Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

Andi Nurtrimarini Karim 1,2, Sri Mawar Said2, Indar Chaerah Gunadin2, Mustadir Darusman B 2,3

1PT. PLN (Persero) Region Sulselrabar Area Bulukumba
Jl. Lanto Daeng Pasewang No.1 Bulukumba, South Sulawesi, 92517, Indonesia
2Department of Electrical Engineering Hasanuddin University
Jl. Poros Malino KM. 6 Borongloe Gowa, South Sulawesi, 92171, Indonesia
3Health Ministry of the Republic of Indonesia
Jl. Perintis Kemerdekaan KM. 11 Makassar, South Sulawesi, 90245, Indonesia

E-mail: rini07anika@gmail.com

Abstract. This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the wind turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

1. Introduction
The electric power system generally consists of generating units connected to the line to serving the load [1]. Electrical power systems with multiple machines typically channel load power through interconnection lines [2, 3]. The main objective of the interconnection channel system is to maintain continuity and availability of electricity towards increasing need of load. The growing power system can lead to weak performance of the system when experiencing interference and greatly affect the stability of the system [4].

The stability itself is divided into three major parts namely steady state stability, dynamic stability and transient stability [5]. This paper will focus on the discussion of transient stability in southern Sulawesi electrical system (Sulbagsel). It needs to get a review because the system in Sulbagsel will enter to the Power Plant Bayu (PLTB / wind turbines) large capacity in two districts of Sidrap and Jeneponto which will certainly affect the topologi in Sulbagsel electrical network. Changing network topologi has impact on the flow of power that will affect too for the stability when a transient disturbance in the system.

Large and complex systems and their changes in instantaneous system conditions [6], usually happen to short circuit interruptions in the power system, and the sudden release or substantial burden
of the large loads. As a result of changes in working conditions of this system and the state of the system will change from the old to the new state. A short period between the two states is called a parallel or transient period. Transient stability is based on a first swing stability condition with a period of investigation in the first second of the disturbance.

To analyzing the entry of wind turbine transient condition of the Sulbagsel interconnection system is used Power System Analysis Toolbox (PSAT). PSAT is a special software to analyze power system [7]. For the computation process results used Matlab software [8]. The system will also be tested using Power System Stabilizer (PSS) which will be placed on the system to see the damping process due to transient disturbance after the PLTB is integrated in Sulbagsel system.

2. Research Methodology

Analysis of the stability of a generator can be seen from the angle and rotor speed using Time based program. One time-based method is Time Domain Simulation (TDS) which is an indirect method that solves the transit stability problem by solving nonlinear differential equations from numerical integration with step-by-step techniques to calculate each machine of the swing curve (angle rotor against time). The modeled Sulbagsel system was then analyzed using the help of the PSAT toolbox. This toolbox is an open source software used to analyze and study the power system [9]. This TDS approach will simulate the system during periods during the faulted and postfault interruptions as well as the interruption time found between stable and unstable times (indirectly). The maximum simulation period depends on the characteristics of a good power system in terms of modeling. This usually does not exceed 15 seconds for complex system modeling. The rotor angle velocity is used to see the deviation at the entry of the wind turbine in the system after a short circuit 3 phase impedance [10]. All operations of computing can be assessed using Graphical User Interfaces (GUI).

2.1. Power System Modeling

In Sulbagsel system consists of 15 generators, 44 buses, 47 lines and 34 load centers [11] that scattered in the model where the transient voltage at q-axis is constant. The wind turbine model uses the doubly fed induction generator (DFIG) type which is connected to Sidrap and jenepon buses. All generators are connected to the Autamic Voltage Regulator (AVR). The researcher used model 3 to facilitate the analysis process [12]. Model 3 presents hydro generator. In this model, some properties of the system are regarded like inelastic penstocks which water inertia is considered, as well as ideal turbines. For analysis implicit, static load models are also used.

![Figure 1. The Sulbagsel Interconection Power Grid Model Use PSAT](image-url)
2.2. Double Feed Induction Generator (DFIG)

Double Feed Induction Generator (DFIG) is one type of wind turbine used in this simulation. The DFIG selection is considered suitable to represent the type of wind turbine that will enter in Sulbagsel interconnection system. DFIG power generated output depends on the reference power used. DFIG uses maximum power point tracking (MPPT). Figure 2 shows the DIFG system.

DFIG is an induction generator with two types of output (fed) used at variable speed PLTB [13]. Unlike the conventional, singly-fed induction generator, DFIG electrical power does not depend on speed. So, it is possible to realize variable speed wind generators by determining the mechanical speed at wind speed and improving turbine operation at an aerodynamic optimal point for a certain wind speed rating.

![Figure 2. System Double Fed Induction Generator (DIFG)](image)

2.3. Power System Stabilizer (PSS)

Inadequate response can cause oscillation of frequency in long period. This will result in reduced power transfer power that can be overcome using PSS. Implementation of a PSS in the power system connected to the stabilizer port that can be seen in Figure 3.

![Figure 3. A PSS System in the i-Generator](image)

PSAT provides of five PSS models [4]. The PSS model used in this study is type II model shown in Figure 4.
where:
\[K_w = \text{Stabilizer gain} \]
\[T_w = \text{Wash-out time constant} \]
\[T_1 = \text{First stabilizer time constant} \]
\[T_2 = \text{Second stabilizer time constant} \]
\[T_3 = \text{Third stabilizer time constant} \]
\[T_4 = \text{Fourth stabilizer time constant} \]
\[T_s = \text{Small time constant} \]

3. Case Study
In this case study, the researcher discusses about the study of transient stability after the entry of a wind turbine in Sulbagsel interconnection system. Figure 1 shows the modeling of the electrical interconnection system in PSAT Sulbagsel. The dynamic parameters of each plant are shown in Table 1. Power flow is used to see the system responses and time domain simulation for the response of the generator during the disturbance [13]. The simulation will be done in two stages. The first stage modeled by the system with the entry of wind turbine on Sidrap and Jeneponto buses and then given 3 phase disturbances to the ground. The second stage of adding PSS devices in the system to see the damping response of each generator rotor angle velocity (\(\omega \)) in the event of a transient disturbance.

No	Pembangkit	Xd (pu)	X'd (pu)	X''d (pu)	Xq (pu)	X'q (pu)	X''q (pu)	ra (pu)	xl (pu)
1	PLTA Bakaru	0.924	0.268	0.27	0.553	0.27	0	0.12	
2	PLTA Teppo (Pinrang)	2.08	0.385	0.261	1.12	0.274	0.261	0.186	
3	PLTD Suppa	2.08	0.385	0.261	1.12	0.267	0.261	0.186	
4	PLTU Barru	2.363	0.199	0.204	2.182	0.395	0.204	0.107	
5	PLTU Tello	1.182	0.0995	0.102	1.091	0.1975	0.102	0.107	
6	PLTD Agrekko (Tello Lama)	2.363	0.199	0.204	2.182	0.395	0.204	0.107	
7	PLTD Sgmnsa	2.08	0.385	0.261	1.12	0.337	0.261	0.186	
8	PLTU Arena (Jeneponto)	2.08	0.385	0.261	1.12	0.485	0.261	0.186	
9	PLTA Tangka Manipi Sinjai	1,924	0.268	0.27	1.553	0.256	0.27	0.12	
10	PLTGU Sengkang	2.31	0.2	0.12	0.553	0.6	0.12	0.6	
11	PLTD Malea (Toraja)	2.08	0.385	0.261	1.12	0.337	0.261	0.186	
12	PLTD Palopo	2.08	0.385	0.261	1.12	0.337	0.261	0.186	
13	PLTA Bili-Bili	2.08	0.385	0.261	1.12	0.330	0.261	0.186	
14	PLTA Poso	0.924	0.268	0.27	0.553	0.368	0.27	0.12	
15	PLTD Tallasa	2.08	0.385	0.261	1.12	0.485	0.261	0.186	

3 phase interruption is placed in the middle of lane Sengkang bus with fault time 0.05 second and fault clearing time 0.10 second. For the first interval breaker is 0.5 second and 1.0 for the second...
intervention. There are 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads that will be used in this research. The study will use a conventional thermal generating unit, which the Governor Turbine (TG) is used for Model 1, while the Hydroelectric unit uses the Model 3 TG applied to the entire system. As for wind turbines in the wind speed setting with nominal value around 15.00 (m/s).

4. Results and Discussions
The simulated results are rotor angle velocity (ω) and each generating unit power flow studies after the entry of the wind turbine in Sulbagsel interconnection system before and after the addition of the PSS device in the transient state. Time domain simulation is used to obtain angular rotor speed (ω).

Table 2 shows the power flow before and after the application of PSS on the system when a transient disturbance occurs. It can be seen that the stresses on each bus application of PSS decreased significantly below the tolerance limits permitted by the Regulatory Commission of the Energy Regulatory Commission in N-0 conditions (0.95-1.05 p.u.). Conversely, after the voltage of PSS application has improved or increased on almost all of buses when transient disturbance occurs in the system.

No Bus	Name Bus	Without SPSS	With SPSS		
		V [p,u] Phase [rad]	V [p,u] Phase [rad]	Generator [p,u]	Load [p,u]
1	Sengkang	0.72 -20.01 0.99 -13.33	1.558 0.266 0.284 0.115		
2	Sidrap	0.70 -20.72 0.90 -13.67	0.000 0.000 0.265 0.103		
3	Soppeng	0.57 -20.32 0.94 -13.49	0.000 0.000 0.141 0.034		
4	Parepare	0.80 -20.79 0.94 -13.73	0.000 0.000 0.187 0.047		
5	Pinrang	0.84 -20.80 0.95 -13.73	0.143 -0.425 0.044 0.062		
6	Polmas	0.85 -20.84 0.97 -13.73	0.000 0.000 0.171 0.041		
7	Bakaru	0.92 -20.84 1.01 -13.77	0.163 0.886 0.150 0.021		
8	Majene	0.83 -20.90 0.93 -13.83	0.000 0.000 0.233 0.037		
9	Mamuju	0.82 -20.91 0.93 -13.84	0.000 0.000 0.096 0.048		
10	Suppa	0.82 -20.78 0.95 -13.72	0.311 -0.097 0.000 0.000		
11	PLTU Barru	0.77 -20.79 0.92 -13.75	0.604 -0.186 0.000 0.000		
12	Barru	0.73 -20.84 0.93 -13.80	0.000 0.000 0.101 0.024		
13	Pangkep	0.64 -20.95 0.95 -13.89	0.000 0.000 0.221 0.080		
14	Pangkep70	0.65 -20.92 1.00 -14.05	0.000 0.000 0.000 -0.134		
15	Tonasa	0.65 -20.93 0.99 -14.06	0.000 0.000 0.189 0.021		
16	Bosowa	0.64 -20.97 0.95 -13.90	0.000 0.000 0.331 0.015		
17	Kima	0.63 -20.97 0.96 -13.89	0.000 0.000 0.180 0.058		
18	Tello	0.62 -20.99 0.98 -13.89	0.210 3.440 0.633 0.183		
19	Panakukang	0.59 -21.04 0.93 -13.94	0.000 0.000 0.683 0.177		
20	Tello70	0.70 -20.72 0.97 -14.20	0.000 0.000 0.000 -0.215		
21	Borongloe	0.76 -20.59 0.92 -14.24	0.052 -0.280 0.114 0.000		
22	Mandai	0.69 -20.75 0.96 -14.21	0.000 0.000 0.243 0.026		
23	Daya	0.70 -20.74 0.97 -14.21	0.000 0.000 0.245 -0.186		
24	Tello30	0.62 -20.99 0.98 -13.89	0.000 0.000 0.000 0.000		
25	Barawaja	0.62 -20.99 0.98 -13.89	0.000 0.000 0.000 0.000		
Figure 5 shows a graph of rotor angle velocity (ω) when a transient disturbance occurs prior to the application of PSS. It also shows the angle of the rotor coming out of its inertia moment due to a system interruption. Most of the generators have been off sync which resulted in a blackout on the system interconnection in Sulbagsel.

Figures 5a and 5b show the rotor angle velocity of generator 1-5. From the graph, it is seen that the rotor angle velocity (ω) is able to dampen and maintain the velocity condition at the limit of 0.98 (rad / s) in the appeal without using PSS during the application of transient disturbance PSS.
Figures 6a and 6b show the same thing in generator 6-10. Where the application of PSS is able to reduce transient noise and maintain the density at the limit of 0.98 (rad / s). Compared without using PSS, the rotor angle density continued to decline to below 0.96 (rad / s). This condition indicates that the influence of the entry of the PLTB which impact on the change of topologi Sulbagse network also influence system stability when transient disturbance occurs.

Figure 6. Graph of Rotor angle velocity for generator 6-10. (a) Without PSS, (b) With PSS

Figures 7a and 7b show slightly different things. The speed of the generator fluctuates with the density. Specifically for generator 14, the density increases 1.7 (rad/s) before PSS is installed in the system. After PSS is installed in the system, the rotor angle velocity of the generator 14 decreases below 1.1 (rad / s). Graph below is the presented of Figure 7a and Figure 7b.

Figure 7. Graph of Rotor angle velocity for generator 11-15. (a) Without PSS, (b) With PSS
5. Conclusions
The TDS approach, which is an indirect method of solving three phase problems and analyzing the transient stability when the entry of wind turbine in the Sulbagsel interconnection system provides satisfactory results in the stability study of the system. From the results of research using TDS method it is found that the system voltage decreased quite extreme when the disturbance occurred. After the addition of PSS control devices mounted on the generator is able to reduce the deviation of the rotor angle and maintain the speed of the rotor angle to find a new equilibrium point. For further research can use a larger case study and control equipment such as STATCOM, UPFC or TCSC in analyzing the transient stability.

References
[1] Anju G P, Thomas P C, Sreerenjini K., Sarin B and Sasidran S 2013 J. Sci. Eng. Res 4
[2] Indar C G, Soeprijanto A and Penangsong O 2012 International Review of Electrical Engineering vol xx
[3] Indar C G, Soeprijanto A and Penangsong O 2012 International Review of Electrical Engineering vol xx
[4] Gamit M G., Jigar S S 2015 Int. J. Res. Eng. Technol 4(3) 604–613
[5] Indar C G, Sri M S and Muhammad I 2016 J. Theor. Appl. Inf. Technol 90(1) 161–167
[6] Anil K N, Ramesh K 2007 I 2(3) 38–45
[7] Federico M 2005 IEEE Transaction On Power Systems 20(3) 1199–1206
[8] Rahul R R, Visakhan R, Sebin J, Aney S V 2015 Int. J. Innov. Res. Sci. Eng. Technol 4(11) 11437–11446.
[9] Federico M, Luigi V and Juan C 2008 IEEE Transactions on Education 51(1) 17–23
[10] Jeevajothi R and Devaraj D 2012 Int. J. Comput. Electr. Eng. 2(5) 259–265.
[11] Ardiaty A and Muhammad B N 2016 ICITACEE p 169–172.
[12] Yuwa C, et al 2012 IEEE p 1–8
[13] Mustadir D, Ansar S, Indar C G 2017 Analisis Stabilitas Small Signal Saat Masuknya PLTB Pada Sistem Interkoneksi Sulbagsel, Tesis (Makassar: Hasanuddin University)