Correlated Triplet Pair Formation Activated by Geometry Relaxation in Directly Linked Tetracene Dimer (5,5'-Bitetracene)

Katsuyuki Shizu,1 Chihaya Adachi,2,3,4 and Hironori Kaji1,*

1Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

2Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan

3International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan

4Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
Full geometry optimization and frequency analysis of $^1(S_0S_0)$ of 55BT

The geometry of ground state, $^1(S_0S_0)$, of 55BT was optimized at the $ωB97X-D/6-31G(d)$ level of theory assuming that 55BT belonged to the C_2 point group and then, its stability was confirmed using frequency analysis at the same level of theory. No imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package. The standard nuclear orientation and tube representation of the stable geometry are shown in Table S1 and Figure S1, respectively.

Full geometry optimization and frequency analysis of $^1(S_0S_1)$ of 55BT

First, the geometry of $^1(S_0S_1)$ of 55BT was optimized at the TD-$ωB97X-D/6-31G(d)$ level of theory assuming that 55BT belonged to the C_2 point group and then, its stability was examined using frequency analysis at the same level of theory. From the frequency analysis, the optimized geometry had a single imaginary mode which broke the C_2 symmetry. Second, the geometry was optimized again at the TD-$ωB97X-D/6-31G(d)$ level of theory assuming that 55BT belonged to the C_1 point group and then, its stability was examined using frequency analysis at the same level of theory. This time, no imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package. The standard nuclear orientation and tube representation of the stable geometry are shown in Table S2 and Figure S1, respectively.

Full geometry optimization and frequency analysis of $^5(T_1T_1)$ of 55BT

The geometry of $^5(T_1T_1)$ of 55BT was optimized at the U$ωB97X-D/6-31G(d)$ level of theory assuming that 55BT belonged to the C_2 point group and then, its stability was confirmed using frequency analysis at the same level of theory. No imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package. The standard nuclear orientation and tube representation of the stable geometry are shown in Table S3 and Figure S1, respectively.
Full geometry optimization and frequency analysis of S₀ of Tetracene (Tc)

The geometry of ground state, S₀, of Tc was optimized at the ωB97X-D/6-31G(d) level of theory assuming that Tc belonged to the D₄h point group and then, its stability was confirmed using frequency analysis at the same level of theory. No imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package.¹ The standard nuclear orientation and tube representation of the stable geometry are shown in Table S4 and Figure S1, respectively.

Full geometry optimization and frequency analysis of S₁ of Tc

The geometry of S₁ of Tc was optimized at the TD-ωB97X-D/6-31G(d) level of theory assuming that Tc belonged to the D₂h point group and then, its stability was confirmed using frequency analysis at the same level of theory. No imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package.¹ The standard nuclear orientation and tube representation of the stable geometry are shown in Table S5 and Figure S1, respectively.

Full geometry optimization and frequency analysis of T₁ of Tc

The geometry of T₁ of Tc was optimized at the UωB97X-D/6-31G(d) level of theory assuming that Tc belonged to the D₂h point group and then, its stability was confirmed using frequency analysis at the same level of theory. No imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package.¹ The standard nuclear orientation and tube representation of the stable geometry are shown in Table S6 and Figure S1, respectively.
Table S1. Standard nuclear orientation of 1(S_0,S_0) geometry of 55BT optimized at the ωB97X-D/6-31G(d) level of theory assuming that 55BT belongs to the C_2 point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	-0.214199	0.715293	-0.893850
2	C	-1.234748	1.143955	-1.744652
3	C	-1.646628	2.526533	-1.732445
4	C	-1.025843	3.418320	-0.874483
5	C	0.003102	3.010173	-0.007077
6	C	0.420082	1.631555	-0.013936
7	C	1.450971	1.236582	0.862118
8	C	2.064613	2.135771	1.720135
9	C	1.646628	3.515153	1.724898
10	C	2.297795	4.427149	2.622376
11	C	3.287484	4.002326	3.451523
12	C	3.113998	1.734372	2.613675
13	C	-1.904619	0.247093	-2.646681
14	C	-2.896608	0.686983	-3.465254
15	C	-3.02371	2.058726	-3.452338
16	H	-1.339006	4.460159	-0.867308
17	H	1.773070	0.199491	0.864750
18	H	0.314084	4.955101	0.866312
19	H	1.980268	5.466717	2.623458
20	H	3.772478	4.701454	4.126214
21	H	4.495567	2.316081	4.119020
22	H	3.425903	0.693323	2.607556
23	H	-1.601766	-0.794607	-2.662399
24	H	-3.390575	-0.006515	-4.139108
25	H	-4.097004	2.386166	-4.115984
26	C	-3.000160	3.987290	-2.599753
27	C	0.214199	-0.715293	-0.893850
28	C	1.234748	-1.143955	-1.744652
29	C	1.646628	-2.526533	-1.732445
30	C	1.025843	-3.418320	-0.874483
31	C	-0.003102	-3.010173	-0.007077
32	C	-0.420082	-1.631555	-0.013936
33	C	-1.450971	-1.236582	0.862118
34	C	-2.064613	-2.135771	1.720135
35	C	-1.646628	-3.515153	1.724898
36	C	-0.634535	-3.915392	0.867911
37	C	-2.297795	-4.427149	2.622376
38	C	-3.287484	-4.002326	3.451523
---	---	---	---	
42 C	-3.702955	-2.631998	3.447438	
43 C	-3.113998	-1.734372	2.613865	
44 C	1.904619	-0.247093	-2.646681	
45 C	2.896608	-0.686983	-3.465254	
46 C	3.302371	-2.058726	-3.452338	
47 C	2.698500	-2.943142	-2.616675	
48 H	1.339006	-4.460159	-0.867308	
49 H	-1.773070	-0.199491	0.864750	
50 H	-0.314084	-4.955101	0.866312	
51 H	-1.980268	-5.466717	2.623458	
52 H	-3.772478	-4.701454	4.126214	
53 H	-4.495567	-2.316081	4.119020	
54 H	-3.425903	-0.693323	2.607556	
55 H	1.601766	0.794607	-2.662399	
56 H	3.390575	0.006515	-4.139108	
57 H	4.097004	-2.386166	-4.115984	
58 H	3.000160	-3.987290	-2.599753	
Table S2. Standard nuclear orientation of \(^1\text{(S}_0\text{S}_1)\) geometry of 55BT optimized at the TD-\(\omega\)B97X-D/6-31G(d) level of theory assuming that 55BT belongs to the \(C_1\) point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	-0.486390	-0.817017	0.565552
2	C	-0.266094	-1.629058	1.682189
3	C	-1.216798	-1.633184	2.766720
4	C	-2.346556	-0.835285	2.690569
5	C	-2.591661	-0.010134	1.578751
6	C	-1.642779	0.006356	0.495170
7	C	-1.890467	0.851714	-0.603513
8	C	-3.023668	1.648763	-0.671620
9	C	-3.977240	1.623684	0.408579
10	C	-3.738402	0.803604	1.499863
11	C	-5.142614	2.456210	0.315054
12	C	-5.345560	3.253054	-0.767775
13	C	-4.398013	3.279153	-1.840190
14	C	-3.279908	2.506645	-1.792745
15	C	0.884152	-2.483018	1.788323
16	C	1.079599	-3.264440	2.883987
17	C	0.140281	-3.260644	3.961985
18	C	-0.966989	-2.475075	3.902254
19	H	-3.063675	-0.844109	3.508647
20	H	-1.172937	0.879867	-1.418565
21	H	-4.451212	0.785190	2.321614
22	H	-5.860319	2.435048	1.131125
23	H	-6.231358	3.878424	-0.827224
24	H	-4.581118	3.923712	-2.694631
25	H	-2.557975	2.522902	-2.604955
26	H	1.597560	-2.493290	0.970759
27	H	1.956161	-3.902379	2.945170
28	H	0.317598	-3.893174	4.826604
29	H	-1.688739	-2.468899	4.715034
30	C	0.483543	-0.814052	-0.563116
31	C	0.219412	-1.624305	-1.712712
32	C	1.155234	-1.619341	-2.800143
33	C	2.317723	-0.818853	-2.701878
34	C	2.589863	-0.024183	-1.585217
35	C	1.643457	-0.011159	-0.483602
36	C	1.914767	0.809005	0.614677
37	C	3.084356	1.607081	0.704521
38	C	4.023831	1.582700	-0.377167
39	C	3.742879	0.764387	-1.496331
40	C	5.184980	2.373372	-0.287845
41	C	5.423523	3.167022	0.826054
---	---	---	---	---
42	C	4.505259	3.191530	1.881457
43	C	3.350781	2.420713	1.818926
44	C	-0.922508	-2.438508	-1.814790
45	C	-1.155336	-3.213757	-2.946133
46	C	-0.247303	-3.202196	-4.006833
47	C	0.894882	-2.414918	-3.930487
48	H	3.024842	-0.823613	-3.528831
49	H	1.206179	0.841127	1.437193
50	H	4.451414	0.749157	-2.322047
51	H	5.898000	2.355824	-1.108176
52	H	6.324811	3.770188	0.876776
53	H	4.693500	3.813552	2.751027
54	H	2.637037	2.438844	2.638415
55	H	-1.631646	-2.458816	-0.993771
56	H	-2.047379	-3.830081	-2.999107
57	H	-0.429727	-3.808176	-4.888946
58	H	1.607561	-2.406498	-4.751303
Table S3. Standard nuclear orientation of $^{5}(T_{1}T_{1})$ geometry of 55BT optimized at the UoB97XD/6-31G(d) level of theory assuming that 55BT belongs to the C_{2} point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	-0.378923	0.638394	-0.862158
2	C	-1.498920	0.792782	-1.771854
3	C	-2.218079	2.020665	-1.786130
4	C	-1.817694	3.074881	-0.899402
5	C	-0.743771	2.940935	-0.017160
6	C	0.002609	1.682436	0.005194
7	C	1.074354	1.560568	0.889414
8	C	1.469310	2.620253	1.774968
9	C	0.743771	3.842965	1.752907
10	C	-0.358535	3.970279	0.843569
11	C	1.125618	4.878780	2.614305
12	C	2.199308	4.722088	3.483739
13	C	2.910677	3.522684	3.505650
14	C	2.546787	2.482348	2.657582
15	C	-1.896167	-0.232440	-2.637558
16	C	-2.973840	-0.062375	-3.502480
17	C	-3.676451	1.139288	-3.512827
18	C	-3.298558	2.170777	-2.662679
19	H	-2.373943	4.009093	0.916619
20	H	1.636393	0.631679	0.916619
21	H	-0.912662	4.905983	0.826743
22	H	0.570396	5.813281	2.596618
23	H	2.482451	5.535180	4.145262
24	H	3.749051	3.399160	4.184349
25	H	3.099801	1.546721	2.673044
26	H	-1.353670	-1.172633	-2.629972
27	H	-3.236329	-0.872112	-4.165171
28	H	-4.517432	1.273895	-4.189691
29	H	-3.844504	3.110881	-2.668869
30	C	0.378923	-0.638394	-0.862158
31	C	1.498920	-0.792782	-1.771854
32	C	2.218079	-2.020665	-1.786130
33	C	1.817694	-3.074881	-0.899402
34	C	0.743771	-2.940935	-0.017160
35	C	-0.002609	-1.682436	0.005194
36	C	-1.074354	-1.560568	0.889414
37	C	-1.469310	-2.620253	1.774968
38	C	-0.743771	-3.842965	1.752907
39	C	0.358535	-3.970279	0.843569
40	C	-1.125618	-4.878780	2.614305
41	C	-2.199308	-4.722088	3.483739
---	---	------	------	------
42	C	-2.910677	-3.522684	3.505650
43	C	-2.546787	-2.482348	2.657582
44	C	1.896167	0.232440	-2.637558
45	C	2.973840	0.062375	-3.502480
46	C	3.676451	-1.139288	-3.516287
47	C	3.298558	-2.170777	-2.662679
48	H	2.373943	-4.009093	-0.918654
49	H	-1.636393	-0.631679	0.916619
50	H	0.912662	-4.905983	0.826743
51	H	-0.570396	-5.813281	2.596618
52	H	-2.482451	-5.535180	4.145262
53	H	-3.749051	-3.399160	4.184349
54	H	-3.099801	-1.546721	2.673044
55	H	1.353670	1.172633	-2.629972
56	H	3.263294	0.872112	-4.165171
57	H	4.517432	-1.273895	-4.189691
58	H	3.844504	-3.110881	-2.668869
Table S4. Standard nuclear orientation of S₀ geometry of Tc optimized at the ωB97X-D/6-31G(d) level of theory assuming that Tc belongs to the D_{2h} point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	0.000000	4.873620	0.715886
2	C	0.000000	3.702971	1.406511
3	C	0.000000	2.440783	0.721150
4	C	0.000000	2.440783	-0.721150
5	C	0.000000	3.702971	-1.406511
6	C	0.000000	4.873620	-0.715886
7	C	0.000000	1.232962	1.401392
8	C	0.000000	1.232962	-1.401392
9	C	0.000000	0.000000	-0.719988
10	C	0.000000	0.000000	0.719988
11	C	0.000000	-1.232962	1.401392
12	H	0.000000	-1.231802	2.488863
13	C	0.000000	-2.440783	0.721150
14	C	0.000000	-2.440783	-0.721150
15	C	0.000000	-1.232962	-1.401392
16	H	0.000000	1.231802	2.488863
17	H	0.000000	5.821156	1.245787
18	H	0.000000	3.699915	2.493051
19	H	0.000000	3.699915	-2.493051
20	H	0.000000	5.821156	-1.245787
21	H	0.000000	1.231802	-2.488863
22	H	0.000000	-1.231802	-2.488863
23	C	0.000000	-3.702971	-1.406511
24	C	0.000000	-3.702971	1.406511
25	C	0.000000	-4.873620	-0.715886
26	C	0.000000	-4.873620	0.715886
27	H	0.000000	-3.699915	-2.493051
28	H	0.000000	-5.821156	-1.245787
29	H	0.000000	-5.821156	1.245787
30	H	0.000000	-3.699915	2.493051
Table S5. Standard nuclear orientation of S_1 geometry of Tc optimized at the TD-ωB97X-D/6-31G(d) level of theory assuming that Tc belongs to the D_{2h} point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	0.000000	4.905403	0.698672
2	C	0.000000	3.702090	1.396151
3	C	0.000000	2.471115	0.717485
4	C	0.000000	2.471115	-0.717485
5	C	0.000000	3.702090	-1.396151
6	C	0.000000	4.905403	-0.698672
7	C	0.000000	1.227293	1.397932
8	C	0.000000	1.227293	-1.397932
9	C	0.000000	0.000000	-0.726338
10	C	0.000000	0.000000	0.726338
11	C	0.000000	-1.227293	1.397932
12	H	0.000000	-1.230717	2.485889
13	C	0.000000	-2.471115	0.717485
14	C	0.000000	-2.471115	-0.717485
15	C	0.000000	-1.227293	-1.397932
16	H	0.000000	1.230717	2.485889
17	H	0.000000	5.845280	1.241811
18	H	0.000000	3.702332	2.483089
19	H	0.000000	3.702332	-2.483089
20	H	0.000000	5.845280	-1.241811
21	H	0.000000	1.230717	-2.485889
22	H	0.000000	-1.230717	-2.485889
23	C	0.000000	-3.702090	-1.396151
24	C	0.000000	-3.702090	1.396151
25	C	0.000000	-4.905403	-0.698672
26	C	0.000000	-4.905403	0.698672
27	H	0.000000	-3.702332	-2.483089
28	H	0.000000	-5.845280	-1.241811
29	H	0.000000	-5.845280	1.241811
30	H	0.000000	-3.702332	2.483089
Table S6. Standard nuclear orientation of T₁ geometry of Tc optimized at the UωB97X-D/6-31G(d) level of theory assuming that Tc belongs to the D_{2h} point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	0.000000	4.911163	0.696757
2	C	0.000000	3.705999	1.392618
3	C	0.000000	2.483646	0.711641
4	C	0.000000	2.483646	-0.711641
5	C	0.000000	3.705999	-1.392618
6	C	0.000000	4.911163	-0.696757
7	C	0.000000	1.224441	1.403957
8	C	0.000000	1.224441	-1.403957
9	C	0.000000	0.000000	-0.732116
10	C	0.000000	0.000000	0.732116
11	C	0.000000	-1.224441	1.403957
12	H	0.000000	-1.231296	2.491463
13	C	0.000000	-2.483646	0.711641
14	C	0.000000	-2.483646	-0.711641
15	C	0.000000	-1.224441	-1.403957
16	H	0.000000	1.231296	2.491463
17	H	0.000000	5.850207	1.241757
18	H	0.000000	3.705286	2.479735
19	H	0.000000	3.705286	-2.479735
20	H	0.000000	5.850207	-1.241757
21	H	0.000000	1.231296	-2.491463
22	H	0.000000	-1.231296	-2.491463
23	C	0.000000	-3.705999	-1.392618
24	C	0.000000	-3.705999	1.392618
25	C	0.000000	-4.911163	-0.696757
26	C	0.000000	-4.911163	0.696757
27	H	0.000000	-3.705286	-2.479735
28	H	0.000000	-5.850207	-1.241757
29	H	0.000000	-5.850207	1.241757
30	H	0.000000	-3.705286	2.479735
Figure S1. Stable \(^1(S_0S_0)\), \(^1(S_0S_1)\), and \(^5(T_1T_1)\) geometries of 55BT and stable \(S_0\), \(S_1\), and \(T_1\) geometries of tetracene. For \(^1(S_0S_0)\) of 55BT and \(S_0\) of tetracene, geometry optimization was done using the \(\omega B97X-D/6-31G(d)\) method; for \(^1(S_0S_1)\) of 55BT and \(S_1\) of tetracene, geometry optimization was done using the TD-\(\omega B97X-D/6-31G(d)\) method; for \(^5(T_1T_1)\) of 55BT and \(T_1\) of tetracene, geometry optimization was done using the U\(\omega B97X-D/6-31G(d)\) method. All the H atoms are omitted for clarity. Numbers show representative C–C bond lengths (Å) and the torsion angle between the two tetracene units (degree).
Method of calculating electronic states of 55BT

The wave functions of \(^1(S_0S_0) \), \(^1(S_0S_1) \), \(^1(S_0S_1)' \), \(^5(T_1T_1) \), and \(^5(T_1T_1) \) for the stable \(^1(S_0S_0)\), \(^1(S_0S_1)\), and \(^5(T_1T_1)\) geometries were calculated using a configuration interaction (CI) method called the RAS-2SF approach with four electrons in four orbitals (denoted as RAS(4,4)-2SF/6-31G(d)). The reference electronic configuration for the RAS(4,4)-2SF/6-31G(d) calculation was obtained using the ROHF/6-31G(d) method. The active space was divided into three subspaces, RAS1, RAS2, and RAS3. RAS2 consisted of HOMO−1, HOMO, LUMO, and LUMO+1. RAS1 consisted of occupied orbitals with energies lower than that of the HOMO−1 (HOMO−2, HOMO−3, ⋯) and RAS3 consisted of unoccupied orbitals with energies higher than that of the LUMO+1 (LUMO+2, LUMO+3, ⋯). The RAS-2SF calculations were performed using the Q-Chem program package. The RAS-CI code written by David Casanova was used for the RAS-2SF calculations. Slater determinants dominantly contributing to \(^1(S_0S_0)\), \(^1(S_0S_1)\), \(^1(S_0S_1)'\), and \(^5(T_1T_1)\) for the optimized \(^1(S_0S_0)\), \(^1(S_0S_1)\), and \(^5(T_1T_1)\) geometries are listed in Table S7, S8, and S9, respectively.

Method of calculating energy differences between electronic states of 55BT

The electronic energies of \(^1(S_0S_1)\), \(^1(S_0S_1)'\), \(^5(T_1T_1)\), and \(^5(T_1T_1)\) as calculated using the RAS(4,4)-2SF/6-31G(d) method are denoted as \(E^{\text{RAS}}[^1(S_0S_1)] \), \(E^{\text{RAS}}[^1(S_0S_1)'] \), \(E^{\text{RAS}}[^5(T_1T_1)] \), and \(E^{\text{RAS}}[^5(T_1T_1)] \), respectively. Corrected electronic energies of \(^1(S_0S_1)\), \(^1(S_0S_1)'\), \(^5(T_1T_1)\), and \(^5(T_1T_1)\) are denoted as \(E^{\text{Corr}}[^1(S_0S_1)] \), \(E^{\text{Corr}}[^1(S_0S_1)'] \), \(E^{\text{Corr}}[^5(T_1T_1)] \), and \(E^{\text{Corr}}[^5(T_1T_1)] \), respectively. The energy corrections of \(^1(S_0S_1)\), \(^1(S_0S_1)'\), \(^5(T_1T_1)\), and \(^5(T_1T_1)\) are denoted as \(E^{\text{Corr}}[^1(S_0S_1)] \), \(E^{\text{Corr}}[^1(S_0S_1)'] \), \(E^{\text{Corr}}[^5(T_1T_1)] \), and \(E^{\text{Corr}}[^5(T_1T_1)] \) account for the dynamic correlation that the RAS(4,4)-2SF/6-31G(d) method was unable to take into account. The method of calculating \(E^{\text{Corr}}[^1(S_0S_1)] \), \(E^{\text{Corr}}[^1(S_0S_1)'] \), \(E^{\text{Corr}}[^5(T_1T_1)] \), and \(E^{\text{Corr}}[^5(T_1T_1)] \) has been described elsewhere. The calculated \(E^{\text{RAS}}[^1(S_0S_1)] \), \(E^{\text{RAS}}[^1(S_0S_1)'] \), \(E^{\text{RAS}}[^5(T_1T_1)] \), and \(E^{\text{RAS}}[^5(T_1T_1)] \) are listed in Table S10. The calculated \(E^{\text{Corr}}[^1(S_0S_1)] \), \(E^{\text{Corr}}[^1(S_0S_1)'] \), \(E^{\text{Corr}}[^5(T_1T_1)] \), and \(E^{\text{Corr}}[^5(T_1T_1)] \) are listed in Table S11. The calculated \(E[^1(S_0S_1)] \), \(E[^1(S_0S_1)'] \), \(E[^5(T_1T_1)] \), and \(E[^5(T_1T_1)] \) are listed in Table S12.
Table S7. Slater determinants dominantly contributing to \(^1(S_0S_0), ^1(S_0S_1), ^1(S_0S_1)’, \text{ and } ^1(T_1T_1)\) of 55BT at the stable \(^1(S_0S_0)\) geometry calculated using the RAS(4,4)-2SF/6-31G(d) method. Calculated \(^1(S_0S_0) \rightarrow ^1(S_0S_1), ^1(S_0S_1) \rightarrow ^1(S_0S_1)’\), and \(^1(S_0S_0) \rightarrow ^1(T_1T_1)\) excitation energies \((E_{ex})\) and transition dipole moments \((\mu)\). \(E_{ex}\) and \(\mu\) are in eV and debye, respectively.

State \(S\)	Slater determinant \(\Phi_0\)	Contribution	\(E_{ex}\)	\(\mu\)
\(^1(S_0S_0)\)	\(\Phi^{LUMO}_{HOMO}^{HOMO}\)	84.9284155	1.3073461	
	\(\Phi^{LUMO+1}_{HOMO-1}^{HOMO-1}\)	1.2986205		
	\(\Phi^{LUMO+1}_{HOMO-1}^{HOMO}\)	1.2801167	0.9837446	
	\(\Phi^{LUMO+1}_{HOMO-1}^{HOMO}\)	0.9714920	0.9710332	
\(^1(S_0S_1)\)	\(\Phi^{LUMO+1}_{HOMO}\)	20.5506484	18.3819733	
	\(\Phi^{LUMO+1}_{HOMO-1}\)	20.5506484	18.3819733	
\(^1(S_0S_1)’\)	\(\Phi^{LUMO}_{HOMO-1}\)	22.0466038	19.8422582	
	\(\Phi^{LUMO+1}_{HOMO-1}\)	22.0466038	19.8422582	
\(^1(T_1T_1)\)	\(\Phi^{LUMO}_{HOMO}^{HOMO}\)	18.9278410	18.7177403	18.7003944
	\(\Phi^{LUMO+1}_{HOMO-1}^{HOMO-1}\)	18.6324788	8.3403100	8.3403100
	\(\Phi^{LUMO+1}_{HOMO-1}^{HOMO}\)	8.3403100	2.1122257	
Transition	Energy (eV)			
----------------------------	-------------			
LUMO-1 HOMO → LUMO+1 LUMO	2.112257			
LUMO+1 HOMO-1 HOMO	2.0581020			
LUMO+1 LUMO-1 HOMO	2.0581020			
LUMO+1 LUMO HOMO-1 HOMO	2.0581020			
Table S8. Slater determinants dominantly contributing to \(^1(S_0S_0) \), \(^1(S_0S_1) \), \(^1(S_0S_1)' \), and \(^1(T_1T_1) \) of 55BT calculated at the stable \(^1(S_0S_1) \) geometry using the RAS(4,4)-2SF/6-31G(d) method. Calculated \(^1(S_0S_0) \rightarrow ^1(S_0S_1) \), \(^1(S_0S_0) \rightarrow ^1(S_0S_1)' \), and \(^1(S_0S_0) \rightarrow ^1(T_1T_1) \) excitation energies \((E_{ex}) \) and transition dipole moments \((\mu) \). \(E_{ex} \) and \(\mu \) are in eV and debye, respectively.

State	Slater determinant	CI coefficient	\(E_{ex} \)	\(\mu \)
\(^1(S_0S_0) \)	\(\Phi_0 \)	82.5169076		
	\(\Phi_{LUMO}^{HOMO} \)	6.7902840		
	\(\Phi_{LUMO+1}^{HOMO-1} \)	3.7745069		
\(^1(S_0S_1) \)	\(\Phi_{LUMO}^{HOMO} \)	34.8593506	3.7671	2.6503
	\(\Phi_{LUMO}^{HOMO} \)	34.8593506		
	\(\Phi_{LUMO+1}^{HOMO-1} \)	3.3717643		
	\(\Phi_{LUMO+1}^{HOMO-1} \)	3.3717643		
\(^1(S_0S_1)' \)	\(\Phi_{LUMO}^{HOMO-1} \)	37.3048079	3.9860	0.6962
	\(\Phi_{LUMO}^{HOMO-1} \)	37.3048079		
	\(\Phi_{LUMO+1}^{HOMO-1} \)	2.2892716		
	\(\Phi_{LUMO+1}^{HOMO-1} \)	2.2892716		
\(^1(T_1T_1) \)	\(\Phi_{LUMO}^{HOMO-1} \)	26.3859334	3.1082	0.0075
	\(\Phi_{LUMO+1}^{HOMO} \)	26.3859334		
	\(\Phi_{LUMO}^{HOMO-1} \)	7.9395642		
	\(\Phi_{LUMO+1}^{HOMO-1} \)	7.9395642		
	\(\Phi_{LUMO+1}^{HOMO} \)	5.3777646		
	\(\Phi_{LUMO+1}^{HOMO} \)	5.3777646		
	\(\Phi_{LUMO+1}^{HOMO} \)	4.4652101		
	\(\Phi_{LUMO+1}^{HOMO} \)	4.4652101		
	\(\Phi_{LUMO}^{HOMO-1} \)	2.3699630		
	\(\Phi_{LUMO}^{HOMO-1} \)	2.3699630		
	\(\Phi_{LUMO}^{HOMO-1} \)	1.1039091		
	\(\Phi_{LUMO}^{HOMO-1} \)	1.1039091		
Table S9. Slater determinants dominantly contributing to $^1(S_0S_0)$, $^1(S_0S_1)$, $^1(S_0S_1)'$, and $^1(T_1T_1)$ of 55BT calculated at the stable $^5(T_1T_1)$ geometry using the RAS(4,4)-2SF/6-31G(d) method. Calculated $^1(S_0S_0) \rightarrow ^1(S_0S_1)$, $^1(S_0S_0) \rightarrow ^1(S_0S_1)'$, and $^1(S_0S_0) \rightarrow ^1(T_1T_1)$ excitation energies (E_{ex}) and transition dipole moments (μ). E_{ex} and μ are in eV and debye, respectively.

State	Slater determinant	CI coefficient	E_{ex}	μ
$^1(S_0S_0)$	$^{\phi}_{LUMO\over HOMO}$ $^{\phi}_{LUMO\over HOMO}$	2.4363953		
	$^{\phi}_{LUMO+1\over HOMO-1}$ $^{\phi}_{LUMO+1\over HOMO-1}$	2.4040161		
	$^{\phi}_{LUMO+1\over HOMO-1}$ $^{\phi}_{LUMO\over HOMO}$	2.3585609		
	$^{\phi}_{LUMO+1\over HOMO-1}$ $^{\phi}_{LUMO\over HOMO}$	2.3585609		
	$^{\phi}_{LUMO\over HOMO-1}$ $^{\phi}_{LUMO+1\over HOMO}$	2.0128205		
	$^{\phi}_{LUMO\over HOMO-1}$ $^{\phi}_{LUMO+1\over HOMO}$	2.0128205		
	$^{\phi}_{LUMO\over HOMO-1}$ $^{\phi}_{LUMO\over HOMO}$	1.9765439		
	$^{\phi}_{LUMO\over HOMO-1}$ $^{\phi}_{LUMO+1\over HOMO}$	1.9532249		
$^1(S_0S_1)$	$^{\phi}_{LUMO_{HOMO}+1}$	22.2434742	4.1781	0.1790
	$^{\phi}_{LUMO_{HOMO}+1}$	22.2434742		
	$^{\phi}_{LUMO_{HOMO}+1}$	17.2174833		
	$^{\phi}_{LUMO_{HOMO}+1}$	17.2174833		
$^1(S_0S_1)'$	$^{\phi}_{LUMO_{HOMO}+1}$	20.3313374	4.3380	0.0210
	$^{\phi}_{LUMO_{HOMO}+1}$	20.3313374		
	$^{\phi}_{LUMO_{HOMO}+1}$	19.1283410		
	$^{\phi}_{LUMO_{HOMO}+1}$	19.1283410		
$^1(T_1T_1)$	$^{\phi}_{LUMO_{HOMO}-1}\over^{\phi}_{LUMO_{HOMO}}$	18.8992721	3.8316	0.0001
	$^{\phi}_{LUMO_{HOMO}-1}\over^{\phi}_{LUMO_{HOMO}}$	18.8928206		
	$^{\phi}_{LUMO_{HOMO}-1}\over^{\phi}_{LUMO_{HOMO}}$	18.6331567		
	$^{\phi}_{LUMO_{HOMO}}\over^{\phi}_{LUMO_{HOMO}}$	18.5536522		
	$^{\phi}_{LUMO_{HOMO}}\over^{\phi}_{LUMO_{HOMO}}$	8.3403579		
	$^{\phi}_{LUMO_{HOMO}-1}\over^{\phi}_{LUMO_{HOMO}}$	8.3403579		
	$^{\phi}_{LUMO_{HOMO}}\over^{\phi}_{LUMO_{HOMO}}$	2.0779212		
Table S10. The electronic energies of $^1(S_0S_0)$, $^1(S_0S_1)$, $^1(S_0S_1)'$, $^1(T_1T_1)$, and $^5(T_1T_1)$ at the stable $^1(S_0S_0)$, $^1(S_0S_1)$, and $^5(T_1T_1)$ geometries as calculated using the RAS(4,4)-2SF/6-31G(d) method. The zero point of the electronic energies is set to be the $^1(S_0S_0)$ energy calculated at the stable $^1(S_0S_0)$ geometry. Values are in eV.

	$^1(S_0S_0)$	$^1(S_0S_1)$	$^5(T_1T_1)$
$E^\text{RAS}[^1(S_0S_0)]$	0.0000	0.3067	0.8324
$E^\text{RAS}[^1(S_0S_1)]$	4.1781	4.0738	4.3673
$E^\text{RAS}[^1(S_0S_1)']$	4.3380	4.2927	4.3773
$E^\text{RAS}[^1(T_1T_1)]$	3.8316	3.4149	2.9247
$E^\text{RAS}[^5(T_1T_1)]$	3.8089	3.4220	2.9032

Table S11. The energy corrections for $^1(S_0S_0)$, $^1(S_0S_1)$, $^1(S_0S_1)'$, and $^1(T_1T_1)$ at the stable $^1(S_0S_0)$, $^1(S_0S_1)$, and $^5(T_1T_1)$ geometries. Values are in eV.

	$^1(S_0S_0)$	$^1(S_0S_1)$	$^5(T_1T_1)$
$E^\text{Corr}[^1(S_0S_0)]$	0.9006	0.9637	1.0284
$E^\text{Corr}[^1(S_0S_1)]$	0.9006	0.9637	1.0284
$E^\text{Corr}[^1(S_0S_1)']$	0.3836	0.2320	0.2266
$E^\text{Corr}[^5(T_1T_1)]$	0.3836	0.2320	0.2266

Table S12. Corrected energies of $^1(S_0S_0)$, $^1(S_0S_1)$, $^1(S_0S_1)'$, $^1(T_1T_1)$, and $^5(T_1T_1)$ at the stable $^1(S_0S_0)$, $^1(S_0S_1)$, and $^5(T_1T_1)$ geometries. The zero point of the electronic energies is set to be the $^1(S_0S_0)$ energy calculated at the stable $^1(S_0S_0)$ geometry. Values are in eV. The corrected energies are shown in Figure S2.

	$^1(S_0S_0)$	$^1(S_0S_1)$	$^5(T_1T_1)$
$E[^1(S_0S_0)]$	0.0000	0.3067	0.8324
$E[^1(S_0S_1)]$	3.2775	3.1101	3.3389
$E[^1(S_0S_1)']$	3.4374	3.3290	3.3489
$E[^1(T_1T_1)]$	3.4480	3.1829	2.6981
$E[^5(T_1T_1)]$	3.4253	3.1900	2.6766
$E[^5(T_1T_1)] - E[^1(S_0S_1)]$	0.1705	0.0728	-0.6408
$E[^1(T_1T_1)] - E[^1(S_0S_1)']$	0.0106	-0.1461	-0.6508
$E[^5(T_1T_1)] - E[^1(T_1T_1)]$	-0.0228	0.0071	-0.0215
Figure S2. Energy-level diagrams for relevant electronic states for SF calculated at the stable $^1(S_0S_0)$, $^1(S_0S_1)$, and $^5(T_1T_1)$ geometries. The electronic energies of $^1(S_0S_0)$, $^1(S_0S_1)$, $^1(S_0S_1)'$, $^1(T_1T_1)$, and $^5(T_1T_1)$ are the corrected RAS(4,4)-2SF/6-31G(d) energies listed in Table S12. The zero point of the electronic energies is set to be the $^1(S_0S_0)$ energy calculated at the optimized $^1(S_0S_0)$ geometry.
Table S13. Interstate vibronic-coupling constant (V_m) of the mth vibrational mode between 1(T$_1$T$_1$) and 1(S$_0$S$_1$) for 55BT calculated at the stable 1(S$_0$S$_1$) geometry. Vibrational factor P_m for the mth vibrational mode. Contribution from the mth mode to r_{IC} ($r_{IC,m}$). $r_{IC} = \Sigma_m r_{IC,m} = 3.45 \times 10^{11}$ s$^{-1}$. V_m, P_m, and $r_{IC,m}$ versus wavenumber plots are shown in Figure 3 in the main text.

m	Wavenumber (cm$^{-1}$)	V_m $(10^{-4}$ a.u.$)$	V_m^2 $(10^{-8}$ a.u.$)$	P_m	$r_{IC,m}$ $(10^{10}$ s$^{-1}$)	
1	7.94	0.03859	0.14891	0.00577	0.38053	
2	33.80	0.00734	0.00539	0.00136	0.00324	
3	37.55	0.11389	1.29710	0.00122	0.70138	
4	47.42	0.01707	0.02915	0.00097	0.01249	
5	49.63	0.00193	0.00037	0.00092	0.00015	
6	80.34	0.09945	0.98893	0.00057	0.25051	
7	86.25	0.22059	4.86600	0.00053	1.14860	
8	108.16	0.53183	28.28400	0.00043	5.33360	
9	121.40	0.36965	13.66400	0.00038	2.29860	
10	129.33	0.66784	44.60100	0.00036	7.04850	
11	159.56	0.05395	0.29107	0.00029	0.03742	
12	166.94	0.14979	2.24370	0.00028	0.27594	
13	178.60	0.08347	0.69672	0.00026	0.08022	
14	220.92	0.51587	26.61200	0.00021	2.49250	
15	236.43	0.34467	11.88000	0.00020	1.04210	
16	242.86	0.58561	34.29400	0.00019	2.93170	
17	275.84	0.06805	0.46301	0.00017	0.03502	
18	284.53	0.00970	0.00942	0.00017	0.00069	
19	314.08	0.01148	0.01319	0.00015	0.00088	
20	320.96	0.22461	5.04500	0.00015	0.32979	
21	321.23	0.10417	1.08510	0.00015	0.07088	
22	331.19	0.10529	1.10860	0.00014	0.07029	
23	347.94	0.18492	3.41950	0.00014	0.20658	
24	358.45	0.62052	38.50500	0.00013	2.25850	
25	386.46	0.16919	2.86250	0.00012	0.15557	
26	416.70	0.13626	1.85670	0.00011	0.09313	
27	438.97	0.04805	0.23089	0.00011	0.01092	
28	458.48	0.07400	0.54764	0.00010	0.02458	
29	472.44	0.16051	2.57630	0.00010	0.11131	
30	476.67	0.38001	14.44100	0.00010	0.61662	
31	480.87	0.00675	0.00456	0.00010	0.00019	
32	484.08	0.09518	0.90589	0.00009	0.03789	
33	505.65	0.08462	0.71597	0.00009	0.02815	
34	508.61	0.02107	0.04438	0.00009	0.00173	
35	522.04	0.00260	0.00068	0.00008	0.00003	
36	533.34	0.09769	0.95431	0.00008	0.03451	
37	542.17	0.07660	0.58669	0.00008	0.02064	
38	555.20	0.07508	0.56369	0.00008	0.01901	
---	----	-----	-----	-----	-----	
39	565.34	0.05833	0.34029	0.00007	0.01110	
40	569.19	0.19676	3.87140	0.00007	0.12466	
41	607.79	0.64359	41.42100	0.00006	1.16570	
42	622.76	0.33243	11.05100	0.00006	0.29452	
43	631.23	0.08418	0.70868	0.00006	0.01110	
44	635.89	0.18755	3.51750	0.00006	0.08931	
45	639.35	0.21414	4.58560	0.00005	0.11494	
46	650.58	0.51054	26.06500	0.00005	0.62648	
47	662.27	0.22768	5.18380	0.00005	0.11925	
48	681.28	0.43132	18.60400	0.00005	0.39849	
49	689.94	0.19432	3.77600	0.00005	0.07831	
50	737.73	0.04311	0.18586	0.00004	0.00324	
51	739.70	0.01920	0.03687	0.00004	0.00064	
52	742.57	0.05608	0.31451	0.00004	0.00539	
53	756.23	0.02017	0.04069	0.00004	0.00067	
54	759.25	0.00308	0.00095	0.00004	0.00002	
55	760.44	0.07110	26.06500	0.00003	0.15815	
56	770.35	0.00728	0.00531	0.00003	0.00008	
57	774.43	0.07208	0.51957	0.00003	0.00799	
58	778.27	0.04833	0.23353	0.00003	0.00355	
59	782.81	0.12508	1.56450	0.00003	0.02342	
60	790.08	0.09853	0.97089	0.00003	0.01420	
61	795.05	0.20475	4.19230	0.00003	0.06036	
62	800.41	0.33467	11.20000	0.00003	0.15861	
63	816.53	0.16398	2.68900	0.00003	0.03627	
64	821.13	0.04554	0.20740	0.00003	0.00276	
65	855.89	0.02329	0.05422	0.00003	0.00066	
66	862.59	0.01693	0.02866	0.00003	0.00034	
67	869.53	0.01017	0.01034	0.00003	0.00012	
68	873.66	0.01287	0.01657	0.00003	0.00019	
69	881.26	0.57855	33.47200	0.00003	0.37933	
70	890.70	0.03041	0.09245	0.00003	0.00102	
71	891.10	0.01772	0.03140	0.00002	0.00035	
72	904.40	0.00031	0.00001	0.00002	0.00000	
73	915.08	0.10193	1.03900	0.00002	0.01088	
74	921.32	0.03197	0.10218	0.00002	0.00106	
75	925.91	0.07299	0.53271	0.00002	0.00545	
76	932.70	0.01160	0.01344	0.00002	0.00014	
77	934.30	0.00862	0.00743	0.00002	0.00007	
78	949.50	0.00887	0.00786	0.00002	0.00008	
79	953.16	0.00586	0.00344	0.00002	0.00003	
80	962.33	0.04374	0.19134	0.00002	0.00182	
81	968.50	0.00973	0.00946	0.00002	0.00009	
82	988.51	0.00248	0.00061	0.00002	0.00001	
83	988.65	0.00125	0.00016	0.00002	0.00000	
---	--------	---------	---------	---------	---------	
84	989.80	0.00633	0.00401	0.00002	0.00004	
85	990.27	0.00130	0.00017	0.00002	0.00000	
86	1013.67	0.00155	0.00024	0.00002	0.00000	
87	1014.02	0.00296	0.00088	0.00002	0.00001	
88	1038.40	0.07772	0.60402	0.00002	0.00501	
89	1042.13	0.01862	0.03467	0.00002	0.00029	
90	1075.52	0.18271	3.33830	0.00002	0.02613	
91	1078.04	1.27190	161.7700	0.00002	1.26130	
92	1085.52	0.42099	17.7230	0.00002	0.13665	
93	1153.30	0.09005	0.81081	0.00002	0.00569	
94	1153.93	0.19340	3.74040	0.00002	0.02621	
95	1162.08	0.45904	21.0720	0.00002	0.14609	
96	1170.48	0.32128	10.3220	0.00002	0.07079	
97	1185.56	0.43543	18.9600	0.00002	0.12754	
98	1195.44	0.12488	1.55950	0.00001	0.01036	
99	1201.24	0.06434	0.41395	0.00001	0.00501	
100	1205.53	0.11352	1.28870	0.00001	0.00846	
101	1212.96	0.10940	1.19680	0.00001	0.00778	
102	1219.60	0.00295	0.00087	0.00001	0.00001	
103	1243.48	0.05166	0.26687	0.00001	0.00167	
104	1245.46	0.09340	0.87239	0.00001	0.00545	
105	1263.13	0.05719	0.32702	0.00001	0.00200	
106	1263.93	0.44047	19.4010	0.00001	0.11874	
107	1269.62	0.16213	2.62860	0.00001	0.01598	
108	1296.15	0.19061	3.63320	0.00001	0.02143	
109	1313.13	0.26687	7.1220	0.00001	0.04123	
110	1323.71	0.37470	14.0400	0.00001	0.08034	
111	1330.10	0.20988	4.4050	0.00001	0.02503	
112	1333.56	0.13165	1.73320	0.00001	0.00981	
113	1337.11	0.23839	5.6830	0.00001	0.03205	
114	1340.82	0.31954	10.2110	0.00001	0.05736	
115	1351.54	0.03703	0.13709	0.00001	0.00076	
116	1357.09	0.01653	0.02733	0.00001	0.00015	
117	1379.27	0.29505	8.70550	0.00001	0.04695	
118	1406.82	0.05523	0.30499	0.00001	0.00160	
119	1408.73	0.09208	0.84795	0.00001	0.00444	
120	1420.71	0.33428	11.17400	0.00001	0.05775	
121	1434.08	0.02249	0.05058	0.00001	0.00026	
122	1444.05	0.01115	0.01243	0.00001	0.00006	
123	1454.87	0.00874	0.00763	0.00001	0.00004	
124	1461.88	0.03965	0.15717	0.00001	0.00078	
125	1470.17	0.00896	0.00802	0.00001	0.00004	
126	1487.66	0.01026	0.01053	0.00001	0.00005	
127	1491.65	0.05551	0.30815	0.00001	0.00148	
128	1503.08	0.23596	5.56770	0.00001	0.02653	
---	-------	-------	-------	-------	-------	-------
129	1505.19	0.12201	1.48860	0.00001	0.00708	
130	1511.04	0.34253	11.73300	0.00001	0.05548	
131	1532.51	0.09720	0.94476	0.00001	0.00438	
132	1543.53	0.00645	0.00416	0.00001	0.00002	
133	1567.28	0.02010	0.04040	0.00001	0.00018	
134	1580.36	0.01499	0.02247	0.00001	0.00010	
135	1589.91	0.02592	0.06720	0.00001	0.00030	
136	1591.61	0.03749	0.14054	0.00001	0.00062	
137	1626.08	0.04042	0.16335	0.00001	0.00069	
138	1627.41	0.09760	0.95263	0.00001	0.00404	
139	1639.14	0.05978	0.35739	0.00001	0.00026	
140	1649.99	0.17880	3.19690	0.00001	0.01330	
141	1666.27	0.07027	0.49382	0.00001	0.00202	
142	1678.27	0.06034	0.36403	0.00001	0.00148	
143	1695.52	0.07740	0.59903	0.00001	0.00239	
144	1723.78	0.09505	0.90351	0.00001	0.00352	
145	1735.24	0.10775	1.16100	0.00001	0.00448	
146	3196.46	0.10651	1.13440	0.00000	0.00167	
147	3197.92	0.21836	4.76810	0.00000	0.00700	
148	3198.71	0.23678	5.60650	0.00000	0.00822	
149	3200.29	0.60122	36.14700	0.00000	0.05297	
150	3204.51	0.06183	0.38232	0.00000	0.00056	
151	3205.04	0.23542	5.54230	0.00000	0.00810	
152	3205.33	0.03675	0.13506	0.00000	0.00020	
153	3205.53	0.08241	0.67916	0.00000	0.00099	
154	3209.68	0.02694	0.07259	0.00000	0.00011	
155	3210.07	0.00176	0.00031	0.00000	0.00000	
156	3217.59	0.00396	0.00157	0.00000	0.00000	
157	3219.41	0.01217	0.01481	0.00000	0.00002	
158	3223.81	0.00562	0.00316	0.00000	0.00000	
159	3223.87	0.00528	0.00279	0.00000	0.00000	
160	3226.38	0.12815	1.64220	0.00000	0.00237	
161	3227.07	0.17646	3.11380	0.00000	0.00450	
162	3230.04	0.10602	1.12400	0.00000	0.00162	
163	3232.48	0.07911	0.62587	0.00000	0.00090	
164	3236.09	0.00361	0.00130	0.00000	0.00000	
165	3238.32	0.00471	0.00222	0.00000	0.00000	
166	3240.55	0.05662	0.32061	0.00000	0.00046	
167	3242.93	0.07953	0.63247	0.00000	0.00091	
Method of calculating triplet energy of 55BT and Tc

The geometry of $^3(S_0T_1)$ of 55BT was optimized at the $U\omega B97X$-D/6-31G(d) level of theory assuming that 55BT belonged to the C_1 point group and then, its stability was confirmed using frequency analysis at the same level of theory. No imaginary modes were obtained, indicating that the optimized geometry was stationary minima. The geometry optimization and frequency analysis were performed using the Gaussian 16 package.1 The standard nuclear orientation and tube representation of the stable $^3(S_0T_1)$ geometry of 55BT are shown in Table S14 and Figure S3, respectively. From Figures S1 and S3, in the stable $^3(S_0T_1)$ geometry of 55BT, one of the Tc units has character of the optimized S0 geometry of the isolated Tc, whereas the other has character of the optimized T1 geometry of the isolated Tc. The T1 energy of 55BT was calculated by subtracting the SCF energy at the stable $^1(S_0S_0)$ geometry from the SCF energy at the stable $^3(S_0T_1)$ geometry. The SCF energy at the stable $^1(S_0S_0)$ geometry was calculated using the $\omega B97X$-D/6-31G(d) method. The SCF energy at the stable $^3(S_0T_1)$ geometry was calculated using the $U\omega B97X$-D/6-31G(d) method.

The standard nuclear orientation and tube representation of the stable T1 geometry of Tc are already shown in Table S6 and Figure S1, respectively. The T1 energy of Tc was calculated by subtracting the SCF energy at the stable S0 geometry from the SCF energy at the stable T1 geometry. The SCF energy at the stable S0 geometry was calculated using the $\omega B97X$-D/6-31G(d) method. The SCF energy at the stable T1 geometry was calculated using the $U\omega B97X$-D/6-31G(d) method. This method of calculating T1 energies of singlet fission molecules has been reported by Vallet \textit{et al.} and validated for predicting the T1 energy of Tc.5
Table S14. Standard nuclear orientation of $^3(S_0T_1)$ geometry of 55BT optimized at the UωB97X-D/6-31G(d) level of theory assuming that 55BT belongs to the C_1 point group.

Atom	Element symbol	x (Å)	y (Å)	z (Å)
1	C	-0.544934	0.866952	-0.532273
2	C	-0.471846	1.728388	-1.628671
3	C	-1.514981	1.713799	-2.624937
4	C	-2.583533	0.844544	-2.484813
5	C	-2.680391	-0.032199	-1.389359
6	C	-1.641997	-0.023770	-0.391511
7	C	-1.750348	-0.907768	0.700443
8	C	-2.823749	-1.774484	0.834205
9	C	-3.862504	-1.781522	-0.165190
10	C	-3.766015	-0.917608	-1.243898
11	C	-4.963663	-2.688622	-0.004770
12	C	-5.028657	-3.524277	1.065262
13	C	-3.996958	-3.517741	2.058198
14	C	-2.936123	-2.675419	1.946227
15	C	0.620869	2.645284	-1.805814
16	C	0.672221	3.475499	-2.880828
17	C	-0.362842	3.458783	-3.868369
18	C	-1.415424	2.609280	-3.743030
19	H	-3.369055	0.836576	-3.237427
20	H	-0.970826	-0.910267	1.456843
21	H	4.546267	-0.918497	2.002109
22	H	-5.745326	-2.691525	-0.760092
23	H	-5.866653	-4.206032	1.175709
24	H	-4.070648	-4.194625	2.904029
25	H	-2.150731	-2.667183	2.697343
26	H	1.409534	2.661281	-1.060543
27	H	1.506125	4.161446	-2.997116
28	H	-0.299283	4.131149	-4.718635
29	H	-2.206205	2.590008	-4.488560
30	C	0.522498	0.879124	0.505943
31	C	0.377410	1.752708	1.655328
32	C	1.389860	1.757418	2.655764
33	C	2.528510	0.898672	2.501388
34	C	2.681501	0.051800	1.402026
35	C	1.645797	0.037579	0.367865
36	C	1.808634	-0.816362	-0.722590
37	C	2.950387	-1.676091	-0.867171
38	C	3.956894	-1.660246	0.136925
39	C	3.790916	-0.783394	1.259868
40	C	5.071525	-2.496753	-0.00368
41	C	5.200283	-3.335550	-1.101612
---	---	--------	--------	--------
42	C	4.212851	-3.351302	-2.086568
43	C	3.098619	-2.527772	-1.967975
44	C	-0.730502	2.592958	1.813917
45	C	-0.848736	3.420977	2.927147
46	C	0.141974	3.424648	3.904767
47	C	1.252038	2.597516	3.766187
48	H	3.296239	0.910782	3.271445
49	H	1.048457	-0.839210	-1.497468
50	H	4.560208	-0.772374	2.028607
51	H	5.840445	-2.483918	0.768057
52	H	6.070628	-3.978248	-1.193019
53	H	4.312243	-4.006240	-2.946777
54	H	2.327794	-2.538692	-2.734256
55	H	-1.506865	2.596344	1.055654
56	H	-1.718080	4.063404	3.027982
57	H	0.051712	4.069590	4.773532
58	H	2.029067	2.596238	4.526528
Figure S3. The stable $^3(S_0T_1)$ geometry of 55BT. Geometry optimization was done using the \Uomega\B97X-D/6-31G(d) method. All the H atoms are omitted for clarity. Numbers are representative C–C bond-lengths (Å) and the torsion angle between the tetracene units (degree).

Figure S4. HOMO, LUMO, HOMO−1, and LUMO+1 at the stable $^1(S_0S_1)$ geometry calculated using the RAS(4,4)-2SF/6-31G(d) method.
Figure S5. The spatial overlap ρ distribution between the electronic wave functions of $^1(S_0S_1)$ and $^1(T_1T_1)$ at the stable $^1(S_0S_1)$ geometry calculated using the RAS(4,4)-2SF/6-31G(d) method.
References

(1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

(2) Casanova, D.; Slipchenko, L. V.; Krylov, A. I.; Head-Gordon, M., Double Spin-Flip Approach within Equation-of-Motion Coupled Cluster and Configuration Interaction Formalisms: Theory, Implementation, and Examples. J. Chem. Phys. 2009, 130, 044103.

(3) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X., et al., Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184-215.

(4) Feng, X.; Luzanov, A. V.; Krylov, A. I., Fission of Entangled Spins: An Electronic Structure Perspective. J. Phys. Chem. Lett. 2013, 4, 3845-3852.

(5) Vallett, P. J.; Snyder, J. L.; Damrauer, N. H., Tunable Electronic Coupling and Driving Force in Structurally Well-Defined Tetracene Dimers for Molecular Singlet Fission: A Computational Exploration Using Density Functional Theory. J. Phys. Chem. A 2013, 117, 10824-10838.