Conservation of the $S10$-spc-α Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus *Leptospira*

Berta Victoria1,*, Ahmed Ahmed2,3, Richard L. Zuerner3, Niyaz Ahmed4, Dieter M. Bulach5, Javier Quinteiro1, Rudy A. Hartskeerl2*

1 Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Galicia, Spain, 2 WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands, 3 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America, 4 Pathogen Evolution Laboratory, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India, 5 Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Victoria, Australia

Abstract

$S10$-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in *Leptospira interrogans*. We demonstrate the highly conserved nature of this region among diverse *Leptospira* and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all *L. interrogans* strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the $S10$-spc-α locus is conserved among pathogenic *Leptospira*. In contrast, PCR analysis of this locus using DNA from saprophytic *Leptospira* species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the $S10$-spc-α locus from two pathogenic species, *L. interrogans* and *L. borgpetersenii*, with the corresponding locus from the saprophyte *L. biflexa* serovar Patoc showed that genetic organization of this locus is well conserved within *Leptospira*. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic *Leptospira*. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic *Leptospira* is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of *Leptospira* strains revealed that strain H6 previously classified as *L. inadai* actually belongs to the pathogenic species *L. interrogans* and that *L. meyeri* strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the $S10$-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously.

Introduction

Leptospirosis is one of the most widespread zoonotic diseases in the world and is caused by pathogenic spirochetes within the genus *Leptospira*. Spirochetes belong to an ancient branch of eubacteria, with *Leptospira* representing its deepest division [1]. *Leptospira* are genetically diverse bacteria. Genetic classification of this genus is based on DNA homology and divides pathogenic *Leptospira* into seven main species: *L. interrogans*, *L. borgpetersenii*, *L. weilii*, *L. noguchii*, *L. santosais*, *L. kirschneri* and *L. alexanderi* [2–4]. In addition, there are currently eleven recognized species with a saprophytic or intermediate pathogenic status, including the saprophytic species *L. biflexa* and *L. meyeri*, and *L. fainei* and *L. inadai* exemplifying species with an intermediate status [5–9]. Whole genome sequencing of *L. interrogans* serovars Lai and Copenhageni and two strains of *L. borgpetersenii* serovar Hardjo has revealed the occurrence of frequent gene rearrangements and fragmentation, perhaps indicating a rapid adaptation to new environments by pathogenic *Leptospira* [10–12]. It has been proposed that genome reduction detected in *L. borgpetersenii* reflects lower environmental survivability corresponding to limited potential for indirect transmission [10], in contrast to *L. interrogans*, a species that frequently passes through surface water between mammalian hosts [13].

We previously characterized the $S10$-spc-α ribosomal protein cluster of *L. interrogans* serovar Lai [14]. The cluster consists of 17.5 kb comprising 32 genes that, with the exception of *fus*, *tuf*, secY, *adk* and *infA*, code for ribosomal proteins. The secY gene codes for preprotein translocase, a gene that has diagnostic value and potential for resolving taxonomic questions in *Leptospira* [5,14]. Genetic organization of ribosomal proteins is highly conserved and a prototypical S10 locus may predate divergence of Archaea and Bacteria [15]. However, translocation of several genes throughout...
the S10-spc-α locus differentiates Gram-positive from Gram-negative bacteria [15]. The genetic organization of the L. interrogans S10-spc-α locus is unique, as it contains all genes found in the Escherichia coli locus, and all genes except map that are found in the Bacillus subtilis locus [14]. The L. interrogans S10-spc-α locus is not typical of other spirochetes; several genes found in the S10-spc-α locus of L. interrogans are translocated to different portions of the Borrelia burgdorferi and Treponema pallidum genomes [14]. Considering the high plasticity of the Leptospira genome [10,11,16], it is unclear if genetic organization of the S10-spc-α locus is conserved amongst Leptospira, or if the genetic organization shared among Borrelia and Treponema may occur among some Leptospira species, and predate divergence of Leptospira from other spirochete genera.

In this study, we examined genetic organization and content of the S10-spc-α locus in Leptospira, and report that this locus is highly conserved throughout the genus. These data suggest that maintenance of the S10-spc-α operon structure is essential regardless of the extent of other rearrangements that have occurred during Leptospira evolution. Comparative sequence analysis of four segments of the S10-spc-α locus provides new information on phylogenetic relationships between pathogenic Leptospira.

Results

Amplification of the S10-spc-α locus of L. interrogans

Correctly sized fragments as deduced from the positions of the primer pairs on the locus (Table 1) were obtained from all six L. interrogans strains (Lai, M20, RGA, Hund Utrecht IV, Pomona and Hardjoprajitno) for each of the 40 primer pairs tested. These data indicate that the S10-spc-α locus is well conserved in L. interrogans (Table S3). Remarkably, the amplification pattern of L. inadai serovar Malaya strain H6 was identical to that of L. interrogans, a finding that we note below indicates this strain was incorrectly classified previously as L. inadai.

Comparative PCR analysis of the S10-spc-α locus in pathogenic Leptospira

Amplification patterns of different L. borgheterensis and L. kirschneri strains shared a high level of identity (one and two differences, respectively). However, marked strain differences were found within the species L. santarosai (8), L. noguchii (9), L. weilii (15) and L. alexanderi (14). Predictably, because genetic relatedness is used to differentiate Leptospira species, the amplification profiles varied depending on the species from which the template DNA was isolated (Table S3). These data show that strains composing these species likely have higher sequence variation within the S10-spc-α locus than that seen in L. interrogans. To confirm that failed PCR amplifications were due to sequence variation at or near the primer annealing sites, and not a disruption of gene synteny, a series of additional primers were designed that directed amplification from conserved sequences in adjacent genes through the regions in question. Amplification using these additional primer sets confirmed that all genes initially identified in the L. interrogans S10-spc-α locus were present throughout the same locus of all pathogenic Leptospira species. This conserved organization extends as far as fts, encoding EF-G at the 5′ end of the locus, through rpsD at the 3′ end of the locus. Thus the genetic organization of the S10-spc-α locus is conserved in all pathogenic Leptospira spp. with no signs of disruptions or translocations of genes within the locus.

Comparative PCR analysis of the S10-spc-α locus of non-pathogenic Leptospira

Attempts to perform PCR analysis of DNA from Leptospira species with saprophytic or intermediate (i.e. questionable) pathogenic status frequently failed to generate products or yielded anomalous sized amplicons. These data imply a marked divergence in the S10-spc-α sequence content from pathogenic Leptospira (Table S3). Interestingly, the amplification profile of L. meyeri strain ICF is consistent with a pathogenic status whereas the profile of L. meyeri strain Veldrat Semarang 173 is more similar to those of the saprophytic and intermediate species L. biflexa, L. fainei, and L. inadai.

To determine if the genetic composition of this segment of the genome is different between saprophytic and pathogenic Leptospira, the corresponding regions of the L. biflexa, L. interrogans, and L. borgheterensis genomes (GenBank accession numbers for L. interrogans, L. borgheterensis and L. biflexa are AE016823, CP000348, CP000786, respectively) were aligned with BLAST and the results visualized by ACT (Fig. S1). These data show that saprophytic and pathogenic Leptospira have the same organization in the S10-spc-α locus, and the lack of successful PCR amplification is likely due to extensive sequence drift within the genus.

Phylogenetic analysis from binary data

The parsimony criterion was used to infer phylogenetic relationships within Leptospira from binary data. The most parsimonious tree generated from these data shows two prominent well-supported clades: 1) a basal clade, with bootstrapping value of 81%, that includes L. fainei and L. inadai, two species with intermediate pathogenic status, and the saprophytic L. meyeri strain Veldrat Semarang 173; and 2) a sister clade, supported with a 68% bootstrap value, that contains pathogenic Leptospira species (Fig. 1). Within the pathogenic clade, relationships among L. alexanderi, L. santarosai, and L. weilii species, are poorly resolved. In contrast, L. interrogans, L. kirschneri, L. borgheterensis, and L. noguchii are clustered in a well-supported clade where L. kirschneri and L. interrogans appear as closely related siblings.

Surprisingly, there are two exceptions to the predicted distribution of strains. L. inadai strain H6 clusters with L. interrogans, and L. meyeri strain ICF branches within pathogenic species suggesting a pathogenic status for these two strains. As we note in the Discussion section, we believe strain H6 is incorrectly classified as L. inadai.

Multilocus sequence typing (MLST)

Phylogenetic analysis was done on four conserved loci within the S10-spc-α locus and compared to available Leptospira rrS sequence data (GenBank accession numbers EU363895-EU363966). DNA amplification of target sequences from the intermediate strains L. fainei strain BUT 6, L. inadai strain 10, and L. meyeri strain Veldrat Semarang 173 was not successful. Therefore, these strains were not included in the analysis. The sequences for the saprophytic strain Patoc I were deduced from its genome sequence [17]. None of the analyzed sequences are significantly deviated from neutral expectations (P>0.1). The shortest G1–G2 fragment (245 bp) showed the highest nucleotide diversity, π value of 0.14, whereas in the 300–301 fragment π was 0.09. Congruently, the mean divergence values (D) for pairwise comparisons ranged from 0.103 to 0.171 for the 300–301 and G1–G2 fragment, respectively. The lowest phylogenetic signal was obtained for 300–301 sequences. In contrast, the 621–625 and 624–650 fragments showed a phylogenetic signal slightly higher than the combined data set (Table 2).

Distance and parsimony analysis yielded identical or similar topologies and bootstrapping values were comparable for the concordant nodes, although they were generally lower in parsimony trees. Alternative branching patterns in parsimony trees (with bootstrap value<50%) occurred in nodes showing the lowest bootstrap support in distance topologies.
In the composite tree (Fig. 2E), pathogenic strains were separated into two well-supported clades that are similar, but not identical to clades resolved in the binary tree. One clade consists of the sister sub-clades containing *L. interrogans* and *L. noguchii*, with *L. kirschneri* located in a basal position. This clade is consistently recovered in all topologies (Fig. 2), with the exception of the tree based on the 621–625 fragment (Fig. 2B) and parsimony topology generated from G1–G2 sequences (Fig. 2D), where *L. kirschneri* and *L. noguchii* swap their positions. The close relationships of these species are also apparent through comparative analysis using 16S rDNA sequence data (Fig. 2F) and independent binary data (Fig. 1). The second clade of the composite tree contains *L. borgpetersenii*, *L. santarosai*, *L. alexanderi*, *L. weilii* and *L. meyeri* strain ICF. Although, the branching pattern within this clade has lower support, the sibling relationship between *L. alexanderi* and *L. weilii* is well conserved. The relative positions of *L. borgpetersenii*, *L. meyeri* and *L. santarosai* are uncertain and vary depending on the data set and method of analysis (Fig. 2).

The repeated findings that placed *L. inadai* strain H6 within the *L. interrogans* cluster, suggested that this strain is probably misclassified and belongs to *L. interrogans*. To rule out that an incorrect strain was used in our study, we repeated the sequence analysis with an H6 strain originating from the CDC collection used to establish the current taxonomic description of *Leptospira* [2]. Results with the CDC H6 reference strain were identical with results obtained with our strain excluding an error in our collection.

The **S10-spc-a** locus encodes ribosomal proteins that interact with rRNA, therefore ribosomal protein and rRNA sequences are

Fragment	Primer pair	Position	Genes	Fragment	Primer pair	Position	Genes
1. 737-745	843-1435	urp	35.*	301-258	rplF-rplF		
2. 740-744	1305-1873	urp	36.*	301-191	rplE-rplF		
3. 748-751	1759-2493	fus	37.	314-191	rplH-rplH		
4. *	5.	2269-2493	fus	38.	314-428c	rplH-rpmD	
5. *	2269-2832	fus	39.	314-430c	rpsH-rplO		
6. *	735-729	2406-2832	fus	40.	802-R1c	rplF-rpmD	
7. *	735-743	2406-3304	fus	41.*	802-428c	rplF-rpmD	
8. 735-667	2406-4394	fus, tuf	42.*	802-430c	rplF-rplO		
9. *	743c-706	3304-3814	fus	43.*	191c-428c	rplO, secY	
10.	743c-667	3304-4394	fus, tuf	44.	191c-430c	rplO, secY	
11.	800-660	3683-4327	fus, tuf	45.*	R1-428c	rplF-rpmD	
12.	800-667	3683-4394	fus, tuf	46.	R1-430c	rplF-rpmD	
13. *	657-654	4350-5255	tuf	47.*	428-430c	rplD, rplO	
14.	657-624c	4350-5976	tuf-rplC	48.	428-G2c	rpmD-secY	
15.	659-648	4438-5465	tuf	49.*	430-G2c	rplO, secY	
16. *	732-624c	5240-5976	tuf-rplC	50	634-635	rplO-adk	
17. *	647-618	5297-5806	tuf, rpsJ	51.*	443-G2c	rplF-rplO	
18. *	647-624c	5297-5976	tuf-rplC	52.*	443-G1	rplF-rplO	
19.	624-650	5976-6790	rplC, rplD	53**	SecYII-SecYIV	secY	
20.	624-644	5976-7151	rplC-rplW	54.	G2-G1	secY	
21.	624-621c	5976-7847	rplC-rplB	55.*	G2-444	secY	
22. *	651-644	6883-7151	rplD, rplW	56.	G2-429	secY-adK	
23. *	643-621c	7138-7847	rplW, rplB	57.*	G2-400	secY-adK	
24. *	622-621c	7689-7847	rplB	58.*	260-458c	infA-rpsD	
25.	621-625	7847-8504	rplB, rpsS	59.*	458-507	rpsD, rpoA	
26. *	621-605c	7847-9082	rplB-rplC	60.*	458-504	rpsD, rpoA	
27. *	605-460	9082-10196	rpsC-rpmC	61.	450-479	rpsD, rpoA	
28. *	801-803c	10105-10965	rpmC-rplX	62.*	477-504	rplO	
29.	801-301c	10105-11601	rpmC-rplE	63.	477-501c	rplO	
30.	801-300	10105-12110	rpmC-rpsH	64.	503-480	rplQ	
31. *	310-309	10167-10672	rpmC-rplN	65.*	478-501c	rplQ	
32. *	310-277	10167-11107	rpmC-rplX	66.*	478-502	rplQ	
33. *	310-301c	10167-11601	rpmC-rplE	67.	501-502	rplQ	
34. *	301-300	11601-12110	rplE-rpsH	68.	19791-20341	rplQ	

Fragments used in the phylogenetic analysis from the binary data.

**Primer pair used to produced G1–G2 sequences from all pathogenic species.

* doi:10.1371/journal.pone.0002752.t001
expected to have parallel phylogenies. Because *rrs* is a well-
accepted target for phylogenetic analysis we constructed a
phylogenetic tree from available *rrs* sequence data. The *rrs*
based phylogenetic tree is similar to the locus-deduced tree, showing
close relationships between the species *L. interrogans*, *L. kirschneri*
and *L. noguchii*. Both the clade support and genetic divergence among
other *Leptospira* species based on *rrs* sequence data was lower than
for *S10-spc-α* locus data alone, a finding consistent with a slower
rate of sequence drift in rRNA than ribosomal protein genes.

Phylogeny of secY versus its G1–G2 domain

The 20-mer primers G1 and G2 amplify a 285 bp fragment of *secY*, and these primers were developed previously as a diagnostic
PCR for the detection of *Leptospira* DNA [5]. A 245 bp fragment
flanked by the G1–G2 primers has been shown previously to be a
useful tool for discriminating between species [18–21]. This study
provides an opportunity to broaden the evaluation of the G1–G2
domain by comparing the discriminative value of this domain with
the majority of the *secY* sequence. Sequences for *secY*
were obtained from 131 *Leptospira* strains (GenBank accession numbers EU357938–
EU358070). The phylogenetic tree produced from *secY*
sequence data was compared to a tree derived from the extracted sequences of
the 245 bp fragment flanked by primers G1 and G2 (Fig. 3). These
two trees are similar, resolve *Leptospira* species, and discriminate
between strains. With few exceptions, all strains clustered with other
members of the same species as determined by DNA-DNA
hybridization analysis [4]. Because of a limitation presented by the
original G2/G2 primer pair, it does not amplify DNA from
L. kirschneri; two new primers were designed (SecYII and SecYIV) that
amplify *secY* sequences from all pathogenic strains (data not shown).

Discussion

Whole genome sequence analyses of different *Leptospira* species
reveal extensive plasticity, including rearrangements, duplications,
and disruptions of otherwise conserved segments of the genome
[10–12,17]. Previously, we demonstrated that *L. interrogans* strain
Lai contained a large ribosomal protein locus spanning the *S10*
, spc, and *α* loci identified in widely divergent eubacterial genera
[14]. Notably, this entire locus is transcribed from either of two
promoters upstream of *fus*, the first gene in the operon, and
comprises one of the longest known prokaryotic transcripts [14].
In the present study, we show that genetic content and
organization of the *S10-spc-α* locus is well conserved across the
genus *Leptospira*, a finding that is somewhat remarkable given the
extent of rearrangements that have disrupted synteny during
Leptospira evolution. The conserved *S10-spc-α* organization includes
the presence of the 5′ *fus* gene coding for elongation factor EF-G
and the genes *adk* (adenylate kinase), *infA* (IF1), and *rpsD* (S4)
located at the 3′ end of the locus, genes that are dispersed in the *B.

![Figure 1](https://www.plosone.org/figure-1-consensus-tree-based-on-PCR-amplification-data-majority-rule-consensus-tree-elaborated-under-the parsimony-criterion-based-on-binary-data-absence-presence-coded-from-amplification-patterns-in-the-S10-spc-α-locus-for-different-Leptospira-species-numbers-on-nodes-are-bootstrap-support-after-100-replicates-only-bootstrap-values-above-or-equal-to-50-are-shown-species-included-in-the-sequence-analysis-are-coded-in-color-L-biflexa-was-used-as-the-outgroup-CI-0-346-doi-10-1371-journal-pone-0002752-g001)

Table 2. Nucleotide diversity, divergent estimations and parameters estimated from the sequences of 4 fragments in diverse *Leptospira* species.

Fragment	Sites	Polymorphic Sites	Mean D	θ per site	Tajima's D	P	g1
300–301	469	179	0.1030	0.0891	-1.2016	>0.1	-0.5670
621–625	479	176	0.1190	0.1034	-0.8672	>0.1	-0.9404
624–650	491	226	0.1440	0.1205	-1.0739	>0.1	-1.0876
G1–G2	245	91	0.1710	0.1434	0.1606	>0.1	-0.5914

![Table 2](https://www.plosone.org/figure-2-nucleotide-diversity-divergent-estimations-and-parameters-estimated-from-the-sequences-of-4-fragments-in-diverse-Leptospira-species)

DOI:10.1371/journal.pone.0002752.t002
Figure 2. Phylogenetic trees based on Tamura-Nei distances and elaborated using the Neighbor-Joining method. Distances were calculated from the 300–301 (A), 621–625 (B), 624–650 (C) and G1–G2 (D) sequence fragments within the S10-spc-a locus of pathogenic species of Leptospira. The total evidence was combined and analyzed under identical conditions (E). In addition, data available from 16S rDNA (rrs) sequences were used to obtain an alternative hypothesis for the relationships of diverse Leptospira strains (F). Dotted lines show alternative branching patterns, with bootstrapping values ≥50%, obtained in the consensus majority rule tree obtained by parsimony criterion. Numbers above branches represent the percentage of bootstrapping results (2000 replicates). Trees are drawn to scale as indicated by the bar depicted below each tree; bars represent the estimated distance in units of the number of base substitutions per site. The scale the 16S rRNA-based tree is expanded relative to other loci. L. biflexa was used as the outgroup.

doi:10.1371/journal.pone.0002752.g002
Figure 3. Circular phylogenetic trees based in Tamura-Nei distances and elaborated using Neighbor-Joining method. Distances were calculated from G1–G2 (A) restricted sequences or the secY sequences (B), and are based on analysis of 131 strains of pathogenic species of *Leptospira*. Numbers above branches represent the percentage of bootstrapping results (2000 replicates). Only bootstrap values above or equal to 50% are shown. *L. biflexa* was used as the outgroup. Dots indicate strains with divergent positions compared to those from DNA-DNA reassociation analysis [2].

doi:10.1371/journal.pone.0002752.g003
borrelii and T. pallidum genomes [14]. The genetic organization of the Leptospira S10-spc-α locus is unique among spirochetes [14], and the data presented in this work support phylogenetic evidence that suggests Leptospira are one of the oldest branches in spirochete evolution. Conservation of the Leptospira S10-spc-α locus is in stark contrast to the unique organization of tRNA genes, where the rrs, rrs, and rm genes are not closely linked to each other, but are dispersed throughout the larger of two chromosomes comprising the Leptospira genome [16,22]. Despite a lack of symmetry for the ribosomal RNA genes, tRNA genes show limited sequence divergence. Generally, tRNA sequence conservation is a consequence of low tolerance to change due to structural constraints within the ribosome and a requirement to maintain specific binding sites for ribosomal proteins [23,24].

PCR analysis of the S10-spc-α locus showed a number of regions that were more consistently amplified than other regions (Table S3), suggesting that either this locus has undergone rearrangements or that sequence drift affected the efficiency of primers to faithfully bind template from diverse species. Alignment of genomic sequences spanning the S10-spc-α locus showed that the genetic organization of this locus is conserved among pathogenic and saprophytic Leptospira (Fig. S1). Therefore, variable success in amplifying regions of the S10-spc-α locus from diverse Leptospira species is likely due to sequence drift; Leptospira species have substantial differences in sequence composition as shown by DNA:DNA hybridization analysis [2]. Additionally, the PCR primers were designed primarily from the available genomic sequences of two pathogenic Leptospira serovars, and our results may be biased due to the divergence between pathogenic and saprophytic species. The binary PCR data positioned Leptospira species into two clades; one clade contained only pathogenic species, while the other contained both saprophytic species and species with intermediate pathogenic potential. One important aspect of our findings is confirmation that L. fainei, L. inadai, and L. meyeri, known to present a group of Leptospira with intermediate pathogenic potential, form a distinct cluster separate from true pathogenic species, suggesting the presence of three distinct lines of evolution within this genus.

We selected four loci within the S10-spc-α locus that were consistently amplified from Leptospira species in initial studies to perform phylogeny studies. Phylogenetic trees deduced from the separate loci as well as from the concatenated sequence were similar, and resulted in trees each having two clades, results similar to those obtained from the binary PCR data. The clades contained branches that, with few exceptions, reflected species designations based on ns sequence analysis [25], MLST analysis [26], multilocus enzyme electrophoresis (MLEE) [27], and DNA homology data [2].

Three anomalies were found during comparison of the binary and sequence-based phylogenetic trees. First, the two strains of species L. meyeri were separated into different branches. Strain ICF was positioned in the pathogenic clusters whereas Veldrat Semarang 173 is a saprophytic one [5,28]. The findings of this work imply that L. meyeri is composed of strains with different pathogenic potential. A second anomaly detected in this work affects the classification of strain H6. Strain H6 was designated a member of L. borgpetersenii strain L530, but are found as unique copy genes in all other sequenced Leptospira genomes, including L. borgpetersenii strain JB197 [10]. Thus, duplication of this locus and subsequent DNA acquisition via horizontal genetic transfer could facilitate stable integration of divergent seqY genes.

The S10-spc-α locus includes the seqY gene encoding preprotein translocase. Primer pair G1–G2 is positioned within this gene and directs amplification of a 285 bp fragment from all pathogenic species except L. kirschneri [5]. Although it has been suggested that this small fragment has a high discriminating power making it useful for a quick speciation [18–21], data supporting that contention is fragmentary. One goal of this study was to determine if analysis of the G1–G2 region provided sufficient information for Leptospira spp. discrimination. Data generated in the present study is more comprehensive than previous reports; phylogenetic trees based on the G1–G2 segment are in accordance with ns based trees, showing that analysis of this small fragment can be used to identify species.

Genetic analysis of the S10-spc-α locus contributes to a better understanding of Leptospira evolution. Trees generated from analysis of sequence data generated here provide analysis of more conserved loci than those studied previously [25], and may be more useful in comparing evolution of the genus. A conserved, yet distinct genetic organization of this locus provides additional support for the early divergence of Leptospira from other spirochetes. Finally, from a practical standpoint, we demonstrate that analysis of a 245 bp segment of seqY is suitable for rapid identification of Leptospira species.

Materials and Methods

Bacterial strains and media

Leptospira strains used in this study were from the reference collections of the WHO/FAO/OIE Collaborating Center for Reference and Research on Leptospirosis at KIT Biomedical Research, Amsterdam, The Netherlands, and the USDA Leptospirosis Reference Center at the National Centers for Animal Health, Ames, USA (Table S1). Bacteria were propagated at 30°C in EMJH liquid media as described by Ellinghausen and McCullough [29] as modified by Johnson and Harris [30].

DNA extraction

Leptospira were grown to late log phase, harvested by centrifugation, and genomic DNA was extracted using a QIAGEN DNA mini kit (Qiagen, Germany) following the manufacturer’s instructions. DNA concentration was determined using a Nano-Drop-1000 spectrophotometer (ThermoFisher Scientific, USA) and by visual comparison with Smart Ladder SF (Eurorgenex S.A., Belgium) after agarose gel electrophoresis in 1.5% agarose gels, stained with ethidium bromide according to standard procedures [31].

PCR analysis

Adjacent and overlapping fragments from the whole S10-spc-α locus were amplified by PCR from various Leptospira strains using primers listed in Table 1 and S2. Several primers were designed by cross-species alignment of available L. interrogans and L. borgpetersenii genome sequences [10–12] and access to the L. biflexa Patoc I genome...
sequence before publication [17]. In addition, an iterative approach was used to develop primers useful for sequencing secY by identifying conserved regions suitable for amplification of adjacent variable regions across divergent species for which the genome sequences are yet unavailable. Primer sets were designed to produce a series of overlapping amplification products to ensure the presence and correct location of genes in the locus. PCR amplifications were done on a PTC-100 Peltier Thermal Cycler (MJ Research, USA) using the following program: denaturation for 5 min, at 94°C, followed by 34 cycles consisting of annealing, 1 min at 52°C, primer extension, 2 min at 72°C, denaturation, 1 min at 94°C. PCR products were separated by agarose gel electrophoresis and visualized as described above.

Sequencing

PCR amplification products were purified by QiAquick PCR purification kits (Qiagen Corp.) prior to DNA sequencing. Nucleotide sequences were determined by dye termination reactions separated on ABI Prism 310 and ABI 3700 (Applied Biosystems, USA) DNA sequencers. Sequencing was done on both complementary and forward strands and repeated at least twice to obtain reliable sequence data. Sequence data were edited using Sequencher (Gene Codes Corp., USA).

Phylogenetic analysis: Binary Analysis of PCR data

The presence (1) or absence (0) of correctly amplified fragments within the S10-spc-α locus, for each of the analyzed species, was codified in a discrete binary 40-character matrix covering a complete set of 24 taxa, representing eleven Leptospira species (Table S1). The characters were weighted proportionally to fragment size and assumed sequence homology for fragments with identical estimated size. The data matrix was analyzed under parsimony criteria using the branch and bound algorithm; support for branches in the tree and critical reading of the manuscript, David Alt and Richard Hornsby for expert technical support, and Mark Wilson for providing Leptospira cultures.

Phylogenetic analysis: Comparative Sequence Analysis

Sequence data from four loci within the S10-spc-α locus were obtained to conduct a distance and parsimony-based phylogenetic analysis of pathogenic Leptospira using MEGA4 and PAUP* v. 4.0b10, respectively. Nucleotide diversity and divergence parameters were obtained with MEGA4 [34] and DNASP [35]. The hypothesis that all mutations are selectively neutral was tested using Tajima’s D test [36] implemented in DNASP. The confidence limits of D were obtained assuming that D follows the beta distribution and the confidence limits given in equation 47 and Table 2, respectively in Tajima, 1989 [36]. Confidence intervals were also determined for Tajima’s D by computer simulations using the coalescent algorithm. In distance analysis, midpoint rooted trees were obtained by the neighbor-joining method with Tamura-Nei distances [37,38] and the cluster support was estimated by bootstrapping with 2000 replicates [39]. The gaps were ignored only when they are included in the two sequences compared, using the pairwise-deletion option. In parsimony analysis, a branch-and-bound search was used with 2000 bootstraps. The homogeneity of the four partitioned data sets was evaluated using the incongruence-length difference test [40].

ACKNOWLEDGMENTS

We thank Marc Suchard and David Haake for their continuous support and critical reading of the manuscript, David Alt and Richard Hornsby for expert technical support, and Mark Wilson for providing Leptospira cultures.

Author Contributions

Conceived and designed the experiments: BV AAA RZ JQ RAH. Performed the experiments: BV AAA RZ. Analyzed the data: NA DB JQ. Wrote the paper: BV AAA RZ NA JQ RAH.
References

1. Paster BJ, Dewhirst FE, Weisburg WG, Tordoff LA, Fraser GJ, et al. (1991) Phylogenetic analysis of the spirochetes. J Bacteriol 173: 6101-6109.

2. Brenner DJ, Kaufmann AF, Sulzer KR, Steigerwald AG, Rogers FC, et al. (1999) Further determination of DNA relatedness between serogroups and serovars in the family Leptospiraceae with a proposal for Leptospira alexandri sp. nov. and four new Leptospira genomospecies. Int J Syst Bacteriol 49 Pt 2: 839-850.

3. Ramadas P, Jarvis B, Corner R, Penny D, Marshall R (1992) Genetic characterization of pathogenic Leptospira species by DNA hybridization. Int J Syst Bacteriol 42: 215-219.

4. Yasuda P, Steigerwald A, Sulzer K, Kaufmann A, Rogers F, et al. (1987) Deoxyribonucleic acid relatedness between serogroups and serovars in the family Leptospiraceae with proposals for seven new Leptospira species. Int J Syst Bacteriol 37: 407-415.

5. Gravekamp C, Van de Kemp H, Franzen M, Carrington D, Schoone GJ, et al. (2004) Comparative genomics of two potential of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc Natl Acad Sci USA 101: 112-117.

6. Letocart M, Baranton G, Perolat P (1997) Rapid identification of pathogenic Leptospira species (Leptospira interrogans, L. borgpetersenii, and L. kirschneri) with species-specific DNA probes produced by arbitrarily primed PCR. J Clin Microbiol 35: 248-253.

7. Levett PN, Mooney RE, Galloway RL, Steigerwald AG (2006) Leptospira bounsi sp. nov., isolated from humans with leptospirosis. Int J Syst Evol Microbiol 56: 671-673.

8. Slack AT, Symonds ML, Dohnt MF, Smythe LD (2006) Identification of pathogenic Leptospira species by conventional or real-time PCR and sequencing of the DNA gyrase subunit B encoding gene. BMC Microbiol 6: 95.

9. Perolat P, Chappel RJ, Adler B, Baranton G, Bulach DM, et al. (1998) Leptospira fainei sp. nov., isolated from pigs in Australia. Int J Syst Bacteriol 48 Pt 3: 851-858.

10. Bulach DM, Zuerner RL, Wilson P, Seemann T, McGrath A, et al. (2007) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103: 11560-11565.

11. Nascimento AL, Koyama M, Saito F, Marins EA, Monim O, et al. (1999) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 181: 2166-2172.

12. Ren SX, Fu G, Jiang XG, Zeng R, Xiao YP, et al. (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422: 893-897.

13. Fane S, Adler B, Bolin G, Perolat P (1999) Leptospira and Leptospirosis, 2nd ed. Melbourne, Australia: MediSci. 272 p.

14. Zuerner RL, Hartskeerl RA, van de Kemp H, Bal AE (2000) Characterization of the Leptospira interrogans S10-spc-alpha operon. FEMS Microbiol Lett 182: 309-314.

15. Watanabe H, Mori H, Inoue T, Gojojiri T (1997) Genome plasticity as a paradigm of eubacteria evolution. J Mol Evol 44 Suppl 1: S57-64.

16. Zuerner RL, Herrmann JL, Saint Girons I (1993) Scattering of the rRNA genes on the physical map of the circular chromosome of Leptospira interrogans serovar icterohaemorrhagiae. J Bacteriol 175: 5445-5451.

17. Picardou M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, et al. (2003) Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis. PLoS ONE 3: e496.

18. De los A Valverde MA, Ramirez JM, Montes de Oca LG, Gorni MGA, Ahmed N (2008) Arenal, a new Leptospira serovar of serogroup Javanica, isolated from a patient in Costa Rica. Infection, Genetics and Evolution. In press.

19. Oliveira MA, Caballero OE, Vago AR, Hartskeerl RA, Romanha AJ, et al. (2005) Low-stringency single specific primer PCR for identification of Leptospira. J Med Microbiol 52: 127-135.

20. Priya CG, Hoogendoorn TK, Hartskeerl RA, Ahmed A, et al. (2007) Field rats form a major infection source of leptospirosis in and around Madurai, India. J Postgrad Med 53: 239-240.

21. Rossetti CA, Liem MS, Samartino LE, Hartskeerl RA (2005) Buenos Aires, a new Leptospira serovar of serogroup Djasaiman, isolated from an aborted dog fetus in Argentina. Vet Microbiol 107: 241-248.

22. Baril C, Herrmann JL, Richard C, Margarita D, Giroux IS (1992) Scattering of the rRNA genes on the physical map of the circular chromosome of Leptospira interrogans serovar icterohaemorrhagiae. J Bacteriol 174: 7566-7571.

23. De los A Valverde MA, Raminez JM, Montes de Oca LG, Gorni MGA, Ahmed N (2008) Arenal, a new Leptospira serovar of serogroup Javanica, isolated from a patient in Costa Rica. Infection, Genetics and Evolution. In press.

24. Gourse RL, Thurlow DL, Gerber SA, Zimmerman RA (1985) Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc Natl Acad Sci USA 78: 2722-2726.

25. Haake DA, Suchard MA, Kelley MM, Dudoit M, Alt DP, et al. (2004) Molecular evolution and mosaicism of leptospirosis outer membrane proteins involves horizontal DNA transfer. J Bacteriol 186: 2816-2828.

26. Ahmed N, Devi SM, Valverde M, Vijayachari P, Machang'u RS, et al. (2006) Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species. Ann Clin Microbiol Antimicrob 5: 28.

27. Letocart M, Boerlin P, Boerlin-Petzold F, Gaudet J, Baranton G, et al. (1999) Genetic structure of the genus Leptospira by multilocus enzyme electrophoresis. Int J Bacteriol 94: 231-238.

28. Koutoumanou U, Rugsauka S, Leelaporn A, Phulsukombati D, Tantiamasawat S, et al. (2007) Detection and differentiation between pathogenic and saprophytic Leptospira spp. by multiplex polymerase chain reaction. Diagn Microbiol Infect Dis 57: 117-122.

29. Ellinghausen HC Jr, McCallough WG (1965) Nutrition of Leptospira Pomona and Growth of 13 Other Serotypes: Fractionation of Oleic Albumin Complex and a Medium of Bovine Albumin and Polysorbate 80. Am J Vet Res 26: 45-51.

30. Johnson RC, Harris VG (1967) Differentiation of pathogenic and saprophytic leptospires. I. Growth at low temperatures. J Bacteriol 94: 27-31.

31. Maniatis T, Fritsch EF, Sambrook J (1983) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 545 p.

32. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta. Sunderland, MA: Sinauer Associates, Inc.

33. Hillis DM (1991) Phylogenetic Analysis (MEGA) software version 4.0. Mol Biol Evol 8: 575-581.

34. Tamura K, Saitou N, Nei M (1987) The neighbor-joining method: a new method for phylogenetic analysis constructed by the minimum evolution principle. J Mol Evol 26: 511-526.

35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for phylogenetic analysis constructed by the minimum evolution principle. J Mol Evol 26: 511-526.

36. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 125: 585-595.

37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for phylogenetic analysis constructed by the minimum evolution principle. J Mol Evol 26: 511-526.

38. Saitou N, Nei M (1987) The neighbor-joining method: a new method for phylogenetic analysis constructed by the minimum evolution principle. J Mol Evol 26: 511-526.

39. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

40. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.

41. Carver TJ, Ruthford KM, Berriman M, Rajandream MA, Barrett BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422-3423.
Author/s:
Victoria, B; Ahmed, A; Zuerner, RL; Ahmed, N; Bulach, DM; Quinteiro, J; Hartskeerl, RA

Title:
Conservation of the S10-spc-alpha Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus Leptospira

Date:
2008-07-16

Citation:
Victoria, B., Ahmed, A., Zuerner, R. L., Ahmed, N., Bulach, D. M., Quinteiro, J. & Hartskeerl, R. A. (2008). Conservation of the S10-spc-alpha Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus Leptospira. PLOS ONE, 3 (7), https://doi.org/10.1371/journal.pone.0002752.

Persistent Link:
http://hdl.handle.net/11343/264970

File Description:
Published version

License:
CC BY