Parallelizing asymptotically optimal algorithms for large-scale dualization problems

Djukova E.V., Nikiforov A.G., Prokofyev P.A.

Vavilov Street, Moscow, 40

Abstract

Dualization is a key discrete enumeration problem. It is not known whether or not this problem is polynomial-time solvable. Asymptotically optimal dualization algorithms are the fastest among the known dualization algorithms, which is supported by new experiments with various data described in this paper. A theoretical justification of the efficiency of these algorithms on the average was given by E.V. Djukova more than 30 years ago. In this paper, new results on the construction of parallel algorithms for intractable enumeration problems are presented. A new static parallelization scheme for asymptotically optimal dualization algorithms is developed and tested. The scheme is based on statistical estimations of subtasks size.

Keywords: discrete enumeration problem, dualization, asymptotically optimal algorithm, irreducible covering of a Boolean matrix, polynomial-time delay algorithm, parallel dualization algorithm

1. Introduction

We consider dualization, which is the problem of searching for irreducible coverings of a Boolean matrix. Let \(L = \|a_{ij}\|_{m \times n} \) be a Boolean matrix and \(H \) be a set of columns of \(L \). The set \(H \) is called a \emph{covering} of \(L \) if each row of \(L \) has at least one unit element in the columns \(H \). A covering \(H \) is called irreducible.
if any proper subset of H is not a covering of L. Let $P(L)$ denote the set of all possible irreducible coverings of L. The problem is to construct $P(L)$.

There are other formulations of dualization, specifically, based on concepts of the theory of Boolean functions and graph and hypergraph theory. Let us present these formulations.

1. Given a conjunctive normal form consisting of m different clauses that implements a monotone Boolean function $F(x_1, \ldots, x_n)$, construct a reduced disjunctive normal form of F.

2. Given a hypergraph H consisting of n vertices and m edges, find all minimal vertex coverings of H.

The efficiency of enumeration algorithms is characterized by the complexity of a single step (see [15]). An algorithm has a (quasi-)polynomial-time delay if, for any individual problem, each step of this algorithm (the construction of the current solution) is executed in (quasi-)polynomial time in the input size of the problem. As applied to the search for irreducible coverings, this means that, for any $m \times n$ Boolean matrix, the time required for the construction of the next irreducible covering is bounded by a (quasi-)polynomial in m and n. In the general case no dualization algorithm with a (quasi-)polynomial time delay has yet been constructed and it is not known whether such an algorithm exists. There are examples of such algorithms for some special cases of dualization [15, 13]. For example, in [15] an algorithm with a time delay $O(n^3)$ was constructed in the case when each row of L has at most two unit elements (in this case H is a graph in formulation (2)).

Studies concerning the complexity of enumeration problems basically address the possibility of constructing incremental (quasi-)polynomial-time algorithms. In this case, the incremental property means that at every step in the construction of the current solution an algorithm searches through the set of solutions obtained at the preceding steps and the time taken by this search is (quasi-)polynomial in the input problem size and the number of previously found solutions. An incremental quasi-polynomial-time dualization algorithm
was constructed in \[14, 16\]. For several special cases of dualization, incremental polynomial-time algorithms were constructed in \[2, 3\].

Another approach to the solution of the problem is based on the concept of asymptotically optimal algorithm with a polynomial time delay. This approach was first proposed in \[4\] and deals with a typical case.

According to this approach, the original enumeration problem \(Z\) is replaced by a simpler problem \(Z_1\) that has the same input and is solved with a polynomial time delay. The solution set of \(Z_1\) contains the solution set of \(Z\) and, second, with increasing input size, the number of solutions of \(Z_1\) is almost always asymptotically equal to the number of solutions of \(Z\). This approach is substantiated by obtaining asymptotics for the typical number of solutions to each of the problems \(Z\) and \(Z_1\).

Thus, in contrast to an "exact" algorithm with a polynomial time delay, an asymptotically optimal algorithm can execute redundant polynomial-time steps. A redundant step is a solution of \(Z_1\) that was either found previously or is constructed for the first time but is not a solution to the problem \(Z\). For almost all problems of a given size, the number of redundant steps must have a lower order of growth than the number of all steps of the algorithm as the problem input size increases. Whether or not a step is redundant must be verifiable in a polynomial amount of time in the problem input size.

A number of asymptotically optimal algorithms for constructing irreducible coverings of a Boolean matrix have been proposed in the case when the input matrix satisfies the condition \(\log m \leq (1 - \epsilon) \log n, 0 < \epsilon < 1\), \[4, 9, 10, 5, 6, 7, 8, 11, 20\]. The following criterion called USM is used to construct \(P(L)\) in these algorithms. A set \(H\) of \(r\) columns of the matrix \(L\) is an irreducible covering if and only if the following two conditions hold:

(a) the submatrix \(L^H\) of \(L\) made up of the columns of \(H\) does not contain rows of the form \((0, 0, \ldots, 0)\) and

(b) \(L^H\) contains every row of the form \((1, 0, 0, \ldots, 0, 0), (0, 1, 0, \ldots, 0, 0), \ldots, (0, 0, 0, \ldots, 0, 1)\); i.e., it contains the identity submatrix of order \(r\).
A set of columns satisfying condition (b) is called consistent. A consistent set of columns is called maximal if it is not contained in any other consistent set of columns.

In the asymptotically optimal dualization algorithm AO1 (see [4]), Z_1 is the problem of constructing a collection of column sets a matrix L satisfying condition (b) in which each set of length r occurs as many times as there are identity submatrices of order r in this set. In fact, all identity submatrices of L are enumerated with a polynomial time delay. Clearly, an irreducible covering can be generated only by a maximal identity submatrix, i.e., by an identity submatrix that is not contained in any other one. A maximal identity submatrix generates a maximal consistent set of columns, i.e., a consistent set of columns that is not contained in any other one.

According to the algorithm AO1, the maximal identity submatrices (the maximal consistent sets of columns) can be enumerated (enumerated with repetition) with a step complexity of $O(qmn)$, where $q = \min\{m, n\}$. As a result of enumerating the identity submatrices, some sets of columns are repeatedly constructed. When obtaining the current maximal identity submatrix Q in time $O(mn)$, the algorithm AO1 checks condition (a) for the set H of columns of L generated by the submatrix Q. If condition (a) holds, then AO1 checks in time $O(mn)$ whether H was constructed at a previous step.

The algorithm AO2 [9], which is a modification of AO1, enumerates (with a polynomial time delay $O(qm^2n)$) only identity submatrices of L that generate coverings. At every step, AO2 constructs an irreducible covering. However, as in AO1, the solutions can repeat. This algorithm takes less redundant steps than AO1. Based on AO2, the algorithms AO2K and AO2M with a reduced execution time were constructed in [11].

The asymptotically optimal algorithm OPT enumerates without repetitions and with a polynomial time delay $O(qm^2n)$ the sets of columns of L satisfying condition (b) and some additional conditions, including the maximality one [10]. Redundant steps in OPT arise due to the construction of maximal consistent sets of columns that are not coverings (do not satisfy condition (a)).
The dualization algorithms RS and MMCS were proposed in [18, 19]. Their description makes use of concepts of hypergraph theory. These algorithms are based on constructing sets of vertices of a hypergraph \mathcal{H} satisfying the “crit” condition, which is equivalent to compatibility condition 2) for the corresponding set of columns of the incidence matrix of \mathcal{H}. Thus, the approach proposed in [18, 19] for the construction of dualization algorithms is not new (in fact, RS and MMCS are asymptotically optimal algorithms).

The algorithm RUNC-M [12] is one of the fastest among asymptotically optimal algorithms. As a rule, RUNC-M is less time-consuming than the asymptotically optimal algorithms constructed in [4, 9, 10, 5, 6, 7, 8, 11, 8, 18, 19]. In this paper, a new implementation of RUNC-M is developed. This implementation works on a number of test tasks significantly faster than the implementation described in [12].

Due to the complexity of dualization, the use of parallel computations is essential. In the development of parallel dualization algorithms, the focus is on deriving theoretical worst case complexity. However, such estimates can be obtained only for some special cases of dualization. (see [17]).

In this paper, a new practical parallization scheme for asymptotically optimal dualization algorithms is constructed. The proposed scheme is of static nature and is based on statistical estimations of subtasks size. There exist simple and obvious practical parallelization schemes of asymptotically optimal dualization algorithms. Their main disadvantage is an unbalanced load of processors which produces insufficient speedup.

Let us describe the computational subtasks in question. Let H be an irreducible covering of the Boolean matrix L consisting of columns with indices j_1, \ldots, j_r, where $j_1 < \cdots < j_r$. Then H is called irreducible j_1-covering. The j-th computational subtask is to construct all irreducible j-coverings of L. Therefore, we define the j-th subtask size $\nu_j(L)$ as the ratio of the number of irreducible j-coverings to the number of all irreducible coverings. For optimal load balancing, one should know the values of $\nu_j(L)$; however, they become known only after the dualization is completed.
The proposed parallelization scheme is based on processing random r-by-n submatrices of the input matrix, where r is a parameter that doesn’t exceed m. The processor load is scheduled only after the calculation of the subtask sizes for a given number of random submatrices.

The validity of estimating $\nu_j(L)$ based on random submatrices is justified statistically. First, we introduce a special random variable η_r defined on the set of r-by-n submatrices and their irreducible coverings. Its value is defined as the least index of columns in the covering. Next, we test the statistical hypothesis that the distribution of η_r is determined by the subtask sizes of the dualization of the matrix L. It is found that, according to the Chi-squared test, this hypothesis can be accepted with confidence when $r \geq m/2$.

The scheme is highly scalable (a balanced load and almost maximal speedup). In this paper, the proposed scheme is applied to the algorithm RUNC-M. However, it is also applicable for all dualization algorithms that sequentially construct sets of irreducible 1-coverings, 2-coverings and so on.

The paper is organized as follows. In Section 2, we give a formal definition of the asymptotically optimal dualization algorithm and describe its basic structure via decision trees. In Section 3, we describe the algorithm RUNC-M, provide some details about its new implementation, and compare it experimentally with the previous RUNC-M version from [12]. Our approach to parallelizing asymptotically optimal algorithms is described in Section 4. This approach is applied to the algorithm RUNC-M and tested in Section 5. Section 6 contains conclusions.

2. Terms and definitions

Let M_{mn} be a set of $m \times n$ Boolean matrices and $P_{mn}(X) = |X|/|M_{mn}|$ for $X \subseteq M_{mn}$. It is said that $f(L) \approx g(L)$, $m, n \to \infty$, for almost all $L \in M_{mn}$ if

$$\forall \delta > 0, \exists \lim_{m, n \to \infty} P_{mn} \left(\{L : |1 - f(L)g(L)^{-1}| < \delta \} \right) = 1.$$

Let us consider the following class of algorithms for enumerating the irreducible coverings of a Boolean matrix $L \in M_{mn}$. Each algorithm A in this class
constructs a finite sequence $Q_A(L)$ of column sets of L that contains all elements from $P(L)$. It is assumed that some elements of $Q_A(L)$ can be repeated. At each step, the algorithm A constructs an element of $Q_A(L)$ and checks whether it belongs to $P(L)$. If the constructed element is in $P(L)$, then A additionally verifies in a polynomial time whether it was earlier constructed. Let $N_A(L)$ be a number of steps of the algorithm A (length of $Q_A(L)$).

The algorithm A is asymptotically optimal with a polynomial time delay d if

- d is bounded above by a polynomial in m and n;
- each step in A consists of at most d elementary operations (one matrix element access);
- $N_A(L) \approx |P(L)|$, $m, n \to \infty$, for almost all $L \in M_{mn}$.

Let $S(L)$ be the set of all identity submatrices of the matrix L. The number of maximal consistent sets of columns is bounded above by $|S(L)|$. The theoretical substantiation of asymptotically optimal dualization algorithms is based on the following statement. If $m \leq n^{1-\varepsilon}$, where $\varepsilon > 0$, then $|S(L)| \approx |P(L)|$, $m, n \to \infty$, for almost all $L \in M_{mn}$ (see [4]).

The column j is said to cover the row i of a matrix L if $a_{ij} = 1$. Let H be a set of columns of L. The set H is said to cover the row i if there exists a $j \in H$ covering i. Let the set of columns H be consistent. The column j of L is said to be compatible with the set H if set $H \cup \{j\}$ is consistent; otherwise this column is called incompatible with the set H.

The work of an asymptotically optimal dualization algorithm can be regarded as a unidirectional traversal of the branches of a decision tree. Each tree vertex is associated with the tuple (H, R, C), where H is the set of columns of L, and R and C are, respectively, the sets of rows and columns describing the submatrix of L, and C and H are disjoint. The vertex (\emptyset, R_0, C_0), where R_0 and C_0 describe the whole matrix L, is the tree root. The leaf vertices are either irreducible coverings or correspond to redundant steps of the algorithm.
Every step of the algorithm represents a transition from one terminal vertex (or root) to another one. A transition from one internal vertex to the next one is performed by adding a column of L to the set H. It is assumed that the number of elementary operations at each step is polynomially bounded in m and n.

Asymptotically optimal algorithms can be classified into two types. Among the first type are the algorithms enumerating the maximal identity submatrices of L. Such algorithms execute redundant steps in which solutions constructed in the preceding steps are constructed once more. Examples of such algorithms are AO1 \[4\] and AO2 \[9\]. The algorithms of the second type are based on the enumeration of maximal consistent sets of columns. This class includes the algorithms OPT \[10\], MMCS, RS \[18, 19\], PUNC, and RUNC-M \[12\].

3. Algorithm RUNC-M

The algorithm RUNC-M is described as a recursive procedure RUNCM. The first call RUNCM(L, H_0, R_0, C_0) should be done with the parameters $H_0 = \emptyset$, $R_0 = \{1, \ldots, m\}$, $C_0 = \{1, \ldots, n\}$. Notice that the parameters are passed by value.

PROCEDURE RUNCM(L, H_0, R_0, C_0)

1: $C_0^{\text{min}} = \{j \in C_0 | a_{ij} = 1\}$, where $i \in R_0$ is the index of the row with the least sum $\sum_{j \in C_0} a_{ij}$;
2: for all $j \in C_0^{\text{min}}$ do
3: $R \leftarrow R_0$
4: $C_0 \leftarrow C_0 \setminus \{j\}$
5: $C \leftarrow C_0$
6: $H \leftarrow H_0 \cup \{j\}$
7: Eliminate from R the rows that are covered by column j
8: if $R = \emptyset$ then
9: Save the set of columns $H \in P(L)$
else
11: Eliminate from C the columns that are incompatible with H
12: call RUNCM(L, H, R, C)

The following criterion is used for incompatible columns elimination. A row i of the matrix L is called *supporting* for (H,j), $j \in H$, if $a_{ij} = 1$ and $a_{il} = 0$, $l \in H \setminus \{j\}$. The set of supporting rows for (H,j), $j \in H$, is denoted by $S(H,j)$. A column u is compatible with H if and only if there is no column $j \in H$ such that column u covers all rows from $S(H,j)$.

We developed a new implementation of the algorithm RUNC-M, which is available at https://github.com/ankifor/dualization-OPT.git.

4. Parallelizing asymptotically optimal algorithms

In this section we describe a practical parallelization S-scheme that computes the relative subtask sizes by estimating the values $\nu_j(L) = |P_j(L)|/|P(L)|$, $j \in \{1,\ldots,n\}$. The proposed scheme is designed for processing the Boolean matrices in which the number m of rows is significantly greater than the number n of columns.

Let $L \in M_{mn}$ and $r \leq m$. The set of all r-subsets of $\{1,\ldots,m\}$ is denoted by W_r^m. Let $w \in W_r^m$; then L^w denotes the submatrix of L consisting of the rows of L with indices from w. We define a function η_r acting from $\Omega_r = \{(L^w,H) : w \in W_r^m, H \in P(L^w)\}$ to $\{1,\ldots,n\}$ such that $\eta_r(L^w,H)$ equals j if $H \in P_j(L^w)$.

We choose t random submatrices L^{w_1}, \ldots, L^{w_t}, $w_s \in W_r^m$, $s \in \{1,\ldots,t\}$ and build $P(L^{w_s})$ for each of them. Then we take u random irreducible coverings H^s_1, \ldots, H^s_u from these sets. Next, we compose a sample $\bar{x} = (x_1, \ldots, x_N)$, $N = t \cdot u$, of values of $\eta_r(L^{w_s},H^s_v)$, $s \in \{1,\ldots,t\}$, $v \in \{1,\ldots,u\}$, and calculate the frequency $f^*_r(j)$ of occurrence of j in \bar{x}. The quantity $f^*_r(j)$ is used as an estimation of $\nu_j(L)$, $j \in \{1,\ldots,n\}$.

A statistical justification of this approach is given below. We also find out the values of r under which the resulting estimates are sufficiently accurate. On the one hand, the integer r should be as small as possible to reduce the computation time of $f^*_r(j)$. On the other hand, these estimations should be sufficiently reliable.
Let Ω_r be a sample space. The probability of event (L^w, H) is set to $(\binom{m}{r} | P(L^w))^{-1}$. Then we denote the probability of event $\eta_r(L^w, H) = j$ by $f_r(j)$.

To test the statistical hypothesis $H_0 : f_r(j) = \nu_j(L)$ about the distribution of the random variable η_r, we use the Chi-squared test with the statistic

$$Z_r(\bar{x}) = N \sum_{j=1}^n \frac{(f_r^*(j) - \nu_j(L))^2}{\nu_j(L)}.$$

P-value is denoted by $\gamma^*_r(\bar{x}) = 1 - \chi^2_{n-1}(Z_r(\bar{x}))$, where χ^2_{n-1} denotes the cumulative chi-squared distribution function with $(n - 1)$ degrees of freedom. Small values of $\gamma^*_r(\bar{x})$ argue for rejecting H_0.

Now we conduct an experiment. Generate 20 random m-by-n matrices. Then dualize these matrices and calculate the exact values of $\nu_j(L)$, $j \in \{1, \ldots, n\}$.

Let $t = 20$ and $u = 50$. For each matrix L and for each $r, r \in \{10, 13, 15, 18, 20, 25, 30, 35\}$ such that $r < m$, construct a sample \bar{x} from the values η_r and calculate the statistic $Z_r(\bar{x})$ and p-value $\gamma^*_r(\bar{x})$.

The median values of $Z_r(\bar{x})$ and $\gamma^*_r(\bar{x})$ are presented in Table 1 for each configuration 30×150, 40×120, 50×100, 70×70 and different values of r. According to Table 1, $\gamma^*_r(\bar{x})$ becomes significant at $r \geq m/2$. That is why a further increase of r will not make the approximation of $\nu_j(L)$ much more accurate.

Consider the configuration 30×150 as an example. At $r = 15$, we observe the so-called “phase transition” — the function $Z_r(\bar{x})$ stabilizes after this point. The plots of $\nu_j(L)$ and $f_r^*(j)$ for this case are presented in Fig. 1.

To sum up, the experiment shows that $\nu_j(L)$ can be used as an estimate of $f_r(j)$ at $r \geq m/2$. Moreover, the frequency $f_r^*(j)$ is well-known to be a “good” estimate for the probability $f_r(j)$. Thus, $f_r^*(j)$ can be used as an approximation of $\nu_j(L)$ under the conditions stated above.

After computing the estimates $f_r^*(j)$, we can proceed to scheduling the processor load. Let we have $p \leq n$ processors and let the j-th subtask be executed by the processor with the index N_j. The vector $\vec{N}^p = (N_1, \ldots, N_n)$ is called...
Table 1: Median values of \((Z_r(\bar{x}), \gamma_r^*(\bar{x}))\) for chi-squared test.

\(r \times m \times n\)	30×120	40×120	50×100	70×70
10	(159, < 10^{-4})	(167, < 10^{-4})	(235, < 10^{-4})	(382, < 10^{-4})
13	(99, < 10^{-4})	(132, < 10^{-4})	(157, < 10^{-4})	(234, < 10^{-4})
15	(77, 0.0134)	(112, < 10^{-4})	(117, < 10^{-4})	(187, < 10^{-4})
18	(74, 0.028)	(90, 0.0002)	(96, < 10^{-4})	(147, < 10^{-4})
20	(60, 0.0815)	(63, 0.0546)	(89, < 10^{-4})	(131, < 10^{-4})
25	(54, 0.315)	(60, 0.0876)	(50, 0.1382)	(85, < 10^{-4})
30	–	–	–	(68, 0.0001)
35	–	–	–	(54, 0.0478)

Figure 1: Plots of \(\nu_j(L)\) and \(f^*_r(r)\) as functions of \(j\), where \(m = 30, n = 120, and r = 15\)

\(\text{schedule}\). The load balance of the \(k\)-th processor is defined as

\[
\sigma_k(\mathbf{N}) = \sum_{j \in \mathbf{J}_k: N_j = k} \nu_j(L).
\]

To obtain an efficient schedule, the following optimization problem should be solved.

\[
\sigma(\mathbf{N}) = \max_k \sigma_k(\mathbf{N}) \rightarrow \min_{\mathbf{N}}.
\]

We propose the following procedure \textbf{DistributeTasks} for finding an approximate solution to problem \([\square]\) which is based on a greedy strategy. The
 parametroi of the procedure are the number p of processors, the number n of columns of L, and the vector $\vec{f}_r^* = (f_r^*(1), \ldots, f_r^*(n))$ of estimators for $\nu_j(L)$.

PROCEDURE DistributeTasks$(p, n, \vec{f}_r^*) \rightarrow (\vec{N}_p, \sigma)$

1: for all $k \in \{1, \ldots, p\}$ do
2: $\sigma_k \leftarrow 0$
3: for $j \in \{1, \ldots, n\}$ do
4: $k_0 \leftarrow \arg\min_{1 \leq k \leq p} \sigma_k$
5: $N_j \leftarrow k_0$
6: $\sigma_k \leftarrow \sigma_k + f_r^*(j)$

5. Parallel RUNC-M Test Results

Testing was performed on the supercomputer IBM Blue Gene/P of the Lomonosov Moscow State University.

Each computation node contains four PowerPC 450 processor cores running at 850 MHz, 2 GB DRAM, and communication interfaces. Computations were performed in the virtual-node mode (four MPI processes per node, 1GB limit per process; cannot create additional threads).

Let p be the number of processors and $T_k(p)$ be the algorithm execution time (in seconds) on the k-th processor. Let $T(p) = \max_k T_k(p)$ and $T_{\Sigma}(p) = \sum_k T_k(p)$. The number $s_k(p) = (T_k(p))/(T_{\Sigma}(p))$ is called the realized load level of the k-th processor. The following measures are of interest:

1. Algorithm speedup $S(p) = T(1)/T(p)$;
2. Load balance uniformity $E(p) = S(p)/p$;

The speedup $S(p) = p$ at $p \geq 1$ is almost maximal. If $E(p)$ is close to unity, then the load balance is considered to be uniform. The measure $s(p)$ is an analog of $\sigma(\vec{N}_p)$ (see formula [I]).

Experiments were carried out on random m-by-n matrices, where $m \in \{30, 40\}$ and $n \in \{100, 150, 200\}$. The parameter r of the statistical procedure described above is equal to $m/2$. In order to estimate the values of $\nu_j(L)$, the
Figure 2: Strong scalability of the parallel RUNC-M version when $m = 40$ and $n \in \{100, 150, 200\}$

Table 2: Parallel RUNC-M execution time (sec) depending on the number of processors

Data / p	1	2	4	8	16	32	64	128
$U(30, 100)$	3.95	2.03	1.95	0.59	0.37	0.32	0.32	0.32
$U(30, 150)$	39.1	20.0	10.4	5.21	3.46	2.32	2.32	2.32
$U(30, 200)$	231	116	61.5	32.2	18.8	13.8	13.8	13.8
$U(40, 100)$	11.5	5.83	3.05	1.53	0.96	0.95	0.95	0.95
$U(40, 150)$	133	67.1	34.8	19.1	10.9	9.44	9.43	9.43
$U(40, 200)$	654	328	177	90.5	61.8	40.4	36.8	36.8

dualization problem is solved for r-by-n submatrices L_w of the matrix L. The computation results are presented in Table 2; they include the execution time of the parallel algorithm on different number of processors. The plots of $S(p)$ and $E(p)$ are given in Fig. 2 for the case when $m = 40$ and $p \in \{1, 2, 4, \ldots, 128\}$.

As can be seen in these figures and table, the parallel RUNC-M version has almost linear speedup $S(p)$ and loads processors in a balanced way when the number of processors p is below some threshold p^\ast. Generally speaking, this threshold depends on the dualized matrix size. For example, p^\ast equals 32 when $m = 40, n = 200$, and it equals 16 when $m = 40, n = 100$. When the number of processors is greater than the threshold, the execution time $T(p)$ stops to improve. This is because parallelization takes place on the first level of the
Figure 3: Realized load level of the parallel RUNC-M version when $m = 40$ and $n \in \{100, 150, 200\}$

decision tree built by the algorithm RUNC-M. Under the proposed approach, the size of the computational subtasks are significantly different. Therefore, it is here impossible to distribute tasks in a balanced manner over a large number of processors.

The realized load levels $s_k(p)$ for each processor are presented in Fig. 3. As seen in this figure, some realized load levels differ by several fold when $m = 40, n = 200$ and $p = 32$. That might be due to insufficient quality of the subtask size estimates $f^*_r(j)$ or non-optimality of the task distribution schedule. Nevertheless, the variance of the realized load levels is fairly small for $p = 16$, which is in agreement with the high speedup.

6. Conclusion

In this paper an approach to the parallel algorithm construction for discrete enumeration problems is developed. This approach is based on statistical estimates of computational subtask sizes. Subtasks are assigned to processors in accordance with precalculated schedule. To construct this schedule, the distribution of a special random variable used for estimating the subtask sizes is found. Then, the load balance of processors is optimized. A novel efficient parallelization scheme for asymptotically optimal dualization algorithms based
on the proposed approach is developed. The scheme is applied to the algo-
rithm RUNC-M [12], which is the fastest known dualization algorithm. The
proposed approach to the the construction of parallel dualization algorithms
ensures high accuracy of subtask size estimates, which under certain conditions
leads to highly efficient parallel algorithms. However, the proposed approach is
not that efficient when the number of processors is large because the sizes of
computational subtasks can vary significantly (the parallelization is performed
at the first level of the decision tree built by the asymptotically optimal dual-
ization algorithm).

References

References

[1] Djukova E., Nikiforov A., Prokofyev P. A Statistically Efficient Parallel
Scheme for Dualization Algorithms. // Journal of Machine Learning and
Data Analysis, 2014. Vol. 1. No. 7, pp. 846–853.

[2] Boros E., Gurvich V., Elbassioni K., Khachiyan L. An efficient incremental
algorithm for generating all maximal independent sets in hypergraphs of
bounded dimension. // Parallel Processing Letters. 2000. Vol. 10, No. 4,
pp. 253–266.

[3] Boros E., Elbassioni K. Generating maximal independent sets for hyper-
graphs with bounded edge-intersections // LATIN 2004: Theoretical In-
formatics. — Springer Berlin Heidelberg, 2004. — P. 488-498.

[4] Djukova E. V. On an asymptotically optimal algorithm for constructing ir-
redundant tests // Soviet Math. Dokl., 1977. Vol. 18, No.2, pp. 423–426.

[5] Djukova E. V. The complexity of the realization of certain recognition pro-
cedures // Computations Mathematics and Mathematical Physics, 1987.
Vol. 27, No. 1, pp. 74–83.
[6] Djukova E.V., Zhuravlev Yu.I. Discrete methods of information analysis in recognition and algorithm synthesis. // Pattern Recognition and Image Analysis. 1997. Vol. 7, No. 2, pp. 192–207.

[7] Djukova E.V., Zhuravlev Yu.I. Discrete Analysis of Feature Descriptions in Recognition Problems of High Dimensionality // Computations Mathematics and Mathematical Physics, 2000. Vol. 40, No. 8, pp. 1214–1227.

[8] Djukova E.V. Discrete Recognition Procedures: The Complexity of Realization // J. Pattern Recognition and Image Analysis, 2003. Vol. 13, No. 1, pp. 8–10.

[9] Djukova E. V. On the implementation complexity of the realization of discrete (logical) recognition procedures // Computations Mathematics and Mathematical Physics, 2004. Vol. 44, No. 3, pp. 532–541.

[10] Djukova E. V., Inyakin A. S. Asymptotically optimal irredundant tests enumeration for integer matrix (in Russian) // Matematicheskie Voprosy Kibernetiki, 2008. Vol. 17, pp. 235–246.

[11] Djukova E. V., Prokofyev P. A., On Asymptotically Optimal Enumeration for Irreducible Coverings of Boolean Matrix (in Russian). // Applied Discrete Mathematics, 2014. Vol. 1, No. 23, pp. 96–105

[12] Djukova E. V., Prokofyev P. A. Asymptotically Optimal Dualization Algorithms. // Computations Mathematics and Mathematical Physics, 2015. Vol. 55, No. 5, pp. 891–905.

[13] Eiter T., Gottlob G., Makino K. New results on monotone dualization and generating hypergraph transversals // SIAM Journal on Computing. 2003. Vol. 32, No. 2, pp. 514–537.

[14] Fredman M. L., Khachiyan L. On the Complexity of Dualization of Monotone Disjunctive Normal Forms // J. Algorithms, 1996. Vol. 21, pp. 618–628.
[15] Johnson D., Yannakakis M., Papadimitriou C. On generating all maximal independent sets // Information Processing Letters, 1988. Vol. 27, No. 3, pp. 119–123.

[16] Khachiyan L., Boros E., Elbassioni K., Gurvich V. An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals and its application in joint generation // Discrete Applied Mathematics, 2006. Vol. 154, No. 16, pp. 2350–2372.

[17] Khachiyan L., Boros M., Gurvich V., Elbassioni K. Computing many maximal independent sets for hypergraphs in parallel. // Parallel Processing Letters, 2007. Vol. 17, No. 2, pp. 141–152.

[18] Keisuke Murakami, Takeaki Uno Efficient Algorithms for Dualizing Large-Scale Hypergraphs. // arXiv: CoRR abs/1102.3813 (2011).

[19] Keisuke Murakami, Takeaki Uno Efficient Algorithms for Dualizing Large-Scale Hypergraphs // Discrete Applied Mathematics, 2014. Vol. 70, pp. 83–94.

[20] Kudryavtsev V.B. and Andreev A.E. Test recognition. // Journal of Mathematical Sciences. 2010. Vol. 169, No. 4, pp. 457-480.

[21] UCI machine learning repository, http://archive.ics.uci.edu/ml/

[22] Frequent Itemset Mining Dataset Repository, http://fimi.ua.ac.be/data/