From LaH$_{10}$ to room–temperature superconductors

M. Kostrzewa1,, K. M. Szczęśniak2,, A. P. Durajski3, & R. Szczęśniak1,3

Thermodynamic parameters of the LaH$_{10}$ superconductor were an object of our interest. LaH$_{10}$ is characterised by the highest experimentally observed value of the critical temperature: $T^b_C = 215$ K ($p_a = 150$ GPa) and $T^c_C = 260$ K ($p_b = 190$ GPa). It belongs to the group of superconductors with a strong electron-phonon coupling ($\lambda_a \sim 2.2$ and $\lambda_b \sim 2.8$). We calculated the thermodynamic parameters of this superconductor and found that the values of the order parameter, the thermodynamic critical field, and the specific heat differ significantly from the values predicted by the conventional BCS theory. Due to the specific structure of the Eliashberg function for the hydrogenated compounds, the qualitative analysis suggests that the superconductors of the La$_X$, H$_{10}$-type (LaXH-type) structure, where $X \in \{Sc, Y\}$, would exhibit significantly higher critical temperature than T_C obtained for LaH$_{10}$. In the case of LaScH we came to the following assessments: $T^a_C \in (220, 267)$ K and $T^b_C \in (263, 294)$ K, while the results for LaYH were: $T^a_C \in (218, 247)$ K and $T^b_C \in (261, 274)$ K.

The experimental discovery of the high-temperature superconducting state in the compressed hydrogen and sulfur systems H$_2$S ($T_C = 150$ K for $p = 150$ GPa) and H$_2$S ($T_C = 203$ K for $p = 150$ GPa) accounts for carrying out investigations, which can potentially lead to the discovery of a material showing the superconducting properties at room temperature. For the first time, the possibility of the existence of the superconducting state in hydrogenated compounds was pointed out by Ashcroft in 2004. It was stated in his second fundamental work concerning the superconducting state occurring in H$_2$ because La can form stable hydrogenated compounds with other metals. Such materials can exhibit so large hydrogen concentration, that they are presently taken into account as basic components of the hydrogen cells intended for vehicle drives.

In 2018, there were held the groundbreaking experiments, which confirmed the existence of the superconducting state of extremely high values of the critical temperature in the LaH$_{10}$ compound: $T^C_C = 215$ K for $p_a = 150$ GPa and $T^{c}_C = 260$ K for $p_b = (180–200)$ GPa (and then $T^{c}_C \sim 250$ K for $p_b \sim 170$ GPa). It was proved on the theoretical basis that the results achieved by Drozdov et al. can be related to the induction of the superconducting phase in the Rhm structure ($T_C = 206–223$ K). The experimental results reported by Somayazulu et al. should be related to the superconducting state induced in the Fm3m structure, where the critical temperature can potentially reach even the value of 280 K. From the materials science perspective, the achieved results imply that all possible actions should be taken in order to examine the hydrogen-containing materials with respect to the existence of the high-temperature superconducting state at room temperature. Attention should be paid to the importance of the discovery of the high-temperature superconducting state in metallic hydrogen. The superconducting state in hydrogenated compounds is induced by the conventional electron-phonon interaction. This fact made possible the theoretical description of the superconducting phase in H$_2$S and H$_3$S even prior to carrying out the suitable experiments. The detailed discussion with respect to the thermodynamic properties of the superconducting state occurring in H$_2$S and H$_3$S one can find in references.

The purpose of this work is, firstly, to present the performed analysis of the thermodynamic properties of the superconducting state in the LaH$_{10}$ compound. We took advantage of the phenomenological version of the Eliashberg equations, for which we fitted the value of the electron-phonon coupling constant on the basis of the experimentally found T_C value. Our next step consisted in examining the hydrogenated compounds of the La$_X$, H$_{10}$-type (LaXH-type) on the basis of the achieved results in order to find a system with an even higher value of the critical temperature. Taking into account the structure of the Eliashberg function for hydrogenated compounds was pointed out by Ashcroft in 2004. It was stated in his second fundamental work concerning the theoretical description of the superconducting phase in H$_2$S and H$_3$S even prior to carrying out the suitable experiments. The detailed discussion with respect to the thermodynamic properties of the superconducting state occurring in H$_2$S and H$_3$S one can find in references.
μ is the order parameter and the wave function renormalization Ω⁺, where and . Let us recall that within the BCS theory we come to the result: was determined using the solutions of the Eliashberg equations on the imaginary axis . The repulsion between electrons is modeled by the function: μ⁺(Ωₘ) = μθ(Ω₋ₘ - |Ωₘ|), where μ⁺ is the Coulomb pseudopotential (μ = 0.1). The quantity Ω₋ denotes the cut-off frequency (Ω₋ = 1 eV). The Eliashberg equations were solved for the Matsubara frequency equal to 1000. We used numerical methods presented in the previous paper . In the considered case, we obtained stable equation solutions for T ≥ Tₐ₀ = 15 K.

The dependence of the maximum value of the order parameter on the electron-phonon coupling constant. We consider two cases: Tₐ = 215 K (pₐ = 150 GPa) and Tₐ = 260 K (pₐ = 190 GPa).

The thermodynamic parameters of the LaH₁₀ superconductor were calculated by means of Eliashberg equations on the imaginary axis . The fitting between the theory and the experimental results is presented in Fig. 1. We obtained λₐ = 2.187 for pₐ = 150 GPa and λₐ = 2.818 for pₐ = 190 GPa. The symbol Ω₋ represents the characteristic phonon frequency, its value being assumed as Ω₋ = 150 GPa and Ω₋ = 190 GPa. The symbol Ω₋ denotes the cut-off frequency (Ω₋ = 100 meV).

The repulsion between electrons is modeled by the function: μ⁺(Ωₘ) = μθ(Ω₋ₘ - |Ωₘ|), where μ⁺ is the Coulomb pseudopotential (μ = 0.1). The quantity Ω₋ denotes the cut-off frequency (Ω₋ = 1 eV). The Eliashberg equations were solved for the Matsubara frequency equal to 1000. We used numerical methods presented in the previous paper . In the considered case, we obtained stable equation solutions for T ≥ Tₐ₀ = 15 K.

Figure 2 illustrates the full dependence of the order parameter on temperature. Physical values of the order parameter were calculated from the equation: ∆ₐ(T) = Re[Δ(Ω = Δ(T))], while the function of the order parameter on the real axis (Δ(Ω)) was determined using the solutions of the Eliashberg equations on the imaginary axis and the analytical continuation method described in the reference . It can be easily seen that the order parameter curves determined within the Eliashberg formalism differ significantly from the curves resulting from the BCS theory. These differences arise from the very high value of the electron-phonon coupling constant of the superconductor, what is mirrored by the high value of the dimensionless Rₐ = 2Δ(T₀)/kₐT₀ ratio, namely Rₐ = 4.91 and Rₐ = 5.25. Let us recall that within the BCS theory we come to the result: [Rₐ]_{BCS} = 3.53, however the BCS theory approximates well the experimental results for λ < 0.5.

We plotted the temperature dependence of the effective electron mass (mₑ) to the band electron mass (mₚ) ratio in the insets in Fig. 2. The value of the mₑ/mₚ ratio is given with good approximation by the value of 1 + λ₂.

Figure 3 presents the results achieved for the difference in free energy between the superconducting and the normal state (∆F), the thermodynamic critical field (Hₐ), and the specific heat in both the superconducting (Cₛ) and the normal (Cₚ) states. The values of the considered quantities were calculated on the basis of formulae given in reference . In particular, the difference in free energy between the superconducting and the normal state is given by:
where $\rho(0)$ denotes the value of electronic density of states at Fermi surface; Z^S_n and Z^N_n are the wave function normalization factors for the superconducting and the normal state, respectively. Note that ΔF is equal to zero exactly for $T = T_C$. This fact results from the overt dependence of free energy on solutions of Eliashberg equations (Δ_n and Z_n) that have been adjusted to the experimental value of critical temperature by appropriate selection of electron-phonon coupling constant (see Fig. 1). Thermodynamic critical field should be calculated from the formula:

$$H_C = \sqrt{8\pi|\Delta F/\rho(0)|}.$$

(4)

The difference in the specific heat between the superconducting and the normal state ($\Delta C = C^S - C^N$) is given by:

$$\frac{\Delta C(T)}{k_B\rho(0)} = -k_B T \frac{d^2|\Delta F/\rho(0)|}{d(k_B T)^2}.$$

(5)

The most convenient way of estimation the specific heat for the normal state is using the expression:

$$\frac{C^N(T)}{k_B\rho(0)} = \gamma k_B T.$$

(6)
The Sommerfeld constant take the form: \(\gamma = \frac{2}{3} \pi^2 (1 + \lambda) \).

Deviations from the results of the BCS theory can be traced in the easiest way by determining the values of dimensionless ratios: \(R_H = \frac{T_C \alpha_{\text{La}}^C(T_C)}{C_{\text{La}}(0)} \) and \(R_C = \frac{\Delta C(T_C)}{C_{\text{La}}(T_C)} \). For the LaH\(_{10}\) superconductor, we achieved the following results: \(R_H^\text{a} = 0.117, R_H^\text{b} = 0.113 \) and \(R_C^\text{a} = 3.51, R_C^\text{b} = 3.75 \). It is worth noticing that the BCS theory predicts \([R_H]_{\text{BCS}} = 0.168 \) and \([R_C]_{\text{BCS}} = 1.43 \).

The subsequent last part of the paper discusses the question of induction of the superconducting state in a group of compounds of the La\(_X\)H\(_{10}\)-type (or LaXH-type for short). Firstly, we are going to give some criteria, which can potentially make easier the search for a material showing the required high-temperature superconducting properties. To do this, let us take into account the formula for the critical temperature valid for the BCS theory: \(k_B T_C = 1.13 \Omega_{\text{max}} \exp[-1/\rho(0) V] \), where \(\Omega_{\text{max}} \) denotes the Debye frequency and \(V \) stands for the pairing potential value. It can be easily noticed that the critical temperature is the higher, the greater are the values of the electron density of states at the Fermi surface, the pairing potential, and the maximum phonon frequency. Therefore it should be supposed, even at such an early stage of analysis, that special attention is to be paid to these hydrogenated compounds, for which the respective non-hydrogenated compounds (La\(_X\)) or hydrides \(XH \) exhibit the high density of electron states at the Fermi surface. Considerations given to the pairing potential at the phenomenological level do not get us very far because this quantity is calculated in a rather complicated way, usually employing the DFT (Density Functional Theory) method.

Nevertheless, a sensible qualitative analysis can be made with respect to the influence of the atomic mass of the \(X \) element on a value of the critical temperature (since the mass of the \(X \) element determines \(\Omega_{\text{max}} \)). In this regard, let us refer to the theoretical results obtained within the Eliashberg formalism for \(H_2S \) and \(H_3S \) superconductors\(^{5,6} \). They prove that contributions to the Eliashberg function \(\alpha^2 F(\Omega) \) coming from sulphur and from hydrogen are separated due to a huge difference between atomic masses of these two elements. To be precise, the electron-phonon interaction derived from sulphur is crucial in the frequency range from 0 meV to \(\Omega_{\text{max}}^X \) equal to about 70 meV, while the contribution derived from hydrogen (\(\Omega_{\text{max}}^H = 220 \) meV) is significant above \(\sim 100 \) meV. It is noteworthy that we come upon a similar situation in the case of the LaH\(_{10}\) compound\(^1\). Therefore the following factorization of the Eliashberg function for the LaXH compound can be assumed:

\[
\alpha^2 F(\Omega) = \lambda^\text{La} \left(\frac{\Omega}{\Omega_{\text{max}}^\text{La}} \right)^2 \theta(\Omega_{\text{max}}^\text{La} - \Omega) + \lambda^X \left(\frac{\Omega}{\Omega_{\text{max}}^X} \right)^2 \theta(\Omega_{\text{max}}^X - \Omega) + \lambda^H \left(\frac{\Omega}{\Omega_{\text{max}}^H} \right)^2 \theta(\Omega_{\text{max}}^H - \Omega),
\]

(7)

where \(\lambda^\text{La}, \lambda^X, \) and \(\lambda^H \) are the contributions to the electron–phonon coupling constant derived from both metals (La, \(X \)) and hydrogen, respectively. Similarly, the symbols \(\Omega_{\text{max}}^\text{La}, \Omega_{\text{max}}^X, \) and \(\Omega_{\text{max}}^H \) represent the respective maximum phonon frequencies. The value of the critical temperature can be assessed from the generalised formula of the BCS theory:

\[
k_B T_C = f f_2 \left(\frac{\Omega_{\text{in}}}{1.27} \right) \exp \left[-1.14(1 + \lambda) \right] \left(\lambda - (1 + 0.163\lambda) \mu^* \right)
\]

(8)

while the symbols appearing in Eq. (8) are defined in Table 1.

Let us calculate explicitly the relevant quantities:

\[\lambda = \lambda^\text{La} + \lambda^X + \lambda^H,\]

(9)

Table 1. The quantities: \(\lambda \) (electron–phonon coupling constant), \(\Omega_{\text{in}} \) (logarithmic phonon frequency), \(\Omega_{\text{max}} \) (second moment of the normalized weight function), \(f_2 \) (strong–coupling correction function), and \(f_1 \) (shape correction function) \(\mu^* \).
It was assumed that \(\lambda^X < 1 \), while keeping in mind that \(\lambda^X = 0.6831 \). Additionally, the previous calculations discussed in the work allow to write that \(\lambda^X + \lambda^H \) is equal to \(\lambda_C = 2.187 \) for \(p_b = 150 \) GPa or to \(\lambda_C = 0.276 \) for \(p_b = 190 \) GPa. The quantity \(\mu^* \) occurring in the Eq. (8) serves now as the fitting parameter. One should remember that the formula for the critical temperature given by the Eq. (8) was derived with the use of significant simplifying assumptions (the value of the cut-off frequency is neglected, as well as the retardation effects modeled by the Matsubara frequency). Therefore the value of the Coulomb pseudopotential determined from the full Eliashberg equations usually differs from the value of \(\mu^* \) calculated analytically. The experimental data for the LaH\(_{10}\) superconductor can be reproduced using Eq. (8) and assuming that \(\mu^*_a = 0.170 \) and \(\mu^*_b = 0.276 \).

The achieved results are presented in Fig. 4. It is evident that taking into consideration the additional X element, which enriches the LaH\(_{10}\) composition, leads to a large increase in the critical temperature value. The estimated upper limit of the \(T_C \) value is equal to 288 K for \(p_b = 150 \) GPa, while for \(p_b = 190 \) GPa we obtain \(T_C = 315 \) K. Therefore the superconducting state can potentially exist at room temperature for both cases.

Now, let us take into account elements with the identical electron configuration at the valence shell as lanthanum, and yet they are considerably lighter. Our numerical calculations suggest the ion, good candidates are scandium and yttrium. These elements have the electron configuration at the valence shell exactly the same as lanthanum, and yet they are considerably lighter. Our numerical calculations suggest the

We are going to consider the case \(\Omega^X_{\text{LaH}_{10}} \sim 40 \) meV \(< \Omega^X_\text{LaH}_{10} < 100 \) meV. It means that we are interested in \(\Omega^X_{\text{LaH}_{10}} \sim 40 \) meV \(< \Omega^X_\text{LaH}_{10} < 100 \) meV for both cases. The effect of growth in the value of the critical temperature results from filling the gap in the Eliashberg function between the contributions coming from La and H, as was already stated above.

Figure 5 presents the expected range of the critical temperature values for the LaScH and the LaYH compounds. We took into account two pressure values: \(p_a = 150 \) GPa and \(p_b = 190 \) GPa. For LaScH we got: \(T_C^a \in (220, 267) \) K and \(T_C^b \in (263, 294) \) K, while the results for LaYH are as follows: \(T_C^a \in (218, 247) \) K and \(T_C^b \in (261, 274) \) K. Apparently, the significant increase in the critical temperature value should be observed in both cases. The effect of growth in the value of the critical temperature results from filling the gap in the Eliashberg function between the contributions coming from La and H, as was already stated above.

To summarize, the experimental results obtained for the LaH\(_{10}\) compound get us much closer to the purpose of obtaining the superconducting state at room temperature. The huge difference between atomic masses of lanthanum and hydrogen results in the characteristic structure of the Eliashberg function modeling the electron-phonon interaction in the considered compound, with distinctly separated parts proceeded either from lanthanum or from hydrogen. The proper selection of the additional element (X) in the LaXH compound is expected to fill the empty’ range of the Eliashberg function between the parts coming from La and H. In our opinion, good candidates are scandium and yttrium. These elements have the electron configuration at the valence shell exactly the same as lanthanum, and yet they are considerably lighter. Our numerical calculations suggest the

\[
\Omega_{\text{In}} = \exp \left[\frac{\lambda^X_{\text{LaXH}}}{\lambda^X_{\text{LaXH}} + \lambda^H_{\text{LaXH}}} \left(\ln(\Omega^X_{\text{max}}) - \frac{1}{2} \right) \right] \times \exp \left[\frac{\lambda^X_{\text{LaXH}}}{\lambda^X_{\text{LaXH}} + \lambda^H_{\text{LaXH}}} \left(\ln(\Omega^H_{\text{max}}) - \frac{1}{2} \right) \right] \times \exp \left[\frac{\lambda^H_{\text{LaXH}}}{\lambda^X_{\text{LaXH}} + \lambda^H_{\text{LaXH}}} \left(\ln(\Omega^H_{\text{max}}) - \frac{1}{2} \right) \right],
\]

\[\Omega_2 = \frac{\lambda^X_{\text{LaXH}}}{\lambda^X_{\text{LaXH}} + \lambda^H_{\text{LaXH}}} \left(\Omega^X_{\text{max}} \right)^2 + \frac{\lambda^H_{\text{LaXH}}}{\lambda^X_{\text{LaXH}} + \lambda^H_{\text{LaXH}}} \left(\Omega^H_{\text{max}} \right)^2.\]
possible growth in the critical temperature of the LaScH compound equal to about 52 K (150 GPa) or to about 79 K (190 GPa) as compared to the T_C value for the LaH$_{10}$ compound. As far as the LaYH compound is concerned, the pertinent increase in T_C value can reach about 32 K for 150 GPa or about 59 K for 190 GPa.

Our results can be the starting point for the advanced DFT calculations or perhaps provide inspiration for carrying out the appropriate experimental measurements. Of course, we realize that the presented analysis is based on the semi-quantitative approximations and may raise some critical remarks. For this reason, we refer to the most significant reservations:

- **In the paper, we assume the relatively simple form of Eliashberg function, which is the linear combination of each of the contributions from La, H and X. Does this mean that any contribution related to Sc or Y will be positive?** Of course, this doesn’t have to be the case. For example, the properly selected concentration of Sc or Y atoms can lead to a decrease in the electron-phonon coupling constant. On the other hand, one should remember the results obtained for YH$_{10}$ compound32,33. Based on the DFT method, it was found that the critical temperature for $p \in (250, 300)$ GPa can exceed the room temperature ($T_{\text{exp}} \approx 320$ K). This result suggests that a high concentration of Y atoms in the LaYH compound should not lead to a decrease in T_C. It should also be noted that future DFT calculations (or possible experiments) should take into account different concentrations of Sc and Y atoms.

- **In the paper, we assume that the phonon frequency regime is completely decoupled (La contributes to low phonon modes and hydrogen vibration should be high). What significance will La-H, Sc-H or Y-H modes which are related to the moderate frequency regime?** In our opinion, they will contribute to the increase in the critical temperature. This will result from activating the Eliashberg function in the frequency range from ~ 40 meV to ~100 meV. This effect was clearly visible in the case of YSH$_6$ and LaSH$_6$ ($p \approx 200$ GPa), where the role of dopant fulfilled sulphur34.

- **Do the values of the Coulomb pseudopotential assumed in Eq. (8) ($\mu_a^* = 0.170$ and $\mu_b^* = 0.276$) roughly correspond to the physical values of this parameters? In particular, are these values too low, which would lead to the significant overestimation of the critical temperature in our paper.** In this case, it is worth referring to the recently obtained DFT results for LaH$_{10}$. In the publication15, the authors showed that qualitative compliance with experimental data can be obtained assuming $\mu_a^* = 0.2$ ($[T_C]_{p=150\text{GPa}} = 197$ K for the crystal structure $R3\overline{m}$, and $[T_C]_{p=200\text{GPa}} = 271$ K for the crystal structure $Fm3m$). In the first case, the experimental critical temperature was underestimated by 18 K (too high value of μ_a^*), in the second case, $[T_C]_{\text{exp}}$ was revalued by 11 K (too low value of μ_a^*). Comparing the results obtained in the paper10 with ours, it is clearly seen that μ_a^* and μ_b^* are fairly well-obtained. In the most interesting case for LaH$_{10}$ corresponds to the pressure of 190 GPa, taking into account the possible reduction of μ_b^* suggested in19, the increase in the critical temperature value for the LaScH and LaYH compounds can be expected. It is worth noting that our results also correlate well with the data obtained in the paper30, where $\mu_a^* = 0.22$ was assumed, which allowed to reproduce the experimental critical temperature for LaH$_{10}$ ($p = 190$ GPa).

One needs to recognise that the exact quantitative analysis of the problem discussed in our work would require to be carried out using the Eliashberg equations including the anharmonicity of the phonon system and the non-linear terms of the electron–phonon–phonon interaction, especially for such high values of the critical temperature as are observed for LaH$_{10}$. Presently we work upon the derivation of suitable equations.

Received: 5 August 2019; Accepted: 8 January 2020; Published online: 31 January 2020
References
1. Drozdov, A. P., Eremets, M. I. & Troyan, I. A. Conventional superconductivity at 190 K at high pressures, https://arxiv.org/abs/1706.05180 (2014).
2. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015).
3. Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Physical Review Letters 92, 187002 (2004).
4. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Physical Review Letters 21, 1748 (1968).
5. Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. The Journal of Chemical Physics 140, 174712 (2014).
6. Duan, D. et al. Pressure-induced metallization of dense (H,S)2H2 with high-Tc superconductivity. Scientific Reports 4, 6968 (2014).
7. Durajski, A. P., Szczęśniak, R. & Li, Y. Non-bcs thermodynamic properties of H2S superconductor. Physica C 515, 1 (2015).
8. Duan, D. et al. Pressure-induced decomposition of solid hydrogen sulfide. Physical Review B 91, 180502(R) (2015).
9. Errea, I. et al. High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor. Physical Review Letters 114, 157004 (2015).
10. Durajski, A. P. Quantitative analysis of nonadiabatic effects in dense H2S and PH3 superconductors. Scientific Reports 6, 38570 (2016).
11. Durajski, A. P., Szczęśniak, R. & Pietronero, L. High-temperature study of superconducting hydrogen and deuterium sulfide. Annalen der Physik 528, 358 (2016).
12. Ishikawa, T. et al. Superconducting H12S phase in sulfur-hydrogen system under high-pressure. Scientific Reports 6, 23160 (2016).
13. Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81 (2016).
14. Sano, W., Koreszun, T., Tadano, T., Akashi, R. & Arita, R. Effect of van hove singularities on high-Tc superconductivity in H2S. Physical Review B 93, 094525 (2016).
15. Durajski, A. P. & Szczęśniak, R. First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa. Scientific Reports 7, 4473 (2017).
16. Szczęśniak, R. & Durajski, A. P. Unusual sulfur isotope effect and extremely high critical temperature in H2S superconductor. Scientific Reports 8, 6037 (2018).
17. Kostrzewa, M., Szczęśniak, R., Kalaga, J. K. & Wrona, I. A. Anomalously high value of coulomb pseudopotential for the H6S2 superconductor. Scientific Reports 8, 11957 (2018).
18. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
19. Kruglov, I. A. et al. Superconductivity of LaH3 and LaH4 polyhydrides. Phys. Rev. B 101, 024508 (2020).
20. Drozdov, A. P. et al. Superconductivity at 215 K in lanthanum hydride at high pressures. https://arxiv.org/abs/1808.07039 (2018).
21. Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Physical Review Letters 122, 027001 (2019).
22. Schlaphach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).
23. Elashclose, G. M. Interactions between electrons and lattice vibrations in a superconductor. Soviet Physics JETP 11, 696 (1960).
24. Szczęśniak, R. The numerical solution of the imaginary-axis eelashberg equations. Acta Physica Polonica A 109, 179 (2006).
25. Beach, K. S. D., Gooding, R. J. & Marsiglio, F. Reliable padé analytical continuation method based on a high-accuracy symbolic computation algorithm. Physical Review B 61, 3147 (2000).
26. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Physical Review 106, 162 (1957).
27. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Physical Review 108, 1175 (1957).
28. Carbotte, J. P. Properties of boson-exchange superconductors. Reviews of Modern Physics 62, 1027 (1990).
29. Aguilera-Navarro, V. & de Llano, M. Generalizing the bcs universal constants to high-temperature superconductivity. Symmetries in Physics. Springer 28, 26–34 (1992).
30. Liu, L. et al. Microscopic mechanism of room-temperature superconductivity in compressed LaH14. Phys. Rev. B 99, 140501(R) (2019).
31. Chen, W. et al. Superconductivity and equation of state of distorted fcc-lanthanum above megabar pressures. https://arxiv.org/abs/1903.02194 (2019).
32. Christoph Heil, Simone di Cataldo, Giovanni B. Bachelet, Lilia Boeri. Superconductivity in sodalite-like yttrium hydride clathrates. Physical Review B 99 (2019).
33. Hanyu Liu, Ivan I. Naumov, Roald Hoffmann, N. W. Ashcroft, Russell J. Hemley. Potential high- superconducting lanthanum and yttrium hydrides at high pressure. Proceedings of the National Academy of Sciences 114, 6990–6995 (2017).
34. Xiaowei Liang, Shitao Zhao, Cancan Shao, Aitor Bergara, Han Yu, Linyan Wang, Rongxin Sun, Yang Zhang, Yufei Gao, Zhisheng Zhao, Xiang-Feng Zhou, Julong He, Dongli Yu, Guoying Gao, Yongjun Tian. First-principles study of crystal structures and superconductivity of ternary and at high pressures. Physical Review B 100 (2019).

Acknowledgements
A.P. Durajski acknowledges the financial support from the Polish National Science Centre (NCN) under Grant No. 2016/23/D/ST3/02109.

Author contributions
R. Szczęśniak wrote the part of the code for numerical calculations and participated in writing the manuscript. M. Kostrzewa, K. Szczęśniak, and A. Durajski designed and carried out the calculations, collected data and drafted the final version of the manuscript. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.P.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
