Short Communication

THE BINDING OF 14C LABELLED 1-(2-CHLOROETHYL)-3-CYCLOHEXYL-1-NITROSOUREA (CCNU) TO MACROMOLECULES OF SENSITIVE AND RESISTANT TUMOURS

T. A. CONNORS AND J. R. HARE

From the Chester Beatty Research Institute, Institute of Cancer Research, Royal Cancer Hospital, Fulham Road, London SW3 6JB

Received 20 June 1974. Accepted 12 July 1974

CCNU and related nitrosoureas are effective in the treatment of a number of different cancers in man, including lymphomata, brain tumours and melanoma. In some of their properties, for example cross resistance and reactivity to thiol groups and to nitrobenzyl pyridine, they resemble the alkylating agents, and because they decompose chemically to alkylating entities, it has been suggested that the two classes of compounds act by a common mechanism (Schabel et al., 1963; Pittillo, Narkates and Burns, 1964; Gale, 1965; Montgomery et al., 1967; Wheeler and Chumley, 1967; Wheeler and Bowdon, 1965). There are, however, many differences between the two types of agent. The majority of the anti-tumour nitrosoureas have only a single alkylating function whereas in the classic alkylating agent series the presence of at least two functional arms is essential for anti-tumour activity. It is also known that tumours resistant to alkylating agents are not necessarily cross-resistant to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (Selawry and Hansen, 1972) while the TLX5 lymphoma, which is highly sensitive to BCNU, does not respond at all to alkylating agents (Audette et al., 1973). The nitrosoureas also prolong the S phase of cells in cycle, an effect quite different from the action of cyclophosphamide and other bifunctional alkylating agents (Bray et al., 1971; Young, 1969; Shirakawa and Frei, 1970).

In studies at the cellular level (Cheng et al., 1972) using 14C-labelled CCNU, it has been shown that the cyclohexyl moiety binds extensively to protein but negligibly to nucleic acids, whereas the ethylene moiety binds only to a small extent to both the nucleic acids and proteins.

The results presented here, using the TLX5 lymphoma and a line with acquired resistance to BCNU, show essentially similar results and also demonstrate that the nuclear proteins are particularly susceptible to attack by the cyclohexyl moiety of CCNU.

MATERIALS AND METHODS

The TLX5 lymphoma was maintained by weekly intraperitoneal passage of 10^6 ascites cells in CBA/LAC female mice. A line with acquired resistance to BCNU was obtained by weekly treatment of the tumour bearing animals with increasing dose levels of the nitrosourea as previously described (Audette et al., 1973).

1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (NSC 79057), the 14C-cyclohexyl derivative (specific activity 12-62 mCi/mmol) and the derivative labelled with 14C in the carbon atoms of the 2-chloroethyl moiety (specific activity 9-94 mCi/mmol) were kindly supplied by Dr H. Wood, Drug Research and Development, Division of Cancer Treatment, National Cancer Institute, Washington.
The in vitro concentration of BCNU, CNU and chlorambucil to kill greater than 99-99% tumour cells was determined by incubating washed TLX5 ascites cells in horse serum: TC 199, 40 : 60 (v/v) for 2 h at 37°C in the presence of a range of concentrations of each drug. The cell kill was estimated by injection of the incubated cells into mice and recording of the survival time as previously described (Ball et al., 1966).

The distribution of CCNU was determined by incubating washed TLX5 ascites cells in TC 199 at a concentration of 15·0 × 10⁶ cells/ml at 37°C. Thirty min later, labelled CCNU (1 μCi/5 ml cell suspension) was added at a concentration of 40 μg/ml and the incubation continued for 1 h. Total intracellular material was estimated by centrifuging the cells at 300 g for 5 min, dissolving the cell pellet in 10% TEH (tetrachloroammonium hydroxide) and measuring radioactivity in a Packard scintillation counter model 3375. The DNA, RNA nuclear and cytoplasmic proteins were isolated from the centrifuged cells by the method of Pascoe and Roberts (1974).

RESULTS AND DISCUSSION

The sensitivity of the two lines of the TLX5 lymphoma is shown in Table I. Both nitrosoureas are effective against the sensitive tumour at concentrations that can be attained in vivo, in contrast to chlorambucil which is less effective. This confirms the finding in whole animals that the tumour is sensitive to nitrosoureas but quite unresponsive to nitrogen mustards even at maximum tolerated dose levels (Audette et al., 1973). There is a four-fold resistance to BCNU and a similar level of cross-resistance to CCNU. However, the resistant line shows an increased sensitivity to chlorambucil and is a further example of the collateral sensitivity seen with many resistant tumour lines (Schmid and Hutchison, 1972).

Table II shows the distribution of the drug intra- and extracellularly, and the amount bound to the cellular TCA (trichloroacetic acid) insoluble material, mainly protein and nucleic acids. The 14C-ethylene labelled derivative is distributed uniformly throughout the medium, since the 3·8% of label found intracellularly is the approximate percentage volume of the cells in the medium. The cyclohexyl labelled nitrosourea attains a higher intracellular concentration, which could be due to breakdown of the agent outside cells and the more efficient uptake of the cyclohexyl moiety, or to the trapping of the moiety intracellularly because of its greater covalent reaction with cell constituents.

Despite the four-fold difference in sensitivity to CCNU, there was no significant difference in the distribution of the compound in the sensitive and resistant tumour lines.

Table III shows the binding of the two labelled derivatives to various macro-
molecules. It is clear that the 14C-cyclohexyl derivative has a particular affinity for protein, especially the nuclear protein fraction. These results are essentially similar to those of Cheng et al. (1972) except that the amount of drug bound to RNA in these experiments is appreciably higher. Analysis of the RNA fraction showed it to contain less than 1% protein and excludes the possibility that the high labelling is an artefact due to contaminating protein. The 14C-ethylene labelled material, in contrast, showed only a very low degree of binding to any fraction. The results therefore confirm that BCNU reacts predominantly by carboxamoylation of lysine residues of proteins following chemical breakdown of the molecule to release cyclohexyl isocyanate (Cheng et al., 1972; Schmall et al., 1973). Carboxamoylation of protein would explain the higher radioactivity associated with the nuclear protein fraction compared with cytoplasmic, because of the high concentration of lysine rich protein in the former.

Once again, no difference was found in the amount of drug bound to the various macromolecules of the sensitive and resistant tumour lines.

Although these results show clearly that the majority of the reaction taking place in cells after administration of CCNU involves carboxamoylation reactions, this cannot be the sole mechanism of action since the active carboxamoylating entity, cyclohexyl isocyanate, while having some properties in common with CCNU is not an effective anti-cancer agent in vivo (Oliverio, 1973). However, the high level of reaction with nuclear protein, probably histone, is of interest since it has been claimed that reaction with histone protein is important in the mechanism of action of both alkylating agents and alkyl nitrosamines (Riches and Harrap, 1973; Alonso and Arnold, 1974; Bhattacharya and Schultz, 1974).

The mechanism of action of the anti-tumour chloroethylnitrosoureas is thus still obscure but it is possible that its action is a complex one involving both inhibition of enzymes and structural proteins by carbamoylation and alkylolation of essential macromolecules.

This work was supported by grants to the Chester Beatty Research Institute (Institute of Cancer Research, Royal Cancer Hospital) from the Medical Research Council (Grant No. 973/787/K) and the award of a Medical Research Council Studentship to one of us (J.H.).

REFERENCES

ALONSO, A. & ARNDT, H. P. (1974) Stimulation of Amino Acids Incorporation into Rat Liver Nonhistone Chromatin Proteins after Treatment with Diethylnitrosamine. FEBS Letters, 41, 8.

AUDETTE, R. C. S., CONNORS, T. A., MANDEL, H. G., MERAI, K. & ROSS, W. C. J. (1973) Studies on the Mechanism of Action of the Tumour Inhibitory Triazines. Biochem. Pharmac., 22, 1855.

BALL, C. R., CONNORS, T. A., DOUBLE, J. A., UZHACY, V. & WHISSON, M. E. (1966) Comparison of Nitrogen Mustard Sensitive and Resistant Yoshida Sarcomas. Int. J. Cancer, 1, 319.

BHATTACHARYA, R. K. & SCHULTZE, M. O. (1974) Protective Effects of Histones against Drug Induced Alterations of Deoxyribonucleic Acid in Thymus Chromatin. Biochem. Pharmac., 23, 1519.

Sensitive tumour	Resistant tumour			
Fraction	14C-ethylene	14C-cyclohexyl	14C-ethylene	14C-cyclohexyl
DNA	88.5 ± 8	54.8 ± 13.5	56.9 ± 12.4	74.3 ± 12.3
RNA	227.7 ± 119.6	1278.0 ± 326.3	1379.0 ± 116.1	1311.0 ± 546.7
Total protein	410.0 ± 69.0	14768.0 ± 2590.2	452.6 ± 74.5	10079.2 ± 997.0
Cytoplasmic protein	135.4 ± 38.2	6368.3 ± 1138.1	236.6 ± 98.6	5454.8 ± 451.7
Nuclear protein	378.3 ± 86.4	15883.6 ± 3342.7	513.8 ± 230.9	14510.0 ± 1800.1

The results obtained with the 14C-ethylene-labelled compound have been corrected to a specific activity of 12-62 mCi/mmol in order to be directly comparable with the 14C cyclohexyl labelled derivative. Each result is the mean from 3 separate determinations.
BRAY, D. A., DE VITA, V. T., ADAMSON, R. H. & OLIVERIO, V. T. (1971) Effects of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU; NSC 79037) and its Degradation Products on Progression of L1210 Cells through the Cell Cycle. Cancer Chemother. Rep., 55, 215.

CHENG, C. J., FUJIMURA, S., GRUNBERGER, D. & WEINSTEIN, I. B. (1975) Interaction of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (NSC 79037) with Nucleic Acids and Proteins in vivo and in vitro. Cancer Res., 35, 22.

GALE, G. R. (1965) Effect of 1,3-bis (2-chloroethyl)-1-nitrosourea on Saccharomyces cerevisiae. Proc. Soc. exp. Biol. Med., 119, 1004.

MONTGOMERY, J. A., JAMES, R., MCCALEB, G. & JOHNSTON, T. P. (1967) The Modes of Decomposition of 1,3-bis (2-chloroethyl)-1-nitrosourea and Related Compounds. J. med. Chem., 10, 668.

OLIVERIO, V. T. (1973) Toxicology and Pharmacology of the Nitrosoureas. Cancer Chemother. Rep., 4 (3), 13.

PASCOE, J. M. & ROBERTS, J. J. (1974) Interactions between Mammalian Cell DNA and Inorganic Platinum Compounds. II. Interstrand Crosslinking of Isolated and Cellular DNA by Platinum (IV) Compounds. Biochem. Pharmac., 23, 1345.

PITTILLO, R. F., NARKATES, A. J. & BURNS, J. (1964) Microbiological Evaluation of 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res., 24, 1222.

RICHES, P. G. & HARRAP, K. R. (1973) Some Effects of Chlorambucil on the Chromatin of Yoshida Ascites Sarcoma Cells. Cancer Res., 33, 389.

SCHABEL, F. M., JOHNSTON, T. P., MCCALEB, G. S., MONTGOMERY, J. A., LASTER, W. R. & SKIFER, H. E. (1963) Experimental Evaluation of Potential Anti-cancer Agents. VIII. Effects of Certain Nitrosoureas on Intracerebral L1210 Leukemia. Cancer Res., 23, 725.

SCHMID, B., CHENG, C. J., FUJIMURA, S., GERSTEN, N., GRUNBERGER, D. & WEINSTEIN, I. B. (1973) Modification of Proteins by 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (NSC 79037) in vitro. Cancer Res., 33, 1921.

SCHMID, F. A. & HUTCHINSON, D. J. (1972) Collateral Sensitivity of Resistant Lines of Mouse Leukemias L1210 and L5178Y. Cancer Res., 32, 808.

SELAWRY, O. S. & HANSEN, H. H. (1972) Superiority of CCNU (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea; NSC 79037) over BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea; NSC 409362) in Treatment of advanced Hodgkin's Disease. Proc. Am. Ass. Cancer Res., 13, 46.

SHIRAKAWA, S. & FREI, E. (1970) Comparative Effects of the Anti-tumor Agents 5(dimethyltriazeno)imidazole-4-carboxamide and 1,3-bis(2-chloroethyl)-1-nitrosourea on cell cycle of L1210 Leukemia cells in vivo. Cancer Res., 30, 2173.

WHEELER, G. P. & BOWDEN, B. J. (1965) Some Effects of 1,3-bis(2-chloroethyl)-1-nitrosourea Upon the Synthesis of Protein and Nucleic Acids in vivo and in vitro. Cancer Res., 25, 1770.

WHEELER, G. P. & CHUMLEY, S. (1967) Alkylation Activity of 1,3-bis(2-chloroethyl)-1-nitrosourea and Related Compounds. J. med. Chem., 10, 259.

YOUNG, R. C. (1969) Changes in the DNA Synthetic Phase of the Cell Cycle of Leukemia L1210 Induced by the Chemotherapeutic Agents, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and Cyclophosphamide (CTX). Proc. Am. Ass. Cancer Res., 10, 102.