CORRELATIONS AT LARGE SCALES AND THE ONSET OF TURBULENCE IN THE FAST SOLAR WIND

R. T. Wicks1, D. A. Roberts1, A. Mallet2, A. A. Schekochihin2, T. S. Horbury3, and C. H. K. Chen4

1 NASA Goddard Space Flight Center, Code 672, Greenbelt, MD, USA; robert.t.wicks@nasa.gov
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK
3 Space and Atmospheric Physics Group, Imperial College London, London SW7 2AZ, UK
4 Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA

Received 2013 May 8; accepted 2013 October 10; published 2013 November 13

ABSTRACT

We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ~ 0) and equipartitioned (residual energy ~ 0) have steep structure functions reminiscent of “turbulent” scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ~ -1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ~ 1), and so have closely aligned magnetic and velocity vectors, have wide $1/f$ ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the $1/f$ region observed, and thus the onset scale for the turbulent cascade.

Key words: magnetohydrodynamics (MHD) – plasmas – solar wind – turbulence

Online-only material: color figures

1. INTRODUCTION

The solar wind is a continuous supersonic flow of plasma emitted by the Sun. Observations made in situ by spacecraft provide long, high-cadence time series that are well suited to the study of magnetohydrodynamic (MHD) plasma turbulence (Goldstein et al. 1995). MHD turbulence mediates the transfer of energy at scales larger than the proton gyroscale in the “inertial range” where the dissipation of fluid motions is negligible. Turbulent fluctuations scatter energetic particles such as cosmic rays and solar energetic particles (Bieber et al. 1996), and they also provide energy to heat the solar wind. Given the observational ubiquity of plasma turbulence throughout the universe, results deduced from observations of the solar wind are important in many areas of astrophysics.

The frequency-dependent Fourier spectrum of time-series observations of the solar wind magnetic field (\mathbf{B}) can be directly related to the wavenumber (k) spectrum by the Taylor hypothesis. In the inertial range, the energy spectrum of magnetic fluctuations typically scales as $E(f) \propto f^{-5/3}$. At larger scales, this spectrum is often observed to have a distinct low-frequency range with $E(f) \propto f^{-1}$ (Burlaga & Goldstein 1984; Matthaeus & Goldstein 1986; Matthaeus et al. 2007; Smith et al. 1995). Solar wind streams containing the most correlated magnetic-field and velocity fluctuations (Belcher & Davis 1971), typically found in corotating fast streams and fast polar wind, have the widest 1/f ranges. Less correlated streams have a shorter or no 1/f range (Goldstein et al. 1984; Matthaeus et al. 2007; Tu et al. 1989, 1990). The spectral break between the 1/f range and the inertial range is observed to move to lower frequencies with increasing distance from the Sun (Bavassano et al. 1982; Horbury et al. 1996; Roberts 2010), and the fluctuations within the 1/f range reduce in amplitude with distance (R) from the Sun $\propto R^{-3}$, which is consistent with the Wentzel–Kramers–Brillouin (WKB) approximation (Roberts 1989; Roberts et al. 1990; Jokipii et al. 1995; Horbury et al. 1996). These results support the idea that the energy in the 1/f range is contained in linear superpositions of coronal structures and Alfvénic fluctuations of solar origin, which do not evolve significantly until they become turbulent, acting as an energy reservoir for the turbulence (Matthaeus & Goldstein 1986; Hollweg 1990).

However, recent studies have shown that the behavior of fluctuations at large scales in the fast solar wind is more complicated than is allowed for by the WKB model. When fluctuations in the fast wind are less correlated, scaling of third-order moments is observed to extend to very low frequencies (Sorriso-Valvo et al. 2007; Marino et al. 2012), which may be a sign of active turbulence. Scaling of the alignment angle between \mathbf{B} and velocity \mathbf{V} fluctuations in the 1/f range of the solar wind has also been observed (Podesta et al. 2009; Hnat et al. 2011), which is suggestive of some evolution of the nature of the fluctuations with scale. Wicks et al. (2013) showed that the angle between oppositely propagating Elsasser fluctuations increases with increasing frequency in the 1/f range, with the fluctuations becoming anti-aligned. Furthermore, fluctuations with perpendicular alignment showed steeper scaling than aligned fluctuations, suggesting an active turbulent cascade for the unaligned sub-population of fluctuations in the 1/f range.

Two dimensionless parameters, the normalized residual energy (1) and the normalized cross helicity (2), together completely define the two-dimensional geometry of the fluctuations in the plane formed by the two vectors (see, e.g., Equations (7) and (8) and Figure 4 in Wicks et al. 2013):

\[
\sigma_E = \frac{\delta V^2 - \delta b^2}{\delta V^2 + \delta b^2}, \quad (1)
\]

\[
\sigma_c = \frac{2\delta V \cdot \delta b}{\delta V^2 + \delta b^2}, \quad (2)
\]

where the Alfvén-normalized magnetic-field fluctuation is $\delta b = \delta B/\sqrt{\mu_0 \rho}$ (where ρ is the plasma density) and the velocity...
fluctuation is δv (see Equations (3) and (4) below). The nonlinear terms in the MHD equations are dependent on the geometry of the fluctuations in \mathbf{B} and \mathbf{V} relative to one another (Elsasser 1950; Dobrowolny et al. 1980; Podesta et al. 2009; Wicks et al. 2013), in particular, the relative amplitudes of the fluctuations and the angle between them. Thus, the strength of the nonlinear interaction may change across the phase space defined by σ_τ and σ_t. These two dimensionless parameters are correlated as shown by Bavassano et al. (1998) and Bavassano & Bruno (2006), who measured the joint distribution of σ_τ and σ_t. Their joint distributions were also shown to change slightly with scale (Bavassano et al. 1998; Bavassano & Bruno 2006) and with the distance from the Sun (D’Amicis et al. 2010), echoing the correlations of D’Amicis et al. (2010) that used the average correlation properties of many streams.

Here, we combine the approach of Bavassano et al. (1998), Bavassano & Bruno (2006), and D’Amicis et al. (2010) with that of Wicks et al. (2013) to investigate the effect of the joint distribution of the local normalized cross helicity and residual energy on the scaling of the structure functions of the fluctuating fields. The aim of this study is to look for systematic effects on the width of the $1/f$ range due to the correlation properties of fluctuations within a single solar wind stream. Using a single stream aids the analysis by fixing the external variables that change between different streams: the travel time from the Sun and the evolution of plasma parameters such as plasma β and the Alfvén speed. This study thus differs from previous studies in the solar wind (Burlaga & Goldstein 1984; Goldstein et al. 1984; Roberts et al. 1987; Tu et al. 1989, 1990) that used the average correlation properties of many streams.

2. DATA

We use three-second Wind spacecraft Magnetic Field Investigation (MFI) and 3D Plasma Analyzer (3DP) observations of the magnetic field \mathbf{B}, proton density ρ, and velocity \mathbf{V} taken from a fast solar wind stream from 2008 January 14 04:40:00 to January 21 03:20:00. The average solar wind conditions were speed $|V| = 660$ km s$^{-1}$, magnetic field $|B| = 4.4$ nT, proton number density $n_p = 2.4$ cm$^{-3}$, Alfvén speed $V_A = 62$ km s$^{-1}$, and the ratio of thermal to magnetic pressure for protons $\beta_p = 1.2$. Three similar corotating, approximately seven-day-long fast streams are observed from 2007 December to 2008 March with good data coverage (no individual data gaps longer than 3 hr and a total data coverage of 90% or better). All three give rise to results that are quantitatively similar to those shown here.

Increments in Alfvén-normalized \mathbf{B} and \mathbf{V} are calculated as a function of the time lag τ:

$$\delta \mathbf{b}(t, \tau) = \frac{\mathbf{B}(t) - \mathbf{B}(t + \tau)}{\sqrt{\rho_0(t, \tau)}},$$

$$\delta \mathbf{v}(t, \tau) = \mathbf{V}(t) - \mathbf{V}(t + \tau).$$

The local mean field $\mathbf{B}_0(t, \tau)$ and the local mean proton density $\rho_0(t, \tau)$ are calculated over the same time scales τ:

$$\mathbf{B}_0(t, \tau) = \frac{1}{\tau} \int_{t - \tau}^{t} \mathbf{B}(t')dt',$$

$$\rho_0(t, \tau) = \frac{1}{\tau} \int_{t - \tau}^{t} \rho(t')dt'.$$

We use the component of the fluctuations perpendicular to the local field in order to select the Alfvénic part of the fluctuations, minimizing the effect of compressible and pseudo-Alfvénic fluctuations on our results (Wicks et al. 2012):

$$\delta \mathbf{b}_\perp(t, \tau) = \delta \mathbf{b}(t, \tau) \cdot (1 - \hat{b}_0(t, \tau)\hat{b}_0(t, \tau)),$$

$$\delta \mathbf{v}_\perp(t, \tau) = \delta \mathbf{v}(t, \tau) \cdot (1 - \hat{b}_0(t, \tau)\hat{b}_0(t, \tau)).$$

where $\hat{b}_0 = \mathbf{B}_0/B_0$ and $\mathbf{1}$ is the unit matrix.\footnote{Note, however, that the perpendicular Alfvénic fluctuations account for around 90% of the energy in the turbulence, and using the full vector instead of its perpendicular part does not qualitatively change the results.}

The perpendicular fluctuations are used to calculate scale-dependent normalized cross helicity and residual energy:

$$\sigma_c(t, \tau) = \frac{2\delta \mathbf{v}_\perp(t, \tau) \cdot \delta \mathbf{b}_\perp(t, \tau)}{[\delta \mathbf{v}_\perp(t, \tau)]^2 + [\delta \mathbf{b}_\perp(t, \tau)]^2},$$

$$\sigma_t(t, \tau) = \frac{2\delta \mathbf{b}_\perp(t, \tau) \cdot \delta \mathbf{v}_\perp(t, \tau)}{[\delta \mathbf{b}_\perp(t, \tau)]^2 + [\delta \mathbf{v}_\perp(t, \tau)]^2}.$$

Two hours from the seven-day-long fast stream that we used are shown in Figure 1. The solar wind speed and density, shown in the top panel, are approximately constant and typical for a fast-wind interval at 1 AU. The magnetic field, shown in the second panel, fluctuates with time. The cross helicity and residual energy calculated over a range of scales τ are shown in the bottom two panels. Typically, the cross helicity is positive (red) and the residual energy is negative (blue). This implies that the fluctuations tend to be correlated (magnetic and velocity fluctuations are aligned) but have a somewhat larger magnetic-field component than velocity component. The two quantities are correlated, with the more positive cross helicity typically coinciding with residual energy close to zero, and more negative residual energy coinciding with cross helicity closer to zero (which is geometrically inevitable, see below).

We use the second-order structure functions $S_2(\delta b_{\perp}, \tau) = \langle [\delta \mathbf{b}_\perp(t, \tau)]^2 \rangle$ and similarly for $\delta \mathbf{v}_\perp$ and $\delta \mathbf{z}_\perp$. The average is performed over the entire length of the stream. The mean properties of the fluctuations over the seven-day period are summarized in Figure 2, which shows the structure functions versus frequency $f \equiv 1/(2\pi\tau)$ in the top panel and the associated mean σ_c and σ_t in the bottom panel.

The two vertical lines at low frequencies mark two important scales. $1/T_S$ is the frequency defined by the time the solar wind takes to flow from the Sun to the spacecraft at 1 AU. $1/T_A$ is the...
frequency corresponding to the advection past the spacecraft of the largest distance an Alfvén wave can have traveled in the time the solar wind has propagated from the Sun to the spacecraft. We estimate the latter by using average values of the solar wind speed and the Alfvén speed during the seven-day-long stream and assuming that the Alfvén speed changes with distance from the Sun, \(R \), as \(V_A \propto R^{-1/2} \) (see Wicks et al. 2013). This time scale is a rough estimate of the upper limit on the time lag over which Alfvénic fluctuations may have interacted, and so acts as the approximate low-frequency limit below which turbulence cannot develop.

The structure functions for the four vector fields are plotted individually and conform to the expected behavior of structure functions in highly Alfvénic fast solar wind. The structure-function scaling exponents, \(\alpha \), are related to power spectral indices, \(\gamma \), via \(\gamma = \alpha - 1 \) for \(0 < \alpha < -2 \), so \(-2/3\) corresponds to the \(-5/3\) “Kolmogorov” spectral slope. The structure functions of the magnetic field and the outward propagating Elsasser fluctuations (\(\delta z' \)) have extended flat ranges at low frequencies; this is the “1/f” spectral range. Over the range of frequencies where the magnetic-field structure functions are flat, the structure functions of the velocity and the inward propagating Elsasser fluctuations (\(\delta z'' \)) have a shallow scaling. The boundary between the energy-containing scales in the 1/f range and the turbulent inertial range is estimated as the “knee” in the magnetic-field structure functions where the scaling changes from flat to \(f^{-2/3} \). This frequency is indicated in Figure 2 and later figures by the vertical line labeled \(1/T_0 \). We will refer to this frequency as “the outer scale.” At this frequency, all four of the structure functions steepen, those of the magnetic field and both Elsasser variables to logarithmic slopes close to \(-2/3\), whereas the velocity structure function has a slope of \(-1/2\), corresponding to \(-5/3\) and \(-3/2\) spectra, respectively (see, for example, Podesta et al. 2007; Roberts 2010).

The bottom panel in Figure 2 shows the mean cross helicity \(\langle \sigma_c \rangle \) and residual energy \(\langle \sigma_r \rangle \) calculated from the field increments (Equations (10) and (11)):

\[
\langle \sigma_c \rangle = \frac{2\delta v_\perp(t, \tau) \cdot \delta b_\perp(t, \tau)}{\left|\delta v_\perp(t, \tau)\right|^2 + \left|\delta b_\perp(t, \tau)\right|^2}, \tag{13}
\]

\[
\langle \sigma_r \rangle = \frac{\left|\delta v_\perp(t, \tau)\right|^2 - \left|\delta b_\perp(t, \tau)\right|^2}{\left|\delta v_\perp(t, \tau)\right|^2 + \left|\delta b_\perp(t, \tau)\right|^2}. \tag{14}
\]

The lowest range of frequencies measured here, \(1/T_S < f < 1/T_A \), contains little variation in either \(\langle \sigma_c \rangle \) or \(\langle \sigma_r \rangle \). At frequencies \(1/T_A < f < 1/T_0 \), \(\langle \sigma_c \rangle \) increases and \(\langle \sigma_r \rangle \)
3. ANALYSIS

Having calculated the scale- and time-dependent σ_c and σ_r, we can construct a scale-dependent joint probability distribution. The joint distribution at one of the scales in the $1/f$ range is shown in Figure 3. Values of σ_c and σ_r must lie within a circle of radius 1, as follows from their definitions (Equations (10) and (11)). The difference between fluctuations at the edge of this circle and in the middle is the geometry of the vectors relative to one another. Fluctuations at the edge of the circle are the most correlated. Indeed, at the edge of the circle, $\sigma^2_c + \sigma^2_r = 1$, which implies

$$\langle |\delta v_\perp| |\delta b_\perp| \rangle = \langle |\delta v_\perp \cdot \delta b_\perp| \rangle,$$ \hfill (15)

$$\langle |\delta z^\perp_\perp| |\delta z^\perp_\perp| \rangle = \langle |\delta z^\perp_\perp \cdot \delta z^\perp_\perp| \rangle,$$ \hfill (16)

so the Elsasser, velocity, and magnetic-field fluctuations must be perfectly aligned (co-linear) at the edge.

Close to the center of the circle, however, $\sigma^2_c + \sigma^2_r \ll 1$, and hence

$$\langle |\delta v_\perp|^2 - |\delta b_\perp|^2 \rangle \ll |\delta v^2_\perp + \delta b^2_\perp|,$$ \hfill (17)

$$\langle |\delta z^\perp_\perp|^2 - |\delta z^\perp_\perp|^2 \rangle \ll |\delta z^2_\perp + \delta z^2_\perp|,$$ \hfill (18)

which can only be achieved when there are angles close to 90° between the vectors in each Equation (17) and (18) and the amplitudes of these vectors are approximately equal.

Thus, by examining different regions of the (σ_c, σ_r) space, we separate the two different types of correlations: in magnitude (equipartition) and direction (alignment).

The probability distribution is strongly peaked along the edge of this parameter space, where $\sigma_c > 0$ and $\sigma_r < 0$. This agrees well with the distributions found in other fast-wind intervals with different spacecraft by previous studies (Bavassano et al. 1998; Bavassano & Bruno 2006; D’Amicis et al. 2010). Here, we extend the analysis to include a broader range of scales and to study the structure functions in different regions of this parameter space. Initially, we concentrate on three regions of the (σ_c, σ_r) space that have qualitatively distinct physical properties; these are shown as Regions 1, 2, and 3 in Figure 3 and their properties are summarized in Table 1.

Region 1 is in the center of the parameter space, where $|\sigma_c| < 2/15$ and $|\sigma_r| < 2/15$. When $\sigma_r \ll 1$ and $\sigma_c \ll 1$, fluctuations can be described as balanced ($\delta z^\perp_\perp \sim \delta z^\perp_\perp$) and Alfvenically equipartitioned ($\delta b_\perp \sim \delta v_\perp$) and as a result are unbalanced, with the cosine of the angle between δv_\perp and δb_\perp ($\cos(\theta) < 2/15$ and the cosine of the angle between δz^\perp_\perp and δz^\perp_\perp ($\cos(\phi) < 2/15$).

Region 2 contains fluctuations with $\sigma_c > 14/15$ and $|\sigma_r| < 1/15$, which is consistent with very pure outward propagating Elsasser fluctuations. These are therefore imbalanced ($\delta z^\perp_\perp \gg \delta z^\perp_\perp$), but equipartitioned and aligned.

Region 3 has $|\sigma_c| < 1/15$ and $\sigma_r < -14/15$, which means that the fluctuations therein are magnetically dominated and, therefore, are balanced and have anti-aligned Elsasser fields.

These values are chosen so that the probability of fluctuations being observed does not change systematically across each box but that there are enough (>30) observations in the box at each scale τ to calculate accurate structure-function averages. The regions must also be symmetrical about whichever variable is close to zero in order to make fluctuations balanced (Region 3), equipartitioned (Region 2), or balanced and equipartitioned (Region 1) on average.

We now calculate the structure functions only, using those fluctuations that have σ_c and σ_r corresponding to one of these three regions. These are scale-dependent structure functions conditioned on the local correlation properties of the fluctuations. Thus, these conditioned structure functions do not necessarily come from continuous sections of the time series, but are aggregated from separate times across the whole time series. To do this, we assume that the time series of fluctuations are stationary so that fluctuations that are not locally neighboring may still be statistically comparable. This is a reasonable assumption to make for this particular seven day interval because the data show little systematic variation in magnetic-field strength or proton density. There is a trend of decreasing solar wind speed with time during the interval, however, the instantaneous speed $|V|$ remains within one Alfvén speed of the average solar wind speed $|V|$ i.e., $|V|$ is always found within the range $|V| \pm V_A$ over the entire interval. Thus, the Alfvén Mach number, Reynolds number, and other related quantities do not change significantly over the interval.

We compare the structure functions from the three separate regions in Figure 3 by plotting the sum of $S_2(\delta v_\perp)$ and $S_2(\delta b_\perp)$ against the frequency in Figure 4. We can see that the balanced, equipartitioned, and unaligned fluctuations taken from Region 1 scale steeply from close to the large-scale limit of the turbulence at $f \sim 1/T_A$ down to the instrument noise floor at small scales (shown by the dashed green line; see Podesta et al. 2009; Gogoberidze et al. 2012; Wicks et al. 2013). The scaling of these fluctuations is close to $f^{-2/3}$ and therefore suggests active nonlinear interaction. There is no discernible “spectral break” at the “outer scale” $1/T_0$. The structure functions of the
fluctuations; and Region 3, which contains very pure magnetic fluctuations. Region 2, which contains very pure anti-Sunward Alfvénic fluctuations, never reaches a scaling as steep as estimated from the full data set. Region 2 (imbalanced Elsasser fluctuations) shows the low-frequency regime and then steepen at higher frequencies. Region 3 (magnetically dominated fluctuations) shows the flattest values occur in the range (−0.4 < α < −0.8), which is characteristic of active nonlinear interactions. The flattest values occur in the range (−1 < σr < −0.5, −0.75 < σr < −0.25), corresponding to anti-aligned δv⊥ and δb⊥ as well as anti-aligned Elsasser fluctuations with a dominate δb⊥ component. At the lowest inertial range frequencies (right panel), the exponent has steepened to α < −0.4 almost everywhere, although the gradients at the edge of the (σr, σ⊥) space typically remain flatter than those closer to the center.

The third row of panels shows the structure-function scaling exponent. At the largest scales (left panel), the exponent is close to 0 everywhere. In the middle panel, which represents most of the 1/f range, the bottom edge of the (σr, σ⊥) space has a flat exponent but large areas of the space closer to the middle have instances with steeper scalings in the range −0.4 < α < −0.8, which is characteristic of active nonlinear interactions. The flattest values occur in the range (−1 < σr < −0.5, −0.75 < σr < −0.25), corresponding to anti-aligned δv⊥ and δb⊥ as well as anti-aligned Elsasser fluctuations with a dominate δb⊥ component. At the lowest inertial range frequencies (right panel), the exponent has steepened to α < −0.4 almost everywhere, although the gradients at the edge of the (σr, σ⊥) space typically remain flatter than those closer to the center.

Figures 4 and 5 show that the local correlation properties of velocity and magnetic-field fluctuations in the solar wind have a strong effect on the scale at which the onset of turbulence occurs. Those fluctuations with the widest 1/f range are dominated by magnetic fluctuations (σr ≈ −1) or outward Elsasser fluctuations (σr ≈ 1) or a mixture of both. Magnetic-field fluctuations without an associated velocity fluctuation are likely to be force-free structures (where j × B = 0), and so a stable solution to the MHD equations. Unidirectional Alfvén-wave packets are also a stable solution to the MHD equations (Elsasser solutions). Thus, these two regions of the joint probability distribution of σr and σ⊥, or regions dominated by a mixture

\[
\cos(\phi) = \frac{\delta x_1^* \cdot \delta x_2^*}{|\delta x_1^*||\delta x_2^*|} \text{ and } \cos(\theta) = \frac{\delta v_1 \cdot \delta b_1}{|\delta v_1||\delta b_1|}.
\]

Notes. The angles between vectors are defined as \(\cos(\phi) = \frac{\delta x_1^* \cdot \delta x_2^*}{|\delta x_1^*||\delta x_2^*|}\) and \(\cos(\theta) = \frac{\delta v_1 \cdot \delta b_1}{|\delta v_1||\delta b_1|}\).

Table 1

Region	\(\sigma_c\)	\(\sigma_r\)	Description
1	\(\sigma_c < 2/15\)	\(\sigma_r < 2/15\)	Balanced (\(\delta x_1^* \sim \delta x_2^*\)) and equipartitioned (\(\delta v_1 \sim \delta b_1\)) with unaligned vectors (\(\cos(\phi) - \cos(\theta) \ll 1\)).
2	\(\sigma_c > 14/15\)	\(\sigma_r < 1/15\)	Strongly \(\delta x_1^*\) dominated, equipartitioned and highly aligned (\(\cos(\theta) \sim 1\)).
3	\(\sigma_c < 1/15\)	\(\sigma_r < -14/15\)	Strongly \(\delta b_1\) dominated, balanced and highly anti-aligned (\(\cos(\phi) \sim -1\)).

Figure 4. Sum of the velocity and magnetic-field structure functions in three regions of the \(\sigma_c, \sigma_r\) plane: Region 1, which contains balanced, equipartitioned fluctuations; Region 2, which contains very pure anti-Sunward Alfvénic fluctuations; and Region 3, which contains very pure magnetic fluctuations. (A color version of this figure is available in the online journal.)

Figure 5 shows that the joint probability distribution of \(\sigma_r\) and \(\sigma⊥\), the middle row shows the sum of the velocity and magnetic-field structure functions at each scale, giving an estimate of the total energy in the fluid motion, and the bottom row shows the structure-function exponent. These are each measured at three different scales covering three decades in frequency. These scales are \(\tau = 58,029 \ s \sim T_A\), with the exponent measured in the range \(5 \times 10^{-6} < f < 5 \times 10^{-5} \ Hz\) (left column); the middle of the 1/f range at \(\tau = 5535 \ s\), with the exponent measured in the range \(5 \times 10^{-5} < f < 5 \times 10^{-4} \ Hz\) (middle column); and the top of the inertial range at \(\tau = 528 \ s\), with the exponent measured in the range \(5 \times 10^{-4} < f < 5 \times 10^{-3} \ Hz\) (right column). These scales are indicated by the arrows in Figures 2 and 4.

Moving from left to right along the top row of Figure 5, we see how the joint probability distribution of \(\sigma_c\) and \(\sigma_r\) changes through the 1/f range. The probability is always higher in the bottom right corner (imbalanced fluctuations with some excess of magnetic energy), as was seen in Figure 3, but the peak becomes more pronounced as the scale \(\tau\) becomes smaller. The middle row of panels shows the corresponding fluctuation amplitudes. At the largest scale (left panel), the energy is predominantly in \(\sigma_r > 0\) outward propagating Elsasser fluctuations, but this maximum is larger than the minimum by less than an order of magnitude. In the inertial range (right panel), the energy has been concentrated into a narrow band along the bottom right edge of the parameter space (\(\sigma_r > 0, \sigma⊥ < 0\), which now has approximately two orders of magnitude more power, on average, than fluctuations found closer to the center of the circle.

The sum of the velocity and magnetic-field structure functions in three regions of the \(\sigma_c, \sigma_r\) plane: Region 1, which contains balanced, equipartitioned fluctuations; Region 2, which contains very pure anti-Sunward Alfvénic fluctuations; and Region 3, which contains very pure magnetic fluctuations.

The top row of panels in Figure 5 shows the joint probability distribution of \(\sigma_r\) and \(\sigma⊥\), the middle row shows the sum of the velocity and magnetic-field structure functions at each scale, giving an estimate of the total energy in the fluid motion, and the bottom row shows the structure-function exponent. These are each measured at three different scales covering three decades in frequency. These scales are \(\tau = 58,029 \ s \sim T_A\), with the exponent measured in the range \(5 \times 10^{-6} < f < 5 \times 10^{-5} \ Hz\) (left column); the middle of the 1/f range at \(\tau = 5535 \ s\), with the exponent measured in the range \(5 \times 10^{-5} < f < 5 \times 10^{-4} \ Hz\) (middle column); and the top of the inertial range at \(\tau = 528 \ s\), with the exponent measured in the range \(5 \times 10^{-4} < f < 5 \times 10^{-3} \ Hz\) (right column). These scales are indicated by the arrows in Figures 2 and 4.

Moving from left to right along the top row of Figure 5, we see how the joint probability distribution of \(\sigma_c\) and \(\sigma_r\) changes through the 1/f range. The probability is always higher in the bottom right corner (imbalanced fluctuations with some excess of magnetic energy), as was seen in Figure 3, but the peak becomes more pronounced as the scale \(\tau\) becomes smaller. The middle row of panels shows the corresponding fluctuation amplitudes. At the largest scale (left panel), the energy is predominantly in \(\sigma_r > 0\) outward propagating Elsasser fluctuations, but this maximum is larger than the minimum by less than an order of magnitude. In the inertial range (right panel), the energy has been concentrated into a narrow band along the bottom right edge of the parameter space (\(\sigma_r > 0, \sigma⊥ < 0\), which now has approximately two orders of magnitude more power, on average, than fluctuations found closer to the center of the circle.

The third row of panels shows the structure-function scaling exponent. At the largest scales (left panel), the exponent is close to 0 everywhere. In the middle panel, which represents most of the 1/f range, the bottom edge of the (\(\sigma_r, \sigma⊥\)) space has a flat exponent but large areas of the space closer to the middle have instances with steeper scalings in the range −0.4 < \(\alpha\) < −0.8, which is characteristic of active nonlinear interactions. The flattest values occur in the range (−1 < \(\sigma_r\) < −0.5, −0.75 < \(\sigma_r\) < −0.25), corresponding to anti-aligned \(\delta v⊥\) and \(\delta b⊥\) as well as anti-aligned Elsasser fluctuations with a dominate \(\delta b⊥\) component. At the lowest inertial range frequencies (right panel), the exponent has steepened to \(\alpha < −0.4\) almost everywhere, although the gradients at the edge of the (\(\sigma_r, \sigma⊥\)) space typically remain flatter than those closer to the center.

Figures 4 and 5 show that the local correlation properties of velocity and magnetic-field fluctuations in the solar wind have a strong effect on the scale at which the onset of turbulence occurs. Those fluctuations with the widest 1/f range are dominated by magnetic fluctuations (\(\sigma_r \approx −1\)) or outward Elsasser fluctuations (\(\sigma_r \approx 1\)) or a mixture of both. Magnetic-field fluctuations without an associated velocity fluctuation are likely to be force-free structures (where \(j × B = 0\)), and so a stable solution to the MHD equations. Unidirectional Alfvén-wave packets are also a stable solution to the MHD equations (Elsasser solutions). Thus, these two regions of the joint probability distribution of \(\sigma_r\) and \(\sigma⊥\), or regions dominated by a mixture
of the two, most likely to be found at the bottom right edge of the distribution, may be more stable to nonlinear interaction than other regions of the distribution.

4. CONCLUSIONS

This analysis has shown that low-frequency fluctuations in the solar wind can be meaningfully organized according to the values of their normalized cross helicity $σ_c$ and residual energy $σ_r$ (Bavassano et al. 1998; Bavassano & Bruno 2006; D’Amicis et al. 2010). Most fluctuations cluster near the edge of the circle $σ_c^2 + σ_r^2 = 1$, with $σ_c > 0$ and $σ_r < 0$. This means that they are a mixture of imbalanced fluctuations dominated by the outward propagating Elsasser field and magnetically dominated structures. These two types of fluctuations, in their purest form, are also exact nonlinear solutions of the MHD equations (Elsasser and force-free solutions, respectively) and so it stands to reason that they would be the most resilient ones to survive nonlinear interactions leading to a turbulent cascade (see, e.g., Roberts et al. 1991). Indeed, we find that the width of the “non-turbulent” $1/f$ range is largest for these fluctuations. In contrast, the subdominant fluctuations with small $σ_c$ and $σ_r$ (Elsasser and Alfvénically balanced ones) exhibit a robust Kolmogorov-like scaling starting deep inside what is normally viewed as the $1/f$ range and showing no spectral break at the usual value of the “outer scale” (set by the imbalanced and magnetically dominated fluctuations).

Observations showing the scale-dependent alignment of velocity and magnetic-field fluctuations at low frequencies (Podesta et al. 2009; Hnat et al. 2011) and Elsasser fluctuations (Wicks et al. 2013) can be understood in the context of these results. Unaligned fluctuations of both types (found away from the edge of the circular $σ_c$ and $σ_r$ space) are removed by selective nonlinear interaction, which preserves the more aligned ones (closer to the edge). Note, however, that this behavior is not an automatic consequence of the fact that nonlinear interactions are stronger for the balanced, unaligned, Alfvénic fluctuations: there is no separate conservation law for these, so they are not obliged to cascade into similarly balanced, unaligned, Alfvénic fluctuations at smaller scales. It is thus quite interesting that when selected by conditioning on the values of $σ_c$ and $σ_r$, they give rise to what appears to be quite a robust Kolmogorov scaling. A complete theory of MHD turbulence should strive to explain this behavior (which might provide a valuable hint).

Since cross helicity is typically correlated with solar wind speed, source region, and distance from the Sun, our results
are consistent with previous observations showing that slower, less correlated streams have smaller $1/f$ ranges and faster, more correlated streams have larger $1/f$ ranges (Tu et al. 1989, 1990). As the solar wind travels further out into the heliosphere, the cross helicity decreases and so does the $1/f$ range (Bavassano et al. 1982; Roberts 2010; Tu et al. 1990), again agreeing qualitatively with the conclusions presented here that less correlated fluctuations have narrower $1/f$ ranges.

Further work is required to prove the universality of our results and to investigate the effect of source region and radial evolution on the joint probability distributions of σ_c and σ_r. Numerical simulations of MHD turbulence could also be used to investigate the link between the geometry of the fluctuations as defined by σ_c and σ_r and the strength of the turbulent nonlinear interaction.

An improvement to the method used here would be to include non-Gaussian particle distribution effects, such as the pressure anisotropy and beam drift speed, in the Alfvén normalization for the magnetic field (Chen et al. 2013). Using this improved normalization for the analysis presented here decreases the average σ_r. However, the quantitative and qualitative results showing the existence of wide $1/f$ ranges at the edge of the joint probability distribution of σ_c and σ_r, but not near the center, remain true.

This research was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center (R.T.W.); STFC (A.M., T.S.H.); NASA contracts NNN06AA01C and NAS5-02099 (C.H.K.C.); and the Leverhulme Trust Network for Magnetized Plasma Turbulence. Wind data were obtained from the SPDF Web site http://spdf.gsfc.nasa.gov.

REFERENCES

Bavassano, B., & Bruno, R. 1992, JGR, 97, 19129
Bavassano, B., & Bruno, R. 2006, AnGeo, 24, 3179
Bavassano, B., Dobrowolny, M., Mariani, F., & Ness, N. F. 1982, JGR, 87, 3617
Bavassano, B., Pietropaolo, E., & Bruno, R. 1998, JGR, 103, 6521
Belcher, J. W., & Davis, L., Jr. 1971, JGR, 76, 5354
Bieber, J., Wannier, W., & Matthaeus, W. H. 1996, JGR, 101, 2511
Burlaga, L. F., & Goldstein, M. L. 1984, JGR, 89, 6813
Chen, C. H. K., Bale, S. D., Salem, C. S., & Maruca, B. A. 2013, ApJ, 770, 125
D’Amicis, R., Bruno, R., Palloccchia, G., et al. 2010, ApJ, 717, 474
Dobrowolny, M., Mangeney, A., & Veltri, P. L. 1980, PhRvL, 45, 144
Elissasser, W. M. 1980, PhRvL, 70, 183
Gogoberidze, G., Chapman, S. C., Hnat, B., & Dunlop, M. W. 2012, MNras, 426, 951
Goldstein, M. L., Burlaga, L. F., & Matthaeus, W. H. 1984, JGR, 89, 3747
Goldstein, M. L., Roberts, D. A., & Matthaeus, W. H. 1995, ARA&A, 33, 283
Hnat, B., Chapman, S. C., Gogoberidze, G., & Wicks, R. T. 2011, PhRvE, 84, 065401
Hollweg, J. V. 1990, JGR, 95, 14873
Horbury, T. S., Balogh, A., Forsyth, R. J., & Smith, E. J. 1996, A&A, 316, 333
Jokipii, J. R., Kóta, J., Giacalone, J., Horbury, T. S., & Smith, E. J. 1995, GeoRL, 22, 3385
Marino, R., Sorriso-Valvo, L., D’Amicis, R., et al. 2012, ApJ, 750, 41
Matthaeus, W. H., Breech, B., Dmitruk, P., et al. 2007, ApJL, 657, L121
Matthaeus, W. H., & Goldstein, M. L. 1986, PhRvL, 57, 495
Podesta, J. J., Chandran, B. D. G., Bhattacharjee, A., Roberts, D. A., & Goldstein, M. L. 2009, JGR, 114, A01107
Podesta, J. J., Roberts, D. A., & Goldstein, M. L. 2007, ApJ, 664, 543
Roberts, D. A. 1989, JGR, 94, 6899
Roberts, D. A. 2010, JGR, 115, A12101
Roberts, D. A., Ghosh, S., Goldstein, M. L., & Matthaeus, W. H. 1991, PhRvL, 67, 237341
Roberts, D. A., Goldstein, M. L., & Klein, L. W. 1990, JGR, 95, 4203
Roberts, D. A., Goldstein, M. L., Klein, L. W., & Matthaeus, W. H. 1987, JGR, 92, 12023
Smith, E. J., Balogh, A., Neugebauer, M., & McComas, D. 1995, GeoRL, 22, 3381
Sorriso-Valvo, L., Marino, R., Carbone, V., et al. 2007, PhRvL, 99, 115001
Tu, C.-Y., Marsch, E., & Rosenbauer, H. 1990, GeoRL, 17, 283
Tu, C.-Y., Marsch, E., & Thieme, K. M. 1989, JGR, 94, 11739
Wicks, R. T., Forman, M. A., Horbury, T. S., & Oughton, S. 2012, ApJ, 746, 103
Wicks, R. T., Mallet, A., Horbury, T. S., et al. 2013, PhRvL, 110, 025003
ERRATUM: “CORRELATIONS AT LARGE SCALES AND THE ONSET OF TURBULENCE IN THE FAST SOLAR WIND” (2013, ApJ, 778, 177)

R. T. Wicks1, D. A. Roberts1, A. Mallet2, A. A. Schekochihin2, T. S. Horbury3, and C. H. K. Chen4

1 Code 672, NASA Goddard Space Flight Center, Greenbelt, MD, USA; robert.t.wicks@nasa.gov
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK
3 Space and Atmospheric Physics Group, Imperial College London, London, SW7 2AZ, UK
4 Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA

Received 2014 January 17; published 2014 February 4

Online-only material: color figure

Due to an error at the publisher, the color bars in Figure 5 were displayed incorrectly. The correct version of Figure 5 is shown here.

IOP Publishing sincerely regrets this error.

Figure 5. Evolution of different properties of structure functions from the Alfvén interaction time T_A, through the $1/f$ range, and into the inertial range plotted in the (σ_c, σ_r) plane. The top row shows the joint probability distribution of σ_c and σ_r. The second row shows the total amplitude in fluctuations, $S_2(\delta v_\perp) + S_2(\delta b_\perp)$. The third row shows the scaling exponent of the structure functions, $S_2 \propto f^\alpha$, measured over five consecutive points centered on the scale τ of each panel. The three columns correspond to the three timescales indicated by the arrows in Figures 2 and 4. The middle column is for the same τ as Figure 3.

(A color version of this figure is available in the online journal.)