CONTRACTING THE WEIERSTRASS LOCUS TO A POINT

ALEXANDER POLISHCHUK

Abstract. We construct an open substack $U \subset \mathcal{M}_{g,1}$ with the complement of codimension ≥ 2 and a morphism from U to a weighted projective stack, which sends the Weierstrass locus $W \cap U$ to a point, and maps $\mathcal{M}_{g,1} \setminus W$ isomorphically to its image. The construction uses alternative birational models of $\mathcal{M}_{g,1}$ and $\mathcal{M}_{g,2}$ from [8].

Introduction

Let $W \subset \mathcal{M}_{g,1}$ denote the locus in the moduli stack of smooth one-pointed curves of genus g, consisting of (C, p) such that p is a Weierstrass point on C, i.e., $h^1(gp) \neq 0$. It is well known that W is an irreducible divisor. In this paper we construct a rational map from $\mathcal{M}_{g,1}$ to a proper DM-stack with projective coarse moduli space, which contracts W to a single point and maps $\mathcal{M}_{g,1} \setminus W$ isomorphically to its image (see Theorem A below). This is partly motivated by the question whether the class of the closure of W in $\mathcal{M}_{g,1}$ generates an extremal ray (we do not solve this; however, see Prop. 2.4.6, Rem. 2.4.7 and the discussion below). Note that for small g some pointed Brill-Noether divisors were shown to generate extremal rays in the effective cone of $\mathcal{M}_{g,1}$ in [9], [5] and [6].

The construction involves certain moduli stacks studied in [8]. Namely, in [8] we introduced and studied the moduli stack of curves with marked points (C, p_1, \ldots, p_n), where C is a reduced projective curve of arithmetic genus g, such that $h^1(a_1p_1 + \ldots + a_np_n) = 0$ for fixed integer weights $a_i \geq 0$ such that $a_1 + \ldots + a_n = g$ (we assume that the marked points are smooth and distinct). We denote this stack by $\mathcal{U}_{\text{ns}}^{g,n}(a_1, \ldots, a_n)$. We showed that $\mathcal{U}_{\text{ns}}^{g,n}(a_1, \ldots, a_n)$ can be realized as a quotient of an affine scheme by a torus action and studied the related GIT picture which leads to interesting projective birational models of $\mathcal{M}_{g,n}$. In particular, for $n = 1$ and $a_1 = g$ there is a unique nonempty GIT quotient stack $\overline{\mathcal{U}}_{\text{ns},1}(g)$, obtained from $\mathcal{U}^{\text{ns}}_{g,1}(g)$ by deleting one point corresponding to the most singular cuspidal curve. Furthermore, $\overline{\mathcal{U}}^{\text{ns}}_{g,1}(g)$ is a closed substack in a weighted projective space (see Sec. 1.1 for details).

We start by considering the natural rational map

$$\text{for}_2 : \mathcal{U}^{\text{ns}}_{g,2}(g-1,1) \longrightarrow \overline{\mathcal{U}}^{\text{ns}}_{g,1}(g)$$

(0.0.1)

given by forgetting the second marked point (more precisely, the map for$_2$ is regular on a certain open substack which is dense in the component corresponding to smoothable curves). Our main technical result is that (0.0.1) is regular on the open substack of (C, p_1, p_2) such that $h^1((g+1)p_1) = 0$, and that the divisor, defined by the condition $h^1(gp_1) \neq 0$, gets contracted to a point (see Prop. 1.2.2). Furthermore, we show that this point has trivial group of automorphisms. We derive from this the following result.

Supported in part by the NSF grant DMS-1400390.
Theorem A. Assume that $g \geq 2$. The natural open embedding of stacks

\[\mathcal{M}_{g,1} \setminus \mathcal{W} \hookrightarrow \overline{\mathcal{U}}_{g,1}^{\text{is}}(g) \]

extends to a regular morphism

\[\phi = \phi_g : U \to \overline{\mathcal{U}}_{g,1}^{\text{is}}(g), \]

for some open substack $U \subset \mathcal{M}_{g,1}$ containing $\mathcal{M}_{g,1} \setminus \mathcal{W}$ and such that $\mathcal{M}_{g,1} \setminus U$ has codimension ≥ 2 in $\mathcal{M}_{g,1}$. Furthermore, ϕ contracts $U \cap \mathcal{W}$ to a single point, which has no nontrivial automorphisms.

More precisely, the open substack U in the above Theorem consists of (C, p) such that $h^1((g+1)p) = 0$ and $h^0((g-1)p) = 1$.

We study the case $g = 2$ in more detail. In this case we get a more precise result involving a certain modular compactification of $\mathcal{M}_{2,1}$.

Recall that Smyth introduced in [10] the notion of an extremal assignment, which is a rule associating to each stable curve of given arithmetic genus some of its irreducible components (this rule should be stable under degenerations). For each extremal assignment Z, Smyth considered the moduli stack $\overline{\mathcal{M}}_{g,n}(Z)$ of Z-stable curves, i.e., pointed curves C for which there exists a stable curve C' and a map of pointed curves $C' \to C$, contracting precisely the components of C', assigned by Z, in a certain controlled way. In this paper we consider only one extremal assignment which associates to every stable curve all of its unmarked components (see [10, Ex. 1.12]), so when we say Z-stable we always mean this particular extremal assignment.

We prove that the map ϕ_2 extends to a regular morphism of stacks

\[\phi_2 : \overline{\mathcal{M}}_{2,1}(Z) \to \overline{\mathcal{U}}_{2,1}^{\text{is}}(2) \]

contracting the closure of \mathcal{W} to one point (see Theorem 2.4.5). Furthermore, we identify the point $\phi_2(\mathcal{W})$ explicitly as a certain cuspidal curve C_0 (see Definition 2.2.2), and show that ϕ_2 induces an isomorphism of the complement of \mathcal{W} to the complement of $\phi_2(\mathcal{W})$.

We also prove that the natural rational map of the coarse moduli spaces $\overline{\mathcal{M}}_{2,1} \dasharrow \overline{\mathcal{U}}_{2,1}^{\text{is}}(2)$ is a birational contraction with the exceptional divisors \overline{W} and Δ_1 (see Proposition 2.4.6). One can expect that the rational map $\overline{\mathcal{M}}_{g,1} \dasharrow \overline{\mathcal{U}}_{g,1}^{\text{is}}(g)$ is still a birational contraction for $g > 2$ (see Remark 2.4.7 for further discussion).

In addition, in Sec. 2.1 we obtain an isomorphism

\[\overline{\mathcal{U}}_{2,1}^{\text{is}}(2) \simeq \mathbb{P}(2, 3, 4, 5, 6), \]

where the right-hand side is the weighted projective stack.

Conventions. In Sec. 2.1 we work over $\mathbb{Z}[1/6]$. Everywhere else we work over \mathbb{C}. By a curve we mean a connected reduced projective curve. By the genus of a curve we always mean arithmetic genus. For DM-stacks whose notation involves calligraphic letters \mathcal{M}, \mathcal{U} and \mathcal{W}, we denote their coarse moduli spaces by replacing these letters by M, U and W.
1. Rational maps for 2 and ϕ

1.1. Moduli spaces of curves with non-special divisors. We start by recalling some results from [8] about the stacks $U_{g,n}^{ns}(a)$, where $a = (a_1, \ldots, a_n)$ and a_i are non-negative integers with $a_1 + \ldots + a_n = g$. We denote by $\tilde{U}_{g,n}^{ns}(a)$ the G_m^n-torsor over $U_{g,n}^{ns}(a)$, corresponding to choices of nonzero tangent vectors at the marked points. It is proved in [8] that $\tilde{U}_{g,n}^{ns}(a)$ is an affine scheme of finite type. In this paper we only need the case when all a_i are positive, so we assume this is the case.

The key result we will use is that for each $i = 1, \ldots, n$, and each $(C, p_1, \ldots, p_n, v_1, \ldots, v_n)$ in $\tilde{U}_{g,n}^{ns}(a)$ (where v_i is a nonzero tangent vector at p_i), there is a canonical formal parameter t_i on C at p_i, such that $\langle v_i, dt_i \rangle = 1$, which is defined as follows. Given a formal parameter t_i, for each $m > a_i$ there is unique, up to adding a constant, rational function $f_i[-m] \in H^0(C, \mathcal{O}(mp_i + \sum_{j \neq i} a_j p_j))$ with the Laurent expansion in t_i of the form

$$f_i[-m] = t_i^{-m} + \sum_{q \geq -a_i} \alpha_i[-m, q] t_i^q. \quad (1.1.1)$$

The canonical parameter is uniquely characterized by the condition that $\alpha_i[-m, -a_i] = 0$ for every $m > a_i$. Using these formal parameters we can consider for every pair (i, j) and $m > a_i$ the expansion of $f_i[-m]$ at p_j:

$$f_i[-m] = \sum_{q \geq -a_j} \alpha_{ij}[-m, q] t_i^q$$

(note that $\alpha_i[-m, q] = \alpha_{ii}[-m, q]$). Now we can view the coefficients $\alpha_{ij}[-m, q]$ as functions on $\tilde{U}_{g,n}^{ns}(a)$, where we fix the ambiguity in adding a constant to $f_i[-m]$ by requiring that $\alpha_i[-m, 0] = 0$. It follows from the results of [8] that these functions are all expressed in terms of a finite number of them, which gives a closed embedding of $\tilde{U}_{g,n}^{ns}(a)$ into an affine space.

The rescaling of the tangent vectors (v_i) defines an action of G_m^n on $\tilde{U}_{g,n}^{ns}(a)$, so that the weight of the function $\alpha_{ij}[-m, q]$ is $me_i + qe_j$, where (e_i) is the standard basis in the character lattice of G_m^n.

There is a special point in $\tilde{U}_{g,n}^{ns}(a)$ which is a unique point stable under the action of G_m^n: it is the point where all the functions $\alpha_{ij}[-m, q]$ vanish, i.e., it corresponds to the origin in the ambient affine space. The underlying curve is the union of n rational cuspidal curves $C_{\text{cusp}}(a_i)$, glued transversally at the cusp. Here $C_{\text{cusp}}(a)$ is the projective curve with the affine part given by $\text{Spec}(k \cdot 1 + x^{a+1}[x])$, with one smooth point at infinity (see [8, Sec. 2.1]).

In [8] we also studied the GIT picture for the G_m^n-action on $\tilde{U}_{g,n}^{ns}(a)$. In general we have stability conditions depending on a character χ of G_m^n. In the case $n = 1$, i.e., for $\widetilde{U}_{g,1}^{ns}(g)$ there is a unique nonempty stability condition, so that the unique unstable point in $\widetilde{U}_{g,1}^{ns}(g)$ is the origin, i.e., the point corresponding to the curve $C_{\text{cusp}}(g)$. We denote this point by $[C_{\text{cusp}}(g)]$. Then the functions $\alpha_{ij}[-m, q]$ identify the corresponding GIT quotient stack,

$$\overline{U}_{g,1}^{ns} := (\widetilde{U}_{g,1}^{ns}(g) \setminus [C_{\text{cusp}}(g)])/G_m.$$
with a closed substack in the weighted projective stack.

For two collection of weights as above, \(a \) and \(a' \), we denote by \(\tilde{U}_{g,n}^{ns}(a, a') \) the intersection of the stacks \(\tilde{U}_{g,n}^{ns}(a) \) and \(\tilde{U}_{g,n}^{ns}(a') \). In other words, we impose both conditions, \(h^1(\sum a_ip_i) = \alpha \) and \(h^1(\sum a_ip_i) = \alpha' \), on the marked points.

1.2. The forgetful map. The rational map (0.0.1) corresponds to a regular morphism

\[
\text{for}_2 : \tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) \to \tilde{U}_{g,1}^{ns}(g)
\]

which is given as the composition of the open embedding \(\tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) \rightarrow \tilde{U}_{g,2}^{ns}(g, 0) \) followed by the forgetful map

\[
\text{for}_2 : \tilde{U}_{g,2}^{ns}(g, 0) \to \tilde{U}_{g,1}^{ns}(g)
\]
defined in [8, Thm. A]. The latter map sends \((C, p_1, p_2, v_1, v_2)\), with \(C \) irreducible, to \((C, p_1, v_1)\) (if \(C \) is reducible then it gets replaced by a certain curve \(\overline{C} \), such that \(C \to \overline{C} \) is contraction of the component containing \(p_2 \)).

Let \(Z \subset \tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) \) be the closed subscheme given as the preimage of the origin under (1.2.1). Then there is a regular morphism

\[
\tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) \setminus Z \to \tilde{U}_{g,1}^{ns}(g)
\]

induced by (1.2.1). Note that \(Z \) consists of \((C, p_1, p_2, v_1, v_2)\) such that \((C, p_1)\) is the cuspidal curve \(C_{\text{cusp}}(g) \) (with the marked point at infinity).

Let us denote by

\[
\tilde{U}_{g,2}^{ns}((g - 1, 1), (g + 1, 0)) \subset \tilde{U}_{g,2}^{ns}(g - 1, 1)
\]

the open subset given by the condition \(h^1((g + 1)p_1) = 0 \). Let also

\[
\tilde{W} \subset \tilde{U}_{g,2}^{ns}((g - 1, 1), (g + 1, 0))
\]

denote the closed locus given by the condition \(h^1(g, 0) \neq 0 \), so that

\[
\tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) = \tilde{U}_{g,2}^{ns}((g - 1, 1), (g + 1, 0)) \setminus \tilde{W}.
\]

Recall that we have sections \(f_1[-m] \in H^0(C, \mathcal{O}(mp_1 + p_2)) \), where \(C \) is the universal curve over \(\tilde{U}_{g,2}^{ns}(g - 1, 1) \), for \(m \geq g \), with expansions at \(p_1 \) of the form (1.1.1) (with \(i = 1 \)) with \(\alpha_1[-m, -g + 1] = \alpha_1[-m, 0] = 0 \).

Lemma 1.2.1. Let us set \(\alpha = \alpha_{12}[-g, -1], \beta = \alpha_{12}[-g - 1, -1] \). Then the open subset

\[
\tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) \subset \tilde{U}_{g,2}^{ns}(g - 1, 1)
\]

is given by the condition \(\alpha \neq 0 \). Similarly, the open subset

\[
\tilde{U}_{g,2}^{ns}((g - 1, 1), (g + 1, 0)) \subset \tilde{U}_{g,2}^{ns}(g - 1, 1)
\]

is the locus where either \(\alpha \neq 0 \) or \(\beta \neq 0 \).

Proof. Recall that the open subset \(\tilde{U}_{g,2}^{ns}((g - 1, 1), (g, 0)) \) is characterized by the condition \(h^1(gp_1) = 0 \). Since \(h^1(gp_1 + p_2) = 0 \), the long exact sequence of cohomology associated with the exact sequence of sheaves

\[
0 \to \mathcal{O}(gp_1) \to \mathcal{O}(gp_1 + p_2) \to \mathcal{O}(p_2)/\mathcal{O} \to 0
\]
shows that \(h^1(gp_1) \neq 0 \) precisely for those curves for which \(f_1[-g] \) is regular at \(p_2 \). But this is equivalent to the vanishing of \(\alpha \), since \(\alpha \) is the coefficient of \(t_2^{-1} \) in the expansion of \(f_1[-g] \) at \(p_2 \).

The case of \(\tilde{U}^{\text{ns}}_{g,2}((g-1,1),(g+1,0)) \) is similar: now we consider the exact sequence

\[
0 \to \mathcal{O}((g+1)p_1) \to \mathcal{O}((g+1)p_1+p_2) \to \mathcal{O}(p_2)/\mathcal{O} \to 0
\]

which shows that \(h^1((g+1)p_1) \neq 0 \) when both \(f_1[-g] \) and \(f_1[-g-1] \) are regular at \(p_2 \), i.e., both \(\alpha \) and \(\beta \) vanish.

The following Proposition is a crucial step in proving Theorem A.

Proposition 1.2.2. The subset \(Z \) is closed in \(\tilde{U}^{\text{ns}}_{g,2}((g-1,1),(g+1,0)) \), and we have \(Z \cap \tilde{W} = \emptyset \). There exists a regular morphism

\[
\tilde{\text{for}}_2 : \tilde{U}^{\text{ns}}_{g,2}((g-1,1),(g+1,0)) \setminus Z \to \tilde{U}^{\text{ns}}_{g,1}(g),
\]

extending the morphism (1.2.2) and sending \(\tilde{W} \) to a point. Furthermore, this point has no nontrivial automorphisms.

Proof. Let \(C' \) denote the universal curve over the open subset \(\tilde{U}^{\text{ns}}_{g,2}((g-1,1),(g,0)) \). To calculate explicitly the map (1.2.1), we need to find the sections \(f[-m] \in H^0(C',\mathcal{O}(mp_1)) \), for \(m \geq g + 1 \), and a modified formal parameter \(u \) at \(p_1 \), such that \(f[-m] \) would have expansions of the form

\[
f[-m] = u^{-m} + \alpha[-m, -g+1]u^{-g+1} + \alpha[-m, -g+2]u^{-g+2} + \ldots,
\]

where \(\alpha[-m, q] \) are some rational expressions of the coordinates on \(\tilde{U}^{\text{ns}}_{g,2}(g-1,1) \) with only powers of \(\alpha \) in the denominator.

As the first approximation let us set for \(m \geq g + 1 \),

\[
\tilde{f}[-m] = f_1[-m] - \frac{\alpha_{12}[-m,-1]}{\alpha} f_1[-g].
\]

The constant is chosen so that the poles at \(p_2 \) cancel out, so we have \(\tilde{f}[-m] \in H^0(\mathcal{O}(mp_1)) \), while the expansion of \(\tilde{f}[-m] \) at \(p_1 \) has form

\[
\tilde{f}[-m] = t_1^{-m} - \frac{\alpha_{12}[-m,-1]}{\alpha} t_1^{-g} + \ldots,
\]

where \(t_1 \) is the canonical parameter at \(p_1 \) on \(C' \).

Now we need to change the canonical parameter to \(u = t_1 + c_1 t_1^2 + \ldots \), and to add to each \(\tilde{f}[-m] \) a linear combination of \(\tilde{f}[-m'] \) with \(m' < m \), to get the expansions of the required form (1.2.4). We want to know only the highest order polar parts of the functions \(\alpha[-m, q] \), i.e., those with the highest power of \(\alpha \) (prescribed below) in the denominator, so we introduce the following filtration \(F_n \) on the space of formal Laurent series in \(t_1 \) with coefficients in \(R = \mathcal{O}(\tilde{U}^{\text{ns}}_{g,2}((g-1,1),(g,0))) \). By definition, a Laurent series belongs to \(F_n \) if it can be written in the form \(\sum_i a_i \alpha^{-i-n} t_1 \), where each \(a_i \) extends to a regular function on \(\tilde{U}^{\text{ns}}_{g,2}(g-1,1) \).
It will be enough for us to keep track only of \(f[-m] \mod F_{m-1} \). It is easy to see that the change of variables \(t_1 \mapsto t_1 + c_1 t_1^2 + c_2 t_1^3 + \ldots \), where for each \(i \), \(\alpha^i c_i \) extends to a regular function on \(\tilde{U}_{g,2}^{ns}(g-1,1) \), preserves the filtration \((F_n)\). Since to go from \(t_1 \) to \(u \) we will only use the changes of variables of this form, it suffices for us to know that

\[
\tilde{f}[-g-1] \equiv t_1^{-g-1} - \lambda t_1^{-g} \mod F_g,
\]

(1.2.5)

where \(\lambda = \frac{a_{12}-g-1,-1}{a} = \frac{\beta}{\alpha} \), while

\[
\tilde{f}[-m] \equiv t_1^{-m} \mod F_{m-1} \text{ for } m > g+1.
\]

(1.2.6)

We claim that there exist rational constants \((r_{m,j})\), \(1 \leq j < m - g \), and \((r_i)\), \(i \geq 1 \), such that

\[
f[-m] \equiv \tilde{f}[-m] + \sum_{1 \leq j < m-g} r_{m,j} \lambda^j \tilde{f}[-m+j] \mod F_{m-1},
\]

(1.2.7)

for each \(m \geq g + 1 \), and

\[
t_1 \equiv u + r_1 \lambda u^2 + r_2 \lambda^2 u^3 + \ldots \mod F_{-2}.
\]

(1.2.8)

Namely, we prove by induction on \(n \geq 1 \) that (1.2.7) holds for all \(m \) with \(m \leq g + n \), and that the required relation between \(t_1 \) and \(u \) holds modulo \(t_1^n R[[t_1]] + F_{-2} \).

Let us recall the recursive construction of \((f[-g-n])\) and of formal parameters \(u_n \) such that \(u_n \equiv u \mod t_1^{n+1} R[[t_1]] \), where \(u \) is the canonical parameter (cf. \([4, \text{Lem. 4.1.3}]\)). For \(n = 1 \) we have \(f[-g-1] = \tilde{f}[-g-1] \) and \(u_1 = t_1 \). Assume \(f[-g-n'] \) are already defined for \(n' < n \) and \(u_{n-1} \equiv u \mod t_1^n R[[t_1]] \) is known, so that

\[
f[-g-n'] \equiv u_{n-1}^{-g-n'} \mod t_1^{-g+1} R[[t_1]] \text{ for } n' < n - 1, \text{ while}
\]

\[
f[-g-n+1] \equiv u_{n-1}^{-g-n+1} + c \cdot u_{n-1}^{-g} \mod t_1^{-g+1} R[[t_1]].
\]

(1.2.9)

Then we set \(u_n = u_{n-1} + \frac{c}{g+n-1} u_{n-1}^n \), the expansion of \(f[-g-n+1] \) in \(u_n \) will take form

\[
f[-g-n+1] \equiv u_n^{-g-n+1} \mod t_1^{-g+1} R[[t_1]],
\]

and the expansions of \(f[-g-n'] \) for all \(n' < n - 1 \) in \(u_n \) will still have the correct form. Now, if the expansion of \(\tilde{f}[-g-n] \) in \(u_n \) has form

\[
\tilde{f}[-g-n] = u_n^{-g-n} + p_1 u_n^{-g-n+1} + \ldots + p_{n-1} u_n^{-g-1} + \ldots,
\]

(1.2.10)

then we set

\[
f[-g-n] = \tilde{f}[-g-n] - p_1 f[-g-n+1] - \ldots - p_{n-1} f[-g-1].
\]

(1.2.11)

The induction assumption implies that the function \(c \) in (1.2.9) has the leading polar term \(r \lambda^{n-1} \) for some \(r \in \mathbb{Q} \), so the change of variables from \(u_{n-1} \) to \(u_n \) is of the right form, as discussed above. It follows that

\[
t_1 \equiv u_n + s_1 \lambda u_n^2 + \ldots + s_{n-1} \lambda^{n-1} u_n^{n} \mod t_1^{n+1} R[[t_1]] + F_{-2}
\]

for some \(s_i \in \mathbb{Q} \). Now from (1.2.6) we get that

\[
\tilde{f}[-g-n] = (u_n + s_1 \lambda u_n^2 + \ldots + s_{n-1} \lambda^{n-1} u_n^n)^{-g-n} \mod t_1^{-g} R[[t_1]] + F_{g+n-1}.
\]
This implies that for \(i = 1, \ldots, n = 1 \), the leading polar term of the coefficient \(p_i \) in the expansion (1.2.10) is of the form \(a_i \lambda^i \), for \(a_i \in \mathbb{Q} \). Now (1.2.11) shows that (1.2.7) holds for \(m = g + n \). This finishes the proof of our claim.

Now combining (1.2.5)–(1.2.8), we get that for each \(m \geq g + 1 \) the expansion of \(f[-m] \) in the canonical parameter \(u \) has form

\[
f[-m] \equiv u^{-m} + \sum_{j \geq 1} s_{m,j} \lambda^{m-g+j} u^{-g+j} \mod F_{m-1},
\]

for some rational constants \((s_{m,j})\). In other words, the functions \(\alpha[-m, -g+j] \in R \), defining the map (1.2.1), have form

\[
\alpha[-m, -g+j] = s_{m,j} \lambda^{m-g+j} + \ldots
\]

where the omitted terms have smaller powers of \(\alpha \) in the denominator.

Finally, we need to know that not all \((s_{m,j})\) are zero, so let us compute \(s_{-g-1,-g+1} \) and \(s_{g-1,g+2} \) following the above procedure (we will need to look at two coordinates to prove that the point, which is the image of \(\mathcal{W} \), has no nontrivial automorphisms). Due to (1.2.5), the first change of variables is

\[
t_1 = u_2 - \frac{\lambda}{g+1} u_2^2 \mod F_{-2}.
\]

Then we get expansions

\[
f[-g-1] = \tilde{f}[-g-1] \equiv u_2^{-g-1} + \frac{2-g}{2(g+1)} \lambda^2 u_2^{-g+1} + \frac{-g^2 + g + 3}{3(g+1)^2} \lambda^3 u_2^{-g+2} \mod u_2^{-g+3} R[[u_2]] + F_g,
\]

\[
\tilde{f}[-g-2] \equiv u_2^{-g-2} + \frac{g+2}{g+1} \lambda u_2^{-g-1} + \frac{(g+2)(g+3)}{2(g+1)^2} \lambda^2 u_2^{-g} \mod u_2^{-g+1} R[[u_2]] + F_{g+1},
\]

\[
\tilde{f}[-g-3] \equiv u_2^{-g-3} + \frac{g+3}{g+1} \lambda u_2^{-g-2} + \frac{(g+3)(g+4)}{2(g+1)^2} \lambda^2 u_2^{-g-1} + \frac{(g+3)(g+4)(g+5)}{6(g+1)^3} \lambda^3 u_2^{-g} \mod u_2^{-g+1} R[[u_2]] + F_{g+2}.
\]

Hence, the coefficient of \(u_2^{-g} \) in \(f[-g-2] \mod F_{g+1} \) (which is the same as in \(\tilde{f}[-g-2] \mod F_{g+1} \)) is \(\frac{(g+2)(g+3)}{2(g+1)^2} \lambda^2 \). Thus, the second change of variables (defined so that the coefficient of \(u_3^{-g} \) in \(f[-g-2] \) is zero) is

\[
u_2 = u_3 + \frac{(g+2)(g+3)}{2(g+2)(g+1)^2} \lambda^2 u_3^2 \mod F_{-2},
\]

and we get the expansion

\[
f[-g-1] = u_3^{-g-1} - \frac{2g+1}{2(g+1)} \lambda^2 u_3^{-g+1} + \frac{-g^2 + g + 3}{3(g+1)^2} \lambda^3 u_3^{-g+2} \mod u_3^{-g+3} R[[u_3]] + F_g,
\]
which shows that
\[s_{g+1,1} = \frac{2g + 1}{2(g+1)}. \]

Also, we see that the coefficient of \(u_3^g \) in the expansion of \(\tilde{f}[-g - 3] \mod F_{g+2} \) is equal to \(-\frac{(g+3)(g^2+3g-1)}{3(g+1)^3}\lambda^3\). This dictates that the next change of variables is
\[u_3 = u_4 - \frac{(g^2 + 3g - 1)}{3(g + 1)^3}\lambda^3 u_4 \mod F_{-2}. \]

Finally, we get that the coefficient of \(u_4^{-g+2} \) in the expansion of \(f[-g - 1] \mod F_g \) is equal to
\[\frac{-g^2 + g + 3}{3(g + 1)^2} \lambda^3 + \frac{(g^2 + 3g - 1)}{3(g + 1)^2} \lambda^3 = \frac{4g + 2}{3(g + 1)^2} \lambda^3, \]
and hence,
\[s_{g+1,2} = \frac{4g + 2}{3(g + 1)^2}. \]

Now let us consider the modified map
\[\alpha \cdot \tilde{\text{for}}_2 : \tilde{U}_{g,2}^{ns}(g-1,1), (g,0)) \to \tilde{U}_{g,1}^{ns}(g) : x \mapsto \alpha(x) \cdot \tilde{\text{for}}_2(x) \]
Since the weight of \(\alpha[-m, -g+j] \) is \(m - g + j \), the modified map sends \(x \) to the point in \(\tilde{U}_{g,1}^{ns}(g) \) with coordinates
\[\alpha(x)^{m-g+j} \alpha[-m, -g+j](x) = s_{m,j} \beta(x)^{m-g+j} + \alpha(x) \cdot f_{m,j}(x), \tag{1.2.12} \]
where \(f_{m,j} \) are regular functions on \(\tilde{U}_{g,2}^{ns}(g-1,1) \). In particular, \(\alpha \cdot \tilde{\text{for}}_2 \) can be viewed as a regular map from \(\tilde{U}_{g,2}^{ns}(g-1,1) \).

Recall that by Lemma 1.2.1, the open subset \(\tilde{U}_{g,2}^{ns}(g-1,1), (g+1,0) \) is the locus where either \(\alpha \neq 0 \) or \(\beta \neq 0 \), and the locus \(\tilde{W} \) is given by \(\alpha = 0 \). Thus, (1.2.12) gives for \(x \in \tilde{W} \):
\[\alpha \cdot \tilde{\text{for}}_2(x) = (s_{m,j} \beta(x)^{m-g+j}) = \beta(x) \cdot (s_{m,j}). \]
Furthermore, as we have seen above, the constants \(s_{g-1,1} \) and \(s_{g-1,2} \) are nonzero, so the corresponding coordinates in the above expression are also nonzero. Note also that the corresponding point of \(\tilde{U}_{g,1}^{ns}(g) \) is equal to \((s_{m,j}) \), so it does not depend on \(x \).

Denoting by \(U_{\beta\neq0} \subset \tilde{U}_{g,2}^{ns}(g-1,1), (g+1,0) \) the open subset where \(\beta \neq 0 \), we get
\[(\alpha \cdot \tilde{\text{for}}_2)^{-1}(0) \cap U_{\beta\neq0} = Z \cap U_{\beta\neq0}, \]
and so \(Z \cap U_{\beta\neq0} \) is closed in \(U_{\beta\neq0} \). Since, \(Z \) is closed in the open subset \(\alpha \neq 0 \), we derive that \(Z \) is closed in \(\tilde{U}_{g,2}^{ns}(g-1,1), (g+1,0) \).

We have a covering of \(\tilde{U}_{g,2}^{ns}(g-1,1), (g+1,0) \setminus Z \) by two open subsets: \(\tilde{U}_{g,2}^{ns}(g-1,1), (g,0) \setminus Z \) and \(U_{\beta\neq0} \). The required regular morphism (1.2.3) to \(\tilde{U}_{g,1}^{ns}(g) \) is induced by \(\tilde{\text{for}}_2 \) on \(\tilde{U}_{g,2}^{ns}(g-1,1), (g,0) \setminus Z \) and by \(\alpha \cdot \tilde{\text{for}}_2 \) on \(U_{\beta\neq0} \). As we have seen above, this morphism sends \(\tilde{W} \subset U_{\beta\neq0} \) to the point \((s_{m,j}) \) of the weighted projective stack with two
Indeed, the only unstable point in U since the condition $h_0(gp) = 1$ implies that $h_1((g + 1)p) = 0$ and $h_0((g - 1)p) = 1$.

Note also that we have an inclusion
\[\mathcal{M}_{g,1} \setminus \mathcal{W} \subset U \]
since the condition $h_0(gp) = 1$ implies that $h_1((g + 1)p) = 0$ and $h_0((g - 1)p) = 1$.

Furthermore, the complement to U is a proper closed subset in \mathcal{W}, so it has codimension ≥ 2 in $\mathcal{M}_{g,1}$. In particular, $U \cap \mathcal{W}$ is dense in \mathcal{W}.

Note that we have a natural open inclusion
\[\mathcal{M}_{g,1} \setminus \mathcal{W} \hookrightarrow \overline{\mathcal{U}}_{g,1}^{\text{ns}}(g). \] (1.3.1)
Indeed, the only unstable point in $\mathcal{U}_{g,1}^{\text{ns}}(g)$ corresponds to the singular curve $C_{\text{cusp}}(g)$. We are going to show that the above morphism extends to a regular morphism
\[U \to \overline{\mathcal{U}}_{g,1}^{\text{ns}}(g), \]
such that $U \cap \mathcal{W}$ is mapped to a point.

Recall that by Proposition 1.2.2, we have a regular morphism
\[\tilde{\phi}_2 : \tilde{\mathcal{U}}_{g,2}^{\text{ns}}((g - 1, 1), (g + 1, 0)) \setminus Z \to \overline{\mathcal{U}}_{g,1}^{\text{ns}}(g), \]
sending $\tilde{\mathcal{W}}$ to a point. Let $V \subset \tilde{\mathcal{U}}_{g,2}^{\text{ns}}((g - 1, 1), (g + 1, 0))$ be the open subset corresponding to smooth curves. Then $V \cap Z = \emptyset$ because for points of Z the underlying curve is singular. Thus, the above morphism induces a regular morphism
\[\tilde{\phi} : V \to \overline{\mathcal{U}}_{g,1}^{\text{ns}}(g), \] (1.3.2)
mapping $\tilde{\mathcal{W}} \cap V$ to a point.

Now we claim that the natural projection $V \to \mathcal{M}_{g,1}$ induces a smooth surjective morphism $V \to U$. Indeed, if $h_0((g - 1)p_1 + p_2) = 1$ then $h_0((g - 1)p_1) = 1$, so this projection factors through U. Conversely, if for $(C, p_1) \in \mathcal{M}_{g,1}$ one has $h_0((g - 1)p_1) = 1$ then for generic p_2 we will have $h_0((g - 1)p_1 + p_2) = 1$, hence the map $V \to U$ is surjective. It is smooth since V is a \mathbb{G}_m^2-torsor over an open substack of a universal curve over U.

It remains to prove that the morphism (1.3.2) factors through a morphism $\phi : U \to \overline{\mathcal{U}}_{g,1}^{\text{ns}}(g)$ (it will then map $\mathcal{W} \cap U$ to a point, since (1.3.2) sends $\tilde{\mathcal{W}} \cap V$ to a point). Indeed, this is true if we restrict to the open subset $\mathcal{M}_{g,1} \setminus \mathcal{W}$, by the construction. Now let us set $T := V \times_U V$ and consider two morphisms
\[f_1 = \tilde{\phi} \circ \pi_1, f_2 = \tilde{\phi} \circ \pi_2 : T \to \overline{\mathcal{U}}_{g,1}^{\text{ns}}(g), \]
where π_1 and π_2 are two projections to V. We know that these two maps agree on the open subset $\pi^{-1}(\mathcal{M}_{g,1} \setminus \mathcal{W})$, where π is the projection $T = V \times_U V \to U$.

Note that the scheme T parametrizes data $(C, p_1, p_2, p'_2, v_1, v_2, v'_2)$ such that $h_0((g - 1)p_1 + p_2) = h_0((g - 1)p_1 + p'_2) = 1$ and $h_1((g + 1)p_1) = 0$ (and C smooth, $p_1 \neq p_2$, nonzero homogeneous coordinates, of weights 2 and 3. Hence, this point does not have nontrivial automorphisms. \[\text{□}\]
Let us work over Proposition 2.1.1. Let U be the cartesian diagram

\[
\begin{array}{ccc}
T' & \longrightarrow & \overline{U}_{g,1}^{\text{ns}}(g) \\
\rho & \downarrow & \Delta \\
T & \longrightarrow & \overline{U}_{g,1}^{\text{ns}}(g) \times \overline{U}_{g,1}^{\text{ns}}(g)
\end{array}
\]

Since the stack $\overline{U}_{g,1}^{\text{ns}}(g)$ is separated, the vertical arrows are finite morphisms. Finally, we observe that a generic pointed curve (C, p) in $\mathcal{M}_{g,1}$ does not have nontrivial automorphisms (note that in the case $g = 2$ this is true since we can take p not to be a Weierstrass point). Hence, the preimages of points with trivial automorphisms in $\overline{U}_{g,1}^{\text{ns}}(g)$ under f_1 and f_2 are nonempty open subsets in T. Since f_1 and f_2 agree on a nonempty open subset, we deduce that there exists a nonempty open subset $W \subset T$ such that $\rho^{-1}(W) \to W$ is an isomorphism. Let $T'' \subset T'$ be an irreducible component of T', containing $\rho^{-1}(W)$, with reduced scheme structure. Then $\rho|_{T''} : T'' \to T$ is a finite birational morphism. Since T is smooth, we deduce that $\rho|_{T''}$ is an isomorphism. Hence, ρ admits a section, and so we have $f_1 = f_2$, which means that the map (1.3.2) descends to a morphism from U. \hfill \Box

2. Curves of genus 2

2.1. Explicit identification of $\overline{U}^{\text{ns}}_{2,1}(2)$.

Proposition 2.1.1. Let us work over $\mathbb{Z}[1/6]$. One has an isomorphism of the moduli scheme $\overline{U}^{\text{ns}}_{2,1}(2)$ with the affine space \mathbb{A}^5 with coordinates q_1, q_2, q_2, q_3, q_3, so that the affine universal curve $C \setminus \{p\}$ is given by the following equations in the independent variables f, h, k:

\[
\begin{align*}
h^2 &= f k + q_1 h + 2q_2^2 + f(q_2 + q_2 f), \\
hk &= f(q_3 + q_3 f + f^2) - q_1 k + (q_2 + q_2 f)h + q_2(q_2 + q_2 f), \\
k^2 &= (q_3 + q_3 f + f^2)h + (q_2 + q_2 f)^2 - 2q_1(q_3 + q_3 f + f^2).
\end{align*}
\] (2.1.1)

The weights of the \mathbb{G}_m-action are:

\[
\deg(q_2) = 2, \quad \deg(q_3) = 3, \quad \deg(q_1) = 4, \quad \deg(q_2) = 5, \quad \deg(q_3) = 6.
\]

Hence, we get the identification of $\overline{U}^{\text{ns}}_{2,1}(2)$ with the weighted projective stack $\mathbb{P}(2, 3, 4, 5, 6)$.

Proof. This is proved using the same method as in [7, Thm. A] and [8, Thm. A]. Let (C, p, v) be a point in $\overline{U}^{\text{ns}}_{2,1}(2)$. Since $h^1(2p) = 0$, we have $h^0(np) = n - 1$ for $n \geq 2$. Let t be a formal parameter at t compatible with the given tangent vector. We can find the elements $f \in H^0(C, \mathcal{O}(3p))$, $h \in H^0(C, \mathcal{O}(4p))$ and $k \in H^0(C, \mathcal{O}(5p))$ with the Laurent expansions

\[
\begin{align*}
f &= \frac{1}{t^3} + \ldots, \quad h &= \frac{1}{t^4} + \ldots, \quad k &= \frac{1}{t^5} + \ldots,
\end{align*}
\]

\[p_1 \neq p_2\). Thus, it is an open subset in a \mathbb{G}_m^5-torsor over the universal curve over $\mathcal{M}_{g,2}$ (via the projection to (C, p_1, p_2, p_2)), in particular, T is smooth and irreducible.
where the omitted terms have poles of smaller order. Then the elements
\[f^n, f^n h, f^n k, \quad \text{for } n \geq 0, \quad (2.1.2) \]
form a linear basis on \(H^0(C \setminus \{p\}, \mathcal{O}) \), so we can express \(h^2, hk \) and \(k^2 \) as their linear combinations. Taking into account the above Laurent expansion, we get relations of the form
\[
\begin{align*}
h^2 &= p_1(f)k + q_1(f)h + c_1(f), \\
hk &= p_2(f)k + q_2(f)h + c_2(f), \\
k^2 &= p_3(f)k + q_3(f)h + c_3(f),
\end{align*}
\]
where \(p_i, q_i, c_i \) are polynomials in \(f \) with the following restrictions:
\[
\begin{align*}
deg p_1 &= 1, \, \deg p_2 \leq 1, \, \deg p_3 \leq 1, \, \deg q_1 \leq 1, \, \deg q_2 \leq 1, \, \deg q_3 = 2, \\
\deg c_1 &= 2, \, \deg c_2 = 3, \, \deg c_3 \leq 3,
\end{align*}
\]
and the polynomials \(p_1, q_1 \) and \(c_2 \) are monic. Note that \(f \) is defined up to adding a constant, while \(h \) and \(k \) are defined up to the transformation
\[
(h, k) \mapsto (\tilde{h} = h + A(f), \tilde{k} = k + Bh + C(f)),
\]
where \(A \) and \(C \) are linear polynomials in \(f \) and \(B \) is a constant. It is easy to check that we can fix the ambiguity in the choice of \(h \) and \(k \) by requiring that \(p_3 = 0 \) and \(p_2 = -q_1 \) is a constant, i.e., does not have a linear term in \(f \). More precisely, we should set
\[
A = -\frac{q_1 + p_2}{3}, \quad B = \frac{1}{3}(q_1' - 2p_2'), \quad C = -\frac{p_3}{2} - \frac{B^2p_1}{2} - Bp_2 \quad (2.1.4)
\]
(here \(q_1' \) and \(p_2' \) are derivatives of the linear polynomials \(q_1 \) and \(p_2 \)). Note that here we use our assumption that \(6 \) is invertible. Finally, we can fix the ambiguity in the choice of \(f \) by requiring that \(p_1(f) = f \).

Now the fact that the elements \((2.1.2)\) form a basis of \(H^0(C \setminus \{p\}, \mathcal{O}) \) is equivalent to the condition that the relations \((2.1.3)\) form a Gröbner basis in the ideal they generate (with respect to the degree reverse lexicographical order such that \(f < h < k \), \(\deg(f) = 3 \), \(\deg(h) = 4 \), \(\deg(k) = 5 \)). Applying the Buchberger’s Criterion (see [3, Thm. 15.8]) we compute that this condition is equivalent to the following expressions of \(c_1, c_2, c_3 \) in terms of the other variables (where in the second expression in each line we take into account the normalization \(p_3 = 0, \, p_2 = -q_1 \)):
\[
\begin{align*}
c_1 &= p_2^2 + p_1q_2 - q_1p_2 = 2q_1^2 + q_1q_2, \\
c_2 &= p_1q_3 - p_2q_2 = p_1q_3 + q_1q_2, \\
c_3 &= q_2^2 + p_2q_3 - q_1q_3 = q_2^2 - 2q_1q_3.
\end{align*}
\]
Thus, if we set
\[
q_2 = q_{2,0} + q_{2,1} f, \quad q_3 = q_{3,0} + q_{3,1} f + f^2,
\]
then we see that the constants \((q_1, q_{2,0}, q_{2,1}, q_{3,0}, q_{3,1})\) determine the curve \((C, p)\). The above process can be run in families and can be reversed (see the proofs of [7, Thm. A] and [8, Thm. A]), so this gives the required identification of our moduli space with \(\mathbb{A}^5 \). \(\Box \)
2.2. Special cuspidal curve C_0. Let C_0 denote the curve obtained from \mathbb{P}^1 by pinching the point 0 into a genus 2 cuspidal singular point, so that a regular function f near 0 descends to C_0 if and only if the expansion of f in the standard parameter t has form
\begin{equation}
 f \equiv c_0 + c_2 \cdot t^2 \mod(t^4).
\end{equation}

Note that this condition depends on coordinates, i.e., the point $\infty \in C_0$ plays a special role. For example, the standard \mathbb{G}_m-action on \mathbb{P}^1, preserving 0 and ∞, descends to a \mathbb{G}_m-action on C_0. Also, note that $C_0 \setminus \{\infty\} = \text{Spec}(\mathbb{C}[t^2, t^5])$.

The next Lemma shows that if we equip C_0 with a smooth marked point $p \neq \infty$ then we get a point of $\overline{U}_{2,1}^{is}(2)$.

Lemma 2.2.1. Let $p \in C_0 \setminus \{0, \infty\}$. Then $h^0(C_0, \mathcal{O}(2p)) = 1$. On the other hand, for $p = \infty$ we have $h^0(C_0, \mathcal{O}(2p)) = 2$.

Proof. In the case $p \neq 0, \infty$ we can assume that $t(p) = 1$. Then $\mathcal{O}_{\mathbb{P}^1}(2p)$ is spanned by $1, \frac{1}{1-t}$ and $\frac{1}{(1-t)^2}$. Looking at the expansions at $t = 0$ we see that the only sections of $\mathcal{O}_{\mathbb{P}^1}(2p)$ satisfying (2.2.1) are constants.

In the case $p = \infty$ the functions $(1, t^2)$ give a basis of $H^0(C_0, \mathcal{O}(2p))$. \square

Definition 2.2.2. We denote by $[C_0]$ the point of $\overline{U}_{2,1}^{is}(2)$ corresponding to (C_0, p), where $p \neq 0, \infty$.

2.3. Classification of singular irreducible curves of genus 2. Let C be an irreducible curve of genus 2, and let $\rho : \tilde{C} \to C$ be the normalization. If C is singular then the genus of \tilde{C} is either 1 or 0.

If the genus of \tilde{C} is 1 then $\text{coker}(\mathcal{O}_C \to \rho_* \mathcal{O}_{\tilde{C}})$ has length 1, so it is supported at one singular point $q \in C$. If $\rho^{-1}(q)$ contains two distinct points $q_1, q_2 \in C$ then ρ factors through a morphism $C' \to C$, where C' is the nodal curve obtained by gluing q_1 and q_2 on \tilde{C}. Since C' has genus 2 we should have $C \simeq C'$. If $\rho^{-1}(q)$ is one point on C then it is easy to see that C has a simple cusp at q.

In the remaining case when $\tilde{C} = \mathbb{P}^1$ we have more possibilities. The length of the sheaf $\mathcal{F} := \text{coker}(\mathcal{O}_C \to \rho_* \mathcal{O}_{\tilde{C}})$ is now 2, so the support of \mathcal{F} can consist of ≤ 2 points.

Case I: support of \mathcal{F} consists of two distinct points q_1, q_2. We have the following subcases.

Case Ia: $|\rho^{-1}(q_1)| > 1$ and $|\rho^{-1}(q_2)| > 1$. In this case the map ρ factors through the nodal curve C' obtained by gluing two pairs of distinct points in \mathbb{P}^1. Since the genus of C' is 2, we should have $C \simeq C'$.

Case Ib: $|\rho^{-1}(q_1)| = 1$ and $|\rho^{-1}(q_2)| > 1$. In this case ρ factors through the curve C' obtained by gluing two pairs of distinct points in \mathbb{P}^1 and pinching one extra point to a simple cusp. Again, we have that the genus of C' is 2, so $C \simeq C'$.

Case Ic: $|\rho^{-1}(q_1)| = |\rho^{-1}(q_2)| = 1$. In this case C is obtained by pinching two points of \mathbb{P}^1 into simple cusps.

Case II: \mathcal{F} is supported at one point q.

Case IIa: $|\rho^{-1}(q)| > 2$. In this case ρ factors through the curve C' obtained by gluing transversally 3 points on \mathbb{P}^1 into a single point (with the coordinate cross singularity). Since the genus of C' is 2, we get $C \simeq C'$.

12
Case IIb: $|\rho^{-1}(q)| = 2$. Let $\rho^{-1}(q) = \{q_1, q_2\}$. Let t be a generator of the maximal ideal $m_q \subset O_{C,q}$. Assume first that $t \in m_{q_1}^2$. Then ρ factors through the curve C' obtained from \mathbb{P}^1 by first pinching q_1 into a simple cusp and then gluing it transversally with the point q_2. Since C' has genus 2, we have $C \simeq C'$. On the other hand, if t maps to a generator of m_{q_i} for $i = 1, 2$, then ρ factors through the curve C'' obtained from \mathbb{P}^1 by gluing q_1 and q_2 into a tacnode singularity. Since such C'' has genus 2, we have $C \simeq C''$.

Case IIc: $|\rho^{-1}(q)| = 1$. In this case we can identify C with \mathbb{P}^1 as a topological space, so that O_C is a subsheaf of $O_{\mathbb{P}^1}$, which differs from it only at one point q, so that $m_{C,q} \subset m_{\mathbb{P}^1,q}^2$ is an embedding of codimension 1. We claim that there are two curves of this type, up to an isomorphism. If $m_{C,q} \subset m_{\mathbb{P}^1,q}^3$ then $m_{C,q} = m_{\mathbb{P}^1,q}^3$ and $C = C^{cusp}(2)$ (see Sec. 1.1).

Now assume that $m_{C,q} \not\subset m_{\mathbb{P}^1,q}^3$. Let t be a formal parameter near q on \mathbb{P}^1. Then $\hat{m}_{C,q}$ is a (non-unital) subalgebra in $t^2 \mathbb{C}[[t]]$ of codimension 1, and there exists an element $f \in \hat{m}_{C,q}$ such that $f \equiv t^2 \mod t^3 \mathbb{C}[[t]]$. Changing the formal parameter we can assume that $f = t^2$. There could not be an element $h \in \hat{m}_{C,q}$ such that $h \equiv t^3 \mod t^4 \mathbb{C}[[t]]$, since then we would have $\hat{m}_{C,q} = t^2 \mathbb{C}[[t]]$. Therefore,

$$\hat{m}_{C,q} = \mathbb{C} \cdot t^2 + t^4 \mathbb{C}[[t]].$$

Note that the subspace in the right-hand side depends only on $t \mod t^3 \mathbb{C}[[t]]$. Now we observe that any formal parameter at q, modulo $m_{\mathbb{P}^1,q}^3$, can be obtained from a unique regular function on $\mathbb{P}^1 \setminus \{p\}$, for some $p \neq q$. Using automorphisms of \mathbb{P}^1 we can make $q = 0$, $p = \infty$, so that C is the curve C_0 defined before.

2.4. Comparison of stabilities for irreducible curves of genus 2.

Proposition 2.4.1. Let C be an irreducible curve of genus 2, and let p be a smooth point. Then (C, p) \mathcal{Z}-stable if and only if C is not of type IIc.

Proof. It is easy to see that a curve C of type IIc is not \mathcal{Z}-stable. Indeed, if there is a contracting map $C' \rightarrow C$ then C' would have a rational component with only two distinguished points, so it could not be stable. Assume now that C is not of type IIc. If (C, p) is nodal then it is stable (since C is irreducible), hence it is \mathcal{Z}-stable.

Next, if C is obtained by pinching a point on an irreducible nodal curve E of genus 1 into a cusp, then there is a contraction $f : E \cup E' \rightarrow C$, where $E \cup E'$ is the stable curve with E and E' glued nodally at one point. Here the marked point is placed on E and $f(E')$ is the cusp on C. This shows that (C, p) is \mathcal{Z}-stable. Similarly, if C is a rational curve with two cusps then there is a contraction to C from \mathbb{P}^1 with two elliptic tails (that get contracted into cusps).

There remains two cases for C: IIa and IIb. In the case IIa we have a contraction to C from the union of two \mathbb{P}^1’s, joined nodally at 2 points. In the case IIb there is a contraction to C from the curve with an elliptic bridge. In other words, we consider the union $\mathbb{P}^1 \cup E$, where E is an elliptic curve, \mathbb{P}^1 and E are joined nodally at 2 points, so that there are no marked points on E. It is known (see [10, Ex. 2.5]) that there exists a contraction $\mathbb{P}^1 \cup E \rightarrow C$, mapping E to the singular point, for both types of curves occurring in the case IIb.

Corollary 2.4.2. The stack $\overline{M}_{2,1}(\mathcal{Z})$ is smooth and irreducible.
Proof. The possible singular points that can appear in \(Z \)-stable curves of genus 2, other that nodes, are: a simple cusp, a tacnode, and a coordinate cross in 3-space. All of these have smooth versal deformation spaces and are smoothable, hence the assertion (see [11, Lem. 2.1]).

Using the classification from Sec. 2.3 we easily get the following codimension estimate.

Lemma 2.4.3. Away from a closed subset of codimension \(\geq 2 \), for every point \((C, p)\) in \(\overline{M}_{2,1}(Z) \) (resp., \(\overline{U}_{2,1}^{ss}(2) \)), \(C \) is either smooth, or a nodal curve with the normalization of genus 1.

Proof. Both \(\overline{M}_{2,1}(Z) \) and \(\overline{U}_{2,1}^{ss}(2) \) are irreducible of dimension 4. Now we just go through the strata described in Sec. 2.3 and see that they all have dimension \(\leq 2 \), except when \(C \) is either smooth or nodal with the normalization of genus 1.

We need one more simple observation.

Lemma 2.4.4. Let \(C \) be an irreducible curve of genus 2, and let \(p \in C \) be a smooth point. Then \(h^0(p) = 1 \) and \(h^1(3p) = 0 \).

Proof. First, if \(h^0(p) = 2 \) then we would get a degree 1 regular map \(C \rightarrow \mathbb{P}^1 \). Composing it with the normalization map \(\tilde{C} \rightarrow C \), we get that the normalization map is the inverse map \(\mathbb{P}^1 \rightarrow C \), which is impossible. Hence, \(h^0(p) = 1 \).

If \(h^1(2p) = 0 \) then we also have \(h^1(3p) = 0 \), so it is enough to consider the case \(h^1(2p) \neq 0 \), i.e., \(h^0(2p) = 2 \). Suppose that \(h^0(3p) = 3 \). Then we can choose \(f \in H^0(C, \mathcal{O}(2p)) \) and \(h \in H^0(C, \mathcal{O}(3p)) \) with the Laurent expansions \(f = \frac{1}{t^2} + \ldots \), \(h = \frac{1}{t^3} + \ldots \) at \(p \) (for some formal parameter \(t \) at \(p \)). Furthermore, there is a canonical choice of \(f \) and \(h \), such that the relation

\[
h^2 = f^3 + af + b
\]

holds for some constants \(a \) and \(b \). Then the algebra \(\mathcal{O}(C \setminus \{p\}) \) has the linear basis \((f^n), (hf^n)\), and is isomorphic to the algebra \(A = \mathbb{C}[h, f]/(h^2 - f^3 - af - b) \). Since \(C \) is irreducible, it is isomorphic to Proj of the Rees algebra of \(A \), which is a plane cubic, so we get that the arithmetic genus of \(C \) is equal to 1, which is a contradiction. This shows that \(h^0(3p) = 2 \), i.e., \(h^1(3p) = 0 \).

Theorem 2.4.5. Let \(\overline{W} \subset \overline{M}_{2,1}(Z) \) be the closure of the Weierstrass locus \(W \subset M_{2,1} \). Then \(\overline{W} \) coincides with the locus where \(h^1(2p) \neq 0 \). There is a regular morphism

\[
\phi_2 : \overline{M}_{2,1}(Z) \rightarrow \overline{U}_{2,1}^{ss}(2),
\]

such that \(\phi_2(\overline{W}) = [C_0] \) and \(\phi_2 \) induces an isomorphism

\[
\overline{M}_{2,1}(Z) \setminus \overline{W} \cong \overline{U}_{2,1}^{ss}(2) \setminus [C_0].
\]

Proof. First, we observe that every irreducible component of the locus \(h^1(2p) \neq 0 \) has codimension 1 in \(\overline{M}_{2,1}(Z) \) (recall that the latter stack is smooth and irreducible by Corollary 2.4.2). By Lemma 2.4.3, to see that this locus coincides with \(\overline{W} \), it is enough to see that the locus of \((C, p)\), such that \(C \) is nodal with normalization \(E \) of genus 1 and \(h^1(2p) \neq 0 \) has dimension 2 (and hence has codimension 2 in \(\overline{M}_{2,1}(Z) \)). But if \(C \) is obtained from \(E \)
by identifying points \(q_1 \neq q_2 \) then the condition that \(h^0(2p) = 2 \) implies the existence of a rational function on \(E \) with pole of order 2 at \(p \) and vanishing at both \(q_1 \) and \(q_2 \). In other words, we should have a linear equivalence \(2p \sim q_1 + q_2 \). Thus, we have a finite number of choices for each \((E, q_1, q_2) \), so the dimension is 2.

Next, let us denote by

\[V^Z \subset \widetilde{U}_{2,2}^{\text{ns}}(1, 1) \]

the open substack consisting of \((C, p_1, p_2)\) such that \((C, p_1)\) is \(Z\)-stable (in particular, \(C\) is irreducible). Lemma 2.4.4 shows that every \((C, p)\) in \(\overline{M}_{2,1}(Z)\) satisfies \(h^0(p) = 1\) and \(h^1(3p) = 0\). This implies that

\[V^Z \subset \widetilde{U}_{2,2}^{\text{ns}}((1, 1), (3, 0)) \]

and the projection \(V^Z \to \overline{M}_{2,1}(Z) \) is surjective. Furthermore, since the curve \([C^{\text{cusp}}(2)]\) is not \(Z\)-stable, we have the inclusion

\[V^Z \subset \widetilde{U}_{2,2}^{\text{ns}}((1, 1), (3, 0)) \setminus Z. \]

Thus, the restriction of the map (2.1.3) gives us a regular morphism

\[V^Z \to \overline{U}_{2,1}^{\text{ns}}(2), \tag{2.4.1} \]

contracting \(\overline{W} \) to a point.

Now, similarly to the proof of Theorem A we check that the morphism (2.4.1) factors through \(\overline{M}_{2,1}(Z)\). Note that to apply the same argument as in Theorem A we use the following facts: (i) \(\overline{M}_{2,1}(Z)\) is smooth (see Corollary 2.4.2); (ii) the projection \(V^Z \to \overline{M}_{2,1}(Z) \) is smooth (since \(p_2 \) varies in a smooth part of a curve); and (iii) \(V^Z \times_{\overline{M}_{2,1}(Z)} V^Z \) is irreducible, as a \(\mathbb{G}_m^3\)-torsor over the moduli stack of \((C, p_1, p_2, p')\) with \(C\) smoothable.

This gives us the required morphism \(\phi_2\) contracting to \(\overline{W} \) to some point in \(U_{2,1}^{\text{ns}}(2)\). On the other hand, by Proposition 2.4.1, the only point in \(U_{2,1}^{\text{ns}}(2)\), which is not \(Z\)-stable is \([C_0]\) (recall that by this we mean the pointed curve \((C_0, p)\), where \(p \neq 0, \infty\), see Lemma 2.2.1). Thus, the rational map \(\phi_2^{-1}\) is regular on \(U_{2,1}^{\text{ns}}(2) \setminus [C_0]\) (and sends \((C, p)\) to \((C, p)\)).

Also, the restriction of \(\phi_2\) to \(\overline{M}_{2,1}(Z) \setminus \overline{W}\), i.e., to the locus where \(h^0(2p) = 1\), is an open embedding sending \((C, p)\) to \((C, p)\). This implies that \(\phi_2(\overline{W}) = [C_0]\), and \(\phi_2\) induces an isomorphism of \(\overline{M}_{2,1}(Z) \setminus \overline{W}\) with \(U_{2,1}^{\text{ns}}(2) \setminus [C_0]\). \(\square\)

Let us consider the natural birational maps of the coarse moduli spaces

\[\overline{M}_{2,1} \dashrightarrow \overline{M}_{2,1}(Z) \dashrightarrow U_{2,1}^{\text{ns}}(2). \]

Note that all these spaces are normal (for the last two this follows from Proposition 2.1.1 and Corollary 2.4.2). Note also that we only know that \(\overline{M}_{2,1}(Z)\) is a proper algebraic space.

Let \(\overline{W} \subset \overline{M}_{2,1}\) denote the closure of \(W\), and let \(\Delta_1 \subset \overline{M}_{2,1}\) be the boundary divisor, whose generic point corresponds to the union of two elliptic curves.

Proposition 2.4.6. The natural birational morphism \(f : \overline{M}_{2,1} \dashrightarrow \overline{M}_{2,1}(Z)\) (resp., \(g : \overline{M}_{2,1} \dashrightarrow U_{2,1}^{\text{ns}}(2)\)) is a birational contraction with the exceptional divisor \(\Delta_1\) (resp., exceptional divisors \(\Delta_1\) and \(\overline{W}\)).
Proof. Recall that to check that f (resp., g) is a birational contraction we need to check that the exceptional locus $\text{Exc}(f^{-1})$ (resp., $\text{Exc}(g^{-1})$) has codimension ≥ 2. But this immediately follows from Lemma 2.4.3. Next, the restriction of f to the complement of Δ_1 induces an isomorphism with the open subset in $\overline{M}_{2,1}(\mathcal{Z})$ consisting of (C, p) with C smooth or nodal, so we have an inclusion $\text{Exc}(f) \subset \Delta_1$. On the other hand, the generic point of Δ_1 corresponds to the union of elliptic curves $E_1 \cup E_2$, with the marked point on E_1. Under the map f this curve gets replaced by the cuspidal curve \overline{E}_1, so that we have a contraction $E_1 \cup E_2 \rightarrow \overline{E}_1$ sending the elliptic tail E_2 to the cusp. Since this map forgets the j-invariant of E_2, this means that Δ_1 gets contracted by f. Now the fact that $\text{Exc}(g) = \Delta_1 \cup \overline{W}$ follows from Theorem 2.4.5. \square

Remark 2.4.7. Let $\overline{V}_{g,1}^{\text{ns}}(g) \subset \overline{U}_{g,1}^{\text{ns}}(g)$ be the irreducible component consisting of smoothable curves. Theorem A implies that the natural birational map

$$\overline{M}_{g,1} \dashrightarrow \overline{V}_{g,1}^{\text{ns}}(g)$$

contracts \overline{W} to a point. Passing to the normalizations of the coarse moduli spaces we get the birational map $\phi : \overline{M}_{g,1} \dashrightarrow X$, where X is a normal projective variety, contracting \overline{W} to a point. It seems plausible that ϕ is a birational contraction (which would imply that \overline{W} is an extremal divisor). To check this we would need to prove that $\text{Exc}(\phi^{-1})$ has codimension ≥ 2. In other words, we would need to check that the locus in $\overline{V}_{g,1}^{\text{ns}}(g)$, consisting of unstable (i.e., non-nodal) curves, has codimension ≥ 2. In the case $g = 2$ we have shown this in Lemma 2.4.3. Note that the fact that the class of \overline{W} generates an extremal ray in $NE^1(\overline{M}_{g,1})$ is known for $g \leq 3$ and $g = 5$, by the works [9], [5] and [6].

References

[1] E. Arbarello, Weierstrass points and moduli of curves, Compositio Math. 29 (1974), 325–342.
[2] E. Arbarello, On subvarieties of the moduli space of curves of genus g defined in terms of Weierstrass points, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1978), 3–20.
[3] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
[4] R. Fisette, A. Polishchuk, A_∞-algebras associated with curves and rational functions on $M_{g,g}$, Compositio Math. 150 (2014), 621–667.
[5] D. Jensen, Birational contractions of $\overline{M}_{3,1}$ and $\overline{M}_{4,1}$, Trans. Amer. Math. Soc. 365 (2013), 2863–2879.
[6] D. Jensen, Rational fibrations of $\overline{M}_{5,1}$ and $\overline{M}_{6,1}$, arXiv:1012.5115.
[7] A. Polishchuk, Moduli of curves as moduli of A_∞-structures, arXiv:1312.4636.
[8] A. Polishchuk, Moduli of curves, Gröbner bases, and the Krichever map, Advances in Math. 305 (2017), 682–756.
[9] W. F. Rulla, The birational geometry of moduli space $M(3)$ and moduli space $M(2,1)$, ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–The University of Texas at Austin.
[10] D. I. Smyth, Towards a classification of modular compactifications of $M_{g,n}$, Invent. Math. 192 (2013), 459–503.
[11] D. I. Smyth, Modular compactifications of the space of pointed elliptic curves II, Compos. Math. 147 (2011), no. 6, 1843–1884.