INTRODUCTION

Concrete is an artificial composite building material obtained by curving the mixture of the binders, water, aggregates (and in many cases various additives) and has been the most commonly used building material for over a century. Since the annual production of the concrete exceeds ten billion tonnes, the use of the alternative materials is of increasing importance. One possibility of using alternative components would be to use a lightweight aggregate instead of a part or the whole amount of a conventional aggregate as a filler in a concrete mixture. Although considered as heterogeneous, for everyday design purposes, concrete is considered to be a homogeneous material. The treatment of concrete as a homogeneous continuum is justified when the concrete is in an elastic phase of operation, which in the most situations is the case, since structures are loaded by the ultimate loads in extremely rare cases [8]. Loaded by the ultimate load reinforce...
mogu da dožive lom na nekoliko različitih načina: pucanje (psranje), drobljenje i otpadanje betona, tečenje i izvlačenje zategnutih šipki armature, te tečenje i izvljanje pritisnutih šipki armature. Radi što boljeg opisivanja i sagledavanja ponašanja amiranobetonskih konstrukcija pri lomu, neophodne su napredne numeričke simulacije zasnovane na mehanici kontinuuma. Ovoj zahtevu u suprotnosti stoje računarske mogućnosti i vreme koje na raspolaganju imaju inženjeri, te je upotreba pojednostavljenih modela, kako konstrukcije, tako i ponašanja materijala, uobičajena u praksi. Veliki broj istraživanja urađen je u prethodnih nekoliko godina, kako u pogledu razvitka novih, sve-obuhvatnijih numeričkih modela materijala betona, tako i u pogledu eksperimentalnog ispitivanja lakoagregatnog betona. Numeričko modeliranje pojave plastičnosti betona, te razvitka oštećenja moguće je sprovedeti unapredom CDP (concrete damage plasticity) modela materijala. Odgovarajući model materijala uvodi pretpostavku da su dva glavna mehanizma loma betona pojava prslina usled zatezanja i drobljenje usled pritiska. Ovaj model materijala predstavljen je u [4], a tokom prethodne decenije doživeo je brojna unapređenja u pogledu određivanja varijabli neophodnih za njegovo definisanje [2, 5, 9]. Neka od značajnijih eksperimentalnih ispitivanja lakoagregatnog betona data su u [7, 8, 10].

U ovom radu predstavljen je koncept CDP modela materijala i urađena je numerička simulacija ponašanja uzoraka od lakoagregatnog betona u slučajevima laboratorijskog ispitivanja. Razmatrane su dve konfiguracije ispitivanja: određivanje čvrstoće betona pri pritisku na beotnskoj kocki strani 150 mm i određivanje statickog modula elastičnosti betona na betonskom cilindru prečnika 150 mm i visine 300 mm. S ciljem obuhvata realnog stanja i ponašanja materijala, u ovom radu je korišćen CDP model materijala betona.

2 MODEL PONAŠANJA BETONA

Ponašanje materijala pri lomu usled napona pritiska i napona zatezanja može se opisati na različite načine. U slučaju zatezanja, dolazi do pojave prslina, što se na dijagramu napon-deformacija ogleda u naglog pad pritiska. U slabi materijal, a potom i radu pritiska rasterećujuće grane dijagrama. U slučaju napona pritiska, dolazi do povećanja zapreminе materijala, drobljenja i klijanja unutar materijala. U kombinovanim stanjima napona, lom obično zavisi od odnosa između glavnih napona [2].

Nelinearno ponašanje betona je u ovom radu opisano korišćenjem CDP modela, implementiranog u softver Abaqus®. Ovaj model nelinearnog ponašanja materijala prvenstveno je namenjen modeliranju problema u kojima je moguća pojava plastičnosti betona, međutim, njime je moguće modelirati i druge kvazi-krte materijale. Glavna pretpostavka jeste da su dva glavna mehanizma loma betona pojava prslina usled zatezanja i drobljenje usled pritiska [1]. Pretpostavka ponašanja materijala usled jednoosnog napona pritiska i zatezanja data je na slici 1. concrete structures can suffer failure in several different ways: cracking, crushing and scraping the concrete, yielding and pulling the tensioned reinforcement bars, and yielding and buckling the compressed reinforcement bars. Advanced numerical simulations based on continuum mechanics are required to better describe and understand the behaviour of the reinforced concrete structures during the failure. This requirement fails to agree with the computational capabilities and the time available to the engineers. Therefore, the use of the simplified models, both of the structure and of the material behaviour, is common in practice.

A great number of research activities has been done in the past few years, both with regard to the development of new, more comprehensive numerical concrete material models and the experimental testing of lightweight concrete. The numerical modelling of the concrete plasticity and the damage development can be performed using the CDP (concrete damage plasticity) material model. This material model introduces the assumption that the two main mechanisms of the concrete failure are cracking due to the tension and crushing due to the compression. This material model has been presented in [4]. It has undergone numerous improvements over the past decade while considering determination of the variables necessary to define it [2, 5, 9]. Some of the more significant experimental tests on lightweight concrete are given in [7, 8, 10].

In this paper, the concept of CDP material model is presented and numerical simulation of the behaviour of the lightweight concrete samples in the laboratory testing cases is done. Two test configurations were considered: the determination of the concrete compressive strength on a 150mm concrete cube and the determination of the concrete static modulus of elasticity on a concrete cylinder 150 mm in diameter and 300 mm in height. In order to capture the realistic behaviour of the material, the CDP model of the concrete was used in this paper.
3 EXPERIMENTAL TESTING

In this paper, the experimental data of the laboratory tests presented in [7], [8] and [10] were used. The subject of this research was structural lightweight concrete, with the emphasis on the analysis of the most important physical and mechanical properties of fresh and hardened concrete. Five different concrete mixtures were presented in that study, while the results obtained from a single mixture, labelled as the LLK-1, were used in this paper.

Specimens for which the experimental and numerical results were compared in this paper were made from lightweight aggregate, which is based on the expanded clay “Leca-Laterlite” (Italy). The results of the concrete compressive strength tests as well as the determination of the modulus of elasticity of concrete were compared [7].

Table 1 lists the amounts of component materials used for the specimen mixtures for the experimental testing, as well as the density of the concrete for the LLK-1 concrete mixture.

Table 1. Properties of the lightweight concrete mixture [7]

Oznaka Label	Cement [kg/m^3]	Voda / Water [kg/m^3]	Agregat / Aggregate [kg/m^3]	Zapreminska masa betona [kg/m^3]
LLK-1	450	180	940	333
		15.3	Leca-laterlite 4/15	1902

Due to uniaxial tension, the stress-strain relation is linear-elastic until the tensile strength of σ_0 is reached. Reaching this stress value is treated as the beginning of the formation of micro cracks in concrete, which is represented by a decrease in stress, or by an increase in strains.

Due to uniaxial compression, the stress-strain relation is linear-elastic until the value of the yield stress σ_0 is reached. During the plastification, the response is characterized by the stress strengthening, which is then followed by softening the strain after reaching the concrete compressive strength σ_0 [1].

Usled jednoosnog zatezanja, veza između napona i dilatacije je linearno-elastična sve dok se ne postigne vrednost čvrstoće betona pri zatezanju σ_0. Dostizanje ove vrednosti napona tretira se kao početak formiranja mikropropilina u betonu, koje se prikazuje padom napona, odnosno povećanjem dilatacije.

Usled jednoosnog pritiska, veza između napona i dilatacije je linearno-elastična sve dok se ne postigne vrednost napona tečenja σ_0. Tokom plastifikacije, odgovor se karakteriše ojačanjem napona, koje je potom praćeno omešanjem dilatacije nakon dostizanja čvrstoće betona pri pritisku σ_{cu} [1].

3 EKSPERIMENTALNO ISPITIVANJE

U ovom radu su korišćeni eksperimentalni podaci laboratorijskih ispitivanja predstavljenih u [7], [8] i [10]. Predmet ovog istraživanja su konstrukcijski lakoagregatni betoni, pri čemu je akcenat stavljen na analizu najznačajnijih fizičko-mehaničkih svojstava svežeg i očvrslog betona. U tom istraživanju je predstavljeno pet različitih betonskih mešavin, pri čemu su u ovom radu korišćeni rezultati dobijeni od jedne mešavinе, označene sa LLK-1.

Uzorci za koje je u ovom radu izvršeno poređenje eksperimentalnih i numeričkih rezultata spravljeni su od lakoagregata na bazi ekspandirane gline “Leca-Laterlite” (Italija). Upoređeni su rezultati ispitivanja čvrstoće betona na pritisk, kao i određivanja modula elastičnosti betona [7].

U tabeli 1 date su količine komponentnih materijala korišćenih za spravljanje uzoraka za eksperimentalno ispitivanje i zapreminska masa betona za betonsku mešavinu LLK-1.
3.1 Konfiguracija 1: Određivanje čvrstoće betona pri pritisku

Čvrstoća betona pri pritisku određena je prema standardu SRPS ISO 4012 na uzorcima oblika kocke ivice 150 mm, starosti 28 dana, kao srednja vrednost čvrstoć dobijenih na tri uzorka. Brzina nanošenja opterećenja iznosila je 0.6±0.2 MPa/s. Ispitivanje čvrstoće pri pritisku prikazano je na slici 2. Vrednost čvrstoće pri pritisku lakoagregatnog betona starosti 28 dana određena eksperimentalnim putem iznosi \(f'_{cu,28} = 50.6 \) MPa [8].

3.2 Konfiguracija 2: Određivanje modula elastičnosti betona

Određivanje statičkog modula elastičnosti urađeno je prema standardu SRPS ISO 6784 na uzorcima oblika cilindra prečnika 150 mm i visine 300 mm, starosti između 28 i 35 dana. Ispitivanje je sprovedeno na tri cilindra, a reprezentativna vrednost modula elastičnosti je određena kao srednja vrednost modula elastičnosti dobijenih merenjem napona i deformacija na svakom uzorku. Brzina nanošenja opterećenja iznosila je 0.6±0.2 MPa/s. Deformacije su registроване pomoću ekstenzometra tačnosti 0.001 mm s mernom bazom 200 mm. Gornja granica opterećenja \((\sigma_a = 1/3 \cdot f_{cu,28}) \) definisana je na osnovu prethodno određene čvrstoće betona pri pritisku, dok je donja granica opterećenja definisana na način da mora biti ostvarena deformacija od 0.01 mm. Ispitivanje uzoraka je izvršeno u dva ciklusa (serije opterećenja) [7].

Nakon izvršenih ciklusa opterećenja i rasterećenja, modul elastičnosti je određen na osnovu izraza:

\[
E = \frac{2 \cdot \Delta \sigma}{\Delta \varepsilon_{long}}
\]

3.1 Configuration 1: Determination of the concrete compressive strength

The compressive strength of the concrete was determined according to the standard SRPS ISO 4012 on cube shaped specimens with the dimension of 150mm, 28 days old, as the mean value of the strengths obtained on three different specimens. The loading rate was 0.6±0.2 MPa/s. The compressive strength test is shown in Fig. 2. The compressive strength of the 28-days-old lightweight concrete, determined experimentally, is \(f'_{cu,28} = 50.6 \) MPa [8].

3.2 Configuration 2: Determination of the concrete modulus of elasticity

The determination of the static modulus of elasticity was done according to the standard SRPS ISO 6784, on specimens of cylinder shape with the dimensions of 150mm in diameter and 300mm in height, between 28 and 35 days old. The test was conducted on three different cylinders, and the representative value of the modulus of elasticity was determined as the mean value of the modulus of elasticity obtained by measuring the stresses and strains on each specimen. The loading rate was 0.6±0.2 MPa/s. Deformations were recorded using an extensometer of the accuracy of 0.001mm with a measuring base of 200mm. The upper load limit \((\sigma_a=1/3 \cdot f_{cu,28}) \) was defined based on the pre-determined concrete compressive strength, while the lower load limit is defined in the way that the deformation of 0.01mm must be achieved. Specimen testing was performed in two cycles (load series) [7].

After the load-unload cycles have been completed, the modulus of elasticity is determined using the expression:

\[
E = \frac{2 \cdot \Delta \sigma}{\Delta \varepsilon_{long}}
\]
where $\Delta \sigma = \sigma_a - \sigma_b$ is the difference in the stress readings due to the maximal force on the press (σ_a - stress due to maximal force P_a on the press, σ_b - stress due to force P_b that causes zero strain), Δl_{long} is registered strain corresponding to the stress $\Delta \sigma$, determined by the following expression:

$$\Delta l_{long} = \frac{[\Delta l_{long,a} - \Delta l_{long,b}]}{200}$$

where $\Delta l_{long,a} - \Delta l_{long,b}$ is expressed in mm as the difference in elongation due to the stresses σ_a and σ_b, and 200 mm is the measuring base of the deformeter.

Experimental testing of the modulus of elasticity is shown in Figure 3. The value of the modulus of elasticity of lightweight concrete determined experimentally is $E = 23.21$ GPa [7].

4 NUMERICAL MODEL

Numerical analyses were performed in ABAQUS® [1] software, based on the finite element method. Numerical analyses were performed on two different model configurations: on the cylinder model with dimensions $d/L = 150/300$ mm and on the 150 mm cube model. 3D finite element hexahedrons, average size of 10 mm, were used for the modelling.

The FEM model of the cube was used in order to compare with the experimental results of the concrete compressive strength tests. The model consists of the 150 mm cube and two 170x170x40 mm steel plates. The FEM cylinder model was used for comparison with the experimental results of the determination of the concrete modulus of elasticity. The model consists of the concrete
betonskog cilindra dimenzija \(d/L = 150/300 \text{ mm}\) i, kao u prethodnom slučaju, dve čelične ploče dimenzija \(d/L = 160/40 \text{ mm}\).

Čelične ploče, koje se nalaze sa gornje i donje strane betonskih uzoraka korišćene su u modelima radi što vernijeg prikaza realnog stanja, gde se kocka u hidrauličkoj presi oslanja s donje strane na čeličnu ploču, dok se opterećenje aplicira sa gornje strane, takođe preko čelične ploče. Ovim je omogućeno realnije modeliranje kontaktnih uslova između uzoraka i podloge. Debijina čeličnih ploča od 40 mm obezbeđuje dovoljnu krutost da njihove deformacije budu višestruko manje od deformacije betonskog uzorka.

U oba slučaja je model oslonjen površinski preko donje površine donje čelične ploče, na način da su sprečena pomeranja u sva tri pravca. Trodimenzionalni MKE modeli betonske kocke i cilindra prikazani su na slici 4.

4.1 Model ponašanja materijala

U modelu su korišćena dva tipa modela materijala: linearno-elasnički model i elasto-plastični model (CDP model). Linearno-elasnički model materijala korišćen je za potrebe modeliranja čeličnih ploča u obe konfiguracije. Ovakva pretpostavka ponašanja materijala je opravdana iz više razloga. Prvo, vrednost modula elastičnosti čelika (210 GPa) više je od devet puta veća od vrednosti modula elastičnosti razmatranog lakoagregatnog betona (23.21 GPa). Drugo, vrednosti napona dostignute u modelu višestruko su manje od granice proporcionalnosti čelika, stoga, čelik ni u jednom trenutku neće ući u plastičnu fazu rada.

CDP model materijala je korišćen za potrebe modeliranja betonskog cilindra i kocke. Ovaj model uvodi pretpostavku o nelinearnom ponašanju materijala. Veza napon-dilatacija lakoagregatnog betona pri pritisku je definisana prema [6] izrazom:

Slika 4. 3D prikaz modela: a) betonska kocka i b) betonski cilindar

Figure 4. 3D view of the model: a) concrete cube and b) concrete cylinder

4.1 Material model

Two types of material models were used in the model: the linear-elastic model and the elasto-plastic model (CDP model). A linear-elastic material model was used for modelling steel plates in both configurations. This assumption of material behaviour is justified for several reasons. Firstly, the value of the modulus of elasticity of steel (210 GPa) is more than nine times higher than the value of modulus of elasticity of lightweight aggregate concrete (23.21 GPa). Secondly, the stress values reached in the model are several times lesser than the steel proportionality limit. Therefore, the steel will not enter the plastic phase of the operation at any time.

The CDP material model was used for the purpose of modelling the concrete cylinder and cube. This model introduces the assumption of nonlinear material behaviour. The stress-strain relationship of lightweight
gde su E_0 inicijalni modul elastičnosti, E_s sekantni modul elastičnosti koji odgovara maksimalnom naponu i odgovarajućoj dilataciji, ε_{cu} dilatacija koja odgovara maksimalnom naponu, a α parametar koji kontroliše oblik krive, čija je vrednost usvojena prema [6] i iznosi 1.5.

Ovde je pretpostavljeno da se napon-dilatacija postaja nelinearna nakon dostizanja dilatacije od 5.5×10^{-4}, što odgovara naponu od 12.65 MPa.

Veza napon-dilatacija betona pri zatezanju usvojena je kao linearna do dostizanja vrednosti čvrstoće betona na zatezanje, nakon čega nastupa lom. Čvrstoća lakoagregatnog betona na zatezanje definisana je prema [3] izrazom:

$$f'_c = 0.81 \cdot \left(\frac{f'_c}{\rho_0} \right)^{1.5} \cdot f'_c^{0.35}$$

gde su ρ_0 zapreminska masa lakoagregatnog betona, ρ_0 referentna vrednost zapreminske mase koja iznosi 2200 kg/m3, f'_c čvrstoća betona pri pritisku određena na cilindru d/L = 150/300 mm.

Nakon što se u izraz (4) uvrste vrednosti zapreminske mase analiziranog betona (1902 kg/m3), referentna vrednost zapreminske mase (2200 kg/m3) i čvrstoća betona pri pritisku (39.7 MPa); vrednost dobijena množenjem čvrstoće betona pri pritisku određena na kocki dimenzija 150 mm i koeficijenta 0.79 koji predstavlja odnos čvrstoće pri pritisku cilindra (d/L = 150/300mm) i kocke (a = 150 mm)), dobija se vrednost čvrstoće betona pri zatezanju od 2.72 MPa.

4.2 Konačni elementi

Za modeliranje problema u Abaqus® dostupni su 1D, 2D, 3D i drugi, specijalni, konačni elementi. U ovom radu korišćeni su trodimenzionalni (zapreminski; solid) KE. U zavisnosti od tipa i reda 3D elementa, softver nudi mogućnosti izbor dilatacije od tetraedarnog elementa prvog reda sa 4 čvora do heksaedarne elemente druge reda sa 27 čvorova. Čvorovi trodimenzionalnih elementa imaju 3 stepene slobode, koja se odnose na tri moguće translače u prostoru.

U ovom radu su korišćeni C3D8R konačni elementi (3D heksaedami KE prvog reda sa 8 čvorova). Ovaj tip elementa koristi redukovanu integraciju za formiranje matrice krutosti, pri čemu je broj integracionih tačaka 1 [1].

4.3 Modeliranje kontakta

Stav da usled jednoosnog pritiska uzorak ne trpi nikakva ograničenja u smislu poprečnog deformisanja ne važi u zoni oslanjanja uzorka, već samo u zoni koja se može aproksimirati srednjom trećinom visine uzorka. U zonama oslanjanja, usled trenja koje se javlja na koncretnoj osnovi duže trajanja pritiska, uslove koje bi se morali usvojiti u modelu, su karakteristične za slučajeve naknadnog smanjenja visine uzorka.

Concrete due to the compression is defined according to [6]:

$$\sigma = \frac{E_0 \varepsilon}{1 + \left(\frac{E_0}{E_s} - 2 \right) \frac{\varepsilon}{\varepsilon_{cu}} + \left(\frac{\varepsilon}{\varepsilon_{cu}} \right)^{\alpha}}$$

where E_0 is the initial modulus of elasticity, E_s is the secant modulus of elasticity corresponding to the maximum stress and the corresponding strain, ε_{cu} is the strain corresponding to the maximum stress, and α is the parameter controlling the shape of the curve, whose value is adopted according to [6] and equals to 1.5.

Here, it is assumed that the stress-strain relationship becomes non-linear after reaching a strain of 5.5×10^{-4}, which corresponds to the stress of 12.65 MPa.

The tension stress-strain relationship of the concrete is adopted as linear since the tensile strength of the concrete is reached, followed by failure. Tensile strength of lightweight concrete is defined according to [3].

4.2 Finite elements

1D, 2D, 3D and other special, finite elements are available for modelling in Abaqus®. Three-dimensional (solid) FE are used in this paper. Depending on the type and order of the 3D element, the software offers choices from a 4-node tetrahedral element to a 27-node hexahedral element. Nodes of the three-dimensional elements have 3 degrees of freedom, which refer to three possible translations in space.

In this paper, C3D8R finite elements (3D first order hexahedral KE with 8 nodes) were used. This type of element uses reduced integration to form a stiffness matrix, with the number of integration points being 1 [1].

4.3 Contact modelling

The premise that due to the uniaxial compression the specimen fails to suffer any restrictions since transverse deformation does not apply in the area of support of the specimen, but only in the zone that can be approximated by the middle third of the height of the specimen. In the support zones, due to the friction occurring at the
takša uzorak-ploča, dolazi do određenog ograničavanja bočnih deformacija uzoraka. Stoga, naponsko stanje će u tim zonama biti znatno složenije u odnosu na uslove aksijalnog pritiska.

Radi zadovoljenja ovog stava, kontakt između uzoraka (kocke; cilindra) i čeličnih ploča modeliran je koristeći tangencijalne i normalne komponente. Tangencijalnom komponenti (trenje na spoju uzorak-ploča) dodeljena je vrednost koeficijenta trenja od 0.57, što predstavlja uobičajenu vrednost koeficijenta trenja između betona i čelika. Normalna komponenta je modelirana na način da se, kada su površine u kontaktu, može preneti bilo koji kontaktni pritisak između njih, pri čemu dolazi do razdvajanja kontaktnih površina ako kontaktni pritisak dostigne nultu vrednost. Drugim rečima, zatezanje na kontaktnoj površini nije dozvoljeno.

4.4 Definisajte opterećenje

Opterećenje je u oba slučaja (ispitivanje na kocki i ispitivanje na cilindru) definisano kao jednakopodeljeno površinsko i deluje na gornjoj površini gornje čelične ploče. Vremenske funkcije opterećenja za obe konfiguracije ispitivanja date su na slici 5. Nanošenjem opterećenja u intervalima od 100 s i 27 s aproksimirano je realno stanje u kojem se opterećenje koje izaziva napone u preslicima kocke i cilindra u iznosu od 50.3 MPa i 13.5 MPa nanosi brzinom od 0.6±0.2 MPa/s.

5 ANALIZA REZULTATA NUMERIČKOG MODELA

Sprovedene su nelinearne statičke analize za dve konfiguracije numeričkih modela. Za iterativno rešavanje sistema jednačina koristi se Njutnova metoda, pri čemu je maksimalan broj inkrementa bio 100. Rezultati nelinearne statičke analize dati su samo za deo numeričkog modela koji obuhvata betonske uzorke, budući da su čelične ploče u numeričkom modelu prisutne radi što vernijeg prikaza kontaktnih uslova u zoni kontakta sa uzorkom. Zbog svoje debljine i činjenice da imaju višestruko veći modul elastičnosti, kao i grancu tećenja, čelične ploče u svakom trenutku ostaju u elastičnoj fazi rada, te u ovom radu neće biti predmet razmatranja.

specimen-plate contacts, there is some limitation of the lateral deformations of the specimens. Therefore, the stress state in these zones will be much more complex than the axial compression conditions.

The contact between specimens (cubes; cylinders) and steel plates was modelled using tangential and normal components to meet this argument. Coefficient of friction of 0.57 was assigned to the tangential component (friction at the specimen-steel plate surface), which is the common value of the friction coefficient between the concrete and steel. The normal component is modelled in the way that, when the surfaces are in contact, any contact compression between them can be transferred, whereby the contact surfaces are separated if the contact compression reaches zero. In other words, tension on the contact surface in normal direction is not allowed.

4.4 Load definition

The load is defined in both cases (cube test and cylinder test) as uniformly distributed surface load and acts on the upper surface of the upper steel plate. The time load functions for both test configurations are given in Figure 5. Applying a load at 100 and 27 s intervals approximates the real state in which the load that causes stresses in the cube and cylinder sections of 50.3 MPa and 13.5 MPa, respectively, is applied at the rate of 0.6 ± 0.2 MPa/s.

5 ANALYSIS OF THE RESULTS OF THE NUMERICAL MODEL

Nonlinear static analyses were performed for the two configurations of numerical models. Newton’s method was used to iteratively solve the system of equations, with the maximum number of increments being 100.

The results of the nonlinear static analysis are given only for the part of the numerical model that includes concrete specimens, since the steel plates in the numerical model are present for the most accurate representation of the contact conditions in the contact zone with the specimen. Due to their thickness and the fact that their modulus of elasticity is several times larger, as well as the yield strength, steel plates remain in the elastic phase during the analysis, and will not be considered in this paper.
5.1 Konfiguracija 1

Rezultati modela kocke prikazuju pomeranja, napone i odgovarajuće dilatacije uzorka, kao i napone smicanja na kontaktu između uzorka i čelične ploče.

Na slici 6 prikazan je deformisan oblik uzorka u pogledu sa strane s vrednostima vertikalnog pomeranja, dok je na slici 7 prikazano bočno pomeranje uzorka u X pravcu.

Slika 6. Vertikalno pomeranje – deformisana i nedeformisana kontura [mm]

Slika 7. Bočno pomeranje u X pravcu [mm]

Uočljivo je da se uzorak deformiše na način koji odgovara realnom stanju: budući da usled jednoosnog pritiska uzorak ne trpi nikakva ograničenja u smislu poprečnog deformisanja, on se slobodno deformiše u poprečnom pravcu u zoni srednje trećine uzorka. Približavanjem osloncima poprečna deformacija se smanjuje usled trenja koje se javlja na kontaktima uzorak-ploča. Maksimalno vertikalno pomeranje uzorka iznosi: \(U_2 = 0.8124 \text{ mm} - 0.0137 \text{ mm} = 0.7987 \text{ mm} \).

Na slici 8 prikazani su naponi i odgovarajuće dilatacije u podužnom pravcu kocke (po visini).

Slike 9 i 10 daju prikaz napona i odgovarajućih dilatacija u preostala dva ortogonalna pravca u kocki.

5.1 Configuration 1

The results of the cube model show the displacements, stresses and corresponding strains of the specimen, as well as the shear stresses at the contact between the specimen and the steel plate. Figure 6 shows the deformed shape of the specimen in the side view with the values of the vertical displacement, while Figure 7 shows the lateral displacement of the specimen in the X direction.

It is noticeable that the specimen deforms in the way that corresponds to the real state: since, due to uniaxial compression, the specimen does not suffer any restrictions in terms of transverse deformation. It freely deforms in the transverse direction in the zone of the middle third of the specimen. When approaching the supports, the transverse deformation is reduced due to the friction that occurs on the specimen-plate contacts. The maximum vertical displacement of the specimen is: \(U_2 = 0.8124 \text{ mm} - 0.0137 \text{ mm} = 0.7987 \text{ mm} \).

Figure 8 shows the stresses and corresponding strains in the longitudinal direction of the cube (in height).
poprečnom preseku (po visini) kocke. Ovde se uočava jasno izražena granica između zategnutog i pritisnutog i dela betonske kocke, koji zauzima prostorni X-oblik. Ovakav oblik imaju posledica je sila trenja na kontaktu sa čeličnim pločama, koje deluju tako da „utežu“ beton. Utegnuti deo betona je oblika kline u donjem i gornjem delu kocke, koji deluje na način da istiskuje okolni zategnuti beton nakon dostizanja čvrstoće betona na zatezanja i formiranja prvih prslina.

Veće vrednosti napona u unutrašnjosti kocke posledica su „utegnutosti“ betona, odnosno činjenice da beton bliži spoljašnjoj sprečava bočne deformacije betona u unutrašnjosti kocke. Slika dilatacija prati sliku napona. Maksimalne dilatacije na spoljašnjoj strani imaju vrednosti 3.150×10^{-3} i 5.547×10^{-3} a u unutrašnjosti 3.494×10^{-3} i 7.160×10^{-3}.

Slika 9. Polovina uzorka (vertikalni presek): a) napon S11 [MPa] i b) dilatacija E11

Figure 9. Half of the specimen (vertical section): a) stress S11 [MPa] and b) strain E11

Slika 10. Polovina uzorka (vertikalni presek): a) napon S33 [MPa] i b) dilatacija E33

Figure 10. Half of the specimen (vertical section): a) stress S33 [MPa] and b) strain E33

Na slici 11 prikazani su naponi u ravnim kontaktima kocke i čelične ploče s gornje strane kocke i čelične ploče. Ovde se uočava jasno izražena granica između zategnutog i pritisnutog dela betonske kocke, koji izgleda kao X-oblik. Ovakav oblik imaju posledica je sila trenja na kontaktu sa čeličnim pločama, koje deluju tako da „utežu“ beton. Utegnuti deo betona je oblik kline u donjem i gornjem delu kocke, koji deluje na način da istiskuje okolni zategnuti beton nakon dostizanja čvrstoće betona na zatezanja i formiranja prvih prslina.

Veće vrednosti napona u unutrašnjosti kocke posledica su „utegnutosti“ betona, odnosno činjenice da beton bliži spoljašnjoj stranu sprečava bočne deformacije betona u unutrašnjosti kocke.

Slika dilatacija prati sliku napona. Maksimalne dilatacije na spoljašnjoj strani imaju vrednosti 3.150×10^{-3} i 5.547×10^{-3} a u unutrašnjosti 3.494×10^{-3} i 7.160×10^{-3}.

Slika 11. Na slici 11 prikazani su naponi u ravnim kontaktima kocke i čelične ploče s gornje strane kocke i čelične ploče. Ovde se uočava jasno izražena granica između zategnutog i pritisnutog dela betonske kocke, koji izgleda kao X-oblik. Ovakav oblik imaju posledica je sila trenja na kontaktu sa čeličnim pločama, koje deluju tako da „utežu“ beton. Utegnuti deo betona je oblik kline u donjem i gornjem delu kocke, koji deluje na način da istiskuje okolni zategnuti beton nakon dostizanja čvrstoće betona na zatezanja i formiranja prvih prslina.

Veće vrednosti napona u unutrašnjosti kocke posledica su „utegnutosti“ betona, odnosno činjenice da beton bliži spoljašnjoj stranu sprečava bočne deformacije betona u unutrašnjosti kocke.

Slika dilatacija prati sliku napona. Maksimalne dilatacije na spoljašnjoj strani imaju vrednosti 3.150×10^{-3} i 5.547×10^{-3} a u unutrašnjosti 3.494×10^{-3} i 7.160×10^{-3}.
5.2 Konfiguracija 2

Rezultati modela cilindra prikazuju pomeranja uzorka u vertikalnom i bočnom pravcu, napone u pravcu poduž ose cilindra i odgovarajuće dilatacije, dilatacije u poprečnim pravcima kao i napone smicanja na kontaktu između uzorka i čelične ploče.

Na slici 12 prikazan je deformisan oblik uzorka u pogledu sa strane s vrednostima vertikalnog pomeranja, dok je na slici 13 prikazano bočno pomeranje uzorka u X pravcu.

5.2 Configuration 2

The results of the cylinder model show the displacements of the specimen in the vertical and lateral directions, the stresses in the longitudinal direction of the cylinder axis and the corresponding strains, the strains in the transverse directions, and the shear stresses at the contact between the specimen and the steel plate.

Figure 12 shows the deformed shape of the specimen in the side view with the values of the vertical displacement, while Figure 13 shows the lateral displacement of the specimen in the X direction.
macija cilindra usled jednoosnog pritiska u zoni srednje treće uzorka. Približavanjem osloncima poprečna deformacija smanjuje se usled trenja koje se javlja na kontaktima uzorkaploća. Maksimalno vertikalno pomeranje uzorka iznosi: $U_2 = 0.2482 \text{ mm} - 0.0027 \text{ mm} = 0.2455 \text{ mm}$.

Na slici 14 dati su slika i vrednosti napona u podužnom pravcu cilindra, na jednoj polovini uzorka i na celom uzorku. Slike 15 i 16 daju prikaz slike i vrednosti podužnih i poprečnih dilatacija uzorka.

Figure 14 shows the pattern and the values of the stress in the longitudinal direction of the cylinder, on the one half of the specimen and on the entire specimen. Figures 15 and 16 show the pattern and values of the longitudinal and transverse strains of the specimen.
Maksimalan napon na spoljašnjoj strani cilindra iznosi 15.09 MPa, a u unutrašnjosti cilindra 15.91 MPa. Vrednosti napona pritiska u unutrašnjosti cilindra veće su u odnosu na spoljašnje delove zbog istog razloga opisanog u prethodnoj konfiguraciji.

I ovde, kao i u prethodnoj konfiguraciji, slika dilatacija prati sliku napona. Maksimalna dilatacija na spoljašnjoj strani cilindra iznosi 8.336·10^{-4}, a u unutrašnjosti 8.733·10^{-4}.

Na slici 17 prikazani su naponi u ravnii kontakta cilindra i čelične ploče s gornje strane.

The maximal stress on the outside of the cylinder is 15.09 MPa and 15.91 MPa on the inside of the cylinder. The compression values inside the cylinder are higher than the outer parts for the same reason described in the previous configuration.

Here, as in the previous configuration, the strain pattern follows one of the stress. The maximum strain on the outside of the cylinder is 8.336·10^{-4} and 8.733·10^{-4} on the inside.

Figure 17 shows the stresses in the contact surface between the cylinder and the steel plate on the upper side.

5.3 Rekapitulacija rezultata

U Tabeli 2 prikazani su najznačajniji rezultati laboratorijskih ispitivanja i numeričkih analiza.

Konfiguracija 1	Konfiguracija 2
Laboratorijski uzorak	Laboratorijski uzorak
Numerički model	Numerički model

Konfiguracija 1
- Maksimalno vertikalno pomeranje U_2 [mm]: 0.7987
- Dilatacija na spoljašnosti uzorka / Strain on the outside of the specimen: 3.150·10^{-3}
- Maksimalan napon [MPa]: -50.6

Konfiguracija 2
- Maksimalno vertikalno pomeranje U_2 [mm]: 0.218
- Dilatacija na spoljašnosti uzorka / Strain on the outside of the specimen: 1.10·10^{-3}
- Maksimalan napon [MPa]: -15.14 (spoljašnja strana uzorka)

Slika 17. Napon smicanja [MPa] na kontaktu između betonskog cilindra i čelične ploče (polovina uzorka): a) u X pravcu i b) u Y pravcu

Figure 17. Shear stress [MPa] at the contact between the concrete cylinder and the steel plate (half of the specimen): a) in the X direction and b) in the Y direction

5.3 Result summary

Table 2 shows the most significant results of the experimental testing and the numerical analyses.

Tabela 2. Rekapitulacija rezultata numeričkih analiza

Konfiguracija 1	Konfiguracija 2
Laboratorijski uzorak	Laboratorijski uzorak
Numerički model	Numerički model

Konfiguracija 1
- Maksimalno vertikalno pomeranje U_2 [mm]: 0.7987
- Dilatacija na spoljašnosti uzorka / Strain on the outside of the specimen: 3.150·10^{-3}
- Maksimalan napon [MPa]: -50.6

Konfiguracija 2
- Maksimalno vertikalno pomeranje U_2 [mm]: 0.218
- Dilatacija na spoljašnosti uzorka / Strain on the outside of the specimen: 1.10·10^{-3}
- Maksimalan napon [MPa]: -15.14 (spoljašnja strana uzorka)
6 ZAKLJUČAK

Eksperimentalni podaci laboratorijskih ispitivanja predstavljenih u [7], [8] i [10] poslužili su kao osnova za formiranje MKE modela ponašanja lakoagregatnog betona. Eksperimentom su određeni čvrstoća betona pri pritisku i modul elastičnosti betona starosti 28 dana za nekoliko različitih mešavinica, dok je numeričkom analizom obuhvaćena jedna mešavina (LLK-1). Ponašanje betona kao materijala obuhvaćeno je tzv. concrete damage plasticity (CDP) modelom. Sprovedena je statička nalaznica (inkrementalno-iterativna) analiza za dve konfiguracije modela, po jedna za ispitivanje čvrstoće betona pri pritisku i određivanja modula elastičnosti betona. Prva konfiguracija modela sadrži kocku dimenzija 150 x 150 x 150 mm, a druga cilindar dimenzija d/L = 150/300 mm. Potom su analizirani rezultati proračuna i izvučeni su sljedeći zaključci:

- Ponašanje betonske kocke u MKE analizi blisko je ponašanju kocke tokom laboratorijskog ispitivanja. Naime, kao i u eksperimentu, i u numeričkom modelu je jasno izražen oblik, tj. mehanizam loma uzorka. Ovaj oblik zauzima prostorni X-oblik, budući da se usled sila treanja na kontaktu sa čeličnim pločama obrazuju utegnuti deo betona oblika klinja koji deluje na način da istiskuje okolinu zategnuti beton nakon dostizanja čvrstoće betona na zatezanje i formiranja prvih prslina. Pritisnuti beton ovde je već pomenutog X-oblika, dok se u betonu bližem spoljašnjim stranama javlja zatezanje, pa je jasno uočljiva i granica između zona dva naponska stanja. Upravo se na ovoj granici javljaju prslina koje će narušiti integritet uzorka i diktirati oblik loma.
- Rezultati numeričkog modela u celokupnom pogledu ukazuju na poklapanje sa eksperimentalnim rezultatima. Međutim, neophodna su dalja, finija podešavanja MKE modela, pre svega modela ponašanja betona, radi potpune kompatibilnosti sa eksperimentalnim podacima.
- Ponašanje betonskog cilindra u MKE analizi, kao i u slučaju betonske kocke, blisko je ponašanju cilindra tokom laboratorijskog ispitivanja. Skraćenje cilindra u MKE modelu u iznosu od 0.245 mm veoma je blisko prošećnom skraćenju cilindra u eksperimentu, koje iznosi 0.218 mm, pri istom nivou opterećenja.
- Deformacija cilindra u MKE modelu približno odgovara realnom stanju, gde usled jednosnoj pritisnuta u zoni srednje trećine uzora, uzorak ne trpi nikakva ograničenja u smislu poprečnog deformisanja, te se on slobodno deformiše u poprečnom pravcu. U zoni kontakta sa čeličnim pločama, poprečna deformacija smanjuje se usled trenja koje se javlja na kontaktima uzorak-ploča.
- Takode, dilatacija na spoljašnjoj strani cilindra, u srednjoj trećini visine, u MKE modelu ima vrednost od 0.85·10⁻³, dok je u toj istoj zoni u eksperimentu registrovana dilatacija od 1.10·10⁻³.
- Veće vrednosti napona u unutrašnjosti cilindra (15.91 MPa) u odnosu na vrednosti napona na

6 CONCLUSIONS

The experimental data from the laboratory tests presented in [7], [8] and [10] served as the basis for the formation of the FEM model of the behaviour of the lightweight concrete. The experiment determined the compressive strength of the concrete and the modulus of elasticity of concrete at 28 days of age for several different mixtures, while numerical analysis included one mixture (LLK-1). The behaviour of concrete as a material was accounted by the concrete damage plasticity (CDP) model. The static nonlinear (incremental-iterative) analysis was conducted for two model configurations, one for the determination of the compressive strength of concrete and the other for the determination of the modulus of elasticity of concrete. The first configuration of the model consists of the cube measuring 150x150x150 mm and the second one of the cylinder d/L = 150/300mm. The results of the numerical analyses were analyzed and the following conclusions were drawn:

- Concrete cube behaviour in FEM analysis is close to cube behaviour during laboratory testing. Namely, as in the experiment, the failure mechanism pattern is clearly expressed in the numerical model as well. This shape takes the spatial X-shape, since due to the friction forces on the contact with the steel plates, a wedge-shaped portion of concrete is formed, which acts to squeeze out the surrounding tensiled concrete after reaching the tensile strength and forming the first cracks. The compressed concrete has aforementioned X-shape, while in the concrete closer to the outside the tension occurs, so that the boundary between the zones of these two stress states is clearly visible. It is at this border that cracks appear that will impair the integrity of the specimen and dictate the shape of the failure.
- The results of the numerical model in the overall view indicate a congruence with the experimental results. However, further fine-tuning of the FEM model, especially the concrete behaviour model, is required in order to be fully compatible with the experimental data.
- The behaviour of the concrete cylinder in the FEM analysis is, as in the case of the concrete cube, close to the behaviour of the cylinder during laboratory testing. The 0.245 mm cylinder shortening in the FEM model is very close to the average cylinder shortening in the experiment, which is amounted to 0.218 mm, at the same load level.
- The deformation of the cylinder in the FEM model approximates the real state, where due to uniaxial compression in the middle third zone of the specimen, the specimen fails to suffer any restrictions in terms of transverse deformation, and it deforms freely in the transverse direction. In the contact zone with the steel plates, the transverse deformation is reduced due to the friction that occurs on the specimen-plate contact surface.
- In addition, the strain on the outside of the cylinder,
spoljašnjoj strani cilindra (15.09 MPa) u MKE modelu su posledica „utegnutosti“ betona, odnosno činjenice da beton bliži spoljašnjoštvu sprečava bočne deformacije betona u unutrašnjosti cilindra. Takođe, razlozi za veće vrednosti napona u MKE modelu u odnosu na eksperiment mogu se tražiti u činjenici da je prilikom eksperimenta napon određen kao količnik ukupne silе i površine poprečnog preseka cilindra, dok je u MKE analizi cilindar posmatran kao trodimenziionalno telо, s mogućношћу obuhvatanja u obzир triaksijalног станја prитiska.

ZAHVALNOST

U radu je prikazan deо istraživanja koje je pomoglo Ministarstvu prosvete, nauке i tehnoloшког развоја Republike Srbije у оквиру tehnoloшког пројеката TR 36017 pod називом: "Istraživanje mogućnosti primene otpadних и recikliranih materijala u betonskim kompozitima, sa ocenom uticaja na životnu sredinu, u cilju promocije održivog građevinarstva u Srbiji".

ACKNOWLEDGEMENTS

The paper has been prepared within the scientific research project TR 36017 "Utilization of by-products and recycled waste materials in concrete composites in the scope of sustainable construction development in Serbia: investigation and environmental assessment of possible applications ", which is funded by the Ministry of Science of Serbia.

7 LITERATURA

[1] Abaqus Analysis User’s Guide, 2016
[2] Alfarah B., López-Almansa F., Oller S.: New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures, Engineering Structures 132, 2017, 70-86.
[3] Choi S., Yang K., Sim J., Choi B.: Direct tensile strength of lightweight concrete with different specimen depths and aggregate sizes, Construction and Building Materials 63, 2014, 132-141.
[4] Ciceki U., Vojadiš G., Al-Rub R.: A plasticity and anisotropic damage model for plain concrete, International Journal of Plasticity 23, 2007, 1874-1900.
[5] Grassi P., Xenos D., Nystrom U., Rempling R., Gygliott K.: CDPM2: A damage-plasticity approach to modelling the failure of concrete, International Journal of Solids and Structures 50, 2013, 3805-3816.
[6] Han B., Xiang T.: Axial compressive stress-strain relation and Poisson effect of structural lightweight aggregate concrete, Construction and Building Materials 146, 2017, 338-343.
[7] Malešev M., Radonjanin V., Lukić I., Bulatović V.: The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete, Arabian Journal for Science and Engineering 39, 2014, 705–711.

[8] Malešev M., Radonjanin V., Lukić I., Bulatović V.: Basic properties and possibilities of use of structural lightweight aggregate concrete with aggregate from industrial waste materials - Part 1, 12th International Scientific Conference INDISt 2012, 28-30 November 2012, Novi Sad, Serbia, 634-645.
[9] Poliotti M., Bairan J.M.: A new concrete plastic-damage model with an evolutive dilatancy parameter, Engineering structures 189, 2019, 541-549.
[10] Radonjanin V., Malešev M., Lukić I., Bulatović V.: Basic properties and possibilities of use of structural lightweight aggregate concrete with aggregate from industrial waste materials - Part 2, 12th International Scientific Conference INDISt 2012, 28-30 November 2012, Novi Sad, Serbia, 646-657.
[11] Wang X., Zhangha M., Jivkov P.A.: Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete, International Journal of Solids and Structures 80, 2016, 310-333.
Building Materials and Structures 62 (2019) 4 (37-52)

Rezime

Numerička simulacija ponašanja uzoraka od lakoagregatnog betona u slučajevima laboratorijskog ispitivanja

Vladimir Živaljević
Vlastimir Radonjanin
Ivan Lukić
Dušan Kovacević

U ovom radu prikazano je numeričko modeliranje eksperimentalnog određivanja čvrstoće lakoagregatnog betona pri pritisku i statičkog modula elastičnosti primenom metode konačnih elemenata (MKE). U okviru teorijskog pregleda predstavljen je i opisan CDP (concrete damage plasticity) model ponašanja betona. Numeričko modeliranje i nelinearni statički (inkrementalno-iterativni) proračuni rađeni su za dve različite konfiguracije primenom softvera Abaqus®. Prva konfiguracija modela obuhvata eksperimentalno određivanje čvrstoće betona pri pritisku betonske kocke, a druga određivanje statičkog modula elastičnosti na betonskom cilindru. Trodimenzionalnim MKE modelima uzete su u obzir i čelične ploče, koje se nalaze na gornjoj i donjoj strani uzorka, koje služe za oslanjanje, odnosno apliciranje opterećenja, čime su na realan način obuhvaćeni kontaktni uslovi betonskih uzoraka sa opremom za ispitivanje.

Ključne reči: concrete damage plasticity model, lakoagregatni beton, numerička simulacija, čvrstoća pri pritisku, modul elastičnosti

Abstract

Numerical simulation of the behaviour of the lightweight concrete specimen in the laboratory testing

Vladimir Zivaljevic
Vlastimir Radonjanin
Ivan Lukic
Dusan Kovacevic

This paper presents the numerical modelling of the experimental determination of the compressive strength and the static modulus of elasticity of the lightweight concrete using the finite element method (FEM). In the theoretical review, a concrete damage plasticity (CDP) model of the concrete behaviour is described. Numerical modelling and nonlinear static (incremental-iterative) analyses were performed for two different configurations using the Abaqus® software. The first configuration of the model considers the experimental determination of the concrete compressive strength of the concrete cube, and the second one the determination of the static modulus of elasticity on the concrete cylinder. Steel plates in the three-dimensional FEM models located on the upper and lower sides of the specimens, which serve as the support or for the load application, thus capturing the contact conditions of concrete specimens with testing equipment more realistically, have also been taken into account.

Key words: concrete damage plasticity model, lightweight concrete, numerical simulation, compressive strength, modulus of elasticity