Cycloserine Population Pharmacokinetics and Pharmacodynamics in Patients with Tuberculosis

AUTHORS

Wael A. Alghamdia,b, Abdullah Alsultanc, Mohammad H. Al-Shaera, Guohua And, Shahriar Ahmede, Yosra Alkababf, Sayera Banug, Ketevan Barbakadzeh, Eric Houpti, Maia Kipianij, Lali Mikiashvilig, Stephan Schmidtl, Scott K. Heyselli, Russell R. Kempkerj, J. Peter Cegielskii, Charles A. Peloquina,#

AFFILIATIONS

aDepartment of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL.
bDepartment of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.

[This accepted manuscript was published on 11 March 2019 with a standard copyright line ("© 2019 American Society for Microbiology. All Rights Reserved."). The authors elected to pay for open access for the article after publication, necessitating replacement of the original copyright line, and this change was made on 25 March 2019.]
Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA.
Infectious Diseases Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b).
Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA.
National Center for TB and Lung Diseases (NCTLD), Tbilisi, Georgia.
Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL.
Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA.
University of Texas Health Science Center at Tyler, Tyler, TX.

Corresponding author: Charles A. Peloquin, peloquin@cop.ufl.edu

RUNNING TITLE: Cycloserine Population PK/PD in TB Patients

KEYWORDS: cycloserine, drug-resistant tuberculosis, pharmacokinetics, pharmacodynamics, target attainment.
ABSTRACT

Background: Limited pharmacokinetic/pharmacodynamic (PK/PD) data exist on cycloserine in tuberculosis (TB) patients. We pooled several studies into a large PK dataset to estimate the population PK parameters for cycloserine in TB patients. We also performed simulations to provide insight into optimizing the dosing of cycloserine.

Methods: TB patients were included from Georgia, Bangladesh, and four U.S. sites. Monolix and mlxR package were used for population PK modeling and simulation. We used PK/PD targets for time above MIC ≥30% and ≥64%, representing bactericidal activity and 80% of the maximum kill, to calculate the probability of target attainment (PTA). Optimal PK/PD breakpoints were defined as the highest MIC to achieve ≥90% of PTA.

Results: Data from 247 subjects, including 205 patients with drug-resistant TB, were included. The data were best described by a one-compartment model. In most cases, the PK/PD breakpoints for the simulated regimens were similar for both PK/PD targets. Higher PTA was achieved as the total daily dose was increased. The highest PK/PD breakpoint that resulted from the use of 250 mg dosages was 16 mg/L. For MICs >16 mg/L, doses of at least 500 mg three times daily or 750 mg twice daily were needed.

Conclusions: The current dosing for cycloserine, 250 to 500 mg once or twice daily, is not sufficient for MICs >16 mg/L. Further studies are needed regarding the efficacy and tolerability of daily doses >1000 mg. Dividing the dose minimally affected the PK/PD breakpoints while optimized exposure, which can potentially reduce the drug adverse effects.
INTRODUCTION

Tuberculosis (TB) continues to claim millions of lives annually and is the leading cause of death from a single infectious agent (1). When *Mycobacterium tuberculosis* (Mtb) develops resistance to rifampin and isoniazid, known as multidrug-resistant TB (MDR-TB), treatment requires the use of second-line drugs (SLDs), which are less effective and more toxic than regimens used for drug-susceptible TB. Optimized dosing of current SLDs offers one way to improve existing therapy for MDR-TB while waiting for newer and more effective agents to become available. Cycloserine, a cyclic analogue of D-alanine, is an SLD for TB that was discovered in 1954 (2). It competitively inhibits alanine racemase and D-alanine D-alanine ligase, two key sequential enzymes needed for Mtb cell wall synthesis (3). Recently, the World Health Organization (WHO) has reclassified cycloserine and now recommends its use as part of the regimen for all MDR-TB patients who do not qualify for the shorter MDR-TB regimen (4).

Recent work by Yu *et al.* found that a ratio of cycloserine peak serum concentration to minimum inhibitory concentration (C\text{max}/MIC) ≥1 was associated with favorable outcomes (5). However, they measured a single concentration at 2 hours and did not explore other pharmacodynamic (PD) indices. In hollow fiber systems, Deshpande *et al.* have recently demonstrated that time above MIC (T>MIC) is the key driver for cycloserine efficacy (6), a previously hypothesized PD index owing to its inhibition to the bacteria peptidoglycan synthesis, similar to beta-lactams. Cycloserine also binds to N-methyl-D-aspartate receptors, which in part explains the commonly associated neurotoxicity and also relatedly has led to research into its use for psychiatric indications at lower doses (7, 8). At currently recommended anti-TB dosing...
for cycloserine (250 to 500 mg once or twice daily), the neurotoxicity can range from mild to severe and has resulted in psychosis and treatment discontinuation in some cases (9-12). These adverse events are thought to be associated elevated cycloserine plasma concentrations, although no study has examined this relationship.

Despite the introduction of cycloserine over half a century ago, there are limited pharmacokinetics (PK)-PD data on cycloserine in TB patients. In our study, we pooled relatively large PK datasets for cycloserine from several studies to estimate population PK parameters in TB patients, mainly MDR-TB, and explored covariates that might contribute to the variability of drug exposure. We also performed Monte Carlo simulations and target attainment analyses to better understand the optimal dosing of cycloserine and whether the current recommended doses are sufficient.
RESULTS

Population demographics

A total 235 TB patients and 12 healthy subjects were included in the model. The median (IQR) age and weight were 41.0 (28.9-52.0) years and 59.0 (51.4-68.6) kilograms, respectively. Approximately 75% of the patients were males. Over 80% of the included subjects had MDR, pre-XDR, or XDR-TB (Table 1).

Population pharmacokinetic analysis

The number of cycloserine plasma concentrations used in the PK model was 1069. The median (range) cycloserine peak concentration was 26.5 mg/L (7.5-97.9). Six patients, five from Bangladesh and one from Georgia, had $C_{\text{max}} \geq 80$ mg/L due to their high average dose (13.1 mg/kg) compared to the average dose (7.7 mg/kg) from the rest of the population. The structural model was based on data from the intensively sampled healthy subjects. The remaining datasets that contained semi-rich and sparse data from patients with TB were added next. The entire data were best described by a one-compartment model, with a first-order absorption and lag phase. Adding a parameter for a lag time resulted in a better fit during the absorption phase ($\Delta -2LL = -1035.1$). The proportional model was selected to estimate the residual error. The addition of weight on apparent volume of distribution (V/F) followed allometric scaling, with fixing the exponent to 1. Of the other covariates evaluated, the presence or absence of disease (healthy subjects vs patients with TB) and CrCL had significant effects on CL/F, while body weight had a significant impact on V/F. The difference in $-2LL$ from the base and final models was -60 (Table 2). When those covariates were
added in the final model, the inter-individual variabilities decreased from 0.49 to 0.35 in
CL/F and from 0.24 to 0.17 in V/F. The CL/F of cycloserine was estimated to be 2.00
L/h in healthy subjects and 1.03 L/h in patients, while V/F was estimated to be 24.9 L.
The estimated population PK parameters are presented in Table 2. The observations
versus individual and population predictions are shown in Figure S1 (A and B). The
individual and population weighted residuals versus concentrations are shown Figure
S1 (C and D). Figure 1 shows the VPC for the entire dataset; further stratification by
dose are shown in Figure S2. For 250 mg dose, there was a variety of dosing
frequencies including irregular twice daily dosing (e.g. dose at time 0 and 6 hours).

Monte Carlo simulations

The empirical distribution of the simulated data for the most commonly used
dosage regimens is shown in Figure 2. The PK/PD breakpoints for the simulated
regimens were similar for both T>MIC targets, except for the 750 mg once and three
times daily regimens (Table 3). As the total daily dose of cycloserine was increased, the
PTA also increased (i.e. 250 mg vs. 500 mg vs. 750 mg given once daily). The 250 mg
dosage regimens failed to achieve the prespecified PTA for MICs >16 mg/L (Figure 3).
MICs of 32 and 48 mg/L required at least 500 mg three times daily and 750 mg three
times daily, respectively, to achieve ≥90% of the PTA.

Dividing the daily dose did not improve the PK/PD breakpoints, due to the
relatively long half-life of 16.8 h for cycloserine. An exception to that is dividing the 750
mg dose into 250/500 mg daily resulted in a PK/PD breakpoint of 16 mg/L, compared to
8 mg/L in the 750 mg once daily regimen. Assuming that C_{max} is the predictor for the drug-associated neuropsychiatric toxicity, dividing the daily dose reduced the C_{max} significantly (Table 3 and Figure 2). For example, the C_{max} for 500 mg once daily and 250 mg twice daily were 33 and 26 mg/L, respectively. Similarly, the C_{max} for 750 mg once daily and the 250/500 mg regimen were 50 and 42 mg/L, respectively.
DISCUSSION

In our model, we included rich PK data from healthy subjects, as well as semi-rich and sparse data from MDR-TB patients from various parts of the world. To our knowledge, these are the largest PK data for cycloserine from TB patients, analyzed using a nonlinear mixed-effects model. Weight, CrCL, and the presence or absence of the disease were identified as significant covariates on the PK parameters and explained some of the inter-individual variabilities. Our simulations indicate that the current commonly used doses in practice for cycloserine, 250 to 500 mg once or twice daily, are not sufficient for MICs >16 mg/L (13). For higher MICs, a total daily dose of at least 1500 mg is needed, which raises questions regarding its tolerability.

Recently, the WHO has regrouped drugs used in the treatment of MDR-TB (4). Cycloserine, along with four additional TB agents, is now recommended as part of the regimen for all MDR-TB patients, hence more MDR-TB patients are expected to receive cycloserine. However, limited data are available on its PK/PD in TB patients. Several studies have reported the plasma concentrations of cycloserine, but many of them included 1 to 2 concentrations in therapeutic drug monitoring settings (5, 14-19).

Although the typical \(C_{\text{max}} \) for cycloserine usually is thought to be between 20 to 35 mg/L after 250 or 500 mg dose in adults (20), a few studies have reported lower plasma concentrations in some MDR-TB patients using the same doses (16, 17). This typical range seems to be applicable to children as well. Kumar et al. recently reported an average plasma concentration of 32 mg/L in children with MDR-TB after receiving an average dose of 14 mg/kg (~500 mg dose), which is in accordance with early studies (21, 22).
In Chinese healthy volunteers, Zhou et al. have shown that cycloserine follows linear pharmacokinetics, with average C$_{\text{max}}$ of 19.4, 42.9, and 84.8 mg/L after single doses of 250, 500, and 750 mg, respectively (23). In an earlier study by Zhu et al., they reported a lower C$_{\text{max}}$ (14.8 mg/L) for the 500 mg dose (24). It is worth noting that the average weights between the two studies were quite different (56 vs. 78 kg), which could have contributed to the observed differences in C$_{\text{max}}$. In fact, our model showed that weight had a significant effect on V/F. Our population PK parameter estimates were comparable to what Zhu et al. have reported (24). This was not surprising since we utilized those data in our model. On the other hand, Chang et al. reported lower ka and V/F estimates (0.14 h$^{-1}$ and 10.5 L, respectively) using a one-compartment model with first order absorption (25). This is possibly due to the differences in the structural models (including a lag time in our case) and the inclusion of covariates in our model (including weight as a covariate on V/F).

The significant effect of CrCl on CL/F was expected since cycloserine is approximately 70% renally cleared (26). The CL/F estimate in healthy subjects was about twice the CL/F estimate in patients. This could be due to the differences in the study settings. The healthy subjects had normal kidney and liver functions, fasted overnight, did not take other medications (except studied TB drugs), and were sampled extensively over 48 hours. In contrast, many of these variables were different or missing in the other included studies, which could have contributed to the observed difference between the two groups, knowing that for example food results in delayed absorption (24).
Cycloserine inhibits the cell wall synthesis by targeting the formation of peptidoglycan, the same as the target for beta-lactams but through a different mechanism of action (3, 27). Hence, the PD index for cycloserine was hypothesized to be T_{MIC}. Recently, Deshpande et al. confirmed that T_{MIC} is indeed the efficacy driver for cycloserine in a hollow fiber system model, indicating that a T_{MIC} of 30% was associated with bactericidal activity, and 64% represented the EC$_{80}$ (6). Both were included in our PK-PD analysis. The PTA increased significantly as the total daily dose increased. On the other hand, taking the total daily dose once per day versus dividing it did not affect the PK/PD breakpoint, with the exception of the 250/500-mg regimen, which had a higher PK/PD breakpoint than the 750 mg dose once daily. Interestingly, all the 250 mg dosage regimens, including four times daily, failed to achieve a PK/PD breakpoint higher than 16 mg/L. This suggests that our current dosing for cycloserine may not be sufficient for some strains, given the current tentative epidemiologic cutoff (ECOFF) value for cycloserine (between 32 and 64 mg/L) (6, 28). Indeed, Yu et al. and Deshpande et al. have shown that approximately 30% and 26% of their tested isolates had MIC higher than 16 mg/L. For MIC of 32 mg/L, a dose of at least 750 mg twice daily is needed, which is consistent with previous findings from Deshpande et al. (6).

Therefore, we might need to identify patients who would most likely benefit from cycloserine based on their individual MICs. It is worth noting, however, that in general cycloserine drug-susceptibility testing is not performed in MDR-TB endemic settings. The neuropsychiatric adverse events of cycloserine include anxiety, agitation, depression, psychosis, and rarely seizures (9, 10). Compared to other second-line agents, cycloserine has been associated with more frequent neuropsychiatric-related
adverse events. A recent meta-analysis showed that the frequency of psychiatric and
central nervous system adverse events are 5.7 and 1.1%, respectively (29). These
adverse events may be associated with elevated plasma concentrations of cycloserine
(20). A few studies from the 1950s reported the use of a total daily dose of 1000 to 1500
mg. These showed mixed results in terms of the incidence of neuropsychiatric adverse
effects, ranging from 6% to 77% (30-32); the latter included a very small sample size
(n=13). Holmes et al. indicated that the observed cases (n=2) of psychiatric reactions
had serum concentrations >50 mg/L, while cases (n=2) with early symptoms of tremor,
weakness, and mild disorientation had serum concentrations >40 mg/L (31). Hung et al.
also reported a case with psychotic symptoms had cycloserine plasma concentrations
>35 mg/L (15). Further studies in this area are needed to define the which PK
parameter is associated with toxicity and whether increasing the exposure beyond the
current recommended serum concentration range of 20-35 mg/L is feasible from a
safety perspective.

One of the limitations of our analysis is the inclusion of intensively sampled PK
data for healthy subjects only. However, relatively large semi-rich data from two ongoing
prospective studies in TB patients were also included. As the case with the nature of
retrospective studies, they are prone to a potential inaccuracy in data collection; this can
be another limitation for the data collected retrospectively (the fourth and fifth datasets).
Also, the PD targets for T>MIC were based on hollow fiber studies evaluating the efficacy
of cycloserine alone. Even though the treatment of MDR-TB includes at least 4 to 6
drugs given in combination, the current practice is to try to optimize each drug
independently. At this time, true synergy for cycloserine with other TB drugs has not
been proven. This is a limitation of our study. More importantly, although we have
explored the C_{max} of the simulated regimens as a potential driver for toxicity, our
analysis did not evaluate the safety of cycloserine per se. There are scant safety data
for cycloserine, and we plan to examine that further in ongoing studies. Another
limitation is that we had to assume the plasma protein binding of cycloserine to be zero,
since it has not been reported in the literature.

In conclusion, cycloserine was best described by a one-compartment model with
first-order absorption and a lag phase. Our simulations showed that dividing the dose
minimally affects the PK/PD breakpoints, while resulting in a significant decrease in
C_{max}, which might reduce the neuropsychiatric adverse effects while preserving
microbial kill. Target attainment analysis also showed that the current dosing of
cycloserine is sufficient for MICs up to 16 mg/L. Higher MICs require higher daily doses
(>1000 mg), in which their safety and tolerability need to be evaluated in future studies.
PATIENTS AND METHODS

Study datasets and subjects

A total of five datasets were used for the analysis. The first was from healthy subjects (n=12) recruited at the University of Arizona, and they were given 500 mg of cycloserine as a single dose on empty stomach (24). They were intensively sampled over 48 hours at 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 14, 24, 36, and 48 hours post dose. The second set represents patients with MDR-TB (n=69) given 250 to 1000 mg of cycloserine from Tbilisi, Georgia. They were enrolled in a prospective observational study, and samples were collected mainly 0, 2, 6-8, 10-12, and 24 hours approximately 4-6 weeks after initiating treatment. The third dataset represents MDR-TB patients (n=42) given 500 to 1000 mg of cycloserine from Bangladesh. They were enrolled in a multi-country, prospective, observational study that collected blood samples at 1, 2, 6 and 12 hours two weeks after treatment initiation. Blood samples also were collected at 2 and 6 hours after four and eight weeks following treatment initiation. The fourth dataset comes from patients (n=54) with MDR-TB or nontuberculous mycobacteria from National Jewish Health (NJH) in Denver, CO. This included sparse clinical samples (1 to 2 samples per patient), mainly at 2 and 10 hours post dose. Finally, the fifth dataset also included sparse clinical samples (mainly at 2 and 6 hours) from a retrospective study involving three TB centers in the U.S. (n=70): A.G. Holley Hospital (AGH) in Florida, Texas Center for Infectious Diseases (TCID), and University of Texas Health Science Center at Tyler (UTHSCT). The cycloserine dose for the fourth and fifth datasets ranged from 250 to 750 mg.
The Institutional Review Boards of all participating sites reviewed and approved the studies included in this analysis [AGH: Florida IRB 2014-12; Emory University: IRB 00083639; icddr,b: IRB PR-15121; NCTLD: IRB 00007705; NJH: IRB HS-827; TCID: IRB 14-013; University of Florida: IRB 201300638; University of Virginia: IRB 18452; UTHSCT: IRB 09-016]. For the prospective studies, written informed consents were obtained from all participants or their legal guardians. For the retrospective studies, informed consent was waived by the respective IRBs. The research was performed in accordance with the Declaration of Helsinki and institutional standards.

Drug quantification

Cycloserine plasma concentrations for healthy subjects were measured using a validated high-performance capillary electrophoresis assay, as described by Zhu et al. (24), which also was used for the NJH data. Blood samples from Georgia and Bangladesh studies were centrifuged, and plasma samples were stored at -80°C until assayed. Total plasma concentrations for both studies were measured using a validated liquid chromatography tandem mass spectrometry assay, performed at the Infectious Disease Pharmacokinetics Laboratory at the University of Florida. The analysis was performed on Thermo Scientific TSQ Endura™ or TSQ Quantum Ultra™. The curve was linear over the range 1.25 to 50 mg/L. Samples with concentrations that exceeded 50 mg/L were diluted and reanalyzed with similarly diluted quality control samples. The coefficient of variation of validation quality control samples were 4.7-8.2% for intra-day precision and 4.2-6.3% for inter-day precision. The intra-day and inter-day accuracy ranges were 97.4-110.6 and 95.7 and 107.0%, respectively. The cycloserine
concentrations for patients from the U.S. sites were collected from their patient charts. These samples were assayed in Dr. Peloquin’s laboratory. From 1988 to 2009, that was located at the NJH in Denver. From 2009 onward, that was located at the College of Pharmacy, University of Florida.

Population pharmacokinetic modeling and Monte Carlo simulations

Monolix (2018R1) was used to build the population PK model. One- and two-compartment models, using first- and zero-order elimination, were used to fit the data. Inter-individual (ω) and inter-occasion variabilities (γ) also were estimated assuming log-normal distribution. The tested residual error models included additive, proportional, and combined error models. The intensively sampled PK data from healthy subjects were used first to build and assess the structural model. After establishing that, the other semi-rich and sparse PK data were added. The ratio of Eigenvalues was utilized in assessing the correlation and overparameterization of the population parameters. Age, sex, body weight, body mass index (BMI), absence or presence of disease (i.e. healthy subjects vs. patients), type of disease (i.e. DS-TB, MDR-TB, pre-extensively drug-resistant (pre-XDR) TB, and XDR-TB), creatinine clearance (CrCL), and site also were tested as covariates on the PK parameters. CrCL was calculated using Cockcroft-Gault equation. HIV status was not available for many patients, hence it was not considered in our model. After building the structural model, covariates were added in a stepwise fashion with the most significant covariate being entered first, using a forward inclusion approach. P-value of <0.05 was considered statistically significant. An
exponential model (Eq.1) was used for categorical variables. For continuous variables, a power function was used after normalizing the individual value to the median (Eq.2).

\[CL = CL_{POP} \cdot \left[\text{if } sex = male, e^{\beta_{male}} \right] \quad \text{Eq.1} \]

\[CL = CL_{POP} \cdot \left(\frac{age}{age_{median}} \right)^{\beta_{age}} \quad \text{Eq.2} \]

\(CL_{POP} \) is the population value of CL, and \(\beta \) is the estimated effect of sex or age on CL.

The structural model and addition of covariates were evaluated using the log-likelihood ratio (\(\Delta -2LL \geq 3.84 \) for 1 degree of freedom), goodness-of-fit plots, and the physiological plausibility of the model parameter estimates. Visual predictive checks (VPC) were used to evaluate and validate the final model by simulating cycloserine concentrations for 500 patients using the original dataset and the final model.

The final PK estimates were used in mlxR package (v3.3.0) in R software to simulate the time course of cycloserine concentrations over 24 hours. For each dosage regimen, we simulated the concentrations every 0.2 hour for 1000 TB patients at steady state. Demographic data for the simulated patients were randomly sampled, assuming they were normally distributed, using the mean values and standard deviations from the original dataset. A correlation of 0.4 also was taken into account when simulating weight and CrCL; the value was obtained from the observed correlation in our dataset. We simulated three doses, 250, 500 and 750 mg, with different frequencies (once, twice, three times, and four times daily). For the 750 mg dose, we did not simulate the four times daily regimen since it would result in a high total daily dose (i.e. 3000 mg) that most patients would not likely tolerate. Instead, we simulated 250 mg in the morning and 500 mg in the evening, a dosage regimen that is commonly seen in clinical practice.
We used PK/PD targets for T_{MIC} of $\geq 30\%$ and $\geq 64\%$, representing bactericidal activity and 80% of the maximal kill (EC_{80}), respectively (6). We assumed that cycloserine does not bind to plasma proteins, as there are no data on its protein binding. The studied range of MIC was 4 to 64 mg/L, based on the MIC distribution reported in the literature (5, 6). Using R software, the probability of target attainment (PTA) was calculated as the fraction of simulated patients achieving the PK/PD target at each MIC for each regimen. We selected a PTA of at least 90% for the highest MIC as the PK/PD breakpoint.
ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health Fogarty International Center [D43 TW007124 to RRK and MK], the National Institute of Allergy and Infectious Diseases [K23 AI103044 to RRK; R21 AI122001 to RRK, MK, KB, and LM], the National Institutes of Health [U01 AI115594 to SKH and ERH; T32 AI007046-41 to YA], and the International Science and Technology Center [G-2200 to RRK and MK]. Funding was also provided in part by the Bill and Melinda Gates Foundation via a sub-award of grant OPP1031105, awarded to the Critical Path to TB Regimens (CPTR) Initiative at the Critical Path Institute (C-Path). This work was conducted as part of CPTR’s Modeling and Simulation Working Group, with scientific review, technical advice, and project management support provided by staff at the Critical Path Institute.

We would like to express our gratitude to those who provided assistance in data collection, entry, and cleaning, as well as to those who provided feedback on our analysis. We specifically would like to thank: Jürgen Bulitta, PhD, Carolina De Miranda Silva, PhD, George Drusano, MD, Adam M. Dzedzy, Eric Egelund, PharmD, PhD, Amirhossein Hajihosseini, PhD, Farzaneh Maleki, PhD, Toni Tablante, PharmD student, and Yang Zhao, PharmD student, from the University of Florida; Kelli Christian, RN, Nia Deese, RN, Sammy Huddleston, RN, Lobsang Tsering, RN, and Brandon VanDeman, RN, from University of Texas at Tyler; Maria E. Gomez, RN, and Jerry Jean Stambaugh, PharmD, from the Florida Department of Health; Lacie J. McKamey, PharmD, from Novant Health Presbyterian Medical Center; Robert Bruce, BS, and Jessica Moro, BS, from the University of Georgia at Athens; Amelia Blumberg, MPH, Amber Choquette-Deutschle, MPH, Su Jin Joo, MD, Jennifer Kim, MPH, Taylor
Osborne, MPH, Sarah E. Smith, MPH, and Tanushree Soni, MPH, PhD, from Emory University. We also would like to thank the clinicians, staff, and patients from the participating TB centers.

All authors declare no conflict of interest.
REFERENCES

1. World Health Organization. 2018. Global tuberculosis report 2018.
2. Bankier RG. 1965. Psychosis associated with cycloserine. Can Med Assoc J 93:35-7.
3. Azam MA, Jayaram U. 2016. Inhibitors of alanine racemase enzyme: a review. J Enzyme Inhib Med Chem 31:517-26.
4. World Health Organization. 2018. Rapid communication: Key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB).
5. Yu X, Zeng X, Shi W, Hu Y, Nie W, Chu N, Huang H. 2018. Validation of Cycloserine Efficacy in Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother 62.
6. Deshpande D, Alffenaar JC, Köser CU, Dheda K, Chapagain ML, Simbar N, Schön T, Sturkenboom MGG, McIlerson H, Lee PS, Koeuth T, Mpagama SG, Banu S, Foongladda S, Ogarkov O, Pholwat S, Houpt ER, Heysell SK, Gumbo T. 2018. d-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clin Infect Dis 67:S308-S316.
7. Mataix-Cols D, Fernández de la Cruz L, Monzani B, Rosenfield D, Andersson E, Pérez-Vigil A, Frumento P, de Kleine RA, Difede J, Dunlop BW, Farrell LJ, Geller D, Gerardi M, Guastella AJ, Hofmann SG, Hendriks GJ, Kushner MG, Lee FS, Lenze EJ, Levinson CA, McConnell H, Otto MW, Plag J, Pollack MH, Ressler KJ, Rodebaugh TL, Rothbaum BO, Scheeringa MS, Siewert-Siegmund A, Smits JAJ, Storch EA, Ströhle A, Tart CD, Tolin DF, van Minnen A, Waters AM, Weems CF,
Wilhelm S, Wyka K, Davis M, Rück C, Altemus M, Anderson P, Cukor J, Finck C, Geffken GR, Golfels F, Goodman WK, Gutner C, Heyman I, et al. 2017. D-Cycloserine Augmentation of Exposure-Based Cognitive Behavior Therapy for Anxiety, Obsessive-Compulsive, and Posttraumatic Stress Disorders: A Systematic Review and Meta-analysis of Individual Participant Data. JAMA Psychiatry 74:501-510.

8. Fujihira T, Kanematsu S, Umino A, Yamamoto N, Nishikawa T. 2007. Selective increase in the extracellular D-serine contents by D-cycloserine in the rat medial frontal cortex. Neurochem Int 51:233-6.

9. Kass JS, Shandera WX. 2010. Nervous system effects of antituberculosis therapy. CNS Drugs 24:655-67.

10. Carroll MW, Lee M, Cai Y, Hallahan CW, Shaw PA, Min JH, Goldfeder LC, Alekseyev V, Grinkrug S, Kang HS, Hwang S, Park HM, Kang E, Lee SY, Jin B, Park HE, Min S, Park SK, Jeon DS, Via LE, Barry CE. 2012. Frequency of adverse reactions to first- and second-line anti-tuberculosis chemotherapy in a Korean cohort. Int J Tuberc Lung Dis 16:961-6.

11. Sharma B, Handa R, Nagpal K, Prakash S, Gupta PK, Agrawal R. 2014. Cycloserine-induced psychosis in a young female with drug-resistant tuberculosis. Gen Hosp Psychiatry 36:451.e3-4.

12. Tandon VR, Rani N, Roshi, Gupta R, Arora M, Khajuria V, Mahajan V. 2015. Cycloserine induced psychosis with hepatic dysfunction. Indian J Pharmacol 47:230-1.
13. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, Chaisson LH, Chaisson RE, Daley CL, Grzemska M, Higashi JM, Ho CS, Hopewell PC, Keshavjee SA, Lienhardt C, Menzies R, Merrifield C, Narita M, O’Brien R, Peloquin CA, Raftery A, Saukkonen J, Schaaf HS, Sotgiu G, Starke JR, Migliori GB, Vernon A. 2016. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis 63:e147-95.

14. Mpagama SG, Ndusilo N, Stroup S, Kumburu H, Peloquin CA, Gratz J, Houpt ER, Kibiki GS, Heysell SK. 2014. Plasma drug activity in patients on treatment for multidrug-resistant tuberculosis. Antimicrob Agents Chemother 58:782-8.

15. Hung WY, Yu MC, Chiang YC, Chang JH, Chiang CY, Chang CC, Chuang HC, Bai KJ. 2014. Serum concentrations of cycloserine and outcome of multidrug-resistant tuberculosis in Northern Taiwan. Int J Tuberc Lung Dis 18:601-6.

16. Lee SH, Seo KA, Lee YM, Lee HK, Kim JH, Shin C, Ghim JR, Shin JG, Kim DH. 2015. Low Serum Concentrations of Moxifloxacin, Prothionamide, and Cycloserine on Sputum Conversion in Multi-Drug Resistant TB. Yonsei Med J 56:961-7.

17. Heysell SK, Moore JL, Peloquin CA, Ashkin D, Houpt ER. 2015. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in virginia, 2009-2014. Tuberc Respir Dis (Seoul) 78:78-84.
18. Court R, Wiesner L, Stewart A, de Vries N, Harding J, Maartens G, Gumbo T, McIlleron H. 2018. Steady state pharmacokinetics of cycloserine in patients on terizidone for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 22:30-33.

19. Park SI, Oh J, Jang K, Yoon J, Moon SJ, Park JS, Lee JH, Song J, Jang IJ, Yu KS, Chung JY. 2015. Pharmacokinetics of Second-Line Antituberculosis Drugs after Multiple Administrations in Healthy Volunteers. Antimicrob Agents Chemother 59:4429-35.

20. Alsultan A, Peloquin CA. 2014. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs 74:839-54.

21. Hemanth Kumar AK, Kumar A, Kannan T, Bhatia R, Agarwal D, Kumar S, Dayal R, Singh SP, Ramachandran G. 2018. Pharmacokinetics of Second-Line Antituberculosis Drugs in Children with Multidrug-Resistant Tuberculosis in India. Antimicrob Agents Chemother 62.

22. Battaglia B, Kaufman I, Lyons HA, Marsh W. 1961. Toxicity of cycloserine combined with isoniazid in the treatment of tuberculosis in children. Am Rev Respir Dis 83:751-2.

23. Zhou H, Wu G, Hu X, Zhu M, Zhai Y, Liu J, Shentu J, Wu L. 2015. Pharmacokinetic Properties and Tolerability of Cycloserine Following Oral Administration in Healthy Chinese Volunteers: A Randomized, Open-Label, Single- and Multiple-Dose 3-Way Crossover Study. Clin Ther 37:1292-300.

24. Zhu M, Nix DE, Adam RD, Childs JM, Peloquin CA. 2001. Pharmacokinetics of cycloserine under fasting conditions and with high-fat meal, orange juice, and antacids. Pharmacotherapy 21:891-7.
25. Chang MJ, Jin B, Chae JW, Yun HY, Kim ES, Lee YJ, Cho YJ, Yoon HI, Lee CT, Park KU, Song J, Lee JH, Park JS. 2017. Population pharmacokinetics of moxifloxacin, cycloserine, p-aminosalicylic acid and kanamycin for the treatment of multi-drug-resistant tuberculosis. Int J Antimicrob Agents 49:677-687.

26. Gumbo T, Brunton LL, Hilal-Dandan R, Knollmann BC. 2017. Chemotherapy of Tuberculosis, Mycobacterium avium Complex Disease, and Leprosy, Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e. McGraw-Hill Education, New York, NY.

27. Tipper DJ. 1985. Mode of action of beta-lactam antibiotics. Pharmacol Ther 27:1-35.

28. Schön T, Juréen P, Chryssanthou E, Giske CG, Sturegård E, Kahlmeter G, Hoffner S, Angeby KA. 2011. Wild-type distributions of seven oral second-line drugs against Mycobacterium tuberculosis. Int J Tuberc Lung Dis 15:502-9.

29. Hwang TJ, Wares DF, Jafarov A, Jakubowiak W, Nunn P, Keshavjee S. 2013. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: a meta-analysis. Int J Tuberc Lung Dis 17:1257-66.

30. Walker WC, Murdoch JM. 1957. Cycloserine in the treatment of pulmonary tuberculosis; a report on toxicity. Tubercle 38:297-302.

31. Holmes CX, Martin GE, Fetterhoff KL. 1959. The role of the cycloserine (seromycin) blood level in the treatment of pulmonary tuberculosis and the prevention and control of cycloserine (seromycin) toxicity. Dis Chest 36:591-3.
32. Ritchie JA, Campbell AE, Cuthbert J, Bruce LG. 1958. Treatment of drug-resistant cases of pulmonary tuberculosis with cycloserine and pyrazinamide. Tubercle 39:289-95.
Table 1. Demographic data for subjects included in the population pharmacokinetic model.

Characteristic	Median (IQR) or n (%)	Healthy subjects, n= 12	Patients, n= 235
Age, years	36.1 (27.9-43.9)	41.0 (29.0-52.7)	
Sex, male	6 (50.0)	179 (76.2)	
Weight, kg	77.3 (74.9-83.2)	58.0 (50.6-67.0)	
BMI, kg/m²	25.7 (23.0-28.2)	20.4 (18.4-22.9)	
Diagnosis			
NTM	-	14 (6.0)	
DS-TB	-	16 (6.8)	
RR/MDR-TB	-	160 (68.1)	
PreXDR-TB	-	36 (15.3)	
XDR-TB	-	9 (3.8)	
SrCr, mg/dL	0.90 (0.73-1.00)	0.90 (0.70-1.03)	
CrCL, mL/min	108.8 (98.9-139.9)	89.1 (68.8-111.9)	

BMI, body mass index; CrCL, creatinine clearance; DS, drug-susceptible; NTM, nontuberculous mycobacteria; PreXDR, pre-extensively drug-resistant; RR/MDR, rifampin-resistant/multidrug-resistant; SrCr, serum creatinine; TB, tuberculosis; XDR, extensively drug-resistant.
Table 2. Estimated population PK parameters in the base and final models.

Parameter	Base model	Final model	P-value
	Estimate (RSE, %)	Estimate (RSE, %)	
-2LL	4926.1	4866.1	
Fixed Effect Parameters			
Tlag (h)	0.333 (10.6)	0.326 (1.47)	
ka (h⁻¹)	7.25 (34.4)	6.61 (17.1)	
V/F (L)	28.5 (4.05)	24.9 (2.92)	
βV,WT	1.00, fixed		
CL/F (L/h)	1.02 (3.58)	2.00 (11.9)	
βCL, patients (vs HS)	-0.660 (18.7)	<0.0001	
βCL, CrCL	0.413 (18.1)	<0.0001	
Random Effect Parameters			
ω, Tlag	0.368 (61.5)	0.409 (22.5)	
ω, ka	1.08 (19.2)	1.52 (13.6)	
ω, V/F	0.242 (16.7)	0.174 (36.6)	
ω, CL/F	0.492 (5.59)	0.353 (9.29)	
γ, CL/F	0.190 (21.1)		
Residual Error Parameters			
Proportional	0.202 (3.04)	0.190 (3.37)	

-2LL, -2 x log-likelihood; β, the estimated effect of the covariate; γ, inter-occasion variability; ω, between subject variability; CL, clearance; CrCL, creatinine clearance;
HS, healthy subjects; ka, absorption rate constant; SE, standard error; T_{lag}, lag time; V, volume of distribution; WT, body weight.
Table 3. The PK/PD breakpoints, \(C_{\text{max}}\), and \(\text{AUC}_{0-24\text{h}}\) for the simulated dosage regimens.

Dosage regimen	PK/PD breakpoint*, mg/L	\(C_{\text{max}}\), mg/L	\(\text{AUC}_{0-24\text{h}}, \text{mg}\cdot\text{h}/\text{L}\)	
	\(T_{\geq \text{MIC}} \geq 30\%\)	\(T_{\geq \text{MIC}} \geq 64\%\)	mean (SD)	mean (SD)
250 mg dose				
Once daily	4	4	16.4 (4.3)	259.5 (97.9)
Twice daily	8	8	26.4 (8.0)	516.7 (188.3)
Three times daily	16	16	35.5 (10.4)	737.7 (239.1)
Four times daily	16	16	44.4 (12.5)	945.1 (279.8)
500 mg dose				
Once daily	8	8	32.7 (8.6)	519.0 (195.7)
Twice daily	16	16	52.9 (16.0)	1033.4 (376.7)
Three times daily	32	32	71.0 (20.7)	1475.4 (478.3)
Four times daily	48	48	88.8 (24.9)	1890.1 (559.6)
750 mg dose				
Split to 250/500 mg (AM/PM)	16	16	42.2 (11.7)	763.8 (271.0)
Once daily	16	8	49.6 (13.2)	789.5 (304.6)
Twice daily	32	32	78.4 (22.9)	1527.5 (537.3)
Three times daily	64	48	106.5 (30.6)	2215.0 (702.6)

* PK/PD breakpoint defined as the highest MIC where at least 90% of PTA was achieved.
AUC$_{0-24h}$, area under the drug concentration-time curve from time 0 to 24 hours; C_{max}, maximum (peak) concentration; PK/PD, pharmacokinetic/pharmacodynamic; PTA, probability of target attainment; $T >$MIC, Time above the MIC.
Figure 1. Visual predictive checks.

Observed cycloserine concentrations are shown as open circles. Solid lines are the 5th, 50th, and 95th percentiles of the observed concentrations. The grey areas represent the 95% confidence intervals of the 5th, 50th, and 95th percentiles of the simulated cycloserine concentrations.
Figure 2. The empirical distribution of the simulated data for the most commonly used dosage regimens.

The black line represents the median. The shaded area represents the 90% interval. The degree of shaded area changes every 10 percentiles.
Figure 3. Probability of target attainment for the simulated cycloserine dosage regimens.

Dosage regimens using A) 250 mg dose, B) 500 mg dose, and C) 750 mg dose.