We orient around the North Atlantic as our object of inquiry, exploring cultural, governance, and social movements dimensions of the oil-tourism interface across Denmark, Iceland, Newfoundland and Labrador (Canada), Norway, and Scotland (United Kingdom). This regional focus on the North Atlantic is a response to calls to move beyond the methodological nationalism that treats nation-states as the natural, de facto units of analysis in comparative research, which has dominated social sciences for decades (i.e. Beck and Levy 2013; Thorpe 2012). At the same time, a focus on cases that are linked through the shared maritime geography of the northern Atlantic Ocean extends recent sociological research on oceans as sites of conflict over resource development (Hannigan 2017; Longo and Clark 2016; Widener 2018).

Our case study regions can be conceptualized in several ways. Scandinavia includes Norway and Denmark, as well as Sweden, while the broader framework of the Nordic countries (or Norden) also includes Iceland and Finland. Newfoundland and Labrador is a province of Canada, while Scotland is a more autonomous region within the United Kingdom. Denmark is part of the European Union. Scotland
is embroiled in the Brexit process with the UK leaving the European Union, which has renewed interest in Scottish independence. The Kingdom of Denmark includes Denmark, but also Greenland and the Faroe Islands, which receive limited attention here. Furthermore, except for Scotland, the case study regions have Arctic or near-Arctic geographies and are represented on the Arctic Council. Despite these different—and sometimes overlapping—geographies and political affiliations, it is useful to group them within a North Atlantic regional framework for several reasons.

First, previous comparative research examines various configurations of these case study regions. The edited volume, *Northern Neighbours: Scotland and Norway since 1800*, looks at how issues like access to nature and outdoor recreation, social welfare, and oil development have been shaped by long-term cultural, political, and economic similarities and differences between Scotland and Norway (Bryden et al. 2015a). An overarching theme of the book is that the Norwegian model of governance and natural resource development, characterized by a “more egalitarian, healthy and participatory society,” offers lessons for Scotland (Bryden et al. 2015b, p. 19). The edited volume, *Nordic Tourism: Issues and Cases* examines a range of northern tourism issues, including environmental sustainability and rural economic development, through an analysis of Norway, Denmark, and Iceland (Hall et al. 2009). Wejs et al. (2014) examine the challenges of building legitimacy for climate change adaptation plans through a comparison of Denmark and Norway. Søholt et al. (2018) compare Denmark and Norway in their study of the social dynamics of immigration in rural Nordic communities. Felt (2009) examines structures of municipal governance in the small cities of Corner Brook, on the west coast of Newfoundland, and Akureyri, on the north coast of Iceland, and argues that there are long-term cultural and political characteristics that have resulted in Iceland adopting more pluralistic forms of governance than are found in Newfoundland and Labrador.

Second, our analysis complements other moves to build communities of research, policy, and practice around the North Atlantic region. An example of this is the North Atlantic Forum, a biannual conference that has been held in Atlantic Canada, Iceland, and Norway,
which has led to a series of edited volumes that consolidate research on the North Atlantic (Baldacchino et al. 2009, 2015; Brinklow and Gibson 2017). These volumes touch on issues including oil development, tourism, and governance, with a focus on how rural communities across the North Atlantic navigate the challenges of globalization and rapid social-ecological change.

Third, these study regions are linked by broad similarities of geography, relatively low population density, and democratic political systems. There has also been an historical dependence on fisheries, with more recent turns to offshore oil and nature-based tourism as alternative economic development pathways. Yet, there are significant differences in how well-established and economically significant the tourism and oil industries are in the different sites. For example, while oil exploration and extraction took off in the 1970s among the North Sea cases (Denmark, Norway, and Scotland), oil did not become central to the political economy of Newfoundland and Labrador until the early 2000s, while Iceland was at the early stages of exploration in the Dragon oil field when the 2014 global oil price collapse resulted in cooling interest in Arctic oil exploration. By contrast, Scotland has a long history as a nature-based tourism destination, while Denmark and Newfoundland and Labrador have more recently turned to tourism development as a means of economic diversification. Iceland, by contrast, experienced a recent and rapid tourism boom.

Our cases represent a range of political and economic orientations. According to Lijphart’s (2012) typology of forms of democracy, Canada and the United Kingdom are at the majoritarian and pluralist end of the political spectrum where the winning political party exercises a great deal of policymaking power. Denmark, Iceland, and Norway, by contrast, are at the consensus-oriented and corporatist end of the spectrum, with political cultures characterized by cross-party alliances and higher levels of consultation with non-state actors. Similarly, our cases contain a mix of liberal market economies (Canada, the United Kingdom) that rely more heavily on markets to structure “financial and industrial relations systems” and coordinated market economies (Denmark, Norway) that embrace “higher levels of non-market coordination” (Hall and Soskice 2001, p. 19). The combination of similarities and differences allows
for comparative work that helps us better understand when and how nature-oriented tourism and offshore oil come into contact.

In the remainder of this chapter, we set the stage for our analysis by providing an overview of the political and economic context of oil and tourism development in our five case study regions. We then provide an overview of how our case study regions are responding to the challenges of climate change, as this an important part of the meta-context of the oil-tourism interface in the North Atlantic.

Oil Development in the North Atlantic

North Atlantic oil exploration started in the 1960s in the North Sea around the Scottish, Norwegian, and Danish continental shelves. The 1970s OPEC oil crises was a tipping point in the political economy of offshore oil extraction for the North Atlantic. The OPEC crisis was triggered by the coalition of Middle Eastern oil extracting countries and results in price spikes and oil shortages. A key outcome of the crisis was an emphasis on “energy independence” from the OPEC countries and “energy security” in North America and Europe (Freudenburg and Gramling 2011; Kristoffersen 2014; Urry 2013). As a result, there was a turn to what John Urry (2013) terms “tough oil.” In contrast to the “easy oil” that is extracted from land-based derricks in places like the Middle East or Texas, tough oil is in more remote locations, has a lower ratio of energy returned on energy invested (EROEI), and carries higher environmental risks and impacts. Ramping up oil exploration and extraction across the North Atlantic was part of this shift towards tough oil in response to increasing global oil prices and the search for energy security through the 1970s.

Table 2.1 provides indicators that summarize how oil extraction fits into the political economies of our study regions. Looking at oil sector employment as a percentage of the population, we see that Newfoundland and Labrador (0.99%) and Norway (0.95%) have the highest level of employment in the sector, followed by Scotland (0.66%). By contrast, oil sector employment as a percentage of the population is much lower in Denmark (0.09%). Data is unavailable for Iceland but given the
Table 2.1 Oil orientations of case study regions

Region	Oil sector employment (2018, unless otherwise noted)	Population (2018)	Oil sector employment as % of population	Proven oil reserves (2018, unless otherwise noted)	Oil production in million tonnes (2018, unless otherwise noted)	Growth rate per annum in oil production (2017–2018)	Oil products exports (value in billion US dollar) (2018, unless otherwise noted)
Denmark	5585 (2017)	5,781,190	0.09	0.4	5.7	-15.9%	4.19
Iceland	n/a	357,050	n/a	n/a	n/a	n/a	n/a
Norway	50,600	5,295,619	0.95	8.6	83.1	-6.2%	51.18
Newfoundland and Labrador	5,200	525,075	0.99	3m	11.2n	4.3%	5.92
Scotland	36,100 (2017)	5,438,100 (2017)	0.66	2.5 (UK)	48.7 (2017)	0.5%	20.51 (2017)

aBP Statistical Review of World Energy, 2019
bBP Statistical Review of World Energy, 2019
cBP Statistical Review of World Energy, 2019
dERHV1 table, Statistics Denmark, 2019 (full-time employment in extraction of crude petroleum, extraction of natural gas, support activities for petroleum and natural gas mining, manufacture of refined petroleum products, and wholesale of solid, liquid and gaseous fuels and related products)
eStatistics Denmark, 2019
fUHV7 table, Statistics Denmark, 2019, conversion rate: 1DKK = 0.15358 USD
gStatistics Iceland, 2018
hStatistics Norway, 2019
iStatistics Norway, 2019
jNorwegian Petroleum, 2019, conversion rate: 1NOK = 0.1158 USD
kEconomy 2019, the Department of Finance, Newfoundland & Labrador government, 2019
lStatistics Canada, 2019
mThe Department of Natural Resources, Newfoundland & Labrador government, 2019
nNewfoundland & Labrador Statistics Agency, the Department of Finance, Newfoundland & Labrador government, 2019, unit conversion: 1 tonne of crude oil = 7.5 barrels of oil equivalent
oEconomy 2019, the Department of Finance, Newfoundland & Labrador government, 2019
pNational Energy Board, Canada, 2019
qEconomic Report 2018, Oil & Gas UK, 2018
rUK Office for National Statistics, 2018
sOil and Gas Production Statistics 2017–18, Scottish Government, 2019
tOil and Gas Production Statistics, 2017–18, Scottish Government, 2019
uEnergy Statistics Database, Scottish Government, 2019 (this is a provisional, unbalanced estimate figure, including Scottish oil & gas export to the rest of the world and the rest of UK)
preliminary nature of oil extraction it is not significant relative to other sectors of the economy. There are also significant proven oil reserves in Norway, Newfoundland and Labrador, and the United Kingdom (most of which are within Scotland). By contrast, volumes of proven reserves are significantly lower in Denmark, and unavailable for Iceland. In terms of ongoing extraction, Norway is the largest producer, followed by Scotland, and then by Newfoundland and Labrador. Danish oil production is significantly lower than the other cases, while Iceland is not yet engaged in oil production. In terms of oil exports, Norway is the largest exporter, followed by Scotland. Oil exports from Newfoundland and Labrador and Denmark are significantly lower than these regions, while Iceland is not yet an oil exporter. Finally, if we look at recent growth in oil production, we see that Newfoundland and Labrador is the region where production is growing, while it is declining moderately in Norway and declining more significantly in Denmark. This reflects issues of mature fields in these regions, which have been compounded by recent global price declines and volatility. Taking these indicators together, we position Newfoundland and Labrador, Norway, and Scotland as more oil oriented in terms of their political economy. By contrast, Denmark and Iceland are less oil oriented.

Norway. Following the Second World War, Norway was relatively poor compared to much of Europe, with a reliance on fisheries and agriculture as economic drivers. Norwegian oil extraction began in the North Sea in the 1970s, moved into the Norwegian Sea in the 1990s, and then moved into the Barents Sea in 2007. The Norwegian narrative of oil extraction emphasizes that the government of the day did not immediately sign over Norway’s potential oil wealth to large private corporations, but demanded significant social benefits in exchange for corporate access to Norwegian oil resources (Larsen 2006). This was codified in the “Ten Oil Commandments” developed by the government to ensure employment and economic benefits for oil extraction communities and for the nation as a whole, while mitigating occupational health and safety risks, as well as environmental impacts (Urry 2013). The Oil Commandments figure prominently in the “petroleum fairy-tale” where government negotiation with the oil sector transformed the country into a place with one of the world’s highest standards of living in the space of only a few
decades (Kristoffersen and Dale 2014). Part of this has been the growth of the Norwegian sovereign wealth fund, where oil royalty payments to government have been reinvested in an investment fund that now ranks among the largest in the world (Bridge and Le Billon 2013; Milne 2017). This model of oil development is grounded in a political culture as a “consensus-oriented and egalitarian nation-state” (Brandal and Bratberg 2015, p. 43).

The Norwegian fairy-tale narrative also focuses on government investment and direct involvement in the oil sector through the creation of Statoil and Petoro. Government intervention “as resource-owner, regulator and entrepreneur” was built on a political culture that emphasizes that “natural resources are common property, and their use should benefit all” (Bryden 2015, pp. 146, 149). Statoil was partially privatized in 2001, though it continues to work as a hybrid public and private company that is a central actor in the Norwegian oil sector and across the North Atlantic region. In 2018, Statoil was rebranded as Equinor, reflecting a shift in the public identity of the corporation from an oil company to an energy company that is increasingly involved in renewable energy, particularly offshore wind power.

There have been few major catastrophes in the Norwegian oil sector. The most notable disaster was the 1980 Alexander L. Kailland platform sinking, which resulted in 123 deaths and is memorialized at the Norwegian Petroleum Museum in Stavanger. Through much of its history, the oil sector has been viewed positively by the public and policymakers and there has been a collaborative relationship across the oil sector and the political sphere. However, controversies have emerged around extending Norwegian oil production beyond the North Sea and Norwegian Sea operating areas. Social movements have opposed extending oil exploration into the Lofoten, Vesterålen, Senja (LoVeSe) region as well as into the Barents Sea, and Norwegian Arctic (Avango et al. 2013; Kristoffersen and Dale 2014). The push further north is a response to mature fields in the North Sea, where oil extraction volumes have been gradually declining since 1999, and the Norwegian Sea, where oil extraction volumes have been declining since 2007. At the same time, the Johan Sverdrup field, which is the largest discovery in the Norwegian Continental Shelf since the 1970s, went into production in 2019 and
is expected to produce 660,000 barrels equivalent per day at its peak (Equinor 2019).

Denmark. The history of Danish oil development follows a similar trajectory as Norway. Oil extraction in the Danish Continental Shelf began in 1972. There are now 17 active oil fields, with 55 platforms. However, the “Danish shelf is both small and technically hard-to-reach” compared to neighbouring Norwegian and Scottish sites of oil extraction (Quartz + Co 2012, p. 10). While Denmark did not adopt a formal code to guide oil development like Norway’s Ten Commandments, the state was involved in directing early oil development and became a stakeholder through public ownership of DONG Energy (now renamed Ørsted). Public involvement in the oil sector set expectations for social benefits of the industry and helped guide corporate social and environmental responsibility. While the Danish government still holds 58% of shares, 18% of shares were sold in 2012 to Goldman Sachs who further resold them in a 2016 IPO (Milne 2016). This caused political controversy over Goldman Sachs’ profiting from the sale of shares in the public utility. A news article on the sale notes that there was significant opposition to the partial privatization of DONG energy, but that in 2012 the company was struggling and seeing declining profits. Since the change in ownership structure, it has undergone what Financial Times reporter Milne calls a “remarkable transformation,” leveraging the capital investment from Goldman to “become the clear global leader in developing and operating offshore wind farms as it won a series of projects in the UK and elsewhere” (Milne 2016). This shift in orientation fits a longer history of Danish wind power development, which was strongly influenced by environmental movements that “formed ‘critical communities’ within the Danish energy sector” from the 1970s onward (Vasi 2011, p. 152).

The Danish oil sector is not as economically significant as the Norwegian sector. However, oil impacts the political economy of Denmark through taxes, trade balances, and energy security. In 2010, the oil and gas sector contributed approximately 24 billion DKK ($4.27 billion USD1) through corporate taxes, hydrocarbon taxes, and profit sharing.

1 Conversion rate at 2010-12-30: kr 1 DKK = $ 5.61 USD, Danmarks Nationalbank (2019).
with the government (Quartz + Co 2012, p. 12). Furthermore, the sector employs about 15,000 people, including direct and indirect employment, with most employment located on the west coast of Jutland (Quartz + Co 2012).

There have been no significant oil disasters in the Danish North Sea, which contributes to positive views of the social and environmental responsibility of the sector. Denmark has played an important role as an early adopter in offshore wind energy, which has been scaling up significantly. Oil extraction increasingly coexists with offshore wind power development in regions like Jutland. The offshore wind power transition has been facilitated by public ownership in Ørsted/DONG Energy. At the same time, volumes of oil and gas extracted from the Danish Continental Shelf are expected to decline, with increased costs for extracting the remaining oil. Strategies for dealing with decline include increasing exploration activity, increasing production in more marginal oil fields, and using technological innovation to increase the recovery rate. Declining oil extraction will result in corresponding impacts on employment and government revenues from the oil and gas sector, though some of this is offset by expanding offshore wind energy production.

In the broader context of the Kingdom of Denmark, there has been periodic interest in potential offshore oil development in Greenlandic waters since the 1970s, reflecting periods of high global oil prices and interest in Arctic oil exploration more broadly (Hansen 2014). Issues of Greenlandic oil development are bound up with issues of Danish colonialism. Many Greenlandic Inuit have been supportive of oil exploration and mining projects because resource extraction can be leveraged for greater economic and political autonomy from the Kingdom of Denmark (Shadian 2014). However, with recent declines in global oil prices and cooling interest in Arctic oil exploration an emerging Greenlandic oil economy currently seems unlikely.

Scotland. Oil development in Scotland has similarities and differences from the Nordic cases, although many in Scotland look to Norway as a model for socially beneficial oil development (Bryden et al. 2015b). The historical trajectory is similar, with an exploration and discovery phase in the 1960s and extraction ramping up through the 1970s (Bryden 2015).
Scotland produces 95% of oil within the United Kingdom and, as of 2019, is the largest oil producer in the European Union. The value of oil and gas production is estimated at £10 billion ($12.6 billion USD\(^2\)) and supports approximately 124,500 jobs. The oil sector also contributes spin-off benefits. Oil revenues were integral developing the culture and heritage sectors on Shetland, which have become key tourism attractors (Jennings 2015).

Public investment and ownership in the Scottish oil and gas sector has been less notable than in Norway or Denmark. While publicly owned organizations like Statoil (now Equinor) and DONG Energy (now Ørsted) were core actors in the emergence and evolution of the Nordic oil sector, the Scottish sector evolved with private companies like BP and Shell as core actors. This led to a different political economy of oil. Bryden (2015) argues that UK policy was less stringent in requiring local benefits, which “led to the loss of national control and failed to generate an oil fund for future generations” (Bryden et al. 2015b, p. 17). The oil and gas sector also played into the politics of Scottish nationalism, as control over the social benefits of oil development have been part of political and public debates about the possibilities of Scottish independence (Bryden 2015).

Another key difference between Scottish and Nordic oil development is that environmental movement mobilization has previously been more visible. This is particularly the case with the 1990s controversy over Shell’s proposal to sink the Brent Spar oil rig into the North Sea as a means of disposal. Greenpeace viewed the sinking of the Brent Spar as “an appropriate symbol to make the rather abstract problems of the North Sea more palpable” (Holzer 2010, p. 19). Greenpeace mobilized against the planned sinking of the platform through a public education campaign across Europe. Greenpeace also used direct action by physically occupying the oil platform (Holzer 2010). In the short term, protest and public pressure created “reputational risk” and growing pressure from investors” on Shell to prove their commitments to environmentally responsible decommissioning practices (Barry 2015). Greenpeace

\(^2\)Conversion rate at 2019-01-02: £1 GBP = $1.26 USD, Bank of England (2019).
successfully transformed Shell into a corporate villain in the public sphere and used public pressure to change their practices.

The Brent Spar conflict was a “critical event” (Ramos 2008) in the Scottish oil sector. Much of the Scottish North Sea is at a post-peak phase and decommissioning oil infrastructure is an issue of concern. Greenpeace’s success at making the Brent Spar a public controversy means that environmentally appropriate practices for decommissioning remain important considerations. The Scottish oil sector is dealing with mature oil fields and issues of decommissioning old oil rigs to a greater degree than our other case study regions (Hughes 2014). Scottish oil extraction peaked in 1999 and the current level of extraction “is only around 40% of the production peak in 1999” (Scottish Government 2017, p. 5). There are also moves towards renewable energy transitions by scaling up offshore wind power development. For example, in 2019, the new Beatrice Offshore Wind Farm went into operation with enough capacity to power 450,000 homes (Beatrice Offshore Windfarm 2019).

Newfoundland and Labrador. Oil development in Newfoundland and Labrador emerged later than in the North Sea, with exploration activity ramping up in the 1970s. Oil extraction has centred on three major fields: Hibernia, with the first platform going into production in 1997, as well as Terra Nova and White Rose. A fourth field, Hebron, went into production in 2017. Reserves at Hebron are estimated to be between 660 and 1005 million barrels. Hebron is projected to be in production from 2017 until 2042 (CBC 2012; Government of Newfoundland and Labrador 2012). With the later emergence and development of the oil sector, there is less concern with mature fields or decommissioning. The Newfoundland and Labrador oil industry accounts for approximately 14% of Canada’s total crude oil production (Environment Canada 2009). It has contributed significant provincial per capita GDP increases since the 1980s (Locke 2011). However, the economic benefits are less visible in smaller coastal communities than they are in the area around St. John’s, the capital city (Sinclair 2011).

The emergence of oil production in the province follows the decline of the cod fishery and the 1992 cod moratorium, arguably among the worst ecological disasters in Canadian history. The social and economic impacts were far-reaching, especially in rural coastal communities, which
The oil sector was marked by two significant workplace disasters. The 1982 sinking of the Ocean Ranger oil platform, which was carrying out exploratory work, resulted in 84 deaths. A 2009 Cougar helicopter crash, which was carrying workers to the White Rose and Hibernia oil fields, resulted in the deaths of fifteen passengers. However, Dodd argues that the “promise of oil” with its “rhetoric of job creation and Newfoundland self-determination” carries significant cultural weight in a region with a history of underdevelopment and out migration (Dodd 2012, pp. 142–143). As such, oil disasters have been reframed in public discourse as learning moments for improving workplace safety.

There have been multiple oil spills in recent years, including 250,000 litres spilled from Husky’s SeaRose platform in 2018 and 12,000 litres spilled from the Hibernia platform in 2019 (CBC 2019; Kinsella 2018). These ecological harms have received media coverage, but not the kind of sustained public discussion triggered by the Ocean Ranger or Cougar helicopter disasters. By contrast, exploration proposals for hydraulic fracturing (fracking) on the west coast of the island have drawn public concern and social movement mobilization. Concerns were raised about proposed fracking in one of the enclave communities of Gros Morne National Park, a UNESCO World Heritage Site and key tourism attractor for the province (Smith 2016). In response to public concern, an expert advisory panel was convened and a moratorium was placed on further hydraulic fracturing exploratory work.

Iceland. Finally, Iceland is unique among our cases because it is not yet an oil extracting region. There are potential oil and gas resources...
in the Dreki area in the northeast of the country (referred to as the Dragon Field). This is close to a proposed new harbour development at Finnafjord, which would facilitate transportation to European and American markets. Exploration activity commenced in 2013, while Iceland was recovering from the 2008 economic crisis. With the impact of the financial crisis, the prospect of becoming an oil producing country was generally viewed positively in the public and political sphere. Exploration work was carried out by the Chinese oil company CNOOC (China National Offshore Oil Corporation) in collaboration with Eykon Energy, an Icelandic company. An exploration license was also held by Norway’s Petoro. Exploratory work did not provide a sense of whether there are suitable oil and gas resources to proceed with extraction. With a global downturn in oil prices, Arctic oil exploration programmes have become less viable. Prior to the price downturn, there was political consensus that Icelandic oil was worth pursuing as an economic development strategy. The hope was for a Nordic model of development, following the leads of Norway and Denmark. However, unless oil prices rebound significantly, debate over how to distribute Iceland’s oil resources is likely to remain peripheral.

After a long cycle of high-oil prices through the early 2000s, there was a major drop in global oil prices in 2014, followed by ongoing volatility in the global oil economy. This has been driven by events outside the North Atlantic. The rapid increase in hydraulic fracturing in the United States has seen the U.S. regain its status as a major oil source region. This fracking boom, coupled with the responses of OPEC, has contributed significantly to the recent period of volatility, which led many companies to restructure their operations in the interests of economic efficiency. At the time of writing, this volatility is further compounded by the disruptions of the COVID-19 health pandemic, as well as tensions between OPEC and Russia. This ongoing period of price volatility creates pressure on host societies to revisit regulatory and royalty regimes under the rhetoric of global competitiveness. It also dampened exploratory activity, particularly in the challenging and costly operating environments of the Arctic and northern reaches of the North Atlantic, which had a cooling effect in Iceland. CNOOC and Petoro let go of their exploration licenses,
and political and public debate about oil development has largely fallen beneath the surface (Čirić 2018).

Tourism Development in the North Atlantic

Nature-based tourism involving hunting and fishing has been established across the North Atlantic region for a long time. However, recent decades have seen a turn towards models of eco-tourism, sustainable tourism, or geo-tourism as alternate ways of pursuing lower-impact forms of nature-based tourism (Urry and Larsen 2011). Eco-tourism is premised on non-extractive interaction with natural environments through activities like hiking, sea kayaking, surfing, cycling, or birdwatching, rather than extractive recreation like hunting and fishing. Increasing interest in travel to rural, remote, and cold-water regions has been a parallel trend, as travellers seek alternatives to mass market, resort-based tourism (George et al. 2009). Communities across the North Atlantic have turned to tourism as a means of economic diversification and the revitalization of rural coastal communities (Baldacchino 2010; Huijbens and Jóhannesson 2019). While tourism is often viewed positively, it also creates tensions with established livelihoods and community identities, for example those based on fishing (Ounanian 2019).

Table 2.2 presents indicators of the study regions in terms of tourism-orientation. If we look at tourism employment as a percentage of the population, then Iceland (18.79%) has a very high level of tourism employment. This is followed by Norway (6.36%), Scotland (3.8%), Denmark (3.97%), and then Newfoundland and Labrador (3.42%). However, if we look at inbound tourism traffic, we see a different picture. Denmark and Scotland have the largest visitor flows by far, followed by Norway, then Iceland, then Newfoundland and Labrador. To put this in a different context, we can look at inbound tourism numbers as a ratio of the host community population, which has been used to measure overtourism (Oklevik et al. 2019). While it is difficult to compare country-level and city-level figures, Iceland and Denmark stand out with ratios that are similar to well-known European city destinations like Barcelona (1: 6.1), though their ratios are substantially lower.
Tourism Sector	Direct Employment (2018, unless otherwise noted)	Population (2018 unless otherwise noted)	Tourism sector employment as % of population	Inbound tourism: number of tourist arrivals per year (2017, unless otherwise noted)	Ratio of resident population to inbound tourists per year
Denmark	229,600	5,781,190c	3.971	29,730,000	1: 5.14
Iceland	67,100	357,050d	18.792	2,353,000	1: 6.59
Norway	336,700	5,295,619e	6.358	6,252,000f	1: 1.18
Newfoundland and Labrador	18,000g	525,075h	3.428	510,876i	1: 0.97
Scotland	207,000i	5,404,700k	3.830	14,300,000i	1: 2.64

\(^a\)World Travel & Tourism Council, 2019
\(^b\)United Nations World Tourism Organization, 2019
\(^c\)Statistics Denmark, 2019
\(^d\)Statistics Iceland, 2018
\(^e\)Statistics Norway, 2019
\(^f\)Data does not include same-day visitors (excursionists)
\(^g\)The Department of Tourism, Culture, Industry and Innovation Government, Newfoundland and Labrador Government, 2019
\(^h\)Statistics Canada, 2019
\(^i\)The Department of Tourism, Culture, Industry and Innovation Government, Newfoundland and Labrador Government, 2019
\(^j\)Scottish Government, 2017
\(^k\)UK Office for National Statistics, 2017
\(^l\)Scottish Government, 2017
than the most overtouristed European destinations like Venice (1: 16.3) or Amsterdam (1: 11.5). These cases are followed by Scotland, then Norway, then Newfoundland and Labrador. While each of these indicators paints a different picture, taking them together we characterize Scotland, Iceland, and Denmark as highly tourism-oriented case study regions. By contrast, Newfoundland and Labrador and Norway are relatively less tourism-oriented cases, with tourism being important to particular regions or local communities.

Scotland. Among our case study regions, Scotland has a long history as a destination for nature-oriented tourists in the United Kingdom. The tourism industry has long had an influence on “narratives of Scottishness” through its global circulation of imagery (Edensor 2002). Early forms of nature-based tourism oriented around sport activities like hunting and fishing. The tourism sector in Scotland evolved and diversified over time. It is now “mature” and well-developed, with multiple foci that target visitors with interests in historic sites and museums, arts and culture, food and drink (e.g. whiskey tourism), and nature experiences and outdoor recreation (VisitScotland 2014). The tourism sector evolved with a dual focus on rural environments and urban centres, particularly Edinburgh. Tourism also plays a key role in the political economy of Scotland, with 217,000 tourism jobs accounting for 9% of total employment in 2014 (Visit Scotland 2016). Beyond the direct economic impacts, tourism development has promoted the growth of heritage and cultural sectors in rural and remote communities, such as Shetland, which is characterized by an increasingly “vibrant cultural scene” (Jennings 2015, p. 173). While tourism is important to the Scottish political economy, the uncertainties of Brexit are causing concern, particularly as the EU is a core source market for Scottish tourism and EU nationals make up a significant proportion of the tourism sector workforce (Scottish Government 2018).

Newfoundland and Labrador. Nature-oriented tourism in Newfoundland and Labrador emerged as early as the 1890s, with a focus on camping and sport fishing. During the 1920s and 1930s, nature-based tourism was oriented around sport fishing and hunting, with camps and lodges as destinations. Visiting photographers and writers popularized the region through images of outport villages, rocky shores and
headlands, and icebergs—an iconography that still circulates in tourism marketing. This early wave of tourism development abated following World War Two. However, there was a resurgence of interest in tourism development after the 1992 cod fishing moratorium (Ommer 2007). Tourism development initially focused on the history and perceived authenticity of rural “outport” fishing communities. Over time, tourism developed a dual focus on history and culture, on one hand, and experiential interactions with nature through hiking and boat tours, on the other hand. Icebergs, puffins and whales are particularly iconic nature-based tourism attractors (Stoddart and Graham 2016; Stoddart and Sodero 2015).

While not as economically significant as the oil sector, the tourism sector has grown significantly over time in terms of revenues and employment. In 1992, approximately 264,000 non-residents visited the province. By 2010, this number increased to 518,500 visitors and an estimated $411 million Canadian dollars ($402.9 million USD\(^3\)) in tourism revenues (Globe 2011). The success of tourism marketing is reflected in the province’s designation as “one of the top ‘new’ and ‘undiscovered’ travel destinations on … lists from industry leaders like Lonely Planet and Fodor’s” (Government of Newfoundland and Labrador 2009, p. 18). Tourism is seen as an important avenue for economic diversification, especially for rural coastal communities beyond the capital city of St. John’s. For example, Gros Morne National Park, which is a UNESCO World Heritage Site, is an important nature-based tourism hub. Gros Morne was established in the early 1970s and was intended to bring “the maximum funds into the local economy” (Overton 1996, p. 182). Currently, Gros Morne brings in “upwards of 180,000 visitors each year … accounting for in excess of $37 million [Canadian dollars] in economic benefits” ($33.6 million USD\(^4\)) (Parks Canada, as cited in Canada-Newfoundland and Labrador Offshore Petroleum Board 2014, p. 394). As we explore in our analysis, this region has also been at the centre of controversies around oil development.

\(^3\)Conversion rate at 2010-01-01: $1 CAD = $0.98 USD, Bank of Canada (2019).

\(^4\)Conversion rate at 2014-01-01: $1 CAD = $0.90 USD, Bank of Canada (2019).
Iceland. By contrast, Iceland has a more recent and idiosyncratic history of tourism development. Until recently, the country was a niche destination for adventurous travellers interested in outdoor recreation. However, Iceland experienced a recent tourism boom and tourism is “hailed as one of three pillars of the Icelandic economy, together with fisheries and heavy industries” (Huijbens and Jóhannesson 2019, pp. 281–282). This can be traced to the unintended consequences of the Eyjafjallajökull volcano eruption in 2010 (Benediktsson et al. 2011). This event grounded flights across Europe and garnered international media attention. Imagery of the dramatic Icelandic landscape spread through media coverage and generated interest, which was leveraged by Icelandair and the tourism sector for promotion to North American and European markets (Lund et al. 2017). Since the eruption, annual growth in tourism visitation has been dramatic. The declining value of the Icelandic Krona (ISK) in the wake of the 2008 global economic crisis also helped push tourism development as a recovery strategy (Antanova and Rieser 2019; Lund et al. 2018).

Tourism quickly became significant to the Icelandic political economy. Tourism revenues nearly doubled between 2012 and 2016 to 466,287 billion Icelandic Krona ($4131 billion USD\(^5\)). As of 2016, tourism revenues account for 39.2% of economic activity, which surpasses established industries including “exports of marine products and industrial products” (Óladóttir 2017, p. 2). The number of tourism employees increased from 19,500 to 28,900 between 2012 and 2016, while the number of international visitors went from 488,600 to 1,791,400 annually during the same period (Óladóttir 2017, p. 7). As Lund et al. (2017) note, “Iceland is now a widely popular world destination – ranking 16th and 11th on the World Economic Forum’s 2013 and 2011 Travel and Tourism Competitiveness Reports, respectively” (Lund et al. 2017, pp. 149–150). Tourism development is also seen as particularly important for promoting the well-being of rural areas, as it may serve as a collaboration and innovation space among private businesses, the public sector, and academic and research institutions (Edvardsdóttir 2016). However, 2019 figures from Statistics Iceland show declining visitor

\(^5\)Conversion rate at 2016-12-30: kr 1 ISK = $0.00886 USD, Central Bank of Iceland (2019).
numbers, which suggests the tourism boom may be softening (Statistics Iceland 2019). This raises questions about the long-term economic and social sustainability of tourism as a development pathway.

Icelandic tourism is oriented around nature-oriented experiences, such as whale and puffin watching, the northern lights, glaciers, hiking, and geothermal pools, such as the iconic Blue Lagoon (Huijbens 2016). Tourism promotion focuses on images of Arctic landscapes and nature, thereby playing on increased interest in Arctic tourism more broadly. At the same time, the country is defined as being both exotically Arctic but familiarly European, with the capital city of Reykjavik providing “museums, shopping, contemporary design, art, and a lively nightlife” (Lund et al. 2018, p. 144). There are, however tensions between ongoing whale hunting and the increasing popularity of whale watching, which has been positioned as an environmentally responsible alternative to whale hunting (Cunningham et al. 2012; Hall et al. 2009). Tourism companies like North Sailing and Gentle Giants have played a particularly important role in transforming the small community of Húsavík, on the north coast of the country, into a popular hub for whale tourism, thereby “rejuvenating the local economy” (Cunningham et al. 2012, p. 151). This provides an example of how extractive economies can be transformed through nature-oriented tourism in ways that contribute to the economic revitalization of rural coastal communities.

Denmark. Denmark has also seen a recent expansion of its tourism economy. Much tourism traffic focuses on the capital city of Copenhagen, which has become a trendy urban destination where tourism attractors include history, arts, and culture, and urban environments like the harbour. Though Copenhagen is an urban tourism destination, it can also be seen as an eco-tourism site because cycling is integral to the tourism destination image and place-making of the city (Nilsson 2019). Elsewhere, rural tourism orients around beaches and coastlines (Baerenholdt et al. 2004). There is a parallel focus on local craft as a form of rural tourism entrepreneurship in places like the island of Bornholm (Prince 2017). Like Iceland, tourism has grown over the past several years, though the pace of growth is less dramatic. Visitation numbers have grown 16.9% between 2012 and 2016, with current trends suggesting
the country may receive more than 22 million tourists by 2020 (Statistics Denmark 2017; World Tourism Organization 2017). According to VisitDenmark (2016), tourism is also a major employment driver, with over 100,000 direct and indirect jobs in the sector.

In the broader context of the Kingdom of Denmark, Greenland is emerging as a niche destination as increasing numbers of travellers want to witness real-time effects of climate change. Greenlandic tourism is built on both the promise of encountering “serene, majestic” nature and the promise of the “last chance to see” endangered forms of Arctic nature and wildlife (Ren et al. 2016, p. 289). Tourism is positioned as an economic pillar for the future of Greenland and as one development pathway (along with mining and fisheries) that can be leveraged for greater autonomy from Denmark. However, as a tourism host community, Greenland faces challenges of remoteness and accessibility to tourism markets, as well as “difficulty of attracting investment, high seasonality and highly sensitive environments” (Ren et al. 2016, p. 285).

Norway. In contrast to the other cases, Norway’s tourism sector is less developed. Part of the explanation is the high cost of travel to and within Norway. Nevertheless, natural environments and outdoor recreation are important attractors for Norwegian tourism. The coastal fjord landscape of the west coast is an important tourism region that shows signs of overtourism (Oklevik et al. 2019). The Norwegian Arctic is increasingly the site of tourism travel, motivated by experiencing Europe’s “northern extremity” and the impulse to witness Arctic environments as they are radically transformed by climate change (Jacobsen 2015, p. 136). Indigenous tourism focused on traditional Sami culture is also a growing area (Olsen 2016).

The Lofoten Islands region, above the Arctic Circle where the Norwegian Sea meets the Barents Sea, is going through a localized tourism boom. There are about 180 tourism companies operating in the area “with an estimated local annual value generation of 40 million euros” (Kaltenborn et al. 2017, p. 32). Estimates are that about a million tourists visit Lofoten per year, a rural region that is “home to just 23,000 residents” (Milne 2017). The growing popularity of Lofoten as a tourism hub reflects broader trends in increasing Arctic tourism travel but is also amplified by pop culture imagery. Lofoten embodies the fictionalized
northern setting of Disney’s *Frozen* films, which is a connection regularly made in news stories about the tourism boom. Tourism is creating tensions within host communities around how tourism development should be managed, whether as an engine for economic development or for building local community wellbeing. This raises questions of whether (or how) to intervene in tourism development to discourage mass tourism, prioritize local initiatives, and protect the natural environment and heritage of the region (Lindberg et al. 2019). One response is a national promotion strategy that encourages diffusion away from the major hubs with the messaging “all of Norway, all year round” (VisitNorway 2019).

While tourism is secondary to the national Norwegian political economy, there are regional hubs where it is significant and growing. Lofoten is also significant as a place of contact and controversy between oil development and tourism development. As Kristoffersen notes, “Lofoten is the foremost symbol and icon in national politics regarding whether or not commercial drilling should be allowed in the region, due to its key role historically and culturally, and as a tourist attraction, potentially becoming a World Heritage Site” (Kristoffersen 2014, p. 8). Lofoten is an important site of contact between tourism and oil development that we explore in the remainder of the book.

Responses to Climate Change in the North Atlantic

As noted in the previous chapter, global climate change is an important meta-context of the oil-tourism interface. Ongoing and expected ecological impacts of climate change across the North Atlantic will affect the political economy of oil extraction and eco-tourism. Melting sea ice is opening northern frontier regions for potential natural resource exploration in Norway, Iceland, and Greenland (Bridge and le Billon 2013; Shadian 2014). In Newfoundland and Labrador, changes to sea ice lead some to predict fewer lost operating days in the oil sector due to sea ice and icebergs. Climate change is already having significant ecological impacts on northern and Arctic landscapes, including shifting vegetation
ranges and wildlife habitat, melting sea ice and permafrost (Ren et al. 2016). Sea level rise, coastal erosion, flooding, and increasingly severe storms are also among the regional impacts of climate change (Wejs et al. 2014). Furthermore, global social and political responses to climate change have the capacity to reconfigure tourism practices and energy systems in the coming decades, with potentially significant impacts for host communities that rely on these development pathways. As such, it is worth considering how our case study regions are responding to the challenges of climate change.

Table 2.3 presents indicators of climate change policy and performance for comparison of these five regions. Iceland has the largest share of renewable energy as a percentage of final energy consumption, while also having low per capita carbon emissions, though its most

Region	Renewable sources, % of total final energy consumption (2015)a	Carbon dioxide emissions per capita in tonnes (2014)b	Climate Change Performance Index (CCPI), Overall Performance Index (2019)c	Climate Change Performance Index (CCPI), Ranking (2019)d	Climate Change Performance Index (CCPI), 10-year Ranking Trend (2010–2019)e
Denmark	33.2	5.9	61.96	15	
Iceland	77.0	6.1	52.55 (2017)f	39 (2017)	
Norway	57.8	9.3	62.80	12	
Newfoundland and Labrador (Canada)	22.0	15.1	34.26 (Canada)	54	
Scotland (UK)	8.7 (UK)	6.5 (UK)	65.92 (UK)	8	

aWorld Development Indicators database, World Bank, 2019
bWorld Development Indicators database, World Bank, 2019
cClimate Change Performance Index, 2019
dClimate Change Performance Index, 2019
eClimate Change Performance Index, 2019
fFor methodological reasons, Iceland is not included in the 2019 CCPI
recent international Climate Change Performance Index (CCPI) ranking is 39. The United Kingdom, Norway, and Denmark rank highly on the CCPI, with relatively low per capita carbon emissions among the five regions. The national UK ranking masks regional variation, with Scotland often serving as a climate leader within the United Kingdom. Due to recent policy shifts, Denmark dropped in the climate change performance index rankings, whereas it had previously been among the top-ranked countries. While wind power is scaling up in Denmark, renewable energy development, as a percentage of energy consumption, lags beyond Iceland and Norway. Finally, Canada continues to rank low on the CCPI, with the highest per capita carbon footprint, as well as a lower percentage of renewable energy than the other regions except the United Kingdom. The Canadian ranking also masks regional variation. Newfoundland and Labrador is a laggard relative to other provinces with proactive climate change orientations, such as British Columbia or Quebec. Taking these measures together, the main divide is between Newfoundland and Labrador (Canada), as a poor performer, versus the other four case study regions.

Denmark. Environmental concerns were integrated into policy “unusually fast in comparison with other countries,” partly in response to early waves of mobilization by the Danish environmental movement (Wettergren and Soneryd 2017, p. 171; also see Vasi 2011). Denmark ranks substantially higher than other European countries on measures of environmental activism, particularly around petitioning and contributing to environmental organizations (Bozonnet 2017). The “greening” of the state is supported by high levels of public concern and political consensus on the need for climate policy, including the need to connect climate policy and domestic energy security. Lines of political debate focus on the “prominence of state involvement” and reflect urban–rural tensions in the country (Ladrech and Little 2019, p. 1024). Building on energy efficiency measures and renewable energy development, Denmark cut its CO₂ emissions by 32.6% between 1990 and 2014 (Danish Energy Agency 2014). During the same period, energy consumption in Denmark declined by 7.8%. After leading the global CCPI index for five years, it dropped to thirteenth place, which reflects the shifting climate policy orientations of the centre-right coalition
government that came to office in 2015. However, in terms of “emissions development, renewable energy and energy efficiency the country still performs within the top group” (Burck et al. 2017, p. 4). The 2019 Danish election was viewed as a “climate change election,” with a majority of Danes seeing climate change as a particularly significant issue (Henley 2019). Mette Frederiksen’s Social Democratic government set GHG reductions targets of 70% by 2030, which goes further than targets for the European Union as whole.

Denmark took an early leadership role in developing wind energy, which is “an important part of the ‘branding’ of Denmark as ‘world-leading’ in ecological modernization” (Wettergren and Soneryd 2017, p. 174). Renewable energy production doubled between 1990 and 2014 and now accounts for over 25% of total energy consumption, but over 50% of energy used for heating (Danish Energy Agency 2014). Esbjerg, which is a hub city for the oil sector, has become an important entry point for North Sea offshore wind installation. The Danish image as a green country committed to climate action and renewable energy transitions is a reason why the oil sector seems marginal in public and political discourse (Sovacool et al. 2017; Vasi 2011).

Denmark was the site of the 2009 COP 15 (Conference of the Parties) international climate change meetings. This event provoked one of the largest episodes of environmental movement mobilization around the COP meetings. Movement actors emphasized climate justice discourse, while anti-capitalist activists used digital media to critique the COP process as neoliberal greenwashing (Cassegård and Thörn 2017; Hadden 2015; Uldam and Askanius 2013). The meetings failed to produce substantial progress on international climate governance and were interpreted as a defeat in the Danish environmental movement. The aftermath of COP 15 changed the environmental movement in Denmark. Institutionalized national organizations and chapters of international organizations remained active, while smaller, grassroots, and radical groups went into abatement. As a result, Danish environmental politics saw a retrenchment to institutionalized political spheres and in-system tactics after the COP 15 mobilization (Cassegård and Thörn 2017). However, there have been recent episodes of environmental movement mobilization, such as fossil fuel divestment and anti-fracking
movements, which “call Denmark into question as a green nation, and that point to its fossil fuel dependence” (Wettergren and Soneryd 2017, p. 185).

Norway. While Denmark projects a self-image as a pro-environmental society that has embarked on the renewable energy transition, Norway is more complicated. Like Denmark, Norway ranks substantially higher than other European countries on measures of environmentalism, particularly around petitioning and contributing to environmental organizations (Bozonnet 2017). The Norwegian government proclaims its commitment to the Paris agreement goals, pursues “disruptive’ international initiatives such as divestment from coal in its pension fund,” and facilitates the electrification of car transportation (Četković and Skjærseth 2019, p. 1054). However, the oil sector is a core part of the political economy and government remains committed to oil exploration and the expansion of frontier areas in the “High North,” including into the Barents Sea and Norwegian Arctic (Kristoffersen and Dale 2014). At the same time, the Norwegian government and oil sector are scaling up investment in offshore wind development. As part of this shift, Statoil rebranded as Equinor to signal its transformation from an oil company to a more holistic energy company. A corporatist political culture with well-established relationships between government, environmental groups and fossil fuel companies has helped build a “cross-party consensus on climate change” and encouraged transitions in the energy sector (Farstad 2019, p. 1010).

Norgaard’s (2011) research captures this multifaceted, often contradictory, stance regarding climate change and oil production in Norway. She shows how everyday talk in the political and public sphere works to legitimate continuing oil development, while also acknowledging the severity of climate change. Common themes include the notion that Norway is a small country in a global system of carbon emissions and that Norway suffered a long history as an underdeveloped part of Europe prior to its oil wealth. Furthermore, there is a discourse that Norwegian oil is produced to higher environmental and social standards than oil from other countries and it is beneficial to export it into the global energy system because it can displace dirtier fossil fuels. These discourses allow Norwegians to maintain an everyday form of climate denial that
masks the tensions between espousing concern about climate change, committing to low-carbon climate policies, and continuing fossil fuel extraction.

Iceland. Iceland presents the self-image of a green society with well-developed renewable energy infrastructure based on geothermal and hydropower. Most household energy use comes from renewable energy sources. However, carbon footprints for transportation and shipping are more significant, which reflects the country’s small and diffuse population. Tourism-related air travel is also a significant contributor to the country’s carbon footprint (Huijbens 2016). However, the tourism sector’s carbon footprint gets limited attention in public or political discourse about responding to climate change, or in discussions of landscape transformations that are already occurring, most notably melting glaciers. As oil extraction off the northeast coast is still hypothetical, the fossil fuel sector does not figure into Iceland’s commitments to climate change policy and action. Instead, there are tensions between government, the energy sector, and environmental organizations around the impacts of new renewable energy infrastructure development, which potentially infringes on wilderness values that draw tourists to the country.

Scotland. Like Denmark and Norway, the United Kingdom ranks higher than average on measures of environmental participation, particularly on petitioning and contributing to environmental organizations (Bozonnet 2017). Scotland is a climate leader within the United Kingdom, with the SNP government’s Climate Change Bill setting targets to reduce or offset all GHG emissions by 2045 (BBC 2019a). A key policy is the declaration of a ban on gas and diesel cars with a 2032 target. Looking at the United Kingdom as a whole, however, the 2018 CCPI report notes that “long-term 2030 targets for emissions and renewable energy are not ambitious enough for a well-below-2°C pathway” (Burck et al. 2018, p. 4). As an oil-dependent region, Scotland is dealing with mature, post-peak oil fields in the Scottish North Sea, as well as decommissioning rigs at the end of their production cycles. Relatedly, there is talk about using depleted oil fields for carbon capture and storage to remove CO₂ from the atmosphere. Technologies for CO₂ Utilization (CCU) are also being explored, which would allow CO₂
to be “recovered and converted into commercially valuable products, including bio-oils, chemicals, fertilisers and fuels” (Scottish Government 2017, p. 35). There are also moves to rapidly scale up offshore wind production as part of a renewable energy transition. In 2019, for example, wind power capacity reached a milestone as more than enough power was produced to meet the needs for household energy consumption (BBC 2019b). As with Denmark, climate mitigation strategies are framed in terms of reducing energy consumption and carbon footprints, but also framed in terms of creating new opportunities through emerging economies and technological innovation (Oxburgh 2016).

Newfoundland and Labrador. Finally, Newfoundland and Labrador is among the Canadian provinces that are reluctant to adopt ambitious climate mitigation policies, or to support federal government efforts to reduce Canada’s climate impacts. Provincial climate change policy focuses on individual-level education and supporting community-level adaptation to changing climatic conditions. There is less evidence of climate policy that challenge the oil sector’s political economic power or that puts new investment at risk (Sodero and Stoddart 2015). In their analysis of Canadian oil sector, Carroll et al. (2018) talk about the shift from stage 1 to stage 2 forms of climate denial in the oil sector. Stage 1 denial means questioning the reality or significance of climate change, which is a stance no longer held by most of the oil sector. Instead, stage 2 denial focuses on promoting government “policies that appear as credible responses to the scientific consensus but do not harm big carbon” (Carroll et al. 2018, p. 428). The focus of Newfoundland and Labrador on education and community adaptation, which avoids challenging the political economic power of the oil sector, is a form of stage 2 denial. Furthermore, the province is the least developed among our study regions from a renewable energy transition perspective. A central part of the provincial plan to address climate change is to replace oil-based electricity generation with large-scale hydroelectric power from the Muskrat Falls project. This project is contentious because of massive cost overruns and delays. It has also been the subject of mobilization by Inuit and NunatuKavut Indigenous land protectors and their allies. Environmental justice concerns include downstream impacts of methylmercury on fish populations, which are integral to local diets, as well as fears
about infrastructure failure that could result in community flooding and displacement (Allen 2017).

Summary of the Case Studies

This chapter described facets of the political economies of our case study regions to contextualize the next three chapters on cultural dimensions, governance, and social movement strategic interaction in the oil-tourism interface. These political economy orientations speak to the relative economic power of the oil and tourism sectors across our case studies, which can translate into cultural visibility and political efficacy. Figure 2.1 visualizes our case study regions according to their oil and tourism orientations. This figure represents the relative similarities and differences among our cases as a model with two dimensions. The horizontal dimension represents low- to high-tourism orientation, and the vertical dimension represents low- to high-oil orientation. Our cases are positioned relative to one another in the resulting grid.

There are significant similarities and differences that allow for analytically meaningful comparisons across regions. In visualizing the cases this way, we locate Scotland as high-oil and high-tourism in the orientation of its political economy in relation to the other cases. Denmark and Iceland, by contrast, have relatively low-oil and high-tourism orientations in relation to the other cases. Finally, Newfoundland and Labrador and Norway have relatively high-oil and low-tourism orientations in relation to the other cases. As a qualification, our analysis excludes negative cases, or regions that have low-oil and low-tourism orientations. A comparison with negative cases is a valuable avenue for further research. With the political economic context of the different cases in mind, the next three chapters engage in a comparative analysis of the cultural, governance, and social movements dimensions of the oil-tourism interface in the North Atlantic.
Fig. 2.1 Synthesis of oil and tourism orientations of case study regions

References

Allen, V. (2017). Muskrat Falls. In A. Marland & L. Moore (Eds.), *The democracy cookbook: Recipes to renew governance in Newfoundland and Labrador* (pp. 318–320). St. John’s, NL: ISER Books.

Avango, D., Nilsson, A. E., & Roberts, P. (2013). Assessing Arctic futures: Voices, resources and governance. *The Polar Journal, 3*(2), 431–446.

Baerenholdt, J. O., Haldrup, M., Larsen, J., & Urry, J. (2004). *Performing tourist places*. Aldershot, UK: Ashgate.
Baldacchino, G. (2010). *Island enclaves: Offshoring strategies, creative governance, and subnational island jurisdictions*. Montreal and Kingston: McGill-Queen’s Press.

Baldacchino, G., Greenwood, R., & Felt, L. (Eds.). (2009). *Remote control: Governance lessons for and from small, insular, and remote regions*. St. John’s, NL: ISER Books.

Baldacchino, G., Vodden, K., & Gibson, R. (Eds.). (2015). *Place peripheral: Place-based development in rural, island and remote regions*. St. John’s, NL: ISER Books.

Barry, A. (2015). The oil archives. In A. Hannah, M. Arthu, & M. Watts (Eds.), *Subterranean estates: Life worlds of oil and gas* (pp. 95–107). Ithaca, NY: Cornell University Press.

BBC. (2019a). *Climate change: MSPs approve beefed up emissions target*. https://www.bbc.com/news/uk-scotland-49819905. Accessed 28 January 2020.

BBC. (2019b). *Scottish wind power output at record high*. https://www.bbc.com/news/uk-scotland-scotland-business-48981626. Accessed 28 January 2020.

Beatrice Offshore Windfarm. (2019). *Scotland’s largest operational offshore windfarm*. https://www.beatricewind.com/. Accessed 28 January 2020.

Beck, U., & Levy, D. (2013). Cosmopolitanized nations: Re-imagining collectivity in world risk society. *Theory, Culture & Society, 30*(2), 3–31.

Benediktsson, K., Lund, K. A., & Huijbens, E. (2011). Inspired by eruptions? Eyjafjallajökull and Icelandic tourism. *Mobilities, 6*(1), 77–84.

Bozonnet, J.-P. (2017). Explaining environmental activism by national cultures: The hypothesis of hysteresis. In A. Telesiene & M. Gross (Eds.), *Green European: Environmental behaviour and attitudes in Europe in a historical and cross-cultural comparative perspective* (pp. 91–110). London: Routledge.

Brandal, N., & Bratberg, Ø. (2015). Cousins divided? Development in and of political institutions in Scotland and Norway since 1814. In J. Bryden, O. Brox, & L. Riddoch (Eds.), *Northern neighbours: Scotland and Norway since 1800* (pp. 42–62). Edinburgh, UK: Edinburgh University Press.

Bridge, G., & le Billon, P. (2013). *Oil*. Cambridge, UK: Polity.

Brinklow, L., & Gibson, R. (Eds.). (2017). *From black horses to white steeds: Building community resilience*. Charlottetown, PEI: Island Studies Press at the University of Prince Edward Island.

Bryden, J. (2015). The development of industry and North Sea oil in Scotland and Norway. In J. Bryden, O. Brox, & L. Riddoch (Eds.), *Northern neighbours: Scotland and Norway since 1800* (pp. 123–153). Edinburgh, UK: Edinburgh University Press.
Bryden, J., Brox, O., & Riddoch, L. (Eds.) (2015a). *Northern neighbours: Scotland and Norway since 1800*. Edinburgh, UK: Edinburgh University Press.

Bryden, J., Opsahl, E., Brox, O., & Riddoch, L. (2015b). Introduction. In J. Bryden, O. Brox, & L. Riddoch (Eds.), *Northern neighbours: Scotland and Norway since 1800* (pp. 1–26). Edinburgh, UK: Edinburgh University Press.

Burck, J., Marten, F., Bals, C., Höhne, N., Frisch, C., Clement, N., et al. (2018). *The climate change performance index: Results 2018*. Bonn, Germany: Germanwatch, Climate Action Network International and NewClimate Institute.

Burck, J., Marten, F., Bals, C., Uhlich, T., Höhne, N., Gonzales, S., et al. (2017). *Climate Change Performance Index 2017*. Bonn, Germany: Germanwatch Nord–Süd Initiative.

Canada-Newfoundland and Labrador Offshore Petroleum Board. (2014). *Western Newfoundland and Labrador offshore area Strategic Environmental Assessment update: Final report*. St. John’s, NL: Canada-Newfoundland and Labrador Offshore Petroleum Board.

Carroll, W., Graham, N., Lang, M. K., Yunker, Z., & McCartney, K. D. (2018). The corporate elite and the architecture of climate change denial: A network analysis of carbon capital’s reach into civil society. *Canadian Review of Sociology, 55*(3), 425–450.

Cassegård, C., & Thörn, H. (2017). Climate justice, equity and movement mobilization. In C. Cassegard, L. Soneryd, H. Thorn, & A. Wettergren (Eds.), *Climate action in a globalizing world: Comparative perspectives on environmental movements in the global north* (pp. 33–56). New York: Routledge.

CBC. (2012). *Hebron megaproject gets qualified endorsement: Helicopter safety emphasized in report; doubt given to labour projections*. CBC. http://www.cbc.ca/news/business/story/2012/02/28/nl-hebron-review-commission-ayre-228.html?cmp=rss. Accessed 2 July 2014.

CBC. (2017). *Hibernia celebrates 20 years since first oil*. CBC. http://www.cbc.ca/news/canada/newfoundland-labrador/20th-anniversary-of-hibernia-1.4406683. Accessed 19 November 2017.

CBC. (2019). *12,000 L of oil spilled into ocean off Newfoundland, causing oil rig shutdown*. https://www.cbc.ca/news/canada/newfoundland-labrador/hibernia-oil-spill-production-stopped-1.5216108. Accessed 27 January 2020.

Četković, S., & Skjærseth, J. B. (2019). Creative and disruptive elements in Norway’s climate policy mix: The small-state perspective. *Environmental Politics, 28*(6), 1039–1060.
Cirić, J. (2018). Two companies halt oil exploration in Icelandic waters. *Iceland Review*. http://icelandreview.com/news/2018/01/23/two-companies-halt-oil-exploration-icelandic-waters. Accessed 15 August 2018.

Cunningham, P. A., Huijbens, E. H., & Wearing, S. L. (2012). From whaling to whale watching: Examining sustainability and cultural rhetoric. *Journal of Sustainable Tourism*, 20(1), 143–161.

Danish Energy Agency. (2014). *Energy statistics 2014: Data, tables, statistics and maps*. Copenhagen, Denmark: Danish Energy Agency.

Dodd, S. (2012). *The Ocean Ranger: Remaking the promise of oil*. Halifax, NS: Fernwood.

Edensor, T. (2002). *National identity, popular culture and everyday life*. Oxford, UK: Berg.

Edvardsdóttir, A. G. (2016). *The interaction of the knowledge society and rural development in Iceland and Scotland*. (PhD). University of Iceland, Reykjavik, Iceland.

Environment Canada. (2009). *National inventory report 1990–2007: Greenhouse gas sources and sinks in Canada*. http://www.ec.gc.ca/Publications/B77E6264-D0E3-45B5-BE56-5A395C0B7653%5CNationalInventoryReport19902007GreenhouseGasSourcesAndSinksInCanada.pdf. Accessed 5 March 2012.

Equinor. (2019). *Johan Sverdrup is now open. That’s good news for our investors, for Norway—and for emissions*. https://www.equinor.com/en/what-we-do/johan-sverdrup.html. Accessed 28 January 2020.

Farstad, F. M. (2019). Does size matter? Comparing the party politics of climate change in Australia and Norway. *Environmental Politics*, 28(6), 997–1016.

Felt, L. (2009). A tale of two towns: Municipal agency and socio-economic development in Akureyri, Iceland, and Corner Brook, Newfoundland. In G. Baldacchino, R. Greenwood, & L. Felt (Eds.), *Remote control: Governance lessons for and from small, insular, and remote regions* (pp. 148–169). St. John’s, NL: ISER Books.

Freudenburg, W. R., & Gramling, R. (2011). *Blowout in the Gulf: The BP oil spill disaster and the future of energy in America*. Cambridge, MA: MIT Press.

George, E. W., Mair, H., & Reid, D. G. (2009). *Rural tourism development: Localism and cultural change*. Bristol, UK: Channel View Publications.

Globe. (2011). *An analysis of the economic development opportunities associated with the Green Economy in Newfoundland and Labrador*. http://www.exec.gov.nl.ca/exec/cceeet/publications/Green_Economy_NL.pdf. Accessed 2 July 2014.
Government of Newfoundland and Labrador. (2009). *Uncommon potential: A vision for Newfoundland and Labrador tourism*. http://www.tcr.gov.nl.ca/tcr/publications/2009/Vision_2020.pdf. Accessed 9 January 2012.

Government of Newfoundland and Labrador. (2012). *Oil and Gas*. http://www.economics.gov.nl.ca/E2012/OilAndGas.pdf. Accessed 2 July 2014.

Hadden, J. (2015). *Networks in contention*. New York: Cambridge University Press.

Hall, C. M., Müller, D. K., & Saarinen, J. (2009). *Nordic tourism: Issues and cases*. Bristol, UK: Channel View Publications.

Hall, P. A., & Soskice, D. (2001). An introduction to varieties of capitalism. In P. A. Hall & D. Soskice (Eds.), *Varieties of capitalism: The institutional foundations of comparative advantage* (pp. 1–70). Oxford, UK: Oxford University Press.

Hannigan, J. (2017). Toward a sociology of oceans. *Canadian Review of Sociology, 54*(1), 8–27.

Hansen, K. G. (2014). Greenlandic perspectives on offshore oil and gas activities: An illustration of changes in legitimacy related to democratic decision processes. *Journal of Rural and Community Development, 9*(1), 134–154.

Henley, J. (2019). *Centre-left Social Democrats victorious in Denmark elections*. https://www.theguardian.com/world/2019/jun/05/centre-left-social-democrats-set-to-win-in-denmark-elections. Accessed 19 November 2019.

Holzer, B. (2010). *Moralizing the corporation: Transnational activism and corporate accountability*. Cheltenham, UK: Edward Elgar Publishing.

Hughes, G. (2014). The energy sector in Scotland’s future. *Oxford Review of Economic Policy, 30*(2), 374–391.

Huijbens, E. H. (2016). Topological encounters: Marketing landscapes for tourists. In G. T. Jóhannesson, R. van der Duim, & M. C. Ren (Eds.), *Tourism encounters and controversies: Ontological politics of tourism development* (pp. 201–218). London: Routledge.

Huijbens, E. H., & Jóhannesson, G. T. (2019). Tending to destinations: Conceptualising tourism’s transformative capacities. *Tourist Studies, 19*(3), 279–294.

Jacobsen, J. K. S. (2015). North Cape: In the land of the midnight sun. In H. Nieves & S. R. Roseman (Eds.), *The tourism imaginary and pilgrimages to the edges of the world* (pp. 120–140). Bristol, UK: Channel View Publications.

Jennings, A. (2015). The old rock’s rockin’: A cultural anatomy of Shetland. In K. Vodden, R. Gibson, & G. Baldacchino (Eds.), *Place peripheral: Place-based development in rural, island, and remote regions* (pp. 156–179). St. John’s, NL: ISER Books.
Kaltenborn, B. P., Linnell, J. D. C., Thomassen, J., & Lindhjem, H. (2017). Complacency or resilience? Perceptions of environmental and social change in Lofoten and Vesterålen in northern Norway. Ocean and Coastal Management, 138, 29–37.

Kinsella, S. (2018). Husky ‘deeply sorry’ for oil spill last month off Newfoundland. https://www.cbc.ca/news/canada/newfoundland-labrador/husky-sorry-for-spill-changing-policy-1.4939450. Accessed 27 January 2020.

Kristoffersen, B. (2014). Drilling oil into Arctic minds? State security, industry consensus and local contestation. (PhD). Tromsø, Norway: University of Tromsø.

Kristoffersen, B., & Dale, B. (2014). Post petroleum security in Lofoten: How identity matters. Arctic Review, 5(2), 201–226.

Ladrech, R., & Little, C. (2019). Drivers of political parties’ climate policy preferences: Lessons from Denmark and Ireland. Environmental Politics, 28(6), 1017–1038.

Larsen, E. R. (2006). Escaping the resource curse and the Dutch disease? When and why Norway caught up with and forged ahead of its neighbors. American Journal of Economics and Sociology, 65(3), 605–640.

Lijphart, A. (2012). Patterns of democracy: Government forms and performance in thirty-six countries (2nd ed.). New Haven, CT: Yale University Press.

Lindberg, F., Fitchett, J., & Martin, D. (2019). Investigating sustainable tourism heterogeneity: Competing orders of worth among stakeholders of a Nordic destination. Journal of Sustainable Tourism, 27(8), 1277–1294.

Locke, W. (2011). Newfoundland and Labrador, from austerity to prosperity—and back to austerity (?): Planning to avoid a financial crisis. Newfoundland Quarterly, 104(2), 39–41.

Longo, S. B., & Clark, B. (2016). An ocean of troubles: Advancing marine sociology. Social Problems, 63(4), 463–479.

Lund, K. A., Kjartansdóttir, K., & Loftsdóttir, K. (2018). “Puffin love”: Performing and creating Arctic landscapes in Iceland through souvenirs. Tourist Studies, 18(2), 142–158.

Lund, K. A., Loftsdóttir, K., & Leonard, M. (2017). More than a stopover: Analysing the postcolonial image of Iceland as a gateway destination. Tourist Studies, 17(2), 144–163.

Milne, R. (2016). DONG energy’s debut sparks outrage in Denmark over Goldman windfall. The Financial Times. https://www.ft.com/content/327d093e-2cd1-11e6-bf8d-26294ad519fc. Accessed 18 June 2018.
Milne, R. (2017). Oil and the battle for Norway’s soul. *The Financial Times*. https://www.ft.com/content/c2dad93c-7192-11e7-aca6-c6bd07df1a3c. Accessed 17 April 2018.

Nilsson, J. H. (2019). Urban bicycle tourism: Path dependencies and innovation inGreaterCopenhagen. *Journal of Sustainable Tourism, 27*(11), 1648–1662.

Norgaard, K. M. (2011). *Living in denial: Climate change, emotions, and everyday life*. Cambridge, MA: MIT Press.

Oklevik, O., Gössling, S., Hall, C. M., Jacobsen, J. K. S., Grøtte, I. P., & McCabe, S. (2019). Overtourism, optimisation, and destination performance indicators: A case study of activities in Fjord Norway. *Journal of Sustainable Tourism, 27*(12), 1804–1824.

Óladóttir, O. P. (2017). *Tourism in Iceland in figures*. Reykjavik: The Icelandic Tourist Board.

Olsen, L. S. (2016). Sami tourism in destination development: Conflict and collaboration. *Polar Geography, 39*(3), 179–195.

Ommer, R. E. (2007). *Coasts under stress: Restructuring and social-ecological health*. Montreal: McGill-Queen’s University Press.

Ounanian, K. (2019). Not a ‘museum town’: Discussions of authenticity in coastal Denmark. *Journal of Tourism and Cultural Change, 17*(3), 285–305.

Overton, J. (1996). *Making a world of difference: Essays on tourism, culture and development in Newfoundland*. St. John’s, NL: ISER Books.

Oxburgh, R. (2016). *Lowest cost decarbonisation for the UK: The critical role of CCS*. Report to the Secretary of State for Business, Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS). http://www.ccsassociation.org/news-and-events/reports-and-publications/parliamentary-advisory-group-on-ccs-report/. Accessed 4 June 2018.

Prince, S. (2017). Craft-art in the Danish countryside: Reconciling a lifestyle, livelihood and artistic career through rural tourism. *Journal of Tourism and Cultural Change, 15*(4), 339–358.

Quartz + Co. (2012). *The Danish oil and gas sector’s development and social impact (1992–2022)*. Copenhagen: Quartz & Co.

Ramos, H. (2008). Opportunity for whom? Political opportunity and critical events in Canadian aboriginal mobilization, 1951–2000. *Social Forces, 87*(2), 795–823.

Ren, C. B., Bjørst, L. R., & Dredge, D. (2016). Composing Greenlandic tourism futures: An integrated political ecology and actor-network theory approach. In M. Mostafanezhad, R. Norum, & E. J. Shelton, & A.
Thompson-Carr (Eds.), *Political ecology of tourism: Community, power and the environment* (pp. 284–301). London: Routledge.

Roberts, T. (2019). *Near-record investment expected as 'bow wave' of activity heads for Newfoundland offshore*. https://www.cbc.ca/news/canada/newfoundland-labrador/nalcor-noia-exploration-investments-1.5316369. Accessed 27 January 2020.

Scottish Government. (2017). *Oil and gas production statistics 2016–17*. Edinburgh: The Scottish Government.

Scottish Government. (2018). *First Minister’s speech at Scottish Tourism Alliance*. https://www.gov.scot/publications/first-ministers-speech-at-scottish-tourism-alliance/. Accessed 28 January 2020.

Shadian, J. M. (2014). *The politics of Arctic sovereignty: Oil, ice, and Inuit governance*. London: Routledge.

Sinclair, P. R. (2011). *Energy in Canada*. Don Mills, ON: Oxford University Press.

Smith, J. R. (2016). *When petro-capitalism comes knocking: Community interpretations and responses to the Gros Morne fracking controversy* (MA). St. John's, NL: Memorial University of Newfoundland.

Sodero, S., & Stoddart, M. C. J. (2015). A typology of diversion: Legitimating discourses of tourism attraction, oil extraction and climate action in Newfoundland and Labrador. *Environmental Sociology, 1*(1), 59–68.

Soholt, S., Stenbacka, S., & Nørgaard, H. (2018). Conditioned receptiveness: Nordic rural elite perceptions of immigrant contributions to local resilience. *Journal of Rural Studies, 64*, 220–229.

Sovacool, B. K., Burke, M., Baker, L., Kotiklapudi, C. K., & Wlokas, H. (2017). New frontiers and conceptual frameworks for energy justice. *Energy Policy, 105*, 677–691.

Statistics Denmark. (2017). *Overnight stay by type of overnight accommodations, region, nationality of the guest, and period*. http://www.statbank.dk/TURIST. Accessed 11 November 2017.

Statistics Iceland. (2019). *Tourism short-term indicators in July*. https://www.statice.is/publications/news-archive/tourism/tourism-short-term-indicators-in-july/. Accessed 22 January 2020.

Stoddart, M. C. J., & Graham, P. (2016). Nature, history, and culture as tourism attractors: The double translation of insider and outsider media. *Nature and Culture, 11*(1), 22–43.

Stoddart, M. C. J., & Sodero, S. (2015). From fisheries decline to tourism destination: Mass media, tourism mobility, and the Newfoundland coastal environment. *Mobilities, 10*(3), 445–465.
Thorpe, H. (2012). Transnational mobilities in snowboarding culture: Travel, tourism and lifestyle migration. *Mobilities, 7*(2), 317–345.

Uldam, J., & Askanius, T. (2013). Calling for confrontational action in online social media: Video activism as auto-communication. In B. Cammaerts, A. Mattoni, & P. McCurdy (Eds.), *Mediation and protest movements* (pp. 159–178). Bristol, UK: Intellect.

Urry, J. (2013). *Societies beyond oil: Oil dregs and social futures*. London: Zed Books.

Urry, J., & Larsen, J. (2011). *The tourist gaze 3.0*. Los Angeles: Sage.

Vasi, I. B. (2011). *Winds of change: The environmental movement and the global development of the wind energy industry*. New York: Oxford University Press.

VisitDenmark. (2016). *Tourism in Denmark*. http://www.visitdenmark.dk/sites/default/files/vdk_images/PDF-and-other-files/Analyser/2016/turismen_i_danmark_-_engelsk.pdf. Accessed 11 November 2017.

VisitNorway. (2019). *The joy of different seasons*. https://www.visitnorway.com/plan-your-trip/seasons-climate/. Accessed 28 January 2020.

VisitScotland. (2014). *An overview of our target segments*. Edinburgh: VisitScotland.

VisitScotland. (2016). *Tourism employment in Scotland*. Edinburgh: VisitScotland.

Wejs, A., Harvold, K., Larsen, S. V., & Saglie, I. L. (2014). Legitimacy building in weak institutional settings: Climate change adaptation at local level in Denmark and Norway. *Environmental Politics, 23*(3), 490–508.

Wettergren, Å., & Soneryd, L. (2017). Denmark: From a green economy toward a new eco-radicalism? In C. Cassegard, L. Soneryd, H. Thorn, & A. Wettergren (Eds.), *Climate action in a globalizing world: Comparative perspectives on environmental movements in the global north* (pp. 171–192). New York: Routledge.

Widener, P. (2018). Coastal people dispute offshore oil exploration: Toward a study of embedded seascapes, submersible knowledge, sacrifice, and marine justice. *Environmental Sociology, 4*(4), 405–418.

World Tourism Organization. (2017). *UNWTO Tourism Highlights* (2017th ed.). Madrid: World Tourism Organization.