A comprehensive global perspective on phylogenomics and evolutionary dynamics of *Small ruminant morbillivirus*

Muhammad Zubair Shabbir 1*, Aziz-ul Rahman 2 & Muhammad Munir 2

A string of complete genome sequences of *Small ruminant morbillivirus* (SRMV) have been reported from different parts of the globe including Asia, Africa and the Middle East. Despite individual genome sequence-based analysis, there is a paucity of comparative genomic and evolutionary analysis to provide overarching and comprehensive evolutionary insights. Therefore, we first enriched the existing database of complete genome sequences of SRMVs with Pakistan-originated strains and then explored overall nucleotide diversity, genomic and residue characteristics, and deduced an evolutionary relationship among strains representing a diverse geographical region worldwide. The average number of pairwise nucleotide differences among the whole genomes was found to be 788.690 with a diversity in nucleotide sequences \((0.04889 \pm S.D. \ 0.00468)\) and haplotype variance \((0.00001)\). The RNA-dependent-RNA polymerase \((L)\) gene revealed phylogenetic relationship among SRMVs in a pattern similar to those of complete genome and the nucleoprotein \((N)\) gene. Therefore, we propose another useful molecular marker that may be employed for future epidemiological investigations. Based on evolutionary analysis, the mean evolution rate for the complete genome, \(N, P, M, F, H\) and \(L\) genes of SRMV was estimated to be \(9.953 \times 10^{-4} \), \(1.1 \times 10^{-3} \), \(1.23 \times 10^{-3} \), \(2.56 \times 10^{-3} \), \(2.01 \times 10^{-3} \), \(1.47 \times 10^{-3} \) and \(9.75 \times 10^{-4} \) substitutions per site per year, respectively. A recombinant event was observed in a Pakistan-originated strain (KY967608) revealing Indian strains as major (98.1%, KR140086) and minor parents (99.8%, KT860064). Taken together, outcomes of the study augment our knowledge and current understanding towards ongoing phylogenomic and evolutionary dynamics for better comprehensions of SRMVs and effective disease control interventions.

Peste des petits ruminants (PPR), caused by *Small ruminant morbillivirus* (SRMV), is a contagious transboundary disease of domestic and wild ruminants 1,2. Despite exhaustive vaccination, the disease is endemic across many regions/countries in Africa, Middle East and Asia, where occurrence of frequent disease outbreaks is not uncommon 3-7. Currently, the PPR is threatening approximately 80% of the global population of sheep and goats with an estimated loss of USD 2.1 billion per year 8.

The SRMV belongs to the genus *Morbillivirus* within the family *Paramyxoviridae*. It is a pleomorphic and enveloped virus that carries a negative sense RNA genome 9 of variable length, from 15,927 to 16,058 nucleotides (NCBI database). The genome encodes six structural and two non-structural proteins in an order of \(3'\)-N-P/C/V-M-F-HN-L-5'. Non-structural proteins \((V\) and \(C)\) are encoded either by alternate open reading frames or mRNA editing in the phosphoprotein \((P)\) gene. Based upon either \(N\) gene \((255\) bp) or \(F\) gene \((322\) bp), four distinct lineages of SRMVs \((I-IV)\) are reported so far. Lineage I-II viruses are mostly reported from West African countries. Lineage III viruses seem restricted to the Middle East and East African countries. Lineage III viruses seem restricted to the Middle East and East African countries. Lineage IV viruses have been reported from Asian and African countries 10. The lineage IV is replacing prevalence of other lineages \((i.e.\ I-III)\) territories and the occurrence of lineage IV is overwhelming even in Africa. These features demonstrate that lineage IV possess stronger positive selection and host-adaptation potential in a wide spectrum of hosts and geographical areas 11,12.

Given the fact that genetic variations within a population of viruses could alter their pathogenicity and host spectrum, viral genetic diversity is considered a key to unleash viral evolution 13. Using complete or partial
sequencing of single genes (H, N or F), the clustering pattern, genomic and residue characteristics of SRMVs have widely been studied and discussed across the globe. However, based upon each of these particular genes, the deduced genomic and residue characteristics may not be considered enough to predict ongoing evolutionary patterns across the whole length of the genome. In addition, many aspects of SRMVs evolution, including ancestral strain links, historical and geographic patterns of strain dispersal, divergence and time of origin remain poorly understood. These aspects are important because evolution within a single gene may not necessarily be occurring at the same rate as that of the whole genome. Also, being RNA viruses, SRMVs are more prone to mutations during acute infection and therefore could present a polymorphic population. Therefore, genetic diversity driven from consensus sequences of partial genomes could be far from representing the actual polymorphism across the whole length of the genome. Taken together, understanding comparative phylogenomics and evolutionary dynamics by exploiting complete genome sequence data of SRMVs facilitate better elucidate the genetic diversity, trends in its evolution and disease distribution pattern across diverse geographical regions. With this background, complimented by two complete genome sequences from Pakistan we used complete genome sequence data of SRMVs accessible in public database (until October 01, 2019) and analyzed for genetic diversity, phylogenomics and residue characteristics through different bioinformatics tools. We extend the analysis to each of the coding genes and identified potential ancestral relationship among SRMV-lineages reported from different countries during different time-period. In addition, we analyzed coding genes of all reported complete genomes to determine SRMV’s divergence time, and identified another candidate gene to be used as a phylogenetic marker. Together, the outcome will be expected to enhance our understating of phylogenetic and evolutionary dynamics of SRMVs across the globe.

Results

Comparative genome features. The comparative genomic analysis revealed a variable length of genomes as 15927, 15942, 15948, 15954, 15957 and 16058 nucleotides. Most of sequences across the globe had 15948 nucleotides (n = 39) whereas a number of Chinese strains (n = 31) and a Mongolian strain (KY888168) possessed a genome length of 15954 nucleotides. Only a single SRMV strain reported from India (KT270355) carried 15942 nucleotides. One Israeli strain (MF678816) had 15927 nucleotides. Two unusual genome lengths of 15957 (KM089831) and 16058 nucleotides (KM816619) were exclusively reported from China (Table 1). Excluding complete genomes of unusual lengths (MF678816, KM089831 and KM816619) while performing complete genome-specific analysis, the percentage for GC and AT contents was 47% and 53%, respectively. The proportion of GC content was found highest in N gene (50%) followed by P (48%), each of M, F, H (46%), L genes (43%), trailer (41%) and leader region (38%) (Table 2). The study genomes had a 52 nucleotide (nt) long leader in 3’UTR at 107 nt long genome promoter region and a 73 nt long trailer at 5’UTR in 109 nt long anti-genome promoter region. The total length of each of the genes varied across the whole genome: N gene (1578 nt) encoded 526 aa of 59 KDa, gene (1530 nt) encoded 510 aa of 55 KDa, L gene (1597 nt) encoded 610 aa of 69 KDa and M gene (1641 nt) encoded 546 aa of 59 KDa. Although all complete SRMV sequences showed variable genome length, the coding region for each of the genes was the same. The varying genome length was due to insertion of nucleotides in a non-coding region between P and M genes, and between M and F genes (Table 3). However, all genes were separated by similar conserved non-coding intergenic trinucleotide (CTT) except for one intergenic region between L gene and the trailer sequence (CTA).

Percentage identity of nucleotide and comparative residue analysis. We found a varying nucleotide divergence among strains representing different lineages and geographical settings. For instance, a maximum nucleotide divergence (12.7%) was observed among Mongolian, Georgian (lineage IV) and Asian strains (lineage III). This was followed by 11.9% divergence between Pakistani (lineage IV) and other Asian strains (lineage III), and 11.8% divergence between Chinese (lineage IV) and rest of Asian strains (lineage III). As high as 11.5% nucleotide divergence was observed between Asian (lineage II) and African strains (lineage III) of SRMV. Similarly, a total of 11% nucleotide divergence was observed between African strains of lineages II and III. However, a variable divergence (8.5–10.3%) was noticed between SRMVs of lineage I and IV whereas, a divergence of 1.0–4.9% was revealed among strains within lineage IV (Table 4).

Comparative residue analysis of different proteins across the entire genome length revealed conserved functional and/or structural motifs; however, few substitutions were noticed in some of the studied strains. A hypervariable region of varying length was observed in each of the SRMV proteins i.e., 423–456 aa in N, 74–111 aa in P, 73–197 aa in M, 6–16 aa in F, 174–179 aa in H and 617–627 aa in L protein. The nuclear export and nuclear localization signal, and RNA binding motifs appeared conserve in N protein of all strains. In P protein, a Soyuz 1 motif was also conserved in all strains except for the consensus sequence of Africa/1994–2012 (lineage III) where a total of six substitutions (LSQ, VI0N, E1IK, A14E, L16I and F20K) were observed. A serine residue (H36S) in the P protein and a cell membrane anchor in the M protein were conserved in all of the SRMV sequences (Table 5). The signal peptide in F protein has previously been reported to be hypervariable (Table 6); however, while comparing SRMVs of different lineages, we proposed a relatively conserved long stretch of residue (‘MTRAILTFLFLFPNVAC’) (Fig. 1). The cleavage motif (RGRTR) was conserved in the F protein of all sequences. The fusion peptide motif was conserved for 109–133 aa in all SRMV strains except for consensus sequence of China/2013–15 strain where, phenylalanine (F) was replaced by leucine (L) at 1st position of the motif. Substitutions were observed in leucin zipper domain of consensus sequence in lineage II (African/2009–15, V479I), lineage III (African/1994–2012, I463V) and lineage IV (Bangladesh/2008, A464T). All consensus strains from lineage II including China/2013–15, Mongolia/2016, Georgia/2016 and Ethiopia/2010 carried a conserved residue pattern for hydrophobic anchor membrane of F protein; however, two substitutions (A486V and G489S) were observed predominantly in sequences from lineage IV. While comparing residue type and position in the
Lineage	Geography	Accession number	Strain name	Genome length (nts)	Year	Host	Location
I	Africa	KP789375	E32/1969	15948	1969	Goat	Senegal
		EU267273	ICY89	15948	1989	Goat	Nigeria
		MF741712	PPRV/Sierra Leone/048/2011	15948	2011	Goat	Sierra Leone
		KU236379	Lib/2015	15948	2015	Goat	Libya
		KR781451	CIV/01 P/2009	15948	2009	Goat	Cote d'Ivoire
		KM212177	SnDk11/13	15948	2013	Goat	Senegal
		KR781449	Benin/10/2011	15948	2011	Sheep	Benin
		KJ466104	Ghana/NKI/11/2010	15948	2010	Sheep	Ghana
		EU267274	Ng6/1	15948	1976	Goat	Nigeria
		KR781450	Benin/B1/1969	15948	1969	Goat	Benin
		HQ197753*	Nigeria/75/1	15948	1975	Goat	Nigeria
		X74443*	Nig/Vaccine	15948	1975	Goat	Nigeria
II	Africa	KJ867544	Oman/1983	15948	1983	Goat	Oman
		KJ867545	UAE/1986	15948	1986	Gazelle	UAE
		KJ867540	Ethiopia/1994	15948	1994	Goat	Ethiopia
		KJ867543	Uganda/2012	15948	2012	Goat	Uganda
	Africa	KR828813	NGYO/2013–2162	15948	2013	Goat	Nigeria
		KJ867541	Ethiopia/2010	15948	2010	Goat	Ethiopia
		KY885100	S15	15948	2015	Goat	Algeria
		KCS54074	Morocco/2008	15948	2008	Goat	Morocco
	Euro-asiatic	AJ849636	Turkey/2000	15948	2000	Goat	Turkey
		MF678816	1008	15927	2017	Nubian ibex	Israel
		MF737202	Georgia/Thulsi/2016	15948	2016	Goat	Georgia
		KJ867542*	Sungri/1996 MSID	15948	1996	Goat	India
		KR140086	Izatnagar/94	15948	1994	Goat	India
		KF727981*	Sungri/96	15948	1996	Goat	India
		JX217850	Tibet/Bharal/2008	15948	2008	Goat	China
		FJ905304	China/Tibet/Geg/07–30	15948	2007	Goat	China
		KX421388	China/33/2007	15948	2007	Goat	China
		JF939201	China/Tib/07	15948	2007	Goat	China
		KM816619	GZL–14	16058	2014	Goat	China
		KT639393	China/JXBJ/2015	15954	2015	Ibex	China
		KY888168	PPRV/Mongolia/9/2016	15954	2016	Goat	Mongolia
		KM089830	CH/HNNY/2014	15954	2014	Goat	China
		KM089832	CH/HNZM/2014	15954	2014	Goat	China
		KB868655	CH/GDDG/2014	15954	2014	Goat	China
		KM089831	CH/HNZK/2014	15957	2014	Goat	China
		KP260624	China/BJ/2014	15954	2014	Goat	China
		MF443343	China/JS2014	15954	2014	Goat	China
		MF443344	China/JL2014	15954	2014	Goat	China
		MF443352	China/GD2014	15954	2014	Goat	China
		MF443346	China/HU2014	15954	2014	Goat	China
		MF443337	China/SX2014	15954	2014	Goat	China
		MF443353	China/CQ2014	15954	2014	Goat	China
		MF443339	China/SX2014	15954	2014	Goat	China
		MF443345	China/HN2014	15954	2014	Goat	China
		MF443347	China/HeN2014	15954	2014	Goat	China
		MF443348	China/HR2014	15954	2014	Goat	China
		MF443336	China/YN2014	15954	2014	Goat	China
		MF443342	China/JX2014	15954	2014	Goat	China
		MF443335	China/ZJ2014	15954	2014	Goat	China
		MF443338	China/SC2014	15954	2014	Goat	China
		MF443340	China/NX2014	15954	2014	Sheep	China
		MF443349	China/GZ2014	15954	2014	Goat	China
		MF443350	China/GX2014	15954	2014	Goat	China

Continued
Lineage	Geography	Accession number	Strain name	Genome length (nts)	Year	Host	Location
IV	Asia	MF443354	ChinaAH2014	15954	2014	Goat	China
		KX421387	China/5/2013	15954	2013	Goat	China
		KX354359	PPRV-FY	15948	2015	Goat	China
		MF443341	China/LN2014	15954	2014	Goat	China
		MF443351	China/GB2014	15954	2014	Sheep	China
		KX421384	China/2/2013	15954	2013	Goat	China
		KX421386	China/4/2013	15954	2013	Goat	China
		KX421385	China/3/2013	15954	2013	Goat	China
		MG581412	PPRV/Bangladesh/BD/2008	15948	2008	Goat	Bangladesh
		KM091959	China/JYY1/2013	15954	2013	Goat	China
		KT270355	IND/TN/GIN/2014/01	15942	2014	Goat	India
		KT860063	IND/TN/VM/2014/02	15948	2014	Goat	India
		KX033350	IND/Delhi/2016/05	15948	2016	Goat	India
		KT860064	IND/TN/VEL/2015/03	15948	2015	Sheep	India
		KR261605	India/TN/Gingee/2014	15948	2014	Goat	India
		KT860065	IND/TN/ED/2015/04	15948	2015	Sheep	India
		KY967608	SRMV/Lahore/UVAS/Pak/2015	15948	2015	Sheep	Pakistan
		KY967609	SRMV/Faisalabad/UVAS/Pak/2015	15948	2015	Goat	Pakistan
		KY967610	SRMV/Layyah/UVAS/Pak/2015	15948	2015	Goat	Pakistan

Table 1. A brief summary of dataset on SRMVs available at public database including under-study Pakistan-originated strains *Vaccine strains were excluded from any of the genomic and/or residue analysis performed in this manuscript.

Genome regions	Position	Total length	GC%	3’ UTR	ORF	5’ UTR	Coding gene amino acid*	Intergenic trinucleotide region	Molecular weight (KDa)
Leader	1–52	52	38	—	—	—	—	—	—
N	55–1744	1689	50	59	1578	52	526	CTT	58
P	1748–3402	1655	48	66	1530	59	510	CTT	55
M	3406–4888	1484	46	444	1008	32	336	CTT	38
F	4892–7306	2410	46	136	1641	633	546	CTT	59
H	7306–9262	1957	46	107	1830	20	610	CTT	69
L	9266–15908	6643	43	69	6552	22	2184	CTT	247
Trailer	15912–15948	37	41	—	—	—	CTA	—	—

Table 2. A brief descriptions on genome atlas including coding and non-coding regions of so far reported SRMVs worldwide UTR: untranslated region, ORF: open reading frame *Including stop codon.

Regions	15942 nt	15948 nt	15954 nt	15957 nt	16058 nt
3’ UTR	107	107	107	107	107
N	108–1685	108–1685	108–1685	108–1685	108–1685
Non-coding (N-P)	123	123	123	123	123
P	1807–3336	1807–3336	1807–3336	1807–3336	1807–3336
Non-coding (P-M)	103	103	103	106	103
M	3438–4445	3438–4445	3438–4445	3441–4448	3438–4445
Non-coding (M-F)	1076	1082	1088	1088	1192
F	5520–7160	5526–7166	5532–7172	5535–7176	5636–7276
Non-coding (F-H)	161	161	161	161	161
H	7320–9149	7326–9155	7332–9161	7335–9164	7436–9265
Non-coding (H-L)	134	134	134	134	134
L	9282–15833	9288–15839	9294–15845	9297–15848	9398–15949
5’ UTR	109	109	109	109	109

Table 3. A comparative analysis for the coding genes and intergenic regions present in the whole genome of SRMVs reported from different regions of the globe.
be 9.953 × 10⁻⁴ substitutions per site per year. Best growth model was used for individual SRMV gene dataset to estimate the TMRCA and substitution rate per site per year. A cumulative interpretation of individual gene-based substitution common to all SRMV strains within lineage III was observed in SLAM binding site where tyrosine (Y) was replaced by phenylalanine (F) at position 553, whereas a substitution in asparagine N-linked glycosylation site (NntVVT) was exclusive to strains reported from Africa during 1994–2012 (Table 7). For the N protein, all functionally and structurally important motifs were conserved in strains representing lineage I–IV.

Estimation of evolutionary and divergence rates. Using a Bayesian coalescent approach, a molecular clock analysis of the whole genome and all coding gene sequences was performed to estimate the mean rate of evolution. Based on this analysis, the mean evolution rate for the complete genome of SRMV was estimated to be 9.953 × 10⁻⁴ substitutions per site per year. A best growth model was used for individual SRMV gene dataset to estimate the TMRCA and substitution rate per site per year. A cumulative interpretation of individual gene-based substitution common to all SRMV strains within lineage III was observed in SLAM binding site where tyrosine (Y) was replaced by phenylalanine (F) at position 553, whereas a substitution in asparagine N-linked glycosylation site (NntVVT) was exclusive to strains reported from Africa during 1994–2012 (Table 7). For the N protein, all functionally and structurally important motifs were conserved in strains representing lineage I–IV.

Table 4. Percentage nucleotide identities and divergence derived from complete genome consensus sequences of SRMVs strains (lineage I–IV) reported so far in the public database.

Lineage	SRMV strains	Nucleocapsid protein	Phosphoprotein	Matrix protein
I	Africa/1969–89	NES (IIVKSAFLF)²	Y	55
II	Africa/1969–76	NES (IIIVKSAFLF)²	Y	55
III	Asia/1983–86	NES (IIVKSAFLF)²	Y	55
IV	India/1994–96	NES (IIVKSAFLF)²	Y	55

Table 5. A summarized comparative residue analysis of important domain and motif at NP, P and M proteins of SRMVs for their structural, functional and biologic activities. Note: Consensus sequences used in different lineages according to complete genome of strains; Asia/1983–86 in lineage III is consensus sequence of two lineages according to complete genome of strains; Asia/1983–86 in lineage III is consensus sequence of two

Lineage	SRMV strains	NES	NLS	RNA binding motif	Soyuz 1 motif	Serine 151⁵⁶	Cell membrane anchor
I	Africa/1969–89	NES	NLS	RNA binding motif	Soyuz 1 motif	Serine 151⁵⁶	Cell membrane anchor
II	Africa/1969–76	NES	NLS	RNA binding motif	Soyuz 1 motif	Serine 151⁵⁶	Cell membrane anchor
III	Asia/1983–86	NES	NLS	RNA binding motif	Soyuz 1 motif	Serine 151⁵⁶	Cell membrane anchor
IV	India/1994–96	NES	NLS	RNA binding motif	Soyuz 1 motif	Serine 151⁵⁶	Cell membrane anchor

H protein, several substitutions were revealed. For strains within lineage IV, these included a substitution in the N-terminal anchor of an Indian strain (India/2014–16, A41V) and in Georgian strain (Georgia/2016, Y481H). A substitution common to all SRMVs strains within lineage III was observed in SLAM binding site where tyrosine (Y) was replaced by phenylalanine (F) at position 553, whereas a substitution in asparagine N-linked glycosylation site (NntVVT) was exclusive to strains reported from Africa during 1994–2012 (Table 7). For the N protein, all functionally and structurally important motifs were conserved in strains representing lineage I–IV.

Estimation of evolutionary and divergence rates. Using a Bayesian coalescent approach, a molecular clock analysis of the whole genome and all coding gene sequences was performed to estimate the mean rate of evolution. Based on this analysis, the mean evolution rate for the complete genome of SRMV was estimated to be 9.953 × 10⁻⁴ substitutions per site per year. Best growth model was used for individual SRMV gene dataset to estimate the TMRCA and substitution rate per site per year. A cumulative interpretation of individual gene-based
Table 6

A summarized comparative residue analysis of important domain and motif in the F and H proteins of SRMVs for their structural, functional and biologic activities. Note: Consensus sequences used in different lineages according to complete genome of strains; Asia/1983–86 in lineage III is consensus sequence of two strains including UAE/1986 (KJ867545) and Oman/1983 (KJ867544). Identical residues are shown as "—".

Lineage	SRMV strains	Fusion protein	Haemagglutinin protein	
I	Africa/1969–89	1...T...P...	398...G.L.G...	158—166...
	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...
	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...
II	Africa/1969–76	1...T...P...	398...G.L.G...	158—166...
	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...
	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...
III	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...
	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...
	Asia/1983–86	1...T...P...	398...G.L.G...	158—166...

Figure 1. WebLogo-based diversity and/or conserveness of residues in proposed stretch at fusion protein of so-far reported SRMVs
Lineage	SRMV strains	Domain interact with P protein (Val1226Phs1227Fms1220His1229Ile1230His1235Arg1236Lys1237)	RNA binding motif (K220FAK226C)	Domain I (K175Asp175Val176NYR178)	Domain II (K265H266L269)	Domain III (K1170G1176)	Domain IV (Y1218L1220S1221)	Polymerase associated motif (Q1072G1073R1075G1076N1077Q1078Q1080Q1081)	ATP binding site (K1700GE1701G1702G1703M1704)	Methyltransferase associated motifs (E1466K1467K1468)	Methyltransferase associated motifs (E1466K1467K1468)		
Africa/1969–89	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
India/1994–96	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
India/2014–16	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
China/2007–08	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
China/2013–15	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Mongolia/2016	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Bangladesh/2008	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
IV Pakistan/2015	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Israel/2017	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Georgia/2016	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Ethiopia/2010	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Morocco/2008	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**
Africa/1969–89	*	21	468	630	618	618	676	754	754	706	706	812	**QGDNQ**

Table 7. A summarized comparative residue analysis of important domain and motif in the L protein of SRMVs for their structural, functional and biologic activities. Note: Consensus sequences used in different lineages according to complete genome of strains; Asia/1983–86 in lineage III is consensus sequence of two strains including UAE/1986 (KJ867545) and Oman/1983 (KJ867544). Identical residues are shown as “.”

The phylogenetic analysis showed rates of evolution in N, P, M, F, H and L genes as 1.1×10^{-3}, 1.23×10^{-3}, 2.56×10^{-3}, 2.01×10^{-3}, 1.47×10^{-3} and 9.75×10^{-4} site per year, respectively. The N gene (1.1×10^{-3}) showed a lesser evolution rate as compared to other genes whereas it was highest for the L gene (9.75×10^{-4}).

Phylogenetic topology based on geographical pattern. Utilizing each of the coding genes, the phylogenetic analysis of SRMV sequences revealed a distinct pattern of clustering according to the geographical locations. However, the complete N gene-based clustering pattern was more authoritative and conclusion followed by L, H, F, M and P genes (Fig. 2a,b). Within lineage II viruses, variations in clustering pattern were related to the reporting period from different regions in the African continent. In contrast, lineage III viruses from Africa showed variations in their clustering pattern on the basis of each of five gene used for analysis. For lineages IV viruses, there were significant variations in clustering pattern for each of the coding gene. The clustering pattern derived from N and L genes was similar to M, P, F and H genes. Since N and L genes-based topology of
Figure 2. Individual coding gene-based phylogenetic analysis of so-far reported SRMVs revealed mismatching for monophyletic clustering of strains.

Phylogenetic relationship among geographically distinct strain was found to be more precise and conclusive, the *L* gene is suggested to be employed in future epidemiological investigations.

Based on the analysis of the complete *N* gene dataset, we proposed a geography and timeline based-classification of SRMV strains within lineage IV. A substantial analysis revealed a 6% and 2% nucleotide divergence as a considerable cut-off criterion for the classification of SRMV lineages and sub-lineages, respectively. Further analysis identified a total of six sub-clades (a-f) where sub-clade “a” represented strains from India, Turkey and Israel during 1994–2017, sub-clade “b” contained Chinese strains reported in 2007–08, sub-clade “c” represented strains from Africa and Georgia during 2008–2016, sub-clade “d” had Chinese strains reported...
during 2013–2016, sub-clade “e” possessed strains reported from India during 2014–2016, and sub-clade “f” was exclusive to Pakistan-originated strains which were reported in 2015 (Fig. 3).

Figure 3. The complete N gene-based intra-lineage classification of strains within lineage IV.

Nucleotide diversity and selective pressure analysis. The average nucleotide diversity (Pi-value) was 0.04889 for complete genome of all SRMV strains. With a variance (0.00001) and standard deviation (0.002) for haplotype diversity ($H_d = 1.000$), the average nucleotide differences among all haplotypes was found to be $k = 788.690$. A total of 5891 mutations were observed in DnaSP analysis, where 10831 were monomorphic and 5117 were polymorphic. The polymorphic mutations consisted of 1311 singleton variable sites with 3806 parsimony informative sites. While an assessment for neutrality, the Tajima’s D value was found to be negative for all
genes (p > 0.10). The reliability of the analysis, as determined by HKA test, was found to be 6.078 (X-square value) in T = 6.732 (divergence time) at a significant level (p = 0.0131) (Table 8). An analysis of the genetic diversity within the coding genes across the whole length of the genome revealed an occurrence of hotspot event (300 nt window size per ten nt overlapping steps) between 5ʹ UTR of M gene and 3ʹ UTR of F gene (Fig. 4). The nucleotide diversity across the coding genes of nucleotide sequence haplotypes was found to be highest in H gene (0.05171) followed by P (0.04527), F (0.04409), N (0.04068), L (0.03982) and M (0.03931) genes. On the other hands, the haplotype diversity (Hd) was observed to be higher in L gene (0.996) followed by F (0.926), P (0.921), H (0.920), N (0.909) and M (0.900) genes (Table 8).

Datamonkey output for selective pressure analysis across CDS regions is summarized in Table 9. Although none of the gene carried a mean dN-dS greater than 1 at p < 0.05, it was highest for P gene (0.44679) followed by H (0.20017), N (0.12168), F (0.10253), L (0.08976) and M (0.06601) genes. At p < 0.05, analyzing through different algorithmic approaches (SLAC, FEL, IFEL, REL and MEME), revealed that the L gene showed a highest positive selection sites (96) followed by N (27), F (21), P (16), H (12) and M (2) genes. The plots against codon positions for individual genes were drawn using SLAC statistical approach based on dN-dS value (Fig. 5).

Recombination analysis. Lying between 5ʹ UTR of the M gene (3406–4888 bp) and 3ʹ UTR of the F gene (4892–7306 bp), apparently a putative recombination event was observed in the complete genome (4607–5425 nts) of Pakistan-origin strain of SRMV but is attributed to bioinformatics errors. Therefore, no recombination was found in the current study.

Discussion

We presented a comparative genetic, phylogenomic and evolutionary analysis of SRMV strains reported so far in public database. Whole genome sequences and open reading frames (ORFs) of individual genes of representative strains were used in subsequent higher-resolution bioinformatic analysis. This is because a specific gene might not evolve at the same rate as does the whole genome and, therefore, can provide precise information

Table 8. A brief description on genome polymorphism for selection sites in the complete genome and each of the coding regions in SRMVs. Note: HKA test direct mode: Divergence time T = 6.732 × –square value = 6.078, P value = 0.0131 *, * = 0.01 < p < 0.05.

Parameters	Complete genome	N	P	M	F	H	L
Numbers of sites	15948	1578	1530	1008	1641	1830	6552
Monomorphic sites	10831	1115	1031	738	1168	1199	4754
Polymorphic sites	5117	463	499	270	473	631	1798
Total no. of mutation	5891	496	532	288	497	649	1893
Singleton variable sites	1311	115	171	71	118	161	477
Parsimony Informative Sites	3806	348	328	199	355	470	484
No. of haplotypes (h)	68	51	50	47	49	50	67
Haplotype diversity (Hd)	1.000	0.909	0.921	0.900	0.926	0.920	0.966
Variance of haplotype diversity	0.00001	0.00096	0.00054	0.00093	0.00076	0.00036	0.00001
Standard deviation of gene diversity	0.002	0.030	0.023	0.030	0.028	0.019	0.003
Nucleotide diversity (Pi)	0.04889	0.04686	0.04527	0.03931	0.04409	0.05171	0.03982
Standard deviation of Pi	0.00468	0.00465	0.00497	0.00442	0.00500	0.00568	0.00454
Average no. of pairwise nucleotide difference (k)	788.690	64.358	69.279	39.705	72.406	94.751	261.289
Tajima' D	−1.23601	−1.31743	−1.38728	−1.24841	−1.10701	−0.85748	−1.21260
Data Monkey analysis based brief summary of positive and negative substitution sites in each of the coding gene of so far reported SRMVs.

Table 9.

on viral evolutionary dynamics and necessary epidemiological investigations in future\(^{46}\). While considering the “rule of six” for whole genome atlas, comparative complete genome analysis revealed a varying length of complete genome suggesting the potential of the virus to evolve over a period of time. A few sequences showed unusual lengths (e.g., MF678816; 15927 bp, KM089831; 15957 bp and KM816619; 16058 bp) where, for each of these sequences, a nucleotide insertion/deletion was observed in the noncoding region between the 3^\prime and survival fitness of the virus in nature\(^{27}\).

Comparative residue analysis of viral proteins showed several conserved motifs\(^{20,21}\). Among these, the N protein had three conserved motifs. These included export signal, nuclear localization signal and RNA binding motif. The first two are considered responsible for transport of the N protein to nucleus of host cell, while the third one was believed to be involved in interaction of N-N monomers of RNA during genomic RNA binding and N-N self-interaction\(^{20}\). Developing polymerase complex with N and L proteins, the P protein plays a significant role in virus replication and RNA biosynthesis\(^{22}\). The protein contains a variable N-terminus whereas C-terminus is long and GC rich non-coding region was observed between 3$^\prime$ and 5$^\prime$ UTR-F and F genes\(^{17,18}\). The first two are considered responsible for transport of the N protein to nucleus of host cell, while the third one was believed to be involved in interaction of N-N monomers of RNA during genomic RNA binding and N-N self-interaction\(^{20}\). Developing polymerase complex with N and L proteins, the P protein plays a significant role in virus replication and RNA biosynthesis\(^{22}\). The protein contains a variable N-terminus whereas C-terminus is long and GC rich non-coding region was observed between 3$^\prime$ and survival fitness of the virus in nature\(^{27}\).

Three motifs were also noticed in the F protein as signal peptide, cleavage site (responsible for virulence and/or down-regulation of these proteins to differences in their lengths and therefore may alter cyto-pathogenicity or down-regulation of these proteins to differences in their lengths and therefore may alter cyto-pathogenicity and survival fitness of the virus in nature\(^{27}\).
protein tertiary structure. Since the signal peptide motif was located in a variable region, we performed a comparative analysis to investigate the conserveness of specific residue at a specific position among all reported strains from different geographies and proposed a stretch of consensus residues at the global level. The H protein is considered responsible for attachment of the virus to host cell membrane via cleavage of sialic acid residue in cellular glycoprotein. As observed in the current study, the protein has a hydrophobic domain at the N-terminus that acts as a signal peptide to anchor the protein into the membrane. The findings of SLAM receptor binding sites during the analysis highlight the epitheliotropic and lymphotropic nature of SRMVs. Herein, a high number of glycosylation sites were found in the N protein, which plays a major role in protein translocation. The large protein (L) contributes in viral replication, transcription and polyadenylation using different domains that were found to be conserved in this study. Domain I, II and III are considered responsible for polymerase and kinase activity where GDDD and QGDNQ residues carry a prime significance and, as observed in a previous experimental study, any substitution in these residues can abolish the polymerase activity of the L protein. Two highly conserved hinge regions were also observed in a pattern typically corresponding to established hinge regions of other closely related morbilliviruses. Taken together, the potential influence of these substitutions in the functionality of corresponding proteins is scarce and, therefore, requires future investigations to determine impact of these variations in conserved domains.

The phylogenetic analysis, either based upon complete genome or each of the complete coding genes, showed a clustering pattern according to distinct geographical setting and time-period e.g., strains clustered within a distinct clade represented same country of origin within a specific time period. Therefore, while presenting a global perspective, a clustering and subsequent sub-clade grouping is proposed in the current study as an improved and updated version of previous proposal. This is simply because the previous classification proposal was limited to sub-grouping of Indian strains along with a few of those reported from the Middle East and Africa. Not only that the said proposal excluded strains reported from China and Georgia but also did not represent a well-defined evolutionary cut-off for the lowest taxonomic node (sub-lineage or sub-grouping). In addition to that, Kumar et al. have classified the strains into clades and subclades which contradicts previously proposed standard classification criteria for the lowest taxonomic node or sub-grouping of the viruses within a lineage or genotype. Though such a classification may provide some preliminary assessment exclusively for Indian-origin strains, a limited geographic-pattern based classification may raise controversies for SRMV classification at global scale. Therefore, these are considered unreliable to present molecular epidemiology of SRMVs worldwide. Indeed, with a substantial increase in the number of SRMV sequences in future, following a uniform classification criterion such as

Figure 5. Differences in codon position, synonymous and non-synonymous substitutions (dN-dS values) for each of individual genes.
presented in the current study (IVa, IVb, IVc, IVd, IVe and IVf), is necessary for a more precise clustering at the lowest taxonomic node. While comparing different coding genes (P, M, F, H and L) of SRMV strains (Fig. 2a,b), minor differences were observed in the clustering pattern indicating an influence of nucleotides in genetic diversity of SRMVs. Nevertheless, the N gene-based topography was closer to those of the L gene (RNA-dependent RNA polymerase) and complete genome sequences. Thus it (L gene) could be employed alternatively for a precise evolutionary relationship of SRMV strains originating from different geographical regions. This is important because, considering SRMV a member of the family Paramyxoviridae, L protein is now considered as a standard criterion for classification of some of the closely related members of the sub-family Avulavirinae38. The observed topology of the N gene revealed evolutionary dynamics of circulating SRMV strains consistent with observations made previously10,20. Therefore, it is suggested that complete N and L gene-based phylogeny analysis can provide an accurate evolutionary relationship of the circulating strains in particular geographical settings10,38, especially for those regions where full-genomes have not yet been reported or have limited resources.

Nucleotide diversity analysis was used to unleash the genomic variation (polymorphism) within a given dataset39 where a substitution rate is considered a prime parameter to elucidate virus evolution over a period of time. The average number of pairwise nucleotide difference among the whole genome of all SRMV sequences was found to be 788.690 with a diversity in nucleotide sequences (0.04889 ± S.D. 0.00468) and haplotype variance (0.00001). Gained observations correspond to distinct features of RNA viruses where there is a lack of proof-reading activity by reverse transcriptase40. In contrast to previous observations14, a lower diversity in nucleotide and haplotype variance, and nucleotide difference in the current study may largely be ascribed to inclusion of a smaller number of complete nucleotide sequences than those employed in the current study (n = 37 vs n = 68). In addition to this, evidenced by significant nucleotide diversity over a period of time (p < 0.05), the HKA test outcome indicated an ongoing evolution or adaptation of virus in the environment.

The DnaSP based nucleotide diversity analysis revealed higher diversity in the H gene than others of SRMVs. Owing to significant roles in attachment and subsequent genome replication, the gene has been proposed to assess the evolutionary relationship of SRMV strains41. Though it ascertainment further research, the substitutions in the H gene may have an influence on host adaptability and pathogenicity to susceptible host such as observed previously for SRMV14 and influenza virus42. A diverse nucleotide hotspot was observed between 5' UTR of M and 3' UTR of the F genes in the whole genome. This aligns with observations made previously where a hotspot was identified at similar position between M and F genes43, highlighting potential variations in the genome size and corresponding substitutions43 in each of the gene. An influence of these spontaneous mutations in genome was assessed by employing Tajima's D statistics that showed a non-significant negative value for all coding genes in DnaSP analysis, suggesting a lack of influence of spontaneous mutations on the fitness of individual virus. Such observations suggest positive selection among coding region of sequences with a lower level of sequence diversity and an excess of low-frequency variants reflecting the role of natural selection in SRMV genomes. Contrary to current study findings where analysis showed negative value for each of the coding genes, positive values in F and H genes has previously been suggested14.

The non-synonymous/synonymous rate (ω = dN/dS) is an important indicator of selective pressure at the protein level where ω = 1 means neutral mutations, ω < 1 correspond to purifying selection while ω > 1 indicates diversifying positive pressure44. Herein, as reported in a previous study14, the dN-dS plot for each protein showed value not more than 1 indicating a slow genetic evolution of SRMV. Indeed, such a comparison of rates of synonymous and non-synonymous mutations provides an understanding towards the mechanisms of molecular sequence evolution. The positive selection sites were found in all coding genes (N, P, M, F, H and L) using different statistical approaches. Though these sites were found to be non-significant with a ratio less than 1 by Tajima's D statistics, it seldom happens in structural domains of genome. However, the impact of such positive selection sites with lower level of sequence diversity may cause the emergence of variants44. According to the neutral theory of molecular evolution, such type of molecular variations, which arise via spontaneous mutations, has no influence on individual's fitness45. However, the biological significance of these sites still remains unknown and needs to be explored in future.

The occurrence of recombination events is considered a significant source of genetic diversity for RNA viruses46. Occurrence of recombination in negative-sense RNA viruses is extremely rare, still analysis for the detection of recombination event/s is recommended as a standard component of every phylogenetic analysis to serve an important quality-control function to weed out laboratory and analytical errors47. In the current study, no recombination event was found.

Materials and Methods

Complete genome sequencing of SRMVs from Pakistan and dataset information. The complete genome sequencing of two SRMV isolates [KY967609 (SRMV/Faisalabad/UVAS/Pak/2015) and KY967610 (SRMV/Layyah/UVAS/Pak/2015)] was performed as per primers and protocols described previously2. Later, including these two strains, a total of 75 whole genome sequences of SRMVs were accessed (https://www.ncbi.nlm.nih.gov/), October 01, 2019) and processed for subsequent bioinformatic analysis. Among these 75 SRMV sequences, four were attenuated vaccine strains (KJ867542, KF727981; HQ197753, X74443) and were excluded from the dataset used in the current study. Furtermore, given the “rule of six” genome atlas or polyhexameric genome length, 03 sequences including MF678816 (15927 bp), KM089831 (15957 bp) and KM816619 (16058 bp) were also excluded from comparative whole genome-specific analysis. However, owing to length of coding region comparable to each of the protein of SRMV, only the coding regions of these sequences were included and processed further in comparative genomic and residue analysis. All essential information related to whole genome sequences of study-included strains is presented in Table 1.
Comparative genomic analysis. The complete genome (15954 bp) dataset was aligned to equal length using ClustalW methods in BioEdit version 5.0.649 and, based upon nucleotide number and position across the whole length of the genome, different genomic features were compared among all SRMV sequences. The consen-
sensus sequences were made for those SRMV sequences that had a highest nucleotide similarity and were origi-
nated from similar geographical regions. Nucleotide identity and divergence among all consensus whole genome sequences of lineages I-IV was assessed by Pairwise Sequence Comparisons (PASC) analysis in MEGA version 6.0649. The conserved domains, functional and structural motif/s, trans-membrane regions and unique substi-
tions in open reading frames were predicted using ORF Finder (http://www.ncbi.nlm.nih.gov/orf/orf.html), Conserved Domain Prediction tool (http://www.ncbi.nlm.nih.gov/Structure/cdrom/wrpsb.cgi) and HHMTO P program (http://www.enzim.hu/hhmtop/index.php). The potential N-glycosylation sites (N-X-T/S, where X denoted any residue except a Proline) were predicted by NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/ NetNGlyc) and accepted if the G-score was 0.5. Similarly, the diversity and/or conserveness of residues at impor-
tant but hypervariable motif/s were analysed through WebLogo version 3.1 (accessible at http://weblogo.threepl
usone.com/create.cgi).

Phylogeography-based reconstruction of evolutionary tree. A reliability of a gene for molecular
epidemiology was assessed by comparing all coding genes (N, P, M, F, H and L) extracted from whole genome
sequence of SRMV and aligned separately by ClustalW methods incorporated in the BioEdit version 5.0.649. The phylogenetic trees were constructed by neighbour-joining method with best-fit substitution model for each set of
sequences using MEGA version 6.0649. A 1000 replication bootstrap value was adjusted to better elucidate the
probability and reliability of clustering of isolates or any change in their clustering pattern.

Detection of putative recombination event. The sequences were analyzed for the identification of reli-
able putative breakpoints by different tools including SimPlot version 3.5.155, GARD (http://www.datamonkey.
org/GARD), DAMBE version 5.2.3056 and RDP4 version 4.9557. However, owing to an enhanced accuracy, clarity
and reliability of analysis, outcomes gained by RDP4 were considered conclusive for further interpretation. The
RDP4 was preferred because it employs a combination of seven different algorithms named RDP, GENECONV,
BootScan, MaxChi, Chimaera, SiScan and 3Seq to better unleash putative recombinant and parent isolates at
p < 0.001. A putative recombination event was assumed to have occurred only when it was consistently identified
by at least four of the above-mentioned algorithms at a probability threshold of 0.05.

Ethical approval and informed consent. This research did not involve human participants or animals.
This article does not contain studies with animals or humans performed by any of the authors.

Received: 1 May 2019; Accepted: 18 November 2019;
Published: 8 January 2020

References
1. Munir M. ed. Peste des petits ruminants virus. Heidelberg, New York, Dordrecht, London: Springer. (2015).
2. Aziz-ul, R., Wensman, J. J., Abubakar, M., Shabbir, M. Z. & Rossiter, P. Peste des petits ruminants in wild ungulates.
Trop Anim Health Prod 50(8), 1815–1819 (2018).
3. Banyard, A. C., Parida, S., Batten, C., Oura, C., Kwiatek, O. & Libeau, G. Global distribution of peste des petits ruminants virus and
prospects for improved diagnosis and control. J Gen Virol 91(12), 2885–97 (2010).
4. Baazizi, R. et al. Peste des petits ruminants (PPR): A neglected tropical disease in Maghreb region of North Africa and its threat to
Europe. PLoS one 12(4), e0175461 (2017).
48. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. [London]: Information Retrieval Ltd, c1979-c2000, 95–98 (1999).
49. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12), 2725–9 (2013).
50. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214 (2007).
51. Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. Bayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol 18(6), 1001–13 (2001).
52. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3), 585–595 (1989).
53. Delport, W., Poon, A. F., Frost, S. D. & Kosakovsky, P. S. L. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19), 2455–7, https://doi.org/10.1093/bioinformatics/btq429 (2010).
54. Pond, S. L. & Frost, S. D. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21(10), 2531–3 (2005).
55. Ray, S. C. SimPlot for Windows (version 3.5.1). Baltimore, MD. Available online at: http://sray.med.som.jhmi.edu/SCRoftware/ (accessed June 2015) (2003).
56. Xia, X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30(7), 1720–8 (2013).
57. Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1) https://doi.org/10.1093/ve/vev003 (2015).

Acknowledgements
We thank Dr. Andrew Fielding (Lancaster University, United Kingdom) for necessary edits in improving the manuscript contents and language.

Author contributions
M.Z.S. and A.R. apprehended the idea; M.M., M.Z.S. and A.R. did analysis and manuscript write-up.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.Z.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020