Online wear detection for joints in progressing cavity pumps

J. Müller*, S. Leonow*, J. Schulz**, C. Hansen**
M. Mönnigmann*

* Automatic Control and Systems Theory, Ruhr-Universität Bochum,
Universitätstraße 150, 44801 Bochum, Germany (e-mail:
{jens.mueller-r55, sebastian.leonow, martin.moennigmann}@rub.de).
** SEEPEX GmbH, Scharnhölzstraße 344, 46240 Bottrop, Germany
(e-mail: {jschulz, chansen}@seepex.com).

Abstract: The wear and failure of pin joints integrated in coupling rods of process equipment can lead to unpredictable breakdown with severe consequences. We present a simple algorithm for a non-invasive online detection of wear in pin joints where a progressing cavity pump serves as an example. The algorithm only requires a pressure sensor and a binary speed signal of the motor. We verify the algorithm with a laboratory test setup and an embedded system. The results show that the proposed algorithm can reliably monitor joint wear during regular pump operation.

Keywords: fault detection, joint wear, phase-locked loop, positive displacement pumps, predictive maintenance, progressing cavity pump

1. INTRODUCTION

Progressing cavity pumps (PCPs) are very common in the process and related industries. They are essential for, e.g., applications with very viscous liquids, liquid-solid mixtures, or fluids with changing properties. Traditionally strong in the environmental and the oil and gas sector (Nelik and Brennan, 2005), today PCPs are employed over many industrial sectors from food and beverage over cosmetics to energy (see, e.g., Tan (2020)).

The classical design of a PCP features two pin joints. These joints are typically lubricated with grease or oil to limit wear. However, more than 15% of the unexpected service cases of PCPs are due to joint wear. In about 5% of the cases, the joint even breaks leading to a catastrophic pump failure. Common reasons for joint failures are damaged joint sleeves, resulting in de-lubrication of the joint due to fluid ingress. Additionally, joint failure can be caused by disregarded service intervals, extensive numbers of start-stop cycles or pump operation outside the specifications causing overload on the joints.

Joint failures cause downtimes of the entire pump and thus the process it operates in. The detection of upcoming joint failures is of major interest for pump operators. We present a novel method for predicting joint failures during run time of the pump. The proposed method is lean in that it requires only simple calculations and measurements.

We summarize the background relevant here on PCPs, their drives, and phase-locked-loops in Section 2. Section 3 presents the joint wear detection algorithm. The presentation of the laboratory test setup, the implementation of the algorithm on embedded hardware, and the experimental results are given in Section 4. Results are summarized and discussed in Section 5.

2. PRELIMINARIES

A PCP mainly consists of two units, the rotor and the stator. During pump operation, the rotor performs an eccentric rotation inside the inner geometry of the stator. The torque provided by the electric motor must be transferred to the pump rotor either by a joint system or a flexible shaft without any slip (Wittrisch and Cholet, 2013).

![Fig. 1. Sketch of a pump unit.](image)

We focus on single stage single lobe progressing cavity pumps with coupling rods equipped with pin joints in our contribution. Such a pump and the drive train is shown in Fig. 1. We refer to the rotational angle of the electric motor and the rotor as \( \varphi_M \) and \( \varphi_R \), respectively. For a new pump with a coupling rod with intact joints,

\[
\varphi_M = \varphi_R
\]  

(1) holds because the coupling is torsionally rigid. We neglect any torsion of the rotating unit resulting from finite material rigidity. Furthermore, we assume that the electric motor is directly connected to the coupling rod. For pump
units with a gearbox between electric motor and coupling rod, \( \varphi_M \) refers to the angle on the output side of the gearbox.

2.1 Cavities and Sealings

The rotor interferes with the stator in multiple locations inside the PCP. These contact areas form a sealing pattern inside the pump and separate cavities from one another. We refer to Pan and Tan (2015) or Müller et al. (2019) for further information on the shape of the cavities and sealings.

Fig. 2 shows a sketch of the rotor-stator interaction and the cavities for several values of \( \varphi_R \). Cavities progress from the suction side with pressure \( p_s \) to the pressure side with pressure \( p_p \), conveying the fluid. A cavity open to either side attains the pressure at the respective side. Closed cavities are assumed to attain \( p_s \) (Müller et al., 2019).

Light and dark grey indicate \( p_s \) and \( p_p \), respectively, in Fig. 2. As soon as a cavity with pressure \( p_s \) opens to the pressure side, the pressure inside the cavity changes abruptly. This leads to an instantaneous pressure increase inside the open cavity and an instantaneous decrease in \( p_p \). This occurs in cavity A from step (ii) to (iii) and in cavity B from step (iv) to (v) in Fig. 2. Thus, the pressure side pressure \( p_p \) varies periodically (Belcher, 1991) as a function of the rotational angle \( \varphi_R \). The periodical variation of \( p_p \) and \( \varphi_R \) is shown in Fig. 3 for 200 rpm and approximately 4 bar pressure side pressure. Two cavities open per rotation, thus the pressure drop of \( p_p \) occurs twice per rotor rotation.

In Fig. 3, \( \varphi_R = 0 \) coincides with one of the minima of \( p_p \). This is not necessarily the case in general. In fact, the phase of the pressure pulsation is unknown after the pump assembly because it depends on the installation orientation of the stator. For an assembled pump the stator orientation and thus the phase of the pressure pulsation is unknown but constant. We refer to this uncertainty as the stator phase offset \( \gamma_0 \) and anticipate that it has to be taken into account for the joint wear detection in Section 2.2.

2.2 Pin joints

We treat the pin joint near the rotor (see Fig. 1) in the sequel. All results are valid for both pin joints.

Fig. 4 shows a sketch of a pin joint. The joint consists of three parts: The outer geometry (the rotor here), the inner geometry (the coupling rod here), and the pin, connecting inner and outer geometry in a torsionally rigid fashion.

![Fig. 3. Variation of \( p_p \) with respect to \( \varphi_R \).](image)

![Fig. 4. Schematic pin joint in unworn condition.](image)
resulting in one-sided material loss of outer geometry, inner geometry, and pin. Fig. 5 shows a sketch of a worn pin joint.

Two wear regions (indicated by green dashed boxes in Fig. 5) must be distinguished from one another, the wear between outer geometry and pin (region 1) and the wear between inner geometry and pin (region 2). The wear in region 1 results in a tilt of the pin (α in Fig. 5). The wear in region 2 yields the rotation of the inner geometry with respect to the pin (β in Fig. 5). Note that for both regions, wear occurs at both contacting components. According to Fig. 5, the overall phase shift between inner and outer geometry due to wear can be described by

\[ \Delta \gamma = \alpha + \beta. \]  

(2)

The coupling rod, containing the pin joints, connects the electric motor to the pump rotor (see Fig. 1). Thus, the phase shift between φ_M and φ_R depends on the joint wear \( \Delta \gamma \). Additionally, the constant stator phase offset \( \gamma_0 \) (see Section 2.1) must be taken into account. Hence, (1) no longer applies and has to be replaced by

\[ \gamma = \Delta \gamma + \gamma_0 = \varphi_M - \varphi_R, \]  

(3)

for a pump with a worn joint. We anticipate that \( p_p \) will be used to estimate \( \varphi_R \) in Section 2.3. We limit the domain of \( \gamma \) to

\[ \gamma \in [0, 180) \]  

(4)

because \( p_p \) oscillates with twice the frequency of the rotor (see Fig. 3). We use \( \Delta \gamma \) as a measure of wear and monitor \( \Delta \gamma \) online.

Figure 6 (a) and (b) show a real worn pin and the driving side of the coupling rod, respectively. The green rectangle in Fig. 6 (a) indicates the initial position of the unworn pin. The components in Fig. 6 correspond to the pin and the inner geometry presented in Fig. 5. A rough analysis of the geometries shown in Fig. 6 reveals that the joint presented here reached \( \Delta \gamma \approx 40^\circ \) without breaking, leading to joint failure and pump downtime.

We use the conservative threshold \( \Delta \gamma_t = 30^\circ \) to distinguish acceptable from dangerously worn pin joints in the remainder of the paper. An appropriate value of \( \Delta \gamma_t \) must be provided by the pump manufacturer.

Note that Fig. 6 (b) reveals that there exists wear of the coupling rod in longitudinal direction in addition to the wear in the direction of the circumference discussed so far. We state without giving details that this longitudinal wear increases \( \Delta \gamma \) and thus is accounted for by the proposed method.

We will show with experimental data in Section 4 that our algorithm can reliably detect phase shifts of \( \Delta \gamma \geq 30^\circ \). Hence, the algorithm can detect joint wear before joint failure.

### 2.3 Phase-locked loop

Phase-locked loops (PLLs) are broadly used in industrial and scientific applications (Kroupa, 2003). It is the purpose of a PLL to estimate the phase and frequency of a periodic input signal. To this end, a generated harmonic signal is compared to the input signal. A feedback loop essentially aligns the two signals and thus provides information about the phase and frequency of the input signal. We refer to, e.g., Abramovitch (2002) for details on PLLs.

Our approach uses the periodic variation of \( p_p \) explained in Section 2.1 to estimate \( \varphi_R \) in an online fashion as proposed by Kouhi et al. (2020). The PLL includes a bandpass filter with a bandpass frequency of twice the rotational speed of the pump. This accounts for the opening of two cavities per rotor rotation. The use of the bandpass filter yields a periodic signal suitable for the phase and frequency estimation.

Because the bandpass frequency is a function of the rotational speed, the PLL requires the pump speed in addition to the pressure signal. The simplified block diagram is shown in Fig. 7.
3. JOINT WEAR DETECTION ALGORITHM

The detection of wear inside the pin joints of the coupling rod is based on the monitoring of \( \gamma \) introduced in (3). Thus \( \varphi_M, \varphi_R, \) and \( \gamma_0 \) need to be known to determine \( \Delta \gamma \).

The rotational angle \( \varphi_M \) can easily be measured and is available for the control of the electric motor in many industrial applications. The proposed algorithm does not require the exact measurement of \( \varphi_M \) at any time, but is based on the detection of a rising edge of a binary speed signal each motor rotation. This signal can easily be generated with simple and cheap retrofitted hardware, e.g., a hall sensor and a shaft-mounted magnet. We refer to the resulting peak-signal as \( P \) in the remainder of this contribution.

The motor speed \( \dot{\varphi}_M \) can be calculated from \( P \) by measuring the elapsed time between two peak-signals. This calculation yields \( \frac{\varphi_M}{\Delta \varphi} \), \( \Delta \varphi \) being the number of elapsed time steps after the previous occurrence of \( P = 1 \).

Changing the set point of the pump speed results in a transition to a new operating point. After the pump speed settled to the new stationary speed, \( \varphi_M \) and \( \dot{\varphi}_M \) are available following one rotation of constant speed. This is sufficiently fast, as will be presented by the experimental validation in Section 4.

Due to the eccentric motion of the pump rotor (see Section 2), the axis of the rotor rotation is not constant, which complicates the direct measurement of \( \varphi_R \). The hardware presented for the measurement of \( \varphi_M \) is thus not suitable for the measurement of \( \varphi_R \). We use the PLL proposed in Section 2.3 to estimate \( \varphi_R \) from the variations in \( p_P \), measured by a pressure transmitter. The pressure transmitter is not affected by the eccentric rotation and is already available in many industrial applications.

For the pump operation with unworn joints, e.g., after the assembly of a new pump, \( \Delta \gamma = 0 \) holds. Thus, the execution of the joint wear detection algorithm at an arbitrary point of operation yields \( \gamma_0 \) according to (3). Subsequently, \( \Delta \gamma \) is calculated online, using \( \gamma_0 \) and the online estimation of \( \gamma \).

When \( \Delta \gamma \geq \Delta \gamma_t \) holds, joint wear is detected. We define the boolean variable \( S \), representing the joint status, where \( S = 0 \) and \( S = 1 \) resemble unworn and worn state, respectively.

Fig. 8 shows the scheme of the joint wear detection algorithm. The eval.-block in Fig. 8 carries out the calculation of \( \varphi_M \) and \( \dot{\varphi}_M \). The modulo function in Fig. 8 assures that (4) holds.

The joint wear can either be observed by monitoring \( \gamma \) and manually comparing it to \( \gamma_0 \). This provides additional information about the level of wear and enables the prediction of joint failure. Alternatively, the joint state \( S \) can be monitored during pump operation.

4. EXPERIMENTAL RESULTS

We validate the algorithm introduced in Section 3 with measurement data to assess the potential for an industrial application.

Fig. 9. Scheme of the laboratory test setup with container (a), progressing cavity pump (b), actuated valve (c), pressure transmitter (PT), Motor (M), and torquemeter (TM).

4.1 Laboratory test setup

We use the laboratory test setup depicted in Fig. 9 for the validation of the joint wear detection algorithm.

The progressing cavity pump (b) pumps water from the container (a). The water passes an electrically actuated valve (c). A pressure transmitter (PT) measures the pressure side pressure \( p_p \) between the pump and the valve. The torquemeter (TM) is used to generate the peak-signal \( P \) presented in Section 3. For the industrial application of the proposed algorithm a torquemeter is not necessary, but a binary speed signal suffices (see Section 3).

We use the torquemeter here because it was already installed in the laboratory test setup and enables the simple simulation of joint wear by adding a disturbance to
In general, the orientation of a torquemeter housing (dark grey in Fig. 11) is variable with respect to the measurement shaft (light grey in Fig. 11). We use this variability to simulate joint wear by manually increasing $\Delta \gamma_{\text{sim}}$ by rotating the torquemeter housing as depicted in Fig. 11.

We use $\Delta \gamma_{\text{sim}} = \Delta \gamma$ to simulate joint wear for the validation of the algorithm. The motor of the pump and the actuated valve are used to operate the pump at various speeds ($n$) and pressures ($p_p$) to simulate real pump operation.

### 4.2 Embedded implementation

To demonstrate the simplicity of the joint wear detection algorithm, we implement it on an embedded system. We use an 8-bit microcontroller with a speed of 16 MHz, 256 kB Memory, 8 kB RAM, an interrupt pin for the $P$-signal, and two analog in- and outputs\(^1\). These specifications reveal that the algorithm can be run on simple and cheap hardware during the operation of the pump. Hence, the embedded hardware can easily be retrofitted to existing pumps and applications.

The algorithm is executed with a sample time of 0.01 s on the embedded system. This suffices to capture the variations of $p_p$ even for high pump speeds.

#### 4.3 Results without simulated joint wear

Initially, we execute the joint wear detection algorithm with $\Delta \gamma_{\text{sim}} = \Delta \gamma = 0$ for various points of operation. This resembles the operation of a new pump without joint wear and thus yields $\gamma_0$ according to (3).

We operate the pump with speeds ranging from 50 to 400 rpm and pressures between 0.3 and 2 bar to cover various operational points. The results of this run are depicted in Fig. 10.

Figure 10 shows that $\gamma$ converges to a similar value for all shown points of operation. Thus, the algorithm can be executed during the regular operation of the pump, reliably yielding $\gamma_0$ (marked by the black dashed line in Fig. 10). Additionally, the results in Fig. 10 show that even small values of $p_p$ suffice for the reliable convergence of $\gamma$. Thus, the algorithm can even be used in industrial applications where $p_p$ is small.

The distance between black and red dashed line in Fig. 10 corresponds to $\Delta \gamma_t = 30^\circ$ as proposed in Section 2.2. The algorithm returns values well above the red dashed line for all points of operation. Thus, no joint wear is detected.

\(^1\) We use the IS.Mduino.21+ which is based on an Arduino Mega 2560 to simplify the connection to the test bench. The Algorithm is programmed and downloaded to the Arduino Board using Matlab/Simulink.
4.4 Results with simulated joint wear

We disturb the measurement of $\varphi_M$ by rotating the torquemeter by $\Delta \gamma_{\text{sim}} \approx 40^\circ$ as proposed in Section 4.1 to simulate joint wear.

The results of the joint wear detection algorithm with added disturbance are shown in Fig. 12 for two distinct points of operation. The disturbance is applied at approximately 36 s and 124 s for about 30 s each.

It is evident from Fig. 12 that the joint wear detection algorithm results in $\gamma \neq \gamma_0$ when the disturbance is applied. The sections where joint wear is detected are marked in gray in Fig. 12. These results corroborate that the proposed algorithm can be used to reliably detect joint wear during regular pump operation.

5. CONCLUSION

We presented a novel approach to detect wear of pin joints in coupling rods of process equipment without process downtime and any disassembly. The presented algorithm only relies on values provided by the manufacturer ($\Delta \gamma_t$), a reference measurement of the assembled pump without joint wear, and simple measurement signals that are already available in many industrial applications.

Furthermore, we successfully implemented the algorithm on simple and cheap hardware.

We stress that the application to a PCP serves as an example here and that the presented approach can be implemented to various types of industrial equipment with pin joints and a measurement quantity that fluctuates as a function of the rotational angle.

ACKNOWLEDGEMENTS

Funding by Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen is greatly acknowledged.

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

REFERENCES

Abramovitch, D. (2002). Phase-locked loops: a control centric tutorial. In Proc. of American Control Conference (IEEE Cat. No.CH37391), volume 1, 1–15.

Belcher, I. (1991). An investigation into the operating characteristics of the progressive cavity pump. Ph.D. thesis, Cranfield University (United Kingdom).

Koshti, Y., Müller, J., Leonow, S., and Mönigmann, M. (2020). Estimating load points of a motor-pump system using pressure and inverter drive data. URL http://arxiv.org/abs/2010.04090.

Kroupa, V.F. (2003). Phase Lock Loops and Frequency Synthesis. Wiley.

Müller, J., Leonow, S., Schulz, J., Hansen, C., and Mönigmann, M. (2019). Towards model-based condition monitoring for progressing cavity pumps. In Proceedings of the 4th International Rotating Equipment Conference, 1–10.

Nelik, L. and Brennan, J. (2005). Gulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors. Gulf Publishing Company.

Pan, L. and Tan, J. (2015). Numerical investigation of contact stress between rotor and stator in a two-lead progressing cavity pump. Journal of Petroleum Science and Engineering, 134, 176–185.

Tan, N. (2020). Artificial Lift Methods : Design, Practices, and Applications. Petroleum Engineering, Springer.

Witrisch, C. and Cholet, H. (2013). Progressing Cavity Pumps. Paris, Editions Technip, second edition.