A SHORT PROOF OF LOCAL REGULARITY OF DISTRIBUTIONAL SOLUTIONS OF POISSON’S EQUATION

GIOVANNI DI FRATTA AND ALBERTO FIORENZA

Abstract. We prove a local regularity result for distributional solutions of the Poisson’s equation with \(L^p \) data. We use a very short argument based on Weyl’s lemma and Riesz-Fréchet representation theorem.

1. Introduction

Following the pleasant introduction on the regularity theory of elliptic equations in [15], if \(u \in C^3_0(\Omega) \), \(\Omega \) being an open, bounded set in \(\mathbb{R}^n \), \(n \geq 2 \), then, using integrations by parts and Schwarz’s theorem, and identifying the continuous, compactly supported functions with their corresponding elements in \(L^2(\Omega) \),

\[
\|D^2 u\|^2_{L^2(\Omega)} = \sum_{i,j} \int_{\Omega} \partial_{ij} u \partial_{ij} u \, dx = -\sum_{i,j} \int_{\Omega} \partial_{ij} u \partial_{ij} u \, dx = \sum_{i,j} \int_{\Omega} \partial_{ii} u \partial_{jj} u \, dx = \|\Delta u\|^2_{L^2(\Omega)}.
\]

This means that if \(u \in C^3_0(\Omega) \) solves, in the classical sense, the Poisson’s equation

\[
\Delta u = f, \quad (1)
\]

then the \(L^2 \) norm of the datum \(f \) controls the \(L^2 \) norm of all second derivatives of \(u \). This statement is a typical example of a result in the theory of elliptic regularity, whose main aim is to deduce this kind of results, but under weaker \textit{a priori} hypotheses on the regularity of the solution \(u \).

1.1. The notions of weak, very weak, and distributional solutions. For a given \(f \in L^2(\Omega) \), it is natural to study equation (1) in the \textit{weak sense}. This amounts to interpret (1) as equality between elements of the dual space \(W^{-1,2}(\Omega) \) of the Sobolev space \(W^{1,2}_0(\Omega) \); their images, when tested on every element \(v \in W^{-1,2}_0(\Omega) \), must coincide. If one looks for functions \(u \) in \(W^{1,2}_0(\Omega) \) which satisfy (1) in the weak sense (i.e., for \textit{weak solutions}), the requirement is that

\[
- \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in W^{1,2}_0(\Omega). \quad (2)
\]

Since \(W^{1,2}_0(\Omega) \) is a Hilbert space, by the Riesz-Fréchet representation theorem (see, e.g., [12, p. 118], [3, Theorem 5.5 p. 135]), one gets the existence and uniqueness of the \textit{weak} solution. Note, however, that the weak formulation (2) relies on the apriori assumption that the solution \(u \) has first derivatives with the same integrability property of the datum. For such solutions, one can
prove the $W^{2,2}_{\text{loc}}(\Omega)$ regularity (see, e.g., [15, Theorem 8.2.1]). Also, we recall that under specific assumptions on the regularity of Ω, one can get a better global regularity for u, while under regularity assumptions on the datum, one can get a better local regularity result for the solution (see, e.g., [15, Theorem 8.2.2 and Corollary 8.2.1]).

By (2) one gets the following equivalent equation (the equivalence with (2) immediately follows from a standard density argument), where now the test functions v are in $C_0^\infty(\Omega)$:

$$-\int_\Omega \nabla u \cdot \nabla v \, dx = \int_\Omega f v \, dx \quad \forall v \in C_0^\infty(\Omega). \quad (3)$$

When the problem is in this form, one can look for solutions of equation (1) in the space $W^{1,1}_{\text{loc}}(\Omega)$, because the $L^2(\Omega)$ integrability of the gradient is not needed to give sense to the equation. Regularity results when the datum is in $L^p(\Omega)$, $1 < p < \infty$, are classical, and rely upon the well known Calderón-Zygmund inequality from which one can get the $W^{2,p}_{\text{loc}}(\Omega)$ regularity (see, e.g., [15, Theorem 9.2.2, p. 248], or [10, Corollary 9.10, p. 235]). We mention here also the method of difference quotients introduced by Nirenberg (see, e.g., [7, 20], [5, Step 1, p. 121], and [15, Theorem 9.1.2 p.245]).

Equation (3) is a special case of a class of linear equations which can be written in the form

$$-\text{div}(A \nabla u) = f \quad (4)$$

for which it is known ([23]) that even in the case $f \equiv 0$, when A is a matrix function whose entries are locally L^1, there exist weak solutions, assumed a priori in $W^{1,1}_{\text{loc}}(\Omega)$, which are not in $W^{1,2}_{\text{loc}}(\Omega)$.

As soon as one assumes that a solution is in $W^{1,2}_{\text{loc}}(\Omega)$, much local regularity can be gained by the celebrated De Giorgi’s theorem (see e.g. [10, Chap. 8] and references therein).

We recall, in passing, that for $\Omega \subset \mathbb{R}^2$, it is possible to prove an existence and uniqueness theorem for weak solutions of (4) (and even for a nonlinear variant) in a space slightly larger than $W^{1,2}_{\text{loc}}(\Omega)$, the so-called grand Sobolev space $W^{1,2}_{\text{loc}}(\Omega)$, when the datum is just in $L^1(\Omega)$ (see [9, Theorem A]). For an excellent survey about solutions of a number of elliptic equations, called very weak because the solutions are assumed a priori in Sobolev spaces with exponents below the natural one, the reader is referred to [11].

One can further weaken the notion of solution, and look for solutions of (1) in the space of regular distributions, that is, among elements of the dual space $\mathcal{D}'(\Omega)$ of $C_0^\infty(\Omega)$ that can be identified with elements of $L^1_{\text{loc}}(\Omega)$. In other words, their images, when computed in every element $\varphi \in C_0^\infty(\Omega)$, must coincide:

$$\int_\Omega u \Delta \varphi \, dx = \int_\Omega f \varphi \, dx \quad \forall \varphi \in C_0^\infty(\Omega). \quad (5)$$

Solutions in $L^1_{\text{loc}}(\Omega)$ of equation (5) are called very weak solutions.

A condition on the datum f ensuring existence and uniqueness in $L^1(\Omega)$ has been found in [4, Lemma 1], namely, if f is in the weighted Lebesgue space where the weight is the distance function from the boundary of Ω, there exists a unique solution $u \in L^1(\Omega)$ such that

$$\|u\|_{L^1(\Omega)} \leq \|f \cdot \text{dist}(x, \partial \Omega)\|_{L^1(\Omega)}.$$

Differentiability results for very weak solutions are treated in a number of papers, see, e.g., [6, 21] and references therein (see also [8, Theorem 4.2]). However, all such references gain regularity from data in weighted Lebesgue spaces, where the distance to the boundary is involved in the weight and the domain Ω has itself some regularity assumptions.
When the datum \(f \) is identically zero, the masterpiece theorem of regularity for very weak solutions has been proved by Hermann Weyl in [28, pp. 415/6]. It dates back to 1940, well before the introduction of Sobolev spaces [18, 16], and is nowadays referred to as Weyl’s Lemma:

Lemma 1 (H. Weyl, 1940). Let \(\Omega \subset \mathbb{R}^n \) be an open set. Suppose that \(u \in L^1_{\text{loc}}(\Omega) \) and

\[
\int_{\Omega} u \Delta \varphi \, dx = 0 \quad \forall \varphi \in C^\infty_0(\Omega).
\]

Then there exists a unique \(\tilde{u} \in C^\infty(\Omega) \) such that \(\Delta \tilde{u} = 0 \) in \(\Omega \) and \(\tilde{u} = u \) a.e. in \(\Omega \).

The proof given by Weyl in [28] is elementary and clever. Modern rephrasing of the proof can be found in classical textbooks (see, e.g., [15, Corollary 1.2.1], [5, Theorem 4.7], [24, Appendix, n.2], [27]). A beautiful note devoted entirely on this result and its development is the paper by Strook [26], where Weyl’s lemma is stated under the weaker assumption that \(u \in D'(\Omega) \). Indeed, one can go still further, and write (5) (in fact, (1)) in the form

\[
\langle u, \Delta \varphi \rangle = \langle f, \varphi \rangle \quad \forall \varphi \in C^\infty_0(\Omega).
\]

Any solution of equation (6), is called a distributional solution of the Poisson’s equation (1). The statement proved therein is the following (see also [22, 13, 31] for a more general result, valid for a broader class of differential operators).

Lemma 2 (Weyl’s lemma in \(D'(\Omega) \)). Let \(\Omega \subset \mathbb{R}^n \) be an open set. Suppose that \(u \in D'(\Omega) \) satisfies \(\Delta u = f \in C^\infty(\Omega) \) in the sense of (6). Then \(u \in C^\infty(\Omega) \).

The proof in [26] is very short and elegant. For our purposes, however, it is sufficient the particular case \(f \equiv 0 \), for which the proof in [26] further simplifies.

1.2. Contributions of present work.

In this note, we are interested in regularity results for distributional solutions of (1), i.e., solutions satisfying (6). We prove a local regularity result for distributional solutions of the Poisson’s equation with \(L^p \) data. We use a concise argument based on Weyl’s lemma and Riesz-Frèchet representation theorem. As a byproduct, we get the following classical result on very weak solutions

Theorem 1. If \(f \in L^1_{\text{loc}}(\Omega) \), then any solution \(u \in L^2_{\text{loc}}(\Omega) \) of \(\Delta u = f \) (i.e., satisfying (5)) belongs to \(W^{2,2}_{\text{loc}}(\Omega) \).

Theorem 1, known since 1965 (see [1, Theorem 6.2 p. 58] for a more general result, proved for uniformly elliptic operators with Lipschitz continuous coefficients), is also quoted in the Brezis book [3, Remark 25 p. 306], where it is claimed the delicateness of the proof of interior regularity of very weak solutions, based on estimates for the difference quotient operator (see [1, Def. 3.3 p. 42]). In [2, Section 3 p. 92] the reader can find a modern proof, valid for a wide class of operators, which uses a precise estimate by Hörmander in combination with a spectral representation for hypoelliptic operators. We quote also [29, Theorem 1.3], where for general operators with locally Lipschitz continuous coefficients, in the case \(f \equiv 0 \), it is shown that very weak solutions in \(L^1_{\text{loc}}(\Omega) \) are in fact in \(W^{2,p}_{\text{loc}}(\Omega) \) for every \(p \in [1, \infty) \); in [30, Proposition 1.1], the same authors, for general operators having locally Lipschitz continuous coefficients, in the case \(f \in L^p_{\text{loc}}(\Omega), 1 < p < \infty \), get that very weak solutions in \(L^1_{\text{loc}}(\Omega) \) are in fact in \(W^{2,p}_{\text{loc}}(\Omega) \).

For other results of regularity for very weak solutions of the Poisson’s equation, see, e.g., [17, Section 7.2 p. 223] and [19, Section 4.1 p. 198]. In particular, we mention here that, following
Hilbert, one can ask whether a solution, being a distribution, is analytic in the case where the right-hand side \(f \) is analytic: the answer is positive for equation (4) when \(A \) is analytic, see [14].

2. **Regularity of very weak solutions of Poisson’s equation in the \(L^2 \)-setting**

The main ingredient is stated in the following result which, remarkably, is essentially based on Weyl’s lemma.

Lemma 3. Let \(\Omega \subseteq \mathbb{R}^n \) be an open set, and let \(u \in \mathcal{D}'(\Omega) \). Then

\[
\Delta u \in W^{-1,2}(\Omega) \implies u \in W^{1,2}_{\text{loc}}(\Omega).
\]

Proof. Since \(\Delta u \in W^{-1,2}(\Omega) \), by Riesz representation theorem, there exists \(v \in W^{1,2}_0(\Omega) \) such that \(\Delta v = \Delta u \) in \(\mathcal{D}'(\Omega) \). In particular, \(\Delta (u - v) = 0 \) in \(\mathcal{D}'(\Omega) \). By Weyl’s lemma (Lemma 2 used with \(f \equiv 0 \)), we know that \(u - v \in C^\infty(\Omega) \). Hence \(u = (u - v) + v \in C^\infty(\Omega) + W^{1,2}_0(\Omega) \subseteq W^{1,2}_{\text{loc}}(\Omega) \).

We remark that solutions of Dirichlet problems by Hilbert spaces methods are a classic matter for weak solutions, see, e.g., [12, p. 117]. Again, for weak solutions, we quote [25, Lemma 2.1 p.48], where from the assumption of being locally in a Sobolev space, the authors get a better local regularity, still in Sobolev spaces.

Theorem 2. Let \(\Omega \subseteq \mathbb{R}^n \) be an open set, and let \(u \in \mathcal{D}'(\Omega) \). If \(\Delta u \in L^2_{\text{loc}}(\Omega) \), then \(\nabla u \in W^{1,2}_{\text{loc}}(\Omega) \).

If, in addition, \(u \in L^2_{\text{loc}}(\Omega) \), then \(u \in W^{2,2}_{\text{loc}}(\Omega) \).

Proof. Due to the local character of the result, we can assume \(\Delta u \in L^2(\Omega) \). Therefore, it is sufficient to note that if \(\Delta u = f \) with \(f \in L^2(\Omega) \) then, for any distributional partial derivative of \(u \), we have \(\Delta(\nabla u) = \nabla f \) with \(\nabla f \in W^{-1,2}(\Omega) \). By the previous lemma, we get \(\nabla u \in W^{1,2}_{\text{loc}}(\Omega) \).

Thus, \(u \in W^{2,2}_{\text{loc}}(\Omega) \) if we assume \(u \in L^2_{\text{loc}}(\Omega) \).

3. **Regularity of very weak solutions of Poisson’s Equation in the \(L^p \)-setting**

We point out that the same argument shows that if \(f \in L^p(\Omega), 1 < p < \infty \), then \(u \in W^{2,2}_{\text{loc}}(\Omega) \). Precisely, the following result holds:

Theorem 3. Let \(\Omega \subseteq \mathbb{R}^n \) be an open set, and let \(u \in \mathcal{D}'(\Omega) \). If \(\Delta u \in L^p(\Omega) \), then \(\nabla u \in W^{1,p}_{\text{loc}}(\Omega) \).

If, in addition, \(u \in L^p_{\text{loc}}(\Omega) \), then \(u \in W^{2,2}_{\text{loc}}(\Omega) \).

Proof. Indeed (see, e.g., [25, pp. 10-11]), if \(1/p + 1/q = 1 \) and \(F \in W^{-1,q'}(\Omega) \) then there exists a function \(u_F \in W^{1,p}(\Omega) \) such that

\[
- \int_\Omega \nabla u_F \cdot \nabla \varphi = \langle F, \varphi \rangle
\]

for every \(\varphi \in W^{1,q}_{0}(\Omega) \). Note that this can be considered as the \(q \)-exponent version of the Riesz representation theorem. Now, (8) implies that for any \(F \in W^{-1,q'}(\Omega) \) there exists a distribution in \(v_F \in W^{1,p}(\Omega) \) such that \(\Delta v_F = F \) in \(\mathcal{D}'(\Omega) \). After that, assume that \(f \in L^p(\Omega) \) and \(u \in \mathcal{D}'(\Omega) \) is a distributional solution of (6). Then \(\nabla u \) satisfies \(\Delta(\nabla u) = \nabla f \) with \(\nabla f \in W^{-1,q'}(\Omega) \). Therefore, as in Lemma 3, \(\nabla u \in W^{1,p}_{\text{loc}}(\Omega) \), and we conclude.
4. Acknowledgments

The first author acknowledges support from the Austrian Science Fund (FWF) through the special research program *Taming complexity in partial differential systems* (Grant SFB F65).

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, 1965.
[2] A. C. L. Ashton, Regularity Theorems for Elliptic and Hypoelliptic Operators via the Global Relation, J. Part. Diff. Eq. 24(1) (2011), 83–96.
[3] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, 2010.
[4] H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for \(u_t - \Delta u = g(u) \) revisited, Adv. Diff. Eq., 1(1) (1996), pp. 73–90.
[5] B. Dacorogna, Introduction to the Calculus of Variations, World Scientific Publishing Company, 2014.
[6] J. I. Díaz and J. M. Rakotoson, On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary, J. Funct. Anal. 257(3) (2009), 807–831.
[7] A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Commun. Pur. Appl. Math., 8(4), 503-538.
[8] A. Fiorenza, M. R. Formica and J. M. Rakotoson, Pointwise estimates for \(G \Gamma \) functions and applications, Diff. Int. Equations 30(11-12) (2017), 809–824.
[9] A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of non-linear equations with right hand side in \(L^1 \), Studia Math. 127(3) (1998), 223–231.
[10] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 2001.
[11] T. Iwaniec and C. Sbordone, Caccioppoli estimates and very weak solutions of elliptic equations, Rend. Mat. Acc. Lincei (9),14 (2003), 189–208.
[12] F. John, Partial differential equations, Springer-Verlag,1982.
[13] L. Hörmander, The Analysis of linear partial differential operators II, Springer-Verlag,1983.
[14] F. John, On linear partial differential equations with analytic coefficients, Comm. Pure Appl. Math. (1949), 209–253.
[15] J. Jost, Partial differential equations, Springer-Verlag New York, Inc., 2002.
[16] J. Lützen, The prehistory of the theory of distributions, Springer Science & Business Media (2012) 2002.
[17] D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Springer, 2013.
[18] J. Naumann, Remarks on the prehistory of Sobolev spaces, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik, 2002.
[19] J. Necas, Direct Methods in the Theory of Elliptic Equations, Springer-Verlag, 2012.
[20] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3),13 (1959), 115-162., 2012.
[21] J. M. Rakotoson, New Hardy inequalities and behaviour of linear elliptic equations, J. Funct. Anal. 263 (2012), 2893–2920.
[22] L. Schwartz, Théorie des distributions, Hermann, 1957.
[23] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa (3),18 (1964), 385–387.
[24] C. G. Simader, Equivalence of weak Dirichlet’s principle, the method of weak solutions and Perron’s method towards classical solutions of Dirichlet’s problem for harmonic functions, Math. Nachr. 279(4) (2006), 415–430.
[25] C. G. Simader and H. Sohr, The Dirichlet problem for the Laplacian in bounded and unbounded domains, vol. 360, CRC Press, 1996.
[26] D. Strook, Weyl’s lemma, one of many, in: Groups and analysis: The Legacy of Hermann Weyl, 164–173, London Math. Soc. Lecture Note Series 354, Cambridge Univ. Press, Cambridge (2008).
[27] G. Talenti, Un’introduzione al calcolo delle variazioni. Teoria ed esercizi, Unione Matematica Italiana, 2016.
[28] H. Weyl, The method of orthogonal projection in potential theory, Duke Mathematical Journal, 7 (1940), pp. 411–444.
[29] W. Zhang and J. Bao, Regularity of very weak solutions for nonhomogeneous elliptic equation, J. Funct. Anal. 262 (2012), 1867–1878.
[30] W. Zhang and J. Bao, Regularity of very weak solutions for nonhomogeneous elliptic equation, Comm. Contemp. Math. (2013), 1350012 (19 pages).
[31] C. Zuily, *Eléments de distributions et d’équations aux dérivées partielles*, (2002).

Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstrae 8-10, 1040 Wien, Austria

E-mail address: giovanni.difratta@asc.tuwien.ac.at

Dipartimento di Architettura, Universita di Napoli, Via Monteoliveto, 3, I-80134 Napoli, Italy, and Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli, Consiglio Nazionale delle Ricerche, via Pietro Castellino, 111, I-80131 Napoli, Italy

E-mail address: fiorenza@unina.it