SUPPLEMENTARY INFORMATION

Exosomes released by breast cancer cells under mild hyperthermic stress possess immunogenic potential and modulate polarization in vitro in macrophages
Kacoli Sen¹, Austin E. F. Sheppe², Ishita Singh¹, Winnie Hui², Mariola J. Edelmann² and Carlos Rinaldi¹,³*

Affiliations:
¹Department of Chemical Engineering, University of Florida, Gainesville, USA
²Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
³J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, USA.

* Corresponding Author
Phone Number: (352) 392-0881
Fax Number: (352) 392-9513
Email address: carlos.rinaldi@ufl.edu

Supplementary Figure S1: Melt curve analysis of Arg-1 (red), iNOS (teal), and GAPDH (green) from RT-PCR samples from BMDMs and RAW264.7 cells. Representative of 3 independent experiments.
Supplementary Figure S2: (a, c, e) Cell viability of EMT-6, 4T1, and RAW 264.7 cells after treatment at different temperatures (41-45° C). (b, d, f) Cell viability of EMT-6, 4T1, and RAW 264.7 cells after treatment at different temperatures (41-45° C) converted to CEM43 equivalent minutes. Cell viability of untreated cells was considered as 100%.
Supplementary Figure S3: (a, b, c) Flow cytofluorimetric analysis of individual replicates of untreated and treated EMT-6, 4T1, and RAW 264.7 cells treated with TD50 at 43º C assessed by Annexin V-FITC-PI assay [Data represented in Figure 1. (c-d)]. (d) Cell viability profile of RAW 264.7 cells after treatment at TD50 43º C.
Supplementary Figure S4: NTA analysis of three different isolates of 4T1 derived exosomes of (a-c) untreated control and (d-f) hyperthermia treated set [Data represented in Figure 2, Table 3].
Supplementary Figure S5: NTA analysis of three different isolates of EMT-6 derived exosomes of (a-c) untreated control and (d-f) hyperthermia treated set [Data represented in Figure 2, Table 3].
Supplementary Table S1: Wound healing profile of EMT-6 in homeostatic conditions and after hyperthermic stress. [Data represented in Figure 4 (a)].

Experimental set	Replicate 1	Replicate 2	Replicate 3			
	EMT-6_C	EMT-6_HT	EMT-6_C	EMT-6_HT	EMT-6_C	EMT-6_HT
Length of wound (in µm)	1435.3	1643.5	1211.8	1700.0	1276.5	1864.7
Length of wound after 24h (in µm)	469.8	691.3	370.6	747.3	476.5	764.7
Length of wound recovered after 24h (in µm)	965.6	952.2	841.2	952.8	800.0	1100.0
% Recovery	67.3	57.9	69.4	56.0	62.7	59.0

Supplementary Table S2: Wound healing profile of 4T1 in homeostatic conditions and after hyperthermic stress. [Data represented in Figure 4 (b)].

Experimental set	Replicate 1	Replicate 2	Replicate 3			
	4T1_C	4T1_HT	4T1_C	4T1_HT	4T1_C	4T1_HT
Length of wound (in µm)	1343.5	1291.4	1141.2	1488.34	923.6	1359.0
Length of wound after 24h (in µm)	195.6	378.4	323.6	517.68	200.0	464.7
Length of wound recovered after 24h (in µm)	1147.8	913.0	817.7	970.66	723.6	894.3
% Recovery	85.4	70.7	71.6	65.2	78.4	65.8
Supplementary Figure S6: Bright-field images of wound healing profile of EMT-6 and 4T1 in homeostatic conditions and after hyperthermic stress. (a-b). Wound healing capacity of EMT-6 and 4T1 cells in response to hyperthermia in EMT-6 and 4T1 cells. Student's t-test was used for comparison of the data between the two groups (n=3).
Supplementary Figure S7: Wound healing profile of RAW 264.7 in homeostatic conditions and after hyperthermic stress with or without the presence of positive control (HT=hyperthermia treatment, +ve control=LPS treatment, +ve control+Hyperthermia= LPS, and hyperthermia treatment).
Supplementary Figure S8: Epi-fluorescent microscopy of untreated negative control, positive control (100 ng LPS-treated), control exosome treated RAW 264.7 cells, and post-hyperthermia derived exosome treated RAW 264.7 cells after 24 hours treatment. The cytoskeleton was stained with Alexa Fluor™ 488 Phalloidin (scale bar represents 50 μm). The exosomes used for treatments were derived from 4T1 or EMT-6 cells, as indicated on the figure.
Supplementary Figure S9: Epi-fluorescence microscopy images of RAW 264.7 cells at 20 × magnification showing the distribution of Nile Red-stained exosomes around and within the cells. The cells were incubated with Nile Red-stained exosomes for 0 hours, 3 hours, 6 hours. The cytoskeleton was stained with Alexa Fluor™ 488 Phalloidin (scale bar represents 50 μm).
Supplementary Figure S10: Epi-fluorescence microscopy images of RAW 264.7 cells at 20× magnification showing the distribution of Nile Red-stained exosomes around and within the cells. Cells were incubated with Nile Red-stained exosomes for 0 h, 3 h, 6 h, 12 h, and 24 h. The cytoskeleton was stained with Alexa Fluor™ 488 Phalloidin (scale bar represents 50 μm).
Supplementary Figure S11: Western blot analysis of Hsp70, CD9, CD63 proteins in exosomes from control untreated or hyperthermia treated EMT-6 and 4T1 cells of three different isolates.