Low-dose dobutamine stress gated blood pool SPECT assessment of left ventricular contractile reserve in ischemic cardiomyopathy: a feasibility study

Vladimir V. Shipulin
Cardiology Research Institute, Tomsk NRMC, Russian academy of Sciences

Sergey L. Andreev
Cardiology research institute, Tomsk NRMC, Russian academy of Sciences

Andrew S. Pryakhin
Cardiology research institute, Tomsk NRMC, Russian academy of Sciences

Andrew V. Mochula
Cardiology research institute, Tomsk NRMC, Russian academy of sciences

Alina N. Maltceva
Cardiology research institute, Tomsk NRMC, Russian academy of sciences

Svetlana I. Sazonova
Cardiology research institute, Tomsk NRMC, Russian academy of sciences

Vladimir M. Shipulin
Cardiology research institute, Tomsk NRMC, Russian academy of sciences

Samia Massalha
Rambam Hospital: Rambam Health Care Campus

Konstantin V Zavadovsky (konstzav@gmail.com)
Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences
https://orcid.org/0000-0002-1513-8614

Research Article

Keywords: gated blood pool SPECT, ischemic cardiomyopathy, dyssynchrony

Posted Date: October 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-955622/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

**Purpose:** The purpose of present study was to assess the feasibility of GBPS with low-dose dobutamine (LDD) stress test, performed on a SPECT camera equipped with Cadmium-Zinc-Telluride (CZT) solid state detectors in evaluation of patients with ischemic heart failure (HF).

**Methods.** A total of 52 patients with ischemic cardiomyopathy (ICM) and a control group of 10 patients without obstructive coronary artery lesion underwent GBPS and transthoracic echocardiography (TTE) at rest and during LDD stress test (5, 10, 15 µg/kg/min). The duration of each GBPS step was 5 minutes. Stress-induced changes (Δ) in LV ejection fraction (LVEF), peak ejection rate, LV volumes and dyssynchrony (phase histogram standard deviation, phase histogram bandwidth and entropy) obtained with GBPS were estimated.

**Results.** All GBPS indices except end-diastolic volume showed significant dynamics during stress test in both groups. 17% of ICM patients, but none from control group, showed a decrease in EF during stress, accompanied by a significant increase in entropy. The inter-rater reproducibility was excellent for both rest and stress studies. There was a moderate correlation (r=0.5, p=0.01) between GBPS and TTE, with a mean difference value of -1.7 (95% confidence interval -9.8; 6.4; p=0.06) in ΔLVEF.

**Conclusion.** Low-dose dobutamine stress gated blood pool SPECT performed with high-efficiency CZT-SPECT cameras allow evaluation of stress-induced changes in LV contractility and dyssynchrony in patients with ischemic HF. The high sensitivity of the semiconductor detectors provides an opportunity to perform GBPS with lower acquisition time and a decrease in patient radiation exposure.

**ClinicalTrials.gov** identifier: NCT04508608 (August 7, 2020)

Introduction

Equilibrium radionuclide angiography (ERNA) is a well-established imaging modality for the assessment of cardiac function due to its high accuracy and reproducibility [1]. However, data are lacking regarding the use of ERNA with inotropic pharmacological stress tests. Previously published articles have demonstrated the prognostic value of planar stress ERNA and have shown that it may be used as an alternative to exercise testing for risk stratification [2, 3, 4]. Saliman S. et al. have described stress gated blood pool SPECT (GBPS) in an experimental study on canine models [5]. In this paper, the study duration was of approximately 140 min, which is inappropriate for clinical practice. Introduction of gamma cameras with solid-state semiconductor cadmium zinc telluride (CZT) detectors allows to significantly shorten the imaging time [6, 7, 8], an important feature which could be implemented in GBPS.

The aim of present study was to evaluate the performance of low-dose dobutamine (LDD) gated blood pool SPECT using a CZT camera to assess LV contractile reserve in patients with ischemic cardiomyopathy (ICM). To the best of our knowledge, this is the first study specifically performing GBPS
using a CZT camera in patients with severely reduced left ventricular systolic function and ejection fraction (LVEF).

**Materials And Methods**

**Patient and Study Population**

Between 2018 and 2019, a total of 77 patients with ICM and a control group 10 patients without obstructive coronary artery disease were enrolled in the study.

Inclusion criteria for ICM patients were: reduced LV systolic function with an EF < 40% and an increase in LV volumes demonstrated by transthoracic echocardiography (TTE), history of myocardial infarction or revascularization (coronary artery bypass grafting or percutaneous coronary intervention), > 75% stenosis of left main or > 75% stenosis in the proximal left anterior descending artery, and/ or stenosis of > 75% of two or more epicardial vessels based on invasive coronary angiography results [9]. Inclusion criteria for the control group were the absence of obstructive coronary artery lesion, no history of myocardial infarction or revascularization. Exclusion criteria were patients who had contraindications to the LDD stress test – with acute coronary syndrome, severe aortic valve stenosis, hypertrophic cardiomyopathy, hemodynamic instability, inflammatory myocardial diseases, atrial fibrillation, severe hematological or neurological disorders and patients who could not sign a consent form. The study was approved by the Local Ethical Committee and conformed to the Declaration of Helsinki on Human Research. Written informed consent was obtained from each patient after explanation of the protocol, its aims, and potential risks. This research is part of SciCoRIC study (ClinicalTrials.gov identifier: NCT04508608).

**Study Design**

According to the research protocol, all patients underwent LDD TTE followed by LDD GBPS within 1–3 days of each other.

**Patient Preparation**

The preparation for both LDD TTE and LDD GBSP is similar and was performed according to guidelines [10]. Prior to the test, an intravenous cannula was inserted in the right cubital vein of each patient.

**Stress Protocol**

Dobutamine was infused into a cubital vein starting at a dose of 5 µg/kg/min to achieve a stable response and then increased to 10 and 15µg/kg/min [10]. Each stage lasted for 5 min. A syringe pump Braun Perfusor Compact S (Braun, PA) was used. The 12-lead electrocardiogram (ECG) was monitored continuously during the entire examination. Blood pressure was measured at baseline and repeated at each stage of the dobutamine infusion.

**Transthoracic Echocardiography**
TTE was performed in all patients using the ultrasound system Vivid E9 (GE Healthcare) with matrix multi-frequency transducer (1.5–4.6 MHz).

2D M-mode, Doppler echocardiography measurements and quantification were performed according to recommendations of the American Societies of Echocardiography [11]. All TTE images were recorded and further analyzed by experienced echocardiographers in at least three cardiac cycles using a dedicated software (GE-Vingmed, Horten, Norway). Echocardiography parameters were recorded initially at rest, at 4–5 minutes of infusion of each dose of dobutamine, and during the recovery period. Common 2D echocardiography parameters including LV contractility, end-diastolic volume (EDV), and end-systolic volume (ESV), as well as assessment of valvular disease and pulmonary artery pressure were obtained.

**GBPS Data Acquisition and Processing**

All patients underwent rest and LDD stress gated blood pool SPECT (Discovery NM/CT 570c; GE Healthcare, Haifa, Israel) following in vivo labeling of red blood cells (RBC) with a 99mTc-pertechnetate (Tc-99m) activity of approximately 9 MBq/kg [1]. Patients were imaged in the supine position with the left arm placed over the head.

The data were acquired with ECG gating (16 frames/cycle; acceptance window of ± 15%) for 5 minutes with a 20% energy window centered at 140 keV. No attenuation correction was used.

The entire examination consisted of three acquisition series. The first series was acquired at rest. The second and third series were acquired at 10 and 15 µg/kg/min of dobutamine, respectively. The acquisition was simultaneous with the dobutamine infusion through the entire duration of the stress.

**GBPS Data Analysis**

Raw data were analyzed visually for motion and attenuation artefacts. Quality control was performed according to the EANM guidelines [1]. Count statistics were assessed in a region of interest of 100 mm² placed in the center of the LV. Images were reconstructed on a dedicated workstation (Xeleris 4.0110; GE Healthcare, Haifa, Israel) using maximum-penalized-likelihood iterative reconstruction (60 iterations; Green OSL Alpha 0.7; Green OSL Beta 0.3). The Myovation for Alcyone software (GE Healthcare, Haifa, Israel) was used for image reconstruction. The Butterworth post-processing filter (frequency 0.52; order 5) was applied to the reconstructed slices obtained in a 70x70 pixels matrix with 57 slices.

Reconstructed images were processed using the Quantitative Blood Pool SPECT 2009.0 (Cedars-Sinai Medical Center, Los Angeles, CA, USA) software. The count-based volumes method was used to calculate EDV and ESV, as well as LVEF [1]. Ventricular contours were adjusted manually when required. The following LV parameters were evaluated in further analysis: EDV (ml), ESV (ml), EF (%), peak ejection rate (PER, expressed as EDV/s), phase histogram standard deviation (PSD, expressed in degree), bandwidth (HBW, expressed in degree) and entropy (expressed in percent, %). Changes in GBPS measured LV parameters or in the difference (delta, Δ) between the rest and the different stress test stages were
calculated as \([\text{the value at stress} - \text{rest value}]\). In cases of stress induced decline in LVEF, only the highest value of EF was used for further analysis.

**Dosimetry**

The effective dose to the patient for 99m Tc-RBCs was calculated using ICRP Publication 120 equation: \(7.0 \times 10^{-3} \text{ mSv/MBq of injected 99m Tc}\) [12]

**Interrater reproducibility**

To test the interrater reproducibility 15 patients included in the ICM group were analyzed by two experienced nuclear medicine physicians blinded to each other's results.

**Statistical Analysis**

Data were assessed for normal distribution using the Shapiro–Wilk test. Continuous variables were expressed as mean ± standard deviation or as median with interquartile range (IQR) (Q25 to Q75). The Mann–Whitney U test and Wilcoxon signed-rank test were performed for unpaired and paired data, respectively. Each statistical test was 2-sided, and a p-value of < 0.05 was considered statistically significant. The Spearman test was used to estimate the correlation coefficient between quantitative variables. The Bland-Altman plot was used to assess mean differences between GBPS and TTE measurements.

For interrater reproducibility, the intraclass correlation coefficient (ICC) was calculated. Values below 0.50 were rated as poor reproducibility, 0.50–0.75 – moderate, 0.75–0.90 – good, and > 0.90 – excellent reproducibility. Statistical analyses were performed using STATISTICA 10.0 (StatSoft Inc, Tulsa, OK, USA) and MedCalc 17.4 (MedCalc Software, Mariakerke, Belgium).

**Results**

Among 77 patients with ICM who underwent LDD GBPS, 7 had no LDD TTE data, 5 had technical issues during the GBPS acquisition and 13 had side effects during stress procedure which resulted in interrupting the test and acquisition (6 patients had chest pain, 3 had an excessive hypertensive response and 4 had heart rhythm disturbances). As a result, 52 patients with ICM represent the final study population. Among the control group none had side effects during stress test, and therefore all 10 patients were enrolled (Fig. 1). The clinical characteristics of patients are presented in Table 1.
### Table 1
Patient characteristics

|                             | ICM (n = 52) | Control (n = 10) |
|-----------------------------|--------------|------------------|
| Age                         | 59 ± 7.2     | 52 ± 12.1        |
| Hypercholesterolemia, n (%) | 34 (65%)     | 7 (70%)          |
| Hypertension, n (%)         | 42 (80%)     | 7 (70%)          |
| Diabetes mellitus (type 2), n (%) | 11 (21%) | 2 (20%)          |
| NYHA Class, n (%):          |              |                  |
| 0                           | 0            | 8 (80%)          |
| 1                           | 0            | 2 (20%)          |
| II                          | 24 (46%)     | -                |
| III                         | 28 (54%)     | -                |
| History of MI, n (%)        | 52 (100%)    | -                |
| LVEF (%)*, n (%)            | 30 (27; 35)  | 64 (60; 65)      |
| LV EDV (ml)*, n (%)         | 213 (190; 239) | 106 (93; 117) |
| LV ESV (ml)*, n (%)         | 142 (130; 167) | 39 (36; 40)    |
| The number of CA with stenosis > 75%, n (%) | | |
| 1                           | 4 (8%)       | -                |
| 2                           | 11 (21%)     | -                |
| 3                           | 37 (71%)     | -                |

ICM – ischemic cardiomyopathy; NYHA – functional class of heart failure according to the New York Heart Association; MI – myocardial infarction; LV – left vertical; EF – ejection fraction; EDV – end-diastolic volume; ESV – end-diastolic volume; CA – coronary arteries; * - data obtained from echocardiography.

### Dosimetry

The mean injected $^{99m}$Tc- RBC dose was of 750 ± 111MBq (range 500–980 MBq) resulting in a mean effective radiation dose of 5.28 ± 0.79 mSv (range 3.51–6.89 mSv) per patient.

### Quality Assessment
The mean count rate at rest was of 214,247.0 (IQR 116,875.0; 295,940.0). During the stress study the rate decreased significantly to 186,600.0 (IQR 92,547.0; 297,955.0) counts (p = 0.003), but remained high (minimum value – 54,122.0; lower quartile – 92,547.0).

**GBPS Interrater Reproducibility**

The inter-operator reproducibility was excellent for both rest and stress studies (Table 2).

|                  | Rest          | 15 µg/kg/min |
|------------------|---------------|--------------|
|                  | ICC           | CI           | ICC           | CI           |
| LV EDV           | 0.9625        | 0.8882; 0.9874 | 0.9974        | 0.9871; 0.9982 |
| LV ESV           | 0.9612        | 0.8845; 0.9870 | 0.9943        | 0.9831; 0.9981 |
| LV EF            | 0.9888        | 0.9667; 0.9962 | 0.9822        | 0.9469; 0.9940 |
| LV PER           | 0.9779        | 0.9203; 0.9910 | 0.9808        | 0.9428; 0.9936 |
| LV PSD           | 0.9959        | 0.9877; 0.9986 | 0.9745        | 0.9241; 0.9914 |
| LV HBW           | 0.9968        | 0.9905; 0.9989 | 0.9952        | 0.9858; 0.9984 |
| LV entropy       | 0.9957        | 0.9871; 0.9985 | 0.9953        | 0.9860; 0.9984 |

LV – left vertical; EF – ejection fraction; EDV – end-diastolic volume; ESV – end-diastolic volume; PER – peak ejection rate; PSD – phase histogram standard deviation; HBW – histogram bandwidth; ICC – inter-operator reproducibility; CI – confidence interval.

**LDD GBPS Results**

For each stress stage, stress-induced changes in LV volumes, EF, and PER, and dyssynchrony parameters are presented in Figs. 2 and 3.

In the ICM group, 10 µg/kg/min dobutamine led to significant changes in all GBPS parameters except for EDV in comparison to rest. A dose of 15 µg/kg/min led to significant changes in LVEF, PER, ESV and PSD, when compared to rest parameters. There were no significant changes in any of the GBPS parameters at 15 µg/kg/min in comparison with 10 µg/kg/min. Nine ICM patients (17%) showed a decrease in LVEF during stress test accompanied by a significant increase in entropy (Fig. 4). In the control group, the dobutamine infusion at doses of 10 µg/kg/min and 15µg/kg/min led to significant changes in EF, PER, ESV and dyssynchrony indices (HBW and entropy) in comparison with rest measurements. PSD showed significant changes only at a dose of 15 µg/kg/min. LVEF and ESV changed significantly at the dobutamine dose of 15 µg/kg/min as compared to 10 µg/kg/min.
Stress-induced changes in GBPS parameters in ICM and the control groups are presented in Figs. 5 and 6. Only $\Delta EF$ at both 10 and 15 $\mu$g/kg/min dobutamine doses, as well as $\Delta PER$ and $\Delta HBW$ at 15 $\mu$g/kg/min were significantly higher in the control group as compared to ICM patients.

**Comparison of LDD Stress GBPS and TTE**

There was a moderate correlation ($r = 0.5$, $p = 0.01$) between LDD GBPS and LDD ECHO at peak stress. The Bland-Altman plot showed that both methods were comparable ($p = 0.06$) with mean difference value of -1.7 (96% CI -9.8; 6.4; $p = 0.06$) in $\Delta LVEF$ (Fig. 7).

**Discussion**

To our knowledge, this is the first CZT SPECT study measuring GBPS with LDD stress test in patients with ICM. The main finding of our study is that LDD GBPS allows the assessment of the LV contractile reserve and dyssynchrony changes in patients with ICM and LV dysfunction.

All GBPS parameters showed excellent reproducibility both at rest and stress. LV entropy in the ICM group showed the most significant changes during the stress test. Stress induced decrease in EF was accompanied by a simultaneous increase in entropy (but not PSD and HBW). In normal individuals, represent in present study by the 10 control cases, exercise will lead to an increase in LVEF. In disease, the inability of the heart to decrease the ESV and thus to increase the stroke volume leading to a decrease of the LVEF during exercise is an indicator for the presence and severity of stress induced ischemia [13]. This can also be explained by a decrease in some gene expression in the failing heart (i.e. SERCA2a) [14] or by myocardial remodeling post myocardial infarction [15].

Previous studies have shown that dobutamine stress planar ERNA can be performed in patients with ICM [2, 4]. The planar acquisition technique resulted in an underestimation of the LVEF, particularly in patients with LV systolic dysfunction (LVEF < 35%) and also lacked assessment of the LV dyssynchrony [8, 16]. SPECT ERNA avoids overlapping activity in cardiac chambers. The complete removal of counts from the left atrium resulted in a 7–10% higher LVEF when using SPECT ERNA as compared to LVEF obtained from planar ERNA and thus increased the accuracy of LV function assessment [8, 17].

Performing GBPS on conventional SPECT gamma-cameras takes about 20–30 min (32 frames with 40–60 seconds) per each acquisition [1]. Salimian at al. have applied GBPS with increasing doses of dobutamine using a dual-head gamma camera on a canine model using a 143 min dobutamine infusion and a high administered dose of radiopharmaceutical ~ 1,223 MBq, [Salimian S 2017]. This approach is non-applicable in clinical practice. CZT gamma-cameras allow to reduce the GBPS acquisition time to 8 min [18], 5 min [7] or even 4min [6]. In present study, we applied a 5 min acquisition protocol in combination with the LDD stress test.

Previous studies have demonstrated an excellent reproducibility of the LVEF and volumes obtained with GBPS at rest [19, 20]. SPECT ERNA is a very good tool for the assessment of LV dyssynchrony. Our findings of the stress induced changes in dyssynchrony parameters are similar to those of Boogers et al.
who used a conventional camera and showed good interrater reproducibility for both PSD and HBW in patients with ICM and LVEF ≤ 35%, ICC of 0.88 and 0.93, respectively. The lower ICC values in comparison to our study may be explained by the presence of large perfusion defects (typical in ICM) resulting in incorrect delineation of the myocardium [22]. GBPS avoids this drawback, since it delineates the blood pool and not the myocardium, resulting in more accurate measurements of volumes and function [23]. Moreover, Jensen et al. [24] reported better reproducibility results for rest GBPS parameters (LVEF and volumes) obtained with a CZT device as compared with Anger cameras (both planar and SPECT). Our study demonstrates reproducible results for all parameters, including dyssynchrony both at rest and stress, using a CZT gamma camera.

GBPS is a widely used imaging technique for assessment of myocardial contractility. This approach has diagnostic and prognostic significance in patients with HF including those with arrhythmia (particularly in CRT candidates) [25], pulmonary embolism [26] and cardiotoxicity [17, 20, 27]. This method was validated on cardiac phantom [28] and showed good correlation with CMR [29] and TTE [25]. However, this approach is not widely used for assessment of CR because of the relatively long study duration and high radiation exposure [8]. The CZT technology allows reducing the radiopharmaceutical dose to perform GBPS by up to 40% when the five minute acquisition protocol is applied or even by up to 50% in case of a 10-minute acquisition [8]. In present study the mean $^{99m}$Tc- RBC administered dose was of 740 ± 111MBq, which is 40% lower than the dose recommended for stress studies [1], while at the same time image quality is preserved.

Left ventricular cardiac reserve is an index of global inotropic function increasing during both physical exercise and pharmacological stress test (usually with dobutamine), of well-established prognostic value [4, 30]. In patients with HF this parameter is used to assess the likelihood for improvement of the LVEF following treatment, whether medical, surgery [31] or device implantation [4, 30]. CR has been also shown to correlate with the amount of viable myocardium post infarction [32].

The most accepted criterion of preserved CR is a 5% absolute increase in LVEF during stress or a relative increase of 20% from the baseline rest LVEF [30, 32]. In present study the absolute increase in LVEF was of 4.5% (IQR 0; 9) in the ICM group and 14% (IQR 10; 19) in the control group, on average. CR remained unchanged in more than half of the ICM patients.

Clinical value of stress-induced change in mechanical dyssynchrony.

Numerous studies have shown that a high LV mechanical dyssynchrony (MD) value at rest is an independent predictor of all-cause mortality in ICM [14, 33, 34]. Kano et al [14] observed a significant inverse correlation between LV entropy and expression of the SERCA2a mRNA level, which mediates the contraction of cardiomyocytes and the re-entry of Ca2+ from the cytoplasm into the sarcoplasmic
reticulum. Lower amounts of SERCA2a mRNA are usually noticed in the human failing heart and its reduction is associated with Ca\(^{2+}\) handling impairment and contractile disorders [35].

Exercise or dobutamine stress test can be used to unmask LV dyssynchrony, which can be absent at rest. Such an approach can help identify high-risk patients [36]. Some studies have reported that patients undergoing CRT stress-induced changes in MD show a better correlation to clinical outcome and long-term survival than MD values at rest [37]. Currently, data regarding changes in MD during stress remain controversial. While some studies, using TTE reported that dyssynchrony is not a dynamic state and does not appear during stress [38, 39], other authors claim different patterns of stress-induced MD changes [40, 41]. Such controversial results may be due to the high variability of TTE [5].

We observed a significant decrease in all dyssynchrony parameters, particularly entropy, during stress-test in both groups of patients and controls, similar to some of previously published results [5, 42, 43]. Interestingly we observed a significant increase in entropy but not PSD and HBW in patients with ICM (n = 9) who showed a drop in LVEF at the dobutamine dose of 15 µg/kg/min. None of the control group subjects showed such a response. This finding may be due to the fact that ischemia [44, 45] can appear during the stress test as a result of increasing myocardial oxygen demand [13] and could represent an additional sign of the extent of disease, in line with TID index [46].

**Limitations**

While the relatively small number of enrolled patients is a limitation of present study it seems sufficient considering this to be a first time feasibility project. In addition, in present study we assessed LV contractile function based on the 5 minute data acquisition. While there may be some averaging of the contractile function during the acquisition time, its effect, particularly at 10 and 15 µg/kg/min of dobutamine, can be considered as insignificant because of dobutamine saturation at the dose of 5µg/kg/min.

**Conclusion**

Low-dose dobutamine stress gated blood pool SPECT performed with high-efficiency CZT-SPECT cameras can identify stress-induced changes of LV contractility and dyssynchrony in patients with ischemic HF. Due to the high sensitivity of new semiconductor detectors there is an opportunity to perform GBPS with shorter acquisition time and lower radiation exposure to the patients. Further large scale clinical studies are needed to evaluate the potential clinical significance of this approach in patients with severe HF.

**Declarations**

**ACKNOWLEDGEMENTS**
We thank Dr. Tamara R. Ryabova, PhD and Dr. Vadim A. Katkov who performed ECHO examinations. We thank Ora Israel, MD for her comments and suggestions.

**Conflict of interest:** No potential conflicts of interest relevant to this article exist

**Ethics approval:** All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

**Informed consent:** Written and oral informed consent was provided by the patient involved in this study

**Data availability:** Not applicable.

**References**

1. Corbett JR, Akinboboye OO, Bacharach SL, et al. Equilibrium radionuclide angiography. J Nucl Cardiol. 2006;13(6):e56–79. doi:10.1016/j.nuclcard.2006.08.007.

2. Zafrir N, Vidne B, Sulkes J, Sclarovsky S. Usefulness of dobutamine radionuclide ventriculography for prediction of left ventricular function improvement after coronary artery bypass grafting for ischemic cardiomyopathy. Am J Cardiol. 1999;83(5):691–5. doi:10.1016/s0002-9149(98)00972-2.

3. Verna E, Ghiringhelli S, Scotti S, Caravati F. Evaluation of baseline contractile reserve vs dyssynchrony as a predictor of functional improvement and long term outcome after resynchronization pacing therapy: a radionuclide stress study. J Nucl Cardiol. 2012;19(1):53–62. doi:10.1007/s12350-011-9421-9.

4. Kasama S, Toyama T, Hoshizaki H, et al. Dobutamine gated blood pool scintigraphy predicts the improvement of cardiac sympathetic nerve activity, cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. Chest. 2002;122(2):542–8. doi:10.1378/chest.122.2.542.

5. Salimian S, Thibault B, Finnerty V, Grégoire J, Harel F. Phase analysis of gated blood pool SPECT for multiple stress testing assessments of ventricular mechanical dyssynchrony in a tachycardia-induced dilated cardiomyopathy canine model. J Nucl Cardiol. 2017;24(1):145–57. doi:10.1007/s12350-015-0338-6.

6. Chen YC, Ko CL, Yen RF, et al. Comparison of biventricular ejection fractions using cadmium-zinc-telluride SPECT and planar equilibrium radionuclide angiography. J Nucl Cardiol. 2016;23(3):348–61. doi:10.1007/s12350-015-0367-1.

7. Duvall WL, Guma-Demers KA, George T, Henzlova MJ. Radiation reduction and faster acquisition times with SPECT gated blood pool scans using a high-efficiency cardiac SPECT camera. J Nucl Cardiol. 2016;23(5):1128–38. doi:10.1007/s12350-015-0214-4.

8. van Dijk JD. Dose-optimization in nuclear cardiac imaging, time for the next step? J Nucl Cardiol. 2019;26(6):1981–3. doi:10.1007/s12350-018-1441-2.
9. Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–8. doi:10.1016/s0735-1097(01)01738-7.

10. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers [published correction appears in J Nucl Cardiol. 2016 Jun;23(3):640-2]. J Nucl Cardiol. 2016;23(3):606–639. doi:10.1007/s12350-015-0387-x.

11. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. doi:10.1016/j.echo.2014.10.003.

12. Mattsson S, Johansson L, Leide Svegborn S, et al. Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances [published correction appears in Ann ICRP. 2019 Sep;48(1):96] [published correction appears in Ann ICRP. 2019 Sep;48(1):97]. Ann ICRP. 2015;44(2 Suppl):7-321. doi:10.1177/0146645314558019.

13. Go V, Bhatt MR, Hendel RC. The diagnostic and prognostic value of ECG-gated SPECT myocardial perfusion imaging. J Nucl Med. 2004;45(5):912–21.

14. Kano N, Okumura T, Isobe S, et al. Left ventricular phase entropy: Novel prognostic predictor in patients with dilated cardiomyopathy and narrow QRS. J Nucl Cardiol. 2018;25(5):1677–87. doi:10.1007/s12350-017-0807-1.

15. Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat Rev Cardiol. 2018;15(2):83–96. doi:10.1038/nrcardio.2017.139.

16. Groch MW, DePuey EG, Belzberg AC, et al. Planar imaging versus gated blood-pool SPECT for the assessment of ventricular performance: a multicenter study. J Nucl Med. 2001;42(12):1773–9.

17. Hansen NL, Haarmark C, Zerahn B. Ventricular peak emptying and filling rates measured by gated tomographic radionuclide angiography using a cadmium-zinc-telluride SPECT camera in chemotherapy-naïve cancer patients. J Nucl Cardiol. 2020;27(4):1193–201. doi:10.1007/s12350-019-01756-2.

18. Wells RG, Marvin B, Kovalski G, Ruddy TD. Planar radionuclide angiography with a dedicated cardiac SPECT camera. J Nucl Cardiol. 2013;20(3):358–66. doi:10.1007/s12350-013-9674-6.

19. Adachi I, Akagi H, Umeda T, et al. Gated blood pool SPECT improves reproducibility of right and left ventricular Fourier phase analysis in radionuclide angiography. Ann Nucl Med. 2003;17(8):711–6. doi:10.1007/BF02984981.

20. Romero-Farina G, Aguadé-Bruix S. Equilibrium radionuclide angiography: Present and future [published online ahead of print, 2019 Sep 3]. J Nucl Cardiol. 2019. 10.1007/s12350-019-01876-9. doi:10.1007/s12350-019-01876-9.

21. Boogers MJ, Chen J, Veltman CE, et al. Left ventricular diastolic dyssynchrony assessed with phase analysis of gated myocardial perfusion SPECT: a comparison with tissue Doppler imaging. Eur J
22. AlJaroudi W, Jaber WA, Cerqueira MD. Effect of tracer dose on left ventricular mechanical dyssynchrony indices by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol. 2012;19(1):63–72. doi:10.1007/s12350-011-9463-z.

23. Chua T, Yin LC, Thiang TH, Choo TB, Ping DZ, Leng LY. Accuracy of the automated assessment of left ventricular function with gated perfusion SPECT in the presence of perfusion defects and left ventricular dysfunction: correlation with equilibrium radionuclide ventriculography and echocardiography. J Nucl Cardiol. 2000;7(4):301–11. doi:10.1067/mnc.2000.105279.

24. Jensen MM, Schmidt U, Huang C, Zerahn B. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras. J Nucl Cardiol. 2014;21(2):384–96. doi:10.1007/s12350-013-9844-6.

25. Chen Y, Xue X, Gu Y, Xu H, Zhang X. Equilibrium radionuclide angiography compared with tissue doppler imaging for detection of right ventricular dyssynchrony and prediction of acute response to cardiac resynchronization therapy. Med (Baltim). 2020;99(9):e19296. doi:10.1097/MD.0000000000019296.

26. Zavadovsky KV, Krivonogov NG, Lishmanov YB. The usefulness of gated blood pool scintigraphy for right ventricular function evaluation in pulmonary embolism patients. Ann Nucl Med. 2014;28(7):632–7. doi:10.1007/s12149-014-0861-6.

27. Soufer A, Liu C, Henry ML, Baldassarre LA. Nuclear cardiology in the context of multimodality imaging to detect cardiac toxicity from cancer therapeutics: Established and emerging methods. J Nucl Cardiol. 2020;27(4):1210–24. doi:10.1007/s12350-019-01671-6.

28. De Bondt P, Claessens T, Rys B, et al. Accuracy of 4 different algorithms for the analysis of tomographic radionuclide ventriculography using a physical, dynamic 4-chamber cardiac phantom. J Nucl Med. 2005;46(1):165–71.

29. Pelletier-Galameau M, Finnerty V, Tan S, Authier S, Gregoire J, Harel F. Assessment of left ventricular ejection fraction with cardiofocal collimators: Comparison between IQ-SPECT, planar equilibrium radionuclide angiography, and cardiac magnetic resonance. J Nucl Cardiol. 2019;26(6):1857–64. doi:10.1007/s12350-018-12516-4.

30. Papageorgiou N, Providência R, Lambiase PD, Tousoulis D, Lloyd G, Bhattacharyya S. Does presence of left ventricular contractile reserve improve response to cardiac resynchronization therapy? An updated meta-analysis. Int J Cardiol. 2018;252:224–8. doi:10.1016/j.ijcard.2017.09.034.

31. Abdul Ghaffar Y, Maskoun W, Mustafa NG, Feigenbaum H, Sawada SG. Low dose wall motion score predicts the short and long-term benefit of surgical revascularization in patients with ischemic left ventricular dysfunction. Int J Cardiovasc Imaging. 2019;35(9):1651–9. doi:10.1007/s10554-019-01614-9.

32. Khemka A, Sawada SG. Dobutamine echocardiography for assessment of viability in the current era. Curr Opin Cardiol. 2019;34(5):484–9. doi:10.1097/HCO.0000000000000658.
33. AlJaroudi W, Alraies MC, Hachamovitch R, et al. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: a study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS. Eur J Nucl Med Mol Imaging. 2012;39(10):1581–91. doi:10.1007/s00259-012-1717-3.

34. Uebleis C, Hellweger S, Laubender RP, et al. Left ventricular dyssynchrony assessed by gated SPECT phase analysis is an independent predictor of death in patients with advanced coronary artery disease and reduced left ventricular function not undergoing cardiac resynchronization therapy. Eur J Nucl Med Mol Imaging. 2012;39(10):1561–9. doi:10.1007/s00259-012-2157-1.

35. Zhihao L, Jingyu N, Lan L, et al. SERCA2a: a key protein in the Ca2+ cycle of the heart failure. Heart Fail Rev. 2020;25(3):523–35. doi:10.1007/s10741-019-09873-3.

36. Lee AP, Song JK, Yip GW, et al. Importance of dynamic dyssynchrony in the occurrence of hypertensive heart failure with normal ejection fraction. Eur Heart J. 2010;31(21):2642–9. doi:10.1093/eurheartj/ehq248.

37. Stankovic I, Aarones M, Smith HJ, et al. Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. Eur Heart J. 2014;35(1):48–55. doi:10.1093/eurheartj/eht294.

38. Lafitte S, Bordachar P, Lafitte M, et al. Dynamic ventricular dyssynchrony: an exercise-echocardiography study. J Am Coll Cardiol. 2006;47(11):2253–9. doi:10.1016/j.jacc.2005.11.087.

39. Kurita T, Onishi K, Dohi K, et al. Impact of heart rate on mechanical dyssynchrony and left ventricular contractility in patients with heart failure and normal QRS duration. Eur J Heart Fail. 2007;9(6–7):637–43. doi:10.1016/j.ejheart.2007.03.002.

40. Yagishita-Tagawa Y, Abe Y, Arai K, et al. Low-dose dobutamine induces left ventricular mechanical dyssynchrony in patients with dilated cardiomyopathy and a narrow QRS: a study using real-time three-dimensional echocardiography. J Cardiol. 2013;61(4):275–80. doi:10.1016/j.jjcc.2012.12.012.

41. Chattopadhyay S, Alamgir MF, Nikitin NP, Fraser AG, Clark AL, Cleland JG. The effect of pharmacological stress on intraventricular dyssynchrony in left ventricular systolic dysfunction. Eur J Heart Fail. 2008;10(4):412–20. doi:10.1016/j.ejheart.2008.02.004.

42. Salimian S, Thibault B, Finnerty V, Grégoire J, Harel F. The effects of dobutamine stress on cardiac mechanical synchrony determined by phase analysis of gated SPECT myocardial perfusion imaging in a canine model. J Nucl Cardiol. 2014;21(2):375–83. doi:10.1007/s12350-013-9847-3.

43. Legallois D, Marie PY, Franken PR, Djaballah W, Agostini D, Manrique A. Comparison of the dyssynchrony parameters recorded with gated SPECT in ischemic cardiomyopathy according to their repeatability at rest and to their ability to detect a synchrony reserve under dobutamine infusion. J Nucl Cardiol. 2020;27(6):2247–57. doi:10.1007/s12350-018-01546-2.

44. Singh H, Patel CD, Sharma P, Naik N, Singh S, Narang R. Does perfusion pattern influence stress-induced changes in left ventricular mechanical dyssynchrony on thallium-201-gated SPECT myocardial perfusion imaging? J Nucl Cardiol. 2015;22(1):36–43. doi:10.1007/s12350-014-9979-0.
45. Ferro A, Petretta M, Acampa W, et al. Post-stress left ventricular ejection fraction drop in patients with diabetes: a gated myocardial perfusion imaging study. BMC Cardiovasc Disord. 2013;13:99. Published 2013 Nov 14. doi:10.1186/1471-2261-13-99.

46. Miller RJH, Hu LH, Gransar H, et al. Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. Eur Heart J Cardiovasc Imaging. 2020;21(5):567–75. doi:10.1093/ehjci/jez172.

**Figures**

![Study flow chart. ICM – ischemic cardiomyopathy; LDD – low-dose dobutamine.](image)

**Figure 1**
Figure 2

Difference in LVEF (A), EDV (B), ESV (D) and PER (C) changes in the ICM and control groups. Blue line – ICM group; Green line – control group; LV – left ventricle; EF – ejection fraction; EDV – end-diastolic volume; ESV – end-diastolic volume; PER – peak ejection rate; ml – milliliter; s – seconds;
Figure 3

Dyssynchrony parameters changes in the ICM and control groups. A – phase histogram standard deviation (PSD); B – Entropy; C – histogram bandwidth (HBW). Blue line – ICM group; Green line – control group; LV – left ventricle.
Figure 4

Dynamics of LV entropy during stress test (A). Green line – group without decrease of LVEF; orange line – group with decrease of LVEF; green brackets – significance in group without decrease of LVEF; orange brackets – significance in group with decrease of LVEF. Delta of LV entropy between rest and 15 mcg/kg/min dobutamine study (B). Green bar - group without decrease of LVEF (no dEF); orange bar – group with decrease of LVEF (dEF).
Figure 5

Delta in LVEF (A), EDV (B), ESV (D) and PER (C) changes in ICM and control groups. Orange bar – ICM group; Green bar – control group. Δ – mean values of stress-induced changes between rest and stress acquisition; LV – left ventricle; EF – ejection fraction; EDV – end-diastolic volume; ESV – end-diastolic volume; PER – peak ejection rate; ml – milliliter; s – seconds
Figure 6

Delta of dyssynchrony parameters changes in ICM and control groups. Orange bar – ICM group, Green bar – control group; A – phase histogram standard deviation (PSD); B – Entropy; C – histogram bandwidth (HBW). Blue line – ICM group; Green line – control group; LV – left ventricle.

Figure 7

Comparison of ΔLVEF measured by LDD GBPS and LDD TTE: scatter plot (A) and Bland-Altman plot (B).