Sensitivity of Lightly and Heavily Doped Cylindrical Surrounding Double-Gate (CSDG) MOSFET to Process Variation

Uchechukwu A. Maduagwu, Student Member, IEEE, Viranjay M. Srivastava, Senior Member, IEEE
Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban - 4041, South Africa.
Uchechukwu@ieee.org, Viranjay@ieee.org

ABSTRACT This research work analyzes the sensitivity of Cylindrical Surrounding Double-Gate (CSDG) MOSFET to process variation using the Poisson equation’s analytical solution. This work has been verified with the numerical simulation. Also, the results obtained have been compared with multi-gate device known as Cylindrical Surrounding Gate (CSG) MOSFETs. The lightly and heavily doped CSDG MOSFETs have been realized, and their immunity to parameter variation (channel length, Silicon thickness, and Random Dopant Fluctuations (RDFs)) have been compared to CSG MOSFET. This research work indicates that lightly doped CSDG MOSFET exhibits the slightest threshold variations than CSG MOSFETs. It confirms that the lightly doped CSDG MOSFET has better immunity to channel variation than CSG MOSFETs. This is due to its structure and inherent internal and external gate geometry, which offers greater control over the channel. However, for heavily doped CSG and CSDG MOSFETs, RDFs become a dominating factor, leading to more dispersion in the threshold variations. Therefore, the CSG MOSFET’s immunity to channel variation becomes deteriorated due to the larger surface-to-volume ratio. At this point, the CSG MOSFET tends to offer better immunity to process variation. Hence, the sensitivity of threshold voltage to parameter variations depends entirely on the RDFs, as the heavily doped devices are aggressively scaled to the nanometer regime.

INDEX TERMS Channel length, Cylindrical Surrounding Double-Gate (CSDG) MOSFET, Nanotechnology, Natural length, Scaling pattern, Semiconductors, Short Channel Effects (SCEs), VLSI.

I. INTRODUCTION

The downscaling of MOSFET has benefited the microelectronic industries (manufacturing and applications) for the last three decades because the shrinking of transistors below 100 nm enables millions of transistors to be placed on a single chip [1-4]. At the miniaturized size, the multiple-gate devices such as SOI MOSFET, Double-Gate (DG) MOSFETs, Gate All Around (GAA) MOSFETs, Double FinFET (DFF) MOSFETs, and Cylindrical Surrounding Gate (CSG) MOSFETs are of better control than conventional bulk MOSFET devices because of their multi-gate structures [5-8]. The CSG MOSFET tends to offer a great current drive and better immunity to channel control than all other multi-gate structures except for Cylindrical Surrounding Double-Gate (CSDG) MOSFET, which has been proven to offer better control because of its dual-gate structure and large control area around the channel [9-11]. Although CSDG MOSFET is the promising alternative device for future scaling, its immunity to process variation is yet to be thoroughly examined.

Wang et al. [12] have concluded that RDFs process variation will severely affect the promising multi-gate device characteristics. It has already been proven that the CSG MOSFETs are more immune to process-induced variation and have less performance variation than the FinFET family and conventional MOSFETs [13]. There has been various ongoing research on CSDG MOSFETs. Gowthaman and Srivastava [14] have presented an analytical model of the lightly doped CSDG MOSFET for capacitive modeling using cylindrical coordinates. Rewari et al. [15] have developed a numerical model for electric potential, subthreshold current, and subthreshold swing for Junction-Less Double Surrounding Gate (JLDSG) MOSFET using the superposition method. The results have also been evaluated for different Silicon film thicknesses, oxide film thickness, and channel length.

Srivastava [16] has realized a nano-scaled CSDG MOSFET by means of a double-pole four-throw radio-frequency switch in terms of insertion loss, isolation, reverse isolation, and intermodulation. Hong et al. [17] have derived the complete general solution of nonlinear 1-D undoped Poisson's equation in Cartesian and cylindrical coordinates by employing a special variable transformation method. In this nanotechnology era (microchips), the replacement of diode with MOSFET improves the parameters of rectifier circuits in terms of switching speed, power consumption, bulky device size, and various heat or thermal losses. For this purpose, Maduagwu and Srivastava...
[18] have designed a bridge rectifier with the help of novel CSDG MOSFET. To extend authors previous works, a systematic analysis has been carried out in this present research work to consider the impact of process variation on CSDG MOSFET. Here, the authors have analyzed the sensitivity of CSDG MOSFETs to process variation compared with CSG MOSFET using an analytical approach. The Parabolic Potential Approximation (PPA) model and the second-order differential solution have been used to assess the feasibility of CSDG MOSFET and CSG MOSFET devices [19-22]. This paper has been organized as follows. Section II presents the schematic of CSG MOSFET and CSDG MOSFET. Thereafter, analytical model of CSG and CSDG MOSFETs have been derived. Section III analyzes the threshold voltage based on the subthreshold current model and the channel potential. In Section IV, the sensitivity of the threshold voltage to process variation for CSG MOSFETs and CSDG MOSFETs have been performed. Finally, Section V concludes the work and recommends the future aspects.

II. ANALYTICAL MODEL OF CSG MOSFETS AND CSDG MOSFETS

A procedural derivation of the scaling length of multi-gates (DG and CSG) MOSFETs has been reviewed since the CSDG MOSFETs derivation is based on the same model. These are shown in Fig. 1.

Obviously, at the origin, \(r = 0, z = 0 \), an electric field \((E) = 0 \) for both CSG and CSDG MOSFET. However, for CSG, the origin is center of the channel. The center of the CSDG MOSFET is Gaussian surface at \(r = t_d/2 \) and \(E = 0 \).

The derivation of subthreshold current is dependent on the analytical potential solution. So, the potential solutions of both CSG MOSFET and CSDG MOSFET structure have been derived using a PPA model and a new modeling approach of the second-order differential solution to obtain the Poisson equation's solution of the device structures have been utilized.

A. POTENTIAL SOLUTION FOR THE CSG MOSFET GEOMETRY

Considering Fig. 1(a), at subthreshold regime, the potential distribution \(\psi(r,z) \) along the radius and z-axis satisfies the given Poisson equation as follows [22-24]:

\[
\frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \psi(r,z) \right) + \frac{d^2}{dz^2} \psi(r,z) + \frac{q N_a}{\varepsilon_{sl}} = 0
\]

where \(N_a \), \(\varepsilon_{sl} \), and \(q \) are the doping concentration, permittivity of Silicon, and the electric charge, respectively. The potential distribution along the z-axis exhibits a parabolic profile as:

\[
\psi(r,z) = B_0(z) + B_1(z)r + B_2(z)r^2 \quad (0 \leq r \leq t_d)
\]

where \(B_0, B_1, \) and \(B_2 \) are arbitrary constants that need to be obtained. The solution of the potential distribution has been obtained from Eq. (1) and Eq. (2) based on the boundary conditions from Fig. 1. Based on the radius variation, following conditions have been realized using the electrical potential and the electric field of the device structure:

- The Electric Potential in the device structure enables the derivation of \(B_0 \) along the z-axis.

Condition 1: At the origin or source end of CSG MOSFET, the built-in potential can be given as:

\[
\psi(r = 0, z = 0), \quad \psi_z(z = 0) = v_{bi}
\]

where

\[
v_{bi} = \frac{K_BT}{q} \ln \frac{N_a}{n_i}
\]

where \(K_BT, v_{bi}, \) and \(n_i \) are the Boltzmann’s constant, thermal temperature, built-in potential, and intrinsic concentration, respectively.

Condition 2: At the end of drain w.r.t. source end of the CSG MOSFET, the built-in potential becomes:

\[
\psi(r = 0, z = 0), \quad \psi_z(z = L) = v_{bi} + V_{DS}
\]
where V_{DS} and L are the Drain-to-Source voltage and channel length.

Condition 3: Also, at the origin, where $r = 0$, along the z-axis, the arbitrary constant B_r from Eq. (2) is obtained as the Center Potential. It has been derived as:

$$
\psi(r, z)_{|r=0} = \psi_r(z) = B_0(z) \tag{5}
$$

The Electric Field in the device structure enables the derivation of B_1 and B_2 along z-axis.

Condition 4: Differentiating the Eq. (2) describes the electric field effect in the device structure. The electric field at the center of the device structure is zero, making it easier to determine Poisson’s equation solution. The electric field is given as:

$$
\left. \frac{\psi(r, z)}{dr} \right|_{r=0} = 0 \tag{6}
$$

Condition 5: However, the electric field is continuous at the Silicon-oxide interface, which is in the Silicon substrate’s middle. So, the total voltage drop in the device structure can be given as:

$$
\left. \frac{\psi(r, z)}{dr} \right|_{r=-\frac{L}{2}} = C_{ox} \left(V_{GS} - V_{FB} - \psi_S \right) \tag{7}
$$

where C_{ox}, V_{GS}, V_{FB}, and ψ_s are the gate oxide capacitance, external gate voltage, flat-band voltage due to work function differences, and surface potential. The gate oxide capacitance is given as:

$$
C_{ox} = \frac{\varepsilon_{ox}}{t_{si} \ln \left(1 + \frac{2t_{ox}}{t_{si}} \right)} \tag{8}
$$

The remaining arbitrary constants along the z-axis can be determined by considering Eq. (6) of Condition 4 and Eq. (7) of Condition 5 to obtain the arbitrary constants, B_1, B_2 in Eq (2) respectively, given as:

$$
B_1 = 0 \tag{9a}
$$

$$
B_2 = \frac{C_{ox}}{\varepsilon_{si} t_{si}} \left(V_{GS} - V_{FB} - \psi_S \right) \tag{9b}
$$

Therefore, the channel potential of the CSG structure is given as:

$$
\psi(r, z) = B_0(z) + B_2(z) r^2 \tag{10}
$$

By substituting the arbitrary constant values into Eq. (10). The surface potential of CSG structure at $r = t_{si}/2$ along the z-axis is given as:

$$
\psi_s = \psi_r(z) + \frac{C_{ox}}{4\varepsilon_{si} t_{si}} \left(V_{GS} - V_{FB} - \psi_s \right) \tag{11}
$$

To obtain the total potential distribution in the device structure, the center potential must be known. Therefore, the center potential must be investigated. By substituting Eq. (11) into Eq. (1), a standard form of second-order differential equation is derived as:

$$
\frac{d^2 \psi_r(z)}{dz^2} - \gamma^2 \psi_r(z) = \delta \gamma^2 \tag{12a}
$$

$$
\gamma^2 = \frac{16C_{ox}}{4\varepsilon_{si} t_{si} + C_{ox} t_{si}^2} \tag{12b}
$$

$$
\delta = \left(V_{GS} - V_{FB} + \frac{qN_t}{4C_{ox}} \frac{L}{t_{si}} + \frac{qN_t^2}{16\varepsilon_{si}} \right) \tag{12c}
$$

The general solution to the second-order differential equation (Eq. (12a)) is given as:

$$
\psi_r(z) = B_4 e^{\gamma z} + B_5 e^{-\gamma z} - \delta \tag{13}
$$

The arbitrary constants, B_4 and B_5, can be obtained by using the Eq. (3) of Condition 1 and Eq. (4) of Condition 2.

$$
B_4 = \frac{(V_{si} + \delta)(e^{-\gamma L} - 1) - V_{DS}}{(e^{-\gamma L} - e^{\gamma L})} \tag{14a}
$$

$$
B_5 = \frac{(V_{si} + \delta)(e^{\gamma L} - 1) - V_{DS}}{(e^{\gamma L} - e^{-\gamma L})} \tag{14b}
$$

Since all the arbitrary constants had been derived, the potential distribution can be obtained.

B. POTENTIAL SOLUTION FOR THE CDSG MOSFET GEOMETRY

Similar to the derived CSG MOSFET, the potential distribution along the z-axis exhibits a parabolic profile w.r.t. the internal and external gate. It is written as:

$$
\psi(r, z)_{\text{CDSG}} = C_{in}(r) + C_{in}(r) r + C_{ox}(r) r^2 \quad (a \leq r \leq b) \tag{15}
$$

where $m = 1$ represents the internal potential with arbitrary constants $(C_{0\alpha}, C_{1\alpha},$ and $C_{2\alpha})$ and $m = 2$ illustrates the external potential with arbitrary constants $(C_{0\beta}, C_{1\beta},$ and $C_{2\beta})$ for CSDG MOSFET. The arbitrary constants are obtained based on the boundary condition from Fig. 1(b). The electric potential and electric field of the device structure enable the derivation of the device structure.
The Electric Potential in the device structure (CSDG MOSFET) enables the derivation of C_{01} and C_{02} along the z-axis.

Condition 6: At the origin of CDSG MOSFET, it's evident that the built-in potential is zero since there is a Silicon pile at the origin of the device structure, as shown in Fig. 1(b). Hence, there is no further mathematical analysis required for this condition.

Condition 7: Considering the potential distribution around the silicon pile in CSDG MOSFET near the source as shown in Fig. 1b, the built-in potential can be written as:

$$
\psi(r, z = 0), \quad \psi(r, 0) = v_{bi}
$$

where

$$
v_{bi} = \frac{K_B T}{q} \ln \frac{N_A}{n_i}
$$

$$
\psi(r, z = L), \quad \psi(r, L) = v_{bi} + V_{DS}
$$

The potential distribution at any point along the z-axis w.r.t. the internal and external gate is obtained from Eq. (15) as follows:

$$
C_{01}(z) + C_{11}(z) r + C_{21}(z) r^2 = \frac{K_B T}{q} \ln \frac{N_A}{n_i} \tag{16a}
$$

$$
C_{02}(z) + C_{12}(z) r + C_{22}(z) r^2 = \frac{K_B T}{q} \ln \frac{N_A}{n_i} \tag{16b}
$$

By equating Eq. (17b) to Eq. (17a), the arbitrary coefficients can be simplified as follows:

$$
[C_{01}(z) - C_{02}(z)] + [C_{11}(z) - C_{12}(z)] + [C_{21}(z) - C_{22}(z)] r^2 = 0 \tag{18}
$$

From this Eq. (18), it is evident that some of the arbitrary coefficients remain unchanged for both the internal and external potential. That is, $C_{11}(z) = C_{12}(z)$, $C_{21}(z) = C_{22}(z)$. Whereas $C_{01}(z)$ and $C_{02}(z)$ are dependent on the internal gate and external gate potential surface. Therefore, considering Eq. (15) w.r.t. surface potential of both internal and external gate, the arbitrary coefficients for $C_{01}(z)$ and $C_{02}(z)$ can be derived as:

Internal Gate (radius ‘a’)

$$
\psi(a, z) = C_{01}(z) + C_{11}(z) r + C_{21}(z) r^2 = \psi_a(z) \tag{19a}
$$

$$
C_{01}(z) = \psi_a(z) - C_{11}(z) \left(\frac{r - 2a}{2}\right) - C_{21}(z) \left(\frac{r - 2a}{2}\right)^2
$$

External Gate (radius ‘b’)

$$
\psi(b, z) = \psi_a(z) + V_{gr} \left[\frac{N^2_t (X_2 - 2N_x + 1)}{4} - \psi_a(z) \frac{N(x_2 - 2X_1)}{4}\right] \tag{19b}
$$

where

$$
C_{02}(z) = \psi_a(z) - C_{12}(z) \left(\frac{2b - t_x}{2}\right) - C_{22}(z) \left(\frac{2b - t_x}{2}\right)^2
$$

Condition 8: Similar to CSG MOSFETs, differentiating Eq. (15) gives the electric field in the internal and external potential distribution of CSDG MOSFET. This is derived as follows:

Internal electric field (radius ‘a’)

$$
\frac{\psi(r, z)_{\text{int}}}{dr} \bigg|_{r = 2a} = C_{11}(z) + C_{21}(z)(t_x - 2a) = \frac{C_{\text{int}}(V_{gs} - \psi_a(z))}{e_n} \tag{20a}
$$

External electric field (radius ‘b’)

$$
\frac{\psi(r, z)_{\text{ext}}}{dr} \bigg|_{r = 2b} = C_{12}(z) + C_{22}(z)(2b - t_x) = \frac{C_{\text{ext}}(V_{gs} - \psi_a(z))}{e_n} \tag{20b}
$$

From Eq. (18), it has been shown that $C_{11}(z) = C_{12}(z)$, $C_{21}(z) = C_{22}(z)$. With this, the remaining arbitrary coefficients are obtained from Eq. (20) as follows:

$$
C_{21}(z) = \frac{C_{\text{int}}(V_{gs} - \psi_a(z))}{e_n} \left(\frac{t_x - 2a}{2} - (2b - t_x)\right) + \frac{C_{\text{ext}}(V_{gs} - \psi_a(z))}{e_n} \left(\frac{t_x - 2a}{2} - (2b - t_x)\right) \tag{21a}
$$

$$
C_{22}(z) = C_{12}(z) \left(\frac{t_x - 2a}{2} - (2b - t_x)\right) + \frac{C_{\text{ext}}(V_{gs} - \psi_a(z))}{e_n} \left(\frac{t_x - 2a}{2} - (2b - t_x)\right) \tag{21b}
$$

By substituting Eq. (21) into Eq. (19), the arbitrary coefficients $C_{01}(z)$ and $C_{02}(z)$ will be obtained as:

$$
C_{01}(z) = \psi_a(z) + \frac{N^2_t (X_2 - 2N_x + 1)}{4} - \psi_a(z) \frac{N(x_2 - 2X_1)}{4} + V_{gr} \left[\frac{N^2_t (X_2 - 3X_1 - 2N_x)}{4} - \psi_a(z) \frac{N(x_2 - 2X_1)}{4}\right] \tag{22a}
$$

$$
C_{02}(z) = \psi_a(z) - \frac{2X_M - X_2N^2_t - 2X_M}{4} + \psi_a(z) \frac{N^2_t (2N_x + 1)}{4} + V_{gr} \left[\frac{X_2 (2M - N^2_t) - X_2 (N^2_t N_x + 2M + N^2_t)}{4}\right] \tag{22b}
$$
The relations between the internal and external gate potential can be derived as:

\[\psi_a(z) = A_1 \psi_b(z) - K_1 V_{GF} \]

\[\psi_b(z) = A_2 \psi_a(z) + K_2 V_{GF} \]

Therefore, since all the variables had been obtained, the general potential profile along the radial path of the internal and external gate is obtained using potential distribution w.r.t. the internal gate:

\[\psi (r, z) = C_{01}(z) + C_{11}(z)r + C_{21}(z)r^2 \quad \left(a < r < \frac{t_a}{2} \right) \]

Hence, the internal potential has been obtained by substituting the arbitrary coefficients from Eq. (21) and Eq. (22a) into Eq. (24) given as:

\[\psi (r, z)_{\text{test}} = \psi_a(z) \left[\left[1 + U_i - A_1 \right] + \left[A_1 N_1 (X_z - X_1) - M X_1 \right] r - \left[X_1 (1 + A_1) \right] r^2 \right] + V_{GF} \left[U_i - U_2 - K_2 \right] + \left[N_1 (X_z - X_1) (K_2 - 1) r + \left[X_1 + X_2 (1 - K_2) \right] r^2 \right] \]

Similarly, the potential distribution w.r.t. the external gate is given as:

\[\psi (r, z)_{\text{CSDG}} = \psi_a(z) \left[\left[1 + V_i + A V_i \right] + \left[A v (X_z - X_1 - A M X_1) r - \left[X_1 + X_2 \right] r^2 \right] \right] + V_{GF} \left[V_i - V_{GSDG} \right] + \left[M K_1 (K_1 + 1) - N_1 (X_z - X_1) \right] r + \left[X_1 (1 + K_2) + X_2 \right] r^2 \]

The variables used from Eq. (22) to Eq. (27) have been obtained as:

\[X_1 = \frac{C_{oxa}}{\varepsilon_{ox} \left(t_{a} - 2a - \left(2b - t_{a} \right) \right)} \]

\[X_2 = \frac{C_{oxb}}{\varepsilon_{ox} \left(t_{a} - 2a - \left(2b - t_{a} \right) \right)} \]

\[N_1 = (t_a - 2a) \]

\[N_2 = (2b - t_a) \]

\[M = (t_a - 2a)(2b - t_a) \]

where the gate capacitance oxide of the internal and external gate \(C_{oxa} \) and \(C_{oxb} \) of CSDG MOSFET have been obtained in the authors previous research work [25] as:

\[C_{oxa} = \frac{2 \varepsilon_{ox}}{(t_a - 2a) \ln \left(1 + \frac{2 t_a}{(t_a - 2a)} \right)} \]

\[C_{oxb} = \frac{2 \varepsilon_{ox}}{(2b - t_a) \ln \left(1 + \frac{2 t_a}{(2b - t_a)} \right)} \]

The gate voltage has been expressed as:

\[V_{GF} = (V_{FB} - V_{CS}) \]

To fully obtain the potential distribution in the CSDG device structure, the surface potential w.r.t. the internal and external gate must be known. Similar to CSG MOSFET, a standard form of the second-order differential is derived as:
\[
\frac{d^2 \psi_a(z)}{dz^2} - \sigma_1^2 \psi_a(z) = \alpha_1 \sigma_1^2 \tag{31a}
\]
\[
\frac{d^2 \psi_b(z)}{dz^2} - \sigma_2^2 \psi_b(z) = \alpha_2 \sigma_2^2 \tag{31b}
\]

The variables of the differential equations are obtained based on Eq. (25) and Eq. (27) of the potential profile as:
\[
\sigma_1^2 = \frac{E_1}{G_1} \tag{32a}
\]
\[
\alpha_1 = \frac{qN_u}{e_u G_1} + V_{GF} \left(\frac{F_1}{G_1} \right) \tag{32b}
\]
\[
\sigma_2^2 = \frac{E_2}{G_2} \tag{33a}
\]
\[
\alpha_2 = \frac{qN_u}{e_u G_2} + V_{GF} \left(\frac{F_2}{G_2} \right) \tag{33b}
\]

The terms used in Eq. (32) and Eq. (33) are given as:
\[
E_1 = \left(\frac{A N_1 (X_2 - X_1) - M X_1}{r} \right) - (4X_2 (1 - A_2)) \tag{34a}
\]
\[
E_2 = \left(\frac{N_1 (X_2 - X_1) - A_1 M X_1}{r} \right) - (4(X_1 A_1 + X_2)) \tag{34b}
\]
\[
F_1 = \left(\frac{N_1 (X_2 - X_1) (K - 1)}{r} \right) + (4(X_1 + X_2) (1 - K_2)) \tag{34c}
\]
\[
F_2 = \left(\frac{M K_1 (K + 1) - N_1 (X_2 - X_1)}{r} \right) + (4X_1 (1 + K_1) + X_2) \tag{34d}
\]
\[
G_1 = \left[(1 + U_1 - A_1 U_2) \right] + \left[(A_1 N_1 (X_2 - X_1) - M X_1) r \right]
\]
\[
+ \left[(X_2 (1 + A_2)) r^2 \right] \tag{35a}
\]
\[
G_2 = \left[(1 + V_1 + A_1 V_2) \right] + \left[(N_1 (X_2 - X_1) - A_1 M X_1) r \right]
\]
\[
- \left[(X_1 A_1 + X_2) r^2 \right] \tag{35b}
\]

So, the general solution to the second-order differential equation represents the solution of the internal and external gates' potential distribution profile. This is obtained from Eq. (31) for both internal and external gates, respectively, as:
\[
\psi_a(z) = C_4 e^{\sigma_1 z} + C_5 e^{-\sigma_1 z} - \alpha_1 \tag{36a}
\]
\[
\psi_b(z) = C_6 e^{\sigma_2 z} + C_7 e^{-\sigma_2 z} - \alpha_2 \tag{36b}
\]

The new arbitrary constants, \(C_4, C_5, C_6, \) and \(C_7 \) are obtained using Eq. (16b) of the Condition 7 as:
\[
C_4 = \frac{(V_{bi} + \alpha)(e^{-\sigma_1 L} - 1) - V_{DS}}{e^{-\sigma_1 L} - e^{\sigma_1 L}} \tag{37a}
\]
\[
C_5 = \frac{(V_{bi} + \alpha)(e^{\sigma_1 L} - 1) - V_{DS}}{e^{\sigma_1 L} - e^{-\sigma_1 L}} \tag{37b}
\]
\[
C_6 = \frac{(V_{bi} + \alpha)(e^{-\sigma_2 L} - 1) - V_{DS}}{e^{-\sigma_2 L} - e^{\sigma_2 L}} \tag{37c}
\]
\[
C_7 = \frac{(V_{bi} + \alpha)(e^{\sigma_2 L} - 1) - V_{DS}}{e^{\sigma_2 L} - e^{-\sigma_2 L}} \tag{37d}
\]

The potential distribution of the CSG device structure can be obtained with the help of the arbitrary constants. The further sections use these constants to realize the CSG MOSFET.

III. DERIVATION OF THE SUBTHRESHOLD CURRENT OF CSG AND CSDG MOSFET

Since the potential distribution of the device structures has been obtained, their subthreshold current can be obtained using the verified model proposed by [26] as:
\[
I_{DS} = \frac{\mu W \left(KT / q \right) \left(n^2 / N_s \right) \left(1 - e^{\left(-[E_{GF}] / (KT) \right)} \right)}{Z} \tag{38}
\]

Here \(Z \) depends on the potential distribution obtained from CSG MOSFET and CSDG MOSFET. Hence, it is expressed as follows:

For CSG MOSFET structure, \(Z \) is estimated using the CSG MOSFET’s channel potential derived as:
\[
Z = \int_0^L \frac{dz}{2\pi} \int_0^{\left(\frac{\sqrt{\omega(z)}}{KT} \right)} dr \tag{39}
\]

For CSDG MOSFET structure, \(Z \) has been calculated with the derived channel potential as:
\[
Z = \int_0^L \frac{dz}{2\pi} \int_0^{\left(\frac{\sqrt{\omega(z)}}{KT} \right)} dr dr \tag{40}
\]
MOSFETs devices [27-29]. These deviations have similar effects on CSG MOSFET’s and CSDG MOSFET’s physical dimensions, such as the channel length and channel width, based on their geometry. Also, the threshold voltage variation is dependent on the dopant number fluctuation. With this, the estimated threshold voltage obtained from the subthreshold current model will determine the sensitivity to dopant fluctuation, assuming the number of dopants obeys the Poisson distribution. Therefore, the standard deviation is the average value of the dopant number \(N_a \). This process will aid the practical use of CSDG MOSFETs in the near future.

To compare the process variation of CSG MOSFETs and CSDG MOSFETs, the widths \(W \) must be equal to make a fair comparison. The total width of CSG MOSFET is \(W_{\text{TOTAL}} = 2\pi r \) and that of CSDG MOSFET is \(W_{\text{TOTAL}} = 2\pi (b-a) \) as shown in the Table I, here a point to note is that \(r = (b-a) \) for CSDG MOSFET.

TABLE I.
PARAMETERS FOR THE ANALYZED CSDG MOSFET FOR FIGURE 2

Symbol	Parameter	Values
\(a \)	Internal Radius	4 nm
\(b \)	External Radius	10 nm 14 nm
\(L \)	Channel Length	20 nm 20 nm
\(N_a \)	Heavy Channel Doping	\(10^{18} \) cm\(^{-3} \) \(10^{18} \) cm\(^{-3} \)
\(N_{a}^* \)	Light Channel Doping	\(10^{17} \) cm\(^{-3} \) \(10^{17} \) cm\(^{-3} \)
\(\tau_{ox} \)	Oxide thickness	1 nm 1nm
\(\Phi_{m, m1, m2} \)	Work function	4.8 eV 4.8 eV
\(\text{HfO}_2 \)	Hafnium oxide	2 nm 2 nm (k=23)

The three-dimensional view of CSG and CSDG MOSFET structures used for device simulation are shown in Fig. 2. Their virtual fabrication is done with electronic device simulator at 45 nm technology. The device Physics was used in modelling the devices at submicron technology using the parameters from Table 1. The characterization of the CSG and CSDG MOSFETs devices are done with electronic device simulator. The MOSFET devices are calibrated for low power application in line with ITRS roadmap with nearly 1 nA/m off-current. The device parameters are represented in mesh format for better convergence.

IV. ANALYSIS OF CSG MOSFET’S AND CSDG MOSFET’S SENSITIVITY TO PROCESS VARIATION

This is the first attempt to analyze the sensitivity of CSDG MOSFET to process parameter variation. It was achieved by using a reasonable matured process such as lithography technique of \(\pm 3\sigma \) (where \(\sigma \) stands for standard deviation) value, which is applicable for practical use of
The subthreshold current close form expression from Eq. (39) and Eq. (40) has been validated by comparing the analytical model with the numerical values. Using the drain current extraction method, the authors have estimated the threshold voltage based on the critical subthreshold current’s value, which is dependent on the channel width and gate length of the device structure. The critical subthreshold current has been derived, as $I_{DS,Critical} = \frac{300 \text{ nm}}{W_{\text{TOTAL}/L}}$ [32, 33]. The threshold voltage values for both heavy and light doped CSG and CSDG MOSFETs have been obtained based on drain current extraction. Silicon dioxide has been considered as the oxide thickness for a heavily doped device structure.

Meanwhile, Hafnium dioxide (HfO2) has been taken as a dielectric constant for lightly doped device structure since a small equivalent oxide thickness is required. Hafnium dioxide has been proven to achieve a better electrical performance, thermal stability, high dielectric constant, and lower leakage current than Silicon dioxide [34-42]. From Fig. 3, it’s obvious that the threshold voltage value for CSG MOSFET and CSDG MOSFETs (lightly doped) is approximately 0.42 V. And the threshold voltage value for heavily doped CSG and CSDG MOSFET from Fig. 4 is around 0.22 V. However, here authors have considered the subthreshold regime, therefore, the accuracy of this model is focused on gate voltage (V_{GS}) below threshold voltage (V_{th}). The accuracy of this proposed model has been compared with device simulations, which shows in line with the agreement.

Since the width is the same for better comparison of both devices, Fig. 5, Fig. 6, and Fig. 7 consider the effect of the variations in random dopant fluctuation, channel length, and channel thickness on the threshold voltage behavior of CSG MOSFETs and CSDG MOSFETs. For the heavily doped device, $6 \times 10^{18}/cm^3$ dopant has been introduced into the channel, whereas $1 \times 10^{17}/cm^3$ dopant has been used for the lightly doped device. The results shown in Fig. 5 explained the variation of threshold voltage caused by random dopant fluctuation for channel width (W_{total}) of 65 nm and channel length of 20 nm. The effect of the dopant fluctuation on the threshold voltage is slightly higher for CSDG MOSFET than CSG MOSFET. This is attributed to its double-gate, which shows greater electrostatic control over the channel than CSG MOSFETs. For heavily doped channel, the Silicon thickness variation effects are less significant.

![Figure 4](image1.png)

FIGURE 4. Subthreshold current against gate voltage for heavily doped CSG and CSDG MOSFET device structure.

The effect of variation in channel doping of CSG MOSFET and CSDG MOSFET on threshold voltage is shown in Fig. 5.

![Figure 5](image2.png)

FIGURE 5. Effect of variation in channel doping of CSG MOSFET and CSDG MOSFET on threshold voltage.

The effect of variation in channel length of CSG MOSFET and CSDG MOSFET on threshold voltage is shown in Fig. 7.

![Figure 7](image3.png)

FIGURE 7. Effect of variation in channel length of CSG MOSFET and CSDG MOSFET on threshold voltage.
The effect of channel variation on the threshold voltage is shown in Fig. 7. The variation in threshold voltage for the heavily doped channel between CSDG and CSG MOSFET is minimal and could be neglected. The reason has been that heavy channel doping reduces dependence on gate controllability. However, for lightly doped CSG MOSFET and CSDG MOSFETs, the variation in threshold voltage is smaller for CSDG MOSFET than CSG MOSFET because of the internal gate core of CSDG MOSFET. Fig. 8 shows the threshold voltage roll-off characteristics of CSG MOSFET and CSDG MOSFET for heavily doped channel. Both CSG MOSFET and CSDG MOSFET have the same roll-off characterization. This is because the heavily doped channel reduces the device’s dependence on the channel's electrostatic control. In the lightly doped device structure shown in Fig. 9, it is evident that the threshold voltage roll-off for CSG MOSFET and CSDG MOSFET are approximately the same. However, the threshold roll-off of CSG MOSFET is slightly lower as the channel length is varied beyond 20 nm.

The overall threshold voltage variation due to source variations of CSG MOSFET and CSDG MOSFET can be determined by assuming that the variations sources such as the Random Dopant Fluctuation (RDF) variation, channel length variation (L), and channel thickness variation (t) are independent of each other. Hence, all the variation sources' summation will equal the overall threshold voltage variation (ΔVth,Total), which determines the device sensitivity: ΔVth,Total = |ΔVth, RDF | + |ΔVth, L | + |ΔVth, tsi|. Therefore, when considering the heavily doped channel, the variation of the threshold voltage w.r.t. channel length and channel thickness become less significant while the threshold voltage due to RDF (ΔVth, RDF) dominates the threshold voltage dispersion. Also, when considering the channel length (Vth, L), the ΔVth, RDF is insignificant whereas Vth, tsi becomes less significant and the overall threshold voltage dispersion is dominant by Vth, L. Finally, for variation due to silicon thickness (Vth, tsi), the Vth, RDF is insignificant, whereas Vth, L becomes less significant as shown in Fig. 10 and Fig. 11.

V. CONCLUSION AND FUTURE RECOMMENDATIONS

In this work, the analytical approach of the 2-D Poisson equation’s solution has been used for the CSDG MOSFET, which have been verified with the device simulation, to analyse the sensitivity of their device structures to process variation. It has been realized that the lightly doped CSDG MOSFET has the smallest threshold voltage variation than CSG MOSFET at nanometre. So, as the MOSFET sizes are reduced, the lightly doped devices offer more immunity to process variation than the heavily doped devices. However, due to smaller threshold voltage value, lightly doped CSDG MOSFET has more immunity than CSG MOSFET. Also, CSDG MOSFET offers better immunity to channel thickness variation and channel length variation than CSG MOSFET because of its inherent internal core and external gate controllability. Since the CSG MOSFET is the
promising device to succeed FinFET and other mitigates families, CSDG is the next-generation semiconductor device for CMOS technology because of its amazing features.

At long channel length, the heavy dopant effects on both CSG and CSDG MOSFETs are insignificant. However, the Random Dopant Fluctuation (RDF) determines the overall threshold voltage variation as the channel length reduces. This is because the larger surface area of CSDG MOSFET to volume ratio contributes to its larger threshold voltage variation than CSG MOSFET. Hence, RDF is an essential factor that must be considered at nanometre range when designing heavily doped CSDG MOSFET devices.

As of now the device modelling is ready, therefore, in near future, this device will be fabricated. In addition, material gate engineering of CSDG MOSFETs and various other parameters will be analysed.

REFERENCES

[1] Hussam Amrouch, Girish Pahwa, Amol D. Guidhane, Jorg Henkel, and Yogesh S. Chauhan, “Negative capacitance transistor to address the fundamental limitations in technology scaling: Processor performance,” IEEE Access, vol. 6, pp. 52754-52765, 2018.

[2] International Roadmap for Devices and Systems, 2021, https://irds.ieee.org/

[3] Jinsu Jeong, Jun S. Yoon, Seunghwan Lee, and Rock H. Baek, “Comprehensive analysis of source and drain recess depth variations on silicon nanosheet FETs for sub 5-nm node SoC application,” IEEE Access, vol. 8, pp. 35873-35881, 2020.

[4] Alessio Spessot, Bertrand Parvais, Amita Rawat, Kenichi Miyaguchi, Pieter Weckx, Doyoung Jang, and Julien Ryckaert, “Device scaling roadmap and its implications for logic and analog platform,” IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 16-19 Nov. 2020, pp. 1-8.

[5] Benjamin Iniguez, David Jimenez, Jaume Roig, Hamdy A. Hamid, Lilus F. Marsal, and Josep Pallarés, “Explicit continuous model for long-channel undoped surrounding gate MOSFETs,” IEEE Transactions on Electron Devices, vol. 52, no. 8, pp. 1868-1873, Aug. 2005.

[6] Lining Zhang, Xinnan Lin, Jin He, and Mansun Chan “An analytical charge model for double-gate tunnel FETs,” IEEE Transactions on Electron Devices, vol. 59, no. 12, pp. 3217-3223, Dec. 2012.

[7] S. Bangsaruntip, K. Balakrishnan, S. L. Cheng, J. Chang, M. Brink, I. Lauer, R. L. Bruce, S. U. Engelmann, A. Pzyna, G. M. Cohen, L. M. Gignac, C. M. Breslin, J. S. Newbury, D. P. Klaus, A. Majumdar, J. W. Sleight, and M. A. Guillorn “Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond,” IEEE International Electron Devices Meeting, Washington, DC, USA, 9-11 Dec. 2013, pp. 1-4.

[8] Runsheng Wang, Jing Zhuge, Ru Huang, Yu Tian, Han Xiao, Lianliang Zhang, Chen Li, Xing Zhang, and Yangyuan Wang, "Analog/RF performance of Si nanowire MOSFETs and the impact of process variation," IEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1288-1294, June 2007.

[9] D. Nagy, G. Indalecio, A. J. GarciaA Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, “FinFET versus gate-all-around nanowire FET: Performance, scaling, and variability,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 332-340, Feb. 2018.

[10] Viranjay M. Srivastava and Ghanshyam Singh, MOSFET technologies for double-pole four throw radio frequency switch, Springer International Publishing, Switzerland, Oct. 2013.

[11] Sang H. Oh, D. Monroe, and J. M. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs,” IEEE Electron Device Letters, vol. 21, no. 9, pp. 445-447, Sept. 2000.

[12] J. Wang, E. Polizzi, and M. Lundstrom, “A computational study of ballistic silicon nanowire transistors,” IEEE International Electron Devices Meeting, Washington, DC, USA, Dec. 2003, pp. 1-4.

[13] B. C. Paul, S. Fujita, M. Okajima, T. H. Lee, H. S. P. Wong, and Y. Nishi, “Impact of a process variation on nanowire and nanotube device performance,” IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2369-2376, Aug. 2007.

[14] Naveenalaji Gowthaman and Viranjay M. Srivastava, “Capacitive modeling of CSDG MOSFETs for hybrid RF applications,” IEEE Access, vol. 9, pp. 89234-89242, 2021.

[15] S. Rewari, S. Haldar, V. Nath, S. Deswal, and R. Gupta, “Numerical modeling of subthreshold region of junctionless double surrounding gate MOSFET (JLDSG),” Superlattices and Microstructures, vol. 90, pp. 8-19, 2016.

[16] Viranjay M Srivastava, "Signal processing for wireless communication MIMO system with nano-scaled CSDG MOSFET based DP4T RF Switch," Recent Patents on Nanotechnology, vol. 9, no. 1, pp. 26-32, 2015.

[17] Chuyang Hong, Jun Zhou, Jiasheng Huang, Rui Wang, Wenlong Bai, James B. Kuo, and Yijian Chen, “A general and transformable model platform for emerging multi-gate MOSFETs,” IEEE Electron Device Letters, vol. 38, no. 8, pp. 1015-1018, Aug. 2017.

[18] Uchechukwu A. Maduagwu and Viranjay M. Srivastava, “Bridge rectifier with cylindrical surrounding double-gate MOSFET: A model for better efficiency,” International Conference on the Domestic Use of Energy (DUE), Cape Town, South Africa, 4-5 April 2017, pp. 109-113.

[19] K. Suzuki, T. Tanaka, Y. Tosaoka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFETs,” IEEE Transactions on Electron Devices, vol. 40, no. 12, pp. 3236-3239, Dec. 1993.

[20] C. P. Auth and J. D. Plummer, “Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFETs,” IEEE Electron Device Letters, vol. 18, no. 2, pp. 74-76, Feb. 1997.

[21] A. Y. Shklyar, Complete second order linear differential equations in Hilbert spaces, Birkhauser, 2012.

[22] Uchechukwu A. Maduagwu and Viranjay M. Srivastava “Analytical performance of the threshold voltage and subthreshold swing of CSDG MOSFET,” Journal of Low Power Electronics and Applications, vol. 9, no. 1, pp. 1-10, Nov. 2019.
thin-film transistor for improved performance of ultra-low-power RFID rectifier,” IEEE Access, vol. 8, pp. 194652-194662, Oct. 2020.

[39] S. Wolf, Silicon Processing for the VLSI era - The submicron MOSFET, vol. 3, Lattice Press, California, Jan. 1994.

[40] Rui Zhang, Xiaoyu Tang, Xiao Yu, Junkang Li, and Yi Zhao, “Aggressive EOT scaling of Ge p-MOSFETs with HfO2/AlOx/GeO2, gate-stacks fabricated by Ozone Postoxidation,” IEEE Electron Device Letters, vol. 37, no. 7, pp. 831-834, July 2016.

[41] Daniele Garbin, Elisa Vianello, Olivier Bichler, Quentin Rahay, Christian Gamrat, Gerard Ghidai, Barbara D. Salvo, and Luca Perniola, “HfO2-based OxRAM devices as synapses for convolutional neural networks,” IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2494-2501, Aug. 2015.

[42] Sanjay Kumar, Ekt Goel, Kunal Singh, Balraj Singh, Prince K. Singh, Kamalaksha Baral, and Satyabrata Jit, “2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2 stacked gate-oxide structure,” IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 960-968, March 2017.

Er. MADUAGWU A. UCHECHUKWU (M’18) received Bachelor (2013) in Electronic Engineering from University of Nigeria, Nigeria, Masters (2019) in Electronic Engineering from the University of KwaZulu-Natal, Durban, South Africa and presently pursuing his PhD in Electronic Engineering from the same University. His research area includes Nanotechnology, MOSFETs, Semiconductor Scaling, VLSI, and various novel MOSFET structures.

Er. Uchechukwu is a student member of IEEE. He is author of more than 10 scientific contributions, including articles in international refereed Journals and Conferences.

Prof. VIRANJAY M. SRIVASTAVA (M’09, SM’13) is a Doctrate (2012) in the field of RF Microelectronics and VLSI Design, Master (2008) in VLSI design, and Bachelor (2002) in Electronics and Instrumentation Engineering.

He has worked on the fabrication of devices and development of circuit design. Presently, he is working in the Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban, South Africa. He has more than 19 years of teaching and research experience in the area of VLSI design, RFIC design, and Analog IC design. He has supervised various Bachelors, Masters and Doctorate theses.

Prof. Srivastava is a Professional Engineer of ECSA, South Africa and Life member of IEEE-HKN, Senior members of IEEE, SAIEE, and members of IET, IITPSA. He has worked as a reviewer for several Journals and Conferences, both national and international. He is author/co-
author of more than 280 scientific contributions, including articles in international refereed Journals and Conferences and also the author of various books.