Generalised Baumslag-Solitar groups and Hierarchically Hyperbolic Groups

J. O. Button

Abstract

We look at isometric actions on arbitrary hyperbolic spaces of generalised Baumslag-Solitar groups of arbitrary dimension (the rank of the free abelian vertex and edge subgroups). It is known that being a hierarchically hyperbolic group is not a quasi-isometric invariant. We show that virtually being a hierarchically hyperbolic group is not invariant under quasi-isometry either, and nor is property (QT).

1 Introduction

Gromov’s notion of a word hyperbolic group encapsulates what it means for a finitely presented group to be negatively curved. In particular this property is not just a commensurability invariant (that is, if H is a finite index subgroup of G, for which we write $H \leq_f G$, then H has the property if and only if G has the property) but it is also invariant under quasi-isometry.

However trying to come up with an equivalent notion of non positive curvature for finitely presented groups which is also invariant under quasi-isometry seems less clear. One definition that is invariant is that of having (at most) quadratic Dehn function but this contains groups that would not naturally be thought of as being non positively curved. To give but one example, in [10] it is shown that for each $n \geq 2$ there exists a metabelian group with quadratic Dehn function but which contains the Baumslag-Solitar group $BS(1, n)$, whereas one might hope that any finitely generated soluble subgroup of a non positively curved group is virtually abelian.

Even if invariance under quasi-isometry fails, one could at least hope for a definition of non positive curvature which is invariant under commensurability. However for the property of being CAT(0) (a group which acts
geometrically on a CAT(0) space), which is known not to be invariant under quasi-isometry, it is currently open whether \(H \) being a CAT(0) group and \(H \leq_f G \) implies that \(G \) is a CAT(0) group. It is also still open whether all hyperbolic groups are CAT(0).

A more recent property that also aims to encapsulate non positive curvature is that of being a hierarchically hyperbolic group (a HHG for short). This does include all hyperbolic groups but it was recently shown in [30] that this is not a commensurability invariant as there are groups which are not HHGs but which have a finite index subgroup equal to \(\mathbb{Z}^2 \) which is. Note that neither CAT(0) groups or HHGs contain each other.

However, there is an easy way to turn a group theoretic property \(\mathcal{P} \) into a commensurability invariant provided it is preserved by finite index subgroups (which many properties are, including being CAT(0) and an HHG). We merely alter it to being virtually \(\mathcal{P} \), that is it has some finite index subgroup with \(\mathcal{P} \). We can thus ask instead: for finitely generated groups, is being virtually \(\mathcal{P} \) a quasi-isometric invariant? For instance, this question has been considered for the properties of being virtually free, virtually cyclic, virtually abelian, virtually nilpotent, virtually polycyclic and virtually solvable. None of these would be commensurability invariants if virtually were removed, but the first four are known to be quasi-isometry invariants by various deep results. The fifth is unknown and the sixth is false for finitely generated groups but unknown for finitely presented groups (see [20] IV.B.50 and the references given there).

Therefore, it is natural to ask in this context whether virtually being an HHG is a quasi-isometry invariant. Note that virtually being a CAT(0) group is not. This is demonstrated by the well-known example of a group \(G \) which is a central extension of \(\mathbb{Z} \) by a closed surface group \(S_g \) for \(g \geq 2 \) which does not virtually split and so is not a CAT(0) group (see [8] II.7.26) but which is quasi-isometric to \(\mathbb{Z} \times S_g \). This group \(G \) has all of its finite index subgroups of the same form, so it is not virtually a CAT(0) group either. We also note here that \(\mathbb{Z} \times S_g \) acts geometrically not just on a CAT(0) space but on a CAT(0) cube complex too, thus the property \(\mathcal{P} \) of acting geometrically on a CAT(0) cube complex is not a quasi-isometric invariant and nor is being virtually \(\mathcal{P} \) (note that here virtually \(\mathcal{P} \) is not equal to \(\mathcal{P} \) by [18]).

However, the group \(G \), and more generally central extensions of \(\mathbb{Z} \) by any non-elementary hyperbolic group, was recently shown to be a HHG in [19] Corollary 4.3, so will not provide a counterexample to virtually HHGs being invariant under quasi-isometry. Nor will the examples which are not HHGs
Theorem 4.4 work because these are all virtually \mathbb{Z}^k for some k.

In this paper we show in Theorem 5.3 that there exist finitely presented groups with no finite index subgroup being an HHG but which are quasi-isometric to an HHG. Thus even adding virtually to the property of being an HHG will not make it a quasi-isometric invariant. The particular group used in Theorem 5.3 is the Leary - Minasyan group first appearing in [23]. A Leary - Minasyan group denotes any group formed by starting with $A = \mathbb{Z}^n$ for $n \geq 1$ which is regarded as sitting naturally in \mathbb{Q}^n and then taking a matrix $M : \mathbb{Q}^n \to \mathbb{Q}^n$ which is in $\text{GL}(n, \mathbb{Q})$ and a finite index subgroup B of $A \cap M^{-1}(A)$. The group is then defined to be the HNN extension with base A and associated subgroups B and $M(B)$ using the matrix M. We refer to THE Leary - Minasyan group L as the case where $n = 2$,

$$M = \begin{pmatrix} \frac{3}{2} & -\frac{4}{3} \\ \frac{4}{3} & \frac{5}{3} \end{pmatrix}$$

and $B = A \cap M^{-1}(A)$ which is a CAT(0) group. It was shown in [23] Theorem 1.1 that a Leary - Minasyan group is biautomatic if and only if it is virtually biautomatic which occurs if and only if the matrix M has finite order. (It is unknown whether there exist virtually biautomatic groups which are not biautomatic.) In particular the group L is CAT(0) but not (virtually) biautomatic: this was the first known example. As for whether every HHG is biautomatic, this was answered negatively in [22]. In the introduction, it is asked whether any non-biautomatic Leary - Minasyan group is an HHG, with the answer expected to be no. In this paper we confirm this in Corollary 5.2 by showing that a Leary - Minasyan group is virtually an HHG if and only if the matrix M has finite order.

It turns out that our arguments work in a somewhat wider class of groups than Leary - Minasyan groups, that of generalised Baumslag - Solitar groups of arbitrary rank. A generalised Baumslag - Solitar group of rank n, or GBS_n group for short, is a finite graph of groups where all vertex and edge groups are isomorphic to \mathbb{Z}^n (sometimes the term generalised Baumslag - Solitar group refers only to the case $n = 1$ but we will use the term in its wider context). A GBS_n group G gives rise to a homomorphism from G to $\text{GL}(n, \mathbb{Q})$ which we call the modular homomorphism of G. (Strictly speaking this should be the modular homomorphism of the decomposition of G as a GBS_n group but in all but some basic cases it is unique.) In the case of a Leary - Minasyan group the graph of groups has one vertex and one edge
with the modular homomorphism sending the stable letter to the matrix M and all of the vertex subgroup \mathbb{Z}^n to the identity.

We begin in Section 2 with some introductory material on how groups act on hyperbolic spaces. In Section 3 we introduce generalised Baumslag-Solitar groups G of arbitrary rank n and define the aforementioned modular homomorphism. We use this to examine the free abelianisation of G, that is the usual abelianisation G/G' but with the torsion of G/G' quotiented out. This gives us a dichotomy between groups with finite and infinite monodromy, where the monodromy is the image of G in $GL(n, \mathbb{Q})$ under the modular homomorphism. Indeed it is shown in Theorem 3.4 that a GBS$_n$ group with finite monodromy is virtually equal to $\mathbb{Z}^n \times F_r$ for some finite rank free group F_r (and hence in this case G is virtually a HHG), whereas a GBS$_n$ group with infinite monodromy cannot be of this form. (In particular, whether a GBS$_n$ group has finite or infinite monodromy depends in all cases only on the group and not the decomposition.)

In Subsection 3.3 we use this information to examine the possible actions by isometries of a GBS$_n$ group G on an arbitrary hyperbolic space. Whilst a group of the form $\mathbb{Z}^n \times F_r$ will have many different actions on hyperbolic spaces, we show in Theorem 3.5 that if G has infinite monodromy then there is a non-trivial element of the base \mathbb{Z}^n-subgroup which never acts loxodromically in any action of G on a hyperbolic space.

As for particular actions on hyperbolic spaces, the concept of an acylindrical action of a group G on an arbitrary hyperbolic space X was introduced in [6]. However if X is bounded then any action by isometries is acylindrical, so we require acylindrical actions of G with unbounded orbits in order to obtain anything useful. This was developed in [29] to obtain the much studied concept of an acylindrically hyperbolic group G, in which G has an acylindrical action on some hyperbolic space that is non-elementary, which is equivalent to saying that the action has unbounded orbits and G is not virtually cyclic. In the theory of HHGs, there is a hyperbolic space S which is the maximal domain and it was shown in [3] Theorem 14.3 that if G is an HHG then the resulting action of G on S is acylindrical. However it is perfectly possible that S is a bounded metric space even if G is an infinite HHG (for instance for groups acting geometrically on the product of two trees).

Now it can be seen using standard results that GBS$_n$ groups G are never acylindrically hyperbolic but this does not allow us to conclude that they are not HHGs as well, because it could be that in some potential HHG structure
on G, the maximal domain S is bounded. However this can be avoided by appealing to recent results appearing in [30] which shows that if H is any HHG then there is a finite collection of unbounded domains, invariant under the action of H and which are pairwise orthogonal, such that any unbounded domain in the HHG structure is nested in one of these. If H is an infinite group then this collection will be non empty. Moreover the action of H on these domains can be combined to give an action of H on their product and this action is also acylindrical (as well as containing a loxodromic element). Of course a product of at least two unbounded hyperbolic spaces will not itself be hyperbolic but the definition of an acylindrical action makes sense for an arbitrary metric space. Whilst we do not know of any group theoretic consequences if there exists an acylindrical action with a loxodromic element on a product P of hyperbolic spaces, in Section 4 we look at such actions which also preserve the factors of P, which we call a product acylindrical action. We show in Theorem 4.3 that every element in such an action must either be elliptic or loxodromic, as was shown to be the case for a single hyperbolic space in [6] Lemma 2.2.

This is then used to obtain Theorem 4.4 which states that a GBS_n group with infinite monodromy has no product acylindrical action. In Section 5 we give some background on the properties of HHGs that we will need, as opposed to giving the full definition. We then conclude in Corollary 5.2 that a GBS_n group is virtually an HHG if and only if it has finite monodromy, by virtue of the (non) existence of some product acylindrical action. However having finite monodromy is not a quasi-isometric invariant, as the Leary-Minasyan group shows.

In [5] the property (QT) is introduced, which applies to finitely generated groups. Such a group has (QT) if it acts isometrically on a finite product of quasitrees such that the orbit map is a quasi-isometric embedding. It is shown there that many groups do have (QT). We show in Corollary 6.4 once again using the Leary-Minasyan group L, that (QT) is not preserved under quasi-isometry. For this we do not need knowledge of possible product acylindrical actions of generalised Baumslag-Solitar groups G. We only need to know which elements will be elliptic in all actions of G on a hyperbolic space.

The author would like to acknowledge helpful conversations with Mark Hagen and Sam Hughes.
2 Actions on hyperbolic spaces

In this paper we consider groups G acting by isometries on a hyperbolic space (or later a finite product of hyperbolic spaces). Here a hyperbolic space X will always mean that X is a geodesic metric space satisfying any of the equivalent definitions of δ-hyperbolicity. Note that no further conditions such as properness of the space will be assumed. As X is hyperbolic we can look at the action of G by homeomorphisms (though not isometries) on the (Gromov) boundary ∂X of X to obtain the limit set $\partial_G X$ which is a subset of ∂X. This subset is G-invariant and we have $\partial_H X \subseteq \partial_G X$ if H is a subgroup of G.

We have the standard classification of the individual elements $g \in G$ as follows:

Definition 2.1
(i) The element g is elliptic under the given action if the subgroup $\langle g \rangle$ has bounded orbits. This happens if and only if $\partial_{\langle g \rangle} X = \emptyset$.
(ii) The element g is loxodromic under the given action if the subgroup $\langle g \rangle$ embeds quasi-isometrically in X under the (or an) orbit map, namely there is $c > 0$ (which exists independently of $x \in X$) such that for all $n \in \mathbb{Z}$ we have $d(g^n(x), x) \geq |n|c$. This occurs if and only if $\partial_{\langle g \rangle} X$ consists of exactly 2 points $\{g^\pm\}$ for any $x \in X$ and this is the fixed point set of g on ∂X.
(iii) The element g is parabolic exactly when it is not elliptic or loxodromic, which occurs if and only if $\partial_{\langle g \rangle} X$ consists of exactly 1 point and again this is the fixed point set of g on ∂X.

Note that an element $g \in G$ is elliptic/loxodromic/parabolic if and only if g^n is (for some/all $n \in \mathbb{Z} \setminus \{0\}$) and if and only if some conjugate of g is.

Moving back now to arbitrary groups, if G acts by isometries on an arbitrary hyperbolic space X then we have the Gromov classification dividing possible actions into five very different classes. In the case that $G = \langle g \rangle$ is cyclic, the first three classes correspond to the three cases in Definition 2.1 and the next two do not occur (for these facts and related references, see [1] and [12]):

1. The action has bounded orbits.
2. The action is parabolic (or horocyclic), meaning that $\partial_G X$ has exactly one point p. In this case the action can never be cobounded.
3. The action is lineal, meaning that $\partial_G X = \{p, q\}$ has exactly 2 points
(which in general can be swapped or fixed pointwise by the action of G). In this case there will exist some loxodromic element in G with limit set $\{p, q\}$.

(4) The action is quasi-parabolic (or focal). This says that the limit set has at least 3 points, so is infinite, but there is some point $p \in \partial_G X$ which is globally fixed by G. This implies that G contains a pair of loxodromic elements with limit sets $\{p, q\}$ and $\{p, r\}$ for p, q, r distinct points.

(5) The action is general: the limit set is infinite and we have two loxodromic elements with disjoint limit sets.

We will be interested in the question: given a specific group G and a particular element $g \in G$, can we find an action of G on some hyperbolic space X where g acts loxodromically? If we first consider obstructions, the most obvious is if g has finite order. Moreover if G is finitely generated and $g \in G$ is distorted, that is the word length of g^n does not grow linearly in n, then there is no action of G by isometries on any metric space where g acts loxodromically.

As for sufficient conditions, if we have a homomorphism $\theta : G \to \mathbb{R}$ with $\theta(g) \neq 0$ then we can realise θ as an action of G on \mathbb{R} by translations in which g acts loxodromically. Indeed this also works for a homomorphism $\theta : G \to Isom(\mathbb{R}) \cong \mathbb{R} \rtimes \mathbb{Z}_2$ if $\theta(g)$ has infinite order, as here the elements swapping the ends of \mathbb{R} will have order 2. However, much more generally, this also works by [1] Proposition 4.9 if we have a homogeneous quasi-morphism $q : G \to \mathbb{R}$ with $q(g) \neq 0$, whereupon X is a quasiline.

We also have a type of converse which we will use later: given an action of a group G on a hyperbolic space X where there is a point $p \in \partial X$ on the boundary fixed by all of G, there exist Busemann functions on G. In particular, see [9] where it is shown that there exists a homogeneous quasi-morphism $q : G \to \mathbb{R}$, the Busemann quasicharacter, where the quasi-kernel $\{g \in G \mid q(g) = 0\}$ consists exactly of those elements of G which are not acting loxodromically on X. In particular, although this results in q being trivial in actions of the first or second type, in the third (assuming the two limit points are fixed pointwise) or the fourth types of actions we do obtain a non-trivial homogeneous quasi-morphism on G. Moreover [9] also shows that this Busemann quasicharacter is a genuine homomorphism if either G is amenable or X is proper. Indeed the first point follows from the well known fact that the only homogeneous quasi-morphisms on an amenable group are the homomorphisms.
3 Generalised dimension \(n \) Baumslag - Solitar groups

3.1 The modular homomorphism

Definition 3.1 A generalised dimension \(n \) Baumslag - Solitar group (GBS\(_n\) group) \(G \) is the fundamental group of a finite graph \(\Gamma \) of groups where all vertex and edge groups are isomorphic to \(\mathbb{Z}^n \).

Consequently \(G \) acts (by automorphisms without inverting edges) coboundedly on a simplicial tree \(T \). This tree has finite valence because if \(B \leq A \) with both \(A \) and \(B \) isomorphic to \(\mathbb{Z}^n \) then \(B \) has finite index in \(A \), for which we write \(B \leq_f A \).

We can obtain a finite presentation for \(G \) by taking each vertex \(v_i \in \Gamma \) and corresponding vertex group \(V_i \) and fixing a free basis \(a_{i,1}, \ldots, a_{i,n} \) for \(V_i \). We take a maximal tree \(T_0 \) in the finite graph \(\Gamma \) defining \(G \) and form the amalgamation of the \(V_i \)s over the finite index edge subgroups. We then add a stable letter \(t_j \) to the generators for each of the \(r \) (say) edges \(e_j \) of \(\Gamma \setminus \{T_0\} \) and the corresponding relations where \(t_j \) conjugates the inclusion of the edge group \(E_j \) at one end of \(e_j \) to the inclusion of \(E_j \) at the other end. Note this means that \(G = N \rtimes F_r \) where \(N \) is given by the normal closure of the vertex groups \(V_i \) in \(G \) and \(F_r = \langle t_1, \ldots, t_r \rangle \).

For \(n = 1 \) a modular homomorphism from \(G \) to \(\mathbb{Q}^\times \) was considered in [24]. This was generalised to arbitrary \(n \) in [11] where the homomorphism is now from \(G \) to \(\mathbb{R}^n \rtimes GL(n, \mathbb{R}) \). We present our own more basic version here for arbitrary \(n \) which has the advantage that it works for the finite index subgroups of \(G \) as well.

Given some GBS\(_n\) group \(G \), we first make arbitrary choices of a base vertex \(v_0 \) in the tree \(T \) on which \(G \) acts, a finite index subgroup \(A \cong \mathbb{Z}^n \) of the stabiliser \(Stab_G(v_0) \cong \mathbb{Z}^n \) and an ordered basis \(a_1, \ldots, a_n \) of \(A \). We refer to \(A \) as our base \(\mathbb{Z}^n \)-subgroup for \(G \). Our modular homomorphism \(\mathcal{M} \) will be a homomorphism from \(G \) to \(GL(n, \mathbb{Q}) \) and it is easily checked that changing any of these choices results in a homomorphism that is conjugate in \(GL(n, \mathbb{Q}) \) to \(\mathcal{M} \).

Definition 3.2 Let \(G \) be a GBS\(_n\) group for \(n \geq 1 \) with some base subgroup \(A \cong \mathbb{Z}^n \). We define the modular homomorphism \(\mathcal{M} : G \to GL(n, \mathbb{Q}) \) in the following way.
Given any element \(g \in G \), we have that \(A \) and \(g^{-1}Ag \) are commensurable subgroups of \(G \), that is their intersection has finite index in both. This is because \(g^{-1}Ag \leq_f Stab_G(g^{-1}(v_0)) = g^{-1}Stab(v_0)g \) and the finite valence of the tree \(T \) implies that any two vertex stabilisers are commensurable so this holds for \(Stab_G(v_0) \) and \(g^{-1}Stab(v_0)g \), hence also for \(A \) and \(g^{-1}Ag \). Now for any finite index subgroup \(H \) of \(\mathbb{Z}^n \) there is \(m \in \mathbb{N} \) (depending on \(H \)) such that \(m\mathbb{Z}^n \leq_f H \leq_f \mathbb{Z}^n \) using additive notation here. Thus on applying this to the case where \(\mathbb{Z}^n \) is our subgroup \(A = \langle a_1, \ldots, a_n \rangle \) and \(H \) is \(A \cap g^{-1}Ag \), we have

\[
mA = \langle a_1^m, \ldots, a_n^m \rangle \leq_f A \cap g^{-1}Ag \leq_f A.
\]

In particular for any \(a = a_1^{l_1} \cdots a_n^{l_n} \in A \) with \(l_1, \ldots, l_n \in \mathbb{Z} \), we have that \(a^m \in g^{-1}Ag \) and so the element \(ga^m g^{-1} \) of \(G \) is actually in \(A \). This means that on taking \(a \) to be each of our basis elements \(a_1, \ldots, a_n \) in turn, we have uniquely defined integer coefficients \(g_{ij} \) with

\[
ga_j^m g^{-1} = a_1^{g_{ij}} \cdots a_n^{g_{ij}}
\]

and our definition of the modular map \(\mathcal{M} \) is that it sends \(g \) to the matrix whose \(i,j \)th entry is \(g_{ij}/m \in \mathbb{Q} \).

The monodromy of a GBS\(_n\) group \(G \) is the image \(\mathcal{M}(G) \).

Note that this definition of \(\mathcal{M} \) is independent of the value of \(m \) taken as if we replace \(m \) with \(m' \) for any appropriate \(m' > 0 \) then \((ga^m g^{-1})^{m'} = (gam^m g^{-1})^m \). Moreover for any \(g, h \in G \) we have \(\mathcal{M}(gh) = \mathcal{M}(g)\mathcal{M}(h) \) so that \(\mathcal{M} \) maps to \(GL(n, \mathbb{Q}) \) and is a homomorphism. Clearly the subgroup \(A \) is in the kernel of \(\mathcal{M} \). We also note here that any element \(g \) of \(G \) acting elliptically on the tree \(T \) is sent to the identity by \(\mathcal{M} \) because \(g \) lies in some vertex stabiliser \(Stab(v) \cong \mathbb{Z}^n \) and by finite valence of \(T \) there will be a finite index subgroup \(B \leq_f A \) with \(B \leq Stab(v) \), whereupon \(gb^m = b \) for all \(b \in B \). Thus \(\mathcal{M} \) factors through the decomposition of \(G \) into \(N \times F_r \) above and so can also been thought of as a homomorphism from \(F_r \) to \(GL(n, \mathbb{Q}) \).

In particular if \(r = 0 \) so that the underlying graph \(\Gamma \) is actually a finite tree then \(\mathcal{M} \) is the trivial homomorphism. This can also happen for \(r > 0 \), for instance the HNN extension \(\langle a, b, t \mid [a, b], tat^{-1} = a, tbt^{-1} = b \rangle \) when \(n = 2 \).

Given our modular homomorphism \(\mathcal{M} : G \to GL(n, \mathbb{Q}) \), we can restrict this to a subgroup \(H \) of \(G \). If \(H \leq_f G \) then \(H \) is also a GBS\(_n\) group because the restriction of the action of \(G \) on the tree \(T \) to \(H \) is also cobounded, with edge and vertex subgroups which are finite index subgroups of \(\mathbb{Z}^n \), hence
are all isomorphic to \mathbb{Z}^n too. This description of H gives rise to its own modular homomorphism M_H but we can regard this, up to conjugacy, as the restriction of the modular homomorphism M for G. This is because as G and H are acting on the same tree T, we can first take the same base vertex v_0 in T. Then since $H \leq_f G$, we have that $H \cap \text{Stab}_G(v_0) \leq_f \text{Stab}_G(v_0)$. Thus we can choose our subgroup A to be $H \cap \text{Stab}_G(v_0)$ both when defining M and M_H and we also choose the same ordered basis for A in both cases. We are now in the position that the definition of M_H is exactly the definition of M but just for elements $h \in H$.

3.2 The free abelianisation

If G is a finitely generated group and G' is its commutator subgroup then G/G' is the abelianisation of G. It is a finitely generated abelian group and so is of the form $\mathbb{Z}^k \oplus T$ where the torsion subgroup T is finite. Moreover every abelian quotient of G factors through G/G'. Here we will consider the free abelianisation \overline{G} where we further quotient out by the torsion in the abelianisation to obtain $\overline{G} = \mathbb{Z}^k$ for some k. This has the corresponding universal property that any homomorphism from G to a torsion free abelian group factors through \overline{G}.

If we are given a finite presentation for G with m generators then it is easy to calculate G/G' and \overline{G} by abelianising these relations and considering them as defining a subgroup S of \mathbb{Z}^m so that G/G' is the quotient abelian group \mathbb{Z}^m/S. In fact the process is even easier for \overline{G} because of the lack of torsion: we can work over \mathbb{Q} to get that the rank k of \overline{G} is the dimension of the quotient space \mathbb{Q}^m/R, where \mathbb{Q}^m is the vector space spanned by the given generators for G and R is the subspace spanned by the relators for G, once these relators have been abelianised and regarded as elements of \mathbb{Q}^m. This also says that an element $g \in G$ has infinite order (equivalently is non trivial) in \overline{G} if on expressing g as a word in the generators and abelianising this word, the corresponding \mathbb{Q}^m-vector is not in the subspace R.

This process works out especially well for a GBS_n group G. As before, we take our base vertex v_0, finite index subgroup A of $\text{Stab}_G(v_0)$ and basis a_1, \ldots, a_n for A. On considering the \mathbb{Q}-vector space W of dimension n spanned by this basis, let us consider how this relates to forming the group G as the fundamental group of a finite graph of \mathbb{Z}^n groups and how it also relates to \overline{G}. Each time we introduce a new vertex group V_i and form its amalgamation with the previous vertex groups over the appropriate edge.
group, we are giving an identification of the \(\mathbb{Q}\)-vector space spanned by \(V_i\) with our original vector space \(W\). Thus if there are no stable letters then \(G = \mathbb{Z}^n\). However on taking a stable letter \(t\) with its edge running from the vertex \(v_i\) to the vertex \(v_i'\), this introduces \(n\) new relations in \(G\) of the form

\[tx_1^{l_1} \ldots x_n^{l_n} t^{-1} = y_1^{m_1} \ldots y_n^{m_n}\]

where \(x_1, \ldots, x_n\) is a basis for the vertex group \(V_i\) and \(y_1, \ldots, y_n\) a basis for \(V_i'\). Thus in \(G\) we obtain the abelianised relation \(l_1 x_1 + \ldots + l_n x_n = m_1 y_1 + \ldots + m_n y_n\), so that the corresponding relator can be expressed using our identifications above as an element of \(W\) which is trivial in \(G\). Thus the span of these relators forms a subspace \(R\) of \(W \cong \mathbb{Q}^n\) and our free abelianisation \(\overline{G}\) can be described over \(\mathbb{Q}\) as the quotient vector space \(\mathbb{Q}^r \oplus (W/R)\), where the first summand comes from the stable letters. Note that we can again work out easily whether an element \(g\) of \(G\) is non trivial in \(\overline{G}\) by writing \(g\) in terms of the generators obtained from the graph of groups decomposition and abelianising. Indeed \(g\) will be trivial if and only if each stable letter appears in \(g\) with exponent sum 0 and such that the resulting abelianisation of the word representing \(g\), which will now lie in \(W\), also lies in \(R\). Thus in particular we have from this discussion:

Theorem 3.3 Suppose that \(G\) is a GBS\(_n\) group with base \(\mathbb{Z}^n\)-subgroup \(A\). Then \(A\) embeds in the free abelianisation \(\overline{G}\) if and only if \(R = \{0\}\). Moreover this happens if and only if the the monodromy \(\mathcal{M}(G)\) is trivial because the modular homomorphism is defined by what it does on the stable letters.

Note: from this, we see that the set of elements in \(A\) which are trivial (equivalently have finite order) in the free abelianisation of \(G\) form a subgroup of \(A\). This is because these are the elements of \(A\) which, when considered as elements of \(\mathbb{Q}^n\), lie in the subspace \(R\) of \(W\).

In fact if the monodromy of \(G\) is infinite, it can be further shown that there is a single non-trivial element \(a \in A\) such that for any finite index subgroup \(H\) of \(G\), the image of \(a^i\) in the free abelianisation of \(H\) is trivial whenever \(a^i \in H\). However we will not need this stronger version.

We can now establish a dichotomy in the behaviour of GBS\(_n\) groups (which for \(n = 1\) is shown in [24] Proposition 2.6).

Theorem 3.4 If \(G\) is any GBS\(_n\) group with finite monodromy then \(G\) is virtually \(\mathbb{Z}^n \times F_r\) for some \(r \geq 0\).
Proof. First drop down to a finite index subgroup H of G where H has trivial monodromy. As H is the fundamental group of a finite graph of groups where all of the finitely many edge and vertex groups are commensurable, we can intersect them to get a subgroup B of H which can be used as a base \mathbb{Z}^n-subgroup H. Now let us consider the presentation we obtain for H from this graph of groups decomposition. Our finite generating set consists of generators g_i of the vertex groups along with the stable letters t_j. Now any element $b \in B$ will also lie in any vertex group and so will commute with every element g_i. On taking a stable letter t which is obtained from the edge joining the vertices v_1 and v_2 (possibly the same vertex) with vertex groups V_1, V_2 say and respective edge inclusions $E_1 \leq V_1$ and $E_2 \leq V_2$, we have that $tE_1t^{-1} = E_2$.

But as the monodromy is trivial, there is $M > 0$ (depending on $b \in B$) such that $b^M \in B \cap t^{-1}Bt$ and $tb^M t^{-1} = b^M$. However B lies in every edge and vertex group, so that $b \in E_1$ and hence $tbt^{-1} \in E_2 \cong \mathbb{Z}^n$. Thus tbt^{-1} must be an element in E_2 such that $(tbt^{-1})^M = b^M \in E_2$. Clearly the element b has this property as $B \leq E_2$ as well. Moreover Mth roots are unique in \mathbb{Z}^n, thus $tbt^{-1} = b$.

Hence we conclude that B is normal and indeed central in H. As it lies in (and is normal in) every vertex and edge group, we can consider H/B. This group itself admits a graph of groups decomposition with the same underlying finite graph, but with vertex groups V_i/B and edge groups E_j/B. These are all finite groups so H/B is virtually free. Hence we can pull back a free subgroup of H/B to obtain a subgroup $L \leq H$ with $L/B \cong F_r$. But as this quotient is free the extension splits, so there is a copy of F_r in L with $L = B \times F_r$. As B is central this is simply a direct product, so that G has the finite index subgroup $L \cong \mathbb{Z}^n \times F_r$.

\[\square\]

3.3 Actions of GBS_n groups on arbitrary hyperbolic spaces

We can now use the above to see how a given GBS_n group G and its finite index subgroups H act on hyperbolic spaces. Certainly we have the action of G on its Bass - Serre tree where all elements of the base \mathbb{Z}^n-subgroup A act elliptically. However the point is that if some element a of A is loxodromic
when G acts on a hyperbolic space, the fact that the base subgroup A is commensurated in all of G means that the action must be very restricted.

Theorem 3.5 Suppose the monodromy of a GBS_n group G with given base \mathbb{Z}^n-subgroup A has infinite order. Then there is a non-trivial element $z \in A$ such that for any isometric action of G on a hyperbolic space, the element z does not act loxodromically.

Proof. Consider any isometric action of G on some hyperbolic space X and take an element $a \in A$ which is acting loxodromically. We have the two limit points $p^+ \in \partial X$ for the action of $\langle a \rangle$ and these are the only points in ∂X fixed by any non-trivial power of a. Now for any $g \in G$, we have that A and $g^{-1}Ag$ are commensurable subgroups. As $a \in A$, we can find $j > 0$ such that a^j is in both of these subgroups. In particular $ga^jg^{-1} \in A$ and it acts loxodromically on X because it is a conjugate in G of the element a^j. But as A is abelian, this means ga^jg^{-1} sends the fixed point set of a^j to itself and so swaps or fixes the two points p^+ and p^-. However if these were swapped then the square of ga^jg^{-1} would be a loxodromic element with at least four points, so for every $g \in G$ we have that a^j and ga^jg^{-1} both have the two fixed points p^+ and p^-. But as G acts on $X \cup \partial X$, the latter element actually has fixed points $g(p^+)$ and $g(p^-)$, so $\{p^+, p^-\}$ is preserved by every element of G and hence the action must be lineal of type (3). Here we can have elements of G which swap the two points, but if so then we can avoid this by dropping down to a subgroup of index 2.

Therefore let G_0 be the index 1 or 2 subgroup of G where the action preserves p^+ and p^- pointwise. We can now take the Busemann quasicharacter $q : G_0 \rightarrow \mathbb{R}$ (at p^+ say) which is a homogeneous quasi-morphism on G_0 that restricts to a genuine homomorphism $\theta = q|_{G_0 \cap A}$ on $G_0 \cap A$ (which is amenable). Note that θ is non-trivial because $a \in G_0 \cap A$ is acting loxodromically.

We will now show that we can “lift” θ to G_0, in that there is some homomorphism $\Theta : G_0 \rightarrow \mathbb{R}$ which restricts to θ on $G_0 \cap A$. As G is a GBS_n group with a graph of groups decomposition giving us a presentation for G, we can do the same for G_0 by restricting the action of G on the Bass - Serre tree T to G_0 and then taking a quotient. We already have θ defined on $G_0 \cap A$, which is a finite index subgroup of the vertex group at the base vertex in the finite graph $\Gamma = G_0 \backslash T$ and we can extend Θ to the group generated by all vertex groups but without the relations from the
stable letters. This is because all other defining relations are each given by an isomorphism between finite index subgroups of vertex groups, so we proceed inductively by extending Θ to the image of the edge group in the new vertex group, then we can extend over this vertex group.

However we must also consider the defining relations for \(G_0 \) coming from the stable letters. These are all of the form

\[
x_1^{l_1} \cdots x_n^{l_n} t^{-1} = y_1^{m_1} \cdots y_n^{m_n}
\]

where \(t \) is one of these stable letters. We allow \(\Theta \) to send the stable letters anywhere but \(h_1 := x_1^{l_1} \cdots x_n^{l_n} \) is an element in the vertex group at one end of the edge defining \(t \) and \(h_2 := y_1^{m_1} \cdots y_n^{m_n} \) is in the vertex group at the other end. We must now show that \(\Theta \) is still well defined when these relations of the form \(th_1 t^{-1} = h_2 \) are added. Now \(h_1 \) and \(h_2 \) both lie in vertex stabilisers so by commensurability there will be \(M > 0 \) such that \(h_1^M \) and \(h_2^M \) are both in our base \(\mathbb{Z}^n \)-subgroup \(G_0 \cap A \). But \(t, h_1, h_2 \) all lie in \(G_0 \) which is the domain of the homogeneous quasi-morphism \(q \), thus we have \(q(th_1^M t^{-1}) = q(h_2^M) \).

Now homogeneous quasi-morphisms are invariant under conjugation (because \(|q(yxy^{-1}) - q(x)| \) is bounded independently of \(x \), so we can replace \(x \) with \(x^m \) and let \(m \) tend to infinity), thus this becomes \(q(h_1^M) = q(h_2^M) \). But \(q(h_i^M) = \theta(h_i^M) \) for \(i = 1, 2 \) as \(h_1^M, h_2^M \) are in the domain of \(\theta \) and we have \(\Theta(h_i) = (1/M)\Theta(h_i^M) \) by definition of \(\Theta \) above. Also \(\Theta(th_1 t^{-1}) = \Theta(h_1) \) as we are mapping to \(\mathbb{R} \), so this is also equal to

\[
(1/M)\Theta(h_1^M) = (1/M)\theta(h_1^M) = (1/M)\theta(h_2^M) = (1/M)\Theta(h_2^M) = \Theta(h_2)
\]

so \(\Theta \) is indeed well defined.

We can now finish the proof. The subgroup \(G_0 \) obtained above has index 1 or 2 in \(G \) and there are only finitely many index 2 subgroups in \(G \) as it is finitely generated. Let \(G_2 \) be the intersection of all of these index 2 subgroups, which will have finite index in \(G \). As \(G \) has infinite monodromy, the same is true for \(G_2 \) where we can take our base \(\mathbb{Z}^n \)-subgroup to be \(G_2 \cap A \). Thus by Theorem 3.3 applied to \(G_2 \) with base \(\mathbb{Z}^n \)-subgroup \(G_2 \cap A \), there is some non-identity \(z \in G_2 \cap A \) which is trivial in the free abelianisation of \(G_2 \).

Let us now suppose that \(G \) does have an action on some hyperbolic space \(X \) in which \(z \) is loxodromic, so we can run through the above argument with \(z \) equal to \(a \). But then we will obtain a homomorphism \(\Theta \) from some index 2 subgroup of \(G \) to \(\mathbb{R} \) with \(\Theta(z) \neq 0 \) and this subgroup will contain \(G_2 \). Thus we can restrict \(\Theta \) to \(G_2 \) which is a contradiction because \(z \) is trivial in the
free abelianisation of G_2.

Note that this theorem can be used to complement Theorem 3.4 in that if a GBS_n group G has infinite monodromy then it can have no finite index subgroup H which is isomorphic to a a direct product of a free group and copies of \mathbb{Z}. This is because H would have infinite monodromy as well, thus by Theorem 3.5 there would be a non-trivial element of H which cannot be loxodromic in any action of H on a hyperbolic space. But if H has the above form then we can use actions on trees to make any given element loxodromic.

This at least deals with a potential ambiguity which we have previously glossed over: that G could have different decompositions as a generalised Baumslag - Solitar group (for instance \mathbb{Z}^{n+1} is both a GBS_{n+1} group in a trivial way where the underlying graph is a single vertex and also a GBS_n group $\mathbb{Z}^n \times \mathbb{Z}$ with graph a vertex and an edge, where the stable letter acts trivially by conjugation). We see now that whether the monodromy is finite or infinite (which is our main concern in this paper) is an invariant only of the group G, not of how it decomposes as a generalised Baumslag - Solitar group.

In fact in most cases the modular homomorphism itself and thus the monodromy (up to conjugation in $GL(n, \mathbb{Q})$) is well defined. This can be seen by adapting the result in [17] Corollary 6.10 which achieves this for $n = 1$. We give here an outline of the argument: if a group G has two decompositions as a generalised Baumslag - Solitar group (with the first of dimension n say) then this gives rise to two actions of G on trees T_1 and T_2 say and hence two partitions $\{E_1, H_1\}$ and $\{E_2, H_2\}$ of G into elliptic and hyperbolic elements according to these actions. But if these partitions are the same then the resulting modular homomorphisms are the same, because the elliptic elements are sent to the identity and the image of a hyperbolic element g is determined by how it conjugates elliptic elements, which is a property of the group only.

Thus we are done if we have a characterisation of the hyperbolic and elliptic elements of G which does not depend on the particular action. In [17] this is achieved (in all but some basic cases) for $n = 1$ by showing that the elliptics are the elements of G which are commensurable with all their conjugates. Here we can instead argue: suppose that $g \in G$ lies in $E_2 \setminus E_1$ so that it fixes a vertex v_2 when G acts on T_2 but which is hyperbolic when G acts on T_1. The action of G on T_2 gives rise to a generalised Baumslag -
Solitar decomposition of G where we can take the base group to be $Stab_G(v_2)$. Thus on taking g equal to a in the proof of Theorem 3.5 where we use the action of G on T_1 with g loxodromic, we conclude by the same argument that G fixes setwise the axis of g. This means that this GBS_n decomposition of G gives rise to an invariant line when G acts on the Bass - Serre tree and so G can only be equal to \mathbb{Z}^n, $\mathbb{Z}^n \rtimes_\alpha \mathbb{Z}$ for α some automorphism of \mathbb{Z}^n, or $\mathbb{Z}^n *_C \mathbb{Z}^n$ where C has index 2 in both copies of \mathbb{Z}^n. These are the basic cases so now suppose that G is not isomorphic to one of these groups. We conclude that g could not have been loxodromic and thus $E_2 \subseteq E_1$. We can now swap the actions and argue again to conclude that $E_1 = E_2$, $H_1 = H_2$ and the dimension n is the same in both cases.

We finish this section by noting though that even though the modular homomorphism is well defined (away from these basic cases), a group might have many decompositions as a generalised Baumslag - Solitar group which are not obviously related. For instance the isomorphism problem is open just amongst GBS_1 groups.

4 Acylindrical actions on products of hyperbolic spaces

4.1 Product acylindrical actions

Given a group G acting by isometries on a metric space X, a well known definition is that of G acting acylindrically: that is, given any $\epsilon \geq 0$ we have N, R such that if $x, y \in X$ are two points which are at least distance R apart then the set of group elements moving both x and y by at most ϵ has cardinality at most N. This definition is generally used when X is a hyperbolic metric space whereupon it gives rise to the concept of a group being acylindrically hyperbolic. This is where there exists an acylindrical action which is of type (5) in the earlier list (in fact actions of types (2) and (4) can never be acylindrical on hyperbolic spaces) and which implies a number of consequences, for instance such a group must be SQ-universal.

Observe that the definition of an acylindrical action makes sense for any group action by isometries on any metric space. However such a concept is not useful in this generality. First of all if X is bounded then any action is trivially acylindrical, so any suitable notion needs to avoid this case. (Indeed even if X is unbounded then an acylindrical action can still have bounded
orbits, but not all actions with bounded orbits need be acylindrical.) But even this is problematic because any geometric action on any metric space is uniformly metrically proper, which in turn implies that the action is acylindrical. Therefore any finitely generated group acts acylindrically on its own Cayley graph and consequently there is no chance that an acylindrical action automatically implies any group theoretic consequences, even if we could agree on what a suitable acylindrical action meant in this context.

But one option is to restrict the metric space \(X \) to being hyperbolic-like or to have non-positive curvature in some sense, whilst making it more general than just a hyperbolic space. In this section we look at what happens when we allow \(X \) to be a finite product of hyperbolic spaces rather than just one. This will allow us to create obstructions to GBS\(_n\) groups having such an action, which we will then compare to the class of hierarchically hyperbolic groups in the next section. Suppose we have a product of \(r \) metric spaces \(P = X_1 \times \ldots \times X_r \) (where \(P \) is equipped with the \(\ell_1 \) product metric) and an isometric action of a group \(G \) on \(P \). Note that \(\text{Isom}(X_1) \times \ldots \times \text{Isom}(X_r) \) is naturally a subgroup of \(\text{Isom}(X) \) using the diagonal action. We say that \(G \) acts on \(P \) preserving factors if the image of this action lies inside \(\text{Isom}(X_1) \times \ldots \times \text{Isom}(X_r) \), whereupon we can think of any element \(g \in G \) as having an expression \((g_1, \ldots, g_r)\) with \(g_i \) an isometry of \(\text{Isom}(X_i) \).

We now introduce our main definition of this section.

Definition 4.1 If a group \(G \) acts isometrically on \(P = X_1 \times \ldots \times X_r \) where each \(X_i \) is a hyperbolic space then we say that the action is **product acylindrical** if the action on \(P \) is acylindrical, preserves the factors of \(P \) and such that there is an element \(g = (g_1, \ldots, g_r) \) in \(G \) where some \(g_i \) acts as a loxodromic element on the space \(X_i \).

Note that if \(r = 1 \) then, as opposed to the standard definition of an acylindrically hyperbolic group, we allow actions of type (3) (whereupon our group will be virtually cyclic) with an infinite order element acting loxodromically as we will not need to treat this as a special case. However in common with the standard definition, we rule out any action with bounded orbits.

We make some points about the above definition. First it need not be the case that if \(G \) acts acylindrically on on a space \(X \) and arbitrarily on another space \(Y \) then the product action on \(X \times Y \) is acylindrical. (One could take any acylindrical action of some group \(G \) on \(X \) where a point has an infinite stabiliser and then set \(Y = \mathbb{R} \) with \(G \) acting as the identity on \(Y \).) However if \(G \) acts uniformly metrically properly on \(X \) and arbitrarily on \(Y \) then the
product action on $X \times Y$ will also be uniformly metrically proper and hence will be an acylindrical action. Thus if G does have a product acylindrical action then we can say nothing in general about the action on any individual factor. Moreover we do obtain groups which have a product acylindrical action but which are not themselves acylindrically hyperbolic, for instance $F_2 \times F_2$ or Burger-Mozes-Wise groups acting geometrically on a product of two trees. As these last groups can be virtually simple, we also note that we do not have any result for product acylindrical actions of the form: a group with such an action is SQ-universal or virtually cyclic which we do have for unbounded acylindrical actions on a single hyperbolic space.

In Definition 2.1 we saw a division of hyperbolic isometries into a trichotomy of elliptic/loxodromic/parabolic elements. Note that we still have this trichotomy for a group acting on an arbitrary metric space X: elliptic elements have bounded orbits, loxodromic elements have orbits which quasi-isometrically embed in X and everything else is a parabolic element. However in general we might not have a nice description of how these isometries act on the boundary of X (indeed there might not even be a suitable boundary of X).

However we do have a simple way of classifying an element of a group acting on a finite product of metric spaces preserving factors if we know how this element is behaving on each of the factors.

Lemma 4.2 Let G act on the product of metric spaces $P = X_1 \times \ldots \times X_r$ by isometries preserving factors and take $g = (g_1, \ldots, g_r) \in G$ where g_i acts isometrically on X_i. Then:

(i) g acts elliptically on P if and only if g_i acts elliptically on X_i for each $1 \leq i \leq r$.

(ii) g acts loxodromically on P if and only if there is some i where g_i acts loxodromically on X_i.

(iii) g acts parabolically on P if and only if no g_i acts loxodromically on X_i but some g_i acts parabolically on X_i.

Proof. The first case is straightforward to establish in both directions, just by using the fact that if in the product space $P = X_1 \times \ldots \times X_r$ we have points $x = (x_1, \ldots, x_r)$ and $y = (y_1, \ldots, y_r)$ then $d_{X_i}(x_i, y_i) \leq d_P(x, y)$. The same is true for the reverse implication of the second case.

Thus let us now suppose without loss of generality that g_1 acts parabolically on X_1 and g_i does not act loxodromically on X_i for any $1 \leq i \leq r$. Then the orbit of any point $x_1 \in X_1$ under $\langle g_1 \rangle$ will be unbounded so the orbit of
any \(x \in P \) under \(\langle g \rangle \) will be too. Thus in order to establish the forward direction of (ii) and the reverse direction of (iii), we just need to show that \(g \) is not loxodromic, for which we can use stable translation length. In particular for any point \(x = (x_1, \ldots, x_r) \in P \), we have \(d_i(g^m(x_i), x_i)/m \) tending to zero as \(m \) tends to infinity because no \(g_i \) acts loxodromically. But then by adding and using inequalities we have that \(d_P(g^m(x), x)/m \) tends to zero too, thus we cannot have \(c > 0 \) and \(\epsilon \geq 0 \) with \(d_P(g^m(x), x) \geq cm - \epsilon \) for all \(m \in \mathbb{N} \) and so \(g \) does not act loxodromically on \(P \). Finally if \(g \) acts parabolically on \(P \) then we cannot be in Cases (i) or (ii) by what we have already shown.

\[\square \]

It was shown in [6] Lemma 2.2 that if \(G \) acts acylindrically on a hyperbolic space \(X \) then no element can act parabolically. For a general metric space \(X \), we can certainly have acylindrical actions with elements acting parabolically. For instance take any finitely generated group \(G \) with a distorted infinite cyclic subgroup \(\langle g \rangle \). Then \(G \) acts geometrically and hence acylindrically on its own Cayley graph, but the action of \(g \) here will be parabolic.

We now show however that we cannot have parabolic elements in a product acylindrical action.

Theorem 4.3 Suppose that a group \(G \) acts acylindrically and preserving factors on the product \(P \) of hyperbolic spaces \(X_1 \times \ldots \times X_r \). Then no element of \(G \) acts as a parabolic element on \(P \).

Proof. Suppose otherwise, so that by Lemma 4.2 we have \(g = (g_1, \ldots, g_r) \) acting on \(P \) where without loss of generality the action of \(g_1 \) on \(X_1 \) is parabolic and none of the actions of \(g_i \) on \(X_i \) are loxodromic for \(1 \leq i \leq r \). We now invoke the trichotomy for actions on hyperbolic spaces which is Theorem 13,1 in [7]. This says that there is \(C > 1 \) such that if \(X \) is a \(\delta \)-hyperbolic space (where we can assume \(\delta > 0 \)) and \(S \) is a finite subset of \(\text{Isom}(X) \) which is symmetric and contains 1 then in two of the cases \(\langle S \rangle \) contains a loxodromic element. In the remaining case the joint minimum displacement \(L(S) \) is at most \(C\delta \). Here the joint minimum displacement \(L(S) \) is defined to be the infimum over all points \(x \in X \) of the joint displacement \(\max_{s \in S} d(x, s(x)) \).

We thus apply this result to the group \(\langle g_i \rangle \) acting on the \(\delta_i \)-hyperbolic space \(X_i \). We have no loxodromic elements in \(\langle g_i \rangle \), thus for any finite subset of \(\langle g_i \rangle \) which is symmetric and contains 1, there is some point \(x_i \in X_i \) which is moved by at most distance \(2C\delta_i \) by any \(s \in S \). In particular for any \(N > 0 \),
this applies to the set $S_N = \{g_i^{−N}, \ldots, 1, g_i, \ldots, g_i^N\}$. We will label the point obtained above when this result is applied with $S = S_N$ as $x_i^{(N)} \in X_i$.

We now show that this action of $\langle g \rangle$ on P is not acylindrical and hence nor is the action of G on P. Set ϵ to be $2C\delta r$ where $\delta = \max(\delta_1, \ldots, \delta_r)$ and suppose we are given R and N. Now as g_1 does act parabolically on X_1, the orbit of $x_1^{(N)}$ under $\langle g_1 \rangle$ is not bounded and so we can find g_1^K where, on setting $y_1^{(N)} := g_1^K(x_1^{(N)})$, we have $d_1(x_1^{(N)}, y_1^{(N)}) \geq R$ where d_i is the distance in X_i.

Now for all $1 \leq i \leq r$ and $j \leq |N|$ we have that $d_i(g_i^j(x_i^{(N)}), x_i^{(N)}) \leq 2C\delta$ and also

$$d_i(g_i^j(y_i^{(N)}), y_i^{(N)}) = d_i(g_i^{K+j}(x_i^{(N)}), g_i^K(x_i^{(N)})) = d_i(g_i^j(x_i^{(N)}), x_i^{(N)})$$

which therefore is at most $2C\delta$ as well. Thus if we take the two points $x = (x_1^{(N)}, \ldots, x_r^{(N)})$ and $y = (y_1^{(N)}, \ldots, y_r^{(N)})$ of P then we have $d(x, y) \geq d_1(x_1^{(N)}, y_1^{(N)}) \geq R$ but the $2N + 1$ distinct elements g_i^j for $j \leq |N|$ satisfy

$$d(g_i^j(x), x) = d_1(g_i^j(x_1^{(N)}), x_1^{(N)}) + \ldots + d_r(g_i^j(x_r^{(N)}), x_r^{(N)}) = d(g_i^j(y), y) \leq 2C\delta r$$

so that each of these elements moves both x and y by at most ϵ.

\[\square\]

4.2 Acylindrical actions of generalised Baumslag-Solitar groups

A generalised Baumslag-Solitar group can never be acylindrically hyperbolic. This can be seen by using [27] Theorem 3.7, which states that if G is acylindrically hyperbolic and has a subgroup H where $H \cap gHg^{-1}$ is infinite for all $g \in G$ then H must itself be acylindrically hyperbolic. For a GBS_n group G we can of course take H to be a base \mathbb{Z}^n-subgroup for a contradiction.

However certainly there are GBS_n groups which possess a product acylindrical action, for instance $\mathbb{Z}^n \times F_r$ has an obvious geometric (and hence acylindrical) action on $\mathbb{R} \times \ldots \times \mathbb{R} \times T_{2r}$ where T_d is the regular tree of degree d. We are interested in when a GBS_n group G has a finite index subgroup H possessing a product acylindrical action. (Note that even for acylindrical hyperbolicity, it is not known whether H having this property and $H \leq_f G$ implies that G has this property too. See [28] which is a correction to [27].
However if we consider the property of virtually having a proper acylindrical action then we can now give a complete answer in the case of GBS_n groups.

Theorem 4.4 For any $n \geq 1$, a GBS_n group G has a finite index subgroup H possessing a product acylindrical action if and only if the monodromy of G is finite.

Proof. First if the monodromy of G is finite then by Theorem 3.4 we have $H \leq f G$ with H of the form $\mathbb{Z}^n \times F_r$ and this has a geometric, hence acylindrical, action on the product of $n + 1$ hyperbolic spaces which preserves factors.

Now suppose that the monodromy of G is infinite. Then so will the monodromy of H for any finite index subgroup H, so we just need to rule out that G has a product acylindrical action.

We thus suppose that G acts on the product P of hyperbolic spaces $X_1 \times \ldots \times X_r$ by isometries, and that this action preserves factors and is acylindrical. By Theorem 3.5 we have an infinite order element z of G which lies in our base \mathbb{Z}^n-subgroup A and which cannot be loxodromic in any action of G on a hyperbolic space. Hence on splitting z into its component parts (z_1, \ldots, z_r) with each z_i acting as an isometry of the hyperbolic space X_i, we have that z_i must act parabolically or elliptically on X_i. By Lemma 4.2 z must be a parabolic or elliptic element in the action of G on P. But by Theorem 4.3 there are no parabolic elements if we have a product acylindrical action of G.

Thus z must be an elliptic element. Whilst we can certainly have acylindrical actions with elliptic infinite order elements, or indeed with every element acting elliptically, we are not in the latter case here because in the definition of a product action we must have some element of G which is acting loxodromically.

Hence let $g \in G$ be this element, with $g = (g_1, \ldots, g_r)$ and without loss of generality g_1 acts loxodromically on X_1. Let us set G_2 to be the intersection of the index 2 subgroups of G as before and note that by the proof of Theorem 3.5 we can take for z any non-identity element of $A \cap G_2$ which is trivial in the free abelianisation of G_2. Consider the subset Z of $A \cap G_2$ consisting of elements with this property along with the identity and recall that this forms a subgroup of $A \cap G_2$ and so it is a finitely generated free abelian group. It is also infinite (for instance it contains all powers of a given $z \in Z$). Now for
the element g as above, we can replace it by a power (which we will continue to call g) which lies in G_2.

We will show that this action of G on P cannot in fact be acylindrical. Pick any point $x_0 \in X$ and let D be an upper bound for the set $\{d_P(z(x_0), x_0) \mid z \in Z\}$. This exists because every element z is acting elliptically and so the orbit of x under Z is bounded, because if for instance z_1, z_2 is a generating set for Z then $d_P(z_1^c z_2^c(x_0), x_0) \leq d_P(z_1^c(x_0), x_0) + d_P(z_2^c(x_0), x_0)$ and this is bounded above by $d_2 + d_1$ where d_i are the bounds for the orbit of x under the elliptic subgroups $\langle z_i \rangle$. This argument clearly generalises to arbitrary finite rank as Z is abelian.

Set $\epsilon = D$ and suppose we are given any $R > 0$. As g acts loxodromically, there will exist $K > 0$ such that $d_P(g^K(x_0), x_0) \geq R$ and set $y_R := g^K(x_0)$. Now by definition of the modular homomorphism, there will be an integer $m > 0$ (depending on R) such that $g^K z^m g^{-K}$ is in our base subgroup A and hence in $G_2 \cap A$ as $g^K \in G_2$. But note that if z^m is trivial in the free abelianisation of G_2 then so is $g^K z^m g^{-K}$ as $g^K \in G_2$, so z^m and $g^K z^m g^{-K}$ will have the same image in the free abelianisation of G_2. Notice this also works for powers z^{im} and $g^K z^{im} g^{-K}$ for any $i > 0$.

Thus we have infinitely many elements $\{g^K z^{im} g^{-K} \mid i \in \mathbb{N}\}$ (which are distinct because z^{im} are) lying in Z and so they each move x_0 by at most a distance D in P. But clearly we also have

$$d_P(g^K z^{im} g^{-K}(y_R), y_R) = d_P(g^K z^{im}(x_0), g^K(x_0)) = d_P(z^{im}(x_0), x_0)$$

which is at most D, and so this infinite set of elements moves both x_0 and y_R a distance at most ϵ, but $d_P(x_0, Y_R) \geq R$. Thus G is not acting acylindrically on P. □
5 Hierarchically hyperbolic groups and Generalised Baumslag - Solitar groups

5.1 Hierarchically hyperbolic groups

The notion of a hierarchically hyperbolic space (HHS) was introduced in [3] as a way of generalising hyperbolic spaces to include mapping class groups and many CAT(0) cube complexes. We do not give a definition here but roughly speaking an HHS is a quasigeodesic metric space X together with a structure given in terms of projections $\pi_i : X \to U_i$ to a family (infinite in general) of hyperbolic spaces $\{U_i \mid i \in I\}$ called the domains (these spaces need not be proper in general and they can also be bounded). A hierarchically hyperbolic group (HHG) G is not merely a finitely generated group quasi-isometric to a HHS but one where there is a HHS X where the group G acts (or rather quasi-acts) geometrically on X and permutes the family of hyperbolic spaces by isometries. This family also has a nesting and an orthogonality relation. If G is a HHG then we can take X to be the Cayley graph of G with respect to a finite generating set along with the usual action of G on itself by left multiplication (thus without loss of generality we do have a genuine action of G on X rather than a quasi-action). We can also assume without loss of generality that the image $\pi_i(G)$ is coarsely dense in U_i and that this is uniform over $i \in I$.

At this point we might wonder what properties are possessed by HHGs. We have:

(i) Hyperbolic groups are HHGs (this is seen by taking the family of hyperbolic spaces to be a single hyperbolic space).

(ii) If G is an HHG and $H \leq_f G$ then H is an HHG ([2] Lemma 2.25).

(iii) If G_1 and G_2 are HHGs then so is $G_1 \times G_2$ ([4] Corollary 8.28)

We might also wonder about obstructions for a given group G to be an HHG. Here we have:

(1) Any HHG G is finitely presented and has quadratic isoperimetric inequality ([4] Corollary 7.5).
(2) Given any finitely generated subgroup H of an HHG G, either H is virtually abelian or $F_2 \leq H$ ([14] Theorem 9.15 where the condition of being finitely generated is not used, but see also the correction in [15]).

(3) Every infinite order element $g \in G$ is undistorted in G with respect to word length of a finite generating set (see [14] Theorem 7.1 but again see also the correction in [15]).

Note that for each ordered pair of these three statements, there exists a group satisfying the first but not the second.

More recently another obstruction was found in [30]. We take the following result from Remark 4.9 of that paper.

Theorem 5.1 If G is a HHG then there exist finitely many hyperbolic spaces X_1, \ldots, X_r and an isometric action of some finite index subgroup H of G on the product space $P = X_1 \times \ldots \times X_r$ (with the l_1 metric) such that H preserves each factor X_i and H acts acylindrically on the product P. If G is infinite then each X_i is unbounded and there exists a loxodromic element in the action of H on some X_i, thus this action of H is product acylindrical.

Proof. Theorem 3.2 of [30] shows that for any HHG G there is a finite G-invariant set $W = \{W_1, \ldots, W_r\}$ of unbounded domains which are pairwise orthogonal and such that any unbounded domain U_i is nested in one of these W_j. In the case when G is finite W is necessarily empty as all domains will be bounded. Conversely an HHS with all domains bounded is itself bounded, so whenever G is infinite there will be some unbounded domain and therefore W is non empty.

Consequently there is a finite index subgroup H of G with $H(W_j) = W_j$ for all $1 \leq j \leq r$ and H acts by isometries on each domain W_j. Moreover the action of H on each W_j is cobounded. This is because we can assume for any domain U_i and any $g \in G, x \in X(= G)$ that $g(\pi_i(x)) = \pi_i(gx)$ by [15] Remark 2.1. But we mentioned above that $\pi_i(G) = G(\pi_i(id))$ is coarsely dense and therefore so is $\pi_i(H) = H(\pi_i(id))$ as H has finite index in G. However any cobounded action of a group on an unbounded hyperbolic space must contain a loxodromic element, as mentioned above when we listed the five types of action.

We can now get H to act on the product $W_1 \times \ldots \times W_r$ with the l_1 metric of these unbounded domains using the diagonal action. This action clearly preserves factors and we have said that it will contain a loxodromic element. But as pointed out in [30] Remark 4.9, the proof in [3] Theorem 14.3 that G
acts acylindrically on S in the case where \mathcal{W} consists of the single unbounded domain S applies equally to the above action of H on $W_1 \times \ldots \times W_r$ which preserves factors and contains a loxodromic element in the action, thus this action of H is product acylindrical.

\[\square\]

5.2 Generalised Baumslag-Solitar groups are not generally HHGs

We can now use the results above for our main application. Our initial question might be which generalised Baumslag-Solitar groups are HHGs. However it is possible for a group G to have a finite index subgroup which is an HHG but for G not to be. This was shown in [30] Corollary 4.5 by using Theorem 3.2 in that paper which we have already quoted above. Specifically they show that the (orientation preserving) $(3, 3, 3)$ triangle group is not an HHG but of course it has the finite index subgroup \mathbb{Z}^2 which is. As a group G which is virtually an HHG will still have good group theoretic and geometric properties as these will be inherited from the finite index subgroup, we now give a complete answer to which generalised Baumslag-Solitar groups are virtually HHGs.

Corollary 5.2 If G is a GBS$_n$ group then G is virtually a HHG if and only if G has finite monodromy.

Proof. If G has finite monodromy then G is virtually $\mathbb{Z}^n \times F_r$ by Theorem 3.4 and the latter group is an HHG as it is a direct product of HHGs.

Now suppose the GBS$_n$ group G has a finite index subgroup L which is a HHG. By Theorem 5.1 there is some finite index subgroup H of L which has a product acylindrical action (unless H is finite, in which case G was not a generalised Baumslag-Solitar group). But H is then a finite index subgroup of G and so by Theorem 4.3 we have that the monodromy of G must be finite.

\[\square\]

The result above in [30] that the $(3, 3, 3)$ triangle group is not a HHG even though it is virtually \mathbb{Z}^2 established that being a HHG is not a quasi-isometry invariant and indeed not even a commensurability invariant. However whenever we have a property P of abstract groups which is invariant under taking
finite index subgroups, as is the case for being a HHG, we can recover a commensurability invariant by using the property of being virtually \mathcal{P}. Thus although [30] tells us that being a HHG is not a commensurability invariant and thus not a quasi-isometric invariant, being virtually a HHG is certainly a commensurability invariant so the obvious question now is whether it is preserved under quasi-isometry. By our results here along with a famous recent example of Leary - Minasyan, we can show the answer is no.

Theorem 5.3 The Leary - Minasyan group in [23] given by the finite presentation

$$L = \langle t, a, b \mid [a, b], ta^2b^{-1}t^{-1} = a^2b, tab^2t^{-1} = a^{-1}b^2 \rangle$$

is a GBS_2 group which is not virtually a HHG but which is quasi-isometric to a HHG.

Proof. This group (which is a CAT(0) group) is an HNN extension of $\mathbb{Z}^2 = \langle a, b \rangle$ with edge subgroups having index 5. It is also shown there that L acts properly and cocompactly by isometries on the product of the regular simplicial tree T_{10} and \mathbb{R}^2. Also acting properly and cocompactly by isometries on this space is the group $M = \mathbb{Z}^2 \times F_5$, so L and M are both quasi-isometric to this space and hence by Svarc - Milnor to each other.

Now M is clearly a HHG. Note that L is a GBS_2 group with base \mathbb{Z}^2-subgroup $\langle a, b \rangle$ by using the graph of groups decomposition of one vertex and one edge associated to the HNN extension. The monodromy is determined by the conjugation action of the single stable letter and we can work this out explicitly by noting that the above relations imply that

$$ta^5t^{-1} = a^3b^4 \text{ and } tb^5t^{-1} = a^{-4}b^3$$

both hold in G. Thus the monodromy of L is generated by the matrix

$$\left(\begin{array}{cc} \frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{array} \right)$$

which has infinite order. Hence L has infinite monodromy and is not virtually a HHG by Corollary [5.2]
Property (QT) is not invariant under quasi-isometry

Another property of groups which, like HHGs, considers how a group can act on different hyperbolic spaces, is Bestvina, Bromberg and Fujiwara’s property (QT) from [5]. Here a quasitree will always be a graph equipped with its path metric which is quasi-isometric to a simplicial tree but which need not be locally finite. A finitely generated group G (equipped with the word metric with respect to some finite generating set) is said to have (QT) if it acts by isometries on a finite product P of quasitrees equipped with the ℓ_1 product metric such that the orbit map (using an arbitrary basepoint of P) is a quasi-isometric embedding from G to P. This is a strong definition: for instance it implies that this action is metrically proper. Nevertheless it is shown in [5] that mapping class groups and all residually finite hyperbolic groups have (QT). It is also a consequence of [13] that every Coxeter group has (QT).

Moreover property (QT) has good closure properties, in fact these are better than for HHGs. It is certainly the case that if G has (QT) and H has finite index in G then H also has (QT) but the definition ensures that it also holds more generally when H is an undistorted finitely generated subgroup of G. Moreover if G_1 has (QT) via an action on the space P_1 and G_2 on the space P_2 then it can be checked directly that $G_1 \times G_2$ has (QT) by letting it act on the direct product $P_1 \times P_2$ (with the ℓ_1 product metric) using the action on each factor and summing the word metrics on G_1 and G_2, which is the word metric on $G_1 \times G_2$ with the obvious generating set.

However property (QT) is also a commensurability invariant because if H has index i in G and H acts isometrically on the product P of quasitrees then we can induce an isometric action of G on the product P^i of copies of P. This will also turn the orbit map under G into a quasi-isometric embedding. In particular a group which virtually has (QT) does itself have (QT). Therefore the questions of whether possessing (QT) and virtually possessing (QT) are quasi-isometry invariants are in fact the same question. Here we will answer this by first considering how an isometry on a product of graphs $\Gamma_1 \times \ldots \times \Gamma_r$ (each equipped with the path metric and then using the ℓ_1 product metric) breaks up, or at least virtually breaks up, into individual isometries on each Γ_i. That this can be done using the ℓ_∞ metric is a result of W. Malone and we will now mimic his proof for the (easier) ℓ_1 case.
Theorem 6.1 Suppose that \(X = \Gamma_1 \times \ldots \times \Gamma_m \) is a finite product of connected graphs, where each \(\Gamma_i \) has the induced path metric and \(X \) has the \(l_1 \) or the \(l_\infty \) product metric. Suppose that \(G \) is any group acting by isometries on \(X \). Then \(G \) has a finite index subgroup \(H \) which preserves factors and acts as an isometry on each factor.

Proof. On giving a graph the induced path metric, it becomes not just a metric space which is geodesic but a geodesic metric space which is locally uniquely geodesic. Thus if \(X \) is given the \(l_\infty \) metric then this result is a direct consequence of [25], which is established by using the fact that for certain directions in the product space, geodesics are unique if they are unique in the factors. This is certainly true in an \(l_1 \) product space if we travel “horizontally/vertically”, so in this case we proceed as follows:

Lemma 6.2 Let \(X = X_1 \times \ldots \times X_m \) have the \(l_1 \) product metric \(d_X \) for geodesic metric spaces \((X_1, d_1), \ldots , (X_m, d_m)\). Suppose we have two points \(x, y \in X \) of the form

\[
x = (x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_m)
\]

\[
y = (x_1, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_m)
\]

for \(1 \leq i \leq m \). Then any geodesic between \(x \) and \(y \) only varies in the \(i \)th coordinate. Conversely if we have two points \(x, y \in X \) which differ in at least two coordinates then there is more than one geodesic from \(x \) to \(y \) in \(X \).

Proof. Suppose we have a (unit speed) geodesic \(\gamma : [0, d] \rightarrow X \) from \(x \) to \(y \) where \(d = d_X(x, y) \). If there is \(j_0 \neq i \) and \(t \in (0, d) \) such that the \(j_0 \)th coordinate \(u_{j_0} \) of \(\gamma(t) = (u_1, \ldots, u_m) \) is not equal to \(x_{j_0} \) then

\[
d_i(x_i, y_i) = d_X(x, y) = d(x, \gamma(t)) + d(\gamma(t), y) = \sum_{j=1, j\neq i}^m (d_j(x_j, u_j) + d_j(u_j, x_j)) + d_i(x_i, u_i) + d_i(u_i, y_i) \geq d_{j_0}(x_{j_0}, u_{j_0}) + d_{j_0}(u_{j_0}, x_{j_0}) + d_i(x_i, u_i) + d_i(u_i, y_i) > d_i(x_i, y_i) \text{ as } x_{j_0} \neq u_{j_0}
\]

which is a contradiction.

Now suppose we have two points \(x = (x_1, \ldots, x_m) \) and \(y = (y_1, \ldots, y_m) \) in \(X \) which differ in (without loss of generality) at least the first two coordinates. Take constant speed geodesics \(\gamma_i \) in each \(X_i \) running from \(x_i \) to \(y_i \) and set

\[
\delta_1(t) = (x_1, \gamma_2(t), \ldots, \gamma_m(t)), \delta_2(t) = (\gamma_1(t), y_2, \ldots, y_m)
\]
and

$$\delta_3(t) = (\gamma_1(t), x_2, \gamma_3(t), \ldots, \gamma_m(t)), \delta_4(t) = (y_1, \gamma_2(t), y_3, \ldots, y_m)$$

where in δ_1 the geodesics $\gamma_2, \ldots, \gamma_m$ are reparametrised to have domain $[0, d_X((x, y) - d_1(x_1, y_1))]$ but γ_1 and hence δ_2 remain unit speed. We also do the same for δ_3 and δ_4. Then it is easily checked that following δ_1 then δ_2 and also following δ_3 then δ_4 are both unit speed geodesics from x to y. Moreover they are distinct as the first geodesic passes through a point that projects to (x_1, y_2) in the first two coordinates, whereas the second geodesic never does since $x_1 \neq y_1$ and $x_2 \neq y_2$.

Now we return to the setting in Theorem 6.1. Each Γ_i is a geodesic metric space (which we assume without loss of generality is not a single point). Thus given any isometry g of X, take any point $x = (x_1, \ldots, x_i, \ldots, x_m)$ in X and for a given $1 \leq i \leq m$, let z_i be another point in Γ_i near x_i such that there is only one geodesic γ_i in Γ_i from x_i to z_i. Then by Lemma 6.2 we have that $\gamma(t)$, which is equal to $(x_1, \ldots, \gamma_i(t), x_{i+1}, \ldots, x_m)$, is the unique geodesic in X between x and $z = (x_1, \ldots, x_{i-1}, z_i, x_{i+1}, \ldots, x_m)$ and so under g it must map to a unique geodesic between $g(x)$ and $g(z)$, by considering g^{-1}. Thus by Lemma 6.2 again these two points (which are not the same because g is a bijection) differ in only one coordinate, say the jth.

Now take y_i to be an arbitrary point in Γ_i. Given any geodesic in Γ_i from x_i to y_i, we can split it into a finite number of subgeodesics, with some overlap that is more than a point, where each subgeodesic is the unique geodesic between its own endpoints. Thus the image of each of these subgeodesics under g is a subset of X where only one coordinate varies, and as these subgeodesics overlap this will always be the jth coordinate. In other words given $1 \leq i \leq m$ we have $1 \leq j \leq m$ such that for fixed $x_1 \in \Gamma_1, \ldots, x_i-1 \in \Gamma_{i-1}, x_{i+1} \in \Gamma_{i+1}, \ldots, x_m \in \Gamma_m$ there is $y_1 \in \Gamma_1, \ldots, y_{j-1} \in \Gamma_{j-1}, y_{j+1} \in \Gamma_{j+1}, \ldots, y_m \in \Gamma_m$ and a function $f : \Gamma_i \rightarrow \Gamma_j$ with

$$g(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_m) = (y_1, \ldots, y_{j-1}, f(x), y_{j+1}, \ldots, y_m)$$

for all $x \in \Gamma_i$. Moreover f is a bijection and an isometry because g is. By varying over all m coordinates we see that g permutes $\Gamma_1, \ldots, \Gamma_m$ and for each $1 \leq k \leq m$ it acts as an isometry from Γ_k to $\Gamma_{g(k)}$ (but clearly only
PROPERTY (QT) IS NOT IN Variant UNDER QUASI-ISOMETRY

isometric factors can be permuted). We can therefore set H to be the kernel of this finite permutation action, so that H has finite index in G, preserves factors and acts as an isometry on each factor.

We can now use the same example as for HHGs to show that property (QT) is not a quasi-isometric invariant.

Theorem 6.3 A GBS$_n$ G group with infinite monodromy does not possess any metrically proper action by isometries on any finite product of graphs (using the path metric) which are quasitrees with the l_1 (or l_∞) product metric. In particular G does not have property (QT).

Proof. If G did have such an action then by Theorem 6.1 G would have a finite index subgroup H (also acting metrically properly) which preserves factors and acts by isometries on each factor. But H is also a GBS$_n$ group with infinite monodromy. Thus by Theorem 3.3 applied to H, there is a non trivial element z of H which does not act loxodromically in any action of H on a hyperbolic space. But as isometries of quasitrees can only be loxodromic or elliptic by [26] the action of the infinite order element z is elliptic on each quasitree. Hence the action of $\langle z \rangle$ on X is also bounded, so we have an infinite subgroup of G acting on X with bounded orbits, meaning that the action of G is not metrically proper. Therefore the orbit map from G to X cannot be a quasi-isometric embedding because because there are only finitely many elements in G with word length at most a given value.

We can now use the same counterexample for the (QT) property as we did for HHGs.

Corollary 6.4 The property of having (QT) is not preserved under quasi-isometries.

Proof. We take the Leary - Minasyan group L as given in Theorem 5.3 and again note that it has infinite monodromy, so it does not have (QT) by Theorem 6.3. However it is quasi-isometric to $M = \mathbb{Z}^2 \times F_5$ which acts geometrically on the product $P = \mathbb{R} \times \mathbb{R} \times T_{10}$ of simplicial trees and hence the orbit map from M to P is a quasi-isometry by Svarc - Milnor.

\[\square\]
Note that as P is a product not just of arbitrary quasitrees but of bounded valence simplicial trees, changing the property (QT) by replacing quasitrees with trees or inserting the bounded valence condition, in any combination, will still not result in a quasi-isometry invariant.

Note also that if we equip our product spaces with the ℓ_2 product metric then the Leary - Minasyan group does indeed act geometrically on a product of quasi-trees with the orbit map a quasi-isometric embedding. Here the equivalent of Theorem [6.1] does not hold as we can have a de Rham factor (see [16] for this case). However the definition of (QT) uses the ℓ_1 product metric.

Finally we also note that the Leary - Minasyan group acts geometrically on the CAT(0) cube complex P by isometries but it has no geometric action on any CAT(0) cube complex by cubical automorphisms and nor does any finite index subgroup. This is noted in [23] as a consequence of [21].

References

[1] C. Abbott, S. H. Balasubramanya and D. Osin, Hyperbolic structures on groups, Algebraic and Geometric Topology 19 (2019) 1747–1835.

[2] C. Abbott, T. Ng, D. Spriano, R. Gupta and H. Petyt, Hierarchically hyperbolic groups and uniform exponential growth, http://arxiv.org/1909.00439v2

[3] J. Behrstock, M. F. Hagen and A. Sisto, Hierarchically hyperbolic spaces, I: Curve complexes for cubical groups, Geom. Topol. 21 (2017) 1731–1804.

[4] J. Behrstock, M. F. Hagen and A. Sisto, Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pacific J. Math. 299 (2019) 257–338.

[5] M. Bestvina, K. Bromberg and K. Fujiwara, Proper actions on finite products of quasi-trees, Ann. H. Lebesgue 4 (2021) 685–709.

[6] B. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281–300.
[7] E. Breuillard and K. Fujiwara, *On the joint spectral radius for isometries of non-positively curved spaces and uniform growth*, Ann. Inst. Fourier (Grenoble) 71 (2021) 317–391.

[8] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.

[9] P-E. Caprace, Y. de Cornulier, N. Monod and R. Tessera, *Amenable hyperbolic groups*, J. Eur. Math. Soc. 17 (2015) 2903–2947.

[10] Y. de Cornulier and R. Tessera, *Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups*, Confluentes Math. 2 (2010) 431–443.

[11] Y. de Cornulier and A. Valette, *On equivariant embeddings of generalized Baumslag-Solitar groups*, Geom. Dedicata 175 (2015) 385–401.

[12] R. B. Coulon *Partial periodic quotients of groups acting on a hyperbolic space*, Ann. Inst. Fourier (Grenoble) 66 (2016) 1773–1857.

[13] A. Dranishnikov and T. Januszkiewicz, *Every Coxeter group acts amenably on a compact space*, Topology Proc. 24 (1999) 135–141.

[14] M. G. Durham, M. F. Hagen and A. Sisto, *Boundaries and automorphisms of hierarchically hyperbolic spaces*, Geom. Topol. 21 (2017) 3659–3758.

[15] M. G. Durham, M. F. Hagen and A. Sisto, *Correction to the article Boundaries and automorphisms of hierarchically hyperbolic spaces*, Geom. Topol. 24 (2020) 1051–1073.

[16] T. Foertsch and A. Lytchak, *The de Rham decomposition theorem for metric spaces*, Geom. Funct. Anal. 18 (2008) 120–143.

[17] M. Forester, *Deformation and rigidity of simplicial group actions on trees*, Geom. Topol. 6 (2002) 219–267.

[18] M. F. Hagen, *Cocompactly cubulated crystallographic groups*, J. Lond. Math. Soc. 90 (2014) 140–166.
REFERENCES

[19] M. Hagen, J. Russell, A. Sisto and D. Spriano, Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms, https://arxiv.org/abs/2206.12244v1

[20] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.

[21] J. Huang and T. Prytula, Commensurators of abelian subgroups in CAT(0) groups, Math. Z. 296 (2020) 79–98.

[22] S. Hughes and M. Valiunas, Commensurating HNN-extensions: hierarchical hyperbolicity and biautomaticity, https://arxiv.org/abs/2203.11996v1

[23] I. J. Leary and A. Minasyan, Commensurating HNN extensions: nonpositive curvature and biautomaticity, Geom. Topol. 25 (2021) 1819–1860.

[24] G. Levitt, On the automorphism group of generalized Baumslag-Solitar groups, Geom. Topol. 11 (2007) 473–515.

[25] W. Malone, Isometries of products of path-connected locally uniquely geodesic metric spaces with the sup metric are reducible, https://arxiv.org/abs/0912.3471v1

[26] J. F. Manning, Quasi-actions on trees and property (QFA), J. London Math. Soc. 73 (2006) 84–108.

[27] A. Minasyan and D. Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 362 (2015) 1055–1105.

[28] A. Minasyan and D. Osin, Correction to: Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 373 (2019) 895–900.

[29] D. Osin Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016) 851–888.

[30] H. Petyt and D. Spriano, Unbounded domains in hierarchically hyperbolic groups, https://arxiv.org/abs/2007.12535v2

Selwyn College, University of Cambridge, Cambridge CB3 9DQ, UK
E-mail address: j.o.button@dpmms.cam.ac.uk