RESEARCH PAPER

Synergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants

Dae-Seok Lee1,2, Kwang-Ho Lee1, Sera Jung2, Eun-Jin Jo1, Kyung-Hwan Han4 and Hyeun-Jong Bae1,2,3,*

1 Bio-energy Research Institute, Chonnam National University, Gwangju 500–757, Republic of Korea
2 Department of Forest Products and Technology (Bk21 Program), Chonnam National University, Gwangju 500–757, Republic of Korea
3 Department of Bioenergy Science and Technology, Chonnam National University, Gwangju
4 Department of Plant Molecular Biology, Michigan State University, USA

* To whom correspondence should be addressed: E-mail: baehj@chonnam.ac.kr

Received 5 March 2012; Revised 30 April 2012; Accepted 1 May 2012

Abstract

Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed β-glucosidase (BglIB), xylanase (XyII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which were individually fused with chloroplast-targeting transit peptides and linked via the 2A self-cleaving oligopeptide from foot-and-mouth disease virus (FMDV) as follows: [RsBglB-2A-RaCel5A], [RsXyII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. The enzymes were targeted to chloroplasts in tobacco cells and their activities were confirmed. Similarly to the results of a transient assay using Arabidopsis thaliana protoplasts, when XyII was placed upstream of the 2A sequence, the [RsXyII-2A-RaCel5A] transgenic tobacco plant had a more positive influence on expression of the protein placed downstream. The [RsBglIB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines displayed higher activities towards carboxymethylcellulose (CMC) compared to those in the [RsXyII-2A-RaCel5A] transgenic line. This higher activity was attributable to the synergistic effects of the different cellulases used. The [RsBglIB-2A-RaCel5A] lines exhibited greater efficiency (35–74\% increase) of CMC hydrolysis when the exoglucanase CBHII was added. Among the various exoglucanases, E3 showed higher activity with the crude extract of the [RsBglIB-2A-RaCel5A] transgenic line. Transgenic expression of 2A-mediated multiple enzymes induced synergistic effects and led to more efficient hydrolysis of lignocellulosic materials for bioethanol production.

Key words: 2A-mediated polyproteins, cellulase, enzymic hydrolysis, lignocellulosic biomass, molecular farming, plant expression.

Introduction

Surging oil prices and pressing demand to reduce greenhouse gas emissions are driving technological innovations for cost-effective production of alternative energy sources such as bioethanol. Lignocellulosic biomass, the most abundant renewable resource on Earth, is an attractive raw material for producing bioethanol, as it does not compete with the food and animal feed industries and produces significantly lower greenhouse gas emissions compared to corn-based bioethanol, electricity, or hydrogen (Charles, 2009). However, the requirement for pretreating a lignocellulosic biomass to enhance enzyme accessibility to the cell-wall polymers and costly saccharification by enzymic hydrolysis are the main limiting factors for the economic production of bioenergy from this important feedstock.
Efficient conversion of lignocellulosic biomass to fermentable sugars by enzymic hydrolysis requires three cellulose-degrading enzymes (β-1,4-endoglucanase, β-1,4-exogluccanases, and β-α-glucosidase), two hemicellulose-digesting enzymes (xylanase and xylosidase), and other enzymes involved in debranching side chains (e.g., arabinofuranosidase, fumeric acid esterase, glucuronidase, and acetyl xylan esterase) (Lee et al., 2011; Margolles-Clark, 1996; Saha et al., 2003). Production of lignocellulose hydrolysis enzymes by conventional microbial fermentation methods is not cost-effective for the saccharification of lignocellulosic biomass. Hence, the feasibility of using plants as alternative bioreactors for low cost, large-scale production of recombinant proteins has been investigated (Streetfield, 2007; Jung et al., 2010). Plant-based production of recombinant proteins is estimated to be achievable at 2–10% of the cost of microbial fermentation systems and at 0.1% of the cost of mammalian cell culture systems (Twyman et al., 2003; Kamenarova et al., 2005). Endo-β-1,4-glucanase is recovered at levels >16% of total soluble protein (TSP) in single transgenic maize seed (Hood et al., 2007) and comprises up to 26% of TSP when produced in the apoplasts of Arabidopsis thaliana leaves (Ziegler et al., 2000). Accumulation of β-glucosidase (BglB) from Thermotoga maritima in chloroplasts of tobacco leaves accounts for 5.8% of TSP (Jung et al., 2010).

Another strategy for cost-efficient enzymic hydrolysis is to apply enzyme synergism to the heterogeneous lignocellulosic biomass to produce fermentable sugars. Verma et al. (2010) demonstrated that plants can be used to efficiently produce various enzymes for preparing a cocktail solution consisting of endoglucanase, β-glucosidase, swolenlin, xylanase, and acetyl xylan esterase and observed synergistic effects among the enzymes in the degradation of filter paper, pinewood, and orange peel. These results suggest that simultaneous expression of multiple enzymes in plants could increase the degradation efficiency of lignocellulosic materials, reduce enzyme production cost, and provide a more convenient enzyme harvest compared to single heterogeneous enzyme expression in plants.

The 2A self-cleaving oligopeptide from foot-and-mouth disease virus (FMDV), which comprises 18 amino acids, mediates cleavage or polyprotein dissociation at its C-terminus during the translation of multiple 2A-linked proteins in the ribosome (Donnelly et al., 2001; Samalova et al., 2006). The cleaving efficiency of the 2A-mediated polyprotein system has been studied using various reporter proteins such as green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescence protein, and β-glucuronidase in various cell types (Felipe et al., 2003; Samalova et al., 2006), as well as targeting to various subcellular localizations in HEla and plant cells (Amrani et al., 2004; Felipe and Ryan, 2004; Samalova et al., 2006). Most 2A sequence studies have used reporter genes to characterize the self-cleavage activity of 2A sequences in plant cells with few exceptions, such as applications for metabolic engineering using multiple enzymes that involve carotenoids biosynthesis in tobacco and tomato leaves (Ralley et al., 2004) and in rice endosperm (Ha et al., 2010).

The plant chloroplast is an attractive organelle to sequester hydrolysis enzymes to avoid deleterious effects during plant development and to increase stable accumulation in plant (Jin et al., 2003; Dai et al., 2005). However, a test for targeting up- and downstream proteins of 2A to chloroplasts in an in vivo system has not been described in detail. The protoplast system was tested to confirm whether the current study’s protein expression system with the FMDV 2A sequence was coexpressed and colocalized to the targeted organelle. Polypeptides consisting of β-glucosidase (BglB) and endoglucanase (Cel5A) from Thermotoga maritima, xylanase (XylIII) from Trichoderma reesei, and exoglucanase (E3) from Thermomonospora fusca linked to the FMDV 2A sequence were coexpressed in tobacco plant chloroplasts and shown to have the potential of hydrolysing cellulose through synergistic effects of the coexpressed enzymes. Although plants have been previously used as bioreactors, this work provides a biotechnological example of the coexpression of multiple hydrolysis enzymes for efficient biomass degradation.

Materials and methods

Construction of 2A expression cassettes

Primers for 2A sequences (sense: 5'-AGCTTCAGTTCTGAACATT-GACCTGTCAAGTGAGAGGTGAGTCAGCCACCCTGCGCTCG-3'; antisense: 5'-TGGACGAGCCAGGTGAGTCCAGCCTCTCTGCGCAATTTGACAGTCAAAAGGTCTCAGAA-GCTGA-3') were used to introduce HindIII and SalI restriction enzyme sites into the 326 3G transient expression vector. PCR fragments of GFP and RFP were introduced into the 326 3G 2A-mediated polyprotein vector at BamHI–HindIII or NotI–HindIII sites, respectively, after ligation into pC 2.1 Topo vector (K4500-40, Invitrogen). 326 3G [GFP-2A-RFP] and [RFP-2A-GFP] vectors were constructed and used as backbone vectors for the following procedure. Transient expression and targeting of FMDV 2A-mediated polyproteins to the chloroplast (Kim et al., 2010), were fused to the N-terminal of the reporter genes, constructing the vectors 326 3G [RsGFP-2A-RaRFP] and [RsRFP-2A-RaGFP]. Xylanase (XylIII, accession X69574) cloned from Trichoderma reesei was substituted for reporter genes placed at the restriction enzyme sites, BamHI–HindIII or NotI–XhoI, constructing the vectors 326 3G [RsXyIII-2A-RaGFP] and [RsRFP-2A-RaXyIII]. Eventually, four transient expression vectors, [RsGFP-2A-RaRFP], [RsRFP-2A-RaGFP], [RsGFP-2A-RaXyIII], and [RsXYIII-2A-RaGFP], were constructed to analyse 2A self-cleavage activity and targeted to the chloroplast in protoplasts isolated from A. thaliana plants.

The 326 3G [RsGFP-2A-RaRFP] vector was used as a backbone vector for the construction of binary vector pCambia 2300 [RsBglII-2A-RaCel5A], [RsE3-2A-RaCel5A], and [RsXYIII-2A-RaCel5A]. The reporter genes BglB1 (AE000512), β-glucosidase from Thermotoga maritima, XylII, and E3 (U18978) were cloned from Thermomonospora fusca into the polylinker at the front of the 2A sequence using the BamHI and HindIII restriction enzyme sites in the 326 3G transient expression vector. The gene Cel5A (AE000512), endoglucanase from Thermotoga maritima was substituted for the RFP gene placed between the NotI and XhoI restriction enzyme sites. 326 3G [RsBglII-2A-RaCel5A], [RsE3-2A-RaCel5A], and [RsXYIII-2A-RaCel5A] were cut by restriction enzymes Xbal or Apol or Kpnl, and the fragments were introduced into binary vector pCambia 2300. The primers are presented in Table 1.

Transient expression and targeting of FMDV 2A-mediated polypeptides to the chloroplast

DNA of the 2A-mediated polyprotein vectors [RsGFP-2A-RaRFP], [RsRFP-2A-RaGFP], [RsGFP-2A-RaXYIII], and [RsXYIII-2A-RaGFP] were prepared using the Plasmid Maxi kit (12163, Qiagen), and protoplasts were isolated from whole A. thaliana seedling after growing for
3 weeks using enzyme solution [0.4 M mannitol, 8 mM CaCl$_2$, 5 mM MES-KOH (pH 5.6), 1% cellulase RS10 (216011, Yakult Honsha), 0.25% macerozyme R-10 (202042, Yakult Honsha)]. Each DNA (15 µg) was introduced into the protoplasts by c polyethylene glycol (PEG)-mediated transformation (Jin et al., 2001). Accumulation of GFP placed at anterior and posterior positions of 2A sequence were monitored for 12, 24, and 36 hours after transformation, and images were detected using an inverted microscope (Eclipse TE2000-U, Nikon). Protein extracts were prepared from the transformed protoplast for Western blot analysis with anti-GFP, -RFP, and -T7 primary antibodies, respectively.

Agrobacterium tumefaciens-mediated transformation of tobacco leaf discs

Leaf discs (0.5–1 cm2) of tobacco seedlings (Nicotiana tabacum) grown on MS media (1–4.4 g MS medium including vitamin, 20 g sucrose, 8 g agar, pH 5.7) were prepared and incubated with Agrobacterium tumefaciens GV3013 transformed with individual 2A-mediated polyprotein vectors, pCambia 2300 [RsBglB-2A-RaCel5A], [RsE3-2A-RaCel5A], and [RsXylII-2A-RaCel5A].

Enzyme activity assay

Activity assays for β-glucosidase (BglB), endoglucanase (Cel5A), xylanase (XylII), and exoglucanase (E3) in total soluble protein (30 µg) extracted from young leaf of the transgenic lines, [RsBglB-2A-RaCel5A], [RsE3-2A-RaCel5A], and [RsXylII-2A-RaCel5A] were performed in 1 ml citrate buffer (pH 5.0) or phosphate buffer (pH 7.0) containing 5 mM pNPG, 1% oat spelt xylan, 1% (w/v) carboxymethylcellulose (CMC), or 50 mg filter paper (5 mm × 5 mm) at 50 or 80 °C for 1 hour. The amount of p-nitrophenol (pNP) liberated was determined at 405 nm after addition of 500 mM Na$_2$CO$_3$. Reducing sugars liberated from oat spelt xylan, CMC, and filter paper were measured at 550 nm after boiling with DNS solution [1% (w/v) dinitrosalicilic acid, 0.05% (w/v) sodium sulphite, 2% (w/v) Rochelle salt (C$_6$H$_7$K$_2$NaO$_4$·4H$_2$O), 0.2% (w/v) phenol, 2% (w/v) NaOH], and quantified according to standard curves for pNP, xylose, and glucose, respectively. All enzyme activities were measured 3–5 times for reproducibility.
Synergistic effects of transgenic plants with cellulases on CMC or filter paper

For exoglucanase preparation, E3 (Cel6B) from \textit{Thermomonospora fusca} was subcloned into pCold I Expression vector (TaKaRa) for expression in \textit{Escherichia coli} (Lee et al., 2011) and E6 (Cel48A) from \textit{Thermomonospora fusca}, and the CBH I and CBHII genes from \textit{Aspergillus flavus} were individually introduced into the vector pPICZaA for expression in \textit{Pichia pastoris}. The recombinant plasmids were linearized by restriction with \textit{PmeI} and transformed into \textit{P. pastoris}-competent cells by electroporation. The transformants were selected on YPDZ solid media (1% yeast extract, 2% peptone, 1% glucose, 1 M sorbitol, 300 g ml$^{-1}$ zeocin (R250–05, Invitrogen), 2% agar). A single colony was inoculated in 20 ml YPG broth (1% yeast extract, 2% peptone, 1% (v/v) glycerol). Cells were pelleted by centrifugation at 200 g for 5 min and transferred to 200 ml YPG broth in a 500 ml shake flask and incubated for 24–36 hours. The pelleted cells were finally incubated in 500 ml YP media (1% yeast extract, 2% peptone) with 1% methanol for induction.

Cell lysates from \textit{E. coli} expression (E3) and enzyme supernatants from yeast expression (E6, CBHII, and CBHIII) were purified through the Ni-NTA agarose column (30230, Qiagen). Exoglucanase activity was tested with 3 MM filter paper as substrate under optimal conditions: pH 7.0 and 50 °C for E3 and E6, and pH 5.0 and 50 °C for CBH I and CBHII. One unit was defined as the amount of enzyme producing 0.07–0.08 mg reducing sugars ml$^{-1}$ in 1 hour.

For transgenic plant preparation and synergistic effect tests, transgenic lines 2, 6, 24, 32, and 34 of [RsBglB-2A-RaCel5A] were tested with purified CBHII on CMC and 3MM filter paper. A total of 30 µg total soluble protein extracted from each line was incubated with 1 unit of CBHII in 1 ml citrate-phosphate buffer (pH 5.0) containing an individual substrate (CMC or 3MM filter paper) at 50 °C for 1 hour.

The synergistic effects of line 6 and exoglucanases (E3, E6, CBHII, and CBHIII) were analysed by measuring the amount of reducing sugars released from CMC by each enzyme combination in 1 ml citrate-phosphate (pH 5) or phosphate buffer (pH 7.0) at 50 °C for 1 hour. Reducing sugars released were measured by the DNS method, as previously described.

Results

Transient expression and chloroplast targeting

Transient expression cassettes were constructed with transit peptides fused to the N-terminus of GFP, RFP, and xylanase to determine 2A self-cleavage activity and chloroplast targeting in \textit{Arabidopsis} protoplasts (Fig. 1A). The 2A self-cleavage activity was carried out efficiently in all constructs during the posttranslational process. Self-cleavage activity was higher when GFP or XyIII, but not RFP, was located in front of the 2A sequence. XyIII seemed to have a greater influence than that of GFP on the expression of the protein located at the anterior position of the 2A sequence (Fig. 1B). GFP signals observed in chloroplasts confirmed the posttranslational chloroplast targeting of the proteins encoded at the anterior and posterior positions within 2A-mediated polyproteins (Fig. 1C).

Coexpression of cellulose degradation enzymes and detection of chloroplast targeting in tobacco plants

The genes that encode enzymes that have major roles in the hydrolysis of lignocellulosic material include \textit{BglB}, \textit{Cel5A}, \textit{XyIII}, and \textit{E3}. These were used to construct a 2A-mediated coexpression system under the control of the CaMV 3SSS promoter (Fig. 2A). The transgenic lines of [RsBglB-2A-RaCel5A], [RsXyIII-2A-RaCel5A], [RsE3-2A-RaCel5A] were confirmed by genomic DNA PCR with gene-specific primers (Fig. 2B).

A coexpression test of individual [RsBglB-2A-RaCel5A] transgenic line was carried out by Western blotting analysis with BglB and Cel5A primary antibodies. Simultaneous expression of BglB and Cel5A was detected as discrete proteins from a single open reading frame driven by the CaMV 35S promoter in the transgenic tobacco plants. The BglB protein placed upstream of the 2A sequence was expressed at a higher level than that of Cel5A. Total soluble proteins extracted from selected transgenic lines of [RsXyIII-2A-RaCel5A] and [RsE3-2A-RaCel5A] were separated by SDS-PAGE, and Western blotting was used to detect expression of Cel5A placed downstream of the 2A sequence (Fig. 3). The Cel5A protein from the [RsXyIII-2A-RaCel5A] transgenic plants was expressed at a higher level than the Cel5A protein from the [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines, suggesting that the XyIII placed upstream of the 2A sequence might have positively affected the expression of downstream proteins in the transgenic tobacco plants as well as in \textit{A. thaliana}. A full-size band (~80 kDa) corresponding to the uncleaved polyprotein was detected in younger seedlings of the [RsXyIII-2A-RaCel5A] line (Supplementary Fig. S2) but was not detected or weakly detected in the protein extracts from mature transgenic plants before or after flowering (Fig. 3B). In E3-fused 2A-mediated polyprotein lines, Cel5A expression was estimated to be less than that of [RsXyIII-2A-RaCel5A] and [RsBglB-2A-RaCel5A]. Yield of Cel5A accounted for up to ~8% of total soluble protein in the [RsXyIII-2A-RaCel5A] line 20 (Fig. 4A).

Electron microscopy and immunogold labelling with specific polyclonal antibody to Cel5A were used to localize the chloroplast-targeted Cel5A protein. Cel5A was mainly detected in chloroplasts of the [RsXyIII-2A-RaCel5A] transgenic line (Fig. 4B).

Activity of discrete hydrolysing enzymes in transgenic plants

Total soluble proteins were prepared from selected transgenic lines of [RsBglB-2A-RaCel5A], [RsXyIII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. TSP (30 µg) was used for the enzyme activity assays with the following substrates: pNPG for BglB, oat spelt xylan for XyIII, CMC for Cel5A, and 3 MM filter paper for E3. Each transgenic line displayed BglB and Cel5A activity with pNPG and CMC, respectively, except line 24, which showed only BglB activity (Fig. 5A). Xylanase and endoglucanase activity with oat spelt xylan and CMC were also measured successfully, with TSPs extracted from the transgenic lines that coexpressed XyIII and Cel5A (Fig. 5B). Also observed were exoglucanase and endoglucanase activities in [RsE3-2A-RaCel5A] transgenic plants (Fig. 5C). In addition, the [RsXyIII-2A-RaCel5A] transgenic line showed the highest Cel5A expression level, which was about 4–8 times (and in some cases, much higher) that of the completely cleaved Cel5A of [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A], but exhibited the lowest cellulase activity on CMC (Fig. 6A). This result demonstrated that the interactions between Cel5A and BglB, and between E3 and Cel5A, yielded a higher degree of synergism compared to the single activity of Cel5A on CMC (Fig. 6B).
Fig. 1. Transient assay of 2A-mediated polyproteins in Arabidopsis thaliana protoplasts. (A) Schematic representation of the expression vectors used for protoplast transformation. (B) Analysis of expression pattern of 2A-mediated polyproteins consisting of green fluorescent protein (GFP), red fluorescent protein (RFP), and XylII-fused with transit peptide. Transit peptides (Rs, Rubisco small subunit; Ra, Rubisco activase) were used to target chloroplasts. GFP and RFP were detected by Western blotting using anti-GFP and -RFP primary antibodies. XylII was detected by anti-T7 primary antibody. Asterisk denotes the full size of the polyprotein, and arrows indicate discrete proteins from polyproteins. (C) Targeting of chloroplasts by polyprotein-fused transit peptides was observed by GFP signals. In the control, arrowhead indicates a GFP-transformed protoplast; non-transformants were not detected. CaMV 35S, Cauliflower mosaic virus promoter; GFP, green fluorescent protein; RFP, red fluorescent protein; XylII, xylanase gene from Trichoderma reesei; 2A, self-cleavage sequence of foot-and-mouth disease virus; T7, T7 epitope tag; tNos, nopaline synthase terminator (this figure is available in colour at JXB online).
Synergistic effect of [RsBglB-2A-RaCel5A] transgenic lines with exoglucanase

The [RsBglB-2A-RaCel5A] transgenic lines 2, 6, 32, and 34 exhibited efficient hydrolysis activity (35–74% increase) when exoglucanase CBHII was added. All transgenic lines showed low activity when filter paper was used as the substrate (Fig. 7A).

The preparation of enzyme cocktails combining diverse cellulases requires optimal conditions. Table 2 shows the properties of each enzyme used in this study. The synergistic effects of the enzyme cocktail in combination with the transgenic line 6 protein extract and exoglucanases was higher at pH 5.0 for the CMC substrate, and in particular, E3 supplementation showed the highest activity at pH 5.0. Unexpectedly, adding CBHII to the line 6 extract reduced endoglucanase and \(\beta \)-glucosidase activity for digesting CMC (Fig. 7B).

Discussion

The introduction of multiple genes linked by the FMDV 2A sequence into plants is a more versatile and simpler strategy than conventional methods, such as sexual crossing, retransformation, cotransformation, or the use of directly linked transgenes (Halpin et al., 2001). In the enzymic hydrolysis of lignocellulosic materials with multiple hydrolysis enzymes, 2A self-cleavage polyproteins offer an attractive expression system to achieve low-cost enzyme production and the synergistic effect of multiple enzymes expressed in one transgenic plant. Previous reports have shown that 2A cleavage activity displays wider sequence-specific variation in plants than in animal cells and is influenced by the upstream protein of the 2A sequence (Ryan et al., 1999; Samalova et al., 2006; Felipe et al., 2010). Amrani et al. (2004) demonstrated that two proteins in the evolving complex of photosystem II, dissociated by activity of 2A self-cleavage, were targeted to chloroplasts.
Fig. 3. Western blot analysis of 2A-mediated polyproteins transformed in tobacco plants. Total soluble protein extracted from each transgenic line was separated using SDS-PAGE and detected by individual incubation with the BglB or Cel5A primary antibodies for the [RsBglB-2A-RaCel5A] transgenic line (A) and with the Cel5A primary antibody for the transgenic lines [RsXylII-2A-RaCel5A] (B) and [RsE3-2A-RaCel5A] (C). Arrows indicate BglB (~80 kDa) and its degradation band (~48 kDa). Dots are mature (~41 kDa) and partial degradation protein (38.5 kDa) of chloroplast-targeted Cel5A. Asterisks denote nonspecific bands.
in an in vitro system. The current study found that proteins placed downstream of 2A fused with transit peptides of Rubisco activase at the N-terminus were targeted to Arabidopsis and tobacco plant chloroplasts, and moreover, XylII placed upstream of 2A had a positive impact on the expression of second-position genes in both plants. In [RsXylII-2A-RaCel5A] transgenic plants, 2A activity showed a different pattern, depending on the developmental stage of the transgenic plants. Full-length bands (~80 kDa) of RsXylII-2A-RaCel5A were detected in young transgenic line seedlings (Supplementary Fig. S2). However, the bands almost disappeared in older transgenic lines near the flowering stage (Fig. 3B). One can assume that 2A is more active at a more mature developmental stage or that separation is more efficient by stromal processing peptidase (SPP) when the full-length peptide of [RsXylII-2A-RaCel5A] was translocated into the chloroplast of mature plants. Another construct, [RaXylII-2A-GFP], showed that GFP dominantly accumulated in the cytoplasm after 2A self-cleavage and then targeted to chloroplasts. This result indicated that the discrete downstream-protein-fused transit peptide (RaCel5A) was released first into the cytoplasm after 2A self-cleavage and then targeted to chloroplasts. This suggests that 2A-cleavage activity and expression of downstream proteins can be modulated by plant developmental stage as well as by upstream proteins, as shown in an in vitro translation system and an animal system (Donnelly et al., 2001; Felipe et al., 2010).

The importance of spacer length between the transit peptide and the foreign protein to transport into the stroma and for efficient processing by SPP has been reported (Jin et al., 2003). Additionally, stepwise degradation patterns of chloroplast-targeting endoglucanase (E1) in transgenic tobacco plants were reported (Dai et al., 2005). The current study observed degradation bands (~48 kDa) of BglB targeted to chloroplasts, by protease in stroma. Different patterns of chloroplast-targeted Cel5A degradation were detected when compared to BglB degradation. Cel5A was fused to its N-terminus with 80 amino acids of Rubisco activase transit peptide. The upper band was the mature form (~40 kDa) cleaved by SPP at amino acid position 55 of the transit peptide when the Cel5A protein was sorted into chloroplasts. The lower band was anticipated to be formed as a
partial transit peptide (25 amino acids, ~3 kDa) but remained in the mature form and was further degraded by a particular protease inside the chloroplasts. The activity and accumulation of BglB and Cel5A with transit peptide in the chloroplasts of tobacco plants have been reported previously (Jung et al., 2010; Kim et al., 2010; Mahadevan

Fig. 5. Activity assays for endoglucanase (Cel5A) and β-glucosidase (BglB, A), xylanase (XylII, B), and exoglucanase (E3, C) extracted from leaves of the transgenic lines [RsBglB-2A-RaCel5A], [RsE3-2A-RaCel5A], and [RsXylII-2A-RaCel5A]. Crude extracts were incubated with pNPG for BglB, CMC for Cel5A, oat spelt xylan for XylII, and filter paper for E3. Controls denoted as dashed lines are the mean value of each crude extract that was incubated without substrate. WT, Wild-type plant.
et al., 2011), as has XyII accumulation via dual targeting to chloroplasts and peroxisomes in A. thaliana (Bae et al., 2006). The current study successfully coexpressed the cellulase genes linked by the 2A self-cleavage sequence [RsBglB-2A-RaCel5A] and [RsXyII-2A-RaCel5A] and observed synergistic activity of the proteins expressed in the [RsBglB-2A-RaCel5A] and [RsXyII-2A-RaCel5A].

Fig. 6. Comparison of Cel5A expression levels with CMC degradation activity and HPLC analysis of reducing sugars produced by the coexpression enzymes. (A) Intensities of bands detected by Western blotting with Cel5A primary antibody measured using UTHSCSA Image Tool 2.00. The Western blot procedure was repeated five times during the growth period. (B) HPLC profiles of end products released by hydrolysis enzymes analysed after incubation with a crude extract (30 µg) of individual transgenic plants and CMC at optimum conditions for 1 hour. B/C, [RsBglB-2A-RaCel5A]; X/C, [RsXyII-2A-RaCel5A]; E/C, [RsE3-2A-RaCel5A]; WT, wild type.
lines and Cel5A that was ~8% of TSP in transgenic [RsXylII-2A-RaCel5A] line 20. However, the expression of exoglucanase in bacteria or plants is prone to difficulties, including a lack of expression or lower expression levels compared to the expression of endoglucanase and β-glucosidase because of gene silencing or unsuitable codon usage. This is particularly true of plants. The E3 expression level with localization in the cytosol ranges up to ~0.02% of TSP in tobacco plants and 0.001–0.002% in alfalfa (Ziegelhoffer et al., 1999). However, maize has been used to optimize the first 40 amino acid codons of the CBH1 gene from Trichoderma koningii, which was expressed in transgenic seed at up to 3.2–9% of TSP (Hood et al., 2007), but plants expressing exoglucanase have been rarely reported. Yasuda et al. (2005) reported that GLP-1, a
small glucagon-like peptide 1 with rice-optimized codons, as well as transcripts of endogenous GluBl, is not detected in transgenic rice plants due to siRNA-mediated gene silencing. However, the chimeric constructs GFP-mGLP-1 and GFP-2A-mGLP-1 were highly expressed in transgenic rice seeds because gene silencing was avoided. The current study successfully transformed the chimeric construct [RsE3-2A-RaCel5A] into tobacco plants. This result indicated that the E3 exoglucanase of [RsE3-2A-RaCel5A] was expressed in tobacco plants, although the expression level was slightly lower than that of BglB, as predicted, in accordance with the ratio between BglB and Cel5A in the [RsBglB-2A-RaCel5A] lines. While comparing Cel5A expression and the activity of [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A], this study found a synergistic effect between BglB and Cel5A in the [RsBglB-2A-RaCel5A] lines. Between E3 and Cel5A in the [RsXylII-2A-RaCel5A] lines. The ensemble of transgenic [RsBglB-2A-RaCel5A] lines 2, 6, 32, and 34 with CBHI exoglucanase resulted in 35–74% increase in hydrolysis activity compared to the activity of each line without the CBHIIII supplement. In contrast, the synergistic effect did not occur in line 24, which showed only β-glucosidase activity due to the loss of the initial action of endoglucanase during CMC hydrolysis. Ng et al. (2011) reported that supplementing β-glucosidase from Taiwanese fungi into an enzyme mixture of Trichoderma reesei, which consisted of the main cellulase enzymes CBH1, CBHIII, and EG2 (representing 60, 20, and 12% of the mixture, respectively), enhanced the efficiency of hydrolysis into fermentable sugars. Supplementation with a hemicellulase cocktail containing the side-chain degradation enzymes, endoglucanase, and β-glucosidase of a microbe-produced enzyme mixture of Trichoderma reesei or Trichoderma viride led to more efficient degradation of lignocellulosic biomass and enhanced CMC hydrolysis into glucose and cellobiose.

The preparation of enzyme cocktails containing several enzymes from different origins requires optimal conditions for their activity and synergy. As shown in Table 2, exoglucanases E3 and E6 exhibited optimal activity at pH 7.0 and 50 °C, BglB and Cel5A at pH 5.0 and 80 °C, and CBHI and CBHIII at pH 5 and 50 °C. This study tested the activities of diverse combinations of the extract of the [RsBglB 2A RaCel5A] transgenic line 6 with CBHI, CBHIII, E3, and E6 at pH 5 and 50 °C. As shown in Fig. 7B, synergistic effects with exoglucanases including E3 and CBHIII were induced at pH 5.0 and 50 °C. Notably, E3 displayed higher synergistic activity than CBHIII at pH 5.0 and 50 °C, whereas CBHI seemed to inhibit BglB and Cel5A activity. Supplemental enzyme selection can be considered to induce synergistic effects.

Low-cost enzyme production is important for bioethanol production to be economically competitive. Plant-based enzyme production may achieve this goal because of several advantages including lower scale-up cost. Enzyme production was studied in transgenic plants expressing [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A], involving multiple enzyme expression systems linked to the 2A sequence, which produced 2A-mediated self-cleavage polypeptides with synergistic effects on substrate hydrolysis. The coexpression of lignocellulose hydrolysis enzymes linked to the 2A sequence in plants, consisting of debranching enzymes, as well as cellulase and xylanase, is a novel low-cost enzyme system that provides efficient hydrolysis of lignocellulosic materials, as does a plant-based supplemental enzyme system added to the enzyme mixture produced from fungi, such as T. reesei.

Supplementary material

Supplementary data are available at JXB online.

Supplementary Fig. S1. Transient assay of [RsXylII-GFP] and [RaXylII-2A-GFP] in Arabidopsis protoplasts.

Supplementary Fig. S2. Western blotting analysis of Cel5A expressed in the [RsXylIII-2A-RaCel5A] transgenic lines.

Supplementary Fig. S3. Synergistic effects of [RsBglB-2A-RaCel5A] transgenic line 24.

Acknowledgements

This work was supported by Priority Research Centers Program (2012-0005857) and the World Class University project (R31-2009-000-20025-0) through the National Research Foundation.

Table 2. Summary of hydrolysis enzyme properties

Enzyme	Origin	Family	M₅ (kDa)	Temp (°C)	pH	Reference
TIXyII	Trichoderma reesei	GH 11	24.5	50	5.0	Wong and Saddler (1992)
TmCel5A	Thermotoga maritima	GH 5	24.5	50	5.0	Törnönen and Rouvinen (1995)
TmCel5A	Thermotoga maritima	GH 5	37.6	8.0	4.8	Pereira et al. (2010)
TmCel5A	Thermotoga maritima	GH 5	37.6	8.0	4.8	Mahadevan et al. (2008)
TIE3	Thermomonomospora fusca	GH 6	59.6	60	7.0	Zhang et al. (1995)
TIE6	Thermomonomospora fusca	GH 48	104	40–50	6.0	Irwin et al. (2000)
ACBHI	Aspergillus flavus	–	54.1	50	5.0	–
ACBHI	Aspergillus flavus	–	49.6	50	5.0	–
TmBglB	Thermotoga maritima	GH 3	81.1	85	5.0	Goyal et al. (2001)

References

et al. (2006); Lee et al. (2009-000-20025-0) through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology to H-JB. YGL and SRJ are grateful for the BK21 programme provided by the Ministry of Education.

References

Amrani A, Barakate A, Askari BM, Li AX, Roberts AG, Ryan MD, Halpin C. 2004. Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiology 135, 16–24.

Bae H, Lee DS, Hwang I. 2006. Dual targeting of xylanase to chloroplast and peroxisomes as a means to increase protein accumulation in plant cells. Journal of Experimental Botany 57, 161–169.

Charles D. 2009. Corn-based ethanol flunks key test. Science 324, 587.

Dai Z, Hooker BS, Quesenberry RD, Thomas SR. 2005. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Research 14, 627–643.

Donnelly MLL, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD. 2001. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. Journal of General Virology 82, 1013–1025.

Felipe PD, Hughes LE, Ryan MD, Brown JD. 2003. Co-translational, intraribosomal cleavage of polypeptide by the foot-and-mouth disease virus 2A peptide. The Journal of Biological Chemistry 278, 11441–11448.

Felipe PD, Luke GA, Brown JD, Ryan MD. 2010. Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnology Journal 5, 213–223.

Felipe P, Ryan MD. 2004. Targeting of proteins derived from self-processing polyproteins containing multiple signal sequences. Traffic 5, 616–628.

Goyal K, Selvakumar P, Hayashi K. 2001. Characterization of a thermostable β-glucosidase (BglB) from Thermotoga maritima showing transglycosylation activity. Journal of Molecula Catalysis B: Enzymatic 15, 45–53.

Ha SH, Liang YS, Jung H, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK. 2010. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnology Journal 8, 928–938.

Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD. 2001. Enabling technologies for manipulating multiple genes on complex pathways. Plant Molecular Biology 47, 295–310.

Hood EE, Love R, Lane J, et al. 2007. Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnology Journal 5, 709–719.

Irwin DC, Zhang S, Wilson DB. 2000. Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermofusca. European Journal of Biochemistry 267, 4988–4997.

Jin JB, Kim YA, Kim SJ, Lee SH, Kim DH, Cheong GW, Hwang I. 2001. A new Dynamin-like protein, ADL6, is involved in trafficking from the trans-golgi network to the central vacuole in Arabidopsis. The Plant Cell 13, 1511–1525.

Jin R, Richter S, Zhong R, Lamppa GK. 2003. Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Molecular Biology 51, 493–507.

Jung S, Kim S, Bae H, Lim HS, Bae HJ. 2010. Expression of thermostable bacterial β-glucosidase (BglB) in transgenic tobacco plants. Bioresource Technology 101, 7144–7150.

Kamenarova K, Abumhadi N, Gecheff K, Atanassov A. 2005. Molecular farming in plants: an approach of agricultural biotechnology. Journal of Cell and Molecular Biology 4, 77–86.

Kim S, Lee DS, Choi IS, Ahn SJ, Kim YH, Bae HJ. 2010. Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Research 19, 489–497.

Lee DS, Wi SG, Lee YG, Cho EJ, Chung BY, Bae HJ. 2011. Characterization of a new α-l-arabinofuranosidase from Penicillium sp. LYG 0704, and their application in lignocelluloses degradation. Molecular Biotechnology 49, 229–239.

Mahadevan SA, Wi SG, Lee DS, Bae HJ. 2008. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiology Letters 287, 205–211.

Mahadevan SA, Wi SG, Kim YO, Lee KH, Bae HJ. 2011. In planta differential targeting analysis of Thermotoga maritima Cel5A and CBM6-engineered Cel5A for autohydrolysis. Transgenic Research 20, 877–886.

Margolles-Clark E. 1996. Molecular characterization of side-chain cleaving hemicellulases of Trichoderma reesei. VTT Publications 276, 1–83.

Ng IS, Tsai SW, Ju YM, Yu SM, Ho THD. 2011. Dynamic synergistic effect on Trichoderma reesei cellulase by novel β-glucosidases from Taiwanen fungi. Bioresource Technology 102, 6073–6081.

Pereira JH, Chen Z, McAndrew RP, Sapra R, Chhabra SR, Sale KL, Simmons BA, Adams PD. 2010. Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. Journal of Structural Biology 172, 572–379.

RALLEY L, Enfissi EMA, Misawa N, Schuch W, Mramley PM, Fraser PD. 2004. Metabolic engineering of ketocarotenoid formation in higher plants. The Plant Journal 39, 477–486.

Ryan M, Donnelly M, Lewis A, Mehrotra AP, Wilkie J, Gani D. 1999. A model for nonstoichiometric, cotranslational protein scission in higher plants. Plant Molecular Biology 38, 877–886.

Saha BC. 2003. Hemicellulase bioconversion. Journal of Industrial Microbiology and Biotechnology 30, 279–291.

Samalova M, Fricker M, Moore I. 2006. Ratiometric fluorescence-imaging assays of plant membrane traffic using polyproteins. Traffic 7, 1701–1723.

Streatfield SJ. 2007. Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnology Journal 5, 2–15.

Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigouillot JC. 2006. Enzymatic saccharification of wheat straw for bioethanol production.
by a combined cellulase xylanase and feruloyl esterase treatment. *Journal of Industrial Microbiology and Biotechnology* **39**, 897–902.

Törrönen A, Rouvinen J. 1995. Structural comparison of two major endo-1,4-xylanase from *Trichoderma reesei*. *Biochemistry* **34**, 847–856.

Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R. 2003. Molecular farming in plants: host systems and expression in technology. *Trends in Biotechnology* **21**, 570–578.

Verma D, Kanagaraj A, Jin S, Singh DN, Kolattukudy PE, Daniel H. 2010. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. *Plant Biotechnology Journal* **8**, 1–19.

Wong KKY, Saddler JN. 1992. *Trichoderma* xylanases, their properties and application. *Critical Reviews in Biotechnology* **12**, 413–435.

Yasuda H, Tada Y, Hayashi Y, Jomori T, Takaiwa F. 2005. Expression of the small peptide GLP-1 in transgenic plants. *Transgenic Research* **14**, 677–684.

Zhang S, Lao G, Wilson DB. 1995. Characterization of a *Thermomonospora fusca* exocellulase. *Biochemistry* **14**, 3386–3395.

Ziegler MT, Thomas SR, Danna KJ. 2000. Accumulation of a thermostable endo-1–4-β-d-glucanase in the apoplast of *Arabidopsis thaliana* leaves. *Molecular Breeding* **6**, 37–46.

Ziegelhoffer T, Will J, Austin-Phillips S. 1999. Expression of bacterial cellulase genes in transgenic alfalfa (*Medicago sativa* L.), potato (*Solanum tuberosum* L.) and tobacco (*Nicotiana tabacum* L.). *Molecular Breeding* **5**, 309–318.