Pluripotency of Wolbachia against Arboviruses: the case of yellow fever [version 2; peer review: 2 approved]

Previously titled: Pluripotency of Wolbachia against Arbovirus: the case of yellow fever

Marcele Neves Rocha¹, Myrian Morato Duarte², Simone Brutman Mansur¹, Bianca Daoud Mafra e Silva¹, Thiago Nunes Pereira¹, Talita Émile Ribeiro Adelino², Marta Giovanetti³,⁴, Luis Carlos Junior Alcantara³,⁴, Franciele Martins Santos⁵,⁶, Victor Rodrigues de Melo Costa⁵,⁶, Mauro Martins Teixeira⁵,⁷, Felipe Campos de Melo Iani²,⁴, Vivian Vasconcelos Costa⁵,⁶, Luciano Andrade Moreira¹

¹Mosquitos Vetores, IRR, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
²Serviço de Virologia e Riquetsioses, Fundação Ezequiel Dias-LACEN, Belo Horizonte, MG, Brazil
³Laboratório de Flavivírus, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
⁴Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
⁵Centro de Pesquisa e Desenvolvimento de Fármacos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
⁶Research Group in Arboviral Diseases, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
⁷Immunopharmacology Lab, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

Abstract

Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and still remains the main vector of urban YFV. Although the YFV vaccine is safe and effective, it does not always reach populations at greatest risk of infection and there is an acknowledged global shortage of vaccine supply. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries (www.worldmosquito.org) as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for Yellow fever virus (YFV).

Methods: Two recently isolated YFV (primate and human) were used to challenge field-derived wild-type and Wolbachia-infected (wMel +) Ae. aegypti mosquitoes. The YFV infection status was followed for 7, 14 and 21 days post-oral feeding (dpf). The YFV transmission potential of mosquitoes was evaluated via nano-injection of saliva into uninfected mosquitoes or by inoculation in mice.
Results: We found that Wolbachia was able to significantly reduce the prevalence of mosquitoes with YFV infected heads and thoraces for both viral isolates. Furthermore, analyses of mosquito saliva, through indirect injection into naïve mosquitoes or via interferon-deficient mouse model, indicated Wolbachia was associated with profound reduction in the YFV transmission potential of mosquitoes (14dpf).

Conclusions: Our results suggest that Wolbachia introgression could be used as a complementary strategy for prevention of urban yellow fever transmission, along with the human vaccination program.

Keywords
Wolbachia, Aedes aegypti, Yellow fever virus, vector competence

This article is included in the World Mosquito Program gateway.
Introduction

Arboviruses impose a substantial disease burden on the human population1-3. Most recently, the Zika virus re-emerged in 2014, and unexpectedly caused serious congenital infections in pregnant women and Zika fetal syndrome in affected newborns in several American countries in 2016 and 20174. Chikungunya virus caused massive epidemics in the Americas in 2014 and still circulates in several countries5.

The Yellow fever virus (YFV) is a member of the Flaviviridae family and transmitted by sylvan mosquitoes of the genus *Haemagogus* and *Sabethes*, in South America and *Aedes aegypti* in urban settings6-8. Monkeys are important reservoirs of YFV in sylvan environments. Encroachment by humans into environments where competent mosquito vectors and infected monkeys co-exist is the commonest reason for spillover of YFV transmission to human populations. Although the last reported cases of urban transmission in Brazil occurred in 1942, in 2016–2017, the country faced major outbreaks of the disease mainly in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. In 2018, the epidemic also extended to São Paulo State9. According to the Brazilian Ministry of Health, from July 2017 to April 2018, there were 1,127 YFV cases with 328 deaths, with no evidence of urban transmission. Although the YFV vaccine is safe and effective, it does not always reach populations at greatest risk of infection and there is an acknowledged global shortage of vaccine supply10.

Recent studies have shown that anthropophilic mosquitoes, such as *Aedes aegypti* and *Aedes albopictus*, as well as Brazilian enzootic mosquitoes, such as *Haemagogus leucocelaenus* and *Sabethes albipiruvius*, were highly susceptible to American and African YFV strains11-13. Therefore, the possible resurgence of urban epidemics of YFV in South America has to be constantly monitored by public health authorities14. Population control of *Ae. aegypti* mosquitoes using insecticides has been a mainstay of vector-borne disease control methods for decades but is undermined by widespread insecticide resistance. A promising innovative strategy, based on a bacterium called *Wolbachia pipiensis*, has been tried in many countries. *Wolbachia* is a maternally transmitted bacterial endosymbiont and is naturally present in at least 40% of all insect species15. The World Mosquito Program is deploying *Wolbachia* as a self-sustaining disease control agent on the basis that *Wolbachia* reduces the transmission potential of *Ae. aegypti* mosquitoes for dengue16, Zika17 and chikungunya viruses18.

Here, we studied the ability of *Wolbachia* to suppress YFV infectivity in *Ae. aegypti* mosquitoes. Two virus isolates were used: one from a human clinical sample and another one of primate origin. We found that *Wolbachia* had a major impact on virus replication in mosquitoes, as well as reduced the potential of YFV transmission via saliva, as indirectly determined via mosquitoes or a mouse model.

Methods

Sample collection

The first sample named M377_IV[Human.MinasGerais_.PadreParaíso]2017-02-04 (YFV377H) was isolated from human serum, positive for YFV by RT-qPCR (CT = 28.95) in February, 2017 from Padre Paraíso city (northeast of Minas Gerais state). The other sample named M127_IV[Primate.MinasGerais_.NovaLima]2018-01-15 (YFV127P) was isolated from the liver of a non-human primate found dead in January 2018, in Nova Lima city, in the center-south of Minas Gerais state, positive for YF via RT-qPCR (CT = 17.19). Sequencing of both isolates was performed and is described below. Viral isolation was confirmed by two methodologies: indirect immunofluorescence (IFA) and RT-qPCR. IFA was performed with a monoclonal YFV antibody donated by Evandro Chagas Institute (Arbovirology and Hemorrhagic Fevers Section) and conjugated goat anti-mouse IgG labeled with fluorescein FITC (MP Biomedicals) according to Adungo et al. 201619 with modifications. Images were obtained using an Olympus microscope model BX51 with DP72 camera and DP-2BSW software. Viral molecular confirmation was performed using RNA extracted from the culture supernatant of each isolate, followed by amplification of the genetic material
as described below in the viral detection section according to Domingo et al. 2012. For mosquito infections, the YFV isolates were replicated in C636 cells (Ae. albopictus) cultured in Leibovitz 15 medium (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) for 5 days at 28°C. Viral load was confirmed by RT-qPCR and later through plaque assays (PFU) in VERO cells (CCL81) grown in DMEM medium (Gibco) and 3% Carboxymethylcellulose (Sigma) supplemented with 2% FBS (Gibco) at 37°C and 5% CO₂.

Nucleic acid isolation and virus genome sequencing

Viral RNA was isolated from 200µL of each sample using MagNA Pure 96 (Roche) following manufacturer’s recommendations. To confirm the viral presence in isolates, RT-qPCR was performed, according to Domingo et al. 2012.

A real-time nanopore sequencing strategy with previously developed primers, was applied to both RT-qPCR-positive samples. For these samples, extracted RNA was converted to cDNA using GoScript™ Reverse Transcriptase (Promega) and random hexamer priming. Whole-genome amplification by multiplex PCR was attempted using GoTaq® qPCR Master Mix (Promega), the 500bp sequencing primer scheme and 35 cycles using the adapted protocol. Electrophoresis (2% agarose gel) was used to confirm the expected bands and to purify the specific amplicons using Invitrogen™ E-Gel™ SizeSelect, followed by quantification using fluorimetry with the Qubit dsDNA High Sensitivity assay on the Qubit 3.0 instrument (Life Technologies).

Template was amplified with end point PCR to increase template concentration following the Ion Plus Fragment Library Kit recommendation and PCR products were cleaned-up using AmpureXP purification beads (Beckman Coulter). Emulsion PCR was performed to amplify the library using Ion PGM™ Hi-Q™ View OT2 Kit (Thermo Fisher Scientific) and the Ion OneTouch 2 system (Thermo Fisher Scientific). Ion Sphere particles (ISPs) were enriched using the Ion OneTouch ES (Thermo Fisher Scientific). Enriched ISPs were sequenced using the Ion Torrent Personal Genome Machine (PGM) and the Ion PGM Hi-Q Sequencing kit (Thermo Fisher Scientific), with the Ion 314 chip. All procedures above followed manufacturer’s instructions.

Consensus genome sequences from fastq file were produced by alignment of two-direction reads by using a reference YFV genome. Quality control on raw sequence data have been performed using FastQC. Bowtie 2 was used for mapping reads to a reference using Galaxy. Only positions with ≥ 20x genome coverage were used to produce consensus sequences. Regions with lower coverage and those in primer-binding regions were masked with N characters.

In order to identify the origin of the YFV genome from the samples, we performed a maximum likelihood (ML) phylogenetic analysis using the newly two nucleotide sequences recovered in this study plus 125 reference YFV complete genome sequences from each different genotype (South American I n=84; South American II n=2; West African n=23; East African n=16) already published in peer-reviewed journals, for which sampling year and geographic location is available. Full details of the reference sequences used are provided in Extended data: Table S1.

Consensus sequences were aligned using MAFFT v.7. Maximum likelihood phylogenetic trees were estimated using IQTree under a GTR + Γ nucleotide substitution model. Statistical support for phylogenetic nodes was estimated using a bootstrap approach (100 replicates).

The phylogenetic signal has been investigated with the likelihood mapping method by analyzing groups of four sequences, randomly chosen, called quartets. Likelihood mapping analyses was performed with the program TREE-PUZZLE by analyzing 10,000 random quartets.

Mosquitoes and infections

Wild type Aedes aegypti mosquitoes collected in the neighborhood of Urca, Rio de Janeiro-RJ, Brazil in 2018 were reared in the laboratory for five generations and confirmed for the absence of Wolbachia (WT). Wolbachia wMel strain-containing mosquitoes (wMel +) were obtained from the colony maintained by the World Mosquito Program (WMP) Brazil laboratories in Belo Horizonte, which is backcrossed every five generations with Urca male mosquitoes. They were reared in a controlled environment at 27 ± 2°C and 60 ± 10% relative humidity. Four to six days-old female mosquitoes were starved for 24 to 24 hours and subsequently offered YFV virus culture supernatant mixed with washed human red blood cells (RBCs) (2:1 ratio). The viral titer offered to mosquitoes was 4 × 10⁵ PFU/mL for YFV377H and 1.4 × 10⁶ PFU/mL for YFV127P. RBCs were washed three times for removal of potential YFV vaccine antibodies. Mosquitoes were allowed to feed for one hour and then, engorged females were selected and maintained in triple containment, under BSL-2 conditions. Sucrose solution (10%) was offered ad libitum during the extrinsic incubation period. Viral load was analyzed at 7, 14 and 21 days post feeding (dpf), via RT-qPCR and number of mosquitoes analyzed per group were presented in Figures 3B, C and D and ranged from 17 to 20. Additionally, a subset of mosquitoes (at 7dpf) received an extra blood meal and were collected at 14dpf, when Wolbachia density and viral load was determined. Wolbachia density was analyzed in the three time-points, being 40 mosquitoes at 7dpf, 39 at 14dpf and 38 mosquitoes after 21dpf. The blood used in the infective feedings was obtained from a blood bank (Hemominas) through an agreement signed between both institutions (OF.GPO/CCO- Nr224/16). As a laboratory routine each blood bag is previously tested for dengue, Zika, chikungunya, mayaro and yellow fever, through RT-qPCR to rule out any cross-infection that could interfere with the results.

Mosquito saliva transmission assays

In order to check the ability of mosquitoes to transmit the virus, saliva samples from infected mosquitoes were individually collected at 14 dpf. After removal of legs and wings, mosquitoes had their proboscis introduced into 10 µL tips, containing 50% Fetal Bovine Serum (FBS) (Gibco) and 30% sugar solution and allowed to salivate for 30 minutes. Mosquitoes and solution containing...
the saliva were stored at -70°C until RNA extraction of the heads/thoraces and/or nanoinjection of the saliva into naive mosquitoes (WT). Individual saliva samples were injected into WT mosquitoes, after 2 to 4 days of emergence. Each mosquito received 276 nL and were kept for 5 days before whole body RNA extraction, followed by RT-qPCR. Usually, with one saliva sample it is possible to inject 15 mosquitoes, but due mortality, 8 mosquitoes were analyzed from each nanoinjected saliva sample.

In vivo experiments were conducted using type I interferon receptor deficient mice (A129^-/-), SV129 background. A129^-/- originally from _The Jackson Laboratories_ (reference 010830) were obtained from Biotério de Matrizes da Universidade de São Paulo (USP) and kept under specific pathogen-free conditions at Immunopharmacology Lab at UFMG. Mice were housed in filtered-cages of 28x13x16 cm with autoclaved food and water available ad libitum on ventilated shelves (Alesco). A maximum of 4 mice were kept per cage. Mice were housed under standard conditions with controlled temperature (18–23 degrees) humidity (40–60%) and 12/12h dark light cycle. Sample sizes for _in vivo_ studies were determined using the G*Power 3.1 software package. In each experiment we used 4 mice on YFV377H or YFV127P groups and 6 mice per group on saliva YFV 377H or 127P infected mosquitoes (WT or vMe+) groups. Mice from the same litter were added to either mock- or YFV infected groups, or test or control groups as appropriate. No randomization protocol was utilized. For most of the experiments, no blinding was involved except for body weight and hind paw swelling analysis. Bioanalysis from viral loads and cell count assay experiments was blinded. Groups were divided by code names on the day of euthanasia. Different researchers performed the euthanasia or analyzed the data. Each experiment was replicated twice and all attempts at replication were successful. For the experiments, adult A129^-/- mice (7 to 9 weeks old, 20-22g) were inoculated with 1 × 10^4 PFU with either YFV377H or YFV127P viruses’ strains or with a pool of saliva samples (n=2) either from the WT or vMe+ groups via subcutaneous (intra-plantar) route/50µl paw (right hind paw). Morbidity parameters such as body weight loss, total and differential counts of blood leukocytes and paw edema were evaluated daily. Total cell counts were extracted with Trizol (Invitrogen), whereas mice lymph node samples were isolated with the QIAamp® Viral RNA kit (Qiagen). Multiplex reactions were performed with primers and probes described in Table 1. Reactions were performed on a Lightcytler96 real-time PCR machine (Roche) with the following program: first step at 50°C for 10 min for reverse transcription, 95°C for 30 sec for inactivation and initial denaturation and 95°C for 5 sec followed by 60°C for 30 sec for 40 cycles. The reaction volume was 10 µL (5× RT-PCR Reaction Mix (Roche), 200× RT-enzyme solution (Roche), 2.5 µM each primer (IDT) and 2 µM YF (target yellow fever) probe (IDT) and 1 µM WSPTM2 (target vMel-specific) probe and 0.7 µM RPS 17S (target _Ae. aegypti_ ribosomal S17) probe. For mouse samples, only the YFV probe was used. A fraction (1/20) of the total isolated RNA was used in the reactions. Head and thorax samples from YFV-challenged mosquitoes were analyzed in duplicate through RT-qPCR and viral and _Wolbachia_ quantification were performed.

All animal experiments involving YFV infection and _Wolbachia_ saliva inoculation were conducted following the ethical and animal welfare regulations of the Brazilian Government (law 11794/2008). The experimental protocol was approved by the Committee on Animal Ethics of the Universidade Federal de Minas Gerais (CEUA/UFMG, permit protocol no. 84/2018). All surgeries were performed under ketamine/xylazine anesthesia and all efforts were made to minimize animal suffering. Studies with YFV were conducted under biosafety level 2 (BSL-2) containment at Immunopharmacology Lab from Instituto de Ciências Biológicas (ICB) at Universidade Federal de Minas Gerais.

Table 1. Sequence of primers and probes used in this study.

Primer/Probe	Sequence	Reference
YFV Forward	GCTAATTGGAGTTGTYATTGCTCTGC	19
YFV Reverse	CTGCTAATCGCTCAAMGAACGTGG	
YFV Probe	FAM/ATCGAGTGG/ZEN/CTAGGCAATAAACAC/3lAbKQF	
WSPTM2 Forward	CATTTGTTTCTTTTCTGTGG	15
WSPTM2 Reverse	ACACCGCCTTTAATGACCCAG	
WSPTM2 Probe	CY5/TGACCACGAATGGA/TAO/ACCCGGTCTGTAATGA/3lAbRQSp	
RPS17 S Forward	TCCGTGATCCTCATCAAGCT	28
RPS 17S Reverse	CACCCTCCTGGCGACCTAGTGGTC	
RPS17 S Probe	HEX/CAGGAGGAG/GAZ/AAACGTTGAGCGCAG/3lAbKQF	
in comparison with serial dilution of a standard curve of the respective genes cloned into the pGEMT plasmid (Promega)16,27. Therefore, it was possible to calculate the number of copies per tissue. As a mosquito control gene, we used the RPS 17S sequence of \textit{Ae. aegypti} (Moreira 2009)15. Viable viral loads were quantified by titration assay in permissive Vero cells as described in Costa \textit{et al.}, 201229.

Statistical analysis

All statistical analyses were performed on Prism (Graphpad Version 7.04). Initially the D’Agostino and Person normality test was performed. \textit{Wolbachia} density data as well as viral load were compared using the non-parametric Mann-Whitney test. Statistical analyzes for the mouse data were performed with ANOVA one-way test. The significance level was set for p values less than 0.05.

Results

Viral isolation and sequencing

Two plasma samples (one human and one from a non-human primate) were isolated from the diagnostic service of Fundação Ezequiel Dias, the State Reference Laboratory of Minas Gerais, Brazil. Viral isolation was confirmed by indirect immunofluorescence (IFA), showing the typical signal of fluorescence for both isolates (Figure 1B and C). Both samples were successfully sequenced with PGM (Personal Genome Machine) technology with adapted overlapping multiplex PCR protocol, as shown in Table 2. The phylogenetic analysis showed that the isolates obtained from the two samples (M377_IV and M127_IV) belonged to the South American genotype I and clustered closely with strong bootstrap support (>90%) with the recent sequences, isolated in Minas Gerais, from the current outbreak (Figure 2)29.

Wolbachia density

Absolute quantification of \textit{Wolbachia} in mosquitoes were analyzed in the heads and thoraces of \textit{Wolbachia}-positive mosquitoes (wMel +) after challenge with YFV. There was no difference in \textit{Wolbachia} density among heads and thoraces, collected at 7 or 14 days post feeding (dpf), as shown in Figure 3A. However, \textit{Wolbachia} density presented a slight reduction at 21dpf, which was statistically significant in relation to 14dpf ($p = 0.0062$, Mann Whitney). The median at 14dpf was 2.04 × 106 copies per head/thorax whereas at 21dpf, it decreased to 1.37 × 106.

Wolbachia reduces susceptibility of \textit{Ae. aegypti} to YFV infection

In mosquitoes without \textit{Wolbachia} (WT) the prevalence of YFV infection of heads and thoraces was 30–45% at 7dpf, and 80–89% at 14dpf. For those mosquitoes that received a 2nd blood meal, the prevalence was 89 to 94% at 14dpf and 85 to 100% at 21dpf. There was no significant difference between infection rates resulting from the human or primate virus isolates (Figure 3). In heads and thoraces of \textit{Wolbachia}-positive mosquitoes (wMel +) the infection rate ranged from 0 to 15% at 7dpf, 11 to 16% at 14dpf, 20 to 32% at 14dpf when mosquitoes received a second blood meal, and 20 to 25% at 21dpf (Figure 3). Again, there was no major difference between viral isolates.

The infection rate observed at 7dpf was low for both viral isolates (Figure 3B). At day 7, the presence of \textit{Wolbachia} was already associated with a marked decrease in viral titers in mosquitoes (Figure 3B). At 14dpf, there was a significant increase in the number of viral copies in WT mosquitoes (Figure 3C). Further increase on viral load was observed when mosquitoes received a second blood meal 7 days after the infective meal and were analyzed at 14 dpf. This increase was statistically significant for both isolates ($p <0.01$, Mann Whitney). This may have been due to the fact that the second blood supplied extra important nutrients for viral replication. At 21dpf, the infection reached 100% for the human isolate with a median of 3.15 × 107 viral copies. For the primate isolate, although the infection rate was lower (85%), the viral load was higher with a median of 5.61 × 107 viral copies per head/thoraces. Regardless of the strain of virus used, viral loads were remarkable lower in presence of \textit{Wolbachia} at all time points (Figure 3B–D). In addition, there was no increase in viral load in wMel + mosquitoes after supplying a second blood meal (Figure 3C).

Virus transmission through saliva

Next, we evaluated the ability of orally infected mosquitoes to transmit the virus. We first collected saliva from infected mosquitoes at 14 dpf, from both groups of mosquitoes and virus isolates. We then injected a number of saliva samples into eight naïve (WT) mosquitoes and, after five days, we checked whether those mosquitoes became infected through RT-qPCR, demonstrating that a particular saliva was infectious. As shown in Figure 4, when saliva samples originated from wMel + mosquitoes, no mosquitoes became infected. This assay shows, indirectly, the potential of \textit{Wolbachia} to completely abrogate YFV transmission potential of \textit{Ae. aegypti} mosquitoes. Nevertheless, saliva originating from WT mosquitoes was able to infect 20% of the naïve-injected mosquitoes.

Similar experiments were performed by injecting saliva samples from either the WT or wMel + groups into 4-week-old A129$^+$ mice, which are susceptible to arboviral infections31,32. Results showed that there was no major impact on clinical and laboratory parameters, which is consistent with the relatively low number of viable virus injected (Figure 5A–D). However, there were viable viruses, as assessed by plaque assay, recovered from the paw of mice inoculated with saliva from WT mosquitoes. Indeed, there was culturable virus when both P (primate) and H (human) strains were used. In contrast, none of the samples from the wMel + groups were positive on the plaque assay (Figure 5E–H). Consistently with the mosquito saliva findings above, there were higher number of viral RNA copies in draining lymphnode and liver from mice injected with WT saliva than mice inoculated with wMel + saliva (Figure 5I–K). Virus isolated from the primate (YFV127P) showed greater presence in liver while the human strain (YFV377H) was more localized at the lymphoid tissue (Figure 5).

Collectively these results suggest that \textit{Wolbachia}-positive mosquitoes can efficiently suppress YFV replication and reduce virus transmission through saliva.
Figure 1. Yellow fever virus (YFV) immunofluorescence in C636 cells. (A) Control cells without virus, (B) cells infected with YFV 377 H and (C) cells with YFV127 P. Green fluorescence depicts YFV in cells marked with a monoclonal YFV antibody conjugated goat anti-mouse IgG labeled with fluorescein FITC.

Table 2. Main results obtained by sequencing.

Sample ID	Accession number (GenBank)	CT value	Coverage	Mean depth	N° of reads	Mapped reads	Mean mapping quality
M377_IV	MK249065	13.82	92.5%	4,004 X	218,811	216.613 (99%)	37
M127_IV	MK249066	16.68	93%	6,640 X	361,806	358.522 (99%)	37.02

Figure 2. Maximum likelihood phylogeny obtained using two novel complete Yellow fever virus sequences plus 126 YFV reference sequences from each different genotype (South American I; South American II; West African; East African). ML showing the two newly genomes belongs to South American I (SA1) genotype. SA2, WAfr, and EAfr indicate the South America II, West Africa, and East Africa genotypes, respectively. The scale bar is in units of substitutions per site (s/s). Node labels indicate bootstrap support values. 17DD, the vaccine strain used in Brazil.
Discussion

The ability of *Wolbachia* to reduce the susceptibility of *Ae. aegypti* to disseminated arbovirus infection has been repeatedly demonstrated for dengue\(^1\), Zika\(^2\), chikungunya\(^3\), West Nile\(^4\) and mayaro viruses\(^5\). We have shown that wMel was able to significantly reduce the infectivity of YFV to mosquitoes, independently of the source of the virus (both human and primate). Previously, it has been shown that two strains of *Wolbachia* (wMelPop and wMel) were able to significantly reduce YFV mosquito infection, although with virus isolated from human cases from Nigeria and Bolivia, in 1987 and 1999, respectively\(^6\). Here we evaluated the effect of *Wolbachia* (wMel strain) towards two recently isolated *Yellow fever virus*, originating from the 2017–2018 outbreaks in Brazil. The *Yellow fever virus* isolates used here have different origins, one originating from a non-human primate found in the city of Nova Lima and another originated from a human case in the city of Padre Paraíso, both in the state of Minas Gerais. Although these cities are located more than 500 km apart, they belong to the same genotype. Besides working with recently isolated virus from human and primate sources, the difference in the present study refers to the way in which this population of mosquitoes have been infected. Furthermore, this study was performed with orally infected mosquitoes, which is closer to natural conditions, in comparison to the previous study which infected mosquitoes through thorax injection, in order to improve mosquito infection\(^7\).

The use of *Wolbachia* as an arbovirus control strategy has been developed by the not-for-profit initiative, the World Mosquito Program. The approach offers the prospect of a natural and sustainable method for arbovirus control\(^8\). The impact
Indirect evaluation of yellow fever virus (YFV) transmission through mosquito saliva.

Saliva from both groups of infected mosquitoes were collected at 14 dpf. Individual saliva samples (WT or wMel +) were analyzed into eight naïve (WT) mosquitoes (bars) and, after five days, these injected mosquitoes were analyzed. (A) Mosquitoes injected with mosquito saliva or (B) wMel+ mosquitoes, challenged with human virus. (C) Mosquitoes injected with WT mosquito saliva or (D) wMel+ mosquitoes, challenged with primate virus. Values below each bar depicts the viral load of each mosquito head and thorax which donated that saliva. Positive mosquitoes were quantified through RT-qPCR and the grey-scale represents the number of YFV copies (0 to 10^6 copies), per mosquito.

Figure 4.

Towards reduction of arbovirus has been analyzed39,40 and early indication of positive effect has been recently reported41. In Brazil, WMP is expanding its coverage into Rio de Janeiro and Niteroi municipalities and epidemiological studies in order to determine arbovirus reduction is underway.

The blocking ability conferred by Wolbachia has been directly related to the density of the bacterium within main mosquito tissues such as midgut and/or salivary glands15,42, where viruses replicate to further produce infectious particles17. In our study, and as observed by Pereira et al., 201827, the density of Wolbachia was constant at 7 or 14 days after virus exposure. However, there was a reduction of wMel + density at 21dpf, which did not impact the blocking ability towards the virus (\textbf{Figure 3}). The variation on the density (or titer) of Wolbachia within the host has been previously observed, which could be related to the aging of the host42.

In the present study, the presence of Wolbachia in mosquitoes greatly reduced YFV infection, except for 7dpf, when the infection rate was low in all groups. Further effect of Wolbachia towards YFV was verified when individually collected mosquito saliva was injected into naïve mosquitoes or into a susceptible mice strain and their infectivity was analyzed. This first technique has been widely used by our group and others16,27,44 and it is a robust proxy of the potential of individual saliva towards virus transmission. When the source of saliva came from Wolbachia-positive mosquitoes, there was no infection in any injected mosquito. Through projection of these results into natural conditions, the YFV transmission could be greatly reduced, as previously modeled for Dengue virus39.

Another interesting fact of this work was the increase in viral load observed after the second blood feeding in WT mosquitoes. This same fact was not observed in wMel + mosquitoes. This shows that the blocking ability of Wolbachia persists even after the addition of extra blood nutrients (through a second blood meal) and that its blocking effect occurs within 7 days after infection. The reason to include the second blood meal was that antibodies to YFV could be present in the blood and
Figure 5. Saliva from *Wolbachia*-positive mosquitoes lose its capacity to transmit yellow fever virus *in vivo*. A129° mice were inoculated with 1×10^4 PFU of YFV primate (empty blue circles) and human YFV (empty red circles) or with a pool of saliva from wild type (WT) YFV primate (full blue circles), WT YFV human (full red circles), *Wolbachia*-positive (wMel +) YFV primate (empty blue squares) and *Wolbachia*-positive YFV human (empty red squares) previously infected with YFV via intraplantar route (50 μl/paw). Control mice (MOCK group) received 50 μl of PBS solution (empty black circle). (A) Body weight analysis shown as body weight (g) of mice. (B) Paw volume measured daily and shown as swelling (mm2). On day 4 post-infection mice were euthanized and the following analysis performed. (C–D) Total and differential leukocyte counts in the blood. (E–H) Viable viral loads recovered from paw (E), spleen (F), liver (G) and brain (H) by plaque assay in Vero cells. Results are shown as Log PFU/g of tissue. (I–K) Viral RNA copies recovered from popliteal lymph node (I), liver (J) and spleen (K) by RT-qPCR. Data was presented as mean±SEM or median ($n=4$ mice for MOCK, $n=6$ mice for WT P, wMel + P, WT H and wMel + H groups and $n=4$ for YFV P and YFV H, one-way anova).
Therefore, promoting negative effect towards the virus in WT mosquitoes, but this was not the case. Caragata et al. (2013) studied the effect of cholesterol towards the Drosophila C virus. This mechanism could be present in our experimental mosquitoes, but further studies on this aspect should be developed.

Interestingly, in our experiments, the overall infectivity in mosquitoes was not high, even in control (no Wolbachia) mosquitoes. This shows the reduced vector competence of natural Brazilian Ae. aegypti populations, which could explain why most of the cases reported on the recent outbreaks in Brazil were in proximity to green areas of parks and forests, where natural YFV mosquito vectors such as Haemagogus and Sabethes are easily found.

Our results show that the presence of wMel strain of Wolbachia in mosquitoes has the potential to greatly reduce the transmission potential of Ae. aegypti for YFV. It is important for public health agencies of arbovirus endemic countries to have constant awareness of the potential of Ae. aegypti to become an urban vector for yellow fever virus once again. If that becomes reality, Wolbachia-infected mosquitoes could be a powerful tool for YFV control, along with the currently applied vaccination program.

Lastly, it is important to consider the possible vector competence of other mosquito species and the possibility of Wolbachia virus evolution and, therefore, possible lack of interference in this system. If that is the case, other strategies should be consider, as the use of other strains of Wolbachia to try to block virus transmission by that particular mosquito species. Integration of complementary strategies are the best solution for arbovirus control.

Data availability

Underlying data

The data underlying Figure 3, Figure 4 and Figure 5, as well as viral sequencing data is available from Open Science Framework, https://doi.org/10.17605/OSF.IO/PUZ69.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

1. Musso D, Rodríguez-Morales AJ, Levi JE, et al: Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. Lancet Infect Dis. 2018; 18(11): e355–e361. Published Abstract | Publisher Full Text

2. Livoc MN, Novaes CTG, Lopes MIBF: Yellow fever. Rev Assoc Med Bras (1992). 2018; 64(2): 106–13. Published Abstract | Publisher Full Text

3. Oliveira Melo AS, Malinger G, Ximenes R, et al: Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol. 2016; 47(1): 6–7. Published Abstract | Publisher Full Text

Genome sequences generated in this study are publicly available in GenBank database: M377_IV[Human]MinasGerais_PadreParaiso[2017-02-04]: accession number, MK249065; M127_IV[Primate]MinasGerais_NovaLima[2018-01-15]: accession number, MK249066.

Extended data

Table S1. YFV reference strains information, https://doi.org/10.17605/OSF.IO/PUZ69

Grant information

Bill Melinda Gates Foundation through Monash University and the Brazilian Ministry of Health (DECT) [OPP1140230]. This work was partially supported by the National Institute of Science and Technology in Dengue and Host-microorganism Interaction (INCT Dengue), and the Minas Gerais Foundation for Science (FAPEMIG, Brazil). LAM and MMT are fellows from CNPq, Brazil. This work also received support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Ezequiel Dias (FUNED). LCJA, FCMI and MG have used sequencing primers and protocols from the ZIBRA2 project funded from CNPq and CAPES (440685/2016-8 and 88887.130716/2016-00).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

We thank the Arbovirology and Hemorrhagic Fever Session from the Evandro Chagas Institute, for donating the monoclonal antibody. We thank the State Health Secretariat of Minas Gerais, and the board and technical team of Fundação Ezequiel Dias. Also, Hemominas for blood donation. We are grateful to members of the Mosquitos Vetores Group (MV - IRR/FIOCRUZ) and the team of World Mosquito Program Brazil, particularly the Entomology team for providing wMel and field mosquito eggs. Also, to members of the Immunologia de Doenças Virais group (IRR - FIOCRUZ) who provided the viral culture infrastructure. We are in debt to Dr. Cameron Simmons for critical reading of the manuscript.
Monkey” (Lagotrix lago-tricha humboldti), the “Spider Monkey” (Ateles Ater F. Courrier), and the “Squirrel Monkey” (Saimiri Sciureus Linnaeus). J Exp Med. 1930; 51(5): 703–20. PubMed Abstract | Publisher Full Text | Free Full Text

8. Hervey JP, Filho GS, Travassos da Rosa APA, et al.: Biological ecology of Haemagogus (Haemagogus) janthinomys Dyar et Brynsl. Bih ORSTOM, ser Ent Med Parasitol. 1985; 23(3): 203–8. Reference Source

9. Chaves-TSSD, Orduna T, Lepetic A, et al.: Yellow fever in Brazil: Epidemiological aspects and implications for travelers. Travel Med Infect Dis. 2018; 23: 1–3. PubMed Abstract | Publisher Full Text

10. World Health Organization: Eliminate yellow fever epidemics (EYE) by 2017-2020. World Health Organization. 2016; 1–56. Reference Source

11. Cardoso Jda C, de Almeida MA, dos Santos E, et al.: Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil. 2008, Emerg Infect Dis. 2010; 16(12): 1918–24. PubMed Abstract | Publisher Full Text | Free Full Text

12. Souza RP, Petrella S, Coimbra TL, et al.: Wolbachia infection in field-collected Ae. aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014; 8(2): e2088. PubMed Abstract | Publisher Full Text | Free Full Text

13. Strimmer K, von Haeseler A, et al.: A simple method for determining multiple sequence alignment. J Mol Evol. 1993; 37(2): 13–20. PubMed Abstract | Publisher Full Text | Free Full Text

14. Carvalho DP, Watcher JS, Travassos da Rosa APA, et al.: Wolbachia infection in field-collected Aedes aegypti in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012; 6(11): e1892. PubMed Abstract | Publisher Full Text | Free Full Text

15. N’Diaye M, Guisse J, Guissou Y, et al.: Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2017; 115(2): 361–6. PubMed Abstract | Publisher Full Text | Free Full Text

16. O’Neill SL: The Use of Wolbachia by the World Mosquito Program to interrupt transmission of Aedes aegypti transmitted viruses. Adv Exp Med Biol. In: Hilgenfeld R, Vasdevan S (eds) Dengue and Zika: Control and Antiviral Treatment Strategies Advances in Experimental Medicine and Biology. Springer, Singapore. 2018; 1062: 355–60. PubMed Abstract | Publisher Full Text | Free Full Text

17. Fergusson N, Kian D, Clapham H, et al.: Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. HHS Public Access. 2015; 143(5): 951–9. PubMed Abstract | Publisher Full Text | Free Full Text

18. Anders KL, Indrani C, Ahmad RA, et al.: The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Trials. 2018; 19(1): 302. PubMed Abstract | Publisher Full Text | Free Full Text

19. Carlington LB, Chau BBCCN, Tran NTH, et al.: Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. PLoS Pathog. 2017; 13(12): e1006751. PubMed Abstract | Publisher Full Text | Free Full Text

20. Fraser JE, De Bryne JT, Hironaka NT, et al.: Novel Wolbachia-infected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 2013; 9(12): e1003751. PubMed Abstract | Publisher Full Text | Free Full Text

21. O’Neill SL, Johnson PH, Moreira LA: The wMel Wolbachia strain blocks dengue and inedes caged Aedes aegypti populations. Nature. 2011; 476(7361): 450–3. PubMed Abstract | Publisher Full Text | Free Full Text

22. Anderson SL, Richards SL, Smartt CT: A simple method for determining arbovirus transmission in mosquitoes. J Am Mosq Control Assoc. 2010; 26(4): 108–11. PubMed Abstract | Publisher Full Text | Free Full Text

23. Caragata EP, Rances E, Hedges LM, et al.: Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog. 2013; 9(6): e1003459. PubMed Abstract | Publisher Full Text | Free Full Text

24. Shannon RC, Whiman L, Franca M: Yellow Fever Virus In Jungle Mosquitoes. Science. 1938; 88(2274): 110–. PubMed Abstract | Publisher Full Text | Free Full Text

25. Carlington CV, Auguste AJ: Evolutionary and ecological factors underlying the tempo and distribution of yellow fever vector activity. Infect Genet Evol. 2013; 13: 159–210. PubMed Abstract | Publisher Full Text | Free Full Text

26. de Menezes Martins R, Maia MLS, de Lima SMB, et al.: Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study. Vaccine. 2018; 36(28): 4112–9. PubMed Abstract | Publisher Full Text | Free Full Text

27. Moreira LA: GatesOpen12903. OSF 2019. http://www.doi.org/10.17605/OSF.IO/PU29
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Version 2

Reviewer Report 23 April 2019

https://doi.org/10.21956/gatesopenres.14075.r27067

© 2019 van den Hurk A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Andrew van den Hurk
School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia

The authors have done a good job of addressing the reviewer’s comments. I have no further comments to make.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I am a public health entomologist who researches mosquito-borne pathogens, with a focus on arboviruses. In particular, the research integrates field and laboratory based studies to understand arbovirus transmission cycles, and assesses novel surveillance and control strategies with view to limiting their impact on human health.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 17 April 2019

https://doi.org/10.21956/gatesopenres.14075.r27068

© 2019 Souza-Neto J et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jayme A. Souza-Neto
School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, São Paulo State University (UNESP), Botucatu, Brazil
Bianca C. Carlos
School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, São Paulo State University (UNESP), Botucatu, Brazil

In this revised version the authors have fully addressed the points and concerns raised on Version 1.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Vector-pathogen interactions; vector competence; mosquito immunity; functional genomics; microbiota;

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 25 March 2019

https://doi.org/10.21956/gatesopenres.13999.r26932

© 2019 Souza-Neto J et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jayme A. Souza-Neto
School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, São Paulo State University (UNESP), Botucatu, Brazil

Bianca C. Carlos
School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, São Paulo State University (UNESP), Botucatu, Brazil

This a very elegant manuscript provided by Rocha and colleagues reporting the effect Wolbachia on yellow fever virus (YFV) transmission by *Aedes aegypti*. For testing this, the authors use an already well-known and -established *Ae. aegypti* line carrying Wolbachia (wMel mosquitoes) to evaluate its competence for two closely related YFV isolates, one from humans and another from primates. Finally, the efficacy of the wMel *Ae. aegypti* strain to block YFV transmission is tested by assessing the number of infectious viral particles in the mosquito saliva by two independent methods: 1) intrathoracic inoculation of mosquitoes or 2) paw inoculation of immune-deficient mice with the saliva of either WT or wMel YFV-infected mosquitoes. Clearly, Wolbachia has a potent effect against YFV, reducing both the infection level of YFV in the mosquito body and the rate of YFV-infected mosquitoes when comparing wMel mosquitoes orally exposed to YFV to their respective WT control mosquitoes. More strikingly, the wMel strain is shown to be unable to transmit YFV by the two indirect transmission assays carried out by the authors. Suggestions and comments are presented below with the intention to improve the manuscript, especially the clarity and accuracy of the methods/design and data presentation.
1. Methods/design description: some elements related to this part of the manuscript should be further expanded and detailed for a better understanding and accuracy of the manuscript. Especially, the authors should consider:

- Improving the description of the YFV infection assays in mosquitoes. For example, it is not clear the number of mosquitoes and replicates used to determine the viral load in the body of WT or wMel mosquitoes.

- Similarly, it is important to clarify the design and data presentation of the transmission assays in mosquitoes. For example, it is not clear if each bar on Figure 4 represents the data combination of 8 mosquitoes injected with the same saliva of a given mosquito (1 x 8 x 8) or if it is the data collected from an individual mosquito injected with the saliva of a given individual mosquito (1 x 1 x 8). This may also cause confusion when interpreting this figure as the Y-axis labels refer to “infected mosquitoes per saliva” while the subtitles refer to “the number of YFV copies...per mosquito”. Additionally, the authors should check the position of the graphs on the right (A and C) and left (B and D) panels as they seem not to match their respective description in the subtitles.

- An important question that was raised is why the authors have chosen to inject mosquito saliva into mice instead of feeding such mosquitoes on mice in order to test transmission directly.

2. Results/hypothesis/conclusions:

- The leukocyte counts are significantly high in mice inoculated with the saliva of wMel mosquitoes orally exposed to YFV (Figures 5C and 5D). Do the authors have any hypothesis to explain why this is happening?

- Because the WT mosquito population used in this work presented a relatively low vector competence to YFV, on page 10 (Discussion, second column) the authors infer this phenotype as a representation of Brazilian *Ae. aegypti* populations. While this is a plausible hypothesis, I would suggest the authors to be more cautious with this statement as vector competence to YFV of many other *Ae. aegypti* populations must be tested before one assumes this fact.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Vector-pathogen interactions; vector competence; mosquito immunity; functional genomics; microbiota;

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Apr 2019

Luciano Moreira, Oswaldo Cruz Foundation, Belo Horizonte, Brazil

Reviewer – Dr. Jaime A. Souza-Neto and Bianca C. Carlos

This a very elegant manuscript provided by Rocha and colleagues reporting the effect Wolbachia on yellow fever virus (YFV) transmission by *Aedes aegypti*. For testing this, the authors use an already well-known and -established *Ae. aegypti* line carrying Wolbachia (wMel mosquitoes) to evaluate its competence for two closely related YFV isolates, one from humans and another from primates. Finally, the efficacy of the wMel *Ae. aegypti* strain to block YFV transmission is tested by assessing the number of infectious viral particles in the mosquito saliva by two independent methods: 1) intrathoracic inoculation of mosquitoes or 2) paw inoculation of immune-deficient mice with the saliva of either WT or wMel YFV-infected mosquitoes. Clearly, Wolbachia has a potent effect against YFV, reducing both the infection level of YFV in the mosquito body and the rate of YFV-infected mosquitoes when comparing wMel mosquitoes orally exposed to YFV to their respective WT control mosquitoes. More strikingly, the wMel strain is shown to be unable to transmit YFV by the two indirect transmission assays carried out by the authors. Suggestions and comments are presented below with the intention to improve the manuscript, especially the clarity and accuracy of the methods/design and data presentation.

1. Methods/design description: some elements related to this part of the manuscript should be further expanded and detailed for a better understanding and accuracy of the manuscript. Especially, the authors should consider:
 - Improving the description of the YFV infection assays in mosquitoes. For example, it is not clear the number of mosquitoes and replicates used to determine the viral load in the body of WT or wMel mosquitoes.
 >> In the section on methods in the item mosquitoes and infection, the requested information was included:
 Viral load was analyzed at 7, 14 and 21 days post feeding (dpf), via RT-qPCR and the number
of mosquitoes analyzed per group are presented in figures 3B, C and D, ranging from 17 to 20. Additionally, a subset of mosquitoes (at 7dpf) received an extra blood meal and were collected at 14dpf, when Wolbachia density and viral load was determined. Wolbachia density was analyzed on mosquitoes from the three time-points as follows: 40 mosquitoes on 7 dpf, 39 mosquitoes on 14 dpf and 38 mosquitoes after 21 dpf.

- Similarly, it is important to clarify the design and data presentation of the transmission assays in mosquitoes. For example, it is not clear if each bar on Figure 4 represents the data combination of 8 mosquitoes injected with the same saliva of a given mosquito (1 x 8 x 8) or if it is the data collected from an individual mosquito injected with the saliva of a given individual mosquito (1 x 1 x 8). This may also cause confusion when interpreting this figure as the Y-axis labels refer to “infected mosquitoes per saliva” while the subtitles refer to “the number of YFV copies...per mosquito”. Additionally, the authors should check the position of the graphs on the right (A and C) and left (B and D) panels as they seem not to match their respective description in the subtitles.

>> The information requested on the number of nanoinjected mosquitoes was introduced in the methods section (Mosquito saliva transmission assay) as shown below:
Each mosquito received 276 nL and were kept for 5 days before whole body RNA extraction, followed by RT-qPCR. Usually, with one saliva sample it is possible to inject 15 mosquitoes, but due to mortality, 8 mosquitoes were analyzed from each nanoinjected saliva sample.

>> The panels were indeed misplaced. Thank you for pointing this out. Please see below:
Saliva from both groups of infected mosquitoes were collected at 14 dpf. Individual saliva samples (WT or wMel +) were analyzed into eight naïve (WT) mosquitoes (bars) and, after five days, these injected mosquitoes were analyzed. (A) Mosquitoes injected with WT mosquito saliva or (B) wMel+ mosquitoes, challenged with human virus. (C) Mosquitoes injected with WT mosquito saliva or (D) wMel+ mosquitoes, challenged with primate virus. Values below each bar depicts the viral load of each mosquito head and thorax which donated that saliva. Positive mosquitoes were quantified through RT-qPCR and the grey-scale represents the number of YFV copies (0 to 10^6 copies), per mosquito.

- An important question that was raised is why the authors have chosen to inject mosquito saliva into mice instead of feeding such mosquitoes on mice in order to test transmission directly.

>> The reason why we have not performed the experiment by feeding infected mosquitoes directly on the mice was because we had no biosafety approval to perform these experiments. Therefore, the saliva samples had to be transported to another institution (UFMG), where the mice were located, and then used there.

2. Results/hypothesis/conclusions:- The leukocyte counts are significantly high in mice inoculated with the saliva of wMel mosquitoes orally exposed to YFV (Figures 5C and 5D). Do the authors have any hypothesis to explain why this is happening?

>> Mosquito saliva is a very complex concoction of mixture of proteins (>100 proteins), which exerts several functions in the host by circumventing, for example, vasoconstriction, platelet aggregation, coagulation, and inflammation or host hemostasis. Several works in literature have shown that mosquito saliva by itself exerts profound effects on mouse and human immune
systems. For example, Vogt and colleagues (2018), using a humanized mice model, have shown that mosquito saliva alters several human blood leukocytes populations such as hematopoietic, NK, NKT, B and myeloid cells. However, the isolate and specific effect of mosquito saliva in modulating blood leukocyte counts was not observed in our work. This finding leads us to believe that wolbachia infection could be associated with such blood leukocyte counts increase. However, when we look closely at the results, we observe that the increase in blood leukocyte counts in mice that received saliva of wMel mosquitoes occurred especially (statistically significant) only upon exposure to human YFV isolate but not after the primate YFV strain inoculation (Fig 5C, 5D). These results suggest that the leukocyte increase observed in the wMel hYFV group was probably due to an interaction between the wolbachia-infected saliva and the human viral isolate in comparison to mice that received the YFV isolate from primates. However, the mechanisms underlying these findings require further investigation.

Vogt MB, Lahon A, Arya RP, Kneubehl AR, Spencer Clinton JL, Paust S, Rico-Hesse R. Mosquito saliva alone has profound effects on the human immune system. PLoS Negl Trop Dis. 2018 May 17;12(5):e0006439. doi: 10.1371/journal.pntd.0006439.

- Because the WT mosquito population used in this work presented a relatively low vector competence to YFV, on page 10 (Discussion, second column) the authors infer this phenotype as a representation of Brazilian Ae. aegypti populations. While this is a plausible hypothesis, I would suggest the authors to be more cautious with this statement as vector competence to YFV of many other Ae. aegypti populations must be tested before one assumes this fact.

>> Thanks for this point. It was included with the information that the results were obtained in this particular population.

Besides working with recently isolated virus from human and primate sources, the difference in the present study refers to the way in which this particular population of mosquitoes have been infected.

Competing Interests: No competing interests were disclosed.

Reviewer Report 01 March 2019

https://doi.org/10.21956/gatesopenres.13999.r26939

© 2019 van den Hurk A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Andrew van den Hurk
School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia

The deployment of Aedes aegypti transinfected with the Wolbachia is a highly promising strategy for suppressing the transmission of a number of globally important arboviruses, such as dengue,
Zika, chikungunya and yellow fever viruses. In the current manuscript, the authors conducted laboratory-based experiments to assess the ability of the wMel strain of Wolbachia to inhibit the transmission potential of two outbreak strains of yellow fever virus by Aedes aegypti. As has been demonstrated with other flaviviruses in numerous similar studies, wMel inhibited replication and subsequent transmission when compared with Wolbachia-negative mosquitoes. This is a relatively well written manuscript describing experiments with outcomes of interest to readers of Gates Open Research. However, there are some components of the manuscript that need to be clarified and/or justified.

Below are specific comments as they relate to the reported study:

○ It is difficult to understand the justification for including the mouse component of the work. The final sentence of the introduction is misleading. As it reads, it indicates that mice were used to demonstrate transmission (i.e. that mosquitoes actually fed on mice which were then monitored for evidence of infection). However, mice (along with mosquitoes) were used to indicate whether saliva collected using an in vitro method contained infectious virus and not to demonstrate transmission directly. If mice had been used to demonstrate transmission directly, then this would have added greatly to the novelty and significance of the study by demonstrating that transmission is affected in an animal model and not just using in vitro assessment of transmission (which is what almost all other studies do).

○ The actual number of saliva samples tested was relatively low, so interpretation of the findings with regards to transmission blocking should be undertaken with caution, especially when extrapolating to the field.

○ “Pluripotency” is not really an appropriate descriptive term in this context.

○ The background in the abstract needs to mention that there is an efficacious vaccine and then state issues with its widespread roll-out (i.e. supply, logistics etc.). This provides a segue into why Wolbachia may be appropriate for YFV control.

○ Also in the abstract (5th line): Aedes aegypti is still the main (urban) vector, not “used to be”.

○ Introduction: In lines 3 and 4 of paragraph 2, it is important to emphasise that Haemagogus and Sabethes are important sylvan vectors in South America. Africa has a different suite of sylvan vectors. Also, insert a comma after Sabethes, as the way it currently reads, it sounds as though they are all urban vectors.

○ Also in this paragraph (lines 9-12), state that there was (thankfully) no evidence of urban transmission during these outbreaks.

○ Line 10 of paragraph 3: Need a segue into the Wolbachia-based control. Something like “Wolbachia is being deployed to limit arbovirus transmission...”. Then describe what Wolbachia actually is.

○ Methods: Need to be consistent on whether it is PCR or RT PCR.

○ Methods: Please provide references for the IFA and qRT-PCR in regard to the virus isolation.
○ Methods: In the first paragraph of the mosquito saliva transmission assays (line 9), state whether saliva was from individual mosquitoes or from pools of saliva.

○ Methods: Viral detection on (in) infected mosquitoes and mice:
 ○ Remove “infected” from this heading, as it is not known whether mosquitoes are infected until they are tested.
 ○ Also, line 1 of first paragraph: qPCR detects viral RNA.
 ○ What was the justification for using inoculation of mosquitoes and mice to demonstrate transmission? Why not a cell culture based system?
 ○ In terms of the mice, is there evidence that the strain used was highly susceptible to YFV infection? Why was this strain of mice used?

○ In terms of the multiplex assay, can some data be supplied regarding the relative efficiencies of each of the components of the assay? How does sensitivity compare to singleplex assays? What were the limits of detection, especially for detection of YFV?

○ More information on the quantification of Wolbachia and YFV would be beneficial, especially with respect to the RPS 17 sequence and why it was included.

○ Results: The authors state that there “was no significant difference between infection rates resulting from the human or primate virus isolates.”. Please provide the statistical test used to compare rates and provide significance levels. Please provide statistical tests to show that infection rates were indeed significantly different between Wolbachia-positive and -negative mosquitoes.

○ Results: Paragraph 2, lines 9-11 – this is speculation or if there is previously published work on this it should be provided – in the discussion.

○ Figure 3:
 ○ Were only the head and thorax of YFV-infected mosquitoes tested for Wolbachia density? One would think not, given they are Wolbachia infected. Clarify.
 ○ Line 4, the sentence staring with (B) needs to state that these were the YFV copy numbers from the start.
 ○ In the last sentence, what does the significance level refer to?
 ○ Was this absolute or relative quantification of YFV RNA? Clarify.

○ Results: The number of saliva samples from WT and wMel+ was 8 for each of the viruses (primate and human). Why was such a relatively low number (especially of the WT) of saliva samples tested? In Figure 3, there was a much larger number of mosquitoes tested. Was transmission not attempted with these mosquitoes? The number of saliva samples tested really was very low compared to what could and should have been tested (especially by mosquito injection, where there shouldn't really be any limitation to the number of samples processed).

○ Figure 4: The legend and figures are the wrong way around. Do Figures 4A and 4C actually refer to wMel+ infected saliva?
The discussion needs to consider some important factors:

○ What are the possible mechanisms causing the \textit{Wolbachia}-mediated virus inhibition? This is pertinent in this case, because the effect of subsequent blood meals was examined.

○ \textit{Wolbachia}-based control strategies are undoubtedly promising tools for control of \textit{Aedes aegypti} transmitted viruses. However, the authors should discuss any potential issues that could arise with \textit{Wolbachia}-based approaches in the future.

\textbf{Is the work clearly and accurately presented and does it cite the current literature?}
Yes

\textbf{Is the study design appropriate and is the work technically sound?}
Partly

\textbf{Are sufficient details of methods and analysis provided to allow replication by others?}
Yes

\textbf{If applicable, is the statistical analysis and its interpretation appropriate?}
Partly

\textbf{Are all the source data underlying the results available to ensure full reproducibility?}
Yes

\textbf{Are the conclusions drawn adequately supported by the results?}
Partly

\textbf{Competing Interests:} No competing interests were disclosed.

\textbf{Reviewer Expertise:} I am a public health entomologist who researches mosquito-borne pathogens, with a focus on arboviruses. In particular, the research integrates field and laboratory based studies to understand arbovirus transmission cycles, and assesses novel surveillance and control strategies with view to limiting their impact on human health.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

\textbf{Author Response 08 Apr 2019}

\textbf{Luciano Moreira,} Oswaldo Cruz Foundation, Belo Horizonte, Brazil

Reviewer – Dr. Andrew van den Hurk

The deployment of \textit{Aedes aegypti} transinfected with the \textit{Wolbachia} is a highly promising strategy for suppressing the transmission of a number of globally important arboviruses, such as dengue, Zika, chikungunya and yellow fever viruses. In the current manuscript, the authors conducted laboratory-based experiments to assess the ability of the wMel strain of
Wolbachia to inhibit the transmission potential of two outbreak strains of yellow fever virus by Aedes aegypti. As has been demonstrated with other flaviviruses in numerous similar studies, wMel inhibited replication and subsequent transmission when compared with Wolbachia-negative mosquitoes. This is a relatively well written manuscript describing experiments with outcomes of interest to readers of Gates Open Research. However, there are some components of the manuscript that need to be clarified and/or justified.

Below are specific comments as they relate to the reported study:

- It is difficult to understand the justification for including the mouse component of the work. The final sentence of the introduction is misleading. As it reads, it indicates that mice were used to demonstrate transmission (i.e. that mosquitoes actually fed on mice which were then monitored for evidence of infection). However, mice (along with mosquitoes) were used to indicate whether saliva collected using an in vitro method contained infectious virus and not to demonstrate transmission directly. If mice had been used to demonstrate transmission directly, then this would have added greatly to the novelty and significance of the study by demonstrating that transmission is affected in an animal model and not just using in vitro assessment of transmission (which is what almost all other studies do).

>> Thank you for pointing this out. We agree with this and we have edited the text accordingly. Now the end of the introduction reads: “We found that Wolbachia had a major impact on virus replication in mosquitoes, as well as reduced the potential of YFV transmission via saliva, as indirectly determined via mosquitoes or a mouse model”.

The reason why we have not performed the experiment by feeding infected mosquitoes directly on the mice was because we had no biosafety approval to perform these experiments. Therefore, the saliva samples had to be transported to another institution (UFMG), where the mice were located, and then used there.

- The actual number of saliva samples tested was relatively low, so interpretation of the findings with regards to transmission blocking should be undertaken with caution, especially when extrapolating to the field.

>> We agree with the reviewer, but we think we were able to have good sampling numbers if we consider that 2 isolates (primate and human) were used and the results are quite similar.

- “Pluripotency” is not really an appropriate descriptive term in this context.

>> The idea of using the word “Pluripotency” was to describe the ability of Wolbachia to reduce transmission of several different pathogens. If there is no big issue on this, we would prefer to keep it and change Arbovirus to Arboviruses to better illustrate what we wanted.

- The background in the abstract needs to mention that there is an efficacious vaccine and then state issues with its widespread roll-out (i.e. supply, logistics etc.). This provides a segue into why Wolbachia may be appropriate for YFV control.

>> Thank you for pointing this out. We agree with the reviewer and edited the text accordingly to include this suggestion:

Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and used to be the main vector in the past.
Although the YFV vaccine is safe and effective, it does not always reach populations at greatest risk of infection and there is an acknowledged global shortage of vaccine supply. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries (www.worldmosquito.org) as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for yellow fever virus (YFV).

○ Also in the abstract (5th line): Aedes aegypti is still the main (urban) vector, not “used to be”.

>> OK. This has been corrected:

Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and still remains the main vector of urban YFV.

○ Introduction: In lines 3 and 4 of paragraph 2, it is important to emphasise that Haemagogus and Sabethes are important sylvan vectors in South America. Africa has a different suite of sylvan vectors. Also, insert a comma after Sabethes, as the way it currently reads, it sounds as though they are all urban vectors.

>> The text has been modified to accommodate the reviewer’s suggestion.

The yellow fever virus (YFV) is a member of the Flaviviridae family and transmitted by sylvan mosquitoes of the genus Haemagogus and Sabethes, in South America and Aedes aegypti in urban settings 5–8.

○ Also in this paragraph (lines 9-12), state that there was (thankfully) no evidence of urban transmission during these outbreaks.

>> The text has been modified:

“Although the last reported cases of urban transmission in Brazil occurred in 1942, in 2016–2017, the country faced major outbreaks of the disease mainly in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. In 2018, the epidemic also extended to São Paulo State 9. According to the Brazilian Ministry of Health, from July 2017 to April 2018, there were 1,127 YFV cases with 328 deaths, with no evidence of urban transmission.”

○ Line 10 of paragraph 3: Need a segue into the “Wolbachia-based control. Something like “Wolbachia is being deployed to limit arbovirus transmission…””. Then describe what Wolbachia actually is.

>> The text has been modified to accommodate the reviewer’s suggestion:

“Population control of Ae. aegypti mosquitoes using insecticides has been a mainstay of vector-borne disease control methods for decades but is undermined by widespread insecticide resistance. A promising innovative strategy, based on a bacterium called Wolbachia pipientis, has been trialed in many countries. Wolbachia is a maternally transmitted bacterial endosymbiont and is naturally present in at least 40% of all insect species 14.”

○ Methods: Need to be consistent on whether it is PCR or RT PCR.

>> For all the experiments related to the virus we used RT-qPCR. Regular PCR was used for the sequencing only. Some corrections were made on RT-qPCR throughout the text.
IFA was performed with a monoclonal YFV antibody donated by Evandro Chagas Institute (Arbovirology and Hemorrhagic Fevers Section) and conjugated goat anti-mouse IgG labeled with fluorescein FITC (MP Biomedicals) according to Adungo et al. 2016 18 with modifications. Images were obtained using an Olympus microscope model BX51 with DP72 camera and DP-2BSW software. Viral molecular confirmation was performed using RNA extracted from the culture supernatant of each isolate, followed by amplification of the genetic material as described below in the viral detection section according to Domingo et al. 2012 19. For mosquito infections, the YFV isolates were replicated in C636 cells (Ae. albopictus) cultured in Leibovitz 15 medium (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) for 5 days at 28°C. Viral load was confirmed by RT-qPCR and later through plaque assays (PFU) in VERO cells (CCL81) grown in DMEM medium (Gibco) and 3% Carboxymethylcellulose (Sigma) supplemented with 2% FBS (Gibco) at 37°C and 5% CO 2 20.

Methods: In the first paragraph of the mosquito saliva transmission assays (line 9), state whether saliva was from individual mosquitoes or from pools of saliva.

“Individual saliva samples were injected into WT mosquitoes, after 2 to 4 days of emergence.”

Methods: Viral detection on (in) infected mosquitoes and mice:

- Remove “infected” from this heading, as it is not known whether mosquitoes are infected until they are tested.

“Viral detection in mosquitoes and mice”

- Also, line 1 of first paragraph: qPCR detects viral RNA.

“Detection of viral RNA on infected mosquitoes and mice samples were performed through quantitative real-time PCR (RT-qPCR) using LightCycler® Multiplex RNA Virus Master (Roche), according to the previously published protocol.”

- What was the justification for using inoculation of mosquitoes and mice to demonstrate transmission? Why not a cell culture based system?

We have tested, in the past, individual saliva samples into cell culture and we were not able to have successful viral growth. Therefore, we have chosen to use these indirect methods (mosquito or mice) to show that the virus was indeed infectious. If the mosquito or mouse became infected it is a good sign that the saliva contained active and infectious virus.

- In terms of the mice, is there evidence that the strain used was highly susceptible to YFV infection? Why was this strain of mice used?

In this study A129-/-SV129 strain of mice was used. The A129-/- mice strain was chosen based
on the fact that they are deficient in important innate immune components, more specifically the type I interfeon a/b receptor. Type I Interceptors (IFN-α/β) plays a significant role in preventing viral replication and protecting against arboviral infections such as Zika, Dengue and Yellow fever viruses (1-5). They are the gold standard models to evaluate virus replication and therapeutical drugs due their elevated susceptibility to infection.

Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS. (2016). A mouse model of Zika virus pathogenesis. Cell Host Microbe, 19, 1-11. Published online April 5, 2016. http://dx.doi.org/10.1016/j.chom.2016.03.010

Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Basilaski N, Weaver SC. (2016). Characterization of a novel murine model to study zika virus. Am J Trop Med Hyg, 16-0111; Published online March 28, 2016. http://dx.doi.org/10.4269/ajtmh.16-0111

Sarathy VV, Milligan GN, Bourne N, Barrett ADT. (2015). Mouse models of dengue virus infection for vaccine testing. Vaccine. 2015 Dec 10; 33(50): 7051–7060. 10.1016/j.vaccine.2015.09.112.

Yauch LE, Shresta S. (2008). Mouse models of dengue virus infection and disease. Antiviral Res. 2008 Nov;80(2):87-93. doi: 10.1016/j.antiviral.2008.06.010.

Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD. (2009). A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog. 2009 Oct;5(10):e1000614. doi: 10.1371/journal.ppat.1000614

- In terms of the multiplex assay, can some data be supplied regarding the relative efficiencies of each of the components of the assay? How does sensitivity compare to singleplex assays? What were the limits of detection, especially for detection of YFV?
 >> We have done, please see the graph and table linked here, a comparison of the single or multiplex assay with a plasmid standard curve and the results are quite similar.

- More information on the quantification of Wolbachia and YFV would be beneficial, especially with respect to the RPS 17 sequence and why it was included.
 >> Ok, done:
 A fraction (1/20) of the total isolated RNA was used in the reactions. Head and thorax samples from YFV-challenged mosquitoes were analyzed in duplicate through RT-qPCR and viral and Wolbachia quantification were performed in comparison with serial dilution of a standard curve of the respective genes cloned into the pGEMT plasmid (Promega) 16,27. Therefore, it was possible to calculate the number of copies per tissue. As a mosquito control gene we used the RPS 17S sequence of Ae. aegypti (Moreira 2009)15.

- Results: The authors state that there “was no significant difference between infection rates resulting from the human or primate virus isolates.”. Please provide the statistical test used to compare rates and provide significance levels. Please provide statistical tests to show that infection rates were indeed significantly different between Wolbachia-positive and -negative mosquitoes.
 >> We have included the following statement: There was no significant difference between infection rates resulting from the human or primate virus isolates (Mann-Whitney U test p>0.05). As for the comparisons between different groups we have added the corresponding statistical analyses values in the legend of Fig 3.
 Red lines indicate the median wMel copies (Mann-Whitney U test, ** p=0.0062). (B) Analysis
of copies of viral RNA on 7dpf -WT x wMel+ (** p=0.0028) and YFV Human x Primate WT (p = 0.43), (C) 14dpf YFV Human and Primate WT x wMel + (**** p<0.0001), YFV Human x Primate WT (p=0.75), YFV Human x Primate extra blood meal WT (p=0.78), YFV Human WT x WT extra blood meal (** p=0.0061) and YFV Primate WT x WT extra blood meal (** p= 0.0056) and (D) 21 dpf -WT x wMel+ (**** p=0.0001) and YFV Human x Primate (p= 0.51). Empty black circles and triangles are WT mosquitoes, whereas empty green circles and triangles depict mosquitoes with wMel +. Black filled circles and triangles are mosquitoes that received a second blood meal. The red line indicates the median YFV copies.

Wild type (WT) or positive (wMel +) were orally infected with two YFV isolates and virus dissemination in mosquitoes was analyzed at different times post infection. (A) YFV infected mosquitoes’ heads and thoraces were analyzed for Wolbachia density at different times post-infection through real time RT-qPCR, based on a Wolbachia standard curve. Red lines indicate the median wMel copies (Mann-Whitney U test, ** p=0.0062). (B) Analysis of copies of viral RNA on 7dpf -WT x wMel+ (** p=0.0028) and YFV Human x Primate WT (p = 0.43), (C) 14dpf YFV Human and Primate WT x wMel + (**** p<0.0001), YFV Human x Primate WT (p =0.75), YFV Human x Primate extra blood meal WT (p=0.78), YFV Human WT x WT extra blood meal (** p=0.0061) and YFV Primate WT x WT extra blood meal (** p= 0.0056) and (D) 21 dpf -WT x wMel+ (**** p=0.0001) and YFV Human x Primate (p= 0.51). Empty black circles and triangles are WT mosquitoes, whereas empty green circles and triangles depict mosquitoes with wMel +. Black filled circles and triangles are mosquitoes that received a second blood meal. The red line indicates the median YFV copies.

Figure 3:

- Were only the head and thorax of YFV-infected mosquitoes tested for Wolbachia density? One would think not, given they are Wolbachia infected. Clarify.

- The same samples that were used to evaluate the infection were also tested for Wolbachia quantification in the multiplex assay. The analysis of the results was done by targeting the gene of interest. In this way, it generated the graph 3A for the quantification of Wolbachia in the analyzed tissue that was head and thorax. As Wolbachia is present in practically all mosquito tissues, these analyses are possible.

- Line 4, the sentence staring with (B) needs to state that these were the YFV copy numbers from the start.

- Ok, done: (B) Analysis of copies of viral RNA on 7dpf -WT x wMel+ (** p=0.0028) and YFV Human x Primate WT (p = 0.43)(...)

- In the last sentence, what does the significance level refer to?

- The level of significance was added for all pairwise comparisons in the legend text.

- Was this absolute or relative quantification of YFV RNA? Clarify.

- as stated on the legend title both the Wolbachia as well as the YFV were done via absolute
Results: The number of saliva samples from WT and wMel+ was 8 for each of the viruses (primate and human). Why was such a relatively low number (especially of the WT) of saliva samples tested? In Figure 3, there was a much larger number of mosquitoes tested. Was transmission not attempted with these mosquitoes? The number of saliva samples tested really was very low compared to what could and should have been tested (especially by mosquito injection, where there shouldn't really be any limitation to the number of samples processed).

Each saliva sample was collected and processed individually. Each saliva sample was injected into up to 8 naïve mosquitoes. This clearly show how sample numbers are multiplied (up to 64 for each group). It was merely the question of numbers and trying to lower the costs.

We have collected 20 saliva samples from each group. Eight were used to inject the mosquitoes (as explained above) and the other 12 were used in two (pooled) to inject mice (6 mice per group).

Figure 4: The legend and figures are the wrong way around. Do Figures 4A and 4C actually refer to wMel+ infected saliva?

>> Thank you for pointing this out! The text has been corrected:

Saliva from both groups of infected mosquitoes were collected at 14 dpf. Individual saliva samples (WT or wMel+) were injected into eight naïve (WT) mosquitoes (bars) and, after five days, these injected mosquitoes were analyzed. (A) Mosquitoes injected with WT mosquito saliva or (B) wMel+ mosquitoes, challenged with human virus. (C) Mosquitoes injected with WT mosquito saliva or (D) wMel+ mosquitoes, challenged with primate virus. Values below each bar depicts the viral load of each mosquito head and thorax which donated that saliva. Positive mosquitoes were quantified through RT-qPCR and the grey-scale represents the number of YFV copies (0 to 10^6 copies), per mosquito.

The discussion needs to consider some important factors:

- What are the possible mechanisms causing the Wolbachia-mediated virus inhibition? This is pertinent in this case, because the effect of subsequent blood meals was examined.

In paragraph 5 of the discussion we include this information:

Another interesting fact of this work was the increase in viral load observed after the second blood feeding in WT mosquitoes. This same fact was not observed in wMel+ mosquitoes. This shows that the blocking ability of Wolbachia persists even after the addition of extra blood nutrients (through a second blood meal) and that its blocking effect occurs within 7 days after infection. The reason to include the second blood meal was that antibodies to YFV could be present in the blood and therefore, promote negative effect towards the virus in WT mosquitoes, but this was not the case. Caragata et al. (2013) studied the effect of cholesterol towards the Drosophila C virus. This mechanism could be present in our experimental mosquitoes, but further studies on this aspect should be developed.

Wolbachia-based control strategies are undoubtedly promising tools for control of *Aedes aegypti* transmitted viruses. However, the authors should discuss any potential issues that could arise with Wolbachia-based approaches in the future.

It is important to consider the possible vector competence of other mosquito species and the possibility of Wolbachia/virus evolution and lack of interference in this system. If that is the case, other strategies should be consider, as the use of other strains of Wolbachia to try to block virus...
transmission by that particular mosquito species. We have added this to the end of the discussion. “Lastly, it is important to consider the possible vector competence of other mosquito species and the possibility of Wolbachia/virus evolution and lack of interference in this system. If that is the case, other strategies should be consider, as the use of other strains of Wolbachia to try to block virus transmission by that particular mosquito species. Integration of complementary strategies are the best solution for arbovirus control.”

Competing Interests: No competing interests were disclosed.