A Review Study for Measurement, Analysis and Evaluation
Four Bar Polycentric Knee

Firas Thair Al-Maliky1,2 and Jumaa Salman Chiad1
1University of Al-Nahrain, Mechanical Engineering Department, Iraq
2University of Alkafeel, Computer Engineering Techniques, Najaf, Iraq
E-mail: firas.almaliky@alkafeeluc.edu.iq

Abstract. When a transfemoral amputee missing his knee joint, a polycentric mechanism is used as technical substitute to restore the gait function. The motion ability of transfemoral amputee is dependent on the performance of prosthetic knee. Recent results on the kinematic analysis of four-bar polycentric knee mechanism are reviewed in this article. Different experimental tests on data of above-knee prosthetic limb such as F-socket, gait analysis, ground reaction force, static loading, fatigue life and static prosthetic alignment, etc., were used to analyse the gait cycle and to improve the comfortability of amputee after using prosthetic limb, and to increase the stability of prosthetic knee after using. Finally, the optimization techniques included selection of the optimum dimension of polycentric knee is dependent on the data of ICR trajectory estimated from kinematic analysis of four-bar mechanism. These optimization techniques have significant effect on improving the mechanical properties of polycentric knee and reducing its cost.

Keywords: Gait cycle, Polycentric knee, ICR, Optimization, Knee mechanism.

1. Prosthetic function
A prosthesis is an artificial medical device used to replace a missing body part. The most basic function of lower limb prostheses is to provide the structural support that would otherwise be provided by the missing or removed portion of the skeletal system. Advanced prostheses will contain characteristic to provide stability control, energy storage and release and physical damping. These features replace some of the missing function or altered musculature. Lower limb amputations fall into a number of different categories depending on which level the transaction is made on the limb. As shown in figure 1, a transfemoral amputation involves the bisection of the femur, this is the second most common level of amputation after the transtibial level [1-2]. During a transfemoral amputation, the femur is transected above the knee joint and the portions of the hip adductor and extensor muscles controlling the femur are removed [3]. The procedure naturally shortens the effective lever arm of the adductor muscles and this is part of the reason transfemoral amputees face higher energy expenditure levels during normal walking [4]. There, various investigations are presented for studying the mechanical behavior of different biomechanical part, as knee joint, foot part, below knee parts, above knee parts, hip joint, and other biomechanical parts, [5-23].
Figure 1. Different levels of lower limb amputation [2].

So, the investigation included calculating mechanical properties as strength, modulus of elasticity, hardness, and impact resistance, for biomaterials used. In addition, the investigation included calculating the different mechanical behavior as stress analysis under static and dynamic load, creep behavior, fatigue characterizations, dynamic behavior and other parameters [24-36]. Therefore, different techniques for improving the mechanical properties for materials are used to manufacture the biomechanical parts investigated, such as, reinforcement with different fiber types and volume fraction, different powder reinforcement, natural reinforcement fiber, and Nano reinforcement, [37-53]. An experimental and theoretical technique was used to calculate more mechanical properties and behavior of biomechanical parts, and the results were compared [54-71].

2. Cause of amputation
Thirty million have lost their limbs worldwide [72]. The loss of limbs is associated with various cases such as disease, traffic accident and war operations [73]&[74] which involves removing a limb (arm, leg) or part of it [75]. In war and post-war zones, many amputations are the result of trauma from direct conflict or from the explosion of landmines and other Explosive Remnants of War (ERW). Landmines and ERW remain active even well after the conflict may have ended, exposing all kinds of civilians to traumatic injuries and amputation of their limbs, including young and active children. There are currently millions of uncleared landmines around the world and each year 2-5 million are added. These weapons currently claim an estimated 2000 casualties per month [76]. Most of these are non-fatal yet cause serious damage to the lower limbs, often leading to the need for amputation [77]. Traffic accidents are also a leading cause of amputation in many developing countries. Again, many factors contribute to the higher number of traffic accident related amputations. Quite simply, there are more vehicles, more pedestrians, fewer road safety standards, and a generally poorer road infrastructure [78].

3. Prosthesis components
A lower limb prosthesis for transfemoral amputees consists of four major parts: the socket, knee joint, and foot/ankle unit as shown in Figure 2. Socket is usually made from plastic polymer laminates, reinforcement textiles such as fiberglass, carbon fiber, and nylon which is added to provide the structural support [79] & [80]. For transfemoral amputees, the prosthetic knee joint is the most critical component of the prosthesis, as its purpose is to replace the true knee. The function of a good prosthetic knee joint is to mimic the function of the normal knee, such as providing structural support and stability during stance phase but it is able to flex in a controllable manner during swing phase. The prosthetic knee is connected to the prosthetic foot by the shank, which is usually made of an aluminum or graphite tube. The function of the foot and ankle is to provide a stable weight-bearing platform while offering mobility function by
changing position and responding to ground reaction force vector (GRFV) during gait on different walking surfaces [81].

Figure 2. Lower-limb prosthesis components [82].

4. Gait cycle
Gait refers to the manner of walking and a gait cycle is indicated to the time interval between two sequential occurrences of one of the walking events. The gait cycle can be divided into two general phases: stance phase and swing phase. The stance phase is known as the support phase and defined as the time period of the cycle when the foot is in contact with the ground. The swing phase is defined as the time when the foot is in the air. [83]. The full gait cycle can be classified to eight phases with different durations and objectives as seen in Figure 3. These phases are initial contact, loading response, mid stance, terminal stance, pre-swing, initial swing, mid swing, and terminal swing.

Figure 3. Normal human walking cycle illustrating the events of gait. Adapted from [84].

Initial contact represents the beginning of the gait cycle when the foot touches the ground. The position of each joint determines the initial loading condition placed on the limb [83]. In loading response, the body weight is transferred onto the forward limb. Stability for weight bearing and shock absorption are the two critical objectives in this phase. The limb must bear weight in an unstable position, where unstable refers to the instant the knee tending to flex by the effect loading during this phase [1]. The knee flexion is approximately bounded by 20 degrees generated by quadriceps muscles [85]. During mid stance phase, the knee is brought back to a fully extended position and the entire body weight must be supported with one limb while the other is advanced forward past the stationary foot [83]. Terminal stance marks the second half of the single limb support task. The body weight moves ahead of the forefoot of the planted limb as the hip extends and the heel rises. The other limb has now completed terminal swing and has progressed well beyond the supporting foot [1]&[81]. Pre-Swing is the final phase of stance. In this phase, the opposite limb makes initial contact and body weight is rapidly transferred to the opposite limb. Increased ankle plantar flexion and knee flexion of the trailing limb prepares it for the beginning of the swing-phase [1]. The two main objectives in initial swing phase are foot clearance of the ground and the
beginning of swing-limb advancement. Increased knee flexion coupled with ankle dorsiflexion clears the toe above the ground while hip flexion advances the limb forward [1]&[81]. As the toe clears the ground, the inertia of the shank causes the knee to extend to a maximum of approximately 70 degrees [85]. In mid swing phase, the limb advancement continues with further hip flexion, however the knee angle begins to decrease as gravity causes the knee to extend. The objectives of foot clearance and limb-advancement from initial swing remain [1]&[81]. Finally, limb advancement is completed in terminal swing phase by the full extension of the knee. The end of this phase, and of the complete human GC, is marked by initial contact with the ground of the swinging limb[1]&[83].

5. Prosthetic knee development
The design of knee can be developed to meet the minimal requirements of swing phase, kneeling and sitting. According to [86], knee mechanism can be classified into two kinds: monocentric and polycentric. Monocentric knee (single axis knee) has fixed axis of rotation which has limitation in the control. However, polycentric knee is easier to control and move stable through swing and stance phase the mechanism of polycentric knee manage the instant centre of rotation (ICR) for any angle during knee flexion. Knee mechanisms fall into different categories; pneumatic, constant friction, locking, hydraulic, polycentric, etc. [87]. All types above can be classified under the category of non-microcontroller prosthesis. The microcontroller prosthesis is defined as the ability to adapt the activity of prosthesis such as timing of the stance phase or swing phases of gait under the microcontroller automatic control [88] as shown in Figure 4.

![Figure 4. Classification of knee joint mechanism [88].](image-url)
6. Prosthetic limb tests

6.1. F-Socket test
Colombo et al [89] improved the design of lower limb prosthesis through pressure analysis at the interface residual limb-socket. The experimental setup was based on (Tekscan F-Socket System) to measure the contact pressure of the interface between residual limb and socket. Tekscan system exploited medical sensors 9811E within a pressure range between 0 and 517 kPa as shown in Figure 5.

The sensor was setup by filling of patient form with anthropometric data, 3D scanning of the residual limb, application of sensors over the residual limb, 3D scanning of residual limb with applied sensors and donning of the socket. 3D scans of the residual limb have been executed by using (Microsoft Kinect) with application of 3D scanning software (Skanect), as described in figure 5. The data of pressure are visualized with a color map over 3D residual limb model to evaluate a physical prototype.

6.2. Gait cycle and ground reaction force tests
Kadhim et al [90] tested four prosthetic knee joints. A tactile force and gait cycle measurements system was used; a pressure measurement system (Tekscan-Walkway™) that measures the pressure between the floor platform and the feet.

6.3. Human motion test
Kinovea is a software used to study human motion: capture, observation, annotation and measurement. The videos of gait analysis were uploaded into the program, and the working zone was located according to the end of the sequence of the gait cycle, then a coordination system origin was set to represent the trajectory of the path track as shown in figure 6.

![Figure 5. Sensor data and residual limb acquisition [89].](image-url)
Figure 6. Motion tracking steps in Kinovea, a: setting system coordination, b: reference of calibration, c: locating the markers, d: make path tracking range, and e: path trajectory [90].

The patients were asked to walk on the platform, to ensure a clear gait performance. The tests were used to obtain the maximum velocity and find the walking stability for these prosthetic knees.

6.4. Fatigue life and static loading test
Phanphet et al [91] studied the failure of knee prosthesis under static and cyclic load tests. The optimum design of knee prosthesis was developed to reach the ISO 10328:2006 requirement. The standards force for three amputee’s weight levels at cyclic loading. The ISO 10328 requires applied static ultimate loading and 3,000,000 cyclic loading to the knee prosthesis without failure. The (80 kg) forces were applied to structure of knee prosthesis. A 5 kN servo-pneumatic fatigue machine was used for structure testing with cyclic load 1230 N at 1 Hz speed as shown in figure 7. Two aluminum tubes and top and bottom fixture plate were used to tie the components together.

Figure 7. The structural testing machine [92].

6.5. Static prosthetic alignment
Blumentritt [93] attempted to determine prosthetic alignment for trans-tibial amputees biomechanically using the individual load line as a reference. The L.A.S.A.R. posture (both Co. KGaA & Ottobock SE, Germany) was used to examine and optimize the static alignment in accordance with established
recommendations. The display of load situation in 3D L.A.S.A.R. posture mode for both legs is shown in figure 8. The measurement of forces in horizontal and vertical axis can be present in (image 1) & (image 2). According to the alignment in live image 3, the alignment reference lines was superimposed for the Ottobock components [94].

Figure 8. The display of load situation in 3D L.A.S.A.R. Posture mode for both legs [94].

7. **Mechanism of polycentric knee joint**

The localization of the instant center of rotation (ICR) was established by Radcliffe [95]&[96] in order to obtain a suitable four bar polycentric mechanism and full control of these types of prostheses by the transfemoral amputee. There are many aspects to obtain a good stability in accordance with [96]. First, there is the fitting of the stump-socket interface, and second is the residual limb length and strength. Third, the functional characteristics of the foot–ankle and the knee mechanisms should be combined into the prosthesis. Finally, the relative position of the hip joint is considered with respect to the ankle and knee joints (alignment geometry). The mechanisms of four-bar linkage has three different types used in lower limb prosthesis [86]: (1) the four-bar with elevated ICR, (2) the four-bar mechanism with hyper-stabilized, and (3) four-bar mechanism with voluntary control. It is advisable for amputees with limited ability to control stability and geriatric amputees to use four-bar linkage with an elevated ICR as shown in figure 9. It has long anterior link and short posterior link. The links have been designed in this mechanism to give maximum stability at heel contact. The ICR is located behind the load line for full extension at heel contact. It is not required to hip extension moment exerted by the amputee.

Figure 9. Three types of four-bar mechanism used in lower limb prosthesis [86].
At push off, the amputee generates hip flexion moment. The individual is able to move the load line behind the ICR by the individual. The initiation of knee flexion is performed in minimal effort. The arrangement in four-bar knee mechanism hyper-stabilized is similar to the four-bar mechanism with estimated ICR. However, there is significant difference in kinematic behavior when the dimensions of the mechanism have small changes. The position of ICR is well when it located behind the load line (Figure 9). It is not required to hip extension moment that exerted by the amputee. At push off the ICR is still located behind the load line. The voluntary control in (figure 9) has been designed in four bar mechanism to give to the user amputee the ability to achieve the stability in the prosthetic knee at both heel contact and push off. The voluntary movement of the knee to the stable location is performed in the full extension.

8. Trajectory of polycentric knee joint

The following methodology has been proposed by Hobson and Torfason [97] to describe the mechanism of four-bar polycentric knee and find the desired trajectory of ICR. The revolute joints of four-bar mechanism are centrode at points O_A, A, B and O_B. The upper link AB is connected to socket part. However, the shank is connected by the lower link O_AO_B as shown in figure 10.

![Figure 10. Configuration of a four-bar linkage with Coupler point C](image)

The lengths of bars are a_1, a_2, a_3 and a_4. The angle θ_i represent the angle of each bar and measured in anticlockwise. The coordinates position of point B are defined as follows [97]:

\[
\begin{align*}
 x_B &= x_{OB} + a_4 \cos \theta_4 \\
 &= x_{OA} + a_2 \cos \theta_2 + a_3 \cos \theta_3 \\
 y_B &= y_{OB} + a_4 \sin \theta_4 \\
 &= y_{OA} + a_2 \sin \theta_2 + a_3 \sin \theta_3
\end{align*}
\]

The input can be represented by the coupler link angle θ_3. The equations (3) & (4) are the function of the angle θ_2 and can be written as [97]

\[
\begin{align*}
 a_2 \cos \theta_2 &= a_4 \cos \theta_4 + C_1 \\
 a_2 \sin \theta_2 &= a_4 \sin \theta_4 + C_2
\end{align*}
\]
Where:

\[
C_1 = x_{OB} - x_{OA} - a_3 \cos \theta_3
\]
\[
C_2 = y_{OB} - y_{OA} - a_3 \cos \theta_3
\]

By squared and added Equations (5) and (6)

\[
a^2_z = a^2_4 + C^2_1 + C^2_z + 2C_1a_4 \cos \theta_4 + 2C_2a_4 \sin \theta_4
\]

Rearranging the terms in Equations (9), the following equations are obtained [97].

\[
A \sin \theta_4 + B \cos \theta_4 = C
\]
\[
A = 2C_2a_4
\]

Where:

\[
B = 2C_1a_4
\]
\[
C = a^2_z - a^2_4 - C^2_1 + C^2_z
\]

For different inputs of the angle θ_3, these constants can be found. C_1 and C_2 can be defined by equations (7) and (8). The constants in equation (10) is a function of the angle θ_4. It is necessary to make it explicit from the following substitutions [97].

\[
\sin \theta_4 = \frac{2 \tan(\frac{\theta_4}{2})}{1+\tan^2(\frac{\theta_4}{2})}
\]

\[
\cos \theta_4 = \frac{1-\tan^2(\frac{\theta_4}{2})}{1+\tan^2(\frac{\theta_4}{2})}
\]

By reducing the equation (10) to a quadratic form with function of $\tan (\theta_4/2)$, the solution can be presented as follows [97].

\[
\theta_4 = 2 \tan^{-1} \frac{\sqrt{A^2 + B^2 - C^2}}{B+C}
\]

Two different solutions for angle θ_4 were provided from equation (16). One is positive and the other is negative. Selected of the sign depend on mechanism configuration. The A and B coordinates can be calculated from the following procedure when the angle θ_3 is proposed and the angle θ_4 is calculated [97].

\[
x_B = x_{OB} + a_4 \cos \theta_4
\]
\[
y_B = y_{OB} + a_4 \sin \theta_4
\]
\[
x_A = x_B + a_3 \cos \theta_3
\]
\[
y_A = y_B + a_3 \sin \theta_3
\]

With knowing A and OA coordinates, the angle θ_2 can be found.

\[
\theta_2 = \tan^{-1} \frac{y_B - y_{OA}}{x_A - x_{OA}}
\]

From the intersection of straight lines passes through links 2 and 4, the coordinate of ICR is calculated [97].

\[
X_1 = \frac{y_{OB} - y_{OA} - x_{OB} \tan \theta_4 - x_{OA} \tan \theta_2}{\tan \theta_2 - \tan \theta_4}
\]
\begin{equation}
\gamma_1 = \gamma_{OB} + \tan \theta_4 (x_1 - x_{OB})
\end{equation}

The coupling point coordinates with the distance \(a_c\) can be determined. It is between line AB with an angle \(\varphi\) as following [97]

\begin{equation}
\theta_c = \theta_3 + \varphi
\end{equation}

\begin{equation}
x_c = x_A + a_c \cos \theta_c
\end{equation}

\begin{equation}
y_c = y_A + a_c \sin \theta_c
\end{equation}

9. Optimization of polycentric knee joint

The following studies examined the optimization methods used in polycentric knee joint and can be summarized in table (1).

No.	Researcher Name	Year	Title	Aim	Technical method	Conclusion
1	Soriano et al [99]	2020	"Performance comparison and design of an optimal polycentric knee"	Optimized novel and stable polycentric four bar mechanism knee joint with voluntary control configuration	Genetic algorithm method	Optimal dimension of four bar polycentric mechanism was performed from the data of ICR trajectory in order to create a model. The Genetic algorithm method seeking to reduce the prosthetic knee cost and improve its mechanical properties.
2	Eqra et al [100]	2018	"Optimal synthesis of a four-bar linkage for path generation using adaptive PSO"	Perform adaptive inertia weight particle swarm optimization (AIW-PSO) on the path synthesis of four bar mechanism. The performance of an adaptive solution method was investigated on this problem.	Adaptive Inertia Weight PSO (AIW-PSO)	The AIW-PSO implementation showed good results for path synthesis problem in comparison with other methods. The results were selected from the viewpoint of time, accuracy and ease of implementation.
3	César et al [98]	2013	"Optimization of the Design of a Four Bar Mechanism for a Lower Limb Prosthesis Using the Taboo Search Algorithm"	The error between the trajectory of instantaneous center of rotation (ICR) and the path of four-bar mechanism was minimized	Taboo Search Algorithm	The combination of bars lengths is investigated and all of them in the range of stability.
4	Pfeifer et al [101]	2012	"An Actuated Transfemoral Prosthesis with Optimized Polycentric Knee Joint"	Optimize four types of knee joints to approximate a physiological peak torque versus joint angle versus joint velocity profile.	Grid Optimization	The result of optimization in four-bar mechanism produce uniform torque through the range of motion (ROM) of the knee.

10. Conclusions

The analysis and evaluation of four-bar polycentric knee used in prosthetic limb for transfemoral amputee was reviewed in this research. The gait analysis of human shows that the polycentric knee has been utilized for many amputees because it is successful to enhance the stability during stance phase and the kinematic in swing phase. The conclusions of this article can be summarized as follows:
1. The experimental tests applied on prosthetic limb (F-socket, gait analysis, ground reaction force, static loading, fatigue life and static prosthetic alignment) have significant effect on the development of the prosthetic limb and increasing the stability of prosthetic knee.
2. According to Radcliffe [29], the mechanism of four-bar linkage can be classified into three types: (1) mechanism estimated by ICR (2) hyper stabilized mechanism (3) voluntary control mechanism.
3. The kinematic analysis of four-bar polycentric knee was based on the Grashof law double rocker with length bar condition \((a_2 + a_3 \leq a_1 + a_4)\).
4. The optimization techniques in many studies focused on selecting the optimum dimension of polycentric knee mechanism based on the data of ICR trajectory calculated from kinematic analysis of four-bar polycentric knee and verifying the stability to be set the ICR behind the load line, [102-104].
5. It can be observed that there is no evaluation studies on selecting the optimum prosthetic knee from different types of knee joints. This study will be performed in next research to develop a technical method in selection and evaluation.

11. References
[1] D Wyss 2012 By Evaluation and Design of a Globally Applicable Rear-Locking Prosthetic Knee Mechanism (Toronto)
[2] Capital Health. Lower Limb Amputations 2012 (http://www.cdha.nshealth.ca/amputee-rehabilitation-%0Amusculoskeletal-program/coping-your-amputation/lower-limb-amputations%0A)
[3] J H Bowker 1992 Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles (2nd ed., Mosby)
[4] F A Gottschalk and M Stills 1994 The Biomechanics of Trans-Femoral Amputation (Prosthet. Orthot. Int.) vol 18 no 1 pp 12-17
[5] Bashar A Bedaiwi and Jumaa S Chiad 2012 Vibration Analysis and Measurement in the Below Knee Prosthetic Limb Part I: Experimental Work (ASME 2012 International Mechanical Engineering Congress and Exposition, Proceedings)
[6] S H Bakhy, S S Hassan, S M. Nacy, K Dermitzakis and A H Arieta 2013 Contact Mechanics for Soft Robotic Fingers: Modeling and Experimentation (Robotica) 2013
[7] S H Bakhy 2014 Modeling of Contact Pressure Distribution and Friction Limit Surfaces for Soft Fingers in Robotic Grasping (Robotica)
[8] Ahmed M Hashim, E K Tanner and Jawad K Oleiwi 2016 Biomechanics of Natural Fiber Green Composites as Internal Bone Plate Rafted (MATEC Web of Conferences)
[9] Mohsin Abdullah Al-Shammari, Emad Q Hussein and Ameer Alaa Oleiwi 2017 Material Characterization and Stress Analysis of a Through Knee Prosthesis Sockets (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 6
[10] Mahmud Rasheed Ismail, Muhammad Al-Waily and Ameer A. Kadhim 2018 Biomechanical Analysis and Gait Assessment for Normal and Braced Legs (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 3
[11] Jawad K. Oleiwi and Ahmed Namah Hadi 2018 Experimental and Numerical Investigation of Lower Limb Prosthetic Foot Made from Composite Polymer Blends (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 2 pp 1319-1330
[12] Lara E Yousif, Kadhim K Resan and Raad M Fenjan 2018 Temperature Effect on Mechanical Characteristics of A New Design Prosthetic Foot (International Journal of Mechanical Engineering and Technology) vol 9 no 13 pp 1431-1447
[13] Fahad M Kadhim, Jumaa S Chiad and Ayad M Takhakh 2018 Design And Manufacturing Knee Joint for Smart Transfemoral Prosthetic (IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science) vol 454
[14] Ayad M Takhakh, Saif M Abbas and Aseel K Ahmed 2018 *A Study of the Mechanical Properties and Gait Cycle Parameter for a Below-Knee Prosthetic Socket* (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[15] Saif M Abbas, Kadhim K Resan, Ahmed K Muhammad and Muhammad Al-Waily 2018 *Mechanical and Fatigue Behaviors of Prosthetic for Partial Foot Amputation with Various Composite Materials Types Effect* (International Journal of Mechanical Engineering and Technology) vol 9 no 9 pp 383–394

[16] Muhsin J Jweeg, Zaid S Hammoudi and Bassam A Alwan 2018 *Optimised Analysis, Design, and Fabrication of Trans-Tibial Prosthetic Sockets* (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[17] Jawad K Oleiwi, Rana Afif Majed Anaee and Safaa Hashim Radhi 2018 *Tensile Properties of UHMWPE Nanocomposites Reinforced by CNTs and nHA for Acetabular Cup in Hip Joint Replacement* (Journal of Engineering and Applied Sciences) vol 13 no 13

[18] Muhammad Al-Waily, Emad Q Hussein and Nibas A Al-Roubaiee 2019 *Numerical Modeling for Mechanical Characteristics Study of Different Materials Artificial Hip Joint with Inclination and Gait Cycle Angle Effect* (Journal of Mechanical Engineering Research & Developments) vol 42 no 4 pp 79-93

[19] Yousuf Jamal Mahboba and Mohsin Abdullah Al-Shammari 2019 *Enhancing Wear Rate of High-Density Polyethylene (HDPE) by Adding Ceramic Particles to Propose an Option for Artificial Hip Joint Liner* (IOP Conference Series: Materials Science and Engineering) vol 561

[20] Nada N Kadhim, Qahtan A Hamad and Jawad K Oleiwi 2020 *Tensile and Morphological Properties of PMMA Composite Reinforced by Pistachio Shell Powder used in Denture Applications* (2nd International Conference on Materials Engineering & Science, AIP Conference Proceedings)

[21] Ayad M Takhakh, Fahad M Kadhim and Jumaa S Chiad 2013 *Vibration Analysis and Measurement in KNEE Ankle Foot Orthosis for Both Metal and Plastic KAFO Type* (ASME International Mechanical Engineering Congress and Exposition)

[22] Jumaa S Chiad 2014 *Study the Impact Behavior of the Prosthetic Lower Limb Lamination Materials due to Low Velocity Impactor* (ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis)

[23] Saif M Abbas, Ayad M Takhakh, Mohsin Abdullah Al-Shammari and Muhammad Al-Waily 2018 *Manufacturing and Analysis of Ankle Disarticulation Prosthetic Socket (SYMES)* (International Journal of Mechanical Engineering and Technology) vol 9 no 7 pp 560-569

[24] Muhsin J Jweeg, Muhammad Al-Waily, Ahmed K Muhammad and Kadhim K Resan 2018 *Effects of Temperature on the Characterisation of a New Design for a Non-Articulated Prosthetic Foot* (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[25] Noor Dhia Yaseen, Jumaa S Chiad and Firas Mohammed Abdul Ghani 2018 *The Study and Analysis of Stress Distribution Subjected on the Replacement Knee Joint Components using Photo-Elasticity and Numerical Methods* (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 6 pp 449-464

[26] Ahmed Khaleel Abdulameer and Mohsin Abdullah Al-Shammari 2018 *Fatigue Analysis of Syme’s Prosthesis* (International Review of Mechanical Engineering) vol 12 no 3

[27] Ayad M Takhakh and Saif M Abbas 2018 *Manufacturing and Analysis of Carbon Fiber Knee Ankle Foot Orthosis* (International Journal of Engineering & Technology) vol 7 no 4 pp 2236-2240

[28] Jawad Kadhim Oleiwi, Rana Afif Anaee and Safaa Hashim Radhi 2018 *Roughness, Wear and Thermal Analysis of UHMWPE Nanocomposites Asacetabular Cup In Hip Joint Replacement* (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 6 pp 855-864
[29] Yusra Alyas Shafeeq, Jumaa S Chiad and Yassr Y Kahtan 2018 *Study, Analysis, the Vibration and Stability for the Artificial Hand During Its Daily Working* (International Journal of Mechanical Engineering and Technology) vol 9 no 13 pp 1706–1716

[30] Sadeq Bakhy, Enass Flaieh and Mortada Jabbar 2018 *An Experimental Study for Grasping and Pinching Controls for an Underactuated Robotic Finger Using a PID Controller* (2nd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 433

[31] Muhsin J Jweeg, Abdulkareem Abdulrazzaq Ahumday, and Ali Faik Mohammed Jawad 2019 *Dynamic Stresses and Deformations Investigation of the Below Knee Prosthesis using CT-Scan Modeling* (International Journal of Mechanical & Mechatronics Engineering) vol 19 no 1

[32] Fahad M Kadhim, Ayad M Takhakh and Asmaa M Abdullah 2019 *Mechanical Properties of Polymer with Different Reinforcement Material Composite That used for Fabricates Prosthetic Socket* (Journal of Mechanical Engineering Research and Developments) vol 42 no 4 pp 118-123

[33] Esraa A Abbod, Muhammad Al-Waily, Ziadoon M R Al-Hadrayi, Kadhim K Resan and Saif M Abbas 2020 *Numerical and Experimental Analysis to Predict Life of Removable Partial Denture* (IOP Conference Series: Materials Science and Engineering, 1st International Conference on Engineering and Advanced Technology) vol 870

[34] Fahad M Kadhim, Ayad M Takhakh and Jumaa S Chiad 2020 *Modeling and Evaluation of Smart Economic Transfemoral Prosthetic* (Defect and Diffusion Forum Journal) vol 398 pp 48–53

[35] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Waily 2020 *Fatigue Characterization of Laminated Composites used in Prosthetic Sockets Manufacturing* (Journal of Mechanical Engineering Research and Developments) vol 43 no 5 pp 384-399

[36] Mortada A Jabbar, Sadeq H Bakhy and Enass H Flaieh 2020 *A New Multi-Objective Algorithm for Underactuated Robotic Finger During Grasping and Pinching Assignments* (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[37] Muhammad Al-Waily and Zaman Abd Almalik Abd Ali 2015 *A Suggested Analytical Solution of Powder Reinforcement Effect on Buckling Load for Isotropic Mat and Short Hyper Composite Materials Plate* (International Journal of Mechanical & Mechatronics Engineering) vol 15 no 4

[38] Muhammad Al-Waily, Alaa Abdulzahra Deli, Aziz Darweesh Al-Mawash and Zaman Abd Almalik Abd Ali 2017 *Effect of Natural Sisal Fiber Reinforcement on the Composite Plate Buckling Behavior* (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 1

[39] Ameer A Kadhim, Muhammad Al-Waily, Zaman Abd Almalik Abd Ali, Muhsin J. Jweeg and Kadhim K. Resan 2018 *Improvement Fatigue Life and Strength of Isotropic Hyper Composite Materials by Reinforcement with Different Powder Materials* (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 2

[40] Mohsin Abdullah Al-Shammari and Muhammad Al-Waily 2018 *Analytical Investigation of Buckling Behavior of Honeycombs Sandwich Combined Plate Structure* (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 4 pp 771-786

[41] Jumaa S Chiad, Muhammad Al-Waily and Mohsin Abdullah Al-Shammari 2018 *Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders* (International Journal of Mechanical Engineering and Technology) vol 9 no 9 pp 305-317

[42] A A Taher, A M Takhakh and S M Thahab 2018 *Experimental Study of Improvement Shear Strength and Moisture Effect PVP Adhesive Joints by Addition PVA* (IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science) vol 454

[43] Ahmed A Taher, Ayad M Takhakh and Sabah M Thaha 2018 *Experimental Study and Prediction the Mechanical Properties of Nano-Joining Composite Polymers* (Journal of Engineering and Applied Sciences) vol 13 no 18 pp 7665-7669
[44] Mahmud Rasheed Ismail, Zaman Abud Almalik Abud Ali and Muhannad Al-Waily 2018 Delamination Damage Effect on Buckling Behavior of Woven Reinforcement Composite Materials Plate (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 5 pp 83-93

[45] S I Salih, J K Oleiwi and H M Ali 2018 Study the Mechanical Properties of Polymeric Blends (SR/PMMA) Using for Maxillofacial Prosthesis Application (International Conference on Materials Engineering and Science, IOP Conference Series: Materials Science and Engineering) vol 454

[46] Mohsin Abdullah Al-Shammari and Sahar Emad Abdullah 2018 Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper Composite Plate Structures (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[47] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Waily 2018 Analytical and Numerical Investigations for Dynamic Response of Composite Plates Under Various Dynamic Loading with the Influence of Carbon Multi-Wall Tube Nano Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 6 pp 1-10

[48] Mohsin Abdullah Al-Shammari 2018 Experimental and FEA of the Crack Effects in a Vibrated Sandwich Plate (Journal of Engineering and Applied Sciences) vol 13 no 17 pp 7395-7400

[49] Marwah Mohammed Abdulridha, Nasreen Dakel Fahad, Muhammad Al-Waily and Kadhim K Resan 2018 Rubber Creep Behavior Investigation with Multi Wall Tube Carbon Nano Particle Material Effect (International Journal of Mechanical Engineering and Technology) vol 9 no 12 pp 729-746

[50] Mohsin Abdullah Al-Shammari, Qasim H Bader, Muhammad Al-Waily and A M Hasson 2020 Fatigue Behavior of Steel Beam Coated with Nanoparticles under High Temperature (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 287-298

[51] Ahmed A Taher, Ayad M Takakh and Sabah M Thahab 2020 Study and Optimization of the Mechanical Properties of PVP/PVA Polymer Nanocomposite as a Low Temperature Adhesive in Nano-Joining (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[52] Ekhlas Edan Kader, Akram Mahdi Abed and Mohsin Abdullah Al-Shammari 2020 Al2O3 Reinforcement Effect on Structural Properties of Epoxy Polysulfide Copolymer (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 320-328

[53] Muhammad Al-Waily, Mohsin Abdullah Al-Shammari and Muhsin J Jweeg 2020 An Analytical Investigation of Thermal Buckling Behavior of Composite Plates Reinforced by Carbon Nano Particles (Engineering Journal) vol 24 no 3

[54] Muhsin J Jweeg, Ali S Hammood and Muhammad Al-Waily 2012 A Suggested Analytical Solution of Isotropic Composite Plate with Crack Effect (International Journal of Mechanical & Mechatronics Engineering) vol 12 no 5

[55] Muhammad Al-Waily, Maher A R Sadiq Al-Baghdadi and Rasha Hayder Al-Khayat 2017 Flow Velocity and Crack Angle Effect on Vibration and Flow Characterization for Pipe Induce Vibration (International Journal of Mechanical & Mechatronics Engineering) vol 17 no 5 pp 19-27

[56] Kadhim K Resan, Abbas A Alasadi, Muhammad Al-Waily and Muhsin J Jweeg 2018 Influence of Temperature on Fatigue Life for Friction Stir Welding of Aluminum Alloy Materials (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 2

[57] Rasha Hayder Al-Khayat, Maher A R Sadiq Al-Baghdadi, Ragad Aziz Neama and Muhammad Al-Waily 2018 Optimization CFD Study of Erosion in 3D Elbow During Transportation of Crude Oil Contaminated with Sand Particles (International Journal of Engineering & Technology) vol 7 no 3 pp 1420-1428

[58] Mohsin Abdullah Al-Shammari, Lutfi Y Zedan and Akram M Al-Shammari 2018 FE simulation of multi-stage cold forging process for metal shell of spark plug manufacturing (1st International Scientific Conference of Engineering Sciences-3rd Scientific Conference of Engineering Science)

[59] Ragad Aziz Neama, Maher A R Sadiq Al-Baghdadi and Muhammad Al-Waily 2018 Effect of Blank
Holder Force and Punch Number on the Forming Behavior of Conventional Dies (International Journal of Mechanical & Mechatronics Engineering) vol 18 no 4

[60] Abeer R Abbas, Kadhim A Hebeatir and Kadhim K Resan 2018 *Effect of CO₂ Laser on Some Properties of Ni46Ti50Cu4 Shape Memory Alloy* (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 2 pp 451-460

[61] Muhsin J Jweeg, Kadhim K Resan, Esraa A Abbod and Muhammad Al-Waily 2018 *Dissimilar Aluminium Alloys Welding by Friction Stir Processing and Reverse Rotation Friction Stir Processing* (IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science) vol 454

[62] Worood Hussein and Mohsin Abdullah Al-Shammari 2018 *Fatigue and Fracture Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy* (IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science) vol 454

[63] Abeer R Abbas, Kadhim A Hebeatir and Kadhim K Resan 2018 *Effect of Laser Energy on the Structure of Ni46–Ti50–Cu4 Shape-Memory Alloy* (International Journal of Nanoelectronics and Materials) vol 11 no 4 pp 481-498

[64] Jumaa S Chiad and Fadhel Abbas Abdulla 2018 *Effect of Number and Location of Dampers on Suspension System for Washing Machine* (International Journal of Mechanical Engineering and Technology) vol 9 no 8 pp 794-804

[65] H J Abbas, M J Jweeg, Muhammad Al-Waily and Abbas Ali Diwan 2019 *Experimental Testing and Theoretical Prediction of Fiber Optical Cable for Fault Detection and Identification* (Journal of Engineering and Applied Sciences) vol 14 no 2 pp 430-438

[66] Dania Fadhil Abbas, Kadhim Kamil Resan and Ayad M Takhakh 2020 *Microstructure, Mechanical and Corrosion Properties of the 50%Ni-47%Ti-3%Cu Shape Memory Alloy* (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[67] S K Mahmood, S H Bakhy and M A Tawfik 2020 *Novel Wall-Climbing Robot Capable of Transitioning and Perching* (IOP Conference Series: Materials Science and Engineering)

[68] Muhsin J Jweeg, Salah N Alnomani and Salah K Mohammad 2020 *Dynamic Analysis of a Rotating Stepped Shaft with and without Defects* (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[69] Hussein I Mansoor, Mohsin Al-shammari and Amjad Al-Hamood 2020 *Theoretical Analysis of the Vibrations in Gas Turbine Rotor* (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[70] Akeel Z Mahdi, Samir A Amin and Sadeq H Bakhy 2020 *Influence of Refill Friction Stir Spot Welding Technique on the Mechanical Properties and Microstructure of Aluminium AA5052 and AA6061-T3* (3rd International Conference on Engineering Sciences, IOP Conference Series: Materials Science and Engineering) vol 671

[71] Suhair Ghazi Hussein, Mohsin Abdullah Al-Shammari, Ayad M Takhakh and Muhammad Al-Waily 2020 *Effect of Heat Treatment on Mechanical and Vibration Properties for 6061 and 2024 Aluminium Alloys* (Journal of Mechanical Engineering Research and Developments) vol 43 no 1 pp 48-66

[72] Ramses E Alcaide-Aguirre, David C Morgenroth and Daniel P Ferris 2013 *Motor Control and Learning with Lower-Limb Myoelectric Control in Amputees* (J. Rehabil. Res. Dev.) vol 50 no 5 pp 687-698

[73] V G Chang 2006 *Fundamentos de Medicina de Rehabilitación* (Costa Rica: Editorial de la Universidad de Costa Rica)

[74] M S C H Chien, A Erdemir, A J van den Bogert and W A Smith 2014 *Development of Dynamic Models of the Mauch Prosthetic Knee for Prospective Gait Simulation* (J. Biomech) vol 47 no 12 pp 3178-3184
[75] A O Foundation 2016 Management of Limb Injuries During Disasters and Conflicts (International Committee of Red Cross)
[76] Anti-Personnel Landmines: Friend or Foe? 2020 (International Committee of the Red Cross)
[77] A J H Korver 1996 Injuries of the Lower Limbs Caused by Antipersonnel Mines: the Experience of the International Committee of the Red Cross (Injury) vol 27 no 7
[78] B Paudel, B K Shrestha and A K Banskota 2005 Two Faces of Major Lower Limb Amputations (Kathmandu Univ. Med. J.) vol 2 no 3
[79] F R G Colombo, S Filippi and C Rizzi 2010 A new Design Paradigm for the Development of Custom-Fit Soft Sockets for Lower Limb Prostheses (Computers in Industry) vol 61 no 6
[80] R Greenwald, R Dean and W Board 2003 V. Management: Smart Variable Geometry Socket (SVGS) Technology for Lower-Limb Prostheses (J. Prosthetics Orthot.) vol 15
[81] Jim Richards, David Levine and Michael Whittle 2012 Whittle’s Gait Analysis (Elsevier Ltd)
[82] T Kobayashi, M S Orendurff and D A Boone 2013 Effect of Alignment Changes on Socket Reaction Moments During Gait in Transfemoral and Knee-Disarticulation Prostheses (J. Biomech.) vol 46
[83] C Ngan 2015 Design and Evaluation of a Prosthetic Knee Joint Based on Automatic Stance-Phase Lock (Aspl) Technology for Children with Transfemoral Amputations (University of Toronto)
[84] J Theron 2017 Design, Development and Testing of an Adjustable Above-Knee Prosthetic Leg for Toddlers (Stellenbosch University)
[85] Robert E Stewart 1972 Selection and Application of Knee Mechanisms (Bull. Prosthet. Res.)
[86] C W Radcliffe 1994 Four-Bar Linkage Prosthetic Knee Mechanisms: Kinematics, Alignment and Prescription Criteria (Prosthet. Orthot. Int.) vol 18 no 3 pp 159–173
[87] C L Silver-Thorn and M B Glaister 2009 Functional Stability of Transfemoral Amputee Gait Using the 3R80 and Total Knee 2000 Prosthetic Knee Units (J. Prosthetics Orthoth.)
[88] Z M Abdulhasan 2019 Impact of Combined Microprocessor Control of the Prosthetic Knee and Ankle on Gait Termination in Unilateral Trans-Femoral Amputees, Limb Mechanical Work Performed on Centre of Mass to Terminate Gait on a Declined Surface Using Linx Prosthetic Device (University of Bradford)
[89] G Colombo, C Comotti, D F Redaelli, D Regazzoni, C Rizzi and A Vitali 2016 A Method to Improve Prosthesis Leg Design Based on Pressure Analysis at the Socket-Residual Limb Interface (Proc. ASME Des. Eng. Tech. Conf.) vol 1A pp 1-8
[90] F M Kadhim, J S Chiat and M A S Enad 2020 Evaluation and Analysis of Different Types of Prosthetic Knee Joint Used by Above Knee Amputee (Defect Diffus. Forum) vol 398 pp 34-40
[91] S Phanphet, S Dechjarern and S Jomjanyong 2017 Above-Knee Prosthesis Design Based on Fatigue Life Using Finite Element Method and Design of Experiment (Med. Eng. Phys.) vol 43 pp 86–91
[92] S Lapapong, S Sucharitpawatkul, N Pitaksapsin, C Srisurangkul, S Lerspalungsanti, R Naewngerndee, K Sedchaicharn, W Chonnapatrump and J Pipitpukdee 2017 Finite Element Modeling and Validation of a Four-Bar Linkage Prosthetic Knee Under Static and Cyclic Strength Tests (Journal of Assistive, Rehabilitative & Therapeutic Technologies)
[93] S Blumentritt 1997 A New Biomechanical Method for Determination of Static Prosthetic Alignment (Prosthetics Orthot. International) pp 107–113
[94] Ottobock, 3D L.A.S.A.R. Posture (https://shop.ottobock.us/media/pdf/647G1046-all_INT_INT-10-2006w(3546491)_en.pdf)
[95] C W Radcliffe 1977 The Knud Jansen Lecture : Above-knee prosthetics (Prosthet. Orthot. Int.)
[96] C W Radcliffe 1970 Prosthetic-Knee Mechanism for Above knee Amputees In: Murdoch, G. ed. (Prosthet. Orthotic Pract.)
[97] D A Hobson and L E Torfason 1974 Optimization of Four-Bar Knee Mechanisms- a Computerized Approach (Journal of Biomechanics) vol 7 no 4 pp 371-376
[98] J J Muñoz-César, L H Hernández-Gómez, O I López-Suárez, G Urriolagoitia-Sosa, J A Beltrán-Fernández, G Urriolagoitia-Calderón N D Pava-Chipol and L J Quintero-Gómez 2013 Optimization
of the Design of a Four Bar Mechanism for a Lower Limb Prosthesis Using the Taboo Search Algorithm (Advances in Bio-Mechanical Systems and Materials) vol 40

[99] J F Soriano, J E Rodriguez and L A Valencia 2020 Performance Comparison and Design of an Optimal Polycentric Knee Mechanism (J. Brazilian Soc. Mech. Sci. Eng.) vol 42 no 5 pp 1–13

[100] N Eqra, A Hossein A Ramin 2018 Optimal Synthesis of a Four-Bar Linkage for Path Generation Using Adaptive PSO (J. Brazilian Soc. Mech. Sci. Eng.) vol 40 no 9 pp 1–11

[101] Pfeifer R Riener and H Vallery 2012 An Actuated Transfemoral Prosthesis with Optimized Polycentric Knee Joint (The Fourth IEEE RAS/EMBS, International Conference on Biomedical Robotics and Biomechatronics) pp 1807–1812

[102] Muhannad Al-Waily, Iman Q Al Saffar, Suhair G Hussein and Mohsin Abdullah Al-Shammari 2020 Life Enhancement of Partial Removable Denture made by Biomaterials Reinforced by Graphene Nanoplates and Hydroxyapatite with the Aid of Artificial Neural Network (Journal of Mechanical Engineering Research and Developments) vol 43 no 6 pp 269-285

[103] Ehab N Abbas, Muhannad Al-Waily, Tariq M Hammza and Muhsin J Jweeg 2020 An Investigation to the Effects of Impact Strength on Laminated Notched Composites used in Prosthetic Sockets Manufacturing (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928

[104] Muhannad Al-Waily, Moneer H Tolephih and Muhsin J Jweeg 2020 Fatigue Characterization for Composite Materials used in Artificial Socket Prostheses with the Adding of Nanoparticles (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928