Genetic polymorphisms in serine protease inhibitor Kazal-type 5 and risk of atopic dermatitis

A meta-analysis

Yunling Li, MD, Yin Li, MM, Wei Li, MM, Xiaojuan Guo, MM, Sha Zhou, MM, Huwen Zheng, MD*

Abstract

Background: This study aimed to investigate the role of serine protease inhibitor Kazal-type 5 (SPINK5) polymorphisms (Asn368Ser, Asp386Asn and Glu420Lys) and the risk of atopic dermatitis (AD).

Methods: Studies associated with SPINK5 mutations and AD risk were searched from three databases, including PubMed, Embase, and Cochrane library, with a retrieval deadline of April 22, 2019. An odds ratio (OR) with a 95% confidence interval (95% CI) was chosen as the effect size. Egger’s linear regression test was enrolled to assess the level of publication bias.

Results: Overall, 6 studies met the inclusion criteria for meta-analysis. Significantly statistical differences were calculated between patients with AD and healthy individuals on Asn368Ser polymorphism in the allele model (G vs A: OR = 1.2643, 95% CI = 1.0686–1.4987, P = 0.0069), co-dominant model (GG vs AA: OR = 1.6609, 95% CI = 1.1736–2.3505, P = 0.0042; GA vs AA: OR = 1.5448, 95% CI = 1.1263–2.1189, P = 0.0070), and dominant model (GG+GA vs AA: OR = 1.5700, 95% CI = 1.1656–2.1146, P = 0.0030). However, no statistically significant difference was found in the recessive model for Asn368Ser and other genetic models for Asp386Asn and Glu420Lys (all P > 0.05). No significant publication bias was found.

Conclusion: The SPINK5 Asn368Ser polymorphism may be a risk factor for AD.

Abbreviations: AD = atopic dermatitis, AHRQ = Agency for Healthcare Research and Quality, CI = confidence interval, HWE = Hardy Weinberg equilibrium, IgE = immunoglobulin E, NOS = Newcastle-Ottawa Scale, OR = odds ratio, PCR-RFLP = polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis, PRISMA-P = Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols, SNP = single nucleotide polymorphism, SPINK5 = serine protease inhibitor Kazal-type 5.

Keywords: atopic dermatitis, meta-analysis, polymorphism, risk factor, SPINK5

Key points

- The role of SPINK5 in atopic dermatitis (AD) risk was meta-analyzed.
- SPINK5 Asn368Ser was significantly associated with AD risk.
- Polymorphisms of Asp386Asn and Glu420Lys were not associated with AD risk.

1. Introduction

Atopic dermatitis (AD), also known as atopic eczema, is considered a chronic inflammatory skin disease. It results in dry, itchy, swollen, and red skin. As of 2018, the point prevalence of adult AD in the overall/treated populations was 4.9%/3.9% in the United States, 3.5%/2.6% in Canada, 4.4%/3.5% in the EU, and 2.1%/1.5% in Japan,[1] and the prevalence of AD continues to increase in developing countries.[2] Traditionally, AD is often associated with abnormalities in the skin barrier and immune system dysfunction, accompanied by high microbial colonization and a higher susceptibility to skin infection.[3,4] However, the pathogenesis of AD is not fully understood.

Serine protease inhibitor Kazal-type 5 (SPINK5) is a member of the gene family serine protease inhibitor Kazal-type cluster located on chromosome 5q32, which encode inhibitors of serine proteases. The encoded proteins are mainly distributed in the vaginal epithelium, thymus, vestibular gland, oral mucosa, tonsils, and parathyroid glands, which are mainly involved in the hydrolysis of human growth hormone and skin desquamation.[5] Various mutations in SPINK5 have been identified in
patients with AD, and results were widely variable. For example, data from the study by Nishio et al. showed that five missense mutations, such as Asn368Ser, Asp386Asn, and Glu420Lys were associated with AD.\(^6\) However, Jongepier and his colleagues demonstrated that SPINK5 was not associated with atopic phenotypes in individuals ascertained by a proband with asthma.\(^7\) Thus, the association of AD with SPINK5 polymorphisms remains unclear, and results are not conclusive. Therefore, a meta-analysis would be needed to evaluate the role of SPINK5 polymorphisms and the risk of AD.

In this meta-analysis, previous studies associated with SPINK5 mutations (Asn368Ser, Asp386Asn and Glu420Lys) and AD risk were searched. An odds ratio (OR) with a 95% confidence interval (95% CI) was chosen as the effect size to explore the potential association between SPINK5 polymorphisms and AD risk.

2. Methods

The meta-analysis was performed following the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P). Ethical approval was not necessary since this is a meta-analysis and no patients or animals involved.

2.1. Search strategy

Electronic English works of literature were searched from databases, including PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), Embase (http://www.embase.com), and Cochrane library (http://www.cochranelibrary.com/) with a retrieval deadline of April 22, 2019, based on the predefined search strategy. The keywords and search terms used for all searches were “atopic dermatitis” or “AD” AND “SPINK5” OR “serine protease inhibitor Kazal type 5” or “serine protease inhibitor Kazal-type 5” and “SNP” or “Single Nucleotide Polymorphism” or “polymorphism” or “genetic” or “variant”. Finally, in order to enroll more studies, articles of paper literature, and citations were manually screened.

2.2. Inclusion and exclusion criteria

The present meta-analysis would include the following studies: (1) the research design was a case-control study; (2) the participants in the case group were patients diagnosed with AD, and the participants in the control group were healthy people or hospitalized patients diagnosed without AD; (3) the association between SPINK5 polymorphism and AD was investigated; (4) data associated with the genotype and allele frequency of SPINK5 polymorphism (Asn368Ser, Asp386Asn and Glu420Lys) were provided.

Types of literature would be excluded if they were (1) studies with incomplete data, and statistical analysis could not be performed; (2) reviews, letters, and/or comments. For duplicated publications, only the study with the most complete data, most updated data, or higher Newcastle-Ottawa Scale (NOS) score could be included.

2.2.1. Data extraction and quality evaluation. The authors independently evaluated all relevant articles and extracted relevant data: the first author name, publication year, study region, diagnostic criteria of AD, the detection method of genotype, the same size in the case group and control group, gender, age, and outcomes in each group. Any discrepancies would be resolved by discussion. The genetic polymorphisms mainly included Asn368Ser, Asp386Asn, and Glu420Lys.

The NOS was used to assess the quality of enrolled studies,\(^8\) which was recommended by the Agency for Healthcare Research and Quality (AHRQ) for quality assessment of each case-control study. For example, NOS scores of 0–3, 4–6, and 7–9 represented low, moderate, and high-quality studies, respectively.

2.3. Statistical analysis

Data analyses in this study were performed using the R software package 3.1.2. We initially assessed whether the genotype distribution in the control group was in accordance with Hardy Weinberg Equilibrium (HWE) by using the Chi-square test\(^9\) ORs with their 95% CI\(^10\) of the allele model, co-dominant model, recessive model, and dominant model were calculated in order to assess the relationship between SPINK5 polymorphisms and AD. The heterogeneity was assessed by Dixon’s Q-test\(^11\) and I\(^2\) test. We defined that significant heterogeneity occurred if \(P < .05\) or \(I^2 > 50\%\), and then data would be pooled by the random effects model.\(^12\) If \(P\) value \(> .05\) or \(I^2 < 50\%\), data would be pooled by the fixed effect model.\(^13\) The publication bias was evaluated using the Egger’s linear regression test\(^14\) with \(P > .05\), indicating no publication bias. Sensitivity analysis was performed by eliminating one study at each defined interval. The results are stable if the outcomes did not change.

3. Results

3.1. Study selection

Figure 1 shows the process of study selection in detail. Initially, a total of 120 potentially relevant papers were retrieved (PubMed: \(n = 42\); Embase: \(n = 78\); Cochrane Library: \(n = 0\)). Twenty-six duplicate articles were excluded by screening the titles. Next, 68 irrelevant articles were excluded after reading the title and abstract. For the remaining 26 publications, 20 (5 animal studies, 2 non-case and control studies, 4 meta-analyses/reviews, 1 duplicated population study, and 8 studies in which genotype data could not be obtained) articles were excluded by reviewing the full text. Finally, 6 articles met the inclusion criteria\(^7,15–19\) and were included in the meta-analysis.

3.2. Study characteristics and quality assessment

The included study characteristics are collected in Table 1. All 6 included articles are case-control studies and good quality studies with a NOS score ranging from 6 to 9. These studies were conducted in China, Japan, the United States, and Germany, and were published between 2003 and 2018. A total of 1968 participants were enrolled in this meta-analysis, including 914 patients with AD in the case group and 1054 participants in the control group. The diagnostic criteria of AD were mainly Hanifin and Rajka Criteria.\(^20\) The genotype detection methods were polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PCR-RFLP) and/or PCR amplification. Most articles did not report on the gender ration. Table 2 shows the SPINK5 gene polymorphisms \([A1103G \text{ (Asn368Ser)}, G1156A \text{ (Asp386Asn)}, \text{ and } G1258A \text{ (Glu420Lys)}]\) of each included study. It is worth noting that the genotype distribution in the control group of one study\(^19\) deviated from HWE.
3.3. Meta-analysis for the association between SPINK5 polymorphism and AD

The associations between AD and the genetic polymorphisms of different genetic models for SPINK5 were evaluated in this study. The allele model (Asn368Ser: G vs A; Asp386Asn: A vs G; Glu420Lys: G vs A), co-dominant model (Asn368Ser: GG vs AA, GA vs AA; Asp386Asn: AA vs GG, AG vs GG; Glu420Lys: GA vs AA, GG vs AA), recessive model (Asn368Ser: GG vs AA+GA; Asp386Asn: AA vs GG+AG; Glu420Lys: GG vs AA+GA), and dominant model (Asn368Ser: GG+GA vs AA; Asp386Asn: AA +AG vs GG; Glu420Lys: GG+GA vs AA) for Asn368Ser, Asp386Asn, and Glu420Lys were evaluated.

The heterogeneity test results showed significant heterogeneity among the genetic models of GA vs AA, GG vs AA, GG vs AA +GA, and GG+GA vs AA for Glu420Lys ($P<.05$, $I^2>50$%, Table 3). Therefore, data among individual studies were pooled.

Table 1

Author	Public year	Location	Genotyping method	Score	Diagnostic criteria of AD	Group	N	M/F	Age, years, mean ± SD or median (range)
Dežman K	2017	Slovenia	Real-time PCR	7	Hanfin and Rajka criteria	AD	241	75/166	23.5 ± 12.2
Folster-holst R	2005	Germany	PCR	6	Hanfin and Rajka criteria	Healthy controls	164	103/61	41.7 ± 20.2
Jongepier H	2005	USA	PCR	6	NA	AD	201	NA	NA
Kato A	2003	Japan	PCR	9	Hanfin and Rajka criteria	Healthy controls	368	NA	NA
Morizane S	2018	Japan	PCR	9	Hanfin and Rajka criteria	AD	200	NA	NA
Zhao LP	2011	China	PCR-RFLP	6	Hanfin and Rajka criteria	Healthy controls	122	NA	28.7 (7–74)

AD = atopic dermatitis, M/F = male/female, N = the total number of including, PCR = polymerase chain reaction, PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism.

* NOS score (The Newcastle-Ottawa Scale).
using the random effects model. The fixed effects model was applied to other genetic models (Table 3).

The pooled estimates for Asn368Ser of the allele model (G vs A: OR = 1.2643, 95% CI = 1.0666–1.4987, \(P = .0069 \)), co-dominant model (GG vs AA: OR = 1.1572, 95% CI = 1.0343–1.2917, \(P = .0321 \)), and dominant model (GG+GA vs AA: OR = 1.5700, 95% CI = 1.1656–2.1146, \(P = .0030 \)) indicated significantly statistical differences, while the pooled estimates of the recessive model (GG vs AA+GA: OR = 1.0557, 95% CI = 0.8388–1.3287, \(P = .6441 \)) were not significantly different (Fig. 2). Furthermore, since the OR value and its 95% CI were both greater than 1, the mutation of Asn368Ser in SPINK5 was determined to be a risk factor for AD. No statistically significant difference was found in the other genetic models for Asp386Asn (Fig. 3) and Glu420Lys (Fig. 4, all \(P > .05 \)). These results demonstrated that the genetic polymorphism of Asn368Ser of SPINK5 was significantly related to AD morbidity and is a risk factor for AD.

3.4. Sensitivity analysis and publication bias
In the sensitivity analysis, the meta-analysis results of the genetic model GA vs AA of Asn368Ser, AA+AG vs GG of Asp386Asn, and AG vs GG of Asp386Asn were changed, while the other results were not changed. These results indicated the relative stability and reliability of the results. Additionally, Egger’s test \((P > .05) \) showed that publication bias among studies was not significant (Table 3).

4. Discussion
In our study, 6 articles were included in the meta-analysis. The statistically significant difference between patients with AD and normal controls for Asp386Asn (Fig. 3) and Glu420Lys (Fig. 4, all \(P > .05 \)) showed that patients with AD have a higher frequency of the AA and AG genotypes compared to normal controls. The sensitivity analysis indicated that the results were robust and reliable. However, further studies are needed to verify the results and explore the potential mechanisms behind these genetic associations.

Table 2
Gene distribution of included studies.

Author	Public year	SNP	Case	Control	HWE in control						
N	WH	HT	MH	N	WH	HT	MH	\(\chi^2 \)	\(P \)		
Deizman K	2017	Asp386Asn	203	30 (AG)	168 (AA)	27 (AG)	291 (AA)	0.051	.8221		
Folster-holst R	2005	Asn368Ser	201	41 (AA)	106 (GA)	54 (GG)	196 (GA)	81 (GG)	1.737	.1876	
Jongepier H	2005	Asn368Ser	180	108 (AA)	72 (GA)	112 (AG)	56 (AA)	56 (GA)	–	.1315	
Zhao LP	2011	Asn368Ser	83	19 (AA)	37 (GA)	27 (AG)	199 (AA)	69 (GA)	62 (AG)	.346	.5563
Kato A	2003	Asn368Ser	117	13 (AA)	63 (GA)	41 (GG)	103 (AA)	23 (GA)	31 (AG)	.188	.6642
Morizane S	2018	Asp386Asn	57	6 (AA)	27 (AG)	24 (GG)	50 (AA)	9 (GA)	19 (AG)	.346	.5563

Table 3
Meta-analysis of the association between genetic polymorphism of SPINK5 and AD.

SNP	Gene model	Sample size	Test of association	Test of heterogeneity*	Egger’s test†								
		K	Cases	Control	OR (95% CI)	Z	\(P \)	Model	Q	\(P \)	\(t \)	\(P \)	
Asn368Ser	G vs A	4	916	1438	1.2643 [1.0666–1.4987]	2.7029	.0069	Fixed	0.48	.92	0.0	1.2529	.3369
	GG vs AA	4	225	384	1.6609 [1.1736; 2.3505]	2.8635	.0042	Fixed	0.97	.81	0.0	1.3509	.3093
	GG+GA vs AA	5	638	831	1.0557 [0.8388; 1.3287]	0.4619	.6441	Fixed	5.06	.28	20.9	0.0513	.9623
	AA vs GG	4	458	719	1.5700 [1.1656; 2.1146]	2.9687	.0030	Fixed	2.31	.51	0.0	1.6272	.2452
	AA vs GG+AG	4	312	526	1.5448 [1.1263; 2.1169]	2.9796	.0070	Fixed	2.98	.39	0.0	1.5299	.2670
Asp386Asn	A vs G	4	246	488	1.3190 [0.9422; 2.0656]	1.2088	.2264	Fixed	1.42	.70	0.0	0.6280	.5942
	AA vs GG+AG	4	460	716	1.1101 [0.8371; 1.4721]	0.7253	.4683	Fixed	2.00	.57	0.0	0.1099	.9225
	AA+AG vs GG	4	460	716	1.4300 [0.9751; 2.0970]	1.8311	.0671	Fixed	1.43	.70	0.0	1.4469	.2849
	AG vs GG	4	220	323	1.4525 [0.9686; 2.1777]	1.8066	.0708	Fixed	2.33	.51	0.0	2.1219	.1679
Glu420Lys	G vs A	5	1288	1886	0.9536 [0.8241; 1.0315]	0.6379	.5235	Fixed	5.65	.23	29.3	0.9640	.4058
	GA vs AA	5	528	719	1.3134 [0.8645; 1.9564]	1.2776	.2014	Random	9.35	.05	57.2	0.5214	.6381
	AA vs AG	5	271	459	0.8247 [0.4920; 1.3798]	0.7359	.4630	Random	8.73	.07	54.2	0.6465	.5604
	AA+AG vs GA	6	832	1047	0.7546 [0.5030; 1.3121]	1.3606	.1737	Random	13.93	.02	64.1	1.8484	.1382
	Glu420Lys+GA vs GA+AG	5	644	943	1.1581 [0.7852; 1.7079]	0.7404	.4590	Random	8.79	.07	54.5	0.2739	.8019

\(\chi^2 \) = chi square test, OR = odds ratio

*Random-effect model was used when the \(P \) for heterogeneity test \(< .05 \), otherwise the fixed-effect model was used.

†P < .05 is considered statistically significant for \(t \) statistics.

‡Egger’s test was used to evaluate publication bias, and \(P < .05 \) is considered statistically significant.
healthy participants was calculated for the Asn368Ser polymorphism of the allele model, co-dominant model, and dominant model. However, no significant difference was found in the recessive model for Asn368Ser and other genetic models for Asp386Asn and Glu420Lys. Thus, our data suggest the SPINK5 Asn368Ser polymorphism may be a risk factor for AD.

It is well known that the skin acts as an essential barrier against pathogens and exogenous agents. Moreover, skin barrier dysfunctions are one of the major factors involved in AD development. The gene SPINK5 is located on chromosome 5q31-32, which encodes the skin barrier protein lympho-epithelial Kazal-type-related inhibitor (also known as serine protease inhibitor Kazal-type 5). SPINK5 in the epidermis is primarily expressed in the stratum granulosum, where it functions as a protease. Thus, it is important in the cornification of epithelial differentiation and exfoliation. Previous evidence demonstrated that SPINK5 could prevent an influx of pathogens based on the formation of the cornified cell

Figure 2. Meta-analysis of the association between genetic models of Asn368Ser and atopic dermatitis. The significant results were marked with “☆”.

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
Group = G vs. A							
Folster-holst R 2005	214 402	358 734	1.20	[0.94; 1.53]	21.1%	20.3%	
Kato A 2003	145 234	111 206	1.39	[0.95; 2.04]	8.0%	8.3%	
Morizane S 2018	75 114	60 100	1.28	[0.73; 2.24]	3.9%	3.9%	
Zhao LP 2011	91 166	192 398	1.30	[0.91; 1.87]	9.1%	9.1%	
Fixed effect model	916 1438		1.26	[1.07; 1.50]	42.1%	--	
Random effects model			1.26	[1.07; 1.50]	--	41.7%	

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.92$

Group = GA vs. AA							
Folster-holst R 2005	106 147	196 286	1.19	[0.77; 1.84]	6.6%	6.3%	
Kato A 2003	63 76	49 72	2.27	[1.05; 4.94]	1.5%	2.0%	
Morizane S 2018	27 33	22 31	1.84	[0.57; 5.97]	0.7%	0.9%	
Zhao LP 2011	37 56	68 137	1.98	[1.04; 3.77]	2.4%	2.9%	
Fixed effect model	312 526		1.54	[1.13; 2.12]	11.3%	--	
Random effects model			1.54	[1.12; 2.12]	--	12.0%	

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.39$

Group = GG vs. AA							
Folster-holst R 2005	54 95	81 171	1.46	[0.88; 2.42]	4.4%	4.7%	
Kato A 2003	41 54	31 54	2.34	[1.03; 5.34]	1.3%	1.8%	
Morizane S 2018	24 30	19 28	1.89	[0.57; 6.26]	0.7%	0.8%	
Zhao LP 2011	27 46	62 131	1.58	[0.80; 3.12]	2.4%	2.6%	
Fixed effect model	225 384		1.66	[1.17; 2.35]	8.8%	--	
Random effects model			1.66	[1.17; 2.35]	--	10.0%	

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.81$

Group = GG vs. AA+GA							
Folster-holst R 2005	54 201	81 367	1.30	[0.87; 1.93]	7.5%	7.6%	
Kato A 2003	41 117	31 103	1.25	[0.71; 2.21]	3.8%	3.8%	
Morizane S 2018	24 57	19 50	1.19	[0.55; 2.58]	2.1%	2.0%	
Zhao LP 2011	27 83	62 199	1.07	[0.62; 1.84]	4.4%	4.0%	
Jongepier H 2005	72 180	56 112	0.67	[0.41; 1.07]	7.4%	5.3%	
Fixed effect model	638 831		1.06	[0.84; 1.33]	25.1%	--	
Random effects model			1.05	[0.81; 1.37]	--	22.7%	

Heterogeneity: $I^2 = 21\%$, $\tau^2 = 0.0191$, $p = 0.28$

Group = GG+GA vs. AA							
Folster-holst R 2005	160 201	277 367	1.27	[0.84; 1.92]	7.1%	6.9%	
Kato A 2003	104 117	80 103	2.30	[1.10; 4.82]	1.7%	2.2%	
Morizane S 2018	51 57	41 50	1.87	[0.61; 5.87]	0.8%	1.0%	
Zhao LP 2011	64 83	130 199	1.79	[0.99; 3.22]	3.1%	3.5%	
Fixed effect model	458 719		1.57	[1.17; 2.11]	12.7%	--	
Random effects model			1.57	[1.16; 2.11]	--	13.6%	

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.51$
Evidence from a study by Mocsai et al. showed that skin barrier functions were related to total immunoglobulin E (IgE) levels. Furthermore, Tanei and his colleagues showed that allergic inflammation, mediated by the level of IgE, was crucial in the pathobiology of AD. Recently, Hubiche et al. found an association between SPINK5 E420K polymorphisms and high IgE serum levels. Moreover, several extensive studies support the role of SPINK5 in the development of AD. Thus, the mechanism and the potential role of SPINK5 should be fully elucidated in future studies.

Notably, significant heterogeneity was calculated among data evaluating SPINK5 Glu420Lys polymorphism genotypes, including GA vs AA, GG vs AA, GG vs AA+GA, and GG+GA vs AA. Recently, it was determined that AD in several ethnic groups displayed variant mutation spots and rates between populations. Moreover, skin barrier dysfunctions introduced by virulence factors could also induce allergic inflammation via innate and adaptive immunity. Thus, limited background information of enrolled patients from a different ethnicity might be possible sources of heterogeneity. Although no significant difference was found in the recessive model for Asn368Ser and other genetic models for Asp386Asn and Glu420Lys in the meta-analysis, further clinical data would also be needed to verify the conclusion.

Furthermore, limitations of this meta-analysis should be noted. Firstly, the enrolled number of patients was small, and subgroup

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight (fixed)	Weight (random)
Group = A vs. G							
Folster-holt R 2005	367 406 654 736	1.18 [0.79; 1.76]	11.7% 11.4%				
Kato A 2003	121 234 99 208	1.18 [0.81; 1.71]	13.2% 13.2%				
Morizane S 2018	62 114 45 100	1.46 [0.85; 2.50]	5.7% 6.3%				
Zhao LP 2011	94 166 216 368	1.04 [0.72; 1.50]	14.7% 13.7%				
Fixed effect model	920 1432	1.17 [0.95; 1.43]	45.3% --				
Random effects model		1.17 [0.95; 1.43]	44.6% --				
Group = AA vs. GG							
Folster-holt R 2005	188 172 291 296	0.72 [0.19; 2.72]	1.3% 1.0%				
Kato A 2003	30 56 25 55	1.38 [0.66; 2.92]	3.1% 3.3%				
Morizane S 2018	18 31 12 29	1.96 [0.70; 5.48]	1.4% 1.7%				
Zhao LP 2011	24 37 65 108	1.22 [0.56; 2.66]	3.0% 3.0%				
Fixed effect model	296 488	1.32 [0.84; 2.07]	8.8% --				
Random effects model		1.32 [0.84; 2.06]	9.1% --				
Group = AA vs. GG+AG							
Folster-holt R 2005	168 203 291 368	1.27 [0.82; 1.98]	9.3% 9.4%				
Kato A 2003	30 117 25 104	1.06 [0.59; 2.01]	5.1% 4.9%				
Morizane S 2018	18 57 12 50	1.46 [0.62; 3.44]	2.3% 2.5%				
Zhao LP 2011	24 83 65 194	0.81 [0.46; 1.41]	7.2% 5.9%				
Fixed effect model	460 716	1.11 [0.84; 1.47]	24.0% --				
Random effects model		1.11 [0.83; 1.48]	22.7% --				
Group = AA+AG vs. GG							
Folster-holt R 2005	159 203 363 368	0.69 [0.18; 2.58]	1.3% 1.0%				
Kato A 2003	91 117 74 104	1.42 [0.77; 2.61]	4.5% 5.0%				
Morizane S 2018	44 57 33 50	1.74 [0.74; 4.09]	2.1% 2.5%				
Zhao LP 2011	70 83 151 194	1.53 [0.78; 3.03]	3.7% 4.0%				
Fixed effect model	460 716	1.43 [0.98; 2.10]	11.7% --				
Random effects model		1.43 [0.97; 2.09]	12.5% --				
Group = AG vs. GG							
Folster-holt R 2005	31 35 72 77	0.54 [0.14; 2.14]	1.3% 1.0%				
Kato A 2003	61 87 49 79	1.44 [0.75; 2.74]	4.0% 4.4%				
Morizane S 2018	26 39 21 38	1.62 [0.64; 4.08]	1.9% 2.2%				
Zhao LP 2011	46 59 86 129	1.77 [0.88; 3.52]	3.1% 3.6%				
Fixed effect model	220 323	1.46 [0.97; 2.18]	10.3% --				
Random effects model		1.44 [0.96; 2.17]	11.1% --				

Figure 3. Meta-analysis of the association between genetic models of Asp386Asn and atopic dermatitis.
analysis could not be performed. Secondly, the genotyping method was different among enrolled studies, and the sensitivity ability of each method varied, which might lead to false-negatives. Third, though we found the association of SPINK5 Asn368Ser polymorphism and risk of AD, whether this SNP could influence gene expression of SPINK5 should be further investigated. Therefore, a study with higher NOS scores and larger sample size would be needed.

In conclusion, our study supports the role of SPINK5 Asn368Ser polymorphism as one of the risk factors for patients with AD. Future studies fully elucidating the pathogenic mechanisms involved in the disease are needed.
Author contributions

YLL and HWZ designed the study. YLL received the fund and was a major contributor in drafting the manuscript. HWZ revised the manuscript. YL, WL and XXG searched the references, reviewed the references and extracted the data. SZ performed quality evaluation and statistical analysis. All authors reviewed and approved the final version of the manuscript.

References

[1] Barbarot S, Auziere S, Gadkari A, et al. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy 2018;73:1284–93.
[2] Lopez Carrera YI, Al Hammadi A, Huang YH, et al. Epidemiology, diagnosis, and treatment of atopic dermatitis in the developing countries of Asia, Africa, Latin America, and the Middle East: a review. Dermatol Ther (Heidelb) 2019;9:683–705.
[3] Thomsen SF, Ulrik CS, Kyvik KO, et al. Importance of genetic factors in the etiology of atopic dermatitis: a twin study. Allergy Asthma Proc 2007;28:535–9.
[4] Saurat JH, Hanifi JM. Understanding atopic dermatitis: pathophysiology and etiology. Conclusion. J Am Acad Dermatol 2001;45(1 Suppl):S67–8.
[5] Moffatt MF. SPINK5: a gene for atopic dermatitis and asthma. Clin Exp Allergy 2004;34:325–7.
[6] Nishio Y, Noguchi E, Shibasaki M, et al. Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 2003;4:515–7.
[7] Jongepier H, Koppelman GH, Nolte IM, et al. Polymorphisms in SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 2003;4:515–7.
[8] Saurat JH, Hanifi JM. Understanding atopic dermatitis: pathophysiology and etiology. Introduction. J Am Acad Dermatol 2001;45(1 Suppl):S1.
[9] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
[10] Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
[11] Folster-Holst R, Stoll M, Koch WA, et al. Lack of association of SPINK5 polymorphisms with nonsyndromic atopic dermatitis in the population of Northern Germany. Br J Dermatol 2000;152:1365–7.
[12] Zhao LP, Di Z, Zhang L, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 2012;26:572–7.
[13] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
[14] Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
[15] Folster-Holst R, Stoll M, Koch WA, et al. Lack of association of SPINK5 polymorphisms with nonsyndromic atopic dermatitis in the population of Northern Germany. Br J Dermatol 2000;152:1365–7.
[16] Zhao LP, Di Z, Zhang L, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 2012;26:572–7.
[17] Kato A, Fukai K, Ono N, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 2015;174:665–9.
[18] Dezman K, Korosec P, Rupnik H, et al. SPINK5 is associated with early-onset and CHI3L1 with late-onset atopic dermatitis. Int J Immunogenet 2017;44:212–8.
[19] Morizane S, Ouchida M, Sunagawa K, et al. Analysis of All 34 Exons of the SPINK5 Gene in Japanese Atopic Dermatitis Patients. Acta Med Okayama 2018;72:275–82.
[20] JH , GR . Diagnostic features of atopic dermatitis. Acta Derm Venereol (Stockh) 2000;80:430–4.
[21] Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000;25:141–2.
[22] Sprecher E, Chavanas S, DiGiovanna JJ, et al. The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 2001;117:179–87.
[23] Chao SC, Richard G, Lee JY. Netherton syndrome: report of two Taiwanese siblings with staphylococcal scaled skin syndrome and mutation of SPINK5. Br J Dermatol 2005;152:159–65.
[24] Noguchi EF, Chavanas S, DeSouza J, et al. The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 2001;117:179–87.
[25] Morizane S, Ouchida M, Sunagawa K, et al. Analysis of All 34 Exons of the SPINK5 Gene in Japanese Atopic Dermatitis Patients. Acta Med Okayama 2018;72:275–82.
[26] Morizane S, Ouchida M, Sunagawa K, et al. Analysis of All 34 Exons of the SPINK5 Gene in Japanese Atopic Dermatitis Patients. Acta Med Okayama 2018;72:275–82.
[27] JH , GR . Diagnostic features of atopic dermatitis. Acta Derm Venereol (Stockh) 2000;80:430–4.
[28] Morizane S, Ouchida M, Sunagawa K, et al. Analysis of All 34 Exons of the SPINK5 Gene in Japanese Atopic Dermatitis Patients. Acta Med Okayama 2018;72:275–82.
[29] Morizane S, Ouchida M, Sunagawa K, et al. Analysis of All 34 Exons of the SPINK5 Gene in Japanese Atopic Dermatitis Patients. Acta Med Okayama 2018;72:275–82.