Relations between the first four moments

Iosif Pinelis

Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931, USA
E-mail: ipinelis@mtu.edu

Abstract: One of the results is that \(E X^3 \leq \left(\frac{4}{27} \right)^{1/4} (E X^4)^{3/4} \) for all random variables \(X \) with \(E X \leq 0 \), and the constant factor \(\left(\frac{4}{27} \right)^{1/4} \) here is the best possible.

AMS 2000 subject classifications: 60E15.
Keywords and phrases: upper bounds, probability inequalities, moments.

Let \(X \) be any random variable (r.v.) with moments
\[m_j := E X^j \]
for \(j = 0, 1, \ldots, \) using the convention \(0^0 := 1 \), so that \(m_0 = 1 \).

It is clear that \(m_3 \leq E |X|^3 \leq m_3^{3/4} \). Moreover, \(m_3 = m_4^{3/4} \) if (and only if) the r.v. \(X \) is a nonnegative constant. So, \(c = 1 \) is the best constant factor in the inequality
\[m_3 \leq cm_4^{3/4} \tag{1} \]
over all r.v.'s \(X \) satisfying the condition \(0 < m_4 < \infty \), which will be henceforth assumed.

However, it will shown in this note that the constant \(c \) in (1) can be improved precisely to \(\left(\frac{4}{27} \right)^{1/4} = 0.620 \ldots \) under the additional condition
\[m_1 \leq 0, \tag{2} \]
which will be henceforth assumed as well. Condition (2) is satisfied in many applications, when the r.v. \(X \) is either assumed to be zero-mean or is obtained by truncating a zero-mean r.v. from above.

For any positive real \(u \) and \(v \), let \(X_{u,v} \) stand for any zero-mean r.v. with values in the set \(\{-u,v\} \); note that, given any such \(u \) and \(v \), the distribution of \(X_{u,v} \) is uniquely determined.

Theorem 1. One has
\[m_3 \leq \sqrt{m_4m_2 - m_2^3} \tag{3} \]
and hence

\[m_3 \leq \left(\frac{4}{27} \right)^{1/4} m_4^{3/4}. \]

(4)

The equality in (3) obtains if and only if \(X \overset{D}{=} X_{u,v} \) for some positive real \(u \) and \(v \), where \(\overset{D}{=} \) denotes the equality in distribution. The equality in (4) obtains if and only if \(X \overset{D}{=} X_{u,v} \) with \(u = \frac{\sqrt{3} - 1}{\sqrt{2}} \sigma \) and \(v = \frac{\sqrt{3} + 1}{\sqrt{2}} \sigma \) for some \(\sigma \in (0, \infty) \).

Note that the expression \(m_4m_2 - m_3^2 \) under the square root in (3) is always nonnegative.

Proof of Theorem First here, it is straightforward to check the "if" parts of the statements about the equalities in (3) and (4).

Next, note that if \(m_3 < 0 \) then inequalities (3) and (4) are trivial. So, let us assume that \(m_3 \geq 0 \). The determinant of the obviously nonnegative quadratic form \(Q(a_0, a_1, a_2) := E(a_0 + a_1X + a_2X^2)^2 = \sum_{i,j=0}^2 m_{i+j}a_ia_j \) is nonnegative. Therefore and by (2),

\[m_3^2 \leq m_4m_2 - m_3^2 - m_2^2m_4 + 2m_1m_2m_3 \]

\[\leq m_4m_2 - m_3^2, \]

(5)

(6)

which implies inequality (3).

Further, the equality in (4) obtains only if both inequalities in (5) and (6) are in fact equalities. The equality in (6) implies that \(m_1^2m_4 = 0 \) and hence \(m_1 = 0 \). The equality in (5) means that the determinant of the quadratic form \(Q \) is zero or, equivalently, \(a_0 + a_1X + a_2X^2 = 0 \) almost surely for some real \(a_0, a_1, a_2 \) such that at least one of them is nonzero; in other words, the support of the distribution of \(X \) consists of at most two points (the real roots of the quadratic polynomial \(a_0 + a_1x + a_2x^2 \)), and this distribution is zero-mean. Thus, the necessary and sufficient condition for the equality in (3) is verified.

The upper bound in (4) is obtained by the maximization in \(m_2 \) of the upper bound in (3), with the maximizer \(m_2 = \sqrt{m_4/3} \). Accordingly, the necessary and sufficient condition for the equality in (4) follows from that for the equality in (3); at that, \(\sigma^2 = m_2 = \sqrt{m_4/3} \).

Remark. Inequality (5) can be rewritten as \(\text{Cov}(X^2, X)^2 \leq \text{Var}(X^2) \text{Var} X \), which is an instance of the Cauchy-Schwarz inequality. Also, one can use (5) to obtain exact upper and lower bounds on \(m_3 \) under conditions other than (2).