Toxicity of Antiestrogens

Pirkko Hirsimäki, PhD,* Annukka Aaltonen, MSc,*† and Eero Mäntylä, MSc‡

*Department of Pathology, Turku University Central Hospital, BioCity,
†Hormos Medical Ltd., Pharma City, Turku, Finland, and ‡Brion Scientific Ltd.,
Unit for Independent Medical Writing, Piispanratti

Abstract: The object of this article is to review briefly the preclinical and clinical safety of some antiestrogens. Tamoxifen, toremifene, droloxifene, and idoxifene are polyphenylethylene antiestrogens, whereas the pure antiestrogen, ICI 182,780 or faslodex, as well as raloxifene, is of a different structure. Tamoxifen has been shown to be genotoxic in several studies. It induces unscheduled DNA synthesis in rat hepatocytes and micronuclei in MCL-5® cells in vitro. Tamoxifen also induces aneuploidy in rat liver in vivo and chromosome aberrations and micronuclei in mouse bone marrow. Toremifene has also shown to be genotoxic, but to a far lower extent, by inducing micronuclei in MCL-5® cells in vitro and by inducing aneuploidy in rat liver in vivo. Tamoxifen has been shown to be hepatocarcinogenic in the rat in at least four independent long-term studies. The initiation of tumors in the rat is the result of metabolic activation by cytochrome P450 isoenzymes to an electrophile(s) that binds irreversibly to DNA. The other antiestrogens have not been shown to be carcinogenic in rodents. In several independent clinical studies, the risk of endometrial cancer has increased among tamoxifen-treated women. After reviewing the available data, the International Agency for Research on Cancer concluded that there was sufficient evidence to show that tamoxifen is a class I human carcinogen. The increased risk for endometrial cancer occurs predominantly among women who are 50 years old or older and who have been treated with tamoxifen. It is not yet clear whether the uterine tumor formation is a result of genetic mechanisms, analogous to those seen in the rat liver or due to the estrogen agonist action of tamoxifen. However, the other antiestrogens with a more or less similar intrinsic estrogenic potential have not been shown to be carcinogenic in humans.

Key Words: antiestrogen, toxicity, endometrial cancer, tamoxifen, toremifene, raloxifene

Antiestrogens act as estrogen antagonists; that is, they bind to and compete with endogenous estrogen for estrogen receptors in the nuclei of estrogen-responsive tissues. In clinical practice, antiestrogens are used for ovulation induction (clomiphene, Clomid®) in the treatment or prevention of breast cancer (tamoxifen, Nolvadex® and toremifene, Fareston®) and are also recently used for the prevention of osteoporosis (raloxifene, Evista®)(1). Preliminary results indicate that raloxifene may also have efficacy in breast cancer prevention. The drug is being compared with tamoxifen for this indication. Tamoxifen, toremifene, droloxifene, and idoxifene are polyphenylethenes (Fig. 1). Tamoxifen was introduced in 1971 and toremifene in 1988, whereas droloxifene and idoxifene are newer antiestrogens. The pure antiestrogen, ICI 182,780 or faslodex, and raloxifene are still newer antiestrogens (Fig. 2). The antiestrogens have also been called selective estrogen receptor modulator (SERM) drugs (1,2).

During recent years, convincing preclinical evidence has shown that tamoxifen has genotoxic properties (3–5). The most severe clinical manifestation of this property is the increased risk for secondary endometrial cancer among women using tamoxifen. New longer treatment options, such as chemoprevention and treatment of early breast cancer (adjuvant treatment), targeting healthy women or women with long life expectancy led to an increased alertness toward the safety aspects of antiestrogens. Improved safety is a high priority when developing new SERM drugs (2,5).
PRECLINICAL STUDIES

Genotoxicity

The genotoxicity of tamoxifen and toremifene is well documented in the literature, whereas documentation of the other antiestrogens in this respect remains poor. Tamoxifen has been shown to be positive in all genotoxicity studies. Tamoxifen induces unscheduled DNA synthesis in rat hepatocytes and micronuclei in MCL-5\(^3\) cells in in vitro studies. In in vivo studies, tamoxifen induces aneuploidy and is clastogenic in rat liver and leads to chromosome aberrations and micronuclei formation in mouse bone marrow (Table 1). Toremifene has shown far less noxious genomic effects in preclinical studies than tamoxifen. Williams et al. reported that toremifene is not genotoxic when tested in three standard in vitro assays (6); reversion of bacterial point mutations, unscheduled DNA synthesis in rat hepatocytes from two rat strains, and chromosome aberration assays of human lymphocytes. Similar to idoxifen (7) and even to estrogen (8), toremifene has been reported to induce micronuclei in MCL-5\(^3\) cells in vitro, and in in vivo studies, it induces aneuploidy. It is not, however, clastogenic in the rat liver as is tamoxifen (Table 2). Multiple studies have shown that tamoxifen induces DNA adducts in high levels in rat liver. No adducts or 300-fold less adducts have been reported with toremifene (4).

Carcinogenicity

Tamoxifen has been shown to be hepatocarcinogenic in the rat in several independent, long-term studies (17,18). In a 2-year carcinogenicity study that was conducted by Greaves et al. (19), in Wistar rats, a dose of 5 mg/kg/day induced hepatocellular carcinoma in 16% of the males (controls 1%) and in 12% of the females (controls 0%). Toremifene is not carcinogenic.

Table 1. Genotoxicity Studies with Tamoxifen

System	End point	Result	Study
Tamoxifen	In vitro		
Rat hepatocytes	Unscheduled DNA synthesis	Positive	(9)
MCL-5\(^3\)	Micronuclei	Positive	(10)
In vivo	Rat liver	Aneuploidy	Positive (7,11)
Clastogenicity	Positive	(7,8)	
Mutagenicity	Positive	(12,13)	
Rat liver	DNA adduct formation	Positive	(4,5,16,23)
Mouse bone marrow	Chromosome aberrations	Positive	(14)
	Micronuclei	Positive	(15)
Table 2. Genotoxicity Studies With Toremifene and Raloxifene

System	End point	Result	Study
Toremifene			
In vitro	Micronuclei	Positive	(10)
Rat liver	Aneuploidy	Positive	(7,11)
Rat liver	Clastogenicity	Negative	(7,8)
Rat liver	Mutagenicity	Negative	(12,13)
Rat liver	DNA adduct formation	Negative or very low	(4,5,16,23)
Raloxifene			
Rat liver	DNA adduct formation	Negative	(16)

* Metabolically competent lymphoblast clone.

in rodent tests (17,18,20). The initiation of tumors in the rat is the result of metabolic activation by cytochrome P450 isoenzymes (CYP) to an electrophilic(s) that binds irreversibly to DNA. The ultimate reactive carcinogenic metabolite of tamoxifen is the sulfate-conjugated derivative of the α-hydroxylated parent drug or its N-desmethyl metabolite (5,21–23). Toremifene and raloxifene molecules cannot be activated by this α-hydroxylation pathway in vivo because of their different molecular structure (16). Tamoxifen but not toremifene induces endometrial cancers in adult rats as well (24), although the estrogenic/antiestrogenic effects of these drugs on the endometrium are equal (25). Neonatal tamoxifen exposure also leads to endometrial cancers in rats and mice (26,27). No data are available on carcinogenicity tests with raloxifene.

CLINICAL STUDIES

In general, antiestrogens are associated with a low incidence of serious adverse effects. There is no increase in the incidence of liver cancer with any of the drugs. It is well established, however, that tamoxifen is associated with an increased risk for endometrial cancer in women (5,28). When compared with placebo, the increase in the relative risk to develop secondary endometrial cancer varies twofold to sevenfold in different studies, depending on the length of tamoxifen exposure.

Rutqvist et al. (29) found an average of fourfold increase in endometrial cancer as compared with untreated controls among 4,900 Scandinavian breast cancer patients. The follow-up time was 8 to 9 years (29). A continuous divergence in the cumulative incidence of endometrial cancer between the tamoxifen and the control group in this study, even several years after cessation of treatment, suggests that tamoxifen initiates some of the observed events.

In the National Surgical Adjuvant Breast and Bowel Program in the United States, which involved 2,823 patients with node-negative, estrogen receptor-positive breast cancers, tamoxifen treatment over a 5-year follow-up period resulted in a relative risk of 7.5 over the placebo group (30).

A case-control study in the United States of the Surveillance, Epidemiology and End Results showed an approximately 1.6-fold increase in the incidence of uterine tumors in the group receiving tamoxifen 20 mg/day (31).

A total of 13,388 healthy women at high risk for developing breast cancer were included in National Cancer Institute founded Breast Cancer Prevention Trial. The 4-year follow-up revealed a 4.97-fold increase in the relative risk of developing endometrial cancer among tamoxifen-treated women. Unfortunately, the study was interrupted too early to be able to conclude the long-term effects of tamoxifen treatment in this respect (32).

Reviewing the available data, the International Agency for Research on Cancer concluded that there was sufficient evidence to show that tamoxifen is a class I human carcinogen (28). An increased risk for endometrial cancer is predominantly found in women 50 years old or older. There is a comparatively rapid onset of these secondary tumors, often within 2 to 5 years of the start of treatment (5). However, some data are available that show that late onset, 8 to 10 years after cessation of tamoxifen treatment, is possible (29).

The most common type of endometrial carcinoma, endometrial adenocarcinoma, develops from endometrial hyperplasia in the setting of excess estrogen exposure (33). Relatively few articles have focused on the descriptive morphology of the tamoxifen-associated lesions. In a review of 102 cases using hormone replacement therapy-related endometrial specimens and conventional polyps as the control group, the most characteristic findings of tamoxifen-associated lesions included polarized glands along the long axis of polyps (40%), a cambium layer (72%), frequent and diverse metaplasias, staghorn glands (36%), myxoid degeneration (12%), and small glands (36%). Similar morphologic features were identified in the hormone replacement therapy and control groups but to a variable, lesser extent. The tamoxifen group consisted of 18 cases of hyperplasia and 1 case each of adenofibroma, adenosarcoma, endometrial stromal...
sarcoma, and leiomyosarcoma (34). Estrogen receptors are usually expressed in leiomyosarcomas (35) and also in some adenomas (36).

Available long-term clinical data on tamoxifen with 3 to 5 years of exposure and nearly 10 years of follow-up indicate that there is no increase in endometrial cancer incidence or that the risk is considerably lower than with tamoxifen (37,38). However, further reports and a longer follow-up are needed to confirm this.

The available reports on raloxifene suggest that it has no proliferating or carcinogenic action on human endometrium (39,40). Only long-term data will be able to verify these assertions (39).

It is still not clear whether the mechanism of formation for these uterine tumors is through genetic mechanisms, analogous to those seen in the rat liver, or as a result of the estrogen agonist actions of tamoxifen. Conclusive evidence on the endometrial effects of the newer antiestrogens may be obtained only by further long-term clinical studies.

REFERENCES

1. Plouffe L Jr. Selective estrogen receptor modulators (SERMs) in clinical practice. J Soc Gynecol Invest 2000;7: S38–46.
2. McDonnell DP. Selective estrogen receptor modulators (SERMs): a first step in the development of perfect hormone replacement therapy regimen. J Soc Gynecol Invest 2000;7: S10–5.
3. Hirsimäki P, Hirsimäki Y, Nieminen L, Karlsson S, Mäntylä E. On the safety studies of the antiestrogens toremifene and tamoxifen. Scand J Lab Anim Sci 1996;23: 147–53.
4. Williams GM, Jeffrey AM. Safety assessment of tamoxifen and toremifene. Oncology 1997;11(Suppl 4):41–7.
5. White NH. The tamoxifen dilemma. Carcinogenesis 1999;20:1153–60.
6. Williams GM, Ross PM, Jeffrey AM, Karlsson S. Genotoxicity studies with the antiestrogen toremifene. Drug Chem Toxicol 1998;21:449–76.
7. Sargent LM, Dragan YP, Slatter C, et al. Induction of hepatic aneuploidy in vivo by tamoxifen, toremifene and idoxifene in female Sprague-Dawley rats. Carcinogenesis 1996;17:1051–6.
8. Styles JA, Davies A, Davies R, et al. Clastogenic and aneugenic effects of tamoxifen and some of its analogues in hepatocytes from dosed rats and in human lymphoblastoid cells transfected with human P450 cDNAs (MCL-5 cells). Carcinogenesis 1997;18:303–13.
9. Phillips DH, Potter GA, Horton MN, et al. Reduced genotoxicity of (D5-ethyl)-tamoxifen implicates α-hydroxyla-
tion of the ethyl group as a major pathway of tamoxifen activation to a liver carcinogen. Carcinogenesis 1994;15: 1487–92.
10. Styles JA, Davies A, Lim CK, et al. Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis 1994;15:5–9.
11. Sargent LM, Dragan YP, Bahnub N, et al. Tamoxifen induces hepatic aneuploidy and mitotic spindle disruption after a single in vivo administration to female Sprague-Dawley rats. Cancer Res 1994;54:3357–60.
12. Davies R, Orefio VIC, Martin EA, et al. Tamoxifen causes gene mutations in the livers of Lambda/ lac transgenic rats. Cancer Res 1997;57:1288–93.
13. Davies R, Gant TW, Smith LL, Styles JA. Tamoxifen induces G:C→T:A mutations in the cII gene in the liver lambda/ lac transgenic rats but not in 5'-CpG-3'-dinucleotide sequences as found in the lac transgene. Carcinogenesis 1999; 20:1351–6.
14. Vijayalaxmi KK, Rai SP. Studies on the genotoxicity of tamoxifen citrate in mouse bone marrow cells. Mutat Res 1996;368:109–14.
15. Comoglio A, Gibbs AH, White INH, et al. Effects of tamoxifen feeding on metabolic activation of tamoxifen by the liver of Rhesus monkey: does liver accumulation of inhibitory metabolites protect from tamoxifen-dependent genotoxicity and cancer? Carcinogenesis 1996;17:1687–93.
16. Rajaniemi H, Koskinen M, Mäntylä E, Hemminki K. DNA binding of tamoxifen and its analogues: identification of the tamoxifen-DNA adducts in rat liver. Toxicol Lett 1998; 102-103:453–7.
17. Hirsimäki P, Hirsimäki Y, Nieminen L, Payne BJ. Tamoxifen induces hepatocellular carcinoma in rat liver: a 1-year study with two antiestrogens. Arch Toxicol 1993;67: 49–54.
18. Williams GM, Iatropoulos MJ, Djordjevic MV, Kaltenberg OP. The triphenylethylen drug tamoxifen is a strong liver carcinogen in the rat. Carcinogenesis 1993;14: 315–7.
19. Greaves P, Goonettleke R, Nunn G, Topham J, Orton T. Two-year carcinogenicity study of tamoxifen in Alderly Park Wistar-derived rats. Cancer Res 1993;53:3919–24.
20. Karlsson S, Hirsimäki Y, Mäntylä E, et al. A two-year dietary carcinogenicity study of the antiestrogen toremifene in Sprague-Dawley rats. Drug Chem Toxicol 1996;19:245–66.
21. Dasaradhi L, Shibutani S. Identification of tamoxifen-DNA adducts formed by α-sulfate tamoxifen and α-acetoxytamoxifen. Chem Res Toxicol 1997;10:189–96.
22. Davis W, Venitt S, Phillips DH. The metabolic activation of tamoxifen and alpha-hydroxytamoxifen to DNA-binding species in rat hepatocytes proceeds via sulphation. Carcinogenesis 1998;19:861–6.
23. Rajaniemi H, Mäntylä E, Hemminki K. DNA adduct
formation by tamoxifen and structurally-related compounds in rat liver. *Chem Biol Interact* 1998;113:145–59.

24. Mäntylä E, Karlsson S, Nieminen L. Induction of endometrial cancer by tamoxifen in the rat. In: Li JJ, Gustafsson J-Å, Nandi N, Sekely LI, eds. *Hormonal Carcinogenesis II*. New York: Springer-Verlag, 1996:442–5.

25. Karlsson S, Iatropoulos MJ, Williams GM, Kangas L, Nieminen L. The proliferation in uterine compartments of intact rats of two different strains exposed to high doses of tamoxifen or toremifene. *Toxicol Pathol* 1998;26:759–68.

26. Newbold RR, Jefferson WN, Padilla-Burgos E, Bullock BC. Uterine carcinomas in mice treated neonatally with tamoxifen. *Carcinogenesis* 1997;18:2293–8.

27. Carthew P, Edwards RE, Nolan BM, et al. Tamoxifen induces endometrial and vaginal cancer in rats in the absence of endometrial hyperplasia. *Carcinogenesis* 2000;21:793–7.

28. IARC. Tamoxifen. In: *Some Pharmaceutical Drugs*. Lyon: IARC, 1996:253–365.

29. Rutqvist LE, Johansson H, Signomklao T, et al. Adjuvant tamoxifen therapy for early stage breast cancer and second primary malignancies: Stockholm Breast Cancer Study Group. *J Natl Cancer Inst* 1995;87:645–51.

30. Poirier D, Auger S, Merand Y, Simard J, Labrie F. Synthesis and antiestrogenic activity of diaryl thioether derivatives. *J Med Chem* 1994;37:1115–25.

31. Curtis RE, Boice JD Jr, Shriner DA, Hankey BF, Fraumeni JF Jr. Second cancers after adjuvant tamoxifen therapy for breast cancer. *J Natl Cancer Inst* 1996;88:832–4.

32. Fisher B, Constantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. *J Natl Cancer Inst* 1998;90:1371–88.

33. Sherman ME. Theories of endometrial carcinogenesis: a multidisciplinary approach. *Modern Pathol* 2000;13:295–308.

34. Kennedy MM, Baigrie CF, Manek S. Tamoxifen and the endometrium: review of 102 cases and comparison with HRT-related and non-HRT-related endometrial pathology. *Int J Gynecol Pathol* 1999;18:130–7.

35. Reich O, Regauer S, Urdl W, Lahousen M, Winter S. Expression of oestrogen and progesterone receptors in low-grade endometrial stromal sarcomas. Br J Cancer 2000;82:1030–4.

36. Carvalho FM, Carvalho JP, Motta EV, Souen J. Mullerian adenosarcoma of the uterus with sarcomatous overgrowth following tamoxifen treatment for breast cancer. *Rev Hosp Clin Fac Med Sao Paulo* 2000;55:17–20.

37. Määnpää J, Ellmeén J, Pasanen T, Kaukonen M. Effects of the antiestrogens tamoxifen, toremifene, and ICI 182,780 on endometrial cancer growth. *J Natl Cancer Inst* 1999;91:972.

38. Holli K. Toxicity and early survival results of a prospective, randomized adjuvant trial comparing toremifene and tamoxifen in node-positive breast cancer. *ASCO OnLine* 2000;334.

39. Cummings SR, Eckert S, Krueger KA. The effects of raloxifene on risk of breast cancer in postmenopausal women. *JAMA* 1999;281:2189–97.

40. Kauffman RF, Bryant HU, Yang N, et al. Preventing postmenopausal osteoporosis: an update on raloxifene. *Drug News Perspect* 1999;12:223–33.