Role of HLA, KIR, MICA, and Cytokines Genes in Leprosy

Luciana Ribeiro Jarduli, 1 Ana Maria Sell, 2 Pâmela Guimarães Reis, 1 Emília Ângela Sippert, 1 Christiane Maria Ayo, 1 Priscila Saamara Mazini, 1 Hugo Vicentin Alves, 1 Jorge Juarez Vieira Teixeira, 1 and Jeane Eliete Laguila Visentainer 2

1 Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringá State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
2 Basic Health Sciences Department, Maringá State University, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil

Correspondence should be addressed to Jeane Eliete Laguila Visentainer; jelvisentainer@gmail.com

Received 20 March 2013; Revised 16 May 2013; Accepted 5 June 2013

1. Overview of Leprosy

Leprosy is a chronic infectious disease of slow evolution caused by Mycobacterium leprae, which primarily affects the skin and peripheral nerves and may manifest in different clinical forms. There is strong evidence for a genetic basis for host disease per se susceptibility to and its subtypes [1].

Currently, Brazil is the second in the world in absolute number of cases of leprosy [2]. Patients with leprosy can show a broad spectrum of clinical symptoms. The tuberculoid form (TT) of leprosy consists of well-defined lesions, few bacilli, and vigorous cell-mediated immunity (CMI). On the other hand, lepromatous leprosy (LL) presents as many skin lesions with uncontrolled proliferation of leprosy bacilli and inefficient CMI. Borderline leprosy manifests clinically and immunologically with characteristics between the poles of the spectrum of leprosy and may be classified as 3 subtypes: borderline lepromatous (BL), borderline borderline (BB), and borderline tuberculoid (BT) [3].

Most individuals develop sufficient immunity against M. leprae with no signs of clinical disease. However, in a small proportion of exposed individuals, leprosy can manifest in an array of clinical forms, ranging from the localized tuberculoid to the systemic lepromatous disease. Typically, Th1- and Th2-type immune responses are initiated against the pathogen [4]. Evidence suggests that the incidence of infection in the population is probably much higher than the incidence of clinical leprosy, because a small proportion (about 5%) of infected individuals develop clinical symptoms and the rest can develop subclinical infections or heal spontaneously. This may be due in part to environmental factors such as nutrition, genetic differences, or bacterial [5].

Many genes including HLA, KIR, and MICA genes, as well as polymorphisms in cytokines have been investigated for their role in infectious disease. HLA alleles may influence not only susceptibility or resistance to leprosy, but also the course of the disease. Some combinations of HLA and KIR may result in negative as well as positive interactions between NK cells and infected host cells with M. leprae, resulting in activation or inhibition of NK cells and, consequently, in death of bacillus. In addition, studies have demonstrated the influence of MICA genes in the pathogenesis of leprosy. Specifically, they may play a role in the interaction between NK cells and infected cells. Finally, pro- and anti-inflammatory cytokines have been influencing the clinical course of leprosy. Data from a wide variety of sources support the existence of genetic factors influencing the leprosy pathogenesis. These sources include twin studies, segregation analyses, family-based linkage and association studies, candidate gene association studies, and, most recently, genome-wide association studies (GWAS). The purpose of this brief review was to highlight the importance of some immune response genes and their correlation with the clinical forms of leprosy, as well as their implications for disease resistance and susceptibility.
The clinical and pathological spectrum of leprosy can be explained by genetic differences in host resistance. While some loci affect intrinsic susceptibility to LD, others modify the clinical form of the disease [6]. This review may help to clarify the mechanisms immunopathogenic of

M. leprae. Studies of immune response genes in patients with leprosy can be used as a research tool in assisting genetic characterization of leprosy patients, thus allowing the determination of a possible association between these gene combinations and the development of leprosy and its clinical forms.

Leprosy has long been considered a complex disease. In the past few years, several studies have attempted to characterize genes associated with leprosy, as well as their contribution to the development of the various clinical forms. Immune response genes have been associated with pathogenesis of different forms of leprosy. This review discusses the role of the human leukocyte antigen (HLA), Killer cell immunoglobulin-like receptors (KIRs), and MHC class I chain-related (MIC) genes, as well as polymorphisms of cytokines, in leprosy and their implications for resistance and susceptibility to the disease.

2. Strategy for Screening and Selecting Studies

This review about host genetic polymorphism studies, as well as the current status of genome-wide association studies and their influence on leprosy selected original articles carried out on humans that were found in the databases of PubMed (U.S. National Library of Medicine), LILACs (Latin American and Caribbean Center on Information in Health Sciences), and Google Scholar. The research period covered included the limit of databases until March 2013. There was no restriction regarding language. In the PubMed database MeSH (Medical Subject Heading) terms were used and in the LILACs descriptors were used. In order to retrieve articles of interest, free terms were used in the LILACS and Google Scholar. The MeSH terms, descriptors, and free terms were organized according to thematic groups: (i) HLA and Leprosy (“Leprosy” OR “Leprosy, Multibacillary” OR “Leprosy, Paucibacillary” OR “Leprosy, Tuberculoid” OR “Leprosy, Lepromatous” OR “Leprosy, Borderline” AND “HLA antigens/genetics”); (ii) KIR genes and Leprosy (“Leprosy” AND “Receptors, KIR”); (iii) MIC genes and Leprosy (“Leprosy” AND “MHC class I-related chain A”); (iv) Cytokine genes and Leprosy (“Leprosy” OR “Leprosy, Multibacillary” OR “Leprosy, Paucibacillary” OR “Leprosy, Tuberculoid” OR “Leprosy, Lepromatous” OR “Leprosy, Borderline” AND “Cytokines/genetics” OR “Receptors, Cytokine/genetics” OR “Chemokines/genetics”); (v) Genome-wide association study and Leprosy (“Leprosy” AND “Genome-Wide Association Studies”). The immune response genes, as HLA, KIR, MIC, and cytokines, and their association with leprosy were presented.

Screening the PubMed, LILACs, and Google Scholar databases identified 326 potentially relevant citations. Of these, 260 citations were excluded after evaluating the title and the abstract, because they did not comply with the inclusion criterion, no human, aim, originality, duplicate articles and that could not be downloaded or accessed in full length from journal archives. 64 articles related to immune response genes in association with leprosy and 19 articles more which were added from reference list, adding 83 original articles on human infections included in this review were selected.

The main characteristics of the studies selected, the populations under study, the target genes, the number of individuals, and the main finding for each are shown in Tables 1, 2, and 3.

3. HLA and Leprosy

During infection caused by

M. leprae, HLA alleles influence not only susceptibility and resistance to leprosy, but also the course of the disease. The main role of HLA molecules is to present peptides derived from

M. leprae to T cells of the host [15]. An individual that has a particular combination of HLA alleles that are not linked to the peptide in an appropriate way, or for whom the HLA-peptide linkage does not elicit a proper lymphocyte response, will be more susceptible to infection than an individual that linked to the peptide in an appropriate way [18]. In patients whose HLA systems offer protection against the disease, these genes likely select and stimulate T cells to multiply and eliminate the agent via inflammatory cytokine production which destroy infected cells [15, 71]. Several studies have consistently reported the involvement of HLA alleles and haplotypes, mainly of class II genes, as important genetic factors controlling susceptibility to different forms of leprosy [71]. According to Ridley and Jopling (1966), the clinical manifestation of leprosy depends on the type of immune response that is initiated by the host and the balance between Th1 and Th2 responses may be partially controlled by the mechanism of antigen presentation involving HLA molecules [35, 71]. The tuberculoid (TT) form of leprosy is associated with a Th1 (cellular) immune response, characterised by the production of proinflammatory cytokines that can participate in the clearance of the bacillus. However, the lepromatous (LL) form of leprosy is associated with a Th2 (humoral) immune response, which is characterised by an immunosuppressive cytokine environment, making this type of response problematic for the host [3, 72].

4. Classical HLA Class I Genes

Several studies comparing HLA class I gene frequencies in leprosy cases and controls have found associations either with the polar forms of leprosy or with LD. Nevertheless, results have been inconsistent.

Earlier, association studies showed HLA-Aw21 as a factor of susceptibility to TT in Ethiopian patients [7], while HLA-A9 in India, HLA-A2 in Thailand and Korea as a factor of resistance to leprosy [8, 9, 13]. In leprosy patients from Iran, HLA-B35 antigen was increased, while HLA-A1 was decreased in LL patients [10]. The HLA-B40 antigen and HLA-A2-B40, HLA-A11-B40, and HLA-A24-B40 haplotypes
Population	Study design	Sample size	Phenotype	Serotype, allele, or haplotype	Type of association	P or P_c	Ref.
Ethiopian	Case-control	20TT, 19LL, 36 controls	TT	Aw21	Susceptibility	$P_c = 0.042$	[7]
Indian	Case-control	30BT or TT, 40 controls	TT	A9	Resistance	$P_c = 0.005$	[8]
Thai	Case-control	26TT, 183 controls	TT	A2	Resistance	$0.01 < P < 0.05$	[9]
	Case-control	70LL, 183 controls	LL	Bw17	Susceptibility	$0.01 < P < 0.05$	[9]
Iranian	Case-control	88LD, 125 controls	LL	A1	Resistance	$P < 0.05$	[10]
				Bw45	Susceptibility	$P_c = 0.0027$	
Mumbai/Indian	Case-control	158LL, 150TT, 170 controls	LL	Bw40	Susceptibility	$P_c = 0.02$	
Korean	Case-control	157LD, 162 controls	LD	A2	Resistance	$P = 0.03$	[11]
				A11	Susceptibility	$P = 0.03$	
				Aw33	Susceptibility	$P = 0.003$	
				Cw5	Resistance	$P = 0.001$	
Southern Indian	Case-control	50LL, 69 controls	LL	A9	Susceptibility	$P_c = 0.0004$	[12]
Turkish	Case-control	80LD, 120 controls	LD	A10	Susceptibility	$P_c = 0.0226$	
				Bw4	Susceptibility	$P_c = 0.0003$	
				Bw6	Susceptibility	$P_c = 0.0001$	
				Cw1	Susceptibility	$P_c = 0.0080$	
				Cw2	Susceptibility	$P_c = 0.0055$	
				A3	Resistance	$P_c = 0.0040$	
				B49	Resistance	$P_c = 0.0035$	
Southern Indian	Case-control	32LD, 67 controls	LD	$A^* 02:06$	Susceptibility	$P_c = 0.000007$	[13]
				$A^* 11:02$	Susceptibility	$P_c = 0.00001$	
				$B^* 51:10$	Susceptibility	$P_c = 0.0000005$	
				$B^* 18:01$	Susceptibility	$P_c = 0.007$	
				$C^* 04:07$	Susceptibility	$P_c = 1.0 \times 10^{-9}$	
				$C^* 07:03$	Susceptibility	$P_c = 0.0000001$	
				$C^* 04:11$	Resistance	$P_c = 0.001$	
Table 1: Continued.

Population	Study design	Sample size	Phenotype	Serotype, allele, or haplotype	Type of association	\(P \) or \(P_c \)	Ref.
Mumbai/Indian	Case-control	103LD, 101 controls	LD	A02	Susceptibility	\(P_c = 0.0015 \)	
				A11	Susceptibility	\(P_c = 0.009 \)	
				A28	Resistance	\(P_c = 0.0014 \)	
				B12	Resistance	\(P_c = 0.001 \)	
				B15	Resistance	\(P_c = 0.05 \)	
				B40	Susceptibility	\(P_c = 7.34 \times 10^{-7} \)	
				Cw7	Susceptibility	\(P_c = 2.26 \times 10^{-5} \)	
				Cw3	Resistance	\(P_c = 0.0002 \)	[19]
				\(A^*02:06 \)	Susceptibility	\(P_c = 7.15 \times 10^{-5} \)	
				\(A^*11:02 \)	Susceptibility	\(P_c = 0.00001 \)	
				\(B^*18:01 \)	Susceptibility	\(P_c = 0.007 \)	
				\(B^*51:10 \)	Susceptibility	\(P_c = 5.29 \times 10^{-6} \)	
				\(C^*04:07 \)	Susceptibility	\(P_c = 5.12 \times 10^{-9} \)	
				\(C^*04:11 \)	Resistance	\(P_c = 0.001 \)	
				\(C^*07:03 \)	Susceptibility	\(P_c = 1.97 \times 10^{-5} \)	
				\(A^*11-B^*40 \)	Susceptibility	\(P_c = 0.002 \)	
Brazilian	Case-control	224LD, 446 controls	LD	\(A^*11 \)	Susceptibility	\(P = 0.0345 \)	
				\(B^*38 \)	Susceptibility	\(P = 0.0402 \)	
				\(C^*12 \)	Susceptibility	\(P = 0.01 \)	
				\(C^*16 \)	Resistance	\(P = 0.0124 \)	[20]
				\(C^*07 \)	Susceptibility	\(P = 0.0211 \)	
				\(B^*35 \)	Resistance	\(P = 0.0156 \)	
				\(C^*04 \)	Resistance	\(P = 0.0464 \)	
Vietnamese	Case-control	88LL, 48TT	LL	\(C^*13:05 \)	Susceptibility	\(P = 0.0063 \)	
	family study	198 families	LD				
	family study	292 families	LD				
Indian	Case-control	364LD, 371 controls	LD	\(C^*13:05 \)	Susceptibility	\(P = 8.8 \times 10^{-5} \)	
						\(P = 3.0 \times 10^{-4} \)	

MB: multibacillary leprosy; LL: lepromatous leprosy; BB: borderline borderline; TT: tuberculoid leprosy; ENL: erythema nodosum leprosum; LD: leprosy disease; ns: not significant; \(P_c \): corrected \(P \) Value; Ref.: reference.
Table 2: Associations between HLA class II and leprosy.

Population	Study design	Sample size	Phenotype	Serotype, allele, or haplotype	Type of association	P or P_c	Ref.
Japanese	Case-control	295LL, 74TL, 110 controls	LL/TT	DR2 DRw9	Susceptibility	$P_c < 0.008$	[12]
			LL		Resistance	$P_c < 0.0001$	
Thai	Case-control	32TT, 32 controls	TT	DR2 DQw1	Susceptibility	$P_c = 0.02$	[22]
					Susceptibility	$P_c = 0.008$	
Korean		157LD, 162 controls	LD				
Turkish	Case-control	23LL, 27BL, 50 controls	LL/BL	DR2	Susceptibility	$P = 0.015$	[23]
Asian Indian	Case-control	23TT, 16PTB, 19 controls	TT	DRB1*15:02	Susceptibility	$P < 0.05$	[24]
Indian	Case-control	138LD, 237 controls	LD				
Indian	Case-control	68LL, 237 controls	LL				
Indian	Case-control	30BL, 237 controls	BL				
Indian	Case-control	28TT, 65LL, 47 controls	LL				
Indian	Case-control	28TT, 65LL, 47 controls	TT				
Indian	Case-control	39TT, 20PTB, 46 controls	TT				
Indian	Case-control	54TT, 44 controls	TT				
							[27]
Japanese	Case-control	38LL/BL, 79L, 50 controls	BL/LL				
			LD				
Population	Study design	Sample size	Phenotype	Serotype, allele, or haplotype	Type of association	\(P \) or \(P_c \)	Ref.
------------------	--------------	------------------------------	-----------	--------------------------------	---------------------	----------------	-----
Brazilian	Case-control	32TT, 147 controls	TT	DR2	Susceptibility	\(P_c = 0.0132 \)	[29]
Brazilian	TDT	73 families (147 sib-pairs)	LD	DRB1*02:01	Resistance	\(P_c = 0.008 \)	
Brazilian	TDT	73 families (147 sib-pairs)	TT	DQB1*02:01	Resistance	\(P_c = 0.024 \)	
Japanese	Case-control	93LD, 114 controls	LD	DRB1*04:05, DQA1*03, DQB1*04:01	Resistance	\(P_c < 0.05 \)	[30]
Brazilian	TDT	73 families (147 sib-pairs)	LT	DRB1*04:05, DQA1*03, DQB1*04:01	Resistance	\(P_c < 0.05 \)	
Japanese	Case-control	93LD, 114 controls	LD	DRB1*04:05, DQA1*03, DQB1*04:01	Resistance	\(P_c < 0.05 \)	
Egyptian	Case-control	24LD, 30 controls	LD	DR2	Susceptibility	\(P = 0.032 \)	[32]
Southern Indian	TDT	223 ASP	TT	DRB1*15(2)	Susceptibility	\(P = 0.012 \)	[33]
Argentinean	Case-control	70LL, 112 controls	LL	DRB1*02:01	Resistance	\(P_c = 0.02 \)	
Argentinean	Case-control	19PB, 112 controls	TT	DRB1*04	Resistance	\(P_c = 0.0192 \)	
North Indian	Case-control	34BT/TT, 79BL/LL, 111 controls	BL/LL	DRB1*15:01	Susceptibility	\(P < 0.05 \)	[35]
Brazilian	Case-control	578LD, 691 controls	LD	DRB1*04	Resistance	\(P_c = 0.004753 \)	
Brazilian	Case-control	578LD, 691 controls	LD	DRB1*04/NNC	Susceptibility	\(P_c = 0.02288 \)	
Brazilian	Case-control	578LD, 691 controls	LD	DRB1*10/NNC	Susceptibility	\(P_c = 0.024 \)	
Brazilian	Case-control	578LD, 691 controls	LD	DRB1*15/NNC	Susceptibility	\(P_c = 0.0002 \)	
Vietnamese	TDT	194 single-case families	LD	DRB1*04	Resistance	\(P_c = 0.03 \)	
Argentinean	Case-control	71LD, 81 controls	LL	DRB1*14:01	Susceptibility	\(P_c = 0.0011 \)	
Chinese	Case-control	305BL, 527 controls	LD	DRB1*15	Susceptibility	\(P_c = 0.002 \)	
Brazilian	Case-control	30BL, 178 controls	BL	DRB1*16:01	Susceptibility	\(P_c = 0.0001 \)	
Taiwanese	Case-control	65LD 190 controls	ML	DRB1*04:05	Resistance	\(P_c = 0.0001 \)	
Brazilian	Case-control	77LL, 77 control	LL	DRB1*11	Resistance	\(P_c = 0.0132 \)	
Brazilian	Case-control	36LL, 85 control	LL	DRB1*16	Susceptibility	\(P_c = 0.0105 \)	
Brazilian	Case-control	20TT, 85 control	TT	DRB1*14	Susceptibility	\(P_c = 0.032 \)	

MB: multibacillary leprosy; PB: paucibacillary; LL: lepromatous leprosy; BL: borderline lepromatous; BB: borderline borderline; TT: tuberculoid leprosy; PTB: pulmonary tuberculosis; LD: leprosy disease; NN: all not significantly different alleles collapsed into a unique group (i.e., DRB1*04, 07, 10, 12, and 15) [36]; ASP: affected sib-pair; ns: not significant; \(P_c \): corrected \(P \) value; Ref.: reference.
Population	Study design	Sample size	Phenotype	Allele, genotype, or haplotype	Type of association	\(P \)	Ref.
Brazilian	Case-control	70LL, 85BL, 55BB, 28BT, 63TT, 101L, 15 pure neural, 92 controls	BT/TT	TNF-308A	Resistance	\(P = 0.005 \)	[43]
Brazilian	Case-control	134MB, 29PB, 62 controls	LD	TNF-308A	Resistance	\(P < 0.05 \)	[44]
Brazilian	Case-control	43TT, 65LL, 50BB, 91L, 240 controls	LD	IL10-819TT	Susceptibility	\(P < 0.01 \)	[45]
Brazilian	Family study	363LD	LD	TNF-308A	Resistance	\(P = 0.02 \)	[46]
Indian	Case-control	121LL, 107TT, 160 controls	LD	IL10-819TT	Resistance	\(P = 0.01 \)	[47]
Thai	Case-control	24MB, 13PB, 140 controls	LD	TNF-308A	Susceptibility	\(P < 0.001 \)	[50]
French Polynesian	Family study	6 families	LD	IL-1 beta, TNF-alpha (1, 2), and TNF-alpha (A, G)	ns		[51]
Brazilian	Multi case families study	76 families	LD	TNF-1	Susceptibility	\(P = 0.0001 \)	[31]
Mexican	Case-control	62 cases, 144 controls	LD	TNF-308GA/A	Susceptibility	\(P = 0.001 \)	[52]
Indian	Case-control	449PB, 473MB, 1670 controls	LD	BAT1-LTA-TNF-BTNL2	Susceptibility	\(P < 0.0001 \)	[53]
Brazilian	Case-control	374 cases, 380 controls	LD	IL10-819T	Susceptibility	\(P = 0.01 \)	[54]
Colombian	Case-control	100 cases, 100 controls	LD	IL10-819CC and CT, IL10-592CC and CA, IL10-819C-592C, IL10-818A-819C-592C	Susceptibility	\(P < 0.001 \)	[55]
Brazilian	Case-control	131PB, 166MB, 283 controls	LD	IL10-3575T/-2849G/-2763C, IL10-3575T/-2849A/-2763C	Resistance	\(P = 0.005 \)	[56]
Indian	Case-control	144MB, 142PB, 266 controls	LD	IL10-3575T/-2849G/-2763C/-1028A/-819C/-592C, IL10-3575T/-2849A/-2763C/-1028A/-819T/-592A	Resistance	\(P = 0.01 \)	[57]
Korean	Case-control	93LL, 94 controls	LL	IL12RB1-IFNGR1	Susceptibility	\(P = 0.01 \)	[58]
Japanese	Case-control	130LL, 46TL, 68 controls	LL	IL12RB2-1035G	Susceptibility	\(P < 0.01 \)	[59]

Table 3: Associations between cytokine genes and leprosy.
Table 3: Continued.

Population	Study design	Sample size	Phenotype	Allele, genotype, or haplotype	Type of association	P	Ref.			
Mexican	Case-control	44LL, 51 controls	LL	IL2 3' UTR I188A/C	Susceptibility	P < 0.05	[61]			
Mexican	Case-control	66LL, 140 controls	LL	IL2 3' UTR I188A/C	ns	[62]				
Chinese	Multiple-stage genetic association	4971 cases, 5503 controls	LD	IL18RAP/IL18RI(rs2058660) IL12B(rs6871626)	Susceptibility	P = 4.57 × 10^-19	P = 3.95 × 10^-18	[63]		
Brazilian	Case-control	1045 cases, 1080 controls	LD	IFNG+ 874T	Resistance	P = 0.005	[64]			
Chinese	Case-control	527 cases, 583 controls	LD, MB	IFNG+ 874T/A, IFNG(10CA), IFNG(13CA), IFNG(15CA), IFNG(17CA)	Susceptibility	P = 0.001	P = 0.026	P = 0.007	P = 0.04	[65]
Brazilian	Case-control	108 cases, 113 controls	PB	IFNG+874AA, IFNG(16CA)	Susceptibility	P = 0.028	P = 0.019	[66]		
Brazilian	Case-control	10TT, 59BB, 27LL, 98 controls	LD	IFNG(15CA), (16CA), and (17CA)	Susceptibility	P = 0.01	[67]			
Iranian	Case report	3 cases	LD	IFNGRI-567C	Susceptibility	ND	[68]			
Chinese	Case-control	80PB, 352MB, 465 controls	LD	IL-10 (rs1800871, rs1800872, rs1554286); IL-10B (rs3171425; rs7281762); TGFBR2 (rs2228048, rs744751); IL-6 (rs1800797)	Susceptibility	P = 0.044	P = 0.01	P = 0.001	[69]	
Indian	Case-control	2447 cases, 1294 controls	LD	IL-10B (rs3171425; rs7281762); TGFBR2 (rs2228048, rs744751); IL-6 (rs1800797)	Susceptibility	P < 0.05	[70]			

MB: multibacillary; PB: paucibacillary; LL: lepromatous leprosy; BL: borderline lepromatous; BT: borderline tuberculoid; TT: tuberculoid leprosy; LD: leprosy disease; ns: not significant; ND: no data; P value; Ref: reference.
were frequent among Indian leprosy patients [11], while HLA-A11 and HLA-A33 were increased among Korean LL patients [13].

In Indian patients, an increasing frequency of HLA-A11 [14] and HLA-B60 [15] antigens have been observed in LL patients. In southern Chinese, significantly decreased HLA-B46 was found in multibacillary leprosy [16]. In a Turkish LL case-control study, HLA class I serotypes A9, A10, Bw4, Bw6, Cw1, and Cw2 were significantly overrepresented, and serotypes A3 and B49 were significantly underrepresented in the LD patients [17].

Subsequently, with the advent of molecular genotyping, HLA class I alleles were determined in multibacillary leprosy patients, resulting in a positive association with HLA-A*02:06, A*11:02, B*18:01, B*51:01, C*04:07, and C*07:03 alleles, and a negative association with C*04:01 [18]. The A*11-B*40 haplotype was increased in multibacillary leprosy patients compared to controls [19].

Recent studies have shown a positive association between LD and HLA-A*11, HLA-B*38, and HLA-C*12, as well as a negative association with HLA-C*16. When groups were stratified, HLA-B*35 and HLA-C*04 were shown to be protective against lepromatous leprosy, while HLA-C*07 was shown to be a susceptibility variant [20]. Further, the allele HLA-C*15:05 was related to phenotype LD in certain populations from India and Vietnam [21]. Table 1 summarizes these findings.

5. Classical HLA Class II Genes

According to some studies, the main restriction determinants for M. leprae reside on DR, and not DP or DQ molecules [73, 74]. The HLA-DR2 molecule [12, 13, 15, 21–24, 29, 32], later identified as DRBI*15 and DRBI*16 variants, is primarily associated with leprosy (LD or different clinical forms) in Indian, Japanese, Brazilian, and Chinese patients [25–27, 30, 33, 35, 36, 38, 39, 42].

In Indian patients, DRBI*15:02 was associated with TT, whereas DRBI*15:01 was associated with LL. DRBI*15:01 and *15:02 alleles differ from each other by a single amino acid at codon 86. Class II molecules have polymorphic pockets that accommodate the side chains of bound peptides. The codon 86 residue lies in binding pocket 1. In another Indian study, both DRBI*15:01 and *15:02 were found to be associated with tuberculoid leprosy, [27] indicating that the residue in pocket 1 may not be involved in determining the outcome of leprosy infection. Instead, it appears that certain residues that contribute to the net charge in the putative peptide-specific binding pocket 4 may be more important [75]. It is hypothesized that net negative or neutral charges in binding pocket 4 cause poor binding of the DRBI molecule to M. leprae antigens. HLA molecules with the highest affinity to peptide produce the greatest T-cell proliferation and IFN-γ response [76], and the peptide presentation by low affinity class II molecules may result in muted cell-mediated immunity [75]. Alternatively, peptide presentation by specific class II molecules may result in activation of suppressor/regulatory T-cells [77].

Studies involving HLA-DRBI have found a link between innate and T-cell-mediated immunity [78, 79], and results obtained from a multiple sclerosis study show that the presence of a VDRE (vitamin D response elements) in the proximal promoter region of the HLA-DRBI gene increased gene expression and imparted 1,25-(OH)2-D3 (Vitamin D) sensitivity to the DRBI*15:01 allele [79].

These observations point to the need to apply this possibility of association between these genetic variants and leprosy pathogenesis, since vitamin D, itself, may have a direct effect on leprosy through its receptors, VDR, or may influence leprosy through indirect effects [79].

Amino acid residues involved in the peptide binding groove of HLA-DRBI alleles were examined in three Nigerian ethnic groups (Bini/Igbo, Yoruba, and Efik) with leprosy. Nine positively charged motifs and 2 others with neutral charge in the peptide binding groove were detected. These motifs were more frequent in leprosy patients than what was expected by chance. In contrast, 5 motifs with negative or "modified" neutral charges in the pocket were negatively associated with leprosy. Therefore, the clinical outcome of infection by M. leprae is largely determined by a shared epitope in DRBI alleles characterized by several motifs [75].

In leprosy patients from a Javanese population in Yogyakarta, Indonesia, HLA-DRBI*02 was associated with susceptibility to LL, while HLA-DRBI*12 was associated with resistance [28]. Risk for leprosy associated with the DRBI*10 allele has been described in Turkish, Vietnamese, and Brazilian populations [17, 36], whereas the HLA-DRBI*14 allele was associated with the TT group in a population from northeastern Brazil [42] and DRBI*14:01 and DRBI*14:06 were associated with leprosy per se in Argentinian population [37].

A protective effect on leprosy has been described for DRBI*04 in Brazilian, Korean, Japanese, Vietnamese, Argentinean, and Taiwanese populations [13, 30, 34, 36, 40]. Associations between HLA class II and leprosy are summarized in Table 2.

The HLA complex has been studied in leprosy patients due to the direct involvement of these alleles in the immune response. In terms of both infection control and the manifestation of the different clinical forms, investigation of HLA genes may elucidate mechanisms of susceptibility and resistance, as well as disease course.

Even though genetic epidemiology data in leprosy involving alleles HLA is extensive, results should be cautiously interpreted due to the strong linkage disequilibrium across the alleles in this region, the common occurrence of weak study designs, and publication bias of positive results. Furthermore, functional data to support these associations are required.

6. KIR Genes and Leprosy

Killer cell immunoglobulin-like receptors (KIRs) are members of a group of regulatory molecules found on natural killer (NK) cells. These proteins are encoded by a complex of genes located in the Leukocyte Receptor Complex on chromosome 19p13.4, which has many polymorphisms that may be related to resistance to infection [80]. Known roles of NK cells include modulation on the immune system by the production
of cytokines, as well as direct elimination of infected cells [81]. KIR molecules are either activating or inhibitory to NK cells. Inhibitory molecules (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 3DL1, 3DL2, and 3DL3) function via the well-documented immunoreceptor tyrosine-based inhibitory motifs (ITIMs) [81]. The phosphorylated ITIMs serve as efficient recruitment points for the cytosolic protein tyrosine phosphatases, SHP-1 and SHP-2, resulting in the dephosphorylation of substrates critical for cellular activation [81].

Activating receptors (2DS1, 2DS2, 2DS3, 2DS4, 2DS5, and 3DS1) have truncated cytoplasmic domains lacking ITIMs but possess a charged residue (ITAMs) in their transmembrane domains that mediates interaction with the DAP-12 signal transduction chain. DAP-12 is a member of the immunoglobulin super family encoded at the centromeric end of the LRC. DAP-12 activation then leads to enhanced degranulation and production of cytokines and chemokines [82]. Studies performed over the last few years have revealed extensive diversity at the KIR gene locus, stemming from both its polygenic and multiallelic polymorphisms [83, 84].

Biologically, NK cell reactivity against target cells is partially based on the presence of KIRs and their cognate ligands, the HLA class I molecules. Some combinations of HLA and KIR may result in activation or inhibition of NK cells. It seems likely that NK receptor variants may be risk factors for infectious diseases in addition to HLA variants, as has been reported in leprosy. To further elucidate the balance between inhibitory and activating KIRs in the context of disease pathogenesis, continued epidemiological analysis of KIRs and disease should be pursued [85].

There are many studies showing the influence of KIR genes and their ligand pairs on the role of various infectious diseases. However, to the best of our knowledge only one study has explored the role of KIR genes in the pathogenesis of leprosy [82].

According to Franceschi et al. [82], a significant difference between KIR genes in TT and LL patients has been observed. In TT patients, the frequency of KIR2DS3 (38.1%) was significantly higher than in LL patients (18.5%), and the frequency of KIR2DS2 showed a trend of being higher in TT patients (61.9%) compared to LL patients (45.1%). KIR2DS3 and KIR2DS2 are activator genes in linkage disequilibrium. Tuberculoid patients with both activator genes could develop a better NK-cell activation and then a more efficient cell-mediated immune response, with a milder manifestation of the disease. When KIR inhibitor genes and their HLA ligands were analyzed, TT patients had low frequencies of these KIRs in association with their correlated ligands, conferring a reduced NK cell inhibition and resulting in a protective mechanism against the most severe forms of the disease.

In the same study, patients with the form BB were observed to have a higher frequency of KIR3DL2-A3/II genes (40.0%) compared to the control group (24.6%) and LL patients (20.0%). In contrast, a reduced frequency of KIR2DL1 with the C2 as a ligand was found compared to TT patients (48.9% versus 76.3%) and the control group (48.9 versus 66.4%). This balance between these interactions may explain the undefined characteristics observed in BB patients.

According to Parham [86], of the family of KIR2DL molecules, KIR2DL1 with the ligand C2 is the most potent inhibitor. In the study by Franceschi et al. [82], an increased frequency of homozygous C2/C2 was observed in TT patients compared to BB patients and to control group, suggesting that TT patients may be more susceptible to infection than the control group.

7. MICA Genes

In 1994, Bahram et al. [87] and Leelayuwat et al. [88] independently identified a new set of loci called MHC class I chain-related genes (MHC). The MHC family has two members, MICA and MICB, and 5 pseudogene members: MICC, MICS, MIC1, MIGC, and MICG. MICA is located at the centromeric end of the classical HLA class I region, approximately, 46.4 kb from HLA-B [89]. MICA encodes a cell-surface glycoprotein of 383 amino acids, which is expressed in keratinocytes, fibroblasts and gastrointestinal epithelium, and several other cell types [90]. Exons 2, 3, and 4 of the gene encode three extracellular domains (a1, a2, and a3, resp.), while exon 5 encodes the transmembrane domain. Amino acid sequence alignments with classical HLA class I chains reveal between 15 and 21% homology in a1 and a2 domains but between 32% and 36% homology in the a3 domain [87].

Studies have shown that MICA works as a ligand for NK cells, γδ T cells, and αβ CD8+ T cells, which express a common activating NK cell receptor NKG2D [91]. NKG2D recognizes the human MICA protein in conjunction with a transmembrane signaling adaptor protein, DNAX-activation protein (DAP) [92].

Within exon 5, there is a short tandem repeat (STR) of GCT triplets in varying lengths [93]. This STR is commonly referred to as an “A” followed by the number of GCT repeats and occasionally a “1”, which reflects the presence of a G insertion (e.g., A4, A5, and A5.1). This information about exon 5 in MICA may therefore be of importance as polymorphisms in the transmembrane domain were correlated with the induction of autoreactive CD8+ cytotoxic T lymphocytes [94]. In addition, a G insertion within the exon 5 STR leads to a premature stop codon, which is translated into a truncated protein with impaired function [95].

Similar to classical HLA, MICA displays a high degree of allelic polymorphism within the nonclassical HLA gene loci, which results in MICA polymorphic residues that are positioned on the outer edge of an antigen-binding cleft, unlike MHC class I molecules [96], and they may have a role in the innate immune response to infection.

Since MIC expression is inducible by heat, viral infection, inflammation, and DNA damage, the molecules may be markers of stress in cells.

8. MICA and Leprosy

Studies linking MICA genes and leprosy are limited. Wang et al. [16] analyzed 69 southern Chinese leprosy patients and observed that MICA-A5 allele showed a tendency to
be negatively associated to multibacillary leprosy but not to paucibacillary. In the same group of patients, a negative association between the HLA-B46/MICA-A5 haplotype and leprosy was found, suggesting that the HLA-B46/MICA-A5 haplotype is significantly associated with resistance to leprosy. On the other hand, Tosh et al. [33] provided strong evidence that truncated MICA protein encoded by the MICA-A5.1 allele plays a role in leprosy susceptibility in South Indian families.

In the study performed in southern Brazil by Sacramento et al. [96], 223 patients with leprosy from towns in the northern and northwestern regions of the State of Paraná participated. MICA’002, ’008, ’004, and ’009 alleles were the most frequent, totalling 74.0% of all alleles in leprosy patients and 68.5% in the control group. There was only one significant difference: the frequency of the MICA’027 allele was higher in the control group compared to patients with LD. The alleles MICA’010 and MICA’027 had significant differences in multibacillary (LL, BB, and BL) patients compared to the control group. For the paucibacillary (TT and BT) group, no difference was found.

In this context, the MICA’027 allele was associated with protection against leprosy in both the paucibacillary and multibacillary subtypes. Individuals with the MICA’027 variant have normal expression of A5, a transmembrane domain which enables the interaction between MICA and NKG2D, activating NK cells.

Finally, these results suggest the influence of MICA alleles in the development of the leprosy and their clinical forms and need to be replicated.

9. Cytokines

An important factor that directs the clinical course of leprosy is the presence of proinflammatory and anti-inflammatory cytokines. Paucibacillary patients show a pattern of CMI of the Th1 type, which is characterized by the production of IFN-γ, IL-2, IL-7, IL-12, IL-15, and IL-18 in skin lesions. Conversely, multibacillary patients present a Th2 response with production of TGF-β1, IL-4, IL-5, and IL-10 in skin lesions with high antibody production, but insufficient CMI.

SNPs are the most abundant source of genetic variation in the human genome, which can lead to differences in expression of proteins, causing structural and functional changes. Linking SNPs with the phenotypes of human diseases has great potential for direct clinical application, providing more accurate genetic markers for diagnosis and prognosis, and possibly new therapeutic targets. Some SNPs in cytokine genes have been described as important genetic factors in the occurrence of different clinical forms of leprosy.

10. Cytokines and Leprosy

The gene encoding tumor necrosis factor (TNF) is located in the MHC region on chromosome 6. This cytokine exists in soluble and transmembrane forms [100] and is produced by cells of the immune system, tumor cells, and other cell types in response to inflammatory stimuli, infection, or stress. There is ample evidence of the involvement of cytokines, especially tumor necrosis factor-alpha (TNF-α), in the immune response to leprosy. They may have a beneficial role in host defense but, if produced at high levels, cause tissue damage [101].

Studies conducted in Brazil by Santos et al. [43], Moraes et al. [44], Santos et al. [45], Franceschi et al. [46], and Cardoso et al. [47] indicated the association of TNF-308A (rs1800629) allele with a protective effect against the development of the disease. Vanderborght et al. [101], in a study in Rio de Janeiro, observed that patients possessing an A allele in the promoter region of TNF-308 had a lower bacteriological index (BI), whereas the carriers of the A allele in the promoter region of TNF-238 (rs361525) had higher BI.

A study in Nepal in 2010 by Sapkota et al. [48] showed results similar to Brazilian studies in relation to TNF-308A allele. However, studies conducted in an Indian and Thai populations [49, 50] showed a higher frequency of TNF2 allele (with substitution G>A at position 308 in the TNF promoter region) in lepromatous and multibacillary patients, respectively, compared to the control group, indicating that this allele is associated with susceptibility to this form of disease. Nevertheless, a linkage study conducted in six French Polynesian families for Levée et al. [51] found no evidence of linkage between the loci GIM, G2M, KM, IL-1 beta, TNF-alpha (1, 2), and TNF-alpha (A, G) and leprosy.

In the study multicase leprosy families from northeastern Brazil, the combined segregation and linkage analysis to the major locus showed strong linkage to HLA class II and tumour necrosis factor genes. Extended transmission disequilibrium testing, using multiple affected family members, demonstrated that the common allele TNF*1 of the −308 promoter region polymorphism showed linkage and/or association with disease per se, at a high level of significance. Two-locus transmission disequilibrium testing suggested susceptibility (TNF*1/LTA*2 + protective (TNF*2/LTA*2) haplotypes in the class III region. Taken together the segregation and HLA analyses suggest the possibility of more than one susceptibility locus to leprosy in the MHC.

In a recent study in Mexico [52], no association was found between TNF-308G/A and leprosy, suggesting that other polymorphisms may be important in susceptibility to leprosy in this population. However, a study performed in a population from Northern India [53] provided further evidence for the role of variants BAT1-LTA-TNF-BTNL2 genes in susceptibility to leprosy. According to authors, the combination of low T-cell inhibition status of BTN2L2, less inhibition of TNF by BAT1, and low TNF expression may provide protection from leprosy, which may be stronger in the presence of high TNF producer allele genetic background.

Interleukin 10 (IL-10) is a cytokine produced by monocytes and activated T cells. It is deeply involved in the regulation of inflammatory and immunological reactions. Its effects do not only affect the immune system but can influence many physiological processes, including angiogenesis, tumorigenesis, and infection. Several polymorphisms have been observed in the IL10 gene, including 6–11 CA repeats-
microsatellite polymorphisms, and three point mutations: −1082 (G/A) (rs1800896), −819 (C/T) (rs1800871), and −592 (C/A) (rs1800872) [102].

Recently, in Mexican patients, Velarde-Félix et al. [52] found no statistically significant difference in the frequency of \(IL10 \sim 819C \) allele in patients and controls. However, in a Brazilian population, Pereira et al. [54] had reported that the \(IL10 \sim 819T \) allele was associated with leprosy in both a case-control study and in a meta-analysis.

Similar results were found in another Brazilian population of Rio de Janeiro by Santos et al. [45], where the \(IL10 \sim 819TT \) genotype was significantly higher in patients than in healthy controls, and the frequency of the \(IL10 \sim 819T \) SNP was greater in paucibacillary patients compared to multibacillary or among control subjects. However, in Colombian patients, the genotypes C/C and C/T in the SNP −819 and C/C and C/A in the −592 SNP were positively associated to leprosy. The haplotypes −819C−592C and −1082A−819C−592C showed significant association and these same haplotypes in homozygosis conditions were also associated with leprosy [55].

In another study, Moraes et al. [56] observed that in patients from the same Brazilian region the haplotype \(IL10 \sim 3575A/−2849G/−2763C \) was associated with resistance to leprosy and development of more severe forms of the disease, and that the haplotype \(IL10 \sim 3575T/−2849A/2763C \) was associated with susceptibility to LD.

In a study conducted in India, Malhotra et al. [57] observed that the extended haplotype \(IL10 \sim 3575T/−2849G/−2763C/−1082A/−819C/−592C \) conferred resistance to leprosy per se and to development of more severe forms of the disease, whereas the haplotype \(IL10 \sim 3575T/−2849G/−2763C/−1082A/−819T/−592A \) was associated with the risk of developing a more severe form of the disease. A study in a population of southern Brazil by Franceschi et al. [46] showed a lower frequency of haplotype \(IL10 \sim 1082G/−819C/−592C \) in patients with the lepromatous form of the disease compared to the control group. The results of these studies strongly suggest the involvement of SNPs in the promoter region of the \(IL10 \) gene in leprosy.

IL-12 consists of two covalently linked subunits: p35 and p40. Antigen-presenting cells, specifically dendritic cells and macrophages, are the main producers of this cytokine. The effects of IL-12 are mainly controlled by the level of transcription of p40 and expression of IL-12R. IL-12 is produced quickly after infection and acts as a proinflammatory cytokine by inducing IFN-γ production and enhancing the proliferation and cytotoxicity of NK and T cells [103].

According to Morahan et al. [58], in Indian patients, subjects with leprosy were less likely to have the 3'UTR genotype associated with lower IL-12B expression. However, in Korean patients, Lee et al. [59] found no significant differences in allele frequencies of \(IL12RB1 \) between leprosy patients and the control group [59]. Now, in relation to gene in the 5' flanking region of \(IL12RB2 \), Ohyama et al. [60] determined the functional effects of these SNPs on NK-cell activity, including IFN-γ production and IL-12RB2 gene expression. The results suggest that these SNPs in \(IL12RB2 \) have differential effects on cellular activation of T and NK cells [60].

In Western Mexico, Alvarado-Navarro et al. [61] found that the \(1188A/C \) polymorphism in the 3'UTR of \(IL12p40 \) gene was associated with greater susceptibility to lepromatous leprosy, independent of the expression levels of IL-12 p40. Conversely, Jesús Salvador et al. [62] in a study with Mexican patients found no significant association between genotype and allele frequencies of the \(1188A/C \) polymorphism and lepromatous leprosy [62].

Recently, Liu et al. [63] conducted a multiple-stage genetic association study in leprosy patients from China and discovered associations implicating \(IL12RAP/IL18R1 \) (rs2058660) and \(IL12B \) (rs6871626) as susceptibility genes for leprosy.

The \(IFNG \) gene encodes the IFN-γ cytokine, which plays a key role in host defense against intracellular pathogens. SNPs in \(IFNG \) were evaluated in several epidemiological studies; the SNP \(INFG+874T/A \) (rs2430561), more specifically, the allele \(INFG+874T \) has been associated with protection against infectious diseases [104].

In patients from São Paulo and Rio de Janeiro, two independent studies conducted by Cardoso et al. [64] showed that the \(INFG+874T \) allele conferred protection against leprosy. Recently, in Chinese patients, Wang et al. [65] found no association between \(INFG+874T/A \) and leprosy. However, the variant rs3183557 in the \(IFNG \) gene had many CA-repeat alleles and they observed that the alleles \(INFG \) (10CA), \(INFG \) (13CA), and \(INFG \) (15CA) had a higher frequency in patients, especially in multibacillary compared to the control group (3.2 versus 0.6%; 21.3 versus 18.6%; and 21.8 versus 18.0%, resp.), and that the allele \(INFG \) (17CA) was more frequent in paucibacillary patients than in controls (2.8 versus 1.2%). In patients from Amazonas state, Brazil, there were no significant differences between patients and control subjects, as well as according to Ridley-Jopling classification. However, the A/A genotype and the allele \(INFG \) (16CA) were significantly associated with paucibacillary compared to multibacillary patients [66].

In a population of Brazilian patients, Reynard et al. [67] observed that a higher frequency of alleles \(INFG \) (15CA), \(INFG \) (16CA), and \(INFG \) (17CA) was positively associated with leprosy, which indicates that the \(IFNG \) gene polymorphism may contribute to the course of infection.

In Korean patients, no significant differences were found in allele frequencies \(IFNGRI \) (interferon γ receptor 1) between leprosy patients and the control group [59]. However, a case report showed that the \(IFNGRI \) polymorphism at position −56T/C was positively associated with an increased susceptibility to leprosy, in Iranian children of the same family [68].

Polymorphisms in the \(IL4 \) gene influence the production of IL-4, an important anti-inflammatory cytokine generated by T-helper type 2 (Th2) cells, which have multiple roles in the immune system. Three polymorphisms in \(IL4 \) have been described: a single base polymorphism −590T/C (rs2243250) in the promoter region, polymorphism +33C/T (rs2070874) in exon 1, and type VNTR polymorphism (variable number of tandem repeat) in intron 3. In a Chinese study, Yang et al.
observed that the $IL4−590T/C$ and C/C genotypes, and the $−590C$ allele were less frequent in leprosy patients than in the control group (25 versus 29.9%; 3.9 versus 7.5%; and 16.4 versus 22.5%, resp.), suggesting that the allele $IL4−590C$ is associated with resistance to leprosy in this population.

Interleukin-6 (IL-6) is a pleiotropic cytokine, produced by different cell types, such as macrophages, fibroblasts, and endothelial cells. IL-6 plays an important role in a wide range of processes, such as immune response, acute phase reactions, hematopoiesis [105].

Recently, in a case-control study, Sousa et al. [106] observed a correlation between plasma levels of IL-6 and IL6 genotypes in patients with Type-2 reactions in leprosy. Type-1 and Type-2 leprosy reactions are aggressive inflammatory episodes with highly variable incidence rates across populations but affect up to 50% of leprosy patients. Identification of genetic factors predictive of leprosy reactions could have a great impact on prevention strategies.

A study conducted in MassARRAY platform, carried out by Aggarwal et al. [70], in the Indian population investigated the association of 51 SNPs in anti-inflammatory cytokine and receptor genes with susceptibility to leprosy. Significant associations with leprosy were observed for 8 polymorphisms (rs1800871, rs1800872, and rs554286 of $IL10$, rs3171425 and rs7281762 of $IL10RB$, rs2228048 and rs744751 of $TGFB2$, and rs1800797 of $IL6$). The study revealed a greater association of these polymorphisms with the risk for leprosy than those obtained for any SNP studied individually. This provides an interesting insight on the cumulative polygenic host component that regulates leprosy pathogenesis [70]. Table 3 summarizes these findings.

Studies have been carried out in order to investigate a possible combined effect of HLA genes and cytokines genes in leprosy, more specifically TNF gene and HLA class II [31, 49]. However, the results are inconsistent. The first study by Roy et al. [49] did not find linkage disequilibrium between $TNF2$ allele and HLA class II, showing that these genes appear to be independent, whereas Shaw et al. [31] showed strong linkage between HLA class II (HLA-$DQBI$, $P = 0.000002$; HLA-$DQAI$, $P = 0.000002$; HLA-$DRBI$, $P = 0.000003$) and TNF genes (TNF, $P = 0.00002$; LTA, $P = 0.003$). More studies are needed to clarify this linkage because polymorphisms within the TNF gene, which is located close to the class II region, may lead to variability in TNF-α secretion during the leprosy infection [49]. This is significant, since in mycobacterial infections, TNF-α promotes host defense mechanisms and granuloma formation, but high concentrations of TNF-α are associated with immunopathology [49].

11. Genome-Wide and Leprosy

Finally, we will summarize findings from some important genome-wide association studies of leprosy. The first GWAS of leprosy susceptibility reported convincing associations with markers in six genetic loci: HLA-DR-DQ (rs602875, $P = 5.4 \times 10^{−27}$, $OR = 0.67$), receptor-interacting serine-threonine kinase 2 ($RIPK2$, rs42490, $P = 1.4 \times 10^{−16}$, $OR = 0.76$), tumor necrosis factor $[ligand]$ superfamily member 15 ($TNFSF15$, rs6478108, $P = 3.4 \times 10^{−21}$, $OR = 1.37$), laccase (multicopper oxidoreductase) domain-containing 1 ($LACC1$; previously known as $C13orf31$) (rs3764147, $P = 3.7 \times 10^{−54}$, $OR = 1.68$), coiled-domain containing 122 ($CCDC122$, rs3088362, $P = 1.4 \times 10^{−31}$, $OR = 1.52$), and nucleotide-binding oligomerization domain-containing 2 ($NOD2$, rs9302752, $P = 3.8 \times 10^{−40}$, $OR = 1.59$) [107].

Subsequently, associations between leprosy and the HLA-DR-DQ region, $LACC1$, $CCDC122$, and the $I602S$ functional SNP in the Toll-like receptor 1 ($TLR1$) gene were replicated in an Indian population [108, 109] and between the HLA-DR-DQ, $RIPK2$, $CCDC122$, $LACC1$, and $NOD2$ in Vietnam [110].

Interestingly, an association between $LACC1$ (previous $C13orf31$) and $CCDC122$ and susceptibility to Crohn’s disease was related [111]. However, both genes were of unknown function and should be investigated in relation to their biologic function, which will probably clear a pathogenic mechanism of both diseases.

Recently, Yang et al. [112] carried out a genome-wide single nucleotide polymorphism (SNP) based linkage analysis using 23 pedigrees, each with 3 to 7 family members affected by leprosy, in China [112]. They suggested genomewide significant evidence for linkage on chromosome 2p14, and a suggestive evidence for linkage on chr.4q22 (rs1349350), chr.8q24 (rs618523), and chr.16q24 (rs276990), as well as a moderate evidence for a linkage locus on chromosome 6q24–26 (rs6570858), overlapping a previously reported linkage region on chromosome 6q25–26 [112].

12. Conclusion

The analysis of genetic variants in the susceptibility to infectious diseases has been a topic widely discussed. Through various studies, it is known that the environment and the virulence of the pathogen are not sufficient to explain the different immune response patterns presented in the same population against a particular pathogen. The hypothesis of the existence of a complex network of factors acting simultaneously in infectious disease is recognized, and within this context, in leprosy the host immune response is a critical factor for the onset of the disease, and the levels of this response are influenced by the interaction of different genes.

M. leprae can cause very different disease phenotypes in humans, probably due to individual variation in genetic profile and, consequently, in immune responses. Of the many reports of genes associated with leprosy, relatively few have been replicated in additional study populations. Further studies, involving a large number of genetic factors in populations from different parts of Brazil and the world, should be conducted to elucidate the interactions between these factors, which may be useful in the prognosis and clinical evolution of leprosy patients.

The purpose of this brief review was to highlight the importance of some immune response genes and their correlation with the development of clinical forms of leprosy, as well as their implications for disease resistance and susceptibility.
Disclosure

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

References

[1] G. A. Hansen, “Baccilus leprae,” Norsk Mag Lægevidenskaben, vol. 9, pp. 1–21, 1874.

[2] World Health Organization, “Global leprosy situation,” Weekly Epidemiological Record, vol. 85, p. 337, 2010.

[3] D. S. Ridley and W. H. Jopling, “Classification of leprosy according to immunity. A five-group system,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 34, no. 3, pp. 255–273, 1966.

[4] D. M. Scollard, L. B. Adams, T. P. Gillis, J. L. Krahenbuhl, R. W. Truman, and D. L. Williams, “The continuing challenges of leprosy,” Clinical Microbiology Reviews, vol. 19, no. 2, pp. 338–381, 2006.

[5] P. E. M. Fine, “Natural history of leprosy: aspects relevant to a leprosy vaccine,” International Journal of Leprosy, vol. 51, no. 4, pp. 553–555, 1983.

[6] E. Schurr, A. Alcaïs, L. de Léséleuc, and L. Abel, “Genetic predisposition to leprosy: a major gene reveals novel pathways of immunity to Mycobacterium leprae,” Seminars in Immunology, vol. 18, no. 6, pp. 404–410, 2006.

[7] E. Thorsby, T. Godal, and B. Myrvang, “HLA antigens and susceptibility to diseases. II. Leprosy,” Tissue Antigens, vol. 3, no. 5, pp. 373–377, 1973.

[8] A. Dasgupta, N. K. Mehra, S. K. Ghei, and M. C. Vaidya, “Histocompatibility antigens (HLA) in leprosy,” Tissue Antigens, vol. 5, no. 2, pp. 85–87, 1975.

[9] J. Greiner, E. Schleiermacher, and T. Smith, “The HLA system and leprosy in Thailand,” Human Genetics, vol. 42, no. 2, pp. 201–213, 1982.

[10] N. Mohagheghpour, H. Tabatabai, and K. Mohammad, “Histocompatibility antigens in patients with leprosy from Azarbaijan,” International Journal of Leprosy, vol. 47, no. 4, pp. 597–600, 1979.

[11] U. M. Bale, M. M. Mehta, and N. M. Contractor, “HLA antigens in leprosy patients,” Tissue Antigens, vol. 20, no. 2, pp. 141–143, 1982.

[12] S. Izumi, K. Sugiyama, Y. Matsumoto, and S. Ohkawa, “Analysis of the immunogenetic background of Japanese leprosy patients by the HLA system,” Vox Sanguinis, vol. 42, no. 5, pp. 243–247, 1982.

[13] S. J. Kim, I. H. Choi, and S. Dahlberg, “HLA and leprosy in Koreans,” Tissue Antigens, vol. 29, no. 3, pp. 146–153, 1987.

[14] J. N. Agrewala, S. K. Ghei, K. S. Sudhakar, B. K. Girdhar, and U. Sengupta, “HLA antigens and erythema nodosum leprosum (ENL),” Tissue Antigens, vol. 33, no. 4, pp. 486–487, 1989.

[15] R. Rani, S. A. Zaheer, and R. Mukherjee, “Do human leukocyte antigens have a role to play in differential manifestation of multibacillary leprosy: a study on multibacillary leprosy patients from North India,” Tissue Antigens, vol. 40, no. 3, pp. 124–127, 1992.

[16] L.-M. Wang, A. Kimura, M. Satoh, and S. Mineshita, “HLA linked with leprosy in southern China; HLA-linked resistance alleles to leprosy,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 67, no. 4, pp. 403–408, 1999.

[17] M. Koçak, M. Balci, B. Pençe, and N. Kundakçı, “Associations between human leukocyte antigens and leprosy in the Turkish population,” Clinical and Experimental Dermatology, vol. 27, no. 3, pp. 235–239, 2002.

[18] U. Shankarkumar, G. Ghosh, S. Badakere, and D. Mohanty, “Novel HLA class I alleles. Associated with Indian leprosy patients,” Journal of Biomedical and Biotechnology, vol. 3, pp. 208–211, 2003.

[19] U. Shankarkumar, “HLA associations in leprosy patients from Mumbai, India,” Leprosy Review, vol. 75, no. 1, pp. 79–85, 2004.

[20] D. S. A. Franceschi, L. T. Tsuneto, P. S. Mazini et al., “Class-I human leukocyte alleles in leprosy patients from southern Brazil,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 44, no. 5, pp. 616–620, 2011.

[21] A. Alter, N. T. Huong, M. Singh et al., “Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India,” The Journal of Infectious Diseases, vol. 203, no. 9, pp. 1274–1281, 2011.

[22] V. Schaaf, S. Ryan, and D. Scollard, “Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand,” Tissue Antigens, vol. 26, no. 4, pp. 243–247, 1985.

[23] M. Cem Mat, H. Yazici, F. Ozbakir, and Y. Tuzun, “The HLA association of lepromatous leprosy and borderline lepromatous leprosy in Turkey. A preliminary study,” International Journal of Dermatology, vol. 27, no. 4, pp. 246–247, 1988.

[24] N. K. Mehra, W. Verduijn, V. Taneja, J. Drabbeels, S. P. N. Singh, and M. J. Giphart, “Analysis of HLA-DR2-associated polymorphisms by oligonucleotide hybridization in an Asian Indian population,” Human Immunology, vol. 32, no. 4, pp. 246–253, 1991.

[25] R. Rani, M. A. Fernandez-Vina, S. A. Zaheer, K. R. Beena, and P. Stastny, “Study of HLA class II alleles by PCR oligotyping in leprosy patients from North India,” Tissue Antigens, vol. 42, no. 3, pp. 133–137, 1993.

[26] N. K. Mehra, R. Rajalingam, D. K. Mitra, V. Taneja, and M. J. Giphart, “Variants of HLA-DR2/DR51 group haplotypes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians,” International Journal of Leprosy, vol. 63, no. 2, pp. 241–248, 1995.

[27] L. Zerva, B. Cizman, N. K. Mehra et al., “Arginine at position 13 or 70–71 in pocket 4 of HLA-DRB1 alleles is associated with susceptibility to tuberculoid leprosy,” The Journal of Experimental Medicine, vol. 183, no. 3, pp. 829–836, 1996.

[28] H. Soebono, M. J. Giphart, G. M. T. Schreuder, P. R. Klatser, and R. R. P. de Vries, “Associations between HLA-DRB1 alleles and leprosy in an Indonesian Population,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 65, no. 2, pp. 190–196, 1997.

[29] J. E. L. Visentainer, L. T. Tsoneto, M. F. Serra, R. P. F. Peixoto, and M. L. Petzl-Erler, “Association of leprosy with HLA DR2 in a Southern Brazilian population,” Brazilian Journal of Medical and Biological Research, vol. 30, no. 1, pp. 51–59, 1997.

[30] S. Joko, J. Numaga, M. Namisato, and H. Maeda, “Human leukocyte antigens in forms of leprosy among Japanese patients,” International Journal of Leprosy and Other Mycobacterial Diseases, vol. 68, no. 1, pp. 49–56, 2000.

[31] M. A. Shaw, I. J. Donaldson, A. Collins et al., “Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes,” Genes and Immunity, vol. 2, no. 4, pp. 196–204, 2001.

[32] A. A. Hegazy, I. A. Abdel-Hamid, E.-S. F. Ahmed, S. M. Hammad, and S. A. Hawas, “Leprosy in a high-prevalence region.”
Egyptian village: epidemiology and risk factors,” *International Journal of Dermatology*, vol. 41, no. 10, pp. 681–686, 2002.

[33] K. Tosh, M. Ravikumar, J. T. Bell, S. Meisner, A. V. S. Hill, and R. Pitchappan, “Variation in MICA and MICB genes and enhanced susceptibility to paucibacillary leprosy in South India,” *Human Molecular Genetics*, vol. 15, no. 19, pp. 2880–2887, 2006.

[34] P. M. F. Motta, N. Cech, C. Fontan et al., “Role of HLA-DR and HLA-DQ alleles in multibacillary leprosy and paucibacillary leprosy in the province of Chaco (Argentina),” *Enfermedades Infecciosas y Microbiologia Clinica*, vol. 25, no. 10, pp. 627–631, 2007.

[35] M. Singh, A. Balamurugan, K. Katoch, S. K. Sharma, and N. K. Mehra, “Immunogenetics of mycobacterial infections in the North Indian population,” *Tissue Antigens*, vol. 69, supplement 1, pp. 228–230, 2007.

[36] P. R. Vanderborgh, A. G. Pacheco, M. E. Moraes et al., “HLA-DRB1*04 and DRB1*10 are associated with resistance and susceptibility, respectively, in Brazilian and Vietnamese leprosy patients,” *Genes and Immunity*, vol. 8, no. 4, pp. 320–324, 2007.

[37] S. G. Borrás, C. Cotorruelo, L. Racca et al., “Association of HLA-DRB1 alleles in patients from the south of Brazil: markers for disease susceptibility and resistance, respectively, in Brazilian and Vietnamese leprosy patients,” *Indian Journal of Dermatology, Venereology and Leprology*, vol. 75, no. 5, pp. 560–563, 2009.

[38] M. O. Moraes, N. C. Duppre, P. N. Suffys et al., “Tumor necrosis factor-α (TNF-α) promoter polymorphism and susceptibility to leprosy among Brazilians: a genetic epidemiology assessment, meta-analysis, and functional study,” *The Journal of Infectious Diseases*, vol. 204, no. 8, pp. 1256–1263, 2011.

[39] B. R. Sapkota, M. Macdonald, W. R. Berrington et al., “Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes,” *Human Immunology*, vol. 71, no. 10, pp. 992–998, 2010.

[40] S. Roy, W. McGuire, C. G. N. Mascie-Taylor et al., “Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy,” *The Journal of Infectious Diseases*, vol. 176, no. 2, pp. 530–532, 1997.

[41] S. Vejaesya, P. Mahaisavariya, P. Luangtrakool, and C. Sermungpreet, “TNF-α and NRAMP1 polymorphisms in leprosy,” *Journal of the Medical Association of Thailand*, vol. 90, no. 6, pp. 1188–1192, 2007.

[42] G. Levee, E. Schurr, and J. P. Pandey, “Tumor necrosis factor-alpha, interleukin-1-beta and immunoglobulin (GM and KM) polymorphisms in leprosy. A linkage study,” *Experimental and Clinical Immunogenetics*, vol. 14, no. 2, pp. 160–165, 1997.

[43] J. S. Velarde-Félix, S. Cázarez-salazar, J. R. Río-Tostado, A. Flores-García, H. Rangel-Villalobos, and J. Murillo-Llanes, “Lack of effects of the TNF-alpha and IL-10 gene polymorphisms in Mexican patients with lepromatous leprosy,” *Leprosy Review*, vol. 83, no. 1, pp. 34–39, 2012.

[44] S. Ali, R. Chopra, S. Aggarwal et al., “Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population,” *Human Genetics*, vol. 131, no. 5, pp. 703–716, 2012.

[45] A. C. Pereira, V. N. Brito-de-Souza, C. C. Cardoso et al., “Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for -819C/T in leprosy susceptibility,” *Genes and Immunity*, vol. 10, no. 2, pp. 174–180, 2009.

[46] N. Cardona-Castro, M. Sánchez-Jiménez, W. Rojas, and G. Bedoya-Berrio, “IL-10 gene polymorphisms and leprosy in a Colombian population sample,” *Biomédica*, vol. 32, pp. 71–76, 2012.

[47] M. O. Moraes, A. G. Pacheco, J. M. Schonkeren et al., “Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy,” *Genes and Immunity*, vol. 5, no. 7, pp. 592–595, 2004.

[48] D. Malhotra, K. Darvishi, S. Sood et al., “IL-10 promoter single nucleotide polymorphisms are significantly associated with resistance to leprosy,” *Human Genetics*, vol. 118, no. 2, pp. 295–300, 2005.

[49] G. Morahan, G. Kaur, M. Singh et al., “Association of variants in the IL12B gene with leprosy and tuberculosis,” *Tissue Antigens*, vol. 69, supplement 1, pp. 234–236, 2007.

[50] S.-B. Lee, B. C. Kim, S. H. Jin et al., “Missense mutations of the interleukin-12 receptor beta 1 (IL12Rbeta1) and interferon-gamma receptor 1 (IFNGR1) genes are not associated with susceptibility to lepromatous leprosy in Korea,” *Immunogenetics*, vol. 55, no. 3, pp. 177–181, 2003.

[51] H. Ohyama, N. Kato-Kogoe, F. Nishimura et al., “Differential effects of polymorphisms in the 5′ flanking region of IL12RB2 on NK- and T-cell activity,” *Journal of Interferon and Cytokine Research*, vol. 28, no. 9, pp. 563–569, 2008.

[52] A. Alvarado-Navarro, M. Montoya-Buelna, J. F. Muñoz-Valle, R. I. López-Roa, C. Guillén-Vargas, and M. Fañutis-Morris, “The
3′UTR 1188 A/C polymorphism in the interleukin-12p40 gene (IL-12B) is associated with lepromatous leprosy in the west of Mexico," *Immunochemistry Letters*, vol. 118, no. 2, pp. 148–151, 2008.

[62] V.-F. Jesús Salvador, R.-M. José Guadalupé, O.-R. Luis Antonio, and R.-V. Héctor, “Lack of association between 3′ UTR 1188 A/C polymorphism in the IL-12p40 gene and lepromatous leprosy in Sinaloa, México,” *International Journal of Dermatology*, vol. 51, no. 7, pp. 875–876, 2012.

[63] H. Liu, I. Irwanto, H. Tian et al., “Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases,” *American Journal of Human Genetics*, vol. 91, no. 5, pp. 935–941, 2012.

[64] C. C. Cardoso, A. C. Pereira, V. N. Brito-De-Souza et al., “IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians,” *Human Genetics*, vol. 128, no. 5, pp. 481–490, 2010.

[65] D. Wang, J.-Q. Feng, Y.-Y. Li et al., “Genetic variants of the MRC1 gene and the IFNG gene are associated with leprosy in Han Chinese from Southwest China,” *Human Genetics*, vol. 131, no. 7, pp. 1251–1260, 2012.

[66] G. A. V. Silva, M. P. Santos, I. Mota-Passos et al., “IFN-γ +875 microsatellite polymorphism as a potential protection marker for leprosy patients from Amazonas state, Brazil,” *Cytokine*, vol. 60, pp. 493–497, 2012.

[67] M. P. Reynard, D. Turner, A. P. Junqueira-Kipnis, M. R. de Souza, C. Moreno, and C. V. Navarrete, “Allele frequencies for an interferon-γ microsatellite in a population of Brazilian leprosy patients,” *European Journal of Immunogenetics*, vol. 30, no. 2, pp. 149–151, 2003.

[68] A. A. Velayati, F. Parnia, S. Khalizadeh, A. M. Farahbod, M. Hasanzadi, and M. F. Sheikholeslami, “Case report: interferon-gamma-receptor-I gene promoter polymorphisms and susceptibility to leprosy in children of a single family,” *American Journal of Tropical Medicine and Hygiene*, vol. 84, no. 4, pp. 627–629, 2011.

[69] D. Yang, H. Song, W. Xu et al., “Interleukin 4-590T/C polymorphism and susceptibility to leprosy,” *Genetic Testing and Molecular Biomarkers*, vol. 15, no. 12, pp. 877–881, 2011.

[70] S. Aggarwal, S. Ali, R. Chopra et al., “Genetic variations and interactions in anti-inflammatory cytokine pathway genes in the outcome of leprosy: a study conducted on a MassARRAY platform,” *The Journal of Infectious Diseases*, vol. 204, no. 8, pp. 1264–1273, 2011.

[71] M. T. Mira, “Genetic host resistance and susceptibility to leprosy,” *Microbes and Infection*, vol. 8, no. 4, pp. 1124–1131, 2006.

[72] P. R. Vanderbortgh and C. C. Cardoso, “Susceptibilidade genética na hanseníase,” in *Estudos de Associação HLA x Doenças; II Simpósio Brasileiro de HLA do Brasil*, p. 97, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil, 2009.

[73] M. Ravikumar, V. Dheenadhayalan, K. Rajaram et al., “Associations of HLA-DRB1, DQB1 and DPB1 alleles with pulmonary tuberculosis in south India,” *Tubercle and Lung Disease*, vol. 79, no. 5, pp. 309–317, 1999.

[74] H. Ohyama, S. Matsushita, F. Nishimura et al., “T cell responses to major membrane protein II (MMP II) of Mycobacterium leprae are restricted by HLA-DR molecules in patients with leprosy,” *Vaccine*, vol. 20, no. 3–4, pp. 475–482, 2001.

[75] G. P. Uko, L.-Y. Lu, M. A. Asuquo et al., “HLA-DRB1 leprominogenic motifs in Nigerian population groups,” *Clinical and Experimental Immunology*, vol. 118, no. 1, pp. 56–62, 1999.

[76] J. N. Agrevala and R. J. Wilkinson, “Influence of HLA-DR on the phenotype of CD4+ T lymphocytes specific for an epitope of the 16-kDa alpha-crystallin antigen of Mycobacterium tuberculosis,” *European Journal of Immunology*, vol. 29, pp. 1753–1761, 1999.

[77] T. Mutis, Y. E. Cornelisse, G. Datema, P. J. van den Elsen, T. H. M. Ottenhoff, and R. R. P. de Vries, “Definition of a human suppressor T-cell epitope,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 91, no. 20, pp. 9456–9460, 1994.

[78] W. F. C. Rigby, M. Waugh, and R. F. Graziano, “Regulation of human monocyte HLA-DR and CD4 antigen expression, and antigen presentation by 1,25-dihydroxyvitamin D3,” *Blood*, vol. 76, no. 1, pp. 189–197, 1990.

[79] S. V. Ramagopalan, N. J. Maugeri, L. Handunnetthi et al., “Expression of the multiple sclerosis-associated MHC class II allele HLA-DRB1*1501 is regulated by vitamin D1,” *PLoS Genetics*, vol. 5, no. 2, Article ID e1000369, 2009.

[80] M. Bléry, L. Oicse, and E. Vivier, “Early signaling via inhibitory and activating NK receptors,” *Human Immunology*, vol. 61, no. 1, pp. 51–64, 2000.

[81] E. O. Long, “Regulation of immune responses through inhibitory receptors,” *Annual Review of Immunology*, vol. 17, pp. 875–904, 1999.

[82] D. S. A. Franceschi, P. S. Mazini, C. C. C. Rudnick et al., “Association between killer-cell immunoglobulin-like receptor genotypes and leprosy in Brazil,” *Tissue Antigens*, vol. 72, no. 5, pp. 478–482, 2008.

[83] H. G. Shilling, L. A. Guethlein, N. W. Cheng et al., “Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype,” *Journal of Immunology*, vol. 168, no. 5, pp. 2307–2315, 2002.

[84] C. M. Gardiner, L. A. Guethlein, H. G. Shilling et al., “Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism,” *Journal of Immunology*, vol. 166, no. 5, pp. 2992–3001, 2001.

[85] J. Trowsdale, “Genetic and functional relationships between MHC and NK receptor genes,” *Immunity*, vol. 15, no. 3, pp. 363–374, 2001.

[86] P. Parham, “MHC class I molecules and KIRs in human history, health and survival,” *Nature Reviews Immunology*, vol. 5, no. 3, pp. 201–214, 2005.

[87] S. Bahram, M. Bresnahan, D. E. Geraghty, and T. Spies, “A second lineage of mammalian major histocompatibility complex class I genes,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 91, no. 14, pp. 6259–6263, 1994.

[88] C. Ledayuwa, D. C. Townend, M. A. Degli-Esposti, L. J. Abraham, and R. L. Dawkins, “A new polymorphic and multicopy MHC gene family related to nonmammalian class I,” *Immunogenetics*, vol. 40, no. 5, pp. 339–351, 1994.

[89] T. Shiina, G. Tamiya, A. Oka et al., “Molecular dynamics of MHC genesis unraveled by sequence analysis of the 1,796,938-bp HLA class I region,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 96, no. 23, pp. 13282–13287, 1999.

[90] N. W. Zwirner, M. A. Fernández-Viña, and P. Stastny, “MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes,” *Immunogenetics*, vol. 47, no. 2, pp. 139–148, 1998.

[91] S. Bauer, V. Groh, A. Steinle et al., “Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA,” *Science*, vol. 285, no. 5428, pp. 727–729, 1999.
[92] J. Wu, Y. Song, A. B. H. Bakker et al., “An activating immunoreceptor complex formed by NKG2D and DAP10,” *Science*, vol. 285, no. 5428, pp. 730–732, 1999.

[93] M. Gannagé, A. Buzyn, S. I. Bogiatzi et al., “Induction of NKG2D ligands by gamma radiation and tumor necrosis factor-α may participate in the tissue damage during acute graft-versus-host disease,” *Transplantation*, vol. 85, no. 6, pp. 911–915, 2008.

[94] H. Yasuoka, Y. Okazaki, Y. Kawakami et al., “Autoreactive CD8+ cytotoxic T lymphocytes to major histocompatibility complex class I chain-related gene A in patients with Behcêt’s disease,” *Arthritis and Rheumatism*, vol. 50, no. 11, pp. 3658–3662, 2004.

[95] H. Suemizu, M. Radosavljevic, M. Kimura et al., “A basolateral sorting motif in the MICA cytoplasmic tail,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 99, no. 5, pp. 2971–2976, 2002.

[96] W. Sergio do Sacramento, P. S. Mazini, D. A. S. Franceschi et al., “Frequencies of MICA alleles in patients from southern Brazil with multibacillary and paucibacillary leprosy,” *International Journal of Immunogenetics*, vol. 39, no. 3, pp. 210–215, 2012.

[97] T. Kasahara, J. J. Hooks, S. F. Dougherty, and J. J. Oppenheim, “Interleukin 2-mediated immune interferon (IFN-γ) production by human T cells and T cell subsets,” *Journal of Immunology*, vol. 130, no. 4, pp. 1784–1789, 1983.

[98] A. Alca¨ıs, M. Mira, J. L. Casanova, E. Shurr, and L. Abel, “Genetic dissection of immunity in leprosy,” *Current Opinion in Immunology*, vol. 17, no. 1, pp. 44–48, 2005.

[99] Y. Suh and J. Vijg, “SNP discovery in associating genetic variation with human disease phenotypes,” *Mutation Research*, vol. 573, no. 1-2, pp. 41–53, 2005.

[100] B. B. Aggarwal, A. Samanta, and M. Feldmann, “TNFα,” in *Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense*, pp. 413–434, 2000.

[101] P. R. Vanderborgh, H. J. Matos, A. M. Salles et al., “Single nucleotide polymorphisms (SNPs) at -238 and -308 positions in the TNFalpha promoter: clinical and bacteriological evaluation in leprosy,” *International Journal of Leprosy and Other Mycobacterial Diseases*, vol. 72, no. 2, pp. 143–148, 2004.

[102] R. W. Malefyt, “IL-10,” in *Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense*, pp. 187–201, 2000.

[103] C. Esche, M. R. Shurin, and M. T. Lotze, “IL-12,” in *Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense*, pp. 165–185, 2000.

[104] A. Billiau and K. Vandenbroeck, “IFNG,” in *Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense*, pp. 641–688, 2000.

[105] T. Matsuda and T. Hirano, “IL-6,” in *Cytokine Reference: A Compendium of Cytokines and Other Mediators of Host Defense*, pp. 537–563, 2000.

[106] L. Sousa, V. M. Fava, L. H. Sampaio et al., “Genetic and immunological evidence implicates interleukin 6 as a susceptibility gene for leprosy type 2 reaction,” *The Journal of Infectious Diseases*, vol. 205, no. 9, pp. 1417–1424, 2012.

[107] F. R. Zhang, W. Huang, S. M. Chen et al., “Genomewide association study of leprosy,” *The New England Journal of Medicine*, vol. 361, no. 27, pp. 2609–2618, 2009.

[108] S. H. Wong, A. V. S. Hill, and E. O. Vannberg, “Genomewide association study of leprosy,” *The New England Journal of Medicine*, vol. 362, no. 15, pp. 1446–1447, 2010.