MATERNAL-FETAL MEDICINE

Unexpected changes in birth experiences during the COVID-19 pandemic: Implications for maternal mental health

Cindy H. Liu1,2,3, Amanda Koire2,3, Carmina Erdei1,3, Leena Mittal2,3

Received: 29 December 2020 / Accepted: 22 October 2021 / Published online: 1 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Purpose This study examined the rates of unexpected birth experiences due to the COVID-19 pandemic and its association with women’s postpartum mental health symptoms (depression, generalized anxiety, and PTSD).

Methods Our cross-sectional analysis included postpartum women (N = 506) who reported on birth plan changes attributed to the COVID-19 pandemic through the PEACE (Perinatal Experiences and COVID-19 Effects) Study, an online survey that took place between May 2020 and May 2021. Covariates included sociodemographic variables, number of days since the pandemic, pre-pregnancy mental health history, and protective factors such as social support, distress tolerance, and resilience.

Results Prevalent COVID-19 pandemic changes in the birth experience included not having support people (e.g., partners and friends) permitted to participate in the baby’s delivery (33.5%), reduced access to preferred medications before or after delivery (9.7%), unavailable health care providers for the baby’s birth as planned (9.6%), and other changes (13.8%). The reduced access to medications was associated with those reporting higher levels of depressive (β = .10, p < .01) and PTSD symptoms (β = .07, p < .05). Separation from their baby for a long period after delivery (β = .10, p < .05) and other changes (β = .10, p < .01) were associated with higher levels of PTSD symptoms.

Conclusion Unexpected changes to the birth experience due to the COVID-19 pandemic may have small but persistent effects on depressive and PTSD symptoms. Given increased vigilance and its association with subsequent PTSD, acknowledging any fear of viral contagion within the hospital setting but informing women the plans for ensuring safety may be preventive for later mental health symptomatology.

Keywords Birth plans · Depression · Generalized anxiety · PTSD · Separation · Social support

Introduction

The coronavirus (COVID-19) pandemic and the mitigation of its spread have led to unprecedented changes in healthcare around the world. The shifts in guidelines for patient care have had a tremendous impact on women, with the number of births for the U.S. in 2020 being 3.6 million [1]. To date, much of the research has focused on understanding the virus transmission from the mother to the infant and its impacts on maternal physical health, with emerging research on the psychosocial experiences of childbirth during a pandemic [2–4].

The vast majority of population-level assessments of perinatal anxiety and depression in the past year and a half have highlighted negative impacts of the COVID-19 pandemic on mental health, with clinically significant anxiety reported in the range of 34–71% [5–8] and clinically significant depressive symptoms in 34–43% among mothers [5–9], with the highest rates being documented in Europe and North America [5]. The COVID-19 pandemic has been shown to affect peripartum women in myriad ways, including the cancelation of labor and delivery preparation classes [10], the cancelation of prenatal appointments [8, 11], and decreases in exercise and quality of life due to quarantine [10].

A major concern is the effect of unexpected birth experiences on maternal well-being. One survey study on over one thousand U.S. pregnant women from April 16 to 20,
2020 found that 42.2% of women had birth plan changes, with more than half attributing such changes to their own concerns (53.9%), and information provided by their medical providers (60.8%) [12]. Among these were changes in the planned hospital experience (shortening the hospital stay, altering pain management, or wearing a mask). As well, infection control measures such as the requirement to quarantine or restrictions to the presence of support people at birth have been a major source of concern for pregnant women [12, 13]. Concerns about the initial location of the birth due to fears of contagion or being unable to have support persons present at birth have led some women to pursue alternative birth plans, including home births [14, 15].

Maternal well-being includes having a “positive childbirth experience” [16], which is characterized by an experience that meets the women’s expectations for the birthing process. This includes giving birth to a healthy child under clinically and psychologically safe conditions [17] to support the mother–infant bonding process. The decisions for meeting such expectations and the actual experience itself are related to subsequent maternal well-being [18]. For example, under non-pandemic conditions, women who reported that their birth plans were followed were at lower risk for experiencing PTSD symptoms at 4–6 week postpartum [19]. Dissatisfaction in the birth process is linked to postpartum depression at 3–4 weeks, with unexpected disruptions during birth and inadequate support being a source of such dissatisfaction [20]. Although the maternal experience at birth plays an integral part in subsequent maternal mental health outcomes, the threat to the desired experience because of the pandemic, and its subsequent impact on mental health outcomes are largely unknown at this time.

The purpose of this study was to examine the rates of unexpected birth experiences due to the COVID-19 pandemic, and importantly, determine whether these experiences predicted women’s postpartum mental health symptoms (depression, generalized anxiety, and PTSD). Our present analysis focuses on postpartum women to capture reported changes that took place at birth. We also incorporated psychosocial protective factors to determine the contributing role of pre-pregnancy mental health conditions and concurrent social support, distress tolerance, and resilience on our outcomes [21].

Methods

Participants

This cross-sectional study investigated potential associations between unexpected changes in the birth experience due to the COVID-19 pandemic and postpartum mental health outcomes (depressive, anxiety, and PTSD symptoms). To accomplish this, we used data collected between May 21, 2020 and May 24, 2021 (N = 506) through the Perinatal Experiences and COVID-19 Effects (PEACE) study [22]. Eligible participants had to be over the age of 18, had given birth in the prior 6 months, and residing in the U.S. Recruitment was performed via email listservs, social media, word of mouth, and Facebook groups. After obtaining informed consent, prospective participants who met eligibility criteria were asked to complete a 30- to 40-min online survey administered through REDCAP. The survey included standardized measures used for evaluating mental health outcomes and maternal psychological factors and social support, and included questions pertaining to maternal demographics, mental health history, and unexpected birth experiences. Study participants were not compensated for their participation. Multiple attention checks and human verification steps were included throughout the survey to safeguard data quality. Data were further inspected for potential response irregularities. The Institutional Review Board at Mass General Brigham approved all study procedures.

Measures

Predictors

Pre-pregnancy mental health diagnoses

Pre-pregnancy mental health conditions were obtained based on the self-report of participants given their association with postpartum mental health [23]. Participants were inquired about depressive disorder, generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD) diagnoses predating pregnancy. Participants were presented with four options: ‘Yes, diagnosed and treated’, ‘Yes, diagnosed but not treated’, ‘Suspected, but not diagnosed’, and ‘No’. For each of the three conditions, a binary variable was generated in which those who had been diagnosed formed one group irrespective of treatment status and all other participants formed another; diagnoses were not treated as mutually exclusive.

Instrumental social support

To assess instrumental social support, the Two-Way Social Support Scale was used [24]. This self-report 4-item measure assesses support from the last 2 weeks such as “I have someone to help me if I am physically unwell,” and “There is someone who would give me financial assistance.” Participants were asked to indicate their response using a scale of 0–5 with 0 being ‘Not at all’ and 5 being ‘Always.’ Responses were summed and the higher sum scores reflected more instrumental support. The scale has shown
good internal consistency across studies (alpha = .81-.86) [24–26], as well as good predictive validity with well-being measures and incremental validity with other social support measures [24]. The Cronbach’s alpha for this scale was .80.

Distress tolerance

Participants were asked to complete the Distress Tolerance Scale [27], a 15-item measure that evaluates participants’ ability to withstand and cope with emotional distress. Items include “Being distressed or upset is always a major ordeal for me,” and “I’ll do anything to stop feeling distressed or upset.” This measure relies on a 5-point scale, ranging from 1 ‘strongly agree’ to 5 ‘strongly disagree.’ The mean was calculated with higher scores indicating greater distress tolerance. DTS has demonstrated convergent and discriminant validity, and has found to be reliable in prior published studies [27, 28]. The Cronbach’s alpha for this scale was .93.

Resilience

To assess psychological resilience, the 10-item Connor-Davidson Resilience Scale (CD-RISC-10) was used [29]. With items such as “I can deal with whatever comes my way” and “I think of myself as a strong person when dealing with life’s challenges and difficulties,” the CD-RISC assesses one’s ability to cope with adverse experiences. Participants indicated how they felt in the past month on a 5-point scale, with 0 indicating ‘not true at all’ and 4 indicating ‘true nearly all the time.’ The scores were summed which reflected greater resilience. Adequate internal consistency of alpha = .85–.89 is shown for the CD-RISC-10 across studies [30, 31]. The Cronbach’s alpha for this scale was .90.

Unexpected birth experiences

Unexpected birth experiences were captured using a 9-item list that allowed participants to indicate with a checkbox which changes to their birth plan, if any, occurred as a result of the COVID-19 outbreak. These items were adapted from the Epidemic-Pandemic Impacts Inventory Labor and Delivery Supplement (EPII-LD) [32]. The items inquired about alterations to the delivery including location, modality, assigned healthcare provider, medications, and limitations of support persons, as well as both short-term and long-term separations from the baby after birth. Respondents could affirm multiple changes if relevant and an option for ‘Other’ was also included. All participants were additionally provided the opportunity to elaborate in free text regarding the details of their birth plan change(s).

Outcomes

Depression symptoms

Participants’ self-reported depressive symptomatology was evaluated using the Center for Epidemiologic Studies-Depression (CES-D) scale [33]. This measure is composed of 20 items that inquire about neurovegetative symptoms as well as feelings of worthlessness, hopelessness, and low mood over the past week. Four available response options indicated frequency of each experience, ranging from ‘Rarely or none of the time (less than 1 day)’ to ‘Most or all of the time (5–7 days)’. Measure items were summed and higher sum scores reflected increased subjective depressive symptoms, with a potential score range from 0 to 60. The alpha value for the CES-D has been shown to be .85–.90 across studies [33–35]. The Cronbach’s alpha for this scale was .90.

Anxiety symptoms

Participants’ self-reported symptoms of generalized anxiety were evaluated using the Generalized Anxiety Disorder Scale (GAD-7) [36]. This measure is composed of 7 items that inquire about experiences such as restlessness, worry, irritability, and dread over the past 2 weeks. Four available response options indicated the frequency of each experience, ranging from ‘Not at all’ to ‘Nearly every day’. Measure items were summed and higher sum scores reflected increased subjective anxiety, with a potential score range from 0 to 21 [37]. Reliability of the scale has been shown with alpha = .89–.92 across studies [36, 38]. The Cronbach’s alpha for this scale was .91.

PTSD symptoms

Participants’ self-reported PTSD symptoms were evaluated using the PTSD Checklist-Civilian Version (PCL-C) [39]. This measure is composed of 17 items that inquire about experiences such as nightmares, flashbacks, avoidance, and hypervigilance. Five available response options indicated the subjective distress caused by each item over the past month, ranging from ‘Not at all [bothered]’ to ‘Extremely’. Measure items were summed and higher sum scores reflected increased stress, with a potential score range from 0 to 68. The PCL-C has shown promising internal consistency with Cronbach’s alpha of .83–.96 [40, 41]. The Cronbach’s alpha for this scale was .92.

Covariates

Sociodemographic characteristics

Maternal characteristics including age, educational level, and household income were asked. Women were also asked
if they were living with a partner and whether this was their first pregnancy. Infant age was obtained as well as whether the infant was admitted to the NICU at birth [42].

Duration of pandemic

Pandemic duration was calculated as the difference between the date of the declaration of COVID-19 as a pandemic in the United States (March 13, 2020) and the participant’s survey start date. Duration was reported in days. The variable was assessed to examine the potential evolution in experiences over the course of the pandemic.

Data analytic plan

We examined potential risk and protective factors for depressive, GAD, and PTSD symptoms using a hierarchical multiple regression model. Each mental health condition was regressed on sociodemographic characteristics and covariates (Block 1), self-reported pre-pregnancy diagnoses of depression, GAD, and PTSD (Block 2), psychosocial factors (Block 3), and unexpected birth experiences due to the COVID-19 pandemic (Block 4). Preliminary analyses indicated that maternal age, race, education, and income, as well as duration of the pandemic were not significantly associated with outcomes and therefore removed in subsequent blocks to conserve statistical power. Given the sample size and the number of comparisons, we employed a Bonferroni correction; therefore, significance was based on differences meeting a threshold of at least \(p < .001 \), with an alpha set at .05 and a total of 51 comparisons. Power analyses calculated through G*Power indicated power at 90% with a sample size of 506. We used SPSS 27.0 statistical software to perform all analyses.

Results

The sociodemographic characteristics of our study sample are presented in Table 1. The average age of the participants was 33.1 years. The large majority were White (89.5%), had at least a college education (91.3%), and a household income over $75,000 (87.6%). Almost all the women reported cohabitating with their partner (98.1%). This was the first pregnancy for 41.9% of the women. Among the women, 11.5% had an infant admitted to the NICU and 8.0% had infants who were born premature (<37 weeks). The infants were, on average, 9.4 weeks of age at the time the survey was administered. The date when women completed the survey ranged from 69 to 419 days (average = 150.2 days) after March 13, 2020, the date with which the pandemic was declared as a national emergency in the U.S. Among this sample, 15.0% reported a diagnosis of depression, 23.3% reported a diagnosis of GAD, and 4.0% reported a diagnosis of PTSD.

Table 2 displays the means of the key mental health symptoms and psychosocial experiences used in our analysis. As well, we present the rates of unexpected birth experiences due to COVID-19 pandemic, as reported by the participant. From our sample, 45.8% reported that support people were not permitted to attend the baby’s delivery. Among our sample, 13.2% and 12.1% reported reduced access to preferred medications before or after delivery (i.e., nitrous oxide and epidural), and that their health care provider (e.g., doctor, doula, and midwife) was not available for the baby’s birth as planned, respectively. A smaller percentage of women reported other events including the change from vaginal birth to induction or C-section (5.9%), a change in the

Table 1 Demographic characteristics from the PEACE Study, data collected between May 21, 2020 and May 24, 2021

Predictors	Means (range) or %
Infant age (weeks)	9.38 (0–28.0)
Maternal age (years)	33.1 (20.0–50.0)
Maternal race	
White	89.5%
Black or African American	0.6%
Hispanic or Latino	4.0%
Asian and Pacific Islander	3.4%
Maternal education	
Less than college	9.7%
College	28.1%
Masters	44.5%
Doctorate	17.8%
Household income (USD/year)	
< $74,999	12.4%
$75,000–149,999	41.0%
$150,000–224,999	27.6%
≥ $225,000	19.0%
Relationship	
Cohabitating with partner	98.6%
Not cohabitating	1.4%
First pregnancy	
No	58.1%
Yes	41.9%
NICU admissions	
No	88.5%
Yes	11.5%
Pandemic duration (days)	150.2 (69.0–419.0)
Pre-pregnancy mental health history	
Depression diagnosis	15.0%
Generalized anxiety diagnosis	23.3%
PTSD diagnosis	4.0%
location for delivery (4.3%), being separated from the baby immediately after delivery (3.6%), being separated from baby for a long period after delivery (2.6%), and changes in planned elective induction or C-section was not permitted (1.2%). We also note that 17.0% indicated other changes, which the participant could describe in free form. These largely consisted of COVID-19-related restrictions involving no visitors after delivery, partners who were unable to leave and return to the hospital, and limited hospital personnel during labor and delivery.

Table 3 shows the associations between the key predictors and depressive, generalized anxiety, and PTSD symptoms. Finally, specific unexpected birth experiences due to the COVID-19 pandemic were associated with depressive and PTSD symptoms. Reduced access to preferred medications before or after delivery was associated with higher levels of depressive symptoms ($B = .136$, $p < .0002$). Other changes ($B = .134$, $p < .0002$) were associated with higher levels of PTSD symptoms.

Discussion

Throughout the pandemic, obstetric and other perinatal providers that manage maternal distress in pregnancy, childbirth, and postpartum (e.g., psychiatrists, psychologists, social workers, nurses, midwives, doulas, etc.) have been faced with responding to the maternal distress experienced by women during pregnancy and in childbirth. Their response has been critical as prenatal stress is a major risk factor for maternal mental health [43, 44]. Our study is aimed at providing information about the obstetrical experiences that might be a risk to maternal well-being.
Among our respondents, the most prevalent pandemic-based changes in the birth experience were that support people (partners and family members) were not permitted to attend the baby’s delivery, with nearly half of the participants reporting this change in their birth experience. Consistent with published reports, there was also frequent mention of not being able to have visitors after the birth among those who had indicated other changes [14]. That this occurred for women in our study reinforces the common anticipated stresses among pregnant women, as described among the few existing studies that have examined unexpected changes in the birth experiences or changes in birth plans during the pandemic [12]. Our survey responses also indicate an endorsement of other, less frequent changes (<15% of respondents), including those pertaining to the lack of access to preferred medication or the lack of an available provider at birth, and even fewer, changes pertaining to elective births, delivery location, or changes that led to the separation between the mother and baby.

At least one in eight women from our sample reported reduced access to preferred medicines before or after delivery (i.e., nitrous oxide and epidural). It is intriguing that not receiving the desired medication was associated with increased depressive symptoms in the postpartum period. While epidural anesthesia during labor is neither a risk factor nor a protective factor against postpartum depression [45–47], unmatched expectations of medications during labor have been demonstrated to result in higher rates of postpartum depression [48, 49]. Relative
risk of postpartum depression appears to be higher both for those who intended to deliver with epidural anesthesia during labor, but did not receive it [49], as well as those who intended not to deliver with epidural anesthesia but ultimately received it [48, 49]. Given that the survey language of the present study inquired about both epidural anesthesia and pain management alternatives to an epidural, both these experiences may have contributed to the association seen in our data between changes in intended pain management and higher levels of depressive and PTSD symptoms.

Contrary to expectations, not having a support person during birth was not associated with greater mental health symptoms. However, those who indicated “other” changes in their experience had higher levels of PTSD symptoms, and interestingly, the changes described by participants included having a support person was not associated with postpartum mental health. Complementary research on the topic has further supported that birth support person changes are associated with increased rates of depression and anxiety, as are disruptions to prenatal care and changes to childcare during labor [50]. Although, in general, not having a support person was not associated with postpartum effects in our data, specific experiences that were easily recalled by women when inquired about the changes to the birth experience likely represent a salient birth experience for women. This observed association potentially reflects the importance of available support after delivery, and how pandemic-related impediments to key supports (e.g., restrictions in visitor policies) during the hospital stay may exert effects on postpartum mental health. Complementary research on the topic has further supported that birth support person changes are associated with increased rates of depression and anxiety, as are disruptions to prenatal care and changes to childcare during labor [50]. Although, in general, not having a support person was not associated with postpartum effects in our data, specific experiences that were easily recalled by women may have an enduring effect on PTSD symptoms, including not having consistent support at birth and delivery [51, 52].

Perceived separations at birth in which the infant was quarantined away from the mother for a long period were also not associated with postpartum mental health symptoms. While extensive research detailing the negative effects on infants of maternal separation has been conducted, relatively little has examined the converse experience for the mother [53]. For instance, prolonged maternal–infant separation immediately after delivery in the context of a pandemic has been studied in the setting of a tuberculosis outbreak in Finland, but focused only on psychiatric consequences to children [54]. Yet, 2–10 day separation after delivery for non-life-threatening neonatal health concerns has been perceived as a maternal trauma characterized by feelings of loss, powerlessness, and lack of control [55]. The timeframe of a COVID-19 quarantine may be especially challenging, as a non-pandemic-based study comparing the effects of different lengths of maternal–infant separation after delivery reported that mothers in dyads separated 10–24 days experienced the highest levels of distress and mental preoccupation with the infant [56]. We note that our assessment did not quantify the length of time for such a quarantine which is a study limitation. Additional information regarding the circumstances of the separation is warranted in future research as specific features of separation as well as its perception as a potential stressful or traumatic experience may be linked to mental health outcomes.

It is also worth commenting on other observed associations in our data. Those with a pre-pregnancy diagnosis of GAD were more at risk for postpartum anxiety symptoms. A pre-pregnancy diagnosis of PTSD was highly associated with increased PTSD symptoms consistent with prior work, showing that individuals with a trauma history or with PTSD are at risk for post-traumatic stress after childbirth [57–59]. As well, social support, resilience, and distress tolerance appeared to be protective factors for postpartum mental health in our sample, reinforcing its protective effect on mental health in general [60–63].

Despite these risk and protective factors, our analysis indicates that certain changes in the birth experience due to the COVID-19 pandemic may have small but persistent effects on depressive and PTSD symptoms. Consistent with work under non-pandemic conditions, unexpected changes during birth and delivery in general have been associated with depression [17, 64] and PTSD with such outcomes occurring not only following births that result in medical complications for the infant but among deliveries with healthy infant outcomes [57]. Experiencing unexpected changes at childbirth can lead women to feel powerless, and without communication or reassurance about the circumstances, women may feel uninformed about these changes. Unmet expectations can bring about disappointment [65]. These negative experiences, even among women with healthy deliveries, may be particularly heightened given the COVID-19 pandemic, contributing to subsequent depressive and post-traumatic distress over time [64]. It appears from our study that the risks from the changes in birth experiences, as assessed by our survey, do not confer risks to symptoms across all domains, thus possibly providing reassurance that these experiences do not result in risks to generalized anxiety.

The study has several limitations. We relied on the self-reported experiences of childbirth and the postpartum period which is prone to recall bias. Reported experiences such as mental health history or childbirth experiences were not confirmed by a provider. The survey provided little information regarding circumstances of the unexpected changes to the birth experience. A number of these changes could have been initiated by the women or the provider [12], and this could have had a role on mental health. Greater specificity regarding the items would have been preferable; for instance, it would have been ideal to make distinct the specific support people who were unable to attend the birth, given the
potential differential effects on outcomes based on partner or family member. Single items to assess the specific changes in the birth experience were used, as no standardized measure was available in determining COVID-19-based changes. We were also unable to confirm whether some of the reported birth plan changes were indeed attributable to the pandemic versus other reasons; for example, a change in the mode of delivery (induced vaginal or cesarean section) could have also been related to obstetric indications rather than the pandemic itself. The cross-sectional design limits us in any interpretations regarding causality; longitudinal research is necessary to determine the directionality between changes in the birth experiences and mental health outcomes. The characteristic of the sample, which is predominantly White, highly educated, and financially well off based on reported income levels, is an additional shortcoming that prevents us from generalizing to the general population, especially as birth plans may be more prevalent among Whites compared to other racial/ethnic groups [66]. Future analyses focused on racial/ethnic minority and disadvantaged groups will be needed to determine if the changes to the birth experience changes similarly predict similar outcomes. For instance, negative impacts have been documented among the prenatal experiences among Black women during non-pandemic and pandemic times, with links to mental health concerns [67–69]. Given our findings, we would expect stronger links in the association between prenatal care changes and mental health outcomes among non-White populations. If true, our findings suggest that we channel our energies to address prenatal changes to mitigate against mental health concerns across communities of color.

When considering the clinical implications, it should be noted that in preparing for childbirth during the COVID-19 pandemic, women have reported feeling stressed about the experience. These stresses are not unwarranted; our study demonstrates that women have faced unexpected birth experiences and that such changes due to the COVID-19 pandemic are a risk factor for postpartum mental health. The specific childbirth experiences, particularly those that are unexpected, as well as the subsequent postpartum concerns have the potential to contribute to problems in maternal bonding. For these reasons, identifying risk factors related to unexpected birth experiences is informative; the circumstances surrounding a birth can provide opportunities for preventing or minimizing postpartum depression and PTSD. Similarly, identifying women who are more set in their vision of childbirth and working proactively to develop psychological flexibility prior to delivery may help moderate their distress if the birth does not proceed according to their plans. Additionally, given that pre-pregnancy mental health was associated with postpartum mental health, screening and addressing mental health concerns during preconception planning and pregnancy are likely to be helpful in preventing an exacerbation of symptoms postpartum.

As part of the shared decision-making regarding a woman’s preferences for their birth experience, women should be informed of the latest hospital guidelines and any possible changes that might take place during labor and delivery from medication delivery to available partner support. It should be acknowledged that policies vary widely between hospitals (e.g., visitation), and this, together with other patient goals, wishes, and circumstances should be carefully weighed given their impacts on psychosocial experiences and when deciding on the course of care for patients. Particular care should be taken among individuals who are historically marginalized or underrepresented to ensure that these conversations are comprehensive, culturally sensitive, in their preferred language, and cover topics including their emotional health [70]. Given increased vigilance and its association with subsequent PTSD [59], acknowledging any fear of viral contagion within the hospital setting and developing collaborative safety plans through shared decision-making in keeping with institutional policies may be preventive for later mental health symptomatology. These strategies help women to anticipate the possible changes due to the pandemic that are aligned with the shared goal for a woman to have a positive birth experience. Empowering and supporting women are all the more necessary given the uncertainty that characterizes the COVID-19 pandemic.

Obstetric providers may also work with psychiatric consultants, psychologists, or counselors to obtain training on distress tolerance to be delivered at the bedside. As well, postpartum services may need to be expanded for patients giving birth during the pandemic, with additional support from mental health providers, including but not limited to perinatal psychiatrists who are well equipped to help women understand the nature of their mental health response in response to childbirth during this time. Other professionals included psychologists, counselors, and clinical social workers focused on therapy may also help expand access to mental health support for women for whom psychotherapeutic rather than psychopharmacologic intervention is preferred, and to continually engage other perinatal providers (nurses, midwives, and doulas) in identifying and supporting those in distress. These strategies altogether have the potential to reduce the birth-related postpartum mental health concerns during a pivotal public health crisis.

Acknowledgements We are grateful to Emily Zhang, Sunah Hyun, and Ga Tin Finneas Wong for their assistance in the data collection, Ga Tin Finneas Wong for preparing the references and formatting this manuscript, and Lucy Chie, MD for her comments.

Author contributions CHL: protocol/project development. CHL: data collection or management. CHL: data analysis. CHL, AK, CE, and LM: manuscript writing/editing.
Funding Support for this manuscript was provided through the Mary A. Tynan Faculty Fellowship, Weinberg and Barton families, the Family Health and Resiliency Fund, and an NIH K23 MH 107714-01 A1 award (to C.H.L.).

Declarations

Conflict of interest There are no conflicts of interest to declare for any author.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

1. Hamilton BH, Martin JA, Osterman MJK (2021) Births: Provisional Data for 2020. National Center for Health Statistics, Hyattsville, MD
2. Zeng H, Xu C, Fan J et al (2020) Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA 323:1848–1849. https://doi.org/10.1001/jama.2020.4861
3. Schwartz DA (2020) An Analysis of 38 Pregnant Women With COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med 144:799–805. https://doi.org/10.5858/apmr.2020-0901-SA
4. Shahbazi Sighadeh S, Ebrahimi Kalan M (2020) Care of newborns born to mothers with COVID-19 infection; a review of existing evidence. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1777969
5. Racine N, Eirich R, Cooke J, et al (2021) When the Bough Breaks: A Systematic Review and Meta-Analysis of Mental Health Symptoms in Mothers of Young Children during the COVID-19 Pandemic. In: PsyArXiv Preprints. https://psyarxiv.com/u8pnfh/
6. Lebel C, MacKinnon A, Bagshawe M et al (2020) Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. J Affect Disord 275:5–13
7. Cameron EE, Joyce KM, Delaquix CP et al (2020) Maternal psychological distress & mental health service use during the COVID-19 pandemic. J Affect Disord 276:765–774
8. Groulx T, Bagshawe M, Giesbrecht G et al (2021) Prenatal care disruptions and associations with maternal mental health during the COVID-19 Pandemic. Front Glob Women's Health 2:20
9. Hessami K, Romanelli C, Chiurazzi M, Cozzolino M (2020) COVID-19 pandemic and maternal mental health: a systematic review and meta-analysis. J Maternal Fetal Neonatal Med 31:1–8
10. Bivía-Roig G, La Rosa VL, Gómez-Tébar M et al (2020) Analysis of the impact of the confinement resulting from COVID-19 on the lifestyle and psychological wellbeing of Spanish pregnant women: an Internet-based cross-sectional survey. Int J Environ Res Public Health 17:5933
11. Liu CH, Goyal D, Mittal L, Erdei C (2021) Patient satisfaction with virtual-based prenatal care: implications after the COVID-19 Pandemic. Maternal Child Health J 25:1–9
12. Gildner TE, Thayer ZM (2020) Birth plan alterations among American women in response to COVID-19. Health Expectations: an International Journal of Public Participation in Health Care and Health Policy 23(4):969–971
13. Ahlers-Schmidt CR, Hervey AM, Neil T et al (2020) Concerns of women regarding pregnancy and childbirth during the COVID-19 pandemic. Patient Educ Couns 103(12):2578–2582
14. Herrmann A, Fitelson EM, Bergink V (2020) Meeting maternal mental health Needs during the COVID-19 pandemic. JAMA psychiatry 78(2):123–124
15. Romanis EC, Nelson A (2020) Homebirthing in the United Kingdom during COVID-19. Medical Law International 20:183–200
16. World Health Organization (2018) WHO Recommendations on Intrapartum Care for a Positive Childbirth Experience. World Health Organization
17. Rodríguez-Almagro J, Hernández-Martínez A, Rodríguez-Almagro D et al (2019) Women’s perceptions of living a traumatic childbirth experience and factors related to a birth experience. Int J Environ Res Public Health 16:1654
18. Mei YJ, Afshar Y, Gregory KD et al (2016) Birth plans: what matters for birth experience satisfaction. Birth 43:144–150
19. Hernández-Martínez A, Rodríguez-Almagro J, Molina-Alarcón M et al (2019) Postpartum post-traumatic stress disorder: Associated perinatal factors and quality of life. J Affect Disord 249:143–150
20. Benoit C, Westfall R, Treloro AE et al (2007) Social factors linked to postpartum depression: A mixed-methods longitudinal study. J Ment Health 16:719–730
21. Andersen LB, Melvaer LB, Videbech P et al (2012) Risk factors for developing post-traumatic stress disorder following childbirth: a systematic review. Acta Obstet Gynecol Scand 91:1261–1272
22. Liu CH, Erdei C, Mittal L (2020) Risk factors for depression, anxiety, and PTSD symptoms in perinatal women during the COVID-19 Pandemic. Psychiatry Res 295:113552. https://doi.org/10.1016/j.psychres.2020.113552
23. Phan J, Liu HH, Yasiu M, Liu CH (2019) Psychosocial and healthcare experiences among women with pre-pregnancy mental health concerns. Arch Psychiatr Nurs 33:196–202
24. Shakespeare-Finch J, Obst PL (2011) The Development of the 2-way social support scale: a measure of giving and receiving emotional and instrumental support. J Pers Assess 93:483–490. https://doi.org/10.1080/00223891.2011.594124
25. Hassanein EE, Adawi TR, Johnson ES (2021) Social support, resilience, and quality of life for families with children with intellectual disabilities. Res Develop Disabil 112:103910
26. Hassanein E, Adawi T, Al Attiyah A, Elsayad W (in press) The relative contribution of resilience and social support to family quality of life of a sample of mothers of children with autism spectrum disorder in Qatar, Jordanian. J Educ Sci
27. Simons JS, Gaher RM (2005) The distress tolerance scale: The Connor-Davidson Resilience Scale (CD-RISC). Psychol Assess 17:5933
28. Hsu SH, Collins SE, Marlatt GA (2013) Examining psychometric properties of distress tolerance and its moderation of mindfulness-based relapse prevention effects on alcohol and other drug use outcomes. Addict Behav 38:1852–1858
29. Connors KM, Davidson JRT (2003) Development of a new resilience science scale: The Connor-Davidson Resilience Scale (CD-RISC). Depress Anxiety 18:76–82. https://doi.org/10.1002/da.10113
30. Sexton MB, Byrd MR, von Kluge S (2010) Measuring resilience in women experiencing infertility using the CD-RISC: Examining infertility-related stress, general distress, and coping styles. J Psychiatr Res 44:236–241
31. Campbell-Sills L, Stein MB (2007) Psychometric analysis and refinement of the Connor–Davidson resilience scale (CD-RISC): Springer
Validation of a 10-item measure of resilience. J Traum Stress 20:1019–1028. https://doi.org/10.1002/jts.20271
32. Briggs-Gowan MJ, Muzik M, Drury SS, et al (2020) Epidemic – Pandemic Impacts Inventory Labor and Delivery Supplement (EPII-LD)
33. Radloff LS (1977) The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl Psychol Meas 1:385–401. https://doi.org/10.1177/014662167700100306
34. Devins GM, Orme CM, Costello CG et al (1988) Measuring depressive symptoms in illness populations: Psychometric properties of the Center for Epidemiologic Studies Depression (CES-D) scale. Psychol Health 2:139–156
35. Knight RG, Williams S, McGee R, Olaman S (1997) Psychometric properties of the Centre for Epidemiologic Studies Depression Scale (CES-D) in a sample of women in middle life. Behav Res Ther 35:373–380
36. Spitzer RL, Kroenke K, Williams JB, Löwe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166:1092–1097. https://doi.org/10.1001/archinte.166.10.1092
37. Plummer F, Manea L, Trepel D, McMillan D (2016) Screening for anxiety disorders with the GAD-7 and GAD-2: a systematic review and diagnostic metaanalysis. Gen Hosp Psychiatry 39:24–31. https://doi.org/10.1016/j.genhosppsych.2015.11.005
38. Zhong Q-Y, Gelaye B, Zaslavsky AM et al (2015) Diagnostic validity of the generalized anxiety disorder-7 (GAD-7) among pregnant women. PLoS ONE 10:e0125906.
39. Weathers FW, Litz BT, Herman DS, et al (1993) The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. In: Annual convention of the international society for traumatic stress studies, San Antonio, TX. San Antonio, TX.
40. Wilkins KC, Lang AJ, Norman SB (2011) Synthesis of the psychometric properties of the PTSD checklist (PCL) military, civilian, and specific versions. Depress Anxiety 28:596–606
41. Ruggiero KJ, Del Ben K, Scotti JR, Rabalais AE (2003) Psychometric properties of the PTSD Checklist—Civilian version. J Trauma Stress 16:495–502
42. Liu CH, Mittal L, Erdei C (2021) COVID-19-related health worries compound the psychiatric distress experienced by families of high-risk infants. J Perinatol 41:1191–1195. https://doi.org/10.1038/s41372-021-01000-1
43. Liu CH, Phan J, Yasui M, Doan S (2018) Prenatal life events, maternal employment, and postpartum depression across a diverse population in New York City. Community Ment Health J 54:410–419
44. Liu CH, Tronick E (2013) Re-conceptualising prenatal life stressors in predicting post-partum depression: Cumulative-, specific-, and domain-specific approaches to calculating risk. Paediatr Perinatal Epidemiol 27:497–500
45. Almeida M, Kosman KA, Kendall MC, De Oliveira GS (2020) The association between labor epidural analgesia and postpartum depression: a systematic review and meta-analysis. BMC Womens Health 20:99. https://doi.org/10.1186/s12905-020-00948-0
46. Tan CW, Sultana R, Kee MZL et al (2020) Investigating the association between labour epidural analgesia and postpartum depression: A prospective cohort study. Eur J Anaesthesiol 37:802–802. https://doi.org/10.1097/EJA.0000000000001236
47. Tobin CD, Wilson SH, Hebar L, et al (2017) Labor Epidural Analgesia and Postpartum Depression. Arch Depress Anxiety 2:44–46. https://doi.org/10.17352/2455-5460.000014
48. Toledo P, Miller ES, Wisner KL (2018) Looking Beyond the Pain: Can Effective Labor Analgesia Prevent the Development of Postpartum Depression? Anesth Analg 126:1448–1450. https://doi.org/10.1213/ANE.000000000002857
49. Orbach-Zinger S, Landau R, Haroush AB et al (2018) The Relationship Between Women’s Intention to Request a Labor Epidural Analgesia, Actually Delivering With Labor Epidural Analgesia, and Postpartum Depression at 6 Weeks: A Prospective Observational Study. Anesth Analg 126:1590–1597. https://doi.org/10.1213/ANE.000000000002501
50. Preis H, Mahaffey B, Heiselman C, Lobel M (2020) Vulnerability and resilience to pandemic-related stress among US women pregnant at the start of the COVID-19 pandemic. Soc Sci Med 266:113348. https://doi.org/10.1016/j.socscimed.2020.113348
51. Bohren MA, Hofmeyr GJ, Sakala C, et al (2017) Continuous support for women during childbirth. Cochrane Database of Systematic Reviews
52. Thomas M-P, Ammann G, Brazier E et al (2017) Doula Services Within a Healthy Start Program: Increasing Access for an Under-served Population. Matern Child Health J 21:59–64. https://doi.org/10.1007/s10995-017-2402-0
53. Schen CR (2005) When mothers leave their children behind. Harv Rev Psychiatry 13:233–243. https://doi.org/10.1080/1067322050243380
54. Veijola J, Mäki P, Joukamaa M et al (2004) Parental separation at birth and depression in adulthood: a long-term follow-up of the Finnish Christmas Seal Home Children. Psychol Med 34:357–362. https://doi.org/10.1016/j.spmeyss.2003.11.007
55. Nyström K, Axelsson K (2002) Mothers’ experience of being separated from their newborns. J Obstet Gynecol Neonatal Nurs 31:275–282. https://doi.org/10.1111/j.1552-6909.2002.tb00049.x
56. Feldman R, Weller A, Leckman JF et al (1999) The nature of the mother’s tie to her infant: Maternal bonding under conditions of proximity, separation, and potential loss. J Child Psychol Psychiatry 40:929–939
57. Chan S, Ein-Dor T, Mayopoulos P et al (2020) Risk factors for developing posttraumatic stress disorder following childbirth. Psychiatry Res 8:113090
58. Grekin R, O’Hara MW (2014) Prevalence and risk factors of postpartum posttraumatic stress disorder: a meta-analysis. Clin Psych Rev 34:389–401
59. Ayers S, Bond R, Burttulies S, Wijma K (2016) The aetiology of post-traumatic stress following childbirth: a meta-analysis and theoretical framework. Psychol Med 46:1121–1134
60. Balaji AB, Claussen AH, Smith DC et al (2007) Continuous support for women during childbirth. Cochrane Database of Systematic Reviews
61. Haslam DM, Pakenham KL, Smith A (2006) Social support and postpartum depressive symptomatology: The mediating role of maternal self-efficacy. Infant Mental Health J 27:276–291
62. Toke H, Kita S, Hayashi M et al (2020) Mediating effect of resilience during pregnancy on the association between maternal trait anger and postnatal depression. Compr Psychiatry 102:152190. https://doi.org/10.1016/j.comppsych.2020.152190
63. Williams AD, Thompson J, Andrews G (2013) The impact of psychological distress tolerance in the treatment of depression. Behav Res Ther 51:469–475
64. Watson K, White C, Hall H, Hewitt A (2020) Women’s experiences of birth trauma: A scoping review. Women and Birth 34:417–424
65. Afshar Y, Mei JY, Gregory KD et al (2018) Birth plans—Impact on mode of delivery, obstetrical interventions, and birth experience satisfaction: A prospective cohort study. Birth 45:43–49
66. Afshar Y, Wang ET, Mei J et al (2017) Childbirth education class and birth plans are associated with a vaginal delivery. Birth 44:29–34
67. Gur RE, White LK, Waller R et al (2020) The disproportionate burden of the COVID-19 pandemic among pregnant black women. Psychiatry Res 293:113475
68. Liu CH, Tronick E (2014) Prevalence and predictors of maternal postpartum depressed mood and anhedonia by race and ethnicity. Epidemiol Psychiatric Sci 23:201
69. Liu CH, Giallo R, Doan SN et al (2016) Racial and ethnic differences in prenatal life stress and postpartum depression symptoms. Arch Psychiatr Nurs 30:7–12

70. Liu CH, Tronick E (2012) Do patient characteristics, prenatal care setting, and method of payment matter when it comes to provider-patient conversations on perinatal mood? Matern Child Health J 16:1102–1112. https://doi.org/10.1007/s10995-011-0835-4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.