Regulation of Derlin-1-mediated degradation of NADPH oxidase partner p22phox by thiol modification

Kei Miyanoa,b,*,1, Shuichiro Okamotob,1, Mizuho Kajikawac, Takuya Kiyoharad, Chikage Kawaib, Akira Yamauchib, Shuichiro Okamotob,1, Kei Miyanoa,b,*,1, Futoshi Kuribayashia

a Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
b Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
c Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
d Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan

* Corresponding author. Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan. E-mail address: kei-miyano@med.kawasaki-m.ac.jp (K. Miyano).

These authors contributed equally to this work.

1 These authors contributed equally to this work.

ARTICLE INFO

Keywords:
- Chronic granulomatous disease (CGD)/Derlin-1
- Endoplasmic reticulum-associated degradation (ERAD)/NADPH oxidase/p22phox

ABSTRACT

The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1–4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22phox type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1.

1. Introduction

The NADPH oxidase (Nox) family of enzymes produces reactive oxygen species (ROS) [1–5]. This family participates in variety biological functions, including host defense [1], signal transduction [6], otoconia synthesis [7], and hormone synthesis [8]. The human Nox family comprises seven members (Nox1–5, Duox1, and Duox2). Among the Nox family members, Nox2 (a.k.a. gp91phox) is the prototype and is expressed abundantly in professional phagocytes (e.g., neutrophils and macrophages), where it contributes to host defense by generating substantial quantities of superoxide. The superoxide generated is the precursor for other ROS (highly reactive), including hydrogen peroxide and hydroxyl radicals, which are involved in bacterial killing. Genetic defects in Nox2 (encoded by the X-linked CYBB gene) lead to chronic granulomatous disease (CGD), which is characterized by recurrent life-threatening bacterial and fungal infections [9].

The Nox partner protein p22phox is essential for Nox1–Nox4-based oxidase activity [2]. The multiple membrane-spanning protein p22phox heterodimerizes with the multiple membrane-spanning proteins Nox1–4, except Nox5. \textit{De novo} p22phox interacts with \textit{de novo} Nox2 in the endoplasmic reticulum (ER) [10–12]. Nox2 immediately exits the ER and reaches the phagocyte/plasma membrane in a heterodimerization-dependent manner [10]. In the absence of p22phox, the Nox2 monomer is degraded by ER-associated degradation (ERAD) [10,13,14]. This explains why Nox2 protein is undetectable in the background of p22phox (CYBA gene) genetic deficiency [15–17]. Thus,
heterodimerization with p22phox appears to promote proper the folding of Nox2 to evade degradation by ERAD.

Nonphagocytic Nox4 oxidase is expressed abundantly in endothelial cells (ECs) of blood vessels [18] and contributes to redox signaling, leading to changes in physiological processes, such as angiogenesis [19].Unlike Nox2, Nox4 is primarily localized in the ER, where it also interacts with p22phox [20–22]. The presence of p22phox is also required for the detection of Nox4 protein. We previously reported that in transformed ECs, Nox4 protein levels are attenuated by the hypoxia-induced reduction of p22phox mRNA and protein levels [23]. In addition, Nox4 was undetectable in an animal model expressing the p22phox mutant protein with reduced protein expression instead of wild-type p22phox [22,24].

The heterodimerization with p22phox is indispensable for the localization of Nox2 in the phagocyte/plasma membrane. In addition, p22phox functions as an anchor for the soluble cytosolic activating protein p47phox, forming an active complex. The formation of a complex with Nox2 occurs through the interaction between p47phox and p22phox, because p47phox forms a ternary complex with other activating proteins—p47phox and p40phox. A missense mutation in CYBA (p22phox gene), which results in an amino acid substitution of glutamine for proline-156, impairs the binding of p22phox to p47phox [25,26]. Because the expression of p22phox is responsible for Nox2 localization and activation, genetic defects and missense mutations in p22phox also cause CGD.

The interaction with p22phox is also required for Nox4 activity [20]. The activity of Nox4 is independent of the presence of Nox-activating proteins, such as p47phox and p67phox. The amount of ROS generated by Nox4 is proportional to the expression levels of Nox4–p22phox. A switch for activating Nox2 is turned off by the dissociation of p22phox and the soluble cytosolic activating protein p47phox, whereas a switch for Nox4 activity is not readily turned off. To the best of our knowledge, a switch mechanism for the enzymatic activity of Nox4 has not been proposed yet.

A missense mutation in p22phox (P156Q) has been functionally characterized [25,26]. The mutated proteins are unable to bind to p47phox [25,26]. Thus, Pro-156 is considered to be responsible for the activation of Nox2. The mutational hotspot located in CYBA exon 3 in the A2Z2 type (wherein the p22phox protein is undetectable) of CGD exhibits missense mutations in p22phox (L51Q, L52P, E53V, and P55R) [16]; however, to the best of our knowledge, these mutations have not been characterized yet. In the present study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) and demonstrated that these amino acid substitutions promote the degradation of p22phox protein in the ER. Interestingly, all of the mutant proteins strongly promoted the binding of p22phox to Derlin-1, a key component of the ERAD system [27–30]. These findings suggest that these amino acids (Leu-51, Leu-52, Glu-53, and Pro-55) are responsible for the stability of p22phox protein in the ER. Furthermore, the L52P and E53V substitutions impaired the binding of p22phox to Nox2. Thus, the L51–L52–E53–P55 sequence is involved in Nox2-based oxidase activity through a mechanism different from that of Pro-156.

We further demonstrated that the stability of the p22phox protein is regulated by redox-sensitive Cys-50, which is adjacent to the L51–L52–E53–P55 sequence, in a thiol oxidation-dependent manner. A C50S substitution results in decreased protein stability. Moreover, blocking the free thiol of Cys-50 by alklylation or C50S substitution promoted the association of p22phox and Derlin-1. The Nox2 and Nox4 proteins form a complex with p22phox (C50S) and are rapidly degraded. Thus, the C-terminal region adjacent to Cys-50 (amino acids 50–55, including Cys-50) appears to be responsible for the stability of p22phox and its partners, Nox2 and Nox4. Because the activity and stability of Nox4 are dependent on the presence of p22phox [23], we propose that p22phox degradation resulting from the modification of Cys-50 thiol group is a switch that turns off Nox4 activity.

2. Materials and methods

2.1. Materials

Chemicals, reagents, and antibodies: All general ultrapure-grade reagents were purchased from Nacalai Tesque (Kyoto, Japan), Wako Pure Chemicals Industries (Tokyo, Japan), or Sigma-Aldrich Japan (Tokyo, Japan), unless otherwise stated. Primers were purchased from Eurofins Genomics (Tokyo, Japan). Methyl-PEG24-maleimide reagent (polyethylene glycol [PEG]-maleimide) (catalog #22713) was purchased from Thermofisher Scientific (Tokyo, Japan). The following antibodies were used: mouse monoclonal antibodies against β-tubulin (Wako, 10G10), Myc (Santa Cruz Biotechnology, 9E10), FLAG (DYKDDDDK-tag) (Wako, I66), and p22phox (Santa Cruz Biotechnology, C99); rabbit monoclonal antibody against protein disulfide isomerase (PDI; Cell Signaling Technology, C8H16); and rabbit polyclonal antibodies against p22phox (GeneTex, GTX13970), Nox4 (GeneTex, N3C3), β-actin (Cell Signaling Technology, catalog #4967), and Derlin-1 (Medical & Biological Laboratories, PM018). All antibodies were used at a 1:1000-fold dilution.

Plasmids and cDNA: Sequences encoding peptide epitopes (“FLAG–(Gly)L,−Flag–(Gly)3,” or “Myc–(Gly)L,−Myc–(Gly)3”) were inserted into pcDNA3.1 for expression in mammalian cells. A modified vector, termed pcDNA3.1–FLAG or pcDNA3.1–Myc, was used to insert a FLAG tag at the N- or C-terminus of the protein or a Myc tag at the N- or C-terminus of the protein, respectively [31,21], cDNAs encoding human p22phox, Nox2, Nox4, p47phox, and p67phox were prepared as described previously and ligated to pcDNA3.1 [31,31–33]. The cDNAs for human Derlin-1 were prepared through RT-PCR using mRNA from EA.hy926 cells. Mutations leading to the indicated substitution were introduced by polymerase chain reaction-mediated, site-directed mutagenesis. All the constructs were sequenced for confirmation of their identities.

2.2. Cells, cell culture, and plasmid transfection

The CHO–K1 or HeLa cells were cultured as described previously [31,33]. The plasmids were transfected into CHO–K1 or HeLa cells as previously described [31,33].

2.3. Estimation of protein expression levels: sample preparation for immunoblotting and immunoblotting procedure

The samples were prepared as described previously [33]. Immunoblotting was performed as described previously [33]. Rabbit polyclonal antibodies against p22phox (GTX13970), Nox4 (GeneTex, N3C3) and Derlin-1 (MBL, PM018) were used to detect p22phox–Myc, FLAG–Nox4 and Derlin-1, respectively; a mouse monoclonal antibody against FLAG (116E) was used to detect FLAG–Nox2 and FLAG–Nox4; and mouse monoclonal antibodies against Myc (9E10) and β-tubulin (10G10) were used to detect 22phox–Myc and β-tubulin, respectively.

2.4. Determination of the oxidation state of p22phox

The transfected CHO–K1 cells (7 × 105 cells in 6-well plates) were treated with or without 20 mM N-ethylmaleimide (NEM) or 1 mM H2O2 for 30 min. The treated and untreated cells were washed with phosphate-buffered saline (PBS) (137 mM NaCl, 2.68 mM KCl, 8.1 mM Na2HPO4, and 1.47 mM KH2PO4, pH 7.4) and lysed using 50 μl of 50 mM PEG–maleimide in lysis buffer (20 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, and 1% (v/v) protease inhibitor cocktail). The lysates were incubated for 1 h at 4 °C and centrifuged for 20 min at 17,000 × g. The supernatants were mixed with reducing sodium dodecyl sulfate (SDS)–sample buffer [1% (v/v) 2-mercaptoethanol]. The samples were then analyzed through SDS–polyacrylamide gel electrophoresis and immunoblotted with either anti-p22phox antibody or anti-Myc antibody.
2.5. Immunofluorescence microscopy

Immunofluorescence microscopy was performed as described previously [21]. Briefly, to stain p22phox–Myc, Derlin-1–FLAG and PDI (ER marker), plasmid-transfected CHO–K1 cells grown on coverslips were fixed for 15 min in 4% formaldehyde at room temperature and then for 10 min in ice-cold 100% methanol at 20 °C, followed by permeabilization for 60 min in 0.3% Triton X-100 in PBS with 5% bovine serum albumin (BSA). The samples were incubated overnight at 4 °C with the indicated primary antibodies in PBS with 1% BSA and 0.3% Triton X-100. After fixation, the immunofluorescence signals were observed by confocal microscopy. Scale bars, 10 μm. These experiments have been repeated more than three times with similar results.

2.6. Assay of O\textsubscript{2}- or H\textsubscript{2}O\textsubscript{2} production

The production of O\textsubscript{2}- by cells expressing Nox2 was assayed using Diogenes-luminol solution as described previously [31]. Briefly, the transfected cells (7 × 105 cells in 6-well plates) were cultured for 24 h and harvested by incubation with trypsin/ethylenediaminetetra-acetic acid. After being washed with PBS, the cells were suspended at a density of 7 × 105 cells per 250 μl PBS plus 10 μl Diogenes-luminol solution. The cells were treated with 200 ng/ml phorbol 12-myristate 13-acetate and then transferred to 96-well plates with white walls and flat bottoms (IWAKI, 3620–096). Using a spectral scanning multimode reader (Varioskan® Flash, Thermo), chemiluminescence was measured for 25 min at 37 °C with or without 2 μg/ml superoxide dismutase.
The production of H_2O_2 by cells expressing Nox4 was assayed using the homovanillic acid–horseradish peroxidase detection system as described previously [21, 31].

2.7. Protein stabilization

Protein stability in plasmid-transfected CHO–K1 cells and HeLa cells was analyzed as described previously [21]. Briefly, the transfected cells were treated with $10\mu\text{g/ml}$ cycloheximide (CHX) for the indicated times. When p22$^{\text{phox}}$ was coexpressed with Nox2 or Nox4, the transfected cells were exposed to $10\mu\text{g/ml}$ Brefeldin A for 1 h and then treated with $20\mu\text{M}$ MG132. Protein levels of the indicated proteins were estimated via immunoblotting. Positions for marker proteins are indicated in kDa. Each graph represents the relative density of the bands normalized to β-tubulin ($n = 3$). Statistical analysis was performed using Tukey–Kramer test. ***, $p < 0.001$; **, $p < 0.05$; *, $p < 0.05$; ns, no significance; shorter exposure, shorter exposure films were used for scanning; longer exposure, longer exposure films were used for scanning. These experiments have been repeated more than three times with similar results.

The production of H_2O_2 by cells expressing Nox4 was assayed using the homovanillic acid–horseradish peroxidase detection system as described previously [21,31].

2.8. Immunoprecipitation assay

Immunoprecipitation assay was performed as described previously [21]. Briefly, plasmid-transfected CHO–K1 cells or HeLa cells (2.1 ×...
10⁶ in a 6-cm dish) were lysed using lysis buffer (20 mM Tris–HCl, pH 7.4; 150 mM NaCl; 1% Triton X-100). For transfected CHO cells, proteins in the lysates were precipitated with ANTI-FLAG® M2 Agarose Affinity Gel or Mouse IgG–Agarose (Sigma-Aldrich). For the transfected HeLa cells, proteins in the lysates were precipitated by anti-Myc antibody or control IgG (Fig. 10A).

2.9. Cell surface biotinylation assay

Cell surface biotinylation assay was performed as described previously [31].

![Cell surface biotinylation assay](caption on next column)

Fig. 3. Analysis of p22⁰² CGD mutant proteins

A, interaction of p22⁰² with Nox2. CHO-K1 cells (2.1 × 10⁶ in a 6-cm dish) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22⁰²-Myc (0.1 μg), pcDNA3.1-p22⁰² (L51Q)-Myc (3.0 μg), pcDNA3.1-p22⁰² (L52P)-Myc (3.0 μg), pcDNA3.1-p22⁰² (ES3V)-Myc (0.1 μg), pcDNA3.1-p22⁰² (PS5R)-Myc (0.1 μg), pcDNA3.1-p22⁰² (R90Q)-Myc (0.1 μg), and/or pcDNA3.1-FLAG-Nox2 (3.0 μg), control, Mouse IgG–Agarose; FLAG, ANTI-FLAG® M2 Agarose Affinity Gel. B, cell surface localization of p22⁰² with Nox2. CHO-K1 cells (3.2 × 10⁶ in a 9-cm dish) were transfected simultaneously with the indicated plasmid: pcDNA3.1-wild-type (wt) p22⁰²-Myc (1 μg), pcDNA3.1-p22⁰² (L51Q)-Myc (10 μg), pcDNA3.1-p22⁰² (L52P)-Myc (10 μg), pcDNA3.1-p22⁰² (ES3V)-Myc (1 μg), pcDNA3.1-p22⁰² (PS5R)-Myc (1 μg), and/or pcDNA3.1-FLAG-Nox2 (9 μg). C, superoxide production by Nox2. CHO-K1 cells (7 × 10⁵ cells in 6-well plates) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22⁰²-Myc (0.03 μg), pcDNA3.1-p22⁰² (L51Q)-Myc (0.3 μg), pcDNA3.1-p22⁰² (L52P)-Myc (0.3 μg) and/or pcDNA3.1-Myc-p47⁰² (0.2 μg) and/or pcDNA3.1-Myc-p67⁰² (0.2 μg). Superoxide production was assayed using superoxide dismutase inhibitable-chemiluminescence using Diogenes. Each graph represents the mean ± standard deviation of the chemiluminescence intensities integrated for 10 min after PMA stimulation from three independent transfections. **p < 0.001; ns, no significance.** Protein levels of the indicated proteins were estimated via immunoblotting. Positions for marker proteins are indicated in kDa. Each graph represents the relative density of the bands normalized to β-tubulin (n = 3), complex, complex N-glycan-bearing Nox2; high-mannose, high mannose N-glycan-bearing Nox2. These experiments have been repeated more than three times with similar results.

2.10. Derlin-1 knockdown

The knockdown of Derlin-1 was performed as described previously [21,31]. HeLa cells were cultured as described previously [21]. Briefly, the following 25-nucleotide modified synthetic double-stranded siRNA targeting Derlin-1 (Stealth RNAi) was purchased from Invitrogen: Derlin-1 siRNA, 5′-GAGAGAGAGAAUAAGGAGUUGGU-3′ (sense) and 5′-ACCAAAUCGUAGACUCCUCUCUC-3′ (antisense). Stealth RNAi negative-control duplexes (Invitrogen) were used as the negative control. HeLa cells were cultured in 6-well plates (1 × 10⁵ in a well) and then transfected with 200 pmol RNA using Lipofectamine RNAiMAX (ThermoFisher Scientific) in 50 μl of Opti-MEM (ThermoFisher Scientific) according to the manufacturer’s instructions. Stealth RNA-transfected cells were cultured for 48 h and then transfected with the following plasmids: pcDNA3.1-wild-type (wt) p22⁰²-Myc (0.1 μg), pcDNA3.1-p22⁰² (L51Q)-Myc (0.1 μg), pcDNA3.1-p22⁰² (L52P)-Myc (0.1 μg), pcDNA3.1-p22⁰² (ES3V)-Myc (0.1 μg), pcDNA3.1-p22⁰² (PS5R)-Myc (0.1 μg), and/or pcDNA3.1-p22⁰² (CS50)-Myc (0.1 μg). The transfected cells were cultured for 24 h and used to measure p22⁰² protein levels.

2.11. Statistical analysis

Data were expressed as mean ± standard deviations. Between-group comparisons were performed using t-test and Tukey–Kramer multiple comparison of means test. Statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Characterization of p22⁰² CGD mutants harboring mutations in the amino acid sequence that corresponds to exon 3

We evaluated four amino acid residues (Leu-51, Leu-52, Glu-53, and Pro-55) in the amino acid sequence that corresponds to exon 3 (Fig. 1A)
The A22 wild-type (wt) p22 protein was detected with rabbit polyclonal antibody, based on the fact that the L51Q, L52P, E53V, and P55R mutations lead to alkylation of p22 proteins (L51Q, L52P, E53V, and P55R) were also colocalized (anti-Myc mouse monoclonal antibody). We investigated the effects of amino acid substitutions on the stability of p22 in CHO-K1 cells expressing p22. CHO-K1 cells (7 × 10^6 cells in 6-well plates) were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22 (0.3 μg), pcDNA3.1-p22 (CS05)–Myc (3 μg), or pcDNA3.1-p22 (CS05/C113S)–Myc (0.3 or 1 μg). The band densities were normalized to β-tubulin. Distribution of exogenous mutant p22 in CHO-K1 cells. CHO-K1 cells (7 × 10^6 cells in a 30-mm glass-bottom dish) were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22 (0.1 μg), pcDNA3.1-p22 (C113S)–Myc (0.1 μg), or pcDNA3.1-p22 (C50S/C113S)–Myc (3 μg). After fixation, the immunofluorescence signals were observed by confocal microscopy. Scale bars, 10 μm.

Fig. 4. Redox-sensitive cysteine in p22

A, alkylation of p22. CHO-K1 cells (7 × 10^6 cells in 6-well plates) were transfected with pcDNA3.1-wild-type (wt) p22–Myc (0.3 μg). Protein levels of exogenous p22–Myc in lysates were estimated via immunoblotting. B, expression levels of p22 mutant protein. CHO-K1 cells (7 × 10^6 cells in 6-well plates) were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22–Myc (0.3 or 1 μg), pcDNA3.1-p22 (CS05)–Myc (0.3 or 1 μg), pcDNA3.1-p22 (CS05/C113S)–Myc (0.3 or 1 μg), or pcDNA3.1-p22 (CS05/C113S)–Myc (0.3 or 1 μg). The band densities were normalized to β-tubulin. C, distribution of exogenous mutant p22 in CHO-K1 cells. CHO-K1 cells (7 × 10^6 cells in 30-mm glass-bottom dish) were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22–Myc (0.1 μg), pcDNA3.1-p22 (C113S)–Myc (0.1 μg), or pcDNA3.1-p22 (C50S/C113S)–Myc (3 μg). After fixation, the immunofluorescence signals were observed by confocal microscopy. Scale bars, 10 μm. D and E, alkylation of p22 mutant proteins. CHO-K1 cells (7 × 10^6 cells in 6-well plates) were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22–Myc (0.3 μg), pcDNA3.1-p22 (CS05)–Myc (1 μg), pcDNA3.1-p22 (C113S)–Myc (0.3 μg), or pcDNA3.1-p22 (C50S/C113S)–Myc (0.3 μg). 1 × PEG-mal, 2 × PEG-maleimide-modified p22, 0 × PEG-mal, PEG-maleimide-unmodified p22. Protein levels of exogenous p22–Myc and endogenous β-tubulin (as loading control) in lysates were estimated via immunoblotting. Positions for marker proteins are indicated in kDa. Shorter exposure, shorter exposure films were used for scanning; longer exposure, longer exposure films were used for scanning. These experiments have been repeated more than three times with similar results.

Based on the fact that the L51Q, L52P, E53V, and P55R mutations lead to the A22' type of CGD [16]. Because the amino acid substitutions may interfere with the recognition of p22 mutant proteins by anti-p22 mouse monoclonal antibody (mAB (CS9)) or rabbit polyclonal antibody, wild-type (wt) p22 and mutant proteins were prepared with a C-terminal Myc tag (p22–Myc), which is detectable with mAB 9E10 (anti-Myc mouse monoclonal antibody).

When wild-type p22–Myc was ectopically expressed alone in CHO-K1 cells, which do not express endogenous p22 and Nox2 [34], wild-type and mutant p22–Myc was observed to be colocalized with the ER marker protein PDI under a confocal laser microscope (Fig. 1B). The mutant proteins (L51Q, L52P, E53V, and P55R) were also colocalized with PDI (Fig. 1C). The laser intensity was adjusted to capture the images for the p22 (L51Q) and p22 (L52P) mutant proteins with low expression as described in detail below (Fig. 2). Thus CHO-K1 cells expressing exogenous p22–Myc proteins represent a useful system to characterize p22–Myc mutant proteins in the ER.

When CHO-K1 cell lysates expressing exogenous p22–Myc proteins were immunoblotted with polyclonal antibody to p22 and monoclonal antibody (9E10) to the Myc tag, the L51Q and L52P substitutions resulted in a decrease in the amount of the mutant protein (Fig. 2). This result suggests that the mutation makes the protein unstable. We investigated the effects of amino acid substitutions on the stability of p22–Myc CHO K1 cells expressing p22–Myc were treated with cycloheximide (CHX) to inhibit de novo synthesis of p22 in time course experiments (0, 1, 3, 5, and 9 h). The resulting cell lysates were analyzed by immunoblotting. The levels of p22–Myc (L51Q)–Myc and p22–Myc (L52P)–Myc mutant proteins were decreased to approximately 40% and 20%, respectively, after exposure to CHX for 1 h (Fig. 2B). In contrast, the E53V and P55R substitutions exerted no effect on protein expression (Fig. 2A). The levels of p22–Myc (E53V)–Myc and p22–Myc (P55R)–Myc mutant proteins were maintained approximately 80% and 100%, respectively, after exposure to CHX for 1 h. However, these
substitutions also affected the levels of p22phox mutant proteins after exposure to CHX for 5 h (Fig. 2B). These results suggest that these amino acid residues are responsible for the stability of p22phox protein in the ER. The degradation of the mutant proteins was considerably suppressed in the presence of MG132 (Fig. 2C), indicating that proteasome is involved in the degradation of the mutant proteins after exposure to CHX. Under the same expression conditions that was used for wild-type p22phox, 25% of the protein in the whole cell lysate from the transfected CHO cells was detected on the cell surface. Conversely, the high-mannose form of Nox2 was not detected in the cell surface glycan-bearing Nox2; high-mannose N-glycan-bearing Nox2. B, superoxide production by Nox2. CHO–K1 cells (7 × 10^5 cells in 6-well plates) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox–Myc (0.03 μg), pcDNA3.1-p22phox (C50S)–Myc (0.1 μg), pcDNA3.1-p22phox (C113S)–Myc (0.03 μg), or pcDNA3.1-p22phox (P156Q)–Myc (0.03 μg), pcDNA3.1-FLAG–Nox2 (1 μg), pcDNA3.1-Myc–p67phox (0.2 μg), and/or pcDNA3.1-Myc–p47phox (0.2 μg). Superoxide production was assayed using superoxide dismutase-inhibitable chemiluminescence using Diogenes. Each graph represents the mean ± standard deviation of the chemiluminescence intensities integrated for 10 min after PMA stimulation from three independent transfections. C, H2O2 production by Nox4. CHO–K1 cells (7 × 10^5 cells in 6-well plates) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox–Myc (0.03 μg), pcDNA3.1-p22phox (C50S)–Myc (0.1 μg), or pcDNA3.1-p22phox (C113S)–Myc (0.03 μg) and/or pcDNA3.1-FLAG–Nox2 (1 μg). H2O2 production was assayed using catalase-inhibitable fluorescence using the homovanillic acid–horseradish peroxidase detection system. Each graph represents the mean ± standard deviation of the fluorescence intensities, which were obtained from three independent transfections. Protein levels of the indicated proteins were estimated via immunoblotting. Positions for marker proteins are indicated in kDa. Statistical analysis was performed using Tukey–Kramer test. ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, no significance. These experiments have been repeated more than three times with similar results.

![Fig. 5. Production of ROS by transfected CHO-K1 cells](image-url)

A, cell surface localization of p22phox with Nox2. CHO–K1 cells (3.2 × 10^6 in a 9-cm dish) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox–Myc (1 μg), pcDNA3.1-p22phox (C50S)–Myc (5 μg), pcDNA3.1-p22phox (C113S)–Myc (1 μg), and/or pcDNA3.1-FLAG–Nox2 (9 μg). Complex, complex N-glycan-bearing Nox2; high-mannose N-glycan-bearing Nox2. B, superoxide production by Nox2. CHO–K1 cells (7 × 10^5 cells in 6-well plates) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox–Myc (0.03 μg), pcDNA3.1-p22phox (C50S)–Myc (0.1 μg), pcDNA3.1-p22phox (C113S)–Myc (0.03 μg), or pcDNA3.1-p22phox (P156Q)–Myc (0.03 μg), pcDNA3.1-FLAG–Nox2 (1 μg), pcDNA3.1-Myc–p67phox (0.2 μg), and/or pcDNA3.1-Myc–p47phox (0.2 μg). Superoxide production was assayed using superoxide dismutase-inhibitable chemiluminescence using Diogenes. Each graph represents the mean ± standard deviation of the chemiluminescence intensities integrated for 10 min after PMA stimulation from three independent transfections. C, H2O2 production by Nox4. CHO–K1 cells (7 × 10^5 cells in 6-well plates) were transfected simultaneously with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox–Myc (0.03 μg), pcDNA3.1-p22phox (C50S)–Myc (0.1 μg), or pcDNA3.1-p22phox (C113S)–Myc (0.03 μg) and/or pcDNA3.1-FLAG–Nox2 (1 μg). H2O2 production was assayed using catalase-inhibitable fluorescence using the homovanillic acid–horseradish peroxidase detection system. Each graph represents the mean ± standard deviation of the fluorescence intensities, which were obtained from three independent transfections. Protein levels of the indicated proteins were estimated via immunoblotting. Positions for marker proteins are indicated in kDa. Statistical analysis was performed using Tukey–Kramer test. ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, no significance. These experiments have been repeated more than three times with similar results.

![Fig. 5. Production of ROS by transfected CHO-K1 cells](image-url)
K. Miyano et al.

A.

B.

C.

D.

E.

(caption on next page)
3.2. Redox-sensitive cysteine residues in p22phox

Redox-sensitive cysteine residues in Nox2 subunits p67phox and p47phox participate in Nox2-based oxidase [36–39]. Therefore, we focused on Cys-50, which is adjacent to the L–Cys-50 of mutant p22phox, to investigate the effects of mutations in this residue on Nox2 activity. We expressed mutant p22phox in CHO-K1 cells (7 × 105 cells in 6-well plates) that were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox-Myc (0.2 µg) or pcDNA3.1-p22phox (C50S)-Myc (1.0 µg). The transfected cells were cultured for 0, 2, 4, or 6 h with cycloheximide (CHX) for 6 h. Protein levels of exogenous p22phox-Myc and endogenous β-tubulin (as loading control) were estimated via immunoblotting. D and E, stability of p22phox mutant protein in the presence or absence of 1 mM H2O2. CHO-K1 cells (7 × 105 cells in 6-well plates) were transfected with the indicated plasmids: pcDNA3.1-wild-type (wt) p22phox-Myc (0.2 µg) or pcDNA3.1-p22phox (C50S)-Myc (1.0 µg). The transfected cells were treated for 0, 2, 4, or 6 h with cycloheximide (CHX) in the presence or absence of 20 µM MG132. The graph represents the relative densities of the bands normalized to β-tubulin (n = 3). Protein levels of the indicated proteins were estimated via immunoblotting. Statistical analysis was performed using Tukey–Kramer test. **, p < 0.01; *, p < 0.05; ns, no significance. Positions for marker protein bands are indicated in kDa. These experiments have been repeated more than three times with similar results.

3.3. Role of redox-sensitive Cys-50 and Cys-113 in Nox activity

Next, we investigated the role of Cys-50 and Cys-113 in the ROS-generating activity of Nox2. Using a cell surface biotinylation assay, we demonstrated that p22phox (C50S)-Nox2 and p22phox (C113S)-Nox2 complexes localize at the plasma membrane (Fig. 5A). We expressed wild-type p22phox-Myc, p22phox (C50S)-Myc, or p22phox (C113S)-Myc together with a set of Nox2, p67phox, and p47phox. Under the same expression condition that was used for wild-type p22phox, p22phox (P156Q)-Myc, which was defective in binding to p47phox (a mutation found in a patient with CGD) [25,26], failed to suppress superoxide production by Nox2. In contrast, the production was sufficiently supported by the expression of p22phox (C50S)-Myc and fully supported by that of p22phox (C113S)-Myc (Fig. 5B). Nox4 also interacted with p22phox to function as H2O2-producing oxidase [35]. When FLAG-Nox4 and p22phox mutant proteins were expressed, these mutant proteins activated Nox4 to the same extent as the wild-type p22phox (Fig. 5C). These results indicate that the thiol groups of Cys-50 and Cys-113 are not required for the catalytic function of Nox.

3.4. Role of redox-sensitive Cys-50 in p22phox protein stability

The serine substitution of redox-sensitive Cys-50, but not Cys-113, affected the protein expression level (Fig. 4B). We investigated the effect of the serine substitution of Cys-50 on the stability of p22phox. As shown in Fig. 6A, the levels of p22phox (C50S)-Myc mutant protein decreased to approximately 25% after exposure to CHX for 2 h. This result indicates that Cys-50 is indispensable for protein stability. The degradation of p22phox (C50S)-Myc was considerably suppressed in the presence of MG132 (Fig. 6B), indicating that proteasome is responsible for the degradation of the p22phox (C50S) mutant protein. Furthermore, the oxidation of Cys-50 might affect p22phox stabilization. To test this hypothesis, CHO-K1 cells expressing p22phox–Myc were treated with CHX in the presence or absence of H2O2 (Fig. 6C and D), the addition of which suppressed the degradation of wild-type p22phox–Myc and p22phox (C113S)-Myc but not p22phox (C50S)-Myc (Fig. 6D). The suppression effect was attenuated by pretreatment with NEM for blocking free thiols (Fig. 6E). The H2O2 treatment was able to partially inhibit the proteasome-dependent degradation of wild-type p22phox and p22phox (C113S) mutant protein (Fig. 6E). These results indicate that redox-sensitive Cys-50 is responsible for the stability of p22phox protein in a thiol oxidation-dependent manner.

3.5. Role of Cys-50 of p22phox in Nox2 and Nox4 protein stability

We investigated the effect of p22phox (C50S)–Myc on the stability of Nox2 and Nox4. The coexpression of wild-type p22phox–Myc significantly stabilized ER-localized Nox2 (Fig. 7A) and Nox4 (Fig. 7B) carrying high-mannose glycan proteins. In contrast, these effects were not observed with p22phox (C50S)–Myc. Nox2 and Nox4 interacted with p22phox (C50S)–Myc as well as with wild-type p22phox–Myc (Fig. 7C).
K. Miyano et al.

Redox Biology 56 (2022) 102479

(caption on next page)
Degradation of Nox2 and Nox4 was considerably suppressed in the presence of MG132 (Fig. 7D and E), indicating that proteasome is responsible for degradation of Nox2 and Nox4 complexed with p22phox. These results indicate that the instability of p22phox (C50S) protein affects the stability of Nox2 and Nox4 proteins when complexed with p22phox.

3.6. Recognition of p22phox mutant proteins by Derlin-1

Derlin-1 is implicated in ERAD and interacts with misfolded transmembrane proteins during their transfer from the ER to the cytosolic proteasome [27–30]. To determine whether p22phox mutant proteins bind to Derlin-1, Derlin-1–FLAG proteins were immunoprecipitated from the cell lysates of CHO–K1 cells expressing exogenous p22phox–Myc and Derlin-1–FLAG proteins. In the whole cell lysate, p22phox (C50S)–Myc was observed at an extent similar to that of wild-type p22phox–Myc at a plasmid ratio of 1:5 (wild-type:C50S); however, Derlin-1 coprecipitated p22phox (C50S)–Myc more efficiently than the wild-type p22phox–Myc (Fig. 8A). Pretreatment with NEM for blocking free thiols in wild-type p22phox–Myc promoted the interaction of Derlin-1–FLAG with wild-type p22phox–Myc (Fig. 8B). However, the NEM pretreatment did not enhance Derlin-1 binding to p22phox (C50S)–Myc. These results indicate that redox-sensitive Cys-50 of p22phox is responsible for recognition by Derlin-1.

In whole cell lysates, p22phox (ES3V)–Myc and p22phox (P55R)–Myc were observed at an extent similar to that of wild-type p22phox–Myc at a plasmid ratio of 1:1 (wild-type:mutant proteins), and Derlin-1 was strongly bound to these mutant proteins (Fig. 9A). Although the expression levels of p22phox (L51Q)–Myc and p22phox (L52P)–Myc were considerably lower than those of wild-type p22phox, Derlin-1 coprecipitated these mutant proteins at an extent similar to that of wild-type p22phox–Myc (Fig. 9A). These mutant proteins were observed to be colocalized with Derlin-1–FLAG via a confocal laser microscope (Fig. 9B). These results suggest that Derlin-1 participates in ERAD-mediated degradation of p22phox. To test this possibility, we attempted to knock down Derlin-1 in HeLa cells using commercially available and validated siRNA against human Derlin-1. We observed that endogenous Derlin-1 was efficiently coprecipitated with the anti-Myc antibody but not control IgG from the cell lysates of the cell expressing exogenous p22phox–Myc mutant proteins (Fig. 10A). Derlin-1 knockdown partially restored the expression levels of p22phox mutant proteins (Fig. 10B), which were markedly underexpressed compared with the wild-type protein (Figs. 2A and 4B). Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins (Fig. 10C). These results suggest that p22phox mutant proteins are recognized by Derlin-1 for proteasomal degradation.

4. Discussion

In the present study, we demonstrated that Leu-51, Leu-52, Gln-53, and Pro-55 in the amino acid sequence that corresponds to exon 3 are responsible for p22phox protein stability. In addition, the serine substitution of Cys-50, which is adjacent to the L31-L32-E33-p34 sequence and is redox-sensitive, leads to protein instability. This instability affects the stability of Nox2 and Nox4 when complexed with p22phox. Furthermore, blocking the free thiol of Cys-50 using alkylating agents or the serine substitution of Cys-50 promotes the association of p22phox with Derlin-1, a key component of the ERAD system. In addition, L51Q, L52P, ES3V, and P55R mutant proteins bind to Derlin-1 more efficiently than the wild-type protein. These findings suggest that the C-terminal region adjacent to Cys-50 (amino acids 50–55, including Cys-50) is responsible for p22phox protein stability (Fig. 11).
the CYBA exon 3 of patients with A22° type CGD, the amino acid sequence (residues 44–68) that corresponds to exon 3 appears to be responsible for p22phox protein stability. In a previous study [40], performed screening of a library of peptides spanning the amino acid sequence of p22phox for the inhibition of Nox2 activity. These peptides interfere with the binding of p47phox to Nox2–p22phox [40]: p47phox primarily binds to a proline-rich region (residues 151–160) in the C-terminal cytosolic tail of p22phox. Furthermore, the screening revealed that amino acid residues 47–61 are responsible for Nox2 activity [40]. These peptides may promote the dissociation of p22phox from the Nox2–p22phox complex. In addition, the N-terminal region of p22phox is required for Nox2 protein maturation [41], which completely depends on binding to p22phox. In the present study, we demonstrated that p22phox (L52P) and p22phox (E53V) are defective in binding to Nox2 (Fig. 3A). Therefore, residues 44–68 that correspond to exon 3 may be the region responsible for binding to Nox2.

A previous study showed that p22phox is a target for ubiquitination and treatment with proteasome inhibitors suppresses p22phox degradation [42]. The ERAD system promotes the translocation of misfolded proteins from the ER to the cytosol [43]. They are then degraded by the ubiquitin–proteasome system [43]. Derlin-1 is part of a channel for retro-translocation and is essential for the degradation of misfolded membrane proteins [27–30], such as cystic fibrosis transmembrane conductance regulator (CFTR)-ΔF508 mutant protein [44,45]. Herein, we demonstrated that in the ER, the substitution of Leu-51, Leu-52, Glu-53, and Pro-55 facilitates the interaction of p22phox with Derlin-1 (Figs. 8–10). Thus, L51Q, L52P, E53V, and P55R mutant proteins in patients with A22° type CGD are degraded through the ERAD pathway (Fig. 11).

The L52P and E53V mutations impair the binding of p22phox to Nox2

Fig. 9. Binding of p22phox mutant proteins to Derlin-1

A, interaction of Derlin-1 with p22phox mutant proteins. CHO-K1 cells (2.1 × 10^6 in a 6-cm dish) were transfected simultaneously with the indicated plasmids: pcDNA3.1-Derlin-1–FLAG (0.5 µg) and pcDNA3.1-wild-type (wt) p22phox–Myc (0.5 µg), pcDNA3.1-p22phox (C50S)–Myc (0.5 µg), pcDNA3.1-p22phox (L51Q)–Myc (0.5 µg), pcDNA3.1-p22phox (L52P)–Myc (0.5 µg), pcDNA3.1-p22phox (E53V)–Myc (0.5 µg), or pcDNA3.1-p22phox (P55R)–Myc (0.5 µg). control, Mouse IgG–agarose; FLAG, ANTI-FLAG® M2 agarose affinity gel. The protein levels of the indicated proteins were estimated via immunoblotting. The positions for marker proteins are indicated in kDa. Shorter exposure, shorter exposure films were used for scanning; longer exposure, longer exposure films were used for scanning. B, distribution of exogenous p22phox and Derlin-1 in CHO-K1 cells. CHO-K1 cells (2.1 × 10^6 in a 6-cm dish) were transfected simultaneously with the indicated plasmids: pcDNA3.1-Derlin-1–FLAG (0.1 µg) and pcDNA3.1-wild-type (wt) p22phox–Myc (0.1 µg), pcDNA3.1-p22phox (C50S)–Myc (3 µg), pcDNA3.1-p22phox (L51Q)–Myc (3 µg), pcDNA3.1-p22phox (L52P)–Myc (3 µg), pcDNA3.1-p22phox (E53V)–Myc (0.1 µg), or pcDNA3.1-p22phox (P55R)–Myc (0.1 µg). After fixation, the immunofluorescence signals were observed by confocal microscopy. Scale bars, 10 µm. The data are representative of results from three independent experiments.
As the p22phox protein stability depends on the complex formation with Nox2 [46], monomer p22phox might be degraded in the phagocytes through the ERAD pathway, resulting in the A22° type of CGD. However, L51Q and P55R mutant proteins bind Nox2, although they are unstable. It is currently unknown whether p22phox would be degraded in phagocytes before binding to de novo Nox2 or after complex formation with Nox2.

Blocking the thiol on Cys-50 by alkylation or substituting it with hydroxyl group resulted in p22phox degradation through the ERAD pathway (Fig. 6). In contrast, the oxidation of the Cys-50 thiol group by H2O2 enhanced the stability of ER-retained p22phox protein (Fig. 6) and blocked the alkylation of thiols (Fig. 4). In addition, the degradation of the Nox2–p22phox and Nox4–p22phox complexes were accelerated by the serine substitution of the redox-sensitive Cys-50 (Fig. 7). Hence, the protein expression of Nox2 and Nox4 might be regulated by the modification of the Cys-50 thiol group (Fig. 11). The effects of Cys-50
modification on the stability of p22phox appear to be important for Nox4-based oxidase activity. Nox2, which is heterodimerized with p22phox, is activated depending on complex formation with cytosolic activating proteins and Rac in response to cell stimulation. Thus, the switch for activating Nox2 is turned on or off by the formation or dissociation of the complex. In contrast, Nox4, which is heterodimerized with p22phox, constitutively produces ROS in a cytosolic activating protein-independent manner. Because the switch for Nox4 activity cannot be easily turned off, Nox4 degradation appears to be an effective way to turn off Nox4 activity. Nox4 protein stability is dependent on the presence of p22phox [21,47,48]. In addition, Nox4 primarily localizes in the ER [21,47,48]. Thus, we propose that the modification of the Cys-50 thiol group results in the degradation of p22phox through the ERAD pathway and is a switch for Nox4 inactivation.

Misfolded CFTR-ΔF508 membrane protein can escape ERAD through low-temperature treatment [49] or chemical (VX-809) treatment [50]. These treatments rescue CFTR-ΔF508 trafficking from the ER to the plasma membrane and partially restore the function of the chloride channel. Because p22phox is constitutively found in the plasma membrane and partially restore the function of the chloride channel. Because p22phox (L51Q) and p22phox (P55R) retain the ability to associate with Nox2, the strategy of the escape of mutant proteins from the ERAD system may overcome defective Nox2-based activity in patients with A22° type CGD. Modification of the thiol present in Cys-50, which is adjacent to the L51Q,S52,E53,P55 sequence in the amino acid sequence that corresponds to exon 3, is responsible for both avoiding and promoting the degradation of p22phox. Thus, the identification of molecules involved in the modification of Cys-50 thiol may be valuable for future studies. Molecules that bind/dissociate depending on modification may also be discovered. Additionally, in the present study, we used the indirect method of detecting cysteine oxidation based on reactivity loss with thiol-modifying reagents in the cell lysate. Proteomic approaches are proposed by the Chouchani [51] and Carroll [52] groups for the characterization of cysteine thiol modifications. Using their proposed methods in the future, we would identify post-translational p22phox cysteine residue modifications in intact primary phagocytes.

Author contributions

Conceptualization: KM. Investigation: KM, SO, and CK. Project administration: KM. Visualization: KM. Writing – original draft: KM. Writing – review & editing: KM, SO, MK, TK, AY, and FK.

Funding and additional information

This study was supported in part by JSPS KAKENHI (grant number JP17K08637 (KM), JP22K06934 (KM)), the Wesco Scientific Promotion Foundation (KM), the Takeda Science Foundation (KM), the Okayama Medical Foundation (KM), Teraoka Scholarship Foundation (KM) and Research Project Grants (nos. R015-003 (KM)) from Kawasaki Medical School.

Declaration of competing interest

The authors declare that they have no conflicts of interest.

Data availability

Data will be made available on request.

Acknowledgments

We are grateful to Aya Morihara (Department of Biochemistry, Kawasaki Medical School, Japan) for technical assistance, to Masayoshi Yoshii (Department of Biochemistry, Kawasaki Medical School, Japan) and Hiroko Nishizaki (Department of Natural Sciences, Kawasaki Medical School, Japan) for secretarial assistance, to Shin-Ichiro Nishimatsu and Takefumi Ohashi (Department of Natural Sciences, Kawasaki Medical School, Japan) for the support, and to the Central Research Institute of Kawasaki Medical School for technical support.

References

[1] W.M. Nauseef, The phagocyte NOX2 NADPH oxidase in microbial killing and cell signaling, Curr. Opin. Immunol. 60 (2019) 130–140, https://doi.org/10.1016/j.coi.2019.05.006. PubMed: 31302569.
[2] M.J. Stasia, CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology, Gene 586 (1) (2016) 27–35, https://doi.org/10.1016/j.gene.2016.03.050. Epub 2016 Apr 2. PMID: 27048830; PMCID: PMC5657546.
[3] R.P. Brandes, N. Weissmann, K. Schröder, Nox family NADPH oxidases: molecular mechanisms of activation, Free Radic. Biol. Med. 76 (2014) 208–226, https://doi.org/10.1016/j.freeradbiomed.2014.07.046. PubMed: 25157786.
[4] J.D. Lambeth, A.S. Neish, Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited, Annu. Rev. Pathol. 9 (2014) 119–145, https://doi.org/10.1146/annurev-pathol-012513-104651. PubMed: 24050626.
[5] T.L. Leto, S. Morand, D. Hurt, T. Ueyama, Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases, Antioxidants Redox Signal. 11 (10) (2009) 2607–2619, https://doi.org/10.1089/ars.2009.2637. PubMed: 19438290.
[6] K. Schröder, N. Weissmann, R.P. Brandes, Organizers and activators: cytosolic Nox proteins impacting on vascular function, Free Radic. Biol. Med. 109 (2017) 22–32, https://doi.org/10.1016/j.freeradbiomed.2017.03.017. Epub 2017 Mar 21. PMID: 28336130.
[7] F. Rouset, S. Carnesecchi, P. Senn, K.H. Krause, NOX3-TARGETED therapies for inner ear pathologies, Curr. Pharmaceut. Des. 21 (41) (2015) 5977–5987, https://doi.org/10.2174/138161282166151029112421. PMID: 26510434.
[8] G. Sirokmany, A. Donkö, M. Geiszt, Nox/Duox family of NADPH oxidases: lessons from knockout mouse models, Trends Pharmacol. Sci. 37 (4) (2016) 318–327, https://doi.org/10.1016/j.tips.2016.01.006. Epub 2016 Feb 7. PMID: 26861575.
F.R. DeLeo, J.B. Burritt, L. Yu, A.J. Jesaitis, M.C. Dinauer, W.M. Nauseef, K. Miyano, S. Okamoto, A. Yamauchi, C. Kawai, M. Kajikawa, T. Kiyohara, K. von L...
R.F. Wu, Z. Ma, Z. Liu, L.S. Terada, Nox4-derived H₂O₂ mediates endoplasmic reticulum signaling through local Ras activation, Mol. Cell Biol. 30 (14) (2010) 3553–3568, https://doi.org/10.1128/MCB.01445-09. PubMed: 20457808.

G.M. Denning, M.P. Anderson, J.F. Amara, J. Marshall, A.E. Smith, M.J. Welsh, Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive, Nature 358 (6389) (1992) 761–764, https://doi.org/10.1038/358761a0. PubMed: 1380673.

H.Y. Ren, D.E. Grove, O. De La Rosa, S.A. Houck, P. Sopha, F. Van Goor, B. J. Hoffman, D.M. Cyr, VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1, Mol. Biol. Cell 24 (19) (2013) 3016–3024, https://doi.org/10.1091/mbc.E13-05-0240. PubMed: 23924900.

E.T. Chouchani, A.M. James, I.M. Fearnley, K.S. Lilley, M.P. Murphy, Proteomic approaches to the characterization of protein thiol modification, Curr. Opin. Chem. Biol. 15 (1) (2011) 120–128, https://doi.org/10.1016/j.cbpa.2010.11.003. Epub 2010 Dec 2. PMID: 21130020; PMCID: PMC3087669.

C.E. Paulsen, K.S. Carroll, Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery, Chem. Rev. 113 (7) (2013) 4633–4679, https://doi.org/10.1021/cr300163e. Epub 2013 Mar 20. PMID: 23514336; PMCID: PMC3903468.