Assessing Intervention Strategies for Non Homogeneous Populations Using a Closed Form Formula for R_0

Zeynep Gökçe İşlier • Wolfgang Hörmann • Refik Güllü

Bogazici University Industrial Engineering Department, Bebek 34342 Istanbul Turkey
zeynep.yildiz@boun.edu.tr • hormannw@boun.edu.tr • refik.gullu@boun.edu.tr

Abstract
A general stochastic model for susceptible → infective → recovered (SIR) epidemics in non homogeneous populations is considered. The heterogeneity is a very important aspect here since it allows more realistic but also more complex models. The basic reproduction number R_0, an indication of the probability of an outbreak for homogeneous populations does not indicate the probability of an outbreak for non homogeneous models anymore, because it changes with the initially infected case. Therefore, we use “individual R_0” that is the expected number of secondary cases for a given initially infected individual. Thus, the effectiveness of intervention strategies can be assessed by their capability to reduce individual R_0 values. Also an intelligent vaccination plan for fully heterogeneous populations is proposed. It is based on the recursive calculation of individual R_0 values.

Keywords: basic reproduction number, stochastic epidemics, susceptible infected recovered, non homogeneous populations, intervention methods, intelligent vaccination.

1 Introduction

Epidemiological information is mostly used to plan and evaluate strategies that prevent disease spread by identifying risk factors. Therefore, various disease spread models were developed in the literature. This paper considers a stochastic model for susceptible → infective → recovered (SIR) epidemics among non homogeneous populations. The basic reproduction number R_0 as the expected number of secondary cases produced by a single infected case in a totally susceptible population is important for the determination of the outbreak probability under homogeneous mixing assumption (Allen and Burgin [2000], Craft et al. [2013], Hernandez-Suarez [2002], Kumar and Goel [2020]). In order to assess the dynamics of disease behavior, Ross (2011) analyses the effect of population size and...
disease time distribution on R_0. Moreover, heterogeneity in population has important effects on disease spread behavior as discussed eg. in [Inaba, 2012; Meyers, 2007] with its realistic assumptions.

This paper is concerned with the notion of computable R_0 for heterogeneous models. Our aim is to calculate the expected number of secondary cases produced by a unique given infected case and use it to develop effective intervention strategies and assess the intervention strategies without simulation. [Watson (1980)] proposes a model with two mixing levels and defines three types of outbreaks: localized, restricted and generalized outbreaks. There are also others considering R_0 for non homogeneous populations to estimate outbreak probabilities. Since the definition of R_0 for heterogeneous populations is complex, [Diekmann et al. (1990) and Trapman (2007)] estimates bounds for the expected infectivity based on disease length and heterogeneity state regarding deterministic disease spread models among totally heterogeneous populations. Because the analysis of stochastic disease spread models for heterogeneous populations is difficult, either simulation is used for the analysis ([Ajelli et al., 2010; Longini et al., 2005]) or the models are simplified by decreasing the number of mixing levels. There are a number of recent papers on epidemics in heterogeneous populations in order to estimate R_0. They implement agent based simulation claiming that R_0 cannot be directly calculated ([Lipsitch et al., 2003; Longini et al., 2004]) while [Ball (1986)] calculate the average R_0 exactly among a stratified population with two levels by applying branching process methods. [Keegan and Dushoff (2016)] estimate R_0 for finite populations with different heterogeneity types to analyse the effects of heterogeneity on basic reproduction numbers. However, a single R_0 value is calculated in all of these models to analyse the possibility of an outbreak. [Artalejo and Lopez-Herrero (2013)] measures $R_{e,0}$ that is the exact number of secondary cases generated by the tagged infected individual if the epidemic starts or is already in progress. They emphasize the probability distribution of the number of secondary cases rather than its mean. Following [Artalejo and Lopez-Herrero (2013), Economou et al. (2015)] determine the distribution of the number of secondary cases for SIS models with exponential disease time. [López-García (2016)] introduces R_x^{exact} as the random variable denoting the number of individuals directly infected by a given infected individual during his infectious period given the current state of the process x and its probability mass
Moreover, R_0 is generally used in the literature for analyzing the possibility of an outbreak even if it is also possible to use it for intervention strategy analysis. In the literature, to develop and analyze epidemic control strategies, different mathematical approaches are implemented like introducing contact network epidemiology (Dimitrov and Meyers 2010), implementing optimal control tools (Sharomi and Malik 2017) and simulating scenarios (Carvalho et al. 2019; Wu et al. 2006). However, there are some recent papers considering the use of R_0 to analyze and develop epidemic control methods. Ball (1986) use the average R_0 for optimal vaccination policies in a population partitioned into households. Artalejo and Lopez-Herrero (2013) also suggest to use R_{e0} and R_p to design control strategies for prevention of an outbreak. They consider Markov chains while modelling disease spread, so they assume exponential infectious period. R_{e0} indicates the exact number of secondary cases produced by a single infective while R_p denotes the exact number of secondary cases produced by all currently infected individuals until first recovery. Markov chains with exponential infectious period and homogeneous mixing assumption allow them to obtain exact measures and valuable insight rather than an expectation. Since we consider a totally non homogeneous population and a discrete infectious period distribution, we can only measure the expected number of secondary cases produced by a unique given infected case that changes with the selected initially infected individual and we call it individuals R_0.

In this paper, we make three main contributions. Firstly, we introduce individual R_0 as the expected number of secondary cases produced by a unique given initially infected individual. Individual R_0 is an expectation rather than the exact number of secondary cases so we can propose a general formula for individual R_0 in this paper that is applicable to all types of heterogeneous populations with any size. Our second contribution is to present that it is possible to assess intervention strategies by using the exact formula for individual R_0 without reverting to simulation. It is possible to assess the impact of intervention strategies by their capability to reduce individual R_0 values. Also, a maximum individual R_0 value smaller than 1 guarantees that an outbreak is impossible. Lastly, intelligent intervention strategies can be identified based on individual R_0 values. We propose a vaccination strategy such that the individual with greatest individual R_0 are
vaccinated first. In order to choose the individual who is vaccinated next, we recalculate individual \(R_0 \) values for the unvaccinated individuals and choose the individual with the greatest individual \(R_0 \) again. Thus, our vaccination strategy is to vaccinate individuals one by one by choosing the susceptible having the largest individual \(R_0 \).

The paper is structured as follows. In Section 2, the notion of \(R_0 \) for non homogeneous models is explained and the general formula to calculate individual \(R_0 \) values for non homogeneous populations is presented. In Section 3, basic non homogeneous models for influenza spread are presented. Then, in Section 4, we evaluate some intervention methods applied for these models using their individual \(R_0 \) values. Moreover, we propose intelligent vaccination plans based on individual \(R_0 \). We also consider a model with overlapping mixing groups and check how individual \(R_0 \) values changed due to intervention strategies in Section 5. Finally, concluding remarks are given in Section 6.

2 The Notion of \(R_0 \) for Non Homogeneous Models

In this paper, a stochastic SIR model is considered in a non homogeneous population. Stochastic SIR models in large non homogeneous populations grew popular among practitioners in recent years, see eg. (Ajelli et al., 2010; Longini et al., 2005). The infection probability between an infected and a susceptible individual is modelled with a comparatively small number of parameters assuming mixing in overlapping mixing groups. The detailed structure of a population is generated such that the mixing groups match in size and age those of real world census data. As mixing groups typically households, neighbourhoods, communities, schools and work places are considered. In several papers it is assumed without any discussion that the only way to assess the behaviour of such models is simulation. This fact attracted our attention and we aim to develop here an approach to assess the behaviour of such models for large populations using a properly defined basic reproduction number \(R_0 \) that can be calculated easily also for large populations.

As individuals in a non homogeneous population are not identical, \(R_0 \) for non homogeneous populations depends on the initially infected individual that is chosen. Thus, different \(R_0 \) values occur for different initially infected individuals. In agent based simulation literature, the value of \(R_0 \) for the entire non homogeneous population is generally
estimated by assuming “the random case”. Thus, the initially infected individual is selected among the population with equal probability for every individual. Then, they use an average to calculate R_0 \cite{Longini+etal:2005}. It is also suggested to estimate age dependent R_0 values and calculate overall R_0 as a weighted average of age dependent attack rate patterns \cite{Germann+etal:2006}. The studies which use branching process methods to calculate R_0 also considers R_0 for non homogeneous populations as a mean of different secondary cases for different initially infected individuals \cite{Ball+Lyne:2002}. In these studies, populations with different mixing levels and moderate size are considered based on census data. However, average R_0 is estimated via simulation without exact solution and it cannot be used to assess the possibility of an outbreak anymore. That this is not a sensible approach can be demonstrated with a very simple example:

A population with $N = 200$ is composed of two sub-populations of equal size A and B. An infective from A infects a susceptible from A with probability 0.003 and a susceptible from B with probability 0.0005 during his total infectious period. Furthermore, an infective from B infects a susceptible from B with probability 0.015 and a susceptible from A with probability 0.0005 during his total infectious period. We can easily calculate: The expected number of secondary cases for a single starting infective of A is $99(0.003)+100(0.0005)=0.347$ and for a starting infective of B it is 1.535. Taking the average over all individual we get 0.941. A value of R_0 below one should indicate that an outbreak is impossible, but in our little example it is clear that an outbreak in group B is likely if the first infective is of group B. And in such a case also several individuals of group A are likely to be infected.

R_0 for non homogeneous models is studied especially by using Markov models since they allow to calculate R_0 exactly in the literature. However, there are some problems with Markov modelling of disease spread. Markov chain processes requires exponential disease time which is clearly unrealistic. Meanwhile, the complexity of Markov models for non homogeneous populations increases exponentially due to the size of state space, so the exact distribution of $R_0(i)$ can only be calculated for very small populations. It is clear that even for moderate sized populations the state space for such a model is huge. This makes numerical calculations so difficult that López-García \cite{Lopez-Garcia:2016}, who considers a similar but continuous time model with exponential disease times and develops numerical
methods to calculate the distribution of important stochastic descriptors, stresses even in the title of the paper that this is only possible for small networks.

Following the simulation literature, we consider a simple discrete time stochastic model. Important is that we allow a very general mixing structure assuming that in a finite population of size N we know all probabilities p_{ij} that within one time-step (in practice typically one day) an infected individual “i” transmits the disease to a susceptible individual “j”. It turns out that it is also sometimes necessary to allow the possibility that the infection probabilities change with time. In such cases we will write p_{ijt}.

The estimation p_{ij} for each pair of i and j is possible for small population sizes like hospitals etc. Laskowski et al. (2011) implement an agent based modeling for the spread of influenza like disease in an emergency department. They model patients as occupying a circular space with a radius of 60cm and define different contact types like close and casual contacts based on the distance between agents. Moreover, they consider a basic patient flow model throughout which agents come into contact with each other and the probability of infection is found based on the agent distance during contact and the duration of the contact. However, the estimation of p_{ij} is very difficult for large population sizes. The overlapping mixing groups approach is mainly suggested for estimating p_{ij} in large populations. Individual based models for disease spread have been implemented during the last 50 years, but it has been popular recently due to the lack of both data and advanced computational availability in the past. Yang et al. (2008). Carley et al. (2006) propose a scalable city wide multiagent network numerical model where agents are embedded in social, health, and professional networks. The model allows to define heterogeneous population mixing by agent and social networks characteristics based on real data from census, school districts, general social surveys, etc. Bian (2004) presents a conceptual framework for an individual based spatially explicit epidemiological model based on the following assumptions: (1) individuals are different so age groups are needed; (2) an individual has contacts with a finite number of individuals in different clusters like home and workplace; (3) individuals travel between clusters; and (4) the individuals have different contact rates such as fewer contacts for retired individuals than employed individuals. Thus, two types of contacts are defined: those within a group and those between groups. Moreover, the shift from population based models to individual based
models is explained by the rapid improvements in computing power and availability of spatial data. \cite{Longini2004} compare the efficiency of the use of anti viral drugs and vaccination for a population with 2,000 persons who are stochastically generated by the age distribution and approximate household size published by the US Census Bureau. \cite{Yang2008} study an individual space time activity model for the target city, Eemnes in the Netherlands based on an activity survey data, a synthesized household data, land use data, and PC6 statistical data.

The agent based models collect the infection data at individual level and become more realistic. However, its increased complexity also brings too much a burden for model structure and requires simulation. Moreover, p_{ij}s are required to be computed for individual based models by considering the infection probabilities p_f, p_s, p_n, and p_c in mixing groups of “households”, “school and play groups”, “neighbourhoods” and “communities”, respectively that are also changing with age groups. Then, if infection events between different mixing groups are assumed to be independent, the probability of infection between two individuals i and j during a day is calculated as

$$p_{ij} = 1 - (1 - p_c)^{I_C(j)}(1 - p_n)^{I_N(j)}(1 - p_w)^{I_W(j)}(1 - p_f)^{I_F(j)}$$

where the indicator function of a subset is defined as

$$I_M(j) = \begin{cases}
1 & j \in \text{Mixing Group } M \text{ of } i \\
0 & \text{otherwise.}
\end{cases}$$

That implies that individuals i and j can mix in different mixing groups in set M (community, neighborhood, school, work, family etc.). So the indicator function is one for several j.

The state of our model is described by the state vector holding the state S, I or R for all N individuals. In one time step a susceptible individual j is infected by a single infected individual i with probability p_{ij}. If there is more than one infected individual the assumption that these infections are independent of each other leads to the total infection probability for individual j:

$$p_j = 1 - \prod_{i \in I} (1 - p_{ij}),$$
where \(I \) denotes the set of infected entities. The new infections are thus a sequence of \(|S|\) independent Bernoulli trials with probabilities \(\{p_j | j \in S\} \), where \(S \) denotes the set of all susceptible individuals. To pass from state \(I \) to \(R \) we use the model assumption that the disease times of all individuals are independent and follow a discrete distribution with probability mass function \(f_D(d) \) with \(d = 1, 2, \ldots \).

For non-homogeneous mixing it is obvious that we need, like suggested in López-García (2016), a definition of \(R_0 \) that considers which individual is the single starting infected. As we consider here large populations, we use the simple classical definition of \(R_0 \) and define:

\[
R_0(i) = \mathbb{E}[\text{secondary cases for starting with a unique infected individual } i]
\]

and call it individual \(R_0 \).

One important advantage of individual \(R_0 \) is that it can be calculated easily also for large populations. To develop the formula we first have to calculate the probability \(\tilde{p}_{ij} \) that susceptible \(j \) is infected by infectious \(i \) during the total disease time of \(i \). This is easily done using conditioning on the disease time \(D \):

\[
\tilde{p}_{ij} = \sum_{d=0}^{\infty} [f_D(d)(1 - (1 - p_{ij})^d)].
\]

(2)

It is also sometimes possible that the infection probabilities change with time written as \(p_{ijt} \). Then, the probability \(\tilde{p}_{ij} \) can be calculated as

\[
\tilde{p}_{ij} = \sum_{d=1}^{\infty} [f_D(d)(1 - \Pi_{t=1}^{d}(1 - p_{ijt}))].
\]

(3)

Note that also for a disease time distribution with unbounded domain it is not difficult to calculate a close approximation of \(\tilde{p}_{ij} \) as the error commited by a cut off of the sum after \(d = d_m \) is obviously always smaller than \(1 - F_D(d_m) \) and can thus be easily controlled. Individual \(R_0(i) \) is then simply the "column sum of the matrix \(\tilde{p}_{ij} \)" or more precisely the sum of all \(\tilde{p}_{ij} \)'s for \(i \) fixed and \(j = 1, 2, \ldots, i - 1, i + 1, i + 2, \ldots, N \):

\[
R_0(i) = \sum_{j:j \neq i} \tilde{p}_{ij}.
\]

(4)

The complexity of calculating \(R_0(i) \) in (4) for \(i = 1, 2, \ldots, n \) is in total \(O(d_m N^2) \), where \(d_m \) denotes the size of the domain of the disease time \(D \) for bounded disease time or the cut off value of the infinite sum for the case that \(D \) has an unbounded domain.
2.1 Use of Individual R_0 on Intervention Analysis

A main aim of building agent based simulation models for influenza spread is the assessment of interventions. How is the spread of the disease changed for instance, when

- 15 percent of all individuals are vaccinated;
- anti-viral drugs are given to all members of a household when one member turns out to be infected;
- when 50 percent of all infected would stay at home after the first day of the disease.

How can the calculation of all $R_0(i)$ values help to assess the behavior of the disease spread? As we have demonstrated with the help of a simple example above, the average of all $R_0(i)$ values does not allow a direct assessment. But it is easy to see that if $\max_i R_0(i)$ is smaller than one, an outbreak is impossible. If that value is above one the behavior is not certain but an outbreak is possible.

Like for many other interventions also for the second and third intervention example above it is obviously necessary to assume that the p_{ij} values change with time and are denoted by p_{ijt} on day t. The \tilde{p}_{ij}’s are obviously calculated using Equation 3. To obtain the $R_0(i)$ we need again the column sums given in (4).

To quantify the influence of such interventions it is first necessary to decide how the parameters of the model are changed by the intervention. Here it may be necessary to make assumptions (or guesses) how the infection probabilities are changed; if we consider the case that when 50 percent of all infected would stay at home after their first day of infection is an example where it is clear that people staying at home have infection probabilities of zero with all individuals not belonging to their household.

3 Some Non Homogeneous Population Structures for Influenza Spread

It is possible to calculate individual R_0 values exactly for all non homogeneous models using Equation 4. In this part, we calculate \tilde{p}_{ij} and individual R_0 values for some non homogeneous population structures in the literature that are well applicable for airborne
diseases like influenza. We need a discrete disease time for influenza and assume like that the probability mass function of 3, 4, 5 and 6 days with probabilities 0.3, 0.4, 0.2, and 0.1 respectively. Moreover, we consider two different non homogeneous population models. Then, in Section 4, we evaluate some intervention methods applied for them.

3.1 Model with Multiple Cities

We consider a network of cities around the world connected by transportation. This model is commonly referred as meta population model in the literature suggested by Levins (1968). It includes several sub populations in which perfect mixing is assumed. Individuals travel between the cities leading to disease spread according to probabilistic rules based on the population size and the travel frequency between the cities. Population size and travel data can be obtained from different available sources (e.g. Population Division, U.S. Census Bureau 2004).

Consider now three cities, numbered 1, 2 and 3. Assuming symmetry in travel, we consider a function p_{ij} given in Table 1 and compute individual R_0 values by applying Equation 4. In big cities, it is standard to assume that R_0 is the same in a homogenous population. Thus, the expected number of individuals infected by a single infected individual is not increasing with the size of the population and the probability to meet and potentially to infect another individual is reduced as the population size increases (Lund et al., 2013). Therefore, we assume greater infection probabilities within a city with smaller population sizes. To obtain the infection probabilities between cities is more complicated and challenging and it is beyond the scope of this work (Lund et al., 2013). Here, we take a simplistic view and assume that the travel frequency is the greatest between city 1 and city 2 and the smallest between city 1 and city 3 by considering the distances between cities and population sizes. Furthermore, the infection probabilities between cities are considered to be around 2 percent of the infection probabilities within the same city. However, it is also possible to obtain travel frequency data for better estimation. Moreover, the reported R_0 values for the basic reproduction number in a fully susceptible population is in the range of 1.6 to 2.4 for influenza (Germann et al., 2006). Thus, while setting the infection probabilities, we target to obtain average R_0 1.7 like in the study of Longini et al. (2004). We estimate the infection probabilities by dividing
City	Pop. Size	City 1	City 2	City 3	Super Spreaders	$R_0(i)$
City 1	746	5.20e-4	1.30e-5	8.66e-6	1.00e-3	1.673
City 2	500	1.30e-5	7.80e-4	1.04e-5	1.50e-3	1.714
City 3	746	8.66e-6	1.04e-5	5.2e-4	1.00e-3	1.668
Super-spreaders	8	1.00e-3	1.50e-3	1.00e-3	0	9.174

Table 1: Population Sizes and Infection Probabilities for The Population with Multiple Cities.

target $R_0 = 1.7$ over expected disease time and the number of susceptible individuals. We also include some super spreaders in this example supposing there are some individuals who often travel. Because individuals in the same city have identical characteristic, the number of different individual R_0 values in this case is equal to the number of cities plus one for the super spreaders. The corresponding individual R_0 values are given in the last column of Table 1 computed by using Equation 4 consistent with the simulation results.

3.2 Model with a Population of Households

We also consider a population partitioned into several households similar to [Ball and Lyne (2002)] since the household based public health interventions are important to prevent the spread of infectious diseases. Moreover, the two levels of mixing is also important for the behaviour of the epidemic.

Let's consider that an infected individual infects a household member with probability p_h and other individuals with probability p_c. p_h is selected considerably higher than p_c since individuals in the same household have closer contacts. If we denote the family members of individual i as set $N(i)$, the infection probabilities for individual i are

$$p_{ij} = \begin{cases} p_h, & \text{if } j \in N(i) \\ p_c, & \text{otherwise.} \end{cases}$$

We assume that p_h and p_c are 0.0001 and 0.06 respectively for our intervention analysis and we consider 498 households each consisting of four individuals. Further, there might be some individuals in the population who meet with other people more frequently than other individuals eg. due to their work. We call such people super spreaders. In the literature, super spreaders are defined as the individuals infecting more contacts than
We assume that each infected super spreader infects with probability \(p_s = 0.0008 \) and that there are 8 super spreaders in the population.

4 Intervention Analysis

Intervention methods aim to change the characteristics of the spread of a disease by changing the infection probabilities \(p_{ij} \). We suggest to assess the impact of intervention strategies by calculating and comparing the individual \(R_0 \) values of the different scenarios. We consider the models described in section 3 where the individuals within the same group are assumed to behave homogeneously. Colizza and Vespignani (2008) define the usual \(R_0 \) as a function of disease parameters for each group while a subpopulations reproductive number \(R_* \) as a function depending on the diffusion rate of individuals among subpopulations. Thus, a group specific basic reproductive number is considered for a deterministic metapopulation system and the epidemic behaviour on both the global scale and the local scale is determined by \(R_* \) and \(R_0 \), respectively. Barthélemy et al. (2010) consider a stochastic metapopulation model by taking into account both temporal and topological fluctuations. Moreover, individual \(R_0 \) computed in this section is also a group specific basic reproduction number by considering both infection among the population members of each group and between the members of different groups instead of two different basic reproduction numbers as in the study of Colizza and Vespignani (2008). However, individual \(R_0 \) values can be generalized for every non homogeneous population model like individual based models. Furthermore, we illustrate some numerical results to demonstrate the use of individual \(R_0 \) for both developing and assessing intervention strategies including vaccination, social distancing and use of antiviral drugs.

4.1 Intervention by Vaccination

For the evaluation of vaccine efficacy, it is assumed that vaccination takes place before the infection starts to spread and that all vaccinated individuals develop immunity. Therefore, vaccinated individuals are not considered as susceptible anymore. For the vaccination as an intervention strategy, it is possible to assume random vaccination in which the individuals who are vaccinated are selected randomly with equal probabilities.
within the population. However, it is better to use the vaccine efficiently to attain herd immunity by vaccinating a smaller number of individuals.

Ball and Lyne (2002) develop optimal vaccination policies for a population with two levels of mixing and consider optimality in terms of the cost of vaccination program including vaccine, administration, and travel. Here, we propose an intelligent vaccination strategy when assuming that the cost of vaccine is considerably larger than the cost of vaccination. In other words, the aim is to obtain for a fixed number of vaccines the greatest reduction for the maximum individual R_0 value. In this vaccination strategy, individuals with large individual R_0 are vaccinated first because we both eliminate the greatest individual R_0 and obtain the greatest total reduction in the other individual R_0 values if p_{ij}s are symmetric. Therefore, as a next step all individual R_0 values must be recalculated and their values are arranged in non increasing order. Then, the individual who is vaccinated is selected from the top of the list and the individual R_0 values for unvaccinated individuals are recalculated. Thus, our intelligent vaccination policy is to vaccinate individuals one by one choosing the susceptible having the largest individual R_0.

By taking the population matrix, $popm$ and the target number of vaccinated individuals, $v_{critical}$ as input parameters, Algorithm 1 presents the intelligent vaccination strategy.

Algorithm 1 Intelligent Vaccination Strategy
1: Set $v=0$
2: Compute \tilde{p}_{ij} using Equation 2
3: for $i = 1, 2, \ldots, N - v$ do
4: Compute $R_0(i)$ using Equation 4
5: end for
6: Order $R_0(i)$ from largest to smallest
7: Remove individual i with the largest $R_0(i)$ from the population matrix
8: Set $v = v + 1$. If $v < v_{critical}$ go to step 3. Otherwise, stop the algorithm.

In the theory of branching process where m is the expected number of children of each individual, $m < 1$ implies the ultimate extinction with probability one. If a non homogeneous branching process is considered, m values are different for different individuals (Antreya, 2006). If the maximum m is smaller than one, then the process will be also extinct with probability one. Since we consider non homogeneous populations yielding different individual R_0 values, we guarantee that there will be no outbreak by reducing
all individual R_0 values below one. Algorithm 1 for the intelligent vaccination policy is a greedy heuristic for heterogeneous populations and it approximates to the optimal vaccination policy as the heterogeneity level decreases.

If we consider the population with three cities described in Section 3.1, the intelligent vaccination strategy requires to vaccinate individuals from different cities. The simulation results indicate that a significant proportion of the population has been infected with probability 0.662 without vaccination. To guarantee that the infection is going to disappear before involving a significant number of the population by implementing Algorithm 1, we observe that individual R_0 values in all cities reduce below 1 if 292 individuals from city 1, 200 individuals from city 2, 290 individuals from city 3 and all 8 super spreaders are vaccinated. Therefore, the minimum number of required vaccinated individuals reducing all individual R_0 values to under 1 is found to be 790 where there will be no outbreak controlled by computing the final outbreak size through simulation. As 'in the city infection probabilities', p_{ii} are considerably greater than 'between the cities infection probabilities', p_{ij} where $i \neq j$ for a model with multiple cities, intelligent vaccination strategy based on sequential vaccination also gives us the optimal vaccination strategy for reducing all individual R_0 values to under one. Let 291 individuals be vaccinated from city 1 instead of 292 individuals, then more than one individual have to be vaccinated from the other cities to decrease individual R_0 value of city 1 below one since p_{11} is considerably greater than p_{12} and p_{13}. This also holds for city 2 and city 3. However, it does not always yield the optimal strategy. If we consider an individual based model where each individual has its unique $R_0(i)$, we need to decide which individuals are vaccinated in one step by considering all relationships. Even if it is not possible to vaccinate enough people to reach herd immunity intelligent vaccination is still important in order to have the greatest possible reduction of the individual R_0 values. Table 2 shows how individual R_0 values change for an increasing number of vaccinated individuals when using the intelligent vaccination strategy.

For the population partitioned into households described in Section 3.2, the individual R_0 value for the 1992 individuals living in households is 1.509. The sequence of intelligent vaccination starts with the super spreaders. Then, one individual is vaccinated from every family. To reduce the maximum individual R_0 value below 1, vaccination of one individual
Table 2: Individual R_0 Based Intelligent Vaccination with Different Number of Vaccinated Individuals for The Population with Multiple Cities

City	Vacc. Ind. $R_0(i)$									
1	0	1.644	35	1.563	73	1.479	111	1.397	292	0.999
2	0	1.671	32	1.562	56	1.479	81	1.396	200	0.999
3	0	1.639	33	1.562	71	1.480	108	1.397	290	0.999

from every family is not sufficient so the vaccination continues with the vaccination of second individuals from each family. It is easy to calculate that the maximum of individual R_0 values drops below one when two individuals are vaccinated in 139 families while only one individual is vaccinated from the remaining 359 families. The two resulting individual R_0 values are 0.999 (for 1077 individuals) and 0.777 (for 278 individuals). The minimum number of vaccinated individuals required for herd immunity is thus found to be 645 and. Furthermore, Table 3 presents the number of susceptibles with their corresponding individual R_0 values if 8, 257, 506 and 755 individuals are vaccinated respectively. Table 3 indicates that individual R_0 is 1.483 for unvaccinated individuals if 8 individuals are vaccinated while individual R_0 is reduced to 1.159 and 1.381 for 747 and 996 unvaccinated individuals, respectively if 257 individuals are vaccinated. If 506 individuals are vaccinated, individual R_0 is reduced to 1.057 for all unvaccinated individuals. Moreover, the last two columns of Table 3 show that individual R_0s are reduced to 0.732 and 0.995 for 498 and 747 unvaccinated individuals if 755 individuals are vaccinated, so vaccinating more than 645 individuals decreases individual R_0 much lower than 1.

If intelligent vaccination is compared to random vaccination, it is observed that the minimum number of required individuals to be vaccinated to reach herd immunity is much higher for random vaccination and its performance under limited vaccination supply is also clearly worse.
8 Individuals Vaccinated

R0(i)	Num. of Indiv.	R0(i)	Num. of Indiv.	R0(i)	Num. of Indiv.
0	8	0	257	0	506
1.483	1992	1.159	747	1.057	1494
-	-	1.381	996	-	-
0	8	0	257	0	506

Table 3: Individual R0 Based Intelligent Vaccination with Different Number of Vaccinated Individuals for The Population Partitioned into Households

Without Quarantine	Quarantine with Compliance Rate 50%	Quarantine with Compliance Rate 80%	
R0(i)	Number of Ind.	R0(i)	Number of Ind.
1.509	1992	1.191	1992
8.084	8	0	8

Table 4: Quarantine After First Day of Infection for The Population Partitioned into Households

4.2 Intervention by Social Distancing

The simplest intervention strategy that can be considered as a method of social distancing is household quarantine. The effectiveness of household quarantine depends on many additional disease parameters like the time between the start of the infection and the start of the symptoms and the compliance rate indicating the percentage of symptomatic influenza cases who remain at home. Household quarantine can be implemented only some time after the infection starts so we assume that it is implemented after the first day of the disease.

We consider the population partitioned into households only since it is not possible to implement social distancing by the nature of a model with multiple cities. To demonstrate the impact of household quarantine, it is assumed that individuals stay at home after the first day of infection with probability 0.5 suggested in the study of Wu et al. (2006). Table 4 shows the resulting changed individual R0 values. The important point in Table 4 is the reduction in the individual R0 values of the household members. Therefore, it is possible to decrease individual R0 values by increasing compliance rate. It may be possible to
increase the compliance rate if a viable diagnostic support including virological testing is available. Thus, we search the compliance rate to attain herd immunity for the household model. We observe that household quarantine must be accepted by at least 80% of the infected to make an outbreak impossible for the population partitioned into households described in Section 3.2.

4.3 Intervention by Use of Antiviral Drugs

Antiviral drugs can be both of prophylactic and therapeutic importance. The use of antiviral drugs that is evaluated here prevents infection given exposure. Therefore, it is assumed that antiviral drugs reduce the probability of transmission to others and the probability of being infected given exposure. There are no direct estimates of how much antiviral drug will reduce the probability that an infected individual will develop influenza symptoms compared with an infected person who is not using antiviral drugs but these parameters are inferred from household studies of antiviral drugs in the literature \cite{Longini2004}. Therefore, considering that family members of the initially infected individual use antiviral drugs, we check how their individual R_0 values change for assuming different reduction factors of antiviral drugs. The results in Table 5 indicate that, as expected, the effectiveness of the use of antiviral drugs is strongly influencing to the reduction capability for infection probabilities.

Furthermore, we check how effective is the combination of antiviral drugs and household quarantine. The results are given in Table 6. We observe that assuming a compliance rate of 50% and reduction rate 40% it is possible to prevent an outbreak by using the combined strategy even if this is not possible when using household quarantine and anti

10% Reduction	20% Reduction	30% Reduction	40% Reduction				
$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.
1.448	1992	1.386	1992	1.323	1992	1.258	1992
7.942	8	7.797	8	7.649	8	7.498	8

Table 5: Use of Anti Viral Drugs with Different Reduction Factors without Household Quarantine for The Population Partitioned into Households

10% Reduction	20% Reduction	30% Reduction	40% Reduction				
$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.
1.448	1992	1.386	1992	1.323	1992	1.258	1992
7.942	8	7.797	8	7.649	8	7.498	8

Table 6: Use of Anti Viral Drugs in Combination with Household Quarantine for The Population Partitioned into Households

10% Reduction	20% Reduction	30% Reduction	40% Reduction				
$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.	$R_0(i)$	Num. of Indiv.
1.448	1992	1.386	1992	1.323	1992	1.258	1992
7.942	8	7.797	8	7.649	8	7.498	8
The overlapping mixing group model tries to imitate the disease spread in a real world community using census data. It requires only a moderate number of parameters. The average R_0 for these models is calculated using simulation in the literature (see Longini et al. (2004)). The model uses several mixing groups like “households”, “school and play groups”, “neighborhoods” and “communities” with their respective infection probabilities p_f, p_s, p_n, and p_c changing with age groups to model all infection probabilities p_{ij} that can be calculated by using Equation 1.

Moreover, following Longini et al. (2004) we also consider asymptomatic cases for the overlapping mixing group case as a feature of influenza in real world. Asymptomatic cases are the infected individuals who do not have symptoms. Their infection probabilities are also considered to be smaller than the ones for symptomatic cases. The implementation of intervention strategies like household quarantine and the use of anti viral drugs is impossible for them due to lack of symptoms. However, the result of vaccination is not influenced by adding asymptomatic cases. To calculate individual R_0 for the models with both symptomatic and asymptomatic cases, two \tilde{p}_{ij} values for both the symptomatic and asymptomatic cases have to be calculated using Equation 3. Then, $R_{0,s}(i)$ and $R_{0,a}(i)$ are calculated using the corresponding \tilde{p}_{ij} values. The final $R_0(i)$ values are obtained by taking the weighted average of $R_{0,s}(i)$ and $R_{0,a}(i)$.

In the study of Longini et al. (2004), a population of 2000 persons in four identical neighbourhoods is considered. Each individual mixes with people in community, neigh-

Table 6: Use of Anti Viral Drugs and 50% Household Quarantine with Different Reduction Factors for The Population Partitioned into Households

Reduction	10%	20%	30%	40%	
$R_0(i)$					
Num. of Indiv.					
1.130	1992	1.068	1992	1.005	1992
5.477	8	5.333	8	5.184	8
1.068					
5.333					
1.005					
5.184					
0.940					
5.034					

57 A Model with Overlapping Mixing Groups
horhood, family and play groups. Family sizes differ between one and seven. We have a similar model in the study of Longini et al. (2004) but we also added a mixing group work for adults. We constitute a population matrix each row of which includes the ID of community, neighborhood, family, school-work and the age group of an individual similar to the rows of Table 7. So the number of rows of that population matrix is 2000. The details of the R code for generating such a population matrix based on census data is available from the authors. A major practical problem for this model is the calibration of the probability of infection within each mixing group. We consider the same infection probabilities as in the study of Longini et al. (2004). As disease duration, 3, 4, 5 and 6 days with probabilities 0.3, 0.4, 0.2, and 0.1 is again assumed. In the study, we assume that an infected person is symptomatic with probability 0.67 and an asymptomatic infection is only half as infectious as a symptomatic infection (Longini et al., 2004).

In Figure 1, we present the histogram of all individual R_0 values of the population. The figure indicates that only a small number of individuals in the population have

Individual ID	Family ID	Size of Family	Neighborhood ID	Community ID	Age Group	School-Work ID
1	10	1	100	1	6	9001
2	11	2	100	1	6	9001
3	11	2	100	1	3	3001

Table 7: Population matrix for a model with overlapping mixing groups.
individual R_0 values smaller than 1 while most of the population has individual R_0 values between 1 and 2. Moreover, Longini et al. (2004) estimate R_0 as the average of all secondary cases that the randomly selected initial infective person would infect over all mixing groups he belongs to. They empirically calculate R_0 and find it as 1.7 with a range of secondary cases from zero to 17. We compute $R_0(i)$ values with Equation 4 where \tilde{p}_{ij} is computed by considering the probability of infection within each mixing group and the population matrix. Moreover, the average of $R_0(i)$ values for $i = 1, 2, \ldots, 2000$ is 1.69, so we compute R_0 suggested in the study of Longini et al. (2004) without implementing simulation. Furthermore, there are many possible $R_0(i)$ values giving the same average and the importance of $R_0(i)$ values increase as the heterogeneity level increases.

In studies with overlapping mixing groups, we found only the suggestion of random vaccination and of random vaccination of children (Germann et al., 2006; Longini et al., 2004). In these studies, the results of vaccination are analysed estimating attack rates via simulation. However, we suggest to assess the intervention strategies without simulation also for individual based models. Since we can compute individual R_0 value for each member of the population exactly, see the histogram in Figure 1, we can compare the frequency histograms of individual R_0 values after different intervention strategies are implemented. Moreover, simulation is not needed while vaccinating individuals based on their individual R_0 values by implementing Algorithm 1. In this section, we apply to simulation only for random vaccination in order to compare intelligent vaccination strategy with random vaccination where the vaccinated individual is selected randomly. We compare the performance of intelligent vaccination and random vaccination by considering 30%, 50% and 80% of the population vaccinated respectively. Moreover, we record the maximum individual R_0 value for the intelligent vaccination. However, we record the minimum, median and maximum of maximum individual R_0 values for random vaccination because each run yields a different maximum individual R_0 value. In Table 8, we present the results.

Table 8 indicates that 50% random vaccination of the population cannot reduce maximum individual R_0 below 1 in 1000 repetitions while 50% vaccination based on individual R_0 values of the population reduces maximum individual R_0 much lower than 1. Thus, similar to the model with multiple cities and the model with a population partitioned
Vaccination Percentage	Minimum of Max Individual R_0s in 1000 repetitions	Median of Max Individual R_0s in 1000 repetitions	Maximum of Max Individual R_0s in 1000 repetitions	Max R_0 after Individual R_0 Based Vaccination
0	4.27	4.27	4.27	4.27
30	2.40	3.08	3.73	1.32
50	1.70	2.23	2.98	0.91
80	0.60	0.96	1.54	0.48

Table 8: Maximum Individual R_0 Values after Random Vaccination and Vaccination Based on Individual R_0 without Household Quarantine

![Figure 2](image_url)

Figure 2: The frequency of individual R_0s after vaccination without household quarantine into households, we take the advantages of our R_0 formula. Furthermore, the minimum required number of vaccinated individuals to guarantee herd immunity is 869. In Figure 2, we present individual R_0 values of the unvaccinated population after vaccination of 869 individuals based on their individual R_0s.

Finally, we also check how individual R_0 values change if 80% of the symptomatic cases stay home after their first day of infection. Figure 3 shows that even if a considerable reduction in individual R_0 values is obtained, herd immunity cannot be guaranteed since one third of the infectious cases are considered to be asymptomatic and household quarantine cannot be implemented for asymptomatic cases. This is also true for 100% compliance rate since the actual compliance rate can be at most 67% that is the percentage of symptomatic cases.

The results certainly depend on disease parameters and population structures but we
Individual R_0s
Frequency
0.5 1.0 1.5 2.0 2.5
0 100 200 300 400 500 600

Figure 3: The frequency of individual R_0s after 80% household quarantine

expect that recursive individual R_0 based vaccination gives consistently a better performance. So we can see that the calculation of individual R_0 can be a useful tool to assess the performance of vaccination strategies and also to develop vaccination strategies for stochastic models with arbitrary heterogeneous contact structures.

6 Discussion

In this paper, we consider a discrete time stochastic SIR model for non homogeneous populations and make three main contributions. Firstly, we introduce individual R_0 and propose a general formula for it that is applicable to all types of heterogeneous populations with any size. Our other major contribution is the assessment of intervention strategies by using the formula for individual R_0 without reverting simulation. Lastly, we define intelligent intervention strategies based on individual R_0 values.

As we have studied the notion of R_0 for non homogeneous populations, we introduced individual R_0 as the expected number of secondary cases produced by a unique given initially infected individual. In the literature, R_0 for non homogeneous populations is either calculated by using Markov chains assuming exponential disease time and small population size or estimated via simulation. Here, we propose a general formula for exact calculation of individual R_0 that is applicable to an arbitrary mixing structure and large population size.

Furthermore, the evaluation of intervention strategies is of practical importance. The
effectiveness of these strategies is evaluated by simulation studies comparing the average attack rates or similar characteristics. However, we show that it is possible to assess the impact of the intervention strategies by using directly the individual R_0 formula. We analyze the effectiveness of different intervention strategies by their ability to decrease the maximum individual R_0 value below one. This method is more accurate than descriptive simulation results to decide how to make an outbreak impossible. However, it is only possible to evaluate strategies that are implemented before infection and immediately after one case is infected by using the individual R_0 values of implementing vaccination, household quarantine or the use of antiviral drugs.

Finally, an intelligent vaccination policy is developed based on individual R_0 values. Here, the aim is to obtain the greatest reduction in the maximum individual R_0 value for a fixed number of vaccines. It is observed that the number of required individuals to be vaccinated for herd immunity is much higher for random vaccination than vaccination based on individual R_0.

References

Ajelli, M., B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. J. Ramasco, S. Merler, and A. Vespignani, 2010, “Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models”, *BMC infectious diseases*, Vol. 10(1), pp. 190.

Allen, L. J., and A. M. Burgin, 2000, “Comparison of deterministic and stochastic SIS and SIR models in discrete time”, In: *Mathematical biosciences*, Vol. 163(1), pp. 1–33.

Antreya, K. B., 2006, “Branching process”, *Encyclopedia of Environmetrics*, Vol. 1.

Artalejo, J. R. and M. J. Lopez-Herrero, 2013, “On the exact measure of disease spread in stochastic epidemic models”, *Bulletin of mathematical biology*, Vol. 75(7), pp. 1031–1050.

Ball, F., 1986, “A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models”, *Advances in Applied Probability*, Vol. 18(2), pp. 289–310.
Ball, F. G., and O. D. Lyne, 2002, “Optimal vaccination policies for stochastic epidemics among a population of households”, Mathematical Biosciences, Vol. 177, pp. 333–354.

Barthélemy, M., C. Godreche, and J. M. Luck, 2010, “Fluctuation effects in metapopulation models: percolation and pandemic threshold”, Journal of theoretical biology, Vol. 267(4), pp. 554–564.

Bian, L., 2004, “A conceptual framework for an individual-based spatially explicit epidemiological model”, Environment and Planning B: Planning and Design, Vol. 31(3), pp. 381–395.

Carley, K. M., D. B. Fridsma, E. Casman, A. Yahja, N. Altman, L. Chen, B. Kaminsky, and D. Nave, 2006, “BioWar: scalable agent-based model of bioattacks”, In: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, Vol. 36(2), pp. 252–265.

Carvalho, S. A., S. O. da Silva, and I. da Cunha Charret, 2019, “Mathematical modeling of dengue epidemic: control methods and vaccination strategies”, In: Theory in Biosciences, Vol. 138(2), pp. 223–239.

Colizza, V., and A. Vespignani, 2008, “Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations”, In: Journal of theoretical biology, Vol. 251(3), pp. 450–467.

Craft, M. E., H. L. Beyer, and D. T. Haydon, 2013, “Estimating the probability of a major outbreak from the timing of early cases: an indeterminate problem?”, In: PLoS one, Vol. 8(3), pp. e57878.

Diekmann, O., J. A. P. Heesterbeek, and J. A. Metz, 1990, “On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations”, Journal of mathematical biology, Vol. 28(4), pp. 365–382.

Dimitrov, N. B., and L. A. Meyers, 2010, “Mathematical approaches to infectious disease prediction and control”, In: Risk and optimization in an uncertain world, INFORMS.
Economou, A., A. Gómez-Corral, and M. López-García, 2015, “A stochastic SIS epidemic model with heterogeneous contacts”, *Physica A: Statistical Mechanics and its Applications*, Vol. 421, pp. 78–97.

Germann, T. C., K. Kadau, I. M. Longini, and C. Macken, 2006, “Mitigation strategies for pandemic influenza in the United State”, *Proceedings of the National Academy of Sciences*, Vol. 103(15), pp. 5935–5940.

Hernandez-Suarez, C. M., 2002, “A Markov chain approach to calculate R0 in stochastic epidemic models”, *Journal of theoretical biology*, Vol. 215(1), pp. 83–93.

Inaba, H., 2012, “On a new perspective of the basic reproduction number in heterogeneous environments”, *Journal of mathematical biology*, Vol. 65(2), pp. 309–348.

Keegan, L. T., and J. Dushoff, 2016, “Estimating finite-population reproductive numbers in heterogeneous populations”, *Journal of theoretical biology*, Vol. 397, pp. 1–12.

Kumar, A. and K. Goel, 2020, “A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis”, *Theory in Biosciences*, Vol. 139(1), pp. 67–76.

Laskowski, M., B. C. Demianyk, J. Witt, S. N. Mukhi, M. R. Friesen, and R. D. R. McLeod, 2011, *IEEE Transactions on Information Technology in Biomedicine*, Vol. 15(6), pp. 877–889.

Levins, R., 1968, *Evolution in changing environments: some theoretical explorations*, Princeton University Press, New Jersey.

Lipsitch, M., T. Cohen, B. Cooper, J. M. Robins, S. Ma, L. James, G. Gopalakrishna, S. K. Chew, C. C. Tan, M. H. Samore, D. Fisman, and M. Murray, 2003, “Transmission dynamics and control of severe acute respiratory syndrome”, *Science*, Vol. 300(5627), pp. 1966–1970.

Longini, I. M., M. E. Halloran, A. Nizam, and Y. Yang, 2004, “Containing pandemic influenza with antiviral agents”, *American journal of epidemiology*, Vol. 159(7), pp. 623–633.
Longini, I. M., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. A. T. Cummings, and E. Halloran, 2005, “Containing pandemic influenza at the source”, Science, Vol. 309(5737), pp. 1083–1087.

López-García, M., 2016, “Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks”, Mathematical biosciences, Vol. 271, pp. 42–61.

Lund H., L. Lizana and I. Simonsen, 2013, “Effects of city-size heterogeneity on epidemic spreading in a metapopulation: a reaction-diffusion approach”, Journal of statistical physics, Vol. 151(1-2), pp. 367–382.

Meyers, L., 2007, “Contact network epidemiology: Bond percolation applied to infectious disease prediction and control”, Bulletin of the American Mathematical Society, Vol. 44(1), pp. 63–86.

Ross, J. V., 2011, “Invasion of infectious diseases in finite homogeneous populations”, Journal of theoretical biology, Vol. 289, pp. 83–89.

Sharomi, O., and T. Malik, 2017, “Optimal control in epidemiology”, Annals of Operations Research, Vol. 251(1-2), pp. 55–71.

Trapman, P., 2007, “On analytical approaches to epidemics on networks”, Theoretical population biology, Vol. 71(2), pp. 160–173.

Watson, R., 1980, “A useful random time-scale transformation for the standard epidemic model”, Journal of Applied Probability, Vol. 17(2), pp. 324–332.

Wu, J. T., S. Riley, C. Fraser, and G. M. Leung, 2006, “Reducing the impact of the next influenza pandemic using household-based public health interventions”, PloS medicine, Vol. 3(9), pp. e361.

Yang, Y., P. Atkinson, and D. Ettema, 2008, “Individual space–time activity-based modelling of infectious disease transmission within a city”, Journal of the Royal Society Interface, Vol. 5(24), pp. 759–772.