A novel *ceruloplasmin* mutation identified in a Chinese patient and clinical spectrum of aceruloplasminemia patients

Wan-Qing Xu1 · Wang Ni1 · Rou‑Min Wang1 · Yi Dong1 · Zhi‑Ying Wu1

Received: 4 April 2021 / Accepted: 7 July 2021 / Published online: 4 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Aceruloplasminemia (ACP) is a rare disorder of iron overload resulting from *ceruloplasmin* (*CP*) variants. Because of its rarity and heterogeneity, the diagnosis of ACP is often missed or misdiagnosed. Here, we aim to present a clinical spectrum of ACP and raise more attention to the early diagnosis. Whole exome sequencing (WES) was performed in a Chinese female patient suspected with ACP and her clinical data were collected in detail. The PubMed databases was searched for published ACP patients within the last decade, and we present a systematic review of their clinical features with data extracted from these researches. A novel pathogenic variant (c.2689delC) and a known pathogenic variant (c.606dupA) within *ceruloplasmin* gene were identified in our patient and confirmed the diagnosis of ACP. Then we reviewed 51 ACP patients including the case we reported here. A possible timeline of symptoms was discovered, anemia appears first (29.7 years old on average), followed by diabetes (37.3 years old) and finally neurological symptoms (50.7 years old). The delay in diagnosis was significantly shortened in patients without neurological symptoms. Biochemical triad including anemia, low to undetectable serum ceruloplasmin, low serum iron and/or hyperferritinemia, showed better sensitivity in diagnosis than clinical triad including diabetes, neurological symptoms, and retinal degeneration. Due to the variable symptom spectrum, patients with ACP often visit different departments, which can lead to misdiagnosis. Clinical attention needs to be paid to symptoms and tests that have a warning effect. Prompt diagnosis in the early stage of the disease can be beneficial.

Keywords Aceruloplasminemia · Clinical spectrum · *Ceruloplasmin* · Novel variant · Chinese

Introduction

Aceruloplasminemia (ACP) is a rare (1: 2,000,000 in Japan, incidence unavailable in other parts of the world) autosomal recessive disorder of iron overload resulting from pathological variants within *CP* gene that causes wide range of progressive clinical manifestations including anemia, diabetes mellitus, retinal degeneration, and neurological symptoms (Miyajima and Hosoi 1993). Ceruloplasmin (CP), the protein encoded by *CP*, containing 95% of the copper present in human serum, is essential for regulating the homeostasis of iron ions. Deficiency of CP causes iron mediated oxidative damage and pathological cellular iron retention (Wang and Wang 2019), and eventually leads to iron deposition in related organs and associated symptoms. To date, a total of 74 pathological variants within *CP* were reported according to Human Gene Mutation Database Professional (https://portal.biobase-international.com/hgmd/ pro/gene. php?gene = CP, access date: Apr.5, 2021), including 38 missense/ nonsense variants, 12 splicing variants, 14 small deletions, 5 small insertions, 1 small indels, 2 gross deletions and 2 gross insertions. Since the first case was published in Japan in 1987, only about 100 cases have been reported worldwide so far (Miyajima et al. 1987).

To describe its heterogeneity, some patients started to show signs of microcytic anemia as early as in childhoods while some turned for professional help only for memory loss or depression in their late 60s. The progression of ACP is slow and diverse, and its genotype-phenotype correlation remains unclear. Meanwhile, the development of neurological symptoms causes severe and irreversible effects on
affected individuals. Therefore, early diagnosis and management, such as iron chelation, are essential to delay or prevent the progression of symptoms and improve the overall quality of life of patients. The difficulty of diagnosis lies not only in the criteria of laboratory examinations or image analysis, or even genetic detection, but also in whether the disease can be considered in differential diagnosis process. The establishment of an ACP diagnosis requires typical clinical findings and identification of biallelic pathogenic variants in CP through genetic testing. Clinical findings include diabetes mellitus, anemia, neurologic symptoms, and characteristic retinal degeneration. It is believed that laboratory test results such as low transferrin saturation, hyperferritinemia, and low or undetectable serum ceruloplasmin may also serve as sensitive markers for diagnosis (Marchi et al. 2019).

Here, we presented a Chinese ACP family and reported a new pathogenic variant. Then we collected case reports and articles within the last decade to present them in a more systematic way for further research, and more importantly, to summarize a better pattern for the early diagnosis of ACP, helping more patients and physicians to reduce the costs caused by missed or misdiagnosis.

Methods

Subject and genetic analysis

The family was recruited from the Second Affiliated Hospital of Zhejiang University School of Medicine. Clinical data of the proband, including related laboratory tests, Unified Wilson’s Disease Rating Scale (UWDRS) (Członkowska et al. 2007) results, brain magnetic resonance imaging (MRI), and ophthalmic findings were obtained. Genomic DNA was extracted from peripheral EDTA-treated blood with Blood Genomic Extraction Kit (Qiagen) according to the manufactures’ instructions. Whole exome sequencing (WES) was performed using Agilent SureSelectTM Human All Exon v6 kit on the Illumina HiSeq X Ten platform (XY Biotechnology Co. Ltd., Hangzhou, China). Subsequent variant calling, alignment and annotation were analyzed according to our previously reported protocol (Jiang et al. 2019). Sanger sequencing was performed on an ABI 3500xL Dx Genetic Analyzer (Applied Biosystems) to validate the potential variants, and the procedure was described previously (Dong et al. 2016). The study was approved by the corresponding ethics committee and the informed consents were obtained from the participants.

Literature review design and data analysis

The PubMed databases was searched for published cases of ACP from January 2010 to November 2020. Keywords used are: aceruloplasminemia and ceruloplasmin deficiency. All articles or case reports written in English were reviewed. Search was also extended by screening the reference list of included published articles. Cases without genetic detection and complete diagnostic and treatment process were excluded. Then a total of 50 cases from 30 articles (Watanabe et al. 2010, 2018; Bethlehelm et al. 2010; Hida et al. 2010; Finkenstedt et al. 2010; Ogimoto et al. 2011; Suzuki et al. 2013; Fujita et al. 2013; Rusticeanu et al. 2014; Kerkhof and Honkoop 2014; Matsushima et al. 2014; Meral Gunes et al. 2014; Tai et al. 2014; Lindner et al. 2015; Megari et al. 2015; Vroegindeweij et al. 2015; Pelucchi et al. 2016, 2018; Hayashida et al. 2016; Kassubek et al. 2017; Poli et al. 2017; Kim et al. 2017; Riboldi et al. 2018; Yamamura et al. 2018; Ronquillo et al. 2019; Stelten et al. 2019; Vila Cuenca et al. 2020; Ondrejkovičová et al. 2020; Zhou et al. 2020; Miyake et al. 2020; Tridimas et al. 2021) were summarized in Table 1. Patient characteristics and case descriptions were extracted manually for further analysis. Qualitative analysis was used to analyze various symptoms and test results, expressing the results in terms of positives and negatives. The statistical items included symptoms (anemia, diabetes, neurological symptoms, retinopathy, liver disease) and examination findings (low to undetectable serum ceruloplasmin, low transferrin saturation, low serum iron, hyperferritinemia, intracranial iron deposits, intrahepatic iron deposits) in 51 cases. Qualitative analysis was used for statistics on the earliest age of symptom onset, age of neurological symptoms onset and age of diagnosis. To ensure the authenticity and accuracy of the statistics, if a specific point in time was not mentioned in the article or supplementary, the case is excluded from the relevant data statistics. For example, in the calculation of the age of earliest symptom onset, if the information is not reflected in the case description or described vaguely such as “childhood”, this case will be excluded. T-test was used to compare the characteristics of the groups that met statistical standard. Ages are expressed as mean values. Statistical significance was defined as a p value <0.05.

Results

Genetic findings

After WES analysis, we found that the index patient (Fig. 1a) carried two heterozygous variants (c.606dupA and c.2689delC) within CP gene, which were validated by Sanger sequencing. The known frameshift variant c.606dupA (Fig. 1b) in exon 3 results in the repetition of adenine in the coding region 606, the change of amino acid 203 from aspartic acid to arginine and the creation of a new reading frame, ending at the downstream codon...
Table 1 Fifty cases including 49 cases reported in the past decade

Case No.	Country	Gender	Cp gene variants	AAFM, years	AAFNS, years	AAD, years	NS	RD	Anemia	Brain iron overload	LTU serum CP	LTS/LSI/HF	Liver iron overload	PMID	Publish year
1	Japan	F	c.3107G>A	33	51	58	+	+	+	NA	+	+	+	20,828,764	2010
2	Netherlands	F	c.1948G>A	NA	NA	59	+	–	+	NA	+	+	+	21,071,777	2010
3	Austria	M	c.2554+1G>T	26	43	47	+	+	–	+	+	+	+	20,801,540	2010
4	Japan	F	c.319delT	19	49	52	+	+	NA	+	+	+	+	21,720,062	2011
5	Japan	F	c.210G>A	NA	NA	68	+	+	+	NA	+	+	NA	24,323,439	2013
6	Japan	M	c.2185delC	NA	53	59	–	+	NA	+	+	+	+	23,812,204	2013
7	Italy	F	deletion of exon 12	NA	60	63	+	+	–	+	+	+	+	24,607,334	2014
8	Italy	M	c.1865-312_2077+15	NA	51	50	+	+	+	+	+	+	+	26,777,753	2015
9	Italy	M	c.848G>A; c.2689_2690delCT	NA	56	59	+	+	–	+	+	+	+	27,175,663	2016
10	Netherlands	M	c.1948G>A	NA	NA	56	+	+	–	+	+	+	+	25,661,792	2015
11	Netherlands	F	c.2630G>A	NA	60	63	+	+	–	+	+	+	+	25,864,092	2015
12	Netherlands	M	c.1948G>A	NA	54	56	+	+	–	+	+	+	+	25,661,792	2015
13	Japan	F	a mutation in exon 12 (details NA)	23	43	33	+	+	+	+	+	+	+	27,175,663	2016
14	Korea	F	c.2630G>A; c.1864+1G>C	NA	56	57	–	+	+	+	+	+	+	28,258,281	2016
15	Korea	F	c.2630G>A; c.1864+1G>C	NA	55	57	+	+	+	+	+	+	+	28,258,281	2016
16	Germany	F	c.1049C>A	64	71	72	+	+	NA	+	+	+	+	28,431,603	2017
17	Japan	F	c.1286_1290insTATA; c.2185delC	50	67	68	+	+	–	+	+	+	+	29,709,961	2018
18	Netherlands	NA	c.1192-1196del	NA	NA	55	+	+	–	+	+	+	+	30,383,083	2018
19	USA	F	c.163del; c.591G>A	NA	56	61	+	+	NA	+	+	+	+	29,534,945	2018
20	Japan	F	c.1670T>G	69	72	72	+	+	NA	+	+	+	+	29,434,149	2018
21	USA	F	c.395-1G>A	56	63	63	NA	+	+	NA	NA	NA	NA	31,356,495	2019
22	China	F	c.606dupA	32	52	53	+	+	NA	+	+	+	+	32,114,188	2018
23	Lithuania	F	c.1783_1787delGATA; c.2520_2523delAAAC	55	55	75	+	+	+	+	+	+	+	32,235,485	2020
24	India	M	c.1864+5G>A	35	35	40	+	+	–	+	+	+	+	32,235,485	2020
25	India	M	c.1864+5G>A	62	64	66	+	+	–	+	+	+	+	32,235,485	2020
26	India	F	c.1864+5G>A	57	57	61	+	+	–	+	+	+	–	32,235,485	2020
27	Poland	F	c.389A>C	27	31	40	+	+	–	+	+	+	NA	32,235,485	2020
28	Brazil	F	c.2879-1G>T	36	36	37	+	+	+	+	+	+	+	32,235,485	2020
29	Poland	F	c.389A>C	22	22	25	-	+	+	+	+	+	+	32,235,485	2020
30	Pakistan	M	c.1713+1delG	NA	NA	16	–	+	–	+	+	+	+	32,235,485	2020
31	Japan	M	c.3107G>A	38	61	64	+	+	+	+	+	+	+	32,238,721	2020
32	UK	M	c.1713+1delG	12	12	14	–	+	+	+	+	+	+	33,473,336	2020
33	China	F	c.2699delC; c.606dupA	NA	53	55	+	+	+	+	+	+	+	current study*	2020
34	Japan	M	c.1282_1286delTACAC	42	44	NA	NA	+	+	+	+	+	+	20,686,294	2010
Case No.	Country	Gender	Cp gene variants	AAFM, years	AAFNS, years	AAD, years	DM	NS	RD	Aemia	LTU serum CP	LTS/LSI/HF	Liver iron overload	PMID	Publish year
----------	-----------	--------	------------------	-------------	-------------	------------	-----	------	------	-------	--------------	-----------	---------------------	--------	--------------
36	Japan	M	c.2641G > A	16	_	35	+	_	_	+	+	+	+	24,341,521	2014
37	Germany	M	c.1211_1212dupTG	NA	_	39	+	_	_	+	+	+	+	23,557,349	2014
38	Turkish	F	c.1306C > T	12	_	16	_	_	_	+	+	+	+	25,247,888	2014
39	Germany	F	c.2122G > A	NA	_	43	+	_	_	+	+	+	+	25,089,372	2015
40	Germany	M	c.2122G > A	NA	_	39	+	_	_	+	+	+	+	25,089,372	2015
41	Germany	M	c.2122G > A	NA	_	24	+	_	_	+	+	+	+	25,089,372	2015
42	Italy	F	c.1012T > A	36	_	36	+	_	_	+	+	+	+	29,503,155	2018
43	Italy	M	c.2972T > C	52	_	52	_	_	_	+	+	+	+	29,503,155	2018
44	Italy	F	c.1208+1G > A	37	_	37	_	_	_	+	+	+	+	29,503,155	2018
45	Italy	M	c.1208+1G > A	20	_	20	+	_	_	+	+	+	+	29,503,155	2018
46	Slovak	NA	c.1664G > A	NA	_	41	_	_	_	+	+	+	+	32,264,837	2020
47	Spain	F	c.2050_2051delAC	15	_	33	_	_	_	+	+	+	+	32,235,485	2020
48	Italian	M	c.1012T > A;	43	_	46	_	_	_	+	+	+	+	32,235,485	2020
			c.2972T > C												
49	Italian	M	c.2684G > C;	32	_	62	_	_	_	+	+	+	+	NA	32,235,485
			c.1602T > G												
50	Brazil	F	c.2879-1G > T	NA	_	29	_	_	_	+	+	+	+	32,235,485	2020
51	Brazil	F	c.2756T > C	14	_	46	+	_	_	+	+	+	+	NA	32,235,485

AAFM age at first manifestation, AAFNS age at first neurological symptoms, AAD Age at diagnosis, DM Diabetes mellitus, NS neurological symptoms, RD retinal degeneration, LTU serum CP low to undetectable serum CP, LTS/LSI/HF low transferrin saturation/low serum iron/hyperferritinemia, NA not available; +, positive; −, negative; *Case 1–34 are with neurological symptoms (including the case reported in this publication), case 35–50 are without neurological symptoms.
5. The nonsense variant c.2689delC (Fig. 1c) in exon 6, resulting in the change of 897 amino acid from leucine to termination, is first reported worldwide. This novel variant was absent from public database including Exome Aggregation Consortium (ExAC), Genome Aggregation Database (gnomAD), and our in-house WES database containing 500 Chinese controls. The two variants were classified as pathogenic variants according to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines. The son of the index patient was genetically tested to have a heterozygous variant c.2689delC.

Clinical features

The index patient is a 53-year-old Chinese woman carrying two heterozygous pathogenic variants within CP gene, who was genetically diagnosed with ACP. At her initial visit to our neurology department two years ago, she presented with three months of memory loss. Brain MRI showed excessive iron deposition. In addition, she had a 19-year history of type 1 diabetes, diabetic ketoacidosis, diabetic retinopathy, and atrial septal defect. A microcytic anemia was found with a hemoglobin of 65 g/L (110–150) and mean cell volume of 67.7 fl (84–94). Laboratory tests also showed low serum...
ceruloplasmin of 0.018 g/L (0.2–0.6), low serum iron of 6.73 mmol/L (7.27–9.85), high serum ferritin of 858.3 ng/mL (10–291) and normal range of urine copper: 27.5 μg/24 h (0–60). Therefore, ACP was considered for differential diagnosis with Wilson’s disease (WD). At this point her UWDRS score was 17/320.

A year and a half after diagnosis, the patient was readmitted for the development of an ataxic gait with involuntary tremors of the hands, anxiety, and occasional panic attacks. Brain MRI and susceptibility weighted Imaging (SWI) showed iron deposition on bilateral basal ganglia and cortex (Fig. 1d-f). Hepatic MRI and diffusion-weighted imaging (DWI) showed hepatomegaly with reduced T2WI signal (Fig. 1g). The UWDRS score progressed to 70/320, other psychological scales indicated moderate anxiety, mild to moderate depression, decreased cognitive function, and presence of hallucinations. Later ophthalmic consultation showed no obvious abnormality of retina (Fig. 1h, i).

Literature review

The cases with genetic testing and complete diagnostic and treatment process reported in English in the past decade were included, and 50 cases out of 31 articles were screened out (Table 1). Adding the case in the current study, 34 out of 51 cases had neurological symptoms. As shown in Table 2, the average age of onset (AAO) of symptoms was 35.2 years, and the average age of diagnosis was 48.2 years, which means that the average delay was 13.0 years. Among them, the average delay of 34 patients with neurological symptoms was 15.7 years, while that of 17 patients without neurological symptoms was 8.8 years. The significant difference between the two groups suggests that gene detection and family screening are helpful for early diagnosis in the early stage of disease (anemia, diabetes, or asymptomatic period).

The AAO of neurological symptoms was 50.7 years while that of anemia is hard to determine, with some patients being found anemic in their thirties and forties, and some cases being described as having developed anemia during a vague period of childhood. Therefore, the specific AAO of anemia cannot be calculated with certainty. Based on the 15 cases in which the AAO of anemia was described in detail, their average AAO is 29.7 years old. Similarly, the AAO of diabetes mellitus was not determined at the time of consultation or was not reflected in the case reports for some patients, and the average AAO was 37.3 years in the 16 cases with detailed description. The above values of symptom onset can provide some reference significance, reflecting the chronological order of the onset of different ACP symptoms.

In addition, from the information extracted from these 51 cases, we also got the first diagnosis departments of the patients, which appeared in the department of neurology or psychiatry (24/51), hematology (16/51), endocrinology (9/51), and other (orthopedics, gastroenterology, etc.). Of the cases we collected, 67% presented with neurological symptoms, 82% with anemia, 69% with diabetes mellitus and 27% with retinal disease. Except the undescribed or untested cases, almost all patients had low transferrin saturation, hyperferritinemia, low or undetectable serum ceruloplasmin, and imaging findings of abnormal iron deposition in the brain and liver. Cognitive decline (68%) was most common among patients with neurological symptoms, followed by ataxia in 47%, hyperkinetic movement disorders in 38%, parkinsonism in 29%, and psychiatric changes in 18%. Most patients have more than one kind of neurological symptom (27/34).

Table 2 Clinical feature of 51 aceruloplasminemia patients

	All (n = 51)	Patients with neurological symptoms (n = 34)	Patients without neurological symptoms (n = 17)
AAFM, years	35.2	37.6	29.0
AAFNS, years	50.7	50.7	–
AAD, years	48.2	53.3	37.7*
Average delay, years	13.0	15.7	8.8
Neurological symptoms, %	67% (34/51)	Cognitive decline: 68% (23/34)	
		Ataxia: 47% (16/34)	
		Hyperkinetic movement disorders: 38% (13/34)	
		Parkinsonism: 29% (10/34)	
		Psychiatric changes: 18% (6/34)	
Anemia, %	82% (42/51)	82% (26/34)	82% (14/17)
Diabetes mellitus, %	69% (35/51)	77% (26/34)	52.9% (9/17)
Retinal disease, %	27% (14/51)	41% (14/34)	0%

*p < 0.01; AAFM age at first manifestation, AAFNS age at first neurological symptoms, AAD age at diagnosis
Discussion

ACP is a rare iron deposition disorder with a variety of clinical manifestations, and there is limited number of published cases or data available for study worldwide right now. Here we presented a Chinese patient with a relatively typical course of the disease and a complete medical record and reported a novel pathogenic variant (c.2689delC) in CP gene. The patient developed anemia, diabetes, and neurological symptoms in sequence, which was consistent with the course of ACP as discussed in the literature review. In the literature study, we have found that complete data records are very important for further studies, and the examination of iron deposition in multiple system after diagnosis is also conducive to physicians' understanding of the patient's condition. We recommend a comprehensive examination for ACP patients to be assessed and confirmed.

Previously, reviews from Japan (Kono 2013), Italy (Pelucchi et al. 2018; Marchi et al. 2019), the Netherlands (Vroegindeweij et al. 2015), the United States (Borges et al. 2019) and other countries (Vila Cuenca et al. 2020) also have analyzed reported cases in terms of clinical manifestations and treatment efficiency. These accounts provide an evidence on clinical manifestation and long-term therapy outcomes. In this study, we selected cases from the past decade for further study of diagnosis and treatment with the aim of reducing missed or misdiagnosis of ACP. Because iron deposition in ACP causes a variety of symptoms, patients' first clinical visits may be diverse, resulting in a mean delay of 13.0 years from first symptoms to diagnosis in these 51 cases. In our patient's case, for example, the early onset of anemia had no clear etiology, and the later onset of type I diabetes failed to correlate with the anemia, and it wasn't until the patient developed neurological symptoms in the late stages of the disease that we were able to really connect all the patient’s symptoms together and consider the diagnosis of ACP.

Our findings support the conclusions of previous partial reviews that there is a time window for the onset of ACP (Vroegindeweij et al. 2015) and that the order of onset of anemia, diabetes, and neurological symptoms in this study averaged 29.7, 37.3, and 50.7 years, respectively, and that patients did not necessarily experience all symptoms. Current research on the relationship between genotypes and phenotypes and the pathogenesis of ACP is insufficient to explain this symptomatic profile. However, the analysis of this information allows us to make a definitive diagnosis at an earlier stage of the disease. In this literature review, about 82.0% of the patients have anemia at the final diagnosis, but only about 26.0% diagnosed ACP with anemia as the main complaint. Although 69.0% of the patients had diabetes at the final diagnosis, only 10% diagnosed ACP with diabetes as the main complaint. At the time of diagnosis, 67.0% of the patients have neurological symptoms, and 60.0% of them have been diagnosed due to neurological symptoms, accounting for the largest proportion.

Except for the cases that were not clearly described or recorded, low or undetectable ceruloplasmin and low serum iron and/or hyperferritinemia were found in all confirmed cases. The sensitivity of these two laboratory tests is very credible. It is also very important to make a differential diagnosis with other entities that present similar results, such as Wilson’s disease, Menke’s disease for low serum CP, and metabolic syndrome, alcoholism inflammatory disorders or hemochromatosis for hyperferritemia. Neurological symptoms commonly include cognitive decline, hyperkinetic movement disorders, parkinsonism, ataxia, and psychiatric changes, which may be caused by iron deposition in different areas of the brain, such as the cortex, hippocampus, basal ganglia, etc. The relevance of specific imaging analyses and genotypes needs to be further investigated.

It is worth mentioning that with the development of genetic testing technology, the age at the time of diagnosis with ACP can be brought forward. In this review, several cases successfully managed early diagnosis in patients with anemia, diabetes or liver disease, some asymptomatic cases were also genetically diagnosed in the family screening. For example, the first ACP patient in Turkey was successfully diagnosed at age of 16 by screening for causes of anemia, using laboratory tests and genetic testing (Meral Gunes et al. 2014). A 20-year-old patient in Australia was treated for a sustained increase in ferritin and a mild increase in alanine aminotransferase, he was eventually diagnosed with ACP through clinical manifestations (Lindner et al. 2015). In another case, a Japanese woman suffered from anemia at the age of 21, diabetes at the age of 23, and retinopathy at the age of 25. At the age of 33, she had genetic diagnosis at the same time with her sisters (Hayashida et al. 2016). A 41-year-old patient in Slovakia was treated for recurrent abortion due to persistent small cell hypopigmentation anemia. After careful differential diagnosis, the clinical and genetic diagnosis of ACP was obtained (Ondrejkovičová et al. 2020). These cases are examples of successful early diagnosis. The purpose of this study is to improve the early diagnosis and raise more attention for ACP, reducing the irreversible damage in patients caused by missed diagnosis or misdiagnosis. Further analysis of the treatment and prognosis of these cases are needed, and the relevant molecular and animal models are being developed and studied, which will help to improve our understanding of the disease.
Conclusion

Due to the heterogeneity of clinical manifestations, patients with ACP may report different symptoms at different ages. Anemia and diabetes usually precede the onset of dangerous neurological symptoms. Besides, biochemical triad, namely anemia, low transferrin saturation, low to undetectable serum ceruloplasmin, low serum iron and/or hyperferritinemia, shows better sensitivity in diagnosis than clinical triad, namely diabetes, neurological symptoms, and retinal degeneration, which can benefit the prompt diagnosis in the early stage of the disease.

Authors’ contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Wan-Qing Xu, Wang Ni, Rou-Min Wang, Yi Dong and Zhi-Ying Wu. The first draft of the manuscript was written by Wan-Qing Xu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the research foundation for distinguished scholar of Zhejiang University to Zhi-Ying Wu (188020-193810101/089, Hangzhou).

Data availability All data generated or analyzed during this study are included in this published article.

Code availability Not applicable.

Declarations

Ethics approval The study was approved by the ethics committee of the Second Affiliated Hospital of Zhejiang University School of Medicine.

Consent to participate Informed consent was obtained from all individual participants included in the study.

Consent for publication Patients signed informed consent regarding publishing their data and photographs.

Conflict of interest The authors have no potential conflicts of interest to disclose.

References

Bethlehem C, van Harten B, Hoogendoorn M (2010) Central nervous system involvement in a rare genetic iron overload disorder. Neth J Med 68:316–318
Borges MD, Albuquerque DM, Lanaro C et al (2019) Clinical relevance of heterozygosity for aceruloplasminemia. Am J Med Genet 180:266–271. https://doi.org/10.1002/ajmg.b.32723
Członkowska A, Tarnacka B, Möller JC et al (2007) Unified Wilson’s disease rating scale - a proposal for the neurological scoring of Wilson’s disease patients. Neurol Neurochir Pol 41:1–12
Dong Y, Ni W, Chen W-J et al (2016) Spectrum and classification of ATP7B variants in a large cohort of Chinese patients with Wilson’s disease guides genetic diagnosis. Theranostics 6:638–649. https://doi.org/10.7150/thno.14596
Finkenstedt A, Wolf E, Höfner E et al (2010) Hepatic but not brain iron is rapidly chelated by deferasirox in aceruloplasminemia due to a novel gene mutation. J Hepatol 53:1101–1107. https://doi.org/10.1016/j.jhep.2010.04.039
Fujita K, Osaki Y, Harada M et al (2013) Brain and liver iron accumulation in aceruloplasminemia. Neurology 81:2145–2146. https://doi.org/10.1212/WNL.0000000000003227
Hayashida M, Hashioka S, Miki H et al (2016) Aceruloplasminemia with psychomotor excitement and neurological sign was improved by minocycline (case report). Medicine (Baltimore) 95:e3594. https://doi.org/10.1097/MD.0000000000035994
Hida A, Kowa H, Iwata A et al (2010) Aceruloplasminemia in a Japanese woman with a novel mutation of CP gene: clinical presentations and analysis of genetic and molecular pathogenesis. J Neurol Sci 298:136–139. https://doi.org/10.1016/j.jns.2010.08.019
Jiang B, Zhou J et al (2019) Mutation screening in chinese patients with familial Alzheimer’s disease by whole-exome sequencing. Neurobiol Aging 76:215.e15–215.e21. https://doi.org/10.1016/j.neurobiolaging.2018.11.024
Kassubek R, Uttner I, Schönfeldt-Lecuona C et al (2017) Extending the aceruloplasminemia phenotype: NBIA on imaging and acanthocytosis, yet only minor neurological findings. J Neurol Sci 376:151–152. https://doi.org/10.1016/j.jneuroscience.2017.03.019
Kerkhof M, Honkoop P (2014) Never forget aceruloplasminemia in orders and brain iron overload in a new subtype of aceruloplasminemia. Parkinsonism Relat Disord 21:658–660. https://doi.org/10.1016/j.parkreldis.2015.03.014
Kim HK, Ki CS, Kim YJ, Lee MS (2017) Radiological findings of two sisters with Aceruloplasminemia presenting with chorea. Clin Neuroradiol 27:385–388. https://doi.org/10.1007/s00062-017-0573-0
Kono S (2013) Aceruloplasminemia. Int Rev Neurobiol 110:125–151. https://doi.org/10.1016/B978-0-12-410502-7.00007-7
Lindner U, Schuppan D, Schleithoff L et al (2015) Aceruloplasminemia: a family with a novel mutation and long-term therapy with deferasirox. Horm Metab Res 47:303–308. https://doi.org/10.1055/s-0034-1383650
Marchi G, Busti F, Lira Zidanes A et al (2019) Aceruloplasminemia: a severe neurodegenerative disorder deserving an early diagnosis. Front Neurosci 13:325. https://doi.org/10.3389/fnins.2019.00325
Matsushima A, Yoshida T, Yoshida K et al (2014) Superficial siderosis associated with aceruloplasminemia. Case report J Neurol Sci 339:231–234. https://doi.org/10.1016/j.jns.2014.02.014
Melgari J-M, Marano M, Quattrocchi CC et al (2015) Movement disorders and brain iron overload in a new subtype of aceruloplasminemia. Parkinsonism Relat Disord 21:658–660. https://doi.org/10.1016/j.parkreldis.2015.03.014
Meral Gunes A, Sezgin Evin M, Baytan B et al (2014) Aceruloplasminemia in a Turkish adolescent with a novel mutation of ceruloplasmin gene: the first diagnosed case from Turkey. J Pediatr Hematol Oncol 36:e423–e425. https://doi.org/10.1097/MPH.0000000000000553
Miyajima H, Hosoi Y (1993) Aceruloplasminemia. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle
Miyajima H, Nishimura Y, Mizoguchi K et al (1987) Familial apocepheolysmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37:761–767. https://doi.org/10.1212/WNL.0000000000005761
Miyake Z, Nakamagoe K, Yoshida K et al (2020) Deferasirox might be effective for microcytic Anemia and neurological symptoms associated with Aceruloplasminemia: a case report and review of the literature. Intern Med 59:1755–1761. https://doi.org/10.2169/internalmedicine.4178-19
Ogimoto M, Anzai K, Takenoshita H et al (2011) Criteria for early identification of aceruloplasminemia. Intern Med 50:1415–1418. https://doi.org/10.2169/internalmedicine.50.5108

Ondrejkovičová M, Dražilová S, Drakulová M et al (2020) New mutation of the ceruloplasmin gene in the case of a neurologically asymptomatic patient with microcytic anaemia, obesity and supposed Wilson’s disease. BMC Gastroenterol 20:95. https://doi.org/10.1186/s12876-020-01237-8

Pelucchi S, Pelloni I, Arosio C et al (2016) Does aceruloplasminemia modulate iron phenotype in thalassaemia intermedia? Blood Cells Mol Dis 57:112–114. https://doi.org/10.1016/j.bcmd.2015.12.011

Pelucchi S, Mariani R, Ruvasi G et al (2018) Phenotypic heterogeneity in seven Italian cases of aceruloplasminemia. Parkinsonism Relat Disord 51:36–42. https://doi.org/10.1016/j.parkreldis.2018.02.036

Poli L, Alberici A, Buzzi P et al (2017) Is aceruloplasminemia treatable? Combining iron chelation and fresh-frozen plasma treatment. Neurol Sci 38:357–360. https://doi.org/10.1007/s10072-016-2756-x

Riboldi GM, Anstett K, Jain R et al (2018) Aceruloplasminemia and putaminal cavitation. Parkinsonism Relat Disord 51:121–123. https://doi.org/10.1016/j.parkreldis.2018.03.003

Ronquillo CC, Sauer L, Morgan D et al (2019) Absence of macular degeneration in a patient with aceruloplasminemia. Retina (Philadelphia, Pa) 39:1824–1828. https://doi.org/10.1097/IAE.0000000000002628

Rusticeanu M, Zimmer V, Schleithoff L et al (2014) Novel ceruloplasmin mutation causing aceruloplasminemia with hepatic iron overload and diabetes without neurological symptoms. Clin Genet 85:300–301. https://doi.org/10.1111/cge.12145

Stelten BML, van Ommen W, Keizer K (2019) Neurodegeneration with brain Iron accumulation: a novel mutation in the Ceruloplasmin gene. JAMA Neurol 76:229–230. https://doi.org/10.1001/jamaneurol.2018.3230

Suzuki Y, Yoshida K, Aburakawa Y et al (2013) Effectiveness of oral iron chelator treatment with deferasirox in an aceruloplasminemia patient with a novel ceruloplasmin gene mutation. Intern Med 52:1527–1530. https://doi.org/10.2169/internalmedicine.52.0102

Tai M, Matsushashi N, Ichii O et al (2014) Case of presymptomatic aceruloplasminemia treated with deferasirox. Hepatol Res 44:1253–1258. https://doi.org/10.1111/hepr.12292

Tridimas A, Gillett GT, Pollard S et al (2021) Three-year follow up of using combination therapy with fresh-frozen plasma and iron chelation in a patient with aceruloplasminemia. JIMD Rep 57:23–28. https://doi.org/10.1002/jmrd.212176

Vila Cuenca M, Marchi G et al (2020) Genetic and clinical heterogeneity in thirteen new cases with aceruloplasminemia. atypical anemia as a clue for an early diagnosis. Int J Mol Sci 21(7). https://doi.org/10.3390/ijms21

Vroegindeweij LHP, van der Beek EH, Boon AJW et al (2015) Aceruloplasminemia presents as type 1 diabetes in non-obese adults: a detailed case series. Diabet Med 32:993–1000. https://doi.org/10.1111/diabetes.12712

Wang B, Wang X-P (2019) Does Ceruloplasmin defend against neurodegenerative diseases? Curr Neuropharmacol 17:539–549. https://doi.org/10.2174/1570159X16666180508113025

Watanabe M, Asai C, Ishikawa K et al (2010) Central diabetes insipidus and hypothalamic hypothyroidism associated with aceruloplasminemia. Intern Med 49:1581–1585. https://doi.org/10.2169/internalmedicine.49.3508

Watanabe M, Ohyama K, Suzuki M et al (2018) Aceruloplasminemia with abnormal compound heterozygous mutations developed neurological dysfunction during phlebotomy therapy. Intern Med 57:2713–2718. https://doi.org/10.2169/internalmedicine.9855-17

Yamamura A, Kikukawa Y, Tokunaga K et al (2018) Pancytopenia and Myelodysplastic changes in Aceruloplasminemia: a case with a novel pathogenic variant in the Ceruloplasmin gene. Intern Med 57:1905–1910. https://doi.org/10.2169/internalmedicine.9496-17

Zhou L, Chen Y, Li Y et al (2020) Intracranial iron distribution and quantification in aceruloplasminemia: a case study. Magn Reson Imaging 70:29–35. https://doi.org/10.1016/j.mri.2020.02.016

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.