Proximal minimization in CAT(\(\kappa\)) spaces

Rafa Espínola\(^1\), Adriana Nicolae\(^{1,2}\)

\(^1\) Department of Mathematical Analysis, University of Seville
Apdo. 1160, 41080 Sevilla, Spain
\(^2\) Department of Mathematics, Babeş-Bolyai University,
Kogălniceanu 1, 400084 Cluj-Napoca, Romania
E-mails: espinola@us.es, anicolae@math.ubbcluj.ro

Abstract

In this note, we provide convergence results for the proximal point algorithm and a splitting variant thereof in the setting of CAT(\(\kappa\)) spaces with \(\kappa > 0\) using a recent definition for the resolvent of a convex, lower semi-continuous function due to Kimura and Kohsaka (J. Fixed Point Theory Appl. 18 (2016), 93–115).

Keywords: Proximal minimization, convex optimization, CAT(\(\kappa\)) space.

MSC 2010: 90C25, 49M37, 53C23.

1 Introduction

In Hilbert spaces, the proximal point algorithm originates from Martinet \([16]\) and Rockafellar \([19]\) and is a well-known method used for minimizing convex, lower-semicontinuous functions. More recently, this algorithm and generalizations thereof have been introduced in nonlinear settings too such as Riemannian manifolds of nonpositive sectional curvature \([8, 13]\), of sectional curvature bounded above by \(\kappa > 0\) \([14]\) or even in geodesic spaces of nonpositive curvature in the sense of Alexandrov (also known as CAT(0) spaces) \([2]\).

Let \(X\) be a complete CAT(0) space and \(f : X \to (-\infty, \infty]\) be a proper, convex and lower semi-continuous function. The proximal point algorithm generates a sequence \((x_n)\) starting from a point \(x_0 \in X\) by the following rule: \(x_{n+1} = J^{f}_{\lambda_n}(x_n)\), where \((\lambda_n)\) is a sequence of positive real numbers and for \(\lambda > 0\),

\[
J^{f}_{\lambda}(x) = \arg\min_{y \in X} \left[f(y) + \frac{1}{\lambda} d(y, x)^2 \right], \quad x \in X. \tag{1}
\]

The mapping \(J^{f}_{\lambda} : X \to X\), called the resolvent of \(f\), is well-defined in this context and was studied by Jost \([9, 10]\) and Mayer \([17]\) in connection to the theory of generalized harmonic maps. If there is no ambiguity concerning the function \(f\), we usually just write \(J^{f}_{\lambda_n}\). One of the remarkable properties of the resolvent is the fact that it is firmly nonexpansive in the sense of \([11]\). Moreover,

*After the online publication of this paper, we realized that the proximal point algorithm and its splitting version discussed here had been previously obtained in \([18]\) in the setting of CAT(\(\kappa\)) spaces using in the definition of the resolvent the squared distance function, see \([11]\).
the set of fixed points of J_λ is precisely the set of minimum points of f. Considering a suitable notion of weak convergence that goes back to Lim \cite{lim1984fixed} and is also referred to as Δ-convergence, Ariza-Ruiz, Leustean and López-Acedo \cite{ariza2008asymptotic} showed that for any $\lambda > 0$ and $x \in X$, the sequence of Picard iterates $(J_\lambda^k x)$ Δ-converges to a minimum point of f (provided such a point exists). Bačák \cite{bacak2014convex} proved that if f attains its minimum, then the sequence (x_n) generated by the proximal point algorithm Δ-converges to a minimum point of f. Motivated by results of Bertsekas \cite{bertsekas1979proximal} in the Euclidean setting, Bačák \cite{bacak2014convex} additionally studied in the context of CAT(0) spaces a splitting proximal point algorithm for finding a minimum point of a function that can be written as a finite sum of convex, lower semi-continuous functions and applied his findings to the computation of the geometric median and the Fréchet mean of a finite set of points.

Very recently, Kimura and Kohsaka \cite{kimura2016asymptotic} introduced in CAT(κ) spaces with $\kappa > 0$ the resolvent of a convex, lower-semicontinuous function f as an instance of so-called firmly spherically nonspreading mappings. They showed that, under appropriate boundedness conditions, the Picard iterates of the resolvent of f Δ-converges to a minimum point of f. In this paper we use this definition to study in the setting of CAT(κ) spaces with $\kappa > 0$ the convergence of the corresponding versions of the proximal point and the splitting proximal point algorithms discussed in \cite{bacak2014convex, bacak2014convex} in CAT(0) spaces.

Finally, we would like to point out that after the submission of this paper, it was brought to our attention that Kimura and Kohsaka have also independently submitted a recent joint work (which was accepted in the meantime, see \cite{kimura2017asymptotic}) on the proximal point algorithm in CAT(κ) spaces.

2 Preliminaries

Let (X, d) be a metric space. A geodesic path joining $x, y \in X$ is a mapping $c : [0, l] \subseteq \mathbb{R} \to X$ such that $c(0) = x, c(l) = y$ and $d(c(t), c(t')) = |t - t'|$ for every $t, t' \in [0, l]$. The image $c([0, l])$ of c is called a geodesic segment from x to y. A point $z \in X$ belongs to such a geodesic segment if there exists $t \in [0, 1]$ such that $d(z, x) = td(x, y)$ and $d(z, y) = (1 - t)d(x, y)$, and in this case we write $z = (1 - t)x + ty$. We say that (X, d) is a geodesic space if every two points in X can be joined by a geodesic path. A subset C of X is convex if given two points of C, any geodesic segment joining them is contained in C. A rigorous introduction to geodesic spaces is provided in \cite{bakonyi1984geodesic}.

Let (X, d) be a geodesic space. Having $C \subseteq X$ convex and $f : C \to (-\infty, \infty]$, the domain of f is defined by $\text{dom } f = \{x \in C \mid f(x) < \infty\}$. The function f is called proper if $\text{dom } f \neq \emptyset$. We say that f is convex if for every $x, y \in C$ and $t \in [0, 1]$, $f((1 - t)x + ty) \leq (1 - t)f(x) + tf(y)$. The function f is uniformly convex on $\text{dom } f$ if there exists a nondecreasing function $\delta : [0, \infty) \to [0, \infty]$ vanishing only at 0 such that for every $x, y \in \text{dom } f$ and $t \in [0, 1],$

$$f((1 - t)x + ty) \leq (1 - t)f(x) + tf(y) - t(1 - t)\delta(d(x, y)).$$

One can prove that this is in fact equivalent to the following condition (see also \cite{rockafellar1970convex} where uniformly convex functions are studied in Banach spaces): for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, y \in \text{dom } f$ with $d(x, y) \geq \varepsilon$, then

$$f\left(\frac{1}{2}x + \frac{1}{2}y\right) \leq \frac{1}{2}f(x) + \frac{1}{2}f(y) - \delta.$$

Fix $\kappa \in \mathbb{R}$ and denote by M^2_κ the complete, simply connected model surface of constant sectional curvature κ. A comparison triangle for a geodesic triangle $\Delta(x_1, x_2, x_3)$ in X is a triangle $\Delta = \Delta(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in M^2_κ such that $d(x_i, x_j) = d_{M^2_\kappa}(\overline{x}_i, \overline{x}_j)$ for $i, j \in \{1, 2, 3\}$. A geodesic triangle Δ is said to satisfy the CAT(κ) inequality if for every comparison triangle Δ of Δ and every $x, y \in \Delta$
we have that \(d(x, y) \leq d_{M^2}(x, y)\), where \(\overline{\tau}, \overline{\gamma} \in \Delta\) are the comparison points of \(x\) and \(y\), i.e., if
\[
x = (1 - t)x_i + tx_j \text{ then } \overline{\tau} = (1 - t)\overline{\tau}_i + t\overline{\tau}_j.
\]
A metric space is called a CAT(\(\kappa\)) space if every two points (at distance less than \(\pi/\sqrt{\kappa}\) for \(\kappa > 0\)) can be joined by a geodesic path and every geodesic triangle (having perimeter less than \(2\pi/\sqrt{\kappa}\) for \(\kappa > 0\)) satisfies the CAT(\(\kappa\)) inequality.

Suppose in the sequel that \((X, d)\) is a complete CAT(\(\kappa\)) space with \(\kappa > 0\) such that for every
\(v, w \in X, d(v, w) < \pi/(2\sqrt{\kappa})\). For \(x, y, z \in X\) with \(y \neq z\) and \(t \in [0, 1]\), the following inequality
\[
\cos \left(\sqrt{\kappa}d((1 - t)y + tz, x)\right) \geq \frac{\sin \left(\sqrt{\kappa}(1 - t)d(y, z)\right)}{\sin \left(\sqrt{\kappa}d(y, z)\right)} \cos \left(\sqrt{\kappa}d(y, x)\right) + \frac{\sin \left(\sqrt{\kappa}d(y, z)\right)}{\sin \left(\sqrt{\kappa}d(y, z)\right)} \cos \left(\sqrt{\kappa}d(z, x)\right)
\]
is an immediate consequence of the spherical law of cosines.

Let \((x_n)\) be a sequence in \(X\). For \(x \in X\), set \(r(x, (x_n)) = \limsup_{n \to \infty} d(x, x_n)\). The asymptotic radius of \((x_n)\) is given by \(r((x_n)) = \inf \{r(x, x_n) \mid x \in X\}\) and the asymptotic center of \((x_n)\) is the set \(A((x_n)) = \left\{x \in X : \limsup_{n \to \infty} d(x, x_n) = r((x_n))\right\}\). The sequence \((x_n)\) is said to \(\Delta\)-converge to \(x \in X\) if \(x\) is the unique point in the asymptotic center of every subsequence of \((x_n)\). In this case \(x\) is called the \(\Delta\)-limit of \((x_n)\). Assume next that \(r((x_n)) < \pi/(2\sqrt{\kappa})\). Then \(A((x_n))\) is a singleton (see [7] Proposition 4.1) and \((x_n)\) has a \(\Delta\)-convergent subsequence (see [7] Corollary 4.4). Moreover, if \((x_n)\) \(\Delta\)-converges to some \(x \in X\) and \(f : X \to (-\infty, \infty]\) is a proper, convex lower semi-continuous function, then
\(f(x) \leq \liminf_{n \to \infty} f(x_n)\) (see [11] Lemma 3.1).

Any proper, convex and lower semi-continuous function \(f : X \to (-\infty, \infty]\) is bounded below (see [11] Theorem 3.6). If there exists a sequence \((x_n)\) such that \(\lim_{n \to \infty} f(x_n) = \inf_{y \in X} f(y)\) and \(r((x_n)) < \pi/(2\sqrt{\kappa})\), then \(f\) attains its minimum, i.e., there exists \(z \in X\) such that \(f(z) = \inf_{x \in X} f(x)\) and we call \(z\) a minimum point of \(f\). Indeed, denote \(r = \inf_{y \in X} f(y)\) and consider the sets \(C_p = \{y \in X \mid f(y) \leq r + 1/p\}\). For any \(p \geq 1\), the sequence \((x_n)\) will eventually be contained in \(C_p\). In addition, one can easily see that \((C_p)\) is a decreasing sequence of nonempty, closed and convex sets, so, by [7] Corollary 3.6, \(\bigcap_{p \geq 1} C_p \neq \emptyset\). Any point in this intersection is a minimum point of \(f\). In particular, if \(\text{diam}(X) < \pi/(2\sqrt{\kappa})\), then \(f\) always has a minimum point. Note also that, if nonempty, the set of minimum points of \(f\) has a unique closest point to any given point in \(X\) because it is closed and convex. A detailed discussion on convex analysis in CAT(0) spaces can be found in [4].

In [11], Kimura and Kohsaka define and study properties of the resolvent for a proper, convex and lower semi-continuous function \(f : X \to (-\infty, \infty]\). Consider first, for a fixed \(x \in X\), the following convex functions (see [11] Lemma 4.1)
\[
\Psi^1_x : X \to [1/\kappa, \infty], \quad \Psi^1_x(y) = \frac{1}{\kappa \cos \left(\sqrt{\kappa}d(y, x)\right)},
\]
\[
\Psi^2_x : X \to [-1/\kappa, 0], \quad \Psi^2_x(y) = -\frac{\cos \left(\sqrt{\kappa}d(y, x)\right)}{\kappa},
\]
and
\[
\Psi_x : X \to [0, \infty], \quad \Psi_x(y) = \Psi^1_x(y) + \Psi^2_x(y).
\]
Then, for \(\lambda > 0 \), the resolvent of \(f \) is defined by

\[
J^\lambda_f(x) = \argmin_{y \in X} \left[f(y) + \frac{1}{\lambda} \Psi_x(y) \right], \quad x \in X. \tag{6}
\]

This mapping is well-defined (see [11, Theorem 4.2]) and, when \(k \searrow 0 \), one actually recovers the definition (1) of the resolvent in CAT(0) spaces. Moreover, if \(C \subseteq X \) is nonempty, closed and convex, then the indicator function \(\delta_C : X \rightarrow [0, \infty] \),

\[
\delta_C(x) := \begin{cases} 0, & \text{if } x \in C, \\ \infty, & \text{otherwise}, \end{cases}
\]

is proper, convex and lower semi-continuous and for any \(\lambda > 0 \), \(J^\lambda_{\delta_C} \) is the metric projection onto \(C \), as is the case for the resolvent of \(\delta_C \) in any CAT(0) space (see also [11, Remark 4.4]).

In [11, Theorem 4.6] it is shown that the resolvent \(J^\lambda \) is firmly spherically nonspreading, that is, for any \(x, z \in X \), the following inequality holds

\[
\cos (\sqrt{\kappa} d(x, J^\lambda x)) + \cos (\sqrt{\kappa} d(z, J^\lambda z)) \cos^2 (\sqrt{\kappa} d(J^\lambda x, J^\lambda z)) \\
\geq 2 \cos (\sqrt{\kappa} d(J^\lambda x, z)) \cos (\sqrt{\kappa} d(x, J^\lambda z)).
\]

Furthermore, if \(\text{Fix}(J^\lambda) \neq \emptyset \), then, by [11, Theorem 4.6.(i)], it follows that for every \(x \in X \) and \(z \in \text{Fix}(J^\lambda) \),

\[
\cos (\sqrt{\kappa} d(J^\lambda x, z)) \cos (\sqrt{\kappa} d(x, J^\lambda x)) \geq \cos (\sqrt{\kappa} d(x, z)),
\]

a condition which is satisfied by the projection mapping onto closed and convex subsets (see [7, Proposition 3.5]).

The following result will be used in the next section.

Lemma 2.1. Let \((a_j) \) and \((b_j) \) be sequences of nonnegative real numbers such that \((a_j) \) is bounded, \(\sum_{j=0}^{\infty} b_j < \infty \) and there exists \(j_0 \in \mathbb{N} \) such that for all \(j \geq j_0 \), \(a_{j+1} \geq a_j - b_j \). Then \((a_j) \) is convergent.

Proof. For all \(m, n \in \mathbb{N} \) with \(n \geq m \geq j_0 \), \(a_{n+1} \geq a_m - \sum_{j=m}^{n} b_j \). Thus, \(\liminf_{n \rightarrow \infty} a_n \geq a_m - \sum_{j=m}^{\infty} b_j \), from where \(\liminf_{n \rightarrow \infty} a_n \geq \limsup_{m \rightarrow \infty} a_m \), which shows that \((a_j) \) is convergent. \(\square \)

3 Main results

Let \((X, d) \) be a complete CAT(\(\kappa \)) space with \(\kappa > 0 \) such that for every \(v, w \in X \), \(d(v, w) < \pi/(2\sqrt{\kappa}) \) and suppose \(f : X \rightarrow (-\infty, \infty] \) is a proper, convex and lower semi-continuous function. The following inequality also appears in the proof of [11, Theorem 4.6] in a more particular form.

Lemma 3.1. If \(\lambda > 0 \) and \(J^\lambda \) is defined by (6), then for \(x, z \in X \) we have that

\[
\lambda (f(J^\lambda x) - f(z)) \leq 2 \left(1 + \frac{1}{\cos^2 (\sqrt{\kappa} d(x, J^\lambda x))} \right) \times \left(\cos (\sqrt{\kappa} d(z, J^\lambda x)) \cos (\sqrt{\kappa} d(x, J^\lambda x)) - \cos (\sqrt{\kappa} d(z, x)) \right).
\]
Proof. If \(z = J_\lambda x \), the inequality holds with equality. Otherwise, let \(a = \sqrt{d}(x, z) \), \(b = \sqrt{d}(x, J_\lambda x) \), \(c = \sqrt{d}(z, J_\lambda x) \) and \(e = \sqrt{d}((1 - t)z + tJ_\lambda x, x) \), where \(t \in (0, 1) \). Since

\[
f(J_\lambda x) + \frac{1}{\lambda} \left(\frac{1}{\cos b} - \cos b \right) \leq f((1 - t)z + tJ_\lambda x) + \frac{1}{\lambda} \left(\frac{1}{\cos e} - \cos e \right)
\leq (1 - t)f(z) + tf(J_\lambda x) + \frac{1}{\lambda} \left(\frac{1}{\cos e} - \cos e \right)
\]

and, by (2),

\[
\cos e \geq \frac{\sin((1 - t)c)}{\sin c} \cos a + \frac{\sin(tc)}{\sin c} \cos b
\]

we obtain that

\[
\lambda(1 - t)(f(J_\lambda x) - f(z)) \leq \frac{\cos b (\sin c - \sin(tc)) - \sin((1 - t)c) \cos a}{\cos b (\sin((1 - t)c) \cos a + \sin(tc) \cos b)}
+ \left(1 - \frac{\sin(tc)}{\sin c} \right) \cos b - \frac{\sin((1 - t)c)}{\sin c} \cos a.
\]

Dividing by \((1 - t)\) and letting \(t \searrow 1 \),

\[
\lambda(f(J_\lambda x) - f(z)) \leq \frac{c}{\sin c} \left(1 + \frac{1}{\cos^2 b} \right) (\cos c \cos b - \cos a).
\]

Using the fact that for any \(\alpha \in [0, \pi/2) \), \(\sin \alpha \geq \alpha/2 \), we obtain the desired inequality. \(\square \)

Consider the following variant of the proximal point algorithm where one uses the resolvent defined by (6): given \((\lambda_n)\) a sequence of positive real numbers and \(x_0 \in X\), define the sequence \((x_n)\) in \(X\) by

\[
x_{n+1} = J_{\lambda_n}(x_n) = \arg\min_{y \in X} \left[f(y) + \frac{1}{\lambda_n} \Psi_{x_n}(y) \right]. \tag{7}
\]

The next result shows that the sequence \((x_n)\) defined above \(\Delta\)-converges to a minimum point of \(f\) (provided such a point exists) and constitutes a counterpart of [2, Theorem 1.4] from the context of CAT(0) spaces.

Theorem 3.2. Let \((X, d)\) be a complete CAT(\(\kappa\)) space with \(\kappa > 0\) such that for every \(v, w \in X\), \(d(v, w) < \pi/(2\sqrt{\kappa})\). Suppose \(f : X \to (-\infty, \infty]\) is a proper, convex and lower semi-continuous function which attains its minimum. Then, given any \(x_0 \in X\) and any sequence of positive real numbers \((\lambda_n)\) with \(\sum_{n \geq 0} \lambda_n = \infty\), the sequence \((x_n)\) defined by (7) \(\Delta\)-converges to a minimum point of \(f\).

Proof. Let \(z\) be a minimum point of \(f\). By Lemma 3.1, we have that for every \(n \in \mathbb{N}\),

\[
\cos \left(\sqrt{d}(z, x_n) \right) \leq \cos \left(\sqrt{d}(z, x_{n+1}) \right) \leq \cos \left(\sqrt{d}(x_n, x_{n+1}) \right) \leq \cos \left(\sqrt{d}(z, x_{n+1}) \right).
\]

This yields \(d(z, x_{n+1}) \leq d(z, x_n)\), so \((x_n)\) is Fejér monotone with respect to the set of minimum points of \(f\). Moreover, \(\lim_{n \to \infty} d(z, x_n) \leq d(z, x_0) < \pi/(2\sqrt{\kappa})\) and \(\lim_{n \to \infty} d(x_n, x_{n+1}) = 0\), hence there exists \(n_0 \in \mathbb{N}\) such that for each \(n \geq n_0\), \(1/\cos^2 \left(\sqrt{d}(x_n, x_{n+1}) \right) < 2\). Note also that

\[
f(x_{n+1}) + \frac{1}{\lambda_n} \Psi_{x_n}(x_{n+1}) \leq f(x_n),
\]
which shows that \((f(x_n))\) is nonincreasing. In addition, again by Lemma 3.1 we get that for all \(n \geq n_0\),
\[
\lambda_n (f(x_{n+1}) - f(z)) \leq 6 \left(\cos \left(\sqrt{\kappa}d(z, x_{n+1}) \right) - \cos \left(\sqrt{\kappa}d(z, x_n) \right) \right).
\]
Thus, for \(m \geq n_0\),
\[
(f(x_{m+1}) - f(z)) \sum_{n=n_0}^{m} \lambda_n \leq \sum_{n=n_0}^{m} \lambda_n (f(x_{n+1}) - f(z)) \leq 6 \left(\cos \left(\sqrt{\kappa}d(z, x_{m+1}) \right) - \cos \left(\sqrt{\kappa}d(z, x_{n_0}) \right) \right) \leq 6,
\]
from where
\[
f(x_{m+1}) \leq f(z) + \frac{6}{\sum_{n=n_0}^{m} \lambda_n}
\]
and so \(\lim_{m \to \infty} f(x_m) = f(z)\).

Let \((x_{n_i})\) be a subsequence of \((x_n)\) which \(\Delta\)-converges to some \(x \in X\). Then \(f(x) \leq \liminf_{i \to \infty} f(x_{n_i}) = f(z)\), so \(x\) is a minimum point of \(f\). Since \((x_{n_i})\) is Fejér monotone with respect to the set of minimum points of \(f\) and the \(\Delta\)-limit of every \(\Delta\)-convergent subsequence of \((x_n)\) is a minimum point of \(f\), one can easily see that \((x_n)\) \(\Delta\)-converges to \(x\) (see, for instance, [4, Proposition 3.2.6]).

Remark 3.3. If we assume in the previous result that \(\text{diam}(X) < \pi/(2\sqrt{\kappa})\), then \(f\) always attains its minimum. Furthermore, if \(X\) is compact, then \((x_n)\) converges to a minimum point of \(f\).

A related method for approximating a minimum point of a convex lower semi-continuous function \(f\) was given in geodesic spaces by Jost [10, Chapter 3] by considering a regularization of \(f\) with a nonnegative, lower semi-continuous function satisfying a quantitative strict convexity condition, which is fulfilled by any uniformly convex function. We show next that the function \(\Psi_x\) defined by (5) is indeed uniformly convex.

Remark 3.4. The function \(\Psi_x^1\) defined by (3) is uniformly convex.

Proof. For \(\varepsilon > 0\), take \(\delta = \varepsilon^2/32\). Let \(y, z \in X\) with \(d(y, z) \geq \varepsilon\), \(t \in [0, 1]\) and denote \(a = \sqrt{\kappa}d(x, y)\), \(b = \sqrt{\kappa}d(x, z)\) and \(c = \sqrt{\kappa}d(y, z) \geq \sqrt{\kappa}\varepsilon\). Then
\[
\Psi_x^1 \left(\frac{1}{2}y + \frac{1}{2}z \right) \leq \frac{\sin c}{\kappa \sin(c/2)(\cos a + \cos b)} \leq 2 \cos(c/2) \frac{\cos a + \cos b}{\kappa(\cos a + \cos b)^2}
\]
\[
\leq 2 \cos(c/2) \frac{\cos a + \cos b}{4\kappa \cos a \cos b} = \frac{1}{2} \cos(c/2) \left(\Psi_x^1(y) + \Psi_x^1(z) \right).
\]
Because \(1 - \cos(c/2) = 2\sin^2(c/4) \geq 2(c/8)^2 = c^2/32\), we have that
\[
\Psi_x^1 \left(\frac{1}{2}y + \frac{1}{2}z \right) \leq \frac{1}{2} \left(1 - \frac{c^2}{32} \right) \left(\Psi_x^1(y) + \Psi_x^1(z) \right)
\]
\[
= \frac{1}{2} \Psi_x^1(y) + \frac{1}{2} \Psi_x^1(z) - \frac{c^2}{64} \left(\Psi_x^1(y) + \Psi_x^1(z) \right).
\]
At the same time, \(\Psi_x^1(y) + \Psi_x^1(z) \geq 2/\kappa\). Therefore,
\[
\Psi_x^1 \left(\frac{1}{2}y + \frac{1}{2}z \right) \leq \frac{1}{2} \Psi_x^1(y) + \frac{1}{2} \Psi_x^1(z) - \frac{c^2}{32\kappa} \leq \frac{1}{2} \Psi_x^1(y) + \frac{1}{2} \Psi_x^1(z) - \delta.
\]
\[\blacksquare\]
Thus, Ψ_x is uniformly convex as the sum of a convex and a uniformly convex function and we obtain the following immediate consequence of \cite{10} Theorem 3.1.1.

Theorem 3.5. Let (X,d) be a complete CAT(κ) space with $\kappa > 0$ such that for every $v, w \in X$, $d(v, w) < \pi/(2\sqrt{\kappa})$ and suppose $f : X \to (-\infty, \infty]$ is a proper, convex and lower semi-continuous function. If $x \in X$, J_λ is defined by (6) and

$$\limsup_{n \to \infty} d(x, J_{\lambda_n} x) < \pi/(2\sqrt{\kappa})$$

(8)

for some sequence of positive real numbers (λ_n) with $\lim_{n \to \infty} \lambda_n = \infty$, then $(J_{\lambda} x)_{\lambda > 0}$ converges to a minimum point of f as $\lambda \to \infty$.

Remark 3.6. If we assume above that diam$(X) < \pi/(2\sqrt{\kappa})$, then (8) is satisfied. Moreover, one can show that $(J_{\lambda} x)_{\lambda > 0}$ actually converges to the minimum point of f which is closest to x.

\cite{10} Chapter 4] studies energy functionals defined in an appropriate space of L^2-functions, which is a CAT(0) space if the functions take values in a CAT(0) space. Minimum points of such energy functionals are called generalized harmonic maps and their existence is proved via \cite{10} Theorem 3.1.1. In a similar way, Theorem 3.5 could prove to be useful for the study of energy functionals in an appropriate CAT(κ) space of functions.

We focus next on the following splitting proximal point algorithm employed in the study of minimum points for a function $f : X \to (-\infty, \infty]$ which can be written as

$$f = \sum_{i=1}^{N} f_i,$$

(9)

where for each $i \in \{1, \ldots, N\}$, $f_i : X \to (-\infty, \infty]$ is proper, convex and lower semi-continuous. To this end we will use instead of the resolvent of f, the resolvents of the functions f_i,

$$J_{\lambda}^i(x) = \arg\min_{y \in X} \left[f_i(y) + \frac{1}{\lambda} \Psi_x(y) \right]$$

and given (λ_j) a sequence of positive real numbers and $x_0 \in X$, the sequence (x_n) is defined by

$$x_{jN+1} = J_{\lambda_j}^1(x_{jN}), \quad x_{jN+2} = J_{\lambda_j}^2(x_{jN+1}), \quad \ldots, \quad x_{jN+N} = J_{\lambda_j}^N(x_{jN+N-1}).$$

(10)

This method was recently studied in CAT(0) spaces in \cite{3} Theorem 3.4] and we adapt the proof strategy to our setting.

Theorem 3.7. Let (X,d) be a compact CAT(κ) space with $\kappa > 0$ such that for every $v, w \in X$, $d(v, w) < \pi/(2\sqrt{\kappa})$. Suppose $f : X \to (-\infty, \infty]$ is a function of the form (9) which attains its minimum. For any $x_0 \in X$ and any sequence of positive real numbers (λ_j) with $\sum_{j \geq 0} \lambda_j = \infty$ and

$$\sum_{j \geq 0} \lambda_j^2 < \infty,$$

let (x_n) be defined by (10). If there exists $L > 0$ such that for every $j \in \mathbb{N}$ and $i \in \{1, \ldots, N\}$,

$$f_i(x_{jN}) - f_i(x_{jN+i}) \leq Ld(x_{jN}, x_{jN+i})$$

(11)

and

$$f_i(x_{jN+i-1}) - f_i(x_{jN+i}) \leq Ld(x_{jN+i-1}, x_{jN+i}),$$

(12)

then (x_n) converges to a minimum point of f.
Proof. Let \(z \) be a minimum point of \(f \). For \(j \in \mathbb{N} \) and \(i \in \{1, \ldots, N\} \), apply Lemma 3.1 to the function \(f_i \), the resolvent \(J_{\lambda_j}^i \) and the points \(x_{jN+i-1} \) and \(z \) to get that

\[
\lambda_j (f_i(x_{jN+i}) - f_i(z)) \leq 2 \left(1 + \frac{1}{\cos^2 \left(\sqrt{\kappa d(x_{jN+i-1}, x_{jN+i})} \right)} \right) \times \left(\cos \left(\sqrt{\kappa d(z, x_{jN+i})} \right) - \cos \left(\sqrt{\kappa d(z, x_{jN+i-1})} \right) \right).
\]

Let \(m \in \{1, \ldots, N\} \). Because

\[
f_m(x_{jN+m}) + \frac{1}{\lambda_j} \Psi_{x_{jN+m-1}}(x_{jN+m}) \leq f_m(x_{jN+m-1})
\]

and

\[
\Psi_{x_{jN+m-1}}(x_{jN+m}) = \frac{\sin^2 \left(\sqrt{\kappa d(x_{jN+m-1}, x_{jN+m})} \right)}{\cos \left(\sqrt{\kappa d(x_{jN+m-1}, x_{jN+m})} \right)} \geq \frac{\kappa d(x_{jN+m-1}, x_{jN+m})^2}{4},
\]

by \([12]\), we have that

\[
\frac{\kappa d(x_{jN+m-1}, x_{jN+m})^2}{4} \leq \lambda_j (f_m(x_{jN+m-1}) - f_m(x_{jN+m})) \leq \lambda_j Ld(x_{jN+m-1}, x_{jN+m}),
\]

from where

\[
d(x_{jN+m-1}, x_{jN+m}) \leq 4\lambda_j L/\kappa. \tag{13}
\]

Take \(j_0 \in \mathbb{N} \) such that \(\lambda_j \leq 1 \) for \(j \geq j_0 \) and denote \(\alpha = 1 + 1/\cos^2(4L/\sqrt{\kappa}) \). Then if \(j \geq j_0 \),

\[
1 + 1/\cos^2 \left(\sqrt{\kappa d(x_{jN+i-1}, x_{jN+i})} \right) \leq \alpha \quad \text{and so}
\]

\[
\lambda_j (f_i(x_{jN+i}) - f_i(z)) \leq 2\alpha \left(\cos \left(\sqrt{\kappa d(z, x_{jN+i})} \right) - \cos \left(\sqrt{\kappa d(z, x_{jN+i-1})} \right) \right).
\]

Note that

\[
\sum_{i=1}^{N} (f_i(x_{jN+i}) - f_i(z)) = f(x_{jN}) - f(z) + \sum_{i=1}^{N} (f_i(x_{jN+i}) - f_i(x_{jN})).
\]

Hence, for all \(j \geq j_0 \),

\[
\lambda_j (f(x_{jN}) - f(z)) \leq 2\alpha \left(\cos \left(\sqrt{\kappa d(z, x_{jN+N})} \right) - \cos \left(\sqrt{\kappa d(z, x_{jN})} \right) \right) + \lambda_j \sum_{i=1}^{N} (f_i(x_{jN}) - f_i(x_{jN+i})).
\]

Using \([13]\) we obtain that

\[
d(x_{jN}, x_{jN+i}) \leq d(x_{jN}, x_{jN+1}) + \ldots + d(x_{jN+i-1}, x_{jN+i}) \leq 4i\lambda_j L/\kappa,
\]

which, by \([11]\), yields that for \(j \geq j_0 \),

\[
\lambda_j (f(x_{jN}) - f(z)) \leq 2\alpha \left(\cos \left(\sqrt{\kappa d(z, x_{(j+1)N})} \right) - \cos \left(\sqrt{\kappa d(z, x_{jN})} \right) \right) + 2N(N+1)\lambda_j^2 L^2/\kappa. \tag{14}
\]
Since z is a minimum point of f, we have that for $j \geq j_0$,
\[
\cos \left(\sqrt{\kappa d(z, x_{j+1}N)} \right) \geq \cos \left(\sqrt{\kappa d(z, x_{jN})} \right) - N(N + 1)\lambda_j^2 L^2 / (\kappa \alpha),
\]
which, by Lemma 2.1, shows that the sequence $(\cos (\sqrt{\kappa d(z, x_{jN})}))_j$ is convergent and so the sequence $(d(z, x_{jN}))_j$ converges too. Moreover, using (14), we get that
\[
\sum_{j=0}^{\infty} \lambda_j (f(x_{jN}) - f(z)) < \infty.
\]
This implies that there exists a subsequence $(x_{j_l}N)_l$ of (x_{jN}) such that $\lim_{l \to \infty} f(x_{j_l}N) = f(z)$. We may assume that $(x_{j_l}N)_l$ converges to some $p \in X$ (otherwise take a convergent subsequence of it). Since f is lower semi-continuous, $f(p) \leq \lim_{l \to \infty} f(x_{j_l}N) = f(z)$, so p is a minimum point of f, which means that $(d(p, x_{j_l}N))_j$ is convergent and must converge to 0 since $(x_{j_l}N)_l$ converges to p. Now, one only needs to use (13) to obtain that $(x_{jN+m})_j$ converges to p for all $m \in \{1, \ldots, N\}$ which finally yields that (x_n) converges to p.

Remark 3.8. Other choices for the function Ψ_x in the definition of the resolvent (6) are also possible, even if the image of Ψ_x is not $[0, \infty)$. For instance, it is easy to see that the resolvent is well-defined and that similar convergence results hold for the sequence generated by the proximal point algorithm when considering $\Psi_x = \Psi^1_x$ or $\Psi_x = \Psi^2_x$.

Remark 3.9. Although the proximal point algorithm as given in [2] can be applied in any CAT(κ) space with $\kappa \leq 0$, as before one could also consider for $\kappa < 0$ another algorithm of this type by taking, for example, in (6) $\Psi_x : X \to [0, \infty)$, $\Psi_x(y) = -\frac{1}{\kappa} \left(\cosh \left(\sqrt{-\kappa d(y, x)} \right) - \frac{1}{\cosh \left(\sqrt{-\kappa d(y, x)} \right)} \right)$.

Note that when $\kappa \nearrow 0$, we obtain the squared distance function as for CAT(0) spaces. It turns out that the resolvent is indeed well-defined and that analogous convergence results can be proved in this case too.

Acknowledgements: The authors have been partially supported by DGES (MTM2015-65242-C2-1-P). A. Nicolae would also like to acknowledge the Juan de la Cierva-incorporación Fellowship Program of the Spanish Ministry of Economy and Competitiveness.

References

[1] D. Ariza-Ruiz, L. Leustean and G. López-Acedo, *Firmly nonexpansive mappings in classes of geodesic spaces*, Trans. Amer. Math. Soc. 366 (2014), 4299–4322.

[2] M. Bačák, *The proximal point algorithm in metric spaces*, Israel J. Math. 194 (2013), 689–701.

[3] M. Bačák, *Computing means and medians in Hadamard spaces*, SIAM J. Optim. 24 (2014), 1542–1566.

[4] M. Bačák, *Convex analysis and optimization in Hadamard spaces*, De Gruyter, Berlin, 2014.

[5] D. P. Bertsekas, *Incremental proximal methods for large scale convex optimization*, Math. Program. 129 (2011), 163–195.

[6] M. R. Bridson and A. Häfliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, 1999.
[7] R. Espínola and A. Fernández-León, CAT(κ)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), 410–427.

[8] O. P. Ferreira and P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization 51 (2002), 257–270.

[9] J. Jost, Convex functionals and generalized harmonic maps into spaces of non positive curvature, Comment. Math. Helvetici 70 (1995), 659–673.

[10] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, in: Lect. in Math., ETH Zürich, Birkhäuser, 1997.

[11] Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl. 18 (2016), 93–115.

[12] Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear Nonlinear Anal. (accepted).

[13] C. Li, G. López and V. Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. London Math. Soc. 79 (2009), 663–683.

[14] C. Li and J. C. Yao, Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm, SIAM J. Control Optim. 50 (2012), 2486–2514.

[15] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–182.

[16] B. Martinet, Régularisation d’inéquations variationnelles par approximations sucessives, Rev. Française Informat. Recherche Opérationnelle 4 (1970), 154–158.

[17] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199–253.

[18] S. Ohta, M. Pálfia, Discrete-time gradient flows and law of large numbers in Alexandrov spaces, Calc. Var. Partial Differential Equations 54 (2015), 1591–1610.

[19] T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877–898.

[20] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344–374.