Supplementary information

Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification

Yi-Yu Ke,† Vivek Kumar Singh,‡ Mohane Selvaraj Coumar,§ Yung Chang Hsu,† Wen-Chieh Wang,†
Jen-Shin Song,† Chun-Hwa Chen,† Wen-Hsing Lin,† Szu-Huei Wu,† John T. A. Hsu,† Chuan Shih,† and
Hsing-Pang Hsieh†,*

† Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
‡ Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
*To whom correspondence should be addressed: Phone, +886-37-246-166 ext. 35708; fax, +886-37-586-456; e-mail, hphsieh@nhri.org.tw
Contents

A. Figures

Figure S1. Structure alignment of the homology-modeled and DFG-in X-ray structure........S3

Figure S2. Homology model structure validated by ERRAT server..................................S4

Figure S3. Homology model structure validated by Profile-3D server.............................S4

Figure S4. Homology model structure validated by Ramachandran plot........................S5

Figure S5. Effect of ITD insert and D835 mutation to FLT3 DFG-in modeled structure.....S6

Figure S6. The IC₅₀ determination dose-response curve of BPR056 and BPR080........S7

Figure S7. Molecular dynamics simulation of DFG-in FLT3 in complex with two hits
(H-bond)..S7.

Figure S8. Aligned structures of the original X-ray ligand and docked ligand.............S8

B. Tables

Table S1. The percent FLT3 inhibition at 10 μM for screened compounds................S9

Table S2. Comparison of enrichment factor (EF) of our study with 5 recently reported
virtual screening experiments..S17

Table S3. Docking parameters used for the study..S18
Figure S1. 3D structure alignment of the homology-modeled DFG-in FLT3 structure to the X-ray structure of phosphorylase B kinase (PDB ID: 2V7J) bound to the ligand sunitinib.
Figure S2. Assessment of the DFG-in FLT3-modeled structure by ERRAT server. The arrows represent the active site residues in the protein model. The overall quality factor of the modeled structure improved after MD simulation.

Figure S3. Assessment of the DFG-in FLT3-modeled structure by Profile-3D server. The arrowed regions represent the active site residues in the protein model. The Verify score improved after MD simulation of the modeled structure.
Figure S4. Ramachandran plot of the homology modeled DFG-in FLT3 structure after MD simulation.

Plot statistics:

- Residues in most favoured regions [A,B,L]: 235, 90.0%
- Residues in additional allowed regions [a,b,l,p]: 21, 8.0%
- Residues in generously allowed regions [−a,−b,−l,−p]: 3, 1.1%
- Residues in disallowed regions: 2, 0.8%
- Number of non-glycine and non-proline residues: 261, 100.0%
- Number of end-residues (excl. Gly and Pro): 2
- Number of glycine residues (shown as triangles): 20
- Number of proline residues: 10
- Total number of residues: 293

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good quality model would be expected to have over 90% in the most favoured regions.
Figure S5. FLT3 (DFG-in) ITD insert site and D835 mutation location. Tyrosine kinase domain-1 (TK1, blue color); juxtamembrane domain (JM, red color) and ligand binding site (blue transparent surface).
Figure S6. The IC_{50} determination dose-response curve of BPR056 and BPR080, along with sorafenib.

Figure S7. Molecular dynamics simulation (20 ns) of DFG-in FLT3 in complex with two hits identified from VS. (A) H-bond graph for BPR056 (blue) and BPR0080 (red). (B) Ligand root mean square deviation (RMSD) graph for BPR056 (blue) and BPR080 (red).
Figure S8. Aligned structures of the original ligand conformation (green) present in 2Y7J and the docked ligand conformation (gray) of sunitinib in 2Y7J crystal structure. RMSD = 1.50Å, calculation done using Discovery studio 2.1.
Table S1. The top 97 compounds ranked by DOCK6.0/LigFit score and their percent FLT3 inhibition at 10μM.

Corporate ID	MW	Dock / Ligfit score	Inhibition %	Corporate ID	MW	Dock / Ligfit score	Inhibition %
BPR001(CSV0A031467)	500.559	-372/110	-0.90%	BPR050(CSV0A062560)	500.471	-356/104	0.40%
BPR002(CSV0A011296)	485.46	-369/107	1.70%	BPR051(CSV0C001836)	521.368	-356/96	0.90%
BPR003(CSV0A042562)	501.584	-369/101	0.50%	BPR052(CSV0C008541)	523.596	-356/109	6.00%
BPR004(CSV0A048785)	533.501	-369/108	0.80%	BPR053(CSV0A008714)	532.745	-355/108	-2.20%
BPR005(CSV0A013828)	523.431	-368/108	-2.50%	BPR054(CSV0A013730)	541.58	-355/105	-0.20%
BPR006(CSV0A014367)	481.637	-368/100	-2.70%	BPR055(CSV0A031501)	462.574	-355/100	-1.00%
BPR007(CSV0A051509) 546.541 -368/108 2.80% BPR056(CSV0A034160) 325.33 -355/101 82.10%
BPR008(CSV0A005771) 486.575 -367/98 0.10% BPR057(CSV0A034206) 533.545 -355/106 0.90%
BPR009(CSV0A035490) 525.628 -367/102 6.60% BPR058(CSV0A034595) 486.532 -355/103 2.60%
BPR010(CSV0A038176) 464.435 -367/101 2.50% BPR059(CSV0A043513) 486.454 -355/104 0.80%
BPR011(CSV0A029882) 545.641 -366/107 7.60% BPR060(CSV0A051510) 514.498 -355/107 0.90%
BPR012(CSV0A041534) 501.376 -366/104 2.10% BPR061(CSV0A059600) 479.477 -355/102 4.90%
BPR013(CSV0A008382) 469.504 -365/103 0.00% BPR062(CSV0A061707) 456.508 -355/108 0.80%
BPR021(CSV0A005350) 512.57 -362/100 13.20% BPR070(CSV0A048895) 500.905 -353/103 2.30%

BPR022(CSV0A034868) 508.99 -362/98 -2.20% BPR071(CSV0A061227) 522.013 -353/111 1.40%

BPR023(CSV0A019616) 538.564 -361/113 0.90% BPR072(CSV0A004079) 479.883 -352/101 0.70%

BPR024(CSV0A024759) 535.567 -361/114 0.60% BPR073(CSV0A026290) 479.883 -352/103 0.10%

BPR025(CSV0A032833) 476.545 -361/111 0.50% BPR074(CSV0A030936) 500.474 -352/109 0.20%

BPR026(CSV0A034205) 519.518 -361/107 1.50% BPR075(CSV0A045095) 540.624 -352/111 1.30%

BPR027(CSV0C001841) 504.473 -361/103 -0.20% BPR076(CSV0A053019) 543.646 -352/118 1.10%
BPR028(CSV0A009104) 519.562 -360/109 -0.60% BPR077(CSV0A055635) 468.56 -352/112 4.80%

BPR029(CSV0A043963) 508.516 -360/101 0.90% BPR078(CSV0A043498) 538.421 -351/116 1.30%

BPR030(CSV0B003578) 494.551 -360/102 0.30% BPR079(CSV0A015737) 524.375 -350/97 0.70%

BPR031(CSV0B028719) 436.446 -360/92 1.70% BPR080(CSV0A027968) 479.512 -350/105 41.60%

BPR032(CSV0C002695) 531.619 -360/117 2.50% BPR081(CSV0A034159) 390.4 -350/89 22.80%

BPR033(CSV0C002703) 544.409 -360/96 3.10% BPR082(CSV0A034596) 516.558 -350/104 1.00%

BPR034(CSV0C012196) 506.604 -360/105 0.90% BPR083(CSV0A034609) 482.587 -350/104 3.00%
Code	Compound																											
BPR035(CSV0A038787)	![Compound](image1.png)	544.743 -359/114 1.50% BPR036(CSV0A053548)	![Compound](image2.png)	538.605 -359/114 4.20% BPR037(CSV0A062559)	![Compound](image3.png)	516.514 -359/114 4.90% BPR038(CSV0A029878)	![Compound](image4.png)	507.871 -358/98 1.70% BPR039(CSV0A043865)	![Compound](image5.png)	517.425 -358/99 1.70% BPR040(CSV0A059009)	![Compound](image6.png)	464.482 -358/102 2.40% BPR041(CSV0A022916)	![Compound](image7.png)	526.51 -357/104 0.70% BPR084(CSV0A043957)	![Compound](image8.png)	456.889 -350/96 2.90% BPR085(CSV0A056184)	![Compound](image9.png)	500.575 -350/106 1.00% BPR086(CSV0A058884)	![Compound](image10.png)	525.571 -350/108 0.90% BPR087(CSV0A000015)	![Compound](image11.png)	508.71 -349/101 -0.60% BPR088(CSV0A019152)	![Compound](image12.png)	544.664 -349/118 0.10% BPR089(CSV0A024460)	![Compound](image13.png)	515.533 -349/104 0.90% BPR090(CSV0A028568)	![Compound](image14.png)	515.598 -349/111 -0.20%
Assay control compound	IC₅₀ (µM)	2 µM	0.1 µM																									
------------------------	----------	------	-------																									
Sorafenib	0.102	82.10%	45.20%																									
Table S2. Comparison of enrichment factor (EF) of our study with 5 recently reported virtual screening experiments

Screen method	Our model	J Chem Inf Model. 2011, (51): 755.	J Chem Inf Model. 2013 (53),809	ChemMedChem. 2014, (9): 953.	J Mol Graph Model. 2014, (53): 31	Bioorg Med Chem Lett. 2014 (5): 1261.
Total number of active molecules identified (hits identified)	2	3	1	7	5	2
Total number of molecules selected (no. selected)	97	25	24	151	357	50
Total number of active molecules (hits total)	2	3	1	7	5	2
Total number of molecules in database (no. Total)	125000	1125	77931	125000	200000	4000
Hit IC$_{50}$ range	2.3-10.7 μM	2-58 μM	14.4 μM	1.29-11.71 μM	0.83-1.12 μM	4.05-5.54 μM
Hit ratea	2.06	12	4.7	4.64	1.40	4
Enrichment factor (EF)b	1288.66	45.00	3247.13	827.81	560.22	80.00

aHit rate = (hits identified / no. selected); bEF = (hits identified / no. selected) / (hits total / no. total)
Docking parameters	Value
calculate_rmsd	yes
use_rmsd_reference_mol	yes
orient_ligand	yes
automated_matching	yes
max_orientations	3333
critical_points	yes
chemical_matching	yes
use_ligand_spheres	no
flexible_ligand	yes
min_anchor_size	50
pruning_use_clustering	yes
pruning_max_orients	10
pruning_clustering_cutoff	10
use_internal_energy	yes
internal_energy_att_exp	6
internal_energy_rep_exp	12
internal_energy_dielectric	4
use_clash_overlap	yes
clash_overlap	0.3
bump_filter	yes
max_bumps_anchor	12
max_bumps_growth	8
score_molecules	yes
contact_score_primary	yes
contact_score_secondary	no
contact_score_cutoff_distance	4.5
contact_score_clash_overlap	0.5
contact_score_clash_penalty	10
grid_score_secondary	yes
grid_score_rep_rad_scale	1
grid_score_vdw_scale	1
grid_score_es_scale	1

