On the bracketing entropy condition and
genralized empirical measures

Davit Varron
Université de Bourgogne-Franche-Comté, UMR CNRS 6623

Abstract: We prove a Donsker and a Glivenko–Cantelli theorem for sequences of random discrete measures generalizing empirical measures. Those two results hold under standard conditions upon bracketing numbers of the indexing class of functions. As a byproduct, we derive a posterior consistency and a Bernstein–von Mises theorem for the Dirichlet process prior, under the topology of total variation, when the observation space is countable. We also obtain new information about the Durst–Dudley–Borisov theorem.

1 Introduction

In this article we shall adopt the generic notation (for \(r \in [1, \infty] \))
\[
\ell^r := \left\{ p \in \mathbb{R}^N, \ |\ p |_r < \infty \right\}, \text{ where}
\]
\[
|\ p |_r := \sum_{i \in N} |p_i|^r, \text{ for } 1 \leq r < \infty, \text{ and where}
\]
\[
|\ p |_\infty := \sup_{i \in N} |p_i|, \text{ writing } p = (p_i)_{i \in N}.
\]

Let \((X, \mathcal{A}_X)\) be a measurable space. We shall use the notation
\[
Q(f) := \int_X f dQ
\]
for a given signed measure \(Q \) in \(\mathcal{A}_X \) with finite total variation, and for each \(f \in L^1(Q) \). Any \(X \)-valued sequence \(y = (y_i)_{i \in N} \) combined with an element \(p \in \ell^1 \) defines a signed discrete measure on \((X, \mathcal{A}_X)\) - with finite total variation - through the following formula:
\[
P_{y,p} := \sum_{i \in N} p_i \delta_{y_i}.
\]
Now substitute y by a $A_X^{\otimes N}$ measurable sequence $Y = (Y_i)_{i \in N}$, and p by a ℓ^1-valued Borel random variable $\beta = (\beta_i)_{i \in N}$ (both of them on a probability space (Ω, A, \mathbb{P})). Then the composition map $P_{Y, \beta}$ defines random signed measure in the following sense: for any specified bounded Borel function f, the map

$$P_{Y, \beta}(f) : \omega \to P_{Y_n(\omega), \beta_n(\omega)}(f)$$

is Borel from (Ω, A) to \mathbb{R}. In the sequel we shall continue to adopt the same convention (1) for $P(f)$ when P is a random or non random measure, and we shall extend it - when meaningful - to functions f that are not necessarily bounded.

In [13], Varron started the investigation on how well known results in empirical processes theory (see, e.g., [2, 12] for monographs on the subject) could be carried over sequences of random signed measures of the form P_{Y_n, β_n} where, for each n, the sequence $(Y_{i,n})_{i \in N}$ is independent and identically distributed given β_n. He showed that the uniform entropy numbers and the Koltchinskii–Pollard uniform entropy integral - two crucial notions in empirical processes theory - both adapt very well to that wider class of random measures, which not only encompasses the empirical measure, but also discrete nonparametric Bayesian priors. The latter notion of uniform entropy integral can be briefly defined as follows for a class \mathcal{F} of real Borel functions on (X, A_X):

$$J(\delta, \mathcal{F}) := \int_0^\delta \sqrt{\log \left(\sup_{\text{prob.}} N(\epsilon \| F \|_{Q,2}, \mathcal{F}, \| \cdot \|_{Q,2}) \right)} d\epsilon, \ \delta \in (0, \infty].$$

Here $\| \cdot \|_{Q,2}$ stands for the $L^2(Q)$ norm, $N(\epsilon, \mathcal{F}, \| \cdot \|_{Q,2})$ denotes the minimal number of $\| \cdot \|_{Q,2}$ balls with radius ϵ needed to cover \mathcal{F}, and F stands for the minimal measurable envelope of the class \mathcal{F} - see, e.g., [12] p. 85. Note that F can be simply taken as

$$F(y) := \sup \left\{ \| f(y) \|, f \in \mathcal{F} \right\}, \ y \in X,$$

when \mathcal{F} is countable or pointwise measurable - see §2.2 below. When $J(\infty, \mathcal{F})$ is finite, Varron proved a Donsker theorem under natural asymptotic conditions upon $(\beta_n, Y_n)_{n \geq 1}$. Those two asymptotic theorems (see [13] Theorems 1 and 2) involve processes of the form

$$G_n(f) := \sum_{i \in N} \beta_{i,n} \left[f(Y_{i,n}) - \mathbb{E} \left(f(Y_{i,n}) \mid \beta_{i,n} \right) \right], \ f \in \mathcal{F},$$

indexed by a class \mathcal{F} of real Borel functions. A rigorous definition of $G_n(\cdot)$ is not immediate and is therefore voluntarily postponed to §2.2.
While the uniform entropy has been celebrated as a very useful condition to prove that a class \mathcal{F} is Donsker or Glivenko–Cantelli, another condition turned out to be very fruitful as well: bracketing entropy. The bracket $\llbracket f^-, f^+ \rrbracket$ between two Borel functions f^- and f^+ is defined as the set of Borel functions f fulfilling $f^- < f < f^+$, the symbol \prec standing for the everywhere pointwise comparison between real functions on X. Denoting by $N(\epsilon, \mathcal{F}, \cdot \mapsto \| \cdot \|_{Q,2})$ the minimal number of brackets with $\| \cdot \|_{Q,2}$ diameter less than ϵ needed to cover \mathcal{F}, the Q bracketing entropy of \mathcal{F} is defined as

$$J(\delta, \mathcal{F}, Q) := \int_0^\delta \sqrt{\log N(\epsilon, \mathcal{F}, \cdot \mapsto \| \cdot \|_{Q,2})} \, d\epsilon, \quad \delta \in (0, \infty].$$

(5)

A naturally arising question is then: does bracketing entropy adapt with the same efficiency to sequences of random measures such as in (3)? The answer provided in the present article is: yes, but to a lesser extent. More restrictions upon the weights are needed. First the $\beta_{i,n}$ have to be non negative, since the idea of bracketing relies on the comparison principle

$$f^- \prec f \prec f^+ \Rightarrow Q(f^-) \leq Q(f) \leq Q(f^+),$$

when Q is a non negative measure. Second, when looking for a Donsker theorem, $\| \beta_n \|_\infty$ has to tend to zero fast enough to counterbalance a the possible growth of $\| \beta_n \|_1$. The amount of compensation is directly linked to the moments of $F(Y_{1,n})$, $n \in \mathbb{N}^*$. Those two conditions were not required under the assumption that $J(\infty, \mathcal{F})$ is finite (see [13, Theorems 1 and 2]). This difference can be explained by the fact that the use of the Koltchinskii–Pollard entropy is intimately linked to that of symmetrization, namely the study of

$$G^0_n(f) := \sum_{i \in \mathbb{N}} \epsilon_i \beta_{i,n} f(Y_{i,n}), \quad f \in \mathcal{F},$$

where the ϵ_i are symmetric Bernoulli (or Rademacher) random variables, independent of (Y_{n}, β_n). By subgaussianity of Rademacher processes, the $G^0_n(\cdot)$ inherit several properties of infinite dimensional Gaussian analysis. In particular, Hilbert spaces take a predominant role. This explains why the results in [13] hold under conditions upon $\| \beta_n \|_2$ and $\| \beta_n \|_4$. On the other hand, bracketing methods do not rely on subgaussianity, but on a form of Bernstein’s inequality. The latter is a tradeoff between subgaussian and subexponential tails for sums of independent random variables that are uniformly bounded. This roughly explains why $\| \beta_n \|_\infty$ - and its conjugate norm $\| \beta_n \|_1$ - needs to be controlled. Such a difference of extent between bracketing and uniform entropy was not visible on the empirical
process for the following simple reason: when taking \(\beta_{i,n} \equiv n^{-1/2} \) for \(i \leq n \) and \(\beta_{i,n} \equiv 0 \) otherwise, one has \(\| \beta_n \| \equiv \| \beta_n \|_1 = n^{-1/2} \). This equality makes the counterbalance between those two norms hardly visible in the proof of the bracketing Donsker theorem.

Various interesting classes admit a finite bracketing entropy - see, e.g., [12, Chapter 2.7]. In addition, several examples of posterior distributions in (discrete) Bayesian nonparametrics have the form \(P_{\mathbf{Y},\beta_n} \), or at least exhibit a predominant term that can be expressed as such - see [13, Section 3]. Hence our main results present an interesting range of applications, which we will here illustrate through two examples. The first one takes place in the framework of frequentist asymptotic analysis of nonparametric Bayesian priors: for a countable observation space, we prove a posterior consistency and a Bernstein–von Mises theorem for the Dirichlet process prior, under the topology of total variation (see §4.1). Along the proof, we also revisit the Durst–Dudley–Borisov theorem and we obtain additional information about this phenomenon. Our second example of application is a Donsker theorem - under a bracketing condition - for a specific form of local empirical measures (see §4.2). The remainder of this article is organized as follows: in §2 we give a careful description of the mathematical framework. Then our two main results are stated in §3. Applications follow in §4. The proofs of those results are then written in §5. Finally, the Appendix is dedicated to a minor proof.

2 The mathematical framework

In order to properly state our main results, we first need to carefully define their underlying probabilistic framework. This section may be skipped at first reading.

2.1 The underlying probability space

Empirical processes carry over some lacks of measurability that are usually tackled by using outer expectations - see, e.g., [12, Chapter 1.2]. In order to make use of Fubini’s theorem - which is in general untrue for outer expectations - mathematical rigor imposes to define the underlying probability space \((\Omega, \mathcal{A}, \mathbb{P})\) as a suitable product space. First, for fixed \(n \geq 1 \), consider a Markov transition kernel from \(\ell^1 \) to \(X \), i.e., a family \(\{ \mathbf{P}_{n,p} \mid p \in \ell^1 \} \) of probability measures for which the maps \(p \to \mathbf{P}_{n,p}(A) \), \(A \in \mathcal{A}_X \) are measurable from \((\ell^1, \text{Bor}(\ell^1)) \) to \(([0,1], \text{Bor}([0,1])) \).

Also consider a probability measure \(Q_n \) on \(\ell^1 \times \text{Bor}(\ell^1) \) and define:

\(\hat{\Omega} := \ell^1 \times X^N \), endowed with its product \(\sigma \)-algebra

\(\hat{\mathcal{A}} := \text{Bor}(\ell^1) \otimes A_X^{\otimes N} \), with probability law defined through the generic formula:
\[\mathbb{P}_n \left(\{(p, y) \in \tilde{\Omega}, p \in A, \forall j \in \{1, \ldots, k\}, y_i \in B_j \} \right) := \int_{\tilde{\Omega}} \prod_{j=1}^k P_{n,p}(B_j) dQ_n(p). \]

Then define \(\Omega := \tilde{\Omega}^\times, A := A^{\times}, \mathbb{P} := \bigotimes_{n \geq 1} \mathbb{P}_n \) on \(A \) and define the \(Y_n \) and \(\beta_n \) as coordinate maps on \(\Omega \):

\[\beta_n(p_1, y_1, p_2, y_2, \ldots) := p_n, \quad \text{and} \quad Y_n(p_1, y_1, p_2, y_2, \ldots) := y_n. \]

Note that, for fixed \(n \) and \(p \in \ell^1 \), \(P_{n,p}^{\times} \) is the law of \(Y_n \) given \(\beta_n = p \). We shall denote by \(P_n \) the law of \(Y_{1,n} \).

To simplify the notations we now adopt the following convention: each time a map \(\psi \) is defined on a probability space, the symbol \(\mathbb{E}^\times(\psi) \) will denote the outer expectation with respect to that probability space. We shall adopt the same convention for outer probabilities \(\mathbb{P}^\times \).

2.2 Definition of \(G_n \)

From now on, and throughout all this article, we shall make the assumption that \(P_n(F) < \infty \) for all \(n \geq 1 \). We also assume that \(\mathcal{F} \) is pointwise measurable with countable separant \(\mathcal{F}_0 \) in the following sense: for any \(f \in \mathcal{F} \), there exists \((f_m)_{m \geq 1} \in \mathcal{F}_0^\times \) such that \(f_m(y) \to f(y) \) for each \(y \in X \). Such a very standard assumption will be useful to tackle annoying measurability issues.

Because the symbol \(\Sigma_{i \in \mathbb{N}} \) in [13] is ambiguous, we need to give a rigorous definition of the processes that will be involved in this article. Our definition differs from that used in [13] for two reasons. The first (minor) one is to cover the case where the \(\| \beta_n \| \) are not deterministically equal to 1. The second one is for technical purposes: in our proofs, we shall truncate the \(f \in \mathcal{F} \) from above using thresholds that depend upon the weights. First note that, for any bounded function \(f \) and any Borel map \(T \) from \(\ell^1 \) to \(\mathbb{R}^+ \), the map

\[\Phi_{f,T} : (y, p) \to \sum_{i \in \mathbb{N}} p_i \left(f \mathbb{1}_{\{f \leq T(p)\}}(y_i) - P_n,p \left(f \mathbb{1}_{\{f \leq T(p)\}}(y_i) \right) \right) \]

is properly defined (through the limits in \(\mathbb{R} \) of partial sums) and Borel from \(X^N \times \ell^1 \) to \(\mathbb{R} \). One can hence define a random variable \(G_n^T(f) \) by composition \(G_n^T(f) := \Phi_{f,T} \circ (Y_n, \beta_n) \). We will say that a map \(\psi \) from \(\mathcal{F} \) to \(\mathbb{R} \) is \(\mathcal{F}_0 \)-separable whenever we have \(\| \psi \|_{\mathcal{F}} = \| \psi \|_{\mathcal{F}_0} \). We shall also denote by \(\mathcal{B}(\mathcal{F}, \mathcal{F}_0) \) the space of all bounded \(\mathcal{F}_0 \)-separable functions and by \(A_{\| \cdot \|_{\mathcal{F}}} \) is the \(\sigma \)-algebra spanned by the \(\| \cdot \|_{\mathcal{F}} \)-balls.

Lemma 2.1 For any choice of \(T \) as above, the map

\[\Phi_{f,T} : (y, p) \to \{ f \to \Phi_{f,T}(y, p) \} \]

is measurable from \(X^N \times \ell^1 \) to \((\mathcal{B}(\mathcal{F}, \mathcal{F}_0), A_{\| \cdot \|_{\mathcal{F}}}) \).
Proof: Fix T. Let us first prove that $\Phi_{F,T}$ takes its values in $B(F,F_0)$. Fix $y \in \mathcal{X}^\otimes \mathbb{N}$ and $p \in \ell^1$. Since, for all $k \in \mathbb{N}$:

$$\sup_{f \in F} \left| \sum_{i \geq k+1} p_i \left[f 1_{\{F \leq T(p)\}}(y_i) - P_{n,p}(f 1_{\{F \leq T(p)\}}) \right] \right| \leq 2T(p) \sum_{i \geq k+1} |p_i|,$$

and since $(B(F,F_0), || \cdot ||_F)$ is a Banach space, it is sufficient to prove that each trajectory $f \rightarrow f 1_{\{F \leq T(p)\}}(y_i), i \in \mathbb{N}$, and $f \rightarrow P_{n,p}(f 1_{\{F \leq T(p)\}})$ is F_0-separable. To see this, take $f \in F$ and consider $(f_m)_{m \geq 1} \in F_0^\mathbb{N}$ such that $f_m \rightarrow f_0$ pointwise. Thus $P_{n,p}(f_m 1_{\{F \leq T(p)\}}) \rightarrow P_{n,p}(f 1_{\{F \leq T(p)\}})$ by the dominated convergence theorem. Now since $\Phi_{F,T}$ takes its values in $B(F,F_0)$, the following equality holds for any $(y,p) \in \mathcal{X}^\otimes \times \ell^1$:

$$\sup_{f \in F} |\Phi_{f,T}(y,p)| = \sup_{f \in F_0} |\Phi_{f,T}(y,p)|,$$ \hspace{1cm} (6)

and then the measurability of each $\Phi_{f,T}, f \in F_0$ ensures that of $\Phi_{F,T}$ with respect to $A_{|| \cdot ||_F}$. \hspace{1cm} \square

Now denote by $\tilde{\mathcal{E}}_{F,F_0}$ the space of all measurable maps from (Ω,A) to $(B(F,F_0),A_{|| \cdot ||_F})$. The preceding lemma gives the opportunity to define the processes G_n on any class of functions

$$\mathcal{F}_M := \{f 1_{\{F \leq M\}}, f \in F\}$$

since (confounding M with a constant function on ℓ^1) the composition map

$$G_n^M := \Phi_{F,M} \circ \{Y_n, \beta_n\}$$

belongs to $\tilde{\mathcal{E}}_{F,F_0}$. Denote by \mathcal{E}_{F,F_0} the quotient space of $\tilde{\mathcal{E}}_{F,F_0}$ with respect to the equivalence class

$$G \sim G' \iff ||G - G'||_F = 0, \ \mathbb{P}-\text{a.s.},$$

and endow \mathcal{E}_{F,F_0} with the compatible distance

$$d(G,G') := \mathbb{E}\left(\arctan\left(||G - G'||_F\right)\right),$$ \hspace{1cm} (7)

which is that of $|| \cdot ||_F$-convergence in probability. The following lemma defines G_n as a suitable limit of the G_n^M when $M \rightarrow \infty$.

Lemma 2.2 For fixed $n \geq 1$, the sequence $(G_n^M)_{M \geq 1}$ is Cauchy in the complete metric space (\mathcal{E}_{F,F_0},d). It hence converges to a limit which we take as the definition of G_n. Moreover, for any sequence (T_k) of Borel thresholding maps fulfilling $T_k(\beta_n) \rightarrow F \infty$ as $k \rightarrow \infty$, we have $d(G_n^{T_k}, G_n) \rightarrow 0$ as $k \rightarrow \infty$.

Proof: For integers M, M' we have, writing $f^{M, M'} := f^1_{\{M < F \leq M'\}}$

\[
\begin{align*}
 d\left(G_n^M, G_{n}^{M'}\right) &= \mathbb{E}\left(\arctan\left(\sup_{f \in \mathcal{F}} |\Phi_{f^{M, M'}(Y_n, \beta_n)}|\right)\right) \\
 &\leq \mathbb{E}\left(\arctan\left(\sum_{i \in \mathbb{N}} |\beta_{i, n}||F^{M, M'}(Y_{i, n}) + \mathbb{E}\left(F^{M, M'}(Y_{i, n})|\beta_n\right)|\right)\right). \quad (8)
\end{align*}
\]

Using Fatou’s lemma for conditional expectations and the concavity of \arctan on \mathbb{R}^+ we have, almost surely:

\[
\begin{align*}
 \mathbb{E}\left(\arctan\left(\sum_{i \in \mathbb{N}} |\beta_{i, n}||F^{M, M'}(Y_{i, n}) + \mathbb{E}\left(F^{M, M'}(Y_{i, n})|\beta_n\right)|\right)\right) \\
 &\leq \arctan\left(\sum_{i \in \mathbb{N}} |\beta_{i, n}||\mathbb{E}\left(F^{M, M'}(Y_{i, n})|\beta_n\right)|\right) \\
 &= \arctan\left(2 ||\beta_n||_1 \mathbb{E}\left(F_{\{F > M\}}(Y_{1, n})|\beta_n\right)\right) \quad (9) \\
 &\leq \arctan\left(2 ||\beta_n||_1 \mathbb{E}\left(F_{\{F > T_k(\beta_n)\}}(Y_{1, n})|\beta_n\right)\right), \quad (10)
\end{align*}
\]

where (9) comes from the fact that the law Y_{n} given $\beta_{n} = p$ is $P_{n,p}$. It hence suffices to prove that the right hand side (RHS) of (10) tends to 0 in probability as $M \to \infty$. This is true since $P_{n}(F) < \infty$. Now to prove the last statement of Lemma 2.2 formally replace M by $T_k(p)$ in the preceding calculus and let $M' \to \infty$ to obtain, using Fatou’s lemma for conditional expectations:

\[
\begin{align*}
 d(G_{n}^{T_k}, G_n) &\leq \mathbb{E}\left(\arctan\left(2 ||\beta_n||_1 \mathbb{E}\left(F_{\{F > T_k(\beta_n)\}}(Y_{1, n})|\beta_n\right)\right)\right), \quad (11)
\end{align*}
\]

which tends to 0 as $k \to \infty$, by assumption upon $(T_k(\beta_n))_{k \geq 1}$ and since $P_{n}(F) < \infty$. □

2.3 Definition of the limit processes

One of our results is a Donsker theorem (see Theorem 2 below). The limit processes are mixtures of \mathcal{F}-indexed Brownian bridges, for which a rigorous definition is not immediate due to the non separability of $\ell_\infty(\mathcal{F})$. We shall use the definition of [13]. However, since the possibility to condition upon the weights was not made
Proof: Write Ω' as the canonical map $(p, \psi) \to p$ on $(\Omega'', \mathcal{A}'', \mathbb{P}'')$ and note that β_n' and β_n are equal in law. For any finite subclass $\{f_1, \ldots, f_p\} \subset \mathcal{F}$ we have,
by conditioning on β'_n and then using Dudley’s chaining theorem (see, e.g., [12, p. 101, Corollary 2.2.8])

$$
E\left(\max_{j \leq p} |W_n(f_j)| \right) \leq \mathcal{C}_0 \int_0^{+\infty} \sqrt{\log N(\epsilon, \mathcal{F}, \| \cdot \|_{P_n, \beta'_n, 2})} \, d\epsilon \\
\leq \mathcal{C}_0 \int_0^{+\infty} \sqrt{\log N(\epsilon, \mathcal{F}, \| \cdot \|_{P_n, \beta'_n, 2})} \, d\epsilon \\
= \mathcal{C}_0 \mathcal{J}_{\epsilon_0}(\infty, \mathcal{F}, P_n, \beta'_n) \cdot \mathbb{P}_n' - \text{almost surely},$$

where \mathcal{C}_0 is a universal constant. It follows by Fatou’s lemma for conditional expectations that

$$
E\left(\sup_{f \in \mathcal{F}_0} |W_n(f)| \right) \leq \mathcal{C}_0 \mathcal{J}_{\epsilon_0}(\infty, \mathcal{F}, P_n, \beta'_n) \cdot \mathbb{P}_n' - \text{almost surely}.
$$

Now using the same arguments as those used to obtain [13, p. 2314, assertion (49)], one can show that

$$
\mathbb{P}_n'(\{ \omega' \in \Omega', W_n(\omega) \text{ is not } \mathcal{F}_0 \text{ separable} \}) = 0,
$$

which concludes the proof. \(\square\)

3 Results

Before stating our two main results, let us briefly mention that the maps $p \to N_{\epsilon}((\epsilon, \mathcal{F}, \| \cdot \|_{P_n, p, r}))$ and $p \to \mathcal{J}(\delta, \mathcal{F}, P_n, p)$ are properly measurable for fixed ϵ and δ. This is proved in §6.

3.1 A Glivenko–Cantelli theorem

Our first result is a Glivenko–Cantelli theorem. Recall that P_n is the law of $Y_{1,n}$. We shall denote by $\ell^{1,+} := \ell^1 \cap [0, \infty[^\mathbb{N}$ the set of non negative summable sequences.

Theorem 1 Assume that

$$
\lim_{\epsilon \to 0} \lim_{n \to \infty} P_n(F \mathbb{1}_{\{F \geq M\}}) = 0, \quad (12)
$$

and that, for any $\epsilon > 0$:

$$
\left(N_{\epsilon}((\epsilon, \mathcal{F}, \| \cdot \|_{P_n, \beta_n, 1})) \right)_{n \geq 1} \text{ is bounded in probability.} \quad (13)
$$

9
Also assume that $\beta_n \in \ell^{1,+}$ is almost surely for all n, and that
\[\left(\| \beta_n \|_1 \right)_{n \geq 1} \text{ is bounded in probability.} \quad (14) \]

Then, under the condition $\| \beta_n \|_2 \to P_0$ we have $\| G_n \|_F \to P_0$.

Remark: It is important to compare the assumptions of Theorem 1 to those of Dudley’s bracketing Glivenko–Cantelli theorem [12, p. 122, Theorem 2.4.1] for the empirical measure $P_{Y_n \beta^{Emp}_n}$, where $\beta^{Emp}_{i,n} \equiv n^{-1}$ for $i \leq n$ and is identically null otherwise, and where Y_n is constant in n - hence with constant law $P_n = P_0$.

A few easy arguments then show that, in this special case, those two theorems exactly coincide: first, for $\beta_n = \beta^{Emp}_n$ the convergence in probability is equivalent to an almost sure convergence by Pollard’s reverse martingale argument (see, e.g., [12, p. 124, Lemma 2.4.5]). Second, (12)+(13) is here equivalent to the finiteness of $N_{\epsilon}(\epsilon, F, \| \cdot \|_{P_0,1})$ for each $\epsilon > 0$.

3.2 A Donsker theorem

For a sequence Z_n of maps from Ω to \mathbb{R} we shall write
\[\lim_{n \to \infty} p^* Z_n := \inf \left\{ M \in \mathbb{R}, \lim_{n \to \infty} P^*(Z_n \geq M) = 0 \right\}, \]
with the convention $\inf_{\emptyset} = +\infty$, and we shall simply write $\lim_{n \to \infty} Z_n$ when the maps Z_n are measurable. Our second result is a Donsker theorem.

Theorem 2 Assume that
\[\| \beta_n \|_2 \to P_0 \quad 1, \]
\[\| \beta_n \|_\infty \to P_0 \quad 0, \]
and that, for some $p \in [2, \infty[$
\[\| \beta_n \|_1 \times \| \beta_n \|^{p-1}_\infty \text{ is bounded in probability}, \]
\[\lim_{\delta \to 0} \limsup_{n \to \infty} D_p^n_{\delta}(\epsilon, F, P_n, \beta_n) = 0, \]
\[\lim_{M \to \infty} \lim_{n \to \infty} P_n(F^p \mathbb{1}_{\{F > M\}}) = 0. \]

Also assume that there exists a semimetric ρ that makes F totally bounded, and fulfilling
\[\lim_{\delta \to 0} \lim_{n \to \infty} P^* \sup_{(f_1-f_2) \in F^2, \rho(f_1,f_2) < \delta} P_n,\beta_n((f_1-f_2)^2) = 0. \]
Then
\[
d_{BL}\left(G_n, W_n \right) := \sup_{B \in BL1} \left| \mathbb{E}^* \left(B(G_n) \right) - \mathbb{E}^* \left(B(W_n) \right) \right| \to 0,
\]
where \(BL1 \) is the set of all 1-Lipschitz functions on \((\ell^\infty(F), \| \cdot \|_F) \) that are bounded by 1.
Moreover, if \(F \) is uniformly bounded, then (21) holds without assuming (17) nor (19).

Remarks: We chose to state Theorem 2 under the most general assumptions that our methodology can afford. In order to give more substance to those conditions, it seems convenient to discuss on the place of Theorem 2 in the existing literature on Donsker theorems for empirical processes.

1. When \(\beta_n \) is the vector of rescaled empirical weights (\(\beta_{i,n} \equiv n^{-1/2} \) for \(i \leq n \) and \(\beta_{i,n} \equiv 0 \) otherwise), and when \(P_n = P_0 \) is constant in \(n \), then \(P_{Y_n, \beta_n} \) is a sequence of empirical processes. Noting that - for \(p = 2 \) - the \(\beta_n \) obviously satisfy conditions (15), (16) and (17) one can immediately conclude that - in this setup - Theorem 2 exactly coincides with Ossiander’s bracketing Donsker theorem [8, Theorem 3.1]. Andersen et al. [1] did also prove a Donsker theorem under more general conditions, where the finiteness of \(J(\infty, F, P_0) \) is relaxed to more abstract assumption, involving majorizing measures on \(\| \cdot \|_{P_0, 2} \) balls and "weak \(\| \cdot \|_{P_0, 2} \) brackets. This possible extension of Theorem 2 is beyond the scope of the present article and may deserve future investigations.

2. Let us now relax the assumption that \(P_n \) is constant in \(n \). In that case the \(G_n \) fall into the framework of triangular arrays of empirical processes with varying baseline measures, which were studied by Sheehy and Wellner [10, Section 3]. These authors did prove a Donsker result for \(G_n \) indexed by classes fulfilling \(J(\infty, F) < \infty \), under the envelope condition (19), and assuming that \(P_n \) converges to a limit \(P_0 \) in the following sense - see their Corollary 3.1:

\[
\sup_{(f_1, f_2) \in F^2} \max \left\{ | P_n((f_1 - f_2)^2) - P_0((f_1 - f_2)^2) |, \ | P_n(f_1) - P_0(f_1) |, \ | P_n(f_2) - P_0(f_2) | \right\} \to 0.
\]

(22)

It is then clear that our Theorem 2 puts forward an analogue of their result, replacing their assumption \(J(\infty, F) < \infty \) by the bracketing condition (18). To see this, just note that (20) is satisfied under (22), by choosing \(\rho(f_1, f_2) := \| f_1 - f_2 \|_{P_0, 2} \).
3. Let us now discuss on assumption (18), which might be the most cumbersome to verify for applications. If $J(\infty, F, P_0) < \infty$, a simple way to check (18) - by direct comparison of bracketing numbers - is to prove that

$$\sup_{(f_1, f_2) \in F^2} \frac{P_{n, \beta_n}((f_1 - f_2)^2)}{P_0((f_1 - f_2)^2)}$$

is bounded in probability. (23)

Such a sufficient condition is quite restrictive and seems far from necessary, but its verification is sometimes very simple to perform. This is for example the case for our application to the local empirical process at fixed point - see §4.2.

4. We conclude this series of remarks by pointing out that, whereas involving random weights, Theorem 2 has almost no connections with Donsker theorems for bootstrap empirical measures. For more details see [13, Remark 2.2].

4 Applications

4.1 Posterior analysis of the Dirichlet process prior under the discrete total variation

Assume (in this subsection only) that \mathcal{X} is infinite countable. The class \mathcal{F} of all indicator functions of subsets of \mathcal{X}:

$$\mathcal{F} := \{1_C, C \subset \mathcal{X}\}$$

(24)

is rich enough to define the discrete total variation between two measures on \mathcal{X}, since

$$\| Q - Q' \|_{\mathcal{F}} = \sup_{C \subset \mathcal{X}} | Q(C) - Q'(C) | =: \| Q - Q' \|_{\text{Tot.var.}}$$.

Clearly, \mathcal{F} is too large to satisfy $J(\infty, \mathcal{F}) < \infty$. It was however shown in the celebrated Durst–Dudley–Borisov theorem that \mathcal{F} may have a finite bracketing entropy $J(||(\infty, \mathcal{F}, Q) under a simple necessary and sufficient criterion upon Q, namely

$$(\text{DDB}(Q)) : \sum_{y \in \mathcal{X}} \sqrt{Q(\{y\})} < \infty.$$

Theorem 3 (Durst–Dudley–Borisov, 1981) For the class \mathcal{F} defined in (24) we have

$$J(||(\infty, \mathcal{F}, Q) < \infty \Leftrightarrow (\text{DDB}(Q)).$$
We shall combine Theorem 1 with a refinement of Theorem 3 - see Lemma 5.5 - to prove both a posterior consistency and a Bernstein–von Mises theorem for the Dirichlet process prior, under the discrete total variation. To properly state it, we need to introduce some more notations. From now on we shall denote by $DP(\alpha, M)$ a Dirichlet process with mean probability measure α on X and concentration parameter $M > 0$. A possible representation of $DP(\alpha, M)$ is that of Sethuraman [9]:

$$\tag{25} DP(\alpha, M) = \text{law} \Pr_{Y, \beta},$$

where $Y \sim \alpha \otimes N$, and $\beta_i := V_i P_{i \leq i-1}(1 - V_i)$ with $(V_i)_{i \in N} \sim \text{Beta}(1, M) \otimes N$ being independent of Y. Now consider the nonparametric Bayesian model where the prior \Pr has distribution $DP(\alpha, M)$ and where the sample (X_1, \ldots, X_n) has conditional law $P \otimes_n$ given $\Pr = P$. In this model it is well known (see [4]) that a natural expression of the posterior distribution of \Pr given $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$ is

$$\text{Post}_n(x_1, \ldots, x_n) := DP(\alpha(x_1, \ldots, x_n), M + n),$$

where

$$\alpha(x_1, \ldots, x_n) := \theta_n \alpha + (1 - \theta_n)P_{(x_1, \ldots, x_n)}, \text{ with } \theta_n := \frac{M}{M + n}, \text{ and } P_{(x_1, \ldots, x_n)} := \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}.$$

We shall take advantage of that explicit representation to prove the following two results.

Corollary 1 (Posterior consistency) Take \mathcal{F} as in (24). Let P_0 be a probability measure on countable X, and let $(X_n)_{n \geq 1} \sim P_0^N$. Then for almost every sequence $(x_n)_{n \geq 1}$ we have

$$\left\| \text{Post}_n(x_1, \ldots, x_n) - P_{(x_1, \ldots, x_n)} \right\|_{\text{Tot.Var.}} \rightarrow_{\mathcal{L}} 0.$$

Corollary 2 (Bernstein–von Mises) Assume in addition $(DDB(P_0))$ and $(DDB(\alpha))$. Then for almost every sequence $(x_n)_{n \geq 1}$ we have

$$\sqrt{n} \left(\text{Post}_n(x_1, \ldots, x_n) - P_{(x_1, \ldots, x_n)} \right) \rightarrow_{\mathcal{L}} \mathcal{G}_{P_0}, \text{ in } \ell^\infty(\mathcal{F}).$$

As a consequence, for almost every sequence $(x_n)_{n \geq 1}$ we have

$$\sqrt{n} \left\| \text{Post}_n(x_1, \ldots, x_n) - P_{(x_1, \ldots, x_n)} \right\|_{\text{Tot.Var.}} \rightarrow_{\mathcal{L}} \left\| \mathcal{G}_{P_0} \right\|_{\mathcal{F}}.$$

The corresponding proofs are written in §5.4.
4.2 A Donsker theorem for local empirical measures under a bracketing condition

Assume in this subsection that $X = \mathbb{R}^d$. The local empirical process indexed by functions, introduced by Einmahl and Mason [3] has been intensively investigated during the last decades, due to its connections with several smoothing nonparametric methods. One of its particular forms can be written as follows:

$$T_{n,h_n}(f) := \frac{1}{\sqrt{nh_d}^d} \sum_{i=1}^n \left[f(h_n^{-1}(Z_i - z)) - \mathbb{E}\left(f(h_n^{-1}(Z_i - z)) \right) \right],$$

where $(h_n)_{n \geq 1}$ is a deterministic non negative sequence tending to 0, and where $(Z_n)_{n \geq 1}$ is an i.i.d. sequence. Implicit in the results of Einmahl and Mason [3, Theorem 1.1] is the following Donsker theorem.

Theorem 4 (from Einmahl and Mason, 1997) Let $(h_n)_{n \geq 1}$ be a non random sequence of non negative numbers such that $h_n \to 0$ and $nh_d^d \to \infty$. Assume that $J(\infty, \mathcal{F}) < \infty$. Assume that the support S of F is bounded, and that Z_1 admits a version of Lebesgue density f on a neighborhood of z that is continuous at z and such that $f(z) > 0$. Also assume that, taking P_0 as the uniform distribution on S, we have $P_0(F^2) < \infty$. Then we have the following weak convergence

$$\frac{1}{\sqrt{\lambda(S)f(z)}} T_{n,h_n}(. \to \mathcal{W}_{P_0}(.), \text{ in } \ell^\infty(\mathcal{F}),$$

where $\mathcal{W}_{P_0}(.)$ denotes the $L^2(P_0)$-isornormal Gaussian process indexed by \mathcal{F} (or P_0-Brownian motion).

Their proof heavily relies on a representation of their own [3, Proposition 3.1]:

$$T_{n,h_n}(f) := \text{law} \frac{1}{\sqrt{nh_d}^d} \times \left[\sum_{i=1}^n b_{i,n}(f(Y_{i,n}) - P_n(f)) \right] + R_n(f),$$

as processes indexed by \mathcal{F}, where:

- The $(b_{i,n})_{i \leq n}$ are i.i.d Bernoulli with parameter $a_n := \mathbb{P}(h_n^{-1}(Y_1 - z) \in S)$;
- The $(Y_{i,n})_{i \leq n}$ are i.i.d with law

$$P_n := \mathbb{P}(Y_1 \in \cdot \mid h_n^{-1}(Y_1 - z) \in S),$$

(26)

with $(b_{i,n})_{i \leq n} \perp (Y_{i,n})_{i \leq n}$.

14
The term
\[R_n(f) := \sum_{i=1}^{n} (b_{i,n} - a_n) \frac{P_n(f)}{\sqrt{n\epsilon_n d_n P_n(f)}} \] (27)

plays the asymptotic role of a correcting drift between the Brownian bridge \(G_{P_0} \) and the Brownian motion \(W_{P_0} \).

The following corollary of Theorem 2 is a Donsker theorem for \(T_{n,h} \) under the condition \(J_j(\infty, F, P_0) < \infty \). Its proof is written in §5.5.

Corollary 3 Theorem 4 still holds if assumption \(J_\infty(\infty, F) < \infty \) is replaced by \(J_j(\infty, F, P_0) < \infty \).

5 Proofs

5.1 Proof of Theorem 1

The proof is divided in two lemmas.

Lemma 5.1 Take \(M > 0 \). Under the assumptions of Theorem 1 we have \(||G_M||_{\infty} \to P_0 \) as \(n \to \infty \).

Proof : Fix \(M > 0 \), \(\epsilon > 0 \), and choose - by (13) and (14) - an integer \(N \) for which,
\[P(\beta_n \in S_n) > 1 - \epsilon \]
for all \(n \geq 1 \), with
\[S_n := \{ p \in \ell_1, ||p||_1 \leq N \text{ and } N_j(\epsilon, F, ||p||_n, 1) \leq N \} \]

Now fix \(n \geq 1 \), and \(p \in S_n \) and denote by \(Br(n, p) = \{(f_j^-, f_j^+), j = 1, \ldots, N\} \) a covering bracket of \(F \) with \(\max_{j \leq N} ||f_j^+ - f_j^- ||_{P_n, p} \leq \epsilon/N \). Using the same comparison argument as in [12, p. 122] we have, for \((f^-, f^+) \in Br(n, p) \), \(f \in [f^-, f^+] \) and \(y \in \mathcal{X}^3 \) (recall (2)):
\[\left| P_y, P\left(f^{-1}_{\{F \leq M\}} - P_n, P\left(f^{-1}_{\{F \leq M\}}\right)\right)\right| \leq P_y, p\left(f^{-1}_{\{F \leq M\}} - P_n, P\left(f^{-1}_{\{F \leq M\}}\right)\right) \]
\[\leq \left| P_y, P\left(f^+1_{\{F \leq M\}} - P_n, P\left(f^+1_{\{F \leq M\}}\right)\right)\right| + NP_n, p(f^+ - f^-) \] (28)

from where, writing \(B_{n,p} \) for the set of functions \(f \) that are a side of a bracket (hence \(B_{n,p} \leq 2N \), where "\#" stands for "cardinal"):
\[\sup_{f \in F} \left| P_y, P\left(f1_{\{F \leq M\}} - P_n, P\left(f1_{\{F \leq M\}}\right)\right)\right| \]
\[\leq \max_{f \in B_{n,p}} |P_{Y,p}(f \mathbb{1}_{\{F \leq M\}} - P_{n,p}(f \mathbb{1}_{\{F \leq M\}}))| + \epsilon.\]

Note that the condition \(p \in \ell_{1,+}\) is crucial to obtain (28). Now formally replacing \(y\) by an i.i.d sequence \((Y_i)_{i \in \mathbb{N}}\) having distribution \(P_{n,p}\) we obtain, for \(p \in S_n:\)

\[\mathbb{E}\left(\sup_{f \in F} \left| \sum_{i \in \mathbb{N}} p_i(f(Y_i) - P_{n,p}(f)) \right| \right) \leq \Delta_n(p) + \epsilon, \text{ where} \tag{29}\]

\[\Delta^2_n(p) := \mathbb{E}\left(\sum_{f \in B_{n,p}} \left(\sum_{i \in \mathbb{N}} p_i(f(Y_i) - P_{n,p}(f)) \right)^2 \right) \leq (2N)^2 \max_{f \in B_{n,p}} \mathbb{E}\left(\sum_{i \in \mathbb{N}} p_i(f(Y_i) - P_{n,p}(f))^2 \right) \leq (2N)^2 \sum_{f \in B_{n,p}} \sum_{i \in \mathbb{N}} p_i^2 \text{Var}(f(Y_i)) \leq (2NM \| p \|_2^2). \tag{30}\]

Combining (29) and (30) yields, almost surely

\[\mathbb{E}\left(\left\| G_M^n \right\|_F \left| \beta_n \right| \mathbb{1}_{S_n}(\beta_n) \right) \leq 2NM \| \beta_n \|_2 + \epsilon.\]

This concludes the proof, since \(\| \beta_n \|_2 \rightarrow 0\) by assumption and since \(\mathbb{P}(\beta_n \notin S_n) < \epsilon). \square\]

With Lemma 5.1 at hand, the proof of Theorem 1 will be concluded as follows:

Lemma 5.2 We have

\[\lim_{M \to \infty} \lim_{n \to \infty} d(G^M_n, G_n) = 0.\]

Proof: In view of (14) it is sufficient to show that

\[\forall \epsilon > 0, \quad \lim_{M \to \infty} \lim_{n \to \infty} \mathbb{P}\left(\mathbb{E}\left(F \mathbb{1}_{\{F > M\}}(Y_{1,n}) \left| \beta_n \right) > \epsilon \right) \right) \leq \epsilon.\]

This is immediate by (12) combined with Markov's inequality. \(\square\)
5.2 Proof of Theorem 2

By (15) we can assume without loss of generality that $|\|\beta_n\||_2 \equiv 1$ for all n. First note that (18) immediately implies

$$\forall \delta > 0, \left(N_{||\delta, \mathcal{F}, || \cdot \|_{\mathbb{P}_n, \beta_n, 2}} \right)_{n \geq 1}$$

is bounded in probability. (31)

The proof of Theorem 2 follows the same directions as in that of Theorem 2 in [13]. The only crucial point that changes is that of proving the following asymptotic equicontinuity condition

$$\lim_{\delta \to 0} \lim_{n \to \infty} \sup_{(f_1, f_2) \in \mathcal{F}^2, \rho(f_1, f_2) < \delta} |G_n(f_1) - G_n(f_2)| = 0,$$

which would be the only missing ingredient to complete the proof of Theorem 2.

Proving (32) will be achieved by conditioning upon β_n and using the following chaining argument. It is an extension of usual chaining arguments for the bracketing entropy [11, p. 286, Lemma 19.34] to unbalanced empirical measures. Due to the fact that infinitely many weights are involved, only uniformly bounded classes of functions are treated here for simplicity. This will be largely sufficient for our purposes.

Lemma 5.3 Let $p \in \ell^{1,+}$ such that $\|p\|_2 = 1$ let Q be a probability measure and let \mathcal{G} be a uniformly bounded pointwise measurable class of functions with countable separant \mathcal{G}_0. Let $\delta \in (0, \infty]$ be such that

$$\sup_{g \in \mathcal{G}, y \in X} |g(y)| \leq \|p\|_{-\infty} a(\delta, Q),$$

where

$$a(\delta, Q) := \delta/\sqrt{\log N_{||\delta, \mathcal{G}, || \cdot \|_{Q, 2}}(\delta, \mathcal{G}, \mathbb{P}, || \cdot ||_{Q, 2})}.$$

Then for any i.i.d sequence $(Y_i)_{i \in \mathbb{N}}$ with distribution Q, we have

$$\mathbb{E} \left(\sup_{g \in \mathcal{G}} \left| \sum_{i \in \mathbb{N}} p_i \left(g(Y_i) - Q(g)\right) \right| \right) \leq C_1 J_{\mathcal{G}}(\delta, \mathcal{G}, Q),$$

where C_1 is a universal constant.

Proof: We shall use the notations

$$\Delta^2(\mathcal{G}, Q) := \sup_{g \in \mathcal{G}} Q(g^2), \text{ and } \Gamma(\mathcal{G}) := \sup_{g \in \mathcal{G}, y \in X} |g(y)|.$$
Given a finite class of functions \tilde{G} and given $m \geq 1$ we have, by combining Lemmas 2.2.9 and 2.2.10 in [12, p. 102]:

$$\mathbb{E}\left(\max_{g \in \tilde{G}} \sum_{i=0}^{m} p_i \left(g(Y_i) - Q(g)\right)\right) \leq 24 \sqrt{\sum_{i=0}^{m} p_i^2 \Delta^2(\tilde{G}, Q) \log(1 + \#\tilde{G}) + \max_{i \leq m} |p_i| \Gamma(\tilde{G}) \log(1 + \#\tilde{G})},$$

where the possible choice of factor 24 was actually shown in [11, p. 285, Lemma 19.33]. Since (36) does not depend upon m we then have, as soon as $\Gamma(\tilde{G}) < \infty$ (and recalling that $\|p\|_{\infty} = 1$):

$$\mathbb{E}\left(\max_{g \in \tilde{G}} \sum_{i=0}^{m} p_i \left(g(Y_i) - Q(g)\right)\right) \leq 24 \sqrt{\log(1 + \#\tilde{G}) + \|p\|_{\infty} \Gamma(\tilde{G}) \log(1 + \#\tilde{G})},$$

where (37) is an application of the dominated convergence theorem, since all the involved random variables are bounded by $2\Gamma(\tilde{G})$. Now with (38) at hand, the remainder of the proof is as follows: a careful look at all the arguments of the proof of [11, p. 286, Lemma 19.34] - noting that their truncating argument is not needed here - shows that the latter are still true with the systematic formal change of \sqrt{n} by $\|p\|_{\infty}^{-1}$. □

We can now start our proof of (32). First fix $\epsilon > 0$. Using (18) and (20) there exist $\delta_1, \delta_2 > 0$ and n_0 such that for all $n \geq n_0$ we have $1 - \epsilon \leq \mathbb{P}(\beta_n \in S'_n)$, where S'_n is the set of all $p \in \ell^{1,+}$ satisfying the following conditions:

$$2\sqrt{2c_1} J_{||} \left(\frac{\delta_1}{2}, \mathcal{F}, \mathbb{P}_{n,p}\right) \leq \epsilon$$

$$\sup_{f \in \mathcal{F}_{\delta_2}} \|f\|_{\mathbb{P}_{n,p,2}} \leq \delta_1,$$

where

$$\mathcal{F}_{\delta_2} := \{f_1 - f_2, (f_1, f_2) \in \mathcal{F}^2, \rho(f_1, f_2) < \delta_2\},$$

and where c_1 denotes the universal constant in (35). Now fix p, write

$$T(p) := \|p\|_{\infty}^{-1} a(\delta_1, \mathbb{P}_{n,p}) 1_{\{\|p\|_{\infty} > 0\}},$$

and define
Next, apply Lemma 5.3 for fixed $p \in S'_n$ to obtain (noticing that \mathcal{F}_{p,δ_1} satisfies (39) and (41) for the choice of $Q := P_{n,p}$ and $\delta := \delta_1$)

$$E \left(\sup_{f \in \mathcal{F}_{p,\delta_1}} \left| \sum_{i \in \mathbb{N}} p_i (f(Y_i) - P_{n,p}(f)) \right| \right) \leq C_1 J_1 \left(\delta_1, \mathcal{F}_{p,\delta_1}, P_{n,p} \right)$$

$$\leq 2\sqrt{2} C_1 J_1 \left(\frac{\delta_1}{2}, \mathcal{F}, P_{n,p} \right),$$

(40)

where the Y_i are i.i.d with law $P_{n,p}$ and where (40) is a consequence of (39) and standard comparisons of entropy numbers. Now since the latter inequality is valid for all $p \in S'_n$ we have

$$E \left(\| G_n^T \|_{\mathcal{F}_{p,\delta_1}} \right) \leq C_1 \mathbb{I}_{S'_n} (\beta_n),$$

almost surely.

(41)

Note that the measurability $\| G_n^T \|_{\mathcal{F}_{p,\delta_1}}$ is not immediate at all, but can be proved using the same arguments as in [13] proof of Proposition 4.2]. In view of (40), and since $\mathcal{F}_{p,\delta_1} \subset \mathcal{F}_{p,\delta_2}$ for $p \in S'_n$, the proof of (32) will be completed if we prove the following lemma.

Lemma 5.4 We have $d(G_n^T, G_n) \to 0$ as $n \to \infty$.

Proof: From (11) we have (noting that $\| \beta_n \|_2 = 1$ implies $\| \beta_n \|_\infty > 0$ a.s.)

$$d(G_n^T, G_n) \leq E \left(\arctan \left(2 \| \beta_n \|_1 \frac{1}{E(\mathbb{1}_{\{F > T(\beta_n)\}}(Y_{1,n}) \mid \beta_n)} \right) \right)$$

$$= E \left(\arctan \left(2 \| \beta_n \|_1 \frac{1}{E(\mathbb{1}_{\{F > T(\beta_n)\}}(Y_{1,n}) \mid \beta_n)} \right) \right)$$

$$\leq E \left(\arctan \left(\frac{2 \| \beta_n \|_1}{T(\beta_n)^{p-1}} \frac{1}{E(\mathbb{1}_{\{F > T(\beta_n)\}}(Y_{1,n}) \mid \beta_n)} \right) \right)$$

$$= E \left(\arctan \left(\frac{2 \| \beta_n \|_1 \times \| \beta_n \|_\infty}{a(\delta_1, P_{n,\beta_n})^{p-1}} \frac{1}{E(\mathbb{1}_{\{F > T(\beta_n)\}}(Y_{1,n}) \mid \beta_n)} \right) \right).$$

(42)

Since, by (17) and (31), the sequence $\| \beta_n \|_1 \times (\| \beta_n \|_\infty / a(\delta_1, P_{n,\beta_n}))^{p-1}$ is bounded in probability, it only remains to prove that

$$E_n := E \left(\mathbb{1}_{\{F > T(\beta_n)\}}(Y_{1,n}) \mid \beta_n \right) \to P \ 0.$$

(43)
To prove this, fix $\epsilon > 0$ and choose M large enough so that

$$E\left(F^p I_{\{F > M\}}(Y_1, n)\right) \leq \epsilon^2,$$

for all $n \geq 1$, which is possible by (19). Next apply Markov’s inequality to E_n on the set $\{T(\beta_n) > M\}$ and then note that $P(T(\beta_n) \leq M) \rightarrow 0$ by (16) and (31). To conclude the proof, let us now consider the isolated case where (17) and (19) are removed from the set of assumptions of Theorem 2, but F is uniformly bounded, i.e., $F \leq M$ for some constant $M > 0$. Then a look at (42) immediately yields the claim, noticing that $T(\beta_n) \rightarrow P_\infty$.

5.3 Proof of Corollary 1

With (28) in mind, let us define

$$A := \left\{(x_n)_{n \geq 1}, \left|\alpha(x_1, \ldots, x_n) - P_0\right|_F \rightarrow 0\right\}.$$ (44)

The class of indicators of subsets of a countable set is universally Glivenko–Cantelli - see, e.g., [2, p. 217, Remark 6.4.3]. Therefore, since $\theta_n \rightarrow 0$, the triangle inequality entails $P^{N'}(A) = 1$. Now take an arbitrary sequence $(x_n)_{n \geq 1} \in A$. We shall apply Theorem 1 to the sequence $Post_n(x_1, \ldots, x_n)$. In this setup we have $P_{n,p} = P_n = \alpha(x_1, \ldots, x_n)$ for all $p \in \ell^1$, and

$$\beta_{i,n} := V_{i,n} \prod_{j=0}^{i-1}(1 - V_{j,n}), \quad i \in \mathbb{N}, \quad n \geq 1,$$

with $(V_{i,n})_{i \in \mathbb{N}} \sim Beta(1, M + n)^{\otimes \mathbb{N}}$. To prove (13) let us first remark that if $[[f^-, f^+]]$ is a bracket between two indicator functions fulfilling $\left|f^+ - f^-\right|_{p(x_1, \ldots, x_n), 1} \leq \epsilon$ then $\left|f^+ - f^-\right|_{\alpha(x_1, \ldots, x_n), 1} \leq \theta_n + (1 - \theta_n)\epsilon$. Moreover, since the pointwise supremum/infimum of a set of indicator functions is itself an indicator function, any covering of F by brackets can be converted into another covering with the same number of brackets, each of one between two indicator functions. Hence, since $\theta_n \rightarrow 0$, we conclude that it is sufficient to prove that $N(\epsilon, F, P_{(x_1, \ldots, x_n)})$ is a bounded sequence for fixed $\epsilon > 0$. This is done as follows: let us first choose a finite set $C_0 \subset \mathbb{X}$ such that $P_0(C_0) > 1 - \epsilon$. Then by definition of A one has $P_{(x_1, \ldots, x_n)}(C_0) > 1 - \epsilon$ for all large enough n.

$$\forall C \subset \mathbb{X}, C \cap C_0 \subset C \subset (C \cap C_0) \cup C^C.$$ (45)

Hence the the finite collection

$$\left\{[\mathbb{1}_C, \mathbb{1}_{C \cup C_0^C}], \quad C \subset C_0\right\}$$

20
defines a covering of $2^{\sharp C_0}$ brackets having $\| \cdot \|_{P(x_1,\ldots,x_n)},1$ diameters less than ϵ. This proves that $N_{\|}(\epsilon,\mathcal{F},P(x_1,\ldots,x_n)) \leq 2^{\sharp C_0}$ for all large n, and hence proves (13). Now conditions (12) and (14) are immediate since \mathcal{F} is uniformly bounded and $\| \beta_n \|_1 \equiv 1$ - see, e.g. [6, p. 112]. Finally, standard calculus on beta distributions shows that $E(\| \beta_n \|_2^2) \sim n^{-1}$, from where one can apply Theorem 1 and conclude the proof.

5.4 Proof of Corollary 2

We shall now assume without loss of generality that the support of P_0 is infinite.

5.4.1 Two preliminary results

Theorem 3 states that the finiteness of $\sum_{y \in \mathcal{X}} \sqrt{P_0(\{y\})}$ is equivalent to that of $J_{\|}(\infty,\mathcal{F},P_0)$. Our next lemma goes one step further: it shows that it is possible to control the magnitude of $J_{\|}(\delta,\mathcal{F},P_0)$, for small $\delta > 0$, by "tail" sums of the $\sqrt{P_0(\{y\})}$.

Lemma 5.5 Define, for $k \in \mathbb{N}$:

$$j_{P_0}(k) := \min \left\{ J \in \mathbb{N}, \sum_{y \in \mathcal{X}} P_0(\{y\}) \leq 4^{-j} \right\}. \quad (46)$$

Then, for all $p \geq 1$ we have, for a universal constant C_2

$$J_{\|}(2^{-(p-1)},\mathcal{F},P_0) \leq C_2 \sum_{y \in \mathcal{X}} \sqrt{P_0(\{y\})} \times \sqrt{\sum_{y : P_0(\{y\}) \leq 16^{-j} - j_{P_0}(p+1)} \sqrt{P_0(\{y\})}}.$$

Moreover if the support of P_0 is infinite we have $j_{P_0}(p) \to \infty$ as $p \to \infty$.

Proof: The very last statement is obvious. We shall now write $j(\cdot)$ instead of $j_{P_0}(\cdot)$ for concision. The proof consists in enriching the arguments of Dudley [2, p. 245-246] with additional analytical precisions. We shall hence borrow his notations. First, for $j \in \mathbb{N}$ write

$$A_j := \left\{ y \in \mathcal{X}, 16^{-j-1} < P_0(\{y\}) \leq 16^{-j} \right\}, \text{ and } r_j := \frac{1}{2} A_j.$$

Now define the following maps on \mathbb{N}

$$m(\cdot) : k \to \sum_{j=0}^{j(k)} r_j = \left\{ \bigcup_{j=0}^{j(k)} A_j \right\},$$

21
\[k(\cdot) : J \to \min \left\{ p \geq 1, \ 4^{-p} < \sum_{y: \mathcal{P}_0(\{y\}) \leq 16^{-J}} \mathcal{P}_0(\{y\}) \right\}, \]

\[\kappa(\cdot) : k \to \min \left\{ \kappa \in \mathbb{N}, \ j(\kappa) = j(k) \right\}. \]

For consistency of notations in the following calculus, we shall also define \(k(-1) := 0 \). Note that, writing \(\mathcal{K} \) for the range of \(\kappa(\cdot) \), the map \(j(\cdot) \) is one to one on \(\mathcal{K} \).

Fix \(k \geq 1 \). Similarly as in Dudley [2, p. 245-246] we see that, for fixed \(k \geq 1 \), one can use the same arguments as for (45), with the formal replacement of \(\epsilon \) by \(4^{-k} \) and \(C_0 \) by

\[C_k := \bigcup_{j=0}^{j(k)} A_j, \]

which satisfies \(\mathcal{P}_0(C_k) \geq 1 - 4^{-k} \) by (46). This implies

\[\forall k \geq 1, N_\emptyset(2^{-k}, \mathcal{F}, \| \cdot \|_{\mathcal{P}_0,2}) \leq 2^{m(k)}. \quad (47) \]

Now, for any \(p \geq 1 \), by monotonicity of the involved functions:

\[J_\emptyset(2^{-(p-1)}, \mathcal{F}, \mathcal{P}_0) \leq \sum_{k \geq p} \sqrt{\log N_\emptyset(2^{-k}, \mathcal{F}, \| \cdot \|_{\mathcal{P}_0,2})} (2^{-(k-1)} - 2^{-k}) \]

\[\leq \sqrt{\log(2)} \sum_{k \geq p} \frac{\sqrt{m(k)}}{2^k} \quad \text{by (47)}. \]

Next, fix \(p \geq 1 \) and write

\[\sum_{k \geq p} \frac{\sqrt{m(k)}}{2^k} \leq \sum_{k \geq p} \sum_{j=0}^{j(k)} \sqrt{r_j} 2^{-k} \]

\[\leq \sum_{k \geq p} \sum_{j=0}^{j(k)} \sqrt{\sum_{y \in A_j} \mathcal{P}_0(\{y\})} 2^{j-k}, \quad \text{since } r_j \leq \sum_{y \in A_j} 4^{j+1} \sqrt{\mathcal{P}_0(\{y\})} \]

\[= 2 \sum_{j \geq 0} \sqrt{\mathcal{P}_0(\{y\})} \sum_{k: k \geq p, \ j(k) \geq j} 2^{j-k} \]

\[\leq 2 \sqrt{\sum_{j \geq 0} \sum_{y \in A_j} \mathcal{P}_0(\{y\})} \times \left(\sum_{j \geq 0} \left(\sum_{k: k \geq p, \ j(k) \geq j} 2^{j-k} \right)^2 \right), \quad \text{using Cauchy–Schwartz} \]

\[= 2 \left(\sum_{y \in \mathcal{X}} \mathcal{P}_0(\{y\}) \right) \times \left(\sum_{j \geq 0} \left(\sum_{k: k \geq p, \ j(k) \geq j} 2^{j-k} \right)^2 \right). \]

22
Now we have
\[
\sum_{j \geq 0} \left(\sum_{k : k \geq p, j(k) \geq j} 2^{j-k} \right)^2 \\
\leq 4 \sum_{j \geq 0} 4^{j-k(j-1)} \land 4^{j-p}, \text{ since } j(k) \geq j \text{ implies } k \geq k(j-1) \\
= 4 \sum_{k \geq 0} \sum_{j : j(k-1) \leq j-1 < j(k)} 4^{j-k} \land 4^{j-p}, \text{ since } k(j) = k \text{ for } j(k-1) \leq j < j(k) \\
= 4 \sum_{k \leq p} \sum_{j : j(k-1) \leq j-1 < j(k)} 4^{j-p} + 4 \sum_{k \geq p+1} \sum_{j : j(k-1) \leq j-1 < j(k)} 4^{j-k} \\
\leq 8 \left[4^{j(p)-p} + \sum_{k \geq p+1} 4^{j(k)-k} \right] \\
= 8 \sum_{k \geq p} 4^{j(k)-k} \\
\leq 8 \sum_{k \geq p} 4^{j(k)-k+\kappa(k)} \times \sum_{\ell : P_0(\{\ell\}) \leq 16^{- j(k)+1}} P_0(\{\ell\}), \text{ by } (46) \text{ and since } j(k) = j(\kappa(k)) \\
= 8 \sum_{k \geq p} 4^{j(k)-k+\kappa(k)} \times \sum_{j \geq j(k)-1} \sum_{\ell \in A_j} P_0(\{\ell\}) \\
\leq 8 \sum_{j \geq 0} \left(\sum_{y \in A_j} P_0(\{y\}) \right) \left(\sum_{k : k \geq p, j(k)-1 \leq j} 4^{j(k)-k+\kappa(k)} \right).
\]

Now notice that, when \(j(p) > j + 1 \) the set of indices \(\{k \geq p, j(k) - 1 \leq j\} \) is empty, from where

\[
\sum_{j \geq 0} \left(\sum_{y \in A_j} P_0(\{y\}) \right) \left(\sum_{k : k \geq p, j(k)-1 \leq j} 4^{j(k)-k+\kappa(k)} \right) \\
\leq \sum_{j \geq j(p)-1} \left(\sum_{y \in A_j} P_0(\{y\}) \right) \left(\sum_{k : j(k)-1 \leq j} 4^{j(k)+\kappa(k)-k} \right) \\
\leq \sum_{j \geq j(p)-1} \left(\sum_{y \in A_j} P_0(\{y\}) \right) \left(\sum_{k' \in K, j(k') \leq j+1} 4^{j(k') + k'} \sum_{k : \kappa(k) = k'} 4^{-k} \right) \\
\leq 4 \sum_{j \geq j(p)-1} \left(\sum_{y \in A_j} P_0(\{y\}) \right) \left(\sum_{k' \in K, j(k') \leq j+1} 4^{j(k')} \right), \text{ since } \kappa(k) = k' \text{ implies } k \geq k' \\
\leq 32 \sum_{j \geq j(p)-1} \sum_{y \in A_j} P_0(\{y\}) 4^j, \text{ since } \kappa(\cdot) \text{ is one to one on } K.
\]
\[
\leq 32 \sum_{j \geq \lceil \log p \rceil - 1} \sum_{y \in A_j} \sqrt{P_0(\{y\})}, \text{ since } y \in A_j \implies P_0(\{y\}) \leq \sqrt{P_0(\{y\})}
\]
\[
= 32 \sum_{y \cdot P_0(\{y\}) \leq 16^{-\lceil \log p \rceil + 1}} \sqrt{P_0(\{y\})}.
\]

This concludes the proof. □

Our second preliminary result is as follows.

Lemma 5.6 Write

\[I_\epsilon := \{ y \in X, \ P_0(\{y\}) \leq \epsilon \}, \epsilon \in \mathbb{Q}^+ \]

Then for \(P_0^{\otimes N}\)-almost any sequence \((x_n)_{n \geq 1} \) we have:

\[
\forall \epsilon \in \mathbb{Q}^+, \lim_{n \to \infty} \sum_{y \in I_\epsilon} \sqrt{P(x_1, \ldots, x_n)(\{y\})} = \sum_{y \in I_\epsilon} \sqrt{P_0(\{y\})}. \quad (48)
\]

Proof: Since the class \(\mathcal{F} \) is \(P_0 \)-Donsker and admits a square integrable envelope \((\mathcal{F} \equiv 1) \), the conditional multiplier Donsker theorem applies for a suitable i.i.d. standard normal sequence \((\xi_n)_{n \geq 1} \) - see, e.g., [12, p. 183, Theorem 2.9.7]. Hence for \(P_0^{\otimes N}\)-almost every sequence \((x_n)_{n \geq 1} \) we have - recalling that \(W_{P_0} \) stands for the \(L^2(P_0) \)-isonormal Gaussian process indexed by \(\mathcal{F} \):

\[
\left(W_{(x_1, \ldots, x_n)}(f) \right)_{f \in \mathcal{F}} \to \mathcal{L} \left(W_{P_0}(f) \right)_{f \in \mathcal{F}}, \quad \text{where}
\]

\[
W_{(x_1, \ldots, x_n)}(f) := \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \xi_i f(x_i), \quad f \in \mathcal{F}.
\]

Here the weak convergence holds in the sense of Hoffman-Jörgensen holds taking the underlying probability space as the canonical product space for \((\xi_n)_{n \geq 1} \). Moreover the involved processes are Gaussian, hence weak convergence implies convergence of first moments of absolute suprema. As a consequence, for such a sequence \((x_n)_{n \geq 1} \) fulfilling \((19) \) we have, for all \(\epsilon \in \mathbb{Q}^+ \)

\[
\mathbb{E} \left(2 \sup_{A \subset I_\epsilon} \frac{1}{\sqrt{n}} \left| \sum_{i=1}^{n} \xi_i \mathbb{1}_A(x_i) \right| - \frac{1}{\sqrt{n}} \left| \sum_{i=1}^{n} \xi_i \mathbb{1}_{I_\epsilon}(x_i) \right| \right) \to \mathbb{E} \left(2 \sup_{A \subset I_\epsilon} \left| W_{P_0}(\mathbb{1}_A) \right| - \left| W_{P_0}(\mathbb{1}_{I_\epsilon}) \right| \right).
\]

Finally, by the standard equality

\[
\sup_{A \subset I_\epsilon} \left| \sum_{y \in A} g(y) \right| = \frac{1}{2} \left(\sum_{y \in I_\epsilon} \left| g(y) \right| + \left| \sum_{y \in I_\epsilon} g(y) \right| \right).
\]
we have (with \(g(y) := n^{-1/2} \sum_{i=1}^{n} \xi_i \mathbb{1}_{\{y\}}(x_i) \))

\[
E \left(2 \sup_{A \subset I} \sqrt{n} \sum_{i=1}^{n} \xi_i \mathbb{1}_{A}(x_i) \right) = E \left(\sum_{y \in I} \sqrt{P_{(x_1, \ldots, x_n)}(\{y\})} \right)
\]

and similarly (with now \(g(y) := W_{P_0}(\mathbb{1}_{\{y\}}) \))

\[
E \left(2 \sup_{A \subset I} |W_{P_0}(\mathbb{1}_{A})| - |W_{P_0}(\mathbb{1}_{I_A})| \right) = \sum_{y \in I} \sqrt{P_0(\{y\})}
\]

which concludes the proof. □

5.4.2 Use of Theorem 2

Recall that \(A \) was defined in (44) and has probability one. Let us consider the set

\[
B := \left\{ (x_n)_{n \geq 1}, \forall \epsilon \in \mathbb{Q}^+, \lim_{n \to \infty} \sum_{y: \alpha_{(x_1, \ldots, x_n)}(\{y\}) \leq \epsilon} \sqrt{\alpha_{(x_1, \ldots, x_n)}(\{y\})} \leq \sum_{y \in I_2} \sqrt{P_0(\{y\})} \right\}.
\]

We have, for any \(n \geq 1 \) and \(\epsilon \in \mathbb{Q}^+ \) (using \(\sqrt{a+b} \leq \sqrt{a} + \sqrt{b} \))

\[
\sum_{y: \alpha_{(x_1, \ldots, x_n)}(\{y\}) \leq \epsilon} \sqrt{\alpha_{(x_1, \ldots, x_n)}(\{y\})} \leq \sqrt{\theta_n} \sum_{y: \alpha_{(x_1, \ldots, x_n)}(\{y\}) \leq \epsilon} \sqrt{\alpha(\{y\})} + \sqrt{1 - \theta_n} \sum_{y: \alpha_{(x_1, \ldots, x_n)}(\{y\}) \leq \epsilon} \sqrt{P_{(x_1, \ldots, x_n)}(\{y\})}.
\]

Now if \((x_n)_{n \geq 1}\) belongs to \(A \) and since \(\mathcal{F} \) induces the total variation distance we have, for all \(n \) large enough

\[
\{ y \in X, \alpha_{(x_1, \ldots, x_n)}(\{y\}) \leq \epsilon \} \subset \{ y \in X, P_0(\{y\}) \leq 2\epsilon \} = I_{2\epsilon}.
\]

We hence conclude that \(P_0^n(A \cap B) = 1 \) - recalling that \(\theta_n \to 0 \) and \((DDB(\alpha)) \) holds. Let us now consider a sequence \((x_n)_{n \geq 1} \in A \cap B \). Similarly as in §5.3 we shall prove Corollary 2 by verifying all the assumptions of Theorem 2 for the
choice of $P_n, p = P_{n} := P(x_1, \ldots, x_n)$. Because the class \mathcal{F} is uniformly bounded by 1, the conditions upon

$$\beta_{i,n} := \sqrt{n}V_{i,n} \prod_{j=0}^{i-1}(1 - V_{j,n}), \; i \in \mathbb{N},$$

that we need to check are (15) and (16), or equivalently

$$\| \beta_n \|_2 \to P_1,$$

and

$$\| \beta_n \|_4 \to P_0.$$

These are respectively proved by direct computations of expectations and variances. It now remains to verify (18) and (20). By definition of A and since $\theta_n \to 0$, the sequence P_n obviously fulfills (22) and therefore satisfies (20). Now in view of Lemma 5.5, assertion (18) will be proved if we show that

$$\lim_{p \to \infty} \lim_{n \to \infty} \sum_{y'} \alpha(x_1, \ldots, x_n)(\{y\}) \leq 16^{-j}P_n(p) + 1.$$

\begin{equation}
(50)
\end{equation}

Lemma 5.7 Take $(x_n)_{n \geq 1} \in A$. For any $p \geq 1$ we have $j_P_n(p) \geq j_P_0(p)$ for all large enough n.

Proof: Fix $p \geq 1$. By definition of j_P_0 we have

$$\sum_{y : P_0(\{y\}) \leq 16^{-j_P_0(p)+1}} P_0(\{y\}) > 4^{-p}. $$

Now since $(x_n)_{n \geq 1} \in A$, we have, for all n large enough:

$$\sum_{y : P_0(\{y\}) \leq 16^{-j_P_0(p)+1}} P_n(\{y\}) > 4^{-p}, $$

whence $j_P_0(p) - 1 \leq j_P_n(p) - 1$ by definition of j_P_n. □

Now applying Lemma 5.7 we have, writing $\epsilon(p) := 16^{-j_P_0(p)+1}$:

$$\lim_{p \to \infty} \lim_{n \to \infty} \sum_{y : \alpha(x_1, \ldots, x_n)(\{y\}) \leq 16^{-j_P_n(p)+1}} \sqrt{P_n(\{y\})}$$

$$\leq \lim_{p \to \infty} \lim_{n \to \infty} \sum_{y : \alpha(x_1, \ldots, x_n)(\{y\}) \leq \epsilon(p)} \sqrt{P_n(\{y\})}$$

$$\leq \lim_{p \to \infty} \lim_{n \to \infty} \sum_{y \in I_{2p}} \sqrt{P_0(\{y\})}, $$

since $(x_n)_{n \geq 1} \in B$.
by \((DDB(\mathbf{P}_0))\) together with \(\lim j_{\mathbf{P}_0}(p) \to \infty\). This proves \((50)\) and we can now apply Theorem 2 to obtain
\[
d_{BL}\left(\sqrt{n}\left(\text{Post}_n(x_1, \ldots, x_n) - \alpha_{(x_1, \ldots, x_n)}\right), g_{\alpha_{(x_1, \ldots, x_n)}}\right) \to 0.
\]
But since \((x_n)_{n \geq 1} \in A\) the sequence \(\mathbf{P}_n := \alpha_{(x_1, \ldots, x_n)}\) satisfies \((22)\) from where (see [13, Remark 2.2]):
\[
g_{\alpha_{(x_1, \ldots, x_n)}} \to_{\mathcal{L}} g_{\mathbf{P}_0}, \text{ in } \ell^{\infty}(\mathcal{F}),
\]
which concludes the proof of Corollary 2. □

5.5 Proof of Corollary 3

Recall that \(\mathbf{P}_0\) denotes here the uniform distribution on \(S\) and that \(\mathbf{P}_n\) has been defined in \((26)\). Let \(\mathcal{V}\) be a neighborhood of \(z\) on which \(Z_1\) admits the density \(f\). Since \(S\) is bounded and \(h_n \to 0\) we have \(z + h_n S \subset \mathcal{V}\) for \(n\) large enough. We may assume without loss of generality that this is the case for all \(n \geq 1\).

Lemma 5.8 We have (taking here the convention \(0/0 = 0\))
\[
\left(\sum_{i=1}^{n} \frac{b_{i,n}}{\sqrt{\sum_{i=1}^{n} b_{i,n}^2}} \left(f(Y_{i,n}) - \mathbf{P}_n(f)\right)\right)_{f \in \mathcal{F}} \to_{\mathcal{L}} g_{\mathbf{P}_0},
\]
where \(g_{\mathbf{P}_0}\) denotes the \(\mathbf{P}_0\) Brownian bridge.

Proof: Write
\[
\beta_{i,n} := \frac{b_{i,n}}{\sqrt{\sum_{i=1}^{n} b_{i,n}^2}}, \text{ for } i = 1, \ldots, n.
\]
Since \(f\) is continuous at \(z\) we have
\[
a_n \sim \lambda(S)f(z)h_n^d, \text{ from where } na_n \to \infty \text{ and } a_n \to 0.
\]
This property ensures that the sequence \(\beta_{n}\) satisfies \((15)\), \((16)\) and \((17)\) of Theorem 2 - taking \(p := 2\) and recalling that \(b_{i,n} \equiv b_{i,n}^2\). In order to verify \((18)\) and \((31)\) we will now prove \((23)\), noting here that \(\mathbf{P}_{n,p} := \mathbf{P}_n\) for all \(p \in \ell^{1,+}\). The usual

27
change of variable $u = h_n^{-1}(v - z)$ in the next integrals gives, for an arbitrary non-negative function g with support included in S

$$P_n(g) = \frac{1}{a_n} \int_{z+h_nS} g(h_n^{-1}(v - z)) f(v) dv$$

$$= \frac{h_n^d}{a_n} \int_S g(u) f(z + h_n u) du$$

$$\leq \sup_{u \in S} f(z + h_n u) \int_S g(u) du$$

$$= \sup_{u \in S} f(z + h_n u) \frac{h_n^d}{a_n} \lambda(S) P_0(g).$$

This proves (23) by applying that inequality to elements of the form $(f_1 - f_2)^2$, $(f_1, f_2) \in F^2$ and recalling (51) together with the continuity of f at z. This also proves (19), taking $g := F^2 1_{\{F > M\}}$. Let us now verify (20) by proving (22). Using a calculus similar as above we have, for an arbitrary function $g \prec (2F)^2 \lor (2F)$

$$f(z) \lambda(S) \left| P_n(g) - P_0(g) \right|$$

$$= \left| f(z) \lambda(S) h_n^d \int_S g(u) f(z + h_n u) du - \int_S g(u) f(z) du \right|$$

$$\leq \frac{f(z) \lambda(S) h_n^d}{a_n} \times \left| \int_S g(u) f(z + h_n u) du - f(z) \int_S g(u) du \right|$$

$$+ \left| \frac{f(z) \lambda(S) h_n^d}{a_n} - 1 \right| \times f(z) \int_S |g(u)| du$$

$$\leq \frac{f(z) \lambda(S) h_n^d}{a_n} \times \sup_{v \in S} \left| f(z + h_n v) - f(z) \right| \times \int_S (2F)^2 \lor (2F) du$$

$$+ \left| \frac{f(z) \lambda(S) h_n^d}{a_n} - 1 \right| \times f(z) \int_S (2F)^2 \lor (2F) du,$$

which tends to zero independently of $g \prec (2F)^2 \lor (2F)$. This proves (22) and concludes the proof of Lemma 5.8.

Let us now continue the proof of Corollary 3. First, note that we have

$$\sum_{i=1}^n b_{i,n}^2 \sim \lambda(S)f(z)n h_n^d$$ in probability, from where

$$\left(\frac{1}{\sqrt{f(z)\lambda(S)n h_n^d}} \sum_{i=1}^n \beta_{i,n} \left(f(Y_{i,n}) - \mathbb{E} \left(f(Y_{i,n}) \right) \right) \right)_{f \in F} \rightarrow_{P} \mathbb{G}_{P_0},$$

(54)
and hence that sequence of processes is asymptotically tight (see, e.g., [12 p. 20, Definition 1.3.7]). Now elementary probability calculus shows that
\[
\sum_{i=1}^{n} (b_{i,n} - a_{n}) / \sqrt{f(z) \lambda(S) n h_n^2} \to L Z, \tag{55}
\]
where \(Z \) is standard normal. Moreover, since \(P_n \) satisfies (22) and since \(f \to P_0(f) \) is continuous with respect to \(|| \cdot ||_{P_0,2} \), which makes \(F \) totally bounded, the (deterministic) sequence \(P_n(\cdot) \) is relatively compact in \(\ell^\infty(F) \). This, combined with (55), implies that the sequence \(R_n(\cdot) \) - defined in (27) - is asymptotically tight, and hence so is \(T_{n,h_n}(\cdot) \) by summation. It will hence be proved to converge to \(W_{P_0} \) if we prove finite marginal convergences. This is done by elementary analysis of characteristic functions, using the change of variable \(u = h_n^{-1}(v-z) \) in the integrals. We omit details. □

6 Appendix: a minor proof

In this section we prove the measurability properties claimed in §3.

Lemma 6.1 For fixed \(r \geq 1 \) and \(n \geq 1 \), the map \((\epsilon, p) \to N\left(\epsilon, F, || \cdot ||_{P_n, r}\right)\) is Borel from \(]0, \infty[\times \ell^1 \) to \(\mathbb{R}^+ \). As a consequence, the maps \(p \to J\left(\delta, F, P_n, p\right), \ \delta > 0, \) are Borel.

Proof: Fix \(r \geq 1 \) and \(n \geq 1 \). Any bracket is closed for the the pointwise topology, i.e., the topology spanned by the evaluation maps \(\{ f \to f(y), \ y \in X \} \). Hence so is any finite union of brackets that covers \(F_0 \). Since \(F \) is included in the closure of \(F_0 \) for the pointwise topology, we deduce that
\[
\forall (\epsilon, p) \in]0, \infty[\times \ell^1, \ N\left(\epsilon, F, || \cdot ||_{P_n, r}\right) = N\left(\epsilon, F_0, || \cdot ||_{P_n, r}\right). \tag{56}
\]
Now the proof of Lemma 6.1 boils down to proving the measurability of
\[
H : (\epsilon, p) \to N\left(\epsilon, F_0, || \cdot ||_{P_n, r}\right).
\]
This is done by noting that, for any \(K \in \mathbb{N} \), the set
\[
B_K := \{(f_{j}^-, f_{j}^+)_{j=1}^{K} \in (F_0^2)^K, \ F_0 \subset \bigcup_{j=1}^{K}[f_{j}^-, f_{j}^+]\}
\]
is countable, and that
\[H(\epsilon, p) > K \iff \forall (f_{j}^{-}, f_{j}^{+})_{j=1,\ldots,K} \in B_{K}, \exists j \in \{1,\ldots,K\}, \| f_{j}^{+} - f_{j}^{-} \|_{P_{n,p},r} > \epsilon, \]
which yields the claimed result, since for fixed Borel non negative \(g \), the map \(p \rightarrow \| g \|_{P_{n,p},r} \) is Borel (recall that \(\{ P_{n,p}, p \in \ell^{1} \} \) is regular). \(\square \)

References

[1] N. T. Andersen, E. Giné, M. Ossiander, and J. Zinn. The central limit theorem and the law of iterated logarithm for empirical processes under local conditions. *Probab. Theory Related Fields*, 77(2):271–305, 1988.

[2] R.M. Dudley. *Uniform Central Limit Theorems*. Cambridge Univ. Press, 1999.

[3] U. Einmahl and D.M. Mason. Gaussian approximation of local empirical processes indexed by functions. *Probab. Theory Related Fields*, 107(3):283–311, 1997.

[4] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. *Ann. statist.*, 1(2):209–230, 1973.

[5] X. Fernique. Sur la convergence étroite des mesures Gaussiennes. *Z. Wahrsch. Verw. Gebiete*, 68:331–336, 1985.

[6] N.L. Hjort, C. Holmes, P. Müller, and S.G. Walker. *Bayesian nonparametrics*, volume 28. Cambridge University Press, 2010.

[7] Olav Kallenberg. *Foundations of modern probability*. Springer Science & Business Media, 2006.

[8] M. Ossiander. A central limit theorem under metric entropy with l2 bracketing. *Ann. Probab.*, 15(3):897–919, 1987.

[9] J. Sethuraman. A constructive definition of Dirichlet measures. *Statist. Sinica*, 4:639–650, 1994.

[10] A. Sheehy and Jon A Wellner. Uniform Donsker classes of functions. *Ann. Probab.*, 20(4):1983–2030, 1992.

[11] A.W. Van der Vaart. *Asymptotic Statistics*. Cambridge University Press, 1998.

[12] A.W. Van der Vaart and J.A. Wellner. *Weak Convergence and Empirical Processes*. Springer, New-York, 1996.
[13] D. Varron. Donsker and Glivenko-Cantelli theorems for a class of processes generalizing the empirical process. *Electron. J. Stat.*, 8:2301–2325, 2014.