Review

Trends in Taxonomy of Chagas Disease Vectors (Hemiptera, Reduviidae, Triatominae): From Linnaean to Integrative Taxonomy

Kaio Cesar Chaboli Alevi 1,2,3, Jader de Oliveira 1,2, Dayse da Silva Rocha 3 and Cleber Galvão 3,*

Abstract: Chagas disease is a neglected tropical disease caused by the protozoan *Trypanosoma cruzi* and transmitted mainly by members of the subfamily Triatominae. There are currently 157 species, grouped into 18 genera and five tribes. Most descriptions of triatomine species are based on classical taxonomy. Facing evolutionary (cryptic speciation and phenotypic plasticity) and taxonomic (more than 190 synonymizations) problems, it is evident that integrative taxonomy studies are an important and necessary trend for this group of vectors. Almost two-and-a-half centuries after the description of the first species, we present for the first time the state-of-the-art taxonomy of the whole subfamily, covering from the initial classic studies to the use of integrative taxonomy.

Keywords: Triatominae; classical taxonomy; molecular taxonomy; integrative taxonomy

1. Triatominae: The Vectors of Chagas Disease

Chagas disease is a neglected tropical disease caused by the protozoan *Trypanosoma cruzi* (Chagas, 1909) (Kinetoplastida, Trypanosomatidae) [1]. This disease is found mainly in 21 Latin American countries, where it is mostly vector-borne, more specifically by members of the subfamily Triatominae (Hemiptera, Reduviidae) [1]. Triatomines or kissing bugs are hematophagous insects that have a habit of defecating during or after the blood meal—if they are infected with *T. cruzi*, they release the parasite in the feces/urine [1]. An estimated 8 million people are infected worldwide, and more than 65 million people are at risk of acquiring the disease, which causes more than 12,000 deaths per year, the vector control being the most useful method to prevent new infections [1,2].

There are currently 157 species (154 extant species and three fossils), grouped into 18 genera and five tribes (Table 1) [3–7], being all potential vectors of *T. cruzi*. Taxonomic studies of Triatominae started in the 18th century with the description of *Triatoma rubrofasciata* (De Geer, 1773) (as *Cimex rubro-fasciatus*) [8]. Almost two and a half centuries after the description of the first species, we presented for—the first time—a review of the state-of-the-art taxonomy of the whole subfamily, covering from the initial classic studies to the use of integrative taxonomy, a term formally introduced only in 2005 to describe taxa by integrating information from different data and methodologies [9,10].
Table 1. Tribes, genera, and number of species that make up the subfamily Triatominae.

Tribe	Genus	Species (n)
Alberproseniini	Alberprosenia	2
Bolboderini	Belminus	9
	Bolbodera	1
	Microtriatoma	2
	Parabelminus	2
Cavernicolini	Cavernicola	2
Rhodniini	Psammolestes	3
	Rhodnius	21
Triatomini	Dipetalogaster	1
	Eratyrus	2
	Hermanlentia	1
	Linshcosteus	6
	Mepraia	3
	Nesotriatoma	3
	Panstrongylus	15
	Paratriatoma	2
	Triatoma	81
	Paleotriatoma	1
Total		**157**

2. Applications and Limitations of Triatominae Taxonomic Studies

For 225 years (1773–1998), the descriptions of triatomine species have been based only on studies of classical taxonomy (using descriptive morphology, comparative morphology, and/or morphometry) (Table 2). Although these analyses are imperative and are present in the description of all species of the subfamily Triatominae (Table 2), in the last decade, other approaches (such as biochemical [5,11], cytogenetic [5,12], phylogenetic [5,13–17] and/or of reproductive barriers [5]) started to be combined with the characterization of morphology and/or morphometry, employing the integrative taxonomy in the study of these insect vectors (Table 2).

More than 190 synonymization acts occurred in the subfamily Triatominae [18,19], with the majority of synonymized taxa being described from classical taxonomy. The use of combined analyses for the characterization of a taxon greatly reduces the chances of synonymization (although it does not make it impossible [19,20]). Based on the synonymization events and the importance of multi-analyses for the characterization of a taxon, we will discuss the current issues, applications, and limitations of classical, molecular, and integrative taxonomy.
Table 2. Species, taxonomic tools, and taxonomic classification used in the description of Triatominae taxa.

Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References	
1 Triatoma rubrofasciata (De Geer, 1773)	X				Classical taxonomy	De Geer [8]		
2 Triatoma dimidiata (Latreille, 1811)	X				Classical taxonomy	Latreille [21]		
3 Panstrongylus geniculatus (Latreille, 1811)	X				Classical taxonomy	Latreille [21]		
4 Triatoma infestans (Klug, 1834)	X				Classical taxonomy	Klug [22]		
5 Triatoma phyllosomus (Burmeister, 1835)	X				Classical taxonomy	Burmeister [23]		
6 Panstrongylus megistus (Burmeister, 1835)	X				Classical taxonomy	Burmeister [23]		
7 Triatoma rubrovaria (Blanchard, 1846)	X				Classical taxonomy	Blanchard [24]		
8 Triatoma maculata (Erichson, 1848)	X				Classical taxonomy	Erichson [25]		
9 Triatoma mexicana (Herrich-Schaeffer, 1848)	X				Classical taxonomy	Herrich-Schaeffer [26]		
10 Triatoma sanguisuga (Leconte, 1855)	X				Classical taxonomy	Leconte [27]		
11 Belminus rugulosus (Stål, 1859)	X				Classical taxonomy	Stål [28]		
12 Eratyrus cuspidatus (Stål, 1859)	X				Classical taxonomy	Stål [28]		
13 Eratyrus mucronatus (Stål, 1859)	X				Classical taxonomy	Stål [28]		
14 Rhodnius nasutus (Stål, 1859)	X				Classical taxonomy	Stål [28]		
15 Rhodnius prolizus (Stål, 1859)	X				Classical taxonomy	Stål [28]		
16 Triatoma circunmaculata (Stål, 1859)	X				Classical taxonomy	Stål [28]		
17 Triatoma gerstaeckeri (Stål, 1859)	X				Classical taxonomy	Stål [28]		
18 Paratriatoma lecticularia (Stål, 1859)	X				Classical taxonomy	Stål [28]		
19 Triatoma sordida (Stål, 1859)	X				Classical taxonomy	Stål [28]		
20 Triatoma vitticeps (Stål, 1859)	X				Classical taxonomy	Stål [28]		
21 Triatoma recurva (Stål, 1868)	X				Classical taxonomy	Stål [28]		
22 Triatoma venosa (Stål, 1872)	X				Classical taxonomy	Stål [28]		
23 Triatoma pallidipennis (Stål, 1872)	X				Classical taxonomy	Stål [30]		
24 Rhodnius pictipes (Stål, 1872)	X				Classical taxonomy	Stål [30]		
Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References	
---------	---------------------------	---------------	--------------	----------------------	---	----------	------------	
25	Triatoma nigromaculata (Stål, 1872)	X			Classical taxonomy	Stål [30]		
26	Panstrongylus lignarius (Walker, 1873)	X			Classical taxonomy	Walker [31]		
27	Panstrongylus guentheri (Berg, 1879)	X			Classical taxonomy	Berg [32]		
28	Triatoma rubida (Uhler, 1894)	X			Classical taxonomy	Uhler [33]		
29	Dipetalogaster maxima (Uhler, 1894)	X			Classical taxonomy	Uhler [33]		
30	Triatoma protracta (Uhler, 1894)	X			Classical taxonomy	Uhler [33]		
31	Panstrongylus rufotuberculatus (Champion, 1899)	X			Classical taxonomy	Champion [34]		
32	Triatoma migrans (Breddin, 1903)	X			Classical taxonomy	Breddin [35]		
33	Linshostes carnifex (Distant, 1904)	X			Classical taxonomy	Distant [36]		
34	Bolboderus scabrosa (Valdés, 1910)	X			Classical taxonomy	Valdés [37]		
35	Nesotriatoma flavida (Neiva, 1911)	X			Classical taxonomy	Neiva [38]		
36	Psammolestes coroides (Bergroth, 1911)	X			Classical taxonomy	Bergroth [39]		
37	Panstrongylus howardi (Neiva, 1911)	X			Classical taxonomy	Neiva [40]		
38	Triatoma brasiliensis (Neiva, 1911)	X			Classical taxonomy	Neiva [41]		
39	Triatoma neotomae (Neiva, 1911)	X			Classical taxonomy	Neiva [42]		
40	Triatoma indictiva (Neiva, 1912)	X			Classical taxonomy	Neiva [43]		
41	Triatoma platensis (Neiva, 1913)	X			Classical taxonomy	Neiva [44]		
42	Rhodnius brethesi (Matta, 1919)	X			Classical taxonomy	Matta [45]		
43	Panstrongylus lutzii (Neiva & Pinto, 1923)	X			Classical taxonomy	Neiva and Pinto [46]		
44	Rhodnius domesticus (Neiva & Pinto, 1923)	X			Classical taxonomy	Neiva and Pinto [47]		
45	Triatoma medanacephala (Neiva & Pinto, 1923)	X			Classical taxonomy	Neiva and Pinto [48]		
46	Triatoma bouvieri (Larrousse, 1924)	X			Classical taxonomy	Larrousse [49]		
47	Triatoma petrocchiae (Pinto & Barreto, 1925)	X			Classical taxonomy	Pinto and Barreto [50]		
48	Psammolestes arthuri (Pinto, 1926)	X			Classical taxonomy	Pinto [51]		
Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References	
--------------------------------------	----------------------------	----------------	--------------	----------------------	--	---------------------------	------------------------	
49 Triatoma carrioni (Larrousse, 1926)	X		Classical			Larrousse [52]		
50 Triatoma tibiamaculata (Pinto, 1926)	X		Classical			Pinto [53]		
51 Rhodnius robustus (Larrousse, 1927)	X		Classical			Larrousse [54]		
52 Panstrongylus chinai (Del Ponte, 1929)	X		Classical			Del Ponte [55]		
53 Triatoma breyeri (Del Ponte, 1929)	X		Classical			Del Ponte [55]		
54 Triatoma evatyrusiformis (Del Ponte, 1929)	X		Classical			Del Ponte [55]		
55 Triatoma limai (Del Ponte, 1929)	X		Classical			Del Ponte [55]		
56 Triatoma patagonica (Del Ponte, 1929)	X		Classical			Del Ponte [55]		
57 Rhodnius pallescens (Barber, 1932)	X		Classical			Barber [56]		
58 Triatoma leopoldi (Schoudeten, 1933)	X		Classical			Schoudeten [57]		
59 Mepraia spinolai (Porter, 1934)	X		Classical			Porter [58]		
60 Cavernicola pilosa (Barber, 1937)	X		Classical			Barber [59]		
61 Panatriatoma hirsuta (Barber, 1938)	X		Classical			Barber [60]		
62 Triatoma longipennis (Usinger, 1939)	X		Classical			Usinger [61]		
63 Triatoma picturatus (Usinger, 1939)	X		Classical			Usinger [61]		
64 Panstrongylus humeralis (Usinger, 1939)	X		Classical			Usinger [61]		
65 Triatoma barberi (Usinger, 1939)	X		Classical			Usinger [61]		
66 Triatoma incrassata (Usinger, 1939)	X		Classical			Usinger [61]		
67 Triatoma nitida (Usinger, 1939)	X		Classical			Usinger [61]		
68 Triatoma oliveirai (Neiva et al., 1939)	X		Classical			Neiva et al. [62]		
69 Triatoma arthurneivai (Lent & Martins, 1940)	X		Classical			Lent and Martins [63]		
70 Triatoma hegneri (Mazzotti, 1940)	X		Classical			Mazzotti [64]		
71 Triatoma peninsularis (Usinger, 1940)	X		Classical			Usinger [65]		
72 Triatoma mazzottii (Usinger, 1941)	X		Classical			Usinger [66]		
No.	Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References
-----	--	-----------------------------	---------------	--------------	---------------------	---	-----------------------------------	----------------------------------
73	*Triatoma melanica* (Neiva & Lent, 1941)	X				Classical taxonomy	Neiva and Lent [67]	
74	*Panstrongylus tupynambai* (Lent, 1942)	X				Classical taxonomy	Lent [68]	
75	*Parabellinus carioca* (Lent, 1943)	X				Classical taxonomy	Lent [69]	
76	*Panstrongylus diasi* (Pinto & Lent, 1946)	X				Classical taxonomy	Pinto and Lent [70]	
77	*Triatoma delponenti* (Romaña & Abalos, 1947)	X				Classical taxonomy	Romaña and Abalos [71]	
78	*Triatoma guasayana* (Wygodzinsky & Abalos, 1949)	X				Classical taxonomy	Wygodzinsky and Abalos [72]	
79	*Triatoma dispar* (Lent, 1950)	X				Classical taxonomy	Lent [73]	
80	*Triatoma wygodzinskii* (Lent, 1951a)	X				Classical taxonomy	Lent [74]	
81	*Microtriatoma trinidadensis* (Lent, 1951b)	X				Classical taxonomy	Lent [75]	
82	*Triatoma amicitiae* (Lent, 1951c)	X				Classical taxonomy	Lent [76]	
83	*Rhodnius neivai* (Lent, 1953)	X				Classical taxonomy	Lent [77]	
84	*Triatoma matogrossensis* (Leite & Barbosa, 1953)	X				Classical taxonomy	Leite and Barbosa [78]	
85	*Triatoma pugasi* (Lent, 1953b)	X				Classical taxonomy	Lent [79]	
86	*Rhodnius neglectus* (Lent, 1954)	X				Classical taxonomy	Lent [80]	
87	*Belminus costaricensis* (Herrer et al., 1954)	X				Classical taxonomy	Herrer et al. [81]	
88	*Belminus peruvianus* (Herrer et al., 1954)	X				Classical taxonomy	Herrer et al. [81]	
89	*Rhodnius ecuadoriensis* (Lent & León, 1958)	X				Classical taxonomy	Lent and León [82]	
90	*Triatoma costalimai* (Verano & Galvão, 1958)	X				Classical taxonomy	Verano and Galvão [83]	
91	*Nesotriatoma obscura* (Maldonado & Farr, 1962)	X				Classical taxonomy	Maldonado and Farr [84]	
92	*Triatoma sinuolensis* (Ryckman, 1962)	X				Classical taxonomy	Ryckman [85]	
93	*Triatoma pseudomaculata* (Corrêa & Espíñola, 1964)	X				Classical taxonomy	Corrêa and Espíñola [86]	
94	*Psammolestes tertius* (Lent & Jurberg, 1965)	X				Classical taxonomy	Lent and Jurberg [87]	
95	*Triatoma sinica* (Hsiao, 1965)	X				Classical taxonomy	Hsiao [88]	
96	*Triatoma williami* (Galvão et al., 1965)	X				Classical taxonomy	Galvão et al. [89]	
Table 2. Cont.

Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References	
97 Triatoma bahiensis (Sherlock & Serafim, 1967)	X		X		Classical taxonomy	Sherlock and Serafim [90]		
98 Triatoma deaneorum (Galvão et al., 1967)	X		X		Classical taxonomy	Galvão et al. [91]		
99 Triatoma gerciabesi (Carcavallo et al., 1967)	X		X		Classical taxonomy	Carcavallo et al. [92]		
100 Triatoma lenti (Sherlock & Serafim, 1967)	X		X		Classical taxonomy	Sherlock and Serafim [90]		
101 Panstrongylus lenti (Galvão & Palma, 1968)	X		X		Classical taxonomy	Galvão and Palma [93]		
102 Triatoma ryckmani (Zeledón & Ponce, 1972)	X		X		Classical taxonomy	Zeledón and Ponce [94]		
103 Rhodnius amazonicus (Almeida et al., 1973)	X		X		Classical taxonomy	Almeida et al. [95]		
104 Linshcosteus confusus (Ghauri, 1976)	X		X		Classical taxonomy	Ghauri [96]		
105 Linshcosteus costalis (Ghauri, 1976)	X		X		Classical taxonomy	Ghauri [96]		
106 Rhodnius dalessandroi (Carcavallo & Barreto, 1976)	X		X		Classical taxonomy	Carcavallo and Barreto [97]		
107 Alberprosenia goyovargasi (Martínez & Carcavallo, 1977)	X		X		Classical taxonomy	Martínez and Carcavallo [98]		
108 Rhodnius paraensis (Sherlock et al., 1977)	X		X		Classical taxonomy	Sherlock et al. [99]		
109 Triatoma cavernicola (Else & Cheong, 1977)	X		X		Classical taxonomy	Else et al. [100]		
110 Belminus herreri (Lent & Wygodzinsky, 1979)	X		X		Classical taxonomy	Lent and Wygodzinsky [101]		
111 Linshcosteus chota (Lent & Wygodzinsky, 1979)	X		X		Classical taxonomy	Lent and Wygodzinsky [101]		
112 Linshcosteus kali (Lent & Wygodzinsky, 1979)	X		X		Classical taxonomy	Lent and Wygodzinsky [101]		
113 Microtriatoma borhai (Lent & Wygodzinsky, 1979)	X		X		Classical taxonomy	Lent and Wygodzinsky [101]		
114 Parabelminus yurupucu (Lent & Wygodzinsky, 1979)	X		X		Classical taxonomy	Lent and Wygodzinsky [101]		
115 Triatoma gauzu (Lent & Wygodzinsky, 1979)	X		X		Classical taxonomy	Lent and Wygodzinsky [101]		
116 Alberprosenia malheiroi (Serra et al., 1980)	X		X		Classical taxonomy	Serra et al. [102]		
117 Triatoma brailevskyi (Martínez et al., 1984)	X		X		Classical taxonomy	Martínez et al. [103]		
118 Cavernicola lenti (Barrett & Arias, 1985)	X		X		Classical taxonomy	Barrett and Arias [104]		
119 Triatoma bolivari (Carcavallo et al., 1987)	X		X		Classical taxonomy	Carcavallo et al. [105]		
120 Hermanlentia matsunoi (Fernández-Loayza, 1989)	X		X		Classical taxonomy	Fernández-Loayza [106]		
Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References	
---------------------------------	----------------------------	---------------	--------------	----------------------	--	-------------------------	----------------------------	
121 Rhodnius stali (Lent et al., 1993)	X				Classical taxonomy	Lent et al. [107]		
122 Belminus pittieri (Osuna & Ayala, 1993)	X				Classical taxonomy	Osuna and Ayala [108]		
123 Triatoma gomezununci (Martinez et al., 1994)	X				Classical taxonomy	Martinez et al. [109]		
124 Belminus laportei (Lent et al., 1995)	X				Classical taxonomy	Lent et al. [110]		
125 Mepraia gojardoi (Frias et al., 1998)	X	X	X		Integrative taxonomy	Frias et al. [111]		
126 Triatoma carcavalloi (Jurberg et al., 1998)	X				Classical taxonomy	Jurberg et al. [112]		
127 Triatoma jurbergi (Carcavallo et al., 1998)	X				Classical taxonomy	Carcavallo et al. [113]		
128 Triatoma bassolae (Alejandro Aguilar et al., 1999)	X				Classical taxonomy	Aguilar et al. [114]		
129 Rhodnius colombiensis (Mejia et al., 1999)	X				Classical taxonomy	Mejia et al. [115]		
130 Triatoma buritai (Carcavallo & Jurberg, 2000)	X				Classical taxonomy	Carcavallo and Jurberg [116]		
131 Rhodnius milesi (Carcavallo et al., 2001)	X				Classical taxonomy	Valente et al. [117]		
132 Triatoma klugi (Carcavallo et al., 2001)	X				Classical taxonomy	Carcavallo et al. [118]		
133 Linhastus karupus (Galvão et al., 2002)	X				Classical taxonomy	Galvão et al. [119]		
134 Triatoma sherlocki (Papa et al., 2002)	X				Classical taxonomy	Papa et al. [120]		
135 Triatoma zandae (Carcavallo et al., 2002)	X				Classical taxonomy	Carcavallo [121]		
136 Triatoma dominicana (Ponair Jr., 2005)	X				Classical taxonomy	Ponair Jr. [122]		
137 Belminus corrordori (Galvão & Angulo, 2006)	X				Classical taxonomy	Galvão and Ángulo [123]		
138 Belminus ferroae (Sandoval et al., 2007)	X				Classical taxonomy	Sandoval et al. [124]		
139 Panstrongylus mitarakaensis (Bérenger & Blanchet, 2007)	X				Classical taxonomy	Bérenger and Blanchet [125]		
140 Triatoma boliviana (Martinez et al., 2007)	X				Classical taxonomy	Martinez et al. [126]		
141 Triatoma jauzeirensis (Costa & Felix, 2007)	X				Classical taxonomy	Costa and Felix [127]		
142 Panstrongylus martineziorum (Ayala, 2009)	X				Classical taxonomy	Ayala [128]		
143 Rhodnius zeledoni (Jurberg et al., 2009)	X				Classical taxonomy	Jurberg et al. [129]		
144 Mepraia parapatrica (Frias-Lasserre, 2010)	X				Integrative taxonomy	Frias-Lasserre [12]		
No.	Species	Morphology and Morphometry	Chemotaxonomy	Cytotaxonomy	Experimental Crosses	Phylogenetic Systematics and Molecular Taxonomy	Taxonomy	References
-----	---	-----------------------------	---------------	--------------	----------------------	---	----------	------------
145	*Rhodnius montenegrensis* (Rosa et al., 2012)	X		X	X	Integrative taxonomy	Rosa et al. [13]	
146	*Panstrongylus hispaniolae* (Ponair Jr., 2013)	X		X		Classical taxonomy	Ponair Jr. [130]	
147	*Rhodnius barretti* (Abad-Franch et al., 2013)	X		X		Integrative taxonomy	Abad-Franch et al. [14]	
148	*Triatoma jatai* (Gonçalves et al., 2013)	X				Classical taxonomy	Gonçalves et al. [131]	
149	*Triatoma pintodiasi* (Jurberg et al., 2013)	X	X			Integrative taxonomy	Jurberg et al. [11]	
150	*Rhodnius marabaensis* (Souza et al., 2017)	X		X		Integrative taxonomy	Souza et al. [15]	
151	*Nesotriatoma confusa* (Oliveira et al., 2018)	X				Classical taxonomy	Oliveira et al. [132]	
152	*Triatoma mpop* (Dorn et al., 2018)	X		X		Integrative taxonomy	Dorn et al. [16]	
153	*Paleotriatoma metaxytaxa* (Poinar Jr., 2019)	X				Classical taxonomy	Poinar Jr. [133]	
154	*Triatoma huehuetenangensis* (Lima-Cordon et al., 2019)	X		X		Integrative taxonomy	Lima-Cordon et al. [17]	
155	*Triatoma rosai* (Alevi et al., 2020)	X	X	X	X	Integrative taxonomy	Alevi et al. [5]	
156	*Rhodnius micki* (Zhao et al., 2021)	X				Classical taxonomy	Zhao et al. [6]	
157	*Belminus santosmalletae* (Dale et al., 2021)	X				Classical taxonomy	Dale et al. [7]	
2.1. Classical Taxonomy

Classical taxonomy underlies most taxonomic studies of species description in the subfamily Triatominae (Table 2). The morphological and morphometric studies applied in the last described taxa are: morphological study of the head, thorax, abdomen, and male and female genitalia (with optical microscopy (OM) and/or scanning electronic microscopy (SEM)), and morphometric study of the head, thorax, abdomen and appendices (using OM) [5–7,15–17,132].

Although the use of morphological and morphometric characters is essential to describe a new taxon (since the diagnosis of the species needs to be made based on specimens that will be deposited, such as vouchers, in entomological collections), evolutionary events of cryptic speciation [14] and phenotypic plasticity [14] present in the subfamily Triatominae can make it difficult to diagnose a taxon only by morphological studies. Classic examples of this can be seen in the genus *Rhodnius* Stål, 1859: *R. montenegrensis* Rosa et al., 2012 [13] and *R. marabaensis* Souza et al., 2017 [15] represent two of the four paraphyletic strains of *R. robustus* Larrousse, 1927 [134,135] (the application of integrative taxonomy allowed description of the species from specimens initially characterized as *R. robustus* [136]). On the other hand, was demonstrated that *R. taquarussiensis* Rosa et al., 2017 (species described by integrative taxonomy [20]) represented only an intraspecific polymorphism of *R. neglectus* Lent, 1954 [19] (from studies of molecular taxonomy combined with experimental crosses it was possible to synonymize the species [19]).

Morphological convergence events can also hinder the classic taxonomy of these vectors [129]. The paraphyletic genus *Triatoma* Laporte, 1832 needs several studies from a taxonomic and systematic point of view [137]. *Triatoma tibiamaculata* (Pinto, 1926), for example, is a species that has morphological characteristics that bring it together and groups it (until now) as a *Triatoma* [138]. However, the generic status of this vector has been questioned several times [134,137,138]—since it presents cytogenetic [139], structural [140] and phylogenetic [137,138] characteristics that bring it closer to *Panstrongylus* (which highlights the importance of studies with integrative taxonomy).

2.2. Molecular Taxonomy

The first phylogenetic trees with molecular markers were published only in 1998 [141], giving rise to the phylogenetic systematics and molecular taxonomy of these vectors. Although no species of triatomine has been described by molecular taxonomy (Table 2), the combination of phylogenetic analyses with morphological and morphometric studies in species description studies (integrative taxonomy) has been a trend in the last decade [5,13–17] (Table 2), since it provides greater reliability of the specific status of the taxa and allows, above all, to understand the evolutionary history of the species.

In addition to the contributions mentioned above, molecular taxonomy and phylogenetic systematics allowed the evaluation and re-validation of the taxonomic status of some species: reinclusion of *Linshcosteus* Distant, 1904 genus in Triatomini tribe (extinguishing the Linshcosteini tribe) [30]; inclusion of *Psammolestes* Bergroth, 1911 species in the genus *Rhodnius* [30] (proposal not accepted by the scientific community due to the differences that support the generic status of *Psammolestes* [17]); inclusion of the species *T. flavida* Neiva, 1911, and *N. obscura* Maldonado & Farr, 1962 in the genus *Nesotriatoma* Usinger, 1944 [142]; confirmation of the generic status of *Nesotriatoma* [132]; inclusion of species *T. spinolai* Porter, 1934, *M. gajardoi* Frias, Henry & Gonzalez, 1998, *T. eratyrusiformis* Del Ponte, 1929, and *T. breyeri* Del Ponte, 1929 in the genus *Mepraia* Mazza, Gajardo & Jörg, 1940 [142] (partially accepted suggestion, being the *Mepraia* genus currently composed of *M. spinolai*, *M. gajardoi*, and *M. parapatrica* Frias-Lasserre, 2010 [4,143]); confirmation of the generic status of *Mepraia* [137]; and inclusion of *T. dimidiata* (Latreille, 1811) in the *Meccus* Stål, 1859 genus (genus that later was considered invalid and the *Meccus* species started to be considered as *Triatoma* [137,144,145]).

Although the International Code of Zoological Nomenclature does not consider groupings of triatomines to be complexes or subcomplexes [146], Justi et al. [137] suggests that
these groupings should represent monophyletic groups. In the genus *Triatoma*, for example, studies based on phylogenetic systematics evaluated the position of several species that had been grouped mainly by geographic distribution and morphological similarities and proposed regrouping and/or the creation of new monophyletic groups [137,147,148]. Species well defined as natural groups (monophyletic) are currently the *T. brasiliensis* [149,150], *T. sordida* [151], *T. rubrovaria* [151], *T. infestans* [137], and *T. vitticeps* [148] subcomplexes.

2.3. Integrative Taxonomy

The data integration in the integrative taxonomy can be done by cumulation or congruence [152]. The use of combined tools to delimit a species of triatomine occurred for the first time in 1998 by Frias et al. [111] who combined morphological, morphometric, cytogenetic, and reproductive barriers data to describe *M. gajardoi* (Table 2). However, only in the last decade has the integrative taxonomy has been more applied in the study of these vectors (Table 2).

This tendency to integrate different analyses to characterize a taxon, made it possible to resolve ancient taxonomic issues, such as the description by *T. mopan* Dorn et al. (2018) and *T. huehuetenangensis* Lima-Cordón et al. (2019) from specimens initially characterized as *T. dimidiata* [16,17,153,154] and the recent description of *T. rosai* Alevi et al., 2020 from the allopatric population of *T. sordida* (Stål, 1859) from Argentina [5,155,156]. In addition, the specific status of *T. bahiensis* Sherlock & Serafim, 1967 (a species that for more than three decades has been synonymous with *T. lenti* Sherlock & Serafim, 1967 [101]) has been revalidated based on integrative taxonomy [149].

On the other hand, even if the integrative taxonomy provides more robustness in the characterization of the new taxa (decreasing the chance of synonymization), does not prevent this event can occur (as mentioned above for *R. taquarussuensis* which has been synonymous with *R. neglectus* Lent, 1954 [19]). Although morphological, morphometric, and cytogenetic intraspecific variation had been described in the genus *Rhodnius* [157,158], the description of *R. taquarussuensis* was based on these factors [20]. Thus, synonymization event occurred through phylogenetic analyses and experimental crosses [19]. We suggest that integrative taxonomy work should include molecular studies and, whenever possible, reproductive barriers to confirm the taxon specific status following the biological concept of species [159–161].

In general, most articles of description based on integrative taxonomy combine only morphological and morphometric data with molecular analyses (Table 2). However, it is worth mentioning that in 2020 the description of *T. rosai* was published based on morphometric, morphological, molecular data, and experimental crosses that have been combined with information from the literature about the species (cytogenetic data [155,156], electrophoresis pattern [155], cuticular hydrocarbons pattern [162], geometric morphometry [163], cycle, and average time of life [164–166] as well as geographic distribution [18,42–44,50,51]), becoming the most complete article of species description of the subfamily Triatominae [5].

3. Overview of Tools Applied to Taxonomic Studies of Triatomines

In addition to species descriptions, several taxonomic studies have been carried out to assess the specific status of valid species and, above all, to assist in the correct classification of Chaças disease vectors. Based on this, we will specifically discuss the application of each taxonomic tool.

3.1. Morphology and Comparative Morphology

As already mentioned above, morphological studies are applied to all formal species descriptions (Table 2). These analyses can characterize several structures that, in general, are compared and confirm the specific status of triatomines [5,6,11–17]. Studies with OM and SEM allow characterizing structures of the head, thorax, and abdomen. These analyses are very important for classical taxonomy and support the main dichotomous keys used for the correct identification of these vectors [101,167–172].
3.2. Morphometry

Like morphological studies, morphometric studies are also present in the description of all triatomines (at first, showing the size of specimens and structures and, later, by means of geometric morphometry [4]). These measurable data are very important from a taxonomic point of view, as a visual identification system was recently developed from morphometric data that has the potential to automate the identification of triatomines [173,174].

3.3. Chemotaxonomy

In 1964, Actis et al. [175] used, for the first time, biochemical studies with hemolymph protein electrophoresis to compare species of triatomines, giving rise to chemotaxonomy. Isoenzymes were applied to different species of Rhodnius [176], the T. brasiiliensis subcomplex [177] and Mexican Triatoma [178]. However, recently, biochemical studies are rare from a taxonomic perspective; they contribute to the integrative taxonomy as shown by Jurberg et al. [11] and Alevi et al. [5] with the species descriptions of T. pintodiasi Jurberg et al., 2013 and T. rosai respectively.

3.4. Cytotaxonomy and Karyosystematic

Cytotaxonomy was started with Ueshima [179] by proposing the application of cytogenetic studies of chromosomes to differentiate morphologically related species. Later, the use of chromosomal analyses—such as karyotypes [180–183]—the constitutive heterochromatin pattern [156,184,185], the heterochromatin base pair composition [186–188], and the location of the nucleolar organizing region [139,156,189], assisted in the correct identification and classification of triatomines. Recently, dichotomous keys have been proposed based on cytogenetic data [190–193].

3.5. MALDI-TOF MS

Laroche et al. [194] used, for the first time, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis to differentiate triatome species. The researchers were able to differentiate species from French Guiana by MALDI-TOF. Subsequently, Souza et al. [195] used these analyses to differentiate 12 species of the genus Rhodnius. Furthermore, Souza et al. [196] also differentiated the species of Cavernicola Barber, 1937.

3.6. Omics

In 2017, omics tools (transcriptomics) were used for the first time in taxonomic studies of triatomines to confirm the specific status of R. montenegrensis [197]. In 2019, Brito et al. [198] also validated the specific status of R. montenegrensis and confirmed that this species refers to strain II of the paraphyletic group of R. robustus.

4. Concluding Remarks

Classical taxonomy, over the last few decades, has been revitalized by integrative taxonomy leading to success in the identification and delimitation of new species through the use of multiple and complementary approaches. Most descriptions of triatomine species are based on classical taxonomy. Facing evolutionary (cryptic speciation and phenotypic plasticity) and taxonomic (more than 190 synonymizations) problems has indicated that it is evident that integrative taxonomy studies are an important and necessary trend for this group of vectors. However, from the synonymization of R. taquarussuensis (which was described through integrative taxonomy [20] and was later synonymized with R. neglectus [19]), it is evident that phylogenetic studies (molecular taxonomy) should be considered among the analyses used for the description of new species from the integrative taxonomy (Figure 1).
Figure 1. Schematic representation of the integrative taxonomy of triatomines.

Author Contributions: Conceptualization, K.C.C.A., J.d.O., D.d.S.R. and C.G.; Writing—original draft preparation, K.C.C.A., J.d.O., D.d.S.R. and C.G.; Writing—review and editing, K.C.C.A., J.d.O., D.d.S.R. and C.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by São Paulo Research Foundation, Brazil (FAPESP) (Process number 2017/05015-7 and 2019/02145-2), the Coordination for the Improvement of Higher Education Personnel, Brazil (CAPES)—Finance Code 001 and the National Council for Scientific and Technological Development, Brazil (CNPq).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are within the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/chagasdisease-(american-trypanosomiasis) (accessed on 28 October 2021).
2. Pan American Health Organization. Available online: https://www.paho.org/en/topics/chagas-disease (accessed on 26 November 2021).
3. Justi, S.A.; Galvão, C. The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends Parasit. 2017, 33, 42–52. [CrossRef] [PubMed]
4. Galvão, C. Taxonomia dos Vetores da Doença de Chagas da Forma à Molécula, quase três séculos de história. In Atualidades em Medicina Tropical no Brasil: Vetores, 1st ed.; Oliveira, J., Alevi, K.C.C., Camargo, L.M.A., Meneguetti, D.U.O., Eds.; Stricto Sensu Editora: Rio Branco, Brasil, 2020; pp. 9–37. (In Portuguese)
5. Alevi, K.C.C.; Oliveira, J.; Garcia, A.C.C.; Cristal, D.C.; Delgado, L.M.G.; Bittinelli, I.F.; Reis, Y.V.; Ravazi, A.; Oliveira, A.B.B.; Galvão, C.; et al. Triatoma rosai sp. nov. (Hemiptera, Triatominae): A New Species of Argentinian Chagas Disease Vector Described Based on Integrative Taxonomy. Insects 2020, 11, 830. [CrossRef] [PubMed]
6. Zhao, Y.; Galvão, C.; Cai, W. Rhodnius micki, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. ZooKeys 2021, 1012, 71–93. [CrossRef] [PubMed]
7. Dale, C.; Justi, S.A.; Galvão, C. Belminus santosmalletae (Hemiptera: Heteroptera: Reduviidae): New Species from Panama, with an Updated Key for Belminus Stål, 1859 Species. Insects 2021, 12, 686. [CrossRef] [PubMed]
8. De Geer, C. Mémoires pour Servir à l’Historie des Insectes; L.L. Grefing: Stockholm, Sweden, 1773; pp. 1–696. (In French)
9. Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [CrossRef]
10. Will, K.W.; Mishler, B.D.; Wheeler, Q.D. The perils of DNA barcoding and the need of integrative taxonomy. System. Biol. 2005, 54, 844–851. [CrossRef]
11. Jurberg, J.; Cunha, V.; Cailleaux, S.; Raigorodschi, R.; Lima, M.S.; Rocha, D.S.; Moreira, F.F. Triatoma pintodiasi sp. nov. do subcomplexo T. rubrovaria (Hemiptera, Reduviidae, Triatominae). Rev. Pan Am. Saude 2013, 4, 43–56. [CrossRef]

12. Frias-Lasserre, D. A new species and karyotype variation in the bordering distribution of Mepraia spinolai (Porter) and Mepraia gajardoii Frias et al. (Hemiptera: Reduviidae: Triatominae) in Chile and its parapatric model of speciation. Neotrop. Entom. 2010, 39, 572–583. [CrossRef]

13. Lima-Cordão, R.A.; Monroy, M.C.; Stevens, L.; Rodas, A.; Rodas, G.A.; Dorni, P.L.; Justi, A.S. Description of Triatoma neopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). ZooKeys 2013, 775, 69–95. [CrossRef]

14. Abad-Franch, F.; Pavan, M.G.; Jaramillo-O, N.; Palomeque, F.S.; Dale, C.; Chevarena, D.; Monteiro, F. A Rhodnius barrettii, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Mem. Inst. Oswaldo Cruz 2013, 108, 92–99. [PubMed]

15. Souza, E.S.; Von Atzingen, N.C.N.; Furtado, M.B.; Oliveira, J.; Nascimento, J.D.; et al. Description of Rhodnius montenegrensis n. sp. (Hemiptera: Reduviidae:Triatominae) from the state of Rondônia, Brazil. Zootaxa 2012, 347, 62–76. [CrossRef]

16. Bergroth, E. A new genus of Reduviidae. Neiva, A. Notas de entomologia 1855, 7, 404.

17. Distant, W.L. Hemiptera Argentina Enumeravit Speciesque Novas. [In Portuguese]

18. Uhler, P.R. Observations upon the Heteropterous Hemiptera of Lower California, with description of new species. Proc. Calif. Acad. Sci. 1894, 4, 223–295.

19. Berg, C. Hemiptera Argentina Enumeravit Speciesque Novas; P. E. Coni: Buenos Aires, Argentina, 1879; p. 316.

20. Uhler, P.R. Observations upon the Heteropterous Hemiptera of Lower California, with description of new species. Proc. Calif. Acad. Sci. 1894, 4, 223–295.

21. Latreille, P.A. Insectes de l’Amérique recueillis pendant le voyage de MM. Humboldt, A., Bonpland, A., Eds.; 1811; pp. 197–397. (In French)

22. Klug, J.C.F. Reise um die Erde, in den Jahren 1830, 1831, und 1832, Ausgeführt von F.J.F. Meyen. Teil 1; C. W. Eichhoff: Berlin, Germany, 1834. [CrossRef]

23. Burmeister, H. Handbuch der Entomologie; Tome 2, part 1; T. Enslin: Berlin, Germany, 1835; p. 400. (In German)

24. Blanchard, E. Hémiptères. In D’Orbigny, A. (1837–1846), Voyage dans L’Amérique Méridionale, Tome Sixième, 2.e Partie: Insectes; Chez. P. Bertrand: Paris, France, 1846; pp. 218–222. (In French)

25. Ericsson, W.F. Insecten. In Schomburgk, R. Reisen in British-GUIANA in der Jahren 1840–1844 im auftrag Sr Majestat des Konings von Preussen; Weber: Leipzig, Germany, 1848; pp. 553–617. (In German)

26. Herrich-Schaeffer, G.H.W. Die Wanzenartigen Insekten; C. H. Zehschen Buchhandlung; Nurnberg, Germany, 1848; p. 130. (In German)

27. Leconte, J.L. Remarks on two species of American Cicimex. Proc. Acad. Nat. Sci. Phila. 1855, 7, 404.

28. Stål, C. Monographie der Gattung Conorinus und Verwandten. Berliner Entomol Zeitschrift 1859, 3, 99–117. (In German) [CrossRef]

29. Stål, C. Hemiptera Fabriciana; Pars 1. In Heteroptera; Kongliga Svenska Vetenskaps-Akademiens: Stockholm, Sweden, 1868; pp. 1–148. (In Swedish)

30. Stål, C. Enumeratio Hemipterorum; Pars 2. Kongliga Svenska Vetenskaps-Akademiens: Stockholm, Sweden, 1872; pp. 1–159.

31. Walker, F. Catalogue of the Specimens of Hemiptera Heteroptera in the Collection of the British Museum; BM(NH): London, UK, 1873; p. 220.

32. Berg, C. Hemiptera Argentina Enumeravit Speciesque Novas; P. E. Coni: Buenos Aires, Argentina, 1879; p. 316.
41. Neiva, A. Contribuição para o estudo dos hematofagos brasileiros e descrição de uma nova espécie de Triatoma. Brasil-Médico 1911, 25, 461–462. (In Portuguese)
42. Neiva, A. Notas de entomologia médica. Três novas espécies de reduvidas norte-americanas. Bras. Méd. 1911, 25, 441. (In Portuguese)
43. Neiva, A. Notas de entomologia médica e descrição de duas novas espécies de Triatomas norte-americanas. Bras. Méd. 1912, 26, 21–22. (In Portuguese)
44. Neiva, A. Alguns dados sobre hemípteros hematófagos da América del sur, com descrição de uma nova espécie. Anales del Museo Nacional de Historia Natural 1913, 24, 195–198. (In Spanish)
45. Matta, A. Um novo Reduvido do Amazonas, Rhodnius brethesi n. sp. Amaz. Méd. 1919, 2, 93–94. (In Portuguese)
46. Neiva, A.; Pinto, C. Dos hemípteros hematofágos do Norte do Brasil com descrição de duas novas espécies. Bras. Méd. 1923, 1923, 73–76. (In Portuguese)
47. Neiva, A.; Pinto, C. Estado actual dos conhecimentos sôbre o género Rhodnius Stål, com a descrição de uma nova espécie. Bras. Méd. 1923, 37, 20–24. (In Portuguese)
48. Neiva, A.; Pinto, C. Representantes dos géneros Triatoma Lap. e Rhodnius Stål, encontrados no Brasil Central e Sul; observações biológicas e descrição de uma nova espécie. Bras. Méd. 1923, 37, 84–86. (In Portuguese)
49. Larrousse, F. Triatomes d’Asie: Description diuene nouvelle espécie Triatoma bouvieri n. sp. Annales de Parasitologie Humaine et Comparée 1924, 2, 62–70. (In Spanish) [CrossRef]
50. Pinto, C.; Barreto, J.B. Uma nova espécie de ”barbeiro” do Brasil, (Triatoma petrochii n.s.p.). Sci. Med. 1925, 3, 769. (In Portuguese)
51. Pinto, C. Triatomídeos da Venezuela, com a descrição de uma nova espécie do género Eutriatoma. Ann. Fac. Med. São Paulo 1926, 1, 85–87. (In Portuguese)
52. Larrousse, F. Description de deux espèces nouvelles du genre Triatoma: T. carrioni n. sp., et T. pintoi n. sp. Annales de Parasitologie Humaine et Comparée 1926, 4, 136–139. (In Spanish) [CrossRef]
53. Pinto, C. Eutriatoma tibianaculata novo género e nova espécie, forma intermediaria entre Rhodnius e Triatoma. Sci. Med. 1926, 3, 133–136. (In Portuguese)
54. Larrousse, F. Etude biologique et systématique du género Rhodnius Stål (Hémiptères, Reduviidae). Annales de Parasitologie 1927, 5, 63–88. (In French)
55. Del Ponte, E. Algunas especies nuevas del género Triatoma Lap. Boletin de la Sociedad Entomológica Argentina 1929, 1, 3–8. (In Spanish)
56. Barber, H.G. A new species of Rhodnius from Panama (Hemiptera: Reduviidae). J. Wash. Acad. Sci. 1932, 22, 514–517.
57. Schouteden, H. Résultats scientifiques du voyage de LL. AA. RR. le Prince et la Princesse de Belgique. Hemiptera ñ Heteroptera. Annales de l’Institut Royal de Histoire Naturelle Belgique 1933, 4, 43–70. (In French)
58. Porter, C.E. Una nueva especie de Triatoma挠. Revista Chilena de Historia Natural 1934, 37, 192–193. (In Spanish)
59. Barber, H.G. A new bat-cave bug from Panama (Hemiptera-Heteroptera, Reduviidae). Proc. Entomol. Soc. Wash. 1937, 39, 60–63.
60. Barber, H.G. A new genus and species of the subfamily Triatominae (Reduviidae: Hemiptera). Proc. Entomol. Soc. Wash. 1938, 40, 104–105.
61. Usinger, R.L. Descriptions of new Triatominae with a key to genera (Hemiptera, Reduviidae). Univ. Calif. Publ. Entomol. 1939, 7, 33–56.
62. Neiva, A.; Pinto, C.; Lent, H. Notas sobre triatomídeos do Rio Grande do sul e descrição de uma nova espécie. Memórias do Instituto Oswaldo Cruz 1939, 34, 607–610. (In Spanish) [CrossRef]
63. Lent, H.; Martins, A.V. Estudos sôbre os triatomídeos do Estado de Minas Gerais, com descrição de uma espécie nova. Rev. Entomol. 1940, 11, 877–886. (In Portuguese)
64. Mazzotti, L. Una nueva especie de Triatoma en Mexico. Cien Méx. 1940, 1, 22–23. (In Spanish)
65. Usinger, R.L. A new Triatoma from Lower California (Hemiptera, Reduviidae). Pan Pacific Ent. 1940, 16, 73–74.
66. Usinger, R.L. Notes and descriptions of neotropical Triatominae (Hemiptera, Reduviidae). Pan Pacific Ent. 1941, 17, 49–57.
67. Neiva, A.; Lent, H. Sinopse dos Triatomídeos. Rev. Ent. 1941, 12, 61–92. (In Spanish)
68. Lent, H. Estudos sobre os triatomídeos do Estado do Rio Grande do Sul, com descrição de uma espécie nova. Rev. Bras. Biol. 1942, 2, 219–231. (In Portuguese)
69. Lent, H. Novo transmissor da doença de Chagas na cidade de Rio de Janeiro, D.F. Estudo dos géneros Belminus Stål, 1859, Bolboderma Valdés, 1910 e descrição de Parabelminus caritoca n.g., n. sp. (Hemiptera, Triatomidae). Memórias do Instituto Oswaldo Cruz 1943, 38, 497–516. (In Portuguese) [CrossRef]
70. Pinto, C.; Lent, H. Novo hemíptero hematofago do género Panstrongylus Berg, 1879. Rev. Bras. Biol. 1946, 6, 459–465. (In Portuguese)
71. Romana, C.; Abalos, J. Triatoma delportei n. sp. (Hemiptera, Reduviidae). Anales del Inst. de Med. Reg. Tucumán. 1947, 2, 79–93.
72. Wygodzinsky, P.; Abalos, J.W. Triatoma guasayana sp. n. (Triatominae, Reduviidae, Hemiptera) (Nota previa). Semana Médica 1949, 56, 2.
73. Lent, H. Nova espécie de Triatoma Laporte, 1833 (Hemiptera, Reduviidae). Rev. Bras. Biol. 1950, 10, 437–440. (In Portuguese)
74. Lent, H. Novo Triatoma do Estado de Minas Gerais (Brasil) (Hemiptera, Reduviidae). Rev. Entom. 1951, 22, 349–352. (In Portuguese)
75. Lent, H. Segunda espécie do gênero Bolbodera Valdés, 1910 (Hemiptera, Reduviidae). Rev. Bras. Biol. 1951, 11, 153–156. (In Portuguese)
76. Lent, H. Triatominae das regiões Oriental, Australiana, Etiópica e Paleártica, com descrição de uma nova espécie (Hemiptera, Reduviidae). Rev. Bras. Biol. 1951, 11, 425–429. (In Portuguese)
77. Lent, H. Um novo hemiptero hematófago da Venezuela (Reduviidae, Triatominae). Rev. Bras. Biol. 1953, 13, 169–172. (In Portuguese)
78. Leite, I.C.; Barbosa, A. Triatoma (Eutriatoma) matogrossensis n sp. Bol. do Inst. Oswaldo Cruz 1953, 2, 123–126.
79. Lent, H. Nova espécie de Triatoma da Região Oriental (Hemiptera, Reduviidae). Rev. Bras. de Biol. 1953, 13, 315–319. (In Portuguese)
80. Lent, H. Comentários sôbre o gênero Rhodnius Stål com descrição de uma nova espécie do Brasil (Hemiptera, Reduviidae). Rev. Bras. de Biol. 1954, 14, 237–247. (In Portuguese)
81. Herrera, A. Contribuição al conhecimento do gênero Belminus Stål, 1859 (Triatominae, Reduviidae, Hemiptera). Anales del Inst. de Med. Reg. Tucumán. 1954, 4, 85–105. (In Spanish)
82. Lent, H.; León, L.A. Um novo Rhodnius Stål do Ecuador (Hemiptera, Reduviidae). Rev. Bras. Biol. 1958, 18, 181–185. (In Portuguese)
83. Verano, O.T.; Galvão, A.B. Triatoma costalimai n. sp. Rev. Bras. Mal. Doenças Trop. 1958, 10, 199–205.
84. Maldonado, J.; Farr, T.H. On some Jamaican Triatominae and Emesinae. Proc. Entomol. Soc. Wash. 1962, 64, 187–194.
85. Ryckman, R.E. Biosystematics and hosts of the Triatoma protracta complex in NorthAmerica (Hemiptera: Reduviidae) (Rodentia: Cricetidae); University of California Press: Oakland, CA, USA, 1962; Volume 27, pp. 93–240.
86. Correa, R.R.; Espinola, H.N. Descrição de Triatoma pseudomaculata, nova espécie de triatominés de Sobral, Ceará (Hemiptera, Reduviidae). Arquivos de Higiene e Saúde Publica 1964, 29, 115–127. (In Portuguese)
87. Lent, H.; Jurberg, J. O género Psammolestes Bergroth, 1911, com um estudo sôbre a genitália das espécies (Hemiptera, Reduviidae, Triatominae). Rev. Bras. Biol. 1965, 25, 349–376. (In Portuguese)
88. Hsiao, T.Y. A new species of Triatoma Laporte (Hemiptera, Reduviidae). Acta Zootax. Sinica 1965, 2, 197–200.
89. Galvão, A.B.; Silva e Souza, H.; Lima, R.R. Triatoma williamsi n. sp. (Hemiptera, Triatominae). Rev. Bras. Mal. Doenças Trop. 1965, 17, 363–366.
90. Sherlock, I.A.; Serafim, M. Triatoma lentii sp. n., Triatoma pessoii sp. n. e Triatoma bahiensis sp. n. do estado da Bahia, Brasil (Hemiptera, Reduviidae). Gaz. Méd. Bahia. 1967, 67, 75–92. (In Portuguese)
91. Galvão, A.B.; Souza, H.A.S.; Lima, R.R. Espécies de Triatominae ocorrentes em Goias e descrição de uma nova espécie. Revista Brasileira de Malariologia e Doenças Trop. 1967, 19, 397–412. (In Portuguese)
92. Carcavallo, R.U.; Cichero, J.A.; Martínez, A.; Prosen, A.F.; Roneros, R. Uma nova espécie do gênero Triatoma Laporte (Hemiptera, Reduviidae, Triatominae). Anais da Congresso Brasileiro de Malariolesiologia e Doenças Trop. 1965, 1, 23–48. (In Spanish)
93. Galvão, A.B.; Palma, J.D. Uma nova espécie do gênero Pancunyus Berg, 1879 (Reduviidae, Triatominae). Rev. Bras. Biol. 1968, 28, 403–405. (In Portuguese)
94. Zeledón, R.; Ponce, C. Descripción de una nueva especie de Triatoma de Honduras, América Central (Hemiptera, Reduviidae). Rev. Biol. Trop. 1972, 20, 275–279. (In Spanish) [PubMed]
95. Almeida, F.B.; Santos, E.I.; Sposina, G. Triatomíneos da Amazônia III. Acta Amaz. 1973, 3, 43–66. (In Portuguese) [CrossRef]
96. Ghauri, M.S.K. The Indian triatomine genus Linchcostes (Reduviidae). Syst. Ent. 1976, 1, 183–187. [CrossRef]
97. Carcavallo, R.U.; Barreto, P. Uma nova espécie de Rhodnius Stål (Hemiptera, Reduviidae, Triatominae) de Colômbia. Bol. Dir. Mal. San. Amb. 1976, 16, 176–183. (In Spanish)
98. Martínez, A.; Carcavallo, R.U. Um novo Triatominae neotropical (Hemiptera: Reduviidae). Bol. Ent. Mex. 1977, 38, 109–118. (In Spanish)
99. Sherlock, I.A.; Guitton, N.; Miles, M. Rhodnius paraensis espécie nova do Estado do Pará, Brasil (Hemiptera, Reduviidae, Triatominae). Acta Amazon. 1977, 7, 71–74. (In Portuguese) [PubMed]
100. Else, J.G.; Cheeong, W.H.; Mahadevan, S.; Zárate, L.G. A new species of cave-inhabiting Triatoma (Hemiptera: Reduviidae) from Malaysia. J. Med. Ent. 1977, 14, 367–369. [CrossRef]
101. Lent, H.; Wygodzinsky, P. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bull. Am. Mus. Nat. Hist. 1979, 163, 123–230.
102. Serra, R.G.; Atzinger, N.C.B.; Serra, O.P. Nova espécie do gênero Alberprosenia Martínez & Carcavallo, 1977, do Estado do Pará, Brasil. V Congresso Bras. Par. 1980, 126. (In Portuguese)
103. Martínez, A.; Carcavallo, R.U.; Pelaez, D. Triatoma braulovskyi, nueva especie Triatominae de México. Chagas 1984, 1, 39–42. (In Spanish)
104. Barrett, T.V.; Arias, J.R. A new triatomine host of Trypanosoma cruzi from the Central Amazon of Brasil: cavernicola lenti n. sp. (Hemiptera, Reduviidae, Triatominae). Memórias do Instituto Oswaldo Cruz 1985, 80, 91–96. [CrossRef]
105. Carcavallo, R.U.; Martínez, A.; Pelaez, D. Uma nova especie de Triatoma Laporte, de México. Chagas 1987, 4, 4–5. (In Spanish)
106. Fernandez-Loayza, R. Triatoma matsunoi nueva especie del norte peruano (Hemiptera, Reduviidae, Triatominae). Rev. Per. Ent. 1989, 31, 21–24. (In Spanish)
107. Lent, H.; Jurberg, J; Galvão, C. Rhodnius stali n. sp., afin de Rhodnius pictipes Stål, 1872. Memórias do Instituto Oswaldo Cruz 1993, 88, 605–614. [CrossRef]
108. Osuna, E.; Ayala, J.M. Belminus pittieri, nova especie de Bolboderini (Triatominae: Reduviidae: Heteroptera). Bol. Ent. Venez. 1993, 8, 147–150. (In Spanish)

109. Martínez, A.; Carcavallo, R.U.; Jurberg, J. Triatoma gomeznunezi a new species of Triatomini from Mexico (Hemiptera, Reduviidae, Triatominae). Ent. Vect. 1994, 1, 15–19.

110. Lent, H.; Jurberg, J.; Carcavallo, R.U. Belminus laportei sp. n. da região Amazônica (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 1995, 90, 33–39. (In Portuguese) [CrossRef] [PubMed]

111. Frias, D.A.; Henry, A.A.; González, C.R. Mepraia gajardoi: A new species of Triatominae (Hemiptera: Reduviidae) from Chile and its comparison with Mepraia spinolai. Rev. Chil. Hist. Nat. 1998, 71, 177–188.

112. Poinar, G., Jr. Triatoma jatai sp. n. coletada na Bahia, Brasil (Hemiptera: Reduviidae, Triatominae). Memórias do Instituto Oswaldo Cruz 2002, 97, 649–654. (In Portuguese) [CrossRef] [PubMed]

113. Galvão, C. Angulo, V.M. Belminus correordi, a new species of Bolboderini (Hemiptera: Reduviidae: Triatominae) from Santander, Colombia. Zootaxa 2006, 1241, 61–68.

114. Sandoval, C.M.; Pábon, E.; Jurberg, J.; Galvão, C. Belminus ferroae n. sp. from the Colombian north-east, with a key to the species of the genus Rhodnius Stal, 1859 (Hemiptera, Reduviidae, Triatominae). Memórias do Instituto Oswaldo Cruz 2001, 96, 71–79. (In Portuguese) [CrossRef]

115. Mejia, J.M.; Galvão, C.; Jurberg, J. Triatoma baratai sp. n. do estado do Mato Grosso do Sul, Brasil (Hemiptera, Reduviidae, Triatominae). Ent. Vect. 2000, 7, 373–387. (In Portuguese)

116. Valente, V.C.; Valente, S.A.S.; Carcavallo, R.; Rocha, D.S.; Galvão, C.; Jurberg, J. Considerações sobre uma nova espécie do gênero Rhodnius Stal, do estado do Pará, Brasil (Hemiptera, Reduviidae, Triatominae). Ent. Vect. 2001, 8, 65–80. (In Portuguese)

117. Galvão, C.; Portugues, J.S.; Silva, D.R.; Jurberg, J.; Galvão, C.; Ambrose, D.P.; Miles, M.A. A new species of triatomine from Tamil Nadu, India. Med. Vet. Ent. 2002, 16, 75–82. [CrossRef]

118. Papa, A.R.; Jurberg, J.; Carcavallo, R.U.; Cerqueira, R.L.; Barata, J.M.B. Triatoma sherlocki sp. n. coletada na Bahia, Brasil (Hemiptera, Reduviidae, Triatominae). Ent. Vect. 2002, 9, 133–146. (In Portuguese)

119. Carcavallo, R.U.; Jurberg, J.; Lent, H.; Galvão, C.; Steindel, M.; Pinto, C.J.C. Nova espécie do complexo oliverai (nova denominação para o complexo matogrossensis) Hemiptera, Reduviidae, Triatominae do estado do Rio Grande do Sul, Brasil. Memórias do Instituto Oswaldo Cruz 2007, 102, 733–736. [CrossRef]

120. Poinar, G., Jr. Triatoma dominicana sp. n. (Hemiptera: Reduviidae: Triatominae), and Trypanosoma antiquus sp. n. (Sternorrhyncha: Tripanosomatidae), the first fossil evidence of a triatomine-trypanosomatid vector association. Vec. Borne. Zoon. Dis. 2005, 5, 72–81. [CrossRef] [PubMed]

121. Galvão, C.; Pattersin, J.S.; Silva, D.R.; Jurberg, J.; Carcavallo, R.; Rajen, K.; Ambrose, D.P.; Miles, M.A. A new species of triatomine from Tamil Nadu, India. Med. Vet. Ent. 2002, 16, 75–82. [CrossRef]

122. Béenger, J.M.; Blanchet, D. A new species of the genus Panstrongylus from French Guiana (Heteroptera; Reduviidae; Triatominae). Memórias do Instituto Oswaldo Cruz 2007, 102, 373–376. [CrossRef]

123. Cartagena, E.; Chávez Espada, T.; Sossa Gil, D.; Asturizaga, R.A.; Mamani, B.V.; Prieto, P.V.; Triatoma javae sp. n. do complexo oliverai encontrada no Estado de Mato Grosso, Brasil (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 2007, 102, 373–376. [CrossRef]

124. Carcavallo, R.U.; Jurberg, J.; Rocha, D.S.; Galvão, C.; Noireau, F.; Lent, H. Triatoma vandae sp. n. do complexo oliverai encontrada no Estado de Mato Grosso, Brasil (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 2007, 102, 373–376. [CrossRef]

125. Carcavallo, R.U.; Jurberg, J.; Rocha, D.S.; Galvão, C.; Jurberg, J.; Lent, H. Uma nova espécie de Triatoma do Estado do Rio Grande do Sul, Brasil (Hemiptera, Reduviidae, Triatominae). Entom. Vect. 1998, 5, 295–310. (In Portuguese)

126. Carcavallo, R.U.; Galvão, C.; Lent, H. Triatoma jurbergi sp. n. do norte do estado do Mato Grosso, Brasil (Hemiptera, Reduviidae, Triatominae) com uma atualização das sinonimias e outros táxons. Memórias do Instituto Oswaldo Cruz 1998, 93, 459–464. (In Portuguese) [CrossRef] [PubMed]

127. Costa, J.; Felix, M. Triatoma jauzeiriensis sp. nov. from the state of Bahia, Northeastern Brazil (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 2007, 102, 87–90. (In Spanish) [CrossRef] [PubMed]

128. Ayala, J.M. Uma nova especie de Panstrongylus Berg de Venezuela. (Hemiptera: Reduviidae, Triatominae). Entomotropica 2009, 24, 105–109. (In Spanish)

129. Jurberg, J.; Rocha, D.S.; Galvão, C. Rhodnius zeledoni sp. nov. afim de Rhodnius paraensis Sherlock, Guitton & Miles, 1977 (Hemiptera, Reduviidae, Triatominae). Biota Neotrop. 2009, 9, 123–128.

130. Poinar, G., Jr. Panstrongylus hispaniolae sp. n. (Hemiptera: Reduviidae: Triatominae), a new fossil triatomine in Dominican amber, with evidence of gut flagellates. Palaodiversity 2013, 6, 1–8.

131. Gonçalves, T.C.M.; Teves-Neves, S.C.; Santos-Mallet, J.R.; Carabajal-de-la-Fuente, A.L.; Lopes, C.M. Triatoma jatai sp. nov. in the state of Tocantins, Brazil (Hemiptera: Reduviidae: Triatominae). Memórias do Instituto Oswaldo Cruz 2013, 108, 429–437. [CrossRef] [PubMed]

132. Oliveira, J.; Ayala, J.M.; Justi, S.A.; da Rosa, J.A.; Galvão, C. Description of a new species of Nesotriatoma Usinger, 1944 from Cuba and revalidation of synonymy between Nesotriatoma bruneri (Usinger, 1944) and N. flavida (Neiva, 1911) (Hemiptera, Reduviidae, Triatominae). J. Vector. Ecol. 2018, 43, 148–157. [CrossRef]
133. Poinar, G., Jr. A primitive triatomine bug, *Paleotriatoma metaxytaxa* gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-Cretaceous amber from northern Myanmar. *Cret. Res.* 2018, 93, 90–97. [CrossRef]

134. Monteiro, F.A.; Weirauch, C.; Felix, M.; Lazoski, C.; Abd-Aban-Franch, F. Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. *Adv. Parasitol.* 2018, 99, 265–344.

135. Castro, M.R.J.; Clément, G.; Monteiro, F.A.; Vieira, C.; Carareto, C.M. Homology-free detection of transposable elements unveils their dynamics in three ecologically distinct *Rhodius* species. *Genes* 2020, 11, 170. [CrossRef]

136. Monteiro, F.A.; Barret, T.V.; Fitzpatrick, S.; Cordon-Rosales, C.; Feliciangeli, D.; Beard, C.B. Molecular phylogeography of the Amazonian Chagas disease vectors *Rhodius prolincus* and *R. robustus*. *Mol. Ecol.* 2003, 12, 997–1006. [CrossRef]

137. Justi, S.A.; Russo, C.A.M.; Mallett, J.R.S.; Obara, M.T.; Galvão, C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). *Parasites Vectors* 2014, 7, 149. [CrossRef]

138. Pinzera, F.; Pita, S.; Nattero, J.; Panzera, Y.; Dumonteil, E.; Rodas, A.; Rua, N.; Garnica, R.; Monroy, C. Two Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae) across its geographic range. *J. Med. Entomol. 1998, 35, 232–238. [CrossRef] [PubMed]

139. Cesaretto, N.R.; Oliveira, J.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Vicente, R.D.; Cristal, D.C.; Galvão, C. Phylogeny and biogeography of Triatomini (Hemiptera: Reduviidae): Molecular evidence of a New World origin of the Asiatice clade. *Mol. Phylo. Evol.* 2002, 23, 447–457. [CrossRef]

140. Nascimento, J.D.; Caneguim, B.H.; Paula, M.C.; Ribeiro, A.R.; Sasso-Cerri, E.; Rosa, J.A. Spermathecae: Morphofunctional features and correlation with fat bodies and trachea in six species of vectors of Chagas disease. *Acta Trop.* 2019, 197, 105032. [CrossRef]

141. Garcia, B.A.; Powell, J.R. Phylogeny of species of *Triatoma* (Hemiptera: Reduviidae) based on mitochondrial DNA sequences. *J. Med. Entomol. 1998, 35, 232–238. [CrossRef] [PubMed]

142. Hypša, V.; Tietz, D.; Zrzavy, J.; Rego, R.O.; Galvao, C.; Jurberg, J. Phylogeny and biogeography of Triatomini (Hemiptera: Reduviidae): Molecular evidence of a New World origin of the Asiatice clade. *Mol. Phylo. Evol.* 2002, 23, 447–457. [CrossRef]

143. Lasserre, D.F.; Oliveira, J.; Pinotti, H.; Rosa, J.A. Morphological description of *Mepraia* spp. females (Hemiptera: Reduviidae: Triatominae). *Acta Trop.* 2019, 189, 389–394. [CrossRef]

144. Rengifo-Correa, L.; Abad-Franch, F.; Martinez-Hernández, F.; Salazar-Schettino, P.M.; Téllez-Rendón, J.L.; Villalobos, G.; Morrone, J.J. A biogeographic-ecological approach to disentangle reticulate evolution in the *Triatoma phyllosoma* species group (Heteroptera: Triatominae), vectors of Chagas disease. *J. Zool. Syst. Evol. Res. 2020, 59, 94–110. [CrossRef]

145. Cesaretto, N.R.; Oliveira, J.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Vicente, R.D.; Cristal, D.C.; Galvão, C.; Azeredo-Oliveira, M.T.V.; et al. Trends in taxonomy of Triatomini (Hemiptera: Reduviidae, Triatominae): Reproductive compatibility reinforces the synonymization of *Meccus Stål, 1859 with Triatoma Laporte*, 1832. *Parasit Vect.* 2021, 14, 340. [CrossRef] [PubMed]

146. International Commission on Zoological Nomenclature. *The International Code of Zoological Nomenclature*. 1999. Available online: https://www.iczn.org/the-code/the-international-code-of-zoological-nomenclature/the-code-online/ (accessed on 28 October 2021).

147. Panzera, F.; Pita, S.; Ferreiro, M.J.; Ferrandis, I.; Lages, C.; Pérez, R.; Silva, A.E.; Guerra, M.; Panzera, F. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). *Cytop. Gen. Res. 2012, 138, 56–67. [CrossRef] [PubMed]

148. Alevi, K.C.C.; Oliveira, J.; Azeredo-Oliveira, M.T.V.; Rosa, J.A. Phylogenetic and phenotypic relationships of *Triatoma* (Hemiptera: Reduviidae) based on mitochondrial DNA sequences. *Parasites Vectors 2017, 10, 180. [CrossRef] [PubMed]

149. Cesaretto, N.R.; Oliveira, J.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Vicente, R.D.; Cristal, D.C.; Galvão, C.; Azeredo-Oliveira, M.T.V.; et al. Evolution history of the *Triatoma* (Hemiptera, Reduviidae) species complex. *Zootaxa* 2016, 4107, 239–254.

150. Oliveira, J.; Marcet, P.L.; Takiya, D.M.; Mendonça, V.J.; Belintani, T.; Bargues, M.D.; Mateo, L.; Chagas, V.; Folly-Ramos, E.; Cordeiro-Estrela, P.; et al. Combined phylogenetic and morphometric information to delimit and unify the *Triatoma brasiliensis* species complex and the *Brasilensis* subcomplex. *Act. Trop. 2017, 170, 140–148. [CrossRef] [PubMed]

151. Belintani, T.; Oliveira, J.; Pinotti, H.; Silva, L.A.; Alevi, K.C.C.; Galvão, C.; Rosa, J.A. Phylogenetic and phenotypic relationships of the *Triatoma sordida* subcomplex (Hemiptera: Reduviidae: Triatominae). *Acta Trop. 2020, 212, 105679. [CrossRef]

152. Pañer, J.M.; Miralles, A.; de la Riva, I.; Vences, M. The integrative future of taxonomy. *Front. Zool.* 2010, 7, 16. [CrossRef]

153. Dorn, P.L.; Calderon, C.; Melgar, S.; Moguel, B.; Solorzano, E.; Dumonteil, E.; Rosas, A.; Rua, N.; Garnica, R.; Monroy, C. Two distinct *Triatoma dimidiata* (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. *PLoS Negl. Trop. Dis. 2009, 3, c393. [CrossRef]

154. Dorn, P.L.; de la Rúa, N.M.; Axen, H.; Smith, N.; Richards, B.R.; Charabati, J.; Suarez, J.; Woods, A.; Pessoa, R.; Monroy, C.; et al. Hypothesis testing clarifies the systematics of the main Central American Chagas disease vector, *Triatoma dimidiata* (Latreille, 1811), across its geographic range. *Infect. Genet. Evol. 2016, 44, 431–443. [CrossRef]

155. Panzera, F.; Horner, S.; Pereira, J.; Cestau, R.; Canale, D.; Diatajui, J.; Dujardin, J.P.; Perez, R. Genetic variability and geographic differentiation among three species of triatomine bugs (Hemiptera-Reduviidae) revealed by chromosomal markers. *Parasites Vectors 2015, 8, 495–504. [CrossRef] [PubMed]
157. Dias, F.B.S.; Jaramillo, N.; Diotaui, L. Description and characterization of the melanic morphotype of *Rhodnius nasutus* Stål, 1859 (Hemiptera: Reduviidae: Triatominae). *Rev. Soc. Bras. Med. Trop.* 2014, 47, 637–641. [CrossRef]
158. Pita, S.; Panzera, F.; Ferrandis, I.; Galväo, C.; Gómez-Palacio, A.; Panzera, Y. Chromosomal divergence and evolutionary inferences in *Rhodniini* based on the chromosomal location of ribosomal genes. *Memórias do Instituto Oswaldo Cruz* 2013, 108, 376–382. [CrossRef] [PubMed]
159. Mayr, E. *Animal Species and Evolution*; Harvard University Press: Cambridge, MA, USA, 1963.
160. Mayr, E. *Populations, Species, and Evolution*; Harvard University Press: Cambridge, MA, USA, 1970.
161. Dobzhansky, T. *Genetics of the Evolutionary Process*; Columbia University Press: New York, NY, USA, 1970.
162. Calderón-Fernández, G.M.; Juárez, P. The cuticular hydrocarbons of the *Triatoma sordida* species subcomplex (Hemiptera: Reduviidae). *Memórias do Instituto Oswaldo Cruz* 2013, 108, 778–784. [CrossRef] [PubMed]
163. Nattero, J.; Piccinali, R.M.; Lopes, C.M.; Hernandez, M.L.; Abrahán, L.; Lobbia, P.A.; Rodríguez, C.S.; Carbajal de la Fuente, A.L. Morphometric variability among the species of the Sordida subcomplex (Hemiptera: Reduviidae: Triatominae): Evidence for differentiation across the distribution range of *Triatoma sordida*. *Parasit. Vectors* 2017, 10, 412. [CrossRef]
164. Oscherov, E.B.; Damborsky, M.P.; Bar, M.E. Características biológicas de *Triatoma sordida* (Heteroptera, Reduviidae): Ciclo de vida. Revista de la Sociedad Entomológica Argentina 1998, 57, 13–17. (In Spanish)
165. Souza, J.M.P.; Rodrigues, V.L.C.C.; Rocha e Silva, E.O. *Triatoma sordida*: Considerações sobre o tempo de vida das formas adultas e sobre a oviposição das fêmeas. Revista de Saúde Pública 1978, 12, 291–296. (In Portuguese) [CrossRef]
166. Pinto, C.F. Fatos curiosos sobre a biologia do *Triatoma sordida* (Nota prévia). Rev. Soc. Bras. Med. 1949, 6, 305. (In Spanish)
167. Rosa, J.A.; Souza, E.S.; Costa, T.A.; Barbosa, R.R.; Souza, A.J.; Belintani, T.; Nascimento, J.D.; Gil-Santana, H.R.; Oliveira, J. Third record of *Rhodnius amazonicus* and comparative study with *R. pictipes* (Hemiptera, Reduviidae, Triatominae). *Acta Trop.* 2017, 176, 364–372. [CrossRef] [PubMed]
168. Rodrigues, J.M.S.; Rosa, J.A.; Moreira, F.F.F.; Galvão, C. Morphology of the terminal abdominal segments in females of Triatominae (Insecta: Hemiptera: Reduviidae). *Acta Trop.* 2018, 185, 86–97. [CrossRef]
169. Dale, C.; Almeida, C.E.; Mendonça, V.J.; Oliveira, J.; Costa, J. An updated and illustrated dichotomous key for the Chagas disease vectors of *Triatoma brasiliensis* species complex and their epidemiologic importance. *Zookeys* 2018, 805, 33–43. [CrossRef] [PubMed]
170. Osório-Quintero, L.; Ceretti, W.; Vendramini, D.P.; Rosa, J.A.; Oliveira, J.; Obara, M.T.; Barata, J.M.S. Morphological study of the urotergite I process in ten species of the genus *Triatoma* (Hemiptera, Reduviidae, Triatominae). *Acta Trop.* 2019, 192, 112–122. [CrossRef]
171. Almeida, M.A.R.C.; Freitas, S.P.C.; Oliveira, L.R.; Lima, N.R.C.; Rangel, E.F.; Santos-Mallet, J. Characterization of the Buccula, Rostrum, Stridulatory Sulcus, Scutellum, and External Female Genitalia of *Triatoma caracoloi* (Jurberg, Rocha & Lent, 1998), *Triatoma circummaculata* (Stål, 1859), and *Triatoma rubrovaria* (Blanchard, 1843) (Hemiptera, Reduviidae, Triatominae). *J. Parasitol.* Res. 2019, 2019, 3517098.
172. Oliveira, J.; Almeida, C.E.; Mendonça, V.J.; Alevi, K.C.C.; Costa, J.; Rosa, J.A. *Triatoma brasiliensis* species complex: Characterization of the external female genitalia. J. Vector Ecol. 2020, 45, 57–68. [CrossRef] [PubMed]
173. Gurgel- Gonçalves, R.; Komp, E.; Campbell, L.P.; Khalighifar, A.; Mellenbruch, J.; Mendonça, V.J.; Owens, H.L.; Felix, K.C.; Peterson, A.T.; Ramsey, J.M. Automated identification of insect vectors of Chagas disease in Brazil and Mexico: The Virtual Vector Lab. PeerJ 2017, 5, e3040. [CrossRef]
174. Khalighifar, A.; Komp, E.; Ramsey, J.M.; Gurgel-Gonçalves, R.; Peterson, A.T. Deep learning algorithms improve automated identification of Chagas disease vectors. *J. Med. Entomol.* 2019, 56, 1404–1410. [CrossRef] [PubMed]
175. Actis, A.S.; Traversa, O.C.; Carcavalho, R.U. Estudios taxonómicos sobre el genero *Triatoma* Laporte mediante la electrophoresis de la linfa. An. Esc. Nac. Cienc. Biol. 1964, 3, 97–106. (In Spanish)
176. Dujardin, J.P.; Chávez, T.; Moreno, J.M.; Machane, M.; Noireau, F.; Schofield, C.J. Comparison of isoenzyme electrophoresis and morphometric analysis for phylogenetic reconstruction of the Rhodniini (Hemiptera: Reduviidae): *Triatominae*. J. Med. Entomol. 1999, 36, 653–659. [CrossRef] [PubMed]
177. Costa, J.; Freitas-Sibajev, M.G.R.; Marchon-Silva, V.; Pires, M.Q.; Pacheco, R.S. Isoenzymes detect variation in populations of *Triatoma brasiliensis* (Hemiptera, Reduviidae, Triatominae). *Memórias do Instituto Oswaldo Cruz* 1997, 92, 459–464. [CrossRef]
178. Flores, A.; Magallón-Castelum, E.; Bosseno, M.F.; Ordóñez, R.; Lozano-Kasten, F.; Espinoza, B.; Ramsey, J.; Brenière, S.F. Isolezyms variability of five principal triatomine vector species of Chagas disease in Mexico. * Infect. Genet. Evol.* 2001, 1, 21–28. [CrossRef]
179. Ueshima, N. Cytotaxonomy of The Triatominae (Hemiptera: Reduviidae). *Chromosoma* 1966, 18, 97–122. [CrossRef]
180. Alevi, K.C.C.; Mendonça, P.P.; Pereira, N.P.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Karyotype of *Triatoma melanocephala* Neiva and Pinto (1923). Does this species fit in the Brasiliensis subcomplex? *Infect. Genet. Evol.* 2012, 12, 1652–1653. [CrossRef]
181. Alevi, K.C.C.; Borsatto, K.C.; Moreira, F.F.F.; Jurberg, J.; Azeredo-Oliveira, M.T.V. Karyosystematics of *Triatoma rubrofasciata* (De Geer, 1773) (Hemiptera: Reduviidae: Triatominae). *Zootaxa* 2015, 3994, 433–438. [CrossRef] [PubMed]
182. Alevi, K.C.C.; Borsatto, K.C.; Moreira, F.F.F.; Jurberg, J.; Azeredo-Oliveira, M.T.V. Karyosystematic and karyotype evolution of *Panstrongylus latu* (Neiva & Pinto, 1923) (Hemiptera, Triatominae). *Braz. J. Biol.* 2017, 78, 180–182. [PubMed]
183. Alevi, K.C.C.; Oliveira, J.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Karyotype Evolution of Chagas Disease Vectors (Hemiptera, Triatominae). *Am. J. Trop. Med. Hyg.* 2018, 99, 87–89. [CrossRef]
184. Panzera, F.; Pérez, R.; Panzera, Y.; Ferrandis, I.; Ferreiro, M.J.; Calleros, L. Cytogenetics and Genome Evolution in the Subfamily Triatominae (Hemiptera, Reduviidae). Cytogen. Gen. Res. 2010, 128, 77–87.

185. Imperador, C.H.L.; Moreira, F.F.F.; Rosa, J.A.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. Cytotaxonomy of the Maculata subcomplex (Hemiptera, Triatominae). Braz. J. Biol. 2017, 77, 887–889. [CrossRef] [PubMed]

186. Bardella, V.B.; Pita, S.; Vanzela, A.L.L.; Galvão, C.; Panzera, F. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae). Memórias do Instituto Oswaldo Cruz 2016, 111, 614–662.

187. Alevi, K.C.C.; Bittinelli, I.F.; Delgado, L.M.G.; Madeira, F.F.; Oliveira, J.; Lilioso, M.; Folly-Ramos, E.; Rosa, J.A.; Azeredo-Oliveira, M.T.V. Molecular cytotaxonomy of the Triatoma brasiliensis species subcomplex (Hemiptera, Triatominae). Acta Trop. 2020, 201, 105225. [CrossRef]

188. Ravazi, A.; Oliveira, J.; Campos, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. Trends in evolution of the Rhodniini tribe (Hemiptera, Triatominae): Experimental crosses between Psammolestes tertius Lent & Jurberg, 1965 and P. coreodes Bergroth, 1911 and analysis of the reproductive isolating mechanisms. Parasites Vectors 2021, 14, 350.

189. Pita, S.; Lorite, P.; Cuadrado, A.; Panzera, Y.; Oliveira, J.; Alevi, K.C.C.; Rosa, J.A.; Freitas, S.P.C.; Gómez-Palacio, A.; Solari, A.; et al. High chromosomal mobility of ribosomal clusters in holocentric chromosomes of Triatominae, vectors of Chagas disease (Hemiptera-Reduviidae). Med. Vet. Entomol. 2021. In press. [CrossRef] [PubMed]

190. Borsatto, K.C.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. Identification Key for the Chagas Disease Vectors of Five Brazilian States, Based on Cytogenetic Data. Am. J. Trop. Med. Hyg. 2019, 100, 303–305. [CrossRef]

191. Borsatto, K.C.; Reis, Y.V.; Garcia, A.C.C.; Sousa, P.S.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. CytoKey: Identification Key for the Chagas Disease Vectors of the Largest Brazilian Urban Center (São Paulo State), Based on Cytogenetic Data. Am. J. Trop. Med. Hyg. 2019, 101, 113–115. [CrossRef]

192. Oliveira, J.; Rosa, J.A.; Alevi, K.C.C. Chagas Disease Vectors of Espírito Santo, Brazil: First Report of Triatoma infestans (Klug, 1834) (Hemiptera, Triatominae) in the Brazilian State and Development of an Identification Key Based on Cytogenetic Data. Am. J. Trop Med. Hyg. 2021, 104, 653–655. [CrossRef]

193. Gonzalez-Britz, N.E.G.; Alevi, K.C.C.; Garcia, A.C.; Martinez-Purroy, C.E.; Galvão, C.; Carrasco, H.J. Chagas disease vectors of Paraguay: Entomoepidemiological aspects of Triatoma sordida (Stål, 1859) and development of an identification key for Paraguayan triatomines based on cytogenetics data. Am. J. Trop Med. Hyg. 2021, 105, 130–133. [CrossRef]

194. Laroche, M.; Bérenger, J.M.; Gazelle, G.; Blanchet, D.; Raoult, D.; Parola, P. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 2018, 145, 665–675. [CrossRef] [PubMed]

195. Souza, E.S.; Fernandes, R.P.; Guedes, W.N.; Santos, F.N.; Eberlin, M.N.; Lopes, N.P.; Padovani, V.D.; Rosa, J.A. Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. Anal. Bioanal. Chem. 2020, 412, 1431–1439. [CrossRef] [PubMed]

196. Souza, É.S.; Fernandes, R.P.; Galvão, C.; Paiva, V.E.; Rosa, J.A. Distinguishing two species of Cavernicola (Hemiptera, Reduviidae, Triatominae) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Acta Trop. 2019, 98, 105071. [CrossRef] [PubMed]

197. Carvalho, D.B.; Congrains, C.; Chahad-Ehlers, S.; Pinotti, H.; De Brito, R.A.; Da Rosa, J.A. Differential transcriptome analysis supports Rhodnius montenegrensis and Rhodnius robustus (Hemiptera, Reduviidae, Triatominae) as distinct species. PLoS ONE 2017, 12, e0174997. [CrossRef]

198. Brito, R.N.; Geraldo, J.A.; Monteiro, F.A.; Lazoski, C.; Souza, R.C.M.; Abad-Franch, F. Transcriptome-based molecular systematics: Rhodnius montenegrensis (Triatominae) and its position within the Rhodnius prolixus-Rhodnius robustus cryptic-species complex. Parasit. Vectors 2019, 12, 305. [CrossRef]