ArborX: A Performance Portable Search Library

D. Lebrun-Grandié∗, A. Prokopenko†, B. Turcksin‡, S. R. Slattery§

Abstract

Searching for geometric objects that are close in space is a fundamental component of many applications. The performance of search algorithms comes to the forefront as the size of a problem increases both in terms of total object count as well as in the total number of search queries performed. Scientific applications requiring modern leadership-class supercomputers also pose an additional requirement of performance portability, i.e. being able to efficiently utilize a variety of hardware architectures. In this paper, we introduce a new open-source C++ search library, ArborX, which we have designed for modern supercomputing architectures. We examine scalable search algorithms with a focus on performance, including a highly efficient parallel bounding volume hierarchy implementation, and propose a flexible interface making it easy to integrate with existing applications. We demonstrate the performance portability of ArborX on multi-core CPUs and GPUs, and compare it to the state-of-the-art libraries such as Boost.Geometry.Index and nanoflann.

1 Introduction

Performing proximity searches on collections of geometric objects is an inherent component of applications in many fields. Finding the nearest neighbors of a point, or finding all objects within a certain distance, are common tasks in shape registration methods Besl and McKay (1992) in computer vision and pattern recognition, special effects in games and movies Karras (n. d.)a, anomaly detection Breunig et al. (2000), machine learning Pedregosa et al. (2011), data transfer in multiphysics simulations Slattery (2016), contact detection in computational mechanics Feng and Owen (2002) and many others. Such algorithms involve multiple searches through thousands or millions of objects. The performance of search algorithms is thus crucial for the overall performance of an application. Brute force computations are prohibitively expensive for all but the simplest applications with very few
objects of interest. Instead, methods employing tree-based data structures are preferred
due to their inherent logarithmic cost.

Many libraries have been developed dedicated to search algorithms. A major choice in
developing such a library is the underlying tree data structure. This choice dictates both
the complexity of implementation and the resulting performance, including the tradeoff
between the time to construct the data structure and the time to perform search queries.
A data structure that is fast in performing the search may require a longer time setting up,
and vice versa. The way it is used in each application dictates the desired tradeoff. Two
tree structures, k-d and R-tree, are particularly suitable for geometry-based search, and are
commonly implemented in libraries.

k-d tree [Bentley (1975)] is a binary space partitioning data structure. The construction
algorithm chooses a suitable hyperplane to split a given set of points into two, and continues
recursively for each subset, deciding on a new hyperplane each time. The internal nodes
of the tree correspond to such hyperplanes, with parent-child relationship formed through
a single recursive iteration. The hyperplane orientations are typically switched each level
so as not to produce very skewed sets, with cyclic rotation amongst dimensions being the
simplest approach. Once the algorithm terminates, the leaf nodes contain the original set
of points. Variants of the k-d tree are widely used in libraries, e.g., FLANN [Muja and Lowe
(2009)] and nanoflann [Blanco and Rai (2014)].

The R-tree [Guttman (1984)] is an alternative data structure used for spatial search. The
leaf nodes of an R-tree are multidimensional rectangles bounding the objects of interest,
and higher level nodes of a tree are aggregations of increasing number of objects. This is
the data structure that was chosen in the Boost.Geometry.Index boo ([n. d.]) library.

Both nanoflann and Boost.Geometry.Index libraries are widely used in applications.
Both, however, are less suitable for high-performance computing (HPC) applications as
they do not take advantage of multi-threading nor do they consider the variety of different
architectures available today. Current HPC trends require search algorithms to perform well
on a variety of hardware architectures, including GPUs and other accelerators provided by
a variety of vendors. This is particularly true within the Exascale Computing Project
(ECP) of the U.S. Department of Energy (DOE) [exa ([n. d.]) where significant resources
are devoted to porting applications to utilize both CPUs and GPUs and preparing for
upcoming new architectures such as APU and FPGA. Given the variety of the current
hardware landscape and some uncertainty in future hardware directions, a search library
that is developed from scratch should be performance portable.

With this goal in mind, we introduce a new open-source library ArborX. It is a header-
only C++ library with a focus on performance portability for both current and known
future leadership-class supercomputers. The implemented algorithms were carefully chosen
to be efficient on the multiple architectures, and rely on the C++ Kokkos [Edwards et al.
(2014)] library to provide performance portability. We focus on low order dimensional space,
building the data structures from scratch (i.e., no incremental updates).

The paper is organized as follows. In Section 2, we describe the algorithms that are
used in ArborX. In Section 3, we compare our library to other state-of-the-art libraries and
demonstrate its performance on different architectures. Finally, we present our conclusions
in Section 4.
Search algorithms are memory bound by nature. The fundamental parts of any good search algorithm include visiting as few tree nodes of the search tree as possible, reducing the amount of memory required by each tree node, and using inexpensive computations to construct and query the tree data structure. Furthermore, reducing thread execution divergence (executing different code) and data divergence (reading or writing disparate locations in memory) is highly desirable in parallel implementations, particularly for accelerators with thousands of threads (such as GPUs) and architectures that improve performance via vectorization (e.g. modern CPUs). Below we present a bounding volume hierarchy (BVH) tree data structure that was carefully chosen to satisfy all these requirements on modern architectures.

A BVH is a tree structure created from a set of geometric objects in a multi-dimensional space. The objects are wrapped in simple geometric form (bounding volumes) that form leaf nodes of the tree. Similar to the R-tree, each node of a BVH is an aggregate of its children, enclosing the group within a larger bounding volume. The root node of the hierarchy corresponds to the bounding volume around all objects (called scene bounding volume). Binary BVH is by far the most popular choice and is what we have chosen for our implementation in this work. For multithreaded and GPU implementations the binary BVH has the convenient property that the number of internal nodes in the tree is equal to the number of leaf nodes decreased by one which allows for static memory allocations once the input geometry is known.

The choice of the geometry of a bounding volume is crucial for performance. Bounding volumes should require little data to store, be fast to test for intersection, have fast distance computations, and fit closely to the underlying object (to avoid unnecessary traversal). In practice, axis-aligned bounding boxes (AABB), which are boxes aligned with axes of the coordinate system, are often a good choice \cite{Haverkort2004}. They require minimal space to store (two opposite corner points, or six double precision numbers in 3D) and are fast to test for intersections. Computing the distance from a point to an AABB is also inexpensive. This often outweighs the main drawback of AABB of not fitting tightly to the underlying objects.
data in some situations. Figure 1 demonstrates an example of a BVH tree formed for a set of 8 geometric objects represented by human figures. The red bounding volumes correspond to leaf nodes (nodes 0-7) and tightly surround the objects themselves. They are then combined to form larger bounding volumes corresponding to internal nodes (nodes 8-14), culminating with the root node bounding volume surrounding the whole scene. The corresponding BVH tree is shown in Figure 1b.

A BVH variant called linear BVH allows for a high degree of parallelism as shown in the work of Karras Karras (n. d. b, n). In that approach, the leaves of a tree are ordered based on a space-filling Z-curve using Morton codes. Together with a custom ordering scheme of internal nodes, it allows for the construction of all internal nodes concurrently. We provide an overview of the core algorithms for the construction of such tree in Section 2.1. The corresponding traversal algorithms are detailed in Section 2.2. Finally, in Section 2.3, we discuss a user interface to allow flexibility in interaction with user data.

2.1 BVH construction

In this Section, we describe the construction of the linear BVH used to accelerate the search for a given set of geometric objects. The degree of parallelism in BVH trees is severely limited in a typical bottom-up construction (i.e., constructing a node only after its children). On the other hand, the linearity imposed by a Z-curve implicitly partitions the objects based on the highest differing bit of their Morton codes, allowing for a top-down approach. A clever numbering of internal nodes as described in Karras (2012) then allows for a fully parallel algorithm. A brief description of the involved steps is provided below.

1. Construct axis-aligned bounding boxes (AABB). As in any BVH algorithm, the first step is to compute the bounding boxes of the user provided objects. The only requirement on the objects is that they are boundable. For certain classes of objects, such as polyhedrons, this step is inexpensive. The computed boxes may be degenerate, such as those produced for points or objects of dimension lower than that of AABBs, giving one or more dimensions with an extent of zero.

2. Calculate the scene bounding box. The scene bounding box is an AABB that contains the bounding boxes of all objects. It is easily computed by a reduction of the corners of the bounding boxes.

3. Assign Morton codes for each AABB. Morton codes, or Z-order codes, are used to map multidimensional data to a single dimension, while preserving the spatial locality of the data. Given a point, a Morton code can be efficiently computed by interleaving bits of the point coordinates. The Morton code of a bounding box is computed as the Morton code of its centroid scaled using the scene bounding box. This guarantees that all coordinates lie within $[0,1]^3$ cube. In general, Morton codes are not guaranteed to be unique. Thus, if multiple objects share the same Morton code, they are augmented with an index to differentiate them.

4. Sort the bounding boxes using their Morton code. The bounding boxes may now serve as leaf nodes. The goal of this procedure is to decrease the size and the overlap of bounding boxes of internal nodes that will be generated.

5. Generate the bounding volume hierarchy. With a linear order imposed by sorted Morton codes, construction of a hierarchy can be seen as a recursive partitioning of the range of Morton indices so that each internal node in a tree corresponds to an interval of Morton codes. The recursion terminates when a range contains only one item, which is to be leaf
node. The described partitioning is based on selecting a position called split to cut a given range in two. The splits are based on the highest differing bits of Morton codes within a given range. The range of each internal node is computed independently, allowing a parent node to determine its children and record the parent-child relationships without waiting for the construction of other nodes. A more detailed discussion can be found in [Karras 2012].

Calculate internal nodes bounding boxes. The final step is to compute the bounding boxes of internal nodes by traversing the tree bottom-up. In parallel, each thread is assigned a leaf node and traverses towards the tree root. Upon encountering an internal node, only one of the children’s threads is allowed to proceed further.

2.2 BVH traversal

Once constructed the tree data structure may be used as many times as needed to complete the search process. Each query of the data structure results in a traversal of the tree where the approximation of objects by AABB boxes allows for a preliminary coarse search which is responsible for listing all boxes with potential collisions. It is then followed by a fine search where user-specified search criteria is used to trim the results. The tighter the bounding volumes are to the real objects, the more accurate the results of the coarse search are and the fewer expensive fine search queries that are needed.

We distinguish two kinds of (search) queries; spatial and nearest. A spatial query searches for all objects within a certain distance of an object of interest. A nearest query, on the other hand, looks for a certain number of closest objects regardless of their distance from an object of interest. These two query kinds require fundamentally different tree traversal algorithms. The spatial query has to necessarily explore all nodes in a tree that satisfy a given distance-based predicate. The nearest query, on the other hand, can terminate early when it can be guaranteed that the already found candidates are the best possible ones.

It is very common to execute multiple search queries simultaneously. In parallel, the threads are executed in batched mode, with each thread assigned a range of search queries (on CPU) or a single search query (on GPU). While it may be possible to further improve the performance by having multiple threads work on the same query, we do not address this in the current ArborX implementation, and each query is performed exclusively by a single thread.

As threads traverse the tree, the attention to execution and data divergence is paramount for performance. We next describe our strategies for traversal with each query type.

2.2.1 Traversal for spatial queries

In spatial query traversal, each node can be tested independently for predicate satisfaction. A simple distance-based predicate tests for whether a distance from a AABB to a bounding box is less than a given radius.

Spatial traversal is executed top-down, starting from the root node. A naive recursive implementation may lead to high execution divergence as shown in [Karras (n. d.)b]. Instead, an iterative traversal is preferred, using a stack to keep track of nodes to visit. In the beginning of the traversal the root node is added to the stack. The algorithm proceeds by popping a node from the stack, and testing its children for predicate satisfaction, upon which they are either added to the stack (internal nodes) or to the output (leaf nodes). The algorithm terminates upon empty stack.
An important issue associated with spatial traversals is that the number of found objects is not known \textit{a priori}. Dynamic allocation of memory is inefficient in multithreading, and is problematic on GPUs. This can be avoided by using count-and-fill technique, i.e., by doing two passes (2P). The first pass just counts the number of found objects. Then, the required storage is allocated, and the process is repeated in the second pass, this time storing the results.

2P approach, while robust, comes with a drawback of having to traverse the hierarchy twice. A superior alternative, when possible, is to only do the second pass once preallocated memory is exceeded. In this approach (called 1P), an estimate for a maximum number of found objects per query is provided by a user. During the first pass, the found objects are both counted and stored. If the storage is exceeded, the algorithm falls back to the 2P approach. If the estimate is correct, i.e., is an upper bound, only a single pass is done, improving the overall performance. That single pass is then followed by “compacting” the results due to excess allocation. Such technique is typically less costly than performing the traversal twice.

2.2.2 Traversal for nearest queries

Nearest traversal proceeds in top-down fashion, similarly to spatial-based traversal. However, in this case, the number of found neighbors (or, rather, its upper bound) is known in advance, and thus allows for the preallocation of memory and to avoid the second pass through the tree.

A typical implementation of nearest traversal uses priority queue based on distances, using the closest node in each iteration. An alternative and better performing approach, first derived for k-d trees in Patwary et al. (2016), is to use a stack. As stack is a LIFO (Last-In-First-Out) data structure, it is possible to get a behavior similar to the one of a priority queue by adding a child with a shorter distance second (so that it sits on top of the stack). The algorithm terminates when the remaining candidates in the stack are guaranteed to result in worse results, or the stack is empty. The final (optional) step is to clean the results by purging missing data (if, for example, the number of found objects is less than specified).

2.2.3 Query ordering

Both execution and data divergence depend heavily on whether the nearby computational threads traverse the tree similarly. Sorting the queries may have a significant impact on the overall performance as was noted in Karras (n. d.). One way to accomplish this is by making sure that the search queries for nearby threads are “close” to each other, i.e. the corresponding tree traversals would be very similar in both nodes they visit and the order they visit them. This can be achieved by computing Morton codes for query objects and then using them for pre-sorting.

To illustrate this phenomenon, consider nearest traversal of a point cloud of 418 points (representing a leaf) shown in Figure 2a. Figure 2b represents a binary matrix of size 418×418 corresponding to the original ordering of search queries. Each row represents a search query assigned to a single thread, and each column corresponds to an internal node in the tree. A value in the matrix is nonzero (black) when a thread accesses a bounding box of a corresponding node. As one can see, using the original ordering of search queries results
ArborX implements a performance portable interface through the use of Kokkos [Edwards et al., 2014], a C++ library providing a uniform programming interface for various backends, such as OpenMP or CUDA. Using Kokkos allows for running the same code on CPUs or GPUs by simply changing the backend through a template parameter.

The construction procedure begins with a set of bounding boxes, provided by a user as a Kokkos::View, a Kokkos data structure corresponding to a multi-dimensional array. At a high level, Kokkos::View<T*, DeviceType> can be thought of as an array containing objects of type T. The DeviceType template argument indicates both the memory that the data resides in (e.g., host or device memory), and the place to execute the code (e.g., CPU or GPU). Once bounding boxes are constructed, they are passed to the constructor of BVH, the ArborX class containing the hierarchy (see Figure 3).

Next, the queries are built. Each query corresponds to a pair of a query point and a number of neighbors to be found (nearest query), or a pair of a query point and a radius in little correlation of accessed nodes of two nearby threads. The performance suffers in this case due to poor memory access pattern. Figure 2c, on the other hand, corresponds to the queries reordered based on their Morton codes. It is clear that the nearby threads now share many nodes of the tree in their traversal. The apparent hierarchical pattern of the matrix indicates the concentration of queries in certain subtrees before switching to sibling trees.

2.3 Library interface

The construction procedure begins with a set of bounding boxes, provided by a user as a Kokkos::View, a Kokkos data structure corresponding to a multi-dimensional array. At a high level, Kokkos::View<T*, DeviceType> can be thought of as an array containing objects of type T. The DeviceType template argument indicates both the memory that the data resides in (e.g., host or device memory), and the place to execute the code (e.g., CPU or GPU). Once bounding boxes are constructed, they are passed to the constructor of BVH, the ArborX class containing the hierarchy (see Figure 3).

Next, the queries are built. Each query corresponds to a pair of a query point and a number of neighbors to be found (nearest query), or a pair of a query point and a radius in little correlation of accessed nodes of two nearby threads. The performance suffers in this case due to poor memory access pattern. Figure 2c, on the other hand, corresponds to the queries reordered based on their Morton codes. It is clear that the nearby threads now share many nodes of the tree in their traversal. The apparent hierarchical pattern of the matrix indicates the concentration of queries in certain subtrees before switching to sibling trees.

```cpp
// Create the View for the bounding boxes
Kokkos::View<ArborX::Box*, DeviceType> bounding_boxes("bounding_boxes", n_boxes);
// Fill in the bounding boxes Kokkos::View
...  
// Create the bounding volume hierarchy
ArborX::BVH<DeviceType> bvh(bounding_boxes);
```

Figure 3: BVH construction interface.
Create the View for the spatial-based queries
Kokkos::View<ArborX::Within *, DeviceType> queries("queries", n_queries);

Fill in the queries
using ExecutionSpace = typename DeviceType::execution_space;
Kokkos::parallel_for("setup_queries",
 Kokkos::RangePolicy<ExecutionSpace>(0, n_queries), KOKKOS_LAMBDA(int i) {
 queries(i) = ArborX::within(query_points(i), radius);
 });

Perform the search
Kokkos::View<int*, DeviceType> offsets("offset", 0);
Kokkos::View<int*, DeviceType> indices("indices", 0);
bvh.query(queries, indices, offsets, buffer_size);

Figure 4: BVH search interface (spatial queries).

(spatial query). The spatial-based version is shown in Figure 4 with queries being filled in a device parallel loop. Once the queries are constructed, two views are allocated to store the results: the indices view to contain the indices associated with the bounding boxes that satisfy the queries, and the offsets view to contain the offsets in indices associated with each query. Two views are necessary as the number of results for each query may differ (for example, the number of results within specific radius for spatial-based search). The search is done by invoking the query function of BVH. The additional parameter buffer_size is optional, and only used for spatial-based queries. It indicates the user-provided estimate for the number of returned results, and if accurate, allows to do a single pass (1P).

3 Numerical Results

The numerical studies presented in the paper were performed on two systems:

- CADES system with each node containing two Intel Xeon E5-2695 v4 18-core CPUs running at a clock speed of 2.1 GHz with 256 GB of main memory;
- OLCF Summit system with each node having two IBM POWER9 AC922 21-core CPUs, each having 4 hardware threads with 6 Nvidia Volta V100 GPUs connected by NVLink 2.0 [n. d.].

We used the Google Benchmark tool goo [n. d.] in our experiments, using the median of the runs for the results we have reported here.

3.1 Experimental Data Sets

In our experiments, we use several artificial data sets proposed in Elseberg et al. [2012]. We consider two shape forms, cube and sphere. For a given shape, a set of points is then chosen either from within the selected shape (filled variant), or from its boundary (hollow variant). To generate \(p \) points, set \(a = p^{1/3} \), \(\Omega = [-a, a]^3 \), and proceed as follows:

- filled cube: each random point is drawn randomly from \(\Omega \) with uniform distribution;

2 This format is similar to that of compressed sparse row format that is commonly used to store sparse matrices.
• **hollow cube:** points are placed on the faces of Ω in a cyclic manner, with the position of the point on each face being random with uniform distribution;

• **filled sphere:** points are randomly chosen from Ω and accepted based on being within a sphere of radius a centered at 0;

• **hollow sphere:** points are first generated within $[-1,1]^3$ cube and then projected to the sphere of radius a centered at 0.

In our experiments, we consider two cases: searching for a filled sphere cloud of query points in the filled cube cloud (filled case), and searching for a hollow sphere cloud in the hollow cube cloud (hollow case). The major difference between these two cases is the workload per thread. For the filled case, the data and the query results are balanced between threads. The hollow case, however, presents a challenge due to a wide imbalance of query results, as only small number of threads will produce positive results for a spatial search.

For a given problem, m source points and n target points are generated using one of the described four shapes. The number of neighbors k for nearest search is fixed to 10 in all experiments. The radius r for spatial search is chosen in such a way that on average there are k neighbors within radius r in a filled cube shape.

3.2 Comparison with available libraries

In this Section, we compare the performance of ArborX with that of two state-of-the-art existing libraries, Boost.Geometry.Index and nanoflann.

The Boost.Geometry.Index [n.d.] library implements different algorithms for R-trees. For the purpose of performance comparison, we used the packing algorithm [Leutenegger et al. (1997); García R et al. (1998)] which is the most performant algorithm contained in Boost.Geometry.Index. The performance comes at the cost of flexibility since the tree has to be built statically. We used boost library version 1.66.0.

nanoflann [Blanco and Rai (2014)] is a header-only library for building k-d trees. We used nanoflann hash 527f733.

As Boost.Geometry.Index and nanoflann are implemented only in serial, the comparisons in this subsection were done using one thread. The scaling of ArborX with the number of OpenMP threads, and its CPU performance, is demonstrated in the next Section.

The experiments were performed on the CADES system. They were run for the increasing number of source points m, ranging from 10^4 to 10^8. The number of the target points n was chosen to be the same as the number of source points, $n = m$. Such configuration is common in many applications, e.g., finding potentially colliding pairs of objects in graphics applications, or finding nearby particles for pair-wise interactions in physics simulations.

The results are presented in Figures 5 and 6. Figure 5a (6a) shows the rate of tree construction for a filled (hollow) case, respectively. We observe that ArborX and Boost.Geometry.Index libraries perform similarly, while nanoflann is faster for fewer objects and slower for large numbers. We also note that the rate decreases with the number of indexed objects for all libraries as expected due to the logarithmic scaling factor.

Figures 5c (6c) demonstrate the rate of spatial-based search for a filled (hollow) case, respectively. The main difference between the filled and hollow variants is the number of

3As Boost.Geometry.Index is thread safe, it is theoretically possible to run it in batched mode. However, this will require a user to write the necessary parallel implementation.
results returned by queries. Specifically, for spatial-based search, the filled variant returns 10 neighbors on average (with the minimum being 0 and the maximum being 32). However, for the hollow variant the number of neighbors is much more imbalanced, ranging from 0 to 522, with the average being 2. This is due to a) the fact that the hollow sphere touches the hollow cube in just few places (centers of the faces), and b) both being two-dimensional objects thus having a significantly higher density than in 3D for the same number of points. As expected, the rate for the hollow variant is significantly faster than that of the filled due to most queries returning empty result.

Comparing the query performance of the libraries, we first observe that for nearest search (Figures 5b and 6b), ArborX significantly outperforms both Boost.Geometry.Index and nanoflann libraries for larger numbers of objects, particularly for the hollow case. Secondly, as expected, the performance of the 1P variant of spatial search is about twice as fast as that of the 2P version in the filled case, where workloads are balanced. However, for a larger number of objects (larger than \(10^6\)) in the hollow case, the 1P variant could not be run due to requiring too much memory to preallocate the storage for the results based on the maximum estimate. Therefore, no results from the 1P variant are given for these larger cases in Figure 6c.
3.3 Multi-threaded strong scaling

We next examine the scalability of ArborX using OpenMP on the CADES system. For the strong scaling, the number of source points m is fixed to a value from 10^4 to 10^8, and the number of OpenMP threads increased from one to 16. The number of target points n was chosen to be the same as the number of source points, $n = m$.

The results are presented in Figures 7 and 8. ArborX demonstrates excellent scalability for a large number of objects. However, having too few objects per thread for smaller simulations results in suboptimal scalability. The sorting routine was identified to have poor scalability in this mode (with every thread having less than 1000 objects). It was discovered that the sorting routine in Kokkos was in fact using the non-threaded version of \texttt{std::sort} by default for OpenMP. However, trying other parallel sort algorithms (e.g., \texttt{gnu_parallel::sort}) led only to a minor improvement and thus, further analysis is required. This issue affects both construction (sorting of Morton codes, see Section 2.1), and search (sorting of queries, see Section 2.2.3).
3.4 Accelerator comparison

We now compare the performance of ArborX using OpenMP and CUDA on the OLCF Summit system. We compare the performance of two CPUs of a single Summit node (42 physical cores) with that of a single Volta V100 GPU.\footnote{Right now, Kokkos (and thus ArborX) does not support multiple GPUs within the same process. This is typically managed by having MPI ranks manage GPUs, one each.} POWER9’s physical cores consist of four “slices”, and can be run in a variety of configurations. In smt4 mode, each slice operates independently of the other three, allowing for separate streams of execution for OpenMP threads on each physical core. In smt2 mode, pairs of slices work together to run tasks. Finally, in smt1 mode the four slices work together to execute the task/thread assigned to the physical core.

The results are presented in Figures 9 and 10. Increasing the number of used slices per physical core is clearly beneficial for performance. We also note that a single Summit GPU compares well against the full node of CPUs, exhibiting shortcomings only for smaller problems that are less suitable for the high parallelism provided by the accelerator. As each node of Summit has six GPUs connected by NVLink, it is expected that using just accelerators would significantly outperform using only CPUs when using an MPI+Kokkos approach in the future.

We note that another way to compare the performance would have been to normalize the data by the power drawn by the corresponding hardware. Unfortunately, we were not able to obtain such data as it is not yet provided by the facility, or the performance monitoring software. While the published specifications of V100 and Power9 do have some information, including thermal design power, those were observed to be inaccurate in practice by others, and thus were not relied on in our reporting.

4 Conclusion and Outlook

In this paper, we presented a new library ArborX for searching close geometric objects in space. ArborX’s strength lies in its performance and its ability to be run on multiple hardware architectures using a single interface definition. Experiments were con-
ducted to compare its performance with existing popular libraries, such as nanoflann and Boost.Geometry.Index, and to demonstrate its scalability and performance on accelerators. Our results show that our implementation is competitive with these libraries in single thread execution and is also able to effectively leverage both the multithreaded CPU and GPU compute power on modern leadership-class supercomputers such as Summit.

There are two natural directions for future work. One is addressing the current scalability limitations through careful analysis and profiling of the library. The second is implementing the distributed search algorithms using MPI to address the requirements of exascale applications where the objects indexed by the tree as well as the query objects are distributed across a large number of MPI ranks. This creates additional challenges to those presented in this paper as it is likely that the data that one searches for may not belong to the same node, or that the data distribution among MPI ranks may be imbalanced. Thus, a communication layer deploying a load balancing strategy will be required to be effectively scale to thousands of accelerated compute nodes.

Acknowledgements

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
References

[n. d.]. Boost Geometry. https://www.boost.org/doc/libs/1_67_0/libs/geometry/doc/html/geometry/spatial_indexes/introduction.html

[n. d.]. Exascale Computing Project. https://www.exascaleproject.org

[n. d.]. Google Benchmark. https://github.com/google/benchmark

[n. d.]. OLCF Summit. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Communication of the ACM 18, 9 (September 1975), 509–517. https://doi.org/10.1145/361002.361007

P. J. Besl and N. D. McKay. 1992. A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2 (February 1992), 239–256. https://doi.org/10.1109/34.121791

Jose Luis Blanco and Pranjal Kumar Rai. 2014. nanoflann: a C++ header-only fork of FLANN, a library for Nearest Neighbor (NN) with KD-trees. https://github.com/jlblancoc/nanoflann

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000. LOF: identifying density-based local outliers. In ACM sigmod record, Vol. 29. ACM, 93–104.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003

Jan Elseberg, Stéphane Magnenat Rol, and Siegwart Andreas Nüchter. 2012. Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. Journal of Software Engineering for Robotics (2012), 2–12.

YT Feng and DRJ Owen. 2002. An augmented spatial digital tree algorithm for contact detection in computational mechanics. Internat. J. Numer. Methods Engrg. 55, 2 (2002), 159–176.

Yván J. García R, Mario A. López, and Scott T. Leutenegger. 1998. A Greedy Algorithm for Bulk Loading R-trees. In Proceedings of the 6th ACM International Symposium on Advances in Geographic Information Systems (GIS '98). ACM, New York, NY, USA, 163–164. https://doi.org/10.1145/288692.288723

Antonin Guttman. 1984. R-trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data (SIGMOD ’84). ACM, New York, NY, USA, 47–57. https://doi.org/10.1145/602259.602266

Herman Haverkort. 2004. Results on Geometric Networks and Data Structures. Ph.D. Dissertation. University of Utrecht.
Tero Karras. [n. d.].a. Thinking Parallel, Part I: Collision Detection on the GPU. https://devblogs.nvidia.com/thinking-parallel-part-i-collision-detection-gpu.

Tero Karras. [n. d.].b. Thinking Parallel, Part II: Tree Traversal on the GPU. https://devblogs.nvidia.com/thinking-parallel-part-ii-tree-traversal-gpu.

Tero Karras. [n. d.].c. Thinking Parallel, Part III: Tree Construction on the GPU. https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu.

Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graphics (EGGH-HPG’12). Eurographics Association, Goslar Germany, Germany, 33–37. https://doi.org/10.2312/EGGH/HPG12/033-037

S. T. Leutenegger, M. A. Lopez, and J. Edgington. 1997. STR: A Simple and Efficient Algorithm for R-Tree Packing. In Proceedings 13th International Conference on Data Engineering. 497–506. https://doi.org/10.1109/ICDE.1997.582015

Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. In International Conference on Computer Vision Theory and Application VISSAPP’09). INSTICC Press, 331–340.

M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Liu, P. Sadowski, E. Racah, S. Byna, C. Tull, W. Bhimji, Prabhat, and P. Dubey. 2016. PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 494–503. https://doi.org/10.1109/IPDPS.2016.57

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

Stuart R. Slattery. 2016. Mesh-free data transfer algorithms for partitioned multiphysics problems: Conservation, accuracy, and parallelism. J. Comput. Phys. 307 (2016), 164–188. https://doi.org/10.1016/j.jcp.2015.11.055