Analysis of PALB2 Gene in BRCA1/BRCA2 Negative Spanish Hereditary Breast/Ovarian Cancer Families with Pancreatic Cancer Cases

Ana Blanco1,10, Miguel de la Hoya2, Ana Osorio3, Orland Diez4, Maria Dolores Miramar5, Mar Infante6, Cristina Martinez-Bouzas7, Asunción Torres8, Adriana Lasa9, Gemma Llort10, Joan Brunet11, Begona Graña12, Pedro Perez Segura13, Maria Jose Garcia13, Sara Gutiérrez-Enríquez4, Ángel Carracedo1, María-Isabel Tejada7, Eladio A. Velasco6, María-Teresa Calvo5, Judith Balmana14, Javier Benitez15, Trinidad Caldés2, Ana Vega1,9

1 Fundación Pública Galega de Medicina Xenómica-Servicio Galego de Saúde, Grupo de Medicina Xenómica-Universidade de Santiago de Compostela, Spanish Network on Rare Diseases (CIBERER), Instituto de Investigaciones Sanitarias de Santiago, Santiago de Compostela, A Coruña, Spain, 2 Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Madrid, Spain, 3 Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Spain and Spanish Network on Rare Diseases (CIBERER), Madrid, Spain, 4 Oncogenetics Laboratory, University Hospital Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain, 5 Sección de Genética, Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain, 6 Cancer Genetics, Instituto de Biología y Genética Molecular de la Universidad de Valladolid (UVA) y del Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain, 7 Laboratorio de Genética Molecular-Servicio de Genética, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain, 8 Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain, 9 Unidad de conseño genético, Instituto Oncològico del Valles, Sabadell, Terrassa, Spain, 10 Hereditary Cancer Program, Catalan Institute of Oncology, Giróna Biomedical Research Institute, Girona, Spain, 11 12 Oncologia Médica, Unidade de alto risco en cancro-Consello Xeneítico, Hospital Arquitecto Marcide, Área Sanitaria de Ferrol, A Coruña, Spain, 13 Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain, 14 Medical Oncology Department, University Hospital Vall d'Hebron, Barcelona, Spain, 15 Human Genetics Group and Genotyping Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Spain and Spanish Network on Rare Diseases (CIBERER), Madrid, Spain

Abstract

Background: The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3–4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer.

Methods: 132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification.

Results: Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop) previously reported, and c.3362del (p.Gly1121ValfsX3) which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%.

Conclusions: The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s) involved in the development of breast/pancreatic cancer families is required.
Introduction

Hereditary breast cancer accounts for approximately 5–10% of all breast cancer cases. Mutations in the two main susceptibility genes, BRCA1 and BRCA2, together with mutations in a number of other high-penetrance genes such as TP53 and PTEN, account for 20% of familial breast cancer cases [1–3]. For the remaining 80%, the genetic factors are largely unknown and they are likely to involve mutations in moderate and low penetrance susceptibility genes, plausibly acting together with some environmental or other hereditary factors. Apart from breast and ovarian cancer, BRCA1 and BRCA2 carriers might be at higher risk for additional malignancies such as prostate, colorectal, familial melanoma and pancreatic cancers.

Pancreatic cancers are the fourth most common cause of cancer-related deaths in the Western world. Approximately 5% to 10% of individuals with pancreatic cancer report a history of pancreatic cancer in a close family member. In addition to this, several known genetic syndromes have been shown to be associated with an increased risk of pancreatic cancer. Thus, germline mutations in the BRCA2, p16/CDKN2A, STK11, and PRSS1, that are responsible for familial breast cancer, Familial atypical multiple melanoma, Peutz-Jeghers and Familial pancreatic, respectively, have been clearly associated with an increase risk of pancreatic cancer [4–7]. Additionally, some studies have described pancreatic cancer developing among individuals with HNPCC [8,9].

The PALB2 (partner and localizer of BRCA2) gene was identified by searching for novel components of endogenous BRCA2-containing complexes [10]. PALB2 supports BRCA2 stability and determines its localization in the nucleus after DNA damage [10]. Relocation of PALB2 and BRCA2 to damaged chromatin is regulated by BRCA1. These three proteins form a complex in which PALB2 acts as a bridge between BRCA1 and BRCA2 [11]. This complex is critical for the initiation of homologous recombination in the DNA-damage response [11,12]. In cells depleted of PALB2 the DNA repair pathway dependent on the BRCA1/2 is disrupted [10,11]. Immediately after PALB2 was discovered, evidence showed that it was also a Fanconi anemia gene, known as FANCN [13,14]. Biallelic inactivation mutations in PALB2/FANCN cause Fanconi anemia subtype N, characterized by a severe predisposition to pediatric malignancies such as Wilms tumor, medulloblastoma, AML and neuroblastoma [14]. Interestingly, the gene underlying the D1 subtype of Fanconi anemia, FANCD1 [15], was found to be BRCA2 and biallelic mutations in BRCA2/FANCD1 originate a phenotype with high risk of childhood malignancies, very similar to that produced by PALB2/FANCN biallelic mutations. This supports the proposal that PALB2 is important for BRCA2 tumor suppression activity [16].

As in other Fanconi anemia genes, monoallelic mutations in PALB2 have been associated with increased breast cancer risk [3]. Thus, PALB2 monoallelic mutations have been identified in approximately 1% of hereditary breast cancer families globally, as summarized by Tischkowitz and Xia [16]. It has recently become clear that the PALB2 gene should not only be considered as a susceptibility gene for breast cancer but also for pancreatic cancer. This pancreatic association was based on the identification of a PALB2 mutation by exomic sequencing and the subsequent PALB2 analysis in additional familial pancreatic cancer patients that revealed a prevalence of 3.1% [17]. A similar prevalence (3.7%) was found by Slater et al [18] in European patients with familial pancreatic cancer, whereby PALB2 carriers also had a history of breast cancer.

Given these findings, we aimed to determine the prevalence of PALB2 mutations in a Spanish population of BRCA1/BRCA2-negative breast/ovarian cancer families with either a personal or family history of pancreatic carcinoma.

Materials and Methods

Patients

Index cases from 132 BRCA1/BRCA2 mutation-negative unrelated Spanish breast/ovarian cancer families with a personal history of both breast and pancreatic cancer, or a family history with pancreatic cancer cases, were screened for mutations within the entire coding sequence and splicing sites as well as large genomic rearrangements of PALB2 gene. Patient and family characteristics are summarised in Table 1. Families were enrolled from 11 different Spanish centres (Table S1). Ethical committee approval and informed consent for all participants in the study were obtained.

All index cases had been previously screened for point mutations and large rearrangements in BRCA1 and BRCA2 genes. All were found to be negative.

Mutation analysis of the PALB2 gene

Mutational analysis of PALB2 gene included the complete coding sequencing and flanking intron-exon boundaries along with the analysis of genomic rearrangements, as previously described by Blanco et al [19].

Nomenclature and databases

Sequences used for PALB2 nomenclature were obtained from the NCB1 RefSeq database (NG_007406.1 for genomic, NM_024675.3 for mRNA and NP_078951.2 for protein) (http://www.ncbi.nlm.nih.gov). Standardized nomenclature was reported considering the A of the ATG initiation codon of the coding DNA Reference Sequence as nucleotide position +1.

Potential consequences of missense substitutions were obtained using the prediction software PolyPhen-2 (Polymorphism Phenotyping-2, see http://genetics.bwh.harvard.edu/pph2/), SIFT (Sorting Intolerant From Tolerant, see http://sift.jcvi.org/) and Align-GVGD (Granham score difference, see http://aggd.iarc.fr/) tools. Native alignments of each algorithm were used (see Text S1 for a brief description of the tools).

CEU-population data from 1000 Genomes Project database (http://www.1000genomes.org/) was used to obtain allelic frequency of the identified variants in our samples.

Results

We sequenced all exons and splicing boundaries of PALB2 gene. We also carried out MLPA analysis in 132 index cases from BRCA1/BRCA2-negative families with breast and/or ovarian cancer with either a personal or familial history of pancreatic cancer. Two mutations were identified by sequencing analysis, the
A (p.Tyr551Stop) located at exon 4 with the result of a premature stop codon, and the frameshift c.3362del (p.Gly1121ValfsX3) in exon 13, which is predicted to generate a translation-stop three codons downstream from the first affected amino acid. The PALB2 truncating mutation c.1653T>A (p.Tyr551Stop) was identified in a woman diagnosed with an infiltrating ductal carcinoma (IDC), negative for estrogen receptor (ER), progesterone receptor (PR) and HER2 at the age of 36. Her mother had been diagnosed with breast cancer at 48 and with pancreatic cancer at 72 years of age. Her maternal uncle had been diagnosed with pancreatic cancer at 50 years of age (Figure 1A). Unfortunately, it was not possible to obtain samples from family members to confirm the mutation in the paternal branch of the proband. The frameshift mutation in exon 13, c.3362del produces a stop codon in position 1123 (p.Gly1121ValfsX3) that would cause the loss of the 63 amino acids from the N-terminal PALB2 region. Other truncated mutations in the last codons of the gene have already been described in breast/pancreatic cancer families [3], [20]. It has been shown that residues 836 to 1186 of the PALB2 protein are part of the WD40 repeats C-terminal domain which associates with the N-terminus of BRCA2 [12], [13].

Table 1. **BRCA1/BRCA2** mutation-negative Spanish high risk breast/ovarian cancer families with pancreatic cancer cases.

Type of case	N' of cases (n = 132)	Mean age at cancer diagnosis	Additional family history
Personal history of BC and PC	3	BC:43.6	PC in FDR0
Personal history of PC and familiar history of BC and PC	4	PC:65	PC in FDR1
Personal history of OC and familiar history of PC	9 (1BiOC)	OC:43.6	PC in FDR3
Personal history of PrC and familiar history of BC and PC	2	PrC:54.5	PC in FDR1
Personal history of BC and familiar history of PC	BC diagnosed <50	BC diagnosed >50	
		92 (13BiBC (1+leukemia, 1+melanoma; 1+OC), 1 MBC, 1+CCR)	
		BC:39.2	PC in FDR25 (1+BC)
		PC in FDR58.8	PC in SDR50
		PC in SDR: 63.8	BC in FDR: 31 (2 BiBC)
		BC in SDR: 26 (1 BiBC, 1 MBC)	OC in FDR: 1
		BC in SDR: 77	BC in FDR: 2
		BC in SDR: 2 (1 BiBC)	OC in SDR: 1
		BC diagnosed >50	
		22 (4 BiBC, 1MBC, 1+OC, 1+endometrium)BC:58.6	
		BC:58.6	PC in FDR: 9 (1+BC)
		PC in FDR: 64.1	BC in FDR: 12 (1+BC)
		PC in SDR: 65.7	BC in FDR: 15 (1 BiBC, 1 MBC, 1+PC)
		BC in SDR: 15	OC in FDR: 1
		OC in SDR: 1	OC in SDR: 1

BC: Breast cancer; **PC**: Pancreatic cancer; **OC**: Ovarian cancer; **BiOC**: Bilateral Ovarian cancer; **PrC**: Prostate cancer; **MBC**: Male Breast cancer; **BiBC**: Bilateral Breast Cancer; **CCR**: Colorectal cancer; **FDR**: First degree relative; **SDR**: Second degree relative.

DOI:10.1371/journal.pone.0067538.t001
cancer present in the family were skin, stomach and CNS in paternal aunts (Figure 1B).

In addition to these two mutations, sequence analysis revealed another 21 different \textit{PALB2} variants and polymorphisms (Table 2), one in the 5'UTR region, 4 in introns and 16 in exons (12 missense and 4 silent coding variants). From the total number of variants identified, seven were novel (c.110G>A (p.Arg37His), c.212-180T>G, c.232G>A (p.Val78Ile), c.262C>T (p.Leu88Phe), c.1431T>C (p.Glu478Lys), c.2587-59T>C, c.2837C>G (p.Ala946Gly)) and observed only once in our samples, whereas the other variants had been previously reported \cite{3}, \cite{19}, \cite{21}, \cite{22}.

The results of bioinformatic predictions for intronic and missense variants are represented in Table 3. Four of the missense variants, c.1010T>C (p.Leu337Ser), c.2816T>G (p.Leu939Trp), c.2837C>G (p.Ala946Gly) and c.2993G>A (p.Gly998Gln), were predicted to likely affect \textit{PALB2} protein function by all the tested algorithms. Variants c.2816T>G (p.Leu939Trp) and c.2837C>G (p.Ala946Gly) are not present in CEU 1000 Genome Project samples, whereas 1010T>C (p.Leu337Ser) and 2993G>A (p.Gly998Gln), have a 2% frequency in CEU population (Table 2). For variant c.2816T>G (p.Leu939Trp), a similar frequency in controls and cases was observed \cite{22}–\cite{24}. For the missense variant c.110 G>A (p.Arg37His) two of the three prediction programs considered the variant as deleterious, whereas only one prediction tool considered variants c.2014 G>C (p.Glu672Gln), c.2590 C>T (p.Pro864Ser) and 2794 G>A (p.Val932Met) as deleterious (see Table 3). The bioinformatic splicing analyses showed consensus site score variations for variants c.110 G>A (p.Arg37His) (three programs), c.2837C>G (p.Ala946Gly) (two programs) and c.2993G>A (p.Gly998Gln) (one program). A destruction of a cryptic splice site was predicted for variants c.47G>A and c.2794G>A (p.Val932Met) by three and two programs, respectively, as well as an increase in the score of a cryptic sites by all programs for the variant c.2794G>A (p.Val932Met) and by two programs for the variant c.2590C>T (p.Pro864Ser).

\section*{Discussion}

Mutations in \textit{PALB2} gene were originally associated with an increased risk for breast cancer and later, with pancreatic cancer. We analyzed a large series of hereditary breast/pancreatic cancer families analysed for \textit{PALB2} mutations. We identified two germline truncating mutations, the nonsense c.1653T>A (p.Tyr551Stop) located at exon 4 and the novel frameshift mutation c.3362del (p.Glu1121ValfsX3) in exon 13. These mutations were considered to be pathogenic, since they all create a stop codon that is predicted to cause a truncation of the \textit{PALB2} protein. The nonsense mutation c.1653T>A (p.Tyr551Stop) had been previously reported in a Fanconi anemia patient as well as in a familial breast cancer case \cite{13}, \cite{25}. Truncating mutations in \textit{PALB2} are rare in individuals without cancer. In fact, they had not been identified in 1084 healthy individuals analysed \cite{3}. In our series, c.1653T>A (p.Tyr551Stop) and c.3362del (p.Glu1121ValfsX3) were identified in index cases diagnosed with breast cancer under 50 years of age and at least one first degree relative diagnosed with pancreatic cancer. No ovarian cancer was present in these families. Considering these two \textit{PALB2} variants as causal mutations, the prevalence of \textit{PALB2} mutation in our BRCA1/BRCA2 breast and pancreatic cancer series is 1.5% (2/132). Previous studies of
breast/pancreatic cancer families have described prevalences from 0% (77 families analysed in Studler et al [26], 45 in Adank et al [27], 29 in Guirroz et al [28] and 28 in Harinck et al [29]), 2.1% (Hofstatter et al [24], 2 mutations in 94 families), to 4.8% (Peterlongo et al [20], 3 mutations in 62 families) reviewed in Table 4. Considering these studies with our data, the global prevalence of PALB2 mutation in breast/pancreatic cancer families is 1.5% (7 mutations in 467 families).

We recently, estimated a PALB2 mutation prevalence of 0.75% for Spanish breast/ovarian cancer families with at least one male breast cancer case [19]. Although we identified twice as many carriers in families with pancreatic cancer cases than in families with male breast cancer cases, both prevalences are similar to the 1% reported for families with breast cancer unselected for other cancers [3], [30], [31]. Importantly, for most of the breast/pancreatic cancer series analysed, index cases were breast cancers. Similarly, in our study only 7 from the 132 index cases were pancreatic cancer. The selection of index cases could therefore be introducing a bias in the estimate of the prevalence of PALB2 mutations in these families.

The selection of a gene to be included in a routine genetic test would be, in part, based on the risk it confers. However, the risk associated with deleterious mutations in genes like PALB2 is not easily determined since deleterious alleles are extremely rare in the population, and the number of mutation carriers in published studies are small [32]. Mutations in PALB2 gene were originally associated with a moderate (2-3 fold) increase risk for breast cancer [3]. As higher risks were increasingly suggested, at least for specific mutations [33], [34], the inclusion of this gene in hereditary breast cancer tests would be justified.

In our study both breast tumors from our PALB2 mutant breast cancer patients displayed a more aggressive tumor phenotype, including triple-negative disease, higher tumor grade (c.3362del, p.Gly1121ValfsX3). It has been shown that some PALB2-associated breast cancers display a more aggressive tumor phenotype, including triple-negative disease, higher tumor grade and higher Ki67 expression [35]. Thus, tumors of the 1592delT PALB2 mutation carriers presented triple negative phenotype more often (54.5%, P<0.0001) than those of other familial (12.2%) or sporadic (9.4%) breast cancer patients [35]. In fact, nearly 40% of the PALB2-associated breast tumors identified to date displayed a triple-negative phenotype, regardless of the specific PALB2 mutation [16]. This representation of triple negative tumors, more akin to BRCA1- than BRCA2-related tumors, could be related to

NUCLEOTIDE CHANGE*	PROTEIN CHANGE	Name of SNP	AA	AB	BB	A (A%)	B (B%)	A%	B%	
S’ upstream sequence	c.-47G->A	-	rs8053188	127	5	0	259(98.1)	5(1.9)	98	2
EXON 3	c.110G->A	p.Arg37His	rs202194596	131	1	0	263(99.6)	1(0.4)	100	0
INTRON 3	c.212-58A->C	-	rs80291632	123	9	0	255 (96.6)	9(3.4)	96	4
EXON 4	c.232G->A	p.Val78Ile	-	131	1	0	263(99.6)	1(0.4)	100	0
EXON 5	c.2587-59T	-	rs4554034	131	1	0	263(99.6)	1(0.4)	98	2
INTRON 6	c.1194G->A	p.Asp219Gly	-	131	1	0	263(99.6)	1(0.4)	100	0
EXON 7	c.1653T->A	p.Tyr551Stop	rs118203997	131	1	0	263(99.6)	1(0.4)	100	0
EXON 8	c.2590C->T	p.Leu88Phe	-	131	1	0	263(99.6)	1(0.4)	98	2
EXON 9	c.212-180T->C	-	rs80291632	123	9	0	255 (96.6)	9(3.4)	96	4
EXON 10	c.2587-59T	-	rs4554034	131	1	0	263(99.6)	1(0.4)	100	0
EXON 11	c.2587-59T	-	rs4554034	131	1	0	263(99.6)	1(0.4)	100	0
EXON 12	c.2587-59T	-	rs4554034	131	1	0	263(99.6)	1(0.4)	100	0
EXON 13	c.2587-59T	-	rs4554034	131	1	0	263(99.6)	1(0.4)	100	0

*Allelic frequency is the percentage of n/N, where n is the number of minor alleles and N is the total number of alleles.

doi:10.1371/journal.pone.0067538.t002
Table 3. Results of bioinformatic analysis for PALB2 variants.

Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	ProximalCryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation
Location, SS, Distance	Splice Signal Detection	Proximal Cryptic/De novo (%) Variation

The table reports score modifications due to the detected variants in PALB2 (for greater clarity, when the variants didn’t change the score, the corresponding tool is not indicated). Proximal cryptic sites are indicated with the corresponding tool, when the variants led to de novo site it is also indicated. N/A = not applicable as the change is synonymous or intronic. Location indicates exon/intron, SS stands for splice site and distance to the nearest splice site is indicated in base pairs.

aCpDNA analysis was performed. No additional products in the carrier sample compared to control samples has been identified (data not shown).

doi:10.1371/journal.pone.0067538.t003
the nature of the interaction and/or certain functional similarities between PALB2 and BRCA1 [11], [12], or a direct transcriptional activation of the estrogen receptor by PALB2 as has been shown for PALB2 [11], [12], or a direct transcriptional activation of the estrogen receptor by PALB2 as has been shown for BRCA1 [36]. However, larger numbers of PALB2-related tumors will need to be studied before any firm conclusions can be drawn.

As shown in Table 3, different prediction tools gave contradictory results. For instance, missense variant c.656 A>G (p.Asp219Gly) and c.2590 C:T (p.Pro864Ser) were predicted as C65 likely to be pathogenic) by A-GVGD and as Benign and Tolerated by Polyphen and Sift. Prediction of individual variants can be sensitive to the alignment used; both the number and type of orthologues aligned at the mutation site can affect prediction of pathogenicity [37]. Since we used default alignments for each tool, we cannot rule out that the different outcomes we have for these variants is related to this. However, an optimum alignment is difficult to identify and is likely to vary depending on the variant tested [37]. It has been previously shown that the accuracy of the result improves when multiple algorithms give the same prediction [38]. Considering this as well as such consensus predictions for all consensus sites described by Cartegni et al [40], 11 bases for the 5’ site (from the 3 last exonic to the 8 first intronic bases) and 14 bases for the 3’ site (from the 12 last intronic to the first 2 exonic bases), would have reliable predictions with these bioinformatic tools [39]. In our study, this would mean that the unique reliable prediction is for variant c.110 G>A (p.Arg37His), at the second exonic base from the 3’ site. However, the reduction in the score predicted by the algorithms, all lower than 10%, and the absence of variations near cryptic splice sites would suggest that c.110 G>A (p.Arg37His) is not a variant producing a major impact in splicing process. The RNA analysis of the variant confirmed this prediction (Table 3).

Conclusions

In summary, we found that PALB2 mutations occur with a prevalence of 1.5% in a population of BRCA1/2-negative breast cancer patients specifically selected from a personal and/or familiar history of pancreatic cancer. This is not much different from the prevalence described for families not selected for the presence of pancreatic cancer. However, we cannot rule out a higher prevalence of 1.5% in a population of BRCA1/2-negative breast cancer patients specifically selected from a personal and/or familiar history of pancreatic cancer. However, we cannot rule out a higher prevalence of pancreatic cancer index cases.

PALB2 mutations seem to explain only a small fraction of the clustering of both pancreatic and breast cancer. It is therefore, crucial that future research aims to identify other gene(s) that are involved in the development of familial breast/pancreatic cancer cases.

Supporting Information

Table S1 Participating centers and families from Spain. (DOCX)

Text S1 This document summarizes the meanings of scores of bioinformatic programs used. (DOCX)
Acknowledgments

We are grateful to the families for their cooperation and to the clinical personnel involved in aspects of recruitment and clinical data collection. We thank Anna Tenes and Miriam Masas for technical assistance.

Author Contributions

Conceived and designed the experiments: AB AV. Performed the experiments: AB AV. Analyzed the data: AB AV. Contributed reagents/materials/analysis tools: MH AO OD MDM MI CMB AT AL GL J. Brunet BG MPS MJG SGE AC MIT EAV MTC J. Balka J. Benitez TC. Wrote the paper: AB AV.

References

1. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, et al. (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689.
2. Walsh T, King MC (2007) Ten genes for inherited breast cancer. Cancer Cell 11:103–105.
3. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, et al. (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167.
4. Giardiello FM, Breminger JD, Terremette AC, Goodman SN, Petersen GM, et al. (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119:1447–1453.
5. Goldstein AM, Fraser MC, Strowning JP, Hussussian CJ, Ranade K, et al. (1993) Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4a mutations. N Engl J Med 333:979–974.
6. Lovenfelt AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, et al. (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 328:1433–1437.
7. Whitcomb DC, Goetz MC, Preston RA, Furey W, Sossehinneri MJ, et al. (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145.
8. Abraham SC, Wu TT, Klimstra DS, Finn LS, Lee JH, et al. (2001) Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol 159:1619–1627.
9. Yamamoto H, Itoh F, Nakamura H, Fukushima H, Sasaki S, et al. (2001) Genetic and clinical features of human pancreatic ductal adenocarcinoma with widespread microsatellite instability. Cancer Res 61:3139–3144.
10. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, et al. (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22:719–729.
11. Zhang F, Ma J, Wu J, Ye L, Cai H, et al. (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19:524–529.
12. Sy SM, Huen MS, Zhu Y, Chen J (2009) PALB2 regulates recombinational repair through a co-factor association and oligomerization. J Biol Chem 284:18302–18310.
13. Xia B, Dorumon JC, Ameziane N, de Vries Y, Roosmans MA, et al. (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161.
14. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, et al. (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164.
15. Hovdeog NG, Taniguchi T, Olson S, Cox B, Waisz Q, et al. (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609.
16. Tischkowitz M, Xia B (2010) PALB2/FANCC - recombining cancer and Fanconi anemia. Cancer Res 70:7353–7359.
17. Jones S, Hruban RH, Kaminsky M, Borges M, Zhang X, et al. (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217.
18. Slater EP, Langer P, Nienycz E, Strauch K, Butler J, et al. (2010) PALB2 mutations in European pancreatic cancer families. Clin Genet 78:490–494.
19. Blanco A, de la Hoya M, Balmaña J, Ramon y Cajal T, Teule A, et al. (2012) Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat 132:307–315.
20. Peterlongo P, Catucci I, Pasquini G, Verderio P, Peissel B, et al. (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71:2222–2229.
21. Casadei S, Norequist BM, Waloh T, Stray S, Mandell JB, et al. (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71:2222–2229.
22. Sy SM, Huen MS, Zhu Y, Chen J (2009) PALB2 regulates recombinational repair through a nuclear partner, PALB2. Mol Cell 22:719–729.
23. Rahman N, Scott RH (2007) Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum Mol Genet 16:R60–R66.
24. Hoflikker EW, Domchek SM, Miron A, Garber J, Wang M, et al. (2011) PALB2 mutations in familial breast and pancreatic cancer. Fam Cancer 10:225–231.
25. Tsichlowski M, Sabaghian N, Hamel N, Borgida A, Rosner C, et al. (2009) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137:1103–1106.
26. Stadler ZK, Sato-Mullen E, Sabaghian N, Simon JA, Zhang L, et al. (2011) Germline PALB2 mutation analysis in breast-pancreas cancer families. J Med Genet 48:529–532.
27. Adak MA, van Mil SE, Gille JL, Waisz Q, Meijers-Heijboer H, et al. (2011) PALB2 analysis in BRCA2-like families. Breast Cancer Res Treat 127:357–362.
28. Ghiorzo P, Pensotti V, Forinari G, Sciallero S, Battistuzzi, et al. (2012) Contribution of germline mutations in the BRCA2 and PALB2 genes to pancreatic cancer in Italy. Fam Cancer 11:41–47.
29. Haninck F, Klaajt I, van Mil SE, Waisz Q, van Os TA, et al. (2012) Routine testing for PALB2 mutations in familial pancreatic cancer families and breast cancer families with pancreatic cancer is not indicated. Eur J Hum Genet 20:577–579.
30. Cao AY, Huang J, Hu Z, Li W, Ma ZL, et al. (2009) The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early-onset breast cancer or affected relatives. Breast Cancer Res Treat 114:475–482.
31. Balca G, Sensi E, Lombardi G, Rencolla M, Bevilacqua G, et al. (2010) PALB2: a novel inactivating mutation in a Italian breast cancer family. Fam Cancer 9:331–336.
32. Southey MC, Teo ZL, Dowty JG, Odefrey FA, Park DJ, et al. (2010) A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 12:R109.
33. Rahman N, Caparu M, Sabaghian N, Li L, Liang X, et al. (2012) Rare germline mutations in PALB2 and breast cancer risk: a population-based study. Hum Mutat 33:674–680.
34. Heikkinen T, Karkkanen I, Aaltonen K, Mäne RL, Heikila P, et al. (2009) The breast cancer susceptibility mutation PALB2 (1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 15:3214–3222.
35. Honek AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, et al. (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res 9:R83.
36. Rahman N, Scott RH (2007) Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum Mol Genet 16:R60–R66.
37. Williams S (2012) Analysis of in silico tools for evaluating missense variants. National Genetics Reference Laboratory (Manchester).
38. Cha P, Duraisamy S, Miller PJ, Newell JA, McBride C, et al. (2007) Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MSH2, MECPI2, and tyrosinase (TYR). Hum Mutat 28:683–693.
39. Houdayer C, Caus Moncoutoir V, Krieger S, Barrois M, Benett F, et al. (2012) Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat 33:1220–1238.
40. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonct mutations that affect splicing. Nat Rev Genet 3:283–298.