Supplemental information

Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells

Chase P. Kelley, Maja C. Haerle, and Eric T. Wang
Figure S1. gRNA only controls for splicing assay and dCas13d/MBNL1 competition, related to Figure 1. A MBNL1 exon 5 minigene splicing assay after transfection of HeLa cells with gRNA and target plasmids, in the absence of Cas13d. n=3 transfections per condition. n.s.: not significant, p>0.05, two-tailed Student’s t test. B Simultaneous FISH/IF for MBNL1 (α-MBNL1 IF, magenta), CUG_{480} RNA (CAG_{10} FISH probe, yellow), and dCas13d-EGFP (α-GFP IF, green) in transfected HeLa cells. Nuclei stained with DAPI (cyan). Scale bars 10 µm. C Quantification of colocalization of dCas13d and MBNL1 IF signal with nuclear CUG_{480} RNA foci in FISH/IF experiment. n>15 nuclei per condition. ***p<0.001, two-sided Mann-Whitney U test. n.s.: not significant, p>0.05, two-sided Mann-Whitney U test.
Figure S2. CUG-targeted Cas13d suppresses EGFP expression and upregulates stress response and apoptosis pathways, related to Figure 2. A Visualization of unfused EGFP marker on Cas13d plasmid 20 hr after transfection with Cas13d, gRNA, and CUG_{480} target plasmids. PC: phase contrast. Scale bars 20 µm. B Quantification of EGFP expression by plate reader 20 hr after transfection. n=3 transfections per condition. Error bars indicate standard deviation. *p<0.05, two-tailed Student's t test. n.s.: not significant, p>0.05. C Resazurin cell viability assay performed 20 hr and 44 hr after transfection with Cas13d, gRNA, and CUG_{480} target plasmids. n=5 transfections per condition. Error bars indicate standard deviation. *p<0.05, **p<0.01, ***p<0.001, two-tailed Student's t test. n.s.: not significant, p>0.05. D Description of RNA-seq experiment to assess transcriptomic changes induced by Cas13d. HeLa cells were transfected with Cas13d, dCas9, or shRNA in CUG-targeting or non-targeting conditions and incubated for 3 days prior to RNA extraction, library preparation, and sequencing. n=3 transfections per condition. Data were processed using kallisto, HISAT2, and DESeq2 for alignment and differential expression (DE) analysis. E Heatmap of correlation coefficients of log_{10} TPM between sequencing libraries. F Volcano plots of DESeq2 false discovery rate (FDR)-corrected q-value vs. fold change in targeting and non-targeting conditions. DE genes (FDR q<0.05) are highlighted in red (downregulated) or blue (upregulated). G Plot of median fold change of transcripts in targeting and non-targeting conditions, binned by maximum CUG repeat length within the transcript in the human reference genome. H Median knockdown between targeting and non-targeting conditions of all transcripts containing a CUG repeat as long as or longer than the length of the Cas13d spacer (22 nt). I PANTHER gene ontology (GO) analysis of biological processes enriched in the DE genes between CUG-targeting and non-targeting Cas13d conditions. Enriched processes are defined as processes with a ratio of observed to expected genes >5 and FDR q<0.05. For each process, FDR q is plotted on the vertical axis and enrichment is indicated by circle area. Color indicates classification into functional categories. J PANTHER GO analysis of processes enriched in DE genes between CUG-targeting and non-targeting shRNA conditions.
Figure S3. Development of HeLa-tet:Cas13d-mCherry cell line and cell viability upon targeting endogenous genes, related to Figure 3. A Fluorescent western blot of protein extracted from clonal HeLa cell lines after treatment with lentivirus encoding Cas13d-T2A-EGFP under the constitutive EF1α promoter. Blot stained with α-HA (green) and α-HSP70 (red) primary antibodies. Expected MW of Cas13d is 117 kDa, lower bands indicate truncations of Cas13d that retained expression of the downstream EGFP marker. L: protein ladder, pXR001: transient transfection of Cas13d plasmid in HeLa. B Fluorescent western blot of protein extracted from clonal HeLa cell lines after integration of constitutive mCherry and tetracycline-inducible Cas13d-T2A-EGFP. Expression induced with 2 µM doxycycline for 44 hr prior to protein extraction. Blot stained with α-HA (green) and α-HSP70 (red) primary antibodies. ‡ indicates the clone chosen for subsequent experiments. L: protein ladder, pXR001: transient transfection of Cas13d plasmid in HeLa. C Visualization of EGFP and mCherry before and after 44 hr doxycycline treatment by fluorescence microscopy. PC: phase contrast. Scale bars 20 µm. D Resazurin cell viability assay of HeLa-tet:Cas13d-mCherry cells transfected with plasmids encoding gRNAs targeting endogenous genes and induced with 2 µM doxycycline for 44 hr. n=5 transfections per condition. Error bars indicate standard deviation. *p<0.05, **p<0.01, ***p<0.001, two-tailed Student’s t test. n.s.: not significant, p>0.05. E Comparison of cell viability measured 44 hr after Cas13d expression with gRNA targeting endogenous genes vs. depletion of gRNAs targeting the same genes in a CRISPR essentiality screen in HeLa (Hart et al., 2015). Pearson correlation coefficient is shown. n=5 transfections per condition. p>0.05, beta distribution c.d.f.
Figure S4. Prediction of Cas13d binary complex concentration and autoregulation efficiency from simulation of GENO dynamics, related to Figure 4.

A Equilibrium Cas13d binary complex concentration as a function of transcription rate and crRNA processing rate, for high (left) and low (right) translation rate.

B Equilibrium binary complex concentration as a function of translation rate and transcription rate, for high (left) and low (right) crRNA processing rate.

C Equilibrium binary complex concentration as a function of crRNA processing rate and translation rate, for high (left) and low (right) transcription rate.

D Autoregulation efficiency (η_{GENO}, defined in Data S1) as a function of transcription rate and crRNA processing rate, for high (left) and low (right) translation rate.

E η_{GENO} as a function of translation rate and transcription rate, for high (left) and low (right) crRNA processing rate.

F η_{GENO} as a function of crRNA processing rate and translation rate, for high (left) and low (right) transcription rate.
Figure S5. Detection of diffraction-limited spots in Cas13d HCR FISH and CUG$_n$ FISH images of AAV-treated DM1 myoblasts, related to Figure 5.

A Representative images at 40x magnification of DM1 myoblasts stained for Cas13d mRNA (HCR FISH, magenta) after treatment with AAV for 6 days. Cytoplasm (CellMask, green) and nuclei (DAPI, cyan) are also labeled. Scale bars 10 µm.

B Mean number of Cas13d HCR FISH spots detected in nuclei after AAV treatment. Error bars indicate SEM. n>43 nuclei per condition, 21 images per condition.

C Number of CUG$_n$ FISH spots (RNA foci) detected in each nucleus after AAV treatment. Dots represent individual nuclei, black line indicates median. n>43 nuclei per condition, 21 images per condition. n.s.: not significant, $p>0.05$, two-sided Mann-Whitney U test.

D Representative images at 40x magnification of DM1 myoblasts labeled with α-MBNL1 IF (green), CUG$_n$ FISH (greyscale), and Cas13d HCR FISH (magenta) after treatment with AAV for 6 days. Nuclei (DAPI, cyan) are also labeled. Scale bars 10 µm.

E Nuclear-to-cytoplasmic ratio of MBNL1, calculated from α-MBNL1 IF for each cell. Dots represent individual cells, black line indicates median. n>11 cells per condition, 8 images per condition. *$p<0.05$, one-sided Mann-Whitney U test. n.s.: not significant, $p>0.05$.

F Mean nuclear intensity of Cas13d HCR FISH across nuclei in GENO-regulated targeting and non-targeting conditions. Dots represent individual nuclei, black line indicates median. n>43 nuclei per condition, 21 images per condition. n.s.: not significant, $p>0.05$, two-sided Mann-Whitney U test. Grey line indicates mean baseline nuclear FISH signal in PBS-treated myoblasts and grey shaded region indicates standard deviation, n=53 nuclei, 21 images.

G Representative images at 40x magnification of DM1 myoblasts labeled with HCR FISH for mRNAs of PPIB (magenta), POLR2A (yellow), and Cas13d (green) after treatment with AAV for 6 days. Nuclei (DAPI, cyan) are also labeled. Scale bars 10 µm.

H Number of PPIB HCR FISH spots detected in each nucleus after AAV treatment. Dots represent individual nuclei, black line indicates median. n>12 nuclei per condition, 6 images per condition. n.s.: not significant, $p>0.05$, two-sided Mann-Whitney U test.

I Number of POLR2A HCR FISH spots detected in each nucleus after AAV treatment. Dots represent individual nuclei, black line indicates median. n>12 nuclei per condition, 6 images per condition. n.s.: not significant, $p>0.05$, two-sided Mann-Whitney U test.
SUPPLEMENTAL TABLES

Table S1. List of spacer sequences for RfxCas13d gRNAs used in this study, related to STAR Methods.

gRNA ID	Spacer
NT	CGAGGGCGACTTAACCTTAGGT
CUG-1	GCAGCAGCAGCAGCAGCAGCAGCAGCAG
CUG-2	CAGCAGCAGCAGCAGCAGCAGCAGCAGC
CUG-3	AGCAGCAGCAGCAGCAGCAGCAGCAGCA
DMPK-1	CTGGAGCGGTTTGAAGTTCAGG
DMPK-2	GTCTACAAGGACACCTTCGAGCC
DMPK-3	GTCCGTAGCTGTCAGCGAGT
DMPK-4	GACAAGACAAATACCCGAGGA
DMPK-5	CGGAGTCGACAGATTTCTAGG
DMPK-6	CACTGTGCAGCACCAGATAGGG
DMPK-7	AACTCCATCGCTCCTGCAGA
DMPK-8	TCCTCCAGGTGTCTATACAGGC
MS2-1	CTAATGAACCAGGGGGAGATCTGC
MS2-2	TAGCCAATGCTGTACCTTGAGG
MS2-3	GTTTTCTAGAGTCGACCTGCAG
puro-1	GTTCCGTAACTCGCTCAATGTC
puro-2	CAAACACTGCACCTTCAACTC
puro-3	CACCATCATCTGCAACCCCATAC
LDHA	GACTTGGCGAGTGAACCTTGCTC
CD63	GCCTGCAAGGAGAAGATCTTGCTC
CD81	CACGTCGCTTCCTCAACTTGATCTC
LGMN	TGCCATGCTACCAGATCTTCC
SYBU	CAGAAAGAGGTGACAGTGAGC
EPOR	TGACTCTGGCATCTCAACTGAC
Table S2. List of transcripts in the human reference genome (hg19) by longest CUG_n repeat length, related to Figure S2.

(exceeds page length, uploaded separately)
Table S3. Mean transcripts per million (TPM) for selected genes in non-transgenic HeLa cells in our RNA-seq study, related to Figure 3.

Gene	Average TPM in HeLa (RNA-seq)
LDHA	1211.99628
CD63	354.456528
CD81	112.262125
LGMN	40.980735
SYBU	12.224917
EPOR	3.8507395
Table S4. Primer sequences used in this study, related to STAR Methods.

Name	Sequence
RG6_F	CAAAGTGAGGAGGACCCAGTACC
RG6_R	GCGCATGAAACTCCTTGATGAC
mCherry_F	GACTACTTGAAGCTGCTTTCC
mCherry_R	CGCAGCTTCACCTTTGTAGAT
GAPDH_F	GGTGAAGGTCGGTGTGAACG
GAPDH_R	CTCGCTCCTGGAAGATGGTG
CUG480_F	CGATCTCTGCTGCTTACTC
CUG480_R	GTCGGAGGACGAGGTCAATAAA
SUPPLEMENTAL ITEMS

Data S1. Dynamical model of Cas13d gRNA excision for negative-autoregulatory optimization (GENO), related to Figure 4.