Handling Homographs in Neural Machine Translation

Frederick Liu, Han Lu, Graham Neubig

Language Technology Institute
Carnegie Mellon University, Pittsburgh, PA 15213
{fliu1, hlu2, gneubig}@cs.cmu.edu

Abstract

Homographs, words with different meanings but the same surface form, have long caused difficulty for machine translation systems, as it is difficult to select the correct translation based on the context. However, with the advent of neural machine translation (NMT) systems, which can theoretically take into account global sentential context, one may hypothesize that this problem has been alleviated. In this paper, we first provide empirical evidence that existing NMT systems in fact still have significant problems in properly translating ambiguous words. We then proceed to describe methods, inspired by the word sense disambiguation literature, that model the context of the input word with context-aware word embeddings that help to differentiate the word sense before feeding it into the encoder. Experiments on three language pairs demonstrate that such models improve the performance of NMT systems both in terms of BLEU score and in the accuracy of translating homographs.

1 Introduction

Neural machine translation (NMT; Sutskever et al. (2014); Bahdanau et al. (2015), §2), a method for MT that performs translation in an end-to-end fashion using neural networks, is quickly becoming the de-facto standard in MT applications due to its impressive empirical results. One of the drivers behind these results is the ability of NMT to capture long-distance context using recurrent neural networks in both the encoder, which takes the input and turns it into a continuous-space representation, and the decoder, which tracks the target-sentence state, deciding which word to output next. As a result of this ability to capture long-distance dependencies, NMT has achieved great improvements in a number of areas that have bedeviled traditional methods such as phrase-based MT (PBMT; Koehn et al. (2003)), including agreement and long-distance syntactic dependencies (Neubig et al., 2015; Bentivogli et al., 2016).

One other phenomenon that was poorly handled by PBMT was homographs – words that have the same surface form but multiple senses. As a result, PBMT systems required specific separate modules to incorporate long-term context, performing word-sense (Carpuat and Wu, 2007b) or phrase-sense (Carpuat and Wu, 2007a) disambiguation to improve their handling of these phenomena. Thus, we may wonder: do NMT systems suffer from the same problems when translating homographs? Or are the recurrent nets applied in the encoding step, and the strong language model in the decoding step enough to alleviate all problems of word sense ambiguity?

In §3 we first attempt to answer this question...
quantitatively by examining the word translation accuracy of a baseline NMT system as a function of the number of senses that each word has. Results demonstrate that standard NMT systems make a significant number of errors on homographs, a few of which are shown in Fig. 1.

With this result in hand, we propose a method for more directly capturing contextual information that may help disambiguate difficult-to-translate homographs. Specifically, we learn from neural models for word sense disambiguation (Kalchbrenner et al., 2014; Iyyer et al., 2015; Kågebäck and Salomonsson, 2016; Yuan et al., 2016; Šuster et al., 2016), examining three methods inspired by these literatures (§4). In order to incorporate this information into NMT, we examine two methods: gating the word-embeddings in the model (similarly to Choi et al. (2017)), and concatenating the context-aware models with a strong baseline NMT system as a function of the number of senses that each word has. The conditional distribution is optimized quantitatively by examining the word translation accuracy of a baseline NMT system as a function of the number of senses that each word has.

To evaluate the effectiveness of our method, we compare our context-aware models with a strong baseline (Luong et al., 2015) on the English-German, English-French, and English-Chinese WMT dataset. We show that our proposed model outperforms the baseline in the overall BLEU score across three different language pairs. Quantitative analysis demonstrates that our model performs better on translating homographs. Lastly, we show sample translations of the baseline system and our proposed model.

2 Neural Machine Translation

We follow the global-general-attention NMT architecture with input-feeding proposed by Luong et al. (2015), which we will briefly summarize here. The neural network models the conditional distribution over translations $Y = (y_1, y_2, \ldots, y_m)$ given a sentence in source language $X = (x_1, x_2, \ldots, x_n)$ as $P(Y|X)$. A NMT system consists of an encoder that first generates a target word at each time step condition on both h and previous words. The conditional distribution is optimized with cross-entropy loss at each decoder output.

The encoder is usually a uni-directional or bi-directional RNN that reads the input sentence word by word. In the more standard bi-directional case, before being read by the RNN unit, each word in X is mapped to a embedding in continuous vector space by a function f_e.

$$f_e(x_t) = M_e \cdot y_t$$

$M_e \in \mathbb{R}^{d \times d}$ is a matrix that maps a one-hot representation of x_t, $y_t(x_t)$ to a d-dimensional vector space, and V_s is the source vocabulary. We call the word embedding computed this way Lookup embedding. The word embeddings are then read by a bi-directional RNN

$$\ddot{h}_t = \text{RNN}_e(\ddot{h}_{t-1}, f_e(x_t))$$
$$\ddot{h}_t = \text{RNN}_e(\ddot{h}_{t+1}, f_e(x_t))$$

After being read by both RNNs we can compute the actual hidden state at step t, $h_t = [\ddot{h}_t; \ddot{h}_t]$, and the encoder summarized representation $\hat{h} = h_n$. The recurrent units RNN_e and RNN_d are usually either LSTMs (Hochreiter and Schmidhuber, 1997) or GRUs (Chung et al., 2014).

The decoder is a uni-directional RNN that decodes tth target word conditioned on (1) previous decoder hidden state g_{t-1}, (2) previous word y_{t-1}, and (3) the weighted sum of encoder hidden states a_t. The decoder maintains the tth hidden state g_t as follows,

$$g_t = \text{RNN}_d(g_{t-1}, f_d(y_{t-1}), a_t)$$

Again, RNN_d is either LSTM or GRU, and f_d is a mapping function in target language space.

The general attention mechanism for computing the weighted encoder hidden states a_t first computes the similarity between g_{t-1} and $h_{t'}$ for $t' = 1, 2, \ldots, n$.

$$\text{score}(g_{t-1}, h_{t'}) = g_{t-1}W_{att}h_{t'}$$

The similarities are then normalized through a softmax layer, which results in the weights for encoder hidden states.

$$\alpha_{t,t'} = \frac{\text{score}(g_{t-1}, h_{t'})}{\sum_{k=1}^{n} \text{score}(g_{t-1}, h_k)}$$

We can then compute a_t as follows,

$$a_t = \sum_{k=1}^{n} \alpha_{t,k}h_k$$

Finally, we compute the distribution over y_t as,

$$\tilde{g}_t = \text{tanh}(W_1[g_t; a_t])$$
$$p(y_t|y_{<t}, X) = \text{softmax}(W_2\tilde{g}_t)$$
3 NMT’s Problems with Homographs

As described in Eqs. (2) and (3), NMT models encode the target words using recurrent encoders, theoretically endowing them with the ability to handle homographs through global sentential context. However, despite the fact that they have this ability, our qualitative observation of NMT results revealed a significant number of ambiguous words being translated incorrectly, casting doubt on whether the standard NMT setup is able to appropriately learn parameters that disambiguate these word choices.

To demonstrate this more concretely, in Fig. 2 we show the translation accuracy of an NMT system with respect to words of varying levels of ambiguity. Specifically, we use the best baseline NMT system to translate three different language pairs from WMT test set (detailed in §6) and plot the F1-score of word translations by the number of senses that they have. The number of senses for a word is acquired from the Cambridge English dictionary, after excluding stop words.

We evaluate the translation performance of words in the source side by aligning them to the target side using fast-align (Dyer et al., 2013). The aligner outputs a set of target words to which the source words aligns for both the reference translation and the model translations. F1 score is calculated between the two sets of words.

After acquiring the F1 score for each word, we bucket the F1 scores by the number of senses, and plot the average score of four consecutive buckets as shown in Fig. 2. As we can see from the results, the F1 score for words decreases as the number of senses increases for three different language pairs. This demonstrates that the translation performance of current NMT systems on words with more senses is significantly decreased from that for words with fewer senses. From this result, it is evident that modern NMT architectures are not enough to resolve the problem of homographs on their own.

4 Neural Word Sense Disambiguation

Word sense disambiguation (WSD) is the task of resolving the ambiguity of homographs (Ng and Lee, 1996; Mihalcea and Faruque, 2004; Zhong and Ng, 2010; Di Marco andNavigli, 2013; Chen et al., 2014; Camacho-Collados et al., 2015), and we hypothesize that by learning from these models we can improve the ability of the NMT model to choose the correct translation for these ambiguous words. Recent research tackles this problem with neural models and has shown state-of-the-art results on WSD datasets (Kågebäck and Salomonsson, 2016; Yuan et al., 2016). In this section, we will summarize three methods for WSD which we will further utilize as three different context networks to improve NMT.

Neural bag-of-words (NBOW) Kalchbrenner et al. (2014); Iyyer et al. (2015) have shown success by representing full sentences with a context vector, which is the average of the Lookup embeddings of the input sequence

$$c_t = \frac{1}{n} \sum_{k=1}^{n} M^T_c 1(x_k)$$

This is a simple way to model sentences, but has the potential to capture the global topic of the sentence in a straightforward and coherent way. However, in this case, the context vector would be the same for every word in the input sequence.

Bi-directional LSTM (BiLSTM) Kågebäck and Salomonsson (2016) leveraged a bi-directional LSTM that learns a context vector for the target word in the input sequence and predict the word sense with a multi-layer perceptron. Specifically, we can compute the context vector c_t for tth word similarly to bi-directional encoder as follows,

$$\vec{c_t} = \text{RNN}_c(\vec{c_{t-1}}, f_c(x_t))$$
\begin{align}
\overline{c}_t &= \overline{\text{RNN}}_c(\overline{c}_{t+1}, f_e(x_t)) \\
 c_t &= [\overline{c}_t; \overline{c}_t]
\end{align}

\begin{align}
\overline{\text{RNN}}_c, \ \overline{\text{RNN}}_c, \ \text{are forward and backward LSTM}s \text{ respectively, and } f_e(x_t) &= M_e^\top \mathbf{1}(x_t) \text{ is a function that maps a word to continuous embedding space.}
\end{align}

Held-out LSTM (HoLSTM) Yuan et al. (2016) trained a LSTM language model, which predicts a held-out word given the surrounding context, with a large amount of unlabeled text as training data. Given the context vector from this language model, they predict the word sense with a WSD classifier. Specifically, we can compute the context vector \(c_t\) for \(t\)th word by first replacing \(t\)th word with a special symbol (e.g. \(<\$>\)). We then feed the replaced sequence to a uni-directional LSTM:

\begin{align}
\overline{c}_t &= \overline{\text{RNN}}_c(\overline{c}_{t-1}, f_e(x_t))
\end{align}

Finally, we can get context vector for the \(t\)th word

\begin{equation}
 c_t = \overline{c}_n
\end{equation}

\(\overline{\text{RNN}}_c\) and \(f_e\) are defined in BiLSTM paragraph, and \(n\) is the length of the sequence. Despite the fact that the context vector is always the last hidden state of the LSTM no matter which word we are targeting, the input sequence read by the HoLSTM is actually different every time.

5 Adding Context to NMT

Now that we have several methods to incorporate global context regarding a single word, it is necessary to incorporate this context with NMT. Specifically, we propose two methods to either *Gate* or *Concatenate* a context vector \(c_t\) with the Lookup embedding \(M_e^\top \mathbf{1}(x_t)\) to form a context-aware word embedding before feeding it into the encoder as shown in Fig. 3. The detail of these methods is described below.

Gate Inspired by Choi et al. (2017), as our first method for integration of context-aware word embeddings, we use a gating function as follows:

\begin{align}
f_e'(x_t) &= f_e(x_t) \odot \sigma(c_t) \\
 &= M_e^\top \mathbf{1}(x_t) \odot \sigma(c_t)
\end{align}

Figure 3: Illustration of our proposed model. The context network is a differentiable network that computes context vector \(c_t\) for word \(x_t\) taking the whole sequence as input. \(\odot\) represents the operation that combines original word embedding \(x_t\) with corresponding context vector \(c_t\) to form context-aware word embeddings.

The symbol \(\odot\) represents element-wise multiplication, and \(\sigma\) is element-wise sigmoid function. Choi et al. (2017) use this method in concert with averaged embeddings from words in source language like the NBOW model above, which naturally uses the same context vectors for all time steps. In this paper, we additionally test this function with context vectors calculated using the BiLSTM and HoLSTM.

Concatenate We also propose another way for incorporating context: by concatenating the context vector with the word embeddings. This is expressed as below:

\begin{align}
f_e'(x_t) &= W_3[f_e(x_t) ; c_t] \\
 &= W_3[M_e^\top \mathbf{1}(x_t); c_t]
\end{align}

\(W_3\) is used to project the concatenated vector back to the original \(d\)-dimensional space.

For each method can compute context vector \(c_t\) with either the NBOW, BiLSTM, or HoLSTM described in §4. We share the parameters in \(f_e\) with \(f_e\) (i.e. \(M_e = M_e\)) since the vocabulary space is the same for context network and encoder. As a result, our context network only slightly increases the number of model parameters. Details about the
number of parameters of each model we use in the experiments are shown in Table 1.

6 Experiments

We evaluate our model on three different language pairs: English-French (WMT’14), and English-German (WMT’15), English-Chinese (WMT’17) with English as the source side. For German and French, we use a combination of Europarl v7, Common Crawl, and News Commentary as training set. For development set, newstest2013 is used for German and newstest2012 is used for French. For Chinese, we use a combination of News Commentary v12 and the CWMT Corpus as the training set and held out 2357 sentences as the development set. Translation performances are reported in case-sensitive BLEU on newstest2014 (2737 sentences), newstest2015 (2169 sentences) for German, newstest2013 (3000 sentences), newstest2014 (3003 sentences) for French, and news-dev2017 (2002 sentences) for Chinese.

We compare our context-aware NMT systems with strong baseline models on each dataset.

6.1 Training Details

We limit our vocabularies to be the top 50K most frequent words for both source and target language. Words not in these shortlisted vocabularies are converted into an ⟨unk⟩ token.

When training our NMT systems, following Bahdanau et al. (2015), we filter out sentence pairs whose lengths exceed 50 words and shuffle mini-batches as we proceed. We train our model with the following settings. (1) We start with a learning rate of 1 and we begin to halve the learning rate every epoch once it overfits. (2) We train until the model converges. (i.e. the difference between the perplexity for the current epoch and the previous epoch is less than 0.01) (3) We batched the instances with the same length and our maximum mini-batch size is 256, and (4) the normalized gradient is rescaled whenever its norm exceeds 5. (6) Dropout is applied between vertical RNN stacks with probability 0.3. Additionally, the context network is trained jointly with the encoder-decoder architecture. Our model is built upon OpenNMT (Klein et al., 2017) with the default settings unless otherwise noted.

6.2 Experimental Results

In this section, we compare our proposed context-aware NMT models with baseline models on English-German dataset. Our baseline models are encoder-decoder models using global-general attention and input feeding on the decoder side as described in §2, varying the settings on the encoder side. Our proposed model builds upon baseline models by concatenating or gating different types of context vectors. We use LSTM for encoder, decoder, and context network. The decoder is the same across baseline models and proposed models, having 500 hidden units. During testing, we use beam search with a beam size of 5. The dimension for input word embedding d is set 500 across encoder, decoder, and context network. Settings for three different baselines are listed below.

Baseline 1: An uni-directional LSTM with 500 hidden units and 2 layers of stacking LSTM.

Baseline 2: A bi-directional LSTM with 250 hidden units and 2 layers of stacking LSTM. Each state is summarized by concatenating the hidden states of forward and backward encoder into 500 hidden units.

Baseline 3: A bi-directional LSTM with 250 hidden units and 3 layers of stacking LSTM. This can be compared with the proposed method, which adds an extra layer of computation before the word embeddings, essentially adding an extra layer.

The context network uses the below settings.

NBOV: Average word embedding of the input sequence.

BiLSTM: A single-layer bi-directional LSTM with 250 hidden units. The context vector is represented by concatenating the hidden states of forward and backward LSTM into a 500 dimensional vector.
We observe that for all settings except NBOW+Concat, the proposed method is able to improve over the respective baseline methods with 2 layers. Comparing the best baseline model with the best context-aware model (results in bold in the table), we can see that we achieved improvements of around 0.7 BLEU on both WMT14 and WMT15. This is in contrast to simply using a 3-layer network, which actually degrades performance, perhaps due to the vanishing gradients problem it increases the difficulty in learning.

Next, comparing different methods for incorporating context, we can see that BiLSTM performs best across all settings. HoLSTM performs slightly better than NBOW, and NBOW obviously suffers from having the same context vector for every word in the input sequence failing to outperform the corresponding baselines. Comparing the two integration methods that incorporate context into word embeddings. Both methods improve over the baseline with BiLSTM as the context network. Concatenating the context vector and the word embedding performed better than gating. Finally, in contrast to the baseline, it is not obvious whether using uni-directional or bi-directional as the encoder is better for our proposed models, particularly when BiLSTM is used for calculating the context network. This is likely due to the fact that bi-directional information is already captured by the context network, and may not be necessary in the encoder itself.

We further compared the two systems on two different languages, French and Chinese. We achieved 0.5-0.8 BLEU improvement, showing our proposed models are stable and consistent across different language pairs. The results are shown in Table 2.

To show that our 3-layer models are properly trained, we ran a 3-layer bidirectional encoder with residual networks on En-Fr and got 27.45 for WMT13 and 30.60 for WMT14, which is similarly lower than the two layer result. It should be noted that previous work such as Britz et al. (2017) have

Context	Integration	uni/bi	#layers	#params	Ppl	WMT14	WMT15
None	-	→	2	85M	7.12	20.49	22.95
None	-	↔	2	83M	7.20	21.05	23.83
None	-	↔	3	86M	7.50	20.86	23.14
NBOW	Concat	→	2	85M	7.23	20.44	22.83
NBOW	Concat	↔	2	83M	7.28	20.76	23.61
HoLSTM	Concat	→	2	87M	7.19	20.67	23.05
HoLSTM	Concat	↔	2	86M	7.04	21.15	23.53
BiLSTM	Concat	→	2	87M	6.88	21.80	24.52
BiLSTM	Concat	↔	2	85M	6.87	21.33	24.37
BiLSTM	Gating	→	2	87M	7.07	20.94	23.58
BiLSTM	Gating	↔	2	85M	7.11	21.33	24.05

Table 1: WMT’14, WMT’15 English-German results - We show perplexities (Ppl) on development set and tokenized BLEU on WMT’14 and WMT’15 test set of various NMT systems. We also show different settings for different systems. → represents uni-directional, and ↔ represents bi-directional. We also highlight the best baseline model and the best proposed model in bold. The best baseline model will be referred as base or baseline and the best proposed model will referred to as best for further experiments.

System	BLEU	
en → de	WMT’14	WMT’15
baseline	21.05	23.83
best	**21.80**	**24.52**
en → fr	WMT’13	WMT’14
baseline	28.21	31.55
best	**28.77**	**32.39**
en → zh	WMT’17	
baseline	24.07	
best	**24.81**	

Table 2: Results on three different language pairs - The best proposed models are significantly better (p-value < 0.001) than baseline models using paired bootstrap resampling (Koehn, 2004).

HoLSTM: A single-layer uni-directional LSTM with 500 hidden units.

The results are shown in Table 1. The first thing we observe is that for all settings except NBOW+Concat, the proposed method is able to improve over the respective baseline methods with 2 layers. Comparing the best baseline model with the best context-aware model (results in bold in the table), we can see that we achieved improvements of around 0.7 BLEU on both WMT14 and WMT15. This is in contrast to simply using a 3-layer network, which actually degrades performance, perhaps due to the vanishing gradients problem it increases the difficulty in learning.
also noted that the gains for encoders beyond two layers is minimal.

6.3 Targeted Analysis

In order to examine whether our proposed model can better translate words with multiple senses, we evaluate our context-aware model on a list of homographs extracted from Wikipedia\(^5\) compared to the baseline model on three different language pairs. For the baseline model, we choose the best-performing model, as described in §6.2.

To do so, we first acquire the translation of homographs in the source language using fast-align (Dyer et al., 2013). We run fast-align on all the parallel corpora including training data and testing data\(^6\) because the unsupervised nature of the algorithm requires it to have a large amount of training data to obtain accurate alignments. Since there might be multiple aligned words in the target language given a word in source language, we use F1, precision, and recall as our metrics, and take the micro-average across all the sentence pairs.\(^7\) We calculated the scores for the 50000 words/characters from our source vocabulary using only English words. The results are shown in Table 3. The table shows two interesting results: (1) The score for the homographs is lower than the score obtained from all the words in the vocabulary. This shows that words with more meanings are harder to translate with Chinese as the only exception.\(^8\) (2) The improvement of our proposed model over baseline model is larger on the homographs compared to all the words in vocabulary. This shows that although our context-aware model is better overall, the improvements are particularly focused on words with multiple senses, which matches the intuition behind the design of the model.

6.4 Qualitative Analysis

We show sample translations on English-Chinese WMT’17 dataset in Table 4 with three kinds of examples. We highlighted the English homograph in bold, correctly translated words in blue, and wrongly translated words in red. (1) Target homographs are translated into the correct sense with the help of context network. For the first sample translation, “meets” is correctly translated to “” by our model, and wrongly translated to “” by baseline model. In fact, “” is closer to the definition “come together intentionally” and “” is closer to ”satisfy” in the English dictionary. (2) Target homographs are translated into different but similar senses for both models in the forth example. Both models translate the word “believed” to common translations “” or “” , but these meaning are both close to reference translation “” . (3) Target homograph is translated into the wrong sense for the baseline model, but is not translated in our model in the fifth example.

7 Related Work

Word sense disambiguation (WSD), the task of determining the correct meaning or sense of a word in context is a long standing task in NLP (Yarowsky, 1995; Ng and Lee, 1996; Mihalcea and Faruque, 2004; Navigli, 2009; Zhong and Ng, 2010; Di Marco andNavigli, 2013; Chen et al., 2014; Camacho-Collados et al., 2015). Recent research on tackling WSD and capturing multi-senses includes work levering LSTM (Kågebäck and Salomonsson, 2016; Yuan et al., 2016), which we extended as a context network in our paper and predicting senses with word embeddings that capture context (Kågebäck and Sa-
English-Chinese Translations
src
ref
best
base
top
ref
best
base
ref
best
base
ref
best
base

Table 4: Sample translations - for each example, we show sentence in source language (src), the human translated reference (ref), the translation generated by our best context-aware model (best), and the translation generated by baseline model (base). We also highlight the word with multiple senses in source language in bold, the corresponding correctly translated words in blue and wrongly translated words in red. The definitions of words in blue or red are in parenthesis.

lomonsson, 2016; Yuan et al., 2016). Šuster et al. (2016); Kawakami and Dyer (2016) also showed that bilingual data improves WSD.

In contrast to the standard WSD formulation, Vickrey et al. (2005) reformulated the task of WSD for Statistical Machine Translation (SMT) as predicting possible target translations which directly improves the accuracy of machine translation. Following this reformulation, Chan et al. (2007); Carpuat and Wu (2007a,b) integrated WSD systems into phrase-based systems. Xiong and Zhang (2014) breaks the process into two stages. First predicts the sense of the ambiguous source word. The predicted word senses together with other context features are then used to predict possible target translation.

Within the framework of Neural MT, there is one work that has similar motivation to ours. Choi et al. (2017) leverage the NBOW as context and gate the word-embedding on both encoder and decoder side. However, their work does not distinguish context vectors for words in the same sequence, in contrast to the method in this paper, and our results demonstrate that this is an important feature of methods that handle homographs in NMT. In addition, our quantitative analysis of the problems that homographs pose to NMT and evaluation of how context-aware models fix them was not covered in this previous work.

8 Conclusion

Theoretically, NMT systems should be able to handle homographs if the encoder captures the clues to translate them correctly. In this paper, we empirically show that this may not be the case; the performance of word level translation degrades as the number of senses for each word increases. We hypothesize that this is due to the fact that each word is mapped to a word vector despite them being in different contexts, and propose to integrate methods from neural WSD systems into an NMT system to alleviate this problem. We concatenated the context vector computed from the context network with the word embedding to form a context-aware word embedding, successfully improving the NMT system. We evaluated our model on
three different language pairs and outperformed a strong baseline model according to BLEU score in all of them. We further evaluated our results targeting the translation of homographs, and our model performed better in terms of F1 score.

While the architectures proposed in this work do not solve the problem of homographs, our empirical results in Table 3 demonstrate that they do yield improvements (larger than those on other varieties of words). We hope that this paper will spark discussion on the topic, and future work will propose even more focused architectures.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In ICLR.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and Marcello Federico. 2016. Neural versus phrase-based machine translation quality: a case study. In EMNLP. pages 257–267.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python: analyzing text with the natural language toolkit. "O’Reilly Media, Inc.”.

Denny Britz, Anna Goldie, Thang Luong, and Quoc Le. 2017. Massive exploration of neural machine translation architectures. arXiv:1703.03906.

José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. 2015. A unified multilingual semantic representation of concepts. In ACL. pages 741–751.

Marine Carpuat and Dekai Wu. 2007a. How phrase sense disambiguation outperforms word sense disambiguation for statistical machine translation. TMI pages 43–52.

Marine Carpuat and Dekai Wu. 2007b. Improving statistical machine translation using word sense disambiguation. In EMNLP-CoNLL. pages 61–72.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007. Word sense disambiguation improves statistical machine translation. In ACL. volume 45, pages 33–40.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014. A unified model for word sense representation and disambiguation. In EMNLP. pages 1025–1035.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. 2017. Context-dependent word representation for neural machine translation. arXiv:1607.00578.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555.

Antonio Di Marco and Roberto Navigli. 2013. Clustering and diversifying web search results with graph-based word sense induction. Computational Linguistics 39(3):709–754.

Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013. A simple, fast, and effective reparameterization of ibm model 2. NAACL-HLT, pages 644–648.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal Daumé III. 2015. Deep unordered composition rivals syntactic methods for text classification. In ACL. pages 1681–1691.

Mikael Kågebäck and Hans Salomonsson. 2016. Word sense disambiguation using a bidirectional lstm. COLING 2016 page 51.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. ACL pages 212–217.

Kazuya Kawakami and Chris Dyer. 2016. Learning to represent words in context with multilingual supervision. ICLR workshop.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. 2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. arXiv:1701.02810.

Philipp Koehn. 2004. Statistical significance tests for machine translation evaluation. In EMNLP. pages 388–395.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. 2007. Moses: Open source toolkit for statistical machine translation. In ACL. pages 177–180.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In NAACL. pages 48–54.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to attention-based neural machine translation. EMNLP pages 1412–1421.

Rada Mihalcea and Ehsanul Faruque. 2004. Sense-learner: Minimally supervised word sense disambiguation for all words in open text. In ACL/SIGLEX. volume 3, pages 155–158.

Roberto Navigli. 2009. Word sense disambiguation: A survey. ACM Computing Surveys (CSUR) 41(2):10.
Graham Neubig, Makoto Morishita, and Satoshi Nakamura. 2015. Neural reranking improves subjective quality of machine translation: Naist at wat2015. WAT.

Hwee Tou Ng and Hian Beng Lee. 1996. Integrating multiple knowledge sources to disambiguate word sense: An exemplar-based approach. In ACL. pages 40–47.

Simon Šuster, Ivan Titov, and Gertjan van Noord. 2016. Bilingual learning of multi-sense embeddings with discrete autoencoders. NAACL-HLT pages 1346–1356.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In NIPS. pages 3104–3112.

David Vickrey, Luke Biewald, Marc Teyssier, and Daphne Koller. 2005. Word-sense disambiguation for machine translation. In HLT-EMNLP. pages 771–778.

Deyi Xiong and Min Zhang. 2014. A sense-based translation model for statistical machine translation. In ACL. pages 1459–1469.

David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In ACL. pages 189–196.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin Evans, and Eric Altendorf. 2016. Semi-supervised word sense disambiguation with neural models. arXiv:1603.07012.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense: A wide-coverage word sense disambiguation system for free text. In ACL. pages 78–83.