CHERNOFF-LIKE COUNTEREXAMPLES RELATED TO UNBOUNDED OPERATORS

Souheyb DEHIMI and Mohammed Hichem MORTAD

(Received 1 September 2018 and revised 28 May 2019)

Dedicated to the memory of Professor Paul R. Chernoff

Abstract. In this paper, we give an example of a closed unbounded operator whose square domain and adjoint’s square domain are equal and trivial. Then, we come up with an essentially self-adjoint whose square has a trivial domain.

1. Introduction

The striking example by Chernoff is well known to specialists. It states that there is a closed, unbounded, densely defined, symmetric and semi-bounded operator A such that $D(A^2) = \{0\}$. This was obtained in [3] and came in to simplify a construction already obtained by Naimark in [7]. It is worth noting that Schmüdgen [8] obtained almost simultaneously (as Chernoff) that every unbounded self-adjoint T has two closed and symmetric restrictions A and B such that

$$D(A) \cap D(B) = \{0\} \quad \text{and} \quad D(A^2) = D(B^2) = \{0\}.$$

This result by Schmüdgen (which was generalized later by Brasche and Neidhardt in [2]; see also [1]) is great but remains fairly theoretical. There seems to be no other simple Chernoff-like (whatever simplicity means) example around in the literature except the one by Chernoff. It is worth recalling that this type of operator cannot be self-adjoint nor can be normal. It cannot be invertible either.

So, what we will do here is to completely avoid Chernoff’s (or Naimark’s) construction and get a closed operator whose square has a trivial domain. As a bonus, its adjoint’s square domain is also trivial. The example is based on matrices of unbounded operators. So, we refer readers to [10] for properties of block operator matrices.

In our second example, we give an essentially self-adjoint bounded not-everywhere-defined operator whose square has also a trivial domain. Recall that Chernoff’s example cannot be essentially self-adjoint as it is already closed.

Finally, we assume that readers are familiar with the basic properties of bounded and unbounded operators. See [6] and [9] for further reading. We recall a few facts which may not be well known to some readers.

Recall that $C_0^\infty(\mathbb{R})$ denotes here the space of infinitely differentiable functions with compact support. The following result, whose proof relies upon the Paley–Wiener theorem, is well known.

2010 Mathematics Subject Classification: Primary 47A05.

Keywords: unbounded operators; closed and symmetric operators; domains.

© 2020 Faculty of Mathematics, Kyushu University
Theorem 1.1. If \(f \in C_0^{\infty}(\mathbb{R}) \) is such that \(\hat{f} \in C_0^{\infty}(\mathbb{R}) \), then \(f = 0 \).

One may wonder whether Theorem 1.1 remains valid for the so-called cosine Fourier transform? The answer is obviously no, as any non-zero odd function provides a counterexample. However, the same idea of proof of Theorem 1.1 works to establish the following (and we omit the proof).

Theorem 1.2. If \(f \in C_0^{\infty}(\mathbb{R}) \) is even and such that its cosine Fourier transform too is in \(C_0^{\infty}(\mathbb{R}) \), then \(f = 0 \).

2. Main counterexamples

Lemma 2.1. There are unbounded self-adjoint operators \(A \) and \(B \) such that

\[
D(A^{-1}B) = D(BA^{-1}) = \{0\}
\]

(where \(A^{-1} \) and \(B^{-1} \) are not bounded).

Proof. Let \(A \) and \(B \) be two unbounded self-adjoint operators such that

\[
D(A) \cap D(B) = D(A^{-1}) \cap D(B^{-1}) = \{0\},
\]

where \(A^{-1} \) and \(B^{-1} \) are not bounded. An explicit example of such a pair on \(L^2(\mathbb{R}) \) may be found in [4, Proposition 13, Section 5] (the idea is in fact due to Paul R. Chernoff). It reads: Let \(A = e^{-H} \) where \(H = \text{id}/dx \) and \(A \) is defined on its maximal domain, say. Then \(A \) is a non-singular (unbounded) positive self-adjoint operator. Now, set \(B = VAV \) where \(V \) is the multiplication operator by

\[
v(x) = \begin{cases}
-1, & x < 0, \\
1, & x \geq 0.
\end{cases}
\]

Then \(V \) is a fundamental symmetry, that is, \(V \) is unitary and self-adjoint. Moreover, \(A \) and \(B \) obey

\[
D(A) \cap D(B) = D(A^{-1}) \cap D(B^{-1}) = \{0\}.
\]

This is not obvious and it is carried out in several steps.

For our purpose, we finally have

\[
D(A^{-1}B) = \{x \in D(B) : Bx \in D(A^{-1})\} = \{x \in D(B) : Bx = 0\} = \{0\},
\]

for \(B \) is one-to-one. Similarly, we may show that \(D(BA^{-1}) = \{0\} \).

Theorem 2.2. There is a densely defined unbounded and closed operator \(T \) on a Hilbert space such that

\[
D(T^2) = D(T^{*2}) = \{0\}.
\]

Proof. Let \(A \) and \(B \) be two unbounded self-adjoint operators such that

\[
D(A) \cap D(B) = D(A^{-1}) \cap D(B^{-1}) = \{0\},
\]

where \(A^{-1} \) and \(B^{-1} \) are not bounded. Now, define

\[
T = \begin{pmatrix} 0 & A^{-1} \\ B & 0 \end{pmatrix}
\]
on $D(T) := D(B) \oplus D(A^{-1}) \subset L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$. Since A^{-1} and B are closed, we may show that T is closed on $D(T)$. Moreover, $D(T)$ is dense in $L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$. Now,
\[
T^2 = \begin{pmatrix} 0 & A^{-1} \\ B & 0 \end{pmatrix} \begin{pmatrix} 0 & A^{-1} \\ B & 0 \end{pmatrix} = \begin{pmatrix} A^{-1}B & 0 \\ 0 & BA^{-1} \end{pmatrix}.
\]
By Lemma 2.1, we have
\[
D(T^2) = D(A^{-1}B) \oplus D(BA^{-1}) = \{0\} \oplus \{0\} = \{(0, 0)\},
\]
as needed.

Finally, we know (cf. [10] or [5]) that
\[
T^* = \begin{pmatrix} 0 & B \\ A^{-1} & 0 \end{pmatrix}
\]
because A^{-1} and B are both self-adjoint. As above,
\[
T^{*2} = \begin{pmatrix} BA^{-1} & 0 \\ 0 & A^{-1}B \end{pmatrix}
\]
on $D(T^{*2}) = D(BA^{-1}) \oplus D(A^{-1}B) = \{(0, 0)\}$, marking the end of the proof.

The second promised example is given next.

Proposition 2.3. There exists a densely defined essentially self-adjoint operator A such that $D(A^2) = \{0\}$.

Proof. Define
\[
L^2_{\text{even}}(\mathbb{R}) := \{f \in L^2(\mathbb{R}) : f(x) = f(-x) \text{ almost everywhere in } \mathbb{R}\}.
\]
Then $L^2_{\text{even}}(\mathbb{R})$ is closed in $L^2(\mathbb{R})$ and so it is in fact a Hilbert space with respect to the induced $L^2(\mathbb{R})$-inner product. Next define
\[
\text{even-}C_0^\infty(\mathbb{R}) := \{f \in C_0^\infty(\mathbb{R}) : f(x) = f(-x)\}.
\]

Let \mathcal{F} be the usual L^2-Fourier transform and let \mathcal{F}_0 be its restriction to even-$C_0^\infty(\mathbb{R})$. Hence $\mathcal{F}_0 \subset \mathcal{F}$ and so $\mathcal{F}_0^* \subset \mathcal{F}^*$ whereby $\mathcal{F}^* = \mathcal{F}_0^*$. Therefore
\[
\mathcal{F}_0 = \mathcal{F} = \mathcal{F}.
\]

Set $A = \mathcal{F}_0 + \mathcal{F}_0^*$ (that is, A is just the cosine Fourier transform) which is defined on even-$C_0^\infty(\mathbb{R})$ because \mathcal{F}_0^* is defined on the whole of $L^2_{\text{even}}(\mathbb{R})$. Then A is densely defined because even-$C_0^\infty(\mathbb{R})$ is dense in $L^2_{\text{even}}(\mathbb{R})$ (note also that A is bounded but not everywhere defined). Moreover, A is symmetric for
\[
A = \mathcal{F}_0 + \mathcal{F}_0^* \subset \overline{\mathcal{F}_0} + \mathcal{F}_0^* \subset (\mathcal{F}_0 + \mathcal{F}_0^*)^* = A^*.
\]
Moreover, $D(A^*) = L^2_{\text{even}}(\mathbb{R})$. As above, we obtain $\overline{A} = A^*$, that is, A is essentially self-adjoint.
Now, by known properties of the distributive laws of not-everywhere-defined operators (see e.g. [9]), we may write

\[A^2 = (F_0 + F_0^\ast)(F_0 + F_0^\ast) \]

\[= F_0(F_0 + F_0^\ast) + F_0^\ast(F_0 + F_0^\ast) \]

\[= F_0(F_0 + F_0^\ast) + F_0^\ast F_0 + F_0^2 \]
(for \(F_0^\ast \) is defined everywhere).

But,

\[D[F_0(F_0 + F_0^\ast)] = \{ f \in \text{even-}C_0^\infty(\mathbb{R}) : (F_0 + F_0^\ast)f \in \text{even-}C_0^\infty(\mathbb{R}) \} = \{ 0 \} \]

by Theorem 1.2. Accordingly,

\[D(A^2) = D[F_0(F_0 + F_0^\ast)] \cap D(F_0^\ast F_0) \cap D(F_0^2) = \{ 0 \}, \]

as needed.

REFERENCES

[1] Y. Arlinski˘ı and V. A. Zagrebnov. Around the van Daele–Schm¨udgen theorem. Integral Equations Operator Theory 81(1) (2015), 53–95.
[2] J. F. Brasche and H. Neidhardt. Has every symmetric operator a closed symmetric restriction whose square has a trivial domain? Acta Sci. Math. (Szeged) 58(1–4) (1993), 425–430.
[3] P. R. Chernoff. A semibounded closed symmetric operator whose square has trivial domain. Proc. Amer. Math. Soc. 89(2) (1983), 289–290.
[4] H. Kosaki. On intersections of domains of unbounded positive operators. Kyushu J. Math. 60(1) (2006), 3–25.
[5] M. Möller and F. H. Szafraniec. Adjoints and formal adjoints of matrices of unbounded operators. Proc. Amer. Math. Soc. 136(6) (2008), 2165–2176.
[6] M. H. Mortad. An Operator Theory Problem Book. World Scientific, Singapore, 2018.
[7] M. Naimark. On the square of a closed symmetric operator. Dokl. Akad. Nauk SSSR. 26 (1940), 866–870; Dokl. Akad. Nauk SSSR. 28 (1940), 207–208.
[8] K. Schm¨udgen. On domains of powers of closed symmetric operators. J. Operator Theory 9(1) (1983), 53–75.
[9] K. Schm¨udgen. Unbounded Self–Adjoint Operators on Hilbert Space (Graduate Texts in Mathematics, 265). Springer, Berlin, 2012.
[10] Ch. Tretter. Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London, 2008.

Souheyb Dehimi
Department of Mathematics
Faculty of Mathematics and Informatics
University of Mohamed El Bachir El Ibrahimi
Bordj Bou Arrêridj
El-Anasser 34030
Algeria
(E-mail: souheyb.dehimi@univ-bba.dz, sohayb20091@gmail.com)

Mohammed Hichem Mortad
Department of Mathematics
University of Oran 1 Ahmed Ben Bella
B.P. 1524, El Menouar
Oran 31000
Algeria
(E-mail: mhmortad@gmail.com, mortad.hichem@univ-oran1.dz)