The Estimation of Total Sediments Load in River Tributary for Sustainable Resources Management

T A Gunawan¹, A Daud¹, H Haki¹ and Sarino¹

¹Civil Engineering Department, Sriwijaya University, Jalan Srijaya Negara Bukit Besar, Bukit Lama, Ilir Barat, I, Kota Palembang, Sumatera Selatan, Indonesia.

tagz.unsri@gmail.com

Abstract. One problem that disrupts the stability of the river is sedimentation. The impact caused by excessive sedimentation can cause an increase in riverbed elevation (siltation) and at the same time can cause an increase in water level so that it can increase losses when flooding occurs. For the purpose of sustainable water resource management, especially for river ecosystems, it is very important to be able to estimate the total amount of sediment loads a little more accurately according to the river's carrying capacity. This study aims to evaluate the method of estimating sediment transport that is gives the best level of accuracy of existing sediment transport methods. The method is considered accurate if the percentage of compliance with the highest discrepancy ratio (r) ranges from the available data. This research methodology analyzes and compares several methods of estimating the total sediment load that are most suitable for the Cimanuk River tributary data. Sediment parameter data inventory is done by taking water samples to estimate the concentration of suspended sediment, bed load sediment samples and samples of the bed load material using the correct strander data retrieval. In addition, measurement of river hydraulic parameters is needed, including flow velocity and river water temperature. Based on the analysis, the method that works best to calculate the sediment transport values in sequence are the Van Rijn method, the Yang method, the Bagnold method, the Engelund-Hunsen method, the Karim-Kennedy method and the Toffaletti method which is close to 30% fulfilling the discrepancy ratio (r) (0.5 ≤ r ≤ 2.0).

1. Introduction
The river is a dynamic system that includes hydraulic processes and sediment transport. In a watershed, soil erosion due to rain causes ecological and environmental damage and decreases in agricultural production. The process of erosion of the river body and erosion of the catchment area in the upper reaches of the river along the surface flow will enter the river bodies and can cause sedimentation. Sediment deposits in this river channel will cause flood water levels to rise. On the other hand, the erosion of the river bed due to strong river currents can cause water levels to fall upstream and transport sediment particles downstream. Sediments in the water will also have a negative effect on water quality. Sediment and scouring generally occurs in the riverbed due to differences in sediment load and sediment transport capacity in the stream.

The water flow of the river is a fairly complex process. Water moves through the river body due to the influence of gravity. Flow velocities increase with increasing slope of the river bed. In natural rivers,
the flow is definitely not uniform even in a turbulent form. The stream energy will also increase in line with the increase in water volume and slope so as to bring the sediment load. The dynamics of turbulent flow causing sediment load value is non-linear with respect to variables other rivers. Several important variables in the dynamics of river flow are: (1) gradient, (2) velocity, (3) discharge and (4) sediment load [1].

The flow rate indicates the water supply coming into the main river body. With careful observation can be known the source of the arrival of the water whether from surface flow or seepage of ground water that enters the river body. The existence of ground water is very important because it ensures the existence of a river as a permanent streams throughout the year. Instead, if the river water supply depends on the season, the river is sometimes filled with water or dry or known as non-permanent rivers (intermittent streams).

Along the river body, the flow velocity is not the same, depending on the flow pattern, shape, and roughness of the river body. The largest velocity is located at the top of the deepest part of the canal which is far from frictional strings on the walls and bottom of the canal. In a winding river, the maximum velocity zone is on the outside of the bend and the minimum speed zone is in the interior of the bend. This causes a lateral erosion of the river body. The flow velocity flows proportionally to the slope of the riverbed. Rivers in mountainous areas that have a large slope, produce a faster flow. On a gentle slope, it produces slow velocity even close to zero. Flow velocity also depends on the volume of water, where if the volume of water gets bigger, the flow velocity will increase.

A number of researchers have developed various analytical procedures and theories to predict sediment load, but the implementation of most existing theories is only suitable for certain types of rivers. From various tests on sediment measurement data through laboratory experiments and data measurements on the river by various researchers, there are limitations in the application of existing theories. It is planned to validate the conversion functions using additional data from further sediment seasons [2]. This study aims to evaluate the best method of estimating sediment transport rates from a number of existing sediment transport methods for river conditions in Indonesia.

2. Method

2.1 Sediment Load Estimation Methods

Nowadays, there are many methods of estimation of sediment transport which includes basic sediment transport, suspended sediment transport and sediment transport in total. Based on the basic concept formulation, existing theories can be classified according to the basis of the critical shear stress or flow; statistics and probability; energy exchange; and other concepts.

![Figure 1. The classification of sedimen load method.](image)

(1) based on the concept of critical shear stress.
(2) based on the statistical-probabilistic concept.
(3) based on the concept of energy exchange.
(4) based on the concept of dimension analysis and regression.
(5) others.

From the literature review it is explained that in general methods based on the concept of energy exchange are more accurate, reliable and simpler than other approaches [3]. Fig.1 shows the classification method for sediment transport calculation based on the type of load and the basic concept of the estimation formulation. To simplify the calculation, the procedure and the calculation process is programmed into Microsoft Excel, so as to save time in the estimation process. Table 1 describes the formula and parameter data requirements used for each calculation method.

No	Methods	Formulation	\(V \), \(\rho_w \), \(g \)	W	D	V	S	\(S_{50} \)	SG	\(\omega \)	T
----	---------	-------------	-----------------	---	---	---	---	---	---	!---	---
1.	Van Rijn	\(q_s = C_s \cdot u_s \cdot \delta_s \) \(\text{atau} \) \(q_s = 0.053 \cdot p^{2.1} \cdot \left(\frac{g(s-1)}{D} \right)^{0.5} \cdot d_s^{0.5} \)	✓	✓	✓	✓	✓	✓	✓		
2.	Einstein	\(q_{sv} = \sum i_{sv} \cdot q_{sv} = i_{sv} \cdot \rho \cdot g \cdot d_i^{0.5} \cdot \left(s-1 \right)^{0.5} \) \(q_i = \sum \left(i_{sv} \cdot q_{sv} \right) \left(I_i + I_s + 1 \right) \)	✓	✓	✓	✓	✓	✓	✓		
3.	Toffaleti	\(q_{sv} = M(2d)^{0.5} \)	✓	✓	✓	✓	✓	✓	✓		
4.	Karim-Kennedy	\(\log \left(\frac{q_s}{g \cdot \Delta d_s} \right) = -2.279 + 2.972 \log \left(\frac{S}{g \cdot \Delta d_s} \right) \) + 1.06 \(\log \left(\frac{V}{g \cdot \Delta d_s} \right) \) \(\log \left(\left(\frac{u}{g \cdot \Delta d_s} \right) \right) \)	✓	✓	✓	✓	✓	✓	✓		
5.	Yang	\(\log C_i = 5.435 - 0.286 \log \frac{u}{\rho} - 0.457 \log \frac{u}{\rho}) + 1.799 - 0.409 \log \frac{u}{\rho} - 0.314 \log \frac{u}{\rho} \) \(q_s = \gamma_s \cdot D \cdot V \cdot \left(C_s \times 10^6 \right) \)	✓	✓	✓	✓	✓	✓	✓		

Table 1. Parameter of total sediment load formulation.
The movement of sediment particles in the flow can be by rolling, sliding / hopping and floating. The load of bed transport material comes from the channel material itself on a combination of various complex factors including; depth, width, slope of the riverbed, width of river (m), measured from the width of the upper part of the river, concentration of the load of basic material (not including wash load), in units of ppm by mass. Temperature (T) is the temperature data in degrees Celsius.

Ideally many factors (parameters) can be included for the formulation of the sediment transport rate calculation. There is a very significant effect and there is also a small influence. Accurate calculation of sediment transport rates depends on a combination of various complex factors including; depth, width, density, energy gradient, temperature, viscosity and turbulence of flowing water, size, shape, density, compactness and concentration of sediment particles and wide variations in longitudinal and lateral directions on river bodies. Real time measurements of suspended sediment concentration (SSC) and particle size distribution (PSD) measurements are very important for the investigation and management of fine sediment related processes in surface water systems and hydraulic schemes [2].

The factors that influence sedimentation in a watershed, include the amount and intensity of rainfall, geological formation and soil type, land use, topography, upstream erosion, sediment characteristics and river hydraulic characteristics. In the alluvial river, the flow erodes the material of the wall and bottom of the channel so that the flow is filled by sedimentary grains that are directly proportional to the amount of flow energy that can transport it [4]. The movement of sediment particles in the flow can be by rolling, sliding / hopping and floating. The load of bed transport material comes from the channel material itself...
which consists of bed load and from suspended loads and determined by the basic conditions of the flow.

Almost all streams in the field are turbulent [6]. Contrary to this fact, almost all methods of sediment calculation are derived through the assumption of uniform, steady flow and other simpler conditions. This simplification assumption can be considered as a source of inaccuracy in predicting the sediment discharge [7].

Almost all researchers concentrate on calculating the transport capacity of riverbed materials. This means that the formula is developed with the assumption that the base material layer being reviewed always flows and the flow can bring as much sediment as it can get. Furthermore, the researchers can only calculate the components of basic material content and do not consider washload. To get the total sediment transport rate, washload should be analyzed separately and added to the basic material load of [8].

Sediment load can be predicted using several existing methods. From the results of the application and analysis of various types of rivers and compare them with the results of field measurements or experiments, it can be concluded that a method that initially gives good results that approach the measurement results for a particular area does not gives same result for other river conditions [9 - 14].

Some researchers have developed the equation for transporting sediment loads. The sediment transport equation has derived based on the concept of energy [8]. Testing on a limited scope between the results of the prediction of sediment load and the results of measurements or experiments provide comparative results that are relatively good. There are various sediment transport theories, it is recommended to choose one that shows better consistency with sediment flow and conditions and available data [8].

Several computer programs such as SWAT, SOBEK-RE, HEC-RAS and StratSedOC has been used to compare the results of quantitative calculations and qualitative sediment transport rate [14 - 16]. However, because there are several parameters that cannot be entered directly into the program, there is a difference in the final result. Calculation of the sediment transport rate of the basic material for a single fraction size based on the concept of transport capacity fraction (TCF) and compared the results with the measurement results has been developed [17]. The results of the study deduced that the calculation of the transport rate for a single fraction size showed a small difference between the results of the calculation and the measurement results until the size of the fraction approached d_{50}. A mathematical model can be used to simulate the movement of water and sediment [18]. Regarding the results of the study, the peak of the water level will increase as the excess sediment increases.

The application of artificial neural network methods can also be used to calculate sediment load [19]. Based on the study it can be concluded that the backpropagation neural network (BPNN) model can be used in estimating sediment load in rivers. The BPNN model results are quite satisfactory. Better outcome will be obtained by increasing the number of hidden layers and calculation variation parameters found in the MATLAB model. This model estimates about 61% to 64% data accuracy for 2 to 8 hidden layers. This is a model advantage for use in predicting sediments for rivers with different hydraulic and sedimentary characteristics. The weakness of this model is that it cannot distinguish between valid and invalid data.

2.2 Methodology

The methodology of this research is to analyze and compare several methods of estimating the total sediment load that are most suitable for the Cimanuk tributary data set. The research phase carried out in this study can be described as follows:

1) Selection of methods based on the criteria of the basic concept of formulation to get the best method. Further testing of a number of secondary data sets. The method of estimating the total sediment load analyzed are the Van Rijn, Einstein, Toffaleti, Karim-Kennedy, Shen-Hung, Engelund-Hansen, Yang, Ackers-White, Colby, Bagnold and Laursen methods.

2) Based on the analysis of the results of the calculation there are probably 3 types:

a. The method is not suitable where the comparison of estimation results with measurement data (discrepancy ratio (r) is worth between 0 to 0.1 or discrepancy ratio (r) of more than 100).
b. The method that results is close enough to the measurement results with the comparison of estimation results with measurement data between 0.1 to 100. This method is then analyzed and reliability is improved by estimation by regression or optimization so that there is a part of the formulation modified. This modified formulation is tried again with the same data until the results can be considered quite accurate.

c. The method is appropriate and the results are accurate

To predict sediment transport rates in a river segment, knowledge of the nature and characteristics of the river is needed through basic sediment sampling using special nets, a sample of sediment using a USDH 48 sediment sampling tool and a sample of basic materials using the Ekman Grab tool. The sampling of these samples coincides with the measurement time of speed (V) and water temperature (T). These samples then go through a laboratory inspection process, where from the basic sediment sample measured the weight of the basic sediment particles in units of kg / s / m and from the floating sediment is known the concentration of elevated sediment (C) in units of mg / liter. The basic material sample will go through a sieve test and the percentage of average diameter \(d_{50} \) and gradation value, specific gravity (SG) particle sediment examination.

The data used in this study are primary data for the Cimanuk tributaries: the Cikamiri and Cibuah Rivers for 3 years i.e. 2012, 2013 and 2014. Data recapitulation of the Cibuah River and Cikamiri River can be seen in Table 2. From the results of the PUSAIR laboratory Bandung, it is obtained data on concentration of basic sediment load and suspend sediment and properties data. Furthermore, obtained instantaneous discharge and flow velocity data as well as measurement data including transverse profile and profile measurement data extending each river segment where river water samples were taken for study.

The measurement of elevated sediment discharge is carried out by measuring the river water discharge and taking samples of suspend sediments simultaneously. Sediment debit at measuring time or (volume of suspend sediment per unit time \(Q_s \)) can be calculated by the formula.

\[
Q_s = k \cdot C \cdot Q_w
\]
No	Data Code	Discharge (Q)	Width (W)	Depth (h)	Slope (S)	D35	D50	D65	Gradation	Specific Gravity (G)	Concentration
1	Cikamiri-03-2012-1	0.23132	2.36	0.36	0.08	0.2839397	0.46064	1.6473	6.9202057	0.759553	60.755632
2	Cikamiri-03-2012-1	0.25084	2.71	0.31	0.08	0.2387149	0.37017	1.3270	5.2189763	0.608425	67.436674
3	Cikamiri-03-2012-1	0.32813	2.19	0.23	0.08	0.2288806	0.29946	1.3010	5.1232576	0.549889	69.169124
4	Cikamiri-03-2012-1	0.36301	1.70	0.26	0.08	0.2689008	0.26538	1.3750	4.3689828	0.449051	72.687407

Table 2. Data recapitulation on Cibuah and Cikamiri River

International Conference on SMART CITY Innovation 2018

IOP Publishing

IOP Conf. Series: Earth and Environmental Science [248] (2019) 012079
doi:10.1088/1755-1315/248/1/012079
3. Results and Discussion

The application of the total sediment transport estimation method using the data from the Cibuah River and Cikamiri River has not provided satisfactory results. The highest percentage of data included in the range of $0.5 < r < 2$ discrepancy ratio is the van Rijn method and the Yang method which is 28% respectively. Next in a row are the Bagnold method, the Engelund-Hunsen method and the Karim-Kennedy method and the Toffaletti method. In more detail the recapitulation of the results of the analysis of the fulfillment of the discrepancy ratio of $0.5 < r < 2$ can be seen in Table 3.

Table 3. Discrepancy ratio (r) from sediment load calculation for Cibuah and Cikamiri River.

No.	Recap	van Rijn	Einstein	Toffaletti	Karim & Yang	Ackers & White	Engelund & Shen	Colby	Bagnold	Laursen	Score
1	Computed	75	75	75	54	75	75	75	75	75	75
2	(0.5 - 2.0)	21	1	18	15	14	10	13	20	2	2
3	Average	6.10	3.22	331.51	36.30	3.74	1.E-04	5.13	1.51	0.90	3.48
4	Stdev	11.62	15.08	2598.65	216.90	5.87	9.E-04	9.56	2.76	2.49	4.10
5	Score	28%	1%	24%	28%	19%	25%	13%	17%	27%	3%

Figure 2 (a) and (b) below present a comparison of the comparison of total sediment concentration data between the measurement data and the estimation results using the selected method 11 for the Cibuah River and Cikamiri River. From the figure (a) and (b) it can be seen that the data points are spread out beyond the range of the discrepancy ratio of $0.5 < r < 2$.

With consideration in addition to the eleven methods that have not been calibrated, these data also contain an error procedures during sampling and processing in the laboratory. The results of the calculation of the critical shear stress of the Shield show a lot of data that does not meet the requirements of the magnitude. The most data incompatibility lies in the data of the average diameter of sediment particles, d_{50} and gradation values. Methods that require fulfillment of shear stress conditions is the Karim-Kennedy method which only fulfill 18% of the data.
There are several reasons that cause inaccuracies in the estimation results of sediment loads, including the phenomena associated with quite complex sediment discharge. Sediment transport rates involve a number of flow types and parameters, including: depth, width, density, energy gradient, temperature, viscosity, and turbulence, as well as the size, shape, density, compactness and concentration of moving particles. Conversely, almost all sediment calculation methods and formulas are derived through the assumption that uniform flow conditions, steady flow and other conditions are simpler. Accordingly, other thing that affects the calculation of the estimated sediment load is due to inaccuracies and limited amounts of available data. Data inaccuracy can be caused by the limitations of measuring devices and a large enough spatial and temporal variation of the concentration and rate of sediment transport. The limited number and site selection data collection in the field that do not represent the entire river locations.

Weaknesses of several existing procedures, such as Einstein's bed load function [20], and Samaga's method [21, 22] are less simple and often use various correction factors that must be read from a series of tables and graphics. The procedure not only makes calculations complicated and is not suitable for engineering applications, it can also result in loss of accuracy at each stage of the calculation.

4. Conclusions
 Based on the analysis, some conclusions could be drawn as follows:
 1. The method range of discrepancy ratio \(r \) \((0.5 \leq r \leq 2.0)\) method can be used to compare the accuracy of various sediment load calculation methods.
 2. The best method for calculating the total sediment load is the Van Rijn method, the Yang method, the Bagnold method, the Engelund-Hunsen method, the Karim-Kennedy method and the Toffaletti method which is close to 30% fulfilling the discrepancy ratio \(r \) \((0.5 \leq r \leq 2.0)\).
 3. Although all calculations of the sediment transport method have been carried out carefully, there has not been a single formulation that is generally applicable to all existing sediment data. There is still a gap that proves that not all sediment transport methods include an applicable modified version of a particular river case, even though it has been developed through an empirical approach to laboratory and field data.
4. The most sensitive parameters of the estimation method sequentially are sediment particle size \((d_{50}) \), base channel slope \((S) \), sediment particle falling speed \((j_{atuh}) \) and flow velocity \((V) \).

The characteristics of rivers in Indonesia are very different when compared to rivers where the theory of estimation of sediment load is developed. Therefore, it is necessary to study and modify several equations to be developed into suitable methods for rivers in Indonesia.

Selecting a suitable method for estimating sediment load, beside based on the data, should also pay attention to the basic concept of deriving the formulation. The first step that can be done is to study carefully the information related to the location of the study including:

1. Information about the characteristic of river and the type of river flow
2. Climatic and geographical conditions of the study location
3. Range, type, variation and completeness of secondary data that can be collected
4. Parameters that can be generated from data
5. Previous studies related to additional secondary information that can be obtained to compare with existing data

Knowing the strengths, weaknesses and limitations of the method chosen serves as a guide to developing more accurate procedures and modifying existing theories. In this case it is necessary to conduct a critical study of the selected calculation methods. For each method will be analyzed based on the concepts used, techniques, and calculation procedures used.

Considering Indonesia is still in dire need of studies on estimating transport of sediment loads because the impact of sedimentation is quite alarming. The disadvantages encountered in this study are the limitations of the data, especially those related to river sedimentation. For this reason, a large series of sediment data is needed with a good level of validity, so the guidelines procedures are needed regarding the measurement of hydraulic parameters and sediment sampling including the processing of the data in the laboratory. Related to this, it is time for the government through competent agencies as well as the private sector and educational institutions to pay attention and financial support.

5. References

[1] Simons, D. B. and Şentürk, F. 1992. Sediment transport technology: water and sediment dynamics, Water Resources Publication.

[2] Felix, D., Albayrac, I. and Boes, R. M. 2018. In-situ investigation on real-time suspended sediment measurement techniques: Turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry. International journal of sediment research, 33, 3-17.

[3] Yang, C. T. Unit stream power and sediment transport. J. Hydr. Div., ASCE, 1974. Citeseer.

[4] Strand, R. I., & Pemberton, E. L. (1982). Reservoir sedimentation. Technical guideline for Bureau of Reclamation (USA).

[5] Einsele, G., Overbeck, R., Schwarz, H. U., & Unsöld, G. (1974). Mass physical properties, sliding and erodibility of experimentally deposited and differently consolidated clayey muds (approach, equipment, and first results). Sedimentology, 21(3), 339-372.

[6] Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993-2029.

[7] Kodoatie, R. J. 2002. Hidrolika Terapan, Yogyakarta, Andi Yogyakarta.

[8] Habibi, M. and Sivakumar, M. Review of selected methods of sediment transport estimation. 11th Australasian Fluid Mechanics Conference. Hobart, 1992. 175-178.

[9] Baosheng, W., Van Maren, D. and Lingyun, L. 2008. Predictability of sediment transport in the Yellow River using selected transport formulas. International Journal of Sediment Research, 23, 283-298.

[10] Haddadchi, A. and Dehghani, A. A. 2012. Assessment of bed-load predictors based on sampling in a gravel bed river. Journal of Hydrodynamics, Ser. B, 24, 145-151.

[11] Kiat, C. C., Ghani, A. A. and Wen, L. Development of modified Einstein bed-load equation for sandy stream in Malaysia. 2nd International conference on managing river in the 21st century—Solutions toward sustainable river basins: Kuching, Sarawak, Malaysia, 2007. 533-538.
[12] Molinas, A. and Wu, B. 2001. Transport of sediment in large sand-bed rivers. Journal of hydraulic research, 39, 135-146.

[13] Srinivasan, V. S., Cavalcante, R. G. and Santos, C. A. 2009. CA. A comparative study of some of the sediment transport equations for an alluvial channel with dunes (doi: 10.4090/juee. 2008. v2n1. 028032). Journal of Urban and Environmental Engineering (JUEE), 2.

[14] Talreja, J. 2013. Estimating the Sediment Transport Capacity Using HEC-RAS. GRA - Global Research Analysis, Volume : 2 | Issue : 4 | April 2013.

[15] Van Griensven, A., Popescu, I., Abdelhamid, M., Ndomba, P. M., Bevers, L. and Betrie, G. D. 2013. Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania. Physics and Chemistry of the Earth, Parts A/B/C, 61, 12-21.

[16] Yeh, T.-H. and Parker, G. 2013. Software for evaluating sediment-induced stratification in open-channel flows. Computers & Geosciences, 53, 94-104.

[17] Baosheng, W., Molinas, A. and Anping, S. 2003. Fractional transport of sediment mixtures. 国际泥沙研究 (英文版), 18.

[18] Gopakumar, R. and Jesuraj, R. 2012. Simulation of Non-Equilibrium Transport of Suspended Sediment in Open Channels. Int. J. Soft Comput. Eng. (IJSCIE), 2, 57-61.

[19] Gunawan, T. A., Kusuma, M. S. B., Cahyono, M. and Nugroho, J. The application of backpropagation neural network method to estimate the sediment loads. MATEC Web of Conferences, 2017. EDP Sciences, 05016.

[20] Einstein, H. A. 1950. The bed-load function for sediment transportation in open channel flows, US Department of Agriculture.

[21] Samaga, B. R., Raju, K. G. R. and Garde, R. J. 1986a. Bed load transport of sediment mixtures. Journal of Hydraulic Engineering, 112, 1003-1017.

[22] Samaga, B. R., Ranga Raju, K. G. and Garde, R. J. 1986b. Suspended load transport of sediment mixtures. Journal of Hydraulic Engineering, 112, 1019-1034.

Acknowledgements
This article’s publication is supported by the United States Agency for International Development (USAID) through the Sustainable Higher Education Research Alliance (SHERA) Program for Universitas Indonesia’s Scientific Modeling, Application, Research and Training for City-centered Innovation and Technology (SMART CITY) Project, Grant #AID-497-A-1600004, Sub Grant #IIE-00000078-UI-1.

This article is presented at the International Conference on Smart City Innovation 2018 that supported by the United States Agency for International Development (USAID) through the Sustainable Higher Education Research Alliance (SHERA) Program for Universitas Indonesia’s Scientific Modeling, Application, Research and Training for City-centered Innovation and Technology (SMART CITY) Project, Grant #AID-497-A-1600004, Sub Grant #IIE-00000078-UI-1.