Fat Grafting: A Citation Analysis of the Seminal Articles

Cormac W. Joyce MB, BCh*, Kenneth M. Joyce MB, BCh*, George Rahmani MB, BCh*, Stewart R. Walsh, MD†, Sean M. Carroll, MD‡, Alan J. Hussey, MD*, Jack L. Kelly, MD*

Background: There has been substantial rise in the volume of published works on fat transfer in the medical literature in the past 25 years, and this is indicative of its growing popularity. However, many unanswered questions remain, and there is no consensus as to the optimum technique. Consequently, the scientific and clinical research on fat grafting continues to increase rapidly. The purpose of our study was to perform a bibliometric analysis of the most-cited articles in fat transfer.

Methods: Through the Web of Science, all articles relating to fat grafting were identified in the plastic and reconstructive literature. The 100 most-cited articles were identified and analyzed individually.

Results: Total citations ranged from 35 to 363 and the most-cited paper by Sidney Coleman was published in Plastic and Reconstructive Surgery. The United States produced 46% of the most-cited papers, and the University of California was the most prolific institution. Twenty-one articles focused on lipofilling to the face while 14 articles looked at fat grafting to the breast.

Conclusions: The scientific relevance of a published work is reflected in the number of citations from peers that it receives. Therefore, the 100 most-cited papers in fat grafting have been the most influential articles on this field, and they are likely to be the ones that are remembered most. (Plast Reconstr Surg Glob Open 2015;3:e295; doi: 10.1097/GOX.0000000000000269; Published online 27 January 2015.)

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by the authors.
flawed system. The role of the citation is to recognize other authors for their influential and pertinent articles that they have previously published. The relative impact of a published body of work is reflected in the actual number of citations from peers that it receives, so that its scientific relevance increases with an increasing citation count.

In an era where “publish or perish” is increasingly apparent, the number of citations is being used to determine how grants and subsidies are awarded. The number of citations is of critical importance to the journal also, as the more citations that a particular article receives, the greater the impact factor (IF) of the journal. The IF was devised to facilitate comparisons between journals within specific fields of academic interest. It is a measure that is indicative of the average number of citations of recent articles published by the journal. The higher the IF, the more influential and noteworthy the journal is apparently deemed. Notwithstanding the obvious flaws associated with the IF system, it is still widely regarded as the best available mode of gauging the merits of specific publications.

For a given year, the IF can be calculated by averaging the number citations received per article published in that journal during the preceding 2 years.

A citation analysis is a bibliometric method that describes the means of analyzing the citation history of published articles. The purpose of this study was to identify the 100 most-cited articles relating to fat grafting in the medical literature and to carefully analyze each article individually looking at the article type, year of publication, authorship, country of origin, institution, and level of evidence.

MATERIALS AND METHODS

Eighteen international journals were included in our citation analysis, and these were selected based on an overall consensus reached by 2 of the authors. The publications included 10 well-known plastic and reconstructive journals and 8 high IF surgical journals (Table 1). The 8 surgical journals were included as there was agreement by the authors that these would be the most likely to publish articles pertaining to fat grafting.

The Institute of Scientific Information produces the Web of Science (Thomson Reuters, NY, N.Y.), and this facilitates access to the Science Citation Index, MEDLINE, and other citation indices, which collectively index more than 12,000 journals. Using this electronic database, we were able to identify the most-cited articles on fat grafting from 1945 to 2014 in our chosen journals.

All Web of Science (Thomson Reuters) indexed articles from the 18 journals were combined in our search and the resulting articles (144,246 in total) were then ranked in order of times cited. To locate articles relating to fat grafting, specific keywords were added separately into the Web of Science (Thomson Reuters) database and the chosen 18 journals were searched. The keywords used were “fat,” “fat transplant,” “fat graft,” “lipotransfer,” “lipoaspirate,” “adipocyte,” and “adipose stem cells.” The filtered results were examined by 2 of the authors independently looking for articles on fat grafting. An article was only selected for further analysis if both authors agreed it was suitable. The 100 most-cited articles on fat grafting were then chosen for further analysis. Each individual article was analyzed looking at its subject matter, authorship, article type, country of origin, institution, year of publication, and level of evidence.

RESULTS

The top 100 articles on fat grafting are in descending order based on citation number in Table 2. Citation numbers ranged from 35 to 363, with a mean of 83 ± 60.7. Eighteen international journals were initially included for analysis in our study but only 6 journals contributed articles to the 100 most-cited list (Table 1). These included 5 specialist plastic and reconstructive journals: *Plastic and Reconstructive Surgery (PRS)*, *Aesthetic Plastic Surgery, Clinics in Plastic Surgery, Annals of Plastic Surgery, and Journal of Plastic, Reconstructive and Aesthetic Surgery*. The only general surgery journal that contributed to the top 100 was the *American Journal of Surgery*. Fifty-one percent of articles originated from *PRS* while *Aesthetic Plastic Surgery* produced 23 articles. The *Annals of Plastic Surgery* produced 12 articles while *Clinics in Plastic Surgery* had 10 articles in the top 100.

The article with the highest citation number was written by Coleman, and it has been cited 363 times

Table 1. The Journals and the Number of Articles Each Journal Contributed to the Top 100 Most-cited Articles on Fat Grafting

Journal	No. Articles in Top 100
Plastic and Reconstructive Surgery	51
Aesthetic Plastic Surgery	23
Clinics in Plastic Surgery	10
Annals of Plastic Surgery	12
Journal of Plastic, Reconstructive and	3
Aesthetic Surgery	
American Journal of Surgery	1

The Annals of Surgery, British Journal of Surgery, Surgery, American Journal of Surgery, Aesthetic Surgery Journal, Archives of Facial Plastic Surgery, British Journal of Plastic Surgery, Canadian Journal of Plastic Surgery, European Journal of Plastic Surgery, Journal of the American College of Surgeons, Journal of Plastic Surgery and Hand Surgery, and Scandinavian Journal of Plastic Surgery and Reconstructive Surgery were included in the search, but they did not contribute to the top 100.
Table 2. The List of 100 Most-cited Articles on Fat Grafting

Rank	Author	Citations	Rank	Author	Citations	Rank	Author	Citations
1	Coleman	363	34	Lu et al	79	67	Chan et al	50
2	Coleman	258	35	Dragoo et al	77	68	Toledo	50
3	Billings and May	257	36	Guerrerosantos et al	75	69	Torio-Padron et al	49
4	Ersek	225	37	Dudas et al	75	70	Har-Shai et al	49
5	Mizuno et al	215	38	Gutowski	74	71	Zheng et al	46
6	Coleman	215	39	Kaufman et al	71	72	Coleman	45
7	Yoshimura et al	211	40	von Heimburg et al	70	73	Pereira and Radwanski	45
8	Coleman	209	41	Moore et al	69	74	Pu et al	44
9	Ashjian et al	197	42	Teimourian	69	75	Feinendegen et al	44
10	Peer	189	43	De Ugarte et al	68	76	Wolter et al	43
11	Coleman and Saboeiro	186	44	Carraway and Mellow	68	77	Schoeller et al	43
12	Niechajev and Sevcuk	184	45	Pu et al	68	78	Guerrerosantos et al	41
13	Chajchir and Benzaquen	150	46	Chajchir and Benzaquen	67	79	Mojallal et al	41
14	Ellenbogen	136	47	Fagrell et al	63	80	Gonda et al	41
15	Illouz	129	48	Moscona et al	63	81	Hudson et al	41
16	Katz et al	127	49	Bircoll and Novack	63	82	Serra-Renom et al	40
17	Moseley et al	113	50	Kurita et al	63	83	Serra-Renom and Fontdevila	40
18	Smith et al	110	51	Stoch and Mao	59	84	Khouri and Del Vecchio	39
19	Rohrich et al	109	52	Carpaneda and Ribeiro	59	85	Rigotti et al	39
20	Kononas et al	107	53	Eppley et al	59	86	Lu et al	39
21	Coleman	102	54	Ramon et al	58	87	Gonzalez et al	39
22	Bircoll	101	55	Klinger et al	58	88	Cárdenas-Camarena et al	37
23	Hör et al	100	56	Guerrerosantos et al	58	89	Baran et al	38
24	Lee et al	99	57	Tholpady et al	58	90	Hyakusoku et al	37
25	Spear et al	90	58	Carpaneda and Ribeiro	57	91	Marra et al	36
26	Schipper et al	90	59	Chajchir et al	56	92	Trepsat et al	36
27	Yuksel et al	87	60	Ersek et al	55	93	Castello et al	36
28	Loeb	86	61	Guerrerosantos et al	54	94	Lewis et al	36
29	Kaufman et al	82	62	Chajchir et al	54	95	Pinsolle et al	35
30	Boschert et al	81	63	Zhu et al	53	96	Loeb et al	35
31	Illouz	80	64	Ullmann et al	53	97	Zocchi and Zuliani	35
32	Matsudo and Toledo	80	65	Kesselring	53	98	Toledo and Mautad	35
33	Peer	79	66	Illouz and Sterodimas	52	99	Vaienti et al	35
						100	Locke and de Chalain	35
to date. This article, published in Clinics in Plastic Surgery in 1997, was a landmark article insofar that it was one of the first modern-day descriptions of lipofilling to the face using the Coleman method of fat transfer.45 The oldest article in the top 100 was from 1950 and written by Peer.38 It is the 10th most-cited article (189 citations) and was published in PRS. This early article on fat transfer, in which Peer postulates on the “cell survival theory,” describes the mixed results he encountered when a group of individuals were fat grafted. The most recent article in the top 100 was written by Rigotti et al67 and published in August 2010 in Aesthetic Plastic Surgery. This article examined the perceived oncological risk in fat transfer to the breast for postmastectomy patients. The decade that contributed the most articles to the top 100 articles on fat grafting was the 2000s with 53 articles (Table 3). Eighty-five percent of the top articles were published since 1990, thereby highlighting the recent surge in fat grafting procedures.

To facilitate the analysis of the characteristics of each article, the 100 articles were placed into 4 different categories based on the anatomical location of the fat grafting (Table 4). Twenty-one articles focused on lipotransfer to the face while 20 articles looked at fat grafting to the breast. Fourteen articles described fat transfer to contour defects of the trunk, and one solitary article looked at fat grafting to the hands. Sixty-five articles in the top 100 were clinical, and the remainder was laboratory-based including animal studies. Seven articles were review articles, whereas 2 articles were published correspondence to the editor of that particular journal.36,53 One of the letters to the editor reported on a rare case of blindness following fat grafting to the face,36 whereas the other letter by Illouz53 reports on his early experience of lipotransfer from 1983. The majority of the studies in the top 100 were level IV or V evidence (77%) while there was no level I studies (Table 5).

The top 100 most-cited articles in fat grafting originated from 18 countries, with the United States contributing the most with 46 articles (Fig. 1). Brazil produced 8 articles while Mexico, Japan, and France
Table 7. The Authors Who Contributed Most Articles to the Top 100 List

Author	No. Citation Classics	Position on Author List
Coleman	8	First author—7, second author—1
Hedrick	7	Third author—2, fourth—1, sixth—1, seventh—2, ninth—1
Guerresantos	5	First author—4
Chajchir	4	First author—4
Rubin	4	Fourth author—1, fifth—1, seventh—1, eighth—1
Zhu	4	Second author—1, third—1, fifth—1
Benham	3	Fifth author—1, eighth—2
Benzaquen	3	Second author—3
De Ugarte	3	First author—1, fourth—1
Illouz	3	First author—3
Marra	3	Second author—2
Ogawa	3	Second author—1, fourth—1, fifth—1
Pu	3	First author—2, eighth—1
Sato	3	Second author—1, fourth—1
Toledo	3	First author—2, second—1
Ullman	3	First author—1, second—1, eighth—1
Zuk	3	Second author—1, sixth—2
Ashjian	2	First author—1, second—1
Beach	2	Fourth author—1
Bircoll	2	First author—2
Bradley	2	Second author—1, seventh—1
Brown	2	Third author—1, seventh—1
Carpaneda	2	First author—2
Elbarbary	2	Second author—1, third—1
Ersek	2	First author—2
Futrell	2	Fourth author—1, fifth—1
Gonda	2	First author—1, fifth—1
Har-Shai	2	First author—1, third—1
Hirshowitz	2	Fourth author—1, fifth—1
Hyakusoku	2	First author—1, sixth—1
Katz	2	First author—1, sixth—1
Kaufman	2	First author—2
Kurita	2	First author—1, fourth—1
Lindenbaum	2	Second author—1, sixth—1
Llull	2	Second author—2
Matsumoto	2	Second author—1, fourth—1
Miller	2	Second author—1, tenth—1
Mizuno	2	First author—1, second—1
Peer	2	First author—2
Schipper	2	First author—1, sixth—1
Serra-Renom	2	First author—2
Ribeiro	2	Second author—2
Rohrich	2	First author—1, sixth—1
Shigeura	2	Second author—1, third—1
Sorokin	2	Second author—1, fifth—1
von Heimburg	2	First author—1, second—1
Wasson	2	Fifth author—2
Yoshimura	2	First author—1, twelfth—1

published 5 articles each. The institution that produced the most articles was the University of California system with 8 articles (Table 6), whereas the New York University School of Medicine published 7 articles. Eleven authors were first-named authors on more than 1 article (Table 7), whereas 48 authors contributed to more than 1 article overall. The most illustrious author was Coleman as he was first-named author on 7 articles while Guerresantos and Chajchir were first-named authors on 4 articles each.

The second most-cited article in the top 100 was another article by Coleman, and this has been cited 258 times to date. This article retrospectively examined over 400 fat injections to the face and compared it to a control. This article was the first article detailing the Coleman technique for fat transplantation. The third article on the most-cited list was a review on fat grafting written by Billings and May and published in PRS. This 1989 article revisited the topic of fat grafting as it had been a seemingly neglected topic for many years in plastic surgery, most likely due to unpredictable results coupled with an absence of a clear understanding of how it worked.

At number 7 in the top 100 list, Yoshimura et al described a novel technique for breast augmentation using lipoinfiling in conjunction with cell-assisted transfer. They found that postoperative fat atrophy was negligible compared to fat grafting alone. The 14th most-cited article was published in the Annals of Plastic Surgery in 1986. This article by Ellenbogen was a preliminary report on the use of fat as a facial filler, and it has been cited 136 times to date.

At number 19, Rohrich et al examined the role of centrifugation along with harvest site in fat grafting. As fat grafting yields such unpredictable results with varying amounts of fat resorption, there have been numerous attempts at refining the technique. Proposed measures to improve fat survival include centrifugation and fat harvest from certain anatomical sites. Rohrich et al found that centrifugation had no effect on fat viability, and neither was there any difference in adipocyte viability between several donor sites.

Results from the “Autologous fat transfer national consensus survey” were at 29. This article published the results of a survey of 508 plastic surgeons. The aim of the survey was to assess their technique used in fat grafting and ascertain their level of success with their chosen method. Overall, most surgeons did not deviate from published methods of fat grafting, and 80% of them were happy with the long-term results.

The American Society of Plastic Surgeons Fat Graft Task Force was set up in 2007 to conduct an assessment regarding the efficacy and safety of autologous fat grafting. The recommendations put forward by this task force were at number 38 in the most-cited list. This article detailed the evidence-based practice recommendations put forward by the task force on fat transfer. At number 55, Klinger et al reported on their experience with fat grafting of burn wounds. Using the Coleman fat transfer method, scars from burns were injected and reviewed at
6 months whereby histological examination demonstrated changes suggestive of tissue regeneration.

At 90th position in the top 100, Hyakusoku et al reported on the complications associated with autologous fat injection to the breast, including calcifications and cysts. Furthermore, they also observed that routine breast cancer screening would detect abnormalities following fat grafting.

DISCUSSION

Fat transfer is now an invaluable tool in the plastic surgeon’s armamentarium, and its growth in popularity is echoed in the large volume of published material. The purpose of our study was to identify the 100 most-cited articles in fat grafting and to further analyze each article individually. As the citation count of an article is a reflection of its influence on a particular field, the most-cited articles in fat transfer are the published works that have made the biggest impact on our specialty. The top 100 list contains articles that represent most of the key moments in the evolution of fat grafting written by illustrious authors who are well-recognized experts in the art of fat transfer.

Despite the fact that most of the key articles on fat grafting are present on our top 100 list, several landmark articles have failed to be included in the top 100. This may be explained by the phenomenon of “obliteration by incorporation,” whereby “classic articles” fail to be cited over time as they have become such common knowledge. A prime example of this is the 2012 article by Khouri et al, which reports on the dual use of lipotransfer and the Brava (Brava, LLC, Miami, Fla.) device for breast augmentation. Despite being a well-known article with over 30 citations, it failed to make it in to the top 100.

A study of this nature is not without limitations, however. Several biases exist with bibliometric analyses, including self-citation, journal bias, in-house bias, and omission bias, whereby academic competitors are purposely not cited. Incomplete citing is a considerable limitation that occurs when citations are made to persuade the reader rather than recognizing key works in that particular area.

It is argued that the most influential articles that have made the most impact on a specific specialty can be found on the reference list of their most-cited articles. It has also been proposed that older articles have a higher citation count than more recent articles based on a longer citable period. Scientific articles tend not to be cited frequently until 2 years after publication and usually reach a maximum after 3–10 years after which they continue to be cited, albeit at a slower rate. Consequently, several methods have been devised to remedy this perceived bias. The citation index, as described by Loonen et al, was defined as the average number of times an article has been cited per year up to 16 years after publication. Sixteen years was accepted as the critical citable period as they found that the most significant change in annual increase of the fraction of citations occurred at this time point. For articles that had been published within the last 16 years, the total citation number since publication was divided by the number of years since publication. However, we have found that the citation index heavily favors more recently published articles and several reasons account for this. The growing utilization of electronic citation managers (ie, EndNote, Thomson Reuters) facilitates rapid incorporation of references into modern-day articles, which would not have been as readily achievable in previous years. Also, most recent published works tend to be available online and are therefore much more accessible than older articles that often require significant effort to locate.

Eighty-five percent of the top 100 articles were published in the past 24 years, and this highlights how fat grafting has soared in popularity in recent times. It is important to recognize the contribution Peer made to fat transfer as his seminal work was published in the 1950s in an era when fat grafting was not commonplace. It is a testament to his work that 2 of his articles are in the top 100.

There is a paucity of studies in plastic surgery with high levels of evidence. The majority of the clinical studies in the top 100 most-cited list were level IV or V evidence, which is in keeping with what Loonen et al found when they analyzed the characteristics of the top 50 articles in plastic surgery. In contrast to medicine, surgery by its very nature does not lend itself to randomized control trials, as it is difficult to standardize surgical procedures. Furthermore, a limited disease incidence coupled with the variation in experience and expertise between surgeons renders surgical procedures less suitable for level I studies. The intended outcome in fat grafting is for an aesthetically pleasing result with added volume. Therefore, the level IV and V studies published on fat grafting are as important to this field as the higher level of evidence studies are to other disciplines.

The top 100 list contains articles that document the entire history of fat grafting. Bircoll and Coleman are widely attributed with pioneering the procedure in the 1990s, and as such, both authors are well represented in the top 100 list. Although several articles predate the work of Bircoll and Coleman, they are largely responsible for the surge in popularity of fat grafting. The Coleman technique for fat grafting is one of the most commonly employed techniques for fat transplantation, yet numerous other techniques have been published. The results of the varied different techniques...
for fat grafting are quite similar, thus indicating that no one technique is superior. The Coleman technique of low-volume lipofilling is in stark contrast to the mega-volume fat transfer described by Khouri et al.118

Despite having a better understanding of fat grafting today than we did in the 1950s, there still remain many unanswered questions.115 No consensus has been reached on the optimum technique for any of the 3 steps in fat transfer: harvesting, processing, and lipofilling.119 This is highlighted by the fact that there are so many laboratory-based animal studies in the top 100 list which seek to find the answer to optimizing adipocyte viability. Refinements in the technique of fat grafting have yielded improved results, yet there remains a huge discrepancy in outcomes between patients. Despite this, it is a rapidly evolving field within plastic surgery, and it has transformed clinical practice in recent years. Although it was first described more than 120 years ago, fat transfer still remains in its infancy due to its neglect for so many years. The number of indications for fat grafting continually grows as it becomes used in a plethora of conditions.120-122 This is evident in the expanding medical literature that continuously reports on newly unearthed benefits of fat grafting,123 which, in turn, further drives scientific research.

CONCLUSIONS

The top 100 list generated from our analysis not only identifies the landmark papers that have had the most influence on fat grafting but also acknowledges the most prolific authors and institutions that have contributed papers to the list. Many articles described pioneering methods and techniques that are still used today. Citation analysis is certainly not a measure of scientific quality and certain intrinsic limitations exist with it. However, it does provide an objective and quantitative measure of the impact that an article has on its respective field. More importantly, it provides useful information on readership. The top 100 papers on fat grafting were all written by experts in the field and their importance is reflected in the large number of citations they received from their peers.
patients with long-term follow up. J Plast Reconstr Aesthet Surg 2008;61:792–798.

26. Coleman SR. Structural fat grafts: the ideal filler? Clin Plast Surg. 2001;28:111–119.

27. Kaufman MR, Miller TA, Huang C, et al. Autologous fat transfer for facial recontouring: is there science behind the art? Plast Reconstr Surg. 2007;119:2287–2296.

28. Coleman SR. Facial augmentation with structural fat grafting. Clin Plast Surg. 2006;28:111–119.

29. Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32:48–55.

30. von Heimburg D, Zachariah S, Low A, et al. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells. Plast Reconstr Surg. 2001;108:411–420; discussion 421–422.

31. Pereira LH, Radwanski HN. Fat grafting of the buttocks and lower limbs. Aesthetic Plast Surg. 1996;20:409–416.

32. Coleman SR. Structural fat grafting: more than a partial filler. Plast Reconstr Surg. 2006;118(3 Suppl):108S–120S.

33. Moore JH Jr, Kolaczynski JW, Morales LM, et al. Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg. 1995;19:335–339.

34. Pu LL, Cui X, Fink BF, et al. The viability of fatty tissues within adipose aspirates after conventional liposuction: a comprehensive study. Ann Plast Surg. 2005;54:288–292.

35. Ashjian PH, Elbarbary AS, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 2003;111:1922–1931.

36. Teimourian B. Blindness following fat injections. Plast Reconstr Surg. 1988;82:361.

37. Feinendegen DL, Baumgartner RW, Vuadens P, et al. Autologous fat injection for soft tissue augmentation in the face: a safe procedure? Aesthetic Plast Surg. 1998;22:163–167.

38. Peer IA. Loss of weight and volume in human fat grafts: with postulation of a “cell survival theory”. Plast Reconstr Surg. 1950;5:217–230.

39. De Ugarte DA, Ashjian PH, Elbarbary A, et al. Future of fat as raw material for tissue regeneration. Ann Plast Surg. 2008;50:215–219.

40. Wolter TP, von Heimburg D, Stoffels I, et al. Cryopreservation of mature human adipocytes: in vitro measurement of viability. Ann Plast Surg. 2005;55:408–413.

41. Coleman SR, Saboeiro AP. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2007;119:775–785; discussion 786–787.

42. Carraway JH, Mellow CG. Syringe aspiration and fat concentration: a simple technique for autologous fat injection. Ann Plast Surg. 1990;24:293–296; discussion 297.

43. Schoeller T, Lille S, Wechselberger G, et al. Histomorphologic and volumetric analysis of implanted autologous preadipocyte cultures suspended in fibrin glue: a potential new source for tissue augmentation. Aesthetic Plast Surg. 2001;25:57–63.

44. Niechajev I, Sevcik O. Long-term results of fat transplantation: clinical and histologic studies. Plast Reconstr Surg. 1994;94:496–506.

45. Pu LL, Coleman SR, Cui X, et al. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 2008;122:932–937.

46. Guerrerossantos J. Simultaneous rhytidoplasty and lipoinjection: a comprehensive aesthetic surgical strategy. Plast Reconstr Surg. 1998;102:191–199.

47. Chajchir A, Benzaquen I. Fat-grafting injection for soft-tissue augmentation. Plast Reconstr Surg. 1989;84:921–934; discussion 935.

48. Chajchir A, Benzaquen I. Liposuction fat grafts in face wrinkles and hemifacial atrophy. Aesthetic Plast Surg. 1986;10:115–117.

49. Mojallal A, Lequeux C, Shipkov C, et al. Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg. 2009;124:765–774.

50. Ellenbogen R. Free autologous pearl fat grafts in the face—a preliminary report of a rediscovered technique. Ann Plast Surg. 1986;16:179–194.

51. Fagrell D, Eneström S, Berggren A, et al. Fat cylinder transplantation: an experimental comparative study of three different kinds of fat transplants. Plast Reconstr Surg. 1996;98:90–96; discussion 97–98.

52. Gonda K, Shigeura T, Sato T, et al. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 2008;121:401–410.

53. Illoiu YG. The fat cell “graft”: a new technique to fill depressions. Plast Reconstr Surg. 1986;78:122–123.

54. Moscona R, Ullman Y, Har-Shai Y, et al. Free-fat injections for the correction of hermifacial atrophy. Plast Reconstr Surg. 1989;84:501–507; discussion 508–509.

55. Hudson DA, Lambert EV, Bloch CE. Site selection for fat autotransplantation: some observations. Aesthetic Plast Surg. 1990;14:195–197.

56. Katz AJ, Llull R, Hedrick MH, et al. Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 1999;26:587–603, viii.

57. Bircoll M, Novack BH. Autologous fat transplantation employing liposuction techniques. Ann Plast Surg. 1987;18:327–329.

58. Serra-Renom JM, Muñoz-Olmo JL, Serra-Mestre JM. Fat grafting in postmastectomy breast reconstruction with expanders and prostheses in patients who have received radiotherapy: formation of new subcutaneous tissue. Plast Reconstr Surg 2006;117:1836–1844.

59. Moseley TA, Zhu M, Hedrick MH. Adipose-derived stromal/stem cell grafting. Plast Reconstr Surg. 2007;119:71–84.

60. Kurita M, Matsumoto D, Shigeura T, et al. Influences of human adult stem cells: clinical implications in plastic and reconstructive surgery. Plast Reconstr Surg. 2006;118(3 Suppl):121S–128S.

61. Serra-Renom JM, Muñoz-Olmo JL, Serra-Mestre JM. Fat transplantation using pre-expansion and autologous fat transplantation. Clin Plast Surg. 2009;36:269–280, viii.
Joyce et al. • Fat Transfer Citation Analysis

65. Rohrich RJ, Sorokin ES, Brown SA. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg 2004;113:391–395.

66. Carpaneda CA, Ribeiro MT. Study of the histologic alterations and viability of the adipose graft in humans. Aesthetic Plast Surg. 1993;17:43–47.

67. Rigotti G, Marchi A, Stringhini P, et al. Determining the oncological risk of autologous liposapirate grafting for post-mastectomy breast reconstruction. Aesthetic Plast Surg. 2010;34:475–480.

68. Kononas TC, Bucky LP, Hurley C, et al. The fate of suctioned and surgically removed fat after reimplantation for soft-tissue augmentation: a volumetric and histologic study in the rabbit. Plast Reconstr Surg. 1993;91:763–768.

69. Eppley BL, Sidner RA, Platis JM, et al. Bioactivation of fat cells and beyond. Plast Reconstr Surg. 2003;50:610–617.

70. Lu F, Li J, Gao J, et al. Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg. 2009;124:1437–1446.

71. Coleman SR. Hand rejuvenation with structural fat grafting. Plast Reconstr Surg. 2002;110:1731–1744; discussion 1745–1747.

72. Ramon Y, Shoshani O, Peled IJ, et al. Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plast Reconstr Surg. 2005;115:197–201; discussion 202–203.

73. Gonzalez AM, Lobocki C, Kelly CP, et al. An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg. 2007;120:285–294.

74. Bircoll M. Cosmetic breast augmentation utilizing autologous fat and liposuction techniques. Plast Reconstr Surg. 1987;79:267–271.

75. Klinger M, Marazzi M, Vigo D, et al. Bioactivation of fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg. 2002;110:1940–1944.

76. Cárdenas-Camarena L, Lacouture AM, Tobar-Losada A. Combined glycolipase: liposuction and lipoinjection. Plast Reconstr Surg. 1998;101:820–826.

77. Hörl HW, Feller AM, Biemer E. Technique for liposuction fat reimplantation and long-term volume evaluation by magnetic resonance imaging. Ann Plast Surg. 1991;26:248–258.

78. Guerrerosantos J. Long-term outcome of autologous fat transplantation in aesthetic facial contouring: sixteen years of experience with 1936 cases. Clin Plast Surg. 2000;27:515–543.

79. Baran CN, Celebioglu S, Sensoz O, et al. The behavior of fat grafts in recipient areas with enhanced vascularization. Plast Reconstr Surg. 2002;109:1646–1651.

80. Lee JA, Parrett BM, Conjeero JA, et al. Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg. 2005;50:610–617.

81. Tholpady SS, Llul R, Ogle RC, et al. Adipose tissue: stem cells and beyond. Clin Plast Surg. 2006;33:55–62, vi.

82. Hyakusoku H, Ogawa R, Ono S, et al. Complications after autologous fat injection to the breast. Plast Reconstr Surg. 1990;14:127–136.

83. Spear SL, Wilson HB, Lockwood MD. Fat injection to correct contour deformities in the reconstructed breast. Plast Reconstr Surg. 2005;116:1300–1305.

84. Carpaneda CA, Ribeiro MT. Percentage of graft viability versus injected volume in adipose autotransplants. Aesthetic Plast Surg. 1994;18:17–19.

85. Marra KG, Defail AJ, Clavijo-Alvarez JA, et al. FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg. 2008;121:1153–1164.

86. Schipper BM, Marra KG, Zhang W, et al. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2006;50:538–544.

87. Chajchir A. Fat injection: long-term follow-up. Aesthetic Plast Surg. 1996;20:291–296.

88. Trepsat F. Peri-orbital rejuvenation combining fat grafting and blepharoplasties. Aesthetic Plast Surg. 2003;27:243–253.

89. Yuksel E, Weinfeld AB, Cleck R, et al. Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-1, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg. 2000;105:1712–1720.

90. Ersek RA, Chang P, Salisbury MA. Lipo layering of autologous fat: an improved technique with promising results. Plast Reconstr Surg. 1998;101:820–826.

91. Castelli JR, Barros J, Vázquez R. Giant lipomeric pseudocyst after breast augmentation by fat injection. Plast Reconstr Surg. 1999;103:291–293.

92. Loeb R. Fat graft shifting and fat grafting for leveling lid depressions. Clin Plast Surg. 1981;8:757–776.

93. Guerrerosantos J. Autologous fat grafting for body contouring. Clin Plast Surg. 1996;23:619–631.

94. Lewis CM. Correction of deep gluteal depression by autologous fat grafting. Aesthetic Plast Surg. 1992;16:247–250.

95. Kaufman MR, Bradley JP, Dickinson B, et al. Autologous fat transfer national consensus survey: trends in techniques for harvest, preparation, and application, and perception of short- and long-term results. Plast Reconstr Surg. 2007;119:325–331.

96. Chajchir A, Benzaquen I, Wexler E, et al. Fat injection. Aesthetic Plast Surg. 1990;14:127–136.

97. Pinsolle V, Chichery A, Grolleau JL, et al. Autologous fat injection in Poland’s syndrome. J Plast Reconstr Aesthet Surg. 2008;61:784–791.

98. Boschert MT, Beckert BW, Puckett CL, et al. Analysis of lipocyte viability after liposuction. Plast Reconstr Surg. 2002;109:761–765; discussion 766–767.

99. Zhu M, Zhou Z, Chen Y, et al. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg. 2010;64:222–228.

100. Loeb R. Naso-jugal groove leveling with fat tissue. Clin Plast Surg. 1995;20:393–400.

101. Illouz YG. Present results of fat injection. Aesthetic Plast Surg. 1988;12:175–181.

102. Ullmann Y, Hyams M, Ramon Y, et al. Enhancing the survival of aspirated human fat injected into nude mice. Plast Reconstr Surg. 1998;101:1940–1944.

103. Zocchi ML, Zuliani F. Bicompartmental breast lipoplasty and blepharoplasties. Plast Surg. 1993;20:393–400.

104. Matsudo PK, Toledo LS. Experience of injected fat grafting and blepharoplasties. Plast Reconstr Surg. 1998;104:1524–1531.

105. Kesselring UK. Regional fat aspiration for body contouring. Aesthetic Plast Surg. 2008;32:313–328.

106. Matsudo PK, Toledo LS. Experience of injected fat grafting and blepharoplasties. Plast Reconstr Surg. 1998;104:1524–1531.

107. Peer LA. The neglected free fat graft, its behavior and clinical use. Am J Surg. 1956;92:40–47.

108. Illouz YG, Sterodimas A. Autologous fat transplantation to the breast: a personal technique with 25 years of experience. Aesthetic Plast Surg. 2009;33:706–715.

109. Vaietti L, Soresina M, Menozzi A. Parascapular free flaps and fat grafts: combined surgical methods in morpho-
logical restoration of hemifacial progressive atrophy. *Plast Reconstr Surg* 2005;116:699–711.

110. Locke MB, de Chalain TM. Current practice in autologous fat transplantation: suggested clinical guidelines based on a review of recent literature. *Ann Plast Surg* 2008;60:98–102.

111. Villani F, Caviggioli F, Giannasi S, et al. Current applications and safety of autologous fat grafts: a report of the ASPS Fat Graft Task Force. *Plast Reconstr Surg* 2010;125:758–759.

112. Khouri RK, Eisenmann-Klein M, Cardoso E, et al. Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. *Plast Reconstr Surg* 2012;129:1173–1187.

113. Picknett T, Davis K. The 100 most-cited articles from JMB. *J Mol Biol*. 1999;293:171–176.

114. Bohannon RW, Roberts D. Core journals of rehabilitation: identification through index analysis. *Int J Rehabil Res*. 1991;14:333–336.

115. Joyce CW, Sugrue CM, Joyce KM, et al. 100 citation classics in the melanoma literature: a bibliometric analysis. *Dermatol Surg*. 2014;40:1284–1298.

116. Rodrigues MA, Tedesco AC, Nahas FX, et al. Journal impact factor versus the evidence level of articles published in plastic surgery journals. *Plast Reconstr Surg*. 2014;133:1502–1507.

117. Offer GJ, Perks AG. In search of evidence-based plastic surgery: the problems faced by the specialty. *Br J Plast Surg*. 2000;53:427–433.

118. Khouri RK, Rigotti G, Cardoso E, et al. Megavolume autologous fat transfer: part II. Practice and techniques. *Plast Reconstr Surg*. 2014;133:1369–1377.

119. Longaker MT, Aston SJ, Baker DC, et al. Fat transfer in 2014: what we do not know. *Plast Reconstr Surg*. 2014;133:1305–1307.

120. Mende K, Strub B, Meuli-Simmen C. Autologous fat grafting for painful finger scars. *J Hand Surg Eur Vol*. 2014 Jul 10. [Epub ahead of print].

121. Bank J, Fuller SM, Henry GI, et al. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality. *Plast Reconstr Surg*. 2014;133:1109–1118.

122. Vercler CJ, Ballard TN, Buchman SR. Conjunctival fat grafting for improved aesthetics of an ocular prosthesis. *J Plast Reconstr Aesthet Surg*. 2014;67:575–576.

123. Garza RM, Paik KJ, Chung MT, et al. Studies in fat grafting: Part III. Fat grafting irradiated tissue—improved skin quality and decreased fat graft retention. *Plast Reconstr Surg*. 2014;134:249–257.