The Automorphism Group of a Self Dual Binary [72,36,16] Code Does Not Contain Z_4

Vassil Yorgov * and Daniel Yorgov †

Abstract

It has been proven in a series of works that the order of the automorphism group of a binary [72,36,16] code does not exceed five. We obtain a parametrization of all self-dual binary codes of length 72 with automorphism of order 4 which can be extremal. We use extensive computations in MAGMA and on a supercomputer to show that an extremal binary code of length 72 does not have an element of order 4.

Keywords: Automorphism, extremal code, self dual code.

1 Introduction

A binary self-dual code of length n is doubly-even if the weight of every code vector is a multiple of four. An upper bound $d \leq 4\lfloor n/24 \rfloor + 4$ for the minimum weight d of such code is given in [15]. Self-dual codes achieving this bound are called extremal. The extremal codes of length divisible by 24 are of particular interest. There are unique extremal codes of length 24 and 48 [18], [12]. It is not known if an extremal code of length 72 exists [21].

Let C be a binary extremal self-dual doubly-even code of length 72. One possible way of looking for such code is by assuming that C has nontrivial automorphisms. The automorphism group of C is studied in a series of works. The possible prime divisors of the group are determined in [9]. The prime divisors bigger than 5 are eliminated in [19], [20], [14], and [10]. The automorphism group of C and its possible order is studied in [7], [24], [8], [22], [17], [2], [4], and [3]. As a result it is known that the order of the automorphism group of C is at most 5.

In this note we search for a code C which allows the cyclic group of degree 4, Z_4, as an automorphism group. The subcode of C fixed by an automorphism of order 2 corresponds to a self dual [36,18,8] binary code. All such codes are completely classified [1]. Up to equivalence their number is 41. We prove that only three of them correspond to C, namely the codes C_4, C_{12}, and C_{19} from the
Munemasa’s online database of binary self-dual codes [16]. Using some recent results on the module structure of C [17], we obtain that a generator matrix of C depends on 72 binary parameters. Each of these $3(2^{72})$ matrices generates a doubly even self-dual code of length 72 with cyclic automorphism group of order 4. We further decrease the search space by using affine transformations which preserve the fixed subcode that determines C_4, C_{12}, and C_{19}, correspondingly. These transformations act on a certain 27 dimensional subcode of C which matrix depends only on the first 36 parameters. Using computer algebra system Magma [5] and a desktop computer we split these subcodes into orbits and compute the minimum weight of a representative of each orbit. The total number of orbits of weight 16 subcodes is 1558954. Each of them determines 2^{36} generator matrices for C which is still a formidable search space. These 1558954(2^{36}) binary matrices were traversed and checked on the Janus supercomputer at the University of Colorado. Each matrix generated a vector of weight less than 16. Thus we have the following result.

Theorem 1 The automorphism group of a binary self-dual [72,36,16] code does not have an element of order four.

2 Parametrization of C

In this section $C \leq \mathbb{F}_2^{72}$ is a self-dual binary code of length 72 with minimum weight 16 and automorphism g of order 4. As g^2 has order 2, it does not have fixed points [6]. Hence, g is free of fixed points and we may assume that

$$g = (1, 2, 3, 4)(5, 6, 7, 8) \cdots (69, 70, 71, 72).$$

(1)

It is known [17] that C is a free module over the group ring $R = \mathbb{F}_2 \langle g \rangle$. As the dimension of R as vector space over \mathbb{F}_2 is 4, the free R-module C has rank 9.

Let

$$v = (v_{1,0}, v_{1,1}, v_{1,2}, v_{1,3}, v_{2,0}, v_{2,1}, v_{2,2}, v_{2,3}, \ldots, v_{18,0}, v_{18,1}, v_{18,2}, v_{18,3})$$

be a vector from \mathbb{F}_2^{72}. We define the maps $\mu : \mathbb{F}_2^{72} \rightarrow R^{18}$ and $\mu' : \mathbb{F}_2^{72} \rightarrow R^{18}$ by

$$\mu(v) = \left(\sum_{i=0}^{3} v_{1,i}g^i, \sum_{i=0}^{3} v_{2,i}g^i, \ldots, \sum_{i=0}^{3} v_{18,i}g^i\right),$$

$$\mu'(v) = \left(\sum_{i=0}^{3} v_{1,i}g^{-i}, \sum_{i=0}^{3} v_{2,i}g^{-i}, \ldots, \sum_{i=0}^{3} v_{18,i}g^{-i}\right).$$

Thus $\mu(C)$ is a code of length 18 over the ring R and has rank 9.

A version of the following lemma for automorphisms of odd prime orders is proved in [23].

Lemma 2 Let u and v be vectors from \mathbb{F}_2^{72}. The vector u is orthogonal to the vectors $g^i v$ for $i = 0, 1, 2, 3$ if and only if $\mu(u)$ and $\mu'(v)$ are orthogonal with respect to the usual inner product in R^{18}.

2
Let $h = 1 + g$. Then $h^2 = 1 + g^2$, $h^3 = 1 + g + g^2 + g^3$, $h^4 = 1 + g^4 = 0$, and 1, h, h^2, h^3 is a basis of R over \mathbb{F}_2. Thus, $R = \mathbb{F}_2 + \mathbb{F}_2 h + \mathbb{F}_2 h^2 + \mathbb{F}_2 h^3$. The next obvious lemma is included for convenience in referencing.

Lemma 3 The \mathbb{F}_2-linear transformation on the ring R defined by $g^i \mapsto g^{-i}$, for $i = 1$, 2, 3, maps the basis elements 1, h, h^2, h^3 to 1, $h + h^2 + h^3$, h^2, h^3, correspondingly.

In the next theorem we obtain further restrictions on the R-code $\mu(C)$.

Theorem 4 Let C be a self-dual doubly-even binary code of length 72 with minimum weight 16 and automorphism g of order 4 given in (7). Let $h = 1 + g$. Up to a column permutation, $\mu(C)$ is a code of length 18 over the ring R with a generator matrix $[I + B_1 h + B_2 h^2 + B_3 h^3 | A]$ where I is the identity matrix and B_1, B_2, B_3, and A are binary square matrices of order 9 satisfying the following requirements:

(i) A is orthogonal ($A^T A = I$ where A^T is the transpose of A),
(ii) B_1 is symmetric ($B_1^T = B_1$),
(iii) $B_2 + B_2^T = B_1^2 + B_1$,
(iv) $B_3 + B_3^T = B_2 B_1 + B_1 B_2 + B_1^3 + B_1$.

If B_1, B_2, B_3, and A satisfy the above four conditions, then the μ-preimage of an R-code with a generator matrix $[I + B_1 h + B_2 h^2 + B_3 h^3 | A]$ is a binary self-dual code of length 72.

Proof. As we know $\mu(C)$ is a free R module of rank 9 [17]. Since $h^4 = 0$, $1 + \mathbb{F}_2 h + \mathbb{F}_2 h^2 + \mathbb{F}_2 h^3$ is the set of all units of R. It follows that, up to a permutation of columns, the code $\mu(C)$ has a generator matrix

$$[I \mid A + A_1 h + A_2 h^2 + A_3 h^3]$$

where I is the identity matrix of order 9 and A, A_1, A_2, A_3 are binary square matrices of order 9. Lemma 2 and Lemma 3 imply

$$I + (A + A_1 h + A_2 h^2 + A_3 h^3) (A^T + A_1^T (h + h^2 + h^3) + A_2^T h^2 + A_3^T h^3) = 0.$$

As 1, h, h^2, h^3 are linearly independent over \mathbb{F}_2, we obtain $I + AA^T = 0$. Thus A is orthogonal.

Using this we can replace (2) with

$$[I + B_1 h + B_2 h^2 + B_3 h^3 | A].$$

Additional applications of Lemma 2 and Lemma 3 on the matrix (3) give parts (ii), (iii), and (iv). The proof of the second part of the Theorem is straightforward.

Since the matrix $B_2 + B_2^T$ from condition (iii) has zero diagonal, we obtain the following corollary.

Corollary 5 The matrix B_1 from Theorem 4 is such that $B_1^2 + B_1$ has zero diagonal.
Any R-code with a generator matrix satisfying the requirements of Theorem 4 corresponds under the map μ^{-1} to a binary self-dual code of length 72 which is not necessarily doubly-even. Since an extremal code of length 72 is doubly-even, the search space can be restricted. It is done in the next theorem which provides a necessary and sufficient condition for a code to be doubly-even.

We use the following well known Lemma (see [13], page 8) in the proof of Theorem 7.

Lemma 6 If u and v are binary vectors of the same length, then
\[
wt(u + v) \equiv wt(u) + wt(v) + 2(u, v) \mod 4
\]
where (u, v) is the inner product.

Theorem 7 Let D be an R-code with a generator matrix $[I + B_1 h + B_2 h^2 + B_3 h^3 \mid A]$ satisfying the requirements (i), (ii), (iii), and (iv) of Theorem 4. The corresponding binary code $\mu^{-1}(D)$ of length 72 is doubly-even if and only if
\[
B_3[i, i] \equiv \frac{1 + wt(A[i])}{2} + B_2[i, i] + \sum_{j=1}^{9} (B_1[i, j] + 1)B_2[i, j] \mod 2
\]
for $i = 1, 2, \ldots, 9$ where $A[i]$ is row i of the matrix A and $B_2[i, j]$ is the entry in row i column j of the matrix B_2.

Proof. Since $h^4 = 1$, the matrices $[Ih + B_1 h^3 + B_2 h^5 \mid Ah], [Ih^2 + B_1 h^3 + Ah^2], \text{and } [Ih^3 + Ah^3]$ generate subcodes of D. Replacing h with $1 + g$ and collecting the terms with respect to the powers of g, we obtain the matrix
\[
\begin{bmatrix}
I + B_1 + B_2 + B_3 & B_1 + B_3 & B_2 + B_3 & B_3 & A & 0 & 0 & 0 \\
I + B_1 + B_2 & I + B_2 & B_1 + B_2 & B_2 & A & 0 & 0 \\
I + B_1 & B_1 & I + B_1 & B_1 & A & 0 & A & A \\
I & I & I & A & A & A & A
\end{bmatrix}
\]
which generates a code equivalent to $\mu^{-1}(D)$. Hence the code is self-dual by Theorem 4.

Let w_i be the weight of row i of matrix (4). Thus w_i is even for $i = 1, 2, \ldots, 36$. The code is doubly-even if and only if w_i is a multiple of 4. For $i = 1, 2, \ldots, 9$ we have
\[
w_i = wt(I[i]) + B_1[i] + B_2[i] + B_3[i] + wt(B_1[i] + B_3[i]) + wt(B_2[i] + B_3[i]) + wt(A[i]).
\]
Applying Lemma 6 several times, we obtain
\[
w_i \equiv wt(I[i]) + wt(A[i]) + 2wt(B_1[i]) + 2wt(B_2[i]) + 2(I[i], B_1[i]) + 2(I[i], B_2[i]) + 2(I[i], B_3[i]) + 2(B_1[i], B_2[i]) \mod 4.
\]
Since A is orthogonal, $\text{wt}(A[i])$ is odd and

$$
\frac{w_i}{2} = \frac{1 + \text{wt}(A[i])}{2} + \text{wt}(B_1[i]) + \text{wt}(B_2[i]) + B_1[i, i] + B_2[i, i] + B_3[i, i] + (B_1[i], B_2[i]) \mod 2
$$

As $\text{wt}(B_1[i]) \equiv B_1B_1^T[i, i] \mod 2$ and B_1 is symmetric, we have

$$
B_1[i, i] + \text{wt}(B_1[i]) \equiv B_1[i, i] + B_2[i, i] \mod 2.
$$

Now Corollary 3 gives $B_1[i, i] + \text{wt}(B_1[i]) \equiv 0 \mod 2$. Hence, w_i is a multiple of 4 if and only if

$$
B_3[i, i] \equiv \frac{1 + \text{wt}(A[i])}{2} + B_2[i, i] + \text{wt}(B_2[i]) + (B_1[i], B_2[i]) \mod 2.
$$

For $i = 10, 11, \ldots, 36$ we check similarly that w_i is always a multiple of 4.

Now we determine the possible matrices B_1 and A for the code C. We use the automorphism $g^2 = (1, 3)(2, 4) \cdots (71, 73)(72, 74)$ to define two mappings. Let $C(g^2) = \{ c \in C \mid g^2(c) = c \}$ be the fixed code of g^2. The first mapping is $\pi : C(g^2) \rightarrow \mathbb{F}_2^{36}$ defined by

$$
(c_1, c_2, c_1, c_2, \ldots, c_{35}, c_{36}, c_{35}, c_{36}) \mapsto (c_1, c_2, \ldots, c_{36}). \quad (5)
$$

The second mapping is $\Phi : C \rightarrow \mathbb{F}_2^{36}$ defined by

$$
(c_1, c_2, \ldots, c_{72}) \mapsto (c_1 + c_3, c_2 + c_4, \ldots, c_{70} + c_{72}).
$$

It is known that $\pi(C(g^2)) = \Phi(C)$ is a self-dual [36,18,8] binary code. An application of Φ is the same as identifying coordinate positions 1 and 3, 2 and 4, and so on. This identification makes g^2 trivial and $\Phi(C)$ becomes a module over the quotient ring $R/\langle g^2 \rangle \cong \mathbb{F}_2 + \overline{h}\mathbb{F}_2$ where \overline{h} is the coset $h \langle h^2 \rangle$ and $\overline{h^2} = 0$. Thus, $\Phi(C)$ is generated by the matrix $[I + B_1\overline{h}]$ over the ring $\mathbb{F}_2 + \overline{h}\mathbb{F}_2$ and has automorphism $\overline{g} = (1, 2)(3, 4) \cdots (34, 36)$ as a binary code. There are 41 inequivalent self-dual [36,18,8] binary codes [11]. For each of these 41 codes we find the conjugacy classes of automorphisms of order 2 without fixed points and select a representative. For each pair of code and orbit representative we compute the matrix B_1. Only for three of the pairs the requirement of Corollary 5 are met. They come from the codes C_4, C_{12}, and C_{19} from the Munemasa’s online database of binary self-dual codes [16]. We reorder the coordinates of the three codes in such way that $\overline{g} = (1, 2)(3, 4) \cdots (34, 36)$ is the automorphism of order 2 in each of the three pairs. This way we obtain the following lemma.

Lemma 8 Let C be a self-dual doubly-even binary code of length 72 with minimum weight 16 and automorphism g of order 4 given in [11]. Up to equivalence, the matrices B_1 and A from Theorem 4 can be selected as follows:
Each matrix $B_{1}^{(j)}$, $j = 1, 2, 3,$ has zero diagonal. The generator matrix (3) depends on B_2 and B_3. Multiplying the columns of the matrix (3) by $g^2 = 1 + h^2$ as needed we can make the diagonal of B_2 to be zero without changing the entries of $B_{1}^{(j)}$ and $A_{1}^{(j)}$. Condition (iii) of Theorem 4 determines the entries below the diagonal of B_2. Hence, B_2 depends on 36 parameters. Condition (iv) of Theorem 4 and Theorem 7 determine the entries on and below the diagonal of B_3. Thus, B_3 depends on 36 parameters. We obtain the following result.

Corollary 9 An extremal self-dual code of length 72 with an automorphism of order 4 is equivalent to one of the 3 (2^{72}) codes determined by the matrix (3), Theorem 4, Theorem 7, and Lemma 8.
3 Further Reduction of the Search Space

Let \(P = \mathbb{F}_2[x_1, x_2, \ldots, x_{72}] \) be the the polynomial ring of the indeterminates \(x_1, x_2, \ldots, x_{72} \) over the binary field \(\mathbb{F}_2 \). Corollary \(\text{[9]} \) shows that the matrices \(B_2 \) and \(B_3 \) are determined by the entries above the diagonal:

\[
\begin{align*}
B_2[1, 2] &= x_1, \quad B_2[1, 3] = x_2, \ldots, \quad B_2[1, 9] = x_9, \\
B_2[2, 3] &= x_9, \ldots, \quad B_2[2, 9] = x_{15}, \ldots, \quad B_2[8, 9] = x_{36}, \\
B_3[1, 2] &= x_{37}, \quad B_3[1, 3] = x_{38}, \ldots, \quad B_3[1, 9] = x_{44}, \\
B_3[2, 3] &= x_{45}, \ldots, \quad B_3[2, 9] = x_{51}, \ldots, \quad B_3[8, 9] = x_{72}.
\end{align*}
\]

As the matrices \(B^{(j)}_1 \) and \(A^{(j)} \), \(j = 1, 2, 3 \), are determined in Lemma \(\text{[8]} \) for any selection of binary values for \(x_1, x_2, \ldots, x_{72} \) the matrix \(\text{[9]} \) determines a doubly even self-dual code \(C \) of length 72. The [36,18,8] code \(\Phi(C) \) has a generator matrix

\[
\begin{bmatrix}
I_2 \otimes I + J_2 \otimes B^{(j)}_1 & I_2 \otimes A^{(j)}
\end{bmatrix}
\]

where \(\otimes \) denotes the Kronecker product, \(I_2 \) and \(J_2 \) are the identity and the all-one matrices of order 2, correspondingly. Let \(G_j \) be the automorphism group of this code, \(j = 1, 2, 3 \). We know that \(\tau \in G_j \).

Using Magma we determine the groups \(G_j \) and \(C_{G_j}(\bar{\tau}) \), the centralizer of \(\bar{\tau} \in G_j \). The order of \(C_{G_j}(\bar{\tau}) \) for \(j = 1, 2, 3 \) is 96, 384, and 96 and the number of generators is 4, 5, and 5, correspondingly. Clearly \(C_{G_j}(\bar{\tau}) \subseteq C_{S_{72}}(\bar{\tau}) \) which is isomorphic to the wreath product \(Z_2 \wr S_{18} \). On the other hand \(C_{S_{72}}(g) \) is isomorphic to \(Z_4 \wr S_{18} \). Any permutation from \(C_{S_{72}}(g) \) maps \(C \) to an equivalent code with automorphism \(g \).

Let \(\bar{\tau} \) be a generator of \(C_{G_j}(\bar{\tau}) \). We lift \(\bar{\tau} \) to \(\tau \in C_{S_{72}}(g) \) having the same permutation part from \(S_{18} \) as \(\bar{\tau} \) such that when \(\tau \) is applied to the matrix

\[
[I + B^{(j)}_1 h + B_2 h^2 + B_3 h^3 \mid A^{(j)}]
\] (6)

the matrices \(I, B^{(j)}_1 \), and \(A^{(j)} \) do not change and \(B_2 \) maps to a matrix \(B_2' \) with zero diagonal. The computations show that the entries above the diagonal of \(B_2 \) are \(X \ast T_{\tau} + v_{\tau} \), where \(X = (x_1, x_2, \ldots, x_{36}) \), \(T_{\tau} \) is a 36x36 nonsingular binary matrix and \(v_{\tau} \) is a binary vector of length 36. The affine transformations \((T_{\tau}, v_{\tau}) \) generate an affine group \(K_j \) for \(j = 1, 2, 3 \), of order 12288, 49152, 12288, correspondingly. Every binary code given by \(\text{[6]} \) has a subcode of dimension 27 defined by the matrix

\[
[I h + B^{(j)}_1 h^2 + B_2 h^3 \mid A^{(j)} h]
\] (7)

We used computations with Magma on a desktop computer to obtain the next lemma.

Lemma 10 The number of orbits of weight 16 codes \(\text{[7]} \) under the action of the group \(K_j \), for \(j = 1, 2, 3 \), is 501142, 131840, and 925972, correspondingly.
4 The Test of $1558954(2^{36})$ Codes

The number of orbits from Lemma 10 is 1558954. For each orbit we select a representative and determine the corresponding matrix (7). As the matrix B_3 from (6) depends on 36 binary parameters, the search space contains $1558954(2^{36})$ codes. In order to speed up the computations we use a 36-bit binary reflected Gray code [11] to order the vectors of the 36 dimensional binary vector space in a sequence

$$u^{(0)}, u^{(1)}, u^{(2)}, \ldots, u^{(n-1)}$$

$n = 2^{36}$, such that consecutive vectors $u^{(i-1)}$ and $u^{(i)}$, $i = 1, 2, \ldots, n-1$, differ in exactly one bit in position, say $g(i)$. For a fixed matrix (7), the corresponding 2^{36} matrices (8) form a sequence

$$M^{(0)}, M^{(1)}, M^{(2)}, \ldots, M^{(n-1)}$$

such that $M^{(i)} - M^{(i-1)} = D^{(g(i))}$ is one of 36 predetermined mask matrices

$$D^{(1)}, D^{(2)}, \ldots, D^{(36)}.$$

Each of the mask matrices has at least 28 zero rows. As a result a low weight vector found in a code with a generator matrix from (8) often belongs to the next several codes.

We carried out these computations on the Janus supercomputer at the University of Colorado Denver. We wrote a computer code in C programming language that was highly optimized for both the task and the Janus hardware. The program employs some of the 64-bit single-cycle bitwise operations of the processors. We used about 6 million CPU core hours over a period of more than three months to find a vector of weight less than 16 in each of the $1558954(2^{36})$ codes from the search space. This completes the proof of the Theorem 1.

Acknowledgement: This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research. The authors would like to thank Dr. Jan Mandel, University of Colorado Denver, for his advice in setting up the computations.

References

[1] C. Aguilar Melchor, P. Gaborit, "On the classification of extremal [36, 18, 8] binary self-dual codes," IEEE Trans. Inf. Theory, vol. 54, pp. 4743-4750, Oct. 2008.

[2] M. Borello, "The Automorphism Group of a Self-Dual [72, 36, 16] Binary Code Does Not Contain Elements of Order 6," IEEE Trans. Inf. Theory, vol. 58, pp. 7240-7245, Dec. 2012.
[3] M. Borello, "The automorphism group of a self-dual [72,36,16] code is not an elementary abelian group of order 8," Finite Fields and Their Applications, vol. 25, pp. 1-7, Jan. 2014.

[4] M. Borello, F.D. Volta, G. Nebe, "The automorphism group of a self-dual [72,36,16] code does not contain S_3, A_4, or D_8," Advances in Mathematics of Communications, vol. 7, no. 4, pp. 503-510, Nov. 2013.

[5] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., vol. 24, pp. 235-265, 1997.

[6] S. Bouyuklieva, "On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24m," Designs, Codes, Cryptography, vol. 25, pp. 5-13, 2002.

[7] S. Bouyuklieva, "On the automorphism group of a doubly-even (72,36,16) code," IEEE Trans. Inf. Theory, vol. 50, pp. 544-547, Mar. 2004.

[8] S. Bouyuklieva, E.A. O’Brien, W. Willems, "The automorphism group of a binary self-dual doubly-even [72,36,16] code is solvable," IEEE Trans. Inf. Theory, vol. 52, 4244-4248, Aug. 2006.

[9] J.H. Conway, V. Pless, "On primes dividing the group order of a doubly-even (72,36,16) code and the group order of a quaternary (24,12,10) code," Discrete Math., vol. 38, no. 2-3, pp. 143-156, 1982.

[10] T. Feulner, G. Nebe, "The automorphism group of a self-dual binary [72, 36, 16] code does not contain Z_7, $Z_3 \times Z_3$, or D_{10}," IEEE Trans. Inf. Theory, vol. 58, pp. 6916-6924, Oct. 2012.

[11] E.N. Gilbert, "Gray Codes and Paths on the n-Cube", The Bell System Tech. J., vol. 37, no. 3, pp. 815-826, May 1958.

[12] S.H. Houghton, C.W.H. Lam, L.H. Thiel, J.A. Parker, "The extended quadratic residue code is the only [48, 24, 12] self-dual doubly-even code," IEEE Trans. Inf. Theory, vol. 49, pp. 53-59, Jan. 2003.

[13] W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes. Cambridge, United Kingdom: CU Press, 2003.

[14] W.C. Huffman, V.Y. Yorgov, "A [72, 36, 16] doubly even code does not have an automorphism of order 11," IEEE Trans. Inf. Theory, vol. 33, pp. 749-752, Sep. 1987.

[15] C.L. Mallows, N.J.A. Sloane, "An upper bound for self-dual codes," Information and Control, vol. 22, no. 2, pp. 188-200, Mar. 1973.

[16] A. Munemasa, Database of self-dual codes, http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.html
[17] G. Nebe, "An extremal \([72, 36, 16]\) binary code has no automorphism group containing \(\mathbb{Z}_2 \times \mathbb{Z}_4\), \(\mathbb{Q}_8\), or \(\mathbb{Z}_{10}\)," Finite Fields and their applications, vol. 18, no. 3, pp. 563–566, May 2012.

[18] V. Pless, "On the uniqueness of the Golay codes," J. Combin. Theory, vol. 5, pp. 215-228, 1968.

[19] V. Pless, "23 does not divide the order of the group of a \((72, 36, 16)\) doubly-even code," IEEE Trans. Inf. Theory, vol. 28, pp. 113-117, Jan. 1982.

[20] V. Pless, J.G. Thompson, "17 does not divide the order of the group of a \((72, 36, 16)\) doubly-even code," IEEE Trans. Inf. Theory, vol. 28, pp. 537 - 541, May 1982.

[21] N.J.A. Sloane, "Is there a \((72,36), d=16\) self-dual code?" IEEE Trans. Inf. Theory, vol. 19, p. 251, Mar. 1973.

[22] N. Yankov, "A putative doubly even \([72, 36, 16]\) code does not have an automorphism of order 9," IEEE Trans. Inf. Theory, vol. 58, pp. 159-163, Jan. 2012.

[23] V. Yorgov, "Binary self-dual codes with automorphisms of odd order," Probl. Peredachi Inf., vol. 19, no. 4, pp. 11–24, 1983.

[24] V. Yorgov, "On the automorphism group of a putative code," IEEE Trans. Inf. Theory, vol. 52, pp. 1724-1726, Apr. 2006.