Review Article

Global Cardiovascular Risk Assessment in the Management of Primary Hypertension: The Role of the Kidney

Francesca Viazzi, Giovanna Leoncini, and Roberto Pontremoli

Università Degli Studi e I.R.C.C.S. Azienda Ospedaliera Universitaria San Martino-IST,
Istituto Nazionale per la Ricerca sul Cancro, 16125 Genoa, Italy

Correspondence should be addressed to Roberto Pontremoli; roberto.pontremoli@unige.it

Received 20 May 2013; Accepted 8 July 2013

Academic Editor: B. Waeber

Copyright © 2013 Francesca Viazzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The knowledge of each patient’s global risk profile is a prerequisite for effective therapeutic strategies in primary hypertension. Detecting the presence of subclinical organ damage at the cardiac, vascular, and renal levels is key for stratifying cardiovascular risk and may also be helpful in choosing antihypertensive agents and in monitoring the effectiveness of treatment. A systematic, in-depth search for subclinical organ damage, however, may be difficult to carry out because of logistic and economic problems related to the high prevalence of hypertension in the population. Renal abnormalities such as microalbuminuria and reduction in glomerular filtration rate have proven to be powerful predictors of cardiovascular and renal outcome. Thanks to their relatively low cost and wide applicability, more widespread use of these tests in the diagnostic workup will help detect subsets of patients at greater risk for whom additional preventive and therapeutic treatment is advisable.

1. Introduction

The prevalence and incidence of hypertension, arguably the most important modifiable risk factor for cardiac and cerebrovascular diseases, are going to increase dramatically worldwide over the next decade [1]. Prevention and treatment of high blood pressure (BP) already represent a public health challenge in many areas of the world and will likely require even more economic resources in the future. Not all hypertensive patients share the same adverse outcome, however. While, on the average, increased BP values are known to entail an unfavourable outcome whose magnitude is proportional to the severity of hypertension, for the majority of patients the long term risk of developing a cardiovascular (CV) event depends more on their overall risk profile than on their BP levels per se [2]. Given the overwhelming number of hypertensive subjects, early identification of those at greater risk for CV complications is of paramount importance because it could set the stage for directing additional measures to those who need them the most. Thus, besides taking into account traditional risk factors like age, gender, family history, obesity, smoking habits, lipid status, and diabetes, other conditions such as the presence of subclinical organ damage are currently used to identify high-risk patients and tailor treatment [3, 4].

2. Prognostic and Therapeutic Implications of Target Organ Damage

Subclinical organ damage at the cardiac, vascular, and renal levels often precedes and predicts the development of morbid events [5]. Thus, patients with left ventricular hypertrophy, especially the concentric type, show a higher risk of developing a coronary event or a stroke as compared to those with normal left ventricular geometry [6]. Similarly, carotid atherosclerosis has been associated with a worse prognosis regardless of other traditional risk factors. Non-invasive, ultrasound-detected left ventricular hypertrophy and/or asymptomatic signs of extracardiac atherosclerosis (i.e., intima media thickness at the carotid and femoral levels) are often used to identify subsets of patients at increased risk [7]. It has been shown that a systematic in-depth search for multiple risk factors or organ damage significantly increases the likelihood of identifying high-risk individuals.
It is generally agreed upon that this abnormality signals the coexistence of functional and structural abnormalities of the systemic vasculature secondary to atherosclerosis and hypertension. The resulting state of widespread increased permeability, which is revealed at the kidney level by an abnormal amount of urine albumin, possibly the end product of both increased glomerular permeability and reduced tubular reabsorption, is a forerunner and a risk factor for major CV events. A recent meta-analysis clearly showed that the risk for CV morbidity and mortality is linearly related to urinary albumin excretion and that the relationship becomes significant at relatively low values of albuminuria and shows no recognizable threshold or plateau [9, 22]. Furthermore, a reduction of albuminuria under antihypertensive treatment is paralleled by changes in CV risk [23, 24]. These results have led some investigators to claim that reducing albuminuria might become a therapeutic goal in itself.

Another subclinical renal abnormality, that is, a slight

Table 1: ESH-ESC Guidelines 2013.

Marker	Predictive power (CV disease)	Feasibility	Cost effectiveness
Electrocardiography	+++	++++	+++
Echocardiography	++++	+++	+++
Carotid intima-media thickness	+++	++	+
Arterial compliance (pulse wave velocity)	+++	++	+
Ankle-brachial index	+++	+++	+
Coronary calcium score	++	+	+
Endothelial dysfunction	+	+	+
Cerebral lacune/white matter disease	+	+	+
Estimated GFR	+++	+++	+++
Microalbuminuria	+++	+++	+++

The table shows how renal abnormalities, that is, increased albuminuria and reduced eGFR, are best suited for the initial routine assessment of cardiovascular profile in patients with primary hypertension (modified from [2]).
the detection of a significantly higher percentage of patients with organ damage and yield a stratification of risk that is almost superimposable to what is obtained by the routine use of US, although at a significantly lower cost. This, in turn, may lead to a substantial improvement in identifying high-risk patients while optimizing the cost effectiveness of CV risk stratification [27]. Screening for the presence of these abnormalities is a relatively low-cost and therefore widely applicable way to implement a more thorough risk assessment of the hypertensive patient and gain useful information for therapeutic management. A rational, cost-effective search for organ damage must start from low-cost, easy-to-perform tests and proceed to more expensive ones only in patients resulting at relatively low overall risk on the basis of previous risk stratification (modified from [27]).

Unfortunately, the powerful predictive power of renal abnormalities is not yet fully exploited in clinical practice, at least in Europe, as confirmed by a recent survey carried out by the ESH [29].

4. Conclusions

Thorough assessment of CV risk, including the presence and degree of target organ damage, is a prerequisite for devising effective therapeutic strategies and for tailoring treatment goals in primary hypertension. Clinical studies have shown that the higher the risk status of an individual patient, the greater the benefit for a given amount of BP reduction. The presence of target organ damage may also be helpful when choosing antihypertensive agents and in monitoring the effectiveness of treatment. Due to the high prevalence of high BP in the general population, logistic and economic reasons may limit a liberal approach to the evaluation of organ damage aimed at risk assessment. Subclinical renal abnormalities such as microalbuminuria or a slight reduction in eGFR provide a useful and easily applicable way to detect subsets of patients at greater risk for whom additional preventive and therapeutic treatment is advisable. A more widespread use of these tests in the assessment of CV risk in patients with hypertension is advisable.

Acronyms

BP: Blood pressure
CV: Cardiovascular
eGFR: Estimated glomerular filtration rate.

Acknowledgment

This work was supported by Grants from the Italian Ministero della Salute (Bando Giovane Ricercatore 2008, CUP G35J1000130001).

References

[1] M. Ezzati, A. D. Lopez, A. Rodgers, S. Vander Hoorn, and C. J. L. Murray, “Selected major risk factors and global and regional burden of disease,” Lancet, vol. 360, no. 9343, pp. 1347–1360, 2002.
[2] G. Mancia, R. Fagard, K. Narkiewicz et al., “2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC),” Journal of Hypertension, vol. 31, pp. 1281–1357, 2013.
[3] L. G. Ogden, J. He, E. Lydick, and P. K. Whelton, “Long-term absolute benefit of lowering blood pressure in hypertensive patients according to the JNC VI risk stratification,” Hypertension, vol. 35, no. 2, pp. 539–543, 2000.
[4] G. Leoncini, G. Sacchi, F. Viazzi et al., “Microalbuminuria identifies overall cardiovascular risk in essential hypertension: an artificial neural network-based approach,” Journal of Hypertension, vol. 20, no. 7, pp. 1315–1321, 2002.
[5] R. B. Devereux and M. H. Alderman, “Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events,” Circulation, vol. 88, no. 4 I, pp. 1444–1455, 1993.
[6] J. K. Ghalil, Y. Liao, and R. S. Cooper, “Influence of left ventricular geometric patterns on prognosis in patients with or without coronary artery disease,” Journal of the American College of Cardiology, vol. 31, no. 7, pp. 1635–1640, 1998.
[7] D. H. O’Leary, J. F. Polak, R. A. Kronmal, T. A. Manolio, G. L. Burke, and S. K. Wolfson Jr., “Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults,” New England Journal of Medicine, vol. 340, no. 1, pp. 14–22, 1999.
[8] F. Viazzi, G. Leoncini, D. Parodi et al., “Impact of target organ damage assessment in the evaluation of global risk in patients with essential hypertension,” Journal of the American Society of Nephrology, vol. 16, no. 3, supplement, pp. S89–S91, 2005.
[9] K. Matsushita, M. van der Velde, B. C. Astor et al., “Association of eGFR and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis,” Lancet, vol. 375, pp. 2073–2081, 2010.

[10] P. Verdecchia, G. Schillaci, C. Borgioni et al., “Prognostic significance of serial changes in left ventricular mass in essential hypertension,” Circulation, vol. 97, no. 1, pp. 48–54, 1998.

[11] R. E. Schmieder, M. P. Schlaich, A. U. Klingbeil, and P. Martus, “Update on reversal of left ventricular hypertrophy in essential hypertension (a meta-analysis of all randomized double-blind studies until December 1996),” Nephrology Dialysis Transplantation, vol. 13, no. 3, pp. 564–569, 1998.

[12] B. Dahlöf, R. B. Devereux, S. E. Kjeldsen et al., “Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol,” Lancet, vol. 359, no. 9311, pp. 995–1003, 2002.

[13] N. O. Borhani, M. Mercuri, P. A. Borhani et al., “Final outcome results of the Multicenter Irbesartan Diuretic Atherosclerosis Study (MIDAS): a randomized controlled trial,” Journal of the American Medical Association, vol. 276, no. 10, pp. 785–791, 1996.

[14] A. Zanchetti, E. Agabiti Rosei, C. Dal Palù, G. Leonetti, B. Magnani, and A. Pessina, “The Verapamil in Hypertension and Atherosclerosis Study (VHAS): results of long-term randomized treatment with either verapamil or chlorthalidone on carotid intima-media thickness,” Journal of Hypertension, vol. 16, no. 11, pp. 1667–1676, 1998.

[15] A. Simon, J. Gariépy, D. Moyse, and J. Levenson, “Differential effects of nifedipine and co-amilozide on the progression of early carotid wall changes,” Circulation, vol. 103, no. 24, pp. 2949–2954, 2001.

[16] A. Zanchetti, M. G. Bond, M. Hennig et al., “Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial,” Circulation, vol. 106, no. 19, pp. 2422–2427, 2002.

[17] F. Turnbull, “Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively designed overviews of randomised trials,” Lancet, vol. 362, no. 9395, pp. 1527–1535, 2003.

[18] R. Pontremoli, “Microalbuminuria in essential hypertension—its relation to cardiovascular risk factors,” Nephrology Dialysis Transplantation, vol. 11, no. 11, pp. 2113–2115, 1996.

[19] R. Pontremoli, M. Raverà, G. P. Bezante et al., “Left ventricular geometry and function in patients with essential hypertension and microalbuminuria,” Journal of Hypertension, vol. 17, no. 7, pp. 993–1000, 1999.

[20] J. S. Jensen, B. Feldt-Rasmussen, S. Strandgaard, M. Schroll, and K. Borch-Johnsen, “Arterial hypertension, microalbuminuria, and risk of ischemic heart disease,” Hypertension, vol. 35, no. 4, pp. 898–903, 2000.

[21] M. H. Olsen, K. Wachtell, K. Borch-Johnsen et al., “A blood pressure independent association between glomerular albumin leakage and electrocardiographic left ventricular hypertrophy. The LIFE study,” Journal of Human Hypertension, vol. 16, no. 8, pp. 591–595, 2002.

[22] K. Wachtell, H. Ibsen, M. H. Olsen et al., “Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study,” Annals of Internal Medicine, vol. 139, no. 11, pp. 901–906, 2003.