Atherosclerosis in Rabbit Vein Grafts

Robert M. Zwolak, Thomas R. Kirkman, and Alexander W. Clowes

Human coronary saphenous vein bypass grafts develop atherosclerosis more readily than do grafts made of internal mammary artery. The reasons for this increased susceptibility, particularly in the presence of hyperlipidemia, are not known. In this study in rabbits, we investigated the possibility that the increased susceptibility might be attributed to increased smooth muscle proliferation and foam cell accumulation in vein grafts compared to native artery. Hypercholesterolemic and control rabbits underwent placement of jugular vein grafts in the carotid artery. Dietary cholesterol content was adjusted to maintain serum cholesterol levels of 200 to 600 mg/dl in the fat-fed rabbits. The vein graft intimal thickness in hypercholesterolemic rabbits was greater than in normolipemic rabbits at 3 and 6 months after implant. The increased thickness in the hypercholesterolemic group was largely accounted for by an accumulation of lipid-laden macrophages. Medial thicknesses increased during the first month, remained constant at later times, and were similar in control and hypercholesterolemic animals. In both groups, endothelial and smooth muscle cell proliferation (thymidine labeling) increased immediately after graft implantation and declined at 3 and 6 months. No incremental mitogenic stimulus could be attributed to the hypercholesterolemia. In Immunohistochemical preparations, the large foam cells were noted to be macrophages, and the intimal proliferating cells, to be smooth muscle. Proximal and distal carotid artery segments adjacent to the vein grafts in hypercholesterolemic rabbits had virtually no accumulation of lipid-laden macrophages. These results suggest that the endothelial and smooth muscle cell response in vein grafts adapting to the arterial circulation is not altered by hyperlipidemia, but that the wall becomes thick because of an accumulation of lipid-laden macrophages. (Arteriosclerosis 9:374-379, May/June 1989)

Autogenous saphenous vein grafts undergo early intimal thickening and accelerated atherosclerosis,1-13 both of which may contribute to eventual graft failure. While estimates of late vein graft stenosis and failure vary, in a 10-year angiographic follow-up study, Campeau et al.1 demonstrated that 30% of aortocoronary vein grafts patent after the first postoperative year were occluded at 10 years, and 32% were significantly stenosed. The mechanism of late failure appears to be atherosclerosis.13 Atherosclerosis commonly develops in vein grafts and appears to progress more rapidly than in native arteries. Hyperlipidemia is not only the most common risk factor associated with native artery atherosclerosis in Western society, but also is related closely to the accelerated failure of coronary vein grafts.1

Several studies have characterized the effects of hyperlipidemia on intimal thickening in experimental vein graft models. Rabbit femoral vein grafts subjected to intimal injury in the presence of hyperlipidemia develop a greater surface coverage by atherosclerotic plaque than do native arteries or native veins in the same animals or vein grafts in normolipemic rabbits.14 Similar findings have been described in hyperlipidemic dogs and rhesus monkeys.15,16 Although these studies all provide a morphological description of atherosclerosis in vein grafts, none has examined in detail the contribution of cell proliferation and accumulation in the process. In addition, it is not clear why vein grafts are so susceptible or how graft atherosclerosis differs from that in native artery.

Our earlier studies and those of other laboratories17,18,19 have shown that normcholesterolemic vein grafts become thicker largely because of smooth muscle proliferation and accumulation in the intima. The current study was designed to determine the effect of cholesterol feeding on wall thickening, cell accumulation, and the endothelial cell and smooth muscle cell proliferative response in rabbit vein grafts. We have addressed the possibility that accelerated vein graft atherosclerosis is really due to an augmented smooth muscle proliferative response to hyperlipidemia, as well as to an accumulation of lipid-laden macrophages.

Methods

Animal Model

Male New Zealand White rabbits weighing approximately 3 kg each were begun on an atherogenic diet containing 0.2% cholesterol.20 Venous blood samples were analyzed monthly for serum cholesterol and triglycerides. The concentration of cholesterol in the diet was adjusted to maintain the serum cholesterol level between 200 and 600 mg/dl. Control rabbits were fed commercial rabbit chow and underwent monthly phlebotomy for serum lipid analysis.
After 1 month of the atherogenic diet, the rabbits underwent surgical placement of an autologous jugular vein graft into the left common carotid artery. Anesthesia was induced with xylazine (7 mg/kg) and ketamine (35 mg/kg), and the left carotid artery and jugular vein were exposed through a vertical midline neck incision. After intravenous heparinization; a 3-cm segment of jugular vein was dissected free and sutured into the divided common carotid artery with interrupted 7-0 polypropylene sutures as described previously. Topical papaverine (15 mg) diluted in lactated Ringer's solution was administered to the vein during the procedure. Animal care complied with the "Principles of Laboratory Animal Care" and the "Guide for the Care and Use of Laboratory Animals" (NIH Publication No. 80-23, revised 1978).

Morphology

Groups of fat-fed and control rabbits were sacrificed at 4, 12, and 24 weeks after implantation of the vein grafts. One hour before sacrifice, the rabbits were anesthetized with ketamine and xylazine and were given intravenous doses of triiodinated thymidine (0.5 mCi/kg; 6.7 Ci/mmole; New England Nuclear, Incorporated, Billerica, MA), Evans blue dye (25 mg/kg), and heparin (1000 units).

A 22-gauge angiocath was inserted in the brachial artery for constant blood pressure monitoring, and just before sacrifice, 25 mg/kg of intravenous sodium pentobarbital was administered. Systolic blood pressure was kept over 90 mm Hg with an infusion of intravenous lactated Ringer's solution while a midline laparotomy was performed for placement of an abdominal aortic perfusion catheter and an inferior vena cava drainage catheter. The vascular system was flushed with lactated Ringer's solution. Glutaraldehyde (2.5% in phosphate buffered saline, pH 7.4) was used for perfusion fixation with regulation of the inflow pressure and outflow rates to keep the intravascular pressure to 90 to 100 mm Hg. Vessels were excised at 1 hour and were fixed by immersion for 24 hours. Samples of graft were then prepared for light, transmission, and scanning electron microscopy, morphometric analysis of intima and media, cross-sectional smooth muscle autoradiography, and endface endothelial autoradiography. Tissue samples to be used for immunohistochemical analysis were immersion-fixed in methyl Carnoy's solution. Samples were processed as previously described and stained with antibodies specific for smooth muscle cells (HHF-35) or rabbit macrophages (RAM-11).21-23

Results

The hyperlipidemic diet was well tolerated, and the fat-fed animals gained weight at the same rate as the controls. In general, serum cholesterol levels rose over 2 months and then remained stable. Response to the diet was variable among rabbits. Some required continuation of the 0.2% cholesterol regimen to maintain moderately elevated serum cholesterol, while others had markedly elevated serum cholesterol levels despite being adjusted down to 0.05% cholesterol. The cholesterol levels were maintained between 200 and 600 mg/dl. Triglycerides were not significantly elevated.

The fat-fed and control rabbits tolerated the surgical procedure equally well with no perioperative mortality and no difference in patency of the grafts (90%).

Morphology and Morphometry

By 1 month, in vein grafts of control rabbits, the patchy endothelial loss produced by the surgical manipulations was fully repaired, and thickening of the intima and media was evident. Most of the thickening was due to the accumulation of smooth muscle cells as identified by immunohistochemistry.

At 1 month, the light microscopic appearance of the control and fat-fed groups was similar except that foci of lipid-laden macrophages (as identified by the macrophage antibody RAM-11) were located near the luminal surface in the hyperlipidemic rabbits (Figure 1A). Most of the graft wall stained positive for smooth muscle (HHF-35) (Figure 1B). At 3 and 6 months, a distinct inner layer or band of foam cells of graft was present in the intima of fat-fed but not in the control animals (Figure 2). These cells were identified as macrophages based on their immunostaining characteristics and appearance in transmission electron micrographs (Figure 3). Because of this lipid-rich inner layer of intima, the total intimal thickness was greater in the fat-fed grafts at 3 and 6 months (Figures 2 and 4). The foam cell thickness did not change between the third and sixth months (Figure 4). In both groups, the medial thickness increased dramatically in the first month and then remained constant at the later time points (normal vein: 12 ± 2 μm; 1-month grafts: control, 57 ± 2 μm; fat-fed, 61 ± 5 μm). In general, the cross-sectional area increased in parallel with intimal thickness up to a maximum at 3 months. No accumulation of foam cells was seen at any time point in the adjacent carotid artery or in nongrafted veins in the fat-fed rabbits.

Endothelial and Smooth Muscle Proliferation

The endothelial cell thymidine labelling was increased at 1 month, was reduced at 3 and 6 months (Table 1), and was the same in the grafts of control and cholesterol-fed animals at all times. The pattern of smooth muscle proliferation was similar to what was observed for endothelial proliferation. Smooth muscle cell thymidine labeling was increased at 1 month and declined thereafter (Table 2). The values were similar in both dietary groups at each time point.

Discussion

In this study, the experiments were designed to examine cellular events in a model system of vein graft atherosclerosis. We found significant increases in the thickness of the vein graft wall in hyperlipidemic animals, with little direct effect on the underlying response of the venous endothelial cell reparative response or the smooth muscle accumulation after transplantation. The increased thickness could be attributed entirely to an influx of macrophages. Perhaps the most striking feature of these data is the similarity in smooth muscle cell and endothelial cell labeling indices in vein grafts of normal and hyperlipidemic
rabbits, but a marked difference in intimal thickness. Although vein grafts placed in the carotid artery were highly susceptible to early lesion formation, the effect of hyperlipidemia appeared to be on the addition of an inner layer of foamy macrophages, rather than an additional or superimposed stimulation of intimal smooth muscle cell proliferation. Thus, the data suggest that, at least in the short term, the mechanism stimulating smooth muscle cell proliferation in the adapting vein graft is not altered by cholesterol feeding. Since macrophages secrete growth factors for smooth muscle cell proliferation in vitro, we expected to see increased proliferation of smooth muscle cells adjacent to the foam cell layer. That we did not might be because of the absence of a sufficient concentration of growth factor or because of our inability to detect low, but significantly increased, levels of proliferation.

In an earlier series of experiments, we studied the effects of cholesterol feeding on injury-induced intimal thickening in rat carotids. We found that lipid accumulated preferentially in the injured segment in comparison to the rest of the artery. The cholesterol feeding did not produce an increase in smooth muscle hyperplasia above that seen in the damaged vessels of serum cholesterolemic rats even as late as 1 year. In ballooned rabbit arteries, others have demonstrated a marked increase in lipid accumulation and intimal thickening in regions covered by regenerating endothelium. As in the vein grafts, the increase in thickness could be attributed largely to an increase in foamy macrophages and not to smooth muscle hyperplasia.

Taken together, these observations suggest that the hyperlipidemia induced by cholesterol feeding does not have an additive or synergistic effect with injury on smooth muscle growth, at least in the short term (0 to 12 months). It is possible that over the long term, smooth muscle cells
might proliferate in response to some secondary phenomenon related to the hyperlipidemia such as focal injury and thrombosis.

In contrast to human vein graft atherosclerotic plaque, the rabbit lesions showed no evidence of a smooth muscle cell cap over the macrophage layer and thus were
Figure 4. Histogram of vein graft intimal thickness (mm)±SD. There were three animals in each group. Note that the contribution of the layer of large foamy macrophages (see Figure 2B) accounts for the difference in intimal thickness between control and fat-fed rabbit grafts. The differences in thickness were significant at 3 and 6 months (p<0.05, f test).

Table 1. Endothelial Thymidine Labeling Indices

Rabbits	1 month	3 months	6 months
Control	0.69±0.67 (5)*	0.04±0.03 (4)	0.07±0.07 (6)
Fat-fed	0.28±0.06 (3)	0.05±0.02 (3)	0.10±0.07 (6)

*Thymidine labeling index (%):SD; numbers in parentheses are the number of grafts analyzed.

Table 2. Smooth Muscle Thymidine Labeling Indices

Rabbits	1 month	3 months	6 months
Control	0.84±0.28 (6)*	0.19±0.10 (5)	0.19±0.15 (4)
Fat-fed	0.53±0.42 (3)	0.27±0.27 (3)	0.05±0.06 (4)

*Thymidine labeling index (%):SD; numbers in parentheses are the number of grafts in each group.

more similar to the human fatty streak lesion. This may not be surprising since the changes noted in human grafts at least 1 year appear to be more intimal myoproliferative in nature, while typical atherosclerotic plaques are not seen before 1 year.19

In summary, vein grafts in cholesterol-fed rabbits display increased wall thickness that is almost entirely due to subendothelial accumulations of foamy macrophages. No influence of the hyperlipidemia or of the macrophages present in the intima could be detected on the proliferative index or the accumulation of intimal or medial smooth muscle cells.

Acknowledgment

The assistance of Patricia Bartnick in the preparation of the manuscript is gratefully acknowledged.

References

1. Campeau LC, Enjalbert M, Leeperance J, et al. The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. N Engl J Med 1984; 311:1329–1332

2. McCann RL, Larsson RM, Mitchener JS III, Fuchs JCA, Hagen P. Intimal thickening and hyperlipidemia in experimental primate vascular autografts. Ann Surg 1979; 189:62–67

3. Jones M, Conkie DM, Ferreras VJ, et al. Lesions observed in arterial autogenous vein grafts. Light and electron microscopic evaluation. Circulation 1973;48(suppl II):III-198–III-210

4. Marti MC, Bouchardy B, Cox JN. Aorto-coronary bypass with autogenous saphenous vein grafts: Histopathological aspects. Virchows Arch [Pathol Anat] 1971:352:255–266

5. Bonchek LI, Boebeoom LE, Olinger GN, et al. Prevention of lipid accumulation in experimental vein bypass grafts by antiplatelet therapy. Circulation 1982;66:336–341

6. Bulley BH, Hutchins GM. Accelerated “atherosclerosis.” A morphologic study of 97 saphenous vein coronary artery bypass grafts. Circulation 1977;55:163–169

7. Wanten KW, Slaney G, Ashion F. Atherosclerosis in vascular graft for peripheral vascular disease. Atherosclerosis 1985;54:49–64

8. Barborjak JJ, Pintar K, Van Horn DK, Batayas GE, Korns ME. Pathologic findings in the aorto-coronary vein grafts. A scanning electron microscope study. Atherosclerosis 1978; 29:59–80

9. Brody WR, Angel WW, Kosek JC. Histologic fate of the venous coronary artery bypass in dogs. Am J Pathol 1972; 68:111–119

10. Lawrie GM, Lie JT, Morris GC, Beazley HL. Vein graft patency and intimal proliferation after aorto-coronary bypass: Early and long-term angiopatologic correlations. Am J Cardiol 1976;38:856–862

11. Kem WH, Dermer GB, Lindemith GG. The intimal proliferation in aortic-coronary saphenous vein grafts. Am Heart J 1972;84:771–777

12. Rosaler SJ, Brody WR, Kosek JC, Lupton MJ, Angel WW. Internal mammary artery versus autogenous vein for coronary artery bypass graft. Circulation 1974;50:1236–1243

13. DePalma RG. Atherosclerosis in vascular grafts. Atherosclerosis Rev 1979;6:147–177

14. King P, Royle JP, Autogenous vein grafting in atherosclerotic rabbits. Cardiovasc Res 1971;5:627–633

15. Fonkalsrud EW, Sanchez M, Zerubavel R. Morphological evaluation of canine autogenous vein grafts in the arterial circulation. Surgery 1976;84:253–264

16. Halmovits H, Walser N. Autogenous vein grafts in experimental canine atherosclerosis. Arch Surg 1974;109:95–102

17. Zvolak RM, Adamia MC, Cloves AW. Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg 1980;61:126–136

18. McGeesieh JK, Prandersteg FJ, Morris PJ. Vein grafts for arterial repair: An experimental study of the histological development of the intima. Ann R Coll Surg Engl 1983; 65:85–89

19. Fuchs JCA, Mitchener JS III, Hagen P. Postoperative changes in autologous vein grafts. Ann Surg 1978;168:1–15

20. Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatly streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolisteremic fat fed rabbits. Arteriosclerosis 1987;7:9–23

21. Cloves AW, Gown AM, Hanson SR, Reidy MA. Mechanisms of arterial graft failure. I. Role of cellular proliferation in early healing of PTFE prostheses. Am J Pathol 1985; 118:43–54

22. Tsukada T, Tippins D, Mer H, Gordon D, Ross R, Gown AM. HIF-SS: A muscle-actin-specific monoclonal antibody. I. Biochemical and immunocytochemical characterization. Am J Pathol 1987;126:51–60

23. Tsukada T, Rosenfeld M, Ross R, Gown AM. Immunocytochemical analysis of cellular components in lesions of atherosclerosis in the Watanabe and fat-fed rabbits using monoclonal antibodies. Atherosclerosis 1986;5:601–613
24. Shimokado K, Raines EW, Madtes DK, Barnett TB, Benditt EP, Rosa R. A significant part of macrophage derived growth factor consists of at least two forms of PDGF. Cell 1985;43:277–286
25. Madtes DK, Raines EW, Sakarlasse KD, Assola RK, Sporn MB. Induction of transforming growth factor-alpha in activated human alveolar macrophages. Cell 1986;53:285–293
26. Clowes AW, Ryan QB, Breakow JL, Kamovsky MJ. Absence of enhanced intimal thickening in the response of the carotid arterial wall to endothelial injury in hypercholesterolemic rats. Lab Invest 1976;35:6–17
27. Clowes AW, Breslow JL, Kamovsky MJ. Regression of myointimal thickening following cardiac endothelial injury and development of aortic foam cell lesions in long term hypercholesterolemic rats. Lab Invest 1977;36:73–81
28. Falcone DJ, Heijer DP, Minick CR. Lipoprotein and albumin accumulation in reendothelialized and deendothelialized aorta. Am J Pathol 1984;114:112–120
29. Wight TN, Curwen KD, Lithrent MM, Alonso DR, Minick CR. The effect of endothelium on glycosaminoglycan accumulation in the rabbit aorta. Am J Pathol 1983;113:156–164
30. Alavi M, Moore S. Glycosaminoglycan composition and biosynthesis in the endothelium-covered neointima of deendothelialized rabbit aorta. Exp Mol Pathol 1985;42:389–400

Index Terms: atherosclerosis • vein graft • smooth muscle cell • macrophage • hypercholesterolemia