Shikonin induces odontoblastic differentiation of dental pulp stem cells via AKT–mTOR signaling in the presence of CD44

Kunihiro Kajiura, Naoki Umemura, Emika Ohkoshi, Takahisa Ohta, Nobuo Kondoh, and Satoshi Kawano

Department of Endodontics, Asahi University School of Dentistry, Gifu, Japan; Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu, Japan; Department of Natural and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Japan; Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Gifu, Japan

ABSTRACT

Purpose: In our previous study, we demonstrated that hyaluronan induces odontoblastic differentiation of dental pulp stem cells via interactions with CD44. However, it remains unclear whether CD44 expression by dental pulp stem cells is required for odontoblastic differentiation.

Methods: We searched for a compound other than hyaluronan that induces odontoblastic differentiation of dental pulp stem cells and used western blotting to determine whether CD44 is involved in the induction of odontoblastic differentiation by the compound. We further validated the cell signaling details of the compound-induced expression of dentin sialophosphoprotein (DSP), which is known as a marker of odontoblastic differentiation.

Results: We investigated shikonin, which is one of the derivatives of naphthoquinone, the skeleton of vitamin K. Shikonin-induced expression of DSP was inhibited by PI3K, AKT, and mTOR inhibitors. Additionally, shikonin-induced expression of DSP was inhibited in dental pulp stem cells transfected with siRNA against CD44.

Conclusions: Shikonin can stimulate dental pulp stem cells to undergo odontoblastic differentiation through a mechanism involving the AKT–mTOR signaling pathway and CD44. Although expression of CD44 is important for inducing odontoblastic differentiation of dental pulp stem cells, the relationship between the AKT–mTOR signaling pathway and CD44 expression, in the context of shikonin stimulation, has not yet been elucidated. This study suggests that shikonin may be useful for inducing odontoblastic differentiation of dental pulp stem cells, and that it may have clinical applications, including protection of the dental pulp.

Introduction

In our previous study, we demonstrated that hyaluronan, a large molecule, induces odontoblastic differentiation of dental pulp stem cells (DPSCs) via interactions with CD44. However, the underlying cellular signaling mechanism has not yet been elucidated, and it has been unclear whether small molecules can induce odontoblastic differentiation of DPSCs. Therefore, we explored whether small molecules could induce odontoblastic differentiation of DPSCs and attempted to identify the differentiation induction mechanism. In addition, we assessed whether CD44 was essential for this mechanism.

In the field of DPSC research, several research groups have shown that collagenase-treated cells isolated from human dental pulp showed more rapid proliferation, compared with hematopoietic stem cells, and a similar degree of multipotency. Subsequently, various groups have described possible DPSCs. There have been reports of the induction of odontogenic differentiation from DPSCs in vitro. Moreover, human DPSCs can differentiate into hepatocytes, and the differentiation of DPSCs into pancreatic β cells can be induced by specific culture conditions. Some in vivo experiments in rats have demonstrated that DPSC transplantation can regenerate corneal epithelium, myocardium, spinal cord, muscle (in a model of muscular dystrophy), and craniofacial bone (using collagen gel as a scaffold).

Notably, there are reports that cells expressing CD44, a marker of DPSCs, are present in dental pulp tissue around the tooth root, and that these CD44-positive cells are involved in mineralization. Furthermore, our previous study revealed that DPSCs express high levels of CD44; it also showed that hyaluronan, a ligand of CD44, can induce odontoblastic differentiation of DPSCs. The results showed no change in the expression of mRNAs related to bone differentiation, bone morphogenetic protein-2 (BMP-2) or BMP-4.

CONTACT Naoki Umemura umemura@dent.asahi-u.ac.jp Department of Oral Biochemistry, Asahi University School of Dentistry, 1851 Hozumi, Gifu 501-0296, Japan

© 2021 Informa UK Limited, trading as Taylor & Francis Group

ARTICLE HISTORY

Received 22 May 2020
Accepted 14 December 2020

KEYWORDS Dental pulp stem cells; dentin sialophosphoprotein; odontoblast differentiation; CD44; mammalian target of rapamycin
In contrast, markers of odontoblasts, dentin sialophosphoprotein (DSPP), and dentin morphogenetic protein-1 (DMP1) were elevated not only at the mRNA level but also at the protein level\(^1\). These findings suggest that dental pulp cells, including DPSCs, differentiate into odontoblasts through a CD44-mediated mechanism and participate in calcification.

Although the intracellular signaling of DPSCs stimulated with hyaluronan involves activation of various signals (e.g., MAPK and AKT) in a CD44-mediated manner, the causal relationship between odontoblastic differentiation of DPSCs and these activating signals is not clear. To the best of our knowledge, there have been few reports of inducers or factors (e.g., hyaluronan) that efficiently induce odontoblastic differentiation of DPSCs. Furthermore, it remains unclear whether CD44 is required to induce odontoblastic differentiation of DPSCs. Notably, menatrenone (a vitamin K\(_2\) analogue) is used clinically as an osteoporosis treatment and hemostatic agent; it is known to be involved in bone formation, tissue calcification, and blood coagulation\(^17\)\(^,\)\(^18\). However, the clinical significance of menatrenone in the dental field has not been fully investigated.

In this study, we focused on vitamin K analogues containing naphthoquinone derivatives, to determine whether these analogues can induce odontoblastic differentiation of DPSCs. Then, we explored small molecules involved in inducing odontoblastic differentiation of DPSCs; the findings enabled us to elucidate whether the intracellular signaling of new compounds that induce odontoblastic differentiation of DPSCs involve CD44-mediated signaling, similar to that observed upon stimulation with hyaluronan.

Materials and methods

Reagents and cell culture

Vitamin K\(_1\), 2-methyl-1,4-naphthoquinone (Vitamin K\(_3\)), vitamin K\(_4\), 1,4-benzoquine, emodin, and aloe emodin were purchased from Tokyo Chemical Industry Co., Ltd (Tokyo, Japan). Vitamin K\(_2\) and a shikonin standard sample (99%) were purchased from Fujifilm Wako Pure Chemical Industries (Osaka, Japan). These reagents were each dissolved in dimethyl sulfoxide as stock solutions (100 mM final concentration) and stored in the dark at \(-20\) °C. Human DPSCs were obtained from Lonza Walkersville, Inc. (Walkersville, MD, USA). Cultures were maintained in Dental Pulp Stem Cell Growth Media (Lonza) at 37 °C in a humidified atmosphere containing 5% CO\(_2\).

Immunoblot analyses

Whole cell extracts were obtained using a lysis buffer (10 × RIPA buffer [Cell Signaling Technology, Beverly, MA, USA], with 1 mM phenylmethylsulfonyl fluoride and 1 × protease inhibitor). Ten micrograms of protein extracts were separated by electrophoresis in an 8% sodium dodecyl sulfate-polyacrylamide gel and transferred to a polyvinylidene difluoride membrane. Membranes were probed with primary antibodies to CD44 (mouse monoclonal, catalog #5640), phospho-AKT (rabbit monoclonal, catalog #4060), AKT (rabbit monoclonal, catalog #4691), phospho-mTOR (Ser2448) (rabbit monoclonal, catalog #5536), mTOR (rabbit monoclonal, catalog #4691) (all from Cell Signaling Technology; dilution 1:1,000); DSPP (mouse monoclonal, catalog #sc-73,632) (Santa Cruz Biotechnology, Inc., Dallas, TX, USA; dilution 1:200); and beta-actin (catalog #A5441) (Sigma-Aldrich, St. Louis, MO, USA; dilution 1:10,000). Signals were revealed using peroxidase-conjugated secondary antibodies; bands were visualized by chemiluminescence (Clarity Western ECL substrate; Bio-Rad, Hercules, CA, USA). The blots and images were developed with the ImageQuant™ LAS500 Imaging System (GE Healthcare Bio-Science AB, Uppsala, Sweden). As a semi-quantitative analysis, the protein bands were quantified by densitometry using ImageJ software (National Institutes of Health, Bethesda, MD, USA). The expression of the target protein relative to the expression of beta-actin was calculated.

Cell viability assay

DPSCs were seeded in 96-well plates at a density of 1 × 10\(^3\) cells/well and allowed to adhere for 24 h. Cells were treated with each compound for 48 h. Cell viability was assessed by addition of 5 μl of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (i.e., MTT) using a Cell Proliferation Kit I (Roche Diagnostics, Mannheim, Germany) in accordance with the manufacturer’s instructions. The numbers of viable cells were assessed by measuring the absorbance of the resulting formazan crystals at 595 nm with a TECAN SpectraFluor and XFluor4 software (Tecan Japan Co., Ltd, Kawasaki, Japan). All data are presented as the means ± standard deviations of at least three independent experiments. To calculate the half maximal inhibitory concentration (IC\(_{50}\)) of shikonin and alkannin in DPSCs, a cell proliferation curve was created from the cell viability assay, and a value that inhibited cell proliferation by 50% was calculated.
The IC₅₀ value was statistically processed from more than three sets of independent data.

Signal blocking assay

LY294002 (phosphoinositide 3-kinase [PI3K] inhibitor), GSK690693 (AKT inhibitor), and rapamycin (mTOR inhibitor) were purchased from Selleck Chem (Tokyo, Japan). LY294002, GSK690693 and rapamycin were used at concentrations of 10 μM or 50 μM, 1 μM or 2 μM, and 1 μM or 2 μM, respectively. DPSCs were pretreated with all inhibitors for 30 min before stimulation with shikonin 0.5 μM. After 30 min of stimulation with shikonin, cells were harvested to investigate the inhibition of several signaling pathways. After 24 h of stimulation with shikonin, cells were harvested to assay the expression of the odontoblastic differentiation marker, dentin sialophosphoprotein (DSPP), by immunoblotting.

CD44 knockdown by siRNA transfection

Small interfering RNAs (siRNAs) specifically targeting human CD44 (siRNA IDs s2681 and s2682) were obtained from Life Technologies (Carlsbad, CA, USA). DPSCs (1 × 10³ per well) were plated in six-well plates and transfected with CD44 siRNA for 24 h in antibiotic-free media using siRNA Lipofectamine RNAiMAX and OPTI-MEM I reduced serum medium (Invitrogen, Carlsbad, CA, USA), in accordance with the siRNA manufacturer’s protocol. After 24 h of transfection, the cells were used for experiments.

Statistical analysis

After the cell viability assay, Student’s t-tests (two-tailed) were performed to compare the IC₅₀ between shikonin and alkannin. For analysis of semi-quantitative western blotting, the data are presented as the means ± standard deviations of three independent sets of western blotting results and evaluated using one-way analysis of variance followed by Dunnett’s multiple comparison (shikonin 0 μM vs. 0.1 μM, 0.2 μM, 0.4 μM or hyaluronan 10 μg/mL).

Results

Among vitamin K analogues, shikonin induces DPSCs to odontoblastic differentiation

First, we examined whether naphthoquinone derivatives, which constitute the skeleton of vitamin K, could induce odontoblastic differentiation of DPSCs. DSPP is a major non-collagenous matrix protein of odontoblasts, and is known as a marker for odontoblasts. We found that, among the vitamin K analogues we examined, shikonin prominently induced expression of DSPP, a marker of odontoblastic differentiation (Figure 1). This result suggested that shikonin could induce differentiation of DPSCs into odontoblasts.

Shikonin induces odontoblastic differentiation of DPSCs, whereas its enantiomer does not

Next, we examined the 50% inhibitory concentrations of shikonin and its enantiomer, alkannin, against DPSCs (Figure 2(a)). The 50% inhibitory concentrations did not significantly differ between shikonin (4.48 ± 0.51 μM) and alkannin (5.08 ± 1.21 μM) (Figure 2(b)). Furthermore, DSPP was expressed by DPSCs stimulated with shikonin concentrations greater than 0.4 μM (Figures 2(c and d)). Conversely, stimulation with alkannin did not induce expression of DSPP by DPSCs (Figure 2(e)). These results suggested that shikonin could induce differentiation of DPSCs to odontoblasts in an enantioselective manner.

Shikonin induces odontoblastic differentiation of DPSCs via AKT–mTOR signaling

We investigated the shikonin-related intracellular signal transduction that could induce odontoblastic differentiation of DPSCs. AKT phosphorylation peaked at 30 min after shikonin treatment (Figure 3(a)); mTOR phosphorylation was also observed between 30 and 90 min after shikonin treatment (Figure 3(b)). On the basis of these results, we hypothesized that AKT and mTOR play important roles in the mechanism by which shikonin induces odontoblastic differentiation of DPSCs. Thus, we investigated whether DSPP expression was inhibited.
upon administration of inhibitors for these proteins. When the phosphorylation of AKT was suppressed by treatment with the PI3K inhibitor, Ly294002, the expression of DSPP was suppressed (Figure 3(c, d)). In addition, when AKT was inhibited with the pan-AKT kinase inhibitor, GSK690693, the expression of DSPP was suppressed (Figure 3(e, f)). Furthermore, when phosphorylation of mTOR was inhibited by the mTOR inhibitor, rapamycin, the expression of DSPP was suppressed (Figure 3(g, h)). These results indicated that shikonin could induce odontoblastic differentiation of DPSCs via AKT–mTOR signaling.

Shikonin induces CD44-mediated odontoblastic differentiation of DPSCs

To determine whether shikonin could induce CD44-mediated odontoblastic differentiation of DPSCs, we knocked down CD44 expression by using siRNA transfection. siRNA knockdown of CD44 suppressed odontoblastic differentiation of DPSCs, despite shikonin treatment (Figure 4(a)). To investigate the relationships between shikonin and CD44 with respect to the odontoblastic differentiation of DPSCs via AKT–mTOR signaling, we examined changes in AKT–mTOR signaling after shikonin treatment in DPSCs that had been treated with CD44 siRNA. When CD44 was inhibited, both AKT and mTOR signaling pathways were induced by shikonin treatment (Figure 4(b)). This result indicated that in the absence of CD44, shikonin does not induce odontoblastic differentiation of DPSCs, despite its ability to induce AKT–mTOR intracellular signaling.

Discussion

Our previous study indicated that hyaluronan induces odontoblastic differentiation of DPSCs via CD44.
Because hyaluronan is a type of glycosaminoglycan with a molecular weight of up to 2000 kDa, it is necessary to explore novel small molecules that can induce odontoblastic differentiation for future clinical applications. Furthermore, a previous study revealed that CD44 expression was important for odontoblastic differentiation of DPSCs. Hence, we performed this study to explore whether novel small molecules, not previously associated with CD44 expression, could induce odontoblastic differentiation of DPSCs. The aim of this study was to determine whether CD44 expression in DPSCs remained important for the activity of any novel compounds that could induce odontoblastic differentiation.

Vitamin K is a lipophilic vitamin involved in post-translational protein modifications associated with various blood coagulation factors. Furthermore, it is involved in the production of vitamin K-dependent bone matrix proteins, such as osteocalcin. Menatetrenone, a vitamin K analogue, has been used as an osteoporosis therapeutic agent and a hemostatic agent. Therefore, we focused on vitamin K analogues in this study, and found that shikonin could induce odontoblastic differentiation. Shikonin comes from the thick purple roots of Lithospermum erythrorhizon, a perennial plant native to the grasslands of East Asia. The lithospermum root is used as herbal medicine (Chinese name: Zi Cao), and shikonin is a natural red pigment that is the main component of the root (containing 0.5%–1.5%). In second century ancient China, the drug book “Shennong Bencaojing” (from the later Han Dynasty to the Three States Period) lists lithospermum root as a medicinal herb; its medicinal properties are useful for the treatment of various diseases (e.g., pharyngitis, burns, cuts, measles, and purulent skin inflammation). Shikonin has been reported to inhibit the growth of various cancer cells and induce apoptosis of these cells, as well as to suppress angiogenesis. However, the underlying molecular
mechanisms of these effects mediated by shikonin are not fully understood. Because we found that shikonin could induce expression of DSPP in DPSCs in an enantioselective manner, we examined the intracellular signaling involved. DSPP is one of the key non-collagenous proteins (NCPs) involved in tooth development and mineralization, and is an inducer of dentin mineralization. Therefore, DSPP is considered to be an odontoblastic differentiation marker. The results showed that shikonin induced odontoblastic differentiation through CD44 and AKT–mTOR signaling. In addition, CD44 may be more critical for the shikonin-induced odontoblastic differentiation of DPSCs, compared with AKT–mTOR signaling, because CD44 inhibition suppressed odontoblastic differentiation regardless of changes in phosphorylation of AKT–mTOR. Thus, shikonin induces odontoblastic differentiation via AKT–mTOR signaling in the presence of CD44.

The PI3K/AKT pathway is a pro-proliferation signaling pathway that is active in various cells. Furthermore, AKT is regarded as a positive regulator of the mTOR complex. The AKT signaling pathway is reportedly involved in osteogenic differentiation of human mesenchymal stem cells, human dental follicle cells, and rat bone marrow stromal cells. However, AKT reportedly inhibits odontogenic differentiation of stem cells from the apical papilla; thus, there is controversy regarding the function of AKT–mTOR signaling. The results of our study suggest that the AKT–mTOR signaling pathway is involved in the shikonin-induced odontoblastic differentiation of DPSCs. Furthermore, CD44 was required for shikonin-induced odontoblastic differentiation.

Our study showed that shikonin could induce odontoblastic differentiation of DPSCs. The AKT–mTOR signaling pathway was the main intracellular mechanism involved; moreover, CD44 was important for the induction of odontoblastic differentiation. However, it remains unclear how the AKT–mTOR signaling pathway and CD44 are specifically related to the shikonin
induced odontoblastic differentiation of DPSCs. In addition, it remains unknown whether this effect of shikonin is present in vivo.

Our previous study indicated that the hyaluronan-induced odontoblastic differentiation of DPSCs was mediated by CD44. In the present study, the expression of CD44 was found to be important for inducing the odontoblastic differentiation of DPSCs, regardless of the presence or absence of treatment with hyaluronan.

Conclusions

To the best of our knowledge, this study is the first to report that shikonin can induce odontoblastic differentiation of DPSCs via CD44 and the AKT–mTOR signaling pathway. Because CD44-expressing cells are abundant in incomplete apical areas, the pulp horn, and the pulp chamber roof\(^ {15,16} \), shikonin may be a useful inducer of odontoblastic differentiation, and may have potential clinical use in the protection of pulp.

Acknowledgments

We thank Ryan Chastain-Gross, PhD, from Edanz Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Authors’ contributions

KK performed most of the experiments and drafted the manuscript. NU contributed to the experimental design, performed some experiments, and drafted the manuscript. EO performed some experiments and critically revised the manuscript. TO participated in the study design and critically revised the manuscript. NK participated in the study design and manuscript preparation, and critically revised the manuscript. SK contributed to experimental conceptualization and

Figure 4. Shikonin induces expression of dentin sialophosphoprotein (DSPP) by a CD44-mediated mechanism. DSPP expression levels after treatment with 0.5 μM shikonin in cells transfected with siRNA against CD44 (a). Changes in phospho-mTOR and phospho-AKT expression levels after treatment with 0.5 μM shikonin in cells transfected with siRNA against CD44 (b).
data interpretation, and critically revised the manuscript. All authors read and approved the final manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Consent for publication
Not applicable

Declarations
Not applicable

Disclosure statement
The authors declare that they have no competing interests.

Funding
This work was supported in part by Japan Society for the Promotion of Science [17K11691,17K17146,20K09947]; We hereby declare that the funding body had no role in the design of the study, the collection, analysis, and interpretation of data, or in the writing of the manuscript.

References
1. Umemura N, Ohkoshi E, Tajima M, Kikuchi H, Katayama T, Sakagami H. Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via cd44. Stem Cell Res Ther. 2016;7(1):135. doi:10.1186/s13287-016-0399-8.
2. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyd A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–535. doi:10.1177/154405910208100806.
3. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (dpssc) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97 (25):13625–13630. doi:10.1073/pnas.240309797.
4. Zhang W, Liu W, Ling J, Lin Z, Gao Y, Mao X, Jian Y. Odontogenic differentiation of vascular endothelial growth factor-transfected human dental pulp stem cells in vitro. Mol Med Rep. 2014;10(4):1899–1906. doi:10.3892/mmr.2014.2481.
5. Nam S, Won JE, Kim CH, Kim HW. Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue Eng. 2011;2011(812547). doi:10.4061/2011/812547.
6. Lee JH, Lee DS, Choun HW, Shon WJ, Seo BM, Lee EH, Cho JY, Park JC. Odontogenic differentiation of human dental pulp stem cells induced by preameloblast-derived factors. Biomaterials. 2011;32 (36):9696–9706. doi:10.1016/j.biomaterials.2011.09.007.
7. Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Nakahara T, Ishikawa H, Mitev V, Haapasalo M. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod. 2012;38(4):475–480. doi:10.1016/j.joen.2011.12.011.
8. Carnevale G, Riccio M, Pisciotta A, Beretti F, Maraldi T, Zavatti M, Cavallini GM, La Sala GB, Ferrari A, De Pol A. In vitro differentiation into insulin-producing beta-cells of stem cells isolated from human amniotic fluid and dental pulp. Dig Liver Dis. 2013;45 (8):669–676. doi:10.1016/j.dld.2013.02.007.
9. Syed-Picard FN, Du Y, Latham KL, Mann MM, Funderburgh ML, Funderburgh JL. Dental pulp stem cells: A new cellular resource for corneal stromal regeneration. Stem Cells Transl Med. 2015;4 (3):276–285. doi:10.5966/stcm.2014-0115.
10. Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26 (3):638–645. doi:10.1634/stemcells.2007-0484.
11. Nicola FDC, Marques MR, Odorczyk F, Arcego DM, Petenuzzo I, Aritsimun A, Vizuete A, Sanchez EF, Pereira DP, Maurmann N, et al. Neuroprotective effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res. 2017;1663 (95–105):95–105. doi:10.1016/j.brainres.2017.03.015.
12. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wako N, Imagama S, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122(1):80–90. doi:10.1172/JCI59251.
13. Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala GB, Bruszegi G, Ferrari A, Huard J, et al. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/scid mice. Stem Cell Res Ther. 2015;6(1):156. doi:10.1186/s13287-015-0141-y.
14. Chamieh F, Collignon AM, Coyac BR, Lesieur J, Ribes S, Sadoine J, Llorens A, Nicoletti A, Letourneur D, Colombier ML, et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6(38814). doi:10.1038/srep38814.
15. Chen KL, Huang YY, Jung L, Yeh YY, Yuan K. Cd44 is involved in mineralization of dental pulp cells. J Endod. 2013;39(3):351–356. doi:10.1016/j.joen.2012.11.043.
16. Chen KL, Yeh YY, Jung L, Yang YC, Yuan K. Mineralization effect of hyaluronan on dental pulp cells via cd44. J Endod. 2016;42(5):711–716. doi:10.1016/j.joen.2016.01.010.
17. Guralp O, Erel CT. Effects of vitamin k in postmenopausal women: mini review. Maturitas. 2014;77 (3):294–299. doi:10.1016/j.maturitas.2013.11.002.
18. Iwamoto J, Seki A, Sato Y, Matsumoto H, Takeda T, Yeh JK. Effect of vitamin k2 on cortical and cancellous bone mass and hepatic lipids in rats with combined methionine-choline deficiency. Bone. 2011;48(5):1015–1021. doi:10.1016/j.bone.2011.02.015.

19. Guo S, Lim D, Dong Z, Saunders TL, Ma PX, Marcelo CL, Ritchie HH. Dentin sialophosphoprotein: A regulatory protein for dental pulp stem cell identity and fate. Stem Cells Dev. 2014;23(23):2883–2894. doi:10.1089/scd.2014.0066.

20. Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Muller R, Goldberg M, Kulkarni AB. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol. 2009;28(4):221–229. doi:10.1016/j.matbio.2009.03.006.

21. Dahlbäck B. Blood coagulation. The Lancet. 2000;355(9195):1627–1632. doi:10.1016/S0140-6736(00)22225-X.

22. Palermo A, Tuccinardi D, D’Onofrio L, Watanabe M, Maggi D, Maurizi AR, Greto V, Buzzetti R, Napoli N, Pozzilli P, et al. Vitamin k and osteoporosis: myth or reality? Metabolism. 2017;70(57–71):57–71. doi:10.1016/j.metabol.2017.01.032.

23. Iwamoto J. Vitamin k(2) therapy for postmenopausal osteoporosis. Nutrients. 2014;6(5):1971–1980. doi:10.3390/nu6051971.

24. Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OM. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2003;47(9):2810–2816. doi:10.1128/AAC.47.9.2810-2816.2003.

25. Komi Y, Suzuki Y, Shimamura M, Kajimoto S, Nakajo S, Masuda M, Shibuya M, Itabe H, Shimokado K, Oettgen P, et al. Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovalerylshikonin. Cancer Sci. 2009;100(2):269–277. doi:10.1111/j.1349-7006.2008.01049.x.

26. Butler WT, Ritchie H. The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol. 1995;39(1):169–179.

27. Li S, Lin C, Zhang J, Tao H, Liu H, Yuan G, Chen Z. Quaking promotes the odontoblastic differentiation of human dental pulp stem cells. J Cell Physiol. 2018;233(9):7292–7304. doi:10.1002/jcp.26561.

28. Chen Y, Zhang Y, Ramachandran A, George A. DSPP is essential for normal development of the dental-craniofacial complex. J Dent Res. 2016;95(3):302–310. doi:10.1177/0022034515610768.

29. Fruman DA, Rommel C. P3k and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–156. doi:10.1038/nrd4204.

30. Pantovic A, Krsitc A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, Trajkovic V. Coordinated time-dependent modulation of ampk/akt/mtor signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone. 2013;52(1):524–531. doi:10.1016/j.bone.2012.10.024.

31. Tsai TL, Wang B, Squire MW, Guo LW, Li WJ. Endothelial cells direct human mesenchymal stem cells for osteo- and chondro-lineage differentiation through endothelin-1 and akt signaling. Stem Cell Res Ther. 2015;6(1):88. doi:10.1186/s13287-015-0065-6.

32. Viale-Bouroncle S, Klingelhofer C, Ettl T, Morsczeck C. The akt signaling pathway sustains the osteogenic differentiation in human dental follicle cells. Mol Cell Biochem. 2015;406(1–2):199–204. doi:10.1007/s10100-015-2437-8.

33. Meng YB, Li X, Li ZY, Zhao J, Yuan XB, Ren Y, Cui ZD, Liu Y, Yang XJ. Microrna-21 promotes osteogenic differentiation of mesenchymal stem cells by the p3k/beta-catenin pathway. J Orthop Res. 2015;Jul;33(7):957–64. doi:10.1002/jor.22884.

34. Zhai YK, Guo XY, Ge BF, Zhen P, Ma XN, Zhou J, Ma HP, Xian CJ, Chen KM. Icaritin stimulates the osteogenic differentiation of rat bone marrow stromal cells via activating the p3k-akt-enos-cgmp-pkg pathway. Bone. 2014;66(189–198). doi:10.1016/j.bone.2014.06.016.

35. Tanaka Y, Sonoda S, Yamaza H, Murata S, Nishida K, Hama S, Kyumoto-Nakamura Y, Uehara N, Nonaka K, Kunita T, et al. Suppression of akt-mtor signal pathway enhances osteogenic/dentinogenic capacity of stem cells from apical papilla. Stem Cell Res Ther. 2018;9(1):334. doi:10.1186/s13287-018-1077-9.

36. Tanaka Y, Sonoda S, Yamaza H, Murata S, Nishida K, Kyumoto-Nakamura Y, Uehara N, Nonaka K, Kunita T, Yamaza T. Acetylsalicylic acid treatment and suppressive regulation of akt accelerate odontogenic differentiation of stem cells from the apical papilla. J Endod. 2019;45(5):591–598 e596. doi:10.1016/j.joen.2019.01.016.