Research article

Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals

Wenbing Sun and Rui Xu

School of Science, Shaoyang University, Shaoyang 422000, China

Correspondence: Email: fireworks1990@126.com.

Abstract: In this paper, we establish a new integral identity involving local fractional integral on Yang’s fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.

Keywords: Hermite-Hadamard type inequality; generalized harmonically convex function; Yang’s fractal sets; local fractional integral

Mathematics Subject Classification: 26D15, 26A51, 26D10

1. Introduction

Let $\phi : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $\alpha, \beta \in I$ with $\alpha < \beta$, then the following inequality holds,

$$\phi\left(\frac{\alpha + \beta}{2}\right) \leq \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \phi(x)dx \leq \frac{\phi(\alpha) + \phi(\beta)}{2},$$

(1.1)

which is well known as Hermite-Hadamard’s inequality [1] for convex functions. Both inequalities hold in the reversed direction if ϕ is concave.

Convex function is an important function in mathematical analysis and has been applied in many aspects [2, 3]. With the extension of the definition of convex function, Hermite-Hadamard’s inequality has been deeply studied. Some improvement and generalizations for Hermite-Hadamard’s inequality (1.1) can be found in the references [4–12].

In [11], İşcan gave the definition of harmonically convexity as follows:

Definition 1. Let $I \subset \mathbb{R} \setminus \{0\}$ be a real interval. A function $\phi : I \rightarrow \mathbb{R}$ is said to be harmonically
convex, if
\[\phi \left(\frac{xy}{tx + (1-t)y} \right) \leq t\phi(y) + (1-t)\phi(x) \]
(1.2)
for all \(x, y \in I \) and \(t \in [0, 1] \). If the inequality in (1.2) is reversed, then \(\phi \) is said to be harmonically concave.

In recent years, many researchers presented many kinds of fractional calculus by different methods and explored their applications. For example, Riemann-Liouville fractional integrals and its applications in inequalities [13–16]. Recently, Yang stated the theory of local fractional calculus on Yang’s fractal sets systematically in [17–19]. Local fractional calculus can explain the behavior of continuous but nowhere differentiable function. In view of the special advantages of local fractional calculus, more and more researchers extended their studies to Yang’s fractal space, see [20–29].

In [22], Sun introduced the definition of the generalized harmonically convex function on Yang’s fractal sets as follows:

Definition 2. Let \(I \subset \mathbb{R} \setminus \{0\} \) be a real interval. A function \(\phi : I \to \mathbb{R}^\varepsilon (0 < \varepsilon \leq 1) \) is said to be generalized harmonically convex, if
\[\phi \left(\frac{xy}{tx + (1-t)y} \right) \leq t^\varepsilon \phi(y) + (1-t)^\varepsilon \phi(x) \]
(1.3)
for all \(x, y \in I \) and \(t \in [0, 1] \). If the inequality in (1.3) is reversed, then \(\phi \) is said to be generalized harmonically concave. The sign \(\varepsilon \) represents the fractal dimension.

Example 1. Let \(\phi : (0, \infty) \to \mathbb{R}^\varepsilon \) and \(\psi : (-\infty, 0) \to \mathbb{R}^\varepsilon \), then \(\phi(x) = x^\varepsilon \) is a generalized harmonically convex function and \(\psi(x) = x^\varepsilon \) is a generalized harmonically concave function.

The following result related to Hermite-Hadamard’s inequalities holds.

Theorem 1. [22] Let \(\phi : I \subset \mathbb{R} \setminus \{0\} \to \mathbb{R}^\varepsilon \) be a generalized harmonically convex function on fractal space and \(\alpha, \beta \in I \) with \(\alpha < \beta \). If \(\phi(x) \in \mathcal{I}^\varepsilon_1[\alpha, \beta] \), then
\[
\frac{1}{\Gamma(1+\varepsilon)} \phi \left(\frac{2\alpha\beta}{\alpha + \beta} \right) \leq \frac{\alpha^\varepsilon \beta^\varepsilon}{(\beta - \alpha)^\varepsilon} \int_\alpha^\beta \phi(x) \frac{dx}{x^{2\varepsilon}} \leq \frac{\Gamma(1+\varepsilon)}{\Gamma(1+2\varepsilon)} \left[\phi(\alpha) + \phi(\beta) \right].
\]
(1.4)

Based on the theory of local fractional calculus and the definition of the generalized harmonically convex function on Yang’s fractal sets, the main aim of this paper is using a new integral identity and monotonicity of functions to establish some new Hermite-Hadamard type inequalities involving local fractional calculus.

2. Preliminaries

Let \(\mathbb{R}^\varepsilon (0 < \varepsilon \leq 1) \) be \(\varepsilon \)-type set of the real line numbers on Yang’s fractal sets, and give the following operation rules, see[17,18]. The sign \(\varepsilon \) represents the fractal dimension, not the exponential sign.

If \(\alpha^\varepsilon, \beta^\varepsilon, \gamma^\varepsilon \in \mathbb{R}^\varepsilon \), then addition and multiplication operations satisfy
(a) \(\alpha^\varepsilon + \beta^\varepsilon \in \mathbb{R}^\varepsilon \), \(\alpha^\varepsilon \beta^\varepsilon \in \mathbb{R}^\varepsilon \),
(b) \(\alpha^\varepsilon + \beta^\varepsilon = \beta^\varepsilon + \alpha^\varepsilon = (\alpha + \beta)^\varepsilon = (\beta + \alpha)^\varepsilon \),
(c) \(\alpha^\varepsilon + (\beta^\varepsilon + \gamma^\varepsilon) = (\alpha + \beta)^\varepsilon + \gamma^\varepsilon \),
(d) $\alpha^\beta \beta^\epsilon = \beta^\alpha \alpha^\epsilon = (\alpha \beta)^\epsilon = (\beta \alpha)^\epsilon$,
(e) $\alpha^{(\beta^\gamma)} = (\alpha^\beta)^{\gamma^\epsilon}$,
(f) $\alpha^{(\beta + \gamma)} = \alpha^\beta + \alpha^\gamma$,
(g) $\alpha^0 = \alpha$, $\alpha^\epsilon + (\alpha^\epsilon)^0 = 0^\epsilon$ and $\alpha^\epsilon 1^\epsilon = 1^\epsilon \alpha^\epsilon = \alpha^\epsilon$,
(h) $(\alpha - \beta)^\epsilon = \alpha^\epsilon - \beta^\epsilon$.

Definition 3. [18, 19] If there exists the relation

$$|\phi(x) - \phi(x_0)| < \epsilon^\epsilon$$

with $|x - x_0| < \delta$, for $\epsilon, \delta > 0$ and $\epsilon, \delta \in \mathbb{R}$. Then the function $\phi(x)$ is called local fractional continuous at x_0. If $\phi(x)$ is local fractional continuous on (α, β), we denote by $\phi(x) \in C_{\epsilon}(\alpha, \beta)$.

Definition 4. [17, 19] Supposing that $\phi(x) \in C_{\epsilon}(\alpha, \beta)$, the local fractional derivative of $\phi(x)$ of order ϵ at $x = x_0$ is defined by

$$\phi^{(\epsilon)}(x_0) = \frac{d^\epsilon \phi(x)}{dx^\epsilon} \bigg|_{x=x_0} = \lim_{x \to x_0} \frac{\Gamma(\epsilon + 1)(\phi(x) - \phi(x_0))}{(x - x_0)^\epsilon}.$$

For any $x \in (\alpha, \beta)$, there exists $\phi^{(\epsilon)}(x) = D^{(\epsilon)}_x$, denoted by $\phi^{(\epsilon)}(x) \in D^{(\epsilon)}_x(\alpha, \beta)$. $D_{\epsilon}(\alpha, \beta)$ is called ϵ-local fractional derivative set. If there exists $\phi^{((\alpha+1)\epsilon)}(x) = D^{(\epsilon)}_x \cdots D^{(\epsilon)}_x \phi(x)$ for any $x \in I \subseteq \mathbb{R}$, then we denote $\phi \in D^{(n+1)\epsilon}(I)$, where $n = 0, 1, 2, \cdots$

Definition 5. [17, 19] Let $\phi(x) \in C_{\epsilon}[\alpha, \beta]$. The local fractional integral of function $\phi(x)$ of order ϵ is defined by

$$\alpha I^{(\epsilon)}_\beta \phi(x) = \frac{1}{\Gamma(\epsilon + 1)} \int_\alpha^\beta \phi(t)(dt)^\epsilon = \frac{1}{\Gamma(\epsilon + 1)} \lim_{\Delta \to 0} \sum_{j=0}^{N-1} f(t_j)(\Delta t)^\epsilon,$$

where $\alpha = t_0 < t_1 < \cdots < t_{N-1} < t_N = \beta$, $[t_j, t_{j+1}]$ is a partition of the interval $[\alpha, \beta]$, $\Delta t_j = t_{j+1} - t_j$, $\Delta t = \max(\Delta t_0, \Delta t_1 \cdots \Delta t_{N-1})$.

Note that $\alpha I^{(\epsilon)}_\alpha \phi(x) = 0$, and $\alpha I^{(\epsilon)}_\beta \phi(x) = -\beta I^{(\epsilon)}_\alpha \phi(x)$ if $\alpha < \beta$. We denote $\phi(x) \in I^{(\epsilon)}_x[\alpha, \beta]$ if there exits $\alpha I^{(\epsilon)}_\epsilon \phi(x)$ for any $x \in (\alpha, \beta)$.

Lemma 1. [17]

1. Suppose that $\phi(x) = \varphi^{(\epsilon)}(x) \in C_{\epsilon}[\alpha, \beta]$, then

$$\alpha I^{(\epsilon)}_\beta \varphi(x) = \varphi(\beta) - \varphi(\alpha).$$

2. (Local fractional integration by parts)

Suppose that $\phi(x), \varphi(x) \in D_{\epsilon}(\alpha, \beta)$, and $\phi^{(\epsilon)}(x), \varphi^{(\epsilon)}(x) \in C_{\epsilon}[\alpha, \beta]$, then

$$\alpha I^{(\epsilon)}_\beta \phi(x) \varphi^{(\epsilon)}(x) = [\phi(x) \varphi(x)]^{\beta}_\alpha - \alpha I^{(\epsilon)}_\beta \phi^{(\epsilon)}(x) \varphi(x).$$

Lemma 2. [17] Suppose that $\phi(x) \in C_{\epsilon}[\alpha, \beta]$ and $\alpha < \gamma < \beta$, then

$$\alpha I^{(\epsilon)}_\beta \phi(x) = \alpha I^{(\epsilon)}_\gamma \phi(x) + \gamma I^{(\epsilon)}_\beta \phi(x).$$
3. Main results

Let us introduce the special functions on Yang’s fractal sets as follows:

1. The generalized Beta function is given by

 \[\int_a^b \frac{x^k}{(1-t)^\alpha} (1-t)^{-\beta} \, dt, \quad x > 0, y > 0, \]

2. The generalized hypergeometric function is given by

 \[_2F_1(\alpha, \beta; \gamma; z) = \frac{1}{B(\beta, \gamma - \beta)} \int_0^1 t^{(\beta-1)t} (1-t)^{\gamma-1} (1-zt)^{-\alpha} \, dt, \quad \gamma > \beta > 0, |z| < 1. \]

3. For convenience, we use the symbol \(A_t \) to denote \(t \alpha + (1-t) \beta \) in the following sections.

\textbf{Lemma 6.} Let \(I \subset (0, \infty) \) be an interval, \(\phi : I^0 \to \mathbb{R}^e \) (\(I^0 \) is the interior of \(I \)) such that \(\phi \in D_\epsilon(I^0) \) and \(\phi^{(e)} \in C_\epsilon(\alpha, \beta) \) for \(\alpha, \beta \in I^0 \) with \(\alpha < \beta \). Then the following equality holds

 \[\phi^{(2\alpha\beta)}_{\alpha + \beta} - \Gamma(1+\epsilon) \frac{\alpha^\epsilon \beta^{\epsilon} (\beta - \alpha)^{\epsilon} A_t^\epsilon \phi(x)}{x^{2\epsilon}} = I_1 + I_2 + I_3, \]

where

\[I_1 = \frac{\alpha^\epsilon \beta^{\epsilon} (\beta - \alpha)^{\epsilon}}{2^{\epsilon}} \frac{1}{\Gamma(1+\epsilon)} \int_0^{1/2} \phi^{(e)} \left(\frac{\alpha \beta}{A_t} \right)^{(dt)^\epsilon} \]

\[I_2 = -\frac{\alpha^\epsilon \beta^{\epsilon} (\beta - \alpha)^{\epsilon}}{2^{\epsilon}} \frac{1}{\Gamma(1+\epsilon)} \int_{1/2}^1 \phi^{(e)} \left(\frac{\alpha \beta}{A_t} \right)^{(dt)^\epsilon} \]

\[I_3 = -\frac{\alpha^\epsilon \beta^{\epsilon} (\beta - \alpha)^{\epsilon}}{2^{\epsilon}} \frac{1}{\Gamma(1+\epsilon)} \int_0^1 (1-2t)^\epsilon \phi^{(e)} \left(\frac{\alpha \beta}{A_t} \right)^{(dt)^\epsilon}. \]
Proof. Calculating I_1, I_2, from Lemma 1(1), we get

$$I_1 = \frac{\alpha^\varepsilon \beta^\varepsilon (\beta - \alpha)^\varepsilon}{2^\varepsilon} \frac{1}{\Gamma(1 + \varepsilon)} \int_0^{1/2} \phi^{(e)}(\frac{\alpha \beta}{A_1}) (dt)^\varepsilon$$

$$= \frac{1^\varepsilon}{2^\varepsilon} \phi^{(e)}(\frac{\alpha \beta}{A_1}) \bigg|_0^{1/2} = \frac{1^\varepsilon}{2^\varepsilon} \left[\phi \left(\frac{2 \alpha \beta}{\alpha + \beta} \right) - \phi(\alpha) \right]$$

and

$$I_2 = -\frac{\alpha^\varepsilon \beta^\varepsilon (\beta - \alpha)^\varepsilon}{2^\varepsilon} \frac{1}{\Gamma(1 + \varepsilon)} \int_{1/2}^1 \phi^{(e)}(\frac{\alpha \beta}{A_1}) (dt)^\varepsilon$$

$$= -\frac{1^\varepsilon}{2^\varepsilon} \phi^{(e)}(\frac{\alpha \beta}{A_1}) \bigg|_{1/2}^1 = \frac{1^\varepsilon}{2^\varepsilon} \left[\phi \left(\frac{2 \alpha \beta}{\alpha + \beta} \right) - \phi(\beta) \right].$$

Calculating I_3, by the local fractional integration by parts, we have

$$I_3 = \frac{\alpha^\varepsilon \beta^\varepsilon (\alpha - \beta)^\varepsilon}{2^\varepsilon} \frac{1}{\Gamma(1 + \varepsilon)} \int_0^{1} \left(1 - 2t\right)^\varepsilon \phi^{(e)}(\frac{\alpha \beta}{A_1}) (dt)^\varepsilon$$

$$= \frac{(2t - 1)^\varepsilon}{2^\varepsilon} \phi^{(e)}(\frac{\alpha \beta}{A_1}) \bigg|_0^1 - \frac{1}{\Gamma(1 + \varepsilon)} \int_0^{1} (\alpha \beta)(1 + \varepsilon) \phi^{(e)}(\frac{\alpha \beta}{A_1}) (dt)^\varepsilon$$

$$= \frac{\phi(\alpha) + \phi(\beta)}{2^\varepsilon} - \frac{\Gamma(1 + \varepsilon)}{\Gamma(1 + \varepsilon)} \int_0^{1} \phi \left(\frac{\alpha \beta}{tx + (1 - t)\beta} \right) (dt)^\varepsilon.$$

Using changing variable with $x = \frac{\alpha \beta}{t\beta}$, we have

$$I_3 = \frac{\phi(\alpha) + \phi(\beta)}{2^\varepsilon} - \frac{\Gamma(1 + \varepsilon)}{\Gamma(1 + \varepsilon)} \int_0^{1} \phi \left(\frac{\alpha \beta}{tx + (1 - t)\beta} \right) (dx)^\varepsilon$$

$$= \frac{\phi(\alpha) + \phi(\beta)}{2^\varepsilon} - \frac{\Gamma(1 + \varepsilon)}{\Gamma(1 + \varepsilon)} \frac{\alpha^\varepsilon \beta^\varepsilon \phi^{(e)}(x)}{(\beta - \alpha)^\varepsilon} x^{2^\varepsilon}.$$

Adding $I_1 - I_3$, the desired result is obtained. This completes the proof. □

Theorem 2. Let $I \subset (0, \infty)$ be an interval, $\phi : I^\circ \rightarrow \mathbb{R}$ (I° is the interior of I) is an increasing function on I° such that $\phi \in D_q(I^\circ)$ and $\phi^{(e)} \in C_q[\alpha, \beta]$ for $\alpha, \beta \in I^\circ$ with $\alpha < \beta$. If $|\phi^{(e)}|^q$ is generalized harmonically convex on $[\alpha, \beta]$ for some fixed $q > 1$, then for all $x \in [\alpha, \beta]$, the following local fractional integrals inequality holds,

$$\left| \phi \left(\frac{2 \alpha \beta}{\alpha + \beta} \right) - \Gamma(1 + \varepsilon) \frac{\alpha^\varepsilon \beta^\varepsilon}{(\beta - \alpha)^\varepsilon} x^{2^\varepsilon} \phi^{(e)} \left(\frac{\alpha \beta}{\alpha + \beta} \right) \right| \leq \frac{\phi(\beta) - \phi(\alpha)}{2^\varepsilon} + \frac{\alpha^\varepsilon \beta^\varepsilon (\beta - \alpha)^\varepsilon}{2^\varepsilon} \left(K_1^{\varepsilon}(\alpha, \beta) + K_2^{\varepsilon}(\alpha, \beta) \phi^{(e)}(\alpha) + K_3^{\varepsilon}(\alpha, \beta) \phi^{(e)}(\beta) \right)^{\frac{1}{2^\varepsilon}}, \quad (3.2)$$

where...
From Lemma 6, using the property of the modulus and the generalized Hölder’s inequality, we have

\[K_1^\epsilon(\alpha, \beta) = \beta^{-2\epsilon} \left[2F_1^\epsilon(2, 1; 3; 1, \frac{\alpha}{\beta}) \frac{\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} + 2F_1^\epsilon(2, 2; 3; 1 - \frac{\alpha}{\beta}) \frac{2\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} \right]_{\epsilon} \]

\[- \frac{2F_1^\epsilon(2, 1; 2; 1 - \frac{\alpha}{\beta})}{\Gamma(1 + \epsilon)} \]

\[K_2^\epsilon(\alpha, \beta) = \beta^{-2\epsilon} \left[\frac{1}{2\epsilon} 2F_1^\epsilon(2, 2; 4; 1, \frac{\alpha}{\beta}) \frac{\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} - \frac{\Gamma(1 + 2\epsilon)}{\Gamma(1 + 3\epsilon)} \right]_{\epsilon} \]

\[+ 2\epsilon 2F_1^\epsilon(2, 2; 4; 1 - \frac{\alpha}{\beta}) \frac{\Gamma(1 + 2\epsilon)}{\Gamma(1 + 3\epsilon)} - 2F_1^\epsilon(2, 2; 3; 1 - \frac{\alpha}{\beta}) \frac{\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} \]

\[K_3^\epsilon(\alpha, \beta) = \beta^{-2\epsilon} \left[2F_1^\epsilon(2, 1; 3; 1, \frac{\alpha}{\beta}) \frac{\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} \right]_{\epsilon} \]

\[+ 2\epsilon 2F_1^\epsilon(2, 2; 4; 1 - \frac{\alpha}{\beta}) \frac{\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} - \frac{\Gamma(1 + 2\epsilon)}{\Gamma(1 + 3\epsilon)} \]

\[- 2F_1^\epsilon(2, 1; 3; 1 - \frac{\alpha}{\beta}) \frac{\Gamma(1 + \epsilon)}{\Gamma(1 + 2\epsilon)} \]

Proof. Since \(\phi \) is an increasing function on \(I^* \), and \(0 < \alpha < \frac{2\alpha\beta}{\alpha + \beta} < \beta \), we can obtain

\[\phi(\alpha) < \phi\left(\frac{2\alpha\beta}{\alpha + \beta}\right) < \phi(\beta). \]

From the proof of Lemma 6, we have

\[|I_1| + |I_2| = \frac{\phi(\beta) - \phi(\alpha)}{2\epsilon}. \quad (3.3) \]

Taking modulus in equality (3.1), we obtain

\[\left| \phi\left(\frac{2\alpha\beta}{\alpha + \beta}\right) - \frac{\alpha\beta^\epsilon}{(\beta - \alpha)^\epsilon} \frac{\phi(x)}{x^{2\epsilon}} \right| \leq |I_1| + |I_2| + |I_3| \]

\[= \frac{\phi(\beta) - \phi(\alpha)}{2\epsilon} + |I_3|. \quad (3.4) \]

From Lemma 6, using the property of the modulus and the generalized Hölder’s inequality, we have

\[|I_3| = \left| \frac{\alpha\beta^\epsilon}{(\beta - \alpha)^\epsilon} \frac{1}{2\epsilon} \Gamma(1 + \epsilon) \int_0^1 (1 - 2\epsilon)^\epsilon \phi(x) \left(\frac{\alpha\beta}{A} \right) \left(\frac{\phi(x)}{A} \right) \left(\frac{d\epsilon}{A} \right)^\epsilon \frac{A^\epsilon}{A^2 \epsilon} \right| \]

\[\leq \frac{\alpha\beta^\epsilon}{(\beta - \alpha)^\epsilon} \frac{1}{2\epsilon} \Gamma(1 + \epsilon) \int_0^1 (1 - 2\epsilon)^\epsilon \left| \phi(x) \left(\frac{\alpha\beta}{A} \right) \left(\frac{\phi(x)}{A} \right) \right|^\epsilon \left(\frac{d\epsilon}{A} \right)^\epsilon \]

\[= \frac{\alpha\beta^\epsilon}{(\beta - \alpha)^\epsilon} \frac{1}{2\epsilon} \Gamma(1 + \epsilon) \int_0^1 (1 - 2\epsilon)^\epsilon \left| \phi(x) \left(\frac{\alpha\beta}{A} \right) \right|^\epsilon \left(\frac{d\epsilon}{A} \right)^\epsilon \]

\[\leq \frac{\alpha\beta^\epsilon}{(\beta - \alpha)^\epsilon} \frac{1}{2\epsilon} \int_0^1 (1 - 2\epsilon)^\epsilon \left(\frac{d\epsilon}{A} \right)^\epsilon \left(\frac{1}{2\epsilon} \Gamma(1 + \epsilon) \int_0^1 (1 - 2\epsilon)^\epsilon \left| \phi(x) \left(\frac{\alpha\beta}{A} \right) \right|^\epsilon \left(\frac{d\epsilon}{A} \right)^\epsilon \right)^\frac{1}{2}. \quad (3.5) \]

Since \(\phi(x) \) is generalized harmonically convex on \([\alpha, \beta] \), thus
By calculating, we get

\[
\frac{1}{\Gamma(1+\epsilon)} \int_0^1 \left| \frac{(1-t)^\epsilon}{A_i^{2\epsilon}} \right|^q (dt)^\epsilon \\
\leq \frac{1}{\Gamma(1+\epsilon)} \int_0^1 \left| \frac{(1-t)^\epsilon}{A_i^{2\epsilon}} \right|^q \left[\left(t^\epsilon \phi^{(e)}(\beta) \right)^q + (1-t)^\epsilon \left| \phi^{(e)}(\alpha) \right|^q \right] (dt)^\epsilon \\
= \left(\frac{1}{\Gamma(1+\epsilon)} \int_0^1 \left| \frac{1-2t^\epsilon}{A_i^{2\epsilon}} (dt)^\epsilon \right| \left(\phi^{(e)}(\alpha) \right)^q \right) + \left(\frac{1}{\Gamma(1+\epsilon)} \int_0^1 \left| \frac{1-2t^\epsilon}{A_i^{2\epsilon}} (dt)^\epsilon \right| \phi^{(e)}(\beta) \right)^q. \\
\tag{3.6}
\]

By calculating, we get

\[
\frac{1}{\Gamma(1+\epsilon)} \int_0^1 \left| \frac{1-2t^\epsilon}{A_i^{2\epsilon}} (dt)^\epsilon \\
= \frac{1}{\Gamma(1+\epsilon)} \int_0^1 \frac{1}{A_i^{2\epsilon}} (dt)^\epsilon \\
+ \frac{1}{\Gamma(1+\epsilon)} \int_0^1 \frac{1}{A_i^{2\epsilon}} (dt)^\epsilon \\
= \frac{2^\epsilon}{\Gamma(1+\epsilon)} \int_0^1 \frac{1}{A_i^{2\epsilon}} (dt)^\epsilon \\
+ \frac{1}{\Gamma(1+\epsilon)} \int_0^1 \frac{1}{A_i^{2\epsilon}} (dt)^\epsilon \\
= \beta^{-2\epsilon} \left[\frac{1}{\Gamma(1+\epsilon)} \int_0^1 \frac{1}{A_i^{2\epsilon}} (dt)^\epsilon \\
+ \frac{2^\epsilon}{\Gamma(1+\epsilon)} \int_0^1 t^\epsilon (1-(1-\frac{\alpha}{\beta})^2) (dt)^\epsilon \\
- \frac{1}{\Gamma(1+\epsilon)} \int_0^1 (1-(1-\frac{\alpha}{\beta})^2) (dt)^\epsilon \right] \\
= \beta^{-2\epsilon} \left[\text{2F}_1\left(2, 1; 3; \frac{1}{2}(1-\frac{\alpha}{\beta})B_\epsilon(1, 2) + 2\text{2F}_1\left(2, 2; 3; 1-\frac{\alpha}{\beta}\right)B_\epsilon(2, 1) \\
- 2\text{2F}_1\left(2, 1; 2; 1-\frac{\alpha}{\beta}\right)B_\epsilon(1, 1) \right] \\
= \beta^{-2\epsilon} \left[\text{2F}_1\left(2, 1; 3; \frac{1}{2}(1-\frac{\alpha}{\beta})\frac{\Gamma(1+\epsilon)}{\Gamma(1+2\epsilon)} + 2\text{2F}_1\left(2, 2; 3; 1-\frac{\alpha}{\beta}\right)\frac{2^\epsilon\Gamma(1+\epsilon)}{\Gamma(1+2\epsilon)} \\
- 2\text{2F}_1\left(2, 1; 2; 1-\frac{\alpha}{\beta}\right)\frac{\Gamma(1+\epsilon)}{\Gamma(1+2\epsilon)} \right] \\
= K_1^{(\epsilon)}(\alpha, \beta). \\
\tag{3.7}
\]

Similarly, we get
From (3.4)–(3.9), we get inequality (3.2). This completes the proof.
Theorem 3. Let $I \subset (0, \infty)$ be an interval, $\phi : I^o \to \mathbb{R}^e$ is an increasing function on I^o such that $\phi \in D_e(I^o)$ and $\phi^{(e)} \in C_e[\alpha, \beta]$ for $\alpha, \beta \in I^o$ with $\alpha < \beta$. If $|\phi^{(e)}|^q$ is generalized harmonically convex on $[\alpha, \beta]$, $q > 1$, $\frac{1}{p} + \frac{1}{q} = 1$, then for all $x \in [\alpha, \beta]$, the following local fractional integrals inequality holds.

$$\left| \phi \left(\frac{2\alpha \beta}{\alpha + \beta} \right) - \Gamma(1 + \epsilon) \frac{\alpha^{\beta} \epsilon^{\gamma}}{(\beta - \alpha)^{\gamma} x^{\gamma}} \phi(x) \right| \leq \frac{\phi(\beta) - \phi(\alpha)}{2\epsilon} + \frac{\alpha^{\beta} \epsilon^{\gamma}}{(\beta - \alpha)^{\gamma} x^{\gamma}} \phi(x) \bigg| \frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left| 1 - 2t^{\epsilon} \right|^q \left(\frac{\alpha \beta}{A} \right) \left(\frac{\alpha \beta}{A} \right)^q (dt)^\epsilon \bigg|$$

$$\leq \frac{\alpha^{\beta} \epsilon^{\gamma}}{(\beta - \alpha)^{\gamma} x^{\gamma}} \left[\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left| 1 - 2t^{\epsilon} \right|^q \left(\frac{\alpha \beta}{A} \right)^q (dt)^\epsilon \right] \left[\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left(1 - \frac{\alpha}{\beta} \right)^q \phi^{(e)}(\alpha)^q (dt)^\epsilon \right].$$

(3.10)

Proof. From inequality (3.4), we have

$$\left| \phi \left(\frac{2\alpha \beta}{\alpha + \beta} \right) - \Gamma(1 + \epsilon) \frac{\alpha^{\beta} \epsilon^{\gamma}}{(\beta - \alpha)^{\gamma} x^{\gamma}} \phi(x) \right| \leq \frac{\phi(\beta) - \phi(\alpha)}{2\epsilon} + |I_3|.$$

(3.11)

From Lemma 6, using the property of the modulus and the generalized Hölder’s inequality, we have

$$\left| I_3 \right| \leq \frac{\alpha^{\beta} \epsilon^{\gamma}}{(\beta - \alpha)^{\gamma} x^{\gamma}} \left[\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left| 1 - 2t^{\epsilon} \right|^q \left(\frac{\alpha \beta}{A} \right)^q (dt)^\epsilon \right] \left[\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left(1 - \frac{\alpha}{\beta} \right)^q \phi^{(e)}(\alpha)^q (dt)^\epsilon \right].$$

(3.12)

Since $|\phi^{(e)}|^q$ is generalized harmonically convex on $[\alpha, \beta]$, we can get

$$\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left(\frac{\alpha \beta}{A} \right)^q (dt)^\epsilon \right] \left[\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left(\frac{\alpha \beta}{A} \right)^q (dt)^\epsilon \right] \left[\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left(1 - \frac{\alpha}{\beta} \right)^q \phi^{(e)}(\alpha)^q (dt)^\epsilon \right].$$

(3.13)

By calculating, we have

$$\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \left(\frac{\alpha \beta}{A} \right)^q (dt)^\epsilon = \beta^{2q} \left(2q, 2; 3, 1 - \frac{\alpha}{\beta} \right) B_c(2, 1),$$

$$= \frac{\Gamma(1 + \epsilon)}{\beta^{2q} \epsilon(1 + 2\epsilon)} F_1^c(2q, 2; 3, 1 - \frac{\alpha}{\beta}).$$

(3.14)
\[
\frac{1}{\Gamma(1+\varepsilon)} \int_0^1 (1-t)^{\varepsilon} \left(\frac{1}{A_t^{2\varepsilon}} \right) (dt) = \frac{1}{\Gamma(1+\varepsilon)} \int_0^1 (1-t)^{\varepsilon} \left(1 - \frac{\alpha}{\beta} t \right)^{2\varepsilon} (dt) = B(2q, 1; 3; 1 - \frac{\alpha}{\beta}),
\]
and
\[
\frac{1}{\Gamma(1+\varepsilon)} \int_0^1 |1 - 2t|^{q\varepsilon} (dt) = \frac{\Gamma(1+p\varepsilon)}{\Gamma(1+(p+1)\varepsilon)}.
\]

Thus, combining (3.11)–(3.16), we obtain the required inequality. The proof is completed. \(\square\)

Theorem 4. Let \(I \subset (0, \infty)\) be an interval, \(\phi : I^n \to \mathbb{R}^n\) is an increasing function on \(I^n\) such that \(\phi \in D_* (I^n)\) and \(\phi^{(e)} \in C_{\alpha, \beta}\) for \(\alpha, \beta \in I^n\) with \(\alpha < \beta\). If \(|\phi^{(e)}|^q\) is generalized harmonically convex on \([\alpha, \beta]\), \(q > 1, \frac{1}{p} + \frac{1}{q} = 1\), then for all \(x \in [\alpha, \beta]\), the following local fractional integrals inequality holds.

\[
\left| \phi \left(\frac{2\alpha\beta}{\alpha + \beta} \right) - \Gamma(1+\varepsilon) \frac{\alpha^\varepsilon \beta^\varepsilon}{(\beta - \alpha)^\varepsilon} \phi^{(e)} (x) \right| \leq \phi(\beta) - \phi(\alpha) + \frac{\alpha^\varepsilon (\beta - \alpha)^\varepsilon}{2\varepsilon \beta^\varepsilon} \left[2 F_1 (2p, 1; 2; 1 - \frac{\alpha}{\beta}) \right] \frac{\Gamma(1 + q\varepsilon)}{\Gamma(1 + (q + 1)\varepsilon)} \left(\frac{\Gamma(1 + q\varepsilon)}{2\varepsilon \Gamma(1 + (q + 1)\varepsilon)} \right)^{\frac{1}{q}} \left[\phi^{(e)} (\alpha)^q + \phi^{(e)} (\beta)^q \right]^{\frac{1}{q}}.
\]

Proof. From Lemma 6, using the generalized Hölder’s inequality and the generalized harmonically convexity of \(|\phi^{(e)}|^q\), we have

\[
|I_3| \leq \frac{\alpha^\varepsilon \beta^\varepsilon (\beta - \alpha)^\varepsilon}{2\varepsilon} \left[\Gamma(1+\varepsilon) \frac{1}{A_t^{2\varepsilon}} \right] \left(\phi^{(e)} \left(\frac{\alpha\beta}{A_t} \right) \right) (dt)^\varepsilon
\]

\[
\leq \frac{\alpha^\varepsilon \beta^\varepsilon (\beta - \alpha)^\varepsilon}{2\varepsilon} \left[\Gamma(1+\varepsilon) \frac{1}{A_t^{2\varepsilon p}} (dt)^p \right] \left[\Gamma(1+\varepsilon) \frac{1}{A_t^{2\varepsilon q}} \right] \left(\phi^{(e)} \left(\frac{\alpha\beta}{A_t} \right) \right) \left(\phi^{(e)} (\beta)^q + (1 - t)^{q\varepsilon} \phi^{(e)} (\alpha)^q \right) (dt)^\varepsilon.
\]

By calculating, we have
\[
\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 \frac{1}{A^{2\epsilon}_t} (dt)^\epsilon = \beta^{-2\epsilon} \frac{1}{\Gamma(1 + \epsilon)} \int_0^1 (1 - (1 - \frac{\alpha}{\beta}) t)^{-2\epsilon} (dt)^\epsilon \\
= \beta^{-2\epsilon} \frac{2F_1(2p, 1; 1; 1 - \frac{\alpha}{\beta})}{\beta^{2\epsilon} \Gamma(1 + \epsilon)}, \quad \text{(3.19)}
\]

and

\[
\frac{1}{\Gamma(1 + \epsilon)} \int_0^1 |1 - 2t|^q (dt)^\epsilon = \frac{1}{\Gamma(1 + \epsilon)} \int_0^{1/2} (1 - 2t)^q (dt)^\epsilon \\
+ \frac{1}{\Gamma(1 + \epsilon)} \int_{1/2}^1 (2t - 1)^q (dt)^\epsilon \\
= \frac{\Gamma(1 + q \epsilon)}{2^\epsilon \Gamma(1 + (q + 1) \epsilon)}. \quad \text{(3.20)}
\]

From (3.11) in Theorem 3, combining (3.18)–(3.21), we obtain the required inequality. The proof is completed. \qed

Theorem 5. Let \(I \subset (0, \infty) \) be an interval, \(\phi : I^o \to \mathbb{R}^e \) is an increasing function on \(I^o \) such that \(\phi \in D\epsilon(I^o) \) and \(\phi^{(e)} \in C\epsilon[I, \beta] \) for \(\alpha, \beta \in I^o \) with \(\alpha < \beta \). If \(|\phi^{(e)}(\cdot)|^{\alpha} \) is generalized harmonically convex on \([\alpha, \beta], \) \(q > 1, \frac{1}{p} + \frac{1}{q} = 1, \) then for all \(x \in [\alpha, \beta], \) the following local fractional integrals inequality holds.

\[
\left| \phi \left(\frac{2\alpha \beta}{\alpha + \beta} \right) \right| \leq \frac{\phi(\beta) - \phi(\alpha)}{2^\epsilon} + \frac{\epsilon^e (\beta - \alpha)^\epsilon}{2^{\epsilon} \beta^\epsilon} \left[\frac{\Gamma(1 + p \epsilon)}{\Gamma(1 + (p + 1) \epsilon)} \right]^{\frac{1}{\epsilon}} \left[\frac{2F_1(2p, 1; p + 2; 1 - \frac{\alpha}{\beta})}{\beta^{2\epsilon} \Gamma(1 + \epsilon)} \right]^{\frac{1}{\epsilon}} \left[|\phi^{(e)}(\alpha)|^{\alpha} + |\phi^{(e)}(\beta)|^{\alpha} \right]^{\frac{1}{\epsilon}}. \quad \text{(3.22)}
\]

Proof. Note that \((\alpha - \beta)^\epsilon = \alpha^e - \beta^e \). From Lemma 6, using the generalized Hölder’s inequality and the generalized harmonically convexity of \(|\phi^{(e)}|^{\alpha} \), we have
By calculating, we have

\[
|I_3| \leq \frac{\alpha \beta (\beta - \alpha)^\varepsilon}{2^\varepsilon} \int_0^1 \left| 1 - 2t \right|^{\varepsilon} \left| \phi^{(\varepsilon)} \left(\frac{\alpha \beta}{A_t} \right) \right| (dt)^\varepsilon
\]

\[
= \frac{\alpha \beta (\beta - \alpha)^\varepsilon}{2^\varepsilon} \int_0^1 \frac{|(1 - t)^\varepsilon - t|^\varepsilon}{A_t^2} \left| \phi^{(\varepsilon)} \left(\frac{\alpha \beta}{A_t} \right) \right| (dt)^\varepsilon
\]

\[
\leq \frac{\alpha \beta (\beta - \alpha)^\varepsilon}{2^\varepsilon} \left[\int_0^1 \frac{|(1 - t)^\varepsilon - t|^\varepsilon}{A_t^2} \left| \phi^{(\varepsilon)} \left(\frac{\alpha \beta}{A_t} \right) \right| (dt)^\varepsilon \right]
\]

\[
+ \frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{t^\varepsilon}{A_t^2} \left| \phi^{(\varepsilon)} \left(\frac{\alpha \beta}{A_t} \right) \right| (dt)^\varepsilon
\]

\[
\leq \frac{\alpha \beta (\beta - \alpha)^\varepsilon}{2^\varepsilon} \left[\left(\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{|(1 - t)^\varepsilon|^\varepsilon}{A_t^{2p}} (dt)^\varepsilon \right)^{1/p} \right]
\]

\[
+ \left(\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{t^\varepsilon}{A_t^{2p}} (dt)^\varepsilon \right)^{1/p}
\]

\[
\times \left(\frac{1}{\Gamma(1 + e)} \int_0^1 \left| \phi^{(\varepsilon)} \left(\frac{\alpha \beta}{A_t} \right) \right|^q (dt)^\varepsilon \right)^{1/q}
\]

\[
\leq \frac{\alpha \beta (\beta - \alpha)^\varepsilon}{2^\varepsilon} \left[\left(\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{|(1 - t)^\varepsilon|^\varepsilon}{A_t^{2p}} (dt)^\varepsilon \right)^{1/p} \right]
\]

\[
+ \left(\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{t^\varepsilon}{A_t^{2p}} (dt)^\varepsilon \right)^{1/p}
\]

\[
\times \left(\frac{1}{\Gamma(1 + e)} \int_0^1 \left| \phi^{(\varepsilon)} \left(\frac{\alpha \beta}{A_t} \right) \right|^q (dt)^\varepsilon \right)^{1/q}
\]

\[
\leq \frac{\alpha \beta (\beta - \alpha)^\varepsilon}{2^\varepsilon} \left[\left(\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{|(1 - t)^\varepsilon|^\varepsilon}{A_t^{2p}} (dt)^\varepsilon \right)^{1/p} \right]
\]

\[
+ \left(\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{t^\varepsilon}{A_t^{2p}} (dt)^\varepsilon \right)^{1/p}
\]

\[
\times \left(\frac{1}{\Gamma(1 + e)} \int_0^1 \left| t^\varepsilon \phi^{(\varepsilon)} (\beta) \right|^q (dt)^\varepsilon \right)^{1/q} + \left(1 - t^\varepsilon \right)^q (dt)^\varepsilon \right)^{1/q}
\]

\[
(3.23)
\]

By calculating, we have

\[
\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{|(1 - t)^\varepsilon|^\varepsilon}{A_t^{2p}} (dt)^\varepsilon = \beta^{-2pe} \frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{|1 - (1 - \frac{\alpha}{\beta} t)|^{-2pe}}{A_t^{2p}} (dt)^\varepsilon
\]

\[
= \beta^{-2pe} F_1^{(2p, 1; p + 2; 1 - \frac{\alpha}{\beta})} B_1 (1, p + 1)
\]

\[
= \frac{\beta^{-2pe} \Gamma(1 + p\varepsilon)}{\Gamma(1 + (p + 1)e)} F_1^{(2p, 1; p + 2; 1 - \frac{\alpha}{\beta})}.
\]

\[
(3.24)
\]

Similarly,
\[
\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 \frac{t^p}{A_t^k} dt = \beta^{-2p} \Gamma(1 + p\varepsilon) \left(2p, p + 1; p + 2; 1 - \frac{\alpha}{\beta}\right)
\]

And
\[
\frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 t^p dt = \frac{1}{\Gamma(1 + \varepsilon)} \int_0^1 (1 - t)^p dt = \frac{\Gamma(1 + \varepsilon)}{\Gamma(1 + 2\varepsilon)}.
\]

From (3.11) in Theorem 3, combining (3.23)–(3.26), we obtain the required inequality. The proof is completed.

4. Applications to special means

We consider the following \(\varepsilon\)-type generalized special means of the real line numbers \(\alpha^\varepsilon, \beta^\varepsilon\) with \(\alpha < \beta\) on Yang’s fractal sets.

(1) The generalized arithmetic mean

\[A_{\varepsilon}(\alpha, \beta) = \frac{\alpha^\varepsilon + \beta^\varepsilon}{2\varepsilon};\]

(2) The generalized p-logarithmic mean

\[L_{p\varepsilon}(\alpha, \beta) = \left[\frac{\Gamma(1 + p\varepsilon)}{\Gamma(1 + (p + 1)\varepsilon)} \frac{\beta^{p+1}\varepsilon - \alpha^{(p+1)\varepsilon}}{(\beta - \alpha)^\varepsilon}\right]^{1/p}, \quad p \in \mathbb{R}\setminus\{-1, 0\};\]

(3) The generalized geometric mean

\[G_{\varepsilon}(\alpha, \beta) = (\alpha^\varepsilon\beta^\varepsilon)^{1/\varepsilon};\]

(4) The generalized harmonic mean

\[H_{\varepsilon}(\alpha, \beta) = \frac{(2\alpha\beta)^\varepsilon}{\alpha^\varepsilon + \beta^\varepsilon}.\]

Consider the function \(\phi : (0, \infty) \to \mathbb{R}^\varepsilon, \phi(x) = \frac{\Gamma(1 + k\varepsilon)}{\Gamma(1 + (k + 1)\varepsilon)} x^{(k+1)\varepsilon}, x > 0, k \geq 1, q \geq 1\). Because the function \(\varphi(x) = |\phi(x)|^q = x^{kq\varepsilon}\) is generalized convex and nondecreasing on \((0, \infty)\), by Proposition 3.3 in [22], the function \(\varphi(x)\) is generalized harmonically convex on \((0, \infty)\).

Let \(\phi(x) = \frac{\Gamma(1 + k\varepsilon)}{\Gamma(1 + (k + 1)\varepsilon)} x^{(k+1)\varepsilon}, x > 0, k > 1, q > 1\). Then

\[
\frac{\alpha^\varepsilon\beta^\varepsilon}{(\beta - \alpha)^\varepsilon} \int_0^1 s^\varepsilon \phi(x) = \frac{\Gamma(1 + k\varepsilon)}{\Gamma(1 + (k + 1)\varepsilon)} L_{k-1}^{(k-1)\varepsilon}(\alpha, \beta) G_2^\varepsilon(\alpha, \beta),
\]
\[\frac{\phi(\beta) - \phi(\alpha)}{2^e} = \frac{(\beta - \alpha)^e}{2^e} L^k_{ke}(\alpha, \beta). \]

Proposition 1. From Theorem 2, we obtain the following inequality

\[
\left| H^{k+1}_e(\alpha, \beta) - \Gamma(1 + e)L^{k-1}_{k-1e}(\alpha, \beta)G^2_e(\alpha, \beta) \right|
\leq \frac{(\beta - \alpha)^{\Gamma(1 + (k + 1)e)}}{2^{2^{e+1}}} \left[L^k_{ke}(\alpha, \beta) + \alpha^e \beta^e \left(K^e_1(\alpha, \beta) \right)^{1/2} \left(K^e_2(\alpha, \beta) \right)^{1/2} + K^e_3(\alpha, \beta) \right] \frac{1}{\epsilon},
\]

where \(K^e_1(\alpha, \beta), K^e_2(\alpha, \beta) \) and \(K^e_3(\alpha, \beta) \) as in Theorem 2.

Proposition 2. From Theorem 3, we obtain the following inequality

\[
\left| H^{k+1}_e(\alpha, \beta) - \Gamma(1 + e)L^{k-1}_{k-1e}(\alpha, \beta)G^2_e(\alpha, \beta) \right|
\leq \frac{(\beta - \alpha)^{\Gamma(1 + (k + 1)e)}}{2^{2^{e+1}}} \left[L^k_{ke}(\alpha, \beta) + \alpha^e \beta^e \left(\frac{\Gamma(1 + pe)}{\Gamma(1 + (p + 1)e)} \right) \right]^{1/2} \left(\frac{\Gamma(1 + e)}{\Gamma(1 + 2e)} \right)^{1/2}
\times \left(\frac{2F_1(2q, 1, 2; 1 - \alpha \beta; \epsilon)}{2^{2} \Gamma(1 + (q + 1)e)} \right)^{1/2} \left(\frac{2F_1(2p, 1; 1 - \alpha \beta; \epsilon)}{2^{2} \Gamma(1 + (p + 1)e)} \right)^{1/2},
\]

where \(p = \frac{1}{q} = 1, q > 1 \).

Proposition 3. From Theorem 4, we obtain the following inequality

\[
\left| H^{k+1}_e(\alpha, \beta) - \Gamma(1 + e)L^{k-1}_{k-1e}(\alpha, \beta)G^2_e(\alpha, \beta) \right|
\leq \frac{(\beta - \alpha)^{\Gamma(1 + (k + 1)e)}}{2^{2^{e+1}}} \left[L^k_{ke}(\alpha, \beta) + \alpha^e \beta^e \left(\frac{\Gamma(1 + pe)}{\Gamma(1 + (p + 1)e)} \right) \right]^{1/2} \left(\Gamma(1 + qe) \right)^{1/2}
\times \left(\frac{2F_1(2q, 1, 2; 1 - \alpha \beta; \epsilon)}{2^{2} \Gamma(1 + (q + 1)e)} \right)^{1/2} \left(\frac{2F_1(2p, 1; 1 - \alpha \beta; \epsilon)}{2^{2} \Gamma(1 + (p + 1)e)} \right)^{1/2},
\]

where \(p = \frac{1}{q} = 1, q > 1 \).

Proposition 4. From Theorem 5, we obtain the following inequality

\[
\left| H^{k+1}_e(\alpha, \beta) - \Gamma(1 + e)L^{k-1}_{k-1e}(\alpha, \beta)G^2_e(\alpha, \beta) \right|
\leq \frac{(\beta - \alpha)^{\Gamma(1 + (k + 1)e)}}{2^{2^{e+1}}} \left[L^k_{ke}(\alpha, \beta) + \alpha^e \beta^e \left(\frac{\Gamma(1 + pe)}{\Gamma(1 + (p + 1)e)} \right) \right]^{1/2} \left(\frac{2F_1(2p, 1; 1 - \alpha \beta; \epsilon)}{2^{2} \Gamma(1 + (p + 1)e)} \right)^{1/2}
\times \left(\frac{2F_1(2p, 1; 1 - \alpha \beta; \epsilon)}{2^{2} \Gamma(1 + (p + 1)e)} \right)^{1/2},
\]

where \(p = \frac{1}{q} = 1, q > 1 \).
5. Conclusions

In this paper, the research on Hermite-Hadamard type inequalities is extended to Yang’s fractal space. By using the definitions of generalized harmonically convex function and the theory of local fractional calculus, we construct some new Hermite-Hadamard type integral inequalities for monotonically increasing functions with generalized harmonically convexity. Some applications related to the special mean are established by using the obtained inequalities, which shows that our results have certain application significance. Our research may inspire more scholars to further explore Hermite-Hadamard type integral inequalities on Yang’s fractal sets.

Acknowledgments

This work is supported by the Natural Science Foundation of Hunan Province (No. 2020JJ4554) and Scientific Research Project of Hunan Provincial Education Department (No. 18B433).

Conflict of interest

This work does not have any conflicts of interest.

References

1. J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, *J. Math. Pures Appl.*, **58** (1893), 171–215.
2. A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, *SIAM J. Numer. Anal.*, **43** (2005), 909–923.
3. A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, *Math. Comput.*, **73** (2004), 1365–1384.
4. T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, *Appl. Anal.*, **100** (2021), 642–662.
5. M. A. Latif, M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions, *J. Egypt. Math. Soc.*, **23** (2015), 236–241.
6. J. G. Liao, S. H. Wu, T. S. Du, The Sugeno integral with respect to α-preinvex functions, *Fuzzy Sets Syst.*, **379** (2020), 102–114.
7. M. E. Özdemir, Çetin Yıldız, A. O. Akdemir, E. Set, On some inequalities for s-convex functions and applications, *J. Inequalities Appl.*, **2013** (2013), 333.
8. S. Qaisar, C. J. He, S. Hussain, A generalizations of Simpsons type inequality for differentiable functions using (α, m)-convex functions and applications, *J. Inequalities Appl.*, **2013** (2013), 158.
9. W. B. Sun, Q. Liu, New Hermite-Hadamard type inequalities for (α, m)-convex functions and applications to special means, *J. Math. Inequalities*, **11** (2017), 383–397.
10. S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, *J. Math. Inequalities*, **11** (2017), 241–259.

11. İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, *Hacettepe J. Math. Stat.*, **43** (2014), 935–942.

12. A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, *J. Approximation Theory*, **115** (2002), 260–288.

13. M. Z. Sarıkaya, E. Set, H. Yıldız, N. Başak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, *Math. Comput. Model.*, **57** (2013), 2403–2407.

14. E. Set, İ. İşcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, *Konuralp J. Math.*, **3** (2015), 42–55.

15. J. R. Wang, C. Zhu, Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, *J. Inequalities Appl.*, **2013** (2013), 325.

16. İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, *Appl. Math. Comput.*, **238** (2014), 237–244.

17. X. J. Yang, *Advanced local fractional calculus and its applications*, New York: World Science Publisher, 2012.

18. X. J. Yang, *Local fractional functional analysis and its applications*, Hong Kong: Asian Academic Publisher, 2011.

19. X. J. Yang, Local fractional integral equations and their applications, *Adv. Comput. Sci. Appl.*, **1** (2012), 234–239.

20. H. X. Mo, X. Sui, D. Y. Yu, Generalized convex functions on fractal sets and two related inequalities, *Abstr. Appl. Anal.*, **2014** (2014), 636751.

21. W. B. Sun, Some local fractional integral inequalities for generalized preinvex functions and applications to numerical quadrature, *Fractals*, **27** (2019), 1950071.

22. W. B. Sun, Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities, *J. Nonlinear Sci. Appl.*, **11** (2017), 5869–5880.

23. S. Erdena, M. Z. Sarıkaya, Generalized Pompeiu type inequalities for local fractional integrals and its applications, *Appl. Math. Comput.*, **274** (2016), 282–291.

24. J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, A new perspective to study the third order modified KdV equation on fractal set, *Fractals*, **28** (2020), 2050110.

25. X. J. Yang, F. Gao, H. M. Srivastava, Non-differentiable exact solutions for the nonlinear odes defined on fractal sets, *Fractals*, **25** (2017), 1740002.

26. X. J. Yang, J. A. Tenreiro, D. Baleanu, Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, *Fractals*, **25** (2017), 1740006.

27. M. Z. Sarıkaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, *Proc. Am. Math. Soc.*, **145** (2017), 1527–1538.
28. K. J. Wang, Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative, *Fractals*, 29 (2021), 2150044.

29. K. L. Wang, S. W. Yao, Y. P. Liu, L. N. Zhang, A fractal variational principle for the telegraph equation with fractal derivatives, *Fractals*, 28 (2020), 2050058.

30. G. Chen, H. M. Srivastava, P. Wang, W. Wei, Some further generalizations of Hölder’s inequality and related results on fractal space, *Abstr. Appl. Anal.*, 2014 (2014), 832802.