Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Chapter from the book *Pesticides - Formulations, Effects, Fate*
Downloaded from: http://www.intechopen.com/books/pesticides-formulations-effects-fate

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com
1. Introduction

Pesticide contamination of river and lake waters from agriculture use is a problem of worldwide importance. Many field data on the pesticide contamination of surface waters and aquatic organisms in rivers and lakes (Amaraneri & Pillala, 2001; Abdel-Halim et al., 2006; Agradi et al., 2000; California Environmental Protection Agency, 2002; California Regional Water Quality Control Board, 2002; California State Water Resources Control Board, 2002; Domagalski, 1996; 1997; Environment Canada, 2002; Ganapathy et al., 1997; Gfrerer et al., 2002a; 2002b; Harman-Fetcho et al., 1999; Hall, 2003; Laabs et al., 2002; Lekkas et al., 2004; Leong et al., 2007; Mansour et al., 2001; Mansour & Sidky, 2003; McConnell et al., 2004; Oros et al., 2003; Rovedatti et al., 2001; Struger et al., 2004; Sudo et al., 2002a; 2002b; 2004; Tanabe et al., 2001; Tsuda et al., 1996a; 1997a; 1998; 1999; Vitanov et al., 2003; Washington State Department of Ecology, 1999; 2000) have been reported in the world.

This chapter consisted of (1) Field surveys on pesticide contaminations in rivers and lakes, (2) Bioconcentration of pesticides in the field fish (3) Bioconcentration of pesticides in fish by laboratory experiments (4) Evaluation of the pesticide contamination in the field fish by their laboratory bioconcentration potential data

1. Diazinon, fenitrothion, malathion and fenthion were selected as insecticides and atrazine, simazine, simetryn, molinate and benthiocarb, mefenacet and pretilachlor as herbicides. Surveys on the contamination of the 4 insecticides (Abdel-Halim et al., 2006; Ministry of the Environment, Japan, 2001; Mansour & Sidky, 2003; Ohtsu, 1994; Tsuda et al., 1992a; 1994; 1998; 2009) and the 7 herbicides (Chiba Prefecture, 2002; 2003; Kanagawa Prefecture, 2000; 2001; Ministry of the Environment, Japan, 1993; 1999; Takino et al., 1998; Tsuda et al., 1996a; 1997a; 1998; 1999; Vitanov et al., 2003; Washington State Department of Ecology, 1999; 2000) have been reported in the world.

2. Bioconcentration factor (BCF) of each 11 pesticide in the field fish was calculated as its bioconcentration potential from the data on the pesticide concentration in the water and fish from rivers and lakes in the world were reviewed from literatures in the past.

3. Laboratory BCF data of the 11 pesticides in fresh-water fish were reviewed from literatures in the past for the 4 insecticides (Allison & Hermanutz, 1977; De Bruijn & Hermens, 1991; Escartin & Porte, 1996; Fisher, 1985;Goodman et al., 1979; Kanazawa, 1975; 1978; 1981; 1983; 1987; Keizer et al., 1991; 1993; Lockhart et al., 1983; Miyamoto et al., 1979; Nihon Kagaku-busshitsu Anzen-Jyohou Center, 1992; Sancho et al., 1992; 1994; Seguchi & Asaka, 1981; Takimoto et al., 1984; 1987; Tsuda et
al., 1989a; 1990; 1992b; 1993; 1995; 1996b; 1997b; 1997c) and for the 7 herbicides (Du Preez & Van Vuren, 1992; Gorge & Nagel, 1990; Gunkel & Streit, 1980; Isensee, 1976; Kanazawa, 1981; 1983; Kearney et al., 1977; Martin et al., 1992; Sanders & Hunn, 1982; Tsuda et al., 1988; 1989b; 1992c; 1997d; 1999; Tsuda et al., unpublished data; Wang et al., 1992; Xu & Zhang, 1989). The BCF value of each pesticide in fish was evaluated as its bioconcentration potential.

4. (4) The contamination of the 10 pesticides except atrazine in the field fish was evaluated by comparing the field BCF data calculated from the field data with the laboratory BCF data of the 10 pesticides in fresh-water fish.

1.1 Field surveys on pesticide contaminations in rivers and lakes

Surveys on contamination of insecticides and herbicides in water and fish from rivers and lakes in the world were reviewed from literatures in the past. Diazinon, fenitrothion, malathion and fenthion were selected as insecticides and atrazine, simazine, simetryn, molinate and benthiocarb, mefenacet and pretilachlor as herbicides. These pesticides have been widely used not only in Japan but also in the world. The field data surveyed simultaneously for both of water and fish were summarized in Tables 1-1 and 1-2 for the 4 insecticides (Abdel-Halim et al., 2006; Ministry of the Environment, Japan, 2001; Mansour & Sidky, 2003; Ohtsuki, 1994; Tsuda et al., 1992a; 1994; 1998) and Tables 2-1 and 2-2 for the 7 herbicides (Chiba Prefecture, 2002; 2003; Kanagawa Prefecture, 2000; 2001; Ministry of the Environment, Japan, 1993; 1999; Takino et al., 1998; Tsuda et al., 1996a; 1997a; Watanugi et al., 1993). Further, recent survey data on contamination of 5 insecticides and 16 herbicides in water and fish from Lake Biwa in Japan (Tsuda et al., 2009) were summarized in Tables 3 and 4.

As shown in Tables 1-1 and 1-2, diazinon and fenitrothion were detected in the concentrations of < 0.005~0.175 and < 0.005~0.037 μg/l in water and 4.1 and 11 μg/kg in pale chub, respectively, from Tama River Basin, Japan in 1993. The two insecticides were detected in the pale chub at their high concentrations of the water but were not detected in common carp and crucian carp. Further in Japan, diazinon, fenitrothion, malathion and fenthion were detected in the concentration ranges of ND~0.51, ND~0.39, ND~0.20 and ND~0.11 μg/l, respectively, in water from rivers in Shiga Prefecture from April in 1991 to March in 1992. Fenitrothion was detected in the concentration ranges of ND~2.1 μg/kg wet wt. in pale chub and fenthion was detected in the concentration ranges of ND~1.7 μg/kg wet wt. in ayu fish and ND~19.4 μg/kg wet wt. in dark chub. However, diazinon and

No.	Location	Country	Sampling date	Water (μg/l)
1	Tama River Basin	Japan	Jul.-1993	< 0.005~0.175 < 0.005~0.037 < 0.005~0.005
2	River in Kanagawa Pref.	Japan	Aug.-2000	< 0.01~0.02
3	Rivers in Shiga Pref. (n=7)	Japan	Apr.-1990~Mar.-1991	ND~0.70 ND~2.00 ND~ND
4	Rivers in Shiga Pref. (n=7)	Japan	Apr.-1990~Mar.-1991	ND~0.70 ND~2.00 ND~ND
5	Rivers in Shiga Pref. (n=7)	Japan	Apr.-1991~Mar.-1992	ND~0.51 ND~0.39 ND~0.20 ND~0.11
6	Rivers in Shiga Pref. (n=7)	Japan	Apr.-1991~Mar.-1992	ND~0.51 ND~0.39 ND~0.20 ND~0.11
7	Rivers in Shiga Pref. (n=7)	Japan	Apr.-1991~Mar.-1992	ND~0.51 ND~0.39 ND~0.20 ND~0.11
8	Ezura River	Japan	Apr.-1995~Mar.-1996	< 0.005~0.12
9	Shinakawagishi River	Japan	Jan.-Dec.-2000	< 0.01~0.03
10	Lake Qarun	Egypt	Oct.-1998~April-1999	42.0 (n=1)
11	New Damietta Drainage canal	Egypt	Spring-1999	70.5 (n=1) 466 (n=1)
12	New Damietta Drainage canal	Egypt	Winter-2001	24.6 (n=1) 71.9 (n=1)

Table 1-1. Concentrations of insecticides in water from rivers and lakes

www.intechopen.com
Bioconcentration of Pesticides in Fish from Rivers and Lakes

Table 1-2. Concentrations of herbicides in water from rivers and lakes

No.	Location	Sampling date	Water (μg/l)	Moline	Simetryn	Benthiocarb	Malathion	Pentachlor	Simazine	Atrazine
10	Lake Suigetsu (Kanagawa Pref.)	1999								
11	Rivers in Kanagawa Pref. (n=3)	Aug.-Dec. 2000	< 0.10	< 0.01	< 0.01	< 0.01				
12	Rivers in Chiba Pref. (n=10)	Jan.-2002	< 0.02	< 0.02	< 0.05	< 0.02				
13	Rivers in Chiba Pref. (n=10)	Feb.-2003	< 0.04	< 0.02	< 0.07	< 0.02				
14	Rivers in Shiga Pref. (n=7)	Apr.-1992-Mar. 1994	0.02~20.8	0.01~14.8	0.02~8.1	0.02~1.7				
15	Rivers in Shiga Pref. (n=7)	Apr.-1992-Mar. 1994	0.02~20.8	0.01~14.8	0.02~8.1	0.02~1.7				
16	Rivers in Shiga Pref. (n=7)	Apr.-1994-Mar. 1996	0.01~75.3	0.01~21.2	0.01~11.2	0.01~8.5	0.02~2.6			
17	Rivers in Shiga Pref. (n=7)	Apr.-1994-Mar. 1996	0.01~75.3	0.01~21.2	0.01~11.2	0.01~8.5	0.02~2.6			
18	Senjo River in Shiga Pref.	Apr.-1994-Mar. 1996	0.01~0.22	0.01~2.08	0.01~0.75	0.01~0.02				
19	Tenjin River in Shiga Pref.	Apr.-1997-Mar. 1998	0.01~0.22	0.01~2.08	0.01~0.75	0.01~0.02				
20	Ezura River in Shiga Pref.	Apr.-1997-Mar. 1998	0.01~0.22	0.01~2.08	0.01~0.75	0.01~0.02				
21	Rivers in Chiba Pref. (n=10)	Sep.-Oct. 1998	0.05~0.03	0.00~0.09	0.05~0.09	0.05~0.09	0.05~0.09			
22	Rivers in Chiba Pref. (n=10)	Sep.-Oct. 1998	0.05~0.08	0.00~0.09	0.05~0.09	0.05~0.09	0.05~0.09			
23	Lake Shiga	Sep.-Oct. 1992	0.02~0.02	0.02~0.11	0.02~0.2	0.2~0.2				
24	Lake Shiga	Sep.-Oct. 1992	0.02~0.02	0.02~0.11	0.02~0.2	0.2~0.2				
25	Lake Kawagishiku in Ishikawa Pref.	May-1989	15.9	6.6	2.2					
26	Lake Kawagishiku in Ishikawa Pref.	May-1990	15.9	6.6	2.2					
27	Lake Kawagishiku in Ishikawa Pref.	May-1990	16.2	6.8	3.7					
28	Lake Kawagishiku in Ishikawa Pref.	May-1990	16.2	6.8	3.7					
29	Lake Kawagishiku in Ishikawa Pref.	May-1991	13.0	7.7	2.8					
30	Lake Kawagishiku in Ishikawa Pref.	May-1991	13.0	7.7	2.8					
31	Lake Kawagishiku in Ishikawa Pref.	May-1992	6.4	6.2	6.4					

Table 2-1. Concentrations of herbicides in water from rivers and lakes in Japan

Malathion were not detected in the three species of fish (pale chub, ayu fish and dark chub). In Egypt, malathion were detected in the concentrations of 42.0 μg/l in water and 6 μg/kg wet wt. in tilapia from Lake Qarun in 1998~1999, and diazinon and malathion were detected in the concentrations of 24.6 and 71.9μg/l in water and 21.1 and 19.3 μg/kg wet wt. in tilapia, respectively, from New Damietta Drainage canal in winter of 2001.

As shown in Tables 2-1 and 2-2, molinate, simetryn, benthio carb, mefenacet and simazine were detected in the concentrations of < 0.01~75.5, < 0.01~21.2, < 0.01~0.90, < 0.01~11.2 and < 0.02~2.6 μg/l in water and < 2~1156, < 5~50, < 10~< 10, < 10~324 and < 20~20 μg/kg in ayu fish, respectively, from rivers in Shiga Prefecture, Japan from April in 1994 to March in 1996. Benthio carb and simazine were not detected in the fish in spite of their detections in the river water. Further, molinate, simetryn and benthio carb were detected in the concentrations of 13.9, 6.6 and 2.2 μg/l in water and 10~170, 30~40 and 250~540 μg/kg in carp, respectively, from Lake Kawagishiku in Ishikawa Prefecture, Japan in 1989.
Concentrations of pesticides in fish from east littoral zone of northern basin of Lake Biwa

Table 2-2. Concentrations of herbicides in fish from rivers and lakes in Japan

As shown in Table 3, two insecticides and 10 herbicides in water and 4 herbicides in two species of fish (Hasu and pale chub) were detected from east littoral zone of (C_{10}, C_{11} and C_{13}) of northern basin of Lake Biwa. As shown in Table 4, two insecticides and 12 herbicides

Table 3. Concentrations of pesticides in fish from east littoral zone of northern basin of Lake Biwa

Pesticides - Formulations, Effects, Fate
Table 4. Concentrations of pesticides in fish from littoral zone of Akanoi Bay in southern basin of Lake Biwa

Pesticides	Water (μg/l) (n=21)	Bluegill (μg/kg) (n=14)
Isopropcarb	< 0.02 ~ < 0.02	< 2 ~ > 2
Fenobucarb	< 0.01 ~ 0.04	< 2 ~ < 2
Diazinon	< 0.01 ~ 0.28	< 2 ~ < 2
Fenitrothion	< 0.02 ~ < 0.02	< 2 ~ < 2
Fenthion	< 0.01 ~ < 0.01	< 2 ~ < 2
Molinate	< 0.01 ~ 1.40	< 2 ~ 14
Simazine	< 0.01 ~ < 0.01	< 2 ~ < 2
Propyzamide	< 0.01 ~ < 0.01	< 2 ~ < 2
Bromobutide	0.02 ~ 5.77	< 2 ~ 32
Simetryne	0.03 ~ 3.44	< 2 ~ 6
Alachlor	< 0.01 ~ 0.02	< 2 ~ < 2
Esprocarb	< 0.01 ~ 0.44	< 2 ~ 59
Thiobencarb	< 0.01 ~ 0.06	< 2 ~ < 2
Dimethametryn	< 0.02 ~ 0.13	< 2 ~ < 2
Dimepiperate	< 0.01 ~ < 0.01	< 2 ~ < 2
Pretilachlor	< 0.01 ~ 0.46	< 2 ~ 6
Thenylchlor	< 0.01 ~ 0.13	< 2 ~ < 2
Pyributicarb	< 0.02 ~ < 0.02	< 2 ~ < 2
Anilofos	< 0.02 ~ 0.10	< 2 ~ 7
Mefenacet	< 0.02 ~ 2.65	< 4 ~ 29
Cafenstrole	< 0.05 ~ 0.09	< 4 ~ 9

in water and 8 herbicides in bluegill were detected from littoral zone of Akanoi Bay (North, Center and South) in southern basin of Lake Biwa. The two insecticides and 12 herbicides were detected in the water from the two littoral areas of Lake Biwa but the two insecticides were not and the only 8 herbicides were detected in the three species of fish from the locations. An example of concentration changes of the 8 herbicides in the water and bluegill from the littoral zone of Akanoi Bay (Center) in southern basin of Lake Biwa is shown in Fig. 1 throughout the survey from May to August in 2007. The concentrations of molinate, bromobutide, simetryne and mefenacet in the water were high in May and June. This result corresponds to the maximum use of the herbicides in paddy fields of Japan. Detections of the 8 herbicides in the fish corresponded well to those in the water, but the order of the herbicide concentrations in the fish was different from that in the water. For example, the concentration of esprocarb was low in the water but high in the fish. This is probably because bioconcentration potential of esprocarb is higher than the other herbicides.

2. Bioconcentration of pesticides in the field fish

Bioconcentration factor (BCF) of each pesticide in the field fish was calculated as its bioconcentration potential from the field data (Tables 1-1, 1-2, 2-1 and 2-2) on the pesticide concentration in the water and fish from the rivers and lakes in Japan and Egypt. The BCF values are shown in Table 5 for the 4 insecticides (diazinon, fenitrothion, malathion and fenthion). The BCF values in the two or three species of fish from the rivers in Japan
were 20–150 for diazinon, 70–790 for fenitrothion and 20–240 for fenthion. For malathion, its BCF value could not be calculated because of its no detections in the common carp from the two rivers in Japan. This is probably due to its low bioconcentration potential. In Egypt, the BCF values in the tilapia from New Damietta Drainage canal were 0.6 and 0.9 for diazinon and 0.3 for malathion and that in the tilapia from Lake Qarun was 0.1 for malathion. The BCF values of diazinon (0.6 and 0.9) in the tilapia in Egypt were considerably lower than those (20–150) in the two species of fish (pale chub and ayu fish) in Japan.

Table 5. BCF of insecticides in fish from field survey data

No.	Species	Tissue	Location	Field BCF data (wet wt.)	Reference	
1	Pale chub	Whole body	Tama River Basin	20 (n=1)	790 (n=1)	Ohtsuki, A. (1994)
1	Common carp	Whole body	Tama River Basin	50–250 (n=2)	140–360 (n=2)	Ohtsuki, A. (1994)
1	Crucian carp	Whole body	Tama River Basin	< 130 (n=1)	140 (n=1)	Ohtsuki, A. (1994)
2	Common carp	Whole body	River in Kanagawa Pref.	< 30 (n=1)	< 50 (n=1)	Kanagawa Pref. (2001)
3	Ayu fish	Whole body	Rivers in Shiga Pref. (n=7)	150 (n=5)	70 (n=2)	Tsuda et al. (1992)
4	Ayu fish	Whole body	Rivers in Shiga Pref. (n=7)	60 (n=1)	580 (n=1)	Tsuda et al. (1992)
4	Ayu fish	Whole body	Rivers in Shiga Pref. (n=7)	190 (n=2)	100 (n=1)	Tsuda et al. (1994)
4	Dark chub	Whole body	Rivers in Shiga Pref. (n=7)	240 (n=1)	100 (n=1)	Tsuda et al. (1994)
5	Pale chub	Whole body	Kanaya River	150 (n=1)		Tsuda et al. (1998)
6	Common carp	Whole body	Shinkawa-guchi River	< 50 (n=1)		Ministry of the Environment, Japan (2001)
7	Tilapia	Whole body	Lake Qarun	0.1 (n=1)		Mansour, S.A. & Selky, M. M. (2003)
8	Tilapia	Muscle	New Damietta Drainage canal	0.6 (n=1)		Abdel-Halim, et al. (2006)
9	Tilapia	Muscle	New Damietta Drainage canal	0.5 (n=1)	0.3 (n=1)	Abdel-Halim, et al. (2006)

The BCF values in the rivers and lakes in Japan are shown in Table 6 for the 7 herbicides (molinate, simetryn, benthiothrin, mefenacet, pretilachlor, simazine and atrazine). The BCF values were 15–286 for molinate, 2–163 for simetryn, 56–248 for benthiothrin and 20–36 for mefenacet in the two or the three species of fish (ayu fish, pale chub and dark chub) and 19 for pretilachlor in the pale chub from the rivers. The BCF value of simazine was calculated as 150 (n=1) in the carp from a river but could not calculated in the carp or the pale chub from other rivers. Those of simazine in the carp and the pale chub were estimated to be < 100 and < 33, respectively. For atrazine, its BCF values could not be calculated at all in the three species of fish from the rivers. Those were estimated to be < 50 in Steed barbell, < 50 and < 6.8 in carp and < 22 in crucian carp. This is probably due to its low bioconcentration
3. Bioconcentration of pesticides in fish by laboratory experiments

Laboratory BCF data of the 11 pesticides in fresh-water fish were reviewed from literatures in the past and the BCF value of each pesticide in fish was evaluated as its bioconcentration potential.
Laboratory BCF data of the 4 insecticides in fresh-water fish are shown in Fig. 3 for diazinon (Allison & Hermanutz, 1977; Goodman et al., 1979; Kanazawa, 1975; 1978; 1981; 1983; Keizer et al., 1991; 1993; Nihon Kagaku-busshitsu Anzen-Jyohou Center, 1992; Seguchi & Asaka, 1981; Sancho et al., 1992; Tsuda et al., 1989a; 1990; 1995; 1997b; 1997c), Fig. 4 for fenitrothion (De Bruijn, & Hermens, 1991; Escartin & Porte, 1996; Fisher, 1985; Kanazawa, 1975; 1981; 1983; 1987; Lockhart et al., 1983; Miyamoto et al., 1979; Nihon Kagaku-busshitsu Anzen-Jyohou Center, 1992; Sancho et al., 1994; Takimoto et al., 1984; 1987; Tsuda et al., 1989a; 1990; 1995; 1997b; 1997c), Fig. 5 for malathion (Tsuda et al., 1989a; 1990; 1997b) and fenthion (De Bruijn & Hermens, 1991; Tsuda et al., 1992b; 1993; 1995; 1996b; 1997c). The average BCF value of each insecticide was 100 (n=12) for diazinon, 170 (n=10) for fenitrothion, 20 (n=2) for malathion and 340 (n=6) for fenthion. The order of the 4 insecticides in the BCF values was fenthion > fenitrothion > diazinon > malathion.

Diazinon

![Fig. 3. Bioconcentration of diazinon in fresh-water fish](image)

Fenitrothion

![Fig. 4. Bioconcentration of fenitrothion in fresh-water fish](image)
Bioconcentration of Pesticides in Fish from Rivers and Lakes

Malathion

Fenthion

Fig. 5. Bioconcentration of malathion and fenthion in fresh-water fish

Benthiocarb

Fig. 6. Bioconcentration of benthiocarb in fresh-water fish

Those of the 7 herbicides in fresh-water fish are shown in Fig. 6 for benthiocarb (Kanazawa, 1981; 1983; Sanders & Hunn, 1982; Tsuda et al., 1988; 1989b; 1997d; Wang et al., 1992) and Fig. 7 for simetryn (Tsuda et al., 1988; 1989b; Xu & Zhang, 1989), molinate (Kanazawa, 1981; 1983; Martin et al., 1992; Tsuda et al., 1999), mefenacet (Tsuda et al., unpublished data), pretilachlor (Tsuda et al., unpublished data), simazine (Tsuda et al., 1992c) and atrazine (Isensee, 1976; Kearney et al., 1977; Gunkel & Streit, 1980; Gorge & Nagel, 1990; Du Preez & Van Vuren, 1992). The average BCF value of each herbicide was 192 (n=12) for benthiocarb,

www.intechopen.com
35 (n=3) for simetryn, 19 (n=3) for molinate, 21 (n=2) for mefenacet, 33 (n=2) for pretilachlor, 3.9 (n=1) for simazine and 8.3 (n=3) for atrazine. The order of the 7 herbicides in the BCF values was benthiocarb > simetryn, pretilachlor ≧ mefenacet, molinate > atrazine, simazine.

Fig. 7. Bioconcentration of simetryn, molinate, mefenacet, pretilachlor, simazine and atrazine in fresh-water fish

For benthiocarb, simetryn and atrazine, their bioconcentration in muscle and viscera (liver, kidney and gallbladder) of two species of fish (carp and bream) (Du Preez & Van Vuren, 1992; Tsuda et al., 1989b) is shown in Fig. 8. BCF values of benthiocarb were 26 in muscle, 63 in liver, 73 in kidney and 63 in gallbladder. Similarly, those of simetryn were 2.4 in muscle, 14 in liver, 8.1 in kidney and 11 in gallbladder. The order of the BCF values in the 4 parts of the carp for benthiocarb was slightly different from that of simetryn. But for both herbicides, the values of BCF in the viscera were higher than those in the muscle. Further in the bream, the BCF value in the liver was higher than that in the muscle.

Fig. 8. Bioconcentration of benthiocarb, simetryn and atrazine in muscle and viscera of fresh-water fish
4. Evaluation of the pesticide contaminations in the field fish by their laboratory BCF data

The contaminations of the 10 pesticides in the field fish were evaluated by comparing the field BCF data with the laboratory BCF data. The field BCF data of the 4 insecticides in the field fish (Table 5) and the laboratory BCF data (Figs. 3 - 5) are summarized and compared in Fig. 9. The field BCF data of the 4 insecticides were nearly equal to the laboratory BCF data. Similarly, the field BCF data (Table 6) and the laboratory BCF data (Figs. 6 - 7) of the 6 herbicides except atrazine are summarized and compared in Fig. 10. The field BCF data of the 4 insecticides and the 5 herbicides except simazine were nearly equal to the laboratory BCF data. It was revealed that the contamination of 9 pesticides except simazine in fish from the rivers and the lakes was approximately predicted by the laboratory BCF data.

Fig. 9. Comparison of laboratory BCF data and field BCF data for 4 insecticides

Fig. 10. Comparison of laboratory BCF data and field BCF data for 6 herbicides
Field BCF data of the 5 herbicides (molinate, bromobutide, simetryn, pretilachlor and mefenacet) in the fish from Lake Biwa (Fig. 2) and the laboratory BCF data are shown in Fig. 11. The average field BCF values were nearly equal to the average laboratory BCF values for molinate, bromobutide and pretilachlor but slightly lower for simetryn and slightly higher for mefenacet. The differences in the field and laboratory BCF values of simetryn and mefenacet are not wide, so both of the field and laboratory BCF data are considered to be the same levels for all of the 5 herbicides. From the comparison shown in Fig. 11, it was clarified that the contamination of the 5 herbicides in the fish from Lake Biwa could be approximately estimated by the laboratory BCF.

Fig. 11. Comparison of laboratory BCF data and field BCF data for 5 herbicides

5. References

Agradi, E., Baga, R., Cillo, F., Ceradini, S. & Heltai, D. (2000). Environmental contaminants and biochemical response in eel exposed to Po river water, Chemosphere Vol. 41: 1555-1562.

Amaraneri, S.R. & Pillala, R.R. (2001). Concentrations of pesticides in tissues of fish from Kolleru Lake in India, Environ. Toxicol. Vol. 16: 550-556.

Allison, D.T. & Hermanutz, R.O. (1977). Toxicity of diazinon to brook trout and fathead minnows, Ecol. Res. Ser., EPA-600/3-77-060, Environ. Res. Lab., U.S. EPA.

Abdel-Halim, K.Y., Salama, A.K., El-khateeb, E.N. & Bakry, N.M. (2006). Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: Implications for monitoring and biomarker responses, Chemosphere, Vol. 63: 1491-1498.

California Environmental Protection Agency (2002). Rice pesticides use and surface water monitoring 2002, California Environmental Protection Agency.

California Regional Water Quality Control Board (2002). Central Valley Region Draft Staff Report on Recommended Changes to California’s Clean Water Act Section 303(d) List Appendix B., California Environmental Protection Agency.
California State Water Resources Control Board (2002). *Dissolved pesticides in the Alamo River and the Salton Sea, California, 1996-97, Open-File Report* 02-232, California Environmental Protection Agency.

Chiba Prefecture (2002). *Survey results on endocrine disrupter etc. in fiscal year 2001, Kanagawa Prefecture* (in Japanese).

Chiba Prefecture (2003). *Survey results on endocrine disrupter etc. in fiscal year 2002, Kanagawa Prefecture* (in Japanese).

De Bruijn, J & Hermens, J.: *Uptake and elimination kinetics of organophosphorous pesticides in the guppy (Poecilia reticulata)*, (1991). Correlations with the octanol/water partition, *Environ. Toxicol. Chem*. Vol. 10: 791-804.

Domagalski, J. (1996). Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California, *Water Resources Bulletin* Vol. 32: 953-964.

Domagalski, J. (1997). Results of a prototype surface water network design for pesticides developed for the San Joaquin River Basin, California, *Journal of Hydrology* Vol. 192: 33-50.

Du Preez, H.H. & Van Vuren, J.H.J. (1992). Bioconcentration of atrazine in the Banded tilapia, *Tilapia sparrmanii*. *Comp. Biochem. Physiol.* Vol. 101C, 651-655.

Environment Canada (2002). *Pesticide concentrations in the Don and Humber River Watersheds (1998-2000)*, Environment Canada.

Escartin, E. & Porte, C. (1996). Bioaccumulation, metabolism and biochemical effects of the organophosphorus pesticide fenitrothion in Procambarus clarkii. *Environ, Toxicol. Chem.* Vol. 15: 915-920.

Fisher, S.W. (1985). Effects of pH upon the environmental fate of [14C] fenitrothion in an Aquatic Microcosm, *Ecotoxicol. Environ. Saf.* Vol. 10: 53-62.

Ganapathy, C., Nordmark, C., Bennett, K., Bradley, A., Feng, H., Hernandez, J. & White, J. (1997). *Temporal distribution of insecticide residues in four California rivers. Environment Hazard Assessment Program*, Environmental Monitoring and Pest Management Branch, California Department of Pesticide Regulation.

Gfrerer, M., Martens, D., Grawlik, B.M., Wenzl, T., Zhang, A., Quan, X., Sun, C., Chen, J., Platzer, B., Lankmayr, E. & Kettrup, A. (2002a). Triazines in the aquatic systems of the Eastern Chinese Rivers Liao-He and Yangtse, *Chemosphere* Vol. 47: 455-466.

Gfrerer, M., Wenzl, T., Quan, X., Platzer, B. & Lankmayr, E. (2002b). Occurrence of triazines in surface and drinking water of Liaoning Province in Eastern China, *J. Biochem. Biophys. Methods* Vol. 53: 217-228.

Goodman, L.R., Hansen, D.J., Coppage, D.L., Moore, J.C. & Matthews, E. (1979) Diazinon: Chronic toxicity to, and brain acetylcholinesterase inhibition in the sheepshead minnow, *Cyprinodon variegatus*, *Trans. Am. Fish. Soc.* Vol. 108: 479-488.

Gorge, G. & Nagel, R. (1990). Kinetics and metabolism of 14C-lindane and 14C-atrazine in early life stages of zebrafish (*Brachydanio rerio*), *Chemosphere* Vol. 21, 1125-1137.

Gunkel, G. & Streit, B. (1980). Mechanism of bioconcentration of a herbicide (Atrazine, *S*-triazine) in a freshwater mollusc (*Ancylus fluviatilis Mull.*) and a fish (*Coregonus fera Ju*) *Wat. Res.* Vol. 14, 1573-1584.

Harman-Fetcho, J.A., McConnell, L.L. & Baker, J.E. (1999). Agricultural pesticides in the Patuxent River, a tributary of the Chesapeake Bay. *J. Environ. Qual.* Vol. 28: 928-938.
Hall, L.W.Jr. (2003). Analysis of diazinon monitoring data from the Sacramento and Feather River watersheds: 1991-2001, Environmental Monitoring and Assessment, Vol. 86: 233-253.

Isensee, A.R. (1976). Variability of aquatic model ecosystem-derived data, Int. J. Environ. Stud. Vol. 10, 35-41.

Kanazawa, J. (1975). Uptake and excretion of organophosphorus and carbamate insecticides by freshwater fish, Motsugo, Pseudorasbora pava, Bull. Environ. Contam. Toxicol. Vol. 14: 346-352.

Kanazawa, J. (1978). Bioconcentration ratio of diazinon by freshwater fish and snail, Bull. Environ. Contam. Toxicol. Vol. 20: 613-617.

Kanazawa, J. (1981). Measurement of the bioconcentration factors of pesticides by freshwater fish and correlation with physicochemical properties or acute toxicities, Pestic. Sci. Vol. 12: 417-424.

Kanazawa, J. (1983). A metod of predicting the bioconcentration potential of pesticides by using fish, Jpn. Agric. Res. Q. Vol. 17: 173-179.

Kanagawa Prefecture (2000). Survey results on endocrine disrupter etc. in fiscal year 1999, Kanagawa Prefecture (in Japanese).

Kanagawa Prefecture (2001). Survey results on endocrine disrupter etc. in fiscal year 2000, Kanagawa Prefecture (in Japanese).

Kearney, P.C., Oliver, J.E., Helling, C.S., Isensee, A.R. & Kontson, A. (1977). Distribution, movement, persistence and metabolism of N-nitrosotrazine in soils and a model aquatic ecosystem, J. Agric. Food. Chem. Vol. 25, 1177-1181.

Keizer, J., D'Agostino, G. & Vittolzi, L. (1991). The importance of biotransformation in the toxicity of xenobiotics to fish. I. Toxicity and bioaccumulation of diazinon in guppy (Poecilia reticulata), Aquat. Toxicol. Vol. 21: 239-254.

Keizer, J., D'Agostino, G., Nagel, R., Gramenzi, F. & Vittolzi, L. (1993). Comparative diazinon toxicity in guppy and zebra fish: Different role of oxidative metabolism, Environ. Toxicol. Chem. Vol. 12: 1243-1250.

Laabs, A., Amelung, W., Pinto, A.A., Wantzen, M., Silva, C.J. & Zech, W. (2002). Pesticides in surface water, sediment and rainfall of the northeastern Pantanal basin, Brazil, J. Environ. Qual., Vol. 31: 1636-1648.

Lekkas, T., Kolokythas, G., Nikolaou, A., Kostopoulou, M., Kotrikla, A., Gatidou, G., Thomaidis, N.S., Golfinopoulos, S., Makri, C., Babos, D., Vagi, M., Stasinakis, A., Petsas, A. & Lekkas, D.F. (2004). Evaluation of the pollution of the surface waters of Greece from the priority compounds of List II, 76/464/EEC Directive, and other toxic compounds, Environ. Int. Vol. 30: 995-1007.

Leong, K.H., Tan, L.L.B., Mustafa, A.M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003, Chemosphere Vol. 66: 1153-1159.

Lockhart, W.L., Metner, D.A., Billeck, B.N., Rawn, G.P. & Muir, D.C.G. (1983). Bioaccumulation of some forestry pesticides in fish and aquatic plants, in Garner, W.Y., Billeck, B.N. & Muir, D.C.G.: (ed.), Proc. Symp. Implications of Chemical and Biol. Agents in Forestry Applic., Chem. Soc. No. 238: 297-318.
Mansour, S.A., Mahram, M.R. & Sidky, M.S. (2001). Ecotoxicological studies. 4. Monitoring of pesticides residues in the major components lake Qarun, Egypt. J. Acad. Soc Envir. Dev. Vol. 2: 83-116.

Mansour, S.A. & Sidky, M.M. (2003). Ecotoxicological studies. 6. The first comparative study between Lake Qarun and Wadi El-Rayyan wetland (Egypt), with respect to contamination of their major components, Food Chemistry Vol. 82: 181-189.

McConnell, L.L., Harman-Fetcho, J.A. & Hagy III, J.D. (2004). Measured concentraions of herbicides and model predictions of atrazine fate in the Patuxent River Estuary, J. Environ. Qual. Vol. 33: 594-604.

Martin, J.F., Bennett, L.W. & Anderson, W. (1992). Off-flavor in commerical catfish ponds resulting from molinate contamination, Sci. Total Environ. Vol. 119: 281-287.

Miyamoto, J., Takimoto, Y. & Mihara, K. (1979). Metabolism of organophosphorus insecticides in aquatic organisms, with special emphasis on fenitrothion, in Khan, M.A.Q. & Menn, J.J. (ed.), Pesticide and Xenobiotic Metabolism in Aquatic Organisms, ACS (Am. Chem. Soc.), Symp. Ser. 99: 3-20.

Ministry of the Environment, Japan (1993). Chemicals in the environment (Fiscal year 1993), Ministry of the Environment, Japan (in Japanese).

Ministry of the Environment, Japan (1999). Survey results on pesticide etc. residues in the environment, Ministry of the Environment, Japan (in Japanese).

Ministry of the Environment, Japan (2001). Survey results on environmental movements of pesticides (Fiscal year 2000), Ministry of the Environment, Japan (in Japanese).

Nihon Kagaku-busshtsu Anzen-Jyohou Center (1992). Kashinhou no Kizon-Kagakubusshtsu Anzensei-Tenken Data-Shu, Tsuusanshou kagakuhin-Anzen Ka (supervision), Kagakuhin-Kensa-Kyokai (edition), Nihon Kagaku-busshtsu Anzen-Jyohou Center (in Japanese).

Ohtsuki, A. (1994). Tamagawa Chu-Karyu-ryuiki niokeru Nouyaku-Kigen no Iou-ganyu-Yukibutsu no Noudo-Bunpu to Sono Seibutsu-Noushuku-Kikou nikansuru Kenkyu Seika No. 161, Zaidan-Houjin Tokyu-Kankyo-Jyoka-Zaidan (in Japanese).

Oros, D.R., Jarman, W.M., Lowe, T., David, N., Lowe, S. & Davis, J.A. (2003). Surveillance for previously unmonitored organic contaminants in the San Francisco Estuaray, Marine Pollution Bulletin Vol. 46: 1102-1110.

Rovedatti, M.G., Castañé, P.M., Topalián, M.L. & Salibián, A. (2001). Monitoring of organochlorine and organophosphorous pesticides in the water of the Reconquista River (Buenos Aires, Argentina), Wat. Res. Vol. 35: 3457-3461.

Sanders, H.O. & Hunn, J.B. (1982). Toxicity, bioconcentration and depuration of the herbicide Bolero 8EC in freshwater invertebrates and fish, Bull. Jpn. Soc. Fish./ Nippon Suisan Gakkaishi Vol. 48, 1139-1143.

Sancho, E., Ferrando, M., Andreu, E. & Gamon, M. (1992). Acute toxicity, uptake and clearance of diazinon by the European eel, Anguilla Anguilla, J. Environ. Sci. Health Vol. B27: 209-221.

Sancho, E., Ferrando, M.D., Andreu-Moliner, E. & Gamon, M. (1994). Fenitrothion Upake and bioconcentration in the European eel (Anguilla anguilla), Toxicol. Environ. Chem. Vol. 44: 81-87.
Seguchi, K. & Asaka, S. (1981). Intake and excretion of diazinon in freshwater fishes, Bull. Environ. Contam. Toxicol. Vol. 27: 244-249.

Struger, J., L’Italien, S. & Sverko, E. (2004). In-use pesticide concentrations in surface waters of the Laurentian Great Lakes, 1994-2000, J. Great Lakes Res. Vol. 30: 435-450.

Sudo, M., Kunimatsu, T. & Okubo, T. (2002a). Concentration and loading of pesticide residues in Lake Biwa basin (Japan), Wat. Res. Vol. 36: 315-329.

Sudo, M., Okubo, T., Kunimatsu, T., Ebise, S., Nakamura, M. & Kaneki, R. (2002b). Inflow and outflow of agricultural chemicals in Lake Biwa, Lakes & Reservoirs: Research and Management Vol. 7: 301-308.

Sudo, M., Kawachi, T., Hida, Y. & Kunimatsu, T. (2004). Spatial distribution and seasonal changes of pesticides in Lake Biwa, Japan, Limnology Vol. 5: 77-86.

Takimoto, Y., Ohshima, M., Yamada, H. & Miyamoto, J. (1984). Fate of fenitrothion in several developmental stages of the killifish (Oryzias latipes), Arch. Environ. Contam. Toxicol. Vol. 13: 579-587.

Takimoto, Y., Ohshima, M. & Miyamoto, J. (1987). Comparative metabolism of fenitrothion in aquatic organisms. I. Metabolism in the Euryhaline fish, Oryzias latipes and Mugil cephalus, Ecotoxicol. Environ. Saf. Vol. 13: 104-117.

Takino, A., Tsuda, T., Kojima, M., Harada, H. & Nakajima, A. (1998). Survey on herbicides in water and fish from rivers in Shiga Prefecture, Rep. Shiga Pref. Inst. Pub. Hlth. & Environ. Sci. Vol. 33: 96-98.

Tanabe, A., Mitobe, H., Kawata, K., Yasuhara, A. & Shibamoto, T. (2001). Seasonal and spatial studies on pesticides residues in surface waters of the Shinano River in Japan, J. Agric. Food Chem. Vol. 49: 3847-3852.

Tsuda, T., Aoki, S., Kojima, M. & Harada, H. (1988). Bioconcentration and excretion of benthiocarb and simetryne by willow shiner, Toxicol. Environ. Chem. Vol. 18: 31-36.

Tsuda, T., Aoki, S., Kojima, M. & Harada, H. (1989a). Bioconcentration and excretion of diazinon, IBP, malathion and fenitrothion by willow shiner, Toxicol. Environ. Chem. Vol. 24: 185-190.

Tsuda, T., Aoki, S., Kojima, M. & Harada, H. (1989b). Bioconcentration and excretion of benthiocarb and simetryne by carp, Wat. Res. Vol. 23, 529-531.

Tsuda, T., Aoki, S., Kojima, M. & Harada, H. (1990). Bioconcentration and excretion of diazinon, IBP, malathion and fenitrothion by carp, Comp. Biochem. Physiol. Vol. 96C: 23-26.

Tsuda, T., Aoki, S., Kojima, M. & Fujita, T. (1992a). Pesticides in water and fish from rivers flowing into Lake Biwa (II), Chemosphere Vol. 24: 1523-1531.

Tsuda, T., Aoki, S., Kojima, M. & Fujita, T. (1992b). Accumulation and excretion of organophosphorous pesticides by willow shiner, Chemosphere Vol. 25: 1945-1951.

Tsuda, T., Aoki, S., Kojima, M. & Fujita, T. (1992c). Accumulation and excretion of pesticides used in golf courses by carp (Cyprinus carpio), Comp. Biochem. Physiol. Vol. 101C: 63-66.

Tsuda, T., Aoki, S., Kojima, M. & Fujita, T. (1993). Accumulation and excretion of organophosphorous pesticides by carp Cyprinus carpio, Comp. Biochem. Physiol. Vol. 104C: 275-278.
Tsuda, T., Aoki, S., Kojima, M. & Fujita, T. (1994). Pesticides in water and fish from rivers flowing into Lake Biwa (III), Toxicol. Environ. Chem. Vol. 41: 85-90.

Tsuda, T., Aoki, S., Inoue, T. & Kojima, M. (1995). Accumulation and excretion of diazinon, fenthion and fenitrothion by killifish: comparison of individual and mixed pesticides. Wat. Res. Vol. 29: 455-458.

Tsuda, T., Inoue, T., Kojima, M. & Aoki, S. (1996a). Pesticides in water and fish from rivers flowing into Lake Biwa, Bull. Environ. Contam. Toxicol. Vol. 57: 442-449.

Tsuda, T., Kojima, M., Harada, H., Nakajima, A. & Aoki, S. (1996b). Accumulation and excretion of fenthion, fenthion sulfoxide and fenthion sulfone by killifish. Comp. Biochem. Physiol. Vol. 113C: 45-49.

Tsuda, T., Kojima, M., Harada, H., Nakajima, A. & Aoki, S. (1997a). Herbicides in water and fish from rivers flowing into Lake Biwa. Toxicol. Environ. Chem. Vol. 61: 243-249.

Tsuda, T., Kojima, M., Harada, H., Nakajima, A. & Aoki, S. (1997b). Acute toxicity, accumulation and excretion of organophosphorous insecticides and their oxidation products in killifish. Chemosphere Vol. 35: 939-949.

Tsuda, T., Kojima, M., Harada, H., Nakajima, A. & Aoki, S. (1997c). Relationships of bioconcentration factors of organophosphate pesticides among species of fish, Comp. Biochem. Physiol. Vol. 116C: 213-218.

Tsuda, T., Kojima, M., Harada, H., Nakajima, A. & Aoki, S. (1997d). Acute toxicity, accumulation and excretion of bentiocarb and its degradation products in killifish, Bull. Environ. Contam. Toxicol. Vol. 58, 603-610.

Tsuda, T., Kojima, M., Harada, H., Nakajima, A. & Aoki, S. (1998). Pesticides and their oxidation products in water and fish from rivers flowing into Lake Biwa, Bull. Environ. Contam. Toxicol. Vol. 60: 151-158.

Tsuda, T., Takino, A., Kojima, M. & Harada, H. (1999). Accumulation and excretion of molinate, bromobutide and their degradation products in fish, Toxicol. Environ. Chem. Vol. 73: 237-246.

Tsuda, T., Nakamura, T., Inoue, A. & Tanaka, K. (2009). Pesticides in water, fish and shellfish from littoral area of Lake Biwa, Bull. Environ. Contam. Toxicol. Vol. 82: 716-721.

Tsuda, T., Takino, A., Kojima, M., Harada, H. & Nakajima, A., unpublished data.

Vitanov, N.K., Lekova, K.I. & Dobreva, N.I. (2003). Monitoring river water in the lower Danube for atrazine contamination, Acta Chromatographica Vol. 13, 230-242.

Wang, Y.S., Jaw, C.G., Tang, H.C., Lin, T.S. & Chen, Y.L. (1992). Accumulation and release of herbicides butachlor, thiobencarb and chlomethoxyfen by fish, clam and shrimp, Bull. Environ. Contam. Toxicol. Vol. 48: 474-480.

Watanugi, F., Namiki, T. & Tsukabayashi, H. (1993) Fates of paddy herbicides in water course and residues in fishes (2), Rep. Ishikawa Pref. Inst. Pub. Hlth. & Environ. Sci. Vol. 30: 121-130 (in Japanese).

Washington State Department of Ecology (1999). Lake Whatcom watershed cooperative drinking water protection project - Results of 1998 water, sediment and fish tissue sampling -, Publication No.99-337, Washington State Department of Ecology.
Washington State Department of Ecology (2000). *Washington State Pesticide Monitoring Program - 1997 Surface Water Sampling Report*, Washington State Department of Ecology.

Xu, Y., Lay, J.P. & Zhang, Y. (1989). Uptake and transfer of 14C-simetryne through the laboratory freshwater food chain, *Chin. J. Oceanol. Limnol.* Vol. 7: 10-16.
This book provides an overview on a large variety of pesticide-related topics, organized in three sections. The first part is dedicated to the "safer" pesticides derived from natural materials, the design and the optimization of pesticides formulations, and the techniques for pesticides application. The second part is intended to demonstrate the agricultural products, environmental and biota pesticides contamination and the impacts of the pesticides presence on the ecosystems. The third part presents current investigations of the naturally occurring pesticides degradation phenomena, the environmental effects of the breakdown products, and different approaches to pesticides residues treatment. Written by leading experts in their respective areas, the book is highly recommended to the professionals, interested in pesticides issues.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Taizo Tsuda (2011). Bioconcentration of Pesticides in Fish from Rivers and Lakes, Pesticides - Formulations, Effects, Fate, Prof. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-532-7, InTech, Available from: http://www.intechopen.com/books/pesticides-formulations-effects-fate/bioconcentration-of-pesticides-in-fish-from-rivers-and-lakes