Biological Effects and Clinical Applications of Dwarf Elder (Sambucus ebulus L): A Review

Marzie Jabbari, MD, PhD1, Babak Daneshfard, MD, PhDC2,3, Majid Enmiazey, MD, PhD1,4, Ali Khiveh, MD, PhDC1, and Mohammad Hashem Hashempur, MD, PhDD5,6

Abstract
Dwarf elder (Sambucus ebulus L) is one of the best known medicinal herbs since ancient times. In view of its benefits as a widely applicable phytomedicine, it is still used in folk medicine of different parts of the world. In addition to its nutritional values, dwarf elder contains different phytochemicals among which flavonoids and lectins are responsible for most of its therapeutic effects. Dwarf elder has been used for different ailments including: joint pains, cold, wounds, and infections. Nevertheless, recent evidence has revealed its potentials for making attempts at treating cancer and metabolic disorders. This review aimed to provide a comprehensive description of dwarf elder regarding its traditional uses and modern findings which may contribute to the development of novel natural-based therapeutic agents.

Keywords
Sambucus ebulus, dwarf elder, medicinal plants, phytotherapy, traditional Persian medicine

Received June 11, 2016. Received revised August 19, 2016. Accepted for publication February 24, 2017.

Sambucus ebulus is a perennial plant with an underground stem rhizome from which unbranched erect stems grow in large groups near each other to a height of 1 to 2 m. The leaves have 5 to 9 leaflets 15 to 30 cm long, with fetid smell, pinnate, and opposite to each other. The stems end in a corymb, 10 to 15 cm in diameter, with white (occasionally pink) flat-topped flowers (Figure 1). Its fruit is dark blue to
The image contains text about the traditional and folk use of Sambucus ebulus. Here is the conversion to a natural text representation:

Bioactive Constituents of Sambucus ebulus

Phytochemical compounds of *S. ebulus* have been reported in several studies. It is revealed that elderberries have considerable nutritional value due to their accumulation of sugars, fibers, vitamins, and minerals. Moreover, Sambucus plants store numerous secondary metabolites such as: anthocyanins, phytosterols, flavonoids, phenols, triterpenes, tannins, iridoid glycosides, cardiac glycosides, derivatives of caffeic acid (like volatile substances), chlorogenic acid, ursolic acid, and lectins.

Lectins are considered to be amongst the most studied bioactive compounds of Sambucus. Ebulins, which are protein-synthesis-inhibitory lectins, have been separated from different parts of *S. ebulus* such as leaves (ebulin 1), fruits (ebulin f), and rhizomes (ebulins r1 and r2). Other ingredients of *S. ebulus* seeds are α-linolenic, linoleic acid, oleic acid, and palmitic acid as essential polyunsaturated fatty acids (PUFAs).

Traditional and Folk Use of Sambucus ebulus

As an ancient plant, berries from *S. ebulus* have been used as food or medicine since 5000 years in Italy and France. Traditionally, various parts of *S. ebulus* have been used to treat different ailments such as rheumatoid arthritis, fever, infections, bites, and sore throat. It has been known as *Khaman* and *Palem* in traditional Persian medicine and recommended as an analgesic for different painful conditions and various bone and joint disorders such as: joint pain, fracture, and dislocation. *S. ebulus* is also suggested for uterine diseases, burns, gout, dental ailments, dropsy, fistula, and bite. Furthermore, in Iran’s folklore medicine, *S. ebulus* is used for several therapeutic purposes such as arthritis, sore throat, and bee bites. It has also been recommended as a diuretic and purgative agent.

In addition to Iran, Sambucus plants play an important role in folk medicine of other countries from Western Europe to Middle East. In Turkish settlements—due to its wide range of applications—it is called *hekimana* in Anatolia, which means “mother physician.” These applications comprise external use of *S. ebulus* leaves for rheumatic pain, abscess, wound, stroke, snakebite, edema, common cold, eczema, high fever, and against piles on foot. In addition, the leaves are used internally as a purgative, diuretic and/or diaphoretic as well as against hemorrhoids and stomachache as the folk medicine of this area. In Turkey, before fruit maturation of *S. ebulus*, fresh leaves are collected and cooked with milk for 20 minutes. Then, its poultice is used externally for rapid recovery of wounds.

In Bulgarian folk medicine, the berries, rhizomes, and less commonly: the flowers of *S. ebulus* are used as diuretic, antiseptic, tonic, and purgative agents. Also in Romania, *S. ebulus* is used for rheumatic pains and cold. Moreover, it is known as a bacteriostatic and diuretic agent in Romanian folk medicine.

Sambucus ebulus in Biomedical Researches

Preclinical Studies

Antioxidant Activity. Phenolic and polyphenolic compounds as natural antioxidants are attributed to the therapeutic effects of most of medicinal herbs. The main role of such compounds is protection against oxidative stress caused by reactive oxygen species which are known to be involved in disorders like cancer and hypertension. Hydroalcoholic extract of *S. ebulus*, which contains considerable amounts of flavonoids and phenol, has shown an effective protection against lung toxicity induced by gamma irradiation, posing its lipid peroxidation effect. This antioxidant activity has also been observed in methanol extracts of *S. ebulus* fruit, which have shown hydrogen peroxide scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effects. As a rich-in-anthocyanin plant, *S. ebulus* possesses considerable total polyphenol content and total antioxidant capacity. In comparison to the others, *S. ebulus* has the highest level of total antioxidant capacity and total polyphenol content in anthocyanin-containing plants. Its free radical scavenging effect, as a confirming evidence for its antioxidant activity, has been proved in an in vitro study. Moreover, antioxidant activity of *S. ebulus* makes it a protective agent against teratogenicity of albendazole. In an animal study, co-administration of *S. ebulus* extract with albendazole decreased the rate of skeletal malformations in Wistar rats.

Anti-Inflammatory Effect. *Sambucus ebulus* extract has been used traditionally to treat inflammatory conditions such as sore throat, joint pains, and rheumatic pains. Its anti-inflammatory

Figure 1. A photograph of *Sambucus ebulus* from an uncultivated site in Fouman (Gilan province), North of Iran (photo by Marzie Jabbari).
potential has been proved where extract of its flowers and leaves effectively suppressed the biosynthesis of tumor necrosis factor–α (TNF–α), interleukin 1-α (IL1-α), and interleukin 1-β (IL1-β). Additionally, TNF-stimulated expression of vascular cell adhesion molecule 1 (VCAM-1)—an associated molecule with chronic inflammatory disorders—in human umbilical vein endothelial cells, could be inhibited by leaf extract of S ebulus. This inhibitory effect is attributed to ursolic acid, which plays an anti-inflammatory role by interaction with COX-2 pathway. S ebulus fruit extract has also exhibited a significant nitric oxide—an indicator of inflammation—scavenging activity. This property, which is correlated with its total flavonoid content, could be another explanation for its anti-inflammatory effect. An animal study in rats revealed that methanol and n-hexane extract of S ebulus have a considerable inhibitory effect on carrageenan-induced paw edema in comparison with diclofenac.

Analgesic Effect. There has, of course, been conducted yet another study indicating the significant antinociceptive effect of S ebulus in rats. Such analgesic activity, which is not linked to opioid system, may be related either to interfacing with serotonergic system, tachykinin pathway, and α-2 adrenocaptor, or endogenous glucocorticoid release.

Antimicrobial Activity. There is an increasing concern toward antimicrobial resistance as a global health care issue. This would naturally push us to find out new solutions for this terrible growing problem. As a natural antimicrobial agent, S ebulus methanol extract has emanated antibacterial effect on methicillin-resistant Staphylococcus aureus. Its acceptable minimum inhibitory concentration against Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumonia, and Bacillus subtilis (which is attributed to the flavonoid content of the extract) proves good antimicrobial potential of S ebulus. S ebulus chloroform extract is also effective on eradicating helicobacter pylori which is manifested as a pathogenic factor for peptic ulcer disease. This anti H. pylori effect of S. ebulus is due to the potent urease inhibitory activity of its flavonoids. Another study shows antibacterial activity of S. ebulus fruit extract on Pseudomonas fluorescens and Enterococcus faecalis which makes S. ebulus a good candidate for production of new natural-based drug besides its being an antifungal agent.

Anticancer. It is known that tumor cells release proangiogenic factors to induce a vascular network for oxygen and nutrient supply of tumor mass. Based on this mechanism of tumor development, application of immunoconjugates for antivascular therapy against tumor neovascularity, is deemed an anticancer approach. Such immunoconjugates have been constructed by ribosome-inactivating proteins (ebulin) of S ebulus. In addition, S ebulus ethyl acetate extract—as an effective anticancer agent—has demonstrated high toxicity against human hepatocarcinoma and human colon carcinoma cancer cell lines.

Wound Healing Activity. One percent concentration of S ebulus methanol extract has shown a considerable wound healing activity in both linear and circular excisions in animal model. This property, which is related to "quercetin 3-O-glucoside" as a flavonoid derivative, is supported by histopathological examination of wound models.

Antidepressant. Attempts to control the depression is an ongoing process; depression is expected to be in the second rank of global disease burden by 2020. In an animal study, fruit extract of S ebulus evinced a significant antidepressant effect in both tail suspension tests and forced swimming test in mice. This property is supposed to be the effect of polyphenolic ingredients like flavonoids.

Giardial Activity. Beside excellent in vitro antigiardial activity of S ebulus, its methanol extract has had an extremely significant antigiardial activity on Giardia lamblia cysts.

Scolicidal Activity. Most of scolicidal agents used to treat hydatid cysts are not safe enough because of their possible side effects. In an in vivo study, S ebulus fruit methanol extract demonstrated a significant scolicidal activity in different concentrations (P < .0001). Therefore, it could potentially be used as an effective scolicidal drug in hydatid cyst surgery.

Neuroprotective Effect. Neuroprotective effect of S ebulus has been established where its methanol extract exhibited a prominent antiemetic activity. This effect is attributed to free radicals scavenging, plasma antioxidans increasing, and protein modification inhibitory effects of S ebulus.

Clinical Studies

Paederus Dermatitis. Anti-inflammatory effect of S ebulus fruit extract has been found to be effective in treating paederus dermatitis. This irritant contact dermatitis has significantly responded to anti-inflammatory, wound healing, and analgesic effect of palemolin (5% fruit extract of S ebulus in ethanol 70%) in a randomized double-blind placebo-controlled trial.

Metabolic Disorders. Sambucus ebulus fruit infusion has been found effective on metabolic disorders related to impaired lipid profile and oxidative stress. A study, in which 21 healthy participants consumed 200 mL S ebulus fruit infusion daily for 1 month, brought out a significant potential for decreasing total cholesterol (15.04%), triglycerides (14.92%), and low-density lipoprotein (24.67%) besides increasing high-density lipoprotein/low-density lipoprotein ratio (42.77%). It improves total thiol levels and serum antioxidant capacity. This anti-inflammatory and antioxidative activity could potentially be preventive for oxidative stress-related disorders, such as type 2 diabetes and metabolic syndrome.

Knee Osteoarthritis. Sambucus ebulus gel (10% aqueous extract) showed significant effect on treatment of knee osteoarthritis. In
a recent study, 79 patients with knee osteoarthritis were allocated in 2 parallel groups of a randomized double-blind active-controlled clinical trial. Topical S ebulus gel or 1% diclofenac gel were prescribed for the patients, 3 times a day for a period of 4 weeks. The patients were assessed by visual analogue scale for pain and Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. At the end of intervention period, visual analogue scale score, total and pain Western Ontario and McMaster Universities Osteoarthritis Index scores were significantly lower in the S ebulus group when compared with diclofenac group. Therefore, it seems that S ebulus gel could be introduced as an effective alternative topical treatment for patients with knee osteoarthritis.

Toxicity and Side Effects
Sambucus ebulus raw berries are considered to be poisonous while excess consumption of the other parts might well lead to toxicity. For instance, high-dose consumption of S ebulus fruits may induce vomitory toxicity, especially in children. Some genuses of Sambucus have poisonous leaves and stems in a way that contact dermatitis may be caused by their leaves. Stomach upset also could happen by the fruit of these species. Yet, this toxicity is at such a low level that could be prevented by cooking. It has proven that short-term heating could eliminate potential risks of toxic lectins of S ebulus without any significant reduction in polyphenol and antioxidant contents.

Nephrotoxicity and hepatotoxicity have also been observed to be induced by S ebulus ethyl acetate extract in mice model. Still, no state of being venomous has been reported after 2 mg/kg intraperitoneal injection in this model. Lethal dose 50% (LD50) of its rhizome methanol extract is 600 mg/kg.

Conclusions
As an ancient herb, S ebulus has a long history of nutritional and medicinal applications and is still used in different countries in our modern time. Its high potential for therapeutic applications due to multiple bioactive phytochemicals would naturally foreshadow a brilliant future for this medicinal herb. S ebulus is supposed to be a protective agent against cancer and cardiovascular events. Although any material—including medicinal herbs—could potentially be harmful, S ebulus is relatively safe when used in the proper manner. Of course, there is an obvious need for further rigorous preclinical and clinical investigations to evaluate its safety and efficacy in order to provide promising evidence for its wide range of therapeutic effects.

Acknowledgments
This study was a part of a PhD thesis by Dr Marzie Jabbari. The authors would like to thank Dr Reza Sanaye for linguistic editing in addition to proofreading.

Author Contributions
The work presented in this article was carried out through collaboration between all authors. MJ and MHH made the initial hypothesis. MHH and MJ defined the research theme. MJ, ME, AKH, and BD contributed toward data gathering. MJ, MHH, and BD drafted the manuscript. All authors revised and approved the final version of the manuscript.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by a grant from Fasa University of Medical Sciences.

ORCID iD
Babak Daneshfard, MD, PhD http://orcid.org/0000-0001-6729-9113

Ethical Approval
Ethical approval is not required for this study as no human subjects were involved.

References
1. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(suppl 1):69-75.
2. Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206-220.
3. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod. 2003;66:1022-1037.
4. Golshani SA, Daneshfard B, Mosleh G, Salehi A. Drugs and pharmacology in the Islamic Middle Era. Pharm Hist (Lond). 2015;45:64-69.
5. Heyadri M, Hashemipour MH, Ayati MH, Quinterd N, Nimrouzi M, Heyadri M. The use of Chinese herbal drugs in Islamic medicine. J Integr Med. 2015;13:363-367.
6. Roozbeh J, Hashemipour MH, Heydari M. Use of herbal remedies among patients undergoing hemodialysis. Iran J Kidney Dis. 2013;7:492-495.
7. Hashemipour MH, Heydari M, Mosavat SH, Heydari ST, Shams M. Complementary and alternative medicine use in Iranian patients with diabetes mellitus. J Integr Med. 2015;13:319-325.
8. Schweiger S, Zeller I, Pötzeltbauer P, et al. Identification and pharmacological characterization of the anti-inflammatory principal of the leaves of dwarf elder (Sambucus ebulus L.). J Ethnomed. 2011;133:704-709.
9. Heywood VH, ed. Flowering Plants of the World. New York, NY: Oxford University Press; 1993.
10. Chirigiu L. Physico-chemical research on Sambucus ebulus L. species [dissertation]. Craiova, Romania; University of Medicine and Pharmacy of Craiova; 2014.
11. Westwood J. Albion: A Guide to Legendary Britain. London, England: Grafton; 1985.
12. Vlachojannis J, Cameron M, Chrubasik S. A systematic review on the sambuci fructus effect and efficacy profiles. *Phytother Res*. 2010;24:1-8.

13. Yesilada E, Gürbüz İ, Toker G. Anti-ulcerogenic activity and isolation of the active principles from *Sambucus ebulus* L. leaves. *J Ethnopharmacol*. 2014;153:478-483.

14. Zahmanov G, Alipieva K, Simova S, Georgiev MI. Metabolic differentiations of dwarf elder by NMR-based metabolomics. *Phytochem Lett*. 2015;11:404-409.

15. Duymus¸ HG, Go¨ger F, Bas¸er KHC. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. *Food Chem*. 2014;155:112-119.

16. Bubulica M-V, Chirigiu L, Popescu M, et al. Analysis of sterol compounds from *Sambucus ebulus*. *Chem Nat Compounds*. 2012;48:520-521.

17. Pieri V, Schweiger S, Ellmerer EP, Stuppner H. Iridoid glycosides and fatty acid regiodistribution in triacylglycerols of seed oils of *Sambucus nigra* L. and *Sambucus ebulus* L. *Toxins*. 2009;12:447.

18. Ahmadiani A, Fereidoni M, Semnanian S, Kamalinejad M, Saremi S. Antinociceptive and anti-inflammatory effects of *Sambucus ebulus* rhizome extract in rats. *J Ethnopharmacol*. 1998;61:229-235.

19. Ferreras JM, Citores L, Iglesias R, Jiménez P, Girbès T. Use of ribosome-inactivating proteins from *Sambucus* for the construction of immunotoxins and conjugates for cancer therapy. *Toxins*. 2011;3:420-441.

20. Girbès T, Citores L, Iglesias R, et al. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from *Sambucus ebulus* L. leaves. *J Biol Chem*. 1993;268:18195-18199.

21. Citores L, de Benito FM, Iglesias R, et al. Presence of polymerized and free forms of the non-toxic type 2 ribosome-inactivating protein ebulin and a structurally related new homodimeric lectin in fruits of *Sambucus ebulus* L. *Planta*. 1998;204:310-317.

22. Jimenez P, Cabrero P, Basterrechea JE, Tejero J, Cordoba-Diaz D, Girbes T. Isolation and molecular characterization of two lectins from dwarf elder (*Sambucus ebulus* L.) blossoms related to the Sam n1 allergen. *Toxins*. 2013;5:1767-1779.

23. Dull FV, Oroian I, Vodnac D, Socaciu C, Pintea A. Lipid classes and fatty acid regiodistribution in triglycerides of seed oils of two *Sambucus* species (*S. nigra* L. and *S. ebulus*) L. *Molecules*. 2013;18:11768-11782.

24. Mariotti Lippi M, Bellini C, Mori Secci M. Palaeovegetational reconstruction based on pollen and seeds/fruit data from a Bronze Age archaeological site in Tuscany (Italy). *Plant Biosystems*. 2010;144:902-908.

25. Martin L, Jacomet S, Thiebault S. Plant economy during the Neolithic in a mountain context. The case of “Le Chenet des Pierres” in the French Alps (Bozel-Savoie, France). *Veg Hist Archaecobot*. 2008;17:113-122.

26. Petkov V. Bulgarian traditional medicine: a source of ideas for phytopharmacological investigations. *J Ethnopharmacol*. 1986;15:121-132.

27. Mirhaydar H. *Plant Information: Plant Usage in Disease Treatment*. Tehran, Iran: Farhang Islami Press; 1994.

28. Khorasani MA. *Makhtzan al Advieh*. Tehran, Iran: Bavardaran Press; 2001.

29. Biruni AR. *Seydaneh fit Teb*. (Persian translated by Mozaffarzadeh B). Tehran, Iran: Iranian Academy of Persian Language and Literature Press; 2004.

30. Tonkaboni M. *Tohfat ol Moeminnin* Rewritten by Rahimi R, Shams Ardekan MI, Farjadmand F. Tehran, Iran: Nashr Shahr Press; 2007.

31. Ognyanov I, Popov A, Ivanova B, et al. *Sambucus ebulus* Linnaeus, phytochemical and pharmacological screening. *Rivista Ital Essenze, Profumi, Pianta Officinali, Aromi, Saponi, Cosmetici Aerosol*. 1979;61:114-118.

32. Zargar A. *Medicinal Plants*. Tehran, Iran: Tehran University Press; 1995.

33. Sütar IP, Akkol EK, Yalçın FN, Koca U, Keleş H, Yesilada E. Wound healing potential of *Sambucus ebulus* L. leaves and isolation of an active component, quercetin 3-O-glucoside. *J Ethnopharmacol*. 2010;129:106-114.

34. Tasinov O, Kiselova-Kaneva Y, Ivanova D. *Sambucus ebulus*—from traditional medicine to recent studies. *Scripta Sci Med*. 2013;45:36-42.

35. Rodin S, Butu A, Petreache P, et al. Evaluation of the antimicrobial and antioxidant activity of *Sambucus ebulus* extract. *Farmacia*. 2015;63:751-754.

36. Chirigiu L, Chirigiu R, Tircomnicu V, et al. GC-MS analysis of chemical composition of *Sambucus ebulus* leaves. *Chem Nat Compounds*. 2011;47:126-127.

37. van Acker SA, Trimp MN, Griffioen DH, et al. Structural aspects of antioxidant activity of flavonoids. *Free Radic Biol Med*. 1996;20:331-342.

38. Karami M, Ale-Nabi SS, Nosrati A, et al. The protective effect of *Sambucus ebulus* against lung toxicity induced by gamma irradiation in mice. *Pharm Biomed Res*. 2015;1:48-54.

39. Ebrahimzadeh M, Nabavi S, Nabavi S. Antioxidant activities of methanol extract of *Sambucus ebulus* L. flower. *Pak J Biol Sci*. 2009;12:447.

40. Ebrahimzadeh MA, Ehsanifar S, Eslami B. *Sambucus ebulus* eluarensis fruits: a good source for antioxidants. *Pharmacogn Mag*. 2009;5:213.

41. Ivanova D, Tasinov O, Kiselova-Kaneva Y. Improved lipid profile and increased serum antioxidant capacity in healthy volunteers after *Sambucus ebulus* L. fruit infusion consumption. *Int J Food Sci Nutr*. 2014;65:740-744.

42. Shahrbandy K, Hosseinzadeh R. In vitro antioxidant activity of *Polygonum hyrcanicum*, *Centauraea depressa*, *Sambucus ebulus*, *Mentha spicata* and *Phytolacca americana*. *Pak J Biol Sci*. 2007;10:637-640.

43. Lak E, Ranjbar R, Najafzadeh H, et al. Protective effect of *Sambucus ebulus* extract on teratogenicity of albendazole. *Middle-East J Sci Res*. 2011;8:606-610.

44. Yesilada E, Üstün O, Sezik E, Takaishi Y, Ono Y, Honda G. Inhibitory effects of Turkish folk remedies on inflammatory cytokines: interleukin-1α, interleukin-1β and tumor necrosis factor α. *J Ethnopharmacol*. 1997;58:59-73.

45. Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ. Ursolic acid inhibits cylooxygenase-2 transcription in human mammary epithelial cells. *Cancer Res.* 2000;60:2399-2404.
46. Nabavi S, Ebrahimzadeh M, Nabavi S, et al. Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacognosyonline. 2008;2:560-567.
47. Ebrahimzadeh MA, Nabavi S, Nabavi S, et al. Nitric oxide radical scavenging potential of some Elburz medicinal plants. Afr J Biotechnol. 2013;9:5212-5217.
48. Ebrahimzadeh MA, Mahmoudi M, Karami M, Saeedi S, Ahmadi AH, Salimi E. Separation of active and toxic portions in Sambucus ebulus. Pak J Biol Sci. 2007;10:4171-4173.
49. Olivier C, Williams-Jones B, Doize B, et al. Containing global antibiotic resistance: ethical drug promotion in the developing world. Antimicrob Resist Dev Cries. 2010;505-524.
50. Salehzadeh A, Asadpour L, Naemi AS, Houshandmand E. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. Afr J Tradit Complement Altern Med. 2014;11:38-40.
51. Mahboubi A, Kamalinejad M, Shalviri M, et al. Evaluation of antibacterial activity of three Iranian medicinal plants. Afr J Microbiol Res. 2012;6:2048-2052.
52. Yeşilada E, Gürbüz İI, Shibata H. Screening of Turkish anti-ulcerogenic folk remedies for anti–Helicobacter pylori activity. J Ethnopharmacol. 1999;66:289-293.
53. Korman MG, Bolin TD, Engelman JL, Pianko S. Sucralfate as an alternative to bismuth in quadruple therapy for Helicobacter pylori eradication. Helicobacter. 1997;2:140-143.
54. Nabatı F, Mojab F, Habibi-Rezaei M, Bagherzadeh K, Amanlou M, Yousefi B. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity. Daru. 2012;20:72.
55. Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fátima Â. An overview on the potential of natural products as ureases inhibitors: a review. J Adv Res. 2015;6:35-44.
56. Benítez J, Ferreras JM, Muñoz R, et al. Cytotoxicity of an ebulin I-anti-human CD105 immunotoxin on mouse fibroblasts (L929) and rat myoblasts (L6/9) cells expressing human CD105. Med Chem. 2005;1:65-71.
57. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353-364.
58. Jiménez P, Tejero J, Cordoba-Diaz D, et al. Ebulin from dwarf elder (Sambucus ebulus L.): a mini-review. Toxins. 2015;7:648-658.
59. Saravi SS, Shokrzadeh M, Shirazi FH. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. Afr J Biotechnol. 2013;12:3360-3365.
60. Mahmoudi M, Ebrahimzadeh M, Dooshan A, Arimi A, Ghasemi N, Fathiazad F. Antidepressant activities of Sambucus ebulus and Sambucus nigra. Eur Rev Med Pharmacol Sci. 2014;18:3350-3353.
61. An L, Zhang Y-Z, Yu N-J, et al. Role for serotonin in the antidepressant-like effect of a flavonoid extract of Xiaobuxin-Tang. Pharmacol Biochem Behav. 2008;89:572-580.
62. Anjaneyulu M, Chopra K, Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food. 2003;6:391-395.
63. Rahimi-Esboei B, Ebrahimzadeh MA, Gholami Sh, Falah-Omrani V. Anti-giardial activity of Sambucus ebulus. Eur Rev Med Pharmacol Sci. 2013;17:2047-2050.
64. Gholami S, Rahimi-Esboei B, Ebrahimzadeh MA, Pourhajibagher M. In vitro effect of Sambucus ebulus on scolices of Hydatid cysts. Eur Rev Med Pharmacol Sci. 2013;17:1760-1765.
65. Fathi H, Ebrahimzadeh MA, Ziar A, Mohammadi H. Oxidative damage induced by retching: antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol Toxicol. 2015;31:231-239.
66. Ebrahimzadeh MA, Rafati MR, Damchi M, Golpur M, Fathiazad F. Treatment of paeders dermatitis with Sambucus ebulus lotion. Iran J Pharm Res. 2014;13:1065-1071.
67. Meigs JB, Larson MG, Fox CS, Keyan JF, Jr, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes. 2007;30:2529-2535.
68. Jabbari M, Hashempur MH, Razavi SZ, Shahraki HR, Kamalinejad M, Emtriazy M. Efficacy and short-term safety of topical dwarf elder (Sambucus ebulus L.) versus diclofenac for knee osteoarthritis: a randomized, double-blind, active-controlled trial. J Ethnopharmacol. 2016;188:80-86.
69. Shokrzadeh M, Saeedi Saravi S. The chemistry, pharmacology and clinical properties of Sambucus ebulus: a review. J Med Plants Res. 2010;4:95-103.
70. Jimenez P, Cabrero P, Basterrechea JE, et al. Effects of short-term heating on total polyphenols, anthocyanins, antioxidant activity and lectins of different parts of dwarf elder (Sambucus ebulus L.). Plant Foods Hum Nutr. 2014;69:168-174.
71. Saravi SS, Shokrzadeh M. Anti-inflammatory, toxic effects, biochemical and pathological analysis in presence or lack of vitamins C and E, and cytotoxicity of n-hexane, methanolic and ethyl acetate extracts of Sambucus ebulus. Toxicol Lett. 2009;189: S166-S167.
72. Saeedi Saravi S, Shokrzadeh M. Histopathological and biochemical disorders following administration of Sambucus ebulus extract on mice and rats and preventive effects of vitamins C and E on renal and hepatic disorders. Pharmacogn Mag. 2008;5:131-135.