Analysis of Carotenoids and Identification of Mangrove Sediment Bacteria of Segara Anakan, Cilacap

Riyanti1*, Meris Rahmawati1, Nuning Vita Hidayati1, Agung Dhamar Syakti2 and Ocky Karna Radjasa3

1Faculty of Fisheries and Marine Science, Jenderal Soedirman University
Jl. dr. Soeparno Karangwangkal, Purwokerto, 53122, Indonesia
2Center of Maritime Bioscience Study, Jenderal Soedirman University
Jl. dr. Soeparno Karangwangkal, Purwokerto, 53122, Indonesia
3Faculty of Fisheries and Marine Science, Diponegoro University
Jl.Prof.H.Soedarto, S.H.Tembalang, Tembalang, Semarang, 50275, Indonesia
Email: riyanti.anti@gmail.com

Abstract

The excessive consumption of artificial dyes can lead to negative effects on human body. Thus, the invention of natural dyes, such as carotenoids, is needed in order to reduce the negative impacts. Carotenoids are yellow, orange, and reddish yellow pigments produced by plants, animals, algae, and microorganisms. This study was aimed to analyze the carotenoid pigments of mangrove sediment bacteria in Segara Anakan, Cilacap, and to identify species of bacteria that can produce carotenoids. Carotenoids were analysed by using Thin Layer Chromatography (TLC) and UV-Vis spectrophotometer. Meanwhile molecular identification of bacteria was carried by 16S rDNA PCR and DNA sequence was analysed through a program called Basic Local Alignment Search Tool (BLAST). The kinship of bacteria was shown in Phylogenetic tree by using Bioedit and MEGA 5 software. Qualitative analysis by using TLC produced several pigments like: β-carotene, β-isorenieraten, lycopene, flavonoids, chlorophyll a, chlorophyll b and a xanthoptin with RF value of 0.36-0.95. Quantitative analysis showed that bacteria KH (greenish yellow), KT (dark yellow) and KM (light yellow) produced carotenoids at 95.30 μg.g⁻¹, 110.34 μg.g⁻¹ and 25.349 μg.g⁻¹. KH, KT and KM were suspected to be bacteria known as Streptomyces chartreusis, Bacillus megaterium and Streptomyces chromofuscus with similarity of 99%. Mangrove sediment bacteria had the potential of producing carotenoids as an alternative of eco-friendly natural dyes.

Keywords: pigment, Streptomyces, Bacillus, natural dyes

Introduction

In the market, dyes are very often added to food. The use of dyes that is excessive, inappropriate and harmful needs to be avoided because it can have negative impacts on health. Natural dyes can be used as an alternative solution in dealing with the harmful effects of the use of artificial dyes. Natural dyes can be obtained from plants, animals, micro-algae (cyanobacteria), heterotrophic and phototrophic bacteria, and fungi (Britten, 1998; Kumiawan et al., 2010; Gupta et al., 2011). Natural dyes that have been mass produced are β-caroten from Dunaliella, astaxanthin from Haematococcus, and lutein from Chlorophyceae (Campo et al., 2007). Bacteria that are known to be the producers of carotenoid are Streptomyces sp., Brevibacterium maris, Paracoccus alcaliphilus, Rhodotorula rubra, Bradyrhizobium sp. (Hannibal et al., 2000; Simova et al., 2004; Baskar et al., 2010; Arlita et al., 2013).

Bacteria are potential organisms utilized in the health and industry sector. Natural color pigment or substance that can be produced by bacteria has positive impacts on human health. Palanichamy et al. (2011) said Streptomyces sp. isolated from sediments on the coast of Chennai, India, is potential as a pigment producer. The new acyclic carotenoids and monocyclic C40 carotenoids were isolated from the novel Gram-negative bacterium Rubritalea squalenificiens and novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes respectively (Shindo and Misawa, 2014).

The utilization of bacteria as the producers of carotenoid pigment can be an alternative to gain dyes that are eco-friendly and safe to be consumed by human. This research is aimed to analyse carotenoid pigment produced by mangrove sediment bacteria of Segara Anakan, Cilacap and to identify bacteria that can produce carotenoid pigment.
Material and Methods

The content of carotenoid was measured by spectrophotometry method (Dharmaraj et al., 2009). Carotenoid was extracted in accordance with Dharmaraj et al. (2009) with modifications. Bacterial isolates were inoculated in a starch casein medium with pH 7 of 100 ml, and incubated in a shaker with a rotation speed of 180 rpm and temperature of 28°C for 120 hours. Furthermore, the solution was centrifuged at 6000 rpm for 15 minutes. Bacterial cells were taken and extracted by using maceration method with acetone and methanol (7:3). Then, the extract is centrifuged and dried by using nitrogen gas.

Measurement of carotenoid’s quality

Carotenoid’s quality of bacterial isolates was measured by employing TLC (Dharmaraj et al., 2009; Baskar et al., 2010). Adsorbent or plate used in TLC was silica gel 60 F254. The qualification of control of the TLC used mobile phase variations, that were: methanol: chloroform (1:7,v:v) methanol: chloroform (1:5,v:v), methanol:chloroform (1:9,v:v), hexane:methanol (5:5,v:v) hexane:methanol (3:7,v:v) hexane:methanol (1:9,v:v). The results were visualized on a 254 nm UV light. The analysis of carotenoid’s quality with Rf (Retardation factor) value:

\[Rf = \frac{\text{migration distance of extract}}{\text{migration distance of solvent}} \]

Measurement of carotenoid’s quantity

Measurement of carotenoid’s quantity (Sahara et al., 2013), was done by using UV-Vis Scan Spectrophotometer with a wavelength of 400-600 nm. Total carotenoid was counted by using sample comparison with the standard of β-carotene curve (Musfiroh et al., 2008).

Molecular identification of mangrove sediment bacteria that produce carotenoids

DNA was extracted in accordance with Margavey et al. (2004) with modification. A total of 1 ml of liquid culture of bacteria was put into a 1.5-mL tube, and then it was centrifuged for 5 min. Next, pellet was homogenized with 400 μlTE and, again, centrifuged for 5 min. 400 μl of SET solution and 50 μl of Lysozim solution were added and incubated at a temperature of 37°C for 1 h. 50 μl of SDS solution were added and then incubated at a temperature of 65°C for 1 h. Furthermore, 167 μl of NaCl solution were added and incubated at the temperature of 65°C for 1 h. 400 μl of cool chloroform solution were added and then incubated at room temperature for 30 min. After 30 min, the mixture was centrifuged for 10 minutes and supernatant obtained was moved to a new tube and then a solution of isopropanol in the ratio of 1:1 was added and incubated at -20°C for 24h. The samples then were centrifuged for 5 min. The pellet was homogenized with cool ethanol 70%. The ethanol was evaporated and the pellet formed was dried by wind. The pellet then was resuspended with 50 μl of TE solution.

The amplification of 16S rDNA PCR fragment was done toward isolates that potentially had carotenoids by using primer R1492 (5′-TACGCTACGTGTAGGACT-3′) and F27 (5′-AGAGTTTGATCTGCTAGC-3′). The composition of PCR reaction consisted of 7.5μl ddH2O, 2.5μl of genomic DNA (50 ng,μl-1), 1.25μl of primer F27 (25 pmol), 1.25 μl of primer R1492 (25 pmol), and 12.5μl of KAPPA MiX PCR (Margavey et al., 2004). The composition was modified by by Riyanti et al. (2009).

DNA was amplified by employing an initial denaturation program at a temperature of 80°C for 5 minutes; 30 cycles that consisted of: denaturation (94°C for 30 sec), annealing (55°C for 30 seconds), polymerisation (72°C for 60 sec), and last polymerisation at a temperature of 72°C for 7 min. The result of amplification was analysed by employing electrophoreses, that was 2% agarose and a dye ethidium bromide (Margavey et al., 2004).

The results of DNA sequences in bacteria were compared to DNA sequences in the DNA data center. The search was performed with the Basic Local Alignment Search Tool (BLAST) at the National Center for Biotechnology Information, National Institute for Health, USA (www.ncbi.nlm.nih.gov) (Atschul et al., 1997). Then, a phylogenetic tree was made from DNA sequent by employing Bioedit and MEGA 5 software (Zhang et al., 2008).

Result and Discussion

Analysis of carotenoid pigments

Observations based on the color samples of the bacterium used three test samples. Bacteria that contained carotenoid pigments had several color (Figure 1.).

The value of Rf (Table 2.) shows that the extract with KH code allegedly contained β-carotene, flavonoids, fefotin a, chlorophyll a, and chlorophyll b pigment. The one with KT code was suspected to contain β-carotene, flavonoids, and chlorophyll a pigment. While extract with KM code was suspected to contain β-isorenieraten pigment, chlorophyll a, chlorophyll b and lycopene pigment. Then this
research would only discuss about carotenoid pigment groups that were β-carotene, β-isorenieraten, and lycopene. The movement of non-polar carotene was faster, marked with the higher Rf than that of other pigments (Rizkina et al., 2013) so that easily identified through visual observation. According to Gross (1991), yellow-orange dye is a sign of carotene pigment group, green-blue is chlorophyl a, while light yellow is xanthophyll pigment group. Carotenoids are divided into two main groups namely polar carotenoid (xanthophill) and non-polar carotenoid non polar (carotene).

The result of TLC was confirmed by employing UV-Vis spectrophotometer. Based on the analysis of the rough extract of KH, KT dan KM pigment, a spectrum pattern with 3 peaks in the wavelength of 400-600 nm (Figure 2.) could be obtained. They were indicated as a carotenoid pigment (Sahara et al., 2013).

The result of measurement shows that KH extract was indicated for containing carotenoid pigment with three peaks, which were 468.5, 439.5 and 416.0 nm. KT extract shows that maximum wavelengths were 653.5, 474.5 and 364.5. In addition, apparently KM extract contained carotenoid pigment that had wavelengths of 467.5, 439.0 and 416.0. Those three extracts samples are included in carotenoid wavelength category, which is 400-600 nm (Sahara et al., 2013). Besides the comparison between the wavelength of the samples and that of the references, the fathoming of carotenoid content was also held by comparing the curve of spectrophotometer with the standard carotenoid curve of Laughlin et al. (2002). Laughlin et al. (2002) states that pure β-carotene, when it is measured with the wavelength of 210-700 nm, shows a peak in the wavelength of 452 nm.

It is supported by Barredo (2012) who explain that maximum wavelengths of β-carotene pigment’s are 430, 453 and 447 nm; those of Lycopene are 445, 457 and 504 nm; those of Zeaxanthin are 427, 453 and 447 nm; and those of Lutein are 427, 448 and 472 nm. While Cantaxanthin and Astaxanthin only has one maximum wavelength, that is 470 and 477 nm, respectively. The result of β-carotene degree determining by using ray spectroskopy method appeared on the pigment of sediment bacteria as shown on Figure 3 and Table 2.

The regression equation for the curve above in the concentration range of 5–50 ppm was $y = 0.0662x – 0.0068$ with R^2 = 0.99. The result shows that the level of beta carotene of KT was higher than that of KH and KM. β-carotene concentration in KH and KT were exceed the “limit of quantification” while the concentration of KM could be counted accurately. The problem related to the limited supply of rough extract of bacteria that produced KH and KT pigment curbed us in validating the concentration of β-carotene of KH dan KT extract. KT extract’s level of β-carotene is higher than that of other extracts seen from the concentration of the measurement result by using regression equation. Besides, the dark yellow dye owned by KT extract indicated that its carotene content was high. It is supported by Britton et al. (1995) that carotene pigment has orange hue. The production of pigment by microorganisms is affected by several factors such as pH, temperature, source of carbon and nitrogen, and time of incubation (Chintapenta et al., 2012).

Carotenoid content produced by KH, KT and KM bacteria was less than that produced by Micrococcus sp. Isolated from the sediment, Canada. A research conducted by Ibrahim (2008) shows that Micrococcus sp. produces 430 μg.g$^{-1}$ of carotenoid. It means sediment bacteria can produce carotenoid more than carrot and purple carrot, that is between 200 and 300 μg.g$^{-1}$ (Lee et al., 2011). Ibrahim (2008) says that there are some factors affect the production of carotenoid besides light.
that are pH, rate of centrifuge and the temperature of incubation.

Identification of sediment bacteria producing carotenoid pigment

Bacteria used in the process of identification were labelled KM, KH and KT. KT bacteria (Figure 4) were assumed as a part of *Bacillus megaterium* and the level of similarity was 99%. The result of the research shows that *Bacillus megaterium* could produce dark yellow pigment. Based on the research held by Mitchell et al. (1986) in Khaneja et al. (2009) it is known that *Bacillus megaterium* can produce red pigments. According to Khaneja et al. (2010) there are some *Bacillus* species that can produce carotenoid, such as *B. marisflavi*, *B. indicus*, *B. firmus*, *B. altitudinis* and *B. safensis* with yellow, orange and pink detected on the wave length of 455, 467 and 492 nm. It is supported by the research of Duc et al. (2006) that discovers *Bacillus indicus* produces yellow carotenoid. Nugraheni et al. (2010) in their research about the characteristic of carotenoid of bacterial symbionts in seagrass, *Thalassia hemprichii*, find that *B. licheniformis* produces orange carotenoid. *Bacillus* Genus produce carotenoid pigment with optimum pH, that is 7 (Khaneja et al., 2010).

KM and KH bacteria were *Streptomyces chromofuscus* and *S.chartreusis* that were 99% similar. Some types of *Streptomyces* that have been examined previously are also reported for containing certain kinds of carotenoid for instance the one identified by Dharmaraj et al. (2009), *Streptomyces* sp., isolated from *Callyspongia diffusa* sponge produces lycopene pigment with the maximum wave length is 445 nm and it’s Rf value is 0.40. Next, Dharmaraj et al. (2009) found *Streptomyces* strain (AQBMM35) species from *Mycale mytilorum* sponge as the producer of phytone pigment with Rf value was 0.81. Palanichamy et al. (2011) isolated

Figure 2. The result of absorbance of UV-Vis spectrophotometer (a) KH extract (b) KT extract (c) KM extract (d) absorbance spectrum of lycopene (-----), γ-carotene (-----), β-carotene (-----), α-carotene (-----) in petroleum ether (Amaya, 2001)
Table 1. Fathoming of kind of pigment based on Rf value by using TLC

Isolate	Spot	Color	Rf value	fathoming Pigmen Type	Literature	Reference
KH	1	Yellow	0.94	β-carotene	0.94-0.97	Ati et al. (2006)
	2	Yellow	0.86	Flavonoid	0.86-0.89	Ati et al. (2006)
	3	Grey	0.8	pheophytin a	0.74-0.82	Heriyanto and Limantara (2006)
	4	Grey	0.64	chlorophyl a	0.57-0.64	Heriyanto and Limantara (2006)
	5	Bluish green	0.6	chlorophyl a	0.57-0.64	Heriyanto and Limantara (2006)
	6	Yellow	0.48	chlorophyl b	0.48-0.56	Heriyanto and Limantara (2006)
KT	1	Dark yellow	0.94	β-carotene	0.94-0.97	Ati et al. (2006)
	2	Grey	0.64	chlorophyl a	0.57-0.64	Heriyanto and Limantara (2006)
	3	Bluish green	0.6	chlorophyl a	0.57-0.64	Heriyanto and Limantara (2006)
	4	Light yellow	0.36	Flavonoid	0.32-0.40	Ati et al. (2006)
KM	1	Dark yellow	0.95	β-isorenieratene	-	Baskar et al. (2010)
	2	Bluish green	0.6	chlorophyl a	0.57-0.64	Heriyanto and Limantara, (2006)
	3	Yellow	0.48	chlorophyl b	0.48-0.56	Heriyanto and Limantara, (2006)
	4	Light brown	0.40	Lycopene	-	Dharmaraj et al. (2009)

Tabel 2. Level of β-carotene pigment of mangrove sediment bacteria

Sample	Absorbance	Level of β-carotene (µg.g⁻¹)
KH	0.721	95.30
KT	0.899	110.34
KM	0.354	25.34

Figure 3. The curve of β-carotene calibration

S.coelicolor and S. violaceoruber bacteria from the sediment of sea and soil in India as the producers of actinorhodin pigment that has red-blue dye. Bose et al. (2013) in their research state that Streptomyces sp. T1027, lighted by a lamp during the culture, can produce β-carotene pigmen. Baskar et al. (2010) also discovered that Streptomyces sp. isolated from some spesies of fish such as Tendania anhelan, Epinephelus diacanthus, Cyprinus carpio and Ospherenemous gourami can produce several types of carotenoid like phytoene, phytofluene, α-carotene, β-carotene and β-isorenieratene.
Figure 4. Genetic relation of mangrove sediment bacteria. The formation of dendrogram was based on PCR 16S rDNA. For the sequence alignment ClustalW Multiple Alignment was employed. While for the analysis, the researcher used Neighbor joining, phylogeny test with Bootstrap method and 1000 repetitions, as well as kimura 2-parameter model.

Conclusion

Mangrove sediment bacteria of Segara Anakan-Cilacap could produce carotenoid pigment of carotene group, which were β-carotene, β-isorenieratene and lycopene. KH, KT and KM bacteria were known can produce carotenoid sebesar 95.30 μg.g⁻¹, 110.34 μg.g⁻¹ and 25.34 μg.g⁻¹. The result of identification shows that KT, KM and KH bacteria had similarity with Bacillus megaterium, Streptomyces chromofuscus and Streptomyces chartreusis.

Acknowledgement

The writers would like to thank Research and Community Service Institute (LPPM) through Institutional Research and DIPA of Jenderal Soedirman University as the source of fund. Thank is also delivered specifically to Rahmawati M, who had helped in producing data related to the isolation of sediment bacteria and the characterization of carotenoid pigment in the research of her thesis.

References

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25(17):3389-3402. doi: 10.1093/nar/25.17.3389.

Arlita, N.R., Radjasa, O.K. & Santoso, A., 2013. Identifikasi Pigmen Karotenoid Pada Bakteri Simbion Rumput Laut *Caulerpa Cupressoides* (Vahl) C. Agardh. *J. Mar. Res.* 2(3):68-77.

Ati, N.H., Rahayu, P., Notosodarmo, S. & Limantara, L. 2006. Komposisi dan Kandungan Pigmen
Barredo, J.L. 2012. Microbial carotenoids from bacteria and microalgae. *Methods. Mol. Biol.* 892: 133-141. doi: 10.1007/978-1-6177-9879-5_1

Baskar, V., Madhanraj, P., Kanimozhi, K. & Panneerselvam, A. 2010. Characterization of carotenoids from selected strains of *Streptomyces* sp. *Annals Biol. Res.* 1(4): 194-200.

Bose, V.S.C., Vishnupriya, B. & Selvam, K., 2013. Characterization of Marine streptomyces sp. T1027 Producing β-Carotene Under Light Induction. *Am. J. Pharm. Res.* 3(3): 1-14.

Britton, G. 1995. UV/visible spectroscopy. In Britton, G., Liaaen-Jensen, G, Pfander, H (eds), *Carotenoids: Spectroscopy*, vol. 1B. Birkhäuser Verlag. Basel. 63 pp.

Britton, G. 1998. Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) *Carotenoids: Biosynthesis and Metabolism*. Birkhäuser. Basel, 147 pp.

Campo, J.A.D., Garcia-González, M. & Guerrero, M.G., 2007. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. *App. Microbial.Biotechnol.* 74(6):1 163-1174. doi: 10.1007/s00253-007-0844-9

Chintapenta, L.K., Rath, C.C., Maringinti, B. & Ozbay, G., 2014. Culture conditions for growth and pigment production of a Mangrove Penicillium species. *J. Multidiscip. Sci. Res.* 1(1): 2-5.

Dharmaraj, S., Ashokkumar, B. & Dhevendran, K. 2009. Fermentative Production of Carotenoids from Marine Actinomycetes. *Iran J. Microbiol.* 1 (4): 36-41.

Duc, L.H., Fraser, P.D., Tam, N.K. & Cutting, S.M., 2006. Carotenoids present in halotolerant Bacillus spore formers. *FEMS Microbial. Lett.* 255(2): 215-224. doi: 10.1111/j.1574-6968.2005.00091.x

Gross, J. 1991. Pigments In Vegetables (Chlorophylls and Carotenoids).Van Nostrand Reinhold. New York. 75 pp.

Gupta, C., Garg, A.P., Prakash, D., Goyal, S. & Gupta, S., 2011. Microbes as potential source of biocolours. *Pharma. 2:* 1309-1318.

Hannibal, L., Lorquin, J., D’Ortol, N.A., Garcia, N., Chaintreuil, C., Masson-Boivin, C., Dreyfus, B. & Giraud, E. 2000. Isolation and characterization of canthaxanthin biosynthesis genes from the photosynthetic bacterium *Bradyrhizobium* sp. Strain ORS278. *J. Bacteriol.* 182: 3850–3853. doi: 10.1128/JB.182.13.3850-3853.2000

Heriyanto & Limantara, L. 2006. Komposisi Dan Kandungan Pigmen Utama Tumbuhan Taliputri *Cuscuta australis* R.Br. dan *Cassyytha filiformis* L. *Makara Sains*. 10(2): 69-75. doi: 10.7454/ mss.v10i2.183

Ibrahim, A.S.S. 2008. Production of Carotenoids by a Newly Isolated Marine *Micrococcus* sp. *J. Biotechnol.* 7(3): 469-474.

Khaneja, R., Perez-Fons, L., Fakhry, S., Baccigalupi, L., Steiger, S., To, E., Sandmann, G., Dong, T.C., Ricca, E., Fraser, P.D. & Cutting, S.M. 2010. Carotenoids found in *Bacillus.* *J. Appl. Microbiol.*, 108(6): 1889–1902. doi:10.1111/j.1365-2672.2009.04590.x

Kurniawan, M., Izzati, M. & Nurchayati, Y. 2010. Kandungan Klorofil, Karotenoid, dan Vitamin C pada Beberapa Spesies Tumbuhan Akuatik. *Bul. Anatomi dan Fisiologi.* 18 (1): 28-40.

Laughlin, R.G., Bunke, G.M., Eads, C.D., Laidig, W.D. & Shelley, J.C. 2002. Preparation and physical characterization of pure β-carotene. *Chem. Phys. Lipids.* 115(1): 63–76. doi: 10.1016/S0027-6470(01)00008-7

Lee, E.J., Yoo, K.S. & Patil, B.S., 2011. Total Carotenoid, Anthocyanin, and Sugar Contents in Sliced or Whole Purple (cv. BetaSweet) and Orange Carrots during 4-week Cold Storage. *Hortic. Environ. Biotechnol.* 52(4): 402-407. doi: 10.1007/s13580-011-0227-0

Magarvey, N.A., Keller, J.M., Bernan, V., Dworkin, M. & Sherman, D.H., 2004 Isolation and Characterization of Novel Marine-Derived Actinomycetes Taxa Rich In Bioactive Metabolites. *Appl. Environ. Microbiol.* 70(12): 7520-7529. doi: 10.1128/AEM.70.12.7520-7529.2004

Musfiroh, I., Indriyati, W., Muchtaridi & Setiya, Y. 2008. Analisis Proksimat dan Penetapan Kadar β-Karoten dalam Selai Lembaran Terung belanda (Cyphomandra betacea Sendtn.) dengan Metode Spektrofotometri Sinar Tampak. Fakultas Farmasi Universitas Padjadjaran. 367 pp.
Nugraheni, S.A., Khoeri, M.M., Kusmita, L., Widyastuti, Y. & Radjasa, O.K., 2010. Characterization of Carotenoid Pigments from Bacterial Symbionts of Seagrass Thalassia hemprichii. J. Coas. Dev. 14(1): 51-60.

Palanichamy, V., Hundet, A., Mitra, B. & Reddy, N. 2011. Optimization of Cultivation Parameters for Growth and Pigment Production by Streptomyces spp. Isolated From Marine Sediment and Rhizosphere Soil. Int. J. Plant. Anim. Environ. Sci. 1(3): 158-170.

Rizkina, R.A., Yudiati, E. & Sedjati, S. 2013. Uji Toksisitas Ekstrak Pigmen Kasar Mikroalga Spirulina platensis Dengan Metode Uji BSLT (Brine Shrimp Lethality Test). J. Mar. Res. 2(1): 25-31.

Rodriguez-Amaya, D.B., 2001. A guide to carotenoid analysis in foods. Washington, DC: ILSI press.

Sahara, F.N.I., Radjasa, O.K. & Supriyantini, E. 2013. Identifikasi Pigmen Karotenoid Pada Bakteri Simbion Rumput Laut Kappaphycus alvarezii. J. Mar. Res. 2(3): 56-67.

Shindo, K. & Misawa., N. 2014. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities. Mar. Drugs. 12: 1690-1698; doi: 10.3390/md12031690

Simova, E.D., Frengova, G.I. & Beshkova, D.M., 2004. Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultured with yogurt starter cultures in whey ultrafiltrate. J. Indus. Microbiol. Biotechnol. 31(3): 115-121. doi: 10.1007/s10295-004-0122-0

Zhang, Y., Ji, Y., Jiang, X., Xu, S., Zhu, Z., Zheng, L., He, J., Ling, H., Wang, Y., Liu, Y. & Du, W., 2008. Genetic characterization of measles viruses in China, 2004. Virol. J. 5(1): 120-125.