Vitamin B$_{12}$ production in soybean fermentation for tempeh

Maria E. Kustyawati*, Subeki, Murhadi, Samsul Rizal and Penipuji Astuti

Department of Agriculture Product Technology, University of Lampung, Jl. S.Brojonegoro, 35145, Bandar Lampung, Indonesia

* Correspondence: Email: maria.erna@fp.unila.ac.id; Tel: +62721781823; +6281369994986.

Abstract: Most studies have found that vitamin B$_{12}$ in tempeh is produced by contaminating bacteria specifically, Klebsiella sp. and Citrobacter freundii, during fungal fermentation. This study is to evaluate the effect of starter culture on the vitamin B$_{12}$ and isoflavone aglicone content of soybean fermentation for tempeh production. In this study, soybeans were washed, soaked in water overnight, dehulled and sterilized by boiling at 100 °C for 30 min. Three starter cultures (10^3 CFU g$^{-1}$) namely Rhizopus oligosporus, Klebsiella sp. and Saccharomyces cerevisiae were then inoculated as follows, soybeans + R. oligosporus + Klebsiella sp. (SRK), soybeans + R. oligosporus + S. cerevisiae (SRS), soybeans + R. oligosporus + S. cerevisiae + Klebsiella sp. (SRSK), and Soy + R. oligosporus (SR) and soybeans + Klebsiella sp (SK). Inoculated soybeans were then incubated at 30 ± 2 °C for 40 hours (tempeh-style). The growth of Klebsiella sp., S. cerevisiae, R. oligosporus and the production of vitamin B$_{12}$ as well as isoflavone aglcones were observed. The results showed the highest vitamin B$_{12}$ 3.15 mg 100 g$^{-1}$ was found in tempeh SRS, followed by 2.88 mg 100 g$^{-1}$ and 1.64 mg 100 g$^{-1}$ in tempeh SR and SRSK, respectively. In addition, vitamin B$_{12}$ in tempeh SRK was the lowest (0.81 mg 100 g$^{-1}$). All the starter cultures were able to hydrolyze daidzin and genistin, but the amount of daidzein and genistein was tripled and doubled, respectively when Klebsiella sp was inoculated to the soybean fermentation. The study suggested that S. cerevisiae contributes to the production of vitamin B$_{12}$, while Klebsiella sp contributes to production of daidzein and genistein in soybean fermentation for tempeh production.

Keywords: tempeh of soybean fermentation; vitamin B$_{12}$; isoflavones; Klebsiella sp.; S. cerevisiae; R. oligosporus
1. Introduction

Vitamin B\(_{12}\), also known as cobalamin, plays an important role in the functioning of the brain and nervous system, and in the formation of red blood cells. Vitamin B\(_{12}\), occurring naturally in food, derives from bacterial synthesis and therefore occurs only in foods of animal origin. Small amounts can be found in plant products due to the presence of bacteria or due to microbial contamination. Plant food such as blue-green algae contains pseudo vitamin B\(_{12}\) which is inactive in humans. In foods, cobalamins are bound to proteins and glycoproteins and must be released by enzymatic and acid hydrolysis in the gut. Dairy foods, milk and milk products, eggs, meat and seafoods are the main natural sources in the diet. Tempeh, solid state boiled-dehulled soybean fermentation using starter culture of \textit{Rhizopus oligosporus}, is rich of antioxidants and contains vitamin B\(_{12}\) \[1,2\]. Few scientific literatures mentioned the vitamin B\(_{12}\) values of tempeh. Areekul et al. \[3\] found between 0.18 and 4.1 Mcg vitamin B\(_{12}\) analogues per 100 g tempeh sold in market in Jakarta, and tempeh sold in Toronto, Canada contained of 148 ng of vitamin B\(_{12}\) per g \[4\]. During the soybean fermentation, enzymatic activities of \textit{R. oligosporus} leads to a significant increase in water-soluble nutrients, enhancing the biosynthesis of B vitamins and transformation of soy-isoflavones into antioxidant compounds. Soybean itself contains low or undetectable of vitamin B\(_{12}\), yet when soybeans are fermented to produce tempeh, a considerable amount of vitamin B\(_{12}\) was found, about 0.7 to 0.8 µg/100 g \[5\]. It is known that vitamin B\(_{12}\) contained in tempeh is synthesized by \textit{Klebsiella pneumoniae} and \textit{Citrobacter freundii} \[6\]. These bacteria were thought as the contaminating bacteria during processing of tempeh making. With these values of vitamin B\(_{12}\), tempeh may be as an additional diet of vitamin B\(_{12}\) from plant-derived food sources. The RDI of vitamin B\(_{12}\) for adults is set at 2.4 µg/day in Indonesia \[7\], and as well in The US and Japan (RDA) \[8\]. Recently, industrial production of vitamin B\(_{12}\) has been carried out through microbial fermentation, mostly use \textit{Pseudomonas denitrificans}, \textit{Propionibacterium shermanii} \[9\]; however, this process has some drawbacks such as a long fermentation process and expensive media requirements.

Consumption of soy based foods may have health benefits due to their functional ingredients, especially isoflavones. In soybeans, isoflavones are in the form of isoflavone glycosides. The two most widely studied of isoflavones from soybeans are daidzin and genistin, which are not easily absorbed by the intestinal absorptive cells because of their large hydrophilic structures \[10,11\]. However, hydrolytic enzyme-producing microorganisms can hydrolyze isoflavone glucosides by the enzyme β-glucosidase to form of aglycones, daidzein and genistein which have antioxidant properties. Hydrolysis of isoflavone glycoside, and variation of individual isoflavone aglycones are influenced by microbial types \[12–14\] reported that bacteria are more effective in converting daidzin and genistin into their aglycone forms than molds. Aspergillus and Streptomyces isolated from soybean fermented foods are known as best producer of ortho-dihydroxyisoflavone (ODI), hydroxylated isoflavones which is produced during fermentation of soybeans. This study conducted to analyze the vitamin B\(_{12}\) and the isoflavone aglycone contents produced during soybean fermentation using co-inoculated of \textit{R. oligosporus}, \textit{S. cerevisiae}, and \textit{Klebsiella sp} as starter cultures.
2. Materials and methods

2.1. Starter cultures and inoculum preparation

Starter cultures used in this study: *Rhizopus oligosporus* was isolated from tempeh, *Saccharomyces cerevisiae* isolated from commercial Fermipan dried yeast product, and *Klebsiella sp* non-pathogenic bacteria were isolated from the tempeh [15]. Except for *Klebsiella sp* which was cultured on nutrient agar and its stock culture was maintained at −20 °C in 20% glycerol, all the starter cultures were freshly prepared. For inoculums preparation, the bacteria and yeast were grown in nutrient broth at 37 and 32 °C respectively for 24 h. The cells were harvested and resuspended in sterile distilled water and properly adjusted to obtain a concentration of 10^5 and 10^5 CFU mL$^{-1}$ respectively. For mold preparation, the mycelium was streaked on potatoes dextrose agar and grown at 27 °C for 120 h. The spores were harvested, resuspended in sterile distilled water and properly adjusted to obtain a concentration of 10^5 cell mL$^{-1}$.

The data obtained was analysed by the use of Excel Microsoft program 2016.

2.2. Tempe making

Soybeans in this research were purchased in the Primkopti Bandar Lampung. Tempeh was produced in a microbiology laboratory as follows; 300 g of soybeans were soaked in clean water overnight at room temperature, and then dehulled manually. Dehulled soybeans were boiled in clean water with a ratio of 1:3 (soybeans: water) for 30 minutes, drained, air dried at room temperature, and then 100g aseptically inoculated with the cultures at defined number of cells which was 10^5, 10^5, and 10^5 CFU 100g$^{-1}$ for *R. oligosporus*, *S. cerevisiae*, and *Klebsiella sp*, respectively. Inoculated soybeans were packed in perforated plastic packaging and incubated at 32 ± 2 °C for 40 hours. Five types of fermented soybeans with the addition of different inoculated cultures were produced in this study, namely (1) soybeans + *R. oligosporus* + *Klebsiella sp* (SRK), soybeans + *R. oligosporus* + *S. cerevisiae* and *Klebsiella sp*, respectively. Inoculated soybeans were packed in perforated plastic packaging and incubated at 32 ± 2 °C for 40 hours. Five types of fermented soybeans with the addition of different inoculated cultures were produced in this study, namely (1) soybeans + *R. oligosporus* + *Klebsiella sp* (SRK), soybeans + *R. oligosporus* + *S. cerevisiae* and *Klebsiella sp*, respectively. Inoculated soybeans were packed in perforated plastic packaging and incubated at 32 ± 2 °C for 40 hours. Five types of fermented soybeans with the addition of different inoculated cultures were produced in this study, namely (1) soybeans + *R. oligosporus* + *Klebsiella sp* (SRK), soybeans + *R. oligosporus* + *S. cerevisiae* and *Klebsiella sp*, respectively. Inoculated soybeans were packed in perforated plastic packaging and incubated at 32 ± 2 °C for 40 hours. Separate soybeans were also fermented as a control without inoculation. The experiments were made in three replication.

The measurement of pH was carried out with a pH meter model 501 (Crison, Barcelona, Spain). All samples were homogenized prior to pH measurements. Measurements were made three times for testing the accuracy then the mean was taken.

2.3. Microbial enumerations

Each of fermented soybeans was analyzed for its total number of bacteria, yeast and molds at the starting and the end of fermentation. A total of 15 g tempeh was taken, mixed with 135 mL of 0.1% peptone water, homogenized with a stomacher for 30 seconds, and a series of dilutions from 10^{-1} to 10^{-8} was made in duplicate. Then one milliliter is taken from certain dilutions for plating microorganisms done by spread plate method on EMB agar (BBL Microbiology Systems. Cockeysville, Md.), MEA (Difco), and PDA (Oxoid) for *Klebsiella sp.*, *S. cerevisiae*, and *R. oligosporus*, respectively. Incubation of the plates was at 37, 27, 32 °C for *Klebsiella sp.*, *S. cerevisiae*, and *R. oligosporus* respectively, for 24 to 48 hours.
2.4. Vitamin B12 analysis

The method of vitamin B$_{12}$ analysis was performed according to the procedure run by Lawrence [16] with small modification on the application of UAE. Sample preparation method applies water ultrasonic assisted extraction (UAE), in which ultrasonic water extraction was used for extraction. A total of 0.5 grams of ground tempeh was weighed and place into 100 mL Erlenmeyer containing of 20 mL of milli-Q water. Sample was extracted by using ultrasonic equipped with heater for 30 minutes. Then, sample volume was set for 25 mL by adding milli-Q-water, and centrifuged at 3000 rpm for 10 min. Supernatant was pipetted using syringe equipped with filter holder so that 2 mL of supernatant was obtained, and then filtered using paper filter of 13 mm in diameter and 0.2 µm pore size. The filtrate was then placed in the vial bottle. The sample was ready to be injected into the HPLC (Shimadzu, CBM-20A controller, LC 20AD solvent delivering unit, CTO 10A column oven, SPD M20-A photo diode array detector). HPLC running condition was using Agilent C-18 5 um (125 × 4.6 mm) column, column temperature of 35 ºC, mobile phase (water: acetonitrile: buffer phosphate 10 mM = 80:10:10), isocratic mobile phase method with flow rate 1 mL min$^{-1}$, injection volume of 20 µL, wavelength detector 360 nm, and running time of 20 min.

Standard solution was prepared as following, weigh 5 mg of standard cyanocobalamin, dissolve it in 100 mL of milli-Q-water so that a concentration of 50 µg.mL$^{-1}$ is obtained. Then the standard was diluted into a working solution with a concentration of 0.5 µg.mL$^{-1}$, 1 µg.mL$^{-1}$, 2 µg.mL$^{-1}$, and 4 µg.mL$^{-1}$.

2.5. Daidzein and genistein analysis

For quantification of daidzein and genistein, fermented soybean samples were freeze-dried and stored at −20 ºC until used. The extraction of isoflavones from fermented soybeans and unfermented soybeans, and their quantification by HPLC were assayed followed the procedures worked by El-Shazy et al. [17] with small modification and was assayed at the Centre Technology and Innovation Lab. Univ. of Lampung. HPLC-MWD instrument (Agilent 1200 series), Zorbax 5µm (4.6 mm × 150 mm) column, and UV detector (λ max = 254 nm). The mobile phase consisted of 100% methanol and 10 mmol L$^{-1}$ of ammonium acetate buffer (60:40) containing 1 mL of trifluoro-acetic acid per liter of solvent mixture. This was set at a flow rate of 0.6 mL min$^{-1}$. Standards of daidzein and genistein were obtained from Sigma. 1gram of the freeze-dried sample was added to 10mL of 80% (v v$^{-1}$) aqueous methanol and extracted under agitation for 24 hours at room temperature. The homogenates were centrifugated at 15000rpm for 30min and the methanol obtained were used to determine daidzein and genistein concentrations. Injection volumes of isoflavone standards and of the samples were set at 100 µL throughout the run time of 30min. Single standards were also prepared for peak identification. Calculation of the isoflavone concentration was dry basis (µg g$^{-1}$ fermented soybean).

3. Results and discussion

The number of R. oligosporus, S. cerevisiae, and K. sp inoculated into soybeans for tempeh production were 10^3, 10^5 and 10^7 cells g$^{-1}$, respectively. Table 1 shows that the addition of S. cerevisiae and K. sp. either together or separately did not affect the growth of R. oligosporus.
R. oligosporus in tempeh is not a contaminant microorganism and instead it has to be deliberately added into the soybeans. It was possible that R. oligosporus played a role in supporting the growth of other microorganism in the soybeans fermentation, because during fermentation R. oligosporus produces several enzymes including lipase, protease, and phytase which hydrolyzes carbohydrate, lipid, and protein from the soybeans and produces fatty acids and amino acids which are then utilized by bacteria and yeast [18]. In addition, they also function as growth control of microorganisms in tempeh, preventing the tempeh consumer from diarrhea and flatulence. R. oligosporus produces antibiotics which actively kill certain bacteria in tempeh i.e. Staphylococcus aureus, Bacillus subtilis, and Clostridium sp which is known to produce gas in the intestines [19]. S. cerevisiae was able to grow together either with R. oligosporus or Klebsiella sp. during fermentation of tempeh making, it is possible to obtain carbon and nitrogen sources from soybeans as well as fatty acid and amino acids produced by R. oligosporus. Meanwhile, the wide pH tolerant and that Klebsiella is a bacterial contaminant in tempeh which may be the reason for the high number of Klebsiella found in tempeh. The pH of tempeh in this experiment was found between 6.60 to 7.40 (Tabel 2).

Table 1. The total number of microorganism in soy fermentation inoculated with various cultures.

Type of isolates in soy fermentation	Microbial number (CFU g⁻¹) at 0 h of fermentation	40 h of fermentation				
	Ro	Sc.	K	Ro	Sc.	K
SR	2.6 × 10³	ND	ND	3.4 × 10⁶	ND	2.0 × 10⁶
SRSK	2.8 × 10³	3.6 × 10³	ND	4.5 × 10⁶	1.2 × 10⁶	1.1 × 10⁶
SRScK	4.4 × 10³	6.3 × 10³	1.0 × 10³	5.6 × 10⁵	3.7 × 10⁵	2.5 × 10⁵
SRK	5.0 × 10³	ND	2.7 × 10³	3.0 × 10⁵	ND	1.9 × 10⁵
SK	ND	ND	2.1 × 10³	ND	ND	2.7 × 10⁵

Note: The data in the table were average value of three replications. ND not detected. SR is soy + R. oligosporus, SRS is soy + R. oligosporus + S. cerevisiae, SRScK is soy + R. oligosporus + S. cerevisiae + Klebsiella sp, SRK is soy + R. oligosporus + Klebsiella sp, SK is soy + Klebsiella sp. Ro is R. oligosporus, Sc is S. cerevisiae, K is Klebsiella sp.

Biosynthesis of vitamin B₁₂ is limited to some bacteria and archaea, and its production depends on type of microorganisms involved during fermentation. Soybeans only used as control of the tempeh production in this experiment contained very little vitamin B₁₂ that it would not be of nutritional significance. This finding (0.36 mg100g⁻¹) was close with data reported by Liem et al. [4] and Areekul et al. [3], in which the amount was found to be 0.39 ng/g and 0.15 ng g⁻¹, respectively. R. oligosporus was an essential microorganism in the production of tempeh, but when Klebsiella sp was used as culture to soybean fermentation, tempeh did not produce (Figure 1). When R. oligosporus was as an inoculum in soybean fermentation it yielded vitamin B₁₂ of about 2.88 mg 100g⁻¹. R. oligosporus co-inoculated with Klebsiella sp yielded lower vitamin B₁₂ (0.81 mg 100g⁻¹). The first data (2.88 Mgc 100 g⁻¹) was close with the data reported by Liem et al. [4] which was 66.0 ng g⁻¹. The presence of S. cerevisiae during tempeh fermentation was beneficial from the nutritional point of view. When S. cerevisiae co-inoculated with R. oligosporus, a high vitamin B₁₂ was produced (3.15 Mgc100 g⁻¹) in tempeh. S. cerevisiae is rich in cobalt and a vitamin B₁₂ producer [20,21], which may contribute to an increase in vitamin B₁₂ of the tempeh. In addition, S. cerevisiae co-inoculated with R. oligosporus in soybean fermentation produced tempeh that contain β-glucan [22] and a new aroma of yeasty which is preferred by some tempeh consumers [23]. Yeasty aroma of tempeh produced by
alcohol, ester, and aromatic group such as styrene, caryophyllene, phenol, and maltol during fermentation.

The recommended dietary allowance of vitamin B\textsubscript{12} is 2.4 µg/day for adults. When the concentration of vitamin B\textsubscript{12} in tempeh was 3.15 Mcg100g-1, it becomes visible for the consumer to get his or her daily requirement of vitamin B\textsubscript{12} by consumption of approximately 76.2 g of tempeh. The bioavailability of vitamin B\textsubscript{12} in tempeh in this study was not investigated. Mo et al. [24] found the bioavailability of tempeh was 0.016–0.072 Mcg 100g-1 which is very low. This could be because they made tempeh from soybean fermentation with Rhizopus microsporus var. microsporus LU573 and did not use the vitamin B\textsubscript{12} producing bacteria. However, Bor et al. [25] mentioned that a daily vitamin B\textsubscript{12} intake of 6 Mcg is sufficient to maintain a steady-state concentration of plasma vitamin B\textsubscript{12}. Bioavailability of dietary vitamin B\textsubscript{12}, daily body loss of vitamin B\textsubscript{12}, and human healthiness of normal gastrointestinal function are important to consider for consumption of tempeh as a source of daily vitamin B\textsubscript{12} intake. When compared to cooked lean meat which contains 33 µg 100g-1 of vitamin B\textsubscript{12} and the bioavailability of vitamin B\textsubscript{12} which is 0.9 µg from 100 g of mutton ground patties, tempeh can be a potential source of vitamin B\textsubscript{12} from non-meat origin. Provided that the potential use of bacteria producing vitamin B\textsubscript{12} or yeast in soy fermentation is attempted to increase the quantity of vitamin B\textsubscript{12} to make tempeh a reliable source of vegetable vitamin B\textsubscript{12}.

Recently Propionibacterium freundreichii, the food grade producer of vitamin B\textsubscript{12}, has been used in co-culture with \textit{R. oryzae} to enrich vitamin B\textsubscript{12} in lupin tempeh [26]. An increase of vitamin B\textsubscript{12} content (up to 0.97 μg100 g-1) was achieved in lupin tempeh and its texture, taste and overall acceptance were not affected by the bacterial co-inoculation [27]. Nevertheless, lupin tempeh have distinct flavour and aroma that may be unacceptable to consumers who are familiar with the taste of soy tempeh. Propionibacterium freundreichii was usually used in the preparation of cheese making with its contribution to fat compounds, an important flavour in cheese [28]. Regardless of whether tempeh can be fermented with substantial amount of vitamin B\textsubscript{12} producing bacteria, its overall digestibility, rich in protein content and antioxidant. This can make it potential meat alternative and functional food.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{tempeh_profile.png}
\caption{The profile of tempeh produced by the use of different cultures. SR is soy + \textit{R. oligosporus}, SRSc is soy + \textit{R. oligosporus} + \textit{S. cerevisiae}, SRScK is soy + \textit{R. oligosporus} + \textit{S. cerevisiae} + \textit{Klebsiella sp}, SRK is soy + \textit{R. oligosporus} + \textit{Klebsiella sp}, SK is soy + \textit{Klebsiella sp}. All of the tempeh except SK showed the white mycelium binds the beans into a compact, cake-like texture.}
\end{figure}
Table 2. Effect of isolated cultures in producing vitamin B$_{12}$, daidzein, and genistein during tempeh fermentation.

Isolated culture	Initial pH	Final pH	Water content (%)	Vit B$_{12}$ (Mcg100 g$^{-1}$)	Daidzein (Mcg g$^{-1}$)	Genistein (Mcg g$^{-1}$)
SR	6.2	6.40	65.1 ± 0.19	2.88 ± 0.50	276.17 ± 0.20	492.96 ± 1.0
SRSsc	6.2	6.10	65.23 ± 0.80	3.15 ± 0.70	224.37 ± 0.20	465.12 ± 0.90
SRSscK	6.2	6.60	65.14 ± 0.10	1.64 ± 0.9	753.96 ± 0.15	1072.87 ± 0.90
SRK	6.2	6.60	65.24 ± 0.20	0.81 ± 2.00	781.76 ± 0.15	1071.85 ± 1.0
SK	6.2	7.40	65.91 ± 0.50	0.39 ± 1.9	782.17 ± 0.30	1072.51 ± 0.70
Soybean only	6.2	6.20	65.0 ± 0.50	0.36 ± 0.42	0.69 ± 0.20	0.25 ± 0.60

Note: The data in the table were mean of three replications with standard deviation. SR is soy + *R. oligosporus*, SRSsc is soy + *R. oligosporus + S. cerevisiae*, SRSscK is soy + *R. oligosporus + S. cerevisiae + Klebsiella sp*, SRK is soy + *R. oligosporus + Klebsiella sp*, SK is soy + *Klebsiella sp*.

In all, the tempeh that was analyzed showed that genistein was larger amount than daidzein (Table 2). Most of the inoculated cultures, *R. oligosporus*, *S. cerevisiae* and *Klebsiella sp* may effectively hydrolyze daidzin and genistin during the soy fermentation. In tempeh fermentation co-inoculated with *Klebsiella sp*, it was noticed that the amount of daidzein was three-fold, and genistein was doubled compared to that of without *Klebsiella sp*. Differences in the biotransformation of both daidzin and genistin were found when the addition of *Klebsiella sp* to the soy fermentation produced high amount of both daidzein and genistein. In addition, inoculation of the mold *R. oligosporus* into the soy fermentation produced low amount of either daidzein or genistein. Even though the activity of β-glucosidase was not analyzed in this study, the production of daidzein and genistein indicated that there was biotransformation of isoflavones catalysed by the β-glucosidase. Our results are not in agreement with the work done by El-Shazly et al. [17] where the amount of daidzein was larger than genistein in fermented soy flour with *Bacillus licheniformis*. The type of soybean fermentation applied to measure isoflavones, and the selective action of the β-glucosidase, might explain the different findings in this study. Solid state fermentation as a process in which microorganisms are grown in solid material without the presence of free liquid was applied in this study while submerge fermentation was applied in another study. According to Fang et al. [9], hydrolysis of soy isoflavones by microbial β-glucosidase depend on substrate specificity. Beside hydrolyzed from daidzin and genistin, daidzein and genistein may also be derived from formononetin and biochanin-A [29]. In addition, the bacterial-synthesized β-glucosidase can be bound to the cell walls or secreted into the periplasmic space [30]. Borges et al. [31] found that soaking, cooking and fermentation times in the tempeh making influenced the production of isoflavone, and the highest yield of genistein and daidzein was fermentation with *R. oligosporus* for 18 hours, but the beans and the culture used were no cause for concern.

4. Conclusions

R. oligosporus is the main isolated culture in tempeh production. Inoculation of *Klebsiella* to cooked dehulled soybean fermentation did not produce tempeh. *S. cerevisiae* is the most potential contributor of vitamin B$_{12}$ in tempeh. *Klebsiella sp*. co-inoculation with either *R. oligosporus* or *S.
cerevisiae inhibit the production of vitamin B₁₂ in tempeh, although it does not affect their growth. *Klebsiella* sp contributes to the production of daidzein and genistein in tempeh.

Acknowledgment

This research was partly funded by the University of Lampung through the BLU-Fundamental Research, University of Lampung, 2019.

Conflict of interest

All authors declare no conflict of interest.

References

1. Nout MJR, Sarkar PK, Beuchat LR (2007) Indigenous fermented foods, In: Doyle M, Beuchat L, *Food Microbiology: Fundamentals and Frontiers*, Third Eds., Washington, DC: ASM Press, 817–835.
2. Keuth S, Bisping B (1994) Vitamin B₁₂ Production by *Citrobacter freundii* or *Klebsiella pneumonia* during Tempeh Fermentation and Proof of Enterotoxin Absence by PCR. *Appl Environ Microbiol* 60: 1495–1499.
3. Areekul S1, Pattanamatum S, Cheeramakara C, et al. (1990) The source and content of vitamin B₁₂ in the tempehs. *J Med Assoc Thai* 73: 152–156.
4. Liem IT, Steinkraus KH, Cronk TC (1977) Production of vitamin B₁₂ in tempeh, a fermented soybean food. *Appl Environ Microbiol* 34: 773–776.
5. Nout MJR, Rombouts FM (1990) Recent developments in tempeh research. *J Appl Bacteriol* 69: 609–633.
6. Denter J, Bisping B (1994) Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. *Intern J Food Microbiol* 22: 23–31.
7. Kartono D, Hardinsyah, Jahari AB, et al. (2012) Summary of recommended daily intake for Indonesian 2012, (*Ringkasan Angka Kecukupan gizi (AKG) yang dianjurkan bagi orang Indonesia* 2012). From Conference Paper, 2012. Available from: http://www.researchgate.net/publication/316095861.
8. Watanabe F (2007) Vitamin B₁₂ sources and bioavailability. *Exp Biol Med* 232: 1266–1274.
9. Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B₁₂: A review and future perspectives. *Microb Cell Fact* 16: 1–15.
10. Raffi F (2015) The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. *Metabolites* 5: 56–73.
11. Lee PG, Lee UK, Song H, et al. (2018) Recent advances in the microbial hydroxylation and reduction of soy isoflavones. *FEMS Microbiology Letters* 365: fny 195.
12. Xiao Y, Zhang S, Tong H, et al. (2018) Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. *Photother Res* 32: 384–394.
13. Sirilun S, Sivamaruthi BS, Kesika P, et al. (2017) Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. *Asian Pac J Trop Biomed* 7: 930–936.
14. Deza MAC, de Olmos AR, Garro MS (2019) Solid fermentation to obtain vegetable products bio-enriched with isoflavones aglycones using lactic cultures. *Rev Argent Microbiol* 51: 201–207.

15. Ayu E, Suwanto A, Barus T (2014) *Klebsiella pneumonia* from Indonesian tempeh were genetically different from that of pathogenic isolates. *Microbiology* 8: 9–15.

16. Lawrance P (2011) An evaluation of procedures for the determination of vitamin B12 in foods, supplements and premixes using HPLC and UPLC after selective extraction with immunoaffinity cartridges. LGC Limited, 1–12.

17. El-Shazly AI, El-Deen AMN, Ibrahim NA, et al. (2017) Assessment of genistein and daidzein production by some local fungal and bacterial isolates. *Egypt J Microbiol* 52: 49–61.

18. Handoyo T, Morita N (2006) Structural and functional properties of fermented soybean (tempeh) by using *R. oligosporus*. *Int J Food Prop* 9: 347–355.

19. Shurtleff W, Aoyagi A (2007) History of tempeh, a special report on the history of traditional fermented soyfoods, In: Shurtleff W, Aoyagi A, *History of Soybeans and Soyfoods: 1100 B.C. to the 1980s*, Lafayette, California: Soyinfo Center, 1–85.

20. Klis FM, Boorsma A, de Groot PWJ (2006) Cell wall construction in *Saccharomyces cerevisiae*. *Yeast* 23: 185–202.

21. Fakruddin MD, NurHossain Md, Ahmed MM (2017) Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. *BMC Complement Altern Med* 17: 1–11.

22. Rizal S, Murhadi, Kustyawati ME, et al. (2020) Growth optimization of S. cerevisiae and R. oligosporus during fermentation to produce tempeh with high β-glucan content. *Biodiversitas* 21: 2667–2673.

23. Kustyawati ME, Nawansih O, Nurdjanah S (2017) Profile aroma compounds and acceptability of modified tempeh. *Int Food Res J* 24: 734–740.

24. Mo H, Kariluoto S, Piironen V, et al. (2013) Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempeh. *Food Chem* 141: 2418–2425.

25. Bor MV, von Castel-Roberts KM, Kauwell GPA, et al. (2010) Daily intake of 4 to 7 µg dietary vitamin B-12 is associated with steady concentrations of vitamin B12—related biomarkers in a healthy young population1–4. *Am J Clin Nutr* 91: 571–577.

26. Wolkers-Rooijackers JCM, Endika MF, Smid EJ (2018) Enhancing vitamin B12 in lupin tempeh by in situ fortification. *Food Sci Technol* 96: 513–518.

27. Kaczmarska KT, Chandra-Hioe MV, Frank D, et al. (2018) Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. *LWT-Food Sci Technol* 87: 225–233.

28. Mukdsi MCA, Falentin H, Maillard MB, et al. (2013) The secreted esterase of *Propionibacterium freudenreichii* has a major role in cheese lipolysis. *Appl Environ Microbiol* 80: 751–756.

29. Ogbuewu IP, Uchechuku MC, Emenalom OO, et al. (2010) Overview of the chemistry of soy isoflavones, potential threats and potential therapeutic benefits. *Electric J Environ Agric Food Chem* 9: 682–695.
30. Pyo YH, Lee TC, Lee YC (2005) Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Res Int 38: 551–559.
31. Borges CWC, Carrao-Panizzi MC, Mandarino JMG, et al. (2016) Contents and bioconversion of β-glycoside isoflavones to aglycones in the processing conditions of soybean tempeh. Pesq agropec bras, Brasilia 51: 271–279.