Supplemental Data for accompanying manuscript titled:

Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome

Authored by: Zanlin Yu*, Oded Kleifeld*, Avigail Lande-Atir*, Maisa Bsoul†, Maya Kleiman*, Daria Krutauz*, Adam Book‡, Richard D. Vierstra‡, Kay Hofmann§, Noa Reis*, Michael H Glickman.**, and Elah Pick*||

* Department of Biology, Technion Institute of Technology, 32000 Haifa Israel;
† Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 31905, Israel.
‡ Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
§ Miltenyi Biotec GmbH, Friedrich-Ebert-Str. 68 51429 Bergisch-Gladbach, Germany
|| Department of Biology, University of Haifa at Oranim, Tivon 36006, Israel

*corresponding authors:
*Michael Glickman: glickman@techunix.technion.ac.il
*Elah Pick: elahpic@research.haifa.ac.il

On the following pages, this file contains the following sections:

A) Four supplementary Figures
B) Six Supplementary Tables
C) Supplementary materials and methods
D) Supplementary references
A) SUPPLEMENTARY FIGURES (S1-S4):
Figure S1:

- (a) A schematic diagram in scale, of wild-type and mutant Rpn5 used in this study. Rpn5 bears a carboxyl terminal PCI domain (black), which is truncated in \textit{rpn5-1} and \textit{rpn5ΔC} mutants (Isono et al., 2007; Ben-Aroya et al. 2010). \textit{rpn5-1}: Bears an early stop codon, and lacks 30 carboxyl terminal amino acids. In addition this mutant bears two point mutations: Ile/Leu in position 180 and Arg/Gly in position 344. \textit{rpn5ΔC}: Bears an early stop codon, and lacks 28 amino acids which are substituted by an octapeptide. This mutant also bears a point mutation of Phe/Ser in position 275.

- (b) Phylogenetic relationship of Rpn5 and Csn4 paralog subunits. Most eukaryotes contain both Csn4 and Rpn5 but in \textit{S. cerevisiae} only Rpn5 exists.
Figure S2: Rpn5-CBP-A2, CBP-A2-Rpt6 and Csn10-CBP-A2 complexes were subjected to western blot using anti-Rpn5 antibody recognizes both Rpn5 and protein A peptides, anti-CBP antibody recognizes proteins tagged by CBP, or anti-HA that recognizes proteins tagged by protein A. The results show that the carboxyl terminal protein-A tags were cleaved in approximately half of the Rpn5-CBP-A2 population.
Figure S3: (a) Calmodulin purified CBP-A2-Rpt6, Rpn5-CBP-A2 and Csn10-CBP-A2 complexes, were separated on a 12% SDS PAGE and stained with Coomassie Brilliant Dye. A conventionally purified proteasome was separated aside, as for comparison. As seen from the gel, both Rpn5-CBP-A2 and CBP-A2-Rpt6 samples are enriched with RP- components. (b) Rpn5-CBP-A2 complexes were separated on 4.5% native PAGE that was obtained for peptidase activity (left) or western-blot (right) using anti-HA antibody. Most of the peptidase activity is found in doubly regulatory particle proteasomes. Interestingly, immunoblotting with anti-HA that is being recruited by the Protein A tags, exposes low molecular Rpn5- containing complexes which are proteolytically inactive, this in addition to full structures of proteasome. These complexes include 19S, Lid and CSN.
Figure S4: Crude protein extract from green *Arabidopsis* seedlings was fractionated in a gradient of 10% - 40% Glycerol. Proteasome distribution was determined by western blot with antibodies recognizing proteasome lid (Rpn5, Rpn6 and Rpn12), base (Rpn1) and CP (Pba1) subunits, as well as Arabidopsis CSN (Csn5, Csn4) subunits. Complexes are indicated by the brackets.
B) SUPPLEMENTARY TABLES (Tables S1-6)
Table S1:

DOMAIN	A.thaliana	A nidulans	N. crassa	S. pombe	C. merolae	C. albicans	S. cerevisiae
	19S Lid	CSN					
MPN	Rpn11	Csn5a/b	Csn5	Csn5	Csn5	Csn5	Csn5
PCI	Rpn6	Csn2	Csn2	Csn2	Csn2	Csn2	Csn2
PCI	Rpn7	Csn1	Csn1	Csn1	Csn1	Csn1	Csn11
PCI	Rpn9a/b	Csn7	Csn7	Csn7	Csn7	Csn7	Csn9
PCI	Rpn3a/b	Csn3	Csn3	Csn3	Csn3	Csn3	
PCI	Rpn5a/b	Csn4	Csn4	Csn4	Csn4	Rpn5	
MPN	Rpn8a/b	Csn6a/b	Csn6				
PCI	Rpn12a/b	Csn8	Csn8				
	Sem1						Csi1

Table S1: **Loss of CSN subunits in unicellular organisms**: direct orthologs of *Arabidopsis thaliana* CSN subunits in various unicellular organisms (*Aspergillus nidulans; Neurospora crassa; Schizosaccharomyces pombe; Cyanidioschyzon merolae; Candida albicans, Saccharomyces cerevisiae*). Rpn paralogs in plant proteasome are shown to guide the reader. Note that only one direct ortholog of CSN subunits is found in budding yeast (Csn5). The other three PCI subunits (Csn9, 10 and 11) are highly diverged, and one subunit (Csi1) does not bear any of the conserved recognition domains. In this manuscript we suggest that Rpn5 is the substitution for Csn4 which is missing in the budding yeast genome. The table is not intended to show phylogenic relationship.
Table S2:

PLASMID	CHARACTERISTICS	SOURCE
M1070	AtCSN4-LEU2 ADH Amp	This study
M1077	ScRPN5-URA3 CEN Amp	(Yang et al., 2004)
M1079	AtRPN5a-LEU2 2mic-ScRpn10 promoter Amp	(Yang et al., 2004)
M1081	AtRPN5b-LEU2 2mic ScRpn10 promoter Amp	(Yang et al., 2004)
M1083	ScRPN5-LEU2 2mic ScRpn10 promoter Amp	(Yang et al., 2004)
M1043	CBP-A2-RPT6-LEU2 2mic Rpt4 promoter Amp	This study

Table S2: List of plasmids used in this study
Table S3: list of yeast strains used in this study

STRAIN	MAT	RELEVANT GENOTYPE	SOURCE/COMMENTS
MY58	a	his3ko1; leu2ko0; met15ko0; ura3ko0	Euroscarf
MY60	a	Csn5::KAN'	Euroscarf
MY299	a	rub1::KAN'	Euroscarf
MY1045	a	csn9::CSN9-MYC13-HIS3	This study
MY1061	a	csn9::CSN9-MYC13- KAN' csn10::CSN10-CBP-A2-HIS3	This study
MY1068	a	rpn7::rpn7-3-URA3	(Isono et al., 2004)
MY1070	a	rpn5::rpn5-1-TRP1	(Isono et al., 2007)
MY1082	a	Rpt6::CBP-A2-RPT6-LEU2	This study
MY1094	a	csn9::CSN9-MYC13-HIS3 csn5:: KAN'	This study
MY1107	a	rpn3::rpn3-4-TRP1	(Bailly and Reed, 1999)
MY1108	a	rpn3::rpn3-7-TRP1	(Bailly and Reed, 1999)
MY1109	a	rpn12::rpn12-1-URA3	(Bailly and Reed, 1999)
MY1122	a	rpn6::rpn6-1 URA3	(Isono et al., 2005)
MY1123	a	rpn9::rpn9ΔC-LEU2	(Takeuchi et al., 1999)
MY1130	a	rpn5::RPN5-CBP-A2-URA3	(Gavin et al., 2002)
MY1131	a	RPN5:: KAN' [M1077]	(Yang et al., 2004)
MY1135	a	RPN5:: KAN' [M1079]	(Yang et al., 2004)
MY1137	a	RPN5:: KAN' [M1081]	(Yang et al., 2004)
MY1139	a	RPN5:: KAN' [M1083]	(Yang et al., 2004)
MY1194	a	RPN6::RPN6-CBP-A2-URA3	(Gavin et al., 2002)
MY1195	a	RPN8::RPN8-CBP-A2-URA3	(Gavin et al., 2002)
MY1231	a	rpn5::rpn5-1-TRP1 csn9::CSN9-MYC13-HIS3	This study
Ts944	α	rpn5::rpn5ΔC-URA3	(Ben-Aroya et al., 2010)
Table S4:

ORF	Name	Coverage	Unique peptides	Group
YDR179C	CSN9	10.5%	2	CSN
YDL216C	RRI1	7.5%	2	CSN
YDL147W	RP5S	8.3%	5	Proteasome
YDL229W,YNL209W	SSB1	29.2%	16	ATPase HSP family
YLR259C	HSP60	20.6%	9	Mitochondrial chaperone
YER090W	TRP2	5.9%	2	Metabolism
YJR121W	ATP2	4.9%	2	Mitochondrial F1F0 ATP synthase
YER013W	PRP22	0.8%	2	RNA helicase
YCR073C	SSK22	1.5%	2	MAP kinase

Table S4: Proteins from MY58 wild-type strain (control), and MY1045 wild type strain expressing a genomic tagged Csn9-Myc13 were affinity purified under native conditions using anti-Myc antibodies coupled to agarose beads. Myc tagged Csn9 and other co-purified proteins were separated by SDS-PAGE and 30-70 kDa gel slices were excised and analyzed by mass spectrometry. Unique proteins identified by tandem MS analysis only in MY1045 are presented, showing the number of unique peptides and the relative coverage (in percent of full sequence).
Table S5:

ORF	PROTEIN	START	FRAC4	FRAC8	GROUP
YGL011C	a1	30/65%	27/58%	CP	
YML092C	a2	3/40%	13/39%	CP	
YGR135W	a3	21/47%	17/35%	CP	
YOL038W	a4	21/61%	12/31%	CP	
YGR253C	a5	28/72%	25/52%	CP	
YMR314W	a6	30/92%	24/60%	CP	
YOR362C	a7	18/51%	16/42%	CP	
YJL001W	b1	11/40%	8/30%	CP	
YOR157C	b2	8/18%	4/14%	CP	
YER094C	b3	11/48%	7/23%	CP	
YER112W	b4	15/40%	16/50%	CP	
YPR103W	b5	13/36%	13/33%	CP	
WBL041W	b6	19/59%	14/38%	CP	
YFR050C	B7	11/41%	11/31%	CP	
YHR127C	RPN1	45/37%	33/29%	base	
YIL075C	RPN2	76/57%	41/36%	base	
YLR421C	RPN13	7/33%	1/7%	4/25%	base
YKL145W	RPT1	48/59%	34/45%	base	
YDL007W	RPT2	32/52%	21/34%	base	
YDR394W	RPT3	38/63%	18/34%	base	
YOR259C	RPT4	42/60%	29/40%	base	
YOR117W	RPT5	35/59%	5/13%	29/40%	base
YGL048C	RPT6	37/61%	25/44%	base	
YHR200W	RPN10	14/34%	8/24%	8/22%	base
YER021W	RPN3	51/56%	18/29%	Lid	
YDL147W	RPN5	42/62%	15/23%	Lid	
YDL097C	RPN6	51/71%	18/32%	Lid	
YPR108W	RPN7	43/48%	27/38%	Lid	
YOR261C	RPN8	48/73%	21/52%	Lid	
YDR427W	RPN9	57/67%	28/51%	Lid	
YFR004W	RPN11	25/56%	18/44%	Lid	
YFR052W	RPN12	31/64%	10/43%	Lid	
YDR363W	SEM1			Lid	
YOL117W	CSN10	6/16%	1/2%	CSN	
YDL216C	CSN5	7/12%	1/1%	CSN	
YDR179C	CSN9	3/12%		CSN	
YIL071C	*CSN11	5/13%	2/4.3%	CSN	
YMR025W	*CSN1	4/13.9%	4/13.9%	CSN	
YJR084W	CSN12			CSN	
YGL004C	RPN14	13/31%	3/8%	19S assembly	
YGR232W	NAS6	13/45%	2/8%	19S assembly	
YIL007C	NAS2	4/20%		19S assembly	
YBR272C	HSM3	15/28%		19S assembly	
YOR269W	PAC1			20S assembly	
YER007W	PAC2			20S assembly	
YMR294W	PAC3			20S assembly	
YBR173C	UMP1			20S assembly	
YHL030W	ECM29	1/2%			
YFL007W	BLM10				
YFR010W	UBP6				
YGL141W	Hu5				
YDL126C	CDC48	2/2%			

Table S5: Tandem MS identification of proteasome, CSN subunits and known proteasome assembly or activity-related factors in affinity purified RPN5-CBP-A2 eluant and two fractions bearing
deRubylation or peptidase activity. The number of unique peptides and the relative coverage (in percent of full sequence) is shown. An asterisk refers to hits that were identified from an identical parallel independent experiment.
Table S6:

ORF	PROTEIN	START	FRAC4	GROUP
YOL117W	CSN10	22/19.2%	6/41.6%	CSN
YDL216C	CSN5	34/63.6%	32/47.5%	CSN
YIL071C	PCE8	11/19.6%	33/40.8%	CSN
YMR025W	CS1	5/12.2%	28/53.9%	CSN
YDR179C	CSN9	6/24.7%	10/34%	CSN
YDL147W	RPN5	13/27.4%	40/60.2%	Proteasome
YDL097C	RPN6	6/7.1%		Proteasome
YKL145W	RPT1	5/10.5%		Proteasome
YIL075C	RPN2	1/1.6%		Proteasome
YDR394W	RPT3	1/4.4%		Proteasome
YGR232W	NAS6	1/4.4%		19S assembly
YIL148W, YKR094C, YLL039C, YLR167W	ubiquitin	9/50.8%	8/69.6%	Ubiquitin
YER151C	UBP3	9/10.5%	21/35%	Ubiquitin
YNR051C	BRE5	2/2.5%	11/31.1%	Ubiquitin
YDL074C	BRE1	3/5.1%	2/5.1%	Ubiquitin
YHL002W	HSE1	9/14.8%	3/7.1%	Ubiquitin
YDR143C	SAN1	3/5.2%	1/2%	Ubiquitin
YKL090W	CUE2	1/3.8%	2/5.9%	Ubiquitin
YGR054W	YGR054W	1/3.3%	5/10.4%	eIF2a
YMR012W	TIF31	7/7.5%	2/2.4%	eIF3
YBR079C	RPG1	19/13.9%	6/8.2%	eIF3a
YOR361C	PRT1	7/6.6%	1/1.7%	eIF3b
YOL139C	CDC33	4/12.7%	4/13.6%	eIF4e
YEL034W	HYP2	2/19.1%		eIF5a
YPL096W	PNG1	4/12.7%	7/24.2%	
YBR025C	OLA1	22/49.2%	8/28.2%	
YLR215C	CDC123	1/3.1%	1/3.1%	
YER165W	PAB1	7/15.9%	1/1.7%	

Table S6: Tandem MS identification of proteasome, CSN subunits and known proteasome assembly or activity-related factors in affinity purified RPN5-CBP-A2 (before fractionation in a gradient of glycerol density) and fraction 4 that is bearing deRubylation activity. The number of unique peptides and the relative coverage (in percents of full sequence) is shown.

Note that total peptide counts of all core CSN subunits are enriched in fraction 4 relative to the Csn10-pullout used as start in this experiment. This is not the case for most other trace hits.
C) SUPPLEMENTARY INFORMATION FOR MASS SPECTROMETRY ANALYSIS

Protein preparation and digestion

Rpn5 interacting proteins from Rpn5-CBP-A2 strain were purified as described in experimental procedure section (Glickman et al., 1998). The affinity purified proteins were denatured by addition of 8M Urea, reduced with 10 mM DTT (at 60°C for 30min), modified with 100 mM iodoacetamide in 10 mM ammonium bicarbonate (room temperature for 30min) and trypsinized in 10 mM ammonium bicarbonate containing trypsin [modified trypsin (Promega)] at a 1:50 enzyme-to-substrate ratio, overnight at 37°C.

Mass spectrometry analysis

The resulting tryptic peptides were resolved by reverse-phase chromatography on 0.075 X 200-mm fused silica capillaries (J&W) packed with Reprosil reversed phase material (Dr Maisch GmbH, Germany). The peptides were eluted with linear 65 minutes gradients of 5 to 45% and 15 minutes at 95% acetonitrile with 0.1% formic acid in water at flow rates of 0.25 μl/min. Mass spectrometry was performed by an ion-trap mass spectrometer (Orbitrap, Thermo) in a positive mode using repetitively full MS scan followed by collision induces dissociation (CID) of the 7 most dominant ion selected from the first MS scan.

Database search

The mass spectrometry data was analyzed using the Trans Proteomic Pipeline (TPP) Version 4.3(Keller et al., 2005). TPP-processed centroid fragment peak lists in mzXML format were searched against Saccharomyces cerevisiae translations of all systematically named ORFs (release date Jan 5th, 2010; Downloaded form SGD). The 5904 proteins were supplemented with their 5904 corresponding decoy sequences (as described in http://www.matrixscience.com/help/decoy_help.html). The database searches were performed using X! Tandem with k-score plugin through the TPP. Search parameters include: trypsin cleavage specificity with two missed cleavage, cysteine carbamidomethyl as fixed modification, methaionine oxidation and protein N-terminal acetylation as variable modifications, peptide tolerance and MS/MS. Absolute Protein Expression (APEX) abundances of the CSN10-CPB-A2 pullout proteins were calculated using the protXML file
generated from the PeptideProphet™ and ProteinProphet™ validation of the X!Tandem search results. A <1% false positive rate (FPR) was chosen Employing the APEX tool (Braisted et al., 2008) Stoichiometry of the CSN complex was calculated by dividing the protein abundances found by the calculated abundance of CSN10.

D) SUPPLEMENTARY REFERENCES

Bailly, E., and Reed, S.I. (1999). Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol. Cell. Biol. 19, 6872-6890.

Ben-Aroya, S., Agmon, N., Yuen, K., Kwok, T., McManus, K., Kupiec, M., and Hieter, P. (2010). Proteasome nuclear activity affects chromosome stability by controlling the turnover of Mms22, a protein important for DNA repair. PLoS Genet 6, e1000852.

Braisted, J.C., Srilatha Kuntumalla, Christine Vogel, Edward M Marcotte, Alan R Rodrigues, Rong Wang, Shih-Ting Huang, Erik S Ferlanti, Alexander I Saeed, Robert D Fleischmann, Scott N Peterson, and Pieper, R. (2008). The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results. . BMC Bioinformatics

Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., H., R., A., M., K., M., H., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147.

Glickman, M.H., Rubin, D.M., Fried, V.A., and Finley, D. (1998). The regulatory particle of the S. cerevisiae proteasome. Mol. Cell. Biol. 18, 3149-3162.

Isono, E., Nishihara, K., Saeki, Y., Yashiroda, H., Kamata, N., Ge, L., Ueda, T., Kikuchi, Y., Tanaka, K., Nakano, A., and Toh-e, A. (2007). The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18, 569-580.

Isono, E., Saeki, Y., Yokosawa, H., and Toh-e, A. (2004). Rpn7 Is Required for the Structural Integrity of the 26 S Proteasome of Saccharomyces cerevisiae. J. Biol. Chem. 279, 27168-27176.

Isono, E., Saito, N., Kamata, N., Saeki, Y., and Toh-e, A. (2005). Functional Analysis of Rpn6p, a Lid Component of the 26 S Proteasome, Using Temperature-sensitive rpn6 Mutants of the Yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 6537-6547.

Keller, A., Eng, J., Zhang, N., Li, X.J., and Aebersold, R. (2005). A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1, 2005 0017.

Takeuchi, J., Fujimuro, M., Yokosawa, H., Tanaka, K., and Toh-e, A. (1999). Rpn9 is required for efficient assembly of the yeast 26S proteasome. Mol. Cell. Biol. 10, 6575-6584.

Yang, P., Fu, H., Walker, J., Papa, C.M., Smalle, J., Ju, Y.M., and Vierstra, R.D. (2004). Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 279, 6401-6413.