Probing of local ferroelectricity in BiFeO₃ thin films
and (BiFeO₃)ₘ(SrTiO₃)ₘ superlattices

R. Ranjith, U. Lüders and W. Prellier

Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN
6 Bd Maréchal Juin, 14050 Caen Cedex, France

A. Da Costa, I. Dupont and R. Desfeux

Université d’Artois, Unité de Catalyse et de Chimie du Solide, CNRS-UMR 8181,
Faculté des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex, France

Abstract

Ferroelectric BiFeO₃ thin films and artificial superlattices of (BiFeO₃)ₘ(SrTiO₃)ₘ (m~1 to 10 unit cells) were fabricated on (001)-oriented SrTiO₃ substrates by pulsed laser ablation. The variation of leakage current and macroscopic polarization with periodicity was studied. Piezo force microscopy studies revealed the presence of large ferroelectric domains in the case of BiFeO₃ thin films while a size reduction in ferroelectric domains was observed in the case of superlattice structures. The results show that the modification of ferroelectric domains through superlattice, could provide an additional control on engineering the domain wall mediated functional properties.
1. Introduction

Multiferroic materials, i.e. a material that possesses more than one ordering (Ferroelectric, Ferromagnetic or Ferroelastic) simultaneously, have been the object of fundamental studies and identified as a potential technological applications [1,2]. BiFeO$_3$ is one among the few simple perovskite system, exhibiting multiferroic properties and has been studied extensively in the past few decades [3]. In bulk form BiFeO$_3$ shows a magnetic Neel temperature of \(\sim 673\)K and a ferroelectric Curie temperature of \(\sim 1093\)K. It exhibits a complex cycloidal magnetic ordering of wavelength around 64nm which gives rise to an antiferromagnetic (AFM) behavior [3]. The ferroelectric polarization in BiFeO$_3$ is expected to arise due to the structural distortion induced by the \(6s^2\) lone pair electrons of the Bi$^{3+}$ cation [4]. At room temperature, a polarization ranging from \(\sim 50\mu\text{C/cm}^2\) to \(\sim 110\mu\text{C/cm}^2\) has been observed in thin films along the \(<001>\) and \(<111>\) directions, respectively [5].

In addition to the relatively large polarization, the ferroelectric (FE) domains of the BiFeO$_3$ thin films have been studied extensively [6-8]. Different kinds of FE domain pattern including stripe domains and fractal dimensions have been observed [7,8]. The FE domains of single layer BiFeO$_3$ thin films were found to be larger than the conventional FE systems for a given thickness of an epitaxial thin film [8]. The observed correlation in the domain pattern size and the periodicity of FE domains with the FM domains strongly suggests a multiferroic coupling at the domain walls, which was recently demonstrated on single BiFeO$_3$ layer [8,9]. Hence, the understanding of the domain dynamics and the control over their size and periodicity could facilitate the external tunability of the domain wall mediated coupling.

However, there are certain limitations in utilizing BiFeO$_3$ for device applications [10]. In particular, the large ferroelectric coercive field and high leakage are considered as major limitations [10]. Owing to the high sensitivity of the quality of BiFeO$_3$ thin films on the process parameters, such leakage behavior has been attributed to the presence of additional
phases like bismuth oxide and iron oxide [11]. Even without alternate phases, the high DC leakage could be attributed to the presence of oxygen vacancies and the reduction of small fraction of Fe$^{3+}$ cations to Fe$^{2+}$ cations [11,12]. As a consequence, numerous studies have focused on the reduction of this leakage and understanding the leakage mechanisms in BiFeO$_3$ thin films [11,13,14].

Among the various approaches to reduce the leakage current, recently a superlattice with a combination of BiFeO$_3$ and SrTiO$_3$ has been proven to be a useful approach to improve the leakage behavior of BiFeO$_3$ [13,14]. In this work, different series of artificial superlattices structures made of BiFeO$_3$ and SrTiO$_3$ layers was fabricated using the pulsed laser deposition (PLD) technique. The room temperature remnant polarization (P_r), leakage current density (J) and their periodicity dependence on the periodicity of the (BiFeO$_3$)$_m$(SrTiO$_3$)$_m$ (m=1 to 10 unit cells) superlattices were studied. The remnant polarization and leakage current density was optimized for a periodicity range of \sim 20-60 Å. The ferroelectric domain structure of both the single layer and superlattice structures was analyzed by piezo force microscopy.

2. Experimental

Thin films of BiFeO$_3$, SrTiO$_3$ and their superlattices were grown on (001) oriented SrTiO$_3$ substrates (CrysTec, Germany), at 700°C at an oxygen pressure of 20 mTorr using a multitarget Pulsed Laser Deposition technique. The deposition rates (typically \sim 0.1 Å/pulse) of BiFeO$_3$ and SrTiO$_3$ were calibrated individually for each laser pulse of energy density \sim 1.5 J/cm2. The superlattice structures were synthesized by repeating the bilayer consisting of m unit cells thick BiFeO$_3$ layer and m unit cells thick SrTiO$_3$ layer, with m taking integer values from 1 to 10, keeping a constant total thickness of the superlattice equal to 1200Å. A series of superlattices with periodicity varying in the range of \sim8-80Å were fabricated. Prior to the growth of superlattice, a bottom electrode of LaNiO$_3$ (800Å) was deposited at 700°C at an oxygen pressure of 100 mTorr. Gold pads of 400x400µm2 dimensions (physical mask)
were sputtered on top of the superlattice structures and on top of LaNiO$_3$ regions unexposed to the superlattice deposition. The fabricated heterostructures were characterized in a metal-insulator-metal configuration to study their ferroelectric polarization and leakage current.

Surface morphology and ferroelectric domain structure of both BiFeO$_3$ thin films and (BiFeO$_3$)$_m$(SrTiO$_3$)$_m$ superlattice structures were studied using a modified commercial Atomic Force Microscope (AFM) (Multimode, Nanoscope IIIa, Digital Instruments) [15]. FE domain imaging was performed using platinum/iridium coated silicon tip with spring constants of ~ 2.5 N/m. Local piezo phase measurements, out-of-plane (Vertical PFM - VPFM) and in-plane (Lateral PFM - LPFM) measurements were performed to highlight the direction of polarization.

3. Results and Discussion

Phase pure BiFeO$_3$ (BFO) and (BiFeO$_3$)$_m$(SrTiO$_3$)$_m$ superlattice structures were grown epitaxially on $<001>$-SrTiO$_3$ (STO) substrates [13]. Epitaxially grown, phase pure BiFeO$_3$ thin films exhibit an out-of-plane lattice parameter of $\sim 4.010\text{Å}$, which is in close agreement with previous reports. In the case of superlattices, the calculated out-of-plane average lattice spacing revealed that the BiFeO$_3$ in the superlattice structure is under an out-of-plane tensile strain. On increasing the periodicity, the strain relaxes and a shift in the average lattice spacing towards that of the SrTiO$_3$ substrate was observed.

Typical polarization–electric field (P–E) loop of a (BiFeO$_3$)$_5$(SrTiO$_3$)$_5$ superlattice (Λ \sim 40 Å) measured at different frequencies is shown in Fig. 1(a). The coercive field (E_c) of the superlattice structure is $\sim 35\text{kV/cm}$ and is independent of the measured frequency ranging between 1 and 10 kHz. The remnant polarization (P_r) obtained from the polarization measurements were in good correlation with the PUND analysis carried out on the same structure.[13] The details of the polarization studies of (BiFeO$_3$)$_m$(SrTiO$_3$)$_m$ superlattice structures with different periodicity is reported elsewhere [13]. The frequency-independent
behavior of P_t shows that the observed polarization is intrinsic to the superlattice structure and does not arise from mobile charges or other extrinsic effects, such as leakage current. Since the P_t values observed from both the (P-E) loops and PUND measurements are consistent, we believe that the FE behavior is intrinsic to the superlattice structures.

The leakage mechanism was also analyzed. The leakage current density of the $(\text{BiFeO}_3)_m(\text{SrTiO}_3)_m$ superlattice structures is dominated by the bulk limited Poole-Frenkel emission in which the emission of charge carriers trapped in the defect centers contributes to the conduction process [16]. Figure 1(b) shows the Poole-Frenkel fitting of the $(\text{BiFeO}_3)_m(\text{SrTiO}_3)_m$ superlattice structures for $m = 5$, recorded at different temperatures. The fitting is reasonably good for a wide range of voltage and temperature. The validity of the mechanism could be verified by the magnitudes of the characteristic physical entities derived from the curves. The values of the high frequency dielectric constant and the refractive index derived from the PF type of conduction in the temperature range of 300 – 383K are 5.7 - 7.1 (6.5 for BiFeO$_3$ bulk [17]) and 2.3 - 2.6 (2.5 for bulk BiFeO$_3$ and 2.2-2.6 for bulk SrTiO$_3$ [18]), respectively. The observed values correlate well with the intrinsic material properties of BiFeO$_3$ and SrTiO$_3$ available in the literature and with reported values for the single layer BiFeO$_3$ thin films [10]. In the case of single layer BiFeO$_3$ thin films, the defects are expected to originate from the oxygen vacancy formed due to the mixed oxidation state of Fe$^{2+}$ and Fe$^{3+}$ cations [10]. In the case of superlattice structures, in addition to the oxygen vacancies, the defects could arise from the high trap densities due to the strain fields at the interface like misfit dislocations [19]. Even more, a distribution of shallow traps with low activation energies could be expected at the interface between BiFeO$_3$ and SrTiO$_3$. The details of the analysis of leakage current of the $(\text{BiFeO}_3)_m(\text{SrTiO}_3)_m$ superlattices in light of various existing models can be found elsewhere [20].
The inset of Figure 1(b) shows the variation of room temperature leakage current density with the superlattice periodicity. In spite of the reduction in the leakage current on increase of periodicity (m≥5), a reduction in the polarization was also observed in the case of (BiFeO$_3$)$_m$(SrTiO$_3$)$_m$ superlattice structures.[13,20] In addition to that, the macroscopic polarization measurements on single layer BiFeO$_3$ films were dominated by the leakage current and hindered the measurements. Figure 2(a) shows the surface morphology of a BiFeO$_3$ single layer thin film; the AFM image was simultaneously recorded with the out-of-plane domain (VPFM) image (figure 2(b)). The image shows the presence of smeared square type grains with a grain size between 100-150 nm with an average roughness of ~ 4nm. The observed morphology and roughness are in consistent with earlier studies reported for films of similar thicknesses.[8] The morphology is in consistent with the existing literature of BFO thin films synthesized under similar process conditions and thicknesses [11]. In the present case, these grains exhibit a clear piezo response demonstrating the absence of conducting impurity phases. The aforementioned observation was further confirmed by the measurement of local piezoloops performed over the surface of the randomly selected grains. [21] In strict sense, the observed domains are piezoelectric domains and the black, white and grey regions represent the force experienced by the probe tip due to upward polarization, downward polarization and intermediate polarization [6-8]. Ideally the dark regions should correspond to the polarization pointing either up or down and the white regions corresponding the polarization either down or up, normal to the film surface respectively in a domain image observed in the VPFM.[6]

Figure 2(c) & (d) shows the out-of-plane domains image and the in-plane domains image respectively on the same sample, but on a larger scan area. Figure 2(e) shows the phase switching (~180°) with applied field, which shows that the observed image contrasts are due to the ferroelectric domain patterns. The combination of the out-of-plane image and the in-
plane domain images could give a better understanding regarding the orientations of polarization in a given system. Similar to the out-of-plane image, the dark and white regions in an in-plane image correspond to left and right polarization. The grey regions present in both the images reveal the overlap of the different orientations of polarization in both the vertical and in-plane forces experienced by the tip [7]. This is expected in the case of BiFeO₃ thin films whose polarization has been observed to be ~110µ/cm² along the [111] direction. Hence, the projection of polarization along the [111] direction on the (110) and (100) planes of a given unit cell of BiFeO₃ is expected to overlap in both the out-of-plane and in-plane domain image leading to grey regions which has already reported earlier in the case of stripe like domains and other ferroelectric systems [7].

Figures 3(a and b) show the surface morphology (a) of a (BiFeO₃)₁₀(SrTiO₃)₁₀ superlattice structure whose top layer is SrTiO₃ and out-of-plane domain image (b) of the same area. The surface image clearly reveals spherical grain morphology with a surface roughness of around ~ 1nm. In comparison with the single layer BiFeO₃ thin film a reduced domain size and domain pattern is observed. Recent studies reveal the analogy between the magnetic domains and the ferroelectric domains, and as a result the domain wall formation energy is expected to be larger [8]. Hence, also larger ferroelectric domains in the case of BiFeO₃ than conventional ferroelectrics is expected [8,9]. The correlation in the ferroelectric and ferromagnetic domains strongly emphasizes the plausible multiferroic coupling in the domain walls [8,9]. Therefore, the strain assisted modification of domain structure and the domain walls present in the superlattice structures, could offer an additional degree of freedom to alter the properties of the system. The observed variation of domain pattern and the domain size in a (BiFeO₃)ₘ(SrTiO₃)ₘ superlattice suggests the plausible external control/modification of the domains, in effect, expected to alter the multiferroic coupling. In the case of a (BFO)ₘ(STO)ₘ superlattice structure the strain distributed over the whole
thickness of the film normal to the interfaces and surface is expected to play a crucial role in determining the domain sizes and the macroscopic polarization of the same. A variation in domain size from 100 – 15 nm on varying the periodicity from 20 – 80Å, respectively, was observed.[21] The quantitative studies of strain distribution and its influence over the FE domains are currently under progress.

4. Summary and Conclusions

In summary, single phase epitaxial thin films of BiFeO₃ thin films and (BiFeO₃)ₘ(SrTiO₃)ₘ artificial superlattice structures were fabricated by the pulsed laser deposition technique. The room temperature leakage current density of BiFeO₃ thin films was reduced by two orders of magnitude by employing SrTiO₃ layers to form a superlattice structure at certain periodicities. The leakage behavior was observed to be dominated by a bulk limited Poole-Frenkel emission. Ferroelectric domains in the range of 120-15 nm were observed in the case of a single layer BiFeO₃ thin film. The observed pattern and the size of the domains are in correlation with the earlier observations. The combination of out-of-plane and the in-plane domain images confirmed the overlap of forces on the probe tip from various polarization directions present in the BiFeO₃ thin films. In the case of superlattice structures a variation in domain size from 100 – 15 nm on varying the periodicity from 20 – 80Å, respectively, was observed. Finally, we conclude that the superlattice structures of (BiFeO₃)ₘ(SrTiO₃)ₘ provide an opportunity to alter the polarization, the leakage current and also facilitates modifying the domain size, pattern and coercive voltages, which are known to directly influence on the multiferroic coupling in the case of multiferroic BiFeO₃ thin films and its applications.

Acknowledgement:
This work was carried out in the frame of the NoE FAME (FP6-5001159-1), the STREP MaCoMuFi (NMP3-CT-2006-033221), and the STREP CoMePhS (NMP4-CT-2005-517039)
supported by the European Community and by the CNRS, France. Partial support from the ANR (NT05-1-45177, NT05-3-41793) and the Région Basse Normandie thought the CPER is also acknowledged. The authors would also like to acknowledge Dr. L. Mechin, Mr. C. Fur, Mr. J. Lecourt, Prof G. Poullain, Dr. W.C.Sheets and Dr. J. Wang
Reference:

[1] W. Prellier, M.P. Singh and P. Murugavel, J. Phys. Cond. Matter, 17 (2005) R803.

[2] Nicola. A. Hill and Alessio Filipetti, J. Mag. Mag. Mater., 242-245 (2002) 976-979.

[3] J.Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh, Science, 299 (2003) 1719.

[4] P. Baettig, C. Ederer and N. A. Spaldin, Phys. Rev. B, 72 (2005) 214105.

[5] J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin and D. Viehland, Appl. Phys. Lett., 84 (2004) 5261.

[6] F. Zavaliche, P. Shafer, R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim and C. B. Eom, Appl. Phys. Lett., 87 (2005) 252902.

[7] F. Zavaliche, R. R Das, D. M Kim, C. B. Eom, S. Y. Yang, P. Shafer and R. Ramesh, M. P Cruz, Appl. Phys. Lett., 87 (2005) 182912.

[8] G. Catalan, H. Bea, S. Fusil, M. Bibes, P. Paruch, A. Barthelemy and J. F. Scott, Phys. Rev. Lett., 100 (2008) 027602.

[9] Y-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S-J Han, Q. He, N. Balke, C-H Yang, D Lee, W. Hu, Q. Zhan, P-L Yang, A. F. Rodriguez, A. Scholl, S. X. Wang and R. Ramesh, Nature Materials 7 (2008) 478..

[10] G.W. Pabst, L. W. Martin, Y. H. Chu and R. Ramesh, Appl. Phys. Lett., 90 (2007) 072902.

[11] H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J. P Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson and M. Viret, Appl. Phys. Lett., 87 (2005) 072508.

[12] X. Qi, J. Dho, R. Tomov, M. G. Blamire and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86 (2005) 062903.

[13] R. Ranjith, B. Kundys and W. Prellier, Appl. Phys. Lett., 91 (2007) 222904.
[14] S. Bose and S.B. Krupanidhi, Appl. Phys. Lett., 90 (2007) 212902.

[15] A. Ferri, S. Saitzek, A. Da Costa, R. Desfeux, G. Leclerc, R. Bouregba and G. Poullain, Surf. Sci., 602 (2008) 1987.

[16] P. Zubko, D.J. Jung and J.F. Scott, J. Appl. Phys., 100 (2006) 114113.

[17] K. Takahashi, N. Kida and M. Tonouchi, Phys. Rev. Lett., 96 (2006) 117402.

[18] K. Van Benthem, C. Elsasser and R.H. French, J. Appl. Phys., 90 (2001) 6156.

[19] S.P. Alpay, I. B. Misirlioglu, V. Nagarajan and R. Ramesh, Appl. Phys. Lett., 85 (2004) 2044.

[20] R. Ranjith, W. Prellier, Jun Wei Cheah, J. Wang and T. Wu, Appl. Phys. Lett. 92 (2008) 232905.

[21] R. Ranjith, U. Lüders, W. Prellier, A. Da Costa, A. Ferri and R. Desfeux, To be published.
Figure Captions:

Figure 1. (a) Polarization hysteresis of a \((\text{BiFeO}_3)_5(\text{SrTiO}_3)_5\) \((\Lambda \sim 40\text{Å})\) superlattice structure at different frequencies. (b) Poole – Frenkel plot of the same superlattice structure at different temperatures. The inset shows the room temperature leakage current density at different periodicity.

Figure 2. (a) Surface morphology of a BiFeO$_3$ thin film obtained by atomic force microscopy, (b) the out-of-plane piezo force domain image obtained from the same area (c) the out-of-plane piezo force domain image with a larger scan area (5µm x 5µm), (d) the in-plane piezo force domain image of the same region and (e) local phase piezo loop with applied bias for BiFeO$_3$ single layer.

Figure 3. (a & b): Surface image of a \((\text{BiFeO}_3)_{10}(\text{SrTiO}_3)_{10}\) \((\Lambda \sim 80\text{Å})\) superlattice structure and the out-of-plane piezo domain image of the same region.
Figure 1
Figure 2
Figure 3
Figure 1

(a)

Polarization (μC/cm2) vs. Electric Field (kV/cm)

- 1 kHz
- 5 kHz
- 10 kHz

(b)

Ln(J/E) [A/m²] vs. E$^{0.5}$ (V/m)$^{0.5}$

- 303 K
- 323 K
- 353 K
- 383 K
- 413 K

Inset: J vs. λ (Ångström)
