Animals with *Coxiella burnetii* infection demonstrate a Western immunoblot profile of chronic Q fever in humans

TJ MARRIE MD, LINDA YATES RT

Q fever is a zoonosis that results from infection with the microorganism *Coxiella burnetii* (1,2). While there is an extensive wildlife reservoir of *C burnetii* (2), cattle, sheep and goats are the domestic animals that are usually responsible for the spread of this organism to humans (1). The epidemiology of Q fever in Nova Scotia is unique in that infected parturient cats have been implicated in the spread of this infection to humans in this province (3).

Q fever in humans causes both acute and chronic infections (1). The former includes a self-limited febrile illness, pneumonia or hepatitis. The latter almost always is endocarditis or other intravascular infection and rarely osteomyelitis (1).

The objective of this study was to examine the immune response of a variety of animals to *C burnetii* phase I and phase II antigens by using Western immunoblotting.

MATERIALS AND METHODS

Serum samples: Serum samples from eight humans with acute and four with chronic Q fever and from 14 seropositive cats, eight rabbits, eight raccoons, three cows and one dog were used.

Determination of antibody titres to phase I and phase II *C burnetii* antigens: Antibody titres to phase I and phase II *C burnetii* antigens:
C. burnetii antigens were determined using a microimmuno-
fluorescence test as previously described (4). Anticat, an-
tirabbit, antibovine and antihuman fluorescent
isothiocyanate-conjugated antisera were obtained from Data
Immunoglobulins (Dakopatts, Glostrup, Denmark). Antirac-
coon fluorescent isothiocyanate-conjugated antiserum was
obtained from Zymed Laboratories (California).

An antibody titre of 1:8 or greater to either phase I or phase II C. burnetii antigen was considered a positive result. Sera were titred to end-point.

Western immunoblotting: C. burnetii phase I (CB9M1C7) and phase II (CB9M2C4) whole cells were gamma-irradiated at −70°C with 1.5 to 2 million rads and diluted to 1 mg/mL aliquots in phosphate buffered saline. Before use, samples were thawed and centrifuged for 10 mins. The supernatant was discarded and the pellet was resuspended in 1 mL of Laemmli sample buffer (5) and boiled for 5 mins. One milligram of whole-cell antigen was used in a volume of 1 mL for each set of
samples. Molecular mass markers ranging from 200 kDa to 14.3 kDa were prestained (Sigma, Missouri) and were prepared according to the manufacturer’s instructions. In addition, Legionella pneumophila heat shock protein, molecular mass 58 kDa (6), which has homology to C. burnetii heat shock protein, was obtained and was used to identify the antibodies reacting with the C. burnetii heat shock protein.

Electrophoresis: Gels were formed in a Biomed Protein II gel electrophoresis unit (Bio Rad). The gel running buffer consisted of 0.5% Tris (Sigma), 1.44% glycerine (Sigma) and 0.1% SDS. The pH was adjusted to 8.3. Electrophoresis was carried out for 4.5 to 6.5 h at 41 to 51 mA. The electrophoresis apparatus was kept cool with running water.

Prepared C. burnetii cells and markers were electrophoresed through a 5% stacking gel before separation in a 12.5% polyacrylamide separation gel. Phase I and phase II C. burnetii cells were run simultaneously on different gels.

Electrophoretic transfer of proteins to nitrocellulose: Gels were removed from the electrophoresis chamber and equili-

Table 1

Antibody titres to phase I and phase II *Coxiella burnetii* antigens, by indirect immunofluorescence antibody test, of the sera from the various animals

Animal	Phase I	Phase II
Human		
Acute Q fever	1:256	1:4096
Convalescent	1:128	1:4096
Chronic Q fever	1:65,536	1:8192
Raccoon	1:32	< 1:8
Dog	1:256	1:8192
Cow	> 1:4096	1:1024
Rabbit	1:512	1:64
Cat	1:64	1:512

RESULTS

Serum samples from eight humans with acute Q fever (four with chronic Q fever), 14 seropositive cats associated with outbreaks of Q fever in humans (3), eight raccoons, one dog, three cows and eight rabbits were examined. All had positive antibody titres to *C. burnetii* antigens by the indirect immunofluorescence test – data for the serum samples shown in the figures are given in Table I. These are representative of the antibody titres for the various animals studied. Figures 1 and 2 are representative of the results and show the immune response of the various animals to *C. burnetii* antigens.

All the animal samples tested showed an almost identical response to that of the human with chronic Q fever. The cat seemed to have identical responses to phase II and phase I (Figure 1) antigens. For the remaining animals the phase I response was dominant. The sample from human with chronic Q fever recognized fewer phase II than phase I antigens. The intensity of the bands in Western blot varied considerably for the different animals tested and, except for the raccoon serum, did not correlate with the antibody titre. In contrast, the serum from the human with acute Q fever had antibodies against the 58 kDa heat shock protein only. The cat sample recognized more phase II antigens than did the human with chronic Q fever.

DISCUSSION

In a previous study (7) we found that patients with chronic Q fever recognized eight to 15 *C. burnetii* phase I antigens. In contrast, samples from subjects with acute Q fever recognized only four phase I antigens. In addition several antigens were recognized only by sera from patients with chronic Q fever – these included antigens with molecular masses of 50, 80 and 160 kDa.
The major finding in the present study is that cats, rabbits, raccoons and cows with antibodies to phase I antigens recognize most of the same antigens as patients with chronic Q fever.

Novak et al (8) analyzed serum samples from mice infected intraperitoneally with *C burnetii* phase I cells. IgG antibodies to 60, 49, and 27 kDa proteins appeared on day 10 after infection, followed by those to 77 kDa protein from day 18 postinfection. Antibodies to seven other proteins of 42 to 70 kDa molecular mass appeared after 28 days of infection. This profile from day 29 onwards is remarkably similar to our findings for rabbits, cats, raccoons and cows.

Willems et al (9) used unfixed *C burnetii* phase I cells and scanned the immunoblots with a laser densitometer. They found that mice three weeks after infection recognized antigens with molecular masses of 13.3, 31.8, 41.7, 44, 46, 50.4 and 52 kDa. The main peaks were at 41.7, 50.4 and 52.5 kDa. An infected cow recognized antigens with molecular masses of 13.9, 23, 30, 57.3 kDa. The one human studied recognized antigens with molecular masses of 14.6, 23, 29.6, 46.5, 59.1 kDa.

The dominant antigen recognized by humans, rabbits, cats, cows and raccoons in our study was the 58 kDa heat shock protein. Heat shock proteins appear in response to a variety of stresses, including temperature elevation, and range in size from 10 to 100 kDa (10,11). The heat shock protein of *C burnetii* has homology with heat shock proteins of 58 to 65 kDa in *Mycobacterium tuberculosis*, *Mycobacterium leprae*, *L pneumophila*, *Pseudomonas aeruginosa*, *Borrelia burgdorferi*, and *Treponema pallidum* (12). Thompson et al (12) found that the major heat shock protein of *C burnetii* had an apparent molecular mass of 62 kDa.

Chronic Q fever has not been recognized in animals other than humans; however, uterine infection and recrudescence of Q fever infection during pregnancy are common in animals other than humans (2). In this regard it is interesting that a human female with primary Q fever during pregnancy who had *C burnetii* isolated from the placenta at parturition had a profile like that of chronic Q fever (unpublished data). It is possible that chronic endometrial infection may be one reason for the predominance of phase I antibodies and the chronic Q fever-like profile on immunoblotting in animals other than humans. The cats, dog and cow were all female, and all had...
been associated with Q fever in humans. One of the cats had chronic endometritis as shown by prolonged uterine bleeding following parturition. Lang (13) states that chronic infection by C. burnetii of adult animals (other than humans) does not have a cardiac or hepatic localization; instead, the uterus and the mammary glands are sites for chronic shedding of the microorganisms. It is interesting that the cat serum recognized more phase II antigens then did serum from the human with chronic Q fever. The sex of the rabbits and raccoons was not recorded when blood samples were collected.

It is also possible that animals other than humans have Q fever endocarditis, but it is unlikely that all seropositive animals have this disease, as the immunoblots suggest. Recently we examined the hearts of 20 seropositive raccoons and did not seen any vegetations on their valves (unpublished data).

ACKNOWLEDGEMENTS: This research was supported by a grant from Eli Lilly Canada Inc. Drs Jim Williams and David Waag graciously supplied the Coxiella burnetii antigens. Dr Paul Hoffman, Department of Microbiology, Dalhousie University supplied the Legionella pneumo- phila heat shock protein.

REFERENCES
1. Sawyer LA, Fishbein DB, McDade JE. Q fever: current concepts. Rev Infect Dis 1987;19:935-46.
2. Baburdieri B. Q fever: a zoonosis. Adv Vet Sci 1985;5:81-181.
3. Marrie TJ, Durant H, Williams JC, Mintz E, Waag D. Exposure to parturient cats is a risk factor for acquisition of Q fever in Maritime Canada. J Infect Dis 1988;158:101-8.
4. Marrie TJ, Van Buren J, Fraser J, et al. Seroepidemiology of Q fever among domestic animals in Nova Scotia. Am J Public Health 1985;75:763-6.
5. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
6. Hoffman PS, Butler CA, Quinn FD. Cloning and temperature-dependent expression in Escherichia coli of a Legionella pneumophila gene coding for a genus-common 60 kilodalton antigen. Infect Immun 1989;57:1731-9.
7. Blondeau JM, Williams JC, Marrie TJ. The immune response to phase I and phase II Coxiella burnetii antigens as measured by Western immunoblotting. Ann NY Acad Sci 1990;590:187-202.
8. Novak M, Brezina R, Kazar J. Immunoblot analysis of antibody response in mice infected with Coxiella burnetii phase I. Acta Virol 1992;36:39-44.
9. Willems H, Thiele D, Glas-Adollah-Baik Kashi M, Krauss H. Immunoblot technique for Q fever (Technical Note). Eur J Epidemiol 1992;8:103-7.
10. Neidhardt FC, Vanbogelen RA, Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet 1984;18:295-329.
11. Kaufmann SHE. Heat-shock proteins: a missing link in the host-parasite relationship? Med Microbiol Immunol 1990;179:61-6.
12. Thompson HA, Bolt CR, Hoover T, Williams JC. Induction of heat-shock proteins in Coxiella burnetii. Ann NY Acad Sci 1990;590:127-35.
13. Lang GH. Coxiellosis (Q fever) in animals. In: Marrie TJ, ed. Q Fever. Vol 1. The Disease. Boca Raton: CRC Press, 1990:23-48.
