COX-2 Regulates the Proliferation and Apoptosis of Activated Hepatic Stellate Cells through CDC27

Yang Hu, Nian Fu, Li Xian Chen, Jian Hua Xiao, and Xue Feng Yang

1Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan, China
2Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001 Hunan, China
3Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001 Hunan, China
4Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, 336 Dongfeng South Road, Hengyang, 421002 Hunan Province, China

Correspondence should be addressed to Jian Hua Xiao; jhxiao223@163.com and Xue Feng Yang; yxf9988@126.com

Received 15 March 2021; Revised 20 March 2021; Accepted 1 April 2021; Published 28 April 2021

Copyright © 2021 Yang Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cyclooxygenase-2 (COX-2) is an important rate-limiting enzyme in the synthesis of prostaglandins (PGs). COX-2 has been shown to be involved in the occurrence and development of hepatic fibrosis by regulating the proliferation and apoptosis of hepatic stellate cells (HSCs) in previous studies. The aims of the study are to study the mechanism of how COX-2 regulates the proliferation and apoptosis of HSCs and to provide new targets for the prevention and treatment of hepatic fibrosis. A short hairpin RNA targeting COX-2 was constructed, and the changes in proliferation and apoptosis of liver tissue cells and HSCs were observed, respectively. COX-2-shRNA-1 significantly suppressed the proliferation of HSCs in vivo. Moreover, knockdown of COX-2 significantly suppressed cell proliferation and accelerated cell cycle arrest and apoptosis in vitro. Among those differential genes related to cell proliferation and apoptosis, CDC27 and Sh3kbp1 were upregulated, but Plcd4 was suppressed. Mechanistically, the influence of COX-2 on HSCs partly depends on upregulating CDC27. Our results demonstrated that COX-2 regulates the proliferation and apoptosis of activated hepatic stellate cells through the CDC27 pathway. This study contributes to our understanding of the effect of COX-2 for the treatment of hepatic fibrosis.

1. Introduction

Hepatic fibrosis, a common pathophysiological process in many chronic liver diseases, is manifested by the excessive and abnormal deposition of extracellular matrix components in the liver. It is the necessary stage for the development of chronic liver disease to cirrhosis. It is now believed that liver fibrosis may be reversed to normal, while cirrhosis is not. However, there is no effective method for the treatment of liver fibrosis.

Cyclooxygenase-2 (COX-2) is an important rate-limiting enzyme in the synthesis of prostaglandin (PGs). COX-2 is hardly expressed in normal tissues, but can be upregulated when stimulated by various factors. Extensive research has shown that COX-2 participates in some pathological processes, such as cell malignant transformation, inflammatory response, and catalyzing the biosynthesis of arachidonic acid (AA) to affect disease processes. Research in the area of hepatic fibrosis showed that COX-2 is an important molecule that affects the development of it. Celecoxib, a COX-2 inhibitor, suppresses the hepatic fibrosis induced by bile duct ligation (BDL) and thioacetamide (TAA) [1]. Other researchers used CCL4 to replicate the model of hepatic fibrosis and found that COX-2 knockout mice had less necrosis, degeneration, and connective tissue hyperplasia than the wild-type mice [2]. These mice also had lower expression of α-smooth muscle actin (α-SMA) in the liver tissue and less serum hyaluronic acid (HA), collagen IV (IV-C), and collagen III (PC III). Short hairpin RNA was used to silence COX-2 in nonalcoholic fatty liver disease (NAFLD) rats, and the liver tissue steatosis, inflammatory degree, and hepatic fibrosis were significantly reduced in COX-2 silencing rats [3].
CDC27 is a core subunit of anaphase-promoting complex/cyclosome (APC/C). APC/C is a type of E3 ligase complex that regulates chromosome segregation and mitotic exit [4]. APC/C reportedly participates in the TGF-β signaling pathway, and TGF-β activates CDC27, which promotes liver fibrosis via the TGF-β pathway in both HSC and hepatocyte [5]. Recent evidence suggests that COX-2 may be involved in the development of hepatic fibrosis by regulating the proliferation and apoptosis of hepatic stellate cells (HSCs). SC-236, a selective COX-2 inhibitor, had an antihepatic fibrosis effect and significantly promoted the apoptosis and growth inhibition of isolated cultured HSCs [6]. Celecoxib, another COX-2 inhibitor, has been reported to suppress the formation of hepatic fibrosis in rats by inhibiting the proliferation of platelet-derived growth factor- (PDGF-) induced HSCs and promoting the apoptosis of these HSCs [1].

However, the mechanism of how COX-2 regulates the proliferation and apoptosis of HSCs remains unclear. Therefore, this study silenced the expression of COX-2 in hepatocytes and hepatic stellate cells in liver fibrosis rats by using short hairpin RNA. Then the changes of proliferation and apoptosis of HSCs and related gene expression profiles after COX-2 silencing were observed. Based on our experimental results, we found that COX-2 regulated the proliferation and apoptosis of activated hepatic stellate cells through the CDC27 pathway.

2. Materials and Methods

2.1. Animal Model.

48 male SD rats (Nanjing Junke Bioengineering Co., Ltd.) were randomly divided into four groups by body weight: control group (control), liver fibrosis model group (model), null plasmid control group (sh-NC), and COX-2-shRNA-1 group (COX-2-shRNA-1). Except for the control group, the other 3 groups were fed a high-fat diet for 12 weeks after a week of adaptive feeding. Rats in the COX-2-shRNA-1 group and the sh-NC groups were injected with adenovirus plasmids and adenovirus no-load physique grains (PBS dilution) through the caudal vein from the beginning of the high-fat diet, respectively. The dose and time of injection were 1×10^9 pfu/each and once weekly. Rats in the control group and the model group were given an equal volume of PBS through the caudal vein. After 12 weeks of rearing, the rats were sacrificed by caesarean section to take 0.5~1.5 g of the left lateral lobe of the rat liver and immediately put it into ice-cold William E medium filled with a mixed gas of 95% oxygen and 5% CO for subsequent experiments. This experiment had been approved by the Animal Management Committee of our hospital.

2.2. Reverse Transcription-PCR.

Reverse transcription-PCR (RT-PCR) was used to detect the mRNA expression of COX-2, α-SMA, CDC27, Sh3kbp1, Cdc27, Serpinb2, Dusp1, Dusp6, TP53, Cxcl10, Plcd4, GAPDH, and COX-2-shRNA-1 group (COX-2-shRNA-1). Except for the control group, the other 3 groups were fed a high-fat diet for 12 weeks after a week of adaptive feeding. Rats in the COX-2-shRNA-1 group and the sh-NC groups were injected with adenovirus plasmids and adenovirus no-load physiological grains (PBS dilution) through the caudal vein from the beginning of the high-fat diet, respectively. The dose and time of injection were 1×10^9 pfu/each and once weekly. Rats in the control group and the model group were given an equal volume of PBS through the caudal vein. After 12 weeks of rearing, the rats were sacrificed by caesarean section to take 0.5~1.5 g of the left lateral lobe of the rat liver and immediately put it into ice-cold William E medium filled with a mixed gas of 95% oxygen and 5% CO for subsequent experiments. This experiment had been approved by the Animal Management Committee of our hospital.

2.2.1. RNA Isolation.

Total RNA from each liver sample and HSCs was extracted by Trizol reagent (Generay Biotech, China), and cDNA was synthesized by using Revert Aid First Strand cDNA synthesis Kit (Ferramentas, Germany), according to the manufacturer’s instructions. Relative gene expression was quantified by real-time PCR using ABI 7500 detection system. Band intensity was measured by a densitometer and normalized for comparison. The expression level of gene was analyzed using the equation $2^{-\Delta\Delta CT}$ method, where $\Delta\Delta CT = CT_{\text{target gene, experimental group}} - CT_{\text{target gene, control group}} - (CT_{\text{endogenous control, experimental group}} - CT_{\text{endogenous control, control group}})$.

2.2.2. PCR Primer Design.

The sequences and products of amplified gene primer are shown in Table 1.

Gene	Primer	Sequences	Length (bp)
COX-2	Forward	ATCTAGTCTGGAGTGGAGG	420
	Reverse	AATGATACCGCAGACTG	
α-SMA	Forward	TGTGCTGGACCTCTGGAGATG	292
	Reverse	GATCACCTGCGACATCGGAGG	
Serpinb2	Forward	GTAGATGTGGAAGCGAGGG	142
	Reverse	GTATGGTGGCGTGTAAGGG	
Cdc27	Forward	ACTGGCGACCTGTTACTA	359
	Reverse	CTGGCTTCTCCACTCTATT	
Sh3kbp1	Forward	AGAAATGAGACACAGGAGG	271
	Reverse	TGTGTTTGTATGACAGGAGG	
Dusp1	Forward	TGTGTTTGTATGACAGGAGG	171
	Reverse	TGGAGACAGGGAAGATGGAAG	
Dusp6	Forward	CAGGCTGACAGTTGCTTTAC	215
	Reverse	AGACATTCTGTTGGAGG	
TP53	Forward	GAGGTGCAAAGAGAGCAGT	134
	Reverse	CTCATTGAGCCTTCGGAACA	
Cxcl10	Forward	TTCCTGAACTCTATCTTG	170
	Reverse	TCTTCTTCTTCATTGTGGG	
Plcd4	Forward	TTGTGGCAACATTAGCAG	438
	Reverse	GACAACAGGGCGAGTAG	
GAPDH	Forward	TATCGGAGCCTGGTTAC	852
	Reverse	GCATCAAAGTGGAGAAT	

Table 1: The sequences and products of amplified gene primer.
were measured at the wavelength of 490 nm to realized with dimethyl sulfoxide. Optical density (OD) values remaining MTT solution was removed, and cells were soluble at basal medium at 1:10 ratio. After 4-hour incubation, the 5 mg/ml MTT solution (in PBS) was added into the Then, 5 mg/ml MTT solution (in PBS) was added into the Cells were treated for 24 h, 48 h, and 72 h. 2.6. MTT Assay. fluorescent protein in cells to evaluate the fluorescent protein in cells to evaluate the fluorescence density. fluorescence density.

2.2. Immunohistochemistry. Liver tissues were fixed in 4% formaldehyde solution for 3 to 5 days. Then, tissues were removed from the fixative solution and trimmed to an appropriate shape and thickness. Tissues were dehydrated, transparented, and embedded in wax, then dewaxed with xylene and rehydrated with gradient alcohol. Three of the most important steps were blocking and inactivating endogenous peroxidase and performing antigen retrieval. Primary antibodies anti COX-2 and α-SMA were used and incubated overnight in a refrigerator at 4°C (PBS buffer solution instead of primary antibody as a negative control). The samples were transferred to room temperature and equilibrated for 30 minutes and rinsed with PBS for 3 x 5 minutes before adding a secondary antibody. The secondary antibody was incubated at 37°C for 15 minutes and rinsed with PBS for 3 x 5 minutes. DAB staining was used.

2.4. Culture of HSC Cell Lines. HSC cell lines (HSC-T6) were obtained from the American Type Culture Collection (ATCC) and were cultured at 37°C with 5% CO2 in a cell incubator. Cells were cultured in DMEM medium (Gibco, USA) supplemented with 10% fetal bovine serum (FBS) plus 1% 100 μg/ml penicillin/streptomycin. Cells were seeded in 6-well plates and grown to reach 70% confluence before transfection. For transfecting cells, cells were transfected with different plasmids using FuGENE HD Transfection reagent (Roche, Switzerland) following the manual instruction. Then, transfected cells were harvested for molecular assays.

2.5. Cell Transfection. shRNA targeting COX-2 (COX-2-shRNA) or CDC27 (sh-CDC27) were synthesized by Win Run Biotechnology Co, Ltd. (Changsha, China). The applied shRNA sequences for COX-2 were as follows: COX-shRNA-1, 5′-CCTCGTCCAGATGCTATCTTT-3′; COX-shRNA-2, 5′-AGTTCCAGTACAGCAACCGCATTGCTCT-3′; and COX-shRNA-3, 5′-GACACCTTCAACATTGAGAACCGAGGTA-3′. The applied shRNA sequences targeting CDC27 were 5′-CCGGGCGCTATAACAGTGACTTGATTC TGAGAATCAAGTCAACTGTTATAGGCTTTTTTG-3′. According to the manufacturer’s protocol, HSC-T6 cells (5 x 10^5) were seeded in 6-well plates, incubated for 24 h, and then 200 ng/ml specific shRNA or negative control (NC) was transfected into the cells by using Lipofectamine®2000 (Invitrogen; USA). Effects of the shRNA were evaluated by western blotting and RT-PCR. A fluorescence microscope was used to observe the expression of green fluorescent protein in cells to evaluate the fluorescence density.

2.6. MTT Assay. Cells were treated for 24 h, 48 h, and 72 h. Then, 5 mg/ml MTT solution (in PBS) was added into the basal medium at 1:10 ratio. After 4-hour incubation, the remaining MTT solution was removed, and cells were solubilized with dimethyl sulfoxide. Optical density (OD) values were measured at the wavelength of 490 nm to reflect cell viability: cell proliferation rate = (experimental group OD – control group OD)/(NC group OD – control group OD).

2.7. Flow Cytometry Assay. HSC-T6 cells were harvested after 48 h posttransfection. The culture medium was then changed into serum-free Hank’s balanced salt solution. Then, cells were rinsed in pre-cold PBS. Fluorescein isothiocyanate-(FITC-) conjugated Annexin V and propidium iodine (PI) staining buffer were sequentially added. Cell apoptosis was then measured on a flow cytometry (BD, USA).

2.8. Cell Cycle Assay. Cell cycle of HSC-T6 cells was monitored by flow cytometry. After 48 h posttransfection, all groups of HSC-T6 cells were digested by trypsin and were washed in precold PBS. Cells were fixed by 70% cold ethanol overnight and were resuspended in 100 μg/ml RNase A in PBS for 30 min incubation at 37°C. Cell nuclei were stained by 50 μg/ml PI for 30 min. Cell cycle was then measured on flow cytometry using fluorescent-assisted cell sorting (FACS).

2.9. DNA Microarray Assay and Data Analysis. Microarray-based oligonucleotide hybridization approach was used to quantify expression levels of target gene [4]. In brief, total RNA was obtained as mentioned above. Then, the obtained sample RNA was labeled by fluorescence and turned into DNA. The labeled DNA was dissolved in 80 μl hybridization solution (3× SSC, 0.2% SDS, 5× Denhart’s, and 25% formamide) and hybridized at 42°C overnight. After the hybridization is completed, it was first washed in a liquid containing 0.2% SDS and 2× SSC at 42°C for 5 min and then washed in a 0.2× SSC medium for 5 min in room temperature. After the slide is dried, it can be used for scanning. LuxScan 3.0 software (CapitalBio Corp., China) was used firstly to transform images into digital signals. Linear correction across chips was performed based on global mean values of cy5 and cy3 signals for normalization of means. All data from this experiment can be divided into three groups: (1) all data include the whole signal data set containing those with or without differential expressions, and ratio values were defined after Lowess normalization. (2) Checked genes include those genes with effective signals after assay. (3) Differentially expressed genes were screened out and annotated by pathway and GO database for functional assay and statistical analysis using Capital Bio software.

2.10. Western Blotting. Western blotting was used to quantify the expression of COX-2 and CDC27. In brief, rat hepatic tissues or cultured HSCs were lysed in RIPA buffer and proteins were quantified by BCA kit. About 20~40ug protein samples were loaded onto SDS-PAGE gel for electrophoresis separation and were transferred to PVDF membrane. After blocking, the membrane was incubated with primary antibody including rabbit anti-COX-2 (#12282, CST, USA), rabbit anti-CDC27 (#9499, CST, USA), and rabbit anti-β-actin (#4970, CST, USA) overnight. On the next day, HRP-conjugated secondary antibody was added for room temperature incubation for 2 h. The membrane was then developed by ECL substrate, and images were captured by a computerized system.
2.11. Statistics. All data were presented as the mean ± standard deviation (SD). The differences between two groups were analyzed using unpaired Student’s t-test. One-way ANOVA was used for multiple groups. A statistical significance was defined when \(p < 0.05 \). All statistical analyses were performed using SPSS18.0 software.

3. Results

3.1. COX-2 Expression in Each Group after Knocking Down COX-2. To evaluate the transfection efficiency of COX-2-shRNA, the fluorescence density of cells exceeded 70-85%, as observed by the fluorescent microscope (Figure 1(a)). No
fluorescent signal was observed in the control group, indicating a successful cell transfection. All the three-specific shRNA of COX-2 downregulate the COX-2 expression after transfection of 48 hours and 72 hours, and the most significant effect was caused by COX-2-shRNA-1 (p < 0.001, Figure 1(b)). After transfection of 24 hours, COX-2 mRNA decreased in the COX-2-shRNA-1-transfected group (p < 0.05). Further analysis of the results showed that a remarkably decreased COX-2 protein expression in the COX-2-shRNA-1-transfected group at 48 h (p < 0.05) while the other two groups showed no major difference (Figure 1(c)). What emerges from the results reported here is that the construction of shRNA targeting COX-2 is successful and can be used for further experiments.

3.2. Knockdown of COX-2 Suppresses Proliferation of HSCs in Liver Tissue of Rats with Hepatic Fibrosis. To investigate the effect of COX-2 on proliferation and apoptosis of HSCs in the liver tissue of rats with hepatic fibrosis, we firstly generated a rat model in which COX-2 nanomedicine-shRNA-1 was injected. As the first evidence to support COX-2 nanomedicine for liver fibrosis, western blotting showed that the expression level of COX-2 nanomedicine in liver fibrosis model rats was significantly increased, and it can be effectively inhibited by transfection with COX-2 nanomedicine-shRNA-1 (p < 0.05, Figure 2(a)). As the indicator of HSC proliferation, the expression pattern of α-SMA showed similarity with COX-2 nanomedicine, as shown by the elevated expression in the model group and the downregulated expression in the COX-2 nanomedicine-shRNA-1 group (p < 0.05, Figure 2(b)). Detection of COX-2 nanomedicine and α-SMA in liver tissues by immunohistochemistry indicated that the expression trends of COX-2 nanomedicine and α-SMA were consistent with the results of western blotting (Figure 2(c)). Taken together, these results suggest that knockdown of COX-2 nanomedicine suppresses proliferation of HSCs in the liver tissue of rats with hepatic fibrosis.
Figure 3: Continued.
3.3. Cox-2-shRNA-1 Suppressed Proliferation and Induced Apoptosis of HSCs In Vitro. Next, we investigated the effect of COX-2 knockdown on hepatic cell proliferation and apoptosis in vitro. Cell proliferation was remarkably inhibited after transfection at 72 h as demonstrated by the MTT assay \((p < 0.05\), Figure 3(a)). Further analysis of the cell cycle revealed that knockdown of COX-2 increased the percentage of cells arresting at G1 phase (Figure 3(b)). Moreover, cell apoptotic rate in the COX-2-shRNA-1 group was found significantly higher by FACS \((p < 0.01\), Figure 3(c)). Overall, these results suggest that knockdown of COX-2 effectively suppressed hepatic stellate cell proliferation and accelerating their apoptosis.

3.4. Changes in Expression of Dynamic Genes of Hepatic Stellate Cells after Knockdown of COX-2. To further investigate the mechanism of COX-2 in regulating proliferation and apoptosis of hepatic stellate cells, gene chip assay was used to compare differential between the untreated and treated cells. Gene chip results showed that 37 genes were upregulated and 8 genes were downregulated after shRNA transfection with 48 hours (Table 2). Analysis of cells after 72 hours transfection showed that 50 genes in HSCs showed increased, while 46 genes showed decreased (Table 3). We also performed GO annotation on those differentially expressed genes, among which three proliferation-associated genes were upregulated (Il6, Csf2, and Atf3) at 48 h, but without any downregulated gene. At 72 h, three proliferation genes (CDC27, TP53, and Cxcl10) were unregulated and three genes (DUsp1, Serpinb2, and Plcd4) were downregulated. For all 8 genes associated with cell apoptosis, we found four of them (Il1b, Il6, CcI2, and Phlda3) were upregulated at 48 h and without any gene down-regulated. At 72 h, Tp53 was upregulated while Sh3kbpl, Paa15, and Plcd4 were suppressed (Tables 1–3). Those genes with significant changes were further validated by RT-PCR. As the results demonstrated that COX-2-shRNA-1 elevated CDC27, but decreased the Plcd4 gene transcripts. However, opposite trends were observed as Sh3kbp1 was upregulated, plus DUsp1 upregulated, in sharp contrast with DNA chip assay (Figures 4(a) and 4(b)). No significant change was found in other candidate genes (Figure 4(c)). In summary, COX-2-shRNA-1 modulated the cell proliferation and apoptosis related to the change in the expression of CDC27 and Plcd4.

3.5. COX-2-shRNA-1 Regulated the Proliferation and Apoptosis of HSCs through Regulating CDC27. CDC27 has been demonstrated in modulating cell proliferation [7] and apoptosis of tumor cells [8]. Therefore, we speculate that COX-2 may affect cell proliferation and apoptosis by affecting CDC27. Our conjecture was confirmed by the results that knockdown of COX-2 significantly elevated the protein level of CDC27, and this can be attenuated by knockdown of CDC27 (Figure 5(a)). The role of CDC27 on hepatic stellate cell proliferation was further investigated. Compared with the COX-2-shRNA-1 group, increased cell proliferation in the COX-2-shRNA-1+ sh-CDC27 group indicated the
Table 2: Differential gene expression profiles between COX-2-shRNA-1 and sh-NC at 48 hours posttransfection.

Oligo_id	Name	Ratio	Description
1	Rn30002068	Ppef2	Protein phosphatase
2	Rn30009092	—	Immunoresponsive gene 1
3	R001746_01	Cxcl10	Small inducible cytokine B10 precursor
4	Rn30015483	Gbp4	Similar to guanylate nucleotide-binding protein 4
5	Rn30001057	Oasl1	2'-5'-Oligoadenylate synthetase-like 1
6	Rn30004185	—	Antisense RNA overlapping MCH protein.
7	Rn30021148	Ifit3	Tetracicopeptide repeat 3
8	Rn30015485	Gbp4	Similar to guanylate nucleotide-binding protein 4
9	Rn30001055	Oasl1	2'-5'-Oligoadenylate synthetase-like 1
10	Rn30020145	—	
11	R000595_01	Cx3cl1	Chemokine (C-X3-C motif) ligand 1
12	Rn30020616	Cxcl11	Chemokine (C-X-C motif) ligand 11
13	R001188_01	Il1b	Interleukin-1 beta precursor (IL-1 beta).
14	Rn30005625	Mdm2	Similar to mdm2 gene product
15	Rn30024865	Isg12(b)	Putative ISG12(B) protein
16	Rn30016690	Isg20	Interferon-stimulated protein (predicted)
17	Rn30021722	Apol9a	
18	Rn30005624	Mdm2	Similar to mdm2 gene product
19	R003548_01	Kcnt1	Potassium channel subfamily T member 1
20	Rn30015487	Gbp5	Similar to guanylate-binding protein 5
21	R003549_01	Csf2	Colony-stimulating factor
22	R001026_01	Atf3	Cyclic AMP-dependent transcription factor ATF-3
23	Rn30004011	Scin	Scinderin
24	R001191_01	Il6	Interleukin-6
25	Rn30015486	Gbp5	Similar to guanylate-binding protein 5
26	Rn30008444	Ifi27l	Putative ISG12(a) protein
27	Rn30008951	Elov4	Similar to Elov4
28	Rn30016019	Irf7	Interferon regulatory factor 7
29	R002891_01	Cyp2d4v1	Cytochrome P450 2D18
30	Rn30001796	Mx2	Interferon-induced GTP-binding protein Mx3
31	R000644_01	Ccl2	Chemokine (C-C motif) ligand 2
32	Rn30023693	—	
33	Rn30026248	—	Macrophage inflammatory protein 2-beta precursor
34	Rn30016526	Ccdc37	Similar to C230069K22Rik protein
35	Rn30012826	Aaadac	Arylacetamide deacetylase
36	Rn30001056	Oasl2	2'-5'-Oligoadenylate synthetase-like 2
37	Rn30008269	Phlda3	Pleckstrin homology-like domain family A member 3
38	R003539_01	Mapk8ip1	C-Jun-amino-terminal kinase-interacting protein 1
39	Rn30026086	—	Ankyrin repeat domain 11
40	Rn30018744	Ptv1	Prostate tumor overexpressed gene 1
41	Rn30003851	Sh3kbp1	SH3-domain kinase binding protein 1
42	Rn30001871	—	Steroid-sensitive protein 1
43	R002280_01	Thra_v2	Thyroid hormone receptor alpha
44	R002312_01	Pla2g2a	Phospholipase A2, membrane-associated precursor
45	Rn30001610	—	Leucine-rich repeats and calponin homology (CH) domain containing 3
Oligo_id	Name	Ratio	Description
------------	-----------------------	--------	--
Rn30022454	—	6.1452	Tripartite motif-containing 65
Rn30006362	Purb	3.4474	
R001746_01	Cxcl10	2.8634	Small inducible cytokine B10 precursor
Rn30020145	—	2.652	
Rn30001057	Oasl1	2.6028	2'-5'-Oligoadenylate synthetase-like 1
Rn30005291	Cdc27	2.4796	Cell division cycle 27 homolog
Rn30006471	—	2.3552	PFTAIRE protein kinase 1
Rn30015483	Gbp4	2.3519	Similar to guanylate nucleotide-binding protein 4
Rn30021673	—	2.3392	
R000595_01	Cx3cl1	2.3344	Fractalkine precursor
Rn30001055	Oasl1	2.3048	2'-5'-Oligoadenylate synthetase-like 1
Rn30002812	Enah	2.2328	Enabled homolog
Rn30018127	—	2.2025	Diaphanos homolog
Rn30024865	isg12(b)	2.2007	Putative ISG12(B) protein
Rn30025470	—	2.1365	RNA-binding motif protein 27
Rn30025880	—	2.0773	Topoisomerase (DNA) II beta-binding protein
Rn30021148	Ifit3	2.0594	Human interferon-inducible proteins
Rn30002530	Rfc1	2.035	VIP-receptor-gene repressor protein
Rn30006955	—	1.9683	Peptidyl-prolyl cis-trans isomerase G
Rn30024339	Gbf1	1.9515	Golgi-specific brefeldin A-resistance factor 1
Rn30015485	Gbp4	1.9459	Similar to guanylate nucleotide-binding protein 4
Rn30009903	Trp53	1.8363	Cellular tumor antigen p53
Rn30010375	—		
Rn30006914	Loxl3	1.7087	Similar to lysyl oxidase-like 3
Rn30018257	Hsp90ab1	1.7047	Heat shock protein HSP 90-beta (HSP 84).
Rn30016830	Chd4	1.6964	Mi-2 autoantigen
Rn30021722	Apol9a	1.6932	
Rn30015487	Gbp5	1.6803	Similar to guanylate-binding protein 5
Rn30009073	—	1.6721	
Rn30008992	—	1.6509	WAS protein family, member 2
Rn30017948	Pamb10	1.6478	Proteasome subunit, beta type 10
Rn30005283	—	1.644	Rap1 interacting factor 1 homolog (yeast)
Rn30019336	Pogz	1.6139	Pogo transposable element with ZNF domain
Rn30023995	NIPBL	1.6115	PREDICTED: similar to delangin
Rn30021836	Olr1214	1.5675	Olfactory receptor Olr1214
R003169_01	AcsI6	1.5651	Long-chain-fatty-acid-CoA ligase 6
R004194_01	Zfp709	1.565	Zinc finger protein 14
Rn30004337	RGD1565597	1.5561	Similar to RIKEN cDNA 2210421G13
Rn30007454	—	1.5487	Complement receptor 2
Rn30003220	—	1.545	13-day embryo male testis cDNA
Rn30015924	Trub1	1.5415	TruB pseudouridine (psi) synthase homolog 1
Rn30019481	Gabp2b	1.5354	Transcription factor GABP beta 2-1 chain
Rn30009011	RGD1305500	1.5248	DNA segment, Chr 19, ERATO Doi 737
Rn30015486	Gbp5	1.5204	Guanylate-binding protein 5
Rn30015488	—	1.5197	Guanylate nucleotide-binding protein 2
R002891_01	Cyp2d4v1	1.5187	Cytochrome P450 2D18
Rn30016434	—	1.5155	RGD1310888-predicted protein
Oligo_id	Name	Ratio	Description
-------------	-----------------------	--------	--
Rn30001002	—	1.5108	
R001164_01	—	1.5085	Granzyme M precursor
Rn30023011	—	1.5073	
Rn30000745	Hspa1b	0.6661	Heat shock 70 kDa protein 1A/1B
Rn30010844	—	0.6653	
R002646_01	—	0.665	
Rn30013433	Med31	0.6623	RNA polymerase II transcription subunit 31
Rn30003203	Dynl3	0.6605	T-complex-associated testis-expressed 1-like
Rn30022044	—	0.6596	
Rn30003825	Nt5c1b	0.6581	Retinol dehydrogenase 1
Rn30025065	P4ha2	0.6576	Procollagen-proline, 2-oxoglutarate-4-dioxygenase, alpha II polypeptide
Rn30000745	Hspa1b	0.6555	Heat shock 70 kDa protein 1A/1B
Rn30019963	—	0.6548	
Rn30005770	Ero1l	0.6482	ERO1-like protein alpha precursor
Rn30024141	—	0.6465	
Rn30019903	Rassf1	0.6464	Ras association domain family 1 isoform 2
Rn30003533	Dusp1	0.6461	Dual specificity protein phosphatase 1
Rn30020658	RGD1563649	0.6446	Similar to ORF4
Rn30006166	Pea15a	0.6435	Phosphoprotein enriched in astrocytes 15
Rn30012217	Arg1	0.6427	Arginase-1 (EC 3.5.3.1)
Rn30023334	—	0.6392	
Rn30023867	Rnase1l2	0.6379	
Rn30002222	Pkg1	0.6341	Phosphoglycerate kinase 1
R002211_01	Aldoc	0.6301	Fructose-bisphosphate aldolase C
Rn30002683	RGD1560553	0.6288	PREDICTED: similar to hypoxia-induced gene 1
Rn30018943	—	0.6233	DNA-3-methyladenine glycosylase
Rn30006243	—	0.619	
Rn30025357	—	0.6154	
Rn30000745	Hspa1b	0.6086	Heat shock 70 kDa protein 1A/1B
Rn30003851	Sh3kbp1	0.6013	SH3-domain kinase binding protein 1
Rn30000745	Hspa1b	0.5944	Heat shock 70 kDa protein 1A/1B
Rn30005084	LOC499742	0.5851	LRRG00150.
Rn30000745	Hspa1b	0.5848	Heat shock 70 kDa protein 1A/1B
Rn30015841	Bnip3	0.581	BCL2/adenovirus E1B-interacting protein 3
Rn30014271	RGD1559815	0.5793	Da1-12
Rn3000745	Hspa1b	0.5732	Heat shock 70 kDa protein 1A/1B
Rn3000745	Hspa1b	0.5731	Heat shock 70 kDa protein 1A/1B
Rn3000745	Hspa1b	0.5706	Heat shock 70 kDa protein 1A/1B
Rn3000745	Hspa1b	0.5699	Heat shock 70 kDa protein 1A/1B
Rn30026196	Hist1h4m	0.5511	Histone H4.
Rn3000745	Hspa1b	0.545	Heat shock 70 kDa protein 1A/1B
Rn30024135	LOC499698	0.5425	C-reactive protein precursor.
Rn30000745	Hspa1b	0.5364	Heat shock 70 kDa protein 1A/1B
Rn30015672	Car9	0.51	Similar to carbonic anhydrase 9
Rn30004468	Upp1	0.4769	Uridine phosphorylase 1
Rn30014956	Plcd4	0.4744	Phospholipase C, delta 4
R001854_01	Ccl20	0.4709	Small inducible cytokine A20 precursor
Rn30022206	Dusp6	0.4411	Dual specificity protein phosphatase 6
Figure 4: Continued.
Figure 4: Differential gene expression profiles in COX-2 knockdown cells. (a) Expression of CDC27 and Sh3kb1 were detected by RT-PCR in cells. (b) Expression of Phlcd4 and Dusp1 was detected by RT-PCR. (c) The expressions of Serpinb2, cxcl10, Dusp6, and TP53 genes were measured by RT-PCR. *p < 0.05 and **p < 0.01, compared with the sh-NC group.
Figure 5: Continued.
The primary effector cell in hepatic fibrosis is the HSCs [9]. HSCs are activated and transformed from quiescent to activated when the liver is damaged by mechanical stimulation or the inflammation. Activated HSCs have a strong ability to synthesize extracellular matrix, then leading to the formation of liver fibrosis or cirrhosis. Therefore, inhibiting the proliferation of HSCs and promoting its apoptosis have become the main strategy to treat liver fibrosis [10].

Previous studies have shown that COX-2 may be involved in the development of hepatic fibrosis by regulating the proliferation and apoptosis of HSCs [4]. SC-236 was used to prevent the occurrence of carbon tetrachloride-induced hepatic fibrosis in rats, which is mainly related to its regulation on the apoptosis and proliferation of HSCs [4]. However, the side effect of COX-2 inhibitors such as cardiovascular events or gastrointestinal bleeding limits its wide application [11]. Therefore, the nucleotide-based inhibitor for gene expression has been raised as a novel treatment approach. RNA interference (RNAi), a phenomenon of posttranscriptional gene silencing (PTGS),

Figure 5: Effects of shRNA-mediated COX-2 knockdown on HSCs related with the changed expression of CDC27. (a) Western blotting for CDC27 protein expression in all groups. (b) Cell proliferation was detected in cotransfection of COX-2 and CDC27 shRNA cells, COX-2-shRNA-1, and sh-NC cells. (c) HSC-T6 cells were transfected with COX-2-shRNA-1, or sh-NC, or cotransfected with COX-2-shRNA-1 and sh-CDC27. Cell cycle analysis was examined by flow cytometry. (d) Apoptosis of HSC-T6 cells transfected with COX-2-shRNA and CDC27-shRNA, COX-2 nanomedicine-shRNA-1, and sh-NC was examined by flow cytometry. *p < 0.05 and ***p < 0.001, compared with the sh-NC group and COX-2-shRNA-1 group.
provides new insights for treating liver fibrosis [12]. Previous experiments showed that COX-2-shRNA-1 can effectively treat experimental liver fibrosis [3].

In this study, we found that knockdown of COX-2 effectively suppressed the proliferation of HSCs in the liver of rats with hepatic fibrosis, which has been proved by the decrease in α-SMA and the number of α-SMA immunopositive cells. More clearly, knockdown of COX-2 suppressed proliferation and facilitated apoptosis of HSCs. Our results were consistent with most literature reports [1, 6]. We argue that the regulation of COX-2 on HSC cell behavior might be the primary mechanism of it in hepatic fibrosis pathogenesis.

For the further evidences of COX-2 in regulating hepatic fibrosis, we employed mRNA microarray assay to examine the expression of a series of proliferative and apoptotic relative genes. Knockdown of COX-2 in HSCs leads to some cell proliferation genes to change; some of them upregulated, such as Il6, Csf2, Atpf, Cdc27, Tp53, and Cxcl10; and some of them downregulated including Dusp1, Serpinb2, and Plcd4. As for the apoptotic related genes, upregulation of Il1b, Il6, Csf2, Atf3, Cdc27, Tp53, and Cxcl10; and some of them downregulated including Dusp1, Serpinb2, and Plcd4. As for the apoptotic related genes, upregulation of Il1b, Il6, Csf2, Phlda3, and Tp53 and downregulation of Sh3kbp1, Peal5, and Plcd4 genes were demonstrated. Sh3kbp1 gene may regulate various cell behaviors [13], and Plcd4 gene expression was associated with breast cancer cell proliferation [14]; CXCL10 induced cell proliferation and apoptosis [15, 16]. After silencing the COX-2 gene in HSCs, the expression of CDC27 is enhanced, which is the only gene with consistent results in DNA chips and RT-PCR. CDC27 was previously reported to facilitate proliferation [7]. It has potent protein binding affinity [8, 17] and participates in various biological processes including ubiquitination mediated proteolysis [18], cell cycle regulation [19], cell division [20], and transformation at metaphase of mitosis [21, 22]. In this study, we found that CDC27 knockdown could accelerate HSC proliferation and inhibit cell apoptosis, indicating that RNAi silencing of COX-2 could modulate HSCs growth, inhibit cell proliferation, and induce cell apoptosis via CDC27 upregulation. Moreover, CDC27 has been postulated to be one major target for induced cell apoptosis and cell cycle arrest in cancer cells [23]. The expression of COX-2 and CDC27 has been associated during immune response regarding macrophage proliferation [24]. This study, on the other hand, revealed the regulation of CDC27 gene expression by COX-2 knockdown, suggesting that CDC27 exerted its role at the downstream of COX-2. Our data thus provide the first-hand information on how COX-2 regulates HSC proliferation, cell cycle, and cell apoptosis by regulating CDC27 gene expression, revealing an unknown pathway of HSC behavior. However, the detailed molecular mechanism for COX-2 regulation on CDC27 gene expression is still unclear yet and thus requires further mechanistic studies to fulfill the weakness of the current study.

In summary, the current study described the regulation of HSC proliferation and apoptosis by COX-2/CDC27 axis and found that such regulatory pathway played important roles in mediating severity of hepatic fibrosis. Our overall findings provide a promising treatment target for early intervention of liver fibrosis.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical Approval

All animal procedures were approved by the Institutional Animal Care and Use Committee of University of South China (2011002A), Hengyang, China.

Conflicts of Interest

The authors declare no conflict of interest, financial, or otherwise.

Authors’ Contributions

Yang Hu designed the experiments. Yang Hu, Li Xian Chen, and Nian Fu performed the experiments and analyzed the data. Yang Hu wrote the manuscript. Jian Hua Xiao and Xue Feng Yang have modified the language expression of the article. All authors have read and approved the manuscript.

Acknowledgments

This study was funded by the Scientific Research Project of Hunan Provincial Health and Family Planning Commission (No. A2017015), the Hunan Provincial Union Fund for Natural Science and Cities (No. 2016JJ5010), the financial support from the Program for Hunan Provincial Science and Technology Department (No. 2018DK51707), and the National Natural Science Foundation of China (No. 81373465).

References

[1] Y. H. Paik, J. K. Kim, J. I. Lee et al., “Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats,” Gut, vol. 58, no. 11, pp. 1517–1527, 2009.
[2] H. Hu, X. Jing, X. Zou, and J. Wu, “Role of cyclooxygenase 2 and its inhibitor valdecoxib in liver fibrosis,” Zhonghua Yi Xue Za Zhi, vol. 94, no. 10, pp. 784–787, 2014.
[3] X. Ni, H. W. Liao, W. S. Ou et al., “Construction of COX-2 short hairpin RNA expression vector and its inhibitory effect on hepatic fibrosis,” Biotechnology & Biotechnological Equipment, vol. 32, no. 3, pp. 1–10, 2018.
[4] L. Chang, Z. Zhang, J. Yang, S. H. McLaughlin, and D. Barford, “Atomic structure of the APC/C and its mechanism of protein ubiquitination,” Nature, vol. 522, no. 7557, pp. 450–454, 2015.
[5] J. Zhu, Z. Luo, Y. Pan et al., “H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes,” Journal of Cellular Physiology, vol. 234, no. 6, pp. 9698–9710, 2019.
[6] A. Planagumà, J. Clària, R. Miquel et al., “The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation,” The FASEB Journal, vol. 19, no. 9, pp. 1120–1122, 2008.
[7] L. Qiu, J. Wu, C. Pan et al., “Downregulation of CDC27 inhibits the proliferation of colorectal cancer cells via the accumulation
of p21Cip1/Waf1,” *Cell death & disease*, vol. 7, no. 1, p. e2074, 2016.

[8] V. P. Bermudez, S. A. MacNeill, I. Tappin, and J. Hurwitz, “The influence of the Cdc27 subunit on the properties of the Schizosaccharomyces pombe DNA polymerase delta,” *Journal of Biological Chemistry*, vol. 277, no. 39, pp. 36853–36862, 2002.

[9] S. Karvar, E. A. Ansa-Addo, J. Suda et al., “Moesin, an ERM family member, regulates hepatic fibrosis,” *Hepatology*, vol. 72, no. 3, pp. 1073–1084, 2019.

[10] S. Bi, F. Chu, M. Wang et al., “Ligustrazine-oleanolic acid glycine derivative, G-TOA, selectively inhibited the proliferation and induced apoptosis of activated HSC-T6 cells,” *Molecules*, vol. 21, no. 11, p. 1599, 2016.

[11] C. C. Szeto, K. Sugano, J. G. Wang et al., “Non-steroidal anti-inflammatory drug (NSAID) therapy in patients with hypertension, cardiovascular, renal or gastrointestinal comorbidities: joint APAGE/APLAR/APSDE/APSH/APSN/PoA recommendations,” *Gut*, vol. 69, no. 4, pp. 617–629, 2020.

[12] J. M. Bangen, L. Hammerich, R. Sonntag et al., “Targeting CCl4-induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice,” *Hepatology*, vol. 66, no. 4, pp. 1242–1257, 2017.

[13] R. Dejournett, R. Kobayashi, S. H. Pan et al., “Phosphorylation of the proline-rich domain of Xp95 modulates Xp95 interaction with partner proteins,” *The Biochemical Journal*, vol. 401, no. 2, pp. 521–531, 2007.

[14] D. W. Leung, C. Tompkins, J. Brewer et al., “Phospholipase C delta-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells,” *Molecular cancer*, vol. 3, no. 1, p. 15, 2004.

[15] Q. Jiang, F. Wang, L. L. Shi et al., “C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis,” *Cell death & disease*, vol. 8, no. 10, p. e3146, 2017.

[16] M. Wornle, H. Schmid, M. Merkle, and B. Banas, “Effects of chemokines on proliferation and apoptosis of human mesangial cells,” *BMC Nephrology*, vol. 5, no. 1, 2004.

[17] A. Schreiber, F. Stengel, Z. Zhang et al., “Structural basis for the subunit assembly of the anaphase-promoting complex,” *Nature*, vol. 470, no. 7333, pp. 227–232, 2011.

[18] L. A. MacFarlane and P. R. Murphy, “Regulation of FGF-2 by an endogenous antisense RNA: effects on cell adhesion and cell-cycle progression,” *Molecular Carcinogenesis*, vol. 49, no. 12, pp. 1031–1044, 2010.

[19] J. M. Pérez-Pérez, O. Serralbo, M. Vanstraelen et al., “Specialization of CDC27 function in the Arabidopsis thaliana anaphase-promoting complex (APC/C),” *The Plant Journal*, vol. 53, no. 1, pp. 78–89, 2008.

[20] D. Li, G. Morley, M. Whitaker, and J. Y. Huang, “Recruitment of Cdc20 to the kinetochore requires BubR1 but not Mad2 in Drosophila melanogaster,” *Molecular and Cellular Biology*, vol. 30, no. 13, pp. 3384–3395, 2010.

[21] L. Zhang, T. Fujita, G. Wu, X. Xiao, and Y. Wan, “Phosphorylation of the anaphase-promoting complex/Cdc27 is involved in TGF-beta signaling,” *The Journal of Biological Chemistry*, vol. 286, no. 12, pp. 10041–10050, 2011.

[22] T. Fujita, M. W. Epperly, H. Zou, J. S. Greenberger, and Y. Wan, “Regulation of the anaphase-promoting complex-separase cascade by transforming growth factor-beta modulates mitotic progression in bone marrow stromal cells,” *Molecular Biology of the Cell*, vol. 19, no. 12, pp. 5446–5455, 2008.