Summary

What is already known about this topic?
The incidence of tuberculosis (TB) was declining in China but has plateaued in recent years.

What is added by this report?
Notifications of pulmonary TB declined by 27.7% between 2008 and 2018, with an average crude decline of 3.4% per year and an average age-adjusted decline of 4.3% per year. Notifications decreased faster among older people, but slower in western China; the combination of trends led to an inflection in 2016 in the overall notification trend from decreasing to stable.

What are the implications for public health practice?
Population ageing and geographic disparities slowed tuberculosis control progress in China. Enhanced, targeted, and proactive responses are recommended to achieve the End TB targets.

In this study, we analyzed age-specific PTB rates reported in TBIMS from 2008 to 2018 and conducted a joinpoint regression analysis to evaluate the impact of ageing on the potential to achieve the World Health Organization (WHO) End TB Strategy targets. We found an overall decline of 27.7% during the study period with an annual crude percentage change of −3.4% and an annual age-adjusted change of −4.3%. The rates of decline were greater among older people and were lower in central and western China compared with eastern China. In 2016, there was an inflection point in which the decline plateaued, potentially cancelling tuberculosis control progress in China. Targeted responses, including enhanced surveillance, age-sensitive analysis, and early screening and preventative therapy, are recommended.

The study data came from all 31 provincial-level administrative divisions (PLADs) in the mainland of China. Annual population data were collected from the China Statistical Yearbook. We determined annual crude and age-adjusted notification rates using the 2008 population as a reference. We determined the average crude and age-adjusted annual percentage change (APC) using exponential linear regression and joinpoint regression. Comparison of declines by subgroup was based on both crude and age-adjusted APCs. Joinpoint regression identified a joinpoint that divided the crude and age-adjusted notification rates into two periods that we used in subsequent analyses. A trend was defined as an increase or decrease if it had a statistically significant difference (P<0.01), and as stable if it had a non-significant difference (P≥0.01). Statistical analyses were done with R (version 3.6.0, R Development Core Team, Vienna, Austria) and Joinpoint Regression Program, (version 4.7.0, Statistical Research and Applications Branch, National Cancer Institute, Bethesda, MD, USA).

Between 2008 and 2018, a total of 9,242,525 PTB cases were notified to TBIMS, for an average notification rate of 62.1 cases per 100,000. Notification rates were higher for males, increased with age, and were disproportionately distributed by...
Among individuals 15 years or older, annual notification rates for males were significantly higher than for females, particularly among older adults (Table 1). A significant decrease was observed in PTB notification rates, with an absolute change of −21.0 cases per 100,000 during the study period — a relative change of −27.7% and an average annual percentage change of −3.4% (95% confidential interval, CI: −3.9 to −3.0). Decreases were observed in all groups, but were faster among males, people younger than 45, smear-positive patients, eastern China, and central China (Table 1).

Among children (<15 years), the average annual percentage change was significantly greater in males, in central China, and in western China compared with the overall average. Among 15 to 64-year-olds, changes were greater in 35 to 44-year-olds, 15 to 24-year-olds except in western China, 25 to 34-year-old females, and people in central China and western China. Among people 65 years and older, the average annual percentage change was greater in males, in eastern China, and in central China. Children 0 to 14 years old in eastern China and 65 to 74-year-olds in western China were the only groups without a significantly decreasing trend (Figure 1).

The year 2016 was an inflection point between decreasing and stable incidences. Before 2016, the crude annual percentage change showed a faster decline in smear-positive PTB (−11.7%, 95% CI: −13.7 to −9.6) than in PTB (−3.9%, 95% CI: −4.3 to −3.5) and a faster decline in eastern China (−5.3%, 95% CI: −5.9 to −4.8) than in central China (−3.7%, 95% CI: −4.2 to −3.3) and western China (−3.5%, 95% CI: −4.5 to −2.5). After 2016, no statistically significant change was identified. Trends in central and eastern China were different from national level and western China trends. In central China, TB declined rapidly after 2015, while in eastern China the rate of decline slowed but didn’t stop. Age-adjusted joinpoint analyses showed consistent regression patterns but with faster declines. The annual percentage change of age-adjusted rates were −4.3% (95% CI: −4.8 to −3.8) at the national level, −5.5% (95% CI: −6.1 to −4.9) in eastern China, −5.0% (95% CI: −5.2 to −4.8) in central China, and −3.1% (95% CI: −4.4 to 1.8) in western China (Table 2).

DISCUSSION

Our study found that the pulmonary tuberculosis notification rate declined by 27.7% in China between 2008 and 2018, with an annual decline of 3.4% until 2016, when the decline plateaued. Age, sex, and regional disparities had significant impacts on distribution and notification trends. Age-specific analyses showed the highest notification rate in people 65 years and above. As noted, joinpoint analysis showed an inflection in the declining trend in 2016. Given few proactive strategies, China may face a slower decline or a plateau in PTB incidence in the coming years, or possibly a resurgence like some countries experienced during the 1990s. Great attention should be paid to trends and demographic characteristics of TB patients.

China is rapidly moving toward an ageing society, with high-paced economic development and achievement of universal health coverage. According to a World Population Prospects 2019 estimate, China’s fertility rate was approximately 1.7 — lower than the regeneration rate of 2.1. The percentage of the population over 65 years increased from 8.3% in 2008 to 11.9% in 2018 (3) and may exceed 20% in 2035 (2). This rapid ageing has brought great challenges to TB control in China. The TB notification rate in people 65 years and above was more than twice that of the entire population. Although the rate of decline in older people seems higher, age standardization reduced the annual decline rate by 0.9% in 2008 to 2016 and 0.5% in 2016 to 2018. Standardization impact may be even greater over the longer term due to the acceleration of population ageing.

Western China changed from decrease to plateau (and close to increase) in TB notifications, which contributed to the national plateau after 2016. Economic disparities and consequential disparities in health awareness and health service accessibility could be important reasons. According to JP Janssen and colleague’s analysis, TB incidence is linearly related to per capita gross domestic product (4). During recent decades, large-scale population flow has occurred from western and central China into eastern China because of unbalanced economic development. Considering most migrant populations are under 40 years of age (5), interregional migration may aggravate demographic, and consequently TB disparities in the different regions.

Many factors may be responsible for a faster decline in the notification rate of smear-positive PTB patients. In 2008, China launched national guidelines (6) and standardized diagnostic criteria (7), which strengthened diagnosing, reporting, and treating of smear-negative
Group	Number of total notified cases	Average notification rate (1/100,000)	Annual notification rate (1/100,000)	Change between 2008 and 2018	Trend analysis			
		2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018		Absolute change	Relative change	Average annual percentage change (95% CI)	P value	
Total	9,242,525	62.1 75.6 71.4 67.9 65.7 64.5 60.9 58.6 56.6 54.6 53.8 54.7		−21.0	−27.7%	−3.4% (−3.9 to −3.0)	<0.01	Decrease
Sex								
Male	6,441,130	84.4 103.1 97.1 92.4 89.8 87.8 82.6 79.6 76.9 74.0 73.3 73.6		−29.5	−28.6%	−3.5% (−4.0 to −3.1)	<0.01	Decrease
Female	2,801,395	38.6 46.4 44.3 42.2 40.3 40.0 38.1 36.4 35.3 34.2 33.4 34.8		−11.6	−24.9%	−3.2% (−3.8 to −2.6)	<0.01	Decrease
Age (years)								
0–14	59,017	2.3 3.3 3.3 2.5 2.4 2.3 1.9 1.6 1.6 1.8 1.9 2.4		−0.9	−26.9%	−5.2% (−8.6 to −1.6)	<0.01	Decrease
15–24	1,425,718	58.1 71.2 69.9 68.1 65.6 61.9 56.8 53.4 48.3 47.7 46.4 46.5		−24.7	−34.7%	−5.0% (−5.7 to −4.2)	<0.01	Decrease
25–34	1,318,915	62.2 77.0 72.4 69.5 65.7 62.8 59.8 58.2 56.6 55.6 54.0 53.5		−23.5	−30.5%	−3.7% (−4.2 to −3.1)	<0.01	Decrease
35–44	1,331,405	51.9 67.6 64.8 61.8 58.1 55.2 50.1 49.2 44.3 41.0 38.5 37.5		−30.1	−44.6%	−6.0% (−6.5 to −5.6)	<0.01	Decrease
45–54	1,543,716	70.5 88.9 80.3 75.1 72.0 70.6 68.3 64.6 64.9 65.5 65.4 64.8		−24.1	−27.1%	−2.8% (−3.8 to −1.8)	<0.01	Decrease
55–64	1,616,223	99.8 126.8 116.5 108.6 104.7 105.1 101.5 93.7 90.0 86.3 83.8 89.3		−37.5	−29.6%	−3.7% (−4.5 to −2.9)	<0.01	Decrease
65–74	1,275,541	147.7 189.0 172.9 161.5 141.2 153.9 146.4 142.9 144.8 126.5 130.2 130.8		−58.2	−30.8%	−5.7% (−6.8 to −4.7)	<0.01	Decrease
75–	671,990	129.7 185.8 172.8 163.8 142.0 132.8 126.9 118.4 121.4 104.2 106.0 106.4		−79.4	−42.7%	−3.3% (−3.8 to −2.9)	<0.01	Decrease
TB category								
New pulmonary tuberculosis	9,130,914	61.3 74.2 70.1 66.8 64.8 63.7 60.3 58.1 56.2 54.2 53.4 54.2		−20.0	−26.9%	−9.7% (−12.5 to −6.8)	<0.01	Decrease
Smear-positive pulmonary tuberculosis	3,856,327	25.9 40.0 38.3 36.3 31.6 26.6 23.0 19.8 17.5 16.4 16.3 20.5		−19.5	−48.8%	−4.7% (−5.1 to −4.3)	<0.01	Decrease
Region								
Eastern	2,910,810	47.9 61.0 58.2 55.6 51.3 49.7 46.1 44.8 43.2 41.2 40.0 38.5		−22.6	−37.0%	−3.9% (−4.2 to −3.7)	<0.01	Decrease
Central	3,255,461	69.5 84.4 80.8 76.8 73.9 73.1 69.1 66.7 64.5 61.1 58.7 56.4		−28.0	−33.2%	−2.2% (−3.5 to −0.9)	<0.01	Decrease
Western	3,076,254	75.6 90.3 82.6 78.3 78.9 77.7 74.5 69.7 67.4 67.1 68.7 76.9		−13.4	−14.8%	−4.7% (−5.1 to −4.3)	<0.01	Decrease

Abbreviation: CI=confidential interval.
FIGURE 1. Average annual percentage change of pulmonary tuberculosis notification rates by age group in China, 2008–2018. (A) PTB; (B) PTB in male; (C) PTB in female; (D) Smear-positive PTB; (E) Smear-positive PTB in male; (F) Smear-positive PTB in female; (G) PTB in eastern; (H) PTB in central; (I) PTB in western.

Note: Dots and shaded areas represent the annual percentage change (% per year) and 95% CIs in pulmonary tuberculosis notification rates by age group in China during 2008–2018. The dashed line represents the average annual percentage change in all age groups in pulmonary tuberculosis (~3.4%) and smear-positive pulmonary tuberculosis (~9.7%). PTB is pulmonary tuberculosis.

Abbreviation: PTB=pulmonary tuberculosis; CI=confidential interval.
TB patients. Enhancement programs such as health education and patient-awareness augmentation also contributed greatly to shortening diagnosis time and lessening TB patients’ symptoms. Meanwhile, the reform of China’s TB service delivery model from traditional TB-specific facilities to designated general hospitals may have influenced the examination and detection of smear-positive patients (8).

The End TB Strategy requires a decline in the TB incidence rate of at least 10% before 2025. Based on our analysis, achieving the End TB 2020/2025 milestones and the National Tuberculosis Program 13th Five Year Plan targets is on pace. However, the current rate of decline is too slow to achieve the End TB 2035 milestone. While the scientific community looks for new vaccines and drugs to accelerate this process, we must also proactively address new challenges like population ageing and regional disparities.

The annual rate of decline rate that we found is

Group	Trend 1: decrease	Trend 2: stable and decrease					
Crude rate	Period	Annual percentage change (95% CI)	Trend	Period	Annual percentage change (95% CI)	Trend	
Sex	2008–2016	−3.9% (−4.3 to −3.5)*	Decrease	2016–2018	0.2% (−3.8 to 4.3)	Stable	
Male	2008–2016	−4.0% (−4.4 to −3.6)*	Decrease	2016–2018	−0.1% (−4.2 to 4.2)	Stable	
Female	2008–2016	−3.8% (−4.2 to −3.4)*	Decrease	2016–2018	0.9% (−3.1 to 5.2)	Stable	
TB category	New pulmonary tuberculosis	2008–2016	−3.8% (−4.2 to −3.4)*	Decrease	2016–2018	−0.0% (−4.0 to 4.2)	Stable
	Smear-positive pulmonary tuberculosis	2008–2016	−11.7% (−13.7 to −9.6)*	Decrease	2016–2018	11.1% (−13.6 to 42.9)	Stable
Region	Eastern	2008–2013	−5.4% (−6.0 to −4.8)*	Decrease	2013–2018	−3.8% (−4.5 to −3.0)*	Decrease
	Central	2008–2015	−3.7% (−4.2 to −3.3)*	Decrease	2015–2018	−4.3% (−6.2 to −2.5)*	Decrease
	Western	2008–2016	−3.5% (−4.5 to −2.5)*	Decrease	2016–2018	7.5% (−2.2 to 18.2)	Stable
Age-adjusted rate	2008–2016	−4.8% (−5.2 to −4.4)*	Decrease	2016–2018	−0.3% (−4.6 to 4.1)	Stable	
Sex	2008–2016	−4.9% (−5.3 to −4.5)*	Decrease	2016–2018	−0.6% (−4.9 to 4.0)	Stable	
	Female	2008–2016	−4.5% (−4.9 to −4.1)*	Decrease	2016–2018	0.3% (−3.9 to 4.7)	Stable
TB category	New pulmonary tuberculosis	2008–2016	−4.6% (−5.0 to −4.2)*	Decrease	2016–2018	−0.5% (−4.7 to 4.0)	Stable
	Smear-positive pulmonary tuberculosis	2008–2016	−12.6% (−14.6 to −10.6)*	Decrease	2016–2018	10.4% (−14.3 to 42.3)	Stable
Region	Eastern	2008–2013	−6.5% (−7.8 to −5.2)*	Decrease	2013–2018	−4.1% (−5.6 to −2.6)*	Decrease
	Central	2008–2015	−4.7% (−5.1 to −4.4)*	Decrease	2015–2018	−5.2% (−6.9 to −3.6)*	Decrease
	Western	2008–2016	−4.4% (−5.3 to −3.5)*	Decrease	2016–2018	6.7% (−2.6 to 16.9)	Stable

* P<0.01, an average annual percentage change had significant difference from zero.

Abbreviation: CI= confidential interval.
average levels in Western Pacific countries or worldwide (10). China is shifting from a high to a moderate epidemic of TB, similar to what was seen in developed countries in the 1950s. At that stage, in addition to implementation of standardized chemotherapy and treatments, most developed countries implemented various policies such as large-scale active screening, active targeted screening in key populations, and preventative treatment. For example, the United States (11) and Japan (12) both launched active screening strategies for elderly people during this period, as highlighted in the WHO End TB Strategy relevant guidelines. China has started exploring active screening pilot projects in key populations. Successful experiences will help spread these good practices to other regions.

There are limitations to our study. We did not consider HIV and drug-resistance in our analyses. The impact of COVID-19 on the TB epidemic could not be evaluated at the time of the study. Other studies showed that COVID-19 temporarily decreased the TB notification rate in China (13). Whether COVID-19 will profoundly influence TB notification will need to be evaluated in a future study.

Our dynamic analysis and monitoring of surveillance data demonstrated demographic changes and TB epidemiological trends in China. Age-specific transitions and decreased pace of TB case notifications due to population ageing and geographic disparities may significantly influence TB control progress in the future. Maintenance of the current strategy will have limited impact on reducing future TB incidence; only additional screening and preventative therapy for older people will enable China to reach its targets on time.

Conflicts of interest: No conflicts of interest reported.

doi: 10.46234/ccdw2022.176

* Corresponding author: Hui Zhang, zhanghui@chinacdc.cn.

1 National Centre for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; 2 Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China; 3 NHIC Key Lab of Health Economics and Policy Research, Shandong University, Jinan City, Shandong Province, China. * Joint first authors.

Submitted: May 18, 2022; Accepted: September 18, 2022

REFERENCES

1. World Health Organization. Global TB database [Internet]. https://www.who.int/tb/data/en/. [2020-2-18].
2. United Nations. Department of Economic and Social Affairs Population Division. World Population prospects 2019 [Internet]. 2019. https://population.un.org/wpp/DataQuery/. [2019-12-20].
3. National Bureau of Statistics. China statistical yearbook 2019. Beijing: China Statistics Press. 2019. http://find.nl.cn/search/showDocDetails?docId=824063901205803717&dataSource=uc01&query=%E4%BA%AD%E5%9B%BD%E7%BB%9F%E8%AE%A1%E5%B4%89%E9%89%94. (In Chinese).
4. Janssens JP, Rieder HL. An ecological analysis of incidence of tuberculosis and per capita gross domestic product. Eur Respir J 2008;32(5):1415 – 6. http://dx.doi.org/10.1183/09031936.00078708.
5. Duan Chengrong. New Characteristics of Migrant Population in China. China Population Today 2016:69 – 12. http://dx.doi.org/ CNKI:SUN:DDZG.0.2016-06-004.
6. Disease Prevention and Control Bureau of the Ministry of Health, Department of Medical Affairs, Ministry of Health, Chinese Center for Disease Control and Prevention. Guidelines for implementing the national tuberculosis control program in China (2008). Beijing: China Union Medical University Press. 2009. (In Chinese).
7. Ministry of Health of the People’s Republic of China. WS 288-2008 Diagnostic criteria for pulmonary tuberculosis. Beijing: People’s Medical Publishing House. 2008. http://www.csres.com/detail/189560. html. (In Chinese).
8. Li T, Du X, Liu XQ, Li YH, Zhao YL. Implementation performance of tuberculosis control in China: 2011–2020. China CDC Weekly 2021;3(12):252 – 5. http://dx.doi.org/10.46234/ccdw2021.073.
9. Ding C, Wang ST, Shangguan YW, Feng XW, Guo WR, Shi P, et al. Epidemic trends of tuberculosis in China from 1990 to 2017: evidence from the global burden of disease study. Infect Drug Resist 2020;13:1663 – 72. http://dx.doi.org/10.2147/IDR.S294968.
10. World Health Organization. Global tuberculosis report 2019. Geneva: WHO. 2019. https://book.douban.com/subject/35072660/.
11. Prevention and control of tuberculosis in facilities providing long-term care to the elderly. Recommendations of the advisory committee for elimination of tuberculosis. MMWR Recomm Rep 1990;39(RR-10):7–13. https://pubmed.ncbi.nlm.nih.gov/2165558/.
12. Gohri N, Nishimura S, Takatsuka N. Japan’s national tuberculosis control strategies with economic considerations. Environ Health Prev Med 2005;10(4):213 – 8. http://dx.doi.org/10.1007/BF02897713.
13. Huang F, Xia YY, Chen H, Wang N, Du X, Chen W, et al. The impact of the COVID-19 epidemic on tuberculosis control in China. Lancet Reg Health West Pac 2020;3:100032. http://dx.doi.org/10.1016/j. lanwpc.2020.100032.