Regional disparity in the axial skeleton of Saurichthyidae and implications for axial regionalization in non-teleostean actinopterygians

Maxwell, E E ; Romano, C ; Wu, F -X

Abstract: The postcranial axial skeleton of actinopterygian fishes is typically divided into three regions: (1) an anterior abdominal region, (2) a posterior caudal region and (3) those vertebrae supporting the caudal fin. However, in some actinopterygians, the axial skeleton is more finely subdivided, with up to six morphologically distinct sub-regions recognized. Phylogenetic continuity and homology of structures across these sub-regions have not been investigated in detail, either between or among groups. We examine variation in axial regionalization in saurichthyid fishes, a clade of extinct non-teleostean actinopterygians with highly variable axial skeletal morphology but an otherwise conservative body plan, and compare these findings to other non-teleostean actinopterygians to assess conservation of a regionalized axial skeleton within bony fishes. We document up to eight distinct regions in the vertebral column of Triassic Saurichthys: (1) a postoccipital region, (2) an anterior and (3) a posterior abdominal region, (4) a transitional region spanning the abdominal–caudal boundary, (5) an anterior and (6) a posterior caudal region and (7) preural and (8) ural regions. Based on taphonomical and morphological evidence, the transitional region appears to function in axial stiffening in the area of the median fins, whereas the abdominal region is highly flexible. The degree to which these axial regions are osteologically differentiated is highly variable across Saurichthyidae, implying iterative evolution of differentiation and de-differentiation over relatively short geological timescales. Such variably expressed regionalization was also identified in the outgroup non-teleostean actinopterygians Birgeria and Australosomus. Despite variation in morphological disparity, the regions identified in saurichthyids correlate well with those documented in some teleosts and Paleozoic actinopterygians, suggesting potential deep patterning homology but independent evolution of specific regionalized axial morphologies in response to changing functional demands.

DOI: https://doi.org/10.1111/jzo.12878

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-201272
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

Originally published at:
Maxwell, E E; Romano, C; Wu, F -X (2021). Regional disparity in the axial skeleton of Saurichthyidae and implications for axial regionalization in non-teleostean actinopterygians. Journal of Zoology:jzo.12878. DOI: https://doi.org/10.1111/jzo.12878
Regional disparity in the axial skeleton of Saurichthyidae and implications for axial regionalization in non-teleostean actinopterygians

E. E. Maxwell1, C. Romano2 & F.-X. Wu3,4

1Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
2Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
3Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
4Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China

Keywords
Saurichthyidae; Birgeria; Actinopterygi; vertebral column; morphology; evolution; axial skeleton; Triassic.

Correspondence
Erin Maxwell, Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany.
Email: erin.maxwell@smns-bw.de

Editor: Andrew Kitchener
Associate Editor: Christine Böhmer

Abstract
The postcranial axial skeleton of actinopterygian fishes is typically divided into three regions: (1) an anterior abdominal region, (2) a posterior caudal region and (3) those vertebrae supporting the caudal fin. However, in some actinopterygians, the axial skeleton is more finely subdivided, with up to six morphologically distinct sub-regions recognized. Phylogenetic continuity and homology of structures across these sub-regions have not been investigated in detail, either between or among groups. We examine variation in axial regionalization in saurichthyid fishes, a clade of extinct non-teleostean actinopterygians with highly variable axial skeletal morphology but an otherwise conservative body plan, and compare these findings to other non-teleostean actinopterygians to assess conservation of a regionalized axial skeleton within bony fishes. We document up to eight distinct regions in the vertebral column of Triassic Saurichthys: (1) a postoccipital region, (2) an anterior and (3) a posterior abdominal region, (4) a transitional region spanning the abdominal-caudal boundary, (5) an anterior and (6) a posterior caudal region and (7) preural and (8) ural regions. Based on taphonomical and morphological evidence, the transitional region appears to function in axial stiffening in the area of the median fins, whereas the abdominal region is highly flexible. The degree to which these axial regions are osteologically differentiated is highly variable across Saurichthyidae, implying iterative evolution of differentiation and de-differentiation over relatively short geological timescales. Such variably expressed regionalization was also identified in the outgroup non-teleostean actinopterygians Birgeria and Australosomus. Despite variation in morphological disparity, the regions identified in saurichthyids correlate well with those documented in some teleosts and Paleozoic actinopterygians, suggesting potential deep patterning homology but independent evolution of specific regionalized axial morphologies in response to changing functional demands.

Introduction
A highly regionalized axial skeleton consisting of cervical, thoracic, lumbar, sacral and caudal regions has historically been viewed as a typical feature of tetrapods (Sallan, 2012). Although best-developed in mammals, these regions can be morphometrically recovered even within groups showing more subtle variation along the vertebral column (e.g. snakes: Head & Polly, 2015; odontocete cetaceans: Buchholtz & Gee, 2017); this is referred to as ‘regionalized but de-differentiated’ (Buchholtz and Gee, 2017). In contrast, the vertebral column of actinopterygian fishes has been divided into only two general areas: an abdominal and a caudal region, distinguished by the presence of haemal spines in the latter (e.g. Bird & Mabee, 2003). Some actinopterygians show more complex patterns of axial regionalization (e.g. the Weberian vertebrae of ostariophysans in the anterior column; the ural skeleton of teleosts: Bird and Mabee, 2003), but historically these have been interpreted as isolated specializations of specific lineages of highly derived teleosts, external to a conserved framework of axial patterning. However, detailed examination of the axial skeleton in the Paleozoic (Carboniferous) basal actinopterygian Tarra-
sius indicates five clearly differentiated regions within the pre-
caudal axial skeleton (Sallan, 2012), and more recently five
distinct axial regions have been recognized in salmonids (De Clercq et al., 2017), which have a generalized body plan. These reports raise intriguing questions as to the prevalence of axial regionalization in actinopterygians and structural variability within morphologically disparate regions.

In vertebrates, precaudal axial regionalization is patterned by spatially and temporally collinear expression of Hox genes within the somitic mesoderm during embryonic development (Burke et al., 1995). Gene expression in zebrafish, the best-known actinopterygian developmental model system, suggests anteriorly shifted, overlapping patterns of Hox expression during embryonic development (Prince et al., 1998; Morin-Kensicki, Melancon & Eisen, 2002). Sharks, on the other hand, show a regionalized Hox expression pattern more similar to tetrapods, although the axial regions are effectively anatomically undifferentiated (sensu Buchholtz and Gee, 2017), leading to the hypothesis that an anteriorized pattern may be derived within Actinopterygii (Oulion et al., 2011). The question arises as to when within Actinopterygii this anteriorized axial morphology arose, how widespread tetrapod-like regionalization is within non-teleost actinopterygians, and whether the caudal skeleton also shows conserved patterns of regionalization.

The predominantly Early Mesozoic saurichthyids are a speciose group (over 50 species) of non-teleostean actinopterygians characterized by an elongated body and posterior displacement of the dorsal and anal fins. Phylogenetically, Saurichthya + Birgeria are positioned as sister-group to crown actinopterygians (Argyriou et al., 2018). Elongation in Saurichthya has been correlated with increasing numbers of abdominal vertebrae (Maxwell & Wilson, 2013), and body size also affects vertebral counts in the clade (pleomerism; Wu & Fang, 2018). Extensive morphological variation has been reported in the anterior caudal region of saurichthyids (Wu et al., 2015), but changes in regionalization along the length of the vertebral column have never been comprehensively investigated. Convergent evolutionary reductions in the squamation combined with qualitative disparity between regions of the vertebral column (e.g. Maxwell et al., 2015) make saurichthyids an ideal group in which to investigate regionalization in non-teleostean actinopterygians.

Institutional abbreviations

PIMUZ, Paläontologisches Institut und Museum, Universität Zürich, Switzerland; SMNS, Staatliches Museum für Naturkunde, Stuttgart, Germany.

Materials and methods

Terminology and general axial anatomy in Saurichthyidae

Many terms, some group-specific or with different meanings ascribed by different authors, have developed for structures associated with the actinopterygian vertebral column. These are clarified in Table 1; Saurichthys-specific details are discussed below to help orient the reader. As with many non-teleostean actinopterygians, the vertebral column of Saurichthyidae is characterized by an unconstructed notochord; ossified centra are absent (aspondylous vertebrae: Arratia, Schultz & Casciotta, 2001). Within one axial segment, ossified components dorsal to the notochord include neural arches with medially unfused neural spines; the neural arches articulate with adjacent axial elements via zygapophyses (Stensiö, 1925). Posterior to the true neural arch of each segment, Saurichthys possesses a second neural arch-like element, convergent in morphology to the first but homologous to an expanded interdorsal element (Maxwell, Ferrer & Sánchez-Villagra, 2013). Supraneurals are absent, as are ossified ribs and intermuscular elements. Ossifications ventral to the notochord are more variable, but when present, these consist of an anterior element (ventral arcocentrum/haemal arch) and a posterior element, the interventral (Stensiö, 1925). As with the neural arches, the haemal processes are not medially fused. The term ‘haemal spine’ has been used in the literature to refer to these ventrally extended haemal arches in Saurichthys (Rieppel, 1985; Wu et al., 2015); here, we refer to these structures as haemal processes sensu Nielsen (1942), and restrict use of the term haemal spine to refer exclusively to a median structure that develops by extension of the haemal arches (Table 1). The caudal fin skeleton of saurichthyids is abbreviated diphycercal (e.g. Rieppel, 1985).

We use the axial anatomy of the phylogenetically basal Middle Triassic species Saurichthys rieppeli Maxwell et al., 2015 (PIMUZ T 61) as a template of regional variation across Saurichthyidae. The axial skeleton of this specimen is superbly preserved, and this species shows the maximum observed degree of regionalization, allowing comparison to other saurichthyids and outgroups. For these comparisons, we personally examined specimens of Saurichthyidae and Birgeria in the collections of the SMNS and PIMUZ, with reference to the literature (Table S1).

Regions were identified based on overall morphological disparity and comparison with previous studies on actinopterygians (Morin-Kensicki et al., 2002; Sallan, 2012; De Clercq et al., 2017; see discussion for a critical evaluation). While this approach is more subjective than morphometric approaches (Head and Polly, 2015; Buchholtz & Gee, 2017), it provides a baseline against which to test quantitatively derived hypotheses of regionalization. Moreover, morphometric methods cannot easily be applied to taxa with aspondylous vertebrae, which include many extinct non-teleostean actinopterygians occupying key phylogenetic positions.

Results

Regionalization in Saurichthys rieppeli

The following eight regions are differentiated (or hypothesized to be distinct, in the case of Region 1) in the axial skeleton of PIMUZ T 61 (Figs. 1 and 2a):

1. Postoccipital region (‘cervical’ sensu Morin-Kensicki et al., 2002): The anteriormost vertebrae are obscured by overlying elements in Saurichthys rieppeli, making the presence of a differentiated ‘cervical’ region difficult to assess. The presence of this region is inferred based on related taxa (Fig. 2b).
E. E. Maxwell et al.

Clarification of anatomical terminology used in the text. Not all listed structures are present in all taxa

Term	Definition	Reference
Arcocentrum	Ossification of cartilage extending from the arcualia around the notochord	Schultze & Arratia, 1986; Gadow & Abbott, 1895; Stensiö, 1925.
Axial regionalization		
(2) Anterior abdominal region (Figs. 1 and 2a). The neural spine and its segmental duplicate are only gently posteriorly inclined and dorsally expanded. Zygapophyses are well developed with a small secondary dorsal projection anterior to the neural spine (Fig. 1a). The most anterior preserved 11–12 segments in S. rieppeli are morphologically differentiated from more posterior segments by the presence of a triangular ventral ossification positioned between the neural arch and its duplicate. These ossifications are largest anteriorly, and become smaller posteriorly. There are two possible interpretations for the ventral ossifications: parapophyses ossified along the horizontal septum following Wu et al. (2018) based on Saurichthys spinosa and interpreted as a functional adaptation for axial stiffening, or parapophyses associated with cartilaginous ribs. Unlike parapophyses, which co-ossify with the neural arch (Wu et al., 2018), the elements in S. rieppeli lie ventral to the neural arches and ossify independently. This pattern is identical to that seen in the ossified parapophyses in Acipenseriformes (Leprévost et al., 2017: fig. 3F); thus, in S. rieppeli we find parapophyses to be the more plausible interpretation for these ventral elements.		
(3) Mid-abdominal region (Fig. 1b). The mid-abdominal region, characterized by the absence of ossified parapophyses, begins posterior to segment 12. A second change occurs within this region: around segment 20, the mid-abdominal neural spines become narrower and more posteriorly inclined, and the dorsal expansion of the prezygapophysis is lost. This does not correlate with a change in ventral ossifications. Based on broader taxonomic comparisons within saurichthyids, the ventral ossifications appear to better reflect regional variation in the anterior column (regions II–III).		
(4) Transitional region (Figs. 1c and 2a). This region spans the abdominal–caudal transition, and can be subdivided into three parts (IVα–c). In the region of the pelvic fins, paired ventral ossifications, here identified as haemal arches forming ventral arcocentra and fused with ossified interventrals, reappear and rapidly become stereotypically spool-shaped (Region IVa). Each ventral element spans one axial segment with a foramen in the posterior half interpreted as transmitting the intersegmental vessels (Stensiö, 1925). Immediately anterior to the anal fin, long posteriorly directed processes are present (Region IVb), originating from the posterior half of a ventral arcocentrum ventral to the vascular foramen, and identified as haemal processes. The right and left haemal processes are unfused. Posteriorly, the ventral arcocentra become progressively more weakly ossified, and the differentiated haemal arch and interventrals cease to fuse to each other (Region IVc).		
(5) Anterior caudal region (Fig. 1d and 2a). Around the midpoint of the anal fin base, the haemal processes are reduced, and by the end of the anal fin base no mineralized ventral elements are present. Also at around the midpoint of the dorsal fin base, the neural spines rapidly reduce in size until no longer present, while the		
zygapophyses remain present, resulting in T-shaped neural arches.

(6) Peduncle region (Fig. 1e). Immediately anterior to the caudal fin, co-ossified ventral arcocentra and haemal processes reappear. The anteriormost two elements consist only of the ventral arcocentra. Unlike in regions III–IV, a haemal arch is present for every neural arch. Haemal processes are oriented parallel to the notochord in the peduncle region. Neural spines, oriented approximately parallel to the notochord, also reappear in this region.

(7) Preural caudal region (Figs. 1f and 2c). Dorsal and ventral elements in the caudal fin are oriented vertically and support lepidotrichia. The ventral elements are relatively thick and show a constriction between the haemal arch and spine (the paired nature of this structure is unclear), indicating that these are preural. The preural and ural regions are differentiated by the absence of a haemal arch in the latter (Nybelin, 1963).

(8) Ural region (Figs. 1f and 2c). Although not well-preserved, there appears to be a morphological change part way along the fin, which we interpret as the approximate location of the preural/ural boundary. The ventral elements (hypurals) become flattened and lose the constriction between arch and spine, and the dorsal elements become smaller. Although disruption of the terminal lobe prevents an exact count, _S. rieppeli_ has at least six hypurals, making the caudal skeleton polyural, as is typical of non-teleost actinopterygians (Schultze & Arratia, 1989).

Regionalization across Saurichthyidae

There is extensive variability in the axial skeleton of saurichthyids. We provide a brief overview of differences in regionalization between taxa to understand trends and variability within the clade (Fig. 3; Table S1).

Early Triassic saurichthyids

As far as has been described, there is little difference in axial regionalization between _Saurichthys rieppeli_ and phylogenetically basal/phylogenetically indeterminate Early Triassic saurichthyids (e.g. Kogan & Romano, 2016a, 2016b).
One key difference is the much shorter anterior transitional region (IVa) in *S. madagascariensis* than in *S. rieppeli*. This region appears approximately dorsal to the location of the pelvic girdle in both taxa, independent of the end of the body cavity. Differentiated Regions I–II and VI–VIII have not been documented in *S. madagascariensis*, but these regions are not well-exposed in any Early Triassic saurichthyid.
Sinosaurichthys species group (sensu Tintori, 2013)

In *Sinosaurichthys longimedialis* (Anisian), Region II is characterized by ossified parapophyses; these are replaced by ossified ventral arcocentra in Region III. Region IV is divided into a short anterior region, characterized by very short haemal processes (IVa) interspersed with ossified interventrals, and a longer posterior region (IVb), characterized by alternating haemal processes and interventrals. Region V is differentiated by the loss of haemal processes and neural spines (T-shaped neural arches; Wu et al., 2011). In Region VI, haemal processes reappear, but differentiation of Regions V and VI is relatively weak in this clade.

Saurichthys grignae

This Middle Triassic (Ladinian) species is phylogenetically basal to the better-defined clades higher up the tree (Fig. 3; Maxwell et al., 2015). Region IV lacks subdivisions, and is differentiated from Region V by a change in the orientation of the neural spines and haemal processes (Tintori, 2013). Regions V and VI are not differentiated: since neural spines and haemal processes are not lost in the anterior caudal region, the whole preural caudal region is superficially similar to Region VI of *S. rieppeli*. In particular, Region II is differentiated by ossified parapophyses in a 1:2 relationship with the neural arches (described by Rieppel, 1992 as haemal arches). These have an elongated morphology (Fig. 2d) and are ossified on both the dorsal and ventral surfaces, but around segment 10 become small, nodular and are ossified on only one surface (Fig. 2e). We interpret this shift as a change from ossified parapophyses, characterizing Region II, to ossified ventral arcocentra, characterizing Region III. Haemal processes appear dorsal to the anal loop, and are equal in number to the neural arches (Region IV). The first haemal process is not fused with the ventral arcocentrum (IVa), but more posteriorly the two elements are co-ossified (IVb). The anteriormost haemal processes are bifid, but towards the posterior end of the anal fin the processes become unbranched (IVc). This point roughly corresponds to the appearance of T-shaped neural arches, although these have a transitional morphology until the posterior end of the dorsal fin. Posterior to the anal fin, the haemal processes gradually become smaller and disappear. We interpret this as a gradual transition between Regions IV and V, rather than a sudden shift to a caudal morphology as documented in *S. rieppeli*.

The regionalization pattern of *Saurichthys* (*Costasaurichthys*) *costasquamosus* is similar to *S. paucitrichus* but provides additional information on caudal regionalization (PIMUZ T 1275; Fig. 2c). In this species, regions V–VIII are differentiated. The preural–ural transition is not entirely clear, but at minimum seven hypurals are present.

Costasaurichthys species group (sensu Tintori, 2013)

The pattern in *Saurichthys* (*Costasaurichthys*) *paucitrichus* (PIMUZ T 59) roughly corresponds to that described for *S. rieppeli*. In particular, Region II is differentiated by ossified parapophyses in a 1:2 relationship with the neural arches (described by Rieppel, 1992 as haemal arches). These have an elongated morphology (Fig. 2d) and are ossified on both the dorsal and ventral surfaces, but around segment 10 become small, nodular and are ossified on only one surface (Fig. 2e). We interpret this shift as a change from ossified parapophyses, characterizing Region II, to ossified ventral arcocentra, characterizing Region III. Haemal processes appear dorsal to the anal loop, and are equal in number to the neural arches (Region IV). The first haemal process is not fused with the ventral arcocentrum (IVa), but more posteriorly the two elements are co-ossified (IVb). The anteriormost haemal processes are bifid, but towards the posterior end of the anal fin the processes become unbranched (IVc). This point roughly corresponds to the appearance of T-shaped neural arches, although these have a transitional morphology until the posterior end of the dorsal fin. Posterior to the anal fin, the haemal processes gradually become smaller and disappear. We interpret this as a gradual transition between Regions IV and V, rather than a sudden shift to a caudal morphology as documented in *S. rieppeli*.

The regionalization pattern of *Saurichthys* (*Costasaurichthys*) *costasquamosus* is similar to *S. paucitrichus* but provides additional information on caudal regionalization (PIMUZ T 1275; Fig. 2c). In this species, regions V–VIII are differentiated. The preural–ural transition is not entirely clear, but at minimum seven hypurals are present.

Saurichthys curionii

Regions II and III are differentiated by the presence of ossified parapophyses in the former; however, differentiation of these
regions is not present in all specimens, even within a given maturity class—namely, gravid females. A single specimen (PIMUZ T 3917) shows structures that we interpret as atypically ossified ribs in region II. Region IV is differentiated by ossified haemal arches in a 1:1 relationship with the neural arches, and begins well anterior to the pelvic girdle; haemal processes occur posterior to the pelvic girdle (IVb). The transition from Region IV to V ventral to the dorsal fin is characterized by a sudden change in the angle of the neural spines (Rieppel, 1985); the haemal processes become much shorter and thinner at this point. Although the haemal processes are slightly more robust in the caudal peduncle, this transition is gradual and subtle.

Saurorhynchus species group (sensu Maxwell et al., 2015)

Detailed data for this clade is only available for *Saurorhynchus haufi* (Early Jurassic; Maxwell & Stumpf, 2017). Region I consists of ~4 neural arch-like elements, and is differentiated from Region II by the block-like shape of the centra and the relative reduction of the prezygapophyses and neural spines (Fig. 2b). Regions II and III are not differentiated. There are two subregions within Region IV; the anteriormost (IVa) consists of short haemal processes, which gradually lengthen, and the second (IVb) is characterized by elongation and distal bifurcation of the neural spines and haemal processes anterior to and supporting the dorsal and anal fin, respectively. Posterior to the median fins, the neural spines and haemal processes become laterally expanded (V), as described in *Saurichthys grignae* (Tintori, 2013), and cease to bifurcate. In Region VI, bifurcation resumes and the notochord becomes very narrow. The dorsal and ventral elements in Region VII are in articulation with each other, and there is a change in the angle of the neural and haemal arches.

Regionalization in outgroups: Birgeria

The Triassic actinopterygian *Birgeria* is hypothesized to be the sister-group of Saurichthyidae, whereas the Early Triassic *Australosomus* falls basal to this clade on the neopterygian stem (Fig. 3; Argyriou et al., 2018). Thus, both taxa are informative in understanding the evolution of regionalization in Saurichthyidae.

As in saurichthyids, the vertebral column of *Birgeria* is aspondylyous, consisting of ossifications dorsal and ventral to the notochord. Although previous studies did not recognize regional disparity in the axial skeleton, re-study of *Birgeria stensioei* (PIMUZ T 4780) from the Middle Triassic of Monte San Giorgio revealed a slightly regionalized pattern, though the change in morphology is subtle compared with other taxa (Fig. 4; see Supplement Appendix S1 for details). In addition, the posterior vertebral column of the species *B. liui* from the Middle Triassic of China has recently been described (Ni et al., 2019) and can be used for comparison.

Region I is characterized by short, robust, curved neural spines and stout supraneurals in PIMUZ T 15, T 2775 and T 4780.

Region II consists of at least 22 paired elements. The dorsal ossifications are relatively small, with a high neural arch, and short, thickened, caudally curved neural spines. Distally, the neural spines articulate with relatively robust supraneurals, which have a gently curved S-shape and a blunt distal end. Ventral ossifications, interpreted as parapophyses, are present. In some specimens, the parapophyses show a tuberosity, similar to structures that, in other *Birgeria* species, have been interpreted as attachment structures for cartilaginous ribs (*B. groenlandica*: Nielsen, 1949). This division agrees well with *Australosomus* (Fig. 5c; also see Nielsen, 1949).

In Region III, anterior processes on the neural arches are present and distinctive, and posterior processes are absent. Supraneurals are straight or slightly curved, with their concave side facing anteriorly. Parapophyses are ossified, but ventral arcoconcae are absent or cartilaginous in *B. stensioei*. Ossified plate-like ventral arcoconcae fused to the parapophyses are present in Region III in *B. liui* (Ni et al., 2019).

The transitional region has four parts: IVa is similar to III, but here spine-like haemal arches occur in addition to the parapophyses; these were interpreted as ribs in *B. liui* by Ni et al. (2019). Neural arches are paired and similar in morphology to those in Region III, and supraneurals are present. Region IVb is marked by the absence of ossified parapophyses, although some large plate-like ossifications preserved ex situ complicate interpretation (Fig. 4). The spine-like haemal arches gradually increase in length posteriorly. Supraneurals are present. In IVc, the haemal arches abruptly become broader and larger relative to those in IVb. Neural arches and spines are similar to those in more anterior subregions. In IVd, supraneurals are absent. The paired neural spines are more elongate and the haemal arches are broader than in more anterior subsections of Region IV.

Region V is characterized by median, unpaired neural and haemal spines. The long axes of the haemal arch and spine are offset, forming an angle in lateral view. This is similar to the anterior caudal region in *B. liui*.

Region VI is characterized by slender haemal arches that are not offset from the median haemal spines. Externally, scale cover begins in this region. Region VI in *B. stensioei* is characterized by a change in the inclination of the neural spines, similar to the posterior caudal region in *B. liui* (Ni et al., 2019).

Regions VII + VIII support the lepidotrichia of the caudal fin. Haemal arches with a median hypural plate are present in Region VII; the condition of the dorsal ossifications is unclear due to scale cover. Haemal arches are absent in region VIII.

As in *Saurichthys rieppelti*, all eight regions can be recognized in *Birgeria*. Region IV in *Birgeria* also represents a transition between the abdominal and caudal axial skeleton, with a progressive loss of ‘abdominal’ phenotypes (e.g. parapophyses, supraneurals) and an acquisition of ‘caudal’ phenotypes (e.g. elongated, robust haemal processes that resemble haemal spines in all aspects except median fusion) over many axial segments. As in *S. rieppelti* and the Early Triassic saurichthyids, the boundary between the abdominal and transitional regions correlates with the position of the pelvic girdle.
Axial regionalization in Saurichthyidae

E. E. Maxwell et al.
Regionalization in outgroups: **Australosomus**

In contrast to *Birgeria* and Saurichthyidae, *Australosomus kochi* has ossified vertebral centra. All eight axial regions are differentiated in the latter taxon (Fig. 5c, Table S1; data from Nielsen, 1949). As in *Birgeria*, shorter, thicker neural spines characterize Regions I and II. A small lateral process on the ventral arcocentrum (parapophysis) suggests that vertebrae in the postoccipital region (I) may have borne cartilaginous ribs, unlike in teleosts (e.g. De Clercq *et al.*, 2017). The subregions of Region IV are not well-documented in *A. kochi*, but there is some evidence that loss of parapophyses, appearance of haemal spines, and fusion of neural arches and interdorsal elements do not occur simultaneously. Region V is characterized by diplospondyly, and Regions VI–VIII are similar to saurichthyids.

Discussion

Both axial regionalization and differentiation appear to have declined in Saurichthyidae over evolutionary time, with the highest number of and clearest differentiation between regions observed in basal species and outgroup taxa (Fig. 3). Loss of differentiation between the anterior- and mid-abdominal regions (Regions II–III) and between the caudal and peduncle regions (V–VI) evolved multiple times within the clade. Two groups of saurichthyids show independent decreases in regionalization (*Saurichthys grignae*, and the *Saurorhynchus* species group), affecting regions of both the abdominal and caudal vertebral column. In view of this within-group evolutionary lability, as well as the well-documented variation in vertebral regionalization across clades (see below and Table S1) we are not assuming direct homology between regions across Actinopterygii.
Rather, we are hypothesizing iterative evolution of differentiated axial regions based on a shared underlying developmental framework (deep homology). Such a view is consistent with reports of differentiation in various regions of the axial skeleton in jawless vertebrates (Chevrinais et al., 2018).

Axial regionalization across Actinopterygii

Two to three postoccipital (cervical) vertebrae, identified by the absence of ribs, are morphologically distinctive in both *Danio* and *Oncorhynchus*, and in *Danio* correspond to similar gene expression boundaries as the cervical region in tetrapods (Table 2; Morin-Kensicki et al., 2002; De Clercq et al., 2017). However, the absence of ribs in the postoccipital vertebrae is not universal in actinopterygians (e.g., *Lepisosteus*: Grande, 2010; *Australosomus*: Nielsen, 1949). The vertebrate neck is defined as the domain of the cucullaris muscle, which inserts on the pectoral girdle (Kuratani, 2008). Thus, patterning of the ‘cervical’ region is closely correlated with the position of the brachial plexus in all vertebrate groups (Burke et al., 1995). It seems likely that a short postoccipital region will be conserved across Actinopterygii, but incorporation of vertebrae into the back of the skull may complicate assessment of homologies (Grande & Bemis, 2002). Due to the high counts, the anterior-most well-preserved neural arches of *Saurichthys rieppeli* likely do not correspond to the postoccipital vertebrae.

The abdominal region in *Danio* consists of very few vertebrae, and the transition between the two posterior Weberian vertebrae and the abdominal region is patterned using the same genetic underpinnings as the thoracolumbar transition in amniotes (Morin-Kensicki et al., 2002). In the non-teleostean actinopterygians surveyed here, the abdominal region is elongated in comparison with *Danio*, but the anterior- and mid-abdominal regions are usually either very subtly differentiated or undifferentiated. This configuration is more similar to that described in chondrichthians (Oulion et al., 2011), and may represent the primitive state in gnathostomes.

The widely recognized abdominal-caudal transition in actinopterygians, defined by the first occurrence of haemal spines/processes (e.g. Bird & Mabee, 2003), falls within a highly conserved zone in which abdominal and caudal vertebral morphologies overlap in the region of the posterior body cavity and anterior tail. This transitional region (Region IV; Type III of *De Clercq et al.*, 2017) spans the abdominal-caudal boundary, and has even been reported in jawless vertebrae (Euphanerops; Chevrinais et al., 2018). This region coincides with the expression domain of Hox PG11 in chondrichthians (Oulion et al., 2011), a sacral marker in tetrapods (Wellik, 2007). In *S. rieppeli*, the ‘abdominal’ portion of the transitional region (IVA) is particularly expanded relative to the outgroup taxon *Australosomus* (Fig. 5c), and some other saurichthyids (e.g. Costasaurichthys species group, see also Table S1). Interestingly, in *Birgeria*, the body cavity extends ventral to Region IVb (Fig. 4); thus although the transitional region is expanded in *Birgeria*, this has been achieved via a different mechanism than in *S. rieppeli*. Expansion of Region

Table 2 Tentative deep homologization of axial regions and terminology in actinopterygians. References: *Danio* (Morin-Kensicki et al., 2002; Bird & Mabee, 2003); *Oncorhynchus* (De Clercq et al., 2015; this study); Hox paralogous groups (PG; Burke et al., 2007). Please note that this study did not characterize the abdominal region in *S. rieppeli*.

Region	Cervical	Thoracic	Lumbo-sacral	Caudal
Type I	Postcervical	Weberian	Cervico-thoracic	Preural
Type II	Postcervical	Cervical	Thoraco-lumbar	Ural
Type III	Postcervical	Thoracic	Lumbar	Ural
Type IV	Postcervical	Thoracic	Mid-lumbar	Ural
Type V	Type III = Type IV	Lumbo-sacral	Sacral	Ural
Type VI	Not preserved	Not preserved	Not preserved	Ural
Type VII	Not preserved	Not preserved	Not preserved	Ural
Type VIII	Not preserved	Not preserved	Not preserved	Ural

Fig. 5a Postcranial
Fig. 5b Axial regionalization in *S. rieppeli*, and in *Danio* (Morin-Kensicki et al., 2002; De Clercq et al., 2015; this study). Hox paralogous groups (PG; Burke et al., 2007). Table S1. Interesting, in *Birgeria*, the body cavity extends ventral to Region IVb (Fig. 4); thus although the transitional region is expanded in *Birgeria*, this has been achieved via a different mechanism than in *S. rieppeli*. Expansion of Region

© 2021 The Authors. Journal of Zoology published by John Wiley & Sons Ltd on behalf of Zoological Society of London
IV well into the abdominal region may promote axial stability (see below).

The anterior caudal region (V), beginning several segments posterior to the end of the body cavity, is widely conserved and has been described in _Tarrasius, Oncorhynchus_, and corresponds to the end of the ‘variable’ region (sensu Morin-Kensicki et al., 2002: fig. 6) in _Danio_ (Table 2; Sallan, 2012, Bird & Mabee, 2003, De Clercq et al., 2017, Morin-Kensicki et al., 2002). In _Saurichthys rieppeli_, this region is interpreted as beginning at the point where the neural spines disappear, although ossified haemal processes are absent in this species. The posterior caudal region of _S. rieppeli_ is further differentiated, with three additional regions: the caudal peduncle (VI), and the preural and ural caudal fin regions (VII–VIII). Region VI is differentiated in _Australosomus_ and _Birgeria_, as well as in basal saurichthyids, implying phylogenetic continuity in this part of the tree; however, Region VI is not widely conserved in actinopterygians (Table 2; Table S1). Convergent differentiation of this region has occurred in some teleosts (e.g. _Thunnus, Trachurus_). The developmental basis for posterior axial regionalization is poorly understood: the caudal region, including the tail fin, is induced by an independent organizer (Agathon et al., 2003), and may be patterned separately from the rest of the axis (Morin-Kensicki et al., 2002). *Hox* genes may be involved but their role in conferring identity is not clear (Ahn & Gibson, 1999).

Functional interpretation

Taphonomic disarticulation is concentrated at particular points along the body in Middle Triassic saurichthyids (Beardmore & Furrer, 2016). In _Saurichthys curionii_, the anterior abdominal regions (II/III) and the region posterior to the median fins (Regions V–VI) were particularly affected by disarticulation, whereas in the _Costasaurichthys_ species group, bending and disruption of the axial skeleton were concentrated anteriorly (II/III) and regions V–VII were rigid. In all cases, the region of the axial skeleton with elongated haemal processes (Iva/IVb) showed the least flexibility. This suggests bending during locomotion was concentrated anterior to Region IV in most species of _Saurichthys_ (as reconstructed by Kogan et al., 2015), with additional posterior flexibility in the skeleton of _S. curionii_ possibly associated with a more anguilliform swimming style. A regionally differentiated axial skeleton in a fully aquatic organism therefore might be adaptive in the control of bending and flexibility along the vertebral column associated with specialized locomotor strategies.

Conclusions

Differentiation of axial regions in bony fishes varies considerably even within clades in which a highly differentiated axial skeleton is the primitive condition (Saurichthiidae: this study). The axial skeleton of _Saurichthys rieppeli_ shows a high level of regionalization, similar to that of the Carboniferous actinopterygian _Tarrasius_ (Sallan, 2012), and all available evidence suggests that the capacity to generate morphologically disparate axial regions is conserved across Osteichthyes (Table 2). As with _Tarrasius_, regional differentiation in saurichthyids is not associated with a terrestrial or amphibious lifestyle, but may be associated with elongation of the abdominal region, as regional differentiation appears to exert differential control on flexibility and stability of the vertebral column. Whether these qualitative morphological regions correlate with the regions recovered using linear measurements and associated with swimming style in teleosts (Meunier & Ramzu, 2006) remains to be tested morphometrically.

The specific morphologies characterizing these axial regions and relative disparity between them is variably expressed in Actinopterygii (see Table S1). However, the developmental framework underpinning a regionalized vertebral column is likely to be conserved (Oulion et al., 2011). The probability of a conserved framework underlying superficially convergent axial morphologies in fishes opens up several interesting lines of investigation, such as the relationship between within-column disparity and evolutionary radiations, or meristic variation of specific regions in relation to body shape and axial flexibility across clades.

Acknowledgements

Thanks to C. Klug (PIMUZ) for collections access, and to C. Böhmer and E. Buchholtz for organizing and editing this symposium volume. D. Fowler provided constructive feedback on an early version of the manuscript. We thank I. Kogan and two anonymous reviewers for detailed comments which improved the text. Funding: National Natural Science Foundation of China to F.-X. Wu (grant no. 41472019).

References

Agathon, A., Thisse, C. & Thisse, B. (2003). The molecular nature of the zebrafish tail organizer. _Nature_ 424, 448–452.

Ahn, D.-G. & Gibson, G. (1999). Expression patterns of thre spine stickleback _Hox_ genes and insights into the evolution of the vertebrate body axis. _Dev. Genes Evol._ 209, 482–494.

Argyriou, T., Giles, S., Friedman, M., Romano, C., Kogan, I. & Sánchez-Villagra, M. (2018). Internal cranial anatomy of Early Triassic species of †_Saurichthys_ (Actinopterygii: †_Saurichthyiformes_): implications for the phylogenetic placement of †_saurichthyiforms_. _BMC Evol. Biol._ 18, 161.

Arratia, G., Schultz, H.-P. & Casciotta, J. (2001). Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. _J. Morphol._ 250, 101–172.

Beardmore, S.R. & Furrer, H. (2016). Taphonomic analysis of _Saurichthys_ from two stratigraphic horizons in the Middle Triassic of Monte San Giorgio, Switzerland. _Swiss J. Geosci._ 109, 1–16.

Bird, N.C. & Mabee, P.M. (2003). Developmental morphology of the axial skeleton of the zebrafish, _Danio rerio_ (Ostariophysi: Cyprinidae). _Dev. Dyn._ 228, 337–357.
Axial regionalization in Saurichthyidae

E. E. Maxwell et al.

Buchholtz, E.A. & Gee, J.K. (2017). Finding sacral: developmental evolution of the axial skeleton of odontocetes (Cetacea). *Evol. Dev.* 19, 190–204.

Burke, A.C., Nelson, C.E., Morgan, B.A. & Tabin, C. (1995). *Hox* genes and the evolution of vertebrate axial morphology. *Development* 121, 333–346.

Chevrinais, M., Johanson, Z., Trinajstic, K., Long, J., Morel, C., Renaud, C.B. & Cloutier, R. (2018). Evolution of vertebrate postcranial complexity: axial skeleton regionalization and paired appendages in a Devonian jawless fish. *Palaeontology* 61, 949–961.

Clothier, C.R. (1950). A key to some southern California fishes based on vertebral characters. Calif. Dept. Nat. Res. Div. Fish and Game. *Fish Bull.* 79, 1–83.

De Clercq, A., Perrott, M.R., Davie, P.S., Preece, M.A., Wybourne, B., Ruff, N., Huysseune, A. & Witten, P.E. (2017). Vertebral column regionalisation in Chinosaur salmon, *Onchorhyncus tsawatscna*. *J. Anat.* 231, 500–514.

Gadow, H. & Abbott, E.C. (1895). IV. On the evolution of the vertebral column in fishes. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 166, 163–221.

Goodrich, E.S. (1930). *Studies on the structure and development of vertebrates*. London: MacMillan and Co.

Grande, L. (2010). An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holosteii. American Society of Ichthyologists and Herpetologists Special Publication 6. *Copeia Suppl.* 10, 871.

Grande, L. & Bemis, W.E. (1998). A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. *J. Vertebr. Palaeontol.* *Memoir* 4, 1–698.

Head, J.J. & Polly, P.D. (2015). Evolution of the snake body form reveals homoplasy in amniote *Hox* gene function. *Nature* 520, 86–89.

Hilton, E.J., Grande, L. & Bemis, W.E. (2011). Skeletal anatomy of the shortnose sturgeon *Acipenser brevisrostrum* Lesueur, 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae). *Fieldiana Life Sci.* 3, 1–168.

Kogan, I., Pacholak, S., Licht, M., Schneider, J.W., Brücker, C. & Brandt, S. (2015). The invisible fish: hydrodynamic constraints for predator-prey interaction in fossil fish *Saurichthys* compared to recent actinopterygians. *Biol. Open* 4, 1715–1726.

Kogan, I. & Romano, C. (2016a). A new postcranial of *Saurichthys* from the Early Triassic of Spitsbergen. *Freiberger Forschungshefte, C.* 550, 205–221.

Kogan, I. & Romano, C. (2016b). Redescription of *Saurichthys madagascariensis* Piveteau, 1945 (Actinopterygii, Early Triassic), with implications for the early saurichthyid morphotype. *J. Vertebr. Paleontol.* 36, e1151856.

Kuratani, S. (2008). Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. *Dev. Growth Differ.* 50, S189–A194.

Leprévost, A., Azaïs, T., Trichet, M. & Sire, J.-Y. (2017). Vertebral development and ossification in the Siberian sturgeon (*Acipenser baerii*) with new insights on bone histology and ultrastructure of vertebral elements and scutes. *Anat. Rec.* 300, 437–449.

Maxwell, E.E., Furrr, H. & Sánchez-Villagra, M. (2013). Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes. *Nat. Commun.* 4, 2570.

Maxwell, E.E., Romano, C., Wu, F. & Furrr, H. (2015). Two new species of *Saurichthys* (Actinopterygii: Saurichthyidae) from the Middle Triassic of Monte San Giorgio, Switzerland, with implications for character evolution in the genus. *Zool. J. Linnean Soc.* 173, 887–912.

Maxwell, E.E. & Stumpf, S. (2017). Revision of *Saurorhyhncus* (Actinopterygii: Saurichthyidae) from the Early Jurassic of England and Germany. *Eur. J. Taxon.* 321, 1–29.

Maxwell, E.E. & Wilson, L.A.B. (2013). Regionalization of the axial skeleton in the ‘ambush predator’ guild – are there developmental rules underlying body shape evolution in ray-finned fishes? *BMC Evol. Biol.* 13, 265.

Meunier, F.J. & Ramzu, M.-Y. (2006). La r.* paléobiofonctionelle de l’axe vertébral chez les Télérosteens en relation avec le mode de nage*. *C.R. Palevol.* 5, 499–507.

Morin-Kensicki, E.M., Melancon, E. & Eisen, J.S. (2002). Segmental relationship between somites and vertebral column in zebrafish. *Development* 129, 3851–3860.

Ni, P.G., Tintori, A., Sun, Z.Y., Lombardo, C. & Jiang, D.-Y. (2019). Postcranial skeleton of *Birgeria liui* (Osteichthyes, Actinopterygii) from the Longobardian (Ladinian, Middle Triassic) of Xingyi, Guizhou, South China. *Swiss J. Geosci.* 112, 307–32.

Nielsen, E. (1942). Studies on Triassic fishes from East Greenland I. *Palaeozoologica Groenlandica* 138, 1–394.

Nielsen, E. (1949). Studies on Triassic Fishes II. *Palaeozoologica Groenlandica* 3, 1–309.

Nybelin, O. (1963). Zur Morphologie und Terminologie des Schwanzskelletes der Actinopterygier. *Ark. Zool., Ser.* 2(15), 485–516.

Oulion, S., Borday-Birraux, V., Debiais-Thibaud, V., Mazan, S., Laurenti, P. & Casane, D. (2011). Evolution of repeated structures along the body axis of jawed vertebrates, insights from *Scyliorhinus canicula* *Hox* code. *Evol. Dev.* 13, 247–259.

Prince, V.E., Joly, L., Ekker, M. & Ho, R.K. (1998). Zebrafish *hox* genes: genomic organization and modified colinear expression patterns in the trunk. *Development* 125, 407–420.

Rieppel, O. (1985). Die Triasfauna der Tessiner Kalkalpen XXV. Die Gattung *Saurichthys* (Pisces, Actinopterygii) aus der mittleren Trias des Monte San Giorgio. Kanton Tessin. Schweiz: *Palaeontol. Abt.* 108, 1–103.

Rieppel, O. (1992). A new species of the genus *Saurichthys* (Pisces: Actinopterygii) from the Middle Triassic of Monte San Giorgio (Switzerland), with comments on the phylogenetic interrelationships of the genus. *Palaeontogr. Abt.* A 221, 63–94.
Sallan, L.C. (2012). Tetrapod-like axial regionalization in an early ray-finned fish. Proc. R. Soc. Biol. Sci. 279, 3264–3271.
Schaeffer, B. (1967). Osteichthyan vertebrae. J. Linnean Soc. 47, 185–195.
Schultze, H.-P. & Arratia, G. (1986). Reevaluation of the caudal skeleton of actinopterygian fishes: I. Lepisosteus and Amia. J. Morphol. 190, 215–241.
Schultze, H.-P. & Arratia, G. (1989). The composition of the caudal skeleton of teleosts (Actinopterygii: Osteichthyes). Zool. J. Linnean Soc. 97, 189–231.
Stensiö, E. (1925). Triassic fishes from Spitzbergen, Part II. K Sven. vetensk.akad. handl., Ser. 3, 2, 1–126.
Tintori, A. (2013). A new species of Saurichthys (Actinopterygii) from the Middle Triassic (early Ladinian) of the northern Grigna Mountain (Lombardy, Italy). Riv. Ital. Paleontol. S. 119, 287–302.
Wellik, D.M. (2007). Hox patterning of the vertebrate axial skeleton. Dev. Dynam. 236, 2454–2463.
Wu, F.-X., Sun, Y.-L. & Fang, G.-Y. (2018). A new species of Saurichthys from the Middle Triassic (Anisian) of southwestern China. Vert. PalAs. 56, 273–294.

Wu, F.-X., Sun, Y.-L., Hao, W.-C., Jiang, D.-Y. & Sun, Z.-Y. (2015). A new species of Saurichthys (Actinopterygii; Saurichthyiformes) from the Middle Triassic of southwestern China, with remarks on pattern of the axial skeleton of saurichthyid fishes. Neues Jahrb. Geol. Palaeontol. Abh. 275, 249–267.
Wu, F., Sun, Y., Xu, G., Hao, W. & Jiang, D. (2011). New saurichthyid actinopterygian fishes from the Anisian (Middle Triassic) of southwestern China. Acta Palaeontol. Pol. 56, 581–614.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Regional differentiation across Actinopterygii: summary Table S1 and discussion of regionalization in Birgeria, Lepisosteus and Amia.
Table S1. Regional differentiation across Actinopterygii.