Validity arguments for patient-reported outcomes: justifying the intended interpretation and use of data

Melanie Hawkins1*, Gerald R. Elsworth1, Sandra Nolte2 and Richard H. Osborne1

Abstract

Background: Contrary to common usage in the health sciences, the term “valid” refers not to the properties of a measurement instrument but to the extent to which data-derived inferences are appropriate, meaningful, and useful for intended decision making. The aim of this study was to determine how validity testing theory (the Standards for Educational and Psychological Testing) and methodology (Kane’s argument-based approach to validation) from education and psychology can be applied to validation practices for patient-reported outcomes that are measured by instruments that assess theoretical constructs in health.

Methods: The Health Literacy Questionnaire (HLQ) was used as an example of a theory-based self-report assessment for the purposes of this study. Kane’s five inferences (scoring, generalisation, extrapolation, theory-based interpretation, and implications) for theoretical constructs were applied to the general interpretive argument for the HLQ. Existing validity evidence for the HLQ was identified and collated (as per the Standards recommendation) through a literature review and mapped to the five inferences. Evaluation of the evidence was not within the scope of this study.

Results: The general HLQ interpretive argument was built to demonstrate Kane’s five inferences (and associated warrants and assumptions) for theoretical constructs, and which connect raw data to the intended interpretation and use of the data. The literature review identified 11 HLQ articles from which 57 sources of validity evidence were extracted and mapped to the general interpretive argument.

Conclusions: Kane’s five inferences and associated warrants and assumptions were demonstrated in relation to the HLQ. However, the process developed in this study is likely to be suitable for validation planning for other measurement instruments. Systematic and transparent validation planning and the generation (or, as in this study, collation) of relevant validity evidence supports developers and users of PRO instruments to determine the extent to which inferences about data are appropriate, meaningful and useful (i.e., valid) for intended decisions about the health and care of individuals, groups and populations.

Keywords: Validity testing theory, Validation, Health Literacy Questionnaire, Validity, Quantitative research, Qualitative research, Patient-reported outcome measure, PRO, PROM, Health literacy

* Correspondence: melaniehawkins@swin.edu.au
1Swinburne University of Technology, Centre for Global Health and Equity, School of Health Sciences, PO Box 218, Hawthorn, Melbourne, Victoria 3122, Australia
Full list of author information is available at the end of the article
Background
Contrary to common usage in the health sciences, the term “valid” refers not to the properties of a measurement instrument but to the extent to which data-derived inferences are appropriate, meaningful, and useful for intended decision making [37, 99]. Data from patient-reported outcome measures (PROMs) are increasingly being used to inform decisions about, for example, patient care [69, 90], intervention development [3, 20, 57], and pharmaceutical labelling claims [41, 106]. The U.S. Food and Drug Administration (FDA) puts strong emphasis on qualitative evidence in support of the content (i.e., items, domains and scores specific to population, condition and treatment) of an assessment instrument [106] and Edwards et al. explain how a compelling validity argument includes both quantitative and qualitative evidence [37]. However, the predominant focus of validation in health remains on examination of statistical properties of a measurement instrument when psychometrically sound properties alone cannot justify the use of a PROM’s data for any purpose [24, 40, 111].

Validation is not about a static property of a measurement instrument but rather it is a process of obtaining and synthesising validity evidence [7, 111]. The field of health has little to no history of applying modern validity testing theory and methodology, and these draw on a long history of thinking and debating about validity in education and psychology [5–10, 30, 34, 62, 63, 65, 79, 87, 100, 101]. Until about 1950, validity testing theory was based primarily on content and criterion-related validity [100]. Content validity was mainly used in educational testing to confirm the extent to which a test measured specific course subject matter. Test-criterion correlations were used to validate prediction: for example, to decide about someone’s suitability for a job based on their responses to a vocational interest inventory. In the middle of the twentieth Century, a third type of validity, construct validity, came to prominence [10, 33]. In construct validity, test responses are interpreted as a measure of a theoretical construct, which was particularly important for psychology in the early days of working out how to measure personality and intelligence [33, 100]. These three types of validity became the primary model for validity testing [46]. However, problems arose. There were issues with subjective selection of content, confirmation bias, and adequate representativeness of tasks for content validity [45]. Criterion-related validity was problematic for measuring theoretical constructs that had no directly observable and measurable form, and where there was no existing or appropriate criterion measure [32, 45, 100]. It also became clear that these three aspects of validity were interrelated: criterion-related and content validity began to be seen as integral to the evaluation of construct validity. This dilemma led to Samuel J Messick’s Unified Theory of Validation [79].

Messick built on the work of previous theorists [30, 33, 34] to bring the concepts of content and criterion validity together under the heading of construct validity, as the one Unified Theory of Validation [79]. It was Messick’s often-cited 1989 chapter Validity in the 3rd edition of Educational Measurement [79], and his paper of the same year in Educational Researcher [78], that brought the concept to the forefront of validity testing theory. He said that “The essence of unified validity is that the appropriateness, meaningfulness, and usefulness of score-based inferences are inseparable and that the unifying force behind this integration is the trustworthiness of empirically grounded score interpretation, that is, construct validity” (p.5) [78]. The idea of validity being related to the meaning and use of scores, and not to test properties, took some time to take hold but it remained an undercurrent in validity thinking. The argument for this way of conceptualising validity grew over time and was progressively expressed through the different iterations of the Standards, from the first technical recommendations in 1954 through to the 2014 Standards [5–10]. Worthy of note is the 1985 name change from the Standards for Educational and Psychological Tests to the Standards for Educational and Psychological Testing, which recognised that the focus of validity is on the process of testing rather than on the test itself [6]. Messick extended the idea of validity to incorporate not just test score meaning but also the value implications of score interpretations, as well as the potential social consequences of testing [80, 82]. Messick’s work remains at the core of validity testing theory today and influenced validity theorists such as Kane whose work strongly influenced the 1999 and 2014 Standards [7, 59, 62].

The Standards [7] describes the need for evidence based on five sources (Table 1): test content; response processes of respondents and users; internal structure; relations to other variables; and the consequences of testing as related to a source of invalidity such as construct-irrelevant variance or construct underrepresentation.
Validation methodology
Kane formalised his practical validity testing methodology in his 1990 essay An Argument-based Approach to Validation [25–27, 59, 61, 62, 65]. Following Cronbach [31], the 1985 edition of the Standards [6], and Messick [79], construct validity and the interpretive integration of evidence are central to Kane’s approach. There are two steps to Kane’s argument-based approach to validation:

1. The interpretive argument (also the interpretation/use argument or IUA): Clearly and coherently state the intended interpretation and use of scores, including the chain of inferences that will lead from observed scores through to decisions based on those scores.
2. The validity argument: Evaluate evidence and the construct theory to determine the extent to which these support the interpretive argument.

Kane’s methodology places validation as a process of establishing empirical evidence to build an argument for the validity of the interpretive argument [71]. Interpretive arguments can range from quite simple to more complex depending on what is being measured [25–27, 29, 63]. In his chapter about validation in Educational Measurement (p.17–64; 2006) [63], Kane discusses several common interpretive arguments in education including for the measurement of theoretical constructs (p.43), which involves a degree of complexity. Kane explains that an interpretive argument for a theoretical construct relies on five inferences. These inferences come from Stephen E Toulmin’s practical argument model [104, 105]: 1) scoring, 2) generalisation, 3) extrapolation, 4) theory-based interpretation, and 5) implications (also called utilisation) [25, 63, 104, 105].

The process of validation involves evaluating the interpretive argument by demonstrating that these inferences are supported by evidence and the theory of the construct being measured. That is, a validity argument explains the extent to which the interpretive argument can be trusted.

Most of the interpretive and validity argument research has been done in language testing and in education. One example is the comprehensive development of a validity argument for the new Test of English as a Foreign Language (TOEFL) [25–27]. This extensive undertaking examined the inferences involved in the TOEFL interpretive argument and provided detailed reasoning and evidence for each inference, and why and how to apply Kane’s methodology [25]. The work of Chapelle et al. required a multi-chapter book to build a validity argument for the TOEFL. Building a full validity argument is usually a cumulative effort and may take many years and multiple studies. The papers by RE Hawkins et al. [52] and Hatala et al. [47] comprehensively outline the development of validity arguments for assessments in medical education and review and collate existing validity evidence. Further, Cook et al. [28] offer advice for applying the Standards and Kane to clinical medicine, research and education but they do not develop full interpretive and validity arguments [28]. The 2017 paper of the Montreal Accord on Patient-Reported Outcomes use [99] is an important and detailed review of modern perspectives of measurement validation and PRO scores. The paper references Kane [64] (but not the Standards) and discusses the importance of the accumulation of evidence to support the inferences, actions and decisions that arise from the interpretation of PRO scores. But, again, there is no development of interpretive or validity arguments for PRO scores.

Study rationale
Validity testing theory and methodology are rarely used or even mentioned in validation studies for health assessments [76, 111], yet are recommended generally as best practice for validation planning to avoid piecemeal validity studies that have no focus or synthesis of
The theory-based self-report assessment used in this study was the Health Literacy Questionnaire (HLQ) [94].

The HLQ is a PRO assessment based on a nine-domain theoretical construct of health literacy. Each scale consists of between 4 and 6 items (44 items in total). The HLQ has two parts. Part 1 (scales 1 to 5) uses four-point response options (score range 1–4): strongly disagree, disagree, agree, and strongly agree. Part 2 (scales 6 to 9) uses five-point response options (score range 1–5): cannot do or always difficult, usually difficult, sometimes difficult, usually easy, and always easy. All items are equally weighted and scores for each scale are summed and divided by the number of items in each scale. Results are the nine scale scores. The HLQ has been used in many settings and for different health conditions, including public and private hospitals [55, 56]; health professional students in universities [88, 103]; Indigenous people with chronic disease in remote Australia [97]; community-based clients with diabetes receiving home nursing services [42]; migrant populations [35, 98]; rural fishing villages in Egypt [11]; and cardiac rehabilitation [2].

In our expository study, Kane’s five inferences for theoretical constructs were applied to the existing general interpretive argument for the HLQ [94]. The HLQ development paper provides a broad statement about the intended interpretation and use of HLQ scores: “We sought to develop an instrument that was capable of detecting a wide range of health literacy needs of people in the community, and that could be used for a variety of purposes from describing the health literacy of the population in health surveys through to measuring outcomes of public health and clinical interventions designed to improve health literacy” (p.2) [94]. Based on this statement and the use of the HLQ in studies using the Ophelia (Optimising Health Literacy and Access) process [16, 17], HLQ data are intended to be interpreted as profiles (based on the nine scale scores) of health literacy strengths and needs and used for a range of purposes, such as:

1. describing the health literacy of populations
2. informing foci for health literacy interventions
3. measuring outcomes of public health and clinical interventions designed to improve health literacy.

The indicators of the nine-domain theoretical construct of the HLQ (Table 2) are the 44 items, which are calculated as nine scale scores [94]. Inferences are based on assumptions that the warrants (i.e., the grounds or rules) on which an inference is made are backed by evidence [7, 12, 25–27, 63, 83, 84, 105]. The extent to which an interpretive argument can be justified (i.e., the degree to which it is valid) depends on the generation of corroborating evidence and the detection of threats (i.e., rebuttal arguments). If any one of the five inferences cannot be supported by evidence then justification of the...
Table 2 The five inferences for measurement of theoretical constructs as related to the Health Literacy Questionnaire (HLQ)

1. **Scoring inference**
 - The scoring inference assumes that users of the HLQ will abide by the warrant of the HLQ scoring instructions. The evidence for this inference is derived from development information about the HLQ items, scales and response options and scoring procedures, which includes that scoring is free from bias [7, 63, 94]. Statements about how a study scores a PROM need to be clear because this provides evidence for the assumption that the scoring has taken place as intended. The validity of the scoring inference is the basis for the validity of all other inferences.

2. **Generalisation inference**
 - The warrant for the generalisation inference follows the same principle of any generalisation study: that scores are estimates (representative) of the scores that other similar respondents (from a universe of possible respondents) would get on the same or similar measure (e.g., a translated HLQ). The assumption is that context is not relevant to scale score interpretations (i.e., that time, place, language/culture or other contextual factors do not present validity threats). The Standards state that evidence for generalisation (relations to other variables) stems from meta-analyses and statistical summaries of past studies (e.g., cumulative databases) (p.18) [7]. While reliability evidence is relevant to every inference, it is predominantly applicable to the generalisation inference [47], and is reported as such in this study.

3. **Extrapolation inference**
 - The extrapolation inference is the first step in the process of linking the observed HLQ scores to the nine-domain health literacy theory. It is this inference that underpins the majority of psychometric "construct validity" testing in health measurement. The warrant for this inference is that the HLQ scale scores are accurate representations of the corresponding HLQ health literacy domains (i.e., the target scores). This warrant assumes that the nine scale scores account for a range of attributes, resources and competencies that people need for accessing, understanding, and using health information and services to manage their health [94]. The evidence for this inference [7] includes:
 - information derived from the processes used to develop the HLQ items, scales and response options, and how respondents interpret and understand these;
 - the internal structure of the HLQ domains using methods that, for example, test if response patterns conform to the nine scale scores;
 - and the relationships between the HLQ scales, which while related, are distinctly independent from each other.

4. **Theory-based interpretation inference**
 - The warrant for the theory-based interpretation inference is the nine-domain health literacy theory, which is operationalised in the high and low score descriptions [94]. This warrant assumes that the HLQ health literacy theory (i.e., domain descriptions) explains the scales and items, and that the item and scale scores provide appropriate estimates of the theory [63]. The evidence for this inference is derived from evaluation of the content of the HLQ items and how respondents engage with the items [7].

5. **Implications (or utilisation) inference**
 - The overarching warrant for the implications (or utilisation) inference is the rules for decisions based on HLQ data. Bachman (pp.18–20) [12] describes four specific warrants for a data utilisation argument:
 - Relevance: that the score-based interpretation is relevant to the decision to be made.
 - Utility; that the score-based interpretation is useful for making the intended decision.
 - Intended consequences: that the consequences of using the assessment and making intended decisions will be beneficial to individuals, the program, company, institution, or system, or to society at large.
 - Sufficiency: that the assessment/s provide sufficient information for making the decision.
 - The main assumption underlying these four warrants is that the HLQ health literacy construct (operationalised through the nine scale scores) embodies several factors (the nine theoretical domains) that influence health outcomes (and potentially health equity). The evidence for this assumption is based primarily on the validity-related consequences of data-based decisions [7, 12, 54, 58, 63, 72].

Inferences in relation to the construct theory is uncertain and the validity of the interpretive argument is questionable, perhaps invalid [33, 63, 65]. The sources of evidence, warrants and assumptions associated with Kane’s five inferences are described in relation to the HLQ in Table 2.

After establishing a general interpretive argument, a literature review was conducted to find existing validity evidence for the HLQ. HLQ validity testing studies were collated by the first author (MH) through a search of the peer-reviewed literature in EBSCOhost databases: Academic Search Complete; CINAHL Complete; ERIC; Global Health; MEDLINE Complete; PsycINFO. No limiters were applied. Articles with statements in the title or abstract about undertaking validity testing of the HLQ were included for data extraction. Reference lists of pertinent systematic reviews were scanned for relevant articles, as were article reference lists and the authors’ personal reference lists. This study categorised HLQ data only as sources of validity evidence, as defined by the Standards. Reliability evidence and general study characteristics were also extracted from the articles. A descriptive and frequency analysis approach was used to identify, categorise and count the sources of evidence [48, 50]. The reliability of data extraction and categorisation was ascertained through extensive consultations between MH and GE and with frequent reference to the descriptions of the five sources of evidence in the 2014 Standards. The collated sources of validity evidence were then aligned.
with the five inferences (and underlying warrants and assumptions) of the HLQ interpretive argument, as specified by the Standards.

Results

Figure 1 displays the general HLQ interpretive argument [25–27, 104, 105]. The central vertical arrow denotes Kane’s five inferences for theoretical constructs that connect the data (HLQ raw scores) to the intended interpretation and use of the data [94]. The five inferences rely on one overarching warrant that the nine independent HLQ scale scores can be interpreted as measuring the nine theoretical domains of health literacy and are appropriate for the intended use, as backed by evidence and with acknowledgement of potential threats to the inferential pathway.

Figure 2 shows the connections between the warrants and assumptions and each of the five theory-based inferences of the HLQ [63], which are denoted by the central vertical arrow in Fig. 1 [25]. Figure 2 is read from the bottom to the top – from the observation of raw data up through the assumptions, warrants and inferences that lead to the implications of the interpretation and use of HLQ data. The HLQ raw data are calculated into observed scores on the assumed warrant of the **scoring inference** that scores are calculated as per the HLQ scoring instructions. Next, the **generalisation inference** assumes the warrant that scale scores are representative of a universe of scores from other similar respondents and measures. The **extrapolation inference** links data to theory and assumes the warrant that the nine scale scores are representative of the nine health literacy domains (e.g., scale scores account for real-life attributes, resources and competencies). The **theory-based interpretation inference** assumes the warrant that a relationship exists between the nine-domain theory and the items and scales such that the HLQ scores support profiles of health literacy strengths and needs. Finally, the

Fig. 1 A general interpretive argument for the Health Literacy Questionnaire

Warrant: The 9 HLQ scale scores can be interpreted as measuring the 9 independent domains of health literacy and can be used for a range of purposes related to health literacy actions and decision making.

Evidence: Definitions of the health literacy construct, history of health literacy measurement, and extensive qualitative and quantitative HLQ research and testing with patients, health practitioners, and health policy makers in different contexts.

Raw data: Self-report scores for the 44 items of the Health Literacy Questionnaire (HLQ) are calculated into 9 scale scores that represent 9 theoretical domains of health literacy.

So

Unless

Since

Rebuttal argument: Testing reveals threats to the validity of interpretive inferences, such as construct underrepresentation or construct-irrelevant variance (e.g., as can occur during translation / cultural adaptation).
implications (or utilisation) inference assumes the warrant that the nine theoretical health literacy domains embody factors that affect health outcomes. Evidence to support each of these inferences implies that HLQ data (in the form of the nine scale scores) can be used appropriately and meaningfully for the intended purposes listed in the top row of Fig. 2.¹

¹Note that different types of evidence may be required to support the use of HLQ scale scores for different potential purposes (see the top row of Figure 2). This study provides an example of how to use Kane’s five inferences to develop an overall interpretive argument for a theory-based self-report questionnaire. It also shows, as a general example, how to align the five sources of validity evidence from the Standards with each inference. Future studies are required to define specific interpretive arguments for specific uses of the data and outline or provide the evidence required to determine the extent to which the interpretive argument is valid.

The review resulted in 11 articles in which validity testing of the HLQ had been conducted [19, 36, 39, 43, 51, 53, 68, 74, 86, 92, 94]. Table 3 displays the countries in which these studies were conducted, the years of publication, and the evidence for reliability.

Table 4 displays the number of times the five sources of validity evidence were reported across studies. In total, validity evidence was reported 57 times, with evidence based on test content reported the most frequently (n = 23; 40%). There were no studies that reported evidence about the consequences of testing.

A theoretical validity testing framework was referenced by four of the 11 HLQ papers [39, 43, 51, 94], with statements to support the citations: one paper [39] directly referenced Messick [4]; another paper [51] directly referenced Messick [81], Kane [62] and the Standards [5]; and two papers [43, 94] indirectly...
Table 3 Country and year of publication, and reliability evidence

Country of study	N
Australia	5
China	1
Denmark	2
France	1
Germany	1
Slovakia	1
Total	11

Year of publication	N
2013	1
2014	1
2016	2
2017	4
2018	2
2019	1
Total	11

Reliability	N
Cronbach’s alpha	8
Composite reliability	6
Inter-rater reliability	1
Item response theory	1
Person Separation Index	1
Total	17

referred the Standards through Hawkins et al. (2018) [43, 49] and Buchbinder et al 2011 [23, 94].

Table 5 displays the interpretive argument of the HLQ (Fig. 1), including the five inferences and the warrants and assumptions underlying each inference (Fig. 2), and the corresponding sources of validity evidence for the HLQ.

1. Scoring inference – HLQ sources of evidence

The Standards places information about scoring in test content [7]. All 11 studies stated the way that the HLQ was scored. The HLQ scoring instructions were written in the development stage and introduced in the original HLQ development paper [94]. The study by Kolarčik et al. [68] conducted testing on two sets of wording for the Part 2 response options of the HLQ: the original and revised versions and produced evidence in support of the revised response options.

2. Generalisation inference – HLQ sources of evidence

In the HLQ studies, reliability was calculated mainly through Cronbach’s alpha with or without composite reliability (n = 9 studies) [19, 36, 39, 43, 53, 68, 74, 92, 94]. Kolarčik et al. [68] also calculated reliability using IRT. Morris et al. [86] used the Person Separation Index (PSI), and Hawkins et al. [51] used a qualitative inter-rater reliability method to examine concordance (and discordance) between patient- and clinician-reported HLQ scores and interview narratives. No HLQ generalisation studies based on meta-analyses or accumulated data were located.

3. Extrapolation inference – HLQ sources of evidence

Evidence for extrapolation from observed data to a theoretical construct can be extensive and is based on four of the five sources of evidence in the Standards: test content, response processes, internal structure, and relations to other variables.

Evidence based on test content included information about item content and difficulty (as described by the HLQ item intent descriptions) [19, 36, 51, 53, 74, 92, 94], response options and scoring (although this is discussed under the scoring inference), and administration formats. Methods included expert review [92, 94]; involvement of the target audience (HLQ respondents and users) in the development of scales and items [94]; development of construct high/low and item intent descriptions [94]; comparison of respondent narratives with item intent descriptions [51]; examination of administration methods [94]; and item difficulty studies [19, 36, 53, 74, 94].

Evidence based on response processes provided analyses about what the items and scales mean to respondents and users of the HLQ (i.e., how they think about, interpret and respond to the items, given their life experiences) [112], and whether or not these meanings conform to the intended theoretical construct of health literacy [95]. Three studies investigated the ways respondents cognitively engaged with the HLQ items. All studies used the method of cognitive interviewing [51, 74, 94]. One of the studies was counted as producing two instances of evidence based on response processes because the interviews were conducted with both users of HLQ data (clinicians) and respondents (patients) [51]. The only study of a translated HLQ to report investigation of response processes was the Maindal et al. study, which conducted cognitive interviews.
Evidence based on internal structure described the interrelationships of items within scales, and the extent to which the items conform to the construct of that scale [77]. Some studies used more than one method to conduct internal structure analyses resulting in 15 instances of evidence based on internal structure. Confirmatory factor analysis (CFA) [36, 39, 43, 53, 68, 74, 92, 94] and differential item functioning (DIF) [68, 86] studies were primarily used (n = 9 studies). The Morris et al. study also used principal component analysis (PCA) and Rasch analysis [86] and Osborne et al. also used item-remainder correlations and intra-factor correlations [94].

Evidence based on relations to other variables is usually derived from studies that analyse the relationships between an instrument and other criteria [77]. However, for a multidimensional instrument such as the HLQ (nine scales), there must be evidence that each of the scales is unidimensional and distinct from the other scales (pp.38–39) [77]. The nine HLQ scales, although related, are intended to measure different aspects of the health literacy construct. The Standards places evidence for discriminant validity within relations to other variables (p.16) [7], so this is how the HLQ studies that calculated discriminant validity between the nine scales were categorised (n = 7 studies) [19, 36, 39, 53, 74, 92, 94]. Criterion-referenced validity was investigated by Goodwin et al. [43] using linear regression models and the SF-36 [22, 109] to test the strength of associations between each of the nine HLQ scales and physical and mental health. Huang et al. [53] did correlation studies with the SF-12 [110] using the Spearman correlation coefficient. There were five studies that examined group differences (i.e., relationships between the HLQ scales and background characteristics such as demographic information) [19, 36, 39, 68, 74].

4. Theory-based interpretation inference – HLQ sources of evidence

Evidence for the theory-based inference can also rely on evidence based on test content, response processes, internal structure, and relations to other variables. However, instead of the focus being on whether or not the scale scores account for the scope of the health literacy construct (extrapolation inference), the focus for the theory-based interpretation inference is on evidence to support scale scores as estimates of the theory. That is, the focus is on evidence for the extent to which a scale score estimates a person’s or population’s level of

Inferences	Warrants	Assumptions	Sources of validity evidence
1. Scoring	HLQ scoring instructions.	The 44 HLQ item responses are calculated as nine scale scores according to the HLQ scoring instructions.	Test content: all 11 studies
2. Generalisation	The nine HLQ scale scores are estimates of scores of other similar respondents across HLQ versions / similar measures.	Content is not relevant to scale score interpretations across similar respondents and measures.	Relations to other variables: no meta-analyses or accumulated data studies were found. Reliability: [19, 36, 39, 43, 53, 68, 74, 92, 94]
3. Extrapolation	HLQ scales represent the elements of the nine HLQ domains.	The nine scale scores account for a range of attributes, resources and competencies required to access, understand and use health information and services.	Test content: [19, 36, 51, 53, 74, 92, 94] Response processes: [51, 74, 94] Internal structure: [36, 39, 43, 53, 68, 74, 86, 92, 94] Relations to other variables: [19, 36, 39, 53, 92, 94]
4. Theory-based interpretation	The health literacy theory: descriptions of high/low scores of the nine HLQ conceptual domains.	Health literacy theory (the nine HLQ domain descriptions) explains the scales and items, and the HLQ scale scores provide appropriate estimates of the theory.	Test content: [92, 94] Response processes: [51, 74, 94]
5. Implications (utilisation)	Decision rules (p.28) [33]: The attributes, resources and competencies represented by the nine HLQ domains are relevant to improving health outcomes. Data from the HLQ are useful for informing decisions about health literacy practice and policy. The consequences of using scale scores to make practice and policy decisions will result in the intended benefits. HLQ data are sufficient for making these decisions (or there is need for additional information) (p.18) [87].	The health literacy construct (operationalised through HLQ scale scores) embodies a network of factors that affect health outcomes (and health equity).	Consequences: No studies were located.
attributes, resources or competencies associated with that HLQ domain. Evidence, therefore, relies heavily on test content and response processes to understand the cognitive connection between the HLQ domains and the items and scales. Often these are qualitative studies undertaken during development (e.g., expert review, and information feedback or cognitive interviews with patients, community members or users) [51, 74, 92, 94]. The HLQ authors wrote item intent descriptions (i.e., descriptions of the meaning and difficulty), which are useful for determining if respondents are engaging with the items as intended [94]. The item intents and domain descriptions are particularly useful for translation or adaptation studies where equivalence of meaning and measurement is essential for the integrity of score interpretation and use within and across cultures [68, 74, 92].

5. Implications (or utilisation) inference – HLQ sources of evidence
Evidence to support this assumption is based on the consequences of using the data to inform decisions and actions [7, 12, 54, 63, 72]. The Ophelia (Optimising Health Literacy and Access) process uses HLQ data in needs assessments to support communities (e.g., healthcare organisations, community healthcare, local and federal governments) to identify health literacy needs and assets. Interpretations of these data have influenced decisions about interventions and health system improvements [1, 13, 14, 16–18, 42, 57, 66, 67] but evidence of the extent and, particularly, the effectiveness of this use of HLQ data in these and other contexts is needed. Comprehensive pre-post evidence of the outcomes of health literacy interventions informed by HLQ data are still being generated.

Gaps in validity evidence
Validation is an ongoing process of checking that the interpretation and use of a PRO assessment’s data are valid for each new context, and so generation of validity evidence for the use of HLQ data in different contexts is ongoing. There is incomplete evidence for the generalisation (except for reliability) and implications inferences. Also, the HLQ has been translated to more than 30 languages since 2013 but evidence based on response processes (how people engage with, think about, interpret, and respond to the items) was found in only one HLQ translation study [74]. Although it is known that other response process testing has taken place, this evidence has not been published. This is the most obvious gap in evidence required to support the adequacy and appropriateness of HLQ score interpretation and use in other language and cultural contexts.

Discussion
This study integrates validity testing theory and methodology from education and psychology with measurement research in health. Kane’s five inferences and associated warrants and assumptions were demonstrated in relation to the HLQ, a PROM based on a theoretical construct. Existing HLQ validity evidence was collated within the Standards’ five sources of validity evidence and mapped to the five inferences in the HLQ interpretive argument. Further research is required to synthesise and evaluate the evidence to determine a validity argument for the HLQ general interpretive argument, and for each stated purpose of HLQ data. Table 5 provides the basis for future validity testing research in health measurement for the evaluation of evidence for validity arguments in relation to the five inferences for PROMs that assess theoretical constructs in health.

Collation and categorisation of existing sources of validity evidence for the HLQ shows that some sources of evidence have been published for HLQ scoring, extrapolation and theory-based interpretation inferences but minimal evidence is available for the generalisation and implications inferences. The HLQ is a relatively new measurement instrument that has been quickly taken up for use in a wide range of studies in more than 60 countries. The development and publication of validity evidence has not kept pace with the application of the HLQ in practice. However, since the literature review for this study was conducted, more articles presenting evidence for the HLQ have been published [1, 2, 11, 13, 21, 66, 73, 89, 96, 107, 108].

For translations of the HLQ, gaps mainly exist for evidence based on response processes. Many HLQ translation teams did conduct cognitive interviews but the processes and outcomes of this testing have not been published. Evidence based on internal structure has been generated for translated HLQs through CFA to confirm that the relationships between HLQ items and scales in different contexts behave in comparable ways to the English-language HLQ items and scales. However, full analyses of measurement invariance comparing data from translated and original versions of the HLQ using, for example, multiple-group confirmatory factor analysis are lacking. This type of analysis is essential if cross-cultural data comparisons are to take place [14]. Evidence based on relations to other variables is common for the HLQ because of the decision in this study to categorise calculations of discrimination between each of the nine scales under discriminant validity: that is, although the nine scales represent the overall construct of health literacy, analyses should show that each scale is distinct from the other scales. However, it should be noted that there are limited studies of convergent and discriminant validity with other constructs in the nomological network of health literacy.
Validation planning

The findings of this study are important because they demonstrate that validity testing theory and methodology from education and psychology can be applied to the development, testing, and retrospective evaluation of a theory-based health literacy measure, and can potentially be applied to other self-report PROMs [15, 85]. This study retrospectively collated existing sources of validity evidence to inform the direction of future HLQ validity studies and research. However, the findings from this study can also be used to prospectively inform the types of evidence needed to determine the extent to which data from new PROMs are valid [15]. Invalid data can lead to ill-informed decisions about people’s health [70, 111]. If any one of the inferences in an interpretive argument is not supported by evidence, then the data are invalid. For example, the HLQ scoring inference assumes that users will score the HLQ as intended. If not, then all subsequent inferences are implausible, and the data are invalid and cannot be used for the intended purpose. There is currently no validity evidence to support alternative scoring strategies for the HLQ, such as developing a single total score. Messick emphasised that the appropriateness, the meaningfulness and the usefulness of score-based inferences must be evaluated, and this is essential for determining how decisions based on PROM data will benefit or perhaps disadvantage people [58, 75, 82, 91].

Quantitative and qualitative research address different aspects of validity testing

Quantitative analyses can confirm the psychometric properties of an instrument, but these data do not explain how people interpret and cognitively respond to items or the consequences of data-based decisions [54, 58, 70]. For example, during the translation process of a PROM from one language to another, there is a risk of unintentionally jeopardising measurement equivalence through introducing construct-irrelevant variance or of not noticing that there is construct underrepresentation in the new culture [38, 44, 49]. Qualitative research methods are used to investigate the transference of test content to another language and to understand the response processes of the target population when they engage with the translated instrument’s items [24, 60, 93, 95, 102]. The use of validity testing theory and methodology in PROM validation practice enables systematic approaches to generating the sources of evidence that are most important for the PROM’s intended score interpretation and use [25, 111].

Limitations and strengths of this study

A limitation of this study is that it does not evaluate existing HLQ validity evidence to develop a validity argument for the HLQ or to determine gaps in evidence to support HLQ data for decision making in different contexts and for different purposes. Future research for the HLQ will involve more detailed analyses of the outcomes of the studies reviewed. The predominant strength of this study is that it demonstrates that well-developed theory and methodology from education and psychology can be applied to validation practice for PROMs. This study was retrospective in nature, but the process can also be used prospectively for validation planning and testing of newly developed PROMs.

Conclusions

PROM validation practice needs to evolve from referring to validity as a property of a measurement instrument to understanding that validity refers to the data-derived inferences that influence decision making. This study demonstrated a process for systematic and transparent validation planning (i.e., build an interpretive argument outlining inferences, warrants and assumptions) and collection of relevant existing validity evidence, using the HLQ as an example PROM. Such a process enables PROM developers and users to then synthesise evidence and evaluate the extent to which the evidence supports the appropriateness, meaningfulness and usefulness (i.e., the validity) of the data for making decisions about the health and care of individuals, groups and populations in different contexts.
References

1. Aaby, A., Beauchamp, A., O’Hara, J., & Maindl, H. T. (2020a). A large diversity in Danish health literacy profiles: Perspectives for care of long-term illness and multimorbidity. European journal of public health, 30(1), 75–80. https://doi.org/10.1093/eurpub/ckz134.

2. Aaby, A., Friis, K., Christensen, B., & Maindl, H. T. (2020b). Health literacy among people in cardiac rehabilitation: Associations with participation and health-related quality of life in the heart skills study in Denmark. International journal of environmental research and public health, 17(2), 443. https://doi.org/10.3390/ijerph17020443.

3. Aaby, A., Simonsen, C. B., Ryom, K., & Maindl, H. T. (2020c). Improving organizational health literacy responsiveness in cardiac rehabilitation using a co-design methodology: Results from the heart skills study. Int J Environ Res Public Health, 17(3), 1015. https://doi.org/10.3390/ijerph17031015.

4. Alkin, M. C. (1992). Encyclopedia of educational research, (vol. 3) Macmillan.

5. American Educational Research Association, American Psychological Association, Joint Committee on Standards for Educational and Psychological Testing (U.S.). National Council on Measurement in Education (1999). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.

6. American Educational Research Association, American Psychological Association, National Council on Measurement in Education (1985). Standards for educational and psychological testing. American Educational Research Association.

7. American Educational Research Association, American Psychological Association, National Council on Measurement in Education (2014). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.

8. American Psychological Association, American Educational Research Association, National Council on Measurement in Education (1954) Technical recommendations for psychological tests and diagnostic techniques, vol 51. vol 2. American Psychological Association.

9. American Psychological Association, American Educational Research Association, National Council on Measurement in Education (1974) Standards for educational & psychological tests. American Psychological Association.

10. American Psychological Association, American Educational Research Association, National Council on Measurement in Education, American Educational Research Association Committee on Test Standards (1966) Standards for educational and psychological tests and manuals. American Psychological Association.

11. Anwar, W. A., Mostafa, N. S., Hakim, S. A., Sos, D. G., Abazoid, D. A., & Osborne, R. H. (2020). Health literacy strengths and limitations among rural fishing communities in Egypt using the health literacy questionnaire (HLQ): PLoS One, 15(7), e0235550. https://doi.org/10.1371/journal.pone.0235550.

12. Bachman LF (2005) Building and supporting a case for test use. Language Assess Quart 2(1):1–34, DOI: https://doi.org/10.1207/s15434311laq0201_1.

13. Bakker, M., Puttk, P., Rademakers, J., Van de Laar, M., Vonkeman, H., Kok, M., … Osborne, R. (2020). OP0257-PARE using patient health literacy profiles to identify solutions to challenges faced in rheumatology care. Ann Rheum Dis, 79(Suppl 1) 1622, 1612. https://doi.org/10.1136/a\n
14. Bakker, M. M., Puttk, P., Aaby, A. S. E., Debussche, X., Morrisey, J., Borge, C. R., … Maindl, H. T. (2019). Acting together—WHO National Health Literacy Demonstration Projects (NHLDPs) address health literacy needs in the European region. Public Health Panorama, 32–33, 233–243.

15. Barnett, L. M., Mazzoli, E., Hawkins, M., Lander, N., Lubani, D. R., Caldwell, S., … Dudley, D. (2020). Development of a self-report scale to assess children's perceived physical literacy. Physical Education and Sport Pedagogy, (pp. 1–26). https://doi.org/10.1080/17408989.2020.1849596.

16. Batterham, R. W., Buchbinder, R., Beauchamp, A., Dodson, S., Elsworth, G. R., & Osborne, R. H. (2014). The OPTimising Health LiteracyC (Ophelia) process: Study protocol for using health literacy profiling and community engagement to create and implement health reform. BMC Public Health, 14(1), 694–703. https://doi.org/10.1186/s1471-2458-14-694.

17. Beauchamp, A., Batterham, R. W., Dodson, S., Astbury, B., Elsworth, G. R., McPhee, C., … Osborne, R. H. (2017). Systematic development and implementation of interventions to Optimise health literacy and access (Ophelia). BMC Public Health, 17(1), 230. https://doi.org/10.1186/s12889-017-4147-5.

18. Beauchamp, A., Mohebbi, M., Cooper, A., Pridmore, V., Livingston, P., Scanlon, M., … Osborne, R. (2020). The impact of translated reminder letters and phone calls on mammography screening booking rates: Two randomised controlled trials. PLoS One, 15(1), e0226610. https://doi.org/10.1371/journal.pone.0226610.

19. Bo, A., Friis, K., Osborne, R. H., & Maindl, H. T. (2014). National indicators of health literacy: Ability to understand health information and to engage actively with healthcare providers - a population-based survey among Danish adults. BMC Public Health, 14(1), 1095. https://doi.org/10.1186/1471-2458-14-1095.

20. Boëtang MA, Agyei-Balfour P, Angel S, Asare O, Prempeh B, Enemeku U (n.d.): Pre-print under review Co-Creation and Prototyping of An Intervention Focusing On Health Literacy In Management of Malaria At Community-Level In Ghana. Research Involvement and Engagement. doi: https://doi.org/10.2139/bsr2020.33.

21. Boëtang, M. A., Angel, S., Agyei-Balfour, P., & Enemeku, U. (2020). Cultural adaptation and validation of the Ghanaian language (Akan, Asante Twi) version of the health literacy questionnaire. BMC health services research, 20(1), 1064. https://doi.org/10.1186/s12913-020-05932-w.

22. Brazier, J. E., Harper, R., Jones, N., O’cathain, A., Thomas, K., Usherwood, T., & Westlake, L. (1992). Validating the SF-36 health survey questionnaire: New outcome measure for primary care. British medical journal, 305(6904), 160–164. https://doi.org/10.1136/bmj.305.6904.160.

23. Buchbinder, R. Batterham, R., Elsworth, G., D’lonne, C. E., Irvin, E., & Osborne, R. H. (2011). A validity-driven approach to the understanding of the personal and societal burden of long back pain: Development of a conceptual and measurement model. Arthritis research & therapy, 13(5), R152. https://doi.org/10.1186/ar3468.

24. Castillo-Díaz, M., & Padilla, J. L. (2013). How cognitive interviewing can provide validity evidence of the response processes to scale items. Soc Indic Res, 114(3), 963–975. https://doi.org/10.1007/s11271-012-0184-8.

25. Chapelle, C. A. (2008). The TOEFL validity argument. Building a validity argument for the Test of English as a Foreign Language, (pp. 319–352).

26. Chapelle CA (2012) Validity argument for language assessment: The framework is simple . . . Language Testing 29 (1):19–27.

27. Chapelle, C. A., Enright, M. K., & Jamieson, J. (2010). Does an argument-based approach to validity make a difference? Educational measurement: Issues and practice, 19(1), 71–2458-14-1095.

28. Cook, D. A., & Beckman, T. J. (2006). Current concepts in validity and reliability for psychometric instruments: Theory and application. The American journal of medicine, 119(2), 166.e167–166.e16.

29. Cook, D. A., Byrdges, R., Ginsburg, S., & Hatala, R. (2015). A contemporary approach to validity arguments: A practical guide to Kane’s framework. Med Educ, 49(6), 560–575. https://doi.org/10.1111/medu.12678.

30. Cronbach, L. (1960). Validity. In C. W. Harris (Ed.), Encyclopedia of educational research: A project of the American Educational Research Association. New York: Macmillan.

31. Cronbach, L. J. (1971). Test Validation. In R. L. Thorndike, W. H. Angoff, & E. F. Lindquist (Eds.), Educational Measurement. American Council on Education Washington, (pp. 483–507).

32. Cronbach, L. J. (1988). Five perspectives on validity argument. In H. Wainer, & H. I. Braun (Eds.), Educational Measurement. American Council on Education Washington, (pp. 359–369).

33. Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological bulletin, 52(4), 281–302. https://doi.org/10.1037/h0040957.

34. Cureton, E. (1950). Validity. In E. F. Lindquist (Ed.), Educational measurement, (pp. 621–694). Washington, DC: American Council on Education.

35. Debussche, X., Caroupin-Soupoutevin, J., Balcou-Debussche, M., Fassier, M., Boegner, C., Hawkins, M., … Corbeau, C. (2021). Health literacy needs among migrant populations in France: validity testing and potential
