Review

Applications of virus-induced gene silencing for identification of gene function in fruit

Gangshuai Liu (刘港帅), Hongli Li (李泓利) and Daqi Fu (傅达奇)*

Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China

*Correspondence to: Daqi Fu, Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China. E-mail: daqifu@cau.edu.cn

Received 7 June 2020; Revised 15 May 2021; Editorial decision 23 May 2021.

Abstract

With the development of bioinformatics, it is easy to obtain information and data about thousands of genes, but the determination of the functions of these genes depends on methods for rapid and effective functional identification. Virus-induced gene silencing (VIGS) is a mature method of gene functional identification developed over the last 20 years, which has been widely used in many research fields involving many species. Fruit quality formation is a complex biological process, which is closely related to ripening. Here, we review the progress and contribution of VIGS to our understanding of fruit biology and its advantages and disadvantages in determining gene function.

Keywords: Gene function; virus-induced gene silencing; fruit; viral vector.

Introduction

Fruit not only provides seeds for plant reproduction, but also provides an abundant source of dietary nutrients for humans (Giovannoni, 2004; Klee and Giovannoni, 2011). The formation of fruit quality attributes, such as color, flavor, texture and nutrition, is controlled by ripening-related genes during the fruit ripening process (Giovannoni et al., 2017; Li et al., 2021). The study of the molecular mechanism of fruit ripening and quality formation can provide a theoretical basis for improving fruit quality through genetic selection and transgenic breeding in the future. With the development of high-throughput sequencing technology, it has become very easy to obtain genetic information, but the identification of gene function still depends on effective methods for functional evaluation.

When double-stranded RNA (dsRNA) appears in an organism, it will induce the organism’s defense mechanisms, including a response called post transcriptional gene silencing (PTGS; Zhang et al., 2015). The PTGS uses the Dicer enzyme to cut dsRNA into small interfering RNA (siRNA). This siRNA specifically recognizes and degrades any complementary mRNA sequence in the cytoplasm. The degradation of mRNA leads to the loss of the function of the gene, by RNA interference (RNAi; Filipowicz et al., 2005). In the RNAi process, dsRNA is the inducer of RNAi, and if we can effectively introduce dsRNA of the target gene into a plant, that target mRNA in plant will effectively be silenced at the RNA level. In order to form dsRNA in plants, it is necessary to construct a vector for expression of a DNA sequence with an antisense or hairpin fragment of the target gene. This recombinant vector can be introduced into plant tissue and transgenic plants can be obtained through tissue culture so that the reduction in target gene expression is stably inherited. Expression of the transgene from the vector will induce the RNAi of the target gene in the plant, but the transgenic process required to achieve this is complex and time-consuming and is also difficult or impossible for some plant species. However, dsRNA can also be produced during virus replication. If the target gene fragment is inserted into a modified virus that is then used to infect a plant, a large number of dsRNA molecules corresponding to the target gene can be produced rapidly in the infected plant as a consequence of the virus replication, thus effectively inducing RNAi in plants using the virus as a transient gene expression vector (Pandey et al., 2015). Compared with transgenic plant, virus-induced gene silencing (VIGS) technology is simple, fast and efficient, and it is not necessary to obtain transgenic
plants through tissue culture (Burch-Smith et al., 2004). In this strategy, VIGS uses the recombinant virus to induce the organism to initiate the PTGS process during the process of infection. The characteristics of VIGS result in an RNAi process against any selected target gene added to the recombinant vector. In recent years, the fruit research field has established the application of VIGS technology in multiple species of fruit, but there are also some problems. Here, we will briefly review the progress of VIGS in this field.

Strategic Considerations for Fruit VIGS

Selection of virus vector

There are many kinds of plant viruses in nature, which can in theory be modified into suitable VIGS vectors, but only a few have actually been used for VIGS because it is hard to modify a wild virus into a VIGS vector. General plant virus vectors include tobacco mosaic virus (TMV), potato virus-X (PVX), barley stripe mosaic virus (BSMV), bean pod mottle virus (BPMV), tomato golden mosaic virus (TGMV), satellite virus (SV), cabbage leaf curl virus (CbLCV), apple latent spherical virus (ALSV), prunus necrotic ringspot virus (PNRSV), cucumber mosaic virus (CMV), citrus tristeza virus (CTV), cucumber green mottle mosaic virus (CGMMV) and pea early browning virus (PEBV) vectors, of which TRV, ALSV, CMV, PVX and CGMMV vectors have been successfully applied to mediate gene silencing in fruits (Burch-Smith et al., 2004; Zhang and Ghabrial, 2006; Lin et al., 2008; Senthil-Kumar and Mysore, 2011; Cui and Wang, 2017; Killiny, 2020; Liu et al., 2020).

Ideally, suitable VIGS vectors should not only produce very obvious virus symptoms after they infect plants but also be able to interfere with the observed phenotype caused by silencing of the target gene and could also affect plant growth. At present, the TRV vector is the most widely used, mainly because its structure is simple, it has more than 400 host species, and it can effectively infect the meristems of plants. Furthermore, the virus symptoms are mild, which will not interfere with the normal growth of plants (Bachan and Dinesh-Kumar, 2012). The process of VIGS based on TRV is shown in Figure 1.

Selection of reporter gene

A reporter gene is a marker that ensures the virus infection is effective and enables subsequent identification of plants with the VIGS construct. When we want to test whether a VIGS vector can induce gene silencing in a new plant, it is necessary to make sure that the modified virus can infect, spread and be active in the target host plant. If the virus cannot infect the plant, the reporter gene will not be silenced and cannot produce the desired phenotype. If the target plant is a host of the virus, then we can observe the silencing phenotype of a reporter gene. Phytoene desaturase (PDS) gene is a common and effective reporter gene expressed routinely in the leaves of green plants. If there is virus in the newly growing leaves, there will be virus in the newly growing leaves. If it can be detected, this indicates that the virus can infect, replicate and move in the plant. For any plant VIGS system that has never been successfully reported before, it is essential to ascertain whether a reporter gene silencing phenotype can be observed to prove the virus has infected plants. If PDS is selected as the reporter gene, a new leaf will show yellow or white patches of photobleaching in the infected plant. Real-time quantitative PCR (RT-qPCR) can then be used to detect the silencing level of the selected target gene.

Verification and analysis of gene silencing

There are two distinct aspects of VIGS that have to be evaluated in order to judge success. First, does the selected virus actually infect the target plant? This is generally evaluated by measuring whether there is virus in the newly growing leaves. If it can be detected, this indicates that the virus can infect, replicate and move in the plant. For any plant VIGS system that has never been successfully reported before, it is essential to ascertain whether a reporter gene silencing phenotype can be observed to prove the virus has infected plants. If PDS is selected as the reporter gene, a new leaf will show yellow or white patches of photobleaching in the infected plant. Real-time quantitative PCR (RT-qPCR) can then be used to detect the silencing level of the selected target gene. The silencing of fruit ripening-related genes often affects the ripening process of the fruit, and often results in different colored regions of the same fruit. If there is no color change expected in the fruit when the target gene is silenced, it is necessary to select a visualization system to identify silenced parts of the fruit for sampling. For example, if the transgenic purple tomato carrying Del and Ros1 genes from Antirrhinum majus are used, the selected target gene and Del or Ros1 gene (Orzaez et al., 2009) are co-silenced in Del and Ros1
overexpression transgenic tomato plant and it is easy to distinguish the VIGS-silenced tissue in which the target gene is silenced because it lacks the purple color. Transgenic GFP tomato is also a good visualization material (Quadrana et al., 2011), as silencing can be tested by looking for lack of fluorescence. The identified silenced tissue samples need to be further verified by RT-qPCR and then used for subsequent analysis, such as RNA-seq, proteome and metabolome, etc.

Figure 1. Brief process of VIGS based on TRV (Fu et al., 2005; Wang et al., 2016; Gao et al., 2018; Meng et al., 2018). First, the RNA1 and RNA2 of TRV are reverse-transcribed into double-stranded DNA, then inserted into a plant expression vector forming pTRV1 and pTRV2, respectively. The cDNA fragment of a candidate gene is inserted into pTRV2. pTRV1 and pTRV2-target gene fragments are then transferred to Agrobacterium before infecting plants. In the preparation for infection, Agrobacterium infiltration suspensions carrying pTRV1 and pTRV2-target gene fragments are mixed in a 1:1 ratio and used to infect plants by either leaf injection, high-pressure spray gun, vacuum infiltration, stem injection or carpopodium injection, after which the fruit-silencing phenotype is observed after a suitable time interval has passed. Screening and selection of VIGS-affected tissue is by reporter gene selection (color change or GFP fluorescence as described in the text) followed by polymerase chair reaction verification of target gene silencing and analysis of the resulting fruit phenotype. VIGS, virus-induced gene silencing; TRV, tobacco rattle virus; PDS, phytoene desaturase; GFP, green fluorescent protein.
Application of VIGS in Functional Gene Identification in Fruit

VIGS has been widely used as a rapid gene function verification method in fruits of many species (Table 1). Tomato is the most widely used fruit and TRV is the most popular virus vector. There also have been reports of successful application of VIGS in several other fruits in which it is hard to obtain transgenic plants, such as apple, peach, pear, litchi, mango, and others. In above cases, detached fruit are mostly injected with the VIGS vector, without any report of its application in a plant VIGS system to make sure that the virus can infect the plant. Therefore, it is recommended that verification is required as to whether VIGS can be effectively implemented in these kinds of fruits.

There are several examples of the functional identification of genes by VIGS in fruit. First, VIGS is often used to verify the role of a selected candidate gene related to fruit ripening or pigment regulation. Compared with the control, the fruit silenced by the candidate gene may show an uneven ripening phenotype or color change if the candidate gene plays an important role in the fruit ripening and color formation. If the candidate gene is a negative regulator, the silenced part of the fruit will ripen prior to the non-silenced fruit part. In the case of the silencing of a positive regulator, one aspect of ripening, such as color change involving the accumulation or degradation of chlorophyll, anthocyanin and lycopene metabolism will be affected and it is easy to show a visible phenotype, which can be used to verify the function of candidate genes. VIGS can also be used to screen transcription factors family members when one member has been shown to be involved in fruit ripening, such as the NAC transcription factors (TFs) family. Gao et al. (2018) used VIGS to screen 34 NAC (NAM, ATAF1, ATAF2 and CUC2) TF family members and found that non-ripening-like1 (SNOR-like1) is a positive regulator of fruit ripening. VIGS of SNOR-like1 produced an uneven fruit ripening phenotype, and RT-qPCR detection of delayed ripening sites showed that the expression level of SNOR-like1 was significantly reduced. VIGS was also used to screen seven HD-Zip family members with high expression levels in fruit and found that BEL1-LIKE HOMEODOMAIN 11 (SIBEL11) negatively regulated the synthesis of chlorophyll in tomato fruit and expression of SIBEL11 was significantly inhibited in the region where chlorophyll accumulation was accelerated (Meng et al., 2018). The HD-Zip homeobox protein 1 (LeHb-1) gene was silenced by PVX to show delayed ripening in tomato fruit (Lin et al., 2008). VIGS can be used to screen the function of ripening-related proteins. Wang et al. (2014) used VIGS to investigate the functions of different proteins obtained from proteomics studies and found that two E2s genes, ubiquitin-conjugating enzymes 32 (SIUBC32) and ubiquitin-conjugating enzymes 41 (SIUBC41), are involved in the regulation of fruit ripening. The infected fruit again showed an uneven ripening phenotype during the ripening process, with delayed yellow regions compared with unaffected orange regions, and the expression levels of SIUBC32 and SIUBC41 in the yellow region with delayed ripening were significantly decreased. Zhu et al. (2015) used VIGS to screen long non-coding RNAs (lncRNAs) with high expression level during fruit ripening and found that lncRNA1459 and lncRNA1840 regulate tomato fruit ripening, and the ripening process of the silenced parts of lncRNA1459 and lncRNA1840 VIGS fruit was significantly delayed.

An important feature of the VIGS approach is that it is possible to screen more than 100 candidate genes in tomato fruit in a short time. This can be done by sprout vacuum-infiltration (Yan et al., 2012). For example, if it is desired to screen the genes related to fruit ripening from 100 candidate genes by VIGS, a fast and high throughput operation can be used, as follows. Firstly, 300–500 bp fragments of these 100 candidate genes are cloned and inserted into the TRV vector by the In-fusion method to obtain 100 candidate gene TRV–candidate gene vectors numbered from 1 to 100, and transformed into Agrobacterium tumefaciens GV3101 for the next step. Secondly, prepare 1000 sprouts of Micro-Tom tomato. Place each group of 10 sprouts into 2-mL centrifuge tubes numbered from 1 to 100. Add to each centrifuge tube 1 mL Agrobacterium tumefaciens infection solution with the same number. Then, place the 100 centrifuge tubes in a tube rack fitted with an opening cover for use during vacuum infiltration. Subsequently, all infected sprouts are transferred into soil and cultured under appropriate temperature and humidity conditions. After one month the seedlings grow, blossom and bear fruit. The color change of fruits during ripening can be observed and the candidate genes corresponding to fruits with uneven ripening phenotype selected for subsequent identification. At the same time, 10 sprouts infected by TRV-PDS can be used as control to evaluate the effectiveness and efficiency of the infection process of the same batch. This process takes about 3e months to screen 100 candidate genes (Figure 2).

Conclusions

VIGS can play an important role in the field of fruit ripening research. The use of TRV vectors is a mature technology and has been successfully applied to good effect in fruit function research. The feasibility and effectiveness of TRV in pear, peach, apple and other fruits still needs further study, because no reference has demonstrated that TRV can cause effective reporter gene silencing, for example by PDS silencing in the seedlings. Apart from TRV vectors, few other effective vectors have been reported. It is necessary to develop easy-to-use VIGS vectors with mild viral symptoms that are suitable for use with a wide range of hosts. It is also necessary to explore and establish a variety of effective visualization methods for use with the VIGS technology system, in order to identify silenced tissue, because it is hard to silence all fruit tissue completely. At present, fruit VIGS is mostly used in fruit ripening, but it could be widely used in fruit nutrition metabolism and disease resistance research in the future. In addition to its application in the identification of fruit gene function, VIGS could also be applied in the study of gene functions in various aspects of plant biology, such as disease resistance (Peart et al., 2002; Wei et al., 2018; Situ et al., 2020), stress response (Zhang J. X. et al., 2018, Zhang G. F. et al., 2020) and organ development (Chen et al., 2021). Compared with other transgenic technologies based on tissue culture, such as CRISPR/Cas9 technology, RNAi technology and strong promoter-based overexpression technology, VIGS technology has the advantages of simple and rapid operation (Burch-Smith et al., 2004). It can also be used for efficient high-throughput screening and functional verification of candidate genes without involving a cumbersome tissue culture process. However, due to the fact that gene silencing mediated by VIGS technology in plants cannot be intergenerational and complete silencing of target genes cannot be achieved, further studies on plant gene function still mainly rely on obtaining transgenic plants that stably inherit the modification through tissue culture.
Table 1. Applications of VIGS in functional gene identification of fruit

Function	Target gene	Virus	Fruit species	Reference
Disease resistance	MdCNGC2	TRV	Apple	Zhou et al. (2020)
Anthocyanin biosynthesis	MdHB1	TRV	Apple	Jiang et al. (2017)
Fruit ripening	MdERF2	TRV	Apple	Li T. et al. (2016)
Fruit ripening	FvTCP9	TRV	Strawberry	Xie et al. (2020)
Fruit ripening	FaIPK1	TRV	Strawberry	Hou et al. (2018)
Metabolism of proanthocyanidins	FaMYB5	TRV	Strawberry	Wang L. et al. (2017)
Fruit ripening	FaABI4	TRV	Strawberry	Chai and Shen (2016)
Fruit coloration	PpGST1	TRV	Peach	Zhao Y. et al. (2019)
Fruit softening	PpBGAL10, PpBGAL16	TRV	Peach	Liu H. K. et al. (2018)
Carotenoid degradation	PrepeSEP1	TRV	Peach	Li et al. (2017)
Carotenoid biosynthesis	CDD4	TRV	Peach	Bai et al. (2016)
Fruit ripening	PpCHLH	TRV	Peach	Jia et al. (2011)
Color formation and carotenoid accumulation	ZEP	TRV	Pepper	Lee et al. (2021)
Carotenoid metabolism	CaPSY1	TRV	Pepper	Wei et al. (2021)
Color formation	PSY2	TRV	Pepper	Jang et al. (2020)
Carotenoid accumulation	PRR2	TRV	Pepper	Jeong et al. (2020)
Fruit ripening	CaMET1-like1	TRV	Pepper	Xiao et al. (2020)
Capsaicin biosynthesis	pAMT	TRV	ASW	Li C. J. et al. (2019)
Anthocyanin biosynthesis	An2	TRV	Pepper	Kim et al. (2017)
Capsaicinoid accumulation	Tpm1	CMV	Pepper	Ogawa et al. (2015)
Capsanthin synthesis	Cca, Ppy, Lcyb, Crtz	TRV	Pepper	Tian et al. (2014)
Piperine biosynthesis	PipCoA ligase	TRV	Black pepper	Schnabel et al. (2020)
Climacteric response	SlICDH1	TRV	Tomato	Gamrasni et al. (2020)
Fruit ripening	Sir1P1b	TRV	Tomato	Yang et al. (2020)
Fruit quality	SITDR4	TRV	Tomato	Zhao X. D. et al. (2019)
Fruit ripening	SPtPS	TRV	Tomato	Naing et al. (2019)
Fruit ripening	LncRNA2155	TRV	Tomato	Yu T. T. et al. (2019)
Chloroplast development and chlorophyll synthesis	SibeL11	TRV	Tomato	Meng et al. (2018)
Fruit ripening	SinoR-like1	TRV	Tomato	Gao et al. (2018)
Fruit ripening	SdORM4	TRV	Tomato	Yang et al. (2017)
Lycopene accumulation	SinaP7	TRV	Tomato	Fu et al. (2016)
Fruit ripening	LcSPL-CN	TRV	Tomato	Lai et al. (2015)
Fruit ripening	LncRNA1459, LncRNA1840	TRV	Tomato	Zhu et al. (2015)
Fruit ripening	SlUBC32, SlUBC41	TRV	Tomato	Wang et al. (2014)
Ethylene biosynthesis	LeRIN, LeACS2, LeACS4, LeACO1	TRV	Tomato	Li et al. (2011)
Fruit ripening	LeHb-1	PVX	Tomato	Lin et al. (2008)
Ethylene response	LeETR4	TRV	Tomato	Zhang et al. (2008)
Ethylene response	LeCTR1, LeEL1a, LeEIN2	TRV	Tomato	Fu et al. (2005)
Fruit size	P5	TRV	Physalis	Gao et al. (2020)
Fruit ripening and softening	PafME1, PafME2	TRV	Sweet cherry	Qi et al. (2020)
Fruit size and ripening	PafCYP78A6	TRV	Sweet cherry	Qi et al. (2019)
Flavonoid biosynthesis	ANS	TRV	Sweet cherry	Qi et al. (2018)
ABA-regulated anthocyanin biosynthesis	PucMYBA	TRV	Sweet cherry	Shen et al. (2014)
Modifies epidermal cells and gravitropism	SmCHS	TRV	Eggplant	Wang and Fu (2018)
Phytoene desaturase biosynthesis	CePD	TRV	Cysticapsorus vesicaria	Hidalgo et al. (2012)
Biosynthesis of limonoids	GoASC	TRV	Citrus	Wang F.S. et al. (2017)
Anthocyanin biosynthesis	VoMYBA1	TRV	Grape berry	Zhang P.F. et al. (2020)
Carotenoid accumulation and coloration	CYC-B	TRV	Loquat	Hong et al. (2019)
Carotenoid accumulation	PSY	TRV	Loquat	Hong et al. (2017)
Phytoene desaturase biosynthesis	PDS	CGMMV	Cucurbit	Liu et al. (2020)
Anthocyanin accumulation	AcMYB10	TRV	Red-fleshed kiwifruit	Yu M. et al. (2019)
Anthocyanin biosynthesis	AcUFGT3a	TRV	Red-fleshed kiwifruit	Liu Y. F. et al. (2018)
Anthocyanin accumulation	PpBBX16	TRV	Pear	Bai et al. (2019)
Betalain biosynthesis	HmnWRKY40	TRV	Pitaya	Zhang et al. (2021)
Brassinosteroid biosynthesis	HrCYP90B1	TRV	Sea buckthorn	Liu et al. (2021)
Anthocyanin accumulation	MmCHI2	TRV	Mulberry	Ciao et al. (2021)
Anthocyanin biosynthesis and fruit coloration	LbNCE1D1	TRV	Lycium	Li G. et al. (2019)
Table 1. Continued

Function	Target gene	Virus	Fruit species	Reference
Early development of fruits and seeds	XsERS	TRV	Xanthoceras sorbifolium	Zhou and Cai (2021)
Fruit ripening and pericarp coloration	RCCR	TRV	Mango	Liu K. L. et al. (2018)
Seed development	LcCWIN2, LcCWIN5	TRV	Litchi	Zhang J. Q. et al. (2018)
Color formation	LcUFGT1	TRV	Litchi	Li X. J. et al. (2016)

CNGC2, cyclic nucleotide-gated ion channel 2; ERF2, ethylene response factor 2; TCP9, teosinte branched 1, cycloidea, and proliferating4 cell factor 9; RIPK1, red-inalual protein kinase 1; MYB5, v-myb avian myeloblastosis viral oncogene homolog 5; ABI4, ABI insensitive 4; GST1, glutathione S-transferase 1; BGAL10, beta-galactosidase 10; BGAL16, beta-galactosidase 16; SEP1, sepalata 1; CCD4, carotenoid cleavage dioxygenase 4; CHLH, magnesium chelatase H subunit; ZEP, zeaxanthin epoxidase; PSY1, phytoene synthase 1; PSY2, phytoene synthase 2; PRR2, pseudo response regulator2; MET1-like1, methyltransferase 1-like1; pAMT, putative aminotransferase, An2, Anthocyanin2; Pun1, Punnet gene 1; Cca, capsanthin/capsorubin synthase; Lcyb, lycopene-beta-cyclase; Crtz, beta-carotene hydroxylase; PipCoA ligase, piperic acid coenzyme A ligase; ICDH1, isocitrate dehydrogenase 1; RIP1b, RNA editing factor interacting protein 1b; TDR4, FRUITFULL 1; ORRM4, organelle RNA recognition motif-containing protein 4; NAP7, non-intrinsic ARC protein 7; SPL-CNR, squamosa promoter-binding-like-colorless non-ripening; RIN, ripening inhibitor; ACS2, 1-amincyclopropane-1-carboxylate synthase 2; ACS4, 1-amincyclopropane-1-carboxylate synthase 4; ACO1, 1-amincyclopropane-1-carboxylate oxidase 1; ETR4, ethylene receptor 4; EILs, ethylene insensitive 3-like protein; P5, physalis lateral organ boundaries domain family transcription factor; PME1, pectin methyl esterase 1; PME2, pectin methyl esterase 2; CYP78A6, cytochrome P450, family 90, subfamily A, polypeptide 6; ANS, anthocyanidin synthase; MYBA, v-myb avian myeloblastosis viral oncogene homolog A; CHS, chalcone synthase; OSC, oxidosqualene cyclase; MYB1, v-myb avian myeloblastosis viral oncogene homolog A1; CYC-B, chromoplast-specific lycopene beta-cyclase; MYB10, v-myb avian myeloblastosis viral oncogene homolog 10; UFGT3a, uridine diphosphate flavonoid glycosyltransferase 3a; BBX16, B-box domain protein 16; WRKY40, WRKY DNA-binding protein 40; CYP90B1, cytochrome P450, family 90, subfamily B, polypeptide 1; CHI2, chalcone isomerase 2; NCED1, 9-cis-epoxycarotenoid dioxygenase 1; ERS, ethylene receptor homolog; RCCR, red chlorophyll catabolite reductase; CWIN2, cell wall invertase 2; CWIN3, cell wall invertase 3; UFGT1, uridine diphosphate flavonoid glycosyltransferase 1; TRV, tobacco rattle virus.

Figure 2. High-throughput screening of VIGS based on sprout vacuum-infiltration (Yan et al., 2012). First, sufficient seeds of tomato (cv. Micro-Tom) are germinated in water at 28 °C for 2-3 days to reach a length of 0.5-1 cm. At the same time, the Agrobacterium infection solutions carrying pTRV1 or pTRV2-candidate gene fragments are prepared and mixed in a 1:1 ratio. Then 10 seeds and 1 mL mixed infection solution are added to a 2-mL centrifuge tube with a cover that can be opened for vacuum-infiltration. Infected sprouts are planted in commercially available vegetative soil, and the silencing phenotype of fruit can be observed as the plants develop. For example, PDS-silenced fruit will show a phenotype of photobleaching. VIGS, virus-induced gene silencing; TRV, tobacco rattle virus; PDS, phytoene desaturase.
Author Contributions
Gangshuai Lu: Writing original draft, review and editing. Hongli Li: Writing, review and editing. Daqi Fu: Design, writing original draft, review and editing, supervision.

Acknowledgement
We thank Donald Grierson for the helpful comments on the manuscript.

Funding
No funding was received for this work.

Conflict of Interest
The authors declare no conflict of interest.

References
Bachan, S., Dinesh-Kumar, S. P. (2012). Tobacco rattle virus (TRV)-based virus-induced gene silencing. Methods in Molecular Biology, 894: 83–92.
Bai, S. L., Tao, R. Y., Tang, Y. X., et al. (2019). BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal, 17(10): 1985–1997.
Bai, S. L., Yuan, P. A., Tatsuki, M., et al. (2016). Knockdown of carotenoid cleavage dioxygenase 4 (CCD4) via virus-induced gene silencing confers yellow coloration in peach fruit: evaluation of gene function related to fruit traits. Plant Molecular Biology Reporter, 34(1): 257–264.
Burch-Smith, T. M., Anderson, J. C., Martin, G. B., et al. (2020). The role of FAABI4 virus-induced gene silencing on carotenoid accumulation in fruit of Eriobotrya japonica Lindl. Molecular Plant Breeding, 16(6): 1792–1797. (In Chinese)
Hong, M., Chi, Z. H., Wang, Y. Q., et al. (2019). Expression of a chloroplast-specific lycopene beta-cyclase gene (CYC-B) is implicated in carotenoid accumulation and coloration in the loquat. Biomolescules, 9(12): 874.
Hou, B. Z., Xu, C., Shen, Y. Y. (2018). A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. Journal of Experimental Botany, 69(7): 1569–1581.
Jang, S. J., Jeong, H. B., Jung, A., et al. (2020). Phytoseiidae symbiont 2 can compensate for the absence of PSY1 in Capsicum fruit. Journal of Experimental Botany, 71(12): 3417–3427.
Jeong, H. B., Jang, S. J., Kang, M. Y., et al. (2020). Candidate gene analysis reveals that the fruit color locus CI corresponds to PR2 in (Capsicum frutescens). Frontiers in Plant Science, 11: 399.
Jia, H. F., Chai, Y. M., Li, C. L., et al. (2011). Cloning and characterization of the H subunit of a magnesium chelatase gene (PpCHLH) in peach. Journal of Plant Growth Regulation, 30(4): 445–455.
Jiang, Y. H., Liu, C. H., Yan, D., et al. (2017). MdB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. Journal of Experimental Botany, 68(5): 1055–1069.
Killiny, N. (2020). The efficacy of Citrus tristeza virus as a vector for virus induced gene silencing in Huanglongbing-affected citrus. Tropical Plant Pathology, 45(3): 327–333.
Kim, J., Park, M., Jeonge, E. S., et al. (2017). Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods, 13: 3.
Klee, H. J., Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45: 41–59.
Lai, T. F., Wang, Y., Zhou, T., et al. (2015). Virus-induced LeSPL-CNR silencing inhibits fruit ripening in tomato. Journal of Agricultural Science (Toronto), 7(7): 184–195.
Lee, S. Y., Jung S. J., Jeong, H. B., et al. (2021). A mutation in zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). The Plant Journal, in press.
Li, C. J., Hirano, H., Kasajima, I., et al. (2019). Virus-induced gene silencing in chili pepper by apple latent spherical virus vector. Journal of Virological Methods, 273: 113711.
Li, G., Zhao, J. H., Qin, B. B., et al. (2019).ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. BMC Plant Biology, 19: 317.
Li, J. J., Fang, L., Qian, M., et al. (2017). Characteristics and regulatory pathway of the PrpSEP1 SEPALLATA gene during ripening and softening in peach fruits. Plant Science, 257: 63–73.
Li, L., Zhu, B. Z., Fu, D. Q., et al. (2011). RN1 transcription factor plays an important role in ethylene biosynthesis of tomato fruit ripening. Journal of the Science of Food and Agriculture, 91(13): 2308–2314.
Li, S., Chen, K. K., Grierson, D. (2021). Molecular and hormonal mechanisms regulating fleshy fruit ripening. Cells, 10: 1136.
Li, T., Jiang, Z. Y., Zhang, L. C., et al. (2016). Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal, 88(5): 735–748.
Li, X. J., Zhang, J. Q., Wu, Z. C., et al. (2016). Functional characterization of a glucosyltransferase gene, LeUGFT1, involved in the formation of cyanidin

Author Contributions
Gangshuai Lu: Writing original draft, review and editing. Hongli Li: Writing, review and editing. Daqi Fu: Design, writing original draft, review and editing, supervision.

Acknowledgement
We thank Donald Grierson for the helpful comments on the manuscript.

Funding
No funding was received for this work.

Conflict of Interest
The authors declare no conflict of interest.

References
Bachan, S., Dinesh-Kumar, S. P. (2012). Tobacco rattle virus (TRV)-based virus-induced gene silencing. Methods in Molecular Biology, 894: 83–92.
Bai, S. L., Tao, R. Y., Tang, Y. X., et al. (2019). BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal, 17(10): 1985–1997.
Bai, S. L., Yuan, P. A., Tatsuki, M., et al. (2016). Knockdown of carotenoid cleavage dioxygenase 4 (CCD4) via virus-induced gene silencing confers yellow coloration in peach fruit: evaluation of gene function related to fruit traits. Plant Molecular Biology Reporter, 34(1): 257–264.
Burch-Smith, T. M., Anderson, J. C., Martin, G. B., et al. (2004). Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 39(5): 734–746.
Chai, L., Shen, Y. Y. (2016). FaABF4 is involved in strawberry fruit ripening. Science Horticulture, 210: 34–40.
Chao, N., Wang, R. F., Hou, C., et al. (2021). Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. Plant Physiology and Biochemistry, 161: 65–73.
Chen, J. C., Jiang, C. Z., Gookin, T. E., et al. (2004). Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Molecular Biology, 55(4): 521–530.
Chen, W. H., Jiang, Z. Y., Hsu, H. F., et al. (2021). Silencing of FOREVER YOUNG: FLOWER-Like genes from Phalaenopsis orchids promotes flower senescence and abscission. Plant & Cell Physiology, 62(1): 111–124.
Cui, H. G., Wang, A. M. (2017). An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene. Plant Biotechnology Journal, 15(3): 344–356.
Filipowicz, W., Jaskiewicz, L., Kolb, F. A., et al. (2005). Post-transcriptional gene silencing by siRNAs and miRNAs. Current Opinion in Structural Biology, 15(3): 331–341.
Fu, D. Q., Meng, L. H., Zhu, B. Z., et al. (2016). Silencing of the SnIP7 gene influences plastid development and lycopene accumulation in tomato. Scientific Reports, 6: 38664.
Fu, D. Q., Zhu, B. Z., Zhu, H. L., et al. (2005). Virus-induced gene silencing in tomato fruit. The Plant Journal, 43(2): 299–308.
Fu, D. Q., Zhu, B. Z., Zhu, H. L., et al. (2006). Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Molecules and Cells, 21(1): 153–160.
Gamarasri, D., Erov, M., Saat, L., et al. (2020). The isocitrate dehydrogenase 1 gene is associated with the climacteric response in tomato fruit ripening. Postharvest Biology and Technology, 166: 111219.
Gao, H. H., Li, J., Wang, L., et al. (2020). Transcriptomic variation of the flower-fruit transition in Physalis and Solanum. Planta, 252(2): 28.
glucoside in the pericarp of Litchi chinensis. Physiologia Plantarum, 156(2): 139–149.

Liu, Z. F., Hong, Y. G., Yin, M. G., et al. (2008). A tomato HD-ZIP homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. The Plant Journal, 55(2): 301–310.

Liu, H. K., Qian, M., Song, C. H., et al. (2018). Down-regulation of PbBGA10 and PbBGA16 delays fruit softening in peach by reducing polygalacturonase and pectin methylesterase activity. Frontiers in Plant Science, 9: 1015.

Liu, H. P., Fu, D. Q., Zhu, B. Z., et al. (2012). Virus-induced gene silencing in eggplant (Solanum melongena). Journal of Integrative Plant Biology, 54(6): 422–429.

Liu, J. F., Wang, Z. Y., Zhao, J., et al. (2015). Evidence of capsaicin synthetase in strawberry (Fragaria x ananassa). Plant Physiology, 175(4): 2106–2116.

Liu, J. T., Zhao, Z. C., Guo, A. P., et al. (2018). Cloning RCCR gene from mango (Mangifera indica) and the construction of gene silencing vector. Molecular Plant Breeding, 16(10): 3174–3181. [In Chinese with English abstract.]

Liu, M., Liang, Z. L., Aranda, M. A., et al. (2020). A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods, 16(1): 9.

Liu, Y. L., Schiff, M., Dinesh-Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31(6): 777–786.

Liu, Y. J., Zhou, B., Qi, Y. W., et al. (2018). Biochemical and functional characterization of AcUFGT3a, a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis). Physiologia Plantarum, 162(4): 409–426.

Meng, L. H., Fan, Z. Q., Zhang, Q., et al. (2018). REL1-LIKE HOMEODOMAIN 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit. The Plant Journal, 94(6): 1126–1140.

Naing, A. H., Kyu, S. Y., Pe, P. P. W., et al. (2019). Silencing of the phytotoxin desaturase (PDS) gene affects the expression of fruit ripening genes in tomatoes. Plant Methods, 15(1): 110.

Ogawa, K., Murota, K., Shimura, H., et al. (2015). Evidence of caspacin synthase activity of the Pn1-1-encoded protein and its role as a determinant of caspacinoid accumulation in pepper. BMC Plant Biology, 15: 93.

Orzaez, D., Mirabel, S., Wieland, W. H., et al. (2006). Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiology, 140(1): 3–11.

Peart, J. R., Cook, G., Fris, J. B., et al. (2002). An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. The Plant Journal, 29(5): 569–579.

Qi, X. L., Li, M., Liu, C. L., et al. (2018). Construction of TRV-mediated virus induced gene silencing (VIGS) system in sweet cherry fruit. Journal of Fruit Science, 35(11): 1309–1315. [In Chinese with English abstract.]

Qi, X. L., Liu, C. L., Song, L. L., et al. (2019). Arabidopsis EOD1 homologue FcCYP78A6 affects fruit size and is involved in sweet cherry (Prunus avium L.) fruit ripening. Scientia Horticulturae, 246: 57–67.

Qi, X. L., Li, M., Liu, C. L., et al. (2020). Functional characterization of sweet cherry PrpME1 and PrpME2 during fruit ripening and softening. Journal of Fruit Science, 37(10): 1453–1463. [In Chinese with English abstract.]

Quadrana, L., Rodriguez, M. C., Lopez, M., et al. (2011). Coupling virus-induced gene silencing to eggplant and diverse Solanaceae species. The Plant Journal, 64(2): 322–331.

Schnabel, A., Cotinghuiza, F., Athmer, B., et al. (2020). A piperic acid CoA ligase produces a putative precursor of piperine, the pungent principle from black pepper fruits. The Plant Journal, 102(3): 569–581.

Senthil-Kumar, M., Mysore, K. S. (2011). New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 16(12): 656–665.

Shen, X. J., Zhao, K., Liu, L. I., et al. (2014). A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant & Cell Physiology, 55(1): 862–880.

Situ, J. J., Liang, J. Q., Fan, X. N., et al. (2020). An OXLR effector PlAVhi42 from Peronosporabata bchsis triggers plant cell death and contributes to virulence. Molecular Plant Pathology, 21(3): 415–428.

Tian, S. L., Li, L., Chai, W. G., et al. (2014). Effects of silencing key genes in the capsanthin biosynthetic pathway on fruit color of deaperid pepper fruits. BMC Plant Biology, 14: 314.

Wang, C. C., Fu, D. Q. (2018). Virus-induced gene silencing of the eggplant chalcone synthase gene during fruit ripening modifies epidermal cells and gravitropism. Journal of Agricultural and Food Chemistry, 66(11): 2623–2629.

Wang, R. H., Yuan, X. Y., Meng, L. H., et al. (2016). Transcriptome analysis provides a preliminary regulation route of the ethylene signal transduction component, STEIN2, during tomato Ripening. PLoS ONE, 11(12): e0168287.

Wang, F. S., Wang, M., Liu, X. N., et al. (2017). Identification of putative genes involved in limonoids biosynthesis in citrus by comparative transcriptomic analysis. Frontiers in Plant Science, 8: 782.

Wang, L., Tang, H. R., Wang, X. R., et al. (2017). Virus-induced gene silencing as a tool for FaMYB5 gene functional studies in strawberry. Acta Horticulturae Sinica, 44(1): 33–42.

Wang, T., Wen, L. W., Zhu, H. L. (2015). Effectively organ-specific virus-induced gene silencing in tomato plants. Journal of Nature and Science, 1: e34.

Wang, Y. W., Wang, W. H., Cai, J. H., et al. (2014). Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biology, 15(12): 548.

Wei, X. C., Meng, C. Y., Yuan, X. Y., et al. (2021). CaPSY1 gene plays likely the key role in carotenoid metabolism of pepper (Capsicum annuum) at ripening. Functional Plant Biology, 48(2): 141–155.

We, Y. X., Liu, G. Y., Chang, Y. L., et al. (2018). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Molecular Plant Pathology, 19(10): 2209–2220.

Xiao, K., Chen, J., He, Q. X. M., et al. (2020). DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. Journal of Experimental Botany, 71(6): 1928–1942.

Xie, Y. G., Ma, Y. Y., Bi, P. P., et al. (2020). Transcription factor FeTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiology and Biochemistry, 146, 374–383.

Yan, H. X., Fu, D. Q., Zhu, B. Z., et al. (2012). Sprout vacuum-infiltration: a simple and efficient agroinoculation method for virus-induced gene silencing in diverse solanaceous species. Plant Cell Reports, 31(9): 1713–1722.

Yang, Y. F., Zhu, G. N., Li, R., et al. (2017). The RNA editing factor SiorRM4 is required for normal fruit ripening in tomato. Plant Physiology, 175(4): 1690–1792.

Yang, Y. F., Liu, X. Y., Wang, K. R., et al. (2020). Molecular and functional diversity of organelle RNA editing mediated by RNA recognition motif-containing protein ORR4M4 in tomato. New Phytologist, 228(2): 570–583.

Yu, M., Man, Y. P., Wang, Y. C. (2019). Light- and temperature-induced expression of an R2R3-MYB gene regulates anthocyanin biosynthesis in red-fleshed kiwifruit. International Journal of Molecular Sciences, 20(20): 5228.

Yu, T. T., Zheng, D. T. W., Li, R., et al. (2019). Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Annals of Botany, 123(3): 469–482.

Zhang, C., Xie, Y. H., Luo, Y. B., et al. (2008). The VIGS of LeETR4 in tomato fruit and its effect on system II ethylene. Science & Technology of Food Industry, 29(3): 125–127. (In Chinese)
Zhang, C. Q., Ghabrial, S. A. (2006). Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology, 344: 401–411.

Zhang, G. F., Liu, W., Feng, F., et al. (2020). Ethylene response factors MbERF4 and MbERF72 suppress iron uptake in woody apple plants by modulating rhizosphere pH. Plant & Cell Physiology, 61(4): 699–711.

Zhang, J. Q., Wu, Z. C., Hu, F. C., et al. (2018). Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Horticulture Research, 5: 39.

Zhang, J. X., Wang, F. R., Zhang, C. Y., et al. (2018). Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes. Horticulture Research, 5: 39.

Zhang, P. F., Dong, Y. M., Wen, H. Y., et al. (2020). Knockdown of VvMYBA1 via virus-induced gene silencing decreases anthocyanin biosynthesis in grape berries. Canadian Journal of Plant Science, 100(2): 175–184.

Zhang, X. Y., Zhu, Y., Wu, H. H., et al. (2015). Post-transcriptional gene silencing in plants: a double-edged sword. Science China-Life Sciences, 59(3): 271–276.

Zhao, X. D., Yuan, X. Y., Chen, S., et al. (2019). Metabolomic and transcriptomic analyses reveal that a MADS-Box transcription factor TDR4 regulates tomato fruit quality. Frontiers in Plant Science, 10: 792.

Zhao, Y., Dong, W. Q., Zhu, Y. C., et al. (2019). PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal, 18(5): 1284–1295.

Zhou, H. J., Bai, S. H., Wang, N., et al. (2020). CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-mediated silencing of MdCNGC2 in fruits improve resistance to Botryosphaeria dothidea. Frontiers in Plant Science, 11: 575477.

Zhou, Q. Y., Cai, Q. (2021). Role of ethylene in the regulatory mechanism underlying the abortion of ovules after fertilization in Xanthoceras sorbifolium. Plant Molecular Biology, 106(1–2): 67–84.

Zhu, B. Z., Yang, Y. F., Li, R., et al. (2015). RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of Experimental Botany, 66(15): 4483–4495.