Dear Editor,

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 13 million confirmed cases and more than 580,045 deaths across 218 countries and geographical regions as of July 16, 2020. This novel coronavirus primarily causes respiratory illness with clinical manifestations largely resembling those of SARS. However, neurological symptoms including headache, anosmia, ageusia, confusion, seizure, and encephalopathy have also been frequently reported in COVID-19 patients. In a study of 214 hospitalized COVID-19 patients in Wuhan, China, neurologic findings were reported in 36.4% of patients, and were more commonly observed in patients with severe infections (45.5%). Similarly, a study from France reported neurologic findings in 84.5% (49/58) of COVID-19 patients admitted to hospital. Importantly, a recent study in Germany demonstrated that SARS-CoV-2 RNA could be detected in brain biopsies in 36.4% (8/22) of fatal COVID-19 cases, which highlights the potential for viral infections in the human brain. To date, there has been no direct experimental evidence of SARS-CoV-2 infection in the human central nervous system (CNS). We recently demonstrated that SARS-CoV-2 could infect and replicate in cells of neuronal origin. In line with this finding, we showed that SARS-CoV-2 could infect and damage the olfactory sensory neurons of hamsters. In addition, angiotensin-converting enzyme 2 (ACE2), the entry receptor of SARS-CoV-2, is widely detected in the brain and is highly concentrated in a number of locations including substantia nigra, middle temporal gyrus, and posterior cingulate cortex. Together, these findings suggest that the human brain might be an extra-pulmonary target of SARS-CoV-2 infection.

To explore the direct involvement of SARS-CoV-2 in the CNS in physiologically relevant models, we assessed SARS-CoV-2 infection in induced pluripotent stem cells (iPSCs)-derived human neural progenitor cells (hNPCs), neurospheres, and brain organoids. We first evaluated the expression of ACE2 and key coronavirus entry-associated proteases in hNPCs. Our data suggested that ACE2, TMPRSS2, cathepsin L, and furin were readily detected in the hNPCs (Supplementary information, Fig. S1). Next, we challenged iPSC-derived hNPCs with SARS-CoV-2 at 10 multiplicity of infection (MOI) and with SARS-CoV as a control. Supernatant was harvested at 0, 24, and 48 h post infection (hpi) for virus replication assessment. Interestingly, our data suggested that SARS-CoV-2, but not SARS-CoV, could replicate in hNPCs (Fig. 1a; Supplementary information, Fig. S2). In addition, we quantified the cell viability of SARS-CoV-2-infected hNPCs. Importantly, SARS-CoV-2 infection significantly reduced the viability of hNPCs to 4.7% (P < 0.0001) and 2.5% (P < 0.0001) of that of the mock-infected hNPCs at 72 and 120 hpi, respectively (Fig. 1a). In contrast to the substantial cytototoxicity induced by SARS-CoV-2 in the infected hNPCs, SARS-CoV-2 infection did not significantly upregulate interferon (Supplementary information, Fig. S3) and pro-inflammatory (Supplementary information, Fig. S4) response in the infected hNPCs. Next, we challenged 3D neurospheres with SARS-CoV-2 and harvested supernatant samples from the infected neurospheres at 0, 24, 48, and 72 hpi for virus replication assessment. We found the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) copy number significantly increased in a time-dependent manner (Fig. 1b, left). In addition, a significant amount of infectious virus particles were released from the infected neurospheres as determined by plaque assays (Fig. 1b, right). In parallel, SARS-CoV-2-infected neurospheres were cryosectioned and immunostained for viral antigen assessment. Importantly, SARS-CoV-2 nucleocapsid (N) protein was readily detected across the infected neurospheres but no positive signals were detected in the mock-infected neurospheres (Fig. 1c). Furthermore, electron microscopy detected extensive viral particles in vacuoles within the double-membrane structures, which may represent sites of viral particle formation (Fig. 1d). These findings indicate that neurospheres were permissive to SARS-CoV-2 infection and supported productive virus replication.

Next, we examined whether SARS-CoV-2 could infect 3D human brain organoids. We generated iPSC-derived human brain organoids using previously described protocols. The 35-day-old brain organoids showed self-organizing internal morphology with fluid-filled ventricular-like structures resembling that of developing cerebral cortex (Fig. 1e). Cryosectioning and immunostaining were performed to determine the expression and distribution of neuronal markers in 35-day-old brain organoids. Pan-neurons, early forebrain, and hNPCs markers were identified by TUJ1, PAX6, and NESTIN staining, respectively. The TUJ1 staining identified a primitive cortical plate with early neurons (Fig. 1e), whereas PAX6 staining represented the radial glia in the cerebral cortex (Fig. 1e). In addition, NESTIN staining identified active proliferating NPCs in the brain organoids (Fig. 1e). Overall, these results indicated that telencephalon development and cerebral neurogenesis could be modelled by our organoid system.

To investigate whether the brain organoids were permissive to SARS-CoV-2 infection, human iPSC-derived 35-day-old brain organoids were challenged with SARS-CoV-2. Importantly, extensive SARS-CoV-2 antigen was detected in the infected samples at 72 hpi (Fig. 1f), indicating that SARS-CoV-2 directly infected the brain organoids. Immunofluorescence staining and confocal microscopy revealed SARS-CoV-2 N signals in the peripheral regions (Fig. 1f, arrows) and in deeper regions of the brain organoids (Fig. 1f, white arrowheads). In addition, cell-cell fusion was readily detected in regions with robust SARS-CoV-2 infection (Fig. 1f, yellow arrowheads). No SARS-CoV-2 N signals were detected in the mock-infected brain organoids (Fig. 1f). We next analyzed supernatant samples from infected brain organoids to evaluate SARS-CoV-2 virus particle release. The results demonstrated SARS-CoV-2 RdRp gene copy number increased in a time-dependent manner, suggesting active release of progeny virus particles from infected brain organoids (Fig. 1g, left). Specifically,
about 3.2×10^6 copies of SARS-CoV-2 RdRp gene were detected at 72 hpi, which was nine-fold higher than at 0 hpi ($P < 0.0001$) (Fig. 1g, left). Plaque assays performed on supernatant samples from brain organoids infected with SARS-CoV-2 showed that the infectious virus titer peaked at 24 hpi and were continuously detected at 48 and 72 hpi. These findings unambiguously demonstrated that SARS-CoV-2 can productively infect brain organoids with release of viral particles (Fig. 1g, right). Remarkably, double immunostaining demonstrated that SARS-CoV-2-N was colocalized with neuronal marker TUJ1 and NPC marker NESTIN,
suggesting that SARS-CoV-2 can directly infect cortical neurons and NPCs in brain organoids (Fig. 1h, i).

In summary, our results demonstrated that iPSC-derived hNPCs were permissive to SARS-CoV-2, but not SARS-CoV infection. Extensive viral protein expression and infectious viral particles were detected in neurospheres and brain organoids infected with SARS-CoV-2, which suggest SARS-CoV-2 can productively infect the human brain. Importantly, SARS-CoV-2 infection in 3D human brain organoids was localized to TUJ1- and NES+ -positive cells, suggesting SARS-CoV-2 could directly target cortical neurons and NPCs. The neurosphere model represents early characteristics of neurogenesis, whereas the brain organoid model exhibits features of human cortical development that recapitulate the development and physiological arrangements of the human brain. The finding that SARS-CoV-2 can productively infect human brain organoids highlights the potential of direct viral involvement in neurological symptoms in COVID-19 patients. These results provided insight on the pathogenomic symptoms of anosmia (loss of smell) and ageusia (loss of taste) as well as other neurological manifestations of COVID-19 including seizures, encephalopathy, encephalitis, Guillain-Barré syndrome, and Miller Fisher syndrome. During the submission process of this manuscript, the susceptibility of human brain organoid was similarly suggested by two independent studies. However, the permissiveness of neuronal progenitor cells to SARS-CoV-2 was not evaluated in these studies. We demonstrated here that SARS-CoV-2 could also target the neuronal progenitor cell populations. In this regard, the recovery of the olfactory function and other neurological manifestations might be incomplete and late as these neural progenitor cells could be infected by SARS-CoV-2. Importantly, the Zika virus that re-emerged in 2015 is also well recognized to target neural progenitor cells in the human brain, leading to microcephaly and severe developmental defects in the fetus and other neurological anomalies in adults. The chronic or long-term consequence of SARS-CoV-2 infection in the CNS should be closely monitored.

ACKNOWLEDGEMENTS

We would like to thank the technicians in the laboratories of JDH and KYY for their help in running the project. This work was supported by the Health and Medical Research Fund (COVID190117), the Shenzhen Peacock Team Project (KQTD2015033117210153), Shenzhen Science and Technology Innovation Committee Basic Science Research Grant (JCYJ20170413154523577) and China Postdoctoral Science Foundation (2019M663167).

AUTHOR CONTRIBUTIONS

J-D.H., K-Y.Y., H.C., B-Z.Z. conceived the project; J-D.H., K-Y.Y., H.C., B-Z.Z., H.S., J.D., Y.H., H.G., A-C.Y.L., Z.Z., T.Y., W.W., I.F.-N., H., J-F.W.C. performed the experiments and/or analyzed the data; B-Z.Z., H.C., S.H., H.S., J.D., Y.H., H.G., A.C-Y.L., Z.Z., T.Y., W.W., I.F.-N., H., J-F.W.C. designed the experiments. B-Z.Z., S.H., J.D., J.Y.H., H.G., A-C.Y.L., Z.Z., T.Y., W.W., I.F.-N., H., J-F.W.C. performed the experiments and/or analyzed the data; B-Z.Z., H.C., S.H., J.D. drafted the manuscript.

ADDITIONAL INFORMATION

Supplementary information accompanies this paper at https://doi.org/10.1038/s41422-020-0390-x.

Competing interests: The authors declare no competing interests.

Bao-Zhong Zhang1,2, Hin Chu3, Shuo Han1, Huiping Shuai3, Jian Deng1, Ye-fan Hu4, Hua-rui Gong5, Andrew Chak-Yiu Lee5, Zijiao Zou1, Thomas Yau6, Wutian Wu6,7, Ian Fan-Ngai Hung4, Jasper Fuk-Woo Chan7, Kwok-Yung Yuen7,8,9 and Jian-Dong Huang1,2

1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China; 2CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; 3Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; 4Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; 5Department of Mechatronics and Intelligent Systems, Shenzhen Graduate School of The Chinese University of Hong Kong, Shenzhen, Guangdong 518055, China; 6Re-Stem Biotech, Suzhou, Jiangsu 315020, China; 7State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China; 8CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; 9Re-Stem Biotech, Suzhou, Jiangsu 315020, China.
REFERENCES

1. Zhu, N. et al. N. Engl. J. Med. 382, 727–733 (2020).
2. Mao, L. et al. JAMA Neurol. 77, 683–690 (2020).
3. Helms, J. et al. N. Engl. J. Med. 382, 2268–2270 (2020).
4. Puelles, V. G. et al. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2011400 (2020).
5. Chu, H. et al. Lancet Microbe 1, e14–e23 (2020).
6. Zhang, A. J. et al. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa995 (2020).
7. Chen, R. et al. BioRxiv https://doi.org/10.1101/2020.04.07.030650 (2020).
8. Trujillo, C. A. et al. Cell Stem Cell 25, 558–569, e557 (2019).
9. Lancaster, M. A. et al. Nat. Protoc. 9, 2329–2340 (2014).
10. Bullen, C. K. et al. ALTEX https://doi.org/10.14573/altex.2006111 (2020).
11. Cederquist, G. Y. et al. Cell Stem Cell 27, 35–49, e36 (2020).
12. Garcez, P. P. et al. Science 352, 816–818 (2016).