A series of Lniii\textsubscript{4} clusters: Dy\textsubscript{4} single molecule magnet and Tb\textsubscript{4} multi-responsive luminescent sensor for Fe3+, CrO\textsubscript{4}2−/Cr\textsubscript{2}O\textsubscript{7}2− 4-nitroaniline

Yaru Qin, Yu Ge, Shasha Zhang, Hao Sun, Yu Jing, Yahong Li* and Wei Liu

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
E-mail: liyahong@suda.edu.cn

Content

Fig. S1-S3 1H, 13C NMR and IR spectra of H\textsubscript{2}L………2

Table S1 Selected bond lengths and angles for 1-5……..3

Fig. S4 PXRD patterns for 1-5……...6

Fig. S5 IR spectra of 1-5……7

Table S2 Results of Continuous Shape Measures (SHAPE) calculation…….8

Fig. S6 The Curie-Weiss law fit of 1……9

Fig. S7 Temperature dependence of the out-of-phase (χ'') ac susceptibility for 3…….9

Fig. S8 The excitation and emission spectra of H\textsubscript{2}L and emission spectra of 1-5 in solid state………………………………………………………………………………9

Fig. S9 Excitation spectrum and emission spectrum of 2 in solid state……………………………………………………………………………………………………10

Fig. S10-S11 PXRD patterns of 2 for pH and stability experiments……..10

Fig. S12 SEM images and particle size distribution of 2 ……….11

Fig. S13 Plots of $I_0/I-1$ and fluorescence intensity of 2 versus low concentration of Fe3+………………………………………………………………………………11

Fig. S14 The XPS spectra of 2 and 2-Fe3+…….12

Fig. S15 PXRD patterns for 2 after the detection of Fe3+, CrO\textsubscript{4}2− and Cr\textsubscript{2}O\textsubscript{7}2−……………………………………………………………………………….12

Fig. S16 Luminescent responses of 2 towards different concentrations of CrO\textsubscript{4}2− and Cr\textsubscript{2}O\textsubscript{7}2−, respectively………..12

Fig. S17 Plot of $I_0/I-1$ and fluorescence intensity of 2 versus low concentration of CrO\textsubscript{4}2− and Cr\textsubscript{2}O\textsubscript{7}2−…………………..13

Fig. S18 Luminescent responses of 2 towards different concentrations of 4-NA……..13

Fig. S19 Plot of $I_0/I-1$ and fluorescence intensity of 2 for 4-NA in low concentration region………………………………………………………………………………14
Fig. S20 PXRD patterns of 2 for free and 4-NA ethanol stability experiments.

Table S3 Comparison of various Ln-complexes fluorescent sensors for Fe$^{3+}$, CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$.

Table S4 Comparison of various complexes fluorescent sensors for 4-NA.

Fig. S1 1H NMR spectrum of H$_2$L.

Fig. S2 13C NMR spectrum of H$_2$L.
Fig. S3 FT-IR spectrum of H$_2$L.

	Length/Å		Length/Å		Length/Å
Gd(1)-O(1)	2.310(3)	Tb(1)-O(1)	2.293(2)	Dy(1)-O(1)	2.293(2)
Gd(1)-O(3)	2.202(3)	Tb(1)-O(3)	2.181(2)	Dy(1)-O(3)	2.169(3)
Gd(1)-O(5)	2.451(3)	Tb(1)-O(5)	2.427(2)	Dy(1)-O(5)	2.405(2)
Gd(1)-O(6)	2.444(3)	Tb(1)-O(6)	2.435(2)	Dy(1)-O(6)	2.429(3)
Gd(1)-O(10)	2.368(3)	Tb(1)-O(10)	2.358(2)	Dy(1)-O(10)	2.355(3)
Gd(1)-O(11)	2.548(4)	Tb(1)-O(11)	2.533(3)	Dy(1)-O(11)	2.534(3)
Gd(1)-O(12)	2.478(4)	Tb(1)-O(12)	2.474(3)	Dy(1)-O(12)	2.455(3)
Gd(1)-N(1)	2.509(4)	Tb(1)-N(1)	2.495(3)	Dy(1)-N(1)	2.491(3)
Gd(2)-O(1)	2.332(3)	Tb(2)-O(1)	2.314(2)	Dy(2)-O(1)	2.298(2)
Gd(2)-O(2)	2.586(3)	Tb(2)-O(2)	2.578(2)	Dy(2)-O(2)	2.575(3)
Gd(2)-O(5)	2.391(3)	Tb(2)-O(5)	2.379(2)	Dy(2)-O(5)	2.378(2)
Gd(2)-O(7)	2.305(3)	Tb(2)-O(7)	2.289(2)	Dy(2)-O(7)#1	2.303(2)
Gd(2)-O(7)#1	2.332(3)	Tb(2)-O(7)#1	2.312(2)	Dy(2)-O(7)	2.281(2)
Gd(2)-O(8)#1	2.634(4)	Tb(2)-O(8)#1	2.640(3)	Dy(2)-O(8)#1	2.635(3)
Gd(2)-O(9)	2.280(3)	Tb(2)-O(9)	2.258(2)	Dy(2)-O(9)	2.249(3)
Gd(2)-N(2)	2.479(5)	Tb(2)-N(2)	2.450(3)	Dy(2)-N(2)	2.443(3)
Ho(1)-O(1)	2.276(3)	Ho(1)-O(6)	2.408(3)	Ho(1)-O(12)	2.430(3)
Ho(1)-O(3)	2.167(3)	Ho(1)-O(10)	2.334(3)	Ho(1)-N(1)	2.472(4)
Ho(1)-O(5)	2.393(3)	Ho(1)-O(11)	2.519(3)	Ho(2)-O(1)	2.285(3)
Ho(2)-O(2)	2.568(3)	Ho(2)-O(5)	2.359(3)	Ho(2)-O(7)	2.268(3)
Ho(2)-O(7)#1	2.289(3)	Ho(2)-O(8)#1	2.618(3)	Ho(2)-O(9)	2.234(3)
Ho(2)-N(2)	2.429(4)				
Er(1)-O(1)	2.264(3)	Er(1)-O(10)	2.328(3)	Er(2)-O(1)	2.276(3)
Er(2)-O(7)#1	2.277(3)	Er(1)-O(3)	2.160(3)	Er(1)-O(11)	2.519(3)
Er(2)-O(2)	2.572(3)	Er(2)-O(8)#1	2.614(3)	Er(1)-O(5)	2.389(3)
--------------	---------	--------------	---------	-----------	---------
Er(1)-O(12)	2.417(3)	Er(2)-O(5)	2.344(3)	Er(2)-O(9)	2.224(3)
Er(1)-O(6)	2.400(3)	Er(1)-N(1)	2.457(3)	Er(2)-O(7)	2.262(3)
Er(2)-N(2)	2.424(4)				

1

Angle/°	2	Angle/°	3	Angle/°	
O(1)-Gd(1)-O(5)	73.48(11)	O(1)-Dy(1)-O(5)	72.91(8)		
O(1)-Gd(1)-O(6)	138.17(12)	O(1)-Dy(1)-O(6)	138.57(9)		
O(1)-Gd(1)-O(10)	84.17(12)	O(1)-Dy(1)-O(10)	84.34(9)		
O(1)-Gd(1)-O(11)	134.50(12)	O(1)-Dy(1)-O(11)	134.32(9)		
O(1)-Gd(1)-O(12)	87.23(12)	O(1)-Dy(1)-O(12)	87.05(9)		
O(1)-Gd(1)-N(1)	75.32(13)	O(1)-Dy(1)-N(1)	75.46(10)		
O(3)-Gd(1)-O(1)	127.73(12)	O(3)-Dy(1)-O(1)	127.96(10)		
O(3)-Gd(1)-O(5)	146.01(12)	O(3)-Dy(1)-O(5)	146.22(9)		
O(3)-Gd(1)-O(6)	85.60(12)	O(3)-Dy(1)-O(6)	85.07(9)		
O(3)-Gd(1)-O(10)	79.87(13)	O(3)-Dy(1)-O(10)	79.57(9)		
O(3)-Gd(1)-O(11)	76.43(13)	O(3)-Dy(1)-O(11)	76.19(10)		
O(3)-Gd(1)-O(12)	122.70(13)	O(3)-Dy(1)-O(12)	123.41(10)		
O(3)-Gd(1)-N(1)	72.92(13)	O(3)-Dy(1)-N(1)	73.68(10)		
O(5)-Gd(1)-O(11)	108.61(12)	O(5)-Dy(1)-O(11)	109.29(9)		
O(5)-Gd(1)-O(12)	79.59(12)	O(5)-Dy(1)-O(12)	78.73(9)		
O(5)-Gd(1)-N(1)	140.90(12)	O(5)-Dy(1)-N(1)	139.97(9)		
O(6)-Gd(1)-O(5)	65.86(11)	O(6)-Dy(1)-O(5)	70.75(9)		
O(6)-Gd(1)-O(11)	70.75(12)	O(6)-Dy(1)-O(11)	70.75(9)		
O(6)-Gd(1)-O(12)	94.58(13)	O(6)-Dy(1)-O(12)	94.05(10)		
O(6)-Gd(1)-N(1)	145.51(13)	O(6)-Dy(1)-N(1)	144.74(10)		
O(10)-Gd(1)-O(5)	76.27(12)	O(10)-Dy(1)-O(5)	76.52(9)		
O(10)-Gd(1)-O(6)	77.31(12)	O(10)-Dy(1)-O(6)	77.57(9)		
O(10)-Gd(1)-O(10)	141.26(12)	O(10)-Dy(1)-O(10)	141.31(9)		
O(10)-Gd(1)-O(11)	155.79(13)	O(10)-Dy(1)-O(11)	155.21(9)		
O(10)-Gd(1)-N(1)	123.11(13)	O(10)-Dy(1)-N(1)	123.94(10)		
O(12)-Gd(1)-O(11)	50.58(12)	O(12)-Dy(1)-O(11)	50.10(9)		
N(1)-Gd(1)-O(11)	75.94(13)	O(12)-Dy(1)-N(1)	75.73(10)		
O(1)-Gd(2)-O(2)	64.51(11)	O(1)-Dy(2)-O(2)	65.13(9)		
O(1)-Gd(2)-O(5)	74.22(11)	O(1)-Dy(2)-O(5)	73.38(9)		
O(1)-Gd(2)-O(7)#1	89.14(12)	O(1)-Dy(2)-O(7)#1	88.98(9)		
O(1)-Gd(2)-O(8)#1	76.69(11)	O(1)-Dy(2)-O(8)#1	76.44(9)		
O(1)-Gd(2)-N(2)	151.17(13)	O(1)-Dy(2)-N(2)	150.93(10)		
O(2)-Gd(2)-O(8)#1	120.64(11)	O(2)-Dy(2)-O(8)#1	121.43(9)		
O(5)-Gd(2)-O(2)	127.31(11)	O(5)-Dy(2)-O(2)	126.88(9)		
O(5)-Gd(2)-O(8)#1	76.77(11)	O(5)-Dy(2)-O(8)#1	76.11(8)		
O(5)-Gd(2)-N(2)	77.00(13)	O(5)-Dy(2)-N(2)	77.62(10)		
O(7)-Gd(2)-O(1)	138.07(12)	O(7)-Dy(2)-O(1)	138.07(9)		
O(7)-Gd(2)-O(2)	75.87(12)	O(7)-Dy(2)-O(2)	74.38(9)		
Bond	Angle/°	Bond	Angle/°	Bond	Angle/°
---------------	----------	---------------	----------	---------------	----------
O(7)#1-Gd(2)-O(2)	73.95(12)	O(7)-Tb(2)-O(2)	75.73(9)	O(7)-Dy(2)-O(2)	75.52(9)
O(7)-Gd(2)-O(5)	146.00(12)	O(7)-Tb(2)-O(5)	146.76(8)	O(7)-Dy(2)-O(5)	147.05(9)
O(7)#1-Gd(2)-O(5)	138.09(11)	O(7)#1-Tb(2)-O(5)	137.70(8)	O(7)#1-Dy(2)-O(5)	137.43(9)
O(7)-Gd(2)-O(7)#1	66.35(14)	O(7)-Tb(2)-O(7)#1	66.09(10)	O(7)-Dy(2)-O(7)#1	66.22(10)
O(7)#1-Gd(2)-O(8)#1	61.90(11)	O(7)#1-Tb(2)-O(8)#1	61.85(8)	O(7)#1-Dy(2)-O(8)#1	62.03(8)
O(7)-Gd(2)-O(8)#1	115.29(11)	O(7)-Tb(2)-O(8)#1	115.03(8)	O(7)-Dy(2)-O(8)#1	115.26(9)
O(7)-Gd(2)-N(2)	69.97(14)	O(7)#1-Tb(2)-N(2)	113.93(9)	O(7)#1-Dy(2)-N(2)	70.37(10)
O(7)#1-Gd(2)-N(2)	113.92(13)	O(7)-Tb(2)-N(2)	70.41(9)	O(7)-Dy(2)-N(2)	113.84(10)
O(9)-Gd(2)-O(1)	92.28(12)	O(9)-Tb(2)-O(1)	92.48(9)	O(9)-Dy(2)-O(1)	92.89(9)
O(9)-Gd(2)-O(2)	71.67(12)	O(9)-Tb(2)-O(2)	71.79(9)	O(9)-Dy(2)-O(2)	71.77(9)
O(9)-Gd(2)-O(5)	79.03(12)	O(9)-Tb(2)-O(5)	78.92(9)	O(9)-Dy(2)-O(5)	79.06(9)
O(9)-Gd(2)-O(7)	87.72(12)	O(9)-Tb(2)-O(7)	88.16(9)	O(9)-Dy(2)-O(7)	87.96(9)
O(9)-Gd(2)-O(7)#1	141.02(12)	O(9)-Tb(2)-O(7)#1	141.45(9)	O(9)-Dy(2)-O(7)#1	141.57(9)
O(9)-Gd(2)-O(8)#1	155.34(12)	O(9)-Tb(2)-O(8)#1	155.05(8)	O(9)-Dy(2)-O(8)#1	154.87(9)
O(9)-Gd(2)-N(2)	80.60(14)	O(9)-Tb(2)-N(2)	80.50(10)	O(9)-Dy(2)-N(2)	80.36(11)
N(2)-Gd(2)-O(2)	136.43(13)	N(2)-Tb(2)-O(2)	136.50(9)	N(2)-Dy(2)-O(2)	136.27(10)
N(2)-Gd(2)-O(8)#1	98.39(13)	N(2)-Tb(2)-O(8)#1	98.07(10)	N(2)-Dy(2)-O(8)#1	97.86(10)

4 Angle/° 4 Angle/° 4 Angle/°
Bond	Angle (°) 1	Bond	Angle (°) 2	Bond	Angle (°) 3
O(1)-Er(1)-O(11)	134.56(10)	O(1)-Er(1)-O(12)	86.88(10)	O(1)-Er(1)-N(1)	75.87(10)
O(3)-Er(1)-O(1)	128.17(10)	O(3)-Er(1)-O(5)	145.47(10)	O(3)-Er(1)-O(6)	84.16(10)
O(3)-Er(1)-O(10)	78.79(10)	O(3)-Er(1)-O(11)	76.26(10)	O(3)-Er(1)-O(12)	124.30(10)
O(3)-Er(1)-N(1)	74.47(11)	O(5)-Er(1)-O(6)	67.24(9)	O(5)-Er(1)-O(11)	109.70(10)
O(5)-Er(1)-O(12)	78.55(10)	O(5)-Er(1)-N(1)	139.93(10)	O(6)-Er(1)-O(11)	70.65(10)
O(6)-Er(1)-O(12)	94.25(11)	O(6)-Er(1)-N(1)	144.04(10)	O(10)-Er(1)-O(5)	76.59(10)
O(10)-Er(1)-O(6)	77.67(10)	O(10)-Er(1)-O(11)	141.18(10)	O(10)-Er(1)-O(12)	155.08(10)
O(10)-Er(1)-N(1)	124.31(11)	O(12)-Er(1)-O(11)	51.57(10)	O(12)-Er(1)-N(1)	75.43(11)
N(1)-Er(1)-O(11)	76.30(11)	O(1)-Er(2)-O(2)	65.43(9)	O(1)-Er(2)-O(5)	73.41(9)
O(1)-Er(2)-O(7)#1	88.60(10)	O(1)-Er(2)-O(8)#1	76.82(9)	O(1)-Er(2)-N(2)	151.00(11)
O(2)-Er(2)-O(8)#1	122.45(9)	O(5)-Er(2)-O(2)	127.27(9)	O(5)-Er(2)-O(8)#1	75.27(9)
O(5)-Er(2)-N(2)	77.63(11)	O(7)-Er(2)-O(1)	137.73(10)	O(7)-Er(2)-O(2)	74.96(10)
O(7)#1-Er(2)-O(2)	74.19(10)	O(7)-Er(2)-O(5)	147.38(10)	O(7)#1-Er(2)-O(5)	137.14(9)
O(7)-Er(2)-O(7)#1	66.24(12)	O(7)#1-Er(2)-O(8)#1	62.70(9)	O(7)-Er(2)-O(8)#1	115.46(9)
O(7)-Er(2)-N(2)	70.62(11)	O(7)#1-Er(2)-N(2)	114.29(11)	O(9)-Er(2)-O(2)	92.77(10)
O(9)-Er(2)-O(2)	71.29(10)	O(9)-Er(2)-O(5)	79.56(10)	O(9)-Er(2)-O(7)	87.92(10)
O(9)-Er(2)-O(7)#1	141.19(10)	O(9)-Er(2)-O(8)#1	154.58(10)	O(9)-Er(2)-N(2)	80.46(11)

Symmetry transformation: #1 -X, 2-Y, 1-Z for 1, #1 2-X, -Y, 1-Z for 2-5
Fig. S4 PXRD patterns of 1(a), 2(b), 3(c), 4(d), 5(e).
Fig. S5 IR spectra of 1(a), 2(b), 3(c), 4(d), 5(e).

Table S2. Agreement factor between the coordination polyhedron of the LnIII and the various ideal polyhedral calculated by the SHAPE program

	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JBTAPR	BTPR-8	JSD-8	TT-8
Gd1	14.779	8.898	1.686	2.836	14.348	2.716	1.948	5.147	9.501
Gd2	14.482	11.904	3.123	2.877	11.858	2.745	2.428	4.685	12.131
Tb1	14.941	8.967	1.635	2.787	14.521	2.674	1.858	5.070	9.572
Tb2	14.587	11.972	3.095	2.913	11.953	2.721	2.435	4.625	12.156
Dy1	15.029	9.008	1.635	2.709	14.552	2.604	1.787	4.952	9.590
Dy2	14.735	12.056	3.038	2.904	12.026	2.668	2.416	4.549	12.224
Ho1	15.177	9.091	1.567	2.688	14.556	2.534	1.741	4.917	9.670
Ho2	14.872	12.189	2.967	2.924	11.996	2.572	2.313	4.515	12.306
Er1	15.298	9.127	1.525	2.645	14.588	2.447	1.685	4.823	9.686
Er2	14.918	12.242	2.990	2.925	12.031	2.566	2.323	4.478	12.406

1 HBPY-8 Hexagonal bipyramid D6h
2 CU-8 Cube Oh
3 SAPR-8 Square antiprism D4d
4 TDD-8 Triangular dodecahedron D2d
5 JGBF-8 Johnson – Gyrobifastigium (J26) D2d
Fig. S6 Plot of $1/\chi_M$ versus T for 1, the linear fit is the Curie-Weiss law fit at 1 kOe field.

Fig. S7 Temperature dependence of the out-of-phase (χ'') ac susceptibility for 3 under zero dc field at 1000 Hz.

Fig. S8 (a) The excitation and emission spectra of H$_2$L ligand. (b) Emission spectra of 1-5 in solid state at room temperature.
Fig. S9 Excitation spectrum (a) and emission spectrum (b) of 2 in solid state at room temperature.

Fig. S10 PXRD patterns for the simulated and experimental samples of 2 soaked in aqueous solutions with pH values in the range of 3-14 for two days.

Fig. S11 PXRD patterns for the simulated and experimental samples of 2 soaked in water for 2 days and 14 days.
Fig. S12 SEM images (left) and particle size distributions of 2 (right) after being sonicated for 8 (a), 15 (b) and 30 (c) minutes.

Fig. S13 (a) Stern-Volmer plot of $I_0/I - 1$ versus low Fe$^{3+}$ concentration in the aqueous suspension of 2. (b) Linear region of fluorescence intensity for the suspensions of 2 in water upon incremental addition of Fe$^{3+}$ solutions.
Fig. S14 Comparison of XPS spectra of 2 before (black) and after (red) its immersion in the Fe$^{3+}$ aqueous solution.

Fig. S15 PXRD patterns for 2 after the detection of Fe$^{3+}$, CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$ ions.

Fig. S16 Luminescent responses of a water suspension of 2 (2 mg/2 mL) towards different concentrations of (a) CrO$_4^{2-}$ ions (2×10^{-3} M, 0 µL-2000 µL) and (b) Cr$_2$O$_7^{2-}$ (2×10^{-3} M, 0 µL-2000 µL).
Fig. S17 Stern-Volmer plot of $I_0/I - 1$ versus low concentration of CrO_4^{2-} (a) and $\text{Cr}_2\text{O}_7^{2-}$ (b) in the aqueous suspension of $\mathbf{2}$, and linear region of fluorescence intensity for the suspensions of $\mathbf{2}$ in water upon incremental addition of CrO_4^{2-} (c) or $\text{Cr}_2\text{O}_7^{2-}$ (d) solutions.

Fig. S18 Luminescence responses of an ethanol suspension of $\mathbf{2}$ (2 mg/2 mL) towards different concentrations of 4-NA (1×10^{-3} M, 0 µL-2000 µL).
Fig. S19 (a) Stern-Volmer plot of $I_0/I - 1$ versus low concentration of 4-NA in the ethanol suspension of 2. (b) Linear region of fluorescence intensity for the suspensions of 2 in ethanol upon incremental addition of 4-NA solutions.

Fig. S20 PXRD patterns for 2 after the detection of 4-NA and being soaked in ethanol for 10 days

Table S3 The comparison of various Ln-complexes fluorescent sensors for Fe$^{3+}$, CrO$_4^{2-}$ and Cr$_2$O$_7^{2-}$

Ln based complexes	Analyte	Quenching constant (K_{SV}, M$^{-1}$)	Detection limits	Solvent	Ref	
[Tb$_4$(NO$_3$)$_4$(Piv)$_4$]·2CH$_3$OH	Fe$^{3+}$	1.86×10^4	10µM	water	This	
	CrO$_4^{2-}$	2.998×10^3	52µM	work		
	Cr$_2$O$_7^{2-}$	7.44×10^1	27µM			
{[Tb$_2$(Ccbp)$_3$·6H$_2$O]·3Cl$_{-}$·4H$_2$O)	Fe$^{3+}$	1.143×10^5	ethanol	1		
{[Eu(L1)(BPDC)$_{1/2}$·(NO$_3$)]·H$_2$O)$_n$	Fe$^{3+}$	5.16×10^4	DMF	2		
{[Tb(L1)(BPDC)$_{1/2}$·(NO$_3$)]·H$_2$O)$_n$	Fe$^{3+}$	4.30×10^4	DMF	2		
{[Eu(1,5-Nds)$_{0.5}$(ox)(phen)(H$_2$O)]·H$_2$O}	Fe$^{3+}$	1.3070×10^3	water	3		
Nds$_{3.5}$(ox)(phen)(H$_2$O)]·H$_2$O)	Fe$^{3+}$	1.5374×10^3	1.2 µM	Water	7	
{[Eu(1,5-Nds)$_{0.5}$(ox)(phen)(H$_2$O)]·H$_2$O}	CrO$_4^{2-}$	1.3734×10^3	130 µM	water	6	
{[Tb(TBOT)(H$_2$O)]·4H$_2$O}	CrO$_4^{2-}$	5.51×10^3	130 µM	water	6	
{[CH$_3$$_2NH_2$][Tb(bptc)]·xsolvents	Cr$_2$O$_7^{2-}$	1.37×10^4	340 µM		6	
{[Eu(L2)(HCOO)(H$_2$O)]}	CrO$_4^{2-}$	1.3070×10^3	1.8 µM	Water	7	
{[Tb(L2)(HCOO)(H$_2$O)]}	CrO$_4^{2-}$	2.1335×10^3	2.1 µM	water	7	
Coordination complex	Quenching constant (K_{sv}, M$^{-1}$)	Detection limits	λ_{ex}(nm)	λ_{em}(nm)	Solvent	Ref
----------------------	-------------------------------------	-----------------	----------------	---------------	--------	-----
[CuLII(NO$_3$)$_2$]·2CH$_3$OH	1.14 × 104	8.5µM	360	544	ethanol	This work
[Cd$_2$(LIII)$_2$(bib)$_2$·(H$_2$O)$_2$]$_n$	6.6 × 104	325	DMSO	14		
([Cd$_2$(LIII)$_2$(bib)$_2$]·3H$_2$O)$_n$	1.1 × 104	375	DMSO	14		
[Cd$_2$(H$_2$LII)II]·5H$_2$O·2DMF	1.81 × 104	480	isopropanol	15		
([Zn4(O$_2$)(L7)(H$_2$O)]II·2DMF)$_n$	350	400 red-shifted about 40 nm.	DMF	16		
[Zn$_\text{II}$LI·(1,10-phen·H$_2$O)]·2H$_2$O	6556	330	456	DMA	17	
[Zn$_\text{II}$LI·(1,10-phen·H$_2$O)]·2H$_2$O	3955	318	396	DMA	17	

CrO$_2$$_\text{II}$	4.85 × 103	0.33 ppm	water	8
CrO$_2$$_\text{II}$	1.04 × 104	1.07 ppm	water	9
Fe$_\text{III}$	2.942 × 103	10 µM	DMF	10
CrO$_2$$_\text{II}$	1.526 × 103	10 µM	DMF	11
Fe$_\text{III}$	3667	1 µM	water	12
CrO$_2$$_\text{III}$	11106	5 µM	water	13
[Eu(HPIDC)(m-bdc)·1.5H$_2$O]$_n$	Cr$_\text{II}$O$_2$$_\text{II}$	4.1 × 104	water	13
[Eu(HPIDC)(m-bdc)·1.5H$_2$O]$_n$	Cr$_\text{II}$O$_2$$_\text{II}$	6.1 × 104	water	13

Ccb$^+$ = 4-carboxy-1-((4-carboxybenzyl)pyridinium; H$_2$LI = 2,5-di(pyridin-4-yl)terephthalic acid; BPDC = biphenyl-4,4$'$-dicarboxylic acid; 1,5-Nds = 1,5-naphthalenedisulfonate disulfonate; ox = oxalate; phen = 1,10-phenanthroline; m-H$_2$bdc = 1,3-benzenedicarboxylic acid; H$_2$bpptc = benzophenone-3,3,3$'$,4,4$'$,4$'$-tetracarboxylic acid; H$_2$PIDC = 2-(4-pyridyl)-1H-imidazole-4,5-dicarboxylic acid; H$_2$MFDA = 9,9-dimethyl-fluorene-2,7-dicarboxylic acid; H$_2$TPbpc = 4,4$'$-[(2$'$-cyano-[1,1$'$-biphenyl]-4-yl)methoxy]isophthalic acid; H$_2$LIII = 5,5$'$-(carbonylbis(azanediyl))diisophthalic acid; H$_2$BPDC = 4,4$'$-bis(imidazol-1-yl)benzene; H$_2$LIII = 5,5$'$-bis(imidazol-1-yl)biphenyl; H$_2$LIV = 2,5-bis(3,5-dicarboxyphenyl)thiopheneamide; H$_2$LV = [1,1$'$,4,1$'$]terphenyl-3,3,5,2,5,2$'$,3$'$,5$'$-hexacarboxylic acid; H$_2$LVI = bis-(3,5-dicarboxyphenyl)terephthalamide; DMA = N,N-dimethylacetamide; DMSO = dimethyl sulfoxide

Table 54 The comparison of various coordination complexes fluorescent sensors for 4-NA
References

S1. K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, CrystEngComm, 2016, 18, 2690-2700.
S2. W. Yan, C. Zhang, S. Chen, L. Han and H. Zheng, ACS Appl. Mater. Interfaces, 2017, 9, 1629-1634.
S3. R. Li, X.-L. Qu, Y.-H. Zhang, H.-L. Han and X. Li, CrystEngComm, 2016, 18, 5890-5900.
S4. X. H. Zhou, L. Li, H. H. Li, A. Li and W. Huang, Dalton Trans., 2013, 42, 12403-12409.
S5. X. L. Zhao, D. Tian, Q. Gao, H. W. Sun, J. Xu and X. H. Bu, Dalton Trans., 2016, 45, 1040-1046.
S6. M. Chen, W. -M. Xu, J. -Y. Tian, H. Cui, J.-X. Zhang, C. -S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2015-2021.
S7. Z. Sun, M. Yang, Y. Ma and L. Li, Cryst. Growth Des., 2017, 17, 4326-4335.
S8. J. Liu, G. Ji, J. Xiao and Z. Liu, Inorg. Chem., 2017, 56, 4197-4205.
S9. W. Liu, X. Huang, C. Xu, C. Chen, L. Yang, W. Dou, W. Chen, H. Yang and W. Liu, Chem. –Eur. J., 2016, 22, 18769-18776.
S10. G. X. Wen, M. L. Han, X. Q. Wu, Y. P. Wu, W. W. Dong, J. Zhao, D. S. Li and L. F. Ma, Dalton Trans., 2016, 45, 15492-15499.
S11. G. P. Li, G. Liu, Y. Z. Li, L. Hou, Y. Y. Wang and Z. Zhu, Inorg. Chem., 2016, 55, 3952-3959.
S12. W. Gao, F. Liu, B. Y. Zhang, X. M. Zhang, J. P. Liu, E. Q. Gao and Q. Y. Gao, Dalton Trans., 2017, 46, 13878-13887.
S13. X. H. Huang, L. Shi, S. M. Ying, G. Y. Yan, L. H. Liu, Y. Q. Sun and Y. P. Chen, CrystEngComm, 2018, 20, 189-197.
S14. L. Huo, J. Zhang, L. Gao, X. Wang, L. Fan, K. Fang and T. Hu, CrystEngComm, 2017, 19, 5285-5292.
S15. F. Wang, Z. Yu, C. Wang, K. Xu, J. Yu, J. Zhang, Y. Fu, X. Li and Y. Zhao, Sen. Actuators B Chem., 2017, 239, 688-695.
S16. X.-Y. Wan, F.-L. Jiang, C.-P. Liu, K. Zhou, L. Chen, Y.-L. Gai, Y. Yang and M.-C. Hong, J. Mater. Chem. A, 2015, 3, 22369-22376.
S17. F. Wang, C. Wang, Z. Yu, Q. He, X. Li, C. Shang and Y. Zhao, RSC Adv., 2015, 5, 70086-70093.