Impact of malolactic fermentation with *Lactobacillus plantarum* on volatile compounds of sea buckthorn juice

Niko Markkinen1 · Oskar Laaksonen1 · Baoru Yang1

Received: 18 September 2020 / Revised: 18 November 2020 / Accepted: 22 November 2020 / Published online: 8 February 2021

© The Author(s) 2021

Abstract

Malolactic fermentation using sea buckthorn (*Hippophaë rhamnoides*) juice as raw material was performed with six different strains of *Lactobacillus plantarum*. Increasing juice pH from 2.7 to 3.5 or adapting cells to low pH (i.e., acclimation) prior to inoculation allowed malolactic fermentation with all tested strains. Moreover, reducing pH of the growth medium from 6 to 4.5 with L-malate had little or no impact on biomass production. Volatile profile of sea buckthorn juice was analyzed with HS-SPME–GC–MS before and after fermentation. A total of 92 volatiles were tentatively identified and semi-quantified from sea buckthorn juice, majority of which were esters with fruity odor descriptors. Esters and terpenes were decreased in both inoculated and control juices during incubation. Microbial activity increased the levels of acetic acid (vinegar like), free fatty acids (cheese like), ketones (buttery like), and alcohols with fruity descriptors. Conversely, aldehydes associated with “green” aroma were decreased as a result of fermentation. Juices fermented with DSM 1055 had the highest acid and alcohol content, while fermentation with DSM 13273 resulted in the highest content of ketones. Compared to inoculation with other strains, fermentation with strains DSM 16365 and DSM 100813 resulted in rapid malolactic fermentation, less production of volatile acids, and lower loss of esters and terpenes important for natural sea buckthorn flavor.

Keywords Acclimation · Lactic acid bacteria · Volatiles · GC–MS · SPME · Berry

Abbreviations

MLF Malolactic fermentation
SBJ Sea buckthorn juice
GEM General edible medium
CAM Cell acclimation medium

Introduction

Sea buckthorn (*Hippophaë* L.) is a genus of deciduous shrubs belonging to the family Elaeagnaceae. Eight species have been identified within the genus, originating from different regions throughout the Eurasian continent and have been cultivated in Europe, Asia and the North America for commercial purposes [1]. Sea buckthorn produces oval shaped berries of yellow, orange or red color with strong variation both between and within species as well as among cultivars [2]. The berry mesocarp accumulates substantial amount of oil (up to 4% of FW), which consists of triacylglycerols, phospholipids, tocopherols, tocotrienols, carotenoids, and plant sterols. Hydrophilic fraction of the sea buckthorn berry contains high levels of ascorbic acid, flavonoids and organic acids [2]. Human trials have associated consumption of sea buckthorn and sea buckthorn products with improved health of mucous membranes [3, 4] and reduction in postprandial insulin response [5].

However, sensory value of sea buckthorn characterized by intensive sourness and astringency presents a great hurdle for utilization of the berry in food industry [6, 7]. Sour taste of sea buckthorn juice has been associated with the high content of organic acids, especially those of malic acid and quinic acid, with the total acid content ranging between 31 and 51 g/L, depending on the variety. Moreover, the juice has low natural sweetness, due to the low total sugar content (19–71 g/L) and low sugar/acid ratio [7, 8]. Astringency of sea buckthorn has been associated with the high content of flavonoids, especially with flavonols and procyanidins [9],
as well as with the total acid content [7]. Recently, ethyl glucose, a β-d-glucopyranose derivative present in the sea buckthorn berry, was found to contribute to bitterness of sea buckthorn [10]. Additionally, the juice of sea buckthorn has high turbidity (Brix 9.3–22.7) [2] due to the presence of insoluble solids and suspended oil droplets [11].

One potential solution to reduce intense sourness of sea buckthorn is malolactic fermentation (MLF), which is used in the wine industry to reduce acidity and to alter aroma in wines. While typically performed using *Oenococcus oeni*, interest towards *Lactobacillus plantarum* as malolactic starter is increasing due to large cascade of enzyme it produces, potentially altering flavor properties of wines and other food products [12, 13]. Earlier, *L. plantarum* has been successfully used to improve the aroma profile of mulberry juices [14]. Besides flavor modification, benefits of using *L. plantarum* for bioprocessing of plant materials include improved shelf-life and food safety [15, 16], increased antioxidant capacity [14, 17, 18], and enhanced nutritional value and probiotic properties [19]. However, the changes in physicochemical properties are both raw material and strain dependent; fermentation of pomegranate juice with *L. plantarum* led to beneficial impact on aroma profile [20], while reducing antioxidant activity [21].

Earlier, MLF has been utilized with *O. oeni* to reduce acidity and, thus, to potentially affect pleasantness of sea buckthorn [8]. In addition, MLF with *L. plantarum* has been performed on sea buckthorn juice without pH adjustment or acclimation phase [22, 23]. MLF of sea buckthorn juice led to reduction in total acid content without affecting sugars, subsequently increasing sugar/acid ratio [22, 23]. In addition, flavonols of sea buckthorn were not affected; however, protocatechuic acid content was increased [22]. However, in general, the metabolic activity was limited under these circumstances.

Therefore, in this study, our first goal was to determine whether MLF of sea buckthorn can be enhanced by adjusting initial pH of the sea buckthorn juice or by preparing *L. plantarum* starter culture in acclimation medium prior to fermentation. In wine industry, acclimation is used to enhance wine malolactic fermentation by inducing stress-related gene expression prior to inoculation through exposure to ethanol, low pH, SO₂ and l-malate in a medium rich in nutrients [24].

MLF with *L. plantarum* has potential to both improve aroma (due to ester, e.g., ethyl lactate, formation) and to produce spoilage off-aromas, such as volatile phenols with animal-like “horse sweat” aromas [25]. On the other hand, β-glucosidase activity can release aroma compounds from non-volatile precursors during fermentation [26]. Therefore, our second goal was to analyze changes in volatile profiles of sea buckthorn juice during MLF with HS-SPME–GC–MS to screen formation of potentially pleasant aromas (e.g., floral esters or alcohols) or fermentation related off-flavors. Due to the previous indication on strain-dependent functional properties of lactic acid bacteria as a result of adaptation to the specific environmental niche [19], six commercially available strains of *L. plantarum* originally extracted from various fermented plant-based foods were included in this study.

Materials and methods

Berry material

Frozen sea buckthorn (*Hippophaë rhamnoides* subsp. *mongolica*) berries were purchased from a professional farmer (Vinkkilän luomutuote, Vehmaa, Finland). According to the producer, the berries were a mixture of cultivars ‘Ljubitel’skaja’ and ‘Prozrachnaya’. The berries were frozen right after picking and stored at −20 °C until use.

Juice preparation

First, frozen sea buckthorn berries were thawed in a microwave at 600 W for 3.5 min. Next, berries were made into a mash with a Bamix immersion blender (ESGE Ltd., Switzerland). The juice was extracted from the mash with a fruit press (Chef Titanium XL with AT644 attachment, Kenwood, UK) in batches of ~400 g of mash, and the juice was filtered through a cheesecloth to remove solids. Thereafter, juice was pooled, divided into aliquots for each fermentation batch, and stored at −20 °C until use.

Two types of juice were used for fermentation, one with natural pH (2.7) and the other with pH adjusted to 3.5 with 1 M NaOH. Study of malolactic gene of *L. plantarum* showed that both uptake of l-malate and malolactic fermentation rate were highest when extracellular pH was between 4 and 5 [27]. However, as pH is increased, metabolic flux towards fermentation of sugars is increased simultaneously [22], which was undesirable in our work. Therefore, pH 3.5 was selected as a compromise to increase malolactic activity, while limiting conversion of sugars to lactate.

Prior to pasteurization, the juices were diluted 1:1 (w/w) and divided into 30 mL aliquots in individual glass vials. The juice samples were pasteurized in a water bath (temperature ~96 °C) until temperature of the juices reached 90 °C, and this was followed by cooling the juices in an ice bath until 10 °C. Juice temperature was monitored with a thermometer (TM-947SD, Lutron Electronics, South Korea) coupled with a thermocouple probe (Supplementary Fig. S1). After cooling, the pasteurized juice samples were tempered for 1 h at +30 °C in an IF-110Plus incubator (Memmert GmbH, Schwabach, Germany), followed by preparation for fermentation.
Fermentation

Preparation of bacterial strains as glycerol stocks

Freeze-dried cultures of five strains of *Lactobacillus plantarum* subsp. *plantarum* (DSM 100813 (originating from grape must), DSM 10492 (olive brine), DSM 1055 (bread dough), DSM 13273 (jojoba meal fermentation), DSM 20174T (pickled cabbage)) and one strain belonging to *Lactobacillus plantarum* subsp. *argentoratensis* (DSM 16365T, fermented cassava roots) were obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany). The bacterial strains were revived in MRS plates for 48 h at + 30 °C, followed by a transfer of a single colony to 250 mL of general edible medium (*GEM*), prepared according to a previous report with modifications (dextrose 30 g L⁻¹, soy peptone 20 g L⁻¹, yeast extract 7 g L⁻¹, MgSO₄×7 H₂O 1 g L⁻¹, MnSO₄×H₂O 0.05 g L⁻¹, in potassium phosphate buffer 0.01 M, pH 6.3 ± 0.2) [28].

The inoculated *GEM* was incubated at + 30 °C for 24 h, divided into aliquots and mixed at a ratio of 1:1 with 20% glycerol solution, and stored at −80 °C until use.

Optical density (OD600) linear regression models for estimating cell counts

To standardize inoculation rate of the SBJ, optical density (OD600) linear regression models were prepared individually for each of the used strains. First, a growth curve (measured as change in OD600 over time) for each strain was determined in *GEM* (Supplementary Fig. S2 and S3), showing an early stationary phase reached after approximately 24 h of fermentation with average cell count of 1–3 × 10⁹ CFU/mL (OD600 = 2.2–2.3). Next, five dilutions were made from the cell culture with pure *GEM* reaching a cell count between 8.30 Log CFU/mL juice. In total, four fermentation settings were ran simultaneously for each strain, incubated with either initial pH 2.7 or 3.5, inoculated with cells from *GEM* (pH2.7/*GEM* and pH3.5/*GEM*, respectively) or CAM (pH2.7/CAM and pH3.5/CAM, respectively). The starter culture cell count was enumerated with viable cell plate count (see Sect. “*L. plantarum* viability count”).

The juice samples were fermented at + 30 °C for 36 or 72 h in an IF-110Plus incubator (Memmert GmbH, Schwabach, Germany). Control juices without inoculation with both initial pH 2.7 and 3.5 were incubated simultaneously with the inoculated samples for both 36 and 72 h. All fermentations were prepared as triplicates (three parallel inoculations). After fermentation, the samples were cooled down in an ice bath, each divided into aliquots and stored at −80 °C until analysis. During the whole experimental procedure, the samples were kept above + 4 °C only when necessary to limit residual enzymatic activity.

Acclimation medium

Cell acclimation medium (*CAM*) was prepared by adding l-malic acid (4 g/L) to *GEM* and adjusting pH to 4.5. Cell cultures with *CAM* were prepared similarly to those performed with *GEM*.

Starter culture preparation and fermentation

First, a scrape from glycerol stock was revived in a MRS plate for 36–48 h at + 30 °C. Next, a single colony was transferred from the MRS plate to 250 mL of either *GEM* or CAM followed by incubation at + 30 °C for 24–25 h. Next, 80–90 mL of the bacterial culture was transferred to sterile centrifuge tubes; thereafter, the cells were collected by centrifugation (4500×g, 5 min, RT) and washed twice with PBS (140 mM NaCl, 3 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.4). After removal of supernatant, the cells were re-suspended to 5 mL of PBS to produce the starter culture. To estimate the cell count of the starter culture, OD600 was measured from a 1:200 dilution. Finally, 30 mL of pasteurized juice was transferred to autoclaved fermentation vessels, and starter culture was added to juice samples to reach an initial cell count of 8.30 Log CFU/mL juice. In total, four fermentation settings were ran simultaneously for each strain, juices with either initial pH 2.7 or 3.5, inoculated with cells from *GEM* (pH2.7/*GEM* and pH3.5/*GEM*, respectively) or CAM (pH2.7/CAM and pH3.5/CAM, respectively). The starter culture cell count was enumerated with viable cell plate count (see Sect. “*L. plantarum* viability count”).

The juice samples were fermented at + 30 °C for 36 or 72 h in an IF-110Plus incubator (Memmert GmbH, Schwabach, Germany). Control juices without inoculation with both initial pH 2.7 and 3.5 were incubated simultaneously with the inoculated samples for both 36 and 72 h. All fermentations were prepared as triplicates (three parallel inoculations). After fermentation, the samples were cooled down in an ice bath, each divided into aliquots and stored at −80 °C until analysis. During the whole experimental procedure, the samples were kept above + 4 °C only when necessary to limit residual enzymatic activity.

L. plantarum viability count

To estimate viable cell count in cultured media or starter cultures, the cell suspension was first serially diluted (1/10) with PBS, followed by streaking 100 µL of dilution to MRS agar plates (LabM, Heywood, UK) and incubation at + 30 °C for 36–48 h. All plates were prepared in triplicates. Colony counts between 30 and 300 on each plate were considered acceptable for enumeration.

Analysis of organic acids

The concentrations of l-malate, l-lactate and d-lactate of SBJ before and after fermentation were determined using K-LMAL, K-LATE, K-DATE enzyme kits (Megazyme, Bray, Ireland), respectively.
Determination of volatile compounds

The volatile compounds in the SBJ samples before and after fermentation were analyzed using a method described earlier [29] with modifications. Headspace volatiles from juice sample (2 mL of juice with 10% (w/v) NaCl and 10 µL ISTD (ethyl propionate 100 ppm; nonane 200 ppm)) were collected with solid phase microextraction (SPME) with a 2 cm DVB/CAR/PDMS fiber (50/30 µm, Supelco, Bellefonte, PA) at 45 °C for 20 min. Prior to headspace volatile collection, the juice sample was incubated 10 min at 45 °C and the fiber conditioned at 230 °C.

Analytical instrument of headspace volatiles consisted of a Trace 1310 gas chromatograph coupled with a TSQ 7000 single quadrupole mass spectrometer (Thermo Fisher Scientific, Waltham, MA). The gas chromatograph instrument was equipped with either DB-WAX polar capillary column (60 m × 0.25 mm i.d. × 0.25 µm film thickness, J&W Scientific, Folsom, CA) or SPB-624 mid-polarity capillary column (60 m × 0.25 mm i.d. × 1.4 µm film thickness, Supelco, Bellefonte, PA). Within each batch of analysis, the order of the samples was randomized to avoid systematic error from residual enzymatic activity.

The temperature program of the gas chromatograph oven was as follows: \(T_{\text{start}} \) 50 °C, hold 3 min; \(T_{\text{end}} \) 200 °C, rate 5 °C/min, hold 8 min at 200 °C. For SPB-624 column, additional temperature ramp of \(T_{\text{end}} \) 230 °C, rate 10 °C/min, hold 4 min was added to reduce the risk of sample carry-over. The injector temperature was 220 °C and the initial injection mode was splitless; the split valve was opened after 0.10 min from injection. The carrier gas was helium at a flow rate of 1.6 and 1.4 mL/min for DB-WAX and SPB-624 columns, respectively. Mass spectra were detected in electron impact mode at 70 eV with a full scan mode (scan range of 33–300 m/z) and a scan speed 0.2 s. The temperatures of the MS transfer line was 200 °C and 210 °C for DB-WAX and SPB-624 columns, respectively. For both columns, the temperature of the ionization source was 220 °C. Each juice sample (prepared in biological triplicates) was analyzed once; no technical replicates were used. Empty vials and vials with only the internal standards were analyzed with every batch to confirm that no cross contamination occurred between the vials during the analysis.

The volatile compounds were identified by comparing mass spectra with standard NIST 08 library, literature data and Kovats retention indices (RI). The RIs of the volatile compounds were calculated based on retention times of C5–C30 alkane mixture (Sigma-Aldrich, St. Louis, MO) determined using the same gas chromatographic conditions. Individual volatile compounds were semi-quantified (µg/L) by comparing area of the base peak ion to the area of the base peak ion of ethyl propionate (internal standard) (Table 1), which was selected due to low sample to sample variation in peak area and high number of esters present in sea buckthorn juice. Results gained using DB-WAX column were used for semi-quantification, with a few exceptions (Table 1).

Statistical analysis

Results are reported as mean ± standard deviation, determined from biological triplicates. Paired Student’s t-test was used to compare pH and independent samples test to compare organic acid concentrations (unequal population size and unequal variances assumed) between untreated and fermented SBJ. For comparison of volatile profiles, Tukey’s test for population with equal variances and one-way ANOVA were performed for multiple comparisons. Differences reaching confidence level of \(p < 0.05 \) was considered as statistically significant. For comparison of the content of individual volatile compounds within each strain or juice treatment, statistical analyses were performed with software R 3.2.3 (The R Foundation for Statistical Computing, Vienna, Austria) using library agricolae (command HSD.test) [30]. Default parameters of the package was used. To study differences between \(L. \) plantarum strains (\(X = 6, n = 24 \)) and the impact of fermentation time (0 h, \(n = 12 \); 36 h, \(n = 78 \); 72 h, \(n = 78 \)), and juice pH and growth media as combined variable (\(X = 4, n = 36 \)) in relation to the sums of volatile compound subgroups, IBM SPSS 26.0 (SPSS, Chicago, IL, USA) was used. In addition, principal component analysis (PCA) was carried out using the software Unscrambler X (version 11, Camo Inc., Norway). This was used to illustrate the relationship between volatile composition and the treatments applied to produce fermented SBJ.

Results and discussion

Production of \(L. \) plantarum starter culture

As normal basal medium (GEM) has been optimized for growing lactic acid bacteria, it was investigated whether CAM would require higher inoculation level due to reduced or limited growth rate. Earlier work has shown that \(L. \) plantarum retains moderate to high growth rate even when pH of growth medium is reduced to 4.5 [31].

The growth rate of \(L. \) plantarum strains DSM 1055 and DSM 13273 in cell acclimation media (CAM) was measured by following change in optical density (OD600) during incubation. These strains were selected as the former had the lowest and the latter highest viable cell count in GEM after 24 of incubation. Several inoculation levels were tested (single colony, \(10^6–10^8 \) CFU/mL) (Supplementary Fig. S3). DSM 13273 showed similar growth rate in CAM as in GEM. However, DSM 1055 showed lower growth rate in CAM than
Table 1 Identification of volatile compounds with SPME–GC–MS and their odor descriptor and odor series in non-treated and fermented sea buckthorn juice

No.	Compound	RI^a	RI^b	BP^c	Formula	Ident^d	Odor series	Odor descriptor	Ref.^e
1	Acetic acid*	1460	1463	684	C₂H₄O₂	MS, RI	Acidic	Sharp, pungent, sour, vinegar	1
2	3-Methylbutanoic acid	1676	1702	917	C₅H₁₀O₂	MS, RI	Cheesy	Sour, sweaty, cheesy, tropical	1
3	2-Hydroxy-2-methylbutyric acid*	967	73	C₅H₁₀O₃	MS				
4	Hexanoic acid	1852	1882	1055	C₆H₁₂O₂	MS, RI	Fatty	Sour, fatty, sweat, cheese	1
5	Heptanoic acid	1975	2000	60	C₇H₁₄O₂	MS, RI	Rancid, sour, cheesy, sweet	1	
6	Octanoic acid	2070	2109	60	C₈H₁₆O₂	MS, RI	Fatty	Fatty, waxy, rancid, oily, vegetable, cheesy	1
7	Nonanoic acid	60	C₉H₁₈O₂	80	Waxy	MS, RI	Waxy	Waxy, dirty, cheesy, dairy	1
8	Ethanol	937	98	<600	C₂H₆O	MS, RI	Alcoholic	Alcoholic, ethereal, medicinal	1
9	3-Methyl-1-butanol	1211	1211	787	C₅H₁₂O	MS, RI	Fermented	Fusel, alcoholic, whiskey, fruity, banana	1
10	1-Heptanol	1461	1460	56	C₇H₁₄O	MS, RI	Green	Musty, leafy, violet, herbal, green, sweet, woody, peony	1
11	2-Ethyl-1-hexanol	1492	1493	57	C₈H₁₆O	MS, RI	Citrus	Citrus, fresh, floral, oily, sweet	1
12	3,3-Dimethyl-cyclohexanol	1578	95	C₈H₁₆O	MS				
13	Benzyl alcohol	1885	1892	78	C₇H₈O	MS, RI	Floral	Floral, rose, phenolic, balsamic	1
14	Acetaldehyde	690	702	<600	C₂H₄O	MS, RI	Ethereal	Pungent, ethereal, aldehydic, fruity	1
15	Hexanal	1083	1085	846	C₆H₁₂O	MS, RI	Green	Fresh, green, fatty, aldehydic, grassy, leafy, fruity, sweaty	1
16	Heptanal	1188	1188	950	C₇H₁₄O	MS, RI	Green	Fresh, aldehydic, fatty, green, herbal, cognac, ozone	1
17	3-Methyl-2-butenal	1212	1202	84	C₈H₁₆O	MS, RI	Fruity	Sweet, fruity, pungent, brown, nutty, almond, cherry	1
18	Octanal	1291	1292	1054	C₈H₁₆O	MS, RI	Aldehydic	Aldehydic, waxy, citrus, orange, peal, green, fatty	1
19	Nonanal	1396	1397	1157	C₉H₁₈O	MS, RI	Aldehydic	Waxy, aldehydic, rose, fresh, orris, orange, peel, fatty, peely	1
20	Benzaldehyde	1529	1536	1042	C₇H₁₄O	MS, RI	Fruity	Sharp, sweet, bitter, almond, cherry	1
21	4-Methyloctane	823	856	867	C₉H₁₈O	MS, RI	Gasoline		2
22	Nonane (ISTD)**	901	900	57	C₉H₁₈O	MS, STD			
23	Decane	999	999	43	C₁₀H₂₂	MS, STD			
24	2,4-Dimethylheptane	797	809	825	C₁₀H₂₂	MS, RI			
25	Ethyl propionate (ISTD)**	961	960	740	C₂H₆O₂	MS, STD		Sweet, ethereal, fruity, alcohohic, fusel, rummy	1
26	Ethyl 2-methylpropanoate	961	969	784	C₂H₆O₂	MS, RI	Fruity	Apple, fruity, pineapple	1
27	Methyl 3-methylbutanoate	1019	1023	804	C₄H₈O₂	MS, RI	Fruity	Fruity, juicy, fruit, fruity, pineapple, cognac	1
28	Ethyl butyrate	1036	1041	828	C₂H₆O₂	MS, RI	Fruity	Sharp, sweet, green, apple, fruity	1
29	Ethyl 2-methylbutanoate	1052	1057	877	C₂H₆O₂	MS, RI	Fruity	Fruity, sweet, apple, pineapple, tutti, frusti	1
30	Ethyl 3-methylbutanoate	1072	1072	880	C₄H₈O₂	MS, RI	Fruity	Fruity, sweet, apple, pineapple, green, tropical	1
31	3-Methyl-1-butyl acetate	1126	1126	43	C₂H₆O₂	MS, RI	Fruity	Bitter, sweet, apple, fruity	1
32	Ethyl pentanoate	1136	1139	927	C₅H₁₂O₂	MS, RI	Fruity	Fruity, sweet, pineapple, tutti frutti, rumny, cherry, apple	1
33	Propyl 3-methylbutanoate	1167	1159	977	C₂H₆O₂	MS, RI	Fruity	Fruity, sweet, pineapple, tutti frutti, rumny, cherry, apple	1
34	2-Methylpropyl butanoate	1161	1163	71	C₂H₆O₂	MS, RI	Fruity	Fruity, sweet, pineapple, tutti frutti, rumny, cherry, apple	1
No.	Compound	RIa	RIb	BPc	Formula	Ident.d	Odor series	Odor descriptor	Ref.e
-----	----------	-----	-----	-----	---------	---------	-------------	----------------	-------
35	Isobutyrl-2-methylbutanoate	1179	1188	95	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
36	Methyl lactate	1185	1189	950	C3H8O2	MS, RI	Fruity	Sweet, fruity	1
37	Isobutyrl-3-methylbutanoate	1198	1193	1035	C9H18O2	MS, RI	Fruity	Sweet, fruity, apple	1
38	Ethyl 3-methyl-2-butenylacetate	1219	1211	980	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
39	Ethyl-3-methyl-2-butenoate	1233	1238	880	C7H12O2	MS, RI	Fruity	Sweet, fruity, pineapple	1
40	Ethyl hexanoate	1256	1270	800	C8H16O2	MS, RI	Fruity	Sweet, fruity	1
41	Isobutyl 2-methylbutanoate	1261	1270	1050	C9H18O2	MS, RI	Fruity	Sweet, fruity, apple	1
42	Ethyl 2-methylpropanoate	1279	1284	850	C6H12O2	MS, RI	Fruity	Sweet, fruity	1
43	Ethyl 2-methylpropanoate	1296	1299	1050	C6H12O2	MS, RI	Fruity	Sweet, fruity	1
44	Propyl butanoate	1308	1322	1040	C8H16O2	MS, RI	Fruity	Sweet, fruity	1
45	3-Methylbutyl 2-methylpropanoate	1329	1338	1050	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
46	Ethyl 3-hydroxy-3-methylbutanoate	1340	1359	1040	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
47	3-Methylbutyl 3-methylbutanoate	1356	1375	1050	C10H20O2	MS, RI	Fruity	Sweet, fruity	1
48	Ethyl octanoate	1380	1399	1220	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
49	Hexyl 3-methylbutanoate	1392	1401	1040	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
50	Isopentyl hexanoate	1422	1431	1040	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
51	Methyl salicylate	1432	1440	1040	C9H8O3	MS, RI	Fruity	Sweet, fruity	1
52	Ethyl decanoate	1460	1482	1220	C10H20O2	MS, RI	Fruity	Sweet, fruity	1
53	3-Methylbutyl octanoate	1497	1516	1220	C10H20O2	MS, RI	Fruity	Sweet, fruity	1
54	Ethyl trans-4-decenoate	1504	1523	1220	C10H20O2	MS, RI	Fruity	Sweet, fruity	1
55	Ethyl benzoate	1526	1545	1220	C9H10O2	MS, RI	Fruity	Sweet, fruity	1
56	2-Furylmethyl 3-methylbutanoate	1564	1583	85	C9H14O3	MS, RI	Fruity	Sweet, fruity	1
57	Methyl salicylate	1636	1655	1050	C9H8O3	MS, RI	Fruity	Sweet, fruity	1
58	Ethyl benzoate	1681	1700	1050	C9H10O2	MS, RI	Fruity	Sweet, fruity	1
59	3-Methylbutyl 3-methylbutanoate	1727	1746	1050	C9H18O2	MS, RI	Fruity	Sweet, fruity	1
60	Ethyl trans-4-decenoate	1732	1751	1050	C10H20O2	MS, RI	Fruity	Sweet, fruity	1
61	Ethyl 2-hydroxy-3-methylbutanoate	1754	1773	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
62	Ethyl 4-octenoate	1770	1789	1050	C9H16O2	MS, RI	Fruity	Sweet, fruity	1
63	Ethyl 2-hydroxy-3-methylbutanoate	1780	1800	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
64	Ethyl 3-hydroxy-3-methylbutanoate	1796	1815	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
65	Ethyl 3-hydroxy-3-methylbutanoate	1810	1829	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
66	Ethyl 3-hydroxy-3-methylbutanoate	1824	1843	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
67	Ethyl 2-hydroxy-3-methylbutanoate	1838	1857	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
68	Ethyl 3-hydroxy-3-methylbutanoate	1852	1871	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
69	Ethyl 3-hydroxy-3-methylbutanoate	1866	1885	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
70	Ethyl 3-hydroxy-3-methylbutanoate	1880	1900	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
71	Ethyl 3-hydroxy-3-methylbutanoate	1904	1923	1050	C7H14O3	MS, RI	Fruity	Sweet, fruity	1
No.	Compound	RI^a	RI^b	BP^c	Formula	Ident.^d	Odor series	Odor descriptor	Ref.^e
-----	---	----------------	---------------	---------------	----------	-------------------------	---------------------------------	-------------------------------	------------------
72	Ethyl phenylethanoate	1785	1799	1311	C₁₀H₁₂O₂	MS, RI	Floral	Sweet, floral, honey, rose, balsamic, cocoa	1
73	Ethyl dodecanoate	1843	1851	88	C₁₄H₂₈O₂	MS, RI	Waxy	Sweet, waxy, floral, soapy, clean	1
74	Phenylmethyl 3-methylbutanoate	1894	1907	1468	C₁₂H₁₆O₂	MS, RI	Fruity	Sweet, fruity, apple, pineapple, herb	1
75	3-Methylbutyl benzoate	1928	1933	105	C₁₂H₁₆O₂	MS, RI	Balsamic	Sweet, balsamic, green, waxy	1
76	2-Phenylethyl pentanoate	2034	2007	104	C₁₂H₁₄O₂	MS, RI	Floral	Floral, rose, leafy	1
77	3-Methylbut-3-enyl benzoate	1993	2014	105	C₁₂H₁₄O₂	MS, RI			1
78	Phenylacetic acid isoamyl ester	2016	2019	43	C₁₃H₁₈O₂	MS, RI	Chocolate	Sweet, honey, cocoa, balsamic, chocolate, castoreum, animal	1

Ketones

No.	Compound	RI^a	RI^b	BP^c	Formula	Ident.^d	Odor series	Odor descriptor	Ref.^e
79	Acetone	814	817	<600	C₃H₆O	MS, RI	Solvent	Solvent, ethereal, apple, pear	1
80	2-Butanone[*]	643	3	C₄H₈O	MS	Ethereal	Acetone, ethereal, fruity, camphor	1	
81	2-Pentanone[*]	735	3	C₅H₁₀O	MS	Fruity	Sweet, fruity, ethereal, wine, banana, woody	1	
82	Butane-2,3-dione	977	977	86	C₄H₈O	MS, RI	Buttery	Buttery, sweet, creamy, pungent, caramellic	1
83	2-Heptanone	1185	1186	941	C₆H₁₄O	MS, RI	Cheesy	Fruity, spicy, sweet, herbal, coconut, woody	1
84	3-hydroxybutan-2-one	1287	1292	785	C₅H₁₀O	MS, RI	Buttery	Sweet, buttery, creamy, dairy, milky, fatty	1
85	6-Methyl-5-hepten-2-one	1342	1343	43	C₆H₁₂O	MS, RI	Citrus	Citrus, green, musty, lemongrass, apple	1
86	2-Nonanone	1393	1393	1147	C₇H₁₆O	MS, RI	Fruity	Fresh, sweet, green, weedy, earthy, herbal	1
87	2-Undecanone	1599	1606	1348	C₉H₂₀O	MS, RI	Fruity	Waxy, fruity, creamy, fatty, orris, floral	1

Terpenes

No.	Compound	RI^a	RI^b	BP^c	Formula	Ident.^d	Odor series	Odor descriptor	Ref.^e
88	β-Ocimene	1252	1255	1067	C₁₀H₁₆O	MS, RI	Floral	Citrus, tropical, green, terpenic, woody, green	1
89	Prenol	1313	1326	71	C₁₀H₁₈O	MS, RI	Fruity	Fruity, green, lavender	1
90	(Z)-3-hexen-1-ol	1389	1389	41	C₆H₁₂O	MS, RI	Green	Fresh, green, cut, grass, foliage, vegetable, herbal, oily	1
91	Linalool	1552	1550	93	C₁₀H₁₈O	MS, RI	Floral	Citrus, floral, sweet, bois, de, rose, woody, green, blueberry	1

Sulfur-containing compounds

No.	Compound	RI^a	RI^b	BP^c	Formula	Ident.^d	Odor series	Odor descriptor	Ref.^e
92	Methanethiol	675	674	47	CH₃S	MS, RI	Sulfurous	Cabbage, garlic	1
93	Dimethyl disulfide	1078	1078	94	C₄H₈S₂	MS, RI	Sulfurous, vegetable, cabbage, onion	1	
94	Methyl propyl sulfide	1267	61	C₄H₈S	MS	Alliaceous	Alliaceous, creamy, green, leek	1	

^aRetention indices of volatile compounds for DB-WAX or similar polar column in literature. References: for compound 70 [51], otherwise acquired from NIST Standard Reference Database Number 69

^bRetention indices of volatile compounds for DB-WAX and SPB-624 columns

^cBase peak of mass spectrum

^dIdentification method of volatile compounds. MS, mass spectrum; RI, retention indices; STD, authentic standard

^eOdor series and odor descriptor references. 1. (http://www.thegoodsentscompany.com); 2. (http://flavornet.org/flavornet.html); 3. Material safety data sheet; 4. [54]; 5. [55]; 6. [56]

[*]Semi-quantification based on SPB-624; otherwise semi-quantification based on DB-WAX

ISTD internal standard
in *GEM*, yet reached the target OD600 after 25 h of incubation. Thus, inoculation of *CAM* with a single colony was confirmed to be adequate.

Supplementary Table 1 shows details of the starter cultures of each *L. plantarum* strain used in this research. While the target inoculation level was 2×10^8 CFU/mL, viable plate counts of the starter cultures gave inoculation levels between 1.64 and 2.61×10^8 CFU/mL. While the linear regression models vary between the strains, it should be noted that the model for DSM 1055 underestimated, and the model for DSM 13273 overestimated, the expected cell count.

Malolactic fermentation of sea buckthorn juice

In MLF, decarboxylation of *d*-malate produces *d*- or *l*-lactate, thus increasing pH of the fermented material, unlike the fermentation of sugars by homolactic bacteria, which increases acidity of the food material. Hence, pH of the juice fermented for 36 h increased in correspondence to reduction of *d*-malate content and to increase of *d*- and *l*-lactate (Table 2). More importantly, acclimation of bacterial cells made it possible to ferment SBJ with natural pH with all the studied strains. Here, acclimation medium consisted of normal basal medium for lactic acid bacteria supplemented with *l*-malate at the concentration of 4 g/L and pH adjusted to 4.5. It has been observed that low pH and presence of *l*-malate induce expression of *mle* (malolactic enzyme gene) [12]. Increasing pH of the SBJ to 3.5 prior to fermentation improved MLF to comparable degree as obtained using acclimation medium.

Among the studied strains, only strain DSM 20174 showed production of *d*- and *l*-lactate without acclimation in juice with initial pH of 2.7. Comparing results between the two fermentation times (36 h and 72 h) in the samples where MLF was successful, there was no substantial difference in pH, decrease in *l*-malate content or increase in *d*- or *l*-lactate contents. A small decrease in pH occurred after 36 h of fermentation suggesting increase in conversion of sugars into acids. To summarize, with the parameters used here, fermentation time of 36 h was enough for an almost complete malolactic conversion. Compared to other strains, DSM 1055 was an exception, retaining 1.8–3.23 g/L of *l*-malate even after 72 h of fermentation.

To summarize, acclimation of the *L. plantarum* strains in a growth media with added *l*-malate allowed fermentation of SBJ with the natural pH of 2.7 without compromising biomass production during starter culture production. Alternatively, adjusting pH from 2.7 to 3.5 also allowed the successful fermentation of SBJ, without acclimation of the bacteria before fermentation.

Volatile profile of initial sea buckthorn juice

In total, 91 volatile compounds (Table 2) were identified or tentatively identified from fresh sea buckthorn juice, of which were 53 esters, 7 acids, 6 alcohols, 7 aldehydes, 3 alkenes, 8 ketones, 4 terpenes and 3 sulfur-containing compounds. All of the volatile compounds detected from fresh juice were present also in fermented samples in addition to 2-undecanone (compound 87) which was present solely in the fermented samples. The semi-quantification results for individual compounds are presented in Supplementary Table 2.

Non-branched, branched, and aromatic esters were detected. Identified non-branched fatty acid esters with varying acyl carbon numbers were, in the descending order of abundance, C6, C8, C3, C10, C5, C7 and C2. The most abundant branched esters were those with acyl group of 3-methylbutanoates, 2-methylbutanoates, 2-methylpropanoates, or 3-methyl-2-butenoates. Esters of benzoate were the main aromatic esters.

The most abundant compounds in the GC–MS chromatograms were, in the descending order, 3-methylbutyl 3-methylbutanoate, 3-methylbutyl hexanoate and ethyl hexanoate. A majority of the tentatively identified esters have fruity odor descriptor, while esters and terpenes with floral odor description were also detected. Earlier, ethyl and 3-methylbutyl esters with 3-methylbutanoic or hexanoic acids have been found highest in abundance in SBJ. The volatile profile of sea buckthorn berry is dependent on genetic background (i.e., species and cultivar) and growth conditions [32–34].

The main volatile acids detected were acetic acid and medium-chain fatty acids (C6–C9), while fatty acid-derived aldehydes with the same carbon numbers were also detected. Other aldehydes detected were benzaldehyde and acetaldehyde. Fatty acid-derived ketones with acyl chain lengths of 3, 4, 5, 7, 9, and 11 were detected. However, except for ethanol and 1-heptanol, no corresponding alcohols to aldehydes or ketones were detected.

As sea buckthorn berry accumulates oil in its mesocarp, mostly as triacylglycerols [7, 35], many of the volatile compounds detected here, including esters, free fatty acids, aldehydes and ketones, are derived from metabolism of fatty acids [36].

Non-microbial impact of incubation time on volatile profile

Volatile compounds of food materials are susceptible to alterations due to thermal processing or extended storage [37, 38]. Therefore, it was necessary to separate the effect of incubation on the volatile profile from the impact of microbial metabolism during fermentation of SBJ.
Table 2 Change in pH and content of organic acids (g/L) in non-treated and fermented sea buckthorn juice

Value	Initial pH	Time (h)	Juice	Media	Fermented samples
pH	2.7	0			DSM 1055
		36	GEM	2.70 ± 0.01	2.70 ± 0.01
		72	GEM	2.70 ± 0.01	2.70 ± 0.01
		36	CAM	2.80 ± 0.01*	2.87 ± 0.01*
		72	CAM	2.86 ± 0.02*	2.94 ± 0.01*
	3.5	0			DSM 13273
		36	GEM	3.63 ± 0.01	3.89 ± 0.01*
		72	GEM	3.86 ± 0.01*	3.88 ± 0.01*
		36	CAM	3.69 ± 0.02*	3.88 ± 0.01*
		72	CAM	3.75 ± 0.02*	3.81 ± 0.01*
l-malic acid	2.7	0			DSM 20174
		36	GEM	14.54 ± 0.58	16.04 ± 1.50
		72	GEM	14.66 ± 0.38	14.66 ± 0.55
		36	CAM	7.29 ± 0.10*	1.50 ± 0.30*
		72	CAM	2.67 ± 0.18*	0.00 ± 0.00*
	3.5	0			DSM 10492
		36	GEM	5.32 ± 0.24*	4.01 ± 0.07*
		72	GEM	3.23 ± 0.08*	0.98 ± 0.02*
		36	CAM	4.27 ± 0.14*	0.65 ± 0.05*
		72	CAM	1.80 ± 0.02*	0.48 ± 0.03*
l-lactic acid	2.7	0			DSM 16365
		36	GEM	0.00 ± 0.00	0.00 ± 0.00
		72	GEM	0.00 ± 0.00	1.48 ± 0.17*
		36	CAM	5.65 ± 0.72*	5.80 ± 0.11*
		72	CAM	8.10 ± 0.71*	5.98 ± 0.18*
	3.5	0			DSM 100813
		36	GEM	1.69 ± 0.28*	4.20 ± 0.32*
		72	GEM	3.13 ± 1.00*	5.38 ± 0.56*
		36	CAM	2.75 ± 0.99*	7.39 ± 0.32*
		72	CAM	6.84 ± 0.00*	6.08 ± 0.52*
To determine how individual volatile compounds and subgroups (volatile acids, esters, terpenes, alcohols, aldehydes, ketones) were affected by fermentation variables (strain, fermentation time, juice pH, growth media), unsupervised classification with principal component analysis was performed for non-fermented juice samples (fermentation time 0 h) in addition to the fermented samples (total \(n = 168 \)). (Fig. 1). Principal components 1 and 2 together explained 73% of total variance, PC-1 48%, and PC-2 25%. The PCA scores plot (Fig. 1a) shows that PC-1 clearly separates the non-treated juice from the fermented samples, corresponding to practically all esters and majority of terpenes (all except linalool) clustering at the left end of PC-1 along with the dummy variable for non-treated juice (“0 h”) in the loadings plot (Fig. 1b). In addition, the content of total esters and total terpenes was decreased significantly \((p < 0.001)\) as incubation time was increased (Fig. 2). Moreover, similar decrease was observed in both inoculated juices and non-inoculated control samples. This suggests that the changes in these esters and terpenes were not related to microbial activity but rather by extended exposure to the fermentation conditions (i.e., incubation temperature). In fruit juices in general, esters are important volatile compounds contributing to the fruity aroma and overall flavor [38], and also in sea buckthorn [39], and thus, limiting loss of the key aroma compounds is important when optimizing the MLF process.

Regarding esters, the highest loss of over 50% in normalized peak area (0 h vs. 72 h) was observed in ethyl, methyl and propyl esters of butyric acid, 2-methylpropanoic acid, 3-methylbutanoic acid and hexanoic acid (26–34, 36 and 40) (Supplementary Table 2). Similarly, Tiitinen et al. (2006b) observed the reduced content of ethyl 2-methylpropanoate (26), ethyl 3-methylbutanoate (30) and ethyl hexanoate (40) in SBJ after MLF with \(O. \ oeni \).

Changes in volatile profile by microbial activity and strain-dependent differences

Table 2 (continued)

	Value	Initial pH	Time (h)	Juice	Time (h)	Media	Time (h)	Value	Initial pH
Fermented samples									
DSM 1055									
DSM 1237									
DSM 10492									
DSM 16365									
DSM 100813									
DMS									
GEM									
CAM									
d-lactic acid									
2.7	0	36	36	36	36	36	36	36	36
0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00
0.66±0.01*	4.22±0.31*	4.42±0.29*	4.73±0.52*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*
2.91±0.14*	4.96±0.18*	4.96±0.18*	4.96±0.18*	4.96±0.18*	4.96±0.18*	4.96±0.18*	4.96±0.18*	4.96±0.18*	4.96±0.18*
3.58±0.19*	2.57±0.33*	2.57±0.33*	2.57±0.33*	2.57±0.33*	2.57±0.33*	2.57±0.33*	2.57±0.33*	2.57±0.33*	2.57±0.33*
2.91±0.14*	1.77±0.02*	1.77±0.02*	1.77±0.02*	1.77±0.02*	1.77±0.02*	1.77±0.02*	1.77±0.02*	1.77±0.02*	1.77±0.02*
3.58±0.19*	5.38±0.11*	5.38±0.11*	5.38±0.11*	5.38±0.11*	5.38±0.11*	5.38±0.11*	5.38±0.11*	5.38±0.11*	5.38±0.11*
2.91±0.14*	4.73±0.33*	4.73±0.33*	4.73±0.33*	4.73±0.33*	4.73±0.33*	4.73±0.33*	4.73±0.33*	4.73±0.33*	4.73±0.33*
2.91±0.14*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*
2.91±0.14*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*
2.91±0.14*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*	4.37±0.31*

Results are mean±standard deviation. Each sample was analyzed at least in triplicates. Values 0.00±0.00 indicate concentrations below detection limit. Abbreviations: GEM, general edible medium; CAM, cell acclimation medium. Statistically significant differences between untreated (“Juice” column, for comparison of pH only Time = 0 h was used) and fermented juice \((p < 0.05)\) with Student’s \(t \)-test was used and fermented juice \((p < 0.05)\) with Student’s \(t \)-test was used and fermented juice \((p < 0.05)\) with Student’s \(t \)-test was used.

To investigate in detail the impact of microbial activity on the volatile composition of SBJ, compounds affected by fermentation conditions, separated by PC-1 in Fig. 1 (esters and terpenes) were excluded from the second PCA (Fig. 3). In Fig. 3, PC-1 explains 57% of the variance, separating the samples with no or low malolactic activity (on the left) from those with high activities (on the right side). Variables for fermentation times (’36 h’ and ’72 h’) are located close to the origin in the loadings plot (Fig. 3b) indicating that fermentation time explains only little variance, as intended, on the first two PCs in the model. However, scores plot (Fig. 3a) shows that different time points are often separated within each strain with samples fermented for 72 h appearing further to the right side along PC-1 compared to the samples fermented with 36 h. Interestingly, the samples fermented
with DSM 20174 (pH 2.7/GEM) separated from other strains with the same fermentation variables. This shows that even modest malolactic activity can produce detectable changes in volatile composition.

Total aldehydes, as seen in Fig. 2, were significantly reduced in the fermented samples compared to juice without inoculation. Loadings plot (Fig. 3b) shows that the content of all aldehydes (14–20, green and aldehydic aromas) detected was decreased by fermentation, except 3-methyl-2-butenal.

Fig. 1 Principal component analysis (PCA) score plots and correlation loadings plots based on the data of volatile compounds (99 X-variables) of both non-treated sea buckthorn juice and juice fermented with *Lactobacillus plantarum* (168 samples). The variable numbers in the correlation loadings plots refer to Table 1. Dummy variables are with green font in the loadings plot. Variables written as T("compound group") refer to the sum variable for that compound group. Abbreviations: NT, non-treated juice; FC, fermentation control without inoculation.
(17, fruity aroma) which was increased in abundance. While decrease in aldehydes was universal in all samples with high malolactic conversion, the decrease was less in the juices fermented with DSM 10492 due to the lower reduction of acetaldehyde compared to other strains (Fig. 2, Supplementary Table 2). Previously, fermentation of pineapple, cherry, carrot and tomato juices with \textit{L. plantarum} caused decrease of almost all detected aldehydes [41]; while, significantly reduced amount of fatty acid-derived aldehydes, namely hexanal, octanal, and nonanal, was observed in rice after fermentation with \textit{L. plantarum} [36]. In vegetable and fruit juices fermented with \textit{L. plantarum}, some aldehydes can be reduced to corresponding alcohols [41]. Here, negative correlation between ethanol (8) and acetaldehyde (14), as well as between 1-heptanol (10, green aroma) and heptanal (16) was observed in the fermented juices (Fig. 3b). While both 10 and 16 have green odor descriptor, heptanal has a higher odor threshold [42]. In combination with the overall decrease in aldehydes, changes in aldehyde profile by fermentation with \textit{L. plantarum} could result in the reduction of greenish notes and increase in fruity aroma (17) in SBJ.

To highlight the strain-dependent impact on the volatile profiles, a third PCA model was created including only samples that were inoculated with \textit{L. plantarum} at initial pH = 3.5 (Fig. 4). Although the pH2.7/CAM had high malolactic fermentation, these were excluded from the model as these samples influenced the model too extensively, as reflected by PC-1 in Fig. 3, where pH2.7/CAM forms a separate cluster from pH3.5/GEM and pH3.5/CAM (effect of pH discussed separately in Sect. “Impact of acclimation and initial juice pH on the volatile profile”). Nonetheless, comparing PCA modeled with only the pH2.7/CAM samples (Supplementary Fig. S4) to Fig. 4 suggests that the strain-dependent differences in volatile profiles appear similar in pH 2.7/CAM, pH 3.5/GEM and pH 3.5/CAM.

The alcohol with the highest abundance in fermented samples was 3-methyl-1-butanol (9, fermented aroma) (Supplementary Table 2). Due to differences in concentrations of this compound, the juices fermented with strains DSM 1055 and DSM 100813 had elevated volatile alcohol content \((p<0.05)\), while the lowest content was in samples inoculated with DSM 16365 (Fig. 2). In PC-1 and PC-3 loadings plots (Fig. 4) the two former strains are associated with ethanol (8), 3-methyl-1-butanol (9), and benzyl alcohol (13, floral aroma). This suggests that \textit{L. plantarum} can introduce potentially both negative fermented aroma (8, 9) and positive floral (13) notes in MLF of sea buckthorn juice.

Loadings plot (Fig. 4b) shows that acetic acid (1), 3-methylbutanoic acid (2, cheesy aroma) and medium-chain fatty acids (4–7, fatty and cheesy aromas) are correlated with total acids. Acetic acid is typically produced through heterofermentative pathways in lactic acid bacteria. While predominantly homofermentative species, genomic studies on \textit{L. plantarum} have showed the ability to alternate between homo- and heterofermentative routes [43]. On the other hand, citrate metabolism (via citrate lyase) into oxaloacetic acid produces acetate as a by-product [12]. In food models, acetic acid has been detected earlier in vegetable and fruit juices fermented with \textit{L. plantarum} [41].

Compounds 2 and 4–7 are produced possibly due to increased hydrolysis of the corresponding esters during fermentation, possibly due to lipase and/or esterase activity of \textit{L. plantarum} [44]. Compared to other strains, fermentation with DSM 1055 introduced significantly more volatile acids to SBJ. Significantly lowest levels were in juices fermented with DSM 100813 and DSM 16365, respectively (Fig. 2). As acetic acid has vinegar-like aroma and free fatty acids have been associated with rancid aroma, optimizing fermentation to limit formation of volatile acids is preferable.

All identified ketones except 2-butanone (80, ethereal aroma) were positively correlated with samples of high microbial metabolic activity (Fig. 3). 2-Undecanone (87, fruity aroma) was the only compound that was detected solely in fermented samples. 3-Hydroxybutan-2-one (acetoin, 84) was the most abundant ketone in all fermented samples (Supplementary Table 2). Additionally, loadings plot (Fig. 4b) shows that acetoin and butane-2,3-dione (diacetyl, 82) correlated positively with the strain DSM 13273 on PC-2; juices fermented with this strain also had the highest total ketone content \((p<0.05)\). Similarly to volatile acids, lowest ketone contents were detected in juices fermented with DSM 100813 and DSM 16365 (Fig. 2). Earlier, the content of 82 and 84 was increased in elderberry juice fermented with \textit{L. plantarum} [45]. In MLF of wines, acetoin and diacetyl are important ketones to enhance buttery and fatty notes. Both acetoin and diacetyl are produced from pyruvate, which in turn originates from either citrate or carbohydrate metabolism [12]. Acetoin can be further converted to 2,3-butanediol; however, \textit{L. plantarum} lacks the enzyme for this conversion (2,3-butanediol hydrogenase) [43], possibly explaining why diacetyl and acetoin, but not 2,3-butanediol, were detected in the fermented juices.

While \textit{L. plantarum} possesses genes to metabolize phenolic acids into vinyl derivatives, and further to ethyl derivatives [25], no formation of these off-aromas was detected after MLF of sea buckthorn juice.

Impact of acclimation and initial juice pH on the volatile profile

Exposure of \textit{L. plantarum} cells to sub-optimal pH and t-malic acid prior inoculation to sea buckthorn (i.e., acclimation) likely led to activation of genes related to acid stress [12], which in turn allowed MLF of sea buckthorn juice at pH 2.7 (Table 2). However, no significant differences was observed between \textit{GEM} and \textit{CAM} juices at pH 3.5 in any of
Fig. 2 Sums of volatile compound subgroups over different fermentation variables. Results are mean ± standard deviation. For fermentation control \((n = 12)\) and strains \((n = 24)\), and pH and growth media as combined variable \((n = 36)\) different letter represents groups that are statistically different \((p < 0.05)\). For fermentation time \((0\ h, n = 12; 36\ h, n = 78; 72\ h, n = 78)\) asterisks mark groups that are statistically different \((^{*}p < 0.05; ^{**}p < 0.01; ^{***}p < 0.001)\). Tukey’s HSD test of significance was used for comparisons. Y-axis represents semi-quantified volatile content (µg/L)
the volatile compound classes (Fig. 2). Additionally, growth mediums explained only little variance in the PCA models (Fig. 4). These together indicate that acclimation in CAM had no secondary effect on the aroma-related metabolism in L. plantarum during the fermentation of sea buckthorn juices.

On the other hand, the initial juice pH had significant impact on the observed volatile profiles of the fermented juices. First, the total ester and total terpene content was

Fig. 3 Principal component analysis (PCA) score plots and correlation loadings plots based on the data of volatile compounds (36 X-variables; terpenes and esters excluded) of sea buckthorn juice fermented with Lactobacillus plantarum. Both inoculated and control samples are included (156 samples; excluding samples that have not been incubated). The variable numbers in the correlation loadings plots refer to Table 1. Dummy variables are with green font in loadings plot. Variables written as T ("compound group") refer to the sum variable for that compound group.
significantly higher ($p < 0.05$) in the samples fermented with the initial pH of 3.5 (with high malolactic activity) compared to the pH 2.7/GEM samples with low malolactic activity (Fig. 2). Second, pH 3.5/GEM and pH 3.5/CAM samples had higher total alcohol, acid and ketone content compared to the pH2.7/CAM samples, despite the fact that MLF proceeded efficiently in all these samples (Fig. 2). While the difference was not significant in any of the groups, in Fig. 3 scores plot, pH2.7/CAM samples are clustered into separate group. Here we speculate three possible explanations. First is pH-related matrix effect, as volatile compounds with pH-dependent dissociable group are absorbed in SPME preferably in neutral form, as supported by the previous findings of higher extraction rate of monoterpenols and norisoprenoids from Madeira wines at pH 3.9 compared to pH 2.7 [46, 47]. Second explanation is pH-depentent rate of ester hydrolsis since based on mathematical models, esters are hydrolyzed at a slower rate at a higher pH [48].
dependent on sample matrix. Thus, sensory analyses with tiles vary significantly between compounds and are strongly analysis to aroma properties is that odor thresholds of vola-

sea buckthorn. In addition, malolactic fermentation proceeded rapidly with acids that contribute to vinegar, fatty and cheesy aromas.

strains DSM 100813 and DSM 16365 produced less volatile and alcohols compared with the samples fermented with other strains, while fermentation with DSM 13273 produced more compounds associated with buttery notes. In contrast,

and increased hydrolysis of fatty acid-

L. plantarum

in acclimation medium was comparable to growth rate in typical basal medium.

While majority of the volatile compounds detected in SBJ were esters of hexanoic and 3-methylbutanoic acid with fruity odor descriptor, a number of alcohols, ketones, alde-

hydes, terpenes and acids were also detected. Fermentation time explained most of the variance between the samples, as all of the esters and majority of terpenes were decreased when fermentation time was increased, mostly due to the incubation conditions instead of microbial activities. Microb-

ial activities during the fermentation significantly increased the content of volatile acids, ketones, alcohols, while those of aldehydes were decreased.

Increase in acid content was due to production of acetic acid by L. plantarum and increased hydrolysis of fatty acid-

derived esters. Formation of 3-hydroxybutan-2-one, butane-

2,3-dione and 2-undecanone explained the increase in the ketone content. Fermentation with all the strains reduced content of fatty acid-derived aldehydes. The juices fer-

mented with DSM 1055 had significantly more volatile acids, ketones, alcohols, while those of aldehydes were decreased.

Conclusions

We investigated changes in organic acid content and volatile profile of sea buckthorn juice after malolactic fermentation with different strains of Lactobacillus plantarum. Acclima-
tion of L. plantarum allowed malolactic fermentation of sea buckthorn juice with its original pH (2.7) with all the studied strains. Increasing juice pH to 3.5 prior to fermentation allowed MLF with the all tested strains regardless the media used for pre-cultivation. Acclimation medium for malolactic fermentation of wines often require high inoculation rates (10⁹ CFU/mL) [50], as the composition of the medium inhibits effective biomass production. In our study, growth rate of L. plantarum in acclimation medium was comparable to growth rate in typical basal medium.

reduced or inhibited activity of enzymes related to volatile compound formation when extracellular pH is 2.7 [26, 44, 49]. Further research is required to elucidate if the pH-dependent differences in volatile profiles were matrix related or due to enzyme activity (or lack thereof) of L. plantarum.

human subjects are ultimately required to complement the chemical analyses. However, in studies of organoleptic prop-
erties, the number of samples need to be kept limited to avoid exhausting the panelists. Therefore, studies screen-
ing chemical responses to various fermentation parameters are required. This study provided novel information related to changes in volatile compound profile of sea buckthorn juice in response to acclimation, juice pH, microbial strain and fermentation time. This information can be utilized for development of fermented sea buckthorn products or when designing sensory studies or consumer trials of such products.

Conclusions

We investigated changes in organic acid content and volatile profile of sea buckthorn juice after malolactic fermentation with different strains of Lactobacillus plantarum. Acclima-
tion of L. plantarum allowed malolactic fermentation of sea buckthorn juice with its original pH (2.7) with all the studied strains. Increasing juice pH to 3.5 prior to fermentation allowed MLF with the all tested strains regardless the media used for pre-cultivation. Acclimation medium for malolactic fermentation of wines often require high inoculation rates (10⁹ CFU/mL) [50], as the composition of the medium inhibits effective biomass production. In our study, growth rate of L. plantarum in acclimation medium was comparable to growth rate in typical basal medium.

While majority of the volatile compounds detected in SBJ were esters of hexanoic and 3-methylbutanoic acid with fruity odor descriptor, a number of alcohols, ketones, alde-

hydes, terpenes and acids were also detected. Fermentation time explained most of the variance between the samples, as all of the esters and majority of terpenes were decreased when fermentation time was increased, mostly due to the incubation conditions instead of microbial activities. Microb-

ial activities during the fermentation significantly increased the content of volatile acids, ketones, alcohols, while those of aldehydes were decreased.

Increase in acid content was due to production of acetic acid by L. plantarum and increased hydrolysis of fatty acid-

derived esters. Formation of 3-hydroxybutan-2-one, butane-

2,3-dione and 2-undecanone explained the increase in the ketone content. Fermentation with all the strains reduced content of fatty acid-derived aldehydes. The juices fer-

mented with DSM 1055 had significantly more volatile acids, ketones, alcohols, while those of aldehydes were decreased.

General shortcoming when relating volatile compound analysis to aroma properties is that odor thresholds of vola-
tiles vary significantly between compounds and are strongly dependent on sample matrix. Thus, sensory analyses with human subjects are ultimately required to complement the chemical analyses. However, in studies of organoleptic prop-
erties, the number of samples need to be kept limited to avoid exhausting the panelists. Therefore, studies screen-
ing chemical responses to various fermentation parameters are required. This study provided novel information related to changes in volatile compound profile of sea buckthorn juice in response to acclimation, juice pH, microbial strain and fermentation time. This information can be utilized for development of fermented sea buckthorn products or when designing sensory studies or consumer trials of such products.

Conclusions

We investigated changes in organic acid content and volatile profile of sea buckthorn juice after malolactic fermentation with different strains of Lactobacillus plantarum. Acclima-
tion of L. plantarum allowed malolactic fermentation of sea buckthorn juice with its original pH (2.7) with all the studied strains. Increasing juice pH to 3.5 prior to fermentation allowed MLF with the all tested strains regardless the media used for pre-cultivation. Acclimation medium for malolactic fermentation of wines often require high inoculation rates (10⁹ CFU/mL) [50], as the composition of the medium inhibits effective biomass production. In our study, growth rate of L. plantarum in acclimation medium was comparable to growth rate in typical basal medium.

While majority of the volatile compounds detected in SBJ were esters of hexanoic and 3-methylbutanoic acid with fruity odor descriptor, a number of alcohols, ketones, alde-

hydes, terpenes and acids were also detected. Fermentation time explained most of the variance between the samples, as all of the esters and majority of terpenes were decreased when fermentation time was increased, mostly due to the incubation conditions instead of microbial activities. Microb-

ial activities during the fermentation significantly increased the content of volatile acids, ketones, alcohols, while those of aldehydes were decreased.

Increase in acid content was due to production of acetic acid by L. plantarum and increased hydrolysis of fatty acid-

derived esters. Formation of 3-hydroxybutan-2-one, butane-

2,3-dione and 2-undecanone explained the increase in the ketone content. Fermentation with all the strains reduced content of fatty acid-derived aldehydes. The juices fer-

mented with DSM 1055 had significantly more volatile acids, ketones, alcohols, while those of aldehydes were decreased.

General shortcoming when relating volatile compound analysis to aroma properties is that odor thresholds of vola-
tiles vary significantly between compounds and are strongly dependent on sample matrix. Thus, sensory analyses with

Acknowledgements We acknowledge PhD Annelie Damerau for her technical support operating the SPME–GC–MS instrument.

Funding Open Access funding provided by University of Turku (UTU) including Turku University Central Hospital. This work was supported by the Doctoral Programme in Molecular Life Sciences (DPMLS) in University of Turku and by personal grants from Raisio Research Foundation, Niemi foundation, OLVI foundation, and Magnus Ehrnrooth foundation.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of in-

terest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Yongshan L, Xuelin C, Hong L (2003) Taxonomy of seabuckthorn (Hippophae L.). In: Seabuckthorn (Hippophae L.): a multipurpose wonder plant, Vol. I. Indus Publishing Company, New Delhi, India, pp 35–46
2. Bal LM, Meda V, Naik SN, Satya S (2011) Sea buckthorn ber-

ries: a potential source of valuable nutrients for nutraceuticals and cosmeceuticals. Food Res Int 44:1718–1727. https://doi.org/10.1016/j.foodres.2011.03.002
3. Larmo P, Löyttyniemi E, Yang B et al (2019) Effects of a sea buckthorn oil cream on vulvovaginal atrophy. Maturitas 124:145–146. https://doi.org/10.1016/j.maturitas.2019.04.105
4. Larmo P, Järvinen R, Laiha J et al (2019) Effects of a sea buckthorn oil spray emulsion on dry eye. Contact Lens Anterior Eye
5. Mortensen MW, Spagner C, Cumporeanu C et al. (2018) Sea buckthorn decreases and delays insulin response and improves glycemic profile following a sucrose-containing berry meal: a randomised, controlled, crossover study of Danish sea buckthorn and strawberries in overweight and obese male subjects. Eur J Nutr 57:2827–2837. https://doi.org/10.1007/s00394-017-1550-8

6. Laaksonen O, Knaapila A, Niva T et al. (2016) Sensory properties and consumer characteristics contributing to liking of berries. Food Qual Prefer 53:117–126. https://doi.org/10.1016/j.foodqual.2016.06.004

7. Tiitinen K, Hakala MA, Kallio HP (2005) Quality components of sea buckthorn (Hippophaë rhamnoides) varieties. J Agric Food Chem 53:1692–1699. https://doi.org/10.1021/jf0484125

8. Tiitinen K, Vahvaselkä M, Hakala M et al. (2006) Malolactic fermentation in sea buckthorn (Hippophaë rhamnoides L.) Berries. J Agric Food Chem 65:9871–9879. https://doi.org/10.1021/jf061456w

9. Ma X, Yang W, Laaksonen O et al. (2017) Role of flavonols and proanthocyanidins in the sensory quality of sea buckthorn (Hippophaë rhamnoides L.). Berries. J Agric Food Chem 65:9871–9879. https://doi.org/10.1021/acs.jafc.7b04156

10. Zeb A (2004) Chemical and nutritional constituents of sea buckthorn juice. Pak J Nutr 3:99–106. https://doi.org/10.3923/pjn.2004.99.106

11. Brzuzela N, Tymczyszyn EE, Semorile LC et al. (2019) Lactobacillus plantarum: Identification of the strain and the malic acid consumption in wine-like medium. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00470

12. Guimarães A, Santiago A, Teixeira JA et al. (2018) Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int J Food Microbiol 264:31–38. https://doi.org/10.1016/j.ijfoodmicro.2017.10.025

13. Rodríguez H, Curiel JA, Landete JM et al. (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90. https://doi.org/10.1016/j.ijfoodmicro.2009.03.025

14. Kwaw E, Ma Y, Tchabo W et al. (2018) Effect of lactic bacteria strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem 250:148–154. https://doi.org/10.1016/j.foodchem.2018.01.009

15. Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. BioMed Res Int. https://doi.org/10.1155/2018/9361614

16. Guimarães A, Santiago A, Teixeira JA et al. (2018) Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int J Food Microbiol 264:31–38. https://doi.org/10.1016/j.ijfoodmicro.2017.10.025

17. Filannino P, Cavoski I, Thilen N et al. (2016) Lactic acid fermentation of cactus cladodes (Opuntia ficus-indica L.) generates flavonoid derivatives with antioxidant and anti-inflammatory properties. PLoS ONE 11:e0152575. https://doi.org/10.1371/journal.pone.0152575

18. Kim J, Choi K-B, Park JH, Kim KH (2019) Metabolite profile changes and increased antioxidative and antiinflammatory activities of mixed vegetables after fermentation by Lactobacillus plantarum. PLoS ONE 14:e0217180. https://doi.org/10.1371/journal.pone.0217180

19. Szutowiska J (2020) Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review. Eur J Food Res Technol 246:357–372. https://doi.org/10.1007/s00201-019-04325-7

20. Di Cagno R, Filannino P, Gobberti M (2017) Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. Int J Food Microbiol 248:56–62. https://doi.org/10.1016/j.ijfoodmicro.2017.02.014

21. Filannino P, Azzi L, Cavoski I et al. (2013) Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int J Food Microbiol 163:184–192. https://doi.org/10.1016/j.ijfoodmicro.2013.03.002

22. Markkinen N, Laaksonen O, Nakhu R et al. (2019) Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem 286:204–215. https://doi.org/10.1016/j.foodchem.2019.01.189

23. Tkacz K, Chmielewska J, Turkwiez JP et al. (2020) Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem 332:127382. https://doi.org/10.1016/j.foodchem.2020.127382

24. Succi M, Pannella G, Tremonte P et al. (2017) Sub-optimal pH preadaptation improves the survival of Lactobacillus plantarum strains and the malic acid consumption in wine-like medium. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00470

25. Santamaria L, Reverón I, de Felipe FL et al. (2018) Ethylphenol formation by Lactobacillus plantarum: Identification of the enzyme involved in the reduction of vinylphenols. Appl Env Microbiol 84:e01064-e1118. https://doi.org/10.1128/AEM.01064-18

26. Špano G, Rinaldi A, Ugliano M et al. (2005) A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J Appl Microbiol 98:855–861. https://doi.org/10.1111/j.1365-2672.2004.02521.x

27. Olsen EB, Russell JB, Henick-Kling T (1991) Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation. J Bacteriol 173:6199–6206. https://doi.org/10.1128/JB.173.19.6199-6206.1991

28. Saarala M, Rantala M, Hallamäki K et al. (2004) Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214. https://doi.org/10.1111/j.1365-2672.2004.02286.x

29. Liu S, Laaksonen O, Yang B (2019) Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol 80:25–39. https://doi.org/10.1016/j.fm.2018.12.015

30. de Mendiburú F (2016) agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-4

31. Fessard A, Remize F (2019) Genetic and technological characterization of lactic acid bacteria isolated from tropically grown fruits and vegetables. Int J Food Microbiol 301:61–72. https://doi.org/10.1016/j.ijfoodmicro.2019.05.003

32. Leung G-S, Marriott R (2016) Year to year variation in sea buckthorn juice volatiles using headspace solid phase microextraction. Flavour Fragr J 31:124–136. https://doi.org/10.1002/ffj.3290

33. Socaci SA, Socaciu C, Tofană M et al. (2013) In-tube extraction and GC–MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophaë rhamnoides L. ssp. carpatica) berry varieties and juice. Phytochem Anal 24:319–328. https://doi.org/10.1002/pca.2413

34. Tiitinen K, Hakala M, Kallio H (2006) Headspace volatiles from wild and cultivated sea buckthorn juice using headspace solid phase microextraction. Flavour Fragr J 31:124–136. https://doi.org/10.1002/ffj.3290

35. Vorrinr AL, Markkinen N, Kalpio M et al. (2015) Effect of growth environment on the gene expression and lipids related to triacylglycerol biosynthesis in sea buckthorn (Hippophaë rhamnoides) berries. Food Res Int 77:608–619. https://doi.org/10.1016/j.foodres.2015.08.023

36. Park MK, Kim Y-S (2019) Distinctive formation of volatile compounds in fermented rice inoculated by different molds, yeasts,
and lactic acid bacteria. Molecules. https://doi.org/10.3390/molecules24121213
37. Altisent R, Graell J, Lara I et al (2008) Regeneration of volatile compounds in Fuji apples following ultra low oxygen atmosphere storage and its effect on sensory acceptability. J Agric Food Chem 56:8490–8497. https://doi.org/10.1021/jf8005728
38. Perestrello R, Silva C, Silva P et al (2019) Differentiation of fresh and processed fruit juices using volatile composition. Molecules 24:974. https://doi.org/10.3390/molecules24050974
39. Lundén S, Tiitinen K, Kallio H (2010) Aroma Analysis of Sea Buckthorn Berries by Sensory Evaluation, Headspace SPME and GC-Olfactometry. In: Expression of Multidisciplinary Flavour Science. Proceedings of the 12th Weurman Symposium. pp 490–493
40. Tiitinen K, Vahvaselkä M, Hakala M et al (2006) Effect of malolactic fermentation on the volatile aroma compounds in four sea buckthorn varieties. Dev Food Sci 43:101–104. https://doi.org/10.1016/S0167-4501(06)80024-5
41. Filannino P, Cardinali G, Rizzello CG et al (2014) Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Appl Environ Microbiol 80:2206–2215. https://doi.org/10.1128/AEM.03885-13
42. Laing DG, Legha PK, Jinks AL, Hutchinson I (2003) Relationship between molecular structure, concentration and odor qualities of oxygenated aliphatic molecules. Chem Senses 28:57–69. https://doi.org/10.1093/chemse/28.1.57
43. Huang T, Xiong T, Peng Z et al (2020) Genomic analysis revealed adaptive mechanism to plant-related fermentation of Lactobacillus plantarum NCU116 and Lactobacillus spp. Genomics 112:703–711. https://doi.org/10.1093/genome/bgy153
44. Esteban-Torres M, Reverón I, Santamaría L et al (2016) The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01118
45. Ricci A, Cirilini M, Levante A et al (2018) Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Food Res Int 105:412–422. https://doi.org/10.1016/j.foodres.2017.11.042
46. Câmara JS, Alves MA, Marques JC (2006) Development of headspace solid-phase microextraction-gas chromatography–mass spectrometry methodology for analysis of terpenoids in Madeira wines. Anal Chim Acta 555:191–200. https://doi.org/10.1016/j.aca.2005.09.001
47. Feng L, Huang Y, Wang H (2008) Solid-phase microextraction in combination with GC-FID for quantification of the volatile free fatty acids in wastewater from constructed wetlands. J Chromatogr Sci 46:577–584. https://doi.org/10.1093/chromsci/46.7.577
48. Rayne S, Forest K (2016) Carboxylic acid ester hydrolysis rate constants for food and beverage aroma compounds. Flavour Fragr J 31:385–394. https://doi.org/10.1002/ffj.3327
49. Palles B, Condon C (1998) Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J Appl Microbiol 85:147–154. https://doi.org/10.1046/j.1365-2672.1998.00486.x
50. Brizuela N, Bravo-Ferrada BM, Pozo-Bayón MÁ et al (2018) Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Res Int 106:22–28. https://doi.org/10.1016/j.foodres.2017.12.032
51. Fang C, Du H, Xiaojiao Z et al (2018) Flavor compounds in fermented Chinese alcoholic beverage alter gut microbiota and attenuate ethanol-induced liver damages. bioRxiv. https://doi.org/10.1101/437731
52. The Good Scents Company Information System. In: Good Scents Co. http://www.thegoodscentcompany.com/. Accessed 31 Jan 2020
53. Flavornet and human odor. Gas chromatography-olfactometry (GCO) of natural products. http://www.flavornet.org/flavornet.html. Accessed 2 Jan 2020
54. Flament I (2001) Coffee Flavor Chemistry, 1st edn. John Wiley & Sons, England
55. Rodríguez-Burruezo A, Kollmannsberger H, González-Mas MC et al (2010) HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum Fruits from the annuum–chinense–frutescens complex. J Agric Food Chem 58:4388–4400. https://doi.org/10.1021/jf100933t
56. Sampaio KL, Garruti DS, Franco MRB et al (2011) Aroma volatiles recovered in the water phase of cashew apple (Anacardium occidentale L.) juice during concentration. J Sci Food Agric 91:1801–1809. https://doi.org/10.1002/jsfa.4385

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.