REMARKS ON A PROBLEM OF EISENSTEIN

ROGER C. ALPERIN

Abstract. The fundamental unit of $\mathbb{Z}[\sqrt{N}]$ for square-free $N = 5 \text{ mod } 8$ is either ϵ or ϵ^3 where ϵ denotes the fundamental unit of the maximal order of $\mathbb{Q}(\sqrt{N})$. We give infinitely many examples for each case.

1. Introduction

For N square-free, the ring of integers \mathcal{O}_N of a real quadratic field $\mathbb{Q}(\sqrt{N})$ has an infinite cyclic group of units of index 2. The generator ϵ for this subgroup is the fundamental unit. The ring of integers \mathcal{O}_N has a subring $\mathcal{A}_N = \mathbb{Z}[\sqrt{N}]$; this is a proper subring if and only if $N = 1 \text{ mod } 4$. The subring also has an infinite cyclic subgroup of units generated by ϵ^e; it is easy to see that $e = 1$ or $e = 3$; the latter occurs only if $N = 5 \text{ mod } 8$.

Characterizing those N for which $e = 3$ is the problem of Eisenstein in the title of this article. By elementary methods we shall give infinitely many examples for each of the cases of $e = 1$ or $e = 3$. This problem has been addressed in [3] and [4] using other methods.

2. Main Examples

Basic properties of continued fractions and the relation of equivalence can be found in [2]. Equivalence of two continued fractions means that the periodic parts are equal or equivalently that the two real numbers are related by a linear fractional transformation.

The following examples are well-known [4, p. 297]:

Example 2.1. $\sqrt{a^2 + 4} = (a; \frac{a-1}{2}, 1, 1, \frac{a-1}{2}, 2a)$ for any odd integer $a > 1$.

Consider $a = 4b \mp 1$ and $N = a^2 + 4$ then

$$\frac{1}{\frac{\sqrt{N+1}}{4} - b} = \frac{4}{\sqrt{N} - a} \frac{\sqrt{N} + a}{\sqrt{N} + a} = 4 \frac{\sqrt{N} + a}{N - a^2} = \sqrt{N} + a$$

Proposition 2.2. Suppose a is odd and greater than 1. For $N = a^2 + 4$, then $\frac{\sqrt{N+1}}{4}$ is equivalent to \sqrt{N}.

Proof. For $a = 4b \mp 1$ the floor of $\frac{\sqrt{N+1}}{4}$ is b. □

Example 2.3. For any odd integer $a > 3$, $\sqrt{a^2 - 4} = (a-1; 1, \frac{a-3}{2}, 2, \frac{a-3}{2}, 1, 2a - 2)$.
As a consequence one can easily show that

\[1 + \frac{\sqrt{a^2 - 4}}{a - 2} = (2; \frac{a - 3}{2}, 1, 2a - 2, 1, \frac{a - 3}{2}). \]

Let \(N = a^2 - 4 \) and put \(a = 4b \pm 1 \). For \(a = 4b - 1 \) we have

\[\frac{1}{\sqrt{N} - (b - 1)} = \frac{4}{\sqrt{N} - (a - 2)} = \frac{\sqrt{N} + (a - 2)}{a - 2}. \]

For \(a = 4b + 1 \) we obtain

\[\frac{1}{\sqrt{N} + (b - 1)} = \frac{4}{\sqrt{N} - (a - 2)} = \frac{\sqrt{N} + (a - 2)}{a - 2}. \]

Proposition 2.4. Suppose \(a \) is odd and greater than 3. For \(N = a^2 - 4 \) then \(\frac{\sqrt{N} \pm 1}{4} \) is equivalent to \(\sqrt{N} \).

Proof. For \(a = 4b \pm 1 \) we have \(\frac{\sqrt{N} \pm 1}{4} \) is equivalent to \(1 + \frac{\sqrt{N}}{a - 2} \) which is equivalent to \(\sqrt{N} \). \(\blacksquare \)

Example 2.5. For any integer \(a > 1 \) \(\sqrt{a^2 + 1} = (a; 2a) \).

Proposition 2.6. For \(N = 4a^2 + 1 \) where \(a \) is odd and greater than 3, then \(\frac{\sqrt{N} \pm 1}{4} \) is not equivalent to \(\sqrt{N} \).

Proof. The numbers \(u_\pm = (\frac{\sqrt{N} \pm 1}{4} - \lfloor \frac{\sqrt{N} \pm 1}{4} \rfloor)^{-1} \) are greater than 1 by definition. They are purely periodic (Theorem 2) since the conjugates are negative and \(-\frac{1}{u_\pm} = \frac{\sqrt{N} \pm 1}{4} + \lfloor \frac{\sqrt{N} \pm 1}{4} \rfloor \) is greater than 1.

If \(\frac{\sqrt{N} \pm 1}{4} \) is equivalent to \(\sqrt{N} \) then \(u_\pm \) has period length one also. Hence \(u_\pm = (\frac{a}{2a};) \). The continued fraction \((\frac{2a}{a};) \) satisfies the equation \(x^2 - 2ax - 1 \) which has the solutions \(\sqrt{a^2 + 1} \pm a \); these can not be the same as \(u_\pm \). This contradiction gives the desired result. \(\blacksquare \)

3. Relations of Units to Continued Fractions

We suppose that \(N = 5 \mod 8 \) is square-free. It is an elementary exercise to see that the fundamental unit \(\epsilon \) is a solution to \(x^2 - Ny^2 = \pm 4 \) with \(x, y \) odd if and only if \(e = 3 \).

Let \(A = A_N \) and \(O = O_N \). Consider the ideals \(I_\pm = [4, \sqrt{N} \pm 1] \) in \(A \) (the generators are a lattice basis). Extend these ideals to ideals \(J_\pm = 2[2, \sqrt{N} \pm 1] \) in \(O \); thus \(J_\pm \) is principal since when \(N = 5 \mod 8 \) the ideal \((2) \) is maximal. An easy calculation shows that \([4, \sqrt{N} \pm 1]^2 = 2[4, \sqrt{N} - 1] \) so that \([4, \sqrt{N} \pm 1] \) is an element of order 1 or 3 in the class group \(Cl(A) \).

Lemma 3.1. When \(N = 5 \mod 8 \) the following are equivalent:

(a) The equation \(x^2 - Ny^2 = \pm 4 \) has a solution with odd integers \(x, y \).

(b) There is a non-integral element of norm \(\pm 4 \) in \(A_N \).
(c) The ideals I_\pm are principal.
(d) The elements $\sqrt{N+1}/4$ are equivalent to \sqrt{N}.

Proof. It is easy to see that (a) and (b) are equivalent using $N = 5 \mod 8$. The conditions (b) and (c) are also easily seen to be equivalent since the ideals I_\pm have norm 4. Conditions (c) and (d) are equivalent using the well-known description of the class group in terms of equivalence classes of elements according to their continued fractions.

If the elements $\sqrt{N+1}/4$ are not on the principal cycle then the two continued fractions are the reverse of one another since the elements $[4, \sqrt{N} \pm 1]$ are inverses of one another in the class group of A.

Theorem 3.2. Suppose $N = 5 \mod 8$ is square-free. Consider the surjective natural homomorphism

$$\phi : Cl(A_N) \to Cl(O_N).$$

(a) The homomorphism ϕ is an isomorphism if and only if $e = 3$.
(b) The homomorphism ϕ has kernel generated by $[4, \sqrt{N} + 1]$ if and only if $e = 1$.

Proof. It is well-known that ϕ is surjective, that the kernel has order dividing three, and the order of the kernel is three if and only if condition (a) of the Lemma fails [5]. Using Lemma 3.1 and this remark we see that the kernel of ϕ is the ideal class of $[4, \sqrt{N} + 1]$, and hence this class is an element of order 3 if and only if $e = 1$. ■

4. Applications

Using a theorem of Erdős [11] it follows that there are infinitely many square-free integers $a^2 \pm 4$ or $4a^2 + 1$ for odd a.

Theorem 4.1. For a odd and greater than 3. There are infinitely many square-free $N = 4a^2 + 1$ with $e = 1$.

Proof. It follows from Proposition 2.6 that $\sqrt{N+1}/4$ have cycle lengths greater 1 and hence are not equivalent to \sqrt{N}; thus the ideals $[4, \sqrt{N} \pm 1]$ of A_N are not principal and therefore there is no element of norm 4 so the fundamental unit ϵ does belong to A_N; hence $e = 1$. ■

Theorem 4.2. For a odd and greater than 3. There are infinitely many square-free $N = a^2 \pm 4$ with $e = 3$.

Proof. The numbers $u_\pm = \sqrt{N+1}/4$ are equivalent to \sqrt{N}. Consequently the ideal $[4, \sqrt{N} \pm 1]$ of A_N is principal and therefore the fundamental unit ϵ does not belong to A_N; hence $e = 3$. ■
References

[1] P. Erdős, *Arithmetical properties of polynomials*, J. London Math. Soc., 28, 1953, 416–425.

[2] G. H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, Oxford, Fifth Edition, 1979.

[3] N. Ishii, P. Kaplan, K. S. Williams, *On Eisenstein’s Problem*, Acta Arithmetica, 54, 1990, 323–345.

[4] W. Sierpinski, *Elementary Theory of Numbers*, Polish Academy of Sciences, Vol. 42, Warsaw, 1964.

[5] P. Stevenhagen, *On a Problem of Eisenstein*, Acta Arithmetica, 74, 3, 1995, 259-26.

MSC: 11R65, 11R29

Department of Mathematics, San Jose State University, San Jose, CA 95192, USA

E-mail address: alperin@math.sjsu.edu