THE INTEGRALS IN GRADSHTEYN AND RYZHIK.
PART 3: COMBINATIONS OF LOGARITHMS AND EXPONENTIALS.

VICTOR H. MOLL

Abstract. We present the evaluation of a family of exponential-logarithmic integrals. These have integrands of the form \(P(e^{tx}, \ln x) \) where \(P \) is a polynomial. The examples presented here appear in sections 4.33, 4.34 and 4.35 in the classical table of integrals by I. Gradshteyn and I. Ryzhik.

1. Introduction

This is the third in a series of papers dealing with the evaluation of definite integrals in the table of Gradshteyn and Ryzhik [2]. We consider here problems of the form

\[
\int_0^{\infty} e^{-tx} P(\ln x) \, dx,
\]

where \(t > 0 \) is a parameter and \(P \) is a polynomial. In future work we deal with the finite interval case

\[
\int_a^b e^{-tx} P(\ln x) \, dx,
\]

where \(a, b \in \mathbb{R}^+ \) with \(a < b \) and \(t \in \mathbb{R} \). The classical example

\[
\int_0^{\infty} e^{-x} \ln x \, dx = -\gamma,
\]

where \(\gamma \) is Euler’s constant is part of this family. The integrals of type (1.1) are linear combinations of

\[
J_n(t) := \int_0^{\infty} e^{-tx} (\ln x)^n \, dx.
\]

The values of these integrals are expressed in terms of the gamma function

\[
\Gamma(s) = \int_0^{\infty} x^{s-1} e^{-x} \, dx
\]

and its derivatives.

Date: May 14, 2007.
1991 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals.
2. The evaluation

In this section we consider the value of $J_n(t)$ defined in (1.4). The change of variables $s = tx$ yields

\begin{equation}
J_n(t) = \frac{1}{t} \int_0^\infty e^{-s} (\ln s - \ln t)^n \, ds.
\end{equation}

Expanding the power yields J_n as a linear combination of

\begin{equation}
I_m := \int_0^\infty e^{-x} (\ln x)^m \, dx, \quad 0 \leq m \leq n.
\end{equation}

An analytic expression for these integrals can be obtained directly from the representation of the gamma function in (1.5).

Proposition 2.1. For $n \in \mathbb{N}$ we have

\begin{equation}
\int_0^\infty (\ln x)^n x^{s-1} e^{-x} \, dx = \left(\frac{d}{ds} \right)^n \Gamma(s).
\end{equation}

In particular

\begin{equation}
I_n := \int_0^\infty (\ln x)^n e^{-x} \, dx = \Gamma^{(n)}(1).
\end{equation}

Proof. Differentiate (1.5) n-times with respect to the parameter s. \hfill \Box

Example 2.2. Formula 4.331.1 in [2] states that

\begin{equation}
\int_0^\infty e^{-\mu x} \ln x \, dx = -\frac{\delta}{\mu}
\end{equation}

where $\delta = \gamma + \ln \mu$. This value follows directly by the change of variables $s = \mu x$ and the classical special value $\Gamma'(1) = -\gamma$. The reader will find in chapter 9 of [1] details on this constant. In particular, if $\mu = 1$, then $\delta = \gamma$ and we obtain (1.3):

\begin{equation}
\int_0^\infty e^{-x} \ln x \, dx = -\gamma.
\end{equation}

The change of variables $x = e^{-t}$ yields the form

\begin{equation}
\int_{-\infty}^\infty t \, e^{-t} e^{-t} \, dt = \gamma.
\end{equation}

Many of the evaluations are given in terms of the polygamma function

\begin{equation}
\psi(x) = \frac{d}{dx} \ln \Gamma(x).
\end{equation}

Properties of ψ are summarized in Chapter 1 of [4]. A simple representation is

\begin{equation}
\psi(x) = \lim_{n \to \infty} \left(\ln n - \sum_{k=0}^n \frac{1}{x+k} \right),
\end{equation}

from where we conclude that

\begin{equation}
\psi(1) = \lim_{n \to \infty} \left(\ln n - \sum_{k=1}^n \frac{1}{k} \right) = -\gamma,
\end{equation}

\begin{footnote}{1}The table uses C for the Euler constant.\end{footnote}
this being the most common definition of the Euler’s constant γ. This is precisely the identity $\Gamma'(1) = -\gamma$.

The derivatives of ψ satisfy

$$(2.11) \quad \psi^{(m)}(x) = (-1)^{m+1} m! \zeta(m+1, x),$$

where

$$(2.12) \quad \zeta(z, q) := \sum_{n=0}^{\infty} \frac{1}{(n + q)^z}$$

is the Hurwitz zeta function. This function appeared in [3] in the evaluation of some logarithmic integrals.

Example 2.3. Formula 4.335.1 in [2] states that

$$\int_0^{\infty} e^{-\mu x} \ln(x)^2 \, dx = \frac{1}{\mu} \left(\frac{\pi^2}{6} + \delta^2 \right), \tag{2.13}$$

where $\delta = \gamma + \ln \mu$ as before. This can be verified using the procedure described above: the change of variable $s = \mu x$ yields

$$\int_0^{\infty} e^{-\mu x} \ln(x)^2 \, dx = \frac{1}{\mu} \left(I_2 - 2I_1 \ln \mu + I_0 \ln^2 \mu \right), \tag{2.14}$$

where I_n is defined in (2.4). To complete the evaluation we need some special values: $\Gamma(1) = 1$ is elementary, $\Gamma'(1) = \psi(1) = -\gamma$ appeared above and using (2.11) we have

$$\psi'(x) = \frac{\Gamma''(x)}{\Gamma(x)} - \left(\frac{\Gamma'(x)}{\Gamma(x)} \right)^2. \tag{2.15}$$

The value

$$\psi'(1) = \zeta(2) = \frac{\pi^2}{6}, \tag{2.16}$$

where $\zeta(z) = \zeta(z, 1)$ is the Riemann zeta function, comes directly from (2.11). Thus

$$\Gamma''(1) = \zeta(2) + \gamma^2. \tag{2.17}$$

Let $\mu = 1$ in (2.13) to produce

$$\int_0^{\infty} e^{-x} \ln(x)^2 \, dx = \zeta(2) + \gamma^2. \tag{2.18}$$

Similar arguments yields formula 4.335.3 in [2]:

$$\int_0^{\infty} e^{-\mu x} \ln(x)^3 \, dx = -\frac{1}{\mu} \left[\delta^3 + \frac{1}{2} \pi^2 \delta - \psi''(1) \right], \tag{2.19}$$

where, as usual, $\delta = \gamma + \ln \mu$. The special case $\mu = 1$ now yields

$$\int_0^{\infty} e^{-x} \ln(x)^3 \, dx = -\gamma^3 - \frac{1}{2} \pi^2 \gamma + \psi''(1). \tag{2.20}$$

Using the evaluation

$$\psi''(1) = -2\zeta(3) \tag{2.21}$$

produces

$$\int_0^{\infty} e^{-x} \ln(x)^3 \, dx = -\gamma^3 - \frac{1}{2} \pi^2 \gamma - 2\zeta(3). \tag{2.22}$$
Problem 2.4. In [1], page 203, we introduced the notion of weight for some real numbers. In particular, we have assigned \(\zeta(j) \) the weight \(j \). Differentiation increases the weight by 1, so that \(\zeta'(3) \) has weight 4. The task is to check that the integral
\[
I_n := \int_0^\infty e^{-x} (\ln x)^n \, dx
\]
is a homogeneous form of weight \(n \).

3. A SMALL VARIATION

Similar arguments are now employed to produce a larger family of integrals. The representation
\[
\int_0^\infty x^{s-1} e^{-\mu x} \, dx = \mu^{-s} \Gamma(s),
\]
is differentiated \(n \) times with respect to the parameter \(s \) to produce
\[
\int_0^\infty (\ln x)^n x^{s-1} e^{-\mu x} \, dx = \left(\frac{d}{ds} \right)^n \mu^{-s} \Gamma(s) .
\]
The special case \(n = 1 \) yields
\[
\int_0^\infty x^{s-1} e^{-\mu x} \ln x \, dx = \frac{d}{ds} \mu^{-s} \Gamma(s) = \mu^{-s} (\Gamma'(s) - \ln \mu \Gamma(s)) = \mu^{-s} \Gamma(s) (\psi(s) - \ln \mu) .
\]
This evaluation appears as 4.352.1 in [2]. The special case \(\mu = 1 \) yields
\[
\int_0^\infty x^{s-1} e^{-x} \ln x \, dx = \Gamma'(s),
\]
that is 4.352.4 in [2].

Special values of the gamma function and its derivatives yield more concrete evaluations. For example, the functional equation
\[
\psi(x + 1) = \psi(x) + \frac{1}{x},
\]
that is a direct consequence of \(\Gamma(x + 1) = x \Gamma(x) \), yields
\[
\psi(n + 1) = -\gamma + \sum_{k=1}^{n} \frac{1}{k} .
\]
Replacing \(s = n + 1 \) in (3.3) we obtain
\[
\int_0^\infty x^{n} e^{-\mu x} \ln x \, dx = \frac{n!}{\mu^{n+1}} \left(\sum_{k=1}^{n} \frac{1}{k} - \gamma - \ln \mu \right) ,
\]
that is 4.352.2 in [2].

The final formula of Section 4.352 in [2] is 4.352.3
\[
\int_0^\infty x^{n-1/2} e^{-\mu x} \ln x \, dx = \frac{\sqrt{\pi} (2n - 1)!!}{2^n \mu^{n+1/2}} \left[2 \sum_{k=1}^{n} \frac{1}{2k - 1} - \gamma - \ln(4\mu) \right] .
\]
This can also be obtained from (3.3) by using the classical values
\[
\Gamma(n + \frac{1}{2}) = \frac{\sqrt{\pi}}{2^n} (2n - 1)!!
\]
\[
\psi(n + \frac{1}{2}) = -\gamma + 2 \left(\sum_{k=1}^{n} \frac{1}{2k - 1} - \ln 2 \right).
\]
The details are left to the reader.

Section 4.353 of [2] contains three peculiar combinations of integrands. The first two of them can be verified by the methods described above: formula 4.353.1 states
\[
\int_{0}^{\infty} (x - \nu)x^{\nu-1}e^{-x} \ln x \,dx = \Gamma(\nu),
\]
and 4.353.2 is
\[
\int_{0}^{\infty} (\mu x - n - \frac{1}{2})x^{n-\frac{1}{2}}e^{-\mu x} \ln x \,dx = \frac{(2n - 1)!!}{(2\mu)^n} \sqrt{\frac{\pi}{\mu}}.
\]

Acknowledgments. The author wishes to thank Luis Medina for a careful reading of an earlier version of the paper. The partial support of NSF-DMS 0409968 is also acknowledged.

References

[1] G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.

[2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 6th edition, 2000.

[3] V. Moll. The integrals in Gradshteyn and Ryzhik. Part 1: a family of logarithmic integrals. Scientia, 13:1–8, 2006.

[4] H. M. Srivastava and J. Choi. Series associated with the zeta and related functions. Kluwer Academic Publishers, 1st edition, 2001.

Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@math.tulane.edu