Triple-wavelength filter based on the nanoplasmonic metal-insulator-metal waveguides

Cao Dung Truong1 · Tai Nguyen Van1 · Minh Tuan Trinh2 · Hoang Chu Manh3 · Hung Nguyen Tan4,5 · Bac Dang Hoai1

Received: 17 January 2021 / Accepted: 12 April 2021 / Published online: 21 April 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we present a proposal for compact photonic wavelength filtering and 3-dB wavelength splitting device based on a nanoplasmonic metal-insulator-metal structure. The operating performance of the device has been accurately simulated using the temporal coupled-mode theory. We use a numerical simulation method of eigenmode expansion propagation in the overall design process. We show that the transmission efficiency of the drop filter can be significantly enhanced by applying specific optimization of nanotube waveguide. The proposed structure has potential applications in highly efficient, ultra-compact integrated circuits as well as in optical communication systems at the nanoscale size.

Keywords Surface plasmon polaritons (SPPs) · Metal-insulator-metal (MIM) · Fabry–Perot nanocavity · Wavelength filter · Eigen mode expansion (EME) simulation

1 Introduction
Recently, surface plasmon polaritons (SPPs) have proved the considerable potential to confine light in a nanoscale beyond the so-called diffraction limit that was unable to overcome by silicon-based photonic waveguides (Barnes et al. 2003; Gramotnev and Bozhevolnyi 2010; Maier 2006). SPPs are regarded as a promising method for constructing highly integrated photonic circuits (Ozbay 2012; Hsieh et al. 2015; Haffner 2015). For instance, long-range SPPs can be realized in a plasmonic hybrid silicon

Cao Dung Truong
dungtc@ptit.edu.vn
Hung Nguyen Tan
hung.nguyen@ac.udn.vn

1 Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
2 Department of Physics, University of South Florida, Tampa, FL 33620, USA
3 International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi, Vietnam
4 The University of Danang - Advanced Institute of Science and Technology, Danang, Vietnam
5 The University of Danang - University of Science and Technology, Danang, Vietnam
waveguide (Dai and He 2009; Melikyan 2014). Among SSP structures, plasmon-slot-based waveguides using metal-insulator-metal (MIM) structures have been realized in both long-range propagation and sub-wavelength SSP confinement for photonic integrated circuits (Bozhevolnyi et al. 2006; Dong et al. 2017). Moreover, MIM waveguides are widely applied in designing nanoscale integrated devices because of high localization and small bending loss with a relatively easy fabrication thanks to the current advanced manufacturing technologies. These plasmonic nanostructures were applied to design variety of devices, for instance, switches (Hsieh et al. 2015; Min and Veronis 2009; Lu et al. 2011a), sub-wavelength imaging systems (Wu et al. 2009), nano-sensors (Kwon 2013; Chang et al. 2009), band-stop filters (Wei 2017; Hajshahvaladi et al. 2019; Hocini et al. 2020). Furthermore, broadband MIM waveguides with low sidelobes were proposed as an alternative to creating Bragg gratings for coupling with optical fibers in telecommunication systems (Guo 2014). Metallic plasmonic slits used for the design of nanoscale devices with near-field applications have been demonstrated in fact (Islam et al. (2017)) because MIM waveguides can trap light with an acceptable length for SPP propagation (Dong et al. 2017). Based on the MIM waveguide architecture, recently, several wavelength-selective devices have been proposed and investigated, e.g., plasmonic tooth-shaped filters (Zhu et al. 2011; Lin and Huang 2008), and nano-disk shaped resonators (Liu et al. 2015). In various MIM waveguides, optical resonators using nanotubes are important elements of plasmonic wavelength-multiplexing structures due to their symmetry, simplicity of the fabrication (Xiao 2016).

Plasmonic wavelength demultiplexers allowing to filter specific wavelengths in channels play an indispensable role in all-optical wavelength processing nanoscale circuits. Noual et al. (Noual et al. 2009) proposed a plasmonic multiplexer utilizing Y-bent MIM waveguides. However, this device needs at least 1.5 µm of the distance between the cavities, making it unsuitable for a compact device. Besides, the device was only designed for adding/dropping two operating wavelengths. Another plasmonic demultiplexer based on the metallic grating in three-dimensional free space has been proposed (Kumar et al. 2010). However, its size seems unsuitable for integrating and miniaturizing devices due to the periodic array and 3D conformation. In order to promote the miniaturization of plasmonic devices, Hua Lu et al. (Lu et al. 2011b) introduced a plasmonic triple wavelength demultiplexer using MIM waveguides. Also, some others suggested wavelength demultiplexers based on nanocavities, coupled resonators (Geng et al. 2016a; Zand et al. 2012, 2013; Wen 2014; Zhang, et al. 2018). However, investigations of such devices either suggested wavelengths not popular in WDM communication systems, or only supported two wavelengths or reached the relatively low transmission efficiency.

In this paper, we designed a nanoplasmonic wavelength filter for three wavelength bands of 1310 nm, 1430 nm, and 1550 nm, which is based on the channel dropping structures in the MIM waveguide using isolated Fabry–Perot (FP) rectangular resonators and a double stub waveguide. The eigenmode expansion (EME) propagation simulation method (Pannipitiya et al. 2010) based on the highly-stable modal transmission line theory (Kocabas et al. 2008) has demonstrated the efficient transmission and relatively low loss of the drop waveguide when introducing the double nano-stub waveguide. We demonstrated that this nanoscale plasmonic triple-wavelength filter and 3-dB wavelength splitter has efficiently performed adding/dropping/splitting functions in applications of wavelength division multiplexing devices at the telecom regime such as optical access networks and optical computing systems.
2 Model and design principle

The conceptual diagram of the proposed three-wavelength band filter is shown in Fig. 1. The device consists of a SiO$_2$ bus waveguide, a symmetric double nano-stub in the vertical direction of the propagation waves, and three SiO$_2$ rectangular nanotube waveguides in the horizontal direction. These nanoscale waveguides are designated to selectively couple with each wavelength band for realizing the functionality of three drop channels. The purpose of the symmetric double stub is to make the possibility of wavelength band blocking for three bands of 1310 nm, 1430 nm, and 1550 nm. The working principle of the stub waveguide is based on the principle of the temporal coupled-mode theory. Whereas plasmonic rectangular nanotube waveguides play the role of nanoscale isolated Fabry–Perot cavities, also following the principle of temporal coupled-mode theory (Lu et al. 2010; Kristensen et al. 2017), to selectively couple wavelength bands depending on the appropriate cavity length. In this design, we labeled three nano-cavities as Cavity1, Cavity2, Cavity3. These three cavities correspond to Port1, Port2, Port3 for the dropping channels of 1310 nm, 1430 nm, and 1550 nm, as seen in Fig. 1, respectively. The proposed structure c MIM waveguides in which the insulating material in metallic slits and cavities is silica (SiO$_2$). The metallic layer in this device is silver, whose relative permittivity could be calculated by using the Drude model (Lin and Huang 2008; Johnson and Christy 1972) as follows:

$$\varepsilon_m = \varepsilon_\infty - \frac{\omega_p^2}{\omega(\omega + i\gamma)}$$

where ε_∞ is the dielectric constant at the infinite frequency of silver, ω_p is the bulk plasma frequency, ω and γ are the angular frequency of incident light in the vacuum and the electron oscillation damping constant, respectively. These parameters have following values $\varepsilon_\infty = 3.7$, $\omega_p = 9.1$ eV, and $\gamma = 0.018$ eV (Park et al. 2008; Søndergaard et al. 2008). Silver is selected in this device due to its very small imaginary part in the wavelength ranges of the telecom windows, thus, losses caused by the skin depth absorption are low enabling a long-range propagation of the SPP waves into the device. The refractive index of the fused
silica glass material is described by the Sellmeier equation (Ghosh et al. 1994), showing slowly varying values in the telecom wavelength range from 1.44 to 1.46 at the room temperature of 300 °K (Tan and Arndt 2000). In this design, we make use of silica as an insulator instead of air because its high refractive index allows the MIM waveguide to confine lightwave in a nanoscale size easier than air.

As we all know that, following the surface plasmon polariton theory, the s-polarized wave (TE-polarized wave) cannot exist in the mechanism of the SPP mode. Whereas, only the p-polarized wave (TM-polarized wave) can exist and be guided in the mechanism of the SPP mode. Therefore, in our simulation study, the light of the TM-polarized wave is lead from the input port and propagates to three desired output ports for wavelength bands of 1310 nm, 1430 nm, and 1550 nm.

Transmission characteristics of the stub nano waveguide are analyzed by applying the temporal coupled-mode theory combining the plasmon waves passing through and returning from the stub with the phase matching. In that case, the transmission expressions of the symmetric single stub (T_s) and double stub (T_d) waveguides can be expressed as (Matsu-zaki et al. 2008):

$$T_s = \frac{1}{1 + \tan^2 \left(\frac{2\pi L}{\lambda_{gp}} \right)}$$ \hspace{1cm} (2)

$$T_d = \frac{4}{4 + \tan^2 \left(\frac{2\pi L}{\lambda_{gp}} \right)}$$ \hspace{1cm} (3)

where λ_{gp} is the plasmon propagation wavelength in the MIM waveguide, L is the length of the single stub structure.

Optical characterizations were carried out using EME simulation with the grid sizes in a two-dimensional space as $\Delta x = \Delta z = 5$ nm applied for the total area of the proposed device. In this design, we choose all waveguides that have the same width, w. Figure 2 shows the transmission curves of the single stub waveguide at the output port as the functions of the single stub length L for some values of the width w at the operation wavelength of 1550 nm. The waveguide widths for these studies are $w = 25$ nm, 50 nm, 100 nm, and 200 nm. Here, we placed the stub waveguides at a distance of 1.9 µm from the input. As can be seen from Fig. 2, the wider stub width has higher efficiency. In addition, when the stub width increases the stub length for obtaining the highest resonance also increases. In order to realize the integrated circuit at the nanoscale in this design, we chose the width $w = 50$ nm.

In Fig. 3, transmission spectra characteristics are illustrated as a function of the stub length L in the range from 0 to 0.4 µm for three wavelengths of 1310 nm (blue), 1430 nm (red), and 1550 nm (green) for the single stub (a) and the double stub (b) at the width $w = 50$ nm. Both sides of the double stub waveguide have the same length $L = 160$ nm. The resonant peaks for these three wavelengths are 140 nm, 160 nm, and 170 nm for single stub and double stub cases, respectively. Moreover, the maximum transmissions occur at a length of about 330 nm with a loss of 1.5 dB. However, the full width at half maximum (FWHM) of the double stub’s resonant dips is more significant than that of the single stub for each corresponding wavelength. Furthermore, the depth of the resonant peaks corresponding to the minimum transmissions in the double stub case is significantly larger than that of the single stub. Simulation results are in good
agreement with analytic characteristics depicted by Eq. (2) and Eq. (3). Insets in Fig. 3b illustrate the distribution of electromagnetic fields by mean of the eigenmode propagation method for three wavelength bands. It is seen that the double stub plays the role of a three bands holder, which helps enhance the efficiency of the dropping wavelengths in nano-cavities.

In this section, we will design the dropping channels by using nanotubes, which operate like FP cavities for selectively coupling at proper wavelength bands. First, we assume that the TM-polarized wave is injected into the device from the input bus waveguide with the incident power as P_I. We denote O_1, O_2, and O_3 for the drop ports with outgoing powers as P_{O_1}, P_{O_2}, and P_{O_3}, respectively. Transmission characteristics of the drop channels can be defined as $T_{d_1} = \frac{P_{O_1}}{P_I}$, $T_{d_2} = \frac{P_{O_2}}{P_I}$, and $T_{d_3} = \frac{P_{O_3}}{P_I}$. For the plasmonic structure in our proposed MIM waveguides, the temporal evolution of amplitudes of incoming and outgoing waves are described by the interference between incident and reflected waves. These waves depend on the quality factors of the three nanotube cavities determined by the innate loss of propagating light over cavities. The accumulative phase between two reference planes satisfying the phase-matching condition is expressed by the following equation:

$$\varphi = d\beta_{spp} = dn_{eff}k_0$$

where n_{eff} stands for the effective refractive index of the SPP mode propagating into the bus waveguide which depends on the wavelength λ and the width w of the bus waveguide; k_0 is the wave number of incident light in the vacuum; and β_{spp} represents the propagation constant of the SPP mode in the MIM waveguide. Equation (4) presents the phase-matching condition of the dispersion relation in the plasmonic waveguide which is governed by (Lin and Huang 2008):
where \(\varepsilon_m \) and \(\varepsilon_d \) are the dielectric constants of the silver cladding and silica insulating layers. Three maximum transmissions of the dropping ports are expressed in the final forms owing to the mutual effects between cavities as follows (Lu et al. 2011b):

\[
\varepsilon_m \sqrt{n_{eff}^2 - \varepsilon_d} \tanh \left(\frac{w_l k_0 \sqrt{n_{eff}^2 - \varepsilon_d}}{2} \right) + \varepsilon_d \sqrt{n_{eff}^2 - \varepsilon_m} = 0 \tag{5}
\]

Fig. 3 Transmission properties of the stub waveguide via numerical simulation EME for three wavelength bands at the width \(w = 50 \) nm as a function of the stub length: a single stub, and b double stub. Insets in (b) are the electromagnetic field distributions for three wavelength bands.
where Q_1, Q_2, and Q_3 are the quality factors of Cavity1, Cavity2, and Cavity3, respectively. Also, Q_{d1}, Q_{d2}, and Q_{d3} are correspondingly to decayed quality factors due to reducing of power into the dropping waveguides, $r_1 = 1/[1 + 2Q_{d1}/Q_1]$, $r_2 = 1/[1 + 2Q_{d2}/Q_2]$, and $r_3 = 1/[1 + 2Q_{d3}/Q_3]$ are the reduced quality factors from the bus waveguides due to the Ohmic absorption of the propagation waves.

Figure 4 shows the normalized transmission amplitude of the magnetic field $|H_y|$ (TM-polarized SPP mode) that was simulated by utilizing the 2D-EME simulation method at the output Port2 in the absence of the Cavity1 and Cavity3 as well as the double stub waveguides. The inset shows the electromagnetic field distribution of the TM mode ($\lambda = 1430$ nm) in the nanoscale size of 50 nm × 210 nm at the output Port2.

In order to separate three wavelengths bands into the desired output ports, we need to design Cavity1, Cavity2, and Cavity3 properly so that Cavity1 is highly resonant with the wavelength of 1310 nm but is not resonant with the other wavelengths, and vice versa. Similarly, Cavity2 and Cavity 3 are designed for the resonant wavelengths of 1430 nm and 1550 nm, respectively. Note that no analytical solution exists to describe the resonant effects of propagation waves in plasmonic waveguides. Thus, this paper will apply numerical simulation methods for investigation. As we all know both EME and FDTD (finite-difference time-domain) simulations are rigorous solutions for simulating plasmonic circuits that have been efficiently proved in many of the previous related works (Søndergaard et al. 2008; Dolatabady and Granpayeh 2017; Geng et al. 2016b; Yu et al. 2017; He 2013; Kulchin et al. 2014). However, the FDTD method is more time-consuming to simulate and characterize the circuit than the EME method. Therefore, in this paper, we utilize the EME method to simulate and optimize design processes. Nonetheless, the obtained results are accurate.
In the simulation, we set the initial baffle thickness between rectangular cavities and the corresponding dropping waveguides as \(t_1 = t_2 = t_3 = t = 10 \) nm, the gap between cavities and the bus waveguide is also initially set the same value of \(g \) as zero nm. We design selectively to realize highly efficient transmissions at the nanocavities via numerical simulation. The process is carried out by searching for the highest transmission efficiency at an accumulative phase condition of Cavity1 \(\varphi_1 = (2m + 1)\pi/2 \) for the wavelength of 1310 nm by changing both the distance \(D_1 \) and the length \(L_1 \) of Cavity1. Here \(D_1 \) denotes the distance from Cavity1 to the input port which was initially set as 455 nm. \(m \) is an integer that we expect to be a minimum value, capably. Similar steps are also carefully performed in cases of Cavity2 and Cavity3. Finally, we found that the lengths of Cavity1, 2, and 3 are 400 nm, 640 nm, and 575 nm, respectively. The reference distances \(D_1, D_2, D_3 \) from the corresponding cavities numbers to the input port are found out as 455 nm, 1305 nm, and 860 nm for obtaining the highest transmission efficiencies.

Figure 5 presents the transmission efficiencies of the proposed drop filter at three desired output ports for three desired wavelength bands of 1310 nm, 1430 nm, and 1550 nm by using numerical simulation in two cases, with and without the contribution of the double stub waveguide. Herein, the normalized powers (to the input power) for the Port1, Port2, and Port3 are denoted as \(P_1, P_2, \) and \(P_3 \) with the contribution of the double stub waveguide, and vice versa without the contribution of the double stub waveguide as \(P'_1, P'_2, \) and \(P'_3 \), respectively. Simulated results show that the transmission efficiencies of the SPP modes at the desired output ports are significantly enhanced for all three wavelength bands when introducing the double stub waveguides. Based on the working principle of the filter device, we can design a 3-dB three-wavelength band splitter by mirroring the output ports over the straight bus waveguide. The detailed characterization of these devices will be presented in the next section.

![Fig. 5](attachment:EME_simulation_normalized_transmissions_wavelength.png)
3 Device performance and characterization

First, we use numerical simulations to evaluate the functions of the three-wavelength band filter and the three-wavelength band 3-dB splitter as well as characterize the optical performances of the proposed device by mean of EME method. Figures 6a–c and 7a–c show magnetic field distributions, $|H_y|$, of plasmonic modes at the individual wavelength bands for the wavelength filter and the wavelength splitter, respectively. The 2D-plots of the field distribution for the modes at three wavelength-bands clearly demonstrate functions of filter and 3 dB-splitter of the proposed device with high efficiencies with negligible crosstalk between optical fields at each output ports. In addition, 2D-plots corresponding to Fig. 6d–f also exhibit the confinement of light at Cavity 1, 2, 3 for wavelengths of 1200 nm, 1650 nm and 1800 nm, respectively.

Because the three-wavelength 3-dB power splitter is designed by using a symmetrical structure which is ideal for the design of three-wavelength filtering device, and therefore, we only consider the characteristics of the proposed device in the role of the wavelength filter. We investigate the performance of this device in the wavelength domain by scanning wavelength from 1200 to 1700 nm via EME simulation. Figure 8 illustrates the transmission properties of three output ports as functions wavelength. As can be seen, the power transmissions at three output ports obtain the highest resonant peaks at the wavelength bands of 1310 nm, 1430 nm, and 1550 nm with the corresponding powers of -5.37 dB, -6.19 dB, and -5.68 dB, respectively. Besides, a 3-dB bandwidth...
Fig. 7 Magnetic field amplitude distribution $|H|$ of plasmonic modes is simulated for three wavelength bands of 1310 nm (a), 1430 nm (b), 1550 nm (c) and structure diagram (d) for the proposed plasmonic 3-dB wavelength splitter. The axis units are in µm.

Fig. 8 Wavelength response for three desired output ports of the proposed plasmonic wavelength filter $(\Delta \lambda_{FWHM})$ of three bands obtained from the simulation exhibits the widths of 90 nm, 80 nm, and 100 nm as presented by the blue, red, and green double arrows in Fig. 8, respectively. However, for assuring the difference level between the desired power and undesired powers, or in term of crosstalk, is not smaller than 10 dB, the bandwidths for
the output ports Port1, Port2, and Port3 in these cases are as much as 90 nm, 40 nm, 100 nm. The bandwidths of these calculated transmission spectra are relatively broad, and therefore, the proposed filter is suitable for broadband access optical network applications. In order to make narrower bandwidth and increase the wavelength resolution for the wavelength selective filter in the application of wavelength division multiplexing (WDM) technique, we can modify the resonant properties of the isolated FP resonator to Fano-line shape resonator by adjusting the thickness, position of the silver baffles and the distance, and the length of FP resonators (Chen et al. 2011, 2014).

To fabricate the MIM waveguide at the nanoscale size, high-resolution lithography techniques such as focused ion-beam (FIB) lithography, based on heavier particles, can be used for patterning across a surface in order to create nanoscale structures instead of using ultraviolet or X-ray photolithography techniques. Although the FIB technique has high accuracy, it still exists a finite tolerance because these heavier particles have more momentum for etching the patterns. Therefore, it is important to investigate the effect of geometrical fabrication tolerance regarding the width of cavities and the primary bus waveguide for the proposed wavelength filter performance. Figure 9 illustrates the variation of power transmissions at three output ports corresponding to the wavelength bands of 1310 nm (a), 1430 nm (b), 1550 nm (c), and total absorption and total reflection of the wavelength filter (d). With a tolerance of $\Delta w = \pm 2$ nm, the power transmissions are not smaller than 7 dB, the crosstalk powers are below -15 dB, the absorptions are not exceeded 1 dB, and reflections are lower than -10 dB.

![Graphs showing power transmission](image-url)
Finally, we study the effect of insulating materials on the characteristics of the proposed wavelength-selective filter. To do that, we will investigate the device performance with the refractive index change, Δn, of different materials compared to that of the crystalline silica used in the previous section using the Sellmeier model (Ghosh et al. 1994). Figure 10 presents the power transmissions at output ports Port1, Port2, Port3, and output port Port0 of the main bus waveguide corresponding to wavelength bands of 1310 nm (a), 1430 nm (b), and 1550 nm (c). Figure 10d presents the total absorption and power transmission of individual wavelength bands. One can see a strong dependence of the optical characteristics at the output ports with the insulator materials’ index difference. However, no clear behavior trend was observed in the fluctuation rather. Both power transmission and absorption are the highest for silica material, about -5 dB to -6 dB for power transmission and 1 dB for absorption.

4 Conclusion

In conclusion, a triple-wavelength filter using MIM waveguides with thin baffles and a double nano-stub was introduced as isolated FP resonators and wavelength band selectors. A compact and highly efficient broadband wavelength filter and a broadband 3-dB wavelength

Fig. 10 Optical transmission characteristics as functions of index difference of insulating material at four output ports: a at 1310 nm, b at 1430 nm, c at 1550 nm, and d total absorption and total power at three wavelength bands for three output port. $\Delta n = 0$ is corresponding to silica
splitter were demonstrated numerically via the strong coupling effect of various isolated FP resonators and enhancement of nano-stub waveguide EME simulation. The proposed structure exhibits high transmission, low absorption, relatively large tolerances, and relatively broadband for optical access network applications at the telecom windows. In addition, the narrower bandwidth and the high wavelength resolution can be obtained via the Fano-line shape resonance mechanism, which may provide a novel method for designing nanoscale and high-resolution wavelength components in optical communications and computing, especially in wavelength division multiplexing and switching systems.

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2017.61. The authors would like to thank Dr. Dao Duy Thang of Silicon Austria Labs for his advise and support on various technical contents of this research.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)
Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006). https://doi.org/10.1038/nature04594
Chang, Y.-C., Wang, C.-M., Abbas, M.N., Shih, M.-H., Tsai, D.P.: T-shaped plasmonic array as a narrow-band thermal emitter or biosensor. Opt. Express 17(16), 13526 (2009). https://doi.org/10.1364/OE.17.013526
Chen, J., Li, Z., Li, J., Gong, Q.: Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt. Express 19(10), 9976 (2011). https://doi.org/10.1364/oe.19.009976
Chen, Z., Hu, R., Cui, L., Yu, L., Wang, L., Xiao, J.: Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014). https://doi.org/10.1016/j.optcom.2013.12.079
Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17(19), 16646–16653 (2009). https://doi.org/10.1364/OE.17.016646
Dolatabady, A., Granpayeh, N.: All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. J. Nanophoton. 11(2), 026001 (2017). https://doi.org/10.1117/1.jnp.11.026001
Dong, L., Liu, H., Wang, S., Qu, S., Wu, L.: Hybrid tube-triangle plasmonic waveguide for ultradeep subwavelength confinement. J. Light. Technol. 35(11), 2259–2265 (2017). https://doi.org/10.1109/JLT.2017.2677947
Geng, X.M., Wang, T.J., Yang, D.Q., He, L.Y., Wang, C.: Tunable plasmonic wavelength demultiplexing device using coupled resonator system. IEEE Photon. J. (2016a). https://doi.org/10.1109/JPHOT.2016.2573041
Geng, X.M., Wang, T.J., Yang, D.Q., He, L.Y., Wang, C.: Tunable plasmonic wavelength demultiplexing device using coupled resonator system. IEEE Photon. J. 8(3), 1–8 (2016b). https://doi.org/10.1109/JPHOT.2016.2573041
Ghosh, G., Endo, M., Iwasaki, T.: Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J. Light. Technol. 12(8), 1338–1342 (1994). https://doi.org/10.1109/50.317500
Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4(2), 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282
Guo, J.: Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities. Appl. Opt. 53(8), 1604 (2014). https://doi.org/10.1364/ao.53.001604
Haffner, C., et al.: All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon. 9(8), 525–528 (2015). https://doi.org/10.1038/nphoton.2015.127
Hajshahvaladi, L., Kaatuzian, H., Danaie, M.: Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt. Quantum Electron. 51(12), 1–16 (2019). https://doi.org/10.1007/s11082-019-2108-1

He, Y.J.: Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method. Opt. Express 21(12), 13875 (2013). https://doi.org/10.1364/oe.21.013875

Hocini, A., Ben salah, H., Khdrouche, D., Melouki, N.: A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure. Opt. Quantum Electron. 52(7), 1–10 (2020). https://doi.org/10.1007/s11082-020-02446-x

Hsieh, C.H., Lin, K.P., Leoti, K.C.: Design of a compact high-performance electro-optic plasmonic switch. IEEE Photon. Techn. Lett. 27(23), 2473–2476 (2015). https://doi.org/10.1109/LPT.2015.2470541

Islam, M., Chowdhury, D.R., Ahmad, A., Kumar, G.: Terahertz plasmonic waveguide based thin film sensor. J. Light. Technol. 35(23), 5215–5221 (2017). https://doi.org/10.1109/JL.T.2017.2763326

Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

Kocabas, S.E., Veronis, G., Miller, D., Fan, S.: Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008). https://doi.org/10.1109/JSTQE.2008.924431

Kristensen, P.T., De Lasson, J.R., Heuck, M., Gregersen, N., Mork, J.: On the theory of coupled modes in optical cavity-waveguide structures. J. Light. Technol. 35(19), 4247–4259 (2017). https://doi.org/10.1109/JLT.2017.2714263

Kulchin, Y.N., Vitrik, O.B., Dyshlyuk, A.V.: Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method. Opt. Express 22(18), 22196 (2014). https://doi.org/10.1364/oe.22.022196

Kumar, M.S., Piao, X., Koo, S., Yu, S., Park, N.: Out of plane mode conversion and manipulation of surface plasmon polariton waves. Opt. Express 18(9), 8800–8805 (2010). https://doi.org/10.1109/COIN.2010.5546551

Kwon, S.H.: Deep subwavelength-scale metal-insulator-metal plasmonic disk cavities for refractive index sensors. IEEE J. Photonics. 2013. https://doi.org/10.1109/JPHOT.2013.2244206

Lin, X.-S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometric sizes. Opt. Lett. 33(23), 2874–2876 (2008). https://doi.org/10.1364/OL.33.002874

Liu, Y., Yan, J., Han, G.: The transmission characteristic of metal-dielectric-metal slot waveguide-based nanodisk cavity with gain medium. IEEE Photon. J. (2015). https://doi.org/10.1109/J Phelps.2015.2406766

Lu, H., Liu, X., Mao, D., Wang, L., Gong, Y.: Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18(17), 17922 (2010). https://doi.org/10.1364/oe.18.017922

Lu, H., Liu, X., Wang, L., Gong, Y., Mao, D.: Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19(4), 2910 (2011a). https://doi.org/10.1364/OE.19.002910

Lu, H., Liu, X., Gong, Y., Mao, D., Wang, L.: Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt. Express 19(14), 12885–12890 (2011b)

Maier, S.A.: Plasmonics: the promise of highly integrated optical devices. IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006)

Matsuzaki, Y., Okamoto, T., Harauchi, M., Fukui, M., Nakagaki, M.: Characteristics of gap plasmon waveguide with sub structures. Opt. Express 16(21), 16314 (2008). https://doi.org/10.1364/oe.16.016314

Melikyan, A., et al.: High-speed plasmonic phase modulators. Nat. Photon. 8(3), 229–233 (2014). https://doi.org/10.1038/nphoton.2014.9

Min, C., Veronis, G.: Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express 17(13), 10757 (2009). https://doi.org/10.1364/oe.17.010757

Noual, A., Akjouj, A., Pennec, Y., Gillet, J.-N., Djafari-Rouhani, B.: Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J. Phys. 11(103020), 1–19 (2009). https://doi.org/10.1088/1367-2630/11/10/103020

Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2012). https://doi.org/10.1126/science.1114849

Panpillitya, A., Rukhlenko, I.D., Premaratne, M., Hattori, H.T., Agrawal, G.P.: Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6), 6191 (2010). https://doi.org/10.1364/OE.18.006191

Park, J., Kim, H., Lee, B.: High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt. Express 16(1), 413–425 (2008)

Søndergaard, T., Jung, J., Bozhevolnyi, S.I., Della Valle, G.: Theoretical analysis of gold nano- strip gap plasmon resonators. New J. Phys. (2008). https://doi.org/10.1088/1367-2630/10/10/05008
Tan, C.Z., Arndt, J.: Temperature dependence of refractive index of glassy SiO$_2$ in the infrared wavelength range. J. Phys. Chem. Solids 61(8), 1315–1320 (2000). https://doi.org/10.1016/S0022-3697(99)00411-4

Wei, Z., et al.: Optical band-stop filter and multi-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator. Photon. Nanostruct. Fundam. Appl. 23, 45–49 (2017). https://doi.org/10.1016/j.photonics.2016.11.002

Wen, K., et al.: Electromagnetically induced transparency-like transmission in a compact side-coupled t-shaped resonator. J. Light. Technol. 32(9), 1701–1707 (2014). https://doi.org/10.1109/JLT.2014.2310236

Wu, X., Zhang, J., Gong, Q.: Metal-insulator-metal nanorod arrays for subwavelength imaging. Opt. Express 17(4), 2818–2825 (2009). https://doi.org/10.1364/OE.17.002818

Xiao, J., et al.: A CMOS-compatible hybrid plasmonic slot waveguide with enhanced field confinement. IEEE Electron. Device Lett. 37(4), 456–458 (2016). https://doi.org/10.1109/LED.2016.2531990

Yu, Y., Si, J., Ning, Y., Sun, M., Deng, X.: Plasmonic wavelength splitter based on a metal–insulator–metal waveguide with a graded grating coupler. Opt. Lett. 42(2), 187 (2017). https://doi.org/10.1364/OL.42.000187

Zand, I., Mahigir, A., Pakizeh, T., Abrishamian, M.S.: Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators. Opt. Express 20(7), 7516 (2012). https://doi.org/10.1364/OE.20.007516

Zand, I., Abrishamian, M.S., Pakizeh, T.: Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing. IEEE J. Sel. Top. Quantum Electron. 19(3), 1–5 (2013). https://doi.org/10.1109/JSTQE.2012.2224645

Zhang, Z., et al.: Plasmonic filter and demultiplexer based on square ring resonator. Appl. Sci. (2018). https://doi.org/10.3390/app8030462

Zhu, J.H., Wang, Q.J., Shum, P., Huang, X.G.: A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide. IEEE Trans. Nanotechnol. 10(6), 1357–1361 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.