2-nearly Platonic graphs are unique v07e

D. Froncek, M.R. Khorsandi, S.R. Musawi, J. Qiu

Abstract
A 2-nearly Platonic graph of type \((k|d)\) is a \(k\)-regular planar graph with \(f\) faces, \(f - 2\) of which are of degree \(d\) and the remaining two are of degrees \(m_1, m_2\), both different from \(d\). Such a graph is called balanced if \(m_1 = m_2\). We show that all 2-nearly Platonic graphs are necessarily balanced. This proves a recent conjecture by Keith, Froncek, and Kreher.

Keywords: Planar graphs, regular graphs, Platonic graphs
Mathematics Subject Classification: 05C10

1 Introduction
Throughout this paper, all graphs we consider are finite, simple, connected, planar, undirected and non-trivial graph.

A graph is said to be planar, or embeddable in the plane, if it can be drawn in the plane such that each common point of two edges is a vertex. This drawing of a planar graph \(G\) is called a planar embedding of \(G\) and can itself be regarded as a graph isomorphic to \(G\). Sometimes, we call a planar embedding of a graph a plane graph. By this definition, it is clear that we need some matters of the topology of the plane. Immediately, after deleting the points of a plane graph from the plane, we have some maximal open sets (or regions) of points in the plane called faces of the plane graph. There exist exactly one unbounded region that we call it an outerface of the plane graph and other faces are called as internal faces. The boundary of a face is the set of points of vertices and edges touching the face. In the graph-theoretic language, the boundary of a face is a closed walk. A face is said to be incident with the vertices and edges in its boundary, and two faces are adjacent if their boundaries have an edge in common.

A graph \(G\) is \(k\)-regular when the degrees of all vertices are equal to \(k\). A regular graph is one that is \(k\)-regular for some \(k\). Let \(G = (V, E, F)\) be a graph with the vertex set \(V\), edge set \(E\), and face set \(F\). The well-known Euler’s formula states that if \(G\) is a connected planar graph, then

\[
|V| - |E| + |F| = 2.
\]

The length of a face in a plane graph \(G\) is the total length of the closed walk bounding the face in \(G\). A cut-edge belongs to the boundary of only one face, and it contributes twice to its length.
A graph \(G \) is \(k \)-connected if \(|V(G)| > k \) and \(G - X \) is connected for every set \(X \subseteq V(G) \) with \(|X| < k \). If \(|V(G)| > 1 \) and \(G - A \) is connected for every set \(A \subseteq E(G) \) of fewer than \(\ell \) edges, then \(G \) is called \(\ell \)-edge-connected.

Platonic solids are a well-known family of five three-dimensional polyhedra. There is no reliable information about their first mention, and different opinions have been taken [1, 15]. However, they are attractive for mathematicians and others, in terms of some symmetries that they have. In the last two centuries, many of authors have paid attention to the polyhedra and they have extended it to convex and concave polytopes, see, e.g., [7].

But what matters from the combinatorial point of view is that a convex polyhedron can be embedded on a sphere, and then we can map it on a plane so that the images of lines on the sphere do not cut each other in the plane. In this way, we have corresponded a polyhedron on the sphere with a planar graph in the plane. Steinitz’s theorem (see, e.g., [7]) states that a graph \(G \) with at least four vertices is the network of vertices and edges of a convex polyhedron if and only if \(G \) is planar and 3-connected.

In 1967, Grünbaum considered 3-regular and connected planar graphs and he got some results. For example, for a 3-regular connected planar graph and \(k \in \{2, 3, 4, 5\} \), it is proved that if the length of all faces but \(t \) faces is divisible by \(k \) then \(t \geq 2 \) and if \(t = 2 \) then two exceptional faces have not a common vertex [7]. In 1968, in his Ph.D thesis, Malkevitch proved the same results for 4 and 5-regular 3-connected planar graphs [16]. Several papers are devoted to the study of this topic, but all of them have considered the planar graphs such that the lengths of all faces but some exceptional faces are a multiple of \(k \) and \(k \in \{2, 3, 4, 5\} \) (see [2, 9, 10, 11, 12]).

A \(k \)-regular planar graph with \(f \) faces is a \(t \)-nearly Platonic graph of type \((k|d) \) if \(f > 2t \), \(f - t \) of its faces are of size \(d \) and the remaining \(t \) faces are of sizes other than \(d \). The faces of size \(d \) are often called common faces, and the remaining ones exceptional or disparate faces. When \(t \geq 2 \) and all disparate faces are of the same size, then the graph is called a balanced \(t \)-nearly Platonic graph.

Keith, Froncek, and Kreher [13, 14] and Froncek, Khorsandi, Musawi, and Qiu [6] proved recently that there are no 1-nearly Platonic graphs.

Deza, Dutour Sikirić, and Shtogrin [4] classified for each admissible pair \((k|d) \) all possible sizes of the exceptional faces of balanced 3-nearly Platonic graphs and sketched a proof of the completeness of the list. Froncek and Qiu [5] provided a detailed combinatorial proof of existence of infinite families of such graphs for each of the listed exceptional sizes.

There are 14 well-known families of balanced 2-nearly Platonic graphs (see, e.g., [4] or [13]). Deza, Dutour Sikirić, and Shtogrin [4] provide a list and offer a sketch of a proof of the completeness of the list. Keith, Froncek, and Kreher conjectured [13] that every 2-nearly Platonic graph must be balanced.

We show that the only admissible types of 2-nearly Platonic graphs are
(3|3), (3|4), (3|5), (4|3), and (5|3), and that all 2-nearly Platonic graphs are balanced. We also prove in detail that the list of 14 families presented by Deza, Dutour Sikirić, and Shtogrin [4] is complete.

2 Terminology and notation

We say that the two exceptional faces are touching each other or simply touching, if they share at least one vertex. Similarly, an exceptional face will be called self-touching if a vertex appears on the boundary of the face more than once.

Definition 2.1. Let G be a graph and $S \subseteq V(G)$. Then $\langle S \rangle$, the induced subgraph by S, denotes the graph on S whose edges are precisely the edges of G with both ends in S. Also, $G - S$ is obtained from G by deleting all the vertices in S and their incident edges. If $S = \{x\}$ is a singleton, then we write $G - x$ rather than $G - \{x\}$.

Definition 2.2. A $(k; k_1, k_2|d)$-block B of order n is a 2-connected planar graph with $n-2$ vertices of degree k, two vertices x and y with $\deg(x) = k_1$, $\deg(y) = k_2$ where $2 \leq k_2 \leq k_1 < k$, all faces but one of degree d, and the remaining face of degree $h \neq d$, where vertices x, y belong to the face of degree h.

Definition 2.3. A $(k; k_1|d)$-endblock of order n is a 2-connected planar graph with $n-1$ vertices of degree k, one vertex x with $\deg(x) = k_1$ where $1 < k_1 < k$, all faces but one of degree d, and the remaining face of degree $h \neq d$, where the vertex x belongs to the face of degree h.

When we speak about blocks, we always assume that the exceptional face is the outer face. Let the boundary path of the exceptional face of $(k; k_1, k_2|d)$-block B be of length $h = a + b$. We denote it $x = x_0, x_1, \ldots, x_a = y, x_{a+1}, \ldots, x_{a+b-1}$ and always assume that $a \leq b$. When we need to specify a and b in our arguments, we denote such a block as $(k; k_1, k_2|d, (a, b))$-block.

Similarly, if we need to specify the length h of the exceptional face in an endblock, we will denote it as $(k; k_1|d, (h))$-endblock.

We observe that when the exceptional faces touch in exactly one vertex, say z, then by splitting z into two vertices x and y we obtain a $(k; k_1, k_2|d, (a, b))$-block, where $\deg(x) \geq 2$, $\deg(y) \geq 2$ and a and b are the sizes of the two original exceptional faces, $k_2 = 2$ and $2 \leq k_1 \leq 3$. Consequently, such a graph would have to be of type (4|3) or (5|3).

3 Related results

We will use the following results in our proofs.

Theorem 3.1. In a 2-connected plane graph, all facial boundaries are cycles and each edge lies on the boundary of two distinct faces.
Theorem 3.2 ([14]). There are no 2-connected 1-nearly Platonic graphs.

The following result is stated in [3], and a detailed proof is given in [6].

Theorem 3.3 ([3],[6]). There are no endblocks of any admissible type.

The non-existence of 1-nearly Platonic graphs with connectivity 1 follows directly from the above Theorem.

Theorem 3.4 ([6]). There are no 1-nearly Platonic graphs with connectivity 1.

4 Touching exceptional faces

4.1 No self-touching exceptional face

First we observe that if there are two touching exceptional faces, each of them must be touching the other but not itself.

Lemma 4.1. There is no self-touching exceptional face in any connected 2-nearly Platonic graph.

Proof. Suppose that in a connected 2-nearly Platonic graph G there is a self-touching exceptional face. Then G has a cut-vertex. It is well known that in such a case there is a block B containing exactly one cut-vertex. (The term block is here used in the usual sense, that is, for a maximal 2-connected subgraph.) Because we have $\delta(G) \geq 3$, block B must be an endblock as defined above, which does not exist by Theorem 3.3, which proves the claim. \(\square\)

Recall that if the exceptional faces are touching at exactly one vertex, then the graph must be of type $$(4\mid 3)$$ or $$(5\mid 3)$$.

4.2 Excluding non-admissible values of a

Now we reduce the family of blocks that we need to investigate just to the cases where $a \leq d$.

Proposition 4.2. If there exists a $$(k; k-1, k_2|d, (a, b))$$-block B with $a > d$, then there exists a $$(k; k-1, k_2|d, (a-d, b+d))$$-block B'.

Proof. Take the block B, remove edge $x_{d-1}x_d$ and replace it by edge x_0x_{d-1}. Vertex x_0 is now of degree k while x_d is of degree $k-1$. The lengths of the boundary segments are now $a-d$ and $b+d$, respectively.

If the graph is no longer 2-connected, then there is a cut-vertex x_j with $j > a$. The subgraph bounded by $x_0, x_{d-1}, x_j, x_{j+1}, \ldots, x_{a+b-1}$ is then an endblock of type $$(k; k_1|d)$$ with $2 \leq k_1 \leq k-1$ and exceptional vertex x_j, which does not exist by Theorem 3.3.

Therefore, the graph is still 2-connected, and the conclusion follows. \(\square\)
Hence, from now on we can only consider \((k; k - 1, k_2|d)|\)-blocks with \(1 \leq a \leq d\). First we exclude the existence of \((k; k - 1, k_2|d)|\)-blocks with \(a = d\).

Lemma 4.3. There is no \((k; k - 1, k_2|d)|\)-block with \(a = d\) for any admissible \(k\).

Proof. Suppose such a block exists. First assume \(k_2 = 2\). We remove the edge \(x_{d-1}x_d = x_{d-1}y\) and replace it by the edge \(x_0x_{d-1} = xx_{d-1}\). This way we obtain a new internal face of size \(d\). Vertex \(x_0\) is now of degree \(k\), vertex \(x_d = y\) is of degree one and all other vertices are of degree \(k\).

Then we remove the vertex \(y = x_d\), and vertex \(x_{d+1}\) is now of degree \(k - 1\). But then we have a \((k; k - 1|d)|\)-endblock, which does not exist by Theorem 3.3.

If \(k_2 \geq 3\), then \(4 \leq k \leq 5\) and we must have \(d = a = 3\). Remove the edge \(x_2x_3 = x_2y\) and replace it by the edge \(x_0x_2 = xx_2\). This creates a new internal triangular face. Vertex \(x_0\) is now of degree \(k\), vertex \(x_3 = y\) is of degree \(k_2 - 1 \geq 2\) and all other vertices are of degree \(k\).

Similarly as in Proposition 4.2, if the graph now has a cut vertex \(x_j\) originally belonging to the triangle \(x_2, x_3, x_j\), then the graph bounded by the cycle \(x_0, x_2, x_j, x_j+1, \ldots, x_{3+b-1}\) is an endblock of type \((k; d_1k_{1})\) with \(2 \leq k_1 \leq k - 1\), which does not exist by Theorem 3.3.

So the graph must be still 2-connected. The edge \(x_2x_3\) must have belonged to a triangle \(x_2, x_3, z\) and we have a \((k; k_2 - 1|d)|\)-endblock with boundary \(x_0, x_2, z, x_3, \ldots, x_{a+b-1}\) and \(x_3\) of degree \(k_2 - 1 \geq 2\), which does not exist by Theorem 3.3. \(\square\)

The case of \(a = d - 1\) can be easily excluded for \(k_2 < k - 1\).

Lemma 4.4. There is no \((k; k - 1, k_2|d)|\)-block with \(a = d - 1\) and \(k_2 < k - 1\) for any admissible \(k\).

Proof. If such a block exists, then by adding edge \(xy\) we create a new internal face of size \(d\). Vertex \(y\) is still of degree less than \(k\) while all other vertices are of degree \(k\). This new graph would be a \((k; k_2|d)|\)-endblock, which does not exist by Theorem 3.3. \(\square\)

Now we exclude the existence of \((k; k - 1, k_2|d)|\)-blocks with \(a = 1\).

Lemma 4.5. There is no \((k; k - 1, k - 1|d)|\)-block with \(a = 1\) for any admissible \(k\).

Proof. Suppose such a block \(B\) exists. If \(d = 3\), then add a new vertex \(z\) and edges \(xz\) and \(yz\). This creates a \((k; 2|3)|\)-endblock, which does not exist by Theorem 3.3.

For \(d = 4\), create a copy \(B'\) of \(B\) with vertices \(x'\) and \(y'\) corresponding to \(x\) and \(y\), respectively. Then add edges \(xx', yy'\) to create a new internal face of size four. All vertices in this new graph are of degree \(k\), and the outer face is of size at least six. The resulting graph would now be 2-connected and 1-nearly Platonic, but such a graph does not exist by Theorem 3.2.
For \(d = 5 \), again create \(B' \) as above, and an extra vertex \(z \). Add edges \(xx', yz, y'z \) to obtain a new internal face \(x, x', y, y'z \) of size five, vertex \(z \) of degree two, and all other vertices of degree \(k \). The new graph now would be a \((k; 2|5)\)-endblock, which does not exist by Theorem 3.3.

For \(k = 5 \), we can even exclude large values of \(a \) even for \(k_1 = k - 2 = 3 \).

Lemma 4.6. If there is a \((5; 3, d_2|3, \langle a, b \rangle)\)-block \(B \) with \(a > 3 \), then there is a \((5; 3, d_2|3, \langle a - 3, b + 3 \rangle)\)-block. Consequently, there exists a \((5; 3, d_2|3, \langle a', b' \rangle)\)-block \(B' \) with \(1 \leq a' \leq 3 \).

Proof. As always, \(b \geq a \) by our assumptions above.

First, call \(z \) the common neighbor of \(x_2 \) and \(x_3 \). Take the edge \(x_2x_3 \) and replace it by edge \(x_0x_2 \). We have a new triangular face \(x_0, x_1, x_2 \) and \(\deg(x_0) = \deg(x_3) = 4 \) and \(\deg(x_a) = d_2 \). Now take the edge \(zx_3 \) and replace it by edge \(x_0x_2 \). We have a new triangular face \(x_0, x_2, z \) and \(\deg(x_0) = 5 \), \(\deg(x_3) = 3 \) and \(\deg(x_a) = d_2 \). If the original triangular face \(x_2, x_3, z \) had \(z = x_j \) for some \(j > a \), then the cycle \(x_0, z = x_j, x_{j+1}, \ldots, x_{a+b-1} \) is now bounding a \((5; 3|d')\)-endblock for some \(d' \leq 4 \), which is impossible by Theorem 3.3.

Hence, \(z \) is an inner vertex of the block \(B \). But in this case we have obtained another \((5; 3, d_2|d, \langle a - 3, b + 3 \rangle)\). If \(a - 3 \leq 3 \), we are done. Otherwise, we repeat the reduction until we arrive at a block \((5; 3, d_2|d, \langle a', b' \rangle)\) with \(a' = a - 3t \leq 3 \) as desired.

4.3 Uniqueness of \((3; 2, 2|d)\)-blocks

We can now show uniqueness of the \((k; k-1, k-1|d)\)-blocks for all \(d = 3, 4, 5 \).

Lemma 4.7. The \((3; 2, 2|d)\)-blocks are unique for each \(d = 3, 4, 5 \).

Proof. **Case** \(d = 3 \)

By Proposition 4.2 and Lemmas 4.3 and 4.5, we only need to investigate the case \(a = 2 \).

If \(a = 2 \), then we can add the edge \(xy = x_0x_2 \) to obtain a 3-regular 2-connected graph with all faces size \(d = 3 \), except possibly the outer one. If the new outer face is of size greater than three, then we have obtained a 2-connected 1-nearly Platonic graph. By Theorem 3.2, there is no such graph, hence the outer face must be a triangle \(x_0, x_2, x_3 \) and the new graph is the tetrahedron. Thus, the original \((3; 2, 2|3)\)-block was the tetrahedron without one edge shown in Figure 1.
Similarly as above, by Proposition 4.2 and Lemmas 4.3 and 4.5, we only need to consider $2 \leq a \leq 3$.

If $a = 2$, by adding a new vertex z and edges x_0z and zx_2, both x_0 and x_2 now have degree 3, and we obtain a $(3; 2|4)$-endblock, which does not exist by Theorem 3.3.

When $a = 3$, then by adding the edge $xy = x_0x_3$ we obtain a 3-regular graph 2-connected graph with all faces except possibly the outer one of size $d = 4$. By Theorem 3.2, there is no 2-connected 1-nearly Platonic graph, hence the outer face must be a 4-cycle x_0, x_3, x_4, x_5 and the new graph is the cube. Thus, the original $(3; 2, 2|4)$-block was the cube without one edge shown in Figure 2.

Finally, when $a = 4$, by adding the edge $xy = x_0x_4$ we get a new face of size five bounded by x_0, x_1, x_2, x_3, x_4 and all vertices are now of degree three. By Theorem 3.2, there are no 2-connected 1-nearly Platonic graphs. Since our new graph is 2-connected, the new outer face must be a pentagon as well. Thus,
the new graph is a dodecahedron and the original graph was a dodecahedron without one edge shown in Figure 3.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{dodecahedron.png}
\caption{Unique (3; 2, 2|5)-block}
\end{figure}

\section*{4.4 Uniqueness of (4; k_1, k_2|d)-blocks}

Now we discuss existence of (4; k_1, k_2|d)-blocks. The only admissible value of \(d\) is \(d = 3\), and the only possibilities are (4; 3, 3|3)-blocks, (4; 3, 2|3)-blocks, and (4; 2, 2|3)-blocks.

\begin{lemma}
The (4; 3, 3|3)-block is unique.
\end{lemma}

\begin{proof}
We must consider only \(a = 2\).

We again add to \(B\) the edge \(xy = x_0x_2\) similarly as in the case of \(k = 3\) and obtain a 4-regular 2-connected graph with all internal faces of size \(d = 3\). By Theorem 3.2, there is no 2-connected 1-nearly Platonic graph, hence the outer face must be a triangle \(x_0, x_2, x_3\) and the new graph is the octahedron. Thus, the original (4; 3, 3|3)-block was the octahedron without one edge shown in Figure 4.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{octahedron.png}
\caption{Unique (4; 3, 3|3)-block}
\end{figure}

The following result is a direct corollary of Lemmas 4.3, 4.4, and 4.5.

\begin{lemma}
There is no (4; 3, 2|3)-block.
\end{lemma}

\begin{proof}
First assume such a block \(B\) exists for \(a = 1\). Then we take two copies of \(B\), say \(B\) and \(B'\) and amalgamate vertices \(y\) and \(y'\), obtaining another vertex of degree two and add edge \(xx'\). But then we have constructed a 2-connected 1-nearly Platonic graph of type \(4|3\), which does not exist by Theorem 3.2.

We cannot have \(a = 2\) by Lemma 4.4, or \(a = 3\) by Lemma 4.3. Hence, the proof is complete.
\end{proof}
The only remaining case for 4-regular blocks is more complex.

Lemma 4.10. The $(4; 2, 2|3)$-block is unique.

Proof. Let such a block be called B. If $a = 1$, we create three copies B^0, B^1, B^2 of B with the vertices of degree two denoted x^i and y^i in each copy B^i. Assume that B has t internal triangular faces and observe that $b > 1$. Then we amalgamate x^i with y^{i+1} for all $i = 0, 1, 2$, where the superscripts are calculated modulo 3. This way we obtain a 2-connected 4-regular graph with $3t + 1$ inner triangular faces and the outer face of size $3b ≥ 6$. Because no such graph exists by Theorem 3.2, this case is impossible.

When $a = 2$, then we add the edge $xy = x_0x_2$ and obtain a $(4; 3, 3|3)$-block with the vertices of degree three joined by an edge, which cannot exist by Lemma 4.5. Hence, $a ≠ 2$.

For $a = 3$ and $b = 3$, the boundary is the 6-cycle $x_0, x_1, . . . , x_5$ with $\deg(x_0) = \deg(x_3) = 2$. Therefore, inside the 4-cycle x_1, x_2, x_4, x_5 with edges $x_1x_2, x_2x_4, x_4x_5, x_5x_1$ there must be a vertex v, adjacent to all vertices of the cycle. This gives the unique $(4; 2, 2|3)$-block shown in Figure 5. Notice that amalgamating x_0 with x_3 produces an octahedron.

![Figure 5: Unique (4; 2, 2|3)-block](https://example.com/figure5.png)

Now we need to show that when $a = 3$, we cannot have $b > 3$. Suppose we can. But then by amalgamating x_0 with x_3 as above into a vertex x' we obtain one new inner triangular face x', x_1, x_2 and an outer face $x_0, x', x_3, . . . , x_{3+b-1}, x_0$ of size $b + 1$. Because $b > 3$, the outer face is of size at least four, and we have a 2-connected 1-nearly Platonic graph of type $(4|3)$. No such graph exists by Theorem 3.2, which implies $b = 3$, contradicting our assumption that $b > 3$.

Finally, let $a > 3$. Let $a = 3c + r$ for some $c > 1$ and $0 ≤ r ≤ 2$. Remove edges $x_2x_3, . . . , x_{3c-1}x_{3c}$ and replace them by edges $x_0x_2, . . . , x_{3c-1}, x_{3c-3}$.

Let i be the smallest subscript such that the edge $x_{3i-1}x_{3i}$ belonged to a triangle x_{3i-1}, x_{3i}, x_j for some $j > a$ and the previous edges (if any) $x_{3s-1}x_{3s}$ belonged to triangles x_{3s-1}, x_{3s}, z_{3s}, where z_{3s} is not a boundary vertex. Then the graph bounded by the cycle $x_0, x_2, z_3, x_3, x_5, . . . , x_{3i-1}, x_j, x_{j+1}, . . . , x_{a+b-1}$ has x_0 of degree 3 and x_j of degree 2 or 3. However, if $\deg(x_j) = 2$, no such graph can exist by Proposition 4.2 and Lemma 4.3.

If $\deg(x_j) = 3$, the graph B^* bounded by $x_0, x_2, z_3, x_3, x_5, . . . , x_{3i-1}, x_j, x_{j+1}, . . . , x_{a+b-1}$ would be a $(4; 3, 3|3)$-block. However, such a block is unique.
with $a = 2$, while here we have $a^* \geq 3$, because of the path $x_0, x_2, z_3, x_3, x_5, \ldots, x_{3i-1}, x_j$, where $i \geq 1$. Therefore, this possibility can be ruled out as well.

Thus, no edge $x_{3i-1}x_{3i}$ belongs to a triangle x_{3i-1}, x_{3i}, x_j.

Now if $a = 3c$, after performing the edge operations above, we are left with x_a having degree one and its only remaining neighbor is x_{a+1}. Removing x_a we obtain again a $(4; 3, 3|3)$-block as in the previous paragraph, and the same contradiction.

When $a = 3c+1$, we end up with $\deg(x_0) = \deg(x_{a-1}) = 3$ and $\deg(x_a) = 2$. We create two copies of the block, say B and B', amalgamate x_a with x'_a and add a new edge $x_{a-1}x'_{a-1}$. This way we obtain a $(4; 3, 3|3, (2a-1, 2b))$-block. Since $2b > 2a - 1 \geq 7$, no such block can exist by Lemma 4.8.

Finally, for $a = 3c+2$ we transform the graph so that $\deg(x_0) = \deg(x_{a-2}) = 3$ and $\deg(x_a) = 2$. By adding the edge $x_{a-2}x_a$ we create a new inner triangle x_{a-2}, x_{a-1}, x_a and $\deg(x_{a-2}) = 4$ and $\deg(x_a) = 3$. The resulting graph is a $(4; 3, 3|3, (a-1, b))$-block. But $b > a - 1 \geq 4$, and no such block can again exist by Lemma 4.8.

\section*{4.5 Uniqueness of $(5; k_1, k_2|d)$-blocks}

Again, we must have $d = 3$. Hence, we are left with blocks of type $(5; k_1, k_2|3)$ for $4 \geq k_1 \geq k_2 \geq 2$.

\textbf{Lemma 4.11.} The $(5; 4, 4|3)$-block is unique.

\textit{Proof.} It follows from Lemma 4.5 that we only have to consider $a = 2$.

By adding the edge $x_0x_2 = xy$, we obtain a 5-regular graph with all internal faces of size three. By Theorem 3.2, the outer face now must be also a triangle, as otherwise we would have a 2-connected 1-nearly Platonic graph with the outer face of size more than three. Therefore, the new graph is the icosahedron and the original one was the icosahedron without an edge shown in Figure 6.

\begin{center}
Figure 6: Unique $(5; 4, 4|3)$-block
\end{center}

\textbf{Lemma 4.12.} A $(5; 4, 3|3)$-block does not exist.

\textit{Proof.} We have $1 \leq a \leq 3$ by Proposition 4.2. But we cannot have $a = 3$ by Lemma 4.3, or $a = 2$ by Lemma 4.4. Hence, $a = 1$.

10
We again create two copies of B with t inner triangular faces and assume $\deg(x) = \deg(x') = 4$ and $\deg(y) = \deg(y') = 3$. Now we add a new vertex z and edges zx, zx', zy, zy', yy'. This way we obtain a 2-connected graph with $2t + 3$ inner triangular faces in which $\deg(z) = 4$ and all other vertices are of degree five. This graph would be a $(5; 4|3)$-endblock, which does not exist by Theorem 3.3.

Lemma 4.13. A $(5; 4, 2|3)$-block does not exist.

Proof. We have $a = 1$ by Proposition 4.2 and Lemmas 4.3 and 4.4.
Suppose $\deg(x) = 2$. We remove x and obtain a $(5; 4, 3|3)$-block. But by Proposition 4.12, it is impossible.

Now we investigate $(5; 3, d_2|3)$-blocks.

Lemma 4.14. A $(5; 3, 3|3)$-block does not exist.

Proof. By Lemma 4.6 we have $1 \leq a \leq 3$. If $a = 1$, we create two copies of the block B with t inner triangular faces (and $b > 1$) and amalgamate the edges xy and $x'y'$. This creates a 2-connected 5-regular graph with $2t$ inner triangular faces and the outer face of size $2b \geq 4$. Such graph would be 1-nearly Platonic and cannot exist by Theorem 3.2.

When $a = 2$, then by adding the edge $xy = x_0x_2$ we would obtain a $(5; 4, 4|3)$-block whose non-existence was proved in Lemma 4.11.

For $a = 3$, we replace the edge $x_2x_3 = x_2y$ by edge x_0x_2, creating a new triangular face. Now $\deg(x) = 4, \deg(y) = 2$ and the boundary path from x to y is $x = x_0, x_2, v, y$ for some v. If $v = x_j$ for some $j > 3$, then the block bounded by $x_0, x_2, x_j, x_{j+1}, \ldots, x_{a+b-1}$ is a $(5; 4, 3|3)$-block or $(5; 4, 2|3)$-block where $v = x_j$ is of degree three or two, respectively. Such blocks do not exist by Lemmas 4.12 and 4.13.

If v is an inner vertex of B, then we obtain a $(5; 4, 2|3)$-block with $a = 3$, which cannot exist by Lemma 4.3. All cases have been covered and the proof is complete.

Lemma 4.15. The $(5; 3, 2|3)$-block is unique.

Proof. By Lemma 4.6 we have $1 \leq a \leq 3$. If $a = 1$, we create three copies B^0, B^1, B^2 of the block B with $\deg(x^i) = 3$ and $\deg(y^i) = 2$ in each copy B^i. Assume that B has t internal triangular faces and observe that $b > 1$. Then we amalgamate x^i with y^{i+1} for all $i = 0, 1, 2$, where the superscripts are calculated modulo 3. This way we obtain a 2-connected 5-regular graph with $3t + 1$ inner triangular faces and the outer face of size $3b \geq 6$. Because no such graph exists by Theorem 3.2, this case is impossible.

When $a = 2$, then we add the edge $xy = x_0x_2$ and obtain a $(5; 4, 3|3)$-block, which cannot exist by Lemma 4.12.
Now let $a = 3$ and the outer face be $x_0, x_1, \ldots, x_{a+b-1}$, where $\deg(x_0) = 3, \deg(x_3) = 2$, and $\deg(x_{i}) = 5$ otherwise.

Amalgamate x_0 and x_3 into a new vertex x' of degree five so that the new triangular face is x', x_1, x_2 and it is an inner face. The outer face is now $x', x_4, x_5, \ldots, x_{a+b-1}$, and has size $a + b - 3$.

If $b > 3$, we have $a + b - 3 \geq 4$. But then the resulting graph is a 1-nearly Platonic graph of type $(5|3)$ with exceptional face of size at least four, which is non-existent by Theorem 3.2. Therefore, $b = 3$. But then the new amalgamated graph has outer boundary of size three, namely x', x_4, x_5. Clearly, we have obtained the icosahedron, and the original block shown in Figure 7 is unique.

![Figure 7: Unique (5; 3, 2|3)-block](image)

Since there are no other values of a to investigate, the proof is now complete.

For the remaining case, that is, the $(5; 2, 2|3)$-block, we show directly the non-existence of a graph containing such block, rather than investigating the block on its own.

Lemma 4.16. There is no 2-nearly Platonic graph with touching faces containing a $(5; 2, 2|3)$-block.

Proof. Suppose such a graph with a $(5; 2, 2|3)$-block does exist. Let x_0 and x_a be the two vertices of degree two. First we show that each of them must be shared by a $(5; 3, d_2|3)$-block. Suppose it is not the case, such a block B exists in a 2-nearly Platonic graph G and x_0 does not belong to any $(5; 3, d_2|3)$-block. Denote the neighbors of x_0 not in B by v_1, v_2, v_3 and assume that there is a drawing of G where the neighbors of x_0 in clockwise order are $x_1, v_1, v_2, v_3, x_{a+b-1}$. At least one of edges x_0v_1, x_0v_3 does not belong to any $(5; d_1, d_2|3)$-block, say it is v_1. Then the paths $P_1 = x_1, x_0, v_1, P_2 = v_1, x_0, v_2$, and $P_3 = v_3, x_0, x_{a+b-1}$ all belong to boundaries of non-triangular faces. But because we only have two such faces, F_1 and F_2, one of them must contain x_0 twice. Say it is F_1. Hence, F_1 is self-touching, and we must have an endblock of some kind, which is impossible by Theorem 3.3.

Hence, both x_0 and x_a must belong to some $(5; 3, d_2|3)$-block. Because neither $(5; 4, 3|3)$-block nor $(5; 3, 3|3)$-block exist, it must be a $(5; 3, 2|3)$-block. It should be now obvious that if we attach such a block to each x_0 and x_a, the
new graph will again have two new vertices of degree two, and such a chain of blocks can never be closed to create a 2-connected 2-nearly Platonic graph. Therefore, the graph will have connectivity one, and consequently contain an endblock. This is impossible by Theorem 3.3 and the proof is complete. □

4.6 Classification: touching exceptional faces

Based on our lemmas, we can now state the main result of this section.

Theorem 4.17. There are exactly seven infinite families of 2-nearly Platonic graphs with touching exceptional faces; one of each of types (3|3), (3|4), (3|5), two of type (4|3), and two of type (5|3), shown in Figures 8–14.

Moreover, all these graphs have the two exceptional faces of the same size.

Proof. For graphs of type (3|d), the only blocks can be (3; 2, 2|d) and they are all unique by Lemma 4.7.

For type (3|3) the only possible block is the (3; 2, 2|3, ⟨2, 2⟩)-block isomorphic to the tetrahedron with one removed edge, and the graph must be a chain alternating the (3; 2, 2|3, ⟨2, 2⟩)-blocks and graphs K_2.

![Figure 8: Chain of blocks of type (3; 2, 2|3) and K_2, tetrahedron edge cycle](image)

Next, for type (3|4) the only possible block is the (3; 2, 2|4, ⟨3, 3⟩)-block isomorphic to the cube with one removed edge, and the graph is a chain alternating the (3; 2, 2|4, ⟨3, 3⟩)-blocks and graphs K_2.

![Figure 9: Chain of blocks of type (3; 2, 2|4) and K_2, cube edge cycle](image)

Once again, for type (3|5) the only possible block is the (3; 2, 2|5, ⟨4, 4⟩)-block isomorphic to the dodecahedron with one removed edge, and the graph is a chain alternating the (3; 2, 2|5, ⟨4, 4⟩)-blocks and graphs K_2.

13
For type (4;3), the blocks could possibly be only of type (4; 3, 3|3), (4; 3, 2|3), or (4; 2, 2|3). A (4; 3, 2|3)-block does not exist by Lemma 4.9; the other two are unique by Lemmas 4.8 and 4.10. Hence, the graph is either a chain consisting of the (4; 3, 3|5, (2, 2))-blocks (that is, octahedrons without an edge) and graphs K_2, or a chain of (4; 2, 2|5, (3, 3))-blocks, arising from octahedron by splitting one vertex.

Figure 11: Chain of blocks of type (4; 3, 3|3) and K_2, octahedron edge cycle

Figure 12: Chain of blocks of type (4; 2, 2|3), octahedron vertex cycle

For type (5|3), blocks of type (5; 4, 3|3) and (5; 4, 2|3) do not exist by Lemmas 4.12 and 4.13, respectively. The block of type (5; 4, 4|3) is unique by Lemma 4.11; it is the (5; 4, 4|3, (2, 2))-block, isomorphic to the icosahedron with one removed edge. The resulting graph then is a chain of the (5; 4, 4|3, (2, 2))-blocks alternating with graphs K_2.

Figure 13: Chain of blocks of type (5; 4, 4|3) and K_2, icosahedron edge cycle

Blocks of type (5; 3, 3|3) and (5; 2, 2|3) do not exist by Lemmas 4.14 and 4.16. The block of type (5; 3, 2|3) is unique by Lemma 4.15; it is the (5; 3, 2|3, (3, 3))-block, obtained from the icosahedron by splitting one vertex into two vertices.
of degree three and two, respectively. The resulting graph then is a chain of the
$(5; 3|3, 2|2)$-blocks.

![Figure 14: Chain of blocks of type $(5; 3|3)$, icosahedron vertex cycle](image)

5 Non-touching exceptional faces

5.1 New notions

Let F_1, F_2 be the disjoint outer and inner disparate faces, respectively. We denote their respective boundaries by x_1, x_2, \ldots, x_n, and y_1, y_2, \ldots, y_m in clockwise order. We define the distance between F_1 and F_2 as

$$\text{dist}(F_1, F_2) = \min \{ \text{dist}(x_i, y_j) | x_i \in F_1, y_j \in F_2 \}.$$

In a subgraph of a 2-nearly Platonic graph of type $(k|d)$, a vertex is saturated, if it is of degree k. It should be obvious that in a 2-nearly Platonic graph with non-touching exceptional faces, each vertex must belong to at least two faces of size d. Similarly, in a subgraph of a 2-nearly Platonic graph of type $(k|d)$, a path of length $d - 1$ is weakly saturated, if all its internal vertices are of degree k.

We start with some easy observations regarding the graphs of types $(3|3)$, $(3|4)$, and $(4|3)$.

5.2 Graphs of types $(3|3)$, $(3|4)$, and $(4|3)$

Observation 5.1. There is no 2-nearly Platonic graph of type $(3|3)$ with non-touching exceptional faces.

Proof. By contradiction. Let $\text{dist}(F_1, F_2) = 1$. Then there is an edge x_iy_i for some i. Because the faces are non-touching, we have $x_a \neq y_b$ for any a, b. Vertex x_i is saturated, having neighbors x_{i-1}, x_{i+1}, y_i, and must belong to a triangular face x_i, x_{i+1}, y_i. But then y_i is of degree at least four, a contradiction.

If $\text{dist}(F_1, F_2) = \text{dist}(x_i, y_i) \geq 2$, then we have a path $x_i, v_1, v_2, \ldots, y_i$ (where possibly $v_2 = y_j$). Again, x_i is saturated, hence must belong to triangular faces x_i, x_{i-1}, v_1 and x_i, x_{i+1}, v_1, and v_1 must be of degree at least four, a contradiction again. \qed
Observation 5.2. The only 2-nearly Platonic graph of type (3|4) with non-touching exceptional faces is a prism.

Proof. If \(\text{dist}(F_1, F_2) = 1 \), the graph will be a prism. Let the shortest path be \(x_1 y_1 \), weakly saturating the path \(x_2, x_1, y_1, y_2 \), and since the common face is of degree four, \(x_2 y_2 \) is forced. Using the same argument repeatedly, edge \(x_i y_i \) is forced for every \(i \). Hence, the graph must be a prism.

If \(\text{dist}(F_1, F_2) = \text{dist}(x_1, y_1) \geq 2 \), let \(x_1, v_1, v_2, \ldots, y_1 \) be the shortest path, where \(v_2 \) can be equal to \(y_1 \). Then \(v_1 \) will have one more neighbor, say \(w_1 \), WLOG in the clockwise direction. This saturates \(v_1 \) and thus \(v_2 \) and \(x_n \) are adjacent. But now we have a shorter path \(x_n, v_2, \ldots, y_1 \), a contradiction. \qed

Observation 5.3. The only 2-nearly Platonic graph of type (4|3) with non-touching exceptional faces is an antiprism.

Proof. If \(\text{dist}(F_1, F_2) = 1 \), the graph will be an anti-prism. Let \(x_1 y_1 \) be a shortest path. Vertex \(x_1 \) has neighbors \(x_2, x_n, y_1 \) and some \(v_1 \), which can be placed WLOG so that the edge \(x_1 v_1 \) is placed between edges \(x_1 x_n \) and \(x_1 y_1 \). Then \(x_1 \) is saturated, and we must have edge \(x_2 y_1 \). Now \(y_1 \) is saturated, which forces edge \(x_2 y_2 \). After repeating the argument \(n \) times, we obtain an anti-prism.

Now suppose that \(\text{dist}(F_1, F_2) = \text{dist}(x_1, y_1) \geq 2 \), and \(x_1, v_1, v_2, \ldots, y_1 \) is the shortest path, where \(v_2 \) can again be equal to \(y_1 \).

Let \(w_4 \) be the fourth neighbor of \(x_1 \) and WLOG suppose it is located counter-clockwise from \(x_1 \). Now \(x_1 \) is saturated and \(v_1 \) and \(x_2 \) are adjacent. For the same reason, saturation of \(x_1 \), we must have the edge \(w_1 v_1 \). Notice that \(v_1 \) is now saturated, which forces also the edge \(x_2 v_2 \). This would mean that \(\text{dist}(x_2 y_1) \leq \text{dist}(x, y_1) = \text{dist}(F_1, F_2) \), which is a contradiction, and the proof is complete. \qed

5.3 Graphs of type (3|5)

For the (3|5) case, we need several lemmas to determine the distance between the two non-touching exceptional faces.

Lemma 5.4. Suppose \(G \) is a 2-nearly Platonic graph of type (3|5) with non-touching exceptional faces \(F_1, F_2 \).

Let \(l = \text{dist}(F_1, F_2) \) and suppose \(l \geq 3 \). Let \(x_1, v_1, v_2, \ldots, y_1 \) be a path of length \(l \). Denote by \(w_i \) the third neighbor of \(v_i \) for \(i = 1, 2, \ldots, l - 1 \), and assume \(w_1 \) is located clockwise from \(v_1 \). Then all vertices \(w_{2j+1} \) are located clockwise from the path \(x_1, v_1, v_2, \ldots, y_1 \), while all vertices \(w_{2j} \) are located counter-clockwise from \(x_1, v_1, v_2, \ldots, y_1 \).

Proof. First observe that \(w_2 \) must be placed counter-clockwise from \(v_2 \). For if not, then the path \(x_n, x_1, v_1, v_2, v_3 \) is weakly saturated and forces edge \(x_n v_3 \). Then \(\text{dist}(x_n y_1) < \text{dist}(x, y_1) = \text{dist}(F_1, F_2) \), which is a contradiction.

Now let \(i \) be the smallest subscript such that \(w_i \) and \(w_{i+1} \) are both placed in the same direction, say counter-clockwise from \(v_i \) and \(v_{i+1} \), respectively.
Then the path \(w_{i-1}, v_{i-1}, v_i, v_{i+1}, v_{i+2} \) is weakly saturated, which forces edge \(w_{i-1}v_{i+1} \). However, this creates a path \(x_1, v_1, \ldots, v_{i-1}, w_{i-1}, v_{i+2}, v_{i+3}, y_1 \) of length \(l - 1 < \text{dist}(F_1, F_2) \), which is impossible. This contradiction completes the proof.

Lemma 5.5. Suppose \(G \) is a 2-nearly Platonic graph of type (3/5) with non-touching exceptional faces \(F_1, F_2 \) and \(\text{dist}(F_1, F_2) = l \). Then \(l = 1 \) or \(l = 3 \).

Proof. Let the shortest path be as in the previous proof, and third neighbors \(w_i \) of \(v_i \) be placed clockwise for odd subscripts, and counter-clockwise for even subscripts. We first want to show that the shortest path cannot have length more than three.

Suppose it does. Then \(w_2 \) is placed counter-clockwise, and \(x_n, x_1, v_1, v_2, w_2 \) is a weakly saturated path, forcing edge \(x_nw_2 \). Similarly, \(w_4 \) (which can be equal to \(y_m \)) is placed counter-clockwise, and \(w_2, v_2, v_4, w_4 \) is a weakly saturated path, forcing edge \(w_2w_4 \). This creates a path \(x_n, w_2, w_4, v_4, v_5 \ldots, y_1 \) of length at most \(l - 1 \), a contradiction.

Now suppose \(l = 2 \), and denote the shortest path between \(F_1 \) and \(F_2 \) by \(x_1, v_1, y_1 \). Again suppose the third neighbor \(w_1 \) of \(v_1 \) is placed clockwise from \(v_1 \). Then since the path \(x_n, x_1, v_1, y_1, y_m \) is weakly saturated, we must have \(x_ny_m \) as an edge. Then \(\text{dist}(F_1, F_2) = \text{dist}(x_n, y_m) = 1 \), which is impossible.

So we just proved that the distance can only be one or three. In fact, the structures of the graphs for both cases are determined for both cases, which will be shown in the next lemma. Specifically, for the distance one case, we will shown that by some operations, every such graph could become a 2-nearly Platonic graph with touching faces while the lengths of the exceptional faces do not change. And for the distance three case, we could reduce it to the smallest such graph and determine its structure.

Lemma 5.6. There is exactly one infinite class of 2-nearly Platonic graphs of type (3/5) with non-touching exceptional faces \(F_1, F_2 \) and \(\text{dist}(F_1, F_2) = 1 \).

Proof. For \(l = 1 \), assume there is the edge \(x_1y_1 \). We can now split the edge into two edges \(x'_1y'_1 \) and \(x'_2y'_2 \). We create five copies of this graph, and amalgamate the edge \(x'_i y'_i \) in the \(i \)-th copy with \(x'_1 y'_1 \) in the \((i + 1)\)-st copy, with \(i \) taken modulo 5. It should be clear that the new graph is still 2-nearly Platonic with two exceptional faces, one of size \(5n \), and the other of size \(5m \).

Then we relabel the vertices of the exceptional faces. Denote one of the edges \(x'_1 y'_1 \) by \(w_1z_1 \), and let our two exceptional faces be \(w_1w_2 \ldots, w_{5n}z_2 \ldots, z_{5m} \). We add edges \(w_1w_5, w_6w_{10}, \ldots, w_{5n-4}w_1 \) and remove edges \(w_nw_1, w_5w_6, \ldots, w_{5n-5}w_{5n-4} \). This way we obtain a 2-nearly Platonic graph with touching faces since the two new faces share the vertex \(z_1 \). Note that this operation does not change the size of the exceptional faces.
As we proved before, the conjecture is true for the touching exceptional faces case, thus we can conclude that $5m = 5n$, or $m = n$. Since we have classified the structure of the 2-nearly Platonic graphs for the touching exceptional faces, we can determine the structure of all the non-touching case of type $(3|5)$ by reversing the operations. The fundamental block of this type is shown in Figure 15.

![Figure 15: Fundamental block with non-touching faces of type $(3|5)$ with $l = 1$](image)

Lemma 5.7. There is exactly one infinite class of 2-nearly Platonic graphs of type $(3|5)$ with non-touching exceptional faces F_1, F_2 and $\text{dist}(F_1, F_2) = 3$.

Proof. Recall that the exceptional faces F_1 and F_2 are bounded by cycles x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m, respectively. We have $\text{dist}(F_1, F_2) = 3$ and denote a shortest path by x_1, v_1, v_2, y_1 and the third neighbors of v_1, v_2 by w_1, w_2, respectively. Without loss of generality (WLOG) suppose w_1 is placed clockwise from the path x_1, v_1, v_2, y_1, then by Lemma 5.4, w_2 is placed counter-clockwise. Since x_1, v_1, v_2, y_1 are all saturated, thus $w_1 y_2$ and $w_2 x_n$ must be adjacent. Also, the third neighbor of w_1, call it z_1, must be placed clockwise from the path x_1, v_1, w_1, y_2 while the third neighbor z_2 of w_2 must be counter-clockwise from x_n, w_2, v_2, y_1.

Now consider the path x_1, v_1, w_1, y_2 and x_n, w_2, v_2, y_1. They have the same structure in the sense that the third neighbors of both corresponding vertices v_1 and w_2 are placed counter-clockwise from the respective paths, while the third neighbors of the corresponding vertices w_1 and v_2 are placed clockwise from the respective paths. Therefore, we can amalgamate those two paths together (omitting the loop arising from edge $v_1 v_2$) and reduce the size of the two exceptional faces by one. More precisely, we amalgamate x_n with x_1, w_2 with v_1, v_2 with w_1, and y_1 with y_2.

Since the reduced graph also maintains the property that the distance of two exceptional faces is three, we can repeat this procedure. We can also reverse it by taking a path x_1, v_1, v_2, y_1 and splitting it into two paths, x'_1, v'_1, v'_2, y'_1 and $x''_1, v''_1, v''_2, y''_1$ so that the original edge $w_2 v_2$ becomes $w_2 v'_2$ and $v_1 w_1$ becomes $v''_1 w_1$. Now we add edges $x'_1 x''_1, v'_1 v''_1$ and $y'_1 y''_1$ to obtain a new graph in which the structure is preserved while the exceptional faces have sizes $n + 1$ and $m + 1$, respectively.
Now we want to show that $m = n$. We assume WLOG that $n \leq m$. If $n = 5 + t$ for some $t \geq 0$, we reduce the graph t times to obtain $n' = 5$ and $m' > 5$, and we have a 1-nearly Platonic graph of type $(3|5)$ with the exceptional face of size $m' > 5$, which is impossible by Theorem 3.2. Hence, we must have $m = n$.

If $n < 5$, say $n = 5 - s$, we expand the graph s times, and get $n' = 5$ and $m' > 5$. By the same argument as above, such graph cannot exist. Therefore, we must have $m = n$.

The fundamental block of this type is shown in Figure 16.

![Figure 16: Fundamental block with non-touching faces of type (3|5) with $l = 3$](image)

Hence in either case, we know the structure of the graph and the two exceptional faces have the same degree for each case.

5.4 Graphs of type $(5|3)$

For the $(5|3)$ case, we also first discuss the distance between the two exceptional faces.

We start by showing that the number of vertices on F_1 and F_1 is half of the order of the graph. Denote the order of the graph by $|V|$, and we know there are m and n vertices on F_1 and F_2, respectively. Since the graph is 5-regular, there are $5|V|/2$ edges. Also, we can count the number of edges using the number of faces. By Euler’s formula, the number of faces, denoted by $|F|$, is $|E| - |V| + 2$, which is $5|V|/2 - |V| + 2$, or $3|V|/2 + 2$. Since all faces except two are triangles, and the other two faces are of degree m and n, respectively, we have $3(|F| - 2) + m + n = 2|E|$. Because $|F| = 3|V|/2 + 2$ and $|E| = 5|V|/2$, we have $9|V|/2 + m + n = 5|V|$, or $2(m + n) = |V|$, as desired.

We summarize these findings as follows.

Observation 5.8. Let G with vertex set V be a 2-nearly Platonic graph with non-touching exceptional faces of sizes m and n, respectively. Then $|V| = 2(m + n)$.

Now we use the fact that $|V| = 2(m + n)$ to show the distance between F_1 and F_2 cannot be greater than two.
Lemma 5.9. Let G be a 2-nearly Platonic graph of type $(5|3)$ with non-touching exceptional faces F_1 and F_2 and $\text{dist}(F_1, F_2) = l$. Then $1 \leq l \leq 2$.

Proof. Suppose the distance is two or more, and define the neighborhoods of F_1, F_2 as

$$N(F_j) = \{u \mid ux \in E(G) \text{ for some } x \in F_j \text{ and } u \notin F_j \}.$$

We observe that $u \notin F_{j+1}$ for $u \in N(F_j)$ as the distance is more than one. We want to show that $|N(F_j)| = 2|F_j|$.

Let the n-cycle x_1, x_2, \ldots, x_n be the boundary of F_1 and $u^0_i, u^1_i, u^2_i \in N(F_1)$ be the three neighbors of x_i, placed in that order. Since the faces inside the boundary are all triangles, u^2_i and u^0_{i+1} must be the same vertex. Also, u^0_i and u^1_i are forced to be adjacent, as well as u^1_i and u^2_i. So in $N(F_1)$, we would have n distinct vertices that have exactly two neighbors in F_1 each, and n distinct vertices with exactly one neighbor in F_1 each. Thus, together there are $2n$ vertices.

By applying the same argument to $N(F_2)$, we have $|N(F_2)| = 2m$. Because we have $|F_1| = n, |F_2| = m$ and by Observation 5.8 $|V| = 2(m + n)$, it follows that

$$|N(F_1) \cup N(F_2)| \leq n + m.$$

But we also have

$$|N(F_1)| = 2n \text{ and } |N(F_2)| = 2m.$$

Indeed, $N(F_j) \subseteq N(F_1) \cup N(F_2)$, and

$$2n = |N(F_1)| \leq |N(F_1) \cup N(F_2)| \leq n + m,$$

which yields $n \leq m$. By symmetry, looking at $N(F_2)$, we obtain $m \leq n$, which implies $m = n$, and consequently

$$|F_1| = |F_2| = n \text{ and } |N(F_1) \cup N(F_2)| = 2n.$$

Therefore,

$$|F_1| + |F_2| + |N(F_1) \cup N(F_2)| = 4n = |V|$$

and there is no vertex between the boundaries of F_1 and F_2 which would not be adjacent to vertices in both F_1 and F_2. Thus the distance between F_1 and F_2 cannot exceed two.

In the previous lemma, we not only proved the statement, but we observed that if the distance is two, the conjecture holds. Moreover we can determine the structure in this case. By the proof of the lemma, all vertices other than the boundary of F_2 are at distance one from both F_1 and F_2. Let the vertices having one neighbor on F_1 be v_i for $i = 1, 2, \ldots, n$ and $x_i v_i$ be the edges. Let
the common neighbor of \(x_i \) and \(x_{i+1} \) be \(w_i \). Then there is the inner cycle \(C_{2n} = v_1, w_1, v_2, w_2, \ldots, v_n, w_n \) closing the triangles.

By symmetry, all vertices except the boundary of \(F_1 \) are at distance one from \(F_2 \). Thus they are all in the set \(\{v_1, v_2, \ldots, v_n\} \cup \{w_1, w_2, \ldots, w_n\} \). Clearly, for \(i = 1, 2, \ldots, n \) each \(w_i \) is already of degree four and must be a neighbor of exactly one vertex on \(F_2 \), say \(y_j \). This forces \(v_i \) to be the remaining neighbor of both \(y_{i-1} \) and \(y_i \). This uniquely determines the structure of the graph. We summarize our findings in the following lemma.

Lemma 5.10. The class of 2-nearly Platonic graphs of type \((5|3)\) with non-touching exceptional faces \(F_1 \) and \(F_2 \) and \(\text{dist}(F_1, F_2) = 2 \) is unique.

Proof. The proof was given above, and the structure can be seen in Figure 17 below.

![Figure 17: Fundamental block with non-touching faces of type (5|3) with \(l = 2 \)](image)

There is only one case left now, namely when \(\text{dist}(F_1, F_2) = 1 \). The method we will use is similar to what we did in distance one case for type \((3|5)\). That is, we will use the results for the touching case to prove the non-touching case.

Lemma 5.11. There are exactly two classes of 2-nearly Platonic graphs of type \((5|3)\) with non-touching exceptional faces \(F_1 \) and \(F_2 \) and \(\text{dist}(F_1, F_2) = 1 \).

Proof. Because \(\text{dist}(F_1, F_2) = 1 \), we must have an edge joining the two faces, say \(x_1y_1 \). Up to symmetry, there are three possible structures for the neighbors of \(x_1 \) and \(y_1 \). The first case is that the two neighbors of \(x_1 \) inside the boundary are located clockwise from \(x_1y_1 \) while two neighbors of \(y_1 \) are counter-clockwise from \(x_1y_1 \). The second case is that only \(x_1 \) has its two internal neighbors on the same side of \(x_1y_1 \), say clockwise for it, and \(y_1 \) has neighbors on both sides of \(x_1y_1 \). The last case is that the two neighbors of \(x_1 \) inside the boundary are on different sides of \(x_1y_1 \), and so are the two neighbors of \(y_1 \). The reason why the four neighbors cannot be on the same side of \(x_1y_1 \), say clockwise from \(x_1y_1 \), is that if so, then the path \(x_n, x_1, y_1 \) is weakly saturated and we would need the edge \(x_ny_1 \) to complete the triangular face. However, this would make \(y_1 \) of degree six, which is impossible. The three possible cases are shown in Figure 18 below.

In fact, if we have the structure as described in the second case, we obtain the same structure as in case one. We have the two neighbors of \(x_1 \) located
Figure 18: From left to right: case 1, 2, and 3

clockwise from x_1y_1, which implies that the path $x_nx_1y_1$ is weakly saturated, and x_ny_1 must be an edge. Now, x_n, x_1, y_1 form a triangle and because both x_1 and y_1 are already saturated, x_n cannot have a neighbor inside the triangle. Thus both remaining internal neighbors of x_n are located counter-clockwise from x_ny_1, and the two remaining neighbors of y_1 (one of which is x_1) are both on the clockwise side of x_ny_1, which is what we have in case one up to symmetry.

We reduced the problem to two cases, and will discuss them now one by one. For the first case where the two neighbors of x_1 inside the boundary are located clockwise from x_1y_1 while two neighbors of y_1 are counter-clockwise from x_1y_1, we can split the edge x_1y_1 to obtain a strip. Then we make three copies of the strip and attach them together, for the vertices that are incident with the splitting edge are symmetric. This way we obtain a larger 2-nearly Platonic graph with exceptional faces of degrees $3n$ and $3m$. We label the vertices again so that x_1y_1 is a path from F_1 to F_2 and x_1 has two neighbors clockwise from x_1y_1. So x_1y_2 will be an edge connecting F_1 to F_2 as well. Then we remove edges $x_3n x_1, x_3x_4, \ldots, x_{3n-3}x_{3n}$ and add edges $x_3x_3, x_4x_5, \ldots, x_{3n-2}x_{3n}$. The graph remains 5-regular and all but the two exceptional faces are triangles. Also, the long faces will have the same length as the graph before the operation. However, now the two exceptional faces share the vertex y_1, so by the previous result, the two faces must have the same size, i.e. $3m = 3n$, thus $m = n$, as desired.

For the third case, where the two neighbors of x_1 inside the boundary are on different sides of x_1y_1, and the same holds for y_1, we can also split the edge x_1y_1, make three copies and glue them together. Then instead of adding and removing edges on only one of the exceptional faces as we did in the first case, we will add and remove edges on both inner and outer face. Again after the operation the two new exceptional faces share a vertex, which is one of the common neighbors of x_1 and y_1. Since the operation does not change the face size, we could conclude that $3m = 3n$, and so $m = n$.

Since the class of 2-nearly Platonic graphs with touching faces obtained by these operations is unique as described in Lemma 4.15, it should be obvious that starting with graphs in Figure 18 and reversing the steps, we obtain graphs in 19 and 20, respectively. \qed
5.5 Classification: non-touching exceptional faces

Theorem 5.12. There are exactly seven infinite families of 2-nearly Platonic graphs with non-touching exceptional faces; the prism of type (3|4) in Figure 21, two graphs of type (3|5) in Figures 22 and 23, antiprism of type (4|3) in Figure 24, and three of type (5|3) in Figures 25, 26 and 27. Moreover, all these graphs have the two exceptional faces of the same size.

Proof. The non-existence of 2-nearly Platonic graphs follows from Observation 5.1. The result for type (3|4) follows from Observation 5.2.

For type (3|5) the result follows from Lemmas 5.6 and 5.7.
The result for type \((4|3)\) follows from Observation 5.3.

Finally, for type \((5|3)\) the result follows from Lemmas 5.10 and 5.11. \qed
6 Conclusion

We summarize our results in the form answering in the affirmative the conjecture by Keith, Froncek, and Kreher [13]. For the respective classes of graphs, we slightly modified the terminology introduced in [13].

Theorem 6.1. All 2-nearly Platonic graphs are balanced and belong to one of the following 14 families, listed by type \((k|d)\):

- **Type** \((3|3)\):
 1. tetrahedron edge cycle (Figure 8)

- **Type** \((3|4)\):
 2. cube edge cycle (Figure 9)
 3. prism (Figure 21)

- **Type** \((3|5)\):
 4. dodecahedron edge cycle (Figure 10)
 5. barrel (Figure 22)
 6. dodecahedron thick cycle (Figure 23)

- **Type** \((4|3)\):
 7. octahedron edge cycle (Figure 11)
 8. octahedron vertex cycle (Figure 12)
 9. antiprism (Figure 24)

- **Type** \((5|3)\):
 10. icosahedron edge cycle (Figure 13)
 11. icosahedron vertex cycle (Figure 14)
 12. icosahedron wide cycle (Figure 25)
 13. icosahedron first thick cycle (Figure 26)
 14. icosahedron second thick cycle (Figure 27)
Remark. This paper was originally written as two independent papers by two disjoint pairs of co-authors. The methods used in both papers were very similar, and the papers differed mainly in the structure of theorems and proofs. After we had learned about each other, we decided to join forces and merge the papers into one, which is presented here.

References

[1] M. Atiyah and P. Sutcliffe, Polyhedra in physics, chemistry and geometry, *Milan J. Math.*, **71** (2003), 33–58.

[2] D.W. Crowe, *Nearly regular polyhedra with two exceptional faces*, The Many Facets of Graph Theory (Proc. Conf. Western Mich. Univ., Kalamazoo, MI, 1968), 63–76, Springer, Berlin 1969.

[3] M. Deza and M. Dutour Sikirić, *Geometry of Chemical Graphs: Polycycles and Two-Faced Maps*. Cambridge University Press, 2008.

[4] M. Deza, M. Dutour Sikirić and M. Shtogrin, *Fullerene-like spheres with faces of negative curvature*, Chapter 13 in “Diamond and Related Nanостructures” M.V. Diudea and C.L. Nagy ed., Springer, 2013.

[5] D. Froncek and J. Qiu, Balanced 3-nearly Platonic graphs, *Bull. Inst. Combin. Appl.*, **86** (2019), 34–63.

[6] D. Froncek, M.R. Khorsadi, S.R. Musawi, and J. Qiu, A note on non-existence of nearly Platonic graphs with connectivity one, *manuscript*.

[7] B. Grünbaum (Prepared and with a preface by V. Kaibel, V. Klee and G.M. Ziegler) *Convex polytopes*, Graduate Texts in Mathematics, 221. Springer-Verlag, New York, 2003.

[8] M. Horňák, A theorem on nonexistence of a certain type of nearly regular cell-decompositions of the sphere, *Časopis Pěst. Mat.*, **103**(4) 1978, 333–338.

[9] M. Horňák and S. Jendrol, On a conjecture by Plummer and Toft, *J. Graph Theory* **30**(3) 1999, 177–189.

[10] M. Horňák and E. Jucovič, Nearly regular cell-decompositions of orientable 2-manifolds with at most two exceptional cells. *Math. Slov.* **27**(1) 1977, 73–89.

[11] S. Jendrol’, On the non-existence of certain nearly regular planar maps with two exceptional faces. *Mat. Čas.* **25**(2) 1975, 159–164.
[12] S. Jendrol’ and E. Jucovič, On a conjecture by B. Grünbaum. Disc. Math. 2(1) 1972, 35–49.

[13] W. Keith, D. Froncek, D. Kreher, A note on nearly Platonic graphs, Australas. J. Combin., 70 (2018), 86–103.

[14] W. Keith, D. Froncek, D. Kreher, Corrigendum to: A note on nearly Platonic graphs, Australas. J. Combin., 72 (2018), 163.

[15] D.R. Lloyd, How old are the Platonic solids?, BSHM Bull., 27(3) (2012), 131–140.

[16] J. Malkevitch. Properties of planar graphs with uniform vertex and face structure. Memoirs of the AMS, No. 99, American Mathematical Society, Providence, R.I. 1970. MR0260616 (41 #5240).