Toxoplasmosis-Associated Difference in Intelligence and Personality in Men Depends on Their Rhesus Blood Group but Not ABO Blood Group

Jaroslav Flegr¹*, Marek Preiss², Jiří Klose³
¹ Department of Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, ² Department of Biochemistry & Brain Pathophysiology, Prague Psychiatric Center, Prague, Czech Republic, ³ Central Medical Psychology Department, Military University Hospital Prague, Prague, Czech Republic

Abstract

Background: The parasite *Toxoplasma gondii* influences the behaviour of infected animals and probably also personality of infected humans. Subjects with a Rhesus-positive blood group are protected against certain behavioural effects associated with *Toxoplasma* infection, including the deterioration of reaction times and personality factor shift.

Methodology/Principal Findings: Here, we searched for differences in the toxoplasmosis-associated effects between RhD-positive and RhD-negative subjects by testing 502 soldiers with two personality tests and two intelligence tests. The infected subjects expressed lower levels of all potentially pathognomic factors measured with the N-70 questionnaire and in neurasthenia measured with NEO-PI-R. The RhD-positive, *Toxoplasma*-infected subjects expressed lower while RhD-negative, *Toxoplasma*-infected subjects expressed higher intelligence than their *Toxoplasma*-free peers. The observed *Toxoplasma*-associated differences were always larger in RhD-negative than in RhD-positive subjects.

Conclusions: RhD phenotype plays an important role in the strength and direction of association between latent toxoplasmosis and not only psychomotor performance, but also personality and intelligence.

Copyright: © 2013 Flegr et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Flegr J, Preiss M, Klose J (2013) Toxoplasmosis-Associated Difference in Intelligence and Personality in Men Depends on Their Rhesus Blood Group but Not ABO Blood Group. PLoS ONE 8(4): e61272. doi:10.1371/journal.pone.0061272

Editor: Martin E. Rottenberg, Karolinska Institutet, Sweden

Received October 18, 2012; Accepted March 7, 2013; Published April 10, 2013

Funding: The authors' work was supported by the Grand Agency of the Czech Republic (Grant No. P303/11/1398) and Charles University of Prague (GAUK 18810, grant UNCE 204004). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: flegr@cesnet.cz

Introduction

The trophically transmitted parasites often modify the behavior of their intermediate host to increase its susceptibility to predation [1,2]. By this they increase the probability of their transmission from intermediate to definitive host. A popular model for studying such manipulation activity of parasites in a mammal host is *Toxoplasma gondii*, for review see [3,4]. In its life cycle, *Toxoplasma* needs to be transmitted from the intermediate host, e.g. an infected rodent, to the definitive host, i.e. any representative of the Felidae family, including the domestic cat. It is known that infected rodents are hyperactive in the open field [5,6], exhibit increased voluntary wheel running [7,8] and longer exploration times in the hole board test [9], are deficient in motor performance and coordination [8,10], and have longer reaction times [11], impaired working memory [12], and impaired ability to recognise novel stimuli [8,13]. The most specific and also the most spectacular toxoplasmosis-associated change reported in rodents is the so-called Fatal attraction phenomenon, i.e. the conversion of the rats’ and mice’s innate fear of cat odour into attraction to cat odour but not to the odour of other predators. This phenomenon was observed in several laboratories [12,14–16] and was dependent on activation of the brain regions that respond to sexual stimuli in normal mice by the odour of a particular predator, the cat in infected rodents [16]. Current results suggest that changed concentrations of testosterone [17] and dopamine probably play an important role in the differences in the personality and behavior between *Toxoplasma*-infected and *Toxoplasma*-free subjects. It was found that the *Toxoplasma gondii* genome contains two genes for enzymes (tyrosine hydroxylases) implicated in the synthesis of dopamine [18] and increased concentration of this neurotransmitter was observed in the infected rodent brain areas [19].

Any warm-blooded animal, including humans, can be infected with *Toxoplasma* and the prevalence of this infection in different countries varies between 5 and 80% depending on climate, hygienic standards and kitchen habits [20]. After a short phase of acute toxoplasmosis, the infection proceeds to its latent stage when tissue cysts with bradyzoites are formed and these survive for the rest of the host’s life mainly in neural and muscular tissues. In immunocompetent subjects, the latent phase of infection was considered asymptomatic and harmless from the clinical point of view, however, results of many recent studies suggested that this form of the infection could have many serious clinical implications [21–24]. However, practically all studies performed in the past 20 years have demonstrated behavioural changes including the Fatal attraction phenomenon [25], observed earlier in laboratory animals, also in humans, for recent reviews, see [3,26].
It is well known that the gene pool of the local human population is strongly influenced by the selection pressure of parasites. Recent studies have shown that the association between latent toxoplasmosis and human reaction times, personality and physiology depend on RhD phenotype of the infected subject [27–31]. It has even been suggested that the spreading of the deletion responsible for RhD negativity in the Caucasian population can be caused by increased psychomotor performance of RhD-negative, Toxoplasma-free subjects in Europe where the cats and therefore toxoplasmosis were rare before the advent of the domestic cat [27]. The association between toxoplasmosis and the personality of RhD-negative and RhD-positive subjects was studied using Cattell’s 16PF and Cloninger’s TCI questionnaires [29]. In the present study, we searched for the difference between RhD-positive and RhD-negative subjects using the NEO-PI-R questionnaire that is based on the modern Big Five model of personality. Moreover, we searched for similar RhD phenotype- and toxoplasmosis-associated differences in verbal and nonverbal intelligence and also in pathognomic traits measured with the N-70 questionnaire.

Materials and Methods

Ethics Statement
All participants provided their written informed consent. The recruitment of study subjects and data handling were performed in compliance with the Czech legislation in force and were approved by the Institutional Review Board of the Faculty of Science, Charles University.

Sample and Participant Selection
All psychological testing was performed at the Military University Hospital Prague. The study population consisted of 502 male soldiers of Czech nationality (age: 18–52, mean 27.25, S.D. 6.71, median 25.94) who attended the Military University Hospital Prague to take entrance psychological examinations for military missions in 2005 and consented to participate in the research project. The subjects were examined with standardized panel of psychological and performance tests, essayed for RhD and ABO phenotype during the health examination and also provided 5 ml of blood for a serology test. In the informed consent form, the general aim of the project (a study of the influence of environmental factors on human psychology and performance) and the need for obtaining their consent to using the results of their psychological and clinical examinations were explained. The consent rate was about 65%.

N-70 questionnaire

The N-70 is a questionnaire constructed for the assessment of seven areas of clusters - anxiety, depression, phobia, hysteria, hypochondria, psychosomatic symptoms and psychastenia [32]. The purpose of this method is to detect individuals who may be too sensitive for military operations [33]. Subjects are asked to answer 70 questions using a 3-point agreement scale. Scores in each cluster range from 0–30. The total N-70 score is the number of non-negative answers for all 70 questions.

NEO-PI-R questionnaire

The electronic version of NEO-PI-R (Costa & McCrae, 1992) translated to Czech and validated by Hřebíčková (2001) [34] was used.

Wiener Matrizen-Test of intelligence

The Wiener Matrizen-Test (WMT) [35], a nonverbal intelligence test, is an adapted version of the Raven progressive matrices which conforms to the Rasch model [36]. The WMT assesses general intelligence by measuring reasoning ability. The test requires the completion of 24 matrices with increasing task difficulty and was administered without an explicit time limit. The intention and conceptualization of the WMT are largely based on Raven’s Matrices [37–39]. The correlation between the WMT and Standard Progressive Matrices is about r = 0.92 [35]. Construction and item selection, however, follow the standards of Rasch scaling. For these reasons, and due to the fact that the WMT showed comparable validity characteristics but had a considerably higher administration economy, we prefer the WMT to the Raven matrices in clinical practice. The split-half reliability of the WMT is 0.83 [35]. The 1993 Czech adopted version [40], distributed by Psychodiagnostika (Brno), was used in the present study. Both the raw score and the IQ adjusted for age of the participant were compared in statistical tests.

OTIS test of intelligence

The OTIS test is a test of verbal intelligence which was derived from the original test [41]. Seven types of items were taken from the original test:

- term or object definition by choosing the most suitable characteristics
- term or object definition by choosing the most suitable description
- the choice of an object based on common attributes
- the choice of the opposite
- the identifying of “foreign” (unrelated) terms
- logical or ethical solution of the situations
- the interpretation of the adage

The test contains 32 items (0–32). The maximum score is therefore 32 points. Both the raw score and the IQ (adjusted for the educational level, see [32]) were compared in statistical tests.

Immunological tests for toxoplasmosis

All serological tests were carried out in the National Reference Diagnostic Laboratory for Toxoplasmosis, National Institute of Public Health, Prague. Specific IgG and IgM antibody titres were determined by ELISA (IgG: SEVAC, Prague, IgM: TestLine, Brno), optimized for early detection of acute toxoplasmosis (Pokorny et al., 1989) and by complement fixation tests (CFT) (SEVAC, Prague) which are more sensitive and therefore more suitable for the detection of old T. gondii infection (Warren & Sabin, 1942). The titre of anti-Toxoplasma antibodies in sera was measured in dilutions between 1:8 and 1:1024. The subjects with negative results of IgM ELISA (positivity index <0.9) and both CFT titres higher than 1:8 and IgG ELISA >250 optical units, i.e. approximately 10 IU/ml, were considered latent toxoplasmosis positive. The individuals with ambiguous diagnosis, e.g. different result of CFT and ELISA, were excluded from the study.

Statistical analysis

The Statistica 8.0 was used for descriptive statistics, General Linear Model tests and computing t anova by standard Kendall correlation tests. Partial Kendall correlation test suggested by Siegel and Castellan [42] based on t anova computed with standard Kendall correlations was used for nonparametric analyses [17]; the
Excel sheet for this analysis is available at http://web.natur.cuni.cz/flegr/programy.php.

Results

We obtained scores for the N-70, NEO-PI-R, WMT and Otis tests from 502 subjects tested for RhD and latent toxoplasmosis. One hundred and fifty-four (154, i.e. 31.4%) of 491 subjects with unambiguous results of the test for toxoplasmosis were Toxoplasma infected and 87 (17.3%) of 502 subjects were RhD negative. No association between toxoplasmosis and RhD phenotype was observed (Chi² = 0.14, p = 0.707). Descriptive statistics for the population under study are shown in Tables 1 and 2. For the analysis of correlation of toxoplasmosis and RhD phenotype with the personality profile of soldiers (ordinal variables), we used a robust nonparametric test. To control for the effect of age, partial Kendall correlation tests were performed with age as a covariate and to control for the effect of RhD phenotype, RhD-positive and RhD-negative subjects were tested separately. Table 1 shows that Toxoplasma-infected subjects scored lower in the total N-70 score and also in anxiety, depression, phobia, hysteria, and vegetative lability and in the BigFive trait neuroticism. The differences were much stronger in RhD-negative than RhD-positive subjects. No relation between latent toxoplasmosis and nonverbal (WMT) or verbal (Otis) intelligence was observed in RhD nonsorted population. However, separate analyses performed for RhD-positive and RhD-negative populations showed negative association between intelligence and toxoplasmosis in RhD-positive subjects and positive association between intelligence and toxoplasmosis in RhD-negative subjects, see Fig. 1. Again, the correlation of intelligence with toxoplasmosis (estimated with partial tau) was much stronger for RhD-negative subjects.

The same analyses (partial Kendall correlations with age as a covariate) was performed for the independent binary variable RhD phenotype, in the whole population and separately in the Toxoplasma-infected and Toxoplasma-free subjects, see Table 2. Significant association of RhD phenotype with the total N-70 score, hypochondria, vegetative lability, psychastheny, and the NEO-PI-R neuroticism were observed only in Toxoplasma-infected subjects. However, the association of RhD phenotype with nonverbal and verbal intelligence was detected also in Toxoplasma-free subjects, suggesting that not only the protective effect of RhD positivity against consequences of toxoplasmosis but also the main effect of RhD phenotype (or its protective effect against some unknown third factor) probably played a role in the observed associations between RhD phenotype and various personality traits.

The partial Kendall correlation test can control for one confounding variable only. To study the effect of interactions and several potential confounding variables we performed General Linear Model analyses with independent variables age, toxoplasmosis, RhD phenotype, ABO phenotype and RhD phenotype-toxoplasmosis and ABO phenotype-toxoplasmosis interactions. The analyses showed significant effect of RhD phenotype-toxoplasmosis interaction on psychastheny and IQ and no significant effects of ABO phenotype or ABO phenotype interaction (Tab. 3).

Discussion

Soldiers with and without latent Toxoplasma infection differ in several personality traits. Generally, the infected subjects expressed lower levels of potentially pathognomonic factors measured with the N-70 questionnaire and of neuroticism tested with the NEO-PI-R (Big Five model). The RhD-positive, Toxoplasma-infected subjects express lower while RhD-negative, Toxoplasma-infected subjects express higher verbal and nonverbal intelligence than their Toxoplasma-free peers. The observed Toxoplasma-associated differences in personality traits, including intelligence were always larger in RhD-negative than in RhD-positive subjects.

The GLM analysis showed that the effect of RhD-toxoplasmosis interaction on intelligence is highly significant. This analysis also showed a significant effect RhD-toxoplasmosis interaction on psychastheny. It must be reminded, however, that this effect is non-significant after the correction for multiple statistical tests. The GLM also showed absence of main effects of RhD phenotype and toxoplasmosis (after correction for multiple tests), which contrasted with results of partial Kendall correlation tests. The lower power of parametric tests for ordinal data with asymmetric distribution as well as the presence of several other independent variables and their interactions in more complex GLM models could be responsible for this difference between results of parametric and nonparametric tests. GLM analysis models also showed absence of effect of ABO phenotype and its interaction on personality and intelligence. Absence of any effect of ABO phenotype contrasted with existence of numerous effects of RhD phenotype – see the Table 3, confirming the special role of RhD proteins in human physiology.

Association between Toxoplasma infection and human personality factors were studied thoroughly in the past 20 years. About 10 published studies have demonstrated associations of toxoplasmosis with human personality traits mostly using Cattell's 16PF and Cloninger's TCI questionnaires; for review, see [26,43,44]. Only one study, showing positive association of toxoplasmosis with extraversion and its negative association with conscientiousness, used the NEO-PI-R questionnaire [45]. A correlation study has also shown that the difference in the prevalence of latent toxoplasmosis between the general populations of particular countries can explain a significant portion of the variance in aggregate neuroticism among populations [46].

Surprisingly, the results obtained in the present study performed on military personnel differed from those observed earlier on university students. For example, Toxoplasma-infected and Toxoplasma-free soldiers expressed no differences in extraversion or conscientiousness and Toxoplasma-infected and Toxoplasma-free students expressed no difference in neuroticism. Moreover, the results of the correlation study comparing the prevalence of latent toxoplasmosis with aggregate neuroticism in the general populations of particular countries suggest that Toxoplasma-infected subjects have higher rather than lower neuroticism [46]. It was also suspicious that infected soldiers expressed lower and not higher levels of psychopathognomic traits measured with the N-70 questionnaire. Our present hypothesis is that Toxoplasma-infected soldiers express stronger tendency to mask any negative property when responding to questions in questionnaires. Several studies have shown a lower super ego strength (Cattell's factor G) and higher suspiciousness (Cattell's factor L) in Toxoplasma-infected men. The testing of soldiers in the current study was a part of their entrance examination for a voluntary (and well-paid) participation in an international military mission and (in contrast with university students or blood donors tested in the previous anonymous studies) the subjects were objectively motivated to mask their negative (e.g. the pathognomonic) and to accentuate their positive properties. It is urgently needed to confirm our results in an anonymous research study where the motivation for intentional distortion of data is lower.

Existence of the interaction between toxoplasmosis, RhD phenotype and human behaviour has been confirmed in four studies. Two of them have shown resistance of RhD-positive
subjects, especially the RhD-positive heterozygotes, to impairment of reaction times after Toxoplasma infection [27,28] and one prospective study performed on 3900 military drivers has found an increased risk of traffic accidents in Toxoplasma-infected, RhD-negative subjects [30]. The fourth study has reported opposite relation of toxoplasmosis with Cattell's ego strength, praxernia, and ergic tension and Cloninger's cooperativeness in RhD-positive and RhD-negative blood donors [29]. The latter study also indicates that RhD phenotype might play an important role not only in the toxoplasmosis-associated differences but also in the age-associated differences in specific personality traits. Another recent study shows that RhD phenotype could also play a role in correlations of age and smoking with psychomotor performance, intelligence and health of draftees [47]. The results of the current study are in agreement with the already published data. The correlations of toxoplasmosis with personality of soldiers (reflected by the absolute values of Kendall \(\tau \) shown in Tables 1 and 2) were always much stronger in RhD-negative than RhD-positive subjects [27,28]. The results of the current study are in agreement with the already published data. The correlations of toxoplasmosis with personality of soldiers (reflected by the absolute values of Kendall \(\tau \) shown in Tables 1 and 2) were always much stronger in RhD-negative than RhD-positive subjects, see Table 1. Moreover, the higher verbal and nonverbal intelligence of RhD-positive Toxoplasma-free subjects than Rh-negative Toxoplasma-free soldiers suggests that RhD positivity could protect not only against detrimental effects of latent toxoplasmosis but also against other (still unknown) factors. At the present time, we have no explanation for the opposite relation between RhD phenotype and intelligence in Toxoplasma-infected and Toxoplasma-free subjects. We cannot exclude a possibility that some unknown gene that is in linkage disequilibrium with RHD gene, rather than RHD gene itself, is responsible for the observed phenomena. We cannot even exclude a possibility that the observed phenomena are caused by some unknown confounding variables that co-vary with RhD phenotype and also other observed variables, namely risk of Toxoplasma infection and human personality and intelligence. However, the present data could explain the controversial results concerning the existence (and direction) of the correlation between latent toxoplasmosis on intelligence [48,49].

The mechanism responsible for physiological and behavioural effects of RhD phenotype is unknown. The RhD molecule is part of a molecular complex (RhAG) on the membrane of red cells [50,51]. Structural data suggest that the complex is a membrane NH\(_3\) or possibly CO\(_2\) pump with unknown function [52–54]. In RhD-negative subjects, the gene RHD is absent in chromosomes of both maternal and paternal origin due to a large deletion and therefore also the RhD molecule is missing and is probably substituted with another related molecule in the complex [55]. RhD-containing and RhD-free complexes may differ in the specificity, activity and most probable also response to regulation signals. The membrane pump could directly or indirectly influence the partial tension of oxygen and water balance in various tissues, including the brain tissue [56–58].

Limitations of the present study

The major limitation of the present study was that the study subjects were objectively motivated to accent positive and to hide negative traits of their personality as their results were to be used as a part of the entrance examination for the participation in a military (peacekeeping) mission. The resulting bias probably
	All	Rh+	Rh-										
	N mean												
Age													
Total N-70	337	154	26.70	27.83	28.0	125	26.77	28.26	57	28	26.35	26.26	
Anxiety	335	152	4.31	3.68	4.28	278	123	3.74	3.09	57	28	4.47	3.39
Depression	335	152	2.18	1.80	2.16	278	123	1.86	1.05	57	28	2.28	1.50
Phobia	335	152	2.87	2.34	2.91	278	123	2.57	0.96	57	28	2.95	2.14
Hysteria	335	152	2.51	2.24	2.54	278	123	2.36	0.95	57	28	2.40	1.71
Vegetative lability	335	152	3.15	2.71	3.18	278	123	2.82	0.95	57	28	3.00	2.18
Psychastheny	335	152	2.13	1.91	2.14	278	123	2.10	0.95	57	28	2.11	1.00
Neuroticism	314	143	69.06	63.15	68.86	259	117	66.49	0.94	253	55	69.98	59.32
Extraversion	314	143	116.84	116.70	117.08	259	117	116.83	0.91	253	55	117.11	116.80
Openness	314	143	101.81	102.40	102.89	259	117	101.41	0.93	253	55	100.47	106.88
Agreeableness	318	144	122.42	123.45	121.80	259	117	123.28	0.95	253	55	125.35	123.68
Conscientiousness	316	144	128.81	130.07	128.73	259	117	130.12	0.97	253	55	129.18	130.00
Row WMT	314	143	23.19	23.04	23.38	278	123	22.72	0.95	278	123	22.28	24.46
IQ WMT	312	142	101.49	101.09	101.95	278	123	100.37	0.96	278	123	99.25	104.54
Row Otis	311	141	14.53	14.12	14.75	273	117	13.86	0.97	273	117	13.38	15.41
IQ Otis	309	140	101.97	100.78	102.62	273	117	100.14	0.96	273	117	98.80	104.30

Table 1. Descriptive statistics and results of testing differences in personality traits and intelligence between Toxoplasma-infected and Toxoplasma-free RhD-negative and RhD-positive male soldiers.

Tau shows effect size and sign, p shows statistical significance measured with partial Kendall tests. Significant results (p < 0.05, two-sided test) are printed in bold. Toxoplasma-free and Toxoplasma-infected subjects are coded with 0 and 1, respectively. Therefore, negative Tau means lower test score in Toxoplasma infected subjects. Formal correction for multiple (51) tests was not performed. Theoretically, 2–3 of 51 tests presented in this table should provide false positive results.

doi:10.1371/journal.pone.0061272.t001
Table 2. Descriptive statistics and results of testing differences in personality traits and intelligence between RhD-negative and RhD-positive *Toxoplasma*-infected and *Toxoplasma*-free male soldiers.

	All	RhD−	RhD+																	
	N	mean	N	mean	N	mean	N	mean	N	mean	N	mean	N	mean	N	mean	N	mean	N	mean
Age			87	415	26.36	27.26	57	280	26.35	27.77	28	125	26.26	28.26	0.03	0.13	0.01			
Total N-70			87	411	16.97	18.36	0.05	0.108	57	278	18.96	19.79	0.00	0.98	28	123	13.50	17.21	0.12	
Anxiety			87	411	4.08	4.11	0.00	0.089	57	278	4.47	4.28	−0.03	0.14	28	123	3.99	3.74	0.06	
Depression			87	411	4.17	2.04	0.00	0.869	57	278	2.26	2.16	−0.04	0.39	28	123	1.50	1.86	0.05	
Phobia			87	411	2.66	2.75	0.03	0.377	57	278	2.95	2.86	0.00	0.97	28	123	2.14	2.57	0.07	
Hysteria			87	411	2.44	2.74	0.06	0.057	57	278	2.68	2.91	0.05	0.19	28	123	2.00	2.42	0.07	
Hypochondria			87	411	2.18	2.46	0.05	0.108	57	278	2.40	2.54	0.02	0.56	28	123	1.71	2.36	0.12	
Vegetative lability			87	411	2.68	3.08	0.06	0.050	57	278	3.00	3.18	0.02	0.66	28	123	2.18	2.82	0.13	
Psychastheny			87	411	1.70	2.13	0.09	0.003	57	278	2.11	2.14	0.02	0.66	28	123	1.00	2.10	0.21	
Neuroticism			82	386	57.90	59.16	0.03	0.314	55	259	60.75	59.72	−0.02	0.63	25	117	51.92	58.01	0.13	
Extroversion			82	386	95.21	95.52	0.01	0.827	55	259	95.20	95.52	−0.01	0.84	25	117	94.84	95.44	0.05	
Openness			82	386	82.70	82.22	−0.01	0.814	55	259	81.24	82.51	0.02	0.60	25	117	86.28	81.80	−0.06	
Agreeableness			82	386	104.63	102.00	−0.06	0.045	55	259	105.45	101.64	−0.08	0.027	25	117	103.08	103.03	−0.01	
Conscientiousness			82	386	109.18	108.84	−0.01	0.763	55	259	108.75	108.31	−0.01	0.795	25	117	109.72	109.65	−0.01	
Row WMT			87	411	22.94	23.20	0.03	0.362	57	278	22.28	23.38	0.09	0.010	28	123	24.46	22.72	−0.15	
IQ WMT			87	411	100.79	101.55	0.03	0.347	57	278	99.25	101.95	0.08	0.027	28	123	104.54	100.37	−0.13	
Row Otis			82	399	13.93	14.45	0.05	0.094	53	273	13.38	14.75	0.12	0.002	27	117	15.41	13.86	−0.12	
IQ Otis			82	399	99.99	101.76	0.05	0.137	53	273	98.60	102.62	0.10	0.007	27	117	104.30	100.14	−0.11	

Tau shows effect size and sign, p shows statistical significance measured with partial Kendall. RhD-negative and RhD-positive subjects are coded with 0 and 1, respectively. Therefore, negative Tau means lower test score in RhD-positive subjects. Formal correction for multiple (51) tests was not performed. Theoretically, 2–3 of 51 tests presented in this table should provide false positive results.

doi:10.1371/journal.pone.0061272.t002
cannot influence the result of the intelligence tests; however, it makes it difficult to interpret psychological meanings of the observed relations of toxoplasmosis and RhD phenotype with the personality profile. Many subjects were probably aware about their RhD phenotype; however, nobody was aware either about the hypothesis under study or about their toxoplasmosis status and therefore no systematic bias in the obtained data could be expected.

The second important limitation of the study was the fact that only RhD phenotype and not RhD genotype of the subjects was tested. Results of a previous study suggested that in contrast to RhD-positive heterozygotes, the RhD-positive homozygotes were only transiently protected against some negative effects of toxoplasmosis (namely against prolongation of reaction times) [27]. It is very easy (and cheap) to determine RhD phenotype using the standard agglutination technique. However, a much more sophisticated (and expensive) technique must be used for the determination of RhD genotype. It is highly probable that similar or even stronger associations could exist between infection with other pathogens, e.g. chlamyd- ia, yeasts and herpetic viruses, and behavioural and psychological traits. For example, not only the infection with T. gondii, but also with human cytomegalovirus is accompanied by decreased novelty seeking [60]. Our subjects were not tested for presence of other infectious agents except Toxoplasma gondii and therefore we could not include these potential confounding factors into our models. It must be stressed, however, that the absence of these factors in the models could cause false negative but not false positive results of statistical tests.

Conclusions

The effect of blood groups on personality and intelligence was the subject of many earlier studies. Despite the widespread belief in the existence of such effects in some cultures, e.g. in Japan, rigorous tests usually provided only negative results. It must be reminded, however, that the ABO blood group system rather than the Rhesus factor system was nearly always examined in these studies, see [61–64]. Our subjects were not tested for presence of other infectious agents except Toxoplasma gondii and therefore we could not include these potential confounding factors into our models. The effect of blood groups on personality and intelligence was the subject of many earlier studies. Despite the widespread belief in the existence of such effects in some cultures, e.g. in Japan, rigorous tests usually provided only negative results. It must be reminded, however, that the ABO blood group system rather than the Rhesus factor system was nearly always examined in these studies, see [61–64]. Our subjects were not tested for presence of other infectious agents except Toxoplasma gondii and therefore we could not include these potential confounding factors into our models. It must be stressed, however, that the absence of these factors in the models could cause false negative but not false positive results of statistical tests.

Author Contributions

Conceived and designed the experiments: JF. Performed the experiments: JK MP. Analyzed the data: JF. Contributed reagents/materials/analysis tools: JF JK. Wrote the paper: JF.
References

1. Moore J, Adamo S, Thomas F (2005) Manipulation: expansion of the paradigm. Behav Processes 68: 203–287.
2. Barnard CJ, Behnke JM (1990) Parasitism and Host Behaviour. New York: Plenum Press, 333 pp.
3. Webster JP, McConkey GA (2010) Toxoplasma gondii – altered host behaviour: cues to as mechanism of action. Folia Parasitol 57: 95–104.
4. Webster JP (2007) The effect of Toxoplasma gondii on animal behavior: Playing cat and mouse. Schizophr Bull 33: 752–756.
5. Xiao J, Kannan G, Jones-Brando L, Brannock C, Krasnow IN, et al. (2012) Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience 206: 39–48.
6. Hay J, Aitken PP, Hutchinson WM, Graham DI (1983) The effect of congenital Toxoplasma gondii infections on the motor performance of mice. Ann Trop Med Parasitol 77: 261–277.
7. Hay J, Aitken PP, Arnott MA (1985) The influence of Toxoplasma infection on the spontaneous running activity of mice. Z Parasitenkd 71: 459–462.
8. Hodkovi H, Kodym P, Flegr J (2007) Poorer results of mice with latent toxoplasmosis in learning tests: impaired learning processes or the novelty discrimination mechanism? Parasitology 134: 1299–1327.
9. Skallová A, Kodym P, Frynta D, Flegr J (2006) The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasiology 135: 525–335.
10. Hutchinson WM, Aitken PP, Wells BW (1989) Chronic Toxoplasma infections and motor performance in the mouse. Ann Trop Med Parasitol 74: 507–510.
11. Hrdlá Š, Vojtýpka J, Kodym P, Flegr J (2000) Transient nature of Toxoplasma gondii –induced behavioral changes in mice. J Parasitol 86: 657–663.
12. Kannan G, Molin K, Xiao JC, Yolken RH, Jones-Brando L, et al. (2012) Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol 59: 151–157.
13. Hay J, Aitken PP, Graham DI (1984) Toxoplasma infection and response to novelty in mice. Z Parasitenkd 70: 573–580.
14. Berdys M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc R Soc B Biol Sci B 267: 1591–1594.
15. Vyas A, Kim SK, Giacominii N, Boothroyd JC, Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion to cat odors. Proc Natl Acad Sci U S A 104: 6442–6447.
16. House PK, Vyas A, Sapolsky R (2011) Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats. PLoS ONE 6.
17. Káňková Š, Kodym P, Flegr J (2011) Direct evidence of Toxoplasma-induced changes in serum testosterone in mice. Exp Parasitol 128: 181–183.
18. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA (2009) A unique dual activity amino acid hydroxylase in Toxoplasma gondii PLoS ONE 4: e4801.
19. Prandota J (2010) Possible pathomechanisms of sudden infant death syndrome: cat odour attractiveness increased for male babies. Folia Parasitol 57: 136–142.
20. Prandota J, Hanusová J, Klose J, Černochová P, Gashova Z (2010) The influence of Toxoplasma gondii infections on the motor performance of mice. Folia Parasitol 57: 143–150.
21. Káňková Š, Sule J, Flegr J (2010) Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasiology 137: 1773–1779.
22. Flegr J, Hamplov R, Černochová D, Preisí M, Bělková M, et al. (2012) The relation of cortisol and sex hormone levels to results of psychological, performance, IQ and memory tests in military men and women. Neuroendocrinology 95: 136–142.
23. Vací K (1975) Follow up of decisive processes in time pressure (In Czech: Sledování rozhodovacích procesů v časové třínu) [Doctoral thesis]. Faculty of Philosophy: Charles University.
24. Flegr J, Zitkova S, Kodym P, Frynta D (1996) Induction of changes in human behavior by the parasitic protozoan Toxoplasma gondii. Parasitology 113: 49–54.
25. Flegr J, Havlícek J (1999) Changes in the personality profile of young women with latent toxoplasmosis. Folia Parasitol 46: 22–28.
26. Canton C, Kemp TJ, Poulter (1997) Evolution of the human RH (rhesus) blood group genes: A 30 year old prediction (partially) fulfilled. Hum Mol Genet 6: 843–850.
27. Flegel WA (2006) Molecular genetics of RH and its clinical application. Transfus Clin Biol 13: 4–12.
28. Bier S, Noschy S, Supier P, Supier C, Andre B, et al. (2006) Physiological role of the putative ammonium transporter RbCG in the mouse. Transfus Clin Biol 13: 167–168.
29. Prandota J (2004) Possible pathomechanisms of sudden infant death syndrome: key role of chronic hypoxia, infection/inflammation states, cytokine irregularities, and metabolic trauma in genetically predisposed infants. Am J Ther 11: 517–546.
30. Prandota J (2012) Rhesus-associated glycoconjugate (RhAG) phenotype of the red blood cells modulates T. gondii infection-associated psychomotor performance reaction times and changes in the human personality profile. Impaired function of the CO2, AQP1, and AQP4 channels may cause hypoxia and thus enhance neuroinflammation in autitic individuals. In: Gemma C, editor. Neuroinflammation: Pathogenesis, Mechanisms and Management. New York: Nova Publishers.
31. Líšnová J, Kubína AA, Slavcová A, Krivohlávková R, Novotná M, et al. (2010) Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol 57: 136–142.
32. Novotná M, Hamílová J, Klose J, Preisí M, Havlíčková J, et al. (2005) Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host. BMC Infect Dis 5: 54.
33. Wiener AS (1963) Blood groups and personality traits. Am J Hum Genet 17: 359.
34. Castell RB (1972) Blood groups and personality traits. Am J Hum Genet 24: 485.
35. Rogers M, Glendon AI (2003) Blood type and personality. Pers Individ Dif 34: 1099–1112.
36. Wu KH, Lindsted KD, Lee JW (2005) Blood type and the five factors of personality in Asia. Pers Individ Dif 38: 797–808.

Effect of Toxoplasmosis and RhD on Intelligence

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e61272