On the computation of the Apéry set of numerical monoids and affine semigroups

Guadalupe Márquez Campos,
Work with Ignacio Ojeda and José María Tornero

Departamento de Álgebra, Universidad de Sevilla

Cortona, September 9, 2014
Index

1. Introduction to Groebner bases.

2. Numerical monoids.

3. The Groebner correspondence.

4. An algorithm to the computation of the Apéry set.

5. Computation of the type set.
Index

1. Introduction to Groebner bases.

2. Numerical monoids.

3. The Groebner correspondence.

4. An algorithm to the computation of the Apéry set.

5. Computation of the type set.
Let $A = k[x_1, \ldots, x_n]$.
Introduction to Groebner bases.

Let $A = k[x_1, \ldots, x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering).

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal, which is very useful for obtaining or checking fundamental properties.

Definition: Buchberger’s criteria, 1965

A set of polynomials $B = \{f_1, \ldots, f_s\} \subset I$ is a Groebner basis of I if and only if for all $f, g \in B$, the remainder of dividing the polynomial $S(f, g)$ (Syzygy) by B is zero.

On the computation of the Apéry set.

Guadalupe Márquez Campos

September, 9, 2014
Let $A = k[x_1, ..., x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering)

Most important fact: Unique remainder.
Let $A = k[x_1, \ldots, x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering)
Most important fact: Unique remainder.

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal,
Let $A = k[x_1, ..., x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering)

Most important fact: Unique remainder.

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal, which is very useful for obtaining or checking fundamental properties.
Introduction to Groebner bases.

Let $A = k[x_1, ..., x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering)

Most important fact: Unique remainder.

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal, which is very useful for obtaining or checking fundamental properties.

Definition

Buchberger’s criteria, 1965

(Fixed an order on the variables.)
Let $A = k[x_1, \ldots, x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering) Most important fact: Unique remainder.

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal, which is very useful for obtaining or checking fundamental properties.

Definition

Buchberger’s criteria, 1965
(Fixed an order on the variables.)
A set of polynomials $B = \{f_1, \ldots, f_s\} \subset I$, is a Groebner basis of I.
Let $A = k[x_1, \ldots, x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering).

Most important fact: Unique remainder.

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal, which is very useful for obtaining or checking fundamental properties.

Definition

Buchberger’s criteria, 1965

(Fixed an order on the variables.)

A set of polynomials $B = \{f_1, \ldots, f_s\} \subseteq I$, is a Groebner basis of I \iff
Introduction to Groebner bases.

Let $A = k[x_1, \ldots, x_n]$. There is a division procedure in A which parallels the Euclidean division (after fixing a monomial ordering).

Most important fact: Unique remainder.

A Groebner basis of an ideal I of A is essentially a set of generators of the ideal, which is very useful for obtaining or checking fundamental properties.

Definition

Buchberger’s criteria, 1965

(Fixed an order on the variables.)

A set of polynomials $B = \{f_1, \ldots, f_s\} \subset I$, is a Groebner basis of I if for all $f, g \in B$ the remainder of dividing the polynomial $S(f, g)$ (Syzygy) by B is zero.
Let $I \subset k[x_1, \ldots, x_n]$ be an ideal,
Let \(I \subset k[x_1, ..., x_n] \) be an ideal, fixed a monomial ordering
Let $I \subset k[x_1, \ldots, x_n]$ be an ideal, fixed a monomial ordering we note:

Let $I \subset k[x_1, \ldots, x_n]$ be an ideal, fixed a monomial ordering we note:
Groebner basis. Notation.

Let $I \subset k[x_1, ..., x_n]$ be an ideal, fixed a monomial ordering we note:
- the Groebner basis of I

The normal form of $f \in k[x_1, ..., x_n]$ w.r.t. B is $\bar{f} = f \mod B$.

$p_i = \exp(LT(g_i))$, being $LT(f)$ the leading monomial,

"copy" of the positive quadrant with origin q_i

$k_{q_i} = q_i + \mathbb{Z}^n_{\geq 0} \subset \mathbb{Z}^n_{\geq 0}$.

Using this notation, define the stair of the Groebner basis as:

$E = \bigcup_i k_{q_i} \subset \mathbb{Z}^n_{\geq 0}$.

Guadalupe Márquez Campos
Let \(I \subset k[x_1, \ldots, x_n] \) be an ideal, fixed a monomial ordering we note:

- the Groebner basis of \(I \rightarrow B = \{g_1, \ldots, g_s\} \).
Let $I \subset k[x_1, ..., x_n]$ be an ideal, fixed a monomial ordering we note:

- the Groebner basis of $I \rightarrow B = \{g_1, ..., g_s\}$.
- The normal form of $f \in k[x_1, ..., x_n]$ w.r.t. B
Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal, fixed a monomial ordering we note:

- the Groebner basis of $I \rightarrow B = \{g_1, \ldots, g_s\}$.
- The normal form of $f \in k[x_1, \ldots, x_n]$ w.r.t. $B \rightarrow N_B(f)$.

(Often it's the remainder of the division of f by B.)
Groebner basis. Notation.

Let \(I \subset k[x_1, ..., x_n] \) be an ideal, fixed a monomial ordering we note:

- the Groebner basis of \(I \longrightarrow B = \{ g_1, ..., g_s \} \).
- The normal form of \(f \in k[x_1, ..., x_n] \) w.r.t. \(B \longrightarrow N_B(f) \).
 (It's the remainder of the division of \(f \) by \(B \).)
Let $I \subset k[x_1, ..., x_n]$ be an ideal, fixed a monomial ordering we note:

- the Groebner basis of $I \rightarrow B = \{g_1, ..., g_s\}$.
- The normal form of $f \in k[x_1, ..., x_n]$ w.r.t. $B \rightarrow N_B(f)$. (It's the remainder of the division of f by B.)
- $q_i = \exp(LT(g_i))$, being $LT(f)$ the leading monomial,
Groebner basis. Notation.

Let $I \subset k[x_1, ..., x_n]$ be an ideal, fixed a monomial ordering we note:

- the Groebner basis of $I \rightarrow B = \{g_1, ..., g_s\}$.
- The normal form of $f \in k[x_1, ..., x_n]$ w.r.t. $B \rightarrow N_B(f)$. (It's the remainder of the division of f by B.)
- $q_i = \exp(LT(g_i))$, being $LT(f)$ the leading monomial,
- “copy” of the positive quadrant with origin q_i
Let $I \subset k[x_1, ..., x_n]$ be an ideal, fixed a monomial ordering we note:

- The Groebner basis of $I \rightarrow B = \{g_1, ..., g_s\}$.
- The normal form of $f \in k[x_1, ..., x_n]$ w.r.t. $B \rightarrow N_B(f)$. (It’s the remainder of the division of f by B.)
- $q_i = \exp(LT(g_i))$, being $LT(f)$ the leading monomial,
- “copy” of the positive quadrant with origin q_i

$$K_{q_i} = q_i + \mathbb{Z}_\geq^n \subset \mathbb{Z}_\geq^n.$$
Let $I \subset k[x_1, ..., x_n]$ be an ideal, fixed a monomial ordering we note:

- the Groebner basis of $I \rightarrow B = \{g_1, ..., g_s\}$.
- The normal form of $f \in k[x_1, ..., x_n]$ w.r.t. $B \rightarrow N_B(f)$. (It’s the remainder of the division of f by B.)
- $q_i = \exp(LT(g_i))$, being $LT(f)$ the leading monomial,
- “copy” of the positive quadrant with origin q_i

$$K_{q_i} = q_i + \mathbb{Z}_{\geq 0}^n \subset \mathbb{Z}_{\geq 0}^n.$$

Using this notation, define the stair of the Groebner basis as:
Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal, fixed a monomial ordering we note:

- the Groebner basis of $I \rightarrow B = \{g_1, \ldots, g_s\}$.
- The normal form of $f \in k[x_1, \ldots, x_n]$ w.r.t. $B \rightarrow N_B(f)$. (It’s the remainder of the division of f by B.)
- $q_i = \exp(LT(g_i))$, being $LT(f)$ the leading monomial,
- “copy” of the positive quadrant with origin q_i

$$K_{q_i} = q_i + \mathbb{Z}_n^{\geq 0} \subset \mathbb{Z}_n^{\geq 0}.$$

Using this notation, define the stair of the Groebner basis as:

$$E = \bigcup_{i} K_{q_i} \subset \mathbb{Z}_n^{\geq 0}.$$
Index

1. Introduction to Groebner bases.

2. Numerical monoids.

3. The Groebner correspondence.

4. An algorithm to the computation of the Apéry set.

5. Computation of the type set.
Numerical monoids. Basic concepts

Let $S = \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | \lambda_i \in \mathbb{Z} \geq 0\}$ be a numerical monoid.

Notation:
The set $G(S) = \mathbb{Z} \geq 0 \setminus S$ is finite → "gaps".

$\# G(S) = g(S)$.

Frobenius number $f(S) = \max \mathbb{Z} \geq 0 (G(S))$.

The conductor: $c(S) = f(S) + 1$.

The multiplicity: $m(S) = \min S \setminus \{0\}$.

The embedding dimension: $e(S)$ is the minimal number of generators of S.

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014 7 / 38
Let $S = \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0}\}$ be a numerical monoid.
Let $S = \{ \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0} \}$ be a numerical monoid. Notation:
Let $S = \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0}\}$ be a numerical monoid. Notation:

- The set $G(S) = \mathbb{Z}_{\geq 0} \setminus S$ is finite
Let $S = \{ \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0} \}$ be a numerical monoid. Notation:

- The set $G(S) = \mathbb{Z}_{\geq 0} \setminus S$ is finite → “gaps”. $\#G(S) = g(S)$.

Guadalupe Márquez Campos
On the computation of the Apéry set. September, 9, 2014 7 / 38
Let $S = \{ \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0} \}$ be a numerical monoid.

Notation:

- The set $G(S) = \mathbb{Z}_{\geq 0} \setminus S$ is finite \rightarrow “gaps”. $\# G(S) = g(S)$.
- Frobenius number $f(S) = \max_{\mathbb{Z}_{\geq 0}}(G(S))$.
Numerical monoids. Basic concepts

Let $S = \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0}\}$ be a numerical monoid. Notation:

- The set $G(S) = \mathbb{Z}_{\geq 0} \setminus S$ is finite \rightarrow “gaps”. $\#G(S) = g(S)$.
- Frobenius number $f(S) = \max_{\mathbb{Z}_{\geq 0}}(G(S))$.
- The conductor: $c(S) = f(S) + 1$.
Let $S = \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0}\}$ be a numerical monoid. Notation:

- The set $G(S) = \mathbb{Z}_{\geq 0} \setminus S$ is finite \rightarrow “gaps”. $\#G(S) = g(S)$.
- Frobenius number $f(S) = \max_{\mathbb{Z}_{\geq 0}}(G(S))$.
- The conductor: $c(S) = f(S) + 1$.
- The multiplicity: $m(S) = \min S \setminus \{0\}$.
Numerical monoids. Basic concepts

Let $S = \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}_{\geq 0}\}$ be a numerical monoid.

Notation:

- The set $G(S) = \mathbb{Z}_{\geq 0} \setminus S$ is finite \rightarrow “gaps”. $\#G(S) = g(S)$.
- Frobenius number $f(S) = \max_{\mathbb{Z}_{\geq 0}}(G(S))$.
- The conductor: $c(S) = f(S) + 1$.
- The multiplicity: $m(S) = \min S \setminus \{0\}$.
- The embedding dimension: $e(S)$ is the minimal number of generators of S.
1 Introduction to Groebner bases.

2 Numerical monoids.

3 The Groebner correspondence.

4 An algorithm to the computation of the Apéry set.

5 Computation of the type set.
Consider the following ideal,
\[I = \langle y_1 - x a_1, \ldots, y_k - x a_k \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]
and let \(B = \{ g_1, \ldots, g_r \} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.

Numerical monoid,
\[S = \{ y_1 a_1 + \ldots + y_n a_n | y_i \in \mathbb{Z}_{\geq 0} \} \]
\[\leftrightarrow \mathbb{E} \cap \{ x = 0 \} \]
Established by the following:
\[G : S \rightarrow \mathbb{E} \cap \{ x = 0 \} \subset \mathbb{Z}_{k+1}^+ \]
\[m \rightarrow \exp \left(N_B(x m) \right) \]
The Groebner correspondence.

Consider the following ideal,

\[I = \langle y_1 - x a_1, \ldots, y_k - x a_k \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]

and let \(B = \{ g_1, \ldots, g_r \} \) a reduced basis, with \(E = \bigcup K q_i \) its staircase.

Numerical monoid, \(S = \{ y_1 a_1 + \ldots + y_n a_n | y_i \in \mathbb{Z}_{\geq 0} \} \rightleftharpoons E \cap \{ x = 0 \} \)

Established by the following:

\[G : S \rightarrow E \cap \{ x = 0 \} \subset \mathbb{Z}_{k+1} \geq 0 m \mapsto \exp(N_B(x m)) \]

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014
Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]
The Groebner correspondence.

Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, ..., y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, ..., y_k], \]

and let \(B = \{ g_1, ..., g_r \} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.
Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]

and let \(B = \{g_1, \ldots, g_r\} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.

Numerical monoid,

\[S = \{y_1a_1 + \ldots + y_na_n | y_i \in \mathbb{Z}_{\geq 0}\} \]
Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]

and let \(B = \{g_1, \ldots, g_r\} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.

Numerical monoid,

\[S = \{y_1a_1 + \ldots + y_na_n \mid y_i \in \mathbb{Z}_{\geq 0}\} \]
The Groebner correspondence.

Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]

and let \(B = \{g_1, \ldots, g_r\} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.

Numerical monoid,

\[S = \{y_1a_1 + \ldots + y_na_n \mid y_i \in \mathbb{Z}_{\geq 0}\} \]

\[\overline{E} \cap \{x = 0\} \]
The Groebner correspondence.

Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]

and let \(B = \{g_1, \ldots, g_r\} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.

Numerical monoid,

\[S = \{y_1a_1 + \ldots + y_na_n \mid y_i \in \mathbb{Z}_{\geq 0}\} \]

Established by the following:
The Groebner correspondence.

Consider the following ideal,

\[I = \langle y_1 - x^{a_1}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k], \]

and let \(B = \{g_1, \ldots, g_r\} \) a reduced basis, with \(E = \bigcup K_{q_i} \) its staircase.

Numerical monoid,

\[S = \{ y_1 a_1 + \ldots + y_n a_n \mid y_i \in \mathbb{Z}_{\geq 0} \} \]

Established by the following:

\[G : S \rightarrow \overline{E} \cap \{x = 0\} \subset \mathbb{Z}_{\geq 0}^{k+1} \]

\[m \mapsto \exp(N_B(x^m)) \]
Bijection between the Groebner and numerical monoids.

This bijection can be extended to the gaps
This bijection can be extended to the gaps

The gaps:

\[G(S) = \mathbb{Z}_+ \setminus S \]
This bijection can be extended to the gaps

The gaps:

\[G(S) = \mathbb{Z}_+ \setminus S \]
This bijection can be extended to the gaps

The gaps:

\[G(S) = \mathbb{Z}_+ \setminus S \]

\[\bigcap_i K_{q_i} \setminus \{x = 0\} \subset \mathbb{Z}_{\geq 0}^{k+1}. \]
Bijection between the Groebner and numerical monoids.

This bijection can be extended to the gaps

The gaps:

\[G(S) = \mathbb{Z}_+ \setminus S \]

Given by

\[\mathcal{F} : G(S) \rightarrow \bigcap_i \overline{K}_{q_i} \setminus \{x = 0\} \]

\[m \mapsto \exp(N_B(x^m)) \]
Bijection between the Groebner and numerical monoids.

This bijection can be extended to the gaps

The gaps:
\[G(S) = \mathbb{Z}_+ \setminus S \]

Given by
\[F : G(S) \rightarrow \bigcap_i K_{q_i} \setminus \{x = 0\} \subset \mathbb{Z}_{\geq 0}^{k+1}. \]

In both cases
\[(\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k) = \exp(N_B(x^m)) \rightarrow N = \sigma_0 + a_1\sigma_1 + a_2\sigma_2 + \ldots + a_k\sigma_k \]
Bijection between the Groebner and numerical monoids.

This bijection can be extended to the gaps

The gaps:
\[G(S) = \mathbb{Z}_+ \setminus S \]

Given by

\[\mathcal{F} : G(S) \longrightarrow \bigcap_i K_{q_i} \setminus \{x = 0\} \]
\[m \longmapsto \exp(N_B(x^m)) \]

In both cases

\[(\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k) = \exp(N_B(x^N)) \]
Bijection between the Groebner and numerical monoids.

This bijection can be extended to the gaps

The gaps:

\[G(S) = \mathbb{Z}_+ \setminus S \]

\[\bigcap_i K_{q_i} \setminus \{x = 0\} \subset \mathbb{Z}_{\geq 0}^{k+1}. \]

Given by

\[\mathcal{F} : G(S) \longrightarrow \bigcap_i K_{q_i} \setminus \{x = 0\} \]

\[m \longmapsto \exp(N_B(x^m)) \]

In both cases

\[(\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k) = \exp(N_B(x^N)) \]
Bijection between the Groebner and numerical monoids.

This bijection can be extended to the gaps

The gaps:

\[G(S) = \mathbb{Z}_+ \setminus S \]

Given by

\[F: G(S) \rightarrow \bigcap_i K_{q_i} \setminus \{x = 0\} \]

\[m \mapsto \exp(N_B(x^m)) \]

In both cases

\[(\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k) = \exp(N_B(x^N)) \iff N = \sigma_0 + a_1 \sigma_1 + a_2 \sigma_2 + \ldots + a_k \sigma_k \]
1. Introduction to Groebner bases.

2. Numerical monoids.

3. The Groebner correspondence.

4. An algorithm to the computation of the Apéry set.

5. Computation of the type set.
The Apéry set.

Definition

Let $a \in S$ be a numerical monoid, the Apéry set of S with respect to an element $s \in S$ can be defined as $\text{Ap}(S, a) = \{0, w_0, \ldots, w_{a-1}\}$ where w_i is the smallest element in S congruent with $i \mod a$.

Lemma

With the previous notation, for all $s \in S$ $\text{Ap}(S, a) = \{s \in S | s - a/\in S\}$.

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014 12 / 38
Definition

Let \(a \in S \) be a numerical monoid,
Definition

Let $a \in S$ be a numerical monoid, the Apéry set of S with respect to an element $s \in S$ can be defined as

$$Ap(S, a) = \{0, w_0, \ldots, w_{a-1}\}$$

where w_i is the smallest element in S congruent with $i \mod a$.
The Apéry set.

Definition

Let $a \in S$ be a numerical monoid, the Apéry set of S with respect to an element $s \in S$ can be defined as

$$Ap(S, a) = \{0, w_0, \ldots, w_{a-1}\}$$

where w_i is the smallest element in S congruent with $i \pmod{a}$.

Lemma

With the previous notation, for all $s \in S$
The Apéry set.

Definition

Let $a \in S$ be a numerical monoid, the Apéry set of S with respect to an element $s \in S$ can be defined as

$$Ap(S, a) = \{0, w_0, ..., w_{a-1}\}$$

where w_i is the smallest element in S congruent with $i \pmod{a}$.

Lemma

With the previous notation, for all $s \in S$

$$Ap(S, a) = \{s \in S \mid s - a \not\in S\}.$$
Algorithm. Numerical case.

Let $S = \langle a_1, \ldots, a_k \rangle$ be a numerical monoid in a polynomial ring $\mathbb{Q}[x, y_1, \ldots, y_k]$, $a_i \neq 0$.

1: We define the binomial ideal:

$$I_S = \langle y_1 - x a_1, y_2 - x a_2, y_3 - x a_3, \ldots, y_k - x a_k \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k].$$

2: Let us define an elimination ordering for x, noted σ_j:

$$
\begin{pmatrix}
1 & 0 & 0 & \cdots & (j+1) & 0 & \cdots & 0 \\
0 & \cdots & 0 & a_1 & a_2 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & 1 & \cdots & 0 & \cdots & 0 \\
\end{pmatrix}
$$

Guadalupe Márquez Campos
Let $S = \langle a_1, ..., a_k \rangle$ be a numerical monoid in a polynomial ring $\mathbb{Q}[x, y_1, ..., y_k]$, $a_i \neq 0$.

Algorithm. Numerical case.
Let $S = \langle a_1, \ldots, a_k \rangle$ be a numerical monoid in a polynomial ring $\mathbb{Q}[x, y_1, \ldots, y_k]$, $a_i \neq 0$.

1: We define the binomial ideal:

$$I_S = \langle y_1 - x^{a_1}, y_2 - x^{a_2}, y_3 - x^{a_3}, \ldots, y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, \ldots, y_k].$$
Algorithm. Numerical case.

Let $S = \langle a_1, ..., a_k \rangle$ be a numerical monoid in a polynomial ring $\mathbb{Q}[x, y_1, ..., y_k]$, $a_i \neq 0$.

1: We define the binomial ideal:

$$I_S = \langle y_1 - x^{a_1}, y_2 - x^{a_2}, y_3 - x^{a_3}, ..., y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, ..., y_k].$$

2: Let us define an elimination ordering for x, noted σ_j:
Algorithm. Numerical case.

Let $S = \langle a_1, ..., a_k \rangle$ be a numerical monoid in a polynomial ring $\mathbb{Q}[x, y_1, ..., y_k]$, $a_i \neq 0$.

1: We define the binomial ideal:

$$I_S = \langle y_1 - x^{a_1}, y_2 - x^{a_2}, y_3 - x^{a_3}, ..., y_k - x^{a_k} \rangle \subset \mathbb{Q}[x, y_1, ..., y_k].$$

2: Let us define an elimination ordering for x, noted σ_j:

$$
\begin{pmatrix}
 1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\
 0 & a_1 & a_2 & \cdots & 0 & \cdots & a_k \\
 0 & 1 & 0 & \cdots & 0 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & 0 & \cdots & 1 \\
 0 & 0 & 0 & \cdots & 1 & \cdots & 0 \\
\end{pmatrix}
$$
3: Let \mathcal{B}_j be the reduced Groebner basis of I_S with respect to σ_j.

Theorem
Under the previous conditions $A_p(S, a_j) = \Delta_{\sigma_j}(S, a_j)$.

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014 14 / 38
3: Let B_j be the reduced Groebner basis of I_S with respect to σ_j.

4: We define the following set.
3: Let \mathcal{B}_j be the reduced Groebner basis of I_S with respect to σ_j.

4: We define the following set.

$$\Delta_{\sigma_j}(S, a_j) := \left\{ N \in \mathbb{Z}_{\geq 0} \mid \exp \left(\mathcal{N}_j \left(x^N \right) \right) \in \{ x = y_j = 0 \} \cap \overline{E(I)} \right\}$$
3: Let \mathcal{B}_j be the reduced Groebner basis of I_S with respect to σ_j.

4: We define the following set.

$$\Delta_{\sigma_j}(S, a_j) := \left\{N \in \mathbb{Z}_{\geq 0} \mid \exp \left(N_j \left(x^N \right) \right) \in \{ x = y_j = 0 \} \cap \overline{E(I)} \right\}$$
3: Let B_j be the reduced Groebner basis of I_S with respect to σ_j.

4: We define the following set.

$$\Delta_{\sigma_j}(S, a_j) := \left\{ N \in \mathbb{Z}_{\geq 0} \mid \exp\left(Nj_\sigma(x^N)\right) \in \{x = y_j = 0\} \bigcap \overline{E(I)} \right\}$$

Theorem

Under the previous conditions $Ap(S, a_j) = \Delta_{\sigma_j}(S, a_j)$.
Proof.

Let $n \in \text{Ap} (S, a_j) = \Rightarrow n \in S = \Rightarrow$ there are $x_1, \ldots, x_k \in \mathbb{Z} \geq 0$ such that $n = k \sum_{i=1}^{n} a_i x_i$.

Being in the Apéry set, we already know $n - a_j / \in S$. We want to prove $\exp (N_j (x_n)) \in \{y_j = 0\}$.
Proof.

\[Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j). \]
Proof.

- \(Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j) \).
 Let \(n \in Ap(S, a_j) \implies n \in S y n > a_j \)
Proof.

- \(Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j) \).

Let \(n \in Ap(S, a_j) \implies n \in S \) y \(n > a_j \) which implies \(n \in S \implies \) there are \(x_1, ..., x_k \in \mathbb{Z}_{\geq 0} \) such that

\[
n = \sum_{i=1}^{k} a_i x_i.
\]
Proof.

- $Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j)$.

 Let $n \in Ap(S, a_j) \implies n \in S$ y $n > a_j$ which implies $n \in S \implies$ there are $x_1, ..., x_k \in \mathbb{Z}_{\geq 0}$ such that

 $$n = \sum_{i=1}^{k} a_i x_i.$$

 Being in the Apéry set, we already know $n - a_j \notin S$.

Proof.

- \(Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j) \).

 Let \(n \in Ap(S, a_j) \implies n \in S \) and \(n > a_j \) which implies \(n \in S \implies \) there are \(x_1, \ldots, x_k \in \mathbb{Z}_{\geq 0} \) such that

 \[
 n = \sum_{i=1}^{k} a_i x_i.
 \]

 Being in the Apéry set, we already know \(n - a_j \notin S \). We want to prove

 \[
 \exp(N_j(x^n)) \in \{x = 0\} \cap \{y_j = 0\}.
 \]
Proof.

- \(Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j) \).
 Let \(n \in Ap(S, a_j) \implies n \in S \) y \(n > a_j \) which implies \(n \in S \implies \) there are \(x_1, \ldots, x_k \in \mathbb{Z}_{\geq 0} \) such that

\[
 n = \sum_{i=1}^{k} a_i x_i.
\]

Being in the Apéry set, we already know \(n - a_j \notin S \). We want to prove

\[
 \exp (N_j(x^n)) \in \{x = 0\} \cap \{y_j = 0\}. \quad \text{for } n \in S
\]
Proof.

- \(Ap(S, a_j) \subseteq \Delta_{\sigma_j}(S, a_j) \).

Let \(n \in Ap(S, a_j) \implies n \in S \) y \(n > a_j \) which implies \(n \in S \implies \) there are \(x_1, ..., x_k \in \mathbb{Z}_{\geq 0} \) such that

\[
 n = \sum_{i=1}^{k} a_i x_i.
\]

Being in the Apéry set, we already know \(n - a_j \notin S \). We want to prove

\[
 \exp(N_j(x^n)) \in \{x = 0\} \cap \{y_j = 0\}.
\]

We have to prove

\[
 \exp(N_j(x^n)) \in \{y_j = 0\}.
\]
Let us write $\exp(N_j(x^n)) = (\gamma_1, \gamma_2, \ldots, \gamma_k)$.
Proof

Let us write \(\exp(N_j(x^n)) = (\gamma_1, \gamma_2, \ldots, \gamma_k) \).

From the expression above

\[
n - a_j = a_1 \gamma_1 + \ldots + a_j(\gamma_j - 1) + \ldots + a_k \gamma_k. \quad (\star)
\]
Proof

Let us write \(\exp(N_j(x^n)) = (\gamma_1, \gamma_2, \ldots, \gamma_k) \).

From the expression above

\[
n - a_j = a_1\gamma_1 + \ldots + a_j(\gamma_j - 1) + \ldots + a_k\gamma_k. \quad (\star)
\]

As \(n - a_j \notin S \),
Proof

Let us write $exp(N_j(x^n)) = (\gamma_1, \gamma_2, ..., \gamma_k)$.

From the expression above

$$n - a_j = a_1\gamma_1 + ... + a_j(\gamma_j - 1) + ... + a_k\gamma_k. \quad (\star)$$

As $n - a_j \not\in S$, this expression (\star) must have a strictly negative coefficient.
Proof

Let us write \(\exp(N_j(x^n)) = (\gamma_1, \gamma_2, \ldots, \gamma_k) \).

From the expression above

\[
n - a_j = a_1 \gamma_1 + \ldots + a_j(\gamma_j - 1) + \ldots + a_k \gamma_k. \quad (\star)
\]

As \(n - a_j \notin S \), this expression \((\star)\) must have a strictly negative coefficient.

As \(\gamma_i \in \mathbb{Z}_{\geq 0} \quad \forall \ i = 1, \ldots, k \)
Proof

Let us write \(\exp(N_j(x^n)) = (\gamma_1, \gamma_2, \ldots, \gamma_k) \).

From the expression above

\[
n - a_j = a_1\gamma_1 + \ldots + a_j(\gamma_j - 1) + \ldots + a_k\gamma_k. \tag{\star}
\]

As \(n - a_j \notin S \), this expression (\(\star \)) must have a strictly negative coefficient.

As \(\gamma_i \in \mathbb{Z}_{\geq 0} \) \(\forall \ i = 1, \ldots, k \) it must be \((\gamma_j - 1) \notin \mathbb{Z}_{\geq 0} \).
Proof

Let us write \(\exp(\mathcal{N}_j(x^n)) = (\gamma_1, \gamma_2, \ldots, \gamma_k) \).

From the expression above

\[
n - a_j = a_1 \gamma_1 + \ldots + a_j(\gamma_j - 1) + \ldots + a_k \gamma_k. \quad (\ast)
\]

As \(n - a_j \notin S \), this expression (\(\ast \)) must have a strictly negative coefficient.

As \(\gamma_i \in \mathbb{Z}_{\geq 0} \quad \forall \ i = 1, \ldots, k \) it must be \((\gamma_j - 1) \notin \mathbb{Z}_{\geq 0} \).

And therefore

\[
\gamma_j = 0
\]

as we wanted to show.
\[\Delta_{\sigma_j}(S, a_j) \subseteq Ap(S, a_j). \]
Proof

- $\Delta_{\sigma_j}(S, a_j) \subseteq Ap(S, a_j)$.

 Take $n \in \Delta_{\sigma_j}(S, a_j) \implies n \in S$ with

 $exp(N_j(x^n)) \in \{y_j = 0\} \cap \{x = 0\}$
Proof

- $\Delta_{\sigma_j}(S, a_j) \subseteq \text{Ap}(S, a_j)$.

 Take $n \in \Delta_{\sigma_j}(S, a_j) \implies n \in S$ with

 $\exp(N_j(x^n)) \in \{y_j = 0\} \cap \{x = 0\}$

 \[\Downarrow \quad \exists \gamma_1, \ldots, \gamma_{j-1}, \gamma_{j+1}, \ldots, \gamma_k \in \mathbb{Z}_{\geq 0}, \]

 \[N_j(x^n) = y_1^{\gamma_1} \cdots y_{j-1}^{\gamma_{j-1}} \cdot y_{j+1}^{\gamma_{j+1}} \cdots y_k^{\gamma_k}.\]
Proof

- $\Delta_{\sigma_j}(S, a_j) \subseteq Ap(S, a_j)$.

Take $n \in \Delta_{\sigma_j}(S, a_j) \implies n \in S$ with

$\exp(N_j(x^n)) \in \{y_j = 0\} \cap \{x = 0\}$

\[\Downarrow \exists \gamma_1, \ldots, \gamma_{j-1}, \gamma_{j+1}, \ldots, \gamma_k \in \mathbb{Z}_{\geq 0}, \]

\[N_j(x^n) = y_1^{\gamma_1} \cdots y_{j-1}^{\gamma_{j-1}} \cdots y_{j+1}^{\gamma_{j+1}} \cdots y_k^{\gamma_k}. \]

$n \in Ap(S, a_j)$?
\begin{itemize}
\item \(\Delta_{\sigma_j}(S, a_j) \subseteq \text{Ap}(S, a_j) \).
\end{itemize}

Take \(n \in \Delta_{\sigma_j}(S, a_j) \implies n \in S \) with
\(\exp(N_j(x^n)) \in \{y_j = 0\} \cap \{x = 0\} \)

\[
\Downarrow \quad \exists \gamma_1, \ldots, \gamma_{j-1}, \gamma_{j+1}, \ldots, \gamma_k \in \mathbb{Z}_{\geq 0},
\]

\[
N_j(x^n) = y_1^{\gamma_1} \cdots y_{j-1}^{\gamma_{j-1}} \cdot y_{j+1}^{\gamma_{j+1}} \cdots y_k^{\gamma_k}.
\]

\(n \in \text{Ap}(S, a_j) \)?

R.A:

Let us assume \(n \notin \text{Ap}(S, a_j) \). So either \(n \notin S \) or \(n > a_j \) and
\(n - a_j \in S \).
\[\Delta_{\sigma_j}(S, a_j) \subseteq Ap(S, a_j). \]

Take \(n \in \Delta_{\sigma_j}(S, a_j) \) \(\implies n \in S \) with
\[\exp(N_j(x^n)) \in \{y_j = 0\} \cap \{x = 0\} \]

\[\Downarrow \exists \gamma_1, \ldots, \gamma_{j-1}, \gamma_{j+1}, \ldots, \gamma_k \in \mathbb{Z}_{\geq 0}, \]

\[N_j(x^n) = y_1^{\gamma_1} \cdots y_{j-1}^{\gamma_{j-1}} \cdot y_{j+1}^{\gamma_{j+1}} \cdots y_k^{\gamma_k}. \]

\(n \in Ap(S, a_j)? \)

R.A:
Let us assume \(n \notin Ap(S, a_j) \). So either \(n \notin S \) or \(n > a_j \) and \(n - a_j \in S \).
\(\implies \exists \alpha_1, \ldots, \alpha_k \in \mathbb{Z}_{\geq 0} \) such that

\[n = \sum_{i=1, i\neq j}^{k} a_i \alpha_i + a_j(\alpha_j + 1) \implies (\alpha_1, \ldots, (\alpha_j + 1), \ldots, \alpha_k) \in \mathbb{Z}_{\geq 0}^k. \]
So we have two expressions for n,

$$\gamma_1, \ldots, (j), \ldots, \gamma_k$$

$$n - a_j: \alpha_1, \ldots, (\alpha_j + 1), \ldots, \alpha_k$$

which yields,

$$\sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) + a_j (\alpha_j + 1) = 0 \, .$$

(∗)
Proof

So we have two expressions for n,

1. Normal form:

$\left(\gamma_1, \ldots, \gamma_k\right)$

$$\left(\gamma_1, \ldots, \begin{array}{c}(j) \\ 0 \end{array}, \ldots, \gamma_k\right)$$
So we have two expressions for n,

1. **Normal form:**

\[
\left(\gamma_1, \ldots, \underbrace{0}_{(j)}, \ldots, \gamma_k\right)
\]

2. $n - a_j$:

\[
\left(\alpha_1, \ldots, (\alpha_j + 1), \ldots, \alpha_k\right)
\]
Proof

So we have two expressions for n,

1. **Normal form:**

 $$(\gamma_1, \ldots, (\gamma_j, \ldots, 0, \ldots, \gamma_k))$$

2. **$n - a_j$:**

 $$(\alpha_1, \ldots, (\alpha_j + 1), \ldots, \alpha_k)$$

which yields,

$$\sum_{i=1, i \neq j}^{k} a_i(\alpha_i - \gamma_i) + a_j(\alpha_j + 1) = 0. \quad (*)$$
Proof

So by the definition of σ_j, we know that

$$(0, \gamma_1, \ldots, 0, \ldots, \gamma_k) <_{\sigma_j} (0, \alpha_1, \alpha_2, \ldots, \alpha_k)$$
Proof

So by the definition of σ_j, we know that

\[
(0, \gamma_1, \ldots, 0, \ldots, \gamma_k) <_{\sigma_j} (0, \alpha_1, \alpha_2, \ldots, \alpha_k)
\]

\[
\begin{align*}
\sum_{i=1, i \neq j}^{k} \gamma_i a_i &\leq \sum_{i=1, i \neq j}^{k} \alpha_i a_i \\
\sum_{i=1, i \neq j}^{k} a_i (\alpha_i - \gamma_i) &\geq 0.
\end{align*}
\]
Proof

So by the definition of σ_j, we know that

$$
(0, \gamma_1, \ldots, 0, \ldots, \gamma_k) <_{\sigma_j} (0, \alpha_1, \alpha_2, \ldots, \alpha_k)
$$

$$
\uparrow
$$

\begin{align*}
\sum_{i=1, i \neq j}^k \gamma_i a_i & \leq \sum_{i=1, i \neq j}^k \alpha_i a_i \quad \Rightarrow \quad \sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) \geq 0. \\
\sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) + a_j (\alpha_j + 1) & \geq 0
\end{align*}

\Rightarrow a_j = 0 \rightarrow QED
Proof

So by the definition of σ_j, we know that

$$(0, \gamma_1, \ldots, 0, \ldots, \gamma_k) <_{\sigma_j} (0, \alpha_1, \alpha_2, \ldots, \alpha_k)$$

$$\uparrow$$

$$\sum_{i=1,i\neq j}^k \gamma_i a_i \leq \sum_{i=1,i\neq j}^k \alpha_i a_i \implies \sum_{i=1,i\neq j}^k a_i (\alpha_i - \gamma_i) \geq 0.$$
Proof

So by the definition of σ_j, we know that

$$(0, \gamma_1, \ldots, 0, \ldots, \gamma_k) <_{\sigma_j} (0, \alpha_1, \alpha_2, \ldots, \alpha_k)$$

$$\Updownarrow$$

$$\sum_{i=1, i \neq j}^k \gamma_i a_i \leq \sum_{i=1, i \neq j}^k \alpha_i a_i \implies \sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) \geq 0.$$

$$\sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) + a_j (\alpha_j + 1) = 0 \implies a_j = 0 \rightarrow \leftarrow$$
Proof

So by the definition of σ_j, we know that

$$(0, \gamma_1, \ldots, 0, \ldots, \gamma_k) <_{\sigma_j} (0, \alpha_1, \alpha_2, \ldots, \alpha_k)$$

$$\uparrow$$

$$\sum_{i=1, i \neq j}^k \gamma_i a_i \leq \sum_{i=1, i \neq j}^k \alpha_i a_i \implies \sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) \geq 0.$$

$$\sum_{i=1, i \neq j}^k a_i (\alpha_i - \gamma_i) + a_j (\alpha_j + 1) \geq 0 \implies a_j = 0 \implies QED.$$
Corollary

The set $\Delta_{\sigma_j}(S, a_j)$ does not depend on the choice of σ_j.
Corollary

The set $\Delta_{\sigma_j}(S, a_j)$ does not depend on the choice of σ_j.

Let $S = \langle 7, 8, 9, 13 \rangle$.
Algorithm. Example

Corollary

The set $\Delta_{\sigma_j}(S, a_j)$ does not depend on the choice of σ_j.

Let $S = \langle 7, 8, 9, 13 \rangle$. We have.

$$I_S = \langle y_1 - x^7, y_2 - x^8, y_3 - x^9, y_4 - x^{13} \rangle \subset \mathbb{Q}[x, y_1, y_2, y_3],$$
The set $\Delta_{\sigma_j}(S, a_j)$ does not depend on the choice of σ_j.

Let $S = \langle 7, 8, 9, 13 \rangle$. We have.

$$I_S = \langle y_1 - x^7, y_2 - x^8, y_3 - x^9, y_4 - x^{13} \rangle \subset \mathbb{Q}[x, y_1, y_2, y_3],$$

For this monoid we have

$$Ap(S, 13) = \{0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32\}.$$
A possible picture of $Ap(S,13)$ (for a chosen monomial ordering) is
A possible picture of $A_p(S, 13)$ (for a chosen monomial ordering) is
A possible picture of $Ap(S,13)$ (for a chosen monomial ordering) is
A possible picture of $Ap(S, 13)$ (for a chosen monomial ordering) is
Another possible picture of \(Ap(S, 13) \) is

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & y_4 & y_3 & y_1 & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 0 & 0 & 21 & 28 & & & \\
1 & 1 & 8 & 15 & 22 & 29 & 36 & & \\
2 & 2 & 16 & 23 & 30 & 37 & 44 & & \\
3 & 3 & 24 & 31 & 38 & 45 & 52 & & \\
4 & 4 & 32 & 39 & 46 & 53 & 60 & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & y_4 & y_3 & y_1 & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 1 & 9 & 16 & 23 & 30 & 37 & & \\
1 & 1 & 17 & 24 & 31 & 38 & 45 & & \\
2 & 2 & 25 & 32 & 39 & 46 & 53 & & \\
3 & 3 & 33 & 40 & 47 & 54 & 61 & & \\
4 & 4 & 41 & 48 & 55 & 62 & 69 & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
y_3 & y_1 & 0 & 1 & 2 & 3 \\
\hline
0 & 18 & 25 & 32 & 39 & & \\
1 & 26 & 33 & 40 & 47 & & \\
2 & 34 & 41 & 48 & 55 & & \\
3 & 42 & 49 & 56 & 63 & & \\
\hline
\end{array}
\]
Another possible picture of $Ap(S, 13)$ is

$$\begin{array}{cccccc}
\hline
x & y_4 & y_3 & y_1 & y_1 & y_1 & y_1 \\
\hline
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
1 & 0 & 7 & 14 & 21 & 28 \\
2 & 8 & 15 & 22 & 29 & 36 \\
3 & 16 & 23 & 30 & 37 & 44 \\
4 & 24 & 31 & 38 & 45 & 52 \\
\hline
\end{array}$$

$$\begin{array}{cccccc}
\hline
x & y_4 & y_3 & y_1 & y_1 & y_1 & y_1 \\
\hline
0 & 1 & 2 & 3 & 4 & 4 & 4 \\
1 & 0 & 7 & 14 & 21 & 28 & 28 \\
2 & 8 & 15 & 22 & 29 & 36 & 36 \\
3 & 16 & 23 & 30 & 37 & 44 & 44 \\
4 & 24 & 31 & 38 & 45 & 52 & 52 \\
\hline
\end{array}$$

In both cases $Ap(S, 13) = \Delta_{\sigma_j}(S, 13)$.
Algorithm: Affine case.

An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$.

We will say that a monoid S is pointed if $S \cap (-S) = \{0\}$. Equivalently, if the rational cone, $\text{pos}(S) := \{\lambda_1 a_1 + \ldots + \lambda_k a_k | \lambda_i \in \mathbb{Q} \geq 0\}$, is pointed.

Let $\Lambda \subseteq \{a_1, \ldots, a_k\}$ such that $\text{pos}(S) = \text{pos}(\Lambda)$. The Apéry set of S with respect to Λ is defined as follows: $\text{Ap}(S, \Lambda) = \{a \in S | a - b \not\in S, \forall b \in \Lambda\}$.
An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$.

A point is said to be pointed if $S \cap (-S) = \{0\}$. Equivalently, if the rational cone, $\text{pos}(S) := \{\lambda_1 a_1 + \ldots + \lambda_k a_k | \lambda_i \in \mathbb{Q} \geq 0\}$, is pointed.

Let $\Lambda \subseteq \{a_1, \ldots, a_k\}$ such that $\text{pos}(S) = \text{pos}(\Lambda)$. The Apéry set of S with respect to Λ is defined as follows: $\text{Ap}(S, \Lambda) = \{a \in S | a - b \not\in S, \forall b \in \Lambda\}$.

Guadalupe Márquez Campos

On the computation of the Apéry set.

September, 9, 2014 23 / 38
An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$.

We will say that a monoid S is pointed if $S \cap (-S) = \{0\}$.

Equivalently, if the rational cone, $\text{pos}(S) := \{\lambda_1 a_1 + \ldots + \lambda_k a_k | \lambda_i \in \mathbb{Q} \geq 0\}$ is pointed.

Let $\Lambda \subseteq \{a_1, \ldots, a_k\}$ such that $\text{pos}(S) = \text{pos}(\Lambda)$. The Apéry set of S with respect to Λ is defined as follows: $\text{Ap}(S, \Lambda) = \{a \in S | a - b \not\in S, \forall b \in \Lambda\}$.
Algorithm: Affine case.

An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$. We will say that a monoid S is pointed if $S \cap (-S) = \{0\}$. (0 is the only invertible element of S)
An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$. We will say that a monoid S is pointed if $S \cap (-S) = \{0\}$. (0 is the only invertible element of S)

Equivalently, if the rational cone,
An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$.

We will say that a monoid S is pointed if $S \cap (-S) = \{0\}$. (0 is the only invertible element of S)

Equivalently, if the rational cone,

$$\text{pos}(S) := \{ \lambda_1 a_1 + \ldots + \lambda_k a_k \mid \lambda_i \in \mathbb{Q}_{\geq 0} \}$$

is pointed
Algorithm: Affine case.

An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \(\mathbb{Z}^d, d \geq 0 \).

We will say that a monoid \(S \) is pointed if \(S \cap (-S) = \{0\} \).

(0 is the only invertible element of \(S \))

Equivalently, if the rational cone,

\[
pos(S) := \{ \lambda_1 a_1 + \ldots + \lambda_k a_k \mid \lambda_i \in \mathbb{Q}_{\geq 0} \}
\]

is pointed. Let \(\Lambda \subseteq \{ a_1, \ldots, a_k \} \) such that \(pos(S) = pos(\Lambda) \). The Apéry set of \(S \) with respect to a \(\Lambda \) is defined as follows:
Algorithm. Affine case.

An affine monoid is a finitely generated monoid that is isomorphic to a submonoid of \mathbb{Z}^d, $d \geq 0$.

We will say that a monoid S is pointed if $S \cap (-S) = \{0\}$. (0 is the only invertible element of S)

Equivalently, if the rational cone,

$$pos(S) := \{ \lambda_1 a_1 + \ldots + \lambda_k a_k \mid \lambda_i \in \mathbb{Q}_{\geq 0} \}$$

is pointed. Let $\Lambda \subseteq \{a_1, \ldots, a_k\}$ such that $pos(S) = pos(\Lambda)$. The Apéry set of S with respect to a Λ is defined as follows:

$$Ap(S, \Lambda) = \{ a \in S \mid a - b \not\in S, \forall b \in \Lambda \}.$$
Algorithm: Affine case.

Suppose \(\Lambda = \{ a_k - n + 1, \ldots, a_k \} \), \(n \leq k \).

Consider \(Q = [x_1, \ldots, x_d, y_1, \ldots, y_k] \).

And let \(\prec \Lambda \) be a block–ordering over \(\Lambda \) such that:

\[\begin{align*}
\prec \Lambda &= \begin{cases}
\text{arbitrary order} & \text{for } x \\
\text{S–graded reversed lex} & \text{for } y
\end{cases}
\end{align*} \]

\(\forall j \in \{1, \ldots, k-n\} \)

\(\forall j \in \{k-n+1, \ldots, k\} \).
Algorithm: Affine case.

Suppose $\Lambda = \{a_{k-n+1}, \ldots, a_k\}$, $n \leq k$.
Algorithm: Affine case.

Suppose $\Lambda = \{a_{k-n+1}, \ldots, a_k\}$, $n \leq k$. Consider $\mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k]$.
Algorithm: Affine case.

Suppose \(\Lambda = \{ a_{k-n+1}, \ldots, a_k \} \), \(n \leq k \).
Consider \(\mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \). And let \(\prec_{\Lambda} \) be a block-ordering over \(A \) such that...
Algorithm: Affine case.

Suppose $\Lambda = \{a_{k-n+1}, \ldots, a_k\}$, $n \leq k$.
Consider $\mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k]$. And let \prec_{Λ} be a block–ordering over A such that

$$\prec_{\Lambda} = \begin{cases} \text{monomial arbitrary order } \prec_x & \text{for } x \\ S\text{–graded reversed lex } \prec_y & \text{for } y \mid y_j \prec_y y_i \end{cases}$$

$\forall j \in \{1, \ldots, k - n\}$ y $\forall j \in \{k - n + 1, \ldots, k\}$.
Algorithm: Affine case.

\[I \subseteq S \quad \text{the kernel of the ring homomorphism} \quad \tilde{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \to \mathbb{Q}[x_1, \ldots, x_d] \]

\[y_j \mapsto x_{a_j} = x_{a_{j1}} \cdots x_{a_{jd}} \quad x_i \mapsto x_{a_i} \]

\[B \Lambda, \quad \text{the reduced Groebner basis of} \quad I \quad \text{w.r.t.} \quad \Lambda. \]

\[N \Lambda, \quad \text{for the normal form operator with respect to this basis.} \]

\[\begin{array}{c}
\{ z_1, \ldots, z_n \} \leftarrow \{ y_k - n + 1, \ldots, y_k \}
\end{array} \]

\[\text{We define the set} \quad Q \prec \Lambda(S) = \left\{ a \in \mathbb{Z}^d_{\geq 0} \mid \exp(N \Lambda(x^a)) \in \{ x_1 = \ldots = x_d = \ldots = z_i = 0 \} \cap E(I_S) \right\} \]

Theorem

\[Q \prec \Lambda(S) = \text{Ap}(S, \Lambda). \]
Algorithm: Affine case.

Let $I_\mathcal{S}$ the kernel of the ring homomorphism

\[\phi: \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d], \quad y_j \mapsto x_{a_j} := x_{a_1} \cdots x_{a_d} \]

$B \Lambda$, the reduced Groebner basis of $I_\mathcal{S}$ w.r.t. $\prec \Lambda$.

Noted \(\{z_1, \ldots, z_n\} \leftarrow \{y_k - n + 1, \ldots, y_k\} \).

We define the set

\[Q_\prec \Lambda(\mathcal{S}) = \{ a \in \mathbb{Z}^d \geq 0 | \exp(N_\Lambda(x^a)) \in \{x_1 = \ldots = x_d = \ldots = z_i = 0\} \cap E(I_\mathcal{S}) \} \]

Theorem $Q_\prec \Lambda(\mathcal{S}) = Ap(\mathcal{S}, \Lambda)$.
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

$$
\tilde{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d]
$$

$$
y_j \mapsto x^a_j := x_1^{a_{1j}} \cdots x_d^{a_{dj}}
$$

$$
x_i \mapsto x_i
$$
Let I_S the kernel of the ring homomorphism

$$\phi : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \longrightarrow \mathbb{Q}[x_1, \ldots, x_d]$$

$$y_j \longmapsto x^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}}$$

$$x_i \longmapsto x_i$$

B_Λ.

Algorithm: Affine case.
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

$$
\bar{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \longrightarrow \mathbb{Q}[x_1, \ldots, x_d]
$$

$$
y_j \longmapsto x^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}}
$$

$$
x_i \longmapsto x_i
$$

\mathcal{B}_Λ, the reduced Groebner basis of I_S w.r.t. \prec_Λ.
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

$$\tilde{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d]$$

$$y_j \mapsto x^{a_j} := x_1^{a_1j} \cdots x_d^{a_dj}$$

$$x_i \mapsto x_i$$

B_Λ, the reduced Groebner basis of I_S w.r.t. \prec_Λ.

N_Λ.
Algorithm: Affine case.

Let I_Σ the kernel of the ring homomorphism

\[\widetilde{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d] \]

\[y_j \mapsto x^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}} \]

\[x_i \mapsto x_i \]

\mathcal{B}_Λ, the reduced Groebner basis of I_Σ w.r.t. \prec_Λ.

N_Λ, for the normal form operator with respect to this basis.
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

$\tilde{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d]$

$y_j \mapsto \mathbf{x}^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}}$

$x_i \mapsto x_i$

B_Λ, the reduced Groebner basis of I_S w.r.t. \vartriangleleft_Λ.

N_Λ, for the normal form operator with respect to this basis.

Noted $\{z_1, \ldots, z_n\} \leftarrow \{y_{k-n+1}, \ldots, y_k\}$.
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

$$
\bar{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d]
$$

$$
y_j \mapsto x^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}}
$$

$$
x_i \mapsto x_i
$$

B_Λ, the reduced Groebner basis of I_S w.r.t. \prec_Λ.

N_Λ, for the normal form operator with respect to this basis.

Noted $\{z_1, \ldots, z_n\} \leftarrow \{y_{k-n+1}, \ldots, y_k\}$.

We define the set
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

$$\tilde{\phi}: \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \rightarrow \mathbb{Q}[x_1, \ldots, x_d]$$

$$y_j \mapsto x^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}}$$

$$x_i \mapsto x_i$$

B_Λ, the reduced Groebner basis of I_S w.r.t. \prec_Λ.

N_Λ, for the normal form operator with respect to this basis.

Noted \(\{z_1, \ldots, z_n\} \leftarrow \{y_{k-n+1}, \ldots, y_k\} \).

We define the set

$$Q_{\prec_\Lambda}(S) = \left\{ a \in \mathbb{Z}_{\geq 0}^d \mid \exp(N_\Lambda(x^a)) \in \{x_1 = \ldots x_d = \ldots = z_i = 0\} \cap E(I_S) \right\}$$
Algorithm: Affine case.

Let I_S the kernel of the ring homomorphism

\[\tilde{\phi} : \mathbb{Q}[x_1, \ldots, x_d, y_1, \ldots, y_k] \longrightarrow \mathbb{Q}[x_1, \ldots, x_d] \]

\[y_j \longmapsto x^{a_j} := x_1^{a_{1j}} \cdots x_d^{a_{dj}} \]

\[x_i \longmapsto x_i \]

\mathcal{B}_Λ, the reduced Groebner basis of I_S w.r.t. \prec_Λ.

N_Λ, for the normal form operator with respect to this basis.

Noted $\{z_1, \ldots, z_n\} \leftarrow \{y_{k-n+1}, \ldots, y_k\}$.

We define the set

\[Q_{\prec_\Lambda}(S) = \left\{ a \in \mathbb{Z}_{\geq 0}^d \mid \exp(N_\Lambda(x^a)) \in \{x_1 = \ldots x_d = \ldots = z_i = 0\} \cap \overline{E(I_S)} \right\} \]

Theorem

$Q_{\prec_\Lambda}(S) = Ap(S, \Lambda)$.
Index

1. Introduction to Groebner bases.
2. Numerical monoids.
3. The Groebner correspondence.
4. An algorithm to the computation of the Apéry set.
5. Computation of the type set.
Let S be a numerical monoid.
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$.
Gorenstein condition

Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo–Frobenius number** of S if:
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo–Frobenius number** of S if:
 - $x \notin S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.

\[t(S) = \# \bigcup_{n \in S} \{ \max_{\leq_S} A_p(S, n) \} \]
Gorenstein condition

Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo–Frobenius number** of S if:
 - $x \notin S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.

The set of pseudo–Frobenius numbers: $\rightarrow PF(S)$.

Type: $t(S) = \#PF(S)$
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo–Frobenius number** of S if:
 - $x \notin S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.

The set of pseudo–Frobenius numbers: $\rightarrow PF(S)$.

Type: $t(S) = \#PF(S)$

$$S \text{ is symmetric } \iff t(S) = 1$$
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo–Frobenius number** of S if:
 - $x \notin S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.
- The set of pseudo–Frobenius numbers: $\rightarrow PF(S)$.
- **Type:** $t(S) = \#PF(S)$

$$S \text{ is symmetric} \iff t(S) = 1 \iff PF(S) = \{f(S)\}$$
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo-Frobenius number** of S if:
 - $x \notin S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.

The set of pseudo–Frobenius numbers: $\rightarrow PF(S)$.

Type: $t(S) = \#PF(S)$

$$S \text{ is symmetric } \iff t(S) = 1 \iff PF(S) = \{f(S)\}$$

- An integer
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$.
- $x \in \mathbb{Z}$ is a pseudo-Frobenius number of S if:
 - $x \not\in S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.

The set of pseudo-Frobenius numbers: $\rightarrow PF(S)$.

Type: $t(S) = \#PF(S)$

Symmetric: S is symmetric $\iff t(S) = 1 \iff PF(S) = \{f(S)\}$

- An integer $g \in PF(S)$
Let S be a numerical monoid.

- We define the partial order \leq_S in S as $x \leq_S y \iff y - x \in S$
- $x \in \mathbb{Z}$ is a **pseudo–Frobenius number** of S if:
 - $x \notin S$.
 - $x + s \in S$ for all $s \in S \setminus \{0\}$.

The set of pseudo–Frobenius numbers: $\rightarrow PF(S)$.

Type: $t(S) = \#PF(S)$

- S is symmetric $\iff t(S) = 1 \iff PF(S) = \{f(S)\}$

An integer $g \in PF(S)$ if and only if for any $n \in S$, $g + n$ is a maximal element in $Ap(S, n)$ with respect to the ordering \leq_S.

$$t(S) = \# \bigcup_{n \in S} \left\{ \max_{\leq_S} Ap(S, n) \right\}.$$
Gorenstein condition

Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]
Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]

Case \(n = 2, \ S = \langle a_1, a_2 \rangle \)
Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]

Case \(n = 2, \ S = \langle a_1, a_2 \rangle \Rightarrow \]
Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]

Case \(n = 2, S = \langle a_1, a_2 \rangle \Rightarrow g(S) = \frac{1}{2}(f(S) + 1). \) (Sylvester)
Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]

Case \(n = 2 \), \(S = \langle a_1, a_2 \rangle \Rightarrow g(S) = \frac{1}{2}(f(S) + 1) \). (Sylvester)

\(n > 2 \)?
Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]

Case \(n = 2, S = \langle a_1, a_2 \rangle \Rightarrow g(S) = \frac{1}{2}(f(S) + 1). \) (Sylvester)

Let \(S = \langle a_1, \ldots, a_k \rangle \) and let us consider the set

\[T(S) = \{ m \in Ap(S, a_k) \mid m + a_i \notin Ap(S, a_k), \forall i = 1, \ldots, k \} . \]
Gorenstein condition

Nijenhuis and Wilf studied the property:

\[g(S) = \frac{1}{2}(f(S) + 1) \]

Case \(n = 2 \), \(S = \langle a_1, a_2 \rangle \) \(\Rightarrow \) \(g(S) = \frac{1}{2}(f(S) + 1) \). (Sylvester)

\(n > 2? \)

Gorenstein condition.

Let \(S = \langle a_1, \ldots, a_k \rangle \) and let us consider the set

\[T(S) = \{ m \in Ap(S, a_k) \mid m + a_i \notin Ap(S, a_k), \forall i = 1, \ldots, k \} . \]

Then

\[g(S) = \frac{1}{2}(f(S) + 1) \iff \#T(S) = 1. \]
The Gorenstein set and $PF(S)$

Proposition $PF(S) = \{m - a_k | m \in T(S)\}$.

Corollary Under the previous assumptions: $\#T(S) = t(S)$.

$T(S)$: Type set.
The Gorenstein set and $PF(S)$

Proposition

\[PF(S) = \{ m - a_k \mid m \in T(S) \} . \]
Proposition

\[PF(S) = \{ m - a_k \mid m \in T(S) \} . \]

Corollary

Under the previous assumptions:
The Gorenstein set and $PF(S)$

Proposition

$$PF(S) = \{ m - a_k \mid m \in T(S) \} .$$

Corollary

Under the previous assumptions:

- $\#T(S) = t(S)$.
Proposition

\[PF(S) = \{ m - a_k \mid m \in T(S) \} . \]

Corollary

Under the previous assumptions:

- \(\# T(S) = t(S) \).
- \(S \) verifies the Gorenstein condition if and only if it is symmetric.
The Gorenstein set and $PF(S)$

Proposition

$$PF(S) = \{m - a_k \mid m \in T(S)\}.$$

Corollary

Under the previous assumptions:

- $\#T(S) = t(S)$.
- S verifies the Gorenstein condition if and only if it is symmetric.
- $T(S) = \{\max_{\leq S} Ap(S, a_k)\}$.

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014
29 / 38
Proposition

\[PF(S) = \{ m - a_k \mid m \in T(S) \}. \]

Corollary

Under the previous assumptions:

- \(\#T(S) = t(S). \)
- \(S \) verifies the Gorenstein condition if and only if it is symmetric.
- \(T(S) = \{ \text{max}_{\leq_S} Ap(S, a_k) \}. \)

\(T(S) \): Type set.
Computation of the type set.

If we want to compute the set $T(S)$ of the monoid $S = \langle 3, 7, 11 \rangle$.

$Ap(S, 11) = \{0, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19\}$.

We can use the partial ordering \leq_S:

$0 \rightarrow \rightarrow 3 \rightarrow \rightarrow 6 \rightarrow \rightarrow 9 \rightarrow \rightarrow 12 \rightarrow \rightarrow 15 \rightarrow \rightarrow 19 \rightarrow \rightarrow 16 \rightarrow \rightarrow 13 \rightarrow \rightarrow 10 \rightarrow \rightarrow 7 \rightarrow \rightarrow 4 \rightarrow \rightarrow 8$.

Then $T(S) = \{15, 19\}$, $PF(S) = \{4, 8\}$.
If we want compute the set $T(S)$ of the monoid $S = \langle 3, 7, 11 \rangle$.
If we want compute the set $T(S)$ of the monoid $S = \langle 3, 7, 11 \rangle$.

$$Ap(S, 11) = \{0, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19\}.$$
If we want compute the set $T(S)$ of the monoid $S = \langle 3, 7, 11 \rangle$.

$$Ap(S, 11) = \{0, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19\}.$$

We can use the partial ordering \leq_S:

$$\begin{align*}
0 & \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 12 \rightarrow 15 \\
7 & \rightarrow 10 \rightarrow 13 \rightarrow 16 \rightarrow 19
\end{align*}$$
Computation of the type set.

If we want compute the set $T(S)$ of the monoid $S = \langle 3, 7, 11 \rangle$.

$$ Ap(S, 11) = \{0, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19\}. $$

We can use the partial ordering \leq_S:

$$ T(S) = \{15, 19\}, \; PF(S) = \{4, 8\} $$
Computation of the type set.

With the previous algorithm we compute $A_p(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$.

Let $N \in A_p(S, a_k)$, and therefore let us write $\exp(N_k(xN)) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0)$.

Definition

We will say N is an extremal element of $A_p(S, a_k)$ for σ_j if, for all $i = 1, \ldots, k$ we have $(0, \gamma_1, \ldots, \gamma_i + 1, \ldots, \gamma_k - 1, 0) / \in E(IS) \cap \{x = y_k = 0\}$.

We will denote:

$\partial \sigma_j(S, a_k) = \{\text{Extremal elements of } A_p(S, a_k) \text{ for } \sigma_j\}$.

$\partial \sigma_j(S, a_k)$ depends on the σ_j order chosen.
Computation of the type set.

With the previous algorithm we compute $A_p(S, a_k)$ using an order σ_j.
Computation of the type set.

With the previous algorithm we compute $Ap(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$.

Definition

We will say N is an extremal element of $Ap(S, a_k)$ for σ_j if, for all $i = 1, \ldots, k$ we have $(0, \gamma_1, \ldots, \gamma_i + 1, \ldots, \gamma_k - 1, 0) / \in E(I_S) \cap \{x = y, k = 0\}$.

We will denote:

$\partial \sigma_j(S, a_k) = \{\text{Extremal elements of } Ap(S, a_k) \text{ for } \sigma_j\}$.

$\partial \sigma_j(S, a_k)$ depends on the σ_j order chosen.
Computation of the type set.

With the previous algorithm we compute $Ap(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$. Let $N \in Ap(S, a_k)$,
Computation of the type set.

With the previous algorithm we compute $Ap(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$.

Let $N \in Ap(S, a_k)$, and therefore let us write

$$\exp \left(N_k \left(x^N \right) \right) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0).$$
With the previous algorithm we compute $Ap(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$. Let $N \in Ap(S, a_k)$, and therefore let us write

$$\exp \left(N_k \left(x^N \right) \right) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0).$$

Definition

We will say N is an extremal element of $Ap(S, a_k)$ for σ_j if, for all $i = 1, \ldots, k$ we have
Computation of the type set.

With the previous algorithm we compute $A_p(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$.
Let $N \in A_p(S, a_k)$, and therefore let us write

$$\exp \left(N_k \left(x^N \right) \right) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0).$$

Definition

We will say N is an extremal element of $A_p(S, a_k)$ for σ_j if, for all $i = 1, \ldots, k$ we have

$$(0, \gamma_1, \ldots, \gamma_i + 1, \ldots, \gamma_{k-1}, 0) \notin \overline{E(I_S)} \cap \{ x = y_k = 0 \}.$$

We will denote:

$$\partial_{\sigma_j}(S, a_k) = \{ \text{Extremal elements of } A_p(S, a_k) \text{ for } \sigma_j \}.$$
Computation of the type set.

With the previous algorithm we compute $\text{Ap}(S, a_k)$ using an order σ_j whose normal form will be denoted by $N_k(\cdot)$.

Let $N \in \text{Ap}(S, a_k)$, and therefore let us write

$$\exp \left(N_k \left(x^N \right) \right) = (0, \gamma_1, ..., \gamma_{k-1}, 0).$$

Definition

We will say N is an extremal element of $\text{Ap}(S, a_k)$ for σ_j if, for all $i = 1, ..., k$ we have

$$(0, \gamma_1, ..., \gamma_i + 1, ..., \gamma_{k-1}, 0) \notin \overline{E(I_S)} \cap \{ x = y_k = 0 \}.$$

We will denote:

$$\partial_{\sigma_j}(S, a_k) = \{ \text{Extremal elements of } \text{Ap}(S, a_k) \text{ for } \sigma_j \}.$$

$\partial_{\sigma_j}(S, a_k)$ depends on the σ_j order chosen.
Computation of the type set.

Lemma.

$T(S) \subset \partial \sigma_j(S, a_k)$ for any Apéry ordering σ_j.

Proof:

RA: Assume it is not so, for some $\exists N \in T(S)$ with $\exp(N_k(x_N)) = (0, \gamma_1, ..., \gamma_{k-1}, 0)$, $\Rightarrow \exists i \in \{1, ..., k-1\}$ such that $(0, \gamma_1, ..., \gamma_i+1, ..., \gamma_{k-1}, 0) \in E(IS) \cap \{x = y_{k-1} = 0\}$ $\Rightarrow N + a_i \in \text{Ap}(S, a_k)$.
Lemma.

\(T(S) \subset \partial_{\sigma_j}(S, a_k) \) for any Apéry ordering \(\sigma_j \).

Proof:

Assume it is not so, for some

\[\exists \ N \in T(S) \text{ with } \exp(N_k(x_N)) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0), \]

\[\Rightarrow \exists i \in \{1, \ldots, k-1\} \text{ such that } (0, \gamma_1, \ldots, \gamma_i+1, \ldots, \gamma_{k-1}, 0) \in E(I_S) \cap \{x = y\}, \]

\[\Rightarrow N + a_i \in Ap(S, a_k). \]
Lemma.

\[T(S) \subset \partial_{\sigma_j}(S, a_k) \] for any Apéry ordering \(\sigma_j \).

Proof:

RA:
Lemma.

$T(S) \subseteq \partial_{\sigma_j}(S, a_k)$ for any Apéry ordering σ_j.

Proof:
RA: Assume it is not so, for some $\exists N \in T(S)$ with $\exp(N_k(x^N)) = (0, \gamma_1, ..., \gamma_{k-1}, 0)$,
Lemma.

\(T(S) \subset \partial_{\sigma_j}(S, a_k) \) for any Apéry ordering \(\sigma_j \).

Proof:
RA: Assume it is not so, for some \(\exists N \in T(S) \) with
\[
\exp(N_k(x^N)) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0),
\]
\(\implies \exists i \in \{1, \ldots, k-1\} \)
Lemma.

$T(S) \subset \partial_{\sigma_j}(S, a_k)$ for any Apéry ordering σ_j.

Proof:

RA: Assume it is not so, for some $\exists N \in T(S)$ with

$\exp(N_k(x^N)) = (0, \gamma_1, ..., \gamma_{k-1}, 0),$

$\implies \exists i \in \{1, ..., k-1\}$ such that

$$(0, \gamma_1, ..., \gamma_i + 1, ..., \gamma_{k-1}, 0) \in \overline{E(I_s)} \cap \{x = y_k = 0\}$$
Lemma.

\[T(S) \subset \partial_{\sigma_j}(S, a_k) \] for any Apéry ordering \(\sigma_j \).

Proof:

RA: Assume it is not so, for some \(\exists N \in T(S) \) with

\[\exp(N_k(x^N)) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0), \]

\(\implies \exists i \in \{1, \ldots, k-1\} \) such that

\[(0, \gamma_1, \ldots, \gamma_i + 1, \ldots, \gamma_{k-1}, 0) \in \overline{E(I_S)} \cap \{x = y_k = 0\} \]

\(\implies N + a_i \in Ap(S, a_k) \).
Lemma.

\(T(S) \subset \partial_{\sigma_j}(S, a_k) \) for any Apéry ordering \(\sigma_j \).

Proof:

RA: Assume it is not so, for some \(\exists N \in T(S) \) with \(\exp(N_k(x^N)) = (0, \gamma_1, \ldots, \gamma_{k-1}, 0) \),

\[\implies \exists i \in \{1, \ldots, k-1\} \text{ such that} \]

\[(0, \gamma_1, \ldots, \gamma_i + 1, \ldots, \gamma_{k-1}, 0) \in \overline{E(I_S)} \cap \{x = y_k = 0\} \]

\[\implies N + a_i \in Ap(S, a_k). \]
Theorem.

If O is the set of Apéry orderings with respect to a_k, then

\[
\bigcap_{\sigma_k \in O} \partial \sigma_k(S, a_k) = T(S).
\]

Proof:

By the previous lemma, we only need to prove the following:

If $N/ \in T(S)$, then there exists an Apéry ordering $\sigma_k \in O$ such that $N/ \in \partial \sigma_k(S, a_k)$.

If $N/ \in T(S)$, there must exist a generator a_i such that $N/ + a_i \in Ap(S, a_k)$.

Let us take $\sigma_k \in O$ with the reverse lexicographic ordering in $\{y_1, y_2, \ldots, y_i - 1, y_i + 1, \ldots, y_k - 1, y_i\}$.

If $\exp(N \sigma_k(x_N)) = (0, \beta_1, \ldots, \beta_i, \ldots, \beta_{k-1}, 0)$.

Then it must hold that,

$\exp(N \sigma_k(x_N + a_i)) = (0, \beta_1, \ldots, \beta_i + 1, \ldots, \beta_{k-1}, 0)$,
Theorem.

If \mathcal{O} is the set of Apéry orderings with respect to a_k, then

$$\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).$$
Theorem.

If \mathcal{O} is the set of Apéry orderings with respect to a_k, then

$$
\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).
$$

Proof:
Theorem.
If \mathcal{O} is the set of Apéry orderings with respect to a_k, then

$$
\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).
$$

Proof: By the previous lemma, we only need to proof the following: $N \notin T(S)$, then there exists an Apéry ordering $\sigma_k \in \mathcal{O}$ such that $N \notin \partial_{\sigma_k}(S, a_k)$.

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014
Theorem.

If \mathcal{O} is the set of Apéry orderings with respect to a_k, then

$$\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).$$

Proof: By the previous lemma, we only need to prove the following:

- If $N \notin T(S)$, then there exists an Apéry ordering $\sigma_k \in \mathcal{O}$ such that $N \notin \partial_{\sigma_k}(S, a_k)$.
- If $N \notin T(S)$ there must exist a generator a_i such that
Computation of the type set.

Theorem.
If \mathcal{O} is the set of Apéry orderings with respect to a_k, then
\[\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S). \]

Proof: By the previous lemma, we only need to proof the following:
If $N \notin T(S)$, then there exists an Apéry ordering $\sigma_k \in \mathcal{O}$ such that $N \notin \partial_{\sigma_k}(S, a_k)$.
If $N \notin T(S)$ there must exist a generator a_i such that $N + a_i \in Ap(S, a_k)$.
Theorem.
If \mathcal{O} is the set of Apéry orderings with respect to a_k, then
\[
\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).
\]

Proof: By the previous lemma, we only need to proof the following:
$N \notin T(S)$, then there exists an Apéry ordering $\sigma_k \in \mathcal{O}$ such that $N \notin \partial_{\sigma_k}(S, a_k)$.
If $N \notin T(S)$ there must exist a generator a_i such that $N + a_i \in Ap(S, a_k)$.
Let us take $\sigma_k \in \mathcal{O}$ with the reverse lexicographic ordering in
$\{y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{k-1}, y_i\}$.

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014
33 / 38
Computation of the type set.

Theorem.

If \mathcal{O} is the set of Apéry orderings with respect to a_k, then

$$\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).$$

Proof: By the previous lemma, we only need to prove the following:

If $N \notin T(S)$, then there exists an Apéry ordering $\sigma_k \in \mathcal{O}$ such that $N \notin \partial_{\sigma_k}(S, a_k)$.

If $N \notin T(S)$ there must exist a generator a_i such that $N + a_i \in Ap(S, a_k)$. Let us take $\sigma_k \in \mathcal{O}$ with the reverse lexicographic ordering in

$$\{y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{k-1}, y_i\}.$$

If $\exp\left(N_{\sigma_k}\left(x^N\right)\right) = (0, \beta_1, \ldots, \beta_i, \ldots, \beta_{k-1}, 0)$.
Computation of the type set.

Theorem.

If \(\mathcal{O} \) is the set of Apéry orderings with respect to \(a_k \), then

\[
\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).
\]

Proof: By the previous lemma, we only need to prove the following:

If \(N \notin T(S) \), then there exists an Apéry ordering \(\sigma_k \in \mathcal{O} \) such that \(N \notin \partial_{\sigma_k}(S, a_k) \).

If \(N \notin T(S) \) there must exist a generator \(a_i \) such that \(N + a_i \in Ap(S, a_k) \).

Let us take \(\sigma_k \in \mathcal{O} \) with the reverse lexicographic ordering in \(\{y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{k-1}, y_i\} \).

If \(\exp\left(N_{\sigma_k}(x^N)\right) = (0, \beta_1, \ldots, \beta_i, \ldots, \beta_{k-1}, 0) \).

Then it must hold that,
Computation of the type set.

Theorem.
If \mathcal{O} is the set of Apéry orderings with respect to a_k, then

$$\bigcap_{\sigma_k \in \mathcal{O}} \partial_{\sigma_k}(S, a_k) = T(S).$$

Proof: By the previous lemma, we only need to proof the following:

- If $N \notin T(S)$, then there exists an Apéry ordering $\sigma_k \in \mathcal{O}$ such that $N \notin \partial_{\sigma_k}(S, a_k)$.
- If $N \notin T(S)$ there must exist a generator a_i such that $N + a_i \in Ap(S, a_k)$.

Let us take $\sigma_k \in \mathcal{O}$ with the reverse lexicographic ordering in

$$\{y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{k-1}, y_i\}.$$

If $\exp\left(N_{\sigma_k} \left(x^N \right) \right) = (0, \beta_1, \ldots, \beta_i, \ldots, \beta_{k-1}, 0)$.

Then it must hold that,

$$\exp\left(N_{\sigma_k} \left(x^{N+a_i} \right) \right) = (0, \beta_1, \ldots, \beta_i + 1, \ldots, \beta_{k-1}, 0),$$

Guadalupe Márquez Campos
On the computation of the Apéry set.
September, 9, 2014 33 / 38
This comes straightforwardly, if we had otherwise
This comes straightforwardly, if we had otherwise

\[
\exp \left(N_{\sigma_k} \left(x^{N+a_i} \right) \right) = (0, \alpha_1, \ldots, \alpha_i, \ldots, \alpha_{k-1}, 0)
\]
This comes straightforwardly, if we had otherwise

$$\exp \left(N_{\sigma_k} \left(x^{N+a_i}\right)\right) = (0, \alpha_1, ..., \alpha_i, ..., \alpha_{k-1}, 0)$$

Then we have

$$(0, \alpha_1, ..., \alpha_i, ..., \alpha_{k-1}, 0) <_{\sigma_k} (0, \beta_1, ..., \beta_i + 1, ..., \beta_{k-1}, 0)$$
Computation of the type set.

This comes straightforwardly, if we had otherwise

\[\exp \left(N_{\sigma_k} \left(x^{N+a_i} \right) \right) = (0, \alpha_1, \ldots, \alpha_i, \ldots, \alpha_{k-1}, 0) \]

Then we have

\[(0, \alpha_1, \ldots, \alpha_i, \ldots, \alpha_{k-1}, 0) <_{\sigma_k} (0, \beta_1, \ldots, \beta_i + 1, \ldots, \beta_{k-1}, 0) \]

But this is not possible by the definition of Apéry order,
This comes straightforwardly, if we had otherwise

\[\exp \left(N_{\sigma_k} \left(x^{N+a_i} \right) \right) = (0, \alpha_1, \ldots, \alpha_i, \ldots, \alpha_{k-1}, 0) \]

Then we have

\[(0, \alpha_1, \ldots, \alpha_i, \ldots, \alpha_{k-1}, 0) \prec_{\sigma_k} (0, \beta_1, \ldots, \beta_i + 1, \ldots, \beta_{k-1}, 0) \]

But this is not possible by the definition of Apéry order, therefore

\[N \not\in \partial_{\sigma_k}(S, a_k). \]
Computation of the type set. Example.

Let $S = \langle 7, 8, 9, 13 \rangle$ the previous example.

$A_1(S, 13) = \{0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32\}$.

$T(S) = \{32\}$, S is symmetrical.
Let $S = \langle 7, 8, 9, 13 \rangle$ the previous example.
Let $S = \langle 7, 8, 9, 13 \rangle$ the previous example.

$$Ap(S, 13) = \{0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32\}.$$
Let $S = \langle 7, 8, 9, 13 \rangle$ the previous example.

\[Ap(S, 13) = \{0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32\}. \]

\[T(S) = \{32\}, \]
Let $S = \langle 7, 8, 9, 13 \rangle$ the previous example.

$$Ap(S, 13) = \{0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32\}.$$

$$T(S) = \{32\}, \quad S \text{ is symmetrical}$$
Let $S = \langle 7, 8, 9, 13 \rangle$ the previous example.

$$Ap(S, 13) = \{0, 7, 8, 9, 14, 15, 16, 17, 18, 23, 24, 25, 32\}.$$

$$T(S) = \{32\}, \quad S \text{ is symmetrical}$$
Algorithm. Example.

Set $\Delta_{\sigma_1}(S, 13)$:
Set $\Delta_{\sigma_1}(S, 13)$:

x	y4	y3	y1		
0	0	0	0		
0	1	2	3	4	
0	7	14	21	28	
1	15	22	29	36	
2	23	30	37	44	
3	24	31	38	45	52
4	32	39	46	53	60
5	40	47	54	61	68
Algorithm. Example.

Set $\Delta_{\sigma_1}(S, 13)$:
Algorithm. Example.

Set $\Delta_{\sigma_1}(S, 13)$:

x	y_4	y_3	y_1
0	0	0	1
0	7	14	21
1	8	15	22
2	16	23	30
3	24	31	38
4	32	39	46
5	40	47	54

x	y_4	y_3	y_1
0	0	1	2
1	9	16	23
1	17	24	31
2	25	32	39
3	33	40	47
4	41	48	55
5	49	56	63

y_3	y_1
2	0
1	1

y_3	y_1
0	1
1	2

y_3	y_1
2	0
1	1

y_3	y_1
0	1
1	2

y_3	y_1
2	0
1	1

y_2	y_1
0	18
1	26
2	34
3	42
Algorithm. Example.

Set $\Delta_{\sigma_1}(S, 13)$:

\[
\partial_{\sigma_1}(S, 13) = \{ 14, 18, 23, 25, 32 \}.
\]
Algorithm. Example.

Set $\Delta_{\sigma_3}(S, 13)$:

x	y_4	y_3	y_1
0	0	0	0
0	7	14	21
1	15	22	29
2	23	30	37
3	31	38	45
4	39	46	53

$\Delta_{\sigma_1}(S, 13) = \{24, 32\}$ implies $\Delta_{\sigma_1}(S, 13) \cap \Delta_{\sigma_3}(S, 13) = \{32\}$.
Algorithm. Example.

Set $\Delta_{\sigma_3}(S, 13)$:

\[
\partial_{\sigma_1}(S, 13) = \{ 24, 32 \}
\]
Algorithm. Example.

Set $\Delta_{\sigma_3}(S, 13)$:

x	y_4	y_3	y_1
0	0	0	0
	0	1	2
y2->	0	7	14
	1	15	22
	2	23	30
	3	31	38
	4	39	46
			53
			60

x	y_4	y_3	y_1
0	1	0	1
	1	9	16
y2->	0	23	30
	1	24	31
	2	32	39
	3	40	47
	4	48	55
			62
			69

y_3	y_1
2	0
y2->	1
0	18
1	26
2	34
3	42

$\partial_{\sigma_1}(S, 13) = \{24, 32\}$
Algorithm. Example.

Set $\Delta_{\sigma_3}(S, 13)$:

\[
\begin{array}{cccccccc}
\hline
x & y_4 & y_3 & y_1 \\
\hline
0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
\hline
y_2 \rightarrow & 0 & 0 & 7 & 14 & 21 & 28 \\
& 1 & 8 & 15 & 22 & 29 & 36 \\
& 2 & 16 & 23 & 30 & 37 & 44 \\
& 3 & 24 & 31 & 38 & 45 & 52 \\
& 4 & 32 & 39 & 46 & 53 & 60 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\hline
x & y_4 & y_3 & y_1 \\
\hline
0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
\hline
y_2 \rightarrow & 0 & 9 & 16 & 23 & 30 & 37 \\
& 1 & 17 & 24 & 31 & 38 & 45 \\
& 2 & 25 & 32 & 39 & 46 & 53 \\
& 3 & 33 & 40 & 47 & 54 & 61 \\
& 4 & 41 & 48 & 55 & 62 & 69 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccc}
\hline
y_3 & y_1 \\
\hline
2 & 0 & 1 & 2 & 3 \\
\hline
y_2 \rightarrow & 0 & 18 & 25 & 32 & 39 \\
& 1 & 26 & 33 & 40 & 47 \\
& 2 & 34 & 41 & 48 & 55 \\
& 3 & 42 & 49 & 56 & 63 \\
\hline
\end{array}
\]

$\partial_{\sigma_1}(S, 13) = \{24, 32\} \implies \partial_{\sigma_1}(S, 13) \cap \partial_{\sigma_3}(S, 13) = \{32\}.$
Thank you very much!
Grazie tante!