Reaction-field model for the dielectric response of mixtures

Cite as: J. Chem. Phys. 153, 054503 (2020); https://doi.org/10.1063/5.0009660
Submitted: 01 April 2020 . Accepted: 10 July 2020 . Published Online: 04 August 2020

Huib J. Bakker

ARTICLES YOU MAY BE INTERESTED IN

Simulations of activities, solubilities, transport properties, and nucleation rates for aqueous electrolyte solutions
The Journal of Chemical Physics 153, 010903 (2020); https://doi.org/10.1063/5.0012102

Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
The Journal of Chemical Physics 153, 020901 (2020); https://doi.org/10.1063/5.0011599

Recent developments in the PySCF program package
The Journal of Chemical Physics 153, 024109 (2020); https://doi.org/10.1063/5.0006074
Reaction-field model for the dielectric response of mixtures

Cite as: J. Chem. Phys. 153, 054503 (2020); doi: 10.1063/5.0009660
Submitted: 1 April 2020 • Accepted: 10 July 2020 • Published Online: 4 August 2020

Huib J. Bakker

AFFILIATIONS
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

*Author to whom correspondence should be addressed: bakker@amolf.nl

ABSTRACT

We present a new effective medium theory for the dielectric response of mixtures of molecules with molecular polarizability and a permanent dipole moment. This model includes the interaction of each local dipole moment with the dipolar reaction fields of neighboring dipolar molecules. This interaction leads to an enhancement of the dielectric response of the mixture and constitutes an alternative method to describe the correlated motion of dipoles in liquids compared to the models of Fröhlich and Kirkwood. The model requires as input parameters the volume fractions of the components contained in the mixture and the dielectric parameters of the pure components. The results of the model are compared with experimental data and with the results of previous effective-medium theories.

INTRODUCTION

The dielectric response of a mixture is not a weighted average of the dielectric responses of its constituting pure components and often shows a nonlinear dependence on the volume fractions of its components. Examples are ice and snow particles in air,1,2 glass beads and quartz sand in water,3 micelles in water,4 and mixtures of organic liquids and water.5,6 The nonlinear dependence of the dielectric response on the volume fractions of the components is a consequence of the so-called local electric field. Application of an electric field to a medium leads to the polarization of the molecules or particles that together create an additional electric (Lorentz) field at each molecule/particle. Molecules/particles with a high dielectric constant can, thus, mutually amplify each other’s dielectric response, which leads to a nonlinear dependence of the overall dielectric response on their volume fraction in case the molecules/particles are embedded in a medium with a lower dielectric constant.

Ideally, the dielectric response of liquids, including liquid mixtures, is described with a microscopic theory that includes all the interactions of the constituting molecules. Such microscopic theories have been developed by Nienhuis and Deutsch, Høye and Stell,7 and Chandler.8 In these studies, it was demonstrated that the dielectric response of a liquid can be expressed as a sum of all the local interactions of the molecules contained in the liquid. Potentially, these theories provide a complete description of the dielectric response of liquids including mixtures, accounting for all dipolar interactions and local structuring effects. However, for practical applications, it is often useful to describe the dielectric response of a mixture in terms of the dielectric properties of the pure constituting components and their volume fractions, using an effective medium approach.

An essential element of all effective medium models is the local electric field \(\mathbf{E}_L \) that in a medium of dielectric constant \(\varepsilon \) equals \((\varepsilon + 2)\mathbf{E}/3 \), where \(\mathbf{E} \) is the macroscopic applied electric field. For a system of molecules with polarizability \(\alpha \) and no permanent dipole moment, the enhancement of the dielectric response through the local-electric field leads to the well-known Clausius–Mosotti relation between \(\varepsilon \) and \(\alpha \):

\[
\frac{\varepsilon - 1}{\varepsilon + 2} = \frac{N\alpha}{3\varepsilon_0},
\]

with \(N \) being the number density and \(\varepsilon_0 \) being the vacuum permittivity (\(\approx 8.854 \times 10^{-12} \text{ C}^2 \text{ s}^{-2} \text{ kg}^{-1} \text{ m}^{-3} \)). The Clausius–Mosotti relation forms the basis of several effective-medium models for the dielectric response of mixtures, including those of Maxwell–Garnett and...
In the present work, we consider a liquid consisting of molecules \(k \) with vacuum dipole moment \(p_{\mathbf{k}0} \) and polarizability \(\alpha_k \). Each molecule forms a (mathematical) cavity within the dielectric medium with an effective dielectric constant \(\varepsilon_\mathbf{E} \). The back reaction of the surrounding medium to the dipole in the cavity creates a reaction field \(E_{\mathbf{R},\mathbf{p}_k} \) of the dipole \(\mathbf{p}_k \), which is given by (see the supplementary material)

\[
E_{\mathbf{R},\mathbf{p}_k} = \frac{2(\epsilon - 1)}{2\epsilon + 1} \frac{p_k}{4\pi\varepsilon_0 a_k^3},
\]

with \(a_k \) being the radius of the cavity. This reaction field of \(\mathbf{p}_k \) polarizes the molecule due to its polarizability \(\alpha_k \), which leads to an enhancement of the molecular dipole moment. Onsager derived the following expression for the resulting dipole moment \(\mathbf{p}_k \) of the molecule in the cavity (see the supplementary material),

\[
\mathbf{p}_k = \frac{(2\epsilon + 1)(n_k^2 + 2)}{6\epsilon + 5n_k} \mathbf{p}_{\mathbf{k}0},
\]

with \(n_k \) being the refractive index of the molecule in case there would be no dipolar contribution to the dielectric function.

The application of an electric field \(\mathbf{E} \) to the above described system results in an electric field \(\mathbf{E}_c \) within the cavity of which the magnitude can be calculated from the Laplace equation with the appropriate boundary conditions,

\[
E_c = \frac{3\epsilon}{2\epsilon + 1} E.
\]

The application of an electric field \(\mathbf{E} \) also leads to a change in the reaction field resulting from the electric-field induced change in the dipole moment \(\Delta \mathbf{p}_k \), which represents both the change due to the orientation of the permanent dipole \(\mathbf{p}_k \) and the induced dipole moment due to the polarizability \(\alpha_k \). The magnitude of this change in the reaction field \(E_{\mathbf{R},\Delta \mathbf{p}_k} \) follows from Eq.

\[
E_{\mathbf{R},\Delta \mathbf{p}_k} = \frac{2(\epsilon - 1)}{2\epsilon + 1} \frac{\Delta \mathbf{p}_k}{4\pi\varepsilon_0 a_k^3}.
\]

The sum of the change in the reaction field \(E_{\mathbf{R},\Delta \mathbf{p}_k} \), averaged over the liquid, and the cavity field \(\mathbf{E}_c \) equals the local field \(\mathbf{E}_L \) (see the supplementary material). For systems with a large dielectric constant \(\epsilon_k \) such as liquid water, \(E_{\mathbf{R},\Delta \mathbf{p}_k} \) is much larger than \(\mathbf{E}_c \).

For polar molecules, the dielectric response results, in part, from the rotation of the dipole toward the direction of \(\mathbf{E} \), following a torque \(\mathbf{W}_k = \mathbf{E}_{\mathbf{T},k} \times \mathbf{p}_k \), with \(\mathbf{E}_{\mathbf{T},k} \) being the electric field that is effective in inducing a reorientation of the dipole \(\mathbf{p}_k \). The torque field \(\mathbf{E}_{\mathbf{T},k} \) consists of the cavity electric field and part of the reaction field. As pointed out by Onsager, the component of the change in the reaction field that results from the rotation of the local dipole \(\mathbf{p}_k \) does not contribute to the torque field. The rotation of the dipole in the applied field induces a change in its reaction field that adds to the already present reaction field of dipole and leads to a dipolar reaction field that remains always perfectly parallel with the rotated dipole \(\mathbf{p}_k \). This means that the change in the reaction field due to the rotation of the dipole is ineffective in further rotating this dipole and does not contribute to the torque field. The electric field \(\mathbf{E}_{\mathbf{T},k} \) that torques the dipole moments is, thus, much smaller than the local electric field \(\mathbf{E}_L \).
In the original formulation by Onsager, the torque electric field $E_{T,k}$ was taken equal to the cavity field E_C,17 but later, it was shown that $E_{T,k}$ also contains the reaction field component that results from the polarizability α_k of the molecules.24,25 For polar molecules such as water, this component of the reaction field is usually much smaller than the reaction field of the dipole moment, but due to its orientation along E, this part of the reaction field does contribute to the torque field. The torque field, thus, becomes

$$E_{T,k} = \frac{\varepsilon(n_k^2 + 2)}{2\varepsilon + n_k^2} (E + E_B).$$

(6)

The different electric field components of the reaction-field model are schematically illustrated in Fig. 1.

The polarization due to the dipolar orientation of all the dipoles is equal to $N_k p_k \cos \theta_k$, where N_k is the number density and θ_k represents the angle between the dipole moment p_k and the direction of the electric field. The ensemble average $\cos \theta_k$ can be calculated by considering the potential energy V_k of the dipole in the field $E_{T,k}$:

$$V_k = -E_{T,k} p_k \cos \theta_k.$$

The value of $\cos \theta_k$ can be calculated using a Boltzmann distribution of the orientation of the different dipoles in the torque field $E_{T,k}$:

$$\cos \theta_k = \int \cos \theta_k e^{-V_k/k_BT} \sin \theta_k d\theta_k / \int e^{-V_k/k_BT} \sin \theta_k d\theta_k,$$

(7)

where k_B is Boltzmann’s constant and T being the temperature. The total polarization P due to the dipolar reorientation and the polarizability of the molecules of a mixture consisting of components k is, thus, given by

$$P = \sum_k \frac{f_k}{k} N_k p_k \cos \theta_k + \frac{\varepsilon(n_k^2 + 2)}{2\varepsilon + n_k^2} \alpha_k (E + E_B),$$

(8)

where the summation runs over the different components k of the mixture and f_k is the volume fraction of component k.

FIG. 1. Schematic representation of the electric fields in the reaction-field model for the dielectric response of liquids. The electric field E_T that torques the dipole $p_{k,i}$ consists of the cavity electric field E_C, the reaction field resulting from the polarizability of the molecules $E_R(\alpha)$, and the background reaction field $E_B(\{E_{R,p_{k,i}}\})$, which is determined by the electric-field induced changes in the dipolar reaction fields of all the other dipoles $p_{k,i+1}$.
We take the background field E_B proportional to the polarization resulting from the dipolar orientation of the different components in the mixture,

$$E_B = \sum_k e(n_k^2 + 2) b_k f_k N_k p_k^2 \frac{E + E_B}{3k_B T e_0},$$ \hspace{1cm} (9)$$

where b_k is a parameter of the pure component k that we will determine later. b_k does not depend on the volume fraction f_k and is assumed to be independent of the nature and volume fractions of the other components in the mixture. Equation (9) has important characteristics that E_B scales with the volume fractions of the polar molecules present in the mixture and that E_B has a self-amplifying effect, i.e., the applied field E aligns the dipoles leading to a non-zero E_B that adds to E, thereby increasing the alignment of the dipoles and, thus, the magnitude of E_B. This self-amplifying effect will lead to a nonlinear dependence of the dielectric constant ε on the volume fractions of the components of the mixture. This nonlinear dependence on the volume fraction should not be confused with a potential nonlinear dependence of ε on the strength of the applied electric field, i.e., the nonlinear dielectric effect.\(^{16}\)

Equation (9) can be solved for E_B, yielding

$$E_B = h(f_k, \varepsilon)E,$$ \hspace{1cm} (10)$$

with

$$h(f_k, \varepsilon) = \frac{\sum_k e(n_k^2 + 2) b_k f_k N_k p_k^2}{1 - \sum_k e(n_k^2 + 2) b_k f_k N_k p_k^2} \frac{E}{3k_B T e_0}.$$ \hspace{1cm} (11)$$

Using $P_0 = e_0(e - 1)E$, Eq. (8) for P, and Eq. (10) for E_B, we obtain

$$e_0(e - 1) = \sum_k f_k N_k \frac{e(n_k^2 + 2)}{2e + n_k^2} \left(\frac{p_k^2}{3kT} + a_k \right)(1 + h(f_k, \varepsilon)).$$ \hspace{1cm} (12)$$

From Eq. (11), it follows that

$$\frac{1}{1 + h(f_k, \varepsilon)} = 1 - \sum_k e(n_k^2 + 2) b_k f_k N_k p_k^2 \frac{E_B}{3k_B T e_0},$$ \hspace{1cm} (13)$$

Following the Clausius–Mossotti relation of Eq. (1), we can write

$$N_k a_k = 3e_0(n_k^2 - 1)/(2e + n_k^2).$$ \hspace{1cm} (14)$$

Substitution of Eqs. (13) and (14) in Eq. (12) yields

$$\sum_k f_k (e - 1)(2e + n_k^2) - 3f_k e(n_k^2 - 1) \frac{2e + n_k^2}{2e + n_k^2} = \sum_k f_k N_k p_k^2 e(n_k^2 + 2)(1 + (e - 1)b_k) \frac{E_B}{3k_B T e_0}.$$ \hspace{1cm} (15)$$

Using $(e - 1)(2e + n_k^2) - 3e(n_k^2 - 1) = (2e + 1)(e - n_k^2)$ and Eq. (3) to substitute p_k by p_{k0}, the last expression can be written as

$$\sum_k f_k (e - n_k^2) \frac{e(2e + 1)(n_k^2 + 2)(1 + (e - 1)b_k)}{2e + n_k^2} = \sum_k f_k N_k p_{k0}^2 e(2e + 1)(n_k^2 + 2)(1 + (e - 1)b_k).$$ \hspace{1cm} (16)$$

For a pure component k, we have

$$e_k - n_k^2 = \frac{N_k p_{k0}^2 e(2e + 1)(n_k^2 + 2)(1 + (e - 1)b_k)}{27k_B T e_0},$$ \hspace{1cm} (17)$$

which can be solved for b_k,

$$b_k = \frac{27k_B T e_0}{N_k p_{k0}^2} (e_k - n_k^2)(2e_k + n_k^2)^2 - \frac{1}{e_k - 1}.$$ \hspace{1cm} (18)$$

The value of b_k is, thus, determined by several parameters of the pure component k that are usually well known, i.e., the pure dielectric constant e_k, the pure number density N_k, the vacuum dipole moment p_{k0}, and the high-frequency limit n_k^2 of its dielectric function. Hence, the value of b_k is not an adjustable parameter, but follows directly from the properties of the pure component k. It is useful to tabulate these values as b_k is supposed to be the same for any mixture containing component k. The value of b_k is assumed to depend only on physical parameters such as the pressure and the temperature. Table I presents the values of b_k for several pure components and the corresponding values of h_k ($= E_B/E$), which follow from Eq. (11).

For practical applications, it is useful to transfer Eq. (16) to a form that relates the dielectric response ε of a mixture to the volume fractions f_k, the dielectric constants e_k and n_k^2 of the pure components, and the new parameters b_k. To arrive at such an expression, we eliminate $N_k p_{k0}^2/(27k_B T e_0)$ from Eqs. (16) and (17),

$$\sum_k f_k (e - n_k^2) \frac{e(2e + 1)(n_k^2 + 2)(1 + (e - 1)b_k)}{2e + n_k^2} = \sum_k f_k N_k p_{k0}^2 e(2e_k + n_k^2)^2 e_k(2e_k + 1)(1 + (e - 1)b_k).$$ \hspace{1cm} (19)$$

Equation (19) can be used to calculate the dielectric response ε of any mixture, using the dielectric parameters of the pure components and tabulated values of b_k as input. In case the mixture only contains apolar components, $e_k(e) = n_k^2$ for all components k, and Eq. (19) reduces to the well-known Bruggeman expression for the dielectric response of mixtures: $\sum_k (e - n_k^2)/(2e + n_k^2) = 0$.

Equation (19) constitutes a higher-order expression in e, and thus, in general, this equation needs to be solved numerically. The evaluation can be simplified in the following manner. We define

$$g_k(e) = \frac{e(n_k^2 + 2) N_k p_{k0}^2}{2e + n_k^2} \frac{3k_B T}{e_0}.$$ \hspace{1cm} (20)$$

Using this expression and Eqs. (10) and (11), we can write $E_B + E$ as
The contribution of the polarizability of component \(k \) can be further simplified to

\[
\varepsilon - 1 = \frac{\sum_k f_k [(\varepsilon_k - 1) - c_k(\varepsilon_k)] + c_k(\varepsilon_k) (b_k(\varepsilon_k - 1) + 1)] / (b_k(\varepsilon_k - 1) + 1)}{\sum_k f_k (b_k(\varepsilon_k - 1) + 1)}.
\]

In the case of a mixture consisting of an apolar component and a single polar component with a large dielectric constant, e.g., water, Eq. (27) can be further simplified to

\[
\varepsilon - 1 = \frac{f_w(\varepsilon_w - 1)[1 + \frac{1}{2}b_w(n_w^2 - 1)] + (1 - f_w)(n_a^2 - 1)] [b_w(\varepsilon_w - 1) + 1]}{1 + \frac{1}{2}f_w b_w (n_a^2 - 1) + (1 - f_w)b_w(\varepsilon_w - 1)}.
\]
where the subscript w refers to the polar component and the subscript a refers to the apolar component for which the dipolar reaction field parameter b_a equals zero. In this expression, the contribution of the polarizability of the polar component, represented by $c_w(\epsilon_w)$, is approximated as $\frac{1}{2}(n_w^2 - 1)$, which is a good approximation if $\epsilon_w > n_w^2$.

RESULTS AND DISCUSSION

In Fig. 2, we present experimental and calculated results for the static dielectric constant as a function of volume fraction f of water for a mixture of water and an apolar liquid [Fig. 2(a)] and for mixtures of water with different alcohols as a function of water volume fraction [Fig. 2(b)]. For the apolar liquid, we take $\epsilon_k = n_k^2 = 2.0$. It is seen in Fig. 2(a) that the Wagner, Landau–Lifshitz–Looyenga, and Bruggeman models all yield a too strong nonlinear dependence of ϵ on the water volume fraction. This too strong nonlinear dependence results from the fact that in these models, the part of the reaction field that results from the orientation of the water dipoles is assumed to be fully effective in enhancing the dielectric response. The curve denoted as Kirkwood–Oster is obtained by applying the theory of Kirkwood to mixtures using an Oster rule approach. In this approach, it is assumed that the Kirkwood factors of the pure components retain their values in the mixture. This approach predicts a nearly linear dependence of the dielectric constant on the water volume fraction, which is again in poor agreement with the experimental observations. In the present model, we do not describe the correlated motion of the dipoles with a Kirkwood factor, but as the result of the background reaction field of the water dipoles of which the strength increases with an increase in the water volume fraction, and that possesses a self-amplifying effect, as expressed in Eq. (9). This self-amplifying effect of the background reaction field leads to the observed nonlinear dependence of the dielectric constant of the water–oil mixture on the water volume fraction. It should be noted that the degree of this nonlinearity is fully determined by the dielectric parameters of pure water, without any adjustable parameter. The comparison of the solid and the dashed curves shows that for the studied mixtures, the term $c_w(\epsilon)$ can, indeed, be well approximated by $\frac{1}{2}(n_w^2 - 1)$.

In Fig. 2(b), we show the calculated and measured dielectric response of water–alcohol mixtures. These mixtures contain two polar components that contribute to the dipolar background reaction field. The dependence of the dielectric response is governed by the relative strengths of the background reaction fields of these components. Methanol has a stronger background reaction field than water, leading to a convex form of the dependence of ϵ on the water volume fraction. The stronger background reaction field of methanol can be explained from the fact that for alcohols, the molecular dipole moments are more aligned with the hydrogen bonds than for water, leading to a stronger local correlation of the orientation of the dipole moments. For isopropanol and tertiary butanol, the background reaction field is weaker than for water probably because these alcohols have larger apolar groups, leading to larger distances between the dipoles. The weaker background field of isopropanol and butanol leads to a concave form of the dependence of ϵ on the water volume fraction, similar to what is observed for mixtures of water and an apolar liquid [Fig. 2(a)]. For ethanol, the background reaction field is similar to that for water probably because the two effects (better alignment of the dipoles with the hydrogen bonds for ethanol and larger distances between the dipoles because of the hydrophobic part of ethanol) compensate each other. The similarity of the background reaction fields of pure water and pure ethanol leads to a nearly linear dependence of the dielectric response of water–ethanol mixtures on the water volume fraction. In Fig. 3, we compare the dependence of the dielectric response of water–methanol and water–ethanol mixtures on the water volume fractions at different temperatures. For all compositions, the dielectric response decreases with an increase in temperature.
The reaction-field model can also be used to determine the frequency-dependence of the dielectric response of the mixture, by expressing the dielectric response \(\epsilon(\omega) \) of the mixture at each frequency \(\omega \) in terms of the dielectric responses \(\epsilon_k(\omega) \) of the components contained in the mixture. The reaction-field parameter \(b_k \) is also a frequency-dependent function that can be evaluated for each pure component \(k \) from \(\epsilon_k(\omega) \) and the relaxation time constant(s) of that component. An interesting question is how these relaxation time constants change when the molecules of component \(k \) become part of a mixture. The frequency dependence of the dielectric response of mixtures will be the subject of future study.

The background reaction field is expected to possess a certain characteristic length. An indication of this length can be obtained from the dependence of the dielectric constant of water molecules in the center of a water droplet on the size of the droplet. Molecular dynamics simulations show that the droplet size has to be quite large, typically tens of nanometers, for the water molecules in the center to acquire the static dielectric constant of water. This finding indicates that the extension of the background reaction field is on the order of tens of nanometers. In the derivation of Eqs. (19) and (27), we assumed that the background reaction field scales with the volume fractions of the different components contained in the mixture (effective medium description). In case the length scale of the structure/inhomogeneity of the medium becomes larger than the length scale of the background reaction field, this effective medium approach will break down, and the dielectric response of the mixture is expected to show a more linear dependence on the volume fractions. The deviation of the calculated curves from the experimental points for large water volume fractions observed for mixtures of water and iso-propanol/butanol [Fig. 2(b)] may be caused by this effect. For large water volume fractions, the volumes of the water clusters in the mixture may become very large due to aggregation of the iso-propanol and butanol molecules and may, thus, well exceed the characteristic length of the background dipolar reaction field of water, thus leading to a breakdown of the effective medium approach.

CONCLUSIONS

We present a new effective-medium model for the dielectric response of mixtures with components possessing molecular polarizability and a permanent dipole moment. This model differs from the previous models for the dielectric response of polar molecules of Frohlich and Kirkwood in the description of the correlated motion of the dipoles in the applied electric field. In the present model, this motion follows from the interaction of each local dipole moment with high-frequency intramolecular vibrations and electronic transitions and does not include relaxation (Debye) modes and other intermolecular modes such as librations. We estimated the value of \(n_k^2 \) to be somewhat higher than the square of the refractive index at optical frequencies because \(n_k^2 \) contains the low-frequency limit of the response of the high-frequency molecular vibrations, whereas the refractive index at higher frequencies contains the (smaller) high-frequency range of this response. The values of \(n_k^2 \) of the pure components that we used in the calculations are presented in Table I.

In Table I, we present the static dielectric constants of pure water, methanol, and ethanol at different temperatures and the corresponding values of \(b_k \) and \(h_k \), calculated with Eqs. (18) and (11), respectively. The dielectric response of pure liquid water at 248 K is obtained by extrapolating the measured dielectric constant of supercooled water. For all three liquids, the parameter \(h_k (= E_b/E) \), which represents the relative strength of the background reaction field, increases with a decrease in temperature.

The parameter \(n_k^2 \) of each component \(k \) of the mixture represents the low-frequency response of the polarizability \(\alpha \) of the molecules. This parameter affects the static dielectric response in several ways, the most important being that the reaction field induced by the polarizability \(\alpha \) enhances the torque electric field \(E_T \) felt by the dipoles. In the reaction-field model, the parameter \(n_k^2 \) is defined as the low-frequency limit of all the vibrational and electronic responses that does not include a reorientation of the dipole moment. This means that for polar liquids, \(n_k^2 \) includes the

![FIG. 3. Static dielectric constant as a function of water volume fraction \(f_w \) for different temperatures: (a) for mixtures of water and methanol \(^{31,32}\) and (b) for mixtures of water and ethanol. \(^{31,32}\) The solid curves are calculated with Eq. (19), and the dashed curves with Eq. (27).](image-url)
with the dipolar reaction fields of neighboring dipolar molecules. The strength of the dipolar reaction field of the mixture follows from the volume fractions of the different components contained in the mixture and the reaction fields of the pure components. The reaction field of each pure component is defined by a new parameter b_k that follows unambiguously from like the density, the molecular dipole moment, and the static dielectric constant of the pure component [Eq. (18)]. The values b_k of different polar liquids can be tabulated and subsequently used to calculate the dipolar reaction field of any mixture containing these components, irrespective of the volume fractions.

The reaction-field model leads to Eq. (19) that expresses the dielectric response ϵ of the mixture in terms of the volume fractions and the dielectric parameters of the pure components (including the new parameters b_k). Equation (23), in general, has to be evaluated numerically, but in good approximation can be simplified to Eq. (27). For a mixture of a single polar and an apolar liquid, Eq. (27) reduces to expression (28).

We compare the reaction-field model with previous effective medium theories and with experimental data for water–oil mixtures and water–alcohol mixtures. For water–oil mixtures, the dielectric response shows a strong nonlinear dependence on the water volume fraction, which is well accounted for by the reaction-field model. For water–alcohol mixtures, the dependence of the dielectric response on the water volume fraction depends on the nature of the alcohol, changing from a convex shape for methanol to a concave shape for isopropanol and butanol. The convex form of the dielectric response of water–methanol mixtures can be explained by the stronger reaction field of pure methanol compared to pure water. For water–methanol and water–ethanol mixtures, the model provides an accurate description of the observed dielectric response for all volume fractions and at different temperatures. For mixtures of water and larger alcohols, the reaction-field model does not provide a good description of the experimental observations at large water volume fractions probably because the alcohol molecules aggregate, leading to a microscopic phase separation and a breakdown of the effective medium approach.

SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of Eqs. (2) and (3) and the prefactor of the torque electric field of Eq. (6).

ACKNOWLEDGMENTS

This work is part of the research program of The Netherlands Organisation for Scientific Research (NWO). The author would like to thank Paul Planken, Sander Woutersen, Niklas Ottoson, and Yves Rezus for useful discussions.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. R. Meneghini and L. Liao, J. Atmos. Ocean. Technol. 17, 628–640 (2000).
2. S. Leinss, H. Löwe, M. Proksch, J. Lemmetyinen, A. Wiesmann, and I. Hajnsek, Cryosphere 10, 1771–1797 (2016).
3. D. A. Robinson and S. P. Friedman, J. Non-Cryst. Solids 305, 261–267 (2002).
4. K. Asami, J. Phys.: Condens. Matter 19, 376102 (2007).
5. Q. Xue, J. Electrost. 50, 169–175 (2001).
6. Y. S. Joshi and A. C. Kumbharkhane, J. Mol. Liq. 161, 120–124 (2011); Y. S. Joshi, P. G. Hudge, A. C. Kumbharkhane, and S. C. Mehrotra, J. Mol. Liq. 163, 70–76 (2011).
7. G. Nienhuis and J. M. Deutch, J. Chem. Phys. 55, 4213 (1971).
8. J. S. Hove and G. Stell, J. Chem. Phys. 61, 562 (1974).
9. D. Chandler, J. Chem. Phys. 67, 1113 (1977).
10. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley and Sons, Inc., New York, 1999).
11. K. W. Wagner, Arch. Elektrotech. 2, 371 (1914).
12. V. A. Markel, J. Opt. Soc. Am. A 33, 1244 (2016).
13. D. A. G. Bruggeman, Ann. Phys. 416, 636–664 (1935).
14. T. Hanai, Koloidn. Zh. 171, 23 (1960).
15. H. Looyenga, Physica 31, 401 (1965).
16. P. Debye, Phys. Z. 13, 97 (1912).
17. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
18. C. J. F. Böttcher, Theory of Electric Polarization, Dielectrics in static fields Vol. 1, 2nd ed. (Elsevier, Amsterdam, 1973).
19. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980).
20. M. Neumann, J. Chem. Phys. 85, 1567 (1986).
21. J. Anderson, J. J. Ulló, and S. Yip, J. Chem. Phys. 87, 1726 (1987).
22. C. Zhang, J. Hutter, and M. Sprick, J. Phys. Chem. Lett. 7, 2696–2701 (2016).
23. J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).
24. H. Fröhlich, "Theory of dielectrics: Dielectric constant and dielectric loss," in Monographs on the Physics and Chemistry of Materials, 2nd ed. (Oxford University Press, Oxford, 1958).
25. K. Zakrzewski and A. Piekara, Nature 144, 250 (1939).
26. G. Oster, J. Am. Chem. Soc. 68, 2036 (1946).
27. A. H. Harvey and J. M. Prausnitz, J. Solution Chem. 16, 857 (1987).
28. T. Hanai, N. Koizumi, and R. Gotoh, Koloidn. Zh. 167, 11 (1959).
29. A. Dittrich, “Messungen der komplexen dielektrizitätszahl im frequenzbereich von 10 kHz bis 1 GHz an ternären lösungen vom typ wasser/n-alkan/polyoxyethylen-tensid,” Ph.D. thesis, Georg-August-University Göttingen, Göttingen, Germany, 1985.
30. G. Akerlöf, J. Am. Chem. Soc. 54, 4125 (1932).
31. P. Petong, R. Pottel, and U. Kaatze, J. Phys. Chem. A 104, 7420–7428 (2000).
32. D. Bertolini, M. Cassettari, and G. Salvetti, J. Chem. Phys. 78, 365 (1983).
33. See https://hypertextbook.com/facts/2007/AllenMa.shtml for the density of water.
34. D. Bertolini, M. Cassettari, and G. Salvetti, J. Chem. Phys. 76, 3285 (1982).
35. S. Senapati and A. Chandra, J. Phys. Chem. B 105, 5106–5109 (2001).