Short title: Light response curves in photosynthesis modeling

Rapid chlorophyll *a* fluorescence light response curves mechanistically inform photosynthesis modeling

Jonathan R. Pleban,¹*; Carmela Rosaria Guadagno,²*†; David Scott Mackay¹; Cynthia Weinig,²,³,⁴; Brent E. Ewers²,³

1- Department of Geography, SUNY University at Buffalo, Buffalo, NY, USA
2- Department of Botany, University of Wyoming, Laramie, WY, USA
3- Program in Ecology, University of Wyoming, Laramie, WY, USA
4- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
* These authors equally contributed
† Author for correspondence:
 Carmela Rosaria Guadagno, PhD
 University of Wyoming, Botany Department, 1000 University Avenue-Aven Nelson Bldg.,
 82071-Laramie (WY), U.S.A.
 (+1) 307-223-6447

Author Contributions
1 J.R.P., C.R.G., D.S.M and B.E.E. contributed to updated model conceptualizations. J.R.P.,
2 C.R.G and D.S.M. contributed to experimental design. C.R.G. and J.R.P. performed experiments.
3 J.R.P implemented and conducted analysis of all models. C.R.G. and J.R.P. contributed original
draft preparation. C.R.G., J.R.P., B.E.E., C.W. and D.S.M. contributed to review and editing.

One-sentence Summary: Chlorophyll *a* fluorescence rapid light response curves improve
mechanistic models of drought limitations to photosynthetic electron transport.
Abstract

Crop improvement is crucial to ensuring global food security under climate change, and hence there is a pressing need for phenotypic observations that are both high throughput and improve mechanistic understanding of plant responses to environmental cues and limitations. In this study, chlorophyll a fluorescence light response curves and gas-exchange observations are combined to test the photosynthetic response to moderate drought in four genotypes of *Brassica rapa*. The quantum yield of photosystem II (ϕ_{PSII}) is here analyzed as an exponential decline under changing light intensity and soil moisture. Both the maximum ϕ_{PSII} (α_{PSII}) and the rate of ϕ_{PSII} decline across a large range of light intensities (0–1000 μmol photons m$^{-2}$ s$^{-1}$) (β_{PSII}) are negatively affected by drought. We introduce an alternative photosynthesis model (β_{PSII} model) incorporating parameters from rapid fluorescence response curves. Specifically, the model uses β_{PSII} as an input for estimating the photosynthetic electron transport rate (ETR), which agrees well with two existing photosynthesis models (Farquhar-von Caemmerer-Berry and Yin). The β_{PSII} model represents a major improvement in photosynthesis modeling through the integration of high-throughput fluorescence phenotyping data, resulting in gained parameters of high mechanistic value.

Keywords: Photosynthesis modeling, Chlorophyll a Fluorescence, High-throughput Phenotyping, Drought, *Brassica rapa*

Introduction

Increasing global populations and environmental change require greater mechanistic understanding of plant responses to fluctuating environmental factors along with meaningful phenotyping for tolerance to stress such as drought (Sheffield and Wood, 2008; Jin et al., 2018). Improved phenotyping technologies can also advance our ability to link physiological mechanisms to rapidly improving genetic information. Amongst the challenges towards this goal is the genetic complexity behind drought tolerance traits of interest to breeders (Holland, 2007; Shi et al., 2009). Hence, model-assisted phenotyping has been advocated to separate complex traits such as quantum yield of photosynthesis, stomatal conductance, and water use efficiency.
into manageable mechanistic components (Tardieu, 2003; Martre et al., 2015). Mechanistic modeling formalizes plant physiology using interconnected mathematical equations, which describe primary biochemical and first principle biophysical processes. Improving predictive understanding of crop responses to changing environments will require that mechanistic models directly use phenotypic and environmental data to simulate outcomes sensitive enough to capture possible variation in the expressed traits among unknown genotypes. When these requirements are met, mechanistic models can assist in unraveling the genetic architecture underlying the complex quantitative traits of drought physiology (Reymond et al., 2003; Hammer et al., 2006; Chenu et al., 2009).

Although mechanistic models have evolved to capture the expression of complex plant traits in a changing environment, no current model can dependably capture the impact of drought on photosynthesis (Drake et al., 2017). Photosynthesis models focus on those environmental factors considered critical to net assimilation rates (A_n) (de Witt, 1966; Farquhar et al., 1980; Patrick et al., 2009; Yin et al., 2009). Observations of A_n and available CO$_2$ (A/C_i) are combined in mechanistic models, such as the Farquhar, von Caemmerer, and Berry model (1980; FvCB model), to reveal biochemical mechanisms underpinning photosynthesis. FvCB estimates A_n as limited by two primary factors. First, RuBisCO-limited A_n (A_c) is dominated by the response of the maximum rate of carboxylation (V_{cmax}). Second, light-limited A_n (A_J) is constrained by the electron transport rate (ETR) across photosystem II and I (PSII and PSI), which ultimately produces ATP and NADPH needed for the Calvin carboxylation cycle (Farquhar, et al., 1980; von Caemmerer, 2000). Although the FvCB model captures the phenomenological link between ETR and A_n, it omits mechanistic details of the photosynthetic electron transport chain (Horton et al., 1994; Allen and Pfannschmidt, 2000; Laisk et al., 2002; Yin et al., 2004). Whereas the conceptual power of a reduced complexity model (FvCB) yields crucial insights under non-stressed conditions, it lacks additional mechanistic detail for plants exposed to environmental stress (Urban et al., 2017).

Drought stress impacts both A_c and A_J via interactive mechanisms (Flexas and Medrano, 2002; Bota et al., 2004; Fini et al., 2012). The initial response to water stress is often a decline in stomatal conductance (g_s), which impacts CO$_2$ availability for photosynthesis (Medrano et al., 2002; Grassi and Magnani, 2005). Additional CO$_2$ constraints on A_c are possible via mesophyll conductance (g_m), limiting CO$_2$ at the site of carboxylation (Flexas et al., 2002; Niinemets et al., 2004).
Prolonged CO\textsubscript{2} limitation can result in over-reduction of the photosynthetic electron transport chain (Miller \textit{et al.}, 2010), triggering the production of reactive oxygen species (ROS) at different sites of the photosynthetic pathway with the potential for photo-oxidative damage (Krieger-Liszkay \textit{et al.}, 2008; Miller \textit{et al.}, 2010; Sharma \textit{et al.}, 2012). PSII is highly susceptible to oxidative stress, and a variety of mechanisms, collectively called photoprotection, preserve it from irreversible photodamage that causes sustained declines in the overall efficiency of PSII (Murata \textit{et al.}, 2007; Takahashi and Badger, 2011). Heat energy dissipation, state-transitions, augmented PSI energy utilization, and changes in leaf absorbance using alternate pigments or chloroplast avoidance are all known mechanisms of photoprotection (Müller \textit{et al.}, 2001; Kasahara \textit{et al.}, 2002; Takahashi and Badger, 2011).

Photosynthesis models must now progress to reflect these stress-induced mechanisms while using high-throughput phenotyping data, including non-invasive measures of leaf spectral reflectance, absorbance, and chlorophyll \textit{a} fluorescence (Cruz \textit{et al.}, 2016; Kuhlglert \textit{et al.}, 2016; Silva-Perez \textit{et al.}, 2018). Fast and informative techniques provide fine temporal resolution of mechanistic responses to external stressors from mild to lethal stress (Guadagno \textit{et al.}, 2017), which are necessary to improve predictive understanding of photosynthesis responses to drought.

In particular, pulse amplitude modulated (PAM) chlorophyll \textit{a} fluorescence analysis quantifies PSII activity in response to observed photosynthetically active radiation (\(Q\)) and it is informative of the status of the photosynthetic electron transport (Maxwell and Johnson, 2000; Kramer \textit{et al.}, 2004; Baker, 2008). PAM measurements, using the signal of the excitation energy re-emitted by chlorophyll \textit{a} molecule as fluorescence, are used to define the fate of the absorbed light in the leaf and they are currently one of the fastest and most reliable phenotyping tools in photosynthetic measurements (Filek \textit{et al.}, 2015; Gullì \textit{et al.}, 2015; Flood \textit{et al.}, 2016; Gómez \textit{et al.}, 2017; Guadagno \textit{et al.}, 2017). The operating efficiency of PSII (\(\phi_{\text{PSII}}\)) is a fluorescence parameter calculated from the relative difference in light conditions between the steady-state (\(F_s\)) and the maximum fluorescence emitted after a saturating flash that closes (reduces) all PSII reaction centers (\(F_m^{'}\)); i.e. \(\phi_{\text{PSII}} = (F_m^{'} - F_s)/F_m^{'}\) (Genty \textit{et al.}, 1989). A large fraction of the excitation energy not used in PSII photochemistry or re-emitted as fluorescence is dissipated as heat via regulated (\textit{e.g.}, non-photochemical quenching, NPQ) and non-regulated energy dissipation (\textit{e.g.}, NO) mechanisms (Müller \textit{et al.}, 2001; Kramer \textit{et al.}, 2004). Recently, the original derivation of NPQ has also been extended allowing for high-throughput estimates of...
quantum yield NPQ (Φ_{NPQ}) (Tietz et al., 2017). Φ_{NPQ} can be measured in a few seconds, allowing for high-throughput and field applications, and its calculation does not require full relaxation of quenching processes as for the classic NPQ parameter. The combination of fluorescence observations with leaf gas-exchange data has been shown as a powerful way to inform and test models of photosynthesis (Laisk et al., 2002; Yin et al., 2009; Bellasio et al., 2016).

Alternative models of photosynthetic electron transport have been developed using an increasing number of mechanistic details of the Z-scheme for the electron transport (Fig. 1). Within chloroplasts, photosynthetic electron transport occurs across the thylakoid membranes (Fig. 1a) where a hydrogen ion gradient builds up upon the transfer of excited e\' to ultimately produce ATP and NADPH, which are used as substrates in the Calvin Cycle. Fig. 1 (b) summarizes the ETR derivation of the FvCB model. This model assumes that the electron flow is entirely linear (LEF) from PSII to NAPD\(^+\) reduction with the CO\(_2\) fixation rate from the A/C_i response used to parametrize the maximum ETR (J_{max}). Data from the linear portion of a light response curve can be used to parameterize quantum yield on an $\Delta CO_2/\Delta Q$ basis (Φ_{CO_2}) (Fig. 1b (inset graph)). Although the significance of the correlation between the quantum yield of assimilation and the PSII quantum yield has been previously studied (Oberhuber and Edwards, 1993; Pietrini and Massacci, 1998; Singaas et al., 2000), to the best of our knowledge the effect of drought on its linearity is still unclear. The FvCB model has been recently implemented to include proportional changes between ETR and A_n using observations of A_n and Φ_{PSII} under low-light conditions ($Q < 200 \, \mu$mol photons m\(^{-2}\) s\(^{-1}\) to estimate ETR and A_J (Yin et al., 2004; Yin et al., 2009; Bellasio et al., 2016) (Fig. 1c). Quantum yield is estimated on an $\Delta e/\Delta Q$ basis using the linear portion of the Φ_{PSII} light response (Fig. 1c (top inset graph)), but the use of only low-light conditions to characterize PSII quantum yield is limiting. In the Yin model, a lumped parameter, s, is estimated to account for the energy partitioning between photosystems (ρ_2), leaf absorbance in the antenna complex (α_{leaf}), and the potential use of electron pathways other than LEF (f_{alt}). However, neither FvCB nor the Yin model explicitly address the influence of environmental stress on ETR and A_n and they are not well equipped to capture the A_J responses of the PSII antenna complex to stressors (Govindjee, 2002; Asada, 2006; Murata et al., 2007; Urban et al., 2017).
Here, we introduce an alternative approach (β_{PSII} model) that considers PSII activity across a wide range of light conditions and that can better accommodate the role of stress-related mechanisms (Fig. 1d). We observe that data from the ϕ_{PSII}/Q response can be modeled as an exponential decline (Fig. 1d (inset graph)). This new parameter as the rate of decline (β_{PSII}) can be used to calculate ETR, A_i, and A_n under stress conditions such as drought. Using a more complete characterization of quantum yield via the ϕ_{PSII} light response, the β_{PSII} model approach accommodates mechanisms of photoprotection including non-photochemical quenching (NPQ), chloroplast avoidance, and pigment alterations as well as PSII damage relative to repair (Fig. 1d). Our integration of the ϕ_{PSII} decline provides a link between gas conductance-based limitations on A_c and photoprotective limitations impacting A_j representing a further step in the mechanistic understanding of the electron transport under stress (incremental yellow shadow in Fig. 1). All model parameters (observed and predicted) for the FvCB, Yin, and β_{PSII} models are compared in Table 1, whereas Table 2 describes the equations used in the three photosynthesis models.

We tested the β_{PSII} approach in an effort to analyze physiological responses of A_n under different soil moisture conditions from full watering to moderate drought in the species Brassica rapa (Supplemental Fig. 1-2). High intraspecific physiological diversity with respect to complex quantitative traits such as A_n and WUE has previously been shown for Brassica (Edwards et al., 2011; Franks, 2011; Edwards et al., 2012; Baker et al., 2015), making it a perfect model to investigate photosynthesis phenotyping tools. Specifically, we tested a turnip crop type (VT), a cultivated oilseed (R500), and two experimental genotypes (RILs) developed from a cross between a rapid-cycling genotype (Imb211) and an oilseed crop (R500), thus ensuring a broad range of both photosynthetic and biomass allocation diversity (Edwards et al., 2011; Yarkhunova et al., 2016; Pleban et al., 2018).

We developed a ϕ_{PSII} light response curve using a three-parameter exponential function,

$$\phi_{PSII} = (\alpha_{PSII} - \kappa_{PSII})e^{Q\beta_{PSII}} + \kappa_{PSII} \quad \text{(Eqn.1)}$$

where the exponential rate of decline for ϕ_{PSII} (β_{PSII}) under increasing light (Q) and the intercept of ϕ_{PSII} as Q approaches zero (α_{PSII}) are used to model the responses. Importantly, α_{PSII} derives from measurements taken in light conditions and it is different that the classic Fv/Fm parameter derived from dark-adapted measurements (Table 1). The κ_{PSII} term represents a non-
zero minimum of ϕ_{PSII} as Q approaches ∞. To evaluate potential differences in photoprotection strategies due to ETR, we validated the ϕ_{PSII} light response parameters (β_{PSII}, α_{PSII}) at different soil moisture conditions. Then, we incorporate these parameters in an alternative photosynthesis model that directly incorporates ϕ_{PSII} light-response traits into the estimation of ETR and we assessed how the derived parameters relate to known traits, including V_{cmax} and g_m.

Using rapid measurements with high mechanistic significance, our approach innovatively connects high-throughput phenotyping and biophysical modeling to better predict plant photoprotective strategies. Gained knowledge will help to clarify the complexity of photosynthetic traits, such as drought tolerance, thus improving breeding and management strategies towards more drought-resistant crops with increased final yield.

Results

Establishing Drought Treatments

After sowing, plants were immediately randomized and put into different treatment groups (Supplemental Fig. 1). On experimental Day 0 (28 days after sowing) drought was applied via complete water withholding for the droughted cohort. Control pots (Well-Watered) were watered daily throughout the experiment and WW plants measured on experimental days 1, 4, 5, 6, and 9. Droughted plants were assigned to three different groups and replicate plants observed on experimental days 4–7 (treatment group D1), 9–12 (treatment group D2), and 15 (treatment group D3). On experimental day 9, water was re-applied to a subset of droughted plants (R1) and they were observed on experimental day 9–12. On experimental day 15, a second subset of droughted plants (R2) was re-watered and observed 6 h after re-watering. Finally, on day 16 the last subset of droughted plants was re-watered and assessed at 30 h after re-watering (R3). For each experimental day, volumetric soil water content (VWC) was measured across all cohorts of plants for the duration of the experiment (Supplemental Fig. 2).

Impact of Drought on Leaf Traits and genotypic difference

The progressive drought and recovery (Supplemental Fig. 1) application inevitably impacted the photosynthetic performance of all genotypes. Table 3 summarizes 14 photosynthetic leaf traits assessed on three different experimental days for each *B. rapa* genotype. As expected, D1 plants were the least impacted by water scarcity for the measured
physiological traits. However, early signs of drought stress were already detected. g_s was reduced in D1 plants of all genotypes by a mean of 0.16 mmol m$^{-2}$ s$^{-1}$ (±0.10), with the biggest decline for $R500$ (0.29 mmol m$^{-2}$ s$^{-1}$). In VT, the electrochromic shift (ECS_t) (Δ absorbance 530 nm), which reflects the trans-thylakoidal ΔH^+ gradient, at 300 and 1000 umol photon m$^{-2}$ s$^{-1}$, increased in D1 plants relative to WW. More sustained drought (D2 and D3 plants) results in pronounced changes across all genotypes (Table 3). g_s showed further reduction in all genotypes but $r46$ in D3 plants. LEF was decreased across genotypes, with $R500$ showing the greatest loss at both 300 and 1000 umol photon m$^{-2}$ s$^{-1}$. Φ_{NPQ} and ECS_t at both 300 and 1000 umol m$^{-2}$ s$^{-1}$ increased overall in D3 plants. Pigments content as SPAD at 530 nm units and relative chlorophyll content increased in all four genotypes of the D3 cohorts. The changes in ECS_t, LEF, and SPAD are reflected in a decreased lumped s parameter in D3 plants, which accounts for potential changes in f_{alt}, ρ_2, and α_{leaf} (Supplemental Fig.3). These results validate the robustness of high-throughput measurements of fluorescence to pick up early signs of drought stress. The drought treatments applied here can be considered as mild to moderate for B. rapa with an overall recorded VWC never lower than 3% and plants still capable of recovery upon re-watering for all genotypes (Supplemental Fig.1). Changes in physiological traits reflect the expected behavior of the four genotypes under drought (Edwards et al., 2011; Edwards et al., 2012; Baker et al., 2015; Greenham et al., 2017). Genotypes with high biomass accumulation ($R500$, $r301$ and VT) were more impacted at an earlier stage by changes in soil moisture, whereas the small, highly water use-efficient $r46$ was able to tolerate drought and maintain stable level of gas exchange despite the decreased LEF. These genotypic differences in drought behavior were confirmed when looking at the onset of NPQ_t at increased LEF (Supplemental Fig.4), where $R500$ and VT showed earlier changes in NPQ_t values already at lower LEF in comparison to the inbred lines $r46$ and $r301$.

Analysis of Rapid Light Response Curves of Fluorescence

Rapid Chlorophyll a fluorescence light response curves were taken on 119 replicate leaves during six different experimental days, with each genotype \times treatment replicated 1–7 times (mean replication rate of 3.3) (Supplemental Fig. 1). The variation in sample size was due to time constraints and destructive measurements occurring during the experiment. Firstly, the rapid light response curves for all genotypes and treatments were pooled together with the mean of
observed ϕ_{PSII} at each Q estimated using the median value of the posterior distributions of the parameter from Eqn. 1. The decline was then fitted with an exponential model for each genotype and treatment (Fig.2). All genotypes show a decline in ϕ_{PSII} under drought, more pronounced after 15 days (D3), but all plants recovered to pre-stressed values after re-watering (R1, R2, R3). The partial increase of ϕ_{PSII} can be found in the rapid leaf development of the utilized genotypes, typical of the Brassicaceae. Since the youngest fully developed leaf was utilized at each measuring point, leaf growth and display changed over the course of 15 days, causing different leaf angles, changes in the photosynthetic complex stoichiometry, and resulting in different responses to incoming radiation and absorbance. Then, to utilize a more rigorous and probabilistic approach to signify differences (Kruschke, 2014), we used the 95% posterior high-density intervals (HDIs) as a Bayesian probabilistic estimator of difference. Figure 3 summarizes the changes in β_{PSII} and α_{PSII}, estimated following Eqn. 1, at varying VWC. Genotypes VT and r301 showed credible interval differences at 95% HDI in β_{PSII} for D2 and D3 relative to the WW treatment, whereas r46 and R500 showed a credible interval difference (95% HDI) only for D3 relative to the WW treatment (Fig. 3a-d).

All genotypes demonstrated similar recovery patterns in β_{PSII} with credible differences at 95% HDI for the R2 and R3 treatments relative to D3. For R plants, a less negative β_{PSII} was observed at 30 h after re-watering (R3) with respect to the 6-h period (R2) demonstrating ongoing recovery during that time period. Figure 3 (e-h) displays the change of slope in ϕ_{PSII} as Q approaches zero, α_{PSII}, with 95% posterior HDI. r301, R500 and VT each show credible interval difference at 95% HDI in α_{PSII} for D3 relative to WW treatment whereas r46 remains stable in α_{PSII}. The α_{PSII} parameter shows a recovery response similar to β_{PSII}, with r301, R500, and VT each showing a credible interval difference at 95% HDI for the R3 treatment with respect to pre-stressed values.

Comparison of Photosynthesis Models

All three photosynthesis models (FvCB, Yin, and β_{PSII}) performed well across genotypes and treatments when comparing observations of leaf gas exchange to simulated results, using the medians of the posterior (i.e. a more rigorous Bayesian estimator that incorporates uncertainty in both measurements and models; McElreath, 2016, Kruschke 2014) parameter distributions. For
the β_{PSII} model, a comparison of simulated A_n vs. observed A_n from light response and A/Ci
curves results in $0.66 < R < 0.98$ across genotypes and treatments (Supplemental Fig. 5).

The β_{PSII} parameter, describing the slope of decline of ϕ_{PSII} vs. Q, was integrated into the
ETR derivation for estimating light-limited photosynthesis, A_J, and the updated ETR description
was compared to both the FvCB and Yin photosynthesis models. To quantitatively evaluate the
alternate modeling approaches estimating ETR, posterior parameters distributions were
compared between the FvCB, Yin, and β_{PSII} decline models (Fig. 4, 5). The correlation (R) of the
medians of these posterior distributions was chosen to evaluate the strength and direction of a
linear relationship amongst alternative parameterizations. For the parameter V_{cmax}, maximum rate
of carboxylation, all models showed close agreement in estimates with R values of 0.97–0.98
(Fig. 4a-c). For mesophyll conductance (g_m), the R value between the FvCB model and the β_{PSII}
model was 0.90, between the Yin model and the β_{PSII} model was 0.90, and between the FvCB
model and the Yin model was 0.99 (Fig. 4d-f). Additional posterior parameters not common to
all three models were compared to factors with similar biophysical meaning, such as quantum
yield terms (ϕ_{CO2}, ϕ_{2ll} and α_{PSII}) (Fig. 5a-c). Agreement between the quantum yield terms is
particularly strong between ϕ_{2ll} (Yin model) and α_{PSII} (β_{PSII} model) (Fig. 5b). The κ_{PSII} estimates
show little correlation with J_{max} in the FvCB or Yin models (Fig. 5d, e), whereas J_{max} estimates in
FvCB and Yin are highly correlated (Fig. 5f). The Yin model and the β_{PSII} model were highly
correlated in the lumped s parameter ($R = 0.83$) (Fig. 5g). The convexity factor, θ, used in FvCB
and Yin models shows a correlation of 0.57 with the Yin estimates closer to the maximum of 1.0
(Fig. 5h). Finally, a comparison was made between β_{PSII} as described in Eqn. 1 with the V_{cmax} and
J_{max} estimates from the FvCB model and Yin models. β_{PSII} showed an R value of 0.81 with V_{cmax}
as described by the FvCB model and 0.83 with V_{cmax} as described by Yin. β_{PSII} showed a $R=0.69$
relationship with J_{max} estimates of the FvCB model and $R=0.68$ with Yin (Supplemental Fig.6).

Comparison of High and Low Throughput Fluorescence measurements

Full gas-exchange light response curves coupled with fluorescence were taken on 34 leaves
on four experimental days with each genotype x treatment replicated 1–4 times (mean replication
rate of 2.3 ± 0.9) (Supplemental Fig. 1). The variation in sample size was once again due to time
constraints and destructive measurements occurring during the experiment. Specifically, the
assessment of gas-exchange light response curves was done at experimental day 1 and 6 for WW plants, at experimental day 5 and 7 for D1 plants, and at day 9 and 13 for D2 plants. Re-watered plants in the cohorts R2 were observed at experimental day 10 (Supplemental Fig. 1). The assessment of rapid ϕ_{PSII} vs. Q curves was done at experimental day 1, 5, and 9 for WW plants, at experimental day 5 for D1 plants, at day 9 and 12 for D2 plants, and day 13 for D3 plants. Re-watered plants had rapid ϕ_{PSII} vs. Q observations for cohort R1 on experimental day 9, for cohort R2 on experimental day 13 (6 h after watering was restored), and for cohort R3 on experimental day 14 (30 h after watering was restored). The comparable posterior parameter estimates were matched with posterior parameter estimates from classic gas-exchange light response curves following Eqn. 1 and shown in Supplemental Fig. 7. The median posterior estimates of β_{PSII} show a R value of 0.72, whereas median posterior estimates of α_{PSII} parameter show $R = 0.67$ (Supplemental Fig. 7 a, c). Next, the correlation between the posterior estimates for both β_{PSII} and α_{PSII} derived using the full β_{PSII} photosynthesis model and the rapid fluorescence curves was tested (Supplemental Fig.7b, d). The full β_{PSII} photosynthesis model utilizes coupled gas-exchange and fluorescence observations from a low-throughput infrared gas analyzer (LiCor 6400XT), whereas the rapid fluorescence curves of ϕ_{PSII} vs. Q curves are obtained using the high-throughput spectrophotometer MultispeQ. Despite the different times of collection, the two methods agree with correlations of 0.66 for β_{PSII} and 0.69 for α_{PSII} (Supplemental Fig.7b, d).

Discussion

Here we tested how applying alternative descriptions of quantum yield (ϕ_{CO2}, ϕ_{PSII}, β_{PSII}) in photosynthesis models (Fig. 1) can improve the mechanistic realism of electron transport processes and their potential changes under drought. Our β_{PSII} photosynthesis model utilized the full ϕ_{PSII} vs. Q response accounting for possible photoprotective mechanisms (i.e., NPQ, changes in absorbance, etc.). All these mechanisms decrease photosynthetic ETR and play a crucial role in the A_n magnitude under stress and we have to consider and quantify them to mechanistically improve simulated responses to drought and other environmental changes.

β_{PSII} dynamics

Our main goal was to explore the use of chlorophyll a fluorescence parameters derived from rapid light curves, collected with a dynamic high-throughput tool, to develop a
photosynthesis model for estimating photosynthetic electron transport rate (ETR). The major
design improvement of the MultispeQ is the quick capture of fluorescence parameters precisely
during steady-state illumination (Kuhlger et al., 2016) and we tested the relationship between
rapid fluorescence data from the MultispeQ and the LiCOR6400-40 fluorimeter (Fig. 6). Single
measurement comparisons grouped by genotype show linear relationships across different light
levels and water treatment with $R^2 > 0.9$ despite the variations in time of the day, duration of the
actinic light, etc. between the low and high-throughput measurements due to the fact that the
LiCOR instrument is primarily utilized to take simultaneous measurements of gas exchange. Our
results build on previous work by Meacham et al. (2017) who posed the question about the use
of rapid fluorescence analysis for photosynthesis modeling. However, we experimented beyond
their results using the high-throughput MultispeQ instead of a monitoring PAM from Walz, thus
avoiding the use of aluminum foil to cover the leaves during the measurements and the possible
increases in temperature with consequent changes in water vapor exchange (Bücher et al., 2018;
Giorio, 2011). Rapid light curves are complex to interpret due to the presence of several
components in the photosynthetic apparatus characterized by different time constants (i.e., the
time to reach ~63% of the full response) involved (Pearcy, 1990; Way and Pearcy, 2012). We
acknowledge that light harvesting and energy transfer respond nearly instantaneously to changes
in the light environment, whereas adjustments in the carbon cycle metabolites can take up to
several seconds (Bowels, 1984; Geiger and Servaites, 1994). However, the use of a fast analysis
is necessary to capture the true light conditions of plants in the field, where they rarely
photosynthesize at full capacity (Zhu et al., 2010; Ort et al., 2011). Fast changes in incoming
radiation, such as that used during the collection of rapid light curves, can be thought to have
similar consequences as for leaves exposed to sunflecks. After an initial uncoupling of the
electron transport from CO$_2$ fixation, the metabolites pool has been shown to re-fill within a few
seconds in healthy leaves (Servaites, 1990; Parry, 2008; McClain and Sharkey, 2019). The
fluorescence calculated parameters have already been shown to have a very dynamic behavior
(Porcar-Castell et al. 2006), which leaves room to accommodate for stress-related mechanisms.

The exponential decline of ϕ_{PSII} vs. Q (Eqn. 1) takes into account changes occurring at
PSII antenna-reaction center complexes and is extremely relevant under stress conditions. These
changes are not included in current photosynthesis models (Fig. 1). Identifying the parameter
β_{PSII}, meaning the slope of decline of ϕ_{PSII} at Q increase, and its dynamics at the onset of water
stress is highly valuable to mechanistically elucidate processes of photoprotection and increased
photorespiration, which are relevant for the overall reduction of assimilation under stress (Ort
and Baker, 2002; Souza et al., 2004). The ϕ_{PSII} and Q relationship has been previously used to
assess photosynthetic responses using the ETR maximum, showing declines under water stress
(Rascher et al., 2004; Li et al., 2008; Batra et al., 2014).

Our results depict a more complete picture of the changes in ϕ_{PSII} vs. Q under drought and the
parameter β_{PSII} seems to be better suited to explain a range of stress responses (Fig. 2,3). The
observed declines in β_{PSII}, here observed under drought, may in fact be the result of more or less
regulated processes, such as NPQ (Table 3), chloroplast light avoidance, and non-regulated
energy dissipation (Müller et al., 2001; Kasahara et al., 2002; Takahashi and Badger, 2011).

Further, the modest recovery after a 6-h period in both β_{PSII} and α_{PSII} suggests that these
parameters account for more than just fast-regulated photoprotective mechanisms (Dall’Osto et
al., 2005; Lambrev et al., 2012). Near full recovery by 30 h after the start of re-watering may be
due to slow-relaxing and/or un-regulated processes, along with protein turn-over and repair
processes that require a longer time to return to pre-stress conditions (Nishiyama et al., 2006;
Brooks et al., 2013; Malnoë, 2018). Indeed, both slow and rapid light curves are able to trigger
slow-relaxing NPQ mechanisms with qI having lifetime changes similar to those observed during
the qE (rapid-relaxing) (Ruban, 2016; Lazár, 2015; Müller et al., 2001).

Both β_{PSII} and α_{PSII} depicted genotypic variation relative to drought severity, with r301
showing greatest declines, i.e. transgressive segregation with respect to the RIL parents, followed
by R500 and VT which accumulate the highest amount of above-ground biomass (Fig. 3b, f).
Future work should consider how the slope of variation in ϕ_{PSII} vs. Q response relates to previous
findings of root:shoot allocation differences occurring under drought (Edwards et al., 2016) as
well as exploring how variance in β_{PSII} may influence reactive oxygen species production and,
when more pronounced declines occur, cellular damage (Reddy et al., 2004).

Implementing Photosynthesis Modeling

Using direct observations of ϕ_{PSII} vs. Q data as parameters in a leaf photosynthesis model
provided a means of quantifying the impacts of PSII photoprotective mechanisms on ETR.
Although these protective processes are critical to final net photosynthesis, they are abstracted
out of all FvCB-based modeling efforts (Horton et al., 1994; Allen and Pfannschmidt, 2000;
Laisk et al., 2002); therefore, current parameterization approaches may be biased by tuning parameters without mechanistic insight. Our β_{PSII} approach extends the development of FvCB-based models using both A/C_i and light response curves in analysis (Holland, 2007; Patrick et al., 2009) to integrate both gas-exchange and fast chlorophyll a fluorescence observations into models (Laisk and Loreto, 1996; Laisk et al., 2002; Yin et al., 2006; Yin et al., 2009). The β_{PSII} photosynthesis model maintains the use of commonly employed parameters V_{cmax}, R_d, and g_m, while shifting away from others, such as J_{max} and θ that do not fully incorporate stress impacts on ETR, for describing ETR and associated processes. Estimates of the common parameters including V_{cmax} show strong similarity across the three considered photosynthetic models (Fig. 4). The correlations between the β_{PSII} with V_{cmax} and J_{max} estimates of the FvCB and Yin model is promising for model parameterization. The throughput of ϕ_{PSII} vs. Q measurements will also increase the number of genotypes used in models and thus better incorporate mechanistically rigorous, genotype-level informed parameters for crop simulation (Boote et al., 2001; Bertin et al., 2010; Archontoulis et al., 2012; Pleban et al., 2018).

The lumped s parameter has a valuable role in accommodating a number of mechanisms affecting the final ETR and showed declines after 13 days of drought (Supplemental Fig. 3). Our photosynthesis model is able to assess the extent of the mechanisms slowing down ETR as a whole. However, the same MultispeQ collects fluorescence values at each recorded pulses. All components of NPQ (q_E, q_T, q_I) could then be calculated from values of Fm' and Fm over time, allowing for a detailed energy partitioning analysis. These results could benefit the model and separate physiological (feedback mechanisms) and damage consequences of the stress. Future work including the use of knockout mutants, such as those for genes involved in NPQ mechanisms, will be needed to disentangle the three factors lumped in s (f_{alt}, α_{leaf}, ρ_2). Changes in relative chlorophyll and SPAD at 540 nm affect the overall leaf absorbance (α_{leaf}) and are partially responsible for changes in s (Table 3). Future work evaluating the light harvesting properties of photosynthetic pigment molecules (Ye et al., 2013) will help clarify the importance of this component on the lumped s. Isolating changes in α_{leaf} might also use statistical methods to identify dominate shifts in absorption from spectrophotometric data (Baker et al., 2018). It appears likely that the other two factors, f_{alt} and ρ_2, changed during drought progression based on the decline in LEF relative to increases in ECS_t (Table 3). We speculate that the altered relationship between LEF and ECS_t may relate to energetic spillover and changes in cross-
membrane ΔH^+ triggering unbalanced activity in the PSII-PSI duo, ultimately leading to an increased cyclic electron flow around PSI (Livingston et al., 2010; Strand et al., 2015). Future data-model integration could consider saturation pulse estimation of PSI yield parameters to quantify the specific contribution of f_{alt} and ρ_2 (Klughammer and Schreiber, 1994). Integration with ECS$_t$ data could also assist in understanding the potential for change how trans-thylakoidal ΔH^+ might be coordinated by the use of cyclic and other non-linear electron transport pathways (Kramer et al., 2004).

Our framework offers opportunities to better evaluate stress limitations on quantum yield and ETR. The coupling of s and β_{PSII} as described here are critical for future efforts to model individual photoprotective, photoinhibitory, and photo-damaging mechanisms, which are encompassed in these two parameters albeit in a lumped way. Further implementation of current instrumentation and further modeling approaches may allow for itemizing specific physiological or genetic mechanisms underlining s and β_{PSII} responses to drought (Noctor et al., 2002; Miller et al., 2010; Guadagno et al., 2017).

β_{PSII} photosynthesis model limitations

Our approach needs additional tests under natural and/or higher intensity light conditions to investigate details of photoprotective mechanisms and their behavior under extreme environmental conditions. For instance, the ratio of carotenoids in the PSII antenna complex responsible for NPQ can vary with growing conditions (Kato et al., 2003). Further, photodamage has been shown to be more severe in the UV range and at 500–600 nm, and the ratio of photodamage to repair is higher as light intensity increases (Nogués and Baker, 2000; Murata et al., 2007; Zavafer et al., 2015). Also, dynamic fluctuations in light, such as those in natural settings, can have relevant effects on photosynthetic rate (Viale-Chabrand et al., 2016; Viale-Chabrand et al., 2017), which we expect are more severe under drought, with subsequent recovery processes possibly delayed (Fig. 3). The repair of PSII damage can also be compromised by temperature stress (Murata et al., 2007). Consequently, how β_{PSII}, α_{PSII}, and s respond to field conditions, drought, and other stresses should be further investigated.

The difficult estimation of g_m may also affect further implementation of our framework and alternative methods of g_m assessment should be considered. The g_m estimation in all three photosynthesis models used the combined fluorometry/gas exchange approach (Harley et al.,
1992, Pons et al., 2009, Archontoulis et al., 2012). Two of the three models (Yin and β_{PSII}) included the s parameter to consider alternative electron pathways influencing the g_m estimation (Fig. 4d, e, f). State-of-the-art photosynthesis models include a dynamic g_m responding to variations in both internal leaf status and external environments (Tazoe et al., 2009; Moualeu-Ngangue et al., 2017). Coupling online isotope discrimination data to the linear and total electron flow, gathered from gas exchange and fluorometry observations, may help resolve concerns related to g_m estimation and allow for the integration of a dynamic g_m model into the β_{PSII} method (Pons et al., 2009; Tazoe et al., 2009; Lianhong and Ying, 2014; Moualeu-Ngangue et al., 2017; Flexas et al., 2018).

Predictive understanding of both photoprotective and g_m mechanisms are still in their infancy; the alternative approach we have successfully tested provides a crucial transfer of high-throughput empirical measurements and analyses to mechanistic simulations that are likely to improve predictive understanding of drought and other stress responses across a range of plant species and genotypes. Our β_{PSII} model will further the improvements of current whole-plant crop modeling by the incorporation of first principles mechanisms (Hammer et al., 2006; Chenu et al., 2009; Wang et al., 2019; Müller and Martre, 2019), through the incorporation of more genetic and omic information into the parameters of biophysical-based models.

Material and Methods

Plant material

Four genotypes of *Brassica rapa* were utilized for our analysis: two crop accessions *R500* (oilseed crop, *B. rapa subsp. trilocularis* (Yellow Sarson)) and vegetable turnip (*VT*), VT-089, D’Auvergne Hative); and two recombinant inbred lines (RILs) (*r46* and *r301*). The RILs are part of a population developed from a cross between the *R500 × Imb211* genotypes. The *R500* genotype is an oilseed cultivar planted in India for approximately 3,000 years (Prakash and Hinata, 1980) with large allocation to seed production (Baker et al., 2015). The *Imb211* genotype is a rapid cycling line derived from the Wisconsin Fast Plant™ (Williams and Hill, 1986). The extremely divergent selection history suggests that genetic variation segregating in the RILs may resemble that segregating in crop × wild hybrids found commonly in nature (Adler et al., 1993). The RIL population has been previously described, and the two RILs of interest were chosen based on their transgressively segregating drought stress phenotypes identified in earlier research.
(Iniguez-Luy et al., 2009; Edwards et al., 2011; Edwards et al., 2012; Pleban et al., 2018). Seeds of R500, r46 and r301 were obtained from a single-seed collection bulked at the University of Wyoming in 2011. VT was obtained from the Wageningen UR Center for Genetic Resources (CGN#10995).

Growth Conditions

Seeds were germinated and grown in pots (500 ml) filled with a soil mixture (Miracle-Gro Moisture Control Potting Mix (20% v/v), 453 Marysville, OH, USA and Profile Porous Ceramic (PPC) Greens Grade (80% v/v), Buffalo Grove, IL, USA) with the addition of 2 ml of Osmocote 18-6-12 fertilizer (Scotts, Marysville, OH, USA). Experiments occurred during July and August of 2017 at the University at Wyoming in three growth chambers (PGC-9/2 Percival Scientific, Perry, Iowa, USA). Growth chamber conditions were set at a 14-h photoperiod of approximately 250–300 μmol of photons m⁻² s⁻¹, with a 25–30°C /18–22°C day/night cycle and relative humidity maintained at 45–65%. Soil moisture content was monitored daily for all treatment groups (ECH₂O/EC5 probe, Decagon, Pullman, WA, USA). Plants were randomized in three growth chamber compartments with blocks of each treatment with a randomized mix of four genotypes present in each compartment.

For four weeks, all plants were regularly watered to maintain volumetric soil water content at 0.30 ± 5. At 28 days after sowing (DAS), watering was withheld from treatment plants in the droughted and re-watered cohorts (Supplemental Fig. 1). On experimental Day 0, drought was applied via complete water withholding for the droughted cohort. Droughted plants were assigned to three different groups and replicate plants observed on experimental days 4–7 (treatment group D1), 9–12 (treatment group D2), and 15 (treatment group D3). On experimental day 9, water was re-applied to a subset of droughted plants (R1) and they were observed on experimental day 9–12. On experimental day 15, a second subset of droughted plants (R2) was re-watered and observed six h after re-watering. Finally, on day 16 the last subset of droughted plants was re-watered and assessed at 30 h after re-watering (R3). Soil moisture observations in this study were comparable to those from Guadagno et. al. (2017), where the mean VWC was 0.06 (±0.01) after 14 days of drought; here the mean VWC after 13 days of drought was 0.05 (±0.03).

Plant physiological observations
Physiological data collection followed the temporal frequency in Supplemental Fig. 1. For evaluation of photosynthesis traits throughout the treatment period, curves of A_n vs. CO_2 availability (A/C_i curves) and photosynthetic light response curves were taken (LiCOR 6400XT, LI- COR Biosciences Inc., Lincoln, NE, USA) following established methods (Long and Bernacchi, 2003). Both response curves were measured between 10:00 h and 16:00 h on fully expanded leaves (between 5th and 8th leaf) with cuvette settings at flow rate of 300 μmol s$^{-1}$, relative humidity maintained at 50% (± 8) and temperature maintained at 20°C. A/C_i curves set sample chamber CO_2 concentrations to 50, 100, 200, 300, 400, 500, 600, 800, 1000, 1250, 1500, and 2000 μmol CO$_2$ mol$^{-1}$ air. A/C_i curves were taken on WW, D1, and R1 plants. Light response curves were measured across ten light conditions ($Q= 2000, 1500, 1000, 500, 250, 125, 60, 30, 15, 0$ μmol photons m$^{-2}$ s$^{-1}$). Light response curves were taken on WW, D1, and R1 as well as D2 and D3 plants. For both response curves, PAM fluorescence was measured immediately after gas exchange using leaf chamber fluorimeter (Li-COR 6400-40, LiCOR Biosciences Inc., Lincoln, NE, USA). With actinic light maintained at setting of curve protocol ($\lambda = 470$ nm, 10% blue to obtain values of steady-state fluorescence (F_s)), a short saturating pulse (0.8 sec; ~8,000 μmol photons m$^{-2}$ s$^{-1}$) was applied to measure maximum fluorescence in light saturating conditions (F_m') with a short Far-Red pulse to record the F_o' value at the end of induction (Baker, 2008). These were used to determine the operating efficiency of photosystem II photochemistry ($F_m' - F_s$)/$F_m' = \phi_{PSII}$, for light acclimated conditions (Genty et al., 1989). Fluorescence measurements were taken in conjunction with all changes in C_i or Q for each A/C_i and light response curve.

Further chlorophyll fluorescence observations used a rapid PAM light response protocol developed for the MultispeQ spectrophotometer (PhotosynQ LLC, East Lancing, MI). The protocol is available on the PhotosynQ platform under project title: B. rapa drought and recovery Chl Fl evaluation (https://photosynq.org/projects/b-rapa-drought-and-recovery-chl-fl-evaluation). In a single 5-minute clamping with a fully expanded leaf (between 5th and 8th leaf), actinic light (655 nm (Lumileds, LXZ1-PA01)) was incremented at ten light intensities (1000, 800, 600, 500, 400, 300, 200, 100, 50, 0 μmol photons m$^{-2}$ s$^{-1}$) for 30 s before a PAM fluorometry sequence was initiated following established methods (Rascher et al., 2000; Datko et al., 2008). After each light acclimation period the PAM sequences used the multiphase flash technique as described in Lorauex, S.D. et al. (2013) with 4 rectangular saturation flashes of 4500, 4050, 3600, and 3150.
A linear regression of each maximum fluorescence ramp vs. $1/Q$ was made to determine expected F_m used for calculating fluorescence parameters. Recently, the original derivation of NPQ has been extended to NPQ_t allowing for high-throughput, under a minute each, yet mechanistically relevant measurements (Tietz *et al.*, 2017). Therefore, this protocol assessed ϕ_{PSII}, the fraction of Q dissipated safely as heat (ϕ_{NPQ_t}), and the fraction of Q quenched via unregulated excitation dissipation (ϕ_{NO}) at each light intensity. ϕ_{NPQ_t} assumes a constant theoretical maximum dark-adapted fluorescence yield and ϕ_{NO} represents the fraction of light use remaining after accounting for ϕ_{NPQ_t} and ϕ_{PSII} ($\phi_{NO} = 1 - (\phi_{NPQ_t} + \phi_{PSII})$) (Tietz *et al.*, 2017). From these response curves, linear electron flow (LEF) was calculated for each Q following $LEF = \phi_{PSII} Q \alpha_{leaf} \rho_2$, where α_{leaf} is assumed 0.85 and ρ_2 is assumed 0.5. Rapid PAM light response curves were taken on plants from each watering cohort (Supplemental Fig. 1).

Total electrochromic shift (ECSt) measurements were obtained at two Q intensities (300, 1000 μmol photons m$^{-2}$ s$^{-1}$ at 650 nm) using the MutlispeQ (Kuhlger t *et al.*, 2016). ECSt monitors the proton flow into the thylakoid lumen by evaluating shifts in the absorbance of cross-membrane carotenoid pigments (Fig. 1 (blue H$^+$ arrows)). Carotenoid absorbance spectrum is dependent on the changing electrical gradient produced by proton flow across the thylakoid membrane (Sacksteder *et al.*, 2000). The protocol for these ECSt observations is available on the PhotosynQ platform (https://photosynq.org/projects/b-rapa-drought-and-recovery-ecs-evaluation). ECSt observations were taken on plants of all watering cohorts (Supplemental Fig. 1). Observations of relative chlorophyll content were also measured with a hand-held MultispeQ spectrophotometer on plants of all watering cohorts (Supplemental Fig. 1).

Exponential decline of ϕ_{PSII} vs. Q

Light response data, ϕ_{PSII}, from both the Li-COR fluorimeter and the MultispeQ rapid fluorescence protocol were used to model the decline in ϕ_{PSII} under increasing Q. A hierarchical Bayesian framework generated genotype x treatment posterior trait distributions of exponential decline parameters. A three parameters exponential decline function was used following:

$$\phi_{PSII} = (\alpha_{PSII} - \kappa_{PSII})e^{Q\beta_{PSII}} + \kappa_{PSII} \text{(Eqn.1)}$$

where α_{PSII} (y-intercept) represents the maximum light-adapted ϕ_{PSII}, β_{PSII} represents the exponential decline rate in ϕ_{PSII} under increasing Q, and κ_{PSII} represents a non-zero minimum of ϕ_{PSII} as Q approaches ∞. Eqn. 1 was modeled using rjags (Plummer, 2014) with samples from the
posterior parameter distributions generated from a Gibbs sampling method (Plummer, 2003). Model parameters (α_{PSII}, β_{PSII}, κ_{PSII}) were estimated using a three-level hierarchical structure with global, genotype by treatment, and individual plant levels. Priors for the means of the exponential decline parameters followed wide informed normal distributions broadly informed with wide variances. Priors for the precision terms used weakly informed normal distributions (Gelman, 2006). The credible interval divergence at 95% high density interval (HDI) was used to evaluate posterior parameter differences for each treatment time. This comparison metric used in Bayesian analysis allows the identification of definitive portions of the posterior distributions characterized by higher probability density than the regions outside those intervals (Kruschke, 2014, Kruschke, 2018, Kruschke and Liddell, 2018), with more rigorous results and higher predictive power.

Photosynthesis Modeling

Utilizing Bayesian statistics, all photosynthesis models describe how quantum yield and underpinning mechanisms are related to CO$_2$ assimilation under changing light conditions and water availability. The three model formulations are similar to those found in photosynthesis process models while hierarchically incorporating uncertainty and providing probabilistic quantification of parameters. Tables 1 and 2 outline the three modeling approaches used to test the utility of ϕ_{PSII} light response data for characterizing ETR and light-limited A_n. All three approaches estimate A_n following Eqn 2.1 with the estimation of the critical $C_t(C_{crit})$, where A_c shifts to A_J, following methods detailed below. All three approaches estimate A_c using Eqn 2.2 and 2.3 (Table 2). The approaches vary in the derivation of photosynthetic ETR. The first approach followed the FvCB model estimating ETR using information from leaf gas exchange (Farquhar et al., 1980; Farquhar and Wong, 1984) (Eqn 2.5) (Fig. 1(a)). This FvCB derivation of ETR for $A_J (J_m)$ requires estimation of three parameters, J_{max}, the maximum rate of electron transport; ϕ_{CO2}, the quantum yield on a CO$_2$ to photon basis; and θ_J, the convexity factor for the response of ETR to Q. Two other parameters are fixed a priori in FvCB, an equal fractionation of light between PSI and PSII ($\rho_2 = 0.5$) and leaf absorbance (α_{leaf}) is set at 0.85. The second approach, described by Yin et. al. (2009), used a combined gas-exchange and fluorescence approach for modeling ETR (J_J) (Fig. 1(b)). The Yin model used ϕ_{PSII} data to parameterize PSII efficiency under limiting light ($\phi_{PSII ll}$) as well as the lumped parameter, s, which lumps α_{leaf}
differences, differences in ρ_2 as well as utilization of alternate electron paths, f_{alt}, along the Z-scheme (Eqn 2.6). Low-light ($0 < Q < 200$ umol photon m$^{-2}$ s$^{-1}$) response data (A_n, Q, ϕ_{PSII}) was subset to estimate R_d, s, and $\phi_{PSII, ll}$ in the Yin model. R_d is estimated as the y-intercept of linear regression of A_n against $\frac{Q\phi_{PSII}}{4}$. The slope of this regression is used to estimate s. The quantum yield parameter for the Yin model, $\phi_{PSII, ll}$, was estimated as the y-intercept of a linear regression of A_n against ψ_{PSII} under low Q. Finally, for the third approach, the β_{PSII} photosynthesis model derivation ETR (J_l), the full light response ϕ_{PSII} dataset was passed in the β_{PSII} model for estimation of $\alpha_{PSII}, \beta_{PSII}$ or κ_{PSII} needed to describe ETR (J_l) (Fig. 1(c)). Following Eqn. 1 the $\alpha_{PSII}, \beta_{PSII}$ or κ_{PSII} estimates were used to predict ϕ_{PSII} at each Q, next was J_l solved following Eqn 2.7. β_{PSII} implementation used the same R_d and s estimation as Yin.

All models used a temperature response following an Arrhenius function for $K_c, K_o, V_{cmax}, J_{max}, g_m, R_d$, and J^*. Each parameter was normalized with respect to 25°C following:

$$X = \frac{E_X(T_{leaf} - 25)}{298 R (T_{leaf} + 273)}$$

(Eqn. 3)

where T_{leaf} is leaf temperature (°C), X_{25} is the parameter normalized with respect to 25°C. E_X is the activation energy of each parameter and R is the universal gas constant (8.314 JK$^{-1}$ mol$^{-1}$).

Other temperature response functions were considered but given the limited variability in T_{leaf} (mean=20.0 ± 0.2) a simple one-parameter equation was selected for analysis.

C_{crit}, the C_i at which A_n transitions from A_c to A_J, was fixed at 285 ppm in all models based on an analysis of $Fv'Fm'$ under increasing C_i. $Fv'Fm'$ increases when $C_i < C_{crit}$ and remains constant when $C_i > C_{crit}$ (Sharkey et al., 2007; Gu et al., 2010; Moualeu-Ngangue et al., 2017). A Bayesian model was employed using a single change point method (Dose and Menzel, 2004) to estimate individual and population-level C_{crit}. Results of change point model found the posterior population level estimate had a mean 287.3 of with a 95% HDI of 265.1–318.7 ppm (Supplemental Fig. 8).

All C_i, A_n, Q, and T_{leaf} data from A/C_i and light response curves were used to estimate A_n traits, an approached used previously (Patrick et al., 2009; Archontoulis et al., 2012), with ϕ_{PSII} data supplied to the Yin and β_{PSII} models as described above. Parameter priors for FvCB and shared parameters among the three models were selected based on a recent implementation
(Pleban et al., 2018). The code for all three photosynthesis models as well as the simple β_{PSII} decline model are available at https://github.com/jrpleban/.

Acknowledgments

We thank Christopher Nieters, Sara Lemli and Shea Ruggier for assistance in data collection. We thank Xiaonan Tai and Diane R. Wang for feedback during manuscript preparation. This research was funded by National Science Foundation Plant Genome Research Projects grants IOS-1444571, IOS-1025965, and IOS-1547796. This research was also support by the University at Buffalo’s Mark Diamond Research Foundation and The College of Arts and Sciences Dissertation Enhancement Grant.

Supplemental Data

Supplemental Figure S1. Experimental design and observation schedule.

Supplemental Figure S2. Volumetric soil water content dynamics.

Supplemental Figure S3. Changes in lumped s parameter estimates.

Supplemental Figure S4. Onset of NPQt parameter.

Supplemental Figure S5. Simulated A_n vs observed A_n for three photosynthesis models.

Supplemental Figure S6. Correlations β_{PSII} with classic photosynthetic model parameters.

Supplemental Figure S7. Decline rates of Photosystem II efficiency under changing light conditions.

Supplemental Figure S8. Identification of transition point between A_c and A_J (C_{crit}).

Conflict of Interest

The authors declare no conflicts of interest. The views expressed here are those of the authors and do not necessarily represent the views of the NSF.

Tables

Table 1.

List of abbreviations used for models (observations, predictions and parameters).

Abbreviation	Definition	Units
A_n	CO$_2$ assimilation rate observed	μmol m$^{-2}$ s$^{-1}$
C_i	Intercellular CO$_2$ partial pressure observed	Pa
Leaf temperature observed T_{leaf} °C

Conductance to CO$_2$ from atmosphere to intercellular space observed g_s μmol m$^{-2}$ s$^{-1}$

Ambient O$_2$ (assumed 21% atmosphere) O Pa

Photosynthetically active radiation observed Q μmol m$^{-2}$ s$^{-1}$

Operating efficiency of photosystem II $(Fm'-Fs'/Fm')$ observed ϕ_{PSII} e$^{-}$/photon

Predicted Rubisco limited rate of CO$_2$ assimilation A_c μmol m$^{-2}$ s$^{-1}$

Predicted electron transport limited rate of CO$_2$ assimilation A_j μmol m$^{-2}$ s$^{-1}$

Predicted rate of electron transport following Farquhar J_m μmol m$^{-2}$ s$^{-1}$

Predicted rate of electron transport following Yin J_f μmol m$^{-2}$ s$^{-1}$

Predicted rate of electron transport following β decay model J_l μmol m$^{-2}$ s$^{-1}$

Predicted rate of electron transport following Yin using Eqn 2.6 ϕ_{PSII}_{ll} mol e$^{-}$/mol photon$^{-1}$

Universal gas constant (8.314 J K$^{-1}$ mol$^{-1}$) R J K$^{-1}$ mol$^{-1}$

Absorptance of leaf photosynthetic pigments α_{leaf} %

Partitioning of energy between PSII and PSI ρ_2 %

Fraction of electron not using LEF $(1-f_{pseudoe}(1-f_{cyc})$ in Yin et al. 2009 f_{alt} %

Lumped parameter $(\rho_2 a_{leaf}f_{alt})$ (Yin et al. 2009) s %

CO$_2$ photocompensation point (standardized to 25 °C) Γ^{*25} Pa

Michaelis-Menten constant for Rubisco for CO$_2$ (standardized to 25 °C) K_{c25} Pa

Michaelis-Menten constant for Rubisco for O$_2$ (standardized to 25 °C) K_{o25} kPa

Activation energy used in Arrhenius function $Ei's$ (Kc, Ko, Rd, Vcmax, Γ^*, J_{max}, gm, V_{cmax}) KJ mol$^{-1}$

Respiration rate in the dark (standardized to 25 °C) R_{d25} μmol m$^{-2}$ s$^{-1}$

Mesophyll conductance (standardized to 25 °C) g_m μmol m$^{-2}$ Pa$^{-1}$ s$^{-1}$

Maximum rate of carboxylation (standardized to 25 °C) V_{cmax25} μmol m$^{-2}$ s$^{-1}$

Maximum rate of electron transport (standardized to 25 °C) J_{max25} μmol m$^{-2}$ s$^{-1}$

Quantum yield of CO$_2$ using Eqn 2.6 ϕ_{CO2} mol CO$_2$ mol photon$^{-1}$

Curvature factor on electron transport rates predictions J_m and J_f θ_f unitless

Maximum quantum efficiency following Yin using Eqn 2.6 ϕ_{PSII} mol e$^{-}$/mol photon$^{-1}$

Decay rate in ϕ_{PSII} under increasing Q using Eqn 1 β_{PSII} Q$^{-1}$

Modeled ϕ_{PSII} as Q approaches zero using Eqn 1 α_{PSII} unitless

Modeled ϕ_{PSII} as Q approaches ∞ using Eqn 1 κ_{PSII} unitless
Table 2.
List of equations used in three photosynthesis models (FvCB, Yin, β_{PSII} decay).

Eqn No	Equation	Description
2.1	$A_n = \begin{cases} A_c & \text{if } C_i < C_{crit} \\ A_j & \text{if } C_i > C_{crit} \end{cases}$	A_n depending on 2 limiting factors and the critical C_i (C_{crit})
2.2	$A_i = \frac{-b+\sqrt{b^2-4ac}}{2a}$	General quadratic form for solving A_c, A_j, J_m, J_f
2.3	$a = \frac{-1}{g_m}$, $b = \frac{V_{i,max} - R_d}{g_m} + C_i + K_c(\frac{1+O}{K_o})$, $c = R_d(C_i + K_c(\frac{1+O}{K_o})$	Quadratic roots using intercellular CO$_2$ (C_i) and a mesophyll conductance (g_m) term for describing A_c
2.4	$a = \frac{-1}{g_m}$, $b = \frac{1}{g_m} - R_d$, $c = R_d(C_i + 2\Gamma^*) - \frac{1}{4}(C_i - \Gamma^*)$	Quadratic roots for A_j using J_m, J_f or J_l
2.5	$Q_{abs} = Q_{\alpha_{leaf}}$, $a = \theta_J$, $b = -(Q_{abs} \phi_{CO2}) - J_{max}$, $c = Q_{abs} \phi_{CO2} J_{max}$	Quadratic roots for whole chain ETR (J_m) as described in von Caemmerer (2000) assumes $\alpha_{leaf} = 0.85$
2.6	$a = \theta_J$, $b = -(Q s \phi_{HL}) - J_{max}$, $c = Q s \phi_{HL} J_{max}$	Quadratic roots for combined gas-exchange and chlorophyll fluorescence ETR (J_f) as described in Yin (2009) $s = \alpha_{leaf} f falt$
2.7	$J_l = \phi_{preact} Q$, β_{PSII} model for full ϕ_{PSII} vs Q derivation of ETR (J_l) using Eqn 1 to predict ϕ_{II} from decay with Q	
Table 3.

Genotype by treatment trait estimates for 14 photosynthesis traits. Modeled traits show median of posterior distribution (95% credible interval range) while observed traits show mean values (standard deviation). Bold indicates significance relative to Well-Watered at \(p < 0.05 \) or for 95% CI's HDI interval difference not intersecting with zero was used to describe a credible trait variance (\(A_{\text{max}} \) and \(s \)).

Trait	Treatment	\(r_{301} \)	\(r_{46} \)	\(R_{500} \)	\(VT \)
\(A_{\text{max}} \) (μmol m\(^{-2}\) s\(^{-1}\))	Well Watered	27.70 (25.47, 30.26)	17.12 (14.99, 19.57)	25.42 (22.86, 28.13)	18.25 (15.94, 20.64)
	Early Drought	28.70 (26.02, 31.22)	14.54 (12.73, 16.43)	25.62 (23.33, 27.74)	14.71 (12.91, 16.45)
\(s \) unitless	Well Watered	0.33 (0.3, 0.37)	0.29 (0.25, 0.32)	0.32 (0.29, 0.34)	0.31 (0.27, 0.35)
	Early Drought	0.36 (0.33, 0.38)	0.28 (0.25, 0.31)	0.32 (0.3, 0.34)	0.29 (0.25, 0.32)
\(ESC_{300} \times 1000 \)	Well Watered	1.7 (0.35)	1.7 (0.34)	1.4 (0.32)	1.2 (0.42)
\(\Delta \text{ absorbance} 530 \)	Early Drought	1.4 (0.10)	1.7 (0.49)	1.8 (0.48)	1.9 (0.32)
	Late Drought	3.0 (0.44)	2.4 (0.13)	2.7 (0.24)	2.7 (0.21)
\(LEF_{300} \)	Well Watered	61.07 (2.90)	57.37 (0.26)	70.25 (4.43)	64.06 (3.39)
\(\Delta \text{ absorbance} 530 \)	Early Drought	68.72 (0.18)	57.46 (7.59)	63.27 (4.34)	61.23 (3.05)
	Late Drought	34.48 (11.38)	43.06 (7.59)	36.21 (5.70)	42.39 (1.53)
\(\phi_{NPQ_{300}} \) (%)	Well Watered	0.31 (0.03)	0.33 (0.04)	0.21 (0.03)	0.24 (0.04)
	Early Drought	0.24 (0.02)	0.32 (0.01)	0.27 (0.06)	0.28 (0.03)
	Late Drought	0.55 (0.05)	0.49 (0.07)	0.52 (0.08)	0.49 (0.03)
\(\phi_{NPQ_{1000}} \) (%)	Well Watered	0.64 (0.02)	0.66 (0.02)	0.57 (0.03)	0.59 (0.04)
	Early Drought	0.6 (0.01)	0.67 (0.01)	0.60 (0.06)	0.62 (0.03)
	Late Drought	0.73 (0.01)	0.73 (0.02)	0.69 (0.05)	0.69 (0.01)
\(\phi_{NO_{300}} \) (%)	Well Watered	0.21 (0.019)	0.22 (0.009)	0.24 (0.011)	0.25 (0.028)
	Early Drought	0.22 (0.018)	0.23 (0.01)	0.23 (0.032)	0.24 (0.011)
	Late Drought	0.18 (0.045)	0.17 (0.015)	0.20 (0.036)	0.18 (0.019)
\(\phi_{NO_{1000}} \) (%)	Well Watered	0.15 (0.022)	0.15 (0.006)	0.18 (0.018)	0.20 (0.029)
	Early Drought	0.15 (0.005)	0.15 (0.011)	0.17 (0.021)	0.17 (0.008)
	Late Drought	0.15 (0.026)	0.14 (0.007)	0.19 (0.035)	0.16 (0.005)
\(SPAD_{530} \)	Well Watered	58.66 (3.93)	52.42 (6.57)	58.53 (5.8)	41.54 (8.2)
	Early Drought	53.06 (7.57)	45.61 (7.39)	56.86 (17.02)	43.19 (9.4)
	Late Drought	98.91 (10.11)	72.59 (11.91)	102.86 (8.66)	84.86 (27.68)
\(gs \) (mmol m\(^{-2}\) s\(^{-1}\))	Well Watered	0.48 (0.07)	0.21 (0.06)	0.44 (0.12)	0.23 (0.11)
	Early Drought	0.30 (0.15)	0.17 (0.07)	0.15 (0.15)	0.09 (0.11)
	Late Drought	0.19 (0.14)	0.17 (0.12)	0.04 (0.06)	0.06 (0.06)
Leaf Temp & Well Watered & -1.2 (1.57) & -0.68 (1.02) & -0.58 (1.19) & -1.03 (0.94) \\
Differential (°C) & Early Drought & -0.17 (0.81) & 0.51 (1.32) & 0.45 (1.48) & **1.76 (0.7)** \\
(Std. Dev) & Late Drought & -0.1 (1.41) & 0.53 (0.57) & 0.33 (0.24) & -0.24 (0.35) \\
Relative Chlorophyll & Well Watered & 45.75 (3.58) & 42.46 (5.91) & 45.72 (3.03) & 29.57 (10.98) \\
(Std. Dev) & Late Drought & **73.52 (2.04)** & **56.82 (5.37)** & **77.85 (3.67)** & **67.44 (10.18)**

Figure Legends

Figure 1. Simplified illustration of the light reactions of photosynthesis representing how three conceptual models account for the photosynthetic electron transport. Upon light energy absorption, energy in the form of excited electrons (e) is transferred from light harvesting antennae to the reaction centers of photosystems I and II (PSI and PSII) in the chloroplastic thylakoid membranes (a). This energy transport has been described as a Z-scheme (Hill and Bendall, 1960) whereby e from PSII produce a transmembrane H⁺ gradient (used for ATP production) while e downstream of PSI produce NADPH; both ATP and NADPH are then used for Calvin cycle CO₂ fixation. For modeling applications (inset graphs of panels b, c, and d), photosynthetic quantum yield describes how light energy relates to CO₂ fixation (Long et al 1993, Gentry et al 1989) and assumptions are made about the processes of electron transfer more or less obscuring (gray boxes in b, c, and d) the actual physiological mechanisms. In the traditional FvCB conceptualization, quantum yield is calculated on a photon to CO₂ basis (ϕCO₂) (inset graph of panel b). Here, ETR processes are ignored, assuming 100% linear electron flow (LEF) from PSII to NADPH production, leaf absorbance (αleaf) is fixed (0.85) and an implicit 50/50 fractionalization of Q between PSII and PSI (ρ₂) (b). The Yin conceptualization improved the use of PSII physiology by calculating quantum yield on a photon to e basis, using the relationship between ϕPSII and Q under light limiting conditions (ϕPSII,b) (top inset graph of panel c). Yin also used a lumped s parameter defined by the slope of a linear regression of Aₙ against (Q ϕPSII)/4 using light < 200 μmol m⁻² s⁻¹, where 4 is the number of protons needed to synthesis one ATP. This regression was used to calibrate for three factors, the unknown fraction of non-linear electron flow around PSI (fₐᵲ), αleaf and ρ₂ (bottom inset graph of panel c). Our alternative βPSII conceptualization captures the behavior of energy transfer from the antennae complex to the PSII reaction complex (d). Here, quantum yield is modeled using an exponential decay function (Eqn. 1) across all relevant Q conditions, on a photon to e basis, providing estimates of both maximum light-acclimated quantum yield (αPSII) and the decay rate in ϕPSII under increasing Q (βPSII) (inset graph of panel d). βPSII model maintains the use of the s parameter to address fₐᵲ, αleaf, and ρ₂. Implementations of modeling photosynthetic electron transport in the Yin and βPSII approaches are represented as incrementing highlighted yellow in panels c and d.

Figure 2. Photosystem II operating efficiency (ϕPSII) across photosynthetically active radiation (Q) of 0–1000 μmol photons m⁻² s⁻¹ for four B. rapa genotypes. Observations of r301 (a), r46 (b), R500 (c), and VT (d) occurred over a range of water regimes from well-watered (W1, W2, W3) to increasing drought (D1, D2, D3) and different levels of re-watering (R1, R2, R3). Points are the mean values of replicates (n curves=119, average n curves per replicate = 3.3), fitted lines use median posterior estimate of a three-parameter exponential decline model (Eqn 1) by genotype x treatment.

Figure 3. Photosystem II dynamics in response to different water regimes. Decline rate in Photosystem II efficiency (ϕPSII) under increasing light intensity (βPSII) (Q⁻¹) (a,b,c,d) and maximum light-acclimated Photosystem II efficiency (αPSII) (e,f,g,h) for the four B. rapa genotypes R500 (a,e), r301 (b,f), r46 (c,g), and VT (d,h) over a range of water regimes, as defined in Figure 2, described by volumetric soil moisture content (VWC). Points represent median posterior estimate of βPSII and αPSII from a three-parameter
exponential decline model (Eqn.1) (β_{PSII} and α_{PSII} derived from n curves=119, average n curves per replicate = 3.3), vertical bars are 95% high density intervals of posterior estimates and horizontal bars are standard deviations on observations of VWC (n=153, average n per replicate = 4.25). On the right side of the panels are Bayesian prior distributions of β_{PSII} and α_{PSII}.

Figure 4. Comparison of posterior median estimates of parameters common to the FvCB, Yin, and β_{PSII} photosynthesis models. Comparison of maximum rate of carboxylation (V_{cmax}), estimates between β_{PSII} and FvCB, β_{PSII} and Yin, and FvCB and Yin with R for each relationship (a,b,c). Comparison of mesophyll conductance (g_m) estimates between β_{PSII} and FvCB, β_{PSII} and Yin and FvCB and Yin with R for each relationship (d,e,f). Genotypes and water regimes are as defined in Figure 2.

Figure 5. Comparison of posterior median estimates of parameters in the FvCB, Yin, and β_{PSII} models. Comparison of quantum yield terms for each model: α_{PSII} (mol photon/mol e') of β_{PSII} model with ϕ_{CO2} (mol CO$_2$/mol e') of FvCB model (a) α_{PSII} with $\phi_{\text{PSII, ll}}$ (mol photon/mol e') of Yin model (b), and ϕ_{ll} with $\phi_{\text{PSII, ll}}$ (c) with correlation coefficient (R) for each. Comparison of s parameter between Yin model and β_{PSII} model (d) and comparison of θ_s between Yin model and FvCB model (e). Genotypes and water regimes are as defined in Figure 2.

Figure 6. Photosystem II efficiency analysis. Comparison of Photosystem II efficiency (ϕ_{PSII}) across two instruments, Li-Cor 6400 and Multispec, and three light intensities (0, 500, 1000 μmol photons m$^{-2}$ s$^{-1}$) for the four B. rapa genotypes r301 (a), r46 (b), R500 (c), and VT (d). Each set of observations occurred over a range of water regimes from well-watered (W1) to increasing drought (D1, D2, D3) and re-watering (R2). Points are mean of replicate error bars are standard deviations (total n Li-Cor 6400 = 162, average n per replicate 2.7; total n Multispec = 213, average n per replicate 3.6)
References

Adler LS, Wikler K, Wyndham FS, Linder CR, Schmitt J (1993) Potential for persistence of genes escaped from canola: germination cues in crop, wild, and crop-wild hybrid Brassica rapa. Functional Ecology 7: 736-745

Allen JF, Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 1351-1359

Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC (2012) Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? Journal of Experimental Botany 63: 895-911

Asada K (2006) Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology 141: 391-396

Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89-113

Baker RL, Leong WF, Brock MT, Markelz RJ, Covington MF, Devisetty UK, Edwards CE, Maloof J, Welch S, Weinig C (2015) Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape. New Phytol 208: 257-268

Batra NG, Sharma V, Kumari N (2014) Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of plant interactions 9: 712-721

Bellasio C, Beerling DJ, Griffiths H (2016) An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant, cell & environment 39: 1180-1197

Bertin N, Martre P, Génard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. Journal of Experimental Botany 61: 955-967

Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agricultural Systems 70: 395-420

Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist 162: 671-681

Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK (2013) A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proceedings of the National Academy of Sciences 110: E2733-E2740

Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in Maize: a "Gene-to-Phenotype" modeling approach. Genetics 183: 1507-1523

Cruz Jeffrey A, Savage LJ, Zegarac R, Hall Christopher C, Satoh-Cruz M, Davis Geoffry A, Kovac William K, Chen J, Kramer David M (2016) Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes. Cell Systems 2: 365-377

Dall'Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. The Plant Cell 17: 1217-1232
Datko M, Zivcak M, Brestic M (2008) Proteomic analysis of barley (Hordeum vulgare L.) leaves as affected by high temperature treatment. In Photosynthesis. Energy from the sun. Springer, pp 1523-1527

de Witt CT (1966) Agriculturual Research Report: Photosynthesis of leaf canopies. In. Centre for Agricultural Publications and Documentation, Wageningen

Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Global Change Biology 10: 259-272

Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT (2017) Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology 247: 454-466

Edwards CE, Ewers BE, Weinig C (2016) Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology. BMC Plant Biology 16: 185

Edwards CE, Ewers BE, McClung CR, Lou P, Weinig C (2012) Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits. Molecular Plant 5: 653-668

Edwards CE, Ewers BE, Williams DG, Xie Q, Lou P, Xu X, McClung CR, Weinig C (2011) The genetic architecture of ecophysiological and circadian traits in Brassica rapa. Genetics 189: 375-390

Farquhar G, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90

Farquhar GD, Wong SC (1984) An Empirical Model of Stomatal Conductance. Australian Journal Plant Physiology 11(3): 191 – 210

Filek M, Łabanowska M, Kościelniak J, Biesaga-Kościelniak J, Kurdziel M, Szarejko I, Hartikainen H (2015) Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. Journal of agronomy and Crop science 201: 228-240

Fini A, Guidi L, Ferrini F, Brunetti C, Di Ferdinando M, Biricolti S, Pollastri S, Calamai L, Tattini M (2012) Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? Journal of Plant Physiology 169: 929-939

Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology 29: 461-471

Flexas J, Carriqui M, Nadal M (2018) Gas exchange and hydraulics during drought in crops: who drives whom? Journal of Experimental Botany 69: 3791-3795

Flood PJ, Kruijer W, Schnabel SK, Schoor R, Jalink H, Snel JF, Harbinson J, Aarts MG (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12: 14

Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytologist 190: 249-257

Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1: 515-534
31

Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990: 87-92

Gómez R, Carrillo N, Morelli MP, Tula S, Shahinnia F, Hajirezaei M-R, Lodgeyro AF (2017) Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts. Photosynthesis research: 1-10

Govindjee (2002) A Role for a Light-Harvesting Antenna Complex of Photosystem II in Photoprotection. The Plant Cell 14: 1663-1668

Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment 28: 834-849

Gu L, Pallardy SG, Tu K, Law BE, Wullschleger SD (2010) Reliable estimation of biochemical parameters from C3 leaf photosynthesis–intercellular carbon dioxide response curves. Plant, Cell & Environment 33: 1852-1874

Guadagno CR, Ewers BE, Speckman HN, Aston TL, Huhn BJ, DeVore SB, Ladwig JT, Strawn RN, Weig C (2017) Dead or Alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiology 175: 223-234

Gulli M, Salvatori E, Fusaro L, Pellacani C, Manes F, Marmiroli N (2015) Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety. PLoS One 10: e0117073

Hammer G, Cooper M, Tardieu F, Welch F, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Science 11: 587–593

Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology 98: 1429-1436

Holland JB (2007) Genetic architecture of complex traits in plants. Current Opinion in Plant Biology 10: 156-161

Horton P, Ruban AV, Walters RG (1994) Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiology 106: 415-420

Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theoretical and Applied Genetics 120: 31-43

Jin Z, Ainsworth EA, Leakey ADB, Lobell DB (2018) Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology 24: e522-e533

Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420: 829

Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The Excess Light Energy that is neither Utilized in Photosynthesis nor Dissipated by Photoprotective Mechanisms Determines the Rate of Photoinactivation in Photosystem II. Plant and Cell Physiology 44: 318-325

Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192: 261-268
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis research 79: 209

Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends in plant science 9 (7): 349-357.

Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research 98: 551-564

Kromdijk J, Glowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354: 857-861

Kruschke JK (2018) Rejecting or accepting parameter values in Bayesian estimation, advances in methods and practices. Psychological Science 1: 270-280

Kruschke JK (2014) Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.

Kuhlert S, Austic G, Zagarac R, Osei-Bonsu I, Hoh D, Chilvers MI, Roth MG, Bi K, TerAvest D, Weebadde P (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science 3: 160592

Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant, Cell & Environment 25: 923-943

Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence (ribulose-1, 5-bisphosphate carboxylase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiology 110: 903-912

Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817: 760-769

Lazár D (2015) Parameters of photosynthetic energy partitioning. Journal of Plant Physiology 175: 131-147

Li QM, Liu BB, Wu Y, Zou ZR (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. Journal of Integrative Plant Biology 50: 1307-1317

Lianhong G, Ying S (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant, Cell & Environment 37: 1231-1249

Kruschke JK, Liddell TM (2016) The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review 79: 328-34

Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. The Plant Cell 22: 221-233
Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54: 2393-2401

Malnoé A (2018) Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environmental and Experimental Botany 154: 123-133

Martre P, Quilot-Turion B, Luquet D, Memmah M-MO-S, Chenu K, Debaeke P (2015) Model-assisted phenotyping and ideotype design. In Crop Physiology (Second Edition). Elsevier, pp 349-373

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51: 659-668

McElreath R (2016) Statistical Rethinking: A Bayesian Course with Examples in R and Stan CRC Press

Meacham K, Sirault X, Quick WP, von Caemmerer S, Furbank R (2017) Diurnal solar energy conversion and photoprotection in rice canopies. Plant Physiology 173: 495-508

Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Annals of Botany 89: 895-905

Miller GAD, Suzuki N, Sultan C-Y, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33: 453-467

Moualeu-Ngangue DP, Chen T-W, Stützel H (2017) A new method to estimate photosynthetic parameters through net assimilation rate—intercellular space CO2 concentration (A–Ci) curve and chlorophyll fluorescence measurements. New Phytologist 213: 1543-1554

Müller P, Li X-P, Niyogi KK (2001) Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology 125: 1558-1566

Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1767: 414-421

Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany 60: 2249-2270

Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1757: 742-749

Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and Oxidative Load in the Leaves of C(3) Plants: a Predominant Role for Photorespiration? Annals of Botany 89: 841-850

Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of experimental botany 51: 1309-1317

Oberhuber W, Edwards CE (1993) Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 Plants. Plant Physiology 101: 507-512

Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Current Opinion in Plant Biology 5: 193-198
Patrick LD, Ogle K, Tissue DT (2009) A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants. Plant, Cell & Environment 32: 1695-1709

Pietri F, Massacci A (1998) Leaf anthocyanin content changes in Zea mays L. grown at low temperature: Significance for the relationship between the quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosynthesis Research 58: 213–219

Pleban JR, Mackay DS, Aston TL, Ewers BE, Weinig C (2018) Phenotypic trait identification using a multimodel Bayesian method: a case study using photosynthesis in Brassica rapa genotypes. Frontiers in plant science 9: 448-468

Plummer M (2014) rjags: Bayesian graphical models using MCMC. In Ed 3.14, Downloaded from: http://mcmc-jags.sourceforge.net/

Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing, Vol 124. Vienna, Austria, p 125

Pons TL, Flexas J, Von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. Journal of Experimental Botany 60: 2217-2234

Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Botanica 55: 1-57

Rascher U, Bobich E, Lin G, Walter A, Morris T, Naumann M, Nichol C, Pierce D, Bil K, Kudeyarov V (2004) Functional diversity of photosynthesis during drought in a model tropical rainforest—the contributions of leaf area, photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange. Plant, Cell & Environment 27: 1239-1256

Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light–response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment 23: 1397-1405

Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189-1202

Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining Quantitative Trait Loci Analysis and an Ecophysiological Model to Analyze the Genetic Variability of the Responses of Maize Leaf Growth to Temperature and Water Deficit. Plant Physiology 131: 664-675

Ruban AV (2016) Non photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170: 1903-1916

Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proceedings of the National Academy of Sciences 97: 14283-14288

Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30: 1035-1040

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012
Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31: 79-105

Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in *Brassica* *napus*. Genetics 182: 851-861

Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR (2018) Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. Journal of Experimental Botany 69: 483-496

Singsaas EL, Ort DR, DeLucia E H (2001) Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128:15–23

Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany 51: 45-56

Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant, Cell & Environment 21: 347-359

Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proceedings of the National Academy of Sciences 112: 5539-5544

Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16: 53-60

Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant Science 8: 9-14

Tazoe Y, von Caemmerer S, Badger MR, Evans JR (2009) Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. Journal of Experimental Botany 60: 2291-2301

Tietz S, Hall CC, Cruz JA, Kramer DM (2017) NPQ (T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, cell & environment 40: 1243-1255

Urban L, Aarrouf J, Bidel LPR (2017) Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Frontiers in Plant Science 8

Vialet-Chabrand V, Matthews JSA, Simkin AJ, Raines CA, Lawson T (2017) Importance of fluctuations in light on plant phototysnthetic acclimation. Plant Physiology 173: 2163-2179

Vialet-Chabrand V, Matthews JSA, Brendel O, Blatt M, Wang Y, Hills A, Griffiths H, Rogers S, Lawson T (2016) Modelling water use efficiency in a dynamic environment: an example using *Arabidopsis thaliana*. Plant Physiology 173: 2163-2179

Wang DR, Guadagno CR, Mao X, Mackay DS, Pleban JR, Baker RL, Weinig C, Jannink J, Ewers BE (2019) A framework for genomics-informed ecophysiological modeling in plants. Journal of Experimental Botany 70: 2561–2574
Wang X, Du T, Huang J, Peng S, Xiong D (2018) Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. Journal of experimental botany 188

Williams PH, Hill CB (1986) Rapid-cycling populations of Brassica. Science 232: 1385-1389

Yarkhunova Y, Edwards CE, Ewers BE, Baker RL, Aston TL, McClung CR, Lou P, Weinig C (2016) Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa. New Phytologist 210: 133-144

Yin X, Struijk PC, Romero P, Harbinson J, Evers JB, Van Der Putten PE, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell & Environment 32: 448-464

Yin X, Harbinson J, Struijk PC (2006) Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. Plant, Cell & Environment 29: 1771-1782

Yin X, Van Oijen M, Schapendonk A (2004) Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant, Cell & Environment 27: 1211-1222

Zavafer A, Cheah MH, Hillier W, Chow WS, Takahashi S (2015) Photodamage to the oxygen evolving complex of photosystem II by visible light. Scientific Reports 5: 16363
\[R^2 = 0.925 \]

\[R^2 = 0.979 \]

\[R^2 = 0.931 \]

\[R^2 = 0.963 \]
Adler LS, Wikler K, Wyndham FS, Linder CR, Schmitt J (1993) Potential for persistence of genes escaped from canola: germination cues in crop, wild, and crop-wild hybrid Brassica rapa. Functional Ecology 7: 736-745

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Allen JF, Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences 355: 1351-1359

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC (2012) Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? Journal of Experimental Botany 63: 895-911

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Asada K (2006) Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology 141: 391-396

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review Plant Biology 59: 89-113

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Baker RL, Leong WF, Brock MT, Markelz RJ, Covington MF, Devisetty UK, Edwards CE, Maloof J, Welch S, Weinig C (2015) Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape. New Phytol 208: 257-268

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Batra NG, Sharma V, Kumari N (2014) Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of plant interactions 9: 712-721

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Bellasio C, Beerling DJ, Griffiths H (2016) An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant, cell & environment 39: 1180-1197

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Bertin N, Martre P, Génard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. Journal of Experimental Botany 61: 955-967

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agricultural Systems 70: 395-420

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist 162: 671-681

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK (2013) A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proceedings of the National Academy of Sciences 110: E2733-E2740

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in Maize: a "Gene-to-Phenotype" modeling approach. Genetics 183: 1507-1523

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Chen Jeffrey A, Savage LJ, Zagarac R, Hall Christopher C, Sato-Cruz M, Davis Geoffry A, Kovac William K, Chen J, Kramer David M (2016) Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes. Cell Systems 2: 365-377

Pubmed: Author and Title
Google Scholar: Author Only, Title Only, Author and Title

Dall'Osto L, Caffari S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. The Plant Cell 17:1217-1232

Author and Title

Pubmed

Google Scholar

www.plantphysiol.org on May 5, 2020 - Published by Downloaded from Copyright © 2020 American Society of Plant Biologists. All rights reserved.
Dako M, Zivcak M, Brestic M (2008) Proteomic analysis of barley (Hordeum vulgare L.) leaves as affected by high temperature treatment. In Photosynthesis. Energy from the sun. Springer, pp 1523-1527

de Witt CT (1966) Agricultural Research Report: Photosynthesis of leaf canopies. In. Centre for Agricultural Publications and Documentation, Wageningen

Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Global Change Biology 10: 259-272

Drake JE, Power SA, Duursma RA, Medlyn BE, Aepinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT (2017) Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology 247: 454-466

Edwards CE, Ewers BE, Weinig C (2016) Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology. BMC Plant Biology 16: 185

Edwards CE, Ewers BE, McClung CR, Lou P, Weinig C (2012) Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits. Molecular Plant 5: 653-668

Farquhar G, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90

Farquhar GD, Wong SC (1984) An Empirical Model of Stomatal Conductance. Australian Journal Plant Physiology 11(3): 191 – 210

Filek M, Łabanowska M, Kościelniak J, BiesagaKościelniak J, Kurzdziel M, Szarejko I, Hartikainen H (2015) Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. Journal of agronomy and Crop science 201: 228-240

Fini A, Guidi L, Ferrini F, Brunetti C, Di Ferdinando M, Biricolti S, Pollastri S, Calamai L, Tattini M (2012) Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? Journal of Plant Physiology 169: 929-939

Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology 29: 461-471

Flexas J, Carriquí M, Nadal M (2018) Gas exchange and hydraulics during drought in crops: who drives whom? Journal of Experimental Botany 69: 3791-3795

Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of botany 89: 183-189

Flood PJ, Kruijer W, Schnabel SK, Schröder JL, Juelink H, Steijl F, Harbinson J, Arts MG (2016) Phonomics for photosynthesis, growth...
and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12: 14

Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytologist 190: 249-257

Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1: 515-534

Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990: 87-92

Gómez R, Carrillo N, Morelli MP, Tula S, Shahinnia F, Hajirezaei M-R, Lodeyro AF (2017) Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts. Photosynthesis research: 1-10

Govindjee (2002) A Role for a Light-Harvesting Antenna Complex of Photosystem II in Photoprotection. The Plant Cell 14: 1663-1668

Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment 28: 834-849

Gu L, Pallardy SG, Tu K, Law BE, Wullschleger SD (2010) Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant, Cell & Environment 33: 1852-1874

Guadagno CR, Ewers BE, Speckman HN, Aston TL, Huhn BJ, DeVore SB, Ladwig JT, Strawin RN, Weining C (2017) Dead or Alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiology 175: 223-234

Gullì M, Salvatori E, Fusaro L, Pellacani C, Manes F, Marmirol N (2015) Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety. PLoS One 10: e0117073

Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Science 11: 587-593

Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology 98: 1429-1436

Holland JB (2007) Genetic architecture of complex traits in plants. Current Opinion in Plant Biology 10: 156-161

Horton P, Ruban AV, Walters RG (1994) Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiology 106: 415-420

Iniguez-Luy FL, Lukens L, Farnham MW, Anasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theoretical and Applied Genetics 120: 31-43

Jin Z, Ainsworth EA, Leakey ADB, Lobell DB (2018) Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology 24: e522-e533
Kasahara M, Kagawa T, Okawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420: 829

Kato MC, Hikosaka K, Hirotsuka N, Makino A, Hirose T (2003) The Excess Light Energy that is neither Utilized in Photosynthesis nor Dissipated by Photoprotective Mechanisms Determines the Rate of Photoinactivation in Photosystem II. Plant and Cell Physiology 44: 318-325

Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192: 261-268

Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis research 79: 209

Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends in plant science 9 (7): 349-357.

Krieger-Liszkay A, Füfezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research 98: 551-564

Kromdijk J, Glowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354: 857-861

Kruschke JK (2018) Rejecting or accepting parameter values in Bayesian estimation, advances in methods and practices. Psychological Science 1: 270-280

Kruschke JK (2014) Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.

Laisk A, Oja V, Rasulov B, Rämmä H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant, Cell & Environment 25: 923-943

Laisk A, Oja V, Rasulov B, Rämmä H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant, Cell & Environment 25: 923-943

Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence (ribulose-1,5-bisphosphate carboxylase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiology 110: 903-912

Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817: 760-769

Lazar D (2015) Parameters of photosynthetic energy partitioning. Journal of Plant Physiology 175: 131-147

Li QM, Liu BB, Wu Y, Zou ZR (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. Journal of Integrative Plant Biology 50: 1307-1317
Lianhong G, Ying S (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant, Cell & Environment 37: 1231-1249

Kruschke JK, Liddell TM (2016) The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review 79: 328-34

Livingston AK, Cruz JA, Kohzuma K, Dingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. The Plant Cell 22: 221-233

McElreath R (2016) Statistical Rethinking: A Bayesian Course with Examples in R and Stan CRC Press

Meacham K, Sirault X, Quick WP, von Caemmerer S, Furbank R (2017) Diurnal solar energy conversion and photoprotection in rice canopies. Plant Physiology 173: 495-508

Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter. Annals of Botany 89: 895-905

Müller P, Li X-P, Niyogi KK (2001) Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology 125: 1558-1566

Niinemets Ü, Díaz-ESpejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany 60: 2249-2270

Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1757: 742-749
Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and Oxidative Load in the Leaves of C(3) Plants: a Predominant Role for Photorespiration? Annals of Botany 89: 841-850

Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of experimental botany 51: 1309-1317

Oberhuber W, Edwards CE (1993) Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 Plants. Plant Physiology 101: 507-512

Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Current Opinion in Plant Biology 5: 193-198

Patrick LD, Ogle K, Tissue DT (2009) A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants. Plant, Cell & Environment 32: 1695-1709

Pietrini F, Massacci A (1998) Leaf anthocyanin content changes in Zea mays L. grown at low temperature: Significance for the relationship between the quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosynthesis Research 58: 213–219

Plummer M (2014) rjags: Bayesian graphical models using MCMC. In, Ed 3.14, Downloaded from: http://mcmc-jags.sourceforge.net/

Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing, Vol 124. Vienna, Austria, p 125

Pons TL, Flexas J, Von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. Journal of Experimental Botany 60: 2217-2234

Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Botanica 55: 1-57

Rascher U, Bobich E, Lin G, Walter A, Morris T, Naumann M, Nichol C, Pierce D, Bil K, Kudeyarov V (2004) Functional diversity of photosynthesis during drought in a model tropical rainforest—the contributions of leaf area, photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange. Plant, Cell & Environment 27: 1239-1256

Rascher U, Liebig M, Lüttinge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell & Environment 23: 1397-1405

Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189-1202

Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining Quantitative Trait Loci Analysis and an Ecophysiological Model to Analyze the Genetic Variability of the Responses of Maize Leaf Growth to Temperature and Water Deficit. Plant Physiology 131: 664-675

Downloaded from on May 5, 2020 - Published by www.plantphysiol.org
Copyright © 2020 American Society of Plant Biologists. All rights reserved.
Ruban AV (2016) Non photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170: 1903-1916

Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proceedings of the National Academy of Sciences 97: 14283-14288

Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30: 1035-1040

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012

Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31: 79-105

Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus. Genetics 182: 851-861

Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR (2018) Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. Journal of Experimental Botany 69: 483-496

Singsaas EL, Ort DR, DeLucia EH (2001) Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128:15–23

Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany 51: 45-56

Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant, Cell & Environment 21: 347-359

Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proceedings of the National Academy of Sciences 112: 5539-5544

Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16: 53-60

Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant Science 8: 9-14

Tazoe Y, von Caemmerer S, Badger MR, Evans JR (2009) Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. Journal of Experimental Botany 60: 2291-2301

Tietz S, Hall CC, Cruz JA, Kramer DM (2017) NPQ (T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, cell & environment 40: 1243-1255
Urban L, Aarrouf J, Bidel LPR (2017) Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Frontiers in Plant Science 8

Vialet-Chabrand V, Matthews JSA, Simkin AJ, Raines CA, Lawson T (2017) Importance of fluctuations in light on plant phototysnthetic acclim atation. Plant Physiology 173: 2163-2179

Vialet-Chabrand V, Matthews JSA, Brendel O, Blatt M, Wang Y, Hills A, Griffiths H, Rogers S, Lawson T (2016) Modelling water use efficiency in a dynamic environment: an example using Arabidopsis thaliana. Plant Physiology 173: 2163-2179

Wang DR, Guadagno CR, Mao X, Mackay DS, Pleban JR, Baker RL, Weinig C, Jannink J, Ewers BE (2019) A framework for genomics-informed ecophysiological modeling in plants. Journal of Experimental Botany 70: 2561–2574

Wang X, Du T, Huang J, Peng S, Xiong D (2018) Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. Journal of experimental botany 188

Williams PH, Hill CB (1986) Rapid-cycling populations of Brassica. Science 232: 1385-1389

Yarkhunova Y, Edwards CE, Ewers BE, Baker RL, Aston TL, McClung CR, Lou P, Weinig C (2016) Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa. New Phytologist 210: 133-144

Yin X, Struijk PC, Romero P, Harbinson J, Evers JB, Van Der Putten PE, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell & Environment 32: 448-464

Yin X, Harbinson J, Struijk PC (2006) Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. Plant, Cell & Environment 29: 1771-1782

Yin X, Van Oijen M, Schapendonk A(2004) Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant, Cell & Environment 27: 1211-1222

Zavafer A, Cheah MH, Hillier W, Chow WS, Takahashi S (2015) Photodamage to the oxygen evolving complex of photosystem II by visible light. Scientific Reports 5: 16363