What is the Impact of Novel Coronavirus Disease 2019 Pandemic on Orthopedic Surgeons?: Experience from a Single Institution of South Korea

Gi Beom Kim
Yeungnam University School of Medicine and College of Medicine

Oog-Jin Shon
Yeungnam University School of Medicine and College of Medicine

Jeong Jin Park
Yeungnam University Medical Center

Sun-Mi Lee
Bumin Hospital Busan

Gun Woo Lee (gwlee1871@gmail.com)
Yeungnam University School of Medicine and College of Medicine

Research article

Keywords: Novel coronavirus disease 19, Orthopaedic surgeons, Psychologic impact, Preventive surgeries

DOI: https://doi.org/10.21203/rs.3.rs-35264/v1

License: © ☐ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: This study aimed to investigate the cancellation rate and trend of orthopedic surgery at the main institution in Daegu, Korean epicenter of novel coronavirus disease 19 (COVID-19), and to analyze the psychologic status of the healthcare workers in the orthopedic division during the COVID-19 pandemic. Moreover, we sought to assess the outcomes of the preventive surgeries underwent in patients suspected to have COVID-19.

Methods: Cancellation rates of elective surgeries over three months since the first confirmed COVID-19 case in South Korea on January 20, 2020 were investigated. Moreover, the number of elective surgeries conducted in the same period over the last two years was compared. Four different questionnaires were used to investigate psychologic impact among health care workers in the orthopedic department. The surveyed outcomes according to occupation and type of work were compared. Urgent preventive surgeries underwent in patients who could not wait for the results of the COVID-19 diagnosis were also investigated.

Results: During the pandemic, spine and hip surgery had relatively lower cancellation rates, and elective surgeries were significantly reduced compared to the same period in the last two years. The surveyed outcomes of the psychological questionnaires were within the normal range and there were no significant differences between groups. After preventive surgeries, the virus did not spread to all medical staff involved.

Conclusions: During the COVID-19 pandemic, the cancellation rate of orthopedic elective surgeries was significantly higher than in the same period of the previous year, and was different for each subdivision depending on the degree of pain or disability experienced by the patient. Health care workers in the orthopedic division did not seem to have significant psychological distress; rather, a decrease in workload appears to be a positive factor in their mental health. Preventive surgery performed in specialized facilities did not spread the virus to involved medical staff.

Background

Since the initial report of the novel coronavirus disease (COVID-19) from Wuhan, China in December 2019, the spread of pandemic continues to explode worldwide [1]. Health care workers, including clinicians and nurses from around the world, are struggling to manage the many COVID-19 patients. Since their first confirmed case in January 20 2020, South Korea has been severely burdened with COVID-19, showing a rapid increase in case numbers over the last few months [2, 3]. Particularly, the epicenter of Daegu, located in southeastern South Korea, has experienced a rapid spread of COVID-19 that has been attributed to a confirmed case on February 19, 2020, which was related to subsequent super spreading at a church service [2, 4, 5].

A challenging crisis such as the COVID-19 can cause psychological issues including fright, anxiety, uncertainty, and loneliness that affects not only infected patients, but also the health care workers who treat them [6, 7]. During this national disaster, assessing the psychological status of health care workers associated with diagnosis, treatment, and care for COVID-19 patients, as well as considering optimal support for these workers, are issues of top priority [8, 9]. Furthermore, the relationship between the type of COVID-19 services provided by a health care worker and degree of psychological stress have not been fully understood. Some studies showed that non-frontline workers have less psychological stress in comparison with frontline workers [10, 11], but vice versa in other studies [12, 13]. Particularly, in order to minimize the risk and negative influence of this disaster in orthopedic health care, it is necessary to acknowledge the effect of COVID-19 on surgeons’ work and mental status; however, no studies have yet reported an impact of COVID-19 on orthopedic surgeons.

In a pandemic such as COVID-19, orthopedic surgery is not a priority, and thus, appears to be less relevant during this urgent situation. In most countries, elective orthopedic procedures are recommended to be delayed [12, 14, 15]. Moreover, the demand for orthopedic care has decreased due regulations such as social distancing and home isolation that prevent the transmission of COVID-19. Nevertheless, some orthopedic emergent surgeries have no choice but to be performed, and in such situations, the preliminary settings or strategies of the operation room (OR) should take extreme measures to reduce the risk of viral transmission [16, 17]. However, most countries still have not provided guidance regarding the continuation of orthopedic procedures during the COVID-19 pandemic. Furthermore, to date, there has been a paucity of literature on orthopedic surgery related to COVID-19.
Therefore, the purpose of this study is to investigate the cancellation rate and trend of orthopedic surgery at the main institute in Daegu, the Korean epicenter of COVID-19, and to analyze the psychologic status of the healthcare workers in the orthopedic division during the COVID-19 pandemic. Moreover, we sought to assess the outcomes of the preventive surgeries underwent in patients suspected to have COVID-19.

Methods

Source of data

Data were collected from a single institution at Daegu, the epicenter of COVID-19 in South Korea, for three months since January 20, 2020, when the first case was confirmed in South Korea. This study was approved by the institutional review board of our hospital, and written informed consent was provided by all survey participants prior to their enrollment. All information was retrieved from the institution's medical records, including detailed information such as primary diagnosis, surgical procedure, use of specialized facilities (including negative pressure environments), whether the operation was performed, and if COVID-19 was diagnosed. During the COVID-19 pandemic, our institution established a guideline to routinely perform a COVID-19 diagnostic test in all patients requiring surgery from the outpatient clinic or emergency room. (Table 1). Patients requiring urgent procedures that could not wait for COVID-19 results and diagnosis underwent surgical treatment with preventive measures, such as employing a temporary negative pressure room and a mobile negative pressure tent for patient transport in a specific OR complex with special facilities (Fig. 1). These patients were relocated to wards based on the results of the COVID-19 diagnosis after surgery.

Table 1

Recommendations from Our Institution for Management of Elective Surgical Procedures During COVID-19 Pandemic
A. Target patients and procedures
(It is important to detect suspicious patients before the elective surgeries)
1. During the COVID-19 pandemic period, it is not necessary to reschedule elective surgeries.
2. Always! Confirmation of COVID-19 screening in all patients undergoing elective surgeries: even in asymptomatic patients
3. COVID-19 screening is included in the pre-operative evaluation, and is prescribed and paid in outpatient clinic.
4. After payment, a screening test label is obtained from a laboratory.
5. The day before hospitalization, the patient should visit the Drive-thru screening room in our hospital and wait after collecting a sample, until confirming it.
6. After confirming the COVID-19 negative, the patient can proceed with the admission procedure.
7. If symptoms are suspected, the operation should be postponed until a negative result is confirmed.
8. Always! If the diagnostic test is positive, the operation must be postponed until a negative result is confirmed and symptoms improve.
B. Test items
1. Test Name: COVID-19 Confirmation Test (Test Code: TQ125)
2. Test Options
: No symptoms of COVID-19: 'Nasal and throat' only
: If suspicious symptoms of COVID-19, or suspect COVID-19: Both 'Nasal and throat' and 'Sputum'

*If the samples are received by 10 a.m., the results can be notified by 3 p.m. on the same day.

Influence on elective surgeries
“Elective surgery” is defined as a pre-planned procedure that provides medically unnecessary or non-emergent surgery which, if delayed, does not place a patient's immediate health, safety, or wellbeing at risk, or contribute to the worsening of a life-threatening medical condition [12, 15]. During events such as a pandemic, cancellation rates of elective surgeries for each orthopedic subdivision were compared. In addition, the difference in the number of surgeries in each subdivision during the same period over the past two years was also compared.

Mental health care measures among orthopedic health care workers

In regard to the psychologic impact of the COVID-19 outbreak in South Korea, we assessed the severity of symptoms of anxiety, depression, and distress in orthopedic health care workers of our institution. Accordingly, we surveyed orthopedic health care workers using four different questionnaires, including the Hamilton Anxiety Rating Scale (HAM-A) (range, 0 – 56) [18], the 22-item impact of event scale-revised (IES-R) scores (range, 0 – 88) [19], the Korean version of the Beck Depression Inventory-II (K-BDI-II) (range, 0 – 63) [20], and the short form-12 (SF-12) health survey including physical and mental components (range, 12 – 58) [21]. The total scores of these measurements were interpreted as follows: HAM-A, normal (< 18), mild (18 – 24), moderate (25 – 29), severe (≥ 30) anxiety; IES-R, normal (0 – 8), mild (9 – 25), moderate (26 – 43), and severe (44 – 88) distress; K-BDI-II, normal (< 9), mild (10 – 15), moderate (16 – 23), severe (≥ 24) depression. Each category was based on values established in the literature [18–20]. Furthermore, we compared the outcomes according to occupation (physician or nurse), and type of work (faculty staff, resident physician, or nurse).

Outcomes of preventive surgeries

Generally, elective surgeries on non-COVID-19 patients in our institution were assigned to the main OR complex. Patients suspected to have COVID-19 underwent preventive surgery in a specific OR complex separated from the main complex with facilities such as negative pressure environments and personal protective equipment (Fig. 1) [12, 16]. Additionally, patients in need of urgent procedures who could not wait for COVID-19 results and diagnosis underwent preventive surgery in a separate OR complex. During the study period, we investigated the details of preventive surgeries and the presence of postoperative COVID-19 transmission of operation-related staffs.

Statistical methods

Data analysis was performed using IBM SPSS software (version 23; IBM, Armonk, NY), and continuous data were expressed as means with ranges. The Kolmogorov-Smirnov test was utilized to evaluate all dependent variables for normality of distribution and equality of variance. Moreover, data was also analyzed using nonparametric tests based on normality. Between the groups, continuous variables were compared by Mann-Whitney U test and Kruskal-Wallis test depending on the normality of distribution. Categorical variables were compared using Chi square or Fisher's exact test. A p-value < 0.05 was considered statistically significant.

Results

Cancellation of elective surgery and changes of surgery conducted

Among a total of 151 elective surgeries during a reference period of January 20, 2020 – April 20, 2020, 84 cases (55.6%) were delayed due to COVID-19 and the remaining 67 (44.4%) were conducted as scheduled (Table 2). During the COVID-19 pandemic period compared to the same period in the past two years, elective surgeries at the institution significantly decreased (p = 0.003) (Fig. 2).
Table 2
Cancellation of Elective Surgeries in Outpatient Clinic (2020.1.20 – 2020.4.20)*

	Total scheduled surgeries	Canceled surgeries	Surgeries conducted	Cancellation rate (%)
Spine	27	9	18	33.3
Hip	4	1	3	25.0
Knee	36	20	16	55.6
Foot and ankle	33	22	11	66.7
Upper extremity (shoulder, elbow, and hand)	31	15	16	48.4
Tumor and Etc.†	20	17	3	85.0
Total	151	84	67	55.6

*Data are presented as numbers

†Tumor and Etc. included musculoskeletal tumor surgeries, primary closure, incision and drainage, and removal of k-wires requiring local anesthesia.

Psychological impact on health care workers in orthopedic division

In total, 48 health care workers in the orthopedic division (16 men and 32 women) answered the questionnaire. The average age was 35.9 years (range, 22 - 60 years). All physicians participating in the survey were men, and all nurses were women. Although IES-R showed mild distress, most of psychological outcomes were within the normal range and there were no significant differences between the groups according to occupation or type of work (Table 3).
Table 3
Comparison of Psychologic Impact on Health Care Workers in Orthopaedic Division

Category	Total	Men	Women	P value	Physician	Nurse	P value	Faculty staff	Resident physician	Nurse	P value
No. (%)	48 (100)	16 (33.3)	32 (66.7)		16 (33.3)	32 (66.7)		8 (16.7)	8 (16.7)	32 (66.7)	
Age (years)	35.9 (22 – 60)	38.8 (27 – 60)	33.7 (23 – 56)	0.004	38.8 (27 – 60)	33.7 (23 – 56)	0.004	45.5 (36 – 60)	32.1 (27 – 36)	33.7 (23 – 56)	0.002
HAM-A (Anxiety)	10.9 (0 – 35.0)	7.9 (1.0 – 27.0)	12.4 (0 – 35.0)	0.435	7.9 (1.0 – 27.0)	12.4 (0 – 35.0)	0.435	4.0 (1.0 – 10.0)	11.9 (3.0 – 27.0)	12.4 (0 – 35.0)	0.100
IES-R (Distress)	14.6 (0 – 45.0)	12.1 (1.0 – 45.0)	15.8 (0 – 45.0)	0.405	12.1 (1.0 – 45.0)	15.8 (0 – 45.0)	0.405	5.5 (2.0 – 13.0)	18.8 (1.0 – 45.0)	15.8 (0 – 45.0)	0.161
K-BDI-II (Depression)	6.3 (0 – 22.0)	6.5 (1.0 – 22.0)	6.2 (0 – 19.0)	0.422	6.5 (1.0 – 22.0)	6.2 (0 – 19.0)	0.422	4.9 (2.0 – 8.0)	8.1 (1.0 – 22.0)	6.2 (0 – 19.0)	0.653
SF-12 (Health-related QOL)	43.4 (36 – 50)	43.7 (42.0 – 47.0)	43.2 (36.0 – 50.0)	0.357	43.7 (42.0 – 47.0)	43.2 (36.0 – 50.0)	0.357	43.4 (42.0 – 47.0)	43.4 (42.0 – 47.0)	43.2 (36.0 – 50.0)	0.402

*Data are presented as mean with range

HMA-A, Hamilton Anxiety Rating Scale; IES-R, the 22-item impact of event scale-revised; K-BDI-II, the Korean version of the Beck Depression Inventory-II; SF-12, short form-12; QOL, quality of life

Emergent surgery for patients suspected to have COVID-19

During the study period, a total of 47 preventive surgeries were performed at the hospital. The majority of preventive surgeries (19 cases) were performed in the orthopedic surgery unit, followed by general surgery and other units (Table 4). All patients had a fever of 37.7 – 38.7 °C, and nine patients had respiratory symptoms such as cough or sputum. Among these, only one patient suffering from a diabetic foot was confirmed as COVID-19-positive after surgery; however, all medical staff involved in the operation tested negative.
Department	No. (%)
GS	16 (34.0)
NS	5 (10.6)
ENT	4 (8.5)
PS	3 (6.4)
OS	19 (40.4)
	Spine infection, 8 (17.0)
	Fracture around hip 4 (8.5)
	Multiple trauma, 4 (8.5)
	Diabetic foot, 3 (6.4)
Total	47

GS, general surgery; NS, neurosurgery; ENT, ear, nose, and throat; PS, plastic surgery; OS, orthopaedic surgery

Discussion

The most notable findings in the current study indicate that the cancellation rate of elective procedures in the orthopedic department was significantly higher during the COVID-19 pandemic compared to the same period of the previous year or before the outbreak of this virus. Furthermore, the discontinuation of elective procedures was significantly different for each subdivision. During the same period, the mental health status of health care workers in the orthopedic division did degrade significantly according to the outcomes of the psychological questionnaires. Additionally, there were no significant differences in psychological outcomes according to occupation or type of work. Although there was one postoperative patient that tested positive for COVID-19, the virus was not transmitted to health care workers who were involved in the operation, including surgeons.

To date, the cancellation rate of elective surgery in orthopedic divisions during viral epidemic outbreaks such as COVID-19 has not been reported. The cancellation may be due to the public health awareness or individual patient needs. There have been no established guidelines regarding cancellation of orthopedic procedures in South Korea during the COVID-19 pandemic. Since some cases are ambiguous, the guidelines and decision-making often depend on the individual hospital system or surgeon. Meanwhile, several states in the United States have recommended the minimizing, delay, or cancellation of non-essential elective surgical, endoscopic, dental, and orthopedic procedures as much as possible [12, 22, 23]. In the current study, the cancellation rate in the spine subdivision was the lowest, which is likely due to the high degree of pain and disability of patients, compared to those suffering from knee, foot, or ankle injuries.

Several previous studies have reported on the mental health status of health care workers during viral epidemic outbreaks such as COVID-19, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS) [6, 7, 24, 25]. During this period, medical staff in direct contact with infected patients consistently have a fear of infection. Accordingly, such outbreaks of epidemics may cause severe emotional distress, anxiety, depression, and post-traumatic stress among health care workers [6, 26]. Particularly, it has been reported that clinicians may have more fundamental psychological distress from such epidemics compared to other health care professionals [11, 27]. However, in the current study, health care workers in the orthopedic division did not demonstrate severe mental health issues according to the conducted surveys. Moreover, although some studies reported psychological differences according to type or level of work [10, 11], there were no significant differences in the current study. It is
thought that health care workers in orthopedic surgery, who are non-frontline workers that rarely directly treat COVID-19 patients, may not have severe emotional distress. Additionally, the reduction in demand for orthopedic care due to the COVID-19 pandemic seems to benefit orthopedic health care workers in regard to mental health. A recent study reported some advantages for orthopedic surgeons during this calamity, including more time for personal stress relief, time away from the radiation exposure, the opportunity to finish pending research, and more time with their family [28].

When performing surgery on patients suspected of having COVID-19, specialized facilities such as isolation OR, negative pressure mechanisms, and personal protective equipment are essential (Fig. 1) [16]. These measures can optimize the quality of care provided to patients infected with COVID-19 and minimize the risk of viral transmission to other patients or health care workers. We performed preventive surgery in patients who were suspected of having COVID-19 without confirming the results of the diagnosis due to a time-sensitive urgency for surgery. Although one patient was confirmed positive after surgery, the virus was not transmitted to the medical staff involved.

This study has some limitations. First, the scope of the study is limited. This study collected data related to orthopedic surgery at the main medical institution in Daegu. Therefore, it may be difficult to generalize the results of the current study to all regions of South Korea or Asia. Nevertheless, data from Daegu, the epicenter of South Korea, a representative country of the early COVID-19 outbreak, can be a good reference for medical staff in other regions. Second, since the study was based on three months of data since the first confirmation of COVID-19, it lacks long-term follow-up results. Although the current mental health status of orthopedic surgeons is reported to have no major problems, it is possible that health care workers may experience a severe deterioration in psychological state as the pandemic continues. Therefore, follow-up of long-term psychological symptoms for these subjects is needed.

Nevertheless, this study suggests some valuable information for many health care workers, including orthopedists, during the COVID-19 pandemic. (1) To date, this study is the first to report the cancellation rate of elective procedures in orthopedic division during the COVID-19 pandemic; (2) Health care workers, such as orthopedic surgeons, who rarely treat patients infected with COVID-19 directly, report to have less psychologic stress. Furthermore, it showed that the pandemic may be a positive factor in mental health for orthopedic health care workers, as their overall workload was reduced; and (3) In patients suspected of having COVID-19, performing preventive surgery in special facilities equipped with negative pressure environments or personal protective equipment could prevent the transmission to involved health care workers.

Conclusions
During the COVID-19 pandemic, the cancellation rate of orthopedic elective surgeries was significantly higher than in the same period of the previous year, and differed for each subdivision depending on the degree of pain or disability reported by patients. Health care workers in the orthopedic division did not report significant psychological distress; rather, subjects reported a decreased workload to be a positive factor in their mental health. Preventive surgery performed in specialized facilities prevented the spread of virus to involved medical staff.

Abbreviations
COVID-19: novel coronavirus disease; OR: operation room; HAM-A: Hamilton Anxiety Rating Scale; IES-R: 22-item impact of event scale-revised scores; K-BDI-II: Korean version of the Beck Depression Inventory-II; SF-12: short form-12 health survey; SARS: severe acute respiratory syndrome; MERS: Middle East respiratory syndrome

Declarations
Acknowledgement
We would like to thank Editage (www.editage.cn) for English language editing.
Authors’ contribution

GWL and GBK conceptualized, collected and interpreted the clinical data, and wrote the manuscript. GWL, GBK, OJS, JJP, SML interpreted the clinical data and revised the manuscript critically for important content. All authors read and approved the manuscript.

Funding

This work was supported by 2019 Yeungnam University Research Grant. The funder had no role in the study design, data collection and analysis, and study progression.

Availability of data and materials

Date that support the findings of this study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The protocol of present study was approved by the medical ethics committee of Yeungnam University Medical Center. The study was conducted in compliance with the Declaration of Helsinki. Informed consent for this study was obtained from all participants by both written and verbal.

Consent for publication

The written informed consents were obtained from all participants to use their data and accompanying images for publication.

Competing interest

The authors declare that they have no conflicts of interest in the authorship and publication of this contribution.

References

1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020.
2. Shim E, Tariq A, Choi W, Lee Y, Chowell G: Transmission potential and severity of COVID-19 in South Korea. Int J Infect Dis 2020.
3. Yoo J-H: The fight against the 2019-nCoV outbreak: an arduous march has just begun. J Korean Med Sci 2019, 35(4).
4. Ryall J: Coronavirus: Surge in South Korea virus cases linked to church 'super-spreader'. The Telegraph 2020.
5. Bostock B: South Korea is testing 200,000 members of a doomsday church linked to more than 60% of its coronavirus cases. Business Insider 2020.
6. Xiang Y-T, Yang Y, Li W, Zhang L, Zhang Q, Cheung T, Ng CH: Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry 2020, 7(3):228-29.
7. Park S-C, Park YC: Mental health care measures in response to the 2019 novel coronavirus outbreak in Korea. Psychiatry Investig 2020, 17(2):85.
8. Lai J, Ma S, Wang Y, Cai Z, Hu J, Wei N, Wu J, Du H, Chen T, Li R: Factors associated with mental health outcomes among health care workers exposed to Coronavirus disease 2019. JAMA Netw Open 2020, 3(3):e203976-e76.
9. Perlis RH: Exercising Heart and Head in Managing Coronavirus Disease 2019 in Wuhan. JAMA Netw Open 2020, 3(3):e204006-e06.

10. Lu Y-C, Chang Y-Y, Shu B-C: Mental symptoms in different health professionals during the SARS attack: A follow-up study. Psychiatr Q 2009, 80(2):107.

11. Chang H-J, Huang N, Lee C-H, Hsu Y-J, Hsieh C-J, Chou Y-J: The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS. Am J Public Health 2004, 94(4):562-64.

12. Illinois Department of Public Health. COVID-19 - elective surgical procedure guidance. 2020.

13. Li Z, Ge J, Yang M, Feng J, Qiao M, Jiang R, Bi J, Zhan G, Xu X, Wang L: Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control. Brain Behav Immun 2020.

14. Control CfD, Prevention: Interim guidance for healthcare facilities: Preparing for community transmission of COVID-19 in the United States. In.; 2020.

15. Desantis R: State of Florida Office of the Governor. Executive Order Number 20-72. Emergency management—COVID-19—non-essential elective medical procedures. In.; 2020.

16. Wong J, Goh QY, Tan Z, Lie SA, Tay YC, Ng SY, Soh CR: Preparing for a COVID-19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Can J Anesth 2020:1-14.

17. Wen X, Li Y: Anesthesia Procedure of Emergency Operation for Patients with Suspected or Confirmed COVID-19. Surg Infect (Larchmt) 2020, 21(3):299.

18. Maier W, Buller R, Philipp M, Heuser I: The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders. J Affect Disord 1988, 14(1):61-68.

19. Weiss DS: The impact of event scale: revised. In: Cross-cultural assessment of psychological trauma and PTSD. edn.: Springer; 2007: 219-38.

20. Lim S-Y, Lee E-J, Jeong S-W, Kim H-C, Jeong C-H, Jeon T-Y, Yi M-S, Kim J-M, Jo H-J, Kim J-B: The validation study of Beck Depression Scale 2 in Korean version. Anxiety Mood 2011, 7(1):48-53.

21. Ware Jr JE, Kosinski M, Keller SD: A 12-item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical Care 1996:220-33.

22. R D: State of Florida Office of the Governor. Executive Order Number 20-72. Emergency management—COVID-19—non-essential elective medical procedures. In.; 2020.

23. Surgeons. ACo: COVID-19: recommendations for management of elective surgical procedures. 2020.

24. Lee SM, Kang WS, Cho A-R, Kim T, Park JK: Psychological impact of the 2015 MERS outbreak on hospital workers and quarantined hemodialysis patients. Compr Psychiatry 2018, 87:123-27.

25. Phua D, Tang H, Tham K: Coping responses of emergency physicians and nurses to the 2003 severe acute respiratory syndrome outbreak. Acad Emerg Med 2005, 12(4):322-28.

26. Cabello IR, Echavez JFM, Serrano-Ripoll MJ, Fraile-Navarro D, de Roque MAF, Moreno GP, Castro A, Perez IR, Campos RZ, Goncalves-Bradley D: Impact of viral epidemic outbreaks on mental health of healthcare workers: a rapid systematic review. medRxiv 2020.

27. Lung F, Lu Y, Chang Y, Shu B: Mental symptoms in different health professionals during the SARS attack: a follow-up study. Psychiatry Q. 2009; 80 (2): 107–16. In.

28. Haleem A, Javaid M, Vaishya R, Vaish A: Effects of COVID-19 pandemic in the field of orthopaedics. J Clin Orthop Trauma 2020.

Figures
Figure 1

(A) Mobile negative pressure tent applied in a patient with suspected to have COVID-19. (B, C) OR with a negative pressure environment in the isolated specific OR complex separated from the main complex for elective surgeries. (D) When performing preventive surgery in patients with multiple trauma suspected of having COVID-19, all medical staffs involved in the surgery must wear personal protective equipment, such as a protective suit.
Comparison of The Number of Elective Surgeries Conducted
In The Same Period Over The Last Two Years in Our Institution

	2018.1.20 – 2018.4.20	2019.1.20 – 2019.4.20	2020.1.20 – 2020.4.20	p-value
Spine	61	68	18	
Hip	76	72	3	
Knee	245	223	16	
Foot and ankle	162	204	11	
Upper extremity (shoulder, elbow, and hand)	94	115	16	
Tumor	57	65	15	
Total	637	676	79	0.003

Figure 2

Comparison of the number of elective surgeries conducted in the same period over the last two years in our institution (p=0.003) (Fig. 2).