The Critical Role of PPARγ in Human Malignant Melanoma

Christian Freudlsperger, Udo Schumacher, Siegmar Reinert, and Jürgen Hoffmann

1 Department of Oral and Maxillofacial Plastic Surgery, Tübingen University Hospital, Osianderstrasse 2-8, 72076 Tübingen, Germany
2 Department of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

Correspondence should be addressed to Christian Freudlsperger, christian.freudlsperger@med.uni-tuebingen.de

Received 28 February 2008; Accepted 21 April 2008

The past 30 years have only seen slight improvement in melanoma therapy. Despite a wide variety of therapeutic options, current survival for patients with metastatic disease is only 6–8 months. Part of the reason for this treatment failure is the broad chemoresistance of melanoma, which is due to an altered survival capacity and an inactivation of apoptotic pathways. Several targetable pathways, responsible for this survival/apoptosis resistance in melanoma, have been described and current research has focused on mechanisms inactivating these pathways. As PPARγ was shown to be constitutively active in several tumor entities and PPARγ agonists extent strong anticancer effects, the role of PPARγ as a possible target for specific anticancer strategy was investigated in numerous studies. However, only a few studies have focused on the effects of PPARγ agonists in melanoma, showing conflicting results. The use of PPARγ agonists in melanoma therapy has to be carefully weighted against considerable, undesirable side effects, as their mode of action is not fully understood and even pro-proliferative effects have been described. In the current review, we discuss the role of PPARs, in particular PPARγ in melanoma and their potential role as a molecular target for melanoma therapy.

Copyright © 2008 Christian Freudlsperger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. MALIGNANT MELANOMA AND MOLECULAR TARGETS IN MELANOMA THERAPY

Cutaneous malignant melanoma is the most aggressive form of skin cancer. Despite attempts to treat melanoma using a large variety of therapies, including immuno-, radio, and chemotherapies, survival remains very poor once the disease has spread to distant sites (median survival: 6–8 months) [1]. Systemic therapy, immunotherapy, or even biochemotherapy have failed to improve the survival of these patients. Until now, the only drug approved by the FDA for treatment of metastatic melanoma is the alkylating agent dacarbazine (DTIC), which results in clinical response only of 5–10% of cases when given as a single agent [2]. This treatment failure is mainly due to the notorious chemoresistance of melanoma cells. In contrast to other cancer cells, this chemoresistance of melanoma cells seems not to be acquired selectively following drug therapy, but to be more intrinsic in melanoma cells. Alteration of survival capacity and inactivation of apoptotic pathways are the molecular mechanisms responsible of conventional drug resistance in melanoma cells (see Figure 1). One example for a targetable pathway is the mitogen-activated protein kinase (MAP-kinase) pathway, which plays a crucial role in cell proliferation, invasion, and enhanced survival in diverse cancers [3]. A key player in the MAP-kinase pathway is B-RAF, a serin/threonine protein kinase acting as an oncogene [4]. The recent identification of activating mutations in B-RAF in over 60% cases of melanoma has offered the first opportunity for a rationale treatment program [3] and early clinical trials using the RAF kinase inhibitor BAY 43-9006 have been encouraging, being the first positive example of how targeted therapy can work in malignant melanoma. Other examples of targetable pathways in melanoma are the phosphoinositide-3-kinase (PI3K)/Akt pathway, which can be activated either through growth factors or loss of negative regulators of this pathway [5]. One of the most critical regulators of Akt (also known as protein kinase B) is the phosphatase and tensin homologue (PTEN), which degrades the products of PI3K, preventing the activation of Akt [6]. In several studies it has been shown that up to 30% of melanoma, cell lines have lost PTEN expression [7].
Finally, Huang et al. investigated that the NFκB signaling pathway, acting as a key regulator of survival in cancer cells, is constitutively activated in melanoma cells [8]. In addition, a recent study has demonstrated that inhibiting NFκB activity, using the proteasome inhibitor bortezomib, reduced melanoma cell growth in vitro [9]. Although these targets seem to be attractive ones for melanoma therapy in the future, most of the findings in this area do not give a comprehensive picture which would warrant a review. As several studies have shown an antiproliferative effect of PPARγ agonists on several tumour entities including melanoma, this review focuses on the role of the PPARγ as a possible target in melanoma therapy.

2. PPARγ AND PPARγ AGONISTS

The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, belonging to the nuclear receptor superfamily [10]. Activated PPAR forms heterodimer to peroxisome proliferator response elements (PPREs) on the DNA, initiating transcription of downstream genes. The PPAR subfamily comprises three isoforms, PPARα, PPARβ/δ, and PPARγ, each showing a distinct distribution and ligand preference. While PPARα is predominantly expressed in metabolically active tissue, like liver, kidney, skeletal muscle and brown fat [11], PPARδ is expressed ubiquitously. PPARγ is highly expressed in adipocytes, where it functions as a key regulator of adipocyte differentiation [12] and insulin-dependent glucose utilization [13]. Prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is the most potent naturally occurring ligand for PPARγ and the thiazolidinedione (TZD), also called glitazones, a class of antidiabetic, insulin-sensitizing drugs, are specific exogenous ligands for PPARγ. The TZD family of PPARγ agonists includes rosiglitazone, pioglitazone, ciglitazone, and troglitazone, rosiglitazone being the most potent agonist (Kd = 40 nM). In general, TZDs are selective for PPARγ in concentrations of 10 μM or less [14]. Recently, expression of PPARγ has been demonstrated in tumor cells originating from various malignancies, including breast, colon, lung, gastric, pancreatic, prostate, and bladder cancer and its activation through PPARγ agonists led to a significant decrease in proliferation of tumor cells in vitro [15–21], however, the exact mechanisms underlying this effect are still being explored. As a consequence, PPARγ has become a molecular target for potential anticancer drug development.

3. PPARγ AND MELANOCYTES

Until now, there is little information on the PPAR subtypes and relative levels of PPAR protein expressed in human skin. The three PPAR subtypes have been investigated in human keratinocytes [22], and PPARγ ligands have been shown to induce the expression of genes associated with keratinocyte differentiation in vitro [23]. In addition, Kang et al. showed the expression of all three PPAR subtypes in human melanocytes [24]. Immunocytochemistry showed that PPAR staining was mostly confined to the cytoplasm. Furthermore, proliferation of melanocytes was inhibited through administration of PPARα (WY-14643) and PPARγ (ciglitazone) agonists but not through PPARβ/δ (bezafibrate) agonists in a dose dependent manner at concentrations ranging between 0 and 100 μM. The inhibitory effect of ciglitazone seemed to occur through induction of apoptosis, which was observed by the TUNEL method and flow cytometry [25]. Moreover, Lee et al. showed that pigmentation in melanocytes was accelerated with PPARα and PPARγ agonists, suggesting a possible role for PPARα and PPARγ in modulating melanocyte proliferation and differentiation (pigmentation) [26]. Eastham et al. investigated the expression of mRNA for PPARα, PPARβ/δ, and PPARγ in human melanocytes [27]. In addition, the natural PPARγ agonist 15d-PGJ2 and the synthetic PPARγ agonists ciglitazone and troglitazone inhibited the cell growth of human melanocytes, whereas the PPARα agonists WY14643 and Leukotriene B4 had no effect on the proliferation of human melanocytes.

4. PPARγ AND MELANOMA CELLS

Only a few studies have focussed on PPARγ expression and effects of PPARγ agonists in melanoma cell lines (summarized in Table 1). Mössner et al. investigated the expression of PPARγ in four human melanoma cell lines MM-358, MM-201, MM-254 (established from lymph node metastasis of cutaneous malignant melanoma), and KAI (derived from a cutaneous nodular melanoma) [29]. In accordance with the immunocytochemistry of the melanocytes, staining was predominantly localized in the cytoplasm. In addition, the PPARγ agonists 15d-PGJ2, troglitazone, and rosiglitazone dose-dependently inhibited the cell proliferation of all melanoma cells at concentrations between 0 and 50 μM. As shown by flow cytometry, this antiproliferative effect was not mediated through induction of apoptosis, but rather
by induction of G₁ phase cell cycle arrest. Eastham et al. investigated the expressions of PPARα, PPARβ/δ, and PPARγ in human melanoma cells SK-mel28 and A375 [27]. Both melanoma cell lines express PPARα protein levels 20–47% higher and PPARγ protein levels 40–50% higher, respectively, than the normal human melanocytes. However, mRNA levels and protein levels for these receptors did not match. In addition, the natural PPARγ agonist 15d-PGJ₂ and the synthetic PPARγ agonists ciglitazone and troglitazone inhibited the cell growth of the human melanoma cell line A375 in concentrations of 0–10 μM, whereas the SK-mel28 cells were not affected in this concentration range. The PPARα agonists WY14643 and leukotriene B₄ had no effect on the cell proliferation of both cell lines. Placha et al. investigated PPARγ expression in the melanoma cell lines WM35, derived from a primary tumour site, and A375, derived from a solid metastatic tumour. Furthermore, an antiproliferative effect of the PPARγ agonist ciglitazone and 15d-PGJ₂ in both melanoma cell lines was observed in concentrations of 10–15 μM [30]. The antiproliferative effect of ciglitazone was mediated through induction of apoptosis, as evidenced by fluorescence microscopy. Núñez et al. showed an antiproliferative effect of 15d-PGJ₂ on the melanoma cell line A375 at concentration of 16 μM or higher, which was mediated through induction of apoptosis, while ciglitazone showed no growth inhibitory effect [31]. Our own results showed expression of PPARγ in six different human melanoma cells MV3, Lox, MeWo, G361, FemX-1, and UIISO-Mel6, which were established from primary malignant melanoma or metastatic melanoma lymph node [28]. Similar to the findings of Mössner et al., immunocytochemical staining of PPARγ was mostly confined to the cytoplasm.

Several studies have documented various mechanisms for the antiproliferative effect of PPARγ agonists, both being dependent or independent of PPARγ activation, which holds true also for melanoma cells. Using a reporter gene assay, Eastham et al. showed that the PPARγ agonists 15d-PGJ₂ and ciglitazone stimulated PPRE reporter gene activity in a dose-dependent manner in B16 melanoma cells. This activity correlated with their ability to inhibit cell proliferation, hence a PPARγ-dependent mechanism was postulated [27]. Simularily, Placha et al. investigated, that the apoptosis inducing effect of ciglitazone in human melanoma cells was clearly associated with the strong induction of transcription by endogenous PPARγ through PPRE target sequences, as shown in the reporter gene assay system [30]. On the other hand, PPARγ agonists have been reported to have nonreceptor mediated effects too. In our own studies, quantitative analyses of PPARγ protein showed no correlation between the amount of the PPARγ protein and the respective susceptibility of the melanoma cell lines towards PPARγ.

Table 1: Effects of PPARγ agonists on melanoma cell growth.

Cell line	PPARγ agonist	Concentration	Results	Mechanism of action	Reference
UIISO-Mel6, MV3, MeWo, G361, Lox	Rosiglitazone, pioglitazone, ciglitazone, troglitazone	0.3–300 μM, 0.1–50 μM, 0.1–50 μM	– Growth inhibition of all cell lines at 30–300 μM, – Growth inhibition only of A375 at 10 μM, – Growth inhibition of all cell lines at 20–50 μM	– Independent from apoptosis, – Independent from apoptosis, – Induction of G₁ phase cell cycle arrest	Freudlsperger et al. [28], Mössner et al. [29]
MM-358, MM-201, MM-254, KAI	15d-PGJ₂, troglitazone, ciglitazone	15d-PGJ₂: 0.1–50 μM, troglitazone: 0–10 μM	– Growth inhibition of all cell lines at 15d-PGJ₂: 15d-PGJ₂ at 15d-PGJ₂: 10–15 μM	– Growth inhibition of all cell lines at 10–15 μM	– Not investigated, Eastham et al. [27]
SK-mel28, A375	Ciglitazone, troglitazone, 15d-PGJ₂, rosiglitazone	0–10 μM, 10–15 μM, 0–32 μM	– Growth inhibition of all cell lines at 0–10 μM, – Growth inhibition of all cell lines at 10–15 μM, – Growth inhibition of all cell lines at 16 μM of 15d-PGJ₂	– Induction of apoptosis	Placha et al. [30], Núñez et al. [31]

5. **PPARγ-dependent or -independent effects of PPARγ agonists in melanoma cells**

Several studies have documented various mechanisms for the antiproliferative effect of PPARγ agonists, both being dependent or independent of PPARγ activation, which holds true also for melanoma cells. Using a reporter gene assay, Eastham et al. showed that the PPARγ agonists 15d-PGJ₂ and ciglitazone stimulated PPRE reporter gene activity in a dose-dependent manner in B16 melanoma cells. This activity correlated with their ability to inhibit cell proliferation, hence a PPARγ-dependent mechanism was postulated [27]. Simularily, Placha et al. investigated, that the apoptosis inducing effect of ciglitazone in human melanoma cells was clearly associated with the strong induction of transcription by endogenous PPARγ through PPRE target sequences, as shown in the reporter gene assay system [30]. On the other hand, PPARγ agonists have been reported to have nonreceptor mediated effects too. In our own studies, quantitative analyses of PPARγ protein showed no correlation between the amount of the PPARγ protein and the respective susceptibility of the melanoma cell lines towards PPARγ.

agonists. Therefore, a PPARγ-independent effect of PPARγ agonists was assumed [28]. In other cancer cells, resistance pathways which are constitutively activated in melanoma cells (Figure 1) were affected through PPARγ agonist independent from PPARγ activation. For example, 15d-PGJ$_2$ has been shown to alter NF-κB activity in hepatocellular carcinoma cells where 15d-PGJ$_2$ induces apoptosis via caspase-dependent and -independent pathways [32]. In addition, Straus et al. showed a PPARγ-independent repression of NF-κB by 15d-PGJ$_2$ through two mechanisms, inhibition of IkB kinase (IKK) and inhibition of NF-κB DNA binding [33]. The inhibition of NF-κB by PPARγ agonists through PPARγ-independent mechanisms could be a possible way for the antiproliferative effect in melanoma cells, especially for the combination of the PPARγ agonist rosiglitazone with bortezomib, a potent inhibitor of NF-κB, has led to an augmented antiproliferative effect on melanoma cells [34]. In addition, Han and Roman investigated that rosiglitazone inhibited the cell growth of human lung carcinoma cells through inactivation of PI3K/Akt pathway and increase of PTEN expression [35]. These changes were inhibited by GW9662, a potent antagonist of PPARγ, suggesting that they depend upon PPARγ activation. If this inactivation of the PI3K/Akt pathway by rosiglitazone also contributes to the antiproliferative effect of PPARγ agonists in melanoma needs to be further elucidated.

6. CONCLUSION

The rapid increase in incidence of malignant melanoma has not been accompanied by better therapeutic options [36]. The past few years have seen great leaps in our understanding of the mechanism of drug resistance and cell survival in melanoma. Many reports have indicated the central role of the steroid hormone receptor superfamily by peroxisome proliferators, "translating basic immunology into new therapies," Lancet Oncology, vol. 2, no. 4, pp. 205–211, 2001.

REFERENCES

[1] J. D. Wolchok and P. O. Livingston, "Vaccines for melanoma: translating basic immunology into new therapies," Lancet Oncology, vol. 2, no. 4, pp. 205–211, 2001.
[2] L. Serrone, M. Zeuli, F. M. Sega, and F. Cognetti, "Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview," Journal of Experimental and Clinical Cancer Research, vol. 19, no. 1, pp. 21–34, 2000.
[3] H. Davies, G. R. Bignell, C. Cox, et al., "Mutations of the BRAF gene in human cancer," Nature, vol. 417, no. 6892, pp. 949–954, 2002.
[4] M. J. Garnett and R. Marais, "Guilty as charged: B-RAF is a human oncogene," Cancer Cell, vol. 6, no. 4, pp. 313–319, 2004.
[5] J. Luo, B. D. Manning, and L. C. Cantley, "Targeting the PI3K-Akt pathway in human cancer: rationale and promise," Cancer Cell, vol. 4, no. 4, pp. 257–262, 2003.
[6] L. Simpson and R. Parsons, "PTEN: life as a tumor suppressor," Experimental Cell Research, vol. 264, no. 1, pp. 29–41, 2001.
[7] H. Tsao, X. Zhang, K. Fowlkes, and F. G. Haluska, "Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines," Cancer Research, vol. 60, no. 7, pp. 1800–1804, 2000.
[8] S. Huang, A. DeGuzman, C. D. Bucana, and I. J. Fidler, "Nuclear factor-κB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice," Clinical Cancer Research, vol. 6, no. 6, pp. 2573–2581, 2000.
[9] K. I. Amiri, L. W. Horton, B. J. LaFleur, J. A. Sosman, and A. Rich mond, "Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma," Cancer Research, vol. 64, no. 14, pp. 4912–4918, 2004.
[10] L. Isserivis and S. Green, "Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators," Nature, vol. 347, no. 6294, pp. 645–650, 1990.
