Bending impact on the performance of a flexible Li$_4$Ti$_5$O$_{12}$-based all-solid-state thin film battery

Alfonso Sepúlvedaa‡, Jan Speulmannsa, Philippe M. Vereeckena,b

aImec, Kapeldreef 75, 3001 Leuven, Belgium

bCentre for Surface Chemistry and Catalysis, University of Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium

‡Corresponding Author: alfonso.sepulvedamarquez@imec.be

Supporting Information
Figure S1: Charge and discharge cycles for the flexible all-solid-state battery at different C-rates for different bending states.
Figure S2: AFM measurements done on a) bare flexible ceramic substrate, b) Flexible ceramic substrate + 200 nm LTO layer, c) bare SiOx substrate and d) SiOx substrate + 200 nm LTO layer.
Figure S3: Cross section SEM of full battery stack on a) a flexible ceramic substrate and b) a rigid SiOx/Si substrate.
Calculation procedure to define Figure 4

Layer thicknesses and values:

Flexible substrate: 40 µm
Ti adhesion layer: 20 nm
Pt current collector: 70 nm
Li$_4$Ti$_5$O$_{12}$ cathode electrode: 200 nm
LiPON solid electrolyte: 500 nm
LiFePO$_4$ anode electrode: 1 µm
Total thickness: 41.79 µm

Mechanical Neutral Plane situated at: 20.895 µm
(d) Li$_4$Ti$_5$O$_{12}$ electrode distance to neutral plane: 19.295 µm
(E) Young’s Modulus: 200 GPa
(Rc) Bending radii: 25, 17 and 14 mm

The stress for each bending radius is calculated by:

$$\sigma = \frac{E \cdot d}{Rc}$$

Resulting in:

$$\sigma = 154, 227 \text{ and } 276 \text{ MPa for } Rc = 25, 17 \text{ and } 14 \text{ mm, respectively.}$$

The force applied at each bending state is considered following the relation:

$$F = \sigma \cdot A$$

where A is the cross-sectional area of the active materials in the flexible battery

$$A = 36 \text{ mm} \times 41.79 \text{ µm} = 1.5044 \times 10^{-6} \text{ m}^2$$

Giving as a result for the Force as:

$$F = 232, 341 \text{ and } 415 \text{ Newtons for } Rc = 25, 17 \text{ and } 14 \text{ mm, respectively.}$$

The value for strain can be defined with the strain to stress relation:

$$\varepsilon = \frac{\sigma}{E}$$

Resulting in values of strain of:

$$\varepsilon = 0.000772, 0.00114 \text{ and } 0.00138 \text{ for } Rc = 25, 17 \text{ and } 14 \text{ mm, respectively.}$$

This values are plotted in Figure 4 and are related to the corresponding capacity changes for each bending radius depicted in average values from Table 1. To link it to the results from
Ning et al.14 the maximum strain limit is calculated according to the specifications provided by the supplier from the Weibull distribution obtained from the physical and mechanical properties from https://www.enrg-inc.com/technology.

![Weibull Distribution](https://www.enrg-inc.com/technology)

This is calculated by assuming a Young’s modulus (E) of 200 GPa which is defined for the flexible ceramic substrate and by considering a failure probability of 98 % obtained when applying a strength of 1.2 GPa. Using the cross sectional area (A) of 0.8E-6 m2. The force obtained at 1.2GPa strength by the relation $F = \sigma A$, results in: 96 Newtons. When applying this same force in the geometry of our thin film flexible battery ($A = 1.5044E-6$ m2) the resulted stress achieved is $\sigma = 638$ MPa. Next, the value for strain can be defined with the strain to stress relation ($\varepsilon = \sigma/E$) resulting in a maximum strain $\varepsilon = 0.003$. This value is linked to the 5 % maximum lattice strain from Ning et al.[14] It is assumed that the maximum capacity change is 5.47 % (Table 1) for both conditions of bending. That is, a maximum change of ± 5.47 % linked to the Lithium diffusion energy barrier of 1 eV and to a free Lithium diffusion pathway (Energy barrier = 0). In addition, it is assumed that under zero strain the capacity the change in capacity is 0.