The top 100 most impactful articles on the anterior cruciate ligament: An altmetric analysis of online media

Matthew D Civilette1,2, William R Rate1, Brett D Haislup3, Andrew S Cohen3, Lyn Camire3, Blake M Bodendorfer4 and Heath P Gould3

Abstract

Objectives: To identify the top 100 most impactful anterior cruciate ligament articles in online media as measured by the Altmetric Attention Score and compare their characteristics to the most-cited anterior cruciate ligament articles in the scientific literature.

Methods: The Altmetric database was queried to identify all published articles pertaining to the anterior cruciate ligament. The search yielded 9445 articles, which were stratified by highest to lowest Altmetric Attention Score. The top 100 articles were included. Collected data included article type, article topic, journal name, and online mentions in news, blogs, Twitter, Facebook, Wikipedia, and other sources. The geographic origin of each article was also determined based on the institutional affiliation of the first author.

Results: Altmetric Attention Score of the top 100 anterior cruciate ligament articles ranged from 109 to 2193 (median 172.0, interquartile range 137.5–271.5). Of the 100 articles, 65 were published in three journals: American Journal of Sports Medicine, British Journal of Sports Medicine, and Journal of Orthopaedic & Sports Physical Therapy. The most prevalent article type was original research (60%), followed by systematic review/meta-analysis (18%). The most prevalent article topic was rehabilitation and return to play after anterior cruciate ligament reconstruction (22%), followed by epidemiology/risk factors (16%), injury prevention (14%), and biomechanics of anterior cruciate ligament injuries (14%). Of the top 100 articles, 54% were American, 31% were European, and 15% were published in other countries outside of the United States and Europe.

Conclusion: This study used Altmetric Attention Score to identify the 100 most engaged anterior cruciate ligament articles in online media. The characteristics of these articles differed substantially from the most-cited anterior cruciate ligament articles in the literature with regard to article type, article topic, geographic origin, and publication journal. These findings suggest that alternative metrics measure distinct components of anterior cruciate ligament article engagement and add an important dimension to understanding the overall impact of published research on the anterior cruciate ligament.

Keywords

Orthopedics, sports medicine, anterior cruciate ligament, ACL, altmetrics, altmetric attention score, AAS, citation rate, bibliometrics

Date received: 5 January 2022; accepted: 13 June 2022

Introduction

Bibliometric analysis has been used to assess the academic impact of various types of orthopedic research.1–8 This type of analysis provides insight into the value of specific articles within various scientific communities and is a growing trend in other medical specialties in the last 5 years, including medical imaging, gastroenterology, and neurosciences.9–11 However, social media platforms, such as Twitter, are increasingly used as a means of disseminating scientific
research, and conventional bibliometrics do not account for the engagement of physicians and scientists with academic research that occurs in the online setting. Overall, little is known about the proliferation of orthopedic research in online media.

Previous studies have used the Altmetric Attention Score (AAS) to examine the most mentioned articles in online media pertaining to other medical specialties, such as cardiology,15 neurology,16 and spine surgery,17 but no study has reported the online engagement of articles pertaining to a particular topic in sports medicine. The anterior cruciate ligament (ACL) is one of the most commonly injured ligaments in the human body, with over 120,000 ACL injuries occurring annually in the United States and peak incidence in high school athletes.19 The implications of ACL injuries in the realm of competitive athletics may generate a robust online discussion surrounding ACL research that has not yet been captured or quantified in a systematic way.

The purpose of this study was to use an established alternative metrics database to evaluate the online engagement of ACL research articles. We aimed to identify the 100 most engaged ACL articles in online media as measured by the AAS and compare their characteristics to the most-cited ACL articles in the literature. Our goal was to achieve a better understanding of the online dissemination of ACL research as an added dimension of ACL research impact.

Methods

The Altmetric database (Altmetric.com), which tracks online attention generated by a research article20 and calculates a quantitative AAS, was queried on 17 June 2020, to identify articles pertaining to the ACL. The search was performed using the PubMed MeSH terms “ACL” or “anterior cruciate ligament” and yielded 9445 articles published between 2005 and 2020. These articles were stratified by highest to lowest AAS, and the 100 articles with the highest scores were included for analysis. All articles that focused on other orthopedic topics were sequentially excluded until 100 relevant articles were gathered.

Collected data included title, authors, year of publication, journal name, institutional affiliations, article type, article topic, and online mentions (e.g. the number of times the article was mentioned in news, blogs, Twitter, Facebook, and Wikipedia). Article type was identified from the article abstract and classified as original research (further subclassified as randomized controlled trial, prospective cohort, retrospective cohort, case–control, case series, case report, or laboratory study), descriptive epidemiology, systematic review/meta-analysis, review, editorial/expert opinion, clinical commentary, or other. Article topic was classified as anatomy, basic science, biomechanics, cost, diagnostics, treatment, neuromechanics, epidemiology/risk factors, injury prevention, rehabilitation/return to play, patient satisfaction/quality of life, or other. The geographic origin of the article was determined by the institutional affiliation of the first author, categorized as American (originating in the United States), European (originating in Europe), or other.

Statistical analysis

STATA 15.1 (STATACorp) was used for calculations and statistical analysis. Median and quartiles were calculated for AAS. Spearman correlation and logarithmic regression were used to determine the relationship between online mentions and AAS, and analysis of variance (ANOVA) was used to determine whether article type or topic was associated with AAS. All calculations were performed at a significance level of $p < 0.05$.

Results

The AAS of the top 100 ACL articles ranged from 109 to 2193 (median 172.0, interquartile range (IQR) 137.5–271.5) (Table 1). Among online media sources, YouTube video description mentions (median 8.0, IQR 4.0–17.5), and 735 Facebook mentions (median 8.0; IQR 4.0–17.5), and 735 mentions in online news outlets (median 1.0; IQR 0–3.0). Among online media sources, YouTube video description mentions ($r = 0.78$, $R^2 = 0.60$) correlated most strongly with AAS, followed by Twitter mentions ($r = 0.75$, $R^2 = 0.56$) and blog mentions ($r = 0.75$, $R^2 = 0.56$).
Table 1. Top 100 most influential ACL articles by Altmetric Attention Score (AAS).

Rank	AAS	Authors	Article title	Year published	Journal
1	2193	Magnussen et al.21	ACL graft metabolic activity assessed by 18 FDG PET–MRI	2017	Knee
2	1276	Grindem et al.22	Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study	2016	British Journal of Sports Medicine
3	832	Webster and Hewett23	Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs	2018	Journal of Orthopaedic Research
4	730	van Melick et al.24	Evidence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus	2016	British Journal of Sports Medicine
5	579	Ardern et al.25	2018 International Olympic Committee consensus statement on prevention, diagnosis, and management of pediatric anterior cruciate ligament (ACL) injuries	2018	British Journal of Sports Medicine
6	569	Owusu-Akyaw et al.26	Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises	2018	American Journal of Sports Medicine
7	478	Sugimoto et al.27	Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females: Meta-analysis and subgroup analysis	2014	British Journal of Sports Medicine
8	461	Nagelli and Hewett28	Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations	2016	Sports Medicine
9	439	Liederbach et al.29	Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers	2017	American Journal of Sports Medicine
10	427	Dingenen and Gokeler30	Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: A critical step back to move forward	2017	Sports Medicine
11	403	Kyritsis et al.31	Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a 4 times greater risk of rupture	2016	British Journal of Sports Medicine
12	399	Moatshe et al.32	The influence of graft tensioning sequence on tibiofemoral orientation during bicruciate and posterolateral corner knee ligament reconstruction: A biomechanical study	2018	American Journal of Sports Medicine
13	391	Ohta et al.33	Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament rehabilitation	2009	Acta Orthopaedica Scandinavica
14	386	Taylor et al.34	Isolated tears of the anterior cruciate ligament	2017	American Journal of Sports Medicine
15	383	Walden et al.35	Three distinct mechanisms predominate in noncontact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases	2015	British Journal of Sports Medicine
16	380	Petushek et al.36	Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: A systematic review and meta-analysis	2018	American Journal of Sports Medicine
17	373	Frobell et al.37	Treatment for acute anterior cruciate ligament tear: Five-year outcome of randomized trial	2013	British Medical Journal
18	343	Salzler et al.38	Management of anterior cruciate ligament injuries in adults aged > 40 years	2018	Journal of the American Academy of Orthopaedic Surgeons
19	336	Padua et al.39	National athletic trainers’ association position statement: Prevention of anterior cruciate ligament injury	2018	Journal of Athletic Training
20	319	Arundale et al.40	Exercise-based knee and anterior cruciate ligament injury prevention	2018	Journal of Orthopaedic & Sports Physical Therapy
21	310	Eitzen et al.41	A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury	2010	Journal of Orthopaedic & Sports Physical Therapy
Rank	AAS	Authors	Article title	Year published	Journal
------	-----	--------------------------	--	----------------	--
22	302	Beischer et al.42	Young athletes who return to sport before 9 months after anterior cruciate ligament reconstruction have a rate of new injury 7 times that of those who delay return	2020	Journal of Orthopaedic & Sports Physical Therapy
23	295	Walden et al.43	ACL injuries in men’s professional football: A 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture	2016	British Journal of Sports Medicine
24	280	Grooms et al.44	Neuroplasticity associated with anterior cruciate ligament reconstruction	2017	Journal of Orthopaedic & Sports Physical Therapy
25	272	Johnston et al.45	Video analysis of anterior cruciate ligament tears in professional American football athletes	2018	American Journal of Sports Medicine
26	271	Weinhandl et al.46	Reduced hamstring strength increases anterior cruciate ligament loading during anticipated sidestep cutting	2014	Clinical Biomechanics
27	271	DeFroda et al.47	Oral contraceptives provide protection against anterior cruciate ligament tears: A national database study of 165,748 female patients	2019	Physician & Sports Medicine
28	257	Kotsifaki et al.48	Measuring only hop distance during single-leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: A systematic review and meta-analysis	2019	British Journal of Sports Medicine
29	256	Escamilla et al.49	Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: A guide to exercise selection	2012	Journal of Orthopaedic & Sports Physical Therapy
30	252	van Yperen et al.50	Twenty-year follow-up study comparing operative versus non-operative treatment of anterior cruciate ligament ruptures in high-level athletes	2018	American Journal of Sports Medicine
31	239	Failla et al.51	Does extended preoperative rehabilitation influence outcomes 2 years after ACL reconstruction?	2016	American Journal of Sports Medicine
32	223	Webster et al.52	What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis	2019	Sports Medicine
33	220	Hewett et al.53	Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction	2012	American Journal of Sports Medicine
34	219	Joseph et al.54	A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics	2013	Journal of Athletic Training
35	215	LaBella et al.55	Anterior cruciate ligament injuries: Diagnosis, treatment, and prevention	2014	Pediatrics
36	211	Hewett et al.56	Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools	2016	Journal of Orthopaedic Research
37	210	Hewett et al.57	Preventive biomechanics: A paradigm shift with a translational approach to injury prevention	2017	American Journal of Sports Medicine
38	208	Benjaminse et al.58	Optimization of the anterior cruciate ligament injury prevention paradigm: Novel feedback techniques to enhance motor learning and reduce injury risk	2015	Journal of Orthopaedic & Sports Physical Therapy
39	204	Frobell et al.59	A randomized trial of treatment for acute anterior cruciate ligament tears	2010	New England Journal of Medicine
40	201	Omi et al.60	Effect of hip-focused injury prevention training for anterior cruciate ligament injury reduction in female basketball players: A 12-year prospective intervention study	2018	American Journal of Sports Medicine
41	195	Rambaud et al.61	Criteria for return to running after anterior cruciate ligament reconstruction: a scoping review	2018	British Journal of Sports Medicine
42	193	Toole et al.62	Young athletes after anterior cruciate ligament reconstruction cleared for sports participation: How many actually meet recommended return-to-sport criteria cutoffs?	2017	Journal of Orthopaedic & Sports Physical Therapy
43	192	Khayambashi et al.63	Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes	2015	American Journal of Sports Medicine

(Continued)
Rank	AAS	Authors	Article title	Year published	Journal
44	192	Gray et al.⁶⁴	Effects of oral contraceptive use on anterior cruciate ligament injury epidemiology	2016	Medicine and Science in Sports & Exercise
45	190	Grooms et al.⁶⁵	Neuroneplasticity following anterior cruciate ligament injury: A framework for visual-motor training approaches in rehabilitation	2015	Journal of Orthopaedic & Sports Physical Therapy
46	184	Hewett et al.⁶⁶	Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study	2005	American Journal of Sports Medicine
47	184	Paterno et al.⁵⁷	Incidence of second ACL Injuries 2 years after primary ACL reconstruction and return to sport	2014	American Journal of Sports Medicine
48	178	Wu et al.⁶⁸	Randomized control trial to evaluate the effects of acute testosterone administration in men on muscle mass, strength, and physical function following ACL reconstructive surgery: rationale, design, methods	2014	BMC Surgery
49	174	Allen et al.⁶⁹	Are female soccer players at an increased risk of second anterior cruciate ligament injury compared with their athletic peers?	2016	American Journal of Sports Medicine
50	172	Wiggins et al.⁷⁰	Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction	2016	American Journal of Sports Medicine
51	171	Mørtvedt et al.⁷¹	I spy with my little eye . . . a knee about to go “pop”? Can coaches and sports medicine professionals predict who is at greater risk of ACL rupture?	2019	British Journal of Sports Medicine
52	170	Ardern et al.⁷²	Fifty-five percent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors	2014	British Journal of Sports Medicine
53	169	Weiler et al.⁷³	Non-operative management of a complete anterior cruciate ligament injury in an English Premier League football player with return to play in less than 8 weeks: Applying common sense in the absence of evidence	2015	BMJ Case Reports
54	167	Hewett et al.⁷⁴	Utilization of ACL injury biomechanical and neuromuscular risk profile analysis to determine the effectiveness of neuromuscular training	2016	American Journal of Sports Medicine
55	167	Grindem et al.⁷⁵	Alarming underutilisation of rehabilitation in athletes with anterior cruciate ligament reconstruction	2018	British Journal of Sports Medicine
56	165	Hewett et al.⁷⁶	Effectiveness of neuromuscular training based on the neuromuscular risk profile	2017	American Journal of Sports Medicine
57	165	Lai et al.⁷⁷	Eighty-three percent of elite athletes return to preinjury sport after anterior cruciate ligament reconstruction: A systematic review with meta-analysis of return to sport rates, graft rupture rates, and performance outcomes	2017	British Journal of Sports Medicine
58	165	Sugimoto et al.⁷⁸	Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: Meta- and subgroup analyses	2013	Sports Medicine
59	163	Filbay et al.⁷⁹	Delaying ACL reconstruction and treating with exercise therapy alone may alter prognostic factors for 5-year outcome: An exploratory analysis of the KANON trial	2017	British Journal of Sports Medicine
60	161	Mendias et al.⁸⁰	The use of recombinant human growth hormone to protect against muscle weakness in patients undergoing anterior cruciate ligament reconstruction: A pilot, randomized placebo-controlled trial	2020	American Journal of Sports Medicine
61	159	Fukuda et al.⁸¹	Open kinetic chain exercises in a restricted range of motion after anterior cruciate ligament reconstruction	2013	American Journal of Sports Medicine
62	158	Cinque et al.⁸²	High rates of osteoarthritis develop after anterior cruciate ligament surgery: An analysis of 4108 patients	2017	American Journal of Sports Medicine

(Continued)
Rank	AAS	Authors	Article title	Year published	Journal
63	158	Baar et al.	Minimizing injury and maximizing return to play: Lessons from engineered ligaments	2017	Sports Medicine
64	156	Shelbourne et al.	Results of anterior cruciate ligament reconstruction with patellar tendon autografts: Objective factors associated with the development of osteoarthritis at 20 to 33 years after surgery	2017	American Journal of Sports Medicine
65	154	Samuelsen et al.	Hamstring autograft versus patellar tendon autograft for ACL reconstruction: Is there a difference in graft failure rate? A meta-analysis of 47,613 patients	2017	Clinical Orthopaedics & Related Research
66	151	Kia et al.	Size of initial bone bruise predicts future lateral chondral degeneration in ACL injuries: A radiographic analysis	2020	Orthopaedic Journal of Sports Medicine
67	149	Thompson et al.	Biomechanical effects of an injury prevention program in preadolescent female soccer athletes	2016	American Journal of Sports Medicine
68	148	Sugimoto et al.	Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis	2016	British Journal of Sports Medicine
69	148	Lien-Iversen et al.	Does surgery reduce knee osteoarthritis, meniscal injury, and subsequent complications compared with non-surgery after ACL rupture with at least 10 years of follow-up? A systematic review and meta-analysis	2020	British Journal of Sports Medicine
70	147	Hewett et al.	Anterior cruciate ligament injuries in female athletes	2006	American Journal of Sports Medicine
71	144	Huang et al.	A majority of anterior cruciate ligament injuries can be prevented by injury prevention programs: A systematic review of randomized controlled trials and cluster-randomized controlled trials with meta-analysis	2020	American Journal of Sports Medicine
72	144	Krosshaug et al.	The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players	2016	American Journal of Sports Medicine
73	144	Perriman et al.	The effect of open- versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: A systematic review and meta-analysis	2018	Journal of Orthopaedic & Sports Physical Therapy
74	142	Buckthorpe	Optimizing the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction	2019	Sports Medicine
75	138	Yosmaoglu et al.	Tracking ability, motor coordination, and functional determinants after anterior cruciate ligament reconstruction.	2011	Journal of Sports Rehabilitation
76	137	Silvers-Granelli et al.	Does the FIFA 11 + injury prevention program reduce the incidence of ACL injury in male soccer players?	2017	Clinical Orthopaedics & Related Research
77	136	Konrath et al.	Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction	2016	American Journal of Sports Medicine
78	136	Khan et al.	ACL and meniscal injuries increase the risk of primary total knee replacement for osteoarthritis: A matched case–control study using the Clinical Practice Research Datalink (CPRD)	2019	British Journal of Sports Medicine
79	135	Beck et al.	ACL tears in school-aged children and adolescents over 20 years	2017	Pediatrics
80	134	Chung et al.	A biodegradable tri-component graft for anterior cruciate ligament reconstruction	2014	Journal of Tissue Engineering and Regenerative Medicine
81	131	Cordasco et al.	Return to sport and reoperation rates in patients under the age of 20 after primary anterior cruciate ligament reconstruction: Risk profile comparing three patient groups predicated upon skeletal age	2019	American Journal of Sports Medicine
82	129	Webster et al.	Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction	2016	American Journal of Sports Medicine

(Continued)
Rank	AAS	Authors	Article title	Year published	Journal
83	129	Lepley et al.	Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: A DTI and TMS study	2020	NeuroImage: Clinical
84	127	Lee et al.	Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments	2015	Journal of Applied Physiology
85	125	Kapreli et al.	Anterior cruciate ligament deficiency causes brain plasticity	2009	American Journal of Sports Medicine
86	123	Brophy et al.	Changes in transcriptome-wide gene expression of anterior cruciate ligament tears based on time from injury	2016	American Journal of Sports Medicine
87	123	Culvenor et al.	Accelerated return to sport after anterior cruciate ligament injury: A risk factor for early knee osteoarthritis?	2016	British Journal of Sports Medicine
88	121	Lopes et al.	The effects of injury prevention programs on the biomechanics of landing tasks: A systematic review with meta-analysis	2017	American Journal of Sports Medicine
89	119	Culvenor et al.	Loss of patellofemoral cartilage thickness over 5 years following ACL injury depends on the initial treatment strategy: results from the KANON trial	2019	British Journal of Sports Medicine
90	118	Thoma et al.	Coper classification early after anterior cruciate ligament rupture changes with progressive neuromuscular and strength training and is associated with 2-year success: The Delaware-Oslo ACL Cohort Study	2019	American Journal of Sports Medicine
91	114	Gokeler et al.	Principles of motor learning to support neuroplasticity after ACL injury: implications for optimizing performance and reducing risk of second ACL injury	2019	Sports Medicine
92	113	Trigsted et al.	Greater fear of reinjury is related to stiffened jump-landing biomechanics and muscle activation in women after ACL reconstruction	2018	Knee Surgery, Sports Traumatology, Arthroscopy
93	112	Wellsandt et al.	Does anterior cruciate ligament reconstruction improve functional and radiographic outcomes over non-operative management 5 years after injury?	2018	American Journal of Sports Medicine
94	112	Grindem et al.	How does a combined preoperative and postoperative rehabilitation program influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry	2014	British Journal of Sports Medicine
95	112	Wellsandt et al.	Limb symmetry indexes can overestimate knee function after anterior cruciate ligament injury	2017	Journal of Orthopaedic & Sports Physical Therapy
96	111	Janssen et al.	ACL reconstruction with hamstring tendon autograft and accelerated brace-free rehabilitation: A systematic review of clinical outcomes	2018	BMJ Open Sport & Exercise Medicine
97	111	Maniar et al.	Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting	2018	Scientific Reports
98	110	Mather et al.	Societal and economic impact of anterior cruciate ligament tears	2013	Journal of Bone & Joint Surgery, American Volume
99	110	Dingenen et al.	Test–retest reliability and discriminative ability of forward, medial and rotational single-leg hop tests	2019	Knee
100	109	Myklebust et al.	Return to play guidelines after anterior cruciate ligament surgery	2005	British Journal of Sports Medicine

AAS: Altmetric Attention Score; ACL: anterior cruciate ligament.
Discussion

Although some of the online discussion surrounding ACL research occurs among members of the general public who follow or report on sports, social media is also being used increasingly by orthopedic surgeons for general discussion121 and educational purposes.122 The results of this study suggest that the online dissemination of ACL research adds an important dimension to the online engagement of published articles pertaining to the ACL. Our findings support the use of alternative metrics as a supplement to conventional bibliometrics in order to achieve a more complete assessment of the overall impact of ACL research within the academic community.

Among the 100 most mentioned ACL articles identified in this study, original research was the most prevalent article type and the most common topics were rehabilitation/return to play, epidemiology/risk factors, and injury prevention. Online interest in ACL research was broad, with no association observed between article type, topic, or geographic origin and AAS. Three specialty-specific sports medicine journals (AJSM, BJSM, and JOSPT) accounted for 65% of the 100 articles. Our data suggest that the topics most talked about online tend to be American studies published in sports

![Figure 1](image_url)
medicine journals that focus on practical concerns related to the effect of ACL injury on athletic participation.

Our findings pertaining to article topic contrast with a previous report of the 50 most-cited ACL articles, in which the most common topics were anatomy/biomechanics (38%) and surgical technique (26%). The readership of sports medicine journals, comprised predominantly of orthopedic surgeons and other musculoskeletal healthcare providers, may be likely to view the aspects of ACL injury that fall within their domain as the most important: understanding the anatomical and biomechanical factors underlying the injury and providing the optimal surgical treatment. In online media, however, attention appears to be focused on the aspects of ACL rupture that directly impact an athlete’s ability to perform.

Citation rate has been shown to have no correlation to AAS, supported in our study by the incongruence in the article topics and types that constitute to the most impactful articles as determined by AAS or citation rate. Compared with previous studies that examined the most impactful ACL articles by citation density, the results of the present study demonstrate a predominance of clinically focused studies and a relatively lower degree of interest in laboratory studies. This finding is congruent with the historical trend of ACL research toward higher levels of evidence. Among the 100 ACL articles with the highest AAS, the most common article type was original research (Figure 1(a)), and basic science studies accounted for just 10% of these articles (Figure 1(b)). By comparison, basic science accounted for a higher proportion of studies (42% and 36%, respectively) in previous reports on the 50 most-cited ACL articles. One possible explanation for this finding is that laboratory findings, which are farther removed from the clinical setting, may hold less interest to an online audience that is more focused on ACL research with immediate clinical relevance.

The current findings also suggest that the online distribution of ACL research may facilitate broader access to readership compared with traditional citation-based methods. In their previous studies of the most-cited ACL articles, Vielgut et al. and Voleti et al. reported a strong predominance of American publications (80% and 68%, respectively), followed distantly by studies originating in Europe (16% and 18%, respectively). A predominance of highly cited articles originating in the United States is not unique to the ACL literature and has been demonstrated in other topics related to orthopedic, general, and plastic surgery. By comparison, a greater proportion of articles in the present study (46%) originated outside the United States, with nearly one-third of all articles being European in origin and 15% originating from other countries outside the United States and Europe. BJSM articles accounted for 21% of the top 100 ACL articles in this study, and four of the top five ACL articles with highest AAS originated in Europe.

There are many considerations to address before using Altmetric as a standalone metric of article impact. Although social media attention provides a benchmark of article attention, the AAS could be used deliberately to promote some publications over others. Moreover, the AAS for individual articles could be manipulated by utilizing Twitter bots or through self-promoting online journal clubs. There are other internal factors of Altmetric to consider, including its dynamic nature which has the potential to produce a different list of top 100 articles depending on which date the search...
is performed. In addition, articles published in the years preceding Altmetrics release in 2012 are likely to have lower AAS.\(^{11}\) The Almetric algorithm itself is not publicly available, giving question to internal bias or shortcomings to adequately capture every online mention which constitutes to an article’s AAS. Finally, Almetric does not account for the content of the online conversation or the positive or negative nature of the conversation.\(^{12–15}\) Thus, the articles with highest AAS scores may not indicate high study quality or scientific importance.

Conclusion

The 100 most impactful online ACL articles, as measured by AAS, differed substantially from the most-cited ACL articles in the literature with regard to article type, article topic, geographic origin, and publication journal. These findings suggest that alternative metrics measure distinct components of ACL article engagement and add an important dimension to understanding the overall impact of published research on the ACL.

Author contributions

Matthew D Civilette: Writing – Original draft preparation.

William R Rate: Formal analysis.

Andrew S Cohen: Data curation.

Heath P Gould: Conceptualization, Review & Writing – review & editing.

Blake M Bodendorfer: Writing – review & editing.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Matthew D Civilette https://orcid.org/0000-0002-5209-8965

Blake M Bodendorfer https://orcid.org/0000-0002-1313-6025

References

1. Damodar D, Plotsker E, Greif D, et al. The 50 most cited articles in meniscal injury research. *Orthop J Sports Med* 2021; 9(4): 2325967121994909.

2. Zhou T, Xu Y and Xu W. Emerging research trends and foci of studies on the meniscus: a bibliometric analysis. *J Orthop Surg (Hong Kong)* 2020; 28(3): 2309499020947286.

3. He J, He L, Geng B, et al. Bibliometric analysis of the top-cited articles on unicondylar knee arthroplasty. *J Arthroplasty* 2021; 36(5): 1810–1818.

4. Zhang Y, Wumaier M, He D, et al. The 100 top-cited articles on spinal deformity: a bibliometric analysis. *Spine (Phila Pa 1976)* 2020; 45: 275–283.

5. Siegel N, Lopez J, Cho A, et al. A bibliometric analysis of research productivity during residency for 125 hand surgery fellows. *J Surg Educ* 2020; 77(3): 710–716.

6. Yakkanti R, Greif DN, Wilhelm J, et al. Unicondylar knee arthroplasty: a bibliometric analysis of the 50 most commonly cited studies. *Arthroplasty Today* 2020; 6(4): 931–940.

7. Karsli B and Tekin SB. The top 100 most-cited articles on ankle arthroscopy: bibliometric analysis. *J Foot Ankle Surg* 2021; 60(3): 477–481.

8. Tekin SB and Bozgeyik B. The top 100 most-cited articles on hallux valgus. *J Foot Ankle Surg* 2021; 60(4): 757–761.

9. Diaz-Ruiz A, Orbe-Arteaga U, Rios C, et al. Alternative bibliometrics from the web of knowledge surpasses the impact factor in a 2-year ahead annual citation calculation: linear mixed-design models’ analysis of neuroscience journals. *Neurol India* 2018; 66(1): 96–104.

10. Roldan-Valadez E and Rios C. Eigenfactor score and alternative bibliometrics surpass the impact factor in a 2-years ahead annual-citation calculation: a linear mixed design model analysis of Radiology, Nuclear Medicine and Medical Imaging journals. *Radiol Med* 2018; 123(7): 524–534.

11. Roldan-Valadez E and Rios C. Alternative bibliometrics from impact factor improved the esteem of a journal in a 2-year-ahead annual-citation calculation: multivariate analysis of gastroenterology and hepatology journals. *Eur J Gastroenterol Hepatol* 2015; 27(2): 115–122.

12. Jildeh TR, Okoroha KR, Guthrie ST, et al. Social media use for orthopaedic surgeons. *JBJS Rev* 2019; 7: e720190329.

13. Kunze KN, Richardson M, Bernstein DN, et al. Altmetrics Attention Scores for randomized controlled trials in total joint arthroplasty are reflective of high scientific quality: an altmetrics-based methodological quality and bias analysis. *J Am Acad Orthop Surg Glob Res Rev* 2020; 4(12): e2000187.

14. Donnally CJ 3rd, McCormick JR, Pastore MA, et al. Social media presence correlated with improved online review scores for spine surgeons. *World Neurosurg* 2020; 141: e18–e25.

15. Barakat AF, Nimri N, Shokr M, et al. Correlation of Altmetric Attention Score with article citations in cardiovascular research. *J Am Coll Cardiol* 2018; 72: 952–953.

16. Punia V, Aggarwal V, Honomichl R, et al. Comparison of attention for neurological research on social media vs academia: an Altmetric score analysis. *JAMA Neurol* 2019; 76: 1122–1124.

17. Parrish JM, Jenkins NW, Brundage TS, et al. The top 100 spine surgery articles on social media: an Altmetric study. *Spine (Phila Pa 1976)* 2020; 45: 1229–1238.

18. Vielgut I, Dauwe J, Leithner A, et al. The fifty highest cited papers in anterior cruciate ligament injury. *Int Orthop* 2017; 41(7): 1405–1412.

19. Gornitzky AL, Lott A, Yellin JL, et al. Sport-specific yearly Attention Score with article citations in cardiovascular journals. *Hepatol* 2020; 1122–1124.

20. Roldan-Valadez E, Salazar-Ruiz SY, Ibarra-Contreras R, et al. Recent concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, ScImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. *Ir J Med Sci* 2019; 188(3): 939–951.
21. Magnussen RA, Binzel K, Zhang J, et al. ACL graft metabolic activity assessed by (18)FDG PET-MRI. *Knee* 2017; 24: 792–797.

22. Grindem H, Snyder-Mackler L, Moksnes H, et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. *Br J Sports Med* 2016; 50(13): 804–808.

23. Webster KE and Hewett TE. Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. *J Orthop Res* 2018; 36(10): 2696–2708.

24. van Melick N, van Cingel RE, Brooijmans F, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. *Br J Sports Med* 2016; 50(24): 1506–1515.

25. Ardern CL, Ekas GR, Grindem H, et al. 2018 International Olympic Committee consensus statement on prevention, diagnosis and management of paediatric anterior cruciate ligament (ACL) injuries. *Br J Sports Med* 2018; 52: 422–438.

26. Owusu-Akyaw KA, Kim SY, Spritzer CE, et al. Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises. *Am J Sports Med* 2018; 46: 1559–1565.

27. Sugimoto D, Myer GD, Foss KD, et al. Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females: meta-analysis and subgroup analysis. *Br J Sports Med* 2015; 49(5): 282–289.

28. Nagelli CV and Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. *Sports Med* 2017; 47(2): 221–232.

29. Liederbach M, Dilgen FE and Rose DJ. Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. *Am J Sports Med* 2008; 36(9): 1779–1788.

30. Dingenen B and Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. *Sports Med* 2017; 47(8): 1487–1500.

31. Kyriasis P, Bahr R, Landreau P, et al. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. *Br J Sports Med* 2016; 50(15): 946–951.

32. Moatshe G, Chahla J, Brady AW, et al. The influence of graft tensioning sequence on tibiofemoral orientation during bicuciate and posterolateral corner knee ligament reconstruction: a biomechanical study. *Am J Sports Med* 2018; 46: 1863–1869.

33. Ohta H, Kurosawa H, Ikeda H, et al. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. *Acta Orthop Scand* 2003; 74(1): 62–68.

34. Taylor DC, Posner M, Curl WW, et al. Isolated tears of the anterior cruciate ligament: over 30-year follow-up of patients treated with arthroscopy and primary repair. *Am J Sports Med* 2009; 37(1): 65–71.

35. Walden M, Kroshaug T, Bjorneboe J, et al. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. *Br J Sports Med* 2015; 49(22): 1452–1460.

36. Petushek EJ, Sugimoto D, Stoolmiller M, et al. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. *Am J Sports Med* 2019; 47(7): 1744–1753.

37. Frobell RB, Roos HP, Roos EM, et al. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial. *BMJ* 2013; 346: f232.

38. Salzler MJ, Chang J and Richmond J. Management of anterior cruciate ligament injuries in adults aged ≥40 years. *J Am Acad Orthop Surg* 2018; 26: 553–561.

39. Padua DA, DiStefano LJ, Hewett TE, et al. National Athletic Trainers’ Association Position Statement: prevention of anterior cruciate ligament injury. *J Athl Train* 2018; 53(1): 5–19.

40. Arundale AJH, Bizzini M, Giordano A, et al. Exercise-based knee and anterior cruciate ligament injury prevention. *J Orthop Sports Phys Ther* 2018; 48(9): A1–A42.

41. Eitzen I, Moksnes H, Snyder-Mackler L, et al. A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. *J Orthop Sports Phys Ther* 2010; 40(11): 705–721.

42. Beischer S, Gustavsson L, Senorski EH, et al. Young athletes who return to sport before 9 months after anterior cruciate ligament reconstruction have a rate of new injury 7 times that of those who delay return. *J Orthop Sports Phys Ther* 2020; 50(2): 83–90.

43. Walden M, Hagglund M, Magnussen H, et al. ACL injuries in men’s professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. *Br J Sports Med* 2016; 50(12): 744–750.

44. Grooms DR, Page SJ, Nichols-Larsen DS, et al. Neuromasticly associated with anterior cruciate ligament reconstruction. *J Orthop Sports Phys Ther* 2017; 47(3): 180–189.

45. Johnston JT, Mandelbaum BR, Schub D, et al. Video analysis of anterior cruciate ligament tears in professional American football athletes. *Am J Sports Med* 2018; 46: 862–868.

46. Weinhandl JT, Earl-Boehm JE, Ebersole KT, et al. Reduced hamstring strength increases anterior cruciate ligament loading during anticipated sidestep cutting. *Clin Biomech (Bristol, Avon)* 2014; 29(7): 752–759.

47. DeFrada SF, Bokshan SL, Worobey S, et al. Oral contraceptives provide protection against anterior cruciate ligament tears: a national database study of 165,748 female patients. *Phys Sportsmed* 2019; 47(4): 416–420.

48. Kotsifaki A, Korakakis V, Whiteley R, et al. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: a systematic review and meta-analysis. *Br J Sports Med* 2020; 54(3): 139–153.

49. Escamilla RF, Macleod TD, Wilk KE, et al. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. *J Orthop Sports Phys Ther* 2012; 42(3): 208–220.

50. van Yperen DT, Reijman M, van Es EM, et al. Twenty-year follow-up study comparing operative versus nonoperative treatment of anterior cruciate ligament ruptures in high-level athletes. *Am J Sports Med* 2018; 46: 1129–1136.
51. Failla MJ, Logerstedt DS, Grindem H, et al. Does extended preoperative rehabilitation influence outcomes 2 years after ACL reconstruction? A comparative effectiveness study between the MOON and Delaware-Oslo ACL cohorts. *Am J Sports Med* 2016; 44(10): 2608–2614.

52. Webster KE and Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. *Sports Med* 2019; 49: 917–929.

53. Hewett TE, Di Stasi SL and Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. *Am J Sports Med* 2013; 41(1): 216–224.

54. Joseph AM, Collins CL, Henke NM, et al. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. *J Athl Train* 2013; 48(6): 810–817.

55. LaBella CR, Hennrikus W, Hewett TE, et al. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. *Pediatrics* 2014; 133(5): e1437–e1450.

56. Hewett TE, Myer GD, Ford KR, et al. Mechanisms, prediction, and prevention of ACL injuries: cut risk with three sharpened and validated tools. *J Orthop Res* 2016; 34(11): 1843–1855.

57. Hewett TE and Bates NA. Preventive biomechanics: a paradigm shift with a translational approach to injury prevention. *Am J Sports Med* 2017; 45(11): 2654–2664.

58. Benjaminse A, Gokeler A, Dowling AV, et al. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. *J Orthop Sports Phys Ther* 2015; 45(3): 170–182.

59. Frobell RB, Roos EM, Roos HP, et al. A randomized trial of treatment for acute anterior cruciate ligament tears. *N Engl J Med* 2010; 363: 331–342.

60. Omi Y, Sugimoto D, Kuriyama S, et al. Effect of hip-focused injury prevention training for anterior cruciate ligament injury reduction in female basketball players: a 12-year prospective intervention study. *Am J Sports Med* 2018; 46(4): 852–861.

61. Rambaud AJM, Ardem CL, Thoreux P, et al. Criteria for return to running after anterior cruciate ligament reconstruction: a scoping review. *Br J Sports Med* 2018; 52(22): 1437–1444.

62. Toole AR, Ithurburn MP, Rauh MJ, et al. Young athletes cleared for sports participation after anterior cruciate ligament reconstruction: how many actually meet recommended return-to-sport criterion cutoffs. *J Orthop Sports Phys Ther* 2017; 47(11): 825–833.

63. Khayambashi K, Ghoddosi N, Straub RK, et al. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. *Am J Sports Med* 2016; 44(2): 355–361.

64. Gray AM, Gugala Z and Baillargeon JG. Effects of oral contraceptive use on anterior cruciate ligament injury epidemiology. *Med Sci Sports Exerc* 2016; 48(4): 648–654.

65. Grooms D, Appelbaum G and Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. *J Orthop Sports Phys Ther* 2015; 45(5): 381–393.

66. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. *Am J Sports Med* 2005; 33(4): 492–501.

67. Paterno MV, Rauh MJ, Schmitt LC, et al. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. *Am J Sports Med* 2014; 42(7): 1567–1573.

68. Wu BW, Berger M, Sum JC, et al. Randomized control trial to evaluate the effects of acute testosterone administration in men on muscle mass, strength, and physical function following ACL reconstructive surgery: rationale, design, methods. *BMC Surg* 2014; 14: 102.

69. Allen MM, Pareek A, Krych AJ, et al. Are female soccer players at an increased risk of second anterior cruciate ligament injury compared with their athletic peers. *Am J Sports Med* 2016; 44(10): 2492–2498.

70. Wiggins AJ, Grandhi RK, Schneider DK, et al. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. *Am J Sports Med* 2016; 44(7): 1861–1876.

71. Mortvedt AI, Krosshaug T, Bahr R, et al. I spy with my little eye. A knee about to go ‘pop’? Can coaches and sports medicine professionals predict who is at greater risk of ACL rupture? *Br J Sports Med* 2020; 54: 154–158.

72. Ardem CL, Taylor NF, Feller JA, et al. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. *Br J Sports Med* 2014; 48(21): 1543–1552.

73. Weiler R, Monte-Colombo M, Mitchell A, et al. Non-operative management of a complete anterior cruciate ligament injury in an English Premier League football player with return to play in less than 8 weeks: applying common sense in the absence of evidence. *BMJ Case Rep*. Epub ahead of print 26 April 2015. DOI: 10.1136/bcr-2014-208012.

74. Hewett TE, Ford KR, Xu YY, et al. Utilization of ACL injury biomechanical and neuromuscular risk profile analysis to determine the effectiveness of neuromuscular training. *Am J Sports Med* 2016; 44(12): 3146–3151.

75. Grindem H, Arundale AJ and Ardem CL. Alarming underutilisation of rehabilitation in athletes with anterior cruciate ligament reconstruction: four ways to change the game. *Br J Sports Med* 2018; 52(18): 1162–1163.

76. Hewett TE, Ford KR, Xu YY, et al. Effectiveness of neuromuscular training based on the neuromuscular risk profile. *Am J Sports Med* 2017; 45(9): 2142–2147.

77. Lai CCH, Ardem CL, Feller JA, et al. Eighty-three per cent of elite athletes return to pre-injury sport after anterior cruciate ligament reconstruction surgery: rationale, design, methods, and meta-analysis including aspects of physical functioning and contextual factors. *Sports Med* 2014; 44(12): 3146–3151.

78. Sugimoto D, Myer GD, Foss KD, et al. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: meta- and sub-group analyses. *Sports Med* 2014; 44(4): 551–562.

79. Filbay SR, Roos EM, Frobell RB, et al. Delaying ACL reconstructive surgery: rationale, design, methods, and validated tools. *Br J Sports Med* 2014; 48(12): 3146–3151.

80. Mendias CL, Enselman ERS, Olszewski AM, et al. The use of recombinant human growth hormone to protect against muscle weakness in patients undergoing anterior cruciate ligament reconstruction and treating with exercise therapy alone may alter prognostic factors for 5-year outcome: an exploratory analysis of the KANON trial. *Br J Sports Med* 2017; 51(22): 1622–1629.
reconstruction: a pilot, randomized placebo-controlled trial. Am J Sports Med 2020; 48(8): 1916–1928.
81. Fukuda TY, Fingerhut D, Moreira VC, et al. Open kinetic chain exercises in a restricted range of motion after anterior cruciate ligament reconstruction: a randomized controlled clinical trial. Am J Sports Med 2013; 41(4): 788–794.
82. Cinque ME, Dorman GJ, Chahla J, et al. High rates of osteoarthritis develop after anterior cruciate ligament surgery: an analysis of 4108 patients. Am J Sports Med 2018; 46(8): 2011–2019.
83. Baar K. Minimizing injury and maximizing return to play: lessons from engineered ligaments. Sports Med 2017; 47(Suppl. 1): 5–11.
84. Shellbourne KD, Benner RW and Gray T. Results of anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with the development of osteoarthritis at 20 to 33 years after surgery. Am J Sports Med 2017; 45(12): 2730–2738.
85. Samuelsen BT, Webster KE, Johnson NR, et al. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 2017: 475: 2459–2468.
86. Kie C, Cavanaugh Z, Gillis E, et al. Size of initial bone bruise predicts future lateral chondral degeneration in ACL injuries: a radiographic analysis. Orthop J Sports Med 2020; 8(5): 2325967120916834.
87. Thompson JA, Tran AA, Gatewood CT, et al. Biomechanical effects of an injury prevention program in preadolescent female soccer athletes. Am J Sports Med 2017; 45(2): 294–301.
88. Sugimoto D, Myer GD, Barber Foss KD, et al. Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis. Br J Sports Med 2016; 50(20): 1259–1266.
89. Lien-Iversen T, Morgan DB, Jensen C, et al. Does surgery reduce knee osteoarthritis, meniscal injury and subsequent complications compared with non-surgery after ACL rupture with at least 10 years follow-up? A systematic review and meta-analysis. Br J Sports Med 2020; 54(10): 592–598.
90. Hewett TE, Myer GD and Ford KR. Anterior cruciate ligament injuries in female athletes: part 1. mechanisms and risk factors. Am J Sports Med 2006; 34(2): 299–311.
91. Huang YL, Jung J, Mulligan CMS, et al. A majority of anterior cruciate ligament injuries can be prevented by injury prevention programs: a systematic review of randomized controlled trials and cluster-randomized controlled trials with meta-analysis. Am J Sports Med 2020; 48(6): 1505–1515.
92. Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med 2016; 44(4): 874–883.
93. Perriman A, Leahy E and Semciw AI. The effect of open-versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. J Orthop Sports Phys Ther 2018; 48(7): 552–566.
94. Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med 2019; 49(7): 1043–1058.
95. Yosmaoglu HB, Baltaci G, Kaya D, et al. Tracking ability, motor coordination, and functional determinants after anterior cruciate ligament reconstruction. J Sport Rehabil 2011; 20(2): 207–218.
96. Silvers-Granelli HJ, Bizzini M, Arundale A, et al. Does the FIFA 11+ injury prevention program reduce the incidence of ACL injury in male soccer players? Clin Orthop Relat Res 2017; 475: 2447–2455.
97. Konrath JM, Vertullo CJ, Kennedy BA, et al. Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44(10): 2589–2598.
98. Khan T, Alvand A, Prieto-Alhambra D, et al. ACL and meniscal injuries increase the risk of primary total knee replacement for osteoarthritis: a matched case-control study using the Clinical Practice Research Datalink (CPRD). Br J Sports Med 2019; 53(15): 965–968.
99. Beck NA, Lawrence JTR, Nordin JD, et al. ACL tears in school-aged children and adolescents over 20 years. Pediatrics 2017; 139(3): e20161877.
100. Chung EJ, Sugimoto MJ, Koh JL, et al. A biodegradable tricomponent graft for anterior cruciate ligament reconstruction. J Tissue Eng Regen Med 2017; 11(3): 704–712.
101. Cordaso FA, Black SR, Price M, et al. Return to sport and reoperation rates in patients under the age of 20 after primary anterior cruciate ligament reconstruction: risk profile comparing 3 patient groups predicated upon skeletal age. Am J Sports Med 2019; 47(3): 628–639.
102. Webster KE and Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44(11): 2827–2832.
103. Lepley AS, Ly MT, Grooms DR, et al. Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: a DTI and TMS study. Neuroimage Clin 2020; 25: 102157.
104. Lee CA, Lee-Barthel A, Marquino L, et al. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments. J Appl Physiol (1985) 2015; 118: 1250–1257.
105. Kapreli E, Athanasopoulos S, Glitisi J, et al. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med 2009; 37(12): 2419–2426.
106. Brophy RH, Tycksen ED, Sandell LJ, et al. Changes in transcriptome-wide gene expression of anterior cruciate ligament tears based on time from injury. Am J Sports Med 2016; 44(8): 2064–2075.
107. Culvenor AG and Crossley KM. Accelerated return to sport after anterior cruciate ligament injury: a risk factor for early knee osteoarthritis. Br J Sports Med 2016; 50(5): 260–261.
108. Lopes TJA, Simic M, Myer GD, et al. The effects of injury prevention programs on the biomechanics of landing tasks: a systematic review with meta-analysis. Am J Sports Med 2018; 46(6): 1492–1499.
109. Culvenor AG, Eckstein F, Wirth W, et al. Loss of patellofemoral cartilage thickness over 5 years following ACL injury depends on the initial treatment strategy: results from the KANON trial. Br J Sports Med 2019; 53(18): 1168–1173.
110. Thoma LM, Grindem H, Logerstedt D, et al. Coper classification early after anterior cruciate ligament rupture changes with progressive neuromuscular and strength training and is associated
111. Gokeler A, Neuhaus D, Benjaminse A, et al. Principles of motor learning to support neuroplasticity after ACL injury: implications for optimizing performance and reducing risk of second ACL injury. *Sports Med* 2019; 49: 853–865.

112. Trigsted SM, Cook DB, Pickett KA, et al. Greater fear of reinjury is related to stiffened jump-landing biomechanics and muscle activation in women after ACL reconstruction. *Knee Surg Sports Traumatol Arthrose* 2018; 26(12): 3682–3689.

113. Wellsandt E, Failla MJ, Axe MJ, et al. Does anterior cruciate ligament reconstruction improve functional and radiographic outcomes over nonoperative management 5 years after injury. *Am J Sports Med* 2018; 46(9): 2103–2112.

114. Grindem H, Granan LP, Risberg MA, et al. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. *Br J Sports Med* 2015; 49(6): 385–389.

115. Cabrera D, Roy D and Chisolm MS. Social media scholarship: merging altmetrics and bibliometrics. *Ann Thorac Surg* 2017; 109: 589–595.

116. Janssen RPA, van Melick N, van Mourik JBA, et al. ACL reconstruction with hamstring tendon autograft and accelerated brace-free rehabilitation: a systematic review of clinical outcomes. *BMJ Open Sport Exerc Med* 2018; 4(1): e000301.

117. Maniar N, Schache AG, Sritharan P, et al. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated side-step cutting. *Sci Rep* 2018; 8: 2501.

118. Jamison AM, Broniatowski DA and Quinn SC. Malicious actors on Twitter: a guide for public health researchers. *Am J Public Health* 2019; 109(5): 688–692.

119. Dingenen B, Truijen J, Bellemans J, et al. Test-retest reliability and discriminative ability of forward, medial and rotational single-leg hop tests. *Knee* 2019; 26(5): 978–987.

120. Myklebust G and Bahr R. Return to play guidelines after anterior cruciate ligament surgery. *Br J Sports Med* 2005; 39(3): 127–131.

121. Hughes H, Hughes A and Murphy C. The use of Twitter by the trauma and orthopaedic surgery journals: Twitter activity, impact factor, and alternative metrics. *Cureus* 2017; 9: e1931.

122. Fehring KA, De Martino I, McLawhorn AS, et al. Social media: physicians-to-physicians education and communication. *Curr Rev Musculoskelet Med* 2017; 10(2): 275–277.

123. Kolahi J, Khazaee S, Irannaneh P, et al. Meta-analysis of correlations between Atmetric Attention Score and citations in health sciences. *Biomed Res Int* 2021; 2021: 6680764.

124. Voleti PB, Tjoumakaris FP, Rotmil G, et al. Fifty most-cited articles in anterior cruciate ligament research. *Orthopedics* 2015; 38(4): e297–e304.

125. Kambhampati SBS and Vaishya R. Trends in publications on the anterior cruciate ligament over the past 40 years on PubMed. *Orthop J Sports Med* 2019; 7(7): 2325967119856883.

126. Lefaivre KA, Shadgan B and O’Brien PJ. 100 most cited articles in orthopaedic surgery. *Clin Orthop Relat Res* 2011; 469: 1487–1497.

127. Paladugu R, Schein M, Gardezi S, et al. One hundred citation classics in general surgical journals. *World J Surg* 2002; 26(9): 1099–1105.

128. Loonen MPJ, Hage JJ and Kon M. Plastic surgery classics: characteristics of 50 top-cited articles in four plastic surgery journals since 1946. *Plast Reconstr Surg* 2008; 121(5): 320e–327e.

129. Roemer RC and Borchardt R. Issues, controversies, and opportunities for Altmetrics, https://journals.ala.org/index.php/ltr/article/view/5747/7189 (2015, accessed 15 March 2022).

130. Jamison AM, Broniatowski DA and Quinn SC. Malicious actors on Twitter: a guide for public health researchers. *Am J Public Health* 2019; 109(5): 688–692.

131. Cabrera D, Roy D and Chisolm MS. Social media scholarship and alternative metrics for academic promotion and tenure. *J Am Coll Radiol* 2018; 15(1 Pt B): 135–141.

132. Butler JS, Kaye ID, Sebastian AS, et al. The evolution of current research impact metrics: from bibliometrics to Altmetrics. *J Natl Med Assoc* 2017; 109(2): 275–277.

133. Kwok R. Research impact: altmetrics make their mark. *Nature* 2013; 500: 491–493.

134. Luc JGY, Archer MA, Arora RC, et al. Social media improves cardiothoracic surgery literature dissemination: results of a randomized trial. *Ann Thorac Surg* 2020; 109: 589–595.

135. Taylor M. Towards a common model of citation: some thoughts on merging altmetrics and bibliometrics, 2013, https://www.researchtrends.com/issue-35-december-2013/towards-a-common-model-of-citation-some-thoughts-on-merging-altmetrics-and-bibliometrics/