Ensemble Methods for Instance-based Arabic Language Authorship Attribution

Mohammed Al-Sarem\(^1,2\), Faisal Saeed\(^1\), Abdullah Alsaedi\(^1\), Wadii Boullila\(^1,3\) and Tawfik Al-Hadrami\(^4\)

\(^1\)College of Computer Science and Engineering, Taibah University, Medina 344, Saudi Arabia
\(^2\)Faculty of IT\&CS., Saba'a Region University, Ma'areb, Republic of Yemen
\(^3\)RIADI Laboratory, National School of Computer Sciences, University of Manouba, Tunisia
\(^4\)School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.

Corresponding author: Mohammed Al-Sarem (e-mail: mohsarem@gmail.com).

ABSTRACT The Authorship Attribution (AA) is considered as a subfield of authorship analysis and it is an important problem as the range of anonymous information increased with fast growing of internet usage worldwide. In other languages such as English, Spanish and Chinese, such issue is quite well studied. However, in Arabic language, the AA problem has received less attention from the research community due to complexity and nature of Arabic sentences. The paper presented an intensive review on previous studies for Arabic language. Based on that, this study has employed the Technique for Order Preferences by Similarity to Ideal Solution (TOPSIS) method to choose the base classifier of the ensemble methods. In terms of attribution features, hundreds of stylometric features and distinct words using several tools have been extracted. Then, Adaboost and Bagging ensemble methods have been applied on Arabic enquires (Fatwa) dataset. The findings showed an improvement of the effectiveness of the authorship attribution task in the Arabic language.

INDEX TERMS Authorship attribution, Ensemble methods, Stylometric features, TOPSIS method

I. INTRODUCTION

From linguistics analysis perspective, authorship attribution (AA) aims to identifying the original author of unseen text. The idea is basically formulated as follows: for each author, there is a set of features that distinguish his writing style from others. Despite author’s writing style that can change from topic to topic, some persistent uncontrolled habit and writing styles are still valid over the time. The author of anonymous text can be recognized by matching the observed writing style to one of the candidate author set. From the 19th century, several approaches have been proposed to tackle the AA problem. The early approaches had a statistical background [1-4] where the length and frequency of words, characteristics, and sentences were used to characterize the writing style. These approaches, in general, were human expert-based [5] and the applications also covered literary, religious and legal texts [6]. From sixties of the last century up until 1990s, both the approaches and application were shifted to cover new challenging problems such as the source code attribution [7-9], spam detection [10,11], and plagiarism [12-15]. The approaches at that time were aimed to quantifying the writing style by extracting some features from the text. Although the statistical approaches are good to identify the author of long documents, they suffer when the length of the text, under investigation, is short. The main challenges in such cases include: are the small extracted features sufficient enough to make a fair attribution? how can we improve the precision of the authorship attribution? does the size of the training set effect on the result? what does happen if the dataset unbalanced? what is the optimum data size?

Recently, current studies in authorship attribution benefit from explosion in machine learning domain [16] where the AA task can be considered as a multi-class, single-label classification problem [17]. Basically, the machine-learning approach tackles the AA problem by assigning class labels to text samples. Surveying the literature, we found a large number of methods and approaches that were developed to tackle the AA problem such as Support Vector Machine (SVM) [18-23], Naïve Bayes [4, 20, 24-25], Bayesian classifiers [25-27], k-nearest neighbor [28,29], decision trees [29,35]. Although the ensemble methods showed a good
performance to improve machine learning results, few studies such as [30-34] employed them in AA area. The ensemble methods combine several classifiers in order to decrease variance (bagging) and bias (boosting) and then new data are classified by taking a (weighted) vote of their predictions.

Arabic language is the mother tongue for more than 250 million people reside mainly on two different continents. However, the works on AA for Arabic are still less numerous than those on English [5,23,35-45]. Thus, this paper aims to bridge the gap and investigates whether applying the ensemble methods lead to improve the accuracy of the AA task in the Arabic language, in addition to selecting the base classifier for ensemble methods and optimal combination of features. Furthermore, since appropriate tuning of the size of the training set and feature data set can render significantly lighter the machine-learning processing [17], this paper gives some recommendations for selecting the optimal settings of data set size that maximizes the accuracy of classifiers.

The rest of the article is structured as follows: Section 2 presented the related studies on authorship attribution, it also reviews the studies on the Arabic Language Authorship Attribution (ALAA) and a set of base classifiers were chosen. Section 3 presents the experimental setup, datasets used, and techniques employed. The results and their discussion are given in Section 4. Finally, we conclude the study in Section 5.

II. RELATED STUDIES

While AA can be considered as a particular type of authorship analysis, ensemble methods is a known approach in machine learning where a set of classifiers with their results are focused in some way to obtain better decisions [47]. In this section, we briefly describe what the authorship attribution is, the features used, and the typical machine-learning based attribution process. Then, we also present some techniques for improving the classification accuracy of class-imbalanced data. In addition, a review on Arabic Authorship Attribution (ALAA) was presented.

A. AUTHORSHIP ATTRIBUTION

As earlier said, authorship attribution can be considered as a subfield of authorship analysis. It is about identifying the author(s) of an anonymous text document depending on document's characteristics or features. In literatures, such characteristics or features are known as author's writing style or stylo-features [25]. These features are extracted in different ways based on how the AA algorithm covers the whole samples. In general, these ways are categorized into two major groups: profile-based and instance-based approaches [16]. While the former group extract stylo-features by concatenating all the samples, that belong to a particular author, within the training set in one big file, the latter group handles each sample in the training corpus of each author separately and in consequence extracts the writing style features from each document (see Fig. 1). In addition, the former group of approaches enables to catch the most persistent and uncontrolled habits in author's writing style, whilst the latter group enables to detect any variation in the writing style. Thus, a combination of both ways is a practical instrument to improve the accuracy of attributing process.

![FIGURE 1. A typical architecture for authorship attribution task [16]: (a) instance-based approaches, whereas (b) profile-based approaches.](image)
Back to the earlier era of authorship attribution, we can classify the used features in attributing stage into two main classes: unitary invariant class and multivariate analysis which are both classified as human expert-based approaches. The unitary invariant class uses only a single feature, such as word length, words frequencies, and sentence length to distinguish between authors. The unitary invariant methods gave unreliable results. The multivariate analysis methods, on opposite, deal with a set of features to statistically attribute texts. Methods such Bayesian statistical analysis [4], Principal component analysis (PCA) [49], Linear discriminant analysis (LDA) [50], and Distance-based methods [25;51-54] are used to attribute the texts.

The attribution model construction aims to build an adequate model that can classify the anonymous texts and match them to the right author. With the development of machine-learning techniques, the accuracy of attribution model is enhanced obviously [16].

Machine learning is a branch of artificial intelligence concerned with learning computer systems directly from examples, data, and experience. Learning methods can be categorized into two groups: supervised machine learning methods and unsupervised ones. In supervised methods, dataset is divided into sets: training set and testing set. The former set is used to learn classifiers how to predict class labels, whilst data outside the training set (called testing set) is used to evaluate how well the model does. Classification and regression analysis are the common supervised learning task. Unsupervised methods are type of learning methods that is used to find patterns in data. It does not require to split data or label them. Data visualization and clustering are classified as unsupervised learning methods.

The goal of applying machine-learning methods in AA task is concludes in building a vector of features extracted from the training text corpus, then build a classifier that can attribute anonymous texts on the testing corpus. Figure 2 shows a typical machine-learning based of an authorship attribution process.

As earlier state, the authorship attribution process begins with building a vector of features elicited from the text under consideration. The aim of this step is to extract "writing style" features which are internal characteristics of text. Surveying authorship attribution studies, these features can be categorized into: lexical, character, syntactic, semantic, content-specific, structural and language-specific [35,47,16].

- **Lexical features** are one of the most common features used to attribute authorship [5]. Such features can be extracted from a text by tokenizing text into list of words, sentences, numbers, and even punctuation marks. Indeed, in a case of applying the lexical features, results of AA is dependent on the ability of tokenizer to detect the boundaries of words and sentences.
- **Character**, the character features can be considered as subset of lexical features where the text content are treated as a sequence of characters. The character features are partial language-dependent which means features such uppercase and lowercase characters cannot count in e.g. Arabic.
- **Syntactic**, from text to another, the author may tend to use similar syntactic patterns unconsciously. These patterns can be a more reliable authorial fingerprint than the lexical features. However, they require a specific parser to analyze the text. The most common syntactic measure is a part-of-speech (POS) [16].
- **Semantic**, on opposite of aforementioned features, semantic features are high-level natural language processing task. Surveying literatures, only a few attempts address semantic features.
- **Application-specific**, these features can be either structural, content-specific, and language-specific. author's signature, font colors, and font size are obvious structural features used for attributing author [55]. Content-specific features can be extracted from the available texts only and only if all authors, in corpus, are of the same topic. The language-specific features are also common in attributing author. However, to measure them, it has to be defined manually.

B. ENSEMBLE LEARNING

Improving accuracy of a classifier model is a critical task. One way to do that is by fusing the output of a set of classifiers which called in data mining domain as ”ensemble methods”. It is obvious that classifiers are vary in its accuracy and some of them perform better others in some cases. Thus, finding a way to combine them tend to be more accurate than working with each classifier separately. Ensemble methods are type of learning algorithms that combine a set of classifiers and then use a (weighted) vote of their prediction for classify new data points. Current section highlights some aspects of ensemble methods. It gives a brief introduction of the most common methods: bagging, boosting, and random forests.
1) ENSEMBLE METHODS

As earlier stated, an ensemble combines a set of classifiers "base classifiers". The ensemble performs, e.g., majority voting method to prioritize class label of each classifier and outputs the class in majority. Due to the fact that a separated classifier may make a mistake, the ensemble will misclassify only if over half of the base classifiers are in error. Thus, the accuracy of an ensemble is more accurate than its base classifiers [56]. The most popular ensemble methods used in machine learning domain are bagging [], boosting [], and random forest [].

![Illustrative ensemble learning methods for AA: the ensemble method generates a set of classifiers for a training set, the class of the unseen text is labeled and voted by each classifier. The ensemble, then, combines the votes and returns a class prediction.](image)

2) SELECTION OF BASE CLASSIFIER OF ENSEMBLE METHODS

The diversity of existing machine learning classifiers that one can select as a base/weak classifier of the ensemble method makes such selection a challenging task. In [77], Zhou et al., proposed a genetic algorithm-based selective ensemble approach. The proposed approach aimed at selecting the appropriate classifiers for composing an ensemble from a set of available classifiers. However, like any optimization based approaches, falling in a local optimum point is probable. Hence, the researchers have proposed other approaches. Lazarevic and Obradovic proposed a clustering-based approach [78] which uses k-means to identify the groups that had similar classifiers and then eliminated redundant classifiers that were in each cluster. The similar approach is also found in [79] where the hierarchical agglomerative clustering algorithm is used. However, the empirical analysis shows that the clustering-based selective ensemble techniques have a bad influence on the effect [80]. In [81] ranking-based method is proposed. The results showed an improvement in the performance of the ensemble. However, the ranking-based techniques are also time-consuming and require a large amount of storage. At this end, selection the right base classifier plays the vital role in minimizing the total misclassification errors as well as the cost of training. The selection process of base classifier can be led by many factors: accuracy of classification, ability of the base classifier to deal with high dimensional data and its performance when the dataset size is increased, and sensitivity to noise data. Decision tree, in particular, C4.5 is considered a robust learner against noisy data, whereas support vector machine (SVM) is more noise-sensitive [82]. Sáez et al. in [82] showed that the SVM has better performance without noise than C4.5. However, the situation is reversed when some noisy data are added. The average performance of C4.5 is better which indicates that the C4.5 method globally behaves better with noisy data. From sensitivity to increase the dataset size, the SVM shows a notable robustness rather than C4.5. Nikam in [83] provided a comparative study of many classification methods including k-NN, NB, artificial neural networks. As conclusions, the k-NN classifier shows sometimes a robustness with regard to noise data, however, the performance of the classifier is significantly influenced by the number of the dimensions used as well as the dataset size and number of records. The NB shows also a great Computational efficiency and classification rate when the dataset is increased.

3) ENSEMBLE WITH IMBALANCED DATA SETS

To deal with imbalanced data set problem, there are four general methods: oversampling, under-sampling, threshold moving and ensemble techniques. The first three techniques did not carry any change to the construction of the classification model. The oversampling and under-sampling techniques cause only a change in the distribution of the data in the training sets, whereas threshold moving effects the final stage of making a decision of classification new data. The ensemble methods can apply, as earliest stated, bagging, boosting and random forest to build a composite model. However, in case of imbalanced data, the oversampling technique is used to split training set into sets with the same positive and negative tuples. On the contrary, the under-sampling tends to decrease the number of negative tuples in the training sets until the number of positive and negative tuples are equals. The threshold moving technique does not involve any sampling. The classification decision is returned based on the output values. The simplest form is as follows: for the tuples that satisfies the minimum threshold, are considered positive, whilst the others are negatives.

C. ARABIC AUTHORSHIP ATTRIBUTION

The authorship attribution problem in languages such as English, Spanish and Chinese are quite properly studied. However, authorship attribution problem on contexts of Arabic texts has been received much less attention [45]. In this section, we present some issues that have a direct impact on AA in context of Arabic. Some challenges that complicate researchers’ works in Arabic are highlighted. Next, we present a deeper review of the recent works on Arabic authorship attribution which covers period from 2005 up to 2018.

1) ARABIC CHARACTERISTICS

From the morphological point of view, Arabic is a very rich language. The nature and structure of Arabic words make Arabic very highly derivative and inflective language [46]. In addition, the compound structures of Arabic words add more complexity/ challenges especially for machine translation task where the words should syntactically be regarded as phrases...
rather than single words. The orientation of writing in Arabic, as it is known, is from right-to-left and the letters are connected each other which make Arabic writing differs distinctly from any other Latin-based languages like English, French, etc. In Arabic, there are a quite small set of productive prefixes and suffixes, however, the number of possible produced words is very high. In many cases, it is enough to change the letter position or its diacritic\(^2\) to produce a new word. Although the inflection and diacritics increase the number of words, extracting stylometric features such as vocabulary richness measures might influence [47].

2) CHALLENGES IN ARABIC CONTEXT

Arabic is a very rich and challenging language. As stated above, Arabic is very derivative and inflective language [46]. Due to that, several challenges have to deal with before working on authorship attribution task: diacritics, morphological characteristics, structure and orientation of writing, elongation, word length, and word meaning [57].

- **Diacritics**, are special marks placed above or below the words. Diacritics play essential role in representing short vowels and changing the word meaning and pronunciation.

- **morphological characteristics**, one of distinguished features of Arabic is a number of produced words from a common root. Such process is known as inflection where the word is derived by adding affixes (prefixes, infixes and suffixes) [5]. Arabic words, in general, are grouped into four groups: word, morpheme, root and stem [58].

- structure and orientation of writing: In Arabic, sentences are written right to left, no upper-case letters, the shape of a letter is changed based on its position in the sentence.

- **elongation**, to emphasize a feeling or meaning, special dashes are inserted between two letters. In addition to that, these dashes play a stylistic role.

- **word length and meaning**, word, in Arabic, can be: trilateral root, quadrilateral, root, pent-literal root and hex-literal. However, a letter might to play the role of words. The word might to have several different meaning based on the context [57].

D. MACHINE LEARNING METHODS IN ARABIC AUTHORSHIP ATTRIBUTION

In context of authorship attribution, various methods for attributing Arabic texts have been used. Abbasi and Chen [47] were the first who addressed authorship attribution in Arabic context. Support vector machine (SVM) and C4.5 decision trees were applied on Arabic web forum massages. To cope with the elongation challenge, they proposed a filter which is used to remove elongation from the text. However, number of elongation characters is calculated and it is used later as a feature. In [35], Abbasi and Chen repeated the experiment with the same machine learning methods (SVM and C4.5) and have been applied on Arabic web forum massages however the word roots were extracted by de Roeck and Al-Fares's algorithm [59].

![Arabic Characteristics: the leaves present an illustrative example.](image)

Stamatatos [37] proposed a SVM based model for solving imbalance class problem. The dataset was collected from Alhayat newspaper reports. Ellen and Parameswaran [60] applied k-NN with cosine distance and SVM with two kernel functions to classify 2636 Arabic language forum posts from 9 different website forums. Ouamour and Sayoud [39, 40, 69] used SMO-SVM, linear regression (LR) and multilayered preceptron (MLP) methods for attributing authors of very old Arabic texts. Features such characters n-grams and word n-grams were used as input. The best precision they reached was 80%.

Alam and Kumar [61] also used SVM method to identify author of Arabic articles. Several stylometric features were extracted. They followed the method adapted by Abbasi and Chen [35] to conduct experiments. The best accuracy obtained was 98% when they applied the SVM with all feature combination.

Alwajejah et al., [42] used Naive Bayes (NB) and SVM classifiers for automatically attributing Arabic articles. The dataset was collected and labeled manually. Through the experiment, the authors examined the effect of stop words and stemming. The findings were interesting: whilst it was expected that applying Koja stemmer leads to enhance performance of the classifiers, the accuracies are degraded. In addition to that SVM classifier overcomes NB in most subsets. The best accuracy obtained was 99.8%. Howedi and Mohd [62] investigated the effectiveness of NB and SVM classifiers on attributing short historical Arabic texts written by10 different authors. On opposite of the findings in [42], NB exceeds SVM in term of accuracy. In addition, the character-based features give better results than the word-based features. Among the character-based features, the punctuation marks showed a significant improvement in the performance of the classifiers. The accuracies are increased from 67.5% to 74.99%. Otoom et al., [63] introduced a hybrid approach which consists of 27 stylometric features. The ensemble classifier that consists of many decision trees, MultiBoostAB,
NB, SVM and BayesNet classifiers were employed on dataset with 456 Arabic newspapers instances. The best accuracy was 88% achieved by MultiBoostAB classifier with the hold-out test and 82% with the cross-validation test.

Sayoud [64] addressed the problem of authorship discrimination. For this purpose, the Quran and Prophet’s statements were used. The SMO-SVM, Linear Regression (LR) and Multi-Layer Perceptron (MLP) were employed. All classifiers proved its ability to discriminate the author of the text under consideration with 100% accuracy.

Al-Falahi et al., [65] applied Markov chain classifier on Arabic poetry with 33 different poets belong to the same era. The feature set used by Al-Falahi et al., [65] include a content-specific features such as metre of poem and rhyme. The features were partitioned in testing phase into different sets as follows:

set1: five single features (F1 set- character features, F2 set - word length, F3 set- sentence length, F4 set- first word in sentence and F5 set- rhyme).

set2: Character features + word length feature

set3: Character features + word length + sentence length

set4: Character features + word length + sentence length + first word in sentence

set5: Character features + word length + sentence length + first word in sentence + rhyme

The best accuracy obtained was 96.7%. They also repeated the experiment with applying NB, SVM and SMO [23]. The features set consists of those features that were used in [65] and the metre of the Arabic poetry. They followed the same methodology as in [65]. The best average accuracy they got was 72.83% when the set of all features was used and SMO was applied.

Bourib and Khennouf [66] addressed the authorship attribution problem when the genre and topic are quite similar. The texts size in the training set was varies from 100 words to 3000 words per a text. The character n-gram and words were employed and SMO-SVM, MLP and LR were used. The findings show that the performance of classifiers are dependent mainly on the text size, on one hand. On the other hand, it is effected by the used features and the classification techniques themselves.

Social media posts were also under consideration. Rabab’ah et al., [67] investigated the effect of authorship attribution classifiers on tweets written in Arabic. The features set consists of: 57 morphological features MF most of which are POS based features and 340 stylistic features SF. The NB, SVM and decision trees were used. The highest accuracy was 68.67% which was achieved by applying SVM classifier on the combined feature sets. In [45], they extended the experiment to include features extracted by bag-of-words approach. Several reduction techniques were used. The findings show that SVM classifier outperforms all of the other methods in term of accuracy and the SubEval feature selection technique led to reduce the classifier running time.

Publication	Features	Classifier	Accuracy
[35]	Lexical	SVM	85.43%
	+Syntactic + Structural + Content-specific features	C4.5 (DT)	81.03%
[35]	Lexical	SVM	94.83%
	+Syntactic + Structural + Content-specific features	C4.5 (DT)	71.93%
[37]	Character n-grams	SVM	93.6%
[60]	Lexical + Syntactic features	k-NN	95%
		SVM	97%
[39]	Lexical features	SMO-SVM	80%
[40][69]	Lexical features	MLP	70%
		SMO-SVM	80%
		LR	60%
[61]	Lexical + Syntactic + Structural + Content-specific features	SVM	98%
		SVM	99.8%
[62]	Lexical + Character features	SVM	62.96%
		NB	71.85%
[63]	Lexical + Syntactic + Structural + Content-specific features	BayesNet	84.0%
		SVM	86.7%
[65]	Lexical + Structural + Content-specific features	Markov chain	96.67%
[23]	Lexical + Structural + Content-specific features	SVM	71.60%
		SMO	72.83%
		NB	70.37%
[66]	Character N-grams + Words	SMO-SVM	-
		MLP / LR	-
[45][67]	POS + Stylometric features + Emotional features	SVM	68.67%
		DT	59.83%
		NB	38.35%
[64][68]	Character n-gram + word n-gram + words	SVM	100%
		MLP	100%
[44]	Lexical features	RF	24.67%
		C4.5(DT)	51.70%
		LWL	40.87%

Finally, AL-Sarem and Emarra [44] addressed the attribution problem in contexts of modern Islamic fatwā’. In term of attribution classifiers, the locally weighted learning (LWL) classifier, decision tree C4.5, and Random Forest (RF) were used. The features set used by [44] consists of 10 stylistic features. Similar to the work of Al-Ayyoub [45], they investigated the effect of feature selection techniques on the performance of the classifiers. The SubEval, GainRatioEval and PCA were used. The findings show that applying C4.5 method with SubEval technique gives the best accuracy obtained is 51.70%.

Publication	Features	Classifier	Accuracy
[37]	Lexical	SVM	85.43%
[61]	Lexical	SVM	98%
	+Syntactic + Structural + Content-specific features	C4.5 (DT)	81.03%
[35]	Lexical	SVM	94.83%
	+Syntactic + Structural + Content-specific features	C4.5 (DT)	71.93%
[37]	Character n-grams	SVM	93.6%
[60]	Lexical + Syntactic features	k-NN	95%
		SVM	97%
[39]	Lexical features	SMO-SVM	80%
[40][69]	Lexical features	MLP	70%
		SMO-SVM	80%
		LR	60%
[61]	Lexical + Syntactic + Structural + Content-specific + Semantic features	SVM	98%
		SVM	99.8%
[62]	Lexical + Character features	SVM	62.96%
		NB	71.85%
[63]	Lexical + Syntactic + Structural + Content-specific features	BayesNet	84.0%
		SVM	86.7%
[65]	Lexical + Structural + Content-specific features	Markov chain	96.67%
[23]	Lexical + Structural + Content-specific features	SVM	71.60%
		SMO	72.83%
		NB	70.37%
[66]	Character N-grams + Words	SMO-SVM	-
		MLP / LR	-
[45][67]	POS + Stylometric features + Emotional features	SVM	68.67%
		DT	59.83%
		NB	38.35%
[64][68]	Character n-gram + word n-gram + words	SVM	100%
		MLP	100%
[44]	Lexical features	RF	24.67%
		C4.5(DT)	51.70%
		LWL	40.87%
III. MATERIALS AND METHODS

At the end of the previous section, we saw that different classifiers have been applied to solve the authorship attribution problem. The SVM with “linear” kernel (LinearSVM) or SMO optimizer for SVM (SMO-SVM), naïve Bayes (NB) are the most commonly used classifiers. Therefore, there is a need to investigate the performance of all mentioned earlier classifiers, which is a time-consuming and labor-intensive.

Instead of that, we propose to use Analytic Hierarchy Process (AHP) weighted TOPSIS method to prioritize the classifiers. On the other hand, to avoid topic-oriented biases. Thus, this section is organized as follows: first, we describe the method used to select the base classifiers of ensemble model. Then, we test the effect of ensemble techniques on Arabic authorship attribution based on the best TOPSIS alternative. In addition, the used corpus, the main phases of authorship attribution and the experimental evaluation were also described in details.

1) TOPSIS-BASED AHP METHOD

In [70], Saaty introduced (TOPSIS) a technique for order preferences by calculating their similarity to so-called ideal solution. TOPSIS is widely used technique for scoring, ranking and choosing the best alternative. Its proficiently ability to handle both subjective and objective attributes is the reason to be one of the most used multi-attribute decision making method. The TOPSIS method uses AHP to choose the weights for each attribute. So, to employ TOPSIS method (see Fig.5), the following steps should to follow:

(i) **Determine attributes and alternatives**

To make our TOPSIS model more reliable respect selecting authorship attribution classifiers, we propose to use the following attributes:

A- Average accuracies of classifiers stated in published papers, as shown in Table II, to fill the pair-wise comparison matrix of the criteria relating to the goal.

C- Prevalence degree or commonness of use the classifier in publications.

D- Ability to deal with high dimensional data.

P- Performance when increase size of training set.

S- Sensitivity to noise data (the scale is assigned based on [71])

In term of alternatives, the Linear SVM, SMO-SVM, NB, MLP, DT, LR and k-NN are taken on consideration.

(ii) **Create decision table**

Our decision table M is presented as a matrix $P \times Q$ where P- list of alternatives and Q- list of attributes. In the decision table, a row represents the value of each attribute for a respective alternative.

3 The value can be changed based on number of publications that can be published later.
To allow dealing with categorical values as given in Eq. 3, it is required to convert them into numerical values by using a consensual scale. In our case, we use the scale presented in Table III. It is also necessary to uniform scaling by normalizing $M'_p \times q$ as:

$$M'_p = \frac{M_{ij}}{\sqrt{\sum_{j=1}^{q} M_{ij}^2}}$$

Hence, the decision table $M_{p \times q}$ is transformed into $M'_p \times q$ as shown in Eq. 5.

Table III

Attribute value	Very low	Low	Medium	High	Very High
Scale	1	2	3	4	5

(iii) Assign weights to attributes

Following Saaty scale [70], importance of attributes is assigned by making a pair-wise comparison which might lack of subjective opinion. Thus, we invite three experts to assign the weights of attributes. The relative importance matrix $A_{q \times q}$ is produced by following the algorithm stated in [72] as:

$$A_{5 \times 5} = \begin{bmatrix}
1 & 1 & 3 & 5 & 9 \\
1 & 1 & 3 & 5 & 9 \\
1/5 & 1/3 & 1 & 5 & 3 \\
1/3 & 1/5 & 1/5 & 1 & 3 \\
1/9 & 1/9 & 1/9 & 1/3 & 1
\end{bmatrix}$$

The relative normalized weights W are found by computing the geometric mean Gm for each attribute of $A_{q \times q}$ as follows: $W_i = \frac{Gm_i}{\sum_{j=1}^{q} Gm_j}$, where

$$Gm = \left(\prod_{j=1}^{q} a_{ij} \right)^{1/q}$$

The final normalized relative importance weighting matrix is represented in

$$W = \begin{bmatrix}
A & 0.3742 \\
C & 0.3742 \\
P & 0.0737 \\
S & 0.0375
\end{bmatrix}$$

(iv) Check for consistency and correctness

The consistency index (CI) is computed by finding the mean of eigenvalues Λ as: $CI = (\Lambda - q) / (q - 1)$, where:

$$q$$ - number of attributes, $\Lambda = \frac{1}{n} \sum_{i=1}^{n} \lambda_i$,

n - number of alternatives, $\lambda_i = A_j \times W_i$,

The eigenvalue $\lambda_1 = \frac{5.3682}{5.0123}$ and $\Lambda = 5.39292$ which means that $CI = 0.0884$. Based on Saaty's model [70], the acceptable consistency ratio $CR = CI / RI$ should be less than 0.1. Random Index value RI is determined based on Table IV. In our case, $CR = 0.0884 / 0.12 = 0.07963$ which means the model is acceptable.

(vi) Obtain the ideal solution

The TOPSIS method judges for the beneficial or non-beneficial proposed solutions by finding the best L^+ and worst L^- ideal solutions as follows:

$$L^+ = \begin{bmatrix}
l_1^+ \\
l_2^+ \\
\vdots \\
l_n^+
\end{bmatrix},$$

where $l_i^+ = \max(C_{pq})$, $\forall q \in n$ and $p = 1 \text{ to } P$

$$L^- = \begin{bmatrix}
l_1^- \\
l_2^- \\
\vdots \\
l_n^-
\end{bmatrix},$$

where $l_i^- = \min(C_{pq})$, $\forall q \in n'$.
\[
L^- = \begin{bmatrix}
L_{1}^- \\
L_{2}^- \\
L_{3}^- \\
\vdots \\
L_{n}^-
\end{bmatrix}, \quad \text{where, } L_{i}^+ = \\
\begin{cases}
\min(C_{pq}), & \forall q \in n \\
\max(C_{pq}), & \forall q \in n'
\end{cases}
\text{ and } p = 1 \text{ to } P
\]

\[S_p^+ = \frac{E_p^-}{(E_p^+ + E_p^-)} \implies S_p^- = \frac{E_p^+}{(E_p^+ + E_p^-)} \]

The alternatives with highest closeness score is considered as the best preferred alternative. In our case, the SMO classifier turns out to be the best preferred classifiers among those considered in this work followed by SVM and Naive Bayes classifiers.

2) CORPUS

Absence a benchmark dataset of authorship attribution on Arabic makes additional difficulties for evaluating attribution classifiers’ performance. Most of publications on Arabic authorship attribution domain use different dataset (see Table II). Not far of that, our dataset was gathered from Dar Al-Ifta AL Misriyyah\(^4\) website. The website contains a huge set of fatwas which are written in several language including Arabic and 9 other languages. Typically, the fatwa follows a well-defined structure. Apart of that, we deal with it as a regular textual content. We limit our corpus to only those fatwas written in Arabic. To extract the fatwas’ content from the website, the OctoParse 7.0.2 web scraping tool\(^5\). The Octoparse is an easy configurable visual tool. It allows to run an extraction on the cloud as well as on the local machine. The scraped data can be exported in TXT, CSV, HTML or Excel formats. The main challenge was in scrapping the right data. Thus, first we explore the website page manually to group the similar pages and insure that the page contains required texts, then feed the scraper the right URL. The output was an Excel sheet with some useful information: (i) fatwa’s title: a given title which describes its message briefly; (ii) fatwa's date gives information about the period when the fatwa was published; (iii) mofti's name is the person or Islamic scholar who interprets and expounds the law; (iv) fatwa's question which is posed by a questioning person. It contains a lot of helpful information which aims mofti to drive his opinion and final decision; and (v) the fatwa's answer which contains the details of the scholar's. Among of the aforementioned information, mufti answer (fatwa answer) is the more important. The fatwa answer might be varying in length dependent on the nature of fatwa type and the detailed explanation given by the mofti.

One thing should to mentioned here that the corpus can be unbalanced regarding the distribution of fatwas per author

\(^4\)http://www.dar-alifta.org/Foreign/default.aspx?LangID=2&Home=1

\(^5\)https://www.octoparse.com/download
Individual. Thus, the training set has to be managed before employing an attribution classifier.

3) DATA PRE-PROCESSING

Before doing any preprocessing, the corpus is firstly divided into two sub-corpora. Current step allows us to investigate impact of training set size on the performance of the SMO classifier: (i) balanced sub-corpus B in which the number of fatwas per each motif is equal, and (ii) unbalanced sub-corpus U where the distribution of texts per author is different. In addition, each sub-corpus is also grouped into sets of texts size. The last grouping also necessary to test the effect of increasing the training set size on the overall performance. As the dataset organized, others necessary preprocessing steps are performed:

- Normalization: to avoid any variation in Arabic word representation, we follow the steps stated in [5] [73]:
 - change the letters (‘ا’, ‘ى’, ‘ة’) to (‘أ’).
 - change the letters (‘ئ’, ‘إ’, ‘أ’) to (‘أ’).
 - convert text encoding format to CP1256.
- Function words and non-letter removal: unlike text mining tasks, we kept these features in order to provide more authorial evidence [5].
- Stemming: to find the root of the words, we proposed to use the Khojah’s stemmer.

To deal with the above preprocessing steps, we used the Alwajeeh’s ArabicSF tool\(^6\) for both sub-corpora before extracting attribution features.

4) FEATURE EXTRACTION

Since the instance-based approach [16] suggested to treat each text in the training set individually, the result of the feature extraction step is a vector of numerical values. Our features set consists of: (i) 392 features 335 out of them features extracted by the Alwajeeh’s ArabicSF tool, and 56 morphological features extracted by MADAMIRA\(^7\) tool, and (ii) 350 distinct words extracted by the WEKA\(^8\) tool.

\(^6\) http://zeus.cs.pacificu.edu/shereen/research.htm

\(^7\) https://github.com/AAlwajeeh/ArabicSF

\(^8\) https://www.cs.waikato.ac.nz/ml/weka/downloading.html

Feature	Type	Description
ASFM1	Number of characters (C)	Total number of characters
ASFM2	Number of letters/C	Number of letters
ASFM3	Number of words/C	Number of words
ASFM4	Number of white-spaces/C	Number of white-spaces
ASFM5	Number of tab spaces/C	Number of tab spaces
ASFM6	Number of elongations	Number of elongations
ASFM7	Number of multiple elongations	Number of multiple elongations
ASFM8	Number of diacritics	Number of diacritics
ASFM9	Number of special characters/C	Number of special characters
ASFM10	Number of individual letters/C	Number of individual letters
ASFM11	Total number of words N	Total number of words
ASFM12	Average word length	Average word length
ASFM13	Number of different (unique) words/N	Number of different words
ASFM14	Number of long words/N	Number of long words
ASFM15	Number of short words/N	Number of short words
ASFM16	Hapax legomena/N	Hapax legomena

Feature	Type	Description
ASFM17	Number of proper nouns	Number of proper nouns
ASFM18	Number of adjectives	Number of adjectives
ASFM19	Number of verbs	Number of verbs
ASFM20	Number of particles	Number of particles
ASFM21	Number of prepositions	Number of prepositions
ASFM22	Number of abbreviations	Number of abbreviations
ASFM23	Number of non-blank lines in characters	Number of non-blank lines
ASFM24	Sentences length frequency distribution	Sentences length frequency distribution

Feature	Type	Description
ASFM25	Total number of lines (L)	Total number of lines
ASFM26	Total number of sentences (S)	Total number of sentences
ASFM27	Average number of S/P	Average number of S/P
ASFM28	Average number of C/P	Average number of C/P
ASFM29	Average number of words per sentence	Average number of words per sentence
ASFM30	Number of title words	Number of title words
ASFM31	Title length in characters	Title length in characters
ASFM32	Number of blank lines	Number of blank lines
ASFM33	Average length of non-blank line in characters	Average length of non-blank line
ASFM34	Number of short phrases	Number of short phrases
ASFM35	Sentences length frequency distribution	Sentences length frequency distribution

Feature	Type	Description
ASFM36	Number of nouns	Number of nouns
ASFM37	Number of proper nouns	Number of proper nouns
ASFM38	Number of adjectives	Number of adjectives
ASFM39	Number of verbs	Number of verbs
ASFM40	Number of particles	Number of particles
ASFM41	Number of prepositions	Number of prepositions
ASFM42	Number of abbreviations	Number of abbreviations
ASFM43	Number of non-blank lines in characters	Number of non-blank lines
ASFM44	Sentences length frequency distribution	Sentences length frequency distribution

Feature	Type	Description
ASFM45	Number of interjections	Number of interjections
ASFM46	Number of digits	Number of digits
ASFM47	Number of foreign letters	Number of foreign letters
ASFM48	Number of commands	Number of commands
ASFM49	Number of imperfective	Number of imperfective
ASFM50	Number of perfective	Number of perfective
ASFM51	Number of nominative	Number of nominative
ASFM52	Number of accusative	Number of accusative
ASFM53	Number of genitive	Number of genitive
ASFM54	Feminine	Feminine
ASFM55	Masculine	Masculine
ASFM56	Indicative	Indicative
ASFM57	Jussive	Jussive
ASFM58	Subjunctive	Subjunctive
ASFM59	Number of singular words	Number of singular words
ASFM60	Number of plural words	Number of plural words
5) ENSEMBLE METHODS
As stated earlier, the SMO-SVM is assigned as a base classifier of the ensemble method. The ensemble method is trained and tested within WEKA 3.6.12 on a personal computer with an Intel Core(TM) i7-4600U CPU @ 2.70GHz CPU, a 8- Gbyte RAM and a 64-bit Windows 8 operating system. In addition, the Cross-validation was employed in 10-folds version and accuracy, precision, recall and F1-score are used to measure the effectiveness of the attribution model. To answer the second posed question, the features were partitioned into three different sets and the classifier is trained and tested on four different groups size as follows:

Features partition
set1: the Arabic Stylometric Features extracted by ArabicSF tool and MADAMIRA (ASFMs).
set2: the distinct words extracted by applying the bag-of-word method within WEKA environment (DWs).
set3: combination of both ASFMs and DWs (ASFMs+DWs).

Training Set Size: Balanced group
The training set is partitioned into subsets with 50, 100, 200 and 300 texts per author. We denote them β1, β2, β3 and β4 respectively. In addition, the amount of words within a text does not take in consideration.

Training Set Size: Unbalanced group

5.1) β1

group1(U1): The training set has instances of 11 authors. It varies from 11 fatwas per author to 975. The number of the words within a fatwa varies between very short text (31 words per text) and quit long text (400 words per text).
group2 (U2): The training set has instances of eight authors. The number of texts are between 13 and 401 per author. The number of the words within a fatwa is between 400 words per a fatwa and 800 words.
group3 (U3): The training set has instances of five authors. The size is quite small. The distribution of instances per authors varies from 7 fatwas per an author to 80. We limit amount of words within the text to be between 800 words per a fatwa and 1200 words.
group4 (U4): The training set has instances of eight authors. The size is also quite small with quit long fatwa text. The training set contains those texts whose lengths exceed 1200 words per a text.

ASFMs384	Number of dual words
ASFMs385	Grammatical features
ASFMs386	1st person
ASFMs387	2nd person
ASFMs388	Number of indefinite
ASFMs389	Number of definite
ASFMs390	Number of construct/poss/idafa
ASFMs391	Voice features
ASFMs392	Passive voice

FIGURE 6: Distribution of number of authors per imbalanced dataset

IV. RESULTS AND DISCUSSION

A. FEATURE-BASED LEVEL
To investigate the performance of using different stylometric features (ASFMs, DWs and ASFMs+DWs), Table VII-XV summarize the results obtained by the two ensemble methods on balanced and imbalanced datasets in terms of the accuracy, recall, precision and F1-score. The results shown that the combination set of features (ASFMs+DWs) obtained the best performance using Bagging and AdaBoost methods for balanced datasets, except for dataset subset β1. The dataset size of β1 is only 50 texts per author, which makes the DW features more effective than ASFMs that may include more zeros in the feature vector. For the imbalanced datasets, the ASFMs obtained the best results (5 out of 8 cases). Similar to the case of β1, the DW features obtained better results for the dataset subset U1.

Dataset	Classifier	Feature set	Acc.	Prec.	Recall	F1-score
ASFMs	Bagging	DW	0.7273	0.733	0.727	0.729
ASFMs+DW			0.7089	0.718	0.701	0.709
ASFMs	AdaBoost	DW	0.4618	0.487	0.462	0.455
ASFMs+DW			0.7127	0.715	0.713	0.713

Dataset	Classifier	Feature set	Acc.	Prec.	Recall	F1-score
ASFMs	Bagging	DW	0.8050	0.805	0.805	0.802
ASFMs+DW			0.8517	0.852	0.852	0.851
ASFMs	AdaBoost	DW	0.7900	0.789	0.791	0.789
ASFMs+DW			0.8270	0.872	0.872	0.872

Dataset	Classifier	Feature set	Acc.	Prec.	Recall	F1-score
ASFMs	Bagging	DW	0.7060	0.706	0.706	0.706
ASFMs+DW			0.8330	0.833	0.833	0.833
ASFMs	AdaBoost	DW	0.7060	0.706	0.706	0.706
ASFMs+DW			0.8842	0.851	0.833	0.842

TABLE VII
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET

TABLE VIII
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET

TABLE IX
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET

TABLE VI
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET

TABLE VII
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET

TABLE VIII
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET

TABLE IX
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET
TABLE X
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON BALANCED DATASET.

Dataset	Classifier	Feature set	Acc.	Prec.	Recall	F1-score
	ASFM		0.9900	0.9900	0.9900	0.9900
	DW		0.9950	0.9950	0.9950	0.9950
	ASFM+DW		0.9979	0.961	0.997	0.979
U1	Bagging		0.8320	0.865	0.859	0.861
	ASFM		0.7447	0.745	0.721	0.722
	DW		0.8148	0.815	0.814	0.814
	ASFM+DW		0.8037	0.804	0.799	0.800
	Adaboost		0.7079	0.713	0.703	0.708
	ASFM		0.8569	0.857	0.858	0.854
	DW		0.8153	0.815	0.801	0.803
	ASFM+DW		0.8319	0.836	0.829	0.832
	Adaboost		0.7554	0.755	0.719	0.733
	ASFM		0.8535	0.835	0.837	0.834
	DW		0.7225	0.724	0.726	0.725

TABLE XI
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON IMBALANCED DATASET.

Dataset	Classifier	Feature set	Acc.	Prec.	Recall	F1-score
	ASFM		0.9400	0.840	0.796	0.816
	DW		0.8160	0.816	0.802	0.798
	ASFM+DW		0.8234	0.824	0.827	0.825
U3	Bagging		0.8241	0.824	0.816	0.819
	ASFM		0.8160	0.816	0.798	0.800
	DW		0.8104	0.812	0.809	0.810
	ASFM+DW		0.6774	0.677	0.593	0.630
	Bagging		0.6613	0.661	0.584	0.619
	ASFM		0.5510	0.556	0.546	0.550
	DW		0.5806	0.581	0.563	0.571
	ASFM+DW		0.6210	0.621	0.566	0.587

TABLE XII
RESULT OF DIFFERENT ENSEMBLE TECHNIQUES ON IMBALANCED DATASET.

Dataset	Classifier	Feature set	Acc.	Prec.	Recall	F1-score
	ASFM		0.9400	0.840	0.796	0.816
	DW		0.8160	0.816	0.802	0.798
	ASFM+DW		0.8234	0.824	0.827	0.825
U3	Bagging		0.8241	0.824	0.816	0.819
	ASFM		0.8160	0.816	0.798	0.800
	DW		0.8104	0.812	0.809	0.810
	ASFM+DW		0.6774	0.677	0.593	0.630
	Bagging		0.6613	0.661	0.584	0.619
	ASFM		0.5510	0.556	0.546	0.550
	DW		0.5806	0.581	0.563	0.571
	ASFM+DW		0.6210	0.621	0.566	0.587

For balanced datasets, the tables show that the AdaBoost classifier, in most cases, gives the highest performance. It achieves the best accuracy with 99.83%. In addition, the results show that the performance of the classifiers is affected positively with decreasing the number of the authors in the dataset. As a conclusion of that, we recommend to use the AdaBoost method for solving the authorship verification problem for balanced datasets. However, for imbalanced datasets the performance of Bagging method outperformed the AdaBoost method using all datasets subsets. In addition, the results show that when the size of imbalanced dataset increased, the performance of Bagging classifier decreased.

B. CLASSIFIER-BASED LEVEL

Table XVI reports the p-values produced by the Wilcoxon signed-rank test for comparing the significant difference between Bagging and Adaboost classifiers. The reported p-values are higher than the significant level of 0.05, the null hypothesis, that the metrics values are the same, is accepted for all metrics.

Metric	Bagging Vs Adaboost
Accuracy	0.8334
Precision	1
Recall	0.8127
F-score	0.9056

Table XVII summarizes the median and mean values computed for all Balanced dataset for each ensemble classifiers. In most cases, the Bagging classifier achieved slightly higher median scores compared with Adaboost and this interprets why the p-values are higher than 0.05. These reported median and median scores do not show any superiority of one classifier over the other and this may attribute to the advantages of over-sampling that mitigate the problem of data sparseness.

Metric	Bagging	Adaboost
Accuracy	0.8386	0.8375
Mean	0.819217	0.8175
Median	0.8345	0.834
Mean	0.823042	0.823417

Table XIX shows the median and mean values computed for all Imbalanced dataset for each classifier. In all cases, the Bagging classifier achieved clearly higher median scores compared with Adaboost. These reported median and median scores show a clear dominance of Bagging classifier over the Adaboost and this proved the advantages of bagging classifier in dealing with sparse training data.
Authorship Attribution (AA) problem in Arabic language has been addressed in quite few studies and several analysis methods were applied to tackle the issue. However, the performance of these methods needs to be improved. This work distinguishes from the existing works in employing the ensemble techniques which have not been investigated for ALAA. In addition, the TOPSIS method has been used for scoring, ranking and choosing the best alternative base classifier. In order to make the TOPSIS model more reliable for selecting authorship attribution base classifiers, several attributes were used: (i) average accuracies of classifiers stated in published paper, (ii) prevalence degree or commonness of use the classifier in publications, (iii) ability to deal with high dimensional data, (iv) performance and (v) sensitivity to noise data. Indeed, adding others attributes can lead to enhance the TOPSIS method. As a conclusion, the SMO-SVM classifier has been chosen as a base classifier of ensemble methods.

On the other hand, two types of features have been used: 397 stylistic features (ASFMs) which was extracted by Alwajeeh's ArabicSF tool and MADAMIRA tool and 350 distinct words extracted by the WEKA tool. These features were extracted from Arabic texts (Islamic fatwas) collected from Dar Al-ifta AL Misriyyah website using the OctoParse 7.0.2 web scraping tool.

Then, Bagging and AdaBoost methods have been applied. The performance of the methods was examined for balanced and unbalanced training datasets. The results showed different characteristics for the ensemble methods. The AdaBoost methods obtained the highest accuracy for the balanced dataset, whereas the Bagging methods obtained the highest accuracy with unbalanced set. The findings also showed that fusing the ASFMs features and DWs features yielded the best results.

In future work, new attributes will be researched and examined using the TOPSIS method and other ensemble methods will be investigated for ALAA.

REFERENCES

1. Mendehall, T.C (1887). The characteristic curves of composition, Science, IX, 237–249.
2. Zipf GK. The psycho-biology of language. Houghton, Mifflin; 1935.
3. Yule, G.U. (1938). On sentence-length as a statistical characteristic of style in prose, with application to two cases of disputed authorship. Biometrika, 30, 363–390.
4. Mosteller, Frederick and a. D. Wallace, "Inference and disputed authorship: The Federalist," 1964.
5. Altheneyan, A. S., & Menai, M. E. B. (2014). Naïve Bayes classifiers for authorship attribution of Arabic texts. Journal of King Saud University-Computer and Information Sciences, 26(4), 473–484.
6. Xavier Puig, Martí Font & Josep Ginebra (2016): A unified approach to authorship attribution and verification. The American Statistician, DOI: 10.1080/00031305.2016.1148630.
7. Krsul I, Spafford EH. Authorship analysis: Identifying the author of a program. Computers & Security, 1997, 16(3): 233±257. https://doi.org/10.1016/S0167-4048(97)00005-9.
8. Longstaff TA, Schultz EE. Beyond preliminary analysis of the WANK and OILZ worms: A case study of malicious code. Computers & Security, 1993, 12(1): 61±77. https://doi.org/10.1016/0167-4048(93)90013-U.
9. Spafford EH, Weeber SA. Software forensics: Can we track code to its authors?. Computers & Security, 1993, 12(6): 585±595. https://doi.org/10.1016/0167-4048(93)90055-A.
10. De Vel, O. (2000, August). Mining e-mail authorship. In Proc. Workshop on Text Mining, ACM International Conference on Knowledge Discovery and Data Mining (KDD'2000).
11. S. Argamon, M. Saric and a. S. Stein, "Style Mining of Electronic Message for Multiple Authorship Discrimination: First Results," in ninth ACM SIGKDD international conference, New York, 2003.
12. Steams, L. (1992). Copy wrong: Plagiarism, process, property, and the law. Cal. L. Rev., 80, 513.
13. Rudman, J. (1997). The state of authorship attribution studies: Some problems and solutions. Computers and the Humanities, 31(4), 351–365.
14. Singhe, S., & Tweedie, F. J. (1995). Neural networks and disputed authorship: New challenges.
15. Martin, B. (1994). Plagiarism: a misplaced emphasis. Journal of Information Ethics, 3(2), 36.
16. Stammatatos, E., 2009. A survey of modern authorship attribution methods. J. Am. Soc. Inf. Sci. Technol. 60 (3), 538–556. http://dx.doi.org/10.1002/asi.21001.
17. Markov, I., Baptista, J., & Pichardo-Laguana, O. (2017). Authorship Attribution in Portuguese Using Character N-grams. Acta Politechnica Hungarica, 14(3).
18. Posadas-Durán, J. P., Gómez-Adorno, H., Sidorov, G., Batyrshin, I., Pinto, D., & Chanaona-Hernández, L. (2017). Application of the distributed document representation in the authorship attribution task for small corpora. Soft Computing, 21(3), 627–639.
19. Pan L., Gondal I., Layton R. (2017) Improving Authorship Attribution in Twitter Through Topic-Based Sampling. In: Peng W., Aiahakahoon D., Li X. (eds) AI 2017: Advances in Artificial Intelligence. AI 2017. Lecture Notes in Computer Science, vol 10400. Springer, Cham.
20. Dauber, E., Overdorff, R., & Greenstadt, R. (2017, June). Stylo Linguistic Authorship Attribution of Collaborative Documents. In International Conference on Cyber Security Cryptography and Machine Learning (pp. 115–135). Springer, Cham.
21. Marchenko O., Anisimov A., Nykonenko A., Rossada T., Melnikov E. (2017) Authorship Attribution System. In: Frasincar F., Ittoo A., Nguyen L., Métas E. (eds) Natural Language Processing and Information Systems. NLDLB 2017. Lecture Notes in Computer Science, vol 10260. Springer, Cham.
22. Claude, F., Galaktionov D., Konow, R., Lada, S., & Pedreira, Ó. (2017). Competitive Author Profiling Using Compression-Based Strategies. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(Suppl. 2), 5–20.
23. Al-Falahi, A., Ramdani, M., & Mostafa, B. (2017). Machine Learning for Authorship Attribution in Arabic Poetry. International Journal of Future Computer and Communication, 6(2), 42.
24. Szwed, P. (2017, May). Authorship attribution for polish texts based on part of speech tagging. In International Conference: Beyond Databases, Architectures and Structures (pp. 316–328). Springer, Cham.
25. Zhao, Y., Zobel, J., & Vines, P. (2006, October). Using relative entropy for authorship attribution. In Asia Information Retrieval Symposium (pp. 92–105). Springer, Berlin, Heidelberg.
26. Pillay, S.R., Solorio, T., 2010. Authorship attribution of web forum posts. eCrime Researchers Summit (eCrime), IEEE, pp. 1–7. doi:10.1109/ericrime.2010.5706693.
27. Baron, G. (2014). Influence of data discretization on efficiency of Bayesian classifier for authorship attribution. Procedia Computer Science, 35, 1112–1121.
28. Paul, P. P., Sultana, M., Matei, S. A., & Gavrilova, M. (2018). Authorship disambiguation in a collaborative editing environment. Computers & Security.
29. Akimushkin, C., Amancio, D. R., & Oliveira Jr, O. N. (2018). On the role of words in the network structure of texts: application to authorship attribution. Physica A: Statistical Mechanics and its Applications, 495, 49–58.
30. Lahiri, S., & Mihalcea, R. (2013). Authorship attribution using word network features. arXiv preprint arXiv:1311.2978.
31. Wang, L. Z. (2017). News authorship identification with deep learning.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2964952, IEEE Access
Mohammed Al-Sarem received the M.S. degree in Information Technology from the Faculty of Informatics and Computer Engineering, Volgograd State Technical University, Volgograd, Russia, and the Ph.D. degree from the Faculty of Informatics, University of Hassan II Casablanca-Mohamadia, Mohamadia, Morocco, in 2007 and 2014, respectively. He is currently an Assistant Professor with the Information System Department, Taibah University, Al-Madinah Al Munawarah, Kingdom of Saudi Arabia. He published several papers and participated in managing several international conferences. His current research interests include group decision making, multi-criteria decision making, data mining, E-learning, natural language processing and social analysis.

Faisal Saeed is an Assistant Professor at Information Systems Department, Taibah University, KSA since 2017. Previously, he worked as Senior Lecturer at the Department of Information Systems, Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia. He received his BSc in Computers (Information Technology) from Cairo University, Egypt, MSc in Information Technology Management and PhD in Computer Science from UTM, Malaysia. His research interests are data mining, information retrieval and machine learning.

Abdullah Alsaeedi received the B.Sc. degree in computer science from the College of computer science and engineering, Taibah University, Madinah, Saudi Arabia, in 2008, M.Sc. degree in Advanced software engineering, The university of Sheffield, department of computer science, Sheffield, UK, in 2011, and the Ph.D. degree in computer science from the University of Sheffield, UK, in 2016. He is currently an Assistant Professor at the Computer Science Department, Taibah University, Madinah, Saudi Arabia. His research interests include software engineering, software model inference, grammar inference, machine learning, Social Network Mining, data mining and document processing.

Wadil Boullila received the Engineering degree (Hons.) in computer science from the Aviation School of Borj El Amri, in 2005, the M.Sc. degree from the National School of Computer Science (ENSI), University of Manouba, Tunisia, in 2007, and the Ph.D. degree conjointly from ENSI and Telecom Bretagne, University of Rennes 1, France, in 2012. From 2012 to 2015, he was an Assistant Professor in computer science with the Higher Institute of Multimedia Arts of Manouba, Manouba University, Tunisia.

He is currently an Assistant Professor of computer science with the IS Department, College of Computer Science and Engineering, Taibah University, Saudi Arabia. He is also a Permanent Researcher with the RIADI Laboratory, University of Manouba, and an Associate Researcher with the ITI Department, University of Rennes 1, France. His primary research interests include big data analytics, deep learning, data mining, artificial intelligence, uncertainty modeling, and remote sensing images. He has served as the Chair, Reviewer, and a TPC Member for many leading international conferences and journals. Dr. Boullila is a Senior IEEE Member.

Tawfik Al-Hadhrami is currently working as a Senior Lecturer at the Nottingham Trent University, UK. He received his MSc degree in IT/Applied System Engineering from Heriot-Watt University, Edinburgh, United Kingdom. He received his PhD degree in Wireless Mesh Communication from University of the West of Scotland, Glasgow, UK, 2015. He was involved in research at University of the West of Scotland, Networking Group. He is an Associate Editor for IEEE Access and IEEE Sensors journals. His research interest includes Internet of Things (IoT) and Applications, Network Infrastructures & Emerging Technologies, Artificial Intelligence, Computational Intelligence and 5G Wireless Communications. He is a member of Network Infrastructure and Cyber Security group (NICS) at NTU. He is involved in different projects with industries.