Kloosterman Sums with Multiplicative Coefficients

Ke Gong and Chaohua Jia

Abstract. Let $f(n)$ be a multiplicative function satisfying $|f(n)| \leq 1$, $q \leq N^2$ be a positive integer and a be an integer with $(a, q) = 1$. In this paper, we shall prove that

$$\sum_{n \leq N, (n, q) = 1} f(n)e(\frac{\bar{n}a}{q}) \ll \sqrt{\frac{\tau(q)}{q}} N \log \log (6N) + q^{\frac{1}{2} + \frac{1}{2} + N^3} \frac{\log (6N)}{N} + \frac{N}{\sqrt{\log \log (6N)}}$$

where \bar{n} is the multiplicative inverse of n such that $\bar{n}n \equiv 1 \pmod{q}$, $e(x) = \exp(2\pi ix)$, $\tau(q)$ is the divisor function.

1. Introduction

Let $\mu(n)$ be the Möbius function, q be a positive integer and a be an integer with $(a, q) = 1$. In 1988, D. Hajela, A. Pollington and B. Smith [8] proved that

$$\sum_{n \leq N, (n, q) = 1} \mu(n)e(\frac{\bar{n}a}{q}) \ll \varepsilon Nq^{\frac{1}{2} + N^3} \frac{\log (6N)}{N^\frac{1}{2}}$$

where \bar{n} is the multiplicative inverse of n such that $\bar{n}n \equiv 1 \pmod{q}$, $e(x) = \exp(2\pi ix)$ and ε is a sufficiently small positive constant. This estimate is nontrivial for $(\log N)^{\frac{5}{2} + 10\varepsilon} \ll q \ll N^{\frac{1}{2} - 3\varepsilon}$.

Later, P. Deng [4], G. Wang and Z. Zheng [9] independently improved the above estimate to

$$\sum_{n \leq N, (n, q) = 1} \mu(n)e(\frac{\bar{n}a}{q}) \ll \varepsilon N\tau(q) \frac{\log (6N)}{q^\frac{1}{2}} + \frac{q^{\frac{1}{2}} (\log N)^{\frac{13}{2}}}{N^\frac{1}{2}}$$

where $\tau(q)$ is the divisor function, which is nontrivial for $(\log N)^{\frac{5}{2} + \varepsilon} \ll q \ll N^{1 - \varepsilon}$. It was stated in [4] that under the Generalized Riemann Hypothesis,
one can get
\[
\sum_{n \leq N \atop (n, q) = 1} \mu(n)e\left(\frac{an}{q}\right) \ll \varepsilon q^{\frac{1}{2}N^{\frac{1}{3}} + \varepsilon}.
\]

We also mention some progress on the relative topic. In 1998, E. Fouvry and P. Michel [6] proved that if \(q \) is a prime number, \(g(x) = \frac{P(x)}{Q(x)} \) is any rational function with \(P(x) \) and \(Q(x) \) relatively prime monic polynomials in \(\mathbb{Z}[x] \), then for \(1 \leq N \leq q \), one has
\[
\sum_{\substack{p \leq N \atop (p, q) = 1}} e\left(\frac{g(p)}{q}\right) \ll \varepsilon q^{\frac{1}{2}N^{\frac{1}{3}} + \varepsilon} N^{\frac{29}{48}},
\]
where \(p \) runs through prime numbers, the implied constant also depends on the degrees of \(P \) and \(Q \). This estimate is nontrivial for \(N \leq q \ll N^{\frac{2}{3} - \varepsilon} \).

It was stated in [6] that the same method can produce
\[
\sum_{n \leq N \atop (n, q) = 1} \mu(n)e\left(\frac{g(n)}{q}\right) \ll \varepsilon q^{\frac{1}{16} + \varepsilon} N^{\frac{29}{48}}
\]
for the prime number \(q \) and \(1 \leq N \leq q \). Some further results can be found in [5].

In 2011, E. Fouvry and I. E. Shparlinski [7] proved that for \((a, q) = 1 \) and \(N^{\frac{2}{3}} \leq q \leq N^{\frac{4}{5}} \), one has
\[
\sum_{\substack{N < p \leq 2N \atop (p, q) = 1}} e\left(\frac{ap}{q}\right) \ll \varepsilon q^{\frac{1}{4}N^{\frac{4}{5}} + N^{\frac{4}{15}}},
\]
which is nontrivial for \(N^{\frac{2}{3}} \leq q \ll N^{\frac{4}{5} - 6\varepsilon} \). They also proved that if \((a, q) = 1 \), then
\[
\sum_{\substack{N < p \leq 2N \atop (p, q) = 1}} e\left(\frac{ap}{q}\right) \ll N \left(\tau\left(\frac{\log N}{2}\right) \frac{1}{q^{\frac{1}{2}}} + \tau(q) q^{\frac{1}{2}} \frac{1}{N^{\frac{1}{2}}}
ight),
\]
which is nontrivial for \(\log N \ll q \ll N^{\frac{4}{5} - \varepsilon} \). In 2012, R. C. Baker [1] gave improvement under some conditions.

When the first author visited the University of Montreal, Professor A. Granville suggested him to study the general sum
\[
\sum_{n \leq N \atop (n, q) = 1} f(n)e\left(\frac{an}{q}\right),
\]
(1.1)
where $f(n)$ is a multiplicative function satisfying $|f(n)| \leq 1$.

In this paper, we shall apply the method in Section 2 of [3], which is called as the finite version of Vinogradov’s inequality, to give a nontrivial estimate for the sum in (1.1) when q is in a suitable range.

Theorem. Let $f(n)$ be a multiplicative function satisfying $|f(n)| \leq 1$, $q \leq N^2$ be a positive integer and a be an integer with $(a, q) = 1$. Then we have

$$\sum_{\substack{n \leq N \atop (n, q) = 1}} f(n)e\left(\frac{an}{q}\right) \ll \sqrt{\frac{\tau(q)}{q}} N \log \log(6N)$$

$$+ q^{\frac{1}{4} + \frac{\varepsilon}{2}} N^{\frac{1}{2}} (\log(6N))^{\frac{1}{2}} + \frac{N}{\sqrt{\log \log(6N)}}$$

The estimate in (1.2) is nontrivial for

$$(\log \log(6N))^{2 + \varepsilon} \ll q \ll N^{2 - 5\varepsilon}.$$

In a private communication, Ping Xi remarked that when q is a prime number, if Lemma 2 below is replaced by Theorem 16 in [2], then the upper bound in the above nontrivial range can be extended to $q \ll N^A$, where A is any given large constant.

Throughout this paper, we assume that N is sufficiently large and set

$$d_0 = \sqrt{\log \log(6N)}, \quad D_0 = e^{d_0} = \exp(\sqrt{\log \log(6N)}),$$

$$d_1 = d_0^2 = \log \log(6N), \quad D_1 = e^{d_1} = \log(6N).$$

Let p denote a prime number, $\tau(q)$ denote the divisor function, ε be a sufficiently small positive constant.

2. Some preliminaries

Write

$$S = \{n : 1 \leq n \leq N, n \text{ has a prime factor in } [D_0, D_1]\},$$

$$T = \{n : 1 \leq n \leq N, n \text{ has no prime factor in } [D_0, D_1]\}.$$

Lemma 1. We have

$$|T| \ll \frac{N}{\sqrt{\log \log(6N)}}.$$
Proof. Let

\[P(N) = \prod_{D_0 \leq p < D_1} p. \]

We have

\[|T| = \sum_{n \leq N} 1 = \sum_{n \leq N} \sum_{d \mid n} \mu(d) \sum_{d \mid P(N)} 1 \]

\[= \sum_{d \mid P(N)} \mu(d) \left(\frac{N}{d} + O(1) \right) \]

\[= N \sum_{d \mid P(N)} \frac{\mu(d)}{d} + O\left(2^{\pi(D_1)}\right) \]

\[= N \prod_{D_0 \leq p < D_1} \left(1 - \frac{1}{p} \right) + O\left(\frac{2D_1}{\log D_1} \right) \]

\[\ll N \frac{\log D_0}{\log D_1} + O\left(\frac{2 \log(6N)}{\log(6N)}\right) \]

\[\ll \frac{N}{\sqrt{\log \log(6N)}}. \]

Hence, Lemma 1 holds true.

By Lemma 1, we have

\[\sum_{n \leq N} f(n)e^{\frac{a \bar{n}}{q}} = \sum_{n \leq N} f(n)e^{\frac{\bar{n}}{q}} + O\left(\frac{N}{\sqrt{\log \log(6N)}}\right). \] (2.2)

Let

\[P_r = \{ p : e^r \leq p < e^{r+1}, \quad \text{if} \quad [d_0] \leq r \leq [d_1]. \} \] (2.3)

Then

\[\bigcup_{r = [d_0] + 1}^{[d_1] - 1} P_r \subseteq \{ p : D_0 \leq p < D_1 \} \subseteq \bigcup_{r = [d_0]}^{[d_1]} P_r. \]

The prime number theorem yields

\[|P_r| \ll \frac{e^r}{r}. \] (2.4)
Write

\[S' = \{ n : 1 \leq n \leq N, \ n \text{ has a prime factor in } \bigcup_{r = [d_0]}^{[d_1]} P_r \}, \]

\[S'' = \{ n : 1 \leq n \leq N, \ n \text{ has a prime factor in } \bigcup_{r = [d_0]+1}^{[d_1]-1} P_r \}. \]

Then

\[S'' \subseteq S \subseteq S'. \]

Hence,

\[|S\setminus S''| \leq |S'\setminus S''| \ll \sum_{p \in P_0} \frac{N}{p} + \sum_{p \in P_{1]} \frac{N}{p} \]

\[\ll N \left(\frac{|P_{[d_0]}|}{e^{[d_0]}} + \frac{|P_{[d_1]}|}{e^{[d_1]}} \right) \]

\[\ll \frac{N}{d_0} = \frac{N}{\sqrt{\log \log (6N)}}. \]

We note that

\[|\{ n : 1 \leq n \leq N, \ n \text{ has at least two prime factors in the same one of } P_r' ((d_0] + 1 \leq r \leq [d_1] - 1)\}| \]

\[\ll \sum_{r = [d_0]+1}^{[d_1]-1} \sum_{p \in P_r} \sum_{p' \in P_r} \frac{N}{pp'} \]

\[\ll N \sum_{r = [d_0]+1}^{[d_1]-1} \left(\frac{|P_r|}{e^{r}} \right)^2 \]

\[\ll N \sum_{r = [d_0]+1}^{[d_1]-1} \frac{1}{r^2} \]

\[\ll \frac{N}{d_0} = \frac{N}{\sqrt{\log \log (6N)}}. \]

Therefore for

\[S''' = \{ n : 1 \leq n \leq N, \ n \text{ has exact one prime factor in one of } P_r' ((d_0] + 1 \leq r \leq [d_1] - 1)\}, \]

we have

\[S''' \subseteq S''. \]
and
\[|S'' \setminus S'''| \ll \frac{N}{\sqrt{\log \log(6N)}}. \]

The set \(S''' \) can be decomposed as
\[S''' = \bigcup_{r = [d_0] + 1}^{[d_1]-1} S_r, \tag{2.5} \]
where
\[S_r = \{ n : 1 \leq n \leq N, n \text{ has exact one prime factor in } P_r \text{ and has no prime factor in } \bigcup_{i < r} P_i \}. \tag{2.6} \]

By the prime number theorem, it is easy to see that each \(S_r \) \((r = [d_0] + 1, \ldots, [d_1] - 1)\) is not empty. The sets \(S_r \) are disjoint from each other.

Every element \(n \in S_r \) can be written in exact one way as
\[n = py, \tag{2.7} \]
where \(p \in P_r \), \(y \) has no prime factor in \(\bigcup_{i \leq r} P_i \), \(py \leq N \).

From the above discussion, we get
\[
\sum_{n \leq N} f(n)e\left(\frac{an}{q}\right) = \sum_{n \leq N, n \in S'''} f(n)e\left(\frac{an}{q}\right) + O\left(\frac{N}{\sqrt{\log \log(6N)}}\right)
\]
\[
= \sum_{r = [d_0] + 1}^{[d_1]-1} \sum_{n \leq N, n \in S_r} f(n)e\left(\frac{an}{q}\right) + O\left(\frac{N}{\sqrt{\log \log(6N)}}\right)
\]
\[
= \sum_{r = [d_0] + 1}^{[d_1]-1} \sum_{e^r \leq p < e^{r+1}} \sum_{y \leq N \atop (p, y) = 1} f(py)e\left(\frac{apy}{q}\right) + O\left(\frac{N}{\sqrt{\log \log(6N)}}\right) \quad \tag{2.8}
\]

\[+ O\left(\frac{N}{\sqrt{\log \log(6N)}}\right) \]
$$\sum_{r=|d_0|+1}^{[d_1]-1} \sum_{y \leq \frac{N}{p^e}} f(y) \sum_{e^r \leq p < e^{r+1}} f(p) e\left(\frac{ap\overline{y}}{q}\right) + O\left(\frac{N}{\sqrt{\log \log(6N)}}\right)$$

$$\ll \sum_{r=|d_0|+1}^{[d_1]-1} \sum_{y \leq \frac{N}{p^e}} f(y) \sum_{e^r \leq p < e^{r+1}} f(p) e\left(\frac{ap\overline{y}}{q}\right) + \frac{N}{\sqrt{\log \log(6N)}}.$$

Let

$$Y = \frac{N}{e^r}. \quad (2.9)$$

We shall estimate the sum

$$\sum_1 = \sum_{y \leq Y} \left| \sum_{e^r \leq p < e^{r+1}} f(p) e\left(\frac{ap\overline{y}}{q}\right) \right|. \quad (2.10)$$

Lemma 2. For the positive integer q and the integer b, we have

$$\sum_{X < n \leq Z \atop (n, q) = 1} e\left(\frac{bn\overline{q}}{q}\right) \ll \left(\frac{Z - X}{q} + 1\right)(b, q) + q^{1/2} + \varepsilon. \quad (2.11)$$

Proof. Lemma 2.1 in [7] states that

$$\sum_{X < n \leq Z \atop (n, q) = 1} e\left(\frac{bn\overline{q}}{q}\right) \ll \mu^2\left(\frac{q}{(b, q)}\right)\left(\frac{Z - X}{q} + 1\right) \cdot \frac{\varphi(q)}{\varphi\left(\frac{q}{(b, q)}\right)}$$

$$+ \tau(q) \tau((b, q)) \log(2q)q^{1/2}.$$

Then the bounds

$$\frac{\varphi(q)}{\varphi\left(\frac{q}{(b, q)}\right)} = q \prod_{p|q} \left(1 - \frac{1}{p}\right) \cdot \left(\frac{q}{(b, q)} \prod_{p|\varphi(q)} \left(1 - \frac{1}{p}\right)^{-1}\right.\left.\right)$$

$$= (b, q) \prod_{p|q} \left(1 - \frac{1}{p}\right) \leq (b, q)$$

and

$$\tau(q) \ll q^{\frac{6}{7}}$$

7
produce the conclusion in Lemma 2.

3. The proof of Theorem

By Cauchy’s inequality,

$$
\sum_1 \leq \frac{Y^\frac{1}{2}}{2} \left(\sum_{y \leq Y} \sum_{y' \leq p < e^{r+1}} f(p) e\left(\frac{ap_1}{q} \right)^2 \right)^{\frac{1}{2}}.
$$

(3.1)

An application of Lemma 2 to

$$
\sum_2 = \sum_{y \leq Y} \sum_{y' \leq p < e^{r+1}} f(p) e\left(\frac{ap_1}{q} \right)^2
$$

produces

$$
\sum_2 = \sum_{y \leq Y} \sum_{y' \leq p < e^{r+1}} f(p_1) f(p_2) e\left(\frac{a(p_1 - p_2)y}{q} \right)
$$

$$
\leq \sum_{e^{r} \leq p_1 < e^{r+1}} \sum_{(p_1, q) = 1} e\left(\frac{a(p_1 - p_2)y}{q} \right)
$$

$$
\leq \sum_{e^{r} \leq p_1 < e^{r+1}} \sum_{(p_1, q) = 1} e\left(\frac{a(p_1 - p_2)y}{q} \right)
$$

$$
\leq Ye^r + \sum_{e^{r} \leq p_1 < e^{r+1}} \sum_{(p_1, q) = 1} \left(\frac{Y}{q} + 1 \right) (a(p_1 - p_2), q) + q^{\frac{1}{2} + \epsilon}
$$

$$
\leq Ye^r + \left(\frac{Y}{q} + 1 \right) \sum_{e^{r} \leq p_1 < e^{r+1}} \sum_{(p_1, q) = 1} (p_1 - p_2, q) + q^{\frac{1}{2} + \epsilon} e^{2r}.
$$
We have
\[\sum_{\substack{\ell \leq p_1 < \ell + 1 \\ (p_1, q) = 1}} \sum_{\substack{\ell \leq p_2 < \ell + 1 \\ p_2 \neq p_1 \atop (p_2, q) = 1}} (\bar{p}_1 - \bar{p}_2, q) \]
\[= \sum_{k \mid q} k \sum_{\ell \leq p_1 < \ell + 1} \sum_{\substack{\ell \leq p_2 < \ell + 1 \\ p_2 \neq p_1 \atop (p_2, q) = 1}} 1 \]
\[\leq \sum_{k \mid q} k \sum_{\ell \leq p_1 < \ell + 1} \sum_{\substack{\ell \leq p_2 < \ell + 1 \\ p_2 \neq p_1 \atop (p_2, q) = 1}} 1. \]

(3.3)

In the above sum, if \(k \geq e^{r + 1} \), then \(p_2 \equiv p_1 \) (mod \(k \)) and \(p_1, p_2 < e^{r + 1} \implies p_2 = p_1 \), which contradicts the fact \(p_2 \neq p_1 \). Hence, it follows that
\[\sum_{k \mid q} k \sum_{\ell \leq p_1 < \ell + 1} \sum_{\substack{\ell \leq p_2 < \ell + 1 \\ p_2 \neq p_1 \atop (p_2, q) = 1}} 1 \]
\[= \sum_{k \mid q} k \sum_{\ell \leq p_1 < \ell + 1} \sum_{\substack{\ell \leq p_2 < \ell + 1 \\ p_2 \neq p_1 \atop (p_2, q) = 1}} 1 \]
\[\leq \sum_{k \mid q} k \sum_{\ell \leq p_1 < \ell + 1} \sum_{\substack{n_1 < \ell + 1 \\ n_2 = n_1 \, (\text{mod} \, k)}} 1 \]
\[\ll \sum_{k \mid q} k \cdot e^{r + 1} \cdot \frac{e^{r + 1}}{k} \]
\[\ll \tau(q) e^{2r}. \]

Thus we get the estimate
\[\sum_{\substack{\ell \leq p_1 < \ell + 1 \\ (p_1, q) = 1}} \sum_{\substack{\ell \leq p_2 < \ell + 1 \\ p_2 \neq p_1 \atop (p_2, q) = 1}} (\bar{p}_1 - \bar{p}_2, q) \ll \tau(q) e^{2r}. \]

(3.4)
By the above discussion, we have

\[\sum_2 \ll Y e^r + \left(\frac{Y}{q} + 1 \right) \tau(q) e^{2r} + q^{\frac{1}{2} + \varepsilon} e^{2r} \]
\[\ll \frac{\tau(q)}{q} Y e^{2r} + Y e^r + q^{\frac{1}{2} + \varepsilon} e^{2r}. \]

It follows that

\[\sum_1 \ll Y^{\frac{1}{2}} \left(\frac{\tau(q)}{q} Y e^{2r} + Y e^r + q^{\frac{1}{2} + \varepsilon} e^{2r} \right)^{\frac{1}{2}} \]
\[\ll \sqrt{\frac{\tau(q)}{q}} Y e^r + Y e^{\frac{r}{2}} + Y^{\frac{1}{2}} q^{\frac{1}{2} + \varepsilon} e^{r} \]
\[\ll \sqrt{\frac{\tau(q)}{q}} N + \frac{N}{e^{\frac{r}{2}}} + q^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \varepsilon} e^{\frac{r}{2}}. \]

Applying this estimate to (2.8), we get

\[
\sum_{\substack{n \leq N \\ (n, q) = 1}} f(n) e\left(\frac{an}{q}\right) \\
\ll \left[\sum_{r = [d_0] + 1}^{[d_1] - 1} \left(\sqrt{\frac{\tau(q)}{q}} N + \frac{N}{e^{\frac{r}{2}}} + q^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \varepsilon} e^{\frac{r}{2}} \right) \right] + \frac{N}{\sqrt{\log \log (6N)}} \]
\ll \sqrt{\frac{\tau(q)}{q}} N \log \log (6N) + \frac{N}{\exp\left(\frac{1}{2} \sqrt{\log \log (6N)}\right)} \]
\[+ q^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \varepsilon} N^{\frac{1}{2}} (\log (6N))^{\frac{1}{2}} + \frac{N}{\sqrt{\log \log (6N)}} \]
\ll \sqrt{\frac{\tau(q)}{q}} N \log \log (6N) + q^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \varepsilon} N^{\frac{1}{2}} (\log (6N))^{\frac{1}{2}} + \frac{N}{\sqrt{\log \log (6N)}}. \]

So far the proof of Theorem is complete.

Acknowledgements

The first author would like to thank Professor A. Granville for giving him valuable suggestions. Both authors would like to thank Professor P. Sarnak for his fascinating talks addressed in January 2014 in Jinan, which attracted their attention to the method in [3]. They would like to thank Professor Jianya Liu for kindly inviting them to attend the conferment.
ceremony of honorary doctorate on Professor P. Sarnak in Shandong University. They also would like to thank Professor E. Fouvry and Ping Xi for their nice comments and suggestions.

The first author is supported by the National Natural Science Foundation of China (Grant No. 11126150) and the Natural Science Foundation of the Education Department of Henan Province (Grant No. 2011A110003). The second author is supported by the National Natural Science Foundation of China (Grant No. 11371344) and the National Key Basic Research Program of China (Project No. 2013CB834202).

References

[1] R. C. Baker, *Kloosterman sums with prime variable*, Acta Arith., 156(2012), no.4, 351-372.

[2] J. Bourgain and M. Z. Garaev, *Sumsets of reciprocals in prime fields and multilinear Kloosterman sums*, available at http://arxiv.org/abs/1211.4184v1.

[3] J. Bourgain, P. Sarnak and T. Ziegler, *Disjointness of Moebius from horocycle flows*, From Fourier Analysis and Number Theory to Radon Transforms and Geometry, 67-83, Developments in Mathematics 28, Springer, New York, 2013.

[4] P. Deng, *On Kloosterman sums with oscillating coefficients*, Canad. Math. Bull., 42(1999), 285-290.

[5] E. Fouvry, E. Kowalski and P. Michel, *Algebraic trace functions over the primes*, available at http://arxiv.org/abs/1211.6043v2, to appear in Duke Math. J.

[6] E. Fouvry and P. Michel, *Sur certaines sommes d’exponentielles sur les nombres premiers*, Ann. Sci. École Norm. Sup.(4), 31(1998), no.1, 93-130.
[7] E. Fouvry and I. E. Shparlinski, *On a ternary quadratic form over primes*, Acta Arith., 150(2011), 285-314.

[8] D. Hajela, A. Pollington and B. Smith, *On Kloosterman sums with oscillating coefficients*, Canad. Math. Bull., 31(1988), 32-36.

[9] G. Wang and Z. Zheng, *Kloosterman sums with oscillating coefficients*, Chinese Ann. Math., 19(1998), 237-242, in Chinese; English translation in Chinese J. Contemp. Math., 19(1998), 185-191.

Ke Gong
Department of Mathematics, Henan University, Kaifeng, Henan 475004, P. R. China
E-mail: kg@henu.edu.cn

Chaohua Jia
Institute of Mathematics, Academia Sinica, Beijing 100190, P. R. China
Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, P. R. China
E-mail: jiach@math.ac.cn