Microwave-assisted facile synthesis of N, P co-doped fluorescent carbon dot probe for the determination of nifedipine

Saeedeh Narimani1 · Naser Samadi1 · Tooba Hallaj2

Received: 28 September 2021 / Accepted: 22 November 2021
© The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2022

Abstract
A simple and fast microwave synthesis method was applied for the preparation of several carbon dots (CDs) from various combinations of urea, phosphoric acid, and B-alanine as nitrogen, phosphorus, and carbon precursors. The maximum quantum yield (44%) was obtained for nitrogen and phosphorus co-doped carbon dots (N, P-CDs) prepared from urea, B-alanine, and phosphoric acid. Furthermore, N, P-CDs were exploited to synthesize a simple and sensitive fluorometric probe to determine nifedipine (NFD). We determined that the analytical response of the designed sensor could be affected by the kind of dopant and synthesis precursors. It is worth mentioning that the fluorescence intensity of N, P-CDs was weakened by NFD, and no fluorescence quenching was observed for other prepared CDs. The NFD-developed sensor demonstrated a linear response range of $3.3 \times 10^{-8} \text{–} 3.2 \times 10^{-5} \text{ mol/L}$, with the detection limit of $1.0 \times 10^{-8} \text{ mol/L}$. The sensor was successfully applied to measure NFD in human biological fluids.

Keywords Fluorescence · N · P-CDs · Microwave synthesis · Nifedipine

Introduction
Nifedipine (NFD) is a dihydropyridine channel blocker for calcium that impedes the entry of calcium particles through layers into the cardiovascular smooth muscle cells. NFD causes dilation of coronary arteries and prevents calcium contraction and vasoconstriction utilized in treating of high blood pressure, angina pectoris, and some other cardiovascular disorders [1–3]. However, an overdose of NFD leads to disorders such as palpitations, dizziness and may cause vomiting due to its toxicity [4, 5]. Therefore, monitoring of NFD in human biological fluids is essential. Different methods, including chromatographic [6–8], electrochemical [9, 10], and spectroscopy [11, 12], have been reported for the quantification of NFD. Some of these methods are expensive, complicated, and time-consuming. The fluorometric techniques have been applied for designing simple, sensitive, and selective sensors for the measurement of different compounds in biological fluid. In these sensors, diverse phenomena such as dynamic and static quenching, inner filter effect (IFE), photoinduced electron transfer (PET), and energy transfer have been introduced as the quenching mechanism [13].

Recently, carbon dots (CDs) have been applied for designing various tune-off fluorometric sensors for the determination of different compounds including nifedipine [14–18]. CDs have received particular attention due to their high biocompatibility, photostability, water solubility, and tunable excitation and emission spectra [19–21]. These nanoparticles were synthesized by several methods such as hydrothermal [22], solvothermal [23, 24], ultrasonication [25, 26], and microwave, of which the microwave method has attracted additional notice due to its simplicity and rapidness compared to others [27–29]. The fluorescence features of CDs can be affected by various factors such as their size distribution, passivation agents, dopant, solvent, pH, and so on [30, 31]. One of the strategies to improve the fluorescence properties of CDs is the heteroatom doping process. This process can alter the chemical and optical properties of CDs.
and extend their potential applications [32–34]. The most common heteroatom that has been widely used for doping CDs is nitrogen. Concerning the synergistic effect of different elements, co-doping of nitrogen and various heteroatoms such as boron, sulfur, and phosphorus, have been used to improve the quantum yield and selectivity of CDs towards appropriate applications [34–38].

It is worth mentioning that the sensitivity and selectivity of doped CDs toward the determination of analytes is different from the un-doped CDs. For instance, a boron-doped CDs was used as fluorescent probe to determine triticonazole in which triticonazole quenched the fluorescence intensity of boron-doped CDs, while it has no effect on the un-doped CDs [39]. In another study, a selective S, N-doped CD-based fluorescence probe was designed for the determination of nitric oxide, and the selectivity of this sensor was attributed to the doping of S atoms [40].

Herein, a selective and simple CDs-based fluorometric probe was designed for analysis of NFD. Various single and co-doped CDs were prepared by a fast and one-step microwave-assisted synthesis method. The effect of dopant precursors was studied on the selectivity of the designed sensor toward NFD. N, P co-doped CDs were chosen as the best candidate to develop a turn-off fluorometric sensor for the determination of NFD in the real human samples.

Materials and methods

Chemicals and materials

All reagents were of analytical grade. Potassium dihydrogen phosphate, dipotassium hydrogen phosphate, urea, B-alanine, phosphoric acid, nifedipine, amino acids, and quinine sulfate dihydrate were purchased from Merck. Deionized water was utilized for all experiments.

Apparatus

FT-IR spectra were recorded by a (Bruker Co., Germany, www.bruker.com) Tensor-27 FT-IR spectrometer. UV–vis absorption spectra were performed on a (Varian, Australia) Cary-100 spectrophotometer. JASCO FP-8300 fluorescence spectrophotometer was used for recording the fluorescence intensity. All measurements were done in a standard 1.0 cm quartz cell. The pH was measured on a Metrohm 827 PH-Lab. The shape and particle size of the synthesized CDs were determined by transmission electron microscopy (TEM) in a TEM, Zeiss, Leo 906 (Germany) model in which the voltage was 100 kV. Furthermore, the X-ray diffraction (XRD) pattern was performed with a Philips PW 1730 diffractometer at a voltage of 40 kV. The XPS analyses were conducted on a Specs-Flex X-ray photoelectron spectroscope with the energy step size between 200 eV and 4 keV.

Preparation procedure for N, P-CDs

N, P-CDs were synthesized via a fast and one-step microwave method. First, 1.5 g urea, 1 g B-alanine and 4 mL H₃PO₄ were mixed, and dissolved in 20 mL deionized water and stirred vigorously to form a clear and homogeneous solution. The mixture was put into a 900 W microwave oven for 3.5 min. The obtained brown solid product was dissolved in 20 mL deionized water with stirring. To expel large particles, the solution was centrifuged at 6000 rpm for 20 min, and then filtered with 0.22 µm cellulose acetate microporous filter membranes. Finally, the obtained CDs were kept at 4 ºC for further use.

General procedure for measurement of nifedipine

Generally, 4 µL of CDs solution, 500 µL of 0.02 mol/L phosphate buffer solution (pH 6.0), and a specific concentration of NFD standard solution were added to a quartz cell. With the addition of deionized water, the volume of the solution was made up to 1.5 mL. Then the FL spectra were immediately recorded at 402 nm when the excitation wavelength was 365 nm at room temperature. The selectivity of the method toward NFD was also determined with the addition of coexistent materials in a similar manner in the presence of NFD. All the experiments were performed in triplicate.

Preparation procedure for real sample analysis

Plasma samples were acquired from Tabriz Blood Transfusion Center (Iran). A 500 µL sample of real plasma was spiked with a specific concentration of NFD standard solution in a test tube. Afterwards 500 µL of acetonitrile was added into the tube, and the solution was centrifuged at 6000 rpm for 35 min to precipitate the plasma proteins. Then, the supernatant solution was separated and made up to a volume of 10 mL with deionized water. An appropriate volume of this solution was used for the detection. The urine samples were obtained from healthy volunteers and spiked with different concentrations of NFD, and then centrifuge was performed at 6000 rpm for 25 min. After the dilution of the sample up to 4 times with deionized water, specific amounts of the solution were used for subsequent experiments.

Results and discussion

Structural characterization of CDs

A novel, simple and straightforward microwave synthesis method was used to prepare co-doped CDs from urea,
Microwave-assisted facile synthesis of N, P co-doped fluorescent carbon dot probe for the...

phosphoric acid, and B-alanine as nitrogen, phosphorus, and carbon sources, respectively. The as-synthesized N, P-CDs were characterized by various techniques. TEM images showed the N, P-CDs have uniform dispersions without apparent aggregation and have spherical shapes. The N, P-CDs are mainly distributed in the range of 6–8 nm (Fig. 1). As shown in the inset of Fig. 1, these CDs (which have light yellow color under visible light) exhibited a strong bright blue color under 365 nm UV light illumination. The XRD pattern of the CDs showed a broad diffraction peak located at 2θ = 24.9°, which is attributed to the graphitic structure of the N, P-CDs [41] (Fig. S1, Supporting Information). The functional groups on the surface of the prepared CDs were distinguished by FT-IR (Fig. S2). A peak that appeared between 3000 and 3400 cm⁻¹ is ascribed to stretching vibration of hydroxyl, carboxylic, and –NH groups, and the peak at 1659 cm⁻¹ is ascribed to a C = O stretching [42, 43]. The stretching vibration bands of CH₂ appeared at 2438 cm⁻¹. Furthermore, the peaks at 1448 cm⁻¹, 1402 cm⁻¹, 1111 cm⁻¹, and 992 cm⁻¹ are ascribed to P–C, –COO, C-O-P, and C–O stretching vibrations, respectively. The XPS were utilized further to confirm the functional groups and elements of N, P-CDs. The XPS survey spectra shown in Fig. 2a indicate three prominent peaks: C 1 s (282 eV), O 1 s (530 eV), P 2p (130 eV), and N 1s (398). In the high-resolution spectrum of C 1 s (Fig. 2b), the three fitted peaks at 282.07, 282.28, and 285.27 are due to the presence of C = C, C–C, and C–O/C–N, respectively. The two peaks in the O1s high-resolution spectrum (Fig. 2c) are assigned to carbonyl (529.66 eV, C = O), and hydroxyl (C–O, or C–OH 530.37 eV). Moreover, the N1s survey (Fig. 2d) scan shows peaks at 397.84 eV, 398.23 eV, and 399.79 eV, corresponding to the nitrogen in the form of C–N–C, nitrogen in the form of N–(C)₃ and H₂N–C, respectively. The high-resolution P2p spectrum contains two peaks at 131.30 and 132.17 assigned to P = O and P–C groups (Fig. 2e) [42, 44, 45]. The results showed that the as-prepared CDs have hydrophilic surfaces due to the amino, hydroxyl, carboxylic, and carbonyl groups on their surface, which make the CDs highly water-soluble and enable them to be applied in fluorescent-based applications and sensors. Also, the results obtained from XPS and FT-IR confirmed that the

Fig. 1 TEM images of the synthesized N, P-CDs. Inset: photograph of N, P-CDs under daylight (a) and the excitation of UV light with 365 nm (b)

Fig. 2 (a) XPS spectra of CDs and the corresponding high-resolution XPS of the (b) C1s, (c) N1s, (d) O1s, and (e) P2p peak
as-prepared CDs were successfully doped with nitrogen and phosphorus heteroatoms. Furthermore, the UV–vis absorption and fluorescence emission spectra of the N, P-CDs are exhibited in Fig. S3. The two peaks at 252 nm and 324 in the UV–vis absorption spectrum of N, P-CDs are attributed to the transition π-π* of C = C bonds of carbon core and transition n-π* of carbonyl, respectively. Moreover, the fluorescence intensity at different excitations and the 3D fluorescence plot of the CDs with a variation of the emission and excitation wavelengths were recorded. Figure S4 shows that the synthesized N, P-CDs exhibited excitation-dependent emission behavior, and the maximum fluorescence emission was obtained at 365/402 nm (λex/λem). Therefore, 365 nm was selected as the optimum excitation wavelength in all experiments. Furthermore, QY of N, P-CDs was estimated to be 44%.

N, P-CD probe for NFD sensing

To design a sensitive probe for the detection of NFD, we investigated the effect of dopants and their synthesis sources on the fluorescence signal of CDs in the presence and absence of NFD. For this purpose, various precursors, including citric acid, glucose, urea, B-alanine, and H3PO4, were applied to the synthesis of eight kinds of CDs (undoped, single and co-doped CDs). The QY% of all prepared CDs are reported in Table S1 (Supporting Information). N, P-CDs prepared from urea, B-alanine and H3PO4 indicated the highest QY%. As shown in Fig. 3a, these N, P-CDs exhibited the high-intensity blue emission under 365 nm UV light. The results confirmed the formation of radiative relaxation pathways and improvement of the photophysical properties of CDs due to co-doping of N and P. Then, the quenching effect of NFD was studied on the eight as-prepared CDs. Figure 3b shows that the fluorescence intensity of N, P-CDs significantly declined due to NFD while this drug exhibited no declining effect on the other CDs. We suspected that because of existing n-type dopants N and P in the structure of N, P-CDs, the electron concentration of N, P-CDs is high. On the other hand, as a result of the nitro group that is present in the NFD structure, it can act as an electron acceptor toward N, P-CDs. The NFD UV–Vis absorption band is close to the bandgap of the as-prepared N, P-CDs (Fig. S5). Therefore, the electron can transfer from the conduction band of the N, P-CDs to the lowest unoccupied molecular orbital of NFD. Thus, the fluorescence quenching of CDs by NFD can be attributed to the electron transition processes between N, P-CDs, and NFD. Conversely, since the UV–Vis spectrum of the NFD had no spectral overlap with the emission spectrum of the N, P-CDs, the quenching mechanism of N, P-CDs is not energy transfer (Fig S6). Based on the unique behavior of N, P-CDs toward NFD, it was exploited to develop a fluorescence turn-off probe for the determination of NFD.

Analytical performance

To enhance the sensitivity of the N, P-CDs for the determination of NFD, different variables that affected the interaction between NFD and CDs such as the amount of CDs, pH, concentrations of buffer, and incubation time were explored on the fluorescence signal and the results are shown in Fig. S7.

After optimizing the experimental conditions, the experimental performance of the method for quantitative detection of NFD was assessed. The fluorescence intensity at 402 nm continuously decreased with an increase in the concentration of NFD due to the quenching of fluorescence (Fig. 4a). The fluorescence quenching can be depicted by the Stern–Volmer’s equation:

\[
\frac{F_0}{F} = 1 + k_{sv}[c],
\]

where \(F_0\) represents the fluorescence intensity of the fluorophore in the absence of a quencher, and \(F\) is the fluorescence intensity of fluorophore in the absence of a quencher. \(K_{sv}\) represents the dynamic quenching constant, and \(C\) represents the concentration of the quencher.

As shown in Fig. 4b, the variation of fluorescence quenching ratio \((F_0/F)\) versus the concentration of NFD demonstrated excellent linearity in the concentration range of \(3.3 \times 10^{-8} – 3.2 \times 10^{-5}\) mol/L with the detection limit of \(1.0 \times 10^{-8}\) mol/L. Furthermore, Table S2 indicates the comparison between the present method with some previously reported methods for NFD detection. The results show that the analytical performance of the developed sensor is better than other methods, and also show that this sensor is more cost-effective than most methods.

Study of interferences

To evaluate the selectivity of the introduced method in the determination of NFD, the effect of some common interfering substances, including ions and compounds that may be present in the real samples, was investigated on the analytical signal in the determination of NFD. The acceptable limits for interferences (the ratio of interfering substance to the analyte that produces relative error = 5% or less) are reported in Table S3. As shown in Table S3, most compounds at high concentrations have no significant influence on the fluorescence signal. These results confirmed that the recommended sensor has sufficient selectivity for the measurement of NFD in real samples.
Real sample measurements

Human urine and plasma samples were applied to assess the practicability and reliability of the present method for the determination of NFD in real sample analyses. To evaluation of the developed method’s accuracy, different amounts of NFD were spiked into the samples for analysis. The results were calculated and are summarized in Table 1. The recovery rates and RSD of the sensor were in the range of 95–105% and lower than 3.4%, respectively. The results revealed that this method has good accuracy and is reliable for detecting NFD in real samples.

Conclusion

In summary, the present study aimed to develop a sensitive fluorometric sensor based on doped CDs with excellent water solubility through a facile and rapid one-step method to analyze NFD. For this purpose, several CDs with different combinations of precursors were prepared. N, P-CDs showed a brilliant blue FL when exposed to UV light and possessed a QY of 44%. The fluorescence intensity of N, P-CDs effectively declined with the addition of NFD while this drug had a negligible effect on the other CDs. We noted that the analytical application of CDs could be affected by the kind of...
Fig. 4 (a) Fluorescence spectra of the N, P-CDs upon addition of different concentrations of NFD (3.3 × 10⁻⁸–3.2 × 10⁻⁵ M). (b) The linear response of quenching effect (F_0/F) of N, P-CDs vs. the NFD concentration (excitation wavelength is 365 nm).

Table 1 Determination of NFD in human plasma and urine samples

Sample	Added (10^{-7} M)	Found (10^{-7} M)	Recoveries (%)	RSD (%; n = 3)	t statisticsb
Plasma1	7.5	7.31	97.4	3	1.6
	6.5	6.22	95.6	3.3	2.3
Plasma2	7.5	7.9	105.3	2.6	3.3
	6.5	6.25	96.1	2.4	2.8
Urine 1	5	5.01	100.2	3.3	0.1
	8	7.97	99.6	2.2	0.3
Urine 2	5	4.73	94.6	2.4	0.4
	8	7.65	95.6	3.2	2.4

aMean of three determinations ± standard deviation

bt critical = 4.3 for $n = 2$, $P = 0.05$
Microwave-assisted facile synthesis of N, P co-doped fluorescent carbon dot probe for the…

dopant and its precursors. The fluorescence quenching of N, P-CDs by NFD can be ascribed to the electron transition processes between N, P-CDs, and NFD. Based on these facts, the simple and sensitive turn-off fluorescence nanoprobe was developed to measure NFD. The sensing system had remarkable advantages such as high speed, good selectivity, and wide response range, and it was used to detect NFD in human plasma and urine samples with satisfactory results.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.2116/analsci.21P287.

Funding This research did not receive any specific grant from funding agencies in the public, commercial, or profit sectors.

Declarations

Conflict of interest The authors declare that they have no conflict to declare.

References

1. N. Özaltın, C. Yardımcı, I. Süslü, J. Pharm. Biomed. Anal. 30, 573–582 (2002)
2. M. Baghayeri, M. Namadchian, H. Karimi-Maleh, H. Beitollahi, J. Electroanal. Chem. 697, 53–59 (2013)
3. H.-J. Wang, C.-K. Lu, W.-C. Chen, A.-C. Chen, Y.-F. Ueng, J. Food Drug Anal. 27, 284–294 (2019)
4. A.G. Ellrodt, M.J. Ault, Am. J. Emerg. Med. 3, 16–24 (1985)
5. S. Laurent, Pharmacol. Res. 124, 116–125 (2017)
6. M. Gil-Agustí, S. Carda-Broch, L. Monferrat-Pons, J. Electroanal. Chem. 573, 298–304 (2006)
7. M. Vertzoni, C. Reppas, H. Archontaki, Anal. Chim. Acta 573, 135, 160–165 (2019)
8. S. Ahmed, A. Alqurshi, A.-M.I. Mohamed, Talanta 184, 296–306 (2018)
9. M. Khairy, A.A. Khorsheed, F.A. Rashwan, G.A. Salah, H.M. Abdel-Wadood, C.E. Banks, Sens. Actuators B Chem. 252, 1045–1054 (2017)
10. J. Tian, M. Huang, Y. Yang, D. Wang, J. Lu, Biosens. Bioelectron. 135, 160–165 (2019)
11. M. Hamd, A. Abdellatif, S. Derayea, O. Abdelmageed, H. Askal, Ind Chem J 1, 2 (2015)
12. P. Tulasamma, P. Venkateswarlu, Arab. J. Chem. 9, S1603–S1609 (2016)
13. A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu, W. Qin, Sens. Actuators B Chem. 237, 408–415 (2016)
14. R. Jallili, M. Amjadi, RSC Adv. 5, 74084–74090 (2015)
15. H. Eskalen, S. Ürüş, Ş Özğan, B. Tahta, A.B. Sünbul, Quantum Dots 96, 81–94 (2021)
16. Y. Chen, X. Shan, D. Jiang, X. Li, Anal. Sci. 37, 20P433 (2021)
17. S. Narimani, N. Samadi, Microchem. J. 168, 106372 (2021)
18. S. Lei, N. Chang, J. Zhang, H. Wang, Anal. Sci. 37, 20P294 (2020)
19. P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, Microchim. Acta 183, 519–542 (2016)
20. S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao, B. Kong, Nano Today 33, 100879 (2020)
21. C.-L. Shen, Q. Lou, K.-K. Liu, L. Dong, C.-X. Shan, Nano Today 35, 100954 (2020)
22. C.L. Shen, Q. Lou, C.F. Lv, J.H. Zang, S.N. Qu, L. Dong, C.X. Shan, Adv. Sci. 6, 1802331 (2019)
23. C.L. Shen, Q. Lou, J.H. Zang, K.K. Liu, S.N. Qu, L. Dong, C.X. Shan, Adv. Sci. 7, 1903525 (2020)
24. K.M. Omer, A.Q. Hassan, Microchim. Acta 184, 2063–2071 (2017)
25. M. Zaib, A. Akhtar, F. Maqsood, T. Shahzadi, Arab. J. Sci. Eng. 46, 437–446 (2021)
26. Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, New J. Chem. 36, 861–864 (2012)
27. H. Eskalen, S. Ürüş, S. Cömertpay, A.H. Kurt, Ş Özğan, Ind. Crops Prod. 147, 112209 (2020)
28. S. Xu, S. Ye, Y. Xu, F. Liu, Y. Zhou, Q. Yang, H. Peng, H. Xiong, Z. Zhang, Anal. Sci. 36, 19P350 (2019)
29. J.Y. Wei, Q. Lou, J.H. Zang, Z.Y. Liu, Y.L. Ye, C.L. Shen, W.B. Zhao, L. Dong, C.X. Shan, Adv. Optic. Mater. 8, 1901938 (2020)
30. D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, M. Wu, Chem. Commun. 46, 3681–3683 (2010)
31. G.E. LeCroy, S.K. Sonkar, F. Yang, L.M. Veca, P. Wang, K.N. Tackett, J.-J. Yu, E. Vasile, H. Qian, Y. Liu, ACS Nano 8, 4522–4529 (2014)
32. J.P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 6, 2839–2855 (2013)
33. M.K. Barman, B. Jana, S. Bhattacharyya, A. Patra, J. Phys. Chem. C 118, 20034–20041 (2014)
34. L. Ansari, S. Hallaj, T. Hallaj, M. Amjadi, Coll. Surf. B 203, 111743 (2021)
35. A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, Carbon 83, 173–179 (2015)
36. S. Chandra, A.R. Chowdhuri, D. Laha, S.K. Sahu, Luminescence 33, 336–344 (2018)
37. D. Gu, P. Zhang, L. Zhang, H. Liu, Z. Pu, S. Shang, Opt. Mater. 83, 272–278 (2018)
38. K.M. Omer, N.N. Mohammad, S.O. Baban, Catal. Lett. 148, 2746–2755 (2018)
39. R. Shokri, M. Amjadi, Spectrochim Acta Part A 246, 118951 (2021)
40. E.F. Simões, J.M. Leitão, J.C.E. da Silva, Anal. Chim. Acta 960, 117–122 (2017)
41. S.Y. Park, H.U. Lee, E.S. Park, S.C. Lee, J.-W. Lee, S.W. Jeong, C.H. Kim, Y.-C. Lee, Y.S. Huh, J. Lee, ACS Appl. Mater. Interf. 6, 3365–3370 (2014)
42. J. Jiang, Y. He, S. Li, H. Cui, Chem. Commun. 48, 9634–9636 (2012)
43. H. Miao, L. Wang, Y. Zhuo, Z. Zhou, X. Yang, Biosens. Bioelectron. 86, 83–89 (2016)
44. J.N. Hart, P.W. May, N.L. Allan, K.R. Hallam, F. Cleaeyssens, G.M. Fuge, M. Ruda, P.J. Heard, J. Solid State Chem. 198, 466–474 (2013)
45. K.M. Omer, D.I. Tofîq, A.Q. Hassan, Microchim. Acta 185, 1–8 (2018)