Laparoscopic versus open surgery for left flexure colon cancer: A propensity score matched analysis from an international cohort

Corrado Pedrazzani1 | Giulia Turri1 | Soo Yeun Park2 | Koya Hida3 | Yudai Fukui3 | Jacopo Crippa4 | Giovanni Ferrari5 | Matteo Origi5 | Gaya Spolverato6 | Matteo Zuin6 | Sung Uk Bae7 | Seong Kyu Bae7 | Andrea Costanzi8 | Dario Maggioni8 | Gyung Mo Son9 | Andrea Scala10 | Timothy Rockall10 | David W. Larson4 | Alfredo Guglielmi1 | Gyu Seog Choi2

1Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
2Colorectal Cancer Centre, Kyungpook National University Medical Centre, School of Medicine, Kyungpook National University, Daegu, Korea
3Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
4Division of Colon and Rectal Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
5Department of General Surgery, Niguarda Hospital, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
6First Surgical Clinic Section, Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
7Division of Colorectal Surgery, Department of Surgery, School of Medicine, Keimyung University and Dongsan Medical Centre, Daegu, Korea
8General Surgery 3, ASST-Monza, Desio Hospital, Desio, Italy
9Department of Surgery, Pusan National University Yangsan Hospital, School of Medicine, Pusan National University, Yangsan, Korea
10Department of Colorectal and Minimal Access Surgery, Royal Surrey NHS Foundation Trust, Guildford, UK

Abstract

Aim: Surgical treatment of splenic flexure cancer (SFC) still presents some debated issues, including the role of laparoscopic surgery. The literature is based on small single-centre series, while randomized controlled studies comparing open and laparoscopic treatment for colon cancer exclude SFC. This study aimed to determine the role of laparoscopic surgery in the treatment of SFC, comparing short- and long-term outcomes with open surgery.

Method: This was an international multicentre retrospective cohort study that analysed patients from 10 tertiary referral centres. From a cohort of 641 cases, 484 patients with Stage I–III SFC submitted to elective surgery with curative intent were selected. After 1:1 propensity score matching, 130 patients in the laparoscopic group (LapGroup) were compared with 130 patients in the open surgery group (OpenGroup).

Results: After propensity score matching, the two groups were comparable for demographic and clinical parameters. OpenGroup presented a higher incidence of overall (P = 0.02) and surgery-related complications (P = 0.05) but a similar rate of severe complications (P = 0.75). Length of stay was notably shorter in the LapGroup (P = 0.001).
INTRODUCTION

Colorectal cancer (CRC) is one of the most frequent solid tumours worldwide but seldom arises at the splenic flexure \[1\]. Most commonly, cancers of the splenic flexure (SFCs) are defined as those located within the last third of the transverse colon, the splenic flexure itself, and the first 10 cm of the descending colon \[2,3\]. As described in a previous work from our group \[1\] and historical literature \[3–6\], SFCs are associated with negative prognostic factors such as higher risk of presentation with obstruction \[6,7\], advanced stage \[8\] and unfavourable mucinous histology \[1,3,5\]. Nonetheless, our data contradict the widely held dogma that SFC is associated with worse prognosis compared to other cancer sites \[1\].

Several randomized controlled trials demonstrated the non-inferiority of laparoscopy for colon cancer in terms of oncological outcome and its association with better short-term results \[9–12\]. SFCs were excluded from these trials due to their unfavourable clinical characteristics and lack of standardized surgical technique. Few data on the feasibility and outcomes of laparoscopy for SFC are currently available in the literature, mainly from single-centre series \[13–22\].

The purpose of the study was to evaluate short- and long-term results of SFCs treated with laparoscopy compared to open surgery. Data from a large multicentre cohort were analysed after controlling for preoperative variables through propensity score matching (PSM).

MATERIALS AND METHODS

The study protocol was approved by the institutional review board and ethics committee of each of the 10 centres involved. From 21 338 patients, 641 consecutive patients (3%) with SFC were identified as previously described in detail \[1\]. Briefly, SFCs were retrospectively identified through review of preoperative colonoscopies, CT scans, operative reports and histopathology reports at each participating centre as those tumours located between the distal third of the transverse colon and the first 10 cm of the descending colon. All consecutive cases were included. To evaluate outcomes of laparoscopy compared to open surgery, we conducted a subgroup analysis of the global cohort considering patients who had surgery between January 2005 and December 2017. Patients were included if they underwent elective, potentially curative (R0–1) resection for Stage I–III SFC.

Outcome measures

Each centre retrieved relevant information from their institutional database. Clinical-pathological data, intra-operative data, postoperative mortality and morbidity, and oncological outcomes were compared between patients who underwent laparoscopic (LapGroup) and open surgery (OpenGroup). Analysis was performed on an intention-to-treat basis considering patients needing conversion to open surgery as laparoscopic cases. Completion of laparoscopic dissection was judged necessary to classify a procedure as laparoscopic. Conversion was defined as an inability to complete all intended laparoscopic steps laparoscopically. Anastomosis in the LapGroup was performed intracorporeally or extracorporeally depending on the surgeon’s choice. All patients completed a documented follow-up of at least 24 months. Outcome measures were postoperative course, postoperative length of stay (LOS), overall survival (OS), cancer-specific survival (CSS) and recurrence pattern. Disease recurrence was defined as systemic, locoregional or peritoneal and was proved by radiological and/or pathological methods when available. Complications were graded according to the Clavien-Dindo classification \[23\] and divided into minor (Grade I–II) and major (Grade III–V). When several adverse events occurred in the same patient, the highest grade was considered.

Overall (P = 0.793) as well as cancer-specific survival (P = 0.63) did not differ between the two groups.

Conclusions: Elective laparoscopic surgery for Stage I–III SFC is feasible and associated with improved short-term postoperative outcomes compared to open surgery. Moreover, laparoscopic surgery appears to provide excellent long-term cancer outcomes.

KEYWORDS
colon cancer, laparoscopy, left flexure, prognosis, splenic flexure
Surgical technique

Over the study period, patients underwent laparoscopic or open resection according to surgeons’ preference and experience. None of the surgeons at the participating centres was in their learning curve phase. Surgical interventions were classified based on the extent of colonic resection and vessel ligation level as previously described [1]. Common definitions were shared among participating centres to standardize surgical reports. Subtotal colectomy was defined as the resection of the terminal ileum, caecum, ascending and transverse colon, left flexure and descending colon, in which ileocolic, right colic, middle colic and left colic vessels were ligated. Left hemicolectomy entailed the resection of part of the transverse colon, descending colon and sigmoid colon with ligation of the inferior mesenteric vessels and the left branch of the middle colic vessels. Left high colectomy was defined as the resection of the distal transverse colon, left flexure and descending colon, with ligation of the left colic and the left branch of the middle colic vessels. For study purposes, left hemicolectomy and left high colectomy were considered together and named left colonic resection. Partial resection was defined as removing a portion of the colon without ligation of the primary vascular pedicles [24].

Statistical analysis

Continuous data were reported as mean (±SD) or median (interquartile range, IQR) as appropriate according to distribution, while categorical data were reported as frequencies and percentages. The ANOVA or Kruskal–Wallis test for continuous variables and chi-squared or Fisher’s exact test for categorical variables were made by comparison between groups.

Adjusting potential confounding factors influencing the allocation of cases to the LapGroup rather than the OpenGroup, the PSM technique was applied. Multivariate logistic regression generated propensity scores, predicting the probability of undergoing laparoscopic surgery based on the variables which could influence surgical approach: centre (east vs. west), year of surgery (2005–2008 vs. 2009–2012 vs. 2013–2017), gender, age, body mass index, Charlson comorbidity index, previous abdominal surgery (yes vs. no), extra parietal tumour invasion (pT < 4 vs. pT4) and extent of surgery (subtotal colectomy vs. left colectomy vs. partial resection). Patients in the LapGroup were matched 1:1 with patients in the OpenGroup using the nearest neighbour method considering a caliper <0.2. After PSM was performed, differences between the two groups were assessed. Absolute standardized mean differences were estimated to evaluate post-match imbalance, and a standardized mean difference <0.15 was considered a negligible difference in the mean or prevalence of a covariate between treatment groups. Table S1 reports standardized mean differences for matching variables before and after matching. The PSM adequacy was visually assessed by the frequency of propensity scores in each group before and after matching (Figure S1), and the overall balance test result was reported as a quantitative measure of balance. The overall balance test for the model used gave $d^2 = 7.527$ on 13 degrees of freedom ($P = 0.873$) confirming good balancing after PSM.

Overall survival and CSS were computed using the Kaplan–Meier method and compared using the log-rank test. Time of survival was calculated from the date of surgery to the most recent follow-up examination or death. CSS was measured from the date of surgery to the date of death from colon cancer, whilst patients who died from causes other than cancer were considered censored at the time of death. Multivariate analysis for OS and CSS was performed using the Cox regression model considering surgical approach (LapGroup vs. OpenGroup) and adjusting for the following risk factors: age (≥70 years old vs. <70 years old), gender (male vs. female), grading (G1–2 vs. G3), extent of surgery (subtotal colectomy and partial resection vs. left colonic resection), TNM stage (Stage I and Stage II vs. Stage III) and administration of adjuvant chemotherapy (yes vs. no). All statistical tests were two-sided, and a P value lower than 0.05 was considered statistically significant. Statistical analysis was performed using SPSS 23.0 software (IBM Corporation, Armonk, New York, USA).

RESULTS

Patient selection

A minimally invasive approach was adopted in 341 patients (53.2%), while an open approach was preferred in 300 (46.8%). After applying exclusion criteria, 194 patients in the OpenGroup (64.7%) and 290 in the LapGroup (85%) were included for analysis. The selection process and the causes for exclusion are detailed in Figure 1. Following PSM, the final study population consisted of 260 patients, 130 patients who underwent laparoscopic resection and 130 patients who underwent open surgery.

Study population

Before PSM (Table S2), patients in the OpenGroup were significantly older (mean age ± SD 69.8 ± 12.8 years old vs. 66.9 ± 11.4 years old; $P = 0.002$), presented a higher median Charlson comorbidity index score (3 [IQR 2–5] vs. 2 [IQR 2–3]; $P = 0.01$) and a higher rate of previous abdominal surgeries (33.5% vs. 23.4%; $P = 0.02$). Finally, tumours in the OpenGroup were more frequently obstructing (30.4% vs. 18.6%, $P < 0.001$) and locally advanced (pT4, 21.6% vs. 8.6%, $P < 0.001$). After PSM, the two groups were comparable as for demographic and clinical parameters (Table 1). From here on, the analysis will refer only to the matched cohort. Analysis of the operative data and short-term outcomes of the unmatched groups are available in Tables S3 and S4).

Operative data

Operative data and specimen characteristics are reported in Table 2. Eleven patients (8.5%) in the LapGroup needed conversion to open surgery. The most performed procedure was left colonic resection.
in both groups (83 cases in the LapGroup vs. 84 in the OpenGroup; \(P = 0.68\)), followed by partial resection of the splenic flexure (32 cases in the LapGroup vs. 35 in the OpenGroup). A similar proportion of patients in both groups needed resection of adjacent organs due to suspected tumour infiltration (seven patients in the LapGroup and 12 in the OpenGroup; \(P = 0.34\)). No patient in either group presented microscopic residual (R1) tumour on surgical resection margins. Specimen characteristics were comparable except for the median number of retrieved lymph nodes, which was lower in the OpenGroup (15 [IQR 11–21] vs. 17.5 [IQR 12–25]; \(P = 0.01\)). Similarly, a higher percentage of cases with less than 12 nodes was found in the OpenGroup (28.9% vs. 15%; \(P = 0.03\)).

Short-term outcomes

Patients in the OpenGroup (Table 3) presented a higher incidence of overall (33.1% vs. 17.7%; \(P = 0.02\)) and surgery-related complications (24.6% vs. 14.6%; \(P = 0.05\)), with a similar rate of severe complications (6.9% vs. 5.4%; \(P = 0.75\)). Regarding surgical complications, no difference was highlighted for anastomotic leak (2.3% vs. 1.5%; \(P = 1\)). Prolonged postoperative ileus (10% vs. 3.8%; \(P = 0.08\)) and surgical site infections (6.2% vs. 1.5%; \(P = 0.10\)) occurred more frequently after open surgery, but the difference did not reach statistical significance. As expected, LOS of the LapGroup was notably shorter than for the OpenGroup (median 7 days [IQR 5–10] vs. 9 days [IQR 7–15]; \(P = 0.001\)). Thirty-day mortality, redo surgery and readmission rates were similar between the two groups. The rate of administration of adjuvant chemotherapy was comparable in the two groups (22.2% in the LapGroup vs. 20.5% in the OpenGroup; \(P = 0.87\)).

Overall and cancer-specific survival

At the time of analysis, 135 patients (51.9%) completed 5 years of follow-up, with 57 suffering mortality (21.9%). The median length (IQR) of follow-up was 59.9 (37–98) months (61.3 [45–97.7] months for surviving patients) in the LapGroup and 60 (38–98) months (64.1 [47–107.3] months for surviving patients) in the OpenGroup (\(P = 0.239\)). As illustrated in Figure 2, OS in the whole cohort did not differ between open and laparoscopic surgery (5 years OS 81.4% vs.
85%, respectively; \(P = 0.793 \)) although it was slightly better in the latter. Subgroup analysis according to stage showed similar results (\(P = 0.263 \) for Stage I, \(P = 0.428 \) for Stage II, \(P = 0.439 \) for Stage III). Considering CSS, patients showed comparable survival rates after open and laparoscopic surgery (\(P = 0.63 \), Figure 3), and the result was confirmed at subgroup analysis for stage. Multivariate analyses for OS and CSS were conducted considering surgical approach and adjusting for other relevant risk factors (Table 4). Laparoscopy did not prove to be an independent prognostic factor for OS or CSS (\(P = 0.72 \)).

Disease recurrence

Recurrence developed with similar rates in the two groups, 19 patients (14.6%) in the LapGroup and 18 patients (13.8%) in the OpenGroup (\(P = 1 \)). Systemic recurrence in the form of hepatic relapse was found in 13 patients (10%) in the OpenGroup and eight patients (6.2%) in the LapGroup (\(P = 0.36 \)). Patients in the laparoscopic cohort developed peritoneal and locoregional recurrence more frequently than after open surgery (3.1% vs. 0%, and 2.3% vs. 0.8%, respectively), but the difference did not reach statistical significance.

DISCUSSION

Splenic flexure is an uncommon site for CRC, and, historically, SFC has been regarded as an entity with poor prognosis. The optimal surgical procedure is still debated (extended vs. limited resections), as demonstrated by two surveys amongst surgeons [25,26] and current literature [27,28]. The laparoscopic approach to the splenic flexure poses different challenges related to its embryology, the relationship with adjacent organs and intrinsic technical steps that are considered demanding even by experienced colorectal surgeons [29]. Furthermore, SFC has been excluded from large randomized controlled trials [11,30,31] assessing the safety and oncological results of laparoscopy for CRC, leading to a lack of standardization for its treatment. Small series from high-volume centres demonstrated that minimally invasive resection of the splenic flexure is feasible [13,15,18,32–34]. However, population-based studies, including our previous publication [1] and two recent large-scale studies by de’Angelis et al. [27] and Degiuli et al. [28] reported that laparoscopy was adopted in just about 60% of SFCs with conversion rates ranging from 6.2% to 9.9%. To the best of our knowledge, this is the largest surgical cohort of SFCs comparing short- and long-term outcomes of laparoscopy versus open surgery after controlling for

Table 1	Patients' demographic and clinical data according to surgical approach after propensity score matching		
	LapGroup (n = 130)	OpenGroup (n = 130)	\(P \)
Age, years, mean (SD)	67 (12.3)	69.5 (12.2)	0.09
Gender, men	68 (52.3)	73 (56.2)	0.62
BMI, kg/m\(^2\), median (IQR)	23.9 (21.2–26.8)	23.7 (20.7–27.2)	0.45
Charlson comorbidity index, median (IQR)	2 (2–3)	2 (2–3)	1
Previous surgery	37 (28.5)	36 (27.7)	1
Presence of stenosis	27 (20.8)	34 (26.3)	0.09
Missing	7 (5.7)	15 (10.9)	
Depth of tumour invasion (pT)			0.91
pT1-2	34 (26.8)	36 (27.6)	
pT3	77 (60.6)	77 (60.6)	
pT4	16 (12.6)	14 (11)	
Missing	3 (2.3)	3 (2.3)	
Nodal involvement (pN)			0.84
pN0	93 (71.5)	97 (74.6)	
pN1	25 (19.2)	23 (17.7)	
pN2	12 (9.2)	10 (7.7)	
AJCC TNM stage			0.77
Stage I	31 (23.8)	32 (24.6)	
Stage II	63 (48.5)	67 (51.5)	
Stage III	36 (27.7)	31 (23.8)	
Mucinous histology	11 (8.5)	9 (6.9)	0.69
Poorly differentiated grading (G3)	21 (16.9)	19 (15.3)	0.86

Note:: Values in parentheses are percentages unless differently specified. Abbreviations: AJCC, American Joint Committee on Cancer; BMI, body mass index; IQR, interquartile range.
relevant confounding factors. The significant findings of our study are (i) that laparoscopic surgery is confirmed to be safe and feasible for elective resection of Stages I–III SFC; (ii) compared to open surgery, it is associated with better short-term outcomes; and (iii) that it allows comparable long-term oncological outcomes.

Several single-centre studies based on small numbers of patients showed the feasibility of laparoscopy for SFC [13–22]. Looking at studies comparing laparoscopic and open surgery, Nakashima and colleagues [20] compared 33 patients who underwent laparoscopic surgery for SFC to 22 patients who underwent open surgery, demonstrating improved postoperative outcomes in the LapGroup. Following this publication, Okuda and colleagues [22] retrospectively compared 61 laparoscopic surgeries for SFC with 34 conventional open surgeries, and they demonstrated better recovery outcomes in the laparoscopic group and a similar prognosis. Similarly, Kim and colleagues [19] analysed 18 open and 33 laparoscopic surgeries for SFC concluding that laparoscopy allows better short-term outcomes with comparable long-term results. Nevertheless, none of these papers considered possible biases influencing the allocation of patients to laparoscopic or open surgery, which could, in turn, affect outcomes. More recently, Chi and colleagues [35] compared open and laparoscopic colectomy for SFC after matching through PSM. They retrospectively analysed 62 patients submitted to laparoscopy and 62 patients to open surgery and found no differences in short-term outcomes and long-term prognosis. Finally, Beghdadi et al. [36] evaluated the results of laparoscopic surgery for SFC in a multicentric European setting. Although the study population was quite large (399 patients with SFC), after application of PSM only 64 patients treated by laparotomy and 64 with laparoscopy were analysed. They also reported improved postoperative outcomes in the laparoscopic group and no differences in terms of OS and disease-free survival.

In our study, a clear benefit in terms of postoperative complications was observed after laparoscopic surgery (17.7% vs. 33.1%; $P = 0.02$). This difference was mostly related to the decrease in surgical complications (14.6% vs. 24.6%; $P = 0.05$) and mild complications (10.8% vs. 27.7%; $P = 0.03$). The improvement in short-term outcomes is reflected by the decrease in LOS, which was 2 days shorter in the LapGroup (7 days [IQR 5–10] vs. 9 days [IQR 7–15]; $P = 0.001$). The results follow the known advantages of laparoscopy for other colon cancer locations in terms of early bowel function restoration and faster recovery [12,20,37].

Although the laparoscopic approach to the splenic flexure is technically challenging, our results confirmed the data published in previous reports [19,34,38] with a conversion rate of 8.5%, almost comparable to other colon cancer locations in experienced hands [38]. Furthermore, our paper demonstrated that laparoscopy did not interfere with the quality of surgical resection. No differences were found for specimen length and resection margins. Moreover, the median number of retrieved nodes was higher in the LapGroup (17.5 [IQR

TABLE 2 Comparison of surgical procedures and pathological data in the matched population

	LapGroup (n = 130)	OpenGroup (n = 130)	P
Extent of surgery			
Subtotal colectomy	15 (11.5)	11 (8.5)	0.68
Left colonic resection	83 (63.8)	84 (64.6)	
Partial resection	32 (24.6)	35 (26.9)	
Conversion	11 (8.5)	–	
Anastomosis, stapled	89 (68.5)	67 (51.5)	0.002
Stoma formation	2 (1.5)	4 (3.1)	0.68
Cancer-related	7 (5.4)	12 (9.2)	0.34
resections			
Specimen characteristics, cm			
Total length, median (IQR)	23 (17.5–34.5)	22 (16–29)	0.44
Proximal margin, median (IQR)	10 (6–15)	10 (7–13.5)	0.82
Distal margin, median (IQR)	8.2 (5.5–13.3)	7.8 (5–11)	0.13
Total no. retrieved LNs, median (IQR)	17.5 (12–25)	15 (11–21)	0.01
No. of cases with <12 LNs	19 (15)	37 (28.9)	0.03

Note: Values in parentheses are percentages unless differently specified.
Abbreviations: IQR, interquartile range; LN, lymph node.

TABLE 3 Comparison of short-term outcomes in the matched population

	LapGroup (n = 130)	OpenGroup (n = 130)	P
Hospital stay, days, median (IQR)	7 (5–10)	9 (7–15)	0.001
Postoperative 30-day complications	23 (17.7)	43 (33.1)	0.02
Low grade	14 (10.8)	36 (27.7)	0.03
High grade	9 (6.9)	7 (5.4)	0.75
Medical complications	7 (5.4)	15 (11.5)	0.12
Surgical complications	19 (14.6)	32 (24.6)	0.05
Anastomotic leak	2 (1.5)	3 (2.3)	1
Postoperative prolonged ileus	5 (3.8)	13 (10)	0.08
Surgical site infection	2 (1.5)	8 (6.2)	0.10
Redo surgery	6 (4.6)	6 (4.6)	1
30-day unplanned readmission	3 (2.3)	3 (2.3)	1
30-day postoperative mortality	1 (0.8)	2 (1.5)	1
Adjuvant chemotherapy	26 (22.2)	24 (20.5)	0.87
Missing	13 (10)	13 (10)	

Note: Values in parentheses are percentages unless differently specified.
Abbreviation: IQR, interquartile range.
vs. 15 [IQR 11–21]; \(P = 0.01 \) as well as the percentage of patients with more than 12 retrieved nodes (85% vs. 71.1%; \(P = 0.03 \)). This result is in line with previous reports, which associated minimally invasive surgery with a more extensive lymphadenectomy [13,20].

Looking at long-term outcomes, 5-year OS was similar to previous reports [16,17,19,21,22]. Previous studies on SFC [19,33] described similar rates in Stage I–III tumours. Although 5-year OS was slightly better in the LapGroup (85% vs. 81.4%), the difference was not statistically significant (\(P = 0.79 \)). Similarly, CSS was comparable between open and laparoscopic groups (\(P = 0.63 \)). These results were confirmed even when considering Stages I, II and III separately, as well as at multivariate analysis (\(P = 0.72 \)).

The present study has some limitations, mainly related to its retrospective nature. First, due to the length of the inclusion period, a higher proportion of older cases underwent open surgery. However, this critical issue has been addressed through inclusion

![Kaplan–Meier estimates of overall survival probability for patients undergoing laparoscopic and open resection for SFC.](image-url)
of the period of surgery in the computation of the propensity score. Consequently, the length of follow-up was similar in the laparoscopic and open group, with a median of 5 years. Second, it was not possible to retrieve accurate data on the extent of lymphadenectomy and lymph node involvement level. This drawback was acknowledged and, consequently, the extent of surgery was included among PSM variables. Third, lack of information on intra-operative data, such as operation time and blood loss, and postoperative recovery items did not permit any inference on these outcomes.

Conversely, our study has the strength to analyse a large and homogeneous cohort of patients with SFC undergoing elective surgery. The application of strict inclusion criteria and the adoption of PSM allowed us to obtain two comparable groups that represent the largest cohort in the current literature.

FIGURE 3 Kaplan–Meier estimates of cancer-specific survival probability for patients undergoing laparoscopic and open resection for SFC. (A) CSS in the whole population ($P = 0.63$); (B) Stage I ($P = 0.45$); (C) Stage II ($P = 0.19$); (D) Stage III ($P = 0.77$)
CONCLUSION

Laparoscopy is safe and effective for the curative treatment of Stages I–III SFC. It is associated with better short-term results with reduced complication rates and postoperative LOS. Moreover, laparoscopic surgery appears to provide excellent long-term cancer outcomes.

ACKNOWLEDGEMENT

Open Access Funding provided by Universita degli Studi di Verona within the CRUI-CARE Agreement. [Correction added on 26 May 2022, after first online publication: CRUI funding statement has been added.]

CONFLICT OF INTEREST

None.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Corrado Pedrazzani https://orcid.org/0000-0003-2431-6117
Giulia Turri https://orcid.org/0000-0001-6150-6812
Soo Yeun Park https://orcid.org/0000-0003-4821-2101
Koya Hida https://orcid.org/0000-0001-7210-7075
Yudai Fukui https://orcid.org/0000-0002-7262-7975
Jacopo Crippa https://orcid.org/0000-0003-4090-0989
Giovanni Ferrari https://orcid.org/0000-0002-5405-9046
Matteo Origi https://orcid.org/0000-0003-4191-2107
Gaya Spolverato https://orcid.org/0000-0002-7275-2573
Matteo Zuin https://orcid.org/0000-0002-3571-0120
Sung Uk Bae https://orcid.org/0000-0002-7876-4196
Seong Kyu Baek https://orcid.org/0000-0001-6427-8675
Gyung Mo Son https://orcid.org/0000-0002-8861-6293
Timothy Rockall https://orcid.org/0000-0001-8488-7005
Alfredo Guglielmi https://orcid.org/0000-0003-1713-4307
Gyu Seog Choi https://orcid.org/0000-0001-5476-4610

REFERENCES

1. Pedrazzani C, Turri G, Park SY, Hida K, Fukui Y, Crippa J, et al. Clinical-pathologic characteristics and long-term outcomes of left flexure colorectal cancer: a retrospective analysis of an international multicenter cohort. Dis Colon Rectum. 2020;63(12):153–60.
2. Steffen C, Bokey EL, Chapuis PH. Carcinoma of the splenic flexure. Dis Colon Rectum. 1987;30(11):872–4. [cited 2019 Jun 23] Available from: http://www.ncbi.nlm.nih.gov/pubmed/3677963

TABLE 4 Multivariate analysis for OS and CSS performed using the Cox regression model

	OS	CSS
	HR (95% CI)	P
	0.96	0.72
Surgical approach		
Open	1.0 (reference)	1.0 (reference)
Laparoscopy	0.9 (0.6–1.7)	1.1 (0.5–2.5)
Age	<0.001	0.48
≤70	1.0 (reference)	1.0 (reference)
>70	2.3 (1.2–4.3)	1.3 (0.6–2.9)
Gender	0.02	0.09
Female	1.0 (reference)	1.0 (reference)
Male	2 (1.1–3.3)	2 (0.8–5)
Extent of surgery	0.44	0.78
Left colonic resection	1.0 (reference)	1.0 (reference)
Subtotal colectomy	0.5 (0.2–1.4)	0.8 (0.2–2.6)
Partial resection	0.9 (0.5–1.8)	1.2 (0.5–2.8)
Grading	0.04	0.07
G1–2	1.0 (reference)	1.0 (reference)
G3	2 (1.1–3.8)	2.2 (0.9–5.2)
TNM stage	0.05	0.03
Stage I	1.0 (reference)	1.0 (reference)
Stage II	1.4 (1.1–2.9)	1.6 (1.1–2.9)
Stage III	2.4 (1.2–6.2)	2.4 (1.4–7.2)
Adjuvant chemotherapy	0.16	0.99
No	1.0 (reference)	1.0 (reference)
Yes	0.6 (0.3–1.3)	1.0 (0.4–2.9)

Abbreviations: CSS, cancer-specific survival; HR, hazard ratio; OS, overall survival.
13. Grieco M, Cassini D, Spoletini D, Soligo E, Grattarola E, Baldazzi E. Laparoscopic surgery versus open surgery for colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum. 2010;53(1):57–64.

14. Ceccarelli G, Biancafarina A, Patriti A, Spaziani A, Bartoli A, Bellochi M. Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum. 2010;53(1):57–64.

15. Ceretti AP, Maroni N, Sacchi M, Bona S, Angiolini MR, Bianchi P, Mancardi GL. Laparoscopic versus open resection for splenic flexure carcinoma: a matched case–control study. Int J Colorectal Dis. 2016;31:623–30.

16. de'Angelis AN, Hain E, Disabato M, Cordun C, Carra MC, Azoulay D, et al. Laparoscopic extended right colectomy versus laparoscopic left colectomy for carcinoma of the splenic flexure: a matched case–control study. Int J Colorectal Dis. 2016;31:623–30.

17. Gravante G, Elshaer M, Parker R, Mogekwu AC, Drake B, Aboelkassem A, et al. Extended right hemicolectomy and left hemicolectomy for colorectal cancers between the distal transverse and proximal descending colon. Ann R Coll Surg Engl. 2016;98(5):303–7.

18. Han K-S, Choi G-S, Park J-S, Kim HJ, Park SY, Jun S-H. Short-term outcomes of a laparoscopic left hemicolectomy for descending colon cancer: retrospective comparison with an open left hemicolectomy. J Korean Soc Colonol Proctol. 2010;26(5):347. [cited 2019 Jun 26]. Available from: www.coloproctol.org

19. Kim MK, Lee IK, Kang WK, Cho HM, Kye BH, Jalloun HE, et al. Long-term oncologic outcomes of laparoscopic surgery for splenic flexure colon cancer are comparable to conventional open surgery. Ann Surg Treat Res. 2017;93(1):35–42. [cited 2021 Jan 20]. Available from: /pmc/articles/PMC5507789/report=abstract

20. Nakashima M, Akiyoshi T, Ueno M, Fukunaga Y, Nagayama S, Fujimoto Y, et al. Colon cancer in the splenic flexure: comparison of short-term outcomes of laparoscopic and open colectomy. Surg Laparosc Endosc Percutan Tech. 2011;21(6):415–8. [cited 2019 Jun 26]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22146163

21. Odermatt M, Siddiqi N, Johns R, Miskovic D, Khan O, Khan J, et al. The short-and long-term outcomes for patients with splenic flexure tumours treated by left versus extended right colectomy are comparable: a retrospective analysis. Surg Today. 2014;44(11):2045–51. [cited 2019 Jun 26]. Available from: https://link.springer.com/content/pdf/10.1007%2Fs12876-014-0280-3.pdf

22. Okuda J, Yamamoto M, Tanaka K, Masubuchi S, Uchiyama K. Laparoscopic resection of transverse colon cancer at splenic flexure: technical aspects and results. Updates Surg. 2016;68(1):71–5. [cited 2021 Feb 22] https://doi.org/10.1007/s10046-017-0445-1

23. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

24. Mike M, Kano N. reappraisal of the vascular anatomy of the colon and consequences for the definition of surgical resection. Dig Surg. 2013;30:383–92.

25. Manceau G, Benoist S, Panis Y, Rault A, Mathonnet M, Goere D, et al. Laparoscopic extended right colectomy, left colectomy, or segmental resection for tumours of the splenic flexure: a French inter-group (AFC, SFCD, FRENCH, GRECCAR) survey. Tech Coloproctol. 2020;24(2):191–8. https://doi.org/10.1015/20190102143-2

26. Chan D, Shah P, Soanes M, Saklani A. Current trends and controversies in the management of patients with splenic flexure tumours. J Cancer Res Ther. 2013;9(1):8–10.

27. de'Angelis N, Martinez-Perez A, Winter DC, Landi F, Vitali GC, Le Roy B, et al. Extended right colectomy, left colectomy, or segmental left colectomy for splenic flexure carcinomas: a European multicenter propensity score matching analysis on behalf of the SFC Study Group. Surg Endosc. 2021;35(2):661–72. [cited 2020 Feb 22] https://doi.org/10.1007/s00464-020-07431-9

28. Degiuli M, Reddavid R, Ricceri F, Di Candido F, Ortenzi M, Elmore U, et al. Segmental colectomy in the management of patients with splenic flexure tumours: a French inter-group (AFC, SFCD, FRENCH, GRECCAR) survey. Tech Coloproctol. 2020;24(2):191–8. https://doi.org/10.1015/20190102143-2

29. Jamali FR, Soweid AM, Dimassi H, Bailey C, Leroy J, Marescaux J, et al. Evaluating the degree of difficulty of laparoscopic colorectal surgery. Arch Surg. 2008;143(8):762. https://doi.org/10.1001/archsur.143.8.762

30. van der Pas MHGM, Haglind E, Cuesta MA, Fürst A, Lacy AM, Hop WCJ, et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013;14(3):210–8. [cited 2019 May 11] Available from: http://www.color2.org/
31. Green BL, Marshall HC, Collinson F, Quirke P, Guillou P, Jayne DG, et al. Long-term follow-up of the Medical Research Council CLASICC trial of conventional versus laparoscopically assisted resection in colorectal cancer. Br J Surg. 2013;100:75–82. https://doi.org/10.1002/bjs.8945

32. Carlini M, Spoletini D, Castaldi F, Giovannini C, Passaro U. Laparoscopic resection of splenic flexure tumors. Updates Surg. 2016;68(1):77–83. https://doi.org/10.1007/s13304-016-0357-0

33. Yamaguchi S, Tashiro JO, Araki R, Okuda J, Hanai T, Otsuka K, et al. Laparoscopic versus open resection for transverse and descending colon cancer: short-term and long-term outcomes of a multicenter retrospective study of 1830 patients. Asian J Endosc Surg. 2017;10(3):268–75. https://doi.org/10.1111/ases.12373

34. Ardu M, Bergamini C, Martellucci J, Prosperi P, Valeri A. Colonic splenic flexure carcinoma: is laparoscopic segmental resection a safe enough oncological approach? Surg Endosc. 2020;34(10):4436–43. https://doi.org/10.1007/s00464-019-07221-y

35. Chi Z, Li Z, Cheng L, Wang C. Comparison of long-term outcomes after laparoscopic-assisted and open colectomy for splenic flexure cancer. J BUON. 2018;23(2):322–8.

36. Beghdadi N, Martínez-Pérez A, Winter DC, Landi F, Vitali GC, Le Roy B, et al. European multicenter propensity score match study of laparoscopic vs. open colectomy for splenic flexure carcinomas: results from the Splenic Flexure Cancer (SFC) Study Group. J Visc Surg. 2021. [cited 2021 Jul 16] Available from: https://doi.org/10.1016/j.jviscsurg.2021.06.007

37. Martínez-Pérez A, Brunetti F, Vitali GC, Abdalla S, Ris F, de’Angelis N. Surgical treatment of colon cancer of the splenic flexure: a systematic review and meta-analysis. Surg Laparosc Endosc Percutan Tech. 2017;27(5):318–27. [cited 2019 Feb 10] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28796653

38. Bracale U, Merola G, Pignata G, Corcione F, Pirozzi F, Cucurullo D, et al. Laparoscopic resection with complete mesocolic excision for splenic flexure cancer: long-term follow-up data from a multicenter retrospective study. Surg Endosc. 2020;34(7):2954–62. [cited 2019 Nov 23] https://doi.org/10.1007/s00464-019-07078-1

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Pedrazzani C, Turri G, Park SY, Hida K, Fukui Y, Crippa J, et al. Laparoscopic versus open surgery for left flexure colon cancer: a propensity score matched analysis from an international cohort. Colorectal Dis. 2022;24:177–187. https://doi.org/10.1111/codi.15962