All multicellular organisms host microbial communities in and on their bodies, and these microbiomes can have major influences on host biology. Most research has focused on the oral, skin, and gut microbiomes, whereas relatively little is known about the reproductive microbiome. Here, we review empirical evidence to show that reproductive microbiomes can have significant effects on the reproductive function and performance of males and females. We then discuss the likely repercussions of these effects for evolutionary processes related to sexual selection and sexual conflict, as well as mating systems and reproductive isolation. We argue that knowledge of the reproductive microbiome is fundamental to our understanding of the evolutionary ecology of reproductive strategies and sexual dynamics of host organisms.

The Microbiome Revolution and the Reproductive Microbiome

Animals and plants live and evolve in a world dominated by microbes, and host a diversity of microbial communities in and on their bodies. A recent explosion in research on host-associated microbial communities (i.e., microbiota and/or microbiomes, see Glossary) is revolutionising biology. While earlier research typically considered microorganisms from a pathological perspective, it is now widely accepted that the relationship between host and microbes spans a continuum, from detrimental to beneficial. Through their influence on host health, physiology, development, and behaviour [1,2], microbiomes can be seen as an integral part of the host phenotype, and potentially also the host hologenome (e.g., the hologenome concept [3], but see [4]). While considerable attention has been paid to the role of oral, skin, and gut microbiomes in host ecology, evolution, and fitness, less is known about the reproductive microbiome (Box 1). This is surprising given longstanding knowledge of microbes in male and female reproductive systems (e.g., [5]), most notably in the context of sexually transmitted infections (STIs) [6], and more recent DNA-sequencing studies demonstrating the presence of dynamic microbial communities in reproductive tissues [7], especially the vagina [8,9]. Thus, the reproductive microbiome represents an outstanding challenge in the study of host-associated microbial communities.

Patterns of variation have been studied for some female reproductive microbiomes, due in part to an interest in understanding mother–child microbial transfer. In humans, microbiome composition varies across the female reproductive tract (e.g., vagina, cervix, uterus, fallopian tubes, and follicular fluid [9,10]). Intriguingly, the human vaginal microbiome is a relatively low-diversity environment, dominated by bacteria from the genus Lactobacillus [7,9], whereas, in other mammals, lactobacilli rarely constitute >1% of the vaginal microbiome [11–13]. Several hypotheses have been proposed to explain the uniqueness of the human vaginal microbiome, including differences in reproductive physiology, disease risk, and diet [14,15]. The female reproductive microbiome can be highly dynamic. For example, in primates, the vaginal microbiome changes with female age and life-history phase, menstruation, and pregnancy [7,15]. Intra- and interindividual variability has also been reported for the vaginal microbiome of mice, although factors influencing this variation are currently unclear (e.g., variation is not associated with oestrus cycling) [13]. These findings are revolutionising our understanding of the female reproductive system and reproductive health, and have changed the perception of the female reproductive tract as a sterile environment.

Less attention has been paid to the male reproductive microbiome. However, the ejaculate in a range of taxa is known to host microorganisms [16]. High-throughput sequencing studies have shown...
that human ejaculates are typically characterised by low biomass microbial communities [7], thus, requiring special care during sample collection and processing to avoid erroneous results [17]. In humans, the semen microbiome is more diverse (greater species richness) and exhibits greater species evenness than that of the vagina [7], although the two communities do share taxa. A reproductive microbiome has also been described from the seminal fluid of mice [18] and the human penis [19].

Here, we review evidence for the potential impact of reproductive microbiomes for host fertility and fitness, and discuss the functional implications of these impacts for sexual selection, sexual conflict, mating systems and strategies, and reproductive isolation. We also consider the microbial perspective (Box 2), because a full understanding of microbial community assembly, succession, and function requires consideration of the fitness interests of members of the microbiome. While reproductive microbiomes occur across the animal and plant kingdoms, and indeed are likely to have critical implications for both animal and plant hosts, most empirical work to date has focussed on dioecious, sexually reproducing animals with internal fertilisation. Therefore, we focus most of our discussion on these taxa, although the arguments proposed will have broad generality.

Box 1. Defining the Reproductive Microbiome

In the broadest sense, the reproductive microbiome can be defined operationally as the microbiome, including bacteria, viruses and uncellular algae, protozoans and fungi, living in or on any structure, organ, fluid, or tissue of a host that typically makes contact with the gametes (or gamete analogues, e.g., pollen or gametophytes) or reproductive tract or organs of another individual through mating, spawning, or pollination. This captures the microbiomes associated with the reproductive system of a host, involved at any point in the reproductive process, from gamete production and release (e.g., ejaculation) and up to the point of fertilisation, including the microbiomes of male and female reproductive tracts, gametes, and reproductive fluids, as well as genitalia, intromittent organs and sperm transfer structures, (e.g., pedipalps of spiders, hectocotyli of cephalopods, aedeagi of insects, gonopods of millipedes, claspers of sharks and rays, gonopodium of Poeciliidae, and hemipenes of lizards and snakes), and spermatozoa.

This definition includes species that release gametes into the external environment, such as external fertilisers, wind- and vector-pollinated angiosperms, fern spores released in water, and animals that release sperm packages (e.g., spermatophores) on substrate for female uptake, as well as species where fertilisation is mediated by other organisms (e.g., pollination via animal vectors and externally fertilising fish that spawn within the gills of mussels, e.g., European bitterlings). In these cases, the reproductive microbiome reflects the microbiome associated with a set of released gametes, from which there is potential for members of the microbiome to colonise gametes of the opposite sex.

While most research is currently focussed on a few host species, this broad definition enables us to develop arguments and hypotheses of broad generality. As we develop an understanding of the structural and functional diversity of reproductive microbiomes, more refined definitions may begin to emerge, with a narrower focus and more specialised to the biology of different systems. Such definitions might benefit from identifying the host and/or site of the microbiome (e.g., the human reproductive microbiome [7], the vaginal microbiome of primates [11], or the microbiome of copulatory organs of spiders [108]).

An important challenge in the study of reproductive microbiomes is the limited knowledge that we have of these microbial communities. Currently, it is generally unclear how reproductive microbiomes are established or maintained, as well as the function they may have in relation to host mating dynamics and reproductive processes. Furthermore, due to the prevalence of microbiome mixing and chance events (see Box 2) it is unclear to which degree reproductive microbiomes represent native assemblages or more transient, random assemblages, and, in some instances, there is significant contribution from a range of sources, such as the external environment (e.g., microbiome of gametes released into the environment and external genitalia) and other body sites of the host. In many instances, the structure of reproductive microbiomes may be the result of both random and deterministic processes, which may lead to spatiotemporal dynamics in these microbiomes. Consideration of these ecological processes may also lead to greater clarity in our understanding and definition of reproductive microbiomes in the future.
on the health and survival of a range of host taxa [6,20,21](Table 1). Mounting evidence indicates that Impact of the Reproductive Microbiome on Host Reproductive Success

A modified metacommunity framework is useful for understanding what shapes the composition of the microbiome [109]. Metacommunity dynamics assume that the composition of a local patch (i.e., a microbiome) is shaped by both local interactions and immigration from other microbiomes, as well as the external environment. Immigration from other microbiomes is likely to have a particularly important role in shaping reproductive microbiomes, given their inevitable large scale and, often frequent, mixing as a result of transmission during mating. Mixing will increase with increasing mating rates or increases in multiple mating by individuals, and is also greater in females than males. Coupled with the fluctuating selection pressures imposed both by changes in microbiome composition and within-host physiological status, the structure (and function) is likely to vary considerably through time [88]. The propensity for extremely rapid evolution of microbes is also likely to have a major role in shaping these ecological dynamics, which in turn will drive evolutionary change [110].

Arguably, one of the most important implications of a highly compositionally dynamic microbiome is that a ‘holobiont’ or hologenome’ perspective, which assumes that the host and (at least parts of) the microbiome are a unit of selection, is unlikely to be useful [4]. The mixing of microbiomes between sexual partners, as well as potentially acquiring members of the microbiome from other external environments, means that most members of the microbiome are unlikely to be vertically cotransmitted with the host genome and, hence, will create potential evolutionary conflict between members of the microbiome and hosts, notably with respect to rates of sexual encounters.

The mixing of microbiomes will also affect how the structure and function of the reproductive microbiome covary with host genotype, which can have a key role in, for example, the extent to which the microbiome might affect the evolution of host mate choice. From a purely ecological perspective, increased mixing of microbiomes will breakdown this covariance. However, mixing will have less predictable effects on the covariance between host genotype and microbial genotype. Microbes likely to rapidly adapt to local host conditions (local adaptation, LA), increasing host–microbe genetic covariances. While high levels of migration will genetically homogenise populations, reducing LA, increased genetic variation resulting from immigration can also enhance LA by increasing the rate of adaptation [111]. These effects of migration on LA will be reinforced by adaption to co-occurring community members, which can limit the invasion of foreign microbial communities [112]. If certain microbial taxa have key roles in determining microbiome function (although we do not yet know if this is the case), such microbe–host genetic covariances may have important implications.

Microbial community composition and function can also be greatly affected by chance events, further reducing the specificity of microbiomes to their host genotypes [113]. Reproductive microbiomes, particularly vaginal, are regularly disturbed as a consequence of menstruation, enhancing the importance of priority effects [i.e., the dominance of early re-colonising species] in shaping community assembly [114]. Rapid (co)evolution of microbial populations can also lead to divergent community assemblies, as a result of the stochasticity of mutational events, and can potentially reshape entire microbial communities [115].

The phenotypic consequences of the reproductive microbiome on their host may mismatch host genotype even more than community composition. First, functional equivalence between taxa can weaken structure–function relationships [116]. Second, microbiomes are complex ecosystems, often dominated by strongly competitive interactions [117]. These interactions may have a key role in shaping the phenotypic effects of the microbiome on its host. For example, interference and exploitation between microbes can be highly temporally varying traits as a result of coevolution, and can have an important impact on pathogenis through the reductions in population and community size [118]. Finally, some traits selected in response to competition [119] can also directly affect hosts.

Impact of the Reproductive Microbiome on Host Reproductive Success

A diversity of sexually transmitted microbes (STMs) has long been known to have deleterious effects on the health and survival of a range of host taxa [5,20,21] (Table 1). Mounting evidence indicates that the reproductive microbiome can also have significant effects on the reproductive function and performance of males and females. These impacts are frequently (but by no means always) negative, which we suggest likely reflects a combination of both traditional emphasis on pathology and/or disease and the ecological and evolutionary processes that shape reproductive microbiome structure and function (Box 2).
Table 1. Examples of the Effects of Reproductive Microbiomes on Reproductive Traits and Fitness, as well as General Health, in Males and Females*

Host	Impact	Refs
Males		
Impact on reproductive traits and fitness		
Mammals		
Humans, Homo sapiens	In vitro incubation with *Escherichia coli* led to reductions in sperm motility, sperm agglutination due to bacterial adherence to sperm cells, and morphological damage, including damage to the plasma membrane	[24,25]
	Incubation with bacteria (*E. coli* and *Bacteroides ureolyticus*) led to significant increases in the percentage of sperm with DNA damage	[99]
	E. coli led to agglutination of 40–75% of motile sperm	[70]
	Presence of *Lactobacillus* and *Gardnerella* was associated with high-quality sperm samples, while *Prevotella* and *Bordetella* were associated with low-quality sperm samples	[79]
	Bacteria are more prevalent in semen samples from infertile than fertile males	[5,100]
Mouse, Mus musculus	*Staphylococcus aureus* reduces sperm motility, viability, morphology, and sperm ATPase levels	[59]
Boar, Sus scrofa	Presence of *E. coli* in semen samples led to sperm agglutination and reduction in litter size; *E. coli* concentrations were positively correlated with degree of sperm agglutination and negatively correlated with litter size	[101]
Sheep, Ovis aries	Incubation with *Campylobacter fetus fetus* led to significant reduction in sperm motility and percentage of viable sperm, and an increase in percentage of morphologically abnormal sperm	[102]
Aves		
Chicken, Gallus gallus domesticus	In vitro incubation with six different bacteria (*Salmonella enterica, E. coli, Campylobacter jejuni, Clostridium bifermentans, Lactobacillus acidophilus, and Bifidobacterium animalis*) caused significant reductions in sperm motility	[78]
	Presence of *L. acidophilus* in semen used for artificial insemination in chickens significantly reduced sperm motility and reduced hen fertility	[103]
Turkey, Meleagris gallopavo	In vitro incubation with six different bacteria (*S. enterica, E. coli, C. jejuni, C. bifermentans, L. acidophilus, and B. animalis*) caused significant reductions in sperm motility	[104]
Insects		
Cricket, Gryllus texensis	Cricket iridovirus (CrIV) (also known as insect iridovirus type 6, IIV-6) led to complete or near-complete reduction in sperm motile function	[54]
Bedbug, Cimex lectularius	Exposure to polymicrobial mixture (including, e.g., *Acinetobacter, Alcaligenes, Bacillus, Staphylococcus*, and *Streptococcus*) increased sperm mortality by 40%	[71]

(Continued on next page)
Host	Impact	Refs
Impact on health		
Humans, *H. sapiens*	*Chlamydia trachomatis* infections can cause urethritis and epididymitis	[105]
	Neisseria gonorrhoeae infections can cause urethritis	[105]
Females		
Impact on reproductive traits and fitness		
Mammals		
Humans, *H. sapiens*	Presence of *Lactobacillus* spp. in ovarian follicular fluids was associated with higher rates of embryo transfer and improved pregnancy outcomes in IVF procedures in both fertile and infertile women, whereas presence of a range of bacterial species (e.g., *Propionibacterium* and *Streptococcus* spp.) was associated with poor embryo transfer and negative pregnancy outcomes	[7]
	Endometrial microbiome with <90% *Lactobacillus* spp, and >10% other bacteria was associated with reduced embryo implantation, as well as reduced rates of pregnancy, ongoing pregnancy, and live births	[7]
	Low vaginal microbial richness and diversity associated with risk of preterm birth	[7]
	Variation in both placental and amniotic fluid microbiome associated with adverse pregnancy outcomes (e.g., preterm birth and foetal growth restriction)	[7]
	Syphilis, caused by *Treponema pallidum*, can cause infection of foetus in pregnant women, as well as stillbirth or infant death	[105]
Chimpanzee, *Pan troglodytes*	Females infected with *Simian Immunodeficiency Virus*, SIVcpz, were less likely to give birth and had a higher rate of infant mortality compared with uninfected females	[106]
Aves		
Kittiwake, *Rissa tridactyla*	Eggs laid by female kittiwakes infected with *Corynebacterium* were less likely to hatch than those laid by uninfected females	[107]
Impact on health		
Mammals		
Humans, *H. sapiens*	*C. trachomatis* and *N. gonorrhoeae* infections can cause pelvic inflammatory disease, chronic pelvic pain, ectopic pregnancy, tubal infertility, and morbidity. *Chlamydia* infections may also be linked to cervical cancer	[105]
	Trichomonas vaginalis infection is associated with preterm birth and vaginitis	[105]

This is a nonexhaustive list. Nonetheless, the examples are generally reflective of the available empirical literature.
Evidence in Males
That microbes can have a role in sperm dysfunction is becoming increasingly recognised (Table 1). However, most studies have examined bacteria and, in particular, the effects of only one or a few bacterial species. While studies of individual taxa are informative, it is imperative to study the microbiome as a whole to unravel its biological relevance for male sperm quality and fertility. For example, different studies of the same bacterial species can provide conflicting evidence on its relationship with male infertility (e.g., *Chlamydia trachomatis* [22]). Such inconsistencies may be due to different methodologies, variation in sperm:bacterial cell ratios [23,24], or, crucially, to the fact that the pathogenicity of a species may change drastically depending on its ecological interactions with other species of the microbiome.

The impact of bacteria on sperm function may result from direct sperm–bacteria cellular interactions (Figure 1, Table 1). For example, adhesion of *Escherichia coli* to sperm cells leads to sperm agglutination and destruction of the sperm plasma membrane, with negative consequences for sperm motility and ultrastructure (e.g., [24,25]). Alternatively, the release or active secretion of bacterial membrane proteins (e.g., porins or lipopolysaccharides) have been shown to impair sperm function, possibly through the inhibition of macrophagal function [26] or induction of excessive reactive oxygen species (ROS) production [22]. Additionally, the presence of bacteria can increase local leucocyte levels, which can in turn impact sperm function and integrity via the formation of ROS [27]. Thus, the reproductive microbiome may represent an important part of the free radical theory of male infertility. Finally, bacterial infections may also stimulate the production of antibodies that cross-react with sperm and cause sperm agglutination and immobilisation [28].

The consequences of microbially induced sperm dysfunction for male reproductive success are less clear. In humans, bacterial infections are associated with male infertility (Table 1), although whether these are the causative factor is often unclear. Nonetheless, some studies have demonstrated reductions in reproductive output when bacteria are present in ejaculates (Table 1). Overall, microbes appear to be a biologically relevant cause of sperm dysfunction, and microbially induced reproductive dysfunction may impose significant fitness costs on individuals. Finally, dynamic changes in the reproductive microbiome may cause temporal variation in sperm function, which may help explain the relatively low intramale repeatability observed in some sperm traits (e.g., [29]).

Evidence in Females
In placental mammals, the presence of microbes during pregnancy has long been associated with infection, inflammation, and pregnancy complications. However, we are increasingly realising that microbial communities are a typical feature of the female reproductive system [9] and can influence, both beneficially and detrimentally, a range of reproductive processes and outcomes (Table 1). The impact of the microbiome for female reproductive health and fertility is best understood for the human vaginal microbiome. A ‘healthy’ vaginal microbiome is typically dominated by *Lactobacillus* spp. [8,9], oxygen-tolerant anaerobes that exert a range of health-promoting effects, including the formation of a physical barrier against pathogen adhesion, the stimulation of host defences, and the production of lactic acid, which exhibits antimicrobial activity against a range of vaginal pathogens [10,30]. Combined, these effects limit the growth of pathogenic bacteria and the colonisation of STIs and yeast infections [15,30], providing potential fitness benefits to the host. Conversely, modification of the vaginal microbiome (i.e., vaginal dysbiosis) is associated with a range of adverse conditions, including preterm birth, pelvic inflammatory disease, an increased risk of STIs, and infertility [10]. The female reproductive microbiome may also influence the overall health of an individual. For example, changes in the vaginal microbiome may be associated with a variety of gynaecological cancers [31]. Finally, the microbiome of follicular fluid and the endometrium, as well as the placental and amniotic fluid microbiomes, have a range of effects on female reproduction [7,10] (Table 1).

While some of these microbial effects have been attributed to specific bacterial taxa (e.g., *Lactobacillus* spp.), ecological interactions among taxa in the vaginal microbiome are likely to influence...
This may also apply to bacteria usually recognised for their pathogenicity (e.g., *Gardnerella vaginalis* [32]). A degree of functional redundancy among the various dominating *Lactobacillus* spp. in the human vagina may function as a buffer in the face of environmental change [8]. Similarly, in nonhuman primates, the protective role of lactobacilli appears to be fulfilled by other taxa (the common function hypothesis [14,15]). Vaginal bacteria have also been shown to change their gene expression profiles and, thus, the end-products of metabolism, depending upon the predominant state of the microbiome (i.e., healthy versus dysbiotic [33]). Intertwined with the emerging role of the female reproductive microbiome in reproduction, is the idea of microbial seeding of the next generation. In humans, exposure to vaginal bacteria during birth contributes to bacterial colonisation in infants. There is some evidence, at least in humans, that microbial seeding may even occur *in utero* through vertical mother–child microbial transfer [9,10]. This microbial transmission may influence foetal health via bacterial priming or the establishment of a healthy newborn microbiome through stimulation of the foetal innate immune system [10]. Together, these findings highlight the essential role of the reproductive microbiome in female reproductive health and fertility, as well as offspring health in viviparous taxa.

The Reproductive Microbiome and Sexual Selection

Sexual selection is a fundamental driver of the evolution of reproductive strategies, particularly in males. Here, we consider the role of the reproductive microbiome in pre- and postcopulatory sexual selection.

Precopulatory Sexual Selection: Female Mate Choice and Male–Male Competition

The importance of microorganisms in host mating behaviour has generally been studied from the perspective of the role of parasites or pathogens in female mate choice. Hamilton and Zuk [34] proposed that elaborate male ornaments indicate parasite resistance and females choosing males with more elaborate ornaments gain genetic benefits when their offspring inherit parasite resistance. Subsequent models of parasite-mediated sexual selection suggest that mate choice benefits females directly by allowing them to avoid infections when male phenotypes indicate the current parasite load, disease status, or contagion risk of the male [35–37]. In principle, STIs may mediate these mechanisms; however, evidence for female preference for uninfected males is scarce [20,38–40].

In vertebrates, the honesty of sexual signalling may be mediated by testosterone, which controls the expression of many sexual ornaments and courtship behaviours, while simultaneously suppressing part of the immune system [41]. Thus, sexual ornament expression might also reflect microbial infections in the reproductive tract or the ability of a male to combat pathogenic reproductive microbes. However, evidence for either of these scenarios is currently scarce and contradictory. For example, in male rufous-collared sparrows, *Zonotrichia capensis*, plasma testosterone levels are positively (rather than negatively) correlated with cloacal bacterial diversity [42]. Moreover, in some instances, STIs appear to increase the attractiveness of males [20,43], which may reflect a strategy of the microbiome to manipulate host behaviour to increase infection rates (Box 2).

Female mate choice might respond to overall microbial load, rather than to the presence of a specific infectious species. Females may be more likely to experience vaginal dysbiosis or increased activation of immunological responses in the reproductive tract when the microbial load of an ejaculate is high. Secondary sexual traits might then advertise the microbial load or ability of a male to control microbial growth within reproductive tissues and fluids. The semen of male mallards, *Anas platyrhynchos*, with more colourful bills is better able to kill bacteria in *in vitro* assays relative to males with less colourful bills, suggesting that females are able to use bill colouration to avoid mating with males with high ejaculate bacterial loads [44]. Additionally, the phenotype of primary sexual traits may also reflect infections. STIs are often characterised by distinctive symptoms, such as genital warts or discharges, and genital inspection behaviours associated with precopulatory courtship may function to discriminate against infected partners [45]. Olfactory cues can also be shaped by host-associated microbiomes (e.g., scent gland secretions in hyenas [46] or underarm odour in humans [47]), and
recent studies suggest that olfactory cues associated with mate choice are produced by the resident microbiome \[48,49\]. Thus, odours mediated by the reproductive microbiome might also influence mate choice decisions.

Mate choice to avoid infected partners has been suggested to ultimately lead to the evolution of reduced virulence of STMs, thus weakening selection on mate choice \[20\]. However, recent theoretical work indicates that coevolution between mate choice and STIs can lead to complex dynamics, which can preserve mate choosiness and STI virulence \[50\]. Alternatively, some STMs may be beneficial to females \[51\]. One potential example is \textit{Lactobacillus}, which can limit the growth of other bacterial species, including potential pathogens, via the production of lactic acid \[30\].

The role of microbes in precopulatory male–male competition is less well explored. Reproductive microbiomes might influence the intensity of sexual selection via male–male competition if, for example, the reproductive microbiome influences mating behaviour of individuals, either increasing or decreasing mating activity or the propensity for mating, and, thus, the number of males competing for access to females or the population level operational sex ratio. There is evidence that STIs, and pathogens transmitted via sociosexual contact, can both decrease \[52,53\] or increase \[40,54\] male mating activity.

Postcopulatory Sexual Selection: Sperm Competition and Cryptic Female Choice

Increasing evidence indicates that the reproductive microbiome of males and females can have potentially fundamental roles in the dynamics of fertilisation (Figure 2). The outcome of sperm competition is strongly determined by the number of viable sperm inseminated or spawned by rival males and the fertilising efficiency of these sperm, which broadly reflects aspects of sperm metabolic performance, swimming velocity, and longevity \[55\]. Microbes can impact sperm viability and fertilising efficiency to reduce male fertility (Table 1). These effects are expected to be particularly pronounced in polyandrous species, where any reduction in fertilising efficiency will be exploited by rival ejaculates, although evidence of microbial impacts on the outcome of sperm competition is currently scarce. In the fruit fly, \textit{Drosophila simulans}, infection by the bacterial endosymbiont \textit{Wolbachia} \textit{piennies} affects sperm production in males and can reduce the fertilisation success of infected males in sperm competition by >10\% \[56\], but see \[57\]). Similarly, experimental removal of bacterial endosymbionts (\textit{Wolbachia}, \textit{Wigglesworthia glossinidia}, and \textit{Sodalis glossinidius}) of reproductive tissue impacts reproductive gene expression in male tsetse flies, \textit{Glossina morsitans}, including the expression of genes encoding spermatophore and seminal fluid proteins \[58\].

Ejaculate microbes can also influence competitive fertilisation success indirectly by triggering differential immune responses in the female reproductive tract, with sperm being collateral damage of the
female immune attack on inseminated bacteria [16]. Interestingly, cross-reactivity of sperm and bacteria due to shared antigenic determinants means that sperm-immobilising factor, the secretory protein of *Staphylococcus aureus*, both impairs sperm function and fertilisation success (Table 1) and immobilises bacteria [59,60]. In addition to important implications for assisted reproduction, such molecular mimicry between sperm and bacteria may have a critical role in female immune responses, raising the intriguing possibility that sexually transmitted bacteria may evolve molecular mimicry of sperm to dilute female immune responses. Cryptic female choice may also operate through nonimmunological responses; for example, females may preferentially eject ejaculates of males with higher microbial load. Finally, the microbiome of the female reproductive tract may impact the fertilising performance of an insemination directly. For example, a strain of *Staphylococcus warneri*, isolated from the cervix of an infertile woman, caused sperm agglutination and death *in vitro* [61].

Therefore, postcopulatory sexual selection will favour the ability of males to eliminate microbes from their ejaculates and produce sperm that can escape microbes or microbially induced female immunological responses. For example, the evolution of faster swimming sperm may allow sperm to more rapidly reach ova or female sperm storage organs, thus reducing the impact of the female reproductive microbiome and/or immunity [62], although faster sperm may have evolved because of the competitive advantage gained in sperm competition, independently of microbial effects. More convincing is the evidence for antimicrobial activity in ejaculates [44,63,64] and the presence of antimicrobial and immunity-related proteins in seminal fluid in a range of taxa (e.g., red junglefowl, Gallus gallus [65], *Passer* sparrows [66], *Drosophila* [67], and honeybee, *Apis mellifera* [68]). Interestingly, male junglefowl may preferentially invest in seminal fluid proteins involved in immunity over successive matings, possibly to defend depleting numbers of sperm from female antimicrobial and immune responses [69].

However, demonstrations of the impact of seminal fluid proteins on bacteria are scarce. In humans, *E. coli*-induced agglutination of washed sperm (Table 1) was significantly reduced by the addition of seminal fluid [70]. More convincingly, in the bedbug, *Cimex lectularius*, the negative effects of environmental microbes on sperm mortality (Table 1) were eliminated when bacteria were mixed with lysozyme (an antimicrobial enzyme) from chicken egg white, simulating the effect of the lysozyme-like activity of bedbug seminal fluid contained in a single ejaculate [71]. Finally, in honeybees, male seminal fluid kills the facultatively sexually transmitted fungus *Nosema apis* through seminal fluid proteins, which disrupt the life cycle of the fungus by promoting extracellular germination, and nonprotein components of the seminal fluid, which damage fungal spores [72].

Male × Female Compatibility

Genetic incompatibility between reproductive partners has long been identified as a mechanism for balancing sexual selection and a source of genetic variation in a population. Compatibility of the reproductive microbiomes of partners may have a similarly important role in sexual selection by influencing mating decisions and fertilisation success. For example, an ejaculate with a reproductive microbiome similar to that of the inseminated female could elicit a limited female immune response. Similarly, ejaculates may be preferentially retained by females if they contain bacterial species that are beneficial to females but currently scarce or absent in the female reproductive microbiome. Evidence of similar microbiomes in monogamous pairs (see later) might partly reflect such compatibilities. However, testing these ideas requires controlling for the effects of genetic compatibility. For example, while theory predicts sexual selection to favour reproduction among partners compatible at the Major Histocompatibility Complex (MHC) [73], it will be difficult to separate the effects of microbial and MHC compatibility when different MHC haplotypes are characterised by distinct microbiomes [74] (Box 2). A special and rather extreme case of incompatibility driven by bacteria is cytoplasmic incompatibility caused by *Wolbachia* (see later).

The Reproductive Microbiome and Sexual Conflict

The reproductive microbiome may have an important role in sexual conflict. STIs have long been identified as part of the costs of mating, particularly in taxa with a cloaca, which functions in both...
gamete transfer and excretion, which may be predisposed to sexual transmission of faecal microorganisms [21,75]. Asymmetries in the relative costs and infection risk likely generate divergent mating optima between males and females. First, females are at higher risk of infection compared with males [21], even in species without intromission, such as birds [76]. Second, the Darwin–Bateman paradigm suggests that the costs of contracting an STI are more likely to be offset by reproductive gains in males than in females. Therefore, sex-specific costs of STIs may contribute to the evolution of sexually antagonistic strategies, where females evolve resistance to mating, while males evolve strategies to impose mating by circumventing female resistance. Consistent with a male-beneficial, female-detrimental scenario is the finding in garden ants, Lasius niger, that the sperm storage organs (accessory testes) of virgin males enhance bacterial growth, while the sperm storage organs (spermatheca) of virgin queens strongly inhibit bacterial growth [77]. The presence of antimicrobial peptides and proteins in semen may also lead to sexual conflict. For example, while these substances may protect sperm from antimicrobial attack, including from those encountered in the female, these same proteins may be detrimental to the reproductive microbiome of healthy females.

Conversely, a female-beneficial, male-detrimental pattern may be linked to the presence of Lactobacillus spp., which may be beneficial in the vaginal microbiome [8,10], while impairing sperm function [78], but see [79]. A more complex scenario may occur in bedbugs, in which traumatic insemination can lead to accelerated female mortality caused by infection of environmental microbes from the male aedeagus [71], and, thus, creates potential for conflict over mating decisions [80]. Females mated to males and experimentally injected with lysozyme (simulating the antimicrobial effect of male seminal fluid [64]), did not differ in fecundity and longevity from females exposed to mating and control injections [71]. However, lysozyme-injected females and females exposed to prolonged mating were less likely to suffer reproductive senescence, possibly reflecting complex interactions between deleterious effects of insemination (possibly mediated by bacteria) and beneficial effects (e.g., courtship feeding) [71]. These patterns may be partly explained by the recent discovery that females ramp up their immune system in expectation of traumatic insemination (i.e., following a blood meal) [81].

Microbes can have a key role in intersexual coevolution; their fitness interests are likely more aligned with those of the male, particularly for microbial species that are exclusively sexually transmitted. Therefore, such microbes may evolve strategies to promote male mating interests, prevent females from detecting and avoiding infected partners, or increase attractiveness of infected males (see Figure 2. Potential Impact of Reproductive Microbes on Sperm function and the Dynamics of Fertilisation. Microbes contained in an ejaculate will impact sperm and will, in turn, be targeted by antimicrobial factors (blue pentagons) in the seminal fluid (blue arrows). Similarly, the female reproductive tract will respond immunologically (orange pentagons) to local microbes and, following insemination, to sperm and microbes from the male ejaculate (orange arrows). Ecological interactions between ejaculate microbes and the female microbiome will also occur (green arrow). Microbial effects are represented by line arrows, immunological responses by block arrows.)
The Reproductive Microbiome and Mating Systems: A Dynamic Feedback

Increasing evidence indicates that host mating systems can influence the ecology and evolution of reproductive microbiomes. Monogamy should promote similarity in the microbiomes of mating partners (i.e., low individual diversity and high differentiation across mating partners), while polygamy should promote high individual diversity and low differentiation across partners, although this depends on the precise structure of the sexual network and sex-specific risk of sexual transmission (Figure 3). Monogamous mating partners appear to share microbes through sexual transmission [76], which can lead to increased similarity in their reproductive microbiomes [83–85], while a positive relationship between female polyandry and the diversity of the female reproductive microbiome has been found within a population of common lizards, Zootoca vivipara [86], and across species of Peromyscus mice [87] and primates [11]. These effects could reflect both compositional changes to the female reproductive microbiome through sexual transmission of ejaculate microbes and the disruption of the female microbiome caused by intromission and insemination [84]. Specifically, while sexual activity is known to alter the microbial communities of the female reproductive tract [7,84], the female system appears to be constantly attempting to revert back to its ‘natural’ or ‘optimal’ state [84,88].

Mating systems will also have a key role in patterns of selection and evolution of reproductive microbes: monogamy and low mating rates are expected to promote within-host evolution and reduced change with several ecological factors. For example, local costs of sexually transmitted infections (STIs) may promote divorce and promiscuity in monogamous species [120].

Outstanding Questions
Are there broad consistent patterns in reproductive microbiomes across different host taxa? For example, do taxa with different reproductive systems (e.g., internal versus external fertilisers) host distinct microbial communities? Is there a set of taxa always associated with the reproductive systems of healthy individuals (cf. the core microbiomes of the human vagina)? To what extent is this core microbiome shared across the sexes?

How does reproductive microbiome diversity change with host sociality and ecology? What factors (e.g., mating system or population density) favour mutualism between the host and its reproductive microbiome, and what conditions foster virulence? How evolutionarily stable are these host–microbiome relationships?

Are microbial effects driven primarily by the presence of specific taxa (e.g., an STD) or by more general changes in microbial community composition (e.g., dysbiosis)? In other words, what is the impact of adding or subtracting a single microbial species? Is it critical, or is microbial function and metabolic activity more important, such that the addition or subtraction of a single species is only influential when this adds or subtracts a unique metabolic pathway?

Do the male and female reproductive microbiomes show distinct ecologies and evolutionary dynamics? For example, while the microbiomes of the female reproductive tract appear to represent structured, locally adapted communities, do the microbial communities of male ejaculates represent a more transient microbial assemblage? Crucially, are reproductive microbiomes sexually antagonistic?

What is the role of reproductive microbiomes in host speciation processes?
virulence, while polygamy and high mating rates will favour high transmission rates and across-host evolution, creating more scope for virulence (Box 2).

Reproductive microbiomes can also shape ecological and evolutionary changes in host mating systems. Sexually transmitted microbes may, in principle, manipulate host behaviour to increase re-mating rates and promiscuity. For example, in the butterfly Hypolimnas bolina, a male-killing Wolbachia infection leads to a female-biased population sex ratio, male scarcity, and, as a consequence, frequent sperm depletion in males, which in turn promotes female re-mating to secure sufficient sperm supplies [89]. These coevolutionary dynamics depend on, and in turn affect, the benefits of mate choice and multiple mating, and the virulence of STIs [90]. Theory predicts infection levels to diverge between sexes with increasing mating skew, and less-virulent STIs with long infection periods to be favoured in mating systems with high mating skew [50].

The Reproductive Microbiome and Speciation

Reproductive isolation between populations is a fundamental step in speciation. The idea that microbes (i.e., parasites) might drive speciation has received some attention (parasite-mediation speciation; e.g., [91,92]), although other studies have instead suggested that parasites represent a homogenising force [93]. Parasite-mediated divergent selection is proposed in the context of ecological speciation, whereby local adaptation to contrasting parasite communities may facilitate speciation via several nonexclusive mechanisms, including reduced immigrant and hybrid viability or fecundity, pleiotropy, and ecologically based sexual selection, and empirical evidence for these ideas is building [91]. Furthermore, the gut microbiome may have a role in mate choice and hybrid inviability [94,95]. Given their potential to influence mating patterns and fertilisation success, reproductive microbiomes may also have a role in speciation.

In general, reproductive isolation is promoted when mating and fertilisation are favoured by locally co-adapted, compatible microbes, while microbes with high transmission rates will likely be associated with panmixia. Empirical work investigating these ideas is currently limited. However, in fruit flies, Wolbachia-induced unidirectional cytoplasmic incompatibility coupled with behavioural isolation contributes to reproductive isolation between sister species [96], while in Nasonia wasps, bidirectional Wolbachia-induced cytoplasmic incompatibility may contribute to reproductive barriers [97]. Divergence in the human vaginal microbiome has been suggested among ethnic groups [8]. Similarly, for males, diet-induced changes in the semen microbiome of mice [98] suggests that dietary shifts in host populations promotes divergence in the reproductive microbiome. These examples indicate considerable potential for the reproductive microbiome to have a role in reproductive isolation and ultimately speciation.

Concluding Remarks

The widespread occurrence of microbes in male and female reproductive systems can impact, both beneficially and detrimentally, a range of reproductive traits (e.g., sperm quality) and processes (e.g., embryo implantation), as well as reproductive success (e.g., fertilisation and pregnancy loss). Although limited, current knowledge underscores the importance of understanding both community structure and the functional activity of the reproductive microbiome. While microbes of the reproductive tract likely form spatiotemporally structured, locally adapted communities, those found in fluids, such as the male seminal fluid, or associated with sperm may represent more transient assemblages with predisposition for dispersal and colonisation through sexual transmission. Thus, the reproductive microbiome can generate selective pressures on males and females, with critical implications for sexual selection, sexual conflict, and the emergence of mating systems and reproductive barriers. In turn, host reproductive strategies, mating system, and reproductive barriers will have important consequences for the evolution of reproductive microbial assemblages (e.g., microbial ecology and virulence). The study of the evolutionary ecology of host-reproductive microbiome dynamics is in its infancy and many major questions remain (see Outstanding Questions). The combination of sequencing advances, genomic resources, and fine-grained studies of host sexual behaviour will likely catalyse rapid progress in the near future.
Trends in Ecology & Evolution

Acknowledgements

M.R. was funded by the Research Council of Norway (grant no. 230434), L.V. was funded by an Oxford-Merton-NaturalMotion Scholarship (UK), and A.B. was funded by the Natural Environment Research Council (UK) and Biotechnology and Biological Sciences Research Council (UK). We are extremely grateful to Andrea E.A. Stephens and two anonymous reviewers for their valuable comments on earlier versions of the manuscript.

References

1. Parfrey, L.W. et al. (2018) Introduction: the host-associated microbiome: pattern, process and unique? Front. Microbiol. 7, 4139
2. Ezenwa, V.O. et al. (2012) Animal behavior and the microbiome. Science 338, 198–199
3. Rosenberg, E. and Zilber-Rosenberg, I. (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7, e01395
4. Moran, N.A. and Sloan, D.B. (2015) The hologenome concept: helpful or hollow? PLoS Biol. 13(11), e1002311
5. Rehewy, M.S.E. et al. (1979) Aerobic and anaerobic bacterial flora in semen from fertile and infertile groups of men. Arch. Androl. 2, 263–268
6. Lockhart, A.B. et al. (1996) Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol. Rev. 71, 415–471
7. Schoenmakers, S. et al. (2019) The matter of the reproductive microbiome. Obstet. Med. 12, 107–115
8. Ravel, J. et al. (2011) Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. U. S. A. 108, 4680–4687
9. Chen, C. et al. (2017) The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 8, 875
10. Younes, J.A. et al. (2018) Women and their microbes: the unexpected friendship. Trends Microbiol. 26, 16–32
11. Yildirim, S. et al. (2014) Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME J. 8, 2431–2444
12. Swartz, J.D. et al. (2014) Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lactobacilli and near-neutral pH. Front. Vet. Sci. 1, 19
13. Vihanac, A. et al. (2018) The murine vaginal microbiota and its perturbation by the human pathogen group B Streptococcus. BMC Microbiol. 18, 197
14. Miller, E.A. et al. (2016) Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front. Microbiol. 7, 4–13
15. Stumpf, R.M. et al. (2013) The primate vaginal microbiome: comparative context and implications for human health and disease. Am. J. Phys. Anthrop. 152, 119–134
16. Poiani, A. (2006) Complexity of seminal fluid: a review. Behav. Ecol. Sociobiol. 60, 289–310
17. Koedooder, R. et al. (2019) Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum. Reprod. Update 25, 298–325
18. Javurek, A.B. et al. (2016) Discovery of a novel seminal fluid microbiome, and influence of estrogen receptor alpha genetic status. Sci. Rep. 6, 23027
19. Price, L.B. et al. (2010) The effects of circumcision on the penile microbiome. PLoS One 5, e8422
20. Knell, R.J. (1999) Sexually transmitted disease and parasite-mediated sexual selection. Evolution 53, 957–961
21. Sheldon, B.C. (1993) Sexually transmitted disease in birds: occurrence and evolutionary significance. Philos. Trans. R Soc. Lond. B Biol. Sci. 339, 491–497
22. Eley, A. et al. (2005) Can Chlamydia trachomatis directly damage your sperm? Lancet Infect. Dis. 5, 53–57
23. Auroux, M.R. et al. (1991) Is the sperm bacterial ratio a determining factor in impairment of sperm motility: an in-vitro study in man with Escherichia coli. Int. J. Androl. 14, 264–270
24. Diemer, T. et al. (1996) Influence of Escherichia coli on motility parameters of human spermatozoa in vitro. Int. J. Androl. 19, 271–277
25. Diemer, T. et al. (2000) Escherichia coli-induced alterations of human spermatozoa. An electron microscopy analysis. Int. J. Androl. 23, 178–186
26. Galdiero, F. et al. (1988) The action of LPS porins and peptidoglycan fragments on human spermatozoa. Infection 16, 349–353
27. Fraczek, M. et al. (2007) Bacteria trigger oxygen radical release and sperm lipid peroxidation in in vitro model of semen inflammation. Fertil. Steril. 88, 1076–1085
28. Kupisz, M. and Alexander, N.J. (1995) Carbohydrate moieties on sperm surface: physiological relevance. Fertil. Steril. 63, 158–165
29. Kramer, E.R.A. et al. (2015) Morphology-function relationships and repeatability in the sperm of Passer sparrows. J. Morphol. 276, 370–377
30. Tachedjian, G. et al. (2019) The role of lactic acid production by probiotic Lactobacillus species in reproductive health. Res. Microbiol. 168, 782–792
31. Chase, D. et al. (2015) The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol. Oncol. 138, 190–200
32. Castro, J. et al. (2015) Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginoses or non-bacterial vaginosis Gardnerella vaginalis isolates. Sci. Rep. 5, 11640
33. Macklaim, J.M. et al. (2013) Comparative metatRNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 1, 12
34. Hamilton, W.D. and Zuk, M. (1982) Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387
35. Borgia, G. and Collis, K. (1990) Parasites and bright male plumage in the Satin Bowerbird (Ptilonorhynchus violaceus). Am. Zool. 30, 279–285
36. Loehle, C. (1997) The pathogen transmission avoidance theory of sexual selection. Ecol. Model. 103, 231–250
37. Able, D.J. (1996) The contagion indicator hypothesis for parasite-mediated sexual selection. Proc. Natl. Acad. Sci. U. S. A. 93, 2229–2233
38. Luong, L.T. (2005) Sexually transmitted parasites and host mating behavior in the decorated cricket. Behav. Ecol. 16, 794–799
39. Webberley, K.M. et al. (2002) Lack of parasite-mediated sexual selection in a ladybird/sexually
transmitted disease system. Anim. Behav. 63, 131–141
40. Abbott, P. and Dill, L.M. (2001) Sexually transmitted parasites and sexual selection in the milkweed leaf beetle, Labidochroma clivicollis. Oikos 92, 91–100
41. Folstad, I. and Karter, A.J. (1992) Parasites, bright males and the immunocompetence handicap. Am. Nat. 139, 603–622
42. Escallón, C. et al. (2016) Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous-collared sparrows. Funct. Ecol. 31, 192–203
43. Dass, S.A.H. et al. (2011) Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS One 6, e27229
44. Rowe, M. et al. (2011) Sexual ornamentation reflects antibacterial activity of ejaculates in mallards. Biol. Lett. 7, 740–742
45. Thaper, D. (2003) Behavioural defences against sexually transmitted diseases in primates. Anim. Behav. 66, 37–48
46. Minhas, G.S. et al. (2016) Structural basis of malodour precursor transport in the human axilla. eLife 7, 1035
47. Dass, S.A.H. et al. (2011) Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS One 6, e27229
48. Rowe, M. et al. (2011) Sexual ornamentation reflects antibacterial activity of ejaculates in mallards. Biol. Lett. 7, 740–742
49. Thaper, D. (2003) Behavioural defences against sexually transmitted diseases in primates. Anim. Behav. 66, 37–48
50. Minhas, G.S. et al. (2016) Structural basis of malodour precursor transport in the human axilla. eLife 7, 1035
51. Ashby, B. and Boots, M. (2015) Coevolution of systems, and reproductive isolation, Trends in Ecology & Evolution (2020), https://doi.org/10.1016/j.tree.2019.11.004
52. Heys, C. et al. (2018) Evidence that the microbiota counteracts male outbreeding strategy by inhibiting sexual signaling in females. Front. Ecol. Evol. 6, 365–311
53. Archie, E.A. and Theis, K.R. (2011) Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436
54. Ashby, B. and Boots, M. (2015) Coevolution of parasite virulence and host mating strategies. Proc. Natl. Acad. Sci. U. S. A. 112, 13290–13295
55. Smith, C.C. and Mueller, U.G. (2015) Sexual transmission of beneficial microbes. Trends Ecol. Evol. 30, 438–440
56. Bolnick, D.I. et al. (2018) Antibacterial activity of male semen from men of infertile couples: in vitro bactericidal activity in the ejaculate of a wild passerine. Proc. R. Soc. B 285, 20173158
57. Vogel, S. et al. (2014) Major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 37, 159–186
58. Milinski, M. et al. (2006) The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 37, 159–186
59. Kulkarni, S. and Heeb, P. (2007) Social and sexual behaviours aid transmission of bacteria in birds. Behav. Processes 74, 88–92
60. Davila, F. et al. (2018) Antibacterial activity of male and female sperm-storage organs in ants. J. Exp. Biol. 221, jeb175158
61. Stutt, A.D. and Siva-Jothy, M.T. (2001) Traumatic injury induces masculinization in female honeybees. Proc. Natl. Acad. Sci. U. S. A. 98, 5683–5687
62. Skau, P.A. and Folstad, I. (2004) Does immunity regulate ejaculate quality and fertility in humans? Behav. Ecol. 16, 410–416
63. Rowe, M. et al. (2013) Lysosome-associated bactericidal activity in the ejaculate of a wild passerine. Biol. J. Linn. Soc. 109, 92–100
64. Otti, O. et al. (2009) Bactericidal activity of the semen from men of infertile couples: in vitro bactericidal activity in the ejaculate of a wild passerine. Proc. Natl. Acad. Sci. U. S. A. 106, 21742–21747
65. Rowe, M. et al. (2019) Molecular diversification of the seminal fluid proteome in a recently diverged passerine species pair. Mol. Biol. Evol. Published online October 30, 2019. https://doi.org/10.1093/molbev/msz235
66. Monga, M. and Roberts, J.A. (1994) Sperm agglutination by bacteria: receptor-specific interactions. J. Androl. 15, 151–156
67. Minhas, G.S. et al. (2016) Structural basis of malodour precursor transport in the human axilla. eLife 7, 1035
68. Nunn, C.L. (2003) Behavioural defences against sexually transmitted diseases in primates. Anim. Behav. 66, 37–48
69. Minhas, G.S. et al. (2016) Structural basis of malodour precursor transport in the human axilla. eLife 7, 1035
70. Monga, M. and Roberts, J.A. (1994) Sperm agglutination by bacteria: receptor-specific interactions. J. Androl. 15, 151–156
71. Otti, O. et al. (2012) In vitro antimicrobial sperm protection by an ejaculate-like substance. Funct. Ecol. 27, 219–226
72. Peng, Y. et al. (2016) Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis. Proc. R. Soc. B 283, 20151785
73. Milinski, M. et al. (2006) The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 37, 159–186
74. Bolnick, D.I. et al. (2014) Major histocompatibility complex class Iib polymorphism influences gut microbiota composition and diversity. Mol. Ecol. 23, 4831–4845
75. Poiani, A. and Wilks, C. (2000) Sexually transmitted diseases: a possible cost of promiscuity in birds? Auk 117, 1061–1065
76. Kulkarni, S. and Heeb, P. (2007) Social and sexual behaviours aid transmission of bacteria in birds. Behav. Processes 74, 88–92
77. Kuklinski, S. and Heeb, P. (2007) Social and sexual behaviours aid transmission of bacteria in birds. Behav. Processes 74, 88–92
78. Stutt, A.D. and Siva-Jothy, M.T. (2001) Traumatic injury induces masculinization in female honeybees. Proc. Natl. Acad. Sci. U. S. A. 98, 5683–5687
79. Siva-Jothy, M.T. et al. (2019) Female bed bugs (Cimex lectularius L.) anticipate the immunological consequences of traumatic insemination via feeding cues. Proc. Natl. Acad. Sci. U. S. A. 116, 14662–14667
80. Thaper, D. et al. (2016) The seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication. Nat. Sci. Rep. 6, 1–16
81. Thaper, D. et al. (2016) The seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication. Nat. Sci. Rep. 6, 1–16
82. Wade, M.J. (2014) Paradox of mother’s curse and the maternally provisioned offspring microbiome. Cold Spring Harb. Perspect. Biol. 6, a017541
83. Kreisinger, J. et al. (2015) Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS One 10, e0137401
84. White, J. et al. (2010) Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol. Lett. 13, 1515–1524
85. Mandar, R. et al. (2015) Complementary seminovaginal microbiome in couples. Res. Microbiol. 166, 440–447
86. White, J. et al. (2011) Cloacal bacterial diversity increases with multiple mates: evidence of sexual transmission in female common lizards. PLoS One 6, e22339
87. MacManes, M.D. (2011) Promiscuity in mice is associated with increased vaginal bacterial diversity. Naturwissenschaften 98, 951–960
88. Gajer, P. et al. (2012) Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52
89. Charlat, S. et al. (2007) Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277
90. Kokko, H. et al. (2002) Sexually transmitted disease and the evolution of mating systems. Evolution 56, 1091–1100
91. Karvonen, A. and Seehausen, O. (2012) The role of parasitism in adaptive radiations—when might parasites promote and when might they constrain ecological speciation? Int. J. Ecol. 2012, 1–20
92. Bland, J. et al. (2007) MHC adaptive divergence between closely related and sympatric African cichlids. PLoS One 2, e734
93. Fraser, B.A. and Neff, B.D. (2009) Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273–278
94. Sharon, G. et al. (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 107, 20051–20056
95. Brucker, R.M. and Bordenstein, S.R. (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669
96. Shoemaker, D.D. et al. (1999) Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53, 1157–1164
97. Bordenstein, S.R. et al. (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707–710
98. Javurek, A.B. et al. (2017) Consumption of a high-fat diet alters the seminal fluid and gut microbiomes in male mice. Reprod. Fertil. Dev. 29, 1602–1612
99. Frazier, M. et al. (2013) In vitro reconstruction of inflammatory reaction in human semen: effect on sperm DNA fragmentation. J. Reprod. Immunol. 100, 76–85
100. Ahmadi, M.H. et al. (2017) Asymptomatic infection with Mycoplasma hominis negatively affects semen parameters and leads to male infertility as confirmed by improved semen parameters after antibiotic treatment. Urology 100, 97–102
101. Maroto Martin, L.O. et al. (2010) Bacterial contamination of boar semen affects the litter size. Anim. Reprod. Sci. 120, 95–104
102. Zan Bar, T. et al. (2008) Influence of Campylobacter fetus subsp. fetus on ram sperm cell quality. J. Med. Microbiol. 57, 1405–1410
103. Haines, M.D. et al. (2015) When rooster semen is exposed to Lactobacillus fertility is reduced. Int. J. Poult. Sci. 14, 541–547
104. Triplett, M.D. et al. (2016) Influence of 6 different intestinal bacteria on Beltsville Small White turkey semen. Poult. Sci. 95, 1918–1926
105. Centers for Disease Control and Prevention (2018) Sexually Transmitted Disease Surveillance 2017, CDC
106. Keele, B.F. et al. (2009) Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460, 515–519
107. van Dongen, W.F. et al. (2019) Experimental evidence of a sexually transmitted infection in a wild vertebrate, the black-legged kitiwake (Rissa tridactyla). Biol. J. Linn. Soc. 127, 292–298
108. Spicer, M.E. et al. (2019) Spiders, microbes and sex: bacterial exposure on copulatory organs alters mating behaviour in funnel-web spiders. Ethology 92, 91–99
109. Miller, E.T. et al. (2018) Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935
110. Eliner, S.P. et al. (2011) Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614
111. Gandon, S. et al. (1997) Local adaptation and genotype–gene coevolution in a metapopulation model. Proc. R. Soc. B 263, 1003–1009
112. Tikhonov, M. (2016) Community-level cohesion without cooperation. eLife 5, 86
113. Sprockett, D. et al. (2018) Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205
114. Fukami, T. (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23
115. Gómez, P. et al. (2016) Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat. Commun. 7, 12453
116. Martiny, J.B.H. et al. (2015) Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323
117. Coyte, K.Z. et al. (2015) The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666
118. Inglis, R.F. et al. (2012) Spite versus cheats: competition among social strategies shapes virulence in Pseudomonas aeruginosa. Evolution 66, 3472–3484
119. O’Brien, S. et al. (2017) Adaptation to public goods cheats in Pseudomonas aeruginosa. Proc. Biol. Sci. 284, 20171089
120. Ashley, B. and Gupta, S. (2013) Sexually transmitted infections in polygamous mating systems. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120048

Please cite this article in press as: Rowe et al., The Reproductive Microbiome: An Emerging Driver of Sexual Selection, Sexual Conflict, Mating Systems, and Reproductive Isolation, Trends in Ecology & Evolution (2020), https://doi.org/10.1016/j.tree.2019.11.004