Antimicrobial and phytochemical analysis of methanolic leaf extracts of *Terminalia catappa* against some human pathogenic bacteria

Dr. Ramya Lalam

DOI: https://doi.org/10.22271/phyto.2020.v9.i1t.10621

Abstract

Antibiotic resistance is one of the greatest threats of the 21st century. Scientists search for potential antimicrobial sources that can cope with antibiotic resistance. Plants of our community could be excellent source of drugs to fight off this problem. This study is focused on exploring antimicrobial properties of plants against some human pathogens. The antimicrobial potential of 20 methanic plant extracts was screened against 8 pathogenic bacteria by agar well diffusion method. The result indicated that the highest potential was observed in the methanolic extracts exhibited by leaves of *Terminalia catappa* against all pathogenic bacteria tested with zone of inhibition more than 20mm in all strains. The phytochemical screening of methanolic extracts of *T. catappa* revealed that they are positive for phyto chemicals; alkaloids, flavonoids, anthraquinones, tannins, steroids, phenols, quinones and saponins. The presence of these biologically active compounds in *T. catappa*, a valuable medicinal plant support that this plant is being used as medicine for curing various diseases in traditional medicinal systems and can also be employed in the treatment of various ailments in medicine too.

Keywords: *Terminalia catappa*, antimicrobial potential, phytochemical screening, antibiotic resistance

Introduction

Antimicrobial agents are essentially important in reducing the global burden of infectious diseases [1]. Nature has provided a source of medicinal agents for thousands of years and an impressive number of modern drugs have been isolated from natural sources, many based on their use in traditional medicine [2]. Thus the need to find new antimicrobial agents is of paramount importance.

Plants are rich in a wide variety of secondary metabolites such as tannins, alkaloids, phenolic compounds, quinones and flavonoids, which have been found invitro to have antimicrobial properties [3, 4]. A number of phytotherapy manuals have mentioned various medicinal plants for treating infectious diseases as urinary tract infections, gastro intestinal diseases, respiratory diseases and cutaneous infections. *Terminalia catappa* L. belongs to the family Combretacea. *T. catappa* is used primarily as an ornamental, shade and salt- tolerant street tree, but the leaves provide food for the tasar silkworm, and the seeds are edible like almonds with similar oils. *T. catappa* has been claimed to have therapeutic effects for liver related diseases [5]. In India, it is used as cardiac stimulant, its leaves are widely used as a folk medicine in South East Asia for the treatment of dermatosis and hepatitis [6]. More and more pharmacological studies have reported that *T. catappa* leaves and fruits have anti cancer, anti inflammatory, anti diabetic effects and hepato protective activities [7, 8] but the effective components and related mechanisms remain unknown.

The present study was carried out to analyze antimicrobial activity and biologically active compounds present in *T. catappa* methanolic leaf extracts against some human pathogenic bacteria (standard microbial cultures).

Material and Methods

Preparation of plant extracts: Twenty plant species were collected and predicting to posses bioactive compounds, plant species were collected based on the information available from literature [9, 10, 11] folklore [12] and through field observations. The plant materials were collected in and around Visakhapatnam district, Andhra Pradesh, India. The collected plant materials were washed thoroughly with running tap water and finally with distilled water the material was chopped into small pieces and then air dried on a sterile blotter under shade for 20-30 days.
The completely shade dried plant materials were coarsely powdered and allowed to Soxhlet extraction with methanol for 5-6 hours at temperature not exceeding the boiling point of the solvent and then filtered through Whatman no-1 filter paper. The extracted liquid obtained was subjected to rotary evaporator and subsequently concentrated under reduced pressure (in vaccum at 4 °C). The residues obtained were designated as crude extracts, were labelled and stored in refrigerator for further study [13]. The dried plant extract residues obtained were redissolved in 0.1% Dimethyl Sulfoxide (DMSO) to get necessary concentration of crude extracts and filtration through a 0.45µm membrane filter and stored in sterile brown bottles in a freezer at 20 °C until bio-assayed.

Microorganisms: Based on disease index eight bacterial strains were selected listed in table 1. All the eight microorganisms were purchased from microbial type culture collection and gene bank (MTCC) Chandigarh, India. All the pure cultures were obtained in lyophilized or freeze dried form are reconstituted in sterile water and produced a suspension of the microbial cells, inoculation was done with sterile inoculating loop to liquid broth medium. Liquid cultures are then incubated to allow cell replication and adequate growth of the culture, for use in bio assays. Following incubation, liquid cultures are refrigerated to store for further use. Typically, 24hrs will provide sufficient growth to allow visibly thick spread of the microbes for bio assay. The bacterial strains are maintained and tested on nutrient agar medium.

In vitro antimicrobial assays: The development of simple in vitro prescreens could offer initial idea of the biological activity of plant extracts and its compounds. The antimicrobial activity of bacterial strains listed in Table 1 was performed by agar ditch/ well/ cup diffusion method [14, 15, 16] at desired concentration with DMSO solvent which did not affect the growth of microorganisms.

S.no	Pathogen	MTCC code	Disease
1	Bacillus subtilis	121	Septicemia, wound and burn infections
2	Klebsiella pneumoniae	39	Pneumonia, blood stream infections
3	Streptococcus	889	Scarlet fever, rheumatic fever
4	Psuedomonas mirabilis	425	Urinary tract infections
5	Escherichia coli	476	Urinary tract infections, pneumonia
6	Micrococcus	7527	Bacteremia, meningitis
7	Enterococcus faecalis	439	Urinary tract and nosocomical infections
8	Enterobacter cloaceae	509	Skin infections, meningitis, bacteremia

Table 1: Pathogen index

Determination of Flavonoids
a) Alkaline reagent test: Few ml of test sample was taken and NaOH solution was added to form intense yellow color, which turns into colorless on addition of few drops of dilute acid indicating the presence of flavonoids.
b) Lead acetate test: when aqueous basic lead acetate was added to test sample produces reddish brown precipitate, indicating the presence of flavonoids.
c) Zinc hydrochloride reduction test: A mixture of zinc dust and concentrated hydrochloric acid were added to plant extract solution, immediate development of red color indicates the presence of flavonoids.
d) Shinoda test (Magnesium hydrochloride reduction test): To plant extract solution, few fragments of magnesium ribbon and concentrated hydrochloric acid were added drop wise development of reddish to pink color indicates presence of flavonoids.

Determination of Quinones
a) Alcoholic KOH test: The test sample treated with alcoholic KOH solution, the colors appears from red to blue indicates presence of quinones.
b) NaOH test: Few drops of NaOH were added to test samples blue color indicates presence of quinones.

Determination of Anthraquinones:
a) Borntrager’s test: 5ml of plant extract is to be shaken with 10ml benzene, filtered and 5ml of 10% ammonia solution was added to the filtrate. When the mixture is to be shaken to appear a pink, red or violet color in the ammonical (lower) phase indicates the presence of free hydroxyl- anthraquinones.
b) Modified Borntrager’s test: 2ml of test sample and 4ml of alcoholic KOH, dilute with 4ml of water and filter, then acidify with HCl. Next cool and shake well with 5ml of ether. To separate the ether into test tube and shake with 2ml of dilute solution of NH₄OH. Development of rose red to intense red color indicates of anthraquinones.

Determination of Glycosides
a) Raymond’s test: To the test sample add 0.1 ml of a 1% solution of m-Dinitrobenzene in ethanol followed by 2 drops of 20% NaOH solution which gives violet color indicates presence of glycosides.
b) Legal’s test: The test sample was treated with pyridine and sodium nitroprusside solution to developed blood red color.
c) Kellar Kiliani test: 1ml of concentrated H₂SO₄ was taken in a test tube then 5ml of extract and 2ml of glacial
acetic acid with one drop of FeCl₃ were added, formation of a blue color indicates presence of glycosides.

d) **Concentrated Sulphuric acid test:** When few ml of Concentrated H₂SO₄ was added to test sample gives reddish color indicates presence of glycosides.

e) **Bromine water test:** The extract sample treated with bromine water test solution gives yellow precipitate.

f) **Molisch test:** When naphthol and concentrated H₂SO₄ were added to test samples reddish violet ring at the junction of two layers was resulted, responding positive for the presence of glycosides.

Determination of Tannins

a) **Gelatin test:** Gelatin and water were added to test sample in a test tube to formation of white precipitate was resulted, indicating presence of tannins.

b) **Mitchell's test:** Iron and sodium citrate were added to test sample solution, a water soluble iron-tannin complex was formed, in case of tannins present. The complex of iron-tannin is insoluble in ammonium acetate solution.

Determination of Steroids

a) **Salkowski test:** Few ml of concentrated H₂SO₄ were added to extract sample in chloroform, a red color was appeared at the layer lower, which indicates the presence of steroids.

b) **Libermann-Buchard test:** The extraction sample was treated with few drops of acetic anhydride and were boiled, then few drops of concentrated H₂SO₄ was added from the sides of the test tube, shows a brown ring at the junction of the two layers and upper layer turns green which shows the presence of steroids.

Determination of Phenols

a) **Ellagic acid test:** When 5%glacial acetic acid and 5% sodium nitrite were added to extracts a muddy Niger brown color appears, which is a positive result for phenols.

Determination of Saponins

a) **Froth test:** A few ml of test sample taken into a test tube and add upto 20ml of water and shaken vigorously, then left to stand for 10min. A thick persistence froth was resulted indicates presence of saponins.

Results and Discussion

Evaluation of the antimicrobial activity of 20 different methanolic plant extracts was determined by agar well diffusion method against eight human pathogenic bacteria (Table-2). It was observed that *T. catappa* was the most effective among the 20 plant extracts tested. It showed a significant zone of inhibition (ZOI) against all Gram positive and Gram negative bacteria tested (Table-2).

Plant extract	*B. subtilis*	*K. pneumoniae*	*Streptococcus*	*P. mirabilis*	*E. coli*	*Micrococcus*	*E. faecalis*	*E. cloacae*
Z. nummularia	-	8	-	6	-	-	7	8
C. fistula	-	-	-	7	9	7	8	9
D. metel	-	10	-	6	10	-	7	8
L. inermis	9	6	6	6	7	9	7	8
S. nigrum	-	7	9	8	8	9	8	9
A. marmelos	8	7	6	6	-	-	-	7
S. cumini	11	-	-	10	-	-	-	7
B. arundinaceae	-	6	-	7	8	-	-	8
C. papaya	-	8	9	7	7	7	9	-
B. prionites	-	-	-	6	-	-	-	8
S. acuta	-	-	-	6	7	7	7	-
C. laburnifolia	-	7	-	8	8	8	-	10
T. patula	8	10	8	10	7	7	9	10
Eichornia	-	6	6	6	6	-	7	7
P. longum	-	-	8	9	9	-	10	-
T. cordifolia	-	6	-	8	-	-	-	6
T. catappa	33	25	28	25	27	33	32	38
M. heterophylla	-	-	-	6	8	6	8	-
T. f. graecum	-	7	6	7	6	-	7	8
P. guajava	-	-	8	-	-	-	-	-

*Plant extracts 100mg/ml concentration, 50µl in each well.

DIZ- zone of inhibition including 6mm well diameter, is the mean of 3 replicates.

-; indicates no inhibition.

The effectiveness of the extracts in tested bacterial strains was determined by measuring the minimum inhibitory concentration (MIC). MIC was performed for only those organisms which showed a zone of inhibition and were sensitive to the plant extracts. Methanolic leaf extracts of *T. catappa* upto 10mg-1 (W/V) concentrations showed significant activity against all tested pathogens.

Analysis of biologically active compounds of leaf extract of *T. catappa* was done by using standard procedures [17, 18, 19, 20] and results were presented in Table-3. The result shows the presence of flavonoids, alkaloids, steroids, tannins, saponins, quinones, anthraquinones and glycosides. The presence of these secondary metabolites has been reported to account for the exertion of antimicrobial activity by plant. Chloramphenical and penicillin were used as positive controls and their inhibition zones against all bacterial strains were compared with inhibition zones of plant extracts.
Tannins have been found to form irreversible complexes with proline rich proteins resulting in the inhibition of cell protein synthesis. Flavonoids inhibit nucleic acid synthesis, cytoplasmic membrane function, porin on the cell membrane, alteration of the membrane permeability and attenuation of the pathogenicity. Quinines inhibit growth in microbes. Phenols inhibit protein synthesis in microbes. Glycosides alteration of the membrane permeability and attenuation of cytoplasmic membrane function, porin on the cell membrane, synthesis. Flavonoids inhibit nucleic acid synthesis, proline.

Table 3: Phytochemical analysis of leaf extracts of *T. catappa* L.

Phytochemical test	Test result	
1. Alkaloids		
Dрагендорф’s test	+	
Mayer’s test	+	
Hager’s test	+	
Wagner’s test	+	
Tonic acid test	+	
2. Flavonoids		
Alkaline reagent test	+	
Lead acetate test	+	
Zn-HCl reduction test	+	
Shinoda’s test	+	
3. Quinones		
NaOH test	+	
Alcoholic KOH test	+	
4. Anthraquinones		
Borntrager’s test	+	
Modified Borntrager’s test	+	
5. Glycosides		
Raymond’s test	+	
Legal’s test	+	
Kellar Kiliain test	+	
Conc.H2SO4 test	+	
Bromine water test	+	
Moliisch test	+	
6. Tannins		
Gelatin test	+	
Mitchell’s test	+	
7. Steroids		
Salkowski test	+	
Libermann-Buchard test	+	
8. Phenols		
Ellagic acid test	+	
9. Saponins		
Froth test	+	

+, positive (presence of the constituent)

Acknowledgement

I would like to express my special thanks of gratitude to Mr. E. Chandra Shekar, HOD, H&S department, NNRESGI for his able guidance and support that was required.

References

1. Bhattacharjee R, Narain. The growing challenge of antimicrobial resistance in the South-East Asia region—are we losing the battle? Indian Journal of Medical Research. 2010; 132(5):482-486.

2. Cragg GM, Newman DJ. Drugs from Nature: Past achievements, further Prospects, In: Iwu MM and Wootton JC, Eds., Ethnomedicine and Drug Discovery. Elsevier Science, Amsterdam. 2002, 23-37.

3. Duraiappanidyan V, Ayyanar M, Ignacimuthu S. Antimicrobial activity of some ethnemedicinal plants used by Paliyar tribe from Tamilnadu, India, BMC Complementary and Alternative medicine, 2006, 6(35).

4. Djussi DE, Noumedem JAK, Seukey JA et al. Antimicrobial activities of selected edible plants extracts against multidrug- resistant Gram- negative, BMC Complementary and Alternative medicine. 2013, 13(164).

5. Chiu NY, Chang KH. The illustrated Medicinal plants of Taiwan. Vol. 1, SMC Publishing, Inc., Taipei, 1986, 129.

6. Lin CC, Chen YL, Lin JM, Ujiie T. Evaluation of the Antioxidant and Hepatoprotective activity of *Terminalia catappa*. American Journal of Chinese Medicine. 1997; 25(2):153-161.

7. Nagappa AN, Thakurdesai PA, Venkat rao N, Singh J. Antidiabetic activity of *Terminalia catappa* Linn fruits. Journal of Ethnopharmacology. 2003; 88(1):45-50.

8. Xu LZ, Gao J, Zhu L, Lu SY et al. Protective effects of LR-98 on hepatotoxicity induced by carbon tetrachloride and D- galactosamine in mice. Journal of Nanjing university of Natural Science. 2000; 36(2):197-201.

9. Worrier PK, Namibar VP and Ramakutt C. Indian Medicinal Plants. Orient Longman Ltd, 1994-1996, 4.

10. Pulliaiah T. Medicinal Plants in Andhra Pradesh, India, 2002.

11. Narayan Das Prajapati, Purohit SS, Arun Sharma K, Tarun Kumar. A Hand Book of Medicinal Plants. Agrobios, India, 2004.

12. Jain SK, Srivastava. Prospects of Herbal Drugs for Ethno- veterinary Practices (Exp) in North- East India. Nat. Sem. On traditional knowledge base on herbal medicines and plant resources of North- East India, Protection, Utilization and Conservation, Guwahati, Assam, India, 2005, 16.

13. Nostro A, Germano MP, Angelo VD, Marino A, Channatelli MA. Extraction methods and Bio-autography for Evaluation of Medicinal plant Antimicrobial activity. Letters in Applied Microbiology, 2000; 30:379-384.

14. Perez C, Pauli M, Bazerque P. An Antibiotic assay by Agar well diffusion method. Acta Biol, 1990; 15:113-115.

15. Murray PR, Baron EJ, Pfaffer MA, Tenover FC and Yolkern HR. Manual of Clinical Microbiology 6th edition ASM Press, Washington, DC, 1995, 15-18.

16. Setvat Arikan, Victor Paetzinck, John H. Rex., Comparative evaluation of disc diffusion with micro dilution assay in susceptibility testing of Caspofugin against *Aspergillus* and *Fusarium* isolates. Antimicrobial agents and Chemotherapy, 2002, 3084-3087.
17. Trease GE, Evans WC. Pharmacognasy. W. B. Scandars Company Ltd, London. 1989; 14:269-300.
18. Sofowara A. Medicinal plants and Traditional medicines in Africa. John Wily and Sons, New York. 1993; 2:6-56.
19. Brindha P, Sasikala, Purushoth. Preliminary Phytochemical studies of higher plants. Ethnobot. 1997; 3:84-96.
20. Harborne JB. Phytochemical methods given to modern technique of plant analysis. 3rd edition, Chapman and Hall, London, 1998.
21. Babayi H, Kolo I, Okogun JI, Ijah UJJ. The antimicrobial activities of methanolic extracts of *Eucalyptus camaldulensis* and *Terminalia catappa* against some pathogenic microorganisms. Biokemistri. 2004; 16(2):106-111.
22. Fofana S. Exploration biochimique surle pouvoir immunogene de troisplantes en cote d Ivoir: *Alsonia boonei* (Apocynaceae), *Mitragyna ciliate* (Rubiaceae) et *Terminalia catappa* (Combretaceae). These de docteur en Pharmacie. FMPO, Universite de Bamako, 123.