CONTACT STRUCTURE ON 2-STEP NILPOTENT LIE GROUPS

BABAK HASANZADEYE SEYEDI

Abstract. In this paper we study contact structure on 2-step nilpotent Lie groups. We consider properties of normal subgroups and center of Lie groups while cosymplectic and Sasakian structure defined on Lie group.

1. Introduction

Let \tilde{M} be an odd dimensional Riemannian manifold with a Riemannian metric g and Riemannian connection $\tilde{\nabla}$. Denote by TM the Lie algebra of vector fields on \tilde{M}. Then \tilde{M} is said to be an almost contact metric manifold if there exist on \tilde{M} a tensor ϕ of type $(1,1)$, a vector field ξ called structure vector field and η, the dual 1-form of ξ satisfying the following

\begin{equation}
\phi^2X = -X + \eta(X)\xi, \quad g(X, \xi) = \eta(X)
\end{equation}

\begin{equation}
\eta(\xi) = 1, \quad \phi(\xi) = 0, \quad \eta \circ \phi = 0
\end{equation}

\begin{equation}
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)
\end{equation}

For any $X, Y \in T\tilde{M}$. In this case

\begin{equation}
g(\phi X, Y) = -g(X, \phi Y)
\end{equation}

Now, let M be a submanifold immersed in \tilde{M}. A normal almost contact manifold is called a cosymplectic manifold if

\begin{equation}
(\tilde{\nabla}_X \phi)(Y) = 0, \quad \tilde{\nabla}_X \xi = 0
\end{equation}

Theorem 1.1 An almost contact metric structure (ϕ, ξ, η, g) is Sasakian if and only if

\begin{equation}
(\nabla \phi)Y = g(X, Y)\xi - \eta(Y)X
\end{equation}

The Riemannian metric induced on M is denoted by the same symbol g. Let TM and $T^\perp M$ be the Lie algebras of vector fields tangential and normal to M respectively, and ∇ be the induced Levi-Civita connection on M, then the Gauss and Weingarten formulas are given by

\begin{equation}
\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y)
\end{equation}

\begin{equation}
\tilde{\nabla}_X V = -A_X V + \nabla^\perp_X V
\end{equation}

1991 Mathematics Subject Classification. Primary 53B40, Secondary 53C60.

Key words and phrases. contact structure, Lie group, nonsingular, skew adjoint.
for any $X, Y \in TM$ and $V \in T^\perp M$. Where ∇^\perp is the connection on the normal bundle $T^\perp M$, h is the second fundamental form and A_V is the Weingarten map associated with V as

$$g(A_V X, Y) = g(h(X, Y), V)$$

(1.9)

For any $x \in M$ and $X \in T_x M$, we write

$$\phi X = \Psi X + \Gamma X$$

(1.10)

where $\Psi X \in T_x M$ and $\Gamma X \in T^\perp_x M$. Similarly, for $V \in T^\perp_x M$, we have

$$\phi V = \psi V + \gamma V$$

(1.11)

where ψV (resp. γV) is the tangential component (resp. normal component) of ϕV. From (1.4) and (1.9), it is easy to observe that for each $x \in M$, and $X, Y \in T_x M$

$$g(\Psi X, Y) = -g(X, \Psi Y)$$

(1.12)

and therefore $g(\Psi^2 X, Y) = g(X, \Psi^2 Y)$ which implies that the endomorphism $\Psi^2 = Q$ is self adjoint. Moreover, it can be seen that the eigenvalues of Q belong to $[-1, 0]$ and that each non-vanishing eigenvalue of Q has even multiplicity. We define $\nabla \Psi, \nabla Q$ and ∇N by

$$((\nabla^\perp \Psi) Y = \nabla_X \Psi Y - \Psi \nabla_X Y$$

(1.13)

$$((\nabla_X Q) Y = \nabla_X Q Y - Q \nabla_X Y$$

(1.14)

$$((\nabla_X N) Y = \nabla^\perp_X N Y - N \nabla_X Y$$

(1.15)

for any $X, Y \in TM$.

2. PRELIMINARIES

Definition 1.1. A Lie group G is a smooth manifold with group structure such that

$$((i) G \times G \mapsto G (ii) G \mapsto G$$

$$(x, y) \mapsto xy \quad x \mapsto x^{-1}$$

(2.1)

Are smooth.

Definition 1.2. Let G is a Lie group and $a \in G$, thus

$$L_a : G \mapsto G$$

$$x \mapsto ax$$

(2.2)

is called left translation with a. Also map

$$R_a : G \mapsto G$$

$$x \mapsto xa$$

(2.3)

Is called right translation with a. Let G is a Lie group. Vector field X on G is left invariant if

$$L_a(X) = X \quad \forall a \in G$$

(2.4)

And that is right invariant if

$$R_a(X) = X \quad \forall a \in G$$

(2.5)
Difinition 1.3. A Lie group H of a Lie group G is a subgroup which is also a submanifold.

Difinition 1.4. Here $F = \mathbb{R}$ or \mathbb{C}. A Lie algebra over F is pair $(\mathfrak{g}, [\cdot, \cdot])$, where \mathfrak{g} is a vector space over F and

$$
[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}
$$

is an F-bilinear map satisfying the following properties

$$
[X, Y] = -[Y, X]
$$

(2.6)

is the Jacobi identity. In this paper for any $X, Y \in \mathfrak{g}$ we have

$$
[X, Y] = \nabla_X Y - \nabla_Y X
$$

(2.9)

A Lie subalgebra of a Lie algebra is a vector space that is closed under bracket.

Theorem 1.1. Let G is a Lie group and \mathfrak{g} is a set of left invariant vector field on G. We have

(i) \mathfrak{g} is a vector space and map

$$
E : \mathfrak{g} \to T_e G
$$

$$
X \mapsto X_e
$$

is a linear isomorphism and therefore $\dim \mathfrak{g} = \dim T_e G = \dim G$. (e is identity element)

(ii) Left invariant vectro fields necessity are differentiable.

(iii) $(\mathfrak{g}, [\cdot, \cdot])$ is Lie algebra. [6]

Difinition 5.1. Lie algebra made of left invariant vector field on Lie group G is called Lie algebras \mathfrak{g} of G. This Lie algebra is isomorphism with $T_e G$, and we have

$$
[X_e, Y_e] = [X, Y]_e
$$

(2.10)

X and Y are unique left invariant vector field.

Theorem 2.1. Let G be a Lie group. [6]

(a) If H is a Lie subgroup of G, then $\mathfrak{h} \simeq T_e H \subset T_e G \simeq \mathfrak{g}$ g is a Lie subalgebra.

(b) If $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra, there exists a unique connected Lie subgroup $H \subset G$ with Lie algebra \mathfrak{h}.

For each nonzero vector field $X \in \mathfrak{g}$, the angle $\theta(X)$; $0 \leq \theta(X) \leq \frac{\pi}{2}$; between ϕX and \mathfrak{g} is called the Wirtinger angle of X. If the Wirtinger angle θ is a constant its called slant angle of \mathfrak{g}. Let $H \subset G$ is a Lie subgroup and \mathfrak{h} is their Lie algebra, thus \mathfrak{h} is Lie subalgebra of \mathfrak{g} and if \mathfrak{h} is a slant Lie subalgebra, H is called slant Lie subgroup.

If (G,\mathfrak{g}) be a Lie group equipted by Riemannian metric, ad is skew adjoint if for $X, Y, Z \in \mathfrak{g}$, if

$$
g(adX(Y), Z) = -g(Y, adX(Z))
$$

If $X \in Z(\mathfrak{g})$ and $Y, z \in \mathfrak{g}$ we have

$$
X\langle Y, Z \rangle = \langle \nabla_{Y+Z} X, Y \rangle
$$

Theorem 2.3. Let \mathfrak{g} be a left invariant metric on a connected Lie group G. This metric will also be right invariant if and only if $ad(X)$ is skew-adjoint for every
\[X \in \mathfrak{g}. \]

Definition 3.1. A nilpotent Lie group is a Lie group \(G \) which is connected and whose Lie algebras is nilpotent Lie algebra \(\mathfrak{g} \), that is, its Lie algebra have a sequence of ideals of \(\mathfrak{g} \) by \[\mathfrak{g}^0 = \mathfrak{g}, \mathfrak{g}^1 = [\mathfrak{g}, \mathfrak{g}], \mathfrak{g}^2 = [\mathfrak{g}, \mathfrak{g}^1], \ldots, \mathfrak{g}^i = [\mathfrak{g}, \mathfrak{g}^{i-1}]. \] \(\mathfrak{g} \) is called nilpotent if \(\mathfrak{g}^n = 0 \) for some \(n \).

Proposition 3.1. \[\text{Let } \mathfrak{g} \text{ be a Lie algebra.} \]

(i) If \(\mathfrak{g} \) is a nilpotent, then so are all subalgebras and homomorphic images of \(\mathfrak{g} \).

(ii) If \(\mathfrak{g} \) is nilpotent, then so is \(\mathfrak{g} \).

(iii) If \(\mathfrak{g} \) is nilpotent and nonzero, then \(\mathfrak{Z}(\mathfrak{g}) \neq 0 \).

Definition 3.2. A finite dimensional Lie algebra \(\mathfrak{g} \) is 2-step nilpotent if \(\mathfrak{g} \) is not abelian and \([\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]] = 0 \). A Lie group \(G \) is 2-step nilpotent if its Lie algebra \(\mathfrak{g} \) is 2-step nilpotent. In the other word A Lie algebra \(\mathfrak{g} \) is 2-step nilpotent if \([\mathfrak{g}, \mathfrak{g}] \) is non zero and Lies in the center of \(\mathfrak{g} \).

We may identify an element of \(\mathfrak{g} \) with a left invariant vector field on \(G \) since \(T_eG \) may be identified with \(\mathfrak{g} \). If \(X, Y \) are left invariant vector field on \(G \), then \(\nabla_X Y \) is left invariant also. for \(X, Y \in Z^\perp(\mathfrak{g}) \) we have following formula: \[\nabla_X Y = \frac{1}{2}[X, Y] \]

Definition 3.3. A 2-step nilpotent Lie algebra \(\mathfrak{g} \) is nonsingular if \(\text{ad}X : \mathfrak{g} \to \mathfrak{Z}(\mathfrak{g}) \) is surjective for each \(X \in Z^\perp(\mathfrak{g}) \). A 2-step nilpotent Lie group \(G \) is nonsingular if its Lie algebra \(\mathfrak{g} \) is nonsingular.

Let \(G \) denote a simply connected, 2-step nilpotent Lie group with a left invariant metric \(\langle \cdot, \cdot \rangle \) and let \(\mathfrak{g} \) denote the Lie algebra of \(G \). Write \(\mathfrak{g} = \mathfrak{Z}(\mathfrak{g}) \oplus Z^\perp(\mathfrak{g}) \) where \(Z^\perp(\mathfrak{g}) \) its orthogonal complement of center \(\mathfrak{Z}(\mathfrak{g}) \).

3. Cosymplectic and Sasakian

In this section we study cosymplectic structure on 2-step nilpotent Lie groups. Let \(G \) is a 2-step nilpotent Lie group with cosymplectic structure, from (1.5) for any \(X, Y \in \mathfrak{g} \) we have

\[
[\phi X, Y] = [X, \phi Y] = \phi[X, Y]
\]

and

\[
[X, \xi] = 0
\]

Let \(G \) be a 2-step nilpotent nonsingular cosymplectic Lie group. if ad is skew adjoint for any \(X, Y \in \mathfrak{g} \) we have

\[
\eta([X, Y]) = g([X, Y], \xi) = -g([X, \xi], Y)
\]

From() we conclude \(\eta(\mathfrak{Z}(\mathfrak{g})) = 0 \), thus \(\xi \) is normal to \(\mathfrak{Z}(\mathfrak{g}) \) and \(\xi \in Z^\perp(\mathfrak{g}) \), therefore \(\mathfrak{Z}(\mathfrak{g}) \) is integral Lie subgroup and

\[
\phi^2([X, Y]) = [Y, X]
\]
References

[1] David E. Blair, *Riemannian Geometry of contact and symplectic manifolds*. department of mathematics Michigan state University, USA.

[2] J. Milnor, *Curvatures of Left Invariant Metrics on Lie Groups*. Advances in Math. 21 (1976), 293-329.

[3] James. E Humphreys, *Introduction to Lie algebras and representation theory*. Springer-Verlag New york Hiedlberg Berlin (1972)

[4] Patrick Eberlein, *Geometry of 2-step nilpotent groups with a left invariant metric*. Ann. Sci. Ecole Norm. Sup. No. 27, p. 611-660(1994).

[5] S. Helgason, *Differential geometry and symmetric spaces*. Academic press, New York, (1962)

[6] Wolfgang Ziller, *Lie Groups. Representation Theory and Symmetric Spaces*. University of Pennsylvania, Fall 2010

[7] Patrick Eberlein, *Geometry of 2-step nilpotent groups with a left invariant metric II*. Transaction of the American mathematical society, volume 343, 805-828,(1994)

[8] Yu. Khakimdzhanov, M. Gozea, A. Medina *Symplectic or contact structures on Lie groups*. Differential Geometry and its Applications 21 (2004) 4154

[9] Andr Diatta, *Left invariant contact structures on Lie groups*. Differential Geometry and its Applications 26 (2008) 544552

[10] Brendan J. Foreman, *K-contact Lie groups of dimension five or greater*. arXiv:1006.1301v1

[11] Luis A. Cordero, Phillip E. Parker. *pseudo Riemannian 2-step nilpotent Lie groups*. arXiv:math/9905188v1

[12] Andr Diatta, *Riemannian geometry on contact Lie groups*. Geom Dedicata (2008) 133:8394

Young Researchers and Elit Club Islamic Azad University Tabriz Branch, Iran
E-mail address: babakmath777@gmail.com