Quadratic Residues and Non-residues for Infinitely Many Piatetski-Shapiro Primes

Ping XI
School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, P. R. China
E-mail: pingxi.cn@gmail.com

Abstract In this paper, we prove a quantitative version of the statement that every nonempty finite subset of \(\mathbb{N}^+ \) is a set of quadratic residues for infinitely many primes of the form \([n^c]\) with \(1 \leq c \leq 243/205\). Correspondingly, we can obtain a similar result for the case of quadratic non-residues under reasonable assumptions. These results generalize the previous ones obtained by Wright in certain aspects.

Keywords Quadratic residue, quadratic non-residue, Piatetski-Shapiro prime

MR(2010) Subject Classification 11A15, 11N05

1 Introduction

Distributions of quadratic residues and non-residues have received great attention over the recent decades. Wright [1] has proved by combinatorial and reasonably elementary method that

1) Every nonempty finite subset of \(\mathbb{N}^+ \) is a set of quadratic residues for infinitely many primes.

2) For every nonempty finite subset \(\mathcal{A} \subseteq \mathbb{N}^+ \), which contains no squares, we write \(\Pi_{\text{odd}}(a) = \{ p \text{ prime} : p^a || a, \alpha \text{ odd} \} \), \(\Pi = \bigcup_{a \in \mathcal{A}} \Pi_{\text{odd}}(a) \) and \(\mathfrak{P} = \{ \Pi_{\text{odd}}(a) : a \in \mathcal{A} \} \).

If \(\mathfrak{P} \) contains at most 4 elements, then \(\mathcal{A} \) is a set of quadratic non-residues for infinitely many primes if and only if \(\mathfrak{P} \) does not contain a 3-cycle included in \(\{ \mathcal{C} : \mathcal{C} \neq \emptyset, \mathcal{C} \subseteq \Pi \} \).

We intend to give a quantitative version of such results in the present paper. To be precise, for an arbitrarily given set \(\mathcal{S} \) of finite cardinality \(S = \# \mathcal{S} \), consider the following quantity

\[S(x) = \# \left\{ p \in \mathcal{P} \cap (x, 2x] : \left(\frac{s}{p} \right) = 1 \text{ for each } s \in \mathcal{S} \right\}, \]

and correspondingly

\[\overline{S}(x) = \# \left\{ p \in \mathcal{P} \cap (x, 2x] : \left(\frac{s}{p} \right) = -1 \text{ for each } s \in \mathcal{S} \right\}, \]

where \(\mathcal{P} \) is the set consisting of all the primes, \(\left(\frac{s}{p} \right) \) is the Legendre symbol mod \(p \). Clearly, we aim to show that \(S(x) \gg x^{\theta_1} \) and \(\overline{S}(x) \gg x^{\theta_2} \) for certain \(\theta_1, \theta_2 > 0 \) under reasonable assumptions.

Received May 30, 2011, accepted September 6, 2011
Supported by National Natural Science Foundation of China (Grant No. 11171265) and the Fundamental Research Funds for the Central Universities
On the other hand, a classical result due to Piatetski-Shapiro states that there exists $c > 1$ such that there are infinitely many primes of the form $[n^c]$ with $n \in \mathbb{N}^+$, where $[x]$ denotes the integral part of x. More precisely, Piatetski-Shapiro [2] proved that

$$\sum_{n \leq x \atop [n^c] \in \mathcal{P}} 1 = \left(\frac{1}{c} + o(1) \right) \frac{x}{\log x}, \quad \text{as } x \to +\infty$$

for $1 < c < 12/11 = 1.09$. There are many works devoted to enlarging the reasonable range of c, see [3–9] for instance. The most recent result is due to Rivat and Wu [9], who succeeded in showing that

$$\sum_{n \leq x \atop [n^c] \in \mathcal{P}} 1 \gg \frac{x}{c \log x}, \quad \text{as } x \to +\infty$$

for the wider range $1 \leq c \leq 243/205 = 1.18536 \cdots$. Moreover, there are many other problems concerning primes, as well as some related to the analytic theory of automorphic forms (see [10] for instance), which also restrict the primes to be of the form $[n^c]$.

Motivated by these works on the distribution of Piatetski-Shapiro primes, we consider the following quantity

$$S_c(x) = \# \left\{ x < n \leq 2x : [n^c] \in \mathcal{P}, \quad \left(\frac{s}{[n^c]} \right) = 1 \text{ for each } s \in S \right\},$$

and correspondingly

$$\mathcal{S}_c(x) = \# \left\{ x < n \leq 2x : [n^c] \in \mathcal{P}, \quad \left(\frac{s}{[n^c]} \right) = -1 \text{ for each } s \in S \right\}.$$

Clearly, $S_1(x) = S(x)$, $\mathcal{S}_1(x) = \mathcal{S}(x)$.

We shall prove by analytic methods that

Theorem 1.1 Every nonempty finite set $S \subseteq \mathbb{N}^+$ is a set of quadratic residues of infinitely many primes of the form $[n^c]$ with $1 \leq c \leq 243/205$.

To be precise, let c be a number with $1 \leq c \leq 243/205$. Then for sufficiently large x, we have

$$S_c(x) = \left(\# \mathcal{H} + 1 \right) \left(\frac{1}{c \cdot 2^{\#S}} + o(1) \right) \frac{x}{\log x},$$

where \mathcal{H} denotes the collection of all the nonempty subsets of S satisfying that the product of all the elements of each subset is a square integer.

Theorem 1.2 Considering all of the nonempty subsets of the nonempty finite set $S \subseteq \mathbb{N}^+$, the product of the elements of each one is a square. If such subsets of even cardinalities are not less than those of odd cardinalities, then S is a set of quadratic non-residues for infinitely many primes of the form $[n^c]$ with $1 \leq c \leq 243/205$.

More precisely, we have

$$\mathcal{S}_c(x) = \frac{1}{c \cdot 2^{\#S}} \left[1 + \sum_{T \in \mathcal{H}} (-1)^{\#T} + o(1) \right] \frac{x}{\log x},$$

where \mathcal{H} is the same as that in Theorem 1.1.

Corollary For any given finitely many primes, all of them are the quadratic residues for certain infinitely many primes of the form $[n^c]$ with $1 \leq c \leq 243/205$, and in the meanwhile, are also the quadratic non-residues for infinitely many primes of the form $[n^c]$ with $1 \leq c \leq 243/205$.
