The interplay between viruses and host cells regulates each step of the virus-host encounter. Viral tropism is restricted by the availability of cell-surface receptors and host molecules that promote viral internalization, replication, assembly, and release. Understanding the cellular components that underlie productive viral infection can illuminate new targets for development of antiviral therapies, improve viral vector design, and enhance an understanding of cellular processes at the pathogen-host interface.

Mammalian orthoreovirus (called reoviruses here) are nonenveloped, double-stranded RNA viruses that are formed from two concentric protein shells (1). Reoviruses infect most mammalian species, and although most humans are exposed during childhood, infection seldom results in disease (1, 2). The reovirus genome can now be engineered using reverse genetics, leading to the discovery of viable viruses with targeted alterations (3). Coupled with the capacity to elicit mucosal immune responses (1, 4) and natural attenuation in humans (1), this technology provides an opportunity to develop reovirus as a vaccine vector. Moreover, reovirus is currently being tested in clinical trials for efficacy as an oncolytic agent against a variety of cancers (5).

Reovirus attaches to host cells via interactions with cell-surface glycans (6, 7) and junctional adhesion molecule A (JAM-A) (8–10). Following attachment to JAM-A, reovirus is internalized in a β1 integrin-dependent manner via receptor-mediated endocytosis (11). Following internalization, reovirus activates Src kinase (12) and traverses through early and late endosomes (13). In late endosomes, virions undergo stepwise acid-dependent proteolytic disassembly catalyzed by cysteine cathepsin proteases to form infectious subviral particles (ISVPs). ISVPs are characterized by the loss of outer-capsid protein σ3 and cleavage of outer-capsid protein μ1. The μ1 cleavage fragments mediate endosomal membrane penetration and release of the transcriptionally active viral core into the cytoplasm (14–16). ISVPs also can be generated in vitro by treatment of virions with a variety of proteases (14, 16). These particles bind JAM-A to initiate infection but are thought to penetrate at or near the cell surface (8, 17, 18), bypassing a requirement for acid-dependent proteolytic disassembly (16, 18). Host factors that mediate internalization and endosomal transport of reovirus virions are not completely understood.

Microtubules are long, filamentous protein polymers composed of α-tubulin and β-tubulin heterodimers (19). These structures regulate a wide variety of cellular functions, including mitosis, maintenance of cell shape, and intracellular transport (19). Posttranslational modifications of tubulin subunits and the interaction of microtubule-associated proteins with microtubules regulate polymerization dynamics (20). Because of the essential role in cell division, microtubules are targets for several anticancer chemotherapeutic agents (20, 21). For example, paclitaxel was originally developed for use against ovarian cancer but also is used in...
to treat other cancers, including metastatic breast cancer (20–22). Vinca alkaloids, including vindesine sulfate, are used to treat non-small-cell lung cancer, leukemia, lymphoma, and breast cancer (20, 21, 23). Microtubule-inhibiting compounds are classified into two groups based on whether the drug stabilizes or destabilizes microtubules. Stabilizing agents, such as taxanes, enhance microtubule polymerization, whereas destabilizing agents, such as vinca alkaloids and colchicine, inhibit microtubule polymerization by directly binding to microtubule subunits (20). Microtubule motors are used for bidirectional transport of cargo (24). Minus-end motors (dyneins) transport cargo toward the cell interior, whereas plus-end motors (kinesins) move cargo toward the cell periphery (24). It is not known whether microtubules or microtubule motors are required for reovirus entry.

In this study, we identified microtubule inhibitors in a high-throughput screen of small molecules for blockade of reovirus-mediated cell death. These drugs do not impede reovirus attachment or internalization but delay the intracellular transport of incoming virions, with a concomitant decrease in viral infectivity. Diminished expression of the dynein 1 heavy chain by RNA interference (RNAi) decreases reovirus infection. These findings indicate that reovirus uses microtubules and dynein 1 to efficiently enter and infect host cells, providing a potential new therapeutic option for viruses that penetrate deep into the endocytic pathway to establish infection.

RESULTS

Identification of microtubule inhibitors using a high-throughput small-molecule screen. To identify cellular factors required for reovirus cytopotoxicity, we performed a high-throughput screen using small molecules from the NIH Clinical Collection (NCC), a library that contains 446 compounds that have been used in phase I, II, and III clinical trials in humans (see Fig. S1A in the supplemental material). Small molecules in the NCC were initially developed for use against a variety of diseases, including central nervous system, cardiovascular, and gastrointestinal malignancies, as well as numerous anti-infectives. HeLa S3 cells, which undergo cell death following reovirus infection (25), were incubated with dimethyl sulfoxide (DMSO) (vehicle control), 10 μM cystine-protease inhibitor E64-d as a positive control (26), or a 10 μM concentration of each of the compounds in the NCC, adsorbed with cytopathic reovirus strain T3SA+ (6, 27), and incubated for 48 h. Cellular ATP levels were assessed as a proxy for cell viability. Z scores were calculated to identify compounds that significantly diminished reovirus-induced cell death (see Table S1 in the supplemental material). Eleven compounds had Z scores of greater than 2.0, with Z scores in this group ranging from 2.758 to 8.444 (Fig. S1B). Interestingly, 5 of the 11 compounds identified are drugs that influence microtubule stability (20) (Fig. S1C). Microtubule-inhibiting compounds constitute <1% of the total number of small molecules in the NCC, suggesting that the large number of microtubule inhibitors identified does not reflect bias within the screen. Thus, these data suggest that functional microtubules are required for reovirus-induced cytopotoxicity.

Microtubule inhibitors diminish reovirus-mediated cell death and infectivity. To verify that microtubule-inhibiting drugs block cytopotoxicity induced by reovirus, HeLa S3 cells were incubated with DMSO, E64-d, or NH₄Cl as positive controls, or increasing concentrations of microtubule-inhibiting drugs for 1 h prior to reovirus adsorption. Cell viability was assessed by quantifying cellular ATP levels 48 h after adsorption (Fig. 1A). Similar to the observations made using the NCC screen, we observed a dose-dependent decrease in reovirus-mediated cytopotoxicity with increasing concentrations of microtubule-inhibiting compounds, E64-d, or NH₄Cl. The observed inhibition was statistically significant at concentrations of 0.1 to 1.0 μM for all compounds tested except for flubendazole, which inhibited at concentrations of 1.0 and 10 μM. These data confirm findings obtained from the small-molecule screen and provide further evidence that microtubule function is required for reovirus-induced cell death.

To determine whether microtubule function is required for reovirus infectivity in epithelial and endothelial cells, we tested the effect of microtubule-inhibiting compounds on reovirus infection of CCL2 HeLa cells, HeLa S3 cells, and human brain microvascular endothelial cells (HBMECs). Both CCL2 and S3 HeLa cells are highly susceptible to reovirus infection and have been used in studies to understand cellular mediators of reovirus cell entry (12, 13). HBMECs are highly transfactable and provide a tractable model cell line for studies of virus replication in endothelial cells (28). Cells were treated with DMSO, E64-d, NH₄Cl, or increasing concentrations of microtubule inhibitors for 1 h prior to adsorption with reovirus T3SA+, incubated in the presence of inhibitors, and scored for infection by indirect immunofluorescence (Fig. 1B). For all cell lines tested, treatment with vindesine sulfate yielded a statistically significant decrease in infectivity. While colchicine and docetaxel also decreased infectivity in the cell types tested, the effects were not as pronounced as those observed with vindesine sulfate. Interestingly, among the compounds from the NCC, we identified three vinca alkaloid compounds, vindesine sulfate, vincristine sulfate, and vinorelbine bitartrate, that impaired reovirus-mediated cytopotoxicity. These data suggest that vinca alkaloids are more potent as anti-infectives against reovirus than other microtubule-inhibiting agents. Together, these data indicate that microtubule function is required for maximal reovirus infectivity and reovirus-mediated cell killing.

Vindesine sulfate blocks reovirus replication at early times of infection. To define the temporal window in which microtubule inhibitors act to impair reovirus infection, CCL2 HeLa cells were treated with DMSO, NH₄Cl, or 1 μM vindesine sulfate for 1 h prior to reovirus adsorption or in 1-h increments up to 2 h post-adsorption. Cells were then incubated in the presence or absence of inhibitors and scored for infection by indirect immunofluorescence 20 h after adsorption (Fig. 2A). Since microtubules depolymerize at cold temperatures (29), virus was adsorbed at room temperature to prevent microtubule depolymerization while also allowing sufficient time for reovirus to attach to cells. For the remainder of the descriptions of our studies, 0 min represents the initiation of infection following adsorption at room temperature. Vindesine sulfate treatment 1 h prior to or immediately following adsorption substantially decreased reovirus infection. However, addition of vindesine sulfate 1 h or more after adsorption decreased reovirus infection much less efficiently. These data indicate that vindesine sulfate is most potent in diminishing reovirus infection during the first hour of the infectious cycle, suggesting that reovirus requires microtubule function during the interval required for viral entry and uncoating. In addition, these findings demonstrate that impairment of reovirus infection by vindesine sulfate is not attributable to toxicity of the compound.

To determine whether vindesine sulfate impairs infection by
ISVPs, which bind JAM-A at the cell surface but do not require intracellular transport for infection (8, 16–18), CCL2 HeLa cells were treated with DMSO, 20 mM NH4Cl, or increasing concentrations of vindesine sulfate, colchicine, or NH4Cl and incubated for 48 h. Cell viability was quantified using an ATP-dependent luminescence assay. Results are presented as total luminescence intensity values from experiments performed in quadruplicate. Error bars indicate standard deviations. (B) CCL2 HeLa cells, HeLa S3 cells, or HBMECs were incubated with DMSO or increasing concentrations of colchicine, docetaxel, vindesine sulfate, E64-d, or NH4Cl and adsorbed with T3SA+ at an MOI of either 5 PFU/cell for HeLa S3 cells and HBMECs or 1 PFU/cell for CCL2 HeLa cells. Cells were incubated in the presence of inhibitors for 20 h and scored for infection by indirect immunofluorescence. Results are presented as percent mean fluorescence intensity compared with DMSO, normalized to cell number and background fluorescence, for quadruplicate experiments with CCL2 HeLa cells and triplicate experiments with HeLa S3 cells and HBMECs. Error bars indicate standard errors of the mean. ***, P < 0.05 in comparison to DMSO by one-way ANOVA with Dunnett’s multiple-comparison test.
Vindesine sulfate blocks reovirus replication at early times of infection. (A) CCL2 HeLa cells were incubated with DMSO, 20 mM NH₄Cl, or 1 μM vindesine sulfate, adsorbed with T3SA+ at an MOI of 5 PFU/cell, and incubated in the presence of inhibitors for 20 h. Alternatively, cells were incubated with 1 μM vindesine sulfate immediately following adsorption or at 1-h intervals after adsorption. Cells were scored for infection by indirect immunofluorescence. (B) CCL2 HeLa cells were incubated with DMSO, NH₄Cl, or vindesine sulfate, adsorbed with T3SA+ virions or ISVPs at an MOI of 1.63 x 10⁴ particles/cell, and incubated in the presence of inhibitors for 20 h. Cells were scored for infection by indirect immunofluorescence. Results are presented as percent mean fluorescence intensity compared with DMSO, normalized to cell number and background fluorescence, for triplicate experiments. ***, P < 0.005 in comparison to DMSO by one-way ANOVA with Dunnett’s multiple-comparison test.

Vindesine sulfate impairs reovirus access to intracellular acidified compartments. To determine whether vindesine sulfate alters transport of reovirus to acidified compartments during cell entry, CCL2 HeLa cells were treated with DMSO or 1 μM vindesine sulfate for 1 h, adsorbed with reovirus labeled with a pH-sensitive dye (pHrodo), and incubated for 0, 60, or 120 min. The fluorescence intensity of intracellular virus was quantified by flow cytometry (Fig. 4B). In DMSO-treated cells, mean fluorescence intensity increased over time, indicating that virions gain access to an acidified compartment between 60 and 120 min after adsorption, consistent with prior studies of the kinetics of reovirus delivery to acidified endosomes (13, 30). In contrast, mean fluorescence intensity was dampened during the interval of reovirus entry into vindesine sulfate-treated cells. Importantly, microtubule-inhibiting drugs do not affect the intraluminal pH of endosomes (31). These data suggest that vindesine sulfate impairs reovirus infection by impeding transport of virions to acidified intracellular organelles.

During cell entry, reovirus traverses through Rab5-marked early endosomes en route to Rab7- and Rab9-marked late endosomes for proteolytic disassembly (12). To determine whether vindesine sulfate treatment leads to retention of reovirus particles in early endosomes, CCL2 HeLa cells were transfected with enhanced green fluorescent protein (EGFP)-Rab5A, incubated with DMSO or 1 μM vindesine sulfate for 1 h, adsorbed with Alexa-labeled reovirus, incubated for 120 min, and imaged by confocal microscopy. Analysis of the spectral overlap of fluorescently labeled virions and Rab5A-positive compartments showed no statistically significant difference in the percentages of virions in early endosomes in cells treated with either DMSO or vindesine sulfate (Fig. 4C). These data suggest that inhibition of microtubule function by vindesine sulfate does not lead to an accumulation of reovirus particles in early endosomes.

In a complementary experiment, CCL2 HeLa cells were incubated with DMSO or 1 μM vindesine sulfate for 1 h, adsorbed with Alexa-labeled reovirus, and incubated for 60 or 120 min. Cells were stained for lysosomal-associated membrane protein 1 (LAMP1) to identify late endosomes and lysosomes (Fig. 4D). Analysis of the spectral overlap of fluorescently labeled virions and LAMP1-positive compartments revealed a higher percentage of viral particles distributed to LAMP1-positive endosomes in control-treated cells than in those treated with vindesine sulfate (Fig. 4E). Concordant with these observations, vindesine sulfate decreased reovirus colocalization with Rab7-marked endosomes compared to that seen with control-treated cells (data not shown). Together, these data indicate that although vindesine sulfate does not inhibit reovirus internalization or lead to retention of virus in early endosomes, the drug impedes efficient transport of virions to acidified intracellular compartments where viral disassembly takes place.

Reovirus requires dynein 1 to efficiently infect cells. To determine whether reovirus uses minus-end microtubule motor dy-
nein 1 for transport into the cell interior, HBMECs were transfected with small interfering RNAs (siRNAs) specific for the dynein 1 heavy chain, adsorbed with reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D), incubated for 48 h, and scored for infection by indirect immunofluorescence (Fig. 5A). Of the cell lines used in this study, diminished expression of dynein 1 caused by RNAi treatment is most efficient in HBMECs (data not shown). Consistent with a requirement for microtubule function for efficient reovirus infection, diminished dynein 1 heavy chain expression caused by RNAi treatment decreased infection by both T1L and T3D. To further define the role of dynein 1 in reovirus cell entry, cells were adsorbed with T1L, incubated for 20 min, stained for reovirus and dynein 1 heavy chain, and imaged by confocal microscopy. Virions were observed in close proximity to dynein 1 in both HBMECs (Fig. 5B) and CCL2 HeLa cells (Fig. 5C), suggesting that reovirus uses dynein 1 to promote cell entry. Together, these data indicate that reovirus requires the microtubule minus-end motor dynein 1 to efficiently infect cells.

CHKV does not require microtubules to infect cells. Chikungunya virus (CHKV), a mosquito-transmitted alphavirus that causes epidemics of arthritis (32), requires acidification to efficiently enter cells, but unlike reovirus, CHKV does not require access to late endosomes (33). To determine whether vindesine sulfate inhibits CHKV infection, BHK-21 cells, which are susceptible to CHKV, were treated with DMSO or 1 μM vindesine sulfate for 1 h, adsorbed with CHKV vaccine strain 181/25 or virulent strain SL15649, incubated for 10 h, and scored for infection by indirect immunofluorescence (Fig. 6A and B). In contrast to findings made in our studies of reovirus, vindesine sulfate did not impair CHKV infection, suggesting that CHKV does not require microtubule function to efficiently enter cells. These results are in agreement with a requirement for microtubules in the maturation of early to late endosomes (34) and provide additional evidence that the drug does not impair reovirus infection by nonspecific cytotoxic effects.

Vindesine sulfate alters reovirus disassembly kinetics. As a final experiment to define the step in reovirus replication blocked by microtubule inhibitors, we tested whether inhibition of microtubule function alters the kinetics of reovirus disassembly. CCL2 HeLa cells were treated with DMSO or 1 μM vindesine sulfate for
1 h, adsorbed with reovirus, and incubated from 0 to 120 min. Whole-cell lysates were resolved by SDS-PAGE and immunoblotted using a reovirus-specific antiserum to detect viral capsid protein /H9262 and its major cleavage fragment, /H9254 (Fig. 6C). In control-treated cells, /H9254 was detected by 20 min, with increasing band intensity noted over the experimental time course. In vindesine sulfate-treated cells, /H9254 was not detected until 60 min after adsorption. Densitometric analysis of three independent experiments showed delayed /H9262-to-/H9254 conversion at all times tested in vindesine sulfate-treated cells in comparison to control cells (Fig. 6D). We conclude that inhibition of microtubule function leads to inefficient access to acidified endosomal compartments, which in turn delays the disassembly of internalized virions.

DISCUSSION

In this study, we found that reovirus colocalizes with microtubule tracks during cell entry and requires microtubule function and microtubule motor dynein 1 to efficiently traverse the endocytic pathway. Microtubule function is not required for internalization of reovirus virions but rather facilitates targeting of reovirus to acidified endosomes for viral disassembly. Treatment of cells with microtubule inhibitors blocks reovirus infection in a temporal window in which the virus transits from early to late endosomes. These results highlight a new function for microtubules in reovirus replication and suggest that impairment of microtubule activity might diminish infection by viruses that require access to late endosomes to establish productive infection.

Endocytic uptake of macromolecular cargo requires the coordinated action of several host factors, including receptors, Rab GTPases, and enzymes that regulate endocytic transport by modifying targets at specific intracellular sites. For some cargo, microtubules and microtubule-associated motors are required for transport to and from the cell surface. Importantly, the maturation of early to late endosomes is dependent on microtubule function (34). Rab-interacting lysosomal protein (RILP), a Rab7 adapter, recruits dynactin and dynein to late endosomes, promoting late endosome movement toward the cell interior (35). Reovirus is transported to Rab7-marked endosomes during cell entry (13), and expression of dominant-negative RILP inhibits reovirus infection (13). Thus, disruption of microtubule function appears to delay reovirus disassembly by slowing the maturation of the reovirus-containing endosomal fraction. This model is supported by the observed decrease in colocalization of reovirus with LAMP1-marked endosomes. Additional support comes from the
Our report highlights the potential for drugs that inhibit endosomal maturation for use as broadly active anti-infectives. Such drugs could inhibit viruses, bacteria, bacterial toxins, and parasites that require access to late endosomes and lysosomes to mediate pathological effects. Avian reovirus, a fusogenic reovirus that, unlike mammalian reovirus, enters cells via caveolin-1 and causes infected cells to form syncytia (36, 37), also uses microtubules to enter cells (36). This finding suggests that employment of microtubules by fusogenic and nonfusogenic reoviruses is a conserved cell entry mechanism despite the use of different endocytic uptake pathways. Adenovirus (38) and Borna disease virus (39) also use microtubules and microtubule motors during cell entry (40). *Enterococcus faecalis* requires microtubules for efficient internalization into cells (41). Cytotoxic necrotizing factor 1 (CNF1), a toxin produced by some pathogenic *Escherichia coli* strains, requires microtubule function to access late endosomes for the processing required for cytotoxicity (42). Flubendazole, a compound identified in our screen as impairing reovirus cytotoxicity, inhibits infection by nematodes (43). While currently available microtubule-inhibiting compounds are associated with significant adverse effects (21), it is possible that safer agents could be developed for anti-infective therapies that transiently inhibit endosomal maturation.

Reovirus strain T3D, which has been trademarked as Reolysin, is being evaluated in clinical trials for efficacy as an oncolytic agent in combination with various chemotherapeutic drugs, including the microtubule inhibitor docetaxel (5). Our findings suggest that pairing reovirus with microtubule-inhibiting agents during oncolytic therapy may limit virus-induced cell killing. Cancer treatment regimens that use reovirus and microtubule-inhibiting drugs may be more efficacious if the administration of virus and chemotherapeutic is not simultaneous. We found that addition of vindesine sulfate to reovirus-infected cells at up to 1 h after infection fails to significantly diminish infection. Thus, we think it important to assess the effects of pharmacological agents on viral infectivity when these treatments are used in combination.

The NCC screen yielded six candidate compounds that do not target microtubules. Procarbazine, which promotes DNA damage (44), and 6-azauridine, which inhibits pyrimidine synthesis (45), likely impair reovirus replication by affecting viral transcription or genome replication. The identification of nicotinic acetylcholine receptor and serotonin receptor agonists as drugs that impair reovirus-induced cytotoxicity points to interesting cellular targets. The nicotinic acetylcholine receptor is expressed in the brain (46), and serotonin receptors are expressed in both the brain and gastrointestinal tract (47). Both of these organs are sites for reovirus replication in the infected host (1). Finally, the identification of indomethacin, which inhibits cyclooxygenase 1 and 2 (48), suggests a yet-uncharacterized function for cyclooxygenases in reovirus replication. Further studies are required to determine whether these drugs inhibit reovirus replication and to define the antiviral mechanisms by which they act.

The identification of host molecules that regulate steps in viral replication enhances an understanding of how viruses use basic cellular processes to propagate and disseminate. These studies also yield new knowledge about cellular functions and illuminate new targets for antiviral drug development. In this study, we used a high-throughput screening approach to identify microtubules and microtubule motor dynein 1 as host factors required for reovirus cell entry, initiation of infection, and consequent cell death.
Vindesine sulfate does not affect CHKV infection but alters reovirus disassembly kinetics. (A) BHK-21 cells were incubated with DMSO or 1 μM vindesine sulfate, adsorbed with CHKV strain 181/25 or SL15649 at an MOI of 1 PFU/cell, and incubated with DMSO or vindesine sulfate for 10 h. Cells were stained with CHKV-specific antisera and DAPI to detect nuclei. Infection was quantified by indirect immunofluorescence. Results are presented as percent infected cells from triplicate wells. Error bars indicate standard deviations. (B) Images of DMSO- or vindesine sulfate-treated BHK-21 cells infected with CHKV strain 181/25 or SL15649 and stained with CHKV-specific antisera. (C) CCL2 HeLa cells were incubated with DMSO or 1 μM vindesine sulfate, adsorbed with T3SA+ at an MOI of 10 PFU/cell, and incubated with DMSO or 1 μM vindesine sulfate for the times shown. Whole-cell lysates were immunoblotted using reovirus-specific antisera. (D) Densitometric analysis of the δ cleavage fragment of reovirus μ1 protein from triplicate experiments. Error bars indicate standard errors of the mean. The key indicates times in minutes.

Findings made in this study should contribute to the development of improved strategies for use of reovirus as an oncolytic and establish a platform for testing microtubule inhibitors as anti-infective agents.

MATERIALS AND METHODS

Cells, viruses, chemical inhibitors, and antibodies. Spinner-adapted murine L929 cells, CCL2 HeLa cells, HeLa S3 cells, and HBMECs were cultivated as previously described (13, 28). BHK-21 and Vero81 cells were cultivated in Alpha minimal essential medium (MEM) (Sigma) supplemented to contain 5% fetal bovine serum (FBS) (Vero81) or 10% FBS (BHK-21) and l-glutamine. Medium for all cells was supplemented with penicillin-streptomycin (Invitrogen) and amphotericin B (Sigma).

Purified virions of reovirus strains T1L, T3D, and T3SA+ were prepared by plaque purification and passage using L929 cells as previously described (12, 13, 28). ISVPs were generated by treating particles with α-chymotrypsin (Sigma) as previously described (12). Reovirus virions were labeled with succinimidyl ester Alexa Fluor 546 (A546) or pHrodo (Invitrogen) as previously described (13).

CHKV strain 181/25 was provided by Robert Tesh (University of Texas Medical Branch). Viral RNA was isolated from plaque-purified isolate, and cDNA was generated using random hexamers. Overlapping fragments were amplified, cloned into pCR2.1 TOPO (Invitrogen), and sequenced. The 5′ untranslated region was sequenced using 5′ rapid amplification of cDNA ends. An infectious clone was synthesized by GenScript (Piscataway, NJ) in four fragments. Genome fragments were assembled and subcloned into pSinRep5 low-copy-number plasmid. The CHKV strain SL15649 infectious clone was provided by Mark Heise (University of North Carolina at Chapel Hill) (49). Infectious clone plasmids for 181/25 and SL15649 were linearized and transcribed in vitro using an mRNAexpression mMachine SP6 transcription kit (Ambion). BHK-21 cells were electroporated with viral RNA and incubated at 37°C for 24 h. Supernatants containing progeny virus were harvested from electroporated cells and stored at −80°C. All experiments using SL15649 were performed using biosafety level 3 conditions.

Ammonium chloride (NH₄Cl, Gibco) was resuspended in water. E64-d, colchicine, nocodazole (Sigma), docetaxel, flubendazole, and vindesine sulfate (Sequoia Research Products) were resuspended in DMSO. The immunoglobulin G (IgG) fraction of a rabbit antiserum raised against T1L or T3D was purified as previously described (6). LAMPA-specific and dynin heavy chain-specific monoclonal antibodies (Abcam), α-tubulin-specific monoclonal antibody (Cell Signaling Technology), actin-specific monoclonal antibody (Santa Cruz Biotechnology), and CHKV-specific antiserum (ATCC) were used for indirect immunofluorescence experiments, infectivity assays, and immunoblot analyses. Alexa Fluor-conjugated antibodies (Invitrogen) were used as secondary antibodies.

Cell viability assay. HeLa S3 cells were incubated with OMEM-1 (In-vitrogen) medium containing DMSO, E64-d, NH₄Cl, or microtubule inhibitors at 37°C for 1 h and adsorbed with T3SA+ at a multiplicity of infection (MOI) of 200 PFU/cell in the presence of DMSO, E64-d, NH₄Cl, or microtubule inhibitors in OMEM-1 medium at 37°C for 48 h. Cell viability was quantified using the Cell Titer Glo assay.

Quantification of reovirus infectivity. Reovirus infectivity was assessed by indirect immunofluorescence (50). Cells were incubated with complete medium containing DMSO or chemical inhibitors at 37°C for 1 h, adsorbed with reovirus at room temperature for 1 h, and incubated with complete medium containing DMSO or chemical inhibitors at 37°C for 20 h. Cells were fixed and stained with reovirus-specific antisera and goat anti-rabbit IRDye 800 (Li-COR), DRAQ5 (Cell Signaling), and Saphire700 (Li-COR). Immunofluorescence was detected using a Li-COR Odyssey infrared imaging system (Li-COR). Infectivity was quantified using the In-Cell Western feature of the Odyssey software suite.

Confocal microscopy of reovirus-infected cells. Confocal microscopy of reovirus-infected cells was performed as previously described (12, 13). HeLa CCL2 cells were incubated with complete medium containing DMSO or vindesine sulfate at 37°C for 1 h. Cells were adsorbed with reovirus at an MOI of 2 × 10⁴ particles/cell and either fixed with ice-cold methanol or incubated in complete medium containing DMSO or vindesine sulfate at 37°C for 120 min followed by fixation with ice-cold methanol. Cells were incubated with reovirus-specific polyclonal and α-tubulin-specific antisera followed by Alexa Fluor IgG A488 or A546.
Coverslips were placed on slides using aqua-Poly/Mount mounting medium (Polysciences, Inc.).

Colocalization of reovirus particles with Rab5A-positive endosomes was assessed by transfecting CCL2 HeLa cells with EGFP-Rab5A (13) using Eugene 6 (Roche). Cells were incubated at 37°C for 24 h, incubated with medium containing DMSO or vindesine sulfate at 37°C for 1 h, adsorbed with A546-labeled reovirus at an MOI of 10⁴ particles/cell, incubated with complete medium containing DMSO or vindesine sulfate for 120 min, fixed for 20 min with 10% formalin, quenched with 0.1 M glycine, washed with phosphate-buffered saline (PBS), and placed on slides using aqua-Poly/Mount mounting medium.

Colocalization of reovirus particles with LAMP1-positive endosomes was determined by incubating CCL2 HeLa cells with complete medium containing DMSO or vindesine sulfate at 37°C for 1 h followed by adsorption with A546-labeled reovirus at an MOI of 10⁴ particles/cell and incubation with complete medium containing DMSO or vindesine sulfate for various intervals, after which the cells were fixed and stained with LAMP1-specific antibody. Colocalization of reovirus particles with dynein 1 was determined by adsorbing HBMECs or CCL2 HeLa cells with reovirus at an MOI of 10⁴ particles/cell, after which the cells were incubated with complete medium for 20 min, fixed in methanol, and stained with reovirus-specific antiserum and dynein heavy chain-specific antibody.

Images were captured using a Zeiss LSM 510 Meta laser scanning confocal microscope and a 63×/1.40 numerical aperture (NA) Plan-Apochromat oil objective. Pinhole sizes were identical for all fluoros. Images were normalized for pixel intensity, brightness, and contrast. Single sections of 0.39 μm thickness from a Z-stack are presented. Colocalization was determined using the Profile function of LSM Image software (Zeiss) (12, 13).

Flow cytometric analysis of reovirus internalization. CCL2 HeLa cells were treated with DMSO or vindesine sulfate in complete medium at 37°C for 1 h and adsorbed with A546-labeled reovirus at an MOI of 5 × 10⁴ particles/cell at room temperature for 1 h. The inoculum was removed, and cells were incubated with complete medium containing DMSO or vindesine sulfate for various intervals. Cells were detached with Cellstripper (Cellgro) at 37°C for 15 min, quenched with fluorescence-activated cell sorter (FACS) buffer (PBS with 2% FBS), and stained with reovirus-specific polyclonal antisera. Immunoblots were quantified by densitometry analysis using Odyssey software.

Statistical analysis. Mean values for at least triplicate experiments were compared using one-way analysis of variance (ANOVA) with Dunnnett’s multiple-comparison test (Graph Pad Prism). P values of <0.05 were considered to be statistically significant. Alternatively, samples were compared using an unpaired Student’s t test (Graph Pad Prism). P values of <0.05 were considered to be statistically significant.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00405-13/-/DCSupplemental.

Text S1, DOCX file, 0.1 MB. Figure S1, TIF file, 8.9 MB. Table S1, PDF file, 0.1 MB.

ACKNOWLEDGMENTS

We thank Jennifer Konopka and Caroline Lai for critical review of the manuscript. We are grateful to members of the Dermyoty laboratory for useful suggestions during the course of this study. Small-molecule screening was conducted with assistance from the Vanderbilt High-Throughput Screening Facility. Confocal microscopy experiments were conducted in the Vanderbilt Cell Imaging Shared Resource. Flow cytometry experiments were performed in the Vanderbilt Cytometry Shared Resource.

This work was supported by Public Health Service awards T32 HL07751 (B.A.M. and A.W.A.), F32 A1801082 (B.A.M.), R01 AI32539 (T.S.D.), and U54 AI057157 (T.S.D.) and by the Elizabeth B. Lamb Center for Pediatric Research. Additional support was provided by Public Health Service awards P30 CA68485 for the Vanderbilt-Ingram Cancer Center and P60 DK20593 for the Vanderbilt Diabetes Research and Training Center.

REFERENCES

1. Dermyoty TS, Parker J, Sherry B. 2013. Orthoreoviruses. pp. 1304–1346. In: Knipe DM, Howley PM (ed.), Fields virology, vol. 2, 6th ed., Lippincott Williams & Wilkins, Philadelphia, PA.
2. Ouattara LA, Barin F, Barthes MA, Bonnabaud B, Roingeard P, Goudeau A, Castelnau P, Vernet G, Paranhos-Baccalá G, Komurian-Pradel F. 2011. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg. Infect. Dis. 17:1436–1444.
3. Kobayashi T, Antar AA, Boehme KW, Danthi P, Eby EA, Guggielmi KM, Holm GH, Johnson EM, Maginnis MS, Naik S, Skelton WB, Wetzel JD, Wilson GJ, Chappell JD, Dermyoty TS. 2007. A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1:147–157.
4. London SD, Cebra-Thomas JA, Rubin DH, Cebra JJ. 1990. CD8 lymphocyte subpopulations in Peyer’s patches induced by reovirus serotype 1 infection. J. Immunol. 144:3187–3194.
5. Maitra R, Ghalib MH, Godl S. 2012. Reovirus: a targeted therapeutic—progress and potential. Mol. Cancer Res. 10:1514–1525.
6. Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermyoty TS. 2001.
Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J. Biol. Chem. 276:220–2211.

Reiss K, Stencel JE, Liu Y, Blaum BS, Reiter DM, Feizi T, Dermdy TS, Stehle T. 2012. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus. PLoS Pathog. 8:e1003078. doi: 10.1371/journal.ppat.1003078.

Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermdy TS. 2001. Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451.

Campbell JA, Schelling P, Wetzel JD, Johnson EM, Wilson GA, Forrest JC, Arrand-Lions M, Imhof BA, Stehle T, Dermdy TS. 2005. Junctional adhesion molecule-A serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J. Virol. 79:7967–7978.

Forrest JC, Campbell JA, Schelling P, Stehle T, Dermdy TS. 2003. Structure-function analysis of reovirus binding to junctional adhesion molecule 1. Implications for the mechanism of reovirus attachment. J. Biol. Chem. 278:48434–48444.

Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickson SK, Santerro SA, Zutter MM, Nemerov GR, Bergelson JM, Dermdy TS. 2006. Beta-1 integrin mediates internalization of mammalian reovirus. J. Virol. 80:2760–2770.

Mainou BA, Dermdy TS. 2012. Src kinase mediates productive endocytic sorting of reovirus during cell entry. J. Virol. 85:3203–3213.

Mainou BA, Dermdy TS. 2012. Transport to late endosomes is required for efficient reovirus infection. J. Virol. 86:8346–8358.

Ebert DH, Deussing J, Peters G, Dermdy TS. 2002. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J. Biol. Chem. 277:24609–24617.

Boulant S, Stanifer M, Caturel D, Cureton DK, Massol R, Nibert ML, Kirchhausen T. 2002. Novel aspects of natural and synthetic entry of reovirus into the cytoplasm. J. Virol. 76:7967–7978.

Jordan MA. 2008. Induction of conformation changes in the viral capsid hexon subunit. Cell Host Microbe 6:153–163.

Hubert S, Deussing J, Peters G, Dermdy TS. 2002. Cell entry of reovirus into mammalian cells does not require cathepsin L. J. Biol. Chem. 277:1680–1685.

Duflos A, Kruczynski A, Barret JM. 2002. Novel aspects of natural and synthetic entry of reovirus into the cytoplasm. J. Virol. 76:7967–7978.

Weatherbee JA, Luftig RB, Weihling RR. 1978. In vitro polymerization of microtubules from HeLa cells. J. Cell Biol. 78:47–57.

Doyle JD, Dantti P, Kendall EA, Ooms LS, Wetzel JD, Dermdy TS. 2012. Molecular determinants of proteolytic disassembly of the reovirus outer capsid. J. Biol. Chem. 287:8029–8038.

Bayer N, Schoder D, Prcil E, Murphy RF, Blaaas D, Fuchs R. 1998. Effect of bafilomycin A1 and nocodazole on endocytic transport in Hela cells: implications for viral uncoating and infection. J. Virol. 72:9645–9655.

Pastorino B, Myumbe-Tamum Jl, Bessaud M, Tock F, Tolou H, Durand JP, Peyrefitte CN. 2004. Epidemic resurgence of chikungunya virus in democratic republic of the Congo: identification of a new Central African strain. J. Med. Virol. 74:277–282.

Bernard E, Solignat M, Gay B, Chazal N, Higgs S, Devaux C, Briant L. 2010. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One 5:e11479. doi: 10.1371/journal.pone.0011479.

Huotari J, Helenius A. 2011. Endosome maturation. EMBO J. 30:3481–3500.

Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H, Wubbolts R, Neefjes J. 2001. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynnein-dynactin motors. Curr. Biol. 11:1680–1685.

Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. 2011. Cell entry of avian reovirus follows a caspase-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J. Biol. Chem. 286:30780–30794.

Salsman J, Top D, Boutliere J, Duncan R. 2005. Extensive syncytium formation mediated by the reovirus FAST proteins triggers apoptosis-induced membrane instability. J. Virol. 79:8090–8100.

Bremner KH, Scherer J, Yi J, Verhagen M, Gross SP, Vallee RB. 2009. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 6:553–535.

Clemente R, de la Torre JC. 2009. Cell entry of Borna disease virus follows a clathrin-mediated endocytosis pathway that requires Rab5 and microtubules. J. Virol. 83:10406–10416.

Hsieh MJ, White PJ, Pouton CW. 2010. Interaction of viruses with host cell molecular motors. Curr. Opin. Biotechnol. 21:633–639.

Millán D, Chiriboga C, Patarnello M, Fontanilla MR. 2013. Entero- coccus faecalis internalization in human umbilical vein endothelial cells (HUVEC). Microbiol. Pathog. 57:62–69.

Contamin S, Galmiche A, Doye A, Flatau G, Benmerah A, Bouquet P. 2000. The p21 Rho-activating toxin cytotoxic necrotizing factor 1 is endocytosed by a clathrin-independent mechanism and enters the cytosol by an acidic-dependent membrane translocation step. Mol. Biol. Cell 11:1775–1787.

Hanser E, Mehlhorn H, Hoeben D, Vlamink K. 2003. In vitro studies on the effects of flubendazole against Toxocara canis and Ascaris suum. Parasitol. Res. 89:63–74.

Eirikson JM, Tweedie DJ, Ducore JH, Prough RA. 1989. Cytotoxicity and DNA damage caused by the azoxy metabolites of procabazine in L1210 tumor cells. Cancer Res. 49:127–133.

Tatibana M, Kita K, Asai T. 1982. Stimulation by 6-azauridine of car- bamylo phosphate synthesis for pyrimidine biosynthesis in mouse spleen slices. Eur. J. Biochem. 128:625–629.

Changeux JP. 2012. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J. Biol. Chem. 287:43057–43079.