AeroTraj:
Trajectory Planning for Fast, and Accurate 3D Reconstruction Using a Drone-based LiDAR

Fawad Ahmad, Christina Shin, Rajrup Ghosh, John D’Ambrosio, Eugene Chai, Karthik Sundaresan, and Ramesh Govindan
3D Reconstruction

Process of building 3D models

3D representation of the world

3D Model
3D Model Representations

3D Point Cloud

Points:
- 3D position (x, y, and z)
- Intensity
- Color (RGB)
Photogrammetry

Camera

Positioning information

3D Data

* ICRA 2015, CVPR 2016, ICRA 2017, ISPRS 2017

Introduction	Problem Statement	Approach	Evaluation	Wrap-up

Photogrammetry: Shortcomings

Camera

Positioning information

3D Data

Slow & offline

Human-in-the-loop

Inaccurate reconstruction

* ICRA 2015, CVPR 2016, ICRA 2017, ISPRS 2017

Introduction

Problem Statement

Approach

Evaluation

Wrap-up
Our Goal

Automated, Fast, and Accurate 3D Reconstruction
Fast 3D Reconstruction

Introduction

Problem Statement

Approach

Evaluation

Wrap-up

Building to reconstruct
Fast 3D Reconstruction

3D Model

Positioning information

3D point cloud (LiDAR)

Building to reconstruct

Introduction Problem Statement Approach Evaluation Wrap-up
Fast, and **Accurate** 3D Reconstruction

3D Model

- Positioning information (GPS)
- 3D point cloud (LiDAR)

Fuzzed 3D Model with GPS
SLAM for Positioning

Introduction

Problem Statement

Approach

Evaluation

Wrap-up

3D Point Cloud → Simultaneous Localization & Mapping (SLAM) → 3D Pose
SLAM for Positioning

Aligning 3D point clouds

Introduction | Problem Statement | Approach | Evaluation | Wrap-up
SLAM for Positioning

Aligning 3D point clouds

\[T_1 = \text{Align (A, B)} \]
SLAM for Positioning

\[T_1 = \text{Align} (A, B) \]

\[Z = A + T_1 \cdot B \]
SLAM for Positioning

\[Z = A + T_1 \times B + T_2 \times C + T_3 \times D \]

\[T_1 = \text{Align} \ (A, B) \]

Introduction

Problem Statement

Approach

Evaluation

Wrap-up
Challenges

Challenge	Mechanism
Limited compute	
Limited battery	
SLAM positioning	
Vehicle LiDAR SLAM

Whole point cloud
SLAM Positioning: A Drone’s Perspective

Challenging to align sparse point clouds

Vehicle LiDAR SLAM

Drone LiDAR SLAM

Whole point cloud

9% of the point cloud
AeroTraj: Fast, and Accurate 3D Reconstruction

Input	Area of Interest Reconstruction LoD
Output	3D Model at LoD

*LoD (Level of Detail)
Contributions

Challenge	Mechanism
Limited compute	
Limited battery	
SLAM positioning	Trajectory optimization & In-flight feedback
SLAM Positioning: Accuracy

Accuracy

Point Cloud Overlap Point Cloud Density

Introduction Problem Statement Approach Evaluation Wrap-up
SLAM Positioning: Point Cloud Overlap

- **Accuracy**
 - Point Cloud Overlap
 - Point Cloud Density

- **Common area between point clouds**

Approach
- Small overlap
- Large overlap

Introduction

Problem Statement

Evaluation

Wrap-up
SLAM Positioning: Point Cloud Overlap

Introduction

Problem Statement

Approach

Evaluation

Wrap-up

Common area between point clouds

Accuracy

Point Cloud Overlap

Point Cloud Density

Higher overlap is better!
Controlling Point Cloud Overlap: LiDAR Orientation

- LiDAR Orientation
- Drone Speed
- Rotation

Approach

Introduction	Problem Statement	Approach	Evaluation	Wrap-up

Controlling Point Cloud Overlap: LiDAR Orientation

Introduction

Problem Statement

Approach

Evaluation

Wrap-up
Controlling Point Cloud Overlap: LiDAR Orientation

Introduction

Problem Statement

Approach

Evaluation

Wrap-up
Controlling Point Cloud Overlap: LiDAR Orientation

Introduction

Problem Statement

Approach

Evaluation

Wrap-up

Lasers

Direction of motion

Perpendicular

Parallel

Side view

Top view
Controlling Point Cloud Overlap: LiDAR Orientation

Point Cloud Overlap → LiDAR Orientation → Drone Speed

- Orientation: Perpendicular
 - Overlap: Low
 - Error: High
- Orientation: Parallel
 - Overlap: High
 - Error: Low

Rotation

Fly in parallel

Introduction

Problem Statement

Approach

Evaluation

Wrap-up
Controlling Point Cloud Overlap: Drone Speed

- LiDAR Orientation
- Point Cloud Overlap
- Rotation
- Drone Speed

Introduction | Problem Statement | **Approach** | Evaluation | Wrap-up
Controlling Point Cloud Overlap: Drone Speed

Speed	Overlap	Error
Fast	Low	High
Slow	High	Low

Fly slowly
Controlling Point Cloud Overlap: Rotation

- LiDAR Orientation
- Drone Speed
- Rotation

Avoid rotations
SLAM Positioning: Point Cloud Density

Accuracy

Point Cloud Overlap Point Cloud Density

Points per unit area (pts/m^2)
SLAM Positioning: Point Cloud Density

- High density point cloud
- Low density point cloud
- Points per unit area (pts/m²)

Accuracy

Point Cloud Overlap

Point Cloud Density

Introduction	Problem Statement	Approach	Evaluation	Wrap-up
SLAM Positioning: Point Cloud Density

Introduction

Problem Statement

Approach

Evaluation

Wrap-up

High density point cloud

Low density point cloud

Points per unit area (pts/m^2)

Accuracy

Point Cloud Overlap

Point Cloud Density

Higher density is better!
Controlling Point Cloud Density: Distance

Accuracy

Point Cloud Overlap Point Cloud Density

Height	Density	Error
Far	Low	High
Close	High	Low

Fly close to surface
Optimized Trajectory Generation

Goal: Minimize trajectory length

Accuracy constraints

LoD constraints

Building geometry
Optimized Trajectory Generation

Goal: Minimize trajectory length

- Accuracy constraints
- LoD constraints
- Building geometry

ILP Formulation

Introduction | Problem Statement | **Approach** | Evaluation | Wrap-up
Contributions

Challenge	Mechanism
Limited compute	
Limited battery	
Model accuracy	Trajectory generation & In-flight feedback
Drift Detection and Re-calibration

Detection: Trajectory comparison with GPS

Mitigation: Loop closure
AeroTraj: Evaluation

3D Model Reconstruction

Performance Evaluation

Ablation Study

Data Collection

Boundary Estimation
AeroTraj 3D Reconstruction Accuracy

Scheme	Accuracy (m)	Completeness (m)	Reconstruction Time (s)
Large building (100m x 50m x 20m)			
ColMap			
AeroTraj			
AeroTraj 3D Reconstruction Accuracy

Scheme	Accuracy (m)	Completeness (m)	Reconstruction Time (s)
Large building (100m x 50m x 20m)			
ColMap	0.16	0.75	31600
AeroTraj	0.09	0.05	*in-flight*

AeroTraj can do fast and high-quality 3D reconstructions.
AeroTraj: Fast, Accurate, and Automated 3D Reconstruction

3D model of large building complex built using AeroTraj