The molecular configuration of a DOPA/ST monolayer at the air–water interface : a molecular dynamics study

Citation for published version (APA):
Kong, C., Peters, E. A. J. F., Zheng, Q-C., With, de, G., & Zhang, H-X. (2014). The molecular configuration of a DOPA/ST monolayer at the air–water interface : a molecular dynamics study. Physical Chemistry Chemical Physics, 16(20), 9634-9642. https://doi.org/10.1039/C4CP00555D

DOI:
10.1039/C4CP00555D

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Nov. 2023
The molecular configuration of a DOPA/ST monolayer at the air–water interface: a molecular dynamics study†

Chui-Peng Kong,§ E. A. J. F. Peters,§ Qing-Chuan Zheng,∥ G. de With∥ and Hong-Xing Zhang∥§

In this study, surface pressure–area isotherms for N-stearoyldopamine (DOPA) and 4-stearylcatechol (ST) monolayers are obtained by means of molecular dynamics simulations and compared to experimental isotherms. The difference between DOPA and ST is an amide group, which is present in the alkyl tails of DOPA molecules. We find a large difference between the isotherms for DOPA and ST monolayers. Upon using TIP4P/2005 for water and OPLS force fields for the organic material and a relatively large system size, the simulated results are found to be consistent with experiments. With molecular dynamics simulations, the configurations of molecules in the monolayers can be directly analyzed. When the surface pressure is high, a regular molecular orientation is observed for ST molecules, whereas regular orientations are only observed in local domains for DOPA molecules. The differences between DOPA and ST monolayers are attributed to the amide groups in DOPA molecules, which are useful for both steric effects and the formation of hydrogen bonds in the DOPA monolayers. This study clearly demonstrates that hydrogen bonds, due to the presence of the amide group in DOPA, are the cause of the disorder in its Langmuir monolayers. Thus, the conclusion may be helpful in making ordered organic monolayers in the future.

Introduction

Langmuir–Blodgett films, which are obtained by transferring an air–water interface monolayer onto a solid substrate, are widely used because of their capability of building highly ordered structures on substrate surfaces. 1–4 The molecular structure of the monolayer is of critical importance and is mainly controlled by compressing the monolayer at the interface of air and water. 5–8 For example, the Langmuir–Blodgett films of triphenylene-based pyridinium and imidazolium salts with bromine had been studied. 9

While the macroscopic results of the monolayers are usually revealed by experimental investigations, the formation of a monolayer at the air–water interface has been also extensively studied using simulation methods. 10–14 Kox et al. 15 carried out one of the first molecular dynamics (MD) simulations, by simulating a lipid monolayer based on a relatively simplified model. Since then a number of studies based on Lennard-Jones (LJ) and Coulomb interactions have been performed with the purpose of studying the details of the molecular structures on the surface of the water. 12–14,16 Most of these simulation studies are based on well-developed force fields or coarse grained methods combined with the NVT ensemble. 14,17–19

The target molecules in this study are derived from blue mussel's foot proteins. 20 A number of studies 21–23 have revealed that the unusually frequent appearance of 3,4-dihydroxy-L-phenylalanine in mussel’s protein is the main reason for its unmatched adhesive ability. 24–26 The adhesion is mainly due to the catechol and amide groups. Thus, by combining the amide and catechol groups with an aliphatic tail, a molecule with both hydrophilic and hydrophobic groups has been formed, namely N-stearoyldopamine (DOPA). The monolayer of DOPA can be potentially used as an adhesion promoter. To assess the role of the amide groups during the formation of a DOPA monolayer, a molecule with a similar structure except for the amide group, namely 4-stearylcatechol (ST), is also included for comparison. The properties of DOPA and ST on a gold surface has been studied both experimentally and theoretically in our previous studies. 27,28

§ State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China. E-mail: zhanghx@jlu.edu.cn
∥ Laboratory of Materials and Interface Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands. E-mail: G.d.With@tue.nl
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cp00555d

Received 7th February 2014, Accepted 26th March 2014
DOI: 10.1039/c4cp00555d

www.rsc.org/pccp
It has been known that the results of a molecular simulation containing water molecules can be influenced by the choice of the water model. Thus, to assess the influence of water models, DOPA/ST monolayers on a water surface are simulated with two kinds of water models (TIP4P/2005 and SPC). The influence of different boundary sizes on the simulation results has also been considered. To construct surface pressure–area (π–A) isotherms, MD simulations were performed by controlling the surface tension of the whole system and the tail correction item is added. The π–A isotherms obtained using our simulation scheme are consistent with experimental results. The different configurations for DOPA and ST monolayers are displayed. The configurations of the hydrophilic and hydrophobic groups have been analyzed, so as to exhibit the difference quantitatively. Finally, steric effect and hydrogen bonds have been employed to explain the different configurations between DOPA and ST monolayers.

Simulation details

All simulations were carried out using GROMACS 4.5.5 and Visual Molecular Dynamics (VMD) was used for visualization. The Particle Mesh Ewald (PME) method was employed to accurately compute electrostatic interactions. The cutoff for the Coulomb interaction and L-J interaction was set at 10 Å. The simulation temperature was kept at 300 K with V-rescale coupling. We performed simulations at constant surface tension to obtain equilibrium structures and used NVT for production runs.

A. Calculating surface tension

We employed the surface tension as defined in GROMACS:

\[\gamma = \frac{1}{2} \int_0^\infty \rho (s) ds \]

where \(s \) is the surface tension as defined in GROMACS. The cutoff \(r_c \) of the L-J interactions has a minor influence on the molecular arrangement, but significantly influences the computed value of the surface tension. The so-called tail corrections can be employed to improve the computed values. The dispersion correction to the surface tension for the L-J interactions is included following Chapela et al.

\[\gamma_{\text{tail}} = 12 \pi \sigma \rho (s) ds \]

where \(\sigma \) and \(\rho \) are L-J parameters of surface atoms from the applied force field. \(s \) is the cutoff radius. \(d \) can be evaluated by fitting density profile with the hyperbolic tangent function

\[\rho (Z) = \frac{1}{2} \left[\rho (s) + \rho (s) \right] - \frac{1}{2} \left[\rho (s) - \rho (s) \right] \tanh \left(\frac{Z - Z_0}{d} \right) \]

where \(Z \) is the distance along the z axis and \(Z_0 \) represents the position of liquid surface. It should also be noted that in a organic–water system, for the liquid surface is mainly occupied with alkyl tails, the LJ parameters are taken from alkyl carbons. On the other hand, we chose the water density to be the average liquid density \(\rho _l \). The fitting profile can be found in the ESI. Thus, the exact surface pressure can be calculated as

\[\Pi_{\text{surf}} = (\gamma_{\text{water}} + \gamma_{\text{tail}}) - (\gamma_{\text{set}} + \gamma_{\text{tail}}) \]

where \(\gamma_{\text{set}} \) is the surface tension had been set up in our simulation. \(\gamma_{\text{water}} \) refers to the surface tension of pure water. \(\gamma_{\text{tail}} \) refers to the tail correction item.

B. Simulation settings for the water interfaces

Clearly, to compute the surface pressure and have a direct comparison with experiments, we need the simulated pure water surface tension with the chosen force field, because it turns out that the surface tension of water is a quantity that is very sensitive to the details of the force field used. Moreover, the differences between the simulated surface tensions and the experimental values are significant. Thus, a simulation of a water slab containing 4320 water molecules in a periodic box (5.0 \(\times \) 5.0 \(\times \) 20.0 nm\(^3\)) had been carried out to determine the surface tension of the applied water models (Fig. S1, ESI). The system was equilibrated for 2 ns first. After that, another 2 ns NVT simulation run was used to calculate the surface tension. The calculation was repeated three times to obtain an average surface tension of 65.2 mN m\(^{-1}\) for TIP4P/2005 and 49.0 mN m\(^{-1}\) for SPC. Tail corrections have been applied for both TIP4P/2005 (4.3 mN m\(^{-1}\)) and SPC (5.2 mN m\(^{-1}\)) systems. These values are in good agreement with previous studies and are employed as the pure-water surface tension data in this study to compute the surface pressure.

C. Simulation settings for the water–organic interfaces

In the molecular dynamic simulations of DOPA (ST) molecules on water, the organic molecules are simulated using the OPLS all atom force field. For comparison, both the large size system (containing 480 DOPA/STs, with TIP4P/2005 for water) and the relatively small size system (120 DOPA/STs, with TIP4P/2005 and SPC for water) have been employed. In order to simulate a monolayer at a prescribed surface tension, the system is initiated with a large enough surface area (Fig. S3, ESI). An equal number of the organic (DOPA or ST) molecules are assigned to either of the two sides of the water slab to make two organic–water interfaces (Fig. 1A). To control the constant surface tension simulations, the Berendsen pressure coupling is used. For this coupling method to be effective, a value of the compressibility that is close to the real compressibility of the system, \(4.5 \times 10^{-5} \text{ bar}^{-1} \), is required. The next step is to gradually increase the surface pressure to generate the pressure–area isotherms. At each chosen surface pressure, the surface tension coupling molecular dynamics has been performed while monitoring the change of box size on x and y axes. Until the system size has reached its stable state for 2 ns, we consider the system to be in its equilibrium state (Fig. S3, ESI, lower figure). Then, another 2 ns NVT simulation with V-rescale coupling is performed to accumulate the data for the analysis.
The tail correction for these organic–water systems are considered by coupling the gas–liquid phase (see Fig. S2, ESI†). The surface tensions are then corrected according to eqn (2)–(4).

D. Structural aspects

In order to characterize the configurations of the molecules, several quantities (Fig. 1B) are evaluated.28,51 The position of the aromatic rings is described by the angle \(\theta \). To characterize the degree of orientation and stretching of the aliphatic tails, a vector \(R_e \) that contains the carbon atoms labelled from 1 to 18 as shown on the right-hand side of Fig. 1B, is used.52 The projections of \(R_e \) on \(xy \) plane are then employed to describe the orientations. The angle of orientation of the tails with respect to the surface normal is defined as \(\alpha_t \). The condition \(\alpha_t = 0 \) indicates a complete perpendicular to the surface. In order to evaluate the average orientation of the alkyl tails, the order parameter has been defined as15,53

\[
S_z = \frac{1}{2} \cos^2 \theta_z - \frac{1}{2}
\]

where \(\theta_z \) is the angle between the \(z \)-axis of the monolayer normal and the molecular axis under consideration. The brackets indicate an average taken over time and molecules. The order parameter calculation is following the definition in GROMACS, in which the direction at the carbon atom \(C_i \) is constructed from the vector pointing from atom \(C_{i-1} \) to atom \(C_{i+1} \). These vectors are counted from atom \(C_2 \) to atom \(C_{17} \).

Results and discussion

A. Pressure–area isotherms

The isotherms computed using both TIP4P/2005 and SPC water models as well as the isotherms with different system sizes are summarized in Fig. 2A. The surface tension of water using different water models have been discussed in a number of studies.30,32 In the present study, when comparing the two water models, only a minor shift of surface area per molecule (1 Å\(^2\) at maximum) between the two isotherms is observed (ST: SPC and ST: TIP4P/2005) for ST monolayers. For DOPA molecules, the influence of the water model on the isotherm is much more pronounced. When using the SPC model, the surface area per
molecule is smaller than the area obtained using the TIP4P/2005 model (with a difference of more than 5 Å²). The TIP4P/2005 isotherms are consistent with experiments (Fig. 2B). The different results of TIP4P/2005 and SPC are mainly attributed to the non-bonded parameters and Coulomb charges applied in the water model.30–32

For the TIP4P/2005 water model, both the small size system and the large size system have been computed. It is also worthwhile to compare the size effect in this simulation (Fig. 2A). Usually, the artificial boundary effect is decreased with a larger size system. Thus, to better understand molecular configurations for DOPA/ST monolayers, the following analysis is based on the simulation results of TIP4P/2005 large size systems. Although it seems that the system size does not change the DOPA/ST isotherms very much, the configuration of organic molecules in the monolayers are different (Fig. 3 and Fig. S4, ESI†). This issue is explicitly addressed in the later discussion.

While the π–A isotherms for both sizes (large and small) of the simulation systems are consistent with experiments, the shape of the isothermal curve of the large size DOPA system fits with experimental data, for the finite size effect is less.
Some of the very short vectors projected on top of the circles indicate perpendicular orientation to x-y plane, while some others seem to be pointing to certain directions. These results are different from the corresponding ST molecules (Fig. 3C), where there is a long ranged orientation order.

In previous studies, the necessity of using a larger cell for simulating linear molecular systems has been discussed. In a periodic system, a linear molecule is possibly interacting (non-bond interactions) with itself in the neighbouring cell, which leads to an unusual uniform structure. Thus, the chosen cell size should be large enough to avoid these interactions. In this study, it should be noticed that the vector projections also depend on the system size. The graphs for small size systems can be found in the ESI† (Fig. S4). Comparing these two cell sizes (Fig. 3 and Fig. S4, ESI†), the artificial boundary effect for the ST system is more obvious at a lower surface pressure (0.5 mN m\(^{-1}\)). For DOPA, this effect is clearly shown when the cell sizes are small (Fig. S4c and d, ESI†). This is because the small size cell vector (about 5.0–3.0 nm) is too small. Thus, a molecule may be both interacting with itself in the neighbouring cell, and influenced by a neighbouring molecule and its images in all the nearby cells. According to our simulation, a cell size at least larger than twice the linear molecular length is preferred while simulating water-organic monolayer system composed with linear molecules.

The tilt angle distribution of alkyl tails (\(\alpha_t\)) is displayed in Fig. 4. For ST (Fig. 4A), most of the \(\alpha_t\) locate in the range of 20°–40° except for 0.5 mN m\(^{-1}\). This indicates that the orientation of alkyl tails becomes gradually more vertical with increasing surface pressure (According to Fig. 1, a relatively small tilt angle demonstrates a more perpendicular alkyl tails.). For DOPA (Fig. 4B), the trend is identical. The most favourite range for \(\alpha_t\) gradually moved from 50–60 to 30–40 with the surface pressure increasing from 1.6 mN m\(^{-1}\) to 46.6 mN m\(^{-1}\). However, at a surface pressure of 61.0 mN m\(^{-1}\), the \(\alpha_t\) are relatively equally distributed from 0° to 50° while the two most favourite ranges are 10°–20° and 30°–40° correspondingly. This difference is because of the relatively large surface area per DOPA molecule and in accordance with Fig. 3F.

C. Configurations for DOPA/ST molecules in monolayers

The distribution and configuration of catechol groups are displayed in Fig. 5. At the beginning of the compression (Fig. 5A and C), both ST and DOPA molecules are not well distributed on the water surface. At a higher surface pressure (61.0 mN m\(^{-1}\) for DOPA and 60.5 mN m\(^{-1}\) for ST), the distributions of catechol groups become more uniform. For both surface pressures, there are always more uniformly distributed catechol groups observed for ST than for DOPA on the water surface. This is not only because of the larger surface area per molecule for DOPA than that of ST but also due to the extra amide groups in DOPA.

The average values of \(\theta\), \(\alpha_t\), and \(|R_e|\) (see definition in Fig. 1) corresponding to different surface pressures are listed in Table 1. For catechol groups, all \(\theta\) values increase with the increase of surface pressures, and catechols groups in DOPA are more perpendicular to the \(z\) axis especially at lower surface pressure. These values are consistent with Fig. 5. For \(|R_e|\), it is seen that the values are all close to the calculated ideal counter length (21.8 Å). This indicates that the preferred configuration of the DOPA/ST molecules during compression is the stretched position. This also implies that representing alkyl tails by the vector \(R_e\) (see Fig. 3) is reliable. Considering the statistics of tilt angles in DOPA (\(\alpha_t\), first of all, the standard deviation increases

![Fig. 4](image_url)
Fig. 4 Statistics of tilt angle \(\alpha_t\) (degree) of alkyl tails with the increase of surface pressure. (A) ST; (B) DOPA.

![Fig. 5](image_url)
Fig. 5 Top view of catechols distributions on top of water surfaces. The squares represent the cell boundary. (A) 0.5 mN m\(^{-1}\) (ST); (B) 60.5 mN m\(^{-1}\) (ST); (C) 1.6 mN m\(^{-1}\) (DOPA); (D) 61.0 mN m\(^{-1}\) (DOPA). The detailed tilt angle (\(\theta\)) distribution for catechol groups are summarized in Fig. S5 (see ESI†).
with the increase of surface pressure. Secondly, the average value of \(z_\alpha \) decreases correspondingly. These results are in accordance to Fig. 3D–F and Fig. 4B. For ST molecules, the tilt angle \(z_\alpha \) decreases normally with the increase of surface pressure. This is consistent with Fig. 3A–C.

To further investigate the alkyl tails in the monolayers, order parameters with respect to z-axis are calculated for both DOPA and ST (Fig. 6). For each curve, values from C2 to C17 are taken from Fig. 2B simulation results (ST-L and DOPA-L). There are 480 DOPA (ST) molecules in total. The density calculation includes C, O, N, and H atoms in amide group.

D. Hydrogen bond influences on monolayer formation

In order to understand the reason for different configurations between ST and DOPA monolayers, the role of amide groups and the formation of hydrogen bonds are analyzed. Density profiles for water and amide groups are displayed in Fig. 7. The water surface is from around 3 nm to 5 nm. The highest density for amide groups is in the range of 3.5–4.5 nm. This indicates that some of the amide groups are located on the water surface. Hence, the volume of hydrophilic group for DOPA may be enlarged by the amide groups compared to ST. Moreover, water molecules are likely to interact with amide groups because of the hydrogen bond donors and acceptors in DOPA. This may lead to stronger intra-molecular forces in the DOPA system.

Hydrogen bonds are of great importance in various systems.\(^5^7\)–\(^5^9\) The main function of amide groups is increasing the formation of hydrogen bonds in a monolayer. The statistics of hydrogen bonds formed in a DOPA/ST monolayer are listed in Table 2. It is clearly seen that because of the amide groups, there are many more hydrogen bonds in DOPA than in ST. According to Table 2, in a ST monolayer, the hydrogen bonds are only formed between two hydroxyl groups, with the numbers around sixty (except for the case of 0.5 mN m\(^{-1}\)). However, in a DOPA monolayer, there are many more hydrogen bonds. Unlike ST, the total number of hydrogen bonds is obtained by averaging over a 2 ns NVT simulation. There are 480 DOPA (ST) molecules in total.

Table 1: Average values and standard deviation of \(\theta, z_\alpha, \) and \(|R_b| \) (see definition in Fig. 1). Area per DOPA/ST is taken from Fig. 2B simulation results (ST-L and DOPA-L)

| \(\pi \) (mN m\(^{-1}\)) | Area per DOPA (Å\(^2\)) | \(\theta \) (Degree) | \(|R_b| \) (Å) | \(z_\alpha \) (Degree) |
|-----------------|----------------|----------------|-------------|----------------|
| DOPA \(1.6\) | 54.0 | 56.1 ± 20.5 | 20.8 | 52.6 ± 13.9 |
| \(24.2\) | 32.8 | 62.6 ± 18.5 | 20.6 | 41.9 ± 15.9 |
| \(30.5\) | 30.5 | 63.3 ± 18.1 | 20.6 | 40.1 ± 16.2 |
| \(46.6\) | 28.7 | 66.2 ± 17.5 | 20.7 | 36.0 ± 16.9 |
| \(61.0\) | 26.2 | 70.5 ± 15.8 | 20.8 | 30.7 ± 18.0 |

\(^a \) The differences of surface pressures for DOPA and ST monolayers are caused by the tail correction of surface tension. \(^b \) The calculated ideal counter length of \(R_b \) is 21.8 Å.

Table 2: Hydrogen bonds between organic molecules for the large water–DOPA system and the large water–ST system (Water model: TIP4P/2005)

\(\pi \) (mN m\(^{-1}\))	Type 1\(^a\)	Type 2	Type 3	Total\(^b\)	\(\pi \) (mN m\(^{-1}\))	Total\(^b\) (3)
DOPA \(1.6\)	231.8	140.8	31.7	404.3	0.5	31.7
\(24.2\)	245.4	143.1	38.1	426.6	23.0	60.2
\(46.6\)	269.9	140.4	39.3	449.6	45.5	59.3
\(61.0\)	288.3	130.3	47.0	465.6	60.5	62.6

\(^a \) The definition of hydrogen bonds is from GROMACS: 0.35 nm (donor–acceptor), 30 degree (donor–H–acceptor). Type 1: amide–amide hydrogen bonds; type 2: amide–hydroxyl hydrogen bonds; type 3: hydroxyl–hydroxyl hydrogen bond (see Fig. 7, ESI for further information). \(^b \) The number of hydrogen bonds is obtained by averaging over a 2 ns NVT simulation. There are 480 DOPA (ST) molecules in total.
Hydrogen bonds in DOPA system. Only amide groups and catechol groups are shown. Dashed blue lines represent type 1. Dashed cyan lines represent type 2. Dashed red lines represent type 3 (see Table 2).

Fig. 8

Concluding remarks

The simulations of organic monolayers on water surface have been of great interest. In this study, the experimental results of compressing DOPA/ST monolayers have been carefully reproduced with all-atomic force field (OPLS-AA) and the surface-tension coupling. By employing proper force field for water molecules (TIP4P/2005) and treating surface tension with tail correction, the obtained simulated surface pressure–area (π–A) isotherms for DOPA and ST are consistent with experimental results. More importantly, comparing to the coarse grain method and the NVT coupling, a main advantage of the simulating scheme in this study is the detailed configurations for molecules (e.g., hydrogen bonds interactions) can be collected and the compressing process can be reproduced.

According to our analysis, the distribution of DOPA molecules is less homogeneous than that of ST molecules at each point of the π–A isotherm. Because of the hydrogen bonds present in the DOPA system, DOPA molecules are restricted in their local positions when the surface pressure is not sufficient to move them. With the increase of surface pressure, only locally ordered arrangements are gradually obtained for DOPA. Thus, DOPA monolayers are not as regularly oriented as ST monolayers. Hence, the different surface pressure–area (π–A) isotherms for DOPA/ST in the experiments are well explained using our simulation. It is also worthwhile to point out that decorating hydrophobic tails (adding an amide group onto an alkyl tail in this case) may be not always helpful to the uniform formation of the monolayer on water surface. According to previous experiments and the present study, the added group sometimes causes the molecules to orient less regularly because of the hydrogen bonds.

To sum up, the simulating scheme used in this study has been proved effective in reproducing experimental surface pressure–area (π–A) isotherms comparing to coarse grain method or the traditional NVT coupling. The result in the present study may be useful for choosing decoration groups on alkyl tails during a monolayer synthesis. Further works based on the influences of water models or a combination of experiments and simulations are welcome to strengthen our conclusion.
Acknowledgements

We would like to thank China Scholarship Council (No. 2010617085) and National Natural Science Foundation of China (Grant No. 21303068) for the support of this work.

Notes and references

1. P. Sanassy and S. D. Evans, *Langmuir*, 1993, 9, 1024–1027.
2. K. Graf and H. Riegler, *Langmuir*, 2000, 16, 5187–5191.
3. K. Graf and H. Riegler, *Colloids Surf., A*, 1998, 131, 215–224.
4. B. Moghadam, M. H. Ali, J. Wilkhu, D. J. Kirby, A. R. Mohammed, Q. G. Zheng and Y. Perrie, *Int. J. Pharm.*, 2011, 417, 235–244.
5. V. M. Kaganer, H. Mohwald and P. Dutta, *Rev. Mod. Phys.*, 1999, 71, 779–819.
6. J. Clarett, R. Reigler, R. Albalat, J. Crusats, E. Abad, J. Ignes-Mullol and F. Sagues, *J. Phys. Chem. B*, 2004, 108, 17274–17277.
7. A. H. Su, S. S. Tan, P. Thapa, B. N. Flanders and W. T. Ford, *J. Phys. Chem. C*, 2007, 111, 4695–4701.
8. K. Mac-Wydra and P. Dynarowicz-Latka, *J. Phys. Chem. B*, 2008, 112, 11324–11332.
9. A. Nayak, K. A. Suresh, S. K. Pal and S. Kumar, *J. Phys. Chem. B*, 2007, 111, 11157–11161.
10. J. D. McCoy and J. G. Curro, *J. Chem. Phys.*, 2009, 130, 194708.
11. J. J. Giner-Casares, L. Camacho, M. T. Martin-Romero and J. J. L. Cascales, *Langmuir*, 2008, 24, 1823–1828.
12. M. Javanainen, L. Monticelli, J. B. de la Serna and I. Vattulainen, *Langmuir*, 2010, 26, 15436–15444.
13. D. J. Henry, V. I. Dewan, E. L. Prime, G. G. Qiao, D. H. Solomon and I. Yarovsky, *J. Phys. Chem. B*, 2010, 114, 3869–3878.
14. D. Rose, J. Rendell, D. Lee, K. Nag and V. Booth, *Biophys. Chem.*, 2008, 138, 67–77.
15. A. J. Kox, P. J. P. Michels and F. W. Wiegel, *Nature*, 1980, 287, 317–319.
16. S. Karaborni and S. Toxvaerd, *J. Chem. Phys.*, 1992, 96, 5505–5515.
17. W.-X. Shi and H.-X. Guo, *J. Phys. Chem. B*, 2010, 114, 6365–6376.
18. G. Watanabe, J. I. Saito, N. Kato and Y. Tabe, *J. Chem. Phys.*, 2011, 134, 054513.
19. S. L. Duncan and R. G. Larson, *Biophys. J.*, 2008, 94, 2965–2986.
20. M. Wiegemann, *Aquat. Sci.*, 2005, 67, 166–176.
21. J. H. Waite, *Integr. Comp. Biol.*, 2002, 42, 1172–1180.
22. J. L. Dalsin, B. H. Hu, B. P. Lee and P. B. Messersmith, *J. Am. Chem. Soc.*, 2003, 125, 4253–4258.
23. M. Weinhold, S. Soubatch, R. Temirov, M. Rohlfing, B. Jastorff, F. S. Tautz and C. Doose, *J. Phys. Chem. B*, 2006, 110, 23756–23769.
24. K. Inoue, Y. Takeuchi, D. Miki and S. Odo, *J. Biol. Chem.*, 1995, 270, 6698–6701.
25. H. Zhao and J. H. Waite, *J. Biol. Chem.*, 2006, 281, 26150–26158.
26. H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, *Science*, 2007, 318, 426–430.
27. D. Ribena, A. Alekseev, O. van Asselen, G. J. A. Mannie, M. M. R. M. Hendrix, L. G. J. van der Ven, N. A. J. M. Sommerdijk and G. de With, *Langmuir*, 2012, 28, 16900–16908.
28. C.-P. Kong, E. A. J. F. Peters, G. de With and H.-X. Zhang, *Phys. Chem. Chem. Phys.*, 2013, 15, 15426–15433.
29. R. Sakamaki, A. K. Sum, T. Narumi and K. Yasuoka, *J. Chem. Phys.*, 2011, 134, 144702.
30. C. Vega and E. de Miguel, *J. Chem. Phys.*, 2007, 126, 154707.
31. J. L. F. Abascal and C. Vega, *J. Chem. Phys.*, 2005, 123, 234505.
32. H. Berendsen, J. Postma, W. van Gunsteren and J. Hermans, *Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry held in Jerusalem*, Israel, 1981.
33. F. Chen and P. E. Smith, *J. Chem. Phys.*, 2007, 126, 221101.
34. G. A. Chapela, G. Saville, S. M. Thompson and J. S. Rowlinson, *J. Chem. Soc., Faraday Trans. 2*, 1977, 73, 1133–1144.
35. H. Bekker, H. J. C. Berendsen, E. J. Dijkstra, S. Achterop, R. Vondrumen, D. Vanderspoel, A. Sijbers, H. Keegstra, B. Reitsma, M. K. R. Renardus, *Physics Computing 92*, 1993.
36. H. J. C. Berendsen, D. Vanderspoel and R. Vandrune, *Comput. Phys. Commun.*, 1995, 91, 43–56.
37. E. Lindahl, B. Hess and D. van der Spoel, *J. Mol. Model.*, 2001, 7, 306–317.
38. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C. Berendsen, *J. Comput. Chem.*, 2005, 26, 1701–1718.
39. B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, *J. Chem. Theory Comput.*, 2008, 4, 435–447.
40. W. Humphrey, A. Dalke and K. Schulten, *J. Mol. Graphics Modell.*, 1996, 14, 33–38.
41. D. M. York, T. A. Darden and L. G. Pedersen, *J. Chem. Phys.*, 1993, 99, 8345–8348.
42. G. Bussi, D. Donadio and M. Parrinello, *J. Chem. Phys.*, 2007, 126, 041401.
43. J. G. Harris, *J. Phys. Chem.*, 1992, 96, 5077–5086.
44. L. Sun, X. Li, T. Hede, Y. Tu, C. Leck and H. Ågren, *J. Phys. Chem. B*, 2012, 116, 3198–3204.
45. J. Alejandre, D. J. Tildesley and G. A. Chapela, *J. Chem. Phys.*, 1995, 102, 4574–4583.
46. M. G. Martin, *Fluid Phase Equilib.*, 2006, 248, 50–55.
47. W. L. Jorgensen, D. S. Maxwell and J. TiradoRives, *J. Am. Chem. Soc.*, 1996, 118, 11225–11236.
48. A. Kaminski, R. A. Friesner, J. Tirado-Rives and W. L. Jorgensen, *J. Phys. Chem. B*, 2001, 105, 6474–6487.
49. D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C. Berendsen, *Gromacs User Manual version 4.5.6*, 2010, www.gromacs.org.
50. R. A. Fine and F. J. Millero, *J. Chem. Phys.*, 1973, 59, 5529–5536.
51 J. Ignes-Mullol, J. Claret, R. Reigada and F. Sagues, *Phys. Rep.*, 2007, **448**, 163–179.
52 C.-p. Kong, H.-x. Zhang, Z.-x. Zhao and Q.-C. Zheng, *Chem. Res. Chin. Univ.*, 2013, **29**, 545–550.
53 S. K. Ghosh, *Nuovo Cimento Soc. Ital. Fis.*, D, 1984, **4**, 229–244.
54 J. D. Honeycutt and H. C. Andersen, *J. Phys. Chem.*, 1986, **90**, 1585–1589.
55 A. H. de Vries, I. Chandrasekhar, W. F. van Gunsteren and P. H. Hünlenberger, *J. Phys. Chem. B*, 2005, **109**, 11643–11652.
56 W. Weber, P. H. Hünlenberger and J. A. McCammon, *J. Phys. Chem. B*, 2000, **104**, 3668–3675.
57 G.-J. Zhao and K.-L. Han, *Acc. Chem. Res.*, 2011, **45**, 404–413.
58 N. Suttiwijipukdee, H. Sato, M. Unger and Y. Ozaki, *Macromolecules*, 2012, **45**, 2738–2748.
59 Q. Xue, J.-L. Zhang, Q.-C. Zheng, Y.-L. Cui, L. Chen, W.-T. Chu and H.-X. Zhang, *Langmuir*, 2013, **29**, 11135–11144.
60 S. Baoukina, E. Mendez-Villuendas and D. P. Tieleman, *J. Am. Chem. Soc.*, 2012, **134**, 17543–17553.
61 T. R. Lucas, B. A. Bauer, J. E. Davis and S. Patel, *J. Comput. Chem.*, 2012, **33**, 141–152.
62 M. Tarek, D. J. Tobias and M. L. Klein, *J. Phys. Chem.*, 1995, **99**, 1393–1402.
63 U. Tasic, B. S. Day, T. Yan, J. R. Morris and W. L. Hase, *J. Phys. Chem. C.*, 2007, **112**, 476–490.