Crossover from Single-Ion to Coherent Non-Fermi Liquid Behavior in Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$

E. - W. Scheidt $^a,^1$ U. Killer a H. Michor b E. Bauer b C. Dusek b S. Kehrein c,1,2
W. Scherer $^a,^1$

aChemische Physik und Materialwissenschaften, Universität Augsburg, 86159 Augsburg, Germany
bInstitut für Festkörperphysik, TU Wien, 1040 Wien, Austria
cTP III, Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86159 Augsburg, Germany

Abstract

We report specific heat and magneto-resistance studies on the compound Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ for various concentrations over the entire stoichiometric range. Our data reveal single-ion scaling with Ce-concentration between $x = 0.1$ and 0.95. Furthermore, CeNi$_9$Ge$_4$ turns out to have the largest ever recorded value of the electronic specific heat $\Delta c/T \approx 5.5$ J K$^{-2}$mol$^{-1}$ at $T = 0.08$ K which was found in Cerium f-electron lattice systems. In the doped samples $\Delta c/T$ increases logarithmically in the temperature range between 3 K and 50 mK typical for non-Fermi liquid (nFl) behavior, while ρ exhibits a Kondo-like minimum around 30 K, followed by a single-ion local nFl behavior. In contrast to this, CeNi$_9$Ge$_4$ flattens out in $\Delta c/T$ below 300 mK and displays a pronounced maximum in the resistivity curve at 1.5 K indicating a coherent heavy fermion groundstate. These properties render the compound Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ a unique system on the borderline between Fermi liquid and nFl physics.

Key words: non Fermi liquid, Heavy Fermion, single ion effect

Cerium-based intermetallic compounds exhibit a rich variety of ground state properties due to the competition between three different types of interactions: i) crystal-field effects; ii) Ce-Ce intersite correlations which result in long-range magnetic order and iii) on-site correlation between 4f- and conduction-electron states leading to a formation of a local Kondo singlet. In order to minimize the intersite correlation by increasing the Ce-sublattice space CeNi$_9$Si$_4$ and CeNi$_9$Ge$_4$ turn out to be good candidates. Both compounds crystallize in a tetragonal structure with space group $I4/mcm$ and a minimum Ce-Ce distance of 5.5479 Å for Si [1] and of 5.6357 Å for Ge [2]. While CeNi$_9$Si$_4$ is a typical Kondo lattice system with a moderate Sommerfeld coefficient $\gamma = 155$ mJ K$^{-2}$mol$^{-1}$ [1], CeNi$_9$Ge$_4$ exhibits non-Fermi liquid behavior with the largest ever recorded value of the electronic specific heat $\Delta c/T \approx 5.5$ J K$^{-2}$mol$^{-1}$ at $T = 0.08$ K without showing any trace of magnetic order [2]. Recently, specific heat and susceptibility studies on La-substituted samples Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ indicate that the large electronic specific heat value $\Delta c/T$ of CeNi$_9$Ge$_4$ is mainly caused by single ion effects [3]. In addition the observed nFl-behavior in $\Delta c/T$ and ρ and the Kondo-like behavior in χ suggests that in the Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ system two channel Kondo physics takes place [3].

The specific heat divided by temperature of polycrystalline samples Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$(with x ranging from 0 to 1) is displayed in Fig. 1. For all La substituted samples a nearly logarithmic increase of c/T below 1.5 K is observed which is characteristic for nFl phys...
Fig. 1. A semi-logarithmic plot of the specific heat divided by temperature of Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ in the temperature range 0.05K $< T < 20$K. The insert shows the electronic contribution to the specific heat $\Delta c/T$ normalized per Ce-mol.

Fig. 2. The electrical resistivity $\rho(T)$ of various samples normalized at 300 K to that of LaNi$_9$Ge$_4$ which was detected with the Vander-Pauw method. Notice that the unexpected smaller residual resistivity ratio of the stochiometric single crystal sample [4] may be due to anisotropy effects and stress. The insert shows for CeNi$_9$Ge$_4$ the shift of the resistivity maximum at 1.5 K with increasing magnetic field up to higher temperatures.

Fig. 3. Magneto resistance of Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ at 2 K. Insert: percentage decrease of magneto resistance between 0 and 9T.

The concentration dependent crossover from single-ion nFl to coherent behavior in Ce$_{1-x}$La$_x$Ni$_9$Ge$_4$ is also supported by resistivity measurements (Fig. 2). With the exception of CeNi$_9$Ge$_4$ and LaNi$_9$Ge$_4$ the resistivity of all samples passes through a Kondo-like minimum around 30 K, followed by a logarithmic temperature increase and saturates below 2 K with $\rho(T) - \rho(0) \propto T^c$, $c = 0.8\pm0.2$ indicating single-ion nFl-like behavior. While LaNi$_9$Ge$_4$ shows normal metallic behavior, only CeNi$_9$Ge$_4$ has a maximum at low temperature indicating a concentration dependent crossover from a single-ion to a coherent Kondo lattice state below 1 K. Fig. 3 shows the magneto-resistance between 0 and 9 T at 2K. The percentage decrease of magneto resistance between $\rho_{\text{imp}}(0)$ and $\rho_{\text{imp}}(9T)$ increases linearly with rising Ce-concentration starting at $x = 0.9$ (insert Fig. 3). Only for the non-diluted CeNi$_9$Ge$_4$ this reduction deviates from the linearity to higher values, again indicating a concentration dependent crossover from single-ion nFl to coherent behavior. Therefore the magneto-resistance data are in good agreement with those of the specific heat data [3].

References

[1] H. Michor et al., Phys. Rev. B67 (2003) 224428.
[2] H. Michor et al., J. Mag. Mag. Mat. 272-276, (2004) 227.
[3] U. Killer, E.-W. Scheidt, G. Eickerling, H. Michor, J. Sereni, Th. Pruschke, S. Kehrein, cond-mat/0402498.
[4] We are indebted to Th. Herrmannsdörfer, R. König, A. Schindler, and I. Usherov-Marshak for kind support.
of experiments in Bayreuth funded by the EU-TMR Large Scale Facility Project (Contract No. ERBFMGECT950072) and the Austrian FWF, P15066.