Hybridization as a conservation management tool

Wing Yan Chan¹,² | Ary A. Hoffmann³ | Madeleine J. H. van Oppen¹,²

¹Australian Institute of Marine Science, Townsville, Queensland, Australia
²School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
³Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia

Correspondence
Wing Yan Chan, Room 217, School of BioSciences 2, University of Melbourne, VIC3010, Australia.
Email: w.chan@aims.gov.au

Abstract
The recent extensive loss of biodiversity raises the question of whether organisms will adapt in time to survive the current era of rapid environmental change, and whether today’s conservation practices and policies are appropriate. We review the benefits and risks of inter- and intraspecific hybridization as a conservation management tool aimed at enhancing adaptive potential and survival, with particular reference to coral reefs. We conclude that hybridization is underutilized and that many of its perceived risks are possibly overstated; the few applications of hybridization in conservation to date have already shown positive outcomes. Moreover, perceptions of potential risk change significantly when the focus of conservation is on preserving the adaptive potential of a species/population, instead of preserving the species in its original state. Further, we suggest that the uncertain legal status of hybrids as entities of protection can be costly to society and ecosystems, and that a legislative revision of hybrids and hybridization is overdue. We present a decision tree to help assess when and where hybridization can be a suitable conservation tool, and whether inter- or intraspecific hybridization is the preferred option.

Keywords
adaptive potential, conservation policy, genetic rescue, hybridization, inbreeding depression

1 | AVOIDING EXTINCTION THROUGH GENETIC ADAPTATION

Genetic adaptation is one way by which a population or species may avoid extinction caused by rapid environmental change (Hamilton & Miller 2016; Hoffmann et al., 2015; Hoffmann & Sgrò 2011). Whether a species will adapt in time to escape extinction depends on factors such as the rate of environmental change, the amount of adaptive genetic variation present, and generation time (Hamilton, Royauté, Wright, Hodgskiss, & Ledig, 2017; Hoffmann et al., 2015; Hoffmann & Sgrò 2011). Globally, temperature has increased and continues to increase at a rate not previously experienced by life on Earth for at least 50 (if not hundreds of) million years (Gaffney & Steffen, 2017; Hönisch et al., 2012). Although the 2015 Paris Agreement set the goal to limit warming to less than 1.5°C above pre-industrial temperatures by 2100, this goal is likely unachievable based on current trajectories with global temperatures expected to increase by 2–4.9°C (Raftery, Zimmer, Frierson, Startz, & Liu, 2017). The negative impacts of warming are evident from many examples across the marine and terrestrial environments (Chefaoui, Duarte, & Serrão, 2018; Hughes et al., 2018; Klein, Cahanoovitc, Sprintins, Herr, & Schiller, 2019; Pecl et al., 2017), and perhaps among the most significantly affected ecosystems are coral reefs.
In the last 30 years, half of the world’s corals have been lost (The Ocean Agency 2018) due to anthropogenic stresses including ocean warming. Some level of rapid adaptation and/or acclimatization is possible as demonstrated by a number of cases of increased bleaching tolerance in corals following mass bleaching events (Berkelmans, 2009; Guest et al., 2012; Maynard, Anthony, Marshall, & Masiri, 2008; Penin, Vidal-Dupiol, & Adjeroud, 2013). However, the enormous bleaching-related mortality of corals in recent years suggests that the rate of adaptation and/or acclimatization is unlikely sufficient to keep up with the pace of climate change (van Oppen et al., 2017). In addition, climate models predict that the majority of the world’s coral reefs will experience annual temperature extremes before the end of the century (van Hooidonk et al., 2016). Timely adaptation to avoid extinction may require new genetic variation sourced from elsewhere via human-assisted interventions (Hamilton & Miller 2016; Hoffmann & Sgrò 2011; Kremer et al., 2012; van Oppen, Oliver, Putnam, & Gates, 2015; van Oppen et al., 2017).

Increasingly, management options targeted at enhancing genetic variation and adaptive potential of a species or population are being discussed both within the context of revegetation and coral reef restoration (Breed, Stead, Ottewell, Gardner, & Lowe, 2013; Chan, Peplow, Menéndez, Hoffmann, & Van Oppen, 2018; Hamilton & Miller 2016; Hoffmann et al., 2015; Hoffmann & Sgrò 2011; Jones & Monaco 2009; van Oppen et al., 2017; Vitt, Havens, Kramer, Sollenberger, & Yates, 2010). This represents a shift from a traditional focus on restoring local genetic materials to consideration of using nonlocal genetic variation (Jones & Monaco 2009). Many ecosystems have already been drastically altered by climate change and other anthropogenic disturbances, resulting in not just a mismatch between locally adapted traits and altered environmental conditions (Hamilton & Miller 2016; Jones & Monaco 2009), but also an increase in population fragmentation that reduces genetic diversity and adaptive potential (Edmands, 2007; Hoffmann et al., 2015). Without gene flow from other populations to improve genetic variation and adaptive potential, some populations are unlikely to adapt in time to persist. Furthermore, restoring the genetic make-up of the original population may not achieve long-term conservation targets if populations lack the genetic variants or genes necessary to survive altered conditions now or into the future. For example, American chestnut (Castanea dentata) has been decimated by blight (an introduced fungal disease) because it lacks the genes for blight disease resistance (Clark, Schlarbaum, Saxton, & Hebard, 2016; Newhouse et al., 2014). Restoring the original American chestnut population will therefore not likely result in chestnut forests that persist long term. The large drop in the population size of American chestnut has caused changes in community composition, insect and wildlife dynamics, as well as soil chemical processes in the local forests (Clark et al., 2016). Successful restoration of habitat-forming species like canopy trees and corals is critical, particularly as there is a high probability that flow-on effects to other components of biodiversity will occur.

2 IMPROVING CONSERVATION AND RESTORATION SUCCESS VIA HYBRIDIZATION

Hybridization may enhance adaptive potential of a population (Carlson, Cunningham, & Westley, 2014; Chan et al., 2018; Hamilton & Miller 2016; Hoffmann & Sgrò 2011; Jones & Monaco 2009; Meier et al., 2017; van Oppen et al., 2015, 2017; Whiteley, Fitzpatrick, Funk, & Tallmon, 2015; see Table 1 for definitions of terminologies related to hybridization). It increases heterozygosity and creates new genetic combinations, potentially reducing extinction risk by increasing adaptive potential and masking deleterious alleles. Hybridization may lead to new adaptive traits, allowing species to invade new niches and expand their distribution ranges (Becker et al., 2013; Carlson et al., 2014; Hamilton & Miller 2016; Hamilton et al., 2017; Hoffmann & Sgrò 2011; Meier et al., 2017; van Oppen et al., 2015). Genetic rescue or evolutionary rescue can be achieved when a population is successfully restored via hybridization (Table 2).

TABLE 1 Glossary of terms

Term	Definition
Hybridization	The successful mating between individuals from two genetically different lineages. It can be either interspecific (i.e., between different species), intraspecific (i.e., between divergent populations of the same species), or involve subspecies.
Hybrid vigor	The condition where hybrid offspring (usually F1s) display higher fitness relative to its parents.
Introgression	The movement of genetic material from one population/species to another via repeated backcrossing.
Genetic rescue	The increase in population fitness and size following the introduction of new alleles by hybridization.
Evolutionary rescue	The increase in adaptive genetic variation (rather than just an increase in genetic diversity) that allows populations to survive otherwise extinction-inducing environmental stress.
Table 2: Summary of hybridization studies with a focus on population conservation

Studies are selected if their research aim was to examine the usefulness of hybridization in restoration or conservation of a population, and either fitness traits or population size following hybridization was reported.

Organism	Latin name	Size of receiving population	Size and/or species of introducing population	Type of hybridization	Study environment	F*	Traits reported and effect	Reference
Staghorn coral	A. tenuis (pair 1), and A. sarmentosa (pair 2)	Five colonies for each species	Five colonies each for A. loriipes (pair 1), and A. florida (pair 2)	Interspecific	Laboratory (ambient and elevated temperature and pCO2 conditions)	F1	Survival*, size*, algal endosymbiont uptake†, photochemical efficiency‡	Chan et al. (2018), Figure 1
Mountain pygmy possum	*Barramys parvus*	~55 individuals	Five males in 2011, six males in 2014	Intraspecific	Nature	F1	Survival*, body size*, reproduction*, longevity*, population size*	Weeks et al. (2017)
Trinidadian guppies	*Poecilia reticulata*	<100 individuals	75 females, 75 males	Intraspecific	Nature	F2, backcross	Survival*, recruitment*, population size*	Fitzpatrick et al. (2016)
Scandina-vian wolf	Canis lupus	<10 individuals	Two males	Intraspecific	Nature	F1	Reproduction*, population size*	Åkesson et al. (2016)
Torrey pine	*Pinus torreyana* Parry	16 island trees	10 mainland trees	Intraspecific	Laboratory (common garden)	F1	Height†, fecundity*	Hamilton et al. (2017)
American chestnut	*Castanea dentata*	No. unknown	Unknown no. of Chinese chestnut (C. mollissima)	Interspecific	Laboratory (common garden)	F3, backcross	Blight resistance*, height†	Clark et al. (2016)
South Island robin	*Petroica australis*	Five individuals	31 females	Intraspecific	Nature	F1	Survival*, recruitment*, sperm quality*, immunity*	Heber et al. (2013)
Norfolk Island boobook owl	*Ninox novaseeelandiae undulata*	One individual	Two male of N. n. novaseeelandiae	Subspecies hybridization	Nature	F2	Population size*, other traits not measured	Garnett et al. (2011)
Florida panther	*Puma concolor cori*	22 individuals	Eight females pumas (P. c. stanleyana)	Subspecies hybridization	Nature	F2	Survival*, population size*	Johnson et al. (2010)
Mexican wolf	*Canis lupus baileyi*	No. unknown	Crossing inbred lineages, no. unknown	Intraspecific	Nature	F1	Reproduction*, survival*	Fredrickson, Siminski, Woolf, and Hedrick (2007)

*F refers to the most advanced generation examined in the study (e.g., F1 = first generation)

†Positive effect; #no effect; –negative effect.
Genetic rescue is applicable to small and isolated populations that typically have low genetic diversity and often suffer from inbreeding depression (Carlson et al., 2014; Whiteley et al., 2015). Hybridization may bring evolutionary rescue when a shift toward the optimal phenotype occurs via selection on the newly introduced or recombinant later generation hybrid genotypes (Carlson et al., 2014; Whiteley et al., 2015). In some studies, the term evolutionary rescue strictly applies to adaptation to a changing environment from standing genetic variation (Hamilton & Miller 2016; Hufbauer et al., 2015). We use the broader definition, where evolutionary rescue can involve genetic variation already present within a population, arising from de novo mutations, or being introduced through immigration and hybridization (Carlson et al., 2014; Whiteley et al., 2015).

The value of hybridization in conservation and restoration has been demonstrated in several cases (Table 2). For example, the introduction of a few males from a genetically divergent population to the remnant population of Mount Buller pygmy possum who subsequently mated with the native females (i.e., intraspecific hybridization) increased its fitness and contributed to the prevention of this population from going extinct (Weeks et al., 2015). Other successful examples in vertebrates include hybridization in the Scandinavian wolf, South Island robin, Norfolk Island boobook owl, Florida panther, and Mexican wolf (Table 2). The persistence and ecosystem function of American chestnut may also be successfully restored following hybridization with the Chinese chestnut that harbors genetically encoded resistance to the fungal pathogen causing blight (Clark et al., 2016).

3 | RISKS AND PERCEIVED RISKS OF HYBRIDIZATION AS A BIODIVERSITY CONSERVATION TOOL

Perceptions about risks associated with genetic and evolutionary rescue via hybridization have hindered its application. These concerns include (a) the possibility of outbreeding depression and (b) the loss of parental species via genetic mixing. Outbreeding depression is the reduction in fitness of hybrid offspring crossed from two genetically divergent populations or species (Edmands, 1999). This may occur when hybridization breaks up co-adapted gene complexes or brings together allele combinations with negative effects by segregation and recombination (Edmands, 2007; Hamilton & Miller 2016; Orr, 1996; Turelli, Barton, & Coyne, 2001). For example, hybridization between Calylophus serrulatus (a short-lived perennial plant) from two different environments resulted in reduced body size and fecundity in first generation (F1) hybrids (Heiser & Shaw 2006). Similarly, although hybridization has led to enhanced fitness in certain traits in the first one or two generation(s) of marine copepods and Drosophila spp., later generation hybrids showed relatively lower fitness or no fitness benefit (Edmands, 1999; Parda, 2014).

However, the risk of outbreeding depression has likely been overstated (Frankham, 2015; Hoffmann et al., 2015) and empirical evidence of inbreeding depression is vastly greater than that of outbreeding depression (Edmands, 2007). Simulations and field experiments also show that outbreeding depression is likely temporary and can be overcome by natural selection (Aitken & Whitlock 2013; Erickson & Fenster 2006). For example, although hybrid breakdown occurred in the F2 generation of intraspecific crosses in the legume Chamaecrista fasciculata, there was strong recovery of fitness by the F6 when plants were equally fit or fitter than either parent (Erickson & Fenster 2006). The effects of outbreeding depression versus hybrid vigor are environmentally dependent (Edmands, 2007). A meta-analysis demonstrated that hybridizing an inbred population with another population increased composite fitness (i.e., fecundity and survival) by 148% under stressful environments (more variable natural environments) compared to 45% under benign environments (captive, less variable environments), and the results were similar among invertebrates, vertebrates, and plants (Frankham, 2015). This may be due to a higher buffering capacity of heterozygotes, or because stressful conditions aggravate the deleterious effects of inbreeding depression (Edmands, 2007). The advantage of hybridization is thus likely more common in altered or degraded environments, which are becoming increasingly prominent under climate change.

The loss of parental species identity and genetic uniqueness due to genetic mixing through hybridization is another concern that has been repeatedly raised (Allendorf, Leary, Spruell, & Wenburg, 2001; Muhlfeld et al., 2014; Roberts, Gray, West, & Ayre, 2010). For instance, a change in species distribution ranges has led to hybridization of the obligately estuarine Black bream (Acanthopagrus butcheri) with the migratory marine Yellowfin bream (A. australis), and subsequently only 5% of the populations remained purebred A. australis (Roberts et al., 2010). Similarly, hybridization between African and European honey bees in an attempt to improve honey production of the latter subspecies has led to the disappearance of European characteristics over time (Schneider, Leamy, Lewis, & DeGrandi-Hoffman, 2003).

While the risk of genetic mixing may be applicable in the context of conserving currently defined species, this risk can be perceived very differently if one adopts a gene-centric instead of species-centric view (Crispo, Moore, Lee-Yaw, Gray, & Haller, 2011; Hamilton & Miller 2016; Petit,
A gene-centric view can also reveal conservation opportunities that may have otherwise gone unnoticed under a species-centric view. For example, when a population or species is at risk of extinction, hybridization can preserve part of the parental genome that would otherwise be lost by species extinction (e.g., mountain pygmy possum, Florida panther). The conservation of genetic uniqueness should not be prioritized at the cost of (adaptive) genetic diversity (Coleman, Weeks, & Hoffmann, 2013; Hoffmann et al., 2015). For instance, conservation efforts based on the protection of genetic uniqueness have deliberately isolated \textit{Galanxella pusilla} (freshwater fish) populations and this has likely resulted in a decrease in their genetic diversity and adaptive potential (Coleman et al., 2013).

4 | LEGAL FRAMEWORK THAT IMPEDES THE USE OF HYBRIDIZATION IN CONSERVATION

Other than the perceived biological risks, the uncertain legal status of hybrids has also impeded their use in conservation. A review of 81 conservation policies in Canada and the U.S. showed that only 13 policies (16%) provide guidelines regarding hybrid management (Jackiw, Mandil, & Hager, 2015). For example, the term “hybrid” does not appear in the US Endangered Species Act (ESA; Haig & Allendorf 2006) and there are no official policies for the conservation of hybrids (Wayne & Shaffer 2016). Of the 13 policies, six do not allow hybrid conservation, and consider hybrids as threat to biodiversity or not suitable for conservation (Jackiw et al., 2015). Interspecific hybrids are not protected under the ESA, with the exception of a few plant species that arise as a result of hybridization (vonHoldt, Brzeski, Wilcove, & Rutledge, 2018), and the hybrids of subspecies of the Florida panther (Erwin, 2017; Lind-Riehl, Mayer, Wellstead, & Gailing, 2016). For example, while \textit{Panthera tigris} (tiger) and \textit{Panthera pardus} (leopard) and all their subspecies raised in captivity in the U.S.A. are protected under the ESA, interspecific hybrids of the two are not protected and can be legally killed and traded in the U.S.A. (U.S. v. Kapp 2005). In 1996, an Intercross Policy was proposed to the ESA, outlining possible criteria when a hybrid population or species should receive legal status for protection (Allendorf et al., 2001; Wayne & Shaffer 2016). Over 20 years later, however, the policy remains neither accepted nor rejected by the US Fish and Wildlife Service and the National Marine Fisheries Services, and the legal status of hybrids is assessed on a case-by-case basis upon application (Wayne & Shaffer 2016).

Similarly, the legal status of interspecific hybrids is also unclear under the Environment Protection and Biodiversity Conservation Act in Australia. For example, the Norfolk Island boobook owl population was reduced to a single female in 1986 and two males of New Zealand boobook owl were introduced to rescue the population. Subsequent breeding of the second and third generation hybrids has established a population of 45 individuals (Director of National Parks 2010). In 2010, the Norfolk Island Region Threatened Species Recovery Plan stated that due to the hybrid nature of this population, they are excluded from a recovery plan under the Environment Protection and Biodiversity Conservation Act (Director of National Parks 2010), but the legal status of this population has never been clarified (Garnett, Olsen, Butchart, & Hoffmann, 2011). At an international level, the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species also excludes consideration of interspecific hybrids for listing, with the exception of apomictic (i.e., asexually reproducing hybrid plants (vonHoldt et al., 2018)). Ignoring hybrids in conservation represents a mismatch between policy, science, and real-world conservation needs (Richards & Hobbs 2015), and a major revision of conservation legislation is overdue.

A revision of conservation legislation should include several considerations. First, the species-centric conservation approach in current legislation (e.g., ESA) is difficult to apply as species are not fixed entities and are always evolving. In addition, the boundaries between species are often not clear-cut, and our understanding of the extent of natural gene flow between species is still limited (Supple & Shapiro 2018). With the advent of genomic technologies, traces of genetic admixture have been found in many “purebred” populations, making many species currently being protected under the ESA no longer compliant to its rigid interpretations (Erwin, 2017; Wayne & Shaffer 2016). For instance, new evidence suggests that red wolves (\textit{Canis rufus}) that are currently protected under ESA are likely hybrids of gray wolves (\textit{C. lupus}) and coyotes (\textit{C. latrans}) (Waples, Kays, Fredrickson, Pacifici, & Mills, 2018; Wayne & Shaffer 2016). Second, incidents of hybridization have increased and will continue to increase in nature as climate change shifts species distributions and brings together previously isolated species and populations (Crispo et al., 2011; Garroway et al., 2010; Hillebrand et al., 2018; Moritz & Agudo 2013; Pauls, Nowak, Bálint, & Pfenninger, 2013; Pecl et al., 2017). Third, the lack of recognition of hybrids can be a lost opportunity to protect entities that can maintain vital ecosystem functions. For instance, the hybrid coral \textit{Acropora prolifera} continues to provide ecosystem functions to Caribbean reefs while its parental lineages, \textit{A. palmata} and \textit{A. cervicornis}, suffer significant declines (Box 1). Given the rate of climate change, environmental degradation, and species loss, rejection of hybrid species and populations can thus be costly to society and ecosystems generally.
5 | MOVING FORWARD IN CONSERVATION STRATEGIES AND LEGAL POLICIES

Enhancing adaptive potential of a population via hybridization is currently an underutilized management choice due to its perceived risks (Fitzpatrick et al., 2016; Frankham et al., 2011; Hufford & Mazer 2003) and limitations in its existing legal framework (Wayne & Shaffer 2016). As explained above, the perceived risks are possibly overstated and applications of hybridization in conservation have resulted in several positive outcomes. We suggest that conservation policies move away from the rigid view of species and focus instead on evolutionary processes that are important to adaptive potential, and on the conservation of ecosystem function. We encourage State and/or Federal agencies to consider a revision on endangered species or biodiversity conservation legislation, and propose a number of recommendations that may assist such a transition:

1. Adopt a dynamic view on “species,” recognizing “species” as continuously evolving lineages and not as fixed entities.
2. Adopt a gene-centric instead of a species-centric view in conservation management practices and legal policies (Crispo et al., 2011; Hamilton & Miller 2016; Petit, 2004), and include the consideration of evolutionary processes that are essential for maximizing adaptive potential (Eizaguirre & Baltazar-Saoores 2014; Hoffmann et al., 2015; Hoffmann & Sgro 2011; Weeks et al., 2011). In this context, hybrid populations (e.g., the coral A. prolifera) that are reservoirs of their parents’ genetic material should receive legal protection status.
3. Prepare to move beyond preserving or restoring local genetic diversity when traditional management has failed...
to maintain the population or ecosystem functions, or failure is imminent. This includes (a) populations that are small, isolated, and suffering from inbreeding depression, (b) populations that lack the genetic variants or genes vital for survival, and (c) populations that are unlikely to adapt in time to keep up with climate change (see decision tree, Figure 2).

4. Assess the risk of alternative management options (e.g., hybridization) against the risk of extinction and ecosystem system function loss if these alternative options are not considered (Hoegh-Guldberg et al., 2008; McLachlan, Hellmann, & Schwartz, 2007; Vitt et al., 2010). Consider what is the likely trajectory of the population at risk if only traditional conservation efforts continue.
6 | ASSESSING THE SUITABILITY OF HYBRIDIZATION AS CONSERVATION TOOL: A DECISION TREE

To assist the transition away from a species-based approach and facilitate decision-making for conservation managers regarding the use of hybridization, a decision tree is presented here as a practical guide (Figure 2). If hybridization is considered appropriate, the next step involves the selection of a suitable population(s) or species to hybridize with the population of concern. Intraspecific hybridization is the first preferred option if it is feasible and beneficial. Since populations of the same species are expected to have higher relatedness than populations of different species, the probability of successful hybridization is expected to be higher and outbreeding depression is less likely to occur. Intraspecific hybridization can be applied if a population of the same species is available and carries characteristics that meet the conservation goal (e.g., has high genetic diversity or can provide specific desired traits; Figure 2). Examples of this include the introduction of conspecific males from healthy and genetically diverse populations to the genetically depleted Mount Buller pygmy possum population (Weeks et al., 2017); and intraspecific crossing of corals from a higher and lower latitude to enhance thermal tolerance of coral populations at the higher latitude (Dixon et al., 2015; van Oppen, Puill-Stephan, Lundgren, De’ath, & Bay, 2014).

If intraspecific hybridization is not feasible or not able to achieve the conservation goal, interspecific hybridization can be considered. Suitable closely related species may bring a greater increase in genetic diversity and adaptive potential, or provide specific adaptations that the species of concern is lacking (e.g., blight resistance of American chestnut). However, a greater genetic distance between species may increase the likelihood of genetic incompatibility and the risk of outbreeding depression, therefore intraspecific hybridization is considered first. After a suitable population/species has been selected and hybridization has been implemented, ongoing monitoring is required to track the success of the program and to carefully monitor its consequences (Figure 2). This can include measurements of population size, population composition (e.g., frequency of hybrid vs. purebred genotypes in different generations), genetic diversity (e.g., level of allelic richness, heterozygosity), fitness, longevity, and ecological functions (e.g., diversity of associated fauna, primary production). It is also important to keep track of which species/populations or individuals acted as maternal and paternal parents of later generation hybrids and backcrossed offspring to help understand genetic factors that have contributed to the observed fitness outcomes.

7 | DIRECTIONS FOR FUTURE RESEARCH EFFORTS AND CONCLUDING REMARKS

When a population is unlikely to adapt in time to survive climate change, results of laboratory and field studies on hybrid fitness become an important piece of information in terms of deciding whether or not to implement hybridization (see decision tree, Figure 2). Since it is not possible to provide experimental data for every species, results of a subset of species or populations may provide proof-of-concept for groups that share similar biological and ecological characteristics. Research to inform decision making should involve multi-generation testing of hybrids in the laboratory and in the wild (Hamilton et al., 2017). Our review shows that long-term studies are rare for hybridization research related to conservation, and most data have been obtained for the F1 and F2 generations (Table 2). To decide if hybridization will likely enhance conservation success, ideally a minimum of two generations should be tested so that the reproductive potential of hybrids, as well as the potential effect of segregation and recombination (e.g., the possibility of outbreeding depression) can be evaluated (Edmands, 2007; Hamilton et al., 2017).

Furthermore, successful restoration of a population at risk is not only measured from an enhancement of individual traits, but also by a significant rebound in population size (Carlson et al., 2014; Whiteley et al., 2015). An increase in hybrid fitness in one or several traits in the laboratory may not reflect results in nature, therefore field studies are essential (Fitzpatrick et al., 2016). When decisions are made and hybridization is implemented, ongoing monitoring should be in place to quantify the fitness advantages associated with hybridization and genetic change (see decision tree, Figure 2; Weeks et al., 2017). In the case where populations are small and isolated, genetic drift and inbreeding can again decrease genetic diversity over time, and multiple or periodic hybridization maybe required (Heber et al., 2013).

Advancements in genomic technologies and climate science call for a review of our current attitude and approach to legal policies for conservation. We are now in a position to make more informed decisions based on better understanding of species delineations and predictions of future climate change. Adopting a gene-centric view and a less rigid position on “species,” as well as recognizing the importance of evolutionary processes and adaptative potential on population survival, will facilitate timely and practical measures to address conservation needs in a changing world.

ACKNOWLEDGMENTS

The authors thank B. Schaffelke, the editor and the two reviewers for critical feedback on the manuscript, as well as
L. Peplow for photographic assistance. This research was supported by the Paul G. Allen Philanthropies. W.Y.C. acknowledges receipt of the University of Melbourne International Research Scholarship and Fee Remission Scholarship.

AUTHOR CONTRIBUTIONS

All authors contributed to conceptual development and the final edited version of the manuscript. W.Y.C and M.v.O. wrote the manuscript, and W.Y.C. and A.H. designed the decision tree.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ORCID

Wing Yan Chan https://orcid.org/0000-0001-9875-6903

REFERENCES

Aguilar-Perera, A., & Hernández-Landa, R. C. (2017). Occurrence of large thickets of Acropora prolifera (Scleractinia: Acroporidae) in the southern Gulf of Mexico. Marine Biodiversity, 48, 2203–2205.

Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution, and Systematics, 44, 367–388.

Åkesson, M., Liberg, O., Sand, H., Wabakken, P., Bensch, S., & Flagstad, Ø. (2016). Genetic rescue in a severely inbred wolf population. Molecular Ecology, 25, 4745–4756.

Allendorf, F. W., Leary, R. F., Spruell, P., & Wenburg, J. K. (2001). The problems with hybrids: Setting conservation guidelines. Trends in Ecology & Evolution, 16, 613–622.

Becker, M., Gruenheit, N., Steel, M., Voelckel, C., Deusch, O., Heenan, P. B., … Lockhart, P. J. (2013). Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nature Climate Change, 3, 1039–1043.

Berkelmans, R. (2009). Bleaching and mortality thresholds: How much is too much? In M. J. H. van Oppen, & J. M. Lough (Eds.), Coral bleaching: Patterns, processes, causes and consequences (pp. 103–119). Berlin, Germany: Springer.

Biological Review Team. (2005). Atlantic Acropora status review document. Report to National Marine Fisheries Service, Southeast Regional Office. 152 p + App.

Breed, M. F., Stead, M. G., Ottewell, K. M., Gardner, M. G., & Lowe, A. J. (2013). Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics, 14, 1–10.

Carlson, S. M., Cunningham, C. J., & Westley, P. A. H. (2014). Evolutionary rescue in a changing world. Trends in Ecology & Evolution, 29, 521–530.

Chan, W. Y., Peplow, L. M., Menéndez, P., Hoffmann, A. A., & Van Oppen, M. J. H. (2018). Interspecific hybridization may provide novel opportunities for coral reef restoration. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00160

Chefaoui, R. M., Duarte, C. M., & Serrão, E. A. (2018). Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 24, 4919–4928.

Clark, S. L., Schlarbaum, S. E., Saxton, A. M., & Hebard, F. V. (2016). Establishment of American chestnuts (Castanea dentata) bred for blight (Cryphonectria parasitica) resistance: Influence of breeding and nurseries grading. New Forests, 47, 243–270.

Coleman, R. A., Weeks, A. R., & Hoffmann, A. A. (2013). Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: A comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae). Molecular Ecology, 22, 1820–1835.

Crispo, E., Moore, J.-S., Lee-Yaw, J. A., Gray, S. M., & Haller, B. C. (2011). Broken barriers: Human-induced changes to gene flow and introgression in animals. Bioessays, 33, 508–518.

Director of National Parks. (2010). Norfolk island region threatened species recovery plan. Canberra, Australia: Department of the Environment, Water, Heritage and the Arts.

Dixon, G. B., Davies, S. W., Aglyamova, G. V., Meyer, E., Bay, L. K., & Matz, M. V. (2015). Genomic determinants of coral heat tolerance across latitudes. Science, 348, 1460–1462.

Edmans, S. (1999). Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution, 53, 1757–1768.

Edmans, S. (2007). Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463–475.

Eizaguire, C., & Baltazar-Soares, M. (2014). Evolutionary conservation—evaluating the adaptive potential of species. Evolutionary Applications, 7, 963–967.

Erickson, D. L., & Fenster, C. B. (2006). Intraspecific hybridization and the recovery of fitness in the native legume Chamaecrista fasciculata. Evolution, 60, 225–233.

Erwin, A. (2017). Hybridizing law: A policy for hybridization under the Endangered Species Act. Arizona Legal Studies Discussion Paper, No. 17-04.

Fitzpatrick, S. W., Gerberich, J. C., Angeloni, L. M., Bailey, L. L., Broder, E. D., Torres-Dowdall, J., … Funk, W. C. (2016). Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. Evolutionary Applications, 9, 879–891.

Fogarty, N. D. (2012). Caribbean acroporid coral hybrids are viable across life history stages. Marine Ecology Progress Series, 446, 145–159.

Fogarty, N. D., Hightshoe, M. V., Bock, M. E., Budd, A. F., & Baums, I. B. (2016). Extensive phenotypic variation in Caribbean acroporid hybrids is likely a mechanism for adaptation to changing environments. Presented at the 13th International Coral Reef Symposium, Honolulu, Hawaii.

Frankham, R. (2015). Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24, 2610–2618.

Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology, 25, 465–475.

Fredrickson, R. J., Siminski, P., Woolf, M., & Hedrick, P. W. (2007). Genetic rescue and inbreeding depression in Mexican wolves. Proceedings Biological Sciences, 274, 2365–2371.

Gaffney, O., & Steffen, W. (2017). The Anthropocene equation. The Anthropocene Review, 4, 53–61.
Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-wide declines in Caribbean corals. *Science, 301*, 958–960.

Garnett, S. T., Olsen, P., Butchart, S. H. M., & Hoffmann, A. A. (2011). Did hybridization save the norfolk island boobook owl *Ninox novae-seelandiae undulata?* *Oryx, 45*, 500–504.

Garroway, C. J., Bowman, J., Cascade, T. J., Holloway, G. L., Mahan, C. G., Malcolm, J. R., … Wilson, P. J. (2010). Climate change induced hybridization in flying squirrels. *Global Change Biology, 16*, 113–121.

Guest, J. R., Baird, A. H., Maynard, J. A., Muttakin, E., Edwards, A. J., Campbell, S. J., … Chou, L. M. (2012). Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. *Plos One, 7*, e33353.

Haig, S. M., & Allendorf, F. W. (2006). Hybrids and Policy. In J. M. Scott, D. D. Goble, & F. W. Davis (Eds.), *The endangered species act at thirty* (pp. 150–163). Washington, DC: Island Press.

Hamilton, J. A., & Miller, J. M. (2016). Adaptive introgression as a resource for management and genetic conservation in a changing climate. *Conservation Biology, 30*, 33–41.

Hamilton, J. A., Royauté, R., Wright, J. W., Hodgskiss, P., & Ledig, F. T. (2017). Genetic conservation and management of the California endemic, Torrey pine (*Pinus torreyana Parry*): Implications of genetic rescue in a genetically depauperate species. *Ecology and Evolution, 7*, 7370–7381.

Heber, S., Varsani, A., Kuhn, S., Girg, A., Kempenaers, B., & Briskie, J. (2013). The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. *Proceedings Biological Sciences*, 280, 20122228.

Heiser, D. A., & Shaw, R. G. (2006). The fitness effects of outcrossing in *Calythus serrulatus*, a permanent translocation heterozygote. *Evolution, 60*, 64–76.

Hillebrand, H., Brey, T., Gutt, J., Hagen, W., Metfies, K., Meyer, B., & Lewandowska, A. (2018). Climate change: Warming impacts on marine biodiversity. In M. Salomon & T. Markus (Eds.), *Handbook on Marine Environment Protection : Science, Impacts and Sustainable Management* (pp. 353–373). Cham, Switzerland: Springer International.

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., & Thomas, C. D. (2008). Assisted colonization and rapid climate change. *Science, 321*, 345–346.

Hoffmann, A., Griffin, P., Dillon, S., Catullo, R., Rane, R., Byrne, M., … Sgrò, C. (2015). A framework for incorporating evolutionary genomics into biodiversity conservation and management. *Climate Change Responses, 2*, 1.

Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. *Nature, 470*, 479–485.

Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. I., Sluijs, A., … Williams, B. (2012). The geological record of ocean acidification. *Science, 335*, 1058–1063.

Hufbauer, R. A., Szűcs, M., Kasyon, E., Youngberg, C., Koontz, M. J., Richards, C., … Melbourne, B. A. (2015). Three types of rescue can avert extinction in a changing environment. *Proceedings of the National Academy of Sciences of the United States of America, 112*, 10557–10562.

Hufford, K. M., & Mazer, S. J. (2003). Plant ecotypes: Genetic differentiation in the age of ecological restoration. *Trends in Ecology & Evolution, 18*, 147–155.

Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., … Wilson, S. K. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. *Science, 359*, 80–83.

Jackiw, R. N., Mandil, G., & Hager, H. A. (2015). A framework to guide the conservation of species hybrids based on ethical and ecological considerations. *Conservation Biology, 29*, 1040–1051.

Japaud, A., Fauvelot, C., & Bouchon, C. (2014). Unexpected high densities of the hybrid coral *Acropora prolifera* (Lamarck 1816) in Guadeloupe Island, Lesser Antilles. *Coral Reefs, 33*, 593–593.

Johnson, W. E., Onorato, D. P., Roelke, M. E., Land, E. D., Cunningham, M., Belden, R. C., … O’Brien, S. J. (2010). Genetic restoration of the Florida panther. *Science, 329*, 1641–1645.

Jones, T. A., & Monaco, T. A. (2009). A role for assisted evolution in designing native plant materials for domesticated landscapes. *Frontiers in Ecology and the Environment, 7*, 541–547.

Klein, T., Cahanovic, R., Srinstris, M., Herr, N., & Schiller, G. (2019). A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948–2017. *Forest Ecology and Management, 432*, 840–849.

Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guilaine, F., Bohrer, G., Nathan, R., … Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. *Ecology Letters, 15*, 378–392.

Lind-Riehl, J. F., Mayer, A. L., Wellstead, A. M., & Gailing, O. (2016). Hybridization, agency discretion, and implementation of the U.S. Endangered Species Act. *Conservation Biology, 30*, 1288–1296.

Maynard, J. A., Anthony, K. R. N., Marshall, P. A., & Masiri, I. (2008). Major bleaching events can lead to increased thermal tolerance in corals. *Marine Biology, 155*, 173–182.

Mclachlan, J. S., Hellmann, J. J., & Schwartz, M. W. (2007). A framework for debate of assisted migration in an era of climate change. *Conservation Biology, 21*, 297–302.

Meier, J. I., Marques, D. A., Mwaiko, S., Wagner, C. E., Excoffier, L., & Seehausen, O. (2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. *Nature Communications, 8*, 14363.

Moritz, C., & Agudo, R. (2013). The future of species under climate change: Resilience or decline? *Science, 341*, 504.

Muhfeld, C. C., Kovach, R. P., Jones, L. A., Al-Chokhachy, R., Boyer, M. C., Leary, R. F., … Allendorf, F. W. (2014). Invasive hybridization in a threatened species is accelerated by climate change. *Nature Climate Change, 4*, 620–624.

National Marine Fisheries Service. (2014). Endangered and threatened wildlife and plants: Final listing determinations on proposal to list 66 reef-building coral species and to reclassify elkhorn and staghorn corals. *Federal Register, 79*, 53852–54122.

Newhouse, A. E., Polin-McGuigan, L. D., Baier, K. A., Valletta, K. E. R., Rottmann, W. H., Tschaplinski, T. J., … Powell, W. A. (2014). Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny. *Plant Science, 228*, 88–97.

Orr, H. A. (1996). Dobzhansky, Bateson, and the genetics of speciation. *Genetics, 144*, 1331–1335.

Parda, K. F. I. G. (2014). *Long term fitness of hybridized populations of Drosophila*. Long Beach, CA: California State University.

Pauls, S. U., Nowak, C., Bálint, M., & Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. *Molecular Ecology, 22*, 925–946.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., ... Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. *Science*, 355, eaai9214.

Penin, L., Vidal-Dupiol, J., & Adjeroud, M. (2013). Response of coral assemblages to thermal stress: Are bleaching intensity and spatial patterns consistent between events? *Environmental Monitoring and Assessment*, 185, 5031–5042.

Petit, R. J. (2004). Biological invasions at the gene level. *Diversity and Distributions*, 10, 159–165.

Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R., & Liu, P. (2017). Less than 2°C warming by 2100 unlikely. *Nature Climate Change*, 7, 637.

Richards, Z. T., & Hobbs, J.-P. A. (2015). Hybridisation on coral reefs and the conservation of evolutionary novelty. *Current Zoology*, 61, 132–145.

Roberts, D. G., Gray, C. A., West, R. J., & Ayre, D. J. (2010). Marine genetic swamping: Hybrids replace an obligately estuarine fish. *Molecular Ecology*, 19, 508–520.

Schneider, S. S., Leamy, L. J., Lewis, L. A., & DeGrandi-Hoffman, G. (2003). The influence of hybridization between African and European honeybees, *Apis mellifera*, on asymmetries in wing size and shape. *Evolution*, 57, 2350–2364.

Supple, M. A., & Shapiro, B. (2018). Conservation of biodiversity in the genomics era. *Genome Biology*, 19, 131.

The Ocean Agency. (2018). 50 Reefs. Author, Retrieved from URL https://theoceanagency/50-reefs/

Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. *Trends in Ecology & Evolution*, 16, 330–343.

U.S. v. Kapp. (2005). 419 F.3d 666. United States Court of Appeals, Seventh Circuit.

van Hooidonk, R., Maynard, J., Tamelander, J., Gove, J., Ahmadia, G., Raymundo, L., ... Planes, S. (2016). Local-scale projections of coral reef futures and implications of the Paris agreement. *Scientific Reports*, 6, srep39666.

van Oppen, M. J. H., Gates, R. D., Blackall, L. L., Cantin, N., Chakravarti, L. J., Chan, W. Y., ... Putnam, H. M. (2017). Shifting paradigms in restoration of the world’s coral reefs. *Global Change Biology*, 23, 3437–3448.

van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. *Proceedings of the National Academy of Sciences of the United States of America*, 112, 2307–2313.

van Oppen, M. J. H., Puill-Stephan, E., Lundgren, P., De’ath, G., & Bay, L. K. (2014). First-generation fitness consequences of interpopulational hybridisation in a Great Barrier Reef coral and its implications for assisted migration management. *Coral Reefs*, 33, 607–611.

Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D., & Yates, E. (2010). Assisted migration of plants: Changes in latitudes, changes in attitudes. *Biological Conservation*, 143, 18–27.

Vollmer, S. V., & Palumbi, S. R. (2002). Hybridization and the evolution of reef coral diversity. *Science*, 296, 2023–2025.

Vollmer, S. V., & Palumbi, S. R. (2007). Restricted gene flow in the caribbean staghorn coral *Acropora cervicornis*: Implications for the recovery of endangered reefs. *Journal of Heredity*, 98, 40–50.

vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S., & Rutledge, L. Y. (2018). Redefining the role of admixture and genomics in species conservation. *Conservation Letters*, 11, e12371.

Waples, R. S., Kays, R., Fredrickson, R. J., Pacifici, K., & Mills, L. S. (2018). Is the red wolf a listable unit under the US Endangered Species Act? *Journal of Heredity*, 109, 585–597.

Wayne, R. K., & Shaffer, H. B. (2016). Hybridization and endangered species protection in the molecular era. *Molecular Ecology*, 25, 2680–2689.

Weeks, A., Moro, D., Thavornkanlapachai, R., R Taylor, H., E White, N., Weiser, E., & Heinze, D. (2015). Conserving and enhancing genetic diversity in translocation programs. In D. P. Armstrong, M. W. Hayward, D. Moro, & P. Seddon (Eds.), *Advances in Reintroduction Biology of Australian and New Zealand Fauna* (pp. 127–140). Clayton South, Australia: CSIRO Publishing.

Weeks, A. R., Heinze, D., Perrin, L., Stoklosa, J., Hoffmann, A. A., Rooyen, A., ... Mansergh, I. (2017). Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. *Nature Communications*, 8, 1071.

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., ... Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: A genetic perspective. *Evolutionary Applications*, 4, 709–725.

Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). Genetic rescue to the rescue. *Trends in Ecology & Evolution*, 30, 42–49.

How to cite this article: Chan WY, Hoffmann AA, van Oppen MJH. Hybridization as a conservation management tool. *Conservation Letters*. 2019;12:e12652. https://doi.org/10.1111/conl.12652