Supplementary Materials

Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe$_2$

V.V. Atuchin1,2, Fei Liang3, S. Grazhdannikov4,5, L.I. Isaenko4,5, P.G. Krinitsin4,5, M.S. Molokeev5,6,7, I.P. Prosvirin8, Xingxing Jiang3, Zheshuai Lin3

1Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia

2Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090, Russia

3Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

4Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia

5Laboratory of Functional Materials, Novosibirsk State University, Novosibirsk 630090, Russia

6Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

7Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia

8Surface Science Laboratory, Boreskov Institute of Catalysis, SB RAS, Novosibirsk 630090, Russia
Table S1. Fractional atomic coordinates and isotropic displacement parameters (Å2) of LiGaTe$_2$

	x	y	z	U_{iso}
Te	0.26834 (18)	3/4	1/8	0.0138 (5)
Ga	0	0	1/2	0.0201 (11)
Li	0	0	0	0.0126
Table S2. Main bond lengths (Å) of LiGaTe$_2$

Bond	Length (Å)	Symmetry Code
Ga—Tei	2.6086 (7)	
Li—Teii	2.7462 (7)	

Symmetry codes: (i) -y+1/2, x-1/2, -z+1/2; (ii) x, y, z.
T, K	Space group	Cell parameters (º, Å), Cell volume (Å³)	R_{DDM}, R_B (%)	χ^2
303	$I-42d$	$a = 6.33859$ (11), $c = 11.7040$ (2), $V = 470.24$ (2)	14.64, 6.7	1.14
323	$I-42d$	$c = 11.7030$ (3), $V = 470.55$ (3)	15.24, 7.85	1.21
343	$I-42d$	$a = 6.34095$ (16), $c = 11.7011$ (4), $V = 471.06$ (3)	15.30, 7.90	1.16
363	$I-42d$	$c = 11.6991$ (4), $V = 471.41$ (3)	15.60, 7.79	1.16
383	$I-42d$	$a = 6.34710$ (16), $c = 11.6979$ (4), $V = 471.74$ (3)	15.60, 8.21	1.12
403	$I-42d$	$a = 6.35063$ (16), $c = 11.6969$ (3), $V = 471.74$ (3)	16.17, 7.21	1.15
423	$I-42d$	$c = 11.6955$ (5), $V = 472.02$ (4)	16.4, 8.57	1.10
443	$I-42d$	$a = 6.35603$ (16), $c = 11.6914$ (2), $V = 472.17$ (2)	13.52, 8.17	1.18
463	$I-42d$	$c = 11.6900$ (2), $V = 472.51$ (2)	14.25, 7.73	1.20
483	$I-42d$	$a = 6.36001$ (11), $c = 11.6875$ (2), $V = 472.51$ (2)	13.86, 8.10	1.20
503	$I-42d$	$a = 6.3626$ (1), $c = 11.6854$ (2), $V = 473.05$ (2)	14.00, 8.37	1.19
523	$I-42d$	$c = 11.6826$ (2), $V = 473.26$ (2)	14.84, 7.99	1.22
543	$I-42d$	$a = 6.36473$ (12), $c = 11.6805$ (2), $V = 473.59$ (2)	14.86, 9.01	1.21
563	$I-42d$	$a = 6.3700$ (1), $c = 11.6779$ (2),	15.69, 8.35	1.23
\(\nu = 473.85 \) (2)
Figure S1. The diagram of vibrational mode of 75.14 cm$^{-1}$.
Fig 2. Survey photoelectron spectrum of LiGaTe$_2$.
Figure S3. C 1s core level.
Figure S4. O 1s band.
Figure S5. Electronic band structure of LiGaTe$_2$, calculated by PBE functional.
Figure S6. The calculated density of states of LiGaTe$_2$. (a) GGA+U, (b) GGA.
Figure S7. The calculated refractive indexes and birefringence of LiGaTe$_2$ crystal.