On the Connectivity Preserving Minimum Cut Problem

Qi Duana, Jinhui Xub

aDepartment of Software and Information Systems
University of North Carolina at Charlotte
Charlotte, NC 28223, USA

bDepartment of Computer Science and Engineering
State University of New York at Buffalo
Buffalo, NY 14260, USA

Abstract

In this paper, we study a generalization of the classical minimum cut problem, called \textit{Connectivity Preserving Minimum Cut (CPMC)} problem, which seeks a minimum cut to separate a pair (or pairs) of source and destination nodes and meanwhile ensure the connectivity between the source and its partner node(s). The CPMC problem is a rather powerful formulation for a set of problems and finds applications in many other areas, such as network security, image processing, data mining, pattern recognition, and machine learning. For this important problem, we consider two variants, connectivity preserving minimum node cut (CPMNC) and connectivity preserving minimum edge cut (CPMEC). For CPMNC, we show that it cannot be approximated within $\alpha \log n$ for some constant α unless $P=NP$, and cannot be approximated within any $\text{poly}(\log n)$ unless NP has quasi-polynomial time algorithms. The hardness results hold even for graphs with unit weight and bipartite graphs. Particularly, we show that polynomial time solutions exist.

*Corresponding author, phone (704)524-9768

Email addresses: qduan@uncc.edu (Qi Duan), jinhui@buffalo.edu (Jinhui Xu)
for CPMEC in planar graphs and for CPMNC in some special planar graphs. The hardness of CPMEC in general graphs remains open, but the polynomial time algorithm in planar graphs still has important practical applications.

Keywords:
Minimum Cut; Inapproximability; Connectivity Preserving

1. Introduction

Minimum cut is one of the most fundamental problems in computer science and has numerous applications in many different areas [1, 2, 3, 4]. In this paper, we consider a new generalization of the minimum cut problem, called *connectivity preserving minimum cut (CPMC)* problem arising in several areas. In this problem, we are given a connected graph $G = (V, E)$ with positive node (or edge) weights, a source node s_1 and its partner node s_2, and a destination node t. The objective is to compute a cut with minimum weight to disconnect the source s_1 and destination t, and meanwhile preserve the connectivity of s_1 and its partner node s_2 (i.e., s_1 and s_2 are connected after the cut). The weights can be associated with either the nodes (i.e., vertices) or the edges, and accordingly the cut can be either a set of nodes, called a connectivity preserving node cut, or a set of edges, called a connectivity preserving edge cut. Corresponding to the two types of cuts, the CPMC problem has two variants, *connectivity preserving minimum node cut (CPMNC)* and *connectivity preserving minimum edge cut (CPMEC)*.

The CPMC problem has both theoretical and practical importance. Theoretically, it is closely related to three fundamental problems, minimum cut, set cover, and shortest path. Practically, the CPMC problem finds appli-
cations in many different areas. In network security, for example, CPMC can be used to identify potential nodes for attacking. In such applications, an attacker (or police) may want to intercept all communication (or traffic) between a source node s_1 and a destination node t. It is possible that some nodes with (direct) connection to the destination might already have been compromised. To maximally utilize such nodes, the attacker only needs to compromise another set of nodes with minimum cost so that all traffic between the source and destination nodes passes one of the compromised nodes.

To solve this problem, one can formulate it as a CPMC problem in which the compromised nodes are treated as partners of the source after removing their connections to the destination. In applications related to network reliability and emergency recovery, a node in a network might be contaminated, and has to be separated from some critical nodes. Meanwhile, traffic flows among the critical nodes have to be maintained with a minimum cost. To solve such a problem, one can treat the critical nodes as the source and partner nodes and the contaminated node as the destination node, and formulates it as a CPMC problem. In data mining, machine learning, and image segmentation, CPMC can be used to model clustering or segmentation problems with additional constrains for clustering or segmenting certain objects together.

The CPMC problem can be generalized in several ways. For example, we may have multiple pairs of source and destination nodes, and each source node may have multiple partner nodes. The simplest version is the 3-node case in which only one source node, one destination node, and one partner node exist. Note that the 3-node case is much different from the minimum 3-terminal cut problem in which all three nodes are required to be separated,
whereas in the 3-node case two nodes are required to be connected. In this paper, we will mainly focus on the 3-node case.

The CPMC problem is in general quite challenging, even for the 3-node case. One of the main reasons is that the connectivity preserving requirement and the minimum cut requirement seem to be contradicting to each other. As it will be shown later, the hardness of the CPMC problem increases dramatically with the added connectivity requirement. This phenomenon (i.e., increased hardness with the additional connectivity constraint) is consistent with the observations by Yannakakis [6] in several other graph related optimization problems.

The CPMC problem is a new and interesting problem. To the best of our knowledge, it has not been studied previously. Related problems include the non-separating cycle and optimal cycle problems in certain surfaces [7, 8]. Since there is no restriction on the source and its partner nodes, CPMC seems to be more general and fundamental.

In this paper, we mainly consider CPMNC, CPMEC, and CPMC in planar graphs. For the CPMNC problem, we show that the problem is extremely hard to solve and to approximate, even for some very special cases. Particularly, we show that it cannot be approximated within a factor of \(\alpha \log n \) for some small constant \(\alpha \) unless \(P=NP \). We also use Feige and Lovasz’s two-prover one round interactive proof protocol [9] to show that the CPMNC problem cannot be approximated within any \(\text{poly}(\log n) \) factor unless \(NP \subset \text{DTIME}(n^{\text{poly}(\log n)}) \). The hardness results hold even for unit-weighted graphs and bipartite graphs.

For planar graphs, we show that the CPMNC problem can be solved in
polynomial time if \(s_1\) and \(s_2\) are on the same face. For the CPMEC problem, we present a polynomial time solution for general planar graphs, which can be used for CPMC applications in image processing and machine learning. We also reveal a close relation between a Location Constrained Shortest Path (LCSP) problem and the CPMEC problem in special planar graphs in which \(s_1\) and \(t\) are in the same face, and give polynomial time solutions to both problems.

2. Connectivity Preserving Node Cut Problem

First we note that the CPMNC problem is an NP optimization problem. To determine whether a valid cut exists, one just needs to check if \(t\) is connected to any bridge node between \(s_1\) and \(s_2\); if so, then no valid cut exists. Clearly, this can be done in polynomial time. Thus, we assume thereafter that a cut always exists.

We first define the decision version of the CPMNC problem.

Definition 2.1 (Decision Problem of CPMNC). Given an undirected graph \(G = (V, E)\) with each node \(v_i \in V\) associated with a positive integer weight \(c_i\), a source node \(s_1\), a partner node \(s_2\), a destination node \(t\), and an integer \(b > 0\), determine whether there exists a subset of nodes in \(V\) with total weight less than or equal to \(b\) such that the removal of this subset disconnects \(t\) from \(s_1\) but preserves the connectivity between \(s_1\) and \(s_2\).

The decision version of the CPMEC problem can be defined similarly.

Theorem 2.2. The CPMNC problem is NP-complete and cannot be approximated within \(\alpha_1 \log n\) for some constant \(\alpha_1\) unless \(P = NP\), where \(n = |V|\).
Proof. To prove the theorem, we reduce the set cover problem to this problem. In the set cover problem, we have a ground set $\mathcal{T} = \{e_1, e_2, \ldots, e_{n_1}\}$ of n_1 elements, and a set $\mathcal{S} = \{S_1, S_2, \ldots, S_k\}$ of k subsets of \mathcal{T} with each $S_i \in \mathcal{S}$ associated with a weight w_i. The objective is to select a set \mathcal{O} of subsets in \mathcal{S} so that the union of all subsets in \mathcal{O} contains every element in \mathcal{T} and the total weight of subsets in \mathcal{O} is minimized.

Given an instance I of the set cover problem with n_1 elements and k sets, we construct a new graph. The new graph has an element gadget for every element, and every element gadget contains $k_1 + 2$ nodes, where k_1 is the number of sets that contains this element. In every gadget, there are two end points, and k_1 internal nodes are connected to the two end nodes in parallel. Every internal nodes of a gadget corresponds to a set that contains this element. All such n_1 gadgets are connected sequentially through their end points, with s_1 and s_2 at the two ends of the whole construction. All nodes correspond to the same set are connected to a new node which we call set node, and all set nodes are connected to t. Figure 1 is the graph constructed for set cover instance with three elements x_1, x_2, and x_3, three sets $A_1 = \{x_1, x_3\}$, $A_2 = \{x_2, x_3\}$, and $A_3 = \{x_1, x_2\}$.

Every set node is assigned a weight $w_i n_1 k$, where w_i is the weight of the corresponding set in the original set cover instance. All other nodes are assigned weight 1. We let $b = n_1 k D_1 + n_1 k - 1$, where D_1 is the upper bound of weight in the set cover instance. Note that one cannot put all nodes into the cut in an element gadget, otherwise s_1 and s_2 will be separated. Now we can see that if the set cover instance has a cover with weight no more D_1, then we can choose the following cut: The cut contains those set nodes
Figure 1: An example illustrating Theorem 2.2.

Figure 2: An example illustrating Theorem 2.5.
contained in the cover and all the gadget nodes which are not in the set cover. The cut has a weight \(n_1kD_1 + g_1 \), where \(g_1 < n_1k \). Similarly if we can find a cut with weight no more than \(n_1kD_1 + n_1k - 1 \), then we can find a corresponding set cover with weight no more than \(D_1 \). Furthermore, since set cover cannot be approximated within \(\alpha \text{log } n \) for some constant \(\alpha \) unless \(\text{NP=P} \) \cite{10, 11}, we can see that the connectivity preserving minimum cut problem cannot be approximated within \(\alpha_1 \text{log } n \) for some constant \(\alpha_1 \) unless \(\text{NP=P} \). Suppose the optimal solution of the set cover instance is \(D \), then the optimal solution of the constructed graph has a minimum cut with weight \(n_1kD + g_2 \), where \(0 < g_2 < n_1k \). If we can find a cut in which the total weight (in the set cover instance) of all set nodes is \(D_1 \), then the cut has a weight \(n_1kD_1 + g_1 \), where \(0 < g_1 < n_1k \). Assume \(\frac{n_1kD_1 + g_2}{n_1kD + g_1} < \alpha_1 \text{log}(n_1k) \), for some \(\alpha_1 \), then we have \(\frac{D_1}{D} < \frac{n_1kD_1 + g_2}{n_1kD + g_1} + o(1) < \alpha_1 \text{log}(n_1k) \).

For the set cover problem with \(n_1 \) elements and \(k = \text{poly}(n_1) \) sets, it cannot be approximated within \(\alpha \text{log } n_1 \) unless \(\text{NP=P} \) \cite{10, 11}. Since \(k \) is bounded by some polynomial in \(n_1 \), we can see \(\frac{D_1}{D} < \alpha_1 \text{log}(n_1k) \leq \alpha_1 \alpha_2 \text{log } n_1 \), where \(\alpha_2 \) is another constant. If we choose \(\alpha_1 \leq \alpha / \alpha_2 \), then \(\frac{D_1}{D} \leq \alpha \text{log } n \). Now we have a contradiction, which means that the problem cannot be approximated within \(\alpha \text{log } n \) unless \(\text{NP=P} \).

\[\square \]

The above theorem holds for general graphs. For special graphs, we have the following corollaries.

Corollary 2.3. The CPMNC problem is NP-complete and cannot be approximated within \(\alpha \text{log } n \) for some constant \(\alpha < 1 \) unless \(\text{NP=P} \) even if the graph is unit-weighted.

Proof. Note that in the above reduction, only those set nodes have weight
more than 1. We can change every such node \(v \) with weight \(c > 1 \) to a clique \(Q_v \) of \(c \) nodes, and connect each node \(u \), which is originally connected to \(v \) in the old graph, to each node in \(Q_v \) in the new graph. Then the resulting graph is unit-weighted. Note that if one want to cut a set node in the original graph, one must cut all the corresponding clique nodes in the new graph to make the cut minimum. So all the arguments in the proof of Theorem 2.2 still hold.

Corollary 2.4. The CPMNC problem is NP-complete and cannot be approximated within \(\alpha \log n \) for some constant \(\alpha < 1 \) unless \(P=NP \) even if the graph is bipartite.

Proof. From the construction in the proof of Theorem 2.2 it is easy to see that if we shrink the two nodes connecting the neighboring gadgets, the nodes in the graph can be partitioned into two sets such that there is no edge in each set (i.e., the resulting graph is bipartite). Thus the corollary is true for bipartite graphs.

Next we show that the problem cannot be approximated within any \(\text{poly}(\log n) \) ratio unless \(NP \subseteq \text{DTIME}(n^{\text{poly}(\log n)}) \).

Theorem 2.5. The CPMNC problem cannot be approximated within a ratio of \(\log^k n \), for any positive \(k \), unless \(NP \subseteq \text{DTIME}(n^{\text{poly}(\log n)}) \).

The proof is based on Feige and Lovasz’s two-prover one round interactive proof protocol [9] (abbreviated as \(MIP(2,1) \)) and Lund and Yannakakis’s result on the hardness of set cover [12]. \(MIP(2,1) \) consists of two provers \(P_1 \), \(P_2 \) and one verifier \(V \). \(Q_1 \) and \(Q_2 \) are sets of possible questions for \(P_1 \) and \(P_2 \), \(A_1 \) and \(A_2 \) are sets of possible answers from \(P_1 \) and \(P_2 \), \(\Sigma \) is the
set of input alphabet, and R is a set of random seeds. The verifier first computes a (polynomial time computable) function $f : \Sigma^n \times R \rightarrow Q_1 \times Q_2$, to generate two questions for P_1 and P_2. After receiving the answers, V computes a boolean predicate (also polynomial time computable) on $\Sigma^n \times R \times A_1 \times A_2$ to decide acceptance or rejection. Notice that in the protocol, the two provers can only agree with each other on some strategy pre-hand, and once the execution of the protocol begins, the two protocols can no longer communicate. This means that P_1 (or P_2) cannot see the question for P_2 (or P_1), and the answer from P_2 (or P_1). To achieve this securely, an oblivious protocol \cite{13} can be used.

The \textit{MIP}(2,1) protocol for NP has the following properties.

- If the input SAT instance ϕ is satisfiable, then the provers always have a strategy to make the verifier to accept.

- If the input SAT instance ϕ is not satisfiable, then no matter what strategy the provers use, the verifier will accept with probability at most $1/n$, where n is the input size.

- All messages transferred in the protocol have length bounded by a polylog function. Also in the protocol, given an input instance, a random seed $r \in R$, and answer a_1 from P_1, there is a unique valid answer a_2 that the verifier will accept. Additionally, in the construction, $|Q_1| = |Q_2|$, and for every $q_1 \in Q_1$, there is an equal number $|R| / |Q_1|$ of r that will generates q_1. This is also the case for every $q_2 \in Q_2$.

We now prove Theorem \ref{2.6}
Proof. To prove the theorem, we first construct a graph. Given a SAT instance ϕ, the graph will have a valid cut with weight at most $N(|Q_1| + |Q_2| + 1)$ if ϕ can be satisfied, where $N = 2^{\text{poly}(\log n)}$ is the total number of nodes in the constructed graph. If ϕ cannot be satisfied, a valid cut will have weight at least $n^\epsilon N(|Q_1| + |Q_2| + 1)$, for some constant ϵ and $0 < \epsilon < 1$.

The graph has $|R|$ question gadgets ($|R|$ also has size $\text{poly}(\log n)$) with each denoted as (r, q_1, q_2). Every $r \in R$ has a question gadget and a corresponding question pair (q_1, q_2). We put every possible valid answer pair (a_1, a_2) as two nodes in the gadget. All such answer pairs are put in the gadget in parallel (see Figure 2). The gadget also has a backdoor node g_1. This backdoor node is connected to t through an intermediate node g_2, which has a very large weight, say, $nN(|Q_1| + |Q_2| + 1)$. All nodes in a gadget have weight 1. We also have $|Q_1 \times A_1| + |Q_2 \times A_2|$ answer nodes with each of them associated with weight N. Every answer node (q_1, a_1) (or (q_2, a_2)) is connected to the gadget node a_1 (or a_2) if the gadget is (r, q_1, q_2). Note that an answer node may be connected to multiple gadget nodes. Finally, every answer node is connected to t, and the gadgets are connected sequentially with s_1 and s_2 at two ends (see Figure 2).

Let $c(q_1)$ (or $c(q_2)$) be the number of nodes selected in a cut from all those answer nodes corresponding to the same question q_1 (or q_2). If ϕ can be satisfied, then we can find a cut with weight at most $N(|Q_1| + |Q_2| + 1)$. This is because the prover P_1 (or P_2) can have a valid answer a_1 (or a_2) for any question q_1 (or q_2), and if we choose these (q_1, a_1) and (q_2, a_2) ($|Q_1| + |Q_2|$ nodes in total) answer nodes in the cut, we can have a valid cut with weight at most $N(|Q_1| + |Q_2| + 1)$.
If ϕ cannot be satisfied, we then have two cases to consider.

Case 1: For some valid (r, q_1, q_2), there is no valid answer pair (a_1, a_2). In this case, to find a valid cut, one must choose node g_2 in the (r, q_1, q_2) gadget which has weight $nN(|Q_1| + |Q_2| + 1)$.

Case 2: For every valid (r, q_1, q_2), there always exists at least one valid answer pair (a_1, a_2). In this case, let p be percentage of those r whose corresponding q_1 and q_2 have $c(q_1) + c(q_2) \leq n^{\epsilon_1}$, where $0 < \epsilon_1 < 1/2$ is a small positive real number. Then we have $p < (n^{2\epsilon_1}-1)$. To see this, suppose $p > (n^{2\epsilon_1}-1)$. Then for a question node q_1, prover P_1 can randomly select one of the answers a_1 such that (q_1, a_1) is in the cut, prover P_2 can randomly select one of answers a_2 such that (q_2, a_2) is in the cut, and (a_1, a_2) is a valid answer with probability at least $n^{-2\epsilon_1}$. Thus the total probability that the provers will get a valid answer is at least $p n^{\epsilon_1}$, which is greater than n^{-1}, a contradiction. Hence we have $\Sigma_r c(r) \geq (1-n^{2\epsilon_1}) |R| n^{\epsilon_1}$, where $c(r) = c(q_1) + c(q_2)$ and q_1 and q_2 are the queries corresponding to seed r. From this, we immediately have $\Sigma_r c(r) = \Sigma_r (c(q_1) + c(q_2)) = \frac{|R|}{|Q_1|} (\Sigma_{q_1 \in Q_1} c(q_1) + (\Sigma_{q_2 \in Q_2} c(q_2)) = |R| |Q_1| C$, where C is the total number of answer nodes in the cut. Combining the above two, we have $\frac{|R|}{|Q_1|} C \geq (1-n^{2\epsilon_1}) |R| n^{\epsilon_1}$. This implies that $C \geq |Q_1| (1-n^{2\epsilon_1}) n^{\epsilon_1} > n^\epsilon (|Q_1| + |Q_2| + 1)$, where $0 < \epsilon < \epsilon_1$ (Note that here we use the fact that $|Q_1| = |Q_2|$).

Thus the total weight of the cut will be larger than $n^\epsilon N(|Q_1| + |Q_2| + 1)$. Note that $N = 2^{poly(log n)}$, and for any positive number k, $n^\epsilon > log^k N$ for all sufficiently large n. This proves our assertion.
3. CPMC in Planar Graphs

In this section we present polynomial time solutions to CPMEC in planar graphs and CPMNC in some special planar graphs.

Theorem 3.1. If the graph G is planar and the source node s_1 and the partner node s_2 are in the same face, then the CPMNC problem can be solved in polynomial time.

Proof. If s_1 and s_2 are in the same face, we can find a planar embedding of G such that s_1 and s_2 are on the boundary of the embedding (i.e., on the outer face). It is easy to see that after removing the connectivity preserving minimum cut separating s_1 and s_2 from t, s_1 and s_2 are still connected by one of the two boundary paths between s_1 and s_2 (see Figure 3 where s_1 and s_2 are connected by either the path $s_1, A_1, \ldots, A_k, s_2$ or the path $s_1, B_1, \ldots, B_m, s_2$). Thus we can use the following algorithm to solve the problem.

1. Add a dummy node D, and connect D to nodes $s_1, A_1, \ldots, A_k, s_2$. Set the weight of nodes $s_1, A_1, \ldots, A_k, s_2$ to infinity.
2. Compute the minimum cut between D and t. Let x_1 be the weight of this cut.
3. Remove all the previously added edges, connect D to nodes $s_1, B_1, \ldots, B_m, s_2$, and set the weight of nodes $s_1, B_1, \ldots, B_m, s_2$ to infinity.
4. Compute the minimum cut between D and t. Let x_2 be the weight of this cut.
5. Choose the smaller one between x_1 and x_2 as solution.
Obviously, the above algorithm runs in polynomial time and generates the optimal solution. Thus the theorem follows.

Next we show that CPMEC in planar graphs has polynomial time solutions.

First we introduce a perturbation technique that is crucial for the algorithm of the CPMEC problem. Let $G = \{V, E\}$, $V = \{v_1, \ldots, v_n\}$, $E = \{e_1, \ldots, e_m\}$ be an undirected graph with each edge e_i associated with a non-negative weight (or cost) c_i. We use a new weighting function $c'_i = c_i + \epsilon_i$ for each edge e_i, where ϵ_i is a small positive perturbation number. The perturbation numbers are assigned in a way that no two set of edges have the same total weights. Note that such a perturbation always exists. For example, we can first arbitrarily order all edges and add a small value to the weight (assuming to be an integer) of each edge which is 10^{-r}, where r is the rank of the edge in the order. In this way, any two cuts (or more generally, two subsets of edges) in G will have different weights unless they are completely identical. Based on this property, we have the following observations. (1)
Any cut is unique. (2) Given any node $v \in V$, let C_v be the connected component containing v and resulting from the minimum edge cut between v and t. Then all nodes in C_v can be uniquely determined due to the perturbation technique.

Now consider the CPMEC between nodes s_1, v, and t, which is also unique. This CPMEC cuts G into two connected components, and let $C_{s_1,v}$ be the one containing s_1 and v. If $C_{s_1,v_1} = C_{s_1,v_2}$ for two different nodes v_1 and v_2, we say that v_1 and v_2 are connectivity preserving equivalent (CPE). We can classify all nodes in G into multiple CPE classes.

Starting from node s_1 in the new graph, we can compute $C_{s_1,v}$ for every node $v \neq t$ in the graph using Algorithm 1.

In Algorithm 1, $C_{ep}(s_1, v, t)$ is the value of CPMEC between s_1, v, and t. $C_e(s_1, t)$ is the value of the minimum cut between s_1 and t. The minimum cut separating v and $C_{s_1,s}$ from t can be reduced to computing a minimum cut of two nodes D and t, where D is a dummy node connecting to v and every node in $C_{s_1,s}$ with an edge of infinity weight. The idea of the algorithm is similar to the idea of Dijkstra algorithm [14] for shortest path. Though the idea is straightforward, the proof is highly non-trivial. It is also intriguing that the proof does not work for general graphs. It would be interesting to classify the types of graphs that the algorithm can find the optimal cut.

It is easy to see that this is a polynomial time algorithm for finding the CPMEC between s_1, s_2 and t. We have the following observation. In each iteration (the While loop), the algorithm finds a node v with the minimum $C_{ep}(s_1, v, t)$ among all nodes not in S. This implies that the CPMEC found in each iteration is non-decreasing, and for any node $v* \notin S$, $C_{ep}(s_1, v*, t) >$
Algorithm 1: CPMEC Algorithm for Planar Graphs

Fix a planar embedding of G with t being a node in the outer surface.

Let $S = \{s_1\}$, $C_{s_1,s_1} = \{s_1\}$, and $C_{ep}(s_1, s_1, t) = C_e(s_1, t)$;

while $s_2 \notin S$ do

 for every neighbor v (v $\notin S$) of a node $s \in S$ do
 Compute the minimum cut that separates v and all nodes in $C_{s_1,s}$ from t; let the connected component containing v and $C_{s_1,s}$ be $C_{s_1,v}$;
 let the weight of the cut be $u(v, s)$;
 end

 Find the pair of v and s with the minimum $u(v, s)$; denote them as $v*$ and $s*$;
 $S = S \cup C_{s_1,v*}$;

 for every node v' in $C_{s_1,v*}$ do
 if $v' \notin S$ then
 $C_{s_1,v'} = C_{s_1,v*}$;
 $C_{ep}(s_1, v', t) = u(v*, s*)$;
 end
 end

end

Output $C_{ep}(s_1, s_2, t)$.
$C_{ep}(s_1, v, t)$ for any node $v \in S$.

The basic idea for proving the correctness of the algorithm is to show that if the cut obtained at any step of the algorithm is not the actual CPMEC, then we will have a contradiction. The contradiction can be obtained from the fact that for any two “neighboring” CPMECs, there is no hole completely surrounded by the two CPMECs.

We need the following lemmas for the proof.

Lemma 3.2. Let α be a node in C_{s_1,v^*} and $Y = C_{s_1,\alpha} \cap C_{s_1,v^*}$. If the connected component of Y containing s_1 also contains α, then $C_{s_1,\alpha}$ is completely contained in C_{s_1,v^*}.

Proof. Suppose that $C_{s_1,\alpha}$ is not completely contained in C_{s_1,v^*}. Then consider the region $Z = C_{s_1,\alpha} \setminus C_{s_1,v^*}$ (see the shadowed area in Fig. 6). The existence of region Z violates the uniqueness of a cut value. This means that $C_{s_1,\alpha}$ must be completely contained in C_{s_1,v^*}. \hfill \Box

Lemma 3.3. Let C_1 be the CPMEC separating s_1 and A from t, and C_2 be a different CPMEC separating s_1, A_1 from t such that $A \in C_{s_1,A_1}$ and none of the two sets $C_{s_1,A}$ and C_{s_1,A_1} completely contains the other. Then there exists no hole that is completely surrounded by C_{s_1,A_1} and $C_{s_1,A}$.

Proof. First, from the definition, we know that both $C_{s_1,A}$ and C_{s_1,A_1} contain s_1 and A. The intersection of $C_{s_1,A}$ and C_{s_1,A_1} must have one connected component containing s_1 and another connected component containing A. Otherwise, if there is only one connected component, then we can either expand or shrink the boundary of one of $C_{s_1,A}$ and C_{s_1,A_1} and still form a CPMEC. This violates the fact that each CPMEC cut is unique.
If there exists a hole that is completely surrounded by the two CPMECs, then for the boundary of the hole, we can divide the boundary into 3 types of segments: The first type of segments is in the boundary of \(C_{s_1,A} \) but not boundary of \(C_{s_1,A_1} \). We denote the total length of this type of segments as \(L \). The second type of segments is in the boundary of \(C_{s_1,A_1} \) but not boundary of \(C_{s_1,A} \). We denote the total length of this type of segments as \(L_1 \). The third type of segments is in the boundary of \(C_{s_1,A_1} \) and \(C_{s_1,A} \). By the uniqueness of the weight value, we have either \(L > L_1 \) or \(L_1 > L \). If \(L > L_1 \) then we combine CPMEC \(C_{s_1,A} \) with the region inside the hole. Now we can get a smaller CPMEC, because the new cut will decrease by a value of \(L \) and increase by a value of \(L_1 \), and the overall effect is that the value of the cut will decrease by at least \(L - L_1 \). This is a contradiction. If \(L < L_1 \) then we combine CPMEC \(C_{s_1,A_1} \) with the region inside the hole. Now we can get a smaller CPMEC, because the new cut will decrease by a value of \(L_1 \) and increase by a value of \(L \), and the overall effect is that the value of the cut will decrease by at least \(L_1 - L \). This is also a contradiction. So there is no hole that is completely surrounded by \(C_{s_1,A} \) and \(C_{s_1,A_1} \). \(\Box \)

Lemma 3.4. Let \(C_1 \) be the CPMEC separating \(s_1 \) and \(A \) from \(t \), and \(C_2 \) be a different CPMEC separating \(s_1, A_1 \) from \(t \) such that \(A \) and \(A_1 \) are in the same face of the graph with \(A_1 \notin C_{s_1,A} \) and \(A \notin C_{s_1,A_1} \). Let \(Y_1 \) be the graph induced by the set of nodes in \(C_{s_1,A} \) but not in \(C_{s_1,A_1} \), and \(Y_2 \) be the graph induced by the set of nodes in \(C_{s_1,A_1} \) but not in \(C_{s_1,A} \). Then there exists no hole that is completely surrounded by \(C_{s_1,A} \) and \(C_{s_1,A_1} \).

Proof. The argument is similar as that in Lemma 3.3. The only difference is that the intersection of \(C_{s_1,A} \) and \(C_{s_1,A_1} \) must have one connected component.
containing \(s_1 \), but \(A \notin C_{s_1,A} \) and \(A_1 \notin C_{s_1,A} \). If there exists a hole that is completely surrounded by the two CPMECs, then we can also expand the boundary of one of \(C_{s_1,A} \) and \(C_{s_1,A_1} \) to incorporate the region in the hole and form a smaller CPMEC, which is a contradiction.

Lemma 3.5. At any time point during the execution of the algorithm, there is no hole (i.e., a missing subgraph in the embedding of \(G \)) in \(S \).

Proof. We use mathematical induction to prove this. Assume that before node \(v \) is added into \(S \), there is no hole in \(S \). Suppose after \(v \) is added, a hole forms in \(S \), as shown in Fig. 10. Consider the node \(s \) that is chosen in the algorithm during the iteration that \(v \) is added (in the line "find the pair of \(v \) and \(s \) with the minimum \(u(v,s) \)”). Now we can see that there must exist a hole between \(C_{s_{1,s}} \) and \(C_{s_{1,v}} \). Since \(C_{s_{1,s}} \) is contained in \(C_{s_{1,v}} \), we can see that it is impossible that any hole can exist between \(C_{s_{1,s}} \) and \(C_{s_{1,v}} \), using a similar argument in the proof of Lemma 3.3. Thus, there is no hole in \(S \) at any step of the algorithm.

We use mathematical induction to show that the algorithm finds the CPMEC between \(s_1 \), \(s_2 \) and \(t \). The base case is the initial step which is obviously true as \(C_{ep}(s_1, s_1, t) = C_e(s_1, t) \). For the induction hypothesis, we assume that all nodes added to \(S \) in previous iterations have their \(C_{ep} \) values correctly computed (i.e., equal to their true CPMEC value). Also, for any node \(i \) added into \(S \) in some iteration after node \(j \), the \(C_{ep} \) value for node \(j \) is less than the \(C_{ep} \) value for node \(i \). Now consider the iteration when node \(v^* \) is added to \(S \).
Suppose that $C_{ep}(s_1, v^*, t)$ computed in this iteration is not the true CP-MEC. Let $C'_{ep}(s_1, v^*, t)$ be the true CP-MEC, and C'_{s_1, v^*} be its connected component containing s_1 and v^*. Consider the intersection $U_1 = C'_{s_1, v^*} \cap S$, where S is the set of added nodes before this iteration. Let U_2 be the connected component of U_1 containing s_1 and $U_3 = C'_{s_1, v^*} \setminus U_2$. By Lemma 3.5, we know that there should be no hole in U_2. Let U_4 be the set of nodes in U_2 connected to U_3. Let α be any node in U_4 connected to a node β in U_3 and $\Gamma = U_2 \cap C_{s_1, \alpha}$. Denote the connected component of Γ that contains s_1 as Γ_1. If $\alpha \in \Gamma_1$, then we must have $C_{ep}(s_1, \alpha, t) \leq C(U_2)$, where $C(U_2)$ is the cut value of U_2 (i.e., the cut between U_2 and $G \setminus U_2$).

Now we have $C_{ep}(s_1, \beta, t) \leq C(U_3) + C_{ep}(s_1, \alpha, t) - C(U_2, U_3)$, where $C(U_3)$ is the cut value of region U_3, and $C(U_2, U_3)$ is the cut value between U_2 and U_3. But, $C(U_3) + C_{ep}(s_1, \alpha, t) - C(U_2, U_3) \leq C(U_3) + C(U_2) - C(U_2, U_3)$ and $C(U_3) + C(U_2) - C(U_2, U_3) = C'_{ep}(s_1, v^*, t)$. Thus we have $C_{ep}(s_1, \beta, t) \leq C'_{ep}(s_1, v^*, t)$. This means that β should be added into S before v^*, according to the induction hypothesis. This is a contradiction. Hence we know that for any α in U_4, $\alpha \notin \Gamma_1$.

If U_4 has only one node α which connects to β in U_3 (see Fig. 4), then $C_{ep}(s_1, \beta, t) \leq C(U_3) + C_{ep}(s_1, \alpha, t) - C(U_2, U_3)$. Thus we also have $C_{ep}(s_1, \beta, t) \leq C'_{ep}(s_1, v^*, t)$, which is a contradiction.

If U_4 has more than one node, denote them as $\alpha_1, \ldots, \alpha_k$ (see Fig. 5), then we have the following Lemma.

Lemma 3.6. There exists at least one $\alpha \in \{\alpha_1, \ldots, \alpha_k\}$ such that $C_{s_1, \alpha} \subseteq U_2$.

Proof. First we show that there exists no node α in S such that the boundary of $C_{s_1, \alpha}$ completely crosses C'_{s_1, v^*} and partitions the region occupied by C'_{s_1, v^*}.
Figure 4: The first case of U_4.

Figure 5: The second case of U_4.
into two (or more) connected regions K_1 and K_2 outside of $C_{s_1,\alpha}$ and another connected region inside $C_{s_1,\alpha}$ containing both α and s_1 (see Fig. 12), where segment PQ is the crossing, and the thick curve denotes the boundary of $C_{s_1,\alpha}$ and the thin curve denotes the boundary of C'_{s_1,v^*}. If such α exists, then we can replace K_2 with $C_{s_1,\alpha}$ in C'_{s_1,v^*} to obtain a smaller CPEMC for v^*. This is because the $C_{ep}(s_1,\alpha,t)$ is less than the value of the cut surrounding K_2 since $C_{s_1,\alpha}$ is a CPEMC and K_2 contains both s_1 and α. This contradicts the fact that C'_{s_1,v^*} is the minimum cut. We call this property as the non-crossing property.

Now we prove the lemma by contradiction. Suppose that any node α in U_4 has the property that $C_{s_1,\alpha} \not\subseteq U_2$. First we classify the nodes in U_4 into two classes, left nodes and right nodes. For any node $\alpha \in U_4$, consider the components that is in $C_{s_1,\alpha}$ but not in C'_{s_1,v^*}, and denote it as Y_{α}. Denote the connected component in $C_{s_1,\alpha} \cap C'_{s_1,v^*}$ that contains s_1 as X_{α}, the connected component in $C_{s_1,\alpha} \cap C'_{s_1,v^*}$ that contains α as H_{α}, and the connected component in Y_{α} that is connected to H_{α} as Z_{α}. If Z_{α} is on the left hand side of X_{α}, α is a left node, and otherwise a right node (assuming that we are standing at s_1 and facing against the portion of $C_{s_1,\alpha}$ outside of C'_{s_1,v^*}). Fig. 7 and Fig. 8 show these two cases. If all the nodes in U_4 are left nodes, consider the rightmost node α in U_4 and the region $C_{s_1,\alpha}$, as shown in Fig. 11. In this case $C_{s_1,\alpha}$ will completely cross C'_{s_1,v^*} and both nodes α and s_1 are in the same side of the crossing, this violates the non-crossing property. Similarly if all nodes are right nodes, we will also get a contradiction. So we must have two nodes α_i and α_j that are in the same face with α_i being a left node, and α_j being a right node. Now we have three cases to consider, (1) $\alpha_i \in C_{s_1,\alpha_j}$,
(2) \(\alpha_j \in C_{s_1, \alpha_i} \), and (3) \(\alpha_i \notin C_{s_1, \alpha_j} \) and \(\alpha_j \notin C_{s_1, \alpha_i} \). In the last case, suppose that \(C_{s_1, \alpha_i} \) does not completely cross \(C'_{s_1, v^*} \) with \(\alpha_i \) and \(s_1 \) in the same side of the crossing. Now let \(P_0 \) and \(P_1 \) be the first two intersection points between \(C_{s_1, \alpha_i} \) and \(C'_{s_1, v^*} \) while \(C_{s_1, \alpha_i} \) goes out of \(C'_{s_1, v^*} \), and \(P_3 \) and \(P_4 \) be the first two intersection points between \(C_{s_1, \alpha_j} \) and \(C'_{s_1, v^*} \) while \(C_{s_1, \alpha_j} \) goes out of \(C'_{s_1, v^*} \).

By Lemma 3.4, we know that there is no hole that is completely surrounded by \(C_{s_1, \alpha_j} \) and \(C_{s_1, \alpha_i} \). We can see that \(C_{s_1, \alpha_i} \) must have the boundary segment \(P_1P_2 \) as shown in Fig. 6 (Here \(P_2 \) is one of the neighboring face of \(\alpha_i \) in \(G \)) such that no point in segment \(P_1P_2 \) is outside the boundary \(C_{s_1, \alpha_j} \) (but can be in the boundary), otherwise there exists a hole that is completely surrounded by \(C_{s_1, \alpha_j} \) and \(C_{s_1, \alpha_i} \). This means that \(C_{s_1, \alpha_j} \) completely crosses \(C'_{s_1, v^*} \), which is a violation of the non-crossing property.

For the first two cases, we can easily see that by Lemma 3.3, either \(C_{s_1, \alpha_i} \) or \(C_{s_1, \alpha_j} \) will completely cross \(C'_{s_1, v^*} \) following a similar argument. Thus we have a contradiction for both cases. This implies that the lemma holds. \(\square \)

From this lemma, we know that there exists such an \(\alpha \) satisfying the
Figure 7: Illustration for left node.

Figure 8: Illustration for right node.
Figure 9: Illustration for a twisted cut.

Figure 10: Illustration for holes in S.

Figure 11: Illustration for all left nodes.
condition in the Lemma. Let β be the node in U_3 connected to α. Suppose that the node in U_3 that is connected to α is β. Then β must be added into S before v^*, which is a contradiction. Thus we have the correctness of the algorithm.

For the running time of the algorithm, it is easy to see that there are at most $O(n)$ iterations in the while loop and each iteration takes $O(n^2T_{mc})$ time, where T_{mc} is the time for computing the minimum cut for two nodes. Thus, the total time complexity is polynomial.

Remarks: The above time bound is mainly for showing CPMEC is in P for planar graphs. We leave it as future work for designing faster algorithms.

Theorem 3.7. CPMEC in planar graphs can be solved in polynomial time.

Next we present another algorithm for a special case of the CPMEC problem in which s_1 and t are in the same face of a planar graph. The idea of the algorithm is completely different from the above algorithm for general
planar graphs and it has an interesting relationship with another problem, called \textit{Location Constrained Shortest Path (LCSP)}. LCSP finds applications in VLSI design and robotics. LCSP corresponds to the CPMEC problem in its dual planar graph.

Definition 3.8 (LCSP). Let $G = (V, E)$ be a planar graph with a fixed embedding and each edge $e_i \in E$ associated with a weight w_i. Let A, B be two nodes on the boundary of the embedding (without loss of generality, assume that the segment connecting A and B is horizontal) and C be an interior face. Find a shortest path from A to B along the interior nodes of G with C staying above the path.

Theorem 3.9. The LCSP problem can be solved in polynomial time.

\textit{Proof.} We first show that given two nodes A and B in the outer face, and another interior edge UV of the graph, we can find a shortest interior path from A to U, then passing V through edge UV, and reaching B in polynomial time (Fig. 13). That is, we can find the shortest path that passes a specified edge along a specified direction. This can be done in polynomial time based on the algorithm for two node-disjoint paths with minimum sum length when the end points of the two paths are in two faces, as shown in [15, 16].

Next, we show that we can solve the LCSP problem in polynomial time in an iterative fashion.

For this, we first make an observation that for any path to keep the inner face C above the path, a shortest path cannot pass any of its edges in the clockwise direction (with respect to face C). This is shown in Fig. 14. If we want to find a shortest path from A to B and keep face C above the path,
then the path cannot pass through edge DE along the direction from D to E; otherwise the path will not keep C above it. Hence a valid path will only pass through the edge of C (if it does) in a counterclockwise direction. On the contrary, if an interior path passes through an edge of C in a counterclockwise direction, then C must be above the path.

Thus to find the LCSP, we conduct the following computation for each iterative step. For every edge of the face C, we first specify its counterclockwise direction, and compute the shortest path from A to B passing the edge in the counterclockwise direction. We store these shortest paths in some data structure. Then, we remove all edges of face C, and all remaining degree-one nodes.

Now the face C is enlarged. We can repeat the above iterative step, and store the computed shortest paths in the same data structure.

Finally, face C will reach the boundary of the graph, in which case we can find the shortest path trivially. Now we can choose the shortest path among all stored paths which is the desired shortest path.

\[\Box\]

Theorem 3.10. There exists a polynomial time algorithm for CPMEC problem in planar graphs when s_1 and t are in the same face, based on the algorithm for LCSP.

Proof. We can see that any shortest path between two nodes of the boundary in the dual graph will pass through zero or two edges in every face, and any shortest path between two boundary nodes separated by s_1 and t and keeping s_2 above the path will keep s_1 and s_2 connected in the original graph if we convert the shortest path into a cut.
Figure 13: Shortest path with one specified intermediate edge.

Figure 14: Clockwise edge of the face.
Now we can try all pairs of nodes that are separated by s_1 and t on the boundary of the dual graph; then find the shortest that keeps s_2 above the path, using the algorithm in Theorem 3.9. We choose the shortest path among all these trials, which is exactly the minimum edge cut in the original graph (it is easy to see that this cut will keep s_1 and s_2 connected).

4. Remarks and Future Work

Several issues related to the CPMC problem remain open and will be future research directions. First of all, we conjecture that the connectivity preserving minimum node cut problem cannot be approximated within n^ϵ for some $\epsilon < 1$, or even for any $\epsilon < 1$. Secondly, the hardness of CPMEC problem (3-node case) for undirected graphs is still open. As we mentioned earlier, the hardness proofs for the CPMNC problem cannot be directly extended to the CPMEC problem. Thus new proving techniques are needed. Thirdly, we believe that more efficient precise or approximation algorithms exist for some special graphs and it will be another future research direction.

References

[1] C. Papadimitriou, Computational Complexity, Addison Wesley, 1993.

[2] V. V. Vazirani, Approximation Algorithms, Springer, 2004.

[3] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover Publications, 1998.

[4] E. Lawler, Combinatorial Optimization: Networks and Matroids, Dover Publications, 2001.
[5] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, M. Yannakakis, The complexity of multiterminal cuts, SIAM Journal on Computing 23 (1994) 864–894.

[6] M. Yannakakis, The effect of a connectivity requirement on the complexity of maximum subgraph problems, J. ACM 26 (4) (1979) 618–630. doi:http://doi.acm.org/10.1145/322154.322157.

[7] J. Erickson, A. Nayyeri, Minimum cuts and shortest non-separating cycles via homology covers, in: ACM/SIAM Symposium on Discrete Algorithms (SODA), 2011.

[8] E. C. d. Verdière, F. Lazarus, Optimal system of loops on an orientable surface, in: Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS ’02, IEEE Computer Society, Washington, DC, USA, 2002, pp. 627–636. URL http://dl.acm.org/citation.cfm?id=645413.652186

[9] U. Feige, L. Lovasz, Two-prover one-round proof systems: their power and their problems (extended abstract), in: STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, ACM, New York, NY, USA, 1992, pp. 733–744. doi:http://doi.acm.org/10.1145/129712.129783

[10] R. Raz, S. Safra, A sub-constant error-probability low-degree-test and a sub-constant error-probability pcp characterization of NP, in: Proc. 29th ACM Symp. on Theory of Computing, 475-484. El Paso, 1997.
[11] U. Feige, A threshold of \ln n for approximating set cover, Journal of the ACM 45 (1998) 314–318.

[12] C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, J. ACM 41 (5) (1994) 960–981. doi:http://doi.acm.org/10.1145/185675.306789

[13] J. Killian, Founding crytpography on oblivious transfer, in: STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of computing, ACM, New York, NY, USA, 1988, pp. 20–31. doi:http://doi.acm.org/10.1145/62212.62215

[14] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959) 269–271.

[15] Y. Kobayashi, C. Sommer, On shortest disjoint paths in planar graphs, Discrete Optimization 7 (4) (2010) 234 – 245.

[16] Éric Colin De Verdi, Ère Alexander Schrijver, Shortest vertex-disjoint two-face paths in planar graphs, in: Proc. 25th International Symposium on Theoretical Aspects of Computer Science (STACS), 2008.
