FUNDAMENTAL GROUP AND PLURIDIFFERENTIALS ON COMPACT KÄHLER MANIFOLDS

YOHAN BRUNEBARBE & FRÉDÉRIC CAMPANA

Abstract. A compact Kähler manifold X is shown to be simply-connected if its ‘symmetric cotangent algebra’ is trivial. Conjecturally, such a manifold should even be rationally connected. The relative version is also shown: a proper surjective connected holomorphic map $f : X \to S$ between connected manifolds induces an isomorphism of fundamental groups if its smooth fibres are as above, and if X is Kähler.

1. Introduction

We shall show:

Theorem 1.1. Let X be a connected compact Kähler manifold. Suppose that for all $p \geq 1$ and $k \geq 1$ there is no non-zero global section of the sheaf $S^k\Omega^p_X$. Then X is simply connected.

This theorem refines a former result of [5] with the very same statement, but with $\otimes^k\Omega^p_X$ in place of $S^k\Omega^p_X$. The proof of 1.1 is obtained by refining the proof of [5], which rests on L^2-methods à la Poincaré-Atiyah-Gromov.

The 'uniruledness conjecture' below implies easily (see §3) that X should, in fact, be rationally connected, hence simply-connected, by [3]. Theorem 1.1 above permits to bypass this conjecture, as far as the fundamental group is concerned. It is usually quite easy to verify the vanishings of all $S^k\Omega^p_X$, while constructing sufficiently many rational curves requires the characteristic $p > 0$ methods introduced by S. Mori, no characteristic zero proof being presently known.

The weaker assumption that $H^0(X, S^k\Omega^1_X) = \{0\}$ for every $k \geq 1$ implies (see [2]) that all linear representations of the fundamental group $\pi_1(X) \to GL_n(K)$, K a field, have finite image. This raises the question of whether the condition $H^0(X, S^k\Omega^1_X) = \{0\}$ for every $k \geq 1$ might imply that $\pi_1(X)$ is finite, instead of trivial. Enriques

\footnote{By a theorem of Kodaira, any X as above is actually projective.}
surfaces (examples of general type also exist) indeed show that simple-
connectedness may then fail.

In contrast to the condition $H^0(X, S^k \Omega^p_X) = \{0\}$ for every $k \geq 1$
and $p \geq 1$, the condition $H^0(X, S^k \Omega^1_X) = \{0\}$ for every $k \geq 1$
does not seem however to have an even conjectural geometric interpreta-
tion in the frame of bimeromorphic classification of compact Kähler mani-
folds.

The theorem above has a relative version, shown in section §4 below:

\begin{corollary}
Let $f : X \to S$ be a proper holomorphic map with con-
ected fibres between connected complex manifolds. Assume that X
admits a Kähler metric, and that $f_*(S^k(\Omega^p_X/S)) = 0$ for every $k \geq 1$
and $p \geq 1$. Then $f_* : \pi_1(X) \to \pi_1(S)$ is an isomorphism of groups.
\end{corollary}

Note that the conclusion of corollary may fail for a projective
morphism $f : X \to S$ with smooth fibres simply-connected, because of
the possible presence of multiple fibres. Consider indeed an Enriques
surface Y and its $K3$ universal cover $Y' \to Y = Y'/\mathbb{Z}_2$. Let $C \to \mathbb{P}^1 = C/\mathbb{Z}_2$
be the 2-sheeted cover defined by a hyperelliptic curve C. Now let
$X \to S := \mathbb{P}^1$ be deduced from the first projection $X' := C \times Y' \to C$
by taking the equivariant quotient by the involution $u \times v$ acting freely
on X', u and v being the involutions on Y' and C respectively deduced
from the \mathbb{Z}_2 covers above. Here $S = \mathbb{P}^1$ is simply connected although
$\pi_1(X)$ is a \mathbb{Z}_2 extension of $\pi_1(C)$ and the smooth fibres of f are simply-
connected.

\section{Proof of theorem}

As in \cite{5}, the proof goes in two steps: show first that $\pi_1(X)$ is finite
(this is the main step, established below), and then show, using Serre's
covering trick, that $\pi_1(X)$ is in fact trivial.

We start by establishing this second step. Let $\pi : X' \to X$ be a
finite Galois étale cover of X of group G and degree d. The Euler
characteristic of the structural sheaf of X
\begin{equation}
\chi(X, \mathcal{O}_X) := \sum_{i=0}^{\dim X} (-1)^i \cdot h^i(X, \mathcal{O}_X)
\end{equation}

is equal to 1, since by Serre’s duality $h^i(X, \mathcal{O}_X) = h^0(X, \Omega^i_X)$, and
the latter is zero for $i \neq 0$ by hypothesis.

\footnote{Hopf surfaces X have $H^0(X, S^k \Omega^p_X) = \{0\}, \forall k > 1, p > 1$, showing that the Kähler assumption cannot be removed in \cite{1} since $\pi_1(X) \cong \mathbb{Z}$.}

\footnote{These hypothesis should imply that f is projective, locally above S.}
Now, if $\omega \in H^0(X', \Omega^i_{X'})$, the product of the $g^*\omega$ for $g \in G$ defines an element of $H^0(X', S^d\Omega^i_{X'})$ invariant by the action of G. We obtain in this way a global section of $S^d\Omega^i_X$, which is non zero if ω is non zero. Thus it follows from the hypothesis that we must also have $\chi(X', \mathcal{O}_{X'}) = 1$.

From the multiplicativity of the Euler characteristic (see lemma 2.1 below), we get:

$$1 = \chi(X', \mathcal{O}_{X'}) = d \cdot \chi(X, \mathcal{O}_X),$$

and d is then necessarily equal to 1.

Lemma 2.1. Let $X' \to X$ be a finite étale covering of degree d of compact complex analytic spaces. Then

$$\chi(X', \mathcal{O}_{X'}) = d \cdot \chi(X, \mathcal{O}_X).$$

Proof. When X is projective, an elementary proof due to Kleiman is given in [12], exemple 1.1.30. In general, it is an easy consequence of the theorem of Riemann-Roch-Hirzebruch, which is proved in [14] for compact complex analytic spaces.

To complete the proof of theorem 1.1, we need to show that the fundamental group of X is finite. Equivalently, we have to show the

Theorem 2.2. Let X be a connected compact Kähler manifold with infinite fundamental group. Then there exists $p \geq 1$ and $k \geq 1$ such that $H^0(X, S^k\Omega^p_X) \neq \{0\}$.

Proof. Let $p : \tilde{X} \to X$ be the universal cover of X. The fundamental group $\Gamma := \pi_1(X)$ acts on \tilde{X}. The choice of a Kähler metric on X induces a complete Kähler metric on \tilde{X}. Denote by $\mathcal{H}^k_{(2)}(\tilde{X})$ the Hilbert space of L^2-harmonic complex-valued forms of degree k on \tilde{X}. Recall that a p-form α is called harmonic if $\Delta \alpha = 0$, where $\Delta := d \circ d^* + d^* \circ d$ and $d^* := - * \circ d \circ $. Moreover, a L^2 p-form α is harmonic if and only if $d\alpha = 0$ and $d^*\alpha = 0$ (the metric being complete), if and only if $\bar{\partial}\alpha = 0$ and $\bar{\partial}^*\alpha = 0$ (the metric being complete and Kähler), see [9].

The decomposition in types gives rise to a orthogonal sum

$$\mathcal{H}^k_{(2)}(\tilde{X}) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}_{(2)}(\tilde{X}).$$

The space $\mathcal{H}^{p,q}_{(2)}(\tilde{X})$ consists of the L^2-holomorphic p-forms on \tilde{X}.

4We shall only need the case when X is a divisor with normal crossings in a complex Kähler manifold in the proof of corollary 1.
The Hilbert spaces $\mathcal{H}^{p,q}_{(2)}(\tilde{X})$ might be infinite dimensional. Nevertheless, using the isometric action of Γ on them, one can associate to them a non-negative real number $\dim_{\Gamma}(\mathcal{H}^{p,q}_{(2)}(\tilde{X}))$ (cf. [1]). This number is zero if and only if $\mathcal{H}^{p,q}_{(2)}(\tilde{X}) = \{0\}$.

By Atiyah’s L^2-index theorem (cf. [1, 9]), we know that

$$\chi(\mathcal{X}, \mathcal{O}_\mathcal{X}) = \chi_{(2)}(\tilde{\mathcal{X}}, \mathcal{O}_{\tilde{\mathcal{X}}}) := \sum_{q=0}^{\dim \mathcal{X}} (-1)^q \cdot \dim_{\Gamma}(\mathcal{H}^{0,q}_{(2)}(\tilde{X}))$$

Observe that there are no non-zero L^2-holomorphic functions on $\tilde{\mathcal{X}}$.

Indeed, the metric being complete, any harmonic function is closed, hence locally constant. By hypothesis $\tilde{\mathcal{X}}$ is non-compact, and any constant L^2 function has to be zero.

Let us distinguish two cases. Suppose first that $\chi(\mathcal{X}, \mathcal{O}_\mathcal{X}) = 0$. Since $\dim \mathcal{H}^0(\mathcal{X}, \mathcal{O}_\mathcal{X}) = 1$, Hodge symmetry shows that $\mathcal{H}^0(\mathcal{X}, \mathcal{O}_\mathcal{X}) \neq \{0\}$, for some (odd) $p \geq 1$, and the theorem is proved in this case. If, now, $\chi(\mathcal{X}, \mathcal{O}_\mathcal{X}) \neq 0$, it follows from the discussion above that there exists $p \geq 1$ such that $\mathcal{H}^{0,p}_{(2)}(\tilde{X}) \neq \{0\}$. By conjugation $\mathcal{H}^{p,0}_{(2)}(\tilde{X}) \neq \{0\}$, hence we get a non-zero L^2-holomorphic p-form for some $p \geq 1$.

The rest of the proof consists, following [9], in constructing from this L^2 section a non-zero Γ-invariant section of some $S^k\mathcal{O}_\tilde{\mathcal{X}}^p$. This can be done using a construction which goes back to Poincaré, that we now describe in a general setting.

. Let \mathcal{M} be a complex manifold and E be a holomorphic vector bundle on \mathcal{M}. Let Γ be a countable discrete group acting on \mathcal{M} and suppose that the action of Γ lifts to an action on E. Let h_E be a Γ-invariant continuous hermitian metric on E. Let $\Phi : \mathbb{P}(E) \to \mathcal{M}$ denote the projective bundle of hyperplanes in E and $\mathcal{O}_E(1) \to \mathbb{P}(E)$ be the tautological line bundle endowed with the induced hermitian metric h_L. By functoriality the group Γ acts on $\mathbb{P}(E)$ and $\mathcal{O}_E(1)$, and all the maps considered above are Γ-equivariant. As $\Phi_*(\mathcal{O}_E(k)) = S^kE$ for all $k \geq 1$ (where $\mathcal{O}_E(k)$ denotes the line bundle $\mathcal{O}_E(1)^{\otimes k}$), there is a Γ-equivariant identification between the space of holomorphic sections $H^0(\mathbb{P}(E), \mathcal{O}_E(k)) = H^0(M, S^kE)$ under which L^q holomorphic sections are identified for all $q \geq 1$.

To any L^1 holomorphic section s of E we can associate a Γ-invariant section of S^kE for all $k \geq 1$ (the so-called Poincaré series) as follows:

$$P_k(s)(x) := \sum_{\gamma \in \Gamma} \gamma^* s^k(\gamma \cdot x)$$
As s is L^1, this series converges absolutely to a Γ-invariant holomorphic section of $S^k E$.

Moreover, if s is not the zero section, then $P_k(s)$ is non-zero for infinitely many $k \geq 1$. Indeed, the preceding construction shows that we need only to consider the case where E is a line bundle. The assertion is then a consequence of the following lemma.

Lemma 2.3. (See Lemma 3.2.A from [9]) Let $\{a_i\}$ be an l^1-sequence of complex numbers, not all zero. Then there are infinitely many $k \geq 1$ such that $\sum_i a_i^k \neq 0$.

Now recall that in the case where $\chi(X, \mathcal{O}_X) \neq 0$, we showed the existence of a non-zero L^2 section of Ω^{p}_{X} for some $p > 0$. If we see s as a section of the tautological line bundle $\mathcal{O}_{\Omega^{p}_{X}}(1)$ on the projectified bundle of Ω^{p}_{X}, then $s^\otimes k$ is a non-zero L^1 section of $\mathcal{O}_{\Omega^{p}_{X}}(1)$ for any $k \geq 2$. Applying the averaging construction just described to $s^\otimes 2$, we get a non-zero Γ-invariant section of some $\mathcal{O}_{\Omega^{2p}_{X}}(2k)$, giving a non-zero section of $S^{2k}\Omega^{p}_{X}$, as claimed. This concludes the proof. □

Remark. For any compact connected Kähler manifold X with infinite fundamental group, let $P(X)$ (resp. $P_2(X)$) be the set of integers p such that $H^0(X, S^k\Omega^{p}_{X}) \neq \{0\}$ for some $k > 0$ (resp. such that $H^0_2(X', S^k\Omega^{p}_{X'}) \neq \{0\}$ for some $k > 0$ and some infinite connected étale cover X' of X). The arguments above show that $P_2(X) \subset P(X)$. Complex tori show that this inclusion can be strict.

3. A criterion for rational connectedness.

Recall the following consequence of the ‘Abundance Conjecture’

Conjecture. (‘uniruledness’ conjecture) Let X be a connected compact Kähler manifold. Then X is uniruled (i.e. covered by rational curves) if and only if $H^0(X, K_X^\otimes k) = \{0\}$ for all $k > 0$.

Consider also the following conjecture:

Conjecture. Let X be a connected compact Kähler manifold. Then X is rationally connected (i.e. any two generic points are joined by some rational curve) if and only if $H^0(X, S^k\Omega^{p}_{X}) = 0$, for every $k > 0$ and $p > 0$.

5 We thank C. Mourougane for observing that in our first version, our construction appeared to give a section of $S^k(S^2(\Omega^{p}_{X}))$, instead of $S^{2k}(\Omega^{p}_{X})$.

6 A weaker form, usually attributed to D. Mumford, claims the same conclusion assuming that $H^0(X, (\Omega^{1}_{X})^\otimes k) = \{0\}$ for all $k > 0$.
In [6] a weaker form of Conjecture 3 is established: X is rationally connected if \(H^0(X, S^k\Omega^p_X \otimes A) = 0 \), for every \(k > k(A) \), every \(p > 0 \), and some ample line bundle \(A \) on \(X \).

For both conjectures, the “only if” part is easy. The second conjecture implies theorem 1.1 above, since rationally connected manifolds are simply connected [3].

Let us show that the first conjecture implies the second. First, a Kähler manifold \(X \) as in the second conjecture has \(h^2,0(X) = 0 \), so it is projective algebraic by Kodaira’s projectivity criterion. Now consider the so-called ‘rational quotient’ \(r_X : X \rightarrow R \) (constructed in [4] and in [11], where it is called the ‘MRC’-fibration), which has rationally connected fibres and non-uniruled base \(R \) (by [7]). Assuming that \(r := \dim(R) > 0 \), we get a contradiction, since by the first conjecture there exists a non-zero \(s \in H^0(R, K_R^\otimes k) \), for some \(k > 0 \), which lifts to \(X \) as a non-zero section of \(H^0(X, S^k\Omega^p_X) \). Thus \(r = 0 \) and \(X \) is rationally connected.

Remark. For any compact connected Kähler manifold, let \(r^-(X) := \max\{p \geq 0 | \exists k > 0, H^0(X, S^k\Omega^p_X) \neq \{0\} \} \). Let \(r(X) := \dim(R), R \) as above. The preceding arguments show that \(r(X) \geq r^-(X) \), and the uniruledness conjecture is equivalent to the equality: \(r(X) = r^-(X) \).

4. Proof of corollary 1

The corollary is an easy consequence of the theorem and the following, the proof and statement of which are inspired by [10], theorem 5.2:

Theorem 4.1. Let \(f : X \rightarrow S \) be a proper holomorphic map with connected fibres between connected complex manifolds. Assume that \(X \) admits a Kähler metric and that there exists a smooth fibre \(X_s \) of \(f \) which is simply-connected and satisfies \(H^p(X_s, O_{X_s}) = 0 \) for all \(p > 0 \). Then \(f_* : \pi_1(X) \rightarrow \pi_1(S) \) is an isomorphism of groups.

Proof. First observe that all the smooth fibres \(X_s \) of \(f \) are simply-connected and satisfy \(H^p(X_s, O_{X_s}) = 0 \) for all \(p > 0 \). Indeed, the restriction of \(f \) to its smooth locus \(S^o \subset S \) is topologically a locally trivial fiber bundle by Ehresmann’s lemma, and the dimension of \(H^p(X_s, O_{X_s}) \) is locally constant for \(s \in S^o \), as follows from the theory of variations of Hodge structures.

Let us first consider the following special case: \(X \) is a connected complex Kähler manifold, \(f : X \rightarrow \Delta \) is a proper holomorphic map with connected fibres, smooth outside \(0 \in \Delta \). Recall that in this situation \(X_0 \) is a retract of \(X \). We have to show that the fundamental group of
X (which is isomorphic to $\pi_1(X_0)$) is trivial. By blowing-up X, one can ensure that X_0 has only simple normal crossings (i.e. the irreducible components of the corresponding reduced divisor are smooth and meet transversally); this does not change the fundamental group of X. By ([10], lemma 5.2.2) the fundamental group of X is finite cyclic, say of order d. Let $\pi : \tilde{X} \to X$ be a universal cover of X and $g : \tilde{X} \to \Delta$ be the Stein factorization of $f \circ \pi$ so that:

$$
\begin{array}{c}
\tilde{X} \\
\downarrow \pi \\
X \\
\downarrow \downarrow \downarrow \\
\Delta \\
\end{array}
$$

The fibre \tilde{X}_t of g at any $t \neq 0$ is isomorphic to X_{td}, hence $H^p(\tilde{X}_t, \mathcal{O}_{\tilde{X}_t}) = H^p(X_{td}, \mathcal{O}_{X_{td}}) = 0$ for $t \neq 0$ and $p > 0$, and the sheaves $R^pg_*\mathcal{O}_X$ are generically zero for all $p > 0$. Being torsion-free (see [16], theorem 2.11), they are in fact zero on Δ. Using Leray's spectral sequence, this implies that $H^p(\tilde{X}, \mathcal{O}_{\tilde{X}}) = H^p(\Delta, g_*\mathcal{O}_{\tilde{X}}) = 0$ for $p > 0$. Applying the lemma [4.2] below, it follows that $H^p(\tilde{X}_{0,\text{red}}, \mathcal{O}_{\tilde{X}_{0,\text{red}}}) = 0$ for all $p > 0$, hence $\chi(\tilde{X}_{0,\text{red}}, \mathcal{O}_{\tilde{X}_{0,\text{red}}}) = 1$. By multiplicativity of the holomorphic Euler characteristic in finite étale cover (see lemma 2.1), $d = 1$ and X is simply-connected.

Lemma 4.2. (Steenbrink, see [17] lemma 2.14 and [10] lemma 5.2.3) Let X be a complex Kähler manifold and let $D \subset X$ be a reduced divisor such that D as a complex space is proper and has normal crossing only. Assume moreover that D is topologically a retract of X. Then the restriction maps $H^p(X, \mathcal{O}_X) \to H^p(D, \mathcal{O}_D)$ are surjective for all $p \geq 0$.

Proof. Fix a $p \geq 0$. Since D is topologically a retract of X, the map $H^p(X, \mathbb{C}) \to H^p(D, \mathbb{C})$ is an isomorphism. On the other hand, as D is a union of compact Kähler manifolds crossing transversally, $H^p(D, \mathbb{C})$ admits a canonical mixed Hodge structure (see [8] section 4) whose Hodge filtration $H^p(D, \mathbb{C}) = F^0H^p(D, \mathbb{C}) \supseteq F^1H^p(D, \mathbb{C}) \supseteq \cdots$ satisfies $Gr^p F H^p(D, \mathbb{C}) \cong H^p(D, \mathcal{O}_D)$, see [17] section (1.5). It follows that

\[\text{in this reference the morphism is supposed projective but the same proof works for a proper morphism assuming that the total space admits a Kähler metric. See also [15], corollary 11.18.}\]
the map $H^p(D, \mathcal{C}) \to H^p(D, \mathcal{O}_D)$ is surjective. The following commutative diagram

$$
\begin{array}{ccc}
H^p(X, \mathcal{C}) & \longrightarrow & H^p(X, \mathcal{O}_X) \\
\downarrow & & \downarrow \\
H^p(D, \mathcal{C}) & \longrightarrow & H^p(D, \mathcal{O}_D)
\end{array}
$$

shows that $H^p(X, \mathcal{O}_X) \to H^p(D, \mathcal{O}_D)$ is surjective. □

We now reduce the general case to this special case. First, because of the following diagram, theorem 4.1 for f follows from the corresponding statement for the restriction of f to an open $U := S - T$, if the codimension in S of T, Zariski closed in S, is at least 2:

$$
\begin{array}{ccc}
\pi_1(f^{-1}(U)) & \longrightarrow & \pi_1(U) \\
\downarrow & & \downarrow \\
\pi_1(X) & \longrightarrow & \pi_1(S)
\end{array}
$$

On the other hand, any $s \in S$ admits a contractible neighborhood U in S such that $f^{-1}(U)$ is homeomorphic to $U \times f^{-1}(s)$ (see for example [13]). From this, one easily sees that the theorem 4.1 for $f : X \to S$ follows if all fibres X_s are simply-connected, at least for s outside a codimension ≥ 2 closed subvariety by the preceding observation.

Let $D \subset S$ be the proper closed subset of points s for which X_s is not smooth. By removing a codimension ≥ 2 subvariety of S, one can assume that D is a smooth divisor in S. Now, an easy application of Sard’s lemma shows that for $s \in D$ outside a proper subvariety $Z \subset D$, there exists a small disk Δ_s crossing D transversally at s such that $f^{-1}(\Delta_s)$ is smooth. For any $s \in D - Z$, the restriction of f to Δ_s satisfies the assumptions of the special case of theorem 4.1 that we showed above, hence $\pi_1(X_s) = \pi_1(f^{-1}(\Delta_s)) = \{1\}$. □

Let us now explain how the theorems 1.1 and 4.1 imply the corollary. First observe that for fixed $k > 0$ and $p > 0$, the dimension of $H^0(X_s, (S^k \Omega^p_X)_{|X_s})$ is constant on a non empty Zariski open subset of S, and this dimension has to be zero by the flat base change theorem. It follows that $H^0(X_s, S^k \Omega^p_{X_s}) = 0$ for all $k > 0$ and $p > 0$ for a general smooth fibre X_s of f. By theorem 1.1 this implies that a general smooth fibre of f is simply connected; hence every smooth fibre is simply connected. The same argument shows that, in particular, for all $p > 0$, $h^0(X_s, \mathcal{O}_{X_s}) = 0$, for $s \in S$ generic, and so: $h^p(X_s, \mathcal{O}_{X_s}) = 0$. □
by Hodge symmetry. We can thus apply theorem 4.1 to conclude the proof of corollary 1.

REFERENCES

[1] M. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), Astérisque, no. 32-33, (1976), 43–72.
[2] Y. Brunebarbe, B. Klingler, and B. Totaro. Symmetric differentials and the fundamental group. Duke Math. J. 162, no.14, (2013), 2797–2813.
[3] F. Campana. On twistor spaces of the class C, J. Differential Geom., 33, no.2, (1991), 541–549.
[4] F. Campana. Connexité rationelle des variétés de Fano. Ann. Sci. Ec. Norm. Sup 25, (1992), 539–545.
[5] F. Campana. Fundamental group and positivity of cotangent bundles of compact Kähler manifolds. J. Algebraic Geom., 4, no.3, (1995), 487–502.
[6] F. Campana, J.P. Demailly, Th. Peternell. Rationally Connected Manifolds and semipositivity of the Ricci Curvature. arXiv:1210.2092.
[7] T. Graber, J. Harris and J. Starr. Families of rationally connected varieties. J. Amer. Math. Soc., 16, no.1, (2003), 57–67.
[8] Ph. Griffiths, W. Schmich. Recent developments in Hodge theory: a discussion of techniques and results. Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), (1975), 31–127.
[9] M. Gromov. Kähler hyperbolicity and L^2-Hodge theory. J. Differential Geom., 33, no.1, (1991), 263–292.
[10] J. Kollár. Shafarevich maps and plurigenera of algebraic varieties. Inv. Math., 113, (1993), 177–215.
[11] J. Kollár, Y. Miyaoka and S. Mori. Rationally connected varieties. J. Algebraic Geom., 1, no.3, (1992), 429–448.
[12] R. Lazarsfeld. Positivity in algebraic geometry. I Ergebnisse der Mathematik und ihrer Grenzgebiete. 3., 48, (2004).
[13] Le Dung Trang and B. Teissier. Cycles evanescents, sections planes et conditions de Whitney. II [Vanishing cycles, plane sections and Whitney conditions. II] Singularities, Part 2 (Arcata, Calif., 1981), 40, Proc. Sympos. Pure Math., (1983), 65–105.
[14] R. Levy. The Riemann-Roch theorem for complex spaces. Acta Math., 158, no.3-4, (1987), 149–188.
[15] C. Peters and J. Steenbrink. Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete, 52, Springer-Verlag, (2008).
[16] J. Steenbrink. Mixed Hodge structure on the vanishing cohomology. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), 40, Proc. Sympos. Pure Math., (1977), 525–563.
[17] J. Steenbrink. Mixed Hodge structures associated with isolated singularities. Singularities, Part 2 (Arcata, Calif., 1981), 40, Proc. Sympos. Pure Math., (1983), 513–536.

YOHAN BRUNEBARBE, EPFL, LAUSANNE, SUISSE
Frédéric Campana, Institut Elie Cartan, Université de Lorraine, France, et Institut Universitaire de France