetes Metab J 44: 699–710.
24. Lee JH, Lee HS, Lee YJ (2020) Lung function as a predictor of incident type 2 diabetes in community-dwelling
adults: a longitudinal finding over 12 years from the Korean genome and epidemiology study. *Diabetes Metab* 46: 392–399.

25. Forno E, Han YY, Mullen J, Celedon JC (2018) Overweight, obesity, and lung function in children and adults—A meta-analysis. *J Allergy Clin Immunol Pract* 6: 570–581 e10.

26. Eriksson KF, Lindgarde F (1996) Poor physical fitness, and impaired early insulin response but late hyperinsulinaemia, as predictors of NIDDM in middle-aged Swedish men. *Diabetologia* 39: 573–579.

27. Patouchas D, Efremidis G, Karkoulias K, Zoumbos N, Goumas P, *et al.* (2008) Lung function measurements in traditional bakers. *Acta Biomed* 79: 197–203.

28. Chambers JC, Eda S, Bassett P, Karim Y, Thompson SG, *et al.* (2001) C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. *Circulation* 104: 145–150.

29. Hancox RJ, Poulton R, Greene JM, Filsell S, McLachlan CR, *et al.* (2007) Systemic inflammation and lung function in young adults. *Thorax* 62: 1064–1068.

30. Thyagarajan B, Jacobs DR, Apostol GG, Smith LJ, Lewis CE, *et al.* (2006) Plasma fibrinogen and lung function: the CARDIA study. *Int J Epidemiol* 35: 1001–1008.

31. Wouters EF, Reynaert NL, Dentener MA, Vernooy JH (2009) Systemic and local inflammation in asthma and chronic obstructive pulmonary disease: is there a connection? *Proc Am Thorac Soc* 6: 638–647.

32. Cohn LD, Becker BJ (2003) How meta-analysis increases statistical power. *Psychol Methods* 8: 243–253.