Toward an integrated approach to crop production and pollination ecology through the application of remote sensing

Bryony K Willcox Correspond., 1, Andrew J Robson 2, Brad G Howlett 3, Romina Rader 1

1 School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
2 Precision Agriculture Research Group, University of New England, Armidale, NSW, Australia
3 The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand

Corresponding Author: Bryony K Willcox
Email address: bk_willcox@hotmail.com

Insect pollinators provide an essential ecosystem service by transferring pollen to crops and native vegetation. The extent to which pollinator communities vary both spatially and temporally has important implications for ecology, conservation and agricultural production. However, understanding the complex interactions that determine pollination service provisioning and production measures over space and time has remained a major challenge. Remote sensing technologies (RST), including satellite, airborne and ground based sensors, are effective tools for measuring the spatial and temporal variability of vegetation health, diversity and productivity within natural and modified systems. Yet, while there are synergies between remote sensing science, pollination ecology and agricultural production, research communities have only recently begun to actively connect these research areas. Here, we review the utility of RST in advancing crop pollination research and highlight knowledge gaps and future research priorities. We found that RST are currently used across many different research fields to assess changes in plant health and production (agricultural production) and to monitor and evaluate changes in biodiversity across multiple landscape types (ecology and conservation). In crop pollination research, the use of RST are limited and largely restricted to quantifying remnant habitat use by pollinators by ascertaining the proportion of, and/ or isolation from, a given land use type or local variable. Synchronization between research fields is essential to better understand the spatial and temporal variability in pollinator dependent crop production. RST enable these applications to be scaled across much larger areas than is possible with field-based methods and will facilitate large scale ecological changes to be detected and monitored. We advocate greater use of RST to better understand interactions between pollination, plant health and yield spatial variation in pollinator dependent crops. This more holistic approach is necessary for decision-makers to improve strategies toward managing multiple land use types and ecosystem services.
Toward an integrated approach to crop production and pollination ecology through the application of remote sensing

Bryony K Willcox¹*, Andrew J Robson², Brad G Howlett³ and Romina Rader¹

1 School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
2 Precision Agriculture Research Group, University of New England, Armidale, NSW, Australia
3 The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand

*Corresponding author email: bk_willcox@hotmail.com
Abstract

Insect pollinators provide an essential ecosystem service by transferring pollen to crops and native vegetation. The extent to which pollinator communities vary both spatially and temporally has important implications for ecology, conservation and agricultural production. However, understanding the complex interactions that determine pollination service provisioning and production measures over space and time has remained a major challenge. Remote sensing technologies (RST), including satellite, airborne and ground based sensors, are effective tools for measuring the spatial and temporal variability of vegetation health, diversity and productivity within natural and modified systems. Yet, while there are synergies between remote sensing science, pollination ecology and agricultural production, research communities have only recently begun to actively connect these research areas. Here, we review the utility of RST in advancing crop pollination research and highlight knowledge gaps and future research priorities. We found that RST are currently used across many different research fields to assess changes in plant health and production (agricultural production) and to monitor and evaluate changes in biodiversity across multiple landscape types (ecology and conservation). In crop pollination research, the use of RST are limited and largely restricted to quantifying remnant habitat use by pollinators by ascertaining the proportion of, and/or isolation from, a given land use type or local variable. Synchronization between research fields is essential to better understand the spatial and temporal variability in pollinator dependent crop production. RST enable these applications to be scaled across much larger areas than is possible with field-based methods and will facilitate large scale ecological changes to be detected and monitored. We advocate greater use of RST to better understand interactions between pollination, plant health and yield spatial variation in pollinator
dependent crops. This more holistic approach is necessary for decision-makers to improve strategies toward managing multiple land use types and ecosystem services.

Introduction

Crop pollination research straddles multiple disciplines and scales as it concerns the efficiency and transport of pollen by wild and managed taxa across modified and natural systems. In agricultural systems, pollination services provided by insects are important to 75% of agricultural crop production, which accounts for about 35% of global food supply (Klein et al., 2007). Studies that encompass scales relevant to both pollination ecology (plant/tree, landscape) and crop production (field, sub-field) are challenging to conduct using traditional field-based methods. However, if we are to better understand the complex interactions that occur in crops between pollination and production, the development or incorporation of methods and technologies that can facilitate the integration of multiple scales is required.

Remote sensing is defined as the measurement of an object or phenomenon without making physical contact, through the detection of reflected or emitted electromagnetic energy (Mulla, 2013). For the assessment of vegetation, remote sensing provides a non-destructive measure of plant status via a range of sensor types (active or passive), resolutions (spatial, temporal, spectral and radiometric) and platforms (satellite, airborne or ground based) (Mulla, 2013). There are multiple benefits for utilising this technology within pollination research, including providing significant opportunities to connect pollination research with other areas already utilising this technology (Figure 1). For example, in ecology and conservation, remotely sensed data has been used in biodiversity monitoring and assessment across most habitat types (Kerr & Ostrovsky, 2003; Pettorelli et al., 2005; Pettorelli et al., 2011; Pettorelli et al., 2014; de Araujo Barbosa,
Applications have included mapping habitat availability, habitat suitability and distributions of threatened species (Osborne, Alonso, & Bryant, 2001; Luoto, Kuussaari, & Toivonen, 2002; Adhikari, Barik, & Upadhaya, 2012) and pest or invasive species (Andrew & Ustin, 2009; Diao & Wang, 2014), vegetation structure and monitoring (Seavy, Viers, & Wood, 2009) and biomass estimations (Dong et al., 2003). This information is then used to inform conservation and biodiversity management decisions (Gillespie et al. 2008). RST enable these applications to be scaled across much larger areas than is possible with field-based methods (Kerr & Ostrovsky, 2003). In addition, RST offer a standardized, regular source of data allowing large scale ecological changes to be detected and monitored (Pettorelli et al., 2014). For example, at a global ecological scale, remote sensing is assisting with the monitoring and mapping anthropogenic impacts including habitat loss, due to deforestation and land conversion, as well as those induced by climate change such as species distribution changes and growing season length (Kerr & Ostrovsky, 2003; Pettorelli et al., 2005).

Remote sensing technologies are also used widely in the agricultural sciences to better understand the spatial and temporal variation in crop vigour and productivity and for the monitoring of abiotic and biotic constraints across a range of scales (Mahlein et al., 2012; Mulla, 2013). In crop production, specific examples include yield forecasting and mapping (GopalaPillai & Tian, 1999; Baez-Gonzalez et al., 2005; Zaman, Schumann, & Hostler, 2006; Robson, Rahman, & Muir, 2017), water and nutrient monitoring and variable rate applications (Zaman, Schumann, & Miller, 2005; Goffart, Olivier, & Frankinet, 2008; Hedley & Yule, 2009; Tremblay et al., 2009; Barker & Sawyer, 2010), growth monitoring (Gao et al., 2017), disease detection (Zhang et al., 2003; Mahlein et al., 2012; Salgadoe et al., 2018), orchard flower assessments (Horton et al., 2017;
Many crops can now be managed or monitored at multiple scales from individual plants and within field management zones (Zhang, Wang, & Wang, 2002; Mulla, 2013; Aggelopooulou et al., 2013) through to regional, national and even global scales (Wu et al., 2014). For example, in apple crops the radiometric productive foliar index was developed from the relationship between tree canopy area, normalized difference vegetation index (NDVI) and fruit per tree to better predict crop loads (production per tree (kg)), fruit quality measures (fruit weight (g) and soluble solids (Brix)) (Best Salazar, Bastías, & Leon, 2008), while at broader regional, national and global scales, crop monitoring systems utilise a combination of remote sensing data and field data to gauge estimates of crop production, yield and condition (Wu et al., 2014).

Crop pollination research has utilised remote sensing technologies to understand landscape and regional scale habitat use by pollinating insects. Pollinators are highly mobile, and some can travel many kilometres for the purpose of foraging and nesting (Wikelski et al., 2010). They are impacted by variations in habitat proximity and availability (Carvalheiro et al., 2011), with many having nesting and foraging needs directly dependent on specific habitats and some requiring diverse floral resources for year-round foraging needs (Winfree, Bartomeus, & Cariveau, 2011; Kennedy et al., 2013). In a crop environment, variations to insect pollinator movement across different scales can result in downstream variations to pollination and the quantity and quality of crop yields.

For example, at local field scales, pollinators can constantly move into and out of flowering crops (Mesa et al., 2013), with temporal distributions being significantly influenced by the surrounding landscape (Holzschuh et al., 2011). Although flies and bees have been shown to move distances of several hundred metres between the surrounding environment and flowering crops (Rader et al., 2011), studies examining pollinator abundance and efficiency are often limited beyond very local
scales (individual plants or groups of neighboring plants within a field). While these studies are
important for understanding downstream production of fruit and seed set at the plant or within
plant scale, they fail to fully elucidate the mechanisms underlying field level variations in crop
yield (Angadi et al., 2003). In addition, realised crop yields can also be affected by important
interacting and confounding factors that vary within and between fields, including plant
reproductive strategies, nutrient and water availability, pest pressure, soil health and profile, light
availability, crop density and plant health (Esparza et al., 2001; Bos et al., 2007; Lundin et al.,
2013; Motzke et al., 2015; Klein et al., 2015). These multiple and potentially interacting biotic and
abiotic factors may also influence pollination success. Remote sensing technologies can already
detect the signatures of several of these variables (Apostol et al., 2003) and therefore, offers much
needed scope to be able to explore these interactions at a range of scales. Such studies are a
necessary building block in the development of better tailored management practices that optimize
pollination and hence yield outcomes for crop growers.

In this study, we conducted a systematic literature review to evaluate the utility of remote sensing
technology in crop pollination research. We identify the current suite of remote sensing tools being
used, their mode of integration into pollination research, and the unaddressed future research
questions that could be answered using RST in crop pollination research.

Materials and Methods

Literature Search

A literature search using Scopus and Google Scholar identified the types of remote sensing tools
utilised in crop pollination research on 14 July 2016 and 11 January 2018. The search terms
included ‘pollination’ or pollinator* and ‘landscape*’ or ‘spatial’ or ‘land cover’ or ‘aerial image*’
or ‘remote sensing’ or ‘satellite’ or ‘tracking’ and ‘crop’ or ‘tree’ and ‘yield’ or ‘fruit quality’ and ‘wild bee’ or ‘fly’ or ‘diptera’ or ‘beetle’ or ‘native bee’ or ‘bee’ or ‘syrphid’ or ‘hover fly’ or ‘hymenoptera’ or ‘ant’ or ‘coleoptera’. The reference and citation lists of each article identified were also searched, using these same search terms to source additional research papers.

Papers were excluded from the database if crop types were not specified. For example, if papers referred to production systems in a general way such as ‘agroecosystem’ or ‘agricultural matrix’ with no further detail about specific crop type, they were excluded.

For each publication we recorded: author/s, journal, year of publication, location of study, crop type, type of remote sensing technologies used (Figure 1), the spatial factors reported (e.g. proportion or distance to a given land use). We classified each study according to one of three biome types, tropical, subtropical or temperate. The types of insect pollinators investigated in each paper were recorded and categorised into three main groups: managed honey bees (*Apis mellifera*), wild bees (unmanaged *Apis* bees and other non-*Apis* bees, including solitary and social species) and other wild insects (beetles, non-syrphid and syrphid flies, butterflies and moths). Insect pollinator response variables reported in studies were classified into four categories: species richness (number of different species), species abundance (number of individuals of a single species), functional complementarity (how species complement each other in terms of time of visitation, purpose of visit etc.) and community composition (measure of species richness and abundance combined). Finally, we recorded the metric used to measure pollination success. These were categorised into five groups: yield, fruit set, seed set, fruit quality or other (pollen tube or grain counts).
Results

Remote sensing technologies used

We identified a total of 68 journal articles (SI Table 1) that utilised some form of RST to facilitate crop pollination research across 33 different crops (Figures S1-4, including general features of data set). The main forms of RST reported in the literature included sourcing aerial (18%) or satellite imagery (12%), using government produced land cover maps (22%) or GPS units (12%). One study was able to access spatially assessed yield data collected via a harvester mounted yield sensor, while another 12% used base maps provided by software programs such as Google Earth™ and ArcGIS® rather than sourcing other imagery. Two papers in the database reported using the outputs from RST but no mention was made of how they obtained this information. The remaining 21% of papers used combinations of these technologies. The most common use for the imagery sourced was to produce land cover maps (79%), using software programs such as ArcGIS®, ENVI® or Google Earth™.

Methods for incorporating RST

Two methods for incorporating RST into crop pollination were apparent in the literature, broadly defined as proportion and isolation (Figure 2). Proportion involved creating a set perimeter (i.e. radius of 500m, 1km or 2km) around the focal crop site and then using the proportion of one or more land-use types within that perimeter to explain variations in insect spatial patterns, pollination services or pollination success. Landscape types commonly used included non-crop/semi-natural habitat and agricultural/crop. This was the most commonly adopted method across studies (51%).

Isolation was used by 12% of studies. This method measured isolation of a specific crop site or point within a crop site, from landscape or local scale variables, such as natural vegetation patches,
natural vegetation strips, natural vegetation margins or honey bee hives. Thirty-one percent of studies used both proportion and isolation when investigating pollination-related spatial patterns in crops. The remaining 6% of studies assessed spatial variability in various ways including combining decoded honey bee (*Apis mellifera*) waggle dances with aerial photographs of the study area to generate foraging distribution maps (Balfour & Ratnieks, 2016), combining spatial positions within a crop (edge vs centre) with isolation and/or proportion (Gibbs et al., 2016) or assessing field-level yield variability with distance from hives (Cunningham & Le Feuvre, 2013).

Pollination related response variables

Most crop pollinator studies investigated the extent to which remnant or non-crop vegetation was associated with species richness and species abundance (49%), species abundance alone (21%) or species richness, species abundance and community composition combined (16%). The remaining 14% of studies used other various combinations of these variables with some also including functional complementarity and one paper used a measurement of honey bee hives/ha as their response variable.

Only one study directly used RST (harvester-mounted equipment that linked harvested crop to the GPS location within the field) to gain a measure of field level yield variability (Cunningham & Le Feuvre, 2013). While many other studies (53%) considered a measure of crop production (yield, fruit set, seed set or fruit quality) in their experiments these were most often measures taken from an individual plant or group of plants rather than whole fields, and most (82%) were related to the same spatial gradients used for pollinator assessment.
Discussion

In the existing crop pollination literature, the primary application of remote sensing technology was predominantly limited to defining the extent of non-crop and/or crop vegetation in agricultural production systems. This was reported through two main activities: 1) using landscape assessments to measure the proportion of land cover types (predominately non-crop, remnant vegetation) surrounding a crop system; and 2) using landscape assessments to determine the isolation of a crop system from non-crop vegetation. These measures were then used as explanatory factors for pollinator related measures (species abundance and/or richness), with a smaller proportion of studies also investigating production measures (yield, fruit or seed set or quality) using these same spatial explanatory factors. Pollination studies utilising RST in this way have provided invaluable information regarding the influence of landscape and regional scale environmental factors on pollinator abundance and distribution. However, given the use of remote sensing technologies in related research areas such as crop production and ecological disciplines, there is a great deal of potential for its further integration into the field of crop pollination.

Despite the influence of landscape scale vegetation factors on pollinator community composition and foraging behavior, relatively little is known about the features within the vegetation prompting these responses. For example, they may be providing alternative floral resources for adult insects, food sources for the development of larval stages or nesting sites. The current methods adopted within crop pollination research do little to address these questions, as the majority of research uses a coarse level of remotely-derived land cover information (Hofmann et al., 2017) with high levels of variation in landscape classifications between studies. In our review, over 30 different categories for broad landscape types were reported. To standardize multi-site, crop, year and study comparisons (Ne'eman et al., 2010), more consistent descriptions of the vegetation at landscape
and regional levels are needed to better understand the features within the vegetation pollinators are responding to. A range of high resolution RST are already being utilised in other research disciplines to extract vegetation data at these more precise resolutions. For example, aerial LIDAR and multispectral data were combined to distinguish between seven different vegetation structures which ranged from grasslands to tree stands of varying height and composition (defined as seven fuel type categories in the study) in Mediterranean forests (García et al., 2011) and very high spatial resolution data (WorldView-2 satellite) has been used to identify and distinguish between different tree species in a forest environment (Immitzer, Atzberger, & Koukal, 2012). Integrating this type of technology into current crop pollination research would provide more detailed information about important environmental variables that may be comparable between and within crops, years and regions such as vegetation structure, plant diversity and identity, alternative food resources and nesting habitat. This information would also further inform attempts to model and map pollinator species distributions and pollination services (Lonsdorf et al., 2009; Polce et al., 2013).

Measuring the impact of the spatial and temporal fluctuations in insect pollinator communities in terms of pollination service provisioning and crop production is still limited for crop pollination research. For example, pollination response variables (visitation, pollen deposition, fruit set and yield) are typically examined at a single plant or row level within a crop field, and while the logistics of conducting these localised experiments often prevent them being conducted at larger scales, they provide little information about the impact of pollination service provisioning at whole field scales. On the other hand, some studies utilise sub-sampling to gain measures that are representative of the whole field (Goodwin et al., 2011), while this may provide more indicative field level results it still holds a degree of coarseness. RST can greatly overcome this coarseness, by providing a far more directed method for deciding where to sample within a field, ultimately
saving time and effort. Cunningham and Le Feuvre (2013) provide one example of how RST can be incorporated to provide field level assessments of pollination service provisioning. Pollination surveys and flower assessments across a whole crop field, designed as a gradient of distance from managed honey bee hives, were used in conjunction with field level yield maps, derived using harvester mounted RST equipment, to determine the effect of managed honey bee density and pollination on yield.

Pollination studies also typically treat crop fields as a single uniform factor in all respects aside from their isolation from or proportion of surrounding landscape and local variables, despite crop production research showing that yield variability can differ both between and within fields (Robson, Rahman, & Muir, 2017). In comparison, precision agricultural studies recognise field level variability of factors such as nutrients, water stress, soil characteristics and plant health, which impact on final yield measures (Zaman, Schumann, & Miller, 2005; Hedley & Yule, 2009; Barker & Sawyer, 2010). Pollination services are typically investigated in isolation from these important abiotic factors that influence yield outcomes. However, a small number of studies have investigated interactions in crop species between pollination, water and nutrients in almond (Klein et al., 2015), pollination, pesticide and fertilizer in cucumber (Motzke et al., 2015) and pollination, light intensity, nitrogen and water stress in cacao (Groeneveld et al., 2010). In all three studies, pollination was the most important driver of yield variability, with fruit set being lowest when insect pollinators were excluded. However, interactions between pollination and reduced water in almond, pollination and weed control in cucumber and pollination intensity and light intensity in cacao indicate that these need to be more readily incorporated into crop pollination studies (Groeneveld et al., 2010; Klein et al., 2015; Motzke et al., 2015). RST provides the opportunity to use fine-scale measurements of abiotic and environmental factors, such as nutrient or water...
availability, to unravel their possible interactions with pollination success and assess the field-level heterogeneity of these interactions (Kerr & Ostrovsky, 2003; Pettorelli et al., 2005; de Araujo Barbosa, Atkinson, & Dearing, 2015; Galbraith, Vierling, & Bosque-Pérez, 2015). For example, combining factors important to insect pollinators, such as surrounding vegetation, with field surveys specifically targeted to capture the varying levels of tree or plant stress (water, nutrients, light interception) across a whole field, provide significant opportunities to evaluate these interactions and assess their impact on production measures. RST also offers significant opportunities to evaluate whether fine-scale ecological processes that influence pollination success (e.g. pollinator complementarity) are operating on a much broader scales in a landscape.

To achieve this, several challenges still need to be addressed to enable greater integration of remotely-derived data into crop pollination ecology research. First, access to high resolution remotely sensed data can be costly (Rose et al., 2015; Turner et al., 2015). Many of the studies identified in this review utilised freely available land use maps or images provided by Government departments or publicly available through sources such as Google Earth™. While these have been well utilised for determining isolation and proportion measures across these studies, they provide a relatively coarse spatial, spectral and temporal resolution of remotely-derived information compared to what is now commercially available and required in many disciplines (Hofmann et al., 2017). Second, expert knowledge is required to understand how RST may be best utilised and applied in crop pollination research. Factors to be considered in this process include understanding the type of RST needed and what information the associated data can provide. For example, general patterns of pollinator response to satellite-derived land cover and vegetation information may be further refined through the addition of local structural information of vegetation, which can be increasingly accurately estimated using LIDAR (Lefsky et al., 2002; Andrew, Wulder, &
Nelson, 2014). In addition, the information provided by RST needs to be validated through some form of ground-truthing (such as ground-based teams of researchers or sensors) as well as being inspected for possible distortions (atmospheric effects, cloud cover, mechanical issues) (Turner et al., 2003; Andrew et al., 2014). An increased collaborative effort at all stages of the experimental process, between remote sensing experts, crop production and pollination researchers as well as growers and industry stakeholders would enable greater transfer of knowledge among disciplines and facilitate applied outcomes for management.

Understanding how far insect crop pollinators move within and among crops and other habitats is another important future research direction. While several technologies exist to track animal movement at various spatial scales, including radio telemetry, satellite tracking, harmonic radar and radio frequency identification (Law & Lean, 1999; Bonadonna, Lea, & Guinet, 2000; Bontadina, Schofield, & Naef-Daenzer, 2002; Godley et al., 2008; Cagnacci et al., 2010; Thomas, Baker, & Fellowes, 2014), the small size of insects currently limit the use of these types of technologies (Kissling et al., 2014). Micro-transmitters have successfully been deployed to track several larger insect species, such as bumble bees, orchid bees and carpenter bees (Osborne et al., 1999; Pasquet et al., 2008; Wikelski et al., 2010; Hagen, Wikelski, & Kissling, 2011) however technologies for small to medium pollinators, such as wild bees and hoverflies, are limited. As these technologies become more advanced they may soon become a viable option for more detailed investigations of pollinating insect movement distances within crop pollination research.

CONCLUSION

As our dependency on pollination services increase, predominately through greater cultivation of pollinator-dependent crops (Aizen et al., 2008; Potts et al., 2010), understanding the spatial and
temporal stability of pollination service provisioning is becoming increasingly relevant. Relationships between pollinator community structure (abundance, richness and evenness) and broad landscape factors as well as pollination services and yield at a single tree or plant level are well established. What is missing is data and an approach that elucidates on the role of pollination at the field and broader scales. This will facilitate our understanding of interactions between pollinators, pollination services and other important environmental, abiotic and pre- and post-pollination factors, such as plant health, water and nutrients, which affect final harvest measures. The further integration of remote sensing technologies may be one approach to investigating these important interactions and an increased collaborative effort between agricultural and pollination ecology researchers, remote sensing experts as well as key industry stakeholders such as growers will help ensure outcomes that are more applicable for managing multiple land use types and ecosystem services.

References

Adhikari D, Barik S, & Upadhaya K. 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering 40:37-43 DOI: 10.1016/j.ecoleng.2011.12.004.

Aggelopooulou K, Castrignanò A, Gemtos T, De Benedetto D. 2013. Delineation of management zones in an apple orchard in Greece using a multivariate approach. Computers and electronics in agriculture 90:119-130 DOI: 10.1016/j.compag.2012.09.009.

Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. 2008. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current Biology 18(20):1572-1575 DOI: 10.1016/j.cub.2008.08.066.
Andrew ME, Ustin SL. 2009. Habitat suitability modelling of an invasive plant with advanced remote sensing data. *Diversity and Distributions* 15(4):627-640 DOI: 10.1111/j.1472-4642.2009.00568.x.

Andrew ME, Wulder MA, Nelson TA. 2014. Potential contributions of remote sensing to ecosystem service assessments. *Progress in Physical Geography* 38(3):328-353 DOI: 10.1177/0309133314528942.

Angadi S, Cutforth H, McConkey B, Gan Y. 2003. Yield adjustment by canola grown at different plant populations under semiarid conditions. *Crop Science* 43(4):1358-1366

Apostol S, Viau AA, Tremblay N, Briantais JM, Prasher S, Parent LE, Moya I. 2003. Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. *Canadian journal of remote sensing* 29(1):57-65 DOI: 10.5589/m02-076.

Baez-Gonzalez AD, Kiniry JR, Maas SJ, Tiscareno ML, Macias C, Mendoza JL, Richardson CW, Salinas G, Manjarrez JR. 2005. Large-area maize yield forecasting using leaf area index based yield model. *Agronomy Journal* 97(2):418-425.

Balfour, NJ, Ratnieks FL. 2016. Using the waggle dance to determine the spatial ecology of honey bees during commercial crop pollination. *Agricultural and Forest Entomology* 19(2):210-216 DOI: 10.1111/afe.12204.

Barker DW, Sawyer JE. 2010. Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. *Agronomy Journal* 102(3):964-971 DOI: 10.2134/agronj2010.0004.

Best S, Salazar F, Bastias R, Leon L. 2008. Crop load estimation model to optimize yield-quality ratio in apple orchards, Malus Domestica Borkh, Var. Royal Gala. *Journal of Information Technology in Agriculture* 3(1):11-18.

Bonadonna F, Lea MA, Guinet C. 2000. Foraging routes of Antarctic fur seals (Arctocephalus gazella) investigated by the concurrent use of satellite tracking and time-depth recorders. *Polar Biology* 23(3):149-159 DOI: 10.1007/s003000050021.

Bontadina F, Schofield H, Naef-Daenzer B. 2002. Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. *Journal of Zoology* 258(3):281-290 DOI: 10.1017/S0952836902001401.
Bos MM, Veddeler D, Bogdanski AK, Klein AM, Tscharntke T, Steffan-Dewenter I, Tylianakis JM. 2007. Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination. Ecological Applications 17(6):1841-1849 DOI: 10.1890/06-1763.1.

Bradbury RB, Hill RA, Mason DC, Hinsley SA, Wilson JD, Balzter H, Anderson GQA, Whittingham MJ, Davenport IJ, Bellamy PE. 2005. Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments. Ibis 147(3):443-452 DOI: 10.1111/j.1474-919x.2005.00438.x.

Cagnacci F, Boitani L, Powell RA, Boyce MS. 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Proceedings of the Royal Society of London B: Biological Sciences 365(1550):2157-2162 DOI: 10.1098/rstb.2010.0107.

Cao Q, Miao Y, Shen J, Yu W, Yuan F, Cheng S, Huang S, Wang H, Yang W, Liu F. 2016. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precision Agriculture 17(2):136-154 DOI 10.1007/s11119-015-9412-y.

Carvalheiro LG, Veldtman R, Shenkute AG, Tesfay GB, Pirk CWW, Donaldson JS, Nicolson SW. 2011. Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters 14(3):251-259 DOI: 10.1111/j.1461-0248.2010.01579.x.

Cunningham SA, Le Feuvre D. 2013. Significant yield benefits from honeybee pollination of faba bean (Vicia faba) assessed at field scale. Field crops research 149:269-275 DOI: 10.1016/j.fcr.2013.05.019.

de Araujo Barbosa CC, Atkinson PM, Dearing JA. 2015. Remote sensing of ecosystem services: A systematic review. Ecological Indicators 52:430-443 DOI: 10.1016/j.ecolind.2015.01.007.

Diao C, Wang L. 2014. Development of an invasive species distribution model with fine-resolution remote sensing. International Journal of Applied Earth Observation and Geoinformation 30:65-75 DOI: 10.1016/j.jag.2014.01.015.

Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK. 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment 84(3):393-410 DOI: 10.1016/S0034-4277(02)00130-X.
Esparza G, DeJong T, Weinbaum S, Klein I. 2001. Effects of irrigation deprivation during the harvest period on yield determinants in mature almond trees. *Tree Physiology* 21(14):1073-1079 DOI: 10.1093/treephys/21.14.1073.

Galbraith SM, Vierling L, Bosque-Pérez N. 2015. Remote Sensing and Ecosystem Services: Current Status and Future Opportunities for the Study of Bees and Pollination-Related Services. *Current Forestry Reports* 1(4):261-274 DOI: 10.1007/s40725-015-0024-6.

Gao F, Anderson MC, Zhang X, Yang Z, Alfieri JG, Kustas WP, Mueller R, Johnson DM, Prueger JH. 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. *Remote Sensing of Environment* 188:9-25 DOI: 10.1016/j.rse.2016.11.004.

Garcia M, Riaño D, Chuvieco E, Salas J, Danson FM. 2011. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. *Remote Sensing of Environment* 115(6):1369-1379 DOI: 10.1016/j.rse.2011.01.017.

Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. *Science* 339(6127):1608-1611 DOI: 10.1126/science.1230200.

Gibbs J, Elle E, Bobiwash K, Haapalainen T, Isaacs R. 2016. Contrasting pollinators and pollination in native and non-native regions of highbush blueberry production. *PloS one* 11(7):e0158937 DOI: 10.1371/journal.pone.0158937.

Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S. 2008. Measuring and modelling biodiversity from space. *Progress in Physical Geography* 32(2):203-221 DOI: 10.1177/0309133308093606.

Godley BJ, Blumenthal J, Broderick A, Coyne M, Godfrey M, Hawkes L, Witt M. 2008. Satellite tracking of sea turtles: where have we been and where do we go next? *Endangered Species Research* 4(1-2):3-22 DOI: 10.3354/esr00060.

Goffart J, Olivier M, Frankinet M. 2008. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past–present–future. *Potato Research* 51(3-4):355-383 DOI: 10.1007/s11540-008-9118-x.

Goodwin R, Cox H, Taylor M, Evans L, McBrydie H. 2011. Number of honey bee visits required to fully pollinate white clover (Trifolium repens) seed crops in Canterbury, New Zealand.
GopalaPillai S, Tian L. 1999. In-field variability detection and spatial yield modeling for corn using digital aerial imaging. *Transactions of the ASAE* 42(6):1911 DOI: 10.13031/2013.13356.

Groeneveld JH, Tscharntke T, Moser G, Clough Y. 2010. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. *Perspectives in Plant Ecology, Evolution and Systematics* 12(3):183-191 DOI: 10.1016/j.ppees.2010.02.005.

Hagen M, Wikelski M, Kissling WD. 2011. Space use of bumblebees (Bombus spp.) revealed by radio-tracking. *PloS one* 6(5):e19997 DOI: 10.1371/journal.pone.0019997.

Hedley C, Yule I. 2009. A method for spatial prediction of daily soil water status for precise irrigation scheduling. *Agricultural Water Management* 96(12):1737-1745 DOI: 10.1016/j.agwat.2009.07.009.

Hofmann S, Everaars J, Schweiger O, Frenzel M, Bannehr L, Cord AF. 2017. Modelling patterns of pollinator species richness and diversity using satellite image texture. *PloS one* 12(10):e0185591 DOI: 10.1371/journal.pone.0185591.

Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I. 2011. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. *Proceedings of the Royal Society of London B: Biological Sciences* 278(1723):3444-3451 DOI: 10.1098/rspb.2011.0268

Horton R, Cano E, Bulanon D, Fallahi E. 2017. Peach Flower Monitoring Using Aerial Multispectral Imaging. *Journal of Imaging* 3(1):2 DOI: 10.3390/jimaging3010002.

Immitzer M, Atzberger C, Koukal T. 2012. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. *Remote Sensing* 4(9):2661-2693 DOI: 10.3390/rs4092661.

Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ. 2009. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. *Progress in Physical Geography* 33(2):183-207 DOI: 10.1177/0309133309339563.
Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D. 2013. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. *Ecology Letters* 16(5):584-599 DOI: 10.1111/ele.12082.

Kerr JT, Ostrovsky M. 2003. From space to species: ecological applications for remote sensing. *Trends in ecology & evolution* 18(6):299-305 DOI: 10.1016/S0169-5347(03)00071-5.

Kissling DW, Pattemore DE, Hagen M. 2014. Challenges and prospects in the telemetry of insects. *Biological Reviews* 89(3):511-530 DOI: 10.1111/brv.12065.

Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, & Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. *Proceedings of the Royal Society of London B: Biological Sciences* 274(1608):303-313 DOI: 10.1098/rspb.2006.3721.

Klein AM, Hendrix SD, Clough Y, Scofield A, Kremen C. 2015. Interacting effects of pollination, water and nutrients on fruit tree performance. *Plant Biology* 17(1):201-208 DOI: 10.1111/plb.12180.

Lamb D, Brown RB. 2001. Pa—precision agriculture: Remote-sensing and mapping of weeds in crops. *Journal of Agricultural Engineering Research* 78(2):117-125 DOI: 10.1006/jaer.2000.0630.

Law BS, Lean M. 1999. Common blossom bats (Syconycteris australis) as pollinators in fragmented Australian tropical rainforest. *Biological Conservation* 91(2-3):201-212 DOI: 10.1016/S0006-3207(99)00078-6.

Lefsky MA, Cohen WB, Parker GG, Harding DJ. 2002. Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. *AIBS Bulletin* 52(1):19-30 DOI: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2.

Llorens J, Gil E, Llop J, Escola A. 2011. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods. *Sensors* 11(2):2177-2194 DOI: 10.3390/s110202177.
Lonsdorf E, Kremen C, Ricketts T, Winfree R, Williams N, Greenleaf S. 2009. Modelling pollination services across agricultural landscapes. *Annals of Botany* 103(9):1589-1600 DOI: 10.1093/aob/mcp069.

Luoto M, Kuussaari M, Toivonen T. 2002. Modelling butterfly distribution based on remote sensing data. *Journal of Biogeography* 29(8):1027-1037 DOI: 10.1046/j.1365-2699.2002.00728.x.

Lundin O, Smith HG, Rundlöf M, Bommarco R. 2013. When ecosystem services interact: crop pollination benefits depend on the level of pest control. *Proceedings of the Royal Society of London B: Biological Sciences* 280(1753):2012-2243 DOI: 10.1098/rspb.2012.2243.

Mahlein AK, Oerke EC, Steiner U, Dehne HW. 2012. Recent advances in sensing plant diseases for precision crop protection. *European Journal of Plant Pathology* 133(1):197-209 DOI: 10.1007/s10658-011-9878-z.

Marino S, Alvino A. 2014. Proximal sensing and vegetation indices for site-specific evaluation on an irrigated crop tomato. *European Journal of Remote Sensing* 47(1):271-283 DOI: 10.5721/EuJRS20144717.

Mesa LA, Howlett BG, Grant JE, Didham RK, Ni X. 2013. Changes in the relative abundance and movement of insect pollinators during the flowering cycle of Brassica rapa crops: implications for gene flow. *Journal of Insect Science* 13(1):13 DOI: 10.1673/031.013.1301.

Motzke I, Tscharntke T, Wanger TC, Klein AM. 2015. Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. *Journal of Applied Ecology* 52(1):261-269 DOI: 10.1111/1365-2664.12357.

Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. *Biosystems Engineering* 114(4):358-371 DOI: 10.1016/j.biosystemseng.2012.08.009.

Ne'eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A. 2010. A framework for comparing pollinator performance: effectiveness and efficiency. *Biological Reviews* 85(3):435-451 DOI: 10.1111/j.1469-185X.2009.00108.x.

Osborne J, Clark S, Morris R, Williams I, Riley J, Smith A, Reynolds DR, Edwards A. 1999. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. *Journal of Applied Ecology* 36(4):519-533 DOI: 10.1046/j.1365-2664.1999.00428.x533.
Osborne P, Alonso J, Bryant R. 2001. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. *Journal of Applied Ecology* 38(2):458-471 DOI: 10.1046/j.1365-2664.2001.00604.x.

Pasquet RS, Peltier A, Hufford MB, Oudin E, Saulnier J, Paul L, Knudsen JT, Herren HR, Gepts P. 2008. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. *Proceedings of the national Academy of Sciences* 105(36):13456-13461 DOI: 10.1073/pnas.0806040105.

Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W. 2014. Satellite remote sensing for applied ecologists: opportunities and challenges. *Journal of Applied Ecology* 51(4):839-848 DOI: 10.1111/1365-2664.12261.

Pettorelli N, Ryan S, Mueller T, Bunefeld N, Jędrzejewska B, Lima M, Kausrud K. 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. *Climate Research* 46(1):15-27 DOI: 10.3354/cr00936.

Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. *Trends in ecology & evolution* 20(9):503-510 DOI: 10.1016/j.tree.2005.05.011.

Polce C, Termansen M, Aguirre-Gutiérrez J, Boatman ND, Budge GE, Crowe A, Garratt MP, Pietravalle S, Potts SG, Ramirez JA. 2013. Species distribution models for crop pollination: a modelling framework applied to Great Britain. *PloS one* 8(10):e76308 DOI: 10.1371/journal.pone.0076308.

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. *Trends in ecology & evolution* 25(6):345-353 DOI: 10.1016/j.tree.2010.01.007.

Rader R, Edwards W, Westcott DA, Cunningham SA, Howlett BG. 2011. Pollen transport differs among bees and flies in a human-modified landscape. *Diversity and Distributions* 17:519-529 DOI: 10.1111/j.1472-4642.2011.00757.x.

Robson AJ, Rahman MM, Muir J. 2017. Using Worldview Satellite Imagery to Map Yield in Avocado (Persea americana): A Case Study in Bundaberg, Australia. *Remote Sensing* 9(12):1223 DOI: 10.3390/rs9121223.
Rose RA, Byler D, Eastman JR, Fleishman E, Geller G, Goetz S, Guild L, Hamilton H, Hansen M, Headley R. 2015. Ten ways remote sensing can contribute to conservation. *Conservation Biology* 29(2):350-359 DOI: 10.1111/cobi.12397.

Salgadoe ASA, Robson AJ, Lamb DW, Dann EK, Searle C. 2018. Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis. *Remote Sensing* 10(2):226 DOI: 10.3390/rs10020226.

Seavy NE, Viers JH, Wood JK. 2009. Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height. *Ecological Applications* 19(7):1848-1857 DOI: 10.1890/08-1124.1.

Shahbazi M, Théau J, Ménard P. 2014. Recent applications of unmanned aerial imagery in natural resource management. *GIScience & Remote Sensing* 51(4):339-365 DOI: 10.1080/15481603.2014.926650.

Stutchbury BJ, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V. 2009. Tracking long-distance songbird migration by using geolocators. *Science* 323(5916):896-896 DOI: 10.1126/science.1166664.

Thomas RL, Baker PJ, Fellowes MD. 2014. Ranging characteristics of the domestic cat (Felis catus) in an urban environment. *Urban ecosystems* 17(4):911-921 DOI: 10.1007/s11252-014-0360-5.

Tremblay N, Wang Z, Ma BL, Belec C, Vigneault P. 2009. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. *Precision Agriculture* 10(2):145 DOI: 10.1007/s11119-008-9080-2.

Tucker CJ, Townshend JR, Goff TE. 1985. African land-cover classification using satellite data. *Science* 227(4685):369-375 DOI: 10.1126/science.227.4685.369.

Turner W, Rondinini C, Pettorelli N, Mora B, Leidner AK, Szantoi Z, Buchanan G, Dech S, Dwyer J, Herold M. 2015. Free and open-access satellite data are key to biodiversity conservation. *Biological Conservation* 182:173-176 DOI: 10.1016/j.biocon.2014.11.048

Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. 2003. Remote sensing for biodiversity science and conservation. *Trends in ecology & evolution* 18(6):306-314 DOI: 10.1016/S0169-5347(03)00070-3.
Wang Z, Underwood J, Walsh KB. 2018. Machine vision assessment of mango orchard flowering. *Computers and electronics in agriculture* **151**:501-511 DOI: 10.1016/j.compag.2018.06.040.

Wikelski M, Moxley J, Eaton-Mordas A, Lopez-Uribe MM, Holland R, Moskowitz D, Roubik DW, Kays R. 2010. Large-range movements of neotropical orchid bees observed via radio telemetry. *PloS one* **5**(5):e10738 DOI: 10.1371/journal.pone.0010738.

Winfree R, Bartomeus I, Cariveau DP. 2011. Native pollinators in anthropogenic habitats. *Annual Review of Ecology, Evolution, and Systematics* **42**(1):1-22 DOI: 10.1146/annurev-ecolsys-102710-145042.

Wu B, Meng J, Li Q, Yan N, Du X, Zhang M. 2014. Remote sensing-based global crop monitoring: experiences with China's CropWatch system. *International Journal of Digital Earth* **7**(2):113-137 DOI: 10.1080/17538947.2013.821185.

Zaman Q, Schumann A, Hostler H. 2006. Estimation of citrus fruit yield using ultrasonically-sensed tree size. *Applied Engineering in Agriculture* **22**(1):39-44 DOI: 10.13031/2013.20186.

Zaman Q, Schumann A, Miller W. 2005. Variable rate nitrogen application in Florida citrus based on ultrasonically-sensed tree size. *Applied Engineering in Agriculture* **21**(3):331-335 DOI: 10.13031/2013.18448.

Zhang M, Qin Z, Liu X, Ustin SL. 2003. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. *International Journal of Applied Earth Observation and Geoinformation* **4**(4):295-310 DOI: 10.1016/S0303-2434(03)00008-4.

Zhang N, Wang M, Wang N. 2002. Precision agriculture—a worldwide overview. *Computers and electronics in agriculture* **36**(2-3):113-132 DOI: 10.1016/S0168-1699(02)00096-0.
Figure 1 (on next page)

Examples of remote sensing technologies and their current applications in agricultural and ecological disciplines.

Top image credit: Thegreenj (Wikipedia), First middle image credit: Andrew Robson, Second middle image credit: bdk (Wikimedia Commons), Bottom image credit: CSIRO
RST platforms (sensor examples)	Applications	Examples
Satellite (Quickbird, WorldView, SPOT, Landsat, RapidEye)	Land cover mapping, ecosystem classification and change, natural disaster assessment, yield mapping	Robson, Rahman, & Muir, 2017
Joyce et al., 2009		
Pettorelli et al., 2005		
Tucker, Townshend, & Goff, 1985		
Aerial (drones, UAV’s, airplanes) (camera systems e.g. Microsense, Parrot Sequoia)	Land cover mapping, ecosystem classification and change, natural disaster assessment, wildlife research, precision agriculture	Shahbazi, Théau, & Ménard, 2014
Horton et al., 2017		
LIDAR (satellite, aerial or terrestrial) (2D and 3D laser scanners)	Vegetation (crop and non-crop) mapping and structure	Bradbury et al., 2005
Llorens et al., 2011		
Lefsky et al., 2002		
Proximal (tractor or vehicle mounted, handheld devices)	Yield mapping, crop monitoring	Marino & Alvino, 2014
Cunningham & Le Feuvre, 2013		
Cao et al., 2016		
Tracking technology (harmonic radar, radio telemetry, satellite)	Animal movement and distributions	Stutchbury et al., 2009;
Osborne et al., 1999;
Pasquet et al., 2008;
Wikelski et al., 2010 |
Figure 2 (on next page)

Examples of proportion and isolation methods.

(A) proportion of non-crop vegetation [green], crop vegetation [orange] and water [blue] within a 500m perimeter radius of a focal crop site. (B) distance of non-crop vegetation from a focal crop site. (Images © 2018 Google)
