THE STRUCTURE OF LANDSCAPE GARDENING LANDSCAPES IN CENTRAL EUROPE

I. V. Kravtsova

Structurality is one of the important peculiarities of landscapes of different genesis and levels of organization. The structure of the landscape determines its physiognomic organization, shape, spatial and structural features. Garden and park landscapes are examples of constructive territory.
planning, cultural or «soft» use of natural conditions and resources, organization of supplementary interaction between man and nature. Therefore, the study of the structure of garden and park landscapes of Central Europe is an actual scientific problem. The aim of the article: to research the structure of garden and park landscapes of Central Europe. Studies of the structure of garden and park landscapes of Central Europe have been based on the principle of natural-antropogenic coexistence. General scientific and specific scientific research methods have been used, namely: on the basis of expeditionary methods maps of the landscape structure of garden and park landscapes of the study area have been constructed. Spatial structure models have been built in the Corel Draw program based on the digitized surface of the planet Earth in the Google Earth program, vertical profiles of the relief of garden and park landscapes have been done with the help of Google Earth Pro tools. Studies of the daily state of garden and park landscapes have been carried out according to the generally accepted method of performing microclimatic observations. The article presents maps of the landscape structure and spatial configurations of the following garden and park landscapes: Pechersky Park (Pechera village, Tulchynsky District, Vinnytsia Oblast, Ukraine), Sokilets Park (Sokilets Village, Vinnytsia District, Vinnytsia Oblast, Ukraine), park Arcadia (Nieborow, Lod Voivodeship, Poland). Vertical relief profiles have been constructed. The temporal structure of changes in the state of garden and park landscapes in the research area have been studied using the example of the garden and park landscape of the Sofiivka National Dendrological Park of the National Academy of Sciences of Ukraine (Uman, Cherkasy Oblast, Ukraine).

Key words: rational nature use, constructive geography, anthropogenic landscape science, Central Europe, structure, garden and park landscape.
природні, так і соціально-економічні умови регіону.

З метою дослідження структури садово-паркових ландшафтів Центральної Європи були використані як загальнонаукові, так і конкретнонаукові методи дослідження. На основі експедиційних методів побудовані карти ландшафтної структури садово-паркових ландшафтів території дослідження. Моделі просторової структури побудовані у програмі Corel Draw на основі оцифрованої поверхні планети Земля у програмі Google Earth, вертикальні профілі рельєфу садово-паркових ландшафтів виконані з допомогою інструментів Google Earth Pro.

Дослідження добового стану садово-паркових ландшафтів проводилися за загальноприйнятою методикою виконання мікрокліматичних спостережень. Спостереження проводилися за температурою повітря за допомогою аспіраційного психрометра, за швидкістю вітру – анемометра чашкового і за станом неба. Прилади повернені із приладами, що використовуються на реперній метеостанції «Умань» (м. Умань, Черкаська обл., Україна). Натурна ділянка – садово-парковий ландшафт Національного дендрологічного парку «Софіївка» НАН України (м. Умань, Черкаська обл., Україна), у межах якого взаємодіють різні горизонтальні та вертикальні діяльні поверхні, що обумовлюють формування своєрідного дійового шару: поля, лісового масиву, водних поверхонь, поверхонь, вкритих асфальтом, традиційної забудови висотою 3-5 поверхів, сучасної забудови висотою 9 поверхів тощо. Отримані значення метеорологічних елементів завжди має деякі особливості, що швидко змінюються від місця до місця.

Результати та обговорення

Дослідження садово-паркових ландшафтів Центральної Європи показали, що ці антропогенні ландшафтні комплекси складаються із множини природних і антропогенних елементів, які визначають їхню конфігурацію, форму та фізіономічність, а також мозаїчну структуру, яка постійно змінюється як під впливом зовнішніх чинників (переважаючим фактором трансформації є людина), а також ритмів та циклів функціонування ландшафтної обоємки Землі.

Варто зазначити, що у словнику іншомовних слів дається така етимологія та трактування змісту «структура» – це слово латинського походження (structura – побудова, розміщення); це внутрішня будова чогось, певний взаємозв’язок складових частин цілого (Мельничук, 1977). У тлумачному словнику Merriam-Webster структура розуміється як те, що організовано за певною схемою (something arranged in a definite pattern of organization); порядок розміщення частин у субстанції чи тілі (the arrangement of particles or parts in a substance or body); організація частин визначена загальним характером цілого (organization of parts as dominated by the general character of the whole); узгоджена форма чи організація (coherent form or organization); сукупність елементів у взаємозв’язках між ними (the aggregate of elements of an entity in their relationships to each other).

Структурність не лише садово-паркових ландшафтів Центральної Європи, але власне різних груп та класів антропогенних ландшафтів визначається двома категоріями: простором і часом (рис. 1).
Відповідно до принципу природно-антропогенного сумісництва просторова структура садово-паркових ландшафтів території дослідження визначається сукупністю натуральних і антропогенных урочищ та типів місцевостей. Антропогенна просторова структура рівнинних садово-паркових ландшафтів Центральної Європи сформована сукупністю відповідних урочищ, які об’єднуються в межах руслового, заплавного, надзаплавного, терасового, схилового та вододільного типів місцевостей. Ці елементи ландшафтної структури мають різний ступінь антропогенної трансформації. Варто зазначити, що істотних змін зазнають найнижчі гіпсометричні рівні поверхні: це русловий і заплавний типи місцевостей. При організації садово-паркових ландшафтів натуральне урочище руслового типу місцевостей переbudовується: створюються каскади ставків, будуються хвиляери, дамби, канал. Водоспади, організуються складні ландшафтно-технічні системи дамб та шлюзів, насипаються острови. Як результат, маємо антропогенне збільшення площ водного дзеркала в межах відповідних територій (змінюється співвідношення ділянки поверхні), трансформацію ландшафтної структури річниці, зміни форм та розмірів заплавного типу місцевостей тощо. При організації садово-паркових ландшафтів у межах Дністрянсько-Дніпровського лісостепового краю, Західно-Українського краю зони широколистих лісів України урочища схилового типу місцевостей терасуються (наприклад, тераса Муз, тераса Бель В’ю (садово-парковий ландшафт Національного дендрологічного парку «Софіївка» НАН України, м. Умань, Черкаська обл., Україна). У межах урочищ вододільного типу місцевостей будуються палацово-паркові комплекси (садово-парковий ландшафт Печерського парку (с. Печера, Тульчинський р-н, Вінницька обл., Україна), садово-парковий ландшафт «Хороше» (м. Тульчин, Вінницька обл., Україна), садово-парковий ландшафт Синицького парку (с. Синиця, Уманський р-н, Черкаська обл., Україна), садово-парковий ландшафт Міловідового (с. Потапці, Канівський р-н, Черкаська обл., Україна). На рисунках показана сучасна просторова структура деяких садово-паркових ландшафтів Центральної Європи, а саме: садово-паркового ландшафту Печерського парку (с. Печера, Тульчинський р-н, Вінницька обл., Україна) (рис. 2), садово-паркового ландшафту Сокільського парку (с. Сокільця, Вінницький р-н, Вінницька обл., Україна) (рис. 3), садово-паркового ландшафту парку Аркадія (с. Небурів, Лодзинське воєводство, Польща) (рис. 4).
Рис. 2. Сучасна ландшафтна структура Печерського парку
(с. Печера, Тульчинський р-н, Вінницька обл.)
Масштаб: 1: 5000

Умовні позначення:

Русло-заплавний тип місцевостей. Урочища:

- русло річки Південний Буг шириною 60–70 м, середньою глибиною 1,5–2 м з мулістим дном, заповнене гранітними валунами;

- слабко хвиляста поверхня (2°), складена давніми алювіальними відкладами, вкрита сірими опідзоленими супішними ґрунтами з насадженнями з тополі білої, вільхи чорної, ясену звичайного, клену татарського;

- слабко хвиляста поверхня (2°), складена давніми алювіальними відкладами під лучною рослинністю.
Схиловий тип місцевостей. Урошища:
- урвистий схил (88°), складений гранітними брилами, з темно-сірими опідзоленими пилувато-середньосуглинковими ґрунтами під ясенево-клееново-липовими насадженнями;
- балка, з крутими схилами (75°–90°), з гранітними брилами, вкрита темно-сірими опідзоленими пилувато-середньосуглинковими ґрунтами під ясенево-кленово-липовими насадженнями;
- урвистий гранітний схил (75°–90°), вкритий темно-сірими опідзоленими крупнопилувато-середньосуглинковими ґрунтами, зайнятий малоповерховою сільською забудовою.

Вододільний тип місцевостей. Урошища:
- вирівняна лесова поверхня, зайнята малоповерховою забудовою та квітниками партерного типу;
- слабко хвиляста лесова поверхня (1°), вкрита темно-сірими опідзоленними ґрунтами під парковими насадженнями (капгірківський, ясен звичайний, береза бородавчаста, липа серцелиста, клен гостролистий, ялина звичайна, модрина європейська, каталина чудова тощо);
- вододільний тип місцевостей, де переважають урошища слабко хвилястих лесових поверхонь, вкритих культурними ґрунтами, під малоповерховою сільською забудовою;
- липова алея парку, доповнена насадженнями ялини звичайної та ясени, ширинною до 3 м, вкрита плиткою;
- каштанова алея, шириною до 4 м, заасфальтована;
- грабова алея, шириною до 3 м, вкрита бруківкою.
- ґрунтові доріжки ширинною від 1 м до 3 м;
- муровані сходи;
- межі садово-паркового ландшафту;
- межі урошищ;
- межі місцевостей.

Рис. 3. Сучасна ландшафтна структура Сокілецького парку
(с. Сокілець, Немирівський р-н, Вінницька обл.)
Масштаб: 1: 7300
Умовні позначення:

Руслово-заплавний тип місцевостей. Урочища:
- русло річки Південний Буг (середня ширина 60–100 м, глибина до 2 м) з гранітними валунами;
- канал (шириною від 8–10 м до 30 м) з укріпленими берегами, мулистим дном середньої глибини 80 см–1,3 м;
- грунтові доріжки шириною 50–100 см;
- асфальтна дорога шириною до 4,0 м;
- піщаний пляж;
- площа кам'яниста поверхня (1°–2°), вкрита сірими опідзоленними крупнопилувато-середньосуглинковими грунтами на давніх аллювіальних відкладах під насадженнями з ясен звичайного, вільхи чорної, осики, липи серцелісті, клену звичайного, ялин звичайної.

Схиловий тип місцевостей. Урочища:
- кам'яністий схил (85°–88°), складений лесовими породами, вкритий сірими опідзоленними крупнопилувато-середньосуглинковими грунтами під парковими насадженнями (тополя біла, клен звичайний, сосна звичайна, черешня);
- лесовий терасований схил (85°–88°), вкритий сірими опідзоленними крупнопилувато-середньосуглинковими грунтами з рядовими насадженнями з ялин звичайної, кінського канату, зайнятий малоповерховою забудовою санаторією;
- лесовий схил (10°), зайнятий культурними грунтами під малоповерховою сільською забудовою;
- муровані сходи шириною до метра;
- асфальтна дорога шириною до 4,0 м.

Інженерно-технічні системи:
- залізобетонна гребля;
- металевий міст.

Рис. 4. Карта ландшафтної структури садово-паркового ландшафту «Аркадія» (с. Небіров, Люблінське воєводство, Польща)
Умовні позначення:

Русловий тип місцевостей. Урочища:
- русло р. Скірнєвка (Skierniewka), звивисте, береги низькі, дно мулисте, середня глибина – 0,3–0,5 м;
- намивний острів, довжина – 65 м, ширина – 50 м, висота – до 2 м над урізом води, площа – 2800 м² (0,28 га), вкритий лучними ґрунтами під парковими деревами насадженнями;
- намивний острів, довжина – 180 м, ширина – 35–40 м, висота – до 2 м над урізом води, площа – 6374,3 м² (0,64 га), вкритий лучними ґрунтами під парковими деревами насадженнями;
- ставок, витягнутий з північного заходу на південний схід, довжина – 300 м, ширина – 100 м, площ – 31596, 59 м² (3,16 га), береги низькі, дно мулисте, середня глибина до 2 м.

Заплавний тип місцевостей. Урочища:
- вирівняна поверхня, складена льодовиковими і воднольодовиковими відкладами, вкрита сірими лісовими ґрунтами під парковими насадженнями із малими архітектурними формами: храм Діани, кам’яна арка, готичний дім, будинок Муграбі, цирк, амфітеатр;
- вирівняна поверхня, складена льодовиковими і воднольодовиковими відкладами, вкрита лучними ґрунтами під трав’янистою рослинністю;
- вирівняна поверхня, складена льодовиковими і воднольодовиковими відкладами, вкрита сірими лісовими ґрунтами під парковими широколистолісовими насадженнями;
- дорожні ландшафти;
- ставок, береги низькі, дно мулисте, середня глибина до 2,0 м;
- вирівняна поверхня, складена льодовиковими і воднольодовиковими відкладами, вкрита сірими лісовими ґрунтами під сільськогосподарськими угіддями;
- вирівняна поверхня, складена льодовиковими і воднольодовиковими відкладами, вкрита сірими лісовими ґрунтами під малоповерховим типом селитбеного ландшафту;
- межі урочищ;
- межі садово-паркового ландшафту «Аркадія».

Фізіономічність садово-паркових ландшафтов території дослідження як важлива ознака просторової організації антропогенних ландшафтних комплексів визначається геологогеоморфологічною будовою території. Вона не є константною. Її розвиток та зміни відбуваються досить швидко та динамічно. Чинником, що їх ініціює та спрямовує, є людина. Форма та розміри садово-паркових ландшафтов визначаються відповідно до плану організації об’єктів дослідження. Межі штучні. Площа може збільшуватися або зменшуватися. Як наслідок, рисунок садово-паркових ландшафтов дуже різноманітний. Внутрішньо конфігурацію, напрямки зниження фізичної поверхні, загальний характер простягання об’єкту визначають річкові долини. На сучасному етапі розвитку переважна більшість садово-паркових ландшафтов Центральної Європи затиснені іншими типами антропогенних ландшафтов, в основному, малоповерховими та сільськогосподарськими типами селитбенних ландшафтов.

Наприклад, сьогодні просторова конфігурація садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України нагадує силует крокуючої людини, основні лінії якого визначають долина р. Кам’янка та її притоки (рис. 5 - 9).
Рис. 5. Сучасна просторова конфігурація садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України

Просторово-часова трансформація конфігурації та просторової структури садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України показана на рисунках 6–9.

Рис. 6. Конфігурація садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України на початку XIX століття

Рис. 7. Конфігурація садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України наприкінці 80-х років XX століття

Рис. 8. Конфігурація садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України (1996 рік)

Рис. 9. Сучасна конфігурація садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України
У верхній частині це трикутник, який звужується в напрямку течії р. Кам’янка, на півдні садово-парковий ландшафт тягнеться вузькою смугою в межах русового та заплавного типів місцевостей, межуючи з малоповерховими та багатоповерховими типами селітебних ландшафтів м. Умані Черкаської області (рис. 10).

Рис. 10. Зображення просторової структури садово-паркового ландшафту «Софіївка» (м. Умань, Черкаська обл., Україна) в програмі Google Earth

Просторова структура садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України визначається напрямком простягання долини річки Кам’янка (басейн р. Південний Буг) та двома складними урочищами: балкою Звіринець та Грековою Балкою. Долина річки Кам’янка витягнута з північного сходу на південний захід, а від Нижнього ставка, який перерізає виходи Українського кристалічного щита, змінює напрям із півночі на південь. Урочища балок витягнуті з заходу, північного заходу на південь та південний схід. Перепад висот між урочищами вододільного та русового типів місцевостей становить 30–40 м; між урочищами вододільного типу місцевостей на дном балок 20–35 м.

Основу просторової структури садово-паркового ландшафту «Олександрія» (м. Біла Церква, Київська обл., Україна) формує похилі до русла річки Рось (басейн р. Дніпро) схил південної експозиції, порізаний трьома глибокими балками на чотири частини (рис.11). Ці складні урочища поступово розширюються в напрямку до річки, ускладнені урочищами ставків загальною площею близько 12 га.
Рис. 11. Зображення просторової структури садово-паркового ландшафту «Олександрія» (м. Біла Церква, Київська обл., Україна) в програмі Google Earth (дата зйомки 11.06.2019 р.)

Просторова конфігурація садово-паркового ландшафту «Олександрія» (м. Біла Церква, Київська обл., Україна) (рис.12) визначається напрямком простягання русла р. Рось. Перепад висот між уроочищами руслового та вододільного типів місцевостей становить 30–40 м. Балки врізаються на глибину 15–20 м.

Рис. 12. Сучасна конфігурація садово-паркового ландшафту «Олександрія» (м. Біла Церква, Київська обл., Україна)

Варто зазначити, що просторова конфігурація переважної більшості садово-паркових ландшафтів території дослідження визначається напрямком простягання відповідного гідрографічного об’єкту (рис. 13–16).
Рис. 13. Сучасна конфігурація садово-паркового ландшафту у с. Печера (Тульчинський р-н, Вінницька обл., Україна)

Рис. 14. Сучасна конфігурація садово-паркового ландшафту у с. Сокілець (Вінницький р-н, Вінницька обл., Україна)

Рис. 15. Сучасна конфігурація Печеро-Сокілецького садово-паркового ландшафту (Вінницька обл., Україна)

Рис. 16. Сучасна конфігурація Синицького садово-паркового ландшафту (с. Синиця, Уманський р-н, Черкаська обл., Україна)
Геолого-геоморфологічна будова території визначає загальний характер зміни фізичної поверхні території. Вертикальний профіль рельєфу садово-паркового ландшафту (рис. 17–20).

Рис. 17. Вертикальний профіль рельєфу садово-паркового ландшафту Синицького парку (с. Синиця, Уманський р-н, Черкаська обл., Україна)

Рис. 18. Вертикальний профіль рельєфу по лінії з північного сходу на південний захід садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України (м. Умань, Черкаська обл., Україна)
Рис. 19. Вертикальний профіль рельєфу садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України (м. Умань, Черкаська обл., Україна)

Рис. 20. Вертикальний профіль рельєфу Печеро-Сокілецького садово-паркового ландшафту (с. Печера, Тульчинський р-н, Вінницька обл.; с. Сокілець, Немирівський р-н, Вінницька обл., Україна)

Часова структура зміни станів садово-паркових ландшафтів території дослідження вивчена на прикладі садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН України (м. Умань, Черкаська обл., Україна). Роботи виконувалися у весняний період (20 березня, 03 квітня, 19 травня, 22 травня), упродовж якого спостерігаються найінтенсивніші амплітуди коливань добових температур, починається вегетація рослин, фікуються дати переходу через 0°C, + 5°C, + 10°C, + 15°C. Зміну добових станів садово-паркового ландшафту Національного дендрологічного парку «Софіївка» НАН
України проаналізуємо за показниками зміни температури повітря. Для проведення досліджень було обрано шість точок у східній частині садово-паркового ландшафту на схилі південної експозиції. Опорною є реперна метеорологічна станція «Умань» Черкаської області. Точка 1 – галявина «Грибок», узлісся; точка 2 – галявина «Грибок», 50 м від узлісся; точка 3 – лісовий масив (10 м від огороджі); точка 4 – лісовий масив (40 м від огороджі); точка 5 – поле (10 м від огороджі); точка 6 – поле (60 м від огороджі).

Аналізуючи отримані дані мікрокліматичних спостережень, варто відзначити, графіки ходу температур представлені подібними кривими. Добовий хід температури повітря має такі особливості.

20 березня 2015 року спостерігається поступове зростання температур на натурних точках 1–6 із максимумами о 12.00 і 15.00 годинах та поступовим зниженням до 18.00. Амплітуда коливань добової температури становить на точці 1 – 2,8°C, точці 2 – 1,8°C, точці 3 – 2,6°C, точці 4 – 2,3°C, точці 5 – 3,6°C, точці 6 – 3,9°C. На метеостанції «Умань» амплітуда коливання температури становить 3,3°C, спостерігається поступове зростання упродовж дня із максимумом о 18.00 (рис. 21).

Рис. 21. Графік ходу температури повітря 20 березня 2015 року

Рис. 22. Графік ходу температури повітря 03 квітня 2015 року
03 квітня температура повітря має більш різкий хід зміни. Амплітуда коливань становить на точці 1 – 14,7°С, точці 2 – 10,1°С, точці 3 – 10,3°С, точці 4 – 10,8°С, точці 5 – 13,8°С, точці 6 – 7,9°С, на метеостанції «Умань» – 15,2°С. Мінімальні показники температури повітря були зареєстровані о 9.00 на всіх натурних точках, а максимальні – о 15.00 (рис. 22).

19 травня 2015 року добовий хід зміни температури повітря має більш плавний характер. Графіки ходу ілюструють незначні амплітуди коливань, що становлять на точці 1 – 7,6°С, точці 2 – 7,1°С, точці 3 – 5,6°С, точці 4 – 6,1°С, точці 5 – 7,0°С, точці 6 – 7,2°С, метеостанції «Умань» – 6,0°С. Мінімальні температури повітря були зареєстровані о 9.00 на всіх точках спостереження, а максимальні о 15.00 на точках 1–6, на метеостанції «Умань» – о 18.00 (рис. 23).

Рис. 23. Графік ходу температури повітря 19 травня 2015 року

22 травня 2015 року графіки ходу зміни температури повітря мають плавний характер. Найнижчі температури були зареєстровані о 9.00 на всіх точках спостереження, а найвищі з 15.00 по 18.00. Амплітуда коливань температури становить у середньому 5,0 – 7,0°С (рис. 24).

Рис. 24. Графік ходу температури повітря 22 травня 2015 року
Аналіз останніх досліджень та публікацій. Питання структурності ландшафту розкривається у працях вітчизняних і зарубіжних учених. Зокрема В.М. Воловик (2007) зазначає, що структурність — це важлива властивість ландшафту, яка обумовлена системністю ландшафту. Автор стверджує, що без системи структури не існує. У загальній теорії систем, структура — це множина відносень певного типу між елементами. У прикладних застосуваннях теорії систем структура — це набір елементів та зв'язків між ними. Також В.М. Воловик наголошує, що структура можна розуміти і як конфігурацію ландшафту. На думку автора, структурність у теоретико-системному розумінні — «... це властивість системи мати внутрішні зв'язки між її складовими, а в розширеному — існування в системі її відмінних частин, пов'язаних між собою». М.Д. Гродзинський (2005) розкриває питання типів просторової конфігурації ландшафту, розрізняючи природні та соціокультурні конфігурації. О.В. Голубцов (2018) дає характеристику образу ландшафту, зауважуючи, що це зовнішній вигляд об'єкту. Автор пише: «образ ландшафту — це не лише «картинка», яка постає в уяві людини, а також і враження, емоційні переживання, певні цінності та значення, які людина пов'язує з ландшафтом». Критеріями для оцінки образу ландшафту є різноманітність, своєрідність та краса ландшафту, які визначаються складовими (природними компонентами та елементами; тілами природного та антропогенного походження). Тобто, власне, структурою ландшафту, яка буде вказувати на унікальність та красу ландшафного комплексу. А.А. Кліщ, Н.В. Максименко (2020) досліджують позиційно-динамічну територіальну структуру міського ландшафту. Авторами визначена та встановлена територіальна конфігурація різних типів ландшафтних смуг на основі запропонованої Б. Полиновим та доповненої М. Глазовською класичної схеми типології ландшафтних місць за водо-геохімічним режимом; розроблені картографічні моделі позиційно-динамічної структури ландшафтів Харкова. Детально описано виявлені типи режимів, характер просторового розміщення відповідних ландшафтних смуг.

Зарубіжні дослідники у своїх працях більше уваги звертають на питання структури ландшафту як об'єкту господарського використання (Zavadil, 2021), планування території та гармонізації сучасного урбанізованого середовища (Krutskikh, 2021). Досліджують фізіономічність ландшафту як складову наукового підходу щодо оцінки та ідентифікації ландшафтного комплексу, теоретичну основу фізіономічної структури ландшафтів, теорії ландшафтних інтер’єрів (Chmielewski, 2018). Оцінюють ландшафтне різноманіття окремих територій за допомогою різних ландшафтних метрик, серед яких і ландшафтна структура та види землеробства (Venturi, 2021). Аналізують роль просторової структури в загальному образі ландшафтної ідентичності; когнітивні аспекти, які людина сприймає як ландшафтну ідентичність через загальну просторову структуру, абстрагування, згадування деталей та надання символічного значення; узагальнюють просторові структури різних ландшафтів, їхню різноманітність як у сільському, так і в міському середовищах, класифікуючи їх на типи та підтипи; розробляють різні просторові моделі та визначають роль просторової структури в розумінні ідентичності ландшафту та рекомендації щодо включення та збереження важливих просторових структур і елементів у процесі планування територій (Nitavska, 2020). Досліджують фрагментацию та структурні зміни ландшафтів, які зумовлені просторовими еколо-соціальними процесами; просторово-
часові варіації ландшафтної моделі та структури антропогенно-трансформованих територій на основі даних дистанційного зондування Землі (Abbass, 2022); просторову структуру ландшафтів із метою оптимізації територіального просторового планування, захисту та управління ландшафтами (Pan, 2022; Festus, 2020).

Із точки зору сучасного антропогенного ландшафтознавства Центральна Європа є своєрідним природно-етно-культурним утворенням. Особливості природних умов цієї території, історія заселення та антропогенного перетворення – все це відбивається у фізіономічності різних класів антропогених ландшафтів території дослідження. Центральна Європа як природно-географічний регіон включає центральні ділянки Європи, що викрімляються за геолого-геоморфологічною будовою та займають проміжне гіпсометричне положення між високогір'ям Західної та Південної Європи, середньогір'ям Північної і низькогір'ям Східної Європи, чітко обмежовуючись «лесовою формоюцією» простягання. Центральну Європу формують Середньоєвропейська рівнина, Карпати (включаючи Дунайські ріvinи) і прилеглі до Середньоєвропейської рівнини острови Північного і Балтійського морів (Фрізькі, Датські, Борнхольм, Рюген, Моонзундські тощо). Протоками Балтійського моря (Скагеррак, Каттегат, Ересунн, Каттегат, Хамрарне), Фінською затокою, річками Нева та Свір Центральна Європа відмежовується від Фенноскандії, а водами Північного моря – від Британських островів. На північні території обмежується простяганням герцінід, східним передгрі'ям Альт і течіями річок Морава, Сава, Дунай та водами Чорного й Азовського морів. Східна межа Центральної Європи проводиться по західних відрогах меридіонально і субширотно розташованого ланцюга височин (Веліська, Тихвинська, Вадайська, Середньобірісійська, Смоленсько-Московська, Донське пасмо) та річці Дон до впадання її в Таганроцьку затоку (Ґудзевич, 2005; Мартонн, 1938).

У структуру Центральної Європи як суспільно-географічного регіону різні автори відносять різні європейські держави. Наприклад І.В. Смаль, О.М. Харченко (2013) у Центральну Європу об'єднують Білорусь, Молдову, Польщу, Росію, Румунію, Словаччину, Угорщину, Україну та Чехію. В.В. Безугляй, С.В. Козинець (2007) – Білорусь, Естонію, Латвію, Литву, Польщу, Росію (європейська частина), Словаччину, Угорщину, Україну, Чехію. Суспільно-географічним ядром Центральної Європи є Польща, Словаччина, Угорщина, Україна та Чехія.

Садово-паркові ландшафи – це група антропогених ландшафтів, які утворені в результаті господарської діяльності людини, що спрямована за задоволення матеріальних та духовних потреб; в яких природні компоненти (гірські породи, вода, повітря, ґрунт, рослинність, тваринний світ, сонячна радіація) у поєднанні з малими архітектурними формами та спорудами, дорожньо-лінійною мережею утворюють гармонійну, суплетивну ландшафтну систему. Ці антропогенні ландшафтні комплекси насичені різноманітними культурними артефактами, мають сильний асоціативний, історичний аспект і, на нашу думку, є так званими ландшафтними культурними ідентифікаторами відповідних регіонів. Водночас, цю групу антропогених ландшафтів варто розглядати як таку, що несе в собі інформацію про звичайні та унікальні особливості природних умов регіону.

Висновки

За результатами досліджень структурності садово-паркових ландшафтів Центральної Європи встановлено, що структурність садово-
паркових ландшафтів розкривається у просторі та часі. Просторова структура об’єктів дослідження визначається сукупністю елементарних ландшафтних комплексів локального рівня організації. Фізіономічність обумовлена геолого-геоморфологічною будовою, рослинністю, малами архітектурними формами та палацово-парковими комплексами. Конфігурація — форму, розмірами садово-паркового ландшафту та напрямком простягання річкової долини. Часові структури садово-паркових ландшафтів є дуже різноманітними.

Список використаних джерел

Воловик В. М. Ландшафтознавство. Вінниця: О. Власюк, 2007. 204 с.

Голубцов О. В. Образ ландшафту: аналіз і оцінювання у ландшафтному плануванні. Український географічний журнал. 2018. № 1 (101). С. 15-23.

Гродзинський М.Д. Пізнання ландшафту: місце і простір: монографія. К.: Видавничо-поліграфічний центр «Київський університет», 2005. Т.2. 503 с.

Гудзевич А. В. Регіональна фізична географія (Європа та Азія): навчальний посібник. Вінниця: «Віндрук», 2005. 464 с.

Денисик Г. І. Антропогенне ландшафтознавство: навчальний посібник. Частина І. Глобальне антропогенне ландшафтознавство. Вінниця: ПП «ТД «Едельвейс і К», 2012. 336 с.

Смаль І., Харченко О. Соціально-економічна географія світу. Регіони і країни: Європа. Ніжин: НДУ ім. М. Гоголя, 2013. 499 с.

Структура. Словник іншомовних слів / за ред О.С. Мельничука. К.: Головна редакція УРЕ, 1977. С. 641.

Abbas Z., Zhu Z. Y., Zhao YL. Spatiotemporal analysis of landscape pattern and structure in the Greater Bay Area, China. *Earth science informatics*. 2022. 15(7). P. 1977-1992.

Chmielewski T. J., Butler A., Chmielewski S. Landscape’s physiognomic structure: conceptual development and practical applications. *Landscape research*. 2018. 43 (3). P.410-427.

Festus O O., Ji W., Zubair O. A. Characterizing the Landscape Structure of Urban Wetlands Using Terrain and Landscape Indices. *Land*. 2020. 9 (1). 29 s.

Klieshch A. A., Maksymento N. V. Positional-dynamic territorial structure of the urban landscape. *Journal of Geology Geography and Geocology*. 2020. 29 (3). P. 539-549.

Krutskikh N. Modelling the structure of terrestrial landscapes in urban areas. *Quaestiones Geographicae*. 2021. 40 (1). P. 39-49.

Nitavskva, N. The Spatial Structure of the Landscape as One of the Elements of the Landscape Identity. *5th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS)*. 2020. 960 p.

Pan YL., Wu YN., Xu X., Zhang B., Li WF. Identifying Terrestrial Landscape Character Types in China. *Land*. 2022. 11 (7). 2-19 p.

Structure. Merriam-Webster [Electronic resource] URL: https://www.merriam-webster.com/dictionary/structure# (date appeal 10.09.2022).

Venturi M., Piras F., Corrieri F., Fiore B., Santoro A., Agnoletti M. Assessment of Tuscany Landscape Structure According to the Regional Landscape Plan Partition. *Sustainability*. 2021. 13 (10). 2-20 p.

Zavadil T., Jancak V. Farmers shaping the rhadscape: how do they influence the form of landscape and land use structure in Czchia? *Geografie*. 2021. 126 (3). P. 319-345.

References (translated & transliterated)

Volovik, V.M. (2007). Landshaftoznavstvo [Landscape science]. Vinnytsia: O. Vlasyuk. 204 p.[In Ukrainian].

107
Ukrainian Journal of Natural Sciences. Issue 1

Український журнал природничих наук. Випуск 1

Golubtsov, O.V. (2018). Obraz landshaftu: analiz i otsinyuvannya u landshaftnomu planuvanni [Landscape image: analysis and evaluation in landscape planning]. Ukrayins’kyi heohrafichnyy zhurnal [Ukrainian Geographical Journal]. 1 (101). P. 15–23. [In Ukrainian].

Grodzinsky, M.D. (2005). Piznannya landshaftu: mistse i prostir: monohrafiya [Knowledge of the landscape: place and space: the monograph]. K.: Publishing and Printing Center «Kyiv University», 2005. T.2. 503 p. [In Ukrainian].

Gudzevich, A. V. (2005). Rehional’na fizychna heohrafiya (Yevropa ta Aziya): navchal’nyy posibnyk [Regional Physical Geography (Europe and Asia)]. Vinnytsia: «Windruk», 464 p. [In Ukrainian].

Denisyk, G. I. (2012). Antropohenne landshaftoznavstvo: navchal’nyy posibnyk. Chastyna I. Hlobal’ne antropohenne landshaftoznavstvo [Anthropogenic landscape science. Part I. Global anthropogenic landscape science]. Vinnytsia: PE «Edelweiss and K», 336 p. [In Ukrainian].

Smal, I., Kharchenko, O. (2013). Sotsial’no-ekonomichna heohrafiya svitu. Rehiony i krayiny: Yevropa [Socio-economic geography of the world. Regions and countries: Europe]. Nizhyn: NDU. M. Gogol, 499 p. [In Ukrainian].

Strukturna [Structure]. Slovnyk inshomovnykh sliv [Dictionary of foreign words] / edited by O.S. Melnychuk. K.: Main editorial office of URE, 1977. P. 641 [In Ukrainian].

Abbas Z., Zhu Z.Y., Zhao YL. (2022). Spatiotemporal analysis of landscape pattern and structure in the Greater Bay Area, China. Earth science informatics. 2022. 15(7). P. 1977-1992 [in English].

Chmielewski, T. J., Butler, A., Chmielewski, S. (2018). Landscape’s physiognomic structure: conceptual development and practical applications. Landscape research. 43 (3). P.410-427 [in English].

Festus, O O., Ji W., Zubair, O. A., (2020). Characterizing the Landscape Structure of Urban Wetlands Using Terrain and Landscape Indices. Land. 2020. 9 (1). 29 p. [in English].

Klieshch, A. A., Maksymenko, N. V. (2020). Positional-dynamic territorial structure of the urban landscape. Journal of Geology Geography and Geoeconomy. 29 (3). P. 539-549. [in English].

Krutskikh, N. (2021). Modelling the structure of terrestrial landscapes in urban areas. Quaestiones Geographicae. 40 (1). P. 39-49. [in English].

Nitavska, N. (2020). The Spatial Structure of the Landscape as One of the Elements of the Landscape Identity. 5th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS). 2020. 960 p. [in English].

Pan, YL., Wu, YN., Xu, X., Zhang, B., Li, WF. (2022). Identifying Terrestrial Landscape Character Types in China. Land. 2022. 11 (7). 2-19 p. Structure. Merriam-Webster. [Electronic resource] URL: https://www.merriam-webster.com/dictionary/structure# (date appeal 10.09.2022) [in English].

Venturi, M., Piras, F., Corrieri, F., Fiore, B., Santoro, A., Agnoletti, M. (2021). Assessment of Tuscany Landscape Structure According to the Regional Landscape Plan Partition. Sustainability. 2021. 13 (10). 2-20 p. [in English].

Zavadil, T., Jancak, V. (2021). Farmers shaping the landscape: how do they influence the form of landscape and land use structure in Czchia. Geografie. 2021. 126 (3). P. 319-345. [in English].

Отримано: 23 червня 2022
Прийнято: 27 вересня 2022