Research Article

Some New Codes on the k–Fibonacci Sequence

M. Hashemi and E. Mehraban*
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
Correspondence should be addressed to E. Mehraban; e.mehraban.math@gmail.com
Received 7 June 2021; Accepted 12 August 2021; Published 27 August 2021
Academic Editor: Jun Li
Copyright © 2021 M. Hashemi and E. Mehraban. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we define and study the k–Fibonacci sequence matrix for $k \geq 3$. By these obtained results, we introduce some new codes on k–Fibonacci sequence.

1. Introduction

The Fibonacci sequence F^2_n is defined by the recurrence relation $F^2_0 = 0$, $F^2_1 = 1$, and $F^2_n = F^2_{n-1} + F^2_{n-2}$, $n \geq 2$. The Fibonacci sequence and its generalization sequence (k–Fibonacci sequence number and k–Pell sequence) are famous sequences in mathematics. For information about these sequences, see [1–4].

Definition 1. For $k \geq 3$, the k–Fibonacci sequence, denoted by $\{F^n_k\}_{n=0}^{\infty}$, is defined by

$$
\begin{align*}
F^n_k &= F^n_{k-1} + F^n_{k-2} + \cdots + F^n_0, & n \geq 0, \\
F^n_{k-1} &= F^n_{k-1} - (F^n_{k-2} + \cdots + F^n_0), & n < 0,
\end{align*}
$$

(1)

with initial conditions $F^n_k = 0$, $0 \leq i \leq k - 2$, and $F^n_{k-1} = 1$ (see [5]).

For example, let $k = 3$, we have

$$
\begin{align*}
F^3_n &= F^3_{n-1} + F^3_{n-2} + F^3_{n-3}, & n \geq 0, \\
F^3_{n-1} &= F^3_{n-1} - (F^3_{n-2} + F^3_{n-3}), & n < 0.
\end{align*}
$$

(2)

So, $\{F^3_n\}_{n=0}^{\infty} = \{\cdots, -1, 1, 0, 0, 1, 1, 2, 4, 7, \cdots\}$.

By the definition of the k–Fibonacci sequence, the proof of the following lemma is trivial.

Lemma 1. For $k \geq 3$, the following relations are satisfied about the k–Fibonacci sequence:

(i) $F^k_i = 0$, $i \in \mathbb{N}$, $-k \leq i \leq -2$

(ii) $F^k_{k-1} = 1$

(iii) $F^k_{-k-1} = -1$

Apostolic and Fraenkle introduced the Fibonacci code which is used in source coding as well as in cryptography (see [6]). For information on the Fibonacci code, see in [7, 8]. The Fibonacci Q^2_p–matrices were introduced (see [9]), and in [10], for $p = 1$, a coding theory is obtained on the Fibonacci Q^2_p–matrices. Also, a Fibonacci coding method is introduced by using Fibonacci polynomials and Fibonacci sequence (see [8, 11–14]). Here, we introduce some coding methods on k–Fibonacci sequence.

In Section 2, we define the k–Fibonacci sequence matrix and calculate the determinant of it. Section 3 and Section 4 are devoted to obtain some codes on k–Fibonacci sequence.

2. k–Fibonacci Sequence Matrix

The 2–Fibonacci sequence matrix (the Fibonacci Q^2_1–matrices) is defined in [15]. The aim of this section is to define the k–Fibonacci sequence matrix and get to the determinant of this matrix. First, we define the k–Fibonacci sequence matrix for $k = 3$ and obtain the determinant of it.

Definition 2. The 3–Fibonacci sequence matrix, denoted by $Q_{(3,3)}$, is defined:
Lemma 1, we obtain

\[
Q_{(n,3)} = \begin{bmatrix}
F_{n+2}^3 & F_{n+1}^3 & F_n^3 \\
F_{n+1}^3 & F_n^3 & F_{n-1}^3 \\
F_n^3 & F_{n-1}^3 & F_{n-2}^3 \\
\end{bmatrix}, \quad (3)
\]

where \(F_n^3 \) is the element of the 3-Fibonacci sequence. For example, \(n = 10 \), and we have

\[
Q_{(10,3)} = \begin{bmatrix}
F_{12}^3 & F_{11}^3 & F_{10}^3 \\
F_{11}^3 & F_{10}^3 & F_9^3 \\
F_{10}^3 & F_9^3 & F_8^3 \\
\end{bmatrix} = \begin{bmatrix}
274 & 149 & 81 \\
149 & 81 & 44 \\
81 & 44 & 24 \\
\end{bmatrix}. \quad (4)
\]

Now, we get the determinant of the 3–Fibonacci sequence matrix. By the definition of \(F_n^3 \), we have

\[
F_{n-2}^3 = F_n^3 - (F_{n-1}^3 + F_{n-2}^3). \quad (5)
\]

Theorem 1. The determinant of \(Q_{(n,3)} \) is equal to \(-1\).

Proof. For \(n = 3m + i \) where \(0 \leq i \leq 2 \), we have

\[
\begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3m+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i-1}^3 & F_{3m+i-2}^3 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3(m-1)+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i-1}^3 & F_{3m+i-2}^3 \\
\end{bmatrix}. \quad (6)
\]

(i) Add column 2 and column 3, then subtract this summation from column 1, and replace it to the result column 1 (\(c_1 - (c_2 + c_3) \rightarrow c_1 \)). So, by relation (5), we have

\[
Q_{(3m+i,3)} \rightarrow \begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3m+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i-1}^3 & F_{3m+i-2}^3 \\
\end{bmatrix}. \quad (7)
\]

(ii) Add column 1 and column 2, then subtract it from column 2, and replace to the result column 2. Then, by relation (5), we get

\[
\begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3(m-1)+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i-1}^3 & F_{3m+i-2}^3 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3(m-1)+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i-1}^3 & F_{3m+i-2}^3 \\
\end{bmatrix}. \quad (8)
\]

(iii) Add column 1 and column 2, then subtract this summation from column 3, and replace to it. Thus, by relation (5), we have

\[
\begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3m+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i-1}^3 & F_{3m+i-2}^3 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
F_{3(m-1)+i+2}^3 & F_{3(m-1)+i+1}^3 & F_{3(m-1)+i}^3 \\
F_{3(m-1)+i+1}^3 & F_{3m+i+1}^3 & F_{3m+i}^3 \\
F_{3(m-1)+i}^3 & F_{3m+i}^3 & F_{3m+i-1}^3 \\
\end{bmatrix}. \quad (9)
\]

Then, we have

\[
Q_{(3m+i,3)} \rightarrow Q_{(3(m-1)+i,3)} \quad (10)
\]

Continuing this process \(m - 1 \) steps on \(Q_{(3(m-1)+i,3)} \), we obtain the following:

\[
Q_{(3(m-1)+i,3)} \rightarrow Q_{(i,3)} = \begin{bmatrix}
F_{i+2}^3 & F_{i+1}^3 & F_i^3 \\
F_{i+1}^3 & F_i^3 & F_{i-1}^3 \\
F_i^3 & F_{i-1}^3 & F_{i-2}^3 \\
\end{bmatrix}. \quad (11)
\]

Therefore, \(\det Q_{(n,3)} = \det Q_{(i,3)} \). It is sufficient that we get the determinant of \(Q_{(i,3)} \) where \(0 \leq i \leq 2 \). If \(i = 0 \), then by Lemma 1, we obtain

\[
Q_{(0,3)} = \begin{bmatrix}
F_2^3 & F_1^3 & F_0^3 \\
F_1^3 & F_0^3 & F_{-1}^3 \\
F_0^3 & F_{-1}^3 & F_{-2}^3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}. \quad (12)
\]

So, \(\det Q_{(0,3)} = -1 \). If \(i = 1 \), then by Lemma 1, we have

\[
Q_{(1,3)} = \begin{bmatrix}
F_3^3 & F_2^3 & F_1^3 \\
F_2^3 & F_1^3 & F_0^3 \\
F_1^3 & F_0^3 & F_{-1}^3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}. \quad (13)
\]

Therefore, \(\det Q_{(1,3)} = -1 \). Similarly, for \(i = 2 \), we get \(\det Q_{(2,3)} = -1 \). Consequently, the theorem is proven.

Example 1. \(\det Q_{(10,3)} = -1 \). Since \(n = 3 \times 3 + 1 \), we have
\[Q_{(10,3)} = \begin{bmatrix} F_{10}^3 & F_{10}^2 & F_{10}^3 \\ F_{11}^3 & F_{11}^2 & F_{11}^3 \\ F_{12}^3 & F_{12}^2 & F_{12}^3 \end{bmatrix} = \begin{bmatrix} 274 & 149 & 81 \\ 149 & 81 & 44 \\ 81 & 44 & 24 \end{bmatrix}. \quad (14) \]

We get the following:

Step 1:
\[Q_{(10,3)} \rightarrow Q_{(7,3)} = \begin{bmatrix} F_{7}^3 & F_{7}^2 & F_{7}^3 \\ F_{8}^3 & F_{8}^2 & F_{8}^3 \\ F_{9}^3 & F_{9}^2 & F_{9}^3 \end{bmatrix} = \begin{bmatrix} 44 & 24 & 13 \\ 24 & 13 & 7 \\ 13 & 7 & 4 \end{bmatrix}. \quad (15) \]

Step 2:
\[Q_{(7,3)} \rightarrow Q_{(4,3)} = \begin{bmatrix} F_{4}^3 & F_{4}^2 & F_{4}^3 \\ F_{5}^3 & F_{5}^2 & F_{5}^3 \\ F_{6}^3 & F_{6}^2 & F_{6}^3 \end{bmatrix} = \begin{bmatrix} 7 & 4 & 2 \\ 4 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}. \quad (16) \]

Step 3:
\[Q_{(4,3)} \rightarrow Q_{(1,3)} = \begin{bmatrix} F_{1}^3 & F_{1}^2 & F_{1}^3 \\ F_{2}^3 & F_{2}^2 & F_{2}^3 \\ F_{3}^3 & F_{3}^2 & F_{3}^3 \\ F_{4}^3 & F_{4}^2 & F_{4}^3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (17) \]

Therefore, \(\det Q_{(10,3)} = \det Q_{(7,3)} = -1. \)

Now, we are ready to generalize the idea of the 3–Fibonacci sequence matrix to the \(k \)-Fibonacci sequence matrices \((k > 3)\).

Definition 3. The \(k \)-Fibonacci sequence matrices of size \(k \times k \) \((k \geq 4)\), denoted by \(Q_{(n,k)} \), are defined as follows:

\[
Q_{(n,k)} = \begin{bmatrix} F_{n}^k & F_{n}^k & \cdots & F_{n}^k \\ F_{n-1}^k & F_{n-1}^k & \cdots & F_{n-1}^k \\ \vdots & \vdots & \ddots & \vdots \\ F_{2}^k & F_{2}^k & \cdots & F_{2}^k \\ F_{1}^k & F_{1}^k & \cdots & F_{1}^k \\ F_{0}^k & F_{0}^k & \cdots & F_{0}^k \end{bmatrix}, \quad (18)
\]

where \(F_{i}^k \) is the element of the \(k \)-Fibonacci sequence.

Example 3. By the definition of \(Q_{(n,k)} \), we have

\[
Q_{(8,4)} = \begin{bmatrix} F_{10}^4 & F_{9}^4 & F_{8}^4 & F_{7}^4 \\ F_{10}^4 & F_{9}^4 & F_{8}^4 & F_{7}^4 \\ F_{9}^4 & F_{8}^4 & F_{7}^4 & F_{6}^4 \\ F_{8}^4 & F_{7}^4 & F_{6}^4 & F_{5}^4 \\ F_{7}^4 & F_{6}^4 & F_{5}^4 & F_{4}^4 \\ F_{6}^4 & F_{5}^4 & F_{4}^4 & F_{3}^4 \\ F_{5}^4 & F_{4}^4 & F_{3}^4 & F_{2}^4 \\ F_{4}^4 & F_{3}^4 & F_{2}^4 & F_{1}^4 \end{bmatrix} = \begin{bmatrix} 108 & 56 & 29 & 15 \\ 56 & 29 & 15 & 8 \\ 29 & 15 & 8 & 4 \\ 15 & 8 & 4 & 2 \end{bmatrix}. \quad (19)\]

In Theorem 1, we get the determinant of the 3–Fibonacci sequence matrix. Now, we obtain the determinant of the \(k \)-Fibonacci sequence matrices for \(k \geq 4 \). By the definition of \(F_{n}^k \), we have

\[
F_{n-k}^k = F_{n}^k - (F_{n-1}^k + F_{n-2}^k + \cdots + F_{n-k}^k). \quad (20)
\]

Theorem 2. \(\det Q_{(n,k)} \) is equal to \(-1\).

Proof. For \(n = mk + i, 0 \leq i \leq k - 1 \), we have

\[
Q_{(mk+i,k)} = \begin{bmatrix} F_{mk+i(k-1)}^k & F_{mk+i(k-2)}^k & \cdots & F_{mk+i}^k \\ \vdots & \vdots & \ddots & \vdots \\ F_{mk+i}^k & F_{mk+i(k-2)}^k & \cdots & F_{mk+i(k-1)}^k \end{bmatrix}. \quad (21)
\]

We can perform specific column operations to reduce \(Q_{(mk+i,k)} \) to \(Q_{(i,k)} \) where \(0 \leq i \leq k - 1 \). The operations that we use in this process are as follows.

Add column 2 until column \(k \), then subtract this summation from column 1, and replace it to the result column \((c_1 - (c_2 + c_3 + \cdots + c_k)) \rightarrow c_1) \). Then, add column 1 until column \(k \) except column 2, then subtract it from column 2, and replace it to \((c_2 - (c_3 + c_4 + \cdots + c_k)) \rightarrow c_2) \). Continuing the process until column \(k \) and by relation (20), we have

\[
Q_{(mk+i,k)} \rightarrow Q_{((m-1)k+i,k)} = \begin{bmatrix} F_{(m-1)k+i(k-1)}^k & F_{(m-1)k+i(k-2)}^k & \cdots & F_{(m-1)k+i}^k \\ \vdots & \vdots & \ddots & \vdots \\ F_{(m-1)k+i}^k & F_{(m-1)k+i(k-2)}^k & \cdots & F_{(m-1)k+i(k-1)}^k \end{bmatrix}. \quad (22)
\]

Thus, performing above the operations until \(m - 1 \) steps, we get
3. A Code on the \(k \)-Fibonacci Sequence

In this section, we introduce a coding method by using the \(k \)-Fibonacci sequence and obtain error detection and correction of it. First, we need the following definition.

Definition 4. For \(k = 2, n \geq 4 \) or \(k \geq 3, n \geq k + 1 \), let \(F_n \) and \(F_{n+1} \) be two consecutive elements of the \(k \)-Fibonacci sequence. The sequence \(\{T_s\}_{1}^{P_{n+1}} \) is defined as follows:

\[
T_s = s(t_m^{k+1} + 1)(\mod F_{n+1}^k)
\]

For \(u = F_{m+2}^k \) and \(1 \leq i, j \leq u \), we define the matrix \(T^u = (t_{ij})_{u \times u} \) as follows:

\[
t_{ij} = \begin{cases}
1, & \text{if } (i, j) = (5, 1), (3, 2), (1, 3), (6, 4), (4, 5), (2, 6), (7, 7). \\
0, & \text{otherwise}.
\end{cases}
\]

That is,

\[
T^u = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}.
\]

Now, by using above notations, we can explain a method coding, which is named \(T^u \)-code. For \(u = F_{m+2}^k, 1 \leq i \leq u^2 \) and a message matrix \(M \) of size \(u \times u \),

\[
M = \begin{bmatrix}
m_1 & m_2 & \cdots & m_u \\
\vdots & \vdots & \ddots & \vdots \\
m_{u^2-uv+1} & m_{u^2-uv+2} & \cdots & m_{u^2}
\end{bmatrix},
\]

where \(m_i \geq 0 \). We consider a transformation \(E = M \times T^u \) as the \(T^u \)-coding method. Then, \(E = (T^u)^{-1} \) is the \(T^u \)-decoding method.

Example 4. Suppose \(k = 2 \) and \(n = 3 \), we have \(F_4^2 = 3, F_5^2 = 5 \) and \(T_1 \equiv 4 \mod 5, T_2 \equiv 3 \mod 5, T_3 \equiv 2 \mod 5, T_4 \equiv 1 \mod 5, \) and \(T_5 \equiv 5 \mod 5 \). Then,

\[
T^5 = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}.
\]

Let “mathematics is beautiful” be a message. Then, by Table 1 and 0 := blank space, we have

\[
\begin{bmatrix}
m & a & t & h & e \\
m & a & t & i & c \\
s & o & i & s & 0 \\
b & e & a & u & t \\
i & f & u & l & 0
\end{bmatrix} = \begin{bmatrix}
F_{17}^2 & F_5^2 & F_{24}^2 & F_{12}^2 & F_9^2 \\
F_{17}^2 & F_5^2 & F_{24}^2 & F_{13}^2 & F_7^2 \\
F_{23}^2 & F_{31}^2 & F_{13}^2 & F_{25}^2 & F_{31}^2 \\
F_6^2 & F_9^2 & F_5^2 & F_{25}^2 & F_{24}^2 \\
F_{13}^2 & F_{24}^2 & F_{25}^2 & F_{16}^2 & F_{31}^2
\end{bmatrix}.
\]

Hence, we get

\[
\begin{bmatrix}
1597 & 5 & 46368 & 144 & 34 \\
1597 & 5 & 46368 & 233 & 13 \\
28657 & 1346269 & 233 & 28657 & 1346269 \\
8 & 34 & 5 & 75025 & 46368 \\
233 & 46368 & 75025 & 987 & 1346269
\end{bmatrix}.
\]
So, “htameiamcsi s uaebtluti” is the code matrix E.
Note that $M \times E \times (T^5)^{-1}$ is the T^5-decoding method.
By using the elementary operations on matrix T^u, one can prove the following Lemma.

Lemma 2. For $u \geq 4$, $\det T^u = \pm 1$. In particular, $\det T^5 = 1$ and $\det T^4 = \det T^7 = -1$.

Note 1. This lemma follows that for $E = M \times T^u$, we have

$$\det E = \det (M \times T^u) = \det M \times \det T^u = \pm \det M.$$ (34)

In particular, when $u = 4, 7$, we get $\det E = -\det M$, and for $u = 5$, we have $\det E = \det M$.

By using the above facts, we find the error detection and correction for T^u-code where $u = 4, 5, 7$, the code matrix E may contain “single,” “double,” . . . , u^2-fold” errors. Thus, we get

$$1C_{u^2} + 2C_{u^3} + \cdots + u^2C_{u^2} = 2u^2 - 1.$$ (35)

where $rC_s = s!/(r!) \times (s - r)!$.
It is clear that the “single” errors in the code matrix E are as follows:

$$x_1 e_{12} \cdots e_{1u}, \quad e_{21} x_{22} \cdots e_{2u}, \cdots, (u^2) e_{u1} e_{u2} \cdots x_{uu},$$

where $x_i, 1 \leq i \leq u^2$ are possible “destroyed” elements. In this case, there are u^2 errors in the matrix code E.

Suppose $u = 4$ and 7. For correction, by using the algebraic equations and the relation $\det E = -\det M$, we have
| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | 0 |
|---|
| p_{n_1} | p_{n_2} | p_{n_3} | p_{n_4} | p_{n_5} | p_{n_6} | p_{n_7} | p_{n_8} | p_{n_9} | $p_{n_{10}}$ | $p_{n_{11}}$ | $p_{n_{12}}$ | $p_{n_{13}}$ | $p_{n_{14}}$ | $p_{n_{15}}$ | $p_{n_{16}}$ | $p_{n_{17}}$ | $p_{n_{18}}$ | $p_{n_{19}}$ | $p_{n_{20}}$ | $p_{n_{21}}$ | $p_{n_{22}}$ | $p_{n_{23}}$ | $p_{n_{24}}$ | $p_{n_{25}}$ | $p_{n_{26}}$ | $p_{n_{27}}$ |
Using an analogous argument, we can find the error correction. Here, we find coding and decoding on the sequence matrix. For $k \geq 2$, we will name a transformation $E = M \times Q(k)$ as the k–Fibonacci coding and a transformation $M = E \times Q^{-1}(k)$ as the k–Fibonacci decoding. Also, the matrix E is as a code matrix. Now, we explain the above method by an example.

Example 4. Suppose $k = 4$, $n = 5$, and

$$M = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 3 & 2 \\ 0 & 2 & 1 \\ 3 & 4 & 5 & 7 \end{bmatrix}.$$

(38)

By above relations, we can obtain “single” correction. Using an analogous argument, we can find the error correction for T^5–code.

4. Coding and Decoding on the k–Fibonacci Sequence Matrix

Here, we find coding and decoding on the k–Fibonacci sequence matrix $Q(n,k)$ and get its error detection and correction. For $k \geq 3$ and an initial message $M_{1:k}$, we will name a transformation $E = M \times Q(n,k)$ as the k–Fibonacci coding and a transformation $M = E \times Q^{-1}(n,k)$ as the k–Fibonacci decoding. Also, the matrix E is as a code matrix. Now, we explain the above method by an example.

We have

$$Q_{(5,4)} = \begin{bmatrix} F_8 & F_7 & F_6 & F_5 \\ F_7 & F_6 & F_5 & F_4 \\ F_6 & F_5 & F_4 & F_3 \\ F_5 & F_4 & F_3 & F_2 \end{bmatrix} = \begin{bmatrix} 15 & 8 & 4 & 2 \\ 8 & 4 & 2 & 1 \\ 4 & 2 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix}.

\tag{39}$$

By the above notations, we have

$$E = M \times Q_{(5,4)} = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 3 & 2 \\ 1 & 0 & 2 & 1 \\ 3 & 4 & 5 & 7 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 3 & 2 \\ 1 & 0 & 2 & 1 \\ 3 & 4 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 57 & 29 & 17 & 8 \\ 76 & 38 & 21 & 9 \\ 25 & 13 & 7 & 4 \\ 111 & 57 & 32 & 15 \end{bmatrix}.

\tag{40}$$

Also, we obtain

$$M = E \times Q^{-1}_{(5,4)} = \begin{bmatrix} 57 & 29 & 17 & 8 \\ 76 & 38 & 21 & 9 \\ 25 & 13 & 7 & 4 \\ 111 & 57 & 32 & 15 \end{bmatrix}^{-1} \times \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 3 & 2 \\ 1 & 0 & 2 & 1 \\ 3 & 4 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 4 & 3 & 2 \\ 1 & 0 & 2 & 1 \\ 3 & 4 & 5 & 7 \end{bmatrix}.

\tag{41}$$
The error-correction algorithm for the Fibonacci \(Q_2 \)-matrices is described in [16]. Now, we explain error detection and correction for the 3–Fibonacci coding.

\[
E = M \times Q_{(n,3)} = \begin{bmatrix} m_1 & m_2 & m_3 & F_{n+2}^3 & F_{n+1}^3 & F_n^3 \\ m_4 & m_5 & m_6 & F_{n+1}^3 & F_n^3 & F_{n-1}^3 \\ m_7 & m_8 & m_9 & F_n^3 & F_{n-1}^3 & F_{n-2}^3 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ e_7 & e_8 & e_9 & e_4 & e_5 & e_6 \end{bmatrix},
\]

(42)

\[
M = E \times Q_{(n,3)}^{-1} = \begin{bmatrix} e_1 & e_2 & e_3 & F_{n+2}^3 & F_{n+1}^3 & F_n^3 \\ e_4 & e_5 & e_6 & F_{n+1}^3 & F_n^3 & F_{n-1}^3 \\ e_7 & e_8 & e_9 & F_n^3 & F_{n-1}^3 & F_{n-2}^3 \end{bmatrix}^{-1} = \begin{bmatrix} m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\ m_7 & m_8 & m_9 & m_4 & m_5 & m_6 \end{bmatrix}.
\]

Also,

\[
\det Q_{(n,3)} = F_n^3 \left[F_{n+3}^3 - (F_{n+1}^3)^2 \right] - F_{n+1}^3 \left[F_{n+2}^3 F_{n-2}^3 - F_{n-1}^3 F_n^3 \right] + F_n^3 \left[F_{n+1}^3 F_{n-2}^3 - (F_n^3)^2 \right] = -1,
\]

(43)

\[
M = \begin{bmatrix} e_1 & e_2 & e_3 \\ e_4 & e_5 & e_6 \\ e_7 & e_8 & e_9 \end{bmatrix} \begin{bmatrix} (F_n^3)^2 - F_{n+1}^3 F_{n-2}^3 & F_{n+2}^3 F_{n-2}^3 - F_{n+1}^3 F_{n-1}^3 & (F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \\ (F_n^3)^2 - F_{n+1}^3 F_{n-2}^3 & F_{n+2}^3 F_{n-2}^3 - F_{n+1}^3 F_{n-1}^3 & (F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \end{bmatrix}.
\]

Since \(m_i \geq 0, 1 \leq i \leq 9 \), we have

\[
m_1 = e_1 \left((F_{n-1}^3)^2 - F_{n+1}^3 F_{n-2}^3 \right) + e_2 \left[F_{n+2}^3 F_{n-2}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_3 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) > 0,
\]

(44)

\[
m_2 = e_1 \left[F_{n+1}^3 F_{n-2}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_2 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) + e_3 \left[F_{n+2}^3 F_{n-1}^3 - F_{n+1}^3 F_{n-1}^3 \right] > 0,
\]

(45)

\[
m_3 = e_1 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) + e_2 \left[F_{n+2}^3 F_{n-1}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_3 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) > 0,
\]

(46)

\[
m_4 = e_1 \left((F_{n+1}^3)^2 - F_{n+1}^3 F_{n-2}^3 \right) + e_2 \left[F_{n+2}^3 F_{n-2}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_3 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) > 0,
\]

(47)

\[
m_5 = e_1 \left[F_{n+1}^3 F_{n-2}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_2 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) + e_3 \left[F_{n+2}^3 F_{n-1}^3 - F_{n+1}^3 F_{n-1}^3 \right] > 0,
\]

\[
m_6 = e_1 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) + e_2 \left[F_{n+2}^3 F_{n-1}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_3 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) > 0,
\]

\[
m_7 = e_1 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) + e_2 \left[F_{n+2}^3 F_{n-1}^3 - F_{n+1}^3 F_{n-1}^3 \right] + e_3 \left((F_n^3)^2 - F_{n+1}^3 F_{n-1}^3 \right) > 0.
\]

From (44), we get

\[
e_1 (F_{n-1}^3)^2 + e_2 F_{n+1}^3 F_{n-2}^3 + e_3 (F_n^3)^2 > e_1 F_{n+1}^3 F_{n-2}^3 + e_2 F_{n+1}^3 F_{n-1}^3 + e_3 F_{n+1}^3 F_{n-1}^3 + e_4 F_{n+2}^3 F_{n-1}^3 + e_5 F_{n+2}^3 F_{n-2}^3 + e_6 F_{n+2}^3 F_{n-2}^3 + e_7 F_{n+1}^3 F_{n-1}^3 + e_8 F_{n+1}^3 F_{n-1}^3 + e_9 F_{n+1}^3 F_{n-1}^3.
\]

(48)

By using (45), we have

\[
e_1 F_{n+1}^3 F_{n-2}^3 + e_2 (F_n^3)^2 + e_3 F_{n+1}^3 F_{n-1}^3 + e_4 F_{n+1}^3 F_{n-1}^3 + e_5 F_{n+2}^3 F_{n-1}^3 + e_6 F_{n+2}^3 F_{n-2}^3 + e_7 F_{n+1}^3 F_{n-1}^3 + e_8 F_{n+1}^3 F_{n-1}^3 + e_9 F_{n+1}^3 F_{n-1}^3.
\]

(49)
by using relation (43), we have

\[e_1(F_n)^2 + e_2 F_{n+2} F_{n-1} + e_3 F_{n+1} F_n > e_1 F_n F_{n+1} - e_2 F_{n+2} F_{n-1} + e_3 F_{n+1} F_n. \]

(50)

From (46), we get

\[e_2 \left[F_n F_{n-1} - F_{n+1} F_{n-2} \right] + \left[F_n^2 F_{n-1} - (F_n^2) \right] < e_3 \left[(F_n^2) - F_{n+1} F_{n-1} \right], \]

(51)

\[e_2 \left[(F_{n+2} F_{n-2} - F_n^2) \right] + \left[F_{n+2} F_{n-1} - F_{n+1} F_{n-2} \right] < e_3 \left[F_{n+2} F_{n-1} - F_{n+1} F_n \right], \]

(52)

\[e_2 \left[F_{n+2} F_{n-1} - F_{n+1} F_{n+2} \right] + \left[(F_n^2) - F_{n+1} F_{n-1} \right] > e_3 \left[F_{n+2} F_{n} - (F_{n+1}^2) \right], \]

(53)

Let \(A_1 = (F_n^2)^2 - F_n F_{n-1}, A_2 = F_{n+2} F_{n-2} - F_{n+1} F_{n-1}, \) and \(A_3 = F_{n+1} F_{n} - (F_{n+2} F_{n-2}) \). Now, there exist 31 = 27 cases for \(A_1 > 0, A_2 > 0, A_3 > 0. \) We calculate two cases and the rest of the cases get in similar ways.

Case 1. Let \(A_1 > 0, A_2 > 0, \) and \(A_3 > 0. \) By using (51) and (53), we have

\[\frac{e_2 \left[F_n F_{n-1} - F_{n+1} F_{n-2} \right]}{e_1 A_1} + \left[F_n^2 F_{n-1} - (F_n^2) \right] < \frac{e_3 \left[F_{n+2} F_{n-1} - F_{n+1} F_{n-2} \right]}{e_1 A_1} \]

(54)

Then, we get

\[\frac{e_2 \left[F_n F_{n-1} - F_{n+1} F_{n-2} \right]}{e_1 A_3} + \left[F_{n+2} F_{n-1} - (F_{n+1} F_n) \right] > \frac{e_3 \left[F_n F_{n-1} - F_{n+1} F_{n-2} \right]}{e_1 A_3} \]

(55)

So,

\[A_1 \left(F_n^2 F_{n-1} - (F_n^2) \right) - A_1 \left((F_n^2) - F_{n+1} F_{n-1} \right) < e_2 \left(A_1 \left(F_{n+2} F_{n-1} - F_{n+1} F_{n-2} \right) \right) - A_3 \left(F_{n+2} F_{n-1} - F_{n+1} F_{n-2} \right)), \]

(56)

Since \(A_1 = (F_n^2)^2 - F_n F_{n-1}, A_2 = F_{n+2} F_{n-2} - (F_{n+1} F_{n-1})^2 \) and by using relation (43), we have

\[A_1 \left(F_n^2 F_{n-1} - (F_n^2) \right) - A_1 \left((F_n^2) - F_{n+1} F_{n-1} \right) = F_n^2 \text{det} Q_{(n,3)}, \]

\[A_1 \left((F_{n+2} F_{n-2} - (F_{n+1} F_{n-1})^2 \right) = F_{n+2} \text{det} Q_{(n,3)}, \]

(57)

Therefore,

\[\frac{e_1}{e_2} < \frac{F_{n+1}}{F_n}. \]

(58)

By relations (48)–(50), we have

\[e_2 \left[(F_{n+2} F_{n-2} - F_n^2) \right] + \left[F_{n+2} F_{n-1} - (F_{n+1} F_n) \right] < \frac{e_3 \left[(F_n^2) - F_{n+1} F_{n-1} \right]}{e_1 A_2} \]

(59)

Now, we consider (52) and (53). Then,

\[e_2 \left[F_{n+2} F_{n-1} - F_{n+1} F_{n-2} \right] + \left[(F_n^2) - F_{n+1} F_{n-1} \right] > \frac{e_3 \left[F_{n+2} F_{n-1} - F_{n+1} F_n \right]}{e_1 A_3} \]

Hence, we have
By using (43), we have

\[
A_1 \left(F_n^3 - F_{n-1}^3 \right) - A_2 \left(F_n^3 - F_{n+1}^3 \right) - A_3 \left(F_{n+2}^3 - F_{n-1}^3 \right) = F_n^3 \det Q_{(n,3)}.
\]

Similarly, one can prove that

\[
\frac{F_{n+2}^3}{F_{n+1}^3} < \frac{e_2}{e_1} < \frac{F_{n-1}^3}{F_n^3}.
\]

From (58) and (62), we have

\[
\frac{F_{n+2}^3}{F_{n+1}^3} < \frac{e_2}{e_1} < \frac{F_{n-1}^3}{F_n^3}.
\]

Then, we get

\[
\frac{F_{n+2}^3}{F_{n+1}^3} < \frac{e_2}{e_1} < \frac{F_{n-1}^3}{F_n^3}.
\]

Finally, we get

\[
A_3 \left(F_n^3 F_{n-2}^3 - F_{n-1}^3 F_{n-2}^3 \right) - A_2 \left(F_{n+1}^3 F_{n-1}^3 - F_{n-1}^3 F_{n+1}^3 \right) < e_2 (A_1 \left(F_{n+2}^3 F_{n-1}^3 - F_{n+1}^3 F_{n+1}^3 \right) - A_3 \left(F_{n+3}^3 F_{n-1}^3 - F_{n+1}^3 F_{n+2}^3 \right)).
\]
Therefore, we have

\[
\frac{e_1}{e_2} > \frac{F_n^{3n+1}}{F_n^{3n}}.
\]

(69)

In the following, by relations (52) and (53), we get

\[
e_2 \left[\left(\frac{F_{n+2}^{3n+2} - F_n^{3n}}{F_n^{3n+1}} \right)^2 \right] + \frac{F_n^{3n+1} - F_n^{3n+2}}{A_2} > \frac{e_3}{e_1},
\]

(70)

\[
e_2 \left[\left(\frac{F_{n+2}^{3n+2} - F_n^{3n}}{F_n^{3n+1}} \right)^2 \right] + \frac{F_n^{3n+1} - F_n^{3n+2}}{A_3} > \frac{e_3}{e_1}.
\]

\[
A_2 \left[\left(\frac{F_n^{3n+1} - F_n^{3n+2}}{F_n^{3n+1}} \right)^2 \right] - A_3 \left(\left(\frac{F_n^{3n+1} - F_n^{3n+2}}{F_n^{3n+1}} \right)^2 \right) > \frac{e_3}{e_1} A_2 A_3.
\]

(71)

We get

\[
A_2 \left(\frac{F_n^{3n+1} - F_n^{3n+2}}{F_n^{3n+1}} \right)^2 - A_3 \left(\frac{F_n^{3n+1} - F_n^{3n+2}}{F_n^{3n+1}} \right)^2 = -F_n^{3n+1} \det Q_{(n,3)},
\]

(72)

So,

\[
\frac{e_1}{e_2} < \frac{F_n^{3n+2}}{F_n^{3n+1}}.
\]

(73)

By using relations (69) and (73), we have

\[
\frac{F_n^{3n+1}}{F_n^{3n}} < \frac{e_1}{e_2} < \frac{F_n^{3n+2}}{F_n^{3n+1}}.
\]

(74)

Similarly, we get

\[
\frac{F_n^{3n+1}}{F_n^{3n}} < \frac{e_1}{e_2} < \frac{F_n^{3n+2}}{F_n^{3n+1}}.
\]

(75)

Similarly, by the above argument, we get

\[
\frac{F_n^{3n+1}}{F_n^{3n}} < \frac{e_1}{e_2} < \frac{F_n^{3n+2}}{F_n^{3n+1}}.
\]

(76)

We get

\[
\frac{F_n^{3n+1}}{F_n^{3n}} < \frac{e_1}{e_2} < \frac{F_n^{3n+2}}{F_n^{3n+1}}.
\]

(77)

So, by above facts, we have

\[
\lim_{n \to \infty} \frac{F_n^{3n+1}}{F_n^{3n}} = \lim_{n \to \infty} \frac{F_n^{3n+2}}{F_n^{3n+1}} = \lambda,
\]

(79)
where \(\lambda = 1.839 \) is the golden ratio of the 3–Fibonacci sequence.

Hence, we have

\[
\begin{align*}
e_4 & \approx \lambda, \\
e_5 & \approx \lambda, \\
e_6 & \approx \lambda^2, \\
e_7 & \approx \lambda, \\
e_8 & \approx \lambda, \\
e_9 & \approx \lambda, \\
e_{10} & \approx \lambda^2.
\end{align*}
\] (80)

Now, we are in position that the above results are generalized to the \(k \)–Fibonacci coding.

Here, for \(k > 3 \), we get relations among entries the code matrix \(E \). Similar to \(k = 3 \), we can obtain the following relations among the first-row entries code matrix \(E \).

\[
\begin{align*}
e_1 & \approx \mu_k, \\
e_2 & \approx \mu_k, \\
e_3 & \approx \mu_k, \\
e_4 & \approx \mu_k, \\
e_5 & \approx \mu_k, \\
e_6 & \approx \mu_k, \\
e_7 & \approx \mu_k, \\
e_8 & \approx \mu_k, \\
e_9 & \approx \mu_k, \\
e_{10} & \approx \mu_k
\end{align*}
\] (81)

where \(\mu_k \) is the golden ratio of the \(k \)–Fibonacci sequence.

In general, the following relations among the entries of each row of the code matrix \(E = (e_{ij})_{n \times k} \) are obtained by

\[
\frac{F^{k}_{nk-2}}{F^{k}_{nk-2}} \leq \frac{e_{ij}}{e_{ij}} \leq \frac{F^{k}_{nk-1}}{F^{k}_{nk-1}}
\] (82)

where \(i, j = 1, 2, \ldots, k \), \(s = 1, 2, \ldots, k-1 \) and \(2 \leq j + s \leq k, n > k \).

Now, we calculate the determinant of the code matrix \(E \).

For the coding matrix \(Q_{(nk)} \), \(E = M \times Q_{(nk)} \) and \(\det Q_{(nk)} = -1 \), and we have

\[
\det E = -\det M.
\] (83)

Here, we calculate the error detection and correction for the \(k \)–Fibonacci coding.

Let \(k = 3 \). According to the matrix \(E \) of the order \(3 \times 3 \), we have "single," "double," . . . , "nine-fold" errors. The first assumption is that there exists only one error in the matrix \(E \) received from the communication channel. It is clear that there are nine different cases for it, as follows:

\[
\begin{bmatrix}
a & b & e_3 \\
e_1 & e_2 & e_3 \\
e_4 & e_5 & e_6
\end{bmatrix}
\] (86)

where \(a, b, \ldots, i \) are possible "destroyed" entries.

From \(\det (E) = -\det (M) \), we have

\[
\begin{array}{c}
(1) \ a(e_1 e_6 e_7) - e_2(e_1 e_6 e_7) + e_3(e_1 e_6 e_7) = -\det M, \\
(2) \ e_1(e_5 e_6 e_7) - e_2(e_5 e_6 e_7) + e_3(e_5 e_6 e_7) = -\det M, \\
& \vdots \\
(9) \ e_1(e_5 e_6 e_7) - e_2(e_5 e_6 e_7) + e_3(e_5 e_6 e_7) = -\det M.
\end{array}
\] (85)

In a similar way, we will obtain a double error for the matrix \(E \). For example, we consider a bivariate case for matrix \(E \) as follows:

\[
\begin{bmatrix}
a & b & e_3 \\
e_1 & e_2 & e_3 \\
e_4 & e_5 & e_6
\end{bmatrix}
\] (86)

in which possible cases are \(2C_9 = 36 \). Similarly, we obtain "triple," "four-fold," . . . , "nine-fold" errors, which the total number of cases is \(1C_9 + 2C_9 + \cdots + 9C_9 = 2^9 - 1 = 511 \)
errors. By using \(\det E = -\det M \) and the relations (76)–(78), we can correct up to "single," "double," \ldots , "eight" errors except "nine" errors. Therefore, we get that the correctable possibility of the method is equal to \(510/511 \approx 99.80 \% \).

In general, for \(k > 3 \), by the above method, the code matrix \(E \) may contain "single," "double," \ldots , "\(k^2 \) – fold" errors. Thus, \[
1C_k^2 + 2C_k^2 + \cdots + k^2C_k^2 = 2^{k^2} - 1.
\] (87)

Therefore, there are \(2^{k^2} - 1 \) errors. By \(\det E = -\det M \) and relation (82), we can give that the correct ability of the \(k \)-Fibonacci sequence matrix coding is equal to \[
\frac{2^{(k^2)} - 2}{2^{(k^2)} - 1}.
\] (88)

Then, for large value of \(k \), the correct possibility of this method is \[
\frac{2^{(k^2)} - 2}{2^{(k^2)} - 1} \approx 1 = \% 100.
\] (89)

5. Conclusion

In this paper, we give some codes on the \(k \)-Fibonacci sequence. These coding methods are the applications of this sequence. Also, we obtain the following results:

1. For \(u = 4, 5 \) and 7, we get error detection and correction.

2. For \(k > 3 \), the correct ability of the \(k \)-Fibonacci sequence matrix coding is \(2^{(k^2)} - 2/2^{(k^2)} - 1 = \% 100 \). In particular, for \(k = 3 \), the correct ability of this method is equal to \(510/511 = \% 99.80 \).

Data Availability

There are no applications, analysis, or generation during the study. The results are related to the Ph. D. thesis.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Hashemi and E. Mehraban, "On the generalized order 2-Pell sequence of some classes of groups," *Communications in Algebra*, vol. 46, no. 9, pp. 4104–4119, 2018.

[2] M. Hashemi and E. Mehraban, "Fibonacci length and the generalized order \(k \)-Pell sequences of the 2-generator \(p \)-groups of nilpotency class 2," *Journal of Algebra and Its Applications*, In press.

[3] E. Karaduman and O. Deveci, "\(k \)-nacci sequences in finite triangle groups," *Discrete Dynamics in Nature and Society*, vol. 2009, Article ID 453750, 2009.

[4] S. W. Knox, "Fibonacci sequences in finite groups," *Fibonacci Quarterly*, vol. 30, no. 2, pp. 116–120, 1992.

[5] E. Kilic and D. Tasci, "On the generalized Fibonacci and Pell sequences by Hessenberg," *Ars Combinatoria*, vol. 94, pp. 161–174, 2010.

[6] A. Apostolico and A. Fraenkel, "Robust transmission of unbounded strings using Fibonacci representations," *IEEE Transactions on Information Theory*, vol. 33, no. 2, pp. 238–245, 1987.

[7] M. Basu and B. Prasad, "Long range variations on the Fibonacci universal code," *Journal of Number Theory*, vol. 130, no. 9, pp. 1925–1931, 2010.

[8] B. Prasad, "A new Gaussian Fibonacci matrices and its applications," *Journal of Algebra and Related Topics*, vol. 7, no. 1, pp. 65–72, 2019.

[9] O. P. Stakhov, "A generalization of the Fibonacci Q-matrix," *Reports of the National Academy of Sciences of Ukraine*, vol. 9, pp. 46–49, 1999.

[10] A. P. Stakhov, "Fibonacci matrices, a generalization of the "Cassini formula," and a new coding theory," *Chaos, Solitons & Fractals*, vol. 30, no. 1, pp. 667–684, 2005.

[11] M. Esmaeili and M. Esmaeili, "A Fibonacci-polynomial based coding method with error detection and correction," *Computers & Mathematics with Applications*, vol. 60, no. 10, pp. 2738–2752, 2010.

[12] M. Esmaeili, M. Esmaeili, and T. A. Gulliver, "High-rate Fibonacci polynomial codes," in *Proceedings of IEEE International Symposium on Information Theory*, pp. 1921–1924, Saint-Petersburg, Russia, August 2011.

[13] M. Esmaeili, M. Moosavi, and T. A. Gulliver, "A new class of Fibonacci sequence based error correcting codes," *Cryptography and Communications*, vol. 9, no. 3, pp. 379–396, 2017.

[14] A. Nalli and C. Ozylmaz, "The third order variations on the Fibonacci universal code," *Journal of Number Theory*, vol. 149, pp. 15–32, 2015.

[15] H. W. Gloud, "A history of the Fibonacci Q-matrix and a higher dimensional problem," *Fibonacci Quarterly*, vol. 19, pp. 250–257, 1981.

[16] M. Basu and B. Prasad, "The generalized relations among the code elements for Fibonacci coding theory," *Chaos, Solitons & Fractals*, vol. 41, no. 5, pp. 2517–2525, 2009.