THE GOULD BELT “MISFITS” SURVEY: THE REAL SOLAR NEIGHBORHOOD PROTOSTARS

AMANDA HEIDERMAN1,2,3,5 AND NEAL J. EVANS II4
1 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA; heiderman@virginia.edu
2 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
3 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
4 Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA; nje@astro.as.utexas.edu

Received 2015 February 6; accepted 2015 March 19; published 2015 June 19

ABSTRACT

We present an HCO+ J = 3 → 2 survey of Class 0+I and Flat SED young stellar objects (YSOs) found in the Gould Belt clouds by surveys with Spitzer. Our goal is to provide a uniform Stage 0+I source indicator for these embedded protostar candidates. We made single point HCO+ J = 3 → 2 measurements toward the source positions at the CSO and APEX of 546 YSOs (89% of the Class 0+I + Flat SED sample). Using the criteria from van Kempen et al., we classify sources as Stage 0+I or bona fide protostars and find that 84% of detected sources meet the criteria. We recommend a timescale for the evolution of Stage 0+I (embedded protostars) of 0.54 Myr. We find significant correlations of HCO+ integrated intensity with α and Lbol but not with Lbol. The detection fraction increases smoothly as a function of α and Lbol, while decreasing smoothly with Tbol. Using the Stage 0+I sources tightens the relation between protostars and high extinction regions of the cloud; 89% of Stage I sources lie in regions with AV > 8 mag. Class 0+I and Flat SED YSOs that are not detected in HCO+ have, on average, a factor of ~2 higher Tbol and a factor of ~5 lower Lbol than YSOs with HCO+ detections. We find less YSO contamination, defined as the number of undetected YSOs divided by the total number surveyed, for sources with Tbol < 600 K and Lbol < 1 L⊙. The contamination percentage is >90% at AV < 4 mag and decreases as AV increases.

Key words: dust, extinction – galaxies: ISM – infrared: stars – ISM: clouds – galaxies: star formation

Supporting material: machine-readable table

1. INTRODUCTION

The evolution of dense molecular cores into stars has been characterized by observational changes in their spectral energy distributions (SEDs) since the seminal suggestions by Lada & Wilking (1984) and Adams et al. (1987). In this picture the changes in the SED, captured either by the spectral index from 2 to 25 μm in the original Class system or the bolometric temperature (Chen et al. 1995) track the movement of matter from core to disk to star. Adams et al. (1987) connected the observational measures of the SED (Classes) to physical configurations (Stages). The stage referred to as I in the original work included all the time that the forming star was surrounded by an envelope, a phase also referred to as a protostar, or the embedded phase.

Andre et al. (1993) subdivided Stage I into 0 and I, with Stage 0 sources having more mass in the envelope than in the star plus disk. Stage I sources had more mass in the star plus disk than in the envelope, but still some envelope material. We have no way to distinguish these, so we lump these together in this paper, referring to them as Stage 0+I. Thus, a Stage 0+I source consists of a star and disk embedded in a dense, infalling envelope, while a Stage II source contains only a star and disk.

The exact relationship between observations and physical configuration required further definition. Robitaille et al. (2006) suggested defining Stage 0+I sources as those with substantial mass infall rates (Minf) compared to stellar masses (M∗), requiring Minf/M∗ > 10−6 yr−1. However, these two quantities are difficult to determine from observations, and Minf is not related monotonically to evolutionary stage in models of episodic accretion (M. Dunham et al. 2010; M. Dunham & Vorobyov 2012). Crapsi et al. (2008) found that the usual evolutionary tracers, like the spectral index in the near-infrared or the bolometric temperature (Tbol) could be misleading for sources with large inclination angles, but that 0.2 M⊙ in the envelope was a reasonable indicator to select Stage 0+I sources.

Van Kempen et al. (2009) showed that detection of the HCO+ J = 4 → 3 line was a good indicator of a Stage 0+I source. In particular they suggested that an integrated intensity, I∫MB = ∫ MB dV, of 0.4 K km s−1 is a good metric for a Stage 0+I source, because lower values of integrated intensity could arise if only a disk were present. To further discriminate against disk emission and unrelated emission from sources nearby in the sky, they also suggested that the HCO+ emission should be extended, but peaked on the source, or that submillimeter dust continuum emission be extended but peaked on the source.

The c2d (Evans et al. 2009) and Gould Belt (M. Dunham 2015, in preparation) projects together surveyed essentially all nearby (d < 500 pc) molecular clouds, except for Taurus and Orion. They used a common classification scheme for young stellar objects (YSOs) based on the spectral index between 2 and 24 μm, using whatever photometry was available between those wavelengths. The spectral index is defined by

$$\alpha = \frac{d \log (\lambda S(\lambda))}{d \log (\lambda)},$$

where S(λ) is the spectral flux density at wavelength λ. Building on work by Greene et al. (1994), Evans et al. (2009) defined the divisions between classes as follows:

3 NSF Astronomy and Astrophysics Postdoctoral Fellow.
were determined by observations of planets, with a value set to the mean of all other observing runs because no suitable calibrator was available.

The Caltech Submillimeter Observatory was operated by the California Institute of Technology, until 2013 April 1 under cooperative agreement with the European Southern Observatory, the European Southern Observatory, and the Onsala Space Observatory.

Table 1: Observing Parameters

Run	Pointing Uncertainty (arcseconds)	Efficiency
…	…	…
(1)	(2)	(3)
2009 Jun	5''9	0.67
2009 Dec	6''7	0.63
2010 Jul	6''7	0.67
2010 Dec	4''9	0.64
2011 Jul	7''8	0.66
2011 Dec	8''0	0.71
2012 Jun	10''2	0.67*
2012 Sep	7''6	0.69

Note.

* Value set to the mean of all other observing runs because no suitable calibrator was available.

The Class 0+I sources are widely associated with Stage 0+I, while Class II sources are associated with Stage II (star and disk dominated objects), but the status of Flat SED sources has been unclear. When using α alone, there is no distinction between Class 0 and Class I sources, so both are included when we use Class 0+I, and Stage 0+I encompasses the entire phase with a star/disk and surrounding envelope with $M > 0.2 M_\odot$.

Our goal is to provide a uniform indicator of whether Class 0+I and Flat SED sources in the survey of the Gould Belt clouds are likely to be Stage 0+I sources. Because there were over 500 Class 0+I and Flat SED sources in the original sample, mapping of each source was impractical, so we made single point measurements toward the positions of each YSO instead. We also used the $J = 3 \rightarrow 2$ transition of HCO$^+$, as the atmospheric conditions required are less stringent than for the $J = 4 \rightarrow 3$ line. We describe here the results of the MIsFITS of sources identified as Class II according to the spectral index.

2. Observations and Spectral Reduction

Observations of the HCO$^+$ $J = 3 \rightarrow 2$ transition were obtained with the heterodyne receiver at the Caltech Submillimeter Observatory during runs in 2009 (June and December), 2010 (July and December), 2011 (July), and 2012 (June and September). The main beam efficiencies (η_{MB}) were determined on each run by observations of planets. The characteristics of the equipment are indicated in Table 1, including the pointing uncertainties and the main beam efficiency. The pointing uncertainties are the standard deviation of all pointing measurements through the run. Since the pointing offsets were continually corrected, the actual pointing errors on a given source are less than the values in the table. The values of η_{MB} were determined by observations of planets, generally Jupiter or Saturn. They were relatively constant over the various runs with $\left(\eta_{MB}\right) = 0.67 \pm 0.03$, except for the 2012 June run, when suitable planetary calibrators were not available. We have used $\eta_{MB} = 0.67$ for all runs, including the 2012 June run.

The most southerly clouds, Musca and Chamaeleon, were observed with the APEX3 telescope in 2011 October. The APEX-1 receiver and the XFFTS spectrometer were used to obtain a spectral resolution of about 0.085 km s^{-1}. The forward efficiency of the telescope is 0.95 and the beam efficiency is 0.75 (values taken from the APEX website) corresponding to $\eta_{MB} = 0.75 / 0.95 = 0.79$. Weather conditions were variable, so integration time was adjusted to achieve an rms noise of 0.08 K.

The standard data reduction process consisted of averaging multiple observations when relevant, box-car averaging to an effective spectral resolution of 0.2 km s^{-1} for CSO data, 0.17 km s^{-1} for APEX data, fitting a baseline (usually first-order, but occasionally higher order), and fitting a Gaussian if a line was evident. Because the main goal was to find out if a detectable line was present, the fitting process was generally not carefully tuned for optimum parameter estimation. In several clouds, multiple velocity components were present; these were sometimes separable and sometimes too blended to resolve. When separable, two Gaussians were fitted and both results are given (see Table 5 in the Appendix).

When no line was convincingly detected, an upper limit was obtained by calculating the integrated intensity over a velocity range where lines were detected in that cloud and the uncertainty in that value. The upper limit was taken to be the absolute value of the area plus twice the uncertainty. Some of the higher upper limits reflect emission that was systematically high over the range of relevant velocities but did not produce a convincing line profile.

3. RESULTS

For this survey, we compare observations to the table of YSOs from the work of M. Dunham et al. (2013). The full list of sources with HCO$^+$ observations is given in Table 5 in the Appendix. The HCO$^+$ observations were obtained at positions of sources identified in earlier versions of the catalogs. Some of these sources are no longer accepted as YSOs, a few other sources have been added, and there are some positional discrepancies. To match observations with sources in the latest catalogs, we searched for HCO$^+$ observations within $14\arcsec$ (half the CSO beam) of the source. However, only four sources lie more than $6\arcsec$ from the pointing position, with the vast majority still exactly at the pointing center. In a few cases, more that one observation was found within $14\arcsec$. The line measurements were similar, so we used the observations from the nearest position to the infrared source. In addition, some sources have changed classifications since the original catalog was made, and we use the new classifications. As a result, we have some sources that are now classified as Class II according to the spectral index. We include results on these, but we caution that they are not representative of most Class II sources because they are relatively close to the boundary between Class II and Flat sources. Figure 4 shows the distribution of spectral index for the observed sample and for the full catalog of YSOs. Our observed sample becomes very incomplete for $\alpha < -0.3$.
The results of the observations are listed in Table 5 in the Appendix. The summary of results by cloud is in Table 4. For each cloud with sufficient detections, a composite spectrum was constructed from all the detected sources. From these average spectra, a characteristic velocity and linewidth were added to Table 4. When two velocity components could be separated in the composite spectrum, values are given for each.

4. ANALYSIS

Taking all clouds into account, there are 326 Class 0+I sources, 209 Flat SED sources, and 1243 Class II sources in the tables of YSOs from the work of M. Dunham et al. (2013). Because our survey was based on earlier catalogs (Section 3), our coverage is slightly incomplete. We observed 288 Class 0+I sources (88% of the full sample), 188 Flat SED sources (90% of the full sample), and 70 Class II sources (6% of the full sample). Our statistics will be based on that subsample.

4.1. Results Based on Any Detection

For a first estimate, we consider all detections, regardless of strength, within the sample of observed sources. For that criterion and sample, 240 (83%) of Class 0+I YSOs have detections, while 112 (60%) of Flat SED sources have detections, and 28 (40%) of Class II sources have detections. To estimate the number of Stage 0+I sources based on detection of the line, we could add the Flat SED and Class II sources that are detected to the list of Stage 0+I sources, yielding a number of 380 potential Stage 0+I sources out of 546 observed sources.

If we assume that our sample of observed sources was not biased, we can use the detection percentages to extrapolate to the number that would be detected in the full catalog. This analysis yields numbers of plausible detected sources of 271 Class 0+I sources and 125 Flat SED sources for a total of 396 likely detected sources within those two classes (Table 3). We do not include the Class II sources in the extrapolated statistics because the Class II sample was clearly biased. In contrast, the selection of Class 0+I and Flat SED sources was not biased by the values of α, strength of infrared emission, or any other variable known to us. The quite small fraction of sources that remained unobserved resulted entirely from time limitations.

These numbers are certainly an overestimate for the following reasons.

1. Some sources without their own dense envelopes may be superimposed on emission from dense envelopes of other sources. This possibility can be examined only with mapping and detailed analysis, which was not possible for this large sample. The study by M. Carney et al.
2. Weak lines may be associated with very low mass remnant envelopes or even disks. While a quantitative relation between HCO$^+$ emission and mass has not been established, we will follow the example of van Kempen et al. (2009), who set a minimum value for the integrated intensity (Section 4.2). This threshold was intended to eliminate Stage II sources (disk-only), which may have HCO$^+$ emission.

4.2. Results for a Threshold Emission Strength

Van Kempen et al. (2009) applied a series of requirements to decide if sources were in Stage 0+I. The main requirement was that the HCO$^+$ was extended, but peaked on the source with an integrated intensity, $I_{\text{MB}} > 0.4 \text{ K km s}^{-1}$. If the HCO$^+$ was not extended, an alternative criterion required continuum emission from dust at 850 μm to be extended, but peaked on the source. Because we do not have maps, the only criterion we can easily apply is one on the strength of the HCO$^+$ $J = 3 \rightarrow 2$ emission. The criterion used by van Kempen et al. (2009) was that $I_{\text{MB}} > 0.4 \text{ K km s}^{-1}$, for the $J = 4 \rightarrow 3$ line. To translate this limit to our slightly more easily excited line, we compared values of I_{MB} for our $J = 3 \rightarrow 2$ lines with a sample of 27 sources also observed in the $J = 4 \rightarrow 3$ line by M. Carney et al. (2015, in preparation). The $J = 4 \rightarrow 3$ maps were convolved to the 28$''$ beam size of the CSO single pointing observations and the spectra were fitted using a single line Gaussian profile. For that sample our values of I_{MB} are 1.70 ± 0.10 times higher, where the uncertainty is the standard deviation of the mean. Therefore, the equivalent I_{MB} for the

Table 2

Criteria	Number
Strong line detectiona	319
Strong line detection + Submillimeter detection	85
Strong line detection or Submillimeter detection	329
Strong line detection + Submillimeter undetected	55
Weak line detection + Submillimeter detection	6
HCO$^+$ Undetected + Submillimeter detection	4
Source not in HCO$^+$ survey + Submillimeter detection	35

a Strong line defined as a source meets the $I_{\text{MB}} > 0.68 \text{ K km s}^{-1}$ detection criteria.

Table 3

Quantity	Sample	Detected	$I_{\text{MB}} > 0.68$ (K km s$^{-1}$)	Include Class II?
Number	Raw	380	319	Yes
Number	Extrapolated	396	335	No
Timescale	Raw	0.62 Myr	0.51 Myr	Yes
Timescale	Extrapolated	0.64 Myr	0.54 Myr	No

Note.

The Astrophysical Journal, 806:231 (13pp), 2015 June 20

Figure 3. Average HCO$^+$ $J = 3 \rightarrow 2$ spectra of detected sources in five clouds. The black histogram is the average spectrum. The blue line is the fit to the spectrum (either one or two Gaussians). The vertical scale for Cepheus I is larger than for other clouds.

Figure 4. Distribution of α for the full catalog of YSOs (black line) and for the observed sample (filled). The vertical colored lines mark the boundaries between Class II and Class III ($\alpha = -1.6$), Class II and Flat ($\alpha = -0.3$), and Flat and Class 0+I ($\alpha = +0.3$).
Table 4

Cloud	\(D\) (pc)	\(\text{Size} \ (\text{pc})\)	\(\text{Y} \)	\(\text{N} \)	\(\text{Y} \)	\(\text{N} \)	\(\text{Y} \)	\(\text{N} \)	\(\text{V} \) (\(\text{km} \text{s}^{-1}\))	\(\Delta V \) (\(\text{km} \text{s}^{-1}\))	\text{Number}	\text{Notes}
Aquila	260	7.56	66	15	39	21	13	26	7.4	3.0	97	...
Auriga/CMC	450	5.98	28	5	5	3	6	1	0.9	1.8	30	...
Auriga North	450	1.31	1	0	0	0	0	0	-6.9	1.9	1	...
Cepheus I	300	1.75	5	0	2	1	0	1	-4.4	1.3	5	stronger
Cepheus 3	-2.9	1.0	... weaker	
Cepheus 4	288	1.75	4	0	1	0	1	...	2.6	1.3	4	...
Cepheus 5	325	1.08	0	0	0	1	0	0	0	...
Chamaeleon I	200	1.07	0	0	3	0	0	0	-8.0	1.4	3	...
Chamaeleon II	150	1.30	3	1	1	4	2	5	4.8	1.7	2	...
Corona Australis	178	1.78	1	1	0	1	0	0	2.9	0.8	1	...
Scorpius/OphiN	130	0.98	5	1	2	2	0	1	5.2	2.9	7	...
IC5146 E	950	4.42	8	5	0	2	0	3	6.5	1.2	7	...
 weaker	
IC5146 NW	950	5.28	13	0	3	1	0	0	4.2	2.0	11	...
Lupus I	150	1.68	0	1	0	2	0	0	4.9	0.8	0	...
Lupus II	200	2.22	1	1	0	5	0	1	1	...
Lupus IV	150	0.90	0	1	0	0	0	0	0	...
Lupus VI	150	1.46	0	1	0	0	0	0	0	...
Musca	160	1.47	0	1	0	0	0	0	0	...
Ophiuchus	125	3.08	24	3	26	14	1	2	3.1	1.8	45	stronger
Perseus	250	4.83	66	7	18	16	1	0	5.3	2.0	77	...
Scopiius/OphiN	250	7.8	2.7	... stronger	
Serpens	429	3.92	15	2	13	2	4	1	7.6	2.1	28	stronger
Total\(^a\)	240	48	112	76	28	42	319	...
Fraction\(^d\)	...	0.83	0.17	0.60	0.40	0.40	0.60	0.58	...

Note. Columns are: (1) Cloud name; (2) Cloud distance in parsecs; (3) Average cloud size in parsecs; (4) Number of detected Class 0+I sources; (5) Number of undetected Class 0+I sources; (6) Number of detected Flat SED sources; (7) Number of undetected Flat SED sources; (8) Number of detected Class II sources; (9) Number of undetected Class II sources; (10) Cloud velocity (see Section 5); (11) Cloud line width (see Section 5); (12) Number of cloud sources classified as Stage 0+I; (13) Comparative notes on average cloud HCO\(^+\) spectra.

\(^a\) Only clouds with at least one observed source are included in the table.

\(^b\) Counts only detections above the threshold value of integrated intensity.

\(^c\) Total number of sources separated by class that are detected or undetected or are classified as Stage 0+I.

\(^d\) Fraction of sources in each column compared to total number surveyed.

\(J = 3 \rightarrow 2\) line to the van Kempen et al. (2009) criterion is \(I_{MB} \geq 0.68 \text{ K km s}^{-1}\). We have also compared our sample to the Ophiuchus sample observed by van Kempen et al. (2009) and found 17 sources with detections that overlap in both samples. If we include these sources in our average line ratio, we find that our \(J = 3 \rightarrow 2\) line measurements are 1.58 ± 0.10 times higher than the \(J = 4 \rightarrow 3\) integrated intensities. We note that these maps are at a higher resolution and are not convolved to the same beam size of our measurements. With this caveat in mind, we will use the \(I_{MB} \geq 0.68 \text{ K km s}^{-1}\) criteria for the threshold in our analysis, but note in the following paragraph the differences. As noted above, the threshold was intended to discriminate against HCO\(^+\) emission from disks; disk emission would be highly diluted in our beam, so our scaled up threshold is a conservative choice that probably excludes some Stage 0+I sources with low-mass envelopes.

What changes if we apply a cut to the integrated intensity so that only sources with a value above that threshold would qualify as Stage 0+I sources? With this criterion, there are 208/288 (72%) and 90/188 (48%) of the observed Class 0+I sources and Flat SED sources with \(I_{MB}\) above that threshold, respectively. The status of Flat SED sources has never been very clear, but they have been assumed to be a transitional class. The fact that roughly half achieve Stage 0+I status by the standards we are using is consistent with that picture. Interestingly, 21 Class II sources (30% of the observed sources) also satisfy that criterion. If we instead used the slightly lower \(I_{MB}\) threshold average of 0.63 K km s\(^{-1}\) from both the M. Carney et al. (2015, in preparation) and van Kempen et al. (2009) samples, we find 13 additional sources above the threshold or 213/288 (74%) of Class 0+I, 95/188 (51%) Flat SED, and 24 Class II sources. The detected Class II sources have values of \(\alpha\) that are highly skewed toward the boundary between Class II and Flat SEDs. Since these were originally classified as either Class 0+I or Flat (to be included in our sample), they could be Stage 0+I sources with envelopes that are less opaque or that are viewed closer to face-on. They could also be caused primarily by contamination (projected on HCO\(^+\) emission from another source or extended emission); comparison to detections of submillimeter continuum emission (see Section 4.3) suggest the latter explanation.
The number of sources detected above threshold is listed for each cloud in column 12 of Table 4. As in Section 4.1, we extrapolate to the full sample for Class 0+I and Flat SED sources, but not for Class II sources. These results are summarized in Table 3.

4.3. Comparison to Far-infrared or Submillimeter Continuum Emission Detections

Detection of submillimeter continuum emission concentrated on an infrared source, but extended more than would be expected of a disk, is another criterion often used to identify Stage 0+I sources (e.g. van Kempen et al. 2009). We do not have a complete survey of our sample for submillimeter continuum emission, but we can compare to the 167 sources with submillimeter observations within our sample, as tabulated by M. Dunham et al. (2013). Table 2 gives the numbers for various combinations of detections above threshold of HCO\(^+\) and a far-infrared or submillimeter continuum emission detection in a wavelength range 70 \(\mu\)m < \(\lambda\) < 850 \(\mu\)m.

Of the sources in our sample with submillimeter detections, 91 of those are detected in HCO\(^+\) and 4 are undetected, 85 above the threshold of 0.68 K km s\(^{-1}\). Only four sources with submillimeter emission have no HCO\(^+\) detection and six have a weak detection (\(I_{MB} < 0.68 \text{ K km s}^{-1}\)). There is thus generally strong agreement between the HCO\(^+\) and submillimeter criteria.

There are, however, 55 sources with strong HCO\(^+\) detections and submillimeter data, but no submillimeter detection. Without more information on the sensitivity of the submillimeter data, it is hard to decide if there is real disagreement.

Very few sources with submillimeter continuum detections are undetected in HCO\(^+\). Since the sample with submillimeter detections is different, there are 35 sources with submillimeter detections that we did not observe. If one added all the sources with submillimeter detections to the list of Stage 0+I candidates, the numbers and timescales would increase, but not substantially.

We can also examine the changes in the agreement between HCO\(^+\) and submillimeter continuum emission with respect to SED class. There are 52 Class 0+I and Flat SED sources that meet the Stage 0+I emission criteria but do not have submillimeter emission and 162 sources that have not been observed in the submillimeter. There is only 1 submillimeter detection out of the 21 Class II sources that meet the HCO\(^+\) Stage 0+I criteria. That fact clearly suggests that HCO\(^+\) detections toward Class II sources are likely to be due to contamination. We include all the numbers so that readers can make their own judgments, but we favor the values in Table 3 that are extrapolated to the full sample but without Class II sources.

4.4. Timescales for Stage 0+I

The standard calculation for how long is spent in a given class uses the number of sources in that class, the number of sources in a reference class, and an assumed timescale for that reference class (e.g., Evans et al. 2009). The reference class has generally been taken to be Class II objects. While some Class II sources do have HCO\(^+\) emission, it may be caused by confusion. In the absence of maps that could test that possibility, we will continue to associate Class II sources with Stage II sources, those without substantial envelopes but with infrared excess indicative of a disk. Therefore we will calculate the duration of the Stage 0+I phase using the following equation.

\[
\Delta t (\text{Stage 0 + I}) = \Delta t (\text{Class II}) \frac{N(\text{Stage 0 + I})}{N(\text{Class II})}
\]

Table 3 shows the numbers of sources and associated timescales for various possible calculations. The timescales in this table assume a Class II duration of 2 Myr for consistency with previous work (but see below). We show results for any detection and for detections above the threshold, \(I_{MB} \geq 0.68 \text{ K km s}^{-1}\). The numbers indicated by “Raw” count only actual detections but include any class. The numbers indicated by “Extrapolated” account for the incomplete sampling of the full catalog, using the fraction observed, but only in Class 0+I and Flat SED, because the Class II sample was highly incomplete and very biased.

With 1243 Class II YSOs in the clouds, the estimates in Table 3 for \(\Delta t (\text{Stage 0 + I})\) range from 0.51 to 0.62 Myr. As discussed above, we recommend the value based on extrapolation to the full sample, but excluding Class II sources; in this case the timescale for Stage 0+I is 0.54 Myr for a Class II timescale of 2 Myr. This timescale is very similar to that found for Class 0+I sources alone by Evans et al. (2009) for the c2d clouds and slightly larger than timescales found for Class 0+I sources in the Taurus and Orion clouds when similar criteria were used (M. Dunham et al. 2014). The loss of some Class 0+I objects has been compensated by the addition of some Flat SED objects, but now we have a better estimate for the timescale of the entire embedded phase.

As noted above, in previous analyses, we have assumed that the fraction of YSOs with infrared excess declines exponentially with a half-life of 2 ± 1 Myr (Mamajek et al. 2009). However, these estimates depend entirely on the timescales for loss of infrared excess. Recently, longer timescales have been suggested by studies of older associations (Soderblom et al. 2014), and models of disk evolution suggest a relatively constant and high fraction of disks up to about 2.5 Myr, followed by a rapid decrease from 2.5 to 4 Myr (Alexander & Armitage 2009). Observations accounting for more rapid dissipation of disks around close binaries are broadly consistent with this model (Kraus et al. 2012). Consequently, the timescales for Stage 0+I could easily be 1.5–2 times longer.

Conversely, the timescales could be shorter if we added in the denominator in Equation (2) the Class III sources with infrared excesses as seen by Spitzer surveys. If these are also counted in the statistics of infrared excess in clusters, then the half-life from cluster studies includes that fraction of Class III objects. Early studies of disk fraction in clusters were less sensitive to small excesses than was Spitzer, but recent studies by Ribas et al. (2014), using Spitzer data on 22 associations, provide the most comparable sample. They find that the timescale for infrared excess depends on the wavelength where the excess first appears and on stellar mass (Ribas et al. 2015). The timescales in the last reference, converted from \(1/\varepsilon\) time to half-life, range from 1.9 to 3.0 Myr, with the larger time corresponding to excesses beginning at wavelengths as long as 20 \(\mu\)m. The latter is probably the best value for comparison if we include our Class III sources. There are 1188 Class III objects in the tables of YSOs from M. Dunham et al. (2013). Some infrared excess at wavelengths out to 24 \(\mu\)m was required for these to become YSO candidates. If we include those in
Equation (2) and take a 3.0 Myr half-life, the timescale for Stage 0+I drops to 0.41 Myr. We note, however, that our class III sample may be ~50%–100% contaminated by background asymptotic giant branch (AGB) stars (M. Dunham et al. 2015, in preparation). For example, if the number of class III sources had at least 50% AGB star contamination, we would still obtain a similar Stage 0+I timescale of 0.55 Myr.

4.5. Correlations

In this section, we consider how \(I_{\text{MB}} \) correlates with various quantities used to trace evolution. If \(\alpha \) decreases and \(T_{\text{bol}} \) increases as the envelope mass decreases, one might expect correlations (positive and negative respectively) of the HCO\(^+\) emission with these quantities. However, the emission from HCO\(^+\) is not simply proportional to the mass of the envelope. Warmer and denser gas will emit more strongly. We have no direct measure of those quantities, but the gas temperature will be higher around sources of higher luminosity.

Figure 5 plots \(I_{\text{MB}} \) versus the spectral index, \(\alpha \), \(T_{\text{bol}} \), and \(L_{\text{bol}} \), with inverted triangles indicating upper limits. In cases where lines had two velocity components, we used the \(I_{\text{MB}} \) of the stronger line. The gray solid lines show the \(\alpha \) values that separate the SED classes. In the \(I_{\text{MB}} \) versus \(T_{\text{bol}} \) plot, we can separate Class 0 from Class I, and we also show the divisions between classes for extinction-corrected \(T_{\text{bol}} \) suggested by Evans et al. (2009):

\[
\begin{align*}
0 \quad & T_{\text{bol}} < 70 \text{ K;} \\
1 \quad & 70 \text{ K} \leq T_{\text{bol}} \leq 500 \text{ K;} \\
2 \quad & 500 \text{ K} < T_{\text{bol}} \leq 1450 \text{ K;} \\
3 \quad & 1450 \text{ K} < T_{\text{bol}} \leq 2800 \text{ K.}
\end{align*}
\]

The data are very scattered, but there are trends for stronger emission with larger \(\alpha \) (left panel), smaller \(T_{\text{bol}} \), and possibly larger \(L_{\text{bol}} \). To test for a significant (3\(\sigma \)) correlation, we require the absolute values of the Pearson correlation coefficient to exceed \(3/\sqrt{N-1} \), where \(N \) is the number of data points. Including all detections, we have 377 data points (3 have no values for \(\alpha \)), so we test for \(|r| > 0.16\). The tests are done for \(\log I_{\text{MB}} \) versus \(\alpha \), \(\log T_{\text{bol}} \), and \(\log L_{\text{bol}} \). We find significant correlation for \(\alpha \) (\(r = 0.26 \)), and an anti-correlation for \(T_{\text{bol}} \) (\(r = -0.26 \)), but not for \(L_{\text{bol}} \) (\(r = 0.15 \)). The fraction of sources with detections above the threshold shows a strong and smooth correlation with evolutionary indicators. Figure 6 shows the detection fraction of all sources above the \(I_{\text{MB}} \) threshold for Stage 0+I sources in bins of \(\alpha \), \(\log T_{\text{bol}} \), and \(\log L_{\text{bol}} \). The detection fraction increases strongly with \(\alpha \) through the flat category and is 80% or greater for sources with \(\alpha > 0.75 \). The fraction with detections steadily increases as \(T_{\text{bol}} \) decreases or \(L_{\text{bol}} \) increases.

4.6. The Distribution of Stage 0+I Sources

Based on preliminary results of this survey for HCO\(^+\), Heiderman et al. (2010) showed that Class 0+I and Flat SED sources were strongly concentrated into regions with large-scale extinction above 7 or 8 mag, and that this statement became stronger when sources without HCO\(^+\) emission (MISFITS) were removed. We can now revisit this result with the full sample. Figure 7 show the \(A_V \) at the source position, determined from background star extinctions averaged over 270°, for both Stage 0+I and all 535 Class 0+I and Flat SED YSOs in the sample. The sample of all Class 0+I and Flat SED sources (dotted histogram) are concentrated toward regions of high extinction, with 75% of all Class 0+I and Flat SED sources found toward \(A_V > 8 \text{ mag} \) (black vertical dashed line). Stage 0+I sources (black hashed histogram) are still more strongly concentrated in regions of high extinction with 89% of them above \(A_V = 8 \text{ mag} \) and the MISFITS (red hashed histogram) are distributed evenly on either side of \(A_V = 8 \text{ mag} \) line. Figure 8 shows the distribution of bona fide Stage 0+I protostars and MISFITS in the Perseus molecular cloud. The background image is the extinction map with a 180° resolution and contours ranging from 2 to 41 in intervals of 4 mag. The black contour outlines the extinction map at the completeness limit of \(A_V = 2 \text{ mag} \) and the green contour shows where \(A_V = 8 \text{ mag} \). The yellow stars are Stage 0+I protostars. Sources that are filled cyan circles with an open star correspond to MISFITS that are undetected in HCO\(^+\) \(J = 3 \rightarrow 2 \) emission.
It is important to recall that the extinction maps are based on star counting and have much poorer spatial resolution than the HCO\(^+\) observations. High extinction is not just a reflection of the local core density. In fact, one might expect some MISFITS at high extinction, which would distort the mid-infrared SED, despite our efforts to correct for it. Indeed there are a few such objects in the histogram, but the main trend is for a higher HCO\(^+\) detection fraction in regions of higher large-scale extinction.

4.7. Properties of the MISFITS

We can explore trends in properties of the MISFITS or YSOs undetected in HCO\(^+\)\(J = 3 \rightarrow 2\). In Figure 9, we compare the number of MISFITS (black hashed histogram) to Class 0 + 1 and Flat SED YSOs that are detected in HCO\(^+\), and Stage 0+I protostars with strong HCO\(^+\) emission versus \(T_{\text{bol}}\) and \(L_{\text{bol}}\). In all cases, the distributions for Stage 0+I sources are skewed with respect to those of the MISFITS. The median values for \(T_{\text{bol}}\) and \(L_{\text{bol}}\) are 353 K and 0.43 \(L_\odot\) for Stage 0+I sources (detected above threshold), 774 K and 0.083 \(L_\odot\) for MISFITS, and 330 K and 0.41 \(L_\odot\) for YSOs detected at any level, respectively. In general, Class 0+I and Flat SED YSOs that are undetected in HCO\(^+\) have a factor of \(\sim 2\) higher \(T_{\text{bol}}\) and a factor of \(\sim 5\) lower \(L_{\text{bol}}\) than detected YSOs.

Figure 10 shows \(L_{\text{bol}}\) versus \(T_{\text{bol}}\) for all YSOs observed in HCO\(^+\) separated by Class as determined from \(\alpha\) (Class 0+I, Flat SED, and Class II are solid diamonds, squares, and circle points, respectively). Undetected YSOs or MISFITS are shown in color (Class 0+I, Flat SED, and Class III are red, green, and blue solid points, respectively) with an open star. Stage 0+I protostars are indicated by the yellow stars. The percent of YSO contamination defined as the number of MISFITS divided by the total surveyed in a bin is shown color coded from more (red) to less (yellow). Low \(< 17\%\) contamination is found where \(T_{\text{bol}} \lesssim 600\) K and \(L_{\text{bol}} \gtrsim 1\) \(L_\odot\). We further explore the percent of YSO contamination versus \(A_V\) in Figure 11. The contamination fraction is \(\sim 90\%\) at \(A_V < 4\) mag and decreases with increasing \(A_V\). The rise above \(A_V = 20\) mag is due to low number statistics.

5. SUMMARY

The goal of this work was to identify Stage 0+I sources (those with a substantial envelope of dense gas) among the larger sample of Class 0+I and Flat SED sources. To achieve this, we have surveyed for emission in the \(J = 3 \rightarrow 2\) line of HCO\(^+\) toward 546 sources in nearby clouds. The sample is based on the YSO lists for the combined c2d and Gould Belt surveys with Spitzer. It is focused on Class 0+I and Flat SED sources, but a few Class II sources were included.
surveyed sources represent 88% of the Class 0+I sources and 90% of the Flat SED sources in the full list of YSOs in M. Dunham et al. (2013).

If we apply a threshold integrated intensity of \(I_{MB} \geq 0.68 \) K km s\(^{-1}\) to define a Stage 0+I source, 72% of the Class 0+I and 48% of the Flat SED sources would be classified as Stage 0+I sources (Section 4.2). A few Class II sources were also detected, but these sources were originally classified as Flat or Class 0+I sources, so are very unrepresentative of the much larger group of Class II sources. If we exclude them, but extrapolate (modestly) to the full c2d plus Gould Belt sample, we predict 335 Stage 0+I sources in all the clouds.

Based on a 2 Myr timescale for Class II sources, the most appropriate timescale for Stage 0+I (the entire embedded phase) would be 0.54 Myr (Section 4.4 and Table 3). Other choices for how to calculate this number are certainly possible, and we have tried to supply enough information so that other calculations could be made.

There is a good, but imperfect, agreement between HCO\(^+\) detections and far-infrared or submillimeter continuum emission (Section 4.3), within the limited sample with both kinds of data available.

The HCO\(^+\) detection fraction increases with spectral index (\(\alpha \)) and bolometric luminosity (\(L_{bol} \)), and decreases with bolometric temperature (\(T_{bol} \)), all trends that one might expect (Section 4.5). In particular, nothing distinctive occurs within the Flat SED category, and about half of those sources qualify as Stage 0+I sources, suggesting that this category has no physical significance. Unlike the rather smooth dependence of the detection fraction on the usual evolutionary indicators, the strength of the HCO\(^+\) emission scatters widely but trends versus these possible evolutionary indicators are clearly significant. Other variables clearly affect the HCO\(^+\) emission strength, but the correlation of emission strength with \(L_{bol} \) is not significant.

The concentration of Class 0+I and Flat SED sources to regions of high extinction seen in our previous study (Heiderman et al. 2010) is strengthened when consideration is narrowed to Stage 0+I sources (Section 4.6).

YSOs undetected in HCO\(^+\) lie preferentially at higher \(T_{bol} \) and at lower \(L_{bol} \) than detected YSOs. The YSO contamination, defined as the number of undetected YSOs divided by the total surveyed, is low where \(T_{bol} \lesssim 600 \) K and \(L_{bol} \gtrsim 1 L_\odot \). The contamination fraction is \(>90\% \) at \(A_V < 4 \) mag and decreases with increasing \(A_V \).

We thank M. Dunham, J.-H. Chen, H.-J. Kim, J. Green, C. Salyk, M. Merello, N. Vutisalchavakul, I. Oliveira, M. Song, and E. Yu for assistance in obtaining observations at the CSO and A. Gusdorf, G. Siringo, and J. Forbrich for assistance at APEX. We also thank M. Carney and E. van Dishoeck for providing their HCO\(^+\) \(J = 4 \rightarrow 3 \) data for comparison in advance of publication and T. Huard for informative discussions. A.L.H. is supported by an NSF AAFP under award AST-1302978. N.J.E. is supported by NSF Grant AST-1109116 to the University of Texas at Austin. N.J.E. thanks the European Southern Observatory, Santiago, for hospitality during an extended visit when some of this work was done. This work was partially carried out in the Max-Planck Research Group Star formation throughout the Milky Way Galaxy at the Max-Planck-Institut für Astronomie.

APPENDIX A

RESULTS ON SOURCES

The full list of sources with HCO\(^+\) observations is given in Table 5, along with their spectral index, \(\alpha \), after extinction correction, as described in M. Dunham et al. (2013), and the resulting SED class.

APPENDIX B

NOTES ON CLOUDS

B.1 Aquila

Many spectra had two velocity components which could be separated in some positions, but not all. Emission also moved...
in velocity over a range of 3–10 km s\(^{-1}\). The two components are not apparent in the average spectrum in Figure 2; instead they blend into a single, rather broad (3.0 km s\(^{-1}\)) component (Table 4). The Spitzer data on this cloud were analyzed by Gutermuth et al. (2008), and a preliminary analysis of the Herschel data can be found in Bontemps et al. (2010).

B.2 Auriga

This cloud is also called the California Molecular Cloud. There are at least two velocity components, one near \(-1\) km s\(^{-1}\) and another near \(-4.5\) km s\(^{-1}\), along with a possible third component around 1.5 km s\(^{-1}\). Only the component centered near \(-1\) km s\(^{-1}\) is strong and fitted in the average spectrum in Figure 3. For the most part, each position shows one component, but in a few positions, both were present and

Figure 9. Number of MISFITS (undetected in HCO\(^+\) \(J = 3 \rightarrow 2\); hashed histogram) are compared to Class 0+1 and Flat SED YSOs that are detected in HCO\(^+\) \(J = 3 \rightarrow 2\) vs. \(T_{bol}\) and \(L_{bol}\). Distributions are skewed to the right. The median values for \(T_{bol}\) and \(L_{bol}\) are 353 and 0.43 K for Stage 0+I, 774 K and 0.083 \(L_\odot\) for MISFITS, and 330 K and 0.41 \(L_\odot\) for all detected YSO distribution, respectively.

Figure 10. Bolometric luminosity (\(L_{bol}\)) is shown vs. the bolometric temperature (\(T_{bol}\)) for all YSOs observed in HCO\(^+\) \(J = 3 \rightarrow 2\) separated by Class as determined from \(\alpha\) (Stage 0+I, Flat SED, and Class II are solid diamonds, squares, and circle points, respectively). Undetected YSOs or MISFITS are shown in color (Class 0+I, Flat SED, and Class II are red, green, and blue solid points, respectively) with an open star. Stage 0+I protostars are indicated by the yellow stars. The percent of YSO contamination defined as the number of MISFITS divided by the total surveyed in a bin is shown color coded from more (red) to less (yellow). Less contamination (≤17%) is found where \(T_{bol} \lesssim 600\) K and \(L_{bol} \lesssim 1\) \(L_\odot\).

Figure 11. Percent of YSO contamination defined as the number of MISFITS (undetected in HCO\(^+\) \(J = 3 \rightarrow 2\)) divided by the total number surveyed vs. \(A_V\). The contamination fraction is >90% at \(A_V < 4\) mag and decreases as \(A_V\) increases. The rise above \(A_V = 20\) mag is due to low number statistics.
Table 5
MISFITs Properties

Cloud Name	Source Name	R.A. (J2000)	Decl. (J2000)	$\alpha_{E.C.}$	$\int T_{mb} dV$ (K km s$^{-1}$)	$\int T_{mb} dV$ (K km s$^{-1}$)	V (km s$^{-1}$)	ΔV (km s$^{-1}$)	V (km s$^{-1}$)	ΔV (km s$^{-1}$)	A_V (Y/N)	SMM (Y/N)	Stg 0+I (Y/N)
Aquila	J180444.5−043706	18:04:44.52	−04:37:06.02	−0.10	<0.63
Auriga/CMC	J041002.6+400248	04:10:02.63	40:02:48.26	0.88	0.77 ± 0.10	...	−4.74 ± 0.05	0.88 ± 0.15
Cepheus 4	J203943.0 + 670830	20:39:42.96	67:08:30.12	−0.30	<0.55
Chamaeleon I	J110646.4−072232	11:06:46.49	−07:22:32.97	1.12	1.51 ± 0.14	3.07 ± 0.11	3.43 ± 0.05	1.42 ± 0.16	4.93 ± 0.01	0.88 ± 0.04	13.1	Y	Y
C^2A	J190148.0−365722	19:01:48.03	−36:57:22.22	1.01	0.98 ± 0.22
IC5146NW	J214722.7 + 473214	21:47:22.78	47:32:14.99	0.61	9.86 ± 0.20	...	4.07 ± 0.04	3.25 ± 0.11	8.7	Y	Y
Lupus III	J161027.4−390230	16:10:27.43	−39:02:30.22	−0.21	<1.18
Ophiuchus	J162704.1−242829	16:27:04.10	−24:28:29.86	−0.22	0.66 ± 0.10	...	3.28 ± 0.08	1.21 ± 0.23
Perseus	J032739.0 + 301303	03:27:39.08	30:13:03.15	2.46	5.18 ± 0.19	...	4.62 ± 0.03	1.60 ± 0.07	9.3	Y
Scorpius/OphN	J164658.2−093519	16:46:58.27	−09:35:19.76	0.61	<1.13	13.2
Scorpius/OphN	J162204.3−194326	16:22:04.35	−19:43:26.76	−0.01	<0.82	5.9
Serpens	J182844.9 + 005203	18:28:44.96	00:52:03.54	1.12	1.98 ± 0.17	7.80 ± 0.05	1.14 ± 0.12	7.5	Y	Y

Note: Table 5 is published in its entirety in a machine readable format. A portion is shown here for guidance regarding its form and content. Columns are: (1) Cloud name; (2) Source name; (3) HCO$^+$ observed source R.A. in J2000 coordinates; (4) HCO$^+$ observed source Decl. in J2000 coordinates; (5) Extinction corrected spectral index; (6) Integrated main beam HCO$^+$ line intensity, upper limits are computed as $\int T_{mb} dV + 2\times$ the uncertainty in $\int T_{mb} dV$; (7) Integrated main beam HCO$^+$ line intensity if the source has two observed points; (8) Central line velocity at source position; (9) Width of line; (10) Central line velocity measured if the source has double peaked emission; (11) Width of line if the source has double peaked emission; (12) Extinction (A_V) measured at source position; (13) Flag indicating that the protostar does (Y) or does not (N) have at least one observed photometry point in the far-infrared or submillimeter ($70\, \mu m < \lambda < 850\, \mu m$); (14) Flag indicating that the protostar meets (Y) or does not meet (N) the HCO$^+$ emission criteria to be categorized as a physical Stage 0+1 protostar. *A value of −999 for $\alpha_{E.C.}$ indicates the YSO is a known Class I source but does not have enough IR photometric points to calculate the spectral index.

(This table is available in its entirety in machine-readable form.)
two Gaussians were fitted. The Spitzer data were published by Broekhoven-Fiene et al. (2014) and Herschel imaging by Harvey et al. (2013). A single source was observed in Auriga North, and its spectrum in Figure 3 shows that it has a quite different velocity ~6.9 km s\(^{-1}\) from the main Auriga cloud.

B.3 Cepheus clouds

Most of these clouds tended to have a single velocity component in the range of 1–5 km s\(^{-1}\). Cepheus 1 had two components in some positions, both in the range of ~5 to ~3 km s\(^{-1}\), but these could also be self-absorbed spectra from a single component. We have fitted the average spectrum for Cepheus 1 with two components (Figure 3). The average spectra of the other two clouds with detections (Figure 3 for Cepheus 5; Figure 1 for Cepheus 3) show relatively narrow lines, and they were fitted by a single Gaussian (Table 4). Cepheus 5 had a line centered at ~7.8 km s\(^{-1}\), while the line in Cepheus 3 is centered at +2.5 km s\(^{-1}\). The Spitzer data for these clouds have been analyzed by Kirk et al. (2009). The YSOs in Cepheus 1 are associated with L1251A and L1251B. These regions have been analyzed in detail (Lee et al. 2006, 2007, 2010) showing that the HCO\(^+\) J = 3 → 2 spectrum is self-reversed toward the collection of YSOs, so the two components in our average spectrum are most likely not separate components but instead manifestations of a self-reversed profile.

B.4 Chamaeleon Clouds

The Cha I cloud showed two possible velocity features, but they were not very apparent in the average spectrum, which was not well fitted by a single Gaussian (Figure 1). However, attempts to fit two Gaussians did not produce believable results. The components were always close together and could be simply self-reversed profiles of a single component. The Cha II cloud had a single narrow component at the two positions with detections. The average spectrum is in Figure 3. The Spitzer data for Cha II were published by Alcalá et al. (2008) and Herschel data on Cha II have been analyzed by Spezzi et al. (2013).

B.5 Corona Australis

This cloud exhibits one primary velocity component, but some lines were self-absorbed and/or showed broad wings. The average spectrum (Figure 1) shows some structure, but only a single component could be easily fitted. The Spitzer data on this cloud have been published by Peterson et al. (2011), and a detailed analysis of the main sources with data from Herschel is presented by Lindberg et al. (2014).

B.6 IC5146

This region has two cloud sections, IC5146-NW and IC5146-E. IC5146-NW has a single velocity component centered around 4 km s\(^{-1}\). The average spectrum (Figure 2) was fitted with a single component, although there is clearly some non-Gaussian structure. The average spectrum for IC5146-E was fitted with two components, one at 6.5 km s\(^{-1}\), and stronger one at 8 km s\(^{-1}\). The Spitzer data have been published by Harvey et al. (2008).

B.7 Lupus

The Lupus region contains six clouds, usually denoted by roman numerals (Comerón 2008). The only source detected in HCO\(^+\) was in Lupus III (Figure 1). The velocity from that detection was used to set upper limits on the other sources. The Spitzer data were published by Merín et al. (2008).

B.8 Musca

No line was detected toward the Musca cloud, so the upper limits are based on the velocity range of \(^{13}\)CO emission in Vilas-Boas et al. (1994).

B.9 Ophiuchus

Many spectra had two velocity components which could be separated in some positions, but not all. Both components also moved in velocity over a range of 2.5–5 km s\(^{-1}\). The average spectrum (Figure 2) has been fitted with two components (Table 4), and there is also a shoulder on the high-velocity side of the spectrum. This cloud was mapped in CO and \(^{13}\)CO by Ridge et al. (2006), who provided fits to their cloud averaged spectra. The mean velocity for both species was 3.38 km s\(^{-1}\), with linewidths of 2.77 km s\(^{-1}\) for CO and 2.38 km s\(^{-1}\) for \(^{13}\)CO. Both linewidths are substantially larger than those of our individual components and may represent blends. Their average spectra are consistent with our two components, but they were too blended to fit separately.

B.10 Perseus

Two components are seen in the spectra of many positions. They are quite blended in the average spectrum (Figure 2), but two components could be fitted. This spectrum is broadly consistent with an average spectrum of \(^{13}\)CO in Ridge et al. (2006), which is however more blended. Their spectrum shows a third peak around 0 km s\(^{-1}\), which may appear weakly in our average spectrum. Ridge et al. (2006) also note a velocity gradient from east to west across the cloud.

B.11 Serpens

Many spectra had two velocity components (7.6 and 9.6 km s\(^{-1}\)), which could be separated in some positions, but not all. Both components also moved in velocity over a range of 7 to 8 and 8 to 10 km s\(^{-1}\), respectively. The average spectrum (Figure 2) was fitted with two components (Table 4) and there is a weak shoulder extending to higher velocity.

REFERENCES

Adams, F. C., Lada, C. J., & Shu, F. H. 1987, ApJ, 312, 788
Alcalá, J. M., Spezzi, L., Chapman, N., et al. 2008, ApJ, 676, 427
Alexander, R. D., & Armitage, P. J. 2009, ApJ, 704, 989
Andre, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122
Bontemps, S., André, P., Könyves, V., et al. 2010, A&A, 518, L85
Broekhoven-Fiene, H., Matthews, B. C., Harvey, P. M., et al. 2014, ApJ, 786, 37
Chen, H., Myers, P. C., Ladd, E. F., & Wood, D. O. S. 1995, ApJ, 445, 377
Comerón, F. 2008, in Handbook of star Forming Regions, Vol. II: The Southern Sky, ed. B. Reipurth (San Francisco, CA: ASP), 295
Crapsi, A., van Dishoeck, E. F., Hogerheijde, M. R., Pontoppidan, K. M., & Dutellemond, C. P. 2008, A&A, 486, 245
Dunham, M. M., Arce, H. G., Allen, L. E., et al. 2013, AJ, 145, 94
Dunham, M. M., Evans, N. J., II, Terebey, S., Dullemond, C. P., & Young, C. H. 2010, ApJ, 710, 470
Dunham, M. M., Stutz, A. M., Allen, L. E., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, et al. (Tucson, AZ: Univ. Arizona Press), 195
Dunham, M. M., & Vorobyov, E. I. 2012, ApJ, 747, 52
Evans, N. J., II, Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321
Greene, T. P., Wilking, B. A., Andre, P., Young, E. T., & Lada, C. J. 1994, ApJ, 434, 614
Gutermuth, R. A., Bourke, T. L., Allen, L. E., et al. 2008, ApJL, 673, L151
Harvey, P. M., Fallscheer, C., Ginsburg, A., et al. 2013, ApJ, 764, 133
Harvey, P. M., Huard, T. L., Jørgensen, J. K., et al. 2008, ApJ, 680, 495
Heiderman, A., Evans, N. J., II, Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019
Kirk, J. M., Ward-Thompson, D., di Francesco, J., et al. 2009, ApJS, 185, 198
Kraus, A. L., Ireland, M. J., Hillenbrand, L. A., & Martinache, F. 2012, ApJ, 745, 19
Lada, C. J., & Wilking, B. A. 1984, ApJ, 287, 610
Lee, J.-E., di Francesco, J., Bourke, T. L., Evans, N. J., II, & Wu, J. 2007, ApJ, 671, 1748
Lee, J.-E., di Francesco, J., Lai, S.-P., et al. 2006, ApJ, 648, 491
Lee, J.-E., Lee, H.-G., Shinn, J.-H., et al. 2010, ApJL, 709, L74
Lindberg, J. E., Jørgensen, J. K., Green, J. D., et al. 2014, A&A, 565, A29
Mamajek, E. E. 2009, in AIP Conf. Ser. 1158, Exoplanets and Disks: Their Formation and Diversity, ed. T. Usuda, M. Tamura, & M. Ishii (Melville, NY: AIP), 3
Merín, B., Jørgensen, J., Spezzi, L., et al. 2008, ApJS, 177, 551
Peterson, D. E., Caratti o Garatti, A., Bourke, T. L., et al. 2011, ApJS, 194, 43
Ribas, Á., Bouy, H., & Merin, B. 2015, A&A, 576, A52
Ribas, Á., Merín, B., Bouy, H., & Maud, L. T. 2014, A&A, 561, A54
Ridge, N. A., di Francesco, J., Kirk, H., et al. 2006, AJ, 131, 2921
Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmore, P. 2006, ApJS, 167, 256
Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Mamajek, E. E., & Naylor, T. 2014, in Protostars and Planets VI, ed. H. Beuther, et al. (Tucson, AZ: Univ. Arizona Press), 219
Spezzi, L., Cox, N. L. J., Prusti, T., et al. 2013, A&A, 555, A71
van Kempen, T. A., van Dishoeck, E. F., Salter, D. M., et al. 2009, A&A, 498, 167
Vilas-Boas, J. W. S., Myers, P. C., & Fuller, G. A. 1994, ApJ, 433, 96