Rehabilitation services and related health databases, Japan

Kaori Yamaguchi,† Yasuhiro Nakanishi,† Viroj Tangcharoensathien,‡ Makoto Kono,§ Yuichi Nishioka,∥ Tatsuya Noda,¶ Tomoaki Imamura∥ & Manabu Akahane∥

Abstract The demographic transition towards an ageing population and the epidemiological transition from communicable to noncommunicable diseases have increased the demand for rehabilitation services globally. The aims of this paper were to describe the integration of rehabilitation into the Japanese health system and to illustrate how health information systems containing real-world data can be used to improve rehabilitation services, especially for the ageing population of Japan. In addition, there is an overview of how evidence-informed rehabilitation policy is guided by the analysis of large Japanese health databases, such as: (i) the National Database of Health Insurance Claims and Specific Health Checkups; (ii) the long-term care insurance comprehensive database; and (iii) the Long-Term Care Information System for Evidence database. Especially since the 1990s, the integration of rehabilitation into the Japanese health system has been driven by the country’s ageing population and rehabilitation is today provided widely to an increasing number of older adults. General medical insurance in Japan covers acute and post-acute (or recovery) intensive rehabilitation. Long-term care insurance covers rehabilitation at long-term care institutions and community facilities for older adults with the goal of helping to maintain independence in an ageing population. The analysis of large health databases can be used to improve the management of rehabilitation care services and increase scientific knowledge as well as guide rehabilitation policy and practice. In particular, such analyses could help solve the current challenges of overtreatment and undertreatment by identifying strict criteria for determining who should receive long-term rehabilitation services.

Introduction

Member States of the United Nations are committed to the sustainable development goals, which include universal health coverage as a key driver of health and well-being. In addition, rehabilitation has been recognized as an essential component of universal health coverage. The demand for rehabilitation services is increasing globally due to the demographic transition towards an ageing population and the epidemiological transition from communicable to noncommunicable diseases. In 2019, the World Health Organization (WHO) estimated that 2.41 billion people required rehabilitation services. However, such services are not widely available nor adequately funded, particularly in low- and middle-income countries.

We describe how rehabilitation services were integrated into the Japanese health system and discuss the potential of new health information systems based on real-world data for developing evidence-informed rehabilitation policies and practices that will strengthen the country.

Rehabilitation in Japan

Integrating rehabilitation into the health system

Historically, the Japanese government began to train rehabilitation professionals under the guidance of WHO. The first school of rehabilitation – the Professional School of Rehabilitation at the National Sanatoria Tokyo Hospital – was established in 1963 (Fig. 1), the Physical Therapists and Occupational Therapists Act was enacted in 1965 and the first national physical therapist and occupational therapist examinations were held in 1966. With the introduction of a speech–language–hearing therapist law in 1997, physical therapists, occupational therapists and speech–language–hearing therapists became established as the main rehabilitation professions in Japan. In 2021, there were 192,327 physical therapists, 94,255 occupational therapists and 36,255 speech–language–hearing therapists in the country. Because of its ageing population, today Japan has the highest rehabilitation workforce in the world and therapist-led rehabilitation is provided mainly within the health system.

Japan achieved universal health coverage through the establishment of a national health insurance system in 1961. In 1974, reimbursement was revised and fees were established for rehabilitation services provided by physical and occupational therapists. In 1992, the importance of acute rehabilitation was recognized by, and promoted through, the health system and reimbursement for rehabilitation was increased substantially. In 2000, medical service fees were revised and a new type of hospital ward was approved to provide intensive rehabilitation after acute care: the recovery (i.e. convalescent or post-acute) rehabilitation ward. These wards are intended to provide sufficient rehabilitation for patients discharged from acute care hospitals to enable them to return home. Since 2000, an increasing number of rehabilitation professionals has been required for these new wards.

A unit-based payment system for rehabilitation was introduced in 2002 under which a fee is charged for each 20-minute unit of rehabilitation. In 2006, a new payment system was introduced that stipulated time-limits on intensive rehabilitation for different disease groups. Although previously rehabilitation had been provided without regard to disease or disease stage, the new system divided diseases into two categories: (i) those requiring intensive rehabilitation; and (ii) those requir-
In 2011, a community-based integrated care system was introduced following a revision of the Long-Term Care Insurance Law.15,18 The revised system was intended to enable older adults to spend the rest of their lives in their own neighbourhoods, even if they needed long-term care. The system places an emphasis on long-term, primary, preventive care, to which rehabilitation professionals are expected to contribute.17

Current rehabilitation issues

Strict criteria need to be established for determining who should be covered by rehabilitation services because everyone’s health and well-being could potentially benefit from rehabilitation. After the intensive rehabilitation system was introduced in Japan in 2006, the maximum monthly limit on rehabilitation services was removed. Instead, the duration of intensive rehabilitation was determined for individual disease groups, which had the effect of counterbalancing supplier-induced demand for overtreatment to a certain extent. In addition, intensive rehabilitation was reserved for those diseases and clinical disease phases for which there was evidence that interventions were cost-effective and had substantial benefits for patients.

Long-term care insurance differs from medical insurance in having no clear criteria for determining which individuals who require long-term care can have access to rehabilitation. In extreme cases, patients may be permitted to undergo rehabilitation if they demand it, even if there is no real prospect of recovery. Another concern is overtreatment by providers but, on the other hand, there is also the possibility of undertreatment. For people who require long-term care, it might not be appropriate to set an initial limit to their rehabilitation based on disease duration or type because many other factors can contribute to functional decline and the resultant need for rehabilitation. In Japan, efforts have recently been made to improve the management of, for example, short-term intensive rehabilitation immediately after hospital discharge. Overall, it is vital that an effective system is established for providing long-term rehabilitation, especially for an ageing population.

Real-world rehabilitation data

Current databases

Globally, an increasing number of studies are making use of health-care databases.19,20 Administrative insurance claims databases, for example, contain a large amount of real-world data on the

Fig. 1. Integration of rehabilitation into the health system, Japan, 1961–2021

1960s	1970s	1980s	1990s	2000s	2010s	2020s
• National health insurance introduced (1961)	• Rehabilitation by a physical or occupational therapist covered by medical insurance (1974)	• Reimbursement for rehabilitation increased (1992)	• Recovery Rehabilitation wards approved (2000)	• Community-based integrated care system introduced to improve long-term, primary, preventive care (2011)	• Monitoring and Evaluation for Rehabilitation Services for Long-Term Care (VISIT) system introduced (2018)	• The Long-Term Care Information System for Evidence (LIFE) database established (2021)
• School of rehabilitation established (1963)	• Physical and Occupational Therapists Act enacted (1965)	• Speech–language–hearing therapist law passed (1997)	• Long-term care insurance system that covers rehabilitation established (2000)	• Monthly cap on rehabilitation eliminated and rehabilitation fees set according to disease or disease stage (2006)	• Care, Health Status and Events (CHASE) system introduced (2020)	
medical treatments and long-term care services covered by insurance. Retrospective studies using such data can complement the findings of randomized controlled trials and could even generate hypotheses for future trials. In addition, studies using real-world data can overcome some of the limitations of randomized controlled trials; for example, real-world data sets may include older patients and people with multimorbidities who are often excluded from trials. Large population studies can also be performed using real-world data and their findings may have greater external validity than those of randomized controlled trials. Additionally, the use of real-world data enables research to be conducted at a lower cost over a shorter time period and can be helpful for overcoming the lack of statistical power often encountered when studying rare events and diseases.

The Japanese National Database of Health Insurance Claims and Specific Health Checkups is a comprehensive database covering insurance claims for medical service fees under Japan’s National Health Insurance system (Fig. 2). In 2022, it included information on approximately 22.5 billion claims from over 100 million individuals issued between April 2009 and December 2021, making it one of the world’s largest health-related databases. Since the Japanese government made the National Database available for research purposes in 2011, real-world data have been used for studies in fields such as health economics and clinical medicine. The Kokuho local government database, which includes insurance claims, has also been used for these purposes. The Kokuho database covers claims for both medical treatment and long-term care and some local governments link these data categories for individual patients. Consequently, individual patients can be followed from medical care to long-term care.

Although insurance claims data are particularly useful for descriptive epidemiological research and large-scale follow-up surveys, they are limited: the databases lack information on disease severity, on the socioeconomic characteristics of patients and their families, on the patients’ educational level and on laboratory test results, which are key outcome measures. This lack of information can confound study results, which therefore need to be interpreted with caution. Clinical studies should include outcome measures based on the tests used and treatments applied to compensate for the lack of outcome measures in claims data.

Analysis of databases
Details of rehabilitation services provided under the medical insurance system are stored in the National Database of Health Insurance Claims and Specific Health Checkups, and the long-term care insurance comprehensive database contains information on rehabilitation provided both in the community and in long-term care facilities (Table 1).

Previously the National Database was employed primarily to study the usage of rehabilitation services. For example, a recent study investigated cardiac rehabilitation for patients who underwent a percutaneous coronary intervention or coronary artery bypass grafting between April 2017 and March 2018. The study found that only one third of eligible patients participated in cardiac rehabilitation after treatment and that most underwent rehabilitation for too short a time. Another study that used linked medical and long-term care insurance claims administrative data sets investigated long-term care insurance beneficiaries who used home care services in Kashiwa city. This study included data on around 400,000 residents and reported an association between household income and the utilization of home-based rehabilitation and home help services. The study found that long-term care insurance beneficiaries with a low household income may forgo home-based rehabilitation and choose to minimize out-of-pocket payments on home care services.

Other potential applications of the National Database in Japan include analysing the quality and utilization of rehabilitation services by geographical region (e.g. health service area or municipality). By using these large data sets, researchers can estimate future demand for rehabilitation in each geographical region, thereby guiding the expansion of rehabilitation services in a way that minimizes regional gaps.

COVID-19 pandemic
One example of the application of these large data sets was our analysis of the impact of the coronavirus disease 2019 (COVID-19) pandemic on rehabilitation services. We used data from the National Database of Health Insurance Claims and Specific Health Checkups and Kokuho local government database.

Table 1. Long-term care insurance claims data

Category	Data Source
Preventive phase	Health check-up data
Acute and recovery phases	Medical insurance claims data
Chronic phase and long-term care needs	Long-term care insurance claims data

LIFE: Long-Term Care Information System for Evidence.
Notes: The figure shows the rehabilitation data collected by four Japanese databases on individuals during different disease phases. In some prefectures, the Kokuho database contains both data from National Database of Health Insurance Claims and Specific Health Checkups and Long-term care insurance comprehensive databases if they are linked. Although the LIFE database and the long-term care insurance comprehensive database both cover the chronic phase and long-term care needs, they contain different information. For example, the LIFE database includes data on interventions and functional outcomes.

Fig. 2. Rehabilitation data collected by four databases, by disease phase, Japan, 2022

DOI: http://dx.doi.org/10.2471/BLT.22.288174

Bull World Health Organ 2022;100:699–708
and long-term care insurance claims data to compare rehabilitation service utilization before the pandemic in 2019 with that during the pandemic in 2020.31,32 Table 2 shows the number of reimbursement claims from patients without COVID-19 for acute and recovery rehabilitation from medical institutions for different disease groups in 2019 and 2020. We found that the number of reimbursement claims increased in every disease group, with an especially large increase among patients with pulmonary disease. However, the number of claims decreased among people aged under 40 years in all groups. Table 3 shows the number of claims in 2019 and 2020 from individuals covered by long-term care insurance for rehabilitation at home or in a day-care facility or for short-term intensive rehabilitation in long-term care facilities.32 While claims for rehabilitation at home increased, claims for day-care rehabilitation decreased across all age groups and for all levels of care needed. During the pandemic, day-care services, which ordinarily require older people to gather at facilities, were restricted to prevent the spread of infection. Overall, the magnitude of the increase in claims for rehabilitation at home was less than the magnitude of the decrease in claims for day-care rehabilitation, which suggests that some people might not have received rehabilitation because of the pandemic. In this way, the analysis of claims data can provide insights into the way rehabilitation services are dynamically responding during a pandemic.

In early 2022, with the appearance of the omicron variants of severe acute respiratory syndrome coronavirus 2, there was no sign of the pandemic ending and, by 13 January 2022, Japan had reported a total of 1.79 million cases and 18,412 deaths.33 Surveys conducted by WHO found that health systems globally were disrupted and unable to maintain essential health services for people without COVID-19 during the surge of infections.34,35 Moreover, other studies found that the pandemic had led to declines in activities of daily living, instrumental activities of daily living and cognitive functioning in older adults, as well as an increase in the incidence of depression.36–38 Researchers have also reported that the government’s pandemic containment measures resulted in an increase in the proportion of older adults who were frail.39 Clearly rehabilitation is important for maintaining and improving the functioning and capacity of older people. Worldwide, therefore, there is an urgent need to establish a system for providing rehabilitation.

Long-term care database

The quality of long-term care has recently been recognized as important for dealing with issues that arise from population ageing. Consequently, there is a growing interest in Japan in developing evidence-based care on the same principles as evidence-based medicine.40 As a result, two new information systems were introduced in Japan: (i) the Monitoring and Evaluation for Rehabilitation Services for Long-Term Care (VISIT) system in 2018; and (ii) the Care, Health Status and Events (CHASE) system in 2020.41 In April 2021, a new national information system was established by central government with the aim of supporting independent living and preventing increases in the level of care needed: the Information System for Evidence (LIFE) database. The LIFE database aggregates information from VISIT and CHASE and contains real-world data on interventions and outcomes (particularly functional outcomes) in users.

Table 1. Databases containing rehabilitation data, Japan, 2022

Database characteristic	National Database of Health Insurance Claims and Specific Health Checkups	Long-term care insurance comprehensive database	Long-Term Care Information System for Evidence database
Target group	Whole population	People aged ≥ 65 years2 certified as needing long-term care	People aged ≥ 65 years4 certified as needing long-term care
No. of records	> 100 million4	7 million1	< 7 million1
Indicators of individual’s condition	None	Care needs level and information required for certification of care needs level2	Functional indicators, such as: (i) care needs level2; (ii) Barthel Index, and (iii) performance of instrumental activities of daily living
Data entries relevant to rehabilitation	(i) Supply of acute and recovery rehabilitation by professionals for certain conditions, including cardiovascular, cerebrovascular, musculoskeletal and pulmonary disease, and disseuse syndrome; (ii) supply of rehabilitation by professionals during all clinical phases of dementia, intractable disease and cancer, and for children or adults with disabilities	Supply of rehabilitation by professionals and functional training by trainers, and cooperative activities with rehabilitation professionals	Details of rehabilitation programmes provided by professionals and of functional training provided by trainers for each service user, reported using ICF categories (Box 1)

ICF: International Classification of Functioning, Disability and Health.

1 In addition, people aged 40 years or older with specified conditions (e.g. intractable disease) were included.

2 The number of people certified as requiring long-term care or support in November 2021, as reported in public data from the Ministry of Health, Labour and Welfare.28

3 The care needs level was determined from the total estimated time needed for long-term care, which can be regarded as a functional indicator to some extent.
Table 2. Insurance claims for acute and recovery rehabilitation from patients without COVID-19 before and during the pandemic, by disease group, Japan, 2019–2021

Claimant characteristic	Disease group	Cardiovascular disease	Cerebrovascular disease	Musculoskeletal disease	Pulmonary disease							
	All	2019^a	2020^b	2019^a	2020^b	2019^a	2020^b	2019^a	2020^b			
	No. rehabilitation claims (thousands)	Difference in claim numbers between 2020 and 2019 (%)	No. rehabilitation claims (thousands)	Difference in claim numbers between 2020 and 2019 (%)	No. rehabilitation claims (thousands)	Difference in claim numbers between 2020 and 2019 (%)	No. rehabilitation claims (thousands)	Difference in claim numbers between 2020 and 2019 (%)	No. rehabilitation claims (thousands)	Difference in claim numbers between 2020 and 2019 (%)		
Sex	Male	78,341	83,847	95,184	95,941	63,741	65,524	141,138	141,372	6,714	8,861	32,0
	Female	97,650	103,344	79,386	81,476	141,183	141,372	6,714	5,941	4,712	5,941	26,1
Age, years	< 40	4,586	4,038	11,867	10,642	292	244	10,780	10,031	212	178	-15.8
	40–64	23,100	22,497	32,552	30,852	2,401	2,293	34,358	34,033	745	784	5.3
	65–74	35,056	35,627	39,718	38,999	5,476	5,218	40,053	38,399	1,909	2,167	13.5
	≥ 75	113,248	125,029	90,882	97,124	32,966	33,635	119,732	124,433	8,561	11,673	36.4

CVD-19: coronavirus disease 2019

^a 2019 corresponds to the period between April 2019 and March 2020 before the coronavirus disease 2019 pandemic and 2020 corresponds to the period between April 2020 and March 2021 during the pandemic.

^b Percentages were calculated from the original numbers and not from the rounded numbers reported in this table.
Table 3. Long-term care insurance claims for rehabilitation from patients without COVID-19 before and during the pandemic, by place of rehabilitation, Japan, 2019–2021

Claimants’ characteristic	Place of rehabilitation								
	In the community	In a day-care facility	In a long-term care facility (short-term intensive rehabilitation)						
	At home	In a day-care facility							
No. rehabilitation claims (thousands)	2019	2020	Difference in claims between 2020 and 2019 (%)	2019	2020	Difference in claims between 2020 and 2019 (%)	2019	2020	Difference in claims between 2020 and 2019 (%)
All	1434	1499	4.6	7565	7080	−6.4	13 937	13 831	−0.8
Age, years									
40–64	115	117	2.4	310	283	−8.8	ND	ND	ND
65–74	271	280	3.1	1091	1019	−6.6	ND	ND	ND
≥ 75	1048	1103	5.2	6164	5779	−6.3	ND	ND	ND
Level of support needed									
1	68	75	9.2	868	822	−5.3	ND	ND	ND
2	177	192	8.4	1292	1231	−4.8	ND	ND	ND
Level of care needed									
1, lowest	242	263	8.7	1867	1766	−5.4	1 949	2 019	3.6
2	339	352	4.0	1790	1660	−7.3	2 885	2 853	−1.1
3	236	246	4.1	954	880	−7.8	3 473	3 467	−0.2
4	202	206	1.9	548	505	−8.0	3 770	3 708	−1.6
5, highest	169	164	−2.4	242	213	−12.0	1 860	1 784	−4.1

COVID-19: coronavirus disease 2019; ND: not determined.

* The sum of the number of claims for rehabilitation at home and rehabilitation in a day-care facility is equal to the total number of rehabilitation claims for all individuals certified as requiring long-term care or support.

* Short-term intensive rehabilitation included short-term intensive rehabilitation for dementia.

* Percentages were calculated from the original numbers and not from the rounded numbers reported in this table.

* 2019 corresponds to the period between April 2019 and March 2020 before the coronavirus disease 2019 pandemic and 2020 corresponds to the period between April 2020 and March 2021 during the pandemic.

* When individuals first require care, they apply for a certificate of long-term care, which entitles them to coverage by long-term care insurance. There are seven care needs levels: two support needs levels and five care needs levels. Care needs level 5 is the highest and represents the greatest need for care. The care needs level is determined from the total estimated time needed for long-term care.

Box 1. Categories used to report rehabilitation and functional training programmes in the LIFE database, Japan, 2022

Body functions and structures
Confidence; visuospatial perception; language; mental functioning in sequencing complex movements; hearing; pain; voice; respiration; exercise tolerance functions; ingestion functions; joint mobility; muscle power; muscle tone; muscle endurance functions; and movement functions.

Activities and participation
Basic learning; learning to read; learning to write; learning to calculate; solving problems; making decisions; carrying out daily routine; handling stress and other psychological demands; changing basic body position; maintaining body position; transferring oneself; carrying, moving and handling objects; walking and moving; using transportation; washing oneself; caring for body parts; toileting; dressing; eating and drinking; looking after one’s health; acquisition of goods and services; preparation of meals; washing and drying clothes and garments; cleaning cooking area and utensils; cleaning living area; household tasks; other specified and unspecified; maintaining dwelling and furnishings; maintaining domestic appliances; taking care of plants; general interpersonal interactions; remunerative employment; recreation and leisure; and products and technology.

ICF: International Classification of Functioning, Disability and Health; LIFE: Long-Term Care Information System for Evidence.

Notes: Body functions, body structures, activities and participation are domains defined in ICF. Whenever rehabilitation or functional training is provided, information on the intervention is recorded in the LIFE database using the same categories as the ICF with the exception of two categories that are included in the LIFE database only: “giving information” and “teaching how to care.”

a wealth of information on individuals and their conditions and on rehabilitation interventions and their outcomes (Table 1 and Box 1), including sex, age, height, weight and the level of care required, as well as background information on, for example, diagnoses based on the International Statistical Classification of Diseases and Related Health Problems (10th revision), medical history, medication use and family structure. Details of each individual’s condition include, for example, their Barthel Index (a measure of activities of daily living), a Dementia Behaviour Disturbance Scale score, a nutritional status index and a decubitus scale score (a measure of the risk of pressure ulcers). The Barthel Index is commonly used to assess the clinical outcomes of rehabilitation services, especially for conditions such as stroke. **42** **43** When rehabilitation or functional training has been provided, information on the
The study was funded by a national and long-term care claims data, thereby overcoming some of their limitations. As a result, the scope of research using real-world data in Japan could be broadened.

Policy and practice

Today, it is common practice in Japan for care policy and practice to be guided by the evidence through knowledge translation. For instance, recently a long-term care prevention programme using a population approach was developed and adopted as national policy on the basis of the scientific evidence. In the near future, research findings based on LIFE data could be translated into policy. For example, insights gained from the analysis of LIFE data could lead to a revision of long-term care reimbursement fee schedules. If a LIFE-based data analysis identified effective rehabilitation interventions and appropriate targets for intervention, the introduction of incentives for effective interventions (e.g., additional fees) could result in better outcomes. Moreover, as little is known about the clinical effects of rehabilitation in older adults with chronic conditions or long-term care needs, the analysis of LIFE data could lead to major breakthroughs.

Conclusion

We have summarized how rehabilitation was integrated into the Japanese health system and how large data sets can be used to develop evidence-informed rehabilitation policy and practice. Since the 1990s, in particular, the integration of rehabilitation has been driven by Japan’s ageing population and, today, a growing number of older adults are able to maintain their independence with the help of rehabilitation. The analysis of large data sets could also help solve current issues, such as overtreatment, by identifying strict criteria for determining who should receive long-term rehabilitation services.

Acknowledgements

We thank Editage (Cactus communications, New Jersey, United States of America).

Funding: The study was funded by a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (grant no. JP21K21208) and by Health Science and Labour Research Grants from the Ministry of Health, Labour and Welfare, Japan (grant no. 211A1007).

Competing interests: None declared.

MLA

Yamaguchi, Kaori et al. "Rehabilitation in Japan: the interplay between evidence and policy." Bull World Health Organ, vol. 100, no. 4, 705, 2022, doi:10.2471/BLT.22.288174.

Conflict of interest: None declared.

Keywords

Rehabilitation; Policy; Practice; Evidence; Knowledge; Translation; Japan; Older adults; Chronic conditions; Long-term care;

Abstract

The objective of this review was to provide an overview of rehabilitation services in Japan and to discuss how evidence-based rehabilitation policy and practice can be improved. We have summarized how rehabilitation was integrated into the Japanese health system and how large data sets can be used to develop evidence-informed rehabilitation policy and practice. Since the 1990s, in particular, the integration of rehabilitation has been driven by Japan’s ageing population and, today, a growing number of older adults are able to maintain their independence with the help of rehabilitation. The analysis of large data sets could also help solve current issues, such as overtreatment, by identifying strict criteria for determining who should receive long-term rehabilitation services.

Introduction

Rehabilitation services in Japan have undergone significant changes in recent decades. The integration of rehabilitation in the Japanese health system and the use of large data sets have contributed to the development of evidence-informed rehabilitation policy and practice. This review aims to provide an overview of rehabilitation services in Japan and to discuss how evidence-based rehabilitation policy and practice can be improved.

Policy and practice

Today, it is common practice in Japan for care policy and practice to be guided by the evidence through knowledge translation. For instance, recently a long-term care prevention programme using a population approach was developed and adopted as national policy on the basis of the scientific evidence. In the near future, research findings based on LIFE data could be translated into policy. For example, insights gained from the analysis of LIFE data could lead to a revision of long-term care reimbursement fee schedules. If a LIFE-based data analysis identified effective rehabilitation interventions and appropriate targets for intervention, the introduction of incentives for effective interventions (e.g., additional fees) could result in better outcomes. Moreover, as little is known about the clinical effects of rehabilitation in older adults with chronic conditions or long-term care needs, the analysis of LIFE data could lead to major breakthroughs.

Conclusion

We have summarized how rehabilitation was integrated into the Japanese health system and how large data sets can be used to develop evidence-informed rehabilitation policy and practice. Since the 1990s, in particular, the integration of rehabilitation has been driven by Japan’s ageing population and, today, a growing number of older adults are able to maintain their independence with the help of rehabilitation. The analysis of large data sets could also help solve current issues, such as overtreatment, by identifying strict criteria for determining who should receive long-term rehabilitation services.

Acknowledgements

We thank Editage (Cactus communications, New Jersey, United States of America).

Funding: The study was funded by a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (grant no. JP21K21208) and by Health Science and Labour Research Grants from the Ministry of Health, Labour and Welfare, Japan (grant no. 211A1007).

Competing interests: None declared.
服務的管理，增加康復科學知識以及指導康復政策和實踐。特別是，此類分析可以幫助解決過度治療和治療不足的问题，通過制定嚴格的標準，確定哪些患者應該接受長期康復服務。

Résumé

Services de réadaptation et bases de données correspondantes au Japon

Tant la transition démographique vers un vieillissement de la population que la transition épidémiologique des maladies transmissibles vers les maladies non transmissibles ont entraîné une augmentation de la demande en services de réadaptation dans le monde. Le présent document poursuit plusieurs objectifs: décrit l'intégration de la réadaptation dans le système de santé au Japon, et illustrer comment les systèmes de santé contenant des données réelles peuvent être utilisés en vue d'améliorer de tels services, en particulier pour une population nipponne vieillissante. En outre, il offre un aperçu de la manière dont la politique de réadaptation étayée par des faits s'inspire de l'analyse de vastes bases de données sanitaires japonaises, parmi lesquelles: (i) la base de données nationale des demandes de remboursement au titre de l'assurance-maladie et des bilans de santé spécifiques; (ii) la base de données complète de l'assurance pour les soins longue durée; et enfin, (iii) la base de données du système d'information relatif aux attestations de soins longue durée. Le vieillissement de la population a poussé le Japon à inclure la réadaptation dans son système de santé, surtout depuis les années 1990; aujourd'hui, un nombre croissant de personnes âgées ont aisément accès à des services de réadaptation. Au Japon, l'assurance-maladie globale prend en charge la réadaptation intensive aiguë et post-aiguë (ou de rétablissement). De son côté, l'assurance pour les soins longue durée couvre la réadaptation dans les établissements dédiés et les infrastructures collectives accueillant des personnes âgées, avec pour but de contribuer à préserver l'autonomie au sein d'une population vieillissante. L'analyse de vastes bases de données sanitaires peut favoriser une meilleure gestion des services de réadaptation et accroître les connaissances scientifiques, mais aussi orienter les politiques et pratiques en la matière. Ce type d'analyse peut surtout aider à s'attaquer aux enjeux actuels qui représentent les traitements excessifs ou insuffisants, en identifiant des critères stricts permettant de déterminer qui doit faire l'objet d'une réadaptation sur le long terme.

Резюме

Реабилитационные услуги и базы данных о здоровье, связанные с такими услугами, Япония

Демографический переход к старению населения, а также эпидемиологический переход от инфекционных заболеваний к неинфекционным заболеваниям увеличили спрос на реабилитационные услуги в глобальном масштабе. Цель данной статьи состояла в том, чтобы описать интеграцию реабилитации в японскую систему здравоохранения, а также проиллюстрировать, как системы информации в здравоохранении, содержащие реальные данные, могут использоваться для улучшения реабилитационных услуг, особенно для стареющего населения Японии. Кроме того, есть обзор того, как научно обоснованная политика в области реабилитации опирается на анализ крупных японских баз данных о здоровье, а именно: (i) национальная база данных по требованиям медицинского страхования и конкретных медицинских осмотров; (ii) всесторонняя база данных по страховому обеспечению долгосрочной медицинской помощи; (iii) информационная система долгосрочной медицинской помощи для доказательной базы данных. Уже сначала с 1990-х годов интеграция реабилитации в японскую систему здравоохранения была обусловлена старением населения страны, поэтому сегодня реабилитация широко предоставляется всем большему числу пожилых людей. Общее медицинское страхование в Японии покрывает экстренную и постэкстренную (или восстановительную) интенсивную реабилитацию. Страхование на случай долгосрочной медицинской помощи покрывает реабилитацию в учреждениях долгосрочной помощи и общественных учреждениях для пожилых людей с целью помочь стареющему населению сохранить свою независимость. Для улучшения управления службами реабилитационной помощи и расширения научных знаний, а также для руководства политикой и практикой в области реабилитации можно использовать анализ больших баз данных о здоровье. В частности, такой анализ мог бы помочь решить текущие проблемы избыточного и недостаточного лечения путем установления строгих критериев для определения того, кто должен получать долгосрочные реабилитационные услуги.

Resumen

Servicios de rehabilitación y bases de datos sanitarias asociadas en Japón

La transición demográfica hacia el envejecimiento de la población y la transición epidemiológica de las enfermedades transmisibles a las no transmisibles han aumentado la demanda de servicios de rehabilitación en todo el mundo. Los objetivos de este artículo son describir la integración de la rehabilitación en el sistema sanitario japonés e ilustrar cómo los sistemas de información sanitaria que contienen datos del mundo real se pueden utilizar para mejorar los servicios de rehabilitación, en especial para la población que envejece en Japón. Además, se ofrece una visión general de cómo la política de rehabilitación fundamentada en la evidencia se guía por el análisis de las grandes bases de datos sanitarias japonesas, como: (i) la Base de Datos Nacional de Reclamaciones al Seguro de Enfermedad y Cheques Médicos Específicos; (ii) la base de datos integral del seguro de cuidados de larga duración; y (iii) la base de datos del Sistema de Información de Cuidados de Larga Duración para la Evidencia. En particular, desde la década de 1990, la integración de la rehabilitación en el sistema sanitario japonés se ha visto impulsada por el envejecimiento de la población del país y, en la actualidad, la rehabilitación se ofrece de forma generalizada a una cantidad cada vez mayor de adultos mayores. El seguro médico general de Japón cubre la rehabilitación intensiva aguda y posaguda (o de recuperación). El seguro de cuidados de larga duración cubre la rehabilitación en instituciones de larga estancia y centros comunitarios para adultos mayores con el objetivo de ayudar a mantener la independencia en una población que envejece. El análisis
de las grandes bases de datos sanitarias puede servir para mejorar la gestión de los servicios de atención a la rehabilitación y aumentar los conocimientos científicos, así como para orientar la política y la práctica de la rehabilitación. En concreto, estos análisis podrían ayudar a resolver los problemas actuales de sobretretamiento y subtratamiento, al identificar criterios estrictos para determinar quién debe recibir servicios de rehabilitación de larga duración.

References

1. Make the SDGs a reality [internet]. New York: United Nations Department of Economic and Social Affairs; 2022. Available from: https://sdgs.un.org [cited 2022 Jan 12].

2. Political declaration of the high-level plenary meeting on universal health coverage: resolution adopted by the General Assembly. A/RES/74/2. New York: United Nations; 2019. Available from: https://digitallibrary.un.org/record/3833350?ln=en [cited 2022 Feb 10].

3. Ciez A, Causey K, Kamonov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2021 Dec 19;396(10267):2006–17. doi: http://dx.doi.org/10.1016/S0140-6736(20)32430-0 PMID: 32375908.

4. Rehabilitation in health systems. Geneva: World Health Organization; 2017. Available from: https://www.who.int/publications/i/item/9789241549974 [cited 2022 Feb 10].

5. Yamaguchi K, Makihara Y, Kono M. Rehabilitation professionals for the aging society in Japan: their scopes of work and related health policies and systems. Hoken Inyou Kagaku. 2022;71(1):35–44.

6. Physical therapist and occupational therapist act [Internet]. Tokyo: Ministry of Health, Labour and Welfare; 2012. Japanese. Available from: https://www.mhlw.go.jp/web/ [cited 2022 Jan 12].

7. Human resources project 2020. Global demographics of the occupational therapy profession. Listed in numerical order [PowerPoint]. London: World Federation of Occupational Therapists; 2020. Available from: https://svlot.org/resources/occupational-therapy-human-resources-project-2020-numerical [cited 2022 Sep 10].

8. [What is a speech–language–hearing therapist?] Tokyo: Japan Association of Speech-Language-Hearing Therapists; 2021. Japanese. Available from: https://www.jslhl.or.jp/en/what/ [cited 2022 Feb 21].

9. Ikegami N. Japan: achieving UHC by regulating payment. Global Health. 2019 Nov 28;20(5):51 Suppl 1:72. doi: http://dx.doi.org/10.1186/s12992-019-0524-4 PMID: 31775796.

10. Ikegami N. Achieving universal health coverage by focusing on primary care in Japan: lessons for low- and middle-income countries. Int J Health Policy Manag. 2016 Feb 25;5(2):291–3 doi: http://dx.doi.org/10.15171/ijhp.2016.22 PMID: 27299877.

11. Hishita R. [Physical therapy fee changes and physical therapist specialties.] Jpn J Rehabil Med 2007;44(6):334–8. Japanese.

12. A 50-year history of the Japanese Association of Occupational Therapy. Tokyo: Japanese Association of Occupational Therapy; 2016. Japanese.

13. [Health coverage overview.] Tokyo: National Federation of Health Insurance Societies, 2019. Japanese.

14. Long-term care insurance system of Japan. Tokyo: Ministry of Health, Labour and Welfare; 2016. Available from: https://www.mhlw.go.jp/english/policy/care-coverage/care-welfare-personal-ldf/tc10isj_e.pdf [cited 2022 Sep 11].

15. Tsugihashi K, Hisoe M, Iida H, Hayashi S, Yasunaka M, Shiraike Y, et al; LEVOUS Group. Validating care-needs level against self-reported measures of functioning, disability and sarcopenia among Japanese patients receiving home medical care: the Zaitaku Evaluative Initiatives and Outcome Study. Geriatr Gerontol Int. 2020 Feb;21(2):229–37. doi: http://dx.doi.org/10.1111/ ggi.14124 PMID: 33393206.

16. Tsutui T. Implementation process and challenges for the community-based integrated care system in Japan. Int J Integr Care. 2014 Jan 20;14(1):e002. doi: http://dx.doi.org/10.5313/ijic.988 PMID: 24978614.

17. Long-term care insurance law [internet]. Tokyo: Ministry of Health, Labour and Welfare; 1997. Japanese. Available from: https://www.mhlw.go.jp/web/t_datalist?did=42998034&doctype=6&pageNo=1 [cited 2022 Sep 10].

18. Rudrapatna VA, Butte AJ. Opportunities and challenges in using real-world data for health care. J Clin Invest. 2020 Feb 3;130(2):565–74. doi: http://dx.doi.org/10.1172/JCI129197 PMID: 3201317.
34. Pulse survey on continuity of essential health services during the COVID-19 pandemic: interim report, 27 August 2020. Geneva: World Health Organization; 2020. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS-continuity-survey-2020.1 [cited 2022 Feb 22].

35. Second round of the national pulse survey on continuity of essential health services during the COVID-19 pandemic. Geneva: World Health Organization; 2021. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS-continuity-survey-2021.1 [cited 2022 Feb 22].

36. Borges-Machado F, Barros D, Ribeiro Ó, Carvalho J. The effects of COVID-19 home confinement in dementia care: physical and cognitive decline, severe neuropsychiatric symptoms and increased caregiving burden. Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317520976720. doi: http://dx.doi.org/10.1177/1533317520976720 PMID: 33295781

37. Cravello L, Martini E, Viti N, Campanello C, Assogna F, Perotta D. Effectiveness of a family support intervention on caregiving burden in family of elderly patients with cognitive decline after the COVID-19 lockdown. Front Psychiatry. 2021 Mar 4;12:590104. doi: http://dx.doi.org/10.3389/fpsyt.2021.590104 PMID: 33746791

38. De Pue S, Gillebert C, Dierckx E, Vanderhasselt MA, De Raedt R, Van den Bussche E. The impact of the COVID-19 pandemic on wellbeing and cognitive functioning of older adults. Sci Rep. 2021 Feb 25;11(1):4636. doi: http://dx.doi.org/10.1038/s41598-021-94127-7 PMID: 33633303

39. Shinohara T, Saido T, Tanaka S, Murayama A. Do lifestyle measures to counter COVID-19 affect frailty rates in elderly community dwelling? Protocol for cross-sectional and cohort study. BMJ Open. 2020 Oct 13;10(10):e040341. doi: http://dx.doi.org/10.1136/bmjopen-2020-040341 PMID: 33051236

40. [The Long-Term Care Information System for Evidence (LIFE)]. Tokyo: Ministry of Health, Labour and Welfare; 2021. Japanese. Available from: https://www.mhlw.go.jp/stf/shingi2/0000198094_00037.html [cited 2022 Jan 12].

41. Guideline for utilization of Long-Term Care Information System for Evidence (LIFE). Tokyo: Ministry of Health, Labour and Welfare; 2022. Japanese. Available from: https://www.mii.ni.co.jp/knowledge/gpt_related/roujinshoken/dia/00004412l2-att/R3_129_4_guideline.pdf [cited 2022 Sep 11].

42. Lindley RI, Anderson CS, Billot L, Forster A, Hackett ML, Harvey LA, et al.; ATTEND Collaborative Group. Family-led rehabilitation after stroke in India (ATTEND): a randomised controlled trial. Lancet. 2017 Aug 5;390(10094):588–99. doi: http://dx.doi.org/10.1016/S0140-6736(17)31447-2 PMID: 28666682

43. Brauer SG, Kuyk SS, Paratz JD, Ada L. Improving physical activity after stroke via treadmill training and self-management (IMPACT): a protocol for a randomised controlled trial. BMC Neurol. 2018 Jan 30;18(1):13. doi: http://dx.doi.org/10.1186/s12883-018-1015-6 PMID: 29382298

44. Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2014 Apr 22;2014(4):CD001920. doi: http://dx.doi.org/10.1002/14651858.CD001920.pub3 PMID: 24756870

45. Aziz NA, Leonardi-Bee J, Phillips M, Gladman JR, Legg L, Walker MF. Therapy-based rehabilitation services for patients living at home more than one year after stroke. Cochrane Database Syst Rev. 2008 Apr 16;2008(2):CD005952. doi: http://dx.doi.org/10.1002/14651858.CD005952.pub2 PMID: 18425928

46. Fletcher-Smith JC, Walker MF, Cobbly CS, Steultjens EMJ, Sackley CM. Occupational therapy for care home residents with stroke. Cochrane Database Syst Rev. 2013 Jun 5;2013(6):CD010116. doi: http://dx.doi.org/10.1002/14651858.CD010116.pub2 PMID: 23740541

47. Kondo K, Rosenberg M. Advancing universal health coverage through knowledge translation for healthy ageing: lessons learnt from the Japan gerontological evaluation study. Geneva: World Health Organization, 2019. Available from: https://apps.who.int/iris/handle/10665/279010 [cited 2022 Feb 15].