Transcatheter occlusion of a hepatic vein-to-left atrium fistula: Should we close venovenous collateral vessels following Fontan operation?

Maya El-Khoury¹,², Mariam Arabi¹,², Issam El Rassi³,², Ziad Bulbul¹,², Fadi Sawaya¹, Fadi Bitar¹,²
¹Department of Pediatrics and Adolescent Medicine, The American University of Beirut-Medical Center, Beirut, Lebanon, ²The Children's Heart Center, The American University of Beirut-Medical Center, Beirut, Lebanon, ³Department of Surgery, The American University of Beirut-Medical Center, Lebanon, ⁴Department of Medicine, The American University of Beirut-Medical Center, Beirut, Lebanon

ABSTRACT

Right-to-left shunt due to abnormal systemic venous drainage to the left heart is among the causes of hypoxemia following Fontan operation. There are conflicting data regarding the closure of the venovenous collaterals (VVCs) post-Fontan, showing decreased survival in older patients. In a child with visceral heterotaxy, we describe a rare fistula draining a right-sided hepatic vein into hepatic venous plexus and a right-sided pulmonary venous atrium. The patient presented with severe hypoxemia post-Fontan and underwent fistula occlusion with AMPLATZER™ Vascular Plug II, successfully improving hemodynamic status with resolution of the hypoxemia. Younger patients with cyanosis due to VVCs may benefit from percutaneous occlusion post-Fontan.

Keywords: AMPLATZER™ Vascular Plug II, Fontan, left atrium-to-hepatic vein fistula, transcatheter closure of fistula

INTRODUCTION

Fontan procedure is a palliative surgery done as a final stage treatment in patients with single-ventricle physiology.¹ This surgery directs blood from both venae cavae into the pulmonary arteries.² This procedure can be performed with or without “fenestration,” which is a residual right-to-left shunt intentionally created to decompress the relatively high pulmonary artery pressure (PAP).³ Some centers advocate that fenestration might improve the surgical results in high-risk patients.

Patients with the Fontan circulation usually have an arterial oxygen saturation of around 90%, even in the absence of fenestration. The coronary sinus drains into the left atrium (LA), causing a modest arterial desaturation of around 2%. Other causes of hypoxemia post-Fontan include a residual atrial septal defect or fenestration, intrapulmonary arteriovenous fistulae, and abnormal systemic venous drainage to the heart or the pulmonary veins. Closure of the venovenous collaterals (VVCs) may be necessary to decrease thromboembolism and hypoxemia.

However, Poterucha et al.⁴ reported that the embolization of the VVCs in older patients post-Fontan is associated with decreased survival, as these patients may benefit from the “natural” fenestration that VVCs provide. Few reported cases show favorable outcomes after occlusion of intrahepatic VVCs in patients presenting with profound cyanosis post-Fontan.⁵⁻¹⁰

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: El-Khoury M, Arabi M, El Rassi I, Bulbul Z, Sawaya F, Bitar F. Transcatheter occlusion of a hepatic vein-to-left atrium fistula: Should we close venovenous collateral vessels following Fontan operation? Ann Pediatr Card 2022;15:415-8.
We report a rare case of a fistula between a right hepatic vein (HV) and a right-sided pulmonary venous atrium in a child with profound hypoxemia post-Fontan.

CASE REPORT

We report a 7-year-old boy born to first-degree consanguineous parents, diagnosed with an abdominal situs ambiguous, unbalanced atrioventricular canal (single-ventricle physiology), severe pulmonary stenosis with confluent pulmonary arteries, and normally related great vessels. The patient underwent Blalock-Taussig shunt insertion during infancy, followed by bidirectional Glenn at 18 months of age.

Cardiac catheterizations pre-Fontan revealed atrial situs inversus with the pulmonary veins draining into a posterior right-sided atrium (anatomical LA) and an inferior vena cava (IVC) on the left of the spine draining into the left-sided atrium. The mean PAP was 13 mmHg. There was a small connection between the right HV and the LA.

We performed total cavopulmonary circulation without fenestration at the age of 3 years with no significant complications. Immediately postoperatively, the patient had an arterial oxygen saturation (\(\text{SaO}_2 \)) of 97%. However, 1-month postoperative, the \(\text{SaO}_2 \) declined to 80% and reached the mid-70s a year later. Transthoracic echocardiography revealed normal systolic function and no atrioventricular valvular regurgitation.

Cardiac catheterization post-Fontan revealed a fistula between a right HV and a right-sided pulmonary venous atrium. The HV was connected to the IVC and a right-sided hepatic venous plexus [Figure 1 and Video 1]. The mean LA pressure was 9–10 mmHg. Occlusion of the fistula with a 12-mm TYSHAK® balloon dilatation catheter resulted in an increase in the mean PAP from 14 mmHg to 16 mmHg with a rise in the \(\text{SaO}_2 \) to the high 90s with appropriate systemic blood pressure. Accordingly, we decided to close the fistula.

A 5F Judkins catheter was advanced from the IVC to the HV and into the LA through the abnormal venous fistula. We exchanged the Judkins catheter for a 10F TorqVue LP long sheath. An AMPLATZER™ Vascular Plug II (AVP II) (14 mm × 10 mm) was delivered successfully and occluded the HV-LA fistula, with no obstruction across the Fontan tube [Figures 2,3 and Videos 2,3]. \(\text{SaO}_2 \) increased to 100% with excellent hemodynamics.

Three years following fistula’s occlusion, the patient was doing well and reporting good exercise tolerance. His \(\text{SaO}_2 \) was 99%, and the previously noted fistula was completely occluded.

DISCUSSION

The development of decompressing VVCs is common following Fontan operations. This phenomenon is thought to be a biological reaction to the increased systemic venous pressure changes associated with this type of circulation. Often, these vessels are of supradiaphragmatic origin.[5]

The severe hypoxemia encountered by our patient was due to an infradiaphragmatic right-to-left shunt draining the systemic venous circulation into the LA. Cardiac catheterization pre-Fontan revealed a small hepatic venous to LA connection that increased markedly in size postprocedure. Hepatic venous malformations are seen in 8% of heterotaxy patients undergoing Fontan procedures.[9]

The physiology of the Fontan operation might stimulate the enlargement of rudimentary embryologic connections from the systemic veins to the pulmonary veins or the pulmonary venous atrium, resulting in decompression of VVCs and causing desaturation.

Given the risk of progression of any VVC post-Fontan, all abnormal collaterals should be studied and closed pre-Fontan. Cyanotic patients post-Fontan should undergo diagnostic catheterization and balloon occlusion of the VVCs, unless contraindicated.

VVCs are found in 20%–45% of patients with Fontan circulation.[3] High-risk Fontan patients, such as older patients with mildly decreased \(\text{SaO}_2 \) (88%–90%) and increased central venous pressures, like those enrolled in Poterucha et al. may benefit from these collaterals, and thus, VVC-closure in such patients may decrease survival rate.[4] Poterucha et al. observed decreased 5-year survival in patients who had VVC embolization after Fontan. However, their study included older patients with a mean age of 26 years who presented with mild arterial oxygen desaturation at 88%–90%. In contrast, our patient had severe hypoxemia and low mean PAP of 14 mmHg. The patient improved immediately after the closure of the veno-atrial fistula, with an increase in his

Figure 1: Angiograms in AP projection. Small collateral (yellow arrow) seen pre-Fontan
SaO₂ from 75% to 100% with a slight increase in PAP from 14 mmHg to 16 mmHg and excellent hemodynamics. A 3-year follow-up revealed favorable results.

The relatively rare infradiaphragmatic VVCs presenting with severe cyanosis may be treated differently from those VVCs in older patients with mild cyanosis. The few reported cases that involved occlusion of these intrahepatic VVCs were associated with favorable outcomes.[5-10] Veno-venous collaterals closure is still debatable since high-risk patients (patients with elevated central venous pressure or heterotaxies) might benefit from the natural fenestrations created by the veno-venous collaterals.

CONCLUSION

Closure of a fistula causing right-to-left shunt in patients post-Fontan procedure should be considered cautiously. Approach to VVCs in older patients after the Fontan operation may differ from that in younger children with severe hypoxemia and subdiaphragmatic VVCs. Patients with significant cyanosis due to intrahepatic to atrial connection may benefit from occlusion of these connections.

Authors’ contributions

MA and ZB diagnosed and followed the patient in the clinic. FB and FS performed the procedure. MK wrote the manuscript with the supervision of FB. All authors approved the final manuscript.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8.
2. Rychik J, Atz AM, Celermajer DS, Deal BJ, Gatzoulis MA, Gewillig MH, et al. Evaluation and management of the child and adult with Fontan circulation: A scientific statement from the American Heart Association. Circulation 2019;140:e234–e284.
3. Bouhout I, Ben-Ali W, Khalaf D, Raboissin MJ, Poirier N. Effect of fenestration on Fontan procedure outcomes: A meta-analysis and review. Ann Thorac Surg 2020;109:1467-74.
4. Poterucha JT, Johnson JN, Taggart NW, Cabalka AK, Hagler DJ, Driscoll DJ, et al. Embolization of...
veno-venous collaterals after the Fontan operation is associated with decreased survival. Congenit Heart Dis 2015;10:E230-6.

5. Weber HS, Munir F, Stefek B, Lynch FC. Percutaneous Amplatzer septal occluder device occlusion of a large portal vein to pulmonary venous atrium collateral resulting in severe systemic hypoxemia post Fontan. Congenit Cardiol Today 2020;18:1-4.

6. Guzeltas A, Tanidir IC, Saygi M. Major intrahepatic veno-venous fistula after Fontan operation treated by transcatheter implantation of Amplatzer septal occluder through internal jugular vein. Braz J Cardiovasc Surg 2016;31:174-7.

7. Guérin P, Losay J, Baron O. Transcatheter occlusion of an intrahepatic venovenous fistula after modified Fontan circulation by implantation of an Amplatzer atrial septal occluder. Catheter Cardiovasc Interv 2005;64:117-20.

8. Szkutnik M, Bialkowski J, Knapik P. Major intrahepatic veno-venous fistula after modified Fontan operation treated by transcatheter implantation of Amplatzer septal occluder. Cardiol Young 2001;11:357-60.

9. Kuo JA. Percutaneous device occlusion of hepatocardiac venous collateral via left transhepatic access in a patient with heterotaxy syndrome following Fontan procedure. Catheter Cardiovasc Interv 2015;85:E140-3.

10. Rothman A, Acherman RJ, Luna CF, Restrepo H. Enlarged left vitelline vein remnant as a cause of cyanosis after the Fontan procedure: Resolution with an Amplatzer vascular plug. Pediatr Cardiol 2006;27:381-4.