On the road to percent accuracy VI: the nonlinear power spectrum for interacting dark energy with baryonic feedback and massive neutrinos

Pedro Carrilho$^{1,2}$*, Karim Carrion$^3$, Benjamin Bose$^4$, Alkistis Pourtisidou$^{1,5,6}$, Juan Carlos Hidalgo$^3$, Lucas Lombriser$^4$, Marco Baldi$^{7,8,9}$

$^1$ Institute for Astronomy, The University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK
$^2$ School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
$^3$ Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
$^4$ Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève 4, Switzerland.
$^5$ Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK
$^6$ Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa.
$^7$ Dipartimento di Fisica e Astronomia “Augusto Righi”, Alma Mater Studiorum Università di Bologna, via Gobetti 93/2, I-40129 Bologna, Italy.
$^8$ INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, 40129 Bologna, Italy.
$^9$ INFN - Sezione di Bologna, viale Bertini Pichat 6/2, I-40127 Bologna, Italy.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Understanding nonlinear structure formation is crucial for fully exploring the data generated by stage IV surveys, requiring accurate modelling of the power spectrum. This is challenging for deviations from $\Lambda$CDM, but we must ensure that alternatives are well tested, to avoid false detections. We present an extension of the halo model reaction framework for interacting dark energy. We modify the halo model including the additional force present in the Dark Scattering model and implement it into ReACT. The reaction is combined with a pseudo spectrum from EuclidEmulator2 and compared to N-body simulations. Using standard mass function and concentration-mass relation, we find predictions to be 1% accurate at $z = 0$ up to $k = 0.8 \, h/Mpc$ for the largest interaction strength tested ($\xi = 50 \, \text{b/GeV}$), improving to $2 \, h/Mpc$ at $z = 1$. For smaller interaction strength (10 b/GeV), we find 1% agreement at $z = 1$ up to scales above $3.5 \, h/Mpc$, being close to $1 \, h/Mpc$ at $z = 0$. Finally, we improve our predictions with the inclusion of baryonic feedback and massive neutrinos and study degeneracies between the effects of these contributions and those of the interaction. Limiting the scales to where our modelling is 1% accurate, we find a degeneracy between the interaction and feedback, but not with massive neutrinos. We expect the degeneracy with feedback to be resolvable by including smaller scales. This work represents the first analytical tool for calculating the nonlinear spectrum for interacting dark energy models.

Key words: cosmology: theory – large-scale structure of the Universe – methods: analytical – methods: numerical

1 INTRODUCTION

Forthcoming large-scale structure (LSS) Stage IV surveys such as ESA’s Euclid satellite mission$^1$ (Laureijs et al. 2011; Blanchard et al. 2020) and the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (VRO/LSST)$^2$ (The LSST Dark Energy Science Collaboration et al. 2018), are aiming to probe the nature of dark energy by performing high-precision galaxy clustering and weak gravitational lensing measurements.

The standard cosmological model, $\Lambda$CDM, is currently providing the best fit to data from Cosmic Microwave Background (CMB) and LSS surveys (e.g. Aghanim et al. 2020; Anderson et al. 2012; Song et al. 2015; Beutler et al. 2016; Tröster et al. 2020b; Alam et al. 2021; Abbott et al. 2022; Heymans et al. 2021)). $\Lambda$CDM assumes that dark matter is cold (CDM), dark energy is a cosmological constant, $\Lambda$, and that General Relativity describes gravity on all scales. Therefore, the model requires a dark sector whose nature is unknown. Beyond this, there are now hints of tensions between various data sets (Verde et al. 2019; Knox & Millea 2020), which may indicate new dark sector physics is required, beyond what is assumed within $\Lambda$CDM.

A particular discrepancy has been found between measurements of the growth of structure as estimated from early Universe measurements (Aghanim et al. 2020) and from late-time observations (Abbott et al. 2020; Heymans et al. 2021; Vikhlinin et al. 2009; Reid et al. 2012; Gil-Marín et al. 2017; de Haan et al. 2016; Blake et al. 2011; Beutler et al. 2014; Simpson et al. 2016; Secco et al. 2021). This relates to the amplitude of the late-time matter power spectrum, parameterised by $\sigma_8$, which is consistently measured by weak lensing surveys to be smaller than the one derived from CMB observations assuming $\Lambda$CDM. The tension could be a result of unaccounted systematic effects, but if this possibility is excluded then the tension points to new physics that is likely to require modifications to the dark sector.

* E-mail: pedro.carrilho@ed.ac.uk
1 www.euclid-ec.org
2 https://www.lsst.org/
A number of alternatives to ΛCDM have been hypothesised, either replacing General Relativity (GR) with modified gravity (MG) on cosmological scales (for reviews see Clifton et al. 2012; Joyce et al. 2016; Koyama 2018) or generalizing the dark sector to include dynamical dark energy (for reviews see Copeland et al. 2006; Li et al. 2011). Another interesting class of models to test are coupled models of dark matter and dark energy. These are traditionally called interacting dark energy (IDE) models and come in different flavours, depending on how energy is transferred between the dark sector species (see e.g. Amendola (2000); Farrar & Peebles (2004)). Most IDE models assume some form of energy transfer that affects the background and perturbations. These models usually fail to fit CMB data or are severely constrained (Bean et al. 2008; Xia 2009; Amendola et al. 2012; Gómez-Valent et al. 2020) (see, however, Barros et al. 2019; van de Bruck & Thomas 2019, for more recent models evading these constraints). An alternative class of models assumes instead that the interaction exchanges only momentum at the level of the perturbations, allowing for very good fits to CMB and LSS data (Simpson 2010; Pportsidou et al. 2013; Baldi & Simpson 2017; Pportsidou & Tram 2016; Mancini & Pportsidou 2021). This feature could also be used to alleviate the σ8 tension (Lesgourgues et al. 2016; Linton et al. 2018; Buen-Abad et al. 2018; Kase & Tsujikawa 2020b; Di Valentino et al. 2020a; Amendola & Tsujikawa 2020; Beltrán Jiménez et al. 2021).

Future surveys will have unprecedented statistical power and for that reason, they have great potential to constrain or detect new physics. However, this will only be possible if we can improve our theoretical modelling of the nonlinear scales for deviations to the standard model to a sufficient precision. This is already a difficult problem within ΛCDM, for which several standard physical effects complicate its predictive power at small scales. In addition to nonlinear gravitational collapse, this includes the effects of a non-zero neutrino mass (Bird et al. 2018, 2012; Blas et al. 2014; Mead et al. 2016; Lawrence et al. 2017; Tram et al. 2019; Massara et al. 2014; Angulo et al. 2020), as well as baryonic feedback processes (e.g., van Daalen et al. 2011; Mummery et al. 2017; Springel et al. 2018; van Daalen et al. 2020; Tröster et al. 2021; for a review see Chisari et al. 2019). In particular, for Stage IV surveys, ignoring such effects can lead to biased estimates of cosmological parameters (for examples with baryonic feedback see Sembolini et al. 2011; Schneider et al. 2020; Martínez et al. 2020). For beyond ΛCDM cosmologies, this problem is typically aggravated by the additional nonlinear effects of the modified cosmology, which need to be modelled to sufficient precision and may be degenerate with other effects. This illustrates the need for testing and validation of the nonlinear modelling developed for non-standard cosmologies. In the context of IDE, efforts in this direction have been made for spectroscopic galaxy clustering by Carrilho et al. (2021), where perturbative models were tested and it was shown that unbiased constraints are possible when appropriate scale cuts are chosen. Comorable modelling and testing is currently missing for weak lensing observables in the context of IDE, which is what motivates this work.

A very promising and flexible method for modelling nonlinearities for non-standard cosmologies is the halo model reaction formalism (Cataneo et al. 2019). This novel method has been able to reach percent level accuracy at predicting the power spectrum for various models beyond ΛCDM. This led to the development of ReACT (Bose et al. 2020), a code that can efficiently predict the halo model reaction and therefore be used in data analyses. ReACT has already been utilised in the KiDS-1000 weak lensing data analysis for constraining modified gravity (Tröster et al. 2020a). In addition, in Cataneo et al. (2020); Bose et al. (2021), the reaction formalism was developed for massive neutrinos and applied to ReACT, which allowed for percent-level predictions of the nonlinear power spectrum in scenarios with both modified gravity and massive neutrinos. Furthermore, baryonic effects were also successfully included in Bose et al. (2021), using parameterised feedback models, such as HICODE (Mead et al. 2021) and were tested against hydrodynamical simulations. This was the first formalism that can accurately include the nonlinear effects of massive neutrinos for beyond-ΛCDM cosmologies, as well as strongly suggesting that baryonic feedback can be reliably modelled independently from massive neutrinos and dark energy.

In this paper, we present an extension to the framework of Cataneo et al. (2019) to include the effects of interactions in the dark sector. We modify the reaction formalism to include the additional force generated by the interaction, taking into account both the effects on gravitational collapse and virialisation of structures. This represents a new tool to calculate predictions for interacting models, which will permit them to be tested by future high-precision surveys.

This paper is organised as follows: In section 2 we review the theory of IDE, establish the different classes of models and specify the particular models that we focus on; section 3 is dedicated to the reaction formalism and the modifications introduced in order to model IDE; in section 4 we show the comparisons of our modelling with simulations and demonstrate its accuracy; and in section 5 we extend our modelling to include baryonic feedback and massive neutrinos and explore degeneracies between their nonlinear effects and those of IDE. Finally, we summarise our conclusions in section 6.

## 2 INTERACTING DARK ENERGY

### 2.1 General interacting dark energy modelling

Given that the nature of the two dark sectors is still unknown, it may be that dark matter and dark energy can be coupled to each other (see, for instance, Amendola (2000); Pportsidou et al. (2013); Tamanini (2015); Di Valentino et al. (2020b)). Traditionally interacting dark energy (IDE) has been described as a scalar field (φ) explicitly coupled to cold dark matter (c). We can then define a coupling current $J_\mu$ and the Bianchi identities take the form:

$$\nabla_\nu T^\nu_\mu = J_\mu = -\nabla_\nu T^\nu_\phi ,$$

so that the total energy-momentum tensor of the dark components is conserved. It is also assumed that baryons remain uncoupled, which evades the need for screening mechanisms at solar-system scales.

As the form of the coupling current $J_\mu$ is a phenomenological choice, a plethora of different models can be constructed. In Pportsidou et al. (2013), three distinct types of models of scalar field dark energy coupled to dark matter were constructed using a Lagrangian approach and the pull-back formalism for fluids. In a subsequent paper (Skordis et al. 2015), the authors developed the Parameterised Post-Friedmannian (PPF) framework for IDE. Both methods showed that the most popular coupled quintessence models (e.g. Amendola (2000)) belong to a small subset of more general classes of theories given by the action (Pportsidou et al. 2013)

$$S = \int d^4x \sqrt{-g} L(n, \phi, X, Z) ,$$

in which $n$ is the dark matter number density, representing the degrees of freedom of the dark matter fluid, $X = \frac{1}{2} (\partial \phi)^2$ and $Z = u^\mu \partial_\mu \phi$, with $u^\mu$ the 4-velocity of the dark matter fluid. Coupled quintessence is a model of type 1, having no dependence on $Z$ and a Lagrangian of the form $L = F(X, \phi) + f(n, \phi)$. Type 2 models introduce $Z$ coupled
to n via $\mathcal{L} = F(X, \phi) + f(n, Z)$, whereas in the type 3 case, Z couples instead to the scalar field, with the Lagrangian $\mathcal{L} = F(X, \phi, Z) + f(n)$.

Type 3 models are particularly interesting because the coupling only involves the dark matter velocity and not its density, resulting in $J^\mu = 0$ and therefore allowing for pure momentum exchange in the dark sector. The main consequence of this is that there is no coupling at the background level ($J^\mu = 0$), with only the fluctuations being affected by the interaction. In addition, the dark matter energy-conservation equation remains uncoupled even at the level of the perturbations. Therefore, the model provides for a pure momentum-transfer coupling for perturbations. This is in contrast to the most common coupled dark energy, but it is also what makes this type of model able to fit CMB and LSS data very well (Pourtsidou & Tram 2016; Baldi & Simpson 2015, 2017; Chamings et al. 2020; Amendola & Tsujikawa 2020; Kase & Tsujikawa 2020a; Mancini & Pourtsidou 2021).

An example sub-case of these pure momentum transfer theories is one where the Lagrangian for the scalar field $\phi$ is of the form $F = X + V(\phi) - \beta Z^2$, such that the action in an FLRW background can be written as:

$$S_\phi = \int dt d^3x \, a^3 \left[ \frac{1}{2} \left( 1 - 2\beta \right) \dot{\phi}^2 - \frac{1}{2} \left( \nabla \phi \right)^2 - V(\phi) \right],$$

where a dot denotes a derivative with respect to cosmic time and $a$ is the scale factor. The model is physically acceptable for $\beta < 1/2$. For $\beta \to 1/2$ there is a strong coupling pathology, while for $\beta > 1/2$ there is a ghost in the theory since the kinetic term becomes negative. In Pourtsidou & Tram (2016), Mancini & Pourtsidou (2021) it was shown that this model can fit CMB and LSS data for a wide range of the coupling parameter $\beta$.

This class of theories can be connected to the so-called Dark Scattering model, first constructed in Simpson (2010), which also exhibits a pure momentum coupling. While it cannot be exactly mapped to a specific type 3 model, it was shown in Baldi & Simpson (2017) that this can be done approximately, following the PPF formalism of Skordis et al. (2015). As we show in the next section, this model can be thought of as an extension of wCDM, with a well defined ΛCDM limit, thus being an attractive non-standard model to be tested with Stage-IV galaxy clustering and weak lensing surveys.

### 2.2 The Dark Scattering model

We now focus on the Dark Scattering model first developed in Simpson (2010). This model is based on the assumption that the interaction between dark matter and dark energy is due to the scattering of their constituent particles. This is a phenomenological model, which shares features with dark radiation interaction models (Lesgourgues et al. 2016), as well as with the type 3 momentum-exchange models described above (Pourtsidou et al. 2013; Skordis et al. 2015). This model is built in analogy to Thomson scattering between charged particles and photons. This is evident when we identify the interaction terms as

$$J_I = -\frac{4}{3} \sigma_T \rho \gamma n_c (u_e - u_\gamma),$$

$$J_{DS} = -(1 + w) \sigma_{DS} \rho_{DE} n_c (u_e - u_{DE}),$$

where symbols in bold represent 3-vectors, $u_X$ denotes the peculiar velocity of species $X$; both cold dark matter (c) and dark energy (DE) are assumed to be fluids, with the former having number density denoted by $n_c$ and the latter having density $\rho_{DE}$ and pressure $P_{DE} = w \rho_{DE}$, thus defining the equation of state parameter $w$. We denote the dark scattering cross section as $\sigma_{DS}$, which is assumed constant. We work in the Newtonian approximation, which takes velocities to be non-relativistic and gravitational fields to be weak. Under this approximation the interaction in Equation 2 receives no nonlinear corrections.

With this interaction, the linear Euler equations for the interacting dark components are

$$\theta'_c + \mathcal{H} \theta_c + \nabla^2 \phi = (1 + w) \frac{\rho_{DE}}{\rho_c} a n_c \sigma_{DS} (\theta_{DE} - \theta_c),$$

$$\theta'_c - 2 \mathcal{H} \theta_c - \frac{1}{1 + w} \nabla^2 \delta_{DE} + \nabla^2 \Phi = a n_c \sigma_{DS} (\theta_{DE} - \theta_c),$$

where a prime denotes a derivative with respect to conformal time, $\mathcal{H} = a'/a$ is the conformal Hubble rate, $\theta_X \equiv \nabla \cdot u_X$ are the divergences of the velocities, $\Phi$ is the gravitational potential and $\delta_X = \delta \rho_X / \rho_X$ is the density contrast of species $X$. We assume the sound speed of dark energy fluctuations is $c^2_s = 1$. This implies that on sub-horizon scales, the dark energy fluctuations are heavily damped, such that they can be neglected for the evolution of dark matter, resulting in a simplified Euler equation:

$$\theta'_c + \mathcal{H}(1 + A) \theta_c + \nabla^2 \Phi = 0,$$

where we have defined the variable $A$ as

$$A \equiv \xi (1 + w) \frac{3 \Omega_{DE}}{8 \pi G} H,$$

Here we have introduced the coupling parameter $\xi \equiv \sigma_{DS} / m_c$ in units [b/GeV], which encodes information on the CDM particle mass $m_c$ and the scattering cross section $\sigma_{DS}$, thereby modulating the strength of the interaction. We also use here the Hubble rate $H = a'/a$. Equation 7 reveals that the only effect of the interaction is to introduce additional friction in the evolution of the velocities. There are no other effects relative to a wCDM model, as the energy-conservation equation remains unchanged. In addition, there is a well defined ΛCDM limit, which is the same as for wCDM: when $w \to -1$, we have $A = 0$.

In the context of the PPF formalism developed by Skordis et al. (2015), this model can be shown not to be exactly of type 3, since in that case one has

$$J = B_6 \nabla \delta_{DE} + B_5 u_{DE} + B_3 u_c,$$

with all $B_I$ being different and only vanishing if there is no interaction. However, Baldi & Simpson (2017) showed that this can be done approximately, using a Lagrangian of the type $F \propto \exp(-Z)$. Alternatively, if the sound speed is $c^2_s = 1$ then the contributions from dark energy fluctuations can be neglected, making those type 3 models have a similar form to the Dark Scattering case, with equivalence being achieved if the time-dependence of $B_6$ can be matched to the one from Equation 4.

Using N-body simulations, the Dark Scattering model has been extended to the nonlinear level in Baldi & Simpson (2015), by assuming that the interaction is always linear in the dark matter velocity, therefore allowing one to extrapolate its effect for the equation of motion of individual particles as

$$x'' = -\mathcal{H}(1 + A) x' - \nabla \Phi,$$

where $x'$ is the velocity of particles in comoving coordinates. As mentioned above, this assumption of linearity is justified under the Newtonian approximation. This formulation of the theory was used

\footnote{It is likely this approximation of linearity in the dark matter velocity also holds for many of the type 3 theories that are sufficiently similar to Dark}
3 THE HALO MODEL REACTION

We briefly review the halo model reaction approach to modelling the nonlinear matter power spectrum for general cosmologies (Cataneo et al. 2019, 2020). In this scheme the nonlinear spectrum is given as a product of two key quantities, the halo model reaction \( \mathcal{R}(k, z) \) and the nonlinear pseudo power spectrum \( P_{NL}^{\text{pseudo}}(k, z) \)

\[
P_{NL}(k, z) = \mathcal{R}(k, z) \times P_{NL}^{\text{pseudo}}(k, z).
\]

The pseudo cosmology is defined as a ΛCDM cosmology whose initial conditions are tuned such that the linear clustering at the target redshift matches the target cosmology. In this way, the reaction models the nonlinear modifications to the power spectrum arising from beyond ΛCDM physics, be it modifications to general relativity, massive neutrinos or a non-standard dark sector.

This quantity is given by (Bose et al. 2021)

\[
\mathcal{R}(k) = \left( \frac{f_{c}}{f_{L}} - 2f_{v} \frac{P_{\text{HMF}}^{(vb)}}{P_{L}^{(m)}} - 1 \right)
\]

where we have dropped the redshift dependence for brevity. The superscript \( (m) \) \( \equiv \) \( (v+b) \) with ‘cb’ standing for CDM plus baryons and ‘v’ standing for massive neutrinos. The combination \( (vb) \) is approximated by \( P_{\text{HMF}}^{(vb)}(k) \) \( \equiv \) \( \sqrt{P_{L}^{(m)}(k)P_{\text{HMF}}^{(vb)}(k)} \). The subscript ‘HM’ stands for halo model and \( f_{v} \equiv (1 - f_{c}) \) with \( f_{v} = \Omega_{v,0}/\Omega_{m,0} \) being the ratio of present day massive neutrino density to the total matter density. The subscripts ‘L’ stand for linear and ‘1h’ stands for 1-halo. We refer the reader to the review by Cooray & Sheth (2002) for details on how the 1-halo spectrum is constructed. The linear spectra, which include the beyond ΛCDM physics, can all be produced using a Boltzmann solver such as CAMB (Lewis & Bridle 2002) or CLASS (Lesgourgues 2011) and the extensions thereof (e.g. Zucca et al. 2019; Hojjati et al. 2011; Zhao et al. 2009)). In particular, we have modified CLASS for the Dark Scattering model and we use it for many of our calculations.

From Equation 12 we see that this nonlinear correction is simply a ratio of the target-to-pseudo halo model power spectra with the effects of massive neutrinos added in linearly in the numerator, which was shown to be a sufficient approximation in Castorina et al. (2015). One may now ask, why correct a nonlinear pseudo spectrum and not a full ΛCDM spectrum? The importance of using the pseudo cosmology comes from the observation that the mass function in both target and pseudo cosmologies becomes far more similar as they share the same linear clustering that enters the peak statistic (Mead 2017). This similarity provides a smoother transition between the 2-halo and 1-halo regimes, an issue of previous halo model prescriptions (Cooray & Sheth 2002; Cacciato et al. 2009; Giocoli et al. 2010).

Finally, the full halo model reaction as described in Cataneo et al. (2019) and Bose et al. (2021) also involves a perturbation theory-based calculation, entering in the \( P_{\text{HMF}}^{(cb)}(k) \) term. This term is only relevant when new mode couplings are introduced in the modification to ΛCDM, typical of theories of gravity beyond general relativity (see Koyama (2018) for a review on modified gravity and screening mechanisms). Since we will only be considering a modified dark sector here, this additional term will not be used.

3.1 Nonlinearities for interacting dark energy

3.1.1 Evolution equations

The late-time evolution of the Universe is assumed to be well described by a perturbed flat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime, whose contents are baryons, neutrinos, CDM and DE. At the background level, there is no modification with respect to the wCDM model, such that the energy conservation equations for each species \( X \) can be written in general form as

\[
\dot{\rho}_{X} = -3H(1 + w_{X})\rho_{X}.
\]

The Friedmann equation can then be expressed as,

\[
H^{2} = H_{0}^{2}\left(\Omega_{m,0}a^{-3} + \Omega_{DE,0}a^{-3}\int(1+w)d\log a\right),
\]

where we have collected all non-relativistic species into \( \Omega_{m} \) and substituted the solutions for the energy densities. We use the Chevalier-Polarski-Linder (CPL) parametrisation (Chevallier & Polarski 2001; Linder 2003) for the evolution of the dark energy equation of state, given by

\[
w = w_{0} + w_{a}(1 - a),
\]

with \( w_{0} \) and \( w_{a} \) being constant parameters. In the case of \( w_{a} = 0 \), we use \( w \) as a parameter, for simplicity.

We treat the evolution of matter fluctuations in the Newtonian approximation, such that the nonlinear evolution equations for dark matter are

\[
\delta' + \nabla \cdot \left( (1 + \delta_{m}) u_{c} \right) = 0,
\]

\[
u' + u_{c} \cdot \nabla u_{c} + H u_{c} + \nabla \Phi = -\Lambda H u_{c},
\]

where we have neglected pressure and other stress contributions that are typically small in the context of cold dark matter. Baryons and neutrinos have the same evolution equations as in ΛCDM, so we do not repeat them here. The system of equations is closed by the Poisson equation

\[
\nabla^{2} \Phi(x, \eta) = \frac{1}{2} \Omega_{m}H^{2} \delta(x, \eta),
\]

where \( \delta = \delta_{m} \) denotes the density contrast of all non-relativistic matter.

The Dark Scattering interaction is not universal, given that only dark matter interacts but other species do not. For this reason, one expects the effective strength of the interaction to be modulated by the dark matter fraction of the total matter, \( f_{c} = \rho_{c}/\rho_{m} \). This can be demonstrated by analysing the Euler equations of non-relativistic species at the linear level. We split those species into CDM and non-CDM, with the latter including baryons and massive neutrinos, which we approximate to evolve in the same way. We then define

\[
f' + \nabla x \cdot (f x') + \nabla p \cdot (f p') = 0.
\]

\[4\] These can be obtained directly from Equation 10 using the suitable Vlasov equation for dissipative systems (see Perpekelin et al. 2018).
the total matter velocity divergence \( \theta_m \equiv f_c \theta_c + f_{b,\nu} \theta_{b,\nu} \) and the velocity difference \( \Delta \theta \equiv \theta_c - \theta_{b,\nu} \), whose evolution equations are
\[
\begin{aligned}
\theta_m' &= -\mathcal{H}(1 + A f_c) \theta_m - \mathcal{H} A f_c f_{b,\nu} \Delta \theta - \nabla^2 \Phi, \\
\Delta \theta' &= -\mathcal{H}(1 + A f_{b,\nu}) \Delta \theta - \mathcal{H} A \theta_m.
\end{aligned}
\]
(20)
(21)

Since \( \Delta \theta \) is expected to be small, we can approximate the solution for the \( \Delta \theta \) equation by its equilibrium solution (i.e. the solution which gives \( \Delta \theta' = 0 \)). Substituting that into the \( \theta_m \) equation results in
\[
\theta_m' = -\mathcal{H} \left( 1 + \frac{A f_c}{1 + A f_{b,\nu}} \right) \theta_m - \nabla^2 \Phi.
\]
(22)

This demonstrates that the total matter evolves with an effective coupling function that depends on the relative amount of dark matter in the Universe. While this coupling function has a slightly modified time-dependence relative to the standard coupling function, \( A \), we have verified with a numerical solution from our modified version of CLASS that it is a very good approximation to evaluate the denominator at \( \tau = 0 \), so that we can define an effective coupling constant \( \tilde{\xi} \), given by
\[
\tilde{\xi} = \frac{f_c}{1 + A_0(1 - f_c)} \xi.
\]
(23)

This means that a single fluid description is possible by using this effective coupling to compute the growth factor and growth rate. At the nonlinear level, this approximation assumes that we can put together the clustering species when computing the halo model prediction by using this effective coupling. We use this assumption in the following sections, which describe the ingredients of the halo model that are modified when the interaction is active.

3.1.2 Spherical Collapse

In order to approximate the halo formation of the IDE model we use the Press-Schechter formalism (Press & Schechter 1974), thus modelling it with spherical collapse. We follow the evolution of a spherical overdensity of physical radius \( r \) and mass \( M \), modelled through the well-known top-hat model (see, e.g. Schmidt et al. 2009),
\[
M = \frac{4\pi}{3} r^3 \tilde{\rho}_m (1 + \delta) = \text{const}.
\]
(24)

For this idealised overdensity, the following nonlinear evolution is derived from Equations 17 – 19,
\[
\frac{\ddot{\delta}}{a^2} + 2 H \frac{\dot{\delta}}{a} - \frac{4}{3} \frac{\delta^2}{(1 + \delta)} = \frac{(1 + \delta)}{a^2} \nabla^2 \Phi - \mathcal{H} \dot{\delta}.
\]
(25)

This can be rewritten in terms of the sphere radius \( r \) instead of \( \delta \), arriving at,
\[
\frac{\ddot{r}}{r} + \frac{A H^2}{r} \frac{\dot{r}}{r} = -\frac{4\pi G}{3} \frac{\delta}{\tilde{\rho}_m + (1 + 3w)\tilde{\rho}_{DE}} + A H^2 - \frac{4\pi G}{3} \tilde{\rho}_m \delta.
\]
(26)

We see that there are two contributions from the dark interaction, one which dampens the collapse and one that appears to enhance it. This split into two terms is due to using physical radius \( r \) as a coordinate, instead of a comoving coordinate. This is explained by the fact that the interaction is only dependent on the peculiar velocity of dark matter, defined relative to the Hubble flow so the term on the right-hand-side of Equation 26 serves to compensate for the expansion. This can be clearly seen by using the comoving variable \( y = \frac{r}{a_i} \), which will also be useful for our numerical implementation, resulting in
\[
\begin{aligned}
\partial^2_y \delta + \left( 2 + A + \frac{\partial_y H}{H} \right) \partial_y \delta + \left( \frac{H^2}{2a^3} \frac{\Omega_m}{\Omega_m(r)} \right) \delta &= 0,
\end{aligned}
\]
(27)

where \( \delta_y \) denotes a derivative with respect to the number of e-folds, \( N = \ln a \). The density contrast of the top-hat is related to \( y \) via
\[
\delta(y, a) = \left[ 1 + \delta_i \left( \frac{a_i}{a} \right)^{-3} - 1 \right],
\]
(28)

where \( \delta_i \) is its initial value, when the physical size of the fluctuation is \( r_i \) at the initial time \( a_i \). While, according to the equations above, evolution would lead to full collapse to \( r = 0 \), in the real Universe, a collapsing fluctuation will instead reach virial equilibrium. Therefore we evolve Equation 26 up to collapse to find the scale factor at that time, \( a_{\text{vir}} \), while also determining at which point along the evolution virial equilibrium is reached, \( a_{\text{vir}} \), as well as the virial overdensity,
\[
\Delta_{\text{vir}} = \left[ 1 + \delta(y, a_{\text{vir}}) \right] \left( \frac{a_{\text{col}}}{a_{\text{vir}}} \right)^3,
\]
(29)

and the corresponding mass
\[
M_{\text{vir}} = \frac{4\pi}{3} r_{\text{vir}}^3 \tilde{\rho}_m \Delta_{\text{vir}}.
\]
(30)

For that reason, we also need to know how the virial theorem is modified due to the dark sector interaction and we describe that in the next section.

3.1.3 Virial Theorem

As shown previously, the effect of the dark sector interaction is to generate an additional friction force on dark matter particles. Within the approximations used in this work, this friction force is clearly not conservative and it cannot be included in the traditional potential term of the virial theorem. Therefore, we must add a non-conservative force \( F_{\text{fric}} \) to the standard expression
\[
2\langle T \rangle + \langle W \rangle + \sum_i \langle F_{\text{fric}}^i \cdot r_i \rangle = 0,
\]
(31)

where \( T \) is the total kinetic energy of the system, \( W \) is the potential term and the sum is over all particles, with physical positions \( r_i \). The friction force that comes from the interacting term is
\[
F_{\text{fric}}^i = -mAHx_i^2.
\]
(32)

We then integrate this with the distribution function over the momentum and position to obtain the total contribution,
\[
W_{\text{DS}} = -AH \int d^3 x \, a \rho \cdot x,
\]
(33)

where the integral is over the comoving coordinate \( x \). Expressing this for the top hat profile described in the previous section, in terms of the normalised comoving radius \( y \), we find the following expression for the contribution of the interaction to the virial theorem
\[
W_{\text{DS}} = -\frac{3}{2} \lambda A M (r_i H)^2 y \partial_y \left( \frac{a}{a_i} \right)^2.
\]
(34)

Following Cataneo et al. (2020), we write the contributions to the Virial theorem in units of \( E_0 = \frac{1}{120} M (H_0 r_i)^2 \). The expressions in this case are:
\[
\frac{W_{\text{N}}}{E_0} = -\Omega_m \left( \frac{1}{a_i^2} \right) a y^2 (1 + \delta),
\]
(35)

\[
\frac{W_{\text{DE}}}{E_0} = -\frac{H^2}{H_0^2} \left( 1 + 3w \right) \Omega_m \left( \frac{a}{a_i} \right)^2 y^2,
\]
(36)

\[
\frac{W_{\text{DS}}}{E_0} = -\frac{H^2}{H_0^2} \left( 1 + 3w \right) \Omega_m \left( \frac{a}{a_i} \right)^2 y \partial_y y,
\]
(37)
where we have split the Newtonian contribution, $W_N$ from that coming from the background acceleration, $W_{DE}$. For completeness, we present also the total kinetic energy of the top hat, $T$,

$$ T = \frac{\dot{E}_0}{\dot{H}_0} = \frac{\alpha}{\dot{a}} \left( \dot{\beta}_N y + y \right)^2. \quad (38) $$

To summarize, the equation that must be solved to find the virialisation time $\alpha_{vir}$, as well as the corresponding overdensity $\Delta_{vir}$, is

$$ 2T + W_N + W_{DE} + W_{DS} = 0. \quad (39) $$

These modifications are then applied to the calculation of the halo model reaction predictions using the code ReACT. This results in predictions for the power spectrum for the dark scattering model that can be compared to simulations. We perform this validation in the next section.

4 ACCURACY VALIDATION OF THE MODELLING AGAINST SIMULATIONS

Here we will validate the halo model reaction predictions against the N-body simulations for the Dark Scattering model described in Baldi & Simpson (2017). These were performed using a modified version of the GADGET-2 N-body code (Springel 2005) which consistently implements the momentum exchange between the dark matter particles and the underlying homogeneous dark energy field. These simulations contain 1024$^3$ dark matter particles in a box of 1 Gpc/h per side. They begin the particle evolution at $z_i = 99$ and trace it up to $z = 0$. The resulting CDM particle mass is $m_c = 8 \times 10^{10}$ $M_\odot/h$ and the spatial resolution is $\epsilon = 24$ kpc/h (equivalent to $k_\epsilon = 261$ h/Mpc).

In this work we consider a subset of the simulations presented in Baldi & Simpson (2017), which we summarise in Table 1. We also use a reference $\Lambda$CDM simulation with the same setup. All simulations share the base cosmological parameters given in Table 2. Furthermore, they all share the same initial seeds allowing us to divide-out cosmic variance by taking ratios of power spectra.\(^5\) We have power spectrum measurements up to $k = 12$ h/Mpc for $z = 0$, $k = 9$ h/Mpc for $z = 0.5$ and $k = 6$ h/Mpc for $z = 1$. We refer the interested reader to Baldi & Simpson (2017) for a more extended description of the simulations and of the modified N-body code.

The 3 different interacting models we consider are only a sample of all the different sets of parameters and time-dependencies for $w$ that are possible in this theory. However, they cover different interaction strengths and values of $w$, two of which ($wCDM+$ and CPL) are relevant in the context of the $\sigma_8$ tension as they reduce its value by approximately 5%, matching the discrepancy between CMB and weak lensing data (Abbott et al. 2022). Additionally, given that the reaction formalism has been shown by Cataneo et al. (2019) to be accurate for many different functions $w(z)$ for the non-interacting case, we expect that the worsening of accuracy will be a function of the interaction strength, effectively given by $(1 + w)\xi$. For this reason, analysing different values of that combination is expected to be relevant for general settings. In spite of this, further cases with different time-dependence would be useful to better understand how the accuracy of our predictions varies with parameter choices. This requires additional simulations, which we leave for future work.

We compute our prediction for the matter power using the halo model reaction formalism described above, calculating the reaction $\mathcal{R}$ with the new version of ReACT in which the Dark Scattering model is implemented. As the N-body simulation contains only interacting particles, we use the uncorrected coupling, $\xi$, instead of using the effective coupling, $\xi$, in Equation 23 (or equivalently set $f_e = 1$).\(^6\) To obtain the full power spectrum, we require an accurate pseudo power spectrum – a fully nonlinear spectrum in a $\Lambda$CDM cosmology, whose corresponding linear spectrum is equal to that of the cosmology with interaction, at the requested redshift. We obtain that pseudo spectrum using the EuclidEmulator2 (Euclid Collaboration et al. 2021) by giving as input a scalar amplitude, $\mathcal{A}_\sigma$, corrected by the appropriate growth factors, i.e. $D_{DS}^2(z)/D_{\Lambda CDM}^2(z)$, thus ensuring the match to the linear power spectrum of the dark scattering case. This is possible because this interaction model generates scale independent linear growth, such that a re-scaling of the amplitude is sufficient for the matching. In more complex cases, other alternatives for the pseudo power spectrum may be required, such as HMCode, that takes as input the linear power spectrum. We have also tested that option for this work, finding very similar results, but finding the EuclidEmulator2 to be slightly more accurate on intermediate scales. We present those results in the next section.

\(^5\) Due to the nonlinear nature of the evolution, some variance could still remain, which could affect these ratios and could artificially improve or degrade the measured accuracy of our predictions. This has been checked by Cataneo et al. (2019) for the evolving DE case using different initial seeds, which found the results to be insensitive to the change in realisation. We have confirmed these results in the dark scattering case, by running smaller simulations (500 Mpc/h, 256$^3$ particles) with 2 different random seeds for both $\Lambda$CDM and dark scattering. This exercise has confirmed that the variance in their ratios is always below 1%, which allows us to safely neglect it.

\(^6\) It would be interesting to test the effective coupling approximation in detail, using simulations with more than one type of particle, similar to the ones produced in the recent work by Ferto et al. (2022). We plan to test this more realistic situation in future work.

Table 1. A summary of the models considered in this work.

| Model  | $w_0$ | $w_a$ | $\xi$ | $\sigma_8(z = 0)$ |
|--------|-------|-------|-------|------------------|
| $\Lambda$CDM | -1.0  | 0.0   | 0.0   | 0.8261           |
| $wCDM+$  | -0.9  | 0.0   | 10.0  | 0.7939           |
| $wCDM-$  | -1.1  | 0.0   | 10.0  | 0.8512           |
| CPL     | -1.1  | 0.3   | 50.0  | 0.7898           |

Table 2. Base cosmological parameters.

| Parameter | Value |
|-----------|-------|
| $h$       | 0.678 |
| $\Omega$  | 0.2598|
| $\Omega_b$| 0.0482|
| $\mathcal{A}_\sigma$ | $2.115 \times 10^{-9}$ |
| $n_s$     | 0.966 |

Table 3. Maximum value of $k$ (in h/Mpc) for which the residual is below 1% ($k_{\max}^{1\%}$) and 3% ($k_{\max}^{3\%}$).

| Model  | $k_{\max}^{1\%}$ | $k_{\max}^{3\%}$ | $k_{\max}^{1\%}$ | $k_{\max}^{3\%}$ |
|--------|-----------------|-----------------|-----------------|-----------------|
| $wCDM+$ | 1.0             | 1.6             | >6              | >6              |
| $wCDM-$ | 0.9             | 1.5             | >6              | >6              |
| CPL    | 0.8             | 2.0             | 2.0             | 2.6             |
4.1 Results

We begin by presenting our results for the cases of constant DE equation of state in Figure 1, where we show the ratio between the power spectra for the Dark Scattering model and the corresponding ΛCDM model at three redshifts. We show both the predictions from the reaction formalism as well as from the pseudo power spectrum, for cosmologies with \( w = -0.9 \) and \( w = -1.1 \) and a coupling parameter value of \( \xi = 10 \) h/GeV. These two cases have opposite effects, since the interaction becomes larger. In spite of this, at that redshift, the nonlinear effects arise both from the pseudo spectrum and from the halo model reaction, with errors below 1% on those scales. The reason for this is that in this formulation, the reaction calculation would give equally good predictions on these scales. We find that, even for \( z = 0 \), that is not the case and we do need the full model. The reason for this is that in this formulation, nonlinear effects arise both from the pseudo spectrum and from the reaction. With the large linear effects, the pseudo spectrum shows enhanced nonlinear effects on intermediate scales, which are then compensated by the reaction, as seen in Figure 1. For that reason, ignoring the interaction in the calculation of the reaction typically doubles the errors relative to simulations around \( k < 1 \) h/Mpc. Therefore, even when the interaction produces nonlinear effects that are small, their modelling is only accurate when the coupling is fully taken into account.

Next, we validate the final case in Table 1, with a varying equation of state, following the CPL parametrisation. We show our results for that case with \( w_0 = -1.1 \), \( w_a = 0.3 \) and \( \xi = 50 \) h/GeV at \( z = 0, 0.5, 1 \) in Figure 2. This case is interesting because the effective coupling, \( A \), changes sign at \( z = 0.5 \), first being positive and suppressing linear growth at high redshift, and later enhancing it as redshift goes to 0. As most of the linear clustering occurs before dark energy begins to dominate, the suppression of growth is the largest access to additional simulations (going above \( k = 6 \) h/Mpc) we cannot determine a value of \( k_{\text{max}} \).

In this first case, with \( \xi = 10 \) h/GeV, while the linear effects are considerable, the nonlinear effects of the interaction are fairly small within the scales that we model accurately. This is particularly true at \( z = 0 \), where the size of the effect is sub-percent at \( k < 1 \) h/Mpc. For this reason, we have tested whether neglecting the interaction in the reaction calculation would give equally good predictions on these scales. We find that, even for \( z = 0 \), that is not the case and we do need the full model. The reason for this is that in this formulation, nonlinear effects arise both from the pseudo spectrum and from the reaction. With the large linear effects, the pseudo spectrum shows enhanced nonlinear effects on intermediate scales, which are then compensated by the reaction, as seen in Figure 1. For that reason, ignoring the interaction in the calculation of the reaction typically doubles the errors relative to simulations around \( k < 1 \) h/Mpc. Therefore, even when the interaction produces nonlinear effects that are small, their modelling is only accurate when the coupling is fully taken into account.
effect, and the overall result is more similar to the one for \( w = -0.9 \) than \( w = -1.1 \). The biggest difference comes in the form of a change of shape on the smallest scales, visible in the results at \( z = 0 \), at which the interaction dampened most of the previous nonlinear amplification. All of these nonlinear effects are enhanced here because we study the much larger interaction strength of \( \xi = 50 \) \( \text{b/GeV} \). In spite of this, the prediction of the halo model reaction is 1% accurate up to scales of \( k \approx 0.8 \) \( h/\text{Mpc} \) at \( z = 0 \), reaching \( k \approx 2 \) \( h/\text{Mpc} \) at higher redshift, as detailed in Table 3. In addition, at \( z = 0 \), the errors are never larger than 4% for the entire range of scales available from the simulations. While this is likely due to the compensation between the effects of the interaction from high and low redshift, it shows that our results capture the correct qualitative behaviour in all cases. In addition, contrary to what happened with the cases with \( \xi = 10 \), here the interaction is responsible for larger nonlinear contributions at all redshifts already on intermediate scales, showing that our modelling is robust in this case too.

In summary, the fact that our predictions are accurate for a substantial range of scales and redshifts, particularly for large interaction strengths, demonstrates that the reaction formalism is effective at modelling the nonlinear effects of interacting dark energy and can be used for the analysis of real data to constrain the interaction strength. For that to be fully realised, however, we need to understand all the contributions to the power spectrum on small scales, including those generated by baryon feedback and massive neutrinos. We analyse that in the next section.

5 INCLUDING BARYONIC FEEDBACK AND MASSIVE NEUTRINOS

In the previous section, we have shown that we can model the effects of interacting dark energy on nonlinear scales with percent-level accuracy, as shown in Table 3. However, to get a full prediction for the matter power spectrum that is relevant for observations, we need to include the effects of baryon feedback and massive neutrinos, which substantially alter the power spectrum on small scales.

Both these effects represent a scale-dependent suppression of power that could imitate the features of interacting dark energy. As seen in Figure 1 and Figure 2, the nonlinear effect of the interaction initially enhances the linear effect at intermediate scales, representing a suppression for \( w > -1 \) and an enhancement for \( w < -1 \). On highly nonlinear scales, however, the effect is reversed, as the additional friction for \( w > -1 \) causes structures to lose energy and collapse to deeper potential wells, thus forming denser structures, with the inverse happening for \( w < -1 \). This is similar to what occurs with baryonic feedback, which induces suppression of power on intermediate scales, due to gas expulsion from AGN feedback, and an enhancement on smaller scales due to star formation. It is therefore likely that there is a degeneracy between the two effects. Massive neutrinos also induce a suppression of power, since they do not cluster as efficiently as cold matter on sufficiently small scales. While this effect is less similar to that of the interaction, it could also be somewhat degenerate, particularly on intermediate scales.

In this section we describe how these effects can be modelled within the reaction formalism, and perform a first analysis of the degeneracy between them and the contributions of the interaction. Throughout this section, we employ the effective coupling approx-
5.1 Baryonic feedback

Following Bose et al. (2021), we include the effects of baryonic feedback in the computation of the pseudo power spectrum via HHCCode (Mead et al. 2021). The model implemented there is also based on the halo model and takes into account effects from Active Galactic Nuclei (AGN) feedback and star formation, encoding them in a 6-parameter model, accounting for time evolution. That model was then fitted to the BAHAMAS simulations (McCarthy et al. 2017) to obtain a 1-parameter model, which depends only on the temperature of AGN, via θ = log₁₀(T_{AGN}/K), and was validated in the range 7.6 ≤ θ ≤ 8.3 (see Mead et al. 2021, for more details). This model is called HHCCode2020_feedback and is the one we use in this work. The correction for baryonic feedback is taken into account by an extra boost factor, B(k, z), multiplying the power spectrum, defined by the ratio between the full power spectrum and the DM-only spectrum, as follows,

\[ B(k, z) = \frac{P_{\text{full}}}{P_{\text{DM-only}}} \]  

Therefore, to obtain the final power spectrum within the halo model reaction framework, we combine HHCCode2020_feedback and ReACT prescriptions to obtain,

\[ P_{\text{NL}}(k, z) = R(k, z) \times B(k, z) \times P_{\text{DM-only}}(k, z) \]  

With this prescription we can readily predict the nonlinear matter power spectrum for Dark Scattering, in the presence of baryon feedback effects.9

We now focus in determining whether a degeneracy exists between IDE and baryonic feedback parameters at the level of the spectrum in Equation 41. While it is clear that the linear effects of the interaction do not have a counterpart baryonic effect, they are degenerate with the amplitude of the power spectrum as well as with w, given their scale-independence. At nonlinear scales, however, the contributions from baryons and IDE could be very similar or partially cancel each other out, so this degeneracy needs to be understood. To that end, we will attempt to fit a non-interacting model with varying baryon feedback to an interacting model with fixed baryon feedback, in order to ascertain whether the baryonic effects can mimic the interaction contribution. To isolate the scale-dependent nonlinear effects we are interested in, instead of comparing the full power spectra, we match instead spectra normalized to their large scale value,

\[ Q_{\text{NL}} \equiv \frac{P_{\text{NL}}}{P_{\text{NL}}(k_{\text{NL}})}, \]

where \( k_{\text{NL}} \ll k_{\text{NL}} \) so that \( P_{\text{NL}}(k_{\text{NL}}) \approx P_1(k_{\text{NL}}) \). We begin by generating our fiducial spectrum with \( \xi = 50 \text{ b/GeV} \) (\( \xi = 60 \text{ b/GeV} \)), \( w_0 = -1.1 \), \( w_0 = 0.5 \), \( w_0 = 0.0 \) and adding a baryon boost with \( \theta = 7.8 \) and thus computing \( Q^\text{fid}_{\text{NL}} \). We then generate results without interaction (\( \xi = 0 \)), while varying feedback strength until we are able to find a value \( \theta_{\text{best-fit}} \) which minimises the residuals between this case and the fiducial spectra. We fit all three redshift bins together and we consider only the scales for which our predictions from the halo model reaction have an accuracy of \( \Delta \leq 1\% \) (displayed in Figure 2), ensuring that the feedback is not mimicking incorrect effects. As the scale-dependent effect of the interaction in the chosen case is to suppress power, we expect the baryon feedback model that best mimics it to have a higher temperature than the fiducial case. The fiducial temperature of \( \theta = 7.8 \) was chosen taking this fact into account, both ensuring that itself and the higher value resulting from the fitting procedure are within the well-tested region of parameter space (7.6 ≤ \( \theta \) ≤ 8.3).

The results from this procedure are illustrated in Figure 3, where we show the residuals between the fiducial and best fit cases, as well as compared to a base non-interacting case with the same temperature as the interacting case. As seen there the best-fit value is \( \theta_{\text{best-fit}} = 8.01 \), which is substantially different from the fiducial temperature.

8 This is the general prescription for obtaining the power spectrum when the three ingredients are generated by different methods. Naturally, when the full pseudo power spectrum is created also by HHCCode, there is no need to separate the boost out.

9 Note that, while we do not test the validity of using a ΛCDM prescription for the baryon boost, this has been tested by Bose et al. (2021) in the non-interacting case and found to be an accurate prescription. Additionally, it has been shown that the baryonic boost has nearly no dependence on cosmology, except for the baryon fraction (McCarthy et al. 2018; van Daalen et al. 2020; Giri & Schneider 2021), and, given that the interaction does not affect baryons, we expect the same to apply in this case.  

10 We chose the case with the largest interaction strength we had validated since it is the case generating the largest nonlinear effects and therefore the one in which the degeneracy will be most clearly seen. In addition, as described in subsection 4.1, the nonlinear effects of \( \xi = 10 \text{ b/GeV} \) models are small and even if they could be fully mimicked by the baryonic effects, a degeneracy could not be claimed, as it would be within the expected errors in the theoretical modelling.
value of 7.8. It is also clear in the figure that modulating the feedback strength can mimic the effect of the interaction, as it reduced the residuals to below 1% on scales up to \( k = 1 \, h/\text{Mpc} \), in which we trust our modelling fully, whereas the original residual is above 3% on the same scales, at all redshifts, as seen in the black lines. This clearly suggests that the two effects are degenerate and that they would be hard to distinguish in an analysis including only these scales. Our modelling seems to indicate that going to smaller scales is likely to dilute this degeneracy, but that is also where the errors in our predictions begin to grow, indicating that better modelling may be required to completely understand this degeneracy. The presence of this degeneracy highlights the importance of using a combined analysis with spectroscopic clustering to constrain degeneracy with the nonlinear evolution would change these conclusions. However, the generic feature that the interaction creates on small scales is expected to be fairly robust, given that it is observed in all our results. Still, more detailed forecasts of these degeneracies are necessary also taking into account the detection capabilities of future surveys. These will have to include an analysis of how this degeneracy depends on dark energy evolution and we leave them for future work.

5.2 Massive neutrinos

We now aim to investigate the degeneracy between massive neutrinos and the dark sector interaction. The effect of massive neutrinos is fully included in the reaction formalism, as described in section 3 and it is therefore straightforward to compute using ReACT. We proceed in the same way as in the previous section, attempting to find a value for the neutrino mass for which \( Q_{\text{NL}} \) mimics that of the interacting cosmology. Note that, while for the baryon feedback case, all the effects measured by \( Q_{\text{NL}} \) were purely nonlinear, in the case of neutrinos, \( Q_{\text{NL}} \) also includes scale-dependent linear effects, which are not degenerate with the scalar amplitude, and therefore have to be included for a consistent study of degeneracy with the nonlinear effects of the interaction.

In Figure 4, we show the percentage deviation from a fiducial spectrum with \( \xi = 50 \, b/\text{GeV} \) and \( \nu = 0.1 \, eV \), \( w_0 = -1.1 \), \( w_a = 0.3 \) and a neutrino mass of \( M_\nu = 0.1 \, \text{eV} \) to a no-interaction spectrum having \( \xi = 0 \, b/\text{GeV} \), \( w_0 = -1.1 \), \( w_a = 0.3 \) but a neutrino mass of \( M_\nu = 0.12 \, \text{eV} \). We also show the comparison to a base non-interacting case with the same neutrino mass as the interacting case. We find over the three redshifts considered, this neutrino mass is the one that fits the fiducial best in the absence of interaction in the dark sector. We clearly see that a dark sector momentum exchange at the level of \( \xi = 50 \, b/\text{GeV} \) cannot be mimicked by massive neutrinos alone, even if a single redshift slice is considered in isolation. This is in contrast with the baryonic feedback case where we can achieve better agreement even when considering the entire redshift range.

It should be noted that we use a single set of dark energy parameters to test both degeneracies, and it is conceivable that a very different dark energy evolution would change these conclusions. However, the generic feature that the interaction creates on small scales is expected to be fairly robust, given that it is observed in all our results. Still, more detailed forecasts of these degeneracies are necessary also taking into account the detection capabilities of future surveys. These will have to include an analysis of how this degeneracy depends on dark energy evolution and we leave them for future work.

6 SUMMARY

In this paper we have used the halo model reaction formalism to build a complete model for the nonlinear matter power spectrum for the dark scattering model. We did this by extending the halo model to include the additional force acting on dark matter particles, which required modifying the spherical collapse dynamics, as well as the virial theorem, in addition to the linear evolution. These extensions have been implemented into ReACT (Bose et al. 2020), which is publicly available (see Data Availability).

To our knowledge, this represents the first analytical model for the nonlinear power spectrum for an interacting dark energy model. We conjecture that many other models of momentum-exchange interactions could be readily described by this formalism, simply by modifying the time-dependence of the interaction function, \( A \), in Equation 8. Additionally, much of the formalism constructed here would be useful to generate nonlinear predictions for more complex interacting models. Those extensions will be explored in future work.

We have validated our modelling against simulations with the dark scattering interaction from Baldi & Simpson (2017), using a pseudo spectrum generated with the EuclidEmulator2 (Euclid Collaboration et al. 2021). We found that our predictions have 1% agreement with simulations for scales up to \( O(1) \, h/\text{Mpc} \) at redshift zero, improving beyond that at higher redshift, as summarized in Table 3. In particular, at \( z = 1 \), the accuracy is only worse than 1% after \( k = 2 \, h/\text{Mpc} \). This includes both models with very mild nonlinear effects of the interaction (\( \xi = 10 \, b/\text{GeV} \)), but also a case for which they are much larger (\( \xi = 50 \, b/\text{GeV} \)). This allows us to conclude that our modelling is successful at describing the nonlinear power spectrum and can be used for analysing data.

In order to further extend the reach into even smaller scales, additional steps could be taken. This includes using a more accurate concentration-mass relation, fitted to simulations, which was shown by Cataneo et al. (2020) to improve the accuracy. In addition, improving the modelling of angular momentum loss during collapse could also enhance the accuracy, given that this is a crucial contributor to the effects of dark scattering on the smallest scales (Baldi & Simpson 2015).

We have also included the effects of baryonic feedback using...
Nonlinear spectrum for interacting dark energy

ACKNOWLEDGMENTS

We are grateful to Matteo Cataneo and Catherine Heymans for feedback. P.C.’s research is supported by a UK Research and Innovation Future Leaders Fellowship. A.P. is a UK Research and Innovation Future Leaders Fellow [grant number MR/S016066/1]. A.P. is grateful to the Cosmic Dawn Center, University of Copenhagen, for hospitality while part of this work was in progress. K.C. acknowledges support from a CONACYT scholarship. J.C.H. and K.C. acknowledge support from program UNAM-PAPIIT [grant number IN-107521]. B.B. and L.L. acknowledge support from the Swiss National Science Foundation (SNSF) Professorship grant No. 170547. M.B. acknowledges support by the project “Combining cosmic microwave background and large scale structure data: an Integrated approach for addressing fundamental questions in cosmology” funded by the PRIN-MIUR 2017 grant 2017YJYZAH. We acknowledge the use of open source software (Jones et al. 2001; Hunter 2007; McKinney 2010; van der Walt et al. 2011).

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author. The software employed is publicly available in ReaCT. The DM-only pseudo power spectrum is provided by the EuclidEmulator2. The baryonic feedback correction is provided by HMCode. The linear predictions are obtained by a modified version of CLASS.

REFERENCES

Abbott T. M. C., et al., 2020, PRD, 102, 023509
Abbott T. M. C., et al., 2022, PRD, 105, 023520
Aghanim N., et al., 2020, A&A, 641, A6
Alam S., et al., 2021, PRD, 103, 083533
Amendola L., 2000, PRD, 62, 043511
Amendola L., Tsujikawa S., 2020, JCAP, 06, 020
Amendola L., Pettorino V., Quercellini C., Vollmer A., 2012, PRD, 85
Anderson L., et al., 2012, MNRAS, 427, 3435–3467
Angulo R. E., Zennaro M., Contreras S., Aricò G., Pellejero-Ibañez M., Stücker J., 2020 (arXiv:2004.06245)
Linton M. S., Pourtsidou A., Crittenden R., Maartens R., 2018, JCAP, 04, 043
Mancini A. S., Pourtsidou A., 2021 (arXiv:2110.07587)
Martinelli M., et al., 2020 (arXiv:2010.12382)
Massara E., Villaescusa-Navarro F., Viel M., 2014, JCAP, 12, 053
McCarthy I. G., Schaye J., Bird S., Le Brun A. M. C., 2017, MNRAS, 465, 2936
McCarthy I. G., Bird S., Schaye J., Harnois-Deraps J., Font A. S., Van Waerbeke L., 2018, MNRAS, 476, 2999
McKinney W., 2010, Proceedings of the 9th Python in Science Conference, pp 51–56
Mead A., 2017, MNRAS, 464, 1282
Mead A. J., Heymans C., Lombriser L., Peacock J. A., Steele O. I., Winther H. A., 2016, MNRAS, 459, 1468
Mead A. J., Brieden S., Tröster T., Heymans C., 2021, MNRAS, 502, 1401
Mummery B. O., McCarthy I. G., Bird S., Schaye J., 2017, MNRAS, 471, 227
Perepelkin E. E., Sadovnikov B. I., Inozemtseva N. G., Suchkov D. A., 2018 (arXiv:1811.09424)
Pourtsidou A., Tram T., 2016, PRD, 94, 043518
Pourtsidou A., Skordis C., Copeland E. J., 2013, PRD, 88, 083505
Press W. H., Schechter P., 1974, ApJ, 187, 425
Reid B. A., et al., 2012, MNRAS, 426, 2719
Schneider A., Stoira N., Refregier A., Weiss A. J., Knabenhsns M., Stadel J., Teyssier R., 2020, JCAP, 04, 019
Secco L. F., et al., 2021 (arXiv:2105.13544)
Semboloni E., Hoekstra H., Schaye J., van Daalen M. P., McCarthy I. J., 2011, MNRAS, 417, 2020
Simpson F., 2010, PRD, 82, 083505
Simpson F., et al., 2016, PRD, 93, 023525
Skordis C., Pourtsidou A., Copeland E. J., 2015, PRD, 91, 083537
Song Y.-S., et al., 2015, PRD, 92, 043522
Springel V., 2005, MNRAS, 364, 1105
Springel V., et al., 2018, MNRAS, 475, 676
Tamanini N., 2015, PRD, 92, 043524
The LSST Dark Energy Science Collaboration et al., 2018 (arXiv:1809.01669)
Tram T., Brandbyge J., Dakin J., Hannestad S., 2019, JCAP, 03, 022
Tröster T., et al., 2020a (arXiv:2010.16416)
Tröster T., et al., 2020b, A&A, 633, L10
Tröster T., et al., 2021 (arXiv:2109.04458)
Verde L., Treu T., Riess A. G., 2019, Nature Astron., 3, 891
Vikhlinin A., et al., 2009, ApJ, 692, 1060
Xia J.-Q., 2009, PRD, 80, 103514
Zhao G.-B., Pogosian L., Silvestri A., Zylberberg J., 2009, PRD, 79, 083513
Zucca A., Pogosian L., Silvestri A., Zhao G.-B., 2019, JCAP, 05, 001
de Haan T., et al., 2016, ApJ, 832, 95
van Daalen M. P., Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS, 415, 3649
van Daalen M. P., McCarthy I. G., Schaye J., 2020, MNRAS, 491, 2424
van de Bruck C., Thomas C. C., 2019, PRD, 100, 023515
van der Walt S., Colbert S. C., Varoquaux G., 2011, Computing in Science & Engineering, 13, 22

This paper has been typeset from a TeX/LaTeX file prepared by the author.