Hydrogen bond mediated intermolecular magnetic coupling in mononuclear high spin iron(III) Schiff base complexes: Synthesis, structure and magnetic study with theoretical insight

Tanmoy Basak, Carlos J. Gómez-García, Rosa M. Gomila, Antonio Frontera, Shouvik Chattopadhyay

Table: S1 Selected bond angles (°) in complexes 1 and 2.

Atoms	1	2	Atoms	1	2
O1-Fe1-N1	93.57(9)	95.0(2)	N2-Fe1-N4	89.05(9)	97.2(2)
O1-Fe1-N2	163.15(9)	162.26(19)	N2-Fe1-N5	96.59(9)	–
O1-Fe1-N3	87.25(9)	85.8(2)	N3-Fe1-N4	91.56(9)	172.5(2)
O1-Fe1-N4	100.80(9)	98.1(2)	N3-Fe1-N5	175.36(9)	–
O1-Fe1-N5	97.38(9)	–	N4-Fe1-N5	88.01(10)	–
N1-Fe1-N2	78.02(9)	78.0(2)	Cl1-Fe1-O1	–	96.46(15)
N1-Fe1-N3	93.20(10)	90.8(2)	Cl1-Fe1-N1	–	167.29(19)
N1-Fe1-N4	165.06(9)	82.6(3)	Cl1-Fe1-N2	–	92.41(16)
N1-Fe1-N5	86.10(11)	–	Cl1-Fe1-N3	–	95.43(14)
N2-Fe1-N3	78.78(9)	78.03(18)	Cl1-Fe1-N4	–	90.5(2)
IR and UV-Vis spectra

The IR and electronic spectra of both complexes are in good agreement with their molecular structures. The IR spectra of both complexes exhibit strong bands at ~1580 cm\(^{-1}\), corresponding to the azomethine (C=N) stretching vibrations.\(^1\) In complex 1, there is a bifurcated sharp band at 2075 cm\(^{-1}\) and 2042 cm\(^{-1}\) attributed to the two terminal thiocyanate groups.\(^2\) Complex 2 shows a sharp band around 2040 cm\(^{-1}\), due to the presence of the terminal azide ligand.\(^3\) Both complexes show weak bands at ~3227 cm\(^{-1}\) due to the N-H stretching vibrations of the primary amine group and another weak bands at ~3134 cm\(^{-1}\), corresponding to the N-H stretching vibrations of the secondary amine group.\(^4\) In both cases, the C-H stretching vibrations appear in the range 2866-2944 cm\(^{-1}\).\(^5\) IR spectra of both complexes are shown in Fig. S1.

![Fig. S1: IR spectra of complexes 1 (left) and 2 (right).](image)

The colors of solid microcrystalline products of both complexes 1 and 2 are dark green and the colors of 10\(^{-4}\) M solutions of both complexes are light green. The electronic absorption
spectra of complexes 1 and 2 show similar features. The band (at 515 nm for 1 and 520 nm for 2) in the electronic spectrum of each complex may be originated from d-d transition. The intensity of this band is weak as the d-d transitions in any d^5 iron(III) complex is forbidden by both Laporte and spin selection rules. A stronger band (at 330 nm in both complexes) may tentatively be assigned to a superposition of the amine-to-iron(III), azide to iron(II) and phenoxido-to-iron(III) charge transfer transitions. For both complexes, bands around 230 and 270 nm may be assigned as intra-ligand π→π* and n→π* transitions, respectively. The band positions and intensities are comparable with those found in similar complexes. UV-Vis spectra of both complexes are shown in Fig. S2.

Fig. S2: UV-Vis spectra of complexes 1 (left) and 2 (right).
Curie-Weiss plots

Fig. S3: Curie plot for complex 1. Solid line is the best fit to the Curie-Weiss law with $C = 4.54$ cm3 K mol$^{-1}$ and $\theta = -1.61$ K = -1.12 cm$^{-1}$.

Fig. S4: Curie plot for complex 2. Solid line is the best fit to the Curie-Weiss law with $C = 4.55$ cm3 K mol$^{-1}$ and $\theta = -4.73$ K = -3.29 cm$^{-1}$.
Table S2: Ligands name of the following complexes mentioned in Table 5.

Complex	CSD code/CCDC no.	Ligands	
\([\text{Cu}_2(L^a)_2]\)	-	\(L^a = 2,2'-[[1,3\text{-dimethyl}-1,3\text{-propanediylidene}]\text{dinitrilo}]\text{bis-ethanol}\)	
\([\text{Cu}_2(L^a)_2]\)	HEAICU10	\(L^a = 2,2'[1,3\text{-dimethyl}-1,3\text{-propanediylidene}]\text{dinitrilo}]\text{bis-ethanol}\)	
\([\text{Cu}_3(L^b)_2(C_6\text{H}_5\text{COO})_2\text{Cl}]\text{Cl}\)	DEPSAT	\(L^b = 2\text{-}[2\text{-Hydroxyphenylmethylaminomethyl}]\text{pyridine}\)	
\([\text{Cu}_2(\mu_2^-\text{H}_2\text{O})(L^c)_2(\text{H}_2\text{O})_2](\text{ClO}_4)_2\cdot2\text{H}_2\text{O}\)	KEDNIR	\(L^c = 2\text{-}[1\text{-}[2\text{-}(\text{Dimethylamino})\text{ethyl}]\text{jimino}]\text{ethyl}]\text{phenol}\)	
\([\text{Cu}_2(L^d)_2(\text{H}_2\text{O})_2(\text{ClO}_4)](\text{ClO}_4)\cdot\text{H}_2\text{O}\)	FUTCON	\(L^d = 2\text{-}[2\text{-}(\text{Pyridin-2-yl})\text{hydrazono}]\text{methyl}]\text{phenol}\)	
\([\text{Cu}(L^e)_2(\text{H}_2\text{O})]\)	BEYRAY	\(L^e = 2\text{-Carboxypyrazine}\)	
\([\text{Zn}^{II}(\text{H}_2\text{O})_6][\text{Cu}^{II}(L^f)_2(\text{H}_2\text{O})_2]\)	HULMOQ	\(L^f = \text{malonic acid}\)	
\([\text{Cu}_2(L^g)_2(\text{H}_2\text{O})_2\cdot2\text{H}_2\text{O}\)	MATLOJ	\(L^g = 2\text{-di1H-2-imidazolylmethylmalonic acid}\)	
\([\text{Cu}(L^h)(\text{H}_2\text{O})(\text{NO}_3)]\)	NUQKOZ01	\(L^h = 2\text{-}(\text{o-hydroxyphenyliminomethyl}]\text{pyridine}\)	
Complex	Formula	L	Notes
---------	---------	---	-------
[Cu(L)]₂(H₂O)₂	FAHNAE	L= 2-hydroxy-1,4-naphthoquinone	
[Cu(L)](H₂O)-4H₂O	SAGLAC	L= N-Salicylideneglycine	
[NiCl₂(L)₂]	FUJQOQ	L= phenylenediamine	
[Cu(HL)][(L')][H₂O]₂	AETCUB	[L'= 2-amino-2-methylpropanol]	
[Cu(HL)²](L²)₂(NO₃)₂	AETCUA	L²= 2-aminoethanol	
[[Cu(H₂L)²][Cu(Hsabhe)]][BF₄]	ODALAG	L²= N-salicylidene-2-(bis(2-hydroxyethyl)amino)ethylamine	
[[Cu(H₂L)²][BF₄]₂	ODALEK	L²= N-salicylidene-2-(bis(2-hydroxyethyl)amino)ethylamine	
[Cu(HL)(L²)]PF₆	MASQIJ	L²= 2-pyridylmethanol	
[Cu(HL²)[L²]BF₄·2H₂O	YUKCOX	HL²= N-t-butyl-N-2-pyridylhydroxylamine	
[Cu(HL²)(L²)](H₂O)₂	BUQLIJ	L²= 3- nitrobenzoate; L²= nicotinamide	
cis-[Cu(L²)₂(H₂O)₂]	NEDPAO	L²= 4-formyl-2-methoxyphenolato	
trans-[Cu(L²)₂(H₂O)₂]·H₂O	PAXTUE	L²= 4-formyl-2-methoxyphenolato	
[Ni₃(L²)(CO₃)(H₂O)(py)₇]	GIDNAK	L²= 2,6-bis(5-(2-hydroxyphenyl)pyrazol-3-yl)pyridine	
[{Mn(bpy)H₂O}]²(μ-O)[Mn(bpy)(ClO₄)]ClO₄	AGOJOY	L²= μ-2,6-dichlorobenzoato; bpy= bipyridine	
[{Mn(bpy)H₂O}]²(μ-O)[Mn(bpy)(NO₃)]NO₃	AGOJUE	L²= μ-2,6-dichlorobenzoato; bpy= bipyridine	
Chemical Formula	Formula	Description	
------------------	---------	-------------	
[Fe(L\(^\nu\))Cl(H\(_2\)O)]·MeOH	AZOXAO	L\(^\nu\)= 3,6,9,12-tetra-aza-1(2,6)-pyridinacyclotricaphane-2,13-dione	
[(Ni(L\(^w\))\(_2\)(Fe(CN)\(_6\))\(_2\)]·7H\(_2\)O	ROQCA B	L\(^w\)= Bis(1-pyrazolyl)methane	
([Mn(OH)(OAc)\(_2\)]·AcOH·H\(_2\)O\(_n\))	HUWHOW	AcOH= acetic acid	
[FeL\(^1\)(NCS)\(_2\)]	2036380	HL\(^1\)= 2-[1-[[2-[[2-(aminoethyl)amino]ethyl]iminato]ethyl]phenol	
[FeL\(^2\)(N\(_3\))Cl]	2036381	HL\(^2\)= 2-[-1-(2-(2-aminoethylamino)ethyl)iminato]ethyl)-4-methylphenol	

References

1 (a) T. Basak, K. Ghosh and S. Chattopadhyay, *Polyhedron*, 2018, **146**, 81–92; (b) P. Bhowmik, S. Jana, P. P. Jana, K. Harms and S. Chattopadhyay, *Inorg. Chim. Acta*, 2012, **390**, 53–60; (c) D. Maity, S. Chattopadhyay, A. Ghosh, M. G.B. Drew and G. Mukhopadhyay, *Polyhedron*, 2009, 28, 812–818; (d) M. Das, S. Chatterjee, K. Harms, T. K. Mondal and S Chattopadhyay, *Dalton Trans.*, 2014, **43**, 2936–2947.

2 (a) S. Roy, M. G. B. Drew, A. Frontera and S. Chattopadhyay, *ChemistrySelect*, 2017, **2**, 7880–7887; (b) S. Chattopadhyay, M. S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli, A. Cantoni and A. Ghosh, *Inorg. Chim. Acta*, 2006, **359**, 1367–1375.
3 T. Basak, A. Bhattacharyya, M. Das, K. Harms, A. Bauza, A. Frontera and S. Chattopadhyay, *ChemistrySelect* 2017, **2**, 6286–6295.

4 I. Nemec, R. Herchel and Z. Trávníček, *Dalton Trans.*, 2015, **44**, 4474–4484.

5 T. Basak, K. Ghosh, C. J. Gómez-García and S. Chattopadhyay, *Polyhedron* 2018, **146**, 42–54.

6 S. Naiyaa, S. Giri, S. Biswas, M. G.B. Drew and A. Ghosh, *Polyhedron*, 2014, **73**, 139–145.

7 R. Biswas, C. Diaz, A. Bauzá, A. Frontera and A. Ghosh, *Dalton Trans.*, 2013, **42**, 12274–12283.

8 S. Jana, A. Bhattacharyya, B. N. Ghosh, K. Rissnen, S. Herrero, R. J.-Aparicio and S. Chattopadhyay, *Inorg. Chim. Acta*, 2016, **453**, 715–723.

9 F. Banse, V. Balland, C. Philouze, E. Rivierea, L. Tchertanova, and J.-J. Girerd, *Inorg. Chim. Acta*, 2003, **353**, 223-230.

10 R. Biswas, M. G. B. Drew, C. Estarellas, A. Frontera and A. Ghosh, *Eur. J. Inorg. Chem.*, 2011, 2558–2566.