Supporting Information: P-type Cobaltite Oxide Spinel Enables Efficient Electrocatalytic Oxygen Evolution Reaction

David Doppelbauer,a,b Abdalaziz Aljabour,c Halime Coskun,a He Sun,a,c Markus Gusenbauer,a,b Julia Lumetzberger,b Daniel Primetzhofer,d Bogdan Faina,b Jiri Duchoslav,e Matthias Kehrer,e David Stifter,e Heiko Groiss,e,f Verena Ney,b Andreas Ney,b and Philipp Stadler∗a,c

Table of Content

• Figure SS1: Samples used for OER characterization
• Figure SS2: Panel of scanning electron microscopy (SEM) in titanium mesh (aspect ratio of 0.75 projected versus geometric area).
• Figure SS3: Al:ZnO-based sample (stack: sapphire (0001) - Al:ZnO - Zn1.2Co1.8O3.5) used for oxygen evolution reaction.
• Figure SS4: Conductivity of Al:ZnO (2% Al) versus temperature and the sheet resistance at 300K (room temperature).
• Figure SS5: Ti-mesh calibration X-ray diffraction pattern (blank Ti-mesh and Ti-mesh plus Zn1.2Co1.8O3.5).
• Figure SS6: Detailed diffraction patterns of Zn1.2Co1.8O3.5: (222), (333) and (444) reflections on sapphire and Al:ZnO.
• Figure SS7: FWHM/Scherrer analysis of the diffraction peaks of the (222) Zn-Co-O spinel patterns (semi-log scale) on following substrates: TiO2 (rutile, tetragonal), Ti-mesh with native TiO2, Al2O3 (sapphire 0001, hexagonal) and Al:ZnO/sapphire (0001).
• Figure SS8: Complementary TEM cross section showing the columnar growth of Zn1.2Co1.8O3.5 on Ti-mesh.
• Figure SS9: Zoom in high-resolution cross-sectional TEM in single column of Zn1.2Co1.8O3.5 (25 nm grain size).
• Table S1: Diffraction parameters from Scherrer analysis as derived from the measurements shown in Figure SS7.
• Figure SS10: X-ray reflectivity to Zn1.2Co1.8O3.5 Hall specimen yielding 165 nm.
• Table S2: Electrochemical impedance spectra: summary of parameters (membrane and electrolyte resistance and capacitance) as shown in Figure S14.

• Table S3: Statistical overview of electrocatalytic Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ anodes relating to Figure S10.

• Figure S11: Cyclic voltammetry (CV) and 50 h chronoamperometry on Au/Ti-mesh substrate.

• Figure S12: Corrosion effect on Ti-mesh (anodic growth of TiO$_2$).

• Figure S13: Detailed Tafel-slope analysis of as-measured current versus overpotential η.

• Figure S14: Electrochemical impedance spectroscopy and corresponding equivalent circuit to derive the cell parameters (electrolyte and membrane resistance).

• Figure S15: Linear sweep voltammograms to large current densities.

• Figure S16: Determination of the electrochemical surface area by linear sweep voltammetry in organic electrolyte (acetonitrile, 0.1 M TBA-PF$_6$).

• Figure S17: Schematic of the electrochemical H-cell.

• Figure S18: Statistical evaluation of different experiments carried out on the electrocatalytic anodes of Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ grown on (left) Ti-mesh and (right) Al:ZnO.

• Figure S19: after-electrolysis XPS survey of Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ on titanium with a Zn:Co ratio at approx. 0.65.

• Figure S20: Hall measurement outline/summary parameters of Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ Hall specimen - van der Pauw specimen; sample grown on sapphire (0001)).

• Figure S21: Proof of Ohmic-contact to the sample specimen prior Hall-characterization.

• Figure S22: Details of resistivity measurement (at 300K) of Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ Hall specimen using the van-der-Pauw geometry.

• Figure S23: Corresponding Hall-characterization (at 300K) using AC-Hall method supported by LakeShore HMS 8400 cryogenic probe station: AC-magnetic fields allow to probe Hall-voltages in low-mobility samples such as the defect-controlled Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$.

• Figure S24: Gas-chromatogram (He) of the anode headspace before/after 1h electrolysis.
Additional tables and equations

Table 1 FWHM analysis of p-doped Zn-Co spinels.

substrate	peak spinel (222) / 2θ	FWHM / 2θ	τ° / nm
sapphire	38.0 deg	0.25 deg	31.8
rutile	38.092 deg	0.25 deg	32
Ti-mesh (native TiO₂)	38.092 deg	0.28 deg	28.6
Al:ZnO (wurtzite)	38.3 deg	0.39 deg	21

*Scherrer analysis.

Table 2 Electrochemical impedance spectra of electrolysis cell.

WE	CE	R ele. / Ω cm⁻²	R me. / Ω cm⁻²	C / μF cm⁻²
Pt	Pt	1.8	16	27
Zn₁.₂Co₁.₈O₃.₅/Ti-mesh*	Ni	2.0	16	21.3

* Including Ti-corrosion effects. ** WE = working electrode, CE = counter electrode, ele. = electrolyte, me. = membrane.

Table 3 Statistical data.

Anode	η av. / V	η av. / V	η min. / V	standard deviation / mV
Zn₁.₂Co₁.₈O₃.₅/Ti-mesh	0.35	0.363	0.345	±6
Zn₁.₂Co₁.₈O₃.₅/Al:ZnO	0.41	0.425	0.39	±7

* at 10 mA cm⁻²

Appendix: Scherrer analysis

The domain size (τ) is calculated using the Scherrer formula:

\[\tau = \frac{K \cdot \lambda}{\beta \cdot \cos \theta} \]

(1)

with the excitation length \(\lambda = 0.15406 \text{ nm} \) (Cu K_{α1}), the shape factor \(K = 0.89 \) (spherical), the Bragg angle \(\theta \) (deg) of the peak and the (radial) peak full width (at half maximum, FWHM, deg, Figure S7).
Fig. S1 Samples used for OER characterization: blank Ti-mesh, Ti-mesh covered with Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ and patterned substrate on sapphire (0001) with Al:ZnO as conducting layer buried under Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ and Au, respectively.

Fig. S2 SEM images of the Ti-mesh: We show the geometric factor of 0.75 (projected versus geometric area).
Fig. S3 Al:ZnO as conductive substrate for OER: high-quality Al:ZnO is co-deposited prior the Zn-Co-O spinel on sapphire (0001). To protect the Al:ZnO from dissolution in alkaline media, the conducting oxide is covered in the center with spinel $\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5}$ (active area) and, concomitantly, on the edges with Au (schematic in (a)). In (b), the actual electrolysis cell used for characterization is depicted.
Fig. S4 Conductivity of Al:ZnO on sapphire (0001): Prior the catalytic Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$, 200 nm Al:ZnO are deposited (doping at approx. 2% Al) resulting in a conductivity of 1100 S cm$^{-1}$ and a sheet resistance of 45.4 Ω per square.
Fig. S5 Ti-mesh calibration: X-ray diffraction patterns of Ti-mesh with and without Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$.
Fig. S6 Detailed diffraction patterns of $\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5}$: (222), (333) and (444) pattern on sapphire and Al:ZnO.
Fig. S7 Comparison of the FWHM/Scherrer analysis: Diffraction peaks of the (222) Zn-Co-O spinel pattern (semi-log scale) on following substrates: TiO$_2$ (rutile, tetragonal) and Al$_2$O$_3$ (sapphire 0001, hexagonal) as the reference substrates; Ti-mesh with native TiO$_2$ and Al:ZnO (on sapphire 0001, hexagonal) used as electrocatalytic anodes. On the bottom, the spinel we include the structure of the Zn-Co-O system and the corresponding full widths according to the diffraction pattern. From that we calculated the average domain size τ according to equation 1 summarized in Table 1.
Fig. S8 Structure of the Ti-mesh by bright field STEM: (a) the overview displays the homogeneous thick $\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5}$ on top of the TiO$_2$ covered Ti-mesh. (b) Most of the columnar grains reach from the TiO$_2$ to the surface with diameters in the region from 10-40 nm.
Fig. S9 TEM lattice image of the Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ layer: The lattice fringes of the marked grain and its neighboring grains are well visible in the right-hand high-resolution phase contrast image proving the good crystal quality of the active Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ layer. The average domain size τ corresponds to the XRD Scherrer analysis (Figure S7 and Table S1).
Fig. S10 X-ray reflection measurement on Hall-specimen: Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ grown on sapphire (0001) for the van-der-Pauw Hall specimen yielding 165 ± 3 nm.
Fig. S11 Electrochemical characterization of Ti/Au (10 nm) / Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$. (a) Cyclic voltammetry and (b) chronopotentiometry for 50 h to test the stability at 10 mA cm$^{-2}$.

@ $\eta = 0.405$ V
Fig. S12 Ti-corrosion: Cyclic voltammogram reveals an increase of the anodic current after cycling at anodic potentials.
Fig. S13 Detailed Tafel analysis: Extraction of Tafel slopes in the linear regime of the semilogarithmic Tafel-plots.
Fig. S14 Electrochemical impedance spectroscopy: The electrochemical cell constants ($R_{\text{electrolyte}}$, R_{membrane}, capacitance) are presented in Table 2.

Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$

Pt ref.
Fig. S15 Linear sweep voltammogram exceeding 500 mA cm$^{-2}$.

Fig. S16 Current density versus scan rate to determine the electrochemical surface area (ECSA) in organic electrolyte (acetonitrile, 0.1 M TBA-PF$_6$). The measurement was performed at the equilibrium potential of the O$_2$ evolution at +1 V vs. Ag/AgCl (quasi) reference electrode.
Fig. S17 Schematic of the electrochemical H-cell for conducting the electrocatalytic splitting of water.
Fig. S18 Statistical evaluation: Different experiments on electrocatalytic anodes: $\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5}$ on Ti-mesh and Al:ZnO, respectively.
Fig. S19 XPS survey before/after electrolysis of \(\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5} \) on titanium: surface composition (Zn:Co at \(\approx 0.65 \)) remains similar after electrolysis of \(\text{O}_2 \) for 50 h.
Step 3.1: Hall measurement (at 300K)

Run-time operator

Sample

ID	CoZnOx Spinell
Type	van der Pauw
Thickness	165

Other dimensions

L_p [mm]

Hall factor: 1
Max voltage [V]: 100
Max current [mA]: 20
Gate bias voltage [V]: 0

Comment:

Final results

	Mean value	Limit
\(\mu \)	Hall mobility [cm²/V-s]	4.7167E-2
	Carrier type	P
\(n \)	Carrier concentration [1/cm³]	1.4382E21
\(n_{\text{sheet}} \)	Sheet carrier concentration [1/cm²]	3.0489E16
\(R \)	Hall coefficient [cm²/C]	4.3399E-3
\(R_{\text{sheet}} \)	Sheet Hall coefficient [cm²/C]	2.0471E2
\(\rho \)	Resistivity [Ω-cm]	9.2011E-2
\(\rho_{\text{sheet}} \)	Sheet resistivity [Ω-cm]	4.3401E3
\(V_H \)	Hall voltage [V]	1.2800E-6
	Phase [deg.]	-7.7
	Worst case Ohmic check correlation (1-3)	9.9893E-1

Measurement comment

Fig. S20 Summary of Hall measurement: A LakeShore 8400 Hall measurement system was used to measure the van der Pauw-type specimen of \(\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5} \) grown on sapphire (0001) (here shown at 300K).

Fig. S21 Ohmic Check: Contacting \(\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5} \) in the van der Pauw geometry shows ohmic linear behavior.
Resistivity measurement

Setup	
Resistance measurement method:	High resistance
Excitation current	Manual
Current [mA]:	1
Current reversal:	Yes

General	
Sample geometry:	Geometry averaged
Average count:	10
Wait mode:	Auto
Measure current lead voltages:	No

Environment					
Start	Finish	Average	Status		
Date	Monday, November 17, 2021	Monday, November 17, 2021	300.2	300.2	Time out
Time	11:26:36 PM	11:28:36 PM	0.0000	0.0000	
Temperature [K]	300.2	300.2	1.0931E-13	1.0931E-13	
Field [T]	0.0000	0.0000			
Gate bias voltage [V]	0.0000E0	0.0000E0			
Gate bias current [A]	4.3397E-13	4.3397E-13			

Final average	Geometry A	Geometry B
Resistivity [Ω·cm]	9.2146E-2	9.1875E-2
Sheet resistivity [Ω·cm]	4.3465E3	4.3337E3
F value	0.99	0.99

Intermediate results	Geometry A	Geometry B		
Resistance [Ω]	8.0865E2	1.1277E3	8.0570E2	1.1251E3
Standard deviation of resistance [Ω]	1.1460E-2	1.6047E-2	9.8568E-3	1.9360E-2
Voltage [V]	8.0859E-1	1.1276E0	8.0565E-1	1.1250E0
Standard deviation of voltage [V]	5.2217E-6	6.5738E-6	4.2001E-6	1.3625E-5
Current [A]	9.9992E-4	9.9991E-4	9.9993E-4	9.9994E-4
Standard deviation of current [A]	1.2614E-8	1.2979E-8	1.1067E-8	1.2222E-8

Average measurements (I+)	Geometry A	Geometry B		
Voltage [V]	8.0934E-1	1.1291E0	8.0427E-1	1.1264E0
Standard deviation of voltage [V]	7.5468E-6	8.4175E-6	6.9433E-6	1.1666E-5
Current [A]	1.0000E-3	1.0000E-3	1.0000E-3	1.0000E-3
Standard deviation of current [A]	2.1591E-8	1.3743E-8	1.7665E-8	1.7115E-8
Current lead voltage [DC V]	N/A	N/A	N/A	N/A

Average measurements (I-)	Geometry A	Geometry B		
Voltage [V]	-8.0783E-1	-1.1261E0	-8.0703E-1	-1.1237E0
Standard deviation of voltage [V]	7.2187E-6	1.0100E-5	4.7278E-6	2.4627E-5
Current [A]	-9.9983E-4	-9.9982E-4	-9.9984E-4	-9.9985E-4
Standard deviation of current [A]	1.3048E-8	2.2022E-8	1.3335E-8	1.7453E-8
Current lead voltage [DC V]	N/A	N/A	N/A	N/A

Fig. S22 Resistivity at 300K: 8-fold probing in the van der Pauw geometry to obtain the isotropic resistivity of the 165 nm thick Zn$_{1.2}$Co$_{1.8}$O$_{3.5}$ on sapphire.
Fig. S23 AC-Hall measurement at 300K: the AC-Hall method developed by LakeShore (8400 HMS Series) allows to induce an AC-magnetic sinusoidal sweep of the magnetic field (amplitude maximum at 0.91 T, average at 0.625 T, frequency 100 mHz), while the electric parameters (DC-current, voltage) are measured in DC-mode. Using this, the sensitivity is increased below $0.7 \cdot 10^{-6}$ V (high-sensitivity Hall voltage probing). Details of the measurements at 300K of the 165 nm thick $\text{Zn}_{1.2}\text{Co}_{1.8}\text{O}_{3.5}$ on sapphire are presented.
Fig. S24 Gas-chromatogram (He) of the anode headspace: Before and after composition of the headspace showing the rise of anodically produced O_2 gas.

ratios:
before: $N_2:O_2 = 6:1$
after: $N_2:O_2 = 2:1$