Integra-based Reconstruction of Large Scalp Wounds: A Case Report and Systematic Review of the Literature

Maxwell B. Johnson, MS
Alex K. Wong, MD, FACS

Background: Large complex scalp wounds that have traditionally required free vascularized tissue transfer have been successfully reconstructed with skin substitutes such as Integra. Although there are multiple reports of Integra-based reconstructions of scalp wounds, there has not been a comprehensive assessment of this body of literature that critically examines this method. Our goal was to conduct a systematic review to determine the effectiveness of Integra-based reconstructions of scalp wounds, with emphasis on large defects.

Methods: A comprehensive systematic review was completed using key search terms, including Integra, dermal regeneration template, bovine collagen, skin substitute, forehead, and scalp. Selected articles reported characteristics of patients and their reconstructions. The primary outcome measures were wound complications and percent graft take.

Results: Thirty-four articles were included in this systematic review. Wound sizes ranged from 5.7 to 610 cm², with 35.3% of articles reporting a mean defect size >100 cm². Thirty-two articles reported mean percent take of skin graft ≥90%. Sixteen articles reported a minor complication. There were no major complications associated with the reconstructions.

Conclusions: There is a substantial evidence base for the use of Integra to reconstruct scalp wounds. To date, the dermal regeneration template is generally reserved for salvage procedures or when the patient cannot tolerate free tissue transfer. Based on the findings of this systematic review and the authors’ clinical experience, Integra can be used to achieve predictable results in large complex scalp defects.

Received for publication August 4, 2016; accepted August 15, 2016.
Copyright © 2016 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The American Society of Plastic Surgeons. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.
DOI: 10.1097/GOX.0000000000001074

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by the authors.
size the available literature on Integra-based reconstruction of scalp wounds. We wished to explore whether there was a critical defect size at which Integra was not reliable and thus paid particular attention to large defects, defined in this article as those defects that are ≥100 cm². Furthermore, we sought to identify factors predisposing Integra-based reconstructions to complication and to identify best practices in the use of Integra for scalp wounds.

CASE PRESENTATION

A 40-year-old man with history of intellectual disability and multiple preexisting medical conditions was referred to the plastic surgery service for definitive management and closure of a large scalp mass with bleeding and foul-smelling discharge (Fig. 1A). Per the patient’s parents, the mass had been present for a year and a half and had grown over that period of time. On physical exam, a large 64 cm² ulcerated mass was noted over the patient’s forehead and frontal scalp, with additional 1 cm² lesions on the left temporal region and dorsum of the left hand. A presumptive diagnosis of squamous cell carcinoma was made based on outside hospital records, and the patient was taken to the operating room for definitive management. The scalp mass was excised down to calvaria, resulting in a 144 cm² scalp defect. The defect was reconstructed with fenestrated Integra after burring the calvaria. A wound vacuum-assisted closure (VAC) was used as the bolster dressing and removed on postoperative day 5. Pathology confirmed the diagnosis of squamous cell carcinoma. On readmission for second-stage reconstruction, the silastic membrane was removed and a healthy granulation bed was noted (Figs. 1B, C). A fenestrated split-thickness skin graft was applied and the patient was discharged home 6 days later. One hundred percent graft take was noted at subsequent clinic visits, with excellent cosmetic and functional results at follow-up at 244 days (Fig. 1D).

MATERIALS AND METHODS

Literature Search and Study Selection

A systematic literature search was completed according to Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines (Fig. 1)..outer}

Fig. 1. Photos of a patient undergoing Integra-based reconstruction of a large scalp defect. The patient is shown preoperatively (A), before removal of the silastic membrane (B), with a healthy granulation bed after removal of the silastic membrane before placement of skin graft (C), and on follow-up 244 days after initial reconstruction (D).
PubMed and Ovid were queried using the search terms “Integra AND (scalp OR forehead OR head)”, “bovine collagen AND (scalp OR forehead OR head)”, “skin substitute AND (scalp OR forehead OR head)”, and “dermal regeneration template AND (scalp OR forehead OR head)”. Additional references relevant to the review were retrieved from article reference lists. Inclusion and exclusion criteria are presented in Table 1. Two authors independently screened all articles for inclusion or exclusion.

Table 1. Inclusion and Exclusion Criteria Utilized in This Systematic Review

Inclusion criteria
English
Studies where patients underwent Integra reconstruction of the forehead or scalp
Exclusion criteria
Non-English
Studies that were review articles
Studies where patients underwent Integra reconstruction of sites other than the forehead or scalp
Studies where patients underwent reconstruction of the forehead or scalp with alternative skin substitutes
Studies with patients who had chronic illnesses predisposing them to reconstruction failure
Studies with insufficient information to abstract data
Animal studies

Data Abstraction and Analysis

Data were abstracted for a variety of preoperative, intraoperative, and postoperative details. Preoperative criteria included mean patient age, mean defect size, and indication for reconstruction. Intraoperative criteria included staging, bone burring, and Integra fenestration. Postoperative criteria included mean time to skin graft, adjuvant radiotherapy, complication, and mean percent graft take. In cases where mean percent take was not reported numerically, qualitative descriptors were used to estimate mean percent take. If graft take was described as “good” or “excellent,” it was converted to a mean percent take of 100%. Other descriptors were converted on a case-by-case basis. Studies not reporting specific patient or procedural details were removed from descriptive analysis for that detail. Given the limitations of the data, quantitative evaluation was not performed.

RESULTS

Study Retrieval and Characteristics

Eighty-six studies were identified through the initial database search, and 2 studies through article reference lists (Fig. 2). Abstracts for 67 studies were screened, and
55 full-text articles were assessed for eligibility. Thirty-four studies met inclusion criteria for qualitative analysis.

Preoperative Wound Characteristics

The leading indication for reconstruction was resection of a malignant skin tumor (67.6%; Table 2). This was followed by trauma (17.6%), failed previous reconstruction (11.8%), burn (8.8%), radiation necrosis (5.9%), infection (2.9%), and aplasia cutis congenita (2.9%). Patient age ranged from 0 to 93 years old, with 55.9% reporting a mean age over 65. In general, Integra was selected for reconstruction in elderly patients with multiple comorbidities.

Defects ranged in size from 5.7 to 610 cm², with 12 studies reporting a mean defect size >100 cm² (Table 2). Percent take of Integra and/or skin graft ranged from 50% to 100%, with 94.1% reporting take ≥90%. Mean follow-up was 14 months.

Outcomes of Integra-based Scalp Reconstruction

The most common approach to Integra-based reconstruction is the staged approach, with initial application of the skin substitute followed by a split-thickness skin graft over the revascularized matrix at a later date. In this systematic review, 82.4% of studies utilized a staged approach (Table 3). Overall, staged reconstructions were successful, with 92.9% reporting average percent take ≥90%. Of the 11 staged studies with average defect size ≥100 cm², all reported percent take >90%.

The timing of the second-stage of Integra reconstruction is largely dependent on the state of the granulation bed. If the matrix appears well-vascularized, the skin graft can be applied and expected to heal well. In this systematic review, 82.1% of studies reported a time to second stage ≤30 days (data not pictured). Five studies reported time to second stage >30 days. All five reported a complication accounting for the delay.

Among staged reconstructions, 53.6% of studies reported complications in at least 1 patient (Table 3). Infection (17.9%) was the most common, followed by delayed healing (10.7%), incomplete adherence of the Integra (10.7%), radionecrosis after postoperative radiotherapy (10.7%), persistent contour defect (7.1%), seroma (3.6%), wound failure (3.6%), and ecchymosis (3.6%). Mean percent take for these studies ranged from 50% to 100%, with only 2 studies reporting mean percent take <90%. Four studies with mean defect size ≥100 cm² reported complications. All five reported a complication accounting for the delay.

Table 2. Preoperative Characteristics of Patients Undergoing Integra-based Reconstruction

Reference	Defect Size (cm²)	No. of Patients	Age (y)	Follow-up (mo)	Indication	Percent Take (%)
Punnucci et al	Unknown	23	66	23	Malignant skin tumor	97
Burd and Wong	5.7	1	83	21	Malignant skin tumor	100
De Angelis et al	20.2 ± 13.2	20	79.3 ± 5.1	3–6	Malignant skin tumor	100
Wain et al	25	1	91	2	Malignant skin tumor	100
Girone et al	25.1	1	75	2	Malignant skin tumor	100
Fung et al	32	1	69	14	Malignant skin tumor	90
Wrafter	47	1	79	Unknown	Malignant skin tumor	100
Ahmed et al	36	1	45	24	Aplasia cutis congenita	100
Singh et al	36	1	Newborn	16	Malignant skin tumor	100
Singer et al	50	1	7	5.7	Trauma	100
Wilensky et al	51.4 ± 37.9	23	70.3 ± 14.9	Unknown	Malignant skin tumor	100
Momoh et al	56	1	74	Unknown	Radionecrosis	100
Kosutic et al	60.24	1	72	Unknown	Burn, failed reconstruction	95
Elledge et al	61.9	8	Unknown	3 ± 3.3	Malignant skin tumor	70–100
Koenen et al	62.3 ± 35	13	80 ± 10	6	Malignant skin tumor	100
Richardson et al	63.2 ± 54	10	80 ± 9	16	Malignant skin tumor	99.8
Tufaro et al	73.4 ± 7	7	53 ± 21.9	Unknown	Malignant skin tumor	97–100
Spector and Glatt	80	1	50	48	Malignant skin tumor	100
McClain et al	94.8 ± 61.4	5	67.2 ± 12.6	Unknown	Malignant skin tumor	95–100
Khan et al	95	30	63	14	Malignant skin tumor	100
Komorowska-Timek et al	97.5 ± 58	7	70 ± 14	14 ± 13	Malignant skin tumor, trauma, infection	100
Orseck et al	97.6 ± 83.1	13	61 ± 11.7	9	Malignant skin tumor, trauma, infection	100
Wang and To	100	1	50	9	Failed reconstruction	90
Soucé and	108.1 ± 116.5	4	85.5 ± 7.7	10.8 ± 0.3	Malignant skin tumor	90–100
El-Tigani et al	143.3	8	81.5	24	Malignant skin tumor	100
Yeong et al	150	2	16	12	Burn	100
Ching and Gould	150.8	1	70	Unknown	Malignant skin tumor	100
Chalimer et al	164 ± 105	6	70 ± 13.9	16 ± 13	Malignant skin tumor	90–100
Navařa et al	180	1	26	12	Burn	100
Khan et al	280	1	59	21	Trauma, failed reconstruction	100
Angelos et al	300	1	50	12	Malignant skin tumor	100
Gonyon and Zenn	400	1	20	15	Radionecrosis	100
Cunningham and Marks	Unknown	2	67	9	Malignant skin tumor	100
Konofaos et al	610	1	0.2	12	Trauma	98

All values reported as mean ± SD where possible.
Seven studies included patients who underwent adjuvant radiotherapy after reconstruction.12,18,22,24,31-41 Four reported subtotal radionecrosis, radiation-induced soft tissue breakdown, with eventual graft take of 100%.22,24,31-33 In contrast, patients with preoperative radiotherapy of the wound bed had mixed results, with percent take as low as 50%.10,12,17,22,36

Six articles utilized a single-stage reconstructive approach.11,21,27,39-41 Five of the 6 studies did not apply a skin graft,11,21,39-41 while one applied both Integra and skin graft in the same procedure.27 One case report performed one-stage reconstruction of a defect ≥100 cm², reporting a minor infection in the postoperative period.11 Percent take for one-stage studies was 100%.

Effect of Bone Burring on Integra Scalp Reconstruction

Bone burring of the calvaria before Integra placement encourages vascular ingrowth from the diploë into the construct. Burring was employed in 74.2% of the studies included in this systematic review, with percent take ranging from 50% to 100% (Table 4).9,10,12,13,17-20,22-24,27,28,30-34,36-38,40 Percent take was >90% in studies not employing bone burring.9,11,12,16,17,29,35,39,41

Effect of Fenestration and Postoperative Bolster Technique on Integra Scalp Reconstruction

Fenestrating Integra permits the egress of fluids, in theory reducing the risk of seroma or hematoma formation. Nine studies fenestrated the dermal regeneration template, with mean percent take ≥97% (Table 5).12,13,17,23,24,28,30,36,41 Khan et al20 and De Angelis et al41 reported formation of small seroma and hematoma, respectively, not affecting final graft take. The remaining 22 articles using unfenestrated Integra reported percent take ranging from 50% to 100%.9-11,14-16,18-20,22-25,27,31-35,37,39,42 Fung et al17 reported hema-

Table 3. Postoperative Characteristics of Patients Undergoing Integra-based Reconstruction

Reference	Defect Size (cm²)	No. Stages	Bone Burring	Integra Fenestration	Postoperative Radiotherapy Complication	Percent Take (%)
Pannucci et al29	Unknown	2	No	Unknown	None	97
Bird and Wong31	3.7	1*	Yes	Unknown	Yes (1)	100
De Angelis et al31	20.2 ± 13.2	1*	No	Unknown	Yes (1)	100
Wain et al41	25	2	Yes	No	None	100
Girino et al30	25.1	1*	No	No	None	100
Wrafter,31	32	2	Yes	No	None	100
Fung et al37	32	2	Yes	No	No (1)	100
Ahmed et al36	36	2	Yes	No	None	100
Singh et al36	36	2	Yes	No	None	100
Singer et al40	50	1*	Yes	Unknown	None	100
Wilensky et al37	51.4 ± 37.9	2	Unknown	Yes	None	100
Momoh et al30	56	2	Yes	No	None	100
Kosutic et al37	60	1	Yes	No	None	100
Elledge et al38	61.9	2	Yes	Unknown	Yes (1)	100
Koenen et al38	62±35	2	Yes	No	Unknown	100
Richardson et al32	63.2 ± 54	2	Unknown	Unknown	Yes (2)	99.8
Tufaro et al37	73 ± 47	2	Yes (4)	Yes	No (3)	97–100
Spector and Glat16	80	2	No	No	No (3)	100
McClain et al39	94.8 ± 61.4	2	Unknown	Yes (1)	Radionecrosis (1), wound failure (1)	95–100
Khan et al31	97 ± 58	2	Yes (4)	Yes (1)	Contour defect (2)	100
Komorowska-Timek et al32	97.6 ± 83.1	2	Yes	Yes	No	100
Orseck et al39	100	2	No	No	No	90
Soufian and El-Tigani33	108.1 ± 116.5	2	Yes	No	None	90–100
Corradino et al23	143.3	2	Yes	Yes (2)	No	100
Yeong et al34	150	2	Yes	No	None	100
Ching and Gould35	150.8	2	Unknown	Yes	None	100
Chalmers et al22	164 ± 105	2	Yes	No	Yes (1)	100
Nsavia et al37	180	1*	No	No	No	100
Abbas Khan et al39	280	2	Yes	No	None	100
Angelos et al33	300	2	Yes	No	None	100
Gonyon and Zenn30	400	2	Yes	No	None	100
Cunningham and Marks35	400	2	No	No	None	100
Komofoa et al38	610	2	Yes	Yes	None	98

*No split-thickness skin graft applied after Integra application.

All values reported as mean ± SD where possible. In cases where multiple patients are included in the study, the number of patients experiencing the descriptor is included in parentheses.
toma formation under unfenestrated Integra resulting in 90% graft take.

Studies were divided on the basis of postoperative wound care method to evaluate its impact on outcome of Integra reconstruction (Table 6). VAC was the most common postoperative wound dressing (32%).10,22,24,27,28,35,38 These studies reported percent take of 50–100%, with 87.5% of studies reporting percent take >98%. Bolstered dressings (28%) and silver-impregnated dressing materials (24%) were also popular, with percent take ≥98%. Notably, Gonyon and Zenn10 were the only authors to report on the use of hyperbaric oxygen in the perioperative management of Integra-based reconstruction.

DISCUSSION

There is a substantial body of literature supporting the use of Integra in a wide variety of reconstructive settings, including trauma, burns, and postoncologic resection.6,7 Its popularity is largely due to its ability to provide effective and immediate closure to wounds without significant associated donor site morbidity and with low risk for scar contracture or hypertrophy.14 Staging permits the use of Integra in poorly vascularized wounds, as the split-thickness skin graft is applied after neovascularization of the dermal regeneration template by host vessels.5 Functional and cosmetic results are often excellent.5,7,45,46 Of the 34 articles included in this review, 32 reported success rates ≥90%.

The initial impetus for reviewing the literature on scalp reconstruction using Integra was to determine if there was a maximal wound size where the dermal regeneration template could reliably be used. We found that relatively large scalp wounds can be successfully treated with Integra-based reconstruction as demonstrated by the presented case. Twelve studies reported mean defect size >100 cm² across one- and two-stage reconstructions (Table 2). Eleven of these studies reported a mean percent take of 90–100%. We also found that large scalp wounds do not seem to have significantly more complications. Including both one- and two-stage reconstructions, approximately 41.7% of studies with large mean defect size reported at least one complication. This is comparable to the 45.5% of studies with smaller defects that reported complications. Thus, we believe that wound size alone should not prohibit the selection of Integra as a reconstructive option.

Although Integra can be effective in some types of poorly vascularized wound beds, our experience suggests

Table 4. The Effect of Bone Burring on Outcome of Integra-based Reconstruction

Reference	Defect Size (cm²)	Percent Take (%)
Bone not burred before application of Integra		
De Angelis et al11	20.2 ± 13.2	100
Gironi et al10	25.1	100
Spector and Glat16	80	100
Tufaro et al17	82.5 ± 40.9	100
Wang and To9	100	90
Navsaria et al11	180	100
Cunningham and Marks35	400	100

Bone burred before application of Integra

Reference	Defect Size (cm²)	Percent Take (%)
Wain et al13	25	100
Wrafter,15	32	100
Ahmed et al14	36	100
Singh et al18	36	100
Singer et al40	50	100
Momoh et al19	56	100
Kosutic et al37	60	100
Tufaro et al17	60 ± 60.6	100
Elledge et al36	61.9	70–100
Koenen et al18	62 ± 35	100
Khan et al33	95	100
Komorowska-Timek et al12	97.5 ± 58	100
Orseck et al34	97.6 ± 83.1	100
Souèid and El-Tigani34	108.1 ± 116.5	90–100
Corradino et al25	134.3	100
Yeong et al15	150	100
Chalmers et al20	164 ± 105	50–100
Navsaria et al11	180	100
Angelos et al33	300	100
Gonyon and Zenn10	400	100
Cunningham and Marks35	Unknown	100

Table 5. The Effect of Fenestration on Outcome of Integra-based Reconstruction

Reference	Defect Size (cm²)	Percent Take (%)
Integra not fenestrated before application		
Wain et al13	25	100
Gironi et al10	25.1	100
Wrafter,15	32	100
Ahmed et al14	36	100
Momoh et al19	56	100
Kosutic et al37	60	100
Koenen et al18	62 ± 35	100
Wang and To9	100	90
Souèid and El-Tigani34	108.1 ± 116.5	90–100
Corradino et al25	134.3	100
Yeong et al15	150	100
Chalmers et al20	164 ± 105	50–100
Navsaria et al11	180	100
Angelos et al33	300	100
Gonyon and Zenn10	400	100
Cunningham and Marks35	Unknown	100

Integra fenestrated before application

Reference	Defect Size (cm²)	Percent Take (%)
De Angelis et al11	20.2 ± 13.2	100
Singh et al18	36	100
Wilensky et al33	51.4 ± 37.9	100
Tufaro et al17	73.47	97–100
Komorowska-Timek et al12	97.5 ± 58	100
Orseck et al34	97.6 ± 83.1	100
Corradino et al25	134.3	100
Abbas Khan et al20	280	100
Konofaos et al36	610	98

*Study included patients with and without bone burring before application of Integra.

All values reported as mean ± SD where possible. Defect size for subgroups calculated where possible.
Table 6. The Effect of Postoperative Wound Care Method on Outcome of Integra-based Reconstruction

Reference	Defect Size (cm²)	Percent Take (%)
Bolstered dressing	5.7	100
Burd and Wong¹²	29.2 ± 13.2	100
Fung et al²⁷	32	90
Ahmed et al¹⁴	36	100
Wilensky et al²¹	51.4 ± 37.9	100
Komorowska-Timek et al²²	97.5 ± 58	100
Corradino et al²⁵	143.3	100
Silver-impregnated dressing		
Singh et al²⁸	36	100
Koenen et al¹⁹	62 ± 35	100
Tufaro et al¹⁷	73.4 ± 47	97–100
Spector and Glat¹⁵	80	100
Khan et al²⁴	95	100
Wang and To¹¹	100	90
Vacuum-assisted closure		
Momoh et al¹⁹	56	100
Kosutic et al²⁷	60	100
Orseck et al²³	97.6 ± 83.1	100
Chalmers et al²²	164 ± 160	50–100
Abbas Khan et al²⁰	280	100
Angelos et al²⁵	300	100
Cunningham and Marks²⁵	400	100
Konoalos et al²⁹	610	98
Other dressing material		
McClain et al²⁷	94.8 ± 61.4	95–100
Richardson et al³⁰	63.2 ± 54	99.8
Yeong et al³⁵	150	100
	30	
	400	
Gonyon and Zenn²⁰	Unknown	100

All values reported as mean ± SD where possible. Only studies reporting wound care methods are included.

that preoperative radiotherapy is a relative contraindication to its use. There is substantial evidence to suggest that irradiation reduces number and function of cells critically involved in wound healing.⁴⁷–⁴⁹ Given that the revascularization of Integra is dependent on host cell migration and proliferation, we feel that preoperative radiotherapy’s effect on the wound bed predisposes Integra reconstruction to failure. Although there are not isolated reports of successful use of Integra in irradiated wound flaps, the extent of radiation damage was variable.¹⁰,¹²,¹⁷,²² Mean percent graft take for these patients ranged from 50% to 100%, and at least one patient experienced 30% breakdown by 22 months.¹⁵ Although we do not recommend the use of Integra in irradiated wounds, it may be possible to achieve stable coverage in areas with limited damage. Hyperbaric oxygen may improve outcomes in selected cases, though we do not believe it can be applied in a predictable fashion.¹⁰,¹² In the senior author’s practice, microsurgical free flap reconstruction in large previously irradiated scalp defects is preferred.

Interestingly, postoperative irradiation after Integra-based reconstruction appears to be well tolerated. Seven studies included patients who underwent adjuvant radiotherapy of the reconstruction site.¹²,¹⁸,²²,²⁴,²⁵,⁴¹,⁴² Although some patients experienced mild acute radiodermatitis and/or radionecrosis, outcomes were largely good with reported mean percent take of graft in excess of 95%. This demonstrates the durability of Integra reconstruction and suggests that Integra is a viable reconstructive approach to wounds that may require future adjuvant radiotherapy.

The standard approach to Integra reconstruction requires 2 stages: the Integra forms a neodermis via ingrowth of host vessels, followed by the application of a thin split-thickness skin graft at a later date. The benefit of staging include the ability to use Integra in poorly vascularized wounds, where the direct application of a skin graft might otherwise fail. This staged approach was used by 82.4% of studies in this review, with the majority reporting time to second stage of <30 days (Table 3). Of these staged studies, 53.6% reported complications (Table 3). The need for multiple operations, however, can carry significant risk for some patients. Additionally, donor sites for skin grafts of appropriate size may be limited. Accordingly, 6 studies employed a single-stage reconstructive approach, ranging in publication date from 2004 to 2015.¹¹,¹²,¹⁷,²⁷,³⁹–⁴² Navsaria et al³⁹ were the first to describe single-stage Integra reconstruction in a patient with a full-thickness burn of the scalp, ear, face, and left arm. Foregoing a skin graft altogether, Navsaria et al³⁹ applied Integra followed by hair micrografting directly into the dermal regeneration template 12 days later. Despite a minor infection in the postoperative period, the patient achieved 100% graft take on follow-up. Although results of the one-stage procedures are positive, this is likely due to relatively small wound sizes. In general, it is the authors’ opinion that a staged procedure should be used when possible, as it provides effective and durable results for all defect sizes.

Tissue overlying denuded bone without pericranium or fascia is unlikely to survive. Under these circumstances, the vessel-rich diploë is often exposed by burring the outer table of the calvaria. This has been shown to promote wound healing and is a relatively benign procedure.⁵⁰ It is particularly common when reconstructing defects postocologic resection, when the thin subcutaneous tissues of the scalp are often removed to achieve adequate margins. Approximately 74.2% of studies in this systematic review burred the calvaria before Integra placement (Table 4). Of the studies employing bone burring, 90.9% reported graft take of ≥90%. Two studies—again Chalmers et al²² and Elledge et al³⁰—reported graft take of <90%. Interestingly, mean percent take of studies not burring bone was also ≥90%, though it is possible that wounds included in this calculation may have had residual pericranium or other sources of vascular ingrowth. De Angelis et al,⁴¹ for example, covered denuded bone with locoregional pericranial flaps before application of the dermal regeneration template. Although it can have an impact on final contour, in cases where the calvaria is denuded or desiccated, bone burring is the optimal preparation for Integra placement.

Fenestration of Integra permits fluid egress, reducing the risk of hematoma or seroma formation and subsequent graft failure. Only 9 studies in this systematic review employed fenestration, all reporting percent take ≥97% (Table 5). Khan et al²¹ and De Angelis et al³⁴ reported small seroma and hematoma formation, respectively, in 1 patient with fenestrated Integra that

7
was resolved by evacuation with a syringe, resulting in 100% graft take at follow-up. Studies utilizing unfenestrated Integra reported percent take ranging from 50% to 100%. Fung et al37 did not fenestrate Integra before application and reported hematoma formation result-
ing in 10% graft failure. Although fenestration of skin grafts can result in unsatisfactory cosmetic results, Integra’s staged approach permits fenestration without substantial impact on final site appearance. As a result, it is the authors’ opinion that Integra should always be fenestrated before application.

Similar to fenestration, subatmospheric pressures generated by VAC also promotes fluid egress, reduces wound edema, enhances perfusion, and promotes the formation of a granulation bed.31 Accordingly, it was the most popular bolster method used in this systematic review, including studies with the largest mean de-fect sizes (Table 6). Cunningham and Marks35 reported 100% graft take in a patient with a 400 cm2 wound who was treated postoperatively with VAC. Similarly, Kono-
faos et al34 reported 98% graft take in a pediatric patient with total scalp avulsion resulting in a 610 cm2 defect. Although beneficial to wounds of all sizes, by assisting with drainage and promoting ingrowth of host vessels, VAC therapy was likely a crucial component of the posi-
tive outcomes in these large scalp defects. Given these findings, we believe VAC to be the best way to manage the wound postoperatively when practical.

As highlighted by this systematic review, there is a significant amount of outcomes data for Integra-based scalp reconstructions, the majority of which demonstrate clear and positive results. To date, however, there has been no systematic and critical evaluation of this body of literature. Although we put forth significant effort to extract objective and quantitative data from each of the articles, a limitation of this review is that there was no normalization of the wounds studied. If a consistent preoperative grading scale was available, a more quantitative analysis of outcomes (ie, meta-analy-
sis) may have been possible. Based on our review, much of the existing published data are from salvage therapy cases or situations in which other options are not appropriate. A favorable results profile in these high-risk wounds supports continued use of Integra when the appro-
priate wound and patient are chosen. Under these circumstances, Integra-based reconstructions of the scalp can be safe, reliable, and esthetic. Although all reconstructive approaches must be chosen on a case-by-case basis, this systematic review and the authors’ ex-
perience with Integra suggest that predictable results can be achieved with use of the dermal regeneration template in the scalp.

References

1. Hussussian CJ, Reece GP. Microsurgical scalp reconstruction in the patient with cancer. Plast Reconstr Surg. 2002;109:1828–1834.

2. Serletti JM, Higgins JP, Moran S, et al. Factors affecting outcome in free-tissue transfer in the elderly. Plast Reconstr Surg. 2000;106:66–70.

3. Rudolph R. Complications of surgery for radiotherapy skin dam-
age. Plast Reconstr Surg. 1982;70:179–185.

4. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55:185–193.

5. Moiemen NS, Staiano JJ, Ojeh NO, et al. Reconstructive surgery with a dermal regeneration template: clinical and histologic study. Plast Reconstr Surg. 2001;108:93–103.

6. Heimbach D, Luterman A, Burke J, et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg. 1988;208:313–320.

7. Heimbach DM, Warden GD, Luterman A, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24:42–48.

8. Moher D, Shamseer L, Clarke M, et al; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

9. Wang JC, To EW. Application of dermal substitute (Integra) to donor site defect of forehead flap. Br J Plast Surg. 2000;53:70–72.

10. Gonyon DL Jr, Zenn MR. Simple approach to the radiated scalp wound using INTEGRA skin substitute. Ann Plast Surg. 2003;50:315–320.

11. Navsaria HA, Ojeh NO, Moiemen N, et al. Recipientization of a full-thickness burn from stem cells of hair follicles micro-
grafted into a tissue-engineered dermal template (Integra). Plast Reconstr Surg. 2004;113:278–281.

12. Komorowska-Timek E, Gabriel A, Bennett DC, et al. Artificial dermis as an alternative for coverage of complex scalp defects following excision of malignant tumors. Plast Reconstr Surg. 2005;115:1010–1017.

13. Wilensky JS, Rosenthal AH, Bradford CR, et al. The use of a bo-
vine collagen construct for reconstruction of full-thickness scalp defects in the elderly patient with cutaneous malignancy. Ann Plast Surg. 2005;54:297–301.

14. Ahmed S, Hussein SS, Philip B, et al. Use of biologic dressing as a temporary wound dressing in reconstruction of a significant forehead Mohs defect. Dermatol Surg. 2006;32:765–767.

15. Yeong EK, Huang HF, Chen YB, et al. The use of artificial dermis for reconstruction of full thickness scalp burn involving the cal-
varia. Burns 2006;32:375–379.

16. Spector JA, Glat PM. Hair-bearing scalp reconstruction using a dermal regeneration template and micrograft hair transplanta-
tion. Ann Plast Surg. 2007;59:63–66.

17. Tufaro AP, Buck DW 2nd, Fischer AC. The use of artificial dermis in the reconstruction of oncolgic surgical defects. Plast Reconstr Surg. 2007;120:638–646.

18. Koenen W, Goerd T, Faulhaber J. Removal of the outer table of the skull for reconstruction of full-thickness scalp defects with a dermal regeneration template. Dermatol Surg. 2008;34:357–363.

19. momoh AO, Lypka MA, Echo A, et al. Reconstruction of full-
thickness calvarial defect: a role for artificial dermis. Ann Plast Surg. 2009;62:656–659.

20. Abbas Khan MA, Chipp E, Hardwicke J, et al. The use of dermal regeneration template (Integra®) for reconstruction of a large full-thickness scalp and calvarial defect with exposed dura. J Plast Reconstr Aesthet Surg. 2010;63:2168–2171.
Johnson and Wong • Integra-based Reconstruction of Large Scalp Wounds

21. Burd A, Wong PS. One-stage Integra reconstruction in head and neck defects. J Plast Reconstr Aesthet Surg 2010;63:404–409.
22. Chalmers RL, Smock E, Geh JL. Experience of Integra® in cancer reconstructive surgery. J Plast Reconstr Aesthet Surg 2010;63:281–290.
23. Corradino B, Di Lorenzo S, Leto Barone AA, et al. Reconstruction of full thickness scalp defects after tumour excision in elderly patients: our experience with Integra dermal regeneration template. J Plast Reconstr Aesthet Surg 2010;63:e245–e247.
24. Khan MA, Ali SN, Farid M, et al. Use of dermal regeneration template (Integra) for reconstruction of full-thickness complex oncologic scalp defects. J Craniofac Surg 2010;21:905–909.
25. McClain L, Barber H, Donnellan K, et al. Reconstruction of large scalp defects. Laryngoscope 2011;121:S353.
26. Ching JA, Gould L. Giant scalp melanoma: a case report and review of the literature. Eplasty 2012;12:e51.
27. Kosutic D, Beasung E, Dempsey M, et al. One-stage Integra reconstruction of large scalp defects. J Plast Reconstr Aesthet Surg 2010;63:2081–2090.
28. Orseck MJ, Trujillo MG Jr, Ritter EF. Screw fixation of dermal regeneration template in the reconstruction of complex scalp defects: a multi-center evaluation. J Eur Acad Dermatol Venereol 2015;2015:698385.
29. Johnson and Wong • Integra-based Reconstruction of Large Scalp Wounds

30. Wain RA, Shah SH, Senarath-Yapa K, et al. Dermal substitutes do well on dura: comparison of split skin grafting +/- artificial dermis for reconstruction of full-thickness calvarial defects. Clin Plast Surg 2012;39:65–67.
31. Wrafter, PF. Management of Traumatic Full Thickness Scalp Wound With Dermal Regeneration Template (Integra) following a dog bite in a pediatric patient. J Craniofac Surg 2011;22:S353.
32. De Angelis B, Gentile P, Tati E, et al. One-stage reconstruction of scalp after full-thickness oncologic defects using a dermal regeneration template (Integra). Biomed Res Int 2015;2015:698385.
33. Fung V, Chalmers RL, Geh JL. Scalp reconstruction using Integra, an alternative to free tissue transfer—case report. OALibJ 2014;1:1–5.
34. Konofaos P, Kashyap A, Wallace RD. Total scalp reconstruction following a dog bite in a pediatric patient. J Craniofac Surg 2014;25:1362–1364.
35. Gironi LC, Boggio P, Colombo E. Reconstruction of scalp defects with exposed bone after surgical treatment of basal cell carcinoma: the use of a bilayer matrix wound dressing. Dermatol Ther 2015;28:114–117.
36. Latenser J, Snow SN, Mohs FE, et al. Power drills to fenestrate dura: comparison of split skin grafting +/- artificial dermis for wound control and treatment: clinical experience. Ann Plast Surg 1990;24:572–577.
37. Liu X, Liu JZ, Zhang E, et al. Impaired wound healing after local soft x-ray irradiation in rat skin: time course study of pathology, proliferation, cell cycle, and apoptosis. J Trauma 2005;59:682–690.
38. Miller SH, Rudolph R. Healing in the irradiated wound. Clin Plast Surg 1999;17:503–508.
39. Latenser J, Snow SN, Mohs FE, et al. Power drills to fenestrate exposed bone to stimulate wound healing. J Dermatol Surg Oncol 1991;17:265–270.
40. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg 1997;38:563–76; discussion 577.