QUIVERS FOR SL₂ TILTING MODULES

DANIEL TUBBENHAUER AND PAUL WEDRICH

Abstract. Using diagrammatic methods, we define a quiver with relations depending on a prime p and show that the associated path algebra describes the category of tilting modules for SL_2 in characteristic p. Along the way we obtain a presentation for morphisms between p-Jones–Wenzl projectors.

Contents

1. Introduction 1
2. The Temperley–Lieb calculus 4
3. The quiver algebra 12
4. Inductive proof of the relations 22
5. Some conclusions 32
Table of notation and central concepts 34
References 34

1. Introduction

Let \mathbb{K} denote an algebraically closed field and $Tilt = Tilt(SL_2(\mathbb{K}))$ the additive, \mathbb{K}-linear category of (left-)tilting modules for the algebraic group $SL_2(\mathbb{K})$. This category can be described as the full subcategory of $SL_2(\mathbb{K})$-modules which is monoidally generated by the vector representation $T(1) \cong \mathbb{K}^2$, and which is closed under taking finite direct sums and direct summands.

The purpose of this paper is to give a generators and relations presentation of $Tilt$ by identifying it with the category of projective modules for the path algebra of an explicitly described quiver with relations. This quiver can be interpreted as the semi-infinite Ringel dual of $SL_2(\mathbb{K})$ in the sense of [BS18]. For \mathbb{K} of characteristic zero this is trivial as $Tilt$ is semisimple, and the indecomposable tilting modules are indeed the simple modules. The quantum analog at a complex root of unity is related to the zigzag algebra with vertex set \mathbb{N}_0 and a starting condition, see e.g. [AT17].

The focus of this paper is on the case of positive characteristic p, for which we represent $Tilt$ as a quotient $\mathbb{Z} = \mathbb{Z}_p$ of the path algebra of an infinite, fractal-like quiver, a truncation of which is illustrated for $p = 3$ in Figure 1.

The main result. From now on let \mathbb{K} be an algebraically closed field of characteristic $p > 0$, and let $SL_2(\mathbb{K})$ be the corresponding special linear group. Recall that the indecomposable tilting modules for $SL_2(\mathbb{K})$ are classified (up to isomorphism) by their highest weight $v - 1 \in \mathbb{N}_0$, and we pick a collection of representatives denoted by $T(v - 1)$.

Theorem A. There is an algebra isomorphism

\[\mathcal{F} : \mathbb{Z} \cong \bigoplus_{v,w \in \mathbb{N}_0} \text{Hom}_{Tilt}(T(v - 1), T(w - 1)), \]

Mathematics Subject Classification 2010. Primary: 20G05, 20C20; Secondary: 16D90, 17B10, 20G40.

Keywords. Modular representation theory, tilting modules, diagrammatic algebra, generators and relations, Temperley–Lieb, positive characteristic.
which sends the constant path on the vertex $v - 1$ to the idempotent for the summand $\mathbb{T}(v - 1)$.

Let pMod-Z denote the category of finitely-generated, projective (right-)modules for \mathbb{Z}. By semi-infinite Ringel duality [BS18, Section 4], we have the following consequence of Theorem A.

Corollary A There is an equivalence of additive, \mathbb{K}-linear categories

$$\mathcal{F}': \text{Tilt} \xrightarrow{\sim} \text{pMod-Z},$$

sending indecomposable tilting modules to indecomposable projectives. \qed

Several classical facts about $\text{SL}_2(\mathbb{K})$-modules are reflected in the presentation of the algebra \mathbb{Z}. For example, a path from $v - 1$ to $w - 1$ can only be non-zero in \mathbb{Z} if $\mathbb{T}(v - 1)$ and $\mathbb{T}(w - 1)$ share a common Weyl factor. More specifically, if the p-adic expansion $v = [a_j, ..., a_0]_p = \sum_{i=0}^{r} a_i p^i$ has exactly $r + 1$ non-zero digits, then $\mathbb{T}(v - 1)$ has exactly 2^r Weyl factors $\Delta(w - 1)$ where w is obtained by negating some of the non-zero digits a_i for $i < j$. In this case, \mathbb{Z} contains r arrows from $v - 1$ to those $w - 1 < v - 1$ that are obtained by negating a single digit.

Our assignment of morphisms to arrows uses the Temperley–Lieb category. In contrast to other descriptions of morphisms between indecomposable tilting modules for $\text{SL}_2(\mathbb{K})$, this presentation of \mathbb{Z} is well-adapted to study Tilt as a monoidal category.

The Weyl factors in indecomposable tilting modules are illustrated in the lines v, \mathbb{T}, Δ in Figure 1, where the colors distinguish arrows in different blocks, the connected components of the quiver, and each reddish number corresponds to the unique simple tilting module in its block.

The algebra \mathbb{Z} in a nutshell. We define the algebra \mathbb{Z} as a quotient of the path algebra of an infinite, fractal-like quiver over the prime field $\mathbb{F}_p \subset \mathbb{K}$. (In particular, we can always extend the algebra \mathbb{Z} to an algebra over \mathbb{K}.) We will use this introduction to sketch the main features of \mathbb{Z} and relegate the precise statement to Theorem 3.2.

- **The underlying quiver.** We identify the vertex set with \mathbb{N}_0 and the constant path at the vertex $v - 1$ will be denoted e_{v-1} (it corresponds to $\mathbb{T}(v - 1)$). If $v = [a_j, ..., a_0]_p$, then for every digit $a_i \neq 0$ with $i \neq j$ there is a pair of arrows

$$D_i e_{v-1}: (v - 1) \rightarrow (v[i] - 1), \quad U_i e_{v[i]-1}: (v[i] - 1) \rightarrow (v - 1),$$

where $v[i] = [a_j, ..., a_{i+1}, -a_i, a_{i-1}, ..., a_0]_p = v - 2a_i p^i$.

- **Some relations.** Up to some additional rules in special cases (which we ignore for the sake of this introduction), there are five types of relations among paths, which hold whenever both sides are defined and satisfy certain admissibility conditions.
1) Idempotents. \(e_{v-1}e_{v-1} = \delta_{w,w}e_{v-1}, e_{w-1}Fe_{v-1} = Fe_{v-1} \) and \(e_{w-1}Fe_{v-1} = e_{w-1}F \), where \(F \) is a word in the generators starting at \(v-1 \) and ending at \(w-1 \). (Throughout, we use such relations to absorb all but one idempotent in each string of generators.)

2) Nilpotency. \(D_i^2 e_{v-1} = U_i^2 e_{v-1} = 0 \).

3) Far-commutativity. \(D_iD_j e_{v-1} = D_jD_i e_{v-1} \), \(U_iD_j e_{v-1} = D_jU_i e_{v-1} \), as well as \(U_iU_j e_{v-1} = U_jU_i e_{v-1} \) whenever \(|i-j| > 1\).

4) Adjacency relations. \(D_{i+1}U_ie_{v-1} = D_iD_{i+1}e_{v-1} \) and \(D_iU_{i+1}e_{v-1} = U_{i+1}U_ie_{v-1} \), and scaled versions \(D_{i+1}D_i e_{v-1} = g'U_iD_{i+1}e_{v-1} \) and \(U_{i+1}U_i e_{v-1} = g''U_{i+1}D_i e_{v-1} \).

5) Zigzag. \(D_iU_i e_{v-1} = gU_iD_i e_{v-1} + fU_{i+1}U_iD_iD_{i+1} e_{v-1} \).

Here \(g, g', g'' \) and \(f \) are scalars that depend on \(p \) and the digit \(a_{i+1} \).

- **Hom spaces.** For \(v, w \in \mathbb{N} \) the \(\mathbb{F}_p \)-vector space \(e_{w-1}Ze_{v-1} \) is spanned by paths of the form \(e_{w-1}U_{j_k} \cdots U_{j_2} D_{i_l} \cdots D_{i_1} e_{v-1} \) with \(j_k > \cdots > j_1, i_1 < \cdots < i_l \), i.e. paths that descend before ascending again. In particular, we have \(e_{v-1}Ze_{v-1} \cong \mathbb{F}_p \) whenever \(v = ap^r \) for \(1 \leq a < p \), which reflects the fact that the corresponding tilting module \(T(v-1) \) is simple.

- **Endomorphism algebras.** Let \(v > 0 \) have \(r+1 \) non-zero digits with indices \(i_{r+1} > \cdots > i_1 \). Then we have the following identifications of \(\mathbb{F}_p \)-algebras

\[
e_{v-1}Ze_{v-1} \cong \mathbb{F}_p[U_{i_r}D_{i_r}, \ldots, U_{i_1}D_{i_1}] / \left\langle (U_{i_r}D_{i_r})^2, \ldots, (U_{i_1}D_{i_1})^2 \right\rangle.
\]

This leads to a description of the endomorphism algebra of \(T(v-1) \) which could have been expected from Donkin’s tensor product theorem [Don93, Proposition 2.1].

We would like to highlight that we will meet a law of small primes (loop) repeatedly. By this we mean the appearance of exceptional relations in cases of \(p \)-adic expansions with digits 0, 1, \(p-2 \), or \(p-1 \). These relations are exceptional in the sense that they contrast with the relations shown above, which describe the behavior of generic \(p \)-adic expansions for large primes \(p \). Nevertheless, exceptional relations are relevant for all primes, and for \(p = 2 \) only exceptional relations apply.

A word about the proof of Theorem A. The basis for our work is the classical fact that the Temperley–Lieb algebra controls the finite-dimensional representation theory of \(SL_2(\mathbb{K}) \). The second main ingredient is an explicit description of \(p \)-Jones–Wenzl projectors [BLS19], which are characteristic \(p \) analogs of the classical Jones–Wenzl projectors, that diagrammatically encode the projections

\[
T(1)^{\otimes (v-1)} \to T(v-1) \to T(1)^{\otimes (v-1)}.
\]

The bulk of this paper is devoted to a careful study of morphisms between \(p \)-Jones–Wenzl projectors over \(\mathbb{F}_p \) and the linear relations between them. This work was supported by extensive computer experimentation using Mathematica and SageMATH.

Relations to other work. To the best of our knowledge, the quiver underlying the tilting category is new: We study Tilt as a finitely presented category. So our main concern are the relations among composites of generating morphisms, rather than just the combinatorics of objects or the dimensions of morphism spaces, which appear in the classical literature.

We would like to acknowledge and reinforce that the \(SL_2(\mathbb{K}) \) representation theory is, of course, well-understood on the level of the modules, see e.g. [CC76], [AJL83], [Don93], [EH02a], [EH02b] and [DH05]. Further, various other quivers associated to \(SL_2(\mathbb{K}) \) are known, describing e.g. rational modules [MT11] or the extension algebra for simple [MT15] or Weyl modules [MT13].
A graded extension and translation functors. It is possible to give a similar quiver description of Tilt as a positively graded module category of the diagrammatic Soergel category $\mathbb{K}S$ for the Weyl group of type \tilde{A}_1, acting by translation functors. The first step in such an extension uses the quantum Satake equivalence (at $q = 1$) [Eli17] to connect the Temperley–Lieb diagrammatic calculus to $\mathbb{K}S$. In fact, Z faithfully describes the degree zero part of the antispherical module category for $\mathbb{K}S$. The second step uses ideas from [RW18] to relate $\mathbb{K}S$ and the principal block $\text{Tilt}_0 \subset \text{Tilt}$ as long as $p > 2$. Along this route, Tilt also inherits a grading from $\mathbb{K}S$.

In this case, the algebra Z essentially describes the degree zero part of the principal block Tilt_0, while the positive degree part is generated by additional degree 1 arrows $U_v: v \to v + 1$ and $D_v: v + 1 \to v$, which interact non-trivially with other paths. Note another fractal-like structure: Z describes Tilt, but also the degree zero part of $\text{Tilt}_0 \subset \text{Tilt}$. We will not pursue this extension in the present paper.

Characteristic zero and higher rank cases. Throughout we could allow the case of characteristic zero, for which Tilt is semisimple. In a more interesting variant, one replaces $\text{SL}_2(\mathbb{K})$ by its quantum group analog at a complex root of unity, using the Jones–Wenzl projectors from [GW93]. The role of Z is then played by the zigzag algebra with vertex set \mathbb{N}_0 and a starting condition, and we would recover a result of [AT17]. In this sense we think of Z as a positive characteristic version of the zigzag algebra.

We also like to highlight that, to the best of our knowledge, a quiver underlying tilting modules for higher rank groups is still unknown, even for the quantum group analog in characteristic zero, cf. [MMMT20, Section 5C] for some first steps in this direction.

We expect the diagrammatic methods used in this paper to generalize to $\text{SL}_N(\mathbb{K})$ and $\text{GL}_N(\mathbb{K})$. This would involve developing characteristic p analogs of so-called clasps, living in the corresponding web calculus, see e.g. [CKM14] or [TVW17], defined over \mathbb{F}_p.

Acknowledgments. D.T. likes to thank Henning Haahr Andersen, Ben Elias, Hankyung Ko, Catharina Stroppel and Geordie Williamson for teaching him everything he knows about tilting modules (which is basically nothing, but that is his fault alone). P.W. would like to thank James Borger, Ben Elias, Alexandra Grant, Anthony Licata and Scott Morrison for useful discussions. Special thanks to Henning Haahr Andersen, Jieru Zhu and an anonymous referee for valuable comments on a draft of this paper, to Nicolas Libedinsky for sharing a draft of the lovely paper [BLS19], which started this project, and Noah Snyder for pointing out a missing argument in the proof of Proposition 2.28.

Parts of this research were conducted while D.T. visited the Australian National University, supported by the Mathematical Sciences Research Visitor Program (MSRVP), and while P.W. visited Universität Zürich. Their hospitality and support are gratefully acknowledged. P.W. was supported by Australian Research Council grants ‘Braid groups and higher representation theory’ DP140103821 and ‘Low dimensional categories’ DP160103479.

2. The Temperley–Lieb calculus

Let $\mathcal{C} = (\mathcal{C}, \otimes, 1_\mathcal{C}, *)$ be a pivotal category with (strict) monoidal composition \otimes, unit $1_\mathcal{C}$, and duality $*$. We usually write $FG := F \circ G$ for the composition of morphisms. We read string diagrams for morphisms in \mathcal{C} from bottom to top and left to right, e.g.

$$(1 \otimes G)(F \otimes 1) = \begin{array}{c}
\otimes \\
F \\
\otimes \\
G
\end{array} = \begin{array}{c}
\otimes \\
F \\
\otimes \\
G
\end{array} = \begin{array}{c}
\otimes \\
F \\
\otimes \\
G
\end{array} = \begin{array}{c}
\otimes \\
F \\
\otimes \\
G
\end{array}.$$

2. The Temperley–Lieb calculus
The duality maps are pictured as cup and cap string diagrams, subject to the expected string-straightening relations. The pivotal structure additionally allows the rotation of string diagrams and guarantees that planar-isotopic diagrams represent the same morphism.

Let S be any commutative and unital ring. (For us S will usually be \mathbb{Q} or $\mathbb{F}_p \subset K$, the prime field of K. However, it also makes sense to formulate everything for \mathbb{Q}_p and \mathbb{Z}_p.)

The category \mathbf{STL} (see e.g. [KL94]) can be described as the pivotal S-linear category with objects indexed by $m \in \mathbb{N}_0$, and with morphisms from m to n being S-linear combinations of unoriented string diagrams drawn in a horizontal strip $\mathbb{R} \times [0,1]$ between m marked points on the lower boundary $\mathbb{R} \times \{0\}$ and n marked points on the upper boundary $\mathbb{R} \times \{1\}$, considered up to planar isotopy relative to the boundary and the relation that a circle evaluates to -2. The composition and tensor product operations are as described above.

Particular cases of the isotopy and circle relations are

\[\bigcap \bigcup = 1, \quad \bigcup \bigcap = -1, \quad \bigcirc = -2. \]

In the following we will use labeled strands as shorthand notation for bundles of parallel strands:

\[\begin{array}{c}
\text{strands:} \\
| m := \mathbb{1}_m = \cdots, \quad m \text{ caps:} \\
\quad = \cdots, \quad m \text{ caps:} \\
\end{array} \]

We even omit these numbers or the lines altogether if no confusion can arise.

The category \mathbf{STL} furthermore admits a contravariant, S-linear involution which reflects string diagrams in a horizontal line. Several arguments in the following will use this up-down symmetry. However, we will usually not have a left-right symmetry.

Recall that $\text{Hom}_{\mathbf{STL}}(m,n)$ is a free S-module with a basis B given by crossingless matchings. The through-degree $\text{td}(X_i)$ of $X_i \in B$ is the number of strands connecting the bottom to the top. More generally, the through-degree of a general morphism $F = \sum_{X_i \in B} x_i X_i$ is defined via $\text{td}(F) := \max\{\text{td}(X_i) \mid x_i \neq 0\}$. Note that $\text{td}(F G) \leq \min(\text{td}(F), \text{td}(G))$, and thus, $\text{td}(m,n) := \{F \in \text{Hom}_{\mathbf{STL}}(m,n) \mid \text{td}(F) \leq i\}$ form a sequence of nested (ω-)ideals in \mathbf{STL}.

Instead of m, the number of strands, let us now use $v = m + 1 \in \mathbb{N}$, which will be crucial number for everything that follows.

Definition 2.1 For $v \in \mathbb{N}$ the JW projectors $\mathbf{e}_{v-1} \in \text{Hom}_{QTL}(v-1,v-1)$ are the morphisms, which are recursively defined by

\[(2-1) \quad \mathbf{e}_0 := \emptyset, \quad \mathbf{e}_1 := |, \quad \mathbf{e}_{v-1} := \begin{array}{c}
\text{box:} \\
\frac{v-1}{v-1} := \frac{v-2}{v-1} + \frac{v-2}{v-2}
\end{array} \quad \text{if } v > 2, \]

where we use a box with $v-1$ bottom and top strands to indicate \mathbf{e}_{v-1}.

Lemma 2.2 (See e.g. [KL94, Section 3].) We have $(\mathbf{e}_{v-1})^* = \mathbf{e}_{v-1}$ and $\text{td}(\mathbf{e}_{v-1}) = v - 1$. Furthermore, the following properties hold, which are best expressed diagrammatically.

\[(2-2) \quad (2-3) \quad (2-4) \]

\[\begin{array}{c}
\frac{v-2}{v-1} = \frac{v-2}{v-1}, \quad \frac{v-1}{v-1} = \frac{v-1}{v-2}, \quad k \frac{v-1}{v-1} = (-1)^k \frac{v}{v-k} \cdot \frac{v-1}{v-1}.
\end{array} \]

Here $1 \leq w \leq v$ and the projector of thickness $w - 1$ in (2-2) can be at any place. Similarly, the cap or cup in (2-3) can be at any place and of any thickness. \qed
2A. Characteristic p notions. As already suggested by the recursion (2-1), the JW projectors have rational coefficients with respect to B and typically cannot be defined in $\mathbb{F}_p\mathbb{TL}$. To formalize this, consider the p-adic valuation $\nu_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$, defined for $n \in \mathbb{Z}$ as $\nu_p(n) = \max\{m \in \mathbb{N}_0 | p^m | n\}$ (including $\nu_p(0) = \infty$) and for $c = r/s \in \mathbb{Q}$ as $\nu_p(c) := \nu_p(r) - \nu_p(s)$.

Definition 2.3 For a non-zero $F = \sum_{X_i \in B} x_i X_i \in \mathbb{Q}\mathbb{TL}$ we let $\nu_p(F) := \min_i \{\nu_p(x_i)\}$. We call such a morphism p-admissible if $\nu_p(F) \geq 0$.

To highlight morphisms that might not be p-admissible, we use $\bar{\cdot}$ as e.g. in (2-1). Note that $F = \sum_{X_i \in B} x_i X_i \in \mathbb{Q}\mathbb{TL}$ is p-admissible if and only if every coefficient x_i can be presented as a reduced fraction r/s with $p \nmid s$. In this case, F represents an element \overline{F} of $\mathbb{F}_p\mathbb{TL}$, which is zero if and only if $\nu_p(F) > 0$. If we write $F = F_0 + F_{>0}$ with $\nu_p(F_0) = 0$ and $\nu_p(F_{>0}) > 0$, then $\overline{F} = \overline{F}_0$.

Example 2.4 We have $\nu_p(\overline{e}_{v-1}) = 0$ for $v \leq p$, which corresponds to the fact that the characteristic zero Weyl module $\Delta(v-1) = \tau(v-1)$ stays simple when reduced modulo p. However, for $v > p$, one typically has $\nu_p(\overline{e}_{v-1}) < 0$, and in such cases the projectors \overline{e}_{v-1} cannot be defined in $\mathbb{F}_p\mathbb{TL}$.

However, there are alternative idempotents $\overline{e}_{v-1} \in \mathbb{Q}\mathbb{TL}$ satisfying $\nu_p(\overline{e}_{v-1}) \geq 0$ and we will consider their specializations $e_{v-1} := \overline{e}_{v-1} \in \mathbb{F}_p\mathbb{TL}$. To this end, recall that we write $v = [a_j, ..., a_0]_p = \sum_i a_ip^i$ for the p-adic expansion of $v \in \mathbb{N}$ with digits $0 \leq a_i < p$ and $a_j \neq 0$. (More generally, we also write $[b_j, ..., b_0]_p := \sum_i b_ip^i$ for any $b_i \in \mathbb{Z}$.)

Definition 2.5 If $v = [a_j, ..., a_0]_p \in \mathbb{N}$ has only a single non-zero digit, then v is called an eve. The set of eves is denoted by Eve. If $v \notin$ Eve, then the mother m_v of v is obtained by setting the rightmost non-zero digit of v to zero. We will also consider the set $\Lambda(v) := \{m_v, m_v^2 := m_v, ..., \}$ of (matrilineal) ancestors of v, whose size g_v is called the generation of v.

Note that $\Lambda(v) = \emptyset$ if and only if $v \in$ Eve, and for $v \notin$ Eve we write Eve(v) for its eve.

Definition 2.6 For $v = [a_j, ..., a_0]_p$, the support $\text{supp}(v) \subset \mathbb{N}$ is the set of the 2^{g_v} integers of the form $w = [a_j, \pm a_{j-1}, ..., \pm a_0]_p$. The integers $v[i] = [a_j, ..., a_{i+1}, -a_i, a_{i-1}, ..., a_0]_p$ for $a_i \neq 0$ form the fundamental support $\text{fsupp}(v) \subset \text{supp}(v)$ of v.

Example 2.7 Let $p = 3$. Then $v = 23 = [2, 1, 2]_3$ has $g_{23} = 2$, and $m_{23} = 21 = [2, 1, 0]_3$ and $m_{23}^2 = \text{Eve}(23) = 18 = [2, 0, 0]_3$. Hence, the ancestry chart of 23 is

$$\Lambda(23) = \begin{array}{c} a_{23} \\ \overline{g}_{23} = 2 \\ g_{21} = 1 \\ 18 \in \text{Eve} \end{array}$$

Moreover, $\text{supp}(23) = \{23 = [2, 1, 2]_3, 19 = [2, 1, -2]_3, 17 = [2, -1, 2]_3, 13 = [2, -1, -2]_3\}$ and $\text{fsupp}(23) = \{19, 17\}$. In pictures,
where we have highlighted in yellow the support of 23. The solid green arcs indicate successive inclusions in fundamental supports, and dashed orange arcs indicate successive inclusions in non-fundamental supports, all starting from 23.

To account for losp we need the following admissibility conditions.

Definition 2.8 Let $S \subset \mathbb{N}_0$ be a finite set. We consider partitions $S = \bigsqcup_i S_i$ of S into subsets S_i of consecutive integers, which we call stretches (in the p-adic expansion of v). For the purpose of this definition, we fix the coarsest such partition.

The set S is called down-admissible for $v = [a_0, \ldots, a_0]_p$ if:

1. $a_{\min(S_i)} \neq 0$ for every i, and
2. if $s \in S$ and $a_{s+1} = 0$, then $s + 1 \in S$.

If $S \subset \mathbb{N}_0$ is down-admissible for $v = [a_0, \ldots, a_0]_p$, then we define

$$v[S] := [a_j, \epsilon_j-1a_{j-1}, \ldots, \epsilon_0 a_0]_p, \quad \epsilon_k = \begin{cases} 1 & \text{if } k \notin S, \\ -1 & \text{if } k \in S. \end{cases}$$

Conversely, S is up-admissible for $v = [a_0, \ldots, a_0]_p$ if the following conditions are satisfied:

1. $a_{\min(S_i)} \neq 0$ for every i, and
2. if $s \in S$ and $a_{s+1} = p - 1$, then $s + 1 \in S$.

If $S \subset \mathbb{N}_0$ is up-admissible for $v = [a_0, \ldots, a_0]_p$, then we define

$$v(S) := [a'_r(S), \ldots, a'_0]_p, \quad a'_k = \begin{cases} a_k & \text{if } k \notin S, k - 1 \notin S, \\ a_k + 2 & \text{if } k \notin S, k - 1 \in S, \\ -a_k & \text{if } k \in S, \end{cases}$$

where we extend the digits of v by $a_h = 0$ for $h > j$ if necessary.

If S is up-admissible, then we denote by $\overline{S} \subset \mathbb{N}_0$ the down-admissible hull of S, the smallest down-admissible set containing S, if it exists.

Example 2.9 Let $p = 7$. The set $S = \{5, 4, 3|0\}$ (here and in the following, we use vertical bars to highlight the coarsest partition into stretches) is down-admissible but not up-admissible for $v = [4, 5, 0, 2, 0, 6, 1]_7$. On the other hand, $S' = \{5, 4, 3|1, 0\}$ is up-admissible, but not down-admissible for v, and we get

$$v[5, 4, 3|0] = [4, 5, 0, 2, 0, 6, 1]_7 = [4, -5, 0, -2, 0, 6, -1]_7,$$
$$v(5, 4, 3|1, 0) = [4, 5, 0, 2, 0, 6, 1]_7 = [6, -5, 0, -2, 2, -6, -1]_7.$$

Here we have underlined the stretches of digits in \overline{S} and $\overline{S'}$. Furthermore, $\overline{S'} = \{5, 4, 3, 2, 1, 0\}$.

Example 2.10 We think of the operations $v \mapsto v(S)$ and $v \mapsto v[S]$ as reflecting v down and up along S, respectively. The admissibility restrictions ensure that the down-admissible sets S are in bijection with the elements $v[S] \in \text{supp}(v)$ and that reflecting down and up are inverse operations as we will see in Lemma 2.14. Explicitly, for $p = 3$ and $S = \{1, 0\}$ one gets

$$13(1, 0) = [\underline{1}, 1|\underline{1}]_3 = [3, -1, -1]_3 = 23, \quad 23[1, 0] = [\underline{2}, 1, \underline{2}]_3 = [2, -1, -2]_3 = 13.$$

See also (2-5).
Definition 2.11 For two non-empty sets $A, B \subset \mathbb{N}_0$ we define

$$d(A, B) = \min(|a - b| \mid a \in A, b \in B).$$

We say A and B are distant if $d(A, B) > 1$, adjacent if $d(A, B) = 1$, or overlapping if $d(A, B) = 0$.

If S and S' are down- or up-admissible for v and $S \cap S' = \emptyset$, then $S \cup S'$ will also be down- or up-admissible, respectively. Conversely, if S is down- or up-admissible for v and $S' \subset S$, then S' need not be down- or up-admissible for v.

For down- or up-admissible sets S, a central object in the following will be the finest partition into down- or up-admissible subsets $S = \bigsqcup_{k=0}^r S_k$ (the number $r(S) + 1$ is the size of this partition), which we order by size of their elements $S_k > S_{k-1}$. Note that the elements of S_k are necessarily consecutive integers, and that this partition is typically finer than the partition considered in Definition 2.8. We call the S_k minimal down- or up-admissible stretches of v, respectively. It is easy to check that

$$v[S] = v[S_1(S)] \cdots [S_0], \quad v(S) = v(S_0) \cdots (S_1(S)),$$

for down- or up-admissible S, respectively.

Example 2.12 For the set $S = \{5, 4, 3\} \cup \{0\}$ (partitioned into stretches by the bar) and v as in Example 2.9 the finest down-admissible partition is $S = \{5, 4, 3\} = S_2 \cup S_1 \cup S_0$ where $v[S_0], v[S_1], v[S_2] \in \text{fsupp}(v)$. More generally, the down-admissible sets S with $v[S] \in \text{fsupp}(v)$ are exactly the minimal down-admissible stretches for v.

If S' is also down- or up-admissible and distant from S, i.e. $d(S, S') > 1$, then we have:

$$(2-6) \quad v[S][S'] = v[S'][S], \quad v(S)(S') = v(S')(S), \quad v(S)[S'] = v[S'](S).$$

If S and T are subsets of \mathbb{N}_0, we write $T > S$ to indicate the requirement that every element in T be strictly greater than every element in S. We have the following equivalences of admissibilities.

Lemma 2.13 Consider stretches $S' > S$ with $d(S, S') = 1$.

(a) S is down-admissible for v and S' is down-admissible for $v[S]$ if and only if S' is down-admissible for $v[S']$. In this case we have $v[S][S'] = v[S'](S)$.

(b) S' is up-admissible for v and S is up-admissible for $v(S')$ if and only if S is down-admissible for v and S' is up-admissible for $v[S]$. In this case we have $v(S')(S) = v[S](S').$

Proof. We prove (a). For this we write $v = [a_j, \ldots, a_0]_p$, $S = \{s, s + 1, \ldots, s' - 1\}$ and $S' = \{s', s' + 1, \ldots, t - 1\}$.

S is down-admissible for v if and only if $a_s \neq 0$ and $a_{s'} \neq 0$, and we get

$$v[S] = [a_j, \ldots, a_t, a_{t-1}, \ldots, a_{s'+1}, a_{s'-1} - 1, p - a_{s'-1} - 1, \ldots, p - a_s, a_{s-1}, \ldots, a_0]_p.$$

Now S' is down-admissible for $v[S]$ if and only if $a_{s'} \neq 1$ and $a_t \neq 0$, and we get

$$v[S][S'] = [a_j, \ldots, a_t - 1, p - a_{t-1} - 1, \ldots, p - a_{s'} + 1, p - a_{s'-1} - 1, \ldots, p - a_s, a_{s-1}, \ldots, a_0]_p.$$

Conversely, S' is down-admissible for v if and only if $a_{s'} \neq 0$ and $a_t \neq 0$, and we get

$$v[S'] = [a_j, \ldots, a_t - 1, p - a_{t-1} - 1, \ldots, p - a_{s'}, a_{s'-1}, \ldots, a_s, a_{s-1}, \ldots, a_0]_p.$$

Now S is up-admissible for S' if and only if $a_s \neq 0$ and $a_{s'} \neq 1$. This shows the equivalence of admissibilities. Furthermore, by reflecting $v[S']$ up along S, it is easy to see $v[S'](S) = v[S][S']$. The case of (b) is analogous. \qed
Lemma 2.14 Let \(v \in \mathbb{N} \) and \(S \subset \mathbb{N}_0 \) finite.

(a) If \(S \) is up-admissible for \(v \), then \(S \) is down-admissible for \(w = v(S) \) and \(v = w[S] \).

(b) If \(S \) is down-admissible for \(v \), then \(S \) is up-admissible for \(u = v[S] \) and \(v = u(S) \).

Proof. Let \(v = [a_j, ..., a_0]_p \). By (2-6) it suffices to consider the case where \(S = \{s, s+1, ..., s' - 1\} \) is a single stretch. For Lemma 2.14(a), suppose that \(S \) is up-admissible for \(v \), i.e. \(a_s \neq 0 \) and \(a_{s'} \neq p - 1 \). We get

\[
w = v(S) = [..., a_{s' + 1}, a_{s'} + 2, -a_{s' - 1}, ..., -a_{s+1}, -a_s, a_{s-1}, ..., a_0]_p
\]

\[
= [..., a_{s' + 1}, a_{s'} + 1, p - a_{s' - 1} - 1, ..., p - a_{s+1} - 1, p - a_s, a_{s-1}, ..., a_0]_p.
\]

Since \(a_{s'} + 1 \neq 0 \) and \(p - a_s \neq 0 \), \(S \) is down-admissible for \(w \) and we have:

\[
v(S)[S] = [..., a_{s' + 1}, a_{s'} + 1, a'_{s' - 1} - p + 1, ..., a_{s+1} - p + 1, a_s - p, a_{s-1}, ..., a_0]_p = v.
\]

The proof of (b) is completely analogous. \(\square \)

2B. Bookkeeping for caps and cups. For this section, we fix \(v = [a_j, ..., a_0]_p \).

Definition 2.15 For \(0 \leq i \leq j \) we consider \(w = [a_j, ..., a_i + 1, -a_i, 0, ..., 0]_p - 1 \) and \(x = [a_{i-1}, ..., a_0]_p \) to define (down and up) diagrams in \(\mathbb{QTL} \) via

\[
d_{i} \mathbb{1}_{v-1} := \mathbb{1}_{x+w}d_{i} \mathbb{1}_{v-1} := \begin{array}{c}
\alpha
\
\beta
\end{array}, \quad \mathbb{1}_{v-1}u_{i} := \mathbb{1}_{v-1}u_{i} \mathbb{1}_{x+w} := \begin{array}{c}
\alpha
\
\beta
\end{array}.
\]

This includes the case of \(a_i = 0 \), for which we have \(d_{i} \mathbb{1}_{v-1} = \mathbb{1}_{v-1}u_{i} = \mathbb{1}_{v-1} \). Note that we use symbols such as \(\mathbb{1}_{v-1} \) to indicate the source or target of these morphisms.

Now, suppose that \(S = \{s_k > \cdots > s_1 > s_0\} \) and \(S' = \{s'_k > \cdots > s'_1 > s'_0\} \) are down-, respectively, up-admissible for \(v \). Then we set

\[
d_{S'} \mathbb{1}_{v-1} := \mathbb{1}_{v}[S]_{-1}d_{S} := \mathbb{1}_{v[S]_{-1}}d_{s_0} \cdots d_{s_{j} \mathbb{1}_{v-1}},
\]

\[
u_{S'} \mathbb{1}_{v-1} := \mathbb{1}_{v(S)_{-1}}u_{S'} := \mathbb{1}_{v(S)_{-1}}u_{s'_0} \cdots u_{s'_{j}} \mathbb{1}_{v-1}.
\]

In (2-7) and in the following we use the usual notation of idempotentened algebras to drop some of the involved idempotents. Further, the different orderings of the factors in \(d_S \) and \(u_{S'} \) ensure that stretches of consecutive integers in \(S \) and \(S' \) give rise to nested caps and cups, respectively.

Lemma 2.16 For \(S' > S \) with \(d(S', S) = 1 \) the following hold.

(a) \(S' \) is down-admissible for \(v \) and \(S \) is down-admissible for \(v[S'] \) if and only if \(S \) and \(S \cup S' \) are down-admissible for \(v \). In this case we have \(d_{S}d_{S'} \mathbb{1}_{v-1} = d_{S \cup S'} \mathbb{1}_{v-1} \).

(b) \(S \) is up-admissible for \(v \) and \(S' \) is up-admissible for \(v(S) \) if and only if \(S' \) and \(S' \cup S \) are up-admissible for \(v \). In this case we have \(u_{S'}u_{S} \mathbb{1}_{v-1} = u_{S' \cup S} \mathbb{1}_{v-1} \).

(c) If \(S' \) is up-admissible for \(v \) and \(S \) is down-admissible for \(v(S) \), then \(S' \cup S \) is up-admissible for \(v \). In this case we have \(d_{S}u_{S'} \mathbb{1}_{v-1} = u_{S' \cup S} \mathbb{1}_{v-1} \).

(d) If \(S \) is up-admissible for \(v \) and \(S' \) is down-admissible for \(v(S) \), then \(S \cup S' \) is down-admissible for \(v \). In this case we have \(d_{S}u_{S'} \mathbb{1}_{v-1} = d_{S \cup S'} \mathbb{1}_{v-1} \).

Proof. The claims about admissibility are not hard to prove and follow, mutatis mutandis, as in the proof of Lemma 2.13 given above. Finally, the equalities as e.g. \(d_{S}d_{S'} \mathbb{1}_{v-1} = d_{S \cup S'} \mathbb{1}_{v-1} \) are isotopies. \(\square \)
Definition 2.17 Using the same notation as in Definition 2.15, we define diagrams in TL

\[\tilde{d}_i \mathbb{1}_{v-1} := \mathbb{1}_{x+w} \tilde{d}_i \mathbb{1}_{v-1} := \bigcup_{x}^{w} \tilde{d}_i, \quad \mathbb{1}_{v-1} \tilde{u}_i := \mathbb{1}_{v-1} \tilde{u}_i \mathbb{1}_{x+w} := \bigcup_{x}^{w} \tilde{u}_i. \]

The boxes represent JW projectors of the size implicit in the diagram, namely \(w + a_i p^i = v - a_i p^i - x \).

Definition 2.18 Suppose that \(S = \{ s_k \gg \cdots \gg s_1 > s_0 \} \) is down-admissible for \(v \) and \(S' = \{ s'_k \gg \cdots \gg s'_1 > s'_0 \} \) is up-admissible for \(v \). Then we define trapezes and standard loops

\[
\begin{align*}
\tilde{s} & := \tilde{d}_S \mathbb{1}_{v-1} := \tilde{e}_v[S]^{-1} \tilde{d}_{s_0} \cdots \tilde{d}_{s_k} \mathbb{1}_{v-1}, \\
\tilde{s}' & := \tilde{u}_{S'} \mathbb{1}_{v-1} := \mathbb{1}_{v}[S']^{-1} \tilde{u}_{s'_0} \cdots \tilde{u}_{s'_k} \tilde{e}_v^{-1}, \\
\tilde{s} & := \tilde{L}_{v-1}^S := \tilde{u}_S \tilde{e}_v[S]^{-1} \tilde{d}_S.
\end{align*}
\]

Note that the diagrams defined in Definition 2.18 are not left-right symmetric.

Example 2.19 For \(v = [a, b, c]_\mathbb{P} \) we have:

We record that \(\text{td}(\tilde{d}_S \mathbb{1}_{v-1}) = v[S] - 1 \), \(\text{td}(\tilde{u}_S \mathbb{1}_{v-1}) = v - 1 \), and \(\text{td}(\tilde{L}_{v-1}^S) = v[S] - 1 \).

2C. The \(p \)-Jones–Wenzl projectors. For \(v \in \mathbb{N} \) and \(s \in \mathbb{N}_0 \) let \(a_{v,s} \) denote the youngest ancestor of \(v \) whose \(sth \) digit is zero. (By convention, \(a_{v,-1} = v \).) For each down-admissible \(S \) for \(v \) we let

\[(2-8) \quad \lambda_{v,S} := \prod_{s \in S} (-1)^{a_s p^s a_{v,s}^{-1}[S]} \in \mathbb{Q}. \]

Note that \(\nu_p(\lambda_{v,S}) = -|S| \).

Example 2.20 Let \(v = [1, 2, 6, 4, 0, 6, 6]_\mathbb{P} \) and \(S = \{5|3, 2, 1, 0\} \). Then we have \(\sum_{s \in S} a_s = 18 \), so the overall sign is positive. The relevant reflected ancestors in the telescoping product (2-8) are \(a_{v,-1}[S] = [1, -2, 6, -4, 0, -6, -6]_\mathbb{P}, a_{v,3}[S] = [1, -2, 6, 0, 0, 0, 0]_\mathbb{P}, a_{v,4}[S] = [1, -2, 0, 0, 0, 0, 0]_\mathbb{P}, a_{v,5}[S] = [1, 0, 0, 0, 0, 0, 0]_\mathbb{P} \). So we get

\[\lambda_{v,S} = [1, -2, 0, 0, 0, 0, 0, 0]_\mathbb{P} [1, -2, -4, 0, -6, -6]_\mathbb{P} = \frac{485105}{689087}, \quad \nu_7(\lambda_{v,S}) = -5. \]

The following is immediate from (2-8).

Lemma 2.21 If \(S' > S \) are down-admissible for \(v \), then \(\lambda_{v,S \cup S'} = \lambda_{v,S'} \lambda_{v,S} \).

As we will see below, the following definition is a reformulation of [BLS19, Section 2.3].

Definition 2.22 For \(v-1 \in \mathbb{N}_0 \) the rational \(p \)-JW projector \(\pi_{v-1} \in \text{Hom}_{\mathbb{Q} TL}(v-1, v-1) \) is defined to be

\[(2-9) \quad \pi_{v-1} := \sum_{S \in \text{supp}(\nu)} \lambda_{v,S} \tilde{L}_{v-1}^S = \sum_{S \in \text{supp}(\nu)} \lambda_{v,S} \tilde{S}. \]
Example 2.23 For $v = [a, b, c]_p$ we have

\[
\begin{align*}
\begin{bmatrix} v_0 \end{bmatrix} &= \begin{bmatrix} e \end{bmatrix} + (-1)^{c \cdot [a, b, c]_p / [1, 0, 0]_p} \cdot \begin{bmatrix} e \\ v_1 \\ e \end{bmatrix} + (-1)^{b \cdot [a, b, 0]_p / [0, 0, 0]_p} \cdot \begin{bmatrix} e \\ v_2 \\ e \end{bmatrix} + (-1)^{b \cdot c \cdot [a, b, c]_p / [0, 0, 0]_p} \cdot \begin{bmatrix} e \\ v_3 \\ e \end{bmatrix}.
\end{align*}
\]

Lemma 2.24 The elements σ_{v-1} agree with the ones defined in [BLS19, Section 2.3]. (Note however that we have mirrored their definition.)

Proof. Careful inspection of the recursive definition in [BLS19, Section 2.3]. More precisely, in our notation their recursion works as follows. If $v \in \text{Eve}$, then $\sigma_{v-1} = \sigma_{v-1}$. Otherwise, (2-10)

\[
\begin{align*}
\begin{bmatrix} v_0 \end{bmatrix} &= \sum_{m \in [S] \in \text{supp}(\sigma_v)} \lambda_{\sigma_v, S} \left(\begin{array}{c} a, p' \\ v[S, b, c] \\ s \\ a, p \\ v[S, a, b, c] \\ s \end{array} \right) + (-1)^{a \cdot p \cdot v[S, s]} \cdot \left(\begin{array}{c} a, p' \\ v[S, b, c] \\ s \\ a, p \\ v[S, a, b, c] \\ s \end{array} \right),
\end{align*}
\]

where a_s is the first non-zero digit of v. □

By Lemma 2.24, we can refer to results of [BLS19] without further notice.

Proposition 2.25 ([BLS19, Theorem 2.6.] For any $v \in \mathbb{N}$ we have $\nu_p(\sigma_{v-1}) \geq 0$. □

Definition 2.26 We define the pJW projectors $e_{v-1} := \sigma_{v-1} \in \text{End}_{\mathbb{K}[p]TL}(v-1)$.

In illustrations we distinguish the three types of JW projectors via

\[
\begin{array}{c}
\sigma_{v-1} = \begin{bmatrix} \sigma_{v-1} \end{bmatrix}, \\
\sigma_{v-1} = \begin{bmatrix} \sigma_{v-1} \end{bmatrix}, \\
e_{v-1} = \begin{bmatrix} e_{v-1} \end{bmatrix},
\end{array}
\]

called JW, rational pJW and pJW projectors, respectively.

Example 2.27 Note that these projectors behave quite differently, e.g. for the projectors as in Example 2.23 we have

\[
\begin{align*}
\begin{bmatrix} v_0 \end{bmatrix} &= 0, \\
\begin{bmatrix} v_2 \end{bmatrix} &= \begin{bmatrix} \sigma_{v-1} \end{bmatrix}, \\
\begin{bmatrix} v_3 \end{bmatrix} &= \begin{bmatrix} e \end{bmatrix}.
\end{align*}
\]

Proposition 2.28 We have a pivotal, \mathbb{K}-linear functor

\[
\mathcal{D} : \mathbb{K}[p]TL \to \text{Tilt}, \quad \mathcal{D}(v-1) = \mathcal{T}(1)^{\otimes (v-1)},
\]

which sends the idempotent e_{v-1} to the projection $\mathcal{T}(1)^{\otimes (v-1)} \to T(v-1) \to \mathcal{T}(1)^{\otimes (v-1)}$. This functor induces an equivalence of pivotal \mathbb{K}-linear categories upon additive Karoubi completion.

Proof. By Proposition 2.25 and the construction of $\mathbb{K}[p]TL$, the only non-trivial statement is the fully-faithfulness of \mathcal{D}. This is known; however, for completeness, let us give a short (but not new, cf. [Eli15, Theorem 2.58] or [AST17, Proposition 2.3]) argument for this. First, the same statement over \mathbb{C} is a classical result and dates back to work of Rumer–Teller–Weyl. This implies that hom spaces on both sides have the same dimension over \mathbb{C}. The point is now the flatness of both sides. Precisely, the standard basis B works for $\mathbb{Z}[p]TL$, showing that the dimensions of hom spaces in $\mathbb{K}[p]TL$ are independent of the characteristic. The same is true in the image of \mathcal{D}: The module $\mathcal{T}(1)$ is a tilting module regardless of the characteristic, and the same thus holds for $\mathcal{T}(1)^{\otimes (v-1)}$. This implies that the hom spaces in $\mathcal{D}(\mathbb{K}[p]TL)$ are also independent of the
characteristic. Finally, one can check that \(\mathcal{D}(B) \) remains linear independent, and the claim follows since all involved dimensions are finite and the same on both sides.

\[\square \]

3. The quiver algebra

3A. Generators and relations. In order to prove Theorem A we have to give a presentation of the algebra

\[3A. \quad Z := \bigoplus_{v,w \in \mathbb{N}} \text{Hom}_{\mathbb{F}_p \mathbf{TL}}(e_{v-1}, e_{w-1}) \]

by generators and relations. To this end, we first introduce notation for certain elements.

Definition 3.1 Let \(S \) and \(S' \) be down- and up-admissible for \(v \), respectively. Then we define

\[D_S e_{v-1} := e_{v[S]-1} d_S e_{v-1}, \]

\[U_{S'} e_{v-1} := e_{v(S')-1} u_{S'} e_{v-1}, \]

\[L_{v-1}^S e_{v-1} := e_{v-1} u_S d_S e_{v-1}. \]

We call the latter the loop on \(v-1 \) down through \(v[S]-1 \).

We will consider the morphisms \(D_S e_{v-1} \) and \(U_{S'} e_{v-1} \) as generators for \(Z \), but restrict to the cases when \(S \) and \(S' \) are minimal admissible stretches of consecutive integers. Then these morphisms can be pictured as

\[\begin{align*}
D_S e_{v-1} &= \begin{array}{|c|}
\hline
\vdots \\
\hline
\end{array}, \\
U_{S'} e_{v-1} &= \begin{array}{|c|}
\hline
\vdots \\
\hline
\end{array}, \\
L_{v-1}^S e_{v-1} &= \begin{array}{|c|}
\hline
\vdots \\
\hline
\end{array}.
\end{align*} \]

We define two functions \(f, g : \mathbb{F}_p \rightarrow \mathbb{F}_p \) (where we again see losp) via

\[f(a) = \begin{cases}
(-a)^2 / a & \text{if } 1 \leq a \leq p-2, \\
0 & \text{if } a = 0 \text{ or } a = p-1
\end{cases}, \quad g(a) = \begin{cases}
-(a+1) / a & \text{if } 1 \leq a \leq p-1, \\
-2 & \text{if } a = 0
\end{cases} \]

Note that \(f(p-1) = g(p-1) = 0 \) and \(g(a) = g(p-a-1)^{-1} \) for \(a \neq 0, p-1 \). Then for each finite \(S \subset \mathbb{N}_0 \) we define scaling operators \(f_S, g_S, h_S \in Z \) on \(v = [a_j, ..., a_0]_p \) as

\[f_S e_{v-1} = f(a_{\max(S)+1}) e_{v-1}, \quad g_S e_{v-1} = g(a_{\max(S)+1}) e_{v-1}, \quad h_S e_{v-1} = g(a_{\max(S)+1}+1) e_{v-1}. \]

These are not considered as generators of \(Z \), but as mere bookkeeping devices for the appearing scalars.

Theorem 3.2 (Generators and relations.) The algebra \(Z \) is generated by \(e_{v-1} \) for \(v \in \mathbb{N} \), and elements \(D_S e_{v-1} \) and \(U_{S'} e_{v-1} \), where \(S \) and \(S' \) denote minimal down- and up-admissible stretches for \(v \), respectively. These generators are subject to the following complete set of relations.

1. **Idempotents.**

 \[e_{v-1} e_{w-1} = \delta_{v,w} e_{v-1}, \quad e_{v[S]-1} D_S e_{v-1} = D_S e_{v-1}, \quad e_{v(S')-1} U_{S'} e_{v-1} = U_{S'} e_{v-1}. \]

2. **Containment.** If \(S' \subset S \), then we have

 \[D_{S'} D_S e_{v-1} = 0, \quad U_S U_{S'} e_{v-1} = 0. \]

3. **Far-commutativity.** If \(d(S, S') > 1 \), then

 \[D_S D_{S'} e_{v-1} = D_{S'} D_S e_{v-1}, \quad D_S U_{S'} e_{v-1} = U_{S'} D_S e_{v-1}, \quad U_S U_{S'} e_{v-1} = U_{S'} U_S e_{v-1}. \]
(4) Adjacency relations. If \(d(S, S') = 1 \) and \(S' > S \), then
\[
D_S U Se_{v-1} = D_{S U S'} e_{v-1}, \quad D_S U Se_{v-1} = U_{S' U S} e_{v-1},
\]
(5) Overlap relations. If \(S' \geq S \) with \(S' \cap S = \{s\} \) and \(S' \not\subset S \), then we have
\[
D_S D Se_{v-1} = U_{\{s\}} D S D S' e_{v-1}, \quad U S U S' e_{v-1} = U_{S' \setminus \{s\}} U S D \{s\} e_{v-1}.
\]
(6) Zigzag.
\[
D_S U Se_{v-1} = U_S D S D S' e_{v-1} + U_T U_S D S D T S' e_{v-1}.
\]
Here, if the down-admissible hull \(S \), or the smallest minimal down-admissible stretch \(T \) with \(T > S \) does not exist, then the involved symbols are zero by definition.

(Basis) The elements of the form
\[
e_{w-1} U S_{i_1} \cdots U S_{i_0} D S_{i_0} \cdots D S_{i_k} e_{v-1},
\]
with \(S_{i_1} > \cdots > S_{i_0} \), and \(S_{i_0} < \cdots < S_{i_k} \), form a basis for \(e_{w-1} Z e_{v-1} \).

(C) Any word \(e_{w-1} F e_{v-1} \) in the generators of \(Z \) can be rewritten as a linear combination of basis elements from (Basis) using only the relations (1)–(6).

Remark 3.3 The algebra \(Z \) is a path algebra of an underlying quiver as follows. The idempotents \(e_{v-1} \) correspond to vertices of a quiver, call these \(v - 1 \). The elements \(D_S e_{v-1} \) and \(U S' e_{v-1} \) correspond to arrows starting at the vertex \(v - 1 \), and either pointing to downwards or upwards (which is leftwards respectively rightwards in Figure 1) to \(v|S| - 1 \) or \(v(S) - 1 \).

Remark 3.4 In the special case of \(v = w \), Theorem 3.2.(Basis) says that ploops form a basis of the endomorphism spaces. Furthermore, we will see in Lemma 3.25 that all ploops are products of ploops \(L_{e_{w-1}} e_{v-1} \) for \(S \) minimal down-admissible.

Remark 3.5 In Theorem 3.2.(4) and (6), the right-hand sides of the shown relations feature morphisms indexed by admissible subsets that are not necessarily minimal. We shall see in Lemma 3.16 that such morphisms decompose into products of generators
\[
(D_S e_{v-1}) := D_{S_1} \cdots D_{S_k} e_{v-1}, \quad (U S' e_{v-1}) := U_{S'_1} \cdots U_{S'_k} e_{v-1},
\]
where the products are taken over the minimal down- respectively up-admissible stretches \(S_{i_j} \) and \(S'_{i_j} \), such that \(S = \bigcup_j S_{i_j} \) and \(S' = \bigcup_j S'_{i_j} \), with \(S_{i_1} < \cdots < S_{i_k} \) and \(S'_{i_1} > \cdots > S'_{i_k} \).

In Theorem 3.2 we use (3-3) as a shorthand notation, but one could also take \(D_S e_{v-1} \) and \(U S' e_{v-1} \) for (not necessarily minimal) admissible \(S \) and \(S' \) as generators for \(Z \). This requires listing the additional relations
\[
(D_S e_{v-1}) := D_{S_1} D_{S_2} e_{v-1}, \quad (U S' e_{v-1}) := U_{S'_1} U_{S'_2} e_{v-1},
\]
for down-admissible \(S_1 < S_2 \) with \(S = S_1 \cup S_2 \) and up-admissible \(S'_1 > S'_2 \) with \(S' = S'_2 \cup S'_1 \), in addition to the relations Theorem 3.2.(1-6) among minimal generators. One advantage of such a presentation is that it exhibits \(Z \) as a quadratic algebra, since relations Theorem 3.2.(4-6) now turn into quadratic relations with respect to the enlarged generating set.

The proof of Theorem 3.2 will occupy the remainder of this paper. However, we already note that Theorem 3.2.(1) holds by the definition of \(Z \) as the endomorphism algebra of a direct sum. Moreover, assuming the relations Theorem 3.2.(1-6), we get:
Lemma 3.6 (Completeness—Theorem 3.2.(Complete).) Let \(e_{w-1}F e_{v-1} \in Z\). Then there is a finite sequence of relations Theorem 3.2.(1-6) rewriting it as a linear combination of elements of the form Theorem 3.2.(Basis).

Proof. We can immediately restrict to the case where \(e_{w-1}F e_{v-1}\) is a product of generators of \(Z\) (rather than a linear combination of such). In order to prove the claim, we will show that, if \(e_{w-1}F e_{v-1}\) is not of the desired form, then we can measure its complexity by counting out-of-order pairs of the following forms, all other pairs are called in-order.

(i) \(D_S^t D_S\) or \(U_S U_{S'}\) for \(S' \geq S\).

(ii) \(D_S U_{S'}\).

A case-by-case check will verify that we can use our relations to reduce these to in-order pairs, which then inductively shows the claim. For the case-by-case check we write down the list of all combinations how stretches \(S\) and \(S'\) can meet. A priori, there are 13 such cases illustrated by

\[
\begin{align*}
\min(S) < \min(S') & : 1a) \quad \ldots \quad 1b) \quad \ldots \quad 1c) \quad \ldots \quad 1d) \quad \ldots \quad 1e) \quad \ldots, \\
\min(S) > \min(S') & : 2a) \quad \ldots \quad 2b) \quad \ldots \quad 2c) \quad \ldots \quad 2d) \quad \ldots \quad 2e) \quad \ldots, \\
\min(S) = \min(S') & : 3a) \quad \ldots \quad 3b) \quad \ldots \quad 3c) \quad \ldots,
\end{align*}
\]

where the solid line represents \(S\) and the dashed line \(S'\), with smaller entries appearing further to the right. Some of the illustrated cases never arise when considering minimal admissible stretches and the remaining cases are precisely covered by our relations. Let us do this in detail for the out-of-order pair \(D_S^t D_S\). First, the cases 2a)–2e) as well as 1e) and 3c) are ruled out by the assumption \(S' \geq S\). The case 1a) is far-commutativity, the case 1b) adjacency, while 1d) and 3b) are covered by containment. The relation 3a) does not occur as \(S'\) would not be minimal. The remaining case 1c) is only possible if \(S' \cap S = \{\min(S')\}\), in which case we can apply the overlap relation.

3B. Basic properties of pJW projectors. We invite the reader to illustrate the statements and proofs of the next lemmas using the explicit diagrammatic examples of trapezes from Example 2.19 and of pJW projectors from Example 2.23.

Lemma 3.7 (See [BLS19, Proposition 3.2].) Suppose that \(S\) and \(S'\) are down-admissible for \(v\). Then we have

\[
\tilde{e}_{v[S]} \tilde{d}_S \tilde{u}_{S'} \tilde{e}_{v[S']^{-1}} = \delta_S, S' \lambda_{v, S S'}^{-1} \cdot \delta_S, S' \lambda_{v, S S'}^{-1} = \delta_S, S' \lambda_{v, S S'}^{-1} \cdot \tilde{e}_{v[S']^{-1}}.
\]

Thus, the summands \(\lambda_{v, S} \tilde{d}_S \tilde{u}_{v[S']}^{-1}\) in (2-9) are orthogonal idempotents in \(QTL\).

Lemma 3.8 Suppose \(S\) is down-admissible for \(v\), and \(S' = \{s, \ldots, s' - 1\}\) is a minimal down-admissible stretch for \(v\). Then we have

\[
\begin{cases}
(-1)^{a_{v,S}} a_{v,S'} \cdot \delta_{S,S'}^{-1} & \text{if } s \in S, s' \notin S, \\
\delta_{S,S'}^{-1} & \text{if } s \notin S, s' \in S, \\
0 & \text{otherwise}.
\end{cases}
\]

We will also use the non-zero cases in the form:

\[
\begin{align*}
\lambda_{v,S'} \cdot \delta_{S,S'}^{-1} & = \lambda_{v,S'} \cdot \delta_{S,S'}^{-1} \quad \text{if } s \in S, s' \notin S, \\
\lambda_{v,S} \cdot \delta_{S,S'}^{-1} & = \lambda_{v,S} \cdot \delta_{S,S'}^{-1} \quad \text{if } s \notin S, s' \in S.
\end{align*}
\]
Proof. Relation (2-3) implies that \(ds' \tilde{u} s e_v[S]_{-1} = 0 \) if either \(s \in S, s' \in S \) or \(s \notin S, s' \notin S \). For the other cases, we define \(S_+ = \{ t \in S \mid t > s' \} \) and \(S_- = \{ t \in S \mid t < s \} \). If \(s \in S \) and \(s' \notin S \), then we use far commutativity, relation (2-4), and \(ds' = ds \) to compute

\[
d_{s'} \tilde{u} S e_v[S]_{-1} = \tilde{u} S_+ d_{s'} \tilde{u} S e_v[S]_{-1} = (-1)^{p(v)} e_v[S]_{-1} \tilde{u} S_+ e_v[S]_{-1}
\]

Similarly, if \(s \notin S \) but \(s' \in S \), we use far commutativity and an isotopy to compute

\[
d_{s'} \tilde{u} S e_v[S]_{-1} = d_{s'} \tilde{u} S_+ \cup (s') \tilde{u} S_- e_v[S]_{-1} = \tilde{u} S_+ \cup (s') \tilde{u} S_- e_v[S]_{-1} = \tilde{u} S \cup S e_v[S]_{-1},
\]

which finishes the proof. \(\square \)

Lemma 3.9 Suppose that \(S' = \{ s, \ldots, s'-1 \} \) is the smallest minimal down-admissible stretch for \(v \) and let \(S \) be down-admissible for \(a_{v,s} = m_v \). Then we have:

\[
(3-6) \quad \sum_{s'=s}^{s'-1} \tilde{d} \tilde{S} = \begin{cases} \tilde{u} S e_v[S]_{-1} \tilde{d} \tilde{S} & \text{if } s' \notin S, \\ \tilde{u} S_{s} \cup S e_v[S]_{-1} \tilde{d} \tilde{S} & \text{if } s' \in S. \end{cases}
\]

Proof. Similar, but easier than the proof of Lemma 3.8. \(\square \)

Lemma 3.10 Let \(e = \text{Eve}(v) \) and \(w \leq v = [a_j, \ldots, a_0]_p \). Then we have

\[
\begin{align*}
&\tilde{e}_{\ell-1} = \tilde{e}_{v-1} = \tilde{v}_{\ell-1} = \tilde{e}_{v-1} \tilde{w}^{-1} = \tilde{w}^{-1} \tilde{e}_{v-1} = \tilde{v}_{\ell-1} = \tilde{e}_{v-1} \\
&\end{align*}
\]

Proof. The first pair of equalities is clear since \(\mathfrak{T}_{w-1} \) contains \(1_{w-1} \) with coefficient 1 and otherwise only cap and cup diagrams, which are killed by (2-3). For a down-admissible set \(S \), let \(i(S) = \max\{ s \in S \mid a_s \neq 0 \} \). For the second pair of equalities we express \(\mathfrak{T}_{v-1} \) as

\[
\mathfrak{T}_{v-1} = e_{v-1} + \sum_{i=0}^{j-1} \left(\sum_{v[S] \in \text{supp}(v), i(i(S) \mathfrak{T}_{v-1}^{j}) \lambda_{v, S} \tilde{e}_{v-1} \right)
\]

It follows from Lemma 3.7 that the summands \(\mathfrak{T}_{v-1}(i) \) are orthogonal idempotents. Note that we can write \(\mathfrak{T}_{v-1}(i) = \tilde{u} \text{F}(v, i) \tilde{d} \), for some morphism \(\text{F}(v, i) \). In particular, \(\mathfrak{T}_{v-1}(i) \) absorbs \(e_{a_{v,i}-1} \) or smaller, and it annihilates all \(e_k \) for \(k > a_{v,i} - 1 \). In particular, it absorbs \(e_{e-1} \). \(\square \)

We prove now a significant generalization of [BLS19, Proposition 3.3] and the analog of (2-2).

Proposition 3.11 (Classical absorption.) Let \(w \leq v \). Then we have

\[
\begin{align*}
&\tilde{e}_{\ell-1} = \tilde{e}_{v-1} = \tilde{v}_{\ell-1} = \tilde{e}_{v-1} \\
&\end{align*}
\]

Proof. We distinguish two cases. If \(w \leq e = \text{Eve}(v) \), then we have

\[
\mathfrak{T}_{w-1} \mathfrak{T}_{v-1} = \mathfrak{T}_{w-1} \mathfrak{T}_{e-1} \mathfrak{T}_{v-1} = \mathfrak{T}_{e-1} \mathfrak{T}_{v-1} = \mathfrak{T}_{v-1}
\]

and the other equation follows by reflection.

On the other hand, if \(w \geq \text{Eve}(v) \), then \(A(v) \cap A(w) \neq \emptyset \). Let \(z = a_{v,s} = a_{w,t} \) denote the youngest common ancestor of \(v \) and \(w \). It follows that \(u = a_{v,s} - 1 \) is the oldest ancestor of \(v \) with
$u \geq w$. Now, we have $e_{v-1} e_{w-1} = e_{v-1}$ and $e_{v-1} e_{w-1}(j) = 0$ for any j, as well as

$$e_{v-1}(i) e_{w-1} = \begin{cases} e_{v-1}(i) & \text{if } i < s, \\ 0 & \text{if } i \geq s, \end{cases} e_{w-1}(j) = \delta_{a_{v,i}, a_{w,j}} e_{v-1}(i).$$

The latter is a consequence of Lemma 3.7. Moreover, for each $i \geq s$, there exists exactly one j, such that $a_{v,i} = a_{w,j}$. Thus, we have

$$e_{v-1} e_{w-1} = e_{v-1} e_{w-1} + \sum_i e_{v-1}(i) e_{w-1} + \sum_{i,j} e_{v-1}(i) e_{w-1}(j)$$

$$= e_{v-1} + \sum_{i<s} e_{v-1}(i) + \sum_{i\geq s} e_{v-1}(i) = e_{v-1}.$$

The computation for $e_{w-1} e_{v-1}$ is analogous. \hfill \square

Example 3.12 For $p = 3$ we have

$$\begin{array}{c}
\begin{array}{c}
2 \\
3
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
3 \\
2
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
2 \\
3
\end{array} \neq \begin{array}{c}
\begin{array}{c}
3 \\
2
\end{array}
\end{array} \neq \begin{array}{c}
\begin{array}{c}
3 \\
2
\end{array}
\end{array}
\end{array}$$

We also have the following relations with no classical analog.

Proposition 3.13 (Non-classical absorbtion and shortening.) Let S be a down-admissible stretch for v. Then we have

$$e_{v[S]-1} d_S e_{v-1} = d_S e_{v-1}$$

$$e_{v-1} u S e_{v[S]-1} = e_{v-1} u S$$

$$e_{v[S]-1} d_S (1_{v-a_{v,s}} \otimes e_{a_{v,s-1}}) = d_S e_{v-1}$$

$$(1_{v-a_{v,s}} \otimes e_{a_{v,s-1}}) u S e_{v[S]-1} = e_{v-1} u S$$

Here $a_{v,s}$ denotes the youngest ancestor of v for which the sth digit is zero.

Proof. If suffices to prove these relations in the case of minimal down-admissible stretches. To be consistent with the above notation, let us write $S' = \{s, \ldots, s' - 1\}$ instead of S.

In order to verify the first relation we compute, using (3-5), that

$$d_S e_{v-1} = d_S \sum_{v[S] \in \text{supp}(v)} \lambda_{v,S} e_{v[S]-1}$$

$$= \sum_{s \in S, s' \notin S} \lambda_{v,S}, e_{v[S]-1} d_S + \sum_{s \notin S, s' \in S} \lambda_{v,S} e_{v[S]-1} d_S.$$

For s with $s \in S, s' \notin S$, we define $S_+ = S \setminus S'$. For s with $s \notin S, s' \in S$, we define $S_- = S \cup S'$.

It is easy to verify that the sets S_- and S_+ are down-admissible for $v[S']$.

Then Lemma 3.7 implies that each summand in (3-7) is invariant under left multiplication by a unique summand in $e_{v[S']-1} = \sum_{v[S'] \in \text{supp}(v[S'])} \lambda_{v[S'],X} e_{v[S']-1}$, while it is killed under left multiplication by any other summand. This proves the first equation; the second absorption equation follows by reflection symmetry.

For later use, note that the relevant summands of $e_{v[S']-1}$ are the $\lambda_{v[S'],X} e_{v[S']-1}$ for which $s, s' \in X$ or $s, s' \notin X$.

Now we are ready to prove the projector shortening relations. We start by expanding

$$d_S (1_{v-a_{v,s}} \otimes e_{a_{v,s-1}}) = d_S \sum_{a_{v,s} | S \in \text{supp}(a_{v,s})} \lambda_{a_{v,s},S} (1_{v-a_{v,s}} \otimes e_{a_{v,s-1}}).$$
Thus, by (3-8), we have
\[\tilde{d}_{S'}(\mathbb{1}_{v-a_v,s} \otimes \tilde{L}_{a_v,s-1}^S) = \begin{cases} \tilde{u}_s \tilde{a}_{a_v,s-1|S|S'-1} \tilde{d}_{S \cup S'} & \text{if } s' \notin S, \\ \tilde{u}_s \tilde{a}_{a_v,s-1|S|S'-1} \tilde{d}_S & \text{if } s' \in S. \end{cases} \]

In the resulting elements we either see \(\tilde{u}_S \), with \(s, s' \notin S \) or \(\tilde{u}_{S \cup S'} \) with \(s, s' \in S \cup S' \).

Now, if \(X \) is down-admissible for \(v[S'] \), we compute
\[(\lambda_v[S], X \tilde{L}_v[S'-1]) \tilde{d}_{S'}(\lambda_{a_v,s} \mathbb{1}_{v-a_v,s} \otimes \tilde{L}_{a_v,s-1}^S) = \begin{cases} c_1(v,Y) \tilde{u}_s \tilde{a}_v[Y]-1 \tilde{d}_Y & \text{if } s \notin X =: S, \ s' \notin S, X(\geq s') = S, Y := S \cup S', \\ c_2(v,Y) \tilde{u}_s \tilde{a}_v[Y]-1 \tilde{d}_Y & \text{if } s \in X =: S_+, \ s' \in S, X(\geq s') = S, Y := S_+ \setminus S', \\ 0 & \text{otherwise,} \end{cases} \]

where the scalars \(c_1(v,Y) \) and \(c_2(v,Y) \) are computed as follows.
\[
\begin{align*}
 c_1(v,Y) &= \lambda_v[S], X \lambda_{a_v,s} \lambda_{a_v,s}^{-1} \\
 &= \lambda_v[S], X \lambda_{a_v,s} \lambda_{a_v,s}^{-1} S = \lambda_v[S], Y \setminus S', \\
 c_2(v,Y) &= \lambda_v[S], X \lambda_{a_v,s} \lambda_{a_v,s}^{-1} S \setminus S_+ \\
 &= (-1)^{a_v[p^* a_v[1]]} \lambda_v[Y] \lambda_{a_v,s} S (-1)^{a_v[p^* a_v[1]]} \lambda_{a_v,s} S = \lambda_v[Y].
\end{align*}
\]

Thus, by (3-8), we have
\[\tilde{e}_v[S] \tilde{d}_{S'}(\mathbb{1}_{v-a_v,s} \otimes \tilde{L}_{a_v,s-1}^S) = \sum_{X,S} (\lambda_v[S], X \tilde{L}_v[S'-1]) \tilde{d}_{S'}(\lambda_{a_v,s} \mathbb{1}_{v-a_v,s} \otimes \tilde{L}_{a_v,s-1}^S). \]

This establishes the third relation. The analogous relation for cups follow by reflection. \(\square \)

The characteristic \(p \) analog of (2-4) is:

Proposition 3.14 (Partial trace.)

(a) For \(v \notin \text{Eve}, a_s \) being the first non-zero digit of \(v \), we have
\[
(3-9) \quad a_v[p^* \mathbb{1}_{v-1}] = (-1)^{a_v[p^* 2 \cdot a_v-1]}. \]

On the other hand, if \(v \in \text{Eve} \) and \(v \geq p \), then the (partial) trace of \(\mathbb{1}_{v-1} \) is zero.

(b) Let \(S \) be down-admissible for \(v \) and \(S' \) the smallest minimal down-admissible stretch for \(v \). Then the partial trace on the bundle of strands specified by \(S' \) evaluates as:
\[
p\text{Tr}_{S'}(\tilde{L}_{a_v}^S) = \begin{cases} L_{a_v}^{S \setminus S'} & \text{if } S' \subset S, \\ (-1)^{v-a_v-2} \cdot L_{a_v}^{S} & \text{if } S' \not\subset S. \end{cases}
\]

Proof. The second claim in Proposition 3.14.(a), concerning the case of \(v \in \text{Eve} \), follows from \(\tilde{e}_{v-1} = \tilde{e}_{v-1} \) and (2-4), which produces a scalar \(a \in \mathbb{Q} \) with \(\nu_p(a) > 0 \). The case \(v \notin \text{Eve} \) follows immediately by applying (2-4) to the two expressions in the bracket in (2-10).

In Proposition 3.14.(a) we have already seen the case \(S = \emptyset \), so we assume that \(S \neq \emptyset \). We then apply the projector shortening relations from Proposition 3.13, and get the following two
cases for $\text{pTr}_{S'}(L^S_{v-1})$, depending on whether $S' \subset S$ or $S' \not\subset S$.

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{diagram1.png}} \\
\text{\includegraphics[width=0.2\textwidth]{diagram2.png}} \\
\end{array}
\end{align*}
\]

Here $\text{pTr}_{S'}(L^S_{v-1}) = (-1)^{v-n_c-2}$, if $S' \subset S$,

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{diagram3.png}} \\
\text{\includegraphics[width=0.2\textwidth]{diagram4.png}} \\
\end{array}
\end{align*}
\]

if $S' \not\subset S$.

Here we have used Proposition 3.14 for the second equation in the bottom row.

\[\square\]

Example 3.15 Note that (3-9) and (2-4) (for eves) give a recursive way to compute traces. For example, for $v = [a, b, c]_p$ we have $m_v = [a, b, 0]_p$, $m_v^2 = [a, 0, 0]_p$, and

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{diagram5.png}} \\
\text{\includegraphics[width=0.2\textwidth]{diagram6.png}} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{diagram7.png}} \\
\text{\includegraphics[width=0.2\textwidth]{diagram8.png}} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{diagram9.png}} \\
\text{\includegraphics[width=0.2\textwidth]{diagram10.png}} \\
\end{array}
\end{align*}
\]

The proposition also implies that the (full) trace of the pJW projectors are zero unless $v < p$.

3C. Morphisms between pJW projectors—the linear structure. First, we state direct consequences of classical absorption, see Proposition 3.11, and non-classical absorption, see Proposition 3.13.

Lemma 3.16 (a) If $S = \bigsqcup_{k=0}^{p} S_{ij}$ with $S_{ij} > \cdots > S_{i1} > S_{i0}$, each down-admissible for v, and $S' = \bigsqcup_{l=0}^{p} S'_{ij}$ with $S'_{ij} > \cdots > S'_{i1} > S'_{i0}$, each up-admissible for v, then

\[
D_{S} e_{v-1} = D_{S_0} \cdots D_{S_{i0}} e_{v-1}, \quad U_{S'} e_{v-1} = U_{S'_{i0}} \cdots U_{S'_{i1}} e_{v-1}.
\]

(b) Let S and S' be down- and up-admissible for v, respectively. Then we have

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{diagram11.png}} \\
\text{\includegraphics[width=0.1\textwidth]{diagram12.png}} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics[width=0.1\textwidth]{diagram13.png}} \\
\text{\includegraphics[width=0.1\textwidth]{diagram14.png}} \\
\end{array}
\end{align*}
\]

The proposition also implies that the (full) trace of the pJW projectors are zero unless $v < p$.

Example 3.17 A way to illustrate ancestor-centering is imagine a line with a marker \ast to the right of each ancestor strand of v. (There are $v-1$ strands in total and g_v many \ast.) For example, for $p = 3$ and $v = 13 = [1, 1, 1]_3$ we have

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{diagram15.png}} \\
\text{\includegraphics[width=0.2\textwidth]{diagram16.png}} \\
\end{array}
\]

Moreover, we have $d_1 \mathbb{1}_{v-1}, \mathbb{1}_{v-1} u_1 \in A(v)$, with mid point right to $[a_j, \ldots, a_i, 0, \ldots, 0]_p \in A(v)$. More generally, the morphisms $d_S \mathbb{1}_{v-1}$ and $\mathbb{1}_{v-1} u_S$ are ancestor-centered if S is down- or up-admissible, respectively.

The following is the analog of (2-3).

Lemma 3.18 For a cap configuration d we have $d e_{v-1} = 0$ unless $d \in A(v)$. Analogously for cup configurations.
Proof. By assumption, \(d\) contains a cap which is not centered around an ancestor of \(v\). By expanding \(d\mathcal{E}_{v-1}\) along (2-9), we see that this cap hits a JW projector in every summand in (2-9), and thus annihilates \(\mathcal{E}_{v-1}\).

Lemma 3.19
(a) Suppose that \(S\) and \(S'\) are down-admissible for \(w\) and \(v\), respectively, with \(w[S] = v[S']\). Then we have

\[
\mathcal{E}_{v-1}U_S D_{S'} \mathcal{E}_{v-1} = \tilde{u}_S \tilde{e}_{v[S']-1} \tilde{d}_{S'} + \sum_{X, Y} c_{X,Y} \tilde{e}_{v[X]-1} \tilde{d}_Y,
\]

for some coefficients \(c_{X,Y} \in \mathbb{Q}\), where \(X\) and \(Y\) are down-admissible for \(w\) and \(v\), respectively, and \(w[X] = v[Y] < v[S']\). (In other words \(\mathcal{E}_{v-1}U_S D_{S'} \mathcal{E}_{v-1} - \tilde{u}_S \tilde{e}_{v[S']-1} \tilde{d}_{S'} \in \mathfrak{t}_d\).)

(b) We have isomorphisms of \(\mathbb{Q}\)-vector spaces

\[
\text{Hom}_{\mathfrak{QTL}}(\mathcal{E}_{v-1}, \mathcal{E}_{w-1}) \cong \text{span}_{\mathbb{Q}}(\tilde{u}_S \tilde{e}_{v[S]-1} \tilde{d}_{S'}),
\]

where \((S, S')\) ranges over pairs of sets that are down-admissible for \(w\) and \(v\), respectively, such that \(w[S] = v[S']\). In particular, \(\text{End}_{\mathfrak{QTL}}(\mathcal{E}_{v-1}) \cong \text{span}_{\mathbb{Q}}(L^{S}_{\mathfrak{Q}})\).

Note that the second isomorphism in (3-11) is unitriangular by (3-10). We will refer to morphisms of the form \(\tilde{u}_S \tilde{e}_{v[S]-1} \tilde{d}_{S'}\) as standard morphisms and to morphisms of the form \(\mathcal{E}_{v-1}U_S D_{S'} \mathcal{E}_{v-1}\) as \(p\)-morphisms.

Proof. The proof of (a) proceeds by iterating Lemma 3.8. Let \(S = \bigsqcup_i S_i\) and \(S' = \bigsqcup_j S'_j\) be the partitions into minimal admissible stretches of consecutive integers with the usual ordering. Then we expand

\[
D_{S'} \mathcal{E}_{v-1} = D_{S'_1} \cdots D_{S'_j} \mathcal{E}_{v-1} = \sum_X d_{S'_1} \cdots d_{S'_{j-1}} \cdot \lambda_{v,X} \cdot d_{S'_j} \tilde{u}_X \tilde{e}_{v[X]-1} \tilde{d}_X
\]

\[
\in \sum_{X \supset S'_j} d_{S'_1} \cdots d_{S'_{j-1}} \cdot \lambda_{v[X] \setminus S'_j, X \setminus S'_j} \cdot d_{S'_j} \tilde{u}_X \tilde{e}_{v[X]-1} \tilde{d}_X + \mathfrak{t}_d,
\]

since by (3-5), we have \(\lambda_{v,X} \cdot d_{S'_j} \tilde{u}_X = \lambda_{v,X_1 \setminus S'_j} \cdot \tilde{u}_X \tilde{d}_X\) if \(S'_j \subset X\), and otherwise \(\max(S'_j) + 1 \in X\) and thus \(v[X] < v[S']\). Here we write \(\mathfrak{t}_d\) for the ideal of morphisms of smaller through-degree than the leading term. We now iterate this argument to find

\[
D_{S'} \mathcal{E}_{v-1} = \tilde{e}_{v[S']-1} \tilde{d}_{S'} + \mathfrak{t}_d,
\]

\[
\mathcal{E}_{w-1} U_S \in \tilde{u}_S \tilde{e}_{w[S]-1} + \mathfrak{t}_d,
\]

which together imply (3-10).

To see the first isomorphism in (3-11): For a given \(F \in \text{Hom}_{\mathfrak{QTL}}(v-1, w-1)\), we compute

\[
\mathcal{E}_{v-1} F \mathcal{E}_{v-1} = \sum_{S, S'} (\lambda_{w, S} \tilde{u}_S \tilde{e}_{w[S]-1} \tilde{d}_S) F(\lambda_{v, S'} \tilde{u}_S \tilde{e}_{v[S']-1} \tilde{d}_S)
\]

\[
= \sum_{S, S'} \delta_{w[S], v[S']} \tilde{u}_S (\lambda_{w, S} \lambda_{v, S'} \tilde{e}_{w[S]-1} \tilde{d}_S F \tilde{u}_S \tilde{e}_{v[S']-1} \tilde{d}_S)
\]

\[
= \sum_{S, S'} \delta_{w[S], v[S']} c_{X, S, S'} \tilde{u}_S \tilde{e}_{v[S]-1} \tilde{d}_S,
\]

where \(c_{X, S, S'} \in \mathbb{Q}\). In the last two lines, we have used Lemma 3.7 and the fact the JW projectors have no endomorphisms besides scalar multiples of the identity, cf. (2-3). Finally, (3-10) implies then the second isomorphism in (3-11).

Lemma 3.20
(\text{Theorem 3.2.}(\text{Basis}).)
(a) Suppose that a \(p\)-admissible morphism is expressed as

\[
\sum_{S, S'} r_{S, S'} \cdot \mathcal{E}_{v-1} U_S D_{S'} \mathcal{E}_{v-1} \in \text{Hom}_{\mathfrak{QTL}}(v-1, w-1),
\]

where \(r_{S, S'} \in \mathbb{Q}\) and the sum \((S, S')\) ranges over pairwise distinct pairs of sets that are down-admissible for \(w\) and \(v\), respectively, such that \(w[S] = v[S']\). Then every coefficient \(r_{S, S'}\) is \(p\)-admissible.

\[\square\]
Lemma 3.23 centered and, thus, kills configuration consisting of a pair of collections of concentric caps. The right one is not ancestor-

Proof. For the first claim, we proceed by induction on the through-degree. Note that the through-degree of $\mathfrak{s}_{w-1} U S D S' \mathfrak{s}_{v-1}$ is $w[S] = v[S']$. Let (S, S') be the pair labeling the summand with maximal through-degree. Then $r_{S,T}$ is p-admissible since it is the coefficient of the (maximal through-degree) basis element $u_S 1_{[S']^{-1} d_{S'}}$ in (3-12). Thus, we can subtract $r_{S,S'} e_{w-1} U S D S' \mathfrak{s}_{v-1}$ to obtain another p-admissible sum, which now has strictly lower through-degree since $r_{S,S'} \mathfrak{s}_{w-1} U S D S' \mathfrak{s}_{v-1}$ was the only summand with this maximal through-degree. If the resulting sum is non-zero, then the remaining coefficients are now p-admissible by the induction hypothesis. The basis step for the induction concerns the morphism of minimal possible through-degree, which is p-admissible (and also its coefficient) since there are no correction terms in (3-10).

To see (b), for any given $F \in \text{Hom}_{F_p \text{TL}}(v-1, w-1)$, we choose a lift $\tilde{F} \in \text{Hom}_{Z \text{TL}}(v-1, w-1) \subset \text{Hom}_{\mathbb{Q} \text{TL}}(v-1, w-1)$. By (3-11), the p-admissible morphism $\mathfrak{s}_{w-1} \tilde{F} \mathfrak{s}_{v-1}$ can be expanded in the p-morphism basis over \mathbb{Q}. By (a), all appearing coefficients are p-admissible and can be specialized to \mathbb{F}_p. This results in an expansion of $e_{w-1} F e_{v-1}$ in terms of the p-morphisms over \mathbb{F}_p. Note that all such morphisms are still linearly independent, since they have distinct through-degrees. □

3D. Morphisms between pJW projectors—the algebra structure.

Lemma 3.21 (a) The algebra $\text{End}_{F_p \text{TL}}(e_{v-1})$ is commutative.

(b) Every L^S_{v-1} is nilpotent. As a consequence, every element of non-maximal through-degree in $\text{End}_{F_p \text{TL}}(e_{v-1})$ is nilpotent.

Proof. By Lemma 3.20.(b), $\text{End}_{F_p \text{TL}}(e_{v-1})$ has a basis that is invariant under reflection. Thus, for all $a, b \in \text{End}_{F_p \text{TL}}(e_{v-1})$ we have $a^* = a$ and $b^* = b$, and then $ab = a^* b^* = (ba)^* = ba$. This implies that $\text{End}_{F_p \text{TL}}(e_{v-1})$ is commutative.

To see (b), we shall use induction on $\text{td}(L^S_{v-1})$. We work over \mathbb{Q} and start by expanding $L^S_{v-1} e_{v-1} \in L^S_{v-1} + \text{td}_>$ into a sum of orthogonal quasi-idempotents and noting that L^S_{v-1} has eigenvalue divisible by p. If S was maximal, then we have $(L^S_{v-1})^2 = (L^S_{v-1} e_{v-1})^2 = 0$ in $\text{End}_{F_p \text{TL}}(e_{v-1})$. Otherwise, if $S \neq \emptyset$, we conclude $\text{td}((L^S_{v-1})^2) < \text{td}(L^S_{v-1})$. By Lemma 3.20.(b), $(L^S_{v-1})^2$ is a linear combination of ploops L^S_{v-1} with $\text{td}(L^S_{v-1}) < \text{td}(L^S_{v-1})$. Then the induction hypothesis implies that $(L^S_{v-1})^2$, and thus also L^S_{v-1}, is nilpotent. □

Lemma 3.22 (Containment—Theorem 3.2.2.) Let S be a stretch that is down- or up-admissible for v and $S' \subset S$ down-admissible for $v[S]$ or up-admissible for $v(S)$ respectively. Then we have

$$D_{S'} D_S e_{v-1} = 0, \quad U_S U_{S'} e_{v-1} = 0.$$

Proof. Note that by projector absorption, we have $D_{S'} D_S e_{v-1} = d_{S'} d_S e_{v-1}$. This is a cap configuration consisting of a pair of collections of concentric caps. The right one is not ancestor-centered and, thus, kills e_{v-1} by Lemma 3.18. □

Lemma 3.23 (Far-commutativity—Theorem 3.2.3.) Suppose that S and S' are down-admissible, T and T' up-admissible and $d(S, S') > 1$, $d(S, T) > 1$, and $d(T, T') > 1$. The following hold.
\[D_S D_{S'} e_{v-1} = D_{S'} D_S e_{v-1}, \quad D_S U_T e_{v-1} = U_T D_S e_{v-1}, \quad U_T U_T' e_{v-1} = U_T U_T' e_{v-1}. \]

Proof. These relations follow from projector absorption. For example, for the first relation we compute

\[D_S D_{S'} e_{v-1} = d_S e_u d_{S'} e_{v-1} = d_S d_{S'} e_{v-1} = d_{S'} e_u d_S e_{v-1} = D_{S'} D_S e_{v-1}. \]

Here we have used an isotopy of caps in the third equality.

Lemma 3.24 (Adjacency relations 1—Theorem 3.2.(4).) If \(d(S, S') = 1 \) and \(S' > S \), then the following equations hold whenever one side, and thus also the other one, is admissible

\[D_{S'} U_{S} e_{v-1} = D_{S'} D_{S} e_{v-1}, \quad D_{S} U_{S'} e_{v-1} = U_{S'} U_{S} e_{v-1}. \]

Proof. The first relation follows from projector shortening and absorption, as can be best verified graphically, i.e.

\[D_{S'} U_{S} e_{v-1} = D_{S'} e_{v-1} = U_{S'} D_{S} e_{v-1} = D_{S'} D_{S} e_{v-1}. \]

Here we have used projector shortening twice, then projector absorption and an isotopy. The second relation is analogous.

The following four statements will be proved jointly by induction in \(v \). The proofs depend on each other in a non-trivial way.

Lemma 3.25 (The endomorphisms.) Let \(v \in \mathbb{N} \) with minimal down-admissible stretches \(S_j, \ldots, S_0 \). Then we have the algebra isomorphism

\[\text{End}_{F_p \mathbf{TL}}(e_{v-1}) \cong F_p[\ell_{v-1}^{S_j}, \ldots, \ell_{v-1}^{S_0}] / \langle (\ell_{v-1}^{S_j})^2, \ldots, (\ell_{v-1}^{S_0})^2 \rangle, \]

and if \(S \) is down-admissible for \(v \), then \(L_{v-1}^S = \prod_{k \in S} L_{v-1}^{S_k} \). Furthermore, if \(S \) is down-admissible for \(v \), then we have

\[(3-13) \quad D_S U_S D_S e_{v-1} = 0, \quad e_{v-1} U_S D_S U_S = 0. \]

Lemma 3.26 (Adjacency relations 2—Theorem 3.2.(4).) Let \(S' > S \) be down-admissible stretches of consecutive integers for \(v \) with \(d(S, S') = 1 \). Then we have

\[D_{S'} D_S e_{v-1} = U_S D_{S'} h_S e_{v-1}, \quad e_{v-1} U_S U_{S'} = e_{v-1} h_S U_S D_{S}. \]

Lemma 3.27 (Overlap relations—Theorem 3.2.(5).) Suppose that \(S \) is a minimal down-admissible stretch for \(v \) and \(S' \geq S \) a minimal down-admissible stretch for \(v[S] \) with \(S \cap S = \{s\} \) and \(S' \not\subset S \), then we have

\[D_{S'} D_S e_{v-1} = U_{\{s\}} D_{S S' \setminus \{s\}} e_{v-1}, \quad e_{v-1} U_{S'} U_{S'} = e_{v-1} U_{S' \setminus \{s\}} U_S D_{\{s\}}. \]

Lemma 3.28 (Zigzag—Theorem 3.2.(6).) Suppose that \(S \) is an up-admissible stretch for \(v \). If \(S \) is also down-admissible for \(v \), then we have

\[D_{S} U_{S} e_{v-1} = U_S D_{S} g_{S} e_{v-1} + U_T U_S D_{S} T f_{S} e_{v-1}. \]

Here \(T \) denotes the smallest minimal down-admissible stretch with \(T > S \), provided it exists. If not, then the equation holds without the second term on the right-hand side.
Furthermore, if S is not down-admissible for v, then we have
\[D_S U_S e_{v-1} = -2U_S D_S e_{v-1}. \]
Here \overline{S} denotes the down-admissible hull of S, if it exists. If not, then the right-hand side is defined to be zero.

4. Inductive Proof of the Relations

In this section we will use the far-commutativity relations from Lemma 3.23, the containment relations from Lemma 3.22, and the adjacency relations from Lemma 3.24, sometimes without explicitly mentioning them. Further, we only prove Lemmas 3.26 and 3.27, and (3-13) for the first shown relations as the other ones are equivalent by reflection.

Convention 4.1 Throughout this section, unless stated otherwise, we use the convention that S denotes either a minimal down- or up-admissible stretch for v, and $U > T > \overline{S}$ are the following minimal down-admissible stretches for v. To declutter the notation, we will suppress \cup symbols in many expressions, for example $D_{STU} := D_{S \cup T \cup U}$. Further, we introduce shorthand notation for the states where we have already proven the above Lemmas for certain $v \in N$.

- $Z_-(v)$ means Lemma 3.28 holds for all zigzags of the form $D_X e_{w-1} U_X$ where $w \leq v$ and X is down-admissible for w, except possibly for the case $w = v$ and $X = S$, the smallest minimal down-admissible stretch for v.
- $A(v)$ means Lemma 3.26 on adjacent generators holds for all $w \leq v$.
- $O(v)$ means Lemma 3.27 on overlapping generators holds for all $w \leq v$.
- $Z(v)$ means Lemma 3.28, holds for all zigzags of the form $D_X e_{w-1} U_X$ where $w \leq v$.
- $E(v)$ means Lemma 3.25, which describes $\text{End}_{\mathbb{F}_2 TL}(e_{w-1})$, holds for all $w \leq v$.

Here we would like to draw the readers attention to the fact that the relevant quantity for zigzags is not where they start, but how high they reach.

The inductive proof of these conditions will proceed in the order shown. As base cases we observe that $A(v)$, $O(v)$, $E(v)$ and $Z(v)$ are all vacuously satisfied for $1 \leq v \leq p$. Then, assuming that these conditions all hold for $v-1$, we will first deduce $Z_-(v)$, then $A(v)$ and $O(v)$, followed by $Z(v)$, and finally $E(v)$.

Lemma 4.2 $Z_-(v)$ follows if we have $Z(v-1)$.

Proof. We need to show that we can resolve all zigzags of the form $D_Y U_Y e_{v[\gamma]}$ where Y denotes a down-admissible stretch for v such that $Y \neq S$, the smallest minimal down-admissible stretch for v. If $S \not\subset Y$, then this is possible using projector absorption and $Z(v-1)$. In the remaining cases we write $Y_+ := Y \setminus S$ and employ the same trick, but for $Y_+ \not\subset S$. If Y_+ is down-admissible for v, we get
\[
D_Y U_Y e_{v[\gamma]} = D_S D_Y U_{Y_+} U_S e_{v[\gamma]} - 2U_S D_Y e_{v[\gamma]}.
\]
Here T denotes the smallest minimal down-admissible stretch $T > Y$ for $v[\gamma]$, if it exists. We have also underlined the locations where relations are applied. If Y_+ is not down-admissible for
Then we have
\[D_Y U \cdot e_v [y] - 1 = D_S D_Y U \cdot e_v [y] - 1 = -2D_S U - D_T U \cdot e_v [y] - 1 \]
\[= -2U - D_S U \cdot e_v [y] - 1 = -2U - D_T U \cdot e_v [y] - 1, \]
or zero, if \(Y \) (and thus \(Y \)) does not exist.

4A. Adjacency relations. Next we focus on establishing \(A (v) \). These relations are irrelevant for \(p = 2 \), so we will assume \(p > 2 \) in this subsection. For this we need an approximate result first.

Lemma 4.3 Suppose that \(S < T < U \) are adjacent minimal down-admissible stretches for \(v \). Then we have
\[D_T D_S e_{v-1} \in U_S D_T h_S e_{v-1} + V_{>U}. \]
Here \(V_{>U} = \text{span}_p (U_S D_T e_{v-1} \mid \exists t \in T \text{ such that } t > U) \) is the span of morphisms with \(T \) exceeding \(U \).

Similarly, if the stretches are up-admissible for \(v \), then we have
\[U_S U_T e_{v-1} \in h_S U_T D_S e_{v-1} + W_{>U}. \]
where \(W_{>U} = \text{span}_p (U_S D_T e_{v-1} \mid \exists s \in S \text{ such that } s > U) \).

In either case, if \(U \) is a largest down-admissible stretch for \(v \), or if no down-admissible stretch exists above \(T \), then the relations from Lemma 3.26 hold on the nose.

Proof. Let us write \(h \) for the scalar appearing in \(h e_{v-1} = h_S e_{v-1} \). (The functions \(f \), \(g \), and \(h \) were defined in Section 3A.) We would like to identify
\[e_{w-1} D_T D_S e_{v-1} = \text{ and } h \cdot e_{w-1} U_S D_T e_{v-1}. \]

By projector absorption it suffices to do this in the case when \(S \) is the smallest minimal down-admissible stretch of \(v \). We will start by computing the characteristic zero analogs of both sides.

Suppose that \(V \subset N_0 \) is down-admissible for \(v \), then by Lemma 3.8 we have
\[d_S \lambda_{v,V} L_{v-1} = \begin{cases} \lambda_{v[S],V'\setminus S} \hat{u}_{V \setminus S} e_{v[V]} - 1 \hat{d}_V & \text{if } S \subset V, T \not\subset V, \\ \lambda_{v,V} \hat{u}_V e_{v[V]} - 1 \hat{d}_V & \text{if } S \not\subset V, T \subset V, \\ 0 & \text{otherwise.} \end{cases} \]

After another application of Lemma 3.8 we get
\[d_T d_S \lambda_{v,V} L_{v-1} = \begin{cases} \lambda_{v[S],V'\setminus S} \hat{u}_{V \setminus S} e_{v[V]} - 1 \hat{d}_V & \text{if } S \subset V, T \not\subset V, U \subset V, \\ \lambda_{v,V}^{-1} \lambda_{v[S],V'\setminus S} \lambda_{v[T],S[V \setminus T]} \hat{u}_{V \setminus S} e_{v[V]} - 1 \hat{d}_V & \text{if } S \not\subset V, T \subset V, U \not\subset V, \\ 0 & \text{otherwise.} \end{cases} \]

These possibilities for \(V \) index the \(p \)-morphism basis for \(\text{Hom}_F ^{p \cdot T L} (e_{v-1}, e_{w-1}) \) from Lemma 3.20.

The term of maximal through-degree arises for \(V = T \). Now, by the unitriangularity of the basis change between \(p \)-morphisms and standard morphisms, we can read off the coefficient of \(U_S D_T e_{v-1} \) in the \(p \)-morphism expansion of \(D_T D_S e_{v-1} \) as the coefficient of \(\hat{u}_S e_{v[T]} - 1 \hat{d}_T \) in (4-1).
Writing $S = \{i, i + 1, \ldots, i_1 - 1\}$ and $T = \{i_1, \ldots, i_2 - 1\}$, we compute this coefficient as
\[
q = \frac{\lambda_{v,T} \lambda_{v[T][S],S}}{\lambda_{v[S],ST}} = \frac{\lambda_{v,T}}{\lambda_{v[S],ST}} = (-1)^{p^1} [a_{j,...,a_{i_2-1},-a_{i_2-1},0,...,0|p} [a_{j,...,a_{i_2-1},-a_{i_2-1},0,...,0|p}
\]
(4-2)
\[
= (-1)^{p^1} \frac{a_{v[S]}[T]}{a_{v,S}[T]+p^1}.
\]
From this, we immediately get $q \equiv g(a_{i_1} - 1) = h \mod p$, as desired.

To finish the proof, we also need to show that $U_{p(T)} D_S e_{v-1}$ (the basis morphism of second highest through-degree in $\text{Hom}_{\mathcal{T}L}(e_{v-1}, e_{w-1})$) does not occur in the p-morphism expansion of $D_T D_S e_{v-1}$. Thanks to triangularity of the basis change, this can be verified by computing the coefficient q' of $\tilde{u} T \tilde{d}_V e_{[V]-1} D_S$ in the difference $e_{w-1} D_T D_S \tilde{E}_{v[T] - 1} - q e_{w-1} \tilde{u} D_T e_{v-1}$, and showing that it reduces to zero modulo p.

To this end, we again use Lemma 3.8 to expand
\[
(4-3)
\]
\[
\tilde{e}_{w-1} \tilde{u} D_T \lambda_{v,v} \tilde{I}_{v-1} = \begin{cases}
\lambda_{v,v} \lambda_{v[T],V} \lambda_{v[T][S],VT} S \tilde{u} V T \tilde{S} \tilde{e}_{[V]-1} D_V & \text{if } S \subseteq V, T \not\subseteq V, U \subseteq V, \\
\lambda_{v[T],V} \tilde{u} V S \tilde{T} \tilde{e}_{[V]-1} D_V & \text{if } S \not\subseteq V, T \subseteq U, U \not\subseteq V, \\
0 & \text{otherwise}.
\end{cases}
\]

Focusing on the case $V = S \cup U$, we compute the crucial coefficient q' as
\[
q' = \lambda_{v,S} U - \frac{\lambda_{v,T} \lambda_{v[S],[U],T} \lambda_{v[T][S],V[T],S}}{\lambda_{v[T][S],V[T],S}} = \lambda_{v,U} \left(1 - \frac{\lambda_{v,T} \lambda_{v[T][S],V[T],S}}{\lambda_{v[S],ST}}\right)
\]
(4-4)
\[
= \lambda_{v,U} \left(1 - \frac{\lambda_{v,T} \lambda_{V[T][S],T}}{\lambda_{v[S],ST}}\right),
\]
where we have used $\lambda_{v[S],ST} = \lambda_{v,U}$, $\lambda_{v[S],SU} = \lambda_{v,U}$, $\lambda_{v[U],S}$ and $\lambda_{v[T],V[T]} = \lambda_{v[T],V[T]} \lambda_{v[U],S}$ in the first line, and in the second line
\[
\lambda_{v[T][S],V[T],S} = \lambda_{v[T][S],V[T][U],T} = \lambda_{v[T][U],T},
\]
\[
\lambda_{v[T],V[T],S} = \lambda_{v[T][U],T}. \lambda_{v[U],S} \lambda_{v[T][U],T},
\]
Now we note that
\[
\frac{\lambda_{v[T][S],T}}{\lambda_{v[T][S],T}} = \frac{a_{i_1,...,i_{i_2-1},-a_{i_2-1},0,...,0,a_{i_2-1},0,...,0|p}}{a_{i_1,...,i_{i_2-1},-a_{i_2-1},0,...,0,a_{i_2-1},0,...,0|p}} = \frac{a_{v[S]-p^1}}{a_{v[S]+p}},
\]
and together with (4-2) we can continue
\[
(4-4) = \lambda_{v,U} \left(\frac{(a_{v[S]-p^1}a_{v[U]+p})}{(a_{v[S]+p})}\right) \frac{(a_{v[S]+p})}{(a_{v[S]-p^1})}
\]
\[
= \lambda_{v,U} \left(\frac{p^1(a_{v[U]+p}+a_{v[S]+p})}{(a_{v[S]+p}+p^1)}\right).
\]
This is divisible by $E^{(v-1)} [p^{(v-1)}] = p^{(v)}$ thus, q' is zero modulo p. This completes the proof of the first claim of the lemma. The second one is analogous.

\begin{lemma}
(4.4) $A(v)$ follows if we have $A(v - 1)$, $E(v - 1)$ and Z_{-v}.
\end{lemma}

The proof will be split into two parts. First we give a proof that works under a technical assumption, which is generically satisfied. In the second part, we treat the remaining cases.

\textit{Proof, with caveat.} By $A(v-1)$ and projector absorption we may assume that S is a smallest down-admissible stretch. At first, we will also assume that $S < T$ are minimal down-admissible stretches for v and that T is also down-admissible for $v[S]$. By Lemma 2.16, this implies that S is up-admissible for v and T is down-admissible for $v(S)$.

We already know that the desired equation holds up to certain potential error terms, i.e.
\[
D_T D_S e_{v-1} = h_{1} U_{v} D_T e_{v-1} + \sum \left(c x U_{X} U_{T} D_{S U X} + d_{x} U_{X S} D_{T X}\right) e_{v-1},
\]
(4-5)
where the summation runs over down-admissible subsets \(X > U \), \(c_X, d_X \in \mathbb{F}_p \) and where we write
\(h_1 := g(a_{\max(S)} + 1) \) for \(v = [a_j, ..., a_0]_p \). We now multiply this equation with \(D_S \) on the left and with \(U_T \) on the right and rewrite it using \(w = v[T] \) and \textbf{Lemma 3.24} into
\[
D_{ST}U_T e_{w-1} = h_1 D_S U e_{v-1} + \sum_X \left(c_X L_{w-1}^{UTS} + d_X L_{w-1} X D_S U e_{v-1} \right).
\]

This equation can be simplified using \(Z_-(v) \). In this proof attempt, we only consider the generic case where \(T \) (and thus also \(TS \)) is down-admissible for \(w \). So, using \(Z_-(v) \) for the pair \((v, ST)\) we get:
\[
D_{ST}U_T e_{v[T]-1} = g_1 L_{v[T]-1}^T + f_1 L_{v[T]-1}^{UTS},
\]
where \(g_1 := g(b_{\max(S,T)}) \) and \(f_1 := f(b_{\max(S,T)}) \) are computed from \(v[T] = [b_1, ..., b_0]_p \). Further, using \(Z_-(v) \) for \((v[T](S), S) \) and \((v, T) \) as well as \(E(v-1) \) we compute
\[
D_S U e_{v[T]-1} = (g_2 L_{v[T]-1}^S + f_2 L_{v[T]-1}^{UTS})(g_1 L_{v[T]-1}^T + f_1 L_{v[T]-1}^{UTS})
\]
\[
= g_2 g_1 L_{v[T]-1}^{UTS} + f_2 g_1 L_{v[T]-1}^{UTS} + g_2 f_1 L_{v[T]-1}^{UTS},
\]
where \(g_1 \) and \(f_1 \) are as above, while \(f_2 := f(b_{\max(S)}) = f(p - a_{\max(S)}) \). We also have
\[
g_2 := g(b_{\max(S)}) = g(p - a_{\max(S)}) = h_1^{-1}.
\]
(Note that \(h_1 \) is invertible since \(p > 2 \).) Using these two computations and \(E(v-1) \), the equation (4-6) transforms into
\[
0 = 0 + \sum_X \left((c_X + g_2 f_1 d_X)L_{w-1}^{XUTS} + g_2 g_1 d_X L_{w-1}^{XUTS} \right).
\]
Since the \(p \)-loops \(Y_{w-1} \) form a basis of \(\text{End}_{F}_p TL(e_{w-1}) \) and the scalars \(g_1 \) and \(g_2 \) are non-zero by admissibility and \(p > 2 \), we conclude \(d_X = 0 \) and then \(c_X = 0 \). Thus all error terms in (4-5) vanish. This completes the proof in the case where \(S \) and \(T \) are minimal.

In the general case, we partition \(S \) and \(S' \) into minimal down-admissible stretches \(S_1 < \cdots < S_k \) and \(S'_1 < \cdots < S'_l \), respectively. Then we have
\[
D_S D_S e_{v-1} = D_{S_1} D_{S_2} \cdots D_{S_{k-1}} D_{S_k} e_{v-1}
\]
\[
= D_{S_1} \cdots D_{S_{k-1}} D_{S_k} D_{S_2} \cdots D_{S_{k-1}} D_{S_k} e_{v-1}
\]
\[
= D_{S_1} \cdots D_{S_{k-1}} U_{S_k} D_{S_2} \cdots D_{S_{k-1}} D_{S_k} e_{v-1}
\]
\[
= U_{S_1} \cdots U_{S_k} D_{S_2} \cdots D_{S_{k-1}} D_{S_k} e_{v-1} = U_{S_1} \cdots U_{S_k} D_{S_2} \cdots D_{S_{k-1}} e_{v-1}.
\]
Here we have first used far-commutativity, then \(A(v-1) \) on the adjacent minimal stretches \(S_k < S'_1 \), and finally \textbf{Lemma 3.24}. Note also that \(h_{S_k} = h_S \) far-commutes with \(D_{S_2} \cdots D_{S_{k-1}} \).

\textbf{Proof of the remaining cases.} In the previous proof we made the assumption that \(T \), and thus also \(T \cup S \), is down-admissible for \(w = v[T] \). Now suppose this is not the case. At first we can proceed in a very similar way as in the previous proof. Whenever we use zigzag relations, we have to replace \(T \) by \(\overline{T} = T \cup U \) and set the \(f \)-term to zero. Hence, we get
\[
D_{ST}U_T e_{v-1} = g_1 L_{w-1}^{UTS},
\]
\[
D_S U e_{v-1} = (g_2 L_{w-1}^S + f_2 L_{w-1}^{UTS})(g_1 L_{w-1}^{UTS}) = g_2 g_1 L_{w-1}^{UTS},
\]
and the equation (4-6) transforms into
\[
0 = 0 + \sum_X \left((c_X + g_2 g_1 d_X)L_{w-1}^{XUTS} \right).
\]
This implies that the coefficients \(c_X \) and \(d_X \) are unit multiples of each other for every \(X \). Next we will use a different strategy to show that \(d_X = 0 \), which thus implies \(c_X = 0 \) and finishes the
proof. The strategy is to multiply both sides of (4-5) by L_{v-1}^U on the right, to equate the first two terms, to kill all terms with coefficients c_X, and to preserve all terms with coefficients d_X.

The first two terms are rewritten as

$$D_T D_S L_{v-1}^U = D_T U_T D_S D_U e_{v-1} = U_U U_T D_S D_U e_{v-1}$$

$$h_1 U_S D_T L_{v-1}^U = h_1 U_S U_T D_U e_{v-1} = h_1 U_U U_T D_U e_{v-1},$$

which are equal by virtue of $A(v - 1)$ since $v[T](S)[U] < v$. We also note that the scalar that appears is exactly h_1^{-1}. After subtracting these terms from the multiple of (4-5), we are left with

(4-7)

$$0 = \sum_X (c_X U_X U_T D_S U_U D_U D_X e_{v-1} + d_X U_X D_X e_{v-1}).$$

We first claim that $U_X U_T D_S U_U D_U D_X e_{v-1} = 0$. To verify this, we distinguish between the two cases in which X is distant or adjacent to U. In the first case, we get

$$U_X U_T D_S U_U D_U D_X e_{v-1} = U_X U_T D_S D_U D_X e_{v-1} = 0,$$

since $D_U U_U D_U D_X e_{v-1} = 0$ thanks to $E(v - 1)$ as $v[X] < v$. In the second case, we get

$$U_X U_T D_S U_U D_U D_X e_{v-1} = U_X U_U U_S D_T D_U D_X e_{v-1} = U_X U_U U_U D_U D_X e_{v-1} = 0,$$

since $U^2 U e_{v-1} = 0$. This proves the claim.

Our second claim is that $U_X S D_T X U_U D_X X e_{v-1} \neq 0$ for every X and that these morphisms are linearly independent. Again it matters whether X is distant or adjacent to U. In the first case we get

$$U_X S D_T X U_U D_X e_{v-1} = U_X U_U U_S D_T D_U D_X e_{v-1} = U_X U_U U_U D_X e_{v-1} = 0,$$

Here we have used $A(v - 1)$ for $v[U \cup X] < v$ to proceed to the second line. (We use \sim to indicate unit proportionality.) In the second case we compute

$$U_X S D_T X U_U D_X e_{v-1} = U_X S D_T U_U D_X e_{v-1} = U_X U_U D_T D_U e_{v-1} = U_X U_T D_X e_{v-1}.$$

This time we have used $A(v - 1)$, namely on the ancestor $a_{v,T} < v$ using projector absorption, to get to the second and the fourth line, and $Z_-(v)$ in the form of a zigzag relation for $v[X](U) < v$, noting that U is down-admissible for $v[X]$, to get to the third line. The proportionality constants that appear in these steps are units and $U_X U_T D_S U_U D_X e_{v-1}$ are linearly independent as X varies.

Finally, the two claims and equation (4-7) imply that $d_X = 0$ for every X, and thus also $c_X = 0$, which finishes the proof of $A(v)$. \qed

4B. Overlap relations. Next, we focus on establishing $O(v)$. We again start with an approximate version.

Lemma 4.5 Suppose that $S < T$ are adjacent minimal down-admissible stretches for v and $S' \geq S$ is a minimal down-admissible stretch for $v[S]$ with $S' \cap S = \{s\}$ and $S' \not\subset S$, then we have

$$D_{S'} D_S e_{v-1} = U_{\{s\}} D_{S' \setminus \{s\}} e_{v-1} + V_{>T}, \quad e_{v-1} U S' = e_{v-1} U S' \setminus \{s\} U S D_{\{s\}} + W_{>T}.$$

Here we use the notations $V_{>T} = \text{span}_{\mathbb{R}}(U_X D_Y e_{v-1} | \exists y \in Y \text{ such that } y > T)$ and $W_{>T} = \text{span}_{\mathbb{R}}(e_{v-1} U_Y D_X | \exists y \in Y \text{ such that } y > T)$. In either case, if T is a largest down-admissible stretch for v then the relations from Lemma 3.27 hold on the nose.
Proof. We will use the notation \(w = v[T](R) \) and \(\{s\} = S \cap S', \ R = S \setminus \{s\} \), and note \(S' = T \cup \{s\} \). We will also consider the minimal down-admissible stretch \(U > T \) for \(v \), if it exists. For the purpose of this proof it is useful to explicitly write down the relevant parts of the continued fraction expansions of \(v, w \) and other entities

\[
v = [..., 0, a_x, 0, ..., a_w, 0, ..., 0, 1, 0, 0, ..., 0, a_r, ...]_p,
\]
\[
v[S] = [..., 0, a_x, 0, ..., a_w, 0, ..., 0, p - 1, p - 1, p - 1, p - 1, p - a_r, ...]_p,
\]
\[
v[T] = [..., 0, a_x, 0, ..., a_w, 0, ..., 0, 0, p - 1, p - 1, p - 1_0, 0, ..., 0, a_r, ...]_p,
\]
\[
v[T][S] = [..., 0, a_x, 0, ..., a_w, 0, ..., 0, p - 1, p - 1, p - 1, p - 2, p - 1, p - 1, p - 1, p - a_r, ...]_p,
\]
\[
v[S][S'] = [..., 0, a_x, 0, ..., a_w, 0, ..., 0, p - 1, p - a_r, ...]_p = w.
\]

Here we have highlighted the digit in position \(s \) in red.

From this description, it is straightforward to see that \(\Hom_{\tilde{F}_T} TL(e_{v-1}, e_{w-1}) \) is spanned by morphisms of the following four different types

\[
U_{XR}D_{TX}e_{v-1}, \quad U_{XUS}D_{SU}Xe_{v-1}, \quad U_{X\{s\}}D_{STX}e_{v-1}, \quad U_{XUTR}D_{UX}e_{v-1},
\]

where \(X \) denotes a down-admissible subset for \(v \) with \(X > U \), which may be empty. The basis elements of highest and second highest through-degree among the above are \(U_{R}D_{T}e_{v-1} \) and \(U_{\{s\}}D_{ST}e_{v-1} \), and all other basis elements are in the subspace \(V_{>T} \).

Our task is to show that \(U_{R}D_{T}e_{v-1} \) appears with coefficient 0 and \(U_{\{s\}}D_{ST}e_{v-1} \) appears with coefficient 1 if we expand \(D_{S'}D_{S}e_{v-1} \) in this basis. We again start with a computation in characteristic zero.

Two applications of Lemma 3.8 establish

\[
d_{S'}d_{S}\lambda_{v,T} \tilde{L}^{V}_{v-1} =
\]

\[
(4-8)
\]

\[
\begin{cases}
\lambda_{v[S],V\setminus S} \tilde{u}_{V[S]\setminus S} e_{v[V]^{-1}} \tilde{d}_{V} & \text{if } S \subset V, T \not\subset V, U \subset V, \\
\lambda_{v,T}^{-1} \lambda_{v[S],V \setminus S} \lambda_{w,VR[T]} \tilde{u}_{V[R \setminus T]} e_{v[V]^{-1}} \tilde{d}_{V} & \text{if } S \not\subset V, T \subset V, U \not\subset V, \\
0 & \text{otherwise}.
\end{cases}
\]

where we have used \(V \cup S \setminus S' = V \cup R \setminus T \) in the second case.

The coefficient \(q \) of the maximal through-degree basis element \(U_{R}D_{T}e_{v-1} \) in \(D_{S'}D_{S}e_{v-1} \) is equal to the coefficient shown for \(\tilde{u}_{R \setminus T} e_{v[T]^{-1}} \tilde{d}_{T} \) in (4-8). This is

\[
q = \lambda_{v,T}^{-1} \lambda_{v[S],TS} \lambda_{w,R} \equiv (-1)^p \left[[..., 0, a_x, 0, ..., a_u, a_u - 1, p - 1, p - 1, p - 1, p - 1, 0]_p, [..., 0, a_x, 0, ..., a_u, a_u - 1, p - 1, p - 1, p - 1, p - 1, 1]_p \right] = 0 \mod p.
\]

This shows that \(U_{R}D_{T}e_{v-1} \) appears with coefficient 0 in \(D_{S'}D_{S}e_{v-1} \). The term \(U_{\{s\}}D_{ST}e_{v-1} \), however, does not seem to appear at all in (4-8). Since it is of second highest through-degree in \(\Hom_{\tilde{F}_T} TL(e_{v-1}, e_{w-1}) \), its coefficient is congruent to the coefficient of \(\tilde{u}_{R \setminus T} e_{v[T]^{-1}} d_{ST} \) in the \(p \)-morphism expansion of \(q \tilde{u}_{R \setminus T} e_{v[T]^{-1}} d_{T} \).

Using Lemma 3.8, it is straightforward to compute that \(\tilde{u}_{R \setminus T} e_{v[T]^{-1}} d_{T} \) equals \(u_{R} e_{v[T]^{-1}} d_{T} - \lambda_{w,\{s\}} u_{\{s\}} e_{v[S]^{-1}} d_{ST} \) up to terms of lower through-degree. Thus, we compute the coefficient of interest as

\[
-\lambda_{w,\{s\}} q \equiv [..., a_u - 1, p - 1, ..., p - 1, -1]_p [..., a_u - 1, p - 1, ..., p - 1, 0]_p \equiv 1 \mod p,
\]

and this finishes the proof. \(\square \)

Lemma 4.6 \(O(v) \) follows if we have \(E(v - 1), A(v - 1), O(v - 1), \) and \(Z_{-}(v) \).
Proof, with caveat. As usual, \(O(v - 1) \) and projector absorption allows us to restrict to the case when \(S \) is the smallest minimal down-admissible stretch for \(v \). By Lemma 4.5 we then have

\[
D_X D_S e_{v-1} = U_{\{s\}} D_S D T e_{v-1}
+ \sum_{X \neq s} c_X U X R D T X e_{v-1}
+ \sum_{X \neq s} d_X U X S D S U X e_{v-1}
+ \sum_{X \neq s} e_X U X \{s\} D S T X e_{v-1}
+ \sum_{X \neq s} f_X U X T R D U T X e_{v-1}.
\]

(4-9)

Here \(U > T \) denotes another adjacent minimal down-admissible stretch for \(v \), if it exists, and \(X \) ranges over down-admissible subsets \(X > U \) for \(v \). Our task is to show that the scalars \(c_X, d_X, e_X, f_X \in \mathbb{F}_p \) are all zero.

We start by multiplying both sides of (4-9) by \(U_T \) on the right. After rearranging, we get

\[
D_S U S T e_{v[T]-1} = U_{\{s\}} D_S D T U T e_{v[T]-1}
+ \sum_{X \neq s} c_X U X R D X D T U T e_{v[T]-1}
+ \sum_{X \neq s} d_X U X S D S U X e_{v[T]-1}
+ \sum_{X \neq s} e_X U X \{s\} D S X D T U T e_{v[T]-1}
+ \sum_{X \neq s} f_X U X T R D U T X e_{v[T]-1}.
\]

(4-10)

The next step is to apply the zigzag relations and for this we shall assume that we are in the generic case, where \(T \) is down-admissible for \(v[T] \) (and thus \(p > 2 \)). This also implies that \(S' \) is down-admissible for \(v[T](R) \), and using the zigzag relations provided by \(Z_-(v) \) for \(v[T](R) \) we compute

\[
D_S U S T e_{v[T]-1} = D_S U S U R e_{v[T]-1}
= g(a_u) U_{S'} D_S' U R e_{v[T]-1}
+ f(a_u) U_{S'} D S U R e_{v[T]-1}
= g(a_u) U_{S'} D S T e_{v[T]-1}
+ f(a_u) U_{S'} D S T U e_{v[T]-1}.
\]

Similarly compute

\[
U_{\{s\}} D_S D T U T e_{v[T]-1} = g U_{\{s\}} D_S U T D T e_{v[T]-1}
+ f U_{\{s\}} D_S U T D T U e_{v[T]-1}
= g U_{\{s\}} U_T S D T e_{v[T]-1}
+ f U_{\{s\}} U_T S D T U e_{v[T]-1}
= g(p - 2) g U_{\{s\}} U_{\{s\}} U_{\{s\}} U R D T e_{v[T]-1}
+ f U_{\{s\}} U_{\{s\}} U_{\{s\}} U R D T U e_{v[T]-1}
= g U_{S'} D_{S'} D T e_{v[T]-1}
+ f U_{S'} D S T U e_{v[T]-1}.
\]

(4-11)

where we write \(g = g(a_u - 1) \) and \(f = f(a_u - 1) \), and we have used \(Z_-(v) \) on the pair \((v, T)\) and smaller instances, as well as \(A(v - 1) \). Thus, we have equated the first two terms in (4-10). We also simplify the \(c_X \) terms

\[
U_X R D_X D T U T e_{v[T]-1} = g U_{\{s\}} U_{\{s\}} U_{\{s\}} U R D T e_{v[T]-1}
+ f U_{\{s\}} U_{\{s\}} U_{\{s\}} U R D T U e_{v[T]-1}
= g U_{\{s\}} U_{\{s\}} U_{\{s\}} U R D T e_{v[T]-1}
+ f U_{\{s\}} U_{\{s\}} U_{\{s\}} U R D T U e_{v[T]-1}.
\]

where we have again used \(Z_-(v) \) on the pair \((v, T)\), then \(A(v - 1) \), and smaller instances of zigzag relations in the case when \(X \neq 0 \) is adjacent to \(U \) for the final step. To be explicit, the sequence of transformations is

\[
D_X U T D T U e_{v[T]-1} = D T U D_X D T U e_{v[T]-1}
\]

\[
= D T U D_X D T U e_{v[T]-1}
\]

\[
= D T U D_X D T U e_{v[T]-1}
\]

\[
= D T U D_X D T U e_{v[T]-1}.
\]
The simplification of the \(f_X \) term proceeds in complete analogy to (4-11) and we get
\[
U_{\{s\}}D_{ST}U_Te_v[T]_{-1} = gU_{XS'}D_{ST}Xe_v[T]_{-1} + fU_{US'}D_{ST}UXe_v[T]_{-1},
\]
having again used only \(Z_-(v) \) and \(A(v - 1) \).

Finally, after all these simplifications, (4-10) gives the following linear system
\[
0 = gc_X, \quad 0 = fe_X + f_X, \quad 0 = d_X + fe_X, \quad 0 = gc_X,
\]
which, since \(g \neq 0 \), implies that all unwanted scalars are zero. \(\square \)

Proof of the remaining cases. Now suppose that \(T \) is not down-admissible for \(v[T] \), which happens exactly if \(a_u = 1 \) in the notation from above. In this case we have \(\overline{T} = T \cup U \) for \(v[T] \) and \(S' = S' \cup U \) for \(v[T](R) \).

We proceed exactly as above, with the only differences being that no \(g \) terms arise and \(f = -2 \). The linear system resulting from (4-10) is
\[
0 = -2c_X + f_X, \quad 0 = d_X - 2c_X.
\]
(Note that if \(p = 2 \), we immediately see \(d_X = 0 = f_X \).) To see that all coefficients are zero, we multiply (4-9) by \(L_v^{-1}U \), expecting that this should allow us to equate the first two terms, kill the \(d_X \) and \(f_X \) terms, and not hurt the \(c_X \) and \(e_X \) terms. Let us check these assertions in turn.

For the first term we get
\[
D_{ST}D_SU_UD_Ue_v^{-1} = D_{ST}U_UD_SU_DUe_v^{-1} = U_{US'}D_{SU}e_v^{-1}.
\]
For the second term we compute
\[
U_{\{s\}}D_{ST}U_UD_Ue_v^{-1} = U_{\{s\}}U_{US'}D_{SU}e_v^{-1} = U_{US'}D_{SU}e_v^{-1},
\]
where the second step works as in (4-11) and requires \(A(v - 1) \) and \(Z_-(v) \). This equates the first two terms.

Now we claim that the \(d_X \) and \(f_X \) terms are killed by the loop along \(U \)
\[
U_{XUS'}D_{SU}e_v^{-1} = U_{XUT}D_{UX}U_DU_U_DUe_v^{-1}.
\]
If \(X \neq \emptyset \) is adjacent to \(U \), then both assertions follow from
\[
D_{UX}U_UD_Ue_v^{-1} = (D_U)^2D_XD_Ue_v^{-1} = 0.
\]
If \(X \) is distant from \(U \) or empty, then we use far-commutativity to see substrings of the form
\[
D_UU_UD_Xe_v^{-1} = 0 \quad \text{by } E(v - 1).
\]
Now we claim that the \(c_X \) and \(e_X \) terms survive the multiplication by the loop along \(U \):
\[
U_{XR}D_{TX}U_UD_Ue_v^{-1} \neq 0 \quad \text{by } \overline{T}(R).
\]
To see this, let us first observe \(D_XU_UD_Xe_v^{-1} = U_UD_Xe_v^{-1} \). This is clear if \(X \) is distant from \(U \), and it follows from \(A(v - 1) \) and \(Z_-(v) \), otherwise. Using this observation, we compute
\[
U_{XR}D_{TX}U_UD_Ue_v^{-1} = U_{XR}D_{TX}U_UD_Xe_v^{-1} = U_{XUT}D_{UX}e_v^{-1} \neq 0
\]
\[
U_{\{s\}}D_{ST}U_UD_U = U_{\{s\}}D_{ST}U_UD_X = U_{\{s\}}U_{US'}D_{SU}.
\]
where the last step works as in (4-11) and requires \(A(v - 1) \) and \(Z_-(v) \).

After these simplifications, we see that (4-9) multiplied by \(L_v^{-1} \) shows \(c_X = 0 = e_X \), which (for \(p > 2 \)) in turn implies \(d_X = 0 = f_X \). This completes the proof of \(O(v) \). \(\square \)

Let us also note the following consequence.
Lemma 4.7 Suppose that a minimal stretch S is down-admissible for v but not for $v[S]$, and suppose the down-admissible hull \overline{S} exists. Then $O(v)$ implies

\begin{equation}
(4.12) \quad D_S D_S \mathbf{e}_{v-1} = U_S D_S \mathbf{e}_{v-1}, \quad \mathbf{e}_{v-1} U_S = \mathbf{e}_{v-1} U_S D_S.
\end{equation}

Proof. Let $s = \max(S)$ and $S' = \{s\} \cup \overline{S} \setminus S$ and $R = S \setminus \{s\}$. Then S' is down-admissible for $v[S]$ and we use $O(v)$ to compute

\[D_S D_S \mathbf{e}_{v-1} = D_R D_S D_S \mathbf{e}_{v-1} = D_R U_{\{s\}} D_S D_S \mathbf{e}_{v-1} = U_{\{s\}} U_R D_S \mathbf{e}_{v-1} = U_S D_S \mathbf{e}_{v-1}. \]

The other relation follows by reflection. \square

4C. Zigzag relations.

Lemma 4.8 The zigzag relations from Lemma 3.28 hold in generation 2.

Proof. Suppose that S' is a down-admissible stretch for v such that $w = v[S']$ is of generation 2. Then, using the projector shortening property from Proposition 3.13, we get

\[D_{S'} U_{S'} \mathbf{e}_{w-1} = p \operatorname{Tr}_{(v+w)/2}(\mathbf{e}_{(v+w)/2-1}). \]

This partial trace is not covered by Proposition 3.14, but since $(v+w)/2$ is of generation at most 2, it can be straightforwardly computed: One first expands $\mathbf{e}_{(v+w)/2-1}$ into a linear combination of standard loops and computes their partial traces using (2-4). The result follows by changing back into theoop basis of $\operatorname{End}_{\mathbb{Q}TL}(\mathbf{e}_{v-1})$ and reducing the coefficients to \mathbb{F}_p.

The basis change from loops to standard loops for w of generation 2 with minimal down-admissible stretches $S < T$ is

\begin{align*}
L^0_{w-1} &= \tilde{L}^0_{w-1} + (-1)^{w-n_v} \frac{w[S]}{\pi_w} \cdot \tilde{L}^S_{w-1} + (-1)^{w-n_{\pi_w}^2} \frac{w(T)}{\pi_w} \cdot \tilde{L}^T_{w-1} + (-1)^{w-n_v} \frac{w[ST]}{\pi_w} \cdot \tilde{L}^{ST}_{w-1}, \\
L^S_{w-1} &= \tilde{L}^S_{w-1} + (-1)^{w-n_{\pi_w}^2} \frac{w(T)}{\pi_w} \cdot \tilde{L}^T_{w-1}, \\
L^T_{w-1} &= \tilde{L}^T_{w-1} + (-1)^{w-n_v} \frac{w[ST]}{\pi_v} \cdot \tilde{L}^{ST}_{w-1}, \\
L^{ST}_{w-1} &= \tilde{L}^{ST}_{w-1}.
\end{align*}

The inverse basis change can be readily computed from this. The basis change in generation 1 is easier and left as an exercise for the reader. \square

Lemma 4.9 $Z(v)$ follows if we have $Z(-v), E(v - 1), A(v)$ and $O(v)$.

The proof again splits into two parts. First we give a proof that works under a technical assumption, which is generically satisfied. In the second part, we refine this proof to work in all cases.

Proof, with caveat. We need to consider the zigzag $D_S \mathbf{e}_{v-1} U_S$ where S is the smallest minimal down-admissible stretch of v. Let us also assume that we are in the generic case, where S is also down-admissible for $v[S]$ (and thus $p > 2$), and we denote by T the minimal down-admissible stretch for $v[S]$ that is adjacent and $T > S$.

By the unitriangularity of the basis change between the loops basis and the standard loops basis for $\operatorname{End}_{\mathbb{Q}TL}(\mathbf{e}_{v[S]-1})$ and by the generation 2 case in Lemma 4.8, we may assume that

\begin{equation}
(4.13) \quad D_S U_S \mathbf{e}_{v[S]-1} = g S L^S_{v[S]-1} + f S L^{ST}_{v[S]-1} + \sum_{U \in S, T} x_U L^U_{v[S]-1},
\end{equation}

with error terms $x_U L^U_{v[S]-1}$ with $x_U \in \mathbb{F}_p$. Our job is to show that we have $x_U = 0$ for all such U. If we multiply (4.13) by $L^S_{v[S]-1}$, then $E(v - 1)$ implies $0 = 0 + 0 + \sum_X x_X L^{SX}_{v[S]-1}$ and thus
We subtract the multiples of \(p_{\text{Tr}} \), where we have used \(p_{\text{Tr}} \) are distant, so we will assume that minimal stretches, and let us now consider following from (3-13),

\[
D_S U_S T D_T e_v[S]_{-1} = g_S L^{ST}_{e_v[S]_{-1}} + \sum_X x_X L^{TX}_{e_v[S]_{-1}},
\]

where now \(X \) runs over all remaining \(U \) such that \(T \not\subseteq X \). Then, by \(A(v) \), we also get

\[
D_S U_S T D_T e_v[S]_{-1} = g_S L^{ST}_{e_v[S]_{-1}}.
\]

This implies \(x_X = 0 \) for such \(X \). The only coefficients \(x_U \) that are left to be considered are the ones for which \(S \cup T \subset U \). Now we apply the partial trace \(p \text{Tr}_{ST} := p \text{Tr}_{(v[S] - a_v[S], ST)} \) to both sides of (4-13). For this we will use the notation \(w = a_v[S], u = a_v[S], ST \), and we get

\[
(-1)^{w+1-u} 2 e_u - 1 = g_S (-1)^{w-u+2} e_u + f_S e_u + \sum_{U \not\in g} x_U L^U_{e_v[S]_{-1}}.
\]

This is because \(p \text{Tr}_{ST}(D_S U_S e_v[S]_{-1}) = p \text{Tr}_{T} (e_v[S]_{-1}) \) where \(z = a_v[S] \), which differs from \(w \) by increasing its first non-zero digit \(a \) by one. The coefficient of \(e_u \) on the right-hand side is computed as follows

\[
-(w-u+1) 2 (\frac{a+1}{a}) + (-1)^{w-u+2} = (-1)^{w+1-u} 2.
\]

After subtracting the multiples of \(e_u \) from both sides, we conclude \(x_U = 0 \).

Proof of the remaining cases. Now suppose that \(S \) is smallest minimal down-admissible stretch for \(v \), but not down-admissible for \(v[S] \). Then (4-13) takes the form

\[
D_S U_S e_v[S]_{-1} = -2 L^S_{e_v[S]_{-1}} + \sum_{U \not\in S} x_U L^U_{e_v[S]_{-1}}.
\]

We first multiply this by \(L^S_{e_v[S]_{-1}} \) and deduce

\[
D_S U_S U_S D_S e_v[S]_{-1} = D_S U_S D_S D_S e_v[S]_{-1} = 0
\]

from \(O(v) \). Since \((L^S_{e_v[S]_{-1}})^2 = 0 \) by \(E(v - 1) \), we get \(x_U = 0 \) unless \(S \subset U \). Then a partial trace argument as above shows that all remaining \(x_U \) are also zero.

Lemma 4.10 \(E(v) \) follows if we have \(E(v - 1), A(v), O(v), \) and \(Z(v) \).

Proof. We first prove (3-13). By \(E(v - 1) \) and projector absorption, we may assume that \(S \) is a smallest minimal down-admissible stretch. Suppose first that \(S \) is down-admissible for \(v[S] \). Then we have

\[
D_S U_S D_S e_v[S]_{-1} = g_S U_S D_S D_S e_v[S]_{-1} + f_U T U_S D_S D_T D_S e_v[S]_{-1}
\]

\[
= 0 + h f U_T U_S D_S U_D T e_v[S]_{-1} = 0.
\]

where we have used \(Z(v), A(v) \) and finally \(E(v - 1) \) to deduce \(e_v[S]_{-1} U_S D_S U_S = 0 \). Now, suppose that \(S \) is not down-admissible for \(v[S] \). Then we instead get

\[
D_S U_S D_S e_v[S]_{-1} = -2 U_S D_S D_S e_v[S]_{-1}
\]

\[
= -2 U_S D_S e_v[S]_{-1} = 0.
\]

Here we have used \(O(v) \) and **Lemma 3.22**.

Next we need to prove that \((L^S_{e_v[S]_{-1}})^2 = 0 \) and \(L^X_{e_v[S]_{-1}} = \prod_k(l[S_k \subset X] L^S_{e_v[S]_{-1}} \). The first relation simply follows from (3-13), i.e.

\[
(l^S_{e_v[S]_{-1}})^2 = U_{S_k} D_{S_k} U_{S_k} D_{S_k} e_v[S]_{-1} = 0.
\]

Next, suppose we already know that \(L^X_{e_v[S]} = \prod_{S_k \subset X} L^S_{e_v[S]} \) for subsets \(X \) that decompose into \(l - 1 \) minimal stretches, and let us now consider \(X \cup S_i \) where \(X \not\subseteq S_i \). The result is clear if \(X \) and \(S_i \) are distant, so we will assume that \(S_i \) is adjacent to \(X \). By projector absorption and (3-13), we
may further assume that $S_i = S$ is the smallest minimal down-admissible stretch for v. Then we compute

$$L^S_{u-1}L^X_{v-1} = L^X_{m_{u-1}}.$$

The equation $pTr_{v-n_0}(L^S_{u-1}L^X_{v-1}) = L^X_{m_{u-1}}$ and Proposition 3.14 imply $L^S_{u-1}L^X_{v-1} = L^X_{m_{u-1}}$ and overlap relations hold vacuously. For in Lemma 4.3 and the overlap relations in Lemma 4.5. Finally, zigzag relations for loops based at words w were treated in Lemma 4.8.

However, the left-hand side has through-degree $v[X]$, while the right-hand side has through-degree at most $v[X \cup S] < v[X]$, a contradiction. Thus, we have $x = 0$ and $y = 1$, and consequently $L^S_{u-1}L^X_{v-1} = L^X_{S_1}$. □

This completes the proof of Theorem 3.2, which by Proposition 2.28, completes the proof of Theorem A.

Remark 4.11 In addition to the eve base cases $1 \leq v \leq p$ for the induction we have explicitly seen certain relations in cases of low generation. For example, for v of generation 1, the description of the endomorphism algebra can be deduced from the proof of Lemma 3.21 while the adjacency and overlap relations hold vacuously. For v of generation 2, we have seen the adjacency relations in Lemma 4.3 and the overlap relations in Lemma 4.5. Finally, zigzag relations for loops based at w of generation 2 were treated in Lemma 4.8.

5. Some conclusions

5A. The fractal nature of \mathbb{Z}. The quiver underlying \mathbb{Z} is a graph with countably infinitely many connected components. In each connected component there is a unique vertex $e - 1$ with $e \in \text{Eve}$, and we denote the vertex set of this component by $(e)_p$.

Example 5.1 We have $(1)_3 = \{0 < 4 < 6 < 10 < 12 < 16 < 18 < 22 < \cdots \}$, cf. (2-5).

The decomposition of the quiver implies that the algebra \mathbb{Z} decomposes as

$$\mathbb{Z} = \bigsqcup_{e \in \text{Eve}} \mathbb{Z}_e \quad \mathbb{Z}_e := \bigoplus_{v \in \{e\}_p} e_{v-1} Z_{e_v-1}.$$

Let M_p denote the free monoid on the set $L = \{0, \ldots, p - 1\}$. We represent the elements of M_p by words $[b_k, \ldots, b_0]$ for $b_i \in L$ and the multiplication is given by

$$[b_k, \ldots, b_0] \circ [a_j, \ldots, a_0] := [a_j, \ldots, a_0, b_k, \ldots, b_0].$$

(Note that the empty word \emptyset is the neutral element.) Elements of M_p with differing numbers of leading zeros are considered as distinct, and so they should not be interpreted as p-adic expansions of natural numbers. However, \mathbb{N} carries an action of M_p defined by

$$M_p \times \mathbb{N} \to \mathbb{N}, \quad [b_k, \ldots, b_0] \circ [a_j, \ldots, a_0]_p := [a_j, \ldots, a_0, b_k, \ldots, b_0]_p.$$

The fractal nature, i.e. the self-similarity, of \mathbb{Z} is now captured by the following proposition.

Proposition 5.2 The monoid M_p acts on \mathbb{Z} by algebra endomorphisms: For each $w \in M_p$, there is an algebra endomorphism $\phi_w \in \text{End}(\mathbb{Z})$ acting on idempotents by

$$\phi_w(e_{v-1}) := e_{w \circ v-1},$$
and on arrows by reindexation. Moreover, we have
\[\phi_z \phi_w = \phi_{z \circ w} \text{ for } w, z \in M_p. \]

Finally, if \(w = [0, \ldots, 0] \), then \(\phi_w \) maps any \(Z_{e^{-1}} \) isomorphically to \(Z_{w \circ e^{-1}} \). In this sense, \(Z \) is generated under the action of \(M_p \) by the summands \(Z_{e^{-1}} \) for \(e \in \{1, \ldots, p - 1\} \).

Proof. This is a direct consequence of Theorem 3.2. \(\square \)

We also note that, since \(Z \) is the direct sum of \(\mathbb{N} \) many copies of \(Z_{e^{-1}} \) for \(e \in \{1, \ldots, p - 1\} \), the underlying quiver of \(Z \) is a fractal graph in the sense of Ille–Woodrow [IW19], albeit in the trivial sense that any countable graph without edges and more than one vertex can be considered as a fractal factor.

5B. A few words about tilting modules. Let us work over the ground field \(\mathbb{K} \). First, recall the category of finite-dimensional modules for \(SL_2(\mathbb{K}) \) has simple \(L(v - 1) \), Weyl \(\Delta(v - 1) \), dual Weyl \(\nabla(v - 1) \) and indecomposable tilting modules \(T(v - 1) \) for \(v \in \mathbb{N} \), the latter being the indecomposable objects of \(\text{Tilt} \), see e.g. [Wil17, Section 1] for a concise summary of the main definitions and properties regarding \(\text{Tilt} \).

Let us now elaborate a bit further on the representation-theoretic implications of Corollary A. Almost all of these are, of course, well-understood. However, the reader might find it helpful to see how they can be derived from our results in the previous sections.

It is well-known that
\[\text{Tilt} = \bigoplus_{e \in \text{Eve}} \text{Tilt}_{e^{-1}}, \quad \text{Tilt}_{e^{-1}} = \{ T(v - 1) \mid v - 1 \in (e)p \}, \]
whose direct summands are called blocks, which are equivalent as additive, \(\mathbb{K} \)-linear categories. From our discussion we immediately get the following.

Proposition 5.3 There is an equivalence of additive, \(\mathbb{K} \)-linear categories
\[\mathcal{F}_{e^{-1}} : \text{Tilt}_{e^{-1}} \overset{\cong}{\to} \text{Mod}_{Z_{e^{-1}}}, \]
sending indecomposable tilting modules to indecomposable projectives. Moreover, \(\text{Hom}_{\text{Tilt}}(X, Y) = 0 \) if \(X \in \text{Tilt}_{e^{-1}} \) and \(Y \in \text{Tilt}_{e'^{-1}} \) for \(e, e' \in \text{Eve}, e \neq e' \). Finally, there is an isomorphism of algebras \(Z_{e^{-1}} \cong Z_{e'^{-1}} \) for all \(e, e' \in \text{Eve} \) with equal non-zero digits.

Proof. Directly from Theorem A and Corollary A, combined with Theorem 3.2 and the above. \(\square \)

In fact \(Z_{e^{-1}} \cong Z_{e'^{-1}} \) for all \(e, e' \in \text{Eve} \), but such isomorphisms involve non-trivial rescalings in our presentation.

Another consequence we get are the tilting–dual Weyl multiplicities.

Proposition 5.4 We have
\[(T(v - 1) : \nabla(w - 1)) = \begin{cases} 1 & \text{if } w \in \text{supp}(v), \\ 0 & \text{else.} \end{cases} \]

Proof. Note that the basis Theorem 3.2.(Basis) is part of the family of bases constructed in [AST18], and the proposition follows from the construction of these bases in loc. cit., and our main statements Theorem A and Corollary A. \(\square \)

Hence, we get the tilting characters \(\chi_{T_{e^{-1}}} = \sum_{w \in \mathbb{N}} (T(v - 1) : \nabla(w - 1)) \chi_{\nabla_{w^{-1}}} \), where the characters \(\chi_{\nabla_{w^{-1}}} = \chi_{\Delta_{w^{-1}}} \) are the characteristic zero characters well-known e.g. by Weyl’s character formula. By reciprocity, cf. [RW18, Proposition 1.14], we also get the Weyl–simple
we also get
Thus, we get
\[T \]
Proof. We will use that
Proposition 5.6
\[(T(w - 1) : L(v - 1)) = \begin{cases} 1 & \text{if } v \in w - 2X(w), \\ 0 & \text{else.} \end{cases} \]
Thus, we get
\[\chi_{w-1}^\Delta = \sum_{v \in \mathbb{N}} \left[(T(w - 1) : L(v - 1)) \right] \chi_{v-1}^L = \sum_{v \in w - X(w)} \chi_{v-1}^L, \]
which determines the simple characters by inverting the change of basis matrix.

Example 5.5 For \(p = 3 \) we have \(\chi_{22}^T = \chi_{18}^T + \chi_{16}^T + \chi_{12}^T \), cf. [JW17, Figure 1]. Moreover, we also get \(\chi_{23}^T = \chi_{22}^T + \chi_{18}^T + \chi_{12}^T + \chi_{10}^T \).

The final consequence we would like to derive in this paper is the following.

Proposition 5.6 Let \(I_v = \{ T(w - 1) \mid w \geq v \} \). For any thick tensor-ideal \(I \neq 0 \) in \(\text{Tilt} \) there exists \(k \in \mathbb{N}_0 \) such that \[I = I_{p^k} = \{ T(v - 1) \mid \nu_p(\dim_{\mathbb{F}_p} (T(v - 1))) \leq k \}, \]
with the latter equality holding in case \(p \neq 2 \).

Proof. We will use that \(T(1) \) is a \(\otimes \)-generator of \(\text{Tilt} \) and Weyl and dual Weyl modules have classical characters.

Assume that \(T(v - 1) \in I \) for \(v \) minimal. Then it is clear by Proposition 5.4 that \(I = I_v \). Thus, it remains to determine the possible minimal \(v \). To this end, note that the decomposition of \(T(1) \otimes T(w - 1) \cong T(1) \otimes T(1) \) into its indecomposable summands is completely determined by Proposition 5.4 and the classical \(SL(2, \mathbb{C}) \) tensor product combinatorics. Analyzing now how tensoring with \(T(1) \) affects the support, Proposition 5.4 then also implies that \(v \) needs to be a prime power, and conversely, that a prime power works as a minimal \(v \).

Finally, the last statement follows from Proposition 3.14 since \(\mathfrak{e}_{v-1} = \overline{e}_{v-1} = \overline{e}_{v-1} \) for \(e \in \text{Eve} \).

Thus, the thick tensor-ideals in \(\text{Tilt} \) are \(\text{Tilt} = I_{p^0} \supset I_{p^1} \supset I_{p^2} \supset I_{p^3} \supset I_{p^4} \supset \cdots \).

Example 5.7 The elements of \(I_{p^1} \) are the so-called negligible modules.

Note that the above implies that \(\text{Tilt} \) has no projective modules since these would form the minimal thick tensor-ideal.

Table of notation and central concepts

In general we use a tilde, e.g. \(\tilde{f} \), to indicate that we work over \(\mathbb{Q} \), an overline, e.g. \(\overline{f} \), to indicate that we have something that reduces mod \(p \) but we want to consider it over \(\mathbb{Q} \), and no extra decoration if we work in \(\mathbb{F}_p \).

References

[AJL83] H.H. Andersen, J. Jørgensen, and P. Landrock. The projective indecomposable modules of \(SL(2, p^n) \). *Proc. Lond. Math. Soc. (3)*, 46(1):38–52, 1983. 10.1112/plms/as3-46.1.38.
Name	Symbol	Description
Ringel dual of SL_2	\mathbb{Z}	the path algebra of a quiver with relations presented in Theorem 3.2.
JW projector	\mathbb{e}_{v-1}	the Jones–Wenzl projectors, corresponding to projections to $\Delta(v-1)$ in $T(1)^{\otimes(v-1)}$; defined over \mathbb{Q}, Definition 2.1.
pJW projector	$\mathbb{e}_{p,v-1}$	the p-Jones–Wenzl projectors, corresponding to projections to $T(v-1)$ in $T(1)^{\otimes(v-1)}$; defined over \mathbb{F}_p, Definition 2.26.
rational pJW proj.	$\mathbb{e}_{\lambda,v-1}$	the p-Jones–Wenzl projectors, corresponding to projections to $T(v-1)$ in $T(1)^{\otimes(v-1)}$, but considered over \mathbb{Q}, Definition 2.22.
integral morphisms	$\mathbb{d}_{S,v-1}$	down or up morphisms given by cups or caps; these work integrally, Definition 2.15.
standard morphisms	$\mathbb{d}_{S,v-1}$	down or up morphisms given by cups or caps together with JW projectors; these over \mathbb{Q}, Definition 2.18.
p morphisms	$\mathbb{D}_{S,e_{v-1}}$	down or up morphisms given by cups or caps together with JW projectors; these over \mathbb{F}_p, Definition 3.1.
standard loops	$\mathbb{L}_{S,v-1}$	compositions of down and up morphisms; form a basis of endomorphism spaces over \mathbb{Q}, Definition 2.18.
p loops	$\mathbb{L}_{S,v-1}$	compositions of down and up morphisms; form a basis of endomorphism spaces over \mathbb{F}_p, Definition 3.1.
eve	e	a number with a single non-zero p-adic digit, Definition 2.5.
mother of v	m_v	defined (unless v is an eve) by setting the last non-zero p-adic digit of v to zero, Definition 2.5.
ancestors of v	m_v,m_v^2,\ldots	positive numbers obtained by setting last p-adic digits of v to zero, Definition 2.5.
generation of v	g_v	the number of ancestors of v, Definition 2.5.
stretches	$-$	sets of consecutive digits in the p-adic expansion of a number, Definition 2.8.
admissibility	$-$	whether a set of digits of a p-adic expansion is suitable for reflecting up or down, Definition 2.8.
admissible hull	\mathfrak{S}	an admissible set containing S, Definition 2.8.

[AST18] H.H. Andersen, C. Stroppel, and D. Tubbenhauer. Cellular structures using U_q-tilting modules. *Pacific J. Math.*, 292(1):21–59, 2018. URL: https://arxiv.org/abs/1503.00224, doi:10.2140/pjm.2018.292.21.

[AST17] H.H. Andersen, C. Stroppel, and D. Tubbenhauer. Semisimplicity of Hecke and (walled) Brauer algebras. *J. Aust. Math. Soc.*, 103(1):1–44, 2017. URL: https://arxiv.org/abs/1507.07676, doi:10.1017/S1446788716000392.

[AT17] H.H. Andersen and D. Tubbenhauer. Diagram categories for U_q-tilting modules at roots of unity. *Transform. Groups*, 22(1):29–89, 2017. URL: https://arxiv.org/abs/1808.08022, doi:10.1007/s00031-016-9363-z.

[BS18] J. Brundan and C. Stroppel. Semi-infinite highest weight categories. 2018. URL: https://arxiv.org/abs/1808.08022.

[BLS19] G. Burrull, N. Libedinsky, and P. Sentinelli. p-Jones–Wenzl idempotents. *Adv. Math.*, 352:246–264, 2019. URL: https://arxiv.org/abs/1902.00305, 10.1016/j.aim.2019.06.005.

[CC76] R. Carter and E. Cline. The submodule structure of Weyl modules for groups of type A_1. *Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975)*. Pages 303–311, 1976.
S. Cautis, J. Kamnitzer, and S. Morrison. Webs and quantum skew Howe duality. *Math. Ann.*, 360(1-2):351–390, 2014. URL: https://arxiv.org/abs/1210.6437, doi:10.1007/s00208-013-0984-4.

S. Donkin. On tilting modules for algebraic groups. *Math. Z.*, 212(1):39–60, 1993. doi:10.1007/BF02571640.

S. Doty and A. Henke. Decomposition of tensor products of modular irreducibles for SL_2. *Q. J. Math.*, 56(2):189–207, 2005. URL: https://arxiv.org/abs/math/0205186, doi:10.1093/qmath/hah027.

B. Elias. Light ladders and clasp conjectures. 2015. URL: https://arxiv.org/abs/1510.06840.

B. Elias. Quantum Satake in type A. Part I. *J. Comb. Algebra*, 1(1):63–125, 2017. URL: https://arxiv.org/abs/1403.5570, doi:10.4171/JCA/1–1–4.

K. Erdmann and A. Henke. On Ringel duality for Schur algebras. *Math. Proc. Cambridge Philos. Soc.*, 132(1):97–116, 2002. doi:10.1017/S0305004101005485.

K. Erdmann and A. Henke. On Schur algebras, Ringel duality and symmetric groups. *J. Pure Appl. Algebra*, 169(2-3):175–199, 2002. doi:10.1016/S0022-4049(01)00071-8.

F.M. Goodman and H. Wenzl. The Temperley–Lieb algebra at roots of unity. *Pacific J. Math.*, 161(2):307–334, 1993.

P. Ille and R. Woodrow. Fractal graphs. *J. Graph Theory*, 91(1):53–72, 2019. doi.org/10.1002/jgt.22420.

L.T. Jensen and G. Williamson. The p-canonical basis for Hecke algebras. In *Categorification and higher representation theory*, volume 683 of *Contemp. Math.*, pages 333–361. Amer. Math. Soc., Providence, RI, 2017. URL: https://arxiv.org/abs/1510.01556, doi:10.1090/conm/683.

L.H. Kauffman and S.L. Lins. *Temperley–Lieb recoupling theory and invariants of 3-manifolds*, volume 134 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1994. doi:10.1515/9781400882533.

M. Mackaay, V. Mazorchuk, V. Miemietz, and D. Tubbenhauer. Trihedral Soergel bimodules. Fund. Math. 248 (2020), no. 3, 219–300. URL: https://arxiv.org/abs/1804.08920, doi:10.4064/fm566-3-2019.

V. Miemietz and W. Turner. Koszul dual 2-functors and extension algebras of simple modules for GL_2. *Selecta Math. (N.S.)*, 21(2):605–648, 2015. URL: https://arxiv.org/abs/1106.5411, doi:10.1007/s00029-014-0164-8.

V. Miemietz and W. Turner. Rational representations of GL_2. *Glasg. Math. J.*, 53(2):257–275, 2011. URL: https://arxiv.org/abs/0809.0982, doi:10.1017/S0017089510000686.

V. Miemietz and W. Turner. The Weyl extension algebra of $GL_2(\mathbb{F}_p)$. *Adv. Math.*, 246:144–197, 2013. URL: https://arxiv.org/abs/1106.566S?context=math, doi:10.1016/j.aim.2013.07.003.

S. Riche and G. Williamson. Tilting modules and the p-canonical basis. *Astérisque*, (397):ix+184, 2018. URL: https://arxiv.org/abs/1512.08296.

D. Tubbenhauer, P. Vaz, and P. Wedrich. Super q-Howe duality and web categories. *Algebr. Geom. Topol.*, 17(6):3703–3749, 2017. URL: https://arxiv.org/abs/1504.05069, doi:10.2140/agt.2017.17.3703.

G. Williamson. Algebraic representations and constructible sheaves. *Jpn. J. Math.*, 12(2):211–259, 2017. URL: https://arxiv.org/abs/1610.06261, doi:10.1007/s11537-017-1646-1.

D.T.: INSTITUT FÜR MATHEMATIK, UNIVERSITÄT ZÜRICH, WINTERTHUERSTRASSE 190, CAMPUS IRCHEL, OFFICE Y27J32, CH-8057 ZÜRICH, SWITZERLAND, WWW.DTUBBENHAUER.COM

Email address: daniel.tubbenhauer@math.uzh.ch

P.W.: MATHEMATICAL SCIENCES INSTITUTE, THE AUSTRALIAN NATIONAL UNIVERSITY, HANNA NEUMANN BUILDING, CANBERRA ACT 2601, AUSTRALIA, PAUL.WEDRICH.AT

Email address: p.wedrich@gmail.com