THE C^*-ALGEBRA OF THE SEMI-DIRECT PRODUCT
$K \ltimes A$.

REGEIBA HEDI AND LUDWIG JEAN

Abstract. Let $G = K \ltimes A$ be the semi-direct product group of a compact group K acting on an abelian locally compact group A. We describe the C^*-algebra $C^*(G)$ of G in terms of an algebra of operator fields defined over the spectrum of G, generalizing previous results obtained for some special classes of such groups.

1. Introduction

It is well known that for a simply connected nilpotent Lie group and more generally for an exponential solvable Lie group $G = \exp(g)$, its dual space \hat{G} is homeomorphic to the space of co-adjoint orbits g^*/G through the Kirillov mapping (see [7]). If we consider semi-direct products $G = K \ltimes N$ of compact connected Lie groups K acting on simply connected nilpotent Lie groups N, then again we have an orbit picture of the dual space of G (see [8]) and one can imagine that the topology of \hat{G} is linked to the topology of the admissible co-adjoint orbits.

By definition the C^*-algebra $C^*(G)$ of a locally compact group G is the completion of the convolution algebra $L^1(G)$ with respect to the norm

$$\|f\|_{C^*(G)} := \sup_{\pi \in \hat{G}} \|\pi(f)\|_{\text{op}}.$$

The unitary dual or spectrum $C^*(G)$ of $C^*(G)$ is in bijection with the dual space \hat{G} of G. Define the Fourier transform \mathcal{F} on $C^*(G)$ by

$$\mathcal{F}(c)(\pi) = \pi(c) \in \mathcal{B}(\mathcal{H}_\pi), \quad \text{for all } \pi \in \hat{G}, \ c \in C^*(G).$$

Then $C^*(G)$ can be identified with the sub-algebra $\widehat{C^*(G)}$ of the big C^*-algebra $\ell^\infty(\hat{G})$ of bounded operator fields given by

$$\ell^\infty(\hat{G}) = \left\{ \phi : \hat{G} \to \bigcup_{\pi \in \hat{G}} \mathcal{B}(\mathcal{H}_\pi); \phi(\pi) \in \mathcal{B}(\mathcal{H}), \|\phi\|_\infty := \sup_{\pi \in \hat{G}} \|f(\pi)\|_{\text{op}} < \infty \right\}.$$

Here $\mathcal{B}(\mathcal{H})$ denotes the space of bounded linear operators on the Hilbert space \mathcal{H}.

In order to understand the structure of the algebra $C^*(G)$, we must determine the special conditions which determine the operator fields $\phi \in \widehat{C^*(G)}$.

For instance if $G = K$, then it is easy to see that

$$\hat{C}^\star(K) = \left\{ F : \hat{K} \to \bigcup_{\pi \in \hat{K}} B(\mathcal{H}_\pi) \mid F(\pi) \in B(\mathcal{H}_\pi), \lim_{\pi \to \infty} \|F(\pi)\|_{\text{op}} = 0 \right\}.$$

Since K is compact, its irreducible unitary representations are finite dimensional. So $\pi(c)$ is always trivially a compact operator. Furthermore, the spectrum of K has the discrete topology. So there is no continuity condition for the operator fields.

If $G = A$ is abelian, then \hat{A} is a locally compact Hausdorff space and

$$\hat{C}^\star(A) = \left\{ \phi : \hat{A} \to \mathbb{C}; \phi \text{ continuous and vanishes at infinity} \right\}.$$

If G is more generally a locally compact group of the form $K \rtimes A$, then its dual space \hat{G} has a complicated structure determined by the K-orbits in \hat{A} and the spectra of the stabilizer groups of the elements of \hat{A}. The topology of \hat{G} has been described in the paper of W. Bagget [2], which will be used intensively here. For the motion groups of the form $G_n = SO(n) \times \mathbb{R}^n$ the conditions for $\hat{C}^\star(G_n)$ have been described explicitly in [3]. For some other groups only a detailed description of the topology of \hat{G} is known (see for instance [4] and [9]).

In section 2, we recall the results of Bagget on the topology of $\hat{K} \rtimes A$, define the Fourier transform for $\hat{C}^\star(G)$ and discover the conditions which determine the algebra $\hat{C}^\star(G)$ inside the big algebra $\ell^\infty(\hat{G})$ (see Definition 2.20). To see what are the difficulties, consider a converging net $\Pi_M = (\pi_m = \pi_{\mu_m, \chi_m})_{m \in M}$ of irreducible representations of G. Here $(\chi_m)_{m \in M}$ is a net of unitary characters of the abelian group A, K_m is the stabilizer of χ_m in K and μ_m is an element of $K_m, m \in M$. Then $\pi_m = \text{ind}_{K_m \rtimes A}^{G} \mu_m \otimes \chi_m$. The problem is to understand for $a \in \hat{C}^\star(G)$ the behavior of the net of operators $(\pi_m(a))_{m \in M}$ acting on the different Hilbert spaces \mathcal{H}_{π_m}. We shall in fact construct for a certain converging subnet of the net Π_M a common Hilbert space \mathcal{H}_M, such that \mathcal{H}_M contains a copy \mathcal{H}_m of the Hilbert space \mathcal{H}_m of π_m and a projection $P_m : \mathcal{H}_M \to \mathcal{H}_m$ for every m in the subnet and we show that the essential condition for an operator field Φ to be an element of $\hat{C}^\star(G)$ is an operator norm convergence of the net $(\Phi(\pi_m))_{m \in M}$ to a limit operator $\sigma(\Phi_L) \in B(\mathcal{H}_M)$ which is determined by the restriction Φ_L of the operator field Φ to the limit set L of the subnet.

In the last paragraph we present as example the group $G_{n,m} = SO(n) \times SO(m) \rtimes \mathbb{R}^{n+m}$, for $n, m \in \mathbb{N}$.

2. The C^\star-algebra of the group $G = K \rtimes A$.

2.1. Preliminaries. Let K be locally compact group, A be an abelian and suppose Ψ is homomorphism of K into the group of automorphisms of A
such that the mapping \(\Psi : K \times A \to A \) is continuous. For simplicity, we write the action of the automorphism \(\Psi(k) \) on an element \(a \) of \(A \) as \(k \cdot a \).

The semi-direct product \(G = K \rtimes A \) of the groups \(K \) and \(A \) is the following locally compact group. \(G \) is the topological product of \(K \) and \(A \) and \(G \) is equipped with the group law

\[
(k, a) \cdot (h, b) = (kh, h^{-1} \cdot a + b), \quad \forall (k, a), (h, b) \in G,
\]

where we write the multiplication in \(K \) with the symbol \(\cdot \) and multiplication in \(A \) additively as \(+ \).

The group \(A \) can be homeomorphically and isomorphically identified with the closed normal subgroup of \(G \) consisting of all pairs \((1_K, a)\), where \(a \) is an element of \(A \). Also, \(K \) is homeomorphic and isomorphic to the closed subgroup of \(G \) consisting of all pairs \((k, 0_A)\), where \(k \) is an element of \(K \). (We write \(1_K \) for the multiplicative identity of \(K \), \(0_A \) for the additive identity of \(A \), and \((1_K, 0_A)\) for the identity of \(G \)).

Now, let \(k \in K \) and \(\chi : A \to \mathbb{T} \in \hat{A} \) be a unitary character of \(A \), and let \(k \cdot \chi \) to be the character of \(A \) defined by

\[
k \cdot \chi(b) = \chi(k^{-1} \cdot b), \quad b \in A.
\]

Thus \(K \) acts on the left as a group of continuous transformations on \(\hat{A} \). If \(\chi \) is in \(\hat{A} \), the stability subgroup \(K_\chi \) of \(\chi \) is the closed subgroup

\[
K_\chi = \{ k \in K | k \cdot \chi = \chi \}.
\]

Definition 2.1.

1. We define the space \(\mathcal{K}(G) \) to be the collection of all closed subgroups of \(G \) equipped with the compact-open topology (see [5]).
2. Let \(\mathcal{A}(G) \) denote the set of all pairs \((C, T)\) where \(C \) is a closed subgroup of \(G \) and \(T \) is an irreducible unitary representation of \(C \).

Proposition 2.2. [see, [2] 2.1-D] Any closed subgroup of \(G \) which contains \(A \) is of the form \(J \ltimes A \), where \(J \) is a closed subgroup of \(K \). Further, a net \((J_n)\) of closed subgroups of \(K \) converges to \(J \) in \(\mathcal{K}(K) \) if and only if the net \((J_n \ltimes A)\) of subgroups of \(G \) converges to the subgroup \(J \ltimes A \) in \(\mathcal{K}(G) \).

Let now \(\chi \in \hat{A} \). Then the Hilbert space of the representation \(\delta = \text{ind}_{\{1_K \ltimes A\}}^G \chi \) can be identified with \(L^2(K) \), thus if \((k, a) \in G, f \in L^2(K)\) and \(h \in K \) we have

\[
\delta(k, a)(f)(h) = \delta((k, 0_A)(1_K, a))(f)(h) = \chi((h^{-1}k) \cdot a)f(k^{-1}h).
\]
2.2. The topology of the dual space of the group G.

The dual space or spectrum of G has been described by G. Mackey (for details, see [10] and [11]).

For each character $\chi \in \hat{A}$ and any irreducible unitary representation μ of the stabilizer K_{χ} of χ in K, we have that

\begin{equation}
\sigma_{(\mu, \chi)} := \mu \otimes \chi
\end{equation}

is an irreducible unitary representation of

$G_{\chi} := K_{\chi} \ltimes A$,

whose restriction to A is a multiple of χ (see [2] proposition 2 p.181) and the induced representation $\pi_{(\mu, \chi)} := \text{ind}^{G}_{G_{\chi}} \sigma_{(\mu, \chi)}$ is an irreducible representation of G.

On the other hand, every irreducible unitary representation τ_{λ} of K extends to an irreducible representation (also denoted by τ_{λ}) of the entire group G defined by

$\tau_{\lambda}(k, a) := \tau_{\lambda}(k), \quad (k, a) \in G$.

The following Propositions give the relationship between \hat{G} and the set of all elements $\pi_{(\mu, \chi)}$ (see [12])

Proposition 2.3. Let π be an irreducible unitary representation of G. Then $\pi|_{A}$ is supported by a K-orbit θ in \hat{A}. Suppose χ is an element of θ. Then π is equivalent to a representation of the form $\pi_{(\mu, \chi)}$ where μ is an irreducible unitary representation of K_{χ}.

Proposition 2.4. Let π and θ be as in the above proposition. Assume χ and χ' are elements of θ, i.e., $\chi' = k \cdot \chi$ for some element k of K. Suppose further that π is equivalent to $\pi_{(\mu, \chi)}$ and also is equivalent to $\pi_{(\mu', \chi')}$ for two elements $\mu \in K_{\chi}, \mu' \in K_{\chi'}$. Then

1. $G_{\chi'} = k \cdot G_{\chi} \cdot k^{-1}$.
2. The representation $h \mapsto \mu'(khk^{-1}), h \in K_{\chi}$, is equivalent to the representation μ.

Definition 2.5. A cataloguing triple we mean a triple (χ, J, μ), where χ is a character of A, J is the stabilizer K_{χ} and μ is an irreducible unitary representation of K_{χ}. We denote by $\pi_{(\mu, \chi)} := \pi_{(\mu, \chi)}$ the induced representation $\text{ind}^{G}_{J \ltimes A}(\mu \otimes \chi)$.

By Baggett in [2] (Proposition 2.4-D p.187), we have

Proposition 2.6. The mapping $(\chi, K_{\chi}, \mu) \mapsto \pi_{(\mu, \chi)}$ is onto \hat{G}.

For the proof of the following theorem, see §§4. 1-D of [2].

Theorem 2.7. The C^{*}-algebra $C^{*}(G)$ of the locally compact group $G = K \ltimes A$ is CCR.

Definition 2.8. Let F be the set of all functions f which satisfy:
Theorem 2.11. The topology of \hat{G} may be described as follows: Let B be a subset of \hat{G} and π an element of \hat{G}. π is contained in the closure of B if and only if there exist: a cataloguing triple $(\chi, (K, \mu))$ for π, an element (H, S) of $A(K)$ and a net $(\chi_n, (K_n, \mu_n))_n$ of cataloguing triples, such that:

1. For each n, the element $\pi_{(\mu_n, \chi_n)}$ of \hat{G} is an element of B.
2. The net $(\chi_n, (K_n, \mu_n))$ converges to $(\chi, (K', \mu'))$ in $\hat{A} \times A(K)$.
3. $K' \chi$ contains K', and $\text{ind}_{K'}^{K'} \mu'$ contains μ.

The following lemma is the key for Definition 2.20.

Lemma 2.12. Let $(\chi_n, (K_n, \mu_n))_n$ be a properly converging net with the limit $(\chi, (K', \mu'))$ (i.e. K' is a closed subgroup of $K \chi$ and $\mu' \in \hat{K'}$). Then for some subnet we have that

$$\dim(\mu_k) = d_{\mu_k} = d_{\mu'} = \dim(\mu')$$

for all k in the subnet.

Proof. The limit set L of the net $(\pi_k)_k$ in \hat{G} is according to [2] the set

$$L = \{\pi_{(\nu, \chi)}; \nu \in \hat{K'} \chi, \nu|_{K'} \ni \mu'\}.$$
We can as in [2] realize all these representations $\pi(\mu, \chi)$ on subspaces in the common Hilbert space $L^2(K)$. Take some $\mu \in \widehat{K}_\chi$ such that $\mu|_{K'}$ contains μ'. Choose a $\rho \in \widehat{K}$, such that $\rho|_{K\chi}$ contains μ. Let $L^2(K)^\rho$ be the minimal left and right translation K-invariant subspace of $L^2(K)$ containing \mathcal{H}_ρ and thus also a copy of the Hilbert space \mathcal{H}_μ of the representation μ of $K\chi$. Then $L^2(K)^\rho$ has dimension d_ρ.

Then $L^2(K)^\rho$ also contains a copy $(\mathcal{H}_{\mu'}, \mu')$ of the irreducible representation μ' of K'. Let $\mathcal{H}^{\mu'}$ be the μ'-isotopic component inside \mathcal{H}_ρ. We write

$$L^2(K)^\rho = \mathcal{H}^{\mu'} \oplus \mathcal{H}^{\mu}_{0},$$

where $\mathcal{H}^{\mu}_{0} := (\mathcal{H}^{\mu'})^\perp \subset L^2(K)^\rho$. There exists $l_{\mu} \in \mathbb{N}_{>0}$ such that $\mathcal{H}^{\mu'} \simeq l_{\mu}\mathcal{H}_{\mu'}$. Similarly we have $L^2(K)^\rho = \mathcal{H}^{\mu_{\nu}} \oplus \mathcal{H}^{\mu_{\nu}}_{0}$, $\mu|_{K\chi} \simeq l_{\mu_n}\mathcal{H}_{\mu_n}$ for some $l_{\mu} \in \mathbb{N}$. Of course $l_{\mu} \leq \dim(L^2(K)^\mu)$ and l_{μ} can be 0.

However, since the representations $(\pi(\mu_n, \chi_n))$ converge to the representation $(\pi(\mu, \chi))$, we can assume that for a subnet the subspaces \mathcal{H}^{μ_n} can be realized inside $L^2(K)^\rho$ for n large enough (see [2], 4.2-D Theorem). This tells us also that $l_{\mu} > 0$ for n large enough and hence, again for a subnet, we can suppose that $l_{\mu} = l$ is fixed for every n. Since the dimensions of the spaces \mathcal{H}^{μ_n} are smaller than the dimension of $L^2(K)^\rho$, we can also assume that all the dimensions d_{μ_n} are the same and equal to some common $d > 0$.

We choose for every n an orthonormal basis $(\xi^n_j)_j$ of $L^2(K)^\rho$, which passes through the l_{μ} copies of \mathcal{H}^{μ_n} and through \mathcal{H}^{μ}_{0}. We choose the ξ^n_j such that $\dim(\mathcal{H}^{\mu_n})$ finite, we can assume (passing to a subnet) that $\lim_{n \to \infty} \xi^n_j = \xi_j$ exists in $L^2(K)$ for every $j \leq ld$. Let $c_n, n \in \mathbb{N}$, be the character of the irreducible representation μ_n of K'. Then $c_n * \xi_n = \xi_n$ for any $\xi_n \in \mathcal{H}^{\mu_n}$ and $c_n * \mathcal{H}^{\mu}_{0} = \{0\}$ for every n. According to Bagget, the pairs $(K\chi_n, c_n)$ converge in $\mathcal{A}(K)$ to the pair $(K', c_{\mu'})$, where $c_{\mu'}$ denotes the character of an irreducible representation ν (see [2], 7.1-B Lemma). This implies that (see [2], 1.4-A Proposition)

$$\xi_j := \lim_{n \to \infty} \xi^n_j = \lim_{n \to \infty} c_n * \xi^n_j = c_{\mu'} * \xi_j$$

for every j and similarly

$$c_{\mu'} * \mathcal{H}^{\mu}_{0} = \{0\}.$$

This shows that K' acts on $\mathcal{H}^{\mu'} = \lim_{n \to \infty} \mathcal{H}^{\mu_n}$ by a multiple of μ'. Define for any n and $i, j \in \{1, \cdots, d\}$ the function $c^n_{i,j}$ on K by

$$c^n_{i,j}(k) := \frac{1}{d} \langle \lambda(k) \xi^n_i, \xi^n_j \rangle_{L^2(K)}, k \in K,$$
where λ denotes the left regular representation of K on $L^2(K)$. Since $\lim_{n \to \infty} \xi^n_i = \xi_i$ in $L^2(K)$ for every i, the functions $c^n_{i,j}$ converge uniformly on K to the function $c_{i,j}(k) := \frac{1}{d} \langle \lambda(k)\xi_j, \xi_i \rangle_{L^2(K)}$.

Now the operator $\mu_n(c^n_{i,j}|_{K\chi_n})$, which acts on the Hilbert space $H_{\mu_n} := \text{span}\{\xi^n_j, 1 \leq j \leq d\}$ is the rank one operator $P_{\xi^n_i, \xi^n_j}$ which converges to the operator P_{ξ_i, ξ_j} on the Hilbert space $H_{\mu'} := \lim_{n \to \infty} H_{\mu_n}$. This shows that the restriction of μ' to $H_{\mu'}$ is irreducible. Hence $d = \dim(H_{\mu'})$ and $l_{\mu'} = l$. □

2.3.

Remark 2.13. Identifying for every n the Hilbert space H_{μ_n} with \mathbb{C}^d via the basis given by the ξ_j's, we see also that for every $f \in C(K)$ the operators $\mu_n(f|_{K\chi_n})$ converge strongly and hence in operator norm to the operator $\mu'(f|_{K'})$.

We have by §§4.5 of [5]:

Theorem 2.14. Let A be a postliminal C^*-algebra. Then A admits a composition net $(I_n)_{0 \leq n \leq \alpha}$ such that for any n, which is not an ordinal, the quotient I_{n+1}/I_n is with continuous trace and such that for every ordinal $\beta \leq \alpha$ the relation $I_{\beta} = \bigcup_{n<\beta} I_n$ holds.

We take now as C^*-algebra our $A = C^*(G)$, which is CCR. Let

$$S_n := \{\pi \in \hat{G}|\pi(I_n) = \{0\}\}, 0 \leq n \leq \alpha.$$

Then $S_0 = \hat{G}$ and $S_\alpha = \{\emptyset\}$. The subsets

$$\Gamma_n := S_n \setminus S_{n+1}, 0 \leq n \leq \alpha, n \text{ not an ordinal}$$

are locally compact and Hausdorff in their relative topologies, since Γ_n is the spectrum of the algebra I_{n+1}/I_n, which is of continuous trace (see [5]). Let $S = \hat{G}$ be the spectrum of G. Then

$$S = \bigcup_{0 \leq n \leq \alpha} S_n = \bigcup_{0 \leq n \leq \alpha} \Gamma_n.$$

2.4. The Fourier transform. Let us first write down explicitly the representation $\pi_{(\mu,\chi)}$. Its Hilbert space $H_{(\mu,\chi)}$ can be identified with the space $L^2(G/K \ltimes A, \sigma_{(\mu,\chi)}) \simeq L^2(K/K_{\chi}, \mu) \subset L^2(K, \mathcal{H}_\mu)$.

Let ξ be an element of $\mathcal{H}(\mu, \chi)$. For all $a \in A$ and $k, h \in K$ we use the same calculation as in (2.1) and we have that
\[
\pi(\mu, \chi)(k, a)\xi(h) = \chi(1_K, h^{-1} \cdot a)\xi(k^{-1}h) =: \chi(h^{-1} \cdot a)\xi(k^{-1}h).
\]

Let us compute for $f \in L^1(G)$ the operator $\pi(\mu, \chi)(f)$. We have for $h \in K$ and $\xi \in \mathcal{H}(\mu, \chi)$ that
\[
\pi(\mu, \chi)(f)\xi(h) = \int_{G} f(k, a)\pi(\mu, \chi)(k, a)\xi(h) \, da \, dk
\]
\[
= \int_{K} \int_{A} f(k, a)\chi(h^{-1} \cdot a)\xi(k^{-1}h) \, da \, dk
\]
\[
= \int_{K} \int_{A} f(hk^{-1}, a)\chi(h^{-1} \cdot a)\xi(k) \, da \, dk
\]
\[
= \int_{K/K} \int_{K} \left(\int_{A} f(hs^{-1}k^{-1}, h \cdot a)a^{-1}\chi(a)da \right)\mu(s^{-1})\xi(k) \, dsdk
\]
\[
= \int_{K/K} \int_{K} \hat{f}^2(hsk^{-1}, h \cdot \chi)\mu(s)\xi(k) \, dsdk
\]
\[
= \int_{K/K} f_{\mu, \chi}(h, k)\xi(k)dk,
\]
(2.2)

where
\[
f_{\mu, \chi} : K \times K \rightarrow \mathcal{B}(\mathcal{H}_\mu)
\]
(2.3)
\[
(h, k) \mapsto \int_{K} \hat{f}^2(hsk^{-1}, h \cdot \chi)\mu(s)ds.
\]

and
\[
\hat{f}^2(k, \mu) := \int_{A} \chi(a)f(k, a) \, da, k \in K, \chi \in \hat{A}.
\]

Definition 2.15. For each $f \in C^*(G)$, the Fourier transform $\mathcal{F}(f)$ of f is the isometric homomorphism on $C^*(G)$ into $\ell^\infty(\hat{G})$ which is given by
\[
\mathcal{F}(f)(\mu, \chi) = \pi(\mu, \chi)(f) \in \mathcal{B}(\mathcal{H}(\mu, \chi)), \ (\chi, K, \mu) \text{ is a cataloguing triple.}
\]

Let now $L^1(G)_c$ be the dense subspace of $L^1(G)$ defined by
\[
L^1(G)_c := \left\{ f \in L^1(G); \text{ the function } \hat{f}^2 \text{ is in } C_c(K \times \hat{A}) \right\}.
\]

Definition 2.16. Let L be a closed subgroup of the compact group K and let (ν, \mathcal{H}_ν) be an irreducible representation of L with character χ_ν. We may identify the Hilbert space \mathcal{H}_ν with \mathbb{C}^d, $d = d_\nu = \dim(\nu)$. Let
\[
L^2(\nu) := L^2(K, \mathcal{H}_\nu) \cong L^2(K, \mathbb{C}^d).
\]
(1) Define for \(\chi \in \hat{A} \) such that \(L \subset K_{\chi} \) and for \(f \in L^1(G) \) the operator \(\tau_{\nu, \chi}(f) \) on \(L^2(K, \mathbb{C}^d) \) by
\[
\tau_{\nu, \chi}(f)(\xi)(x) := \int_K \int_L \left(\int_L (f^2(xy^{-1}, y \cdot \chi)) \nu(l) dl \right) (\xi)(y) dy.
\]

(2) Define for \(\chi \in \hat{A} \), for a closed subgroup \(L \subset K_{\chi} \) of \(K \), for \(\nu \in \hat{L} \), the linear projection \(P_{\nu} : L^2(K, \mathcal{H}_{\nu}) \rightarrow L^2(K/L, \nu) \) by
\[
P_{\nu}(\varphi)(x) := \int_L \nu(l)(\varphi(xl)) dl, \varphi \in C(K, \mathcal{H}_{\nu}), x \in K.
\]

Proposition 2.17.

(1) The linear operator \(P_{\nu} \) is an selfadjoint projection of the Hilbert space \(L^2(\nu) \).

(2) For any closed subgroup \(L \subset K_{\chi} \) of \(K \), \(\nu \in \hat{L} \), \(\chi \in \hat{A} \) and \(f \in L^1(G) \) we have
\[
\text{ind}_{L \times A}^G \chi \otimes \nu = \tau_{\nu, \chi}(f) = \nu_{\chi}(f), f \in L^1(G).
\]

Proof.

(1) We have for \(\varphi \in L^2(K, \mathcal{H}_\nu) \) that
\[
\|P_{\nu}(\varphi)\|^2 = \int_{K/L} \left\| \int_L \nu(l)(\varphi(kl)) dl \right\|^2_{\mathbb{C}^d} dk.
\]
\[
\leq \int_{K/L} \left(\int_L \|\varphi(kl)\|^2_{\mathbb{C}^d} dl \right) dk.
\]
\[
= \int_K \|\varphi(k)\|^2_{\mathbb{C}^d} dk.
\]
\[
= \|\varphi\|^2.
\]

Let \(\varphi \in \mathcal{H}_{\nu, \chi} = L^2(K/L, \nu) \subset L^2(K, \mathcal{H}_\nu) \). Then for \(k \in K \),
\[
P_{\nu}(\varphi)(k) = \int_L \nu(l)(\varphi(kl)) dl.
\]
\[
= \int_L \nu(l)\nu(l)^{-1}(\varphi(k)) dl.
\]
\[
= \int_L \varphi(k) dl.
\]
\[
= \varphi(k).
\]

Hence the operator \(P_{\nu} \) is the identity on \(\mathcal{H}_\nu \subset L^2(K, \mathcal{H}_\nu) \).

Let \(\mu \in \hat{L} \) and let \(c_\mu \) its character. For \(\varphi \in L^2(K, \mathcal{H}_\nu) \) let
\[
\varphi_\mu(k) := \varphi \ast c_\mu(k) = \int_L \varphi(kl^{-1}) c_\mu(l) dl, k \in K.
\]
Then the mapping \(\varphi_\mu \) is also contained in \(L^2(\nu) \) and for another \(\omega \in \hat{L} \) we have that

\[
\langle \varphi_\mu, \varphi_\omega \rangle_{L^2(\nu)} = \int_K \langle \varphi_\mu(k), \varphi_\omega(k) \rangle_{H_\nu} dk
\]

\[
= \int_{K/L} \int_L \langle \varphi_\mu(ql), \varphi_\omega(ql) \rangle_{H_\nu} dldk
\]

\[
= \int_{K/L} \int_L \int_L \langle \varphi(ql^{-1}) c_\mu(l_1), \varphi(ql^{-1}) c_\omega(l_2) \rangle_{H_\nu} dldk
\]

\[
= \int_{K/L} \int_L \int_L \int_L \langle \varphi(ql^{-1}), \varphi(ql^{-1}) \rangle_{H_\nu} dldl_1 d_\nu d^{l_2}
\]

\[
= 0.
\]

It is easy to see now that

\[
L^2(\nu) = \sum_{\mu \in \hat{L}} L^2(\nu) * c_\mu,
\]

since \(L^2(K) = \sum_{\mu \in \hat{L}} L^2(K) * c_\mu \). Furthermore, for \(\mu \neq \nu \) it follows that

\[
P_\nu(\varphi_\mu)(k) = \int_L \nu(l)(\varphi_\mu(ql)) dl
\]

\[
= \int_L \nu(l) \left(\int_L \varphi_\mu(ql^{-1}) c_\mu(l_1) dl_1 \right) dl
\]

\[
= \int_L \nu(l) \left(\int_L \varphi_\mu(ql^{-1}) c_\mu(l_1) dl_1 \right) dl
\]

\[
= \int_L \nu(l) c_\mu(l_1) dl \left(\int_L \varphi_\mu(ql^{-1}) dl_1 \right)
\]

\[
= 0 \cdot \left(\int_L \varphi_\mu(ql^{-1}) dl_1 \right)
\]

\[
= 0.
\]

Hence \(L^2(\nu) = \sum_{\mu \neq \nu} L^2(\nu)_\mu \) and \(P_\nu \) is zero on \(L^2(\nu) \). This shows that

\[
P^*_\nu = P_\nu.
\]
(2) For \(f \in C_\r(G), \varphi \in L^2(K, \mathbb{C}^d), x \in K \), we have by (2.2) that

\[
\begin{align*}
\lim_{L \to A} \nu \otimes \chi(f)(P_\nu(\varphi))(x) &= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \int_{K/L} \int_L \hat{f}^2(xlk^{-1}, k \cdot \chi) \nu(l) dl \, (P_\nu(\varphi)(k)) dk \\
&= \tau_{\nu, \chi}(f)(\varphi)(x).
\end{align*}
\]

Lemma 2.18. Let \(f \in C^*_r(G) \). Then we have:

(1) \(\lim_{(\mu, \chi) \to \infty} \| \mathcal{F}(f)(\mu, \chi) \|_{op} = 0 \).

(2) Let \((\chi_m, L_m, \mu_m)_{m \in M} \) be a converging net in \(\hat{A} \times \mathcal{A}(K) \) with limit \((\chi_\infty, L_\infty, \mu_\infty) \) such that \(\dim(\mu_m) = \dim(\mu_\infty) \) for any \(m \). Then, identifying the Hilbert spaces of the representations \(\mu_m \) with \(\mathbb{C}^d \), we have that \(\lim_{m \to \infty} \tau_{\mu_m, \chi_m}(f) = \tau_{\mu_\infty, \chi_\infty}(f) \) in operator norm for any \(f \in L^1(G) \).

Proof. (1) Let \(A \) be a \(C^* \)-algebra. According to ([3], chapter 3 §3.3) , if a net \((\pi_k)_k \subset \hat{A} \) goes to infinity, i.e. this net has no converging subnet, then \(\lim_{k \to \infty} \| \pi_k(a) \|_{op} = 0 \) for any \(a \in A \). Now Bagget [2] has shown that for every net of cataloguing triples \((\chi_k, K_{\chi_k}, \mu_k)_k \) we have that \((\mu_k, \chi_k)_k \) goes to infinity, if and only if the net \((\pi_k)_k \) goes to infinity in \(\mathcal{C}^*_r(G) \).

(2) Let first \(f \) be contained in \(L^1(G)_c \). Let

\[
f_m(x, y) := \int_{L_m} \hat{f}^2(xly^{-1}, y \cdot \chi_m) \mu_m(l) dl, x, y \in K, m \in M \cup \{ \infty \}.
\]

Then we see that \(f_m(x, y) \in \mathcal{B}(\mathbb{C}^n) \) and by Remark that (2.13)

\[
\lim_{m \to \infty} f_m(x, y) v = f_\infty(x, y) v, v \in \mathbb{C}^d,
\]

point wise in \(x, y \). Therefore also
Let \[M_d(\mathbb{C}) \ni \lim_{m \to \infty} f_m(x, y) = f_\infty(x, y), \]
where \(M_d(\mathbb{C}) \) denotes the space of complex matrices of size \(d \).

Using Lebesgue, we see that
\[
\lim_{m \to \infty} \| \tau_{\mu_m, \chi_m}(f) - \tau_{\mu_\infty, \chi_\infty}(f) \|_{H.S}^2
= \lim_{m \to \infty} \int_{K \times K} \| f_m(x, y) - f_\infty(x, y) \|_{H.S}^2 dxdy
= 0.
\]
Hence
\[
\lim_{m \to \infty} \tau_{\mu_m, \chi_m}(f) = \tau_{\mu_\infty, \chi_\infty}(f).
\]
The lemma follows now from the density of \(L^1(G) \) in \(C^*(G) \).

2.5. A \(C^* \)-condition. Let \(G = K \times A \) be as before a semi-direct product of a compact group \(K \) with a locally compact abelian group \(A \).

Remark 2.19. Let \((\pi(\mu_m, \chi_m))_{m \in M}\) be a net in \(\hat{G} \) which converges to \(\pi(\mu_\infty, \chi_\infty) \).
We can suppose that for a subnet (also denoted by \(M \) for simplicity of notation) that the triples \((\chi_m, K_{\mu_m}, \mu_m)\) converge to \((\chi_\infty, K_\infty, \mu_\infty)\) in \(\hat{A} \times A(K) \) and that the Hilbert spaces \(H_{\mu_m} \) and \(H_{\mu_\infty} \) are identified with \(\mathbb{C}^d \) for some \(d \in \mathbb{N}^* \) and that all these spaces \(H_{(\mu_m, \chi_m)}, m \in M \cup \{\infty\}, \) are subspaces of the common Hilbert space \(H_M := L^2(K, \mathbb{C}^d) \). The representation \(\tau_{\mu_\infty, \chi_\infty} = \text{ind}_{K_\infty \times A}^{G} \mu_\infty \otimes \chi_\infty \) can be disintegrated into an integral of irreducible representations supported by the limit set
\[
L = \left\{ \pi(\mu, \chi) \mid \mu \in \hat{K}_\infty, \mu|_{K_\infty} \text{ contains } \mu_\infty \right\}
\]
of the net \((\pi(\mu_m, \chi_m))_m\) (see Theorem 2.11). We denote by \(\sigma_{\mu_\infty, \chi_\infty} \) the corresponding representation of the algebra \(C^*(G)_L \) on the Hilbert space \(L^2(K/K_\infty, \mu_\infty) \subset L^2(K, \mathbb{C}^d) \). Let us observe that by the construction of \(\sigma_{\mu_\infty, \chi_\infty} \) we have that
\[
\sigma_{\mu_\infty, \chi_\infty}(a_{|L}) = \tau_{\chi_\infty, \mu_\infty}(a), a \in C^*(G).
\]

We can extend this representation \(\sigma_{\mu_\infty, \chi_\infty} \) to the larger \(C^* \)-algebra \(CB(L) \) consisting of all uniformly bounded operator fields \(F \) satisfying \(F(\pi) \in K(\mathcal{H}_\pi), \pi \in L, \) and we denote this extension also by \(\sigma_{\mu_\infty, \chi_\infty} \) (see [1]).

Definition 2.20. Let \(\mathcal{D}(G) = \mathcal{D} \) be the family consisting of all uniformly bounded operator fields \(F \) satisfying \(F(\pi) \in K(\mathcal{H}_\pi), \pi \in L, \) and we denote this extension also by \(\sigma_{\mu_\infty, \chi_\infty} \) (see [1]).

(1) \(F(\pi) \) is a compact operator on \(\mathcal{H}_\pi \) for every \(\pi \in \hat{G} \).
(2) \(\lim_{(\mu, \chi) \to (\infty, \infty)} \| F(\mu, \chi) \|_{op} = 0. \)
(3) Let \((\pi_{(\mu_m, \chi_m)})_{m \in M}\) be a properly converging net in \(\hat{G}\) with the properties and notations of the preceding Remark 2.19. Then
\[
\lim_{m \to \infty} \| F(\mu_m, \chi_m) \circ P_{\mu_m} - \sigma_{\mu_{\infty}, \chi_{\infty}}(F_L) \circ P_{\mu_{\infty}} \|_{\text{op}} = 0.
\]

Proposition 2.21. \(\mathcal{D}(G)\) is a \(C^*\)-algebra for the norm \(\| \cdot \|_{\text{op}}\) containing \(\overline{C^*(G)}\).

Proof. First we show that \(\mathcal{D}\) is a norm closed involutive subspace of \(l^\infty(\hat{G})\). It is clear that \(\mathcal{D}\) is a sub-space of \(\ell^\infty(\hat{G})\). The conditions (1), (2) are evidently true for every \(F\) in the closure \(\overline{\mathcal{D}}\) of \(\mathcal{D}\). For the condition (3), let \(F \in \overline{\mathcal{D}}\) and let \((F^k)_k \subset \mathcal{D}\) such that \(\lim_{k \to \infty} \| F^k - F \|_{\infty} = 0\). Then also \(\lim_{k \to \infty} \|(F^k)^* - F^*\|_{\infty} = 0\). Hence for any \(\varepsilon > 0\) there exists \(k_0\) such that such that \(\| F - F^k \|_{\infty} < \varepsilon\) for any \(k \geq k_0\). Therefore choosing some \(k > k_0\) we have for \(m\) large enough that
\[
\| F^k(\mu_m, \chi_m) \circ P_{\mu_m} - \sigma_{\mu_{\infty}, \chi_{\infty}}(F^k_L) \circ P_{\mu_{\infty}} \|_{\text{op}} \leq \varepsilon
\]
and so
\[
\| F(\mu_m, \chi_m) \circ P_{\mu_m} - \sigma_{\mu_{\infty}, \chi_{\infty}}(F_L) \circ P_{\mu_{\infty}} \|_{\text{op}} \\
\leq \| F(\mu_m, \chi_m) \circ P_{\mu_m} - F^k(\mu_m, \chi_m) \circ P_{\mu_m} \|_{\text{op}} \\
+ \| F^k(\mu_m, \chi_m) \circ P_{\mu_m} - \sigma_{\mu_{\infty}, \chi_{\infty}}(F^k_L) \circ P_{\mu_{\infty}} \|_{\text{op}} \\
+ \| \sigma_{\mu_{\infty}, \chi_{\infty}}(F^k_L) \circ P_{\mu_{\infty}} - \sigma_{\mu_{\infty}, \chi_{\infty}}(F_L) \circ P_{\mu_{\infty}} \|_{\text{op}} \\
\leq \varepsilon + \varepsilon + \| P_{\mu_{\infty}} \circ \sigma_{\mu_{\infty}, \chi_{\infty}}(F^k_L)^* - P_{\mu_{\infty}} \circ \sigma_{\mu_{\infty}, \chi_{\infty}}(F_L)^* \|_{\text{op}} \\
\leq 2\varepsilon + \| \sigma_{\mu_{\infty}, \chi_{\infty}}((F^k)^*_L - F^*|_L) \|_{\text{op}} \\
\leq 3\varepsilon.
\]
Hence \(F \in \mathcal{D}\). Since \(\sigma_{\mu_{\infty}, \chi_{\infty}}\) is a representation, it follows that \(\mathcal{D}\) is involutive and so \(\mathcal{D}\) is an involutive Banach space. Let us show that it is an algebra.

Let \(F, F' \in \mathcal{D}\). We must show that \(F \circ F'\) is in \(\mathcal{D}\) too.

The conditions (1), (2) are necessarily true for \(F \circ F'\).

Let us check point (3). It follows from property (3) for \(F\), using the involution * , that also
\[
\lim_{m \to \infty} \| P_{\mu_k} \circ F(\mu_m, \chi_m) - P_{\mu_{\infty}} \circ \sigma_{\mu_{\infty}, \chi_{\infty}}(F_L) \|_{\text{op}} = 0.
\]
We then have that, since \(P_\mu \circ F(\mu, \chi) \circ P_\mu = F(\mu, \chi) \circ P_\mu \) for every \(\chi \in \tilde{A}, \mu \in \tilde{K} \),
\[
\lim_{m \to \infty} \| F \circ F'(\mu_m, \chi_m) \circ P_{\mu_m} - \sigma_{\mu_\infty, \chi_\infty}(F \circ F'_{\mu_L}) \circ P_{\mu_\infty} \|_{\text{op}} \\
= \lim_{m \to \infty} \| P_{\mu_m} \circ F(\mu_m, \chi_m) \circ F'(\mu_m, \chi_m) \circ P_{\mu_m} - P_{\mu_\infty} \circ \sigma_{\mu_\infty, \chi_\infty}(F_{\mu_L}) \circ \sigma_{\mu_\infty, \chi_\infty}(F'_{\mu_L}) \circ P_{\mu_\infty} \|_{\text{op}} \\
\leq \lim_{m \to \infty} \| P_{\mu_m} \circ F(\mu_m, \chi_m) \circ F'(\mu_m, \chi_m) \circ P_{\mu_m} - P_{\mu_\infty} \circ \sigma_{\mu_\infty, \chi_\infty}(F_{\mu_L}) \circ F'(\mu_m, \chi_m) \circ P_{\mu_m} \|_{\text{op}} + \\
+ \lim_{m \to \infty} \| P_{\mu_\infty} \circ \sigma_{\mu_\infty, \chi_\infty}(F_{\mu_L}) \circ F'(\mu_m, \chi_m) \circ P_{\mu_m} - P_{\mu_\infty} \circ \sigma_{\mu_\infty, \chi_\infty}(F_{\mu_L}) \circ \sigma_{\mu_\infty, \chi_\infty}(F'_{\mu_L}) \circ P_{\mu_\infty} \|_{\text{op}} \\
\leq \lim_{m \to \infty} C \| P_{\mu_m} \circ F(\mu_m, \chi_m) - P_{\mu_\infty} \circ \sigma_{\mu_\infty, \chi_\infty}(F_{\mu_L}) \|_{\text{op}} + \\
+ \lim_{m \to \infty} C \| F'(\mu_m, \chi_m) \circ P_{\mu_m} - \sigma_{\mu_\infty, \chi_\infty}(F'_{\mu_L}) \circ P_{\mu_\infty} \|_{\text{op}} \\
= 0,
\]
where \(C = \max(\| F \|_{\infty}, \| F' \|_{\infty}) \).

Since \(\tilde{C}^*(G) \) satisfies all the conditions of \(D^*(G) \) it follows that \(\tilde{C}^*(G) \) is contained in \(D^*(G) \).

Proposition 2.22. The spectrum \(\tilde{D}(G) \) of the algebra \(D(G) \) can be identified with \(\tilde{G} \).

Proof. We have by \(\S \S \S 4.5 \) of [5]:

Theorem 2.23. Let \(A \) be a postliminal \(C^* \)-algebra. Then \(A \) admits a composition sequence \((I_n)_{0 \leq n \leq \alpha}\) such that the quotients \(I_{n+1}/I_n \) are \(C^* \)-algebras with continuous trace.

This theorem applies of course to our \(C^* \)-algebra \(C^*(G) \). Let now
\[
S_n := \{ \pi \in \tilde{G} \mid \pi(I_n) = \{0\} \}, 0 \leq n \leq \alpha.
\]
The subsets
\[
\Gamma_n := S_n \setminus S_{n+1}, 0 \leq n \leq \alpha,
\]
are locally compact and Hausdorff in their relative topologies, since \(\Gamma_n \) is the spectrum of the algebra \(I_{n+1}/I_n \), which is of continuous trace (see [5]). Then
\[
\tilde{G} = \bigcup_{0 \leq n \leq \alpha} S_n, \\
= \bigcup_{0 \leq n \leq \alpha} \Gamma_n, \\
S_{n-1} \supset S_n, 0 < n \leq \alpha \\
S_0 = \tilde{G}, \\
S_\alpha = \{0\}.
\]
Evidently \(\tilde{\mathcal{D}} \supset \tilde{G} \). Define:
\[
J_n := \{ F \in \mathcal{D} \mid F(\pi) = 0, \pi \in S_n \}, 0 \leq n \leq \alpha.
\]
Then the J_n’s are closed ideals of \mathcal{D} and

\[J_n \supset J_{n-1}, \quad 0 < n \in N, \quad n \text{ not an ordinal}, \]

\[J_\alpha = \mathcal{D}, \]

\[J_0 = \{0\}. \]

Let now $\pi \in \hat{D} \setminus \hat{G}$. Let

\[n_\pi := \sup_{n \in N} \pi(J_n) = \{0\}. \]

If $n_\pi = \alpha$, then $\pi(J_n) = \{0\}$ for every $0 \leq n < \alpha$ and then $\pi(\mathcal{D}) = \pi(J_0) = \{0\}$, which is impossible. Hence

\[n_\pi < \alpha. \]

We have now that $\pi(J_{n+1}) \neq \{0\}$, but $\pi(J_n) = \{0\}$.

This means in particular that π is contained in the hull of the ideal J_{n+1}. Hence, there exists a net $(\pi_k)_k \subset \Gamma_{n+1}$, such that $\pi = \lim_{k \to \infty} \pi_k$ in \hat{D}. Hence, there exists for $\xi \in \mathcal{H}_\pi$ and for any k an element $\xi_k \in \mathcal{H}_{\pi_k}$, such that for any $F \in \mathcal{D}$, we have that

\[\lim_{k \to \infty} \langle F(\pi_k)(\xi_k), \xi_k \rangle = \langle \pi(F)\xi, \xi \rangle. \]

Then π_k does not go to infinity in \hat{G} because of condition (2). Hence, either for a subnet, the net $(\pi_k = \pi_{(\mu_k, \chi_k)})_k$ converges in Γ_{n+1} to some $\pi_\infty = \pi_{(\mu_\infty, \chi_\infty)} \in \Gamma_{n+1}$, and then by condition (3)

\[\|\sigma_{\mu_\infty, \chi_\infty} \circ P_{\mu_\infty} - F(\mu_k, \chi_k) \circ P_{\mu_k}\|_{\text{op}} = 0 \]

for any $F \in \mathcal{D}$. Now for any k we have that

\[\xi_k = P_{\mu_k}(\xi_k). \]

This shows that

\[(2.4) \quad \lim_{k \to \infty} \langle \sigma_{\mu_\infty, \chi_\infty}(F)[L] \circ P_{\mu_\infty}(\xi_k), P_{\mu_\infty}(\xi_k) \rangle = \langle \pi(F)\xi, \xi \rangle, F \in \mathcal{D}. \]

Since in our case $L = \{\pi_\infty\}$, relation [2.4] implies that $\ker(\pi_\infty) \subset \ker(\pi)$. But then $\pi = \pi_\infty$, since π_∞ is completely continuous (see [5], 4.1.11. Corollary).

The other possibility is that the net converges in \hat{G} to a limit set L contained in S_{n+1}.

Now for $F \in J_{n+1}$, it follows from condition (3), that

\[\lim_{m \to \infty} \|F(\pi_k) \circ P_{\mu_k}\|_{\text{op}} = \lim_{m \to \infty} \|F(\pi_k) \circ P_{\mu_k} - \sigma_{\mu_\infty, \chi_\infty}(F)[L] \circ P_{\mu_\infty}\|_{\text{op}} = 0, \]

which shows that $\lim_{k \to \infty} \|F(\pi_k)\|_{\text{op}} = 0$. But this implies then by [2.4] that $\pi(F)(\xi) = 0$ for every ξ. Therefore π is 0 on J_{n+1}. This contradiction shows that $\pi = \pi_\infty \in \hat{G}$. \[\square \]
Theorem 2.24. Let $G = K \rtimes A$ be the semi-direct product of a compact group K with an abelian locally compact group A. Then the C^*-algebra $\mathcal{D}(G)$ is isomorphic to the group C^*-algebra $C^*(G)$.

Proof. We know now that $\hat{\mathcal{D}} = \hat{G}$. It suffices to apply the theorem of Stone-Weierstrass to the C^*-algebra \mathcal{D} and its subalgebra $\hat{C}^*(G)$.

3. Examples

Example 3.1. For all $n \in \mathbb{N}^*$, let G_n the the semi-direct product of the compact Lie group $SO(n)$ with the abelian group \mathbb{R}^n. The C^*-algebra of this group is described by Abdelmoula, Elloumi and Ludwig in [3].

We can parameterize the dual space in the following way:

$$\Gamma_1 = \hat{SO(n-1)} \times \mathbb{R}^*_+$$

$$\Gamma_0 = \hat{SO(n)}.$$

For $\rho_{\mu} \in \hat{SO(n-1)}$, and $r \in \mathbb{R}^*_+$, we denote by $K_{\chi_r} = SO(n-1) \times \mathbb{R}^*_+$ the stabilizer of χ_r. The projection $P_r : L^2(SO(n)) \to L^2(SO(n))$ are

$$P_r(\varphi)(x) := \int_{K_{\chi_r}} \rho_{\mu}(l)\varphi(xl)dl,$$

and for $r = 0$

$$P_0(\varphi)(x) := \int_{SO(n)} \tau_{\lambda}(l)\varphi(xl)dl, \quad \text{where } \tau_{\lambda} \in \hat{SO(n)}.$$

For any $f \in L^1(G_n)$ and $\xi \in L^2(SO(n))$ we have that

$$\tau_{\mu,r}(f)(x) := \int_{SO(n)} \left(\int_{K_{\chi_r}} (\hat{f}^2(xly^{-1}, y \cdot \chi_r)\rho_{\mu}(l)dl) \right) \xi(y)dy, \quad x \in SO(n).$$

$$\tau_{\mu,0}(f)(x) := \int_{SO(n)} \hat{f}^2(y,0)\xi(y^{-1}x)dy, \quad x \in SO(n).$$

Let \mathcal{D}_n be the family consisting of all operator fields $F \in \ell^\infty(\hat{G}_n)$ satisfying the following conditions:

1. $F(\gamma)$ is a compact operator on \mathcal{H}_n for every $\gamma \in \Gamma_1$,
2. $\lim_{\gamma \to \infty} \|F(\gamma)\|_{op} = 0$,
3. $\lim_{r \to 0} \|F(\mu, r) \circ P_r - F(\mu, 0) \circ P_0\|_{op} = 0$.

Then, the C^*-algebra of the group the group G_n is isomorphic to \mathcal{D}_n under the Fourier transform.
Example 3.2. Define the abelian group A and the compact groups L and K by:

\[
A := \{(z_i)_{i \in \mathbb{N}} \in \mathbb{Z}^\infty | z_i \neq 0 \text{ for a finite number of indices}\}
\]
with the discrete topology.

\[
L := \{1, -1\}
\]

\[
K := L^\infty
\]
with the product topology.

Then, by [13], Ch. 4, 2, 3.1., we have that

\[
\hat{A} = T^\infty.
\]

Furthermore, the spectrum \hat{K} of the abelian group K is the set of all infinite products

\[
\chi = \chi_1 \times \chi_2 \times \cdots \in \{1, -1\} \times \{1, -1\} \times \cdots,
\]
where $\chi_j = 1$ almost everywhere.

Define for $m \in \mathbb{N}$ the subgroups L^m and L_m of K by

\[
L_m := \{1\} \times \{1\} \times \cdots \times \{1\} \times \{1, -1\} \times \{1, -1\} \cdots
\]

and

\[
L^m := L \times L \times \cdots \times L \times \{1\} \times \{1\} \cdots
\]

Then L^m is isomorphic to the quotient group K/L_m and it has 2^m elements. The Haar measure dl^m on L^m is given by

\[
\int_{L^m} f(l_m) dl^m = \frac{1}{2^m} \left(\sum_{x \in L^m} f(x) \right), f \in C(L^m).
\]

A function $f : K \to \mathbb{C}$ is continuous, if and only if for every $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that

\[
\sup_{x \in K, l_m \in L_m} |f(x) - f(xl_m)| \leq \varepsilon.
\]

Then the Haar measure dk on K is given according to [13], Ch. 3, 3, example (vi) by

\[
\int_K f(k) dk = \lim_{m \to \infty} \int_{L^m} f(l_m) dl^m.
\]

For $\chi = (\chi_i)_{i \in \mathbb{N}} \in \hat{A}$, the stabilizer K_χ is the direct product

\[
K_\chi = \prod_{i \in \mathbb{N}} K_{\chi_i}
\]
where $K_{\chi_i} = \{1, -1\}$ if $\chi_i \in \{1, -1\}$ and $K_{\chi_i} = \{1\}$ if $\chi_i \not\in \{1, -1\}$.
Let for $m \in \mathbb{N}$
\[
\chi_m = (\chi_j^m)_{j \in \mathbb{N}}
\]
where
\[
\chi_j^m = \begin{cases}
1 & \text{if } j \leq m, \\
0 & \text{if } j > m.
\end{cases}
\]

Then
\[
\lim_{m \to \infty} \chi_m = 1
\]
in \hat{A}. The stabilizer K_{χ_m} in K is the subgroup
\[
K_{\chi_m} = \{1\} \times \{1\} \times \cdots \times \{1\} \times \{1, -1\} \times \{1, -1\} \cdots
\]

Then
\[
\lim_{m \to \infty} K_{\chi_m} = 1 = \{1\} \times \{1\} \times \{1\} \times \cdots
\]

Choose for every $m \in \mathbb{N}$ the trivial character μ_m of K_{χ_m}. Then, according to Definition 2.16, the dimensions d_{μ_m} are one and the projections $P_{\mu_m} : L^2(K) \to L^2(K)$ are given by
\[
P_{\mu_m}(\varphi)(x) := \int_{K_{\chi_m}} (\varphi(xl_m)) dl^m, \varphi \in C(K), x \in K.
\]

Therefore, by Remark 2.19 the limit set of the sequence (π_{μ_m, χ_m}) is the spectrum \hat{K} itself and then for any $f \in L^1(G)$ and $\xi \in L^2(K)$ we have that
\[
\tau_{\mu_m, \chi_m}(f)\xi(x) := \int_K \left(\int_{K_{\chi_m}} \overline{f(xy^{-1}, y \cdot \chi_m)} dl \right) (\xi(y)) dy, x \in K,
\]
\[
\tau_{\mu_\infty, \chi_\infty}(f)\xi(x) := \int_K \overline{f(y, 1)} \xi(y^{-1} x) dy, x \in K.
\]

REFERENCES

[1] W.B. Arveson, Subalgebras of C^*-algebras, Acta Math., 123 141-224 (1969).
[2] Baggett, W., A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc., 132 175 – 215 (1968).
[3] F. Abdelmoula, M. Elloumi, J. Ludwig, The C^*-algebra of the motion group $SO(n) \ltimes \mathbb{R}^n$, Bull. Sci. math. 135 166 – 177 (2011).
[4] Ben Halima, M. Rahali, A On the dual topology of a class of Cartan motion groups, J. Lie Theory, 22 491 – 503 (2012).
[5] J. Dixmier, Les C^*-algèbres et leurs représentations, Gauthier-Villars.
[6] J. M. G, Fell, Weak containment and induced representations of groups II, Trans. Amer. Math. Soc., 110, 424 – 447 (1964).
[7] H. Leptin, J. Ludwig, Unitary representation theory of exponential Lie groups, De Gruyter Expositions in Mathematics, 18, (1994).
[8] Lipsman, R.L., Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. pures et appl., 59, 337 – 374 (1980).
[9] Rahali.A, Regeiba.H, The C^*-algebras of the Cartan motion groups https://arxiv.org/submit/2551412/view
[10] Mackey, G.W., The theory of unitary group representations, Chicago University Press, (1976).
[11] Mackey, G.W., Unitary group representations in physics, probability and number theory, Benjamin-Cummings, (1978).
[12] Mackey, G.W., Induced representations of locally compact groups. I, Ann. of Math. 55, 101 – 139 (1952).
[13] Reiter, Hans; Stegeman, Jan D. Classical harmonic analysis and locally compact groups. Second edition. London Mathematical Society Monographs. New Series, 22, The Clarendon Press, Oxford University Press, New York, (2000).

Université de Sfax, Faculté des Sciences Sfax, BP 1171, 3038 Sfax, Tunisia, Université de Gabès Faculté des Sciences de Gabès Cité Erriadh 6072 Zrig Gabès Tunisie.

E-mail address: rejaibahedi@gmail.com

Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Metz, F-57045, France.

E-mail address: jean.ludwig@univ-lorraine.fr