Constraints on the χ_{c1} versus χ_{c2} polarizations in proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$

The CMS Collaboration

Abstract

The polarizations of promptly produced χ_{c1} and χ_{c2} mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$. The χ_{c} states are reconstructed via their radiative decays $\chi_{c} \rightarrow J/\psi \gamma$, with the photons being measured through conversions to $e^{+}e^{-}$, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_{c2} to χ_{c1} yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the $J/\psi \rightarrow \mu^{+}\mu^{-}$ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.

"Published in Physical Review Letters as doi:10.1103/PhysRevLett.124.162002."
Quarkonium production is a benchmark for understanding how quarks combine into hadrons. The heaviness of c and b quarks makes it possible to describe the process in nonrelativistic quantum chromodynamics (NRQCD) \cite{1-8}, a framework valid when the quark velocities are small. This theory successfully described quarkonium cross sections measured \cite{9} at high transverse momentum, \(p_T \), by complementing the earlier color-singlet model \cite{10, 11} with a superposition of several processes where the bound state originates from colored QQ pairs. In contrast to this complex model, the \(J/\psi, \psi(2S), Y(1S), Y(2S), \) and \(Y(3S) \) differential cross sections measured at central rapidity by ATLAS \cite{12, 13} and CMS \cite{14, 16} have indistinguishable shapes as a function of \(p_T/M \), where \(M \) is the meson mass \cite{17, 18}. This universal momentum scaling pattern is also followed by the \(\chi^c_1 \) and \(\chi^c_2 \) states \cite{19, 20}. The corresponding polarization measurements \cite{21, 22} show that the five S-wave states are well compatible with being produced unpolarized, in contrast to the significant polarizations seen for the W and Z \cite{23-30}, Drell–Yan dileptons \cite{31-36}, and low-\(p_T \) quarkonia \cite{37, 38}. The lack of polarization of high-\(p_T \) vector quarkonia was a long-standing challenge for NRQCD \cite{39}, until recent global-fit analyses \cite{4, 40, 41} showed that cross sections and polarizations can be consistently described, unveiling a delicate compensation between terms in the factorization expansion \cite{42}. Among the measurements mentioned above, one piece is clearly missing: the \(\chi^c_1 \) and \(\chi^c_2 \) polarizations. Contrary to what happens for the vector states, predicting the \(\chi^c_1 \) and \(\chi^c_2 \) polarizations is rather simple within NRQCD, where they are unequivocally determined by a single color-octet parameter, which can be extracted from the \(\chi^c_2 \) to \(\chi^c_1 \) cross section ratio. The analysis of the measured ratios \cite{19, 20} provides a clear result: the polarizations of the two states should be opposite and almost maximal \cite{43} (a result also reached in a parameter-free singlet-only model \cite{44}). Finding that these P-wave states have similar polarizations (following the vector quarkonia in the polarizations, as in the cross sections) would be a challenge to NRQCD, where the two (necessarily different) singlet terms play a leading role.

This Letter reports the first measurement of the polarizations of promptly produced \(\chi^c_1 \) and \(\chi^c_2 \) mesons, using proton-proton (pp) data collected at the LHC by the CMS experiment at a center-of-mass energy of \(\sqrt{s} = 8 \) TeV, corresponding to an integrated luminosity of 19.1 fb\(^{-1}\). The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A detailed description of the CMS detector, together with a definition of the coordinate system used and relevant kinematic variables, can be found in Ref. \cite{45}.

The event sample was collected with a two-level trigger system \cite{46}. At level-1, custom hardware processors select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass 2.8–3.35 GeV, a dimuon vertex fit \(\chi^2 \) probability larger than 0.5%, and a distance of closest approach between the two muons smaller than 0.5 cm. The trigger also requires that the dimuon has \(p_T > 7.9 \) GeV and rapidity \(|y| < 1.25 \). The offline reconstruction requires two oppositely charged muons matching those that triggered the detector readout. The muon tracks must pass high-purity track quality requirements \cite{17}, have \(p_T > 3.5 \) GeV, \(|\eta| < 1.6 \), and fulfill the soft muon identification requirements \cite{48}, which imply, in particular, more than five hits in the silicon tracker, of which at least one is in the pixel layers. The muons are combined to form \(J/\psi \) candidates, which are kept for further processing if \(|y| < 1.2 \) and \(8 < p_T < 30 \) GeV. Promptly produced \(J/\psi \) mesons are selected by requiring the distance between the dimuon vertex and the interaction point be smaller than 2.5 times its uncertainty.

The analysis uses \(\chi^c \to J/\psi \gamma \) decays, with the \(J/\psi \) decaying to a dimuon. The photons are
detected through their conversions to e^+e^- in the beam pipe and in the material of the silicon tracker, starting from two oppositely charged tracks, of which one has at least four tracker hits and the other at least three. The tracks must have a conversion vertex at least 1.5 cm away from the beam axis and a χ^2 probability of the kinematic fit imposing zero mass and a common vertex that exceeds 0.05%. A more detailed account of the reconstruction and selection procedures is given in Refs. [20, 49]. The photons must have $p_T > 0.4$ GeV and $|\eta| < 1.5$. If the distance along the beam axis between the dimuon vertex and the extrapolated photon trajectory is smaller than 5 mm, a χ_c candidate is formed through a kinematic fit of the dimuon-photon system, constraining the dimuon mass to the J/ψ mass [50], the dielectron mass to zero, and requiring that the two muons and the photon have a common vertex. Only χ_c candidates with a fit χ^2 probability larger than 1% and invariant mass between 3.2 and 3.75 GeV are kept in the evaluation of the χ_{c1} and χ_{c2} yields. After all selection criteria, around 103 000, 106 000, and 45 000 χ_c candidates are kept in the J/ψ p_T bins 8–12, 12–18, and 18–30 GeV, respectively.

The seemingly natural way to measure the χ_{c1} and χ_{c2} polarizations is to determine the angular distribution of the considered χ_c decay; in the present case, this means the distribution of the photon direction in the χ_c rest frame. However, that distribution depends not only on the χ_c angular momentum composition, but also, and possibly in a very significant way, on the (poorly known) contributions of photons with large orbital angular momentum ($J^r > 1$). A cleaner determination of the χ_c polarization is obtained by measuring the dimuon angular decay distribution in the rest frame of the daughter J/ψ [51]. It is crucial to choose as polarization axis for the J/ψ decay not the J/ψ direction in the χ_c rest frame, as usually done in cascade decays, but rather any axis (center-of-mass helicity or Collins–Soper [52], for instance) defined in terms of the beam momenta in the J/ψ rest frame and ignoring its origin, as if it were observed exclusively. With the latter choice, the shape of the dimuon distribution represents an exact “clone” of the photon distribution in the χ_c rest frame, as it would be if it were undressed of its higher-order multipole contributions. This method provides, therefore, a full sensitivity to the angular momentum state of the χ_c, resulting in a (theoretically and experimentally) cleaner polarization measurement. The present analysis is performed in the center-of-mass helicity frame [53] and does not use the measured photon momentum, except to select, through the $J/\psi \gamma$ invariant mass distribution, the J/ψ mesons resulting from χ_{c1} or χ_{c2} decays. The dimuon angular decay distribution is parametrized with the function $1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi$, where θ and ϕ are the polar and azimuthal coordinates of the positive muon direction in the J/ψ rest frame, the system of axes being defined with z in the direction of the polarization axis and y perpendicular to the production plane. The χ_c angular momentum composition is encoded in the shape parameters λ_θ, λ_ϕ, and $\lambda_{\theta\phi}$, whose values depend on the choice of polarization frame but must always be within certain physical domains [51], narrower than the parameter space of inclusive vector-particle production [54, 55]. The relation between the shape parameters and the polarization configuration depends on the quarkonium state. For example, $\lambda_\theta = +1$ indicates $J_z = \pm 1$ for the J/ψ, $J_z = 0$ for the χ_{c1}, and $J_z = +2$ for the χ_{c2}; conversely, states in the $J_z = 0$ angular momentum configuration lead to $\lambda_\theta = -1$ for the J/ψ, $\lambda_\theta = +1$ for the χ_{c1}, and $\lambda_\theta = -0.6$ for the χ_{c2}.

The measurement of the λ parameters implies knowing the shapes of the χ_{c1} and χ_{c2} differential cross sections as functions of $|\cos \theta|$ and ϕ, which crucially depend on the accuracy of the corrections of the muon and photon detection efficiencies. These efficiencies change by an order of magnitude in the low p_T bin covered by the present analysis and shape variations within their uncertainties lead to very different λ_θ values. Increasing the muon p_T threshold to avoid the turn-on region of the efficiency function would imply a strong reduction in the number of selected events and a smaller coverage of the $|\cos \theta|$ variable, effectively preventing the
evaluation of λ_θ. Instead, the difference between the χ_{c1} and χ_{c2} polarizations, measured from the angular dependence of the χ_{c2}/χ_{c1} yield ratio, is essentially insensitive to the detection efficiencies, given that they cancel to a large extent in that ratio.

The $|\cos \theta|$ and ϕ dependences of the yield ratio are independently determined in three J/ψ p_T bins: 8–12, 12–18, and 18–30 GeV. For the study of possible azimuthal dependences of the χ_{c2}/χ_{c1} yield ratio, the events are split into subsamples corresponding to six equidistant ϕ bins between 0 and 90$^\circ$. Folding ϕ into the first quadrant reduces the effect of the statistical fluctuations without any loss of information, given the four-fold ϕ symmetry that the angular distributions obey. For each p_T bin, the six $J/\psi \gamma$ invariant mass distributions are simultaneously fitted with an unbinned maximum likelihood fit. In the mass fit model, identical for all ϕ bins, each of the χ_{c1} and χ_{c2} signal peaks is represented by a double-sided Crystal Ball (CB) function [56], which complements a Gaussian core distribution with lower and upper power-law tails. The underlying combinatorial background, reflecting uncorrelated $J/\psi \gamma$ associations, is parametrized by a Breit–Wigner convolved with a Gaussian resolution function. To minimize fit instabilities, the χ_{c0} shape and yield parameters are determined from the corresponding parameters of the χ_{c1} term. The simultaneous fit has the advantage of reducing by a factor of six the number of free parameters defining the shapes of the signal and background mass models, by requiring that those parameters are independent of ϕ, an assumption validated by studies of simulated and measured event samples.

To study the polar angle dependence of the χ_{c2}/χ_{c1} yield ratio, 6, 7, or 5 $|\cos \theta|$ bins are considered, depending on the p_T bin. The $|\cos \theta|$ coverage is smaller in the lowest p_T bin (up to 0.45 instead of up to 0.625) because those events are the ones most affected by the single-muon p_T cut. Analogously to the procedure just described for the ϕ dimension, the χ_{c2}/χ_{c1} yield ratios are obtained as a function of $|\cos \theta|$ through a simultaneous fit of the $J/\psi \gamma$ invariant mass distributions. In this case, however, some of the shape parameters are not required to be independent of $|\cos \theta|$. More details can be found in Ref. [57].

Figure 1 shows one of the simultaneously fitted $J/\psi \gamma$ invariant mass distributions. The two signal peaks are well resolved, with widths around 6 MeV, consistent with the predictions from simulation. All of the fitted χ_c mass distributions show good fit qualities, as judged from the
\(\chi^2 \) between the binned distributions and the fitted functions, the worst case giving \(\chi^2 = 601 \) for 569 degrees of freedom (ndf).

For each bin in \(J/\psi \) \(p_T \) and \(|\cos \theta| \), or \(\varphi \), the fitted \(J/\psi \gamma \) invariant mass distributions provide functions reflecting the probability that an event of mass \(m \) is a \(\chi_{c1} \) or a \(\chi_{c2} \). The \(\chi_{c1} \) and \(\chi_{c2} \) yields, corrected for acceptance and efficiencies, are then computed as the sums, over all events in that bin of \(J/\psi \) \(p_T \) and \(|\cos \theta| \), or \(\varphi \), of the product between the corresponding probabilities and the weights \(1/A_f(|\cos \theta|, \varphi, p_T) \), where \(A_f(|\cos \theta|, \varphi, p_T) \) are the acceptance times efficiency three-dimensional maps, independently evaluated for each \(\chi_{cf} \) state with large samples of simulated events. By correcting the detector acceptance and efficiency effects on an event-by-event basis, with weights depending on three dimuon observables (\(|\cos \theta| \), \(\varphi \), and \(p_T \)), this procedure is immune to integration biases affecting certain one-dimensional analyses [58]. Simulation studies have shown that, if the three-dimensional correction maps are sufficiently fine-grained, the results do not depend on the polarization scenario nor on the \(p_T \) distributions assumed in the simulation, and that all physically allowed differences between the \(\chi_{c1} \) and \(\chi_{c2} \) polarizations, in any frame, can be reliably determined from the dependences of the \(\chi_{c2}/\chi_{c1} \) yield ratios on \(|\cos \theta| \) and \(\varphi \).

The corrected ratios are reported in Tables A.1 and A.2 of Appendix A and shown in Fig. 2, where it can be seen that the uncorrected and corrected values are almost identical, apart from normalization factors irrelevant for the determination of the polar and azimuthal anisotropies.

Several sources of potential systematic effects have been considered, by redoing the analysis with different inputs and comparing the obtained results with the nominal ones. The results are insensitive to variations of the thresholds used to reject the nonprompt contamination from \(b \) hadron decays, estimated to be around 5\%, or events with a poor kinematic vertex fit quality in the reconstruction of the \(\chi_c \) candidates. The fits of the mass distributions were redone using alternative options for the low- and high-mass tails of the double-sided CB functions, and by varying the combinatorial background description, both by changing the floating parameters of the nominal function and by using the alternative function \((x - x_0)\lambda^{\nu} \exp (\nu(x - x_0)) \), where \(\nu \) is left free, \(\lambda \) is fitted to a constant, and \(x_0 = 3.2 \) GeV, a value determined in fits to the background-only mass distributions obtained by excluding the 3.37–3.6 GeV region. The sensitivity of the results to the acceptance and efficiency corrections was evaluated by redoing the analysis with maps computed with alternative single-muon and photon detection efficiencies, as well as with simulated samples generated with different \(p_T/M \) shapes for each of the two \(\chi_c \) states. All effects lead to similar variations in the yields of the two states and cancel, to a large extent, in the \(\chi_{c2}/\chi_{c1} \) ratio, apart from a normalization shift that has no impact on the angular anisotropies. The total systematic uncertainties are less than 20\% of the statistical ones.

The \(\chi_{c2} \) to \(\chi_{c1} \) yield ratios as a function of \(\varphi \), shown in Fig. 2 (left), are compatible with being flat, excluding large differences in azimuthal anisotropy, as exemplified by the two curves compared to the data points in the second \(p_T \) bin. These curves represent the simplest conceivable polarization hypotheses leading to large azimuthal effects in the helicity frame: \(\chi_{c1} \) and \(\chi_{c2} \) have maximally different polar anisotropies in the Collins–Soper frame, corresponding to specific alignments of their angular momentum vectors along the collision direction \((J_{z1} = J_{z2} = 0 \text{ and } J_{z1} = \pm 1, J_{z2} = \pm 2) \), for the dotted and dash-dotted curve, respectively. In fact, the change from the Collins–Soper to the helicity quantization axis is almost a 90° rotation, transforming polarized distributions into azimuthally anisotropic ones. This uniform \(\varphi \) behavior confirms the choice of the helicity axis as the one that should reflect most closely the natural alignment of the angular momentum vector, maximizing the polar anisotropy effects.

In Fig. 2 (right) the measured \(|\cos \theta| \) dependence of the \(\chi_{c2}/\chi_{c1} \) ratio is compared to the analytic
expression \((1 + \lambda_\phi^{X_{c2}} \cos^2 \theta) / (1 + \lambda_\phi^{X_{c1}} \cos^2 \theta) \). Two scenarios are considered. The unpolarized scenario, \(\lambda_\phi^{X_{c1}} = \lambda_\phi^{X_{c2}} = 0 \) independently of \(p_T \), represented in Fig. 2 (right) by the dashed flat lines, gives a poor description of the data. A fit with free normalizations leads to \(\chi^2 / \text{ndf} = 31 / 15 \), corresponding to a \(\chi^2 \) probability of 0.9%. The NRQCD scenario \[43\], where \(\lambda_\phi^{X_{c1}} = 0.72, 0.65, \) and \(0.56 \), and \(\lambda_\phi^{X_{c2}} = -0.48, -0.35, \) and \(-0.19 \), for the average \(p_T \) values in each of the three bins, agrees well with the data: \(\chi^2 / \text{ndf} = 13 / 15 \), corresponding to \(P(\chi^2) = 58\% \).

Figure 3 shows the polar anisotropy parameters \(\lambda_\theta^{X_{c1}} \) and \(\lambda_\theta^{X_{c2}} \) derived from the measured \(|\cos \theta| \) dependence of the \(\chi_{c2} / \chi_{c1} \) ratio, combining the three \(p_T \) bins. The contours in the \(\lambda_\theta^{X_{c1}} \) vs. \(\lambda_\theta^{X_{c2}} \) plane are obtained by scanning the two \(\lambda_\theta \) parameters and the three normalizations to evaluate the \(\chi^2 \) profiles corresponding to the 68.3, 95.5, and 99.7% confidence levels. The unpolarized scenario \(\lambda_\theta^{X_{c1}} = \lambda_\theta^{X_{c2}} = 0 \), as well as more than half of the physically allowed region, including all cases where \(\lambda_\theta^{X_{c2}} \geq \lambda_\theta^{X_{c1}} \), are outside the 99.7% contour. In terms of specific pure angular momentum configurations, it can be seen that, in particular, the cases \(f_z^{X_{c2}} = \pm 2 \) and \(f_z^{X_{c1}} = f_z^{X_{c2}} = \pm 1 \) are strongly disfavored.

The correlation between the \(\lambda_\theta^{X_{c1}} \) and \(\lambda_\theta^{X_{c2}} \) parameters can be accurately expressed through a simple parametrization: \[\lambda_\theta^{X_{c2}} = (-0.94 + 0.90 \lambda_\theta^{X_{c1}}) \pm (0.51 + 0.05 \lambda_\theta^{X_{c1}}), (-0.76 + 0.80 \lambda_\theta^{X_{c1}}) \pm (0.26 + 0.05 \lambda_\theta^{X_{c1}}), \) and \((-0.78 + 0.77 \lambda_\theta^{X_{c1}}) \pm (0.26 + 0.06 \lambda_\theta^{X_{c1}}) \), for the three consecutive \(p_T \) bins. These expressions can be used for direct comparisons to theoretical scenarios.

Figure 4 shows, as a function of \(p_T / M \) of the J/\(\psi \) (equal on average to the \(p_T / M \) of the \(\chi_{c1} \) and \(\chi_{c2} \) mothers \[17\]), the \(\lambda_\theta^{X_{c2}} \) values measured when \(\lambda_\theta^{X_{c1}} \) is fixed to the predictions of the
In summary, first experimental constraints on the polarizations of promptly produced χ_{c1} and χ_{c2} mesons have been obtained, using pp collisions at $\sqrt{s} = 8$ TeV. The analysis uses the $J/\psi \gamma$ decay channel in three $J/\psi p_T$ bins between 8 and 30 GeV. The measurement, made in the helicity frame, shows a significant difference between the polar anisotropy parameters $\lambda_{\chi_{c1}}$ and $\lambda_{\chi_{c2}}$, in agreement with the NRQCD prediction. This result is a new step in the experimental studies of quarkonium production and the first significant indication of kinematic differences...
between the various quarkonia.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEQ, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MON (Montenegro); MBI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBK, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] G. Bodwin, E. Braaten, and P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium”, Phys. Rev. D 51 (1995) 1125, doi:10.1103/PhysRevD.51.1125, [Erratum: doi:10.1103/PhysRevD.55.5853], arXiv:hep-ph/9407339.

[2] M. Butenschoen and B. A. Kniehl, “J/ψ polarization at Tevatron and LHC: nonrelativistic-QCD factorization at the crossroads”, Phys. Rev. Lett. 108 (2012) 172002, doi:10.1103/PhysRevLett.108.172002, arXiv:1201.1872.

[3] M. Butenschoen and B. A. Kniehl, “Next-to-leading-order tests of NRQCD factorization with J/ψ yield and polarization”, Mod. Phys. Lett. A 28 (2013) 1350027, doi:10.1142/S0217732313500272, arXiv:1212.2037.

[4] K.-T. Chao et al., “J/ψ polarization at hadron colliders in nonrelativistic QCD”, Phys. Rev. Lett. 108 (2012) 242004, doi:10.1103/PhysRevLett.108.242004, arXiv:1201.2675.

[5] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, “Polarization for prompt J/ψ and ψ(2S) production at the Tevatron and LHC”, Phys. Rev. Lett. 110 (2013) 042002, doi:10.1103/PhysRevLett.110.042002, arXiv:1205.6682.

[6] H.-S. Shao, Y.-Q. Ma, K. Wang, and K.-T. Chao, “Polarizations of χc1 and χc2 in prompt production at the LHC”, Phys. Rev. Lett. 112 (2014) 182003, doi:10.1103/PhysRevLett.112.182003, arXiv:1402.2913.
[7] H.-S. Shao and K.-T. Chao, “Spin correlations in polarizations of P-wave charmonia χ_{cJ} and impact on J/ψ polarization”, *Phys. Rev. D* **90** (2014) 014002, doi:10.1103/PhysRevD.90.014002, arXiv:1209.4610.

[8] G. T. Bodwin et al., “Fragmentation contributions to hadroproduction of prompt $J/\psi, \chi_{cJ}$, and $\psi(2S)$ states”, *Phys. Rev. D* **93** (2016) 034041, doi:10.1103/PhysRevD.93.034041, arXiv:1509.07904.

[9] CDF Collaboration, “J/ψ and $\psi(2S)$ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV”, *Phys. Rev. Lett.* **79** (1997) 572, doi:10.1103/PhysRevLett.79.572.

[10] R. Baier and R. Ruckl, “Hadronic production of J/ψ and Υ: transverse momentum distributions”, *Phys. Lett. B* **102** (1981) 364, doi:10.1016/0370-2693(81)90636-5.

[11] J.-P. Lansberg, “On the mechanisms of heavy-quarkonium hadroproduction”, *Eur. Phys. J. C* **61** (2009) 693, doi:10.1140/epjc/s10052-008-0826-9, arXiv:0811.4005.

[12] ATLAS Collaboration, “Measurement of the production cross-section of $\psi' \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 7$ TeV at ATLAS”, *JHEP* **09** (2014) 079, doi:10.1007/JHEP09(2014)079, arXiv:1407.5532.

[13] ATLAS Collaboration, “Measurement of Υ production in 7 TeV pp collisions at ATLAS”, *Phys. Rev. D* **87** (2013) 052004, doi:10.1103/PhysRevD.87.052004, arXiv:1211.7255.

[14] CMS Collaboration, “Measurement of J/ψ and ψ' prompt double-differential cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* **114** (2015) 191802, doi:10.1103/PhysRevLett.114.191802, arXiv:1502.04155.

[15] CMS Collaboration, “Measurements of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ differential cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **749** (2015) 14, doi:10.1016/j.physletb.2015.07.037, arXiv:1501.07750.

[16] CMS Collaboration, “Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **780** (2018) 251, doi:10.1016/j.physletb.2018.02.033, arXiv:1710.11002.

[17] P. Faccioli et al., “Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns”, *Phys. Lett. B* **773** (2017) 476, doi:10.1016/j.physletb.2017.09.006, arXiv:1702.04208.

[18] P. Faccioli, C. Lourenc ¸o, M. Ara´ujo, and J. Seixas, “Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production”, *Eur. Phys. J. C* **78** (2018) 118, doi:10.1140/epjc/s10052-018-5610-x, arXiv:1802.01102.

[19] ATLAS Collaboration, “Measurement of χ_{c1} and χ_{c2} production with $\sqrt{s} = 7$ TeV pp collisions at ATLAS”, *JHEP* **07** (2014) 154, doi:10.1007/JHEP07(2014)154, arXiv:1404.7035.

[20] CMS Collaboration, “Measurement of the relative prompt production rate of χ_{c2} and χ_{c1} in pp collisions at $\sqrt{s} = 7$ TeV”, *Eur. Phys. J. C* **72** (2012) 2251, doi:10.1140/epjc/s10052-012-2251-3, arXiv:1210.0875.
[21] CMS Collaboration, “Measurement of the prompt J/ψ and ψ' polarizations in pp collisions at $\sqrt{s} = 7 \text{ TeV}$”, Phys. Lett. B 727 (2013) 381, doi:10.1016/j.physletb.2013.10.055, arXiv:1307.6070

[22] CMS Collaboration, “Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ polarizations in pp collisions at $\sqrt{s} = 7 \text{ TeV}$”, Phys. Rev. Lett. 110 (2013) 081802, doi:10.1103/PhysRevLett.110.081802, arXiv:1209.2922

[23] E. Mirkes and J. Ohnemus, “W and Z polarization effects in hadronic collisions”, Phys. Rev. D 50 (1994) 5692, doi:10.1103/PhysRevD.50.5692, arXiv:hep-ph/9406381

[24] CDF Collaboration, “First measurement of the angular coefficients of Drell–Yan e^+e^- pairs in the Z mass region from $p \bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$”, Phys. Rev. Lett. 106 (2011) 241801, doi:10.1103/PhysRevLett.106.241801, arXiv:1103.5699

[25] CMS Collaboration, “Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s} = 8 \text{ TeV}$ and decaying to $\mu^+\mu^-$ as a function of transverse momentum and rapidity”, Phys. Lett. B 750 (2015) 154, doi:10.1016/j.physletb.2015.08.061, arXiv:1504.03512

[26] D0 Collaboration, “Measurement of the angular distribution of electrons from $W \rightarrow e\nu$ decays observed in $p \bar{p}$ collisions at $\sqrt{s} = 1.8 \text{ TeV}$”, Phys. Rev. D 63 (2001) 072001, doi:10.1103/PhysRevD.63.072001, arXiv:hep-ex/0009034

[27] CDF Collaboration, “Measurement of the polar-angle distribution of leptons from W boson decay as a function of the W transverse momentum in $p \bar{p}$ collisions at $\sqrt{s} = 1.8 \text{ TeV}$”, Phys. Rev. D 70 (2004) 032004, doi:10.1103/PhysRevD.70.032004, arXiv:hep-ex/0311050

[28] CDF Collaboration, “Measurement of the azimuthal angle distribution of leptons from W boson decays as a function of the W transverse momentum in $p \bar{p}$ collisions at $\sqrt{s} = 1.8 \text{ TeV}$”, Phys. Rev. D 73 (2006) 052002, doi:10.1103/PhysRevD.73.052002, arXiv:hep-ex/0504020

[29] CMS Collaboration, “Measurement of the polarization of W bosons with large transverse momenta in $W+\text{Jets}$ events at the LHC”, Phys. Rev. Lett. 107 (2011) 021802, doi:10.1103/PhysRevLett.107.021802, arXiv:1104.3829

[30] ATLAS Collaboration, “Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ with the ATLAS experiment”, Eur. Phys. J. C 72 (2012) 2001, doi:10.1140/epjc/s10052-012-2001-6, arXiv:1203.2165

[31] C. S. Lam and W.-K. Tung, “A systematic approach to inclusive lepton pair production in hadronic collisions”, Phys. Rev. D 18 (1978) 2447, doi:10.1103/PhysRevD.18.2447

[32] P. Faccioli, C. Lourenço, and J. Seixas, “Rotation-invariant relations in vector meson decays into fermion pairs”, Phys. Rev. Lett. 105 (2010) 061601, doi:10.1103/PhysRevLett.105.061601, arXiv:1005.2601

[33] NA10 Collaboration, “Angular distributions of muon pairs produced by negative pions on deuterium and tungsten”, Z. Phys. C 37 (1988) 545, doi:10.1007/BF01549713

[34] J. S. Conway et al., “Experimental study of muon pairs produced by 252 GeV pions on tungsten”, Phys. Rev. D 39 (1989) 92, doi:10.1103/PhysRevD.39.92
[35] NuSea Collaboration, “Measurement of angular distributions of Drell–Yan dimuons in p+d interactions at 800 GeV/c”, Phys. Rev. Lett. 99 (2007) 082301, doi:10.1103/PhysRevLett.99.082301, arXiv:hep-ex/0609005

[36] NuSea Collaboration, “Measurement of angular distributions of Drell–Yan dimuons in p+p interactions at 800 GeV/c”, Phys. Rev. Lett. 102 (2009) 182001, doi:10.1103/PhysRevLett.102.182001, arXiv:0811.4589

[37] HERA-B Collaboration, “Angular distributions of leptons from J/ψ’s produced in 920 GeV fixed-target proton-nucleus collisions”, Eur. Phys. J. C 60 (2009) 517, doi:10.1140/epjc/s10052-009-0957-7, arXiv:0901.1015

[38] NuSea Collaboration, “Observation of polarization in bottomonium production at √s = 38.8 GeV”, Phys. Rev. Lett. 86 (2001) 2529, doi:10.1103/PhysRevLett.86.2529, arXiv:hep-ex/0011030

[39] N. Brambilla et al., “Heavy quarkonium: Progress, puzzles, and opportunities”, Eur. Phys. J. C 71 (2011) 1534, doi:10.1140/epjc/s10052-010-1534-9, arXiv:1010.5827

[40] P. Faccioli et al., “Quarkonium production in the LHC era: A polarized perspective”, Phys. Lett. B 736 (2014) 98, doi:10.1016/j.physletb.2014.07.006, arXiv:1403.3970

[41] G. T. Bodwin, H. S. Chung, U.-R. Kim, and J. Lee, “Fragmentation contributions to J/ψ production at the Tevatron and the LHC”, Phys. Rev. Lett. 113 (2014) 022001, doi:10.1103/PhysRevLett.113.022001, arXiv:1403.3612

[42] P. Faccioli and C. Lourenc ¸o, “NRQCD colour-octet expansion vs. LHC quarkonium production: signs of a hierarchy puzzle?”, Eur. Phys. J. C 79 (2019) 457, doi:10.1140/epjc/s10052-019-6968-0, arXiv:1905.09553

[43] P. Faccioli et al., “From identical S- and P-wave χc spectra to maximally distinct polarizations: probing NRQCD with χ states”, Eur. Phys. J. C 78 (2018) 268, doi:10.1140/epjc/s10052-018-5755-7, arXiv:1802.01106

[44] S. P. Baranov, “Polarization observables in Dalitz decays χcJ → J/ψμ⁺μ⁻ at the LHC”, Acta Phys. Polon. Supp. 12 (2019) 843, doi:10.5506/APhysPolBSupp.12.843

[45] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[46] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366

[47] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569

[48] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at √s = 7 TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071
[49] CMS Collaboration, “Measurement of the production cross section ratio $\sigma(\chi_{b2}(1P))/\sigma(\chi_{b1}(1P))$ in pp collisions at $\sqrt{s} = 8$ TeV”, Phys. Lett. B 743 (2015) 383, doi:10.1016/j.physletb.2015.02.048 arXiv:1409.5761

[50] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, Phys. Rev. D 98 (2018) 030001, doi:10.1103/PhysRevD.98.030001

[51] P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wohri, “Determination of χ_c and χ_b polarizations from dilepton angular distributions in radiative decays”, Phys. Rev. D 83 (2011) 096001, doi:10.1103/PhysRevD.83.096001 arXiv:1103.4882

[52] J. C. Collins and D. E. Soper, “Angular distribution of dileptons in high-energy hadron collisions”, Phys. Rev. D 16 (1977) 2219, doi:10.1103/PhysRevD.16.2219

[53] P. Faccioli, C. Lourenço, J. Seixas, and H. Wohri, “Towards the experimental clarification of quarkonium polarization”, Eur. Phys. J. C 69 (2010) 657, doi:10.1140/epjc/s10052-010-1420-5 arXiv:1006.2738

[54] P. Faccioli, C. Lourenço, and J. Seixas, “New approach to quarkonium polarization studies”, Phys. Rev. D 81 (2010) 111502(R), doi:10.1103/PhysRevD.81.111502 arXiv:1005.2855

[55] P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wohri, “Model-independent constraints on the shape parameters of dilepton angular distributions”, Phys. Rev. D 83 (2011) 056008, doi:10.1103/PhysRevD.83.056008 arXiv:1102.3946

[56] M. J. Oreglia, “A study of the reactions $\psi' \rightarrow \gamma \gamma \psi$” PhD thesis, Stanford University, 1980.

[57] T. Madlener, “Measurement of the prompt χ_c1 and χ_c2 polarizations at CMS” PhD thesis, Technische Universität Wien, 2020.

[58] P. Faccioli, “Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions”, Mod. Phys. Lett. A 27 (2012) 1230022, doi:10.1142/S0217732312300224 arXiv:1207.2050
A Numerical values of the measured yield ratios

Table A.1: The ratio of the χ_{c2} to χ_{c1} yields, corrected for acceptance and efficiencies, vs. φ, in three J/ψ p_T ranges. The average φ values are also given.

J/ψ p_T (GeV)	φ (degrees)	$\langle \varphi \rangle$ (degrees)	χ_{c2}/χ_{c1}
0–15	7.8	0.451$_{+0.027}^{-0.025}$	
15–30	22.6	0.452$_{+0.026}^{-0.025}$	
30–45	37.6	0.499$_{+0.027}^{-0.026}$	
45–60	52.6	0.472$_{+0.025}^{-0.024}$	
60–75	67.6	0.450$_{+0.023}^{-0.022}$	
75–90	82.5	0.445$_{+0.023}^{-0.022}$	
0–15	7.7	0.438$_{+0.021}^{-0.020}$	
15–30	22.5	0.393$_{+0.018}^{-0.017}$	
30–45	37.5	0.412$_{+0.019}^{-0.018}$	
45–60	52.4	0.449$_{+0.020}^{-0.019}$	
60–75	67.5	0.445$_{+0.020}^{-0.019}$	
75–90	82.5	0.400$_{+0.018}^{-0.017}$	
0–15	7.6	0.425$_{+0.030}^{-0.028}$	
15–30	22.6	0.412$_{+0.028}^{-0.027}$	
30–45	37.5	0.420$_{+0.030}^{-0.028}$	
45–60	52.5	0.421$_{+0.030}^{-0.028}$	
60–75	67.6	0.399$_{+0.028}^{-0.026}$	
75–90	82.5	0.409$_{+0.028}^{-0.027}$	
Table A.2: The ratio of the χ_{c2} to χ_{c1} yields, corrected for acceptance and efficiencies, vs. $|\cos \vartheta|$, in three J/ψ p_T ranges. The average $|\cos \vartheta|$ values are also given. Fitting these ratios to a flat function (unpolarized scenario) leads to $\chi^2/\text{ndf} = 7.2/5$, 13.5/6, and 10.3/4, respectively for the p_T ranges 8–12, 12–18, and 18–30 GeV; the corresponding values for the NRQCD prediction are 4.1/5, 4.9/6, and 4.2/4.

| J/ψ p_T (GeV) | $|\cos \vartheta|$ | $\langle |\cos \vartheta| \rangle$ | χ_{c2}/χ_{c1} |
|---------------------|------------------|------------------|------------------|
| | | | |
| 8–12 | | | |
| 0.000–0.075 | 0.037 | 0.453$^{+0.018}_{-0.018}$ |
| 0.075–0.150 | 0.111 | 0.468$^{+0.021}_{-0.020}$ |
| 0.150–0.225 | 0.185 | 0.489$^{+0.025}_{-0.024}$ |
| 0.225–0.300 | 0.259 | 0.439$^{+0.024}_{-0.025}$ |
| 0.300–0.375 | 0.332 | 0.388$^{+0.035}_{-0.031}$ |
| 0.375–0.450 | 0.404 | 0.411$^{+0.056}_{-0.054}$ |
| 12–18 | | | |
| 0.000–0.075 | 0.038 | 0.476$^{+0.023}_{-0.021}$ |
| 0.075–0.150 | 0.113 | 0.438$^{+0.020}_{-0.019}$ |
| 0.150–0.225 | 0.187 | 0.421$^{+0.020}_{-0.019}$ |
| 0.225–0.300 | 0.262 | 0.397$^{+0.021}_{-0.019}$ |
| 0.300–0.375 | 0.336 | 0.398$^{+0.022}_{-0.021}$ |
| 0.375–0.450 | 0.409 | 0.376$^{+0.026}_{-0.024}$ |
| 0.450–0.625 | 0.502 | 0.392$^{+0.033}_{-0.032}$ |
| 18–30 | | | |
| 0.000–0.150 | 0.076 | 0.445$^{+0.036}_{-0.032}$ |
| 0.150–0.300 | 0.225 | 0.456$^{+0.030}_{-0.027}$ |
| 0.300–0.375 | 0.338 | 0.463$^{+0.039}_{-0.036}$ |
| 0.375–0.450 | 0.412 | 0.365$^{+0.032}_{-0.030}$ |
| 0.450–0.625 | 0.526 | 0.370$^{+0.027}_{-0.025}$ |
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth, M. Jeitler, N. Kramer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, J. Schieck, R. Schöfbeck, M. Spanring, W. Waltenberger, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenuk, A.K. Kalsi, L. Moureaux, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, I. Khvastunov, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, V. Lemaitre, J. Prisciandaro, A. Saggio, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, J. Martins, D. Matos Figueiredo, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, A. Szajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
G.M. Chen, H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Q. Wang

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, D. Majumder, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, E. Salama

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. García, J. Havukainen, J.K. Heikkilä, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besançon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Gervenaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro14, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris
S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram15, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte15, J.-C. Fontaine15, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, S. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriazhvili16

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze10

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Erdmann, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdynakow, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, W. Haj Ahmad17, O. Hlushchenko, T. Kress, T. Müller, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl18
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, P. Asmuss, I. Babounikau, H. Bakhshiansohi, K. Beernaert, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. De franchis, C. Díez Pardos, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, L.I. Esteve Bazos, E. Gallo, A. Geiser, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem, M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, T. Lidrych, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, D. Pérez Adán, S.K. Pflitsch, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, R.E. Sosa Ricardo, H. Tholen, O. Turkot, A. Vagnerini, M. Van De Klundert, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev, R. Zlebcík

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Köglere, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C. E. Niemeyer, A. Reimers, O. Rieger, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut für Technologie, Karlsruhe, Germany
M. Akbiyik, M. Baselga, S. Baur, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, M. Giffels, A. Gottmann, F. Hartmann, C. Heidecker, U. Husemann, M. A. Iqbal, S. Kudella, S. Maier, S. Mitra, M. U. Mozer, D. Müllner, Th. Müller, M. Musich, A. Nürnberg, G. Quast, K. Rabbertz, D. Savoiu, D. Schäfer, M. Schneef, M. Schröder, I. Shvetsova, H. J. Simonis, R. Ulrich, M. Wassmer, M. Weber, C. Wöhrmann, R. Wolf, S. Wozniewski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, G. Karathanasis, P. Kontaxakis, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatis, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsiopolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas, F. A. Triantidis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G. I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi
S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa, A. Ranieria, G. Selvaggia,b, L. Silvestrisa, F.M. Simonea,b, R. Vendittia, P. Verwilligena

\textbf{INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy}
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavolloa, C. Cioccaa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbrinia, A. Fanfania,b, E. Fontanesia,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, F. Iemmia,b, S. Lo Meoa,32, S. Marcellinia, G. Masettia, F.L. Navarriaa,b, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Siolia,b, N. Tosia

\textbf{INFN Sezione di Catania a, Università di Catania b, Catania, Italy}
S. Albergoa,b,33, S. Costaa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b,33, C. Tuvea,b

\textbf{INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy}
G. Barbaglia, A. Cassese, R. Ceccarelli, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, F. Fioria,c, E. Focardia,b, G. Latinoa,b, P. Lenza,b, M. Lizzo, M. Meschinia, S. Paoloa,b, R. Seidita, G. Sguazzonia, L. Viliania

\textbf{INFN Laboratori Nazionali di Frascati, Frascati, Italy}
L. Benussi, S. Bianco, D. Piccolo

\textbf{INFN Sezione di Genova a, Università di Genova b, Genova, Italy}
M. Bozzoa,b, F. Ferroa, R. Mulargiaa,b, E. Robuttia, S. Tosia,b

\textbf{INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy}
A. Benagliaa, A. Bescha,b, F. Brivioa,b, V. Cirioloa,b,18, M.E. Dinardoa,b, P. Dinia, S. Gennaia, A. Ghezzia,b, P. Govonia,b, L. Guazzia,b, M. Malbertia, S. Malvezzia, D. Menassea, F. Montia,b, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Valsecchia,b,18, D. Zuoloa,b

\textbf{INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy}
S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa, G. Galatia, A.O.M. Iorioa,b, L. Layera,b, L. Listaa,b, S. Meolaa,d,18, P. Paoluccia,b, B. Rossia, C. Sciacciaa,b, E. Voevodinaa,b

\textbf{INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy}
P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S.Y. Hoha,b, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, M. Presillaa, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, A. Tikoa, M. Tosia,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

\textbf{INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy}
A. Braghieria, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b

\textbf{INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy}
M. Biasinia,b, G.M. Bilea, D. Ciangottinia,b, L. Fana,b, P. Laricciaa,b, R. Leonarda,b, E. Manonia, G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa

\textbf{INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy}
K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, S. Donatoa, L. Gianninic, A. Giassia, M.T. Grippoa,
F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, A. Scribanoa, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, N. Turini, A. Venturia, P.G. Verdinia

\textbf{INFN Sezione di Roma} a, \textbf{Sapienza Università di Roma} b, Rome, Italy

F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b, R. Tenchinia, G. Tonellia,b, N. Turini, A. Venturia, P.G. Verdinia

\textbf{INFN Sezione di Torino} a, \textbf{Università di Torino} b, Torino, Italy, \textbf{Università del Piemonte Orientale} c, Novara, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, J.R. González Fernándeza, B. Kiania,b, F. Leggera, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Romeroa,b, M. Ruspaa,c, R. Salvaticoa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa, D. Trocinoa,b

\textbf{INFN Sezione di Trieste} a, \textbf{Università di Trieste} b, Trieste, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b, A. Zanettia

\textbf{Kyungpook National University}, Daegu, Korea

B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son, Y.C. Yang

\textbf{Chonnam National University}, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon

\textbf{Hanyang University}, Seoul, Korea

B. Francois, T.J. Kim, J. Park

\textbf{Korea University}, Seoul, Korea

S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, Y. Roh, J. Yoo

\textbf{Kyung Hee University}, Department of Physics

J. Goh

\textbf{Sejong University}, Seoul, Korea

H.S. Kim

\textbf{Seoul National University}, Seoul, Korea

J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, H. Lee, K. Lee, S. Lee, K. Nam, M. Oh, S.B. Oh, B.C. Radburn-Smith, U.K. Yang, H.D. Yoo, I. Yoon

\textbf{University of Seoul}, Seoul, Korea

D. Jeon, J.H. Kim, J.S.H. Lee, I.C. Park, I.J. Watson

\textbf{Sungkyunkwan University}, Suwon, Korea

Y. Choi, C. Hwang, Y. Jeong, J. Lee, Y. Lee, I. Yu

\textbf{Riga Technical University}, Riga, Latvia

V. Veckalns

34
Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
F. Mohamad Idris, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benítez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler, P. Lujan

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Górski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voityshin, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chchipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshtein, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, R. Chistov, M. Danilov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov, V. Blinov, T. Dimova, L. Kardapoltsev, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic, M. Stojanovic

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, CristinaF. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, R. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza
National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, A. Celik32, S. Damarseckin33, Z.S. Demiroglu, F. Dolek, C. Dozen54, I. Dumanoglu55, G. Gokbulut, EmineGurpinar Guler56, Y. Guler, I. Hos57, C. Isik, E.E. Kangal58, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir59, A.E. Simsek, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak60, G. Karapinar61, M. Yalvac62

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya63, O. Kaya64, Ö. Özçelik, S. Tekten65, E.A. Yetkin66

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak55, Y. Komurcu, S. Sen67

Istanbul University, Istanbul, Turkey
S. Cerci68, B. Kaynak, S. Ozkorfucuklu, D. Sunar Cerci68

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, D. Burns69, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev70, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, GurpreetSingh CHAHAL71, D. Colling, P. Dauncey, G. Davies, M. Della Negra, P. Everaerts, G. Hall, G. Iles, M. Komm, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, A. Morton, J. Nash72, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtiplyiski, M. Stoye, T. Strebler, A. Tapper, K. Uchida, T. Virdee18, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, C. Madrid, B. McMaster, N. Pastika, C. Smith
Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Albert, D. Arcaro, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, D. Sperka, D. Spitzbart, I. Suarez, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. McColl, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, B.R. Yates, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnani, M. Citron, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, A. Datta, A. Frankenthal, K. Mcdermott, J.R. Patterson, D. Quach, A. Ryd, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee,
Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts1, F. Hansen, J. Hiltbrand, Sh. Jain, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow1, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, G. Fedi, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, Y. Musienko38, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling, B.L. Winer

Princeton University, Princeton, USA
G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, A. Kovalskyi, Y.-J. Lee, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, D.H. Miller, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar
Rice University, Houston, USA
A. Baty, U. Behrens, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, D. Marley, R. Mueller, D. Overton, L. Pernè, D. Rathjens, A. Saforov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
L. Ang, M.W. Arenton, P. Barria, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Université Libre de Bruxelles, Bruxelles, Belgium
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at UFMS, Nova Andradina, Brazil
7: Also at Universidade Federal de Pelotas, Pelotas, Brazil
8: Also at University of Chinese Academy of Sciences, Beijing, China
9: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Suez University, Suez, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Purdue University, West Lafayette, USA
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Brandenburg University of Technology, Cottbus, Germany
22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
23: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
24: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
25: Also at ITB Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
26: Also at Institute of Physics, Bhubaneswar, India
27: Also at G.H.G. Khalsa College, Punjab, India
28: Also at Shoolini University, Solan, India
29: Also at University of Hyderabad, Hyderabad, India
30: Also at University of Visva-Bharati, Santiniketan, India
31: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
32: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
33: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
34: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at University of Florida, Gainesville, USA
42: Also at Imperial College, London, United Kingdom
43: Also at P.N. Lebedev Physical Institute, Moscow, Russia
44: Also at California Institute of Technology, Pasadena, USA
45: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
46: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
47: Also at Università degli Studi di Siena, Siena, Italy
48: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
49: Also at National and Kapodistrian University of Athens, Athens, Greece
50: Also at Universität Zürich, Zurich, Switzerland
51: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
52: Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey
53: Also at Şırnak University, Şırnak, Turkey
54: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
55: Also at Near East University, Research Center of Experimental Health Science, Nicosia,
Turkey
56: Also at Beykent University, Istanbul, Turkey
57: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
58: Also at Mersin University, Mersin, Turkey
59: Also at Piri Reis University, Istanbul, Turkey
60: Also at Ozyegin University, Istanbul, Turkey
61: Also at Izmir Institute of Technology, Izmir, Turkey
62: Also at BozokUniversitetesi Rektörlüğü, Yozgat, Turkey
63: Also at Marmara University, Istanbul, Turkey
64: Also at Milli Savunma University, Istanbul, Turkey
65: Also at Kafkas University, Kars, Turkey
66: Also at Istanbul Bilgi University, Istanbul, Turkey
67: Also at Hacettepe University, Ankara, Turkey
68: Also at Adiyaman University, Adiyaman, Turkey
69: Also at Vrije Universiteit Brussel, Brussel, Belgium
70: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
71: Also at IPPP Durham University, Durham, United Kingdom
72: Also at Monash University, Faculty of Science, Clayton, Australia
73: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
74: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
75: Also at Bingol University, Bingol, Turkey
76: Also at Georgian Technical University, Tbilisi, Georgia
77: Also at Sinop University, Sinop, Turkey
78: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
79: Also at Nanjing Normal University Department of Physics, Nanjing, China
80: Also at Texas A&M University at Qatar, Doha, Qatar
81: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea