Excision Repair Defect in Rothmund Thomson Syndrome

F. VASSEUR, E. DELAPORTE, M. T. ZABOT, M. N. STURQUE, D. BARRUT, J. B. SAVARY, L. THOMAS and P. THOMAS

1 Department of Genetics of Multifactorial Diseases, CHRU, Lille; 2 Department of Dermatology, Claude Huriez Hospital, Lille; 3 Department of Biochemistry, Debrasse Hospital, Lyon; 4 Department of Dermatology, Antiquaille Hospital, Lyon; 5 Department of Medical Genetics, Jeanne de Flandre Hospital, Lille and 6 Department of Dermatology, Hôtel Dieu Hospital, Lyon, France

Rothmund Thomson syndrome is a rare autosomal recessive skin disorder. The main clinical feature is poikiloderma appearing in early childhood associated with skeletal abnormalities. Early occurrence of malignancies is another relevant feature. Here we describe the clinical features of 2 patients with Rothmund Thomson syndrome who were investigated for the DNA excision repair defect, one of whom has been partially described previously (6). We describe here 2 patients with RTS displaying a significant DNA repair capacity, which has been demonstrated in a few patients and the high risk of cancer might be related to reduced DNA repair capacity, assessed with unscheduled DNA synthesis following UVC exposure, was decreased in both patients. Such a defect might explain the patients’ sensitivity to sunlight and the relatively high risk of cancer associated with this syndrome. Key words: Rothmund Thomson Syndrome; DNA excision repair.

(Received October 5, 1998.)

Acta Derm Venereol (Stockh) 1999; 79: 150–152.

F. Vasseur, Laboratoire de Génétique des Maladies Multifactorielles CNRS EPI0, CHRU Lille et Institut Pasteur, 1 rue du Professeur Calmette BP 245, FR-59019 Lille cedex, France.

Rothmund Thomson syndrome (RTS) is a rare autosomal, recessive dermatosis characterized by poikiloderma (telangiectasia, pigmentary changes and cutaneous atrophy) associated with multisystem disorders, the most afflictng being skeletal and ocular abnormalities (1). Manifestations of photosensitivity, including erythema and bullous eruption after exposure to sunlight, are seen in about 30% of patients (2). However, phototesting is rarely reported and the available data are inconsistent (3). Early occurrence of skin malignancies is another relevant feature of the syndrome (3). Photosensitivity and the high risk of cancer might be related to reduced DNA repair capacity, which has been demonstrated in a few patients (4, 5). We describe here 2 patients with RTS displaying a significant DNA excision repair defect, one of whom has been partially described previously (6).

PATIENTS AND METHODS

Clinical findings for both patients are summarized in Table I. For case 1, the results of phototesting procedures were normal. Phototests were performed with a xenon solar simulator emitting wavelengths from 290 to 670 nm (Dermolum© Müller Electronik, Germany) and a UVA lamp emitting wavelengths from 330 to 440 nm (UVA SUN 3000®, Mutzhas Comp., Germany). The emission (mW/cm²) was measured by a calibrated thermopile. MED (707 mJ/cm²) determined 24 h after exposure with increasing doses of solar simulator light (increment 1,414, from 250 to 4,000 mJ) was within the normal range for our laboratory. Repeated exposures using UVB selected from the solar simulator with a WG 345 nm cut-off filter, every 48 h up to 10 MED, induced a mild erythema at 96 h corresponding to a normal reaction for the dose received. The delayed reaction was normal, showing only a slight pigmentation. Repeated exposures to UVA (20 J/cm²) every 48 h up to 40 J/cm² did not induce erythema. For case 2, the results of phototesting showed a normal ranged MED according to the values of our laboratory for skin type V. Repeated exposures using a xenon solar simulator for 3 consecutive days induced only a slight erythema on involved forearm skin as well as non-involved skin on the back. No delayed reaction was noticed up to 2 weeks later. Immunological data revealed a mild deficiency of cell-mediated immunity, with a negative PPD skin test, a CD4 count of 300/mm³ and a low CD4/CD8 ratio of 0.66. The karyotype obtained for stimulated peripheral blood lymphocytes was also normal.

Quantification of DNA excision repair was carried out with an unscheduled DNA synthesis assay (UDS) following 254 nm UV irradiation, and quantitative autoradiography as previously described (7, 9). Cells were irradiated with a 254 nm UV lamp (Bioblock, Strasbourg, France). UV emission was measured with a VLX254 radiometer (Bioblock, Strasbourg, France). The cells from a previously described PIBIDS patient (8) belonging to the XP-D complementation group were included in the experiments and processed in parallel. Autoradiographies were performed with the Kodak NTB2 liquid nuclear emulsion (Eastman Kodak, Rochester, USA). Background values (11) for both patient and control were accounted for the number of autoradiographic grains averaged from 50 random unirradiated cells both from the patient and the normal control. The label values (12), showing a normal range for our laboratory.

Table I. Clinical features of patients with Rothmund Thomson syndrome

Patient	Age	Sex	Parental Consanguinity	Cutaneous Features	Skeletal Features	Immunological Data	DNA Repair Capacity
Case 1	17	Male	Parents are first cousins	Atrophy of the epidermis with dermal melanin deposits	Bone fragility	Immunological data revealed a mild deficiency of cell-mediated immunity, with a negative PPD skin test, a CD4 count of 300/mm³ and a low CD4/CD8 ratio of 0.66.	Normal range
Case 2	16	Female	Parents are first cousins	Atrophy of the epidermis with dermal melanin deposits	Bone fragility	Immunological data revealed a mild deficiency of cell-mediated immunity, with a negative PPD skin test, a CD4 count of 300/mm³ and a low CD4/CD8 ratio of 0.66.	Normal range

© 1999 Scandinavian University Press. ISSN 0001-5555

Acta Derm Venereol (Stockh) 1999; 79: 150–152.
were obtained from an average count of 50 random UV irradiated cells from both patient and control. Specific excision repair labels are equal to I2 minus I1. These values obtained from the patients were compared with the values from the normal control, the latter being taken as the 100% reference level. Statistical differences between patient and control was evaluated with the unpaired Student’s t-test.

RESULTS
Excision repair for patient 1 was investigated in lymphocytes following a 10 J/m² 254 nm UV irradiation. Average silver grain count, specific for excision repair (I2-I1) was 31.3 for normal cells, 3.7 for the repair defected (XP-D) cells and 17.9 for patient 1, respectively (Fig. 1). A significant difference \((p < 0.0001) \) was noticed between patient 1 and control, residual excision repair level of patient 1 was 57.1% of the normal control levels. DNA excision repair of patient 2 was first analysed in lymphocytes. Following a 10 J/m² 254 nm UV irradiation, average silver grains count, specific for excision repair was 18.4 for patient 2 and 30.2 for control cells, \((p = 0.0081) \). The repair level was 60.9%. Similar results have been obtained following a 30 J/m² UV irradiation with an average count of 27.3 grains of specific excision repair label per cell for patient 2 and 49.1 for control cells, \((p < 0.0001) \) (Fig. 2). Repair level was 55.6%. For patient 2, additional excision repair analyses were performed on skin fibroblasts. The results were completely in agreement with those obtained on blood cells, with 64% and 72% residual repair activities of skin fibroblasts following a 30 J/m² 254 nm UV irradiation, after 2 and 7 subcultures.

DISCUSSION
Patients with RTS present variable clinical features and the syndrome appears quite heterogeneous (3) with a high incidence of cutaneous and non-cutaneous malignancies (3, 10). Besides diseases clearly associated with a DNA repair deficiency and/or abnormal sunlight sensitivity (11), the existence of any impairment in DNA repair mechanisms in RTS remains controversial (5, 12, 13, 14, 15). We describe here 2 unrelated RTS patients with DNA excision repair defects. To our knowledge, only 2 other RTS patients with DNA repair defects have been previously reported (4, 16). Our data provide new evidence that a DNA excision repair defect may exist in some cases of RTS. Chromosomal instability (12, 13), increased sister chromatid exchange and chromosomal breakage (14, 15) reported in RTS patients are in favour of an impairment in DNA metabolism. It is tempting to associate it with the high incidence of non-cutaneous malignancies, such as osteosarcoma (17) and particularly with the early onset of skin malignancies reported in RTS (3, 18). Moreover, DNA repair investigations gave controversial results in RTS patients with osteosarcoma (19, 20). In the patients described here, no malignancy has occurred to this date; however, they are still young. However, the older brother of patient 2, was also affected with RTS, and died due to osteosarcoma of the shinbone at 11 years of age. We did not have the opportunity to test this patient. In diseases where a repair defect has been clearly demonstrated, a genetic and a clinical heterogeneity has been reported and the molecular defects lies in genes.
coding for proteins that interact with DNA (21) and those involved in DNA metabolism (22, 23). These pathways could be impaired in RTS and may involve nucleotide excision repair in some cases of RTS. As previously reported for TTD, Cockayne syndrome (CS), XP-F and some XP-B and G patients, an excision repair defect does not always imply skin photosensitivity and/or high risk of cancer (24–26). UDS and quantitative autoradiography remain time-consuming repair analyses. The alkaline comet assay has been proved to be an easier repair test for the diagnosis of repair defects (27) and would facilitate the investigation of most RTS patients. Further investigations for other defects in the DNA metabolism, such as transcription (28) or interactions between other cellular repair mechanisms (29) remain promising. Genetic complementation experiments may shed light on the possibility of a relationship between RT and the previously identified genetic defects of XP, CS and TTD.

ACKNOWLEDGEMENTS

We thank the patients and their parents for their co-operation, Jean Pierre Tietard for technical assistance, and Suren Budhan and Gokhan Osizik for correcting the manuscript.

REFERENCES

1. Taylor WB. Rothmund’s syndrome, Thomson’s syndrome. Arch Dermatol 1957; 75: 236–244.
2. Berg E, Chuang TY, Cripps D. Rothmund Thomson syndrome. A case report, phototesting and literature review. J Am Acad Dermatol 1987; 17: 332–338.
3. Vennos EM, Collins M, James WD. Rothmund-Thomson syndrome: review of the world literature. J Am Acad Dermatol 1992; 27: 750–762.
4. Shinya A, Nishigori C, Moriwaki S, Takebe H, Kubota M, Ogino A, Imamura S. A case of Rothmund Thomson syndrome with reduced DNA repair capacity. Arch Dermatol 1993; 129: 332–336.
5. Smith PJ, Paterson MC. Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients. Mutat Res 1982; 94: 213–228.
6. Barrut D, Goujon-Henry C, Thomas L, Vasseur F, Moulin L. Poikilodermie congénitale type Thomson with anomie de l’excision-réparation de l’ADN. Ann Dermatol Venereol 1993; 120: 755–758.
7. Vasseur F, Marlier-Facon C, Delaporte E, Thomas P, Bergoend H, Savary JB. Excision repair analysis and skin response to UV-B in young patients with basal cell carcinoma. Nouv Dermatol 1993; 13: 321–328.
8. Van Neste D, Caulier B, Thomas P, Vasseur F. PIBIDS: Tay’s syndrome and xeroderma pigmentosum. J Am Acad Dermatol 1985; 12: 372–373.
9. Vasseur F, Thomas P, Caulier B, Savary JB, Deminatti M. Apport de l’étude de l’excision réparation de l’ADN au diagnostic des gênophotodermatoses. Nouv Dermatol 1990; 9: 424–430.
10. Van Hees C, Van Duinen CM, Bruijn JA, Vermeer BJ. Malig-