Magnetotransport of dirty-limit van Hove singularity quasiparticles

Yang Xu 1, František Herman 2,3, Veronica Granata 4, Daniel Destraz 1, Lakshmi Das 1, Jakub Vonka 5,6, Simon Gerber 5, Jonathan Spring 1, Marta Gibert 1, Andreas Schilling 1, Xiaofu Zhang 1, Shiyan Li 7, Rosalba Fittipaldi 4,8, Mark H. Fischer 1, Antonio Vecchione 4,8 & Johan Chang 1,8

Tuning of electronic density-of-states singularities is a common route to unconventional metal physics. Conceptually, van Hove singularities are realized only in clean two-dimensional systems. Little attention has therefore been given to the disordered (dirty) limit. Here, we provide a magnetotransport study of the dirty metamagnetic system calcium-doped strontium ruthenate. Fermi liquid properties persist across the metamagnetic transition, but with an unusually strong variation of the Kadowaki-Woods ratio. This is revealed by a strong decoupling of inelastic electron scattering and electronic mass inferred from density-of-state probes. We discuss this Fermi liquid behavior in terms of a magnetic field tunable van Hove singularity in the presence of disorder. More generally, we show how dimensionality and disorder control the fate of transport properties across metamagnetic transitions.
In two-dimensional systems, saddle points in the electronic band structure generate a diverging density of states (DOS), a so-called van Hove singularity (VHS). A divergent DOS at the Fermi level renders a system susceptible to instabilities like charge/spin density wave order or unconventional superconductivity. Gate-tuned superconductivity in magic angle bilayer graphene has, for example, been proposed to be connected to VHS physics. A VHS is also found in high-temperature cuprate superconductors, and recently it has been associated with the onset of the mysterious pseudogap phase. It is debated whether the surrounding non-Fermi liquid behavior is originating from a quantum criticality or a VHS scenario. In the ruthenates, the surrounding non-Fermi liquid behavior is originating from a VHS physics. A VHS is also found in high-temperature cuprate superconductors and in Sr$_2$RuO$_4$ upon application of pressure or strain. Finally, metamagnetic transitions in systems such as Sr$_2$RuO$_4$, CeRu$_2$Si$_2$, and Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ have been attributed to DOS anomalies near the Fermi level.

Despite the expected connection between an ideal VHS and unconventional electronic properties observed in a wide range of materials, the effect of disorder and dimensionality has received little attention. Quasiparticles in layered materials are neither constrained perfectly in two dimensions nor are their lifetime infinite. Both effects, dimensionality and disorder or electron correlations, broaden the DOS anomaly and hence, potentially change the ideal VHS physics substantially.

Here, we address electronic transport properties of a quasi-two-dimensional disordered system for which the VHS is aligned with the Fermi level by an external magnetic field. Magnetotransport anomalies in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ are directly linked to the metamagnetic transition. Although Fermi liquid properties are preserved across the metamagnetic transition, the electronic scattering processes are highly unusual. In particular, we report a decoupling of the inelastic electron scattering from the electronic mass. This results in a five-fold variation of the Kadowaki–Woods ratio across the metamagnetic transition. Our observations are presented in a broader context of Fermi liquid/non-Fermi liquid aspect before turning to the unusual behavior of the KWR in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$.

Results

Magnetotransport. The temperature dependence of the resistivity ρ measured on Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ at various magnetic fields, is shown in Fig. 1a, b. A region of enhanced resistivity fans out around the metamagnetic transition at $H_m \sim 5.5$ T (see Supplementary Note 1 and Supplementary Fig. 1) in the (H, T) plot [Fig. 1a]. Insights into the scattering mechanisms are commonly gained by analyzing $\rho = \rho_0 + C\rho(T)$ with C being a constant. The temperature-independent term ρ_0 is allowed to vary with field. Figure 1c shows the $H-T$ plot of the exponent α for Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ obtained from this procedure. The low-temperature yellow region demonstrates that Fermi liquid behavior ($\alpha \sim 2$) is found at all fields across H_m. The Fermi liquid cutoff temperature T_m remains constant below H_m and increases above the transition. Magnetoresistance (MR) isotherms, defined by $[\rho(H)-\rho(0)]/\rho(0)$, all exhibit a maximum around H_m that broadens with increasing T [Fig. 1(d)].

Fermi liquid analysis. Since Fermi liquid behavior is observed at low temperature for all fields, we fix $\alpha = 2$ and fit with $\rho = \rho_0 + AT^2$ [see Fig. 2a], where A is the inelastic electron–electron scattering coefficient. In addition to the Fermi liquid cutoff temperature T_{FL} indicated by arrows in Fig. 2a, we identify another temperature scale T_{SM} above which a strange metal behavior $\rho \sim T$ is observed for all fields, as shown in Fig. 2b. The resulting ρ_0 and A from the analysis in Fig. 2a are plotted versus magnetic field in Fig. 2c, d, respectively. The Kadowaki–Woods ratio (KWR) A/ρ^2 (being the Sommerfeld coefficient) is plotted in Fig. 2e. We stress that our higher value of ρ_0 compared to ref. 20 is not due to a lower quality of our sample (see Supplementary Note 2). While the field dependence of ρ_0 closely tracks the MR isotherms, A decreases by a factor of three across H_m.

Two key observations are revealed by our magnetotransport experiment: across the metamagnetic transition, (1) the Fermi liquid state persists at low temperatures and (2) the inelastic scattering coefficient A undergoes a dramatic drop.

Comparison of metamagnetic transitions. Although the metamagnetic transition has been well established in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$, its impact on magnetotransport has not been addressed by previous studies (see Supplementary Note 2). Our results demonstrate a direct connection between the metamagnetic transition and transport properties. As such, Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ can now be directly compared to other metamagnetic systems. As shown in Table 1, Ca$_{1.8}$Sr$_{0.2}$RuO$_4$, CeRu$_2$Si$_2$, and Sr$_2$RuO$_4$ all display a peak in ρ_0 and the Sommerfeld coefficient γ across the metamagnetic transition. Both ρ_0 and γ are proportional to the DOS at the Fermi level. Therefore, these compounds share a field-induced traversal of a DOS peak through the Fermi level. The DOS peak in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ is likely associated with a VHS.

Interestingly, the inelastic electron–electron scattering process varies dramatically across these compounds. Non-Fermi liquid behavior is reported down to the lowest measured temperatures in Sr$_2$RuO$_4$ at H_m. As in CeRu$_2$Si$_2$, we report Fermi liquid behavior across H_m in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$. However, in CeRu$_2$Si$_2$ the scattering coefficient A peaks together with the Sommerfeld coefficient, whereas in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ A undergoes a step-like drop across H_m. In the following, we discuss the Fermi liquid versus non-Fermi liquid aspect before turning to the unusual behavior of the KWR in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$.

Discussion

In strongly correlated electron systems, ρ is generally dominated by impurity and electron–electron scattering at low temperatures. States contributing to the transport properties lie within the scattering phase space defined by $f(E)[1 - f(E)]$, where $f(E)$ is the Fermi–Dirac distribution for temperature T and energy E measured from the Fermi level. For an electronic structure with a peak in the DOS close to or at the Fermi level, the phase-space density energy scale, with a full-width half maximum $W_{SPS} \sim 3.5\kappa T$, can be compared with that of the DOS peak W_{DOS}. In the low-temperature limit $T \leq T_S \sim k_B W_{DOS}(3.5\kappa T)$ with $k_B \ll 1$, Fermi liquid behavior ($\rho \sim T^2$) is anticipated, since the DOS is almost flat within the scattering phase space. By contrast, for $T \gtrsim T_S \sim \beta W_{DOS}(3.5\kappa T)$ with β a strange metal behavior, such as $\rho \sim T^{-\delta}$, $T \sim T^{0.5}$, or $\rho \sim T^{\delta} log(T)$ is expected, once the DOS peak is fully covered by the scattering phase space. These two limits, together with the intermediate region $T_S < T < T_{SM}$, are schematically shown in Fig. 2f–h.

Whereas the scattering phase space W_{SPS} is set by temperature, W_{DOS} is controlled by dimensionality and disorder. Utilizing ρ_0/ρ, T_S, and ρ_0 as effective gauges for the dimensionality and disorder, respectively, we plot different systems with large DOS at the
Fermi level in a dimensionality–disorder–temperature diagram (Fig. 3). For clean two-dimensional systems, such as Sr$_2$RuO$_4$ and Sr$_3$Ru$_2$O$_7$, the sharp DOS peak (small ρ_{DOS}) makes it difficult to experimentally access the temperature scales T_{FL} and T_{SM}. In both systems, when the Fermi level and VHS are tuned to match, the resistivity ρ before being cut off by instabilities (superconductivity and spin-strange metal behavior is observed down to lowest temperatures). We stress that the bare band structure is not expected to change significantly by the application of magnetic field and hence is not the source for the strong field side. A factor-of-five variation [Fig. 2e] of the KWR is the consequence of this decoupling of A and γ^\prime. We show that a change of Fermi surface topology across the transition is a possible cause for the drop in T_{SM}.}

In YbRh$_2$(Si$_{0.95}$Ge$_{0.05}$)$_2$ with a ‘local’ QCP, A and γ^\prime both increase upon approaching the QCP, although the KWR shows a weak field dependence. These are all in stark contrast to Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ where A and γ^\prime anti-correlate on approaching the metamagnetic transition on the low-field side. A factor-of-five variation [Fig. 2e] of the KWR is the consequence of this decoupling of A and γ^\prime. We show that a change of Fermi surface topology across the transition is a possible cause for the drop in T_{SM}. We conclude that quantum criticality must be taken into account. Our results thus have direct implications for the interpretation of the strange metal properties in cuprates.

The evolution of the KWR across the metamagnetic transition in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ is rather unusual. In the simplest case, the ratio A/γ^2 is invariant to electron correlations. This implies that both A and γ^2 are expected to increase with enhanced electron interaction. In practice, even in systems where A/γ^2 is not constant, A and γ^2 still correlate positively. For example, a modified relation $A \sim \Delta \gamma$ holds in Sr$_3$Ru$_2$O$_7$, where $\Delta \gamma$ is the enhancement of γ approaching H_m. In YbRh$_2$(Si$_{0.95}$Ge$_{0.05}$)$_2$ with a ‘local’ QCP, A and γ^\prime both increase upon approaching the QCP, although the KWR shows a weak field dependence. These are all in stark contrast to Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ where A and γ^\prime anti-correlate on approaching the metamagnetic transition on the low-field side. A factor-of-five variation [Fig. 2e] of the KWR is the consequence of this decoupling of A and γ^\prime. We show that a change of Fermi surface topology across the transition is a possible cause for the drop in T_{SM}. We conclude that quantum criticality must be taken into account. Our results thus have direct implications for the interpretation of the strange metal properties in cuprates.
DOS should influence transport in all bands. The recent report of orbital-selective breakdown of Fermi-liquid behavior31, on the other hand, implies a decoupling of the bands allowing for the above scenario of a step-like behavior of A. Note, finally, that momentum-dependent interactions, potentially stemming from the multiorbital structure, can produce a momentum-dependent self-energy43–50, which provides another source for the unusual behavior of the KWR40.

Metamagnetic transitions are found in materials spanning from correlated oxides to heavy fermion compounds. The underlying mechanism might not be identical across all compounds and hence comparative studies are of great interest. We performed a comprehensive study of the metamagnetic transition of Ca\textsubscript{1.8}Sr\textsubscript{0.2}RuO\textsubscript{4}. Presence of a tunable van Hove singularity and disorder provides an explanation for the observed temperature scales associated with the Fermi liquid and strange metal properties. Previous studies suggested quantum critical scaling around the metamagnetic transition may be smeared out by disorder31,52. This is likely the reason why Fermi liquid behavior survives across the metamagnetic transition in Ca\textsubscript{1.8}Sr\textsubscript{0.2}RuO\textsubscript{4} but breaks down in the clean limit represented by Sr\textsubscript{2}Ru\textsubscript{2}O\textsubscript{7}. Alternatively, if only part of the quasiparticles participate in the mass divergence upon approaching a putative quantum critical point at the metamagnetic transition, they can get short-circuited by the remaining quasiparticles. This would reflect on A but not γ. In this scenario, persisting Fermi liquid behavior and a varying KWR are expected. Our study demonstrates that electronic properties across a van Hove singularity induced metamagnetic transition is strongly influenced by the degree of disorder. In the highly disordered limit, we observed an unusual strong violation of the Kadowaki–Woods ratio.

Table 1 Fermi liquid behaviors as the density-of-states peak and the Fermi level are tuned to match.

Compound	Tuning	Critical value	ρ_0 peak	γ peak	A peak	FL	Reference
Sr\textsubscript{2}RuO\textsubscript{4}	Uniaxial strain	$\epsilon = 0.5\%$	Yes	Yes	Yes	No	11,53,56
Sr\textsubscript{2}Ru\textsubscript{2}O\textsubscript{7}	Magnetic field	$H = 7.8$ T	Yes	Yes	Yes	No	7,15,57-59
Ca\textsubscript{1.8}Sr\textsubscript{0.2}RuO\textsubscript{4}	Magnetic field	$H = 5.5$ T	Yes	Yes	No	Yes	This work60
CeRu\textsubscript{2}Si\textsubscript{2}	Magnetic field	$H = 8.0$ T	Yes	Yes	Yes	Yes	17,61-63
CeTiGe	Magnetic field	$H = 12$ T	Yes	-	No	Yes	42

For each compound the tuning parameter (uniaxial strain ϵ or magnetic field H) and the associated critical values are indicated. The behavior (peak or no peak) across the critical tuning of the temperature-independent term in resistivity ρ_0, Sommerfeld coefficient γ, and electron–electron scattering coefficient A (see text) is indicated. Finally, the observed resistivity behavior (Fermi liquid or non-Fermi liquid) at the critical tuning and lowest measured temperature is given.
6. Buhmann, J. M. et al. Numerical study of charge transport of overdoped LSCO: La1.8Sr0.2CuO4, Nd-LSCO: La1.36Nd0.4Sr0.24CuO4, Zn-LSCO: La1.82Sr0.18Cu0.96Zn0.04O4. The vertical thermal axis indicates the two temperature scales as magnetic field or uniaxial pressure, and the values of ρ_{ab}/ρ_{c} chosen at these critical tuning parameter whenever possible. For the cuprates ρ_{ab}/ρ_{c} from refs. 11,13,33,34,57,66-75. The third axis labeled T_F refers to temperature for all systems the DOS are tuned to the Fermi level by tuning parameters such as magnetic field or uniaxial pressure, and the values of ρ_{ab}/ρ_{c} taken at these critical tuning parameter whenever possible. For the cuprates the following abbreviations are used: LSCO: La1.8Sr0.2CuO4, Nd-LSCO: La1.36Nd0.4Sr0.24CuO4, Zn-LSCO: La1.82Sr0.18Cu0.96Zn0.04O4. The vertical thermal axis indicates the two temperature scales T_F and T_{SM} expected within a van Hove singularity scenario. T_F is the Fermi liquid cutoff temperature and above T_{SM} strange metal behavior dominates. 2D and 3D denote two-dimensional and three-dimensional systems, respectively.

Methods

Single crystals of Ca2Sr2RuO4 were grown by the flux-feeding floating-zone technique53,54. Our experimental results were reproduced on several crystals that were applied along the ab axis and silver paste electrical contacts were made on the ab plane. Resistivity measurements were performed in a physical property measurement system (PPMS, Quantum Design) with a Helium-3 option.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 26 June 2020; Accepted: 22 November 2020; Published online: 04 January 2021.

References

1. Volovik, G. E. Topological Lifshitz transitions. Low Temp. Phys. 43, 47–55 (2017).
2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43 (2018).
3. Yuan, N. F. Q., Isobe, H. & Fu, L. Magic of higher-order van Hove singularity. Nat. Commun. 10, 1–7 (2019).
4. Wu, W. et al. Pseudogap and Fermi-surface topology in the two-dimensional Hubbard model. Phys. Rev. X 8, 021048 (2018).
5. Doiron-Leyraud, N. et al. Pseudogap phase of cuprate superconductors confined by Fermi surface topology. Nat. Commun. 8, 1–7 (2017).
6. Buhmann, J. M. et al. Numerical study of charge transport of overdoped La2−xSrxCuO4 within semiclassical Boltzmann transport theory. Phys. Rev. B 87, 035129 (2013).
7. Grigera, S. A. et al. Magnetic field-tuned quantum criticality in the metallic ruthenate Sr2RuO4. Science 294, 329–332 (2001).
8. Grigera, S. A. et al. Disorder-sensitive phase transition linked to metamagnetic quantum criticality. Science 306, 1154–1157 (2004).
9. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr2RuO4. Science 315, 214–217 (2007).
10. Lester, C. et al. Field-tunable density-wave phases in Sr2RuO4. Nat. Mater. 14, 373 (2015).
11. Barber, M. E. et al. Resistivity in the vicinity of a van Hove singularity: Sr2RuO4 under uniaxial pressure. Phys. Rev. Lett. 120, 076602 (2018).
12. Burganos, B. et al. Strain control of fermiology and many-body interactions in two-dimensional ruthenates. Phys. Rev. Lett. 116, 197003 (2016).
13. Kikutaga, N. et al. Band-selective modification of the magnetic fluctuations in Sr2RuO4: A study of substitution effects. Phys. Rev. B 70, 134520 (2004).
14. Shen, K. M. et al. Evolution of the fermi surface and quasiparticle renormalization through a van Hove singularity in Sr2−xLa2+xRuO4. Phys. Rev. Lett. 99, 187001 (2007).
15. Tokiwa, Y. et al. Multiple metamagnetic quantum criticality in Sr2RuO4. Phys. Rev. Lett. 116, 226402 (2016).
16. Tamai, A. et al. Fermi surface and van Hove singularities in the itinerant metamagnet Sr2RuO4. Phys. Rev. Lett. 101, 026407 (2008).
17. Daou, R., Bergemann, C. & Julian, S. R. Continuous evolution of the Fermi surface of CeRu2Si2 across the metamagnetic transition. Phys. Rev. Lett. 96, 026401 (2006).
18. Nakatsuji, S. et al. Heavy-mass Fermi liquid near a ferromagnetic instability in layered ruthenates. Phys. Rev. Lett. 90, 137202 (2003).
19. Horio, M. et al. Three-dimensional Fermi surface of overdoped La-based cuprates. Phys. Rev. Lett. 121, 077004 (2018).
20. Balicas, L. et al. Fermi-surface reconstruction at a metamagnetic transition in Ca2−xSrxCuO4 for 0.2 ≤ x ≤ 0.5. Phys. Rev. Lett. 95, 196407 (2005).
21. Nakatsuji, S. & Maeno, Y. Quasi-two-dimensional Mott transition system Ca2−xSrxCuO4. Phys. Rev. Lett. 84, 2666–2669 (2000).
22. Fang, Z. & Terakura, K. Magnetic phase diagram of Ca2−xSrxCuO4 governed by structural distortions. Phys. Rev. B 64, 020509 (2001).
23. Fang, Z., Nagosa, N. & Terakura, K. Orbital-dependent phase control in Ca2−xSrxCuO4 (0 ≤ x ≤ 0.5). Phys. Rev. B 69, 045116 (2004).
24. Liebsch, A. & Ishida, H. Subband filling and Mott transition in Ca2−xSrxCuO4. Phys. Rev. Lett. 98, 216403 (2007).
25. Mousatov, C. H., Berg, E. & Hartnoll, S. A. Theory of the strange metal Sr2RuO4. Proc. Natl Acad. Sci. U.S.A. 117, 2852 (2020).
26. Bruin, J. A. N. et al. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).
27. Zaanen, J. Why the temperature is high. Nature 430, 512 (2004).
28. Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54 (2015).
29. Buhmann, J. M. Unconventional scaling of resistivity in two-dimensional Fermi liquids. Phys. Rev. B 88, 245128 (2013).
30. Hlubina, R. Effect of impurities on the transport properties in the Van Hove scenario. Phys. Rev. B 53, 11344–11347 (1996).
31. Sutter, D. et al. Orbitalselective breakdown of Fermi liquid quasiparticles in Ca2−xSrxCuO4. Phys. Rev. B 99, 121115 (2019).
32. Matt, C. E. et al. Electron scattering, charge order, and pseudogap physics in La2−xNdxBaxSr2CuO4: an angle-resolved photoemission spectroscopy study. Phys. Rev. B 92, 134524 (2015).
33. Daou, R. et al. Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor. Nat. Phys. 5, 31 (2009).
34. Michon, B. et al. Wiedemann–Franz law and abrupt change in conductivity across the pseudogap critical point of a cuprate superconductor. Phys. Rev. X 8, 041010 (2018).
35. Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142 (2019).
36. Michon, B. et al. Thermodynamic signatures of quantum criticality in cuprate superconductors. Nature 567, 218 (2019).
37. Rice, M. J. Electron-electron scattering in transition metals. Phys. Rev. Lett. 20, 1439–1441 (1968).
38. Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-Fermion compounds. Solid State Commun. 58, 507–509 (1986).
39. Husey, N. E. Non-linearity of the Kadowaki-Woods ratio in correlated oxides. J. Phys. Soc. Jpn. 74, 1107–1110 (2005).
40. Jacko, A. C., Fjærestad, J. O. & Powell, B. J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 5, 422–425 (2009).
41. Casters, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).
42. Deppe, M. et al. Pronounced first-order metamagnetic transition in the paramagnetic heavy-fermion system CeTGe. Phys. Rev. B 85, 060401 (2012).
43. Buhmann, J. M. Unconventional transport properties of correlated two-dimensional Fermi liquids. Ph.D. thesis, ETH Zürich (2013).
44. Byczuk, K. et al. Kinks in the dispersion of strongly correlated electrons. Nat. Phys. 3, 168 (2007).
45. Löhneysen, H. V. et al. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015 (2007).
46. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797 (2001).
47. Gull, E. et al. Momentum-space anisotropy and pseudogaps: a comparative cluster dynamical mean-field analysis of the doping-driven metal-insulator transition in the two-dimensional Hubbard model. Phys. Rev. B 82, 155101 (2010).
48. Tanatar, M. A. et al. Anisotropic violation of the Wiedemann-Franz law at a quantum critical point. Science 316, 1320 (2007).
49. Smith, M. F. & McKenzie, R. H. Apparent violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point. Phys. Rev. Lett. 101, 266403 (2008).
50. Chang, J. et al. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La2−xSrxCuO4. Nat. Commun. 4, 1 (2013).
51. Steffens, P. et al. Field-induced paramagnons at the metamagnetic transition of Ca1.5Sr0.5RuO4. Phys. Rev. Lett. 99, 217402 (2007).
52. Baier, J. et al. Magnetoelastic coupling across the metamagnetic transition in Ca2−xSrxCuO4 (0.2 ≤ x ≤ 0.5). J. Low Temp. Phys. 147, 405 (2007).
53. Nakatsuji, S. & Maeno, Y. Synthesis and single-crystal growth of Ca2−xSrxCuO4. J. Solid State Chem. 156, 26–31 (2001).
54. Fukazawa, H., Nakatsuji, S. & Maeno, Y. Intrinsic properties of the mott insulator Ca2RuO4 (6 = 0) studied with single crystals. Phys. B Condens. Matter 281, 613–614 (2000).
55. Herman, F. et al. Deviation from Fermi-liquid transport behavior in the vicinity of a van Hove singularity. Phys. Rev. B 99, 184107 (2019).
56. Li, Y.-S. et al. High precision heat capacity measurements on Sr2RuO4 under uniaxial pressure. Rev. Sci. Instrum. 91, 103903 (2020).
57. Rost, A. W. et al. Thermodynamics of phase formation in the quantum critical metal Sr2RuO4. Proc. Natl Acad. Sci. U.S.A. 108, 16549–16553 (2011).
58. Rost, A. W. et al. Entropy landscape of phase formation associated with quantum criticality in Sr2RuO4. Science 325, 1360–1363 (2009).
59. Perry, R. S. et al. Magnetic and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7. Phys. Rev. Lett. 86, 2661–2664 (2001).
60. Baier, J. et al. Thermodynamic properties of (Ca,Sr)2RuO4 in magnetic fields. Phys. B Condens. Matter 378, 497 (2006).
61. Pfau, H. et al. Thermoelectric transport across the metamagnetic transition of CeRu2Si2. Phys. Rev. B 85, 035127 (2012).
62. Boukahil, M. et al. Lifshitz transition and metamagnetism: thermoelectric studies of CeRu2Si2. Phys. Rev. B 90, 075127 (2014).
63. Aoki, Y. et al. Thermal properties of metamagnetic transition in heavy-fermion systems. J. Magn. Magn. Mater. 177, 271–276 (1998).
64. Matsuda, T. D. et al. Specific-heat anomaly of metamagnetism on PrFe2P2 and UCoAl. Phys. B Condens. Matter 281, 220 (2000).
65. Muller, T., Joss, W. & Taillleur, L. Specific heat of UPt3 at the metamagnetic phase transition. Phys. Rev. B 40, 2614 (1989).
66. Liu, Y. et al. Electrical transport properties of single crystal Sr2RuO4: the possible existence of an antiferromagnetic instability at low temperatures. Phys. Rev. B 63, 174435 (2001).
67. Nakatsuji, S. & Maeno, Y. Switching of magnetic coupling by a structural symmetry change near the Mott transition in Ca2−xSrxCuO4. Phys. Rev. B 62, 6458 (2000).
68. Lapierre, F. & Haen, P. Resistivity anisotropy in CeRu2Si2. J. Magn. Magn. Mater. 108, 167–169 (1992).
69. Nakamura, Y. & Uchida, S. Anisotropic transport properties of single-crystal La2−xSrxCuO4: evidence for the dimensional crossover. Phys. Rev. B 47, 8369 (1993).
70. Momono, N. et al. Low-temperature electronic specific heat of La2−xSrxCuO4 and La2−xSr2Ca1−xZn2O4. Evidence for a d wave superconductor. Phys. C Supercond. 233, 395 (1994).
71. Kim, J. S. et al. Indications of non-Fermi liquid behavior at the metamagnetic transition of UPt3. Solid State Commun. 114, 413 (2000).
72. de Visser, A., Franse, J. J. M. & Menovsky, A. Resistivity of single-crystalline UPt3 and its pressure dependence: Interpretation by a spin-fluctuation model. J. Magn. Magn. Mater. 43, 43–47 (1984).
73. Aoki, H. et al. Characterization of the mysterious high field ordered phase around H∥[111] and finding of a new phase boundary in PrFe2P2. J. Phys. Soc. Jpn. 81, 084703 (2012).