THE AUTOMORPHISM GROUPS OF CERTAIN SINGULAR $K3$ SURFACES
AND AN ENRIQUES SURFACE

ICHIRO SHIMADA

Abstract. We present finite sets of generators of the full automorphism groups of three singular $K3$ surfaces, on which the alternating group of degree 6 acts symplectically. We also present a finite set of generators of the full automorphism group of an associated Enriques surface, on which the Mathieu group M_{10} acts.

1. Introduction

For a complex $K3$ surface X, we denote by S_X the Néron-Severi lattice of X with the intersection form $\langle , \rangle_S: S_X \times S_X \to \mathbb{Z}$, and by T_X the orthogonal complement of S_X in $H^2(X, \mathbb{Z})$ with respect to the cup-product. We call T_X the transcendental lattice of X. A complex $K3$ surface is said to be singular if the rank of S_X attains the possible maximum 20. By the result of Shioda and Inose [35], the isomorphism class of a singular $K3$ surface X is determined uniquely by its transcendental lattice T_X with the orientation given by the class $[\omega_X] \in T_X \otimes \mathbb{C}$ of a nowhere-vanishing holomorphic 2-form ω_X on X. Shioda and Inose [35] also showed that the automorphism group $\text{Aut}(X)$ of a singular $K3$ surface X is infinite. It is an important problem to determine the structure of the automorphism groups of singular $K3$ surfaces.

In this paper, we study the automorphism groups of the following three singular $K3$ surfaces X_0, X_1, X_2: the Gram matrices of the transcendental lattice $T_k := T_{X_k}$ of X_k is

\begin{align*}
6 & 0 \\
0 & 6 \quad \text{for } k = 0, \\
2 & 0 \\
0 & 12 \quad \text{for } k = 1, \\
2 & 1 \\
1 & 8 \quad \text{for } k = 2.
\end{align*}

(Note that the inversion of the orientation of T_k does not affect the isomorphism class of the singular $K3$ surface in these three cases. See, for example, [34].) These three $K3$ surfaces have a common feature in that they admit a symplectic action by the alternating group \mathfrak{A}_6 of degree 6. By the classification due to Mukai [19], we know that \mathfrak{A}_6 is one of the eleven maximal finite groups that act symplectically on complex $K3$ surfaces. (See also Kondo [17] and Xiao [40].) It was proved in [14] that every $K3$ surface with a symplectic action by \mathfrak{A}_6 is singular. A characterization of singular $K3$ surfaces with a symplectic action by \mathfrak{A}_6 is given in [10] (see also Remark [14]).

The purpose of this paper is to present a finite set of generators of the full automorphism group $\text{Aut}(X_k)$ of X_k for $k = 0, 1, 2$. Moreover, we describe the action of $\text{Aut}(X_k)$ on the Néron-Severi lattice $S_k := S_{X_k}$. Furthermore, we calculate the automorphism group $\text{Aut}(Z_0)$ of an Enriques surface Z_0 whose universal cover is X_0.

2000 Mathematics Subject Classification. 14J28, 14J50, 14Q10.

Partially supported by JSPS Grants-in-Aid for Scientific Research (C) No.25400042.
Let X be a $K3$ surface. We let $\text{Aut}(X)$ act on X from the left, and hence on S_X from the right by the pull-back. We denote by

$$\varphi_X : \text{Aut}(X) \to O(S_X)$$

the natural representation of $\text{Aut}(X)$ on S_X, where $O(S_X)$ is the orthogonal group of the lattice S_X. Since the action of $\text{Aut}(X)$ on $H^2(X, \mathbb{C})$ preserves the one-dimensional subspace $H^{2,0}(X)$, we also have a natural representation

$$\lambda_X : \text{Aut}(X) \to \text{GL}(H^{2,0}(X)) = \mathbb{C}^\times.$$

An automorphism $g \in \text{Aut}(X)$ is said to be symplectic if $\lambda_X(g) = 1$, whereas we say that g is purely non-symplectic if the order of g is > 1 and equal to the order of $\lambda_X(g) \in \mathbb{C}^\times$. For a subgroup G of $\text{Aut}(X)$, the subgroup $\text{Ker} \lambda_X \cap G$ consisting of symplectic automorphisms belonging to G is called the symplectic subgroup of G. Let $\iota \in \text{Aut}(X)$ be an involution. If ι is symplectic, then the quotient $X/\langle \iota \rangle$ is birational to a $K3$ surface. Otherwise, $X/\langle \iota \rangle$ is birational to either an Enriques surface or a rational surface. According to these cases, we say that ι is an Enriques involution or a rational involution.

Recall that the Néron-Severi lattice S_X is canonically isomorphic to the Picard group of X. A vector $h \in S_X$ with $n := (h, h)_S > 0$ is called a polarization of degree n if the complete linear system $|L_h|$ associated with a line bundle $L_h \to X$ whose class is h is non-empty and has no fixed-components. For a polarization $h \in S_X$, we denote the automorphism group of the projective model of the polarized $K3$ surface (X, h) by

$$\text{Aut}(X, h) := \{ g \in \text{Aut}(X) \mid h^g = h \}.$$

It is easy to see that $\text{Aut}(X, h)$ is a finite group. Let $h \in S_X$ be a polarization of degree 2. Then the Galois transformation of the generically finite morphism $X \to \mathbb{P}^2$ of degree 2 induced by $|L_h|$ gives rise to a rational involution

$$\tau(h) : X \to X$$

of X, which we call the double-plane involution associated with h.

Let $X_k (k = 0, 1, 2)$ be the three singular $K3$ surfaces defined above. Recall that S_k is the Néron-Severi lattice of X_k. We have the following:

Proposition 1.1. The action φ_{X_k} of $\text{Aut}(X_k)$ on S_k is faithful.

Hence $\text{Aut}(X_k)$ can be regarded as a subgroup of the orthogonal group $O(S_k)$.

Our main results are as follows:

Theorem 1.2. (0) The group $\text{Aut}(X_0)$ is generated by a purely non-symplectic automorphism $\rho_0^{(0)}$ of order 4 and 3 + 12 double-plane involutions

$$\tau(h_0^{[1]}), \ldots, \tau(h_0^{[3]}), \tau(h_0^{[1]}), \ldots, \tau(h_0^{(12)}).$$

There exists an ample class $a_0 \in S_0$ with $(a_0, a_0)_S = 20$ such that $\text{Aut}(X_0, a_0)$ is a finite group of order 1440. This group $\text{Aut}(X_0, a_0)$ is generated by $\rho_0^{(0)}$ and $\tau(h_0^{[1]}), \ldots, \tau(h_0^{[3]}).$ The symplectic subgroup of $\text{Aut}(X_0, a_0)$ is isomorphic to $\mathfrak{A}_6.$ There exists a unique Enriques involution $\varepsilon_0^{(0)}$ in $\text{Aut}(X_0, a_0)$, and the center of $\text{Aut}(X_0, a_0)$ is generated by $\varepsilon_0^{(0)}.$
(1) The group $\text{Aut}(X_1)$ is generated by a symplectic involution $\sigma_1^{(4)}$ and $3 + (12 - 1)$ double-plane involutions

$$\tau(h_1^{[1]}), \ldots, \tau(h_1^{[3]}), \tau(h_1^{(1)}), \ldots, \tau(h_1^{(3)}), \tau(h_1^{(5)}), \ldots, \tau(h_1^{(12)}).$$

There exists an ample class $a_1 \in S_1$ with $\langle a_1, a_1 \rangle_S = 30$ such that $\text{Aut}(X_1, a_1)$ is isomorphic to the group $\text{PGL}_2(\mathbb{F}_9)$ of order 720. This group $\text{Aut}(X_1, a_1)$ is generated by $\tau(h_1^{[1]}), \ldots, \tau(h_1^{[3]})$, and its symplectic subgroup is isomorphic to $\text{PSL}_2(\mathbb{F}_9) \cong \mathfrak{A}_6$.

(2) The group $\text{Aut}(X_2)$ is generated by $3 + 7$ double-plane involutions

$$\tau(h_2^{[1]}), \ldots, \tau(h_2^{[3]}), \tau(h_2^{(1)}), \ldots, \tau(h_2^{(7)}).$$

There exists an ample class $a_2 \in S_2$ with $\langle a_2, a_2 \rangle_S = 12$ such that $\text{Aut}(X_2, a_2)$ is isomorphic to the group $\text{PGL}_2(\mathbb{F}_9)$. This group $\text{Aut}(X_2, a_2)$ is generated by $\tau(h_2^{[1]}), \ldots, \tau(h_2^{[3]})$, and its symplectic subgroup is isomorphic to $\text{PSL}_2(\mathbb{F}_9) \cong \mathfrak{A}_6$.

Remark 1.3. Part of the assertion on $\text{Aut}(X_0, a_0)$ in Theorem 1.2 was proved in [14], and the group structure of $\text{Aut}(X_0, a_0)$ was completely determined in [15]. The problem of determining the full automorphism group $\text{Aut}(X_0)$ was suggested in [14].

In fact, in Corollary 3.3, we give an explicit basis of S_k by means of a Shioda-Inose elliptic fibration on X_k (see Definition 3.1). Using this basis, we obtain automorphisms generating $\text{Aut}(X_k)$ in the form of 20×20 matrices belonging to $\text{O}(S_k)$ by Borcherds method ([14], [2]). We then extract geometric properties of these automorphisms from their matrix representations computationally. Because of the size of the data, however, it is impossible to present all of these matrices in this paper. Instead, in Tables 8.3, 8.4 and 8.5 we give the polarizations $h_k^{[i]}$ and $\tilde{h}_k^{(i)}$ of degree 2 that appear in Theorem 1.2 in the form of row vectors, from which we can recover the matrices of $\tau(h_k^{[i]})$ and $\tau(\tilde{h}_k^{(i)})$ by the method described in Section 7. Moreover, we present the ADE-type of the singularities of the branch curve of the double covering $X_k \to \mathbb{P}^2$ induced by these polarizations. The matrices of the purely non-symplectic automorphism $\rho_0^{(0)} \in \text{Aut}(X_0)$, the Enriques involution $\varepsilon_0^{(0)} \in \text{Aut}(X_0)$, and the symplectic involution $\sigma_1^{(4)} \in \text{Aut}(X_1)$ are given in Tables 8.2, 8.1 and 8.6 respectively. We also present the ample classes a_k in Table 5.2. For the readers’ convenience, we put the matrices of the generators of $\text{Aut}(X_k)$ and other computational data in the author’s web paper [24].

Let X be a $K3$ surface, and let $\mathcal{P}(X)$ denote the connected component of $\{ x \in S_X \otimes \mathbb{R} \mid \langle x, x \rangle_S > 0 \}$ containing an ample class. We put

$$N(X) := \{ x \in \mathcal{P}(X) \mid \langle x, C \rangle_S \geq 0 \ \text{for any curve} \ C \ \text{on} \ X \}.$$

Then $\text{Aut}(X)$ acts on $N(X)$. Next we investigate this action for $X = X_0, X_1, X_2$.

Let L be an even hyperbolic lattice with the symmetric bilinear form $(\ , \)_L$, and let $\mathcal{P}(L)$ be one of the two connected components of $\{ x \in L \otimes \mathbb{R} \mid \langle x, x \rangle_L > 0 \}$, which we call a positive cone of L. We let the orthogonal group $\text{O}(L)$ of L from the right, and put

$$\text{O}^+(L) := \{ g \in \text{O}(L) \mid \mathcal{P}(L)^g = \mathcal{P}(L) \},$$

which is a subgroup of $\text{O}(L)$ with index 2. For $v \in L \otimes \mathbb{R}$ with $\langle v, v \rangle_L < 0$, we denote by $(v)^\perp$ the real hyperplane

$$(v)^\perp := \{ x \in \mathcal{P}(L) \mid \langle x, v \rangle_L = 0 \}.$$
of $\mathcal{P}(L)$. We put

$$\mathcal{R}(L) := \{ r \in L \mid \langle r, r \rangle_L = -2 \}.$$

Let $W(L)$ denote the subgroup of $O^+(L)$ generated by all the reflections

$$s_r : x \mapsto x + \langle x, r \rangle_L \cdot r$$

in the mirrors $(r)^\perp$ for $r \in \mathcal{R}(L)$. We call $W(L)$ the Weyl group of L. The closure in $\mathcal{P}(L)$ of each connected component of the complement

$$\mathcal{P}(L) \setminus \bigcup_{r \in \mathcal{R}(L)} (r)^\perp$$

of the union of the mirrors of $W(L)$ is a standard fundamental domain of the action of $W(L)$ on $\mathcal{P}(L)$.

We denote by L^\vee the dual lattice $\text{Hom}(L, \mathbb{Z})$ of L, which contains L as a submodule of finite index and hence is canonically embedded into $L \otimes \mathbb{Q}$. A closed subset Σ of $\mathcal{P}(L)$ with non-empty interior is said to be a chamber if there exists a set Δ of L^\vee such that $\langle v, v \rangle_L < 0$ for every $v \in \Delta$, such that the family of hyperplanes $\{(v)^\perp \mid v \in \Delta\}$ is locally finite in $\mathcal{P}(L)$, and such that

$$\Sigma = \{ x \in \mathcal{P}(L) \mid \langle x, v \rangle_L \geq 0 \text{ for any } v \in \Delta \}$$

holds. Let Σ be a chamber. A hyperplane $(v)^\perp$ of $\mathcal{P}(L)$ is said to be a wall of Σ if $(v)^\perp$ is disjoint from the interior of Σ and $(v)^\perp \cap \Sigma$ contains a non-empty open subset of $(v)^\perp$. Then there exists a unique subset $\Delta(\Sigma)$ of L^\vee consisting of all primitive vectors v in L^\vee such that the hyperplane $(v)^\perp$ is a wall of Σ, and such that $\langle x, v \rangle_L > 0$ holds for an interior point x of Σ; that is, $\Delta(\Sigma)$ is the set of primitive outward defining vectors of walls of Σ. We say that Σ is finite if $\Delta(\Sigma)$ is finite.

By Riemann-Roch theorem, we know that the cone $N(X)$ is a chamber in the positive cone $\mathcal{P}(X)$ containing an ample class of X, and that $N(X)$ is a standard fundamental domain of the action of the Weyl group $W(S_X)$ on $\mathcal{P}(X)$. Moreover $\Delta(N(X))$ is equal to the set of all primitive vectors $v \in S_X^\vee$ such that nv is the class of a smooth rational curve on X for some positive integer n. (See, for example, [24].)

The next result describes the chamber $N(X_k)$ of the three singular $K3$ surfaces X_k.

Theorem 1.4. Let k be 0, 1 or 2, and let a_k be the ample class of X_k given in Theorem 1.2. Then there exists a finite chamber $D^{(0)}$ in $\mathcal{P}(X_k)$ with the following properties:

(i) the ample class a_k is in the interior of $D^{(0)}$, and the stabilizer subgroup

$$\{ g \in \text{Aut}(X_k) \mid D^{(0)g} = D^{(0)} \}$$

of $D^{(0)}$ in $\text{Aut}(X_k)$ coincides with $\text{Aut}(X_k, a_k)$,

(ii) $D^{(0)}$ is contained in $N(X_k)$, and $N(X_k)$ is the union of all $D^{(0)g}$, where g ranges through $\text{Aut}(X_k)$,

(iii) if $g \in \text{Aut}(X_k)$ is not contained in $\text{Aut}(X_k, a_k)$, then $D^{(0)g}$ is disjoint from the interior of $D^{(0)}$, and

(iv) if $(v)^\perp$ is a wall of $D^{(0)}$ that is not a wall of $N(X_k)$, then there exists a unique chamber of the form $D^{(0)g}$ with $g \in \text{Aut}(X_k)$ such that the intersection $(v)^\perp \cap D^{(0)} \cap D^{(0)g}$ contains a non-empty open subset of $(v)^\perp$.

Therefore $N(X_k)$ is tessellated by the chambers $D^{(0)}g$, where g runs through a complete set of representatives of $\text{Aut}(X_k, a_k) \setminus \text{Aut}(X_k)$. In fact, this tessellation extends to a tessellation of $\mathcal{P}(X_k)$ by the chambers $D^{(0)}g$, where g runs through a complete set of representatives of $\text{Aut}(D^{(0)}) \setminus O^+(S_k)$, where

$$\text{Aut}(D^{(0)}) := \{ \ g \in O^+(S_k) \ | \ D^{(0)}g = D^{(0)} \}$$

is the stabilizer subgroup of $D^{(0)}$ in $O^+(S_k)$. We call each chamber $D^{(0)}g$ in this tessellation an induced chamber. (See Definition 1.4 for a more general definition.) For a wall $(v)^\perp$ of $D^{(0)}$ that is not a wall of $N(X_k)$, the induced chamber $D^{(0)}g$ such that $(v)^\perp \cap D^{(0)} \cap D^{(0)}g$ contains a non-empty open subset of $(v)^\perp$ is called the induced chamber adjacent to $D^{(0)}$ across $(v)^\perp$.

In fact, we can write all elements of the set $\Delta(D^{(0)})$ explicitly in terms of the fixed basis of S_k. Note that $\text{Aut}(X_k, a_k)$ acts on $\Delta(D^{(0)})$. We describe this action and clarify the meaning of the generators of $\text{Aut}(X_k)$ given in Theorem 1.2

Theorem 1.5. Let $D^{(0)}$ be the finite chamber in $N(X_k)$ given in Theorem 1.2. The set $\Delta(D^{(0)})$ is decomposed into the orbits o_i in Table 1.1 under the action of $\text{Aut}(X_k, a_k)$.

If $v \in o_0$, then v is the class of a smooth rational curve on X_k, and hence $(v)^\perp$ is a wall of $N(X_k)$. If $k = 1$ and $v \in o_0$, then $2v$ is the class of a smooth rational curve on X_1, and hence $(v)^\perp$ is a wall of $N(X_1)$.

Suppose that $i > 0$. Then there exists a vector $v_i \in o_i$ such that the involution $\tau(h_k^{(i)})$, or $\sigma_1^{(4)}$ in the case $k = 1$ and $i = 4$, in Theorem 1.2 maps $D^{(0)}$ to the induced chamber $D^{(i)}$ in $N(X_k)$ adjacent to $D^{(0)}$ across the wall $(v_i)^\perp$.

In Table 1.1, the cardinality $|o_i|$ of each orbit o_i is presented. The rational number ν indicates the square-norm $(v, v)_S$ of the primitive vectors $v \in o_i$, and α indicates $(a_k, v)_S$ for $v \in o_i$.

An involution of X_k that maps $D^{(0)}$ to the adjacent chamber $D^{(i)}$ is not unique. For $i \geq 0$, we put

$$\text{Invols}^{(i)}_k := \{ \ i \in \text{Aut}(X_k) \ | \ i \ is \ of \ order \ 2 \ and \ maps \ D^{(0)} \ to \ D^{(i)} \}.$$

Proposition 1.6. The set $\text{Invols}^{(0)}_k$ of involutions in $\text{Aut}(X_k, a_k)$ has the cardinality

- $|\text{Invols}^{(0)}_0| = 91 = 45 + 1 + 45$,
- $|\text{Invols}^{(0)}_1| = 81 = 45 + 0 + 36$,
- $|\text{Invols}^{(0)}_2| = 81 = 45 + 0 + 36$,

where the right-hand summation means

- (the number of symplectic involutions)
- + (the number of Enriques involutions)
- + (the number of rational involutions).

In Table 1.1, the cardinality of the set $\text{Invols}^{(i)}_k$ is also presented for $i > 0$ in the same manner. Remark that $\text{Invols}^{(4)}_1$ contains no rational involutions, and hence we have to put the symplectic involution $\sigma_1^{(4)}$ in the set of generators of $\text{Aut}(X_1)$ in Theorem 1.2. Note that, for $i \in \text{Invols}^{(i)}_k$ with $i > 0$, the vector $a_k^{(i)} := a_k'$.
The column $\langle a_k^{(i)}, a_k \rangle_S$ shows the degree of $a_k^{(i)}$ with respect to a_k.

As a corollary, we obtain the following:

Table 1.1. The orbit decomposition of $\Delta(D^{(0)})$ by $\text{Aut}(X_k, a_k)$
Corollary 1.7. The action of Aut(X_k) on the set of smooth rational curves on X_k is transitive for $k = 0$ and $k = 2$, whereas this action has exactly two orbits for $k = 1$.

Borcherds method ([1], [2]) has been applied to the studies of the automorphism groups of K3 surfaces by several authors. We briefly review these works. In [16], Kondo applied it to the Kummer surface associated with the Jacobian variety of a generic genus 2 curve. In [17], Kondo and Dolgachev applied it to the supersingular K3 surface in characteristic 2 with the Artin invariant 1. In [8], Keum and Dolgachev applied it to the quartic Hessian surface. In [13], Kondo and Keum applied it to the Kummer surfaces associated with the product of elliptic curves. In [18], Kondo and the author applied it to the supersingular K3 surface in characteristic 3 with the Artin invariant 1. In [38], Ujikawa applied it to the singular K3 surface whose transcendental lattice is of discriminant 7. The singular K3 surfaces whose transcendental lattices are of discriminant 3 and 4 had been studied by Vinberg [39] by another method. On the other hand, in [11], we have shown that, in some cases, Borcherds method requires too much computation to be completed.

The complexity of our results suggests that the computer-aided calculation is indispensable in the study of automorphism groups of K3 surfaces. The procedure to execute Borcherds method on a computer has been already described in [31]. In fact, a part of the result on Aut(X_2) has been obtained in [31]. In [31], however, we did not discuss the problem of converting a matrix in $O(S_X)$ to a geometric automorphism of X. In the present article, we give a method to derive geometric information of automorphisms from their action on S_X. It turns out that the notion of splitting lines ([20], [33]) is useful to describe the geometry of double plane models of X_k associated with the double-plane involutions of X_k. See Section 9 for examples.

The Enriques involution $\varepsilon_0^{(0)}$ in Aut(X_0, a_0) has been detected also by Mukai and Ohashi [20]. The Enriques surface

$$Z_0 := X_0/\langle \varepsilon_0^{(0)} \rangle$$

plays an important role in their classification of finite semi-symplectic automorphism groups of Enriques surfaces.

By the explicit description of Aut(X_0) and the chamber $D^{(0)}$ in $N(X_0)$ presented above, we can calculate the full automorphism group Aut(Z_0) of the Enriques surface Z_0. Let S_Z denote the Néron-Severi lattice of Z_0 with the intersection form $\langle \cdot, \cdot \rangle_Z$. Then S_Z is an even unimodular hyperbolic lattice of rank 10. We have the following:

Proposition 1.8. The natural homomorphism

$$\varphi_Z : \text{Aut}(Z_0) \to O(S_Z)$$

is injective.

Therefore we can regard Aut(Z_0) as a subgroup of $O(S_Z)$. Let Cent($\varepsilon_0^{(0)}$) be the centralizer subgroup

$$\{ g \in \text{Aut}(X_0) \mid g \varepsilon_0^{(0)} = \varepsilon_0^{(0)} g \}$$

of $\varepsilon_0^{(0)}$ in Aut(X_0). Since X_0 is the universal covering of Z_0, we have a natural surjective homomorphism

$$\zeta : \text{Cent}(\varepsilon_0^{(0)}) \to \text{Aut}(Z_0),$$
which induces an isomorphism $\text{Cen}(\varepsilon_0^0)/(\varepsilon_0^0) \simeq \text{Aut}(Z_0)$. By Theorem 1.2, we have $\text{Aut}(X_0, a_0) \subset \text{Cen}(\varepsilon_0^0)$. The subgroup $\zeta(\text{Aut}(X_0, a_0))$ of $\text{Aut}(Z_0)$ with order 720 is generated by

$$(1.2) \quad \zeta(h_0^0), \ \zeta(\tau(h_0^1)), \ \zeta(\tau(h_0^2)), \ \zeta(\tau(h_0^3)).$$

We have the following:

Theorem 1.9. The finite subgroup $\zeta(\text{Aut}(X_0, a_0))$ of $\text{Aut}(Z_0)$ is isomorphic to the Mathieu group M_{10}. The double-plane involution $\tau(h_0^{(3)})$ of X_0 belongs to $\text{Cen}(\varepsilon_0^0)$. The automorphism group $\text{Aut}(Z_0)$ of Z_0 is generated by $\zeta(\text{Aut}(X_0, a_0))$ and $\zeta(\tau(h_0^{(3)}))$.

In fact, we present the generators (1.2) and $\zeta(\tau(h_0^{(3)}))$ of $\text{Aut}(Z_0)$ in the form of 10×10 matrices with respect to a certain basis of S_Z (see Table 10.4). Moreover, we describe a chamber $D_Z^{(0)}$ of S_Z that plays the same role to $\text{Aut}(Z_0)$ as the role $D^{(0)}$ plays to $\text{Aut}(X_0)$.

To the best knowledge of the author, Theorem 1.9 is the first example of the application of Borcherds method to the study of automorphism groups of Enriques surfaces.

This paper is organized as follows. In Section 2, we fix notions and notation about lattices, and present three elementary algorithms that are used throughout this paper. In Section 3, we give a basis of S_k in Corollary 3.5 and a computational criterion for a vector in S_k to be nef in Corollary 3.6. In Section 4, we give a computational characterization of the image of the natural homomorphism φ_{X_k} from $\text{Aut}(X_k)$ to $O(S_k)$ and prove Proposition 4.1. In Section 5, we confirm that the requirements to use Borcherds method given in 3.1 are fulfilled in the cases of our singular $K3$ surfaces X_k, obtain a finite set of generators of $\text{Aut}(X_k)$ in the form of matrices in $O(S_k)$ by this method, and prove Theorems 1.4 and 1.5. The embedding of S_k into the even unimodular hyperbolic lattice L_{26} of rank 26 given in Table 6.1 is the key of this method. In Section 6, we give an algorithm to calculate the set of classes of smooth rational curves of a fixed degree on a polarized $K3$ surface. This algorithm plays an important role in the study of splitting lines of double plane models of $K3$ surfaces. In Section 7, we review a general theory of the involutions of $K3$ surfaces. In Section 8 we prove Theorem 1.2. In Section 9, we investigate some automorphisms on X_k in details by means of the notion of splitting lines. In Section 10, we prove Proposition 1.8 and Theorem 1.9 on the Enriques surface Z_0.

This work was partially completed during the author’s stay in National University of Singapore in August 2014. He express his gratitude to this institution for its great hospitality. Thanks are also due to Professors Shigeru Mukai, Yoshinori Ohashi and De-Qi Zhang for discussions.

Conventions. Throughout this paper, we work over \mathbb{C}. Every $K3$ surface is assumed to be algebraic. The symbol Aut denotes a geometric automorphism group, whereas Aut denotes a lattice-theoretic automorphism group.

2. Computational tools

2.1. Lattices. A lattice is a free \mathbb{Z}-module L of finite rank with a non-degenerate symmetric bilinear form $\langle , \rangle_L : L \times L \rightarrow \mathbb{Z}$. Suppose that a basis e_1, \ldots, e_n of a lattice L is given. The $n \times n$ matrix $((e_i, e_j)_L)$ is called the Gram matrix of L with respect to the basis e_1, \ldots, e_n. The discriminant disc L of L is the determinant of a Gram matrix of L. The group of isometries of a lattice L is denoted by $O(L)$. We let $O(L)$ act on L from the right, and, when a basis of L is given, each vector of $L \otimes \mathbb{R}$ is written as a row vector. A lattice L is even if $\langle v, v \rangle_L \in 2\mathbb{Z}$ holds for any $v \in L$. The signature of a

...
lattice L is the signature of the real quadratic space $L \otimes \mathbb{R}$. A lattice L of rank n is hyperbolic if $n > 1$ and its signature is $(1, n - 1)$, whereas L is negative-definite if its signature is $(0, n)$. A negative-definite lattice L is a root lattice if L is generated by the vectors in $\mathcal{R}(L) := \{ r \in L \mid \langle r, r \rangle_L = -2 \}$. The classification of root lattices is well-known (see, for example, Ebeling [9]). The roots in the indecomposable root systems of type A_l, D_m and E_n are labelled as in Figure 2.1. We denote by $L(m)$ the lattice obtained from L by multiplying $\langle \cdot, \cdot \rangle_L$ by m, and we put $L^- := L(-1)$. For a subset A of a lattice L, we denote by $\langle A \rangle$ the \mathbb{Z}-submodule of L generated by the elements in A.

For an even lattice L, we denote by L^\vee the dual lattice $\text{Hom}(L, \mathbb{Z})$ of L, and by $q_L : L^\vee / L \to \mathbb{Q}/2\mathbb{Z}$ the discriminant form of L. See Nikulin [21] for the definition and basic properties of discriminant forms. The automorphism group of the finite quadratic form q_L is denoted by $O(q_L)$. We have a natural homomorphism $\eta_L : O(L) \to O(q_L)$.

For square matrices M_1, \ldots , M_l, let $\text{diag}(M_1, \ldots , M_l)$ denote the square matrix obtained by putting M_1, \ldots , M_l diagonally in this order and putting 0 on the other part.

2.2. Three algorithms. We use the following algorithms throughout this paper. See Section 3 of [33] for the details. Let L be a lattice. We assume that the Gram matrix of L with respect to a certain basis is given.

Algorithm 2.1. Suppose that L is negative-definite. Then, for a negative integer d, the finite set \(\{ v \in L \mid \langle v, v \rangle_L = d \} \) can be effectively calculated.

Algorithm 2.2. Suppose that L is hyperbolic, and let a be a vector of L with $\langle a, a \rangle_L > 0$. Then, for integers b and d, the finite set

\[
\{ v \in L \mid \langle a, v \rangle_L = b, \langle v, v \rangle_L = d \}
\]

can be effectively calculated.

Algorithm 2.3. Suppose that L is hyperbolic. Let a_1 and a_2 be vectors of L satisfying $\langle a_1, a_1 \rangle_L > 0$, $\langle a_2, a_2 \rangle_L > 0$ and $\langle a_1, a_2 \rangle_L > 0$. Then, for a negative integer d, the finite set

\[
\{ v \in L \mid \langle a_1, v \rangle_L > 0, \langle a_2, v \rangle_L < 0, \langle v, v \rangle_L = d \}
\]
can be effectively calculated.

3. Bases of the Néron-Severi lattices

In order to express elements of Aut(X_k) in the form of 20×20 matrices in $O(S_k)$, we have to fix a basis of S_k. For this purpose, we review the theory of elliptic fibrations on $K3$ surfaces. See [36] or [28] for the details.

Let $\phi: X \to \mathbb{P}^1$ be an elliptic fibration on a $K3$ surface X with a zero-section $\sigma_0: \mathbb{P}^1 \to X$. We denote by $f_\phi \in S_X$ the class of a fiber of ϕ, by $z_\phi \in S_X$ the class of the image of σ_0, and by MW_ϕ the Mordell-Weil group of ϕ. We put

$$\mathcal{R}_\phi := \{ v \in \mathbb{P}^1 \mid \phi^{-1}(v) \text{ is reducible} \},$$

and, for $v \in \mathcal{R}_\phi$, let $\Theta_{\phi,v} \subset S_X$ denote the sublattice spanned by the classes of irreducible components of $\phi^{-1}(v)$ that are disjoint from σ_0. Then each $\Theta_{\phi,v}$ is an indecomposable root lattice. We put

$$U_\phi := \langle f_\phi, z_\phi \rangle, \quad \Theta_\phi := \bigoplus_{v \in \mathcal{R}_\phi} \Theta_{\phi,v}.$$

Then U_ϕ is an even hyperbolic unimodular lattice of rank 2, and we have

$$(3.1) \quad \Theta_\phi = \{ r \in S_X \mid \langle r, f_\phi \rangle_S = \langle r, z_\phi \rangle_S = 0, \quad \langle r, r \rangle_S = -2 \}.$$

The sublattice

$$\text{Triv}_\phi := U_\phi \oplus \Theta_\phi$$

of S_X is called the trivial sublattice of ϕ. For each element $\sigma: \mathbb{P}^1 \to X$ of MW_ϕ, let $[\sigma] \in S_X$ denote the class of the image of σ. Then the mapping $\sigma \mapsto [\sigma] \mod \text{Triv}_\phi$ induces an isomorphism

$$(3.2) \quad \text{MW}_\phi \cong S_X/\text{Triv}_\phi.$$

Recall that a reducible fiber $\phi^{-1}(v)$ is of type II^* if and only if $\Theta_{\phi,v}$ is the root lattice of type E_8.

Definition 3.1. An elliptic fibration on a $K3$ surface is called a Shioda-Inose elliptic fibration if it has a zero-section σ_0 and two singular fibers of type II^*.

Shioda and Inose [35] showed that every singular $K3$ surface has a Shioda-Inose elliptic fibration. Let X be a singular $K3$ surface with a Shioda-Inose elliptic fibration $\phi: X \to \mathbb{P}^1$. Let v and v' be the two points in \mathcal{R}_ϕ such that $\phi^{-1}(v)$ and $\phi^{-1}(v')$ are of type II^*, and let e_1, \ldots, e_8 (resp. e'_1, \ldots, e'_8) be the classes of the irreducible components of $\phi^{-1}(v)$ (resp. $\phi^{-1}(v')$) disjoint from σ_0 numbered in such a way that their dual graph is as in Figure 2.1. Then the 18 vectors

$$(3.3) \quad f_\phi, z_\phi, e_1, \ldots, e_8, e'_1, \ldots, e'_8$$

span a hyperbolic unimodular sublattice $\text{Triv}'_\phi := U_\phi \oplus \Theta_{\phi,v} \oplus \Theta_{\phi,v'}$ of Triv_ϕ. Let V_ϕ denote the orthogonal complement of Triv'_ϕ in S_X, so that we have an orthogonal direct-sum decomposition

$$(3.4) \quad S_X = \text{Triv}'_\phi \oplus V_\phi.$$

Let V'_ϕ be the sublattice of V_ϕ generated by the vectors $r \in V_\phi$ with $\langle r, r \rangle_V = -2$, where $\langle \cdot, \cdot \rangle_V$ is the symmetric bilinear form of the sublattice V_ϕ of S_X. By (3.1) and (3.2), we obtain

$$(3.5) \quad \Theta_\phi = \Theta_{\phi,v} \oplus \Theta_{\phi,v'} \oplus V'_\phi, \quad \text{MW}_\phi \cong V_\phi/V'_\phi.$$

We apply these results to our three singular $K3$ surfaces X_k.

\end{document}
Proposition 3.2. Let \(\phi: X_k \to \mathbb{P}^1 \) be a Shioda-Inose elliptic fibration on \(X_k \). Then \(V_\phi \cong T_k^\perp \).

Proof. By [86] and the fact that \(\text{Triv}_\phi \) is unimodular, we have \(q_{S_k} \cong q_{V_\phi} \). Since \(H^2(X_k, \mathbb{Z}) \) with the cup-product is an even unimodular overlattice of \(S_k \oplus T_k \), we have \(q_{S_k} \cong -q_{T_k} \) by Proposition 1.6.1 of [21]. Hence we have \(q_{V_\phi} \cong q_{T_k} \). Note that \(V_\phi \) is an even negative-definite lattice of rank 2 with discriminant 36 (resp. 24, resp. 15) if \(k = 0 \) (resp. \(k = 1 \), resp. \(k = 2 \)). We can make a complete list of isomorphism classes of negative-definite lattices of rank 2 with a fixed discriminant \(d \) by the classical method of Gauss (see Chapter 15 of [3], for example). Looking at this list for \(d = 36, 24 \) and 15, we conclude that \(V_\phi \cong T_k^\perp \) for \(k = 0, 1, 2 \). \(\square \)

Remark 3.3. In general, the isomorphism class of the lattice \(V_\phi \) depends on the choice of the Shioda-Inose elliptic fibration \(\phi \). See, for example, [26] or [29].

Proposition 3.4. Let \(\phi: X_k \to \mathbb{P}^1 \) be a Shioda-Inose elliptic fibration on \(X_k \), and let \(v \) and \(v' \) be as above.

(0) Suppose that \(k = 0 \). Then we have \(R_\phi = \{v, v'\} \), and \(MW_\phi \) is a free \(\mathbb{Z} \)-module of rank 2 generated by elements \(\sigma_1, \sigma_2 \) such that the vectors
\[
(3.6) \quad s_1 := [\sigma_1] - 3f_\phi - z_\phi, \quad s_2 := [\sigma_2] - 3f_\phi - z_\phi
\]
form a basis of \(V_\phi \) with the Gram matrix
\[
M_0 := \begin{bmatrix}
-6 & 0 \\
0 & -6
\end{bmatrix}.
\]

(1) Suppose that \(k = 1 \). Then there exists a point \(v'' \in \mathbb{P}^1 \) such that \(R_\phi \) is equal to \(\{v, v', v''\} \), and such that \(\phi^{-1}(v'') \) is of type I2 or III. Let \(C_1 \) be the irreducible component of \(\phi^{-1}(v'') \) disjoint from the zero-section \(\sigma_0 \). Then \(MW_\phi \) is a free \(\mathbb{Z} \)-module of rank 1 generated by an element \(\sigma_2 \) such that the vectors
\[
(3.7) \quad s_1 := [C_1], \quad s_2 := [\sigma_2] - 6f_\phi - z_\phi
\]
form a basis of \(V_\phi \) with the Gram matrix
\[
M_1 := \begin{bmatrix}
-2 & 0 \\
0 & -12
\end{bmatrix}.
\]

(2) Suppose that \(k = 2 \). Then there exists a point \(v'' \in \mathbb{P}^1 \) such that \(R_\phi \) is equal to \(\{v, v', v''\} \), and such that \(\phi^{-1}(v'') \) is of type I2 or III. Let \(C_1 \) be the irreducible component of \(\phi^{-1}(v'') \) disjoint from \(\sigma_0 \). Then \(MW_\phi \) is a free \(\mathbb{Z} \)-module of rank 1 generated by an element \(\sigma_2 \) such that the vectors
\[
(3.8) \quad s_1 := [C_1], \quad s_2 := -([\sigma_2] - 4f_\phi - z_\phi)
\]
form a basis of \(V_\phi \) with the Gram matrix
\[
M_2 := \begin{bmatrix}
-2 & -1 \\
-1 & -8
\end{bmatrix}.
\]

Proof. By Proposition 3.2, \(V_\phi \) has a basis \(s_1, s_2 \) with respect to which the Gram matrix of \(V_\phi \) is \(M_k \). Since
\[
\{ r \in V_\phi \mid \langle r, r \rangle_V = -2 \} = \begin{cases}
\emptyset & \text{if } k = 0, \\
\{s_1, -s_1\} & \text{if } k = 1 \text{ or } 2,
\end{cases}
\]
we have
\[\text{MW}_\phi \cong V_\phi / V_\phi' = \begin{cases} \mathbb{Z}s_1 + \mathbb{Z}s_2 & \text{if } k = 0, \\ \mathbb{Z}s_2 & \text{if } k = 1 \text{ or } 2, \end{cases} \]
where \(s_2 := s_2 \mod (s_1) \). By (3.10), the assertions on \(R_\phi \), the type of \(\phi^{-1}(\phi') \) for \(k = 1 \) and 2, and the structure of \(\text{MW}_\phi \) are proved. Note that, for an arbitrary element \(\sigma \in \text{MW}_\phi \), we have
\[\langle [\sigma], [\sigma] \rangle_S = -2, \quad \langle [\sigma], f_\phi \rangle_S = 1, \quad [\sigma] \perp \Theta_{\phi,v}, \quad [\sigma] \perp \Theta_{\phi,v'}, \]
and, when \(k = 1 \) or 2, we have
\[\langle [\sigma], C_1 \rangle_S = 0 \text{ or } 1. \]

The projection \(\text{pr}_V([\sigma]) \) to \(V_\phi \) with respect to the orthogonal direct-sum decomposition (3.11) is
\[[\sigma] - (2 + \langle [\sigma], z_\phi \rangle_S) f_\phi - z_\phi, \]
and its square-norm is \(-4 - 2\langle [\sigma], z_\phi \rangle_S\).

Suppose that \(k = 0 \). Then we have generators \(\sigma_1, \sigma_2 \) of \(\text{MW}_\phi \) such that \(s_1 = \text{pr}_V([\sigma_1]) \) and \(s_2 = \text{pr}_V([\sigma_2]) \). From \(\langle s_1, s_1 \rangle_S = \langle s_2, s_2 \rangle_S = -6 \), we obtain \(\langle [\sigma_1], z_\phi \rangle_S = \langle [\sigma_2], z_\phi \rangle_S = 1 \) and the equality (3.10) follows.

Suppose that \(k = 1 \) or 2. Changing \(s_1, s_2 \) to \(-s_1, -s_2\) if necessary, we can assume that \(s_1 = [C_1] \). Let \(\sigma_2 \) be a generator of \(\text{MW}_\phi \cong \mathbb{Z} \). Then \([C_1] \) and \(\text{pr}_V([\sigma_2]) \) generate \(V_\phi \). In particular, we have
\[s_2 = x \text{pr}_V([\sigma_2]) + y[C_1] \]
for some \(x, y \in \mathbb{Z} \). We put
\[t := \langle [\sigma_2], z_\phi \rangle_S, \quad u := \langle [\sigma_2], [C_1] \rangle_S = \langle [\sigma_2], s_1 \rangle_S. \]
Note that \(t \in \mathbb{Z}_{\geq 0} \) and \(u \in \{0, 1\} \). Then we have
\begin{align*}
\langle s_1, s_2 \rangle_S &= xu - 2y, \\
\langle s_2, s_2 \rangle_S &= x^2(-4 - 2t) + 2xyu - 2y^2.
\end{align*}
Suppose that \(k = 1 \). If \(u = 1 \), then we obtain \(x = 2y \) from (3.9) and \(\langle s_1, s_2 \rangle_S = 0 \), and hence \(x^2(-7/2 - 2t) = -12 \) holds from (3.10) and \(\langle s_2, s_2 \rangle_S = -12 \). Since the equation \(x^2(-7/2 - 2t) = -12 \) has no integer solutions, we have \(u = 0 \). Then \(y = 0 \) and \(x^2(-4 - 2t) = -12 \) hold. The only integer solution of \(x^2(-4 - 2t) = -12 \) is \(t = 4 \) and \(x = \pm 1 \). Therefore, changing \(s_2 \) to \(-s_2\) if necessary, we obtain (3.7). Suppose that \(k = 2 \). Since \(\langle s_1, s_2 \rangle_S = -1 \), we obtain \(u = 1 \) and \(x = 2y - 1 \) from (3.9). Substituting \(x = 2y - 1 \) in \(\langle s_2, s_2 \rangle_S = -8 \), we obtain a quadratic equation
\[(7 + 4t)y^2 - (7 + 4t)y + t - 2 = 0, \]
which has an integer solution only when \(t = 2 \). When \(t = 2 \), we have \((x, y) = (-1, 0) \) or \((1, 1)\). Changing \(s_2 \) to \(-s_2 + s_1 \) if necessary, we obtain (3.8). \(\square \)

Corollary 3.5. The Néron-Severi lattice \(S_k \) of \(X_k \) has a basis
\[f_\phi, z_\phi, s_1, s_2, e_1, \ldots, e_8, e'_1, \ldots, e'_8, \]
where \(s_1, s_2 \) are obtained in Proposition 3.4. The Gram matrix of \(S_k \) with respect to this basis is
\[G_k := \text{diag}(U_{\text{ell}}, M_k, E_8^-, E_8^-), \]
where \(U_{\text{ell}} := \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \), \(M_k \) is defined in Proposition 3.3, and \(E_8^- \) is the Cartan matrix of type \(E_8 \) multiplied by \(-1\).
Throughout this paper, we use the basis \((3.11) \) of \(S_k \), and the Gram matrix \(G_k \) of \(S_k \). Recall that \(\text{O}(S_k) \) acts on \(S_k \) from the right, so that we have

\[
\text{O}(S_k) = \{ A \in \text{GL}_{20}(\mathbb{Z}) \mid A \quad G_k \quad ^tA = G_k \}.
\]

Next we investigate the chamber

\[
N(X_k) := \{ v \in \mathcal{P}(X_k) \mid \langle v, C \rangle_S \geq 0 \quad \text{for any curve } C \quad \text{on } X_k \}
\]

\[
= \{ v \in \mathcal{P}(X_k) \mid \langle v, C \rangle_S \geq 0 \quad \text{for any smooth rational curve } C \quad \text{on } X_k \}
\]

in the positive cone \(\mathcal{P}(X_k) \) of \(S_k \). By the definition of \(f_\phi \) and \(z_\phi \), we see that the vector

\[
a'_k := 2f_\phi + z_\phi
\]

of square-norm 2 is nef, and hence is contained in \(N(X_k) \). Moreover the set

\[
(3.12) \quad \mathcal{B}_k := \{ [C] \mid C \quad \text{is a smooth rational curve on } X_k \quad \text{with } \langle a'_k, C \rangle_S = 0 \}
\]

is equal to

\[
(3.13) \quad \{ \{z_\phi, e_1, \ldots, e_8, e'_1, \ldots, e'_6 \} \quad \text{if } k = 0, \quad \{z_\phi, s_1, e_1, \ldots, e_8, e'_1, \ldots, e'_6 \} \quad \text{if } k = 1 \quad \text{or } 2.
\]

Therefore we have the following criterion:

Corollary 3.6. A vector \(v \in S_k \) with \(\langle v, v \rangle_S > 0 \) is nef if and only if the following conditions are satisfied:

(i) \(\langle v, a'_k \rangle_S > 0 \), so that \(v \in \mathcal{P}(X_k) \),

(ii) the set \(\{ r \in S_k \mid \langle r, r \rangle_S = -2, \langle r, a'_k \rangle_S > 0, \langle r, v \rangle_S < 0 \} \) is empty, and

(iii) \(\langle v, r \rangle_S \geq 0 \) for all \(r \in \mathcal{B}_k \).

A nef vector \(v \in S_k \) with \(\langle v, v \rangle_S > 0 \) is ample if and only if

\[
\{ r \in S_k \mid \langle r, r \rangle_S = -2, \langle r, v \rangle_S = 0 \}
\]

is empty.

Using Corollary 3.6 and Algorithms 2.2 and 2.3 we can determine whether a given vector \(v \in S_k \) is nef or not, and ample or not.

4. Application of Torelli theorem to \(X_k \)

Let \(X \) be a \(K3 \) surface. The second cohomology group \(H^2(X, \mathbb{Z}) \) considered as an even unimodular lattice by the cup-product is denoted by \(H_X \). By Proposition 1.6.1 of \([21]\), the even unimodular overlattice \(H_X \) of \(S_X \oplus T_X \) induces an isomorphism

\[
\delta_H : \text{Q}(S_X) \cong -q_{T_X}.
\]

We regard the nowhere-vanishing holomorphic 2-form \(\omega_X \) on \(X \) as a vector of \(T_X \otimes \mathbb{C} \). If a \(\mathbb{Q} \)-rational subspace \(T_\mathbb{Q} \) of \(H_X \otimes \mathbb{Q} \) satisfies \(\omega_X \in T_\mathbb{Q} \otimes \mathbb{C} \), then \(T_\mathbb{Q} \) contains \(T_X \). From this minimality of \(T_X \), we see that, if \(\gamma \in \text{O}(H_X) \) preserves the subspace \(H^{2,0}(X) = \mathbb{C} \omega_X \) of \(H_X \otimes \mathbb{C} \), then \(\gamma \) preserves \(T_X \). Moreover \(\gamma \in \text{O}(H_X) \) satisfies \(\omega_X^2 = \lambda \omega_X \) if and only if \(\gamma \) acts on \(T_X \) trivially. We define the subgroup \(C_X \) of \(\text{O}(T_X) \) by

\[
(4.1) \quad C_X := \{ \gamma \in \text{O}(T_X) \mid \omega_X^2 = \lambda \omega_X \quad \text{for some } \lambda \in \mathbb{C}^\times \}.
\]
For positive integers n, we define the subgroups $\mathcal{C}_X(n)$ of \mathcal{C}_X by

$$\mathcal{C}_X(n) := \{ \gamma \in O(T_X) \mid \omega_X^\gamma = \lambda \omega_X \text{ for some } \lambda \in \mathbb{C}^\times \text{ with } \lambda^n = 1 \}.$$

Then we have $\mathcal{C}_X(1) = \{ \text{id} \}$. We denote by

$$\eta_S : O(S_X) \to O(q_{S_X}), \quad \eta_T : O(T_X) \to O(q_{T_X})$$

the natural homomorphisms, and by

$$\delta_H : O(q_{T_X}) \xrightarrow{\sim} O(q_{S_X})$$

the isomorphism induced by the isomorphism $\delta_H : q_{S_X} \xrightarrow{\sim} -q_{T_X}$. By the definition of δ_H, an isometry $\gamma \in O(S_X)$ of S_X extends to an isometry $\tilde{\gamma}$ of H_X that preserves the subspace $H^{2,0}(X) = \mathbb{C}\omega_X$ of $H_X \otimes \mathbb{C}$ if and only if

$$\eta_S(\gamma) \in \delta_H(\eta_T(C_X)).$$

More precisely, an isometry $\gamma \in O(S_X)$ extends to an isometry $\tilde{\gamma}$ of H_X that satisfies $\omega_X^{\tilde{\gamma}} = \lambda \omega_X$ with $\lambda^n = 1$ if and only if

$$\eta_S(\gamma) \in \delta_H(\eta_T(C_X(n))).$$

By Torelli theorem for complex algebraic $K3$ surfaces due to Piatetski-Shapiro and Shafarevich [23], we have the following. Recall that we have the natural representations $\varphi_X : \text{Aut}(X) \to O(S_X)$ and $\lambda_X : \text{Aut}(X) \to \text{GL}(H^{2,0}(X)) = \mathbb{C}^\times$ of $\text{Aut}(X)$.

Theorem 4.1. The kernel of φ_X is isomorphic to

$$\{ \gamma \in \mathcal{C}_X \mid \eta_T(\gamma) = \text{id} \}.$$

The image of φ_X is equal to

$$\{ \gamma \in O(S_X) \mid N(X)^\gamma = N(X) \text{ and } \eta_S(\gamma) \in \delta_H(\eta_T(C_X)) \}.$$

More precisely, the image of the subgroup $\{ g \in \text{Aut}(X) \mid \lambda_X(g)^n = 1 \}$ of $\text{Aut}(X)$ by φ_X is equal to

$$\{ \gamma \in O(S_X) \mid N(X)^\gamma = N(X) \text{ and } \eta_S(\gamma) \in \delta_H(\eta_T(C_X(n))) \}.$$

We apply Theorem 4.1 to our singular $K3$ surfaces X_k. Let t_1, t_2 be the basis of T_k with the Gram matrix $\langle \cdot, \cdot \rangle_T$. We denote by $\langle \cdot, \cdot \rangle_T$ the symmetric bilinear form of T_k. We have

$$|O(T_k)| = \begin{cases} 8 & \text{if } k = 0, \\ 4 & \text{if } k = 1, 2, \end{cases} \quad |O(q_{T_k})| = \begin{cases} 16 & \text{if } k = 0, \\ 4 & \text{if } k = 1, 2. \end{cases}$$

Since $\langle \omega_{X_k}, \omega_{X_k} \rangle_T = 0$, we see that ω_{X_k} is equal to

$$\begin{cases} t_1 + \sqrt{-1} t_2 & \text{or } t_1 - \sqrt{-1} t_2 & \text{if } k = 0, \\ t_1 + \sqrt{-6} t_2 & \text{or } t_1 - \sqrt{-6} t_2 & \text{if } k = 1, \\ 8t_1 + (-1 + \sqrt{-15}) t_2 & \text{or } 8t_1 + (-1 - \sqrt{-15}) t_2 & \text{if } k = 2, \end{cases}$$

up to multiplicative constants, and the subgroup $\mathcal{C}_k := \mathcal{C}_{X_k}$ of $O(T_k)$ defined by (4.1) is equal to

$$\begin{cases} \{ \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \pm \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \} & \text{if } k = 0, \\ \{ \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \} & \text{if } k = 1 \text{ or } 2. \end{cases}$$
(Note that \mathcal{C}_k does not depend on the choice of the two possibilities of ω_{X_k} in \cite{[1, 2]}.)

Proof of Proposition \cite{[1, 2]} By direct calculations, we see that η_T maps \mathcal{C}_k into $O(q_{T_k})$ injectively. □

The embedding $V_\phi = (s_1, s_2) \hookrightarrow S_k$ induces an isomorphism $q_{S_k} \cong q_{V_\phi}$. Let $\delta: q_{S_k} \cong -q_{T_k}$ be the isomorphism induced from the isomorphism $V_\phi \cong T_k^-$ given by $s_1 \mapsto t_1, s_2 \mapsto t_2$, and let

$$\delta^*: O(q_{T_k}) \cong O(q_{S_k})$$

be the isomorphism induced by δ.

Lemma 4.2. We have $\delta_H^*(\eta_T(\mathcal{C}_k)) = \delta^*(\eta_T(\mathcal{C}_k))$.

Proof. By direct calculations, we see that $\eta_T(\mathcal{C}_k)$ is a normal subgroup of $O(q_{T_k})$. Since δ_H^* and δ^* are conjugate, we obtain the proof. □

Therefore we can calculate the subgroups

$$C'_k := \delta_H^*(\eta_T(\mathcal{C}_k)),$$

$$C'_k(n) := \delta_H^*(\eta_T(\mathcal{C}_k(n))),$$

of $O(q_{S_k})$, even though we do not know the isomorphism δ_H. Combining these with Proposition \ref{prop:iso}, we obtain the following computational criterion:

Corollary 4.3. We put

$$G_k := \{ \gamma \in O(S_k) \mid \eta_S(\gamma) \in C'_k \}.$$

Let $a \in N(X_k)$ be an ample class. Then, by the natural representation φ_{X_k}, the group $\text{Aut}(X_k)$ is identified with the subgroup $\{ \gamma \in G_k \mid a^\gamma \text{ is ample} \}$ of $O(S_k)$. Under this identification, for $g \in \text{Aut}(X_k)$, we have $\lambda_{X_k}(g)^a = 1$ if and only if $\eta_S(g) \in C'_k(n)$.

Remark 4.4. Let A_1 and A_2 be the positive-definite even lattices of rank 3 with Gram matrices

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 8 & 0 \\ 0 & 0 & 12 \end{bmatrix}, \quad \begin{bmatrix} 6 & 0 & 3 \\ 0 & 6 & 3 \\ 3 & 3 & 8 \end{bmatrix},$$

respectively. Suppose that X is a $K3$ surface on which \mathcal{A}_6 acts symplectically. Then

$$H^2(X, \mathbb{Z})^{\mathcal{A}_6} := \{ v \in H^2(X, \mathbb{Z}) \mid v^g = v \text{ for any } g \in \mathcal{A}_6 \}$$

is isomorphic to A_1 or A_2 (see Table 10.3 of \cite{[10]}). Hence X is singular, and its transcendental lattice is isomorphic to the orthogonal complement of an invariant polarization in $H^2(X, \mathbb{Z})^{\mathcal{A}_6} \cong A_1$.

5. Borcherds method

Let L_{26} be an even unimodular hyperbolic lattice of rank 26, which is unique up to isomorphism (see, for example, Chapter V of \cite{[27]}). We denote by $\langle \cdot, \cdot \rangle_L$ the symmetric bilinear form of L_{26}. We choose a basis

$$f, z, e_1, \ldots, e_8, e'_1, \ldots, e'_8, e''_1, \ldots, e''_8$$

of L_{26} with respect to which the Gram matrix of L_{26} is equal to

$$\text{diag}(U_{\text{ell}}, E_{8}^-, E_{8}^-, E_{8}^-),$$

where U_{ell} is the diagonal matrix of the ellipsoid basis.

Remark 4.5. The space $\text{Sing}(\mathcal{A}_6) \cong H^2(X, \mathbb{Z})^{\mathcal{A}_6}$ is isomorphic to A_1 or A_2. The transcendental lattice of X is isomorphic to the orthogonal complement of an invariant polarization in $H^2(X, \mathbb{Z})^{\mathcal{A}_6} \cong A_1$.
where U_{all} and E_8^- are given in Corollary 3.3. We consider the vector $w_0 \in L_{26}$ that is written as

\begin{equation}
\tag{5.3}
w_0 := (61, 30, -68, -46, -91, -135, -110, -84, -57, -29, -68, -46, -91, -135, -110, -84, -57, -29, -68, -46, -91, -135, -110, -84, -57, -29)
\end{equation}

in terms of the basis (5.1).

Remark 5.1. In terms of the basis of $L_{26}' = L_{26}$ dual to (5.1), we have

\[w_0 = (30, 1, 1, \ldots, 1)^\top. \]

Note that we have $\langle w_0, w_0 \rangle_L = 0$. Let $\mathcal{P}(L_{26})$ be the positive cone of L_{26} that contains w_0 in its closure. The real hyperplanes

\[(r)^\perp = \{ x \in \mathcal{P}(L_{26}) \mid \langle x, r \rangle_L = 0 \} \]

of $\mathcal{P}(L_{26})$, where r ranges through $\mathcal{R}(L_{26}) = \{ r \in L_{26} \mid \langle r, r \rangle_L = -2 \}$, decompose $\mathcal{P}(L_{26})$ into the union of chambers, each of which is a standard fundamental domain of the action of the Weyl group $W(L_{26})$ on $\mathcal{P}(L_{26})$. We call these chambers *Conway chambers*. The action of $O^+(L_{26})$ on $\mathcal{P}(L_{26})$ preserves this tessellation of $\mathcal{P}(L_{26})$ by Conway chambers.

Theorem 5.2. We put

\[W_0 := \{ r \in L_{26} \mid \langle r, r \rangle_L = -2, \langle r, w_0 \rangle_L = 1 \}. \]

Then the chamber

\[\mathcal{D}^{(0)} := \{ x \in \mathcal{P}(L_{26}) \mid \langle x, r \rangle_L \geq 0 \text{ for all } r \in W_0 \} \]

of $\mathcal{P}(L_{26})$ is a Conway chamber, and $(r)^\perp$ is a wall of $\mathcal{D}^{(0)}$ for any $r \in W_0$.

Proof. By [5] and [3], it is enough to prove that $\langle w_0 \rangle^\perp / \langle w_0 \rangle$ is isomorphic the negative-definite Leech lattice; that is, $\langle w_0 \rangle^\perp / \langle w_0 \rangle$ is an even negative-definite unimodular lattice with no vectors of square-norm -2. The vector

\[w_0' := (62, 30, -71, -48, -95, -141, -115, -88, -60, -31, -68, -46, -91, -135, -110, -84, -57, -29, -68, -46, -91, -135, -110, -84, -57, -29) \]

satisfies $\langle w_0, w_0' \rangle_L = 1$ and $\langle w_0', w_0' \rangle_L = 0$. Then the sublattice $\langle w_0, w_0' \rangle$ of L_{26} is an even unimodular hyperbolic lattice of rank 2, and $\langle w_0 \rangle^\perp / \langle w_0 \rangle$ is isomorphic to the orthogonal complement of $\langle w_0, w_0' \rangle$ in L_{26}. Hence $\langle w_0 \rangle^\perp / \langle w_0 \rangle$ is even, negative-definite and unimodular. Moreover we can calculate a Gram matrix of $\langle w_0 \rangle^\perp / \langle w_0 \rangle$. Using Algorithm 2.1 we can confirm that $\langle w_0 \rangle^\perp / \langle w_0 \rangle$ contains no vectors of square-norm -2. \qed

Corollary 5.3. Any Conway chamber is equal to $\mathcal{D}^{(0)g}$ for some $g \in O^+(L_{26})$.

Since the vectors in W_0 span L_{26}, the vector w_0 is uniquely determined by the condition $\langle w_0, r \rangle_L = 1$ for any $r \in W_0$. Therefore $\mathcal{D}^{(0)g} = \mathcal{D}^{(0)g'}$ implies $w_0^g = w_0^{g'}$.

Definition 5.4. We call the vector w_0^g the *Weyl vector* of the Conway chamber $\mathcal{D}^{(0)g}$.
Let \(\varepsilon_k: S_k \hookrightarrow L_{26} \) be the linear mapping given by
\[
\begin{align*}
\varepsilon_k(f_\phi) &= f, & \varepsilon_k(z_\phi) &= z, & \varepsilon_k(e_i) &= e_i', & \varepsilon_k(e'_i) &= e''_i,
\end{align*}
\]
and \(\varepsilon_k(s_1), \varepsilon_k(s_2) \) are given in Table 5.1 in which \([c_1, \ldots, c_8] \) denotes the vector \(c_1 e_1 + \cdots + c_8 e_8 \).

Table 5.1. The embeddings

\[
\begin{bmatrix}
\varepsilon_0(s_1) \\
\varepsilon_0(s_2)
\end{bmatrix} = \begin{bmatrix}
3 & 2 & 4 & 6 & 6 & 4 & 2 \\
6 & 4 & 8 & 12 & 9 & 6 & 4
\end{bmatrix}
\]
\[
\begin{bmatrix}
\varepsilon_1(s_1) \\
\varepsilon_1(s_2)
\end{bmatrix} = \begin{bmatrix}
3 & 2 & 4 & 6 & 5 & 4 & 3 \\
6 & 4 & 8 & 12 & 9 & 6 & 3
\end{bmatrix}
\]
\[
\begin{bmatrix}
\varepsilon_2(s_1) \\
\varepsilon_2(s_2)
\end{bmatrix} = \begin{bmatrix}
3 & 2 & 4 & 6 & 5 & 4 & 3 \\
6 & 4 & 8 & 12 & 10 & 7 & 4
\end{bmatrix}
\]

of \(L_{26} \). We can easily confirm that \(\varepsilon_k \) is a primitive embedding of the lattice \(S_k \) into \(L_{26} \) by using the Gram matrices (3.5) and (5.2). From now on, we consider \(S_k \) as a primitive sublattice of \(L_{26} \) by \(\varepsilon_k \). Let \(R_k \) denote the orthogonal complement of \(S_k \) in \(L_{26} \). It turns out that \(R_k \) is a root lattice of type
\[
\begin{cases}
2A_2 + 2A_1 & \text{if } k = 0, \\
A_3 + A_2 + A_1 & \text{if } k = 1, \\
A_4 + A_2 & \text{if } k = 2.
\end{cases}
\]

By Proposition 1.6.1 of [21], the even unimodular overlattice \(L_{26} \) of \(S_k \oplus R_k \) induces an isomorphism
\[
\delta_L: q_{R_k} \cong -q_{S_k}.
\]

Then \(\delta_L \) induces an isomorphism
\[
\delta_L^*: O(q_{S_k}) \cong O(q_{R_k}).
\]

Since \(R_k \) is negative-definite, we can calculate all elements of \(O(R_k) \) and their images by the natural homomorphism \(\eta_R: O(R_k) \to O(q_{R_k}) \). We have
\[
|O(R_k)| = \begin{cases}
2304 & \text{if } k = 0, \\
1152 & \text{if } k = 1, \\
2880 & \text{if } k = 2,
\end{cases}
\]

and see that \(\eta_R \) is surjective. In particular, by Proposition 1.4.2 of [21], we have the following:

Proposition 5.5. Every element \(\gamma \in G_k \) extends to an isometry \(\tilde{\gamma} \in O(L_{26}) \). \(\square \)

It is easy to see that \(\varepsilon_k \) maps \(\mathcal{P}(X_k) \) into \(\mathcal{P}(L_{26}) \).

Definition 5.6. A chamber \(D \) of \(\mathcal{P}(X_k) \) is called an induced chamber if there exists a Conway chamber \(D \) such that \(D = D \cap \mathcal{P}(X_k) \). In this case, we say that \(D \) is induced by \(D \).
\[a_0 = (122, 60, -11, -17, -136, -92, -182, -270, -220, -168, -114, -58, -136, -92, -182, -270, -220, -168, -114, -58) \]
\[a_1 = (122, 60, -29, -8, -136, -92, -182, -270, -220, -168, -114, -58, -136, -92, -182, -270, -220, -168, -114, -58) \]
\[a_2 = (61, 30, -12, -5, -68, -46, -91, -135, -110, -84, -57, -29, -68, -46, -91, -135, -110, -84, -57, -29) \]

Table 5.2. The ample vectors \(a_k \)

As will be seen in the proof of Theorems 1.4 and 1.5 below, this definition coincides with the definition of induced chambers in Introduction.

By definition, \(\mathcal{P}(X_k) \) is tessellated by induced chambers, and for a wall \((v)^\perp\) of an induced chamber \(D \), we can define the induced chamber adjacent to \(D \) across the wall \((v)^\perp\). By Proposition 5.5 we have the following:

Corollary 5.7. The action of \(G_k \) on \(\mathcal{P}(X_k) \) preserves the tessellation of \(\mathcal{P}(X_k) \) by induced chambers.

If \(r \in S_k \) satisfies \(\langle r, r \rangle_S = -2 \), then we obviously have \(\langle r, r \rangle_L = -2 \). Therefore a wall of \(N(X_k) \) is the intersection of a wall of a Conway chamber and \(\mathcal{P}(X_k) \). Hence, if \(D \) is an induced chamber, then either \(D \) is contained in \(N(X_k) \) or the interior of \(D \) is disjoint from \(N(X_k) \). Therefore \(N(X_k) \) is also tessellated by induced chambers.

We denote by

\[\text{pr}_S : L_{26} \otimes \mathbb{Q} \to S_k \otimes \mathbb{Q} \]

the orthogonal projection. Note that \(\text{pr}_S(L_{26}) \) is contained in \(S_k^{\vee \vee} \). For \(r \in \mathcal{R}(L_{26}) \), we put

\[r_S := \text{pr}_S(r). \]

Using the fact that \(R_k \) contains a vector of square-norm \(-2\) and hence cannot be embedded into the negative-definite Leech lattice, we have the following:

Proposition 5.8 (Algorithm 5.8 in [31]). Suppose that the Weyl vector \(w \) of a Conway chamber \(\mathcal{D} \) is given. Then the set

\[\Delta_w := \{ r \in \mathcal{R}(L_{26}) \mid \langle r, w \rangle_L = 1, \langle r_S, r_S \rangle_S < 0 \} \]

is finite and can be effectively calculated.

We put

\[a_k := \begin{cases} 2 \text{pr}_S(w_0) & \text{if } k = 0 \text{ or } 1, \\ \text{pr}_S(w_0) & \text{if } k = 2. \end{cases} \]

Then \(a_k \) is a primitive vector of \(S_k \) contained in \(\mathcal{P}(X_k) \). Its coordinates with respect to the basis (3.11) are given in Table 5.2. The square-norm \(\langle a_k, a_k \rangle_S \) is given in Theorem 1.2

Proposition 5.9. The closed subset

\[D^{(0)} := \mathcal{D}^{(0)} \cap \mathcal{P}(X_k) \]

of \(\mathcal{P}(X_k) \) is an induced chamber that contains \(a_k \) in its interior and is contained in \(N(X_k) \). In particular, \(a_k \in S_k \) is ample.
Proof. For a vector $r \in L_{26}$ with $\langle r, r \rangle_L = -2$, the subset $(r) \cap \mathcal{P}(X_k) = \{ x \in \mathcal{P}(X_k) \mid \langle rs, x \rangle_S = 0 \}$ of $\mathcal{P}(X_k)$ is equal to

\[
\begin{cases}
\text{the real hyperplane } (r) \cap \mathcal{P}(X_k) & \text{if } \langle rs, rs \rangle_S < 0, \\
\mathcal{P}(X_k) & \text{if } rs = 0, \\
\emptyset & \text{if } rs \neq 0 \text{ and } \langle rs, rs \rangle_S \geq 0.
\end{cases}
\]

Moreover, because the embedding ε_k maps $\mathcal{P}(X_k)$ into $\mathcal{P}(L_{26})$, if $r \in \mathcal{W}_0$ satisfies $rs \neq 0$ and $\langle rs, rs \rangle_S \geq 0$, then every point x of $\mathcal{P}(X_k)$ satisfies $\langle rs, x \rangle_S > 0$. Note that $r \in \mathcal{W}_0$ satisfies $rs = 0$ if and only if $r \in \mathcal{R}_k$.

We first show that a_k is an interior point of the closed subset $D^{(0)}$ of $\mathcal{P}(X_k)$. We calculate the finite set $\Delta_w = \{ r \in \mathcal{W}_0 \mid \langle rs, rs \rangle_S < 0 \}$ by Proposition 5.8 and confirm that

\[
\langle a_k, r \rangle_L > 0 \quad \text{for all } r \in \Delta_w.
\]

Therefore, by the above consideration, we see that $\langle a_k, rs \rangle_S = \langle a_k, r \rangle_L > 0$ for any $r \in \mathcal{W}_0$ with $rs \neq 0$. Hence a_k is an interior point of $D^{(0)}$. Therefore $D^{(0)}$ is an induced chamber.

Next we show that a_k is ample. It is easy to see that $\langle a_k', a_k \rangle_S > 0$, where a_k' is the nef vector $2f_0 + z_\phi$. By Algorithms 2.2 and 2.3 we see that

\[
\begin{align*}
\{ r \in S_k \mid \langle r, a_k' \rangle_S > 0, \langle r, a_k \rangle_S < 0, \langle r, r \rangle_S = -2 \} &= \emptyset, \\
\langle a_k, r \rangle_S > 0 & \text{for any } r \in \mathcal{B}_k, \\
\{ r \in S_k \mid \langle r, a_k \rangle_S = 0, \langle r, r \rangle_S = -2 \} &= \emptyset,
\end{align*}
\]

where \mathcal{B}_k is defined by (4.12) and given in (4.13). By Corollary 4.6 we see that a_k is ample. Since $N(X_k)$ and the interior of $D^{(0)}$ have a common point a_k, we see that $D^{(0)}$ is contained in $N(X_k)$.

\textbf{Proof of Theorems 1.4 and 1.5.} By the results proved so far, the assumptions required to use the main algorithm (Algorithm 6.1) of [31] are satisfied.

We calculate the set $\Delta(D^{(0)})$ of primitive outward defining vectors of walls of $D^{(0)}$ from the set Δ_w above by Algorithm 3.17 of [31]. Since $\Delta(D^{(0)})$ generate $S_k \otimes \mathbb{R}$, we can calculate the finite group

\[(5.4) \quad \text{Aut}(D^{(0)}) := \{ \gamma \in O(S_k) \mid D^{(0)} \gamma = D^{(0)} \}\]

by Algorithm 3.18 of [31]. Since a_k is an interior point of $D^{(0)}$ and the action of G_k preserves the decomposition of $\mathcal{P}(X_k)$ into the union of induced chambers by Proposition 5.5 we have

\[
\text{Aut}(X_k, a_k) = \text{Aut}(D^{(0)}) \cap G_k.
\]

Indeed, a_k is proportional to the sum of the vectors in the orbit o_0 calculated bellow. Thus we can calculate all elements of the finite group $\text{Aut}(X_k, a_k)$ in the form of matrices. Thus we obtain the set $\text{Invol}^{(0)}$ of involutions in $\text{Aut}(X_k, a_k)$.

We then calculate the orbits of the action of $\text{Aut}(X_k, a_k)$ on $\Delta(D^{(0)})$. Let o_i be an orbit. We choose a vector $v_i \in o_i$. Suppose that there exists a positive integer n such that $nv_i \in S_k$ and $n^2 \langle v_i, v_i \rangle_S = -2$. Then $(v_i)^{-1} = (nv_i)^{-1}$ is a wall of $N(X_k)$. This occurs only when $o_i = o_0$ or $(k = 1$ and $o_i = o_0')$. Suppose that there exists no such positive integer n. Then the induced chamber $D^{(i)}$ adjacent to $D^{(0)}$ across the wall $(v_i)^{-1}$ is contained in $N(X_k)$. By Algorithm 5.14 of [31], we calculate the Weyl vector $w_i \in L_{26}$ such that the corresponding Conway chamber $D^{(i)}$ induces $D^{(i)}$. From
Proposition 6.1. Let g be an automorphism of an S-surface and an ample class h of X_S. Then, for each non-negative integer d, we can calculate effectively the set $\mathcal{C}_d(h)$ of the classes of smooth rational curves Γ on X such that $\langle h, \Gamma \rangle = d$.

First we prove two lemmas. In the following, we fix a nef class $h \in S_X$ and an ample class $a \in S_X$.

Lemma 6.2. Let D be an effective divisor on X with $\langle D, D \rangle < 0$, and let

$$D = \Gamma_0 + \cdots + \Gamma_m + M$$

be a decomposition of D such that $\Gamma_0, \ldots, \Gamma_m$ are smooth rational curves and either $M = 0$ or M is effective with no fixed components in $|M|$. Then there exists a smooth rational curve Γ_i among $\Gamma_0, \ldots, \Gamma_m$ such that $\langle D, \Gamma_i \rangle < 0$.

Proof. If $\langle D, \Gamma_i \rangle \geq 0$ for $i = 0, \ldots, m$, then $\langle D, D \rangle = \sum \langle D, \Gamma_i \rangle + \langle D, M \rangle \geq 0$. □

Lemma 6.3. Suppose that $v \in S_X$ satisfies $\langle v, v \rangle = -2$ and $\langle a, v \rangle > 0$. Then the following conditions are equivalent:

(i) The vector v is not the class of a smooth rational curve.

(ii) There exists a smooth rational curve Γ satisfying the following:

$$\langle a, \Gamma \rangle < \langle a, v \rangle, \quad \langle h, \Gamma \rangle \leq \langle h, v \rangle, \quad \langle v, \Gamma \rangle < 0.$$
Suppose further that h is a polarization of degree $n := \langle h, h \rangle > 0$ and that $\langle h, v \rangle > 0$. Then the above two conditions are equivalent to the following:

(iii) There exists a smooth rational curve Γ satisfying the following:

$$\langle a, \Gamma \rangle < \langle a, v \rangle, \quad \langle h, \Gamma \rangle < \langle h, v \rangle, \quad \langle v, \Gamma \rangle < 0.$$

Proof. By $\langle v, v \rangle = -2$ and $\langle a, v \rangle > 0$, there exists an effective divisor D such that v is the class of D. Let $D = \Gamma_0 + \cdots + \Gamma_m + M$ be a decomposition of D such that $\Gamma_0, \ldots, \Gamma_m$ are smooth rational curves and either $M = 0$ or M is effective with no fixed components in $|M|$. By Lemma 6.2, we can assume that $\langle v, \Gamma_0 \rangle = \langle D, \Gamma_0 \rangle < 0$. Since h is nef, we have $\langle h, \Gamma_0 \rangle \leq \langle h, D \rangle$.

Suppose that D is not irreducible. Then $m > 0$ or $M \neq 0$. In either case, we have $\langle a, \Gamma_0 \rangle < \langle a, D \rangle$. Hence (ii) holds by taking Γ_0 as Γ. Suppose that (ii) holds. Since $\langle D, \Gamma \rangle < 0$, Γ is one of $\Gamma_0, \ldots, \Gamma_m$. Since $\langle a, \Gamma \rangle < \langle a, D \rangle$, we have $D \neq \Gamma$, and hence D is not irreducible. Thus the first part of Lemma 6.3 is proved.

Suppose that h is a polarization and that $d := \langle h, v \rangle > 0$. The implication (iii) \implies (ii) is obvious. We assume (i) and prove that (iii) holds. If $M \neq 0$, then $\langle h, M \rangle > 0$. Hence we have $\langle h, \Gamma_0 \rangle < d$, and (iii) holds by taking Γ_0 as Γ. Therefore we can assume that $M = 0$ and $m > 0$. If $\langle h, \Gamma_0 \rangle < d$, then (iii) holds by taking Γ_0 as Γ. Therefore we further assume that $\langle h, \Gamma_0 \rangle = d$. Then we have

$$\langle h, \Gamma_i \rangle = 0 < d \quad \text{for} \quad i = 1, \ldots, m.$$

If $\langle v, \Gamma_i \rangle < 0$ for some $i > 0$, then (iii) holds by taking Γ_i as Γ. Therefore we assume

$$\langle v, \Gamma_i \rangle \geq 0 \quad \text{for} \quad i = 1, \ldots, m,$$

and derive a contradiction. For simplicity, we put

$$\Sigma_j := \sum_{i=0}^{j} \Gamma_i, \quad \Xi_j := \sum_{i=j+1}^{m} \Gamma_i.$$

Note that Γ_0 is distinct from any of $\Gamma_1, \ldots, \Gamma_m$. Since $\langle \Gamma_i, \Gamma_0 \rangle \geq 0$ for $i > 0$ and

$$\langle v, \Gamma_0 \rangle = \langle D, \Gamma_0 \rangle = -2 + \langle \Xi_0, \Gamma_0 \rangle < 0,$$

we have $\langle \Xi_0, \Gamma_0 \rangle = 0$ or 1. If $\langle \Xi_0, \Gamma_0 \rangle = 0$, then $\langle D, D \rangle = -2$ implies that $\langle \Xi_0, \Xi_0 \rangle = 0$. Since the class of Ξ_0 belongs to the orthogonal complement $[h] \perp$ of h in S_X by (6.1), and $[h] \perp$ is negative-definite because $\langle h, h \rangle > 0$, we obtain $\Xi_0 = 0$, which contradicts the assumption (i). Hence $\langle \Xi_0, \Gamma_0 \rangle = 1$, and therefore there exists a curve Γ_i among $\Gamma_1, \ldots, \Gamma_m$, say Γ_1, such that

$$\langle \Gamma_0, \Gamma_1 \rangle = 1, \quad \langle \Gamma_0, \Gamma_i \rangle = 0 \quad (i = 2, \ldots, m).$$

We consider the following property P_k:

(a) $\{\Gamma_0, \ldots, \Gamma_k\} \cap \{\Gamma_{k+1}, \ldots, \Gamma_m\} = \emptyset$,
(b) $\Gamma_0, \ldots, \Gamma_k$ form an A_{k+1}-configuration of smooth rational curves.
(c) $\langle \Gamma_i, \Gamma_j \rangle = 0$ if $i < k$ and $j > k$.
(d) $\langle \Xi_k, \Gamma_k \rangle = 1$.

We have shown that the property P_0 holds. (The property (c) is vacuous for P_0.)

Claim 6.4. Suppose that the property P_k holds. Then, after renumbering of $\Gamma_{k+1}, \ldots, \Gamma_m$, the property P_{k+1} holds.
Proof of Claim [6.4]. Since \(\langle \Xi_k, \Gamma_k \rangle = 1 \) and \(\Gamma_k \notin \{ \Gamma_{k+1}, \ldots, \Gamma_m \} \), there exists a unique element, say \(\Gamma_{k+1} \), in the set \(\{ \Gamma_{k+1}, \ldots, \Gamma_m \} \) such that \(\langle \Gamma_k, \Gamma_{k+1} \rangle = 1 \) and \(\langle \Gamma_k, \Gamma_j \rangle = 0 \) for \(j > k + 1 \). Then we have that
\[
\langle \Xi_k, \Gamma_{k+1} \rangle \neq \langle \Gamma_{k+2}, \ldots, \Gamma_m \rangle,
\]
that \(\Gamma_0, \ldots, \Gamma_{k+1} \) form an \(A_{k+2} \)-configuration of smooth rational curves, and that \(\langle \Gamma_i, \Gamma_j \rangle = 0 \) if \(i < k + 1 \) and \(j > k + 1 \). Therefore it is enough to show that \(\langle \Xi_{k+1}, \Gamma_{k+1} \rangle = 1 \). We have \(\langle \Sigma_k, \Sigma_k \rangle = -2 \) by (b) for the property \(P_k \), and \(\langle \Sigma_k, \Xi_k \rangle = 1 \) by (c) and (d) for \(P_k \). From \(D^2 = (\Sigma_k + \Xi_k)^2 = -2 \), we obtain \(\Xi_k^2 = -2 \). By Lemma [6.2] there exists an irreducible component \(\Gamma_l \) of \(\Xi_k \) such that \(\langle \Xi_k, \Gamma_l \rangle < 0 \). If \(l > k + 1 \), then we have \(\langle \Gamma_l, \Gamma_l \rangle = 0 \) for \(i \leq k \), and hence \(\langle D, \Gamma_l \rangle = \langle \Xi_k, \Gamma_l \rangle < 0 \), which contradicts the assumption [6.2]. Hence we have \(l = k + 1 \). From
\[
\langle \Xi_k, \Gamma_{k+1} \rangle = -2 + \langle \Xi_{k+1}, \Gamma_{k+1} \rangle < 0
\]
and \(\langle \Xi_{k+1}, \Gamma_{k+1} \rangle \geq 0 \) by (6.3), we see that \(\langle \Xi_{k+1}, \Gamma_{k+1} \rangle = 0 \) or 1. If \(\langle \Xi_{k+1}, \Gamma_{k+1} \rangle = 0 \), then \(\langle \Xi_{k+1}, \Sigma_{k+1} \rangle = 0 \) by (c) for \(P_{k+1} \) and, from \(D^2 = (\Xi_{k+1} + \Sigma_{k+1})^2 = -2 \) and \(\Sigma_{k+1}^2 = -2 \) by (b) for \(P_{k+1} \), we have \(\Xi_{k+1}^2 = 0 \). Since the class of \(\Xi_{k+1} \) belongs to the negative-definite lattice \([h] \), we have \(\Xi_{k+1} = 0 \), and hence \(D = \Sigma_{k+1} \). Then \(\langle D, \Gamma_{k+1} \rangle < 0 \), which contradicts the assumption [6.2]. Therefore \(\langle \Xi_k, \Gamma_{k+1} \rangle = 1 \). □

Since the property \(P_1 \) holds, the property \(P_{k+1} \) holds by Claim [6.4] which says that \(\Gamma_0, \ldots, \Gamma_m \) form an \(A_{m+1} \)-configuration. This contradicts [6.2] for \(i = m \). □

Proof of Proposition [6.7]. Since \(\langle h, h \rangle > 0 \), we can calculate the finite set
\[V_d := \{ v \in S_X \mid \langle h, v \rangle = d, \langle a, v \rangle > 0, \langle v, v \rangle = -2 \} \]
by Algorithm [2.2] Suppose that \(d = 0 \). We decompose \(V_0 \) into the disjoint union of subsets
\[V_0[\alpha_i] := \{ v \in V_d \mid \langle a, v \rangle = \alpha_i \} \]
with \(0 < \alpha_0 < \cdots < \alpha_N \). We calculate \(C_0[\alpha_i] \) inductively on \(i \) by setting \(C_0[\alpha_0] := V_0[\alpha_0] \), and
\[C_0[\alpha_i] := \{ v \in V_0[\alpha_i] \mid \text{there exist no vectors } \gamma \text{ in } \bigcup_{j < i} C_0[\alpha_j] \text{ such that } \langle v, \gamma \rangle < 0 \} \]
Then the union of \(C_0[\alpha_0], \ldots, C_0[\alpha_N] \) is the set \(C_0(h) \). Suppose that \(d > 0 \) and that the set \(C_{d'}(h) \) is calculated for every \(d' < d \). Then
\[\{ v \in V_d \mid \text{there exist no vectors } \gamma \text{ in } \bigcup_{d' < d} C_{d'}(h) \text{ such that } \langle v, \gamma \rangle < 0 \} \]
is the set \(C_d(h) \). □

Suppose that \(h \in S_X \) is a polarization of degree \(n := \langle h, h \rangle > 0 \). Let
\[\Phi_h : X \overset{\rho_h}{\longrightarrow} X_h \rightarrow \mathbb{P}^{1+n/2} \]
be the Stein factorization of the morphism \(\Phi_h \) induced by the complete linear system \(|L_h| \) associated with a line bundle \(L_h \to X \) whose class is \(h \). Then \(X_h \) has only rational double points as its singularities, and \(\rho_h \) is the minimal resolution of singularities. The set \(C_0(h) \) is equal to the set of classes of smooth rational curves contracted by \(\rho_h \). In particular, the dual graph of \(C_0(h) \) is a disjoint union of indecomposable root systems of type \(A_l, D_m \) or \(E_n \) (see Figure [2.1]). We can calculate the \(ADE \)-type of the singular points \(\text{Sing}(X_h) \) of \(X_h \) from \(C_0(h) \).
The set \(C_1(h) \) is the set of classes of smooth rational curves that are mapped to lines in \(\mathbb{P}^{1+n/2} \) isomorphically by \(\Phi_h \); that is, \(C_1(h) \) is the set of classes of lines of the polarized K3 surface \((X, h)\).

6.2. Application to projective models.

Definition 6.5. Let \((X, h)\) and \((X', h')\) be polarized K3 surfaces. We say that \((X, h)\) and \((X', h')\) have the same line configuration if there exists a bijection
\[
\alpha : C_0(h) \cup C_1(h) \cong C_0(h') \cup C_1(h')
\]
such that we have
\[
\langle \alpha(r), h' \rangle = \langle r, h \rangle \quad \text{for any } r \in C_0(h) \cup C_1(h),
\]
(that is, \(\alpha(C_0(h)) = C_0(h')\) and \(\alpha(C_1(h)) = C_1(h')\) hold), and
\[
\langle \alpha(r), \alpha(r') \rangle = \langle r, r' \rangle \quad \text{for any } r, r' \in C_0(h) \cup C_1(h).
\]
We say that the line configuration on \((X, h)\) is full if the union of \(C_0(h)\) and \(C_1(h)\) generates \(S_X\).

Proposition 6.6. Suppose that \(X\) is singular and that the line configuration on \((X, h)\) is full. Then, up to isomorphism, there exist only a finite number of polarized K3 surfaces \((X', h')\) that have the same line configuration as \((X, h)\). Moreover all such polarized K3 surfaces \((X', h')\) satisfy \(\langle h', h' \rangle = \langle h, h \rangle\).

Proof. Suppose that \((X', h')\) has the same line configuration as \((X, h)\), and let \(\alpha\) be a bijection from \(C_0(h) \cup C_1(h)\) to \(C_0(h') \cup C_1(h')\) satisfying \(6.4\) and \(6.5\). Let \(S''\) be the sublattice of \(S_{X'}\) generated by the union of \(C_0(h')\) and \(C_1(h')\). Then \(\alpha\) induces an isometry \(\tilde{\alpha}\) from \(S_X\) to \(S''\). Therefore \(X'\) is singular and
\[
disc T_{X'} = -disc S_{X'} = -disc S_X/m^2 = disc T_X/m^2,
\]
where \(m\) is the index of \(S''\) in \(S_{X'}\). Since the number of isomorphism classes of definite lattices of a fixed discriminant is finite, the number of isomorphism classes of singular K3 surfaces \(X'\) that admit a polarization \(h'\) with the same line configuration as \((X, h)\) is finite. Note that the isometry \(\tilde{\alpha} : S_X \cong S'\) maps \(h\) to \(h'\), because \(h\) is uniquely determined by \(C_0(h)\) and \(C_1(h)\) as a unique vector satisfying \(\langle r, h \rangle = 0\) for any \(r \in C_0(h)\) and \(\langle r, h \rangle = 1\) for any \(r \in C_1(h)\). In particular, we have \(\langle h, h \rangle = \langle h', h' \rangle\). For a fixed K3 surface \(X'\), the number of polarizations \(h'\) with a fixed degree is finite up to \(Aut(X')\) by Sterk [37].

We apply this consideration to our singular K3 surfaces \(X_k\). Recall that the inversion of the orientation of \(T_k\) yields a singular K3 surface isomorphic to \(X_k\).

Proposition 6.7. Let \(h\) be a polarization on \(X_k\) of degree \(n := \langle h, h \rangle > 0\) such that the line configuration on \((X_k, h)\) is full. Suppose that \((X', h')\) has the same line configuration as \((X_k, h)\). Then either \(X'\) is isomorphic to \(X_k\), or \(k = 0\) and \(X'\) is the singular K3 surface with \(T_{X'} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}\).

Proof. Since \(X'\) is a singular K3 surface by Proposition 6.6, we have \(disc T_{X'} = 0\) or \(3\ mod \ 4\). By the proof of Proposition 6.6, we see that \(disc T_{X'} = disc T_k/m^2\), and if \(m = 1\), then \(T_{X'} \cong T_k\) by the proof of Proposition 3.2.

Therefore, if the line configuration of \((X_k, h)\) is full, then we can determine the projective model of the polarized K3 surface \((X_k, h)\) up to finite possibilities.
7. INVOLUTIONS OF K3 SURFACES

Let X be a K3 surface such that the representation $\varphi_X : \text{Aut}(X) \to O(S_X)$ is injective. Suppose that we are given the action of an involution $i \in \text{Aut}(X)$ on S_X as a matrix. In this section, we discuss a method to obtain geometric properties of i from this matrix.

7.1. Types of the involution. Note that we have $\lambda_X(i) = \pm 1$, where λ_X is the natural representation of Aut(X) on $H^{2,0}(X)$. Since we have assumed that φ_X is injective, we can determine, by Theorem 4.1 whether i is symplectic or not by seeing whether $\eta_S(\varphi_X(i)) \in O(q_{S_X})$ is the identity or not.

Suppose that i is not symplectic. Then we can determine whether i is Enriques or rational by the following:

Proposition 7.1 (Keum [12]). Let $i : X \to X$ be an involution. We put $S^+_X := \{ v \in S_X \mid v^t = v \}$, $S^-_X := \{ v \in S_X \mid v^t = -v \}$.

Let $S^+_X(1/2)$ denote the \mathbb{Q}-lattice obtained from the lattice S^+_X by multiplying the symmetric bilinear form with $1/2$. Then i is an Enriques involution if and only if $S^+_X(1/2)$ is an even unimodular hyperbolic lattice of rank 10 and S^-_X contains no vectors r with $\langle r, r \rangle = -2$.

Remark 7.2. Since S^+_X contains an ample class, its orthogonal complement S^-_X is negative-definite. Therefore we can calculate $\{ r \in S^-_X \mid \langle r, r \rangle = -2 \}$ by Algorithm 2.

7.2. Polarizations of degree 2. We have the following:

Proposition 7.3 (Proposition 0.1 of Nikulin [22]). Let $h \in S_X$ be a nef class with $n := \langle h, h \rangle > 0$, and let $L_h \to X$ be a line bundle whose class is h. Let $|L_h| = |M| + Z$ be the decomposition of the complete linear system $|L_h|$ into the movable part $|M|$ and the sum Z of the fixed components. Then either one of the following holds:

(i) Z is empty, and $|L_h|$ defines a morphism $\Phi_h : X \to \mathbb{P}^{1+n/2}$. In other words, h is a polarization of degree n.

(ii) Z is a smooth rational curve, and $|M|$ contains a member mE, where $m = 1 + n/2$ and E is a smooth curve of genus 1 satisfying $\langle E, Z \rangle = 1$. The complete linear system $|E|$ defines an elliptic fibration $\phi : X \to \mathbb{P}^1$ with a zero-section Z. In other words, we have $h = mf_\phi + z_\phi$, where f_ϕ and z_ϕ are defined in Section 3.

Corollary 7.4. Let $h \in S_X$ be a nef class with $n := \langle h, h \rangle > 0$. Then h is a polarization of degree n if and only if the set $\mathcal{F}_h := \{ f \in S_X \mid \langle f, h \rangle = 1, \langle f, f \rangle = 0 \}$ is empty.

Proof. If the case (ii) of Proposition 7.3 holds, then the class f_ϕ of E is an element of \mathcal{F}_h. Suppose that the case (i) of Proposition 7.3 holds and that \mathcal{F}_h contains an element f. Then $\dim |L_f| > 0$ and the movable part of $|L_f|$ contains a curve that is mapped to a line in $\mathbb{P}^{1+n/2}$ by Φ_h isomorphically, which is absurd. \qed
Remark 7.5. Since \(\langle h, h \rangle > 0 \), we can calculate \(F_h \) by Algorithm 2.2.

Suppose that a polarization \(h \in S_X \) of degree 2 is given, and let \(\tau(h) \in \text{Aut}(X) \) be the associated double-plane involution. We can calculate the matrix of the action of \(\tau(h) \) on \(S_X \) by the following method, provided that we have an ample class \(a \in S_X \). Let

\[
\Phi_h : X \xrightarrow{p_h} X_h \xrightarrow{\pi_h} \mathbb{P}^2
\]

be the Stein factorization of the morphism \(\Phi_h \) induced by the complete linear system \(|L_h| \), and let \(B_h \) be the branch curve of \(\pi_h : X_h \to \mathbb{P}^2 \), which is a plane curve of degree 6 with only simple singularities. Recall that the dual graph of the set \(C_0(h) \) of classes of smooth rational curves contracted by the minimal resolution of singularities \(\rho_h \) is a disjoint union of indecomposable root systems of type \(A_1 \), \(D_m \), or \(E_n \) in Figure 2.1. The action of \(\tau(h) \) on each indecomposable root system \(R \) is given as follows.

- If \(R \) is of type \(A_1 \), then \(\tau(h) \) maps \(a_i \) to \(a_{i+1-i} \).
- If \(R \) is of type \(D_{2k} \), then \(\tau(h) \) acts on \(R \) as the identity, whereas if \(R \) is of type \(D_{2k+1} \), then \(\tau(h) \) interchanges \(d_1 \) and \(d_2 \) and fixes \(d_3, \ldots, d_{2k+1} \).
- If \(R \) is of type \(E_6 \), then \(\tau(h) \) fixes \(e_1, e_8 \), and interchanges \(e_i \) and \(e_{8-i} \) for \(i = 2, 3 \). If \(R \) is of type \(E_7 \) or \(E_8 \), then \(\tau(h) \) acts on \(R \) as the identity.

The eigenspace \((S_X \otimes \mathbb{Q})^+ \) of the action of \(\tau(h) \) on \(S_X \otimes \mathbb{Q} \) with the eigenvalue 1 is generated over \(\mathbb{Q} \) by the class \(h \) and the classes in the set

\[
\{ r + r\tau(h) \mid r \in C_0(h) \},
\]

and the eigenspace \((S_X \otimes \mathbb{Q})^- \) with the eigenvalue \(-1\) is orthogonal to \((S_X \otimes \mathbb{Q})^+ \). Therefore we can determine the action of \(\tau(h) \) on \(S_X \otimes \mathbb{Q} \) and hence on \(S_X \) from the set \(C_0(h) \).

Conversely, suppose that the matrix \(\varphi_X(\iota) \in O(S_X) \) of a rational involution \(\iota \in \text{Aut}(X) \) is given. We search for a polarization \(h \) of degree 2 such that \(\tau(h) = \iota \). Such a polarization does not necessarily exist. If it exists, however, we can detect it by the following method, with the help of an ample class \(a \in S_X \). Let \(d \) be a positive integer. We calculate the finite set \(\{ v \in S_X \mid \langle v, v \rangle = 2, \langle v, a \rangle = d \} \) by Algorithm 2.2 and its subset

\[
\mathcal{H}_d := \{ v \in S_X \mid \langle v, v \rangle = 2, \langle v, a \rangle = d, v^\prime = v \}.
\]

For each \(h \in \mathcal{H}_d \), we see whether \(h \) is nef or not by Corollary 3.6. If \(h \) is nef, then we see whether \(h \) is a polarization of degree 2 or not by Corollary 7.3. If \(h \) is a polarization of degree 2, then we calculate the matrix \(\varphi_X(\tau(h)) \) by the method described above. If \(\varphi_X(\tau(h)) \) is equal to \(\varphi_X(\iota) \), then we have \(\tau(h) = \iota \). (Recall that we have assumed that \(\varphi_X \) is injective.) We start from \(d = 1 \) and repeat this process until we find the desired polarization \(h \).

Remark 7.6. It often happens that two different polarizations of degree 2 yield the same double-plane involution. Let \(h \in S_X \) be a polarization of degree 2. The morphism \(\Phi_h : X \to \mathbb{P}^2 \) factors as

\[
X \xrightarrow{q} F \xrightarrow{\beta} \mathbb{P}^2,
\]

where \(q \) is the quotient morphism by \(\tau(h) \). Then \(F \) is a smooth rational surface and \(\beta \) is a succession of blowing-downs of \((-1\)-curves. There can exist a birational morphism \(\beta' : F \to \mathbb{P}^2 \) other than \(\beta \). Let \(h' \in S_X \) be the class of the pull-back of a line on \(\mathbb{P}^2 \) by \(\beta' \circ q \). Then \(h' \) is a polarization of degree 2 with \(\tau(h) = \tau(h') \). See Section 9.5 for a concrete example.
7.3. Splitting lines.

Definition 7.7. Let \((X, h)\) be a polarized \(K3\) surface of degree 2. A line \(\ell\) on \(\mathbb{P}^2\) is a splitting line for \((X, h)\) if the strict transform of \(\ell\) by \(\Phi_h\) has two irreducible components.

Let \(B\) be a reduced projective plane curve of degree 6. A line \(\ell\) is a splitting line for \(B\) if \(\ell\) is not an irreducible component of \(B\) and the intersection multiplicity of \(\ell\) and \(B\) at each intersection point is even.

By definition, a line \(\ell\) is splitting for \((X, h)\) if and only if \(\ell\) is splitting for the branch curve \(B_h\) of \(\pi_h : X_h \rightarrow \mathbb{P}^2\). Let \(\Gamma\) be a smooth rational curve on \(X\) such that \([\Gamma] \in C_1(h)\). If \([\Gamma]^{\tau(h)} = [\Gamma]\), then \(\Phi_h\) maps \(\Gamma\) to a line component of \(B_h\) isomorphically. If \([\Gamma]^{\tau(h)} \not= [\Gamma]\), then \(\Phi_h\) maps \(\Gamma\) to a splitting line for \(B_h\) isomorphically.

8. PROOF OF THEOREM 1.2, Proposition 1.6 and Table 1.1

In the proof of Theorems 1.4 and 1.5 in Section 6 we have already calculated, in the form of matrices, all the elements of the finite group \(\text{Aut}(X_k, a_k)\), the set \(\text{Invols}_k^{(0)}\) of involutions in \(\text{Aut}(X_k, a_k)\), and the set \(\text{Invols}_k^{(i)}\) of involutions that map the induced chamber \(D^{(0)}\) to the adjacent induced chamber \(D^{(i)}\) for \(i > 0\). By the method described in Section 7 we determine the types of the involutions in \(\text{Invols}_k^{(i)}\). Thus we prove Proposition 1.6 and complete Table 1.1.

We prove the assertions on \(X_0\) in Theorem 1.2. The cardinalities of the conjugacy classes of \(\text{Aut}(X_0, a_0)\) are as follows:

| order | 1 2 2 2 3 4 4 4 5 6 8 8 8 8 10 |
|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| card. | 1 45 45 1 80 180 180 90 90 144 80 90 90 90 144 |

The center of \(\text{Aut}(X_0, a_0)\) is therefore a cyclic group of order 2 generated by \(\varepsilon_0^{(0)}\) given in Table 8.1. By Proposition 1.4, we see that \(\varepsilon_0^{(0)}\) is an Enriques involution. One of the two conjugacy classes of order 2 with cardinality 45 consists of symplectic involutions, and the other consists of rational involutions. The matrix \(\rho_0^{(0)}\) in Table 8.2 is an element of \(\text{Aut}(X_0, a_0)\) with order 4. Since \(\eta_5^{(0)}(\rho_0^{(0)}) \in \text{O}(\mathfrak{q}_6)\) is of order 4, we see that \(\rho_0^{(0)}\) is purely non-symplectic. There exist three double-plane involutions \(\tau(h_0^{[1]}), \tau(h_0^{[2]}), \tau(h_0^{[3]})\) in \(\text{Aut}(X_0, a_0)\), where the polarizations \(h_0^{[i]}\) of degree 2 are given in Table 8.3 such that \(\tau(h_0^{[1]})\), \(\tau(h_0^{[2]})\), \(\tau(h_0^{[3]})\) and \(\rho_0^{(0)}\) generate \(\text{Aut}(X_0, a_0)\). The subgroup

\[\text{Aut}(X_0, a_0)' := \langle \tau(h_0^{[1]}), \tau(h_0^{[2]}), \tau(h_0^{[3]}) \rangle\]

of \(\text{Aut}(X_0, a_0)\) is of index 2 and consists of elements \(g \in \text{Aut}(X_0, a_0)\) with \(\lambda_{X_0}(g)^2 = 1\). The mapping

\[\tau(h_0^{[1]}) \mapsto ((12)(34), -1), \quad \tau(h_0^{[2]}) \mapsto ((35)(46), -1), \quad \tau(h_0^{[3]}) \mapsto ((23)(56), -1)\]

induces an isomorphism from \(\text{Aut}(X_0, a_0)'/\mathfrak{A}_6 \times \{\pm 1\}\). By this isomorphism, the Enriques involution \(\varepsilon_0^{(0)}\) is mapped to \((\text{id}, -1)\), and the symplectic subgroup of \(\text{Aut}(X_0, a_0)'\) is mapped to \(\mathfrak{A}_6 \times \{1\}\). For \(i = 1, \ldots, 12\), the set \(\text{Invols}_k^{(i)}\) contains a double-plane involution \(\tau(h_0^{(i)})\), where the polarization \(h_0^{(i)}\) of degree 2 is given in Table 8.3.

Next we prove the assertions on \(X_1\) and \(X_2\) in Theorem 1.2. Suppose that \(k = 1\) or 2. Then the cardinalities of the conjugacy classes of \(\text{Aut}(X_k, a_k)\) are as follows:

| order | 1 2 2 3 4 5 5 8 8 10 10 |
|-------|---|---|---|---|---|---|---|---|---|---|
| card. | 1 45 36 80 90 72 72 90 72 72 |

The mapping
The automorphism class of order 2 with cardinality 45 consists of symplectic involutions, and the class of order 2 with cardinality 36 consists of rational involutions. There exist three double-plane involutions \(\tau(h_k^{[1]}), \tau(h_k^{[2]}), \tau(h_k^{[3]}) \) in \(\text{Aut}(X_k, a_k) \), where the polarizations \(h_k^{[i]} \) of degree 2 are given in Tables 8.4 and 8.5. These three involutions generate \(\text{Aut}(X_k, a_k) \), and the mapping

\[
\tau(h_k^{[1]}) \mapsto \begin{bmatrix} 0 & 1 + \sqrt{2} \\ 1 & 0 \end{bmatrix}, \quad \tau(h_k^{[2]}) \mapsto \begin{bmatrix} 0 & 2 + \sqrt{2} \\ 1 & 0 \end{bmatrix}, \quad \tau(h_k^{[3]}) \mapsto \begin{bmatrix} 2 & \sqrt{2} \\ 1 & 1 \end{bmatrix}
\]

induces an isomorphism from \(\text{Aut}(X_k, a_k) \) to \(\text{PGL}_2(\mathbb{F}_9) \). Except for the case \(k = 1 \) and \(i = 4 \), the set \(\text{Invol}_1^{(i)} \) contains a double-plane involution \(\tau(h_k^{[i]}) \), where the polarization \(h_k^{[i]} \) of degree 2 is given in Tables 8.4 and 8.5. The set \(\text{Invol}_1^{(4)} \) consists of 6 symplectic involutions, one of which is the matrix \(\sigma_1^{(4)} \) given in Table 8.6.

Table 8.1. The Enriques involution \(\epsilon_0^{(0)} \)

318	159	20	24	-46	342	-236	465	-684	-560	-430	-289	-148	-350	-237	-474	-700	-569	-438	-296	-148	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
324	162	30	47	-348	-240	474	-696	-570	-438	-294	-150	-354	-240	-480	-708	-576	-444	-300	-150	-00	-50
540	270	49	78	-562	-402	792	-1164	-954	-732	-492	-252	-594	-402	-804	-1188	-966	-744	-504	-212	-00	-50
20	10	2	-3	3	22	-15	30	-44	-36	-27	-18	-9	-24	-16	-32	-48	-39	-30	-20	-10	-00
22	11	2	-3	24	-16	-32	-48	-39	-30	-21	-11	-25	-17	-34	-50	-41	-31	-21	-11	-00	-50
21	10	2	-3	22	-15	-30	-44	-36	-28	-19	-10	-24	-16	-32	-47	-38	-29	-20	-10	-00	-50
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13	6	1	-2	-14	-10	-19	-28	-23	-18	-12	-6	-14	-10	-19	-28	-23	-18	-12	-6	-0	-0
22	11	2	-3	25	-17	-34	-50	-41	-31	-21	-11	-24	-17	-33	-48	-39	-30	-20	-10	-00	-50
20	10	2	-3	22	-15	-29	-43	-35	-27	-18	-9	-21	-14	-28	-42	-34	-26	-18	-9	-0	-0
8	4	1	-1	-8	-6	-11	-16	-13	-10	-7	-4	-9	-6	-12	-15	-12	-8	-4	-0	-0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
22	11	2	-3	25	-17	-34	-50	-41	-32	-22	-11	-24	-16	-32	-48	-39	-30	-20	-10	-00	-50
12	6	1	-2	-12	-8	-16	-24	-20	-15	-10	-5	-13	-9	-18	-26	-21	-16	-11	-6	-0	-0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12	6	1	-2	-13	-9	-18	-26	-21	-16	-11	-6	-12	-8	-16	-24	-20	-15	-10	-5	-0	-0

Table 8.2. The purely non-symplectic automorphism \(\rho_0^{(0)} \) of order 4
Remark 8.1. According to [4], there exist exactly three non-splitting extensions of the cyclic group of order 2 by \mathfrak{S}_6; namely, the symmetric group \mathfrak{S}_6, the Mathieu group M_{10}, and the projective general linear group $\text{PGL}_2(\mathbb{F}_9)$. In [6] Chapter 10, Section 1.5], these three groups are distinguished by the numbers of conjugacy classes of elements of order 3 and 5: \mathfrak{S}_6 has two classes of order 3 and one of order 5, M_{10} has one of each, and $\text{PGL}_2(\mathbb{F}_9)$ has one of order 3 and two of order 5.

9. Examples

In this section, we investigate projective geometry of some of the automorphisms that appear in Theorem [7].

9.1. The purely non-symplectic automorphism $\rho_0^{(0)}$. We investigate the purely non-symplectic automorphism $\rho_0^{(0)}$ of order 4 in $\text{Aut}(X_0, a_0)$. The vector

$$h_{\rho} := (88, 43, -8, -12, -98, -66, -131, -195, -159, -121, -82, -42, -99, -67, -133, -197, -161, -123, -84, -43)$$

h	$\text{Sing}(X_{h})$	(h, a_0)	
$h_0^{(1)}$	$(43, 21, -4, -6, -47, -32, -63, -93, -76, -58, -39, -20, -48, -33, -65, -96, -78, -60, -40, -20)$	$2A_2 + 7A_1$	10
$h_0^{(2)}$	$(64, 32, -6, -9, -71, -47, -94, -140, -114, -87, -59, -30, -71, -48, -95, -141, -115, -88, -60, -40, -30)$	$2A_2 + 7A_1$	10
$h_0^{(3)}$	$(49, 24, -4, -7, -56, -38, -75, -111, -90, -69, -47, -24, -54, -36, -72, -107, -87, -66, -45, -23)$	$2A_2 + 7A_1$	10
$\tilde{h}_{0}^{(1)}$	$(64, 32, -6, -9, -71, -48, -95, -140, -114, -87, -59, -30, -71, -48, -95, -141, -115, -87, -59, -30)$	$A_2 + 8A_1$	10
$\tilde{h}_{0}^{(2)}$	$(57, 28, -5, -8, -64, -43, -86, -127, -103, -78, -52, -26, -64, -43, -85, -127, -103, -78, -53, -27)$	$4A_2 + 4A_1$	12
$\tilde{h}_{0}^{(3)}$	$(64, 32, -6, -9, -72, -48, -96, -142, -116, -89, -60, -31, -69, -47, -93, -138, -113, -86, -59, -30)$	$3A_2 + 6A_1$	12
$\tilde{h}_{0}^{(4)}$	$(74, 37, -7, -10, -83, -56, -111, -164, -134, -103, -69, -35, -82, -55, -110, -164, -134, -103, -70, -36)$	$5A_2 + 4A_1$	14
$\tilde{h}_{0}^{(5)}$	$(80, 40, -7, -11, -91, -61, -122, -181, -147, -112, -75, -38, -89, -60, -119, -178, -145, -110, -75, -38)$	$5A_2 + 4A_1$	14
$\tilde{h}_{0}^{(6)}$	$(176, 88, -16, -25, -193, -130, -260, -383, -312, -238, -161, -81, -197, -134, -264, -391, -318, -243, -165, -84)$	$3A_3 + 6A_1$	22
$\tilde{h}_{0}^{(7)}$	$(140, 70, -13, -20, -153, -102, -204, -303, -245, -187, -127, -64, -155, -105, -209, -310, -254, -194, -131, -67)$	$4A_3 + 4A_1$	22
$\tilde{h}_{0}^{(8)}$	$(152, 76, -14, -21, -173, -115, -230, -342, -277, -212, -144, -72, -167, -113, -222, -331, -270, -208, -142, -73)$	$3A_4 + 2A_2 + A_1$	24
$\tilde{h}_{0}^{(9)}$	$(252, 126, -22, -35, -284, -191, -382, -563, -456, -349, -237, -121, -280, -191, -378, -560, -457, -350, -238, -121)$	$3A_5 + 3A_1$	34
$\tilde{h}_{0}^{(10)}$	$(148, 74, -13, -21, -171, -114, -228, -383, -272, -206, -140, -70, -160, -108, -212, -316, -260, -199, -134, -69)$	$3A_5 + 3A_1$	34
$\tilde{h}_{0}^{(11)}$	$(304, 152, -27, -42, -341, -231, -456, -677, -551, -420, -284, -142, -340, -230, -455, -680, -554, -424, -288, -147)$	$D_4 + 2A_5 + A_1$	38
$\tilde{h}_{0}^{(12)}$	$(206, 103, -19, -29, -231, -156, -312, -457, -371, -285, -193, -97, -224, -153, -300, -447, -365, -278, -191, -98)$	$D_4 + 2A_5 + A_3$	38

Table 8.3. The polarizations $h_0^{[i]}$ and $\tilde{h}_0^{(i)}$ of degree 2.
Hence, by Theorem 5.2 of Saint-Donat \[25\], the polarization P equivalence class of the quartic surface with h is determined by the line configuration of (0) that leaves $\rho (0)$ \emptyset $\{ v \in S_0 \mid \langle v, v \rangle = 0, \langle h, v \rangle = 2 \} = \emptyset$.

Hence, by Theorem 5.2 of Saint-Donat \[25\], the polarization h is not hyperelliptic; that is, h is the class of the pull-back of a hyperplane section by a birational morphism from X_0 to a normal quartic surface $Y \subset P^3$ given by $|L_h|$. Since h is invariant under the action of $\rho_0^{(0)}$, we conclude that $\rho_0^{(0)}$ is induced by a projective linear automorphism of P^3 that leaves Y invariant. By a direct calculation, we see that the line configuration of (X_0, h) is full, and hence, up to finite possibilities, the projective equivalence class of the quartic surface Y is determined by the line configuration of (X_0, h). We describe this line configuration in details, hoping that we can obtain a defining equation of Y in future. Let S be a set on which the group $(\rho_0^{(0)})$ of order 4 acts transitively. By $S = [s_0, s_1, s_2, s_3]$, we mean that $|S| = 4$ and that $\rho_0^{(0)}$ maps s_i to s_{i+1} for $i = 0, 1, 2$ and s_3 to s_0, and by $S = [s_0, s_1]$, we

h	$\text{Sing}(X_h)$	$\langle h, a_1 \rangle$
$h_1^{(1)} = (30, 15, -7, -2, -33, -22, -44, -66, -54, -41, -28, -14)$	$4A_2 + 5A_1$	12
$h_1^{(2)} = (30, 15, -7, -2, -34, -23, -45, -67, -55, -42, -28, -14)$	$4A_2 + 5A_1$	12
$h_1^{(3)} = (43, 21, -10, -3, -46, -31, -62, -92, -75, -57, -39, -20)$	$4A_2 + 5A_1$	12

$h_1^{(1)} = (45, 22, -11, -3, -50, -34, -67, -99, -81, -62, -42, -21)$	$3A_2 + 6A_1$	12
$h_1^{(2)} = (43, 21, -10, -3, -48, -33, -65, -96, -79, -60, -40, -20)$	$A_3 + 4A_2 + 2A_1$	14
$h_1^{(3)} = (46, 23, -11, -3, -50, -34, -68, -100, -81, -62, -42, -21)$	$5A_2 + 4A_1$	14

$h_1^{(5)} = (46, 23, -11, -3, -52, -36, -70, -104, -85, -65, -44, -23)$	$2A_3 + 3A_2 + 2A_1$	16
$h_1^{(6)} = (76, 38, -18, -5, -84, -57, -112, -167, -136, -103, -70, -35)$	$3A_3 + 3A_2$	18
$h_1^{(7)} = (106, 53, -25, -7, -119, -81, -159, -235, -192, -146, -99, -50)$	$2A_4 + 3A_2 + 2A_1$	22
$h_1^{(8)} = (94, 47, -22, -6, -104, -71, -140, -208, -169, -130, -88, -44)$	$2A_4 + 2A_3 + 2A_1$	22
$h_1^{(9)} = (110, 55, -26, -8, -121, -84, -164, -241, -197, -150, -102, -51)$	$2A_5 + 2A_3$	30
$h_1^{(10)} = (124, 62, -29, -8, -138, -95, -186, -276, -225, -171, -116, -58)$	$2A_5 + 2A_3$	30
$h_1^{(11)} = (217, 108, -51, -15, -239, -166, -325, -477, -390, -296, -202, -101)$	$2A_9$	54
$h_1^{(12)} = (250, 125, -59, -17, -277, -185, -370, -548, -449, -343, -231, -119)$	$2A_9$	54

Table 8.4. The polarizations $h_1^{[i]}$ and $\tilde{h}_1^{(i)}$ of degree 2

of S_0 with $\langle h, h \rangle = 4$ is invariant under the action of $\rho_0^{(0)}$. By Corollary \[3.6\], we see that h_ρ is nef, and by Corollary \[7.4\] we see that h_ρ is a polarization of degree 4. Moreover, by Algorithm \[2.2\] we have
mean that \(|S| = 2\) and that \(\rho_0^{(0)}\) interchanges \(s_0\) and \(s_1\). We denote by \(\text{cyc}(a, b, c, d)\) the cyclic matrix

\[
\begin{bmatrix}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a \\
\end{bmatrix}
\]
The intersection pattern of lines in the orbits l_i.

Then the matrices M_{ij} for $i \neq j$ are given in Table 9.1.

i	j	0	1	2	3	4	5	6	7	8
0	C_1	C_2	C_3	C_4	C_5	C_6	C_7			
1	C_1	C_5	C_4	C_6	C_4	C_7				
2	C_4	C_3	C_8	C_2	C_3					
3		C_5	C_4	C_7	C_1					
4			C_9	C_4	C_2					
5				C_8	C_4	C_2				
6					C_9	C_8				
7						C_4				

Table 9.1. The intersection of lines on the quartic surface model Y of X_0

From the set $C_0(h_{ij})$, we see that $\text{Sing}(Y)$ consists of 6 ordinary nodes, and the group $\langle \rho_0 \rangle$ decomposes $\text{Sing}(Y)$ into two orbits $[p_0, p_1, p_2, p_3]$ and $[q_0, q_1]$. From the set $C_1(h_{ij})$, we see that Y contains exactly 36 lines, and they are decomposed into 9 orbits of length 4 by $\langle \rho_0 \rangle$. We can choose the element $\ell_i \in l_i$ in such a way that

$$\text{Sing}(Y) \cap \ell_i = \begin{cases} \emptyset & \text{if } i = 0, 1, \\ \{q_0\} & \text{if } i = 2, 3, \\ \{p_0\} & \text{if } i = 4, 5, 6, 7, \\ \{p_0, q_1\} & \text{if } i = 8. \end{cases}$$

The intersection pattern of lines in the orbits l_i and l_j is given by the cyclic matrix

$$M_{ij} = \text{cyc}(\ell_i, \ell_j, \ell_j', \ell_i', \ell_i''),$$

where $\ell \subset X_0$ is the strict transform of a line $\ell \subset Y$. We have

$$M_{ii} = \begin{cases} \text{cyc}(-2, 0, 1, 0) & \text{if } i = 0, 1, 4, 5, 6, 7, \\ \text{cyc}(-2, 1, 0, 1) & \text{if } i = 2, \\ \text{cyc}(-2, 0, 0, 0) & \text{if } i = 3, 8. \end{cases}$$

We put

$$C_1 := \text{cyc}(0, 0, 1, 0), \quad C_2 := \text{cyc}(0, 0, 0, 1), \quad C_3 := \text{cyc}(1, 0, 0, 0),$$

$$C_4 := \text{cyc}(0, 0, 0, 0), \quad C_5 := \text{cyc}(1, 0, 0, 1), \quad C_6 := \text{cyc}(0, 1, 1, 0),$$

$$C_7 := \text{cyc}(1, 1, 0, 0), \quad C_8 := \text{cyc}(0, 1, 0, 0), \quad C_9 := \text{cyc}(0, 0, 1, 1).$$

Then the matrices M_{ij} for $i \neq j$ are given in Table 9.1.

9.2. The double-plane involutions $\tau(h_0^{[i]})$. The three double-plane involutions $\tau(h_0^{[1]})$, $\tau(h_0^{[2]})$, $\tau(h_0^{[3]})$ of X_0 are conjugate in $\text{Aut}(X_0, a_0)$. Hence there exist a sextic double plane $Y \to \mathbb{P}^2$ and three isomorphisms $\alpha^{[i]}: X_0 \sim \tilde{Y}$ for $i = 1, 2, 3$ such that $\tau(h_0^{[i]}) = (\alpha^{[i]})^{-1} \circ \tau_Y \circ \alpha^{[i]}$ holds for $i = 1, 2, 3$, where \tilde{Y} is the minimal resolution of singularities of Y and τ_Y is the involution of \tilde{Y} induced by $\text{Gal}(Y/\mathbb{P}^2)$. By a direct calculation, we see that the line configuration of $(X_0, h_0^{[i]})$ is full, and hence, up to finite possibilities, the projective equivalence class of the sextic double plane $Y \to \mathbb{P}^2$
is determined by the line configuration of \((X_0, h_0^{[i]})\). Let \(B \subset \mathbb{P}^2\) denote the branch curve of \(Y \to \mathbb{P}^2\). From \(C_0(h_0^{[i]})\), we see that \(\text{Sing}(B)\) consists of two ordinary cusps \(q_0, q_1\) and seven ordinary nodes \(n_0, \ldots, n_6\). The set \(C_1(h_0^{[i]})\) consists of 38 elements, and the action of \(\langle \tau(h_0^{[i]}) \rangle\) decomposes \(C_1(h_0^{[i]})\) into the union of 19 orbits of length 2. Hence \(B\) does not contain a line as an irreducible component. Therefore \(B\) is irreducible, and \(B\) has 19 splitting lines. From the intersection pairing between \(C_0(h_0^{[i]})\) and \(C_1(h_0^{[i]})\), we see that, under suitable numbering of ordinary nodes \(n_0, \ldots, n_6\), these splitting lines are

\[
\ell_{00}, \ldots, \ell_{06}, \ell_{10}, \ldots, \ell_{16}, m_{012}, m_{034}, m_{056}, m_{135}, m_{246},
\]

where \(\text{Sing}(B) \cap \ell_{ij} = \{q_i, n_j\}\) and \(\text{Sing}(B) \cap m_{ijk} = \{n_i, n_j, n_k\}\).

9.3. The double-plane involution \(\tau(h_0^{(1)})\). Next we examine the double-plane involution \(\tau(h_0^{(1)})\) of \(X_0\) that maps the induced chamber \(D^{(0)}\) to the induced chamber \(D^{(1)}\) adjacent to \(D^{(0)}\) across the wall \((v_1)\), where

\[
2v_1 = (64, 32, -6, -9, -72, -48, -96, -142, -116, -88, -60, -30, -70, -48, -94, -140, -114, -86, -58, -30).
\]

As in the previous subsection, we denote by \(B\) the branch curve of the sextic double plane \(Y \to \mathbb{P}^2\) associated with the polarization \(h_0^{(1)}\) of \(X_0\) given in Table 3. By a direct calculation, we see that the line configuration of \((X_0, h_0^{(1)})\) is full, and hence, up to finite possibilities, the projective equivalence class of \(Y \to \mathbb{P}^2\) is determined by the line configuration on \((X_0, h_0^{(1)})\). From \(C_0(h_0^{(1)})\), we see that \(\text{Sing}(B)\) consists of one ordinary cusp \(q_0\) and eight ordinary nodes \(n_0, \ldots, n_7\). The set \(C_1(h_0^{(1)})\) consists of 48 elements, and the action of \(\langle \tau(h_0^{(1)}) \rangle\) decomposes \(C_1(h_0^{(1)})\) into the union of 24 orbits of length 2. Hence \(B\) does not have a line as an irreducible component, and \(B\) has 24 splitting lines. We put

\[
T := \{\{0, 1, 5\}, \{0, 2, 6\}, \{0, 3, 4\}, \{1, 2, 4\}, \{1, 3, 7\}, \{2, 5, 7\}, \{3, 5, 6\}, \{4, 6, 7\}\}.
\]

Under suitable numbering of the ordinary nodes \(n_0, \ldots, n_7\), the splitting lines are

\[
\ell_{0i} (i = 0, \ldots, 7), \quad \ell_i (i = 0, \ldots, 7), \quad m_{ijk} (\{i, j, k\} \in T),
\]

where

\[
\text{Sing}(B) \cap \ell_{0i} = \{q_0, n_i\}, \quad \text{Sing}(B) \cap \ell_i = \{n_i\}, \quad \text{Sing}(B) \cap m_{ijk} = \{n_i, n_j, n_k\}.
\]

Since a triplet of ordinary nodes of \(B\) is collinear, we conclude that \(B\) is irreducible. Note that, if three ordinary nodes \(n_i, n_j, n_k\) are on a line \(\ell \subset \mathbb{P}^2\), then \(\ell\) is splitting for \(B\), and hence \(\{i, j, k\} \in T\). Therefore no three of \(n_0, n_1, n_2, n_3\) are collinear. Choosing homogeneous coordinates of \(\mathbb{P}^2\) in such a way that

\[
n_0 = [1 : 0 : 0], \quad n_1 = [0 : 1 : 0], \quad n_2 = [0 : 0 : 1], \quad n_3 = [1 : 1 : 1],
\]

we see that

\[
n_4 = [0 : 1 : 1], \quad n_5 = [1 : \eta : 0], \quad n_6 = [1, 0, \tilde{\eta}], \quad n_7 = [1 : \eta : 1],
\]

where \(\eta\) is a root of \(z^2 - z + 1 = 0\).
9.4. **The symplectic involution** $\sigma^{(4)}_1$. We examine the symplectic involution $\sigma^{(4)}_1$ on X_1 that maps the induced chamber $D^{(0)}$ to the induced chamber $D^{(4)}$ adjacent to $D^{(0)}$ across the wall $(v_4)^\perp$, where

$$2v_4 = (44, 22, -10, -3, -52, -36, -70, -104, -84, -64, -44, -22, -46, -32, -62, -92, -76, -58, -40, -20).$$

Consider the vector

$$h_\sigma := (60, 30, -14, -4, -69, -47, -92, -137, -111, -85, -58, -29, -65, -45, -87, -129, -106, -81, -55, -28)$$

of S_1 with $(h_\sigma, h_\sigma) = 2$. By Corollary 3.10 we see that h_σ is nef, and by Corollary 7.21 we see that h_σ is a polarization of degree 2. The polarization h_σ is invariant under $\sigma^{(4)}_1$, and hence $\tau(h_\sigma)$ and $\sigma^{(4)}_1$ commute. The symplectic involution $\sigma^{(4)}_1$ induces a commutative diagram

$$\begin{array}{ccc}
Y & \longrightarrow & Y \\
\downarrow & & \downarrow \\
\mathbb{P}^2 & \overset{\sigma}{\longrightarrow} & \mathbb{P}^2
\end{array}$$

on the sextic double plane $Y \rightarrow \mathbb{P}^2$ associated with h_σ. Let B be the branch curve of $Y \rightarrow \mathbb{P}^2$, which is invariant under the action of $\tilde{\sigma}$ on \mathbb{P}^2. By a direct calculation, we see that the line configuration of (X_1, h_σ) is full, and hence the projective equivalence class of the double plane Y is determined by the line configuration of (X_1, h_σ) up to finite possibilities. From $C_0(h_\sigma)$, we see that Sing(B) consists of seven ordinary cusps $q_0, q_1, q'_1, q_2, q'_2, q_3, q'_3$. In particular, B is irreducible. The involution $\tilde{\sigma}$ of \mathbb{P}^2 fixes q_0 and interchanges q_i and q'_i for $i = 1, 2, 3$. From $C_1(h_\sigma)$, we see that B has 10 splitting lines ℓ_0, \ldots, ℓ_9. Under suitable numbering, we have

$$\ell_0 \cap \text{Sing}(B) = \{q_0, q_1, q'_1\}, \quad \ell_1 \cap \text{Sing}(B) = \{q_0, q_2, q_3\},$$

$$\ell_2 \cap \text{Sing}(B) = \{q_0, q'_2, q'_3\}, \quad \ell_3 \cap \text{Sing}(B) = \{q_1, q_2, q'_3\},$$

$$\ell_4 \cap \text{Sing}(B) = \{q_1, q'_2\}, \quad \ell_5 \cap \text{Sing}(B) = \{q'_1, q_2\},$$

$$\ell_6 \cap \text{Sing}(B) = \{q'_1, q'_2, q_3\}, \quad \ell_7 \cap \text{Sing}(B) = \{q_3, q'_3\},$$

$$\ell_8 \cap \text{Sing}(B) = \emptyset, \quad \ell_9 \cap \text{Sing}(B) = \emptyset.$$

The involution $\tilde{\sigma}$ fixes ℓ_0 and ℓ_7, and interchanges two lines in the pairs $\{\ell_1, \ell_2\}$, $\{\ell_3, \ell_6\}$, $\{\ell_4, \ell_5\}$ and $\{\ell_8, \ell_9\}$.

9.5. **The double-plane involutions** $\tau(\tilde{h}^{(11)}_1)$, $\tau(\tilde{h}^{(12)}_1)$, $\tau(\tilde{h}^{(6)}_2)$, $\tau(\tilde{h}^{(7)}_2)$. These four double-plane involutions have the following common feature. We say that a projective plane curve B of degree 6 is of type LQ if the following hold:

(i) B is the union of a line L and an irreducible quintic curve Q,

(ii) L and Q intersect at a point P_0 with intersection multiplicity 5,

(iii) Q is smooth at P_0,

(iv) the singular locus Sing(Q) of Q consists of a point P_1 of type A_9, and

(v) the line ℓ passing through P_0 and P_1 intersects Q at P_1 with intersection multiplicity 4.

If B is of type LQ, then the ADE-type of Sing(B) is $2A_9$, and the line ℓ in the condition (v) is splitting for B.

Let h be $\tilde{h}^{(11)}_1$, $\tilde{h}^{(12)}_1$, $\tilde{h}^{(6)}_2$, or $\tilde{h}^{(7)}_2$. We put $k = 1$ if h is $\tilde{h}^{(11)}_1$ or $\tilde{h}^{(12)}_1$, and $k = 2$ if h is $\tilde{h}^{(6)}_2$ or $\tilde{h}^{(7)}_2$, so that $h \in S_k$ and $\tau(h) \in \text{Aut}(X_k)$. The dual graph of the set $C_0(h)$ is a root system of type $2A_9$. The set $C_1(h)$ consists of 3 elements, and $\langle \tau(h) \rangle$ decomposes it into the union of two orbits of length
1 and 2. The union of \(C_0(h) \) and \(C_1(h) \) generates a sublattice of rank 19 in \(S_k \). Hence, unfortunately, the line configuration of \((X_k, h)\) is not full. The branch curve of \((X_k, h)\) is of type \(LQ \).

We consider two vectors
\[
 h' := (172, 83, -34, -15, -191, -131, -257, -382, -310, -238, -161, -83, \\
 -189, -124, -248, -372, -301, -230, -154, -77), \\
 h'' := (183, 88, -36, -16, -200, -138, -269, -400, -325, -250, -169, -88, \\
 -204, -134, -268, -401, -325, -249, -166, -83)
\]
in \(S_2 \) of square-norm 2. By Corollaries 3.3 and 7.4 we see that they are polarizations of degree 2. We have \(\tau(h') = \tau(h'') = \tau(h_2^{(7)}) \). Unfortunately again, the line configurations of \((X_2, h')\) and \((X_2, h'')\) are not full. The \(ADE \)-type of the singularities of the branch curve of \((X_2, h')\) is \(E_6 + A_{11} \), whereas that of \((X_2, h'')\) is \(A_{15} + A_3 \).

10. THE AUTOMORPHISM GROUP OF THE ENRIQUES SURFACE \(Z_0 \)

In this section, we compute the automorphism group \(\text{Aut}(Z_0) \) of the Enriques surface \(Z_0 := X_0/(\pi_0^{(0)}) \), and prove Proposition 10.8 and Theorem 10.9.

We put
\[
 S_0^+ := \{ v \in S_0 \mid v^{\pi_0^{(0)}} = v \}, \quad S_0^- := \{ v \in S_0 \mid v^{\pi_0^{(0)}} = -v \}.
\]

They are orthogonal complement to each other in \(S_0 \). Let \(\pi: X_0 \to Z_0 \) be the universal covering of \(Z_0 \) by \(X_0 \). Then the pull-back by \(\pi \) identifies the primitive sublattice \(S_0^+ \) of \(S_0 \) with the lattice \(S_Z(2) \). From the matrix representation (Table 8.1) of \(\pi_0^{(0)} \), we see that \(S_0^+ \) is generated by the vectors \(f_1, \ldots, f_{10} \) given in Table 10.1. From now on, we consider \(f_1, \ldots, f_{10} \) as a basis of \(S_Z \) by \(\pi^* \). The Gram matrix
\[
 ((f_i, f_j)_Z) = ((f_i, f_j)_S/2)
\]
of \(S_Z \) with respect to this basis is given in Table 10.2.

Note that we have
\[
 \text{Cen}(\pi_0^{(0)}) = \{ g \in \text{Aut}(X_0) \mid (S_0^+)^g = S_0^+ \}.
\]

Hence we have a natural action
\[
 \psi: \text{Cen}(\pi_0^{(0)}) \to \text{O}(S_0^+)
\]
of \(\text{Cen}(\pi_0^{(0)}) \) on \(S_0^+ \). With the identifications \(\text{O}(S_0^+) \cong \text{O}(S_Z) \) by \(\pi^* \) and \(\text{Cen}(\pi_0^{(0)})/\langle \pi_0^{(0)} \rangle \cong \text{Aut}(Z_0) \) by \(\zeta \), we see that Proposition 10.8 follows from
\[
 \text{(10.1)} \quad \text{Ker} \psi = \langle \pi_0^{(0)} \rangle.
\]

Suppose that \(g \in \text{Ker} \psi \) so that \(g \) acts on \(S_0^+ \) trivially. Since \(\pi_0^{(0)} \in \text{Aut}(X_0, a_0) \), we have \(a_0 \in S_0^+ \) and hence \(a_0^g = a_0 \). Consequently, we have \(\text{Ker} \psi \subset \text{Aut}(X_0, a_0) \). Calculating \(\psi(g) \) for the 1440 elements of \(\text{Aut}(X_0, a_0) \) by means of their matrix representations, we prove (10.1) and hence Proposition 10.8.

By Remark 8.1, in order to prove the first assertion of Theorem 10.9, it is enough to show that \(\zeta(\text{Aut}(X_0, a_0)) = \text{Aut}(X_0, a_0)/\langle \pi_0^{(0)} \rangle \) is a non-splitting extension of \(\mathbb{Z}/2\mathbb{Z} \) by \(\mathfrak{A}_6 \) and to calculate the conjugacy classes of this group. Since the symplectic subgroup of \(\text{Aut}(X_0, a_0) \) is isomorphic to \(\mathfrak{A}_6 \), we see that \(\zeta(\text{Aut}(X_0, a_0)) \) contains a normal subgroup isomorphic to \(\mathfrak{A}_6 \) as a subgroup of index 2. By direct calculations, we confirm that every element of order 2 of \(\zeta(\text{Aut}(X_0, a_0)) \) belongs to this
that every element of the set Invols(3) ε representative (Table 8.1) of the normal subgroup. Hence the extension is non-splitting. The conjugacy classes of

\[f_1 := (1, 0, 2, -1, 0, 0, 0, -4, 0, 0, -4, -1, -2, -8, -6, -3, -4, -5) \]
\[f_2 := (0, 1, 1, 0, 0, 0, 0, -3, 0, 0, -3, -1, -2, -6, -5, -3, -3, -3) \]
\[f_3 := (0, 0, 3, -1, 0, 0, 0, -6, 0, 0, -4, 0, 0, -8, -6, -2, -4, -6) \]
\[f_4 := (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) \]
\[f_5 := (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) \]
\[f_6 := (0, 0, 0, 0, 0, 0, 0, -1, -1, 0, -1, 0, 0, 0) \]
\[f_7 := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) \]
\[f_8 := (0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0, 1) \]
\[f_9 := (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0) \]
\[f_{10} := (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 0, 0, 0, 0) \]

Table 10.1. A basis of \(S_Z \)

\[
\begin{bmatrix}
-54 & -30 & -78 & 0 & 0 & 6 & -5 & 1 & 0 & -2 \\
-30 & -20 & -45 & 0 & 0 & 4 & -3 & 0 & 0 & -1 \\
-78 & -45 & -114 & 0 & 0 & 9 & -7 & 1 & 0 & -3 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 \\
6 & 4 & 9 & 0 & 1 & -4 & 1 & 2 & 0 & 1 \\
-5 & -3 & -7 & 1 & 0 & 1 & -2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 2 & 1 & -4 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 2 \\
-2 & -1 & -3 & 0 & 0 & 1 & 0 & -1 & 1 & -2
\end{bmatrix}
\]

Table 10.2. The Gram matrix of \(S_Z \)

The second assertion of Theorem 1.9 is confirmed by a direct calculation from the matrix representation (Table 5.1) of \(\varepsilon_0^{(0)} \) and the matrix representation (Table 10.8) of \(\tau(h_0^{(3)}) \). In fact, we see that every element of the set Invols_0^{(3)} commutes with \(\varepsilon_0^{(0)} \).
In order to prove the third assertion of Theorem 1.9, we consider the positive cone
\[\mathcal{P}(Z_0) := (S_Z \otimes \mathbb{R}) \cap \mathcal{P}(X_0) \]
of \(S_Z\) that contains an ample class. (Recall that we consider \(S_Z\) as a \(Z\)-submodule of \(S_0\) by \(\pi^*\).) We put
\[D^{(0)}_Z := \mathcal{P}(Z_0) \cap D^{(0)}, \]
where \(D^{(0)}\) is the induced chamber in \(N(X_0)\) given in Theorem 1.4. Let
\[\text{pr}_Z : S_0 \otimes \mathbb{R} \to S_Z \otimes \mathbb{R} \]
be the orthogonal projection. Then we have
\[D^{(0)}_Z = \{ x \in \mathcal{P}(Z_0) \mid \langle u, x \rangle_Z \geq 0 \text{ for any } u \in \text{pr}_Z(\Delta(D^{(0)})) \} \]
Since the interior point \(a_0\) of \(D^{(0)}\) belongs to \(S_Z\), the closed subset \(D^{(0)}_Z\) of \(\mathcal{P}(Z_0)\) also contains \(a_0\) in its interior, and hence \(D^{(0)}_Z\) is a chamber of \(\mathcal{P}(Z_0)\). Moreover the finite group \(\zeta(\text{Aut}(X_0, a_0))\) acts on \(D^{(0)}_Z\). For \(v \in \Delta(D^{(0)})\), the hyperplane
\[(\text{pr}_Z(v))^\perp = (v)^\perp \cap \mathcal{P}(Z_0) \]
of \(\mathcal{P}(Z_0)\) is a wall of \(D^{(0)}_Z\) if and only if the solution of the linear programing to minimize \(\langle \text{pr}_Z(v), x \rangle_Z\) under the condition
\[\langle u', x \rangle_Z \geq 0 \text{ for all } u' \in \text{pr}_Z(\Delta(D^{(0)})) \]
is unbounded to \(-\infty\), where the variable \(x\) ranges through \(S_Z \otimes \mathbb{Q}\). (See Section 3 of [31].) By this method, we see that the set of primitive outward defining vectors of walls of \(D^{(0)}_Z\) consists of 40 vectors, and they are decomposed into the two orbits \(\tilde{o}_0\) and \(\tilde{o}_3\) of cardinalities 30 and 10 under the action of \(\zeta(\text{Aut}(X_0, a_0))\), where
\[\tilde{o}_0 = \{ 2 \text{pr}_Z(r) \mid r \in a_0 \}, \quad \tilde{o}_3 = \{ 2 \text{pr}_Z(v) \mid v \in a_3 \}. \]
\[\begin{bmatrix} 76 & 40 & -67 & -85 & -56 & -116 & -170 & -108 & -71 & -34 \\ 43 & 23 & -38 & -49 & -32 & -67 & -97 & -62 & -41 & -20 \\ 110 & 58 & -97 & -124 & -82 & -170 & -248 & -158 & -104 & -50 \\ 21 & 10 & -18 & -22 & -15 & -30 & -24 & -44 & -27 & -18 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 12 & 5 & -10 & -11 & -8 & -15 & -22 & -14 & -10 & -5 \\ -12 & -5 & 10 & 13 & 9 & 18 & 26 & 16 & 11 & 6 \\ -30 & -15 & 26 & 31 & 22 & 42 & 62 & 39 & 26 & 13 \\ 30 & 15 & -26 & -33 & -23 & -45 & -66 & -41 & -28 & -15 \\ 0 & 0 & 0 & -2 & -1 & -1 & -3 & -2 & -1 & 0 \end{bmatrix} \]

\[\begin{bmatrix} 74 & 37 & -64 & -91 & -58 & -121 & -176 & -112 & -74 & -36 \\ 43 & 21 & -37 & -54 & -35 & -73 & -105 & -67 & -45 & -23 \\ 96 & 48 & -83 & -120 & -76 & -160 & -232 & -148 & -98 & -48 \\ 22 & 11 & -19 & -26 & -17 & -34 & -51 & -31 & -21 & -11 \\ 14 & 7 & -12 & -17 & -12 & -23 & -34 & -21 & -14 & -7 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -14 & -7 & 12 & 17 & 11 & 21 & 32 & 20 & 13 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -9 & -5 & 8 & 11 & 8 & 15 & 22 & 14 & 9 & 5 \end{bmatrix} \]

\[\begin{bmatrix} 109 & 54 & -94 & -130 & -91 & -178 & -258 & -165 & -112 & -59 \\ 79 & 39 & -68 & -93 & -64 & -125 & -183 & -116 & -79 & -42 \\ 166 & 82 & -143 & -198 & -138 & -270 & -392 & -250 & -170 & -90 \\ 34 & 16 & -29 & -37 & -26 & -50 & -74 & -46 & -31 & -16 \\ 43 & 21 & -37 & -49 & -33 & -65 & -96 & -60 & -40 & -20 \\ 13 & -6 & 11 & 17 & 11 & 21 & 33 & 21 & 17 & 7 \\ -21 & -10 & 18 & 23 & 16 & 31 & 46 & 28 & 19 & 10 \\ 0 & 0 & 0 & -2 & -1 & -2 & -4 & -2 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & -1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 & 0 \end{bmatrix} \]

\[\begin{bmatrix} 142 & 69 & -122 & -163 & -106 & -215 & -320 & -201 & -138 & -69 \\ 94 & 46 & -81 & -106 & -70 & -141 & -209 & -132 & -90 & -45 \\ 206 & 100 & -177 & -236 & -154 & -312 & -464 & -292 & -200 & -100 \\ 30 & 15 & -26 & -35 & -24 & -48 & -70 & -44 & -30 & -15 \\ 35 & 17 & -30 & -39 & -27 & -53 & -78 & -49 & -34 & -17 \\ -21 & -10 & 18 & 22 & 15 & 30 & 45 & 28 & 20 & 10 \\ -21 & -10 & 18 & 24 & 17 & 33 & 48 & 30 & 20 & 10 \\ -2 & -2 & 2 & 5 & 3 & 6 & 9 & 6 & 4 & 2 \\ 44 & 22 & -38 & -51 & -35 & -68 & -101 & -63 & -43 & -22 \\ -22 & -11 & 19 & 26 & 18 & 35 & 51 & 32 & 22 & 12 \end{bmatrix} \]

\[\begin{bmatrix} 581 & 290 & -502 & -666 & -446 & -888 & -1310 & -822 & -554 & -286 \\ 315 & 157 & -272 & -360 & -241 & -479 & -707 & -443 & -299 & -155 \\ 830 & 414 & -717 & -950 & -636 & -1266 & -1868 & -1172 & -790 & -408 \\ 138 & 68 & -119 & -157 & -106 & -210 & -310 & -194 & -131 & -68 \\ 43 & 21 & -37 & -49 & -33 & -65 & -96 & -60 & -40 & -20 \\ -73 & -36 & 63 & 82 & 55 & 110 & 161 & 101 & 68 & 35 \\ -73 & -36 & 63 & 82 & 55 & 109 & 162 & 101 & 68 & 35 \\ 60 & 30 & -52 & -66 & -44 & -88 & -130 & -81 & -55 & -28 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 43 & 21 & -37 & -49 & -32 & -65 & -96 & -60 & -41 & -21 \end{bmatrix} \]

Table 10.4. Generators of Aut(Z₀)

Here we use the dual basis of \(S_Z \) not with respect to \(\langle \; , \; \rangle_{S_Z} \) but with respect to \(\langle \; , \; \rangle_Z \). (Recall that we have \(|a₀| = 60 \) and \(|a₁| = 10 \)) The involution \(\zeta(τ(h₀^{[3]})) \) maps \(D_Z^{(0)} \) to a chamber of \(P(Z₀) \) adjacent to \(D_Z^{(0)} \) across the wall defined by a vector

\[\langle 52, 26, -45, -60, -40, -80, -118, -74, -50, -26 \rangle \]
Table 10.5. The orbit \tilde{o}_0

\begin{align*}
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0); \\
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0); \\
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0); \\
(10, 6, -9, -12, -8, -16, -24, -15, -10, -5); \\
(13, 6, -11, -16, -11, -22, -32, -20, -14, -8); \\
(13, 6, -11, -12, -8, -16, -24, -15, -10, -5); \\
(14, 7, -12, -17, -12, -23, -34, -21, -14, -7); \\
(14, 7, -12, -17, -11, -22, -33, -21, -14, -7); \\
(14, 7, -12, -15, -10, -20, -30, -18, -13, -7); \\
(14, 7, -12, -15, -10, -19, -30, -18, -12, -6); \\
(21, 10, -18, -24, -16, -32, -48, -30, -20, -10); \\
(21, 10, -18, -22, -15, -30, -44, -27, -18, -9); \\
(22, 11, -19, -26, -17, -34, -51, -31, -21, -11); \\
(22, 11, -19, -25, -17, -34, -49, -31, -21, -11); \\
(22, 11, -19, -24, -16, -32, -48, -30, -21, -11); \\
(22, 11, -19, -24, -16, -32, -48, -30, -20, -9); \\
(26, 12, -22, -29, -19, -38, -57, -35, -24, -12); \\
(30, 15, -26, -35, -24, -48, -70, -44, -30, -15); \\
(30, 15, -26, -33, -23, -45, -66, -42, -28, -14); \\
(30, 15, -26, -33, -23, -45, -66, -41, -28, -15); \\
(30, 15, -26, -32, -21, -42, -63, -39, -26, -13); \\
(34, 16, -29, -37, -26, -50, -74, -46, -31, -16); \\
(35, 17, -30, -39, -27, -53, -78, -49, -34, -17); \\
(35, 17, -30, -39, -26, -51, -76, -47, -32, -17); \\
(42, 20, -36, -46, -31, -62, -91, -57, -39, -20); \\
(43, 21, -37, -49, -33, -65, -96, -60, -40, -20); \\
(43, 21, -37, -47, -32, -63, -94, -58, -40, -20); \\
(44, 22, -38, -51, -35, -68, -101, -63, -43, -22); \\
(44, 22, -38, -50, -33, -66, -98, -61, -42, -21); \\
(44, 22, -38, -48, -33, -64, -95, -59, -40, -20); \\
\end{align*}

Table 10.6. The orbit \tilde{o}_3

\begin{align*}
(34, 16, -29, -38, -26, -52, -76, -48, -32, -16); \\
(34, 16, -29, -36, -24, -48, -72, -44, -30, -16); \\
(36, 18, -31, -42, -28, -56, -84, -52, -36, -18); \\
(36, 18, -31, -40, -28, -54, -80, -50, -34, -18); \\
(36, 18, -31, -40, -26, -52, -78, -48, -32, -16); \\
(52, 26, -45, -60, -40, -80, -118, -74, -50, -26); \\
(52, 26, -45, -58, -40, -78, -116, -72, -48, -24); \\
(52, 26, -45, -56, -38, -76, -112, -70, -48, -24); \\
(78, 38, -67, -88, -60, -118, -174, -108, -74, -38); \\
(78, 38, -67, -86, -58, -114, -170, -106, -72, -36); \\
\end{align*}
in \tilde{o}_3 isomorphically. In particular, the cone $N(Z_0) := \mathcal{P}(Z_0) \cap N(X_0)$ in $\mathcal{P}(Z_0)$ is tessellated by chambers congruent to $D_Z^{(0)}$ under the action of $\text{Aut}(Z_0)$. Thus Theorem 1.9 is proved.

Remark 10.1. The matrix representations of the generators $\zeta(\rho(0)_0)$, $\zeta(\tau(h^{[1]}_0))$, $\zeta(\tau(h^{[2]}_0))$, $\zeta(\tau(h^{[3]}_0))$ of $\text{Aut}(Z_0)$ with respect to the basis f_1, \ldots, f_{10} of S_Z are given Table 10.4.

Remark 10.2. The interior point a_0 of $D_Z^{(0)}$ is written as

$$(122, 60, -105, -92, -182, -270, -168, -114, -58)$$

with respect to the basis f_1, \ldots, f_{10} of S_Z. The elements of the orbits \tilde{o}_0 and \tilde{o}_3 are given in Tables 10.5 and 10.6. By these data and the Gram matrix (Table 10.2) of S_Z, we can completely determine the shape of the chamber $D_Z^{(0)}$.

References

[1] Richard Borcherds. Automorphism groups of Lorentzian lattices. *J. Algebra*, 111(1):133–153, 1987.

[2] Richard E. Borcherds. Coxeter groups, Lorentzian lattices, and $K3$ surfaces. *Internat. Math. Res. Notices*, (19):1011–1031, 1998.

[3] J. H. Conway. The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. *J. Algebra*, 80(1):159–163, 1983.

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. *Atlas of finite groups*. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.

[5] J. H. Conway and N. J. A. Sloane. Lorentzian forms for the Leech lattice. *Bull. Amer. Math. Soc. (N.S.)*, 6(2):215–217, 1982.

[6] J. H. Conway and N. J. A. Sloane. *Sphere packings, lattices and groups*, volume 290 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, New York, third edition, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.

[7] I. Dolgachev and S. Kondō. A supersingular $K3$ surface in characteristic 2 and the Leech lattice. *Int. Math. Res. Not.*, (1):1–23, 2003.

[8] Igor Dolgachev and Jonghae Keum. Birational automorphisms of quartic Hessian surfaces. *Trans. Amer. Math. Soc.*, 354(8):3031–3057 (electronic), 2002.

[9] Wolfgang Ebeling. *Lattices and codes*. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, revised edition, 2002. A course partially based on lectures by F. Hirzebruch.

[10] Kenji Hashimoto. Finite symplectic actions on the $K3$ lattice. *Nagoya Math. J.*, 206:99–153, 2012.

[11] Toshiyuki Katsura, Shigeyuki Kondo, and Ichiro Shimada. On the supersingular $K3$ surface in characteristic 5 with Artin invariant 1. *Michigan Math. J.*, 63(4):803–844, 2014.

[12] Jong Hae Keum. Every algebraic Kummer surface is the $K3$-cover of an Enriques surface. *Nagoya Math. J.*, 118:99–110, 1990.

[13] Jonghae Keum and Shigeyuki Kondō. The automorphism groups of Kummer surfaces associated with the product of two elliptic curves. *Trans. Amer. Math. Soc.*, 353(4):1469–1487 (electronic), 2001.

[14] Jonghae Keum, Keiji Oguiso, and De-Qi Zhang. The alternating group of degree 6 in the geometry of the Leech lattice and $K3$ surfaces. *Proc. London Math. Soc. (3)*, 90(2):371–394, 2005.

[15] JongHae Keum, Keiji Oguiso, and De-Qi Zhang. Extensions of the alternating group of degree 6 in the geometry of $K3$ surfaces. *European J. Combin.*, 28(2):549–558, 2007.

[16] Shigeyuki Kondō. The automorphism group of a generic Jacobian Kummer surface. *J. Algebraic Geom.*, 7(3):589–609, 1998.

[17] Shigeyuki Kondō. Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of $K3$ surfaces. *Duke Math. J.*, 92(3):593–603, 1998. With an appendix by Shigeru Mukai.
[18] Shigeyuki Kondo and Ichiro Shimada. The automorphism group of a supersingular $K3$ surface with Artin invariant 1 in characteristic 3. *Int. Math. Res. Not. IMRN*, (7):1885–1924, 2014.

[19] Shigeru Mukai. Finite groups of automorphisms of $K3$ surfaces and the Mathieu group. *Invent. Math.*, 94(1):183–221, 1988.

[20] Shigeru Mukai and Hisanori Ohashi. Private communication. 2014.

[21] V. V. Nikulin. Integer symmetric bilinear forms and some of their geometric applications. *Izv. Akad. Nauk SSSR Ser. Mat.*, 43(1):111–177, 238, 1979. English translation: Math USSR-Izv. 14 (1979), no. 1, 103–167 (1980).

[22] V. V. Nikulin. Weil linear systems on singular $K3$ surfaces. In *Algebraic geometry and analytic geometry (Tokyo, 1990)*, ICM-90 Satell. Conf. Proc., pages 138–164. Springer, Tokyo, 1991.

[23] I. I. Piatetski-Shapiro and I. R. Shafarevich. Torelli’s theorem for algebraic surfaces of type $K3$. *Izv. Akad. Nauk SSSR Ser. Mat.*, 35:530–572, 1971. Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 516–557.

[24] B. Saint-Donat. Projective models of $K3$ surfaces. *Amer. J. Math.*, 96:602–639, 1974.

[25] Matthias Schütt. Fields of definition of singular $K3$ surfaces. *Trans. Amer. Math. Soc.*, 361(2):909–949, 2009.

[26] Tetsuji Shioda. On singular $K3$ surfaces. *Michigan Math. J.*, 47(3):423–446, 2000.

[27] Tetsuji Shioda. The two most algebraic $K3$ surfaces. *Math. Ann.*, 265(1):1–21, 1983.

[28] Tetsuji Shioda and H. Inose. On singular $K3$ surfaces. *Nagoya Math. J.*, 98:169–179, 1985.

[29] Tetsuji Shioda and H. Inose. On singular $K3$ surfaces. *J. Algebra*, 403:273–299, 2014.

[30] Tetsuji Shioda and H. Inose. On singular $K3$ surfaces. *Ann. Inst. Fourier (Grenoble)*, 46(1):73–88, 1996.

[31] Tetsuji Shioda. The Mordell-Weil lattices. *Comment. Math. Univ. St. Pauli*, 39(2):211–240, 1990.

[32] Tetsuji Shioda. Finiteness results for algebraic $K3$ surfaces. *Math. Z.*, 189(4):507–513, 1985.

[33] Tetsuji Shioda. The automorphism group of the singular $K3$ surface of discriminant 7. *Comment. Math. Univ. St. Pauli*, 62(1):11–29, 2013.

[34] Gang Xiao. Galois covers between $K3$ surfaces. *Ann. Inst. Fourier (Grenoble)*, 46(1):73–88, 1996.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp