The Healthy States of America: Creating a Health Taxonomy with Social Media

Sanja Šćepanović, Luca Maria Aiello, Ke Zhou, Sagar Joglekar, Daniele Quercia

*Nokia Bell Labs, Cambridge, UK; †IT University of Copenhagen, DK; ‡CUSP King’s College London, UK

Abstract

Since the uptake of social media, researchers have mined online discussions to track the outbreak and evolution of specific diseases or chronic conditions such as influenza or depression. To broaden the set of diseases under study, we developed a Deep Learning tool for Natural Language Processing that extracts mentions of virtually any medical condition or disease from unstructured social media text. With that tool at hand, we processed Reddit and Twitter posts, analyzed the clusters of the two resulting co-occurrence networks of conditions, and discovered that they correspond to well-defined categories of medical conditions. This resulted in the creation of the first comprehensive taxonomy of medical conditions automatically derived from online discussions. We validated the structure of our taxonomy against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding matches of our clusters with 20 official categories, out of 22. Based on the mentions of our taxonomy’s sub-categories on Reddit posts geo-referenced in the U.S., we were then able to compute disease-specific health scores. As opposed to counts of disease mentions or counts with no knowledge of our taxonomy’s structure, we found that our disease-specific health scores are causally linked with the officially reported prevalence of 18 conditions.

1 Introduction

To monitor physical and mental health interventions, National Health agencies such as the Centers for Disease Control and Prevention (CDC) in the U.S. or the National Health Service (NHS) in the U.K. collect and disseminate prevalence data for a broad range of diseases. However, disease prevalence is only part of the story. Such measurements do not paint “a full picture” of people’s own health experiences. What are the patients’ concerns? Which symptoms do they experience? How do these symptoms evolve?

To get a richer picture, some countries conduct periodic health surveys. For example, England regularly runs surveys within the Quality and Outcomes Framework (QOF) to gauge care quality achievements across the entire country (Gillam, Siriwardena, and Steel 2012). However, these surveys generally have four main limitations: 1) they are temporally coarse-grained (they are administered every 3 to 5 years); 2) they are costly; 3) they suffer from recall biases given the retrospective nature of recalling past experiences; and 4) they are administered by doctors and answered by patients who may well reply in a manner that they perceive will be viewed favorably by the doctors themselves (Gkotsis et al. 2017).

To produce more adequate health assessments, researchers have investigated the linguistic characteristics of content shared on social media. That is mainly because social media platforms have become a source of ‘in-the-moment’ daily exchanges on a variety of subject matters, including health. As such, studying such platforms holds the key to understanding what concerns patients (rather than doctors) most (Gkotsis et al. 2017). The number of patients who use social media to solicit support, to discuss symptoms and remedies, or to simply vent is rapidly increasing, thus resulting in thriving health platforms (Kass-Hout and Alhinnawi 2013, Sarasohn-Kahn 2008). Such rich crowdsourced information has encouraged researchers to study health-related behaviors at scale (Kass-Hout and Alhinnawi 2013). Indeed, using social media data, previous research monitored the spreading of infectious diseases (Velasco et al. 2014), and addiction (Balsamo, Bajardi, and Panissson 2019), and tracked non-communicable conditions such as depression (De Choudhury et al. 2013), obesity (Culotta 2014). Recently, risk scores estimated from online data have been proposed even for sexually transmitted diseases (Chan et al. 2018, and stress (Guntuku et al. 2019).

However, if social media studies are to be blended with official data, three issues need to be addressed. The first two issues were already identified in a 2014 Science article (Lazer et al. 2014). In that article, Lazer et al. analyzed the parable of Google Flu Trend, a Google platform that predicted flu trends based on search queries. The authors considered that particular platform because it was often held up as an exemplary use of big data for health in those days (McAfee and Brynjolfsson 2012; Goel et al. 2010). The authors had identified the two main issues that then led to the platform’s demise in 2014, and these issues are still with us today: “big
data hubris”, and “algorithm dynamics”. Big data hubris is “the often implicit assumption that big data are substitute for, rather than a supplement to, traditional data collection and analysis” (Lazer et al. 2014). By contrast, reality has suggested the opposite. It has been found that, by combining Google Flu Trend data with lagged CDC data, over-fitting could have been avoided. Instead, Google’s solution purely relied on search queries and, in February 2013, the platform ended up predicting more than double the proportion of doctor visits related to influenza than CDC’s (Butler 2013).

The second issue that still needs to be addressed is “algorithm dynamics”. That is to do with whether “the instrumentation is actually capturing the theoretical construct of interest” (Lazer et al. 2014). Google’s methodology was to find the best matches among 50 million search queries to fit 1152 points derived from the CDC flu data. “The odds of finding search terms that match the propensity of the flu but are structurally unrelated, and so do not predict the future, were quite high” (Lazer et al. 2014). That translates into saying that big data was over-fitting the small number of cases. Nowadays, any machine learning approach applied to large datasets would suffer from the very same problem. Seth Stephens-Davidowitz says that solutions based on big data are often entrapped by what he calls the curse of dimensionality: being large, new data sources “often give us exponentially more variables than traditional data sources and, if you test enough things, just by random chance, one of them will be statistically significant” (Stephens-Davidowitz 2018). If you test enough search queries to see if they correlate with flu incidence, you will find one that correlates just by chance. This problem is found in areas beyond Internet research as well. It has indeed been a general pattern in genetics research. “First, scientists report that they have found a genetic variant that predicts IQ. Then scientists get new data and discover their original assertion was wrong” (Stephens-Davidowitz 2018).

The third and final issue speaks to the need for broad health measures, rather than measures tailored to specific diseases. Many social media studies focus only on very narrow yet important outcomes. Health, however, consists of a much broader range of aspects, certainly including illnesses and diseases, but also encompassing more general health conditions. Despite all symptoms and diseases are connected by a network of complex relationships (Zhou et al. 2014), most health-related social media studies have so far focused on individual diseases or limited sets of conditions. This is partly due to the historical difficulty in developing text mining models that generalize across multiple health domains. Because of that, previous work focusing only on the preselected conditions could not automatically discover the complex underlying medical taxonomy expressed by people on social media.

Our work partly tackles these three issues by: 1) automatically discovering the medical taxonomy present in online discussions; 2) based on the discovered taxonomy, proposing social media health metrics for a variety of conditions that can be blended with official data; 3) computing each condition’s metric based on the limited set of symptoms related to that condition without over-fitting on, for example, unrelated terms; and 4) proposing broader health metrics, making it possible to examine multiple conditions simultaneously. In so doing, we made four main contributions:

- Based on the latest advancements in Deep Learning, we developed a Natural Language Processing tool that can extract mentions of virtually any symptom or disease from unstructured text (§2). When applied to standard benchmarks, our approach beats the best performing methods proposed in recent literature and achieves high accuracy on social media data.

- We applied our extractor of health mentions on 7M+ posts and 130M+ comments authored by geo-referenced Reddit users. The network that emerges from condition co-occurrence within posts and comments represents the first map of general health discussions in social media (§3). Using community detection on this network, we exposed its highly modular structure arranged in 34 top-level clusters and 241 sub-clusters of known medical conditions. When applying the same procedure on 225M tweets, we found a comparable cluster structure but with distinctions that reflect the different nature of the two platforms. We validated the structure of extracted Reddit taxonomy (the more specialized yet more comprehensive between the two) against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding that 20 of official categories out of 22 in total are matched by our clusters. Using the newly found cluster structure from Reddit, we defined several health scores to measure population health from online discussions (§4).

- When computed on geo-referenced Reddit posts, disease-specific health scores negatively correlate with 18 corresponding statistics of medical conditions estimated at the level of states in the U.S. (§5). For example, we found significant correlations between our mental health score and surveys on mentally unhealthy days ($r = -0.45$), our obesity score with diabetes prevalence statistics ($r = -0.45$), and our STDs score with the prevalence of syphilis ($r = -0.47$). Finally, a more general composite health score best correlates with self-rated overall health ($r = -0.39$).

- Moving beyond correlations, we used causal inference and confirmed the causal impact of the prevalence of 12 medical conditions (out of the 14 we considered in total) on the health scores derived from Reddit at the state level in the U.S. (§6).

2 Extracting medical conditions from social media text

We developed a Natural Language Processing (NLP) algorithm to extract mentions of medical conditions from text (§2.1), trained it on a dataset that we labeled through crowdsourcing, and applied it on geo-referenced Reddit and Twitter posts at scale (§2.2-2.4).

2.1 NLP medical entity extractor

Named Entity Recognition (NER) is the task of extracting entities of interest from text. A NER model identi-
ifies n-grams that are likely to represent an entity of a given type. In the medical domain, the entities considered are usually symptoms (and associated diseases), and drug names. In this work, we trained an entity extractor to detect medical conditions (which include both symptoms and diseases). State-of-the-art NER models are based on Recurrent Neural Networks (RNNs) and contextual embeddings (Jiang et al. 2019) [Akbik, Blythe, and Vollgraf 2018] [Devlin et al. 2019]. We implemented a sequence modeling RNN architecture composed by a bidirectional LSTM with a Conditional Random Field layer (Huang, Xu, and Yu 2015) using RoBERTa contextual embeddings (Liu et al. 2019).

To assess the performance of our model, we trained and tested it using two standard benchmark datasets for medical entity extraction: CADEC (Karimi et al. 2015) and Micromed (Jimeno-Yepes et al. 2015). CADEC contains 1,250 posts from the AskAPatient forum, all annotated by experts who marked mentions of adverse drug reactions, symptoms, clinical findings, diseases, and drug names (we grouped the first four categories into one category). Micromed contains 734 tweets annotated in terms of symptoms, diseases, and pharmacological substances. Our method outperformed the state-of-the-art entity extraction approaches in extracting symptoms both on CADEC (Tutubalina and Nikolenko 2017) (F1 score of .78 against a .71 baseline) and Micromed (Yepes and MacKinlay 2016) (F1 score of .74 compared to .59).

The structure of CADEC and Micromed posts is notably different from that of the typical Reddit post. To preserve a high annotation quality when applying our entity extractor to Reddit, we re-trained our model on Reddit data. We created MedRed: a new dataset of Reddit posts labeled with medical entities (symptoms, diseases, and drug names).

We first sampled 1,980 posts at random from 18 subreddits, each dedicated to a specific disease. We then obtained labels for each post through a crowdsourcing task on Amazon Mechanical Turk, which we set up with labeling instructions similar to those used to create the CADEC dataset (Karimi et al. 2015). We restricted the crowdsourcing task only to workers with an approval rate record above 95%. Given a Reddit post, we asked the workers to copy-paste the symptoms and diseases that they could find in the text. We assigned to the workers batches of four posts, mixed with two additional ‘control’ entries whose medical entities were known to us: one ‘control’ Reddit post with a clearly identifiable symptom, and one entry from CADEC. We discarded the whole batch, if the worker mislabelled the control post, which happened in roughly 21% of the cases. Each post was shown to 10 workers. In line with previous literature (Lawson et al. 2010), we considered only the list of entities \(A_{\text{workers}} \) that were independently found by at least two workers. To assess the quality of the crowdsourcing results, for each CADEC entry \(i \), we computed the pair-wise agreement between the list of entities extracted by the workers and the ground-truth list of entities \(A_{\text{expert}} \) extracted by the CADEC experts:

\[
A_{\text{gr,workers,expert}}(i) = \frac{\text{match}(A_{\text{workers}}(i), A_{\text{expert}}(i))}{\max(|A_{\text{workers}}(i)|, |A_{\text{expert}}(i)|)},
\]

where \(\text{match} \) is a matching function that counts the number of common entries between the two lists. We experimented with two implementations of this function, one that uses ‘exact string’ matching, and one that uses relaxed string matching (e.g., ‘pain’ would be a positive match for ‘strong pain’). We measured a strict agreement of .62 and a relaxed agreement of .77, which indicates that the quality of annotation from the workers is close to the expert annotations. When training on this data, our entity extractor achieved an F1-score of .71 (50% train, 25% tuning and 25% test).

2.2 Geo-located Reddit posts

Reddit is a public discussion website and the fifth most popular website in the U.S. Reddit is structured in roughly 140k independent subreddits (subcommunities) dedicated to a broad range of themes, including a variety of health and well-being topics (e.g., /Depression, r/HealthyFood, r/Fitness). Users can post new submissions to any subreddit, and add comments to submissions or to existing comments. From Pushshift, a public collection of Reddit content (Baumgartner et al. 2020), we gathered all the submissions made during the year 2017, for a total of 96M submissions by 14M users.

To match Reddit discussions with official health data, we focused on users we could locate at the level of states in the U.S. Reddit does not provide any explicit user location, yet it is possible to get reliable location estimates with simple heuristics. Following previous work (Balsamo, Bajardi, and Panisson 2019), we first selected 2,844 subreddits related to cities or states in the U.S. From those subreddits, we listed the users with at least 5 posts or comments and removed those who posted contributions on subreddits in multiple states. We thus obtained a list of 484,440 users who are likely to be located in one of the 50 U.S. states. In 2017, these users authored 7,162,703 posts, and 134,861,496 comments.

We checked the representativeness of the data by computing the ratio between the number of Reddit users located in a state and the state’s population size as per the 2015 census (the census year closest to the data collection period). We found that this ratio deviated more than two standard deviations from the average for three states: Mississippi, Oregon, and Vermont. After excluding these outliers, the number of Reddit users strongly correlated with population size (Pearson \(r = .94 \), Figure 1 left).

2.3 Geo-located tweets

Twitter is a popular micro-blogging service, with more than 300M active monthly users. On Twitter, users post short messages (tweets) that are shown to their followers. Unlike Reddit posts, tweets can be geo-referenced with the device’s GPS coordinates recorded at the time of tweeting. We collected a random sample of 225M tweets posted from the U.S. in the year 2010. In our sample, the number of Twitter users across states correlates strongly with census population from the same year (Pearson \(r = .94 \), Figure 1 right).
When applied to Reddit, our extractor of medical conditions found 818,656 mentions of medical conditions from 531,081 submissions (7% of the total), 23,982,372 mentions of conditions from 4,867,759 comments (20% of the total), authored by 180,401 users (more than 37% of all users). We filtered out submissions and comments from a number of subreddits that could introduce undesired topical biases (including subreddits related to animals, fashion, and computers), which left us with 738,152 mentions of medical conditions from 258,245 tweets posted by 108,437 users. These tweets contained 13,261 unique conditions composed by 5 words at most—which is expected, given that tweets are limited to a maximum of 280 characters. The most frequent symptoms include variations of the words tired, hungry, sick, pain, and headache.

3 Classes of symptoms and diseases

To structure the medical conditions extracted from Twitter and Reddit separately, we derived two co-occurrence networks (§3.1). By hierarchically clustering their nodes, we then obtained two taxonomies (§3.2 and §3.3).

3.1 Clustering the networks of medical conditions

We built two co-occurrence networks of the extracted medical conditions, one from Reddit, and the other from Twitter. In these networks, nodes are medical conditions, undirected edges connect pairs of conditions mentioned in the same message (either a submission, comment, or tweet), and edge weights are equal to the number of co-mentions in the same message. These co-occurrence networks capture the semantic relatedness of medical conditions: symptoms or diseases that were often mentioned together are likely to describe the same class of conditions, and in the network, they form a densely-connected cluster of nodes. To find these semantically cohesive clusters, we used network community detection. Community detection algorithms partition the network into groups (or clusters) of densely connected nodes that are sparsely connected with nodes in other groups. The density of co-occurrence networks is typically high, which negatively impacts the performance of these algorithms. To mitigate this issue, it is standard practice to sparsify the network beforehand. Using noise-corrected backboning (Costa and Neffke 2017)—a technique that relies on a statistical null-model to identify and prune non-salient edges—we reduced the Reddit network from 1.8M to 1M edges, and the Twitter network from 130k to 27k edges. We focused our analysis on the two giant connected components, which contain 411k nodes in the Reddit network, and 6k nodes in the Twitter network.

To find clusters in these two networks, we could have used any of the literally thousands of different community detection algorithms that have been developed in the last decades (Fortunato 2010). Among them, we opted for Infomap (Rosvall and Bergstrom 2008), a widely adopted algorithm that exhibited very good performance across several benchmarks (Lancichinetti and Fortunato 2009). Furthermore, Infomap suits our study because: i) it extracts a hierarchical arrangement of clusters that directly maps to a taxonomy of conditions; and ii) it computes overlapping clusters, thus identifying conditions that play a role in multiple clusters.

In the remainder, we will refer to these clusters as categories of medical conditions.

3.2 Taxonomy of medical conditions from Reddit

Table 1 summarizes the 34 level-1 categories of medical conditions, and the 241 level-2 categories found by Infomap on the Reddit co-occurrence network. These cate-
(A) Level-1	Level-2	Example words
Mental		
isolation, autism, adhd, bipolar, psychosis, severe illness, anhedonia, stress, tics, paranoia, anxiety, depression, personality disorders, impulsive behaviour, genetic, psych disorders, fatigue, misophonia, personality, light head, insecurity, dissociation	wobbly feel, dread, hypermania, autism, suicidal thought	
anxiety		anxiety, panic attack
personality		lack of empathy, sociopathic, manipulative behaviour, abusive behaviour
bpd, dysthria, narcissistic, antisocial, schizotypal		
Behaviour		
breathing		trouble breathing, severe chest pain, esophagus spasms
asthma, fatigue, chest, heart, breathing, active breathing control, inflammations		
vomiting, emetophobia, bugs, pain, gagging		
STDs		stds, yeast, pregnancy, pain
obesity		obese, overweight, excessive fat, overeating
eating disorders, hunger, weight loss		
addiction		drinking problem, opiates, strong urge, abscess, irritable
drugs, porn, alcohol, symptoms		
sleep		ptSD, flashback, acne, snore, wake up every hour
hallucinations, pain, trauma, nightmares, apnea, narcolepsy, insomnia, sleepwalking, lack		
Body parts		
skin		pimple, whitehead, fatty, dark spot, ingrown hair, mango allergy
acne, redness, wrinkles, hyperpigmentation, scalp, aging, dryness, only spots, bleeding, burns, inflammation, rash, itching, eczema, allergies, bites, herpes, food allergies, soreness, bumps, postaural, vitamin, body hair, irritation, scalp		
ear [10]		ringing in my ear, dizzy, blowing nose constantly, eye pressure, spatially aware, nearsighted
tinnitus, dementia, vertigo, vibrations, congestion, noise		
eye [09]		eye pressure, spatially aware, nearsighted
vision distortion, blurry vision, gallstone, high pressure, eye alignment, blindness, glaucoma, sweating, light sensitivity, strain, hypertension, aneurysm, migraine		
heart [11]		irregular heartbeat, poor concentration
palpitations, irregular, tachycardia		
spine [08]		tingling, lesion, difficult to lay
multiple sclerosis, neurodegenerative, hernia		
back [15]		hip pain, muscle stiffness, unable to sit up straight
pain, sciatica, arthritis, lower, stiffness, dullness		
reproductive [16, 17]	stones, infections, clots, lumps, bladder	shave, pain with sex, extremely bloated

(B) Medical conditions belonging to multiple communities
cold, itching, inflammation, oily skin, insecure, heart disease, motion sick, blackhead, trouble sleeping, leukemia, runny nose, paralysis, flashbacks, hearing loss, agitated, confused, extreme anxiety, opioid addiction, tunnel vision, stop, eating, munching, heart anxiety, dry eye, insomia, chronic fatigue, lesion, pale, mental block, hyperactive child, period cramp, celiac disease, queasy, irritable period, high anxiety, injury, low blood sugar, no energy, postpartum depression, blurry vision, suffocation, sleepless, dry patch, trouble falling asleep, nauseate, numb, incontinent, dehydrated skin, mentally challenged, mild cramp, emotional stress, hypersensitivity, heat, cloudy, poor sleep, low self confidence, light spot, dark skin, visualsnowy, dizziness, urge, knees hurt, dri, leakage, itchy scalp, uneven skin tone, blood stain, lack motivation, emotional trauma

(C) ICD-11 categories
[01] Certain infections or parasitic diseases
[06] Mental, behavioural or neurodevelopmental disorders
[10] Diseases of the ear or mastoid process
[14] Diseases of the skin
[18] Pregnancy, childbirth or the puerperium

Conditions	Example words
cancer, gut, skin, lymphoma, lumps, genitals, digestive, lymphnodes, bones	discoloration of skin, swollen lymph node, back ache, terminal illness, greatly bruise
sepsis, heart, fever, overdose, pneumonia, mosquito-borne, measles, blood, pain, confusion	highly viral, dark mucus, sweating and cough, with knockle, blood clot
influenza, viral, flu, yellow fever	increased temperature, loss of appetite, sputum, cough, flushed
diabetes, cataract, metabolic syndrome, vision, brain	nebula, brain fog, low blood sugar, lost pigment
parkinson	tremor, jittering
injuries	concussion, skull fracture, opiates, sleeping difficulties, debilitating fatigue, fungal infection, mold, dark spot
parasites	spaced out feel, numb, muscle twitch
epilepsy	
female	hot flush, irregular period, swollen, painful cyst, vaginitis
infant	spitting up, clogged duct, nipple damage, screaming, mentally drained
elderly	urinary system, cystitis, struggling to walk
pregnancy	regular contractions, bleeding, painful cramp, dilated cervix
developmental	absent nasal bone, unable to digest food, respiratory distress
Systems	
nervous	vessel occlusion, alodinia, cephalgia, photosensitivity
migrain, stroke, nerve pain, hemicrania, neck pain, persisting hallucinations	sniffle, lingering cough, runny nose, tight airways, sore throat, abdominal discomfort, yellowish with cough
respiratory	hard skin, skin, fainting, arrhythmia
cough, ear infection, sinus, sneezing, head, bronchiitis, dryness, throat, nose, abdomen	flare, trouble popping, anal fissure, allergic to gluten
autonomic	lose my hair, growing stomach ache, swollen tyroid
hyperventilation, tingling mouth, histamine, infections, gastritis	

Table 1: (A) The taxonomy of medical conditions extracted from Reddit, arranged in two levels, with some examples of individual conditions. The names of the level-1 and level-2 categories were assigned by the authors after manual inspection. We manually arranged the top-level categories into six coherent themes. (B) A selection of the most frequent conditions that belong to multiple categories. (C) The list of top-level categories from International Classification of Diseases (ICD-11) by the World Health Organisation (WHO).
egories they contained. Finally, we manually grouped the level-1 categories into six main themes (grayed rows in Table 1). That is, symptoms associated with: mental health; individual body parts (e.g., eyes); systems of the human body (e.g., digestive system); specific demographics (e.g., women, elderly); various behaviors (e.g., eating); or specific conditions (e.g., diabetes, cancer).

To assess the breadth of our taxonomy and to test whether its categories cover well-studied medical conditions, we compared it to the official International Classification of Diseases (ICD-11) of the World Health Organization (WHO), which contains 22 top-level disease categories, further split into sub-categories at multiple hierarchical levels. In ICD, diseases are organized mainly based on the body parts they concern. We matched our level-1 categories to the top-level ICD categories by simply searching the level-1 category on ICD. Out of our 34 level-1 categories, as many as 32 found a match (Table 1). Those that did not span multiple ICD categories; for example, our elderly category contains conditions frequent among elderly people; yet, since these conditions affect different parts of the body, they are listed across multiple ICD categories. Still, out of the 22 ICD categories, 20 are represented in our taxonomy, and that makes it the most extensive data-driven categorization of medical conditions.

Beyond individual categories, we analyzed individual conditions that occur in multiple categories—at the bottom of Table 1 we listed a selection of the most frequent ones. Most of these conditions are generic symptoms (e.g., itching), and might frequently appear together with other conditions or symptoms (Neale and Kendler 1995). In our network, these symptoms are usually not tightly embedded within any of the categories but they tie together different categories. To illustrate that, Figure 3 shows the network of medical conditions within the category of mental health. This network is organized in several, well-separated level-2 categories (e.g., autism, anhedonia), which are often bridged by symptoms that belong to multiple top-level categories (e.g., sensory issues). For example, the autism sub-cluster is linked to the anhedonia sub-cluster through the medical condition of sensory issues—indeed, sensory issues often accompany both autism and anhedonia (the inability to feel pleasure) (Bogdashina 2016).

Sometimes, cross-category associations emerge from common misconceptions discussed in Reddit. As an example, we show in Figure 3 (left-hand side) that autism is linked to the top-level community of infective diseases through the node measles (an infective disease commonly prevented with a vaccine), as a result of the widespread hoax that autism is caused by vaccines (Taylor et al. 1999).

3.3 Taxonomy of medical conditions from Twitter

The taxonomy extracted from the Twitter network contains 21 level-1 categories, and 53 level-2 categories that match 14 out of the 22 main ICD categories (Table 2). The Twitter taxonomy exhibits some similarities with Reddit’s (10 out of the 21 top-level categories match those from the Reddit taxonomy), but the two differ both in scope and focus. The Twitter taxonomy covers fewer diseases, and contains categories about general unwellness and very common conditions (e.g., migraine, allergies). These dissimilarities reflect the difference between the two platforms: Reddit is a specialized knowledge-exchange platform containing several forums dedicated to specific conditions (Medvedev, Lambiotte, and Delvenne 2017; Choudhury and De 2014), whereas Twitter is a general-purpose microblogging platform whose strict format limitation of 280 characters per message restricts the possibility of in-depth conversations. Our method for extracting medical conditions adapts well to both Reddit and Twitter: it was able to identify meaningful classes of symptoms and diseases in both, despite the stark differences between them. In the remainder, we focus on Reddit, as it has the most comprehensive taxonomy.

4 Health Scores

We leveraged our categories of medical conditions to define health scores that we later used to estimate the prevalence of different diseases across states in the U.S. Given the set of conditions, $S_i \in S$ in category i, and a user u resident in location (state) l, we considered the set of conditions $S_i(u) \in S_i$ that user u has mentioned. We determined mentions by directly applying our extractor of medical conditions (§2.1) to both Reddit posts and comments. We then computed the weighted fraction of users in location l who mentioned any condition of category i:

$$f_i^l(u) = \frac{1}{|U_l|} \left(\sum_{u \in U_l} \max\{c_{pr}(s), \forall s \in S_i(u)\}^\rho \right)$$

where U_l is the set of all users in state l, $S_i(u)$ is the set of conditions in category i that user u mentioned, $c_{pr}(s)$ is

[1] https://icd.who.int
the Page Rank centrality of condition \(s \) (Page et al. 1999), and \(\rho \) is equal to either zero or one depending on whether Page Rank centrality is used or not. When \(\rho = 0 \), the centrality value is discarded, and \(f_i^l(l) \) becomes simply the fraction of users in \(l \) who mentioned conditions in category \(i \). By weighting the medical conditions by their centrality on the co-occurrence network, we wanted to give more importance to those that best represent the category they are in.

We experimented with variations of Equation (1), using sum or average as aggregation functions instead of maximum, and using harmonic centrality or degree centrality instead of PageRank (Boldi and Vigna 2014). Equation (1) is the setup that yielded the health scores that best correlated with official health statistics (Page et al. 1999), as well as scores for regional happiness and mental well-being from social media posts (Kramer 2010, Bagrow, Kumaraguru, and De Choudhury 2017).

When calculating a score across locations, we applied a standard outlier removal procedure that excluded the locations in which the ratio \(f_i^l(l) \) deviated more than two standard deviations from the overall mean (Kramer 2010). In practice, in all our experiments, this resulted in removing one state (South Dakota). As we previously removed three states because of the lack of representativeness of their user base (2.2), this left us with 46 states in total.

For each of these states, we computed three health scores: \(H^l_i \), \(H^l_i \), and \(H^l_i \). We defined them based on three sets of medical conditions: the full set of conditions from all categories; the conditions in category \(i \); and the set of most-central conditions on the co-occurrence network (top 5% in the PageRank distribution), respectively.

We compared our health scores with a measure based on simple word matching, inspired by dictionary-based approaches such as LIWC (Linguistic Inquiry and Word Count) (Pennebaker, Francis, and Booth 2001). We created Dis-LIWC (Disease Linguistic Inquiry and Word Count): a dictionary of symptoms that are known to be frequently associated with certain diseases. We compiled this list by

(A) Level-1	Level-2	Example words
Mental		
mental	personality disorder, depression, ASD,	
	alzheimer, mental illness, panic, anxiety, restless, pregnancy depression	
eating disorder	eating disorder	
	autism, adhd, disabled, mental, aspergers, ocd, fatigue, dementia, anxiety attack	
	season, nerve pain, boredom, hangover, appetite	
Behavior		
	obesity	obese, complications
	sleep	insomnia
	nervous	nervous
Respiratory	asthma, bronchitis, allergies	
	autoimmune lupus, scleroderma	
Digestive	metabolic syndrome, diabetes mellitus	
Circulatory	cardiovascular, heart	
Gastrointestinal	bladder, infectious	
Systems		
	syringomyelia, chiari malformation, ventricle syndrome, mental disturb, anerysym	
	cough, flu, sinus infect, short, ear infection, breath	
	lupus, fluid, chronic disease, pain relief, shuggish, nightmare, scleroderma, insomnia, coma	
	diabetes, hypocalcemia	
	heart failure, hemorrhagic telangectasia, hemolytic disease	
	bladder cancer, lymphoma, menopause	

(B) Medical conditions belonging to multiple communities
depression, th, whooping cough, hunger, blust, migrain
anxiety attack, heat rash allergy, aortic tear, salmonella,
tremor, kidney stone, discomfort, back pain, concussion, fever, liv, seizure, breath, sinus infection, insomnia, flu

(B) Medical conditions belonging to multiple communities
unconscious
cancer
infectious
diabetes
migraine
allergies
leukemia
Sickle cell anemia
Ibs
Body parts

Table 2: (A) The taxonomy of medical conditions extracted from Twitter, arranged in two levels, with some examples of individual conditions. The names of the level-1 and level-2 categories were manually assigned by the authors after content inspection. We also manually arranged the top-level clusters into six coherent themes. (B) A selection of the most frequent co-morbid conditions that belong to multiple categories.
collating four existing sources: the Human Disease Network (HDN) \cite{Goh2007}, a dataset of over 100K symptom-disease pairs frequently co-mentioned in publications indexed by PubMed; and the set of symptoms that appeared in the ‘disease description’ panels on Medscape, WebMD, and Wikipedia. We were able to build a comprehensive Dis-LIWC for 10 conditions, including depression, diabetes, asthma, and rheumatoid arthritis. After applying Dis-LIWC to our set of geo-referenced Reddit posts, we computed H_i^1 for these 10 disease categories using Formula (2), where $\rho = 0$ (equivalent to simply counting the occurrences of Dis-LIWC words).

5 Validity of our Health Scores

To verify that our health scores are not just proxies for activity levels, we correlated them with four variables obtained for each state in the U.S.: population estimates for the year 2017 produced by the United States Census Bureau\footnote{https://www.census.gov}; the number of Reddit users per 1000 residents\footnote{https://www.reddit.com/user/epickillerpigz}; Reddit adoption calculated as the number of Reddit users in our dataset divided by the census population; and the total number of Reddit users who mentioned medical conditions. None of our health scores correlated with any of those variables (Pearson $r \in [0,0.03]; p > 0.1$). After this preliminary check, we proceeded to validate our health scores against state-level health outcomes.

5.1 External Validity Against Official Statistics

We collected health statistics from the Center for Disease Control and Prevention (CDC)—a leading public health institute—and from the Substance Abuse and Mental Health Services Administration (SAMHSA), both of which regularly publish health statistics in the U.S. To best match our level-1 categories, from CDC, we gathered state-level prevalence statistics for arthritis, asthma, and self-reported ‘mentally unhealthy days’ and ‘poor health’, compiled between 2016 and 2017. From SAMHSA, we collected statistics on the prevalence of: mental illnesses, abuse of different substances (e.g., heroin), conditions linked to metabolic syndrome (e.g., diabetes prevalence), and Sexually Transmitted Diseases (STDs). All SAMHSA statistics were compiled between 2017 and 2018. In total, we collected 18 health statistics (“Official statistic” column in Table 3).

With these statistics at hand, we could test two hypotheses:

H1: The prevalence of a specific health condition i measured by official statistics negatively correlates with the corresponding health score H_i^1;

H2: Poor self-reported general health negatively correlates with our general health scores H^1 and H^2.

To find the conditions upon which to calculate the health scores H_i^1 in H1, we manually parsed all our level-1 categories in our taxonomy to find the best match. In the majority of cases, the mapping was straightforward (e.g., HIV prevalence with the STDs category), except for statistics on arthritis, cocaine use, and heroin use, which do not have a direct mapping. We mapped arthritis to our category elderly (which contains the level-2 category arthritis), and cocaine and heroin use to our category infections (which contains a level-2 category overdose).

The correlation results summarized in Table 3 suggest two key insights. First, the Dis-LIWC baseline performs poorly, yielding no statistically significant correlation: simple word-matching strategies do not capture the relationship between online discussions and health outcomes. Second, considering information from the co-occurrence network in the form of the centrality scores of individual conditions ($\rho = 1$), strengthens the correlations compared to using mention counts only ($\rho = 0$). Indeed, the centrality-weighted scores achieve stronger correlations with both the statistics on specific conditions ($-0.29 \leq r \leq -0.47$, which supports H1), and the statistic on overall poor health ($-0.33 \leq r \leq -0.39$, which supports H2).

6 Causal Link Between Health Outcomes and Health Scores

To go beyond correlation analysis, we set up a causal inference framework (§6.1) to estimate the causal effect of the prevalence of different diseases on their mentions on Reddit captured by our health scores (§6.2).

6.1 Estimating Causality through Matching

In experimental studies, Randomized Control Trials (RCTs) are used to estimate the causal effect of a treatment on an outcome. RCTs select random subjects, assign a treatment to a subset of them, and finally measure the differences in the outcome between the treated and untreated groups. In observational studies, RCTs are not applicable; instead, matching techniques are often used to infer causation. Matching works by pairing subjects that were exposed to different either the treatment or outcome but were comparable in terms of confounding variables—those factors that may affect being assigned to the treatment or to the control group, or that may affect the outcome—are comparable. The magnitude of the causal effect is then estimated with the Average Treatment Effect (ATE), namely the average difference of the outcome variable between paired subjects:

$$ATE = \frac{\sum_{(s_0, s_1) \in M} y(s_1) - y(s_0)}{|M|},$$ (3)

where y is the outcome, M is the set of paired subjects, and s_1 and s_0 are two comparable subjects, one (s_1) in the treatment group, and the other (s_0) in the control group.

In our setup, subjects are the 46 U.S. states we considered, the treatment is a binary indicator of the prevalence of a disease being higher (1) or lower (0) than the median prevalence across states, and the outcome is the min-max normalized value of a health score H_i. To match pairs of states, we used Propensity Score Matching (PSM) \cite{RosenbaumRubin1983}. PSM matches subjects based on a propensity score, namely the probability of a subject being
assigned to the treatment, given a set of its covariates. We obtained propensity scores by regressing the confounders to the treatment using logistic regression, and we then paired states by nearest-neighbor matching on those scores. We estimated the ATE’s 95% confidence intervals using bootstrap: a method that assesses the variability of a measure by recalculating it on multiple re-samples of the data (Austin and Small 2014). Specifically, we repeated 100 times a sampling with replacement of the set M of matching pairs and calculated the confidence interval of the set of ATE values obtained for these samples.

By reviewing relevant literature, we compiled a list of possible confounders (Table 4). For example, we included scholasticization statistics based on studies that suggested a relationship between education levels and health (Cochrane, O’Hara, and Leslie 1980; Cutler and Lleras-Muney 2006). Overall, using open-data sources, we gathered 26 demographic, economic, social, cultural, and psychological variables defined at the state-level (Table 4). When the number of confounders is relatively large compared to the sample size, it is preferable to reduce the set of variables to a more parsimonious set. We did so using two popular statistical approaches: the change-in-estimate (Greenland 2008) and the High-Dimensional Propensity Score Adjustment (HDPSA) (Scheuermann et al. 2009). The change-in-estimates selects a confounder if its inclusion changes the ATE obtained using all other covariates by a minimum threshold of 10%. HDPSA is a method to select the confounders whose distribution is most imbalanced between the treated and control subjects. We select our final set of confounders by intersecting the sets given in output by change-in-estimates and by HDPSA.

6.2 Causal Effect Results

We hypothesize that, after discounting the effect of relevant confounders, the increase of a health condition’s prevalence causes more mentions of that condition on Reddit and, as such, a lower corresponding health score. As expected, all ATE values were negative. We reported the ATE values in Table 5 (rightmost column), and marked the ones whose confidence intervals are entirely below zero (i.e., we are over 95% confident that those ATE are negative). Among the strongest causal associations, we found that a state exhibiting levels of ‘mentally unhealthy days’ higher than the median, after controlling for confounders, produces a 10% decrease in the mental health score (H_{mental}). Other noticeable effects were found for heroin use on the infection health

Table 3: The link between health scores computed at the level of U.S. states and official health statistics. Pearson correlations r are reported for $\rho = 0$ (medical conditions with equal weighting), $\rho = 1$ (medical conditions weighted by their centrality on the co-occurrence graph), and for the Dis-LIWC baseline. P-values classes are also reported (* $p < 0.05$, ** $p < 0.01$). The average treatment effect (ATE) of the health statistics on the best performing health scores ($\rho = 1$) are also reported and marked with * when the ATE’s confidence interval lies entirely below zero. #Conf. represents the number of confounders selected for the causal analysis.

Health score	Official Statistic	$r_{\rho=0}$	$r_{\rho=1}$	$r_{\text{Dis-LIWC}}$	ATE	#Conf.
H_{mental}	Mental Health	-0.31**	-0.45**	-0.06	-0.10*	9
H_{mental}	Mental Illness	-0.23*	-0.30*	-0.01	-0.01	6
$H_{Substance}$	Cigarette Use	-0.31*	-0.29*	-0.10*	7	
$H_{Substance}$	Cocaine Use	-0.25	-0.29*	-0.06*	5	
$H_{Substance}$	Heroin Use	-0.30*	-0.43**	-0.09*	5	
$H_{obesity}$	High Cholesterol	-0.29*	-0.46***	-0.12	-0.04*	8
$H_{obesity}$	High Blood Pressure	-0.26	-0.45***	-0.07*	4	
$H_{obesity}$	Mortality Cardiovascular	-0.19	-0.39**	-0.01	-0.01	4
$H_{obesity}$	Mortality CHD	-0.16	-0.47***	-0.03	-0.07*	5
$H_{obesity}$	Mortality Heart Disease	-0.21	-0.39**	-0.02	-0.01	5
$H_{obesity}$	Overweight	-0.01	-0.33*	-0.07*	4	
$H_{obesity}$	Diabetes Prev.	-0.25	-0.45***	-0.02	-0.02	5
$H_{Specific Diseases}$	Arthritis	-0.45**	-0.47***	-0.06	-0.05*	5
$H_{Specific Diseases}$	Asthma	-0.33*	-0.42**	-0.13	-0.06*	3
H_{STDs}	HIV prevalence	-0.23	-0.43**	-0.14	-0.06*	6
H_{STDs}	AIDS prevalence	-0.22	-0.41***	-0.11	-0.05*	5
H_{STDs}	Prim. and Sec. Syphilis	-0.22	-0.47***	-0.23	-0.03*	7
H_{STDs}	Early Latent Syphilis	-0.28*	-0.39**	-0.10	-0.12*	5
$H_{All Conditions}$	Arthritis	-0.34**	-0.33*	-0.19*	8	
$H_{Most Central Conditions}$	Poor Self-rated Health	-0.38**	-0.39**	-0.12*	7	

Table 4: Selection of candidate confounders (at the level of US states) based on prior literature and existing surveys. Freq refers to the frequency with which the given candidates are selected as confounders in the causal analysis shown in Table 3.

Variable	Demographics	Source	Freq
% single parent households	Stordal et al. 2001	American Community Survey	4
% minorities estimate	CDC Social Vulnerability Index (SVI)	3	
% civilians with disability	1		
% population density population	American Community Survey	6	
age distribution in age brackets	Messer, Miller, and Rosen 2003; Deaton 2008	8	
% unemployed	American Community Survey	7	
per capita income	5		
official poverty measure	2		
housing with DIs units	1		
%mobile homes	2		
housing with more ppl than rooms	4		
% households with no vehicle	CDC Social Vulnerability Index (SVI)	2	
% living in group quarters	1		
% people below poverty estimate	1		
% percentage uninsured	2		
crime	Stanford, Chandra, and Marmot 2007	6	
% people with higher education degree	American Community Survey	4	
% people speaking English less than well	Social Vulnerability Index (SVI)	1	
% people volunteering	Forbes, 2017	5	
%age-adjusted suicide rate	Center of Disease Control	2	
cultural tightness	Harrington and Lefllon 2014	5	
willingness of donating to charities	Bathes, 2017	3	
% of people with disability	Booth-Kewley and Vickers Jr 1994	4	
crime	Stanford, Chandra, and Marmot 2007	6	
population density	American Community Survey	10	
% people with higher education degree	American Community Survey	4	
% people speaking English less than well	Social Vulnerability Index (SVI)	1	
%percentage uninsured	6		
% of people with disability	Booth-Kewley and Vickers Jr 1994	4	
crime	Stanford, Chandra, and Marmot 2007	6	
population density	American Community Survey	10	
% people with higher education degree	American Community Survey	4	
% people speaking English less than well	Social Vulnerability Index (SVI)	1	
%percentage uninsured	6		
H1 analysis, the causal analysis corroborates both graphics based candidates were most likely to be selected as confounders that were selected in the causal analysis. Not surprisingly, we can observe that demographic based candidates were most likely to be selected as confounders. In summary, in a way similar to the correlation analysis, the causal analysis corroborates both H1 and H2.

7 Discussion and conclusion

By using the lens of network science to study the co-occurrences of mentions of medical conditions in social media, we derived the first comprehensive health taxonomy from online health discussions. Its categories happen to align well with the official disease categorization. The two health taxonomies independently extracted from Reddit and Twitter are similar yet exhibit differences that reflect the different uses of the two platforms. Twitter’s taxonomy focused on frequently occurring conditions, while Reddit’s turned out to be more comprehensive, in that, it included less frequently occurring conditions as well. That is mainly because health discussions on Reddit are organized in specialized communities. Furthermore, our health scores computed from Reddit correlated with (and were causally linked to) the prevalence of their corresponding diseases at the level of states in the U.S.

Our methodology is affected by several limitations that future work can address. First, even if our NLP extractor of medical conditions from text surpasses the performance of state-of-the-art solutions, its output is not a perfectly exhaustive and concise representation of all the conditions mentioned in the corpora we analyzed. In particular, our method would benefit from a better procedure of entity normalization, which would allow for grouping mentions of medical conditions with nearly-equivalent semantics. Second, our taxonomy is still a coarse representation of the complex space of all existing health conditions. This is particularly evident in some categories such as the one describing mental health—a very broad category containing thousands of terms split only among three sub-categories. Refining our taxonomy into more specific yet coherent categories below level-2 would allow for a more detailed representation of different classes of diseases and a comparison with the ICD taxonomy at the level of its sub-categories. Third, our validation is restricted by the limited number of datapoints, all representing very broad geographical areas (states in the U.S.); collecting official statistics on disease prevalence at a finer spatial granularity would alleviate this limitation. Fourth, and related to the previous point, the correlations between our health indices and official prevalence are not high. This gap can be explained by not all patients discussing their conditions online, certain states’ populations being more tech-savvy, and some conditions being more likely to be discussed online than the others. The identified link in our taxonomy between measles and vaccines reveals another potential issue, which is that online discussions might correspond to perceived versus really experienced conditions. This issue, however, opens an interesting avenue for future work about potential misconceptions exhibited in online discussions, especially given the widespread scepticism over Covid-19 vaccines currently being administered. Future work could, for example, employ platform-specific signals, such as downvotes, likes, and replies to discover misconceptions among the taxonomy links. Last, like most research based on social media data, our study is affected by sociodemographic biases. Despite Reddit and Twitter’s penetration is higher in the U.S. than anywhere else in the world, their user base is not representative of the population of residents; for example, it is skewed towards an audience that is younger, more affluent, and more educated than average (Perrin and Anderson 2018). This is another potential explanation for the gap between official prevalence and our indices discussed in the previous point.

Despite these limitations, our health categorization matched the ICD-11 categorization surprisingly well at its coarsest level and the health indices we derived from it correlate with official disease prevalence statistics. However, investigating the gap between the prevalence of disease and the volume of its mentions in social media is necessary to shed light upon the relationship between which medical conditions occupy people’s minds as opposed to which trouble their bodies. Shedding further light on this aspect is key to designing an integration of our health indices with official health surveys and other health surveillance systems.

References

[Akbik, Blythe, and Vollgraf 2018] Akbik, A.; Blythe, D.; and Vollgraf, R. 2018. Contextual string embeddings for sequence labeling. In Proceedings of the International Conference on Computational Linguistics (COLING), 1638–1649.

[Austin and Small 2014] Austin, P. C., and Small, D. S. 2014. The use of bootstrapping when using propensity-score matching without replacement: A simulation study. Statistics in Medicine 33(24):4306–4319.

[Bagroy, Kumaraguru, and De Choudhury 2017] Bagroy, S.; Kumaraguru, P.; and De Choudhury, M. 2017. A social media based index of mental well-being in college campuses. In Proceedings of the Conference on Human factors in Computing Systems (CHI), 1634–1646.

[Balsamo, Bajardi, and Panisson 2019] Balsamo, D.; Bajardi, P.; and Panisson, A. 2019. Firsthand opiates abuse on social media: Monitoring geospatial patterns of interest through a digital cohort. In Proceedings of the ACM World Wide Web Conference (WWW), 2572–2579.

[Baumgartner et al. 2020] Baumgartner, J.; Zannettou, S.; Keegan, B.; Squire, M.; and Blackburn, J. 2020. The Pushshift Reddit Dataset. arXiv preprint [arXiv:2001.08435]

[Bogdashina 2016] Bogdashina, O. 2016. Sensory perceptual issues in autism and Asperger syndrome: Different sensory experiences-different perceptual worlds. Jessica Kingsley Publishers.

[Boldi and Vigna 2014] Boldi, P., and Vigna, S. 2014. Axioms for centrality. Internet Mathematics 10(3-4):222–262.

[Booth-Kewley and Vickers Jr 1994] Booth-Kewley, S., and Vickers Jr, R. R. 1994. Associations between major domains
of personality and health behavior. *Journal of Personality* 62(3):281–298.

[Butler 2013] Butler, D. 2013. When Google Got Flu Wrong. *Nature* 494:155–6.

[Chan et al. 2018] Chan, M.-p. S.; Lohmann, S.; Morales, A.; Zhai, C.; Ungar, L.; Holtgrave, D. R.; and Albarracin, D. 2018. An online risk index for the cross-sectional prediction of new HIV chlamydia, and gonorrhea diagnoses across US counties and across years. *AIDS and Behavior* 22(7):2322–2333.

[Choudhury and De 2014] Choudhury, M. D., and De, S. 2014. Mental health discourse on reddit: Self-disclosure, social support, and anonymity. In *Proceedings of the International AAAI Conference on Weblogs and Social Media (ICWSM)*.

[Cochrane, OHara, and Leslie 1980] Cochrane, S. H.; OHara, D. J.; and Leslie, J. 1980. The effects of education on health. Technical Report SWP405, Washington DC World Bank.

[Cutler and Lleras-Muney 2006] Cutler, D. M., and Lleras-Muney, A. 2006. Education and health: Evaluating theories and evidence. Technical report, National Bureau of Economic Research.

[De Choudhury et al. 2013] De Choudhury, M.; Gamon, M.; Counts, S.; and Horvitz, E. 2013. Predicting depression via social media. In *Proceedings of the International AAAI conference on Weblogs and Social Media (ICWSM)*.

[Deaton 2008] Deaton, A. 2008. Income, health, and well-being around the world: Evidence from the Gallup world poll. *Journal of Economic Perspectives* 22(2):53–72.

[Devlin et al. 2019] Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, 4171–4186.

[Fortunato 2010] Fortunato, S. 2010. Community detection in graphs. *Physics Reports* 486(3-5):75–174.

[Gillam et al. 2012] Gillam, S. J.; Siriwardena, A. N.; and Steel, N. 2012. Pay-for-performance in the United Kingdom: impact of the quality and outcomes framework: a systematic review. *Annals of Family Medicine* 10:461–68.

[Gkotsis et al. 2017] Gkotsis, G.; Oellrich, A.; Velupillai, S.; Liakata, M.; Hubbard, T. J.; Dobson, R. J.; and Dutta, R. 2017. Characterisation of mental health conditions in social media using informed deep learning. *Scientific Reports* 7:45141.

[Goel et al. 2010] Goel, S.; Hofman, J. M.; Lahaie, S.; Pennock, D. M.; and Watts, D. J. 2010. Predicting consumer behavior with Web search. *Proceedings of the National Academy of Sciences (PNAS)* 107(41):17486–17490.

[Goh et al. 2007] Goh, K.-I.; Cusick, M. E.; Valle, D.; Childs, B.; Vidal, M.; and Barabási, A.-L. 2007. The human disease network. *Proceedings of the National Academy of Sciences (PNAS)* 104(21):8685–8690.

[Greenland 2008] Greenland, S. 2008. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. *American Journal of Epidemiology* 167(5):523–529.

[Guntuku et al. 2019] Guntuku, S. C.; Buffone, A.; Jaidka, K.; Eichstaedt, J. C.; and Ungar, L. H. 2019. Understanding and measuring psychological stress using social media. In *Proceedings of the International AAAI Conference on Web and Social Media (ICWSM)*, 214–225.

[Harrington and Gelfand 2014] Harrington, J. R., and Gelfand, M. J. 2014. Tightness–looseness across the 50 united states. *Proceedings of the National Academy of Sciences (PNAS)* 111(22):7990–7995.

[Huang, Xu, and Yu 2015] Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional lstm-crf models for sequence tagging. *arXiv preprint arXiv:1508.01991*.

[Jiang et al. 2019] Jiang, Y.; Hu, C.; Xiao, T.; Zhang, C.; and Zhu, J. 2019. Improved differentiable architecture search for language modeling and named entity recognition. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, 3576–3581.

[Jimeno-Yepes et al. 2015] Jimeno-Yepes, A.; MacKinlay, A.; Han, B.; and Chen, Q. 2015. Identifying diseases, drugs, and symptoms in twitter. *Studies in Health Technology and Informatics* 216:643.

[Karimi et al. 2015] Karimi, S.; Metke-Jimenez, A.; Kemp, M.; and Wang, C. 2015. Cadec: A corpus of adverse drug event annotations. *Journal of Biomedical Informatics* 55:73–81.

[Kass-Hout and Alhinnawi 2013] Kass-Hout, T., and Alhinnawi, H. 2013. Social media in public health. *British Medical Bulletin* 108:5.

[Kramer 2010] Kramer, A. D. 2010. An unobtrusive behavioral model of gross national happiness. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI)*, 287–290. ACM.

[Lancichinetti and Fortunato 2009] Lancichinetti, A., and Fortunato, S. 2009. Community detection algorithms: a comparative analysis. *Physical review E* 80(5):056117.

[Lawson et al. 2010] Lawson, N.; Eustice, K.; Perkowitz, M.; and Yetisen-Yildiz, M. 2010. Annotating large email datasets for named entity recognition with Mechanical Turk. In *Proceedings of the ACM NAACL HLT Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk*, 71–79.
[Lazer et al. 2014] Lazer, D.; Kennedy, R.; King, G.; and Vespignani, A. 2014. The Parable of Google Flu: Traps in Big Data Analysis. *Science* 343(6176):1203–1205.

[Liu et al. 2019] Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019. RoBERTa: A robustly optimized BERT pre-training approach. *arXiv preprint arXiv:1907.11692*.

[McAfee and Brynjolfsson 2012] McAfee, A., and Brynjolfsson, E. 2012. Big Data: The management revolution. *Harvard Business Review* 90(10):60–68.

[Medvedev, Lambiotte, and Delvenne 2017] Medvedev, A. N.; Lambiotte, R.; and Delvenne, J.-C. 2017. The anatomy of Reddit: An overview of academic research. In *Dynamics on and of Complex Networks*, 183–204. Springer.

[Meer, Miller, and Rosen 2003] Meer, J.; Miller, D. L.; and Rosen, H. S. 2003. Exploring the health–wealth nexus. *Journal of Health Economics* 22(5):713–730.

[Neale and Kendler 1995] Neale, M. C., and Kendler, K. S. 1995. Models of comorbidity for multifactorial disorders. *American Journal of Human Genetics* 57(4):935.

[Napier et al. 2014] Napier, A. D.; Ancarino, C.; Butler, B.; Calabrese, J.; Chater, A.; Chatterjee, H.; Guesnet, F.; Horne, R.; Jacyna, S.; Jadhav, S.; et al. 2014. Culture and health. *The Lancet* 384(9954):1607–1639.

[Neale and Kendler 1995] Neale, M. C., and Kendler, K. S. 1995. Models of comorbidity for multifactorial disorders. *American Journal of Human Genetics* 57(4):935.

[Page et al. 1999] Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The PageRank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab.

[Pennebaker, Francis, and Booth 2001] Pennebaker, J. W.; Francis, M. E.; and Booth, R. J. 2001. Linguistic inquiry and word count: Liwc 2001. *Mahway: Lawrence Erlbaum Associates* 71.

[Perrin and Anderson 2018] Perrin, A., and Anderson, M. 2018. Share of U.S. adults using social media, including facebook, is mostly unchanged since 2018.

[Rentfrow, Gosling, and Potter 2008] Rentfrow, P. J.; Gosling, S. D.; and Potter, J. 2008. A theory of the emergence, persistence, and expression of geographic variation in psychological characteristics. *Perspectives on Psychological Science* 3(5):339–369.

[Rosenbaum and Rubin 1983] Rosenbaum, P. R., and Rubin, D. B. 1983. The central role of the propensity score in observational studies for causal effects. *Biometrika* 70(1):41–55.

[Rosvall and Bergstrom 2008] Rosvall, M., and Bergstrom, C. T. 2008. Maps of random walks on complex networks reveal community structure. *Proceedings of the National Academy of Sciences (PNAS)* 105(4):1118–1123.

[Sarasohn-Kahn 2008] Sarasohn-Kahn, J. 2008. The wisdom of patients: Health care meets online social media. Technical report, California HealthCare Foundation.

[Schneeweiss et al. 2009] Schneeweiss, S.; Rassen, J. A.; Glynn, R. J.; Avorn, J.; Mogun, H.; and Brookhart, M. A. 2009. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. *Epidemiology (Cambridge, Mass.)* 20(4):512.

[Stafford, Chandola, and Marmot 2007] Stafford, M.; Chandola, T.; and Marmot, M. 2007. Association between fear of crime and mental health and physical functioning. *American Journal of Public Health* 97(11):2076–2081.

[Stephens-Davidowitz 2018] Stephens-Davidowitz, S. 2018. *Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are*. William Morrow & Co.

[Stordal et al. 2001] Stordal, E.; Bjartveit Krüger, M.; Dahl, N. H.; Krüger, Ø.; Mykleuten, A.; and Dahl, A. 2001. Depression in relation to age and gender in the general population: The Nord-Trøndelag Health Study (HUNT). *Acta Psychiatrica Scandinavica* 104(3):210–216.

[Taylor et al. 1999] Taylor, B.; Miller, E.; Farrington, C.; Petropoulos, M.-C.; Favot-Mayaud, I.; Li, J.; and Waight, P. A. 1999. Autism and measles, mumps, and rubella vaccine: no epidemiological evidence for a causal association. *The Lancet* 353(9169):2026–2029.

[Toussaint et al. 2001] Toussaint, L. L.; Williams, D. R.; Mushick, M. A.; and Everson, S. A. 2001. Forgiveness and health: Age differences in a us probability sample. *Journal of Adult Development* 8(4):249–257.

[Tutubalina and Nikolenko 2017] Tutubalina, E., and Nikolenko, S. 2017. Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews. *Journal of Healthcare Engineering* 2017.

[Velasco et al. 2014] Velasco, E.; Agheneza, T.; Denecke, K.; Kirchner, G.; and Eckmanns, T. 2014. Social media and internet-based data in global systems for public health surveillance: a systematic review. *The Milbank Quarterly* 92(1):7–33.

[Yepes and MacKinlay 2016] Yepes, A. J., and MacKinlay, A. 2016. NER for medical entities in Twitter using sequence to sequence neural networks. In *Proceedings of the Australasian Language Technology Association Workshop*, 138–142.

[Zhou et al. 2014] Zhou, X.; Menche, J.; Barabási, A.-L.; and Sharma, A. 2014. Human symptoms–disease network. *Nature Communications* 5:4212.