CLASSIFICATION OF JOININGS FOR KLEINIAN GROUPS

AMIR MOHAMMADI AND HEE OH

Abstract. We classify all locally finite joinings of a horospherical subgroup action on $\Gamma \backslash G$ when Γ is a Zariski dense geometrically finite subgroup of $G = \text{PSL}_2(\mathbb{R})$ or $\text{PSL}_2(\mathbb{C})$. This generalizes Ratner’s 1983 joining theorem for the case when Γ is a lattice in G.

One of the main ingredients is equidistribution of non-closed horospherical orbits with respect to the Burger-Roblin measure which we prove in a greater generality where Γ is any Zariski dense geometrically finite subgroup of $G = \text{SO}(n,1)^\circ$, $n \geq 2$.

Contents

1. Introduction 1
2. Basic properties of PS-measure 6
3. Uniformity in the equidistribution of PS-measure 10
4. Equidistribution of non-closed U-orbits 14
5. Window lemma for horospherical averages 22
6. Rigidity of AU-equivariant maps 27
7. Joining classification 34
References 55

1. Introduction

M. Ratner obtained in 1983 the classification of joinings for horocycle flows on a finite volume quotient of $\text{PSL}_2(\mathbb{R})$ \cite{Ratner}; this precedes her general measure classification theorem for unipotent flows on any finite volume homogeneous space of a connected Lie group \cite{Ratner1986}. The problem of classifying all locally finite invariant measures for unipotent flows on an infinite volume homogeneous space $\Gamma \backslash G$ is quite mysterious and even a conjectural picture is not clear at present. However if G is a simple group of rank one, there are classification results for locally finite measures on $\Gamma \backslash G$ invariant under a
horospherical subgroup of G, when Γ is either geometrically finite ([4, 33, 42]) or a special kind of geometrically infinite subgroups ([2, 19, 20, 36, 37]). In this article, our goal is to extend Ratner’s joining theorem to an infinite volume homogeneous space $\Gamma \backslash G$ where $G = \text{PSL}_2(\mathbb{F})$ for $\mathbb{F} = \mathbb{R}, \mathbb{C}$ and Γ is a geometrically finite and Zariski dense subgroup of G. This seems to be the first measure classification result in homogeneous spaces of infinite volume for unipotent subgroups which are not horospherical.

Letting $n = 2, 3$, respectively, for $\mathbb{F} = \mathbb{R}, \mathbb{C}$, the group G consists of all orientation preserving isometries of the real hyperbolic space \mathbb{H}^n. Let U be a horospherical subgroup of G, i.e., for some one-parameter diagonalizable subgroup $A = \{a_s\}$ of G,

\[U = \{g \in G : a_s g a_{-s} \to e \text{ as } s \to +\infty\} \]

and set $\Delta(U) := \{(u, u) : u \in U\}$. Let Γ_1 and Γ_2 be discrete subgroups of G, and set

\[Z := \Gamma_1 \backslash G \times \Gamma_2 \backslash G \]

Definition 1.1. Let μ_i be a locally finite U-invariant Borel measure on $\Gamma_i \backslash G$ for $i = 1, 2$. A locally finite $\Delta(U)$-invariant measure μ on Z is called a U-joining with respect to the pair (μ_1, μ_2) if the push-forward $(\pi_i)_\ast \mu$ is proportional to μ_i for each $i = 1, 2$; here π_i denotes the canonical projection of Z to $\Gamma_i \backslash G$. If μ is $\Delta(U)$-ergodic, then we call μ an ergodic U-joining.

We will classify U-joinings with respect to the pair of the Burger-Roblin measures. The reason for this is that for Γ geometrically finite and Zariski dense, the Burger-Roblin measure μ_{BR}^{Γ} is the unique locally finite U-invariant ergodic measure on $\Gamma \backslash G$ which is not supported on a closed U-orbit ([4], [33], [42]). Therefore the Burger-Roblin measure for $\Gamma \backslash G$, which we will call the BR-measure for simplicity, plays the role of the Haar measure in Ratner’s joining theorem for Γ a lattice.

In what follows, we assume that at least one of Γ_1 and Γ_2 has infinite co-volume in G; otherwise, the joining classification was already proved by Ratner. Under this assumption, the product measure $\mu_{BR}^{\Gamma_1} \times \mu_{BR}^{\Gamma_2}$ is never a U-joining (with respect to the pair $(\mu_{BR}^{\Gamma_1}, \mu_{BR}^{\Gamma_2})$), since its projection to $\Gamma_i \backslash G$ is an infinite multiple of $\mu_{BR}^{\Gamma_i}$ for at least one of $i = 1, 2$. On the other hand, a finite cover self-joining provides an example of U-joining. Recall that two subgroups of G are said to be commensurable with each other if their intersection has finite index in each of them.

Definition 1.2 (Finite cover self-joining). Suppose that for some $g_0 \in G$, Γ_1 and $g_0^{-1} \Gamma_2 g_0$ are commensurable with each other; this in particular implies that the orbit $[(e, g_0)]\Delta(G)$ is closed in Z. Now using the isomorphism

\[(\Gamma_1 \cap g_0^{-1} \Gamma_2 g_0) \backslash G \to [(e, g_0)]\Delta(G) \]

\[\text{For } S \subset G, \Delta(S) \text{ denotes the diagonal embedding of } S \text{ into } G \times G. \]
given by the map \([g] \mapsto [(g, g_0 g)]\), the push-forward of the BR-measure \(m_{\Gamma_1 \cap g_0^{-1} \Gamma_2 g_0}^{\text{BR}}\) to \(Z\) gives a \(U\)-joining, which we call a finite cover self-joining. If \(\mu\) is a \(U\)-joining, then any translation of \(\mu\) by \((e, u_0)\) is also a \(U\)-joining, whenever \(u_0\) belongs to the centralizer of \(U\), which is \(U\) itself. Such a translation of a finite cover self-joining will also be called a finite cover self-joining.

The following is our main result:

Theorem 1.3 (Joining Classification). Let \(\Gamma_1\) and \(\Gamma_2\) be geometrically finite and Zariski dense subgroups of \(G\). Suppose that either \(\Gamma_1\) or \(\Gamma_2\) is of infinite co-volume in \(G\). Then any locally finite ergodic \(U\)-joining on \(Z\) is a finite cover self-joining.

If \(\mu\) is a \(U\)-joining and \(\mu = \int \mu_x\) is the \(U\)-ergodic decomposition, then it follows from the \(U\)-ergodicity of the BR-measure that almost every \(\mu_x\) is a \(U\)-joining. Therefore the classification of \(U\)-ergodic joinings gives a complete description for all possible \(U\)-joinings.

Theorem 1.3 yields the following by the definition of a finite cover self-joining:

Corollary 1.4. Let \(\Gamma_1\) and \(\Gamma_2\) be as in Theorem 1.3. Then \(Z\) admits a \(U\)-joining measure if and only if \(\Gamma_1\) and \(\Gamma_2\) are commensurable with each other, up to a conjugation.

See Remark 7.24 for a slightly more general statement where \(\Gamma_2\) is not assumed to be geometrically finite.

In the course of our classification theorem, we obtain equidistribution of a non-closed \(U\)-orbit \(xU\) in \(\Gamma \backslash G\). When \(\Gamma\) is a lattice, it is well-known that such \(xU\) is equidistributed with respect to the Haar measure \([7], [32]\). For \(\Gamma\) geometrically finite, the equidistribution is described by the BR-measure, with the normalization given by the Patterson-Sullivan measure \(\mu_{x}^{\text{PS}}\) on \(xU\) (see section 2.2 for a precise definition). We call a norm \(\| \cdot \|\) on \(F\) algebraic if the 1-sphere \(\{ t \in F : \| t \| = 1\}\) is contained in a union of finitely many algebraic varieties.

Theorem 1.5. Let \(\Gamma\) be a geometrically finite and Zariski dense subgroup of \(G\). Fix \(x \in \Gamma \backslash G\) such that \(xU\) is not closed. Then for any continuous function \(\psi\) on \(\Gamma \backslash G\) with compact support, we have

\[
\lim_{T \to \infty} \frac{1}{\mu_x^{\text{PS}}(B_U(T))} \int_{B_U(T)} \psi(xu)du = m_{\Gamma}^{\text{BR}}(\psi)
\]

where \(B_U(T) = \{ u \in U : \| u \| < T\}\) is the norm ball in \(U \simeq F\) with respect to an algebraic norm.

Indeed, we prove this theorem in a greater generality where \(\Gamma\) is a geometrically finite and Zariski dense subgroup of \(G = \text{SO}(n, 1)^0\) for any \(n \geq 2\) (see Theorem 4.6).
Theorem 1.5 was proved for $G = \operatorname{PSL}_2(\mathbb{R})$ in ([39], [22]). One of the difficulties in extending Theorem 1.5 to a higher dimensional case (even to the case $n = 3$) is the lack of a uniform control of the PS-measure of a small neighborhood of the boundary of $B_U(T)$. For $n = 2$, such a neighborhood has a fixed size independent of T, but grows with $T \to \infty$ for $n \geq 3$.

We mention that Theorem 1.5 applied to the Apollonian group can be used to describe the distribution of the accumulation of large circles in an unbounded Apollonian circle packing, whereas the papers [17] and [26] considered the distribution of small circles. We refer to Theorem 5.4 for a window version of Theorem 1.5 which is one of the main ingredients in our proof of Theorem 1.3.

Similarly to the finite joining case, we can deduce the classification of U-equivariant factor maps from the classification of joinings (see sub-section 7.7):

Theorem 1.6 (U-factor classification). Let Γ be a geometrically finite and Zariski dense subgroup of G. Let (Y, ν) be a measure space with a locally finite U-invariant measure ν, and $p : (\Gamma \backslash G, m_{\text{BR}}^\Gamma) \to (Y, \nu)$ be a measurable U-equivariant factor map, that is, $p_* m_{\text{BR}}^\Gamma = \nu$. Then (Y, ν) is isomorphic to $(\Gamma_0 \backslash G, m_{\text{BR}}^{\Gamma_0})$ for some subgroup Γ_0 of G which contains Γ as a subgroup of finite index. Moreover, under this isomorphism, the map p can be conjugated to the natural projection $\Gamma \backslash G \to \Gamma_0 \backslash G$.

We now discuss the proof of Theorem 1.3. Our proof is modeled on Ratner’s proof [31]. However, the fact that we are dealing with an infinite measure introduces several serious technical difficulties which are dealt with in this paper. Here we briefly describe some of the main steps and difficulties.

The main ingredient in the proof is the *polynomial behavior* of unipotent flows, which guarantees *slow* divergence of orbits of two nearby points under unipotent subgroups. This means that for two nearby generic points x and y in Z, the set of $u \in B_U(T)$ such that the divergence of the two orbits $x(u, u)$ and $y(u, u)$ is in the intermediate range, that is, roughly of distance one apart, has Lebesgue measure comparable to that of $B_U(T)$. In order to utilize this property in acquiring an additional invariance of a U-joining in concern, we also need to know that this set is *dynamically non-trivial*, i.e., $x(u, u)$ and $y(u, u)$ for these times of u stay in a fixed compact subset. In the case of a finite measure, this can be ensured using the Birkhoff ergodic theorem.

When Z is of infinite volume, there is no a priori reason for this to hold, for instance, the set of $u \in B_U(T)$ where $x(u, u)$ returns to a compact subset can be “concentrated” near the center, along some sequence of T’s. This is one of the main issues in the way of obtaining rigidity type results for general locally finite measures (cf. [23]).

For a U-joining measure μ on Z, we first prove a window-type equidistribution result for the U-action on each space $\Gamma_i \backslash G$ with respect to the BR-measure. This enables us to establish the required non-concentration
property for \(\mu\)-generic points, using the fact that \(\mu\) projects to the BR-measure.

Based on this non-concentration property, we can use the construction of a polynomial like map in section 7.1 and the fact that an infinite joining measure cannot be invariant under a non-trivial subgroup of \(\{e\} \times U\) (Lemma 7.16) to draw two important corollaries:

(1) almost all fibers of each projection of \(\mu\) are finite;
(2) \(\mu\) is quasi-invariant under the diagonal embedding of a connected subgroup of the normalizer \(N_G(U)\).

In the finite measure case, it is possible to finish using an entropy argument, based on the invariance by the action of a diagonalizable subgroup. Such an argument using entropy is not understood in the infinite measure case. We adapt an original argument of Ratner in [31] (also used by Flaminio and Spatzier in [9] for convex cocompact groups), which avoids a “direct” use of entropy. This involves a step of showing that a measurable set-valued \(N_G(U)\)-equivariant factor map \(\Upsilon : \Gamma \setminus G \to \Gamma \setminus G\) is also equivariant under the action of the opposite horospherical subgroup \(\check{U}\). We use a close relationship between the BR and BMS measures and show that essentially the same proof as in [9] works here, again, modulo the extra technical difficulties caused by the presence of cusps. Roughly speaking, one constructs two nearby points \(x\) and \(y = xu_r\) so that the \(U\)-orbits of \(\Upsilon(x)u_r\) and \(\Upsilon(y)\) do not diverge on average. The fact that the divergence of these two orbits is governed by a polynomial map then implies that the two orbits “do not diverge”. One then concludes that the map commutes with the action of \(\check{U}\) and completes the proof.

Notation In the whole paper, we use the following standard notation. We write \(f(t) \sim g(t)\) as \(t \to \infty\) to mean \(\lim_{t \to \infty} f(t)/g(t) = 1\). We use the Landau notations \(f(t) = O(g(t))\) and \(f \ll g\) synonymously to mean that there exists an implied constant \(C > 1\) such that \(f(t) \leq C \cdot g(t)\) for all \(t > 1\). We write \(f(t) \asymp g(t)\) if \(f(t) = O(g(t))\) and \(g(t) = O(f(t))\). For a space \(X\), \(C(X)\) (resp. \(C^\infty(X)\)) denotes the set of all continuous (resp. smooth) functions on \(X\). We also let \(C_c(X)\) and \(C_c^\infty(X)\) denote the set of functions in \(C(X)\) and \(C_c^\infty(X)\) respectively which are compactly supported. For a compact subset \(\Omega\) of \(X\), we denote by \(C(\Omega)\) and \(C^\infty(\Omega)\) the set of functions in \(C_c(X)\) and \(C_c^\infty(X)\) respectively which vanish outside of \(\Omega\). For a subset \(B\) in \(X\), \(\partial(B)\) denotes the topological boundary of \(B\) with the exception that \(\partial(\mathbb{H}^n)\) means the geometric boundary of the hyperbolic \(n\)-space \(\mathbb{H}^n\). For a function \(f\) on \(\Gamma \setminus G\) and \(g \in G\), the notation \(g.f\) means the function on \(\Gamma \setminus G\) defined by \(g.f(x) = f(xg)\).

Given a subset \(S \subset G\), we let \(\Delta(S) = \{(s, s) : s \in S\}\). Also given a group \(H\) and a subset \(S \subset H\) we set \(N_H(S) := \{h \in H : hSh^{-1} = S\}\), i.e., the normalizer of \(S\) in \(H\).

Acknowledgment We would like to thank M. Einsiedler, Y. Minsky and A. Reid for useful discussions.
2. Basic properties of PS-measure

For sections 2–5, let \(n \geq 2 \) and \(G \) be the identity component of the special orthogonal group \(\text{SO}(n, 1) \). Then \(G \) can be considered as the group of orientation preserving isometries of the hyperbolic space \(\mathbb{H}^n \). Let \(\Gamma < G \) be a discrete subgroup. Let \(\Lambda(\Gamma) \subset \partial(\mathbb{H}^n) \) denote the limit set of \(\Gamma \), and \(\delta \) the critical exponent of \(\Gamma \). The convex core of \(\Gamma \) is the quotient by \(\Gamma \) of the smallest convex subset in \(\mathbb{H}^n \) which contains all geodesics connecting points of \(\Lambda(\Gamma) \). The group \(\Gamma \) is called geometrically finite if a unit neighborhood of the convex core of \(\Gamma \) has finite volume. Throughout the paper, we assume that

\(\Gamma \) is geometrically finite and Zariski dense.

2.1. Conformal densities. A family of finite measures \(\{ \mu_x : x \in \mathbb{H}^n \} \) on \(\partial(\mathbb{H}^n) \) is called a \(\Gamma \)-invariant conformal density of dimension \(\delta_\mu > 0 \) if for any \(x, y, \xi \in \partial(\mathbb{H}^n) \) and \(\gamma \in \Gamma \),

\[
\gamma_* \mu_x = \mu_{\gamma x} \quad \text{and} \quad \frac{d\mu_y}{d\mu_x}(\xi) = e^{-\delta_\mu \beta_\xi(y, x)},
\]

where \(\gamma_* \mu_x(F) = \mu_x(\gamma^{-1}(F)) \) for any Borel subset \(F \) of \(\partial(\mathbb{H}^n) \). Here \(\beta_\xi(y, x) \) denotes the Busemann function: \(\beta_\xi(y, x) = \lim_{t \to \infty} d(\xi_t, y) - d(\xi_t, x) \) where \(\xi_t \) is a geodesic ray tending to \(\xi \) as \(t \to \infty \).

We denote by \(\{ \nu_x \} \) the Patterson-Sullivan density, i.e., a \(\Gamma \)-invariant conformal density of dimension \(\delta \), which is unique up to a scalar multiple.

For each \(x \in \mathbb{H}^n \), we set \(m_x \) to be the unique probability measure on \(\partial(\mathbb{H}^n) \) which is invariant under the compact subgroup \(\text{Stab}_x(\Gamma) \). Then \(\{ m_x : x \in \mathbb{H}^n \} \) forms a \(G \)-invariant conformal density of dimension \((n - 1) \), which will be referred to as the Lebesgue density.

Denote by \(\{ G^s : s \in \mathbb{R} \} \) the geodesic flow on the unit tangent bundle \(\mathcal{T}^1(\mathbb{H}^n) \) of \(\mathbb{H}^n \). For \(w \in \mathcal{T}^1(\mathbb{H}^n) \), we denote by \(w^\pm \in \partial(\mathbb{H}^n) \) the forward and backward endpoints of the geodesic determined by \(w \), i.e., \(w^\pm = \lim_{s \to \pm \infty} G^s(w) \).

Fix \(o \in \mathbb{H}^n \) and \(w_o \in T_0^\lambda(\mathbb{H}^n) \). Let \(K := \text{Stab}_o(\Gamma) \) and \(M := \text{Stab}_o(\mathbb{H}^n) \) so that \(\mathbb{H}^n \) and \(\mathcal{T}^1(\mathbb{H}^n) \) can be identified with \(G/K \) and \(G/M \) respectively. Let \(A = \{ a_s : s \in \mathbb{R} \} \) be the one-parameter subgroup of diagonalizable elements in the centralizer of \(M \) in \(G \) such that \(G^s(w_o) = [M]a_s = [a_s M] \).

For \(g \in G \), define

\[
g^\pm := gw_o^\pm \in \partial(\mathbb{H}^n).\]

The map \(\text{Viz} : G \to \partial(\mathbb{H}^n) \) given by \(g \mapsto g^+ \) (resp. \(g \mapsto g^- \)) will be called the visual map (resp. the backward visual map).

2.2. PS measure on \(gU \subset G \). Let \(U \) denote the expanding horospherical subgroup, i.e.,

\[
U = \{ g \in G : a_s g a_{-s} \to e \ \text{as} \ \ s \to +\infty \}.
\]
The group U is a connected abelian group, isomorphic to \mathbb{R}^{n-1}; we use the parametrization $t \mapsto u_t$ so that for any $s \in \mathbb{R}$,

$$a_s u_t a_s = u_{e^{st}}.$$

For any $g \in G$, the restriction $\text{Viz} \mid_{gU}$ is a diffeomorphism between gU and $\partial(\mathbb{H}^n) - \{g^{-}\}$. Using this diffeomorphism, we can define measures on gU which are equivalent to conformal densities on the boundary:

$$d\mu_{\text{Leb}}^{\text{Leb}}(gu_t) = e^{(n-1)\beta(gu_t) + (\o, gu_t(\o))} \, dm_{\o}(gu_t)^+;$$

$$d\mu_{gU}^{\text{PS}}(gu_t) = e^{\delta\beta(gu_t) + (\o, gu_t(\o))} \, d\nu_{\o}(gu_t)^+.$$

The conformal properties of $\{m_{x}\}$ and $\{\nu_{x}\}$ imply that these definitions are independent of the choice of $\o \in \mathbb{H}^n$. The measure $d\mu_{\text{Leb}}^{\text{Leb}}(gu_t)$ is independent of the orbit gU:

$$d\mu_{\text{Leb}}^{\text{Leb}}(gu_t) = d\mu_{U}^{\text{Leb}}(u_t) = dt$$

and is simply the Lebesgue measure on $U = \mathbb{R}^{n-1}$, up to a scalar multiple. We call the measure $d\mu_{gU}^{\text{Leb}}(gu_t)$ the Patterson-Sullivan measure (or simply PS-measure) on gU. For simplicity, we write

$$d\mu_{g}^{\text{Leb}}(t) = d\mu_{gU}^{\text{Leb}}(gu_t) \quad \text{and} \quad d\mu_{g}^{\text{PS}}(t) = d\mu_{gU}^{\text{PS}}(gu_t)$$

although these measures depend on the orbits but not on the individual points.

These expressions are also useful as we will sometimes consider μ_{g}^{PS} as a measure on U in an obvious way, for instance, in the following lemma. Let $\mathcal{M}(U)$ be the set of all regular Borel measures on U endowed with the following topology: $\mu_{n} \rightarrow \mu$ if and only if $\int f \, d\mu_{n} \rightarrow \int f \, d\mu$ for all $f \in C_{c}(U)$.

The following is proved in [9] for Γ convex co-compact but the proof works for Γ geometrically finite.

Lemma 2.1. [9, Lem. 4.1, Cor. 4.2].

- For $g \in G$, the measure μ_{g}^{PS} assigns 0 measure to any proper subvariety of U.
- The map $g \mapsto \mu_{g}^{\text{PS}}$ is a continuous map from $\{g \in G : g^{+} \in \Lambda(\Gamma)\}$ to $\mathcal{M}(U)$.

The following is an immediate consequence:

Corollary 2.2. For a compact subset $\Omega \subset G$ and any $s > 0$,

$$0 < \inf_{g \in \Omega, g^{+} \in \Lambda(\Gamma)} \mu_{g}^{\text{PS}}(gB_{U}(s)) \leq \sup_{g \in \Omega, g^{+} \in \Lambda(\Gamma)} \mu_{g}^{\text{PS}}(gB_{U}(s)) < \infty.$$

For simplicity, we set $|t|$ to be the maximum norm of t. For $T > 0$, we set

$$B_{U}(T) := \{u_t \in U : |t| \leq T\}.$$

For any $s \in \mathbb{R}$, we have:

$$\mu_{g}^{\text{PS}}(B_{U}(e^{s})) = e^{\delta s} \mu_{ga^{-s}}^{\text{PS}}(B_{U}(1));$$

$$\mu_{g}^{\text{Leb}}(B_{U}(e^{s})) = e^{(n-1)s} \mu_{ga^{-s}}^{\text{Leb}}(B_{U}(1)).$$
2.3. **PS measure on** \(xU \subset \Gamma \setminus G \). Set
\[
X = \Gamma \setminus G.
\]

For \(x \in X \), we define the measure \(\mu^\PS_x \) on the orbit \(xU \) as follows. Choose \(g \in G \) such that \(x = [g] \). If the map \(u \mapsto xu \) is injective, \(\mu^\PS_x \) will be simply the push-forward of the measure \(\mu^\PS_g \) on \(gU \). In general, we first define a measure \(\tilde{\mu}^\PS_x \) on \((U \cap g^{-1} \Gamma g) \setminus U \) as follows: for \(f \in C_c(U) \), let \(\tilde{f} \in C_c((U \cap g^{-1} \Gamma g) \setminus U) \) be given by \(\tilde{f}([u]) = \sum_{\gamma \in U \cap g^{-1} \Gamma g} f(\gamma u) \). Then the map \(f \mapsto \tilde{f} \) is a surjective map from \(C_c(U) \) to \(C_c((U \cap g^{-1} \Gamma g) \setminus U) \), and
\[
\int_{[u] \in U \cap g^{-1} \Gamma g \setminus U} \tilde{f}([u]) \mu^\PS_x[u] := \int_U f(u) \mu^\PS_g(t)
\]
is well-defined, by the \(\Gamma \)-invariance of the PS density. This defines a locally finite measure on \((U \cap g^{-1} \Gamma g) \setminus U \) by \cite{28} Ch.1. Noting that the map \((U \cap g^{-1} \Gamma g) \setminus U \to xU \) given by \([u] \to xu\) is injective, we denote by \(\mu^\PS_x \) the push-forward of the measure \(\tilde{\mu}^\PS_x \) from \((U \cap g^{-1} \Gamma g) \setminus U \) (cf. \cite{25}).

The map \(\mu^\PS_x \) is defined similarly. We caution that \(\mu^\PS_x \) is not a locally finite measure on \(\Gamma \setminus G \) unless \(xU \) is a closed subset of \(X \).

A limit point \(\xi \in \Lambda(\Gamma) \) is called radial if some (and hence every) geodesic ray toward \(\xi \) has accumulation points in a compact subset of \(\Gamma \setminus G \), and parabolic if it is fixed by a parabolic element of \(\Gamma \) (recall that an element \(g \in G \) is parabolic if the set of fixed points of \(g \) in \(\partial(\mathbb{H}^n) \) is a singleton.) A parabolic limit point \(\xi \in \Lambda(\Gamma) \) is called bounded if the stabilizer \(\Gamma_\xi \) acts cocompactly on \(\Lambda(\Gamma) - \{\xi\} \). We denote by \(\Lambda_r(\Gamma) \) and \(\Lambda_{bp}(\Gamma) \) the set of all radial limit points and the set of all bounded parabolic limit points respectively. As \(\Gamma \) is geometrically finite, we have (see \cite{3})
\[
\Lambda(\Gamma) = \Lambda_r(\Gamma) \cup \Lambda_{bp}(\Gamma).
\]

Definition 2.3. For \(x = [g] \in X \), we write \(x \in \Lambda(\Gamma) \) and \(x^- \in \Lambda_r(\Gamma) \) if \(g^- \in \Lambda(\Gamma) \) and \(g^- \in \Lambda_r(\Gamma) \) respectively; this is well-defined independent of the choice of \(g \).

If \(x^- \in \Lambda_r(\Gamma) \), then the map \(u \mapsto xu \) is injective on \(U \).

Lemma 2.4. For \(x \in X \), we have \(x^- \in \Lambda_r(\Gamma) \) if and only if \(|\mu^\PS_x| = \infty \).

Proof. Choose \(g \in G \) so that \([g] = x \). If \(x^- \notin \Lambda(\Gamma) \), then \(\Lambda(\Gamma) \) is a compact subset of \(\partial(\mathbb{H}^n) \setminus \{g^-\} \), and hence \(|\mu^\PS_g| < \infty \). If \(g \in \Lambda_{bp}(\Gamma) \) and \(xU \) is a closed subset of \(X \) and \(\mu^\PS_x \) is supported on the quotient of \(\{gu \in gU : (gu)^+ \in \Lambda(\Gamma)\} \) by the stabilizer \(\Gamma_{x^-} \), which is compact by the definition of a bounded parabolic fixed point. Hence \(|\mu^\PS_x| < \infty \). Suppose that \(g^- \in \Lambda_r(\Gamma) \). Since \(|\mu^\PS_g| = |\mu^\PS_x| \) and \((gU)^+ \cap \Lambda(\Gamma) \neq \emptyset \), we may assume without loss of generality that \(g^+ \in \Lambda(\Gamma) \).
Let Ω be a compact subset of G such that $\gamma_i g a_{-s_i} \in \Omega$ for sequences $s_i \to +\infty$ and $\gamma_i \in \Gamma$. Then
\[
\mu^\text{PS}_x(B_U(\epsilon^{s_i})) = e^{s_i \delta}\mu^\text{PS}_{\gamma_i g a_{-s_i}}(B_U(1)) \\
= e^{s_i \delta}\mu^\text{PS}_{\gamma_i g a_{-s_i}}(B_U(1)) \\
\geq e^{s_i \delta} \cdot \inf_{h \in \Omega, h^+ \in \Lambda(\Gamma)} \mu^\text{PS}_h(B_U(1)).
\]
Since $\inf_{h \in \Omega, h^+ \in \Lambda(\Gamma)} \mu^\text{PS}_h(B_U(1)) > 0$ by Corollary 2.2, we have $|\mu^\text{PS}_x| = \infty$.

2.4. BMS and BR measures. Fixing $o \in \mathbb{H}^n$, the map
\[
w \mapsto (w^+, w^-, s = \beta_{w^-}(o, \pi(w))
\]
is a homeomorphism between $T^1(\mathbb{H}^n)$ with
\[
(\partial(\mathbb{H}^n) \times \partial(\mathbb{H}^n)) \setminus \{(\xi, \xi) : \xi \in \partial(\mathbb{H}^n)\}) \times \mathbb{R}.
\]

Using this homeomorphism, we define measures $\tilde{m}^\text{BMS} = \tilde{m}^\text{BR}$ and \tilde{m}^BMS and \tilde{m}^BR on $T^1(\mathbb{H}^n)$ as follows:
\[
dm^\text{BMS}(w) = e^{\delta_{w^+}(o, \pi(w))} e^{\delta_{w^-}(o, \pi(w))} \, d\nu_o(w^+) d\nu_o(w^-) \, ds; \text{ and}
\]
\[
dm^\text{BR}(w) = e^{(n-1)\beta_{w^+}(o, \pi(w))} e^{\delta_{w^-}(o, \pi(w))} \, dm_o(w^+) d\nu_o(w^-) \, ds.
\]

The conformal properties of $\{\nu_x\}$ and $\{m_x\}$ imply that these definitions are independent of the choice of $o \in \mathbb{H}^n$. Using the identification $T^1(\mathbb{H}^n)$ with G/M, we lift the above measures to G so that they are all invariant under M from the right. By abuse of notation, we use the same notation \tilde{m}^BMS and \tilde{m}^BR. These measures are left Γ-invariant, and hence induce locally finite Borel measures on X, which are the Bowen-Margulis-Sullivan measure m^BMS and the Burger-Roblin measure m^BR respectively.

Note that
- $\text{supp}(m^\text{BMS}) = \{x \in X : x^\pm \in \Lambda(\Gamma)\}$;
- $\text{supp}(m^\text{BR}) = \{x \in X : x^- \in \Lambda(\Gamma)\}$.

Sullivan showed that m^BMS is a finite measure [41]. The BR-measure m^BR is an infinite measure unless Γ is a lattice [25].

We also consider the contracting horospherical subgroup
\[
\mathcal{U} = \{g \in G : a_{-s} g a_s \to e \text{ as } s \to \infty\}
\]
and the parabolic subgroup
\[
P = M A \mathcal{U}.
\]
We note that P is precisely the stabilizer of w_o^+ in G. Given $g_0 \in G$ define the measure ν on $g_0 P$ as follows
\[
d\nu(g_0 p) = e^{-\delta_{(g_0 p)^-}(o, g_0 p(o))} d\nu_o(g_0 pw^-_o) \, dm ds,
\]
for $s = \beta_{(g_0 p)^-}(o, g_0 p(o)), p = ma_\mu$, and dm is the probability Haar measure of M.

This way we get a product structure of the BMS measure which is an important ingredient in our approach: for any \(g_0 \in G \),
\[
\tilde{m}^{\text{BMS}}(\psi) = \int_{g_0 \mathcal{P}} \int_{g_0 \mathcal{U}} \psi(g_0 p u_t) d\mu_{g_0 p}(t) d\nu(g_0 p) \tag{2.1}
\]

3. Uniformity in the equidistribution of PS-measure

We keep notations from the last section; so \(X = \Gamma \backslash G \). For simplicity, we will assume that \(|m^{\text{BMS}}| = 1\); this can be achieved by replacing \(\{\nu_x\} \) by a suitable scalar multiple if necessary.

Theorem 3.1 (Mixing of the \(A \)-action). \([42]\) For any \(\psi_1, \psi_2 \in L^2(m^{\text{BMS}}) \), we have
\[
\lim_{s \to \infty} \int_{\Gamma \backslash G} \psi_1(xa_s) \psi_2(x) dm^{\text{BMS}}(x) = m^{\text{BMS}}(\psi_1)m^{\text{BMS}}(\psi_2).
\]

The following is immediate from Theorem 3.1:

Theorem 3.2. Fix \(\psi \in L^2(m^{\text{BMS}}) \) and a compact subset \(\Omega \) of \(X \). Let \(F \subset L^2(m^{\text{BMS}}) \) be a relatively compact subset. Then for any \(\epsilon > 0 \), there exists \(S > 1 \) such that for all \(s \geq S \) and any \(\varphi \in F \),
\[
\left| \int_X \psi(ga_s) \varphi(g) dm^{\text{BMS}}(g) - m^{\text{BMS}}(\psi)m^{\text{BMS}}(\varphi) \right| \leq \epsilon.
\]

Theorem 3.1 can be used to prove the following: for any \(\psi \in C_c(X), x \in X \), and any bounded Borel subset \(B \subset xU \) with \(\mu_x^\text{PS}(\partial(B)) = 0 \),
\[
\lim_{s \to \infty} \int_B \psi(xu_t a_s) dm_x^\text{PS}(t) = \mu_x^\text{PS}(B)m^{\text{BMS}}(\psi); \quad \text{and} \tag{3.1}
\]
\[
\lim_{s \to \infty} e^{(n-1-\delta)s} \int_B \psi(xu_t a_s) dt = \mu_x^\text{PS}(B)m^{\text{BR}}(\psi) \tag{3.2}
\]
(see \([33]\) and \([25]\) for \(M \)-invariant \(\psi \)'s and \([24]\) for general \(\psi \)'s).

In this paper, we will need uniform versions of these two equidistribution statements; more precisely, the convergence in both statements are uniform on compact subsets. Since the uniformity will be crucial for our purpose, and it is not as straightforward as in the case when \(\Gamma \) is a lattice, we will provide a proof. We will be using the following definitions.

Let \(d \) denote the left \(G \)-invariant and bi-\(K \)-invariant metric on \(G \) which induces the hyperbolic metric on \(G/K = \mathbb{H}^n \). For a subset \(S \subset G \), \(S_\epsilon \) denotes the \(\epsilon \)-neighborhood of \(e \) in the metric \(d \), that is,
\[
S_\epsilon = \{ s \in S : d(s, e) < \epsilon \}. \tag{3.3}
\]

Lemma 3.3. For any compact subset \(\Omega \subset G \), there exists \(R > 0 \) such that \((gB_C(G))^R \cap \Lambda(\Gamma) \neq \emptyset \) for any \(g \in \Omega \).

Proof. The claim follows since the map \(g \mapsto d_{\partial(\mathbb{H}^n)}(g^-, \Lambda(\Gamma)) \) is continuous where \(d_{\partial(\mathbb{H}^n)} \) is the spherical distance of \(\partial(\mathbb{H}^n) \). \(\square \)
For $\Omega \subset X$, the injectivity radius of Ω is defined to be the supremum of $\epsilon > 0$ such that the map $g \mapsto xg$ is injective on G_ϵ for all $x \in \Omega$.

Theorem 3.4. Fix $\psi \in C_c(X)$, a compact subset $\Omega \subset X$ and a number $r > 0$ smaller than the injectivity radius of Ω. Fix $c > 0$ and let $F_r(c)$ be an equicontinuous family of functions $0 \leq f \leq 1$ on $B(r)$ such that $f|_{B(r/4)} \geq c$. For any sufficiently small $\epsilon > 0$, there exists $S = S(\psi, F_r, \epsilon, \Omega) > 1$ such that for $x \in \Omega$ with $x^+ \in \Lambda(\Gamma)$, for any $f \in F_r$, and for any $s > S$, we have

\[
\left| \int_{B(r)} \psi(xu_4a_s)f(t)d\mu^G_x(t) - \mu^G_x(f)m^{BMS}(\psi) \right| < \epsilon \cdot \mu^G_x(f); \\
\left| e^{(n-1-\delta)s} \int_{B(r)} \psi(xu_4a_s)f(t)dt - \mu^G_x(f)m^{BR}(\psi) \right| < \epsilon \cdot \mu^G_x(f)
\]

where $\mu^G_x(f) = \int_{xB(r)} f(t)d\mu^G_x(t)$.

Proof. Let $\bar{\Omega}$ be a compact subset of G which projects onto $\Omega B_U(1)$. Fix a non-negative function $\psi \in C_c(G)$, whose support injects to $\Gamma \setminus G$. For each small $\eta > 0$, we define functions $\psi_{\eta, \pm}$ on G by

$\psi_{\eta, +}(h) := \sup_{w \in G_\eta} \psi(hw)$ and $\psi_{\eta, -}(h) := \inf_{w \in G_\eta} \psi(hw)$.

Fix $\epsilon > 0$. By the continuity of ψ and equicontinuity of F, there exists $0 < \eta < \epsilon$ such that

\[\sup_{h \in G} |\psi_{\eta, +}(h) - \psi_{\eta, -}(h)| < \epsilon/2, \text{ and} \]

\[\sup_{f \in F_r, |t-t'| < \eta} |f(t) - f(t')| < \epsilon/2.\]

Recall $P = MAU$ and P_η denotes the η-neighborhood of ϵ in P. The basic idea is to thicken $xB_U(r)$ in the transversal direction of P, and then to apply the mixing Theorem 3.1. However the transverse measure of xP_η may be trivial for all small η in which case the thickening approach does not work. So we flow x until we reach xu_4 for which the transverse measure xu_4P_η is non-trivial uniformly over all $x \in \Omega$. This however will force us to further subdivide $B_U(r)$ into “smaller” boxes. Let us now begin to explain this process carefully.

For any $p \in P_\eta$ and $t \in B_U(1)$, we have

\[p^{-1}u_t \in u_{\rho_p(t)}P_D\]

where $\rho_p : B_U(1) \to B_U(1 + O(\eta))$ is a diffeomorphism onto its image and $D > 0$ is a constant depending only on η.

Let $R > 1$ be as in Lemma 3.3 with respect to $\tilde{\Omega}$. Set

\[r_1 := \eta/R \quad \text{and} \quad s_0 := \log(r_1^{-1}). \tag{3.4}\]
Without loss of generality we may assume $r_1 < r/10$, by taking η smaller if necessary.

For any $g \in \Omega$ we put

$$g_0 := ga_{so} \in \tilde{\Omega}a_{so},$$

Then for all $g \in \tilde{\Omega}$, we have

$$\nu_{g_0 \eta}(g_0 P) > 0;$$

this follows from the choice of R in view of the fact that $(gB_U(R))^{-}$ is contained in $(g_0 P)^- = (g P_{\eta^0})^-$.

For any $c_1 > 0$, let $F_{r_1}(c_1) \subset C(B_U(r_1))$ be an equicontinuous family of functions f such that $0 \leq f \leq 1$ and $f|_{B_U(r_1/4)} \geq c_1$. Fix $g \in \bar{\Omega}$ with $g^+ \in \Lambda(\Gamma)$. We first claim that there exists some $S > 1$ (depending on r_1, c_1, equicontinuity of $F_{r_1}(c_1)$ and $\bar{\Omega}$) such that for all $s \geq S$, and all $f \in F_{r_1}(c_1)$,

$$\left| \sum_{\gamma \in \Gamma} \int \psi(\gamma gu_t a_s) f(t) d\mu^P_{\eta^0}(t) - \mu^P_{\eta^0}(f) \tilde{m}^{BMS}(\psi) \right| < \epsilon \cdot \mu^P_{\eta^0}(f)$$

where $\mu^P_{\eta^0}(f) = \int_{gB_U(\cdot)} f(t) d\mu^P_{\eta^0}(t)$. Associated to $f \in F_{r_1}(c_1)$, define the function $f_0 \in C_c(g_0 B_U(1))$ by

$$f_0(g_0 u_t) := f(e^{-so} t).$$

Let $\varphi_0 := \varphi_{f,g}$ be a function defined on $g_0 P \eta B_U(1) \subset G$ given by

$$\varphi_0(g_0 pu_{\eta^0}(t)) = \frac{f(e^{-so} t) \chi_{g_0 P \eta}(g_0 P)}{\nu(g_0 P \eta) \epsilon^{g_0 u_{\eta^0}(t)}} \delta g_{\eta^0}^{+},$$

which is well-defined by (3.5). Then φ_0 is supported in the set $g_0 B_U(1 + O(\eta))P_\eta$.

We observe that for each $p \in P_\eta$, $(g_0 u_t)^+ = (g_0 pu_{\eta^0}(t))^+$, the measures $d\mu^P_{\eta^0}(t)$ and $d((\eta^0)_{\eta^0_{(\eta^0)}}, \nu_{\eta^0})(t) = d\mu^P_{\eta^0}(\nu_{\eta^0}(t))$ are absolutely continuous with each other, and the Radon-Nikodym derivative at t is given by $e^{-\delta g_{\eta^0 u_{\eta^0}(t)}}$.

If $s > 2s_0 + \log(D/\eta)$, then

$$e^{so} \int_{B_U(r_1)} \psi(\gamma gu_t a_s) f(t) d\mu^P_{\eta^0}(t)$$

$$= \int_{B_U(1)} \psi(\gamma gu_t a_{s-s_0}) f_0(g_0 u_t) d\mu^P_{g_0}(t) \leq$$

$$\frac{1}{\nu(g_0 P \eta)} \int_{P \eta \cap B_U(1)} \psi_{\eta^0}(\gamma g_0 pu_{\eta^0(t)} a_{s-s_0}) f_0(g_0 u_t) \frac{d\mu^P_{\eta^0}}{d((\eta^0)_{\eta^0_{(\eta^0)}}, \nu_{\eta^0})}(t) d\nu_{\eta^0}(g_0 P)$$

$$= \int_{G} \psi_{\eta^0}(\gamma h a_{s-s_0}) \varphi_0(h) d\tilde{m}^{BMS}(h)$$

by (2.1).
Hence if we set
\[\Psi_{\eta,+}(\Gamma h) := \sum_{\gamma \in \Gamma} \psi_{\eta,+}(\gamma h) \quad \text{and} \quad \Phi_{f,g}(\Gamma h) := \sum_{\gamma \in \Gamma} e^{-\delta_0} \varphi_{f,g}(\gamma h), \]
then
\[\sum_{\gamma \in \Gamma} \int \psi(\gamma gu_k a_s) f(t) d\mu^\text{PS}_g(t) \leq \langle a_{s-s_0} \Psi_{\eta,+}, \Phi_{f,g} \rangle_{m^\text{BMS}}. \quad (3.7) \]

Since \(\mathcal{F}_{r_1}(c_1) \) is an equicontinuous and uniformly bounded family of functions, the collection \(\{ \Phi_{f,g} : f \in \mathcal{F}_{r_1}(c_1), g \in \Omega \} \) is a relatively compact subset of \(L^2(m^\text{BMS}) \).

In view of the assumption that \(\inf_{f \in \mathcal{F}_{r_1}(c_1)} |f|_{B_U(r_1/4)} \geq c_1 \), Corollary 2.2 implies that
\[c_0 := \inf_{g \in \Omega, \epsilon \in \Lambda(\Gamma)} \{ \mu^\text{PS}_g(f) : f \in \mathcal{F}_{r_1}(c_1) \} > 0. \]

Now by Theorem 3.2 there exists \(S > 2s_0 + \log(D_\eta \eta^{-1}) \) such that for all \(s > S \) and for all \(g \in \Omega \),
\[|\langle a_{s-s_0} \Psi_{\eta,+}, \Phi_{f,g} \rangle_{m^\text{BMS}} - m^\text{BMS}(\Psi_{\eta,+}) m^\text{BMS}(\Phi_{f,g})| \leq c_0 \epsilon / 2. \]

Since \(m^\text{BMS}(\Phi_{f,g}) = e^{-\delta_0} \mu^\text{PS}_g(f_0) = \mu^\text{PS}_g(f) \), we deduce
\[\langle a_{s-s_0} \Psi_{\eta,+}, \Phi_{f,g} \rangle_{m^\text{BMS}} \leq \tilde{m}^\text{BMS}(\psi) \mu^\text{PS}_g(f) + \epsilon / 2 \mu^\text{PS}_g(f) + c_0 \epsilon / 2 \leq \tilde{m}^\text{BMS}(\psi) \mu^\text{PS}_g(f) + \epsilon \mu^\text{PS}_g(f). \]

Combined with (3.7), for all \(s \geq S \),
\[\sum_{\gamma \in \Gamma} \int \psi(\gamma gu_k a_s) f(t) d\mu^\text{PS}_g(t) \leq \tilde{m}^\text{BMS}(\psi) \mu^\text{PS}_g(f) + \epsilon \mu^\text{PS}_g(f). \]
The lower bound
\[\sum_{\gamma \in \Gamma} \int \psi(\gamma gu_k a_s) f(t) d\mu^\text{PS}_g(t) \geq \tilde{m}^\text{BMS}(\psi) \mu^\text{PS}_g(f) - \epsilon \mu^\text{PS}_g(f). \]
can be obtained similarly. This finishes the proof of (3.6).

We now deduce (1) using (3.6) and a partition of unity argument. Consider a sub-covering \(\mathcal{B} \) of \(\{ u_t B_U(r_1) : u_t \in B_U(r) \} \) for \(B_U(r) \) of multiplicity \(\kappa \) depending only on the dimension of \(U \).

Let \(\{ \sigma_t : t \in I \} \subset \mathcal{F}_{r_1}(1) \) be an equicontinuous partition of unity subordinate to \(\mathcal{B} \). By the choice of \(\eta \) and \(r_1 < \eta \), we have
\[\sup_{f \in \mathcal{F}_r, |t'| < r_1} |f(t + t') - f(t)| < \epsilon. \]

For any \(f \in \mathcal{F}_r(c) \), define
\[I_1(f) := \{ t \in I : \sup_{t' \in B_U(r_1)} |f(t + t') \sigma_t(t')| < 2 \epsilon \} \]
and let \(I_2(f) := I - I_1(f) \).
Then the family \(\{ f\sigma_t : t \in I_2(f), f \in \mathcal{F}_r(c) \} \) satisfies the conditions of the family in [3.6] with \(r_1 \) and \(c_1 = \epsilon \). Therefore, there exists some \(S > 1 \), independent of \(f \in \mathcal{F}_r(c) \), so that for any \(x \in \Omega \) with \(x^+ \in \Lambda(\Gamma) \), for all \(s > S \) and all \(t \in I_2(f) \), we have

\[
\left| \int \psi(xu_ta_s)f(t + t')\sigma_t(t')d\mu_{xu_t}^{PS}(t') - \mu_{xu_t}^{PS}(f\sigma_t)\tilde{m}_{\Lambda}^{BMS}(\psi) \right| < \epsilon \cdot \mu_{xu_t}^{PS}(f\sigma_t).
\]

Hence

\[
\sum_{t \in I_2(f)} \left| \int \psi(xu_ta_s)f(t + t')\sigma_t(t')d\mu_{xu_t}^{PS}(t') - \mu_{xu_t}^{PS}(f\sigma_t)\tilde{m}_{\Lambda}^{BMS}(\psi) \right| \leq O(\epsilon)\mu_x^{PS}(f).
\]

On the other hand, we have

\[
\sum_{t \in I_1(f)} \left| \int \psi(xu_ta_s)f(t + t')\sigma_t(t')d\mu_{xu_t}^{PS}(t') - \mu_{xu_t}^{PS}(f\sigma_t)\tilde{m}_{\Lambda}^{BMS}(\psi) \right| < \sum_{t \in I_1(f)} O(\epsilon)\mu_x^{PS}(u_tB_U(r_1)) \leq O(\epsilon)\mu_x^{PS}(B_U(r)) \leq O(\epsilon)\mu_x^{PS}(f) \quad (3.9)
\]

where the implied constants depend only on \(\psi, \kappa \) and the positive lower bound for \(\mu_x^{PS}(f) \)'s.

Since \(f = \sum_{t \in I_1(f) \cup I_2(f)} f\sigma_t \), (3.8) and (3.9) imply (1) of the theorem.

Now the uniformity statement regarding (2) follows from the uniformity of (1); this follows directly from the argument in \(\cite{25} \) using the comparison of the transversal intersections. \(\square \)

4. **Equidistribution of non-closed U-orbits**

We call a point \(x \in X \) with \(x^+ \in \Lambda(\Gamma) \) a PS-point.

Recall:

\[
B_U(T) := \{ u_t \in U : |t| \leq T \}
\]

where \(|t| \) is the maximum norm of \(t \in U = \mathbb{R}^{n-1} \).

One way of characterizing the set \(\Lambda_r(\Gamma) \) of radial limit points in terms of U-orbits is that if \(x^- \in \Lambda_r(\Gamma) \), then \(u_t \to xu_t \) is an injective map from \(U \) to \(X \), \(xuUM \) is not closed in \(X \) and \(\mu_x^{PS} \) is an infinite measure (Lemma 2.4).

The following theorem of Schapira shows that for \(x^- \in \Lambda_r(\Gamma) \), most PS-points of \(xB_U(T) \) come back to a compact subset in a quantitative way.

Theorem 4.1. \(\cite{38} \) For any \(\epsilon > 0 \) and any compact subset \(\Omega \subset X \), there exists a compact subset \(Q = Q(\epsilon, \Omega) \subset X \) such that for any \(x \in \Omega \) with \(x^- \in \Lambda_r(\Gamma) \), there exists some \(T_x > 0 \) such that for all \(T \geq T_x \),

\[
\mu_x^{PS}(u_t \in B_U(T) : xu_t \in Q) \geq (1 - \epsilon)\mu_x^{PS}(B_U(T)).
\]

We will also make a repeated use of the following basic fact:
Lemma 4.2. [38 Lem 4.5] For a fixed $\kappa > 1$, there exists $\beta > 1$ such that for any compact $\Omega \subset X$, there exists $T_0(\Omega) > 1$ such that for any $x \in \Omega$ with $x^- \in \Lambda_\kappa(\Gamma)$ and for any $T > T_0(\Omega)$, we have
\[
\mu^\PS_x(B_U(\kappa T)) \leq \beta \cdot \mu^\PS_x(B_U(T)).
\]

4.1. Relative PS-size of a neighborhood of $\partial(B_U(T))$. In order to study the distribution of $xB_U(T)$ either in the PS measure or in the Lebesgue measure, it is crucial to understand the size of a neighborhood of $\partial(xB_U(T))$ compared to the size of $xB_U(T)$ in the PS-measure.

We do not know in general whether the following is true: for $x \in X$ with $x^- \in \Lambda_1(\Gamma)$, there exists $\rho > 0$ such that
\[
\lim_{T \to \infty} \frac{\mu^\PS_x(B_U(T+\rho) \setminus B_U(T-\rho))}{\mu^\PS_x(B_U(T))} = 0. \tag{4.1}
\]

Noting that
\[
\frac{\mu^\PS_x(B_U(T+\rho) \setminus B_U(T-\rho))}{\mu^\PS_x(B_U(T))} = \frac{\mu^\PS_{x^\log T}(B_U(1+\rho T^{-1}) \setminus B_U(1-\rho T^{-1}))}{\mu^\PS_{x^\log T}(B_U(1))},
\]
this question is directly related to the uniformity of the size of a neighborhood of a 1-sphere based at $xa_{\log T}$, where x is in a fixed compact subset.

When Γ is convex-cocompact, and $x^+ \in \Lambda(\Gamma)$ so that $x \in \supp(m^\BMS)$, then (4.1) now follows since $\supp(m^\BMS)$ is compact and any 1-sphere has zero PS-measure, and hence $\mu^\PS_{x^\log T}(B_U(1+\rho T^{-1}) \setminus B_U(1-\rho T^{-1}))$ is uniformly small for all large T. When there is a cusp in X, the PS-measure of a ball around $xa_{\log T}$ depends on the rank of a cusp where it stays (see Theorem 5.1 for a precise statement), and it is not clear whether 4.1 holds or not.

We will prove a weaker result which will be sufficient for our purpose. Let us begin with the following lemma which a consequence of the fact that Γ is Zariski dense, together with a compactness argument.

For a coordinate hyperplane L of $\mathbb{R}^{n-1} = U$, set $L^{(1)} := L \cap B_U(1)$. Define $\mathcal{O}_\rho(L^{(1)})$ to be the ρ-thickening of $L^{(1)}$ in the orthogonal direction.

Lemma 4.3. Let $\Omega \subset X$ be a compact subset. For any $\eta > 0$ there exists some $\rho_0 > 0$ so that
\[
\mu^\PS_y(\mathcal{O}_\rho(L^{(1)})) < \eta \cdot \mu^\PS_y(yB_U(1)).
\]
for all $y \in \Omega \cap \supp(m^\BMS)$ and all $\rho \leq \rho_0$.

Proof. We prove this by contradiction. Suppose the above fails; then there exist $\eta > 0$, and sequences $y_k \in \Omega \cap \supp(m^\BMS)$ and coordinate hyperplanes L_k so that
\[
\mu^\PS_{y_k}(\mathcal{O}_{\rho/k}(L_k^{(1)})) \geq \eta \cdot \mu^\PS_{y_k}(y_kB_U(1)).
\]

Passing to a subsequence we may assume $y_k \to y \in \Omega \cap \supp(m^\BMS)$ and $L_k = L$ for all k. Now for every $\alpha > 0$ we have $\mathcal{O}_{\alpha/k}(L^{(1)}) \subset \mathcal{O}_\alpha(L^{(1)})$ for all large enough k. Since $\mu^\PS_{y_k} \to \mu^\PS_y$ by Lemma 2.1 it follows that
\[\mu_y^{PS}(O_\alpha(L^{(1)})) \geq \eta/2 \] for all \(\alpha > 0 \). This implies \(\mu_y^{PS}(L) > 0 \) which contradicts the Zariski density of \(\Gamma \). This proves the lemma. \(\square \)

Lemma 4.4. Let \(\Omega \subset X \) be a compact subset. For any \(\epsilon > 0 \) there exist some \(\rho_0 = \rho_0(\epsilon, \Omega) > 0 \) with the following property: for all \(x \in \Omega \) with \(x^- \in \Lambda_{\epsilon}(\Gamma) \) there exists some \(R_x > 0 \) so that

\[\mu_x^{PS}(B_U(T + \rho) \setminus B_U(T - \rho)) < \epsilon \cdot \mu_x^{PS}(B_U(T)) \]

for all \(T \geq R_x \) and all \(0 < \rho \leq \rho_0 \).

Proof. Let \(c_1 > 1 \) and \(T_1 > 1 \) be so that for all \(x \in \Omega \) with \(x^- \in \Lambda_{\epsilon}(\Gamma) \) and \(T \geq T_1 \),

\[\mu_x^{PS}(B_U(T + 2)) \leq \mu_x^{PS}(B_U(2T)) \leq c_1 \mu_x^{PS}(B_U(T)) \]

as given by Lemma 4.2.

Apply Theorem 4.1 with \(\Omega \) and \(\epsilon/(2c_1) \) and let \(Q_0 = Q(\epsilon/(2c_1), \Omega) \) and \(T_x \geq 1 \) be given by that theorem.

Let \(T > T_x + T_1 \) in the following. By our choice of \(Q_0 \) and \(T_x \), we have

\[\mu_x^{PS}(B_U(T + 2) : xu \notin Q_0) \leq \frac{\epsilon}{2c_1} \mu_x^{PS}(B_U(T + 2)) \leq \frac{\epsilon}{2} \mu_x^{PS}(B_U(T)). \]

For each \(y \in \partial(xB_U(T)) \cap Q_0 \cap \text{supp}(\mu_x^{PS}) \) and any \(\rho > 0 \), put

\[W_{\rho,T}(y) := x(B_U(T + \rho) \setminus B_U(T - \rho)) \cap yB_U(1). \]

Note that for each \(y \in \partial(xB_U(T)) \) there exist some coordinate hyperplane \(L_1(y), \ldots, L_{\ell}(y) \), for some \(1 \leq \ell \leq n - 1 \), so that

\[W_{\rho,T}(y) \subset \bigcup_j yO_\rho(L_j(y)^{(1)}). \tag{4.2} \]

Since

\[\{yB_U(1) : y \in \partial(xB_U(T)) \cap Q_0 \cap \text{supp}(\mu_x^{PS})\} \]

is a covering for

\[x(B_U(T + \rho) \setminus B_U(T - \rho)) \cap Q_0 \cap \text{supp}(\mu_x^{PS}), \]

we can find a finite sub-cover \(\bigcup_{y \in J_T} yB_U(1) \) with multiplicity at most \(\kappa \), where \(\kappa \) depends only on the dimension of \(U \) by the Bescovitch covering theorem.

Applying Lemma 4.3 with \(\eta := \epsilon/(2c_1\kappa(n - 1)) \) and \(Q_0 \) we get some \(\rho_0 = \rho_0(\eta, Q_0) \) so that the conclusion of that lemma holds true. Thus using
that lemma and (4.2), for every $0 < \rho \leq \rho_0$ and $T > T_x + T_1$, we have
\[
\mu_x^\text{PS}(B_U(T + \rho) \setminus B_U(T - \rho)) \\
\leq \mu_x^\text{PS}(\{ u \in B_U(T + 2) : xu \notin Q_0 \}) + \mu_x^\text{PS}(\cup_{y \in J_T} W_{\rho, T}(y)) \\
\leq \frac{\varepsilon}{2} \mu_x^\text{PS}(B_U(T)) + \sum_{y \in J_T} \mu_y^\text{PS}(W_{\rho, T}(y)) \\
\leq \frac{\varepsilon}{2} \mu_x^\text{PS}(B_U(T)) + \sum_{i=1}^{n-1} \sum_{y \in J_T} \mu_y^\text{PS}(O_{\rho}(L_i(y)\{1\})) \\
\leq \frac{\varepsilon}{2} \mu_x^\text{PS}(B_U(T)) + \eta \varepsilon (n - 1) \mu_x^\text{PS}(\cup_{y \in J_T} yB_U(1)) \\
\leq \frac{\varepsilon}{2} \mu_x^\text{PS}(B_U(T)) + \frac{\varepsilon}{2} \mu_x^\text{PS}(B_U(T + 2)) \\
\leq \varepsilon \mu_x^\text{PS}(B_U(T)).
\]
This implies the lemma. \qed

4.2. Equidistribution of a U-orbit in PS-measure. We now prove an equidistribution result of xU in the PS-measure:

Theorem 4.5. Let $x^{-} \in \Lambda_t(\Gamma)$. Then for any $\psi \in C_c(X)$ we have
\[
\lim_{T \to \infty} \frac{1}{\mu_x^\text{PS}(B_U(T))} \int_{B_U(T)} \psi(xu_t) d\mu_x^\text{PS}(t) = m^\text{BMS}(\psi).
\]

The main ingredients of the following proof are Theorem 3.4, Theorem 4.1 and Lemma 4.4. In view of Theorem 4.1, we only need to focus on the part of $xB_U(T)$ which comes back to a fixed compact subset Q, as this part occupies most of the PS-measure. We will use a partition of unity argument for a cover of $xB_U(T) \cap Q$ by small balls centered at PS-points. Each function in the partition of unity will be controlled by Theorem 3.4, and Lemma 4.4 says this error can be controlled.

More precisely, we proceed as follows.

Proof. By the assumption that $x^{-} \in \Lambda_t(\Gamma)$, there exists a compact subset $\Omega \subset X$ and a sequence $s_i \to +\infty$ such that $xa_{-s_i} \in \Omega$.

Let $Q = Q(\varepsilon, \Omega) \subset X$ be a compact subset given by Theorem 4.1. Let $\rho_0 = \rho_0(\varepsilon, \Omega) > 0$ be given by Lemma 4.4 applied with Ω and $\varepsilon > 0$. Let $S > 1$ be the constant provided by Theorem 3.4 applied with Ω, $r = \rho_0$ and $\varepsilon > 0$. Now choose $s_0 > S$ so that $x_0 := xa_{-s_0} \in \Omega$; note that $x_0^- \in \Lambda_t(\Gamma)$. Apply Theorem 4.1 and Lemma 4.4 with x_0, and let $T_0 := T_{x_0} + R_{x_0}$. Then for all $T \geq T_0$ we have
\[
\mu_x^\text{PS}\{ u \in B_U(T) : xu \notin Q \} \leq \varepsilon \cdot \mu_{x_0}^\text{PS}(B_U(T)).
\]

For each $T \geq T_0$, we will consider a covering of the set
\[
D_T := x_0 B_U(T) \cap \text{supp}(\mu_x^\text{PS}) \cap Q
\]
and an equicontinuous partition of unity $\{ f_y : y \in J_T \}$ subordinate to this covering as follows. Let $J_T := \{ y \in D_T \}$ denote a maximal collection of points where $\{ yB_U(\rho_0/8) \}$ are disjoint. Then $\{ yB_U(\rho_0/2) : y \in J_T \}$ covers
D_T, moreover, the covering \{yB_U(\rho_0) : y \in J_T\} has multiplicity \kappa which depends only on the dimension of U.

Let $f \in C^\infty(B_U(\rho_0))$ be such that

$$0 \leq f \leq 1, \quad f|_{B_U(\rho_0/8)} = 1 \text{ and } 1/2 \leq f|_{B_U(\rho_0/2)} \leq 1.$$

For every $y \in D_T$ put $f'_y(yu_t) := f(u_t)$ and let $F_T = \sum_{y \in J_T} f'_y$. Then

$$1/2 \leq F_T(x_0u_t) \leq \kappa, \quad \text{for } x_0u_t \in D_T.$$

For each $y \in J_T$, put $f_y := f'_y/F_T$. Then \{f_y : y \in J_T\} is an equicontinuous partition of unity subordinate to the covering \{yB_U(\rho_0) : y \in J_T\}. In particular, we have $0 \leq f_y \leq 1$, $\sum_{y \in J_T} f_y = 1$ on $x_0B_U(T - \rho)$, and $\sum_{y \in J_T} f_y = 0$ outside $x_0B_U(T + \rho)$. Moreover, we have

$$f_y|_{B_U(\rho_0/8)} = 1 \text{ and } \frac{1}{2\kappa} \leq f_y|_{B_U(\rho_0/2)} \leq 1 \text{ for all } y \in J_T. \quad (4.4)$$

Fix $\psi \in C_c(X)$. Without loss of generality, we may assume that ψ is non-negative. For $T \geq T_0$, by applying Theorem 3.4 and Lemma 4.4(1), we have

$$\int_{x_0u_t \in Q \cap x_0B_U(T)} \psi(x_0u_t a_{s_0}) d\mu_{x_0}^\text{PS}(t) =$$

$$\sum_{y \in J_T} \int_{Q \cap x_0B_U(T)} \psi(x_0u_t a_{s_0}) f_y(x_0u_t) d\mu_{x_0}^\text{PS}(t)$$

$$+ O(\mu_{x_0}^\text{PS}(B_U(T + \rho_0) \setminus B_U(T - \rho_0)))$$

$$= \sum_{y \in J_T} \mu_{x_0}^\text{PS}(f_y) m_{BMS}(\psi)(1 \pm O(\epsilon)) + O(\epsilon \cdot \mu_{x_0}^\text{PS}(B_U(T)))$$

$$= \mu_{x_0}^\text{PS}(B_U(T)) \cdot m_{BMS}(\psi) + O(\epsilon \cdot \mu_{x_0}^\text{PS}(B_U(T)))$$

where the implied constants depend only on ψ.

Hence if $T \geq e^{s_0}T_0$, then

$$\int_{B_U(T)} \psi(xu_t) d\mu_x^\text{PS}(t)$$

$$= e^{s_0} \int_{B_U(Te^{-s_0})} \psi(x_0u_t a_{s_0}) d\mu_{x_0}^\text{PS}(t)$$

$$= e^{s_0} \left(\int_{x_0B_U(Te^{-s_0}) \cap Q} \psi(x_0u_t a_{s_0}) d\mu_{x_0}^\text{PS}(t) + O(\epsilon \cdot \mu_{x_0}^\text{PS}(B_U(T))) \right)$$

$$= e^{s_0} \left(\mu_{x_0}^\text{PS}(B_U(Te^{-s_0})) \cdot m_{BMS}(\psi) + O(\epsilon \cdot \mu_{x_0}^\text{PS}(B_U(Te^{-s_0}))) \right)$$

$$= \mu_x^\text{PS}(B_U(T)) \cdot m_{BMS}(\psi) + O(\epsilon \cdot \mu_x^\text{PS}(B_U(T)))$$

where the implied constant depends only on ψ.

This finishes the proof as $\epsilon > 0$ is arbitrary. \qed
4.3. **Equidistribution of a U-orbit in Lebesgue measure.** We will use a similar idea as in the proof of Theorem 4.5 to show the equidistribution of $xB_U(T)$ in the Lebesgue measure. The main difference is that we now need to control the escape of the orbit (measured in Lebesgue measure as opposed to the PS measure as in Theorem 4.5) to flares as well as to cusps. For this, we utilize the idea of comparing the "transversal intersections" of the PS-measure of xU and the Lebesgue measure of xU.

Theorem 4.6. Let $x^- \in \Lambda_t(\Gamma)$. Then for any $\psi \in C_c(X)$, we have

$$\lim_{T \to \infty} \frac{1}{\mu^{PS}(B_U(T))} \int_{B_U(T)} \psi(xu_t) dt = m^{BR}(\psi).$$

Proof. Fix x and ψ as above. Without loss of generality, we may assume that ψ is non-negative. Let P denote the parabolic subgroup MAU. We call $W = zP_1U_{\epsilon_0}$ an admissible box if W is the injective image of $P_1U_{\epsilon_0}$ in $\Gamma \backslash G$ under the map $g \mapsto zg$ and $\mu^{PS}_{zP}(zpU_{\epsilon_0}) \neq 0$ for all $p \in P_1$.

Since ψ is compactly supported, using a partition of unity argument, we may assume without loss of generality that ψ is supported in an admissible box $zP_1U_{\epsilon_0}$ for some $z \in \Gamma \backslash G$ and $0 < \epsilon_1 \leq \epsilon_0$.

Since $x^- \in \Lambda_t(\Gamma)$, there exists a compact subset $\Omega \subset \Gamma \backslash G$ and a sequence $s_i \to +\infty$ such that $xa_{-s_i} \in \Omega$. Now fix $\epsilon > 0$ smaller than ϵ_1 and ϵ_0. Let $Q = Q(\epsilon, \Omega) \subset X$ be a compact subset given by Theorem 4.1. Apply Lemma 4.4 with Ω and $\epsilon > 0$ and let $\rho_0 > 0$ be so that

$$\mu^{PS}(B_U(T + 4\rho_0) \setminus B_U(T - 4\rho_0)) < \epsilon$$

for all $x \in \Omega$ whenever $T > R_x$.

Let $S > 1$ be the constant provided by Theorem 3.4(2) applied with Ω, $\rho_0 = r$, and $\epsilon > 0$. Now choose $s_0 > S$ so that $x_0 := xa_{-s_0} \in \Omega$; note that $x_0 \in \Lambda_t(\Gamma)$. Apply Theorem 4.1 and Lemma 4.4 with x_0 and put $T_0 := T_{xa} + R_{xa}$. By Theorem 4.1 for all $T \geq T_0$, we have

$$\mu^{PS}_{x_0}(\{u_t \in B_U(T) : x_0 u_t \notin Q\}) \leq \epsilon \cdot \mu^{PS}_{x_0}(B_U(T)). \quad (4.5)$$

Given $\rho > 0$, for each $y \in x_0 U$, let $f_y \in C(yB_U(\rho))$ be a function such that $0 \leq f_y \leq 1$ and $f_y = 1$ on $yB_U(\rho/8)$.

Claim A: There exists $c > 1$ such that for any $y \in x_0 U$,

$$e^{(\pi - 1 - \delta)c_0} \int_{x_0 U} \psi(yu_t a_{s_0}) f_y(yu_t) dt \ll \psi \mu^{PS}_{y, c^{e_{-s_0}\epsilon_1}}(f_{y, c^{e_{-s_0}\epsilon_1}})$$

where $f_{y, \eta}(yu) := \sup_{u \in U} f_y(yuu')$ for $\eta > 0$. To prove this, define

$$P_\epsilon(s_0) := \{p \in P_1 : yB_U(\rho) a_{s_0} \cap zpU_{\epsilon_0} \neq \emptyset\}.$$

For small $\eta > 0$, we define: for $w \in \text{supp}(\psi)G_{\epsilon_0}$,

$$\psi_{\eta, +}(w) := \sup_{g \in G_\eta} \psi(wg), \quad \Psi_{\eta, +}(wp) := \int_{wpU} \psi_{\eta, +}(wpu_t) dt;$$
and for \(zpu \in zP \),

\[
\tilde{\Psi}_{\eta,+}(zpu) = \frac{1}{\mu_{zP}(zpU_\epsilon)} \Psi_{\eta,+}(zp).
\]

Then we have, for some fixed constant \(c > 0 \),

\[
e^{(n-1-\delta)s_0} \int_{yB(y_0)} \psi(yut\alpha_{s_0})f_y(yut)dt \ll e^{-\delta s_0} \sum_{p \in P(s_0)} f_{y,ce^{-s_0}\epsilon_1,+(zpa_{s_0})} \Psi_{ce1,+}(zp) \quad \text{by \[24, Lemma 6.2\]}
\]

\[
\ll \int_U \tilde{\Psi}_{ce1,+} + (yut\alpha_{s_0})f_{y,ce^{-s_0}\epsilon_1,+(yut)}d\mu_y(T) \quad \text{by \[24, Lemma 6.5\]}
\]

\[
\ll \mu_y \left(f_{y,ce^{-s_0}\epsilon_1,} \right)
\]

where the implied constant depends only on \(\Psi \). This implies the claim.

Without loss of generality, from now we assume that \(s_0 \) is big enough so that \(ce^{-s_0}\epsilon_1 \leq \min\{\rho_0/10, \epsilon\} \).

Using the claim (A) applied to a partition of unity subordinate to the covering by \(\rho_0 \)-balls of the set

\[
x_0(B_{x_0}(T' + \rho_0) \setminus B_{x_0}(T' - \rho_0))
\]

and the fact that \(ce^{-s_0}\epsilon_1 < \rho_0 \), we get

\[
e^{(n-1-\delta)s_0} \int_{B_{x_0}(T' + \rho_0) \setminus B_{x_0}(T' - \rho_0)} \psi(x_0u\alpha_{s_0})dt \ll \psi \mu_{x_0} \left(B_{x_0}(T' + 2\rho_0) \setminus B_{x_0}(T' - 2\rho_0) \right) \ll \epsilon \cdot \mu_{x_0} \left(B_{x_0}(T') \right) \quad \text{(4.6)}
\]

for all \(T' > T_0 \) where in the last in equality we used Lemma \[4.4\].

As it was done in the proof of Theorem \[4.5\], for every \(T' \geq T_0 \), we fix a covering \(\{yB_{y_0}(\rho_0)\} : y \in I_{T'} \} \) of

\[
x_0B_{x_0}(T') \cap \text{supp}(\mu_{x_0}^{\text{PS}}) \cap Q
\]

and let \(\{f_y : y \in I_{T'}\} \) be an equicontinuous partition of unity subordinate to this covering as in \[4.4\]. We recall in particular that

\[
\{yB_{y_0}(\rho_0/2) : y \in I_{T'}\} \text{ covers } x_0B_{x_0}(T') \cap \text{supp}(\mu_{x_0}^{\text{PS}}) \cap Q. \quad \text{(4.7)}
\]

Set

\[
Q_0(T') := \cup_{y \in I_{T'}} yB_{y_0}(\rho_0).
\]
Put $T_1 := T e^{-s_0} > T_0$. Then using Theorem 3.4(2) and (4.6) we have
\[e^{(n-1)\delta} s_0 \int_{x_0 u \in Q_0(T_1)} \psi(x_0 u a_{s_0}) dt \]
\[= e^{(n-1)\delta} s_0 \sum_{y \in J_{T_1}} \int_{y B_U(\rho_0)} \psi(x_0 u a_{s_0}) f_y(x_0 u) dt \]
\[+ O \left(e^{(n-1)\delta} s_0 \int_{\rho_0 (T_1 + \rho_0) \setminus B_U(T_1 - \rho_0)} \psi(x_0 u a_{s_0}) dt \right) \]
\[= \sum_{y \in J_{T_1}} \mu_{y}^{PS}(f_y) m^{BR}(\psi)(1 \pm O(\epsilon)) + O(\epsilon \cdot \mu_{x_0}^{PS}(B_U(T_1))) \]
\[= \mu_{x_0}^{PS}(B_U(T_1)) \cdot m^{BR}(\psi) + O(\epsilon \cdot \mu_{x_0}^{PS}(B_U(T_1))) \]
where the implied constants depend only on ψ.

Let J_{T_1} be a maximal set of points in $x_0 B_U(T_1) \setminus Q_0(T_1)$ so that $\{ y B_U(\rho_0/16) : y \in J_{T_1} \}$ is a disjoint family. Then $\{ y B_U(\rho_0/4) : y \in J_{T_1} \}$ covers $x_0 B_U(T_1) \setminus Q_0(T_1)$; moreover, by (4.7) we have
\[\text{supp}(\mu_{x_0}^{PS}) \cap \left(\bigcup_{y \in J_{T_1}} y B_U(\rho_0/3) \right) \]
\[\subset (x_0 B_U(T_1 + \rho_0) \cap Q^c) \cup (x_0 B_U(T_1 + \rho_0) \setminus B_U(T_1 - \rho_0)) \quad (4.8) \]

Let $\{ f_y : y \in J_{T_1} \}$ be a partition of unity subordinate to $\{ y B_U(\rho_0/4) : y \in J_{T_1} \}$. Applying Claim A to $\{ f_y : y \in J_{T_1} \}$ and using (4.5) and (4.6), we have
\[e^{(n-1)\delta} s_0 \int_{x_0 B_U(T_1) \setminus Q_0(T_1)} \psi(x_0 u a_{s_0}) dt \]
\[\leq e^{(n-1)\delta} s_0 \sum_{y \in J_{T_1}} \int_{y B_U(\rho_0/4)} \psi(y u a_{s_0}) f_y(y u) dt \]
\[\ll \sum_{y \in J_{T_1}} \mu_{y}^{PS}(f_y, \rho_0/10, +) \]
\[\ll \mu_{x_0}^{PS}(x_0 B_U(T_1 + \rho_0) \cap Q^c) + \mu_{x_0}^{PS}(B_U(T_1 + \rho_0) \setminus B_U(T_1 - \rho_0)) \quad \text{by (4.8)} \]
\[\ll \epsilon \cdot \mu_{x_0}^{PS}(x_0 B_U(T_1)). \]

Observing that
\[\frac{1}{\mu_{x_0}^{PS}(B_U(T))} \int_{B_U(T)} \psi(x u) dt = \frac{e^{(n-1)\delta} s_0}{\mu_{x_0}^{PS}(B_U(T_1))} \int_{B_U(T_1)} \psi(x_0 u a_{s_0}) dt \quad (4.9) \]
we have shown that for all $T > T_0 e^{-s_0}$,
\[\frac{1}{\mu_{x_0}^{PS}(B_U(T))} \int_{B_U(T)} \psi(x u) dt = m^{BR}(\psi) + O(\epsilon) \]
which finishes the proof. □
Both theorems 4.5 and 4.6 are proved in [22] for the case $n = 2$. Theorem 4.5 is also proved in [22] for the unit tangent bundle of a convex cocompact hyperbolic n-manifold. However as clear from the above proofs, the proof in the convex cocompact case is considerably simpler since the support of $\mu^B_{x,BMS}$ is compact.

Remark 4.7. Although Theorems 4.5 and 4.6 are stated for the norm balls $B_U(T)$ with respect to the maximum norm on $U \simeq \mathbb{R}^n$, the only property of the max norm we have used is that \{t \in \mathbb{R}^n : \|t\|_{\text{max}} = 1\} is contained in a finitely many union of algebraic sub-varieties in the proof of Lemma 4.3. In fact, our proofs work for any norm $\|\cdot\|$ on \mathbb{R}^n as long as the 1-sphere \{t \in \mathbb{R}^n : \|t\| = 1\} is contained in a finitely many union of algebraic sub-varieties.

Remark 4.8. Theorem 4.6 cannot be made uniform on compact subsets; for instance, if x^- is very close to a parabolic limit point, the convergence is expected to be slower. However, Egorov’s theorem implies that for a given compact subset $Q \subset X$ and any $\epsilon > 0$, there exists a compact subset $Q' \subset Q$ with $\mu^B_{\Gamma}(Q - Q') \leq \epsilon$ on which the convergence in Theorem 4.6 is uniform.

We will use this observation later.

5. Window lemma for horospherical averages

In this section we first prove that for $x^- \in \Lambda^1(\Gamma)$, the PS-measure of $xB_U(T)$ is not concentrated near the center x, in the sense that for any $\eta > 0$, there exists $r > 0$ such that for all large $T \gg 1$,

$$\mu^\text{PS}_x(B_U(T) \setminus B_U(rT)) \geq (1 - \eta)\mu^\text{PS}_x(B_U(T)). \quad (5.1)$$

This is of course immediate in the case when Γ is a lattice, in which case $\mu^\text{PS}_x(B_U(T)) = \mu^\text{Leb}_x(B_U(T)) = c \cdot T^{n-1}$ for some fixed $c > 0$. The inequality (5.1) also follows rather easily when Γ is convex cocompact since $\mu^\text{PS}_x(xB_U(T)) \asymp T^d$ for all $x \in \text{supp}(m^B_{x,BMS})$. For a general geometrically finite group, our argument is based on Sullivan’s shadow lemma. We remark that (5.1) is not a straightforward consequence of Shadow lemma and finding r in (5.1) is rather tricky as we need to consider several different possibilities for the locations of $xa - \log T$ and $xa - \log(rT)$ in the convex core of Γ (see the proof of Lemma 5.2).

5.1. Shadow lemma. For $\xi \in \Lambda_{\text{bp}}(\Gamma)$, choose $g_\xi \in G$ such that $g_\xi \xi = \xi$, and set, for each $R > 0$,

$$\mathcal{H}(\xi, R) = \cup_{s > R} g_\xi U a_{-s} K.$$

The rank of the horoball $\mathcal{H}(\xi, R)$ of depth R is defined to be the rank of a finitely generated abelian subgroup $\Gamma_\xi := \text{Stab}_G(\xi)$ and is known to be strictly smaller than 2δ.

The thick-thin decomposition of the convex core of the geometrically finite manifold $\Gamma \setminus \mathbb{H}^n$ (see [3]) implies that there exists $R \geq 1$ and a finite set
such that for all x where C

Theorem 5.1. Let $\mathcal{H}(\xi_i, R)$ be as given in Theorem 5.1. As $\mathcal{H}(\xi_i, R)$'s are disjoint and equal, we have

$\supp(m^{BMS}) \subset C_0 \cup \left(\bigcup_{i=1}^{t} \mathcal{H}_i \right)$

(5.2)

where $C_0 \subset X$ is compact and $\mathcal{H}_i = \mathcal{H}(\xi_i, R)$.

The following is a variation of Sullivan’s shadow lemma, obtained by Schapira-Maucourant [22].

Theorem 5.1. Let $\Omega \subset X$ be a compact subset. There exists $\lambda = \lambda(\Omega) > 1$ such that for all $x \in \Omega \cap \supp(m^{BMS})$ with $x^- \in \Lambda_t(\Gamma)$ and $T > 1$,

$$\lambda^{-1} T^{\delta} e^{(k(x,T) - \delta)d(C_0, x\Lambda_{-\log T})} \leq \mu^{PS}_x(B_U(T)) \leq \lambda T^{\delta} e^{(k(x,T) - \delta)d(C_0, x\Lambda_{-\log T})},$$

where $k(x,T)$ is the rank of H_i if $xa_{-\log T} \in \mathcal{H}_i$ for some $i \geq 1$, and equals 0 if $xa_{-\log T} \in C_0$.

5.2. Non-concentration property of PS measures.

Lemma 5.2 (Window lemma for PS-measure). Let $\Omega \subset X$ be a compact subset. For any $0 < \eta < 1$, there exists $0 < r = r(\eta, \Omega) < 1$ and $T_0 > 1$ such that for all $x \in \Omega$ with $x^- \in \Lambda_t(\Gamma)$ and $T > T_0$, we have

$$\mu^{PS}_x(B_U(rT)) \leq \eta \cdot \mu^{PS}_x(B_U(T)).$$

(5.3)

Proof. Let C_0 be given as (5.2). We first claim that it suffices to prove the following: for any $0 < \eta < 1$, there exists $0 < r < 1$ such that for all $y \in C_0 \cap \supp(m^{BMS})$ with $y^- \in \Lambda_t(\Gamma)$, and $T > 1$, we have

$$\mu^{PS}_y(B_U(rT)) \leq \eta \cdot \mu^{PS}_y(B_U(T)).$$

(5.4)

Without loss of generality, we may assume Ω contains C_0. By Lemma 3.3, there exists $R_0 > 1$ such that for all $x \in \Omega$,

$$xB_U(R_0) \cap (C_0 \cap \supp(m^{BMS})) \neq \emptyset.$$

Let $T > R_0r^{-1}$, so that we have $rT + R_0 < (2r)T$ for all $T > T_0$.

If $y = xu_t \in xB_U(R_0) \cap C_0 \cap \supp(m^{BMS})$, then $x, y \in \Omega$. Hence by Lemma 4.2 applied to Ω and (5.4), there exists $c_0 > 1$ such that

$$\mu^{PS}_x(B_U(rT)) \leq \mu^{PS}_y(B_U(rT + R_0)) \leq \mu^{PS}_y(B_U(2rT))$$

$$\leq c_0 \mu^{PS}_y(B_U(rT)) \leq \eta c_0 \mu^{PS}_y(B_U(T)) \leq \eta c_0 \mu^{PS}_x(B_U(T + R_0))$$

$$\leq \eta c_0 \mu^{PS}_x(B_U(2T)) \leq \eta c_0 \mu^{PS}_x(B_U(T)).$$

This proves the claim. Therefore, we need to verify (5.4) only for $x \in C_0 \cap \supp(m^{BMS})$ with $x^- \in \Lambda_t(\Gamma)$. In particular, $xa_{-\log T} \in \supp(n^{BMS})$.

Let $p_0 := \max_t \text{rank}(H_t)$ and $\lambda = \lambda(\Omega)$ be as given in Theorem 5.1. As remarked before, $2\delta > p_0$.

Set

$$r(\eta) := (\eta \lambda^{-2})^{1+1/(2\delta-p_0)}.$$

Since $\eta \lambda^{-2} < 1$, we have $r(\eta) < \min\{((\eta \lambda^{-2})^{1/(2\delta-p_0)}, \eta \lambda^{-2}\}.$
In view of Theorem 5.1, it suffices to show that \(r := r(\eta) \) satisfies the following:
\[
\eta \lambda^{-1} T^{\delta} e^{(k(x,T) - \delta)} d(C_0, x_{a_0 - \log r T}) \leq \rho r \lambda^{(k(x,r T) - \delta)} d(C_0, x_{a_0 - \log r T}),
\]
or equivalently
\[
\eta \lambda^{-2} e^{(k(x,T) - \delta)} d(C_0, x_{a_0 - \log r T}) e^{(-k(x,r T) + \delta)} d(C_0, x_{a_0 - \log r T}) \geq r^{\delta}.
\] (5.5)

From the triangle inequality, we have
\[
d(C_0, x_{a_0 - \log T}) - |\log r| \leq d(C_0, x_{a_0 - \log r T}) \leq d(C_0, x_{a_0 - \log T}) + |\log r|.
\] (5.6)

We prove this by considering two cases:

Case 1: \(k(x, T) \geq k(x, r T) \).

Then
\[
(k(x, T) - \delta)d(C_0, x_{a_0 - \log r T}) - (k(x, r T) - \delta)d(C_0, x_{a_0 - \log r T})
\]
\[
\geq (k(x, r T) - \delta)(d(C_0, x_{a_0 - \log r T}) - d(C_0, x_{a_0 - \log r T}))
\]
\[
\geq -|k(x, r T) - \delta| \cdot |\log r|.
\]

Hence the left-hand side of (5.5) is bigger than or equal to \(\eta \lambda^{-2} r |k(x,r T) - \delta| \). Considering two cases \(k(x, r T) \leq \delta \) and \(k(x, r T) > \delta \) separately, it is easy to check that our \(r = r(\eta) \) satisfies \(\eta \lambda^{-2} r |k(x,r T) - \delta| \geq r^{\delta} \), proving (5.5).

Case 2: \(k(x, T) < k(x, r T) \).

We first consider the case when \(k(x, T) = 0 \), so that \(d(C_0, x_{a_0 - \log T}) = 0 \) and \(0 < d(C_0, x_{a_0 - \log r T}) \leq |\log r| \) by (5.6). Then the left-hand side of (5.5) becomes
\[
\eta \lambda^{-2} e^{(-k(x,r T) + \delta)} d(C_0, x_{a_0 - \log r T}) \geq \eta \lambda^{-2} r |k(x,r T) - \delta| \geq r^{\delta}
\]
as before, proving the inequality (5.5).

We now assume that \(k(x, T) \geq 1 \). Then \(k(x, r T) \geq 2 \), and hence \(\delta > 1 \).

In this case, \(x_{a_0 - \log T} \) and \(x_{a_0 - \log r T} \) are in two distinct horoballs, and hence there exists \(r \leq \rho \leq 1 \) such that \(x_{a_0 - \log \rho T} \in C_0 \). We take a maximum such \(\rho \). Then
\[
d(C_0, x_{a_0 - \log T}) \leq d(x_{a_0 - \log (\rho T)}, x_{a_0 - \log T}) \leq |\log \rho|;
\]
\[
d(C_0, x_{a_0 - \log r T}) \leq d(x_{a_0 - \log (\rho T)}, x_{a_0 - \log r T}) \leq \log(\rho r^{-1}).
\]

It follows
\[
e^{(k(x,T) - \delta)} d(C_0, x_{a_0 - \log r T}) \geq \rho^{\delta - 1}
\]
and
\[
e^{(k(x,r T) - \delta)} d(C_0, x_{a_0 - \log r T}) \leq \max\{1, (\rho/r)^{k(x,r T) - \delta}\}.
\]

Therefore (5.5) is reduced to the inequality
\[
\eta \lambda^{-2} \rho^{\delta - 1} \geq r^{\delta} \max\{1, (\rho/r)^{k(x,r T) - \delta}\}.
\] (5.7)

If \(\max\{1, (\rho/r)^{k(x,r T) - \delta}\} = 1 \), since \(\rho > r \), this follows from \(\eta \lambda^{-2} \rho^{\delta - 1} \geq r^{\delta} \), which holds, by the definition of \(r = r(\eta) \).
It remains to prove that when \((\rho/r)^k(x,rT)^{-\delta} \geq 1\),
\[
\eta \lambda^{-2} \rho^{2\delta-k(x,rT)-1} \geq r^{2\delta-k(x,rT)}.
\]
(5.8)

By our definition, we have \(r(\eta) \leq (\eta \lambda^{-2})^{1+1/(2\delta-p_0)}\). Therefore we have
\[
\rho^{2\delta-1-k(x,rT)}/r^{2\delta-k(x,rT)} \geq \max\{\rho^{-1}, (\rho/r)^{2\delta-k(x,rT)}\}.
\]
The conclusion now follows by taking two cases: \(\rho \leq r(\lambda^2 \eta^{-1})^{1/(2\delta-k(x,rT))}\) and alternatively \(r(\lambda^2 \eta^{-1})^{1/(2\delta-k(x,rT))} \leq \rho \leq 1\). This completes the proof.
\(\square\)

5.3. Equidistribution for windows. We now draw the following corollaries of Lemma 5.2 and Theorems 4.5 and 4.6.

For \(\psi \in C_c(X)\) and \(T > 0\), we define the notation
\[
\mathcal{P}_T \psi(x) = \int_{B_U(T)} \psi(xu_t) d\mu^{PS}_x(t);
\]
\[
\mathcal{L}_T \psi(x) = \int_{B_U(T)} \psi(xu_t) dt.
\]

Theorem 5.3 (Window lemma for horospherical average). Fix a compact subset \(\Omega \subset X\). For any \(\eta > 0\), there exists \(0 < r = r(\eta, \Omega) < 1\) such that the following holds:

(1) for \(x \in \Omega\) with \(x^- \in \Lambda_r(\Gamma)\) and for any non-negative \(\psi \in C_c(X)\) with \(m^{BR}(\psi) > 0\), there exists \(T_0 = T_0(x, \psi)\) such that
\[
\mathcal{L}_T \psi(x) \leq \eta \cdot \mathcal{L}_T \psi(x) \quad \text{for all} \ T > T_0.
\]

(2) for \(x \in \Omega\) with \(x^- \in \Lambda_r(\Gamma)\) and for any non-negative \(\psi \in C_c(X)\) with \(m^{BMS}(\psi) > 0\), there exists \(T_0 = T_0(x, \psi)\) such that
\[
\mathcal{P}_T \psi(x) \leq \eta \cdot \mathcal{P}_T \psi(x) \quad \text{for all} \ T > T_0.
\]

Proof. Let \(r = r(\eta/4, \Omega)\) be as in Lemma 5.2. Let \(x \in \Omega\) with \(x^- \in \Lambda_r(\Gamma)\). By Theorem 4.6, there exists \(T_0 = T(x, \psi)\) so that for all \(T > T_0\),
\[
\mathcal{L}_T \psi(x) \leq 2m^{BR}(\psi) \mu^{PS}_x(B_U(rT)) \quad \mathcal{L}_T \psi(x) \geq \frac{1}{2} m^{BR}(\psi) \mu^{PS}_x(B_U(T)).
\]

Hence
\[
\mathcal{L}_T \psi(x) \leq \frac{4 \mu^{PS}_x(B_U(rT))}{\mu^{PS}_x(B_U(T))} \mathcal{L}_T \psi(x) \leq \eta \cdot \mathcal{L}_T \psi(x)
\]
by the choice of \(r\). This proves (1). (2) is proved similarly using Theorem 4.5 in place of 4.6. \(\square\)

Theorem 5.4 (Equidistribution for window averages). For any compact subset \(\Omega \subset X\), the following holds: for any \(x \in \Omega\) with \(x^- \in \Lambda_r(\Gamma)\) and any \(\varphi \in C_c(X)\), we have
Let $\varphi \in \mathcal{PS}(B_U(T) - B_U(rT))$ be such a measure. Let $x \in \Omega$. Then since the support of φ is not \emptyset, we have $\mu^\varphi(x) > 0$ for all $x \in \Omega$. This observation will be used later.

Remark 5.5. Note that if Theorem 4.6 holds for ψ uniformly for all points in a given compact subset Ω, then Theorem 5.4(2) also holds for ψ uniformly for all $x \in \Omega$. This observation will be used later.

5.4. Remark on measure classification. Burger [41] classified all locally finite U-invariant measures on $\Gamma \backslash \text{PSL}_2(\mathbb{R})$ when Γ is convex cocompact with $\delta > 1/2$. Roblin [33] extended Burger’s work in much greater generality, and classified all UM-invariant ergodic measures on $\Gamma \backslash G$ when Γ is a geometrically finite subgroup of a simple Lie group G of rank one. Extending this work, Winter [12] obtained a classification of all U-invariant ergodic measures on $\Gamma \backslash G$ when Γ is also assumed to be Zariski dense. In the case of $G = \text{SO}(n,1)$ and Γ geometrically finite, we can also deduce this classification result from Theorem 3.4 using the Hopf ratio theorem.

First, recall the Hopf ratio theorem proved by Hochman formulated in a setting we are concerned with:

Theorem 5.6. Let H be a connected Lie group and Γ a discrete subgroup. Let $\mathbb{R}^k = N \subset H$ be a connected abelian subgroup. Let μ be a locally finite N-invariant ergodic measure on $\Gamma \backslash G$. Let $\psi_1, \psi_2 \in C_c(\Gamma \backslash H)$. Suppose $\psi_2 \geq 0$. Then for μ-almost all x such that $\int_{B_N(\infty)} \psi_2(xu) \, du = \infty$, we have

$$\lim_{T \to \infty} \frac{\int_{B_N(T)} \psi_1(xu) \, du}{\int_{B_N(T)} \psi_2(xu) \, du} = \frac{\mu(\psi_1)}{\mu(\psi_2)}.$$

Theorem 5.7. The only ergodic U-invariant measure on X which is not supported on a closed orbit of MU is the BR measure.

Proof. Let μ be such a measure. Let $\psi \in C_c(X)$ be a non-negative function so that $\mu(\psi) > 0$ and $m^{\text{BR}}(\psi) > 0$. Then since the support of μ is not
contained in any closed MU-orbit, there exists $x \in X$ with $x^- \in \Lambda_\varepsilon(\Gamma)$ and the Hopf ratio ergodic theorem holds: for all $\varphi \in C_c(X)$, we have
\[
\lim_{T \to \infty} \frac{\mathcal{L}_T \varphi(x)}{\mathcal{L}_T \psi(x)} = \frac{\mu(\varphi)}{\mu(\psi)}.
\]
(5.11)

Therefore
\[
\frac{\mu(\varphi)}{\mu(\psi)} = \frac{m^{BR}(\varphi)}{m^{BR}(\psi)}.
\]

It follows that μ and m^{BR} are proportional to each other. \qed

We mention that when G is a general simple group of rank one, we expect an analogue of Theorem 4.6 holds. However in these cases, the horospherical subgroup is not abelian any more and the Hopf ratio theorem is not available for a general non-abelian nilpotent group action (cf. [13]). However a weaker type of the Hopf ratio theorem is still available (see [13, Theorem 1.4]) and together with this, it is plausible that an analogue of Theorem 4.6 would yield an alternative proof for the above mentioned measure classification theorem.

6. RIGIDITY OF AU-EQUIVARIANT MAPS

For the rest of the paper, we let $F = \mathbb{R}$ or \mathbb{C} and $G = \text{PSL}_2(F)$. Let
\[
U := \left\{ u_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} : t \in F \right\}, \quad \bar{U} := \left\{ \bar{u}_r = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} : r \in F \right\},
\]
and
\[
A = \left\{ a_s = \begin{pmatrix} e^{s/2} & 0 \\ 0 & e^{-s/2} \end{pmatrix} : s \in \mathbb{R} \right\}.
\]

Let Γ_1 and Γ_2 be geometrically finite, and Zariski dense subgroups of G and set for each $i = 1, 2$
\[
X_i := \Gamma_i \setminus G.
\]

We denote $m^{\text{BMS}}_{\Gamma_i}$ the BMS-measure on X_i associated to Γ_i for each $i = 1, 2$. We assume that $|m^{\text{BMS}}_{\Gamma_1}| = |m^{\text{BMS}}_{\Gamma_2}| = 1$. When there is no room for confusion, we will omit the subscript Γ_i from the notation of these measures.

Suppose
\[
v_1, \ldots, v_\ell : X_1 \to X_2
\]
are Borel measurable maps and consider a set-valued map:
\[
\Upsilon(x) = \{v_1(x), \ldots, v_\ell(x)\}.
\]
(6.1)

We assume that Υ is U-equivariant in the sense that there exists a U-invariant Borel subset $X' \subset X_1$ with $m^{\text{BMS}}(X') = 1$ such that for all $x \in X'$ and every $u_t \in U$, we have
\[
\Upsilon(xu_t) = \Upsilon(x)u_t.
\]
(6.2)

The main aim of this section is to prove Theorem 6.1 that if Υ is AU-equivariant on a BMS-conull set, it is also \bar{U}-equivariant.
Theorem 6.1. Suppose that for all \(x \in X' \) and every \(au_t \in AU \), we have
\[
\Upsilon(xau_t) = \Upsilon(x)au_t.
\]
Then there exists a BMS-conull subset \(X'' \subset X' \) such that for all \(x \in X'' \) and for every \(\tilde{u}_r \in \tilde{U} \) with \(x\tilde{u}_r \in X'' \), we have
\[
\Upsilon(x\tilde{u}_r) = \Upsilon(x)\tilde{u}_r.
\]

This is proved in [9] for the case \(\Gamma \) is convex cocompact and \(\ell = 1 \); the proof is based on Ratner’s proof of the rigidity of \(U \)-factors [29] in the lattice case. Here we use similar strategy and generalize this to the case of a geometrically finite group allowing also \(\ell \geq 1 \). The presence of cusps requires extra care in this extension.

Let us recall that following terminology from [16]. Let \(C, \alpha > 0 \) and we denote by \(|\cdot| \) the absolute value of \(F \). A function \(f : F^n \to F \) is said to be \((C, \alpha)\)-good on a ball \(B \) if the following holds: for any ball \(V \subset B \) and any \(\epsilon > 0 \) we have
\[
\ell\{x \in V : |f(x)| < \epsilon\} \leq C \left(\frac{\epsilon}{\sup_V |f|} \right)^\alpha \ell(V) \tag{6.3}
\]
where \(\ell \) denotes the Lebesgue measure on \(F^n \). It follows from Lagrange’s interpolation and induction that if \(f \) is a polynomial in \(n \) variables and of degree bounded by \(d \), then \(f \) is \((C, \alpha)\)-good on \(F^n \) where \(C \) and \(\alpha \) depend only on \(n \) and \(d \).

The \((C, \alpha)\)-good property for fractal measures was studied in [15]. We need the following lemma (a version of this is [9, Lemma 5.1] for \(\Gamma \) convex cocompact); our proof is soft and uses compactness arguments. This can be thought of as a weak form of the \((C, \alpha)\)-good property of polynomials.

Recall a point \(x \in X_1 \) is called a BMS-point (resp. BR-point) if it lies in the support of \(m_{BMS} \) (resp. \(m_{BR} \)).

For \(d \geq 0 \) and \(\ell \geq 1 \), let \(P_{d, \ell} \) be the set of functions \(\Theta : U \to \mathbb{R} \) of the form
\[
\Theta(t) := \min\{|\Theta_1(t)|^2, \ldots, |\Theta_\ell(t)|^2\}
\]
where the function \(\Theta_i : U \to \mathbb{R} \) is a polynomial of degree at most \(d \) for each \(1 \leq i \leq \ell \).

Lemma 6.2. Let \(d, \ell > 0 \) be fixed. For any compact subset \(K \subset X_1 \), there exists some \(C_1 = C_1(K, d, \ell) > 0 \) depending on \(d, \ell \) and \(K \) with the following properties: Let \(x \in K \) be a BMS point with \(x^- \in \Lambda_1(\Gamma) \) and let \(s \geq 0 \) be so that \(xa^-s \in K \). Then for any \(\Theta \in P_{d, \ell} \), we have
\[
\frac{1}{\mu_x^PS(B_U(\varepsilon))} \int_{B_U(\varepsilon)} \Theta(t)dp_x^PS(t) \geq C_1 \cdot \sup_{t \in B_U(\varepsilon)} \Theta(t).
\]

Proof. Write \(K_{BMS} = K \cap \text{supp}(m_{BMS}) \). Note that the above statement is invariant under scaling the map \(\Theta \). Further, for any \(x \in K_{BMS} \), any \(s \in \mathbb{R} \)
and all $\Theta \in \mathcal{P}_{d,\ell}$, we have

$$\frac{1}{\mu^\text{PS}_x(B_U(e^s))} \int_{B_U(e^s)} \Theta(t) d\mu^\text{PS}_x(t) = \frac{1}{\mu^\text{PS}_x(B_U(e^s))} \int_{B_U(1)} \Theta(t) d\mu^\text{PS}_x(e^s t)$$

$$= \frac{1}{\mu^\text{PS}_{x a^{-s}}(B_U(1))} \int_{B_U(1)} \tilde{\Theta}(t) d\mu^\text{PS}_{x a^{-s}}(t)$$

where $\tilde{\Theta}(t) := \Theta(e^s t)$. Suppose now the statement (1) fails. Then we have

- a sequence $x_i \in \mathcal{K}^\text{BMS}$, a sequence $s_i \to \infty$ such that $y_i := x_i a^{-s_i} \in \mathcal{K}$,
- a sequence $\tilde{\Theta}_i \in \mathcal{P}_{d,\ell}$ with $\sup_{B_U(1)} \tilde{\Theta}_i(t) = 1$

so that $\frac{1}{\mu^\text{PS}_{y_i}(B_U(1))} \int_{B_U(1)} \tilde{\Theta}_i(t) d\mu^\text{PS}_{y_i}(t) \to 0$ as $i \to \infty$.

Passing to a subsequence we may assume that $y_i \to y \in \mathcal{K}^\text{BMS}$ and $\tilde{\Theta}_i \to \tilde{\Theta} \in \mathcal{P}_{d,\ell}$ with $\sup_{\mathcal{P}_{d,\ell}} \tilde{\Theta}(t) = 1$. Since the map $x \mapsto \mu^\text{PS}_x$ is continuous on \mathcal{K}^BMS and

$$0 < \inf_{x \in \mathcal{K}^\text{BMS}} \mu^\text{PS}_x(B_U(1)) \leq \sup_{x \in \mathcal{K}^\text{BMS}} \mu^\text{PS}_x(B_U(1)) < \infty,$$

it follows that

$$\int_{B_U(1)} \tilde{\Theta}(t) d\mu^\text{PS}_y(t) = 0.$$

This implies that $\mu^\text{PS}_{y_i}(B_U(1) \cap \{ t : \tilde{\Theta}(t) \neq 0 \}) = 0$ which contradicts the fact that $y \in \text{supp}(m^\text{BMS})$ in view of Zariski density of Γ, proving the claim. \qed

We also recall the following mean ergodic theorem.

Theorem 6.3. [35] Thm. 17] For any Borel set \mathcal{K} of X_1 and any $\eta > 0$, the set

$$\left\{ x \in X_1 : \liminf_T \frac{1}{\mu^\text{PS}_x(B_U(T))} \int_{B_U(T)} \chi_{\mathcal{K}}(x u t) d\mu^\text{PS}_x(t) \geq (1 - \eta) m^\text{BMS}(\mathcal{K}) \right\}$$

has full BMS measure.

In the following, let X' be the set which satisfies (6.2) for Υ. Fix $\eta > 0$. By Lusin’s theorem, there exists a compact subset

$$\mathcal{K}_\eta \subset X' \cap \text{supp}(m^\text{BMS})$$

with $m^\text{BMS}(\mathcal{K}_\eta) > 1 - \eta$ so that v_i is uniformly continuous on \mathcal{K}_η for each $1 \leq i \leq \ell$. Since $\{ x \in X_1 : x^- \in \Lambda_r(\Gamma_1) \}$ has a full BMS-measure, it follows from Theorem 6.3 that there exist a compact subset

$$\Omega_\eta \subset \{ x \in X' \cap \text{supp}(m^\text{BMS}) : x^- \in \Lambda_r(\Gamma_1) \}$$

with $m^\text{BMS}(\Omega_\eta) > 1 - \eta$ and $T_\eta > 1$ such that for any $x \in \Omega_\eta$ and $T \geq T_\eta$,

$$\frac{1}{\mu^\text{PS}_x(B_U(T))} \int_{B_U(T)} \chi_{\mathcal{K}_\eta}(x u t) d\mu^\text{PS}_x(t) \geq (1 - \eta) m^\text{BMS}(\mathcal{K}_\eta)$$

$$\geq 1 - 2 \eta.$$
The following is a key ingredient of the proof of Theorem 6.1.

Proposition 6.4. Under the hypothesis of Theorem 6.1, there exists a compact subset $\Omega \subset \{ x \in X^t : x^- \in \Lambda_t(\Gamma) \}$ with $m^\text{BMS}(\Omega) > 0.9$, $\epsilon' > 0$ and $s_0 > 0$ such that for any $|r| < \epsilon'$, for any $s > s_0$ and $x \in \Omega$ such that $xu_r, xu_r a_s, xa_s \in \Omega$,

$$\Upsilon(xu_r)u_{-r} \subset \Upsilon(x) \cdot \{ g \in G : d(e, g) \leq c \cdot e^{-s} \}. \tag{6.7}$$

where $c > 1$ is an absolute constant.

Proof. Fix a small $\eta > 0$. Let K_η and Ω_η be as in (6.4) and (6.5). Fix a small $\epsilon > 0$. Let $0 < \epsilon' < \epsilon/2$ be such that

$$d(v_i(x), v_i(x')) \leq \epsilon \tag{6.8}$$

for all $1 \leq i \leq \ell$ and all $x, x' \in K_\eta$ with $d(x, x') \leq \epsilon'$. Fix $x \in \Omega_\eta$, $|r| < \epsilon'$ and $s > 0$ such that $xa_s, xu_r, xu_r a_s \in \Omega_\eta$.

We will first explain the idea of proofs assuming Υ is an actual map, i.e., $\ell = 1$. Writing

$$\Upsilon(xu_r)u_{-r} = \Upsilon(x)h_s \quad h_s \in G,$$

we would like to show that

$$d(e, h_s) = O(e^{-s}). \tag{6.9}$$

Set $g_s := a_{-s}h_s a_s$ so that

$$\Upsilon(xu_r)u_{-r}a_s = \Upsilon(x) a_s g_s = \Upsilon(xa_s) g_s.$$

As Υ is A-equivariant on Ω_η, we have $\Upsilon(xu_r)u_{-r}a_s = \Upsilon(xu_r a_s) \tilde{u}_{-e^{-s}r}$ and hence

$$\Upsilon(xu_r a_s) u_{-e^{-s}r} = \Upsilon(xa_s) g_s. \tag{6.10}$$

We will study the divergence of the points $\Upsilon(xu_r a_s) u_{-e^{-s}r}$ and $\Upsilon(x) a_s$ along u_t flow and show that for all s large and for all $t \in B_U(e^s)$,

$$\Upsilon(xu_r a_s) u_{-e^{-s}r} u_t \quad \text{and} \quad \Upsilon(xa_s) u_t$$

stay within bounded distance from each other, that is, $u_{-t}g_s u_t$ is uniformly bounded for all $t \in B_U(e^s)$. This will imply that the element g_s is close to the centralizer of U, which is U itself. We will then be able to conclude that the element $h_s = a_s g_s a_{-s}$ is of size $O(e^{-s})$.

For all $|t| \leq e^s$, set

$$\beta_t(t) = \frac{t}{1 + e^{-s}rt}.$$

Then we have

$$u_{e^{-s}r} u_t = \begin{pmatrix} 1 + e^{-s}rt & e^{-s}r \\ t & 1 \end{pmatrix} = u_{\beta_t(t)} g_r \tag{6.11}$$

where $g_r \in P = AMU$ with $d(e, g_r) \leq \epsilon'$. It is worth mentioning that the function $\beta_t(t)$ above is our time change map, and is responsible for the two aforementioned properties of g_r.

Step 1: We claim that for all \(|t| \leq \epsilon^s\) such that \(x a_s u_t, x u_r a_s u_{\beta_r}(t) \in K_{\eta}\), and for any \(i\),
\[
d(v_i(xu_r)u_r a_s u_t, \Upsilon(xa_s)u_t) \leq \epsilon. \tag{6.12}
\]
Using the \(U\)-equivariance, we have for any \(t \in \mathbb{F}\) and \(i\),
\[
v_i(xu_r)u_r a_s u_t
\]
\[
\in \Upsilon(xu_r a_s)u_r e^{-s_r} u_t \quad \text{using } x u_r a_s = x a_s u e^{-s_r}
\]
\[
= \Upsilon(xu_r a_s)u_{\beta_r}(t)g_r \quad \text{by (6.11)}
\]
\[
= \Upsilon(xu_r a_s u_{\beta_r}(t))g_r
\]
\[
= \Upsilon(xa_s u_t g_r^{-1})g_r \quad \text{by (6.11)};
\]
where we used the identities:
\[
\hat{u}_r a_s u_{\beta_r}(t) = a_s u_r e^{-s_r} u_{\beta_r}(t) = a_s u_t g_r^{-1}
\]
by (6.11). The choice of \(\epsilon\) made in (6.8) implies that for all \(|t| \leq \epsilon^s\) such that \(x a_s u_t, x a_s u_t g_r^{-1} = x u_r a_s u_{\beta_r}(t) \in K_{\eta}\), we have
\[
d(v_i(xu_r)u_r a_s u_t, \Upsilon(xa_s)u_t) \leq 2\epsilon.
\]
This implies (6.12) by the \(U\)-equivariance of \(\Upsilon\).

Step 2: Letting
\[
K_x(s, r) := \{t \in B_U(\epsilon^s) : x a_s u_t, x u_r a_s u_{\beta_r}(t) \in K_{\eta}\}
\]
and \(s_0 = \log T_{\eta}\), we claim that for all \(s > s_0\),
\[
\mu_{xa_s}^{PS}(K_x(s, r)) \geq (1 - c_0 \eta)\mu_{xa_s}^{PS}(B_U(\epsilon^s)) \tag{6.13}
\]
where \(c_0 > 0\) is an absolute constant.
Since \(x a_s, x u_r a_s \in \Omega_{\eta}\), we get from (6.6) that if \(s > s_0\),
\[
\mu_{xa_s}^{PS}(t \in B_U(\epsilon^s) : x a_s u_t \in K_{\eta}) \geq (1 - 2\eta)\mu_{xa_s}^{PS}(B_U(\epsilon^s)) \tag{6.14}
\]
and
\[
\mu_{xa_s}^{PS}(t \in B_U(\epsilon^s) : x u_r a_s u_t \in K) \geq (1 - 2\eta)\mu_{xa_s}^{PS}(B_U(\epsilon^s)). \tag{6.15}
\]
Note that \(\text{Jac}(\beta_r)(t) = 1 + O(\epsilon^s)\) for all \(t \in B_U(\epsilon^s)\), and hence (6.15) implies
\[
\mu_{xa_s}^{PS}(t \in B_U(\epsilon^s) : x u_r a_s u_{\beta_r}(t) \notin K) \leq \mu_{xa_s}^{PS}(t \in B_U(\epsilon^s + O(\epsilon^s)) : x u_r a_s u_t \notin K)
\]
\[
\leq 2\eta \cdot \mu_{xa_s}^{PS}(B_U(\epsilon^s + O(\epsilon^s))
\]
\[
\leq (2c_1 \eta) \cdot \mu_{xa_s}^{PS}(B_U(\epsilon^s))
\]
where \(c_1\) is given by Lemma 4.2 for \(\text{supp}(m^{BMS})\). This is equivalent to saying that
\[
\mu_{xa_s u_{e^{-s_r}}}^{PS}(t \in B_U(\epsilon^s) : x u_r a_s u_{\beta_r}(t) \notin K) \leq (2c_1 \eta) \cdot \mu_{xa_s u_{e^{-s_r}}}^{PS}(B_U(\epsilon^s)). \tag{6.16}
\]
Note that \((x_a \tilde{u}_{r-s} u_{\beta_{-r}(t)})^+ = (xa_s u_t)^+\) since \(g_{-r} \in P\). It follows from the definition of the PS-measure \(d\mu_y^PS(t) = e^{\delta(y, u') + (o(y, u))}d\nu_o((y u_t)^+)\) and the fact \(|e^{-s}\tilde{r}| = O(e^{-s}\ell')\) that on \(B_U(e^s)\),

\[
d\mu_{x a_s}^PS(\beta_{-r}(t)) = (1 + O(e^{-s}\ell'))d\mu_{x a_s}^PS(t).
\]

Therefore (6.16) implies that

\[
\mu_{x a_s}^PS\{t \in B_U(e^s) : x\tilde{u}_r a_s u_{\beta_{-r}(t)} \notin K_\eta\} \leq (c_2\eta) \cdot \mu_{x a_s}^PS(B_U(e^s)) \tag{6.17}
\]

for some absolute constant \(c_2 > 0\). Hence this together with (6.14) implies the claim (6.13).

Step 3: If \(\eta > 0\) and \(\ell' > 0\) are sufficiently small, then for each \(i\), there exists \(k(i)\) such that for all \(s > s_0\),

\[
\sup_{t \in B_U(e^s)} d(v_i(x\tilde{u}_r)\tilde{u}_{r-a_s u_t}, v_{k(i)}(x a_s) u_t) \leq 1. \tag{6.18}
\]

Put

\[
\Theta(t) = \min\{d(v_i(x\tilde{u}_r)\tilde{u}_{r-a_s u_t}, \Upsilon(x a_s) u_t)^2, 1\}.
\]

Then for any \(s > s_0\),

\[
\frac{1}{\mu_{x a_s}^PS(B_U(e^s))} \int_{B_U(e^s)} \Theta(t) d\mu_{x a_s}^PS(t)
\]

\[
\leq c_0\eta + \frac{1}{\mu_{x a_s}^PS(B_U(e^s))} \int_{K_{\sigma}(s_r)} \Theta(t) d\mu_{x a_s}^PS(t) \tag{6.13}
\]

\[
\leq c_0\eta + \epsilon \tag{6.12}
\]

Recall now that if \(y, z \in X\) are two points then for all \(t \in F\) so that \(d(y u_t, z u_t)\) is sufficiently small, the map \(t \mapsto d(y u_t, z u_t)^2\) is governed by a polynomial of bounded degree, see [29]. By (6.12), for any sufficiently small \(\epsilon > 0\), \(\Theta_{x,s} \in \mathcal{P}_{d,\ell}\) where \(d\) depends only on the dimension. If we set \(y := x a_s \in \Omega_\eta\), then \(ya_{-s} = x \in \Omega_\eta\). Hence applying Lemma 6.2 for \(y = xa_s\), we obtain that

\[
\sup_{|t| \leq e^s} \Theta(t) \leq 2(c_0\eta + \epsilon)/C_1 := \zeta
\]

where \(C_1 = C_1(\Omega_\eta, d, \ell)\). If \(\eta\) and \(\epsilon\) are sufficiently small so that \(2(c_0\eta + \epsilon)/C_1 < 1\), then

\[
d(v_i(x\tilde{u}_r)\tilde{u}_{r-a_s u_t}, \Upsilon(x a_s) u_t) < \zeta^{1/2}.
\]

It follows that for each \(i\), there exist \(1 \leq k(i) \leq \ell\), and a subset \(J(s) \subset B_U(e^s)\) with \(\ell(J(s)) \geq \frac{1}{\ell}(B_U(e^s))\) so that if we set

\[
\Theta_i(t) := d(v_i(x\tilde{u}_r)\tilde{u}_{r-a_s u_t}, , v_{k(i)}(x a_s) u_t)^2,
\]

then

\[
\sup_{t \in J(s)} \Theta_i(t) \leq \zeta.
\]
Therefore the above and the fact that polynomials of a bounded degree are \((C, \alpha)\)-good with respect to the Haar measure, see \((6.3)\), imply that
\[
\frac{1}{\ell} \ell(B_U(e^{s})) \leq \ell(J(s)) \leq C4^{-\alpha}(\sup_{|t| \leq e^{s}} \Theta_i)^{-\alpha} \ell(B_U(e^{s})).
\]

Hence
\[
\sup_{|t| \leq e^{s}} \Theta_i \leq \zeta \cdot C^{1/\alpha} \ell = 2C^{1/\alpha}(c_0\eta + \epsilon) / C_1.
\]

Therefore \((6.18)\) holds for \(\eta\) and \(\epsilon\) sufficiently small.

Step 4: For every \(1 \leq i \leq \ell\), define \(g_{s,i} \in G\) by the following
\[
u_i(x \tilde{u}_r a_s) = \nu_k(i)(x a_s)g_{s,i}.
\]

We claim
\[
d(e, a_s g_{s,i} a_{-s}) = O(e^{-s}).
\]

The equation \((6.18)\) in particular implies that \(g_{s,i}\) is contained in an \(O(1)\) neighborhood of the identity.

We further investigate the element \(g_{s,i}\). Write \(g_{s,i} = (x_s \ y_s \ z_s \ w_s)\), so that
\[
u_i(x \tilde{u}_r a_s) = \nu_k(i)(x a_s)g_{s,i}.
\]

Therefore, \((6.18)\) and the fact that \(\det g_{s,i} = 1\) imply
\[
|z_s| = O(1), \ |1 - x_s| = O(e^{-s}), \ |1 - w_s| = O(e^{-s}), \ |y_s| = O(e^{-2s}).
\]

This implies
\[
d(e, a_s g_{s,i} a_{-s}) = O(e^{-s}). \tag{6.19}
\]

This proves \((6.7)\) for \(s_0\) (given in Step 2) and \(\Omega = \Omega_\eta, \epsilon' > 0\) for sufficiently small \(\eta, \epsilon' > 0\) (given in Step 3).

Proof of Theorem 6.1

Let \(\Omega\) and \(\epsilon' > 0\) be as in Proposition 6.4. By the ergodicity of the \(A\)-flow for the BMS measure, which follows from Theorem 3.1 and the Birkhoff ergodic theorem, there exists a conull subset \(X''\) of \(X\) such that for all \(x \in X''A\),
\[
\lim_{S \to \infty} \frac{1}{S} \int_0^S \chi_\Omega(x a_s)ds = m^{\text{BMS}}(\Omega) > 0.9 \tag{6.20}
\]

Let \(x \in X''\) and \(\tilde{u}_r \in \tilde{U}\) such that \(x \tilde{u}_r \in X''\). We will show
\[
\Upsilon(x \tilde{u}_r) = \Upsilon(x)\tilde{u}_r.
\]

By \((6.20)\), we can choose arbitrarily large \(s_0 > 1\) such that \(x a_{s_0}, x \tilde{u}_r a_{s_0} \in \Omega\), and \(e^{-s_0}r\) is of size at most \(\epsilon'\). Setting \(x_0 := x a_{s_0}\) and \(r_0 := e^{-s_0}r\), it suffices to show that \(\Upsilon(x_0 \tilde{u}_r) = \Upsilon(x_0)\tilde{u}_r\), thanks to the \(A\)-equivariance. Therefore, we may assume without loss of generality that
\[
x \in X''A \cap \Omega, \ x \tilde{u}_r \in X''A \cap \Omega \text{ and } |r| \leq \epsilon'.
\]
By (6.20), we have a sequence $s_m \to +\infty$ so that $x\bar{u}_m a_{s_m}, x a_{s_m} \in \Omega$ for all m. By Proposition 6.4 we have
\[
\Upsilon(x\bar{u}_m) \subset \Upsilon(x) \cdot \{g \in G : d(e,g) \leq ce^{-s_m}\}
\]
Hence $\Upsilon(x\bar{u}_m) = \Upsilon(x)$, proving the claim.

7. JOINING CLASSIFICATION

We let $G = \text{PSL}_2(\mathbb{F})$ for $\mathbb{F} = \mathbb{R}, \mathbb{C}$. Let Γ_1 and Γ_2 be geometrically finite, and Zariski dense subgroups of G. Set $X_i := \Gamma_i \backslash G$ for $i = 1, 2$ and $Z := X_1 \times X_2$.

We keep the notations $U, A, \bar{U},$ etc. from section 6. Let
\[
M = \begin{cases}
\{e\} & \text{for } G = \text{PSL}_2(\mathbb{R}) \\
\left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} : \theta \in \mathbb{R} \right\} & \text{for } G = \text{PSL}_2(\mathbb{C})
\end{cases}
\] (7.1)

Since M is considered as a subgroup of $\text{PSL}_2(\mathbb{C})$, two elements which differ by -1 are identified. We set $P = MA\bar{U}$.

We will use the notation Δ for the diagonal embedding map of G into $G \times G$; so $\Delta(g) = (g, g)$ for $g \in G$. For $t \in \mathbb{F}$, $|t|$ denotes the absolute value of t and for $T > 0$, we set
\[
B_U(T) = \{u_t \in U : |t| \leq T\}.
\]

7.1. Construction of a polynomial-like map. We fix a rational cross-section L for $\Delta(U)$ in $G \times G$ as follows:
\[
L = \{(e) \times G\} \cdot \Delta(P) = P \times G.
\]
Then $L \cap \Delta(U) = \{e\}$ and the product map from $L \times \Delta(U)$ to G defines a diffeomorphism onto a Zariski open dense subset of $G \times G$. We will use L as the transversal direction to $\Delta(U)$ in $G \times G$.

We observe that $N_{G \times G}(\Delta(U)) = \Delta(AM) \cdot (U \times U)$ and
\[
N_{G \times G}(\Delta(U)) \cap L = \Delta(AM) \cdot \{(e) \times U\}
\]

Suppose that we are given a sequence $h_k = (h_k^1, h_k^2) \in G \times G$ such that $h_k \notin N_{G \times G}(\Delta(U))$ with $h_k \to e$ as $k \to \infty$. Associated to $\{h_k\}$, we will construct a quasi-regular map
\[
\varphi : \Delta(U) \to \Delta(AM) \cdot \{(e) \times U\}
\]
following [21, Section 5]. Via the identification $\mathbb{F} = \Delta(U)$ given by $t \mapsto \Delta(u_t)$, we will define the map φ on \mathbb{F}, which will save us some notation. Accordingly, we will write $t \in B_U(1)$ to mean that $u_t \in B_U(1)$, etc.

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and for $t \neq -ab^{-1}$, define
\[
\alpha_g(t) = \frac{c + dt}{a + bt}.
\]
We denote the pole of \(\alpha \) by \(R(g) \) and put \(R(g) = \infty \) if \(\alpha \) is defined everywhere. That is, \(R(g) = -ab^{-1} \) if \(b \neq 0 \) and \(\infty \) otherwise.

Set
\[
\alpha_k(t) := \alpha_{h_k}^1(t) \quad \text{and} \quad R_k = R(h_k^1) \quad \text{for each} \quad k.
\]

Note that \(R_k \to \infty \) as \(k \to \infty \). A direct computation shows that for all \(t \in \mathbb{F} - \{ R_k \} \), we can write \(h_k \Delta(t) \) as an element of \(\Delta(U) \mathcal{L} \) where the \(\Delta(U) \) component is given by \(\Delta(u_{\alpha_k(t)}) \). We will denote by \(\varphi_k(t) \) for its transversal component so that
\[
h_k \Delta(t) = \Delta(u_{\alpha_k(t)}) \varphi_k(t) \in \Delta(U) \mathcal{L}.
\]

We renormalize these maps \(\varphi_k \)'s using a representation corresponding to \(\Delta(U) \). Recall that by a theorem of Chevalley there is a finite dimensional representation \((\rho, W) \) of \(G \times G \), where \(G \times G \) acts from the right on \(W \) and a unit vector \(q \in W \) so that
\[
\Delta(U) = \{ h \in G \times G : qr(h) = q \}.
\]

Then
\[
N_{G \times G}(\Delta(U)) = \{ h : qr(h) \rho(\Delta(u_t)) = qr(h) \text{ for all } u_t \in U \}.
\]

We choose a norm \(\| \cdot \| \) on \(Y \) so that \(B(q, 2) \cap qr(G \times G) \subset qr(G \times G) \).

Now for each \(k \), define \(\tilde{\phi}_k : \mathbb{F} \to W \) by
\[
\tilde{\phi}_k(t) = qr(h_k \Delta(t));
\]

\(\tilde{\phi}_k \) is a polynomial map of degree bounded in terms of \(\rho \) and \(\tilde{\phi}_k(0) = q \).

Explicit construction of \(\tilde{\phi}_k \): Consider the following representation: let \(G \times G \) act on \(W = \mathbb{F}^2 \oplus \mathbb{F}^2 \oplus M_2(\mathbb{F}) \) by
\[
(g_1, g_2), (v_1, v_2, Q) = (v_1 g_1, v_2 g_2, g_1^{-1} Q g_2).
\]

Then the stabilizer of \(q := (e_1, e_1, I_2) \) is precisely \(\Delta(U) \). If we write \(h_k = \begin{pmatrix} a_k & b_k \\ c_k & d_k \end{pmatrix} \), then, up to an additive constant vector, say, \(q_k \in W \) we have
\[
\tilde{\phi}_k(t) = q_k + \begin{pmatrix} b_k t^1, 0, b_k t^2, 0, \left(\begin{array}{cc} -A_k t & 0 \\ A_k t^2 + B_k t & A_k t \end{array}\right) \end{pmatrix}
\]
where \(A_k = b_k d_k^2 - c_k d_k^1 \) and \(B_k = a_k d_k^2 + b_k c_k^2 - b_k c_k^1 - a_k d_k^1 \). Hence \(\tilde{\phi}_k \) is a polynomial of degree at most 2.

Let \(T_k > 0 \) be the infimum of \(T > 0 \) such that
\[
\sup_{t \in B_U(T)} \| \tilde{\phi}_k(t) - q \| = 1.
\]

Since \(h_k \not\in N_{G \times G}(\Delta(U)) \), \(\tilde{\phi}_k \) is a non-constant polynomial and hence we get \(T_k \neq \infty \), moreover, in view of our assumption \(h_k \to e \) we have \(T_k \to \infty \) as \(k \to \infty \).

By normalizing \(\tilde{\phi}_k \) by
\[
\phi_k(t) := \tilde{\phi}_k(T_k t),
\]
we obtain a sequence of equicontinuous polynomials ϕ_k. Hence, after passing to a subsequence, ϕ_k converges to ϕ where

- $t \mapsto \phi(t)$ is a non-constant polynomial of degree at most 2.
- $\sup_{t \in B_U(1)} \|\phi(t) - q\| = 1$ and $\phi(0) = q$,
- $\{\phi(t) : t \in B_U(1)\} \subset \rho(G \times G)$
- the convergence is uniform on compact subsets of F.

Put $\varphi = (\rho_L)^{-1} \circ \phi$

where ρ_L is the restriction to L of the orbit map $g \mapsto q\rho(g)$. Then $\varphi : F \to L$ is a rational map defined on a Zariski open dense subset $O \subset F$ containing zero and $\varphi(0) = e$. We have

$$\varphi(t) = \lim_k \varphi_k(T_k t)$$

and the convergence is uniform on compact subsets of O.

Note also that for any $t_0 \in F$, we have

$$\phi(t)\rho(\Delta(u_{t_0})) = \lim_k \phi_k(T_k t)\rho(\Delta(u_{t_0})) = \lim_k q\rho(h_k \Delta(u_{T_k t}))\rho(\Delta(u_{t_0})) = \lim_k q\rho(h_k \Delta(u_{T_k(t+t_0/T_k)})) = \phi(t).$$

Therefore $\varphi(t) \in N_{G \times G}(\Delta(U)) \cap L$.

The following observation will be important in our application:

Lemma 7.1. There is $\eta > 0$ such that $\varphi(t) = e$ and $t \in B_U(\eta)$ implies $t = 0$, that is, 0 is an isolated point in $\varphi^{-1}(e)$.

Proof. Since ϕ is a non-constant polynomial of degree at most 2, the set $\{t \in F : \phi(t) = q\}$ consists of at most two points. \qed

7.2. $\Delta(U)$-recurrence for the pull back function Ψ. As before, we normalize $|m^{BMS}_{\Gamma_i}| = 1$ for $i = 1, 2$. For the sake of simplicity, we will often omit the subscript Γ_i in the notation of $m^{BMS}_{\Gamma_i}$ and $m^{BR}_{\Gamma_i}$.

For the rest of the section, let μ be an ergodic \bar{U}-joining of Z with respect to $m^{BR}_{\Gamma_1} \times m^{BR}_{\Gamma_2}$. In particular, if $\pi_i : X_1 \times X_2 \to X_i$ denotes the projection onto i-th coordinate, then

$$(\pi_i)_*\mu = m^{BR}_{\Gamma_i}.$$ We also suppose that μ is an infinite measure, that is, at least one of $m^{BR}_{\Gamma_i}$ is infinite. Without loss of generality we will assume $m^{BR}_{\Gamma_2}$ is an infinite measure.

Lemma 7.2. The following set has a full μ-measure in Z:

$$\{(x_1, x_2) \in Z : x_i^- \in \Lambda_r(\Gamma_i) \text{ for each } i = 1, 2\}.$$
Proof. Since $\Lambda_r(\Gamma_i)$ has the full Patterson-Sullivan measure in $\Lambda(\Gamma_i)$ by Sullivan [40], $Y_i := \{x_i \in X_i : x_i^- \in \Lambda_r(\Gamma_i)\}$ has a full m^{BR}-measure. Since $(\pi_i)_*\mu = m^{\text{BR}}$, we have $\pi_1^{-1}(Y_1) \cap \pi_2^{-1}(Y_2)$ has a full μ-measure. \qed

Recall that a Borel measure μ is h-quasi-invariant if $h.\mu$ is a positive multiple of μ where $h.\mu(B) := \mu(Bh)$ for any Borel subset B.

Lemma 7.3. If μ is quasi-invariant under (e, g) for some $g \in G$, then it is invariant under (e, g).

Proof. Suppose $(e, g)\mu = c\mu$. Let $\Omega \subset X_1$ be a compact subset with $m^{\text{BR}}(\Omega) > 0$. Then we have

$$c\mu(\Omega \times X_2) = (e, g)\mu(\Omega \times X_2) = \mu((\Omega \times X_2)(e, g)) = \mu(\Omega \times X_2).$$

Since $0 < \mu(\Omega \times X_2) = m^{\text{BR}}(\Omega) < \infty$, we get $c = 1$. \qed

Definition 7.4. We fix the following:

- a non-negative function $\psi \in C_c(X_1)$ with $m^{\text{BR}}(\psi) > 0$, and
 $$\Psi := \psi \circ \pi_1 \in C(Z);$$

- a compact subset $\Omega_1 \subset \{x \in X_1 : x^- \in \Lambda_r(\Gamma_1)\}$ with $m^{\text{BR}}(\Omega_1) > 0$ such that both Theorems 4.6 and 5.4(2) hold for ψ uniformly for all $x_1 \in \Omega_1$ (such Ω_1 exists in view of the remarks 4.8 and 5.5);

- a constant $0 < r := \frac{1}{4} r(0.5, \Omega_1) < 1$ where $r(0.5, \Omega_1)$ is as given in Theorem 5.3;

- a compact subset $Q \subset \Omega_1 \times \Omega_2 \subset Z$ such that $\mu(Q) > 0$ and for all $x \in Q$ and for all $f \in C_c(Z)$,

 $$\lim_{T \to \infty} \frac{\int_{B_U(T)} f(x\Delta(u_t))dt}{\int_{B_U(T)} \Psi(x\Delta(u_t))dt} = \frac{\mu(f)}{\mu(\Psi)}.$$ \hspace{1cm} (7.2)

Note that since $(\pi_1)_*\mu = m^{\text{BR}}$, we have

$$0 < \mu(\Psi) < \infty; \text{ in particular, } \Psi \in L^1(\mu).$$

Since Ψ is defined as the pull-back of a function on X_1, we can transfer the recurrence properties of U-orbits in X_1 to statements about $\Delta(U)$-recurrence properties with respect to Ψ. We record these properties of Ψ in the following two lemmas.

Lemma 7.5. For any $x \in Z$ with $\pi_1(x^-) \in \Lambda_r(\Gamma_1)$, we have

$$\int_{B_U(T)} \Psi(x\Delta(u_t))dt \to \infty \quad \text{as } T \to \infty.$$
Proof. For such an \(x \), we have, by Theorem 4.6

\[
\int_{B_U(T)} \Psi(t) \, dt = \int_{B_U(T)} \psi(t) \, dt \sim \mu_{\pi_1}^{PS}(B_U(T)) \cdot m^{BR}(\psi).
\]

Since \(m^{BR}(\psi) > 0 \), we have \(\int_{B_U(T)} \Psi(t) \, dt \to \infty \).

Lemma 7.6. There exists \(T_0 = T_0(\psi, \Omega) > 1 \) such that for any \(x \in Z \) with \(\pi_1(x) \in \Omega \) and any \(T > T_0 \),

\[
\int_{B_U(T)} \Psi(t) \, dt \leq \frac{1}{2} \int_{B_U(T)} \Psi(t) \, dt.
\]

Proof. For \(x \in Z \) with \(\pi_1(x) \in \Omega \), we have

\[
\int_{B_U(T)} \Psi(t) \, dt - \int_{B_U(T)} \Psi(t) \, dt = \int_{B_U(T)} \psi(t) \, dt - \int_{B_U(T)} \psi(t) \, dt \\
\geq \frac{1}{2} \int_{B_U(T)} \psi(t) \, dt \\
= \frac{1}{2} \int_{B_U(T)} \Psi(t) \, dt \quad (7.3)
\]

where the inequality follows by Theorem 5.3.

7.3. Joining measure.

In this section we will use ergodic theorems and polynomial like behavior of unipotent orbits, the construction of a polynomial-like map in §7.1 in order to produce extra quasi-invariance for the measure. We begin with the following.

Lemma 7.7. Let \(Y \subset Z \) be a Borel subset such that for all \(y \in Y \),

1. \(\lim_{T \to \infty} \int_{B_U(T)} \Psi(y) \, dt = \infty \);
2. for all \(f \in C_c(Z) \),

\[
\lim_{T \to \infty} \frac{\int_{B_U(T)} f(y) \, dt}{\int_{B_U(T)} \Psi(y) \, dt} = \frac{\mu(f)}{\mu(\Psi)}.
\]

If \(h \in N_{G \times G}(\Delta(U)) \) satisfies \(Y \cap Yh \neq \emptyset \), then \(\mu \) is quasi-invariant.

Proof. Let \(h \in N_{G \times G}(\Delta(U)) = \Delta(AM) \cdot (U \times U) \) and \(y \in Y \) such that \(yh \in Y \). Since, under conjugation, \(\Delta(AM) \) acts on \(\Delta(U) \) by homothethy composed with rotations,

\[
h^{-1} \Delta(u) h = \Delta(u_{\beta_h(t)})
\]

where \(\beta_h : U \to U \) is a homothethy composed with a rotation.

If the \(\Delta(A) \)-component of \(h \) is \((a_s, a_s) \), then \(\beta_h(B_U(T)) = B_U(e^{s}T) \) and the Jacobian of \(\beta_h \) is equal to \(e^{(n-1)s} \) where \((n - 1) \) is the dimension of \(U \) as a real vector space.
For any $f \in C_c(Z)$ and for any all large $T \gg 1$,
\[
\left| \frac{\mu(h.f)}{\mu(h.\Psi)} - \frac{\mu(f)}{\mu(\Psi)} \right| = \left| \frac{\mu(h.f)}{\mu(h.\Psi)} - \frac{\int_{B_U(T)} f(y \Delta (u_t) h) dt}{\int_{B_U(T)} \Psi(y \Delta (u_t) h) dt} - \frac{\int_{\beta_h(B_U(T))} f(y h \Delta (u_t) h) dt}{\int_{\beta_h(B_U(T))} \Psi(y h \Delta (u_t) h) dt} \right|.
\]
Since both y and yh belong to Y, it follows that the last two terms tend to zero as $T \to \infty$. Hence
\[
\mu(h.f) = \frac{\mu(h.\Psi)}{\mu(\Psi)} \cdot \mu(f),
\]
finishing the proof.

\[\text{For } 0 < r_0 < 1, \text{ and } T > 0, \text{ set } I_{r_0}(T) := B_U(T) \setminus B_U(r_0 T). \tag{7.4} \]

For a Borel function f on Z, and $x \in Z$, set
\[
D_T f(x) = \int_{I_{r_0}(T)} f(x \Delta (u_t)) dt. \tag{7.5}
\]

Corollary 7.8. For any $f \in C_c(Z)$, and any $x \in Q$, we have
\[
\lim_{T \to \infty} \frac{D_T f(x)}{D_T \Psi(x)} = \frac{\mu(f)}{\mu(\Psi)}. \tag{7.6}
\]

Proof. This follows from Lemma 7.6 and (7.2). \hfill \Box

Remark 7.9. Let $\mathcal{F} \subset L^1(Z, \mu)$ be any countable subset. Then there is a full measure subset $Q' \subset Q$ so that (7.6) holds for all $f \in \mathcal{F}$ and $x \in Q'$. Indeed by the Hopf ratio theorem and the fact that \mathcal{F} is countable there is full measure subset $Q' \subset Q$ so that analogue of (7.2) holds for all $f \in \mathcal{F}$. Then using Lemma 7.6 we have $\frac{D_T f(x)}{D_T \Psi(x)} \to \frac{\mu(f)}{\mu(\Psi)}$ for all $f \in \mathcal{F}$ and all $x \in Q'$.

Fix a small $\epsilon > 0$, and choose $\eta > 0$ small enough so that $\mu(Q\{g : |g| \leq \eta\}) \leq (1 + \epsilon)\mu(Q).$ We put
\[
Q_+ = Q\{g : |g| \leq \eta/4\}, \text{ and } Q_{++} = Q\{g : |g| \leq \eta\}.
\]

Set
\[
\mathcal{F} := \{\chi_Q, \chi_{Q_+}, \chi_{Q_{++}}\}.
\]

Using this and Egorov’s theorem and Remark 7.9, we can find a compact subset
\[
Q_\epsilon \subset Q
\]
with \(\mu(Q) > (1 - \epsilon)\mu(Q) \), such that for any \(f \in F \) and any \(\theta > 0 \), there exists some \(T_0 = T_0(f, \theta) \) so that if \(T \geq T_0 \), then

\[
\left| \frac{\mathcal{D}_T f(x)}{\mathcal{D}_r \Psi(x)} - \frac{\mu(f)}{\mu(\Psi)} \right| \leq \theta \quad \text{for all} \quad x \in Q_c. \tag{7.7}
\]

Such a subset will be referred to as a set of uniform convergence for the family \(F \) (cf. \[23, Lemma 7.5\]).

Lemma 7.10. Fix \(0 < \sigma < 1/2 \). There exist \(T_0 = T_0(\psi, \Omega_1) > 0 \) and \(c_0 = c_0(\psi, \Omega_1) > 1 \) such that for all \(T > T_0 \) and for all \(x \in Q_c \) we have

\[
c_0^{-1} \int_{I_{\psi}(T)} \Psi(x\Delta(u_t))dt \leq \int_{B_U(T)} \Psi(x\Delta(u_t))dt \leq c_0 \int_{I_{\psi}(T)} \Psi(x\Delta(u_t))dt
\]

where \(r_{\sigma}^\pm = (1 \pm \sigma)r \) and \(T_{\sigma}^\pm = (1 \pm \sigma)T \).

Proof. Since Theorem \[5.4(2)\] holds for \(\psi \) uniformly for all \(\pi_1(x) \in \Omega_1 \), there exists \(T_0 > 1 \) such that for any \(x \in Q_c \) and for any \(T > T_0 \),

\[
\int_{I_{\psi}(T)} \Psi(x\Delta(u_t))dt = \int_{I_{\psi}(T)} \psi(\pi_1(x)u_t)dt \geq \frac{1}{2} m^{BR}(\psi) \left(\mu_{\pi_1(x)}^{PS}(B_U(T_{\sigma}^-)) - B_U(r_{\sigma}^+T_{\sigma}^-) \right).
\]

On the other hand, by Lemma \[5.2\] and Lemma \[4.2\] there exist \(T_1 > T_0 \) and \(c_0' > 0 \), depending only on \(\Omega_1 \) such that if \(\pi_1(x) \in \Omega_1 \),

\[
\mu_{\pi_1(x)}^{PS}(B_U(T_{\sigma}^-)) - B_U(r_{\sigma}^+T_{\sigma}^-) \geq \frac{1}{2} \mu_{\pi_1(x)}^{PS}(B_U(T_{\sigma}^-)) \geq c_0' \mu_{\pi_1(x)}^{PS}(B_U(T)).
\]

Since Theorem \[4.6\] holds for \(\psi \), uniformly for all \(\pi_1(x) \in \Omega_1 \), we have, for all sufficiently large \(T \gg 1 \),

\[
m^{BR}(\psi)\mu_{\pi_1(x)}^{PS}(B_U(T)) \geq \frac{1}{2} \int_{B_U(T)} \psi(\pi_1(x)u_t)dt.
\]

Therefore,

\[
\int_{I_{\psi}(T)} \Psi(x\Delta(u_t))dt \geq \frac{c_0'}{2} m^{BR}(\psi)\mu_{\pi_1(x)}^{PS}(B_U(T))
\]

\[
\geq \frac{c_0'}{4} \int_{B_U(T)} \psi(\pi_1(x)u_t)dt = \frac{c_0'}{4} \int_{B_U(T)} \Psi(x\Delta(u_t))dt.
\]

The other direction can be proved similarly. \(\square \)

The following lemma will be used to compare ergodic averages along two nearby orbits.

Lemma 7.11. Let \(\{R_k\} \) be a sequence tending to infinity as \(k \to \infty \) and fix a small number \(0 < \sigma < 1/2 \). For each \(k \), let \(\alpha_k : \mathbb{F} \to \mathbb{F} \) be a rational map with no poles on \(B_{R_k}(\mathbb{F}) \). Suppose that for all \(t \in B_{R_k}(\mathbb{F}) \),

\[
1 - \sigma \leq |\text{Jac}(\alpha_k)(t)| \leq 1 + \sigma.
\]
Then there exist $c_1 > 1$ and $T_1 = T_1(\Omega, \psi, \mathcal{F}) > 1$ such that for all $T < R_k/4$, $x \in Q_\epsilon$ and $f \in \mathcal{F}$, we have

$$c_1^{-1} \cdot D_T f(x) \leq \int_{I_r(T)} f(x \Delta(u_{\alpha_k(t)})) dt \leq c_1 \cdot D_T f(x).$$

Proof. First note that

$$\int_{I_r(T)} f(x \Delta(u_{\alpha_k(t)})) dt = \int_{\alpha_k(I_r(T))} f(x \Delta(u_t)) |\text{Jac}(\alpha_k)(t)| dt.$$ \hspace{1cm} (7.8)

Setting $r^\pm = (1 \pm \sigma)r$ and $T^\pm = (1 \pm \sigma)T$, note that $I_{r^\pm} (T^\pm) \subset \alpha_k(I_r(T)) \subset I_{r^\pm} (T^\pm)$.

Now for all $T > 2T_0(\psi, \Omega)$, where T_0 is as in Lemma 7.10, we have

$$\int_{I_r(T)} f(x \Delta(u_{\alpha_k(t)})) dt \geq (1 - \sigma) \int_{I_{r^\pm}(T^\pm)} f(x \Delta(u_t)) dt + \alpha_1(T)$$

$$\geq (1 - \sigma) c_0^{-1} \int_{B_U(T)} f(x \Delta(u_t)) dt + \alpha_2(T)$$

where $\alpha_i(T)$’s satisfy $\lim_{T \to \infty} \frac{\alpha_i(T)}{\int_{B_U(T)} \Psi(x \Delta(u_t)) dt} = 0$

By Lemma 7.6 and (7.7), it follows that for all $x \in Q_\epsilon$,

$$\lim_{T \to \infty} \frac{\alpha_1(T)}{D_T f(x)} = 0$$

where the convergence is uniform on Q_ϵ.

Therefore for all $x \in Q_\epsilon$ and T large,

$$(1 - \sigma) c_0^{-1} D_T f(x) + \alpha_2(T) \geq c_1^{-1} D_T f(x)$$

and hence

$$\int_{I_r(T)} f(x \Delta(u_{\alpha_k(t)})) dt \geq c_1^{-1} D_T f(x)$$

for some $c_1 > 1$ and for all T bigger than some fixed $T_1 > 1$. The other inequality can be proved similarly. \hfill \square

For a subset $S \subset G \times G$, we denote by $\langle S \rangle$ the minimal connected subgroup of $G \times G$ containing S.
Theorem 7.12. Let $h_k \in G \times G - N_{G \times G}(\Delta(U))$ be a sequence tending to e as $k \to \infty$. If $Q, h_k \cap Q \neq \emptyset$ for all k, then μ is quasi-invariant under a nontrivial connected subgroup of $\Delta(AM)(\{e\} \times U)$. Moreover, if $h_k \in \{e\} \times G$ for all k, then μ is invariant under a nontrivial connected subgroup of $\{e\} \times U$.

Proof. We use the notation used in the construction of the map φ in section 7.1 with respect to $\{h_k\}$. By our assumption we have that there are points $y_k \in Q$ so that $x_k = y_k h_k \in Q$. Recalling the maps φ_k and α_k from above, we have

$$x_k \Delta(u_t) = y_k h_k \Delta(u_t) = y_k \Delta(u_{\alpha_k(t)}) \varphi_k(t).$$

Now let

$$\tau_k' := \sup_{t \in B_U(\tau)} d(e, \varphi_k(t)) = \eta/4, \quad \tau_k = \min\{\tau_k', R_k\},$$

and

$$R_k = \sup\{0 < R < \infty : 0.9 \leq \text{Jac}(\alpha_k)|_{B_R(F)} \leq 1.1\}.$$

Note that

$$\sup_{t \in B_U(\tau_k')} d(e, \varphi_k^{-1}(t)) = \eta/4.$$

Note that $\Theta_k = \tau_k/T_k$ is bounded away from 0; in particular, $\tau_k \to \infty$. Passing to a subsequence we may assume that Θ_k converges to some Θ.

By the definition of Q, we have, for all large enough T,

$$\left| \frac{\int_{I_r(T)} f_1(z_k \Delta(u_t)) dt}{\int_{I_r(T)} f_2(z_k \Delta(u_t)) dt} - \frac{\mu(f_1)}{\mu(f_2)} \right| \leq \theta$$

for $f_1, f_2 \in \mathcal{F} = \{\chi_Q, \chi_{Q^+}, \chi_{Q^{++}}\}$ and $z_k = x_k, y_k$.

With this notation, the above implies: for all large enough k and all $T_0 \leq T \leq \tau_k$ we have

$$\{t \in I_r(T) : x_k \Delta(u_t), y_k \Delta(u_{\alpha_k(t)}) \in Q \} \neq \emptyset. \quad (7.9)$$

To see this, let k be large and let $T_0 \leq T \leq \tau_k$. Then

$$\{t \in I_r(T) : x_k \Delta(u_t) \in Q\} \subset \{t \in I_r(T) : y_k \Delta(u_{\alpha_k(t)}) \in Q_+\} \subset \{t \in I_r(T) : x_k \Delta(u_t) \in Q^{++}\}.$$

On the other hand we have

$$\ell\{t \in I_r(T) : x_k \Delta(u_t) \in Q\} \geq (1 - \epsilon)\ell\{t \in I_r(T) : x_k \Delta(u_t) \in Q^{++}\} \quad (7.10)$$
where $|\cdot|$ denotes the Lebesgue measure on F. From these two and Lemma 7.11 we get

$$\ell\{t \in I_r(T) : y_k \Delta(u_{\alpha_k(t)}) \in Q\}$$

(7.11)

$$\geq c_1 \ell\{t \in I_r(T) : y_k \Delta(u_t) \in Q\}$$

(7.12)

$$\geq c_1(1 - \epsilon) \ell\{t \in I_r(T) : y_k \Delta(u_t) \in \mathcal{Q}_+\}$$

(7.13)

$$\geq c_1(1 - \epsilon) \ell\{t \in I_r(T) : x_k \Delta(u_{\alpha_k^{-1}(t)}) \in \mathcal{Q}\}$$

(7.14)

$$\geq c_1^2(1 - \epsilon) \ell\{t \in I_r(T) : x_k \Delta(u_t) \in \mathcal{Q}\}$$

(7.15)

$$\geq c_1^2(1 - \epsilon)^2 \ell\{t \in I_r(T) : x_k \Delta(u_t) \in \mathcal{Q}_{++}\}$$

(7.16)

Now (7.9) follows by applying (7.10) and (7.11), in view of the choice of ϵ and the fact that by Corollary (7.8) we have

$$\ell\{t \in I_r(T) : x_k \Delta(u_t) \in \mathcal{Q}_{++}\} > 0$$

for all large enough T.

For each k, let $m_k \geq 0$ be the maximum integer so that $r^{m_k}T_k \geq T_k$. Then for any $\ell \geq 0$ and all large enough k we have $\ell \leq m_k$. Let $\ell \geq 0$ and apply (7.9) with $T_{k,\ell} = r^\ell T_k$. Then for each k we find $t \in I_r(T_{k,\ell})$ so that $z_{k,\ell} = y_k \Delta(u_{\alpha_k(t)})$ satisfies $z_{k,\ell} \in \mathcal{Q}$ and $z_{k,\ell} \varphi_k(t) \in \mathcal{Q}$. Passing to a subsequence we get: there exist some $z_t \in \mathcal{Q}$ and some $s \in B_U(\Theta) \setminus B_U(r\Theta)$ so that $z_t \varphi(s) \in \mathcal{Q}$. Therefore by Lemma 7.1 we have μ is $\varphi(s)$ quasi-invariant. Now if we choose ℓ large enough, then $\varphi(s) \neq e$ in view of Lemma 7.1; however, it can be made arbitrary close to the identity by choosing large ℓ's. This implies the first claim, since the image of φ is contained in the subgroup $\Delta(AM)(\{e\} \times U)$.

Now, if $h_k \in \{e\} \times G$, the image of φ is contained in $N_{G \times G}(\Delta(U)) \cap (\{e\} \times G) = \{e\} \times U$. Indeed, $\varphi_k(t) = (e, u_{-t^2}g_k u_t)$ and $\alpha_k(t) = t$. Therefore we get μ is quasi-invariant under the action of a nontrivial connected subgroup of $\{e\} \times U$; hence the claim follows from Lemma 7.3.

7.4. Infinite joining measure cannot be invariant by $\{e\} \times V$ for $V < U$. We recall some basic facts about dynamical systems. Consider an action of one-parameter subgroup $W = \{w_t\}$ on a separable, σ-compact and locally compact topological space X with an invariant Radon measure μ_0. A Borel subset $E \subset X$ is called wandering if $\int_X \chi_E(xw_t) < \infty$ for almost all $x \in E$. The Hopf decomposition theorem says that X is a disjoint union of invariant subsets $\mathcal{D}(W)$ and $\mathcal{C}(W)$ where $\mathcal{D}(W)$ is a countable union of wandering subsets which is maximal in the sense that any wandering subset is contained in $\mathcal{D}(W)$ up to null sets (see [15]). The sets $\mathcal{D}(W)$ and $\mathcal{C}(W)$ are called the dissipative part, and the conservative part of X respectively. If $\mathcal{D}(W)$ (resp. $\mathcal{C}(W)$) is a null set, this action is called conservative (resp. dissipative). If the W-action is ergodic, then it is either conservative or dissipative. The following is well known (e.g. [1]).
Lemma 7.13. If μ_0 is ergodic and infinite, then for any non-negative $f \in L^1(\mu_0)$,
\[
\int_{-T}^{T} f(xw_t) dt \to 0
\]
for almost all $x \in X$.

Remark 7.14. We recall that if Γ is not a lattice, then the BR measure is an infinite measure; this was proved in [25] using Ratner’s measure classification theorem.

We take this opportunity to present an alternative argument. To see this, we note that if the BR-measure were a finite measure, it would have to be A-invariant, since $|a_s m^{BR}| = e^{(2-\delta)s}|m^{BR}|$ for all s and hence $\delta = 2$. For Γ geometrically finite, this implies Γ is a lattice. In the general case, one can utilize facts from entropy to prove a similar result as we now explain. Indeed by the Mautner phenomenon, any AU-invariant finite ergodic measure on $\Gamma \backslash G$ is A-ergodic so we may reduce to the ergodic case. Now we have an A-ergodic measure which is U invariant; in particular it has maximum entropy. This implies the entropy contribution from \tilde{U} has to be maximum as well which implies the measure is also \tilde{U} invariant, see [21, Theorem 9.7] for a more general statement. This implies $\Gamma \backslash G$ has a finite G invariant measure, finishing the proof.

We need the following lemma which says almost all ergodic components of m^{BR} is infinite for any one-parameter subgroup of U; our proof of this lemma uses Ratner’s classification theorem for finite invariant measures for unipotent flows.

Lemma 7.15. Let Γ be a Zariski dense, discrete subgroup of G. Suppose Γ is not a lattice. Let V be a one-parameter subgroup of U, and let $m^{BR} = \int_Y \eta_y d\sigma(y)$ be the ergodic decomposition with respect to V. Then for σ-a.e. y, we have η_y is an infinite measure.

Proof. We will use the fact that the set $\Lambda_{bp}(\Gamma)$ of parabolic limit points is a null set for the Patterson-Sullivan measure since $\Lambda_{bp}(\Gamma)$ is a countable set and that a proper Zariski closed subset of G is a null set for the \tilde{m}^{BR}-measure, since Γ is Zariski dense. Assume the contrary, that is: the set
\[
Y_0 = \{ y \in Y : \eta_y \text{ is a finite measure } \}
\]
has positive measure.

It follows from Ratner’s measure classification theorem [32]: that for all $y \in Y_0$, we have one of the following holds
1. $\text{supp } \eta_y = xV$ for some compact orbit xV;
2. $\text{supp } \eta_y = xU$ for some compact orbit xU;
3. there exists H which is locally isomorphic to $\text{PSL}_2(\mathbb{R})$ so that for some $g \in G$, $V \subset g^{-1}Hg$, η_y is a $g^{-1}Hg$ invariant (finite) measure on a closed orbit $\Gamma H g$;

Indeed similar reductions are possible using Hopf argument in more general settings.
(4) η_y is $\text{PSL}_2(\mathbb{C})$ invariant.

In both (1) and (2) above we get $x^- \in \Lambda_{\text{bp}}(\Gamma)$ and these form a measure zero subset of m^{BR}. The conclusion in (4) cannot hold on a positive measure set as it would imply Γ is a lattice, contrary to our assumption. Therefore for σ-a.e. $y \in Y_0$ the conclusion (3) above holds. We first note that the collection of H so that (3) holds is countable, see [32, Theorem 1.1] or [6, Proposition 2.1]. Therefore if (3) holds there exists some H with ΓH a closed orbit (with finite volume) so that

$$m^{\text{BR}}\{g \in G : gV \subset Hg\} > 0. \quad (7.13)$$

Since $\{g \in G : gV \subset Hg\}$ is a proper Zariski closed subset, this yields a contradiction. □

Lemma 7.16. The joining μ is not invariant under $\{e\} \times V$ for any non-trivial connected subgroup V of U.

Proof. It suffices to prove the claim when V is one dimensional subgroup of U. Set $V = \{v_t : t \in \mathbb{R}\}$ and $\tilde{V} = \{\tilde{v}_t = (e, v_t) : t \in \mathbb{R}\}$.

By the choice of Ψ, $\Psi \in L^1(\mu)$, and for any $x = (x^1, x^2) \in Z$ and any $T \geq 1$, we have

$$\int_T^{T+T} \frac{\Psi(x\tilde{v}_t)}{2T} dt = \psi(x_1). \quad (7.14)$$

Also note that every element of the sigma algebra

$$\Xi = \{B \times X_2 : B \subset X_1 \text{ any Borel set}\}$$

is \tilde{V} invariant. In particular, \tilde{V}-ergodic components of μ are supported on atoms of Ξ which are of the form $\{x^1\} \times X_2$ for $x^1 \in X_1$. Let

$$\mu = \int_Z \mu_z d\tau(z)$$

be an an ergodic decomposition of μ for the action of \tilde{V}, see [1]. Then the above discussion implies that for τ-a.e. z, $\text{supp}(\mu_z) \subset \{x^1\} \times X_2$ for some $x^1 \in X_1$. In particular, taking the projection onto X_2 we get an ergodic decomposition of $m^{\text{BR}}_{X_2}$ for the action of V: $m^{\text{BR}}_{X_2} = (\pi_2)_*\mu = \int_Z \tilde{\mu}_z d\tau(z)$ where $\tilde{\mu}_z = (\pi_2)_*\mu_z$. By Lemma 7.15 a.e. $\tilde{\mu}_z$ is an infinite measure.

This gives a contradiction if we apply (7.14) for a point (x^1, x^2) where x^2 lies in the conull set given by Lemma 7.13 applied to some η_y as above. □

7.5. We draw two corollaries of Theorem 7.12 in this subsection. Let $\mathcal{P}(X_2)$ denote the space of probability Borel measures. By the standard disintegration theorem (cf. [1, 1.0.8]), for each $i = 1, 2$, there exists an m^{BR} co-null set $X'_i \subset X_i$ and a measurable function $X'_i \rightarrow \mathcal{P}(X_2)$ given by $x^i \mapsto \mu_{x^i}^{\pi_i}$ such that for any Borel subsets $Y \subset Z$ and $C \subset X_1$,

$$\mu(Y \cap \pi_i^{-1}(C)) = \int_C \mu_{x^i}^{\pi_i}(Y) \ dm^{\text{BR}}(x^i).$$

The measure $\mu_{x^i}^{\pi_i}$ is called the fiber measure over $\pi_i^{-1}(x^i)$.
Theorem 7.17. There exist a positive integer $\ell > 0$ and an m^{\BR} conull subset $X' \subset X_1$ so that $\pi_1^{-1}(x^1)$ is a finite set with cardinality ℓ for all $x^1 \in X'$. Furthermore, $$\mu^{\pi_1}_{x^1}(x^2) = 1/\ell$$ for any $x^1 \in X'$ and $(x^1, x^2) \in \pi_1^{-1}(x^1)$.

Proof. We first prove that for a.e. $x^1 \in X_1$, the fiber measure $\mu^{\pi_1}_{x^1}$ is fully atomic. Assuming the contrary, we will show that μ is invariant under $\{e\} \times V$ for some non-trivial connected subgroup of U, which will be a contradiction by Lemma 7.16.

Put $B = \{x^1 \in X_1 : \mu^{\pi_1}_{x^1}$ is not fully atomic\}, and suppose that $m^{\BR}(B) > 0$. For any $x^1 \in B$ we write $$\mu^{\pi_1}_{x^1} = (\mu^{\pi_1}_{x^1})^a + (\mu^{\pi_1}_{x^1})^c$$ where $(\mu^{\pi_1}_{x^1})^a$ and $(\mu^{\pi_1}_{x^1})^c$ are respectively the purely atomic part and the continuous part of the fiber measure [14]. Let $$B' = \{(x^1, x^2) : x^1 \in B, \ x^2 \in \text{supp}((\mu^{\pi_1}_{x^1})^c)\}.$$ We take $Q \subset B'$ and $Q_\epsilon \subset Q$ be as in section 7.3 for each small $\epsilon > 0$; In particular, [7.7] holds for Q_ϵ.

Let now $x = (x^1, x^2) \in Q_\epsilon$ be so that there exists a sequence $\{x_k = (x^1_k, x^2_k)\} \subset Q_\epsilon$ so that $x_k \to x$. Such x exists since $Q \subset B'$. We write $$x_k = (x^1_k, x^2_k) = (x^1, x^2)(e, g_k)$$ where $g_k \neq e$ and $g_k \to e$. There are two possibilities to consider: Recall that $$N_{G \times G}(\Delta(U)) \cap (\{e\} \times G) = \{e\} \times U.$$

Case 1. For all large enough k, we have $g_k \in U$, and hence $(e, g_k) \in N_{G \times G}(\Delta(U))$. Since $(x^1, x^2), (x^1, x^2 g_k) \in Q_\epsilon$, Lemma 7.7 implies that μ is quasi-invariant under $\langle (e, g_k) \rangle$. Since $g_k \to e$, and U is a unipotent group, we get μ is invariant by a non-trivial connected subgroup of $\{e\} \times U$, which is a contradiction by Lemma 7.16.

Case 2. By passing to a subsequence, we have $g_k \notin U$, that is, $h_k := (e, g_k) \notin N_{G \times G}(\Delta(U))$. By Theorem 7.12 we get μ is invariant, by a non-trivial connected subgroup of $\{e\} \times U$. This is again a contradiction by Lemma 7.16. This shows that almost all fiber measures are atomic. Set $$\Sigma = \{(x^1, x^2) \in Z : \mu^{\pi_1}_{x^1}(x^1) = \max_{y \in \pi_1^{-1}(x^1)} \mu^{\pi_1}_{x^1}(y)\}.$$ Then Σ is a $\Delta(U)$-invariant set. Since almost all fiber measures are atomic, we have $\mu(\Sigma) > 0$. Therefore, in view of the $\Delta(U)$-ergodicity of μ, we have Σ is conull. We thus conclude that for μ-almost every point, the fiber measures are uniform distribution on ℓ-points. \qed
Corollary 7.18. The joining measure μ is quasi-invariant under a non-trivial connected subgroup A' of $\Delta(AM)(\{e\} \times U)$ which is not contained in $\{e\} \times U$.

Proof. Let the notation be as in Theorem 7.12. In particular, Q is a compact subset with $\mu(Q) > 0$ and $Q_e \subset Q$ with $\mu(Q_e) \geq (1-\epsilon)\mu(Q)$.

With this notation let $x_k, y_k \in Q_e$; suppose $x_k = y_kh_k$, with $h_k \to e$ as $k \to \infty$. Since $(\pi_i)_*\mu = m^{BR}$, we can choose x_k so that for at least one of $i = 1, 2$, $\pi_i(h_k) \notin N_G(U)$. This, in particular, implies that $h_k \notin N_{G \times G}(\Delta(U))$.

Now apply Theorem 7.12 with $\{x_k\}$ and $\{y_k\}$. We get a map

$$\varphi : \Delta(U) \to N_{G \times G}(\Delta(U)) \cap L = \Delta(AM) \cdot (\{e\} \times U)$$

so that μ is quasi-invariant under a non-trivial connected subgroup, L say, of $\langle \text{Im}(\varphi) \rangle$.

Note that by Lemma 7.3 and Lemma 7.16 we have $\{e\} \times V$ is not contained in L for any non-trivial subgroup V of U. Therefore the conclusion follows.

By replacing μ by $(e, u)_\mu$, we may assume that μ is $\Delta(A'U)$-invariant for a non-trivial connected Lie subgroup A' of AM in the rest of the section.

7.6. Reduction to the rigidity of measurable factors. By Theorem 7.17 we have: μ-a.e fibers of π_1 have cardinality ℓ for some fixed $\ell \in \mathbb{N}$.

We put

$$\Upsilon(x^1) = \pi_1^{-1}(x^1).$$

Then there exist a U-invariant BR co-null subset $X' \subset X_1$ and ℓ measurable maps

$$v_1, \ldots, v_\ell : X' \to X_2$$

so that $\Upsilon(x^1) = \{v_1(x^1), \ldots, v_\ell(x^1)\}$ for all $x^1 \in X'$ (see [31], [34]). Note that if μ is $\Delta(L)$-quasi invariant for some subgroup $L \subset G$, then Υ is L-equivariant. Therefore the set-valued map Υ is $A'U$-equivariant; for all $x^1 \in X'$ and every $a' u_t \in A'U$, we have

$$\Upsilon(x^1 a' u_t) = \Upsilon(x^1) a' u_t. \quad (7.15)$$

Lemma 7.19. Let X' be a U-invariant Borel subset of X_1 with $m^{BMS}(X') = 1$ satisfying (6.2). Then there exist $x \in X'$, and a subset $L_x \subset AM$ generate AM such that for any $g \in L_x$,

$$\Upsilon(xg) \subset \Upsilon(x) gU. \quad (7.16)$$

Proof. Let $\eta > 0$ be small, and let $K_\eta \subset X'$, $\Omega_\eta \subset X'$ and $T_\eta > 0$ be as in (6.4) and (6.5). For $\epsilon > 0$, let $\epsilon' > 0$ be as in (6.8). We also assume that for all $g \in AM$ with $d(e, g) < \epsilon'$, the Jacobian of g-action on U is bounded from above and below by $1 \pm \frac{\epsilon'}{2}$ respectively.

By the ergodicity of A-action (see (6.20)), there exists a compact subset $\Omega'_\eta \subset \Omega_\eta$ such that $m^{BMS}(\Omega'_\eta) > 1 - 4\eta$ and for any $x \in \Omega'_\eta$, $xa - s_i \in \Omega_\eta$ for an infinite sequence $s_i \to +\infty$.

Since $m^{BMS}(\Omega'_\eta) > 1 - 4\eta$, if $\eta > 0$ is small enough, we have $x \in \Omega'_\eta$, such that the measure of $L_x := \{am \in AM : xg \in \Omega'_\eta, d(e, g) < \epsilon'\}$ is at least
half of the measure of the set \(\{ g \in AM : d(e, g) < \epsilon' \} \) where the measure is taken with respect to the Haar measure of AM.

Let \(g_0 \in L_x \) be a Lebesgue density point of \(L_x \). Replacing \(x \) with \(xg_0 \), we may assume that \(e \) is a density point of \(L_x \).

In the following, we fix \(g \in L_x \).

As \(g \) normalizes \(U \), we have

\[
\Upsilon(xg)g^{-1}u_t = \Upsilon(xu_tg)g^{-1}.
\]

Hence if \(xu_t, xu_tg \in K_\eta \), then for each \(i \),

\[
d(v_i(xg)g^{-1}u_t, \Upsilon(x^1u_t)) \leq 2\epsilon
\]

by the continuity of \(\Upsilon \) in \(K_\eta \).

Since \(x, xg \in \Omega'_\eta \), we get from (6.6) that if \(T > T_{\eta} \),

\[
\mu^{PS}_{x}\{ t \in B_U(T) : xu_t \in K_\eta \} \geq (1 - 2\eta)\mu^{PS}_{x}(B_U(T))
\]

and

\[
\mu^{PS}_{xg}\{ t \in B_U(T) : xgu_t \in K_\eta \} \geq (1 - 2\eta)\mu^{PS}_{xg}(B_U(T))
\]

Since \(d\mu^{PS}_x \) and \(d\mu^{PS}_{xg} \) are absolutely continuous with each other as \(g \in AM \) and the Radon-Nikodym derivative is given by \(|\text{Jac}(g)|^{\delta} \) satisfying \(1 - \frac{\epsilon}{2} \leq |\text{Jac}(g)| \leq 1 + \frac{\epsilon}{2} \), we have

\[
\mu^{PS}_x\{ t \in B_U(T) : xu_tg \notin K_\eta \} \leq c_0\eta \mu^{PS}_x(B_U(T))
\]

for some absolute constant \(c_0 > 1 \). Consequently, we have

\[
\mu^{PS}_x\{ t \in B_U(T) : xu_t, xu_tg \in K_\eta \} \geq (1 - c_1\eta)\mu^{PS}_x(B_U(T)).
\]

for some \(c_1 > 1 \).

Fixing \(i \), put

\[
\Theta(t) = \min\{d(v_i(xu_t), \Upsilon(xg)g^{-1}u_t)^2, 1\}.
\]

Then for any \(T > T_{\eta} \),

\[
\frac{1}{\mu^{PS}_x(B_U(T))} \int_{B_U(T)} \Theta(t)d\mu^{PS}_x(t) \leq 2\epsilon + 4\eta.
\]

Let \(s_i \to \infty \) be a sequence tending to \(+\infty \) such that \(xa_{-s_i} \in \Omega_\eta \). Then Lemma 6.2 implies that

\[
\sup_{|t| \leq \epsilon s_i} \Theta(t) \leq 1/2
\]

if \(\eta \) and \(\epsilon \) are sufficiently small.

It follows that

\[
\sup_{t \in U} d(v_i(xu_t), \Upsilon(xg)g^{-1}u_t) \leq 1.
\]

We claim that

\[
\Upsilon(xg)g^{-1} \subset \Upsilon(x)U.
\]
Suppose not; then there exists i such that for all j, $v_i(xg)g^{-1} = v_j(x)g_{m,j}$ for $g_{m,j} \notin U$. On the other hand, (7.20) implies that $u_t g_{m,j} u_t$ is uniformly bounded for all t. It implies that $g_{m,j}$ belongs to the centralizer of U, which is U itself. This yields a contradiction, proving the claim. Note that we have shown (7.21) for any $g \in L_x$. Since e is a density point of L_x, it generates AM by the lemma below, and finishes the proof.

□

Lemma 7.20. Let H be a connected Lie group. If $W \subset H$ is a Borel subset such that $e \in W$ is a Lebesgue density point, then W generates H.

Proof. As $e \in W$ is a Lebesgue density point, $\mu_H(W) > 0$ where μ_H is a Haar measure. The convolution

$$f(g) := \chi_W \ast \chi_{W^{-1}}(g) = \int_H \chi_W(hg) \chi_{W^{-1}}(h^{-1}) d\mu_H(h)$$

is a continuous function and $f(e) = \mu_H(W) > 0$. Therefore there exists a neighborhood O of e in H on which f never vanishes. This means that $O \subset W^{-1}W$. Since any neighborhood of e in H generates H, the claim follows.

□

Let us recall that the BMS measure and the BR-measure on X_1 have product structures, and have the “same transversal measures”. To be more precise, let $\psi \in C_c(X)$ and further assume that $\text{supp}(\psi) \subset yP_U$ where $P = MA\hat{U}$. Then

$$m_{BR}(\psi) = \int \int \psi(ypu) d\nu(y) d\mu_{Leb}^{PS}(u), \quad m_{BMS}(\psi) = \int \int \psi(ypu) d\nu(y) d\mu_{Leb}^{PS}(u),$$

where $d\nu$ is the transversal measure on P.

It follows that

Lemma 7.21. If $Q \subset X_1$ is U-invariant and $m_{BR}(Q) = 1$, then Q has full BMS-measure.

Proposition 7.22. The set-valued map Υ is AMU-equivariant; there exists an AMU-invariant BR co-null subset $X'' \subset X_1$ such that for all $x^1 \in X''$ and every $amu_t \in AMU$, we have

$$\Upsilon(x^1 amu_t) = \Upsilon(x^1 amu_t),$$

(7.23)

Proof. It suffices to show that μ is $\Delta(AM)$-quasi-invariant. Let $Y \subset Z$ be a $\Delta(U)$-invariant μ-conull subset such that for all $y \in Y$ we have

(1) $\lim_{T \to \infty} \int_{B_U(T)} \Psi(y \Delta(u_t)) dt = \infty$;

(2) for all $f \in C_c(Z)$,

$$\lim_{T \to \infty} \int_{B_U(T)} f(y \Delta(u_t)) dt = \frac{\mu(f)}{\mu(\Psi)}.$$
Note that by the definition of Υ, the support of μ is $\{(x^1, x^2) : x^1 \in X_1, x^2 \in \Upsilon(x^1)\}$, and hence $\{(x^1, x^2) : x^1 \in X', x^2 \in \Upsilon(x^1)\}$ has full μ-measure. Therefore, replacing X' with a conull set, we may assume that X' is a U-invariant subset with full BR-measure satisfying (6.2). $X' \subset \{x^- \in \Lambda_t(\Gamma_1)\}$, and that

$$\{(x^1, x^2) : x^1 \in X', x^2 \in \Upsilon(x^1)\} \subset Y. \tag{7.24}$$

By Lemma 7.21, we have $m^{BMS}(X') = 1$. Let $x^1 \in X'$ and $L_{x^1} \subset AM$ be as in Lemma 7.19, so that for any $g \in L_{x^1}$, we have

$$v_1(x^1g) = v_j(x^1)u^g \tag{7.25}$$

for some j and $u^g \subset U$.

As $u^g \subset UAM$, we can write $u^g = u_g^{-1}u_g^{-1}$ for some $u_g \subset U$. Since X' is U-invariant and Υ is U-equivariant on X', we have

$$(x^1g, v_1(x^1u_g^{-1}) = (x^1g, v_1(x^1g)) \in Y.$$ Therefore,

$$Y \cap Y(g, u_g^{-1}) \neq \emptyset.$$ Hence by Lemma 7.17, μ is quasi-invariant under the closed subgroup R generated by (g, u_g^{-1}). Since L_{x^1} generates AM, this will finish the proof if we show

$$u_g = e \text{ for each } g \in L_{x^1}.$$ Let $A' \subset \Delta(AM)$ be a connected subgroup as in the remark following Corollary 7.18. Suppose $u_g \neq e$. Consider the commutator of elements of A' and (g, u_g^{-1}). Note that the first component belongs to the commutator subgroup $[AM, AM] = \{e\}$. For any non-trivial $b \in A'$, set

$$(e, v) := (b, b)(g, u_g^{-1})(b^{-1}, b^{-1})(g^{-1}, u_g^{-1}) = (e, bu_g^{-1}b^{-1}u_g^{-1}).$$

We make the following observations:

- U is the commutator subgroup of AMU and hence $v \subset U$.
- $v \neq e$ since $u_g \neq e$.
- $v \neq e$ can be made arbitrarily close to e by choosing these parameters close but not equal to e.

Recall now that A' and R leave μ quasi-invariant. Therefore any (e, v) as above leaves μ quasi-invariant and thus invariant by Lemma 7.3. Hence we get that if $u_g \neq e$, then there is a sequence $v_i \rightarrow e$ in $U \setminus \{e\}$, so that (e, v_i) leaves the measure invariant for all $i \geq 1$. Therefore, there is a non-trivial connected subgroup $V \subset U$ so that μ is invariant under $\{e\} \times V$. This contradicts Lemma 7.16 and finishes the proof. □

Proposition 7.23. Let $\Upsilon : X_1 \rightarrow X_2$ be as above. In particular, it satisfies that $\Upsilon(xg) = \Upsilon(x)g$ for all $x \in X'$ and all $g \in MAU$. Then there exists
\[q_0 \in G \text{ such that } \Gamma_1 \cap q_0^{-1}\Gamma_2q_0 \text{ has finite index in } \Gamma_1 \text{ so that if we put } \Gamma_2q_0\Gamma_1 = \cup_{1 \leq j \leq \ell} \Gamma_2q_0\gamma_j \text{ for } \gamma_j \in \Gamma_1, \text{ then} \]

\[\Upsilon(\Gamma_1g) = \{ \Gamma_2q_0\gamma_jg : 1 \leq j \leq \ell \} \]

on a BR conull subset of \(X_1 \). Moreover \(\mu \) is a \(\Delta(U) \)-invariant measure supported on \(\{(x^1, \Upsilon(x^1)) : x^1 \in X_1\} \) and hence a finite cover self-joining (see Def. (1.2)).

Proof. By Theorem 6.1 and (7.21), we have \(\Upsilon(xg) = \Upsilon(x)g \) for all \(x \in X' \) and all \(g \in UMAU \) where \(X' \) is given by loc. cit. Fixing \(x_0 \in X' \), define

\[\Upsilon'(x_0g) := \Upsilon(x_0)g \]

for all \(g \in G \). Then \(\Upsilon \) and \(\Upsilon' \) coincide with each other on \(Y' := x_0(UMAU) \).

Since \(UMAU \) is a Zariski open subset of \(G \), \(m_{\text{BMS}}(Y') = 1 \), and hence \(\Upsilon = \Upsilon' \) on a BMS-conull subset. Hence we may assume without loss of generality

\[\Upsilon(xg) = \Upsilon(x)g \tag{7.26} \]

for all \(g \in G \) and \(x \in Y' \) with \(xg \in Y' \). Let \(\Gamma_1g_0 \in Y' \) and write \(\Upsilon(\Gamma_1g_0) = \{ \Gamma_2h_1, \ldots, \Gamma_2h_\ell \} \). Then for every \(g \in G \) such that \(\Gamma_1g_0g \in Y' \) we have

\[\Upsilon(\Gamma_1g_0g) = \{ \Gamma_2h_1g, \ldots, \Gamma_2h_\ell g \}. \]

Note that for all \(\gamma \in \Gamma_1 \) we have \(\Gamma_1g_0(g_0^{-1}\gamma g_0) = \Gamma_1g_0 \in Y' \). Therefore, applying the \(G \)-equivariance \((7.26) \) of \(\Upsilon \) to \(g_0^{-1}\gamma g_0 \in g_0^{-1}\Gamma_1g_0 \), we get the set \(\{ \Gamma_2h_1g, \ldots, \Gamma_2h_\ell g \} \) is right invariant under \(g_0^{-1}\Gamma_1g_0 \). It follows that \(\Gamma_2 \backslash \Gamma_2h_i(g_0^{-1}\Gamma_1g_0) \) is finite for each \(i \). Putting \(q_i := h_i g_0^{-1} \), we have \(\Gamma_2 \backslash \Gamma_2q_i \Gamma_1 \) is finite. Let \(q_1, \ldots, q_r \) be such that the corresponding cosets \(\Gamma_2 \backslash \Gamma_2q_i \Gamma_1 \) are distinct and \(\cup_{1 \leq i \leq r} \Gamma_2 \backslash \Gamma_2q_i \Gamma_1 = \cup_{1 \leq i \leq r} \Gamma_2 \backslash \Gamma_2q_i \Gamma_1 \). Thus, if for each \(1 \leq i \leq r \) we put \(\Gamma_2q_i \Gamma_1 = \cup_{1 \leq j \leq \ell} \Gamma_2q_i \gamma_{ij} \) for \(\gamma_{ij} \in \Gamma_1 \), then

\[\Upsilon(\Gamma_1g) = \{ \Gamma_2q_1 \gamma_{i1}g, \ldots, \Gamma_2q_1 \gamma_{i\ell}g, \ldots, \Gamma_1g_r \gamma_{r1}g, \ldots, \Gamma_1g_r \gamma_{r\ell}g \} \tag{7.27} \]

on a BMS conull subset of \(X_1 \).

In particular we get \(q_1^{-1}\Gamma_1q_1 \) is commensurable with a subgroup of \(\Gamma_2 \). Repeating the argument with \(\Gamma_2 \) we get, up to a conjugation, \(\Gamma_1 \) and \(\Gamma_2 \) are commensurable with each other.

Note that in view of (7.22), the \(U \)-invariant set \(X'' = Y' \cap X'U \) has full BR measure. Let now \(g \in G \) be so that \(\Gamma_1g \in X'' \). Then we can write \(g = g'u \) where \(\Gamma_1g' \in X' \) and \(u \in U \). Now property (7.15) of \(\Upsilon \) and (7.27) imply

\[\Upsilon(\Gamma_1g) = \Upsilon(\Gamma_1g')u \]

\[= \{ \Gamma_2q_1 \gamma_{i1}g'u, \ldots, \Gamma_2q_1 \gamma_{i\ell}g'u, \ldots, \Gamma_1g_r \gamma_{r1}g'u, \ldots, \Gamma_1g_r \gamma_{r\ell}g'u \} \]

\[= \{ \Gamma_2q_1 \gamma_{i1}g, \ldots, \Gamma_2q_1 \gamma_{i\ell}g, \ldots, \Gamma_1g_r \gamma_{r1}g, \ldots, \Gamma_1g_r \gamma_{r\ell}g \}. \]

Now for every \(1 \leq i \leq r \) we have that the set

\[\{(x^3, x^2) : x^1 = \Gamma_1g \in X'', x^2 \in \{ \Gamma_2q_i \gamma_{i1}g, \ldots, \Gamma_2q_i \gamma_{i\ell}g \} \} \tag{7.28} \]
is \(\Delta(U)\)-invariant and has positive \(\mu\) measure. Therefore, by the ergodicity of \(\mu\), we get \(r = 1\) and \(\mu\) is a \(\Delta(U)\)-invariant measure supported on the set (7.28). This implies that \(\mu\) is a finite self-joining as defined in the introduction. This finishes the proof.

\[\square\]

Remark 7.24. Note that for a general discrete non-elementary subgroup \(\Gamma\), the Patterson-Sullivan density always exists, although it may not be a unique \(\Gamma\) conformal density of dimension \(\delta_{\Gamma}\), and hence the BR-measure is well-defined on \(\Gamma \setminus G\). Given this, the above proof yields a stronger version of Corollary 1.4 in the introduction where \(\Gamma_2\) is not assumed to be geometrically finite. Namely, we have: if \(\Gamma_1\) is geometrically finite and Zariski dense and \(\Gamma_2\) is a Zariski dense (not necessarily geometrically finite) subgroup of \(G\) with infinite co-volume, then a \(U\)-joining on \(\Gamma_1 \setminus G \times \Gamma_2 \setminus G\) with respect to the pair \((m_{\Gamma_1}^{\text{BR}}, m_{\Gamma_2}^{\text{BR}})\) exists only when \(\Gamma_1\) is commensurable with a subgroup of \(\Gamma_2\), up to conjugation.

7.7

In this section we deduce Theorem 1.6 from Theorem 1.3. When \(\Gamma\) is a lattice, this deduction is due to [31] and [43] (see also [8, Sec. 6]). In the following, we assume that \(\Gamma\) has infinite co-volume. Although the basic strategy is similar to the finite volume case, we will need a certain property of geometrically finite groups of infinite co-volume in the proof.

Define the following closed subgroup of \(G\):

\[H_{\Gamma} := \{ h \in G : h.\tilde{m}^{\text{BR}} = \tilde{m}^{\text{BR}} \}\]

where \(h.\tilde{m}^{\text{BR}}(B) = \tilde{m}^{\text{BR}}(Bh)\) for any Borel subset \(B\) of \(G\). Clearly, \(\Gamma\) is contained in \(H_{\Gamma}\).

Lemma 7.25. The following hold:

- \(\Gamma\) is a finite index subgroup of \(H_{\Gamma}\).
- \(H_{\Gamma} = \{ g \in G : g\Lambda(\Gamma) = \Lambda(\Gamma) \}\).

Proof. Set \(F := \{ g \in G : g\Lambda(\Gamma) = \Lambda(\Gamma) \}\). Since the support of \(\tilde{m}^{\text{BR}}\) is given by \(\{ g \in G : g\omega = g(w_\omega) \in \Lambda(\Gamma) \}\), the inclusion \(H_{\Gamma} \subset F\) follows.

Note that \(F\) is a discrete subgroups of \(G\). Indeed the identity component \(F^\circ\) is normalized by \(\Gamma\). Since \(G\) is simple and \(\Gamma\) is Zariski dense in \(G\), it follows that \(F^\circ\) is either \(G\) or trivial. The former however contradicts the fact that \(\Gamma\) is not a lattice.

Hence the isometric action of \(F\) on the convex hull \(C(\Gamma)\) of \(\Lambda(\Gamma)\) is properly discontinuous. As \(\Gamma\) is geometrically finite, the orbifold \(\Gamma \setminus C(\Gamma)\) has finite volume. Now, \(F \setminus C(\Gamma)\) is an orbifold which is covered by \(\Gamma \setminus C(\Gamma)\) and hence \(F \setminus C(\Gamma)\) has finite volume as well, so \(\Gamma\) is of finite index in \(F\). This implies the first claim.

As \([F : \Gamma] < \infty\) and \(\Gamma\) is geometrically finite, their Patterson-Sullivan densities are equal up to a constant multiple and hence the corresponding BR-measures are proportional to each other. This implies the second claim.

\[\square\]
We denote by $\text{Comm}_G(\Gamma)$ the commensurator subgroup of Γ, that is, $g \in \text{Comm}_G(\Gamma)$ if and only if $g \Gamma g^{-1}$ and Γ are commensurable with each other.

Corollary 7.26. We have: $\text{Comm}_G(\Gamma) \subset H_\Gamma$.

Proof. This follows from Lemma 7.25 since

$$\Lambda(\Gamma) = \Lambda(\Gamma \cap g \Gamma g^{-1}) = \Lambda(g \Gamma g^{-1}).$$

for any $g \in \text{Comm}_G(\Gamma)$. □

Let p be the factor map as in Theorem 1.6, and \tilde{p} denote the lift of p to G. Then \tilde{p} is a left Γ-invariant and right U-equivariant map from G to Y. In view of Lemma 7.25 and replacing Γ by a bigger subgroup of H_Γ, if necessary, we may assume

$$\Gamma = \{h \in H_\Gamma : \tilde{p}(hg) = \tilde{p}(g) \text{ for } \tilde{m}^{\text{BR}}\text{-a.e. } g \in G\}.$$ \hfill (7.29)

Define

$$Q := \{(h,u) \in H_\Gamma \times U : \tilde{p}(hg) = \tilde{p}(g) \text{ for } \tilde{m}^{\text{BR}}\text{-a.e. } g \in G\}.$$

Since \tilde{m}^{BR} is left H_Γ-invariant and right U-invariant we get that Q is a closed subgroup of $H_\Gamma \times U$. The subgroup Q acts on G by

$$q(g) = hgu$$

for $q = (h,u) \in Q$ and $g \in G$.

Lemma 7.27. The subgroup Q is contained in $N_G(\Gamma) \times U$.

Proof. If $(h,u) \in Q$, then for any $\gamma \in \Gamma$ and \tilde{m}^{BR}-a.e. $g \in G$, we have

$$\tilde{p}(\gamma hg) = \tilde{p}(hg) = \tilde{p}(g) = \tilde{p}(\gamma g) = \tilde{p}(h\gamma g).$$

Since \tilde{m}^{BR} is right U-invariant, the above implies

$$\tilde{p}(\gamma hg) = \tilde{p}(\gamma g) \text{ for } \tilde{m}^{\text{BR}}\text{-a.e. } g \in G.$$

By the definition of H_Γ, we deduce

$$\tilde{p}(g) = \tilde{p}(h\gamma h^{-1}g) \text{ for } \tilde{m}^{\text{BR}}\text{-a.e. } g \in G,$$

that is, $h\gamma h^{-1} \in \Gamma$ by (7.29). So $h \in N_G(\Gamma)$. □

Proof of Theorem 1.6. Set $X = \Gamma \setminus G$. Given the factor map $p : (X, m^{\text{BR}}) \to (Y, \nu)$ we can disintegrate m^{BR} into $m^{\text{BR}} = \int_Y \tau_y d\nu(y)$ where $\tau_y(p^{-1}(y)) = 1$ for ν-a.e. y. Recall, e.g. from [10], that we can construct the independent self-joining relative to p by

$$\tilde{\mu} := \int_Y \tau_y \times_p \tau_y d\nu(y).$$ \hfill (7.30)

Then $\tilde{\mu}$ is a U-joining on $Z := X \times X$ supported on $X \times_p X := \{(x_1, x_2) : p(x_1) = p(x_2)\}$. Disintegrate $\tilde{\mu}$ into $\Delta(U)$-ergodic components:

$$\tilde{\mu} = \int_Z \mu_z \, d\sigma(z).$$ \hfill (7.31)
By Theorem 1.3, we have \(\mu_z \) is a finite cover self joining for \(\sigma \)-a.e. \(z \). That is, \(\mu_z \) is the image of \(m_{BR} \) on a closed orbit \([(e, g_z)] \Delta (G)(e, u_z) \) where \(g_z \in \text{Comm}_G(\Gamma) \) and \(u_z \in U \). Note that \((g_z, u_z) \in H_\Gamma \times U \) for \(\sigma \)-a.e. \(z \) by Corollary 7.26.

We now compare the two descriptions (7.30) and (7.31) of \(\bar{\mu} \) and get the following consequences. Since \(\tilde{\rho}(g_z gu_z) = \tilde{\rho}(g) \) for \(\sigma \)-a.e. \(z \) and \(\tilde{m}_{BR} \)-a.e. \(g \in G \), we have \((g_z, u_z) \in Q \).

Recalling from Lemma 7.27 that \(\Gamma \times \{e\} \) is normal in \(Q \), consider the following subgroup

\[L := \Gamma \times \{e\} \setminus Q. \]

Then the above discussion implies that in (7.31), we can consider \(\sigma \) as a probability measure on \(L \). Hence we may write

\[\bar{\mu} = \int_L \mu_\ell \, d\sigma(\ell) \]

where, for \(\sigma \)-a.e. \(\ell \), \(\mu_\ell \) is the image of the BR-measure on

\[(\Gamma \times \Gamma) \setminus \{(g, \ell(g)) : g \in G\}, \]

up to a constant multiple.

Following the proof of [10, Thm. 3.9(iii)], we now claim that the convolution \(\sigma \ast \sigma \) is equal to \(\sigma \). Comparing with (7.30), we get that for \(\nu \)-a.e. \(y \), the measure \(\tau_y \) is supported on a single \(L \) orbit. Furthermore, for \(\tau_y \)-a.e. \(x \in X \) we have

\[\int_L f(\ell(x)) \, d\sigma(\ell) = \int_X f(x') \, d\tau_y(x') \quad \text{for all } f \in C_c(X). \] (7.32)

Now using (7.32), for all \(f \in C_c(X) \) and \(\tau_y \)-a.e. \(x \), we have

\[
\begin{align*}
\sigma \ast \sigma(f) &= \int_L \int_L f(\ell_2 \ell_1(x)) \, d\sigma(\ell_1) \, d\sigma(\ell_2) \\
&= \int_X \int_X f(\ell_2(x')) \, d\sigma(\ell_2) \, d\tau_y(x') \\
&= \int_X \int_X f(x'') \, d\tau_y(x'') \, d\tau_y \\
&= \int_X f(x'') \, d\tau_y(x'') = \int_L f(\ell(x)) \, d\sigma(\ell) = \sigma(f).
\end{align*}
\]

This proves the claim.

It follows that \(\sigma \) is the probability Haar measure of a compact subgroup \(R \) of \(L \) by [10] Lemma 3.11, Rk. 3.12. Since \([H_\Gamma : \Gamma] < \infty \) by Lemma 7.25 it follows that \(R \) is a finite subgroup of \(\Gamma \setminus N_\Gamma(\Gamma) \times \{e\} \subset \Gamma \setminus Q \).

All together we get \(\tau_y \) is the push forward of the Haar measure \(\sigma \) to an orbit of \(R \) in \(X \) for \(\nu \)-a.e. \(y \in Y \). That gives \((Y, \nu) \) is isomorphic to \(R \setminus (\Gamma \setminus G, m_{\text{BR}}) \). This implies 1.6. \(\square \)
REFERENCES

[1] J. Aaronson. *An introduction to infinite ergodic theory*, AMS, Math. Survey and Monographs, Vol 50.
[2] M. Babillot. *On the classification of invariant measures for horospherica foliations on nilpotent covers of negatively curved manifolds*, In Random walks and Geometry (Kaimanovich, Ed.) de Gruyter, Berlin (2004), 319-335.
[3] B. H. Bowditch. *Geometrical finiteness for hyperbolic groups*, J. Funct. Anal., 113(2):245–317, 1993.
[4] M. Burger. *Horocycle flow on geometrically finite surfaces*, Duke Math. J., 61, 779–803, 1990.
[5] F. Dal’bo. *Topologie du feuilletage fortement stable*, Ann. Inst. Fourier (Grenoble), 50(3), (2000), 981-993.
[6] S. G. Dani and G. A. Margulis. *Limit distributions of orbits of unipotent flows and values of quadratic forms*, I. M. Gelfand Seminar, 91-137, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc., Providence, RI, 1993.
[7] S. G. Dani and J. Smillie. *Uniform distribution of horocycle orbits for Fuchsian groups*, Duke Math. J., 51 (1984), 185 –194.
[8] M. Einsiedler, E. Lindenstrauss. *Joining of higher rank diagonalizable actions on locally homogeneous spaces*, Duke Math. J., 138 (2007), no. 2, 203–232.
[9] L. Flaminio and R. Spatzier. *Geometrically finite groups, Patterson-Sullivan measures and Ratner’s theorem*, Inventiones, 99, (1990), 601–626.
[10] A. Furman. *Rigidity of group actions on infinite volume homogeneous spaces, II* J. Amer. Math. Soc. 21 (2008), 479–512.
[11] H. Furtstenberg. *Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation*, Math. Systems Theory 1, (1967), 1–49.
[12] M. Hochman. *A ratio ergodic theorem for multiparameter actions*, Journal of the European Mathematical Society 12 (2010), no. 2, 365–383.
[13] M. Hochman. *On the ratio ergodic theorem for group actions*, Journal of the London Mathematical Society 88 (2013), no. 2, 465–482.
[14] R. A. Johnson *Atomic and nonatomic measures*, Proc. AMS, 25, (1970), 650–655.
[15] D. Kleinbock, E. Lindenstrauss, and B. Weiss. *On fractal measures and Diophantine approximation*, Selecta Math. 10 (2004), 479–523.
[16] D. Kleinbock and G. Margulis. *Flows on homogeneous spaces and Diophantine approximation on manifolds*, Ann. Math. 148 (1998), 339–360.
[17] A. Kontorovich and H. Oh. *Apollonian circle packings and closed horospheres on hyperbolic 3 manifolds*, Journal of AMS. 24 (2011), 603–648.
[18] U. Krengel. *Ergodic theorems*, De Gruyter Studies in Math., Vol 6, Walter de Gruyter, Berlin, New York, 1985.
[19] F. Ledrappier. *Invariant measures for the stable foliation on negatively curved periodic manifolds*, Ann. Inst. Fourier 58 (2008), 85–105.
[20] F. Ledrappier and O. Sarig. *Invariant measures for the horocycle flow on periodic hyperbolic surfaces*, Israel J. Math. 160 (2007), 281–315.
[21] G. Margulis and G. Tomanov. *Invariant measures for actions of unipotent groups over local fields on homogeneous spaces*, Invent. Math. 116 (1994), no. 1-3, 347–392.
[22] F. Maucourant and B. Schapira. *Distribution of orbits in the plane of a finitely generated subgroup of SL(2,R)*, American Journal of Math., 136 (2014), 1497–1542.
[23] A. Mohammadi and H. Oh. *Ergodicity of unipotent flows and Kleinian groups*, Journal of AMS., 28 (2015), 531–577.
[24] A. Mohammadi and H. Oh. *Matrix coefficients, Counting and Primes for orbits of geometrically finite groups*, J. European Math. Soc. 17, (2015), 837–897.
[25] H. Oh, N. Shah. Equidistribution and Counting for orbits of geometrically finite hyperbolic groups, Journal of AMS, 26 (2013), 511–562.
[26] H. Oh, N. Shah. The asymptotic distribution of circles in the orbits of Kleinian groups, Inventiones Mathematicae, Vol 187 (2012), 1–35.
[27] S.J. Patterson. The limit set of a Fuchsian group, Acta Mathematica, 136:241–273, 1976.
[28] M. Raghunathan. Discrete subgroups of Lie groups, New York, Springer-Verlag, 1972.
[29] M. Ratner. Rigidity of horocycle flows, Ann. of Math. 115, (1982) no.3, 597–614.
[30] M. Ratner. Factors of horocycle flows, Erg. Th. and Dyn. Syst., 2 (1982), 465–489.
[31] M. Ratner. Horocycle flows, joinings and rigidity of products, Ann. of Math., 118 (1983), 277–313.
[32] M. Ratner. On Raghunathan’s measure conjecture, Ann. Math. 134 (1992) 545–607.
[33] Thomas Roblin. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.), (95):vi+96, 2003.
[34] V. A. Rohlin On basic concepts of measure theory. Mat. Sbornik 67, 1949, 107–150.
[35] D. Rudolph. Ergodic behavior of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold, Erg. Th. and Dyn. Syst., 2 (1982), 491-512.
[36] O. Sarig. Invariant measures for the horocycle flow on Abelian covers, Inv. Math. 157 (2004), 519-551.
[37] O. Sarig. Unique ergodicity for infinite measures, Proc. Inter. Congress Math., Hyderabad (2010).
[38] B. Schapira. Lemme de l’ombre et non divergence des horosphères d’une variété géométriquement finie, Annales de l’Institut Fourier, 54 (2004), no. 4, 939-987.
[39] B. Schapira. Equidistribution of the horocycles of a geometrically finite surface. Int. Math. Res. Notices, 40 (2005), 2447-2471.
[40] Dennis Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Etudes Sci. Publ. Math., 50:171–202, 1979.
[41] Dennis Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math., 153 (1984), 259–277.
[42] D. Winter. Mixing of frame flow for rank one locally symmetric manifold and measure classification, Preprint, arXiv:1403.2425., To appear in Israel J. Math.
[43] D. Witte. Measurable quotients of unipotent translations, Transactions of the American Mathematical Society, 345 (1994), 577–594.

Department of Mathematics, The University of Texas at Austin, Austin, TX 78750
E-mail address: amir@math.utexas.edu

Mathematics Department, Yale University, New Haven, CT 06511 and Korea Institute for Advanced Study, Seoul, Korea
E-mail address: hee.oh@yale.edu