Physico-chemical characterization of Tamarind residues (Tamarindus indica L.): nutritional and anti-nutritional potential

Emerson Iago Garcia e Silva*
Joelma Barbosa da Silva*
Janiclecia Macedo Albuquerque*
Cristhiane Maria Bazílio de Omena Messias*

Abstract

The purpose of this study was to characterize tamarind residues in terms of physico-chemical aspects, phenolic proportion, and antioxidant activity, exploring its nutritional and anti-nutritional potential for human consumption. The selected fruits were weighed, and the pods were manually broken, separated from the pulps, seeds, and husks. The products were dried in an oven with air circulation (6h). The husks were crushed and submitted to granulometric sieving (250 µm) to form tamarind husk powder (THP). Regarding the seeds, a fraction was submitted to roasting (115ºC for 15 min) and another one kept in natura. Subsequently, they were crushed and subjected to granulometric sieving (250 µm) to form fresh seed powder (FSP) without roasting, and toasted seed powder (RSP). The analytical measurements were taken for the attributes: pH, titratable acidity, water activity, humidity, ash, proteins, lipids, total fiber. The antioxidant potential was determined using the free radical 2,2-diphenyl-1-picrilhidrazil, in addition to the total phenolic composition and tannins. All powders had low moisture values. THP (24.6g/100g) and RSP (15.31g/100g) showed high fiber content. In terms of protein, the RSP had a higher content (14.56g/100g). As for the phenolic compounds, these were higher in the seed powder. The tannin content was similar between powders. Powders showed high antioxidative capacity. Tamarind residues are promising, in terms of added nutritional value, and are able to supplement human diets, especially in relation to fiber, protein, energy, and antioxidant content.

Keywords: Food waste; Integral feeding; Nutrients; Powders.

INTRODUCTION

The need to explore alternative ingredients gained notoriety due to the current increase in the conventional cost of food and the deficit supply1. Thus, the inclusion of unconventional foods, such as agro-industrial waste, can reduce the effective cost of nutrients, decrease the increased demand for food and reduce waste and organic waste2, which are urgent problems in the current scenario of socio-environmental sustainability. On the other hand, a large amount of agro-industrial by-products is produced annually and wasted by the lack of knowledge about the nutritional value and methods of processing them1.

Therefore, fruits and vegetables have been studied in a more comprehensive way, seeking to highlight the benefits that their residues can offer to the population. This is because, for the most part, they have nutritional values (sources of proteins, carbohydrates, fibers and bioactive compounds) that can be reused by the pharmaceutical, chemical, and especially...
Tamarind (*Tamarindus indica* L.) stands out for its nutritional qualities. The seed of this fruit shows great richness in sulfur amino acids, allowing the population to take advantage of it as a component of a cereal-based protein regime.

Traditionally, tamarind is used in herbal medicine to heal wounds, also for the treatment of abdominal pain, diarrhea, dysentery, parasitic infestation, fever, malaria, and respiratory disorders. It is also commonly used in tropical countries due to its laxative and aphrodisiac characteristics.

Although it is not native to the Northeast region, tamarind trees are considered a typical fruit plant in this region due to their ability to adapt, making them an ideal food crop for the semi-arid region.

Tamarind fruits provide two important products - pulp, most of which is consumed directly or used to make local food and drinks, which are sold for domestic income. On the other hand, seeds and husks, originated from the consumption and processing of fruits in a significant volume, are discarded annually; meanwhile seeds, obtained after pulping the pod, are usually thrown away.

According to Akajiaku *et al.*, the fruit pulp contains tartaric acid, responsible for providing typical fruit acidity, while seeds are good sources of protein, crude fiber, carbohydrates, and phytochemicals.

Due to the scarce technological use, there is little evidence in the literature, information, or studies aimed at physico-chemical characterization and human consumption of tamarind husks and seeds, especially in a semi-arid region.

Due to the great search for nutritional improvements, as well as the incentive to use food residues, it is clear that tamarind has a huge potential to be explored. However, the scarcity of studies of its properties limits its use, in addition, the growth conditions (soil, climate, rainfall) differentiate the studies regarding the physico-chemical properties, making it impossible to estimate a real nutritional and nutraceutical value.

Thus, the proximate composition is one of the ways to show the nutritional importance and the possibility of using residues, which until now were considered inedible, in the Brazilian diet. This study aims to contribute to the improvement of the nutritional status of the population and to reduce the problems caused by deficient and non-nutritious food, in addition to reducing the accumulation of organic waste produced in the country.

According to Zanatta, Schlabitz, Ethur, the preparation of powders from fruit residues corresponds to a viable alternative for reuse, since these can be used as ingredients in the preparation of the most diverse products (cookies, cakes, breads, sweets, among others). In addition, they can act as an enriching source of nutrients.

In terms of food stability, it is hoped that the elaborated powders present parameters that maintain their sensory conservation and a state that avoids microbiological contamination. Among the quality parameters, the water content, the acidity, and the pH, as well as the ash content are worth mentioning.

In question, it is emphasized that the culture of tamarind assumes economic importance in the Northeast region - generating income; however, its waste still has a lot of potential to be exploited. Therefore, this physico-chemical study is a way to clarify the potential of these residues.

Based on the exhibitions carried out and considering that there is a lack in the scientific field of chemical identification of tamarind seeds and husks in the *Sub-Middle* region of São Francisco, this test aimed to manufacture powders from the residues of the tamarind fruit (*Tamarindus indica* L.), from the region and characterize them physically and chemically, in addition to checking their antioxidant and phenolic activity. Therefore, exploring its nutritional and anti-nutritional potential for human consumption.
METHODOLOGY

Tamarind fruits: obtaining, selecting, and separating waste

Tamarind fruits were purchased at street markets in the São Francisco valley region, in the cities of Petrolina, Pernambuco (latitude 09º23'55"S; longitude 40º30'03"W) and Juazeiro, Bahia (latitude: 09º24'42"S, longitude: 40º29'55"W), in their full maturity stage for human consumption, between the months of September to December 2018. They were then transported immediately to the Nutrition I (Bromatology) and Nutrition II (Dietary Technique) laboratories of Universidade de Pernambuco – Petrolina Campus, in plastic bags at room temperature, in which the inspection/search for signs of damage, injury, insects, or signs of rotting occurred. Then, the selected fruits were weighed, and the pods were manually broken, separated from the pulps, seeds, and husks.

Preparation of seed powders (fresh and roasted) and husks

The seed pulps were soaked for 12 hours in clean water (1: 3m/v) to allow complete removal of the pulp and fiber threads. To prepare the powders, the seeds were later washed with distilled water and dried in an oven with air circulation (60ºC) for 6 hours. Soon after, the grinding was carried out into fine powders using the appropriate commercial blender, and a granulometric sieve was used for sieving (250 µm), which was stored in an airtight container protected from light and at room temperature (28ºC) until later use. The roasting took place at 150ºC for 15 minutes in a conventional oven and were subsequently crushed and sieved under the same conditions as fresh powder. Finally, the tamarind husks followed the same processes, however without roasting.

Physico-chemical analysis

The physico-chemical characterization of the powders was carried out in the Nutrition Laboratory I (Bromatology) of the University of Pernambuco – Petrolina Campus and in the laboratories of the National Service for Industrial Learning (SENAI). The powders were analyzed in triplicates for the following attributes: pH, titratable acidity, moisture, crude protein, crude lipid, crude fiber, and ash, according to the recommendations proposed by the Adolf Lutz Institute. Quantification of carbohydrates occurred by difference, following the schematic formula: [100 - (lipids + crude protein + ash + crude fiber)]. The measurement of water activity was verified by the Standard Methods for the Examination of Water and Wastewater. Conversion values were used to determine the calorific value: 4 kcal/g for carbohydrates, 4 kcal/g for proteins, and 9 kcal/g for lipids.

Elaboration of extracts and phenolic quantification, tannins, and determination of antioxidant activity

Powder samples were extracted with methanol at room temperature for 24 hours with a volumetric mass in the proportion of 1:20 (g/ml). This solvent was determined based on the study by Razali et al., which found the best extraction for tamarind residues. The methanol extract was then evaporated under reduced pressure. Then, they were dissolved in 10% dimethyl sulfoxide (DMSO). Both solvents, methanol and DMSO are non-toxic in these concentrations. The extracts were preserved at -20ºC until the analysis of phenolic compounds and antioxidant
activity14.

For the quantification of phenolic compounds, the Folin-Ciocalteau (FC) method (Sigma\textregistered, USA) modified by Roesler et al. (2007)15 was used with extracts in a proportion of 1:10 (w/v). In summary, 500µl of the extract was pipetted in a test tube (10ml), completed with 0.5µl of Folin-Ciocalteau (1:10). Subsequently, 0.5µl of a sodium carbonate solution (20%) was added, followed by 3.5µl of distilled water and the mixture was homogenized using a vortex. The mixture was then incubated at room temperature for 2 hours to allow the color to develop. Absorbance was measured at 725 nm. To express the results, a calibration curve was drawn up with the following concentrations: 0.01µl, 0.015µl, 0.02µl, 0.025µl, 0.050µl, 0.075µl, and 0.1µl and expressed in mg of gallic acid equivalents (GAE) per gram of extract (mg GAE.g-1).

As for tannins, they were determined by the method of Magalhães, Rodrigues and Durães16, using the Folin-Denis7 reagent (FD) (Sigma\textregistered, USA). For the measurement, initially, the tannin extraction process was carried out. For this, 0.5g of each powder was transferred to a test tube, 10 ml of a solution of hydrochloric acid (1%) in methanol was added and closed. Then, the samples were vortexed for 20 minutes and centrifuged at 1000 rpm for 8 minutes (with a gradual speed from 200 to 1000 rpm). After extraction, the measurement gear was performed. Briefly, 1000µl of the extract was added to a test tube, then 8.4ml of distilled water, 1µl of saturated sodium carbonate solution, and 0.5µl of the Follin-Denis reagent were added. Then, the tubes were shaken for 30 minutes and measured at 760nm. To express the results, a calibration curve was drawn up with the following concentrations: 100µl, 200µl, 300µl, 400µl, 500µl, 600µl, 700µl, 800 µl. The results were expressed in mg of tannic acid g-1 sample.

The evaluation of the antioxidant activity of the extracts occurred by deactivating the free radical DPPH (2,2-diphenyl-1-picrilhidrazil), which were evaluated for their ability to donate hydrogen to DPPH, according to the methodology of Yamaguchi et al.17. The reading was carried out in the UV-VIS spectrum at a wavelength of 517 nm. The percentage of DPPH radical sequestration was calculated using Equation 1:

\[
\%\ Sequestration = \left(\frac{Absorbance\ of\ the\ control - Absorbance\ of\ the\ sample}{Absorbance\ of\ the\ control}\right) \times 100
\]

Statistical design

Statistical analyzes were performed using the SPSS version 23.0 data package (SPSS Inc., Chicago, IL, USA). Data were compiled in Microsoft Excel 2013. The discrete quantitative variables were tested for normal distribution by the Shapiro Wilk test and homogeneity of variances by the Levenne test. As they assumed normal distribution, a parametric analysis was performed using the Analysis of Variance test (ANOVA one way) with Tukey's post-hoc. A significance level of 5.0% was established for rejection of the null hypothesis.
RESULTS

The yield of tamarind residues (husks and seeds) is presented in relation to the pulp, a popular part of the fruit and considered noble in table 1. Thus, it appears that for each kg of fruit, the residues account for approximately half (48.6%) of the weight of the whole fruit, with emphasis, in terms of proportion, on the tamarind husks.

Quadro 1 - Estimation of the proportions of the parts of the Tamarindo fruit (Tamarindus indica L.) from the Sub-Middle Region of São Francisco for each 1kg of pods (2020).

Part of the fruit for each 1kg of pods	Pulp	Tamarind Seed	Husks
Yield (%)	51.4	22.1	26.5

Source: Author (2020).

The physico-chemical components of the husk and seed powders (fresh and roasted) of tamarind can be seen in Table 1. The analyses revealed in wet (WB) and dry (DB) bases that the fiber content and the glycosidic fraction are predominant in THP. In relation to fresh and roasted seed powders, in addition to the dominance of fibers and carbohydrates, the protein content was also relevant.

The comparative analysis between the powders studied in table 2 is summarized. It is observed that in relation to pH, the powders showed values considered acidic, with an emphasis on the THP, differing significantly from the other powders (p<0.05). Regarding the titratable acidity, THP presented higher values (p<0.05) in relation to the other powders.

As for moisture, the seed powder in natura showed higher and statistically significant content (p <0.05). Regarding the nitrogen or protein content, it is possible to verify that the seeds are concentrated. The RSP demonstrated content that significantly (p<0.05) surpassed in natura content (Table 2).

Regarding the lipid content, it is observed that the powders showed reduced values (Table 1), in which the main part fell significantly (p <0.05) for the roasted seed powder (Table 2), surpassing the fresh powder, and the husk powder significantly (p <0.05). The latter had minimal content (0.6g 100g⁻¹).

While, in relation to carbohydrates, these were significantly higher in the husk powder. All powders can be considered foods with a high fiber content. The THP showed significant values (p <0.05) that exceed the seed powder (Table 2).

The ash content was higher in THP, followed by RSP. As for the caloric value, the roasted seed powder had a higher content when compared to the husk powder, differing significantly (p<0.05) (Table 2).

Regarding the results of phenolic quantification, tannins, and antioxidative activity, the results can be seen in table 3. In view of the content of phenolic compounds, it is noted that this was higher in seed powders, notably in RSP, differing significantly from FSP and THP, the latter with less quantified content. Regarding the tannin values, it is noted that there was no difference in the averages found for the three types of powder. Finally, when evaluating the DPPH radical scavenging activity, all powders had a high percentage of inhibition, above 97%, and were without statistical differences.
Table 1 – Physico-chemical parameters of powders of in natura husks and seeds and roasted tamarind seeds (*Tamarindus indica* L.) from the São Francisco Sub-Middle Region (2020).

Physico-chemical variables	WHP	FSP	RSP
pH	2.9±0.35	6.1±0.04	5.8±0.09
Titratable Acidity *	3.8±0.12	1.9±0.17	1.3±0.17
Water activity (AW) *	0.43±0.00	0.48±0.00	0.47±0.00
Humidity (g.100g⁻¹)	6.3±0.28	6.7±0.32	10.6±0.53
Protein (g.100g⁻¹)	3.4±0.01	3.6±0.01	10.3±0.09
Total fat (g.100g⁻¹)	0.6±0.01	0.6±0.01	3.2±0.04
Total Dietary Fiber (g.100g⁻¹)	23.0±0.0	24.6±0.08	16.5±0.38
Glycosidic fraction (g.100g⁻¹)	62.2±0.43	59.5±0.41	58.7±0.50
Ashes (g.100g⁻¹)	4.7±0.02	5.0±0.02	1.8±0.01
Total caloric value	267.1±1.14	237.1±1.65	304.5±2.4

Source: Author (2019). Schematic values in mean and standard deviation. *Values on a wet base; Means followed by different capital letters on the lines differ significantly by the one-way analysis of variance (ANOVA) followed by the post-hoc Tukey test at a 0.05 significance level.

Table 2 – Comparison between the physico-chemical components of the powders in the husks, fresh seeds, and roasted tamarind seeds (*Tamarindus indica* L.) from the Sub-Middle Region of São Francisco (2020).

Physico-chemical variables	Husk powder	Fresh seed powder	Roasted seed powder
pH	2.9±0.35^A	6.1±0.04^A	5.8±0.09^A
Titratable Acidity *	3.8±0.12^A	1.9±0.17^B	1.3±0.17^C
Water activity (WA) *	0.43±0.00^C	0.48±0.00^B	0.47±0.00^A
Humidity (g.100g⁻¹)	6.7±0.32^B	10.6±0.53^A	6.6±0.24^B
Protein (g.100g⁻¹)	3.63±0.01^C	11.4±0.11^A	14.5±0.09^A
Total fat (g.100g⁻¹)	0.6±0.01^C	3.5±0.05^B	4.6±0.16^A
Total Dietary Fiber (g.100g⁻¹)	24.6±0.08^{AB}	18.3±0.43^B	15.3±0.03^C
Glycosidic fraction (g.100g⁻¹)	59.45±0.41^B	54.3±0.74^B	56.6±0.3^B
Ashes (g.100g⁻¹)	5.0±0.02^B	2.0±0.01^C	2.3±0.08^B
Total caloric value	237.0±1.65^A	294.4±3.01^A	326.1±1.5^A

Source: Author (2019). Schematic values in mean and standard deviation; *Values on a wet base; Means followed by different capital letters on the lines differ significantly by the one-way analysis of variance (ANOVA) followed by the post-hoc Tukey test at a 0.05 significance level.

Table 3 – Comparative analysis of total phenols, tannins, and antioxidant activity of powders from tamarind residues, Petrolina - Pernambuco, 2020.

Powders	Phenolic compounds (mg GAE g⁻¹)	Tannins (mg TAE g⁻¹)	Kidnapping of the DPPH radical (%)
THP	8.9±0.16^C	2.9±0.17^A	97.4±0.28^A
FSP	15.5±0.21^B	3.1±0.07^A	99.9±0.00^A
RSP	16.5±0.15^A	3.1±0.02^A	97.7±2.05^A

Source: Author (2020). THP: Tamarind husk powder; FSP: Fresh tamarind seed powder; RSP: Roasted tamarind seed powder; DPPH: 2,2-diphenyl-1-picyrylhydrazyl; GAE: Gallic acid equivalent; TAE: Tannic acid equivalent; Averages followed by different capital letters in the columns differ significantly by the one-way analysis of variance (ANOVA) followed by the post-hoc Tukey test at the significance level of 0.05.
DISCUSSION

In this study, disproportionate relationships of plant residues were found in relation to the parts considered to be desirable in the fruits. Disagreeing with the findings of the present study, the assay by Pereira et al.18 the parts consisting of tamarind husk, pulp, and seeds contributed respectively with 30%, 30%, and 40% of the weight of the whole fruit. In addition to this, research by the Brazilian Agricultural Research Corporation Semi-arid (EMBRAPA) found a volume of waste generated in the processing of between 50 to 65\%19. Although there may be percentage divergences in relation to the residues yields due to the manual or instrumental processes (mechanized industrial process) used and due to the composition, it is understood that the residues account for important parts of the fruits, largely overcoming the desirability of the pulps (part stigmatized as noble).

Regarding the total water content (humidity), it is observed that the powders showed values within the normal standards, which according to the National Health Surveillance Agency (ANVISA)20 is at most 15g.100-1 or 15\%. Similarly, these findings are confirmed by the approximate values observed in the study by Mohamed, Mohamed, and Ahmed21, in which the tamarind seed powders showed values of 11.21g 100g-1 of moisture. Also, in the article by El-Gindy, Youssif, and Youssif22, studying the chemical properties and technological application of tamarind seeds, found values of 11.5±0.5g. Moreover, in the work of Kumar Shanta and Bhattacharya Sila23, the humidity values for the seeds ranged from 9.4 to 11.3\%.

As for husks, limited and scarce tests restrict comparisons. However, the values of husk moisture were shown to be lower in relation to seeds. Comparing these data with non-conventional powders, the powder from the tamarind husk has lower values. Just look, in the study by Cazarin et al.24, evaluating the proximate composition of passion fruit husk powder (Passiflora edulis), with reported values of 9.48±0.26g. Similarly, Lima et al.25, working with watermelon (Citrus lanatus) powder in the formulation of biscuits, found moisture standards of 9.55±0.29.

In addition, the free water content represented by the water activity (aw), as Melo Filho and Vasconcelos Silva26, classify the powdered foods as having low water content, since all presented an aw below 0.6. Naturally, as the water content, specifically the free water, is the reason for most of the deteriorating manifestations, the observed values predicted a commercial stability of these products.

In addition to the context of microbiological and sensory stability, the pH and acidity variants are also decisive. In this work, depending on the pH, the husk powder can be considered a very acidic food (pH<4.5), while seed powders are a low acid food (pH>4.5), according to the criteria of Krolov27. On the other hand, in terms of total acidity, the powders of the seeds showed higher values in relation to the husk, which was already expected due to the pH of the seeds being higher. It is worth mentioning that even though the seed powders have low acidity according to the pH, the values do not reach alkalinity, guaranteeing protection added to the low availability of water.

The high protein content of tamarind seeds has also been observed in other studies. El-Gindy, Youssif and Youssif22, found an average protein content of 13.1±1.1g in seeds from Cairo, Egypt, similarly to our study. Rana Mahima and Sharma Paul28 measured values of 14.1±1.6g in seeds from Jaipur, India,
also confirming our analyses. Still, in Sudan, Mohamed, Mohamed, and Ahmed, working with light and dark colored tamarind seeds, found nitrogen values of 20.23±0.5658g and 23.75±0.0839g, respectively, exceeding our results, but maintaining the seeds as a food with high protein content.

According to ANVISA, FSP is considered a protein source since it presented a minimum of 6g/100g of food, while RSP is a high-content food, as it presented a minimum of 12g/100g of food. Therefore, the values recorded in this study suggest that the seed powder can be classified as a potential source of vegetable protein and, therefore, could be used as a protein supplement.

Allied to the fact, it is mentioned that according to the study by Kumar Shanta and Bhattacharya Sila, the index of essential amino acids for tamarind seed protein is 71.5% in relation to the Food and Agriculture Organization (FAO) standard. On the other hand, the protein content of tamarind THP, in this study, did not stand out, demonstrating reduced values. One explanation for the low protein content in THP is the evidence by Costa et al. explaining that the storage of a concentrated form of protein occurs in the seeds, which are storage organs. When husks and pulps are compared to seeds, their protein content is lower.

Regarding the fat content, in the follow-up scenario, the average estimates of lipid values found are 3.90±0.05g and 3.17±0.04g, respectively, for light and dark colored Sudanese tamarind seed powders observed in the work of Mohamed, Mohamed, and Ahmed. The study by El-Gindy, Youssif, and Youssif reached lipid averages of 5.3±1.0g in Egyptian tamarind seeds. In both studies, the results came close to our work, confirming it. However, as a contrast, there is the research of Rana Mahima and Sharma Paul, evaluating the physico-chemical composition of Indian tamarind seeds, in which they obtained values of 7.84±0.64g of lipid content, the which considerably surpasses the results of the research herein. It is theorized that agroecological variations, such as climate, vegetation, temperature, and soil, imply differences in the chemical composition of the fruit.

As for fibers, all powders assumed values greater than 3g/100g can be considered sources, and values greater than 6g/100g may be considered sources of high content, as regulated by ANVISA. Regarding the husk, there are no physico-chemical composition studies in the scientific field, however, the values found centralize its importance as a main or alternative ingredient in food formulations. As for seeds, several studies share these results. Shlini Purushothaman and Murthy Siddalinga reported values of 14.9 g of fibers in a control tamarind seed sample. Likewise, El-Gindy, Youssif, and Youssif reported numbers of 21.6±0.05g. Also endorsed by Rana Mahima and Sharma Paul measuring averages of 14.75±2.1g. For this reason, it appears that seeds are potential sources of fiber in diets. Moreover, traditional consumer powders (wheat, corn, and cassava) do not add fiber content suitable to the nutritional needs of individuals and populations. Still, the potential and interest of the powders of the husks is verified in this context, due to the high content observed. Fiber is an important part of the diet, which lowers serum cholesterol levels, the risk of coronary heart disease, hypertension, diabetes, colon, and breast cancer. Eventually, in the studied segments it is necessary to trace the profile (soluble and insoluble) of the fibers, in order to guarantee a basis for specialized indication. However, based on the assumption that the fiber recommendation is in the range of 20-30g/day, based on this study, the consumption...
of 100g of husk powder would reach 100% of the recommendations, while fresh and roasted seed powders would cover 90 and 70%, respectively, considering the minimum recommendation of 20g/day.

The carbohydrate content found was also highlighted for the THP that presented higher (Table 1) and significant (p<0.05) (Table 2) values in relation to the roasted and fresh seed powders (Table 2). Analyzing the findings on the proximate composition of tamarind seeds, it is possible to observe analogies regarding the glycolytic fraction in several studies21,22,28 which are close to those found in this study. Regarding THP, it is observed that the values were lower when compared to non-traditional powders, such as powder from the passion fruit husk according to the study by Cazarin et al.24, which obtained 79.39g.100g-1. Likewise, the values of 83.31g.100g-1 seen by Medeiros et al.34 with green banana powder. Relating the values analyzed with habitual and traditional powders, such as wheat, corn, and manioc, which presented 75.1g, 79.1g, and 81g of carbohydrates, respectively, according to the Brazilian Food Composition Table35, husk and seed powder have comparatively less content.

Thus, in dietary regimes with low glycolytic content, the powders studied appear as alternatives. On the other hand, the high energy percentage observed in the seeds is mainly due to the higher protein and lipid content in the seeds compared to the husk, which is fundamentally a source of carbohydrates, as well as due to the thermal process that possibly concentrated the nutrients.

The ash content represents the mineral mass, and it is possible to assign some indication. However, this study did not propose to evaluate these elements individually, which is the reason for more trials. As for seeds, similarly, the study by Mohamed, Mohamed, and Ahmed21, working with light and dark seeds, found values of 2.5 and 2.17g, respectively, of mineral material, approaching the results of this study. However, most studies22,28,32 with the same proposal for centesimal composition analysis, found values that exceeded the total inorganic mass observed in this work.

According to Okello et al.6, one of the factors that contributes to the retention of minerals is the high rainfall. The Northeast region where the study was carried out, comprises the Caatinga, a biome with low rainfall, an explanation for the low ash content compared to other studies, and, furthermore, the genetic variability of the studied variety.

Regarding the phenolic compounds, it is evident that the seed powders have a higher content compared to the husk powder. An additional fact is that the thermal processing of the seed powder does not decrease the phenol content, on the contrary, it promoted a significant increase in comparison to the others. One explanation may lie in the fact that the phenolic compounds present in the seed powder have considerable thermostability. Another arguable point that is sustained would be due to the loss of water and the consequent concentration of the compounds, as explained by Dutra et al.36.

In terms of quantity, the phenolic values found are different from Ferreira's study37, who found values of 7.4 (mg EGA g-1) for powder from tamarind husk and 40.36 (mg EGA g-1) for seed powder. Another Brazilian study, carried out in the southeastern region, found values of 49.3 (mg EGA g-1) for tamarind seeds, however, it worked with an ethanol extract. In Malaysia, Razali et al.14 found a much higher value in tamarind seed powder compared to Brazilian studies, with values of 271.23 (mg EGA g-1). Notably, there are divergences in the studies, making it difficult
to suggest phenolic values in tamarind residues. It remains, therefore, to consider phenolic compounds as components highly influenced by factors such as fruit variety, climatic conditions, genetic factors, among others, as explained by Sartori, Costa, and Ribeiro, and which could justify the variations between this and other studies. It is reiterated that regardless of the variations observed and the extraction methods, the presence of phenolic compounds in the husks and seeds is verified, which adds nutritional value and the possibility of biological activity for human consumption.

With regards to tannins, these components were similar for the three types of powder. Quantitatively, these data are similar with the study by Ferreira for husk powder that obtained values of 3.3 (g 100g⁻¹), a value close to that of this study. However, for seed powder, Ferreira found higher values. Other studies have also found high values in seed powder.

On the other hand, the use of tannins as adjuvants in the treatment of cardiovascular diseases, cancer, and diseases such as Alzheimer's and Parkinson's disease has been ruled. In view of the differences in therapeutic considerations in virtue of the studies, further research is necessary in order to determine the nutritional value, such as the therapeutic quantity and dose. In addition, for food purposes, reducing the content to less astringent or acceptable levels is also worth mentioning. According to the studies, the powders still have content, suggesting adjustments in the formulation. However, it appears that the content found is inferior to that of other foods, such as wines, foods with pronounced tannin content and therefore bringing a margin of safety to the powders.

Regarding antioxidant activity, the data reveal that all powders had a high inhibitory capacity, suggesting protection against free radicals. These results agree with Ferreira's study, who found antioxidant capacity values greater than 90% and, like this study, found no significant differences between different types of powder. On the other hand, Luzia and Jorge, working with tamarind seeds from southeastern Brazil, found an antioxidant capacity of 75.93%, which was less than the findings of this study.

It is important to mention that the inhibition time must be considered for antioxidant activity. As it was noted, for THP the maximum inhibitory capacity occurred in 50 min, in comparison the seed powder had a shorter time, especially FSP. One explanation may be the presence of phenolic compounds in greater quantity in seed powders since they have antioxidant activity. According to what was observed, it is possible to incorporate tamarind residues as foods with nutritional value and protective capacity, which corroborates the research by Natukunda, Muyonga, and Mukisa, incorporating powder from the tamarind seed in enriched biscuits and mango juice increasing the antioxidant capacity of these foods.
CONCLUSION

Tamarind residues in the form of powder concentrate an important content of nutrients, especially proteins and fibers as constituents of seeds, and fibers as constituents of husks. In addition, phenolic compounds were found, and a high antioxidant capacity of the powders studied was observed.

For the Northeast region, particularly the semiarid region, this study, in addition to clarifying and supporting the indication of tamarind residues, opens space for a socioeconomic issue aimed at the full utilization of residues in the context of population income and material for industries.

ACKNOWLEDGMENTS: To CNPq (National Council for Scientific and Technological Development) and the Foundation for the Support of Science and Technology of the State of Pernambuco (FACEPE).

REFERENCES

1. Balaji M, Chandrasekarran D, Ravi R, Purushothaman, MR, Pandiyvan V. Chemical composition of decorticated tamarind seed meal. Int. J. Poult. Sci. 2013; 48(1): 33-36. Disponível em: http://krishikosh.egranth.ac.in/handle/1/58100036261 Acesso em dez 2019.
2. Saraiva BR, Vital ACP, Anjos FA, Cesaro E, Matumoto-Pintro PT. Valorização de resíduos agroindustriais: fontes de nutrientes e compostos bioativos para a alimentação humana. Rev PubSaúde, 2018; 1(7): p.110. 4. https://dx.doi.org/10.31533/pubsaude1.a007
3. Junior CAS. Quantificação de espécies metálicas em abacaxi (Persea americana mill), mamão (Carica papaya l.), tomate (Lycoperpus esculentum mill), cupuaçu (Theobroma grandiflorum schum), dão (Ziziphus mauritiana lam), ingá (Inga edulis mart), tamarindo (Tamarindus indica l), solo e água [Dissertação]. Boa vista: Universidade Federal de Roraima – UFRR; 2013. Disponível em: https://bdulibict.br Acesso em dez 2019
4. Kuru P. Tamarindus indica and its health related effects. Asian Pac J Trop Biomed, 2014; 4(9): 676-681.https://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0173 Disponível em: https://www.sciencedirect.com/science/article/pii/S2221169111300885 Acesso em dez 2019
5. Sousa DMM, Bruno RL, Dornelias, CSM, Alves ED, Andrade AP, Nascimento, LC. Tamarind fruit and seed morphological characterization and post-seminal development Leguminosae: Caesalpinioideae. Rev. Árvore, 2010; 34(6):1009-1015. https://doi.org/10.1590/S0100-67622010000600006
6. Okeillo J, Okullo JBL, EIU G, Nyeko P, Ohua, J. Mineral composition of Tamarindus indica Linn (Tamarind) pulp and seeds from different agro‐ecological zones of Uganda. Rev Food Sci Nutr, 2017; 5(3): 959–966. https://doi.org/10.1002/fns.490
7. Akajuku LO, Nwosu IN, Onuegbu NC, Njoku NE. Egbeneke CO. Proximate, Mineral and Anti‐Nutrient Composition of Processed (Soaked And Roasted) Tamarind (Tamarindus Indica) Seed Nut. Curr. Res. Nutr. Food Sci; 2014; 2(3): 136–145. https://doi.org/10.4314/swj.v2i1.51699
8. Andahabi B, Muyonga J.H.Phenolic content and antioxidant activity of selected Ugandan traditional medicinal foods. Afr. J. Food Sci, 2014; 8(4): 427–434. https://doi.org/10.5897/AJFS2014.1136
9. Marques A, Chicaybarn G, Araújo MT, Marhães LRT, SababaSuru AOU. Composição centesimal e de minerais de casca e polpa de manga (Mangifera indica l.) Cv. Tommy Atkins. Rev. Bras Frutic, 2010; 32(4): 1206-1210. https://doi.org/10.1590/S0100-294520100005000117
10. Zanatta CL, Schlabiz C, Eihur EM. Avaliação físico-química e microbiológica de farinhas obtidas a partir de vegetais não conformes à comercialização. Alim. Nutr, 2010; 21(3): 459-468. Disponível em https://www.researchgate.net/publication/49600264 Acesso em dez 2019.
11. Selani MM, Brazaca SGC, Dias CTS, Ratnayake, WS, Flores RA, Bianchini, A. Characterization and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem, 2014; 163 (15): 23-30. https://doi.org/10.1016/j.foodchem.2014.04.076
12. Instituto Adolfo Lutz – IAL. Métodos físico-químicos para análise de alimentos. 4. Ed. Brasília, 1018p; 2008.
13. AOAC. Official Methods of Analysis. By: Association of Official Analytical Chemists. 16 th International Ed., Washington, D.C., U.S.A; 1995.
14. Razali N, Junit SM, Ariffin A, Ramli NS, Aziz AA. Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress. BMC Complement Altern. Med, 2015; 15(438):1-16. https://doi.org/10.1186/s12906-015-0963-2
15. Roesler R, Malta LG, Carrasco IC, Holanda RS, Souza CAL, Pastore GM. Atividade antioxidante de frutas do cerrado. Ciência e Tecnologia de Alimentos, 2007; 27(1): 53-60. http://dx.doi.org/10.1590/S0100-29452010000100010
16. Magalhães PC, Rodrigues WA, Durães, FM. (1997). Tanino no grão de sorgo bases fisiológicas e métodos de determinação. Sete Lagoas: APJTB.4.2014APJTB-2014-0173 Disponível em: https://www.sciencedirect.com/science/article/pii/S2221169111300885 Acesso em dez 2019
17. Walsh CM, Biesbroek G, Suttie JW. Composição nutricional e de antioxidantes do alimento de escamagalo (Anacridium aegyptium). Rev. Nutr., 2013; 26(8): 1099-1107. https://doi.org/10.1590/S0101-20612013000800007
18. Zanatta CL, Schlabiz C, Eihur EM. Avaliação físico-química e microbiológica de farinhas obtidas a partir de vegetais não conformes à comercialização. Alim. Nutr, 2010; 21(3): 459-468. Disponível em https://www.researchgate.net/publication/49600264 Acesso em dez 2019.
19. Zanatta CL, Schlabiz C, Eihur EM. Avaliação físico-química e microbiológica de farinhas obtidas a partir de vegetais não conformes à comercialização. Alim. Nutr, 2010; 21(3): 459-468. Disponível em https://www.researchgate.net/publication/49600264 Acesso em dez 2019.
20. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC nº 263, de 22 de setembro de 2005. Regulamento técnico para produtos de cereais, amidos, farinhas e farelos. Seção 1, 54p. Disponível em https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0263_22_09_2005.html Acesso em dez 2019.

21. Mohamed H, Mohamed BE, Ahmed KE. Physicochemical properties of tamarind (Tamarindus indica) seed polysaccharides. J. Food Process. Preserv, 2015; 6(6): 1-5. https://doi.org/10.4172/2157-7110.1000452

22. ElGindy AA, Yousif ME, Yousif MRC. Chemical studies and utilization of Tamarindus indica and its seeds in some technological application. Egypt. J. of Nutrition and Health, 2015; 10(1): 93-107. https://doi.org/10.21608/epjn.2015.4825

23. Kumar C, Bhattacharya, S. Tamarind Seed: Properties, Processing and Utilization. Food Sci. Nutr, 2008; 48(1):1-20. https://doi.org/10.1080/1040839080948600

24. Cazanere CBB, Silva JK, Colomeu TC, Zollner RL, Junior MRM. (2014). Capacidade antioxidante e composição química da casca de maracujá (Passiflora edulis). Cienc. Rural, Santa Maria, 2014; 44(9):1699-1704. http://dx.doi.org/10.1590/0103-8478cr20131437

25. Lima JP, Portela JVF, Marques LR, Alcântara MA, El-Aouar AA. Farinha de entrecasca de melancia em biscoitos sem glúten. Cienc. Rural, 2015; 45(9): 1688-1694. http://dx.doi.org/10.1590/0103-8478cr20132029

26. Melo Filho AB, Vasconcelos MAS. Química de alimentos. Universidade Federal Rural de e Pernambuco, 78 p; 2011.

27. Krowol ACR. Hortaliças em Conserva. Brasília, DF: Embrapa Informação Tecnológica, 40p; 2006.

28. Rana M, Shamma P. Proximate and phytochemical screening of the seed and pulp of Tamarind indica. Res. J. Medicinal Plant, 2018; 6, (2): 111-115. Disponível em https://www.plantsjournal.com/archives/2018/vol6issue2/PartB/6-2-18-823.pdf Acesso em dez 2019

29. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC nº 54, de 12 de novembro de 2012. Regulamento Técnico sobre Informação Nutricional Complementar; 2012.

30. Food and Agriculture Organization (FAO). Report of a joint FAO/WHO Committee. Energy and protein requirements. Report Nº. 52, Food and Agricultural Organization of United Nations, Rome; Italy; 1973.

31. Costa WD, Loiola LCO, Nonato CFA, Andrade CC, Martins da Costa JG, Rodrigues FFG. Análise físico-química, bromatológica e antibacteriana dos frutos de Tamarindus indica LINN. Cad. Cult. Cienc. 2015;14(1):86-95. http://dx.doi.org/10.14295/cad.cult.cien.v14i1.776

32. Shilini P, Murthy, KR S. Proximate composition, antinutritional factors and protein fractions of Tamarindus indica L seeds as influenced by processing treatments. Int. J. Food Sci, 2015; 4(4): 91-96. Disponível em https://www.ijfians.com/temp/IntFoodNutrSci4491-4201877_114018.pdf Acesso em dez 2019.

33. IV Diretriz Brasileira sobre Dislipidemias e Prevenção da Aterosclerose: Departamento de Aterosclerose da Sociedade Brasileira de Cardiologia. Arq. Bras. Cardiol, 2007; 88(1):2-19

34. Medeiros MJ, Oliveira, PAAC, Souza, JLM, Silva, RF, Souza, MZ. Composição química de misturas de farinhas de banana verde com castanha do Brasil. Rev. Inst. Adolfo Lutz, 2010, 69(3),396-402. Disponível em http://docs.bvsalud.org/biblioref/ses-sp/2010/ses-18528/ses-18528-2026.pdf Acesso em dez 2019

35. Tabela brasileira de composição de alimentos - TACO. Universidade Estadual de Campinas – UNICAMP. 4. Ed. e ampl. Campinas: TACO, 2011.

36. Dutra AS, Furtado AAL, Pacheco S, Neto, JO. Efeito do tratamento térmico na concentração de carotenoides compostos fenólicos, ácido ascórbico e capacidade antioxidante do suco de tangerina murcote. Braz. J. Food Technol, 2012; 15(3): 198-207. http://dx.doi.org/10.1590/S1981-672320120003000012

37. Ferreira KCF. Caracterização integral de frutos tamarindo (Tamarindus indica L.) do cerrado de Goiás, Brasil e aplicação em produtos de origem. Dissertação (Mestrado) – FACIN, Universidade Federal de Goiás, Goiânia, 87p; 2016. Disponível em https://repositorio.bcs.ufg.br/btesc/handle/95134 Acesso em dez 2019

38. Sartori GV, Costa JK, Colomeu TC, Zollner RL, Junior MRM. (2014). Capacidade antioxidante e composição química da casca de maracujá (Passiflora edulis). Cienc. Rural, Santa Maria, 2014; 44(9):1699-1704. http://dx.doi.org/10.1590/0103-8478cr20131437

39. Vadivel V, Pugalenthi M. Evaluation of traditional knowledge value and protein quality of ver under-utilized tribal food legum. Indian J Trad Knowl, 2015; 45(9): 198-207. http://dx.doi.org/10.1002/fsn3.311

Received in february 2020.
Accepted in july 2020.
Caracterização físico-química dos resíduos do Tamarindo (*Tamarindus indica* L): potencial nutricional e antinutricional

Emerson Iago Garcia e Silva*
Joelma Barbosa da Silva*
Janiclecia Macedo Albuquerque*
Cristhiane Maria Bazílio de Omena Messias*

Resumo

A proposta desse estudo foi realizar a caracterização de resíduos do tamarindo quanto aos aspectos físico-químicos, proporção fenólica e atividade antioxidante explorando seu potencial nutricional e antinutricional para a alimentação humana. Os frutos selecionados foram pesados e as vagens manualmente quebradas, sendo separados das polpas, sementes e cascas. Os produtos foram submetidos à secagem em estufa com circulação de ar (6h). As cascas foram trituradas e submetidas à peneiração granulométrica (250 µm) para formulação de farinha da casca do tamarindo (FCT). Em relação às sementes, uma fração foi submetida à torrefação (115ºC por 15 min) e outra mantida in natura. Posteriormente, foram trituradas e submetidas à peneiração granulométrica (250 µm) para formação da farinha da semente *in natura* (FSTI) sem torrefação e farinha da semente torrefada (FSTT). As determinações analíticas ocorreram para os atributos: pH, acidez titulável, atividade de água, umidade, cinzas, proteínas, lipídeos, fibra total. O potencial antioxidante foi determinado utilizando o radical livre 2,2-difenil-1-picrilhidrazila, além da composição fenólica total e taninos. Todas as farinhas apresentaram baixos valores de umidade. A FCT (24,6 g/100g) e a FSTT (15,31 g/100g) apresentaram altos conteúdo de fibras. Em termos proteicos, a FSTT apresentou maior conteúdo (14,56g/100g). Quanto aos compostos fenólicos, estes foram maiores nas farinhas das sementes. O conteúdo de taninos foi semelhante entre as farinhas. As farinhas apresentaram alta capacidade antioxidativa. São promissores os resíduos do tamarindo, em termos de valor nutricional agregado, podendo, suplantar dietas humanas, especialmente em relação ao conteúdo de fibras, proteína, valor energético e antioxidante.

Palavras-chave: Resíduos alimentares; Alimentação integral; Nutrientes; Farinhas.

INTRODUÇÃO

A necessidade de explorar ingredientes alternativos ganhou notoriedade em virtude do aumento presente no custo convencional de alimentos e pela oferta deficitária¹. Deste modo, a inclusão de alimentos não convencionais, tais como os resíduos agroindustriais, pode reduzir o custo efetivo de nutrimentos, diminuir a demanda aumentada por alimentos e reduzir o desperdício e lixo orgânico², problemas de natureza emergencial no atual cenário de sustentabilidade socio-ambiental. Em contrapartida, grande quantidade de subprodutos agroindustriais é produzida anualmente e desperdiçada pela falta de conhecimento sobre o valor nutritivo e métodos de processá-los¹. Dessa maneira, frutos e vegetais vem sendo estudados de uma forma mais abrangente, buscando evidenciar os benefícios que os seus resíduos podem oferecer à população. Isso
porque, em sua maioria, apresentam valores nutritivos (fontes de proteínas, carboidratos, fibras e compostos bioativos) passíveis do reaproveitamento pela indústria farmacêutica, química e principalmente, alimentícia.

O tamarindo (Tamarindus indica L.) destaca-se por apresentar qualidades nutricionais. A semente desse fruto exibe grande riqueza de aminoácidos sulfurados, permitindo a população aproveitá-lo como componente de um regime proteico à base de cereais.

Tradicionalmente, o tamarindo é utilizado na medicina herbárea para cicatrizar feridas, ainda, para o tratamento de dores abdominais, diarreia, disenteria, infestação parasitária, febre, malária e afecções respiratórias. Comumente, é também usado em países tropicais em virtude de suas características laxativas e afrodisíacas.

Embora não seja nativo da região Nordeste, o tamarindeiro é considerado como planta frutífera típica dessa região devido a sua capacidade de adaptação, tornando-se cultura alimentar ideal para região semiárida.

Os frutos do tamarindo fornecem dois produtos importantes – a polpa, a maioria consumida diretamente ou usada para fazer comida local e as bebidas, que são vendidas para a renda doméstica. Por outro lado, sementes e cascas, oriundas do consumo e processamento dos frutos em volume importante, são descartados anualmente, depois de despolpar a vagem, geralmente são jogadas fora.

De acordo com Akajiaku et al., a polpa da fruta contém o ácido tartárico, responsável por proporcionar acidez típica do fruto, enquanto as sementes são boas fontes de proteína, fibra bruta, carboidratos e compostos fitoquímicos.

Em razão do escasso aproveitamento tecnológico, são poucos as evidências na literatura e/ou informações ou estudo direcionados a caracterização físico-química e uso na alimentação humana de cascas e sementes de tamarindo, especialmente na região do semiárido.

Devido à grande busca por melhorias nutricionais, assim como, o estímulo ao aproveitamento de resíduos alimentícios, percebe-se que o tamarindo tem um enorme potencial a ser explorado. Entretanto, a escassez de estudos de suas propriedades limita sua utilização, além disso, as condições de crescimento (solo, clima, pluviosidade) diferenciam os estudos frente às propriedades físico-químicas, impossibilitando estimar um real valor nutricional e nutracêutico.

Desse modo, a composição centesimal é uma das formas de mostrar a importância nutricional e a possibilidade da utilização dos resíduos, até então considerados não comestíveis, na dieta brasileira, visando contribuir para a melhoria do estado nutricional da população e reduzir os problemas causados pela alimentação deficitária e não nutritiva, além de reduzir o acúmulo de lixo orgânico produzido no país.

Segundo Zanatta, Schlabitz, Ethur, a elaboração de farinhas a partir de resíduos de frutas corresponde a uma alternativa viável de reaproveitamento, uma vez que estas podem ser utilizadas como ingredientes no preparo dos mais diversos produtos (biscoitos, bolos, pães, doces, entre outros). Além disso, podem atuar como fonte enriquecedora de nutrientes.

Em termos de estabilidade alimentar, almeja-se que as farinhas elaboradas apresentem parâmetros que mantenha sua conservação sensorial e um estado que evite a contaminação microbiológica. Dentre os parâmetros de qualidade, o teor de água, a acidez e o pH, bem como o conteúdo de cinzas merecem destaque.

Em questão, ressalta-se que a cultura do tamarindo assume importância econômica na região Nordeste – geradora de renda; todavia, ainda com muito potencial a ser explorado principalmente de seus resíduos. Assim sendo, o estudo físico-químico é uma forma de esclarecer a potencialidade desses resíduos.

A partir das exposições realizadas e considerando que existe uma carência no campo científico de identificação química das
sementes e cascas do tamarindo (*Tamarindus indica* L.) na região do Submédio do São Francisco, esse ensaio, teve como propósito fabricar farinhas a partir dos resíduos do fruto tamarindo (*Tamarindus indica* L.), provenientes da região e caracterizá-las físico-quimicamente, além de verificar sua atividade antioxidante e fenólica. Desse modo, explorando seu potencial nutricional e antinutricional para a alimentação humana.

METODOLOGIA

Frutos do tamarindo: obtenção, seleção e separação dos resíduos

Os frutos de tamarindo foram adquiridos em feiras livres, na região do vale do São Francisco, nas cidades de Petrolina-Pernambuco (latitude 09º23’55”S, longitude 40º30’03”W) e Juazeiro-Bahia (latitude: 09º24’42” S, longitude: 40º29’55”W), em estágio de maturação completo para consumo humano, entre os meses de setembro a dezembro de 2018. Foram então transportados imediatamente aos laboratórios de nutrição I (Bromatologia) e nutrição II (Técnica Dietética) da Universidade de Pernambuco Campus Petrolina, em sacos de plástico à temperatura ambiente, no qual ocorreu a inspeção/pesquisa de sinais de avarias, injuriação, insetos ou sinais de podridão. Em seguida, os frutos selecionados foram pesados e as vagens manualmente quebradas, sendo separados das polpas, as sementes e cascas.

Elaboração de farinhas das sementes (in natura e torrefadas) e cascas

As polpas com sementes foram embebidas durante 12h em água limpa (1:3m/v) para permitir a remoção completa dos fios de polpa e fibras. Para elaboração das farinhas, posteriormente, as sementes foram lavadas com água destilada e submetidas a secagem em estufa com circulação de ar (60°C) por 6 horas. Logo após, realizou-se a moagem em farinhas finas usando liquidificador comercial apropriado e peneiramento usando peneira granulométrica (250 μm), sendo armazenadas em um recipiente hermético protegido da luz e a temperatura ambiente (28°C) até uso posterior. A torrefação ocorreu em 150°C por 15 minutos em forno convencional, e posteriormente trituradas e peneiradas nas mesmas condições da farinha *in natura*. Finalmente, as cascas do tamarindo seguiram os mesmos processos, contudo sem torrefação.

Análises físico-química

A caracterização físico-química das farinhas foi realizada no laboratório de nutrição I (Bromatologia) da Universidade de Pernambuco, campus Petrolina e nos laboratórios do Serviço Nacional de Aprendizagem Industrial (SENAI). As farinhas foram analisadas em triplicatas para os seguintes atributos: pH, acidez titulável, umidade, proteína bruta, lipídeo bruto, fibra bruta e cinzas, segundo as recomendações propostas pelo Instituto Adolf Lutz. A quantificação dos carboidratos ocorreu por diferença, seguindo a fórmula esquematizada: [100 – (lipídios + proteína bruta + cinzas + fibra bruta)]. A determinação da atividade de água foi verificada pelo Método Standard Methods for the Examination of Water and Wastewater. Para determinar o valor calorífico foram utilizados os valores de conversão: 4 kcal/g para carboidratos, 4 kcal/g para proteínas, e 9 kcal/g para lipídios.

Elaboração de extratos e quantificação fenólica, taninos e determinação da atividade antioxidante

Amostras das farinhas foram extraídas com metanol à temperatura ambiente por 24 horas com massa volumétrica na proporção de 1:20 (g/ml). Esse solvente foi determinado com base no estudo de Razali et al., os quais verificaram a melhor extração para resíduos do tamarindo. O extrato de metanol foi então evaporado sob pressão reduzida. Em seguida, foram dissolvidos em 10% de dimetilsulfóxido (DMSO). Ambos
os solventes, metanol e DMSO atóxicos em concentracoes. Os extratos foram preservados a -20°C até a realização da análise de compostos fenolicos e atividade antioxidante. Para a quantificação dos compostos fenólicos foi utilizado o método de Folin Ciocalteau (FC) (Sigma®, USA) modificado por Roesler et al., onde foram utilizados extratos na proporção de 1:10 (p/v). Em resumo, pipetou-se 500µl do extrato em um tubo de ensaio (10ml), completou-se com 0,5µl do Folin Ciocalteau (1:10). Subsequentemente, foram adicionados 0,5µl de uma solução de carbonato de sódio (20%), seguidos por 3,5µl de água destilada e a mistura homogeneizada usando um vórtice. A mistura foi então incubada à temperatura ambiente por 2h para permitir o desenvolvimento da cor. A absorbância foi medida a 725 nm. Para expressão dos resultados, foi elaborado uma curva de calibração com as seguintes concentrações: 0,01µl, 0,015µl, 0,02µl, 0,025µl, 0,050µl, 0,075µl e 0,1µl e expressa em mg de equivalentes de ácido gálico (AG) por grama de extrato (mg EAG.g\(^{-1}\)).

Quanto aos taninos foram determinados pelo método de Magalhães, Rodrigues, Durães, utilizando o reagente de Folin-Denis (FD) (Sigma®, USA). Para a determinação, inicialmente, foi realizada o processo de extração dos taninos. Para isso, 0,5g de cada farinha foram transferidas para um tubo de ensaio, adicionado 10 ml de solução de ácido clorídrico (1%) em metanol e fechado. Em seguida, agitação posterior em vórtex por 20 minutos e centrifugados a 1000 rpm, durante 8 minutos (com velocidade gradativa de 200 até 1000). Após a extração, foi realizado a marcha de determinação. Resumidamente, em um tubo de ensaio foram adicionados 1000µl do extrato, em seguida 8,4ml de água destilada, 1µl de solução saturada de carbonato de sódio e 0,5µl do reagente de Follin-Denis. Então, os tubos foram agitados por 30 minutos e medidos a 760nm. Para expressão dos resultados foi elaborado curva de calibração com as seguintes concentrações: 100µl, 200µl, 300µl, 400µl, 500µl, 600µl, 700µl, 800 µl. Os resultados foram expressos em mg de ácido tânico g\(^{-1}\) amostra.

A avaliação da atividade antirradical livre dos extratos ocorreu pela desativação do radical livre DPPH (2,2-difenil-1-picrilhidrazila), os quais foram avaliados quanto a sua capacidade em doar hidrogênio para DPPH, de acordo com a metodologia de Yamaguchi et al. Foi realizada a leitura em espectro UV-VIS em comprimento de onda de 517 nm. A porcentagem de sequestro do radical DPPH, foi calculada através da Equação 1:

\[
\% \text{ Sequestro} = \left(\frac{\text{Absorbância do controle} - \text{Absorbância da amostra}}{\text{Absorbância do controle}} \right) \times 100
\]

Delineamento estatístico
As análises estatísticas foram realizadas utilizando o pacote de dados do programa SPSS versão 23.0 (SPSS Inc.,Chicago, IL, USA). A compilação dos dados ocorreu no Microsoft Excel 2013. As variáveis quantitativas discretas foram testadas quanto à distribuição normal pelo teste de Shapiro Wilk e homogeneidade de variâncias pelo teste de Levenne. Como assumiram distribuição normal, procedeu-se análise paramétrica por meio do teste Análise de Variância (ANOVA one way) com pós-hoc de Tukey. Foi estabelecido um nível de significância de 5,0% para rejeição de hipótese de nulidade.
RESULTADOS

Apresenta-se o rendimento dos resíduos (cascas e sementes) do tamarindo em relação a polpa, parte popular do fruto e considerada nobre no quadro 1. Assim, verifica-se que para cada kg de fruto, os resíduos respondem por aproximadamente metade (48,6%) do peso do fruto inteiro, com destaque, em termos de proporção, para as cascas do tamarindo.

Quadro 1 - Estimativa das proporções das partes do fruto Tamarindo (Tamarindus indica L) proveniente da Região do Submédio do São Francisco para cada 1kg de vagens (2020).

Parte do fruto para cada 1kg de vagens	Polpa	Tamarindo	Semente	Casca
Rendimento (%)	51,4	22,1	26,5	

Fonte: Próprio autor (2020).

Os componentes físico-químicos das farinhas da casca e sementes (*in natura* e torrefada) do tamarindo podem ser vistos na Tabela 1. As análises, reveladas em bases úmida (BU) e seca (BS), mostram que o conteúdo de fibras e a fração glicídica são predominantes na FCT. Em relação às farinhas da semente *in natura* e torrefada, além do domínio de fibras e carboidratos, o teor proteico também foi relevante.

Sumariza-se a análise comparativa entre as farinhas estudadas na tabela 2. Observa-se que em relação ao pH, as farinhas apresentaram valores considerados ácidos, com destaque para a FCT, diferindo significativamente das outras farinhas (p<0,05). Em relação à acidez titulável, a FCT apresentou valores maiores (p<0,05) em relação às demais farinhas.

Quanto à umidade, a farinha de semente *in natura* revelou maior conteúdo, estatisticamente significativo (p<0,05). Referente ao conteúdo nitrogenado ou proteico, é possível verificar que se concentra para as sementes. De forma significativa (p<0,05), a FSTT apresentou conteúdo que supera a in natura (Tabela 2).

Quanto ao conteúdo lipídico, observa-se que as farinhas apresentaram valores reduzidos (Tabela 1), no qual o destaque recaiu de forma significativa (p<0,05) para a farinha da semente torrefada (Tabela 2), superando a farinha *in natura*, e essa, a farinha da casca, significativamente (p<0,05). Esta última, com conteúdo ínfimo (0,6g 100g-1).

Enquanto, em relação aos carboidratos, esses foram significativamente maiores na farinha da casca. Particularmente, todas as farinhas podem ser consideradas alimentos com alto conteúdo de fibras. Significativamente (p<0,05), a FCT apresentou valores que superam as farinhas das sementes (Tabela 2).

O conteúdo de cinzas foi superior na FCT, seguido pela FSTT. Quanto ao valor calórico, a farinha da semente torrefada apresentou maior conteúdo comparando com a farinha da casca, diferindo significativamente (p<0,05) (Tabela 2).

Referente aos resultados da quantificação fenólica, taninos e atividade antioxidativa, os resultados podem ser vistos na tabela 3. Frente ao conteúdo de compostos fenólicos, nota-se que esse foi maior nas farinhas de semente, notadamente, na FSTT, diferindo significativamente da FSTI e da FCT, esta última, com menor conteúdo quantificado. Em relação aos valores de taninos, nota-se que não houve diferença nas médias encontradas para os três tipos de farinhas. Por fim, na avaliação da atividade sequestrante do radical DPPH, todas as farinhas apresentam alto percentual de inibição, acima de 97%, e sem diferenças estatísticas.
Tabela 1 – Parâmetros físico-químicos de farinhas da casca e sementes *in natura* e torrefadas do tamarindo (*Tamarindus indica* L) provenientes do Região do Submédio do São Francisco (2020).

Variáveis físico-químicas	FCT	FSTI	FSTT
pH	2,9±0,35	6,1±0,04	5,8±0,09
Acidez Titulável	3,8±0,12	1,9±0,17	1,3±0,17
Atividade de água (Aw)	0,43±0,00	0,48±0,00	0,47±0,00
Umidade (g.100g–1)	6,3±0,28	6,7±0,32	10,6±0,53
Proteína (g.100g–1)	3,4±0,01	3,6±0,01	11,4±0,11
Gorduras totais (g.100g–1)	0,6±0,01	0,6±0,01	3,5±0,05
Fibra Alimentar Total (g.100g–1)	23,0±0,0	24,6±0,08	18,3±0,43
Fração glicídica (g.100g–1)*	62,2±0,43	58,7±0,50	54,3±0,74
Cinzas (g.100g–1)	4,7±0,02	5,0±0,02	2,0±0,01
Valor calórico total	287±1,14	237±1,65	294±4,30

Fonte: Próprio autor (2020). Valores esquematizados em média e desvio padrão. *Valores em base úmida; Médias seguidas por letras maiúsculas diferentes nas linhas diferem significativamente pela análise de variância unidirecional (ANOVA) seguida pelo teste de Tukey a posteriori ao nível de significância de 0.05.

Tabela 2 – Comparação entre os componentes físico-químicos das farinhas da casca, semente *in natura* e torrefada do tamarindo (*Tamarindus indica* L) provenientes do Submédio do São Francisco (2020).

Farinha	Compostos fenólicos (mg EAG.g⁻¹)	Taninos (mg EAT.g⁻¹)	Sequestro do radical DPPH (%)
FCT	8,9±0,16	2,9±0,17	97,4±0,28
FSTI	15,5±0,21	3,1±0,07	99,9±0,00
FSTT	16,5±0,15	3,1±0,02	97,7±2,05

Fonte: Próprio autor (2020). FCT: Farinha da casca do tamarindo; FSTI: Farinha da semente in natura; FSTT: Farinha da semente torrefada; EAG: Equivalente de ácido gálico; EAT: Equivalente de ácido tânico; Médias seguidas por letras maiúsculas diferentes nas colunas diferem significativamente pela análise de variância unidirecional (ANOVA) seguida pelo teste de Tukey a posteriori ao nível de significância de 0.05.

Tabela 3 – Análise comparativa de fenóis totais, taninos e atividade antioxidante de farinhas dos resíduos do tamarindo, Petrolina – Pernambuco, 2020.

Fonte: Próprio autor (2020).
DISCUSSÃO

Nesse estudo, foram encontradas relações desproporcionais dos resíduos vegetais em relação às partes consideradas como nobres dos frutos. Discordando dos achados do presente estudo, no ensaio de Pereira et al.18 as partes constituídas de casca, polpa e sementes de tamarindo, contribuíram respectivamente com 30%, 30% e 40% do peso do fruto inteiro. Além desse, a pesquisa pela Empresa Brasileira de Pesquisa Agropecuária Semiárido (EMBRAPA) encontrou um volume de resíduo gerado no processamento de 50 a 65%19. Embora possam existir divergências percentuais em relação aos rendimentos dos resíduos em virtudes de processos manuais ou instrumentais (industriais mecanizados) utilizados e devido à composição, compreende-se que os resíduos respondem por importantes parcelas dos frutos, superando, em grande parte, a nobreza das polpas (parte estigmatizada como nobre).

Em relação ao conteúdo de água total (umidade), observa-se que as farinhas apresentaram valores dentro dos padrões normativos, que segundo a Agência Nacional de Vigilância Sanitária (ANVISA)20 é no máximo 15g.100g-1 ou 15%. De forma semelhante, esses achados são ratificados pelos valores aproximados observados no estudo de Mohamed, Mohamed e Ahmed21, no qual, as farinhas de semente de tamarindo apresentaram valores de 11,21g 100g-1 de umidade. Também, no ensaio de El-Gindy, Yousif e Youssif22, estudando as propriedades químicas e aplicação tecnológica das sementes de tamarindo, encontrou números de 11,5±0,5. Ainda, no trabalho de Kumar Shanta e Bhattacharya Sila23, os valores de umidade para as sementes oscilaram de 9,4 a 11,3%.

Quanto às cascas, ensaios limitantes e escassos restringem comparações. Todavia, os valores de umidade da casca mostraram-se mais reduzidos em relação às sementes. Comparando esses dados com farinhas de cascas não convencionais, a farinha da casca do tamarindo apresenta valores menores. Basta ver, no estudo de Cazarin et al.24, avaliando a composição centesimal da farinha da casca do maracujá (Passiflora edulis), com valores notificados de 9,48±0,26. Semelhantemente, Lima et al.25, trabalhando com farinha da entrecasca da melancia (Citrulus lanatus) na formulação de biscoitos, encontrou padrões de umidade de 9,55±0,29.

Ademais, o teor de água livre representado pela atividade de água (aw), conforme Melo Filho e Vasconcelos Silva26 classifica as farinhas em alimentos com baixo conteúdo de água, pois todas apresentaram aw inferior a 0,6. Naturalmente, como o teor de água, especificamente a água livre fundamenta grande parte das manifestações deteriorantes, os valores observados preludiam para uma estabilidade comercial desses produtos.

Somado ao contexto de estabilidade microbiológica e sensorial, as variantes pH e acidez são também determinantes. Nesse trabalho, conforme o pH, a farinha da casca pode ser considerada um alimento muito ácido (pH<4,5), enquanto as farinhas da semente, alimentos de baixa acidez (pH>4,5), de acordo com os critérios de Krolow27. Por outro lado, em termos de acidez total, as farinhas das sementes apresentaram valores maiores em relação à casca, que já se esperava em virtude do pH das sementes apresentar-se maior. Convém mencionar, que mesmo as farinhas das sementes apresentando baixa acidez segundo o pH, os valores não alcançam a alcalinidade, garantindo uma proteção somada a baixa disponibilidade de água.

O alto conteúdo proteico das sementes de tamarindo, também foram observados em outros estudos. El-Gindy, Yousif e Youssif22, verificaram um conteúdo médio
de 13,1±1,1 em sementes do Cairo, Egito, similarmente ao nosso estudo. Rana Mahima e Sharma Paul mensuraram valores de 14,1±1,6 em sementes do Jaipur, Índia, ratificando, também, nossas análises. Ainda, no Sudão, Mohamed, Mohamed e Ahmed, trabalhando com sementes de tamarindo de coloração clara e escura, encontraram valores nitrogenados de 20.23±0.5658 e 23.75±0.0839, respectivamente, superando nossos resultados, porém resguardando as sementes como alimentos de alto conteúdo proteico.

De acordo com a ANVISA, a FSTI é considerada como fonte proteica uma vez que apresentou um mínimo de 6g/100g do alimento, enquanto a FSTT, um alimento de alto conteúdo, pois apresentou um mínimo de 12g/100g de alimento. Para tanto, os valores registrados neste estudo sugerem que as farinhas das sementes podem ser classificadas como fontes potenciais de proteína vegetal e, portanto, poderiam ser usadas como suplemento proteico.

Aliado ao fato, menciona-se que segundo o estudo de Kumar Shanta e Bhattacharya Sila, o índice de aminoácidos essenciais para a proteína da semente do tamarindo é de 71,5% em relação ao padrão da FAO. Por outro lado, o teor proteico da FCT do tamarindo, nesse estudo, não se destacou, apresentando valores reduzidos. Traduz-se como explicação a evidência de Costa et al., ao explanarem que o armazenamento de forma concentrada de proteína ocorre nas sementes, que são órgãos de armazenamento, quando comparadas as outras partes como cascas e polpas, razão do baixo conteúdo proteico na FCT.

Quanto à gordura, todas as farinhas assumiram valores maiores que 3g/100g para serem consideradas fontes e maior que 6g/100g para considerá-las de alto conteúdo, conforme regulamenta a ANVISA. Em relação à casca, é inexistente no campo científico estudos de composição físico-química, contudo, os valores encontrados centralizam sua importância como ingrediente principal ou alternativo em formulações alimentícias. Quanto às sementes, compartilham dos resultados diversos estudos. Shlini Purushothaman e Murthy Siddalinga notificaram valores de 14,9g de fibras em amostra de semente de tamarindo controle. Do mesmo modo, El-Gindy, Youssif e Youssif reportaram números de 21,6g±0,05. Endossado, também, por Rana Mahima e Sharma Paul mensurando médias de 14,75±2,1. Por isso tudo, verifica-se que as sementes são potenciais fontes de fibras nas dietas. Soma-se ao fato, que as farinhas tradicionais de consumo (trigo, milho e mandioca), não agregam conteúdo de fibra adequado às necessidades nutricionais dos indivíduos e populações. Ainda, verifica-se o potencial e interesse das farinhas das cascas nesse contexto, pelo alto conteúdo observado. Especialmente, porque a fibra é uma parte importante da dieta, que diminui os níveis séricos de colesterol, o risco de doença cardíaca coronária, hipertensão,
diabetes, cólon e câncer de mama. Eventualmente, nos segmentos estudados é necessário traçar o perfil (solúvel e insolúvel) das fibras, a fim de garantir um embasamento de indicação especializado. Todavia, partindo do pressuposto que a recomendação de fibras está na faixa de 20-30g/dia, com base nesse estudo, o consumo de 100g de farinha da casca atingiram 100% das recomendações, enquanto as farínas das sementes in natura e torrefada cobririam 90 e 70%, respectivamente, considerando a recomendação mínima de 20g/dia.

O conteúdo de carboidratos encontrado também foi destacado para as FCT que apresentaram valores superiores (Tabela 1) e significativos (p<0,05) (Tabela 2) em relação às farí纳斯 das sementes torrefada e in natura (Tabela 2). Analisando os achados sobre composição centesimal de sementes de tamarindo, percebe-se analogias quanto a fração glicídica em vários trabalhos que aproximam-se do encontrado nesse estudo. Em relação à FCT, observa-se que os valores foram menores quando comparado com farínhas não tradicionais, como farinha da casca do maracujá segundo o estudo de Cazarin et al., que obteve 79,39 100g−1. Assim como, os valores de 83,31g 100g−1 visto por Medeiros et al. com farinha de banana verde. Relacionando os valores analisados com farínhas de consumo habitual e tradicionais, como trigo, milho e mandioca que apresentaram 75,1g, 79,1g e 81g de carboidratos, respectivamente, de acordo com Tabela Brasileira de Composição de Alimentos nota-se o teor reduzido da farinha da casca e da semente em comparação.

Assim, em regimes dietéticos com baixo teor glicídico, as farínhas estudadas surgem como alternativas. De outro lado, o alto percentual energético observado nas sementes deve-se, sobretudo, ao maior teor proteico e lipídico nas sementes em comparação a casca, fundamentalmente fonte de carboidratos e também do processo térmico que possivelmente concentrou os nutrientes.

O conteúdo de cinzas representa a massa mineral, sendo possível atribuir alguma indicação. Contudo, esse estudo não se propôs a avaliar esses elementos individualmente, razão de mais ensaios. Quanto as sementes, similaramente, o estudo de Mohamed, Mohamed e Ahmed, trabalhando com sementes claras e escuras, encontrou valores de 2,5 e 2,17g, respectivamente de material mineral, aproximando dos resultados desse estudo. Todavia, grande parte dos estudos com mesma proposta de análise centesimal, encontraram valores que superam a massa inorgânica total observada nesse trabalho.

Segundo Okello et al., um dos fatores que contribui para a retenção de minerais é a alta precipitação pluviométrica. Logo visto, a região Nordeste onde o estudo foi realizado, compreende a Caatinga, bioma com baixas precipitações pluviométricas, explicação para o baixo conteúdo de cinzas em comparação aos outros estudos. Excetuando-se, além disso, a variabilidade genética da variedade estudada.

Em relação aos compostos fenólicos, evidencia-se que as farínhas das sementes se apresentam conteúdo maior em comparação à farinha da casca. Fato adicional é que o processamento térmico na farinha da semente não diminui o conteúdo de fenóis, pelo contrário, promoveu aumento significativo em comparação aos demais. Uma explicação pode residir no fato que os compostos fenólicos presentes na farinha da semente possuem considerável termoestabilidade. Outro ponto discutível que se sustenta seria em decorrência da perda de água e consequentemente concentração dos compostos, conforme explica Dutra et al.

Em termos de quantidade, os valores fenólicos encontrados são diferentes do estudo de Ferreira, que encontrou números de 7,4 (mg EGAg−1) para farinha da casca de...
tamarindo e 40,36 (mg EGA g⁻¹) para farinha da semente. Outro estudo brasileiro, realizado na região sudeste, encontrou valores de 49,3 (mg EGA g⁻¹) para sementes do tamarindo, contudo, trabalhou com extrato etanólico. Ainda, na Malásia, Razali et al.¹⁴, encontraram valor muito superior em farinha da semente do tamarindo em comparação aos estudos brasileiros, com números de 271,23 (mg EGA g⁻¹). Notadamente, existem divergências quanto aos estudos, dificultando sugestões dos valores fenólicos em resíduos do tamarindo. Resta, portanto, considerar os compostos fenólicos como componentes altamente influenciáveis por fatores como variedade da fruta, condições climáticas, fatores genéticos, dentre outros, como explicita Sartori, Costa e Ribeiro³⁸, e que poderia justificar as variações entre este e demais estudos. Reitera-se, que independente das variações observadas e dos métodos de extração, verifica-se a presença de compostos fenólicos nas cascas e sementes, o que agrega valor nutricional e possibilidade de atividade biológica para alimentação humana.

No que se refere aos taninos, estes componentes foram semelhantes para os três tipos de farinhas. Quantitativamente, esses dados são semelhantes com o estudo de Ferreira³⁷ para a farinha da casca que obteve valores de 3,3 (g 100g⁻¹), valor aproximado ao desta pesquisa. Contudo, para farinha da semente, Ferreira³⁷, encontrou valores superiores. Outros estudos, também verificaram altos valores em farinhas das sementes³⁹,⁴⁰.

Por outro lado, a utilização dos taninos como adjuvantes no tratamento de doenças cardiovasculares, câncer e doenças como Alzheimer e Mal de Parkinson tem sido pautado⁴⁴. Haja vista diferenças nas considerações terapêuticas em virtudes dos estudos faz-se necessários novas pesquisas a fim de determinar o valor nutricional, como a quantidade e dose terapêutica. Além disso, para fins alimentícios a redução do conteúdo até níveis menos adstringentes ou aceitáveis também merece destaque. Pelos estudos, as farinhas ainda apresentam conteúdo, sugerindo ajustes na formulação. Contudo, verifica-se que o conteúdo encontrado é inferior ao de outros alimentos, como os vinhos, alimentos com conteúdo pronunciado de taninos e portanto trazendo uma margem de segurança as farinhas.

Referente à atividade antioxidante, os dados revelam que todas as farinhas apresentaram alta capacidade inibitória, sugerindo proteção contra radicais livres. Esses resultados entram em acordo com o estudo de Ferreira³⁷, que encontrou valores de capacidade antioxidante maior que 90% e assim como esse estudo, não encontramos diferenças significativas entre os diferentes tipos de farinhas. Por outro lado, Luzia e Jorge⁴², trabalhando com sementes de tamarindo do Sudeste brasileiro verificaram capacidade antioxidante de 75,93%, variação menor em comparação aos achados desse estudo.

É importante mencionar que o tempo de inibição deve ser levado em consideração para a atividade antioxidante. Como foi notado, para FCT a máxima capacidade inibitória ocorreu no tempo de 50 min, em comparação as farinhas das sementes tiveram menor tempo, especialmente FSTI. Uma das explicações pode ser a presença dos compostos fenólicos em maior quantidade nas farinhas das sementes, uma vez que esses desempenham atividade antioxidante³⁸. De acordo com o observado, é possível incorporar os resíduos do tamarindo como alimentos com valor nutricional e capacidade protetora, o que corrobora a pesquisa de Natukunda, Muyonga e Mukisa⁴³, incorporando farinha da semente de tamarindo em biscoitos enriquecido e suco de manga e aumentando a capacidade antioxidante destes alimentos.
CONCLUSÃO

Os resíduos do tamarindo na forma de farinhas concentram importante conteúdo de nutrientes, especialmente, proteínas e fibras como constituintes das sementes e fibras como constituintes das cascas. Além disso, foram encontrados compostos fenólicos e observada alta capacidade antioxidativa das farinhas estudadas. Para a região Nordeste, em especial, o semiárido, esse estudo, além de esclarecer e embasar a indicação dos resíduos do tamarindo, abre espaço para uma questão socioeconômica voltada ao aproveitamento integral dos resíduos no contexto de renda da população e matéria para as indústrias.

AGRADECIMENTOS: Ao CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) e a Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE).

REFERÊNCIAS

1. Balaji M, Chandrasekarn D, Ravi R, Purushothaman, MR, Pandiyvan V. Chemical composition of decockitated tamarind seed meal. Int. J. Poult. Sci, 2013; 48(1): 33-36. Disponível em: http://krishihok.sh.granth.ac.in/handle/1/5810036261. Acesso em dez 2019.
2. Saraiva BR, Vital ACP, Anjos FA, Cesaro E, Matumoto-Pintro PT. Valorização de resíduos agroindustriais: fontes de nutrientes e compostos bioativos para a alimentação humana. Rev Pub Saúde, 2018; 1(7): p.1-10. 4. https://dx.doi.org/10.31533/pubsaudae1.a007
3. Junior CAS. Quantificação de espécies metálicas em abacate (Persea americana mill), mamão (Carica papaya l), tomate (Lycopersium esculentum mill), caucaçu (Theobroma grandiflorum schum), dão (Ziziphus mauritiana lam), ingá (Inga edulis mart), tamarindo (Tamarindus indica L). Dissertações. Boa vista: Universidade Federal de Roraima – UFR, 2013. Disponível em: https://bdtd.ibict.br Acesso em dez 2019
4. Kuru P. Tamarindus indica and its health related effects. Asian Pac J Trop Biomed, 2014; 4(9): 676-681.https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0173. Disponível em: https://www.sciencedirect.com/science/article/pii/S2221169113300885 Acesso em dez 2019
5. Sousa DAM, Bruno RLA, Donelias, CSM, Alves ED, Andrade AP, Nascimento, LC. Tamarind fruit and seed morphological characterization and post-seedling development Leguminosae: Caesalpinioideae. Rev. Arvore, 2010; 34(6):1009-1015. http://dx.doi.org/10.1590/S0100-67622010000600006
6. Okello J, Okullo JB, Eku G, Nyeke P, Obua, J. Mineral composition of Tamarindus indica Linn (Tamarind) pulp and seeds from different agroecological zones of Uganda. Rev Food Sci Nutr, 2017; 5(5): 959–966. https://dx.doi.org/10.1002/fsn3.490
7. Akajiuaku LO, Nwosu JN, Onuegbu NC, Njoku NE, Egbeneke CO. Proximate, Mineral and Anti-Nutrient Composition of Processed (Soaked And Roasted) Tamarind (Tamarindus Indica) Seed Nut. Curr. Nutr. Res. Nutr. Sci, 2014; 2(3): 136–145. https://doi.org/10.4314/swj.v2i1.51699
8. Andahati B, Muyonga J.H. Phenolic content and antioxidant activity of selected Ugandan traditional medicinal foods. Atr. J. Food Sci, 2014; 8(6): 427–434 https://dx.doi.org/10.5897/AJFS2014.1136
9. Marques A, Chichayam G, Araújo MT, Manhães LRT, Sabaa-Srur AUJO. Composição centesimal e de minerais de casca e polpa de manga (Mangifera indica L.) Cv. Tommy Atkins. Rev Bras Frutic, 2013; 21(3): 459-468. Disponível em: https://www.researchgate.net/publication/49600264 Acesso em dez 2019.
10. Selani MM, Brazaca SGC, Dias CTS, Ratnayake, WS, Flores RA, Bianchini, A. Characterization and potential application of apple pomace in an extruded product for fibre enhancement. Food Chem, 2014; 163 (15): 23-30. https://doi.org/10.1016/j.foodchem.2014.04.076
11. Instituto Adolfo Lutz – IAL. Métodos físico-químicos para análise de alimentos. 4. Ed. Brasília, 1018p; 2008.
12. Kuru P. Tamarindus indica and its health related effects. Asian Pac J Trop Biomed, 2014; 4(9): 676-681.https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0173. Disponível em: https://www.sciencedirect.com/science/article/pii/S2221169113300885 Acesso em dez 2019
13. AOAC. Official Methods of Analysis. By: Association of Official Analytical Chemists. 16 th International Ed., Washington, D.C., U.S.A; 1995.
14. Razali N, Junit SM, Ariffin A, Ramli NS, Aziz AA. Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress. BMC Complement Altern. Med, 2015; 15(438):1-16. https://doi.org/10.1186/s12906-015-0963-2
15. Magalhães PC, Rodrigues WA, Durães, FM. (1997). Tanino no grão de sorgo bases fisiológicas e métodos de determinação. Sete Lagoas: AMPAR e Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE).
16. Sousa DAM, Bruno RLA, Donelias, CSM, Alves ED, Andrade AP, Nascimento, LC. Tamarind fruit and seed morphological characterization and post-seedling development Leguminosae: Caesalpinioideae. Rev. Arvore, 2010; 34(6):1009-1015. http://dx.doi.org/10.1590/S0100-67622010000600006
17. Okello J, Okullo JB, Eku G, Nyeke P, Obua, J. Mineral composition of Tamarindus indica Linn (Tamarind) pulp and seeds from different agroecological zones of Uganda. Rev Food Sci Nutr, 2017; 5(5): 959–966. https://dx.doi.org/10.1002/fsn3.490
18. Marques A, Chichayam G, Araújo MT, Manhães LRT, Sabaa-Srur AUJO. Composição centesimal e de minerais de casca e polpa de manga (Mangifera indica L.) Cv. Tommy Atkins. Rev Bras Frutic, 2013; 21(3): 459-468. Disponível em: https://www.researchgate.net/publication/49600264 Acesso em dez 2019.
19. Selani MM, Brazaca SGC, Dias CTS, Ratnayake, WS, Flores RA, Bianchini, A. Characterization and potential application of apple pomace in an extruded product for fibre enhancement. Food Chem, 2014; 163 (15): 23-30. https://doi.org/10.1016/j.foodchem.2014.04.076
20. Instituto Adolfo Lutz – IAL. Métodos físico-químicos para análise de alimentos. 4. Ed. Brasília, 1018p; 2008.
21. AOAC. Official Methods of Analysis. By: Association of Official Analytical Chemists. 16 th International Ed., Washington, D.C., U.S.A; 1995.
22. Razali N, Junit SM, Ariffin A, Ramli NS, Aziz AA. Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress. BMC Complement Altern. Med, 2015; 15(438):1-16. https://doi.org/10.1186/s12906-015-0963-2
23. Roesler R, Malta LG, Carrasco LC, Holanda RS, Souza CAL, Pastore GM. Atividade antioxidante de frutas do cerrado. Ciênc. Tecnol. Aliment, 2017; 27(1): 53-60. http://dx.doi.org/10.1590/S0101-20612007000100010
24. Magalhães PC, Rodrigues WA. Durães, FM. (1997). Tanino no grão de sorgo bases fisiológicas e métodos de determinação. Sete Lagoas: EMBRAPA – CNPMS, 26p. (EMBRAPA – CNPMS. Circular Técnica, 27). Disponível em: https://www.embrapa.br/buca-de-publicacoes/-publicacao/478035/tanino-no-grao-de-sorgo-bases-fisiologicas-e-metodos-de-determinacao.acesso em dez 2019
25. Yamaguchi T, Takamura, T, Motaba T, Torao J. HPLC method for evaluation of the free radical – scavenging of foods by using 1,1-diphenyl-2-picrylhydrazyl, Biosci. Biotechnol. Biochem, 1998; 62 (6): 1201-1204. https://dx.doi.org/10.1271/bbb.62.1201
26. Pereira CP, Melo B, Freitas RS, Tomaz MA, Freitas CJP. Mudas de tamarindo produzidas em diferentes níveis de matéria orgânica adicionada ao substrato. Rev. Verde Agroecologia Desenvolv. Sustent, 2010; 5(3): 152-159.
27. Pereira LGR, Azevedo JG, Pina DS, Brandão, LGN, Araújo, GGL, Voltolini, TV. (2009). Aproveitamento dos coprodutos da agroindústria processadora de suco e polpa de frutas para alimentação de ruminantes. Embrapa Semiárido, Petrolina-Pernambuco, 30 p. Disponível em
