A LITTLEWOOD-PALEY TYPE THEOREM FOR BERGMAN SPACES

ZEQIAN CHEN AND WEI OUYANG

Abstract. In this paper, we prove that the original Littlewood-Paley g-functions can be used to characterize Bergman spaces as well.

1. Introduction

Let \(D \) be the unit disk in the complex plane \(\mathbb{C} \) with \(\mathbb{T} := \partial D \) being the unit circle. Recall that for \(0 < p < \infty \), the Hardy space \(\mathcal{H}^p \) on \(D \) is defined as the set of all analytic functions \(f \) on \(D \) satisfying

\[
\| f \|_{\mathcal{H}^p} := \sup_{0 < r < 1} \left(\int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi} \right)^{\frac{1}{p}} < \infty.
\]

It is classical that for any \(f \in \mathcal{H}^p \), almost everywhere on \(\mathbb{T} \) there exist radial limits \(\lim_{r \to 1^-} f(re^{i\theta}) \), denoted by \(f(e^{i\theta}) \), and there holds the relation \(\| f \|_{\mathcal{H}^p} = \| f \|_{L^p(\mathbb{T})} \). We refer to [9] for theory of classical Hardy spaces.

Suppose \(f \in \mathcal{H}^p \) and \(f = \sum_n a_n z^n \) is the power series of \(f \). Consider the following two quantities

\[
(1.1) \quad d(f)(z) = \left(\sum_{n=0}^{\infty} |\Delta_n(f)(z)|^2 \right)^{\frac{1}{2}}
\]

where \(\Delta_0(f)(z) = a_0 \) and \(\Delta_n(f)(z) = \sum_{2n-1 \leq k < 2n} a_k z^k \) for \(n \geq 1 \), and

\[
(1.2) \quad g(f)(z) = \left(\int_0^1 \left(1 - r^2 \right) |f'(r z)|^2 dr \right)^{\frac{1}{2}},
\]

for \(z \in \mathbb{D} \cup \mathbb{T} \). Two results on Hardy spaces, essentially due to Littlewood and Paley [6], assert that

\[
(1.3) \quad \| f \|_{L^p(\mathbb{T})} \approx \| d(f) \|_{L^p(\mathbb{T})} \quad \text{and} \quad \| f - f(0) \|_{L^p(\mathbb{T})} \approx \| g(f) \|_{L^p(\mathbb{T})},
\]

the constants involved being only dependent on \(p \) with \(0 < p < \infty \). The two equivalent relations (1.3) can be considered to be the beginning of the Littlewood-Paley theory.

2010 Mathematics Subject Classification: 32A36, 32A50.
Key words: Bergman space, Hardy space, Littlewood-Paley g-function.
This work was partially supported by NSFC grant No. 11171338.
The main purpose of this paper is to prove that these two equivalent relations (1.3) hold true as well in the case of $L^p(D)$ replacing $L^p(T)$, characterizing the so-called Bergman spaces. Recall that for $0 < p < \infty$, the Bergman space A^p consists of functions f analytic in D with

$$\|f\|_{A^p} = \left(\int_D |f(z)|^p dA(z) \right)^{\frac{1}{p}} < \infty$$

where $dA(z) = dx dy/\pi$ with $z = x + iy$ in D. Note that for $1 \leq p < \infty$, A^p is a Banach space under the norm $\|f\|_{A^p}$. If $0 < p < 1$, the space A^p is a quasi-Banach space with p-norm $\|f\|_{A^p}^p$.

Notation. For two nonnegative (possibly infinite) quantities X and Y, by $X \asymp Y$ we mean that there exists a positive constant C depending only on p such that $X \leq CY$, and by $X \approx Y$ that $X \asymp Y$ and $Y \asymp X$.

2. **Main results**

We state our main results as Theorems 2.1 and 2.2.

Theorem 2.1. Let $0 < p < \infty$. There are two constants A_p and B_p depending only on p such that

$$A_p \|f\|_{A^p} \leq \|d(f)\|_{L^p(D)} \leq B_p \|f\|_{A^p}$$

for any $f \in A^p$.

This characterization of those functions in A^p is a straightforward consequence of the first equivalent relation in (1.3), but one of the important features of this characterization is that linear operators obtained by multipliers m_k (of the coefficients a_k) that vary boundedly on the dyadic blocks \triangle_n preserve the class A^p. More generally, this yields a Marcinkiewicz multiplier theorem for Bergman spaces stating that, for any $0 < p < \infty$ there exists a constant C_p depending only on p such that

$$\left\| \sum_{k=0}^{\infty} m_k a_k z^k \right\|_{A^p} \leq C_p \left(\sup_k |m_k| + \sup_{n \geq 0} \sum_{2^n \leq k < 2^n + 1} |m_{k+1} - m_k| \right) \|f\|_{A^p}.$$

The proof of this inequality can be obtained as in the case of Hardy spaces (see for example [9], Theorem XV.4.14).

Proof of Theorem 2.1. Let $0 < p < \infty$. Denote by $f_r(z) = f(rz)$ for $0 < r < 1$ and $z \in D$. By the first equivalent relation in (1.3), one has

$$\int_D |f(z)|^p dv(z) = 2 \int_0^1 rdr \int_0^{2\pi} |f_r(e^{i\theta})|^p \frac{d\theta}{2\pi}$$

$$\approx 2 \int_0^1 rdr \int_0^{2\pi} |d(f_r)(e^{i\theta})|^p \frac{d\theta}{2\pi}$$

$$= \|d(f)\|_{L^p(D)}^p.$$

This completes the proof of (2.1). \qed
Theorem 2.2. Let $0 < p < \infty$. There are two constants α_p and β_p depending only on p such that

\begin{equation}
\alpha_p \|f\|_{A^p} \leq \|g(f)\|_{L^p(D)} \leq \beta_p \|f\|_{A^p}
\end{equation}

for any $f \in A^p$ with $f(0) = 0$. Consequently,

\begin{equation}
\|f\|_{A^p} \approx |f(0)| + \|g(f)\|_{L^p(D)} \quad \text{for } 1 \leq p < \infty,
\end{equation}

and

\begin{equation}
\|f\|_{A^p}^p \approx |f(0)|^p + \|g(f)\|_{L^p(D)}^p \quad \text{for } 0 < p < 1.
\end{equation}

We will deduce this theorem from some classical results, essentially due to Littlewood and Paley, Marcinkiewicz and Zygmund, and a theorem of Coifman and Rochberg [3] on atomic decomposition for Bergman spaces (see Lemma 2.1 below). The proof is thus considerably elementary.

Lemma 2.1. (cf. [7], Theorem 8.3.1) Let $0 < p \leq 1$. There exists a sequence $\{a_k\}$ in D and a constant C such that A^p consists exactly of functions of the form

\begin{equation}
f(z) = \sum_{k=1}^{\infty} c_k \frac{1 - |a_k|^2}{(1 - \bar{a}_k z)^{2/p+1}}, \quad z \in D,
\end{equation}

where $\{c_k\}$ belongs to the sequence space ℓ^p and the series converges in the quasi-norm topology of A^p, and

\[C^{-1} \left(\sum_k |c_k|^p \right)^{1/p} \leq \|f\|_{A^p} \leq C \left(\sum_k |c_k|^p \right)^{1/p}. \]

Proof of Theorem 2.2. We begin with the first inequality in (2.2). Denote by $f_r(z) = f(rz)$ for $0 < r < 1$ and $z \in D$. Then by the second equivalent relation in (1.3) we have for any $0 < p < \infty$,

\[
\int_D |f(z) - f(0)|^p dv(z) = 2 \int_0^1 \|f_r - f_r(0)\|_{H^p}^p r dr \approx \int_0^1 r dr \int_0^{2\pi} \left(\int_0^1 (1 - s^2)|f_r'(se^{i\theta})|^2 ds \right)^{\frac{p}{2}} \frac{d\theta}{2\pi} \\
\leq \int_0^1 r dr \int_0^{2\pi} \left(\int_0^1 (1 - s^2)|f'(rse^{i\theta})|^2 ds \right)^{\frac{p}{2}} \frac{d\theta}{2\pi} \\
\approx \|g(f)\|_{L^p(D)}^p.
\]

This proves the first inequality in (2.2).

To prove the second inequality in (2.2) for the case $0 < p \leq 1$, we will adopt Lemma 2.1. To this end, we write

\[f_k(z) = \frac{1 - |a_k|^2}{(1 - z\bar{a}_k)^{2/p+1}}. \]
An immediate computation yields that
\[|f'_k(rz)|^2 = \frac{(2/p + 1)^2|\bar{a}_k|^2(1 - |a_k|^2)^2}{|1 - rz\bar{a}_k|^{2(2/p + 2)}} \]

Also, it is easy to check that
\[|1 - tz| \leq (1 - t) + |1 - z| \leq 3|1 - tz|, \quad 0 < t \leq 1, \ \forall z \in \mathbb{D}. \]

Then
\[g(f_k)(z) = |a_k|(2/p + 1)(1 - |a_k|^2) \left(\int_0^1 \frac{(1 - r^2)dr}{|1 - rz\bar{a}_k|^{2(2/p + 2)}} \right)^{\frac{1}{2}} \]
\[\lesssim (1 - |a_k|^2) \left(\int_0^1 \frac{dr}{[(1 - r) + |1 - z\bar{a}_k|]^{2(2/p + 1) + 1}} \right)^{\frac{1}{2}} \]
\[\lesssim (1 - |a_k|^2) \frac{1}{|1 - z\bar{a}_k|^{2/p + 1}}. \]

Hence, for \(f = \sum_k c_kf_k \) with \(\sum_k |c_k|^p < \infty \) we have
\[\int_\mathbb{D} |g(f)(z)|^p dv(z) \leq \sum_{k=1}^\infty |c_k|^p \int_\mathbb{D} |g(f_k)(z)|^p dv(z) \]
\[\lesssim \sum_{k=1}^\infty |c_k|^p (1 - |a_k|^2)^p \int_\mathbb{D} \frac{1}{|1 - z\bar{a}_k|^{2+p}} dv(z) \]
\[\lesssim \sum_{k=1}^\infty |c_k|^p, \]
where the last inequality is obtained by the fact that
\[\int_\mathbb{D} \frac{1}{|1 - z\bar{w}|^{2+p}} dv(z) \approx \frac{1}{(1 - |w|^2)^p} \quad \text{as } |w| \to 1^- , \]
for \(p > 0 \) (see Theorem 1.7 in [5]). By Lemma 2.1, we conclude the second inequality in (2.2) for the case \(0 < p \leq 1 \).

Finally, let \(1 < p < \infty \). If \(f \in A^p \), then \(f \) has the integral representation
\[f(z) = \int_\mathbb{D} \frac{f(w)dv(w)}{(1 - zw)^2}, \quad \forall z \in \mathbb{D}. \]

An immediate computation yields that
\[|f'(rz)| \lesssim (1 - |rz|^2)^{-\frac{1}{2}} \int_\mathbb{D} \frac{|f(w)|dv(w)}{|1 - rz\bar{w}|^{\frac{3}{2}}}. \]
Then,

\[
g(f)^2(z) \lesssim \int_0^1 \frac{1-r^2}{1-|rz|^2} \left| \int_{D} \frac{|f(w)|dv(w)}{|1-rzw|^2} \right|^2 dr
\]

\[
\lesssim \int_{D \times D} |f(w)f(\xi)|dv(w)dv(\xi) \int_0^1 \frac{dr}{|1-rzw|^2|1-rz\bar{\xi}|^2}
\]

\[
\lesssim \int_{D \times D} |f(w)f(\xi)|dv(w)dv(\xi)
\]

\[
\times \left(\int_0^1 \frac{dr}{|[1-z\bar{w}|+(1-r)]^{\frac{5}{2}}|[1-z\xi|+(1-r)]^2} \right)^{\frac{1}{2}}
\]

\[
\lesssim \int_{D \times D} \frac{|f(w)f(\xi)|}{|1-z\bar{w}|^2|1-z\xi|^2}dv(w)dv(\xi)
\]

\[
= \left(\int_{D} \frac{|f(w)|}{|1-z\bar{w}|^2}dv(w) \right)^2.
\]

However, the mapping

\[
f \mapsto \int_{D} \frac{f(w)}{|1-z\bar{w}|^2}dv(w)
\]

is bounded on $L^p(D)$ for $1 < p < \infty$ (e.g. Theorem 1.9 in [5]). Therefore, we conclude the second inequality in (2.2) for the case $1 < p < \infty$.

\[\square\]

Remark 2.1. (1) Since 1930’s the Littlewood-Paley theory was developed considerably and mainly carried out by E. M. Stein [8], widening its applicability both in the classical setting involving \mathbb{R}^n (even when $n = 1$) and in abstract situations involving, among other things, Lie groups, symmetric spaces, diffusion semigroups and martingales. We consult [4] and references therein for more recent information.

(2) Some real-variable characterizations of Bergman spaces involving maximal and area integral functions in terms of the Bergman metric, have been obtained recently by the present authors [1, 2].

References

[1] Z. Chen and W. Ouyang, Maximal and area integral characterizations of Bergman spaces in the unit ball of \mathbb{C}^n, arXiv: 1005.2936.

[2] Z. Chen and W. Ouyang, Real-variable characterizations of Bergman spaces in the unit ball of \mathbb{C}^n, arXiv: 1103.6122.

[3] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^p, Asterisque 77 (1980), 11-66.
[4] M. Frazier, B. Jawerth, and G. Weiss, *Littlewood-Paley Theory and the Study of Function Spaces*, American Mathematical Society, 1991.

[5] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman Spaces*, Springer-Verlag, New York, 2000.

[6] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series II, *Proc. London Math. Soc.* 42 (1936), 52-89.

[7] M. Pavlović, *Introduction to Function Spaces on the Disk*, Matematički institut SANU, Beograd, 2004.

[8] E. M. Stein, *Topics in harmonic analysis related to the Littlewood-Paley theory*, Princeton University Press, Princeton, New Jersey, 1970.

[9] A. Zygmund, *Trigonometric Series (Third Edition)*, Cambridge University Press, Cambridge, England, 2002.

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 30 West District, Xiao-Hong-Shan, Wuhan 430071, China

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 30 West District, Xiao-Hong-Shan, Wuhan 430071, China and Graduate University of Chinese Academy of Sciences, Beijing 100049, China