Evaluation of Seizure Activity After Phospho-diesterase Inhibition (BRL 50481) with Guanylate Cyclase Activation (A-350619) and Inhibition (Methylene blue) in Animal Models of Epilepsy

J Nandhakumar, Vinita Ernest and Manoj G Tyagi*
Department of Pharmacology, Christian Medical College, Tamilnadu, India

Abstract

The role of soluble guanylate cyclase (GC) activator (A-350619) and inhibitor (methylene blue) was evaluated in the presence of phosphodiesterase-7 (PDE-7) inhibitor such as BRL-50481, in animal models of epilepsy. Seizures were induced in the animals by subjecting them to an injection of chemical convulsant, pentylenetetrazole (PTZ) and maximal electroshock (MES). The study mainly comprises the onset of seizures, mortality/recovery, percentage of prevention of seizures (anti-convulsant) and total duration of convulsive time. The combination of GC inhibitor, methylene blue with BRL 50481 showed a delay onset (P<0.01) in incidence of seizures, compared to A-350619 and BRL 50481 alone treated group. The total convulsive time was prolonged significantly (P<0.01) in methylene blue alone treated (69.2%) groups, compared to DMSO received group (100%). The study also demonstrates that methylene blue alone and methylene blue with BRL 50481 greatly increased the anti-convulsant activity (P<0.01 and P<0.05) along with higher protection 83.3% and 66.7% range respectively in PTZ model. Methylene blue with BRL 50481 effectively (P<0.01) decreased the MES (150 mA, 0.2 sec) induced convulsion, compared to DMSO. The data shows that methylene blue alone, methylene blue with BRL 50481 greatly increased the anti-convulsant activity (P<0.01 and P<0.01) along with higher protection 83.3% range in animals treated with MES. The present result suggested of the possible involvement of methylene blue alone and with presence of BRL 50481, delays the onset of seizure activity as well as prolongs the total duration of convulsive time in both models.

Keywords: Guanylate cyclase; PDE; A-350619; Methylene blue; BRL 50481; Seizures

Introduction

Epilepsy is a serious neurological disorder that affects a wide range of people throughout the world. It is a disorder of brain characterized by unpredictable and periodic occurrence of a transient alteration of behaviour due to the disordered, synchronous and rhythmic firing of populations of brain neurons [1]. Incidence of epilepsy in developed countries is approximately 50 per 100,000 while that of developing country is 100 per 100,000 [2]. It has been observed that the presently available anti-epileptic drugs are unable to control seizures effectively in as many as 25% of the patients [3]. The conventional anti-epileptic agents like phenytoin, carbamazepine and sodium valporate carry with them several serious side effects notably neurotoxicity [4]. As majority of anti-epileptic drugs are consumed life long, concomitant administration of other drugs predisposes to the risk of drug interaction. However, newer anti-epileptics like gabapentin, vigabatrin, lamotrigine, etc., are used supplemental to the conventional agents [1].

A common way to explain seizures in a normal individual is that a disruption has occurred in the normal balance of excitation and inhibition. The fact that multiple mechanisms exist is not surprising given the varied ways the normal nervous system controls this balance. In contrast, understanding seizures in the brain of an individual with epilepsy is more difficult because seizures are typically superimposed on an altered nervous system. The different environment includes diverse changes, making mechanistic predictions a challenge. Understanding the mechanisms of seizures in an individual with epilepsy is also more complex than understanding the mechanisms of seizures in a normal individual because epilepsy is not necessarily a static condition but can continue to evolve over the lifespan [1]. The cyclic guanosine 3',5'-monophosphate (cGMP) plays a major role in the production of seizure activity. An elevation in cGMP content has been reported in the brain cortex accompanying chemically induced epileptic activity [5-7]. The GC, an important transmembrane enzyme possesses certain activity in the brain, which promotes the intracellular level of cGMP, from guanosine triphosphate (GTP) [7]. In epileptic conditions, markedly elevated cGMP concentration was found in the hippocampus, with lesser elevations in striatum and cortex [8, 9]. Cyclic GMP plays a key function by controlling a wide variety of cellular processes [10], also which acts as a ubiquitous second messenger and modulator of signal transduction processes [5]. This cGMP is generated by the action of guanylate cyclase [10] and degraded by hydrolysis process, which is regulated by a family of cyclic nucleotide phosphodiesterases (PDEs) [11,12].

PDE enzymes regulate the degradation of cGMP a product of the guanylate cyclase activation and could contribute to the pathophysiology of the seizure mechanisms. PDE enzymes are responsible for the hydrolysis of the cyclic nucleotides and therefore have a critical role in regulating intracellular levels of the second messengers cyclic adenosine monophosphate (cAMP), cGMP, and hence cell function as well as downstream cell signalling in the various body systems [13]. Recent evidence that the cyclic nucleotide phosphodiesterases exist in several molecular forms and that these isozymes are unequally distributed

*Corresponding author: Manoj G Tyagi, Department of Pharmacology, Christian Medical College, Vellore- 632 002, Tamilnadu, India, E-mail: tyagi237@indiatimes.com

Received January 08, 2011; Accepted February 12, 2011; Published February 16, 2011

Citation: Nandhakumar J, Ernest V, Tyagi MG (2011) Evaluation of Seizure Activity After Phospho-diesterase Inhibition (BRL 50481) with Guanylate Cyclase Activation (A-350619) and Inhibition (Methylene blue) in Animal Models of Epilepsy. J Neurol Neurophysiol 2:110. doi:10.4172/2155-9562.1000110

Copyright: © 2011 Nandhakumar J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Neurol Neurophysiol
ISSN: 2155-9562 JNN, an open access journal
in various tissue [14]. Twelve members of the PDE family have been identified and these can be further divided into 50 isoforms of subtypes and splice variants [15]. Out of the twelve PDE gene families PDE-5 & 6 belong to cGMP-specific [16-18], PDE-7 & 8 are cAMP-specific [19,20], PDE-10&11 related with cGMP-sensitive and dual specificity [21,22]. Clinical signs of epilepsy arise from the intermittent, excessively synchronized activity of group of neurons. Different neurotransmitters and neuro-modulators are known to play a significant role in the system of excitation [23].

Thus, it is necessary to investigate for an anti-epileptic agent that is highly efficacious as well as safe in terms of drug related toxicity. The aim of treating epileptic is not only to abolish the occurrence of seizures but also to lead a self sustained life. The present study will examine the role of guanylate cyclase in the presence of cyclic nucleotide phosphodiesterase-7 inhibitor in the generation of seizure threshold. We used pharmacological tools like A-350619 (guanylate cyclase activator), methylene blue (guanylate cyclase inhibitor), and BRL 50481 (PDE-7 inhibitor) to block and attenuate the effect of PDE and evaluate the effect on chemical convulsant and maximal electroshock induced seizures in mice and rats.

Materials and Methods

Animals used

Swiss Albino mice of either sex weighing between 24-26 g and Wistar strain rats weighing between 160-220 g were utilized for this study. The animals were placed randomly and allocated to treatment groups in polypropylene cages with paddy husk as bedding. Animals were housed at temperature of 24 ± 2C and relative humidity of 30-70%. A 12:12 dark: light cycle was followed during the experiments. All the animals were allowed to free access to water ad libitum and fed with standard commercial pelletbed rat chaw (M/s. Hindustan Lever Ltd., Mumbai). All the experimental procedures and protocols used in this study were reviewed by the Institutional Animal Ethical Committee and were in accordance with the guidelines of the committee for the purpose of control and supervision of experiments in animals (CPCSEA).

Drugs and chemicals

The following drugs and chemicals were used for conducting this study. 10% w/v of dimethyl sulfoxide (DMSO) Sigma USA, gabapentin (Micro labs Ltd., Bangalore, India), A-350619 (Sigma, USA), methylene blue (Sigma, USA), Zonisamide (Sun Pharma, Mumbai, India), BRL 50481 (Tocris Bioscience, UK), and Except gabapentin, methylene blue and zonisamide, other drugs are soluble in DMSO, rest of others are soluble in sterile water for injection.

A. Chemoshock method

Pentylenetetrazole (PTZ) or Metrazol (MTZ) induced seizure model in mice: Swiss Albino mice were divided into seven groups with six animals (n=6) in each. Treatment protocol and group description is mentioned as follows.

Group - I: Mice served as solvent control, received vehicle i.e 10% w/v of dimethylsulfoxide [DMSO] (5 ml/kg, i.p).
Group - II: Mice received gabapentin (2.5 mg/kg, i.p), treated as positive control.
Group - III: Mice received A-350619 (100 µM/kg, i.p), an guanylate cyclase activator.
Group - IV: Mice received methylene blue (50 mg/kg, i.p), an guanylate cyclase inhibitor.
Group - V: Mice received BRL 50481 (2 mg/kg, i.p), a PDE-7 inhibitor.

Group -VI: Mice received A-350619 (100 µM/kg, i.p) along with BRL 50481 (2 mg/kg, i.p), combination of guanylate cyclase activator and PDE-7 inhibitor.
Group -VII: Mice received methylene blue (50 mg/kg, i.p) along with BRL 50481 (2 mg/kg, i.p), combination of guanylate cyclase inhibitor and PDE-7 inhibitor.

All the drugs were administered intraperitoneally 30 min prior to the administration of pentylenetetrazolo (60 mg/kg, i.p). The animals were observed for 1 hour by placing them in a separate cage. The onset time of various phases of convulsions like action, jerky movement, convulsions and recovery / mortality were noted in seconds as shown by Yemitan and Salahdeen, 2005; Salahdeen and Yemitan, 2006 method [24,25]. All the drugs used are known to cross the blood brain barrier.

B. Maximal electroshock (MES) method for rats

Wistar strain rats were divided into seven groups with six animals (n=6) in each. Treatment protocol and group description is mentioned as follows,

Group - I: Rats served as solvent control, received 10% w/v of dimethylsulfoxide [DMSO] (3.5 ml/kg, i.p).
Group - II: Rats received zonisamide (35 mg/kg, i.p), treated as positive control.
Group - III: Rats received A-350619 (70 µM/kg, i.p), an guanylate cyclase activator.
Group - IV: Rats received methylene blue (35 mg/kg, i.p), an guanylate cyclase inhibitor.
Group - V: Rats received BRL 50481 (1.4 mg/kg, i.p), a PDE-7 inhibitor.
Group -VI: Rats received A-350619 (70 µM/kg, i.p) along with BRL 50481 (1.4 mg/kg, i.p), combination of guanylate cyclase activator and PDE-7 inhibitor.
Group -VII: Rats received methylene blue (35 mg/kg, i.p), along with BRL 50481 (1.4 mg/kg, i.p), combination of guanylate cyclase inhibitor and PDE-7 inhibitor.

All the drugs will be administered intraperitoneally 30 min prior to the electroshock. The electroshock will be induced in animal by passing a current of 150 mA for 0.2 sec duration through electroconvulsiometer (Techno India) using corneal electrodes. The incidence of seizures, tonic limb flexion, tonic extensor, clonus, stupor and recovery / mortality of the animals will be observed and tabulated as per Achliya et al., 2005 [26].

Statistical analysis

All the results were expressed as mean ± SEM. One way analysis of variance (ANOVA) followed by Tukey-Kramer Multiple Comparisons Test was applied for the statistical analysis of the data in order to compare the inter group differences and one way analysis of variance (ANOVA) followed by Dunnett's test was also applied to compare with DMSO treated group for estimation of total duration of convulsion time in seconds and percentage of change from control were analysed in Table 3 and 4. P values <0.05 were considered as statistically significant.

Results

Evaluation of onset of seizures

Chemoshock method

Pentylenetetrazole (PTZ) induced seizure model in mice: Table 1 summarizes the data attained from experiments conducted with PDE-
7 inhibitor beside with guanylate cyclase activator and inhibitor on chemoshock such as PTZ (60 mg/kg, i.p.) induced seizures in mice. The combination of methylene blue and PDE-7 inhibitor, BRL 50481 received mice showed a significant (P<0.001) delay in onset of action, jerky movements and convulsion when compared to A-350619 and BRL 50481 alone treated mice. The overall highlights of Table 1 exhibs the individual effect of methylene blue delays the onset of action of seizures as well as prolongs the total duration of convulsive time.

Table 3 summarizes the total duration of convulsion, percentage change from control, mortality and protection in incredible levels of percentage. The total convulsive time was prolonged significantly (P<0.01) in methylene blue alone treated (69.2%) group, compared to DMSO received group (100%). The data shows that 83.3% of protection as well as prolongs the total duration of convulsive time.

Maximal electroshock (MES) method for rats

Table 2 depicts the data obtained from experiments conducted with maximal electroshock induced seizures in rats. It is evident from the data shown in Table 2 that combination of methylene blue and BRL 50481 effectively (P<0.001) decreased the tonic limb flexion, tonic extensor, clonus and stupor stage of convulsion, compared to alone methylene blue treated rats. The overall highlights of Table 2 exhibits the combined effects of A-350619 with BRL 50481 received groups and BRL 50481 alone received group, potentiates the seizure activity against MES induced convulsion. Also this emphasizes that methylene blue delays the onset of seizure activity as well as prolongs the total duration of convulsive time (Table 2).

Table 4 demonstrates the total duration of convulsion, percentage change from control, mortality and protection in incredible levels of percentage.
change from control, mortality and protection in marked levels of percentage. The total convulsive time was long lasting significantly ($P < 0.01$) in methylene blue alone treated (40.9%) and combination of methylene blue with BRL 50481 treated groups increases significantly ($P < 0.01$) the total duration of convulsion (39.7%), compared to DMSO received group (100%). The data shows that 83.3% of protections of animals were noticed in both methylene blue and i.p injection of methylene blue followed by BRL 50481 treated groups against MES induced seizures in rats. From Table 4, it was evident that there was a significant increase in seizure activity (14.1%) when BRL 50481 treated alone. Apart from these highlighted points, the author would like to discuss few things from the data obtained (data not shown), the action of animals against MES induced seizures. Methylene blue, methylene blue with BRL 50481 treated groups showed significantly ($P < 0.01$) reduction in onset of various phases of convulsion, when compare to DMSO. Simultaneously, A-350619, methylene blue, A-350619 with BRL 50481 received groups showed a significant ($P < 0.001$) reduction in tonic extensor phase of convulsion, against zonisamide treated group. The data shown in Table 4, exposed that i.p administration of methylene blue (35 mg/kg, i.p), greatly enhances the anti-convulsant activity ($P < 0.01$) along with higher protection (83.3%) range. At the same time, the combined effect of methylene blue with exogenously administered BRL 50481 (1.4 mg/kg, i.p) showed a significant ($P < 0.01$) anti-convulsant activity with judicious protection (83.3%) range in both groups (Table 4).

Discussion

The data obtained from this study shown that pre-treatment with soluble guanylate cyclase inhibitor, methylene blue alone and with the PDE-7 inhibitor such as BRL 50481, potentiates the anti-convulsant activity against the PTZ and MES induced convulsions as described in Table 1 & 2. And also our study shows that the combination of A-350619 with BRL50481 as well as the individual effect of A-350619 and BRL 50481 alone showed a quick onset of seizures responses with increased the mortality range in both animal models of epilepsy.

Methylene blue, is a guanylate cyclase inhibitor and belongs to thiazine dye [27]. Pretreatment with either methylene blue or L-Nitro-Arginine Methyl Ester (L-NAME) inhibited the proconvulsant effect of sildenafil, indicated the mediation of this effect by NO–cGMP pathway [28]. Nitric oxide (NO) is a highly reactive and unstable free radical, which diffuses easily through the cell membrane [29,30]. It contributes to intercellular signal transduction in many tissues. In the central nervous system, it acts as a neuronal retrograde messenger [29,31]. NO is an endogenous activator of guanylate cyclase, which synthesizes cGMP [31,32]. It activates guanylate cyclase by binding to the iron of the heme, which is located at the active site of the enzyme and by changing its conformation [33]. In the CNS, NO is formed from L-arginine, by calcium/calmodulin- dependent constitutive NO synthase, which is mainly activated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors [31,33]. Paul et al., reported that, ion channels mediate and regulate crucial electrical functions throughout the body. They are therapeutic drug targets for a variety of disorders [34]. In living tissues, extracellular calcium is essential for the secretion of NO from NMDA-stimulated neurons [31]. NMDA receptor activation causes an influx of a large amount of calcium into the cell through receptor associated ion channels; calcium binds to calmodulin and activates NO synthase [35,36]. This mechanism might be the reason for the protective role and anti-convulsant activity of methylene blue. Our results support this findings in such a way that this combination showed a good reduction ($P < 0.001$) in induction of seizure activity against PTZ and MES induced seizures in animals when compared to methylene blue alone received group of animals (Table 1&2).

BRL50481 is a selective inhibitor of PDE-7, a novel subtype of PDE that is expressed in a number of cell types, including T lymphocytes. There are at least two genes coding for PDE7, each with several splice variants [37]. Two PDE7 genes (PDE7A and PDE7B) have been identified in humans [38,39]. Li et al. 1999 suggest that PDE 7 may modulate human T-cell function [40]. PDE7 is highly expressed in brain regions, including the hippocampus and olfactory bulb [41,42].

![Table 3: Effect of drugs on pentylentetrazole induced seizures in mice.](image)

Treatment groups	Drug name	Total duration of convulsion (Sec)	% change from control (Convulsive time)	Mortality (%)	Protection (%)	Significance
I	10% DMSO	242.60	100	100	-	-
II	Gabapentin	280.72	15.1	33.3	66.7	NS
III	A-350619	216.54	11.2	83.3	16.7	NS
IV	Methylene blue	343.67	40.9	83.3	16.7	P<0.01
V	BRL50481	278.18	14.1	83.3	16.7	NS
VI	A-350619 + BRL50481	235.67	3.40	50.0	50.0	NS
VII	Methylene blue + BRL50481	340.72	39.7	16.7	83.3	P<0.01

The group of mice (n=6) were injected with 60 mg/kg, i.p. of PTZ for induction of convulsion and the total convulsive time was estimated. A value of $P < 0.05$ was considered significant Vs DMSO group, $NS= P > 0.05$. All the drugs were administered intraperitoneally. The drugs used were administered in the following doses. DMSO (5 ml/kg, i.p), Zonisamide (35 mg/kg, i.p), A-350619 (100 µM/kg, i.p), methylene blue (50 mg/kg, i.p) and BRL50481 (2 mg/kg, i.p). (One way ANOVA followed by Dunnett’s test compared with DMSO treated mice).

![Table 4: Effect of drugs on maximal electroshock induced seizures in rats.](image)

Treatment groups	Drug name	Total duration of convulsion (Sec)	% change from control (Convulsive time)	Mortality (%)	Protection (%)	Significance
I	10% DMSO	213.52	100	83.3	16.7	NS
II	Gabapentin	279.00	30.7	33.3	66.7	P<0.05
III	A-350619	194.60	8.0	83.3	16.7	NS
IV	Methylene blue	360.06	69.2	83.3	16.7	NS
V	BRL50481	220.43	3.2	83.3	16.7	NS
VI	A-350619 + BRL50481	230.31	8.2	83.3	16.7	NS
VII	Methylene blue + BRL50481	276.12	29.8	83.3	16.7	P<0.05

The group of rats (n=6) were subjected to 150 mA (0.2 sec) electroshock and total convulsive time was estimated. A value of $P < 0.05$ was considered significant Vs DMSO group, $NS= P > 0.05$. All the drugs were injected intraperitoneally. The drugs used were administered in the following doses. DMSO (3.5 ml/kg, i.p), Zonisamide (35 mg/kg, i.p), A-350619 (100 µM/kg, i.p), methylene blue (50 mg/kg, i.p) and BRL50481 (1.4 mg/kg, i.p). (One way ANOVA followed by Dunnett’s test compared with DMSO treated rats).
The distribution of PDE7A3 is largely unknown, but it has been found in human T-lymphocytes [43] and may also be present in many PDE7A1-expressing cells as both transcripts are probably regulated by the same promoter [44]. In contrast, PDE7B is abundant in the brain, liver, heart, thyroid glands, and skeletal muscles, but it is not found in leukocytes [45]. Our study reports concurrence with combined effect of methylene blue with exogenously administered BRL50481 (1.4 mg/kg i.p) showed a significant (P<0.01) anti-convulsant activity with judicious protection (83.3%) range respectively against MES model as depicted in Table 4. The total convulsive time was prolonged significantly (P<0.01) in methylene blue alone treated (69.2%) and combination of methylene blue with BRL50481 treated (29.8%) groups, compared to DMSO received group (100%) as illustrated in Table 3.

A-350619, a heme-dependent soluble guanylate cyclase activator, sGC is a key signal transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO sGC is a key signal transduction enzyme activated by nitric oxide (NO). guanylate cyclase (GC) inhibitor, methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int 50: 164-171.

References
1. McNamara JO (2001) Drugs effective in the therapy of the epilepsies: In- Goodman and Gillman’s The pharmacological basis of therapeutics. 10th ed. New York, McGraw-Hill, pp 521-539.
2. WHO (2006) Epilepsy: Etiology, epidemiology and prognosis.
3. Mattson RH (1992) Drug treatment of partial epilepsy. Adv Neurol 57: 643-650.
4. Gupta YK, Malhotra J (1997) Adenosinergic system as an endogenous anti-convulsant mechanism. J Physiol Pharmacol 41: 329-343
5. Kimball J (2006) “Second messengers”. http://users.rcn.com/jkimball.ma.ultranet/ BiologyPages/S/Second_messengers.html. Retrieved on February, accessed on Jan 2010.
6. Kohno K, Niwa M, Nozaki M, Uematsu T, Fujimura H (1997) Role of nitric oxide in the convulsive seizures induced by fluorouquinolones coadministered with 4-biphenyl acetic acid. Gen Pharmacol 29: 767-770.
7. Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) Activation of a G protein promotes agonist responses to calcium channel ligands. Nature 325: 445-447.
8. Jonathan EW (1981) Effect of aminophylline on seizure thresholds and brain regional cyclic nucleotides in the rat. Exp Neurol 74: 299-304.
9. Vulliemin Y, Verosky M, Lapert M, Triner L (1983) Effect of enflurane on cerebellar cGMP and motor activity in the mouse. Br J Anaesth 55: 79-84.
10. Essayan DM (1999) Cyclic Nucleotide Phosphodiesterase (PDE) Inhibitors and Immunomodulation. Biochem Pharmacol 57: 965–973.
11. Conti M, Jin SL (1999) The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nuclic Acid Res Mol Biol 63: 1-38.
12. Soldering SH, Beavo JA (2000) Regulation of cAMP and cGMP Signalling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12: 174-179.
13. Maurice DH, Palmer D, Tilley DG, Dunkley HA, Netherton SJ, et al. (2003) Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 64: 533-546.
14. Jeon YH, Heo YS, Kim CM, Hyun YT, Lee TG, et al. (2005) Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci 62: 1198-1220.
15. Wallace DA, Johnston LA, Huston E, Macmaster D, Houslay TM, et al. (2005) Identification and characterization of PDE4A11, a novel, widely expressed long isoform encoded by the human PDE4A4 cAMP phosphodiesterase gene. Mol Pharmacol 67: 1920–1934.
16. Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, et al. (1998) Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3,5-cyclic nucleotide phosphodiesterase. Prog Nuclic Acid Res Mol Biol 63: 139-147.
17. Wang P, Wu P, Myers JG, Stamford A, Elgan RW, et al. (2001) Characterization of human, dog and rabbit corpus cavernosum type 5 phosphodiesterases. Life Sci 68: 1977–1987.
18. Francis SH, Thomas M, Corbin JD (1990) Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action. John Wiley & Sons, Chichester.
19. Michaeli T, Bloom TJ, Martins T, Loughney K, Ferguson K, et al. (1993) Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 268: 12925–12932.
20. Soderling SH, Baysy JA, Beavo JA (1998) Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci USA 95: 8991–8996.
21. Loughney K, Snyder PB, Uher L, Rosman GJ, Ferguson K (1999) Isolation and characterization of PDE10A, a novel human 3, 5 cyclic nucleotide phosphodiesterase. Genes 234: 109–117.
22. Yusa K, Koter J, Fujishige K, Michibata H, Sasaki T, et al. (2000) Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem 275: 31469–31479.
23. Fisher RS & Coyle J T (1991) In summary: Neurotransmitters and epilepsy. Wiley-Liss, New York.
24. Yemitan OK, Salahdeen HM (2005) Neurosedative and muscle relaxant activities of aqueous extract of Bryophyllum pinnatum. Fitoterapia 76: 187-193.
25. Salahdeen HM, Yemitan OK (2006) Neuropharmacological effects of aqueous leaf extract of Bryophyllum pinnatum in mice. African J Bio Med Res 9: 101-107.
26. Achilya GS, Wadodkar SG, Darie AK (2005) Evaluation of CNS activity of Brahmi Ghrita. Ind J Pharmacol 37: 33-36.
27. Furian AF, Fighera MR, Oliveira MS, Ferreira AP, Fiorenza NG, et al. (2007) Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int 50: 164-171.

Citation: Nandhakumar J, Ernest V, Tyagi MG (2011) Evaluation of Seizure Activity After Phospho-diesterase Inhibition (BRL 50481) with Guanylate Cyclase Activation (A-350619) and Inhibition (Methylene blue) in Animal Models of Epilepsy. J Neurol Neurophysiol 2:110. doi:10.4172/2155-9562.1000110
28. Kiarash R, Maryam R, Neda RT, Homayoun H, Ebrahimi F, et al. (2006) The proconvulsant effect of sildenafil in mice: role of nitric oxide-cGMP pathway. Br J Pharmacol 147: 935–943.

29. Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14: 60-67.

30. Dawson TM, Synder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14: 5147-5159.

31. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43: 109-142.

32. Garthwaite J, Charles SL, Chess-williams R (1988) Endothelium derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385-388.

33. Moncada S, Palmer RMJ, Higgs EA (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38: 1709-1715.

34. Bennett PB, Guthrie HR (2003) Trends in ion channel drug discovery: advances in screening technologies. Trends Biotechnol 21: 563-569.

35. Mayer ML, Miller RJ (1990) Excitatory amino acid receptors, second messengers and regulation of intercellular Ca2+ in mammalian neurons. Trends Pharmacol Sci 11: 254-260.

36. Alkaike A, Tamura Y, Terada K, Nakata N (1994) Regulation by neuroprotective factors of NMDA receptor mediated nitric oxide synthesis in brain and retina. Prog Brain Res 103: 391-403.

37. Adkinson: Middleton’s Allergy: Principles and Practice, 7th ed.

38. Gardner C, Robas N, Cawkill D, Fidock M (2000) Cloning and characterization of the human and mouse PDE7B, a cAMP-specific phosphodiesterase. Biochem Biophys Res Commun 272: 186-192.

39. Hetman JM, Soderling SH, Glavas NA, Beavo JA (2000) Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc Natl Acad Sci USA 97: 472-476.

40. Li L, Yee C, Beavo JA (2000) CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 283: 848-851.

41. Miro X, Perez-Torres S, Palacios JM, Puigdomenech P, Mengod G (2001) Differential distribution of cAMP-specific phosphodiesterase 7A mRNA in rat brain and peripheral organs. Synapse 40: 201-214.

42. Reyes-Irisarri E, Perez-Torres S, Mengod G (2005) Neuronal expression of cAMP-specific phosphodiesterase 7B mRNA in the rat brain. Neuroscience 132: 1173-1185.

43. Glavas NA, Ostenson C, Schaefer JB, Vasta V, Beavo JA (2001) T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci USA 98: 6319-6324.

44. Torres-Liort M, Azorin F (2003) Functional characterization of the human phosphodiesterase 7A1 promoter. Biochem J 373: 835-843.

45. Gardner C, Robas N, Cawkill D, Fidock M (2000) Cloning and characterization of the human and mouse PDE7B, a novel cAMP-specific cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 272: 186-192.

46. Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, et al. (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5: 755-768.

47. Domek LK, Strosznajder JB (2005) Cyclic GMP metabolism and its role in brain physiology. J of physiol and pharmacol 56: 15-34.

48. Ishikawa Y, Iida H, Ishida H (2002) The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction. Mol Pharmacol 61: 1423-1434.