Universality of the turbulent magnetic field in hypermassive neutron stars produced by binary mergers

Ricard Aguilera-Miret1,2,3, Daniele Vigano4,3,2, Carlos Palenzuela1,2,3

1Departament de Física, Universitat de les Illes Balears, Baleares E-07122, Spain
2Institute of Applied Community and Community Code (IAC3), Universitat de les Illes Balears, Palma de Mallorca, Baleares E-07122, Spain
3Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
4Institute of Space Sciences (IEEC-CSIC), 08193 Barcelona, Spain

The detection of a binary neutron star merger in 2017 through both gravitational waves and electromagnetic emission opened a new era of multimessenger astronomy. The understanding of the magnetic field amplification triggered by the Kelvin-Helmholtz instability during the merger is still a numerically unresolved problem because of the relevant small scales involved. One of the uncertainties comes from the simplifications usually assumed in the initial magnetic topology of merging neutron stars. We perform high-resolution, convergent large-eddy simulations of binary neutron star mergers, following the newly formed remnant for up to 30 milliseconds. Here we specifically focus on the comparison between simulations with different initial magnetic configurations, going beyond the widespread-used aligned dipole confined within each star. The results obtained show that the initial topology is quickly forgotten, in a timescale of few milliseconds after the merger. Moreover, at the end of the simulations, the average intensity ($B \sim 10^{16} \text{ G}$) and the spectral distribution of magnetic energy over spatial scales barely depend on the initial configuration. This is expected due to the small-scale efficient dynamo involved, and thus it holds as long as: (i) the initial large-scale magnetic field is not unrealistically high (as often imposed in mergers studies); (ii) the turbulent instability is numerically (at least partially) resolved, so that the amplified magnetic energy is distributed across a wide range of scales and becomes orders-of-magnitude larger than the initial one.

I. INTRODUCTION

The GW170817 event$^{[1,2]}$ was arguably one of the most important astrophysical findings of the last decade for several reasons. First, it demonstrated that binary neutron star (BNS) mergers can produce strong gravitational wave (GW) signals and power bright electromagnetic emissions on a broad range of the spectrum$^{[3-11]}$. Second, the comparison of theoretical models with the observations allowed to narrow some of the physical properties of neutron stars (NSs) such as their radius, maximum mass, tidal deformability and equation of state (EoS) (see, e.g.,$^{[12-14]}$). In addition, it also served to measure the GW speed with unprecedented precision, setting strong constraints in many alternative theories of gravity (see, e.g.,$^{[15,16]}$).

Although the dynamics of BNS mergers is fairly well understood (e.g.,$^{[17]}$), there are still many open questions regarding the details of the physical processes taking place during and after the merger. Here we focus in one of them, namely the amplification and large-scale reorganization of the magnetic field, which is thought to be necessary in order to launch a magnetically dominated jet associated to the short gamma-ray burst (SGRB) (see e.g.,$^{[18,19]}$). Although the BNS merger and post-merger evolution of the remnant has been extensively studied through general-relativistic magnetohydrodynamics (GRMHD) simulations$^{[20,31]}$, the problem is not fully resolved yet. The impossibility of capturing the small (but dynamically important) scales induced by the MHD instabilities at play, possibly combined with other instabilities, obscures a definite answer on what is the topology and intensity of the magnetic field in the remnant, when the turbulent amplification approaches saturation. Moreover, these strong magnetic fields are thought to enhance the angular momentum transport (see e.g. $^{[17]}$ and references therein), a key factor in the fate of the remnant. In presence of large-scale magnetic fields, the formation of the jet can be favored, and the amount mass ejecta could also change, compared to a non-magnetized remnant. Moreover, the presence of a jet or magnetically driven winds also depends on the field topology.

Different GRMHD simulations have attempted to resolve all the relevant scales of the problem. The highest-resolution simulations so far$^{[27]}$ showed that the average magnetic field of the remnant can be amplified from 10^{13} G to 10^{16} G during the first milliseconds after the merger. Unfortunately, even the very fine spatial grid size used there (i.e. $\Delta \sim 12$ m) is still much larger than the estimated wavelength of the fastest-growing unstable modes of the Kelvin-Helmholtz instability (KHI); insufficient to well capture the small, highly dynamical scales and the magnetic field amplification at this stage. As a result, the saturation level of the magnetic field intensity was not converging to any clear value.

Nowadays (and arguably in the foreseeable future) it is not possible to perform direct numerical simulations of this scenario, since the range of the relevant scales (from hundreds/thousands km of the domain to the sub-meter shear layer thickness) makes the computational cost unfeasible, even employing the most efficient numerical and parallelization methods currently available. In order to overcome this limitation, different strategies have been implemented to reproduce the under-resolved amplified
small-scale magnetic field. A commonly used one is to impose a purely poloidal magnetic field, with unrealistically large strengths $\sim 10^{14-16} \text{G}$, either before or after the merger (e.g., [26, 31]). This choice is hardly comparable to the real effects of the dynamo operating at small scales, for which purely large-scale ordered field is not an expected outcome.

Other alternatives involve the use of large-eddy simulations (LES), which consist on including extra terms in the discretized version of the evolution equations to account for the unresolved sub-grid scale (SGS) dynamics (see e.g. [32]). The main idea of the LES is to reproduce the imprints of the sub-grid dynamics on the large-scale (numerically resolved) fields, thus providing a magnetic field growth with a realistic topology and spectrum. Following this line, we have recently extended and implemented the so-called gradient SGS model used in non-relativistic fluid dynamics [33, 34] to the non-relativistic [35], special [36] and general relativistic [37] MHD with excellent results on capturing the small scale effects of turbulent flow. We have performed LES of BNS coalescence [38], and found that the average magnetic field in the remnant is amplified with much less computational resources than the higher-resolution simulations leading to comparable results. In an accompanying paper [39], we show that high-resolution LES provide an amplification of the average magnetic field from 10^{11}G to 10^{16}G. More importantly, for the first time the magnetic field strength and its energy spectral distribution are converging to the same saturated level.

The work shown in this letter, which uses the same techniques as in [39], focuses on the role of the initial topology and intensity of the magnetic field in the post-merger remnant. Most (if not all) simulations of magnetized BNS mergers up to date start with mainly dipolar magnetic fields, often confined in each star, for simplicity. However, magnetic topologies are expected to be much richer, with relevant contributions from small scales and from the magnetospheric currents. This holds throughout a neutron star’s life: at birth after the core-collapse supernova [10], for middle (Myr) ages (as shown by NICER studies of old millisecond pulsars [41]) and for late (Gyr) ages similar to what merging NSs should have (as shown by [50]). The key question we want to address here is the following: how the choice of the pre-merger configuration affect the final magnetic field of the remnant? The results presented in this letter indicate that the memory of the initial magnetic field configuration is lost during the amplification phase induced by the small-scale dynamo. For all the initial topologies considered, the bulk of the remnant (i.e., the regions with $\rho \geq 10^{13} \text{g cm}^{-3}$) is endowed with a very similar isotropic, turbulent-like configuration with an average magnetic field of approximately 10^{16}G.

The paper is organized as follows: the evolution equations and the numerical setup are described briefly in §II. The results of the simulations are presented and analysed in §III. Conclusions are drawn in §IV.

II. INITIAL MODELS

Both the Einstein and the full set of filtered GRMHD evolution equations, including all the gradient SGS terms, can be found in [37, 38]. Following those works, we include only the SGS term (i.e., τ_M^{ki}) appearing on the induction equation, that in a flat spacetime can be written as

$$\partial_t B^i + \partial_k [B^j v^k - B^k v^j - \tau_M^{ki}] = 0 , \quad \tau_M^{ki} = -\frac{\Delta v^2}{24} C_M H_M^{ki}$$

where the explicit expressions for the tensor H_M^{ki} in terms of field gradients can be found in [38]. As we found in that study, the value $C_M = 8$ reproduces the magnetic field amplification more accurately for our numerical schemes, and we will set the same value for all our simulations in this work. Note that less dissipative numerical schemes, or higher resolution simulations, would require smaller values of C_M closer to the theoretical expectation $C_M \approx 1$.

As in our previous works, we use the code MHDuet, generated by the platform SIMFLOWNY [45–47] and based on the SAMRAI infrastructure [48, 49]. MHDuet employs at least fourth-order-accurate operators to discretize both the spatial and time derivatives, with high-resolution shock-capturing method for the fluid based on the Lax-Friedrich flux splitting formula [50] and the fifth-order reconstruction method MP5 [51]. A complete assessment of the implemented numerical methods can be found in [52]. We employ the same hybrid EoS as in [39] for the evolution, with a cold contribution given by a tabulated polytrope fit to the APR4 zero-temperature EoS [43], and thermal effects modeled by the ideal gas EoS with adiabatic index $\Gamma_{th} = 1.8$.

The conversion from the conserved fields to the primitive ones is performed by using the robust procedure given in [54]. To minimize further failures in the very tenuous regions outside the star, we impose a minimum density of $6.2 \times 10^5 \text{g cm}^{-3}$, with the regions having such values referred hereafter as atmosphere. Moreover, we apply the SGS terms only in regions where the density is higher than $6.2 \times 10^{13} \text{g cm}^{-3}$ in order to avoid spurious effects near the stellar surface. Since the remnant’s maximum density is above 10^{15}g cm^{-3}, the SGS model is applied only in the most dense regions of the star.

The initial data is created with the LORENE package [55], using the same tabulated polytrope EoS described above. We consider an equal-mass BNS in quasi-circular orbit with an irrotational configuration. The total mass of the system is $M = 2.7 M_\odot$, and the initial separation is 45km, corresponding to an initial angular frequency of 1775 rad s$^{-1}$.

The binary is solved in a cubic domain of side $[-1204, 1204] \text{km}$. The inspiral is fully covered by 7 Fixed
Mesh Refinement (FMR) levels, each being a cube doubling the resolution of the previous one, and one Adaptive Mesh Refinement (AMR) level, achieving a maximum resolution of 60 m in a domain covering at least the bulk of the remnant.

For each star, we consider a commonly-used initial axially-symmetric magnetic field, confined in the region where the fluid pressure P is larger than a value P_{cut}, set to 100 times the atmospheric pressure. The azimuthal (ϕ) component of the vector potential has a radial dependence $A_\phi \propto r^2(P - P_{cut})$, where r is the distance from the center of the star. We have considered four initial configurations that differ among themselves in the intensity and the co-latitude (θ) dependence of the magnetic field, as follows (see also Table I):

- **Aligned Dipole-like (Dip):** A very ordered (large scale) poloidal field $A_\phi = A_0 r^2 \sin^2 \theta(P - P_{cut})$, similar to a dipole (which would go $\propto \sin \theta$), with the magnetic moment aligned to the orbital axis, and a normalization value A_0 such that the maximum intensity (at the centre) is 10^{12} G, orders
of magnitude lower than the large initial fields of other simulations (e.g., [23, 26–30]).

- Highly magnetized (BHigh): The same as the above Dip model, except that the intensity is 1000 times larger, reaching a maximum of \(10^{15}\) G.

- Misaligned dipole (Misal): The same as the Dip model, except that the magnetic moment is orthogonal to the orbital axis.

- Multipole (Mult): A more complex topology containing high multi-polar structures, with \(A_\phi \propto r^2 \sin^6 \theta (1 + \cos \theta) (P - P_{cut})\), with the same maximum intensity as Dip.

Case	Max \(B\) (G)	Orbit-magnetic misalignment (degrees)	Meridional topology
Dip	\(10^{14}\)	0	Dipole-like
BHigh	\(10^{15}\)	0	Dipole-like
Misal	\(10^{12}\)	90	Dipole-like
Mult	\(10^{12}\)	0	Multipole

TABLE I. Configuration of the simulations. We indicate the initial values of the maximum intensity of the magnetic field, the angular misalignment between the orbital and magnetic field axes, and the initial topology of the magnetic field. Cells remarked in grey correspond to the differences with respect to the reference model Dip.

III. RESULTS

Our initial binary system evolves for 5 orbits before merging. The merger produces a differentially rotating remnant that relaxes to an hypermassive-neutron star (HMNS) in a few milliseconds. Before the merger occurs (hereafter, \(t = 0\)), we set a magnetic field topology on each star corresponding to one of the cases described before. Therefore, we have then considered four different simulations, as summarized in Table I.

Fig. 1 displays some snapshots, in the orbital plane \(z = 0\), of the Dip, BHigh, Misal and Mult simulations (from top to bottom) at \(t = \{2, 5, 10, 20\}\) ms (from left to right) after the merger. The orange scale represents the intensity of the magnetic field, while the two black thin lines are mass density contours corresponding to \(\rho = 10^{14}\) g cm\(^{-3}\) (inner line) and \(10^{13}\) g cm\(^{-3}\) (outer line). The shape of the remnant varies at the initial times, but clearly restructures itself at later ones, approaching an almost axisymmetric structure. There we can also see the KHI appearing at the merging layers, amplifying local values of MF up to a maximum of \(10^{17}\) G. Thus, MF changes from fully turbulent to partially ordered at \(~ 20\) ms after the merger, where we can see the systematic formation of azimuthal/spiraling filaments. This is due to the winding that from now on rule the rising of the magnetic field (see [39] for an in-depth discussion about the mechanisms contributing to the amplification).

In Fig. 2 we represent the evolution of the volume-integrated thermal energy (top, solid line), kinetic rotational (top, dashed line) and magnetic energy (bottom) for the four models. We can see the energies of all cases rise soon after merger, at the expense of the large gravitational energy available. For all cases, the thermal energy still rises monotonically after the merger while the rotational one is losing energy, becoming all remnants objects
with higher temperature but rotating more slowly. We obtain comparable values between all cases at 30 ms after the merger for the rotational energy. For the thermal one, differences are around a factor of ~ 1.2 between BHigh and Mult at the same time.

After about 5 milliseconds, the magnetic energy growth saturates, with a maximum factor difference of ~ 3 between Dip and Misal. The KHI that appears during the merger between the two stars, possibly combined with the Rayleigh-Taylor instability near the surface, is the responsible of the amplification of the magnetic energy, which for all cases (except by the BHigh) increases 10 orders of magnitude, from 10^{40} erg to 10^{50} erg. For the BHigh case, the initially large value implies a smaller amplification by 4 orders of magnitude from 10^{46} erg to a similar value of 10^{50} erg. Overall, differences in energies lie within a factor ~ 3, much less than both the orders-of-magnitude differences in the initial magnetic energy and across the evolution.

Fig. 5 shows the intensity of the poloidal (solid lines) and toroidal (dashed lines) components of the magnetic field, as a function of time, averaged in the bulk of the remnant. There we can see the amplification for both components due to the KHI in the firsts 5 milliseconds after the merger. What is important to remark here is that: (i) during the exponential growth, both components are similar due to the isotropic character of turbulence, and (ii) after the rising, the toroidal component is the dominant one, as its shape is practically the same as the magnetic energy plot from Fig. 2. The toroidal component, in the saturation phase, maintains its value merely constant for all cases, close to 10^{16} G. The poloidal component, on the other hand, is slowly decreasing, probably due to energy transfer to the toroidal component, getting values around 10^{15} G. For the toroidal component of the magnetic field we can see almost the same behaviour for all cases where, again, the misaligned and the multipolar ones are below the others by a factor ~ 3. Differences are less notorious when focusing on the poloidal component of the magnetic field, where at the beginning the same cases (i.e., misaligned and multipolar) do not rise as much as the others but at 30 ms after the merger the differences are only about a factor ~ 2.

Besides the volume-integrated quantities, we can analyze the evolving spectral energy distribution $E(k)$ (for details on how it is calculated, see appendix of [37]). This will allow us to see whether the different scales of the problem behave similar or not between the cases we are considering. The spectral distribution of the kinetic (solid lines) and magnetic (dotted lines) energies, as a function of the wavenumber k, is displayed in Fig. 6. The four plots correspond to, from left to right, $t = \{5, 10, 20, 30\}$ ms after the merger. As a reference, Kolmogorov ($k^{-5/3}$, thin solid line) and Kazantsev ($k^{1/2}$, thin dotted line) slopes are also included in all plots. Large dots indicate the spectra-weighted average of the wavenumber, $\bar{k} = \frac{\int_k kE(k)}{\int_k E(k)}$, which gives the typical size $\bar{\lambda} = 2\pi/\bar{k}$ of either the fluid or the magnetic ($\bar{\lambda}_B$) structures.

For all times represented, the kinetic energy spectra behave in the same way for all cases (having a Kolmogorov slope in the inertial range), regardless of the scale we are considering. For the magnetic energy spectra, they initially follow the Kazantsev slope up to the numerical dissipative scale (intrinsically set by the discretization scheme). This is a property of the kinematic phase of the dynamo, until the dynamo approaches saturation at small scales (λ). At $t = 10$ ms all cases have roughly the same amount of magnetic energy spectra. At $t = 20$ ms after the merger, small differences begin to appear, although they may be in part due to stochastic variations. At $t = 30$ ms after the merger, such differences are less evident. Moreover, the amplification has saturated and magnetic spectra appear to be compatible with a Kolmogorov slope at intermediate scales.

We found that $\bar{\lambda}_B \sim 800$ m soon after the merger, increasing to almost 2 km at $t = 30$ ms. This confirm that larger coherent magnetic field structures are being formed in the remnant. Clearly, there is no significant difference (less than 7% in $\bar{\lambda}_B$) between the simulations with different initial topologies considered here.

In Fig. 3 we further analyze the magnetic energy spectra, identifying the contributions coming from the toroidal (dashed lines) and poloidal (solid) components. At 5 ms after the merger, both components are similar for all simulations. As time passes, the poloidal component of all cases decreases two orders of magnitude while the toroidal one increases by about one order of magnitude. However, for all times, both components are still comparable among the different simulations. Notice that, comparing both components in different models, the differences are up to a factor 3 only, much less than the relative differences and the overall changes in time. Finally, at $t = 30$ ms, the slope of the toroidal component (the dominant contribution to the magnetic energy) approaches a Kolmogorov slope at intermediate scales. An interesting difference at these times is that, starting with a (unrealistically) high magnetic field, there is an excess of large-scale magnetic fields (low k), an effect probably due to the winding acting on the already quite organized field.

Finally, notice that the resemblance of integrated magnetic energy and the spectra for the different models point to a universality of the magnetic field not only in the bulk, but in the entire domain.

\section{Conclusions}

We have studied the influence of different initial magnetic configuration on the evolution of BNS mergers, using high-resolution large-eddy simulations employed also in the accompanying paper [39], for which we refer for further details on the methods and amplification mechanisms at work. In particular, we have considered ini-
tial magnetic fields confined within the stars, varying the intensity, the magnetic moment misalignment with the orbital axis and the poloidal topology. Looking at the evolution of integrated energy and spectral distribution, we proved that the differences lie within a factor 3 at most, which could be even smaller in more accurate simulations. This, then, ensures that the initial topology of the stars is not relevant at all because the small-scale turbulence induced in the remnant will erase any memory of realistic magnetic fields of $B \leq 10^{12}$G in only few milliseconds after the merger.

In this work we have explored only some of the infinite possible magnetic configurations. More choices could be explored, in particular: presence of a toroidal field; non-axisymmetric topology; magnetic field extended outside the stars; more complex, small-scale dominated configuration... However, the results shown here already suggest that the expected dependence on the initial topology is basically negligible, compared to other much more uncertain issues. Among the latter, we mention the importance of the numerical capability to resolve the small-scale magnetic amplification, the physics involved in the post-merger phase (neutrino transport, temperature-dependent equation of state...).

This universality of the magnetic field outcome after the merger sets serious doubts on how could we infer the initial magnetic field of the stars in a BNS merger through multimessenger astronomy. The only foreseeable possibilities are through the presence of a precursor electromagnetic signal before the merger, or other kind of outflows that may appear during the first ms after the merger, which would have information mainly on the initial topology and intensity of the magnetic field [20, 56, 57].

The final message is that the commonly used simplification on the topology of the magnetic field is acceptable in BNS mergers, as far as the magnetic field is not too large and enough turbulence is developed to erase the seed and produce the correct spectra distribution. In those cases, the system will tend to be practically the same remnant regardless of its initial configuration. However, if one wants to focus on the realistic generation of a large-scale field in the post-merger, the rule-of-thumb is basically the following: be sure that the large-scale initial magnetic field is much smaller than the amplified average field that the numerical scheme is able to reproduce.
Acknowledgements

We thank Riccardo Ciolfi, Wolfgang Kastaun and Jay Vijay Kalinani for providing us the EoS and for the useful discussions. This work was supported by European Union FEDER funds, the Ministry of Science, Innovation and Universities and the Spanish Agencia Estatal de Investigación grant PID2019-110301GB-I00. DV is funded by the European Research Council (ERC) Starting Grant IMAGINE (grant agreement No. [948582]) under the European Union’s Horizon 2020 research and innovation programme. DV’s work was also partially supported by the program Unidad de Excelencia María de Maeztu CEX2020-001058-M. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (BSC) through Grant project Long-LESBNS by the 22nd PRACE regular call (Proposal 2019215177, P.I. CP and DV).

[1] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, and et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Physical Review Letters 119 no. 16, (Oct., 2017) 161101 arXiv:1710.05832 [gr-qc]

[2] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, and et al., “Multi-messenger Observations of a Binary Neutron Star Merger,” ApJL 848 (Oct., 2017) L12 arXiv:1710.05833

[3] A. Goldstein, P. Veres, E. Burns, M. Briggs, R. Hamburg, D. Kocevski, C. Wilson-Hodge, R. Preece, S. Poolakkil, O. Roberts, et al., “An ordinary short gamma-ray burst with extraordinary implications: Fermi-gbm detection of gb 170817a,” The Astrophysical Journal Letters 848 no. 2, (2017) L14.

[4] V. Savchenko, C. Ferrigno, E. Kuulkers, A. Bazzano, E. Bozzo, S. Brandt, J. Chenevez, T.-L. Courvoisier, R. Diehl, A. Domingo, et al., “Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event gw170817,” The Astrophysical Journal Letters 848 no. 2, (2017) L15.

[5] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, and et al., “Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A,” ApJL 848 no. 2, (Oct., 2017) L13 arXiv:1710.05834 [astro-ph.HE]

[6] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, and et al., “Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817,” ApJL 850 (Dec., 2017) L39 arXiv:1710.05836 [astro-ph.HE]

[7] B. D. Metzger, “Kilonovae,” Living Reviews in Relativity 20 (May, 2017) 3 arXiv:1610.09381 [astro-ph.HE]

[8] P. D’avanzo, S. Campana, O. Salafia, G. Ghirlanda, G. Ghisellini, A. Melandri, M. Bernardini, M. Branchesi, E. Chassande-Mottin, S. Covino, et al., “The evolution of the x-ray afterglow emission of gw 170817/grb 170817a in xmm-newton observations,” Astronomy & Astrophysics 613 (2018) L1.

[9] W.-f. Fong, P. Blanchard, K. Alexander, J. Strader, R. Margutti, A. Hajela, V. Villar, Y. Wu, C. Ye, E. Berger, et al., “The optical afterglow of gw170817: An off-axis structured jet and deep constraints on a globular cluster origin,” The Astrophysical Journal Letters 883 no. 1, (2019) L1.

[10] D. Dobie, D. L. Kaplan, T. Murphy, E. Lenc, K. P. Mooley, C. Lynch, A. Corsi, D. Frail, M. Kasliwal, and G. Hallinan, “A turnover in the radio light curve of gw170817,” The Astrophysical Journal Letters 858 no. 2, (2018) L15.

[11] K. Mooley, D. Frail, D. Dobie, E. Lenc, A. Corsi, K. De, A. Nayana, S. Makkathini, I. Heywood, T. Murphy, et al., “A strong jet signature in the late-time light curve of gw170817,” The Astrophysical Journal Letters 868 no. 1, (2018) L11.

[12] B. Margalit and B. D. Metzger, “Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817,” ApJL 850 (Dec., 2017) L19 arXiv:1710.05938 [astro-ph.HE]

[13] M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kituchi, K. Kyutoku, Y. Sekiguchi, and M. Tanaka, “Modeling gw170817 based on numerical relativity and its implications,” Physical Review D 96 no. 12, (2017) 123012.

[14] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al., “Gw170817: Measurements of neutron star radii and equation of state,” Physical review letters 121 no. 16, (2018) 161101.

[15] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong constraints on cosmological gravity from gw170817 and grb 170817a,” Phys. Rev. Lett. 119 (Dec, 2017) 251301 https://link.aps.org/doi/10.1103/PhysRevLett.119.251301

[16] Y. Gong, E. Papantonopoulos, and Z. Yi, “Constraints on scalar-tensor theory of gravity by the recent observational results on gravitational waves,” European Physical Journal C 78 no. 9, (Sept., 2018) 738 arXiv:1711.04102 [gr-qc]

[17] R. Ciolfi, “The key role of magnetic fields in binary neutron star mergers,” arXiv preprint arXiv:2003.07572 (2020).

[18] J. C. McKinney and R. D. Blandford, “Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations,” Monthly Notices of the Royal Astronomical Society: Letters 394 no. 1, (Mar, 2009) L126–L130 http://dx.doi.org/10.1111/j.1745-3933.2009.00625.x

[19] M. Liska, A. Tchekhovskoy, and E. Quataert, “Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole
accretion with toroidal field," [Monthly Notices of the Royal Astronomical Society 494 no. 3, (04, 2020) 3656-3662]

https://doi.org/10.1093/mnras/staa955

[20] C. Palenzuela, L. Lehner, M. Ponce, S. L. Liebling, M. Anderson, D. Neilsen, and P. Motl, "Electromagnetic and Gravitational Outputs from Binary-Neutron-Star Coalescence," Phys. Rev. Lett. 111 no. 6, (Aug., 2013) 061105 arXiv:1301.7074 [gr-qc]

[21] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T. Wada, "High resolution numerical relativity simulations for the merger of binary magnetized neutron stars," Phys. Rev. D 90 no. 4, (Aug., 2014) 041502 arXiv:1407.2660 [astro-ph.HE]

[22] D. Neilsen, S. L. Liebling, M. Anderson, L. Lehner, E. O’Connor, and C. Palenzuela, "Magnetized neutron stars with realistic equations of state and neutrino cooling," Physical Review D 89 no. 10, (2014) 104029.

[23] K. Kiuchi, P. Cerda-Durán, K. Kyutoku, Y. Sekiguchi, and M. Shibata, "Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers," Phys. Rev. D 92 no. 12, (Dec., 2015) 124034 arXiv:1509.09205 [astro-ph.HE]

[24] B. Giacomazzo, J. Zrale, P. C. Duffell, A. I. MacFadyen, and R. Perna, "Producing Magnetic Fields in the Merger of Binary Neutron Stars," ApJ 809 (Aug., 2015) 39 arXiv:1410.0013 [astro-ph.HE]

[25] C. Palenzuela, S. L. Liebling, D. Neilsen, L. Lehner, O. L. Caballero, E. O’Connor, and M. Anderson, "Effects of the microphysical equation of state in the mergers of magnetized neutron stars with neutrino cooling," Phys. Rev. D 92 no. 4, (Aug., 2015) 044045 arXiv:1505.01607 [gr-qc]

[26] M. Ruiz, R. N. Lang, Y. Paschalidis, and S. L. Shapiro, "Binary Neutron Star Mergers: A Jet Engine for Short Gamma-Ray Bursts," ApJL 824 (June, 2016) L6 arXiv:1604.02455 [astro-ph.HE]

[27] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and M. Shibata, "Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star merger," Phys. Rev. D 97 no. 12, (June, 2018) 124039 arXiv:1710.01311 [astro-ph.HE]

[28] R. Ciolfi, W. Kast, J. V. Kalinani, and B. Giacomazzo, "First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger," Physical Review D 100 no. 2, (2019) 023005.

[29] R. Ciolfi, "Collimated outflows from long-lived binary neutron star merger remnants," Monthly Notices of the Royal Astronomical Society: Letters 495 no. 1, (2020) L66–L70.

[30] M. Ruiz, A. Tsokaros, and S. L. Shapiro, "Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: Effects of magnetic field orientation on jet launching," Physical Review D 101 no. 6, (2020) 064042.

[31] P. Mösta, D. Radice, R. Haas, E. Schnetter, and S. Bernuzzi, "A magnetar engine for short grbs and kilonovae," arXiv preprint arXiv:2003.06043 (2020)

[32] Z. Yang, "Large-eddy simulation: Past, present and the future," Chinese Journal of Aeronautics 91 (12, 2014)

[33] A. Leonard, "Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows," Advances in Geophysics 18 (1975) 237–248

[34] W.-C. Müller and D. Carati, “Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamics turbulent instabilities,” Physica Scripta 9 (Mar., 2002) 824–834

[35] D. Viganò, R. Aguilera-Miret, and C. Palenzuela, “Extension of the sub-grid-scale gradient model for compressible magnetohydrodynamics turbulent instabilities,” Physics of Fluids 31 no. 10, (Oct, 2019) 105102 arXiv:1904.04099 [physics.flu-dyn]

[36] F. Carrasco, D. Viganò, and C. Palenzuela, “Gradient subgrid-scale model for relativistic mhd large-eddy simulations,” Physical Review D 101 no. 6, (2020) 063003.

[37] D. Viganò, R. Aguilera-Miret, F. Carrasco, B. Miño, and C. Palenzuela, “General relativistic MHD large eddy simulations with gradient sub-grid-scale model,” Phys. Rev. D 101 no. 12, (June, 2020) 123019 arXiv:2004.00870 [gr-qc]

[38] R. Aguilera-Miret, D. Viganò, F. Carrasco, B. Miño, and C. Palenzuela, "Turbulent magnetic-field amplification in the first 10 milliseconds after a binary neutron star merger: Comparing high-resolution and large-eddy simulations," Phys. Rev. D 102 no. 10, (Nov., 2020) 103006 arXiv:2009.05669 [gr-qc]

[39] C. Palenzuela and et al. submitted to PRD (Dec, 2021).

[40] A. Reboul-Salze, J. Guilet, R. Raynaud, and M. Bugli, “A global model of the magnetorotational instability in protoneutron stars," A&A 645 (Jan., 2021) A109 arXiv:2005.03567 [astro-ph.HE]

[41] A. Tiengo, P. Esposito, S. Mereghetti, R. Turolla, L. Nobili, F. Gastaldello, D. Gótz, G. L. Israel, N. Rea, L. Stella, S. Zane, and G. F. Bignami, "A variable absorption feature in the X-ray spectrum of a magnetar," Nature 500 no. 7462, (Aug., 2013) 312–314 arXiv:1308.4987 [astro-ph.HE]

[42] A. Borghese, N. Rea, F. Coti Zelati, A. Tiengo, and R. Turolla, "Discovery of a Strongly Phase-variable Spectral Feature in the Isolated Neutron Star RX J0720.4-3125," ApJL 807 no. 1, (July, 2015) L20 arXiv:1506.04206 [astro-ph.HE]

[43] K. N. Gourgouliatos, T. S. Wood, and R. Hollerbach, "Magnetic field evolution in magnetar crusts through three-dimensional simulations," Proceedings of the National Academy of Science 113 no. 15, (Apr, 2016) 3944-3949 arXiv:1604.01399 [astro-ph.SR]

[44] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M. Ludlam, S. Guillot, Z. Arzoumanian, C. L. Baker, A. V. Bilous, D. Chakrabarty, K. C. Gendreau, A. K. Harding, W. C. G. Ho, J. M. Lattimer, S. M. Morsink, and T. E. Strohmayer, “A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation,” ApJL 887 no. 1, (Dec, 2019) L21 arXiv:1912.05702 [astro-ph.HE]

[45] A. Arbó, A. Artigues, C. Bona-Casas, J. Massó, B. Miño, A. Rigo, M. Trías, and C. Bona, “Simfnowy: A general-purpose platform for the management of physical models and simulation problems,” Computer Physics Communications 184 (Oct., 2013) 2321–2331

[46] A. Arbó, B. Miño, A. Rigo, C. Bona, C. Palenzuela, A. Artigues, C. Bona-Casas, and J. Massó, “Simfnowy 2: An upgraded platform for scientific modelling and simulation,” Computer Physics Communications
Communications 229 (Aug., 2018) 170–181
[47] C. Palenzuela, B. Miño, A. Arbona, C. Bona-Casas, C. Bona, and J. Massó, “Simflowny 3: An upgraded platform for scientific modeling and simulation,” Computer Physics Communications 259 (Feb., 2021) 107675 arXiv:2010.00902 [physics.comp-ph]

[48] R. D. Hornung and S. R. Kohn, “Managing application complexity in the samrai object-oriented framework,” Concurrency and Computation: Practice and Experience 14 no. 5, (2002) 347–368. http://dx.doi.org/10.1002/cpe.662

[49] B. T. Gunney and R. W. Anderson, “Advances in patch-based adaptive mesh refinement scalability,” Journal of Parallel and Distributed Computing 89 (2016) 65 – 84. http://www.sciencedirect.com/science/article/pii/S0743731515002129

[50] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, pp. 325–432 Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. https://doi.org/10.1007/978-3-642-00968-1

[51] A. Suresh and H. Huynh, “Accurate monotonicity-preserving schemes with runge–kutta time stepping,” Journal of Computational Physics 136 no. 1, (1997) 83 – 99. http://www.sciencedirect.com/science/article/pii/S0021999197957454

[52] C. Palenzuela, B. Miño, D. Viganó, A. Arbona, C. Bona-Casas, A. Rigo, M. Bezares, C. Bona, and J. Massó, “A Simflowny-based finite-difference code for high-performance computing in numerical relativity,” Classical and Quantum Gravity 35 no. 18, (Sept., 2018) 185007 arXiv:1806.04182 [physics.comp-ph]

[53] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, “Constraints on a phenomenologically parametrized neutron-star equation of state,” Physical Review D 79 no. 12, (Jun, 2009) http://dx.doi.org/10.1103/PhysRevD.79.124032

[54] W. Kastaun, J. Vijay Kalinani, and R. Ciolfi, “Robust Recovery of Primitive Variables in Relativistic Ideal Magnetohydrodynamics,” arXiv e-prints (May, 2020) arXiv:2005.01821, arXiv:2005.01821 [gr-qc]

[55] “LORENE home page.” 2010.

[56] C. Palenzuela, L. Lehner, S. L. Liebling, M. Ponce, M. Anderson, D. Neilsen, and P. Motl, “Linking electromagnetic and gravitational radiation in coalescing binary neutron stars,” Phys. Rev. D 88 no. 4, (Aug., 2013) 043011 arXiv:1307.7372 [gr-qc]

[57] M. Ponce, C. Palenzuela, L. Lehner, and S. L. Liebling, “Interaction of misaligned magnetospheres in the coalescence of binary neutron stars,” Phys. Rev. D 90 no. 4, (Aug., 2014) 044007 arXiv:1404.0692 [gr-qc]