Actaticas A–G, Cycloartane Triterpenes From Actaea asiatica With Their Antiproliferative Activity

Meigeng Hu1,2,3†, Dan Zhao1,2,3†, Xudong Xu1,2,3, Guoxu Ma1,2,3, Haifeng Wu1,2,3* and Xi Chen1,2,3*

1Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China, 2Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China, 3Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China

Phytochemical studies on the rhizomes of Actaea asiatica led to the isolation of seven new cycloartane triterpenes, actaticas A–G (1–7). Their structures were determined by NMR, HRESIMS, and chemical analysis. All the isolates were evaluated for their antiproliferative activity against HT-29 and MCF-7 cell lines. The results showed that all the compounds displayed cytotoxicity. All compounds showed significant inhibitory effects with IC50 values of 9.2–26.4 μM.

Keywords: Actaea asiatica, cycloartane triterpenes, antiproliferative activity, HT-29 cell lines, MCF-7 cell lines

INTRODUCTION

Actaea asiatica H. Hara, a perennial herb belonging to the family Ranunculaceae, is mainly distributed in the southwest and northwest of China. Its roots have been traditionally used among the Tujia folk in Hubei Province for treating headache, sore throat, rheumatic pain, rubella, measles, pertussis, uterine prolapse, and dog bites (Gao et al., 2006a; Gao et al., 2006b; Fan et al., 2007; Gao et al., 2007). Phytochemical studies indicated that the genus Actaea contained cycloartane triterpene glycosides with cytotoxic activities (Kusano et al., 1998; Kusano et al., 1999; Gao et al., 2006b). However, little systematic chemical work on A. asiatica has been carried out so far.

In order to find the bioactive constituents from A. asiatica, chemical research were carried out, resulting in the isolation of seven new cycloartane triterpene glycosides, namely, actaticas A–G (1–7) (Figure 1). Their structures were determined by spectroscopic analysis and chemical methods. Herein, structural elucidation of compounds 1–7 was reported as well as their cytotoxic activities.

MATERIALS AND METHODS

General Experimental Procedures

Optical rotations were obtained on a PerkinElmer 341 digital polarimeter. IR spectra were recorded on Shimadzu FTIR-8400S spectrometers. NMR spectra were obtained with a Bruker AV III 600 NMR spectrometer (chemical shift values are presented as δ values with TMS as the internal standard). HR-ESIMS spectra were performed on a LTQ-Obitrap XL spectrometer. Preparative HPLC was performed on a Lumtech K-1001 analytic LC equipped with two pumps of K-501, a UV
detector of K-2600, and an YMC Pack C18 column (250 × 10 mm, i.d., 5 μm, YMC Co. Ltd., Japan) eluted with CH₃OH-H₂O at a flow rate of 2 ml/min. C18 reversed–phase silica gel (40–63 μm, Merk, Darmstadt, Germany), MCI gel (CHP 20P, 75–150 μm, Mitsubishi Chemical Corporation, Tokyo, Japan), and silica gel (100–200 mesh, Qingdao Marine Chemical plant, Qingdao, the People’s Republic of China) were used for column chromatography. Pre-coated silica gel GF254 plates (Zhi Fu Huang Wu Pilot Plant of Silica Gel Development, Yantai, the People’s Republic of China) were used for TLC. All solvents used were of analytical grade (Beijing Chemical Works).

Plant Material
The plants of *A. asiatica* were collected at Jinfuo Mountain in Chongqing province, the People’s Republic of China, in November 2016, and were authenticated by Professor Sirong Yi. The voucher specimen (CS161108) has been deposited at the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences.

Extraction and Isolation
The air-dried powdered rhizomes *A. asiatica* (6.8 kg) was extracted with 95% EtOH (20 L) three times (each time for 2 h). Removal of the EtOH under reduced pressure yielded the extract (879 g). The residue was suspended in H₂O (1.5 L) and partitioned with petroleum ether (3 × 1 L), EtOAc (3 × 1 L), acetone (3 × 1 L), and n-BuOH (3 × 1 L) successively. The EtOAc fraction (510 g) was subjected to CC over silica gel (100–200 mesh, 8 × 100 cm) eluting with a stepwise gradient of CH₂Cl₂-MeOH (from 1:0 to 0:1) to afford six fractions A–F. Fraction B (29.4 g) was subjected to MCI column chromatography (4 × 80 cm) elution with MeOH-H₂O (40:60; 60:40; 70:30; 80:20; 100:0, v/v) giving five subfractions (Fr. B1–B5). Subfraction B3 (911 mg) was chromatographed by semi-preparative HPLC using acetonitrile–H₂O (75:25, v/v) to yield compound 1 (9.4 mg, tᵣ = 26.3 min) and 7 (7.2 mg, tᵣ = 29.5 min). Subfraction B4 (503 mg) was purified through preparative HPLC elution using an acetonitrile–H₂O (65:35, v/v) system to give compound 2 (12.1 mg, tᵣ = 23.0 min).
Fraction D (5.8 g) was loaded on an ODS C18 column (2 × 80 cm) eluted with MeOH–H2O (40:60; 60:40; 70:30; 80:20; 100:0, v/v) to give five subfractions (Fr. D1–D5). Subfraction D3 (503 mg) was chromatographed by semi-preparative HPLC using acetonitrile–H2O (70:30, v/v) to yield compounds 3 (6.1 mg, tR = 18.5 min), 4 (8.7 mg, tR = 21.4 min), and 5 (7.0 mg, tR = 28.3 min). Fraction F (6.7 g) was fractionated on an MCI-gel column chromatography eluted with MeOH–H2O (40:60; 60:40; 70:30; 80:20; 100:0, v/v) to give five subfractions (Fr. F1–F5). Subfraction F3 (223 mg) was chromatographed by preparative HPLC using acetonitrile–H2O (75:25, v/v) to yield compounds 6 (5.8 mg, tR = 22.7 min).

Actatica A (1): C39H62O11, white amorphous powder; [α]20 D + 19.0 (c = 0.15, MeOH); IR (KBr) νmax max: 3,736, 2,957, 1,738, 1,373, 1,032 cm−1; UV (MeOH) λmax (log e): 201 nm; for 1H NMR (600 MHz, pyridine-d5) and 13C-APT (150 MHz, pyridine-d5) spectroscopic data, see Tables 1, 2; HR-ESIMS m/z: 729.4233 (calcld for C39H62O11Na [M + Na]+, 729.4184).

Actatica B (2): C32H50O6, white amorphous powder; [α]20 D + 35.1 (c = 0.31, MeOH); IR (KBr) νmax max: 3,376, 2,957, 1,738, 1,373, 1,032 cm−1; UV (MeOH) λmax (log e): 201 nm; for 1H NMR (600 MHz, pyridine-d5) and 13C-APT (150 MHz, pyridine-d5) spectroscopic data, see Tables 1, 2; HR-ESIMS m/z: 553.3533 (calcld for C32H50O6Na, 553.3500).

Actatica C (3): C39H62O11, white amorphous powder; [α]20 D + 35.1 (c = 0.31, MeOH); IR (KBr) νmax max: 3,493, 2,928, 1,730, 1,375, 1,044, 3,436, 3,374, 3,272 cm−1; UV (MeOH) λmax (log e): 201 nm; for 1H NMR (600 MHz, pyridine-d5) and 13C-APT (150 MHz, pyridine-d5) spectroscopic data, see Tables 1, 2; HR-ESIMS m/z: 727.4100 (calcld for C39H62O11Na [M + Na]+, 727.4088).

Actatica D (4): C32H42O13, white amorphous powder; [α]20 D + 22.4 (c = 0.22, MeOH); IR (KBr) νmax max: 3,493, 2,934, 1,734, 1,264, 1,033, 1,033, 962 cm−1; λmax (log e): 201 nm; for 1H NMR spectroscopic data, see Tables 1, 2.
Table 2

Position	Compounds	1	2	3	4	5	6	7
1		32.6	33.0	32.6	32.6	32.8	32.9	32.8
2		30.9	31.7	30.9	32.3	30.1	31.1	32.3
3		88.8	82.8	86.7	88.8	88.7	88.8	88.7
4		41.7	40.5	40.5	41.7	41.7	41.7	41.7
5		47.7	47.8	47.8	47.7	47.6	47.7	47.7
6		21.2	21.7	21.4	21.1	21.4	21.1	21.4
7		26.5	26.5	26.4	26.5	26.1	26.7	26.5
8		48.3	48.3	48.2	48.5	48.0	50.3	49.0
9		19.9	20.1	20.1	20.2	19.8	20.7	20.2
10		26.7	27.1	26.7	26.9	27.1	26.9	26.9
11		26.3	26.6	26.5	31.2	27.0	31.9	31.2
12		37.5	25.9	26.4	216.6	216.6	216.6	216.6
13		48.6	50.3	50.3	59.5	48.3	59.0	59.1
14		47.6	47.0	47.0	42.4	46.4	42.7	42.4
15		86.4	80.3	76.7	86.1	85.7	42.7	82.4
16		79.8	78.3	80.3	80.1	79.8	77.3	79.1
17		56.1	51.6	51.6	52.7	59.0	53.2	56.5
18		21.7	14.1	33.5	64.4	26.1	64.5	64.7
19		30.5	31.2	30.4	30.5	30.6	26.2	26.5
20		85.2	86.7	82.9	86.6	87.3	86.6	87.2
21		27.6	25.1	25.1	27.7	22.3	24.4	24.7
22		33.7	41.5	41.4	39.0	39.1	39.1	32.3
23		27.0	29.0	29.0	29.7	30.5	31.2	30.9
24		83.8	111.2	111.2	81.7	115.2	81.6	114.7
25		70.9	72.4	72.4	71.2	72.8	71.7	71.7
26		27.6	25.9	25.8	26.1	30.3	26.1	26.4
27		27.6	26.5	25.9	21.7	22.3	21.5	26.3
28		26.1	25.7	25.6	21.7	26.1	21.5	26.3
29		15.8	15.3	15.6	14.5	15.7	15.8	15.7
30		13.8	14.1	14.1	13.7	13.9	14.5	15.2
15-Ac		170.9	170.7	170.6	171.5	171.2	171.5	
16-Ac		171.2	22.0	171.2	170.2	171.8	171.1	
3-Ac		22.0	22.0	21.6	21.8	24.4	21.4	
26r		170.6	21.9	30.3	27.4			
27r		21.9	30.3	27.4				
The 1H-1H COSY spectrum also showed two oxygenated proton signals at δH 5.49 (d, J = 4.8 Hz) and δH 5.82 (d, J = 4.8 Hz), indicating two acetyl groups at C-15 and C-16. Except for sugar carbons, the 13C-NMR spectrum (Table 2) of 1 displayed 39 carbon resonances including methylene carbon of cyclopropane ring at δC 30.5 (C-19), an oxymethine carbon at δC 88.8 (C-3), an oxygenated quaternary carbon at δC 85.2 (C-20), and an anomic carbon at δC 108.1, together with acetyl signals at δC 170.9, 171.2, 21.2, and 22.0. The 1H and 13C NMR spectroscopic data of 1 confirmed that the compound was a cycloartane triterpene glycoside (Jung et al., 2002; Wu et al., 2017; Wu et al., 2017).

All proton signals were assigned to the corresponding carbons through direct 1H and 13C correlations in the HSQC spectrum. Inspection of the 1H-1H COSY spectrum showed fragments of C-1/C-2/C-3, C-5/C-6/C-7/C-8, C-11/C-12, C-15/C-16/C-17, and C-22/C-23/C-24. In the HMBC spectrum (Figure 2), the correlations were observed from H-28/29 to C-3 and C-5, H-19 to C-1, C-5, C-6, C-9, and C-11, and H-18 to C-12 and C-17, H-30 to C-8, C-14, C-16 and C-18, H-21 to C-22, H-22 to C-24, and H-24 to C-26 and C-2 fully confirmed the basic skeleton cycloartane triterpene of compound 1, which was consistent with the above deduction. The acetyl groups were connected with C-15 and C-16 supported by the correlations from H-15 to δC 170.9 (the carbonyl carbon of OAc) and H-16 to δC 171.2 (the carbonyl carbon of OAc). The sugar was connected with C-3 based on the key HMBC correlation between H-1′ (δH 4.86, d, J = 7.2 Hz) and C-3 (δC 88.8), which was identified as D-xylene by TLC in comparison with authentic monosaccharides (visualization with ethanol-5% H2SO4 spraying) followed by gas chromatography.

The NOESY experiment and coupling constants established the relative configuration of compound 1 (Figure 3), in which correlation of H-3/H-5 showed a-orientation of H-3. The larger coupling constants (JH1,2 > 7.0 Hz) of the anomic protons indicated the β configuration of the sugar unit. The significant cross peaks from H-15 to H2-18, H-17α to Me-21, H-16 to H2-30, and H-24 to Me-21 were observed, which enabled the establishment of OAc-15α and OAc-16β. Until now, all the isolated cycloartane triterpenes share the identical absolute configuration with trans A/B, B/C, C/D rings. Considering the same cycloartane skeleton and identical carbon signals at C-20/C-24, compound 1 was established as 20S and 24R configurations (Ju et al., 2002a). Therefore, the structure of the compound was identified as shown and given the trivial name actatica A.

Compound 2 was determined to have the molecular formula C31H48O11, by the observation of the ion peak at m/z 553.3533 (calcd for C31H48O11Na, 553.3500). The 1H-NMR spectrum (Tables 1, 2) displayed signals for seven tertiary methyls (δH 1.67, 1.62, 1.54, 1.54, 1.58, 1.08, and 1.25), two typical signals at 0.53 (1H, d, J = 4.2 Hz) ascribable to a cyclopropane moiety, indicating that 2 might be a cycloartane-type triterpenoid. The 13C NMR spectrum of 2 displayed 32 carbon signals, three signals attributable to oxygen-bearing quaternary carbons at δ 82.8, 111.2, and 72.4. The NMR data were similar to the reported one (20S, 24S)-16β, 20α, 24-3-deoxy-19-cycloeoxanostane-3β, 15α, 18, 25-tetraol-3-O-β-D-xlyopyranoside (Mu et al., 2014). The differences were the absence of the sugar at C-3, and the appearance of acetyl group at C-15 in compound 2. In the HMBC spectrum, the correlation observed from H-15 to OAc together with the molecular formula confirmed the deduction above. The a configurations of H-16 and H-17 were confirmed by the NOESY correlations between δH 1.86 (H-17) and δH 1.23 (H-30), δH 4.47 (H-16) and δH 2.00 (H-17). Taken together with the 2D-NMR spectra data, compound 2 was characterized and named actatica B.

Compound 3, which was isolated as a white amorphous powder, was assigned as C39H60O11Na, based on its positive HRESIMS ion at m/z 727.4100 (calcd for C39H60O11Na, [M + Na]+, 727.4088). The 1H NMR spectrum showed that 3 possesses a cyclopropane ring, seven methyl groups, and an AB-type hydroxymethyl group (H2-18). The NMR (Tables 1, 2) spectroscopic data for this compound were analogous to 2, except for the appearance of the anomeric proton at δH 4.81 (d, J = 7.8 Hz) and δC 105.1, 71.7, 76.0, 89.0, 67.6, 170.6, and 22.0. The
sugar was identified as a 4′-O-β-D-xylene after acid hydrolysis. Inspection of the
1H-1H COSY spectrum showed fragments of C-1/
C-2/C-3, C-5/C-6/C-7/C-8, C-11/C-12, C-15/C-16/C-17/C-18, and C-22/C-23. In the HMBC
spectrum, the correlation from H-3 (3.36, dd, $J = 11.4, 3.0$ Hz) to the anomeric carbon signal at δ_C
86.7 supported that the sugar unit was attached to C-3. Thus, the
structure of 3 was determined as actatica C.

Compound 4 has a molecular formula of $C_{39}H_{60}O_{13}$ according to
the HRESIMS (m/z 759.3974 [M + Na]$^+$, calcd for
$C_{39}H_{60}O_{13}Na$, 759.3926). Its IR spectrum showed strong
hydroxyl (3,439, 1,044 cm$^{-1}$) and carbonyl (1,730 cm$^{-1}$)
asorptions. The 1H and ^{13}C NMR spectra indicated that 4
had two acetoxyl groups. Detailed NMR spectral analysis revealed that 4
possessed a cyclopropane ring, six methyl groups, a
hydroxymethyl group at C-18, and a D-xylosyl unit at C-3. The
1H and ^{13}C NMR spectra of 4 were similar to those of beesioside J
(Ju et al., 2002b), except for a carbonyl group (C=O) connected to
C-12 of 4, which causes the downfield chemical shift of C-12 (δ_C
216.6). The correlation from δ_H 4.54 (H-11) to δ_C 216.6 (C=O)
according to the HMBC supported the above result. Therefore,
compound 4 was tentatively determined and named actatica D.

Compound 5 has the molecular formula $C_{42}H_{66}O_{12}$ determined by
HR-ESIMS (m/z 785.4301, calcd for $C_{42}H_{66}O_{12}Na$, 785.4341). In the 1H NMR spectrum (Table 1) two
cyclopropane-methylene protons as an AX system at δ_H 0.21 and
0.59 (each 1H, $J = 4.0$ Hz, H$_2$-19) together with nine tertiary
methyl groups indicated a cycloartane triterpenoid structure. The 1H NMR and ^{13}C APT data for this compound were analogous to 1, except for the additional NMR signals at δ_C 30.3 and 27.4, and δ_H 1.31 (3H, s), and 1.45 (3H, s). The differences showed that 5 had one
more hydroxysopropyl group connected at C-24. In the HMBC
spectrum, the correlations from H-24 to C-26, C-27, and C-
27$'$ confirmed the above deduction. Taken together with the NOESY
spectra data, compound 5 was established as 24$'$-
configured (Ju et al., 2016). As a result, the structure of 5 was
8-established and named actatica E.

Compound 6 was determined to have the molecular formula $C_{39}H_{60}O_{13}$ based on the ^{13}C APT data and by the HRESIMS ion peak at
m/z 701.3904 ([M + Na]$^+$, calcd for $C_{39}H_{58}O_{13}Na$, 701.3926). The 1H-NMR spectrum (Table 1) displayed signals for seven tertiary
methyls (δ_H 1.02, 1.22, 1.23, 1.30, 1.53, and 1.55), two typical signals at δ_H 0.12 (1H, $J = 4.2$ Hz) ascribable to a
cyclopropane-methylene protons as an AX system at δ_H 0.21 and
0.41 (each 1H, $J = 4.2$ Hz, H$_2$-19) together with nine tertiary
methyl groups indicated a cycloartane triterpenoid structure. The 1H NMR and ^{13}C APT data were closely related to those of
beesioside I (Tables 1, 2) (Sakurai et al., 1990). The differences showed that 7 had a carbonyl group attached to C-12, which
cause C-12 to move to a lower field, and the chemical shift is
greatly increased to δ_C 216.6). The HMBC spectrum shows that
δ_H 4.54 (H-11) is related to δ_C 216.6 (C = O), confirming the
above inference. Moreover, in the NOESY spectrum, correlations were also detected between Me-21/H-22a/H-
23a/H-24a, H-22a/H-22β, H-23a/H-23β, H-22β/H-23β, and
H-24a/Me-26/Me-27. Considering the same cycloartane triterpene skeleton and identical carbon signals at C-20/C-
24, compound 7 enabled a determination of a 20S$, 24R$ configuration (Ju et al., 2016). As a result, the structure of 7
was established and named actatica G.

Bioactive Activity

The cytotoxicity of all compounds 1–7 was tested for their inhibitory activity against human HT-29 and McF-7 cancer cell lines using MTT assay. All compounds showed significant
inhibitory effects with IC$_{50}$ values of 9.2–26.4 μM (Table 3). Compound 7, with an oxygen bridge between C-18 and C-24,
showed the best potency among the isolated constituents. With a
tetrahydrofuran fragment connected by C-20 and C-24,
compounds 1 and 4–7 showed better activity than 2 and 3.

Seven new 9,19-cycloartane glycosides were isolated from the
rhizomes of *A. asiatica* H. Hara. Until now, nearly 200 naturally
occurring triterpenes with a 9,19-cycloartane have been reported
(Su et al., 2016; Hassan et al., 2020). However, compound 5 with
one more hydroxy isopropyl group was first isolated from the
genus *Actaea*. All compounds displayed inhibitory activity against
human HT-29 and McF-7 cancer cell lines. Further analysis of the
data showed that compounds 1 and 4–7 exhibited better protective
effect than other compounds, which indicated that the
tetrahydrofuran fragment connected by C-20 and C-24 may
affect the inhibitory activity regarding HT-29 and McF-7.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding authors.
AUTHOR CONTRIBUTIONS

HW and XC were responsible for study design. MH and DZ were responsible for compound isolation and cytotoxic activity testing. GM, XX, MH, and DZ were responsible for structure elucidation and validation of compound identities. All authors contributed equally to manuscript writing, review, and editing. All authors have read and agreed to the published version of the manuscript.

FUNDING

This work was financially supported by the Technological Large Platform for Comprehensive Research and Development of New Drugs in the Twelfth Five-Year “Significant New Drugs Created Science and Technology Major Projects (No. 2012ZX09301-002-001-026) and CAMS Innovation Fund for Medical Sciences, Grant/Award Numbers: CIFS 2019-I2M-1-005).

ACKNOWLEDGMENTS

Huling Liu was gratefully acknowledged for her kindness to measuring the NMR spectrum.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.695456/full#supplementary-material

REFERENCES

Fan, Y. S., Yao, Z., Teng, J., Pan, Q., and Duan, H. Q. (2007). Triterpenoids from Actaea Asiatica with Antitumor Activity. Chin. Traditional Herbal Drugs 38 (2), 167–170. doi:10.3231/jssn2533-2670.2007.02.003

Gao, L.-S., Zheng, D.-J., Liu, Q., Zhou, J., Zhang, M.-Z., Yao, W., et al. (2015). Eight New Cycloartane Triterpenoids from Beesia Calthifolia with Hepatoprotective Effects against D-Galactosamine Induced L02 Cell Damage. Bioorg. Med. Chem. Lett. 25 (18), 3845–3849. doi:10.1016/j.bmcl.2015.07.070

Gao, J.-C., Zhang, J.-C., Lu, Z.-J., Zhu, G.-Y., Yang, M.-S., and Xiao, P.-G. (2006b). Chemical Constituents of Actaea Asiatica Hara and Their Anti-osteoporosis Activities. Biochem. Syst. Ecol. 34 (9), 710–713. doi:10.1016/j.bse.2006.02.004

Gao, J.-C., Zhang, J.-C., Zhu, G.-Y., Yang, M.-S., and Xiao, P.-G. (2007). Chromones and Indolomene Alkaloids from Actaea Asiatica Hara. Biochem. Syst. Ecol. 35 (7), 467–469. doi:10.1016/j.bse.2007.01.012

Gao, J., Huang, F., Zhang, J., Zhu, G., Yang, M., and Xiao, P. (2006a). Cytotoxic Cycloartane Triterpene Saponins from Actaea asiatica. J. Nat. Prod. 69 (10), 1500–1502. doi:10.1021/np060113h

Hassan, A. R., Ashour, A., Amen, Y., Nagata, M., El-Toumy, S. A., and Shimizu, K. (2020). A New Cycloartane Triterpenoid and Other Phytoconstituents from the Aerial Parts of Euphorbia Dendroides. Nat. Product. Res. 1–9. doi:10.1080/14786941.2020.1800693

Ju, J.-H., Liu, D., Lin, G., Xu, X. D., Han, B., Yang, J.-S., et al. (2002a). Beesiosides A–F, Six New Cycloartane Triterpene Glycosides from Beesia Calthafolia. J. Nat. Prod. 65 (1), 42–47. doi:10.1021/np010293p

Ju, J.-H., Liu, D., Lin, G., Zhang, Y.-M., Yang, J.-S., Lu, Y., et al. (2002b). Beesiosides G, H, and J–N, Seven New Cycloartane Triterpene Glycosides from Beesia calthafolia. J. Nat. Prod. 65 (2), 147–152. doi:10.1021/np010294h

Jung, D.-W., Lee, J. M., and Sung, C. K. (2002). Enzyme-linked Immunosorbent Assay for the Determination of 20(S)-protopanaxatriol. Analytica Chim. Acta 462 (2), 157–163. doi:10.1016/S0003-2670(02)00340-9

Kusano, A., Takahira, M., Shibano, M., Miyase, T., Kusano, G., and Bulletin, P. (1999). Studies on the Constituents of Cimicifuga Species. XXVI. Twelve New Cyclolanostanol Glycosides from the Underground Parts of Cimicifuga simplex. Fitoterapia 70, 411–414.

Kusano, A., Takahira, M., Shibano, M., Miyase, T., Okuyama, T., and Kusano, G. (1998). ChemInform Abstract: Studies on the Constituents of Cimicifuga Species. Part 22. Structures of Two New Cyclolanostanol Xylosides, Cimiacerosides A and B. ChemInform 5 (48), 1003–1013. doi:10.1002/chin.199839202

Li, P., Zhu, N., Hu, M., Wu, H., Yu, T., Wu, T., et al. (2017). New Cucurbitane Triterpenoids with Cytotoxic Activities from Hemsleya Pechianensis. Fitoterapia 120, 158–163. doi:10.1016/j.fitote.2017.06.009

Mohamed, G. A. (2014). New Cytotoxic Cycloartane Triterpene from Cassia Italica Aerial Parts. Nat. Product. Res. 28 (13), 976–983. doi:10.1080/14786419.2014.902820

Mu, L.-H., Li, H.-J., Gao, D.-H., Zhao, J.-Y., and Liu, P. (2014). Cycloartane Triterpenes from Beesia Calthafolia (Maxim.). Fitoterapia 92, 41–45. doi:10.1016/j.fitote.2013.10.005

Sakurai, N., Goto, T., Nagai, M., Inoue, T., and Xiao, P. (1990). Studies on the Constituents of Beesia Calthafolia, and Souliea Vaginata. III, Breesiodide IV, a Cyclooctanastanol Xyloside from the Rhizomes of B. Calthafolia and S. Vaginata. Heterosycol 30 (2), 897–904. doi:10.3987/COM-89-S78

Su, Y., Chi, W.-C., Wu, L., Wang, Q.-H., and Kuang, H.-X. (2016). Photochemistry and Pharmacology of 9, 19-cyclooctanastanol Glycosides Isolated from Genus Cimicifuga. Chin. J. Nat. Medicines 14 (10), 721–731. doi:10.1080/S1875-5364(16)30087-5

Wu, H.-F., Liu, X., Zhu, Y.-D., Zhou, J., Gong, Y.-Y., Ma, G.-X., et al. (2017). A New Cycloartane Triterpenoid Glycoside from Souliea Vaginata. Nat. Product. Res. 31 (21), 2484–2490. doi:10.21539/rnp.10.16.103.1010.1080.14786419.2017.1314283

Wu, H., Yang, Z., Wang, Q., Zhub, N., Xub, X., Zoub, Q., et al. (2017). A New Cytotoxic Cyclooctanastanol Triterpenoid Xyloside from Souliea Vaginata. Nat. Prod. Commun. 12 (2), 229–232. doi:10.1177/1934578X1701200222

Yin, N., Yan-Li, Z., Chen, J.-C., Lu, L., Qiu, M.-H., and Qieg, C. (2010). Cytotoxic Chemical Constituents from the Roots of Cimicifuga Fetida. J. Nat. Prod. 73 (2), 1192. doi:10.1021/np9003855

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Hu, Zhao, Xu, Ma, Wu and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.