Entropy Admissibility of the Limit Solution for a Nonlocal Model of Traffic Flow

Alberto Bressan and Wen Shen

Department of Mathematics, Penn State University.
University Park, PA 16802, USA.

e-mails: axb62@psu.edu, wxs27@psu.edu

November 8, 2020

Abstract

We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density ρ ahead. The averaging kernel is of exponential type: $w_\varepsilon(s) = \varepsilon^{-1} e^{-s/\varepsilon}$. For any decreasing velocity function v, we prove that, as $\varepsilon \to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\rho_t + (\rho v(\rho))_x = 0$.

1 Introduction

We consider a nonlocal PDE model for traffic flow, where the traffic density $\rho = \rho(t,x)$ satisfies a scalar conservation law with nonlocal flux

$$\rho_t + (\rho v(q))_x = 0. \quad (1.1)$$

Here $\rho \mapsto v(\rho)$ is a decreasing function, modeling the velocity of cars depending on the traffic density, while the integral

$$q(x) = \int_{+\infty}^{x} \varepsilon^{-1} e^{(x-y)/\varepsilon} \rho(y) \, ds \quad (1.2)$$

computes a weighted average of the density of cars ahead. As in [2], we shall assume

(A1) The velocity function $v : [0,\rho_{jam}] \mapsto \mathbb{R}_+$ is C^2, and satisfies

$$v(\rho_{jam}) = 0, \quad v'(\rho) \leq -\delta_* < 0, \quad \text{for all } \rho \in [0,\rho_{jam}]. \quad (1.3)$$

One can think of ρ_{jam} as the maximum possible density of cars along the road, when all cars are packed bumper-to-bumper and nobody moves. The conservation equation (1.1) will be solved with initial data

$$\rho(0,x) = \bar{\rho}(x) \in [0,\rho_{jam}] \quad (1.4)$$
As \(\varepsilon \to 0^+ \), the weight function \(w_\varepsilon(s) = \varepsilon^{-1} e^{-s/\varepsilon} \) converges to a Dirac mass at the origin, and the nonlocal equation (1.1)-(1.2) formally converges to the scalar conservation law

\[
\rho_t + (\rho v(\rho))_x = 0.
\]

(1.5)

Assuming that the initial datum \(\bar{\rho} \) has bounded total variation and takes uniformly positive values, the recent analysis in [2] has established:

(i) For every \(\varepsilon > 0 \), the Cauchy problem with non-local flux (1.1), (1.2), (1.4), has a unique solution \(\rho = \rho_\varepsilon(t,x) \). Its total variation satisfies a uniform bound

\[
\text{Tot.Var.}\{\rho_\varepsilon(t,\cdot)\} \leq M
\]

where the constant \(M \) is independent of \(t,\varepsilon \).

(ii) As \(\varepsilon \to 0 \), by possibly taking a subsequence, one obtains the convergence \(\rho_\varepsilon \to \rho \) in \(L^1_{\text{loc}} \). The limit function \(\rho = \rho(t,x) \) provides a weak solution to the Cauchy problem (1.4)-(1.5).

A major issue, which was not fully resolved in [2], is the entropy admissibility of the limit solution \(\rho \). Aim of the present note is to resolve this question in the affirmative. Namely, we prove:

Theorem. Let \(v \) satisfy the assumptions (A1), and let \(\rho_\varepsilon \) be a sequence of solutions to the nonlocal Cauchy problem (1.1), (1.2) and (1.4), satisfying the uniform BV bounds (1.6). Assume that, as \(\varepsilon \to 0 \), we have the convergence \(\rho_\varepsilon \to \rho \) in \(L^1_{\text{loc}} \).

Then \(\rho \) is the unique entropy admissible solution to the Cauchy problem (1.4)-(1.5).

The above result was proved in [2] in the special case where the velocity is affine: \(v(\rho) = a - b\rho \). The earlier proof was based on the Hardy-Littlewood inequality. In the next section we give a simpler proof, valid for a general class of velocity functions \(v \).

For a more general class of averaging kernels, assuming that the initial datum \(\bar{\rho} \) satisfies a one-sided Lipschitz condition, the convergence to the unique entropy admissible solution was recently proved in [3]. Our result requires an exponential kernel, but it applies to any BV initial data. In particular, \(\bar{\rho} \) can be piecewise constant.

For the general theory of conservation laws we refer to [1, 5, 6]. A brief review of literature on hyperbolic conservation laws with nonlocal flux can be found in [2].

2 Proof of the theorem

1. According to [4, 7], to prove uniqueness it suffices to prove that the limit solution dissipates one single strictly convex entropy. We thus consider the entropy and entropy flux pair

\[
\eta(\rho) = \frac{\rho^2}{2}, \quad \psi(\rho) = \int_0^\rho [sv(s) + s^2v'(s)] \, ds.
\]

(2.1)
For future use, we observe that (1.2) implies
\[\rho = q - \varepsilon q_x. \] (2.2)
Moreover, we introduce the function
\[W(\rho) = \int_0^\rho s^2 v'(s) \, ds. \] (2.3)
The equation (1.1) can now be written as
\[\rho_t + (\rho v(\rho))_x = \left(\rho(v(\rho) - v(q)) \right)_x. \]
Multiplying both sides by \(\eta'(\rho) = \rho \), we obtain
\[\eta(\rho)_t + \psi(\rho)_x = \rho \left(\rho(v(\rho) - v(q)) \right)_x. \] (2.4)

2. Given a test function \(\varphi \in C^1_c(\mathbb{R}), \varphi \geq 0 \), using (2.2) we estimate the quantity
\[J = \int \rho \left(\rho(v(\rho) - v(q)) \right)_x \varphi \, dx \]
\[= \int (\rho^2)_x (v(\rho) - v(q)) \varphi \, dx + \int 2 \rho^2 (v(\rho) - v(q)) x \varphi \, dx \]
\[= - \int \rho^2 (v(\rho) - v(q)) \varphi_x \, dx + \int \rho^2 (v(\rho) - v(q)) x \varphi \, dx \]
\[= J_1 + J_2. \] (2.5)
Concerning the second integral, using (2.2) we obtain
\[J_2 = \int \rho v'(\rho) \rho_x \varphi \, dx - \int \rho v'(q)q_x \varphi \, dx + \int \rho \varepsilon (q_x)^2 \varphi \, dx \]
\[= J_{21} + J_{22} + J_{23}. \] (2.6)
Using (2.2) once again, we now compute
\[J_{21} + J_{22} = \int \rho^2 v'(\rho) \rho_x \varphi \, dx - \int q^2 v'(q)q_x \varphi \, dx + \int q \varepsilon (q_x)^2 \varphi \, dx \]
\[\leq J_3 + J_4 + J_5. \] (2.7)
Since \(\rho, q, \varphi \geq 0 \) while \(v' \leq 0 \), from (2.6) and (2.7) we immediately see that
\[J_{23} \leq 0, \quad J_5 \leq 0. \] (2.8)
On the other hand, integrating by parts and recalling (2.3), we obtain
\[J_3 + J_4 = \int [W(\rho)]_x \varphi \, dx - \int [W(q)]_x \varphi \, dx \]
\[= - \int [W(\rho) - W(q)] \varphi_x \, dx. \] (2.9)
3. To conclude, consider a sequence of solutions \(\rho_\varepsilon \) to (1.1)-(1.2), (1.4). Assume that, as \(\varepsilon \to 0 \), we have the convergence \(\rho_\varepsilon \to \rho \) in \(L^1_{loc} \). Notice that this implies \(q_\varepsilon \to \rho \) in \(L^1_{loc} \) as well. Hence, the integrals \(J_1 \) and \(J_3 + J_4 \) both approach zero. By the previous analysis,

\[
2 \int_0^T \int \left\{ \eta(\rho_\varepsilon)\varphi_t + \psi(\rho_\varepsilon)\varphi_x \right\} \, dx \, dt \\
\geq \int_0^T \int \rho_\varepsilon^2 (v(\rho_\varepsilon) - v(q_\varepsilon)) \varphi_x \, dx \, dt + \int_0^T \int \left[W(\rho_\varepsilon) - W(q_\varepsilon) \right] \varphi_x \, dx \, dt.
\]

Letting \(\varepsilon \to 0 \), since the right hand side converges to zero, we obtain

\[
\int_0^T \int \left\{ \eta(\rho)\varphi_t + \psi(\rho)\varphi_x \right\} \, dx \, dt \geq 0.
\]

This proves that the limit solution \(\rho \) is entropy admissible. In particular, by [4, 7], \(\rho \) is the unique entropy weak solution to the Cauchy problem (1.4)-(1.5).

Acknowledgment. This research was partially supported by NSF with grant DMS-2006884, “Singularities and error bounds for hyperbolic equations”.

References

[1] A. Bressan, *Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem*, Oxford University Press, 2000.

[2] A. Bressan and W. Shen, On traffic flow with nonlocal flux: a relaxation representation, *Arch. Rational Mech. Anal.* 237 (2020), 1213–1236.

[3] M. Colombo, G. Crippa, E. Marconi, and L.V. Spinolo, Local limit of nonlocal traffic models: convergence results and total variation blow-up. Preprint 2019, arXiv:1808.03529v2.

[4] C. De Lellis, F. Otto, and M. Westdickenberg, Minimal entropy conditions for Burgers equation. *Quart. Appl. Math.* 62 (2004), 687–700.

[5] C. Dafermos, *Hyperbolic Conservation Laws in Continuum Physics*, Fourth edition. Springer-Verlag, Berlin, 2016.

[6] H. Holden and N. Risebro, *Front Tracking for Hyperbolic Conservation Laws*. Springer-Verlag, Berlin, 2002.

[7] E. Y. Panov. Uniqueness of the solution of the Cauchy problem for a first order quasi-linear equation with one admissible strictly convex entropy. (Russian) *Mat. Zametki* 55 (1994), 116–129; translation in *Math. Notes* 55 (1994), 517–525.