Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation

Jiuqiang Guan 1, Keren Long 2, Jideng Ma 2, Jinwei Zhang 2, Dafang He 2, Long Jin 2, Qianzi Tang 2, Anan Jiang 2, Xun Wang 2, Yaodong Hu 2, Shilin Tian 3, Zhi Jiang 3, Mingzhou Li Corresp. 2, Xiaolin Luo Corresp. 1

1 Yak Research Institute, Sichuan Academy of Grassland Science, ChengDu, Sichuan, China
2 Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, ChengDu, Sichuan, China
3 Novogene Bioinformatics Institute, Beijing, China

Corresponding Authors: Mingzhou Li, Xiaolin Luo
Email address: mingzhou.li@sicau.edu.cn, xiaolinluo8976@163.com

Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited cooperation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation.
Comparative analysis of the microRNA transcriptome between yak and cattle provides insight into high-altitude adaptation

Jiuqiang Guan†, Keren Long‡, Jideng Ma‡, Jinwei Zhang‡, Dafang He‡, Long Jin‡, Qianzi Tang‡, Anan Jiang‡, Xun Wang‡, Yaodong Hu‡, Shilin Tian,1,3 Zhi Jiang3, Mingzhou Li‡*, Xiaolin Luo‡*

1 Yak Research Institute, Sichuan Academy of Grassland Science, Chengdu 611731, China;
2 Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Wen’jiang 625014, China;
3 Novogene Bioinformatics Institute, Beijing 100089, China;
Correspondence and requests for materials should be addressed to M.L. (mingzhou.li@sicau.edu.cn) or X.L. (luoxl2004@sina.com);
† These authors contributed equally to this work.
Abstract

Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology, anatomy, physiology and genomics, but few investigations focused on the roles of microRNA (miRNA) in high-altitude adaptation. We examined the differences in the miRNA transcriptomes of two representative hypoxia-sensitive tissues (heart and lung) between yak and cattle, two closely related species that live in high and low altitudes, respectively. In this study, we identified a total of 808 mature miRNAs, which corresponded to 715 pre-miRNAs in the two species. The further analysis revealed that both tissues showed relatively high correlation coefficient between yak and cattle, but a greater differentiation was present in lung than heart between the two species. In addition, miRNAs with significantly differentiated patterns of expression in two tissues exhibited co-operation effect in high altitude adaptation based on miRNA family and cluster. Functional analysis revealed that differentially expressed miRNAs were enriched in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism, which indicated the important roles of miRNAs in high altitude adaptation. These results suggested the diverse degrees of miRNA transcriptome variation in different tissues between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation.

Introduction

The yak is a unique livestock species that lives in the Qinghai-Tibet Plateau and adjacent areas, at altitudes of 2,500-6,000 m(Nivsarkar et al. 1997). Yak and cattle is a pair of closely related species and diverged five million years ago (Qiu et al. 2012). Although yak and cattle are different species, their genomes have strong similarities, including identical number of chromosomes (30 chromosomes), similar karyotypes (Wiener et al. 2003) and the extensive synteny which cover up to 94% of the yak genome(Qiu et al. 2012), leading to the availability of these two species in deciphering high altitude adaptation mechanism. Yak have evolved some
anatomical and physiological traits that equip them for the extreme high-altitude environment, including larger lungs and hearts (Wiener et al. 2003), blunted hypoxic pulmonary vasoconstriction (Dolt et al. 2007), strong environmental sense (Wiener et al. 2003) and high energy metabolism (Wang et al. 2011). The mechanism of high altitude adaptation have become topic of great interests in recent years. Extensive and in-depth investigations of high-altitude adaptation have been carried out at the level of morphology (Hoppeler et al. 1990), anatomy (Ahmad et al. 2016), hemodynamics (Ahmad et al. 2016), physiology (Monge & León-Velarde 1991) and genomics (Huertasánchez et al. 2013; Qiu et al. 2012), but few investigations focused on the role of miRNA in high-altitude adaptation.

MicroRNAs (miRNAs) is a kind of endogenous noncoding RNAs which post-transcriptionally modulates gene expression through either translational repression or mRNA degradation (Bushati & Cohen 2007). Recent studies identified a large amount of hypoxia-induced miRNAs that widely participate in various biological processes, including cell apoptosis (Lynam-Lennon et al. 2009), DNA repair (Hu & Gatti 2011; Landau & Slack 2011), cell cycle (Chen & Hu 2012), angiogenesis (Nicolì et al. 2010) and metabolism regulation (Kulshreshtha et al. 2007). For example, myocardial hypoxia induces expression of the miR-199a:214 cluster which thereafter downregulates several cardiac and mitochondrial targets, such as PPARδ, downregulation of PPARδ provokes glycolytic metabolism in heart failure (El et al. 2013).

We investigate: a. whether miRNAs was involved in the mechanism of high altitude adaptation, b. the kind of high altitude-adaptation miRNAs, c. the functions of these high altitude-adaptation miRNAs. We constructed 11 small RNA cDNA libraries of heart and lung tissues in 3 female yaks and 3 female cattle, and performed small RNA sequencing. In total, we identified 757 and 769 unique mature miRNAs in yak and cattle, respectively. The further analysis revealed stronger expression divergence in lung than heart between yak and cattle. In two tissues, we identified total of 85 differentially expressed (DE) miRNAs between yak and cattle, which showed potential co-operation effect in high altitude adaptation. The functional
enrichment analysis revealed extensive roles of miRNAs in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis and fatty acid metabolism.

Materials and methods

Ethics statement. All animals were conducted according to the Institutional Animal Care and Use Committee in College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, China under permit No. DKY-B20151608. Yak and cattle were collected from A’ba (altitude, 3000 m) and Chengdu (altitude, 485 m), respectively. Animals were feed with free access to food and water, and were killed humanely.

Sample collection. Three unrelated 2-year old adult females for both of yaks and cattle (Luxi Huang cattle) were used in this study. Two of significant hypoxia-responsive tissues (heart and lung) were rapidly collected from each carcass, washed three times with physiological saline, immediately frozen in liquid nitrogen. All frozen samples were stored at –80 °C until RNA extraction.

RNA isolation, library preparation, and sequencing. The total RNA were extracted with Trizol (Ambion, USA). NanoDrop ND-2000 spectrophotometer (Nano Drop, DE, USA) and Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) were used to monitor the concentration and integrity of RNA, respectively. In brief, several successive steps consist the Illumina sequencing. The small RNA with length of 14-40 nt were first purified by polyacrylamide gel electrophoresis (PAGE), and then specific adapters were ligated to the purified small RNA. The ligated RNA were reverse transcribed to cDNA libraries. Finally, each library were sequenced on Genome Analyzer.

Data analysis of small RNA sequencing. The analysis procedure of miRNA identification and quantification was conducted as previous study (Li et al. 2010) with several modifications. The raw reads were processed using Illumina’s Genome Analyzer Pipeline software. After trimming
off the adapters, the resulting reads was successively filtered by some strict criteria (only reads with size ranging from 14 to 27nt, containing no more than 80% A, C, G or T; containing no more than two N (undetermined bases) were retained). Bovine known classes of RNAs (i.e. mRNA, rRNA, tRNA, snRNA, snoRNA and repeats) were subsequently removed through searching against three databases, including the NCBI (Pruitt et al. 2009), Rfam (Gardner et al. 2008) and Repbase (Lukasz et al. 2006). All retained reads were defined as “high quality reads”. And then, “high quality reads” were mapped to bovine genome and mapped reads were retained. All retained “high quality reads” were mapped to the known bovine pre-miRNAs and known pre-miRNAs from 24 other mammals in miRBase 20.0 (Kozomara & Griffiths-Jones 2014), reads mapping to bovine or other mammalian miRNAs were defined as miRNA candidates. Given the reliability of miRNA identification, miRNA candidates with a read count ≥ 3 at least one sample were retained for subsequently analysis. Comparable numbers of miRNA species and similar expressional patterns were identified for using bovine genome or yak genome (Figure S1), we selected bovine genome as the reference genome in this study.

Identification of differentially expressed miRNAs. To reveal the difference of miRNA transcriptome between yak and cattle, we identified the differentially expressed (DE) miRNAs using edgeR package (Robinson et al. 2010). To obtain the normalized expression levels, read counts were loaded into edgeR and normalized using the supplied trimmed-mean-of-M-values algorithm. DE miRNAs are defined as those miRNAs with a fold change > 2 and a Benjamini Hochberg FDR (False Discovery Rate) < 0.05 between yak and cattle.

The Prediction and functional analysis of miRNA target genes. As a miRNA pathway analysis web-server, DIANA-miRPath (Vlachos et al. 2015) is able to identify miRNA target, and molecular Gene Ontology (GO) and pathways (http://www.microrna.gr/miRPathv3). The predictions in this study were based on the database of human beings, owing to the lack of the bovine miRNAs in mirPath3.0.

Results
Overview of small-RNA sequencing

We constructed and sequenced 11 small RNA libraries, including five heart libraries (i.e. two yak hearts and three cattle hearts) and six lung libraries (i.e. three yak lungs and three cattle lungs). A total of 96.19 million (M) raw reads were obtained from the 11 libraries, with an average of 8.74 M (8.74 ± 3.37 M) in each library. Through a series of strict criteria, a total of 84.57 M raw reads were defined as high quality reads; With an average of 7.69 ± 2.68 M raw reads in each library were defined as “high-quality reads” (Table S1). By aligning these data to the Rfam database, we also identified abundant known non-coding RNAs (e.g. tRNAs, rRNAs, snoRNAs and snRNAs) (Fig. S1). Consistent with the canonical size of Dicer-processed products, over 80% of high-quality reads were 21–23 nt in length (81.03 ± 1.72%, n = 11), and the highest percentage of high-quality reads were 23 nt in length (45.17 ± 1.62%, n = 11), followed by 23 nt (19.09 ± 2.25%, n = 11) and 21 nt (16.68 ± 1.65%, n = 11) (Fig S1). We then examined small RNA profiling of heart and lung for cattle and yak. In total, we identified 808 mature miRNAs, corresponding to 715 pre-miRNAs (Fig. 1A). Majority of these mature miRNAs were widely expressed in all sample and only a few were expressed as tissue or species-specific (Fig. 1B). The biological replicates showed high Spearman’s correlation coefficient (average $r = 0.99$), which indicates strong experimental confidence (Fig. S3).

Different organs showed varying degrees of miRNA expression divergence

To obtain an overview of miRNA transcription patterns, we performed a clustering analysis of the expression of 718 co-expressed miRNAs. As expected, all samples were firstly clustered by tissue and thereafter by species (Fig. 2A), which indicates the longer evolulutional history of these organs than the species. In addition, we also conducted principal component analysis. The first eigenvector distinguished tissue differentiation, while the second eigenvector captured the biological differentiation and high altitude-related differentiation between yak and cattle for heart and lung tissues. Lung showed larger differentiation than heart between yak and cattle (Fig. 2B). This result is consistent with the universal organ-specific pattern of mRNA gene
expression (Brawand & Al 2011; Melé et al. 2015). It was previously reported that heart showed stronger mRNA transcriptome variance than lung between yak and cattle (Wang et al. 2015), but the miRNA transcriptome showed the opposite trend in this study, which indicates miRNA and mRNA transcriptome inconsistence. Although organ divergence contributes to the primary variance, heart and lung showed similar expression profiles of the most abundant miRNAs (Fig. 2C). Overall, the two organs shares five miRNAs of the top 10 expressed miRNA, which included bta-miR-143-3p, bta-miR-22-3p, bta-miR-27b-3p, bta-miR-30e-5p and bta-miR-30a-5p.

Differentially expressed miRNAs showed a potential co-operation effect in high-altitude adaptation

To further reveal the miRNA adaptation of yak to high altitudes, we performed differential analysis for lung and yak between yak and cattle. In total, we detected 85 differentially expressed mature miRNAs between yak and cattle (fold change >2, FDR < 0.05), of which 29 were present in heart (Fig. 3A) and 70 in lung (Fig. 3B). The detailed information is listed in Table 1 and Table S2, S3. The greater amount of DE lung miRNAs is consistent with the lower Spearman’s correlation coefficient for lung, increases the reliability of greater miRNA transcriptome divergence of lung than heart between yak and cattle.

It is well known that miRNAs that derive from a common ancestor can be grouped into a family, and family members often have similar biological function. Of these 85 differentially expressed miRNAs, we detected 6 miRNA families, including miR-2285, miR-34, miR-192, miR-449, miR-200 families (Table S4). We also detected 8 miRNA clusters in differentially expressed miRNAs that included from two members to 13 members, such as the mir-215/206, mir-127/136 cluster (Table S5). The largest cluster was mir-154/376/379 cluster, which consisted of 13 members. To explore the expression pattern of miRNA families and clusters, we calculated the Pearson’s correlation coefficient of each family, cluster and background. The background showed a wide Pearson’s correlation range from -0.99 to 0.99, with an average of 0.1221 \((r = 0.1221 \pm 0.55, n = 257,403)\). Compared with background, the miRNA families and clusters showed high levels of Pearson’s correlation, with coefficients of 0.86 in miRNA clusters
which indicated the co-expression and potential similar functions of members in each miRNA family or cluster. These results are consistent with the observation that genes which cluster together share common functions and similar expression pattern (Eisen et al. 1998). Consistent with the hypoxic high-altitude environment, these miRNA families and clusters showed high relevance to high altitude adaptation. For example, the p53-responsive microRNA miR-192 and miR-215 are able to induce cell cycle arrest (Braun et al. 2008) and significantly inhibited cellular nucleotide excision repair (NER) (Xie et al. 2011). We identified two differentially expressed miRNAs not only belonging to the same family but also belonging to the same cluster. These miRNAs included miR-34b/34c/449a/449b, miR-200a/429. The miR-34 family consist of four members, including miR-34a, miR-34b, miR-449a, miR-449b. miR-34a/b family clustered together, and miR-449a/b family clustered together (Fig. 3D, E), and showed similar expression pattern between yak and cattle. miRNAs in each family showed overall similar expression pattern in heart and lung tissues between yak and cattle, indicating the potential similar effects of these miRNAs in high-altitude adaptation. The miR-34 family members showed hypoxia related functions, overexpression of miR-34a is able to regulate the G1/S checkpoint through targeting several genes, such as CDK6 and E2F, et al. (Chen & Hu 2012; Sun et al. 2008), and miR-34c affects the S-phase checkpoint through binding to c-myc (Cannell & Bushell 2010). In brief, the similar expression pattern of miRNA families and clusters suggested the potential collaboration effect of miRNAs in high altitude adaptation.

DE miRNAs are associated with hypoxia-related functions

To illustrate the potential function of identified DE miRNAs, we therefore performed target prediction and functional enrichment analysis by DIANA online software (Vlachos et al. 2015). As expected, the majority of DE miRNAs were involved in hypoxia-related pathways, such as the HIF-1α signaling pathway, the insulin signaling pathway, the PI3K-Akt signaling pathway, nucleotide excision repair, cell cycle, apoptosis, fatty acid metabolism, which were high relevant to high-altitude adaptation (Fig. 4A, 4B). In particular, the insulin signaling pathway, fatty acid
biosynthesis, the p53 signaling pathway and cell cycle were simultaneously enriched in both
tissues, which indicates the central role of these DE miRNAs in high-altitude adaptation
pathways.

As a sequence-specific transcription factor, p53 regulates the expression of several genes
associated with growth arrest (Kracikova et al. 2013), DNA repair, apoptosis, and
angiogenesis(Farhang et al. 2013). In this study, we identified 31 DE miRNAs that enriched in
P53 signaling pathway, of which 14 was presented in heart and 22 in lung (Table 2). Especially,
five miRNAs showed differential expression in both heart and lung, including miR-192-5p, miR-
32-3p, miR-200b-3p, miR-146b-5p, miR-122-5p. We interestingly found that miR-192, miR-32,
miR-122, miR-200b are regulators of p53 feedback circuit (Figure 4C). For example, miR-32 is
in a recurrent autoregulatory circuit in which p53 regulate the expression of miR-32, and on
other hand, miR-32 indirectly increase p53 accumulation through targeting Mdm2 and TSC1
(Suh et al. 2012). In addition, p53 can posttranscriptionally regulated the expression of miR-122,
and in turn miR-122 can suppress p53 activity by activating Akt(Manfè et al. 2012), thus
constructing a negative feedback. Three (miR-192-5p, miR-32-3p, miR-122-5p) of these five
miRNAs showed decreased expression level in yak, and one miRNA (miR-125-5p) was
upregulated in yak. The differential expression of these p53 feedback circuit regulators may play
an important roles in the p53 accumulation.

It is well known that some intrinsic and extrinsic genotoxic stress such as oxidative stress
and ultraviolet light could result in DNA damage(Jackson & Bartek 2009). Because of the
hypoxia and intensive ultraviolet environment at high altitudes, yak could have evolved strong
abilities to resist DNA damage caused by hypoxia and intensive ultraviolet. By conducting a
literature search, we identified 10 known DNA damage response miRNAs, including miR-504-
5p, miR-34a, miR-215, miR-192, miR-128, miR-181, et al (Fig. S4A). These miRNAs are
involved in many facets of DNA damage response, including DNA repair, the cell cycle
checkpoint and apoptosis. It was reported that miR-181a and miR-181b were upregulated in
aggressive breast cancers, and their expression level inversely correlates with ataxia
telangiectasia mutated (ATM) levels and DNA damage repair (Bisso et al. 2013). As a negative regulator of human p53, miR-504 is able to directly bind to two target sites in the p53 3' untranslated region, and play important roles in the process of p53-mediated cell-cycle arrest and apoptosis (Hu et al. 2010). The functional enrichment analysis by DIANA software indicated that target genes of 28 DE miRNAs in lung were also enriched in nucleotide excision repair, which indicates a substantial involvement of DE miRNAs in DNA damage response (Fig. S4B).

HIF-1α is a basic transcription factor that trans-activates genes which encode proteins that participate in homeostatic responses to hypoxia, it include expression of proteins involving in glucose metabolism (Remels et al. 2015), cell proliferation (Scaringi et al. 2013), and vascularization (Nicolas Skuli 2012; Zhao et al. 2012). In this study, we detected 15 HIF-1α signaling related miRNAs in heart, and these miRNAs can regulate both upstream and downstream genes of the HIF-1α signaling pathway (Fig. 4D). It was reported that miR-429 construct a negative regulatory loop with HIF-1 and decrease HIF-1 activity through targeting HIF1A mRNA before HIF-2 is activated (Bartoszewska et al. 2015). MiR-326, a recognized tumor-suppressing miRNA, has been found to target the 3'-UTR of the human CCND1 mRNA and promote cell apoptosis (Sun et al. 2016). Hypoxia-induced microRNA-424 promoted angiogenesis both in vitro and in vivo, and increased the expression levels of HIF-1α and HIF-2α by targeting cullin 2 (CUL2), a key protein for the assembly of the ubiquitin ligase system (Ghosh et al. 2010). In addition, miR-218 repression increases the abundance and activity of multiple RTK effectors, and promotes the activation of hypoxia-inducible factor (HIF), most notably HIF2α (Mathew et al. 2014).

Some metabolism-related DE miRNAs and pathways were also revealed in this study. For example, the DNA damage causing miR-181a inhibit the expression of genes that were associated with lipid synthesis and increase the expression of genes that were associated with β-oxidation. It is able to cause decreased expression of isocitrate dehydrogenase 1 which plays roles in tricarboxylic acid (TCA) cycle, thereafter inhibits lipid accumulation (Chu et al. 2015). These results are consistent with the energy shift from fatty acid oxidation to glucose oxidation.
and glycolysis in the high-altitude living conditions (Ding et al. 2014; Ge et al. 2012).

Discussion

In recent years, the mechanism of high altitude adaptation have become topic of great interests and attracted many specialists from various areas. They carried out extensive and in-depth investigations of high altitude adaptation at the levels of morphology (Hoppeler et al. 1990), physiology (Monge & León-Velarde 1991) and genomics (Huertasánchez et al. 2013; Qiu et al. 2012) in human and other species. Yak and cattle is a pair of closely related species and diverged five million years ago (Qiu et al. 2012), and provide an ideal model for deciphering the mechanism of high altitude adaptation for their high similarity of genome. Here, we performed transcriptome analysis in yak and cattle for two hypoxia-sensitive tissues, heart and lung. We identified comparable numbers of miRNA species using yak and cattle genome, respectively. In addition, we also detected similar expressional patterns across all libraries using yak and cattle genome, with the same heat map matrix of pairwise Spearman’s correlations.

In this work, we identified 808 mature miRNAs, corresponding to 715 pre-miRNAs, covering majority of bovine miRNA in miRBase 20.0. The Spearman’s correlation analysis revealed that lung showed larger differentiation than heart between yak and cattle at the level of miRNA transcriptome, which is inconsistent with previous study that heart showed stronger variance than lung between yak and cattle at mRNA transcriptome (Wang et al. 2015). We identified a large amount of differentially expressed miRNA between yak and cattle, including 29 miRNAs in heart and 70 miRNAs in lung. Further examination revealed that majority of differentially expressed miRNAs are downregulated in yak, including 18 of 29 DE miRNAs in heart and 48 of 70 DE miRNAs in lung (Table 1). The pervasive downregulation of differentially expressed miRNAs in yak may correspond to the upregulation of target pathways. For example, we detected 15 differentially expressed miRNAs enriched in HIF1α signaling pathway in heart (Figure 4D), and 13 miRNAs were downregulated in yak which may result in the overall upregulation of HIF1α signaling pathway, consistent with previous studies that HIF pathway genes played important roles in high altitude adaptation and underwent positive
selection in high altitude populations in humans (Beall et al. 2010; Simonson et al. 2010) and
other species (Li et al. 2013; Qiu et al. 2012). In addition, we also identified 14 miRNAs were
differentially expressed genes in heart and enriched in p53 signaling pathway, of which 13
miRNAs are downregulated in heart. It was reported that alleles of ubiquitin specific peptidase 7
(USP7), interleukin 6 family cytokine (LIF), and murine double minute 2 (MDM2) were selected
for in relation to harsh environmental variables related to high altitude (Jacovas et al. 2015). The
widespread of differentially expressed miRNAs targeting p53 pathway gene indicated the
potential involvement of p53 pathway in high altitude adaptation. Taken together, these results
indicated the potential roles of these DE miRNAs in yak high altitude adaptation through
upregulating important pathways.

Although we found substantial differentially expressed miRNA that may be associated with
high altitude adaptation, some limitations in this study should be concerned. Since diverging five
million years ago, yak and cattle underwent distinct selective pressure resulting in inherent
genetic difference which may to some extent disturbance the result and explanation. In addition,
human miRNA orthologs were used to perform miRNA target prediction which may suffer from
the miRNA-mRNA interaction bias in different species. A more comprehensive association
study of mRNA and miRNA expression is necessary for better revealing the authentic roles of
differentially expressed miRNAs.

Conclusions
In this study, we illustrated the differences in the miRNA transcriptomes for heart and lung
between yak and cattle, and suggested extensive roles of miRNAs in high altitude adaptation.
The work performed here will provide a typical demonstration for future deciphering the
mechanism of high altitude adaptation.

Acknowledgements
We thank YuJie Wang, Wanling Qiu, Zihu Hu and Can Liu for help with experiments.

Additional information and declaration
Supplementary information accompanied this paper can see supplementary Figure S1-S4 and Table S1-S4.

Accessions codes: The small RNA sequencing reads have been deposited into the NCBI gene expression omnibus (GEO) under the accession number GSE87833.

Reference

Ahmad KS, Hameed M, Fatima S, Ashraf M, Ahmad F, Naseer M, and Akhtar N. 2016. Morpho-anatomical and physiological adaptations to high altitude in some Aveneae grasses from Neelum Valley, Western Himalayan Kashmir. *Acta Physiologiae Plantarum* 38:1-14.

Bartoszewska S, Kochan K, Piotrowski A, Kamysz W, Ochocka RJ, Collawn JF, and Bartoszewski R. 2015. The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop. *Faseb Journal* 29:1467-1479.

Bisso A, Faleschini M, Zampa F, Capaci V, Santa JD, Santarpia L, Piazza S, Cappelletti V, Daidone M, and Agami R. 2013. Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. *Cell cycle (Georgetown, Tex)* 12:1679-1687.

Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL, and Dobbelstein M. 2008. p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest. *Cancer Research* 68:10094-10104.

Brawand D, and Al E. 2011. The evolution of gene expression levels in mammalian organs. *Nature* 478:343.

Bushati N, and Cohen SM. 2007. microRNA functions. *Annual Review of Cell & Developmental Biology* 23:175-205.

Cannell IG, and Bushell M. 2010. Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? *Cell Cycle* 9:2726.

Chen F, and Hu SJ. 2012. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: A review. *Journal of Biochemical & Molecular Toxicology* 26:79–86.

Chu B, Wu T, Lin M, Mei Y, and Wu M. 2015. MiR-181a regulates lipid metabolism via IDH1. *Scientific Reports* 5:8801.

Ding XZ, Liang CN, Guo X, Wu XY, Wang HB, Johnson KA, and Yan P. 2014. Physiological insight into the high-altitude adaptations in domesticated yaks (Bos grunniens) along the Qinghai-Tibetan Plateau altitudinal gradient. *Livestock Science* 162:233-239.

Dolt KS, Mishra MK, Karar J, Baig MA, Ahmed Z, and Pasha MA. 2007. cDNA cloning, gene organization and variant specific expression of HIF-1 alpha in high altitude yak (Bos grunniens). *Gene* 386:73-80.

Eisen MB, Spellman PT, Brown PO, and Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. *Proceedings of the National Academy of Sciences of the United States of America* 95:14863-14868.
El AH, Leptidis S, Dirkx E, Hoeks J, Van BB, Brand K, Mcclellan EA, Poels E, Sluimer JC, and Mm VDH. 2013. The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. *Cell Metabolism* 18:341-354.

Farhang GM, Goossens S, Nittner D, Bisteau X, Bartunkova S, Zwolinska A, Hulpiau P, Haigh K, Haenebalcke L, and Drogat B. 2013. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. *Cell Death & Differentiation* 20:888-897.

Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffithsjones S, and Eddy SR. 2008. Rfam: updates to the RNA families database. *Nucleic Acids Research* 37:D136-140.

Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Bai Z, and Prchal JT. 2012. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. *Molecular Genetics & Metabolism* 106:244-247.

Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, and Zeng Y. 2010. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. *Journal of Clinical Investigation* 120:4141-4154.

Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, and Cerretelli P. 1990. Morphological adaptations of human skeletal muscle to chronic hypoxia. *International Journal of Sports Medicine* 11 Suppl 1:S3-9.

Hu H, and Gatti RA. 2011. MicroRNAs: new players in the DNA damage response. *Journal of Molecular Cell Biology* 3:151-158.

Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, Tang LH, Levine AJ, and Feng Z. 2010. Negative Regulation of Tumor Suppressor p53 by MicroRNA miR-504. *Molecular Cell* 38:689-699.

Huertasánchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R, Antao T, Cardona A, Montgomery HE, Cavalleri GL, and Robbins PA. 2013. Genetic Signatures Reveal High-Altitude Adaptation in a Set of Ethiopian Populations. *Molecular Biology & Evolution* 30:1877-1888.

Jackson SP, and Bartek J. 2009. The DNA-damage response in human biology and disease. *Nature* 461:1071-1078.

Kozomara A, and Griffithsjones S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. *Nucleic Acids Research* 42:68-73.

Krackova M, Akiri G, George A, Sachidanandam R, and Aaronson SA. 2013. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. *Cell Death & Differentiation* 20:576-588.

Kulshreshtha R, Ferracin M, Negrini M, Calin GA, Davuluri RV, and Ivan M. 2007. Regulation of microRNA Expression: the Hypoxic Component. *Cell Cycle* 6:1426-1431.

Landau DA, and Slack FJ. 2011. MicroRNAs in Mutagenesis, Genomic Instability, and DNA Repair. *Seminars in Oncology* 38:743-751.
Li M, Xia Y, Gu Y, Zhang K, Lang Q, Chen L, Guan J, Luo Z, Chen H, and Li Y. 2010. MicroRNAome of Porcine Pre- and Postnatal Development. *PLoS One* 5:e11541.

Lukasz H, Gentles AJ, Oleksiy K, and Jerzy J. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. *BMC Bioinformatics* 7:474.

Lynam-Lennon N, Maher SG, and Reynolds JV. 2009. The roles of microRNA in cancer and apoptosis. *Biological Reviews* 84:55.

Manfè V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, Lauenborg BT, Ødum N, and Gniadecki R. 2012. miR-122 Regulates p53/Akt Signalling and the Chemotherapy-Induced Apoptosis in Cutaneous T-Cell Lymphoma. *PLoS One* 7:e29541.

Mathew LK, Skuli N, Mucaj V, Lee SS, Zinn PO, Sathyan P, Imtiyaz HZ, Zhang Z, Davuluri RV, and Rao S. 2014. miR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. *Proceedings of the National Academy of Sciences of the United States of America* 111:291.

Melé M, Ferreira PG, Reverter F, Deluca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, and Sullivan TJ. 2015. The human transcriptome across tissues and individuals. *Science* 348:660.

Monge C, and León-Velarde F. 1991. Physiological adaptation to high altitude: Oxygen transport in mammals and birds. *Physiological Reviews* 71:1135-1172.

Nicolas Skuli AJM, Bryan L. Krock, Rickson C. Mesquita, Lijoy K. Mathew, Zachary L. Quinn, Anja Runge, Liping Liu, Meeri N. Kim, Jiaming Liang, Steven Schenkel, Arjun G. Yodh, Brian Keith, M. Celeste Simon. 2012. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. *Journal of Clinical Investigation* 122:1427-1443.

Nicolli S, Standley C, Walker P, Hurlstone A, Fogarty KE, and Lawson ND. 2010. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. *Nature* 464:1196-1200.

Nivsarkar AE, Gupta SC, Gupta N, Nivsarkar AE, Gupta SC, and Gupta N. 1997. Yak production.

Pruitt KD, Tatusova T, Klimke W, and Maglott DR. 2009. NCBI Reference Sequences: current status, policy and new initiatives. *Nucleic Acids Research* 37: D32–D36.

Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, and Larkin DM. 2012. The yak genome and adaptation to life at high altitude. *Nature Genetics* 44:946-949.

Remels AH, Gosker HR, Verhees KJ, Langen RC, and Schols AM. 2015. TNF-α-induced NF-κB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1α. *Endocrinology* 156:1770-1781.

Robinson MD, Mccarthy DJ, and Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26: 139–140.

Scaringi R, Piccoli M, Papini N, Cirillo F, Conforti E, Bergante S, Tringali C, Garatti A, Gelfi C, and Venerando B. 2013. NEU3 sialidase is activated under hypoxia and protects skeletal
muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1α. The Journal of biological chemistry 288:3153-3162.

Suh SS, Ji YY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ, Kim T, Bakác D, Alder H, and Kaur B. 2012. MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proceedings of the National Academy of Sciences of the United States of America 109:5316-5321.

Sun C, Huang C, Li S, Yang C, Xi Y, Wang L, Zhang F, Fu Y, and Li D. 2016. Hsa-miR-326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget 7:8341-8359.

Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, and Zheng X. 2008. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. Febs Letters 582:1564.

Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, and Hatzigeorgiou AG. 2015. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Research 43:W460.

Wang H, Long R, Liang JB, Guo X, Ding L, and Shang Z. 2011. Comparison of Nitrogen Metabolism in Yak (Bos grunniens) and Indigenous Cattle (Bos taurus) on the Qinghai-Tibetan Plateau. Asian Australasian Journal of Animal Sciences 24:766-773.

Wang K, Yang Y, Wang L, Ma T, Shang H, Ding L, Han J, and Qiu Q. 2015. Different gene expressions between cattle and yak provide insights into high-altitude adaptation. Animal Genetics 47:28-35.

Wiener G, Jianlin H, and Ruijun L. 2003. The Yak 2nd edn FAO Regional Office for Asia and the Pacific Food and Agriculture Organization of the United Nations. Bangkok, Thailand.

Xie QH, He XX, Chang Y, Sun SZ, Jiang X, Li PY, and Lin JS. 2011. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells. Biochemical & Biophysical Research Communications 410:440-445.

Zhao Q, Shen X, Zhang W, Zhu G, Qi J, and Deng L. 2012. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone 50:763-770.
Table 1 (on next page)

Differentially expressed miRNAs in heart and lung tissues between yak and cattle.
Table 1. Differentially expressed miRNAs in heart and lung tissues between yak and cattle

Categories	Number of differentially expressed miRNAs			
		Total	Upregulated in yak	Upregulated in cattle
Heart	29	11	18	
Lung	70	22	48	
Table 2 (on next page)

DE miRNAs enriched in P53 signaling pathway.
categories	miRNA name	heart	lung	Target genes in Tarbase
DE in two tissues	miR-192-5p	down	down	CDKN2, MDM2, EI24, PERP, ZMAT3
				MDM4, CDK4, ZMAT3, CCNG1, PPM1D, CASP3
	miR-32-3p	down	down	MDM4, CCNE1, CDK2, PMAIP1, ZMAT3, SIAH1, DDB2, RCHY1
	miR-200b-3p	down	up	MDM4, CCNE1, CDK2, PMAIP1, ZMAT3, SIAH1, DDB2, RCHY1
	miR-146b-5p	up	up	ATR, CDKN1A, THBS1, CCNB3
	miR-122-5p	down	down	MDM4, ATM, TP53, CCNE1, GTSE1, CD262, BCL2L4, CCNG1, TP73, CYCS
DE in heart	miR-200a-3p	down	no	CDKN1A, CCNE1, SIAH1, THBS1, RRM2B
	miR-708-5p	down	no	SESN3, CCNB3
	miR-429	down	no	CDK2, PMAIP1, SIAH1
	miR-885-5p	down	no	CDK2
	miR-194-5p	down	no	TSC2
	miR-708-3p	down	no	CASP3
	miR-208a-3p	down	no	CHK1
	miR-181a-2-3p	down	no	MDM2, CDK4, GTSE1, BCL2L4, SERPINE1, ATR, ATM, TP53, CDKN1A, CDK4, BCL2L4, ZMAT3,
	miR-218-5p	down	no	IGFBP3, SERPINE1, SESN3, CCND3, CD262, RCHY1
	miR-424-5p	no	up	IGFBP3, RRM2B, SESN3, IGFBP3, CCNG1, SIAH1, MDM2, CHK1, CDKN1A, CDK4, GTSE1, RFWD2, CD262, PERP, ZMAT3, PPM1D, SCOTIN
	miR-582-5p	no	up	ATR, CDK4, CCND3, PERP, SIAH1, PTEN, CCNG1, SIAH1, CYCS, CCNB3
	miR-34b-5p	no	up	CDKN1A, CDK4, CD262, SIAH1, PPM1D, THBS1
	miR-450b-5p	no	up	MDM2, CDK4, THBS1, SESN3
	miR-34c-5p	no	up	CDK4, STEAP3, SERPINE1
	miR-136-5p	no	up	THBS1
	miR-582-3p	no	up	CDK4, PTEN, CCNB3
DE in lung	miR-19b-3p	no	up	MDM2, CDKN4, ATM, CHK1, TP53, CDKN1A
	miR-379-5p	no	down	SERPINE1, CASP3
	miR-382-5p	no	down	PTEN, TSC2, CASP3
	miR-181c-3p	no	down	MDM2, EI24
miR	Expression	Gene(s)		
------------	------------	------------------		
miR-299-5p	no	CDKN1A, SERPINE1		
miR-449b-5p	no	CDK4, SERPINE1, THBS1, STEAP3		
miR-551b-3p	no	ZMAT3		
miR-127-3p	no	THBS1		
miR-127-5p	no	THBS2		
miR-122-3p	no	CD262		

Note: “down” indicated downregulated in yak; “up” indicated upregulated in yak, “no” indicated not differently expressed in particular tissue.
Figure 1

The overview of small RNA sequencing.

(A) Mature miRNAs and miRNA precursors identified in this study. (B) Venn charts indicate expression patterns of mature miRNAs among each sample.
Figure 2

Figure 2. Highly conserved heart and lung tissues showed varying degrees of divergence.

(A). Hierarchical clustering and heat map matrix of pairwise Spearman’s correlations of the counts of 718 co-expressed miRNAs between 11 miRNA libraries. (B). Principal component analysis (PCA) plot of each sample. The fraction of the variance explained is 78% for eigenvector 1 and 10% for eigenvector 2. (C). Top 10 unique miRNAs with the highest expression levels in heart and lung tissues of yak and cattle.
Figure 3

Expression pattern of differentially expressed miRNAs belong to the miRNA family in sequence and miRNA cluster in location.

(A-B) Volcano plot showing differentially expressed miRNAs in heart (A) and lung (B) between yak and cattle. (C) Box plot of Pearson’s correlation coefficient for miRNA families, clusters and background. (D) Expression pattern of miR-200 family belonging to miR-200 cluster. (E) Expression pattern of miR-34 family belonging to miR-34 cluster and miR-449 cluster.
Figure 4

Figure 4. Functional analysis of DE miRNAs in heart and lung.

(A-B) Gene Ontology (GO) categories and pathways enriched for target genes of DE miRNAs in heart (A) and lung (B). The p value indicating the significance of the enrichment, was corrected by Fisher’s exact test. miRNA number was the number of DE miRNAs involved in each GO term. Gene number was the number of target genes for DE miRNAs involved in each GO term. (C) DE miRNAs involved in p53 feedback circuit. (D) DE miRNAs and corresponding target genes are involved in HIF-1 pathway. miRNAs in red indicated upregulated in yak, miRNAs in black indicated downregulated in yak.
Manuscript to be reviewed