Distorted representation of one’s own body is a diagnostic criterion and core psychopathology of disorders such as anorexia nervosa and body dysmorphic disorder. Previous literature has raised the possibility of utilising physical activity intervention (PI) as a treatment option for individuals suffering from poor body satisfaction, which is traditionally regarded as a systematic distortion in “body image.” In this systematic review, conducted according to the PRISMA statement, the evidence on effectiveness of PI on body representation outcomes is synthesised. We provide an update of 34 longitudinal studies evaluating the effectiveness of different types of PIs on body representation. No systematic risk of bias within or across studies were identified. The reviewed studies show that the implementation of structured PIs may be efficacious in increasing individuals’ satisfaction of their own body, and thus improving their subjective body image related assessments. However, there is no clear evidence regarding an additional or interactive effect of PI when implemented in conjunction with established treatments for clinical populations. We argue for theoretically sound, mechanism-oriented, multimethod approaches to future investigations on body image disturbance. Specifically, we highlight the need to consider expanding the theoretical framework for the investigation of body representation disturbances to include further body representations besides body image.

Keywords: body image, body representation, physical activity, eating disorders, body dysmorphic disorders

INTRODUCTION

Disturbances in body representation have been identified as the crux of many debilitating psychiatric disorders, such as body dysmorphic disorder (1), body integrity identity disorder (2), somatoparaphrenia (3), and asomatognosia (4). It has also been proposed as a core psychopathology of eating disorders [e.g., (4–9)]—especially in anorexia and bulimia nervosa. Heightened body dissatisfaction has been interpreted as a predisposition indicator in subclinical populations.

Influence of Physical Activity Interventions on Body Representation: A Systematic Review

Duangkamol Srismith1,2,3*, Leona-Magdelena Wider1, Hong Yu Wong4,5, Stephan Zipfel1, Ansgar Thiel6, Katrin Elisabeth Giel1 and Simone Claire Behrens1,2

1 Medical University Hospital Tübingen, Department of Psychosomatic Medicine and Psychotherapy, Tübingen, Germany, 2 Max Planck Institute for Intelligent Systems, Department of Perceiving Systems, Tübingen, Germany, 3 Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany, 4 Werner Reichardt Centre for Integrative Neurosciences, University of Tübingen, Tübingen, Germany, 5 Department of Philosophy, University of Tübingen, Tübingen, Germany, 6 Institute of Sports Science, Faculty of Economic and Social Sciences, University of Tübingen, Tübingen, Germany

Distorted representation of one’s own body is a diagnostic criterion and core psychopathology of disorders such as anorexia nervosa and body dysmorphic disorder. Previous literature has raised the possibility of utilising physical activity intervention (PI) as a treatment option for individuals suffering from poor body satisfaction, which is traditionally regarded as a systematic distortion in “body image.” In this systematic review, conducted according to the PRISMA statement, the evidence on effectiveness of PI on body representation outcomes is synthesised. We provide an update of 34 longitudinal studies evaluating the effectiveness of different types of PIs on body representation. No systematic risk of bias within or across studies were identified. The reviewed studies show that the implementation of structured PIs may be efficacious in increasing individuals’ satisfaction of their own body, and thus improving their subjective body image related assessments. However, there is no clear evidence regarding an additional or interactive effect of PI when implemented in conjunction with established treatments for clinical populations. We argue for theoretically sound, mechanism-oriented, multimethod approaches to future investigations on body image disturbance. Specifically, we highlight the need to consider expanding the theoretical framework for the investigation of body representation disturbances to include further body representations besides body image.

Keywords: body image, body representation, physical activity, eating disorders, body dysmorphic disorders

INTRODUCTION

Disturbances in body representation have been identified as the crux of many debilitating psychiatric disorders, such as body dysmorphic disorder (1), body integrity identity disorder (2), somatoparaphrenia (3), and asomatognosia (4). It has also been proposed as a core psychopathology of eating disorders [e.g., (4–9)]—especially in anorexia and bulimia nervosa. Heightened body dissatisfaction has been interpreted as a predisposition indicator in subclinical populations.
Individuals with body image concerns are reportedly more vulnerable to developing eating and dieting pathologies (10–13). As yet, however, mechanisms of change in body representation are still poorly understood, limiting mechanism-oriented interventions for prevention and treatment of disturbed body representation.

Previous literature has suggested that regular physical activity has beneficial effects on the physical health of the body, as well as a significant impact on the level of satisfaction with which the body is perceived [e.g., (14–16)]. This is surprising, insofar as cross-sectional studies in individuals with high levels of physical activity suggest decreased rather than increased body satisfaction (17). However, it is important to note that there has been little critical appraisal of the existing studies. Previous systematic reviews and meta-analyses on the topic of physical activity and its potential interactions with body satisfaction have been conducted from an outcome-centric perspective [e.g., (14, 15, 18–20)]—focusing on evaluating the effectiveness of physical activity as an intervention for the improvement of individuals’ body satisfaction—with an emphasis on the affective and cognitive aspects (i.e., body image). Nevertheless, the question of which potential mechanisms might be responsible for the apparent shift in body image after the introduction of physical activity has not been inadequately addressed.

Despite the lack of a unified consensus on its exact nature, the term body image has been widely used in research across psychology, neuroscience, and psychiatry. Body image can roughly be characterised as the conscious, predominantly visual, mental representation of one’s own body, which in turn provides a basis upon which perceptual, cognitive, and affective attitudes toward the body are assigned (21, 22). However, it is important to note that the current literature largely concurs on the use of the term body image as a measure of body satisfaction—in that body image as an outcome measure is interpreted as the degree with which individuals are satisfied with various aspects of themselves that is influenced by the visual aspect of their body (e.g., appraisal of body shape information). In this review, we therefore adopt the term body representation when referring to the broad range of mental representations of one’s own body, whereas body image only refers to cognitive-affective appraisal of the body. The fact that body image investigations in health research has so far been conducted from an almost exclusively perceptual-affective perspective is worth discussing.

Longo (23) argued that higher level representations of the body are unlikely to emerge from abstract cognition alone. Rather, they are constructed through the interplay of multiple distinct body representations. Not only do individuals have immediate knowledge of their body from within (i.e., bodily awareness through interoception), they are also able to objectively reflect on their own body from an external perspective, in the same way that external objects are cognitively assessed (with regards to their shape, size, location, aesthetics, et cetera). Relying on neuroscientific evidence, Longo’s framework of body perception consists of multiple distinct body representations that are informed by different sensory modalities and can be arranged along two orthogonal axes: explicit vs. implicit & perceptual vs. conceptual. However, most empirical data concerning body image has been based on self-report or visual body size judgments, which effectively leads to the underrepresentation of other somatically driven/sensory inputs when considering the potential mechanism underlying the concept of body image (24). Although these subcomponents of body representation have been demonstrated to have distinct underpinning neural networks [see (25) for review], the mechanisms responsible for the development and regulation of these subcomponents are still very much unexplored (e.g., the idea that body satisfaction, or the lack thereof, could be socially and/or somatically driven—or the product of their interactions).

As such, it is not at all clear why the body image should remain the sole focal point when investigating how individuals mentally represent their own body, and the potential distortions therein.

In this systematic review, we aim to synthesise existing literature investigating longitudinal interaction between physical activity and body image. Our purpose is to synthesise the empirical evidence from previous studies with a focus on effects, broader potential, and eventual impact mechanisms of physical activity on body representation. Specifically, our research questions were:

i. Are there systematic effects of physical activity on body representation?

ii. Are previous studies informative with regard to prevention or treatment of sub-clinical or clinically relevant body image disturbance?

iii. Are there specific mechanisms of how long-term engagement in structured physical activity influence the dynamics of individuals’ body representations?

METHOD

The systematic review process was conducted according to the PRISMA statement (26). Methods of analysis and inclusion criteria were specified in advance and documented in a protocol.

Literature Search

Studies were identified via searching the following electronic databases: PubMed, Web of Science and SPORTDiscus. The search was weekly updated until January 2020.

The specific search terms are as follows: (“body image” OR “body representation” OR “body dissatisfaction” OR “body satisfaction” OR “body image disturbance”) AND (“physical activity” OR “physical exercise” OR “exercise intervention” OR “endurance training” OR “exercise training” OR “exercise intervention” OR “aerobic exercise” OR “aerobic training” OR “anaerobic exercise” OR “anaerobic training” OR “motor activity” OR “resistance training” OR “resistance exercise” OR “strength training” OR “weight training” OR “weightlifting” OR “cardio training” OR “cardio” OR “athletic sports” OR “exercise program” OR “fitness training” OR “cardiovascular training” OR “interval training” OR “intermittent training” OR “interval exercise” OR “intermittent exercise” OR “sprint training” OR “sprint exercise” OR “high intensity interval training” OR “high intensity interval exercise” OR “moderate intensity training” OR...
“moderate intensity exercise” OR “exercise/psychology” OR “exercise therapy/methods” OR “resistance training/methods”). Additionally, reference lists of included articles were hand searched.

Eligibility Criteria and Study Selection

Each step of the eligibility assessment was performed independently by two reviewers according to the PICOS criteria (27). Only articles in English were considered. Studies had to fulfil the following criteria:

- **Population**: a sample of adult participants,
- **Intervention**: include a longitudinal physical activity intervention (PI; no lifestyle counselling; specific targeting of body image/ body representation not compulsory),
- **Comparison/Control**: include a validated measure of body image/ body representation, a control group was not required,
- **Outcome**: at least one pre & post measurement of a validated self-report or experimental body image/body representation measure, and
- **Study Type**: published as a peer-reviewed original article.

Exclusion criteria were as follows:

i. samples younger than 18 years old, and
ii. no inference statistics performed.

The first author (DS) applied the search terms to three databases, extracted the search results and removed duplicates. DS and LW screened titles to identify relevant records. Abstracts and full texts of the identified records were subsequently screened by DS and SB. All studies included in the qualitative synthesis were rated according to the eligibility criteria by DS and SB. Interrater reliability between DS and LW for title screening was good ($\kappa = 0.61; 94.2\%$ agreement). Articles were included in the full-text screening if one reviewer rated it as a potential match. Interrater reliability between DS and SB for the subsequent steps was very good ($\kappa = 1.0$ for abstract screening; $\kappa = 0.94$ for full-text screening). Disagreements between the reviewers were solved by discussion and, when in doubt, articles were included. DS extracted relevant data from the included studies (i.e., sample characteristics, PI types and dosage, measure of fitness level, measures of body composition, measures of body image/body representation, and results).

Risk of Bias in Individual Studies

To assess the risk of bias in individual studies, DS and SB conducted a quality rating. The Qualitative Assessment Tool for Quantitative Studies by the Effective Public Health Practice Project (28, 29) is recommended by the Cochrane Handbook for Systematic Reviews of Interventions to be used for assessing any quantitative study design (30) and was judged a suitable tool for systematic reviews of effectiveness (31). The tool consists of component ratings for the following categories: selection bias, study design, confounders, blinding, data collection methods, and withdrawals and dropouts. Components were rated according to the accompanying dictionary. Studies received ratings of either “strong”, “moderate”, or “weak” for each category. A global rating was assigned at the end of the process via the summarisation of the number of categories rated as “weak”. Disagreements between the reviewers were solved by discussion.

RESULTS

Study Selection

The searches yielded a total of 3,318 results. Duplicates were discarded ($n = 602$), leaving 2,716 records for title and abstract screening. During this process, 2,659 studies were discarded, and the remaining 57 studies were identified for full-text analysis. Subsequently, 34 studies were included in the systematic review. For the PRISMA flow chart, see Figure 1.

Study Quality

The overall study quality within the current review showed a slight majority for “weak” (55.88%; $n = 19$), followed by “moderate” (41.17%; $n = 14$). Only 1 study (2.94%) included in the review qualified for the global “strong” rating. The detailed components ratings are included in Table 1.

Notably, included studies only received weak ($n = 26$) and moderate ($n = 8$) ratings for the selection bias category. The main reason for depreciation was the recruitment in sports classes or from community samples; thus producing a selection bias favouring highly motivated, sports-oriented participants. In the same vein, most studies qualified for moderate rating in the study design category ($n = 27$). This is due to the lack of randomisation in the selection as well as group allocation process, as participants often conducted the PI of their own design. This limits explanatory power regarding general recommendations of effective types of training. To summarise, there is a possibility for risk of bias in the studies included in the current review.

Study Characteristics

The study characteristics of included studies are detailed in Table 1. All studies employed a longitudinal design, as defined by the inclusion criteria. Of the total 34, 6 studies were described as quasi-experimental. Twenty-three studies included control groups in their experimental design, while the remaining 11 did not. Within the 23 controlled studies, 18 studies included “no intervention” comparison groups, while the remaining 5 studies included participants who performed low to moderate exercise as controls. Eight studies included clinical and/or sub-clinical groups. The remaining 26 studies had healthy samples. Eleven studies aimed to compare different types of PI and their impact on body image/body representation of participants. Most studies ($n = 27$) did not have a randomised participant selection and/or group allocation process.

Physical Activity Interventions

The most commonly investigated types of PI were weight/strength training ($n = 14$), as well as aerobics/cardiovascular training ($n = 13$). Three studies implemented the combination of
both types as a singular intervention. Dancing (n = 3) was also investigated. Other PIs included walking, running, swimming, cycling, pilates, hydrogymnastics, yoga, fascial fitness, and functional training. The mean length of time for the implementation of the PI was 13.29 (SD = 8.45) weeks, with the maximum of 52 weeks (1 year) and the minimum of 2 weeks. The median for PI duration was 12 weeks.

VO2max was used as a measure of fitness in 9 studies. Eleven studies conducted strength tests as a marker of fitness level (i.e., variations of maximum repetition test). Heart rate was also measured as a marker of fitness level (n = 4). Twelve studies did not report any measure of physical fitness.

Outcome Measures

Studies were homogeneous in terms of the operationalisation of body image/body representation measures. Almost all studies exclusively implemented validated questionnaires assessing body image. Only 3 studies additionally implemented more visual-oriented measures (i.e., Stunkard Scale of Silhouette, Figure Rating Scale)—though nevertheless still affective/subjective in nature. No study used experimental assessments of body representation (e.g., depictive/metric body size and visual estimation tasks). As such, the domains of visual, tactile and affordance perception of body representation were not at all investigated.

The most commonly employed scales were MBSRQ (Multidimensional Body Self-Relations Questionnaire; (66) and PSPP (Physical Self-Perception Profile; (67) at 23.53% (n = 8) each. The Body Cathexis Scale was also frequently implemented in earlier studies (n = 7; 20.59%; (68).

Systematic Effects of PI on Body Representation

PI was considered effective if significant improvement in body representation measures was reported at post-test among the intervention group, relative to the control group. The overall results are as follows: 5 studies (14.71%) observed no significant improvement in both control and PI groups across all body image measures; 3 studies (8.82%) observed significant improvement in both control and PI groups across all body image measures; 10 studies (29.41%) reported significant improvement in PI group across all body image measures; 16 studies (47.06%) reported partial significance effect in PI groups (i.e., not all improvement in scores measured in the subscales of the implemented questionnaires reached significance).

However, due to the low number of clinical and sub-clinical studies (n = 8) included in this systematic review, we cannot reliably synthesise significant evidence with regard to utilising long-term PI (structured or otherwise) as a treatment measure for clinically relevant groups.
| Study | Sample characteristics | n | Physical activity intervention & dosage | Measure of fitness level | Measure of body composition | Measure of body image/representation | Main findings | Quality rating: | Strong | Moderate | Weak | Selection bias | Study design | Confounders | Blinding | Data collection methods | Withdrawal and dropouts |
|-----------|------------------------|-----|--|--------------------------|---------------------------|------------------------------------|-------------------------------------|-------------------------------|-------------------|---------|-----------|------|---------------------|---------------|--------------|----------|-----------------------|-------------------------|
| Folkins (32) | | 18 | Unspecified | VO2max | N/A | BCS | PI & Control Groups | 0 | ● ● ● | ● | ● | ● ● ● | ● ● | ● ● ● ○ | ● | ○ | ○ |
| | | | 36x n. r. minutes over 12 weeks | | | | There were no significant changes in BCS scores post-test for both groups. | | | | | | | | | | |
| Controls: | | 18 | no intervention | | | | | | | | | | | | | | |
| Tucker (33) | | 60 | Weight training | N/A | N/A | TSCS | PI Group | ● | ● ● ● | ● | | ● ● ● | ● ● ● | ● ● ● ○ ○ | ● ● ● | ○ | ○ |
| | | | 32x 50 minutes over 16 weeks | | | | Showed significant increase from pre to post PI on all TSCS indices except Social Self. | | | | | | | | | | |
| | | | | | | | Scored significantly higher than control group in the Total Positive, Identity, Behaviour, Physical Self, and Personal Self indices of TSCS post PI. | | | | | | | | | | |
| Controls: | | 45 | no intervention | | | | Control Group | ● | ● ● ● | ● | | ● ● ● | ● ● ● | ● ● ● ○ | ● | ○ | ○ |
| | | | | | | | There were no significant changes in TSCS scores post-test. | | | | | | | | | | |
| | | | | | | | ●PI and control groups did not differ significantly in Moral-Ethical Self, Self-Satisfaction, Family Self, or Social Self indices post-test. | | | | | | | | | | |
TABLE 1 | Continued

Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Strong	Moderate	Weak
Tucker (34)		142	Strength (weight) training 32x 50 minutes over 16 weeks	Strength test	N/A	BCS, TSCS	PI Group • Scored significantly higher than control group for both BCS and TSCS measures post PI.	Moderate	○	○	○
Controls:	no intervention	130					Control Group • There were no significant changes in BCS and TSCS scores post-test.				
Tucker (35)		114	1-RM strength test				PI Group • Scored significantly higher than control group for BCS post PI.				
Controls:	no intervention	127					Control Group • There were no significant changes in BCS scores post-test.				
Caruso and Gill (36)		13	Weight training 30x 50 minutes over 10 weeks	1-RM strength test, VO₂ max	Body fat % (skinfold measures at 3 sites)	PSPP, PIP, BCS	PI & Control Groups • PSPP, PIP and BCS scores improved post-test (significance not calculated) but did not significantly differ between groups.	Moderate	○	○	○
Controls:	physical education activity class	6									
Study 2		42	Weight training 30x 50 minutes over 10 weeks	Max. repetition strength test	Body fat % (skinfold measures at 3 sites)	PSPP, PIP, BCS, BES, Stunkard Scale of Silhouette	PI & Control Groups • PSPP, PIP, BCS, BES scores and Body Size Drawings revealed no				

(Continued)
Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts	
Controls: non-fitness activity		23					significant changes post-test for both groups.								
Tucker and Maxwell (37)	n. r., n. r.	60	Weight training	1-RM strength test	Body fat % (skinfold measures at 3 sites)	BCS	PI Group	• Scored significantly higher than control group for BCS post PI (after controlling for pre-test differences).	Moderate						
Controls: exercised 2.9 ± 2.2 days/week; no weight training		92					Control Group	• Showed no significant improvement from pre-test to post-test on BCS scores.	Weak						
Tucker and Mortell (38)	42.5 ± 4.2, n. r., n. r.	30	Weight training	Max. repetition & 1-RM strength test, 1 Mile Walk test	N/A	BCS	PI Groups	• Both groups showed significant improvement in BCS scores post PI.	Strong						
Controls: none							Control Group	• Weight-trainers scored significantly higher than walkers on BCS scores post PI,	Moderate						
McAuley et al. (39)	54.5 ± 5.5, n. r., n. r.	83	Aerobic training	VO2max	Body fat % (skinfold measures at 3 sites)	PSPP, PIP	PI Group	• Significant improvements were found in the	Weak						

(Continued)
Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating: Strong ○ Moderate ○ Weak ○	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts	
Controls: none							Following subscales of PSPP: Physical Self-Worth & perceptions of Physical Condition.									
					PSPP		Attractive Body subscale of PSPP rating showed no significant effect post-test.		Strong ○ Moderate ○ Weak ○	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
McAuley et al. (40)	M_age: 66.71 ± 5.35	85	Aerobic training 5x 40 minutes over 20 weeks	VO2max, heart rate	Body fat % (TOBEC)	PSPP	PI Groups, Latent growth curve analyses showed a curvilinear pattern of growth with significant increases at all levels of PSPP measure upon completion of PI.									
	M_BMI: n. r.						Significant declines were shown at 6 months post PI in both groups.		Strong ○ Moderate ○ Weak ○	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
Williams and Cash (41)	M_age: 21.7 ± 3.8	39	Weight training 5x 180 minutes over 6 weeks	1-RM strength test	N/A	MBSRQ, SPAS	PI Group, Showed significant improvement post PI in SPAS scores, as well as Appearance Evaluation and Body Area Satisfaction subscales of MBSRQ.									
	M_BMI: 23.9 ± 4.4						Control Group, Reported no significant changes		Strong ○ Moderate ○ Weak ○	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
TABLE 1 | Continued

Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Strong □ Moderate ○ Weak ●					
								Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
								○ ● ○ ● ● ○ ○ ● ○						

Mage (42)
$M_{age}: 22.15 ± 1.87$
$M_{BMI}: n. r.$
% Female: 52.9%

Controls: no intervention

Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Strong □ Moderate ○ Weak ●					
								Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
								○ ● ○ ● ● ○ ○ ● ○						

Mage (43)
$M_{age}: 21.35 ± 0.88$
$M_{BMI}: n. r.$
% Female: 100%

Controls: no intervention

After adjusting for pre-test score differences, significant group differences were found for Appearance Evaluation, Body Area Satisfaction and Social Physique Anxiety post-test.

Srismith et al. Physical Activity and Body Representation
Frontiers in Psychiatry | www.frontiersin.org March 2020 | Volume 11 | Article 999
Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
Depck and Williams (44)	Mage: 22.13 ± 5.51	15	Resistance (weight) training	1-RM strength test	N/A	BCS, BSQ	PI & Control Groups			●	●		●		
	M_{age}: n. r.						Mean BCS scores significantly increased for weight trainers as compared to control group post-test.								
	% Female: 100%						The groups differed significantly in body image disturbance (BSQ scores) post-test.								
	Pre-existing body image disturbance (109.0 mean group score on BSQ)						Weight trainers experienced a greater reduction in body image disturbance than control group post-test.								
	Controls:	15	exercised 2.23 ± 2.02 days/week; no weight training							●	●	●	●		
Annesi (45)	Mage: n. r.	48	Cardiovascular training	N/A	N/A	BES	PI & Control Groups			●	●	●	●		
	M_{age}: n. r.						Scores on the Physical Condition subscale of BES significantly increased post-test for the exercise group, but not the control group.								
	% Female: 100%						Scores on the Sexual Attractiveness subscale of BES did not significantly change post-test for both groups.								
	Controls:	30	no intervention							●	●	●	●		
Annesi and Westcott (46)	Mage: 46.3 ± 13.4	35	Weight & cardiovascular training	Heart rate	N/A	PSPS	PI Group			●	●	●	●		
	M_{age}: n. r.						PSPS scores significantly improved post PI.			●	●	●	●		
TABLE 1 | Continued

Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Strong Moderate Weak					
								Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts

Gnis et al. (47)
Mage: 21.57 ± 2.47
MBMI: n. r.
% Female: 36.4%

Controls: none
30 x 60 minutes over 10 weeks

44
Strength (weight) training
1-RM test
Body fat % (DXA)
SPAS, BASS, DMS

PI Group
- Participants experienced significant increases in BASS and decreases in SPAS scores post PI.
- Only male participants experienced a significant decrease in musculature dissatisfaction (DMA score) post PI.

Controls

Hős (48)
Mage: 48.9 ± 5.6
MBMI: n. r.
% Female: 100%

Controls: 28
no intervention

25
Aerobic dance
N/A
N/A
TSIT

PI Group
- Showed significant increases post PI on Total Self-Image (all subscales of TSIT, except for Family Self-Image).

Control Group
- There were no significant changes post-test on Total Self-Image (all subscales of TSIT, except for Social Self-Image).
- There were significant differences between

(Continued)
Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Strong	Moderate	Weak	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
Henry et al. (49)	Mage: 19.24 ± 1.43	23	Aerobic training	Step test (VO₂ max),	Body fat % (skinfold measure at 3 sites)	BSIQ	PI & Control Groups: Interval circuit training group improved significantly post PI in overall Appearance Evaluation and Health/Fitness Evaluation & Influence, as well as significantly reduced Negative Affect subscales of the BSIQ as compared to control group.	●	●	●	●	●	●	●	●	●	●	●
	MBMI: 22.85 ± 3.39		Interval circuit (weight) training	bench press test (muscular strength & endurance)														
	% Female: 100%		36x 50 minutes over 12 weeks															
Controls:		21	low to moderate exercise (3.24 days/week)															
Opdenacker et al. (50)	Mage: 66.65 ± 4.16	46	Lifestyle PI	VO₂ max	N/A	PSPP	PI & Control Groups: Immediately after PI, the lifestyle group showed significant improvements in Self-Perceived Physical Condition, Body Attractiveness, and Physical Self-Worth subscales of PSPP. In the structured group, significant effects were found on only on Physical Condition. • One year after PI, the lifestyle group had significant	●	●	●	●	●	●	●	●	●	●	●
	MBMI: 27.08 ± 19.11	49	Structured exercise															
	% Female: n. r.		33x 60-90 minutes over 11 weeks															
Controls:		46	no intervention															

(Continued)
Study Sample characteristics

Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating: Strong ⚫ Moderate ⚫ Weak ⚫	Strong ⚫ Moderate ⚫ Weak ⚫
								Global rating Selection bias Study design Confounders Blinding Data collection methods Withdrawal and dropouts	
Özdemir et al. (51)	Mage: 32.34 ± 6.23	11	Swimming	VO₂max	Body fat % (DEXA), muscular strength (isokinetic dynamometer), PSPP	PI & Control Groups	● ● ○ ● ● ○ ○ ○		
	% Female: 0%		11	Cycling					
			11	Running					
				36x 40 minutes over 12 weeks					
Controls:	no intervention	12							
Cruz-Ferreira et al. (52)	Mage: 41.08 ± 6.64	38	Pilates	N/A	N/A	PSCS	PI Group	● ● ○ ● ● ○ ○ ○	
	% Female: 100%								
Controls:	no intervention	24							

- Significant improvements in Physical Condition and Body Attractiveness.
- There were no significant differences between PI groups for both short and long-term results.

※ There were no significant differences between PI groups for both short and long-term results.

Effects on Body Attractiveness while the structured group showed significant improvements in Physical Condition and Body Attractiveness.

Although there were no significant differences between PI groups for both short and long-term results, the structured group showed significant improvements in Physical Condition and Body Attractiveness.

- All groups revealed no statistical improvement in PSPP scores post-test.

- Showed significant improvement between baseline and 6 months post PI in Perception of Physical Appearance, Functionality and Total Physical Self-Concept.

- No significant differences were observed over time.
| Study | Sample characteristics | n | Physical activity intervention & dosage | Measure of fitness level | Measure of body composition | Measure of body image/representation | Main findings | Quality rating: | Strong | Moderate | Weak | Global rating | Selection bias | Study design | Confounders | Blinding | Data collection methods | Withdrawal and dropouts | |
|---|
| Moore et al. (53) | Mage: 20.2 ± 2.02 | 120 | Resistance (weight) training | 1-RM strength test | N/A | PI Group | • Significant improvements were observed across all measures post PI. | | ● | ● | ● | ● | ● | ● | ● | ○ | ○ |
| Controls: | none | | | | | | | | | | | | | | | | | | |
| Van Puymbroeck et al. (54) | Mage: 58.67 ± 9.82 | 18 | Hatha yoga | Tests for flexibility, strength, abdominal muscular endurance, agility & dynamic balance | N/A | Body Image Scale for use with cancer patients | PI & Control Groups | • PI group reported significantly more positive body image as compared to control group at pre and post-test. • There were no statistical differences for the changes in body image scores over time for both groups. | | ● | ● | ● | ● | ● | ● | ● | ○ | ○ |
| Controls: | light exercise | | | | | | | | | | | | | | | | | | |
| Appleton (55) | Mage: n. r. | 34 | Cardiovascular training | Body weight, waist & hip circumferences | MBSRQ | PI Group | • There were significant increases in the following subscales of MBSRQ: Appearance Evaluation, Fitness | | ● | ● | ● | ● | ● | ● | ● | ○ | ○ |
| Controls: | within-subjects, | | | | | | | | | | | | | | | | | | |

No significant differences in PSCS scores were observed between groups at all time points.
Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:
Hatipoglu et al. (56)	no intervention	11	(12 x 40 minutes reading over 2 weeks)	Cardiovascular, strength, balance & stretching training	N/A	BMI	MBSRQ	Evaluation, Fitness Orientation, Health Evaluation, Illness Orientation and Body Areas Satisfaction; Self-Classified Weight significantly decreased post PI.
	Controls:	9		36 x 75 minutes over 12 weeks				Strong ■ Moderate ● Weak ●

	Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
Hatipoglu et al.							
et al. (56)							

Control Group
- Appearance Evaluation and Body Areas Satisfaction subscales of MBSRQ significantly decreased during no PI condition.

- Appearance Evaluation and Body Areas Satisfaction subscales of MBSRQ were unaffected by PI.

PI Group
- Significant improvement in MBSRQ scores was observed post PI.

Control Group
- No significant changes in MBSRQ scores were reported post-test.
| Study | Sample characteristics | Study design | Confounders | Selection bias | Blinding | Data collection methods | Withdrawal and dropouts | n | Main findings | Quality rating: |
|-------|------------------------|--------------|-------------|---------------|----------|-------------------------|--------------------------|---|----------------|----------------|
| Pearson and Hall (57) | Mage: 33.4 ± 7.6
M BMI: 29.02 ± 4.71
% Female: 100%
※ Obesity patients (BMI >25 kg/m²) | 37 Cardiovascular training
VO₂ max
54x 45 minutes over 18 weeks | MBSRQ | PI Group
• Significant improvements occurred between baseline and week 6 as well as week 18 post PI for Appearance Evaluation, Fitness Orientation and Body Areas Satisfaction subscales of MBSRQ. | Strong ○ Moderate ○ Weak ○ | |
| Seguin et al. (58) | Mage: 62 ± 12
M BMI: n. r.
% Female: 100% | 341 Strength (weight) training
20x 60 minutes over 10 weeks | N/A N/A MBSRQ | PI Group
• Significant improvement occurred post PI for Health Orientation, Subjective Weight, Fitness Orientation, Fitness Evaluation, and Health Evaluation subscales of MBSRQ.
• There were no significant changes in Weight Preoccupation subscale of MBSRQ post PI. | Strong ○ Moderate ○ Weak ○ | |
| Zarshenas et al. (59) | Mage: 26 ± 6.9
M BMI: n. r.
% Female: 100%
※ Pre-existing self-reported mild to severe depressive symptoms (BDI-II score of ≥14) | 41 Aerobic training
Heartrate
n. r. x 65 minutes over 4 weeks | N/A MBSRQ | PI Group
• MBSRQ scores across all subscales significantly improved post PI.
• Significant improvement was found in Appearance Evaluation, | Strong ○ Moderate ○ Weak ○ |
| Study | Sample characteristics | n | Physical activity intervention & dosage | Measure of fitness level | Measure of body composition | Measure of body image/representation | Main findings | Quality rating: | Strong | Moderate | Weak | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Gnisl et al. (60) | Controls: none | 41| no intervention | | | | Appearance Orientation, Health Orientation, and Illness Orientation subscales of MBSRQ post PI as compared to control group. | | | | |
| | | | Mage: 21.5 ± 2.93 MBMI: 22.96 ± 3.89 % Female: 100% Pre-existing body image concerns (≥27 score on SPAS & ≤3 on BASS) | | | | Control Group • There were no significant changes in MBSRQ scores post-test. | | | | |
| | | | 17 | Aerobic training VO\textsubscript{2}max, 10-RM strength test BMI, waist-hip ratio | SPAS, AE, BASS, PSDQ | PI Groups • Both PI groups revealed significant improvements across all measures post PI • Aerobic training group yielded significantly greater improvements in SPAS as compared to strength training group post PI | | | | |
| | | | 23 | Strength training 24 x 45 minutes over 8 weeks | | | | | | | | |
| Mendonça et al. (61) | Controls: none | 25| no intervention | | | | PI and Control Groups • Significant improvements in SPA scores were found regardless of the program, with the greatest effect shown by the strength training group post PI • No significant differences were found for body image | | | | |
| | | | Mage: n. c. MBMI: n. c. % Female: 100% | Strength (weight) training 8-RM strength test, heart rate | SPA, Stunkard Scale of Silhouette | | | | | | | |
| | | | 28 | Dance | | | | | | | | | |
| | | | 21 | Hydrogymnastics | | | | | | | | | |
| | | | 48x 60 minutes over 16 weeks | | | | | | | | | |

(Continued)
TABLE 1 | Continued

Study	Sample characteristics	n	Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:	Strong ○ Moderate ● Weak ●					
								Global rating	Selection bias	Study design	Confounders	Blinding	Data collection methods	Withdrawal and dropouts
								▲	○	●	●	●	●	○
								○	○	●	●	○	●	○
								○	○	●	●	○	●	○
								○	○	●	●	○	●	○
								○	○	●	●	○	●	○
								○	○	●	●	○	●	○
								○	○	●	●	○	●	○

Vurgun (62)

- **Mage:** 40.5 ± 12.1
- **MBMI:** n. r.
- **% Female:** 100%
- **Controls:** no intervention
 - 12

Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:
Aerobic training	Heartrate	BMI, waist-hip ratio, body density and fat ratio (skinfold measured at 9 sites)	BISQ PI and Control Groups	●	○

- PI and Control Groups
 - BISQ scores were significantly improved post PI as compared to control group.

Baur et al. (63)

- **Mage:** 37.9 ± 9.2
- **MBMI:** n. r.
- **% Female:** 52.8%
- **Suffers from non-specific back pain**
- **Controls:** none
 - 17

Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:
Fascial training	N/A	N/A	FKB-20 PI and Control Groups	●	○

- PI groups
 - Fascial fitness group showed significant improvement only for negative body image post PI.

Megakli et al. (64)

- **Mage:** 32.70 ± 7.26
- **MBMI:** 35.84 ± 4.59
- **% Female:** 100%
- **Obesity patients (BMI >30 kg/m²)**
- **Controls:** no intervention
 - 18

Physical activity intervention & dosage	Measure of fitness level	Measure of body composition	Measure of body image/representation	Main findings	Quality rating:
Aerobic & resistance training	Waist & hip circumferences	PSPP PI and Control Groups	●	○	

- PI group showed significant increases post PI for all PSPP subscale scores except for Perceived Body Attractiveness as compared to control group.
Mechanisms Underpinning the Interplay Between PI and Body Representation

All studies included neither explicitly addressed/proposed a form of a mechanistic interplay between PI and body representation, nor provided evidence to support one. As such, the question of which potential mechanisms might be responsible for the apparent shift in body representation after the introduction of physical activity remain inadequately addressed.

DISCUSSION

In this systematic review, we synthesised the empirical findings from longitudinal intervention studies on effects of structured PI on body representation. Overall, the studies suggest that the implementation of structured PI is associated with improved body image. Effects on other body representations were not investigated. To our knowledge, this review is the first to demonstrate such an effect in longitudinal settings. The effectiveness of these interventions seems promising for future research and possible development of prevention interventions. However, we argue that due to the quality of existing studies, further research is highly necessary to investigate whether the positive effects of PI can be generalised across healthy (active or sedentary), sub-clinical as well as clinical populations, and to capture a more complete sense of body representations that allows for exploring potential mechanisms of change.

Based on the evidence available, PI can be cautiously regarded as a potentially effective option regarding body image related outcomes. Notably, the studies included in the review examined predominantly volunteer groups (i.e., people who were generally open to the idea of engaging in physical activity), even if they were previously sedentary. It remains unclear whether positive effects of PI would also generalise to the voluntarily sedentary population who are physical-activity-reluctant. From a clinical perspective, these groups would be very relevant, since they are at higher risk for cardiovascular diseases and obesity. Thus, from the current studies, it remains unclear whether positive effects of PI can be generalised across healthy (active or sedentary) and clinical populations, and to capture a more complete sense of body representations that allows for exploring potential mechanisms of change.

Based on our systematic review, it would not be responsible to simply conclude that PI might be a promising treatment option for sub-clinical and/or clinical populations whose core psychopathology is centred around body dissatisfaction and distorted representation of one's own body. Despite the fact that a general improvement in measures of body representations can be observed, the percentage of clinical and sub-clinical studies included within the systematic review is too low to draw such a conclusion (23.53%). Additionally, there is no clear evidence regarding an additional or interactive effect of PI when implemented in conjunction with established treatments for clinical populations. More importantly, a previous meta-analytic review of stand-alone interventions to improve body image by Alleva and colleague (18) has provided evidence which cautioned against discussing physical activity with patients, as it was significantly associated with poorer body image.
image outcomes. The meta-analysis proposed that by discussing physical activity as an intervention, patients may inadvertently have their attention drawn to their own weight and appearance, as well as the associated societal standards for physical fitness and physical attractiveness. Further, it was also not reported to be significantly associated with larger intervention effects on body image. Until the literature on the underlying mechanism between physical activity and body representation is further investigated, physical activity-related interventions targeting body image/representation should therefore be exclusively kept to psychologically healthy populations or be closely embedded in an overall treatment concept.

Notably, objective improvements in bodily composition and physical fitness brought about by PI are inconsistently related to changes in body image. This is surprising, insofar as people typically assume that their body image is based on an objective evaluation and comparison of their body. Instead, it appears that complex appraisal processes, eventually involving perceived improvements in physical capacities or more intense somatosensory experiences during PI may play a more important role. PI interventions could serve to improve body image/body representation by allowing individuals to redirect their attention more toward the functionality of their body and less on their appearance, or by increasing their sense of physical efficacy (69, 70). In this sense, the previous literature supports the need for a comprehensive, multisensory assessment of body representation as suggested by the Longo framework.

Strengths and Methodological Considerations

To our knowledge, this review is the first to provide a comprehensive systematic review on the topic of the longitudinal interactions between PI and body representation—the definition of which we have updated and adapted to fit the more complex theories and discussions which have arisen over the years.

Methodological limitations of this review arise from our study selection process as well as from the included studies. As we only searched for published results, a publication bias towards significant effects cannot be excluded. Further, as terminology in the field is very heterogeneous, it is possible that despite our broad search strategy, a few relevant articles may have been missed. Notably, some of the included studies had small sample sizes and may have been underpowered. The current systematic review is also potentially limited by biases within studies. Although nonsystematic risk of bias across or within studies were identified, 97% of the included studies were considered at risk with regards to selection bias and study design. More importantly, all studies are lacking in the variety of validated outcome measures. Only self-report questionnaires were implemented, and the main component of body image addressed here was body satisfaction or the lack thereof. Additional visual scales implemented were used to measure the disparity between participants’ subjective ideal versus actual body shapes, which, once again, only measured participants’ attitudinal/conceptual issues of their own body image. Moreover, the two studies whose results also reported long-term effects of PI on body image were shown to be in direct contradiction (40, 50). One possible explanation for the contrasting results might be the difference in the type and dosage of the PIs implemented. As such, it remains unclear whether PI-induced body image improvement is indeed sustainable.

Perspectives and Future Directions

Our systematic review revealed that evidence on PI as a means to change body representation is still limited. A major challenge for future research is not only to reduce selection bias in the investigated samples, but also to explore potential mechanisms of body image improvement via PI through adopting a broader perspective on body representation. Based on our review, we argue for a more comprehensive view that takes various sources of information about the body into account (71, 72). In pursuit of a mechanism-oriented intervention, it is imperative to have a solid grasp on the understanding of how body image/body representation are constructed and which aspects drive changes in how individuals mentally represent their body.

The assessment of multisensory body representation is challenging. However, an increasing number of experimental paradigms have been developed in recent years to assess such concepts as: interoception [e.g., (73–75)], implicit knowledge of body dimensions (76–78) and multisensory integration (24). Despite reports of potentially disturbed multisensory integration and interoception in eating disorders (24, 79, 80), these measures have so far been largely neglected in clinical research. We expect that a broader use and further development of these methods in body representation assessment could give rise to a more informed understanding of the mechanisms of disturbed body representation and its malleability.

To this end, it is important to undertake future research on (i) identifying valid tasks to investigate different body representations (e.g., through combining actual body measures with tasks assessing body size estimation, interoceptive abilities or affordance estimates with questionnaires assessing cognitive-affective appraisal of the body), and (ii) investigate the malleability and interactions between different body representations.

AUTHOR CONTRIBUTIONS

DS, KG, SB, SZ, and AT conceptualized the project. DS, SB, and L-MW performed the literature review. DS wrote the first draft of the manuscript. SB, KG, HW, and AT critically reviewed the manuscript with respect to their areas of expertise: body image and eating disorders (KG, SB, SZ); philosophy and cognitive science of body perception (HW); and sports science (AT).

FUNDING

This review was supported by a grant from the intramural graduate school "iReAct" of the University and the University Hospital Tübingen. We acknowledge support by Open Access Publishing Fund of the University Tübingen.
REFERENCES

1. Phillips KA, Didie ER, Feusner J, Wilhelm S. Body dysmorphic disorder: treating an unrecognized disorder. Am J Psychiatry (2008) 165:1111–8. doi: 10.1176/appi.aip.2008.08040500

2. First MB. Desire for amputation of a limb: paraphilia, psychosis, or a new type of identity disorder. Psychol Med (2005) 35:919–28. doi: 10.1017/ S0033291704003320

3. Vallar G, Ronchi R. Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp Brain Res (2009) 192:533–51. doi: 10.1007/s00220-008-1562-y

4. Critchley M. The parietal lobes. London, UK: Edward Arnold & Co (1953).

5. Cash TF, Deagle EA. 3rd. The nature and extent of body-image disturbances in anorexia nervosa and bulimia: a meta-analysis. Int J Eating Disord (1997) 22:107–25. doi: 10.1002/(SICI)1098-108X(199709)22:2<107::AID-EAT1-3.0.CO;2-J

6. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: a "transdiagnostic" theory and treatment. Behav Res Ther (2003) 41(5):509–28. doi: 10.1016/S0005-7967(02)00088-8

7. Fairburn CG, Harrison PJ. Eating disorders. Lancet (2003) 361(9355):407–16. doi: 10.1016/S0140-6736(03)12378-1

8. Pennesi JL, Wade TD. A systematic review of the existing models of disordered eating: Do they inform the development of effective interventions? Clin Psychol Rev (2016) 43:175–92. doi: 10.1016/j.cpr.2015.12.004

9. Treasure J, Caludino AM, Zucker N. Eating disorders. Lancet (2010) 375:583–93. doi: 10.1016/S0140-6736(09)61736-3

10. Tucker LA. Weight training: a tool for the improvement of self and body image. Am J Health Promot (1997) 12(1):70–9. doi: 10.4278/0890-1171-12.1.70

11. Heatherton TF, Mahamedi F, Striepe M, Field AE, Keel P. A 10-year longitudinal study of body weight, dieting, and eating disorder symptoms. J Abnormal Psychol (1997) 106(1):117–25. doi: 10.1037/0021-843X.106.1.117

12. Killen JD, Taylor CB, Hayward C, Haydel KF, Wilson DM, Hammer L, et al. Weight concerns influence the development of eating disorders: a 4-year prospective study. J Consult Clin Psychol (1996) 64(5):936. doi: 10.1037/0022-006X.64.5.936

13. Stice E, Agras WS. Predicting onset and cessation bulimic behaviors during adolescence: a longitudinal grouping analysis. Health Psychol (2006) 21(1):33–47. doi: 10.1037/0278-6133.21.1.33

14. Campbell A, Hausenblas HA. Effects of exercise interventions on body image: a meta-analysis. J Health Psychol (2009) 14(6):780–93. doi: 10.1177/1359105309388977

15. Hausenblas HA, Fallon EA. Exercise and body image: a meta-analysis. Psychol Health (2006) 21(1):33–47. doi: 10.1080/14768340500512570

16. Reel JJ, Greenleaf C, Baker WK, Aragon S, Bishop D, Cachaper C, et al. The parietal lobes (2010). 107(26):11727–76. doi: 10.1002/hed.21451

17. Giel KE, Hermann-Werner A, Mayer J, Diehl K, Schneider S, Thiel A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med (2009) 151(4):W65–94. doi: 10.7326/0003-4819-151-4-200908180-00136

18. Thomas BH, Ciliska D, Dobbins M, Mucic S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evidence-Based Nurs (2004) 1(3):176–84. doi: 10.1111/j.1524-475X.2004.00406.x

19. Thomas BH, Ciliska D, Dobbins M, Mucic S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evidence-Based Nurs (2004) 1(3):176–84. doi: 10.1111/j.1524-475X.2004.00406.x

20. Armstrong R, Waters E, Doyle J. Reviews in public health and health promotion. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. (2008) Chichester, UK: Wiley-Blackwell. p. 593–606.

21. Deeks JJ, Dinnes J, O’Connor S, Bowden JA, Sarakowitch C, Song F, et al. Evaluating non-randomised intervention studies. Health Technol Assess (2003) 7(27):1–173. doi: 10.3310/hta7270

22. Folkins CH. Effects of physical training on mood. J Clin Psychol (1976) 32(2):385–8. doi: 10.1002/1097-4679(197604)32:2<385::AID-JCP2270320237>3.0.CO;2-T

23. Tucker LA. Effect of a weight-training program on the self-concepts of college males. Perceptual Motor Skills (1982) 54(3_suppl):1055–61. doi: 10.2466/pms.1982.54.3c.1055

24. Tucker LA. Weight training: a tool for the improvement of self and body concepts of males. J Hum Mov Stud (1983) 9:31–7.

25. Tucker LA. Effect of weight training on body attitudes: who benefits most? J Sports Med Phys Fitness (1987) 27:70–8.

26. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS One (2010) 5(5):e100332. doi: 10.1371/journal.pone.0010033

27. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med (2009) 151(4):W65–94. doi: 10.7326/0003-4819-151-4-200908180-00136

28. Williams PA, Cash TF. Effects of a circuit weight training program on the body images of college students. Int J Eating Disord (2001) 30(1):75–82. doi: 10.1002/(ISSN)1097-0168

29. Aşçı F. The effects of step dance on physical self-perception of female and male university students. Int J Sport Psychol (2002) 33(4):431–42.

30. Aşçı F. The effects of physical fitness training on trait anxiety and physical self-concept of female university students. Psychol Sport Exercise (2003) 4(3):255–64. doi: 10.1016/s1469-0292(02)00009-2

31. Depcik E, Williams L. Weight training and body satisfaction of body-image-disturbed college women. J Appl Sport Psychol (2004) 16(3):287–99. doi: 10.1080/10413200490498375

32. Annesi J. Relations of body esteem factors with exercise session attendance in women initiating a physical activity program. Perceptual Motor Skills (2005) 100(4):995. doi: 10.2466/pms.100.4.995–1003
64. Megakli T, Vlachopoulos SP, Thøgersen-Ntoumani C, Theodorakis Y. Impact of aerobic and resistance exercise combination on physical self-perceptions and self-esteem in women with obesity with one-year follow-up. *Int J Sport Exercise Psychol* (2017) 15(3):236–57. doi: 10.1080/1612197x.2015.1094115

65. Aukštutylė E, Mauricienė V, Daunoravicienė Č, Knisepšyte G, Berškienė G. Dynamics of body composition and body image of sedentary working women who attend zumba or functional training program: pilot study. * Balt J Sport Health Sci* (2018) 2(109):2–8. doi: 10.33607/bshs.v2i109.190

66. Cash TF. *MBSRQuest™* manual. 3rd ed. Norfolk, VA: Old Dominion University Press (2000).

67. Fox K, Corbin C. The physical self-perception profile: development and preliminary validation. *J Sport Exercise Psychol* (1989) 11:408–30. doi: 10.1123/jsep.11.4.408

68. Secord PF, Jourard SM. The appraisal of body-cathexis: body-cathexis and the self. *J Consult Psychol* (1953) 17(5):343–7. doi: 10.1037/h0060689

69. Ginis KAM, Bassett RL. Exercise and changes in body image. In: Cash TF, Smolak L, editors. *Body Image: A handbook of science, practice and prevention*. New York: Guilford Press (2011) p. 378–86.

70. Martin KA, Lichtenberger CM. Fitness enhancement and changes in body image. In: Cash TF, Pruzinsky T, editors. *Body Image: A handbook of theory, research, and clinical practice*. New York: Guilford Press (2002) p. 414–21.

71. Karnath HO, Möller S, Klüner AK, Tesch J, Giel KE, Wong HY, et al. Visual perception of one’s own body under vestibular stimulation using biometric self-avatars in virtual reality. *PLoS One* (2019) 14(3):e0213944. doi: 10.1371/journal.pone.0213944

72. Longo MR, Azañón E, Haggard P. More than skin deep: body representation beyond primary somatosensory cortex. *Neuropsychologia* (2010) 48(3):655–68. doi: 10.1016/j.neuropsychologia.2009.08.022

73. Boeckstans GE, Hirsch DP, Van den Elzen BDI, Heisterkamp SH, Tytgat GNJ. Impaired drinking capacity in patients with functional dyspepsia: relationship with proximal stomach function. *Gastroenterology* (2001) 121:1054–63. doi: 10.1053/gast.2001.28656

74. Katkin ES, Reed SD, Deroo C. A methodological analysis of 3 techniques for the assessment of individual-differences in heartbeat detection. *Psychophysiology* (1983) 20(4):452–2.

75. Schandry R. Heart beat perception and emotional experience. *Psychophysiology* (1981) 18(4):483–8. doi: 10.1111/j.1469-8986.1981.tb02486.x

76. Engel MM, Keizer A. Body representation disturbances in visual perception and affordance perception persist in eating disorder patients after completing treatment. *Sci Rep* (2017) 7(1):16184. doi: 10.1038/s41598-017-16362-w

77. Mergen J, Keizer A, Koelkebeck K, Heuvel MN, Wagner H. Women with Anorexia Nervosa do not show altered tactile localization compared to healthy controls. *Psychiatry Res* (2018) 267:446–54. doi: 10.1016/j.psychres.2018.06.007

78. Longo MR, Mattioni S, Ganea N. Perceptual and conceptual distortions of implicit hand maps. *Front Hum Neurosci* (2015) 9:656. doi: 10.3389/fnhum.2015.00656

79. Eshkevari E, Rieger E, Musiat P, Treasure J. An investigation of interoceptive sensitivity in eating disorders using a heartbeat detection task and a self-report measure. *Eur Eating Disord Rev* (2014a) 22(5):383–8. doi: 10.1002/er.2305

80. Eshkevari E, Rieger E, Longo MR, Haggard P, Treasure J, Persistent body image disturbance following recovery from eating disorders. *Int J Eating Disord* (2014b) 47(4):400–9. doi: 10.1002/eat.22219

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Srismith, Widar, Wong, Zigfeld, Thiel, Giel and Behrens. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.