A radiogenomics application for prognostic profiling of endometrial cancer

Erling A. Hoivik1,2,3,4,5✉, Erlend Hodneland3,4,5, Julie A. Dybvik3,4, Kari S. Wagner-Larsen3,4, Kristine E. Fasmer3,4, Hege F. Berg1,2, Mari K. Halle1,2, Ingfrid S. Haldorsen3,4,6✉ & Camilla Krakstad1,2,6✉

Prognostication is critical for accurate diagnosis and tailored treatment in endometrial cancer (EC). We employed radiogenomics to integrate preoperative magnetic resonance imaging (MRI, n = 487 patients) with histologic-, transcriptomic- and molecular biomarkers (n = 550 patients) aiming to identify aggressive tumor features in a study including 866 EC patients. Whole-volume tumor radiomic profiling from manually (radiologists) segmented tumors (n = 138 patients) yielded clusters identifying patients with high-risk histological features and poor survival. Radiomic profiling by a fully automated machine learning (ML)-based tumor segmentation algorithm (n = 336 patients) reproduced the same radiomic prognostic groups. From these radiomic risk-groups, an 11-gene high-risk signature was defined, and its prognostic role was reproduced in orthologous validation cohorts (n = 554 patients) and aligned with The Cancer Genome Atlas (TCGA) molecular class with poor survival (copy-number-high/p53-altered). We conclude that MRI-based integrated radiogenomics profiling provides refined tumor characterization that may aid in prognostication and guide future treatment strategies in EC.
Endometrial cancer (EC) is the most prevalent cancer of the female reproductive tract in countries ranked within the highest tier of the human developmental index, with obesity being a strong predisposing factor. While most EC patients have a favorable prognosis, identification of high-risk EC disease is essential to determine optimal surgical treatment and potential adjuvant therapies. Preoperative risk stratification is based on endocervical curettage (biopsy) or endometrial pipelle sample often combined with preoperative imaging, such as pelvic magnetic resonance imaging (MRI) for local staging. The increased use of advanced preoperative imaging and the introduction of novel machine learning techniques have opened for in-depth analyses of tumor characteristics relevant for diagnosis and prognostication. Radiomics is an emerging technique allowing tumor profiling by extracting quantitative information from medical images using mathematical descriptors and has been shown to predict clinical- and molecular tumor characteristics, survival, and response to treatment across various cancers.

Radiogenomics combines radiomic data with non-invasively determined underlying molecular characteristics. Radiogenomics-based models reportedly predict genetic variants, i.e., mutations, microsatellite instability (MSI), gene expression, and tumor heterogeneity in non-small cell lung cancer and breast cancer, making this approach highly promising for developing personalized medicine. An increasing number of radiomics studies have linked radiomic profiling to prognosis in EC. Studies based on computed tomography (CT), MRI, and positron emission tomography (PET)-CT from single slice tumor segmentations and whole-volume tumor segmentations have identified radiomic signatures associated with high-risk features and poor prognosis. Radiomic models predicting lymph node metastasis in EC have also been published. Whole-volume tumor radiomics from contrast-enhanced CT (CE-CT) was shown to predict high mutational burden in ECs, including The Cancer Genome Atlas (TCGA)-equivalent MSI tumors. Similarly, a single-slice MRI radiomic prognostic index vector was recently linked to a specific gene expression signature that predicted poor outcome in EC. Deep-learning applications using MRI in EC have been used to derive valid automated tumor segmentations and reportedly provide promising models for automatic determination of myometrial depth.

The aim of this study was to develop a novel radiogenomics approach using noninvasive, preoperative whole-volume tumor MRI for expedited radiomic based individual risk assessment and develop a corresponding prognostic gene expression signature in EC patients. Furthermore, we aimed to assess whether ML-based automated whole-volume tumor segmentations yield similar radiomic profiles that may be linked to the same gene expression signature.

Results

Unsupervised clustering of radiomic profiles identifies patients with high-risk clinicopathological characteristics and poor outcome. A total of 866 EC patients were included in this study, of which 487 patients had available preoperative whole-volume tumor MRI and 554 patients had mRNA expression profiles and/or molecular markers. An outline of the approach to integrate radiomic, transcriptomic, molecular markers, and clinico-pathological data is displayed in Fig. 1. Fifty-three radiomic features were extracted from manually segmented primary tumors depicted at MRI in 138 EC patients. MRI sequences (B1000) and the corresponding manual tumor segmentation mask used for radiomic tumor profiling is shown for one representative patient in Fig. 2a. A robust linear regression demonstrated a weak positive correlation between tumor volume and z-normalized “normsurfvolratio” (MATLAB, "robustfit", $n = 336$, slope = 0.0090 ml$^{-1}$, $p = 0.0013$). A similar curve fit for tumors with V > 1 ml yielded no significant correlation between z-normalized “normsurfvolratio” and tumor volume (MATLAB, "robustfit", $n = 288$, slope = 0.0043 ml$^{-1}$, $p = 0.13$), hence suggesting independency of tumor volume in larger tumors.

Unsupervised clustering of the radiomic features identified two distinct patient clusters; cluster 1 ($n = 70$) and cluster 2 ($n = 68$). Cluster 2 was characterized by higher values for “clusterrindex”, “clustersize”, “homogeneity”, “energy”, “correlation”, and “LRE” and lower values for the radiomic features “contrast” and “SRE”, compared to cluster 1. Cluster 2 was subsequently re-clustered into subclusters 2a ($n = 44$) and 2b ($n = 24$) using the same unsupervised clustering algorithm; 2b had higher values for “HGREL” and “clusterrsize”, and lower values for “HGREL” compared to cluster 2a (Fig. 2b). Patients in clusters 2a/b more...
often presented high-risk clinico-pathological features including deep myometrial infiltration (>50%; \(p = 0.001 \)), lymph node metastases (\(p = 0.020 \)), high-grade histology (\(p = 0.001 \)), non-endometrioid subtype (\(p = 0.014 \)), and advanced FIGO stages (\(p = 0.006 \)) (Fig. 2b, bottom panel; Table 1). Cluster 2b tumors were of higher grade (\(p = 0.050 \)) and were more likely to be of non-endometrioid type (\(p = 0.050 \)) compared to tumors of cluster 2a (Supplementary Table S1). Inter-centroid distance for all radiomic features indicated that no single radiomic feature was able to discriminate between the three clusters and that the interdependency across features was pronounced (Fig. 2c). When accounting for centroid inter-distance, two volume-related features (”normsurfvolratio” and “vol”) were ranked as the most important features describing the three clusters.
Patients in cluster 2 exhibited significantly reduced disease-specific survival (p < 0.001, Fig. 2d). Furthermore, patients in cluster 1, 2a, and 2b had significantly different disease-specific and recurrence-free survival (overall p < 0.001; Fig. 2e, f) with the best outcome for patients in cluster 1, the intermediate outcome for patients in cluster 2a, and poorest outcome for patients in cluster 2b.

After dilation and erosion of the segmentation masks, only 14% (20/138) or 8% (11/138) of the cases changed clusters upon dilation and erosion, respectively. Furthermore, the finding that patients in the three clusters had significantly different survival was reproduced (p ≤ 0.001 for all; Supplementary Fig. S1).

An 11-gene radiogenomic signature predicts aggressive EC phenotypes and poor survival. We performed a differential gene expression analysis (significance of microarray analysis; SAM) of the radiomic clusters (comparing clusters 1 to 2b, or all three clusters) from patients with overlapping MRI and transcriptome data (n = 51). Eleven genes overlapped between the two analyses and were selected to compute a robust signature of differentially expressed genes for the radiomic clusters. The gene signature included three upregulated genes; HSPA5, GATA3, and HSP90AA1, and eight downregulated genes; SCGB2A1, GSKT1, MMP7, GDF5, ANXA1, SAT1, CNDP2, and PBX1, related to the most aggressive clusters (Table 2). Patients with tumors of high signature score (cutoff above mean signature score) more often exhibited non-endometrioid histologic type (p = 0.019) and tended to be high-grade tumors (p = 0.09) with advanced FIGO stage (p = 0.23). High signature score patients also had biomarker patterns (Fig. 3a, middle panel) associated with aggressive disease described by loss/low levels of the hormone receptors ER (p = 0.037), PR (p = 0.005), and AR (p = 0.013) (Supplementary Table S2). In addition, substitute TCGA-markers (Fig. 3a) indicated that patients with high signature scores were more often classified as TCGA-copy-number-high (p53 abnormal expression; 87% [7/8 cases]) known to indicate a poor prognosis, and clustered to the radiogenomics cluster 2a/b. Patients with low signature scores were more often of the TCGA equivalent POLE class tumors (3/3 cases) indicating favorable prognosis, while the “MSI”- and “CNL”-like classes were more evenly distributed for the high/low signature score groups. We compared the dichotomous high/low gene expression signature levels with the radiomics clusters (cluster 1 vs. 2a/b) among the 51 samples with overlapping data and found that a significantly higher proportion of patients within cluster 1 had a low signature score (84%; 16/19), compared to that of patients within cluster 2 (34%; 11/32) (p = 0.001). The high signature score predicted poor survival in patients with overlapping radiogenomics data (n = 51; Fig. 3b; p = 0.0006) and the poor prognostic impact of the high signature score was reproduced in the EC cohort with full L1000 gene expression data (n = 392) (Table 3, all clinicopathological variables highly significant; Fig. 3c, p < 0.0001). Also, in the subgroup of patients having low-risk histology (endometrioid, grade 1–2) based on preoperative curative(pipelike)/endometrial biopsy, the 11-gene signature had a prognostic impact with high signature score predicting aggressive clinicopathological features and poor survival (n = 296, Supplementary Table S3 and Fig. 3d; p = 0.00012). The association between high signature score and high-risk disease/poor outcome, was also reproduced in the Agilent expression dataset (n = 256 patients; Fig. 3e; p < 0.0001; Supplementary Table S4) and in an external EC RNA sequencing dataset from TCGA (n = 298; Supplementary Fig. S2; p = 0.0019). In the latter, a higher proportion of TCGA-copy-number-high (Serous-like) class tumors was also observed in patients with high signature.

Table 1 Clinico-pathological variables in relation to the radiomic clusters based on the manually segmented tumors (n = 138).

Variable	Description	Radiomic clusters, n (%)	p value^a	
	Cluster 1 (n = 70)	Cluster 2a/b (n = 68)		
Age	<66	38 (57.6)	28 (42.4)	0.130
	≥66	32 (44.4)	40 (55.6)	
Histologic type	Endometrioid	63 (56.3)	49 (43.8)	0.014
	Non-endometrioid	7 (28.0)	18 (72.0)	
Histologic grade	Grade 1–2	55 (63.2)	32 (36.8)	0.001
	Grade 3	5 (22.7)	17 (77.3)	
FIGO stage	I–II	66 (55.9)	52 (44.1)	0.006
	III–IV	4 (21.1)	15 (78.9)	
Myometrial	≤50%	56 (75.7)	18 (24.3)	<0.001
infiltration	≥50%	14 (22.2)	49 (77.8)	
Lymph node	No	40 (48.8)	42 (51.2)	0.020
metastasis	Yes	2 (14.3)	12 (85.7)	
Ploidy	Diploid	24 (43.6)	31 (56.4)	0.424
	Aneuploid	6 (31.6)	13 (68.4)	
ER protein	High expression	27 (52.9)	24 (47.1)	0.059
expression^c	Low expression	8 (29.6)	19 (70.4)	
PR protein	Positive	31 (52.5)	28 (47.5)	0.064
expression^c	Negative	5 (26.3)	14 (73.7)	
AR protein	Positive	16 (51.6)	15 (48.4)	0.451
expression^c	Negative	12 (41.4)	17 (58.6)	

^a Calculated with Chi-Square test or Fischer’s exact test, as appropriate.
^b Endometrioid type only.
^c Protein levels by immunohistochemistry (IHC).

Missing data (numbers): Histologic type (1), Histologic grade (3), FIGO stage (1), Myometrial infiltration (1).
Not assessed (numbers): Lymph node metastasis (42), Ploidy (64), ER (60), PR (60), and AR (78).
Including one inoperable patient.

Fig. 2 Unsupervised clustering of radiomic (3D) tumor features in 138 EC patients yields distinct clusters displaying different prevalence of high-risk features. a Preoperative pelvic MRI with manual tumor segmentation of the primary tumor (red arrows) of a patient with endometrioid type, histologic grade 1, and FIGO stage IA. The following MRI sequences were used for radiomic profiling of the manual segmentation-cohort; contrast-enhanced volumetric interpolated breath-hold examination (VIBE + C), apparent diffusion coefficient (ADC) map and diffusion-weighted sequence with b-value of 1000 (b1000) using the segmentation mask as that for VIBE + C. b Unsupervised clustering reveals three radiomic clusters with differences in clinicopathological variables, reflecting differences in their risk-profiles. Patients in cluster 2a (n = 44) and cluster 2b (n = 24) more often had high-risk clinicopathological features compared to patients in cluster 1 (n = 70). c Representing feature importance of the 53 derived radiomic features in terms of pairwise cluster centroid inter-distance (solid lines with open dots) and the aggregated value (open dots, “All clusters”; scaled for visualization). A large pairwise inter-distance indicates discriminating properties of large importance between clusters for a given texture feature. d–f Kaplan-Meier survival curves depicting significantly reduced disease-specific survival among radiomic clusters 1 and 2a/b combined (d), all three clusters (e), or by recurrence (f). The number of events in brackets. Histological types; EEC endometrioid, CS carcinosarcoma, S serous, CC clear cell, U undifferentiated.
Table 2 List of 11 genes in signature.

Gene name	Signature direction	Entrez gene accession id	Gene description (HGNC Symbol)
HSPA5	Up	ENSG00000044574	Heat shock protein family A (Hsp70) member 5
GATA3	Up	ENSG00000107485	GATA binding protein 3
HSP90AA1	Up	ENSG00000080824	Heat shock protein 90 alpha family class A member 1
SCGB2A1	Down	ENSG00000124939	Secretoglobin family 2A member 1
GSTK1	Down	ENSG00000197448	Glutathione S-transferase kappa 1
MMP7	Down	ENSG00000137673	Matrix metalloproteinase 7
GDF15	Down	ENSG00000130513	Growth differentiation factor 15
ANXA1	Down	ENSG00000135046	Annexin A1
SAT1	Down	ENSG00000130066	Spermidine/spermine N1-acetyltransferase 1
CNDP2	Down	ENSG00000133313	Carnosine dipeptidase 2
PBX1	Down	ENSG00000185630	PBX homeobox 1

*Human Genome Organisation (HUGO) Gene Nomenclature Committee.

ML-based clustering of patients in the validation cohort confirms the link to poor prognosis. When applying the fully automated machine learning algorithm, the tumor was not detected in 3% (13/349) of the patients and these cases were excluded in subsequent radiomic analyses. For the remaining 336 patients, a 53-feature radiomic cluster analysis was applied using the same algorithm as that for the manually segmented datasets. This yielded clusters comprising 188, 84, and 64 patients in clusters 1, −2a, and −2b, respectively. MRI (VIBE + C, ADC, b1000) with the automated ML-derived tumor segmentation in one representative patient are shown in Fig. 4a. The heatmap of radiomic features for the different clusters (Fig. 4b) showed highly similar discriminating features between the ML clusters to that observed for the manually segmented tumors (Fig. 2b). In agreement with results from the manually segmented dataset, patients in clusters 2a/b more often presented with high-risk clinico-pathological features (Fig. 4b and Supplementary Table S5) and had significantly reduced disease-specific (p < 0.0001, Fig. 4c, d) and recurrence-free survival (p = 0.003, Fig. 4e). Cluster 2b tumors had higher FIGO stages (p = 0.003) and were associated with lymph node metastases (p = 0.004), compared to tumors of cluster 2a (Supplementary Table S6).

When comparing the gene expression signature levels across radiomics clusters (clusters 1 and clusters 2a/b) in 98 cases overlapping with the ML-cohort, low signature score tended to be more frequent (74%; 37/50) in patients within cluster 1 compared to that in patients within cluster 2 (56%; 27/48) (p = 0.089).

Discussion

Radiogenomics, linking imaging-, and genomic tumor data, has demonstrated encouraging results in predicting tumor characteristics and survival across many cancer types (reviewed in ref. 8). This study, encompassing 866 patients, allowed an unprecedented integrated radiogenomics characterization of EC. Our results show that MRI radiomic tumor profiling identifies distinct radiomic clusters that differentiate between patient groups having significantly different clinico-pathological characteristics and prognosis. Importantly, these radiomic signatures are associated with specific transcriptional programs, suggesting that noninvasive radiomic profiling may aid in assessing patient risk and characterize transcriptional profiles relevant for tumor biology. The identification and validation of distinct radiomic phenotypes emphasize the promising role of radiomic phenotyping as support for developing risk-stratified targeted treatment strategies in EC.

We used two approaches for whole-volume tumor segmentations; manual tumor segmentation (n = 138) performed by expert radiologists, and automated deep-learning-based 3D tumor segmentation (n = 349). Interestingly, similar radiomic clusters derived from the manual tumor segmentations were reproduced in the radiomic clusters from automated tumor segmentations, and both datasets identified differential transcriptional signatures, specific clinico-pathological patient characteristics, and different prognosis for the radiomic clusters. For the automated approach, we deployed a convolutional neural network (CNN) deep-learning algorithm allowing expedited whole-volume tumor segmentations, which has been shown to yield tumor segmentations with accuracies comparable to that between radiologists. This finding is supported by the present study suggesting that the approach for automated whole-volume radiomic profiling seems to be valid enough to allow clinical phenotyping and point to likely transcriptional signatures.

The radiomic patient clusters were solely based on radiomic features from the EC tumors without prior feature selection. Radiomic studies report a variable number of features included in their models, presumably related to the imaging modality used, available sequences, and the complexity of the applied radiomic extraction algorithms. We used an approach deriving only 53 features, without subsequent dimensionality reduction. This differs from most studies reporting a multitude of image features with subsequent selection of top features to optimize their models. When investigating the interrelationship amongst the 53 features in this study, no single feature was alone able to differentiate between the three clusters (Fig. 2). However, volume-related vectors yielded the longest centroid distance for distinguishing between radiomic cluster 1 and 2b (exhibiting favorable and dismal prognosis, respectively), suggesting a tendency of tumor size to affect clustering. Previously, large tumor size on MRI has been shown to predict deep myometrial invasion, lymph node metastases, high histological grade, advanced FIGO stage, and poor survival in EC, descriptive of aggressive disease. We found the radiomic feature “normsurvvolratio” to be independent of tumor volume for tumors with volume >1 ml (p = 0.14). Most importantly, this parameter was ranked as the single most important radiomic feature for separating the clusters (Fig. 2d), suggesting that an irregularly shaped tumor is an important predictor of high-risk disease.

We report similar prognostic discrimination by clusters based on dilated and eroded segmentation masks to that based on baseline segmentation masks. Thus, it seems reasonable to conclude that the proposed workflow for feature extraction and clustering is relatively resistant against noise and minor changes of the segmentation masks.
The ML-generated segmentation masks, retrospectively reviewed by an expert radiologist, were judged to include tissue that was likely to represent the primary uterine tumor in as much as 99.7% of the cases (all, except one/336 patients), pinpointing the robustness of our ML-based segmentation method to segment primary tumor tissue in EC.

However, in 29% (96/336) of the patients, the automated ML algorithm yielded more than one segmentation mask, which seemed partly to be caused by heterogeneous tumor growth and partly represent non-tumor tissue in the uterus. In our radiomic analyses we did not exclude any extraterine segments, but rather included all ML segments unfiltered, aiming to assess whether
machine learning-based radiomic signatures were reproduced without any human interventions or adjustments of segmentation masks. Interestingly, this study demonstrates that the developed ML-segmentation algorithm, despite involving segmented areas outside the uterus, is able to capture and reproduce the radiomic features and clusters of clinical relevance in EC.

The 11-gene signature we generated from the radiomic clusters was strongly prognostic and validated in the full L1000 dataset and in multiple other cancer types, and decreased expression of SCGB2A1 is known to be functionally described in EC, but that has been linked to the regulation of estrogen signaling in breast cancer36. Eight genes in the signature had reduced expression in the aggressive cancers, and decreased expression of SCGB2A1 is known to be associated with poor survival in EC37,38. The remaining genes are less characterized in EC tumors but have interesting roles in other cancers related to transcriptional regulation (PBX1 interacts with the estrogen-axis in breast cancer39 and SAT1 functions as a transcriptional regulator in aggressive brain tumors40), and key signaling pathways including the transforming growth factor β (TGFβ) pathway (GDF1541), the PI3K/AKT-pathway (ANX1A42), and the Mitogen-activated protein kinase (MAPK) pathway (CNDP243). However, for MMP7, involved in proliferation and metastasis, most studies report elevated expression, suggesting a possible adverse effect of this gene depending on the type of cancer44. While the 11-gene signature was driven by differentially expressed genes emerging from clusters 1 and cluster 2b, no genes reached significance when comparing clusters 2a and 2b. It is possible that other mechanisms not investigated in this study, such as DNA methylation45, could be associated with the radiomic differences between clusters. The gene signature correlated with the protein expression level of the hormone receptors (ERa, PR, and AR), well known as functionally described in EC, but that has been linked to the regulation of estrogen signaling in breast cancer36. Eight genes in the signature had reduced expression in the aggressive cancers, and decreased expression of SCGB2A1 is known to be associated with poor survival in EC37,38. The remaining genes are less characterized in EC tumors but have interesting roles in other cancers related to transcriptional regulation (PBX1 interacts with the estrogen-axis in breast cancer39 and SAT1 functions as a transcriptional regulator in aggressive brain tumors40), and key signaling pathways including the transforming growth factor β (TGFβ) pathway (GDF1541), the PI3K/AKT-pathway (ANX1A42), and the Mitogen-activated protein kinase (MAPK) pathway (CNDP243). However, for MMP7, involved in proliferation and metastasis, most studies report elevated expression, suggesting a possible adverse effect of this gene depending on the type of cancer44. While the 11-gene signature was driven by differentially expressed genes emerging from clusters 1 and cluster 2b, no genes reached significance when comparing clusters 2a and 2b. It is possible that other mechanisms not investigated in this study, such as DNA methylation45, could be associated with the radiomic differences between clusters. The gene signature correlated with the protein expression level of the hormone receptors (ERa, PR, and AR), well known as functionally described in EC, but that has been linked to the regulation of estrogen signaling in breast cancer36. Eight genes in the signature had reduced expression in the aggressive cancers, and decreased expression of SCGB2A1 is known to be associated with poor survival in EC37,38. The remaining genes are less characterized in EC tumors but have interesting roles in other cancers related to transcriptional regulation (PBX1 interacts with the estrogen-axis in breast cancer39 and SAT1 functions as a transcriptional regulator in aggressive brain tumors40), and key signaling pathways including the transforming growth factor β (TGFβ) pathway (GDF1541), the PI3K/AKT-pathway (ANX1A42), and the Mitogen-activated protein kinase (MAPK) pathway (CNDP243). However, for MMP7, involved in proliferation and metastasis, most studies report elevated expression, suggesting a possible adverse effect of this gene depending on the type of cancer44.

Table 3 Clinico-pathological variables in relation to the 11-gene signature score in the L1000 dataset (n = 392).

Variable	Description	Signature score, n (%)	p value³
Age	<66	143 (70.1)	0.002
	≥66	102 (54.3)	
Histologic type	Endometrioid	238 (75.6)	<0.001
	Non-endometrioid	7 (9.1)	
Histologic grade^b	Grade 1–2	212 (83.5)	
	Grade 3	23 (39.7)	
FIGO stage	I–II	223 (65.6)	0.002
	III–IV	22 (42.3)	
Myometrial infiltration	<50%	165 (71.1)	<0.001
	≥50%	80 (50.0)	
Lymph node metastasis	No	179 (62.2)	0.006
	Yes	13 (37.1)	
Ploidy	Diploid	148 (69.2)	<0.001
	Aneuploidy	20 (30.3)	
ER protein expression^c	High expression	184 (74.5)	<0.001
	Low expression	29 (30.2)	
PR protein expression^c	Positive	199 (77.4)	<0.001
	Negative	17 (19.3)	
AR protein expression^c	Positive	150 (73.9)	<0.001
	Negative	50 (43.9)	

^aMissing data (numbers): Histologic grade (3).

^bNot assessed (numbers): Lymph node metastasis (69), Ploidy (112), ER (49), PR (47), and AR (75).

^cCalculated with Chi-Square or Fisher’s exact test, as appropriate.

^dEndometrioid type only.

^eProtein levels by immunohistochemistry (IHC).
Fig. 4 Radiomic clustering of ML segmented tumors in 336 EC patients reproduces three distinct clusters with different prevalence of high-risk features. a Preoperative pelvic MRI with automated ML-based tumor segmentation of EC tumor (red arrows) of a patient with endometrioid type, histologic grade 2, and FIGO stage IIIC1. Tumor segmentation was performed by a machine learning (ML) algorithm trained on the segmentation data from the manual segmentation cohort. The radiologic images of the ML-cohort of VIBE = n = 188, ADC = n = 64, and tumor segmentation were used for radiomic profiling similar to the manual segmentation-cohort. b Heatmap depicting the three distinct radiomic clusters and corresponding clinico-pathologic features capturing different levels of tumor aggressiveness. Patients in cluster 2a (n = 84) and 2b (n = 64) more often had clinico-pathological variables known to be associated with high-risk disease, compared with that of patients in cluster 1 (n = 188). c–e Survival analysis in relation to the radiomic clusters highlighting a significantly poorer survival for patients in cluster 2. Disease-specific survival comparing clusters 1 and 2a/b combined (c), all three clusters (d), or by recurrence (e). Number of events in brackets. Histological types: EEC endometrioid, CS carcinosarcoma, S serous, CC clear cell, U undifferentiated.

robust biomarkers in EC. This finding was consistent across all datasets investigated and emphasizes that the radiomic profiles derived from radiologic image features can capture relevant and well-described biology of the tumors. Interestingly, the distribution of patients is also in accordance with the TCGA classification, with POLE positive tumors assigned to the low-risk gene expression signature score, and p53 abnormal tumors mainly found in the high-risk cluster. In a recent publication, a classifier based on contrast-enhanced computed tomography (CE-CT) for the identification of MSI and tumor mutation...
burden-high (TMB-H) cases was proposed based on a small cohort of endometrial cancers. In this classifier, peritumoral-rim radiomic features were found to be highly important, suggesting that tumors with high mutational burdens have a delineation that can be captured by radiomic profiling. However, the poor soft-tissue resolution at CT often makes valid tumor segmentations difficult, and MRI, yielding much better soft-tissue resolution with an accurate depiction of tumor boundaries, is thus likely to be better suited for whole-volume radiomic profiling. Future radiogenomics studies should evaluate the feasibility of determining the spectrum of TCGA molecular subtypes directly from radiomic data using different imaging modalities in a large cohort.

In the current study, we have demonstrated the translational potential of integrating radiomic profiling with transcriptionomic profiling for better preoperative risk assessments in EC patients. While our study has some limitations mainly linked to the retrospective study design with some overlap of cases in the expression datasets, we applied different and independent assays for transcriptional profiling. MRIs were performed using both 1.5 T and 3 T scanners, with noticeable impact on the radiomic profiles due to systematic differences in signal intensities, and we applied separate Z-transformations for each dataset of the same field strength to account for this. Despite these limitations, we firstly describe distinct radiomic clusters comprising patient groups with differential risk profiles. Secondly, we link these radiomic clusters to differential gene expression and present a gene signature score based on these genes that predicts aggressive features and poor outcome. Thirdly, we demonstrate the feasibility of automated ML-based tumor segmentations for expedited radiomic profiling and clinical phenotyping in EC. Prospective validation in larger and independent patient cohorts should inform potential implementation in the clinic to enable better prognostication and tailoring of treatment in EC.

Methods

Patient cohort and biospecimen collection. The current study was conducted under Institutional Review Board (IRB)-approved protocols (2015/2333, 2015/548) and biobank approval (2014/1907) with written informed consent from all patients. Patients were diagnosed and treated at the same University Hospital (Haukeland University Hospital, Bergen, Norway), which is a European Society for Gynecologic Oncology (ESGO) accredited cancer center serving a population of ~1 million inhabitants. Patients diagnosed with histologically confirmed EC during April 2009–July 2019 who had contrast-enhanced MRI performed preoperatively were included and divided into training and a validation cohort as described below. Two radiologists, each with more than 5 years of relevant clinical experience reported on imaging data which was segmented in the primary tumors. Clinical data were collected retrospectively from medical records. Expert pathologists evaluated the resected tumors, and tumor cellularity was quantified from hematoxylin- and eosin-stained sections. Preoperative endometrial biopsies by curettage or pipelle were classified as “low risk” from preoperative pathology finding consistent with endometrioid grade 1 or 2 tumors. Biopsies were included if tumor content was more than 70%. RNA was extracted from fresh frozen tissues using Qiagen RNA easy kit (Hilden, Germany) according to the manufacturer’s instructions.

Imaging protocol and preprocessing steps. Preoperative MRI was performed on a 1.5 T Siemens Avanto running Syno MR B17 (Erlangen, Germany) (n = 266) using a six-channel body coil or on a 3 T Siemens Skyra running Syno MR E11 (Erlangen, Germany) (n = 221) using an 18-channel-body-phased-array and a spine-coil (Supplementary Table S7). In addition, 20 mg butylscopolamine bromide (Buscopan, Boehringer Ingelheim, Germany) was administered intravenously to reduce bowel peristalsis. A contrast-enhanced T1-weighted axial oblique 3D volumetric interpolated breath-hold (VIBE + C) gradient-echo sequence with fat saturation was acquired 2 min after injection of intravenous contrast agent (0.1 mmol gadolinium/kg body weight, Dotarem, Guerbet, France). In addition, a 2 mm isotropic diffusion-weighted imaging (DWI) sequence with b-values of 0 and 1000 s/mm² (1.5 T) or 0, 500 s/mm², and 1000 s/mm² (3 T) was acquired (Supplementary Table S7) in addition to standard T2-weighted sequences. All imaging data were read and reported as part of the standard routine clinical workup prior to treatment. DICOM images from T1 VIBE + C and DWI were exported as NIfTI-1 format using the conversion tool “nrrd2nifti” as part of FreeSurfer. Apparent diffusion coefficient maps (ADC) and b1000 images (DWI image for b = 1000) derived from the DWI data were aligned with the T1-weighted contrast-enhanced VIBE + C sequence using FLIRT from the FSL package1, leaving a total of three image channels for further analysis.

Training- and validation imaging cohorts. In total, MRI examinations were available for n = 487 patients diagnosed during April 2009 to July 2019; all having visible primary tumors confirmed by a radiologist. The MRI data were divided into a training set with manual tumor segmentations (manual segmentation-cohort, n = 138) and a validation set with machine learning-based automatic tumor segmentation (ML-segmentation-cohort, n = 55; http). There were no significant differences between patients in the two cohorts in terms of survival (p = 0.8, Supplementary Fig. S3), or clinical variables (Supplementary Table S8) except higher recurrence rate in the manually segmented dataset (p = 0.015), which is likely due to longer follow-up time in a manually segmented cohort (47.6 ± 52.9 months compared to 39.2 months in ML-cohort).

Two radiologists having experience with pelvic MRI outlined all primary tumors in 3D on preoperative MRI in the manual segmentation-cohort (1.5 T, n = 71; 3 T, n = 67). Tumor labeling was conducted on the VIBE + C 2 min post contrast images on axial, coronal, and sagittal (long axis of the uterus) slices. The boundaries of the primary tumors were manually drawn and filled to become a binary mask. The remaining MRI examinations in the ML cohort (1.5 T, n = 195; 3 T, n = 154) were used as a validation cohort with machine learning-based automatic tumor segmentation comprising the ML dataset. The automatic tumor segmentation was performed using a previously trained network along with a python script (predictUNet3D.py) for predicting primary tumor in new and unseen VIBE + contrast 2 min datasets can be downloaded from https://github.com/ehodneland/RadioGenomicsEC. The same repository also contains code for the training of the network, as well as for extraction and clustering of radiomic features. Finally, all patients (n = 487) were assigned an MRI tumor mask segmentation, either by a radiologist or by automatic segmentation.

Extraction of radiomic profiles. Radiomic features were automatically extracted for the three abovementioned image channels from within the tumor masks, giving a complete set of 53 radiomics features (Supplementary Table S9). For each patient, one scalar value was reported per radiomic feature. The number of radiomic features was selected lower than the number of patients to improve the performance of the prediction model. Tumor volume “vol” was computed as the sum of voxels within the tumor mask times the voxel volume.

To explore the extent of surface folding and irregular tumor shape decoupled from tumor size itself, we initially considered tumor surface area and tumor surface area/volume. However, since both these parameters are inherently closely linked to tumor volume, we created the parameter “normsurfvolratio” = (V/π)/(A²/r). In this formula, r is the radius of an imaginary sphere having the same volume V as the tumor. The tumor volume V and the tumor area A were normalized with r² and r, respectively, in order to remove direct dependencies on tumor volume.

The features “clustersize” and “cluster index” arise from a k-means two-group clustering of the image intensities within the tumor. Objects smaller than three voxels were considered noise after clustering and therefore excluded, while the average volume of the remaining objects were measured to become the “clustersize”. The cluster index “clustindex” is the total number of spatially disconnected objects within the two clusters. “Clustersize” and “clusterindex” capture random disorder within the tumor. The features “meaning” and “stidnt” are mean and the standard deviation within the tumor, respectively. The feature “mean1Spec” is the average intensity of the 15% lowest intensity voxels within the tumor. Kurtosis, skewness, and entropy were calculated using “scipy.stats”. A set of Gabor filters was constructed using the function “gabor_kernel” from “skimage.filters” leading to a 16-dimensional filter bank. The filters were convolved with the tumor image using ‘convolve’ from “scipy.ndimage”. The convolved output was normalized by dividing with the tumor image itself, and the summed output was divided by the number of filters. The final Gabor filter value was reported as the variance of the filter outputs.

The 4D GLCM output matrix was averaged over the search angles and offsets, and normalized to a sum of 1, becoming the GLCM matrix. The element P_{ijk} refers to how often a pixel with grayscale intensity i is adjacent to a pixel with grayscale intensity j, applied to the given search angles and offsets. The variables contrast, homogeneity, energy, and correlation were estimated by the function “graycoprops” applying the formulas in Supplementary Table S9. The gray level run length matrix (GLRLM) was computed using a tailored algorithm. An output matrix summing the filter response of all filtered angles were summed and divided by the number of filters. The GLRLM matrix P was then normalized to a sum of 1. The element P_{ijk} is the number of homogeneous runs of j voxels with intensity i within the mask. The GLRLM variables short-run emphasis (SRE), long-run emphasis (LRE), low gray level run emphasis (LLRE), and high gray level run emphasis (HGRE) were computed as follows:

SRE

$$SRE = \sum_{i} P_{ijk}$$

LRE

$$LRE = \sum_{i} \sum_{j=0}^{J-1} P_{ijk}$$

LLRE

$$LLRE = \sum_{i} \sum_{j=0}^{J-1} P_{ijk}^2$$

HGRE

$$HGRE = \sum_{i} \sum_{j=0}^{J-1} P_{ijk}^3$$
emphasise (HGLRE) were computed as in Supplementary Table S9. All GLCM and GLRLM matrices were computed 2D-wise on paraxial images and later averaged over all tumour slices in prior statistical analysis. Finally, each radiomic feature was Z-transformed (i.e., scaling to standard deviation = 1 and translation to zero mean) across the patients within the training cohort. To avoid selection bias in the clustering analysis due to differences in image intensity between the magnetic field strengths, a Z-transform was carried out separately for images from the 1.5 T and 3 T scanners.

Unsupervised clustering of radiomic features in the training cohort. Unsupervised clustering was applied to all extracted features to group patients into clusters of similar radiomic patterns. Initially, tumors manually segmented generated two groups using unsupervised k-means clustering with a squared Euclidean distance measure applied to the image feature matrix55. Patients in the two clusters displayed similar clinical characteristics including clinical characteristics across the patients within the training cohort. To avoid selection bias in the clustering analysis, L1000 data was available for 51 patients in the MRI-10 cohort. L1000 data was available for 51 patients in the MRI-10 cohort. The Euclidean distance between the radiomic features were extracted and used for a k-means clustering into three clusters as described.

Assignment of patients to clusters in the ML-cohort. In the ML cohort, patients with no detectable tumor on MRI based on the machine learning algorithm were excluded from further analysis of radiomic profiling (13/349). In the remaining 336 patients, based on automatically segmented tumor volumes, the texture features were Z-transformed for normalization. The normalization parameters of scaling and translation derived from the manual segmentation cohort were applied separately for the 1.5 T and 3 T data. In the next step, we assigned previously unseen patients in the ML cohort to the clusters initially generated from the training cohort. The Euclidean distance between the radiomic feature vectors and the cluster centroids was computed for each patient in the ML cohort, and each patient was assigned to belong to the closest cluster in terms of computed distance. Image data from each patient was examined by either one of two trained radiologists evaluating the accuracy of the ML-derived segmentation masks. Out of 336 patients, they found one patient where the ML-suggested segmentation was not positioned inside the uterus, and therefore likely not representative of a primary tumor. The automated segmentation algorithm suggested more than one lesion in 29% (96/336) patients; all of them had one lesion in the uterus likely to represent primary tumor, and the additional lesions were in most cases located in putative non-malignant tissue in the uterus or in a few cases located in outside the uterus. All masks were included in the further radiomic profiling since the ML-derived tumor segmentation was intentionally conducted completely unsupervised without requiring any manual steps by radiologists. The ranking of feature importance for discriminating clusters was based on pairwise inter-distance cluster centroid distances comparing cluster 1 with ~2a, cluster 1 with ~2b, and cluster 2a with ~2b.

Gene expression profiling. mRNA expression profiles were generated by the LI1000 approach57 for 392 patients. The LI1000 expression data were generated following an algorithm that extrapolates the expression of 978 tissue microarray slides, as previously described in refs. 35,46,47. Missing hormone receptor status were extrapolated from expression data compared to cases with both IHC and L1000 data available, using a mean expression for high-positive/negative markers, for the display of panel in Fig. 3 (n = 51 cases). We determined the TCGA molecular-like classes by following the algorithm of the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE48). This procedure represents a more clinically feasible classifier than the original proposed by the TCGA51. The steps in ProMisE are to be applied sequentially. First, the mismatch repair deficiency was determined (MMRD class; loss of either of MSH6, PMS2, MLH1 or MSH2 by IHC49). Second, the exonuclease domain of polymerase-ε was sequenced (Sanger sequencing of POLE exons 9/11/13/14; POLE class50). Third, the status of protein 53 expression was determined (abnormal p53 by IHC [p53 abnormal, representing TP53 mutations]) or the alternative p53 wt (p53 normal expression [p53 normal]). The resulting ProMisE classification then provides substitution of the molecular classes originally defined as POLE-ultra-mutators, MSI-hypermutators, copy-number-(variant)-low (Endometrioid), and copy-number-high (Serous-like) classes51. We identified four cases with POLE mutations at p.P266R (n = 2), p.D287E (n = 1), and p.S297F (n = 1), all within exon 9 in the manually segmented dataset with overlapping LI1000 expression data (n = 51).

Statistics. Data were analyzed using SPSS version 25 (SPSS INC., Chicago, IL) or R (4.0.0). The level of statistical significance was set as p < 0.05. All reported p values were unadjusted and two-sided. Associations between groups were evaluated using the chi-square test for categorical variables or Fisher’s exact test as appropriate. Kaplan–Meier curves and log-rank tests (Mantel–Cox) were applied for comparing disease-specific and recurrence-free survival between clusters or signatures. The date of primary surgery was defined as the entry date, and the date of death specifically due to endometrial cancer was defined as an event for estimation of disease-specific survival. Recurrence was defined as local recurrence/progression or metastases at later time points.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Validation data are available from the TCGA database via https://portal.gdc.cancer.gov and https://www.cbioportal.org104,4. The transcriptome datasets are deposited at ArrayExpress with accession reference E-MTAB-501762 for Agilent microarray data and E-MTAB-1066863 for LI1000 data, respectively. Other data of this study are available within supplementary files or the corresponding author upon reasonable request and if in compliance with the general data protection regulation (GDPR) and patient consents.

Code availability. Matlab and python codes for data processing and analysis, and example input data, are available in the Github repository: https://github.com/ehodneland/RadioGenomicsEC and archived in Zenodo https://doi.org/10.5281/zenodo.5617896.

Received: 2 May 2021; Accepted: 9 November 2021; Published online: 06 December 2021

References
1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). 2. Lu, K. H. & Broadus, R. R. Endometrial cancer. N. Engl. J. Med. 383, 2053–2064 (2020). 3. Colombo, N. et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: diagnosis, treatment and follow-up. Ann. Oncol. 27, 16–41 (2017). 4. Marmita, S. et al. A modern approach to endometrial carcinoma: will molecular classification improve precision medicine in the future? Cancers 12, 2577 (2020).
Patient-derived organoids reflect the genetic profile of endometrial tumors and predict patient prognosis. Commun. Med. 1, 20 (2021).

Acknowledgements
This study was approved by the National and Regional Ethical Review Boards and the participating institutions. All patients provided written informed consent. This work was supported by The Norwegian Research Council (311350 [I.S.H.] and 273280 [C.K.]), Helse Vest (F-10221 [I.S.H.] and F-12542 [C.K.]), Trond Mohn Foundation (BFS2018TMT06 [I.S.H.]), The Norwegian Cancer Society (190202-2017 [C.K.]) and the University of Bergen. The authors acknowledge expert technical assistance from Kadri Madissoo, Olivera Bozickovic, Elisabeth L. Enge, and Jenny M. Dugstad.

Author contributions
E.A.H., E.H., I.S.H., and C.K. conceived the experiment. E.A.H., E.H., J.A.D., K.S.W.-L., K.E.F., H.F.B., and M.K.H. conducted the experiments. E.A.H., E.H., J.A.D., K.S.W.-L., I.S.H., and C.K. analyzed and interpreted the results. E.A.H., E.H., I.S.H., and C.K. wrote the manuscript. All authors reviewed and provided input to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-02894-5.