Nitrogen Deposition in the Greater Tehran Metropolitan Area

Ali Salahi¹,*, Shirin Geranfar², and Soudabeh A.A. Kororí¹

¹Research Institute of Forests and Rangelands (RIFR), Alborz Research Center, P.O. Box 31585-343, Karaj, Iran, Fax: +98-21-6603482; ²RIFR, Fax: +98-261-8008406

An investigation of air pollution in the Tehran metropolitan area between 1992–2000 indicated that there are significant amounts of nitrate ion (NO₃⁻), over 30 kg/ha/year, deposited as wet deposition, compared to 13 kg/ha/year in the Chitgar Parkland near the Tehran metropolitan area. The amount of NO₃⁻ in warm seasons is twofold that of cold seasons (see Fig. 1), and there was a significant difference between cold and warm seasons (Table 1). Annual wet deposition of ammonia (NH₃) was 10 kg/ha/year in the Chitgar Parkland[1].

EXPERIMENTAL METHOD/PROCEDURES

This experiment and study used a method of wet deposition by precipitation. For measurement and sampling, specific instruments were designed and established in different stations south of Tehran, and also on the east and west sides of Tehran. Samples were analyzed in the Analytical Chemistry Laboratory using a flame photometer for potassium and sodium, a spectrophotometer for SO₄²⁻, and a titration for NO₃⁻.

RESULTS AND DISCUSSION

Monthly rainfall indicates that, in spite of the production of NOx in the cooling season, total nitrate is decreased over winter (Fig. 1). The reason is that production of NO₃⁻ originates from photochemical processes, and the conditions for photochemical...
Reactions are not provided in winter. Therefore, production of NO₃⁻ is decreased (Tables 2 and 3). Amounts of NO₃⁻ as wet deposition in a number of sampling stations in Tehran was over 30 kg/ha/year, and 13 kg/ha/year for the Chitgar Parkland, 15 km west of the Tehran metropolitan area. The amount of NO₃⁻ in warm seasons was more than twofold that of cold seasons (Fig. 1). Seasonal sampling of NO₃⁻ showed that there was significant difference (p = 0.01) between cold and warm seasons (Table 3)[1]. In the cold period, increased production of NO₃⁻ does not parallel the increased consumption of fossil fuels. This means that conditions for photochemical reactions do not occur during winter and cold seasons. Ammonia (NH₃) is formed as a result of the decomposition of most nitrogenous organic materials used as fertilizer and as a chemical intermediate. Evaporation from animal manure accounts for most of the emissions of NH₃ to the atmosphere. It is, however, the surplus of N in the farming cycle that lies at the bottom of the problem, produced as a result of industrialized farming methods based on the use of artificial fertilizer[6].

Annual wet deposition of NH₃ was 9 kg/ha/year (Fig. 3). Acidity (pH) of precipitation is neutralized by suspended particulate matter (SPM). However, many samples of precipitation showed acid rain (pH = 4) in Tehran. This minimum measured acidity in Tehran is 50 times as acidic as atmospheric background.

Figure 1: Annual wet deposition of NO₃⁻ in kg/ha/year inside Chitgar Parkland in west greater Tehran metropolitan area during warm and cold seasons.

Table 1

| Dependent Variable: pH; Independent Variable : NO₃⁻ |

Parameter	Estimate	St. Error	T-Value	Prob.
Intercept	6.048	0.199	30.457	0.0000
Slope	0.071	0.035	2.017	0.0522

Analysis of Variance

Source	S.S.	D.F.	M.F.	F	Prob.
Model	2.240	1	2.240	4.07	0.0966
Residual	17.620	32	0.551		

Note: R = 0.34*
acidity. Analysis of variance for acidity (pH) related to precipitation in Chitgar Parkland showed that there was significant difference (p = 0.01) for different blocks of precipitation sampling (Tables 4 and 5). The regression equation for the independent variable of NO$_3^-$ and dependent variable of acidity (pH) was computed as $Y = 6.048 + 0.071X$ (Fig. 4). The coefficient of determination was 0.34 ($r = 0.34$). The coefficient of determination for correlation between NO$_3^-$ and SO$_4^{2-}$ was 0.64, between NO$_3^-$ and electro-conductivity (EC) was 0.74, and between NO$_3^-$ and Na$^+$ was 0.57[7].
TABLE 4
Analysis of Variance for Acidity (pH) Related to Precipitation in Chitgar Parkland

K Value	Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Prob.
1	Replication	5	4.836	0.967	2.0430	0.1070
2	Factor A	2	6.286	3.143	6.6390	0.0049
4	Factor B	1	0.912	0.912	1.9265	0.1774
6	AB	2	5.097	2.548	5.3830	0.0114
-7	Error	25	11.835	0.473		
Total		35	28.966			

TABLE 5
Duncan’s Multiple Range Test
Related to pH for Different Treatment of Precipitation Sampling

Location	pH	Letter
Near freeway	6.788	a
Center of Parkland	6.488	ab
Inner part of Parkland	5.791	b
CONCLUSION

The main contributor to the concentration of NOx in urban surroundings is usually road traffic, although in some cities combustion plants make a significant contribution. Animal manure consequently becomes a waste product on farms with intensive stock raising, while those concentrating on grain growing have to make up for a shortage of nutrients by using artificial fertilizer. Since so much of the feed stuff production is now dependent on the use of artificial fertilizer, it can be said that the NH3 that emanates from animal manure has its origin in the artificial additives. Where farming operations are thus unbalanced, N is continually being added in the form of artificial fertilizer, and leaks out into air and water in great quantities. Hence, the joint strategy puts more emphasis on cutting down NOx emissions, and more research on health effects is needed.

ACKNOWLEDGEMENTS

The author would like to thank Mrs. Shirin Geranfar for close cooperation, Mr. Hamid Yarmand, former head of the Research Division of Forests and Rangelands Health and Protection, and Professor Mahmoud Shariat, Head of the Environmental Health Group, Tehran University. The author also wishes to thank Mr. Vahid Moniri, Mr. Rasoul Omid, and Mr. Ebrahim Aziz-Khani, colleagues who encouraged me and helped me during research works.

REFERENCES

1. Kojuorc, A.S. (2000) Investigation on Air Pollution Affecting Chitgar Parkland Vegetation Cover. Final report. Research Institute of Forests and Rangelands, Karaj, Iran.

2. Smith, W.H. (1990) Air Pollution and Forests. 2nd ed. Springer-Verlag, New York.

3. Kojuorc, A.S. (1995) Acid Rain and Their Neutralizing Agents in South of Tehran. 5th Intl. Conf. Acidic Deposition, 26–30 June 1995, Goteborg, Sweden. Kluwer Academic Publishers, Dordrecht, the Netherlands. 343 p.

4. Kojuorc, A.S. (1997) Environmental aspects of acid precipitation quality. Acid Snow and Rain. International Congress of ICASR, 6-8 October 1997, Niigata, Japan. pp. 293–298.

5. Fraser, G.A. (1985) The Potential Impacts of the Long Range Transboundary Air Pollutants on Canadian Forests, Information Report E-X-36. Economic Branch, Canadian Forestry Service.

6. Johannesson, M. (1998) Ammonia Also Enters the Picture. Acid News, No. 2. The Swedish Society for Conservation of Nature. pp. 20–21.

7. Kojuorc, A.S. (1993) Acid Rain in South of Tehran and Their Intensity and Alternation [Thesis]. Azad University, Tehran, Iran.

8. Johnson, A.H. (1983) Acid deposition and forest decline. Environ. Sci. Technol. 17(7), 294–305.

9. Kamari, J. (1990) The Rains Model of Acidification. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 225–231.

This article should be referenced as follows:

Salahi, A., Geranfar, S., and Korori, S.A.A. (2001) Nitrogen deposition in the greater Tehran metropolitan area. In Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy. TheScientificWorld 1(S2), 261–265.