Application of Interpolation Image by using Bi-Cubic Algorithm

Dahlan Abdullah¹, F Fajriana¹, M Maryana¹, Lidya Rosnita¹, Andysah Putera Utama Shiehaan², Robbi Rahim², P Harlina³, H Harmayani⁴, Zainuddin Ginting⁵, Cut Ita Erliana⁶, Defi Irwansyah⁶, Z Zulmiardí⁷, Muammar Khaddafi⁸, Feby Milanie⁹, Henry Aspan⁹, Ismul Huda¹⁰, Kundharu Saddhono¹¹, Indrya Mulyaningsih¹², Roy Marthen Moonti¹³, Parwito¹⁴, Hardiano Djanggih¹⁵, Ainna Amalia¹⁶, Edy Winarno¹⁷ and Wiwien Hadikurniawati¹⁷

¹Department of Informatics, Universitas Malikussaleh, Aceh, Indonesia
²School of Computer and Communication Engineering, Universiti Malaysia Perlis, Malaysia
³Department of Informatics Engineering, Sekolah Tinggi Teknik Harapan, Medan, Indonesia
⁴Department of Informatics, AMIK Intel Com Global Indo, Indonesia
⁵Department of Chemical Engineering, Universitas Malikussaleh, Aceh, Indonesia
⁶Department of Industrial Engineering, Universitas Malikussaleh, Aceh, Indonesia
⁷Department of Mechanical Engineering, Universitas Malikussaleh, Aceh, Indonesia
⁸Department of Accounting, Universitas Malikussaleh, Aceh, Indonesia
⁹Universitas Pembangunan Panca Budi, Medan, Indonesia
¹⁰Universitas Syiah Kuala, Aceh, Indonesia
¹¹Graduate Program, Universitas Sebelas Maret, Surakarta, Indonesia
¹²Indonesian Language Teaching Department, Institut Agama Islam Negeri Syekh Nurjati Cirebon, Indonesia
¹³Department of Law, Universitas Gorontalo, Gorontalo, Indonesia
¹⁴Department of Agrotechnology, Universitas Ratu Samban, Bengkulu, Indonesia
¹⁵Department of Law, Universitas Tompotika Luwuk Banggai, Luwuk, Indonesia
¹⁶Islamic Institut of Miftahul Ula Kertosono Nganjuk, East Java, Indonesia
¹⁷Faculty of Information Technology, Universitas Stikubank, Semarang, Indonesia

*dahlan@unimal.ac.id

Abstract. Image magnification is one of the branches in digital image processing that is often required in various applications such as in the field of medicine, multimedia, and in satellite imagery. As technology grows, more and more methods are used for image enlargement. In this study, the image enlargement process performs by using Bi-Cubic spline interpolation method, and the result of image try to compare between the original one and picture after enlargement.
1. Introduction
The rapid development of computers today is constructive for humans to simplify and accelerate their work in all aspects of life. Delivery of data between two geographically dispersed areas can do in seconds, and significant data processing is done in a short time, one of the emerging technologies is the technology of shooting image.

The current shooting image can be done quickly using a smartphone with a very high resolution, this ease dramatically supports the importance of image processing [1, 2, 3] and picture quality improvement [1, 2, 3], but not all shooting image is performed with smartphones as well, another one using media such as CCTV. An image from CCTV is less clear and also the resolution is much smaller than smartphones [4], for small resolution problems can be accomplished by using zooming an image and hope the images become much more clear.

One way to solve the small resolution problem on zooming image [5] is to apply the Bi-Cubic interpolation [6] [7] [8] algorithm. Parsania [9] explained in his research that the image enlargement process can be done well using adaptive technique but it takes longer time, different with Wei-Chen Wu [8] using cubic spline interpolation with Edge curve scaling and smoothing technique to enlarge the image with good result but also takes a longer time.

Some of the previous Bi-Cubic Interpolation [10] [8] research has been discussed by Wu [8] in title Edge Curve Scaling and Smoothing with Cubic Spline Interpolation for Image Up-Scaling the experiment result can maintain the contour of the pixel and improve the sharpness of image [8]. Based on some research results, the authors feel interested in examining more deeply about Bi-cubic Spline Algorithm in the application, so it is known whether the quality of the resulting image by an algorithm or not.

2. Methodology
An ordinary Image already in two dimensions form [1] [11] [9]. From a mathematical point of view, the image is a continuous function of the intensity of light in a two-dimensional plane [11]. The light source illuminates the object, and the object reflects back part of the beam. This light reflection is captured by optical devices, such as the human eye, the camera and the scanner (scanner).

Image interpolation [7] occurs in all digital photos at a particular stage, such as during photo enlargement process. This happens whenever resizing or remapping (distorting) an image from one-pixel box to another. Image enlargement is necessary when it needs to increase or decrease the number of pixels, while mapping can occur in a wide variety of scenarios: correct lens distortion, change perspective and rotate images.

Bi-Cubic interpolation is an extension of cubic interpolation. Bi-cubic interpolation can be achieved using either Lagrange polynomials, cubic splines, or cubic convolution algorithms. In image processing, Bi-Cubic interpolation is often chosen over bilinear interpolation when process speed is not a problem. The resampled image of the Bi-Cubic interpolation is more subtle than Cubic Interpolation. The model the Bi-Cubic interpolation method can be exemplified by the functional value f and the derivatives fx, fy and fxy known at all four angles (0, 0), (1.0), (0.1), and (1, 1) of the units square, then the formula can be written as:

\[p(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^i y^j \]

Application of image enlargement by applying Bi-Cubic algorithm designed by using Visual C# language on Microsoft Windows 7 platform, the test is done with some image with varying image size, the size of the enlargement is also done with dynamic size so that the result of the expansion with various sizes.
3. Result and Discussion

Image zooming will change pixel density over the new mapping space that has been created, where the pixel size remains but the mapping space changes. Image magnification is done by increasing the size of the picture, this magnification will make a void pixel in the picture, and the zooming result looks like fragmented. The zoom image results in a widening occurring with a width (W) and height (H) image can write as formula below:

\[
W = W \times 2 \\
H = H \times 2
\]

The bi-cubic interpolation algorithm works by estimating the color in an image pixel by calculating the average of 16 pixels residing around pixels that are similar to pixels in the source image, and the formula below gives an interpolation result applied to each component of red, green and blue. The last presentation m and n have a 4 x 4 grid length around pixels (i, j).

\[
F(i',j') = \sum_{m=-1}^{2} \sum_{n=-1}^{2} F(i+m,j+n)R(m-dx)R(dy-n)
\]

The function of the color values for bi-cubic expressed in R (x) could see below:

\[
R(x) = \frac{1}{6} [P(x+2)^3 - 4P(x+1)^3 + 6P(x)^3 - 4P(x-1)^3]
\]

\[
P(x) = \begin{cases}
 x & x > 0 \\
 0 & x \leq 0
\end{cases}
\]

For the pseudocode process of the Bi-Cubic algorithm as follows:

Function 'Cubic_BSpline(X#)
 If X < 2 Then
 tmp = X + 2
 If tmp > 0 Then a = tmp * tmp * tmp
 tmp = X + 1
 If tmp > 0 Then B = 4 * tmp * tmp * tmp
 If X > 0 Then c = 6 * X * X * X
 tmp = X - 1
 If tmp > 0 Then d = 4 * tmp * tmp * tmp
 Cubic_BSpline = (a - B + c - d) / 6
 End If
End Function

For experiment image enlargement using application by applying the Bi-Cubic algorithm, the result of implementation can be seen as follows:
For example, image enlargement testing is used in the picture with size 48 x 48, and the image is then enlarged with the size 256 x 256, here is the result of magnification with applications that implement the Bi-Cubic algorithm.

Based on the tests performed, the image with Bi-Cubic method led to a reasonably bright image from the initial image, here are some results of image enlargement performed from several objects of different sizes:
Table 1. Different Sample Results

Image Source (w x h)	256 X 256	400 X 400
![CD 48 x 48](image1.png)	![CD 256x256](image2.png)	![CD 400x400](image3.png)
![DVD 309 x 178](image4.png)	![DVD 256x256](image5.png)	![DVD 400x400](image6.png)
![DVD 64 x 64](image7.png)	![DVD 256x256](image8.png)	![DVD 400x400](image9.png)

Based on the experiment of image enlargement with a Bi-Cubic algorithm to some image with the variation of size, it obtained of good enough result enlargement and clear image too, experiments performed with the same image object using different algorithms such as Spline and Bell produce fairly good enlargement results although with some processes requiring a long time, compared to the Bi-Cubic algorithm is still faster with good results.
4. Conclusion
The use of a Bi-Cubic algorithm in image enlargement process can be done well with the various initial size of image. Image enlargement result also bright to be seen visually. Subsequent research can combine several algorithms or compare some algorithms such as linear interpolation, Spline, Bi-Cubic Spline to determine the performance of each algorithm in doing image enlargement.

REFERENCES

[1] D. Apdilah, M. Y. Simargolang and R. Rahim, "A Study of Frei-Chen Approach for Edge Detection," *International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET)*, vol. 3, no. 1, pp. 59-62, 2017.

[2] H. Harmayani and R. Rahim, "24 Bit Image Noise Reduction with Median Filtering Algorithm," *International Journal of Recent Trends in Engineering & Research (IJRTER)*, vol. 3, no. 2, pp. 1-5, 2017.

[3] A. Ikhwan and R. Rahim, "Implementation of Modified Median Filtering Algorithm for Salt & Pepper Noise Reduction on Image," *The International Journal Of Science & Technology*, vol. 4, no. 11, pp. 75-79, 2016.

[4] W. Zou, J. Song and F. Yang, "Perceived Image Quality on Mobile Phones with Different Screen Resolution," *Mobile Information Systems*, vol. 2016, pp. 1-17, 2016.

[5] R. Roy, M. Pal and T. Gulati, "Zooming Digital Images using Interpolation Techniques," *International Journal of Application or Innovation in Engineering & Management*, vol. 2, no. 4, pp. 34-45, 2013.

[6] T. Narsimulu, B. Rama Raj and C. R. Laxmi, "High-Resolution Video Scaling using Cubic-B-Spline Approach," *International Journal of Computer Applications*, vol. 17, no. 3, pp. 8-16, 2011.

[7] P. S. Parsania and P. V. Virpari, "A Review: Image Interpolation Techniques for Image Scaling," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 2, no. 12, pp. 7409-7414, 2014.

[8] W.-C. Wu, T.-H. Wang and C.-T. Chiu, "Edge Curve Scaling and Smoothing with Cubic Spline Interpolation for Image Up-Scaling," *Journal of Signal Processing Systems*, vol. 78, no. 1, pp. 95-113, 2015.

[9] P. S. Parsania and P. V. Virparia, "A Comparative Analysis of Image Interpolation Algorithms," *International Journal of Advanced Research in Computer and Communication Engineering*, vol. 5, no. 1, pp. 29-34, 2016.

[10] S. Parveen and R. Tokas, "Faster Image Zooming using Cubic Spline Interpolation Method," *International Journal on Recent and Innovation Trends in Computing and Communication*, vol. 3, no. 1, pp. 22-26, 2015.

[11] Safinaz S, "An Efficient Algorithm for Image Scaling with High Boost Filtering," *International Journal of Scientific and Research Publications*, vol. 4, no. 5, pp. 1-9, 2014.