ON THE MULTICANONICAL SYSTEMS OF QUASI-ELLIPTIC SURFACES

TOSHIYUKI KATSURA AND NATSUO SAITO

ABSTRACT. We consider the multicanonical systems $|mK_S|$ of quasi-elliptic surfaces with Kodaira dimension 1 in characteristic 2. We show that for any $m \geq 6$ $|mK_S|$ gives the structure of quasi-elliptic fiber space, and 6 is the best possible number to give the structure for any such surfaces.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic $p \geq 0$, and let S be a nonsingular complete algebraic surface with Kodaira dimension 1 defined over k. Then, S has a structure of genus 1 fibration $\varphi : S \to B$. We denote by K_S a canonical divisor of S and we consider the multicanonical system $|mK_S|$. As is well known, the multicanonical system $|mK_S|$ gives the genus 1 fibration if m is large enough. In Katsura and Ueno [5] and Katsura [3] (see also Iitaka [2]), we considered the following question:

Question 1.1. (1) Does there exist a positive integer M such that if $m \geq M$, the multicanonical system $|mK_S|$ gives a structure of genus 1 fibration for any elliptic surface S over k with Kodaira dimension 1?

(2) What is the smallest M which satisfies this property?

For this question, we have the following theorem.

Theorem 1.2. (1) For the complex analytic elliptic surfaces, $M = 86$ and 86 is best possible (cf. Iitaka [2]).

(2) For the algebraic elliptic surfaces, if the characteristic $p = 0$ or $p \geq 3$, then $M = 14$ and 14 is best possible (Katsura and Ueno [5] and Katsura [3]).

(3) For the algebraic elliptic surfaces, if the characteristic $p = 2$, then $M = 12$ and 12 is best possible (Katsura [3]).
If \(p = 2 \) or \(3 \), there are two kinds of genus 1 fibrations, namely, the elliptic fibration and the quasi-elliptic fibration (cf. Bombieri and Mumford [1]). In these cases, we can also consider the same question for quasi-elliptic surfaces with Kodaira dimension 1. In characteristic 3, we already showed the following results (Katsura [4]).

Theorem 1.3. For the quasi-elliptic surfaces in characteristic 3, we have \(M = 5 \), and 5 is best possible.

Therefore, the remaining case of the question for the surfaces with Kodaira dimension 1 is the one in characteristic 2, and in this paper we show the following theorem. It finishes the answer to the question above for surfaces with Kodaira dimension 1 which S. Iitaka considered in the case of complex analytic elliptic surfaces in 1970 (cf. [2]).

Theorem 1.4. For the quasi-elliptic surfaces in characteristic 2, we have \(M = 6 \) and 6 is best possible.

In Section 2, we summarize basic facts on the theory of vector fields in positive characteristic and some results on quasi-elliptic surfaces. In Section 3, we give a criterion for a vector field that makes a singularity on the quotient of curve. In Section 4, we construct a quasi-elliptic surface over an elliptic curve with only one tame multiple fiber and examine the structure of its multicanonical system. In Section 5, we examine the multicanonical system of quasi-elliptic surfaces in characteristic 2 and show our main theorem.

The first author thanks Professor K. Ueno for indicating him the original question and for many discussions.

2. **Preliminaries**

Let \(k \) be an algebraically closed field of characteristic \(p > 0 \), and let \(S \) be a nonsingular complete algebraic surface defined over \(k \). A non-zero rational vector field \(D \) on \(S \) is called \(p \)-closed if there exists a rational function \(f \) on \(S \) such that \(D^p = fD \).

We use a vector field to construct a quotient surface of \(S \). Let \(\{ U_i = \text{Spec} A_i \} \) be an affine open covering of \(S \) and we set \(A^D_i = \{ D(\alpha) = 0 | \alpha \in A_i \} \). Then, affine surfaces \(\{ U^D_i = \text{Spec} A^D_i \} \) glue together to define a normal quotient surface \(S^D \).

We now recall some results on vector fields by Rudakov and Shafarevich [8 Section 1]. Now, we assume that \(D \) is \(p \)-closed. Then, we know that the natural morphism \(\pi : S \to S^D \) is a purely inseparable morphism of degree \(p \). If the affine open covering \(\{ U_i \} \) of \(S \) is fine enough, then taking local coordinates \(x_i, y_i \) on \(U_i \), we see that there exist \(f_i, g_i \in A_i \) and a rational
function \(h_i \) such that the divisors defined by \(f_i = 0 \) and by \(g_i = 0 \) have no
common divisor and that the vector field \(D \) is expressed as

\[
D = h_i \left(f_i \frac{\partial}{\partial x_i} + g_i \frac{\partial}{\partial y_i} \right) \quad \text{on } U_i.
\]

Divisors \((h_i)\) on \(U_i \) give a global divisor \((D)\) on \(S \), and zero-cycles defined
by the ideal \((f_i, g_i)\) on \(U_i \) give a global zero cycle \(\langle D \rangle \) on \(S \). A point con-
tained in the support of \(\langle D \rangle \) is called an isolated singular point of \(D \). ([8,
Theorem 1, Corollary]). Rudakov and Shafarevich showed that \(S^D \) is non-
singular if and only if \(\langle D \rangle = 0 \). When \(S^D \) is nonsingular, they also showed
a canonical divisor formula

\[
(2.1) \quad K_S \sim \pi^* K_{S^D} + (p - 1)(D),
\]

where \(\sim \) means linear equivalence.

Now, we consider an irreducible curve \(C \) on \(S \) and we set \(C' = \pi(C) \).
Take an affine open set \(U_i \) above such that \(C \cap U_i \) is non-empty. The curve
\(C \) is said to be integral with respect to the vector field \(D \) if \(D \) is tangent to
\(C \) at a general point of \(C \cap U_i \). Rudakov-Shafarevich showed the following
proposition (cf. [8, Proposition 1]):

Proposition 2.1. (i) If \(C \) is integral, then \(C = \pi^{-1}(C') \) and \(C^2 = pC'^2 \).
(ii) If \(C \) is not integral, then \(pC = \pi^{-1}(C') \) and \(pC^2 = C'^2 \).

Now, let \(\varphi : S \longrightarrow B \) be a quasi-elliptic surface. We denote by \(g \) the
genus of the curve \(B \). As was shown in Katsura [4], we have \(Alb(S) \cong J(B) \), and \(\chi(O_S) \geq (1 - g)/3 \) (See also Lang [6] and Raynaud [7]). Here,
\(Alb(S) \) is the Albanese variety of \(S \) and \(J(B) \) is the Jacobian variety of \(B \).
As a corollary, we know that if \(g = 1 \), then \(\chi(O_S) \geq 0 \), and that if \(g = 0 \),
then \(\chi(O_S) \geq 1 \). We will freely use these inequalities in Section 5.

3. CUSPIDAL POINTS

From here on, let \(k \) be an algebraically closed field of characteristic 2,
if otherwise mentioned. Let \(S \) be a nonsingular complete algebraic surface
over \(k \), and let \(D \) be a non-zero 2-closed rational vector field on \(S \). Let \(U \)
be an affine open set of \(S \), and \(x, y \) be local coordinates of \(U \). Then, as in
Section 2, \(D \) is given by

\[
D = h(f \partial / \partial x + g \partial / \partial y),
\]

where \(f, g \) are regular functions on \(U \) such that \(f = 0 \) has no common
curves with \(g = 0 \), and where \(h \) is a rational function on \(S \).

Lemma 3.1. Under the assumption above, \(D(fg) = 0 \) holds.
Proof. We set $\alpha = hf$ and $\beta = hg$. Since there exists a rational function γ such that $D^2 = \gamma D$, we have

\begin{align*}
\alpha \alpha_x + \beta \alpha_y &= \gamma \alpha, \\
\alpha \beta_x + \beta \beta_y &= \gamma \beta.
\end{align*}

Therefore, by direct calculation, we have $D(\alpha \beta) = 0$. Since $\alpha \beta = h^2 fg$, we conclude $D(fg) = 0$.

Corollary 3.2. $D(f/g) = 0$.

Proof. We have $D(f/g) = D(fg/g^2) = (1/g^2)D(fg) = 0$.

Definition 3.3. Let D be a non-zero rational vector field on a nonsingular surface S, and C be a nonsingular irreducible curve on S. Let P be a point on C which is not an isolated singular point of D. If D is non-integral on C and integral at a point P on C, we call P a cuspidal point of the vector field D.

Proposition 3.4. Under the notation in Definition 3.3 we consider the projection $\pi : S \to S^D$. Then, the image $\pi(P)$ of the cuspidal point P is a singular point of the curve $\pi(C)$.

Proof. Let O_P be the local ring of the cuspidal point P and let x, y be a system of parameters of O_P. Let $x = 0$ be a local equation of C at the point P. By the definition of cuspidal points, there exist elements α, β, γ and δ of O_P and a constant $c \in k$ such that $\beta \neq 0$ and $c \neq 0$, and such that $f = \alpha x + \beta y$ and $g = \gamma x + \delta y + c$. Since the situation is local, we may omit h from D. By Corollary 3.2, we see that $D(x + (f/g)y) = 0$. Since $g(P) \neq 0$, $x + (f/g)y$ is contained in O_P. Considering the completion \hat{O}_P of O_P, we have $\hat{O}_P \cong k[[x, y]]$. Since $k[[x, y]]^{D} \supset k[[y^2, x + (f/g)y]]$ and $\dim_k k[[x, y]]^{D}/k[[x^2, y^2]] = \dim_k k[[y^2, x + (f/g)y]]/k[[x^2, y^2]] = 2$, we have $k[[x, y]]^{D} = k[[y^2, x + (f/g)y]]$. Although by the general theory of the vector field the point $\pi(P)$ is a nonsingular point of S^D, this result also shows that S^D is nonsingular at $\pi(P)$. We set $X = x^2$, $Y = y^2$ and $Z = x + (f/g)y$, and let \tilde{f}, \tilde{g} be elements of O_P whose coefficients are the squares of the ones of f, g, respectively. Let S' be a surface defined by the equation

$$Z^2 = X + (\tilde{f}/\tilde{g})Y.$$

Since the degrees of the algebraic extensions $k(S)/k(S^{D})$ and $k(S)/k(S')$ of fields are 2 and $k(S^{D}) \supset k(S')$ holds, we have $k(S^{D}) = k(S')$, that is, S' is birationally equivalent to S^D. Since $\tilde{g}(P) = c^2 \neq 0$, S' is nonsingular at the point $(X, Y, Z) = (0, 0, 0)$. Therefore, by the Zariski main theorem the surface S^D is isomorphic to S' around $\pi(P)$. The curve $\pi(C)$ is defined
by $X = 0$ at the point $\pi(P)$. Therefore, the equation of the curve $\pi(C)$ at $\pi(P)$ on the plane $X = 0$ is given by

$$Z^2(\tilde{\delta}|_{X=0}Y + c^2) = \tilde{\beta}|_{X=0}Y^2.$$

Here, the notation of $\tilde{\beta}$ and $\tilde{\delta}$ are similar to \tilde{f} and \tilde{g}. This equation for the curve $\pi(C)$ shows that $\pi(P)$ is a singular point of $\pi(C)$. □

4. A CONSTRUCTION OF A QUASI-ELLIPITIC SURFACE

Let E be an elliptic curve and $\{U_0, U_\infty\}$ be an affine open covering and let U_0 (resp. U_∞) be given by the equation

$$y^2 + y = x^3 \text{ (resp. } z^2 + z = w^3).$$

The change of coordinates is given by

$$y = 1/z, \quad x = w/z.$$

Let $\{V_0, V_\infty\}$ ($V_0 \cong V_\infty \cong \mathbb{A}^1$: an affine line) be affine open covering of the projective line \mathbb{P}^1 and t (resp.s) be a coordinate of V_0 (resp. V_∞). The change of coordinates is given by

$$t = 1/s.$$

We consider the algebraic surface $S = E \times \mathbb{P}^1$. Then, $\{U_i \times V_j \mid i = 0, \infty; j = 0, \infty\}$ gives an affine open covering of S. We have a projection

$$\psi : S \rightarrow E.$$

Let C_∞ be the curve on S defined by $s = 0$. We consider the following rational vector field D on $U_0 \times V_0$.

$$(I) \quad D = y \frac{\partial}{\partial x} + (x^2 + x^2t + t^4) \frac{\partial}{\partial t}.$$

Then, D gives a rational vector field on S and on each affine chart it is concretely given as follows:

$$(II) \quad D = \frac{1}{z^2} \left\{ z^2 \frac{\partial}{\partial w} + (w^2 + w^2t + z^2t^4) \frac{\partial}{\partial t} \right\}$$

on $U_\infty \times V_0$

$$(III) \quad D = \frac{1}{s} \left\{ s^2 \frac{\partial}{\partial w} + (x^2s^4 + x^2s^3 + 1) \frac{\partial}{\partial s} \right\}$$

on $U_0 \times V_\infty$

$$(IV) \quad D = \frac{1}{z^2s^2} \left\{ z^2s^2 \frac{\partial}{\partial w} + (w^2s^4 + w^2s^3 + z^2) \frac{\partial}{\partial s} \right\}$$

on $U_\infty \times V_\infty$
Since $\frac{\partial y}{\partial x} = x^2$, we have $D^2 = x^2D$. Therefore, the rational vector field D is 2-closed. The isolated singularities of D on each affine chart are as follows.

On $U_0 \times V_0$ \quad $P : (x, y, t) = (0, 0, 0)$

On $U_\infty \times V_0$ \quad $Q_1 : (w, z, t) = (0, 0, 1)$

On $U_0 \times V_\infty$ \quad No isolated singular point

On $U_\infty \times V_\infty$ \quad $R : (w, z, s) = (0, 0, 0), Q_2 : (w, z, s) = (0, 0, 1)$.

On the surface S, Q_1 and Q_2 give the same point, and we denote it by Q. We set

$\psi(P) = P', \psi(Q) = \psi(R) = Q', \psi^{-1}(P') = F_0, \psi^{-1}(Q') = F_\infty$.

From here on, we use the same notation for the curve and the proper transform of the curve, if no confusion can occur. We blow-up at P, and denote the exceptional curve by G_1. Then, on the exceptional curve G_1 there exists one isolated singular point of the rational vector field D. We blow-up at the singular point, and denote the exceptional curve by G_2. Then, the vector field has no isolated singular point on G_2. Now, we blow-up at Q, and denote the exceptional curve by E_1. Then, the vector field has no isolated singular point on E_1. We again blow-up at R, and denote the exceptional curve by E_2. On the surface \tilde{S} which we got by these blowing-ups the rational vector field D has no isolated singularities. We have the morphism

$\tilde{\psi} : \tilde{S} \twoheadrightarrow E$

which is induced by ψ. Then, on \tilde{S}, by our construction we have the following lemma.

Lemma 4.1. On \tilde{S}, we have the following results.

1. $\tilde{\psi}^{-1}(P') = F_0 + G_1 + 2G_2, \tilde{\psi}^{-1}(Q') = F_\infty + E_1 + E_2$.

2. The curves F_0, G_1 and F_∞ are integral with respect to the vector field D. The curves G_2, E_1, E_2 and C_∞ are non-integral with respect to the vector field D.

3. $F_0^2 = -2, G_1^2 = -2, G_2^2 = -1, F_\infty^2 = -2, E_1^2 = -1, E_2^2 = -1$.

4. $(F_0, G_2) = (G_2, G_1) = 1, (F_0, G_1) = 0$.

5. $(F_\infty, E_1) = (F_1, E_2) = (C_\infty, E_2) = 1, (F_\infty, C_\infty) = (E_1, E_2) = (C_\infty, E_1) = 0$.

6. There is a cuspidal point of the vector field D on G_2. There is also a cuspidal point of the vector field D on E_2 where it intersects with C_∞.

We consider the quotient surface \tilde{S}^D of \tilde{S} by D. We have the projection

$\pi : \tilde{S} \twoheadrightarrow \tilde{S}^D$
and a commutative diagram

\[
\begin{array}{ccc}
\tilde{S} & \xrightarrow{\pi} & \tilde{S}^D \\
\tilde{\psi} & \downarrow & \downarrow \psi' \\
E & \xrightarrow{F} & E^{(2)}
\end{array}
\]

Here, \(F \) is the Frobenius morphism and \(E^{(2)} \) is the Frobenius image. We set \(B = E^{(2)}, P'' = F(P') \) and \(Q'' = F(Q') \). For a curve \(C \) on \(\tilde{S} \), we denote the curve \(\pi(C) \) on \(\tilde{S}^D \) again by \(C \), if no confusion can occur. By Lemma 4.1 and Proposition 3.4, we have the following lemma.

Lemma 4.2. On \(\tilde{S}^D \), we have the following results.

1. \(\psi'^{-1}(P'') = 2F_0 + 2G_1 + 2G_2, \psi'^{-1}(Q'') = 2F_\infty + E_1 + E_2 \).
2. \(F_0^2 = -1, G_1^2 = -1, G_2^2 = -2, F_\infty^2 = -1, E_1^2 = -2, E_2^2 = -2, C_\infty^2 = -2 \).
3. \((F_0, G_2) = (G_2, G_1) = 1, (F_0, G_1) = 0 \).
4. \((F_\infty, E_1) = (F_1, E_2) = 1, (C_\infty, E_2) = 2, (F_\infty, C_\infty) = (E_1, E_2) = (C_\infty, E_1) = 0 \).
5. \(G_2 \) and \(E_2 \) are rational cuspidal curves.

First, we blow-down \(F_0, G_1 \) and \(F_\infty \), and then \(E_1 \) becomes an exceptional curve of the first kind and so we blow-down it:

\[
\eta : \tilde{S}^D \longrightarrow X.
\]

Then, we have a quasi-elliptic surface

\[
\varphi : X \longrightarrow B.
\]

The fiber \(\varphi^{-1}(P'') \) is the only one multiple fiber, and we have no other singular fiber.

Now, let’s calculate the canonical divisor \(K_X \). First, we have

\[
K_{\tilde{S}^D} \sim \eta^*K_X + F_0 + G_1 + E_1 + 2F_\infty.
\]

Therefore, we have

\[
\pi^*K_{\tilde{S}^D} \sim \pi^*\eta^*K_X + F_0 + G_1 + 2E_1 + 2F_\infty.
\]

On \(\tilde{S} \), by a direct calculation of \(D \) and \(K_\tilde{S} \), we have

\[
(D) = -2C_\infty - 4F_\infty + G_1 + 4G_2 - 3E_1 - 3E_2,
K_{\tilde{S}} \sim -2C_\infty + G_1 + 2G_2 + E_1 - E_2.
\]

Putting these data in the canonical bundle formula by Rudakov-Shafarevich:

\[
K_{\tilde{S}} \sim (D) + \pi^*K_{\tilde{S}^D},
\]

we have

\[
\pi^*\eta^*K_X \sim 2(F_\infty + E_1 + E_2) - (F_0 + G_1 + 2G_2).
\]
Therefore, we have
\[\eta^*K_X \sim (2F_\infty + E_1 + E_2) - (F_0 + G_1 + G_2). \]

Hence, we have
\[K_X \sim E_2 - G_2 \approx G_2, \]
where \(\approx \) means numerical equivalence. This means that there exists a divisor \(\mathcal{L} \) on \(B \) such that
\[(4.1) \quad K_X \sim \varphi^*(\mathcal{L}) + G_2. \]

Therefore, the fiber \(\varphi^{-1}(P'') \) is a tame multiple fiber.

Proposition 4.3. The surface \(\varphi : X \rightarrow B \) which we constructed above is a quasi-elliptic surface with only one tame multiple fiber. It has no more singular fibers and \(\chi(\mathcal{O}_X) = 0 \) holds. The linear system \(|6K_X| \) gives the structure of the quasi-elliptic surface, and the linear system \(|5K_X| \) does not give the structure of the quasi-elliptic surface.

Proof. Take a general fiber \(G \). Then, we have \(G^2 = 0 \) and \((K_X, G) = 0 \). Therefore, by the genus formula the virtual genus of \(G \) is 1. On the other hand, \(\tilde{\psi} : \tilde{S} \rightarrow E \) is a ruled surface. Therefore, \(G \) is not an elliptic curve. This means that \(\varphi : X \rightarrow B \) is a quasi-elliptic surface. By our construction, we have Betti numbers \(b_1(X) = 2 \) and \(b_2(X) = 2 \). Therefore, the Euler number \(c_2(X) = 1 - 2 + 2 - 2 + 1 = 0 \). Since \(K_X^2 = 0 \), we have \(\chi(\mathcal{O}_X) = 0 \) by Noether's formula. Since we have \(H^0(X, \mathcal{O}_X(6K_X)) \cong H^0(B, \mathcal{O}_B(3P'')) \) and the divisor \(3P'' \) is very ample on \(B \), the linear system \(|6K_X| \) gives the structure of the quasi-elliptic surface. Since \(H^0(X, \mathcal{O}_X(5K_X)) \cong H^0(B, \mathcal{O}_B(2P'')) \) and the divisor \(2P'' \) is not very ample on \(B \), the linear system \(|5K_X| \) does not give the structure of the quasi-elliptic surface. \(\square \)

Remark 4.4. In the above, we calculate the canonical divisor \(K_X \) by the construction of our quasi-elliptic surface. We give here one more proof for (4.1). On the quasi-elliptic surface \(\varphi : X \rightarrow B \), the cusp locus \(C_\infty \) is an elliptic curve and we have \(C_\infty^2 = -1 \) by considering the structure of blow-down. Therefore, by the genus formula, we have \((K_X, C_\infty) = 1 \). On the other hand, by the canonical bundle formula for the quasi-elliptic surface \(X \), we have
\[K_X \sim \varphi^*(\mathcal{L}) + aG_2 \]
with a line bundle \(\mathcal{L} \) on \(B \) and \(a = 0 \) or \(1 \). Since \(1 = (K_X, C_\infty) = 2\deg \mathcal{L} + a \), we conclude \(a = 1 \) and \(\deg \mathcal{L} = 0 \), which shows (4.1).
5. MULTICANONICAL SYSTEMS

Let \(\varphi : S \to B \) be a quasi-elliptic surface over an algebraically closed field \(k \) of characteristic \(p > 0 \). Such a surface exists only in characteristic \(p = 2 \) or \(3 \). In this case, the multiplicity of a multiple fiber is equal to \(p \) (cf. Bombieri-Mumford [1]). We denote by \(pF_i \) \((i = 1, \ldots, \lambda) \) the multiple fibers. Then, the canonical divisor formula is given by

\[
K_S \sim \varphi^*(K_B - f) + \sum_{i=1}^{\lambda} a_i F_i,
\]

where \(f \) is a divisor on \(B \) and \(-\deg f = \chi(O_S) + t \) with \(t = \text{length of the torsion part of } R^1\varphi_*O_S \), and \(0 \leq a_i \leq p - 1 \). For details, see Bombieri-Mumford [1].

We denote by \(g \) the genus of the base curve \(B \). Then, we have the following theorem.

Theorem 5.1. Assume \(p = 2 \). Then, for any quasi-elliptic surface \(\varphi : S \to B \) with Kodaira dimension \(\kappa(S) = 1 \) over \(k \) and for any \(m \geq 6 \) \(|mK_S| \) gives the unique structure of quasi-elliptic surface, and 6 is the best possible number.

Proof. The method of the proof is similar to the one in Iitaka [2] and Katsura-Ueno [5] (see also Katsura [3] [4]). The Kodaira dimension of \(S \) is equal to 1 if and only if

\[
(*) \quad 2g - 2 + \chi(O_S) + t + \sum_{i=1}^{\lambda} (a_i/m_i) > 0.
\]

Therefore, we need to find the least integer \(m \) such that

\[
(**) \quad m(2g - 2 + \chi(O_S) + t) + \sum_{i=1}^{\lambda} [ma_i/m_i] \geq 2g + 1
\]

holds under the condition \((*) \). Here, \([r] \) means the integral part of a real number \(r \). We have the following 6 cases:

- Case (I) \(g \geq 2 \)
- Case (II-1) \(g = 1, \chi(O_S) + t \geq 1 \)
- Case (II-2) \(g = 1, \chi(O_S) = 0, t = 0 \)
- Case (III-1) \(g = 0, \chi(O_S) + t \geq 3 \)
- Case (III-2) \(g = 0, \chi(O_S) + t = 2 \)
- Case (III-3) \(g = 0, \chi(O_S) = 1, t = 0 \)

Case (I) We have \(2g - 2 + \chi(O_S) \geq 5(g - 1)/3. \) Hence, if \(m \geq 3, (** \) holds.

Case (II-1) If \(m \geq 3, (** \) holds.
Case (II-2) All multiple fibers are tame in this case. If $m \geq 6$, (***) holds by $p = 2$. As we constructed in Section 4, there exists a quasi-elliptic surface with only one tame multiple fiber of type II and $\chi(O_S) = 0$ over an elliptic curve. Therefore, we need $m \geq 6$.

Case (III-1) (***) holds for $m \geq 1$.

Case (III-2) Since $\chi(O_S) \geq 1$, we have $t \leq 1$. Therefore, the number of wild fibers is less than or equal to 1. If there exists at least one tame multiple fiber then (***) holds for $m \geq 2$. If there exist no tame fibers and only one wild fiber, then by Katsura-Ueno [5] Lemma 2.4, this case is excluded in the case of $p = 2$.

Case (III-3) By $p = 2$, (***) holds for $m \geq 4$.

The result on the best possible number follows from the example in Section 4. □

REFERENCES

[1] E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. p, II, In “Complex Analysis and Algebraic Geometry” (W.L. Baily, Jr., and T. Shioda, Eds.), Iwanami Shoten, Publishers, Tokyo, and Princeton Univ. Press, Princeton, NJ, 1977, 22-42.

[2] S. Iitaka, Deformations of compact complex surfaces, II, J. Math. Soc. Japan, 22 (1970), 247-261.

[3] T. Katsura, Multicanonical systems of elliptic surfaces in small characteristics, Compositio Math., 97 (1995), 119–134.

[4] T. Katsura, On the multicanonical systems of quasi-elliptic surfaces in characteristic 3, The EMS Series of Congress Report, European Mathematical Society, 2018, 153 – 157.

[5] T. Katsura and K. Ueno, On elliptic surfaces in characteristic p, Math. Ann., 272 (1985), 291–330.

[6] W. Lang, Quasi-elliptic surfaces in characteristic three, Ann. Scient. Ec. Norm. Sup., 12 (1979), 473–500.

[7] M. Raynaud, Surfaces elliptiques et quasi-elliptiques, manuscript, 1976.

[8] A. N. Rudakov and I. R. Shafarevich, Inseparable morphisms of algebraic surfaces, Izv. Acad. Nauk SSSR Ser. Mat., 40 (1976), 1269–1307, [Engl. Transl. Math. USSR Izv.5, 1205-1237 (1976)].

Graduate School of Mathematical Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8914, Japan
E-mail address: tkatsura@ms.u-tokyo.ac.jp

Graduate School of Information Sciences, Hiroshima City University, Asaminami-ku, Hiroshima, 731-3194, Japan
E-mail address: natsuo@math.info.hiroshima-cu.ac.jp