Improved Quantum Cost for \(n\)-bit Toffoli Gates

Dmitri Maslov and Gerhard W. Dueck
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3, Canada
dmitri.maslov@unb.ca, gdueck@unb.ca

Abstract
We present an \(n\)-bit Toffoli gate quantum circuit based on the realization proposed by Barenco et al., where some of the Toffoli gates in their construction are replaced with Peres gates. This results in a significant cost reduction. Our main contribution is a quantum circuit which simulates the \((m + 1)\)-bit Toffoli gate with \(32m - 96\) elementary quantum gates and one garbage bit which is passed unchanged. This paper is a corrected and expanded version of [2].

1 Toffoli gate cost

Toffoli gates are important building blocks in reversible and quantum circuits. In fact, a large number of reversible logic synthesis methods use \(n\)-bit Toffoli gates (for example, [5, 3]). The \(n\)-bit Toffoli gates are mentioned in classical quantum circuits books (such as [6]) as well as in journal publications [1]. The main reason for popularity of \(n\)-bit Toffoli gates over the other gates is their completeness and relative simplicity in using them. The high demand in \(n\)-bit Toffoli gate makes it important to have a low cost quantum circuit for this gate.

Barenco et al. [1] considered all one qubit gates and all controlled-V gates [6] to be elementary. The authors proposed a circuit for the \((m + 1)\)-bit Toffoli gate with a cost of \(48m - 116\) basic operations plus one garbage bit. Here are their two main results (slightly reformulated to fit the notations of this paper).

Lemma 7.2. If number of bits in the circuit \(n \geq 5\) and \(m \in \{3, ..., \lfloor n/2 \rfloor\}\), then an \((m + 1)\)-bit Toffoli gate can be simulated by a network consisting of \(4(m - 2)\) Toffoli gates.

Corollary 7.4. On an \(n\)-bit network (where \(n \geq 7\)), an \((n - 1)\)-bit Toffoli gate can be simulated by \(8(n - 5)\) Toffoli gates, as well as by \(48n - 212(= 48(n - 2) - 116)\) basic operations.
Before we can describe our improved design, we have to introduce the Peres gate. The Peres gate \(P(x_1, x_2, x_3) \) is equivalent to the transformation produced by a Toffoli gate \(TOF(x_1, x_2, x_3) \) followed by a CNOT gate \(TOF(x_1, x_2) \). A four elementary quantum transformations realization of Peres gate is illustrated in Figure 1(i), where \(V = \frac{i+1}{2}(1-i) \) and \(V^+ \) is its inverse. Denote the four gates used in the proposed construction as \(A, B, C \) and \(D \). Trivial analysis shows that the inverse Peres gate can be achieved by a circuit \(D^{-1}C^{-1}B^{-1}A^{-1} \) (Figure 1(ii)), consisting of the inverses of the gates used for construction of Peres gate. From the point of view of Toffoli-CNOT realization, the inverse Peres gate will act as a CNOT \(TOF(x_1, x_2) \) followed by the Toffoli gate \(TOF(x_1, x_2, x_3) \).

We suggest that in construction of Lemma 7.2 in [1] the Peres gate or its inverse are used everywhere instead of the more expensive Toffoli gate. This is illustrated in Figure 2, where each of the pairs Toffoli-CNOT and CNOT-Toffoli is a Peres gate or its inverse.

To prove that such circuit realizes an \((m+1)\) -bit Toffoli one can inspect it or simply notice that a pair of identical CNOTs can be moved together using the moving rule from [4] and thus, be canceled out. Therefore, this circuit

\[
\text{Figure 1: Structure of the Peres gate and its inverse}
\]

\[
\text{Figure 2: Circuit for \((m+1)\)-bit Toffoli (illustrated for \(m = 5\))}
\]
becomes equivalent to the one proposed by Barenco et al.\cite{1} which was shown to simulate a Toffoli gate. With the Peres gates the network for \((m+1)\)-bit Toffoli gate will have a cost of \(4 \times (4m-10) + 4 \times 2 = 16m-32\) elementary quantum operations plus \((m-2)\) garbage bits. Using our construction in Corollary 7.4 of\cite{1} one can achieve a cost of \(32m - 96\) elementary operations plus one garbage bit for \((m+1)\)-bit Toffoli gate construction for \(m \geq 5\), which is better than the calculated in \cite{1} \(48m - 116\) elementary operations plus one garbage bit.

Further, we propose to use the Peres gate in all similar constructions (for example, the circuit on page 184 of\cite{6}) for a better quantum cost analysis.

2 Usefulness of the results

Barenco et al.\cite{1} among other results provide the following Lemma (slightly reformulated to fit the context of the presented paper).

Lemma 7.1. For any \(m \geq 2\), \((m+1)\)-bit Toffoli gate can be simulated with \(2^{m+1} - 3\) controlled-V quantum operations.

Since for small numbers \(m\) \(2^{m+1} - 3\) can be less than \(16m - 32\) or \(32m - 96\) achieved here (and less than \(4(m-2)T\), where \(T\) is the cost of the original Toffoli gate), we would like to illustrate where the new results improve the known ones. Table\cite{1} summarizes usefulness and applicability of the design that uses the Peres gate; symbol “∗” indicates when the result was achieved using the proposed construction. It is interesting to notice that the proposed construction which uses Peres gates in Lemma 7.2 of\cite{1} first worked to decrease quantum cost of size 6 Toffoli gate, even though the construction is valid for smaller Toffoli gates. The first time formula \(32m - 96\) updated the known cost estimates is for the size 10 Toffoli gate quantum cost.

References

[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. The American Physical Society, 52:3457–3467, 1995.

[2] D. Maslov and G. Dueck. Improved quantum cost for \(n\)-bit Toffoli gates. IEE Electronics Letters, 39(25):1790–1791, December 2003.
Toffoli gate size \((m + 1)\)	Garbage	Cost
1	0	1
2	0	1
3	0	5
4	0	13
5	0	29
6	0	61
6	1	52
6	3	48*
7	0	125
7	1	84
7	4	64*
8	0	253
8	1	116
8	5	80*
9	0	509
9	1	154*
9	6	96*
10	0	1021
10	1	192*
\((m + 1) > 10\)	0	\(2^{m+1} - 3\)
\((m + 1) > 10\)	1	\(32m - 96*\)
\((m + 1) > 10\)	\(m - 2\)	\(16m - 32*\)

Table 1: Quantum costs of the Toffoli gates with \(m\) controls

[3] D. Maslov, G. Dueck, and M. Miller. Fredkin/Toffoli templates for reversible logic synthesis. In *International Conference on Computer Aided Design*, November 2003.

[4] D. Maslov, G. Dueck, and M. Miller. Templates for Toffoli network synthesis. In *International Workshop on Logic Synthesis*, pages 320–326, Laguna Beach, CA, 2003.

[5] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for reversible logic synthesis. In *Proceedings of the Design Automation Conference*, pages 318–323, June 2003.
[6] M. Nielsen and I. Chuang. *Quantum Computation and Quantum Information*. Cambridge University Press, 2000.

[7] A. Peres. Reversible logic and quantum computers. *Physical Review A*, 32:3266–3276, 1985.

[8] M. Perkowskii, M. Lukac, M. Pivtoraiko, P. Kerntopf, M. Folgheraiter, D. Lee, H. Kim, W. Hwangbo, J.-W. Kim, and Y. W. Choi. A hierarchical approach to computer-aided design of quantum circuits. In 6th *International Symposium on Representations and Methodology of Future Computing Technologies*, pages 201–209, March 2003.