Low LDL-C and High HDL-C Levels Are Associated with Elevated Serum Transaminases amongst Adults in the United States: A Cross-sectional Study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Jiang, Zhenghui Gordon, Kenneth Mukamal, Elliot Tapper, Simon C. Robson, and Yusuke Tsugawa. 2014. “Low LDL-C and High HDL-C Levels Are Associated with Elevated Serum Transaminases amongst Adults in the United States: A Cross-sectional Study.” PLoS ONE 9 (1): e85366. doi:10.1371/journal.pone.0085366. http://dx.doi.org/10.1371/journal.pone.0085366.

Published Version
doi:10.1371/journal.pone.0085366

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879493

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Low LDL-C and High HDL-C Levels Are Associated with Elevated Serum Transaminases amongst Adults in the United States: A Cross-sectional Study

Zhenghui Gordon Jiang1*, Kenneth Mukamal2, Elliot Tapper1, Simon C. Robson1, Yusuke Tsugawa2,3

1 Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Division of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Harvard University Interfaculty Initiative in Health Policy, Harvard University, Cambridge, Massachusetts, United States of America

Abstract

Background: Dyslipidemia, typically recognized as high serum triglyceride, high low-density lipoprotein cholesterol (LDL-C) or low high-density lipoprotein cholesterol (HDL-C) levels, are associated with nonalcoholic fatty liver disease (NAFLD). However, low LDL-C levels could result from defects in lipoprotein metabolism or impaired liver synthetic function, and may serve as ab initio markers for unrecognized liver diseases. Whether such relationships exist in the general population has not been investigated. We hypothesized that despite common conception that low LDL-C is desirable, it might be associated with elevated liver enzymes due to metabolic liver diseases.

Methods and Findings: We examined the associations between alanine aminotransferase (ALT), aspartate aminotransferase (AST) and major components of serum lipid profiles in a nationally representative sample of 23,073 individuals, who had no chronic viral hepatitis and were not taking lipid-lowering medications, from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010. ALT and AST exhibited non-linear U-shaped associations with LDL-C and HDL-C, but not with triglyceride. After adjusting for potential confounders, individuals with LDL-C less than 40 and 41–70 mg/dL were associated with 4.2 (95% CI 1.5–11.7, p = 0.007) and 1.6 (95% CI 1.1–2.5, p = 0.03) times higher odds of abnormal liver enzymes respectively, when compared with those with LDL-C values 71–100 mg/dL (reference group). Surprisingly, those with HDL-C levels above 100 mg/dL was associated with 3.2 (95% CI 2.1–5.0, p<0.001) times higher odds of abnormal liver enzymes, compared with HDL-C values of 61–80 mg/dL.

Conclusions: Both low LDL-C and high HDL-C, often viewed as desirable, were associated with significantly higher odds of elevated transaminases in the general U.S. adult population. Our findings underscore an underestimated biological link between lipoprotein metabolism and liver diseases, and raise a potential need for liver evaluation among over 10 million people with particularly low LDL-C or high HDL-C in the United States.

Introduction

Measurement of triglyceride and cholesterol concentrations among different lipoproteins as part of the serum lipid panel is a routine part of cardiovascular disease risk stratification. It is rarely considered a useful screening tool for the evaluation of liver diseases, yet there is reason to think otherwise. The liver is the central hub for lipid metabolism and controls the production and clearance of serum lipoproteins [1,2]. Hence, liver disease is likely to be intimately related to serum lipid levels.

Dyslipidemia typically refers to elevated LDL-C or triglyceride or low HDL-C, a pattern that is associated with cardiovascular risk and is also frequently seen in nonalcoholic fatty liver disease (NAFLD) [3,4]. NAFLD, a spectrum of disease ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis, is the most common form of chronic liver disease and the most likely cause of elevated transaminases in otherwise healthy individuals [4,5]. Up to 33–46% of the US population may have NAFLD, among whom 3% eventually develop end-stage liver disease [6–8]. Hepatic steatosis, the critical “first hit” of NAFLD, fundamentally results from imbalanced intrahepatic lipid homeostasis leading to triglyceride accumulation [9]. Insulin resistance, as seen in metabolic syndrome, a common cause of dyslipidemia, is thought to be a primary driver of NAFLD [6,7,10,11]. In population-based epidemiological studies, factors associated with elevated ALT include higher age, male gender, high waist circumference, high triglyceride level, and biomarkers consistent with insulin resistance [4].
However, steatosis does not always concord with dyslipidemia. Two classic examples are abetalipoproteinemia and familial hypobetalipoproteinemia (FHBL), genetic conditions characterized by inadequate assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from hepatocytes [12–17]. Both conditions paradoxically lead to apparently desirable serum lipid profiles but significant hepatic steatosis. Discordance also occurs in cirrhosis, even early compensated or occult-cirrhosis, in which decreased liver synthetic function results in decreased apolipoprotein synthesis and lipoprotein particle secretion, resulting in low circulating LDL-C [18]. For these reasons, a serum lipid panel mistakenly considered “optimal” could represent occult liver disease. However, this association has not been carefully studied to validate its presence and prevalence.

In this context, we used data from serial iterations of the National Health and Nutrition Examination Survey (NHANES) and examined the relationship between the values of serum lipid panel and liver transaminases, a marker for chronic liver diseases among the US population.

Methods

Study Population

NHANES is a nationally representative cross-sectional study conducted by the National Center for Health Statistics at the Centers for Disease Control and Prevention [19,20]. Participants are selected using a stratified multistage probability design with oversampling of certain age and ethnic groups [19]. Provided sample weights allow for inferences to the civilian non-institutionalized population of the US. All participants were interviewed for demographic, socioeconomic, health and dietary information. Information on alcohol and tobacco consumption was available for participants 20 years and older.

We extracted data on 30,752 individuals with age equal or above 20 years old, who participated in NHANES from 1999 through 2010 (Figure 1). Because not all individuals were fasting at examinations and their LDL-C and triglyceride were not measured, the sample composition and weights differed modestly between LDL-C/triglyceride and total cholesterol/HDL-C. We excluded individuals with a positive hepatitis B surface antigen or positive hepatitis C RNA (n = 677), and those taking lipid lowering medication, the sample composition and weights differed modestly between LDL-C/triglyceride and total cholesterol/HDL-C. We excluded individuals with a positive hepatitis B surface antigen or positive hepatitis C RNA (n = 677), and those taking lipid lowering medications (n = 4,768), defined by self-reported use of medication for high cholesterol or the presence of a lipid lowering medication on a separate prescription medication inventory. We also excluded participants with missing transaminase levels (n = 2,102), or those with missing data on HDL-C/cholesterol (n = 1,961), or LDL-C/triglyceride (n = 480), or potential confounders (smoking 32, bmi 755, daily number of medications 43, total n = 811), leaving final sample sizes of 23,073 participants for analyses of HDL-C and non-HDL cholesterol and 10,106 participants for analyses of LDL-C and triglyceride.

Covariates

We identified potential confounders based upon prior studies [3,21,22]. Covariates included age, gender, ethnicity, smoking history, alcohol consumption, number of daily medications, and body mass index (BMI). Race and ethnicity were self-reported. Alcohol consumption was self-reported but correlates to the expected degree with HDL-C in previous reports [23]. Alcohol consumption was converted to categorical variables taking into account its non-linear relationship with the outcomes (i.e. AST and ALT levels). Individuals missing alcohol consumption data were included as a separate category in regression models. The number of daily medications was included as a surrogate marker for overall health and to account for unrecognized drug-related hepatotoxicity. Technicians directly measured height and weight, from which BMI was calculated.

Statistical Analysis

We first examined the continuous association between lipid levels and ALT or AST without assuming linearity by fitting unadjusted restricted cubic spline regression models, with knots corresponding to clinical cutoff points of interest: for LDL-C, 40, 70, 100, 130, 160 mg/dL; for HDL-C, 20, 30, 40, 60, 80, 100 mg/dL; for triglyceride levels, 50, 100, 150, 200, 250 mg/dL; and for non-HDL cholesterol levels, 60, 80, 140, 200, 260 mg/dL. We then constructed multivariate logistic regression models to evaluate the associations of individual lipoprotein lipid classes as well as combined lipid classes with prevalence of abnormal ALT or AST, defined as values greater than 40 IU/L. We chose this cutoff value as it is a common institutional reference value and thus reflects its actual use in the clinical practice. Similar cutoffs have been used in both adolescent and adult epidemiological studies [22,24–26]. We also used a gender-specific cutoff for ALT (male >47 IU/L and female >30 IU/L), and AST greater than 33 IU/L, a reference value recommended in NHANES, as a sensitivity analysis [27]. Each regression model was adjusted for age, age-squared, gender, ethnicity (white, black, Hispanic, other), the number of medications used per day, smoking (never, former, current), alcohol consumption (never, former, <1, 1 to 7, 8 to 14, >14 drinks per week, and missing) and BMI. For interpretability, we treated lipid values as categories using clinical cutoff values: LDL-C ≤40, 41–70, 71–100, 101–130, 131–160, >160 mg/dL; HDL-C ≤30, 31–40, 41–60, 61–80, 81–100, >100 mg/dL; triglyceride ≤50, 51–100, 101–150, 151–200, 201–250, >250 mg/dL, non-HDL cholesterol ≤60, 61–80, 81–140, 141–200, 201–260, >260 mg/dL. The cutoff points were chosen based on the values used in the ATP-III guideline [28], while also accounting for the distribution of values within these samples. In general, categories with the lowest liver enzyme levels were used as the reference levels for the analyses.

To test overlap between lipid types, we simultaneously included the same LDL-C, HDL-C, and triglyceride categories using fasting weights, and HDL-C and non-HDL cholesterol categories using non-fasting weights, in single regression models. Given the concern of residual confounding from alcohol consumption, we repeated our analyses among people who drank minimally (<7 drinks per week) as a sensitivity test. We also investigated the impact of gender on our findings through a subgroup analysis using an interaction term between gender and our outcomes of interest (i.e. AST and ALT levels). To test the impact of chronic liver disease, two approaches were taken. We first repeated our analyses following exclusion of individuals who endorsed either active liver disease or a history of liver disease by questionnaire, which resulted in 22,491 non-fasting samples, and 9,847 fasting samples. A second sensitivity test was performed by including those with a Fibrosis 4 Score >2.67, indicative of stage 3, 4 fibrosis for NASH, which resulted in 22,459 non-fasting samples, and 9,829 fasting samples. The Fibrosis 4 Score was calculated as \[\text{Age(years)} \times \frac{\text{AST(IU/L)}}{\text{Platelet count (}\times 10^3/\text{L})/\left(\text{ALT(IU/L)} \times 10^3/\text{L}\right)^{1/2}}\] [29].

All analyses were performed using STATA/IC version 11.0 (Stata Corp, College Station, Texas), accounting for the complex survey design of the study. Taylor series linearization was used for variance estimation [30].
Results

Study Participants

Table 1 presents the baseline characteristics of individuals with low, medium or high LDL-C, HDL-C or triglyceride. As expected, LDL-C and triglyceride were positively associated with each other and negatively associated with HDL-C.

U shaped Associations between ALT/AST and LDL-C/ HDL-C

We first explored the shape of the relationship between serum lipid profile and transaminase levels using restricted cubic splines with knots evenly set at clinically determined cutoff points. Of note, unlike most regression models, restricted cubic spline does not assume a predetermined shape of the association curve, but rather allow the data to determine its shape. Both ALT and AST demonstrated a non-linear U-shaped association with LDL-C and HDL-C, but not with triglyceride (Figure 2). LDL-C and triglyceride generally had stronger associations with ALT than AST, while that for HDL-C was similar for both ALT and AST. We also tested the relationships between ALT, AST, and total, non-HDL cholesterol, which used the nonfasting dataset. These showed similar U shaped associations with transaminase levels as did LDL-C (data not shown).

Low LDL-C and High HDL-C are Associated with Abnormal Liver Enzymes

To further characterize this association, we calculated the odds ratio of abnormal ALT (ALT >40 IU/L), AST (AST >40 IU/L) or either liver enzyme (ALT or AST >40 IU/L) using logistic regression models (Table 2). After adjustment, high LDL-C was associated with higher odds of elevated transaminases. LDL-C less than 40 mg/dL was associated with four-fold higher odds for abnormal ALT, seven-fold for abnormal AST, and four-fold for any abnormal liver enzyme, compared to those with LDL-C between 71–100 mg/dL. Half a million (95% CI 0.4–0.7 million) US citizens, or 0.3% of the tested US adult population (0.2% of the total US population) have an LDL less than 40 mg/dL, and approximately one in five individuals in this group have an abnormal transaminase (Table 3). Similarly, an LDL-C between 41 and 70 mg/dL, considered a target LDL range for many individuals, was associated with an odds ratio of 1.6 for abnormal liver enzymes compared to the reference group (Table 2). Approximately 9.5 million (95% CI 8.4–10.6 million) US citizens have an LDL-C in this range, representing at least 5.7% of the tested US adult population (3.6% of the total US population) (Table 3).

Low HDL-C was associated with an abnormal ALT or AST, as expected. However, elevated HDL-C above 100 mg/dL was also associated with a two-fold increase in odds ratios for abnormal ALT, four-fold increase for abnormal AST and three-fold increase for either abnormal ALT or AST compared to the group with HDL-C between 61 and 80 mg/dL (Table 2). Approximately 1.8 million (95% CI 1.5–2.1 million) US citizens, or 1.1% of the tested US adult population, have levels of HDL-C above 100 mg/dL, and approximately 11.9% of this tested population have elevated liver enzymes (Table 3).

Because residual confounding by alcohol consumption could potentially affect the shape of the association between lipid profile and liver functions, we repeated our analyses after excluding former or current drinkers who reported more than 7 drinks per week. This did not affect our estimates of the odds ratio for abnormal ALT (adjusted odds ratio 2.4; 95% CI 1.1–5.4, p = 0.04), but the odds ratio for abnormal AST was attenuated to 2.7 (95% CI 1.4–5.6, p = 0.006), indicating that residual confounding may contribute to our HDL-C findings, but is unlikely to account for this observation entirely.
Because males and females differ in both serum transaminases and lipid profiles [31], we performed sub-group analyses comparing the associations between males and females. In general, the odds ratios in males tended to be larger than those in females at both low LDL-C (LDL-C ≤ 40, 41–70 mg/dL) and high HDL-C (HDL-C > 100 mg/dL), but none of the gender differences reached statistical significance in formal tests of interaction (data not shown).

Similarly, female transaminase levels are generally lower than males [31], so we performed a sensitivity analysis using a gender-specific ALT cutoff (47 U/L for male, 30 U/L for female) and AST cutoff of 33 U/L, the thresholds NHANES recommends [27]. An LDL-C less than 40 mg/dL was associated with an odds ratio of 3.3 (95% CI 1.9–5.8, p < 0.001) for abnormal liver enzymes, although LDL-C between 41 and 70 mg/dL was not (adjusted odds ratio 1.2; 95% CI 0.8–1.8, p = 0.3). When using these cutoff values for HDL-C, not only was HDL-C more than 100 mg/dL associated with a 3.1 fold increase (95% CI 2.1–4.4, p < 0.001) in the odds of abnormal liver enzymes, but HDL-C between 80–100 mg/dL also showed statistically significant association with a 1.4 fold increase (95% CI 1.1–1.8, p = 0.005) in the odds of abnormal liver enzymes.

To test the possibility that the association between abnormal liver enzymes and low LDL-C or high HDL-C is largely driven by known liver disease, we performed exploratory analyses excluding individuals with either current or former self-reported liver disease. No substantial differences were found. LDL-C ≤ 40 and 41–70 mg/dL had a 3.4 (95% CI 1.1–10.6, p = 0.03) and 1.6 (95% CI 1.0–2.5, p = 0.04) fold increases in odds of abnormal liver enzymes respectively, while HDL-C > 100 mg/dL had a 3.3 (95% CI 2.2–4.8, p < 0.001) fold increase in odds of abnormal liver enzymes (Table S1). The exclusion of those with FIB4 score ≥ 2.67 resulted in a very similar attenuation in the odds ratio and decrease in p value at low LDL-C or high HDL-C, but on significant impact on the overall association was observed. The odds ratio of abnormal LFT for LDL-C ≤ 40 and 41–70 mg/dL were 3.0 (95% CI 0.9–10.1, p = 0.07) and 1.7 (95% CI 1.1–2.7, p = 0.02) respectively compared to LDL-C 71–100 mg/dL, whereas the odds ratio for HDL-C > 100 mg/dL was 3.2 (95% CI 1.3–7.0, p = 0.003) compared to HDL-C 61–80 mg/dL (Table S2). In contrast to

Table 1. Demographic, clinical and laboratory data of study participants.

LDL-C, mg/dL	HDL-C, mg/dL	Triglyceride, mg/dL
0–70	0–40	0–100
71–130	41–80	101–200
>130	>80	>200
p-value*	p-value*	p-value*

Sample size, N	Age, yr	Gender, %	Race, %	Smoking status, %
653	39±19	<0.001	0.003	0.02
5804	42±23		64.9%	
3649	48±21	<0.001	60.7%	
5052	42±20		71.8%	
16540	44±29	<0.001	71.8%	
1481	49±22		74.9%	
4360	41±25		67.7%	
4345	46±22	<0.001	70.8%	
1401	47±19	<0.001	73.4%	

HDL-C, mg/dL	0–100	0.001	0.001
59	47.6%	48.9%	49.5%
6	0.001	0.001	0.001
16	0.001	0.001	0.001
22	0.001	0.001	0.001
24	0.001	0.001	0.001
26	0.001	0.001	0.001
28	0.001	0.001	0.001

Triglyceride, mg/dL	0–100	0.001	0.001
17	0.001	0.001	0.001
25	0.001	0.001	0.001
32	0.001	0.001	0.001
48	0.001	0.001	0.001

*p-values were calculated using ANOVA for continuous variables and chi-square test for categorical variables.

doi:10.1371/journal.pone.0085366.t001
the relationships with LDL-C and HDL-C, the relationship between triglyceride and ALT was approximately linear (Table 2). To evaluate for the presence of independent associations, we modeled the odds of abnormal ALT or AST using LDL-C, HDL-C, triglyceride, and other covariates simultaneously. The odds ratios were 4.1 (95% CI 1.5–11.7, \(p = 0.008 \)) at LDL-C of 0–40 mg/dL, 1.6 (95% CI 1.0–2.5, \(p = 0.04 \)) at LDL-C of 41–70 mg/dL, and 4.2 (95% CI 2.4–7.4, \(p < 0.001 \)) at HDL-C >100 mg/dL. These findings were similar to the odds ratios calculated using individual lipid types (Table 2). In comparison, a small but consistent decrease in the odds ratios for low HDL-C and high triglyceride were observed when all three lipid groups were used, suggesting an overlap of their effect on liver enzymes in these lipid ranges (data not shown).

Discussion

This study represents a comprehensive attempt to examine the relationship between serum lipid profiles and serum transaminase...
levels. Both low LDL-C and high HDL-C values, an often perceived as a desirable lipid panel, were paradoxically associated with significantly higher prevalence of abnormal levels of ALT and AST. Accordingly, some 10 million American adults with an LDL-C less than 70 mg/dL, and 1.8 million with HDL-C more than 100 mg/dL are at increased risk for potentially unrecognized liver injury. As we excluded people with viral hepatitis and those taking lipid lowering medications, metabolic liver disease is the most likely cause of these injuries.

Cross-sectional design of the study did not eliminate the possibility of reverse causality. In fact, the physiology of hepatic lipoprotein metabolism indicates a potentially bidirectional relationship. For instance, a protein that facilitates apoB maturation, thus impairing LDL-C, disorders of lipoprotein metabolism can lead to hepatic injury, whereas chronic liver disease may also impair lipoprotein production.

FHBL and abetalipoproteinemia are two well-established causes of hepatic steatosis and elevated transaminases. They are generally considered rare entities. FHBL has an estimated prevalence of 1/500 to 1/1000, similar to type 1 diabetes, while abetalipoproteinemia is even rarer [13,34,35]. The prevalence that we observed here far exceeds the known incidence of these two conditions, suggesting alternative causes or an underestimation of these conditions. The sheer size and hydrophobic nature of VLDL and its complicated path from the endoplasmic reticulum to excretion requires an orchestrated assembly of cellular components, each subject to genetic alternations. Genome wide association studies have identified at least 95 genetic loci that can potentially influence serum lipoprotein profiles, testifying to the complex nature of this process [36].

Secondly, chronic liver disease can lead to acquired hypobetalipoproteinemia. Indeed, cirrhosis is a known state with low VLDL production rate secondary to the loss of liver synthetic function. It has been reported that apoB synthesis is impaired in NASH compared to BMI matched obese controls [37]. Meanwhile, progressive insulin resistance has been linked to significantly reduced microsomal triglyceride transfer protein (MTP) expression, a protein that facilitates apoB maturation, thus impairing VLDL secretion [38]. The fact that our results attenuated a little with exclusion of individuals who reported known liver disease or had biomarkers suggestive of advanced fibrosis suggests that underlying liver disease or cirrhosis is indeed a potential cause.

Table 2. Adjusted association between lipid profile and the probability of elevated liver enzymes.

N	LDL-C, mg/dL (n = 10106)	ALT >40 U/L OR 95% CI p	AST >40 U/L OR 95% CI p	ALT >40 U/L or AST >40 U/L OR 95% CI p
39	0-40	3.8* 1.2-12.3 0.03	6.9 2.2-21.2 0.001	4.2 1.5-11.7 0.007
614	41-70	1.5 0.9-2.3 0.1	1.7 0.9-3.0 0.08	1.6 1.1-2.5 0.03
2368	71-100	1.0 Ref. Ref.	1.0 Ref. Ref.	1.0 Ref. Ref.
3436	101-130	1.2 0.90-1.6 0.2	1.1 0.8-1.7 0.5	1.2 0.9-1.6 0.23
2380	131-160	1.8 1.4-1.6 <0.001	1.4 1.0-2.2 0.08	1.7 1.3-2.1 <0.001
1269	>160	2.1 1.6-2.7 <0.001	1.7 1.1-2.5 0.02	2.0 1.5-2.6 <0.001
887	HDL-C, mg/dL (n = 23073)	3.4 2.5-4.7 <0.001	2.2 1.4-3.3 <0.001	2.7 2.0-3.6 <0.001
4165	30-40	2.2 1.8-2.8 <0.001	1.3 0.9-1.7 0.1	1.8 1.5-2.2 <0.001
11474	41-60	1.4 1.2-1.7 <0.001	0.8 0.7-1.0 0.07	1.1 1.0-1.3 0.1
5066	61-80	1.0 Ref. Ref.	1.0 Ref. Ref.	1.0 Ref. Ref.
1206	81-100	1.0 0.6-1.6 0.99	1.5 1.0-2.3 0.09	1.2 0.8-1.7 0.3
275	>100	2.3 1.3-4.0 0.01	4.4 2.8-7.0 <0.001	3.2 2.1-5.0 <0.001
567	Triglyceride, mg/dL	0.7 0.4-1.3 0.2	2.9 1.7-5.0 0.04	1.4 0.8-2.3 0.2
3793	(n = 10106)	1.0 Ref. Ref.	1.0 Ref. Ref.	1.0 Ref. Ref.
2879	101-150	1.7 1.3-2.1 <0.001	1.0 1.0-1.9 0.06	1.6 1.3-2.0 <0.001
1466	151-200	1.9 1.4-2.5 <0.001	1.3 0.9-1.7 0.1	1.8 1.3-2.3 <0.001
744	201-250	2.6 1.9-3.4 <0.001	2.0 1.4-3.0 0.001	2.4 1.8-3.2 <0.001
657	>250	2.4 1.7-3.4 <0.001	2.1 1.3-3.4 0.003	2.3 1.6-3.1 <0.001

*odds ratios with p value <0.05 are highlighted in bold.

doi:10.1371/journal.pone.0085366.t002
contributing to this association. It is interesting that individuals in
the lowest LDL-C group had the highest rate of coronary artery
disease and stroke (Table 1). This might be influenced by a higher
rate of insulin resistance and diabetes, leading to both NASH
cirrhosis and vascular diseases.

We found an unexpected association between elevated liver
enzymes and elevated HDL-C, also known as hyperalphalipopro-
teinemia (HALP). In contrast with hypobetalipoproteinemia, we
observed more pronounced AST elevations in HALP, suggesting
different underlying mechanisms. Known genes that lead to HALP
include cholesteryl ester transfer protein (CETP), hepatic lipase
and endothelial lipase, but their hepatic manifestations are not well
characterized 25, 32. Alcohol is a potential contributor to this
association, as it increases both the HDL-C and liver enzymes,
especially AST [39]. While we adjusted for alcohol in our analyses,
residual confounding from underreporting of alcohol use could
contribute to this association. Most intriguingly, the elevated
HDL-C could also be a direct result of hepatic injury. It is
increasingly evident that HDL functions as more than a lipid
carrier and plays important roles in inflammation, thrombosis,
and endothelial integrity [40]. It carries a host of apolipoproteins along
with complement regulatory proteins and inhibitors for endopep-
tidase [41]. It is unclear whether both elevated liver enzymes and
HDL-C are results of more systemic processes.

The large sample size and the generalizability to the US
population are strengths of this study. The high quality of
NHANES survey provides extensive and reliable information on
the status of viral hepatitis, the use of lipid-lowering medication,
and alcohol and smoking history [20]. However, our study has
several limitations. First, we used transaminases as a surrogate
marker, which is an indirect assessment of liver diseases. NAFLD is
likely to be the predominant etiology for the observed abnormalities,
but without actual liver fat measurement, heterogeneity in liver pathology should be presumed. Second, the proportions of
people with low LDL-C and high HDL-C are small. Therefore,
despite the large dataset, the power can be limited in these
categories, especially when the sample size is reduced for sensitivity
analysis. Third, only a single measurement of transaminase levels
was available for each individual in the NHANES data. Therefore,
abnormal liver function tests in our study indicated the existence of
chronic liver disease, but they were not equivalent to a diagnosis of
chronic liver disease, which by definition requires at least two sets
of abnormal liver function test over a six months period. Finally,
we intentionally excluded individuals taking lipid lowering
medications. Our findings should not be extrapolated to population
with hyperlipidemia and on lipid modifying medications. Current ATP III guidelines recommend a treatment goal of LDL
less than 70 among individuals with coronary artery disease or its
equivalent [28]. Our study should not be interpreted as evidence
for hepatic side effects for this treatment goal, as none of our study
sample had their serum lipid profile decreased by pharmacological
means.

In summary, both low LDL-C and high HDL-C were
associated with significantly higher odds of elevated liver enzymes
in the general U.S. adult population. Our findings raise concerns
about potentially unrecognized hepatic dysfunction among people
with particularly low LDL-C or high HDL-C. The underlying
hepatic pathophysiology deserves further exploration.

Supporting Information

Table S1 Association between abnormal ALT, AST and
and LDL-C, HDL-C among those without self-reported liver
disease.

Table S2 Association between abnormal ALT, AST and
LDL-C, HDL-C among those without stage 3, 4 fibrosis
by FIB4 score.

Author Contributions

Analyzed the data: ZGJ ET SCR KM YT. Wrote the paper: ZGJ ET SCR
KM YT.
References

1. Jiang ZG, Robson SC, Yao Z (2013) Lipoprotein metabolism in nonalcoholic fatty liver disease. J Biomed Res 27: 1–13.
2. Mahley RW, Innerarity TL, Rall Jr SC, Weisgraber KH (1984) Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 25: 1277–1294.
3. Liangumskali S, Chalasani N (2005) Unexplained elevations in alanine aminotransferase in individuals with the metabolic syndrome: results from the third National Health and Nutrition Survey (NHANES III). Am J Med Sci 329: 111–116.
4. Fraser A, Longnecker MP, Lawlor DA (2007) Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999-2004. Gastroenterology 133: 1814–1820.
5. Younossi ZM, Stepanov M, Arefy M, Fang Y, Younossi Y, et al. (2011) Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol 9: 524–530 e521, quiz e560.
6. Browning JD, Szczepaniak LS, Dobbins R, Nurenberg P, Horton JD, et al. (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40: 1307–1305.
7. Williams CD, Stengel J, Auker ML, Torres DM, Shaw J, et al. (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140: 124–131.
8. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, et al. (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129: 113–121.
9. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346: 1221–1231.
10. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, et al. (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107: 95–93.
11. Kelishadi R, Cook SR, Adibi A, Faghhihami Z, Ghatrehzamani S, et al. (2009) Association of the components of the metabolic syndrome with non-alcoholic fatty liver disease among normal-weight, overweight and obese children and adolescents. Diabetol Metab Syndr 1: 29.
12. Schonfeld G (2003) Familial hypobetalipoproteinemia: a review. J Lipid Res 44: 878–883.
13. Schonfeld G, Lin X, Yue P (2005) Familial hypobetalipoproteinemia: genetics and metabolism. Mol Med Sci 62: 1372–1378.
14. Burnett JR, Shan J, Miskie BA, Whitfield AJ, Yuan J, et al. (2003) A novel nontruncating APOB gene mutation, R463W, causes familial hypobetalipoproteinemia. J Biol Chem 278: 13442–13452.
15. Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, et al. (2007) Missense mutations in APOB within the beta alpha 1 domain of human APOB-100 result in impaired secretion of apoB and APOB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem.
16. Collins JC, Scheinberg IH, Giblin DR, Sternlieb I (1989) Hepatic peroxisomal abnormalities in abetalipoproteinemia. Gastroenterology 97: 766–770.
17. Wetterau JR, Aggerbeck LP, Davidson WS, Fayad ZA, Fuster V, et al. (2012) Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125: 1905–1919.
18. Brown MS, Goldstein JL (1983) Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J Clin Invest 72: 743–747.
19. Panayi T, Yoe P, Vahidolsky D, Schonfeld G (2004) Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 45: 941–947.
20. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, et al. (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107: 450–455.
21. Ioannou GN, Weiss NS, Boyko EJ, Kahn SE, Lee SP (2005) Contribution of metabolic factors to alanine aminotransferase activity in persons with other causes of liver disease. Gastroenterology 129: 627–635.
22. Ioannou GN, Boyko EJ, Lee SP (2006) The prevalence and predictors of elevated serum aminotransferase activity in the United States in 1999-2002. Am J Gastroenterol 101: 76–82.
23. Linn S, Carroll M, Johnson C, Fuhrwood R, Kalsheek W, et al. (1993) High-density lipoprotein cholesterol and alcohol consumption in US white and black adults: data from NHANES II. Am J Clin Nutr 53: 811–816.
24. Park HS, Han JH, Choi KM, Kim SM (2003) Relation between elevated serum alanine aminotransferase and metabolic syndrome in Korean adolescents. Pediatrics 112: e561–e565.
25. Clark JM, Brancati FL, Diehl AM (2003) The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 98: 960–967.
26. NHANES Laboratory procedures manual.
27. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 295: 2486–2497.
28. Ioannou GN, Weiss NS, Boyko EJ, Kahn SE, Lee SP (2005) Contribution of metabolic factors to alanine aminotransferase activity in persons with other causes of liver disease. Gastroenterology 129: 627–635.
29. Martinez SM, Crespo G, Navasa M, Forns X (2011) Noninvasive assessment of liver fibrosis. Hepatology 53: 325–335.
30. Lin EL, Graubard BI (1999) Analysis of health surveys (Wiley series in survey methodology). New York: Wiley-Interscience.
31. Witte DL, Angstadt DS, Schweitzer JK (1988) Chemistry profiles in “wellness programs”: test selection and participant outcomes. Clin Chem 34: 1447–1450.
32. Rosenson RS, Brewer Jr HB, Davidson WS, Fayad ZA, Fuster V, et al. (2012) Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125: 1905–1919.
33. Brown MS, Goldstein JL (1983) Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J Clin Invest 72: 743–747.
34. Taniol T, Yoe P, Yablonski D, Schonfeld G (2004) Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 45: 941–947.
35. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, et al. (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107: 450–455.
36. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, et al. (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107: 450–455.
37. Charlton M, Sreekumar R, Rasmussen D, Lindor K, Nair KS (2002) Apolipoprotein synthesis in nonalcoholic steatohepatitis. J Biol Chem 277: 13442–13452.
38. Higuchi N, Kato M, Sreekumar R, Rasmussen D, Lindor K, Nair KS (2002) Apolipoprotein synthesis in nonalcoholic steatohepatitis. J Biol Chem 277: 13442–13452.
39. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, et al. (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107: 450–455.
40. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, et al. (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107: 450–455.
41. Ioannou GN, Weiss NS, Boyko EJ, Kahn SE, Lee SP (2005) Contribution of metabolic factors to alanine aminotransferase activity in persons with other causes of liver disease. Gastroenterology 129: 627–635.
42. Ioannou GN, Boyko EJ, Lee SP (2006) The prevalence and predictors of elevated serum aminotransferase activity in the United States in 1999-2002. Am J Gastroenterol 101: 76–82.