CRISPR Cas9 Mediated Generation of Bex2 KO Mouse Model and Transcriptome Analysis of the Brain

Noor Bahadar
China Japan Union Hospital, Jilin University

Rajiv Kumar Sah
Northeast Normal University

Salah Adlat
Northeast Normal University

Hanif Ullah
Guangxi Medical University

Zinmar Oo
Northeast Normal University

Fatoumata Binta Bah
Northeast Normal University

Farooq Hayel
Northeast Normal University

Muhammad Umar
Shenzhen University

Xuechao Feng
Northeast Normal University

Yaowu Zheng
Northeast Normal University

Minru Zong (zongmr@jlu.edu.cn)
China Japan Union Hospital, Jilin University

May Zun Zaw Myint
Northeast Normal University

Research Article

Keywords: Bex2, CRISPR-Cas9, Transgenic mouse model, Knock out, Transcriptome, Gene Ontology analysis, KEGG pathway

Posted Date: February 3rd, 2022
Abstract

Background. BEX family genes are expressed in many tissues and play significant roles in neuronal development.

Methods. In this study, a mouse model of Bex2 gene knockout was generated, using the CRISPR-Cas9 system. A fragment of the coding exon was successfully deleted. RT-qPCR confirmed loss of gene expression at the mRNA level. A transcriptomic study of the brain was performed to identify genes and pathways under Bex2 regulation. Essential biological functions under the control of Bex2 related to brain development were identified.

Results. A total of 93 genes were found as differentially expressed. Among up-regulated genes, Zfp967 and Zfp984, are zf protein-related genes. Tmsb15l is related to neuronal physiology. Among KEGG pathways, cell adhesion molecules (CAMs) and neuroactive ligand-receptor integration were most enriched. GO analysis identified cellular process, biological regulation, the metabolic process for Biological Processes. Cell, cell membrane, extracellular region and synapsis were found for Cellular Component. While binding, catalytic activity, molecular function were found for Molecular Function. A total of 53 KEGG disease terms were identified, included TNDM, Non-syndromic X-linked mental retardation, Neurodegeneration due to cerebral folate transport deficiency, Schizencephaly. Besides, HMGA, TF-Otx, RXR-like, SAND, zf-C2H2 and Homeobox transcription factors were enriched. A further study is required to confirm and explain each aspect identified.

Introduction

To date, five BEX genes are identified in humans (BEX1-5), five in chimp (BEX1-5), five in mice (Bex1-4 and Bex6), and four in rats (Bex1-4) genome. According to the phylogenetic grouping, mouse and rat both are missing Bex5 member of the Bex gene family. It is predicted that Bex5 got lost in mice during the murid lineages after it is diverged from other mammals. All the Bex genes family members are positioned on the X-chromosome, excluding Bex6, which is present on chromosome 16 of the murine genome (1). These genes show high sequence homology and are predominantly expressed in the brain (2). A promising feature of the BEX genes is that they offer high expression in the mouse brain and are responsible for more than 12% of the rat brain's expressed sequence tags (1, 2). BEX proteins have a role in transcription regulation and signalling pathways in neurodegeneration, cell cycle, and tumour growth (3–6).

The researchers have reported the involvement of BEX2 in various cancer types, such as glioblastoma, glioma, and breast cancer (5–7). BEX2 is characterized in glioma development (8) and is vital to cells' tumorigenesis with activated mTOR (9). BEX2 has a similar pro-survival function in LNT-229 glioma cells, and the downregulation of BEX2 sensitizes LNT-229 cells to the cell death mediated by a dominant-positive variant of p53 (10). The role of BEX2 in oncogenesis is supported by the fact that this gene's downregulation impairs neo-angiogenesis and migration of cells in oligodendroglioma (11). Due to the diverse expression pattern of BEX2 in various tumours types, there is conflicting evidence about the role
of BEX2 in multiple cancers. The BEX2 expression in glioblastoma is very high and promotes the proliferation and survival of the glioblastomas mediated by NF kB signalling (4). BEX2 is also involved in the cell moment and invasion in glioma (5).

For the prediction of new transcripts of a particular gene expression pattern in various tissues or developmental stages, the most widely used technology is RNA sequencing (RNA-seq) compared to DNA microarray analysis (12). In this study, a Bex2 KO mouse model has been generated using CRISPR Cas9 technology, and transcriptome analysis has been performed of the brain. Several essential pathways and KEGG diseases like TNDM, Non-syndromic X-linked mental retardation, Neurodegeneration due to cerebral folate transport deficiency, Schizencephaly are identified.

Methods

Animals

The Institutional Animal Care Committee and Animal Experimental Ethics Committee of Northeast Normal University (NENU/IACUC) have approved the study with approval number of (NENU/IACUC, AP2018011). All the recommendations for The Use of Laboratory Animals of NIH, USA, are followed strictly. Mice were kept in IVC cages (5-6 in each cage) at rotations of the 12/12 light-dark cycle in a pathogen-free environment with free access to food and water. The temperature of 21 degrees Celsius was maintained along 30-60% of humidity. Each time the mice were anaesthetized with 1% of pentobarbital natrium. The dose given was 10 mg/kg.

Designing of sgRNAs and construction of plasmid vector

The CRISPR Cas9 system is based on the 20bps nucleotide complementarity (13). These twenty nucleotides are termed as sgRNAs. These 20 nucleotides might be followed by a three bps nucleotide, NGG, where "N" can be any nucleotide, termed as Protospacer Adjacent Motif (PAM) (14). The Benchling database tool (https://www.benchling.com) was used to design sgRNAs. Two sgRNAs were chosen to delete the coding exon. The plasmid px330-U6-Chimeric_BB-CBhSpCas9 was purchased from Addgene (Addgene plasmid# 42230). The sgRNAs were ligated to the linearized plasmid vector according to the lab protocols. The sgRNAs designed and the respective positions on the genomic loci are shown in Table 1.

sgRNA name	Locus	sgRNA seq	PAM	Remarks
Bex2-1	1016	ctttgctctttaggagaa	TGG	DSB Position 1
Bex2-2	1169	gactactacgtgcctaggg	AGG	DSB position 2
Microinjection and genotype

Pre-requisites were carried out before going for microinjection of the vector to the mice's oocytes strain C57BL/6J. The plasmid vector was directly injected into each oocyte's pro-nuclei. They were transferred directly to the ovary of the pseudo-pregnant mother already prepared. Olympus IX71 inverted microscope and Narishige microinjector was used. Microinjection was carried out by the labs' technician. Bex2 specific primers targeting the upstream and downstream of sgRNAs were designed using the NCBI Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). As the pups were two weeks old, they were being labelled by cutting their fingers, which were used as templates for genotyping. The PCR was carried out according to the prescribed protocol. The PCR conditions were denaturation at 95°C for 4 minutes, 32 cycles of amplification at 94°C for 30 seconds, 56°C for 30 seconds and 72°C for 45 seconds followed by 10 mins extension at 72°C and then cooled down to 4°C. The PCR product was analyzed with 1% of agarose gel electrophoresis for up to one hour. GelDoc was used to observe the gel pictures (15). The transgenic littermates were separated accordingly. The chimaeras were obtained by crossing the littermates.

RNA extraction, synthesis of cDNA and qRT-PCR

Total RNA was extracted from brain tissues of Bex2 KO and WT male mouse (n=3), using Trizol reagent (Takara, Dalian, China). The extracted RNA was converted to cDNA using a reverse transcription kit (Takara, Dalian). Jena Analytika (Germany) system was used for RT-qPCR. Quantitative Real-Time PCR (qPCR) was conducted with SYBR green mix in triplicates (Takara, Dalian, China). All the results were normalized according to the previously reported mechanism (16).

RNA Extraction and Library Preparation for Transcriptome analysis

Total RNA from the brain of Bex2 KO and wild-type mice (n=3, biological replicates per sample, 6 in total) extracted using RNAiso plus reagent (Takara, Dalian) following the manufacturer's instruction and followed by an additional step of DNase I digestion to eliminate genomic DNA contamination. The sample size, and selection of the animals have been decided according to the published protocols (17). Male homozygous KO and pure WT were selected for further experiments since the Bex2 gene is X linked. Quality and purity of RNA was checked on Nanodrop, NanoDropTM One spectrophotometer (ThermoFisher Scientific, USA), and Agilent 2100 Bioanalyzer (Santa Clara, USA). One µg RNA for each transcript was used for the RNA-seq library. RNA-seq was performed on the BGISEQ-500 platform. The adaptor sequences and low quality sequence reads were removed from the data sets. Raw sequences were transformed into clean reads after data processing. Clean reads were mapped to the mouse genome (GCF_000001635.26_GRCm38.p6) by using the Bowtie2 tool (18). The mRNA Seq raw data were deposited at the NCBI's Sequence Read Archive (ID 792087 - BioProject - NCBI (nih.gov)) under the accession number PRJNA792087.

GO and KEGG Analysis of the differentially expressed genes
All the DEGs were mapped to the Gene Ontology database. To perform GO enrichment analysis, the phyper function in the R program was used. Briefly, all DEGs were firstly mapped to each term in the Gene Ontology database (19). Genes in each term were calculated, and the hypergeometric test was applied to find GO terms that are significantly enriched in DEGs compared to the background of all genes in reference species. Bonferroni correction was used for p-value adjustment (20). Q value (corrected p-value) < 0.05 was defined as significantly enriched GO terms in DEGs. Kyoto Encyclopedia of Genes and Genome pathway classification was performed by mapping all the DEGs to the KEGG pathway database (21). The pHYPER function in the R program was used to perform the enrichment analysis accordingly (16). Pathway with Q value ≤ 0.05 was considered as significantly enriched in differentially expressed genes (22).

Statistical Analysis

Results are expressed as means ± SEM (SEM). *P*-value <0.05 (unpaired Student’s *t*-test) was considered statistically significant. All graphics were prepared with GraphPad Prism 8 for Mac (GraphPad Software).

Results

Strategy of Bex2+/− mouse generation & Screening of mutants

The *Bex2* is a small gene and consists of only 1672 bps. The third exon contains the entire coding region. To inactivate the gene, the sgRNA_I was designed in front of the start codon, while the sgRNA_II was targeted upstream of the stop codon. To screen fragment deletion, primer pairs were designed flanking to sgRNA targets (Figure 1A). Nine pups were obtained after 19 days of the zygote transfer. Fifteen days later to the birth, these pups were weaned, cut their fingers for labelling purposes. The same biopsies were used for genotyping, following the standard protocols. Two out of nine mice were found transgenic for *Bex2*, as shown in figure 1B. The deleted (knocked-out) fragment was confirmed by ligating the PCR product fragment into a pMD18 simple vector (Takara, China). The chromatograph is shown (Figure 1C). These two mice were mated with a wild-type C57BL/6J background to segregate the alleles. F2 progenies were used as experimental organisms. The *Bex2* expression level was confirmed by qPCR in the brain and lungs (Figure 1D).

Gene expression profile of Bex2+/− and WT brain

The cDNA libraries were constructed from brain mRNA of 7 weeks old *Bex2+/−* and WT male mice in three replicates (n=3). BGISEQ platform was used for RNA-seq. Total raw reads for *Bex2+/−* and WT were 23.75 M for each sample. Adapter sequences and low-quality reads were filtered out, and each sample produced an average of 1.19 Gb data or 23.74M reads each, respectively, with Q30 base percentage 93.13% and 92.97%, while Q20 percentage was 98.10% and 98.03% (Data not shown). The clean reads were then aligned to the mouse reference genome (GCF_000001635.26_GRCm38.p6), and matching efficiency between clean reads was identified using Bowtie2 (23). Transcript expression levels were calculated and presented by RSEM (24).
Identification of differentially expressed genes

The genes expressed only in KO mice are termed differentially expressed genes (DEGs). Differentially expressed genes were identified accordingly (25). The criteria set for the selection of DEGs was log₂ fold change > 1, and FDR 0.001. According to the set standards, a total of 93 genes were identified as differentially expressed between Bex2−/− and WT, out of which 57 were up-regulated while 36 were down-regulated (Figure 2).

GO enrichment analysis

Gene Ontology (GO) is a standard gene function classification system that comprehensively explains the attributes of genes and gene products in organisms. GO has been divided into three categories; biological process, cellular components and molecular function (26). All the identified DEGs were assigned to the GO tool (Fig. 3A, 3B, 3C). The most significant GO terms enriched under Bex2−/− regulation among Biological processes were cellular process, biological regulation, regulation of the biological process, metabolic process, multicellular organismal process, response to stimulus and signalling etc. Among the Cellular Component category, cell, cell part, organelle, organelle part, protein-containing complex, synapse, synapse part, etc. were enriched. Among Molecular Function, binding, catalytic activity, molecular function, molecular transducer activity etc. were enriched.

KEGG analysis identifies many processes are under Bex2−/− regulation

KEGG pathway analysis helps to understand the biological function of gene networks. KEGG Pathway Enrichment Analysis was then performed to find the significantly enriched pathways in terms of DEGs mapped to the entire genome background (Figure 4). The most significant pathways enriched were cell adhesion molecules (CAMs), neuroactive ligand-receptor interaction, antigen processing and presentation, cAMP signalling pathway, cellular senescence, calcium signalling pathway etc.

KEGG Analysis of Disease-associated pathways

The identified DEGs were assigned to KEGG disease enrichment (Figure 5). The KEGG diseases enriched under Bex2−/− regulation were Transient neonatal diabetes mellitus (TNDM), Postaxial polydactyly, Non-syndromic X-linked mental retardation, Congenital lactase deficiency, and Neurodegeneration due to cerebral folate TD, among others. The genes involved in Postaxial polydactyl, Non-syndromic X-linked mental retardation

Genes that Encoding Transcription Factor Proteins

The essential regulatory proteins are termed transcription factors that play a role in multiple biological processes. Multiple TFs were identified in this study. TFs enriched under Bex2−/− regulation was HMGA self-build, Otx1 transcription factor, zf-C4 self-build TFs, SAND DNA-binding protein domain, Zinc fingers, and Homeobox transcription factor genes (Figure 6). (Figure 7). Otx proteins constitute a class of
vertebrate homeodomain-containing transcription factors essential for anterior head formation, including nervous development. SAND DNA-binding protein domain is localized in the cell nucleus and has a vital function in chromatin-dependent transcriptional control. It is found solely in eukaryotes. Six3 is identified among the Homeobox transcription factors (Log$_2$ FC = 2.98), which are vital in nervous system development Fig. 6.

Discussion

The RNA-guided genome manipulation based on type II prokaryotic CRISPR/Cas system has successfully generated transgenic mouse models (27–31). The Bex2 KO mouse model was generated using the CRISPR Cas9 gene modification system in this study. The gene was selected based on its importance in multiple physiological functions in the brain. The deletion of the fragment was confirmed by Sanger sequencing and, later on, the mRNA using RT-qPCR. A promising feature of the BEX genes is that they offer high expression in the mouse brain and are responsible for more than 12% of the rat brain's expressed sequence tags (1, 2). A brain transcriptome study was conducted in this study using RNA-seq methodology. The genes expressed only in KO mice are termed differentially expressed genes (DEGs). Differentially expressed genes were identified accordingly (25). The criteria set for the selection of DEGs was log$_2$ fold change > 1, and FDR 0.001. According to the set standards, a total of 93 genes were identified as differentially expressed between Bex2$^{-/-}$ and WT, out of which 57 were up-regulated while 36 were down-regulated. The most up-regulated gene is Tmsb15l, the log$_2$ FC is 8.29. Other researchers also found its upregulation in fibroblast of E14 using microarray analysis (32). H2-Q8, DEG log$_2$ FC is 6.62, also found up-regulated by other researchers using microarray analysis (33). Gvin1, 5.67 was identified IFN treatment of neuron cultures (34). Tgtp2, log$_2$ FC is 5.45. IncRNA-Tcam1 up-regulated Tgtp2 during spermatogenesis (35). In contrast, other researchers' results were inverse to this study, where they found that Tgtp2 was down-regulated in Mcpt6 KO mice (36). Serpina9, log$_2$ FC is 3.3. The SNP rs11628722 in the SERPINA9 gene was previously associated with incident ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study reviewed by (37). Other researchers identified that the SNPs in the SERPINA9 gene showed race-specific associations with characteristics of carotid atherosclerotic plaques (38). A team of researchers suggests that along with other genes, Serpina9 might associate with Alzheimer's disease neuropathology in the neurodegenerative process (39). Six3, DEG log$_2$ FC is 2.98. Ectopic expression of Six3 in chicks has shown that Six3 is a direct negative regulator of Wnt1 expression (40). Cldn2 (+2.3), It was found that CLDN2 expression significantly inhibited the malignant phenotype of OS cells in vitro. Rnaset2b, the most down-regulated gene, log$_2$ FC is -9.0. An inflammatory disease, Aicardi–Goutières syndrome, is related to this genes' mutation (41). Another team evaluated two patients with RNASEH2B mutations (42). Rex2, DEG log$_2$ FC -4.90, which a group of researchers identifies as a lesser-studied gene (43). Mss51, DEG log$_2$ FC -3.23 is a metabolism-related gene (44, 45). CD300lf, DEG log$_2$ FC -2.7 is the primary physiologic receptor of murine norovirus (46). Stab2, DEG log$_2$ FC is -2.39 is shown to be venous thromboembolic disease (47).
The most significant GO terms enriched under Bex2\(^{-/-}\) regulation among Biological processes were cellular process, biological regulation, regulation of the biological process, metabolic process, multicellular organismal process, response to stimulus and signalling, etc. Among the Cellular Component category, cell, cell part, organelle, organelle part, protein-containing complex, synapse, synapse part, etc., were enriched. Among Molecular Function, binding, catalytic activity, molecular function, molecular transducer activity, etc. were enriched. KEGG classification regulated under Bex2\(^{-/-}\), several DEGs were annotated to multiple pathways from different categories. KEGG Pathway Enrichment Analysis was then performed to find the significantly enriched pathways in terms of DEGs mapped to the entire genome background. The most significant pathways enriched were cell adhesion molecules (CAMs), neuroactive ligand-receptor interaction, antigen processing and presentation, cAMP signalling pathway, cellular senescence, calcium signalling pathway, etc. The identified DEGs were assigned to KEGG disease enrichment. The KEGG diseases enriched under Bex2\(^{-/-}\) regulation were Transient neonatal diabetes mellitus (TNDM), Postaxial polydactyly, Non-syndromic X-linked mental retardation, Congenital lactase deficiency, and Neurodegeneration due to cerebral folate TD, among others. X-linked mental retardation (XLMR) is an inborn disorder that triggers malfunction to grow intellectual capabilities as of alterations in numerous genes on the X chromosome. XLMR is subdivided into syndromic and non-syndromic types (NS-XLMR), varying on whether further anomalies are observed on bodily inspection, laboratory analysis and brain tomography.

Declarations

Ethics approval and consent to participate. The Institutional Animal Care Committee and Animal Experimental Ethics Committee of Northeast Normal University (NENU/IACUC) have approved the study with approval number of (NENU/IACUC, AP2018011). All the recommendations for The Use of Laboratory Animals of NIH, USA, are followed strictly. Mice were kept in IVC cages (5-6 in each cage) at rotations of the 12/12 light-dark cycle in a pathogen-free environment with free access to food and water. The temperature of 21 degrees Celsius was maintained along 30-60% of humidity. Each time the mice were anaesthetized with 1% of pentobarbital natrium. The dose given was 10 mg/kg. We confirm that all methods are reported in accordance with ARRIVE guidelines (https://arriveguidelines.org) for the reporting of animal experiments.

Consent for publication. N/A

Availability of data and materials. The RNA seq raw data is available at SRA, NCBI with accession numbers SRR17327319 and SRR17327320.

Competing interests. The authors declare no competing interests.

Funding. This research is supported by the College-Enterprise collaboration Project (2017YX244) and the Natural Science Foundation of Jilin Province (20200201127JC). The funders have no role in the design of the study nor analysis.
Author’s contribution. NB designed the study, carried out the experiments, wrote the paper and analysed the data. RKS performed experiments and wrote the paper. SA performed the experiments. HU analysed the data. ZO analysed the data. MZZM analysed data. FBB analysed data. MU analysed data. FH analyzed the data. XF wrote the paper, supervised the project. YZ designed the project, supervised the study and provided funding. MZ supervised the project, revised the manuscript and funded the project.

Acknowledgments. Authors are thankful to Wu Huiyan for miniating the mouse colonies.

Authors information. Noor Bahadar¹,²,³, Rajiv Kumar Sah², Salah Adlat², Hanif Ullah⁴, Zinmar Oo², May Zun Zaw Myint², Fatoumata Binta Bah², Farooq Hayel², Muhammad Umar⁵, Xuechao Feng², Yaowu Zheng²*, Minru Zong¹*

¹China Japan Union Hospital, Jilin University, Changchun, Jilin, China

²Northeast Normal University, Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Changchun, Jilin, China

³Changchun Weishi Testing Technology Service Co,. Ltd, Beihu Science Park B, Changchun, Jilin, China

⁴Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China

⁵Department of Orthopedic, Shenzhen University General Hospital, Shenzhen.

References

1. Alvarez E, Zhou W, Witta SE, Freed CR. Characterization of the Bex gene family in humans, mice, and rats. Gene. 2005;

2. Brown AL, Kay GF. Bex1, a gene with increased expression in parthenogenetic embryos, is a member of a novel gene family on the mouse X chromosome. Human molecular genetics. 1999;8(4):611–9.

3. Fernandez EM, Diaz-Ceso MD, Vilar M. Brain expressed and X-linked (Bex) proteins are intrinsically disordered proteins (IDPs) and form new signaling hubs. PloS one. 2015;10(1).

4. Meng Q, Zhi T, Chao Y, Nie E, Xu X, Shi Q, et al. Bex2 controls proliferation of human glioblastoma cells through NF-κB signaling pathway. Journal of Molecular Neuroscience. 2014;53(2):262–70.

5. Zhou X, Xu X, Meng Q, Hu J, Zhi T, Shi Q, et al. Bex2 is critical for migration and invasion in malignant glioma cells. Journal of Molecular Neuroscience. 2013;50(1):78–87.

6. Naderi A, Liu J, Francis GD. A feedback loop between BEX2 and ErbB2 mediated by c-Jun signaling in breast cancer. International journal of cancer. 2012;130(1):71–82.

7. Naderi A, Liu J, Hughes-Davies L. BEX2 has a functional interplay with c-Jun/JNK and p65/RelA in breast cancer. Molecular cancer. 2010;9(1):111.
8. Nie E, Zhang X, Xie S, Shi Q, Hu J, Meng Q, et al. β-Catenin is involved in Bex2 down-regulation induced glioma cell invasion/migration inhibition. Biochemical and biophysical research communications. 2015;456(1):494–9.

9. Hu Z, Wang Y, Huang F, Chen R, Li C, Wang F, et al. Brain-expressed X-linked 2 is pivotal for hyperactive mechanistic target of rapamycin (mTOR)-mediated tumorigenesis. Journal of Biological Chemistry. 2015;290(42):25756–65.

10. Seznec J, Weit S, Naumann U. Gene expression profile in a glioma cell line resistant to cell death induced by a the chimeric tumor suppressor-1 (CTS-1), a dominant-positive variant of p53—the role of NFκB. Carcinogenesis. 2010;31(3):411–8.

11. Le Mercier M, Fortin S, Mathieu V, Roland I, Spiegler-Kreinecker S, Haibe-Kains B, et al. Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia. 2009;11(5):485–96.

12. Denoeud F, Aury J-M, Da Silva C, Noel B, Rogier O, Delledonne M, et al. Annotating genomes with massive-scale RNA sequencing. Genome Biology [Internet]. 2008 Dec 16 [cited 2020 Aug 26];9(12):R175. Available from: https://doi.org/10.1186/gb-2008-9-12-r175

13. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013 Feb 15;339(6121):819–23.

14. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471.

15. Malumbres M, Mangues R, Ferrer N, Lu S, Pellicer A. Isolation of High Molecular Weight DNA for Reliable Genotyping of Transgenic Mice. BioTechniques [Internet]. 1997 Jun 1 [cited 2021 Mar 1];22(6):1114–9. Available from: https://www.future-science.com/doi/10.2144/97226st03

16. Oo ZM, Adlat S, Sah RK, Myint MZZ, Hayel F, Chen Y, et al. Brain transcriptome study through CRISPR/Cas9 mediated mouse Dip2c gene knock-out. Gene. 2020 Oct 20;758:144975.

17. Sah RK, Yang A, Bah FB, Adlat S, Bohio AA, Oo ZM, et al. Transcriptome profiling of mouse brain and lung under Dip2a regulation using RNA-sequencing. PLOS ONE. 2019 Jul 10;14(7):e0213702.

18. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods [Internet]. 2012 Apr [cited 2021 Jan 1];9(4):357–9. Available from: http://www.nature.com/articles/nmeth.1923

19. Gene Ontology Consortium. Nucleic Acids Research. 2004 Jan 1;32(suppl_1):D258–61.

20. Abdi H. The Bonferroni and Šidák Corrections for Multiple Comparisons [Internet]. 2006 [cited 2021 Mar 3]. Available from: /paper/The-Bonferroni-and-%C5%A0id%C3%A1k-Corrections-for-Multiple-Abdi/8b4300f253644d49c778c037ee614b9cf42a908c

21. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27–30.

22. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Research [Internet]. 2008 Jan 1 [cited 2021 Mar 3];36(suppl_1):D480–4. Available from: https://doi.org/10.1093/nar/gkm882
23. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods [Internet]. 2012 Apr [cited 2021 Jan 1];9(4):357–9. Available from: http://www.nature.com/articles/nmeth.1923

24. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics [Internet]. 2011 Aug 4 [cited 2021 Jan 1];12(1):323. Available from: https://doi.org/10.1186/1471-2105-12-323

25. Audic S, Claverie J-M. The Significance of Digital Gene Expression Profiles. Genome Res [Internet]. 1997 Jan 10 [cited 2021 Jan 1];7(10):986–95. Available from: http://genome.cshlp.org/content/7/10/986

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nature Genetics [Internet]. 2000 May [cited 2020 Aug 26];25(1):25–9. Available from: https://www.nature.com/articles/ng0500_25

27. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS [Internet]. 2012 Sep 25 [cited 2020 Jun 24];109(39):E2579–86. Available from: https://www.pnas.org/content/109/39/E2579

28. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology. 2013 Mar;31(3):233–9.

29. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Weigel D, editor. eLife. 2013 Jan 29;2:e00471.

30. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-Guided Human Genome Engineering via Cas9. Science. 2013 Feb 15;339(6121):823–6.

31. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell research. 2013;23(5):720–3.

32. Hu MS, Borrelli MR, Januszyk M, Luan A, Malhotra S, Walmsley GG, et al. Pathway Analysis of Gene Expression of E14 Versus E18 Fetal Fibroblasts. Advances in Wound Care [Internet]. 2017 Nov 21 [cited 2021 Mar 20];7(1):1–10. Available from: https://www.liebertpub.com/doi/full/10.1089/wound.2017.0763

33. Gwon S-Y, Rhee K-J, Sung HJ. Gene and Protein Expression Profiles in a Mouse Model of Collagen-Induced Arthritis. Int J Med Sci [Internet]. 2018 Jan 1 [cited 2021 Mar 20];15(1):77–85. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765742/

34. Kreit M, Paul S, Knoop L, De Cock A, Sorgeloos F, Michiels T. Inefficient type I interferon-mediated antiviral protection of primary mouse neurons is associated with the lack of apolipoprotein I9 expression. J Virol. 2014 Apr;88(7):3874–84.

35. Kurihara M, Otsuka K, Matsubara S, Shiraishi A, Satake H, Kimura AP. A Testis-Specific Long Non-Coding RNA, IncRNA-Tcam1, Regulates Immune-Related Genes in Mouse Male Germ Cells. Front Endocrinol (Lausanne). 2017;8:299.

36. Grujic M, Hellman L, Gustafson A-M, Akula S, Melo FR, Pejler G. Protective role of mouse mast cell tryptase Mcpt6 in melanoma. Pigment Cell Melanoma Res. 2020 Jul;33(4):579–90.
37. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, et al. An overview of the serpin superfamily. Genome Biol [Internet]. 2006 [cited 2021 Mar 22];7(5):216. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779521/

38. Tang W, Morrison A, Wasserman BA, Folsom AR, Sun W, Campbell S, et al. Association of SERPINA9 gene variants with carotid artery atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Int J Mol Epidemiol Genet [Internet]. 2013 Nov 28 [cited 2021 Mar 21];4(4):258–67. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852645/

39. Jee SW, Cho JS, Kim CK, Hwang DY, Shim SB, Lee SH, et al. Oligonucleotide-based Analysis of Differentially Expressed Genes in Hippocampus of Transgenic Mice Expressing NSE-controlled APPsw. Neurochem Res [Internet]. 2006 Aug 1 [cited 2021 Mar 21];31(8):1035–44. Available from: https://doi.org/10.1007/s11064-006-9117-8

40. Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev [Internet]. 2003 Jan 2 [cited 2021 Mar 21];17(3):368–79. Available from: http://genesdev.cshlp.org/content/17/3/368

41. Crow YJ, Chase DS, Schmidt JL, Szynkiewicz M, Forte GMA, Gornall HL, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. American Journal of Medical Genetics Part A [Internet]. 2015 [cited 2021 Mar 21];167(2):296–312. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.a.36887

42. Portale A, Mazzurco M, Portale L, Pavone P, Bertini E, Polizzi A, et al. Aicardi–Goutières Syndrome Type 2: A Report on Two Cases with Different Phenotypes Caused by RNASEH2B Gene Mutations. Journal of Pediatric Neurology [Internet]. 2020 Aug [cited 2021 Mar 21];18(4):206–9. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0040-1702238

43. Faria TN, LaRosa GJ, Wilen E, Liao J, Gudas LJ. Characterization of genes which exhibit reduced expression during the retinoic acid-induced differentiation of F9 teratocarcinoma cells: involvement of cyclin D3 in RA-mediated growth arrest. Molecular and cellular endocrinology. 1998;143(1–2):155–66.

44. Rovira Gonzalez YI, Moyer AL, LeTexier NJ, Bratti AD, Feng S, Sun C, et al. Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight [Internet]. [cited 2021 Mar 22];4(20). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824300/

45. Moyer AL, Wagner KR. Mammalian Mss51 is a Skeletal Muscle-Specific Gene Modulating Cellular Metabolism. Journal of Neuromuscular Diseases [Internet]. 2015 Jan 1 [cited 2021 Mar 22];2(4):371–85. Available from: https://content.iospress.com/articles/journal-of-neuromuscular-diseases/jnd150119

46. Graziano VR, Walker FC, Kennedy EA, Wei J, Ettayebi K, Strine MS, et al. CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLOS Pathogens [Internet]. 2020
Figures

Figure 1

Strategic plan and screening. (A) Graphical representation of the Bex2 gene and targeting sites. Exon 3 is targeted for fragment deletion by designing of two sgRNAs. Both forward and reverse primers are targeted at flanking both sgRNAs sites. (B) Genotyping of the pups obtained. Two transgenic mice (18,19) knocked out homozygous (Bex2/−) were obtained. (C) Sanger sequence chromatogram. (D) The relative mRNA levels of KO and WT mice brain and lung.
Figure 2

Statistics of differentially expressed genes. The X-axis represents the alignment scheme of DEGs for each group, and the Y-axis represents the corresponding number of differentially expressed genes (DEGs). Red bars represent the number of DEGs up-regulated, and blue bars represent the number of DEGs down-regulated.
Figure 3

3A. GO Enrichment Biological Process. The X-axis indicates the enriched terms the Y-axis indicates the rich ratio. The size of the circle indicates gene number. The colour intensity indicates Qvalue.

3B GO Enrichment Cellular Component. The X-axis indicates the enriched terms the Y-axis indicates the rich ratio. The size of the circle indicates gene number. The color intensity from indicates Qvalue.
3C GO Enrichment Molecular Function. The X-axis indicates the enriched terms the Y-axis indicates the rich ratio. The size of the circle indicates gene number. The color intensity indicates Qvalue.

KEGG Pathway Enrichment (Bex2)

Cell adhesion molecules (CAMs)
Neuroactive ligand-receptor interaction
Antigen processing and presentation
cAMP signaling pathway
Cellular senescence
Gap junction
Bile secretion
Glycosaminoglycan biosynthesis-heparan sulfate
Cytokine-cytokine receptor interaction
Endocytosis
Th17 cell differentiation
Dopaminergic synapse
Phototransduction
Proximal tubule bicarbonate reclamation
Galactose metabolism
Methane metabolism
Pyruvate metabolism
Calcium signaling pathway
Carbohydrate digestion and absorption
Ribosome

Figure 4

KEGG Pathway enrichment of Bex2⁻/⁻. The X-axis is the enrichment ratio (calculated as: Term candidate gene number/Term gene number). The Y-axis is the KEGG pathway. The size of the circle represents the number of genes annotated to the KEGG pathway. The colour represents the enriched significance.
Figure 5

KEGG Disease enrichment. The x-axis indicates the enriched terms the y-axis indicates the rich ratio. The size of the circle indicates the number of genes. The color intensity indicate the Qvalue.
Figure 6

KEGG Transcription Factors enrichment. The x-axis indicates the enriched terms the y-axis indicates the rich ratio. The size of the circle indicates the number of genes. The color intensity indicate the Qvalue.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Bex2KOBrainKEGGpathways.xlsx
- Bex2KOvsWTBrainDEGs.xlsx