Observation of ZZ production via Vector Boson Scattering in ATLAS

Ioannis Maznas
Aristotle University of Thessaloniki

38th Conference on Recent Developments in High Energy Physics and Cosmology
June 2021, Thessaloniki, Greece
Introduction

- Vector Boson Scattering (VBS) has captured our interest lately
 - Direct relation to EWSB and the Higgs mechanism
 - Ability to explore New Physics

- VBS $ZZjj \rightarrow \ell\ell\ell\ell jj$ is one of the rarest processes with signal cross section $\sim 0.1\, fb$
 - However, truly valuable channel due to its purity and ability to fully reconstruct the final state

- Results compatible to SM have been published by both ATLAS and CMS with measurements on the VBS ZZ channel
 - During Run-II, ATLAS managed to collect 139 fb^{-1} of data
 - Proton-proton collisions with a center-of-mass energy 13TeV
 - Limited number of events in this channel does not allow remarkable results (yet)
 - Significant potential for future analyses
Signature characteristics of VBS interactions:

1. Two forward jets,
2. the production of VV in the central region and
3. suppressed hadronic activity between jets due to absence of color flow,
4. a purely EW contribution to VVjj

...something to take advantage of in order to achieve a good S/N ratio

Current study examined both $\ell\ell\ell\ell jj$ and $\ell\ell vvjj$ channels.
Use of two final states

Each of the final states is characterized by different pros/cons.

lllljj
- Chosen as the main channel
- Very clean
 - main background QCD ZZjj
- Fully reconstructible
 - Accurate lepton calibration favors this channel
- depends on our insight into jets

llvvjj
- Expected to have worse sensitivity
 - However, used as cross-check
- Suffers from a lot of background
 - QCD ZZjj, WZ, WW, top, Z+jet…
- Better BR but with more phase space restrictions
- Depends both on jet and MET understanding
- More sensitive to BSM in high mass/pT
Monte Carlo generation

- **Sherpa**, GG2VV and Madgraph (aMC@NLO) used to simulate events at tree level.
 - Follow-up decays and hadronization done with Madspin, Pythia 8, POWHEG-BOX and Sherpa’s internal showering tool
 - No NLO EW ZZjj estimations are included in this analysis

- Different samples generated for signal (EW ZZjj) and background (QCD qqZZjj, ggZZjj)

- Interference between QCD and EW has also been simulated
 - Proved to have insignificantly low contribution (smaller than statistical uncertainty of data) and was treated as a systematic (modelling) uncertainty.

- Decay to electrons or muons via τ-leptons is considered as signal but with negligible contribution
Background studies

Main background Sources:

- Events with the **same final state**
- Misidentified leptons

In order to constrain background:

- **Kinematic cuts** that minimize reducible background (different final state)
 - Control and signal regions defined with loose but effective cuts
- **Multivariate Discriminants** (MD) to optimize even more signal segregation from reducible and irreducible (non-EW ZZjj) background
Signal region definition (detector level)

	\(\ell \ell \ell \ell jj \)	\(\ell \nu \nu \ell jj \)								
Electrons	\(p_T > 7 \text{ GeV},	\eta	< 2.47 \) \(d_0/\sigma_{d_0}	< 5 \) and \(z_0 \times \sin \theta	< 0.5 \text{ mm} \)	\(p_T > 7 \text{ GeV},	\eta	< 2.5 \)
Muons	\(p_T > 7 \text{ GeV},	\eta	< 2.7 \) \(d_0/\sigma_{d_0}	< 3 \) and \(z_0 \times \sin \theta	< 0.5 \text{ mm} \)	\(p_T > 7 \text{ GeV},	\eta	< 2.5 \)
Jets	\(p_T > 30 \) (40) \text{ GeV for }	\eta	< 2.4 (2.4 <	\eta	< 4.5) \)	\(p_T > 60 \) (40) \text{ GeV for the leading (sub-leading) jet}				
\(\mu \mu \ell \ell \) selection	\(p_T > 20, 20, 10 \text{ GeV for the leading, sub-leading and third leptons} \)	\(p_T > 30 \) (20) \text{ GeV for the leading (sub-leading) lepton}								
Two OSSF lepton pairs with smallest \(m_{\ell^+\ell^-} - m_Z	+	m_{\ell^+\ell^-} - m_Z	\)	One OSSF lepton pair and no third leptons	\(80 < m_{\ell^+\ell^-} < 100 \text{ GeV} \)				
\(\Delta R(\ell, \ell') > 0.2 \)		No b-tagged jets								
\(66 < m_{\ell^+\ell^-} < 116 \text{ GeV} \)		\(E_T^{\text{miss}} \)-significance > 12								
Dijet selection	\(m_{jj} > 300 \text{ GeV and } \Delta y(jj) > 2 \)	\(m_{jj} > 400 \text{ GeV and } \Delta y(jj) > 2 \)								

- Event selection, though effective, has loose cuts → room for machine learning
- Different selection criteria based on experimental features (e.g. detector efficiency)
- Suppressed pile-up contribution → deemed to have negligible effects
Main background in $\ell\ell\ell\ell jj$ channel

- Mostly suppressed by m_{jj} and $\Delta\eta_{jj}$ cuts

- Centrality ζ used as another criterion to suppress this background
 - Centrality = position estimate of a Z-boson w.r.t. the rapidity span of the outgoing jets
 - Smaller values \rightarrow cleaner SR

$$\zeta = \left| \eta - \bar{\eta}_{jj} \right| / \Delta\eta_{jj}$$

where

$$\bar{\eta}_{jj} = \frac{\eta_{j1} + \eta_{j2}}{2}$$
QCD $qqZZjj$ / $ggZZjj$

- BDT studies pointed the following as most important discriminatory variables between QCD and EW:

Variable	Value
m_{jj}	$\approx 500\text{GeV}$
$\Delta\eta_{jj}$	≈ 2.9
$\zeta_{\text{leading }Z}$	≈ 1.03
$\zeta_{\text{subleading }Z}$	≈ 1.62

- However, (as already mentioned) looser cuts have been set for event selection
 - MVA methods took over afterwards
Other Background Sources

llvvjj
- WZjj
 - Estimated with simulations
 - Corrected with a 3-lepton CR

- Non-resonant ll contributions
 - WW, ttbar, Wt
 - Estimated yield with an e/μ-pair requirement in CR
 - Distribution shapes extracted from simulations

- Others:
 - Z+jets
 - Largely suppressed
 - Estimated with MET extrapolation
 - Triboson, ttV
 - Estimated with simulations

lllljj
- Fake background
 - Estimated yield via (data-driven) fake-factor and its shape via simulation
 - Great (>50%) uncertainty

- Triboson, ttV
 - Estimated with simulations
In order to determine modeling uncertainties the method used is described explicitly in arXiv:1510.03865

- Different simulation programs (Sherpa, Madgraph) have been used to evaluate PDF and scale theoretical uncertainties
 - Additional uncertainties introduced to capture shape differences between Sherpa and Madgraph

- Several detector-related statistical and systematic uncertainties have been included as well in the estimation of the total reconstruction uncertainty
 - Luminosity, pile-up conditions, electron/muon reconstruction/identification/isolation, jet JVT efficiency….
 - All these uncertainties are considered fully correlated

- Total reconstruction uncertainties range around 10% (30%) for EW (QCD)
 - At tree level μ_R and μ_F scale uncertainties were estimated approximately 6% (25%) for EW (QCD)
 - and PDF uncertainties at 0.5-1.5% by using different PDF scale variations for several PDF sets:
 - NNPDF30_nlo_as_0118, NNPDF30_nlo_as_0119, NNPDF30_nlo_as_0117, CT14nlo, MMHT2014nlo68clas118, PDF4LHC15_nlo_30_pdfas
Estimation of Uncertainties (PDF)
Estimation of Uncertainties (μ_R, μ_F)
Observations

- Reasonable agreement between data and prediction
 - For cross-section measurements the parameter of interest is the signal strength (ratio μ of fiducial measured cross-section to SM prediction)

- Simulation and data found to be compatible even for high m_{jj} and m_{ZZ}

- Further discrimination between signal and background was boosted with MD in order to reach observation threshold

Process	$\ell\ell\ell\ell jj$	$\ell\ell\nu\nu jj$
EW ZZjj	20.6 ± 2.5	12.3 ± 0.7
QCD ZZjj	77 ± 25	17.2 ± 3.5
QCD $ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant-$\ell\ell$	$-$	21.4 ± 4.8
WZ	$-$	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114 ± 26	78.4 ± 6.2
Data	127	82
Observations

- Statistical fit in three regions simultaneously: $lllljj$ CR, $lllljj$ SR and $llvvjj$ SR
- Used profile likelihood fit to test compatibility with SM.
 - As input BDT scores were used
 - All systematic uncertainties (detector and modeling) were treated as nuisance parameters
 - TRexFitter framework used. (Based on HistFitter (arXiv:1410.1280)
 - Obtained 5.5σ combined observation significance (arXiv:2004.10612)
Ongoing studies

- Using the data from Run-II, current studies aim to extract the differential cross section for the ZZjj channel with unfolding techniques.

- Plan to use NLO estimations for QCD and EW.

- Plan to set limits on dim-8 aQGC operators using the EFT approach (see talk by Alexandros Marantis on aQGC studies).
 - Focus on field strength tensor operators ($\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$, $\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$, $\mathcal{L}_{T,8}$, $\mathcal{L}_{T,9}$).
Thank you