An Adeno-Associated Virus-Based Intracellular Sensor of Pathological Nuclear Factor-κB Activation for Disease-Inducible Gene Transfer

Abdelwahed Chtarto1,2, Olivier Bockstael1,2, Elias Gebara3, Katia Vermoesen4, Catherine Melas1,2, Catherine Pythoud5, Marc Levivier5, Olivier De Witte1, Ruth Luthi-Carter3, Ralph Clinkers4, Liliane Tenenbaum5

1 Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles (ULB), Brussels, Belgium, 2 Faculty of Medecine, Institute of Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (I.R.I.B.H.M.), Université Libre de Bruxelles (ULB), Brussels, Belgium, 3 Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 4 Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences (C4F), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium, 5 Department of Clinical Neuroscience, Lausanne University Hospital, Lausanne, Switzerland

Abstract

Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB-responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB-responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB-responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

Introduction

The clinical implementation of drug-dependent regulatable viral vectors for gene therapy has been hampered by the adverse effects of the pharmacologic inducer and the immunogenicity of the artificial transactivator generally containing viral and/or bacterial elements [1,2]. Ideally, gene therapy for CNS diseases should be modulated according to the severity and the evolution of the disease. In addition, the transgene should be specifically expressed in the affected brain region and cell types. As an alternative to drug-mediated regulatory systems, we considered the possibility that regulatory DNA sequences binding transcription factors that are activated in pathological conditions could be used to generate pathology-inducible promoters responding to specific endogenous stimuli [3–5]. The NF-κB family of transcription factors consists of 5 members, defined by their Rel homology region, forming homodimer and heterodimer complexes [6].

While inactive, NK-κB dimers are bound to IκB proteins and retained in the cytoplasm. During activation, IκB is degraded and the NF-κB transcription factors are released and translocate to the nucleus where they regulate the transcription of numerous genes [7]. Stimulation of the NF-κB pathway is a key pathologic component of numerous CNS disorders [8]. In particular, NFκB activation is a major pathogenic component in the kainic acid (KA)-induced rat model of status epilepticus (SE) [9,10], one of the most widely used and best characterized animal models for temporal lobe epilepsy (TLE) [11–14]. This model displays characteristic neuropathological aspects of the disease including
hippocampal sclerosis (neuron loss and gliosis), neuroinflammation, synaptic reorganization, such as mossy fibre sprouting, and the chronic recurrence of spontaneous seizures [15–19].

NFκB activation resulting from increases in inflammatory cytokines has also been involved in pathological processes related to aging [20] and Alzheimer Disease [21]. Additional data suggest that NFκB activation is not an autocompensatory response, since NFκB activation fails to protect neurons against apoptosis associated with long-term culturing or dual TNFα and amyloid-β toxicity [22].

Harnessing disease-mediated NF-κB activation to drive transgene expression in CNS cells could constitute an interesting intracellular approach to anti-inflammatory intervention [23]. Several lines of transgenic reporter mice using tandem NFκB-responsive promoter sequences have exhibited heterogeneous phenotypes. This can likely be explained by the fact that the Rel family of transcription factors includes numerous variants whose abundance varies depending on the tissue and which bind with differential affinities to different variants of the NFκB response element (NFκB-RE). We therefore reviewed these data carefully prior to selecting NFκB-REs for testing in our regulatable gene therapy vectors. Transgenic mice using the NFκB responsive sequence from the Igκ light chain promoter mainly express the reporter gene in immune organs and intestine and transgene expression is further inducible by TNFα, IL1β or LPS in other organs such as lungs and liver [24]. In contrast, the NFκB responsive element present in the HIV promoter is expressed in immune organs, but is also constitutively active in the CNS [25]. The regulatory region of human neurotropic polyoma virus JCVI which contains a NFκB-RE variant that differs from the HIV sequence by only one nucleotide [26] is active in infected astrocytes and oligodendrocytes presumably due to TNFα stimulation of these glial cells [27].

A neuroinflammation-responsive AAV vector based on JCVI NFκB-RE consensus transcriptional sequences was designed. We first tested this NFκB-inducible vector in an in vitro model of brain aging [28] and showed that its delivery of glial cell line-derived neurotrophic factor (GDNF) DNA under the control of the NFκB-inducible promoter enhanced survival of aging cortical neurons in culture. We subsequently showed that hippocampally-delivered, the NFκB-inducible AAV vector responded to systemic KA injection in neurons and astrocytes in specific subregions of the CA1, CA3 hippocampal layers and stratum oriens where inflammatory markers were also induced. Altogether, these results bode positively for the utilization of our novel pathology-inducible vector design for anti-inflammatory gene transfer applications.

Materials and Methods

Plasmids

The pνFκB-d2EGFP plasmid containing 4 NFκB responsive element (NFκBRE) fused to a minimal thymidine kinase promoter (mTK) was purchased from Clontech (Palo Alto, CA, USA). The pHpal-EGFP self-complementary AAV vector was a kind gift from D.McCarty and RJ Samulski [29].

We first constructed pSC-NF4-mTK-d2EGFP by replacing the EcoRI-Sall fragment of pHpal-EGFP containing the CMV promoter, EGFP coding sequence and SV40 polyA with a NotI-Sall fragment from pνFκB-d2EGFP containing a transcription blocker site, a composite NFκB-responsive promoter (4 copies of the NFκB-responsive element fused to a minimal thymidine kinase promoter), destabilized GFP (d2EGFP) and SV40 polyA. Into the obtained vector, d2EGFP was replaced with EGFP to generate pSC-NF4-mTK-EGFP (Fig. 1A). The pSC-mCMVΔ2-EGFP was derived by replacing the mTK promoter in pSC-NF4-mTK-EGFP with a new modified minimal CMV promoter (mCMV) named mCMVΔ2 in which sequences 5’ and 3’ to the TATA box were deleted. To obtain pSC-NF4-d1-EGFP and pSC-NF4-d3-EGFP we increased the distance between the NFκBRE and the mCMVΔ2 promoter by introducing stuffer sequences of various lengths. The pSC-NF-Ctrl was obtained by excising a fragment containing NFκBRE in pSC-NF4-mCMVΔ2-EGFP. To construct pSC-NF0-d1-EGFP and pSC-NF12-EGFP, we replaced the NF4 in pSC-NF4-mCMVΔ2-EGFP respectively by two or three blocks of 4 NFκBRE, separated by 16 bp. The pSC-NF8-d1-GDNF vector was obtained by replacing the EGFP coding sequence in pSC-NF0-d1-EGFP by the human GDNF cDNA (a kind gift from Dr Nicole Deglon, Lausanne Switzerland).

Cell Line

The HEK-293T cell line was purchased from Q-One Biotec (Glasgow, UK) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FCS (Gibco BRL, Life Technologies, Merelbeke, Belgium).

Transfections

For the analysis of the inducibility of the vectors, HEK-293T cells were transfected using the calcium phosphate coprecipitation method. Fifty-thousand cells in 6-wells were transfected with 250 ng DNA. Forty-eight hours later and 5 hours before analysis, transfected cells were treated or not treated with TNFα (Invitrogen) (100 ng/ml). Cells transfected with AAV-NF-EGFP vectors were analyzed for GFP expression on a FACStar analyser/sorter (Becton Dickinson). To analyse the inducibility of AAV-NF-hGDNF vectors in HEK 293T, the supernatants were harvested 4 h after changing the medium to measure GDNF concentration using a commercial ELISA assay (Human GDNF CytoSets, catalog #CHC2423, BioSource, Nivelles, Belgium). The transfection efficiency was normalized using a plasmid constitutively expressing GFP protein.

Viral Production

To produce recombinant AAV2/1 viral stocks, HEK-293T cells (5.0×10^6 cells seeded on 10 cm plates) were cotransfected, in a 1:1 molar ratio, with the vector plasmid (3 μg/plate) together with the helper/packaging plasmid pD1rs (10 μg/plate) expressing the AAV viral genes (rep gene from AAV serotype 2 and cap gene from AAV serotype 1) and the adenoviral genes required for AAV replication and encapsidation (Plasmid Factory, Heidelberg). Fifty hours post-transfection, the medium was discarded and the cells were harvested by low-speed centrifugation and resuspended in Tris pH 8.0, NaCl 0.1 M. After three cycles of freezing/thawing, the lysate was clarified by 30 min centrifugation at 10 000 g. The virus was further purified by iodixanol gradient followed by QXL-sepharose chromatography, according to a well-established method [30]. Viral genomes (vg) were titrated by quantitative PCR as previously described [31]. Titers were 1.95×10^10 and 7.3×10^11 vg/ml respectively for rAAV1-NF8-d1-EGFP and rAAV1-NF8-d1-hGDNF.

Cultures and Infection of Cortical Neurons

Neuronal cultures were prepared from embryonic day 16 Sprague-Dawley rat fetuses using methods similar to those described previously [32].
Neurons were plated in 96-well or 48-well dishes (CostaröTM) previously coated with poly-L-lysine (MW 30,000–70,000). Half of the medium was replaced, weekly, with freshly prepared NeurobasalöTM medium (Invitrogen) supplemented with 2% B27 (Invitrogen), 1/6 penicillin-streptomycin, 0.5 mM L-glutamine, and 15 mM KCl. On in vitro Day 3, cells were infected at a multiplicity of infection of 10⁴ vg/cell.

Immunocytochemistry

Primary cultures were fixed with 4% paraformaldehyde (PFA) for 20 min at 4 °C. Cultures were washed 3×10 min with PBS and then incubated for 1 h in a blocking solution of PBS supplemented with 10% Bovine Serum Albumin (PAA laboratories GmbH, Austria) and 0.1% Triton in PBS. The cells were then incubated overnight at 4 °C in a blocking solution containing mouse monoclonal anti-NeuN antibody (1:400, Chemicon), goat polyclonal anti-PSD95 (1:500, Abcam).

Cells were washed 3×10 min with PBS and then incubated for 1 h with a fluorescent secondary Cy3-conjugated goat anti-mouse antibody (1:1000, Jackson ImmunoResearch Laboratories), Alexa 660 donkey anti-goat antibody (1:500, Invitrogen) followed by 3×10 min PBS washes.

Images of immunostained cells were acquired with a BD pathway 435 Openaccess instrument for cell counting. Image analysis was performed with ImageJ software (US NIH).

For activated NFkB staining, the same protocol was applied using a mouse monoclonal IgG3 anti-activated NFkB recognizing an epitope overlapping the nuclear location signal of the p65 subunit of the NFkB heterodimer thus selectively binding to the activated form of NFkB [33] (Millipore, catalog # MAB3026). The antibody was diluted 1:100 as primary antibody and a biotin-conjugated donkey anti-mouse IgG (Jackson ImmunoResearch, cat number: 715-065-150) diluted 1:500 was used as secondary antibody. For nuclear counterstainings, cells were incubated in the

Figure 1. Description of the NF-κB-responsive AAV vectors. A. Schematic diagram of NF-κB-responsive AAV vectors used in this study. ITR: AAV Inverted Terminal Repeat; TB: Transcriptional Blocker; NFkBRE (4X): four copies of the JC virus NFkB consensus sequence; mTK: herpes simplex virus minimal thymidine kinase promoter; SD/SA: Splice Donor/Splice Acceptor sequence [72]; mCMVΔ2: improved minimal CMV promoter; d1, d3: distance separating the last NFkB consensus sequence and the minimal promoter, respectively, 31 and 71 bp. B. Sequence analysis of the transcription factor binding sites within the minimal CMV and the minimal CMV Δ2 promoters. The mCMV promoter originates from position −52 to position +77 in the wild-type promoter [45]. Analysis of the mCMV sequences highlighted the presence of several transcription factor binding sites: AP2, LFA-1, CRE-1, IFNγ, XRE-1 and GCF. The mCMVΔ2 was obtained by deleting the sequence upstream of the TATA box (−52 to −32) and the sequence downstream of the IFNγ site (+17 to +77) resulting in the removal of AP2, XRE-1 and GCF sites.
Hoescht 33258 dye (Sigma-Aldrich) diluted at 1 μg/ml in TBS for 15 min. Three 10 min washes in TBS of TBS were performed between each step. Images of immunostained cells were obtained using confocal microscopy (Lasersharp version 3.2 (Biorad, Hercules, CA) coupled to Axiovert 100 microscope, (Carl Zeiss, Gottingen, Germany)). The intensity of the staining of individual nuclei was quantified by measuring optical densities using the Image J software (NIH, USA).

Gliosomatic Line-derived Neurotrophic Factor (GDNF) Determination by ELISA

Medium was harvested from rAAV1-NF8-d1-EGFP- and rAAV1-NF8-d1-hGDNF-infected cortical neuron cultures at the indicated time points. GDNF concentrations were measured using a commercial ELISA assay (Human GDNF CytoSets, catalog #HC2423, BioSource, Nivelles, Belgium) and expressed in pg/ml. Recombinant human GDNF (provided by the manufacturer) was used to establish the standard curve.

Kainic Acid-induced Post-status Epilepticus Rat Model of Temporal Lobe Epilepsy

Intracerebral AAV vector injections. Adult male Wistar rats (Charles River) weighing approx. 200 g were housed and treated according to the Belgian law. The protocols were in accordance with national rules on animal experiments and approved by the Ethics Committee of the Faculty of Medicine of the “Université Libre de Bruxelles”. Animals were anesthetized with a mixture of ketamine (Imalgène 1000, Merial; 100 mg/kg) and xylazin (Rompun, Bayer; 10 mg/kg) and placed in a Kopf stereotaxic frame (Kopf Instruments, Tujunga, CA, USA). The injection coordinates in the hippocampus were 4.8 mm posterior, 4.6 mm lateral to bregma, and 2.5 mm below the dural surface. The injection rate was 0.2 μl/min. The needle was left in place for 1 min before a slow withdrawal over an additional minute.

Intraperitoneal kainic acid injections. The induction of status epilepticus was performed as described earlier [34,35]. Briefly, consecutive intraperitoneal kainic acid (KA) injections (5 mg/kg, diluted in PBS, Nanos®) were administered with a one hour interval. If a rat was nearing SE, half-doses (2.5 mg/kg) were given in order to reduce mortality. Control rats were injected with saline (NaCl 0.9%).

Animals were sacrificed one week after intraperitoneal KA injection and perfused intracardially first with saline, then with 4% paraformaldehyde (PF4). Brains were postfixed for 24 hours in PF4.

The experiment was repeated 3 times with similar results.

Immunofluorescence on Brain Sections

GFP labeling. Coronal brain sections (50 μm) obtained using a vibratome (Leica Microsystems, Wetzlar, Germany) were sequentially incubated in: i) THST (50 mM Tris, 0.5 M NaCl, 0.5% Triton X100 (Merck, Frankfurter, Germany) pH 7.6) containing 10% horse serum for 2 hours; ii) polyclonal rabbit anti-GFP (1:3000, Molecular Probes, Invitrogen, Carlsbad, CA); diluted in THST containing 5% horse serum for 16 hours at 4°C; iii) donkey anti-rabbit IgG conjugated with biotin (Amersham, GE Healthcare, Munich, Germany) diluted 1:600 in THST containing 5% horse serum, 2 hours at room temperature; iv) streptavidin conjugated to cyanine 2 (1:300; Jackson ImmunoResearch, West Grove, PA) in THST containing 5% horse serum, 2 hours at room temperature. Three washings in PBS (Tris 10 mM, NaCl 0.9%, pH 7.6) of 10 min were performed between each step.

Sections were mounted using FluorSave mounting fluid for fluorescence (Calbiochem, Merck, Frankfurter, Germany) and photographed using a Zeiss Axiophot 2 microscope equipped with FITC and TRITC filters (Car Zeiss, Gottingen, Germany) as well as an AxioCam digital camera (Carl Zeiss, Gottingen, Germany). Images were acquired as jpeg files using the KS500 software (Car Zeiss, Gottingen, Germany).

The number of GFP-positive cells was evaluated by stereological procedures based on the Cavalieri principle (Sterio, 1984). For each animal, serial sections with an interval of 500 μm were analyzed by means of the optical fractionator of the Stereo-investigator software (MBF Bioscience, Williston, VT) connected to the microscope with a CCD video camera (Leica Microsystems, Wetzlar, Germany).

GFP,NeuN and GFP,GFAP co-labelings. For double immunofluorescence, these incubations were combined with mouse monoclonal antibodies (anti-NeuN 1:200, Chemicon, Millipore, Billerica, MA) or anti-glial fibrillary acid protein (GFAP, 1:200, Chemicon, Millipore, Billerica, MA) (step ii); and donkey anti-mouse IgG conjugated to cyanine 3 (1:200; Jackson ImmunoResearch, West Grove PA) in THST containing 5% horse serum (step iv).

Sections were mounted using FluorSave mounting fluid for fluorescence (Calbiochem, Merck, Frankfurter, Germany).

Co-labeling analysis were performed by confocal microscopy on pictures taken on at least three different sections within the transduction zone using an automatic image analysis system (Lasersharp version 3.2 (Biorad, Hercules, CA) coupled to Axiovert 100 microscope, (Carl Zeiss, Gottingen, Germany)).
A.

B.

C.
PICS were then processed and analysed with the Image J software (NIH, USA).

GFP:Iba1 co-labeling. For GFP:Iba1 double immunofluorescence, the above described GFP labeling was combined with goat anti-Iba1 (Abcam, cat number: ab 5076) followed by a donkey anti-goat A.568 antibody (Molecular probes, cat number A-11057) diluted 1:500.

GFP:Olig2 co-labeling. For GFP:Olig2 double immunofluorescence, a chicken monoclonal anti-GFP antibody (Abcam, Cambridge, UK) at a 1:1000 dilution was combined with rabbit polyclonal anti-Olig2 IgG (diluted 1:500; Chemicon/EMD Millipore).

In order to better visualize the structure of the tissue, cerebellar sections were incubated in the Hoechst 33258 dye (Sigma-Aldrich) diluted at 1 µg/ml in TBS for 30 min. Three washings in TBS of 10 min were performed between each step.

Sections were mounted using Glycergel Mounting Medium for fluorescence (Dako, Belgium, cat number: C0563).

Confocal Microscopy

Co-labeling analysis was performed on pictures taken on at least three different sections using a LSM510 NLO multiphoton confocal microscope fitted on an Axiovert M200 inverted microscope equipped with C-Apochromat 40 x/1.2 N.A. and 63 x/1.2 N.A. water immersion objectives (Zeiss, Iena, Germany).

The 488 nm excitation wavelength of the Argon/2 laser, a main dichroic HFT 488 and a band-pass emission filter (BP500–550 nm) were used for selective detection of the green fluorochrome (Cy2, Alexa 488).

The 543 nm excitation wavelength of the HeNe laser, a main dichroic HFT 488/543/633 and a long-pass emission filter (BP565–615 nm) were used for selective detection of the red fluorochrome (Cy3).

The nuclear stain Hoechst was excited in multiphotonic mode at 760 nm with a Mai Tai tunable broadband laser (Spectra-Physics, Darmstadt, Germany) and detected using a main dichroic HFT KP650 and a band-pass emission filter (BP435–485 nm).

Optical sections, 2 microns thick, 512 by 512 pixels, were collected sequentially for each fluorochrome. Z-stacks with a focus step of 1 micron were collected.

Pictures were then processed and analysed with the Image J software (NIH, USA).

Statistical Analysis

All the statistical analysis was performed using the GraphPad Software.

Results were expressed as mean ±SEM and statistical significance was evaluated with one-way ANOVA Newman-Keuls or student T-test. Differences were considered as significant when p<0.05. Correlation analysis was evaluated with Pearson’s correlation test.

Results

1. **Design and in vitro Evaluation of NFκB-inducible AAV Vectors**

NFκB-inducible reporter cassettes were constructed by fusing a minimal promoter with several repeats of the NFκB responsive elements (NFκB–RE) from the non-coding regulatory region of JC virus [26] upstream to an EGF reporter gene. The promoter-reporter cassettes were then introduced in a self-complementary AAV vector which allows a rapid onset of transgene expression [37,38]. In order to avoid influence of the AAV ITR promoter/ enhancer activity on the NFκB-RE-containing promoter [39,40], a transcriptional blocker site [41] was placed between the left ITR and the test promoters and a bidirectional SV40 polyA was placed between the transgene cDNA and the right ITR [42] (see Fig. 1).

Two different minimal promoters fused to four repeats of the NFκB-RE were compared. These consisted of a minimal thymidine kinase promoter [43] and a minimal CMV promoter [42] from which other putative transcription factor binding sites
Nuclear Factor-κB-Inducible Viral Vector

A. KA

B. KA

C. KA

D. KA
upstream and downstream of the TATA box were deleted, retaining only 3 downstream consensus sequences (CRE-1, LFA-1 and IFNγ). This minimal promoter will be hereafter designated as mCMVΔ2 (see Fig. 1A and Fig. 1B). The pSC-NF-Ctrl-EGFP plasmid expressing mCMVΔ2, TB and the SW40 polyA but devoid of NFkB-responsive sequences was used as a control.

The test vectors were transfected into HEK-293T cells, which were left untreated or exposed to TNFα (100 ng/ml). HEK-293T cells were chosen for these studies based on previous data suggesting that they have little or no NFkB activation under basal conditions [44]. Fig. 2A shows that the use of the mCMV2 promoter resulted in a higher cytokine-induced level of GFP expression than the minimal TK promoter (p < 0.001, one way ANOVA, Newman-Keuls multiple comparison Test) without increasing basal level and thus it was selected for the following constructions. As expected, the control (pSC-NF-Ctrl-EGFP and pSC-NF-Ctrl-Lh-GDNF) vectors were not inducible by TNFα (p > 0.05) (Fig. 2A and 2B).

i) Optimisation of the distance between NFkB-RE and mCMV2. The distance between enhancers and the transcription initiation site is known to be important for the interaction between the proteins involved in the transcriptional complex [45]. In order to optimize the inducibility of the AAV-NF vector, we tested various spacings between the NF-kB repeats and the TATA box of the mCMV2 promoter.

Increasing the distance from 6 bp (pSC-NF4-mCMV2) to 31 bp (pSC-NF4-d1) or 71 bp (pSC-NF4-d3) resulted in significant (p < 0.01) distance-dependent decreases of the basal reporter level. The profile was different for the induced levels however. Inducibility was maintained up to a distance of 31 bp (p > 0.05, pSC-NF4-mCMV2 versus pSC-NF4-d1) and decreased at a distance of 71 bp (p < 0.001, pSC-NF4-mCMV2 versus pSC-NF4-d3). On the basis that a spacing distance of 31 bp maintained high inducible expression levels while decreasing basal expression (compared to the shorter spacing of 6 bp) the 31 bp spacing incorporated in pSC-NF4-d1 was carried forward for further development.

ii) Optimisation of the number of NFkB-RE. Starting from pSC-NF4-d1 (with 4 NFkB-REs), the number of repeats was increased to 8 and 12 (corresponding to pSC-NF8-d1 and pSC-NF12-d1; see Fig. 1A). pSC-NF8-d1 and pSC-NF12-d1 showed basal levels of GFP expression similar to pSC-NF4-d1 whereas the TNFα-induced levels were higher than pSC-NF4-d1 for both plasmids [p < 0.01, pSC-NF4-d1 versus pSC-NF8-d1 and pSC-NF4-d1 versus pSC-NF12-d1 (Fig. 2A)]. Using two reporter genes (EGFP and hGDNF), no significant difference in TNFα-induced levels was observed between pSC-NF8-d1 and pSC-NF12-d1 (Fig. 2A and 2B). Based on its retaining a larger residual cloning capacity (approx. 900 bp), pSC-NF8-d1 vector was selected for further testing.

2. Enhanced Survival of Senescent Cortical Neurons Mediated by NF-kB-inducible GDNF Expression

We then wanted to test whether an effect of a therapeutic transgene could be conveyed by the rAAV2-NF8-d1 recombinant virus. To address this question, the rAAV2-NF8-d1 vector expressing the human GDNF cDNA was evaluated in an in vitro model of brain aging.

To determine which capsid serotype would be suitable for our primary cells in culture, we evaluated control cultures infected with AAV vectors expressing EGFP under the control of the CMV promoter transencapsidated into serotype 1, 2 and 5 capsids (5,000 cells/well; 10⁴ vg/cell). This relatively low multiplicity of infection was chosen to avoid previously described AAV vectors-related toxicity in primary neurons cultures [46]. GFP-positive cells were observed from day 3 after infection and their detectable numbers reached 170 (rAAV2/1), 40 (rAAV2/2) and 92 (rAAV2/5) at 5 days post-infection (data not shown). Therefore, serotype 1 was selected for further experiments.

We then proceeded to test the efficacy of our new vector in long-term cultures of E16 cortical neurons and astrocytes in serum-free medium. In this model, neurons gradually mature and form synapses but eventually undergo apoptosis starting at approximately 35–40 days in vitro. 5,000 cells were infected with rAAV2/1-NF8-d1-EGFP (n = 10) as a control or rAAV2/1-NF8-d1-GDNF (n = 10) at a multiplicity of 10⁵ vg/cell.

After 60 days, cells infected with the rAAV2/1-NF8-d1 vectors were fixed and expression of NeuN (a neuronal specific nuclear protein also known as Fox3a) and PSDL9 (a neuronal postsynaptic density protein) were evaluated. The number of NeuN-positive and PSD95-positive structures was significantly higher in the rAAV2/1-NF8-d1-GDNF-infected wells compared to rAAV2/1-NF8-d1-EGFP-infected wells (see Fig. 3A). We then tested whether NFkB was activated in aging culture. Parallel cultures on coated glass coverslips in 48 well cultures dishes were fixed at different time points and processed for immunofluorescence using an antibody recognizing the activated form of NFkB. The intensity of the nuclear labeling was quantified and shown to increase with time from day 10 to day 47 after seeding (Fig. 3B).

We further measured the concentrations of secreted GDNF in the culture media. As shown in Figure 3C, the GDNF concentration increased over time until 26 days post-infection (corresponding to 31 days post-seeding), then decreased. The GDNF decrease from 33 days post-infection (38 days post-seeding) was presumably due to a reduced number of neurons in aging
injection. Vibratome brain sections (50 μm) were immunolabeled using anti-activated NFκB antibody followed by streptavidin-biotin-peroxidase staining. Note, in particular, the localized increased staining in the CA hippocampal layers. The intensity of the staining of three random areas in the hippocampal layers on every section was quantified using the Image J program. Data are expressed as the mean optical density ± SEM (n = 8 for each group of animals). The difference between KA and saline-treated groups was significant (student test, P = 0.0010). Bars represent 500 μm. C. Correlation between NFκB activation and GFP expression mediated by rAAV2/1-NF8-d1-EGFP in hippocampal layers. A group of 16 rats was injected with a rAAV1/2-NF8-d1-EGFP in the hippocampus. 8 rats were injected with KA and 8 other animals were injected with the saline solution. Two KA-treated rats were removed from the analysis since they either contained no GFP-positive cells (presumably due to a failure to inject the virus) or had a totally different profile of GFP-expression (no GFP-positive cells in the hippocampal layers, presumably due to wrong stereotactic coordinates). The total number of GFP-immunoreactive cells per animal (as evaluated by stereology) was correlated with the mean optical density of the NFκB stainings in the region containing the transduced cells. There was a significant correlation between the two parameters with a coefficient of 0.7001 (p = 0.0002; n = 6 for KA-treated rats and n = 8 for saline-treated rats). The experiment was repeated a second time (n = 8 for KA-treated rats and n = 7 for saline-treated rats) with similar results.

doi:10.1371/journal.pone.0053156.g005

Figure 5. Disease-inducible rAAV1-NF-mediated transgene expression in the hippocampus of kainic acid-treated rats. Recombinant AAV2/1-NF8-d1-EGFP (8 × 10^6 viral genomes in 2 μl) was stereotaxically injected in the right hippocampus of male Wistar rats. Animals were kept in two groups: one group was intraperitoneally-injected with kainic acid (n = 8) one month post stereotaxy and the other group received only saline (n = 8). The animals were sacrificed one week after injection. Vibratome brain sections (50 μm) were immunolabeled using an anti-GFP antibody, biotin-streptavidin amplification and Cy2 fluorophore. A. Representative examples of GFP-labeling of the CA hippocampal layers dentate gyrus post-kainic acid injection. Note the massive presence of GFP-positive cells in the CA1 and CA3 layers. Stereological counts of GFP-positive cell numbers per animal demonstrate a highly significant induction of the AAV-NF vector by kainic acid (P = 0.000875; student test; n = 8 for the saline group; n = 6 for the kainic acid group). KA, kainic acid; saline, 0.9% NaCl. The experiment was repeated 3 times with similar results. Bars represent 500 μm and 100μm in lower and higher (1,2,3 subpannels) magnification pictures, respectively. B. Comparison of the staining intensity for activated NFκB in kainic acid- and saline-treated rats. Vibratome brain sections (50 μm) were immunolabeled using anti-activated NFκB antibody followed by streptavidin-biotin-peroxidase staining. Note, in particular, the localized increased staining in the CA hippocampal layers. The intensity of the staining of three random areas in the hippocampal layers on every section was quantified using the Image J program. Data are expressed as the mean optical density ± SEM (n = 8 for each group of animals). The difference between KA and saline-treated groups was significant (student test, P = 0.0010). Bars represent 500 μm. C. Correlation between NFκB activation and GFP expression mediated by rAAV2/1-NF8-d1-EGFP in hippocampal layers. A group of 16 rats was injected with a rAAV1/2-NF8-d1-EGFP in the hippocampus. 8 rats were injected with KA and 8 other animals were injected with the saline solution. Two KA-treated rats were removed from the analysis since they either contained no GFP-positive cells (presumably due to a failure to inject the virus) or had a totally different profile of GFP-expression (no GFP-positive cells in the hippocampal layers, presumably due to wrong stereotactic coordinates). The total number of GFP-immunoreactive cells per animal (as evaluated by stereology) was correlated with the mean optical density of the NFκB stainings in the region containing the transduced cells. There was a significant correlation between the two parameters with a coefficient of 0.7001 (p = 0.0002; n = 6 for KA-treated rats and n = 8 for saline-treated rats). The experiment was repeated a second time (n = 8 for KA-treated rats and n = 7 for saline-treated rats) with similar results.

doi:10.1371/journal.pone.0053156.g005

3. Selective Induction of rAAV1-NF-mediated Gene Expression in Hippocampal Neurons and Astrocytes in an in vivo Model of Epilepsy

In order to show proof of principle of pathology-induced expression from our new gene transfer vector in vivo, we tested its activity in a KA-induced rat SE model for temporal lobe epilepsy [16,36].

The rAAV2/1-NF8-d1 recombinant virus with an EGFP reporter gene (8 × 10^6 viral genomes in 2 μl) was injected in the right hippocampus one month prior to SE induction. Eight animals received KA and 8 control animals received an equivalent number of saline injections. Haematoxylin-eosin staining of coronal brain sections of KA-treated rats showed typical hippocampal sclerosis whereas hippocampus from saline-treated rats had a normal morphology (Fig. 4A). Activated astrocytes and microglia were evidenced in these regions as demonstrated by GFAP (Fig. 4B) CD11b (Fig. 4C) and Iba1 (Fig. 4D) stainings. Quantification of the staining by optical density showed that GFAP, CD11b and Iba1 expression was significantly stronger in KA-treated versus saline treated animals (for GFAP: p = 0.0003, n = 8 for each group; for CD11b: p = 0.0135; n = 4 for each group; for Iba1: p = 0.0012; n = 6 for each group).

Prominent gene expression was evidenced in the hippocampus of KA-injected rats whereas only few dispersed GFP-positive cells were detected in saline-injected animals (Fig. 5A). The regional pattern of GFP expression in the SE animals consisted of a preferential transduction of the CA1 and CA3 layers as well as an occasional labeling of cells in the stratum oriens (see Fig. 5A).
GFP-positive cells were present in a region of 2.5 mm along the antero-posterior axis (data not shown). Among the eight KA-treated rats, one had no GFP-positive cell and in another rat the biodistribution of gfp-positive cells was totally different (the labeling was observed only in stratum orens and absent in the hippocampal layers). It was considered that stereotaxic injections of the virus were performed at slightly different coordinates in these 2 animals and they were withdrawn for further analysis.

In order to correlate GFP expression with NF\(\kappa\)B activation, hippocampal sections were also labeled with antibodies directed against activated NF\(\kappa\)B. These results show a strong staining in specific hippocampal subregions of epileptic rats corresponding to the area in which GFP-positive cells were observed (see Fig. 5B).

The number of GFP-positive cells was also evaluated by stereology and compared to the control group. The data showed that the epileptic animals contained significantly more GFP-positive cells than the control group (Fig. 5A). Furthermore a significant correlation between the GFP positive cell numbers and activated NF\(\kappa\)B staining intensity per animal was observed with a coefficient of 0.7001, \(p = 0.0002\) (Fig. 5C).

The majority of GFP-positive cells (60\%) were neurons (as revealed by double GFP-NeuN immunofluorescence and confocal microscopy), with a smaller but nonetheless statistically significant proportion (9.5\%) of transduced cells comprising astrocytes (based on co-labeling for the astrocytic marker GFAP) as well as 3.2\% of cells of the oligodendrocyte lineage (as revealed using the Olig2

Figure 6. Cellular specificity of rAAV2/1-NF8d1-EGFP-mediated gene transfer in the hippocampus of kainic acid-treated rats. Kainic acid (5 mg/kg) was injected intraperitoneally (ip) one month after stereotaxic injection of rAAV2/1-NF8d1-EGFP into the hippocampus. Fifty \(\mu\)m coronal sections were co-labeled with GFP (green fluorescence) and NeuN, GFAP IbaI or Olig2. Confocal pictures showing GFP and cell-specific markers co-labeled cells (yellow). White arrows indicate co-labeled cells. Bars represent 50 \(\mu\)m. The mean percentage of GFP-positive cells co-labeling with the GFAP, NeuN and Olig2 markers are shown. No GFP-positive cell stained positive for Iba1. Analysis was performed using confocal microscopy and counting the number co-labeled cells on 5 sections per animal \((n = 5\) rats for GFP/NeuN and GFP/GFAP, \(n = 6\) for GFP/Iba1 and \(n = 7\) for GFP/Olig2 co-labeling).

doi:10.1371/journal.pone.0053156.g006

Figure 7. Absence of transgene upregulation in rAAV2/1-NF8d1-EGFP-mediated gene transfer in the cerebellum of kainic acid-treated rats. Kainic acid (5 mg/kg) was injected intraperitoneally (ip) one month after stereotaxic injection of rAAV2/1-NF8d1-EGFP into the cerebellum. Fifty \(\mu\)m coronal sections were labeled with GFP or GFAP antibodies. Confocal pictures showing GFP (A) or GFAP (B). Bars represent 50 \(\mu\)m. GFAP staining was quantified by measuring the optical density of three areas in all sections stained per animal (6 rats for each condition). The difference between KA- and saline-treated rats is not significant (student test, \(p = 0.8612\)) (B).

doi:10.1371/journal.pone.0053156.g007
marker [47] (Fig. 6). In contrast, double immunofluorescence for GFP and the Iba1 marker for microglia revealed no co-labeled cell (Fig. 6).

The experiment was repeated a second time (n = 8 for the KA group and n = 7 for the saline group) and similar results were obtained (data not shown).

In order to further demonstrate that vector induction was dependent on the KA-induced NFkB activation, the cerebellum was selected as negative control vector injection site because lack of NFkB activation following kainic acid administration to adult rats was previously shown in this region [40]. As expected, i) GFP-positive cells were restricted in a small area around the injection site and their number was not increased by KA treatment (Fig. 7A); ii) KA did not induce cerebellar inflammation as suggested by the similar GFAP staining in treated and untreated rats (Fig. 7B).

Discussion

Abnormal activation of NFkB is a heavily implicated pathogenic mechanism in a number of chronic neurodegenerative and neuroinflammatory diseases [49]. In the CNS, neuroinflammation propagates by communication between astrocytes, microglia and neurons through the activity of pro-inflammatory cytokines such as TNFz and IL1β which activate NFkB [50,51]. While neurons require a basal level of activated NFkB for their survival [25], uncontrolled neuronal activation results in excitotoxicity which leads to further NFkB activation [52]. Our goal was to design a gene transfer vector able to sense pathological increases of NFkB activation.

In order to design a tight NFkB-responsive AAV vector, we first selected a promoter sequence on the basis of previous studies with tetracycline-inducible vectors. Strathdee and colleagues [43] have previously compared the minimal thymidyl kinase promoter (mTK) and CMV promoter (mCMV) and reported that mTK conferred a tighter control to a tetracycline-responsive promoter. Unexpectedly, however, our test of 4 copies of the JC virus NFkB-responsive element linked to the same two promoters showed that the AAV-mTK-NF4 vector conveyed a high basal level of expression and was poorly (less than 2-fold) inducible by TNFz in HEK-293T cells. We have not explicitly tested the origin of this high baseline expression level, which could reflect activity of the mTK promoter alone or together with a contribution from incompletely blocked ITR enhancer activity.

To overcome the issues of high basal expression and poor inducibility, we constructed and tested a new variant of a minimal CMV promoter (mCMVΔ2). It is shown that mCMVΔ2 conferred to AAV-NF a lower basal transgene expression level than the mTK promoter while exhibiting a higher (approx. 4-fold) inducibility in response to TNFz.

To further reduce the basal level of transcription from mCMVΔ2, we modified the distance between the viral cis-acting elements [left ITR] and NFkB-RE and the TATA box of the promoter. Increasing the distance to 31 (d1) and 71 bp (d3) resulted in a further decrease (5- and 13- fold, respectively) of the basal expression level. To increase the inducibility of the vector, we have increased the number of NFkB-REs. The constructs harboring 8 REs (pSC-NF8-d1 and pSC-NF8-d3) had a higher inducibility than those harbouring 4 REs (pSC-NF4-d1 and pSC-NF4-d3) while retaining a similar background [for pSC-NF8-d3, data not shown]. This suggests that the basal expression of the vector may depend more on the ITR than the NFkB-REs. Increasing the number of NFkB-REs to 12 did not further increase the inducibility but slightly reduced the basal level (compare pSC-NF8-d1-EGFP versus pSC-NF12-d1-EGFP), possibly due to an increase of the distance from the minimal promoter to the left ITR.

Two models in which NFkB activation occurs were used to prove the responsiveness of the optimized NFkB -inducible AAV vector. These consisted of an in vitro model of neuronal aging and a rat model of temporal lobe epilepsy. NFkB involvement in the former is believed to result from increases in inflammatory cytokines with age [20] and Alzheimer Disease [21]. Additional data suggest that NFkB activation is not an auto- or compensatory response, since NFkB activation fails to protect neurons against apoptosis associated with long-term culturing or dual TNFz and amyloid-beta toxicity [22].

GDNF has previously been shown to be neuroprotective in animal models of brain aging [53] as well as to reduce apoptosis in dopaminergic neurons [54]. In the current study, we show that GDNF expression under the control of our NFkB-inducible vector increased (by 40%) the number of aging cortical neurons in culture. Our data suggest that it is feasible to harness age-related NFkB activation to express neuroprotective factors in age-related diseases.

A chronic inflammatory state in the brain has been associated with epilepsy in both human and rodent studies [55–58]. In addition, proinflammatory molecules exacerbate seizures in experimental models, whereas anti-inflammatory drugs can have anticonvulsant efficacy [59]. The observed reporter gene expression mediated by the NFkB-inducible AAV vector in the hippocampus in response to systemic KA injection is in accordance with these observations, and further suggests that NFkB activation could be harnessed to drive expression of anti-inflammatory genes. In addition, the cell-type specificity of GFP expression might provide clues to the mechanisms of neuroinflammation in induction and progression of epileptic condition. As expected, in the cerebellum, in which NFkB is not induced by intraperitoneal injection of KA [48] AAV-NF-mediated GFP expression remained at the basal level in epileptic rats.

Transgene expression was detected in neurons and cells of the oligodendrocyte lineage showing that vector delivery and NFkB activation occur in these 3 cell types in the KA model. NFkB activation in neurons could reflect secondary neuroinflammation in neurons by pro-inflammatory cytokines released by microglia and/or neuron hyperactivity induced by the kainic acid model itself [60].

In contrast, no GFP expression was evidenced in microglial cells. This is surprising, since a NFkB response has been observed in microglial cells induced by the pro-inflammatory cytokine TNFz [61] and KA treatment is known to induce pro-inflammatory cytokines, including TNFz in the hippocampus [47].

The capsid serotype largely influences the cellular tropism of AAV vectors in the CNS [62–65]. In rodents, the majority of AAV serotypes or capsid variants, when injected in the rat parenchyma mediate transgene expression mostly in neurons with notable exceptions such as rAAV9 which mediates transgene expression in both neurons and astrocytes (Foust et al., 2009) or rAAV4 which transduce ependymal cells [66]. Interestingly, enhanced gene delivery into astrocytes has been obtained by selecting AAV capsid variants through molecular evolution [67].

In addition, we and others have previously shown that, the promoter also influences the AAV-delivered transgene expression profile [68,69]. Indeed, using a serotype 1 capsid, GFP was exclusively expressed in neurons using the tetOn promoter whereas 5% of GFP-positive cells were astrocytes with the CMV promoter. In the present study, with the rAAV1-NF8-d1 vector, we observed that 9.5% of GFP-positive cells in the hippocampal CA1 and CA3 layers of epileptic rats were astrocytes whereas 60%
were neurons. Whether these data reflect the proportion of astrocytes and neurons in which NFκB has been activated by the KA treatment or are biased by the tropism of the AAV serotype 1 capsid and mCMV promoter cannot be concluded from our data. It remains to be determined if the use of other AAV serotypes would modify the proportion of neurons, astrocytes and possibly microglial cells expressing a transgene driven by the AAV-NFκB vector. Furthermore, the optimal targeting of glial versus neuronal cells may also vary by disease indication.

The onset of AAV-mediated transgene expression in the brain is fairly slow [38]. However, serotype 1 AAV vectors are characterized by remarkably rapid kinetics in several regions of the brain with maximal expression reached at 2 to 4 days post-injection [70]; [71]. In addition, self-complementary vectors that bypass the limitations of second-strand viral DNA synthesis further reduce the delay for transgene expression [70]; [29].

In conclusion, this study constitutes a proof-of-concept step toward the use of NFκB-inducible AAV vectors for disease-inducible transgene delivery to treat disorders of the nervous system. Nonetheless, more data will be required to establish whether transgene expression tightly follows the temporal course of disease and whether pathology-appropriate cellular targeting of the inflammatory response can be reliably achieved.

Acknowledgments
We thank the vector core of the University Hospital of Nantes supported by the Association Francaise contre les Myopathies (AFM) for preparing the large-scale rAAV2/1-NFκB vector. We thank Dr Veerle Baekelandt (Lab. Molecular Virology and Gene Therapy, Katholieke Universiteit Leuven, Belgium) for her help for the stereological analysis.

We would like to acknowledge Dr Frédéric Boulé-Quivogne, PhD (Logistic Scientist F.R.S.- F.N.R.S.) of the Light Microscopy Facility (LiMF), Université Libre de Bruxelles, Brussels, Belgium, for his support with the confocal imaging presented herein.

Author Contributions
Conceived and designed the experiments: AC RLC RC LT. Performed the experiments: AC RLC ODW RC LT. Analyzed the data: AC ML ODW RC LT. Contributed reagents/materials/analysis tools: AC KM EG OB CM CP. Wrote the paper: AC RLC RC LT.
36. Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, et al. (2009) Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 29: 2103–2112.
37. Fu H, Muzezer J, Samulski RJ, Breese G, Siffrid J, et al. (2003) Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 8: 911–917.
38. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8: 1248–1254.
39. Afione SA, Conrad CK, Kears WS, Chunduru S, Adams R, et al. (1996) In vivo micro of adeno-associated virus vector persistence and rescue. J Virol 70: 3235–3241.
40. Haberman RP, McCown TJ, Samulski RJ (2000) Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J Virol 74: 8752–8759.
41. Eggermont J, Proudfoot NJ (1993) Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters. EMBO J 12: 2539–2548.
42. Chintaro A, Bender HU, Hanemann CO, Krens T, Lehmann E, et al. (2003) Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Ther 10: 84–94.
43. Strathdee CA, McLeod M, Hall JR (1999) Efficient control of tetracycline-responsive gene expression from an autoregulated bidirectional expression vector. Gene 229: 21–29.
44. Channavajhala P, Rao VR, Spaulding V, Lin LL, Zhang YG (2005) hKSR-2 inhibits MEKK3-activated MAP kinase and NF-kappaB pathways in inflammation. Biochim Biophys Acta 1744: 1214–1218.
45. Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, et al. (1985) A transgene inducible viral vector. Gene 229: 21–29.
46. Rong Y, Baudry M (1996) Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J Neurochem 67: 662–668.
47. Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS (2005) The development of a GL263 transgenic rat model of Parkinson's disease. Eur J Neurosci 18: 2731–2742.
48. Jankowsky JL, Derrick BE, Patterson PH (2000) Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques. Learn Mem 7: 400–412.
49. Oprica M, Eriksson C, Schultzberg M (2003) Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med 7: 127–140.
50. Turin NP, River S (2004) Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 16: 321–334.
51. Zufferey R, Moirano J, Raschke J, Bondarenko V, Zaneveld RJ, et al. (2000) Tetracycline-inducible viral vector. Hum Gene Ther 11: 1699–1708.
52. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46: 1724–1743.
53. Bockstael O, Melas C, Pythoud C, Levivier M, McCarty D, et al. (2012) Rapid and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV2/1, 2/2, 5/2, 6/2, 7/2/8/2 and 2/9. Gene Ther 19: 517–527.
54. Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7: 1979–1993.
55. Vezzani A, Arosio E, Mazzara A, Pitman GJ (2011) Epilepsy and brain inflammation. Exp Neurol.
56. Shapard PW, Sun X, Emery JF, Giffard RG, Khammass M (2011) Quantitative characterization and analysis of the dynamic NF-kappaB response in microglia. BMC Bioinformatics 12: 276. 1471-2105-12-276 [pii];10.1186/1471-2105-12-276 [doi].
57. Blits B, Derks S, Twisk J, Ehler E, Prins J, et al. (2010) Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. J Neurosci Methods 183: 237–243.
58. Burger C, Goebbels KS, Velardo MJ, Peden CS, Williams P, et al. (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10: 302–317.
59. Taylor JD, Vandenbergh LH, Hauss CE, Thiry I, DeRose CM, et al. (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18: 195–206.
60. Van der PA, Toelen J, Carlton M, Van den HC, Courn F, et al. (2011) Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV2/1, 2/2, 5/2, 6/2, 7/2/8/2 and 2/9. Gene Ther 18: 517–527.
61. Blits B, Derks S, Twisk J, Ehler E, Prins J, et al. (2010) Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. J Neurosci Methods 183: 237–243.
62. Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7: 1979–1993.
63. Vezzani A, Arosio E, Mazzara A, Pitman GJ (2011) Epilepsy and brain inflammation. Exp Neurol.
64. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, et al. (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97: 3428–3432. 10.1073/pnas.050581197 [pii];050581197 [doi].
65. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46: 1724–1743.
66. Koeber JT, Klimeczak R, Jang JH, Dalkara D, Flannery JG, et al. (2009) Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther 17: 2082–2095. mt20091814 [pii];10.1038/mt.2009.184 [doi].
67. Bockstael O, Chitato A, Wakinen J, Yang X, Melas C, et al. (2008) Differential transgene expression profiles from rAAV2/1 vectors using the tetOON and CMV promoters in the rat brain. Hum Gene Ther.
68. Haberman R, Citowill H, Snowdy S, Ming Z, Breese G, et al. (2002) Therapeutic liabilities of in vivo viral vector tropism: adeno-associated virus vectors, NMDAR1 antisense, and focal seizure sensitivity. Mol Ther 6: 495–500.
69. Bockstael O, Melas C, Pyhoud C, Levivier M, McCarty D, et al. (2012) Rapic Transgene Expression in Multiple Precursor Cell Types of Adult Rat Subventricular Zone Mediated by Adeno-Associated Type 1 Vectors. Hum Gene Ther. 10.1089/hum.2011.216 [doi].
70. Reinsmider S, Manfredson FP, Muzyczka N, Mandel RJ (2007) Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/6 transduction in the rat. Mol Ther 15: 1304–1311.
71. Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka N (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70: 4646–4654.

Nuclear Factor-κB-Inducible Viral Vector

PLOS ONE | www.plosone.org