Construction of survival prediction model for elderly esophageal cancer

Shuai Qie¹, Hongyun Shi²*, Fang Wang¹, Fangyu Liu¹, Jinling Gu¹, Xiaohui Liu¹, Yanhong Li¹ and Xiaoyue Sun²

¹Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, China,
²Department of Radiation Oncology, Baoding First Central Hospital, Baoding, China

Background: The purpose of this study was to analyze the clinical characteristics and prognosis of EPEC and to construct a prediction model based on the SEER database.

Methods: All EPECs from the SEER database were retrospectively analyzed. A comprehensive and practical nomogram that predicts the overall survival (OS) of EPEC was constructed. Univariate and multivariate Cox regression analysis was performed to explore the clinical factors influencing the prognosis of EPEC, and finally, the 1-, 3- and 5-year OS were predicted by establishing the nomogram. The discriminant and predictive ability of the nomogram was evaluated by consistency index (C-index), calibration plot, area under the curve (AUC), and receiver operating characteristic (ROC) curve. Decision curve analysis (DCA) was used to evaluate the clinical value of the nomogram.

Results: A total of 3478 patients diagnosed with EPEC were extracted from the SEER database, and the data were randomly divided into the training group (n=2436) and the validation group (n=1402). T stage, N stage, M stage, surgery, chemotherapy, radiotherapy, age, grade, and tumor size were independent risk factors for 1-, 3- and 5-year OS of EPEC (P< 0.05), and these factors were used to construct the nomogram prediction mode. The C-index of the validation and training cohorts was 0.718 and 0.739, respectively, which were higher than those of the TNM stage system. The AUC values of the nomogram used to predict 1-, 2-, and 3-year OS were 0.751, 0.744, and 0.786 in the validation cohorts (0.761, 0.777, 0.787 in the training cohorts), respectively. The calibration curve of 1-, 2-, and 3-year OS showed that the prediction of the nomogram was in good agreement with the actual observation. The nomogram exhibited higher clinical utility after evaluation with the 1-, 2-, and 3-year DCA compared with the AJCC stage system.
Conclusions: This study shows that the nomogram prediction model for EPEC based on the SEER database has high accuracy and its prediction performance is significantly better than the TNM staging system, which can accurately and individually predict the OS of patients and help clinicians to formulate more accurate and personalized treatment plans.

KEYWORDS
esophageal cancer, SEER, nomogram, survival analysis, elderly

Introduction

Esophageal cancer has become one of the most common malignant tumors in the world. According to global cancer statistics in 2020, the number of new cases of esophageal cancer reached 604,000 and the number of deaths reached 544,000 (1). The incidence of esophageal cancer in the aged gradually increases with the aging of the population (2). Most elderly patients often difficult to accept surgical treatment due to a lot of past medical history, organ function decline, poor physical condition, and other reasons, and even give up chemotherapy and choose radiotherapy as its radical treatment (3). Diabetes and hypertension are common medical diseases in the elderly, and their incidence continues to increase. There are few clinical studies on whether these basic diseases have an impact on the toxic side effects and efficacy of radiotherapy (4). Symptoms appear at an advanced stage due to a general lack of responsiveness in the elderly.

The prognostic factors of EPEC are still controversial. Currently, the TNM (Tumor-Node-Metastasis) staging system is considered the most widely used prognostic assessment system and clinical treatment of cancer patients, but it only includes the depth of local tumor invasion, the range of regional lymph node metastasis, and the state of distant metastasis (5). However, many important clinical features may potentially affect the prognosis of esophageal cancer. Therefore, the main aim of this study is to develop richer and more accurate prognostic models to guide survival.

The alignment diagram, also known as the nomogram diagram, is based on multi-factor regression analysis, integrating multiple prediction factors and drawing them in a certain proportion on the same plane with graduated line segments, so as to express the relationship between variables in the prediction model. In this study, based on the data of the SEER (Surveillance, Epidemiology, and End Results) database, the clinicopathological features affecting the prognosis of EPEC were discussed for the first time and the prognostic variables were further studied. Finally, we further construct a nomogram model to predict the prognosis of EPEC.

Methods

Patients selection and data acquisition

The study was based on clinical data from 18 (SEER) cancer registries. In this study, SEER*Stat software (version 8.4) was used to search the SEER database for patients older than 65 years of age with primary esophageal cancer from 2010 to 2015. Inclusion criteria of this study: (I) Primary esophageal cancer; (II) The years of diagnosis were from 2010 to 2015; (III) Single primary tumor; (IV) Pathological diagnosis is clear; (V). Older than 65. Exclusion criteria: (I) No follow-up time; (II) Incomplete data; (III) Younger than 65 years old. All data in this study were extracted from the SEER database free of charge.

Statistical analysis

Statistical analysis was performed using SPSS 25.0 software and R language 3.6.1. Patients were randomly divided into training set and validation set by 7:3 to construct this nomogram. The cut-off values of continuous variables were determined by X-tile software and converted into classified variables. We performed a descriptive analysis of the clinical baseline data of the enrolled patients and used the Chi-square test to compare the characteristics of patients in the training and validation groups. COX hazard ratio model was used to analyze the factors influencing the survival and prognosis of patients in the training set. Factors of $P<0.05$ were included in the multifactor analysis to determine the final independent prognostic factors, and the nomogram containing these independent prognostic factors was constructed using R language. Internal and external validation was carried out in the training set and validation set, respectively.
The prediction effect of this model is evaluated by the area under (AUC) the receiver operating characteristic curve (ROC). The discriminative power of the model was evaluated by the concordance index (C-index). The clinical utility was analyzed using a decision curve analysis (DCA). DCA represents the net benefit of clinical decision-making. The Y-axis represents the net benefit and the X-axis represents the risk threshold. P < 0.05 was considered statistically significant.

Results

Baseline characteristics

Sex, age, race, T stage, N stage, M stage, pathological type, radiotherapy, chemotherapy, surgery, tumor location, pathological grade, and tumor size were included in the analysis. According to the inclusion and exclusion criteria, a total of 3478 eligible patients were screened from the SEER database between 2010 and 2015. A complete flow chart describing the selection process is shown on Figure 1. One-third of the patients were randomly assigned to the validation group and the rest were used to construct the nomogram prediction model. The detailed clinicopathological features of all cases were shown in Table 1.

Independent predictors in the study population

The cut-off values of continuous variables were determined by X-tile software and converted into classified variables. Univariate Cox regression analysis showed that the factors influencing the prognosis of old esophageal cancer patients were race, tumor site, T stage, N stage, M stage, surgery, chemotherapy, radiotherapy, age (65-71 years, 72-83 years, and >83 years), histology, grade, and tumor size (<39mm, 39-62mm, and >62mm). The above 12 factors were again included in the multivariate Cox regression analysis, and the results showed that T stage, N stage, M stage, surgery, chemotherapy, radiotherapy, age, grade, and tumor size were independent factors influencing the prognosis of old esophageal cancer (Table 2).

![Flow diagram of selecting process.](image-url)
TABLE 1 Demographics and characteristics of patients in Training and Validation cohorts.

	Training group (n=2436)	Validation group (n=1042)	χ²	P
Age				
>83	239	112	0.846	0.665
65-71	1115	478	0.444	0.434
72-83	1082	452	0.444	0.434
Sex				
Female	539	213	1.223	0.269
Male	1897	829	1.223	0.269
Race				
Black	161	71	1.985	0.371
Other	126	66	1.985	0.371
White	2149	905	1.985	0.371
T stage				
T1	730	305	2.715	0.438
T2	323	138	2.715	0.438
T3	1071	483	2.715	0.438
T4	312	116	2.715	0.438
N stage				
N0	1069	388	14.028	0.003
N1	996	475	14.028	0.003
N2	280	129	14.028	0.003
N3	91	50	14.028	0.003
M stage				
M0	1966	819	2.031	0.154
M1	470	223	2.031	0.154
Histology				
ADC	1562	659	4.312	0.116
Other	107	63	4.312	0.116
SCC	767	320	4.312	0.116

(Continued)
Table 1 Continued	Training group (n=2436)	Validation group (n=1042)	χ^2	P
Grade				
I	31.50%	30.70%	0.317	0.957
II	6.60% 42.30%	6.50% 43.30%		
III	49.40%	48.60%		
IV	1.70% 1.60%			
Primary site			1.658	0.798
Abdominal	65.30%	66.30%		
Cervical	6.30% 5.80%	6.0% 3.60%		
NOS	4.10% 3.40%	3.8% 3.00%		
Overlapping	4.40% 3.70%	3.9% 3.70%		
Thoracic	20.00%	20.50%		
Tumor size			0.106	0.948
<39	37.60%	37.00%		
>62	25.00%	25.00%		
39-62	37.40%	37.90%		
Surgery			3.896	0.048
No	64.10%	67.60%		
Yes	35.90%	32.40%		
Radiotherapy			0.290	0.590
No	33.40%	34.40%		
Yes	33.40%	34.40%		
Chemotherapy			0.197	0.657
No	31.60%	30.80%		
Yes	68.40%	69.20%		

ADC, adenocarcinoma; SCC, Squamous cell carcinomas.
TABLE 2 Univariate and multivariate Cox analysis of prognostic factors.

Variable	Count	Univariate analysis	Multivariate analysis													
		HR	95% CI	p-value	HR	95% CI	p-value									
Sex																
female	539	Reference	0.659													
male	1897	1.026	0.915	1.152	0.005	0.921	0.758	1.12	0.276							
Race																
black	161	Reference	0.892	0.684	1.164	0.041			1.083	0.828	1.418	0.401	1.097	0.797	1.271	0.262
other	126	0.759	0.633	0.909	0.003	0.948	0.825	1.088	<0.001	0.501						
white	2149	1.124	0.997	1.268	0.037	1.089	0.851	1.36	<0.001	<0.001						
Site																
Abdominal	1590	Reference	1.349	1.119	1.627	0.002			0.952	0.772	1.173	<0.001	0.775	0.612	1.281	0.004
Cervical	154	1.504	1.2	1.885	<0.001	1.188	0.942	1.497	<0.001	<0.001						
NOS	100	1.43	1.144	1.788	0.002	1.007	0.797	1.271	<0.001	<0.001						
Overlap	106	1.124	0.997	1.268	0.037	0.948	0.825	1.088	<0.001	<0.001						
Thoracic	486	1.124	0.997	1.268	0.037	0.948	0.825	1.088	<0.001	<0.001						
T stage																
T1	730	Reference	1.349	1.119	1.627	0.002			0.952	0.772	1.173	<0.001	0.775	0.612	1.281	0.004
T2	323	1.859	0.727	1.014	0.073	0.993	0.835	1.181	0.29							
T3	1071	1.186	1.057	1.331	0.004	1.165	1.021	1.331	0.026							
T4	312	2.391	2.058	2.778	0.001	1.49	1.265	1.756	<0.001							
N stage																
N0	1069	Reference	1.484	1.336	1.648	0.001			1.249	1.112	1.403	<0.001	1.199	1.099	1.304	<0.001
N1	996	1.484	1.336	1.648	0.001	1.249	1.112	1.403	<0.001	<0.001						
N2	280	1.749	1.503	2.035	0.001	1.643	1.394	1.935	<0.001	<0.001						
N3	91	2.317	1.832	2.93	0.001	1.636	1.276	2.097	<0.001							
M stage																
M0	1966	Reference	2.864	2.562	3.201	0.001			1.731	1.523	1.968	<0.001	<0.001			
M1	470	0.3	0.268	0.336	0.37	0.323	0.422	0.029	<0.001							
Surgery																
No	1561	Reference	4.727	0.658	0.805	0.087	0.43	0.552	<0.001							
Yes	875	0.3	0.268	0.336	0.37	0.323	0.422	0.029	<0.001							
Chemotherapy																
No	769	Reference	0.727	0.658	0.805	0.048	0.43	0.552	<0.001							
Yes	1667	0.727	0.658	0.805	0.048	0.43	0.552	0.029	<0.001							
Radiotherapy																
No	814	Reference	1.247	1.127	1.38	<0.001	1.076	0.945	1.225	<0.001						
Yes	1622	1.247	1.127	1.38	<0.001	1.076	0.945	1.225	<0.001							
Age																
>83	239	Reference	1.211	0.964	1.523	0.1	1.13	0.899	1.419	<0.001						
65-71	1115	0.454	0.389	0.53	<0.001	0.675	0.571	0.797	0.083							
72-83	1082	0.659	0.566	0.767	<0.001	0.868	0.741	1.017	<0.001							
Histology																
ADC	1562	Reference	1.211	0.964	1.523	0.1	1.13	0.899	1.419	<0.001						
Other	107	1.211	0.964	1.523	0.1	1.13	0.899	1.419	<0.001							
SCC	767	1.247	1.127	1.38	<0.001	1.076	0.945	1.225	<0.001							
Grade																
I	161	Reference	1.297	1.043	1.613	0.019	1.109	0.89	1.382	0.37						
II	1030	1.297	1.043	1.613	0.019	1.109	0.89	1.382	0.37							
III	1203	1.297	1.043	1.613	0.019	1.109	0.89	1.382	0.37							

(Continued)
Prognostic nomogram building and validation

Nine statistically significant independent prognostic factors were included in the above multivariate COX proportional regression model to construct a nomogram to predict 3-year and 5-year overall survival (Figure 2). Individual scores can be read for each clinicopathological indicator in each patient, and the scores are added together to obtain an overall score.

Compared with the AJCC staging system, the C-index of the training cohorts and validation cohorts were 0.739 (95%CI: 0.727–0.750) and 0.718 (95%CI: 0.700–0.736), respectively, indicating that the nomogram had the good predictive ability, while C-indices of the AJCC stage system were 0.642 (95% CI: 0.627–0.656) and 0.630 (95% CI: 0.608–0.653) in the training cohorts and the validation cohorts, respectively.

For OS, this study draws the area under the ROC curve (AUC) of the nomogram prediction model and TNM staging system (as shown in Figure 3), which intuitively shows the performance of the nomogram prediction model is better than that of the TNM staging system. In the training cohorts, the 1-, 3-, and 5-year OS of AUC of this nomogram was superior to that of the AJCC stage system (1-year OS AUC: 0.8 vs. 0.689, 3-year OS AUC: 0.822 vs. 0.734, 5-year OS AUC: 0.824 vs. 0.752, respectively, Figures 3A–C), whereas the AUC of this nomogram and the AJCC stage system is shown in Figures 3D–F for the validation cohorts (1-year OS AUC: 0.772 vs. 0.752, 2-year OS AUC: 0.788 vs. 0.752, 3-year OS AUC: 0.784 vs. 0.752).

The calibration curve shows that there was a high degree of agreement between the nomogram prediction and the actual 1-, 3-, and 5-year OS in the training cohorts (Figures 3A–C) and the validation cohorts (Figures 4D–F).

Differences in the nomogram and the 7th AJCC TNM stage system

By drawing a decision Curve analysis (DCA) diagram (as shown in Figure 4) to further compare the clinical application value of the Nomogram prediction model with the TNM staging system, it is found that in almost all threshold probabilities at different points, The net return of Nomogram prediction model...
FIGURE 3
The receiver operating characteristic (ROC) curve for nomogram in the training cohort (A–C) and validation cohort (D–F) at 1-year, 3-year, and 5-year, respectively.

FIGURE 4
The calibration curves for predicting patients’ overall survival in the training cohort (A–C) and validation cohort (D–F) at 1-year, 3-year, and 5-year, respectively.
is better than TNM staging system, showing better clinical efficacy of the new model (Figure 5).

Risk stratification model and survival analysis

For each variable in this nomogram, a total score is calculated for each patient and divided into 3 levels: low-risk (scores 0-185), intermediate-risk (scores 186-292), and high-risk (scores 293-437) group. Kaplan-Meier curves (Figure 6) show that this nomogram prediction ability is excellent and risk stratification is accurate.

Discussion

The incidence of esophageal cancer began to rise rapidly after the age of 45, and with the increase of age, the incidence of esophageal cancer increased and reached a peak between 80 and 84 years old (6). Multiple retrospective analyses found that postoperative complications in elderly patients with esophageal cancer increased significantly, tolerance decreased, and perioperative mortality increased (7). For operable esophageal cancer, patients over 70 years old should be comprehensively evaluated before surgery (8). Patients with high surgical risk, complications, and poor cardiopulmonary function can be treated with radical radiotherapy. Radical radiotherapy is the main treatment for inoperable senile esophageal carcinoma (9). There are few reports on the results of high-grade randomized studies on EPEC only. Randomized clinical trials typically exclude patients over 70 years of age from esophageal cancer (10). Therefore, the present about the elderly esophagus. Most of the data on radiotherapy and chemotherapy for cancer come from retrospective studies, the number of cases is generally small, and the treatment standard has not been unified.

The TNM staging system is the most commonly used tumor staging system in the world, which helps doctors understand the progress of cancer, and can help doctors make treatment plans and judge the prognosis (11). Oncologists and patients alike want reliable prognostic information for each patient. The nomogram is more advantageous than the traditional TNM staging system, so it has been proposed as an alternative or even a new standard (12). The personalized predictive power of the nomogram allows it to be used to identify and stratify patients participating in clinical trials. The combination of friendly interfaces and extensive web availability makes them popular among oncologists and patients (13).

In this retrospective study, independent prognostic factors affecting survival in EPEC were obtained through univariate and
multivariate analyses of SEER database data. Compared with the AJCC staging system, we constructed a new visual nomogram using these independent prognostic factors to predict the 1-, 3-, and 5-year overall survival with higher accuracy. The results of this study showed that T stage, N stage, M stage, tumor grade, tumor size, patient age, surgical status, radiotherapy status, and chemotherapy status were independent prognostic factors affecting EPEC.

With the improvement of esophageal surgery theory and technology, anesthesia technology, perioperative management, and the development and improvement of related disciplines and equipment, the surgical treatment effect of esophageal cancer has made great progress, and the safety factor of surgery has been greatly improved (14). Therefore, most scholars believe that surgery can completely remove the tumor, and as long as the patient can tolerate it, surgical treatment should be the first choice, and age should not be a limit for surgical treatment of esophageal cancer (15–17). Because elderly patients are often complicated with cardiovascular, cerebrovascular, and respiratory diseases, it is often believed that there are more postoperative complications, including surgery-related and non-surgery-related complications, which increase the perioperative mortality. The results of Tanja M (18) showed that there was no significant difference between the elderly patients (≥70 years old) and the young patients (<70 years old) with surgery-related complications, which were 20% and 17%, respectively. The results of this study show that surgery can significantly prolong the overall survival of EPEC, which is consistent with the published literature.

To date, there are no guidelines for the treatment of EPEC. RTOG8501 compared the efficacy of 50Gy combined with cisplatin and fluorouracil combined with concurrent chemoradiotherapy plus chemotherapy and 64Gy alone in patients with esophageal cancer (23% of patients aged ≥70 years), and the results showed that the efficacy of concurrent chemoradiotherapy was significantly better than that of radiotherapy alone (5-year overall survival: 26%; 0), but concurrent chemoradiotherapy also resulted in severe acute side effects (grade 3-4 hematological side effects, 48% vs. 3%; grade 3-4 upper gastrointestinal reaction 33%; 18%); Among the patients who were subsequently enrolled in the concurrent chemoradiotherapy group, the completion rate of concurrent chemotherapy was only 68%. Therefore, the effect of concurrent chemoradiotherapy is better than radiotherapy alone.

With the progress and development of radiotherapy technology, the delineation of esophageal cancer radiotherapy target should be based on simulated positioning CT and enhanced contrast agent, so as to better confirm the target location. Intensity Modulated Radiation Therapy (IMRT), which is considered to be better than three-dimensional conformal radiotherapy (19, 20), is currently widely recommended. IMRT technology has better target conformal and can reduce the dose of important organs such as the heart, lung, and other tissues. In the treatment of esophageal cancer, the long-term damage of normal tissues is an important factor affecting the survival time and quality of life of patients in the later stage. Therefore, the application of IMRT technology provides a powerful technical condition to more strictly limit the dose of lung, heart and other important organs. Throughout the studies on esophageal cancer in recent years, a
The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

Study concept and design, SQ and HS. Analysis and interpretation of data, FW, FL, and JG. Drafting of the manuscript, SQ and XL. Critical revision of the manuscript for important intellectual content, YL and XS. All authors contributed to manuscript revision, read, and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
influence on outcome and survival. *J Thorac Cardiovasc Surg* (2007) 133(5):1186–92. doi: 10.1016/j.jtcvs.2006.12.040

16. Kinugasa S, Tachibana M, Yoshimura H, Ueda S, Fujii T, Dhar DK, et al. Postoperative pulmonary complications are associated with worse short- and long-term outcomes after extended esophagectomy. *J Surg Oncol* (2004) 88(2):71–7. doi: 10.1002/jso.20137

17. Monson K, Litvak DA, Bold RJ. Surgery in the aged population: surgical oncology. *Arch Surg* (2003) 138(10):1061–7. doi: 10.1001/archsurg.138.10.1061

18. Cjis TM, Verhoef C, Steyerberg EW, et al. Outcome of esophagectomy for cancer in elderly patients. *Ann Thorac Surg* (2010) 90(3):900–7. doi: 10.1016/j.athoracsur.2010.05.039

19. Conroy T, Galais MP, Raoul JL, Bouché O, Gourgou-Bourgade S, Douillard JY, et al. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE/ACCORD17): final results of a randomised, phase 2/3 trial. *Lancet Oncol* (2014) 15(3):305–14. doi: 10.1016/S1470-2045(14)70028-2

20. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for oesophageal or junctional cancer. *N Engl J Med* (2012) 366(22):2074–84. doi: 10.1056/NEJMoa1112088

21. Li CC, Chen CY, Chien CR. Comparison of intensity-modulated radiotherapy vs 3-dimensional conformal radiotherapy for patients with non-metastatic esophageal squamous cell carcinoma receiving definitive concurrent chemoradiotherapy: A population-based propensity-Score-Matched analysis. *Med (Baltimore)* (2018) 97(22):e10928. doi: 10.1097/MD.0000000000010928