BIFURCATION FROM INFINITY FOR AN ASYMPTOTICALLY LINEAR SCHRÖDINGER EQUATION

WOJCIECH KRYSZEWKI AND ANDRZEJ SZULKIN

Abstract. We consider the asymptotically linear Schrödinger equation (1.1) and show that if \(\lambda_0 \) is an isolated eigenvalue for the linearization at infinity, then under some additional conditions there exists a sequence \((u_n, \lambda_n)\) of solutions such that \(\|u_n\| \to \infty \) and \(\lambda_n \to \lambda_0 \). Our results extend those by Stuart [21]. We use degree theory if the multiplicity of \(\lambda_0 \) is odd and Morse theory (or more specifically, Gromoll-Meyer theory) if it is not.

1. Introduction

In this paper we consider the Schrödinger equation

\[
-\Delta u + V(x)u = \lambda u + f(x, u), \quad x \in \mathbb{R}^N,
\]

where \(\lambda \) is a real parameter, \(V \in L^\infty(\mathbb{R}^N) \), \(f(x,u)/u \to m(x) \) as \(|u| \to \infty \), \(m \in L^\infty(\mathbb{R}^N) \) and \(\lambda_0 \) is an isolated eigenvalue of finite multiplicity for \(L := -\Delta + V(x) - m(x) \). \(L \) will be considered as an operator in \(L^2(\mathbb{R}^N) \). It is well known (see e.g. [18]) that \(L \) is selfadjoint and its domain \(D(L) \) is the Sobolev space \(H^2(\mathbb{R}^N) \). We shall show that if the distance from \(\lambda_0 \) to the essential spectrum \(\sigma_e(L) \) of \(L \) is larger than the Lipschitz constant of \(f - m \) (with respect to the \(u \)-variable), then there exists a sequence of solutions \((u_n, \lambda_n) \subset H^2(\mathbb{R}^N) \times \mathbb{R} \) such that \(\|u_n\| \to \infty \) and \(\lambda_n \to \lambda_0 \). See Theorems 1.3 and 1.4 for more precise statements. We shall say that these solutions bifurcate from infinity or that \(\lambda_0 \) is an asymptotic bifurcation point. Our results extend those by Stuart [21] who has shown using degree theory that if \(f(x,u) = f(u) + h(x) \), then asymptotic bifurcation occurs if \(\lambda_0 \) is of odd multiplicity and the bifurcating set contains a continuum.

Both here and in [21] (see also [20]) the result is first formulated in terms of an abstract operator equation. Let \(E \) be a Hilbert space, \(L : D(L) \to E \) a selfadjoint linear operator and let \(N : E \to E \) be a continuous nonlinear operator which is asymptotically linear in the sense of Hadamard (\(H \)-asymptotically linear for short, see Definition 2.1(i)). We show that if \(\lambda_0 \) is an isolated eigenvalue of odd multiplicity for \(L \) and if the distance \(\text{dist}(\lambda_0, \sigma_e(L)) \) from \(\lambda_0 \) to the essential spectrum of \(L \) is larger than the asymptotic Lipschitz constant of \(N \) (introduced in Definition 2.1(ii)), then \(\lambda_0 \) is an asymptotic bifurcation point for the equation

\[
Lu = \lambda u + N(u), \quad u \in D(L).
\]

Here we have assumed for notational simplicity that the asymptotic derivative \(N'(\infty) \) of \(N \) is 0, see Theorem 1.1 for the full statement. This theorem slightly extends some results in [20, 21].
where the distance condition on λ_0 was somewhat stronger. If N is the gradient of a C^1-functional and λ_0 is an isolated eigenvalue of finite (not necessarily odd) multiplicity, we show that under an additional hypothesis λ_0 is an asymptotic bifurcation point for (1.2). The exact statement is given in Theorem 1.2. Existence of asymptotic bifurcation when the multiplicity of λ_0 is even seems to be new and is the main abstract result of this paper. A related problem was then shown that each eigenvalue 1/λ_0 of A with $|\lambda_0k| < 1$ is an asymptotic bifurcation point. However, the arguments there seem to break down in our case.

The proofs in [20, 21] were effected by first making the inversion $u \mapsto u/\|u\|^2$ (an idea that goes back to Rabinowitz [16] and Toland [22]). In this way the problem is transformed to that of looking for bifurcation from 0 instead of infinity. In the next step a finite-dimensional reduction is performed and finally it is shown that since λ_0 has odd multiplicity, the Brouwer degree for the linearization of the reduced operator at $u = 0$ changes as λ passes through λ_0. This forces bifurcation, and an additional argument which goes back to [15] and uses degree theory in an essential way, shows that there is a continuum bifurcating from $(0, \lambda_0)$. Since the degree does not change if the multiplicity of λ_0 is even, in Theorem 1.2 we use Morse theory instead, and therefore we need the assumption that N is the gradient of a functional. Morse theory can only assert that there exists a sequence, and not necessarily a continuum, bifurcating from infinity. Let us also point out that in [20] a more general operator equation of the form $F(\lambda, u) = 0$ has been considered (2

The fact that $\text{dist}(\lambda_0, \sigma_e(L))$ is larger than the Lipschitz constant of N at infinity is needed in order to perform a finite-dimensional reduction of Liapunov-Schmidt type. As we shall see, if the distance condition is satisfied, then one can find an orthogonal decomposition $E = Z \oplus W$, where $\dim Z < \infty$, such that writing $u = z + w \in Z \oplus W$, it is possible to use the contraction mapping principle in order to express w as a function of z and λ. Although one may think this is only a technical condition, it has been shown by Stuart [21] that there exist examples where asymptotic bifurcation does not occur at eigenvalues of odd multiplicity (and in Section 5.3 there one finds an example where asymptotic bifurcation occurs when λ_0 is not an eigenvalue). So the above condition, or some other, is needed.

The reason for requiring N to be H-asymptotically and not just asymptotically linear (in the sense of Fréchet) is that, in contrast to the situation when (1.1) is considered for x in a bounded domain, we cannot expect the Nemyskii operator N induced by f to be asymptotically linear. Indeed, it has been shown in [19] that if $f(u)/u \to m$ as $|u| \to \infty$, then N is always H-asymptotically linear, and it is asymptotically linear if and only if $f(u) = mu$. In the proof of Theorem 1.3 we show that also the Nemyskii operator corresponding to $f(x, u)$ is H-asymptotically linear if $f(x, u)/u \to m(x)$ as $|u| \to \infty$. The related concept of H-differentiability in the context of elliptic equations in \mathbb{R}^N has been introduced in a series of papers by Evéquoz and Stuart, see e.g. [7].
Now we can state our main results. The symbols $N'(\infty)$ and Lip_∞ (denoting asymptotic H-derivative and asymptotic Lipschitz constant) which appear below are introduced in Definition 2.1

Theorem 1.1. Let E be a Hilbert space and suppose that $L : D(L) \to E$ is a selfadjoint linear operator. Suppose further that

(i) N is H-asymptotically linear and $N'(\infty) : E \to E$ is selfadjoint,

(ii) λ_0 is an isolated eigenvalue of odd multiplicity for $L - N'(\infty)$ and

$$\text{Lip}_\infty(N - N'(\infty)) < \text{dist}(\lambda_0, \sigma_e(L - N'(\infty))).$$

Then λ_0 is an asymptotic bifurcation point for equation (1.2). Moreover, there exists a continuum bifurcating from infinity at λ_0.

By a continuum bifurcating from infinity at λ_0 we mean a closed connected set $\Gamma \subset E \times \mathbb{R}$ of solutions of (1.2) which contains a sequence (u_n, λ_n) such that $\|u_n\| \to \infty$, $\lambda_n \to \lambda_0$. This theorem should be compared with Theorem 4.2 and Corollary 4.3 in [21] (see also Theorem 6.3 in [20]) where the distance condition was somewhat stronger than in (ii) above. The main ingredient in the proof is a finite-dimensional reduction which roughly speaking goes as follows. Let W be an L-invariant subspace of E such that $\text{codim} W < \infty$ and $Z := W^\perp \subset D(L)$. Let $P : E \to W$ be the orthogonal projection and write $w = Pu$, $z = (I - P)u$. Then (1.2) is equivalent to the system

$$Lw - \lambda w = PN(w + z),$$

$$Lz - \lambda z = (I - P)N(w + z).$$

Choosing an appropriate W, $\delta > 0$ small enough and $R > 0$ large enough, one can uniquely for w in the first equation provided $|\lambda - \lambda_0| \leq \delta$ and $\|z\| \geq R$. In this way we obtain $w = w(\lambda, z)$ which inserted in the second equation gives a (finite-dimensional) problem on $Z \setminus B_R(0)$. See Proposition 3.4 for more details. Now the proof of Theorem 1.1 is completed by a well-known argument using Brouwer’s degree.

If N is a potential operator, then the reduced problem has variational structure. More precisely, suppose $N(u) = \nabla \psi(u)$ for some $\psi \in C^1(E, \mathbb{R})$ and let $\Phi_\lambda(u) := \frac{1}{2} \langle Lu - \lambda u, u \rangle - \psi(u)$. Then the functional φ_λ given by $\varphi_\lambda(z) = \Phi_\lambda(w(\lambda, z) + z)$ is of class C^1 and $z \in Z \setminus B_R(0)$ is a critical point of φ_λ if and only if $u = w(\lambda, z) + z$ is a solution of (1.2), see Proposition 3.6. Recall that a functional φ is said to satisfy the Palais-Smale condition ((PS) for short) if each sequence (z_n) such that $\varphi(z_n)$ is bounded and $\varphi'(z_n) \to 0$ contains a convergent subsequence.

Theorem 1.2. Let E be a Hilbert space and suppose that $L : D(L) \to E$ is a selfadjoint linear operator. Suppose further that

(i) N is a potential operator, i.e. there exists a functional $\psi \in C^1(E, \mathbb{R})$ such that $\nabla \psi(u) = N(u)$ for all $u \in E$,

(ii) N is H-asymptotically linear and $N'(\infty) : E \to E$ is selfadjoint,

(iii) λ_0 is an isolated eigenvalue of finite multiplicity for $L - N'(\infty)$ and

$$\text{Lip}_\infty(N - N'(\infty)) < \text{dist}(\lambda_0, \sigma_e(L - N'(\infty))).$$

If φ_{λ_0} satisfies (PS), then λ_0 is an asymptotic bifurcation point for equation (1.2).
Note that here we do not assume \(\lambda_0 \) is of odd multiplicity. In Theorem 1.4 below we shall give sufficient conditions for \(f \) in order that such \(\lambda_0 \) be an asymptotic bifurcation point for (1.1).

To formulate our results for equation (1.1) we introduce the following assumptions on \(f \):

1. \(f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \) satisfies the Carathéodory condition, i.e., it is continuous in \(s \) for almost all \(x \in \mathbb{R}^N \) and measurable in \(x \) for all \(s \in \mathbb{R} \), and there exist \(\alpha \in L^2(\mathbb{R}^N), \beta \in \mathbb{R}^+ \) such that \(|f(x,s)| \leq \alpha(x) + \beta|s| \) for all \(x \in \mathbb{R}^N, s \in \mathbb{R} \);
2. \(f \) is Lipschitz continuous in the second variable, with Lipschitz constant \(\text{Lip}(f) := \inf \{ C : |f(x,s) - f(x,t)| \leq C|s-t| \text{ for all } x \in \mathbb{R}^N, s, t \in \mathbb{R} \} \);
3. \(g(x,s) := f(x,s) - f(x,0) \) is bounded by a constant independent of \(x \in \mathbb{R}^N \) and \(s \in \mathbb{R} \);
4. Assume the limits \(g_{\pm}(x) := \lim_{s \to \pm \infty} g(x,s) \) exist and either \(\pm g_{\pm} \geq 0 \) a.e. or \(\pm g_{\pm} \leq 0 \) a.e.
 In addition, there exists a set of positive measure on which none of \(g_{\pm} \) vanishes;
5. Assume the limits \(h_{\pm}(x) := \lim_{s \to \pm \infty} g(x,s) \) exist, \(h_{\pm} \in L^\infty(\mathbb{R}^N) \) and either \(g(x,s) \geq 0 \) or \(g(x,s) \leq 0 \) for all \(x \in \mathbb{R}^N, s \in \mathbb{R} \). In addition, there exists a set of positive measure on which none of \(h_{\pm} \) vanishes.

Note that if \(f(x,s) = \alpha(x) + f_0(s) \) and \(|f_0(s)| \leq \beta|s| \), where \(\alpha \in L^2(\mathbb{R}^N), \beta > 0 \) and \(f_0 \) is continuous, then \(f \) satisfies (f1). As we have already mentioned, such functions \(f \) have been considered in [21].

Theorem 1.3. Suppose that \(V \in L^\infty(\mathbb{R}^N) \) and \(f \) satisfies (f1)-(f3). Let \(g(x,s) := f(x,s) - m(x)s \).
If \(\lambda_0 \) is an isolated eigenvalue of odd multiplicity for \(-\Delta + V - m \) and \(\text{Lip}(g) < \text{dist}(\lambda_0, \sigma_e(-\Delta + V - m)) \), then \(\lambda_0 \) is an asymptotic bifurcation point for equation (1.1). Moreover, there exists a continuum bifurcating from infinity at \(\lambda_0 \).

This strengthens some of the results of [21, Theorem 5.2]. Using examples in [21, Theorems 5.4, 5.6] and the remarks following them we shall show in Remark 5.1 that the condition on \(\text{Lip}(g) \) above is sharp in the sense that if \(\text{Lip}(g) > \text{dist}(\lambda_0, \sigma_e(-\Delta + V - m)) \), then there may be no bifurcation at a simple eigenvalue.

Theorem 1.4. Suppose that \(V \in L^\infty(\mathbb{R}^N) \) and \(f \) satisfies (f1)-(f4) and either (f5) or (f6). If \(\lambda_0 \) is an isolated eigenvalue of finite multiplicity for \(-\Delta + V - m \) and \(\text{Lip}(g) < \text{dist}(\lambda_0, \sigma_e(-\Delta + V - m)) \), then \(\lambda_0 \) is an asymptotic bifurcation point for equation (1.1).

To our knowledge there are no earlier results on asymptotic bifurcation for (1.1) if the multiplicity of \(\lambda_0 \) is even.

The rest of the paper is organized as follows. Section 2 contains some preliminary material. In Section 3 a finite-dimensional reduction is performed. In Section 4 we prove Theorems 1.1 and 1.2 and Section 5 is concerned with the proofs of Theorems 1.3 and 1.4.

Notation. \(\langle \cdot, \cdot \rangle \) denotes the inner product in a (real) Hilbert space \(E \) and \(\| \cdot \| \) is the corresponding norm. If \(\Phi \in C^1(E, \mathbb{R}) \), then \(\Phi'(u) \in E^* \) is the Fréchet derivative of \(\Phi \) at \(u \) and \(\nabla \Phi(u) \) (the gradient of \(\Phi \) at \(u \)) is the corresponding element in \(E \), i.e., \(\langle \nabla \Phi(u), v \rangle = \Phi'(u)v \). The graph norm
corresponding to a linear operator \(L \) will be denoted by \(\| \cdot \|_L \). The symbol \(B_r(a) \) will stand for the open ball centered at \(a \) and having radius \(r \), and we denote the \(L^p \)-norm of \(u \) by \(\| u \|_p \).

2. Preliminaries

Let \(X, Y \) be (real) Banach spaces and let \(N : X \setminus B_R(0) \rightarrow Y \).

Definition 2.1.

(i) We say that \(N \) is **asymptotically linear in the sense of Hadamard** (\(H \)-asymptotically linear for short) if there is a bounded linear operator \(B : X \rightarrow Y \) such that

\[
\lim_{n \to \infty} \frac{N(t_n u_n)}{t_n} = Bu
\]

for all sequences \((t_n) \subset \mathbb{R}, (u_n) \subset X \) such that \(u_n \rightarrow u \) and \(\|t_n u_n\| \rightarrow \infty \). The operator \(B \) is called the **asymptotic \(H \)-derivative** and is denoted by \(N'(\infty) \).

(ii) We say that \(N \) is **Lipschitz continuous at infinity** if

\[
\text{Lip}_\infty(N) := \lim_{R \to \infty} \sup \left\{ \frac{\|N(u) - N(v)\|}{\|u - v\|} : u \neq v, \|u\|, \|v\| \geq R \right\} < \infty.
\]

Note that the limit is well defined because the supremum above decreases as \(R \) increases.

Remark 2.2.

(i) The definition of \(H \)-asymptotic linearity given in [19] is in fact a little different but the one formulated above is somewhat more convenient and is equivalent to the original one as has been shown in [19, Theorem A.1].

(ii) Recall that \(N \) is **asymptotically linear** (in the sense of Fréchet) if there is a bounded linear operator \(B \) such that

\[
\lim_{\|u\| \to \infty} \frac{\|N(u) - Bu\|}{\|u\|} = 0.
\]

It is clear that if \(N \) is asymptotically linear, then it is \(H \)-asymptotically linear and \(N'(\infty) = B \). If, however, \(\dim X < \infty \), then \(H \)-asymptotic linearity is equivalent to asymptotic linearity and (2.1) above holds for \(B = N'(\infty) \), see [19, Remark 2].

Recall that a linear operator \(L : D(L) \subset X \rightarrow Y \) is called a **Fredholm operator** if it is densely defined, closed, \(\dim N(L) < \infty \) (where \(N(L) \) is the kernel of \(L \)), the range \(R(L) \) is closed and \(\text{codim} R(L) < \infty \). The number

\[
\text{ind} (L) := \dim N(L) - \text{codim} R(L)
\]

is the **index of \(L \)** (cf. [17, Section 1.3]).

Suppose that \(E \) is a real Hilbert space and let \(L : D(L) \subset E \rightarrow E \) be a selfadjoint Fredholm operator. Then \(\text{ind} (L) = 0, E = N(L) \oplus R(L) \) (orthogonal sum) and \(S := L|_{R(L) \cap D(L)} \) is invertible with bounded inverse. Hence, in view of [9, Problem III.6.16],

\[
\|S^{-1}\| = r(S^{-1}) = \frac{1}{\text{dist} (0, \sigma(S))} = \frac{1}{\text{dist} (0, \sigma(L) \setminus \{0\})},
\]

where \(r(S^{-1}) \) denotes the spectral radius of \(S^{-1} \). The first equality holds since \(S^{-1} \) is selfadjoint, see [9, (V.2.4)]. Recall that a selfadjoint operator is necessarily densely defined and closed.
It is clear that if W is a closed subspace of $R(L)$, invariant with respect to L (i.e. $L(W \cap D(L)) \subseteq W$), then $L_W := L|_{W \cap D(L)}$ is also invertible and
\[\|L_W^{-1}\| = \frac{1}{\text{dist}(0, \sigma(L_W))}. \]

Remark 2.3. Keeping the above notation observe that $L_W^{-1} : W \to W \cap D(L)$ is bounded with respect to the graph norm $\| \cdot \|_L$ in $W \cap D(L)$ (recall that $\|u\|_L := \|u\| + \|Lu\|$ for $u \in D(L)$). In fact,
\[\|L_W^{-1}w\|_L = \|L_W^{-1}w\| + \|w\| \leq \left(1 + \frac{1}{\text{dist}(0, \sigma(L_W))}\right) \|w\|, \quad w \in W. \]

Definition 2.4. For a selfadjoint Fredholm operator $L : D(L) \to E$, let us put
\[(2.2) \quad \gamma(L) := \inf\{\|(L|_{W \cap D(L)})^{-1}\| : W \in \mathcal{W}\}, \]
where \mathcal{W} denotes the family of closed L-invariant linear subspaces of $R(L)$ such that $\text{codim} W < \infty$ and $W \perp \subseteq D(L)$.

Definition 2.5. By the **essential spectrum** $\sigma_e(L)$ of a selfadjoint linear operator $L : E \supset D(L) \to E$ we understand the set
\[\{ \lambda \in \mathbb{C} : L - \lambda I \text{ is not a Fredholm operator} \} \]
(see [17, §1.4]).

It follows immediately from this definition that $\sigma_e(L) \subseteq \sigma(L)$ and $\sigma(L) \setminus \sigma_e(L)$ consists of isolated eigenvalues of finite multiplicity.

Theorem 2.6. Let $L : E \supset D(L) \to E$ be a selfadjoint linear operator and let $\lambda_0 \in \sigma(L) \setminus \sigma_e(L)$. Then $L - \lambda_0 I$ is a Fredholm operator and
\[\gamma(L - \lambda_0 I) = \frac{1}{\text{dist}(\lambda_0, \sigma_e(L))}. \]
If $\sigma_e(L) = \emptyset$ (this is the case e.g. if L is resolvent compact), then $\gamma(L - \lambda_0 I) = 0$.

Proof. Since $\sigma_e(L) - \lambda_0 = \sigma_e(L - \lambda_0 I)$ and hence
\[\text{dist}(\lambda_0, \sigma_e(L)) = \text{dist}(0, \sigma_e(L - \lambda_0 I)), \]
we may assume without loss of generality that $\lambda_0 = 0$ and we will show that
\[\gamma(L) = \frac{1}{\text{dist}(0, \sigma_e(L))}. \]
If $W \in \mathcal{W}$ and $Z := W \perp$, then $\text{dim} Z < \infty$ and $Z \subseteq D(L)$ is L-invariant. Hence $\sigma(L) = \sigma(L|_{W \cap D(L)}) \cup \sigma(L|_Z)$. Obviously, any $\lambda \in \sigma(L|_Z)$ is an isolated eigenvalue of finite multiplicity; thus $\sigma_e(L) \subseteq \sigma(L|_{W \cap D(L)})$. This implies that
\[\|(L|_{W \cap D(L)})^{-1}\| = \frac{1}{\text{dist}(0, \sigma(L|_{W \cap D(L)}))} \geq \frac{1}{\text{dist}(0, \sigma_e(L))} \quad \text{and therefore} \quad \gamma(L) \geq \frac{1}{\text{dist}(0, \sigma_e(L))}. \]

Take any $0 < d < \text{dist}(0, \sigma_e(L))$ and let
\[D = [-d, d] \cap \sigma(L), \quad B := \sigma(L) \setminus D. \]
Clearly D is finite: if $\lambda \in D$, then $\lambda \in \sigma(L) \setminus \sigma_e(L)$, i.e., λ is an isolated eigenvalue of finite multiplicity. Therefore B is closed and $\sigma_e(L) \subset B$. Obviously, $\sigma(L) = D \cup B$. Let Z be the subspace spanned by the eigenfunctions corresponding to the eigenvalues in D and let $W = Z^\perp$. Then $Z \subset D(L)$, $W \subset R(L)$, Z,W are invariant with respect to L, $L|_Z$ is bounded, $D = \sigma(L|_Z)$ and $B = \sigma(L|_{W \cap D(L)})$. Clearly, $W \in W$ since $\dim Z < \infty$. Now

$$
\| (L|_{W \cap D(L)})^{-1} \| = r((L|_{W \cap D(L)})^{-1}) = \frac{1}{\dist(0, \sigma(L|_{W \cap D(L)}))} \leq \frac{1}{\dist(0, B)} \leq \frac{1}{d}.
$$

This implies the assertion. Note that if $\sigma_e(L) = \emptyset$, we can choose any $d > 0$. Hence $\gamma(L) = 0$. □

Remark 2.7. Let L be a Fredholm operator of index 0 and let $\mathcal{P}(L)$ denote the collection of all bounded operators K of finite rank and such that $L + K$ is invertible. Clearly, $\mathcal{P}(L) \neq \emptyset$. Put

$$
\tilde{\gamma}(L) := \inf\{\| (L + K)^{-1} \| : K \in \mathcal{P}(L) \}.
$$

Then $\tilde{\gamma}(L)$ corresponds to the notion of *essential conditioning number* in [20, Section 5.1], see also [21, Section 3.1] where the definition above appears explicitly.

We claim that if L is a selfadjoint Fredholm operator, then $\tilde{\gamma}(L) = \gamma(L)$. For $K \in \mathcal{P}(L)$, $\sigma_e(L) = \sigma_e(L + K) \subset \sigma(L + K)$, hence

$$
\| (L + K)^{-1} \| \geq r((L + K)^{-1}) = \frac{1}{\dist(0, \sigma(L + K))} \geq \frac{1}{\dist(0, \sigma_e(L))}.
$$

So $\tilde{\gamma}(L) \geq \gamma(L)$ according to the definition of $\tilde{\gamma}$ and Theorem 2.6. On the other hand, take any $W \in W$ and let $Z := W^\perp$. As before, write $u = z + w \in Z \oplus W$ and let $Ku := \alpha z - Lz$, where

$$
\alpha := \inf\{\|Lw\| : w \in W \cap D(L), \|w\| = 1\} > 0.
$$

Then K has finite rank and, for $u \in D(L)$, $Lu + Ku = Lw + \alpha z$. Hence $L + K$ is invertible and it is easy to see that

$$
\inf\{\|Lu + Ku\| : u \in D(L), \|u\| = 1\} \geq \alpha.
$$

So

$$
\tilde{\gamma}(L) \leq \| (L + K)^{-1} \| \leq \frac{1}{\alpha} = \| (L|_{W \cap D(L)})^{-1} \|
$$

and $\tilde{\gamma}(L) \leq \gamma(L)$. We have shown that $\tilde{\gamma}(L) = \gamma(L)$. Therefore Theorem 2.6 may be considered as a refinement of [20, Theorem 5.5 and Corollary 5.6].

3. The problem and finite-dimensional reduction

Let E be a real Hilbert space and $L : E \supset D(L) \to E$ a selfadjoint operator. We shall study the existence of solutions to the eigenvalue problem (1.2), i.e.,

$$
Lu = \lambda u + N(u), \quad u \in D(L), \quad \lambda \in \mathbb{R},
$$

or, more precisely, the existence of asymptotic bifurcation of solutions to (1.2). Recall that $\lambda_0 \in \mathbb{R}$ is an *asymptotic bifurcation point* for (1.2) if there exist sequences $\lambda_n \to \lambda_0$ and $(u_n) \subset D(L)$ such that $\|u_n\| \to \infty$ and $Lu_n - N(u_n) = \lambda_n u_n$.

By X we denote the domain $D(L)$ furnished with the graph norm

$$
\|u\|_L := \|u\| + \|Lu\|, \quad u \in D(L).
$$
Then X is a Banach space, L is bounded as an operator from X to E and the inclusion $i : X \hookrightarrow E$ is continuous.

If N is a potential operator, i.e. there exists $\psi \in C^1(E, \mathbb{R})$ such that $N = \nabla \psi$, then along with (1.2) we can consider the existence of critical points of the functional $\Phi_\lambda : X \to \mathbb{R}$, $\lambda \in \mathbb{R}$, given by

$$\Phi_\lambda(u) := \frac{1}{2}\langle Lu - \lambda u, u \rangle - \psi(u), \quad u \in X.$$

Since $|\langle Lu, u \rangle| \leq \|Lu\|\|u\| \leq \|u\|^2_L$, $\Phi_\lambda \in C^1(X, \mathbb{R})$ and

$$\Phi'(\lambda)u = \langle Lu - \lambda u, v \rangle - \langle N(u), v \rangle, \quad u,v \in X.$$

It is clear that if $u \in X$ solves (1.2) for some $\lambda \in \mathbb{R}$, then $\Phi'(\lambda)u = 0$ for all $v \in X$, i.e., u is a critical point of Φ_λ. Conversely, if $u \in X$ and $\Phi'(\lambda)u = 0$, then u solves (1.2) since $D(L)$ is dense in E. Note that if L is unbounded, then Φ_λ is defined on $D(L)$ and is not C^1 with respect to the original norm $\| \cdot \|$ of E on $D(L)$.

In what follows we assume:

3.1. N is H-asymptotically linear with $N'(\infty) = 0$;

3.2. N is Lipschitz continuous at infinity;

3.3. $\lambda_0 = 0 \in \sigma(L) \setminus \sigma_e(L)$ and $\text{Lip}_\infty(N) < \text{dist}(0, \sigma_e(L))$.

Observe that these assumptions cause no loss of generality in Theorems 1.1 and 1.2 since if $N'(\infty) \neq 0$ is selfadjoint and $\lambda_0 \neq 0$, then we may replace L by $L - N'(\infty) - \lambda_0 I$ and N by $N - N'(\infty)$.

As a first step towards showing that $\lambda_0 = 0$ is an asymptotic bifurcation point for (1.2) we perform a kind of a Liapunov-Schmidt finite-dimensional reduction near infinity. Put

$$L_\lambda u := Lu - \lambda u, \quad u \in D(L_\lambda) = D(L), \quad \lambda \in \mathbb{R}$$

and note that the norms $\| \cdot \|_L$ and $\| \cdot \|_{L_\lambda}$ are equivalent. Given $W \in W$, let $P : E \to W$ be the orthogonal projection and $Z := W^\perp$. Observe that $u = w + z \in D(L)$, where $w \in W$, $z \in Z$, solves (1.2) if and only if

$$L_\lambda w = PN(w + z), \quad L_\lambda z = (I - P)N(w + z).$$

Proposition 3.4. There are a subspace $W \in W$, numbers $\delta \in (0, \text{dist}(0, \sigma(L) \setminus \{0\}))$, $R > 0$ and a continuous map $w : [-\delta, \delta] \times (Z \setminus B_R(0)) \to W \cap D(L)$ such that (3.2) holds for $w = w(\lambda, z)$ and:

(i) For any λ with $|\lambda| \leq \delta$, $z, z' \in Z \setminus B_R(0)$ and some constant $c > 0$,

$$||w(\lambda, z) - w(\lambda, z')||_L \leq c||z - z'||.$$

In particular, $w(\cdot, \cdot)$ is continuous with respect to the graph norm.

(ii) $w(\lambda, \cdot)$ is H-asymptotically linear with $w'(\lambda, \infty) = 0$.

(iii) $z \in Z \setminus B_R(0)$ is a solution of (3.3) with $w = w(\lambda, z)$ if and only if $u = w(\lambda, z) + z$ is a solution of (1.2).
Note that the condition on \(\delta \) implies invertibility of \(L_\lambda \) for \(0 < |\lambda| \leq \delta \).

Proof. (i) According to Definition 2.4 of \(\gamma(L) \), Theorem 2.6 and assumption 3.3, there is a closed subspace \(W \in \mathcal{W} \) for which

\[
\text{Lip}_\infty(N)(L|_{W \cap D(L)})^{-1} < 1.
\]

Hence we can find \(\delta \in (0, \text{dist}(0, \sigma(L) \setminus \{0\})) \) and \(R > 0 \) such that

\[
k := \sup_{|\lambda| \leq \delta} \|L|_{W \cap D(L)}\| : \beta < 1,
\]

where

\[
(3.5) \quad \beta := \sup \left\{ \frac{\|N(u) - N(v)\|}{\|u - v\|} : u \neq v, \|u\|, \|v\| \geq R \right\}.
\]

Let \(Z := W^\perp \) and let \(P : E \to W \) be the orthogonal projection. To facilitate the notation let us put

\[
M_\lambda(w + z) := (L|_{W \cap D(L)})^{-1}PN(w + z) \in W \cap D(L), \quad w \in W, \ z \in Z \text{ and } |\lambda| \leq \delta.
\]

Then (3.2) is equivalent to the fixed point equation

\[
(3.6) \quad w = M_\lambda(w + z).
\]

Fix \(\lambda \in [-\delta, \delta] \) and \(z \in Z, \|z\| \geq R \). If \(w, w' \in W \), then \(\|w + z\|, \|w' + z\| \geq \|z\| \geq R \), so taking into account that \(\|P\| = 1 \), we have

\[
\|M_\lambda(w + z) - M_\lambda(w' + z)\| \leq k\|w - w'\|.
\]

By the Banach contraction principle there is a unique \(w = w(\lambda, z) \in W \cap D(L) \), continuously depending on \(\lambda \) and \(z \), such that (3.6), and hence (3.2), holds. Moreover,

\[
\|w(\lambda, z) - w(\lambda, z')\| = \|M_\lambda(w(\lambda, z) + z) - M_\lambda(w(\lambda, z') + z')\| \leq k\|w(\lambda, z) - w(\lambda, z')\| + k\|z - z'\|
\]

for all \(|\lambda| \leq \delta, \ z, z' \in Z \setminus B_R(0) \). So \(\|w(\lambda, z) - w(\lambda, z')\| \leq k(1 - k)^{-1}\|z - z'\| \). Using this, (3.3) and arguing as above, we obtain

\[
\|L_\lambda(z) - L_\lambda(z')\| = \|PN(w(\lambda, z) + z) - PN(w(\lambda, z') + z')\|
\]

\[
\leq \beta\|w(\lambda, z) - w(\lambda, z')\| + \beta\|z - z'\| \leq \frac{\beta}{1 - k}\|z - z'\|.
\]

Since \(\|\cdot\|_L \) and \(\|\cdot\|_{L_\lambda} \) are equivalent norms, the second inequality in (3.4) follows (the first one is obvious).

(ii) To show the \(H \)-asymptotic linearity of \(w(\lambda, \cdot) \) with \(w'(\lambda, \infty) = 0 \), let \((z_n) \subset Z \) and \((t_n) \subset \mathbb{R} \) be sequences such that \(z_n \to z \) and \(\|t_n z_n\| \to \infty \). Then, for sufficiently large \(n \),

\[
\|w(\lambda, t_n z_n) + t_n z_n\| \geq \|t_n z_n\| \geq R
\]

and

\[
\|w(\lambda, t_n z_n)\| \leq \|M_\lambda(w(\lambda, t_n z_n) + t_n z_n) - M_\lambda(t_n z_n)\| + \|M_\lambda(t_n z_n)\| \leq k\|w(\lambda, t_n z_n)\| + \|M_\lambda(t_n z_n)\|.
\]

Thus, in view of assumption 3.1

\[
(3.7) \quad \frac{\|w(\lambda, t_n z_n)\|}{|t_n|} \leq \frac{1}{1 - k} \frac{\|M_\lambda(t_n z_n)\|}{|t_n|} \to 0.
\]
(iii) is an immediate consequence of (i).

\[\square \]

Remark 3.5. Suppose that \(z_n \to z \) in \(Z \) and take a sequence \((t_n) \subset \mathbb{R} \) such that \(\|t_n z_n\| \to \infty \). Then, again in view of the \(H \)-asymptotic linearity of \(N \) and (3.7), we have

\[
N(w(\lambda, t_n z_n) + t_n z_n) = N\left(t_n \left(\frac{w(\lambda, t_n z_n)}{t_n} + z_n\right)\right) \to 0
\]

for each fixed \(\lambda \in [-\delta, \delta] \).

If \(N = \nabla \psi \), then we let

\[
\varphi_\lambda(z) := \Phi_\lambda(w(\lambda, z) + z), \quad |\lambda| \leq \delta, \quad z \in Z \setminus \overline{B}_R(0).
\]

Proposition 3.6. Let \(|\lambda| \leq \delta \). Then \(\varphi_\lambda \in C^1(Z \setminus \overline{B}_R(0), \mathbb{R}) \) and

\[\nabla \varphi_\lambda(z) = L_\lambda z - (I - P)N(w(\lambda, z) + z). \]

Therefore \(z \in Z \setminus \overline{B}_R(0) \) is a critical point of \(\varphi_\lambda \) if and only if \(u = w(\lambda, z) + z \) solves (1.2).

Moreover, \(\nabla \varphi_\lambda \) is asymptotically linear with \((\nabla \varphi_\lambda)'(\infty) = L_\lambda|_Z \).

Proof. To show (3.10) we shall compute the derivative of \(\varphi_\lambda \) in the direction \(h \in Z, \ h \neq 0 \). For notational convenience we write \(w(z) \) for \(w(\lambda, z) \). Let \(t > 0 \),

\[u := w(z) + z, \quad \text{and} \quad \xi := w(z + th) - w(z) + th. \]

Then we have

\[\varphi_\lambda(z + th) - \varphi_\lambda(z) = \Phi_\lambda(u + \xi) - \Phi_\lambda(u) - \Phi'_\lambda(u)\xi. \]

Clearly, \(\xi \neq 0 \) as \(t \to 0 \). In view of (3.1), (3.2) and since \(w(z + th) - w(z) \in W \),

\[\Phi'_\lambda(u)\xi = \langle L_\lambda u - N(u), \xi \rangle = \langle L_\lambda w(z) - PN(u), \xi \rangle + \langle L_\lambda z - (I - P)N(u), \xi \rangle \]

\[= \langle L_\lambda z - N(u), th \rangle = t\Phi'_\lambda(u)h. \]

Hence

\[
\frac{\varphi_\lambda(z + th) - \varphi_\lambda(z)}{t} = \Phi'_\lambda(u)h + \frac{\|\xi\|L}{t} \cdot \frac{\Phi_\lambda(u + \xi) - \Phi_\lambda(u) - \Phi'_\lambda(u)\xi}{\|\xi\|L}.
\]

It follows from (3.3) that

\[\|\xi\|L \leq td\|h\| \]

for some \(d > 0 \). This, together with the Fréchet differentiability of \(\Phi_\lambda \) on \(X \) (i.e., on \(D(L) \) with the graph norm) implies that the second term on the right-hand side of (3.11) tends to 0 as \(t \to 0 \). So

\[
\lim_{t \to 0^+} \frac{\varphi_\lambda(z + th) - \varphi_\lambda(z)}{t} = \Phi'_\lambda(u)h = \langle L_\lambda z, h \rangle - \langle (I - P)N(w(z) + z), h \rangle.
\]

Therefore \(\varphi_\lambda \) is continuously Gâteaux differentiable, hence continuously Fréchet differentiable as well, and the derivative is as claimed.

If \(z \in Z \setminus \overline{B}_R(0) \) is a critical point of \(\varphi_\lambda \), then (3.3) with \(w = w(\lambda, z) \) is satisfied; this together with (3.2) shows that \(u = w(\lambda, z) + z \) solves (1.2).
Since \(\dim Z < \infty \), in order to prove the last part of the assertion it suffices to show that \(\nabla \varphi_\lambda \) is \(H \)-asymptotically linear (see Remark 2.2(ii)). If \(z_n \to z \) in \(Z \), \((t_n) \subset \mathbb{R} \) and \(\|t_nz_n\| \to \infty \), then, in view of (3.8),
\[
\frac{\nabla \varphi_\lambda(t_nz_n)}{t_n} = L_\lambda z_n - \frac{(I - P)N(w(t_nz_n) + t_nz_n)}{t_n} \rightarrow L_\lambda z.
\]
This concludes the proof. \(\square \)

Remark 3.7. (i) Using (3.4) and the fact that \(\beta \) in (3.5) is finite, it is easy to see that \(\nabla \varphi_\lambda \) is Lipschitz continuous on \(Z \setminus \overline{B}_R(0) \) and the Lipschitz constant may be chosen independently of \(\lambda \in [-\delta, \delta] \).

(ii) In what follows we may (and will need to) assume that \(\varphi_\lambda \) is defined on \(Z \) and not only on \(Z \setminus \overline{B}_R(0) \). Such an extension of \(\varphi_\lambda \) can be achieved e.g. as follows. Let \(\chi \in C^\infty([\mathbb{R}, [0,1]]) \) be a cutoff function such that \(\chi(t) = 0 \) for \(t \leq R + 1 \) and \(\chi(t) = 1 \) for \(t \geq R + 2 \). Set \(\tilde{\varphi}_\lambda(z) := \chi(\|z\|)\varphi_\lambda(z) \). Then \(\tilde{\varphi}_\lambda \) is of class \(C^1 \), Lipschitz continuous and \(\tilde{\varphi}_\lambda(z) = \varphi_\lambda(z) \) for \(\|z\| > R + 2 \). In particular, \(z \in Z \setminus \overline{B}_R(0) \), where \(\tilde{R} := R + 2 \), is a critical point of \(\tilde{\varphi}_\lambda \) if and only if \(u = w(\lambda, z) + z \) solves (1.2).

4. Proofs of Theorems 1.1 and 1.2

In the proof of Theorem 1.1 we shall need the following version of Whyburn’s lemma which may be found in [1], Proposition 5:

Lemma 4.1. Let \(Y \) be a compact space and \(A, B \subset Y \) closed sets. If there is no connected set \(\Gamma \subset Y \setminus (A \cup B) \) such that \(\overline{\Gamma} \cap A \neq \emptyset \) and \(\overline{\Gamma} \cap B \neq \emptyset \) (\(\overline{\Gamma} \) stands for the closure of \(\Gamma \) in \(Y \)), then \(A \) and \(B \) are separated, i.e. there are open sets \(U, V \subset Y \) such that \(A \subset U, B \subset V, U \cap V = \emptyset \) and \(Y = U \cup V \) (clearly, \(U, V \) are closed as well).

Proof of Theorem 1.1. By Proposition 3.4 it suffices to consider equation (3.3) with \(w = w(\lambda, z) \) which we re-write in the form
\[
F_\lambda(z) := L_\lambda z - (I - P)N(w(\lambda, z) + z) = 0.
\]
As in assumptions 3.1-3.3 it causes no loss of generality to take \(\lambda_0 = 0 \) and \(N'(\infty) = 0 \). Although \(F_\lambda \) in Proposition 3.4 has been defined for \(|\lambda| \leq \delta \) and \(\|z\| \geq R \), we may (and do) extend it continuously to \([-\delta, \delta] \times Z \). Since \(w'(\lambda, \infty) = 0 \) (see (ii) of Proposition 3.4) and asymptotic linearity coincides with \(H \)-asymptotic linearity on \(Z \) (because \(\dim Z < \infty \)), we have, setting \(K_\lambda(z) := (I - P)N(w(\lambda, z) + z) \) and using Remark 3.5
\[
\lim_{\|z\| \to \infty} \frac{\|K_\lambda(z)\|}{\|z\|} = 0.
\]
Suppose there is no asymptotic bifurcation at \(\lambda_0 = 0 \). Taking smaller \(\delta \) and larger \(R \) if necessary, \(F_\lambda(z) \neq 0 \) for any \(|\lambda| \leq \delta \) and \(\|z\| \geq R \). Therefore the Brouwer degree \(\deg(F_\lambda, B_R(0), 0) \) (see e.g. [2], Section 3.1) is well defined and independent of \(\lambda \in [-\delta, \delta] \). Since \(\delta < \text{dist}(0, \sigma(L) \setminus \{0\}) \), \(L_{\pm \delta} \) are invertible. It follows therefore from (4.2) that if \(R_0 \geq R \) is sufficiently large, then \(L_{\pm \delta}z - tK_{\pm \delta}(z) \neq 0 \) for
0 for any \(\|z\| \geq R_0, \ t \in [0,1] \). Hence by the excision property and the homotopy invariance of degree,
\[
k = \deg(F_{\pm \delta}, B_R(0), 0) = \deg(F_{\pm \delta}, B_{R_0}(0), 0) = \deg(L_{\pm \delta}|_Z, B_{R_0}, 0)
\]
for some \(k \in \mathbb{Z} \). Let \(d_1, d_2 \) be the number of negative eigenvalues (counted with their multiplicity) of respectively \(L_\delta|_Z \) and \(L_{-\delta}|_Z \). Then \(k = (-1)^{d_1} = (-1)^{d_2} \) [2] Lemma 3.3]. However, since \(d_1 = d_2 + \dim N(L) \) and \(\dim N(L) \) is odd, this is impossible. So we have reached a contradiction to the assumption that there is no bifurcation.

It remains to prove that there exists a bifurcating continuum. Usually this is done by first making the inversion \(u \mapsto u/\|u\|^2 \) and then showing there is a continuum bifurcating from 0 [16, 20, 22]. Here we give a slightly different argument avoiding inversion. Let
\[
\Sigma := \{(z, \lambda) \in (Z \setminus B_R(0)) \times [-\delta, \delta] : F_\lambda(z) = 0 \}.
\]
Compactify \(Z \) by adding the point at infinity and let \(A := \overline{B_R(0)} \times [-\delta, \delta], B := \{(\infty, 0)\}, Y := A \cup \Sigma \cup B \). Then \(Y \) is compact, \(A \) and \(B \) are closed disjoint. We claim that if \(R \) is large enough, there is a connected set \(\Gamma \subset \Sigma \) such that \(\{(\infty, 0)\} \in \Gamma \) (the closure taken in \(Y \)) and \(\overline{\Gamma} \cap A \neq \emptyset \). Otherwise we shall show \(\Sigma \) is compact and bounded, there exists a bounded open set \(\mathcal{O} \subset Z \times [-\delta, \delta] \) such that \(U \subset \mathcal{O} \) and \(\partial \mathcal{O} \cap \Sigma = \emptyset \). Letting \(\mathcal{O}_\lambda := \{z : (z, \lambda) \in \mathcal{O}\} \) for \(\lambda \in [-\delta, \delta] \), it follows from the excision property and the generalized version of the homotopy invariance property of degree [2] Theorem 4.1] that \(\deg(F_\delta, \mathcal{O}_\delta, 0) = \deg(F_{-\delta}, \mathcal{O}_{-\delta}, 0) \), a contradiction since by the same argument as above \(\deg(F_\delta, \mathcal{O}_\delta, 0) = (-1)^{k_1}, \deg(F_{-\delta}, \mathcal{O}_{-\delta}, 0) = (-1)^{k_2} \) and \(k_1, k_2 \) have different parity.

In the proof of Theorem 1.2 we shall use Gromoll-Meyer theory. Below we summarize some pertinent facts which are special cases of much more general results of [12] where functionals were considered in a Hilbert space \(E \) with filtration, i.e., with a sequence \((E_n) \) of subspaces such that \(E_n \subset E_{n+1} \) for all \(n \) and \(\bigcup_{n=1}^\infty E_n \) is dense in \(E \). In the terminology of [12], here we have the trivial filtration (i.e., \(Z_n = Z \) for all \(n \)) which, together with the fact that \(\dim Z < \infty \), considerably simplifies the proofs. An alternative approach is via the Conley index theory, see e.g. [3, 4], in particular [3] Corollary 2.3 and [4] Theorem 2.

Let \(\varphi : Z \to \mathbb{R} \) be a function such that \(\nabla \varphi \) is locally Lipschitz continuous. Suppose also \(K = K(\varphi) := \{z \in Z : \nabla \varphi(z) = 0\} \) is bounded. A pair \((\mathcal{W}, \mathcal{W}^-) \) of closed subsets of \(Z \) will be called admissible \(C^1 \)-manifold of codimension 1, \(V \) is transversal to \(\mathcal{W}^- \), the flow \(\eta \) of \(-V \) can leave \(\mathcal{W} \) only via \(\mathcal{W}^- \) and if \(z \in \mathcal{W}^- \), then \(\eta(t,z) \notin \mathcal{W} \) for any \(t > 0 \).

\((i) \ K \subset \text{int}(\mathcal{W}) \) and \(\mathcal{W}^- \subset \partial \mathcal{W} \);

\((ii) \ \varphi|_{\mathcal{W}} \) is bounded;

\((iii) \ There exist a locally Lipschitz continuous vector field \(V \) defined in a neighbourhood \(N \) of \(\mathcal{W} \) and a continuous function \(\beta : N \to \mathbb{R}^+ \) such that \(\|V(z)\| \leq 1, \langle V(z), \varphi(z) \rangle \geq \beta(z) \) for all \(z \in N \), and \(\beta \) is bounded away from 0 on compact subsets of \(N \setminus K \) (we shall call \(V \) admissible for \((\mathcal{W}, \mathcal{W}^-) \));

\((iv) \ \mathcal{W}^- \) is a piecewise \(C^1 \)-manifold of codimension 1, \(V \) is transversal to \(\mathcal{W}^- \), the flow \(\eta \) of \(-V \) can leave \(\mathcal{W} \) only via \(\mathcal{W}^- \) and if \(z \in \mathcal{W}^- \), then \(\eta(t,z) \notin \mathcal{W} \) for any \(t > 0 \).
Let H^* denote the Čech (or Alexander-Spanier) cohomology with coefficients in \mathbb{Z}_2 and let the critical groups $c^*(\varphi, K)$ of the pair (φ, K) be defined by

$$c^*(\varphi, K) := H^*(\mathbb{W}, \mathbb{W}^-).$$

Lemma 4.2. Suppose φ satisfies (PS).

(i) For each $R > 0$ there exists a bounded admissible pair $(\mathbb{W}, \mathbb{W}^-)$ for φ and K such that $B_R(0) \subset \mathbb{W}$.

(ii) If $(\mathbb{W}_1, \mathbb{W}_1^-)$ and $(\mathbb{W}_2, \mathbb{W}_2^-)$ are two admissible pairs for φ and K, then $H^*(\mathbb{W}_1, \mathbb{W}_1^-) \cong H^*(\mathbb{W}_2, \mathbb{W}_2^-)$ (i.e., $c^*(\varphi, K)$ is well defined).

(iii) Suppose $\{\varphi_\lambda\}_{\lambda \in [0,1]}$ is a family of functions satisfying (PS) and such that $\nabla \varphi_\lambda$ is locally Lipschitz continuous, $\lambda \mapsto \nabla \varphi_\lambda$ is continuous, uniformly on bounded subsets of Z, and $K(\varphi_\lambda) \subset B_R(0)$ for some $R > 0$ and all $\lambda \in [0,1]$. Then $c^*(\varphi_\lambda, K(\varphi_\lambda))$ is independent of λ.

This lemma corresponds to Lemma 2.13 and Propositions 2.12, 2.14 in [12]. Note that condition (PS)* there is in our setting (i.e., for trivial filtration) equivalent to (PS).

Outline of proof. (i) Choose R, a, b so that $K \subset B_R(0)$, $a < \varphi(z) < b$ for all $z \in B_R(0)$ and let

$$V(z) := \frac{\nabla \varphi(z)}{1 + \|\nabla \varphi(z)\|}.$$

Clearly, the flow η given by

$$\frac{d\eta}{dt} = -V(\eta), \quad \eta(0, z) = z$$

is defined on $\mathbb{R} \times Z$. Let

$$\mathbb{W} := \{\eta(t, z) : t \geq 0, \ z \in B_R(0), \ \varphi(\eta(t, z)) \geq a\}, \quad \mathbb{W}^- := \mathbb{W} \cap \varphi^{-1}(a).$$

Then $(\mathbb{W}, \mathbb{W}^-)$ is an admissible pair. The proof follows that of [12] Lemma 2.13 but is simpler - there is no need for using cutoff functions. Note that (here and below) the Palais-Smale condition rules out the possibility that $\varphi(\eta(t,z)) > a$ and $||\eta(t, z)|| \to \infty$ as $t \to \infty$, hence $t \mapsto \eta(t, z)$ either approaches K as $t \to \infty$ or hits $\mathbb{W}^- = \varphi^{-1}(a)$ in finite time.

(ii) Assume that φ is unbounded below and above (the other cases are simpler but somewhat different). Let $(\mathbb{W}_0, \mathbb{W}_0^-)$ be an admissible pair and V_0 a corresponding admissible vector field. As $\varphi|_{\mathbb{W}_0}$ is bounded, we may choose a, b so that $a < \varphi(z) < b$ for all $z \in \mathbb{W}_0$. Since $(\mathbb{W}_1, \mathbb{W}_1^-) := (\varphi^{-1}([a,b]), \varphi^{-1}(a))$ is an admissible pair, it suffices to show that $H^*(\mathbb{W}_0, \mathbb{W}_0^-) \cong H^*(\mathbb{W}_1, \mathbb{W}_1^-)$. Put $V(z) := \chi_0(z)V_0(z) + \chi_1(z)V_1(z)$, where V_1 is given by (4.3) and $\{\chi_0, \chi_1\}$ is a Lipschitz continuous partition of unity such that $\chi_0(z) = 1$ on \mathbb{W}_0 and $\chi_1(z) = 1$ in a neighbourhood of $\partial \mathbb{W}_1$. Denote the flow of $-V$ by η. Let $A := \{\eta(t, z) : t \geq 0, \ z \in \mathbb{W}_0^-\} \cap \mathbb{W}_1$ and $\mathbb{W} = \mathbb{W}_0 \cup A$, $\mathbb{W}^- := \mathbb{W} \cap \mathbb{W}_1^-$. Then $(\mathbb{W}, \mathbb{W}^-)$ is a an admissible pair and using η one obtains a strong deformation retraction of A onto \mathbb{W}^-. So $H^*(A, \mathbb{W}^-) = 0$ and by exactness of the cohomology sequence of the triple $(\mathbb{W}, A, \mathbb{W}^-)$ and the strong excision property we have $H^*(\mathbb{W}, \mathbb{W}^-) \cong H^*(\mathbb{W}, A) \cong H^*(\mathbb{W}_0, \mathbb{W}_0^-)$. We also have, by excision again, $H^*(\mathbb{W}, \mathbb{W}^-) \cong H^*(\mathbb{W} \cup \mathbb{W}_1^-, \mathbb{W}_1^-)$. Finally, using the flow η once more, we obtain a deformation of $(\mathbb{W}_1, \mathbb{W}_1^-)$ into $(\mathbb{W} \cup \mathbb{W}_1^-, \mathbb{W}_1^-)$ which leaves $\mathbb{W} \cup \mathbb{W}_1^-$ and \mathbb{W}_1^- invariant. Hence $(\mathbb{W} \cup \mathbb{W}_1^-, \mathbb{W}_1^-)$ and $(\mathbb{W}_1, \mathbb{W}_1^-)$ are homotopy equivalent and thus have the same
cohomology. Putting everything together gives $H^*(\mathbb{W}_0,\mathbb{W}_0^-) \cong H^*(\mathbb{W}_1,\mathbb{W}_1^-)$. More details of the proof may be found in [12, Propositions 2.12 and 2.7].

(iii) Let $\lambda_0 \in [0,1]$. It suffices to show that $c^*(\varphi_\lambda, K(\varphi_\lambda))$ is constant for λ in a neighbourhood of λ_0. Denote the vector field for φ_λ given as in (1.3) by V_λ and choose an admissible pair $(\mathbb{W}_{\lambda_0}, \mathbb{W}_{\lambda_0}^-)$ for φ_{λ_0} and $K(\varphi_{\lambda_0})$ such that $B_{R_1}(0) \subset \mathbb{W}_{\lambda_0}$, where $R_1 > R$. By the construction in (i), we may assume V_{λ_0} is admissible for this pair. Let $\tilde{V}(z) := \chi_1(z)V_{\lambda_0}(z) + \chi_2(z)V_{\lambda_0}(z)$, where $\{\chi_1, \chi_2\}$ is a partition of unity subordinate to the sets $B_{R_1}(0)$ and $\mathbb{W}_{\lambda_0} \setminus \overline{B}_R(0)$. It is easy to see that if $|\lambda - \lambda_0|$ is small enough, then $(\mathbb{W}_{\lambda_0}, \mathbb{W}_{\lambda_0}^-)$ is an admissible pair for φ_λ, $K(\varphi_\lambda)$ and \tilde{V} is a corresponding admissible field. Note in particular that

$$\|\nabla \varphi_\lambda(z)\| \geq \|\nabla \varphi_{\lambda_0}(z)\| - \|\nabla \varphi_\lambda(z) - \nabla \varphi_{\lambda_0}(z)\| > 0$$

for $z \in \mathbb{W}_{\lambda_0} \setminus \overline{B}_R(0)$, so indeed \tilde{V} is admissible. Hence $c^*(\varphi_\lambda, K(\varphi_\lambda)) \cong c^*(\varphi_{\lambda_0}, K(\varphi_{\lambda_0})).$

Proof of Theorem 1.2: Let φ_λ be given by (3.9) and extend it to the whole space Z according to Remark 3.7. If $\lambda_0 = 0$ is not an asymptotic bifurcation point for (1.2), then it follows from Proposition 4.6 that $\nabla \varphi_\lambda(z) \neq 0$ for $\lambda \in [-\delta, \delta]$ and $\|z\| > R$, possibly after choosing a smaller δ and larger R. By assumption, φ_0 satisfies (PS) and since L_λ has bounded inverse if $0 < |\lambda| \leq \delta$, we see using (1.2) that $\nabla \varphi_\lambda$ is bounded away from 0 as $\|z\| \to \infty$. Hence all φ_λ, $|\lambda| \leq \delta$, satisfy (PS). By Lemma 4.2, $c^*(\varphi_\lambda, K(\varphi_\lambda))$ is independent of $\lambda \in [-\delta, \delta]$. For $\lambda = \delta$, let $Z = Z_\delta^+ \oplus Z_\delta^-$, and $z = z^+ + z^- \in Z_\delta^+ \oplus Z_\delta^-$, where Z_δ^\pm are the maximal L_δ-invariant subspaces of Z on which L_δ is respectively positive and negative definite. Choose $\epsilon > 0$ such that $\langle \pm L_\delta z^\pm, z^\pm \rangle \geq \epsilon \|z^\pm\|^2$ and let

$$\mathbb{W} := \{z \in Z : \|z^+\| \leq R_0, \|z^-\| \leq R_0\}, \quad \mathbb{W}^- := \{z \in \mathbb{W} : \|z^-\| = R_0\}.$$

Recall $K_\lambda(z) = (I - P)N(w(\lambda, z) + z)$. Taking a sufficiently large R_0,

$$\langle \nabla \varphi_\delta(z), z^+ \rangle = \langle L_\delta z, z^+ \rangle - \langle K_\delta(z), z^+ \rangle \geq \epsilon \|z^+\|^2 - \frac{1}{4} \epsilon \|z\| \|z^+\| > 0, \quad z \in \mathbb{W}, \quad \|z^+\| = R_0.$$

Similarly,

$$\langle \nabla \varphi_\delta(z), z^- \rangle < 0, \quad z \in \mathbb{W}, \quad z^- \in \mathbb{W}^-.$$

So the flow of $-\nabla \varphi_\delta$ is transversal to \mathbb{W}^- and can leave \mathbb{W} only via \mathbb{W}^-. Hence $(\mathbb{W}, \mathbb{W}^-)$ is an admissible pair for φ_δ and $K(\varphi_\delta)$, and $V = \nabla \varphi_\delta$ is a corresponding admissible vector field. Note that this pair is also admissible for the quadratic functional $\Psi_\delta(z) := \frac{1}{2}\langle L_\delta z, z \rangle$. Since 0 is the only critical point of Ψ_δ, it follows e.g. from [14, Corollary 8.3] that if m is the Morse index of Ψ_δ, then

$$c^\delta(\varphi_\delta, K(\varphi_\delta)) = c^\delta(\Psi_\delta, 0) = \delta_{q,m} Z_2.$$

A similar argument shows that $c^\delta(\varphi_{-\delta}, K(\varphi_{-\delta})) = \delta_{q,n} Z_2$, where n is the Morse index of $\Psi_{-\delta}$. As the Morse index changes (by $\dim N(L)$) when λ passes through 0, $m \neq n$ and $c^\delta(\varphi_\delta, K(\varphi_\delta)) \neq c^\delta(\varphi_{-\delta}, K(\varphi_{-\delta}))$. This is the desired contradiction. \qed
5. Proofs of Theorems 1.3 and 1.4

We assume throughout this section that $V \in L^\infty(\mathbb{R}^N)$ and f satisfies (f_1)-(f_3). We consider equation (1.1) which we re-write in the form

$$- \Delta u + V_0(x)u = \lambda u + g(x,u), \quad x \in \mathbb{R}^N,$$

where we have put $V_0(x) := V(x) - m(x)$ and $g(x,u) := f(x,u) - m(x)u$. Let λ_0 be an isolated eigenvalue of finite multiplicity for $-\Delta + V_0$. Replacing $V_0(x)$ by $V_0(x) - \lambda_0$ we may assume without loss of generality that $\lambda_0 = 0$.

Let $E := L^2(\mathbb{R}^N)$ and $Lu := -\Delta u + V_0(x)u$. As we have pointed out in the introduction, L is a selfadjoint operator whose domain is the Sobolev space $H^2(\mathbb{R}^N)$ and the graph norm of L is equivalent to the Sobolev norm. (A brief argument: using the Fourier transform one readily sees that $-\Delta + 1 : H^2(\mathbb{R}^N) \to L^2(\mathbb{R}^N)$ is an isomorphism; hence the conclusion follows because $V \in L^\infty(\mathbb{R}^N)$.)

We define the operator N (the Nemytskii operator) by setting

$$N(u) := g(\cdot,u(\cdot)), \quad u \in E.$$

It follows from (f_1) and Krasnoselskii’s theorem [11] Theorems 2.1 and 2.3] that $N : E \to E$ is well defined and continuous. Let

$$G(x,s) := \int_0^s g(x,\xi) \, d\xi, \quad x \in \mathbb{R}^N, \quad s \in \mathbb{R}$$

and

$$\psi(u) := \int_{\mathbb{R}^N} G(x,u) \, dx, \quad u \in E.$$

Then $\psi \in C^1(E,\mathbb{R})$ and

$$\nabla \psi(u) = N(u),$$

see [11] Lemma 5.1. Furthermore, let

$$\Phi_\lambda(u) := \frac{1}{2} (Lu - \lambda u, u) - \psi(u), \quad u \in X := H^2(\mathbb{R}^N).$$

Then $\Phi_\lambda \in C^1(X,\mathbb{R})$ and $\Phi_\lambda'(u) = 0$ if and only if u is a solution of (5.1).

Proof of Theorem 1.3 We verify the assumptions of Theorem 1.1. First we show that N is H-asymptotically linear and $N'(\infty) = 0$. Let $u_n \to u$ and $\|t_n u_n\| \to \infty$ in E. Assume passing to a subsequence that $u_n \to u$ a.e. Since

$$\frac{g(x,t_n u_n)^2}{t_n^2} \leq \left(\frac{\alpha(x)}{t_n} + (\beta + \|m\|_\infty) |u_n| \right)^2,$$

and $g(x,s)/s \to 0$ as $|s| \to \infty$, it follows from the Lebesgue dominated convergence theorem that

$$\lim_{n \to \infty} \frac{\|N(u_n)\|^2}{t_n^2} = \int_{\mathbb{R}^N} \lim_{n \to \infty} \frac{g(x,t_n u_n)^2}{(t_n u_n)^2} \, u_n^2 \, dx = 0.$$

Hence (i) of Theorem 1.1 is satisfied. Since $\text{Lip}_\infty(N) = \text{Lip}_\infty(g) \leq \text{Lip}(g) < \text{dist}(0,\sigma_e(L))$ (where the second inequality follows by assumption), also (ii) of this theorem holds. This completes the proof. □
Remark 5.1. As we have mentioned in the introduction, the condition $\text{Lip}(g) < \text{dist}(\lambda_0, \sigma_e(L))$ is sharp in the sense that there may be no asymptotic bifurcation if $\text{Lip}(g) > \text{dist}(\lambda_0, \sigma_e(L))$ and other assumptions of Theorem III.3 are satisfied. Let $N = 1$ and suppose $V_0 \in C^1(\mathbb{R})$, $V_0'(x) \leq 0$ for x large, $\lim_{|x| \to \infty} V_0(x) = V_0(\infty)$ exists and $\inf\{\|Lu, u\|_2 = 1\} < V_0(\infty)$. Then $\sigma_e(L) = [V_0(\infty), \infty)$ and $\lambda_0 := \inf \sigma(L) < \inf \sigma_e(L)$ is a simple eigenvalue. Assume without loss of generality that $\lambda_0 = 0$. Assume also that g is independent of x, of class C^1, $g(0) = \lim_{|s| \to \infty} g(s)/s = 0$ and $\xi := V_0(\infty) + g'(0) < 0$. Given $\varepsilon > 0$, we may choose g so that $\text{Lip}(g) = -g'(0) \in (V_0(\infty), V_0(\infty) + \varepsilon)$. So

$$\text{Lip}(g) - \varepsilon < \text{dist}(0, \sigma_e(L)) = V_0(\infty) < \text{Lip}(g),$$

and according to [21, Theorem 5.4] and the remarks following it, there is no asymptotic bifurcation at any $\lambda > \xi$, in particular, not at $\lambda_0 = 0$. See also the explicit Example 1 after the proof of Theorem 5.4 in [21]. A similar conclusion holds for $N \geq 2$, see [21, Theorem 5.6].

In the proof of Theorem III.3 we shall need an auxiliary result. Let $\lambda_0 = 0$ and write $w(z) = w(0, z)$. Then $w(z)$ satisfies equation (3.2), i.e. we have

$$Lw(z) = PN(w(z) + z).$$

Lemma 5.2. Suppose (f_1)-(f_4) are satisfied. Then $\|w(z)\|_\infty \leq C$ for some constant $C > 0$ and all $\|z\| > R$.

Proof. Recall $L := -\Delta + V_0$, where $L : D(L) \subset L^2(\mathbb{R}^N) \to L^2(\mathbb{R}^N)$. We also define $\tilde{L} := -\Delta + V_0$ when $-\Delta + V_0$ is regarded as an operator in $L^\infty(\mathbb{R}^N)$ (i.e., $\tilde{L} : D(\tilde{L}) \subset L^\infty(\mathbb{R}^N) \to L^\infty(\mathbb{R}^N)$). By [3, Theorem 1], $\sigma(L) = \sigma(\tilde{L})$ and isolated eigenvalues of L and \tilde{L} have the same multiplicity. Since Z is spanned by eigenfunctions of $-\Delta + V_0$ corresponding to isolated eigenvalues and such eigenfunctions decay exponentially [18, Theorem C.3.4], $Z \subset L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$. It follows therefore from [19, Theorem III.6.17] that there is an L-invariant decomposition $L^\infty(\mathbb{R}^N) = Z \oplus \tilde{W}$, where $\tilde{Z} = Z$. Moreover, by [9, (III.6.19)],

$$Q := I - P = -\frac{1}{2\pi i} \int_\gamma (L - \lambda \mu)^{-1} d\lambda,$$

where γ is a smooth simple closed curve (in \mathbb{C}) which encloses all eigenvalues corresponding to Z and no other points in $\sigma(L)$. By [3, Proposition 2.1], $(L - \lambda \mu)^{-1}_{|L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)} = (\tilde{L} - \lambda \mu)^{-1}_{|L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)}$. Hence $Q|_{L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)} = \tilde{Q}|_{L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)}$, where \tilde{Q} denotes the \tilde{L}-invariant projection of $L^\infty(\mathbb{R}^N)$ on Z, and the same equality holds for P and $\tilde{P} := I - \tilde{Q}$. \tilde{P} is a projection on a subspace of finite codimension, hence it is continuous and therefore (f_1), (f_4) imply $y = y(z) := PN(w(z) + z) \in L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$ and $\|y\|_\infty \leq C_1$ for some C_1 independent of $z \in \mathbb{Z} - B_R(0)$. Since $\tilde{Q}|_{\tilde{W}}$ has bounded inverse, $\|\tilde{w}\|_\infty \leq C$, where $\tilde{w} = \tilde{w}(z) := \tilde{L}^{-1}y$ (note that for $w = w(z) = L^{-1}y$ we only have a z-dependent L^2-bound because $N(w + z)$ is not uniformly bounded in $L^2(\mathbb{R}^N)$).

We complete the proof by showing that $w = \tilde{w}$. Let $\mu_n \notin \sigma(L)$, $\mu_n \to 0$. By the resolvent equation [9, (I.5.5)] and §III.6.1,

$$w = L^{-1}y = (L - \mu_n \mu)^{-1}y - \mu_n L^{-1}(L - \mu_n \mu)^{-1}y.$$
and
\[\tilde{w} = L^{-1}y = (\tilde{L} - \mu_n I)^{-1}y - \mu_n L^{-1}(\tilde{L} - \mu_n I)^{-1}y. \]

Let \(v_n := (L - \mu_n I)^{-1}y \). Since \(y \in L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \), \(\| \cdot \|_{L^2 \cap L^\infty} := \| \cdot \|_2 + \| \cdot \|_\infty \) as well. As the last term on each of the right-hand sides above tends to 0, \((v_n)\) is a Cauchy sequence in \(L^2(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) (with the norm \(\| \cdot \|_{L^2 \cap L^\infty} := \| \cdot \|_2 + \| \cdot \|_\infty \)) which yields \(w = \tilde{w} \).

Proof of Theorem 1.4 We have already shown that assumptions (i)-(iii) of Theorem 1.2 are satisfied. Suppose first that \((f_4)\) and \((f_5)\) hold. We only need to verify that \(\varphi_0 \) satisfies (PS). Recall from (3.9) that for \(\|z\| > R \)
\[\varphi_0(z) = \Phi_0(w(z) + z), \]

where we have put \(w(z) = w(0, z) \), and by Proposition 3.6, we have
\[\langle \nabla \varphi_0(z), \zeta \rangle = \langle Lz, \zeta \rangle - \int_{\mathbb{R}^N} g(x, w(z) + z)\zeta dx \quad \text{for all } z, \zeta \in Z, \|z\| > R. \]

Let \(z = z^+ + z^- + z^0 \in Z^+ \oplus Z^- \oplus Z^0 \), where \(Z^+, Z^- \) respectively denote the subspaces of \(Z \) corresponding to the positive and the negative part of the spectrum of \(L|_Z \) and \(Z^0 := N(L) \subset Z \).

Let \((z_n) \subset Z\) be such that \(\nabla \varphi_0(z_n) \to 0 \). It suffices to consider \(z_n \) with \(\|z_n\| > R \), and we shall show that \((z_n)\) is bounded. Since \(Z \) is spanned by eigenfunctions of \(-\Delta + V_0\) and \(\dim Z < \infty \), it follows from [18, Theorem C.3.4] that there are constants \(\delta, C_0 > 0 \) such that \(|z(x)| \leq C_0 e^{-\delta|x|} \) for all \(x \in \mathbb{R}^N \) and all \(z \in Z \) with \(\|z\| \leq 1 \). In particular, such \(z \) are uniformly bounded in \(L^p(\mathbb{R}^N) \) for any \(p \in [1, \infty] \). Using this, \((f_4)\) and equivalence of norms in \(Z \), we obtain
\[\left| \langle Lz_n^+, z \rangle \right| \leq \left| \int_{\mathbb{R}^N} g(x, w(z_n) + z_n)z dx + o(1)\|z\| \right| \leq c_1\|z\| \leq c_2 \quad \text{for all } z \in Z^+, \|z\| = 1. \]

Hence \((z_n^+)\) is bounded and a similar argument shows that so is \((z_n^-)\). Suppose \(\|z_n^0\| \to \infty \) and write \(z_n^0 = t_n z_n^0, |z_n^0| = 1 \). Passing to a subsequence, \(z_n^0 \to z^0 \in Z^0 \). Denote
\[v_n := w(z_n) + z_n^+ + z_n^- . \]

We shall obtain a contradiction with the assumption \(\nabla \varphi_0(z_n) \to 0 \) by showing that
\[\langle -\nabla \varphi_0(z_n), z_n^0 \rangle = \int_{\mathbb{R}^N} g(x, v_n + t_n z_n^0)z_n^0 dx \not\to 0. \]

By Lemma 5.2, the sequence \((w(z_n))\) is bounded in \(L^\infty(\mathbb{R}^N) \), and since so are the sequences \((z_n^+)\), \(v_n(x) + t_n z_n^0(x) \to \pm \infty \) for all \(x \in A_\pm := \{ x \in \mathbb{R}^N : \pm z^0(x) > 0 \} \).

Suppose \(\pm g_\pm \geq 0 \). Since \(g \) is bounded and \(z_n^0 \) is uniformly bounded in \(L^1(\mathbb{R}^N) \), we may use the Lebesgue dominated convergence theorem to obtain
\[\lim_{n \to \infty} \int_{A_\pm} g(x, v_n + t_n z_n^0)z_n^0 dx = \int_{A_\pm} g_- z^0 dx \geq 0. \]

By the unique continuation property [5, Proposition 3 and Remark 2], \(z^0(x) \neq 0 \) a.e. Hence the measure of \(\mathbb{R}^N \setminus (A_+ \cup A_-) \) is 0 and thus
\[\int_{A_+} g_+ z^0 dx + \int_{A_-} g_- z^0 dx > 0. \]
This implies \ref{5.3}. If $\pm g_{\pm} \leq 0$, the same argument remains valid after making some obvious changes.

Suppose now that (f_4) and (f_6) are satisfied. Here we do not know whether (PS) holds for φ_0, however, we will construct an admissible pair directly by adapting an argument in \[10\], see in particular the proof of Theorem 4.5 there. Suppose $g(x, s) s \geq 0$ in (f_6) and let

$$\mathcal{W} := \{ z \in Z : \| z^\pm \| \leq R_0, \| z^0 \| \leq R_1 \}, \quad \mathcal{W}^- := \{ z \in \mathcal{W} : \| z^- \| = R_0 \text{ or } \| z^0 \| = R_1 \}$$

(R_0, R_1 to be determined). Boundedness of g and equivalence of norms in Z yield

$$\left| \int_{\mathbb{R}^N} g(x, w(z) + z) z^\pm \, dx \right| \leq c_3 \| z^\pm \|.$$

Since $(\pm L z, z^\pm) \geq \varepsilon \| z^\pm \|^2$ for some $\varepsilon > 0$, $\langle \nabla \varphi_0(z), z^+ \rangle \geq \varepsilon \| z^\pm \|^2 - c_3 \| z^\pm \| > 0$ if $\| z^\pm \| = R_0$ and $\langle \nabla \varphi_0(z), z^- \rangle < 0$ if $\| z^- \| = R_0$ provided R_0 is large enough. We want to show that there exists a (large) R_1 such that $\langle \nabla \varphi_0(z), z^0 \rangle < 0$ for z with $\| z^- \| = R_0$ and $\| z^0 \| = R_1$. Assuming the contrary, $\liminf_{n \to \infty} \langle \nabla \varphi_0(z_n), z_n^0 \rangle \geq 0$ for a sequence (z_n) such that $\| z_n^0 \| \to \infty$. Below we use the same notation as in \ref{5.3}. We have

$$0 = \langle -\nabla \varphi_0(z_n), w(z_n) \rangle = \int_{\mathbb{R}^N} g(x, v_n + t_n z_n^0) w(z_n) \, dx,$$

$g(x, s) \to 0$ as $|s| \to \infty$ (because $h_{\pm} \in L^\infty(\mathbb{R}^N)$ by (f_6)) and $|g(x, v_n + t_n z_n^0) z_n^\pm| \leq c_4 e^{-\delta |x|}$. So according to the Lebesgue dominated convergence theorem,

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} g(x, v_n + t_n z_n^0) v_n dx = 0.$$

Hence Fatou’s lemma and (f_6) give

$$\lim_{n \to \infty} \int_{A_{\pm}} g(x, v_n + t_n z_n^0) t_n z_n^0 dx = \liminf_{n \to \infty} \int_{A_{\pm}} g(x, v_n + t_n z_n^0) (v_n + t_n z_n^0) dx \geq \int_{A_{\pm}} h_{\pm} dx \geq 0.$$

Since by assumption at least one of the integrals on the right-hand side is positive (possibly infinite),

$$\liminf_{n \to \infty} \langle -\nabla \varphi_0(z_n), z_n^0 \rangle = \liminf_{n \to \infty} \int_{\mathbb{R}^N} g(x, v_n + t_n z_n^0) t_n z_n^0 dx > 0,$$

a contradiction. So R_1 exists as required and $(\mathcal{W}, \mathcal{W}^\pm)$ is an admissible pair. Now it is easy to see as in the proof of (iii) of Lemma \[1.2\] that this is also an admissible pair for $\varphi_{\pm \delta}$ if δ is small enough. As in the proof of Theorem \[1.4\] one shows that the critical groups for φ_{δ} and $\varphi_{-\delta}$ are different, and this forces bifurcation.

If $g(x, s) s \leq 0$, a similar argument shows that $\langle \nabla \varphi_0(z), z^0 \rangle > 0$ for some R_1, hence the exit set for the flow is $\mathcal{W}^- := \{ z \in \mathcal{W} : \| z^- \| = R_0 \}$.

\[\square\]

Remark 5.3. Note that \ref{5.4} is a variant of the Landesman-Lazer condition introduced in \[13\] and Theorem \[1.4\] remains valid if one assumes \ref{5.4} holds for all $z \in N(L)$. This is slightly less restrictive than (f_5). The reason that we have chosen (f_5) is that it is a general condition on f, with no reference to eigenfunctions corresponding to λ_0. (f_6) is a kind of strong resonance condition because $g(x, s) \to 0$ as $|s| \to \infty$. Note also that our arguments show that under the assumptions of Theorem \[1.4\] there is a uniform bound for solutions of \[1.1\] with $\lambda = \lambda_0$.

Acknowledgements. We would like to thank Charles Stuart for pointing out the references [6, 23] to us.

References

[1] J. C. Alexander, A primer on connectivity, in: E. Fadell, G. Fournier eds., Fixed Point Theory, Lecture Notes in Math. vol. 886, Springer 1981, pp. 455–483.
[2] A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press 2007.
[3] V. Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231–305.
[4] E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math. 350 (1984), 1–22.
[5] D. G. de Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. PDE 17 (1992), 339–346.
[6] J.-P. Dias and J. Hernández, A remark on a paper by J. F. Toland and some applications to unilateral problems, Proc. Roy. Soc. Edinburgh 75A, (1975/76), 179–182.
[7] G. Evéquoz and C. A. Stuart, Hadamard differentiability and bifurcation, Proc. Roy. Soc. Edinburgh 137A (2007), 1249–1285.
[8] R. Hempel and J. Voigt, The spectrum of a Schrödinger operator in $L_p(\mathbb{R}^n)$ is p-independent, Comm. Math. Phys. 104 (1986), 243–250.
[9] T. Kato, Perturbation Theory for Linear Operators, Springer 1995.
[10] P. Kokocki, Connecting orbits for nonlinear differential equations at resonance, J. Diff. Eq. 255 (2013), 1554–1575.
[11] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press 1964.
[12] W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications, Trans. Amer. Math. Soc. 349 (1997), 3181–3234.
[13] E. M. Landesman and A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609–623.
[14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer 1989.
[15] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Func. Anal. 7 (1971), 487–513.
[16] P. H. Rabinowitz, On bifurcation from infinity, J. Diff. Eq. 14 (1973), 462–475.
[17] M. Schechter, Spectra of Partial Differential Operators, North-Holland 1971.
[18] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447–526.
[19] C. A. Stuart, Asymptotic linearity and Hadamard differentiability, Nonlinear Analysis 75 (2012), 4699–4710.
[20] C. A. Stuart Bifurcation at isolated singular points of the Hadamard derivative, Proc. Royal Soc. Edinburgh 144A (2014), 1027–1065.
[21] C. A. Stuart, Asymptotic bifurcation and second order elliptic equations on \mathbb{R}^N, Ann. IHP - Analyse Non Linéaire (2014), http://dx.doi.org/10.1016/j.anihpc.2014.09.003.
[22] J. F. Toland, Asymptotic linearity and nonlinear eigenvalue problems, Quart. J. Math. Oxford 24 (1973), 241–250.
[23] J. F. Toland, Bifurcation and asymptotic bifurcation for non-compact non-symmetric gradient operators, Proc. Roy. Soc. Edinburgh 73A (1974/75), 137–147.

Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

E-mail address: wkrys@mat.umk.pl

Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

E-mail address: andrzejs@math.su.se