Endogenous gibberellins and abscisic acid-metabolites: their role for during flower bud abscission and embryo development in pistachio

Muhammet Ali GÜNDESLİ*
East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey

Abstract: This study was carried out to determine the effect of different growth periods and possible role of gibberellins (GAs) and abscisic acid (ABA) metabolites on the alternate bearing of the pistachio (Pistacia vera L.). For this purpose, the levels of GAs and ABA in the panicles and nuts of the trees during flower bud abscission and embryo development were analyzed in the crop “on” year. The results showed significant differences and changes in ABA and GAs among the tissues and periods investigated. Dihydrophaseic acid (DPA) and GA$_{19}$ were the dominant ABA and GAs in the pistachio concentrates analyzed in this work, respectively. The nut samples had higher values for almost all ABA metabolites and GAs than panicles. The ABA content of the panicles and nuts increased rapidly during flower development (35 DAFB) prior to flower bud abscission while the initial decrease in the ABA content remained constant at a relatively low level at the end of June (intense flower bud abscission), with the minimum levels being obtained during embryo development stage (65 DAFB). However, on day 65 after full flowering, GA$_{1}$ and GA$_{4}$ were found to have increased. The plant growth regulator profiles of the pistachio showed delayed spikes in GA and ABA groups indicating that there is a hormone requirement during flower bud abscission and embryo development in pistachio. As a results, GA and ABA metabolites produced in different organs play an important role in the control of pistachios during embryo development and flower bud abscission.

Keywords: Abscisic acid-metabolites, gibberellins, Pistacia vera L., alternate bearing (flower bud abscission)

Received: 17.10.2019 • Accepted/Published Online: 12.03.2020 • Final Version: 01.06.2019

1. Introduction

Turkey is one of the most important fruit producers in the world and the country not only has great diversity in the number of fruits grown, but also an astonishing quantity of total produce, about 18 million tons. The fruits grown in Turkey mainly consist of pome fruits, stone fruits, berries and citrus (Acar et al., 2006; Ercisli et al., 2008; Serce et al., 2010; Guney 2019). Alternate bearing is a major economic problem in pistachio fruit production in the horticultural world. Pistachio-producing countries in the world are generally located in the Northern Hemisphere. Among these countries, Iran, the United States, and Turkey are important in terms of their share in the total volume of production. Turkey has rich plant diversity and genetic resources owing to its different climatic and soil conditions. There are also wild pistachio species distributed throughout Turkey (Ak and Acar, 2001; Kafkas, 2006). In particular, the Southeastern Anatolia Region is well suited for pistachio cultivation due to its suitable ecological conditions, covering 95% of the total pistachio growing area and accounting for 91.5% of pistachio production in Turkey (Yavuz, 2011; Gundesli et al., 2018, 2019). Alternate bearing is the tendency of a fruit tree to produce a heavy crop in one year (“on” year), followed by a light crop or no crop in the next year (“off” year). In contrast to other crop species, alternate bearing in pistachios, which occurs with the emergence of inflorescence buds in the abundant year, produces the next year’s crop. Some authors have already reported that this is the main reason for alternate bearing, which is the growth period, the embryo development slows after rapidly growing from the last week of June through July. It was stated that the embryo developed rapidly after 50–55 days of the pollination. According to this, it is understandable that the flower bud abscission amount decreases intensely in June and July in which the development of the pistachio is continuous (Ayfer, 1990; Gunes et al., 2010; Okay et al., 2011). In previous studies, alternate bearing has been associated with genetic factors (Esmaeilpour and Khezri, 2006; Shalom et al., 2012), environmental and physiological factors, cultural management, (Mirsoleimaniet al., 2014), carbohydrates (Baninasab and Rahemi, 2006; Span et al., 2008), plant nutrients (Rosecrane et al., 1998; Vemmos, 2010), and...
plant growth regulators (PGRs) (Al-Shdiefat and Qrunfleh, 2008; Mirsoleimani and Shahsava 2018; Gundesli et al., 2019). The effects of PGRs (including auxin, cytokinins, gibberellins, abscisic acid, and ethylene) on different physiological stages in plants, such as shoot elongation, flower formation, flower bud abscission, embryo development, growth, and fruiting have also been shown (Okuda, 2000; Okay et al., 2010; Mirsoleimani et al., 2014; Gundesli et al., 2019). Among PGRs, gibberellic acid (GAs) are plant hormones necessary for many developmental processes in plants, including seed germination, root elongation, leaf expansion, pollen ripening, and flowering induction (blooming). On the other hand, GAs were found to have a more direct and significant effect on the flower formation of many species than other PGRs. High GA levels showed an inhibitory effect on flower formation during induction and first periods (Dokoozlian and Peacock 2001; Baktir et al., 2004; Ulger et al., 2004; Achar and Genschik, 2009; Gunes et al., 2010; Giacomelli et al., 2013; Koure et al., 2018). In contrast with gibberellins, abscisic acid (ABA) acts as a stress signal to regulate plant growth in response to changes in water availability. ABA plays an important role in stress-responsive gene expression under seed maturation and germination, stoma closure, and osmotic stress conditions. ABA is required for embryo growth at the early stage of embryo and seed development (Frey et al. 2004), but higher levels of ABA at later stages inhibit embryo growth by suppressing gibberellin signaling (Yoshida et al., 2019).

Many studies have also applied PGRs externally to pistachios in order to prevent abscission, obtain regular yield, and increase flower bud formation (Acar et al., 2006; Lovatt et al., 2006; Askari et al., 2011; Oguz and Akkus, 2012; Padmalatha et al., 2017). However, some researchers did not report effective results (Ulger, 1997) due to insufficient data on the changes in PGRs and their relationship with alternate bearing in these species. Furthermore, the role of endogenous ABA and GAs in this process remains unclear. One of the challenges of internal ABA and GAs research is the lack of a precise and effective methodology to identify the type and amount of ABA and GAs in different plant organs. However, in recent years, the advances in technology have led to the development of high performance liquid chromatography–electrospray tandem mass spectrometry (UPLC–ESI–MS/MS) as a separation technique for the efficient quantification of specific ABA metabolites and GAs (Abrams et al., 2003; Chiwocha et al., 2003, 2005; Zaharia et al., 2005 and Lulsdorf et al., 2013), but there is a need to conduct further studies to investigate the efficacy of this method in demonstrating the role of GAs and ABA during (alternate bearing) flower bud abscission and embryo development. Thus, the main purpose of this study was to provide a better understanding of flower bud abscission and embryo development processes in relation to regulation by endogenous GAs (stimulant) and ABA-metabolites (inhibitory) using UPLC-ESI–MS/MS, and it will shed light on future studies. Investigation of endogenous GAs and ABA amounts of different plant species show alternate bearing fruit species especially on “on” year trees. Most of the existing studies on endogenous ABA and GAs in pistachios used bioassays and did not involve qualitative analyses. Furthermore, in a small number of studies that used UPLC-ESI–MS/MS, the relationship of the content of GAs and ABA metabolites with abscission or alternate bearing was not evaluated. This is what makes the current work significant.

2. Materials and methods
2.1. Plant material
In this study, in order to determine the level of changes in endogenous PGRs in cultivated pistachio, the Turkish “Uzun” cultivar developed at the Pistachio Research Institute was used. The experiment was conducted in the 2015 growing seasons at the research and experimental area of the institute in Gaziantep Province. Thirty-three-year-old trees grafted on the Pistacia atlantica Desf. rootstock and planted at 10×10 m space were used as the plant material. In order to ensure the same year alternate bearing in both “on” and “off” year pistachio trees, all the flowers of “off” trees were removed in April 2013. Subsequently, some flower removal in “off” year trees was essential in the early spring of each year to maintain the complete alternate bearing. The 2 groups of trees were maintained with their alternate bearing habit until the end of the study in 2015. In this study, the panicles and nuts were sampled from the “on” year trees.

2.1.1. Plant tissue sampling
The samples were collected between 8:00–10:00 am on 35, 45, 55, and 65 days after full blooming (DAFB) in 2015 (Table 1). The experiments were designed as a randomized complete block with 3 replications and 1

Physiological periods	Panicle and nut
35 DAFB	
45 DAFB	
55 DAFB	
65 DAFB	

*DAFB: Days after full blooming. Full blooming date respectively in study years: 10.04.2015.
Table 2. The content of ABA and its metabolites detected in panicle samples in different physiological periods of the trees of, "on" year trees in 'Urün' in Pistachio variety.

Periods	ABA (ng/g DW)	DPA (ng/g DW)	ABAGE (ng/g DW)	PA (ng/g DW)	7-OH-ABA (ng/g DW)	neo-PA (ng/g DW)	t-ABA (ng/g DW)	Total ABA (ng/g DW)
35 DAFB	1449.41±72.47	18421.73±921.05	1911.71±85.55	1952.49±92.61	32.01±1.60	72.54±3.63	123.62±6.18	23963.51
45 DAFB	651.78±32.53	6525.58±320.28	1353.39±57.66	311.37±10.56	18.60±0.93	33.77±1.69	61.53±3.08	8956.02
55 DAFB	422.74±20.09	5431.86±133.96	1152.02±30.55	165.94±4.78	23.68±0.85	10.88±0.30	15.11±0.38	7221.51
65 DAFB	194.76±9.73	2435.12±101.74	1302.96±50.14	97.84±4.89	8.24±0.41	12.58±0.63	23.88±0.75	4074.90
Average	679.67	8203.57	1430.02	738.75	20.63	32.44	56.035	
D%5	1.96”	1.25”	1.60”	1.29”	1.03”	0.56”	0.52”	

The results represent mean ± standard error. Means in columns with the same letter do not differ, ‘’': Significant at P < 0.05, P < 0.01, respectively; by LSD test, other details are similar to Table 1. ABAGE: ABA-glucose ester, 7-OH-ABA: 7-Hydroxy-ABA. PA: Phaseic acid
4.1.2. ABA-metabolites content in nut samples

The nut concentration (ng g\(^{-1}\) DW) of various ABA metabolites for concentrates is shown in Table 3. Figure 2 shows the percentage of each ABA-metabolites expressed as a percentage of the total ABA-metabolites. The ABA showed different changes between periods in the “on” year. In total, 7 ABA metabolites were identified in the nut samples. Among the ABA-metabolites, diphasic acid (DPA: between 32242.67–57855.23 ng g\(^{-1}\) “on” year) was the dominant metabolite and showed the highest value in 35 DAFB that over 96.58% of the total ABA metabolites. ABA-alcohol (t-ABA: between 12.30–52.76 ng g\(^{-1}\) “on” year) was found to have the lowest value (Table 3; Figure 2).

In contrast to panicles, DPA and PA levels were low in the early stages of full blooming (35 DAFB), increased at the end of June (intense flower bud abscission), and reached maximum levels especially after 65 days of full blooming (Table 3); ABA and PA (202.97–1751.64 ng g\(^{-1}\) and 375.94–2068.07 ng g\(^{-1}\), respectively) levels were high in the early stages of full blooming (35 DAFB), decreased at the end of June (intense fruit abscission), and showed minimum levels 65 days after full bloom, followed by neoPA (between 13.51–134.87 ng g\(^{-1}\)), 7OH-ABA (19.12–88.99 ng g\(^{-1}\)) and t-ABA levels with similar changes (Table 3).

4.2. Identification and quantification of gibberellins

4.2.1. Gibberellin content in panicle samples

The panicle concentration (ng g\(^{-1}\) DW) of the various gibberellins (GAs) are shown in Table 4. Figure 3 shows the percentage of each GAs expressed as a percentage of the total gibberellin. Among the GAs showed different changes between periods in the “on” year trees. In total, 7 GAs were identified in the panicle samples. Among the GAs, GA\(_{19}\) (4.84–51.66 ng g\(^{-1}\) “on” year) was the dominant metabolite and showed the highest value in 35 DAFB that over 59.63% of the total GAs (Figure 3).

Figure 1. The ABA and its metabolites detected in pistachio panicle concentrates in “on” year derived from as a percentage of the total ABA content. DAFB, days after full blooming. Percentages were calculated based on each ABA values × 100/total ABA.

Table 3. The content of ABA and its metabolites detected in nut samples in different physiological periods of the trees of, “on” year trees in ‘Uzun’ in Pistachio variety.

ABA-metabolites (ng/g DW)	Periods	ABA	DPA	ABAGE	PA	7OH-ABA	neo-PA	t-ABA	Total ABA
35 DAFB	1751.64± 80.58	57855.23± 2582.76	1225.89±60.29	2068.07± 103.40	88.99± 3.45	134.87± 6.74	52.76± 2.64	63177.46	
45 DAFB	489.84± 24.49	35497.60± 1041.87	629.73±18.66	943.75± 27.84	30.29± 1.13	61.01± 1.66	12.30± 0.42	37664.50	
55 DAFB	202.97± 9.15	35269.26± 1063.46	456.41±22.82	512.27± 15.61	23.46± 1.17	30.46± 1.52	21.02± 0.75	36515.85	
65 DAFB	77.18± 3.86	32242.67± 1012.13	717.05±30.85	375.94± 16.80	19.12± 0.96	13.51± 0.68	14.38± 0.72	33459.86	
Average	630.41	27191.19	757.27	975.01	40.46	59.96	25.11		

The results represent mean ± standard error, Means in columns with the same letter do not differ, ‘*’ : Significant at P < 0.05, P < 0.01, respectively, by LSD test, other details are similar to Table 1. ABAGE: ABA-glucose ester, 7-OH-ABA: 7-Hydroxy-ABA.
Figure 2. The ABA and its metabolites detected in pistachio nut concentrates derived from as a percentage of the total ABA content. Other details are similar to Figure 1.

Table 4. The content of gibberellins detected in panicle samples in different physiological periods of the trees of “on” year trees in ‘Uzun’ in Pistachio variety.

Gibberellins (ng/g DW)	Periods	GA_8	GA_19	GA_24	GA_29	GA_3	GA_4	GA_44	Total gibberellins
35 DAFB	9.14± 0.41	51.66± 2.32	15.56± 0.70	10.27± 0.46	<LOD	<LOD	<LOD	86.63	
45 DAFB	11.11± 0.44	21.92± 0.88	14.42± 0.58	9.17± 0.35	<LOD	<LOD	<LOD	56.63	
55 DAFB	4.89± 0.22	4.84± 0.27	10.23± 0.57	8.30± 0.46	<LOD	<LOD	<LOD	33.36	
65 DAFB	9.33± 0.42	7.73± 0.35	5.15± 0.23	5.94± 0.27	<LOD	<LOD	<LOD	23.71	
Average	8.62	21.54	11.34	8.42					
D%5[≈] × Periods	0.24**	0.14**	0.22**	0.32**					

No GA_1, GA_4, GA_19, GA_24, GA_29, GA_3, and GA_4 were detected in any of the samples, <LOD = below the limit of detection. The results represent mean ± standard error, means in columns with the same letter do not differ, *[≈]** Significant at P < 0.05, P < 0.01, respectively, by LSD test, other details are similar to Table 1.

Figure 3. The gibberellins detected in pistachio panicle concentrates derived from as a percentage of the total gibberellins content. Percentages were calculated based on each gibberellin values × 100/total gibberellins. Other details are similar to Figure.
GA$_8$(4.89–11.11 ng g$^{-1}$) was found to have the lowest value (Table 4). GA$_{19}$ was the highest levels in the early periods of full flowering in May (35 DAFB), showed a regular decrease to the minimum levels after 55 DAFB and then increased 65 DAFB (Table 4). GA$_8$, GA$_{19}$ and GA$_{44}$(4.89-11.11 ng g$^{-1}$, 5.94-10.27 ng g$^{-1}$ and 5.15-15.56 ng g$^{-1}$, respectively) levels were high in the early stages of full blooming (35 DAFB) and showed a regular decrease to minimum levels after 55 DAFB and then increased 65 DAFB (Table 4).

4.2.2. Gibberellin content in nut samples
The nut concentration (ng g$^{-1}$ DW) of various gibberellins (GAs) are shown in Table 5. Figure 4 shows the percentage of each GAs expressed as a percentage of the total gibberellin. Among the GAs showed different changes between periods in the “on” year trees. In total, 7 GAs were identified in the nut samples. Among the GAs, GA$_{44}$(13.52–69.71 ng g$^{-1}$ in “on” year) was dominant and showed the highest value in 35 DAFB, over 69.97% of the total GAs (Table 5); GA$_8$(5.42–9.33 ng g$^{-1}$) was found to have the lowest value. GA$_1$, GA$_9$, GA$_{19}$, GA$_{20}$, GA$_{24}$, GA$_{51}$ and GA$_{53}$ could not be detected (Table 4).

5. Discussion
In the horticulture world, the alternate bearing of fruit is of great importance for a country’s economy and producers. For almost all fruit trees showing alternate bearing, the

Gibberellins (ng/g DW)	GA$_3$	GA$_{10}$	GA$_{44}$	GA$_{29}$	GA$_3$	GA$_{19}$	GA$_{34}$	Total gibberellins
35 DAFB	9.33±0.42	13.23±0.50	69.71±3.13	11.28±0.51	<LOD	<LOD	<LOD	99.63
45 DAFB	5.42±0.42	4.01±0.20	32.92±1.65	10.71±0.54	<LOD	<LOD	<LOD	55.64
55 DAFB	7.28±0.36	5.56±0.25	13.52±0.61	8.94±0.40	<LOD	<LOD	<LOD	37.29
65 DAFB	8.01±0.40	6.43±0.33	31.76±0.10	6.98±0.35	<LOD	<LOD	<LOD	52.47
Average	7.51	7.31	36.98	9.48				
D%5₅ [‘] × Periods	0.26[‘]	0.20[‘]	0.25[‘]	0.11[‘]				

No GA$_1$, GA$_9$, GA$_{19}$, GA$_{20}$, GA$_{24}$, GA$_{51}$ and GA$_{53}$ were detected in any of the sample, <LOD = below the limit of detection. The results represent mean ± standard error, *: Significant at P < 0.05, **: Significant at P < 0.01, respectively, by LSD test, other details are similar to Table 1.
yield depends on the flower buds formed. These histological studies revealed that abscission was initiated on May 22 (45 DAFB) and completed on July 2 (55–65 DAFB) in the "on" year samples, and bud abscission occurred in very few samples from the "off" year crop during this period (Gundesli, 2017). Many horticultural studies have been conducted on alternate bearing in general. However, the physiological causes of this condition have still not been determined. At the beginning, this problem was trying to be solved using several cultural applications, such as irrigation, pruning, and fertigation. Some researchers suggested that the competition between flower buds and food for fruit and assimilates is responsible for this phenomenon (Cetinkaya, 2004; Ulger et al., 2004; Baninasab et al., 2006; Gunes et al., 2010; Mirsoleiman et al., 2014) while others stated that unbalanced nutrition was not the main cause of the inhibition of flower bud formation, and more attention should be paid to the hypothesis of PGRs (Baktir et al., 2004; Gomez-Jimenez et al., 2010; Gunes et al., 2010; Vemmos, 2010; Gundesli et al., 2019). In higher plants, ABA and GA antagonistically regulate various physiological growth periods, including seed dormancy, seed germination, root growth, shoot elongation, leaf development, flowering, flower bud formation, abscission, and fruit development, as well as biotic and abiotic stresses (Vanstraelen and Benková, 2012; Liu and Hou, 2018). ABA was first isolated from the mature flowers of cotton, rose, peas, and fruit as an abscission accelerator (Lui and Carns 1961; Mayak et al., 1972; Ehuwens and Schwabe, 1975). Some researchers have suggested that alternate bearing was probably to be determined in abscission which effect separately and in combinations with ABA and GAs (ZacarõÅas et al. 1995; Mehouachi et al., 1996; Talon et al., 1997; GoÂomez-Cadenas et al., 2000; Baktur et al., 2004; Ulger et al., 2004; Okay et al., 2011). These reports described the determination of ABA and GAs activity in different plant organs (Tables 2–5; Figures 1–4). However, to our knowledge, no information is available on the active ABA-metabolites and GAs in pistachio and therefore this is the first-time study. In the present study, the results showed low and undetectable levels of ABA and GAs in panicles and nuts in many periods during flower bud abscission and embryo development. Among the ABA metabolites, DPA was dominant. These findings are in agreement with those of Lulsdorf et al. (2012). In a similar study by Lulsdorf et al., (2012), DPA content 1310.03 nM g⁻¹. The highest total DPA level was determined in panicle and nut (Tables 2–5; Figures 1–4). The ABA metabolite content of the panicles and nuts was high in the early period of May (at 35 DAFB) and decreased to minimum levels at 65 DAFB; i.e., during embryo development. Goldschmidt (1976) reported that young fruitlets in citrus showed peak ABA concentration during the first few days after anthesis, which is in agreement with these findings. Other studies showed that the amount of ABA and similar components consistently decreased in the leaves, shoots, and flower buds from May to September (Lovatt and Ferguson, 1998, 2001; Cetinkaya, 2004; Okay et al., 2011). In contrast, Baktir et al., (2004) indicated that the ABA concentration in fruit constantly increased during embryo development and fruit set. Similar to these findings, many researchers reported that ABA was required for embryo growth during the early phase of flower and seed development (Goldschmidt 1980; Cheng et al., 2002; Frey et al., 2004), but high ABA levels in later developmental phases inhibited embryo growth by suppressing gibberellin signaling (White et al., 2000; Raz et al., 2001) and abscission was directly controlled by phytohormones (Addicott 1983). ABA has also been implicated in the abscission of young fruit trees, such as citrus (SaÂgee and Erner 1991; ZacarõÅas et al., 1995; GoÂomez-Cadenas et al., 2000) and apple (Vernieri et al. 1992). These findings are also consistent with previous studies in terms of plant growth regulating functions synthesized in plants and growth periods of fruit species (Talon et al., 1990; Westwood, 1993 Zacarias et al., 1995; Okay et al., 2011). GoÂomez-Cadenas et al., (2000) reported that the changes in ABA followed a biphasic pattern with transitory rises at 14 and 42 DAA (days after anthesis) and fruitlet abscission in citrus preceding both abscission waves. Thereafter, ABA decreased and returned to levels closer to those found in control fruitlets. This suggests that the amount of ABA decreases when flower bud abscission is intense (at 55–65 DAFB), during which the development and maturation in the plants continue. According to these results, ABA had a significant relationship with flower bud abscission (Tables 2 and 3, Figures 1 and 2). Previous studies investigating bioactive GAs concentrations in plants reported values within the range of 10⁻¹¹ to 10⁻⁹ g g⁻¹ fresh weight, depending on the organ and physiological period. Most GAs identified in the early years of GA research were shown to have the highest biological activity and act as an active hormone. GAs is found in the buds, embryos, roots, young leaves, flowers, and fruit of plants (Looney et al., 1985; Ward, 1993; Olszewski et al., 2002; Baktir et al., 2004). Although many studies have shown that GAs are effective at various stages of fruit development (Takahashi, 1974), we still do not know much about the seasonal changes of these hormones, especially in alternate bearing. This study differs from previous research in that it was the first to investigate the effect of GAs on alternate bearing in pistachio in different tissue samples and periods. We detected four dominant GAs in the different organs of pistachios, namely GA₈, GA₁₉, GA₂₀, and GA₄₄ (Tables 4 and 5). The literature contains studies that analyzed the
hormone amounts of the fruit, leaves and flower buds of pistachio (Cetinkaya, 2004; Gunes et al., 2010; Vemmos, 2010; Okay et al., 2011; Gundesli et al., 2019). Furthermore, Khalifah et al. (1965) and Goldschmidt (1976) reported that citrus samples contained three GA-like substances, two of which were tentatively identified as GA1 and GA20. Compared to recent qualitative studies of GAs in pistachio (Cetinkaya, 2004; Okay et al., 2011) and apple (Hedden 1990; Okamuro et al., 1996), more specific GAs was identified in these samples. In this research, GA1 and GA20 were the dominant metabolites with the highest value (Tables 4 and 5; Figures 3 and 4). These findings are in agreement with those of Rodrigo et al. (1997) and Lulsdorf et al., (2012). This is in agreement with Tromp (1982), who showed that GA19 was dominant in citrus which investigated the effects of GAs on the induction of the flower of citrus species during different physiological periods and stated that GA19, GA20 and GA26 were effective. According to this study GA19 and GA20 showed to high in the early period of 35 DAFB (May) and after decreased to levels 45-55 DAFB during intense flower bud abscission. The amount of GA19 and GA20 increased toward the embryo development period (65 DAFB-July) (Tables 4 and 5). These findings are also in agreement with previous research demonstrating that GA-like substance functions increased in the fruit set and during the growth periods of different fruit trees (Baktır et al., 2004; Cetinkaya, 2004; Okay et al., 2011; Suman et al., 2017). Rodrigo et al. (1997) reported the highest content of GA19 precursors (GA19 and GA20) as well as the GA29 (catabolite of GA20) shortly after anthesis in pea (Pisum sativum L.) which then rapidly declined until 12 DAA that these findings are in agreement with the findings. In the current research, the increase in GAs and the decrease in the ABA level show that both these plant growth substances control flower bud abscission and initial embryo development along with other essential components (Tables 2–5; Figures 1–4). Lui and Carns (1961) and Mayak et al., (1972) similarly reported that the ABA amount was in a positive relationship with abscission. In other studies, the GA and ABA amounts of the fruit, leaves and flower buds of different fruit trees showing alternate bearing also gradually decreased during embryo development (Cetinkaya 2004, and Okay et al., 2011 (pistachio); Shulman and Lavee 1980, Baktır et al., 2004 (olive)). Swain et al., (1995) concluded that only GA1 and/or GA3 are associated with embryo and endosperm and are thus physiologically active in pea whereas GA20 and GA29 found in the testa of a seed had biological role. Therefore, the common finding of the previous studies indicated that are the amounts and proportions of PGRs carried by synthesis difference between various organs of the plant and their physiological growth stage (Ulger, 1977; Lavee, 1989; Baktır et al., 2004; Okay et al., 2011).

Therefore, in some previous studies reported that tried to take control of abscission with external applications GAs and ABA both on- and off-crop years, but the results are not definitive (Lin et al., 1984; Ferguson and Maranto 1989; Lovat and Ferguson, 2006; Açar et al., 2006). These findings are consistent with those obtained from different plant growth regulating functions synthesized in pistachio during different growth periods (Takeda and Crane, 1980; Salisbury and Ross, 1991; Westwood, 1993; Açar et al., 2006; Cetinkaya, 2004; Lovat and Ferguson, 2006; Gunes et al., 2010; Okay et al., 2011; Gundesli et al., 2019). It is important to monitor the changes of in PGRs, especially GA and ABA during flower bud abscission and embryo development in order to explain the physiological mechanisms in pistachio, such as the formation of flower bud abscission and embryo development (alternate bearing). In particular, the effect of external growth regulator applications during slow or low PGR synthesis should be investigated to determine the optimum times for such applications.

6. Conclusion
To this knowledge, this is the first study that detected ABA metabolites and GAs detected in different tissue samples obtained from pistachio during different growth periods. PGRs appear to regulate flower bud abscission interactively. This research provides a basis for the role of two PGR classes (ABA metabolites and GA19) during flower bud abscission and embryo development in pistachio. In total, seven ABA metabolites and four GAs were identified in panicle and nut samples. As a result, DPA and GA19 were found to be the dominant ABA metabolite and GAs, respectively. These data confirm that ABA metabolite and GAs concentrations are related to the flower bud abscission process and embryo development; thus, ABA and GAs play a role in irregular or alternate bearing. It seems that in “on” year trees, ABA and GAs are translocated to the fruit, especially during embryo development. Through analyses aimed at explaining the physiological functions of the main ABA metabolites and GAs, we obtained useful data concerning how PGRs control flower bud abscission and embryo development. It is also concluded that GAs can control fruit development in various ways and at different stages of development. The data also show an important a general relationship between ABA metabolite and GAs levels during flower bud abscission (alternate bearing) and embryo development in pistachio.

Acknowledgments
Special thanks to Prof. Dr. Nesibe Ebru Kafkas for her technical and scientific support. I also thank to for material support Republic of Turkey Ministry Food of Agriculture and Livestock- General Directorate of Agricultural Research
References

Abrams SR, Nelson K, Ambrose SJ (2003). Deuterated abscisic acid analogs for mass spectrometry and metabolism studies. Journal of Labelled Compounds and Radiopharmaceuticals: The Official Journal of the International Isotope Society 46 (3): 273-283.

Acar I, Tahtaci SA, Arpacı S, Aydın Y, Karada S (2006). Determination of effects of plant growth regulator applications on alternate bearing in pistachios under suitable growing conditions. Acta Horticulturae 726 (1): 539-544.

Ak BE and Acar I (2001). Pistachio production and cultivated varieties grown in Turkey. International Workshop on Pistachio: Towards a Comprehensive Documentation of Distribution and Use of Its Genetic Diversity in the CWANA Region. Report of the IPGRI Workshop, 14-17 December 1998, Irbid, Jordan. pp. 27-34.

Addicott FT (1983). Absciscic acid in abscission. In: E.T. Addicott (ed.) Abscisic acid. New York, NY, USA: Praeger Publishers.

Al-Shdiefat SM, Qrunfleh MM (2008). Alternate Bearing of the Olive (Olea europaea L.) as Related to Endogenous Hormonal Content. Jordan Journal of Agricultural Content. Jordan Journal of Agricultural.

Achard P, Genschik P (2009). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany 60: 1085-1092. Sciences 4: 12-25.

Askari E, Irani S, Razmjooy K (2011). Bloom, Maturity, and Fruit Set of Pistachio in Response to Early Season Application of Ethephon. Horticulture, Environment, and Biotechnology 52 (1): 29-34.

Ayfer M, Okay Y, Erdogan V (1990). The embryo formation and development in pistachio. The First Pistachio Congress of Turkey. Proceedings: Gaziantep, Turkey (in Turkish). pp. 96-106.

Baktir I, Ulger S, Himelrick DG (2004). Relationship of seasonal changes in endogenous plant hormones and alternate bearing of pistachio. HortScience 39: 987-990.

Baninasab B, Rahemi, M, Shariatmadari H (2007). Seasonal changes in mineral content of different organs in the alternate bearing of pistachio trees. Communications in Soil Science and Plant Analysis 38: 241-258.

Cetinkaya H (2004). Relationship between alternate bearing and levels of hormones, carbohydrate and plant nutrients on some pistachio cultivars bearing complete or rational alternately. MSc, University of Cukurova, Institute of Natural and Applied Sciences, Adana, Turkey.

Cheng WH, Endo A, Zhou L, Penney J, Chen HC et al. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-274.

Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M et al. (2003). A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: analysis of hormone regulation of thermomorancy of lettuce (Lactuca sativa L.) seeds. The Plant Journal 35 (3): 405-417.

Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J et al. (2005). The etr1–2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. The Plant Journal 42 (1): 35-48.

Dokoozlian NK, Peacock WL (2001). Gibberellic acid applied at bloom reduces fruit set and improves size of ‘crimson seedless’ table grapes. HortScience 36: 706-709.

Ercisli S, Akbulut M, Ozdemir O, Sengul M, Orhan E (2008). Phenolic and antioxidant diversity among persimmon (Diospyros kaki L.) genotypes in Turkey. International Journal of Food Sciences and Nutrition 59 (6): 477-482.

Eeuwens CJ, Schwabe WW (1975). Seed and pod wall developments in Pismu sativum L. in relation to extracted and applied hormones. Journal of Experimental Botany 26: 1-14.

Esmaeilpour A, Khezri M (2006). Abscision of inflorescence buds as affected by genetic characteristics in some Iranian commercial pistachio cultivars. International Journal of Agriculture and Biology 8 (3): 360-362.

Ferguson L, Maranto J (1989). Effects of growth regulators on pistachio inflorescence and bud retention. California Pistachio Industry Annual Report Crop Year 1988-1989. pp. 91-92.

Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A (2004). Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218: 958-964.

GoÂmez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M (2000). Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210: 636-643.

GoldschmidtEE (2005). The etr1–2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. The Plant Journal 42 (1): 35-48.

Goldschmidt ED (1976). Endogenous growth substances of Citrus tissues. HortScience 11: 95-99.

Goldschmidt ED (1980). Abscisic acid in citrus flower organs as related to floral development and function. Plant and Cell Physiology 21: 193-195.

Golomb A, Goldschmidt E (1987). Mineral nutrient balance and impairment of the nitrate-reducing system in alternate-bearing Wilking mandarin tress. Journal of the American Society for Horticultural Science 112: 397-401.

Gomez-Jimenez MC, Parades M, Gallardo MS, Isabel M (2010). Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone. Journal of Plant Physiology 167: 1432-144.
GUNDEŞLİ / Turk J Agric For

Gunes NT, Okay Y, Koksal AI, Koroglu M (2010). The effect of nitrogen and phosphorus fertilization on yield, some fruit characteristics, hormone concentrations, and alternate bearing in pistachio. Turkish Journal of Agriculture and Forestry 34: 33-43.

Giacomelli L, Osta-Stabell O, Masuero D, Acheampong AK, Moretti M et al. (2013). Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. Journal of Experimental Botany 64 (14): 4403-4419.

Gundesli MA (2017). Determination of Mechanism of Bud Abscission in Pistachio. PhD thesis, University of Çukurova, Adana, Turkey.

Gundesli MA, Kafkas NE, Kafkas S, Aslan N (2018). Investigation on seasonal changes of macro element concentrations of cluster and nuts of 'Uzuni' Pistachio Variety. International Journal of Agriculture and Environmental Research 4 (6): 1209-1219.

Gundesli MA, Kafkas S, Zarifkikosroshahi M (2019). Role of endogenous polyamines in the alternate bearing phenomenon in pistachio. Turkish Journal of Agriculture and Forestry 43: 265-274.

Gunes NT, Okay Y, Koksal AI, Koroglu M (2010). The effect of nitrogen and phosphorus fertilization on yield, some fruit characteristics, hormone concentrations, and alternate bearing in pistachio. Turkish Journal of Agriculture and Forestry 34: 33-43.

Guney M (2019). Development of an in vitro micropropagation protocol for Myrobalan 29C rootstock. Turkish Journal of Agriculture and Forestry 43: 569-575.

Hedden P (1990). The action of plant growth retardants at the biochemical level. Plant Growth Substances (edited by Pharis, R.P. and Rood, S.B.). Heidelberg, Germany: Springer-Verlag, pp. 322-332.

Kafkas S (2006). Phylogeny, evolution and biodiversity in the genus Pistacia (Anacardiaceae). In: Sharma AK (eds). Plant genome: Biodiversity and evolution. Phanerogams (Angiosperm-dicotyledons), Science Publishing, Eufield, N.H. Vol. 1.

Khalifah RA (1965). Gibberellin-like Substances from the Developing Banana Fruit. Plant Physiology 41 (5): 771-773.

Kour D, Bakshi P, Wali VK, Sharma N, Sharma A et al. (2018). Alternate bearing in olive - a review. International Journal of Current Microbiology and Applied Sciences 7 (9): 2281-2297.

Lavee S (1989). Involvement of plant growth regulators and endogenous growth substances in the control of alternate bearing. Acta Horticulturae 239: 311-322.

Lin TS, Crane JC, Ryugo K (1984). Effects of gibberellic acid on vegetative and inflorescence buds of pistachio. Journal of the American Society for Horticultural Science 109 (1): 39-42.

Liu X, Hou X (2018). Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. Frontiers in plant science 9: 251.

Looney NE, Pharis RP, Noma M (1985). Promotion of flowering in apple trees with gibberellic A4 and C-3 epi-gibberelinA4. Planta. 165: 292-294.

Lovatt CJ, Ferguson L (1998). Using foliar application of urea combined with 6-benzyladenin to decrease pistachio floral bud abscission in an 'on' year to increase yield the next year. California Pistachio Industry Annual Report 1997–1998, pp. 155-158.

Lovatt CJ, Ferguson L (2001). Urea combined with 6-benzyladenin to reduce alternate bearing in pistachio and to increase cumulative yield (Fifth Year Report). California Pistachio Industry Annual Report 2000-2001, pp. 151-152.

Lovatt CJ, Daudhi H, Ferguson L (2006). Efficacy of foliar-applied cytokinins and nitrogen to increase floral bud retention and to reduce alternate bearing of pistachio. Acta Horticulturae (727): 353-364.

Lui WC, Carns HR (1961). Isolation of abscisin and abscission accelerating substance. Science 134: 384-385.

Lulsdorf M, Yuan HY, Slater S, Vandenberg A, Han X et al. (2012). Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Reports 31: 1255-1267.

Mehouachi J, Tadeo FR, Zaragoza S, Primo-Millo E, Talon M (1996). Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. Journal of Horticultural Science 71 (2): 191-198.

Mayak S, Halevy AH, Katz M (1972). Correlative changes in phytohormones in relation to senescence processes in rose petals. Physiologia Plantarum 27: 1-4.

Mirsoleimani A, Shaahsavar AR, Kholdebarin B (2014). Seasonal Changes of Mineral Nutrient Concentrations of Leaves and Stems of Kinnnow Mandarin Trees in Relation to Alternate Bearing. International Journal of Fruit Science 14: 117-132.

Mirsoleimani A, Shaahsavar AR (2018). Changes of free polyamines in the leaves and stems of "Kinnnow" mandarin trees affected by alternate bearing. Journal of Plant Process and Function Vol. 6, No. 22.

Olszewski N, Sun TP, Gubler F (2002). Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 14: 561-580.

Oguz HI, Akkus G (2012). Effects of GA3 and IBA on germination of pistachio. Indian Journal of Horticulture 69 (3): 420-423.

Okay Y, Günes NT, Koksal IA (2011). Free endogenous growth regulators in Pistachio (Pistacia vera L.) African Journal of Agricultural Research 6 (5): 1161-1169.

Okuda H (2000). A comparison of IAA and ABA levels in leaves and roots of two citrus cultivars with different degrees of alternate bearing. Journal of the American Society for Horticultural Science 75 (3): 355-359.

Okamuro JK, den Boer BGW, lotys-Prass C, Szeto W, Jofuku KD (1996). Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis. PNAS 93: 13831-13836.
Patmalatha K, Weksler H, Mugzach A, Acheampong AK, Zheng C et al. (2017). ABA Application during Flowering and Fruit Set Reduces Berry Number and Improves Cluster Uniformity. American Journal of Enology and Viticulture 68:3

Raz V, Bergervoet JH, Koornneef M (2001). Sequential steps for developmental arrest in Arabidopsis seeds. Development 128: 243-252.

Rodrigo MJ, Garci’a-Martinez JL, Santes CM, Gaskin P, Hedden P (1997). The role of gibberellins A1 and A3 in fruit growth of Pismu sativum L. and the identification of gibberellins A4 and A7 in young seeds. Planta 201 (4):446-455.

Rosecrance RC, Weinbaum SA, Brown PH (1998). Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Annals of Botany 82 (4): 463-470.

Sagee O, Erner Y (1991). Gibberellins and abscisic acid contents during flowering and fruit set of ‘Shamouti’ orange. Scientia Horticulturae 48: 29-39.

Salisbury FB, Ross CW (1991). Plant physiology. Belmont, California, USA: Wadsworth Publishing Company.

Serce S, Erisci S, Sengul M, Gunduz K, Orhan E (2010). Antioxidant activity and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacognosy Magazine 6 (21):9-12.

Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H et al. (2012). Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS One 7 (10).

Shulman Y, Lavee S (1980). Gibberellin-like substances during ripening of olive fruit. Scientia Horticulturae 12:169-175.

Spann TM, Beede RH, DeJong TM (2008). Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera L.) trees. Tree Physiology 28: 207-213.

Suman M, Sangma PD, Meghawal DR, Sahu OP (2017). Effect of plant growth regulators on fruit crops. Journal of Pharmacognosy and Phytochemistry 6 (2): 331-337.

Swain SM, Ross JJ, Reid JB, Kamiya Y (1995) Gibberellins and pea seed development. Planta 195 (3): 426-433.

Takeda F, Crane JC (1980). Abscisic acid in pistachio as related to inflorescence bud abscission. Journal of the American Society for Horticultural Science 105 (4): 573-576.

Talon M, Tadeo FR, Ben-Cheikh W, GoÂmez-Cadenas A, Me-houachi J et al. (1997). Hormonal regulation of fruit set and abscission in citrus: classical concepts and new evidence. Acta Horticulturae 463: 209-217.

Tjom J (2000) lower-bud formation in pome fruits as affected by fruit thinning. Plant Growth Regulation 31: 27-34.

Ulger S (1997). Determination of the effects of endogenous plant hormones on alternate-bearing and flower bud formation in olive. PhD thesis. University of Akdeniz, Institute of Natural and Applied Sciences.

Ulger S, Sahriye S, Mustafa K, Nisa E, Ozgur A et al. (2004). Determination of endogenous hormones, sugars and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in Olive. Plant Growth Regulation 42: 89-95.

Vanstraalen M, Benková E (2012). Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28: 463-487.

Vemmos SN (2010). Alternate bearing and the possible role of carbohydrates in bud abscission of pistachio (Pistacia vera L.). In: Zakynthinos G. (ed.). XIV GREMPA Meeting on Pistachios and Almonds. Zaragoza: CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF, pp. 9-18 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 94).

Vernieri P, Tagliasacchì AM, Forino L, Lanfranchi A, Lorenzi R et al. (1992). Abscisic acid level and cell structure in single tissues of shedding affected fruits of Malus domestica Borkh. Journal of Plant Physiology 140: 699-706.

Ward DL (1993). Reducing flower bud density of ‘Redkist’ peach with GA3. MS thesis. Southern Illinois. University, Carbondale, IL, USA.

Westwood MN (1993). Hormones and growth regulators. In: Westwood MN (ed) Temperate-zone pomology, physiology and culture, 3rd ed., Portland, Oregon, USA: Timber Press Inc., pp. 364-381.

White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. Evidence that gibberelin/abscisic acid balance governs germination versus maturation pathways. Plant Physiology 122: 1081-1088.

Yavuz GG (2011). Sert Kabuklu Meyveler / Antep Fıstığı. TEPGE BAKIŞ, Tarımsal Ekonomi 449 ve Politika Geliştirme Enstitüsü, Aralık 2011 / ISSN: 1303–8346 / Nüsha: 5, Ankara, Turkey.

Yoshida T, Obata T, Feil R, Lunn JE, Fujita Y et al. (2019). The Role of Abscisic Acid Signaling in Maintaining the Metabolic Balance Required for Arabidopsis Growth under Nonstress Conditions. The Plant Cell 31: 84-105.

Zacarâ jeszcze L, Talon M, Ben-Cheikh W, Lafuente MT, Primo-Millo E (1995). Abscisic acid increases in non-growing and paclobutrazol–treated fruits of seedless mandarins. Plant Physiol 95: 613-61.

Zaharia LI, Galka MM, Ambrose SJ, Abrams SR (2005). Preparations of deuterated abscisic acid metabolites for use in mass spectrometry and feeding studies. Journal of Labelled Compounds and Radiopharmaceuticals: The Official Journal of the International Isotope Society 48 (6): 435-445.