Aetiology of childhood pneumonia in low- and middle-income countries in the era of vaccination: a systematic review

Claire von Mollendorf1,2, Daria Berger3, Amanda Gwee1,2,3, Trevor Duke2,3, Stephen M Graham1,2,3, Fiona M Russell1,2,*, E Kim Mulholland1,2,4, ARI review group

1Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia
2Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
3Royal Children’s Hospital, Parkville, Victoria, Australia
4Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
*Equal contribution

Background This systematic review aimed to describe common aetiologies of severe and non-severe community acquired pneumonia among children aged 1 month to 9 years in low- and middle-income countries.

Methods We searched the MEDLINE, EMBASE, and PubMed online databases for studies published from January 2010 to August 30, 2020. We included studies on acute community-acquired pneumonia or acute lower respiratory tract infection with ≥1 year of continuous data collection; clear consistent case definition for pneumonia; ≥1 specimen type (except empyema studies where only pleural fluid was required); testing for ≥1 pathogen including both viruses and bacteria. Two researchers reviewed the studies independently. Results were presented as a narrative summary. Quality of evidence was assessed with the Quality Assessment Tool for Quantitative Studies. The study was registered on PROSPERO [CRD42020206830].

Results We screened 5184 records; 1305 duplicates were removed. The remaining 3879 titles and abstracts were screened. Of these, 557 articles were identified for full-text review, and 55 met the inclusion criteria – 10 case-control studies, three post-mortem studies, 11 surveillance studies, eight cohort studies, five cross-sectional studies, 12 studies with another design and six studies that included patients with pleural effusions or empyema. Studies which described disease by severity showed higher bacterial detection (Streptococcus pneumoniae, Staphylococcus aureus) in severe vs non-severe cases. The most common virus causing severe disease was respiratory syncytial virus (RSV). Pathogens varied by age, with RSV and adenovirus more common in younger children. Influenza and atypical bacteria were more common in children 5-14 years than younger children. Malnourished and HIV-infected children had higher rates of pneumonia due to bacteria or tuberculosis.

Conclusions Several viral and bacterial pathogens were identified as important targets for prevention and treatment. Bacterial pathogens remain an important cause of moderate to severe disease, particularly in children with comorbidities despite widespread PCV and Hib vaccination.

Acute lower respiratory infections (ALRI), including pneumonia and viral bronchiolitis, remain among the leading causes of illness and death among children younger than 5 years despite the widespread introduction of pneumococcal conjugate vaccine
(PCV) and Haemophilus influenzae type b (Hib) vaccine [1]. Several multi-country childhood pneumonia etiology studies attempted to define the common causes of ALRIs. From 1984 to 1989, the BOSTID (Board on Science and Technology for International Development) Study [2], conducted in 10 countries in Africa, Asia, and Latin America, detected viruses and bacteria from upper respiratory tract specimens and bacterial blood culture and bacterial antigens from urine specimens. The study enrolled children aged <5 years with upper and lower respiratory tract infections with variable case definitions across sites. The study found a high prevalence of respiratory syncytial virus (RSV) (11%-37%) and bacteria (4.5%-40%), predominantly Streptococcus pneumoniae and H. influenzae, in children with ALRI [2].

The Pneumonia Etiology Research for Child Health (PERCH) study was initiated in 2008 to determine the changing etiology of childhood ALRI in high burden settings in Africa and Asia [3]. This case-control study included cases consistent with the WHO definition of severe and very severe pneumonia cases, included multiple specimen types and utilised novel analytical methods to analyse microbiological findings. Overall, viruses were found to account for 61.4% of cases, and bacteria for 27.3%. The highest aetiological fraction was attributable to RSV (31%), followed by human metapneumovirus (HMPV) (7.5%), rhinovirus (7.5%), parainfluenza virus (7.4%), S. pneumoniae (6.7%), Hib (5.9%) and influenza virus (2.0%). S. pneumoniae and S. aureus were the most common bacterial causes of severe pneumonia [3]. Another case-control study by the GABRIEL (Global Approach to Biological Research, Infectious diseases and Epidemics in Low-income countries) network was conducted in eight countries, between 2010 and 2014 [4]. The study enrolled children meeting the WHO clinical pneumonia case definition [5] and S. pneumoniae, RSV, and rhinovirus were identified as the major causes of pneumonia [4].

This review aimed to determine the common aetiology of severe and non-severe community-acquired pneumonia (CAP) among children 1 month to 9 years of age in low- and middle-income countries (LMICs) globally. This included identifying the main aetiological agents responsible for childhood pneumonia; determining the variation of pneumonia aetiology by region, severity, mortality settings, age groups, comorbidities, and by PCV and Hib vaccine introduction status; and identifying the main pathogens responsible for pneumonia mortality.

METHODS

Search strategy and selection criteria

We conducted a systematic review, reported in accordance with PRISMA 2020 guidelines [6], to summarise common aetiological causes of childhood pneumonia in the era of widespread PCV and Hib vaccination. Our protocol was registered with PROSPERO on September 29, 2020 [CRD42020206830]. Studies were identified by searching electronic databases and scanning reference lists of included articles. We searched MEDLINE (Ovid), EMBASE (Ovid), and PubMed, for references from 2010 to date of search (August 30, 2020) in consultation with a research librarian, using Medical Subject Headings (MeSH), thesaurus terms and keywords. The PubMed search used keywords to retrieve E-pubs and items not indexed in MEDLINE. We included terms for pneumonia, different specimen types, different aetiological causes and LMICs. We used “include related terms” options in the searches and combined the search terms using Boolean operators “OR” and “AND”. For the detailed MEDLINE (OVID) and PubMed search strategies see Appendix S1 in the Online Supplementary Document.

This review was restricted to articles published from 2010 onwards to focus on the post-PCV and Hib vaccination period and build on a previous review conducted in 2010 [7]. We included studies of acute CAP and ALRI which contained data on children aged from one month to 9 years, had one or more year of continuous data collection, had a clear and consistent case definition for pneumonia (WHO- and non-WHO-defined pneumonia), included the testing of more than one specimen type (except for empyema studies where only pleural fluid was required), had data on more than one pathogen, and included both viruses and bacteria. We limited our search to English language articles from low-and-middle-income countries (LMICs) and included randomised controlled trials, clinical trials, and observational studies (cohort studies, cross-sectional studies, and case-control studies). We excluded retrospective studies that focused on patient subsets; studies that described aetiology of acute bronchiolitis only; studies where we were unable to distinguish the aetiology of pneumonia cases from other syndromes (e.g., pneumonia cases within a study of invasive pneumococcal disease (IPD)) or distinguish lower respiratory cases from milder syndromes such as upper respiratory tract infections (URTI); and studies of hospital-acquired pneumonia patients or ventilator associated pneumonia. Animal studies, case reports, comments, letters, and editorials were also excluded.
Aetiology of childhood pneumonia in the era of vaccination

Data extraction, quality assessment and data synthesis

All articles identified during our library database search were extracted into an EndNote library (X7.7.1, New York, USA). All articles were imported into COVIDENCE [8] and duplicates were excluded. Two reviewers screened titles and abstracts of selected citations. Full texts were obtained based on selected citations from screening results. Full text eligibility was performed independently by two reviewers and disagreement was resolved by consensus. Data extraction was performed in COVIDENCE, including: first author, year of publication, country, WHO region and World Bank income classification, mortality setting, PCV and Hib status, study aim, study design and setting, study period, population characteristics, case definition and eligibility determination, specimens collected, laboratory tests and pathogens tested for and identified. The quality and bias of studies were assessed using the “Quality Assessment Tool for Quantitative Studies” developed by the Effective Public Health Practice Project (EPHPP) [9]. This standardised tool results in an overall methodological rating of strong, moderate, or weak in eight areas: selection bias, study design, confounders, blinding, data collection methods, withdrawals and dropouts, intervention integrity and analysis. A narrative synthesis was performed based on identified themes that emerged as the review was conducted. No meta-analysis was conducted.

RESULTS

Our database search identified 5184 records; 1305 duplicates were removed (Figure 1). The remaining 3879 titles and abstracts were screened. Of these, 557 articles were identified for full text review, and 55 met the inclusion criteria. The most common reasons for excluding studies were: wrong patient population (no clear case definition, IPD, only subgroups); wrong outcomes (no aetiology results, no results by age group or diagnosis, only antibiotic resistance or mortality); and conference abstracts with no subsequent publications.

Characteristics are presented separately for each study type (Tables S1-S7 in the Online Supplementary Document): 10 case-control studies, three post-mortem studies, 10 surveillance programmes, eight cohort studies, four cross-sectional studies and 12 studies with another study design. We also identified eight studies in patients with pleural effusions or empyema. There were diverse pneumonia case definitions across all studies. Thirty-two studies (25 individual, seven network) included upper-middle income countries, 24 (17 individual, seven network) included lower-middle income countries, and 11 (six individual, five network) included low-income countries (LICs). Out of the 55 studies, 29 (53%) included children aged 5 years or younger only; 18 (33%) included older children, with the upper age limit ranging from 6 to 18 years, predominantly from the Africa Regional Office (AFRO) (n = 8) and for the Western Pacific Regional Office (WPRO) (n = 4) region. The remaining eight (14%) studies included all age groups, with five from the South East Asia Regional Office (SEARO) region and one each from AFRO/WPRO/Pan American health Organization (PAHO).

Most studies were conducted in the PCV and Hib vaccination era.

Case-control studies

Of the 10 case-control studies (Table 1; Table S1 in the Online Supplementary Document), two were part of the GABRIEL network [4,16] and four part

Figure 1. PRISMA flow diagram for search strategy of aetiology of childhood pneumonia review.
of the PERCH network [3,12,15,17]. The remaining four were conducted in the context of long-standing surveillance programmes or cohort studies [10,11,13,14]. The GABRIEL network [4,16] included children 2-60 months of age with WHO-defined pneumonia hospitalised in eight countries (Cambodia, China, Haiti, India, Madagascar, Mali, Mongolia, Paraguay). Based on upper respiratory sample testing by polymerase chain reaction (PCR), the most common pathogens identified in 888 cases included *S. pneumoniae* (n = 605, 68.2%), *S. aureus* (n = 107, 12.1%), *Hib* (n = 47, 5.3%), HMPV (n = 76, 8.6%), rhinovirus (n = 221, 24.9%), and RSV (n = 178, 20.0%). *S. pneumoniae*, HMPV, rhinovirus, RSV, parainfluenza virus 1, 3, and 4, and influenza virus A and B were independently associated with pneumonia; adjusted population attributable fraction was 42.2% (95% confidence interval (CI) = 35.5%-48.2%) for *S. pneumoniae*, 18.2% (95% CI = 17.4%-19.0%) for RSV, and 11.2% (95% CI = 7.5%-14.7%) for rhinovirus. The mixed bacterial-viral detection rate was 59.6% in cases and 36.1% in controls.

The PERCH network [3,12,15,17] included children 1-59 months of age with WHO-defined (2005) severe and very severe pneumonia [5] hospitalised in seven countries (Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, Zambia). All countries had introduced Hib, except Thailand, and PCV, except Thailand, Bangladesh and Zambia (the latter introduced PCV in the last few months of the study). Based on an integrated aetiological analysis incorporating multiple specimens (including oro/nasopharyngeal swabs) and tests, viruses accounted for 61.4% of causes, bacteria for 27.3% and *Mycobacterium tuberculosis* for 5.9%. This varied across age groups and pneumonia severity, with viruses less common (54.5% vs 68.0%) and bacteria more common (33.7% vs 22.8%) in very severe compared with severe pneumonia cases. Results also varied according to specimen type and test used. Around 3% of blood cultures and 13.5% of lung aspirate cultures across all sites tested positive for bacteria. For all age groups and cases, RSV had the highest aetiological fraction, 31.1% (95% CI = 28.4-34.2). Mixed bacterial-viral detection was high in both cases (83.5%) and controls (75.8%) [3].

In the four case-control studies not part of networks [10,11,13,14], only RSV and influenza were consistently shown to be more commonly detected in cases than controls. In two of these studies, the control group were children visiting clinics for non-severe illness, immunisations or medicine refills, with no history of fever, respiratory symptoms or diarrhoea during the preceding two weeks [10,11]; one study included children with no pneumonia on admission, and no recent history of respiratory symptoms [14], while the last study included controls who were asymptomatic or had URTI symptoms [13]. Severe acute respiratory illness (SARI) surveillance in Kenya reported that the frequency of viruses differed by age, with RSV more common in the 0-11-month age group and influenza and adenovirus more common in the 24-59-month age group [10,11]. Rhinovirus was common across all age groups.

Only PERCH described ALRI aetiology by severity of disease [3], with a higher proportion of bacteria (*S. pneumoniae* and *H. influenzae*) observed in very severe (cough or difficulty breathing and one or more danger signs) compared to severe pneumonia (cough or difficulty breathing with lower chest wall indrawing). Two other studies described deaths in pneumonia patients diagnosed with viral and bacterial aetiology – HMPV (in severely malnourished children) [14], parainfluenza virus and *S. pneumoniae* [16] were found to be important in these cases. In the latter study, three of the four sites introduced PCV during the course of the study [16]. For children with pneumonia and comorbidities, the PERCH study found malnutrition was more common in cases than controls. Among cases, those who had *Pneumocystis jiroveci* detected on nasopharyngeal swab were more likely than other cases to be <6 months of age and malnourished [3].

The only high mortality settings (under 5 mortality rate >50 deaths per 1000 live births) were LICs/LMICs that were part of the two network studies. In PERCH, the three high mortality sites in Africa (The Gambia, Mali and Zambia) reported RSV as the most common pathogen in HIV-uninfected CXR positive patients, with parainfluenza, *S. pneumoniae* or HMPV rated second respectively. RSV was also the most common pathogen in the lower mortality sites. In the GABRIEL Network, Haiti, Mali and Madagascar had high mortality. *S. pneumoniae* was the main bacterium associated with pneumonia in these countries as well as the lower mortality countries.

In the PERCH study, bacterial and virus proportions varied by WHO region [3]. AFRO countries showed a higher proportion of bacterial pathogens, while SEARO countries detected proportionally more viruses; likely partially due to differences in the presentation of enrolled cases, with proportionally more cases in Bangladesh presenting with wheezing [3]. In the GABRIEL network study, *S. pneumoniae* was high in the AFRO, PAHO, and in one WPRO site; the exceptions were China, Cambodia and India (Lucknow), where viruses were detected more commonly [4]. Of the 10 case-control studies, five were deemed of high quality, three moderate and two weak as rated by the EPHPQ Quality Assessment Tool.
Aetiology of childhood pneumonia in the era of vaccination

Table 1. Aetiology of pneumonia in case-control studies

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES	DIAGNOSTIC TESTS	FINDINGS FOR LRTI CASES	FINDINGS FOR COMPARISON GROUP	EPHPP QUALITY ASSESSMENT TOOL	
AFRO WHO REGION							
LOWER-MIDDLE INCOME COUNTRIES							
Breiman 2013	Kenya	Viruses NPS, OPS	Viruses: RT-PCR	All: 28.2% (731/2592)	INFA = 2.57 (1.01-6.32), INF = 3.06 (0.41-23.17), RSV = 10.15 (3.16-32.38), Pos/1 virus = 2.27 (1.51-4.42), Pos/2 virus = 2.36 (1.36-4.11)	All: 4.4% (115/2922)	
					0-11mo: BC + 239: SP + 4 (1.5%), SA + 10 (3.9%), NTS + 7 (2.7%), ST + 1 (0.4%)	Weak	
					NPS N = 283: INF = 27 (9.4%), INF = 1 (1.4%), RSV = 74 (25.9%), Adv = 57 (20%), HMPV = 39 (13.7%), RV/EV = 32 (14.2%)		
					2-2.3mo: BC = 236: SF = 3 (1.3%), SA = 1 (0.4%), NTS = 3 (1.3%), ST = 2 (0.8%)		
					NPS N = 241: INF = 26 (10.8%), INF = 6 (2.5%), RSV = 49 (20.3%), Adv = 76 (31.5%), HMPV = 23 (9.3%), RV/EV = 36 (15%)		
					24-59mo: BC = 341: SF = 1 (0.3%), SA = 3 (0.9%), NTS = 3 (0.9%), ST = 2 (0.6%)		
					NPS N = 289: INF = 39 (13.5%), INF = 11 (3.8%), RSV = 46 (15.8%), Adv = 108 (36.9%), HMPV = 35 (11.9%), RV/EV = 29/55 (53%)	Moderate	
Feikin 2013	Kenya	Viruses/ OPS cases + controls	Viruses: qPCR	For cases in CCS = 199: NPS/OPS INF = 18 (9), INF = 4 (2), INF = 22 (11.1), RSV = 20 (25.3), Adv = 45 (22.6), PicV = 4 (2), PicV = 12 (6), PicV = 20 (10), HMPV = 12 (6), MP = 2 (1.1), RV/EV = 68 (50.4), PicV = 2 (0.1), Pos/1 virus = 113 (84)			
					INF = 7.2 (0.93-53), INF = 2.0 (0.2-19), INF = 6.8 (1.1-21), RSV = 2.9 (1.3-6.7), Adv = 0.89 (0.46-1.8), PicV = 0.60 (0.11-3.3), PicV = 2.6 (0.6-20), PicV = 1.3 (0.49-3.6), HMPV = 0.82 (0.28-2.4), MP = 0.39, RV/EV = 0.80 (0.41-1.60), PicV = 0.30 (0.04-2.3), Pos/1 virus = 1.7 (0.97-2.9)		
					<1yo: BC + 172: SF = 1 (0.6%), NTS = 2 (1.2%)		
					NPS N = 137: INF = 7 (5%), INF = 2 (1.5%), RSV = 45 (33%), Adv = 18 (13%), INF = 8 (5.8%), RV = 14.49 (13%)		
					12-23mo: BC = 188: SF = 3 (1.6%), INF = 0.5% (0.1-5.5%), NTS = 3 (1.6%)		
					NPS N = 117: INF = 10 (8.5%), INF = 1 (0.9%), RSV = 24 (21%), Adv = 16 (14%), HMPV = 8 (6.8%), RV = 25/42 (60%)		
					For controls in CCS = 93: NPS/OPS INF = 1 (1), INF = 1 (1), INF = 2 (2.2), INF = 8 (8.6), Adv = 17 (18.5), PicV = 3 (3.2), PicV = 6 (6.5), MP = 0 (0), MP = 0 (0), RV = 0 (0)	Strong	
					<1yo: BC = 175: SF = 2 (0.9%), NTS = 5 (1.3%)		
					NPS N = 154: INF = 10 (6.5%), INF = 2 (1.3%), RSV = 21 (14%), Adv = 32 (21%), HMPV = 3 (2.2%), RV = 29/35 (35%)		
Hammitt 2012	Kenya	Viruses: NPS, IS, Serum	Viruses: Serology, PCR	All cases (N = 805): RSV = 136 (16.9), RSVB = 77 (9.6), Adv = 39 (4.8), EV = 184 (22.9), PicV = 91 (11.1), PicV = 5 (0.6), PicV = 47 (5.8), PicV = 11 (1.4), InfA = 7 (0.9), InfB = 2 (0.3), InfC = 2 (0.3), HMPV = 25 (3.1), MP = 2 (0.4)	RSV = 3.8 (2.2-6.6), RSVB = 11.9 (7.7-38.2), Adv = 0.7 (0.4-1.2), RV = 1.0 (0.7-1.3), PicV = 0.9 (0.3-2.7), PicV = 0.3 (0.1-0.8), PicV = 0.9 (0.5-1.6), RV/EV = 4.1 (0.4-4.5), InfA = 0.7 (0.2-2.2), InfC = 0.8 (0.1-4.8), HMPV = 2.6 (0.9-8.1), MP = 0.5 (0.1-2.1)	No details by age: Cases with all samples (n = 257): 24 (9) bacteria, 137 (53) viruses, 39 (15) mixed; Considering CCS: 58 (23) bacteria, 133 (31) viral, 92 (31) mixed.	Strong
					All controls (N = 369): RSV = 16 (4.3), RSVB = 3 (0.8), Adv = 28 (7.6), RV = 82 (22.2), PicV = 0 (0), PicV = 8 (2.2), PicV = 22 (6.0), InfA = 4 (1.1), InfB = 5 (1.4), InfC = 0 (0.2), MP = 0 (0), HMPV = 4 (1.1), MP = 4 (1.1)		
Zar 2016	South Africa	Viruses NPS, IS	Viruses: qRT-PCR	Viruses: Serum, Resp33	Viruses: RSV = 66 (23%), InfA = 32 (11%), InfB = 35 (12%), Adv = 33 (10%), HMPV = 29 (10%), EV = 37 (13%), CMV = 151 (53%), CoV = 33 (12%), RV = 37 (13%)	Viruses: RSV = 17 (4%), INF = 11 (3%), INF = 26 (8%), Adv = 41 (10%), HMPV = 44 (11%), RV = 32 (8%), CMV = 177 (43%), CoV = 43 (10%), EV = 57 (14%), RV = 161 (39%)	Strong

RESEARCH THEME 6: PNEUMONIA AND DIARRHOEA IN CHILDREN
Table 1. Continued

Lead Author and Publication Date	Country	Specimen Types	Diagnostic Tests	Findings for LRTI cases	Findings for Comparison Group	EPHPP Quality Assessment Tool
AFRO WHO REGION						
LOWER-MIDDLE INCOME COUNTRIES						
Zar 2016 [13]	South Africa	Bacteria: NPS, IS, Blood.	Bacteria qRT-PCR, FTDResp33, Blood culture	Bacteria: BR = 6 (2%), Hib = 1 (1%), MP = 10 (9%), SA = 81 (28%), HI = 152 (54%), SP = 168 (60%), MC = 214 (75%). Fungi: IFP = 44 (16%).	Bacteria: OR (95% CI): BR = 11.08 (1.33 - 92.54), Hib = 1.08 (0.28 - 4.10), MP = 1.20 (0.54 - 2.78), SA = 0.70 (0.48 - 1.02), HI = 1.67 (1.20 - 2.30), SP = 1.07 (0.76 - 1.48), MC = 1.19 (0.82 - 1.74). Fungi: IFP = 0.35 (0.22 - 0.55).	Bacteria: BR = 1 (0%), Hib = 1 (1%), MP = 14 (3%), SA = 142 (35%), HI = 164 (40%), SP = 237 (58%), MC = 292 (71%). Fungi: IFP = 122 (30%).

SEARO WHO REGION							
LOWER-MIDDLE INCOME COUNTRIES							
Chowdhury 2020 [14]	Bangladesh	Viruses: NPW	Viruses: qRT-PCR	Virus +ve = 69.9% (231/339): RV = 22% (79), RSV = 8.9% (32), Adv = 6.4% (23), PIV3 = 5% (18), HMPV = 4.5% (16), INF A = 3.6% (13), INF B = 0.8% (3), PIV1 = 0.8% (3), PIV2 = 0.3% (1). Multiple viruses = 17.5% (63).	RSV = 13.1 (1.6 - 106.1).	Inpatient death: RSV = 0%; Adv = 4% (1/23); INF = 6% (1/16); RV = 5% (4/79); PIV = 14% (3/22); HMPV = 13% (2/16).	Virus +ve = 44.8% (148/330): Moderate RV = 24.8% (82), Adv = 7.9% (26), HMPV = 1.5% (3), INF A = 0.9% (3), PIV1 = 0.9% (3), INF B = 0.3% (1), INF F = 0.3% (1). Multiple viruses = 7.9% (26).

| **UPPER-MIDDLE INCOME COUNTRIES** | | | | | | |
| Prinlam 2020 [15] | Thailand | Viruses: NPS/OPS | Viruses: qRT-PCR assay (FTD Resp33) | SP NPS/OPS: PCR Positive = 121 (54.5%), Culture positive = 89 (40.1%), PCR or culture = 127 (57.2%); SP whole blood PCR positive 3 (1.4%). No cases were positive for SP by blood culture. Pneumococcal density was not increased in mixed viral infections with RSV or INF | | | SP NPS/OPS: PCR Positive = 400 (62.5%), Culture positive = 340 (52.4%), PCR or culture = 417 (64.2%). SP whole blood PCR positive = 5 (0.8%). |

MIXED WHO REGIONS AND INCOME CLASSIFICATIONS								
GABRIEL NETWORK								
Benet 2017 [16]	India, Madagascar, Paraguay	Viruses: NS, NPA blood, PE urine.	Both viruses & bacteria: RT-PCR	Hypoxaemic pneumonia Respiratory samples = 70: SP = 63.9% (44); SA = 17.4% (12); Hib = 3.7% (4); HMPV = 14.5% (10); Adv = 5.7% (4); RSV = 25.7% (18); PIV1 = 4.3% (3); PIV2 = 1.4% (1); PIV3 = 1.4% (1); PIV4 = 2.9% (2); INF A = 5.7% (4); Blood samples: SP = 14.3% (10); SA = 4.3% (3); Hib = 4.3% (3)	Significant aOR: HMPV = 2.4 (1.0 - 5.8); RSV = 2.5 (1.1 - 5.3)	Findings associated with death: SP PCQ pos 5/13 (38.5%): HR = 6 (1.1 - 4.0); PIV2 pos 1/13 (7.7%): HR = 23.6 (3.0 - 183.9)	Non-hypoxaemic respiratory samples = 335: SP = 60.3% (202), SA = 17.3% (58), Hib = 5.1% (17), MP = 0.9% (3); HMPV = 6.9% (23), Adv = 7.8% (23), RSV = 13.1% (44), PIV1 = 3.9% (13), PIV2 = 0.3% (1), PIV3 = 6.3% (21), PIV4 = 3% (10); INF A = 7.2% (24). Blood samples: SP 12.2% (41), SA = 1.5% (3); Hib = 4.3% (15)	Weak
Table 1. Continued

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES	DIAGNOSTIC TESTS	FINDINGS FOR LRTI CASES	FINDINGS FOR COMPARISON GROUP	EPHPP QUALITY ASSESSMENT TOOL	
AFRO WHO REGION							
Benet 2017 [4]	Cambodia	Both viruses & bacteria: NPS, urine, blood, PF	Viruses: RT-PCR	Cases = 888: SP = 605 (68.2%); SA = 107 (12.1%); HI = 47 (5.3%); MP = 13 (1.5%); HMPV = 76 (8.6%); RV = 42 (4.7%); RV = 231 (24.9%); RV = 187 (20.0%); RV = 26 (2.9%); RV = 4 (0.4%); PIV4 = 21 (2.4%); INF = 59 (6.6%); INF = 26 (2.9%); INF = 33 (3.5%)	SP = 2.6 (0.3-3.3); MP = 9.2 (2.5-33.3); HMPV = 11.0 (5.4-22.3); RV = 1.8 (1.4-2.4); RV = 11.7 (7.4-18.5); PIV1 = 7.3 (2.9-19.7); PIV3 = 3.6-12.6; PIV4 = 2.6 (1.1-6.0); INF = 55.2 (7.4-41.3); INF = 3.3 (1.5-7.3)	Population attributable fraction by age: 2–11 mo: SP = 43.5 (33.6-51.9); RSV = 24.6 (23.5-25.7); HMPV = 6.4 (5.1-7.7). 12–23 mo: SP = 44.4 (28.4-56.8); RSV = 16.6 (15.2-18.0); HMPV = 9.9 (8.8-10.9). 24–60 mo: SP = 41.6 (30.6-50.9); RSV = 11.0 (8.6-13.3); HMPV = 7.1 (6.2-8.1).	Moderate
	China						
	Mongolia	Bacteria Culture, RT-PCR					
	India						
	Madagascar						
	Mali						
	Paraguay						
	Haiti						
PERCH NETWORK							
O’Brien 2019 [3]	The Gambia, Zambia	NPS/OPS	Viruses: FTD Resp33 multiplex qPCR, NPS/OPS culture.				
	South Africa	NPS/OPS culture/PCR					
	Kenya	IS culture					
	Bangladesh, Thailand	Lung aspirate/culture/PCR, PF culture/PCR, GA culture.					
	Mali	Bacteria: Blood, NPS/OPS, IS, lung aspirate, PF, GA.					
	China	Bacteria: BC/PCR, NPS/OPS culture/PCR, IS culture, Lung aspirate culture/PCR, PF culture/PCR, GA culture.					
		Virus: Viruses=61% of causes, whereas bacteria accounted for 27.3% and Mycobacterium tuberculosis for 5.9%.					
	O’Brien 2019 [3]	The Gambia, Zambia	NPS/OPS	Viruses: FTD Resp33 multiplex qPCR, NPS/OPS culture.			
	South Africa	NPS/OPS culture/PCR					
	Kenya	IS culture					
	Bangladesh, Thailand	Lung aspirate/culture/PCR, PF culture/PCR, GA culture.					
	Mali	Bacteria: Blood, NPS/OPS, IS, lung aspirate, PF, GA.					
	China	Bacteria: BC/PCR, NPS/OPS culture/PCR, IS culture, Lung aspirate culture/PCR, PF culture/PCR, GA culture.					
		Virus: Viruses=61% of causes, whereas bacteria accounted for 27.3% and Mycobacterium tuberculosis for 5.9%.					
	O’Brien 2019 [3]	The Gambia, Zambia	NPS/OPS	Viruses: FTD Resp33 multiplex qPCR, NPS/OPS culture.			
	South Africa	NPS/OPS culture/PCR					
	Kenya	IS culture					
	Bangladesh, Thailand	Lung aspirate/culture/PCR, PF culture/PCR, GA culture.					
	Mali	Bacteria: Blood, NPS/OPS, IS, lung aspirate, PF, GA.					
	China	Bacteria: BC/PCR, NPS/OPS culture/PCR, IS culture, Lung aspirate culture/PCR, PF culture/PCR, GA culture.					
		Virus: Viruses=61% of causes, whereas bacteria accounted for 27.3% and Mycobacterium tuberculosis for 5.9%.					
	O’Brien 2019 [3]	The Gambia, Zambia	NPS/OPS	Viruses: FTD Resp33 multiplex qPCR, NPS/OPS culture.			
	South Africa	NPS/OPS culture/PCR					
	Kenya	IS culture					
	Bangladesh, Thailand	Lung aspirate/culture/PCR, PF culture/PCR, GA culture.					
	Mali	Bacteria: Blood, NPS/OPS, IS, lung aspirate, PF, GA.					
	China	Bacteria: BC/PCR, NPS/OPS culture/PCR, IS culture, Lung aspirate culture/PCR, PF culture/PCR, GA culture.					
		Virus: Viruses=61% of causes, whereas bacteria accounted for 27.3% and Mycobacterium tuberculosis for 5.9%.					

SP – Streptococcus pneumoniae, **SA** – Staphylococcus aureus, **MC** – Moraxella catarrhalis, **BP** – Bordetella pertussis, **Hib** – Haemophilus influenzae type b, **MP** – Mycoplasma pneumoniae, **HI** – Haemophilus influenza, **NTS** – Non-typhi Salmonella, **KP** – Klebsiella pneumoniae, **CP** – Chlamydia pneumoniae, **PA** – Pseudomonas aeruginosa, **ST** – Salmonella typhi, **RV** – Rhinovirus, **EV** – Enterovirus, **RSV** – Respiratory syncytial virus, **INFA/B/C** – Influenza (types A, B, and C), **PIV1/2/3/4** – Parainfluenza (types 1, 2, 3, and 4), **AdV** – Adenovirus, **HMPV** – Metapneumovirus, **BV** – Bovivirus, **CMV** – Cytomegalovirus, **CoV** – Coronavirus (NL63,229E, OC43, and HKU1), **PAV** – Parechovirus, **PJP** – Pneumocystis jirovecii, **NPW** – Nasopharyngeal wash, **NPS** – Nasopharyngeal swab, **PF** – pleural fluid, **OPS** – oropharyngeal swab, **IS** – induced sputum, **GA** – gastric aspirate, **BC** – blood culture; y – year, yo – year old, mo – months
Post-mortem studies

Of the three post-mortem studies (Table 2; Table S2 in the Online Supplementary Document) [18-20], two were part of the CHAMPS (Child Health and Mortality Prevention Surveillance) study which included sites in the WHO SEARO (Bangladesh) and AFRO regions (Mali, Mozambique, South Africa, Kenya) [19,20]. These studies showed that CAP was responsible for 25.2% (in children 0-15 years) to 47% (in children <60 months) of deaths. The most common pathogens identified in children 1-59 months of age who died of lower respiratory tract infections were nosocomial Klebsiella pneumoniae (15.6%-17.8%), cytomegalovirus (CMV, 7%-15.6%), S. pneumoniae (12.5%-15.1%), RSV (5.5%-21.9%) and P. jirovecii (9%-18.8%). Tuberculous and non-tuberculous mycobacteria were common as a standalone direct cause of death, and less so as a comorbid condition. Across all studies, HIV prevalence ranged from 12%-34%. Both Hib and PCV were in routine use in all the countries included in these studies.

A study from Zambia [18] included post-mortem examination of the lungs in 121 children who died in-hospital and 92% had lung pathology. Of the 97 children with HIV results, 34% were HIV-infected with lung pathology observed in all cases. Overall, bacterial bronchopneumonia was the most common pathology (50%), followed by interstitial pneumonitis (17%), tuberculosis (8%), CMV pneumonia (7%) and P. jirovecii pneumonia (5%). Malnutrition was the leading comorbidity in all cases (50%). Chawana et al. in South Africa [19] included 127 children up to 14 years of age. 32 (25%) whose immediate or underlying cause of death was CAP in a lower mortality setting. Overall, 12.8% were HIV infected, 23.6% were HIV-exposed uninfected and 62.4% were malnourished. In children 1-11 months where CAP was deemed to be the cause of death, the most common pathogens identified were RSV; PJP (3 HIV-uninfected and 3 HIV-infected), and CMV (2/5 were HIV-infected). The most common pathogens identified in children aged 12-59 months were S. pneumoniae and H. influenzae. Only two children ≥5 years were included. Of the three post-mortem studies, one was deemed of high quality and two weak as rated by the EPHPP Quality Assessment Tool.

Empyema or pleural effusion studies

Eight studies included information on the aetiology of pleural effusions and empyema (Table 3; Table S3 in the Online Supplementary Document) [21-23,25-28]. Most studies did not test for viral pathogens and excluded TB-associated pleural effusions.

One PERCH network study [28] showed a predominance of bacterial pathogens (S. pneumoniae = 20% and H. influenzae = 9% in lung aspirate and S. aureus = 50% and S. pneumoniae = 36% in pleural fluid), which contrasted with overall PERCH findings. One study in The Gambia [24], a high mortality setting, included culture and molecular analysis of pleural effusions and lung aspirates from children 2-59 months with severe pneumonia. A combination of singleplex and multiplex PCRs detected pathogens more frequently than culture, with a predominance of bacteria (S. pneumoniae PCR positive = 91% and S. pneumoniae culture positive = 25%) [24].

Other studies also showed a preponderance of bacterial causes, especially S. pneumoniae and S. aureus. Detection rates varied depending on whether culture or PCR was used, and if PCV was introduced. The highest detection rate for S. pneumoniae using culture was in a study conducted in India, prior to routine PCV introduction, which detected pneumococci in 20.7% (n = 31/150) of pleural fluid samples [22]; while Feris-Iglesias et al. [21] reported a pneumococcal detection rate of 54.5% (n = 61/112) using PCR pre-PCV introduction in the Dominican Republic. One study from a high mortality setting identified only 28 patients with effusions, two-thirds of which had S. aureus identified on pleural effusion culture [25].

A study from South Africa enrolled 65 children <14 years of age with a 20% HIV-positivity rate [27]. More than half of the patients (55.3%) had a bacterial pathogen identified predominantly on culture of blood or pleural fluid. The most common pathogen was S. aureus (n = 14), followed by S. pneumoniae (n = 5) and M. tuberculosis (n = 5); although 28 children were treated for TB despite only a minority having a microbiological diagnosis [27]. Another study from South Africa in children <12 years old, identified M. tuberculosis on culture in 12 (8%) cases as part of a prospective cohort and 3 (14%) cases as part a retrospective cohort; there was no difference by HIV status [26]. Of the eight included studies, two were deemed of high quality and six weak as rated by the EPHPP Quality Assessment Tool.

Surveillance studies

Ten surveillance studies [29-38] tested patients for a variety of viruses and bacteria, using different specimen types (Table 4; Table S4 in the Online Supplementary Document). In all studies, a high proportion of pneumonia patients (49%-78%) tested positive for one or more respiratory viruses by PCR; most com-
Table 2. Aetiology of pneumonia in post-mortem studies

Lead Author and Publication Date	Country	Specimen Types and diagnostic tests	Findings (infection prevalence)	EPHPP Quality Assessment Tool
AFRO WHO REGION				
LOWER-MIDDLE INCOME COUNTRIES				
Bates 2016 [18] Zambia	Lung tissue: Xpert MTB/RIF assay RT-PCR, and Ziehl–Neelsen staining.	N = 121: TB = 10 (8%), CMV pneumonia 8 (7%), PJP 6 (5%).	HIV negative = 62: 86% lung pathology; 4 (6%) TB, 4 (6%) CMV, 2 (3%) PJP.	Weak
			HIV positive = 34: 100% lung pathology; 5 (15%) TB, 3 (9%) CMV, 3 (9%) PJP.	
			HIV unknown = 25: 96% lung pathology; 1 (4%) TB, 1 (4%) CMV, 1 (4%) PJP Malnutrition – 50% (56/111) of cases with lung pathology – predominant comorbidity for five most prevalent lung pathologies: TB, CMV, PJP, bronchopneumonia, pneumonia, interstitial pneumonitis.	
UPPER-MIDDLE INCOME COUNTRIES				
Chawana 2019 South Africa	Blood and tissue: Histopathology, Fast Track diagnostics kit.	12.8% HIV infected on post-mortem. 62.4% of cases were malnourished.	Overall CAP = 25.2% (32/127): RSV = 21.9% (7/32), PJP = 18.8% (6/32), CMV = 15.6% (5/32), K. pneumoniae = 15.6% (4/32), Influenza = 12.5% (4/32), S pneumoniae = 15.6% (4/32), M. catarrhalis = 9.4% (3/32), H. influenzae = 9.4% (3/32), B. pertussis = 6.3% (2/32), P. aeruginosa = 6.3% (2/32), S. aureus = 6.3% (2/32), HMPV = 0.8% (1/32).	Weak
			1-11 mo: N = 67: All CAP = 29.9% (20/67): RSV = 35% (7); PJP = 30% (6); CMV = 25% (5); K. pneumoniae = 15% (3); Influenza = 5% (1); M. catarrhalis = 5% (1); B. pertussis = 10% (2); P. aeruginosa = 5% (1); S. aureus = 5% (1); Unspecified = 10% (1).	
			12-59 mo: N = 37: All CAP = 27% (10/37): K. pneumoniae = 20% (2); Influenza = 20% (2); S pneumoniae = 40% (9); M. catarrhalis = 20% (2); H. influenzae = 30% (3); P. aeruginosa = 10% (1); S. aureus = 10% (1).	
			≥60 mo: N = 23: All CAP = 8.7% (2/23): Influenza = 50% (1); Unspecified = 50% (1).	
MIXED WHO REGIONS AND INCOME CLASSIFICATIONS				
CHAMPS (Child Health and Mortality Prevention Surveillance) NETWORK			In neonates LRTI’s immediate cause = 86/449 (19%) of deaths; in children LRTI = 143/304 (47%) of deaths. No stillbirths were due to LRTI. Neonatal deaths (n = 449 - 240 with infectious cause): A baumannii = 50 (20.8%), K pneumoniae = 35 (14.6%), E coli or Shigella = 7 (2.9%), S agalactiae = 3 (1.2%), S aureus = 7 (2.9%), Streptococcus = 6 (2.5%), E faecalis = 1 (0.4%), S pneumoniae = 3 (1.2%).	Strong
Taylor 2020 [20] Bangladesh Mali Mozambique South Africa Kenya	Biopsies from lungs, heart, brain, liver, and bone marrow. Peri- nal fluid, stool and nasopharyngeal secretions: Blood and CSF cultures. TaqMan Array molecular assays.	Child deaths (1–59 mos) (n = 304 – 275 with infectious cause): K pneumoniae = 54 (19.6%), S pneumoniae = 46 (16.7%), HIV = 3 (1.1%), Cytomegalovirus = 24 (8.7%), A baumannii = 10 (3.6%), S aureus = 22 (8.0%), H influenzae = 19 (6.9%), E coli = 4 (1.4%), RSV = 17 (6.2%), Adenovirus = 11 (4.0%), PJP = 17 (6.2%), P. aeruginosa = 9 (3.3%), Streptococcus = 9 (3.3%), Parainfluenza virus type3 = 9 (3.3%).		

CMV – Cytomegalovirus, PJP – Pneumocystis jirovecii, TB – tuberculosis, CAP – community acquired pneumonia, mos – months
Table 3. Aetiology of pneumonia in empyema

Lead Author and Publication Date	Country	Specimen Types and Diagnostic Tests	Findings	EPHPP Quality Assessment Tool	
PAHO WHO REGION					
UPPER-MIDDLE INCOME COUNTRIES					
Feris-Iglesias 2014 [21]	Dominican Republic	Viruses: rRT-PCR on pleural fluid. Bacteria: Pleural fluid culture and PCR.	Detected by culture n (%)	SP = 19 (15.7), SA = 19 (15.7), SPy = 1 (0.8), SMi = 1 (0.8), Candida Sp = 1 (0.8), No aetiology = 81 (66.9). Detected by PCR: SPF = 61 (54.5), SA = 0 (0), SPy = 2 (1.8), SMi = 0 (0), Candida Sp = 0 (0). No aetiology = 40 (34.8).	Weak
SEARO WHO REGION					
Dass 2011 [22]	India	Viruses: Not tested. Bacteria: Gram stain and culture on pleural pus and blood.	Culture was positive in 48/150 cases (32%) from pleural fluid. SP = 31/150 (20.7%), SA = 11 (7.3%), KP = 3 (2%), Hib = 2 (1.3%), Enterococcus = 1 (0.7%).	Weak	
UPPER-MIDDLE INCOME COUNTRIES					
Lochindarat 2014 [23]	Thailand	Viruses: Not tested. Bacteria: PCR and culture on pleural fluid and blood.	Blood sample/Bacterial culture = 5/66 (8%) positive; SP = 1, HI = 1, SA = 2, En spp = 1; PF sample/Bacterial culture/local laboratory = 13/70 (19%) positive; SP = 2, HI = 1, PA = 1, SA = 6, Strep spp = 2, AB = 1; PF sample/Bacterial culture/CIDM = 15/71 (21%) positive; SP = 2, HI = 1, SA = 8, AB = 1, SM = 1; PF sample/PCR/CIDM = 18/71 (25%) positive; SP = 13, HI = 6, MP = 1. Overall CFR = 6/71 (8%)	Weak	
AFRO WHO REGION					
Howie 2014 [24]	The Gambia	Viruses: PCR on lung and pleural aspiration. Bacteria: Culture, non-molecular serotyping latex agglutination, qPCR, molecular serotyping on lung and pleural aspiration	Culture and molecular results (N = 52): SP = 48 (91%), HI = 12 (23%), SA = 3 (6%), Kb species = 2 (4%), RSV = 2 (4%), AdV 2 (4%), EVB = 1 (2%), CoWHRU1 = 1 (2%), INFC = 1 (2%), CMV = 1 (2%), AB species = 2 (4%), EB species = 2 (4%), Salm species = 2 (4%), SPs = 1 (2%), BD species = 1 (2%), PV species = 1 (2%).	Weak	
			Culture results = 21/56 (38%) specimens: SP = 14 (23%), HI (non-type b) = 3 (5%), SA = 3 (5%). Ziehl-Neelsen staining = 37/56 (66%), lung aspirate samples (all negative); 35/37 (95%) underwent culture for MTB, and all were negative.	Weak	
LOWER-MIDDLE INCOME COUNTRIES					
Kuti 2014 [25]	Nigeria	Bacteria: Culture on pleural fluid.	SA = 19 (68%); SP = 2 (7%); KP = 2 (7%); EC = 1 (3.6%); No growth = 4 (14%). Pneumonia with effusions = 4/28 (14.3%), Pneumonia without effusions = 35/242 (10.8%)	Weak	
UPPER-MIDDLE INCOME COUNTRIES					
Zampoli 2015 [26]	South Africa	Viruses: Not tested. Bacteria: PCR and culture on pleural fluid and blood.	Cohort A: Blood culture = 132/142 (93%) – All bacteria = 32 (24%), SP = 19 (14%), SA = 11 (8%), HI spp = 2 (1.5%), Others spp = 1, Gram-negative organisms = 1. Pleural fluid culture = 136/142 (96%) – All bacteria = 45 (33%), SP = 14 (10%), SA = 20 (15%), HI spp = 2 (1.5%), Others spp = 3 (2%), Gram-negative organisms = 3 (2%), MTB = 10/104 (10%); Combined blood + pleural fluid cultures = 142 (100%) – All bacteria = 56 (39%), SP = 25 (18%), SA = 25 (18%), HI spp = 3 (2%), Other strepococci = 4 (3%), Gram-negative organisms = 4 (3%), Pleural Fluid PCR = 54/142 (38%) – All bacteria = 37 (68%); Pleural Fluid PCR = 52 (48%), SA = 9 (17%), HI spp = 3 (5.3%), Other spp = 3 (5.3%).	Weak	
			Cohort B: Combined blood + pleural fluid cultures = 22 (100%) – All bacteria = 7 (32%), SP = 1 (4.5%), SA = 2 (9%), HI spp = 1 (4.5%), Others spp = 1 (4.5%), Gram-negative organisms = 1 (4.5%), MTB = 3 (14%). Overall = 19/135 (14%) admitted to ICU, 29/135 (21%) needed surgery, 6/135 died (in-hospital mortality 4.4%).	Weak	

| Ghoor 2018 [27] | South Africa | Viruses: Not tested. Bacteria: Culture, biochemistry, PCR on blood, sputum, pleural fluid and gastric washings | Overall = 36/65 (55.3%) positive, 34 on culture of blood or pleural fluid and 2 isolated by multiplex PCR: SA = 14, 21.5%, SP = 5, 7.7%, MTB = 5, 7.7%, KP = 3, 4.6%. One patient (1.5%) grew both MTB and SA on pleural fluid, while the other 4 cases of MTB were cultured on gastric washings or sputum samples. Incidence of empyema = 1.46 (95% CI = 1.05-1.97) per 100000 population and 3.40 (95% CI = 2.45-4.59) per 1000 hospitalised cases of acute lower respiratory infection. Complications: 8 (12.3%) thoracotomy, 7 (10.8%) intubation/ventilation, 1 died (case fatality ratio 1.5%) | Weak |
The Gambia, South Africa, Bangladesh, Mali

Aetiology of childhood pneumonia in the era of vaccination

Specimen types and diagnostic tests

LUNG ASPIRATE
Pneumonia cases included in each study. RSV was consistently one of the most common viruses identified in children aged <1 year, with adenovirus, rhinovirus and HMPV also frequently detected [33,35,38]. In all children <5 years, the pattern was similar, while older children (5-14 years) had higher detection rates for influenza and lower for RSV [37,38]. A study from South Africa compared aetiology in HIV-infected and -uninfected children admitted with SARI. HIV-infected cases had more pneumococcal infections (7% vs 4%) detected on whole blood byA PCR or blood culture and more adenovirus (32% vs 27%) than HIV-uninfected children. In contrast, HIV-uninfected children were more likely to have HMPV (7% vs 4%), RSV (27% vs 13%) and >1 virus detected (34% vs 28%) than HIV-infected cases [33].

For bacterial diagnosis, studies that included blood cultures [29-31] had low positivity (3%-4%); while those that used other samples (tracheal aspirates or sputum) or PCR had higher positivity rates. A study in Madagascar, a high mortality setting, reported detection rates of 22.4% for S. pneumoniae and 9.9% for Hib on sputum culture in 710 children <5 years with routine PCV and Hib vaccine use [37]. Hib was introduced in 2008 with coverage reported as 71%-74% using WHO-UNICEF estimates [37]. One study from Thailand, which defined TB using the WHO definition of ≥2 acid fast bacilli sputum smear-positive results or one positive smear with an abnormal chest radiograph, detected no TB cases in children aged <5 years and only 3 cases in children 5-17 years [36].

Most studies only reported overall deaths in children with pneumonia [29,36]. Bunthi et al. described pathogens detected in fatal and non-fatal pneumonia cases in a low mortality setting [32]. Participants with severe pneumonia were recruited across 30 different health care sites in Thailand. In children <5 years, 60 (10%) cases died and 31 (52%) had positive laboratory results. The most common pathogens detected were RSV, adenovirus, HMPV and K. pneumoniae [32]. Of the ten surveillance studies, four were deemed of high quality and six weak as rated by the EPHPP Quality Assessment Tool.

Cohort studies

The eight cohort studies included in the review [39-46] had a study period ranging from 1-4 years (Table 5; Table S5 in the Online Supplementary Document). Only one study was in the post-PCV period [41]. Viruses were detected in respiratory samples using PCR, with one study also using virus-specific serum antibody titres [46]. The most common respiratory viruses detected were rhinovirus (31%-40.1%), adenovirus (19.1%-50%), RSV (12.9%-16.9%), influenza (45.7%), and enterovirus (25.3%). Culture was predominantly used for bacterial detection, with or without PCR. Most studies showed low rates of positive blood culture (1%-5.4%); the exception was a study in rural Mozambique, a high mortality setting, with high rates of HIV and PJP, which showed a blood culture positivity rate of 12.9% [43]. The study also showed high rates of HIV and PJP, which showed a blood culture positivity rate of 14.8% [43]. Nearly half of these cultures were positive for pneumococcus and a quarter for Hib; however, this study was conducted prior to the introduction of PCV and Hib vaccine. A later study from the same site in Mozambique, following
Table 4. Aetiology in surveillance studies

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	FINDINGS	EPHPP QUALITY ASSESSMENT TOOL
EMRO WHO REGION				
LOWER-MIDDLE INCOME COUNTRIES				
Ali 2016 [29]	Pakistan	Viruses: TAG respiratory viral panel on NPS.	N = 817 cases. BC performed = 356: All positive BC = 5 (1.4), GAS = 1 (0.3), CB = 2 (0.6), SP = 2 (0.6).	0-5mos: BC performed = 181: All positive BC = 1 (0.5), LA +ve = 154 (83.1), AdV = 6 (3), BV = 1 (0.6), CoV229E = 1 (0.6), CoVHKU1 = 5 (2.5), CoVNL63 = 3 (1.5), CoVOC43 = 9 (4.5), EV/RV = 110 (54.7), HMPV = 1 (0.5), INFB = 3 (1.5), PIV1 = 1 (0.5), PIV2 = 1 (0.5), PIV3 = 17 (8.5), PIV4 = 10 (5).
Olsen 2010 [36]	Thailand	Viruses: RT-PCR on NPS, serum.	All (n = 3910): CP = 92/3417 (2.7), CB = 3/755 (0.4), MP = 38/3417 (1.1), MT = 92 (2.4), AdV = 100 (2.6), BV = 53/1165 (4.5), CoV229E = 10/1920 (0.5), CoVHKU1 = 11/1920 (0.6), CoVNL63 = 8/1920 (0.4), CoVOC43 = 35/1920 (1.8), INFA = 436 (11.2), INFB = 150 (3.8), HMPV = 60 (1.5), PIV1 = 67 (1.7), PIV2 = 36 (0.9), PIV3 = 164 (4.2), PIV4 = 397 (15.3), RV = 470/3417 (13.8).	≤5yo: CP = 13/1152 (1.1), CB = 1/150 (0.7), MP = 11/1152 (1.0), AdV = 70 (5.3), Weak BV = 44/379 (11.6), CoV229E = 3/529 (0.6), CoVHKU1 = 3/529 (0.6), CoVNL63 = 1/529 (0.2), CoVOC43 = 8/529 (1.5), INFA = 117 (8.8), INFB = 39 (2.9), HMPV = 38 (2.9), PIV1 = 35 (2.6), PIV2 = 17 (1.3), PIV3 = 107 (8.1), RSV = 496 (37.6), RV = 242/1152 (21).
Baggett 2012 [30]	Thailand	Viruses: rRT-PCR on NPS.	902/7207 (12.5) INF positive cases. Co-infection with RSV: 30 (7.2) INF-A(H1N1) pdm09 pts, 29 (11) with H3N2, and 8 (6.7) with INFB virus.	≤5yo: 190/2436 (7.8%) INF positive. 38/68 (56) INF-RSV co-infections. No deaths recorded in children.
Naorat 2013 [34]	Thailand	Viruses: rRT-PCR on NPS.	RSV positive ≤5yo: RSV = 802/4839 (16.6), 5-19yo = 74/1802 (4.1); Only in RSV positive group – INFA = 77/1137 (6.8), INFB = 14/1137 (1.2). Strong AdV = 21/1137 (1.9), HMPV = 5/181 (2.8).	≤5-17yo: 243 INF positive

SEARO WHO REGION

UPPER-MIDDLE INCOME COUNTRIES

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	FINDINGS	EPHPP QUALITY ASSESSMENT TOOL
Olsen 2010 [36]	Thailand	Viruses: RT-PCR on NPS, serum.	≤5yo: CP = 13/1152 (1.1), CB = 1/150 (0.7), MP = 11/1152 (1.0), AdV = 70 (5.3), Weak BV = 44/379 (11.6), CoV229E = 3/529 (0.6), CoVHKU1 = 3/529 (0.6), CoVNL63 = 1/529 (0.2), CoVOC43 = 8/529 (1.5), INFA = 117 (8.8), INFB = 39 (2.9), HMPV = 38 (2.9), PIV1 = 35 (2.6), PIV2 = 17 (1.3), PIV3 = 107 (8.1), RSV = 496 (37.6), RV = 242/1152 (21).	

Baggett 2012 [30]

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	FINDINGS	EPHPP QUALITY ASSESSMENT TOOL
Naorat 2013 [34]	Thailand	Viruses: rRT-PCR on NPS.	RSV positive ≤12months: RSV = 230/1182 (19.5), 12-59months: 572/3567 (15.6), RSV positive incidence ≤5yo: 981 (919-1043) per 100000 py, 5-19yo: 23 (18-29) per 100000 py.	1750 (3.2) deaths in all age groups; 8 RSV positive deaths ~ 7 were in ≥50yo.
Aetiology of childhood pneumonia in the era of vaccination

VIEWPOINTS

RESEARCH THEME 6: PNEUMONIA AND DIARRHOEA IN CHILDREN

Lead Author and publication date

Country	Specimen types and diagnostic tests	Findings	EPHPP Quality Assessment Tool
Thailand	Viruses: rtRT-PCR on tracheal aspirates.	Overall = 589/972 (60.6%) tested positive for ≥1 pathogen.	Weak
	Bacteria	Overall = 589/972 (60.6%) tested positive for ≥1 pathogen.	Weak
	Viruses: Multiplex PCR on NPA.	Overall n (%)	Strong
	Bacteria: Blood culture	Overall n (%)	Strong
Mozambique	Multiplex PCR on NPA.	Overall n (%)	Strong
	Blood culture.	Overall n (%)	Strong
O’Callaghan-Gordo 2011 [35]	Viruses: Multiplex PCR on NPA.	Overall n (%)	Strong
	Bacteria: Blood culture.	Overall n (%)	Strong
Madagascar	Viruses: In-house multiplex rPCR on NPS.	Overall n (%)	Strong
	Bacteria: Sputum gram-stain and culture.	Overall n (%)	Strong

By age group:

<5 y:
- N = 600, RSV = 18.3% (110), AdV = 4.7% (28), HMPV = 2.5% (15), INF A H1N1 = 0.5% (3), PIV3 = 1.8% (11), INF A H3 = 0.8% (5), PIV1 = 0.8% (5), INF B = 0.1% (1), PIV2 = 1% (6), MP = 3.4% (20), CP = 2.5% (15), Hib = 1.5% (9), MC = 20.3% (20), K. pneumoniae = 0.1% (1), SA = 0.1% (1), EC = 0.3% (2).
- ≥5 y: N = 372, MP = 3.6% (13), A(H1N1)pdm09 = 1.2% (4), RSV = 1.7% (6).

Deaths:
- Overall = 220/972 (22.6%).
- <5 y = 27.3% (60/220), RSV = 1.2% (7/600), AdV = 0.3% (2/600), HMPV = 0.3% (2/600), INF A H1N1 = 0.1% (1/600), PIV3 = 0.3% (2/600), MP = 0.1% (1/600), CP = 0.1% (1/600), Hib = 0.1% (1/600), MC = 0.1% (1/600), K. pneumoniae = 0.3% (2/600), SA = 0.1% (1/600).

AFRO WHO REGION LOW-INCOME COUNTRIES

Country	Specimen types and diagnostic tests	Findings	EPHPP Quality Assessment Tool
Mozambique	Multiplex PCR on NPA.	Overall n (%)	Strong
	Blood culture.	Overall n (%)	Strong
Madagascar	Viruses: In-house multiplex rPCR on NPS.	Overall n (%)	Strong
	Blood culture.	Overall n (%)	Strong
Razanajatovo 2018 [37]	Viruses: In-house multiplex rPCR on NPS.	Overall n (%)	Strong
	Blood culture.	Overall n (%)	Strong

References

- Bunthi 2019 [32]
- O’Callaghan-Gordo 2011 [35]
- Razanajatovo 2018 [37]
| Country | Specimen types and diagnostic tests | Incidence by age | EFHPF Quality Assessment Tool | | |
|---|---|---|---|---|---|
| Berkley 2010 [31] Kenya | Viruses rRT-PCR on NPW | LRTI Overall positive = 56% (425); 36 (4.7%) bacteraemic, with 16 having respiratory virus detected (44%). | Overall n (%) | Incidence (per 100 000 children by age group) | Weak |
| | Bacteria Blood culture. | URTI Overall positive = 44% (42); Well control overall positive = 28% (16). | | All LRTI: Age <5 = 1522; Age 5<13 = 99. | |
| | | RSV: Age <5 = 535; Age 5<13 = 15. | | RSV: Age <5 = 535; Age 5<13 = 15. | |
| | | CoV299E: Age <5 = 105; Age 5<13 = 3. | | INF: Age <5 = 82; Age 5<13 = 15. | |
| | | PIV3: Age <5 = 57; Age 5<13 = 6. | | AdV: Age <5 = 55; Age 5<13 = 9. | |
| | | | 12-23 Months n/N (%) Viruses: INF = 153/1703 (9); ADV = 600/1559 (38); EV = 249/1703 (15); RV = 677/1703 (40); HMPV = 97/1703 (6); PIV3 = 126/1702 (7); RV = 1410/1703 (83); Any virus = 1410/1703 (83); >1 virus = 676/1703 (40); IBD = 14/499 (3); SP = 59/1302 (5). | | HIV-infected n/N (%) Viruses: INF = 49/688 (7); Adv = 198/628 (32); EV = 36/688 (5); RV = 245/688 (36); HMPV = 26/688 (4); PI = 62/688 (9); RSV = 88/688 (13); Any virus = 466/688 (68); >1 virus = 190/688 (28); IBD on culture = 12/111 (4); SP = 44/624 (7); HIV-uninfected n/N (%) Viruses: INF = 362/5161 (7); Adv = 1298/4837 (27); EV = 513/5160 (10); RV = 1952/5160 (39); HMPV = 357/5160 (7); PI = 486/5160 (9); RSV = 142/5160 (27); Any virus = 4098/5160 (79); >1 virus = 1733/5160 (34); IBD on culture = 51/2092 (2); SP = 180/4786 (4) |
| | | Deaths: 24 deaths in LRTI group, with 8 in virus positive children (1.9%). | 20-59 Months n/N (%) Viruses: INF = 150/1328 (11); ADV = 517/1234 (42); EV = 176/1328 (13); RV = 595/1328 (45); HMPV = 67/1328 (5); RSV = 228/1328 (17); Any virus = 1078/1328 (81); >1 virus = 550/1328 (41); IBD = 13/381 (3); SP = 49/993 (5). | 4-11 Months n/N (%) Viruses: INF = 201/2637 (8); ADV = 646/2448 (26); EV = 245/2637 (9); RV = 1027/2637 (39); HMPV = 211/2637 (8); RSV = 712/2637 (27); Any virus = 2146/2637 (81); >1 virus = 932/2637 (35); IBD = 19/876 (2); SP = 75/2063 (4). | Strong |

Table 4. Continued
Table 4. Continued

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	FINDINGS	EPHPP QUALITY ASSESSMENT TOOL	
Venneri 2013 [38]	Guatemala	Viruses: PCR on NP/OP swab	Overall n (%)	By age group	
			50.4% of patients had at least one virus detected, and 365 (9.4%) tested positive for two or more viruses.	Weak: RSV = 39%, AdV = 5%, HMIV = 6%, INFa = 5%, INFb = 0.5%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%	
		Bacteria: PCR on NP/OP swab & blood culture		1-2yo	RSV = 2%, AdV = 8%, HMIV = 11%, INFa = 0%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				3-4yo	RSV = 5%, AdV = 8%, HMIV = 3%, INFa = 7%, INFb = 3%, PIV = 2%, PIV2 = 1.8%, PIV3 = 3%
				5-14yo	RSV = 8%, AdV = 10%, HMIV = 3%, INFa = 7%, INFb = 3%, PIV = 2%, PIV2 = 1.8%, PIV3 = 3%
				<1yo	n = 1349, RSV = 39%, AdV = 5%, HMIV = 6%, INFa = 5%, INFb = 0.5%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				1-4yo	n = 641, RSV = 22%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				5-14yo	n = 304, RSV = 16%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				<1yo	n = 71, RSV = 32%, AdV = 5%, HMIV = 6%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				1-2yo	n = 43, RSV = 22%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				3-4yo	n = 16, RSV = 5%, AdV = 8%, HMIV = 3%, INFa = 7%, INFb = 3%, PIV = 2%, PIV2 = 1.8%, PIV3 = 3%
				5-14yo	n = 8, RSV = 5%, AdV = 8%, HMIV = 3%, INFa = 7%, INFb = 3%, PIV = 2%, PIV2 = 1.8%, PIV3 = 3%
				<1yo	n = 12, RSV = 5%, AdV = 5%, HMIV = 5%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				1-2yo	n = 7, RSV = 22%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				3-4yo	n = 1, RSV = 5%, AdV = 5%, HMIV = 5%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				5-14yo	n = 1, RSV = 5%, AdV = 5%, HMIV = 5%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				<1yo	n = 1349, RSV = 39%, AdV = 5%, HMIV = 6%, INFa = 5%, INFb = 0.5%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				1-4yo	n = 641, RSV = 22%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				5-14yo	n = 304, RSV = 16%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				<1yo	n = 71, RSV = 32%, AdV = 5%, HMIV = 6%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				1-2yo	n = 43, RSV = 22%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				3-4yo	n = 16, RSV = 5%, AdV = 8%, HMIV = 3%, INFa = 7%, INFb = 3%, PIV = 2%, PIV2 = 1.8%, PIV3 = 3%
				5-14yo	n = 8, RSV = 5%, AdV = 8%, HMIV = 3%, INFa = 7%, INFb = 3%, PIV = 2%, PIV2 = 1.8%, PIV3 = 3%
				<1yo	n = 12, RSV = 5%, AdV = 5%, HMIV = 5%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				1-2yo	n = 7, RSV = 22%, AdV = 8%, HMIV = 11%, INFa = 6%, INFb = 2%, PIV = 2%, PIV2 = 1.8%, PIV3 = 1%
				3-4yo	n = 1, RSV = 5%, AdV = 5%, HMIV = 5%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%
				5-14yo	n = 1, RSV = 5%, AdV = 5%, HMIV = 5%, INFa = 5%, INFb = 0.3%, PIV = 1.5%, PIV2 = 1.3%, PIV3 = 2%

Note: GAS – group A strep, CB – campylobacter, SP – Staphylococcus pneumoniae, Spy – Staphylococcus pyogenes, SfM – Mycoplasma pneumoniae, SA – Staphylococcus aureus, CP – Chlamydia pneumoniae, CB – Coxiella burnetii, MT – Mycobacterium tuberculosis, KP – Klebsiella pneumoniae, AB – Acinetobacter baumanii, EC – Escherichia coli, BP – Burkholderia pseudomallei, LG – Legionella spp, PA – Pseudomonas aeruginosa, AC – Acinetobacter calcoaceticus, HI – H. influenza, SH – Staphylococcus haemolyticus, SM – Streptococcus mitis, PIV1 – parainfluenza virus type 1, PIV2 – parainfluenza virus type 2, PIV3 – parainfluenza virus type 3.

The most common pathogens isolated among the patients with blood cultures results were SA (n = 32, 2.4%) and SP (n = 12, 0.9%).
Table 5. Aetiology of cohort studies

Lead Author and Publication Date	Country	Specimen Types and Diagnostic Tests	Infection Prevalence in LRTI Cases (Overall)	Infection Prevalence in LRTI Cases (by Age Group) and Sequelae/Deaths	EPHPP Quality Assessment Tool
AFRO WHO REGION					
LOW-INCOME COUNTRIES					
Lanaspa 2015 [43] Mozambique	Viruses: PCR on blood, NPA	PCP = 6.8% (57) positive. BC = 108/730 (14.8%) positive.	PCP positive group: 0-12 mo = 84.2% (48/57), 1-5 y = 15.8% (9/57).	PCP negative group = 777, 0-12 mo = 51.2%, 1-5 y = 48.8%.	Weak
	Bacteria: Culture on blood, NPA	SP = 42.3% (46/108), HIB = 23.1% (25/108), enteric Gram-negative bacilli = 10.2% (11/108). Viral detection in NPA = 392/806 (48.6%) positive for respiratory viruses, with multiple infections being common (76/392, 19.4% of positive NPA).	PCP case fatality rate = 20.8%, non-PCP case fatality rate = 10.2%.	PCP Prevalence = 14.3% HIV-positive; PCP Prevalence = 3% in HIV-negative.	
Annamalay 2016 Mozambique [40]	Viruses: RT-PCR on NPA	All cases = 206/277 (74.4%) tested positive on NPA: RV = 92 (33.2%), AdV = 19.1%, RSV = 15.5%.	RSV-positive children (mean age = 8.9 mo) were younger than RSV-negative children (mean age = 13.4 mo, P = 0.022). Adenovirus-positive children (mean age = 18.6 mo) were older than adenovirus-negative children (mean age = 11.3 mo).	Of the RV-A positive cases = 23/47 (48.9%) were <12 mo old. Of the RV-C positive cases = 15/35 (42.9%) were <12 mo old.	Weak
	Bacteria: Blood culture. HIV-uninfected (n = 237): RV = 44.7%, AdV = 28.9%, RSV = 10.5%, PIV = 2.6%, HMPV = 10.5%, BV = 2.6%, INF = 5.3%, EV = 2.6%. HIV-infected (n = 38): RV = 31.2%, AdV = 17.3%, RSV = 16.5%, PIV = 10.1%, HMPV = 8%, BV = 9.3%, INF = 6.8%, EV = 4.2%, CV = 1.7%.	Of the RV-A positive cases = 23/47 (48.9%) were <12 mo old. Of the RV-C positive cases = 15/35 (42.9%) were <12 mo old.			
LOWER-MIDDLE INCOME COUNTRIES					
Assane 2018 [41] Senegal	Viruses: RT-PCR on BAL, sinus fluids, throat swab.	AdV = 81 (50%), INF = 74 (45.7%), RV = 65 (40.1%), EV = 41 (25.3%), RSV = 26 (16.1%).	0-6 mo AdV = 17, INF = 15, RV = 18, RSV = 10, EV = 8, Hib = 2, weak SP = 7, MC = 3, other = 2.		
		Single AdV infection rate = 3.7% (6). AdV associated with other viruses = 25.31% (41) and bacteria = 4.94% (8).	6-12 mo AdV = 11, INF = 7, RV = 10, RSV = 6, EV = 8, Hib = 1, SP = 5, MC = 4, other = 2.		
		INF single-virus co-infections = 33.3% (54), virus & bacteria co-infections = 12.95% (20), RV and EV single infections = 1.65% (3).	12-14 mo AdV = 20, INF = 20, RV = 15, RSV = 4, EV = 7, Hib = 3, SP = 11, MC = 11, other = 1.		
		INF single-virus co-infections = 33.3% (54), virus & bacteria co-infections = 12.95% (20), RV and EV single infections = 1.65% (3).	24-60 mo AdV = 29, INF = 23, RV = 17, RSV = 5, EV = 14, Hib = 6, SP = 4, MC = 7, other = 6.		
		INF single-virus co-infections = 33.3% (54), virus & bacteria co-infections = 12.95% (20), RV and EV single infections = 1.65% (3).	60-112 mo AdV = 4, INF = 9, RV = 5, RSV = 1, EV = 4, Hib = 1, SP = 2, MC = 0, other = 0.		
SEARO WHO REGION					
LOWER-MIDDLE INCOME COUNTRIES					
Jullien 2020 [42] Bhutan	Viruses: Multiplex RT-PCR on NPW.	IBT: All positive blood culture = 8/148 (5.4%), SP = 2/148 (1.4%), SP RT-PCR in dried blood spot sample (Ct LytA) = 1/148 (0.7%), All positive pleural culture = 1/1 (100%), SP = 1/1 (100%).	6/189 (3.2%) children died; 30 children PICU		Weak
	Bacteria: Blood culture. RT-PCR (lytA) on blood.	Viral detection: Rapid flu test = 9/32 (28%), NPW positive = 103/115 (89.6%), Single viral infection in NPW = 68/103 (66%), Mixed viral infection in NPW = 35/103 (34%), RSV = 52/115 (45.2%), RV = 42/115 (36.5%), PIV = 19/115 (16.5%), INF 16/115 (13.9%), AdV 8/115 (7.0%), BV 6/115 (5.2%), HMPV 4/115 (3.5%), CoV 2/115 (1.7%).			
Mathew 2015 [44] India	Viruses: Multiplex PCR on NPA, BAL.	Bacterial culture: Blood culture = 492/285 (1.7%). SA = 15, SP = 10, H1 = 4, KP = 6, AB spp = 5, ST = 3, EB spp = 1, EC = 1, PS spp = 0, SM = 0, Yeast spp = 0, Multiple = 4. NPA culture: 322/2323 (13.9%). SA = 22, SP = 255, H1 = 31, KP = 3, AB spp = 1, ST = 0, EB spp = 0, EC = 3, PS spp = 4, SM = 1, Yeast spp = 1, Multiple = 1. BAL culture: 3/30 SA = 1, SP = 1, AB spp = 1.	108 (4.6%) deaths; Mortality rate for pneumonia = 1.2%, severe pneumonia = 4.7%, very severe pneumonia = 15.8%.	Moderate	
Table 5. Continued

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	INFECTION PREVALENCE IN LRTI CASES (OVERALL)	INFECTION PREVALENCE IN LRTI CASES BY AGE GROUP AND SEQUELAE/DEATHS	EPHPP QUALITY ASSESSMENT TOOL
Mathew 2015 [44]	India	Bacteria: Culture, Serology, Multiplex PCR on Blood, NPA, BAL.	NPA PCR = 422/428 (98.6%) positive = 352 (82.2%) multiple = 70 (16.4%) single: SP = 55 (30%), CMV = 13 (18.6%), RSV = 9 (12.9%), other viruses = 6 (8.7%), SA = 5 (7.1%), HI = 2 (2.9%). Total numbers SP = 327, HI = 133, SA = 86, RSV / A/B = 103, INF = 15, PIV = 32, AdV = 16, RV = 45, CV = 34, EV = 15, HMPV = 12, PaV = 4, SARS = 4, CMV = 23, BP = 3, CP = 0, BAL. PCR (n = 30) single pathogens = 10 (SP = 3, CMV = 3, SA = 2, HI = 2) and multiple = 18. Serology positive MP = 103 (4.3%), CP = 26 (1.1%).	1-5 y = 54/104 (51.9%); Influenza = 11/48 (22.9%), bacteria = 3/41 (7.3%), resp viruses = 20/29 (69%), 4 deaths (3.8%).	Weak
UPPER-MIDDLE INCOME COUNTRIES					
Aman 2020 [39]	Indonesia	Viruses: rRTCP, ELISA, serology respiratory and blood.	All ages = 242 (57.6%) tested positive. Influenza = 9/48 (18.8%), Measles = 9/31 (32.3%), MTB = 15 (5%), KP = 6 (1%), FA = 6 (1%), AB = 5 (1%).	5-18 y = 38/106 (35.8%). Influenza = 9/48 (18.8%), bacteria = 4/41 (9.8%), resp viruses = 32/90 (35.5%), 3 deaths (2.8%).	Weak
WPRO WHO REGION					
UPPER-MIDDLE INCOME COUNTRIES					
Nathan 2020 [45]	Malaysia	Viruses: Multiplex PCR on induced sputum.	Viruses: IS PCR. virus alone = 23.7% (71) and virus together with bacteria = 13% (40). Viruses alone were RV = 22 (31.0%), RSV = 12 (16.9%), HMPV = 16 (22.5%), INF = 4 (5.6%), PIV = 3 (4.2%), AdV = 3 (4.2%), BV = 2 (2.8%) and multiple viruses = 9 (12.7%).	Bacteria IS PCR = 65.4% (91/139) as bacteria alone, together with a virus = 33.8% (47/139). HI = (57), SA = (56), SP = (37), MP = (1), BP (2), MC = (4). Blood PCR. SA = (4).	Moderate
Zhang 2011 [46]	China	Viruses: Virus-specific serum antibody titres on acute and convalescent serum using ELISA, Ag & DFA on NPS.	Viral cases: Total = 353/821 (43%), RSV = 149/821 (18%), PIV = 62/821 (8%), INF = 75 (9%), AdV = 67 (8%).	Bacteria: Bacterial antibody assays on acute and convalescent serum samples using ELISA.	Moderate

BC – blood culture, NPW – nasopharyngeal washing, IS – induced sputum; SA – Staph aureus, SP – Streptococcus pneumoniae, HI – Haemophilus influenzae, KP – Klebsiella pneumoniae, AB – Acinetobacter spp, ST – Salmonella typhi, EB – Enterobacter spp, EC – Enterococcus coli, PS – Pseudomonas spp, SM – Stenotrophomonas maltophilia, CMV – cytomegalovirus, RSV – respiratory syncytial virus, INF – influenza - 15, PIV – parainfluenza, AdV – adenovirus, RV – rhinovirus, CV – coronavirus, EV – enterovirus, HMPV – human metapneumovirus, PaV – parechovirus, BV – bocavirus, SARS – severe acute respiratory syndrome, MP – mycoplasma pneumoniae, CP – chlamydia pneumoniae, MC – M. catarrhalis, BP – bordetella pertussis; y – year, yo – year old, mo – months
Table 6. Aetiology of cross-sectional studies

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	FINDINGS	EPHPP QUALITY ASSESSMENT TOOL
AFRO WHO REGION				
LOWER-MIDDLE INCOME COUNTRIES				
Kwofie 2012 [48]	Ghana	Viruses: RT-PCR on NPS.	≥1 virus = 33/128 (25.7%). Multiple viral infections in 2 patients. Bacteria positive = 12 (9.4%) patients – SA = 10, Kb species = 1, Coliform = 1. RSV and SA co-infection = 2.	
		Bacteria: Conventional biochemical methods and culture on blood.	≤5 mo (n=30) ≥1 virus = 6 (20.0), RSV = 4 (13.3), AdV = 2 (6.7), PV1 = 0 (0.0), PV3 = 0 (0.0), INFB = 0 (0.0). 6-23 mo (n=59) ≥1 virus = 18 (30.5), RSV = 9 (15.3), AdV = 8 (13.6), PV1 = 1 (1.7), PV3 = 2 (3.4), INFB = 1 (1.7), 24-60 mo (n=39) ≥1 virus = 9 (23.1), RSV = 5 (12.8), AdV = 3 (7.7), PV1 = 1 (2.6), PV3 = 1 (2.6), INFB = 0 (0.0).	Weak
PAHO WHO REGION				
UPPER-MIDDLE INCOME COUNTRIES				
Nascimento-Carvalho 2016 [49]	Brazil	Viruses: PCR and ELISA on NPA.	N (%): SP = 39 (21.5), HI = 13 (7.2), MP = 11 (6.1), CT = 9 (5.0), MC = 4 (2.2), SN = 3 (1.7), RV = 39 (21.5), RSV = 36 (19.9), AdV = 35 (19.3), INFA/B = 15 (8.7), BV = 17 (9.4), Adv = 10 (5.5), EV = 10 (5.3), HVVP = 8 (4.4).	
		Bacteria: Blood culture, ELISA in paired serum samples, PCR on serum.	Sole bacterial infection: Non-severe = 3/24 (12.5%); Severe = 17/58 (29.3%); Very severe = 5/9 (55.6%).	
			Overall: Viral infection similar severe/very severe and non-severe cases (46.1% vs 47.2%; P = 0.9). Pneumococcal infection increased non-severe (13.2%), severe (23.4%), very severe (35.3%) cases (P = 0.04). Frequency sole bacterial infection different (P = 0.04) among non-severe (32.7%), severe (29.3%) or very severe (55.0%).	
WPRO WHO REGION				
UPPER-MIDDLE INCOME COUNTRIES				
Xu 2018 [50]	China	Viruses: RT-PCR on throat swabs.	Among 385 samples, single infection = 36.41% (213), multiple infections = 9.91% (58). Positive detection rate: <5 yo = 67/96 (69.79%); 5-14 yo = 49/62 (79.03%).	
		Bacteria: Particle agglutination antibody test on serum.	<3yo: MP = 21 (21.88), INFA/B = 9 (9.38), AdV = 4 (14.7), RSV A/B = 8 (33.3), PV1 = 1 (0.4), CoV = 1 (0.4), RV = 1 (0.4), BoV = 1 (0.4). 5-14yo: MP = 24 (38.71), INFA/B = 3 (4.84), AdV = 2 (3.23), RSV A/B = 1 (1.61), PV1 = 1 (1.61).	Weak
Zhong 2019 [51]	China	Viruses: RT-PCR on NP secretions.	1181 (88.5%) positive ≥1 virus or atypical bacteria; Viral infection = 1138 (85.2%). Detection rates: HPV1V = 203 (15.2%), INFA = 67 (5.0%), INFB = 36 (2.7%), RV = 414 (31.6), RSV = 440 (33.3), HMVP = 93 (7.3%), CoV = 40 (3.0%), AdV = 115 (8.6%), BV = 54 (4.4%), MP = 69 (5.2%), CF = 25 (1.9%).	
		Bacteria: RT-PCR on NP secretions or sputum.	Co-infection rates: HPV1V = 24.8%, CoV = 65.0%, INFB = 63.9%, BV = 59.3%, AdV = 56.5%, RV = 51.7%.	Weak

Bacteria: SP – Streptococcus pneumoniae, HI – Haemophilus influenza, SA – Staphylococcus aureus, Kb – Klebsiella species, AB – Acinetobacter species, EB – Enterobacter species, Salm – Salmonella species, SPS – Streptococcus pseudopneumoniae, BD – Bacteroides species, PV – Prevotella species, MTB – Mycobacterium tuberculosis, MP – M. pneumoniae, CT – C. trachomatis, MC – M. catarrhalis, SN – S. negevensis, Viruses: RSV – respiratory syncytial virus, AdV – adenovirus, EV – enterovirus, CoV – coronavirus, INF – influenza, CMV – cytomegalovirus, RV – rhinovirus, PIV – parainfluenza, BV – bocavirus, HMVP – human metapneumovirus, y – year, yo – year old, mo – months
Other studies

The 12 remaining studies [53-64], included a variety of study designs (Table 7; Table S7 in the Online Supplementary Document). One study was a secondary data analysis from the GABRIEL Network [56], which reported the detection of influenza viruses in 888 hospitalised children aged 2 to 60 months with radiologically confirmed pneumonia. Influenza virus was identified in 9.7% of children. Other common viral causes detected were RSV (20.0%) and rhinovirus (24.9%). Although high bacterial carriage was detected on respiratory samples, blood culture was positive in only 2.7% of cases. The use of blood RT-PCR testing increased the detection of bacteria (S. aureus 1.8%, S. pneumoniae 10.4% and H. influenzae 3.4%), but this may also be reflective of carriage.

Three studies from China [54,61,64] and one from Vietnam [60], included children up to 15 years of age and utilised nasopharyngeal swabs for viruses and serology testing for atypical bacteria (M. pneumoniae, Chlamydia pneumoniae). Neither of these countries had PCV as part of their routine vaccination programme. In China, atypical pathogens were more commonly detected in children ≥5 years old (MP = 26.7%-42.4%, CP = 6.7%) compared with younger children (MP = 5.5%-13.6%, CP = 4.9%), whereas viruses such as RSV were more commonly detected in younger children (4%-24.6%) vs older children (1%-3%). The study in Vietnam [60] identified the highest rate of severe atypical pneumonia in hospitalised children <2 years of age, which differed from other studies. Those with severe pneumonia were also more likely to be co-infected with other bacterial pathogens (predominantly pneumococcus) or respiratory viruses than the non-severe group.

Jiang et al. [61] focused on co-infections in children 1 month to 14 years of age, with CAP admitted to a tertiary hospital in China. Of 293 cases, 71.3% were mixed viral-bacterial infections, 19.1% mixed viral-viral infections, and 9.6% mixed bacterial-bacterial infections. Young age (<6 months) and admission to a paediatric intensive care unit (PICU) were associated with co-infections [61].

Two studies [58,63] were conducted in countries with high rates of HIV (Malawi and South Africa). One study focused on causes of severe/very severe pneumonia and detected bacteria in 18% of cases (predominantly S. pneumoniae and S. typhimurium), as well as PJP in 16 cases and TB in 10 cases [58]. The second study described the incidence of PJP (over 50% of cases), which was predominantly diagnosed in HIV-infected individuals. In addition, 61% had CMV, while only five patients were diagnosed with TB [63]. Neither country had introduced PCV at the time of the studies.

A study from Bangladesh [55], which enrolled severely malnourished (z score weight for height<-3 or z score weight for age<-4 or nutritional oedema) children <5 years with radiological pneumonia, explored different diagnostics and specimens for TB diagnosis. Induced sputum culture was positive in 2.5% (n=10/394) of cases, while gastric lavage culture was positive in 1.5% (n = 6) cases. The yield from Xpert MTB/RIF was higher from both induced sputum (n=16, 7.6%) and gastric lavage (n=11, 5.1%). In addition, 4% of blood cultures were positive [55]. Of the 12 studies, four were deemed of moderate quality and eight weak as rated by the EPHPP Quality Assessment Tool.

DISCUSSION

This systematic review identified the main aetiological agents associated with childhood pneumonia in LMICs in the era of widespread routine PCV and Hib vaccine use. A limited number of pathogens, including RSV, HMPV, influenza, parainfluenza, S. pneumoniae, H. influenzae, S. aureus, M. pneumoniae and M. tuberculosis, accounted for most pneumonia cases in most regions, even though case definitions and detection methods varied between studies and settings. PCV coverage, age, severity of disease, medical conditions and regional differences need to be considered in the interpretation of aetiological results and treatment of pneumonia.

Pathogens appear to vary by region and between high and low mortality settings. AFRO region studies generally showed a predominance of bacterial pathogens. SEARO/WPRO countries proportionally demonstrated more viruses, while WPRO countries such as China, showed atypical bacteria to be important in older children. Although some of these differences may be real variations, they are also likely a function of variable diagnostic capacity, difference in laboratory quality standards and difference in routine testing.

Studies which described disease by severity showed higher bacterial detection in severe cases compared with non-severe cases. This included complicated disease, such as empyema, (S. pneumoniae, H. influenzae, and S. aureus) and post-mortem studies. M. tuberculosis was also detected when appropriate testing was done as a primary cause of death or, to a lesser extent, as a comorbid condition. RSV was found to be important in hospitalised infants who died and, in studies published subsequent to the review, in children who died out-
Table 7. Aetiology of other studies

LEAD AUTHOR AND PUBLICATION DATE	COUNTRY	SPECIMEN TYPES AND DIAGNOSTIC TESTS	INFECTION PREVALENCE IN LRTI CASES AND DEATHS	INFECTION PREVALENCE IN LRTI CASES (BY AGE GROUP) AND DEATHS	EPHP QUALITY ASSESSMENT TOOL
WPRO WHO REGION					
LOWER-MIDDLE INCOME COUNTRIES					
Dembele 2019 [57]	Philippines	Viruses: PCR on NPS.	Of 5054 NPS 61.0% tested positive for at least one virus, RSV = 1332/5054 (27.0%), RV = 1156/5054 (23.0%).	2-59 mo NPS (n = 4305): Viruses RSV = 1021 (23.7%), INF = 163 (3.8%), RV = 812 (18.9%), EV = 63 (1.5%), AdV = 49 (1.1%), HMPV = 163 (3.8%), PIV = 116 (2.7%), Multiple viruses = 185 (4.3%). **Bacteria** = 62/2542 (1.7%). CFR: 2-5mo = 76/1087 (CFR = 7.1%), 6-11mo = 50/1114 (CFR = 4.5%) 12-35mo = 59/1736 (CFR = 3.4%), 36-59mo = 1/368 (CFR = 3.5%).	Weak
		Bacteria Blood culture.			
Guerrier 2013 [59]	Cambodia	Viruses: PCR on NPA.			
		Bacteria Blood culture.			
Huong 2014 [60]	Vietnam	Viruses: RTPCR on BAL.	All = 215 (29.78%) cases were positive for atypical pathogens: MP = 190/215 (88.37%), CP = 13/215 (6.05%), LP = 12/215 (5.8%). Severe-ApcAP group = 97/215 (45.12%), MP = 84/97 (86.60%), CP = 13/97 (6.05%), LP = 12/97 (7.22%). Co-infection with bacteria: RSV = 27.83% (27/97), CF = 14/27, HI = 2/27, co-infection with respiratory viruses: RSV = 13.4% (13/97), CF = 2/13, INF = 3/13, MP = 84/118 (72.1%), CP = 6/118 (5.1%), LP = 5/118 (4.3%). Twelve patients died (7 pneumonia and 5 bronchiolitis).	1-2yo = 120 (37.1%), CP = 2.1%, LP = 2.1%, Mixed = 5.2%.	
		Bacteria Culture & multiplex PCR on BAL, Serum serology.			
Chen 2013 [54]	China	Viruses: DFA and RT-PCR on NPA.	Of these cases, URTI = 19/295 (6.4%), LRTI = 250/295 (84.7%).		
		Bacteria PCR on NPA, Blood for serology.	LRTI cases: MP = 85.9% (171/199), CP = 81.5% (66/81).		
Oumei 2018 [64]	China	Viruses: DFA on OPS.	MP = 486 (32.4%).	6mo-1year (n = 212): RSV = 62 (4.13), INF = 13 (0.67), IVA7 (0.47), IVB7 (0.47), PIV2 = 6 (0.40), PIV3 = 9 (0.60), MP = 82 (5.47), Other = 61 (4.07). 1-3years (n = 502): RSV = 63 (4.20), INF = 30 (2.00), IVB18 (1.20), PIV2 = 24 (1.60), PIV3 = 7 (0.47), PIV4 = 1 (0.07), MP = 198 (13.20).	Weak
		Bacteria Serum serology.			

UPPER-MIDDLE INCOME COUNTRIES

Chen 2013 [54]	China	Viruses: DFA and RT-PCR on NPA.	Of these cases, URTI = 19/295 (6.4%), LRTI = 250/295 (84.7%).	By age: <1yo: MP = 80/817 (9.8%), CP = 40/817 (4.9%), Co-influenza = 8/817 (0.1%).	Weak
		Bacteria PCR on NPA, Blood for serology.	LRTI cases: MP = 85.9% (171/199), CP = 81.5% (66/81).		
		Viruses: DFA on OPS.	MP = 486 (32.4%).	6mo-1year (n = 212): RSV = 62 (4.13), INF = 13 (0.67), IVA7 (0.47), IVB7 (0.47), PIV2 = 6 (0.40), PIV3 = 9 (0.60), MP = 82 (5.47), Other = 61 (4.07). 1-3years (n = 502): RSV = 63 (4.20), INF = 30 (2.00), IVB18 (1.20), PIV2 = 24 (1.60), PIV3 = 7 (0.47), PIV4 = 1 (0.07), MP = 198 (13.20).	Weak
		Bacteria: Serum serology.			

Negative cases = 809 (33.9%).
Table 7. Continued

Lead Author and Publication Date	Country	Specimen Types and Diagnostic Tests	Infection Prevalence in LRTI Cases and Deaths	Infection Prevalence in LRTI Cases [By Age Group] and Deaths	EPHPP Quality Assessment Tool
EURO WHO REGION					
UPPER-MIDDLE INCOME COUNTRIES					
Aykac 2018 [53]	Turkey	**Viruses:** PCR on NPS.	LRTI group = 264/1240 (21.3%) samples analysed or 264/339 (77.9%) positive samples. RSV = 64 (18.8%), RV = 44,	1 y = 186/339, RSV = 56, RV = 28, PV = 32, INF = 14, AdV = 12,	Moderate
			Multiple = 46, PV = 32, INF = 29, AdV = 17, CoV = 11.	CoV = 7.	
			Positive blood cultures = 18/192 (9.3%), KP = 3, SI = 1, SP = 2, SE = 2.	1-2 y = 44/339, RSV = 9, RV = 9, INF = 3, AdV = 9, CoV = 4.	
		Bacteria: Blood culture.	URTI group: RSV = 9, RV = 14, PV = 12, INF = 8, AdV = 3, CoV = 4.	2-5 y = 56/339, RSV = 7, RV = 12, PV = 2, INF = 10, AdV = 3,	Weak
				CoV = 4.	
			7/339 (2%) died = AdV = 2, CoV = 1, multiple viruses = 1, INF = 1, RV = 1, HMPV = 1.	>5 y = 53/339, RSV = 3, RV = 13, PV = 3, INF = 10, AdV = 1,	
				CoV = 5.	
			7 died: <1 y = 3, >5 y of age = 3.		
PAHO WHO REGION					
UPPER-MIDDLE INCOME COUNTRIES					
Jonnalagadda 2017 [62]	Ecuador	**Viruses:** PCR on NPS.	RSV = 159 (39.2%), HMPV = 71 (17.5%), AdV = 62 (15.3%), PV = 57 (14.0%), INF = 40 (9.9%), SP = 37/403 (9.2%), MP = 3 (0.74%).	<1 y = 238, RSV = 105 (44.1%), HMPV = 40 (16.8%), AdV = 35 (14.7%), PV = 40 (17%), INF = 33 (13.9%), SP = 20 (8.5%), MP = 0 (0%).	Moderate
				1-5 yo = 168, RSV = 54 (32.1%), HMPV = 31 (18.5%), AdV = 27 (16.1%), PV = 17 (10%), INF = 17 (10%), SP = 17 (10.1%), MP = 3 (1.8%).	
		Bacteria: Blood culture.			
			4% blood culture positive = 18/405 – SP = 4, KP = 2, HI = 2, ST = 2, AB = 2, SA = 1, SalmEF = 1, Ps spp = 1, Ent spp = 1, Polymicrobial = 2.	<1 y = 21/214 (10%).	
SEARO WHO REGION					
LOWER-MIDDLE INCOME COUNTRIES					
Chisti 2014 [55]	Bangladesh	**Bacteria:** Blood culture, Xpert MTB/RIF, MCBs on gastric lavage and IS.	4% blood culture positive = 18/405 – SP = 4, KP = 2, HI = 2, ST = 2, AB = 2, SA = 1, SalmEF = 1, Ps spp = 1, Ent spp = 1, Polymicrobial = 2.	Died in hospital = 9% (35/405); died at home after discharge = 9% (32/369).	Weak
AFRO WHO REGION					
LOW-INCOME COUNTRIES					
Graham 2011 [58]	Malawi	**Viruses:** IFA on NPA.	Confirmed bacterial pneumonia = 58: SP = 34, ST = 10, Hib = 8, SA = 4, EC = 2, KP = 1, PCP = 16, MTB = 10, Unknown = 243. Lung aspirate culture positive = 2.54.	Overall case-fatality rate = 10.1%. Died with confirmed bacterial pneumonia = 2.56% (4.4%), Died with PCP = 11/15 (73%).	Moderate
		Bacteria: Blood/Lung aspirate culture and PCR.			
UPPER-MIDDLE INCOME COUNTRIES					
Morrow 2014 [63]	South Africa	**Viruses:** PCR on NPA, Viral shell vial culture & rapid viral Ag on blood, Funghi: PCP DFA on NPA/BAL	PCP = 109/202 (54.0%), CMV = 124/202 (61.4%). Other viruses = 70/202 (34.7%); Bacteraemia = 20/202 (9.9%). In-hospital mortality was 35 (32.1%) in children with PCP compared to 16 (17.2%) in those without PCP (RR = 1.87; 95% CI = 1.11–3.15; P = 0.02). Only HIV infection was predictive of mortality (OR = 3.7, 95% CI = 1.5–9.0, P = 0.004).		Moderate
Specimen types and diagnostic tests

Infection prevalence in LRTI cases (by age group) and deaths

Death in influenza positive = 3/80

Country

Infection prevalence in LRTI cases and deaths

EPHPP Quality

Table 7. Continued

Lead Author and publication date

Assessment Tool

MIXED WHO REGIONS AND INCOME CLASSIFICATIONS

= 888: INF = 86 (9.7%), AdV = 68 (7.7%), BV = 82 (9.2%), CoVNL63 = 10 (1.1%), CoV229E = 7 (0.8%), CoVOC43 = 20 (2.2%), CoVH-

Viruses:

KU = 23 (2.6%), EV = 42 (4.7%), HMPV = 76 (8.6%), PIV1 = 26 (2.9%), PIV2 = 4 (0.5%), PIV3 = 57 (6.4%), PIV4 = 21 (2.4%), PaV = 21 (2.4%), RSV = 178 (20.0%),

Bacteria in respiratory samples

= 888: SP = 605 (68%), SA = 107 (12.0%), HI = 47 (5.3%), MP = 13 (1.5%), CP = 4 (0.5%), Viral and bacterial co-colonization = 529 (59.6%).

Blood culture positive = 24/888 (2.7%), RT-PCR positive for S. aureus = 13/711 (3.4%).

metapneumovirus, PaV – Parechovirus; bacteria:

moniae, LP – L. pneumophila, HI – Haemophilus influenzae, ST – Salmonella typhi, AB – Acinetobacter, SA – Staphylococcus aureus, SalmE – Salmonella enteritidis, PS – Pseudomonas Enterobacter species;

Public health strategies

Targeting high risk populations is a common public health prevention strategy. Children and infants living with HIV are known to be at increased risk of incidence and mortality from pneumonia. This increased risk is evident across all common infectious causes of pneumonia (ie, bacteria, viruses and TB), but also includes opportunistic pathogens such as P. jirovecii and cytomegalovirus. Higher pneumococcal colonisation density has also been associated with severe pneumonia. However, a recent study from Israel during COVID-19, when there was no RSV circulating due to public health measures, found that pneumonia admission rates in children declined but pneumococcal density remained unchanged throughout the same period. This suggests that pneumococcal density has less of a role in pneumonia severity but RSV (and other viruses) may play a more prominent role in disease progression and severity.

There is a synergistic relationship between malnutrition and infection. Malnutrition is associated with a change in the pattern
of colonising organisms and variations in normal intestinal function with associated malabsorption, inflammation, changes in metabolism, and leakage of bacteria. Malnutrition compromises mucosal epithelial barriers in the gastrointestinal and respiratory tracts, reducing the first line of defense against infections [78]. Children with malnutrition have high rates of bacterial pneumonia and TB and are more likely to be admitted to hospital with bacterial pneumonia [3]. Severely malnourished children often have an atypical pneumonia presentation and are unable to cough effectively. Malnutrition has also been shown to be associated with a higher risk of mortality amongst pneumonia cases [79,80]. Despite this, there were very few studies on the aetiology of pneumonia in malnourished children. More research is needed to address questions on changes in nutritional status and immune competence during and after infection events.

Many studies in the review did not include testing for *M. tuberculosis*. When tested for, TB was found to be a frequent primary cause of pneumonia or comorbidity in children, especially in cases with empyema. In high TB prevalence settings, children are often initiated on TB therapy without a microbiological diagnosis. Confirming the diagnosing of TB is challenging in young children with sputum culture of a 50% sensitivity at best; clinicians often rely on contact history, non-specific symptoms, and radiological evidence. However, TB is often associated with mortality in children with severe pneumonia, and so early treatment is critical [81].

Viral pathogens are an important cause of pneumonia disease burden across all LMICs, and access to supportive measures such as oxygen and ventilation should be made a priority for severe cases. With the ongoing COVID-19 pandemic, acute respiratory infection with SARS-CoV-2 is generally mild in children, whilst post-infectious outcomes may be more complicated. More research is needed, especially in LMICs [82]. The development and rollout of an effective RSV vaccine would play a major role in preventing childhood pneumonia. In addition, the burden of bacterial disease is higher in populations that are not vaccinated. Systems should be strengthened to provide equitable and universal access to vaccination against important causes of severe pneumonia in children.

Identification of pneumonia

Even within the PERCH Network, severity of disease varied greatly between sites. Since the review, a number of manuscripts from individual PERCH sites have described site findings [75,76,79,80,83-87]. Variation in disease severity by PERCH site was likely due to several factors. First, high and low mortality settings differ inherently from one another regarding HIV infection and other comorbid infectious disease rates, access to care, and vaccine programmes; second, the inclusion of wheezing, often associated with chest indrawing, even in non-severe cases, varied between sites; and lastly, the heterogeneity in bacterial case definition was complex and relied on carriage data [88,89].

There are many challenges with different biological specimens and diagnostic methods used to determine the aetiology of pneumonia [90], especially for bacteria. Lung tissue is ideal, but impractical. Bacteria are an important cause of severe pneumonia, but blood cultures, considered the gold standard, have low diagnostic sensitivity (10%-15%). PCR techniques may improve the detection of pneumococcal bacteraemia, including in cases with pre-existing antibiotic treatment. *S. pneumoniae* and *H. influenzae* may be detected with culture or PCR in samples from pleural fluid [91,92]. However, the detection of *S. pneumoniae* by PCR (lytA) in culture negative blood [93,94] and lung aspirate [24] specimens is not universally regarded as diagnostic of pneumococcal pneumonia in children, as detection by PCR may reflect carriage rather than disease. Nasopharyngeal aspirate can be used to detect *M. tuberculosis*, especially given the increasing availability of Xpert MTB/RIF [95]. In children with respiratory distress, the use of sampling such as nasopharyngeal aspirate or stool has advantages over more invasive sampling such as induced sputum or gastric aspirate [96]. Serology based tests for atypical organisms are unreliable for determining aetiology; they lack specificity and are more useful with paired convalescent serology. Upper respiratory tract samples do not necessarily reflect the organisms in the lower airways or lungs, especially for bacteria as colonisation is common [97]. Lastly, some LMICs have limited access to RT-PCR testing for viruses.

Recommendations for antibiotic treatment

The current WHO guidelines for the treatment of pneumonia in children include clear indications for the use of antibiotics [47,98]. Based on the available epidemiological data included in this review, treatment for community acquired pneumonia should target *S. pneumoniae* and *H. influenzae* with oral amoxicillin. *H. influenzae* susceptibility may be variable, however given low rate of identification in the review, amoxicillin remains acceptable. For severe community acquired pneumonia, parenteral amoxicillin (or penicillin G) and gentamicin are appropriate as per current guidelines. If there is no or poor response to treatment or any signs of *S. aureus*
infection (empyema, pneumatoceles, cellulitis, osteomyelitis), treatment should include parenteral flucloxacillin and gentamicin. In children 5-14 years, providers should consider adding a macrolide if atypical pathogens are suspected or confirmed.

Oseltamivir for influenza may be important in older children with pneumonitis or other signs of severe influenza. In lower risk children, studies have reported variable rates of effectiveness across different respiratory outcomes [99,100]. For severe community-acquired pneumonia with hypoxaemia or para-pneumonic effusion or empyema, treatment should target *S. pneumoniae*, *S. aureus*, and *H. influenzae* with parenteral flucloxacillin and gentamicin, or parenteral flucloxacillin and ceftriaxone.

In children with HIV, treatment should include antibiotics as described for community-acquired pneumonia, plus anti-TB treatment if there are supportive features such as recent contact or poor response to antibiotics. In addition, treatment for opportunistic pathogens such as *P. jirovecii* or CMV is considered for HIV-infected infants with severe pneumonia.

Local epidemiology and susceptibility patterns should guide second line therapy. In settings where methicillin-resistant *S. aureus* (MRSA) is common, among high-risk populations with evidence of *S. aureus* pneumonia (pneumatoceles, associated soft-tissue, bone and joint infection), treatment should include vancomycin or another agent against MRSA.

Limitations

There were several limitations identified in the included studies. First, the high variability in testing strategies and methodologies makes it difficult to compare findings across studies. Due to the heterogeneity between sites, the ability to pool results was limited. Second, case definitions for pneumonia, including those of severity, varied across studies; there was, however, some similarity in the main pathogens identified. Third, studies tested for different pathogens. For example, atypical bacteria were mainly included in studies from the WPRO region, while pleural effusion studies generally only tested for bacteria, actively excluding TB-associated pleural effusions. Fourthly, many studies had no control group, which is important when attributing cause to viral pathogens. Fifthly, while *S. pneumoniae* was still a common bacteria detected in the era of PCV use, studies did not aim to demonstrate the impact of PCV vaccination on aetiology and need to be interpreted in the context of PCV vaccination coverage. Lastly, studies used variable, often broad age groups, yet aetiology is age-related. Overall further research is needed and possible applications to policy and antibiotic selection in childhood pneumonia should be ultimately guided by local health care systems, stakeholders, and resources.

CONCLUSIONS

We identified that a number of pathogens, including RSV, influenza, human metapneumovirus, *S. pneumoniae*, *H. influenzae*, *S. aureus*, and *M. tuberculosis*, as important targets for prevention and treatment of childhood ALRI in LMICs. Bacterial pathogens are still responsible for a large proportion of severe or complicated pneumonia, but vaccines against RSV are likely to play a large role in preventing pneumonia. Future research should focus on strengthening the context-specific diagnostic facility capacities for improving local knowledge of viral and bacterial pneumonia aetiology, including identification of pneumonia severity in children. Future studies should include a consistent case definition (eg, WHO pneumonia case definitions), distinguish pneumonia from bronchiolitis where possible, and disaggregate data according to age, as well as clinical and epidemiological risk factors. In addition, an increased emphasis on research that includes very severe and fatal pneumonia in more settings is advisable, especially as we start to monitor replacement in countries using PCV.
Funding: This work was funded by a grant from the World Health Organization (WHO) to the Murdoch Children’s Research Institute (MCRI). Employees of WHO contributed to the design and oversight of the reviews. Any views or opinions presented are solely those of the author and do not necessarily represent those of the WHO, unless otherwise specifically stated.

Authorship contributions: CvM, FMR, EKM, and members of the ARI Review group conceived the study and initiated the study design. CvM and DB led the conduct of searches and data extraction. Data analysis was conducted by CvM. The manuscript was drafted by CvM, with input from DB, FMR and EKM. All authors contributed to revisions and approved the final manuscript.

Competing interests: The authors completed the ICMJE Unified Competing Interest Form (available upon request from the corresponding author) and declare no conflicts of interest.

Additional material
Online Supplementary Document

REFERENCES

1. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388:3027-35. Medline:27839835 doi:10.1016/S0140-6736(16)31393-8

2. Selwyn BJ. The epidemiology of acute respiratory tract infection in young children: comparison of findings from several developing countries. Coordinated Data Group of BOSTID Researchers. Rev Infect Dis. 1990;12 Suppl 8:S870-88. Medline:2270410 doi:10.1093/clinids/12.Supplement_S870

3. O’Brien KL, Baggett HC, Brooks WA, Feikin DR, Hammitt LL, Higdon MM, et al. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet. 2019;394:757-79. Medline:31257127 doi:10.1016/S0140-6736(19)30721-4

4. Bénet T, Sanchez Picot V, Messaoudi M, Chou M, Eap T, Wang J, et al. Microorganisms Associated With Pneumonia in Children <5 Years of Age in Developing and Emerging Countries: The GABRIEL Pneumonia Multicenter, Prospective, Case-Control Study. Clin Infect Dis. 2017;65:604-12. Medline:28605562 doi:10.1093/cid/cyx378

5. World Health Organization. Pocket book of hospital care for children: guidelines for the management of common illnesses with limited resources. 2005. Available: http://whqlibdoc.who.int/publications/2005/9241546700.pdf. Accessed: 20 February 2021.

6. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guide for reporting systematic reviews. Syst Rev. 2021;10:89.

7. Covidence systematic review software: Veritas Health Innovation, Melbourne, Australia; [Available from: https://www.covidence.org/](https://www.covidence.org/) (Accessed 30 August 2020).

8. Effective Public Health Practice Project. EPHPP (2009) Quality Assessment Tool for Quantitative Studies. Available: https://www.ephp.org/quality-assessment-tool-for-quantitative-studies/ Accessed: 30 August 2020.

9. Breiman RF, Cosmas L, Njenga MK, Williamson J, Mott KA, Katz MA, et al. Severe acute respiratory infection in children in a densely populated urban slum in Kenya, 2007-2011. BMC Infect Dis. 2015;15:95. Medline:25879805 doi:10.1186/s12879-015-0827-x

10. Feikin DR, Njenga MK, Bigogo G, Aura B, Aol G, Audi A, et al. Viral and bacterial causes of severe acute respiratory illness among children aged less than 5 years in a high malaria prevalence area of western Kenya, 2007-2010. Pediatr Infect Dis J. 2013;32:e14-9. Medline:22914561 doi:10.1097/INF.0b013e318263df3b

11. Hammitt LL, Kazungu S, Morpeth SC, Gibson DG, Mvera B, Brent AJ, et al. A preliminary study of pneumonia etiology among hospitalized children in Kenya. Clin Infect Dis. 2012;54 Suppl 2:S102-8. Medline:22903223 doi:10.1093/cid/cis570

12. Zar HJ, Barnett W, Stadler A, Gardner-Lubbe S, Myer L, Nicol MC. Aetiology of childhood pneumonia in a well vaccinated South African birth cohort: a nested case-control study of the Drakenstein Child Health Study. Lancet Respir Med. 2016;4:463-72. Medline:27117547 doi:10.1016/S2213-2600(16)00096-5

13. Chowdhury F, Shahid A, Ghosh PK, Rahman M, Hassan MZ, Akhtar Z, et al. Viral etiology of pneumonia among severely malnourished under-five children in an urban hospital, Bangladesh. PLoS One. 2020;15:e0228329. Medline:32017782 doi:10.1371/journal.pone.0228329

14. Piralam B, Prosperi C, Thamthitiwat S, Bunthi C, Sawatwong P, Sangwichian O, et al. Pneumococcal colonization prevalence and density among Thai children with severe pneumonia and community controls. PLoS One. 2020;15:e0232151. Medline:32348330 doi:10.1371/journal.pone.0232151

15. Bénet T, Picot VS, Awasthi S, Pandey N, Budevkar A, Kawade A, et al. Severity of pneumonia in under 5-year-old children from developing countries: A multicenter, prospective, observational study. Am J Trop Med Hyg. 2017;97:68-76. Medline:28719310 doi:10.4269/ajtmh.16-0733

16. Thea DM, Seidenberg P, Park DE, Mwananyanda L, Fu W, Shi Q, et al. Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From The Pneumonia Etiology Research for Child Health (PERCH) Study. Clin Infect Dis. 2017;64 suppl_3:S289-300. Medline:28775363 doi:10.1093/cid/cix098

17. Bates M, Shibemba A, Mudenda V, Chimoga C, Tembo J, Kabwe M, et al. Burden of respiratory tract infections at post mortem in Zambian children. BMC Med. 2016;14:99. Medline:27363601 doi:10.1186/s12916-016-0645-z
21 Chawara R, Baillie V, Izu A, Solomon F, Bassat Q, Blau DM, et al. Potential of Minimally Invasive Tissue Sampling for Attributing Specific Causes of Childhood Deaths in South Africa: A Pilot, Epidemiological Study. Clin Infect Dis. 2019;69 Suppl 4:S361-73. Medline:31598659 doi:10.1093/cid/ciz550

22 Taylor AW, Blau DM, Bassat Q, Onyango D, Kotloff KL, Arifeen SE, et al. Initial findings from a novel population-based child mortality surveillance approach: a descriptive study. Lancet Glob Health. 2020;8:e909-19. Medline:32562647 doi:10.1016/S2214-108X(20)30205-9

23 Fers-Iglesias J, Fernandez J, Sanchez J, Pimenta F, Pena C, Corahin H, et al. Aetiology of paediatric pneumonia with effusion in the Dominican Republic and the potential impact of pneumococcal conjugate vaccines. Pneumonia (Nathan). 2014;4:8-15. Medline:29275575 doi:10.1512/pnecu2014.4/413

24 Dass R, Deka NM, Banman H, Dwarahar SG, Khyriem AB, Saikia MK, et al. Empepyema thoracis: analysis of 150 cases from a tertiary care centre in North East India. Indian J Pediatr. 2011;78:1371-7. Medline:21553207 doi:10.1007/s12098-011-0416-y

25 Lochindarat S, Teeratakulpisarn J, Warachit B, Chanta C, Thapa K, Gilbert GL, et al. Bacterial etiology of empyema thoracis and parapneumonic pleural effusion in Thai children aged less than 16 years. Southeast Asian J Trop Med Public Health. 2014;45:442-54. Medline:24968687

26 Howie SR, Morris GA, Tokarz R, Ebruke BE, Machuka EM, Ideh RC, et al. Etiology of severe childhood pneumonia in the Gambia, West Africa, determined by conventional and molecular microbiological analyses of lung and pleural aspirate samples. Clin Infect Dis. 2014;59:682-5. Medline:24867789 doi:10.1093/cid/ciu384

27 Kuti BP, Oyelami OA. Risk factors for parapneumonic effusions among children admitted with community acquired pneumonia at a tertiary hospital in south-west Nigeria. Am J Respir Med. 2014;10:26-34. Medline:29725575 doi:10.1513/pnecu2014.4/413

28 Zampoli M, Kappos A, Wolter N, von Gottberg A, Verwey C, Mamathuba R, et al. Etiology and Incidence of Pleural Empyema at a tertiary hospital in south-west Nigeria. Am J Respir Med. 2014;10:26-34. Medline:29725575 doi:10.1513/pnecu2014.4/413

29 Ghoor A, Mabaso T, Mopeli K, Izu A, Madhi SA, Lala SG, et al. Empyema in children hospitalised at Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa: A retrospective study. S Afr Med J. 2018;108:1055-58. Medline:30606292 doi:10.7196/SAMJ.2018.v108i12.13099

30 Ebruke BE, Knoll MD, Haddix M, Zaman SMA, Prosperi C, Feiken DR, et al. The Aetiology of pneumonia from analysis of Lung aspirate and Pleural fluid samples: Findings from the PERCH study. Clin Infect Dis. 2020;25:25.

31 Ali A, Akhund T, Warraich GJ, Aziz F, Rahman N, Umrami FA, et al. Respiratory viruses associated with severe pneumonia in children under 2 years old in a rural community in Pakistan. J Med Virol. 2018;86:1882-90. Medline:27096404 doi:10.1002/jmv.24555

32 Baggett HC, Chittagampitch M, Thamthiwat S, Prapasin P, Naorat S, Sawatwong P, et al. Incidence and epidemiology of hospitalized influenza cases in rural Thailand during the influenza A (H1N1)pdm09 pandemic, 2009-2010. PLoS One. 2012;7:e48609. Medline:23139802 doi:10.1371/journal.pone.0048609

33 Berkley JA, Muywoki P, Njama M, Kazungu S, Abwao J, Bett A, et al. Viral etiology of severe pneumonia among Kenyan infants and children. JAMA. 2010;303:2051-7. Medline:20501927 doi:10.1001/jama.2010.675

34 Buntiti C, Baggett HC, Gregory CJ, Thamthiwat S, Yingyong T, Paveenkitiporn W, et al. Enhanced surveillance for severe pneumonia, Thailand 2010-2015. BMC Public Health. 2019;19 Suppl 3:472. Medline:32326941 doi:10.1186/s12889-019-6774-5

35 Cohen C, Walaza S, Moyes J, Groome M, Tempia S, Pretorius M, et al. Epidemiology of viral-associated acute lower respiratory tract infection among children <5 years of age in a high HIV prevalence setting, South Africa, 2009-2012. Pediatr Infect Dis J. 2015;34:66-72. Medline:25093972 doi:10.1097/INF.0000000000000478

36 Naorat S, Chittagampitch M, Thamthiwat S, Henchaichon S, Sawatwong P, Srisaengchai P, et al. Hospitalizations for acute lower respiratory tract infection due to respiratory syncytial virus in Thailand, 2008-2011. J Infect Dis. 2013;208 Suppl 3:S238-45. Medline:22465348 doi:10.1093/infdis/jit456

37 O’Callaghan-Gordo C, Bassat Q, Morais L, Diez-Padrisa N, Machevo S, Nhampossa T, et al. Etiology and epidemiology of viral respiratory tract infection due to respiratory syncytial virus in Thailand, 2008-2011. J Infect Dis. 2013;208 Suppl 3:S238-45. Medline:22465348 doi:10.1093/infdis/jit456

38 Olsen SJ, Thamthiwat S, Chantra S, Chittagampitch M, Fry AM, Simmerman JM, et al. Incidence of respiratory pathogens in persons hospitalized with pneumonia in two provinces in Thailand. Epidemiol Infect. 2010;138:1811-22. Medline:21016450 doi:10.1017/s0950268810000046

39 Razanajatovo NH, Guillebaud J, Harimanana A, Rajatorinirina S, Ratsima EH, Andrianirina ZZ, et al. Epidemiology of severe acute respiratory infections from hospital-based surveillance in Madagascar, November 2010 to July 2013. PLoS One. 2013;8:205124. Medline:30462659 doi:10.1371/journal.pone.0205124

40 Verani JR, McCracken J, Arvelo W, Estevez A, Lopez MR, Reyes L, et al. Surveillance for hospitalized acute respiratory infection in Guatemala. PLoS One. 2013;8:e83600. Medline:24391792 doi:10.1371/journal.pone.0083600

41 Amran AT, Wiwata T, Kosaths H, Asdie RH, Safiri I, Intamours S, et al. Etiologies of severe acute respiratory infection (SARI) and misdiagnosis of influenza in Indonesia, 2013-2016. Influenza Other Respir Viruses. 2021;15:34. Medline:32666619 doi:10.1002/irm.27096404 doi:10.1002/jmv.24555

42 Annamalay AA, Lanaspa M, Khoo SK, Madrid L, Acacio S, Zhang G, et al. Rhinovirus species and clinical features in children hospitalised with pneumonia from Mozambique. Trop Med Int Health. 2016;21:1171-80. Medline:27353724 doi:10.1111/tmi.12743

43 Assane D, Makhtar C, Abdoulaye D, Amary F, Djibril B, Amadou D, et al. Viral and Bacterial Etiologies of Acute Respiratory Infections Among Children Under 5 Years in Senegal. Microbiol Insights. 2018;11:178636118738651. Medline:29467579 doi:10.1016/j.tmi.2020.04.017
Aetiology of childhood pneumonia in the era of vaccination

REFERENCES

43 Lanasca M, O’Callaghan-Gordo C, Machevo S, Madrid L, Nhampossa T, Acacio S, et al. High prevalence of Pneumocystis jiroveci pneumonia among Mozambican children <5 years of age admitted to hospital with clinical severe pneumonia. Clin Microbiol Infect. 2015;21:1018e9.e15. Medline:26231980 doi:10.1016/j.cmi.2015.07.011

44 Mathew JL, Singh S, Ray P, Hagel E, Saghaian-Hedgengen S, Bansal A, et al. Etiology of community acquired pneumonia among children in India: prospective, cohort study. J Glob Health. 2015;5:050418 doi:10.7189/jogh.05.020418

45 Nathan AM, Teh CSJ, Jabar KA, Teoh BT, Tangapurnama A, Westerhout C, et al. Bacterial pneumonia and its associated factors in children from a developing country: A prospective cohort study. PLoS One. 2020;15:e0228056 Medline:32059033 doi:10.1371/journal.pone.0228056

46 Zhang Q, Guo Z, MacDonald NE. Vaccine preventable community-acquired pneumonia in hospitalized children in Northwest China. Pediatr Infect Dis J. 2011;30:7-10. Medline:21825346 doi:10.1097/INF.0b013e3181ec6245

47 World Health Organization. Integrated management of childhood illnesses: chart booklet. 2014. Available: https://thehcpf.org/website/wp-content/uploads/2017/07/2014-IMCI.pdf. Accessed: 20 February 2021.

48 Kwofte TB, Anane YA, Nkrumah B, Annan A, Ngua SB, Owusu M. Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana. Virol J. 2012;9:78. Medline:22490115 doi:10.1186/1743-422X-9-78

49 Nascimento-Carvalho AC, Ruuskanen O, Nascimento-Carvalho CM. Comparison of the frequency of bacterial and viral infections among children with community-acquired pneumonia hospitalized across distinct severity categories: a prospective cross-sectional study. BMC Pediatr. 2016;16:105 Medline:27498988 doi:10.1186/s12887-016-0645-3

50 Xu W, Guo L, Dong X, Li Z, Zhou P, Ni Q, et al. Detection of Viruses and Mycoplasma pneumoniae in Hospitalized Patients with Severe Acute Respiratory Infection in Northern China, 2015-2016. Jpn J Infect Dis. 2018;71:134-9. Medline:29491245 doi:10.7883/youen.JJID.2017.412

51 Zhong P, Zhang H, Chen X, Lv F. Clinical characteristics of the lower respiratory tract infection caused by a single infection or coinfection of the human parainfluenza virus in children. J Med Virol. 2019;91:1625-32. Medline:31066075 doi:10.1002/jmv.25499

52 World Health Organization. Management of the child with a serious infection or severe malnutrition: Guidelines for care at the first-referral level in developing countries 2000. Available: https://apps.who.int/iris/bitstream/handle/10665/42335/WHO_FCH_CAH_00.1.pdf?sequence=1. Accessed: 20 February 2021.

53 Aykaç K, Karadağ-Öncel E, Bayhan C, Tamır- Başaranoğlu S, Alm M, Özsürekci Y, et al. Prevalence and seasonal distribution of viral etiology of respiratory tract infections in inpatients and outpatients of the pediatric population: 10 year follow-up. Turk J Pediatr. 2018;60:642-52. Medline:31365200 doi:10.4295/turkped.2018.06.004

54 Chen Z, Ji W, Wang Y, Yan Y, Zhu H, Shao X, et al. Epidemiology and associations with climatic conditions of Mycoplasma pneumoniae and Chlamydia pneumoniae infections among Chinese children hospitalized with acute respiratory infections. Ital J Pediatr. 2013;39:34. Medline:23709564 doi:10.1186/1824-7288-39-34

55 Chisti MJ, Graham SM, Duke T, Ahmed T, Ashraf H, Faruque AS, et al. A prospective study of the prevalence of tuberculosis and bacteremia in Bangladeshi children with severe malnutrition and pneumonia including an evaluation of Xpert MTB/RIF assay. PLoS One. 2014;9:e93776. Medline:24695758 doi:10.1371/journal.pone.0093776

56 Dananché C, Picot VS, Benet T, Messaoudi M, Chou M, Wang J, et al. Burden of influenza in less than 5-year-old children admitted to hospital with pneumonia in developing and emerging countries: A descriptive, multicenter study. Am J Trop Med Hyg. 2018;98:1805-10. Medline:30180508 doi:10.4269/ajtmh.17-0494

57 Dembele BPP Kamikali T, Dapat C, Tamaki R, Saito M, Okamoto M, et al. Aetiology and risks factors associated with the fatal outcomes of childhood pneumonia among children in the Philippines from 2008 to 2016: A case series study. BMJ Open. 2019;9:e026985. Medline:30928585 doi:10.1136/bmjopen-2016-026895

58 Graham SM, Mankhambo L, Phiri A, Kauda S, Chikaonda T, Mukaka M, et al. Impact of human immunodeficiency virus infection on the etiology and outcome of severe pneumonia in Malawian children. Pediatr Infect Dis J. 2011;30:33-8. Medline:21173674 doi:10.1097/INF.0b013e3181fcafe4

59 Guerrier G, Goyet S, Chheng ET, Rammaert B, Borand L, Te V, et al. Acute viral lower respiratory tract infections in Cambodian children: clinical and epidemiologic characteristics. Pediatr Infect Dis J. 2013;32:e8-13. Medline:22926214 doi:10.1097/INF.0b013e318266d40d

60 Huong PT, Hien PT, Lan NT, Binh TQ, Tuan DM, Anh DD. First report on prevalence and risk factors of severe atypical pneumonia in Vietnamese children aged 1-15 years. BMC Public Health. 2014;14:1304. Medline:25524126 doi:10.1186/1471-2458-14-1304

61 Jiang W, Wu M, Zhou J, Wang Y, Hao C, Ji W, et al. Etiologic spectrum and occurrence of coinfections in children hospitalized with community-acquired pneumonia. BMC Infect Dis. 2017;17:878. Medline:29262797 doi:10.1186/s12879-017-2891-x

62 Jomnalagadda S, Rodriguez O, Estrella B, Sabin LL, Sempertegui F, Hamer DH. Etiology of severe pneumonia in Ecuadorian children. PLoS One. 2017;12:e0171687. Medline:28182741 doi:10.1371/journal.pone.0171687

63 Morrow BM, Samuel CM, Zampoli M, Whiteaw L, Zar HJ. Pneumocystis pneumonia in South African children diagnosed by molecular methods. BMC Res Notes. 2014;7:26. Medline:24109385 doi:10.1186/1756-0500-7-26

64 Ouimei H, Xueleng W, Jiuming L, Kunling S, Rong M, Zhenhe C, et al. Etiology of community-acquired pneumonia in 1500 hospitalized children. J Med Virol. 2018;90:421-e8. Medline:28973629 doi:10.1002/jmv.24963

65 Kazi AM, Aguolu OG, Mughis W, Alisan N, Jamal S, Khan A, et al. Respiratory Syncytial Virus-Associated Mortality Among Young Infants in Karachi, Pakistan: A Prospective Postmortem Surveillance Study. Clin Infect Dis. 2021;73 Suppl_3:S203-9. Medline:34472572 doi:10.1093/cid/ciaa488

66 Caballero MT, Bianchi AM, Grigaites SD, De la Iglesia Niveyro PX, Nuno A, Valle S, et al. Community Mortality Due to Respiratory Syncytial Virus in Argentina: Population-based Surveillance Study. Clin Infect Dis. 2021;73 Suppl_3:S210-7. Medline:34472572 doi:10.1093/cid/ciaa497
67 Murphy C, MacLeod WB, Forman LS, Mwananyanda L, Kwenda G, Pieciak RC, et al. Risk Factors for Respiratory Syncytial Virus-Associated Community Deaths in Zambian Children. Clin Infect Dis. 2021;73 Suppl_3:S187-92. Medline:34472570 doi:10.1093/cid/ciab453
68 Simões EAF, Dani V, Potdar V, Crow R, Satav S, Chadha MS, et al. Mortality From Respiratory Syncytial Virus in Children Under 2 Years of Age: A Prospective Community Cohort Study in Rural Maharashtra, India. Clin Infect Dis. 2021;73 Suppl_3:S193-202. Medline:34472578 doi:10.1093/cid/ciab481
69 Mabena FC, Bailie VL, Hale MJ, Thwala BN, Mthembu N, Els T, et al. Clinical Characteristics and Histopathology of Coronavirus Disease 2019-Related Deaths in African Children. Pediatr Infect Dis J. 2021;40:e323-32. Medline:34397776 doi:10.1097/INF.0000000000003227
70 Vu HT, Yoshiida LM, Suzuki M, Nguyen HA, Nguyen CD, Nguyen AT, et al. Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children. Pediatr Infect Dis J. 2011;30:11-8. Medline:20686433 doi:10.1097/INF.0b013e3181f111a2
71 Fan RR, Howard LM, Griffin MR, Edwards KM, Zhu Y, Williams JV, et al. Nasopharyngeal Pneumococcal Density and Evolution of Acute Respiratory Illnesses in Young Children, Peru, 2009-2011. Emerg Infect Dis. 2016;22:1996-9. Medline:27767919 doi:3021/eid2211.160902
72 Wolder N, Tempia S, Cohen C, Madhi SA, Venter M, Moyes J, et al. High nasopharyngeal pneumococcal density, increased by nasal carriage, is associated with invasive pneumococcal pneumonia. J Infect Dis. 2014;210:1649-57. Medline:24907383 doi:10.1093/infdis/jiu326
73 Carr OJJ, Vilivong K, Bouvivay L, Dunne EM, Lai JYR, Chan J, et al. Nasopharyngeal Pneumococcal Colonization Density is Associated with Severe Pneumonia in Young Children in the Lao PDR. J Infect Dis. 2022;225:1266-73. Medline:33974708 doi:10.1093/mds/jbab239
74 Danino D, Ben-Shimol S, Van Der Beek BA, Givon-Lavi N, Avni VS, Greenberg D, et al. Decline in Pneumococcal Disease in Young Children during the COVID-19 Pandemic in Israel Associated with Suppression of Seasonal Respiratory Viruses, despite Persistent Pneumococcal Carriage: A Prospective Cohort Study. Clin Infect Dis. 2021;ciab1014. Medline:34904635 doi:10.1093/cid/ciab1014
75 Moore DP, Bailie VL, Mudau A, Wadula J, Adams T, Mangera S, et al. The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral Treatment: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S69-78. Medline:3448746 doi:10.1097/INF0000000000002651
76 Seidenberg P, Mwananyanda L, Chipeta J, Kwenda G, Mulindwa JM, Mwansa J, et al. The Etiology of Pneumonia in HIV-infected Zambian Children: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S50-8. Medline:3448744 doi:10.1097/INF0000000000002649
77 Govender K, Msomi N, Moodley P, Parboosing R. Cytomegalovirus pneumonia of infants in Africa: a narrative literature review. Future Microbiol. 2021;16:1401-14. Medline:34812046 doi:10.2217/fmb-2021-0147
78 Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Curr Opin Infect Dis. 2018;31:231-6. Medline:29570495 doi:10.1097/QCO.0000000000000448
79 Tapia MD, Sylla M, Driscoll AJ, Toure A, Kourouma N, Sissoko S, et al. The Etiology of Pneumonia in HIV-infected Zambian Children: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S18-28. Medline:3448741 doi:10.1097/INF0000000000002767
80 Mwananyanda L, Thea DM, Chipeta J, Kwenda G, Mulindwa JM, Mwenechanya M, et al. The Etiology of Pneumonia in Zambian Children: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S40-9. Medline:3448743 doi:10.1097/INF0000000000002652
81 Ofiwa JN, Karumbi JM, Marais BJ, Madhi SA, Graham SM. Tuberculosis as a cause or comorbidity of childhood pneumonia in tuberculosis-endemic areas: a systematic review. Lancet Respir Med. 2015;3:235-43. Medline:26568115 doi:10.1016/S2213-2600(15)00028-4
82 Irfan O, Muttalib F, Tang K, Jiang L, Lassi ZS, Bhutta Z. Clinical characteristics, treatment and outcomes of paediatric COVID-19: a systematic review and meta-analysis. Arch Dis Child. 2021;106:440-8. Medline:33937473 doi:10.1136/archdischild-2020-321385
83 Howie SRC, Ehruke BE, McLellan JL, Deloria Knoll M, Dione MM, Felkin DR, et al. The Etiology of Childhood Pneumonia in The Gambia: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S7-17. Medline:3448740 doi:10.1097/INF0000000000002766
84 Moore DP, Bailie VL, Mudau A, Wadula J, Adams T, Mangera S, et al. The Etiology of Pneumonia in HIV-uninfected South African Children: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S59-68. Medline:3448745 doi:10.1097/INF0000000000002650
85 Awori JO, Kamau A, Morpeth S, Kazungu S, Silaba M, Sande J, et al. The Etiology of Pneumonia in HIV-uninfected Children in Kilifi, Kenya: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S29-39. Medline:3448742 doi:10.1097/INF0000000000002653
86 Brooks WA, Zaman K, Goswami D, Prosperi C, Endtz HP, Hossain L, et al. The Etiology of Childhood Pneumonia in Bangladesh: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40:95:S79-90. Medline:3448747 doi:10.1097/INF0000000000002648
87 Bunthi C, Rhodes J, Thamthitiwat S, Higdon MM, Chuananon S, Amornthapichet T, et al. Etiology and Clinical Characteristics of Severe Pneumonia Among Young Children in Thailand: Pneumonia Etiology Research for Child Health (PERCH) Case-Control Study Findings, 2012-2013. Pediatr Infect Dis J. 2021;40:95:S91-100. Medline:3448748 doi:10.1097/INF0000000000002768
REFERENCES

88 Scott JA, Wonodi C, Moisi JC, Deloria-Knoll M, DeLuca AN, Karron RA, et al. The definition of pneumonia, the assessment of severity, and clinical standardization in the Pneumonia Etiology Research for Child Health study. Clin Infect Dis. 2012;54 Suppl 2:S109-16. Medline:22403224 doi: 10.1093/cid/cir1065

89 Deloria Knoll M, Prosperi C, Baggett HC, Brooks WA, Feikin DR, Hammitt LL, et al. Introduction to the Site-specific Etiologic Results From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr Infect Dis J. 2021;40 9S:S1-6. Medline:34448739 doi:10.1097/INF0000000000002778

90 Mathew JL. Etiology of Childhood Pneumonia: What We Know, and What We Need to Know!: Based on 5th Dr. IC Verma Excellence Oration Award. Indian J Pediatr. 2018;85:23-34. Medline:28944408 doi:10.1007/s12098-017-2486-y

91 Torres A, Lee N, Cilloniz C, Vila J, Van der Eerden M. Laboratory diagnosis of pneumonia in the molecular age. Eur Respir J. 2016;48:1764-78. Medline:27811073 doi:10.1183/13993003.01144-2016

92 Loens K, Van Heirstraeten L, Malhotra-Kumar S, Goossens H, Ieven M. Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections. J Clin Microbiol. 2009;47:21-31. Medline:19020070 doi:10.1128/JCM.02037-08

93 Avni T, Mansur N, Leibovici L, Paul M. PCR using blood for diagnosis of invasive pneumococcal disease: systematic review and meta-analysis. J Clin Microbiol. 2010;48:489-96. Medline:20007385 doi:10.1128/JCM.01636-09

94 World Health Organization. Vaccine Preventable Diseases Surveillance Standards 2018. Available https://apps.who.int/iris/ handle/10665/275754 (Accessed 12 July 2022).

95 Song R, Click ES, McCarthy KD, Heilig CM, McMhiere W, Smith JP, et al. Sensitive and Feasible Specimen Collection and Testing Strategies for Diagnosing Tuberculosis in Young Children. JAMA Pediatr. 2021;175:e206069. Medline:33616611 doi:10.1001/jamapediatrics.2020.6069

96 World Health Organization. Rapid communication on updated guidance on the management of tuberculosis in children and adolescents. 2021. Available: https://www.who.int/publications/i/item/9789240033450. Accessed: 13 December 2021.

97 Shi T, McLean K, Campbell H, Nair H. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis. J Glob Health. 2015;5:010408. Medline:26445672 doi:10.7189/jogh.05.010408

98 World Health Organization. Revised WHO classification and treatment of childhood pneumonia at health facilities 2014. Available: https://apps.who.int/iris/bitstream/handle/10665/137319/9789241507813_eng.pdf. Accessed: 14 February 2021.

99 Malosh RE, Martin ET, Heikkinen T, Brooks WA, Whitley RJ, Monto AS. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clin Infect Dis. 2018;66:1492-500. Medline:29186364 doi:10.1093/cid/cix1040

100 Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan CJ. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545. Medline:24811411 doi:10.1136/bmj.g2545