The group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra

Masaki Izumi
Graduate School of Science
Kyoto University
Sakyo-ku, Kyoto 606-8502, Japan

Taro Sogabe
Graduate School of Science
Kyoto University
Sakyo-ku, Kyoto 606-8502, Japan

March 13, 2019

Abstract

We determine the group structure of the homotopy set whose target is the automorphism group of the Cuntz algebra \mathcal{O}_{n+1} for finite n in terms of K-theory. We show that there is an example of a space for which the homotopy set is a non-commutative group, and hence the classifying space of the automorphism group of the Cuntz algebra for finite n is not an H-space. We also make an improvement of Dadarlat’s classification of continuous fields of the Cuntz algebras in terms of vector bundles.

1 Introduction

Dadarlat [9] computed the homotopy set $[X, \text{Aut } A]$ for a Kirchberg algebra A under a mild assumption of a space X. He constructed a bijection between $[X, \text{Aut } A]$ and a relevant KK-group, and showed that it is a group homomorphism when X is an H’-space (co-H-space). However, the group structure of $[X, \text{Aut } A]$ for more general X is still unknown.

The Cuntz algebra \mathcal{O}_{n+1} is a typical example of a Kirchberg algebra, and it plays an important role in operator algebraic realization of the mod n K-theory [22]. Dadarlat’s computation shows that $[X, \text{Aut } \mathcal{O}_{n+1}]$ as a set is identified with the mod n K-group $K_1(X; \mathbb{Z}_n)$. One of the main purposes of this paper is to determine the group structure of $[X, \text{Aut } \mathcal{O}_{n+1}]$, and we show that it is indeed different from the ordinary group structure of $K^1(X; \mathbb{Z}_n)$ in general. In particular, we verify that the group $[X, \text{Aut } \mathcal{O}_{n+1}]$ is non-commutative when X is the product of the Moore space M_n and its reduced suspension ΣM_n. Our computation uses the Cuntz-Toeplitz algebra E_{n+1} in an essential way, for which the homotopy groups of the automorphism group are computed in [24].

The unitary group $U(n+1)$ acts on \mathcal{O}_{n+1} through the unitary transformations of the linear span of the canonical generators, and it induces a map from $[X, BU(n+1)]$ to $[X, B \text{Aut } \mathcal{O}_{n+1}]$. When X is a finite CW-complex with dimension d, Dadarlat [12, Theorem 1.6] showed that the map is a bijection provided that $n \geq [(d-3)/2]$ and $H^*(X)$ has no n-torsion. Another purpose of this paper is to remove the first condition by a localization trick.

We use the following notation throughout the paper. For a unital C*-algebra A, we denote by $U(A)$ the unitary group of A, and by $U(A)_0$ the path component of 1_A in $U(A)$. For a non-unital C*-algebra B, we denote its unitization by B^\sim. We denote by $B(H)$ the algebra of bounded operators on a Hilbert space H, by K the algebra of compact operators on a separable Hilbert space, and by M_n the algebra of $n \times n$ matrices.

Our standard references for K-theory are [4, 16]. For a projection $p \in A$ (resp. a unitary $u \in U(A)$), we denote by $[p]_0$ (resp. $[u]_1$) its class in the K-group $K_0(A)$ (resp. $K_1(A)$). For a compact Hausdorff space X, we identify the topological K-groups $K^i(X)$ with $K_i(C(X))$ where $C(X)$ is the C*-algebra of

*Supported in part by JSPS KAKENHI Grant Number JP15H03623
the continuous functions on X. When moreover X is path connected, we choose a base point x_0, and set $K^0(X)$ to be the kernel of the evaluation map $(ev_{x_0})_*: K^0(X) \to K^0(\{x_0\}) = \mathbb{Z}$, which is identified with $K_i(C_0(X,x_0))$ where $C_0(X,x_0)$ is the C^*-algebra of the continuous functions on X vanishing at x_0. We denote by ΣX the reduced suspension of X. For two topological spaces X and Y, we denote by $\text{Map}(X,Y)$ the set of continuous map from X to Y, and by $[X,Y]$, the quotient of $\text{Map}(X,Y)$ by homotopy equivalence.

Acknowledgement. The authors would like to thank Marius Dadarlat and Ulrich Pennig for stimulating discussions. Masaki Izumi would like to thank Isaac Newton Institute for Mathematical Sciences for its hospitality.

2 Mod n K-theory

In this section, we summarize the basics of mod n K-theory from the viewpoint of operator algebras.

Recall that the Cuntz algebra \mathcal{O}_{n+1} is the universal C*-algebra generated by $n+1$ isometries $\{S_i\}_{i=0}^n$ with mutually orthogonal ranges whose summation is 1. Its K-groups are

$$K_0(\mathcal{O}_{n+1}) = \mathbb{Z}_n, \quad K_1(\mathcal{O}_{n+1}) = 0,$$

(see [2] Theorem 3.7, 3.8, Corollary 3.11]). The Cuntz Toeplitz algebra E_{n+1} is the universal C*-algebra generated by $n+1$ isometries $\{T_i\}_{i=0}^n$ with mutually orthogonal ranges, and it is KK-equivalent to the complex numbers \mathbb{C}. The closed two-sided ideal generated by the minimal projection $e = 1 - \sum_{i=0}^{n} T_i T_{i}^*$ is isomorphic to K, which is known to be the only closed non-trivial two-sided ideal. Then the quotient algebra E_{n+1}/K is isomorphic to \mathcal{O}_{n+1} with identification $S_i = \pi(T_i)$, where π is the quotient map.

For a natural number n, we denote by M_n the Moore space, the mapping cone of the map $n: S^1 \ni z \mapsto z^n \in S^1$:

$$M_n := ([0,1] \times S^1) \sqcup S^1/\sim,$$

where $(0,z) \sim (0,1)$ and $(1,z) \sim z^n$ for every $z \in S^1$. For cohomology and K-groups, we have

$$H^0(M_n) = \mathbb{Z}, \quad H^1(M_n) = 0, \quad H^2(M_n) = \mathbb{Z}_n, \quad H^k(M_n) = 0 \text{ for } k \geq 2,$$

$$\tilde{K}^0(M_n) = \mathbb{Z}_n, \quad \tilde{K}^1(M_n) = 0,$$

(see [15] Theorem 9.10 for example). Since $C_0(M_n, pt)$ and \mathcal{O}_{n+1} have the same K-theory and they are in the bootstrap class, they are KK-equivalent (see [1] Section 22.3]).

The mod n K-group of the pointed space (X,x_0) is originally defined by

$$\tilde{K}^i(X;\mathbb{Z}_n) := \tilde{K}^i(X \wedge M_n), \quad i = 0,1.$$

We refer to [1] for the mod n K-theory, and refer to [22] Section 8] for an operator algebraic aspect of it. The Bott periodicity of the K-theory induces the Bott periodicity of the mod n K-theory. By the KK-equivalence of $C_0(M_n, pt)$ and \mathcal{O}_{n+1}, the identification

$$\tilde{K}^i(X \wedge M_n) = K_i(C_0(X,x_0) \otimes C_0(M_n, pt)) \cong K_i(C_0(X,x_0) \otimes \mathcal{O}_{n+1})$$

is natural in the variable X (see [23] Theorem 6.4]). We can identify the Bockstein exact sequence with the 6-term exact sequence

$$
\begin{array}{c}
K^0(X) \xleftarrow{\beta} K^0(X;\mathbb{Z}_n) \\
\downarrow \quad \downarrow \\
K^1(X;\mathbb{Z}_n) \xleftarrow{\rho} K^1(X) \xrightarrow{-n} K^1(X).
\end{array}
$$

arising from the exact sequence

$$0 \to C_0(X,x_0) \otimes \mathbb{K} \to C_0(X,x_0) \otimes E_{n+1} \to C_0(X,x_0) \otimes \mathcal{O}_{n+1} \to 0.$$

The map β is called Bockstein map, and ρ is called the reduction map. We frequently identify β with the index map or the exponential map in the 6-term exact sequence.
Lemma 2.1. We have the following isomorphisms from the Bockstein exact sequence:

\[\rho: \tilde{K}^0(M_n) \to \tilde{K}^0(M_n; \mathbb{Z}_n), \quad \beta: \tilde{K}^1(M_n; \mathbb{Z}_n) \to \tilde{K}^0(M_n). \]

The K-theory has a multiplication \(\mu \) defined by the external tensor product of vector bundles:

\[\mu: K^0(X) \otimes K^0(Y) \to K^0(X \times Y) \]

We denote the diagonal map by \(\Delta_X: X \to X \times X \). This gives the ring structure of \(K^0(X) \):

\[x \cdot y := \Delta_X \mu(x \otimes y), \quad x, y \in K^0(X). \]

This induce the ring structure of \(\tilde{K}^0(X) \) by \(\Delta_X: X \to X \wedge X \):

\[x \cdot y := \Delta_X \mu(x \otimes y), \quad x, y \in \tilde{K}^0(X). \]

From [16, Chap.II, Theorem 5.9], the reduced K-group \(\tilde{K}^0(X) \) is the set of nilpotent elements of \(K^0(X) \), and in particular \(\tilde{K}^0(\Sigma X) \cdot \tilde{K}^0(\Sigma X) = \{0\} \).

The multiplication \(\mu \) extends to \(\tilde{K}^i(X) \), \(i = 0, 1 \) by

\[\mu: \tilde{K}^0(S^i \wedge X) \otimes \tilde{K}^0(S^j \wedge Y) \to \tilde{K}^0(S^{i+j} \wedge X \wedge Y), \]

with the property

\[T_{X,Y} \mu(y \otimes x) = (-1)^{ij} \mu(x \otimes y), \quad x \in \tilde{K}^i(X), \ y \in \tilde{K}^j(Y). \]

where the map \(T_{X,Y}: X \wedge Y \to Y \wedge X \) is the exchange of the coordinates (see [16, Chap. II section 5.30]). In a similar way, the multiplication \(\mu \) defines the following:

\[\mu_L: \tilde{K}^i(X) \otimes \tilde{K}^j(Y; \mathbb{Z}_n) \to \tilde{K}^{i+j}(X \wedge Y; \mathbb{Z}_n), \]

\[\mu_R: \tilde{K}^i(X; \mathbb{Z}_n) \otimes \tilde{K}^j(Y) \to \tilde{K}^{i+j}(X \wedge Y; \mathbb{Z}_n), \]

with the same property (see [11, Section 3]):

\[T_{X,Y} \mu_R(y \otimes x) = (-1)^{ij} \mu_L(x \otimes y), \ x \in \tilde{K}^i(X), \ y \in \tilde{K}^j(Y). \]

The multiplications \(\mu, \mu_L \) and \(\mu_R \) are compatible with the reduction \(\rho \) and the map \(\delta : \)

\[\mu_R(\rho \otimes \text{id}) = \rho \mu, \quad \beta(\mu_R(\text{id} \otimes \text{id})) = \mu(\beta \otimes \text{id}), \]

\[\mu_L(\text{id} \otimes \rho) = \rho \mu, \quad \beta(\mu_L(\text{id} \otimes \text{id})) = \mu(\text{id} \otimes \beta). \]

Since the identification \(\tilde{K}^i(X; \mathbb{Z}_n) \cong K_i(C_0(X, x_0) \otimes \mathcal{O}_{n+1}) \) is natural, it is compatible with the Kasparov product, and the multiplications \(\mu_L \) and \(\mu_R \) extend to

\[\mu_L: K_i(C(X)) \otimes K_j(C(Y) \otimes \mathcal{O}_{n+1}) \to K_{i+j}(C(X \times Y) \otimes \mathcal{O}_{n+1}) \]

\[\mu_R: K_i(C(X) \otimes \mathcal{O}_{n+1}) \otimes K_j(C(Y)) \to K_{i+j}(C(X \times Y) \otimes \mathcal{O}_{n+1}). \]

In particular, for \(u \in U((C(X) \otimes \mathcal{O}_{n+1})) \) and a projection \(p \in C(X) \otimes \mathbb{M}_m \), we have

\[\mu_L([p]_0 \otimes [u]_1) = [p \otimes u + (1_m - p) \otimes 1_{\mathcal{O}_{n+1}}]_1 \in K_1(C(X \times X, \mathbb{M}_m \otimes \mathcal{O}_{n+1})) = K_1(C(X \times X, \mathcal{O}_{n+1})). \]

We also use the Künneth theorem of the reduced K-theory.

Theorem 2.2 ([11, Theorem 23.1.3]). For pointed spaces \(X \) and \(Y \), we have the following exact sequence

\[0 \to \bigoplus_{i=0,1} \tilde{K}^i(X) \otimes \tilde{K}^{i+*}(Y) \to \tilde{K}^*(X \wedge Y) \to \bigoplus_{i=0,1} \text{Tor}(\tilde{K}^i(X), \tilde{K}^{i+1-*}(Y)) \to 0, \]

that splits unnaturally.
We note that the map $\tilde{K}^i(X) \otimes \tilde{K}^j(Y) \to \tilde{K}^{i+j}(X \wedge Y)$ above is given by the multiplication μ. Puppe sequence yields the following lemmas.

Lemma 2.3 ([13] Section 10, Proposition 3.4). For compact pointed spaces X and Y, the sequence $X \vee Y \to X \times Y \to X \wedge Y$ induces a split exact sequence

$$0 \to \tilde{K}^i(X \wedge Y) \to \tilde{K}^i(X \times Y) \to \tilde{K}^i(X) \otimes \tilde{K}^i(Y) \to 0.$$

The splitting is given by the projections $\Pr_X : X \times Y \to X$ and $\Pr_Y : X \times Y \to Y$.

We have the diagram below

$$
\begin{array}{ccc}
K^i(X \times Y) & \xrightarrow{\mu(\otimes 1)} & K^i(X) \\
\downarrow & & \downarrow \\
\tilde{K}^i(X \times Y) & \xrightarrow{\Pr^*_X \otimes \Pr^*_Y} & \tilde{K}^i(X)
\end{array}
$$

where $1 \in K^0(\{y_0\})$. So we identify the map \Pr^*_X with the map $\mu(\cdot \otimes 1)$. We also identify \Pr^*_Y with the map $\mu(1 \otimes \cdot)$ where $1 \in K^0(\{x_0\}) = \mathbb{Z}$.

3 The group structure of $[X, \text{Aut} \mathcal{O}_{n+1}]$

3.1 Description of the group structure

Let (X, x_0) be a pointed compact metrizable space. For every $\alpha \in \text{Map}(X, \text{Aut} \mathcal{O}_{n+1})$, we set

$$u_\alpha = \sum_{i=0}^n \alpha(1_{C(X)} \otimes S_i)(1_{C(X)} \otimes S^*_i) \in U(C(X) \otimes \mathcal{O}_{n+1}).$$

By [13] Theorem 7.4, the map

$$[X, \text{Aut} \mathcal{O}_{n+1}] \ni [\alpha] \mapsto [u_\alpha]_1 \in K_1(C(X) \otimes \mathcal{O}_{n+1}) = K^1(X; \mathbb{Z})$$

is a bijection, though it is not a group homomorphism in general as we will see below. From the definition of u_α, we have $u_{\alpha_2}(x) = \alpha_x(u_\beta(x))u_\alpha(x)$, and $[u_{\alpha_2}]_1 = [u_\alpha]_1 + [\alpha(u_\beta)]_1$. Thus to determine the group structure of $[X, \text{Aut} \mathcal{O}_{n+1}]$, it suffices to determine the map

$$K_1(\alpha) : K_1(C(X) \otimes \mathcal{O}_{n+1}) \to K_1(C(X) \otimes \mathcal{O}_{n+1}),$$

induced by $u(x) \mapsto \alpha_x(u(x))$.

Theorem 3.1. For every $\alpha \in \text{Map}(X, \text{Aut} \mathcal{O}_{n+1})$ and $a \in K_1(C(X) \otimes \mathcal{O}_{n+1})$, we have

$$K_1(\alpha)(a) = a - [u_\alpha]_1 \cdot \delta(a),$$

where $\delta : K_1(C(X) \otimes \mathcal{O}_{n+1}) \to \text{Tor}(\tilde{K}^0(X), \mathbb{Z})$ is the index map.

Proof. For a given $b \in \text{Tor}(\tilde{K}^0(X), \mathbb{Z})$, we look for the preimage $\delta^{-1}(b)$ first. We may assume that b is of the form $[p]\otimes [1_{m}]_0$ with a projection $p \in C(X) \otimes M_{2m}$ such that there exists a unitary $v \in C(X) \otimes M_{2m}$ satisfying $v\otimes q = 1 \otimes p$, where $q = \text{Diag}(1_m, 0_m)$.

Identifying $\tilde{K}^0(X)$ with $K_0(C(X) \otimes \mathbb{K})$, we may replace p and q with $e \otimes p$ and $e \otimes q$ respectively, where $e = 1_{E_{n+1}} - \sum_{i=0}^n T_iT^*_i$ is a minimal projection in $K \subset E_{n+1}$. Furthermore, we may adjoin $1_{E_{n+1}}$ to $C(X) \otimes \mathbb{K}$, and

$$e = ([1_{E_{n+1}} - e] \otimes q + e \otimes p) - [1_{E_{n+1}} \otimes q].$$

In what follows, we simply denote $1_E = 1_{E_{n+1}}$ and often denote 1_{2m} for $1 \otimes 1_{2m}$.

We will construct a unitary $U \in C(X) \otimes E_{n+1} \otimes M_{10m}$ satisfying

$$U \text{Diag}((1 - e) \otimes q + e \otimes p, 1_{4m}, 0_{4m})U^{-1} = \text{Diag}(q, 1_{4m}, 0_{4m}).$$
Expressing \(v(x) = \sum_{i,j=1}^{n} e_{i,j} \otimes v_{i,j}(x) \), where \(\{e_{i,j}\}_{1 \leq i,j \leq n} \) is a system of matrix units \(M_n \), we let

\[
\tilde{v}(x) = (e + T_0 T_0^*) \otimes 1_{2m} + \sum_{i,j=1}^{n} T_i T_j^* \otimes v_{i,j}(x).
\]

Then \(\tilde{v} \) is a unitary in \(C(X) \otimes E_{n+1} \otimes M_{2m} \) satisfying

\[
\tilde{v}((1 - e) \otimes q + e \otimes p) \tilde{v}^* = T_0 T_0^* \otimes q + (1 - T_0 T_0^*) \otimes p.
\]

Thus if we put

\[
U_1 = \text{Diag}(\tilde{v}, \begin{pmatrix} 0 & 0 & 1_{2m} & 0 \\ 0 & 1_{2m} & 0 & 0 \\ 1_{2m} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1_{2m} \end{pmatrix}),
\]

we get

\[
U_1 \text{Diag}((1 - e) \otimes q + e \otimes p, 1_{4m}, 0_{4m}) U_1^{-1} = \text{Diag}(T_0 T_0^* \otimes q + (1 - T_0 T_0^*) \otimes p, 0_{2m}, 1_{4m}, 0_{2m}).
\]

Let

\[
U_2 = \text{Diag}((T_0 T_0^* \otimes q + (1 - T_0 T_0^*) \otimes p, 0_{2m}, 1_{4m}, 0_{2m}) U_2^{-1} = \text{Diag}(T_0 T_0^* \otimes q, (1 - T_0 T_0^*) \otimes p, 1_{4m}, 0_{2m}).
\]

Let \(U_3 = \text{Diag}(1_{2m}, V_1, V_2) \) with

\[
V_1 = \begin{pmatrix} 1_{2m} - T_0 T_0^* \otimes p & T_0 T_0^* \otimes p \\ T_0 T_0^* \otimes p & 1_{2m} - T_0 T_0^* \otimes p \end{pmatrix},
\]

\[
V_2 = \begin{pmatrix} T_0 T_0^* \otimes q & 1_{2m} - T_0 T_0^* \otimes q \\ 1_{2m} - T_0 T_0^* \otimes q & T_0 T_0^* \otimes q \end{pmatrix}.
\]

Then

\[
U_3 \text{Diag}(T_0 T_0^* \otimes q, (1 - T_0 T_0^*) \otimes p, 1_{4m}, 0_{2m}) U_3^{-1} = \text{Diag}(T_0 T_0^* \otimes q, 1 \otimes p, 1_{2m} - T_0 T_0^* \otimes p, T_0 T_0^* \otimes q, 1_{2m} - T_0 T_0^* \otimes q).
\]

Let

\[
U_4 = \text{Diag}(1_{2m}, \begin{pmatrix} T_0 \otimes 1_{2m} & 0 & (1 - T_0 T_0^*) \otimes 1_{2m} \\ 0 & 1_{2m} & 0 \\ 0 & 0 & T_0 \otimes 1_{2m} \end{pmatrix}),1_{2m}).
\]

Then

\[
U_4 \text{Diag}(T_0 T_0^* \otimes q, 1 \otimes p, 1_{2m} - T_0 T_0^* \otimes p, T_0 T_0^* \otimes q, 1_{2m} - T_0 T_0^* \otimes q) U_4^{-1} = \text{Diag}(T_0 T_0^* \otimes q, T_0 T_0^* \otimes p, 1_{2m} - T_0 T_0^* \otimes p, q, 1_{2m} - T_0 T_0^* \otimes q)
\]

Let

\[
U_5 = \begin{pmatrix} T_0 T_0^* \otimes q & 0 & 0 & 0 & 1_{2m} - T_0 T_0^* \otimes q \\ 0 & T_0 T_0^* \otimes p & 1_{2m} - T_0 T_0^* \otimes p & 0 & 0 \\ 0 & 1_{2m} - T_0 T_0^* \otimes p & T_0 T_0^* \otimes p & 0 & 0 \\ 0 & 0 & 0 & 1_{2m} & 0 \\ 1_{2m} - T_0 T_0^* \otimes q & 0 & 0 & 0 & T_0 T_0^* \otimes q \end{pmatrix}.
\]
Then
\[U_5 \text{Diag}(T_0 T_0^* \otimes q, T_0 T_0^* \otimes p, 1_{2m} - T_0 T_0^* \otimes q) U_5^{-1} = \text{Diag}(1_{2m}, 1_{2m}, q, 0_{4m}). \]

Let
\[
U_6 = \begin{pmatrix}
0 & 0 & 0 & 1_{2m} & 0 \\
0 & 1_{2m} & 0 & 0 & 0 \\
1_{2m} & 0 & 0 & 0 & 0 \\
0 & 0 & 1_{2m} & 0 & 0 \\
0 & 0 & 0 & 0 & 1_{2m}
\end{pmatrix}.
\]

Then
\[U_6 \text{Diag}(1_{2m}, 1_{2m}, q, 0_{4m}) U_6^{-1} = \text{Diag}(q, 1_{4m}, 0_{4m}). \]

Thus if we put \(U = U_0 U_2 U_3 U_2 U_1 \), we get
\[U \text{Diag}((1 - e) \otimes q + e \otimes p, 1_{4m}, 0_{4m}) U^{-1} = \text{Diag}(q, 1_{4m}, 0_{4m}). \]

Recall that \(\pi : E_{n+1} \to \mathcal{O}_{n+1} \) is the quotient map. Since
\[(\pi \otimes \text{id}_{M_{1m}})(\text{Diag}((1 - e) \otimes q + e \otimes p, 1_{4m}, 0_{4m})) = \text{Diag}(q, 1_{4m}, 0_{4m}), \]
the unitary \((\pi \otimes \text{id}_{M_{1m}})(U) \) commutes with \(\text{Diag}(q, 1_{4m}, 0_{4m}) \). Let
\[W = \text{Diag}(q, 1_{4m}, 0_{4m})(\pi \otimes \text{id}_{M_{1m}})(U^{-1}) \text{Diag}(q, 1_{4m}, 0_{4m}), \]
which we regard as a unitary in \(C(X, \mathcal{O}_{n+1} \otimes M_{5m}) \). Then by the definition of the index map, we get \(\delta([W]_1) = b \).

Let
\[V(x) = \sum_{i,j=1}^{n} S_i S_j^* \otimes v_{i,j}(x). \]

Direct computation yields
\[W = \begin{pmatrix}
0 & V^*(S_0^* \otimes p) & S_0 S_0^* \otimes q \\
S_0 \otimes q & 0 & 1_{2m} - S_0 S_0^* \otimes p + S_0 S_0^* \otimes p \\
1_{2m} - S_0 S_0^* \otimes q & 0 & 0
\end{pmatrix}. \]

Let \(\beta = \text{Ad} u_{\alpha}^* \circ \alpha \). Then \(K_1(\alpha) = K_1(\beta) \), and \(\beta(S_0) = S_0 u_{\alpha} \). Now
\[
W^*(\beta \otimes \text{id}_{M_{1m}})(W)
\]
\[
= \left(\begin{array}{ccc} S_0^* \otimes q & 0 & 0 \\
0 & 1_{2m} - S_0 S_0^* \otimes p + S_0 S_0^* \otimes p & 0 \\
1_{2m} - S_0 S_0^* \otimes q & 0 & 0
\end{array} \right)
\times \left(\begin{array}{ccc} 0 & 0 & S_0 S_0^* \otimes q \\
0 & 1_{2m} - S_0 S_0^* \otimes p + S_0 S_0^* u_{\alpha}^{-1} S_0^* \otimes p & 0 \\
S_0 u_{\alpha} \otimes q & 0 & 0
\end{array} \right)
\times \left(\begin{array}{ccc} 0 & 0 & S_0 S_0^* \otimes q \\
0 & 1_{2m} - S_0 S_0^* \otimes p + S_0 S_0^* u_{\alpha}^{-1} S_0^* \otimes p & 0 \\
0 & 0 & 0
\end{array} \right)
\times \left(\begin{array}{ccc} 0 & 0 & S_0 \otimes 1_{2m} \\
0 & 0 & (1 - S_0 S_0^*) \otimes 1_{2m} \\
0 & 0 & (1 - S_0 S_0^*) \otimes 1_{2m}
\end{array} \right).
\]

whose \(K_1 \)-class is
\[[u_{\alpha}]_1([q]_0 - [p]_0) = -[u_{\alpha}]_1 \cdot b = -[u_{\alpha}]_1 \cdot \delta([W]_1). \]
Thus \[K_1(\alpha)([W]_1 + a) = [W]_1 + a - [u_\alpha]_1 \cdot \delta([W]_1 + a), \]
which finishes the proof.

Recall that we identify the index map δ with the Bockstein map β. By Theorem 3.1, the group
$[X, \text{Aut } \mathcal{O}_{n+1}]$ is isomorphic to $(K^1(X; \mathbb{Z}_n), \circ)$ with
\[a \circ b = a + b - \beta(b), \quad a, b \in K^1(X; \mathbb{Z}_n). \]
Note that $(K^1(X; \mathbb{Z}_n), \circ)$ is a group extension
\[0 \to K_1(X) \otimes \mathbb{Z}_n \to (K^1(X; \mathbb{Z}_n), \circ) \xrightarrow{\hat{\beta}} (1 + \text{Tor}(\tilde{K}_0(X), \mathbb{Z}_n))^\times \to 0, \]
where $\hat{\beta}(a) = 1 - \beta(a)$. We denote the inverse of an element $a \in (K^1(X; \mathbb{Z}_n), \circ)$ by $a^{\circ(-1)}$.

Lemma 3.2. For any $a, b \in (\tilde{K}_1(X; \mathbb{Z}_n), \circ)$, we have
\begin{enumerate}
 \item $a^{\circ(-1)} = -a \cdot (1 - \beta(a))^{-1}$.
 \item $a^{\circ(-1)} \circ b \circ a = b + a \cdot \beta(b) - \beta(a) \cdot b$. In particular, if $b \in K^1(X) \otimes \mathbb{Z}_n = \ker \beta$, we have $a^{\circ(-1)} \circ b \circ a = (1 - \beta(a))b$.
\end{enumerate}

Proof. Direct computation yields
\[(-a \cdot (1 - \beta(a))^{-1} \circ a = -a \cdot (1 - \beta(a))^{-1} + a \cdot (1 - \beta(a))^{-1} \cdot \beta(a) = a + a \cdot (1 - \beta(a))^{-1} \cdot (\beta(a) - 1) = 0, \]
showing the first equation. The second one follows from the first one. \qed

Now we discuss the relationship between the two groups $[X, \text{Aut } E_{n+1}]$ and $[X, \text{Aut } \mathcal{O}_{n+1}]$. Let H_1 be the set of vectors of norm 1 in a separable infinite dimensional Hilbert space H. Then H_1 is contractible. Indeed, we can identify H_1 with the set \{f \in L^2[0, 1] \mid \|f\|_2 = 1\}, and define a homotopy $h_t : H_1 \to H_1$ sending f to \((1 - t) f + 1_{[0,1]} ||f||_2 = 1\), where $1_{[a,b]}$ is the characteristic function of $[a, b]$. This gives a deformation retraction of H_1 to the set \{1_{[0,1]}\}, and the space H_1 is contractible (see [22]). Since the group $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ freely acts on H_1 by multiplication, we can adopt H_1 as a model of the universal principal S^1-bundle $E S^1$ and identify the classifying space BS^1 of S^1 with the set of all minimal projections. The space BS^1 is the Eilenberg-MacLane space $K(\mathbb{Z}, 2)$ and we identifies the homotopy set $[X, BS^1]$ with $H^2(X)$ via the Chern classes of the line bundles.

Let η be the map $\text{Aut } E_{n+1} \ni \alpha \mapsto \alpha(e) \in B S^1$. We denote by η_\ast the induced map $\eta_\ast : [X, \text{Aut } E_{n+1}] \to H^2(X)$, which is a group homomorphism with image in $\text{Tor}(H^2(X), \mathbb{Z}_n)$ (see [24, Theorem 3.15]). We will show that the two maps η_\ast and $\hat{\beta}$ are compatible. Let $\mathcal{P}(K)$ be the set of all projections of K. We remark that the map $[X, \mathcal{P}(K)] \ni [p] \mapsto [p]_0 \in K^0(X)$ is well-defined by the definition of the K_0-group. Since \mathcal{O}_{n+1} is the quotient of E_{n+1} by a unique non-trivial closed two sided ideal, every element in $\text{Aut } E_{n+1}$ induces an element in $\text{Aut } \mathcal{O}_{n+1}$, which gives a group homomorphism from $\text{Aut } E_{n+1}$ to $\text{Aut } \mathcal{O}_{n+1}$. We denote by η the group homomorphism from $[X, \text{Aut } E_{n+1}]$ to $[X, \text{Aut } \mathcal{O}_{n+1}]$ induced by this homomorphism.

Proposition 3.3. Let q be as above, and let $l : H^2(X) \to K^0(X)$ be a map induced by the map $BS^1 \to \mathcal{P}(K)$ where we identify BS^1 with the set of all minimal projections. Then we have the following commutative diagram
\[
\begin{array}{ccc}
[X, \text{Aut } E_{n+1}] & \xrightarrow{\eta_\ast} & \text{Tor}(H^2(X), \mathbb{Z}_n) \\
\downarrow q & & \downarrow l \\
[X, \text{Aut } \mathcal{O}_{n+1}] & \xrightarrow{\hat{\beta}_\ast} & (1 + \text{Tor}(\tilde{K}_0(X), \mathbb{Z}_n))^\times
\end{array}
\]
Proof. For \(\alpha \in \text{Map}(X, \text{Aut } E_{n+1}) \), we denote by \(\hat{\alpha} \) the map in \(\text{Map}(X, \text{Aut } O_{n+1}) \) induced by \(\alpha \). Then with the identification of \([X, \text{Aut } O_{n+1}] \) and \(K^1(X; \mathbb{Z}_n) \), the map \(\eta \) sends \([\alpha] \) to \([u_\alpha] \).

One has \(l \circ \eta_\alpha([\alpha]) = [\alpha(1 \otimes e) \circ e]_0 \in K_0(C(X)) \) for every \(\alpha \in \text{Map}(X, \text{Aut } E_{n+1}) \) by definition. Since \(\beta \) is given by the index map \(\delta: K^1(C(X) \otimes O_{n+1}) \to K_0(C(X)) \). We compute the index \(\text{ind } [u_\alpha] \). We have a unitary lift \(V \in U(M_2(C(X) \otimes O_{n+1})) \) of the unitary \(u_\alpha \oplus u_\alpha^* : \)

\[
V = \left(\begin{array}{cc} \sum_{i=1}^{n+1} \alpha(1 \otimes T_i) T_i^* & \sum_{i=1}^{n+1} \alpha(1 \otimes e) 1 \otimes \alpha(1 \otimes T_i^*) \\ 1 \otimes e & \sum_{i=1}^{n+1} \alpha(1 \otimes e) 1 \otimes \alpha(1 \otimes T_i^*) \end{array} \right).
\]

Direct computation yields

\[
V(1 \otimes 0)V^* = (1 - \alpha(1 \otimes e)) \oplus (1 \otimes e)
\]

where we write \(1_{C(X)} \otimes e \) simply by \(1 \otimes e \). Hence we have

\[
\text{ind } [u_\alpha] = [1 - \alpha(1 \otimes e)]_0 + [1 \otimes e]_0 - [1]_0 = 1 - [\alpha(1 \otimes e)]_0 \in K_0(C(X) \otimes \mathbb{K}).
\]

Now we have \(1 - \text{ind } [u_\alpha] = [\alpha(1 \otimes e)]_0 \), and this proves the statement. \(\square \)

Lemma 3.4. We have the following commutative diagram with exact rows

\[
\begin{array}{cccccc}
K^1(X) & \xrightarrow{\rho} & [X, \text{Aut } E_{n+1}] & \xrightarrow{\eta_*} & \text{Tor}(H^2(X), \mathbb{Z}_n) \\
\downarrow & & \downarrow \delta & & \downarrow \beta & \\
K^1(X) & \xrightarrow{\rho} & [X, \text{Aut } O_{n+1}] & \xrightarrow{\eta_*} & \text{Tor}(H^2(X), \mathbb{Z}_n)^\times.
\end{array}
\]

Proof. Let \(\text{End} E_{n+1} \) be the set of unital endomorphisms of \(E_{n+1} \), and let \(\text{End}_0 E_{n+1} \) be its connected component of id. Then the inclusion \(\text{Aut } E_{n+1} \subset \text{End}_0 E_{n+1} \) is a weak homotopy equivalence (see [24, Theorem 3.14]). For \(u \in U(E_{n+1}) \), we denote by \(\rho_u \) the unitary endomorphism of \(E_{n+1} \) defined by \(\rho_u(T_i) = u T_i \). Then the correspondence \([u]_1 \to [\rho_u]_0\) gives the map from \(K^1(X) \) to \([X, \text{Aut } E_{n+1}] \). The exactness follows from [24, Theorem 3.15] and the Bockstein exact sequence. The right square commutes by Proposition 3.3. The left square commutes because the following diagram commutes

\[
\begin{array}{cccc}
u \in U(C(X) \otimes E_{n+1}) & \xrightarrow{\text{Map}(X, \text{End}_0 E_{n+1}) \ni \alpha = \rho_u} & \text{Map}(X, \text{End}_0 E_{n+1}) \ni \alpha = \rho_u \\
\downarrow & & \downarrow & \\
u \in U(C(X) \otimes E_{n+1}) & \xrightarrow{\text{Map}(X, \text{End}_0 E_{n+1}) \ni \alpha = \rho_u} & \text{Map}(X, \text{End}_0 E_{n+1}) \ni \alpha = \rho_u
\end{array}
\]

where \(\rho_u : X \ni x \mapsto \rho_u x \in \text{End}_0 E_{n+1} \) for every \(u \in U(C(X) \otimes E_{n+1}) \). \(\square \)

3.2 An example of non-commutative \([X, \text{Aut } O_{n+1}]\)

We first examine the ring structure of \(K^*(M_n \times \Sigma M_n) \) to show that \([M_n \times \Sigma M_n, \text{Aut } O_{n+1}]\) is a non-commutative group. By Lemma 2.2 and Theorem 2.2 we have

\[
\tilde{K}^1(M_n \times \Sigma M_n) \cong 1 \otimes \tilde{K}^1(\Sigma M_n) \oplus \tilde{K}^0(M_n) \oplus \tilde{K}^1(\Sigma M_n),
\]

\[
\tilde{K}^0(M_n \times \Sigma M_n) \cong \tilde{K}^0(M_n) \oplus 1 \oplus \tilde{K}^0(M_n \wedge \Sigma M_n).
\]

Therefore Lemma 2.1 yields \(\tilde{K}^0(M_n \times \Sigma M_n) \cong \mathbb{Z}_n^\oplus 2 \). In particular, the map \(\rho: \tilde{K}^1(M_n \times \Sigma M_n) \to \tilde{K}^1(M_n \times \Sigma M_n; \mathbb{Z}_n) \) is injective by the Bockstein exact sequence.

We determine a generator of \(K^1(M_n; \mathbb{Z}_n) \cong K^0(M_n) \cong \mathbb{Z}_n \). Recall that the canonical gauge action \(\lambda_z: S^1 \to \text{Aut } E_{n+1} \) is a generator of \(\pi_1(\text{Aut } E_{n+1}) = \mathbb{Z}_n \) (see [24, Theorem 2.36, 3.14]). Therefore we have a homotopy

\[
h: [0,1] \times S^1 \to \text{Aut } E_{n+1}
\]

with \(h_0(z) = \text{id}_{E_{n+1}}, h_1(z) = \lambda_z^o \), which extend \(\lambda \) to a map

\[
\lambda: M_n \to \text{Aut } E_{n+1}
\]

satisfying \(\lambda \circ i = \lambda_z \) for the map \(i: S^1 \hookrightarrow M_n \). For the gauge action \(\tilde{\lambda} \) of \(O_{n+1} \), we get an extension \(\tilde{\lambda}: M_n \to \text{Aut } O_{n+1} \) in the same way.

8
Lemma 3.5. We have the following isomorphisms:

\[i^*: [M_n, \text{Aut } E_{n+1}] \ni [\lambda] \mapsto [\lambda_1] \in [S^1, \text{Aut } E_{n+1}], \]

\[i^*: [M_n, \text{Aut } O_{n+1}] \ni [\lambda] \mapsto [\lambda_2] \in [S^1, \text{Aut } O_{n+1}]. \]

Proof. First, we show that \(i^*: [M_n, \text{Aut } O_{n+1}] \rightarrow [S^1, \text{Aut } O_{n+1}] \) is an isomorphism. By [14], Puppe sequence \(S^n \rightarrow S^1 \rightarrow M_n \rightarrow S^2 \rightarrow \cdots \) gives an exact sequence

\[\mathbb{Z}_n = \pi_1(\text{Aut } O_{n+1}) \xrightarrow{\mathbb{Z}_1} \pi_1(\text{Aut } O_{n+1}) \xrightarrow{i^*} [M_n, \text{Aut } O_{n+1}] \rightarrow 0. \]

Hence, the map \(i^* \) is an isomorphism of groups.

Similarly, the map \(i_*: [M_n, \text{Aut } E_{n+1}] \rightarrow [S^1, \text{Aut } E_{n+1}] \) is an isomorphism by [23] Theorem 2.36, 3.14.

Lemma 3.6. For every \(\alpha \in \text{Map}(M_n, \text{Aut } O_{n+1}) \), we have \(K_1(\alpha) = \text{id}_{K^0(M_n; \mathbb{Z}_n)}. \) In particular, we have \(K^0(M_n) \cdot K^1(M_n; \mathbb{Z}_n) = K^0(M_n) \cdot K^0(M_n) = \{0\}. \)

Proof. By Lemma 3.5, we have the following commutative diagram

\[
\begin{array}{ccc}
[M_n, \text{Aut } O_{n+1}] & \xrightarrow{i^*} & [S^1, \text{Aut } O_{n+1}] \\
\downarrow & & \downarrow \\
(K_1(C_0(M_n, pt) \otimes O_{n+1}), \circ) & \xrightarrow{K_1(r)} & (K_1(C_0(S^1, pt) \otimes O_{n+1}), \circ),
\end{array}
\]

where \(r: C_0(M_n, pt) \rightarrow C_0(S^1, pt) \) is a restriction by \(i: S^1 \hookrightarrow M_n \). Since two vertical maps are group isomorphisms, the map \(K_1(r) \) is a group homomorphism with respect to the multiplication \(\circ \). We have \(K_1(C(S^1) \otimes O_{n+1}) \xrightarrow{\beta} K^0(S^1) = 0 \), and it follows that \((K^1(S^1; \mathbb{Z}_n), +) = (K^1(S^1; \mathbb{Z}_n), \circ) \) by Theorem 3.4. Therefore two multiplications \(\circ \) and \(+ \) coincide in \(K^1(M_n; \mathbb{Z}_n) \), and we have \(K_1(\alpha) = \text{id}_{K^0(M_n; \mathbb{Z}_n)} \) and \(K^1(M_n; \mathbb{Z}_n) \cdot K^0(M_n) = 0 \). Since the map \(\beta \) is compatible with multiplication, we have \(K^0(M_n) \cdot K^0(M_n) = \beta(K^1(M_n; \mathbb{Z}_n) \cdot K^0(M_n)) = \{0\}. \)

We denote by \(a_1 \), the generator \([\lambda] \in [M_n, \text{Aut } O_{n+1}] = K^1(M_n; \mathbb{Z}_n) \), and denote \(g_1 = \beta(a_1) \).

By Lemma 2.7, two elements \(g \) and \(\rho(g) \) are the generators of \(K^0(M_n) \) and \(K^0(M_n; \mathbb{Z}_n) \) respectively. By Lemma 3.4, we have

\[g \cdot g = 0 \in K^0(M_n), \]

\[a_1 \cdot g = 0 \in K^1(M_n; \mathbb{Z}_n). \]

Now, we determine the group \([M_n \times \Sigma M_n, \text{Aut } E_{n+1}] \). Since the reduction \(\rho: \tilde{K}^1(M_n \times \Sigma M_n) \rightarrow \tilde{K}^1(M_n \times \Sigma M_n; \mathbb{Z}_n) \) is injective, we regard \(\tilde{K}^1(M_n \times \Sigma M_n) \) as a subgroup of \((\tilde{K}^1(M_n \times \Sigma M_n; \mathbb{Z}_n), \circ) \). From Lemma 3.4, we can regard \(\tilde{K}^1(M_n \times \Sigma M_n) \) as a normal subgroup of the group \([M_n \times \Sigma M_n, \text{Aut } E_{n+1}] \) too. Consider the map

\[\lambda: = \lambda \circ \text{Pr}_M: M_n \times \Sigma M_n \rightarrow \text{Aut } E_{n+1}. \]

By definition, we have \(q([\lambda]) = [u_\lambda]_1 = \text{Pr}_M([u_\lambda]_1) = \mu_R(a_\lambda \otimes 1) \in \tilde{K}^1(M_n \times \Sigma M_n; \mathbb{Z}_n). \)

Proposition 3.7. The group homomorphism \(q: [M_n \times \Sigma M_n, \text{Aut } E_{n+1}] \rightarrow [M_n \times \Sigma M_n, \text{Aut } O_{n+1}] \) is injective.

Proof. Note that the K"unneth formula implies \(H^2(M_n \times \Sigma M_n) \cong \mathbb{Z}_n. \) Since \(\hat{\beta}(\mu_R(a_\lambda \otimes 1)) = 1 - \mu(g \otimes 1) \) has order \(n \), and \(\hat{\beta}(\mu_R(a_\lambda \otimes 1)) = l(\eta([\lambda])), \) the element \(\eta([\lambda]) \) is a generator of \(H^2(M_n \times \Sigma M_n) \), and \(l \) is injective. Thus the statement follows from Lemma 3.4.
Theorem 3.8. With the above notation, the group \([M_n \times \Sigma M_n, \text{Aut } E_{n+1}]\) is isomorphic to the Heisenberg group \(\mathbb{Z}_n^2 \rtimes \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \mathbb{Z}_n\).

Proof. We already know that the group \([M_n \times \Sigma M_n, \text{Aut } E_{n+1}]\) isomorphic to the subgroup of \((K^1(M_n \times \Sigma M_n; \mathbb{Z}_n), \circ)\) generated by \(K^1(M_n \times \Sigma M_n)\) and \([u_\Lambda]_1\). Since the order of \([u_\Lambda]_1\) is \(n\), the group is a semi-direct product \((\mathbb{Z}_n \times \mathbb{Z}_n) \rtimes \mathbb{Z}_n\). To determine the group structure, it suffices to compute the action of \(\hat{\beta}([u_\Lambda]_1) = 1 - \mu(g \otimes 1)\) on \(K^1(M_n \times \Sigma M_n)\) by multiplication. Since \(K^1(M_n \times \Sigma M_n) = (\mu(1 \otimes u)) \otimes (\mu(g \otimes u)) \cong \mathbb{Z}_n \otimes \mathbb{Z}_n\), and \(g \cdot g = 0\), we get the statement.

\(\square\)

Corollary 3.9. The groups \([M_n \times \Sigma M_n, \text{Aut } E_{n+1}]\) and \([M_n \times \Sigma M_n, \text{Aut } \mathcal{O}_{n+1}]\) are non-commutative for any \(n \geq 2\). In particular, two spaces \(\text{BAut } \mathcal{O}_{n+1}\) and \(\text{BAut } E_{n+1}\) are not H-spaces.

Remark 3.10. If \(n\) is an odd number, we can actually show

\([M_n \times \Sigma M_n, \text{Aut } \mathcal{O}_{n+1}] \cong [M_n \times \Sigma M_n, \text{Aut } E_{n+1}] \times \mathbb{Z}_n\).

4 Continuous fields of Cuntz algebras

We first review Dadarlat’s results on the continuous fields of the Cuntz algebras. We refer to [10] Definition 10.1.2, 10.1.3 for the definition of the continuous fields of C*-algebras. A locally trivial continuous field of a C*-algebra \(A\) is the section algebra of a locally trivial fiber bundle with the fibre \(A\), which is an associated bundle of a principal \(Aut\ A\) bundle. By [13] Theorem 1.1, all continuous fields of \(\mathcal{O}_{n+1}\) over finite CW-complexes are locally trivial. So we identify the continuous fields of \(\mathcal{O}_{n+1}\) over finite CW-complexes with principal \(Aut\ \mathcal{O}_{n+1}\) bundles.

For a compact Hausdorff space \(X\), we denote by \(\text{Vect}_m(X)\) the set of the vector bundles of rank \(m\). Dadarlat investigated continuous fields of \(\mathcal{O}_{n+1}\) over \(X\) arising from \(E \in \text{Vect}_{n+1}(X)\), which are Cuntz-Pimsner algebras. We refer to [17] and [19] for Cuntz-Pimsner algebras. Fixing a Hermitian structure of \(E\), we get a Hilbert \(C(X)\)-module from \(E\), which we regard as a \(C(X)\)-\(C(X)\)-bimodule. Then the Pimsner construction gives the Cuntz-Pimsner algebra \(\mathcal{O}_E\), which is the quotient of \(T_E\) by \(K_E\). The algebra \(\mathcal{O}_E\) is a continuous field of \(\mathcal{O}_{n+1}\) over \(X\). We denote by \(\theta_E : C(X) \to \mathcal{O}_E\) the natural unital inclusion.

Theorem 4.1 ([19] Theorem 4.8]). Let \(X\) be a compact Hausdorff space, and let \(E\) be a vector bundle over \(X\). Then we have the following exact sequence

\[
\begin{array}{cccc}
K_0(C(X)) & \xrightarrow{1-[E]} & K_0(C(X)) & \xrightarrow{\theta_E} & K_0(\mathcal{O}_E) \\
\downarrow & & \downarrow & & \downarrow \\
K_1(\mathcal{O}_E) & \xrightarrow{\theta_E} & K_1(C(X)) & \xrightarrow{1-[E]} & K_1(C(X))
\end{array}
\]

where the map \(\theta_E : C(X) \to \mathcal{O}_E\) is the natural inclusion, and the map \(1-[E]\) is the multiplication by \(1-[E] \in K^0(X)\).

Dadarlat found an invariant to classify the \((C(X))\)-linear isomorphism classes of \(\mathcal{O}_E\).

Theorem 4.2 ([12] Theorem 1.1]). Let \(X\) be a compact metrizable space, and let \(E\) and \(F\) be vector bundles of rank \(\geq 2\) over \(X\). Then there is a unital \(*\)-homomorphism \(\varphi : \mathcal{O}_E \to \mathcal{O}_F\) with \(\varphi \circ \theta_E = \theta_F\) if and only if \((1-[E]) \cdot K^0(X) \subset (1-[F]) \cdot K^0(X)\). Moreover we can take \(\varphi\) to be an isomorphism if and only if \((1-[E]) \cdot K^0(X) = (1-[F]) \cdot K^0(X)\).

The key observation of Dadarlat is that if there is a \((C(X))\)-linear isomorphism \(\varphi : \mathcal{O}_E \to \mathcal{O}_F\), we have \((1-[E]) \cdot K^0(X) = \text{Ker } K_0(\theta_E) = \text{Ker } K_0(\theta_F) = (1-[F]) \cdot K^0(X)\) by the exact sequence of Theorem 4.1.

Dadarlat also estimate the cardinality of the set of the \((C(X))\)-linear isomorphism classes of \(\mathcal{O}_E\). We denote \([x] : = \min\{k \in \mathbb{Z} : k \geq x\}\).
Theorem 4.3. Let X be a finite connected CW-complex with Tor(H*(X), Z_n) = 0. Then the following holds.
1. \(|K^0(X) \otimes \mathbb{Z}_n| = |\bar{H}^{even}(X, \mathbb{Z})|\).
2. If \(n \geq \lfloor (\dim X - 3)/3 \rfloor\), the set \(\{|O_E|; E \in \text{Vect}_{n+1}(X)\}\) exhausts all the isomorphism classes of continuous fields of \(O_{n+1}\) over \(X\), and its cardinality is \(|K^0(X) \otimes \mathbb{Z}_n|\).

Our goal in this section is to remove the restriction \(n \geq \lfloor (\dim X - 3)/3 \rfloor\) from the above statement using a localization trick. In fact, all the necessary algebraic arguments for the proof are already in Dadarlat’s paper [12].

Let \(F_n\) be the set of all prime numbers \(p\) with \((n, p) = 1\), and let \(M_{\langle n \rangle}\) be the UHF algebra

\[M_{\langle n \rangle} = \prod_{p \in F_n} M_p\).

This is the unique UHF algebra satisfying \(K_0(M_{\langle n \rangle}) = \mathbb{Z}_{\langle n \rangle}\) where \(\mathbb{Z}_{\langle n \rangle}\) is a localization of \(\mathbb{Z}\) by \(\langle n \rangle\). Assume that \(r\) is a natural number with \((n, r) = 1\). Then the \(K\)-groups of \(O_{nr+1} \otimes M_{\langle n \rangle}\) are

\[K_0(O_{nr+1} \otimes M_{\langle n \rangle}) = \mathbb{Z}_{nr} \otimes \mathbb{Z}_{\langle n \rangle} = \mathbb{Z}_n = \langle 1 \rangle, \quad K_1(O_{nr+1} \otimes M_{\langle n \rangle}) = 0[13].

Therefore Kirchberg and Phillips’ classification theorem [13, Theorem 4.2.4] yields \(O_{nr+1} \otimes M_{\langle n \rangle} \cong O_{n+1}\). Let \(F_r\) be a vector bundle over \(X\) of rank \(nr + 1\). Then we have a continuous field of \(O_{n+1}\) of the form \(O_F \otimes M_{\langle n \rangle}\).

Definition 4.4. We denote by \(O(X)_n\) the \(C(X)\)-linear isomorphism classes of continuous fields of the Cuntz algebra \(O_{n+1}\) over \(X\) of the form \(O_F \otimes M_{\langle n \rangle}\) for \(F_r \in \text{Vect}_{nr+1}(X)\) with \((n, r) = 1\).

Note that we have \(K_*(C(X) \otimes M_{\langle n \rangle}) = K^*(X) \otimes \mathbb{Z}_{\langle n \rangle}\). Following Dadarlat’s argument, we consider an ideal \((1 - [F_r])K^0(X) \otimes \mathbb{Z}_{\langle n \rangle}\) of the ring \(K^0(X) \otimes \mathbb{Z}_{\langle n \rangle}\).

Lemma 4.5. Let \(X\) be a finite connected CW-complex. Let \(F_r\) and \(F_R\) be vector bundles over \(X\) of rank \(nr + 1\) and \(nR + 1\) respectively, with \((n, r) = (n, R) = 1\). If \(O_F \otimes M_{\langle n \rangle}\) is \(C(X)\)-linearly isomorphic to \(O_{F_R} \otimes M_{\langle n \rangle}\), we have \((1 - [F_r])K^0(X) \otimes \mathbb{Z}_{\langle n \rangle} = (1 - [F_R])K^0(X) \otimes \mathbb{Z}_{\langle n \rangle}\).

Proof. Let \(\varphi: O_F \otimes M_{\langle n \rangle} \rightarrow O_{F_R} \otimes M_{\langle n \rangle}\) be a \((C(X))-linear isomorphism. First, we show that the following diagram induces a commutative diagram of \(K_0\)-groups:

\[
\begin{array}{cccc}
C(X) \otimes M_{\langle n \rangle} & \overset{\theta_F \otimes \text{id}}{\longrightarrow} & O_F \otimes M_{\langle n \rangle} & \overset{\text{id} \otimes 1 \otimes \text{id}}{\longrightarrow} & O_{F_r} \otimes M_{\langle n \rangle} \\
\downarrow & & \downarrow & & \downarrow \\
C(X) \otimes M_{\langle n \rangle} & \overset{\theta_F \otimes \text{id} \otimes 1}{\longrightarrow} & O_F \otimes M_{\langle n \rangle} \otimes M_{\langle n \rangle} & \overset{\varphi \otimes \text{id}}{\longrightarrow} & O_{F_R} \otimes M_{\langle n \rangle} \otimes M_{\langle n \rangle} \\
\downarrow & & \downarrow & & \downarrow \\
C(X) \otimes M_{\langle n \rangle} & \overset{\theta_F \otimes \text{id} \otimes 1}{\longrightarrow} & O_F \otimes M_{\langle n \rangle} \otimes M_{\langle n \rangle} & \overset{\text{id} \otimes 1 \otimes \text{id}}{\longrightarrow} & O_{F_R} \otimes M_{\langle n \rangle} \otimes M_{\langle n \rangle} \\
\downarrow & & \downarrow & & \downarrow \\
C(X) \otimes M_{\langle n \rangle} & \overset{\theta_F \otimes \text{id}}{\longrightarrow} & O_F \otimes M_{\langle n \rangle} & \overset{\text{id} \otimes 1 \otimes \text{id}}{\longrightarrow} & O_{F_R} \otimes M_{\langle n \rangle}.
\end{array}
\]

The middle square of the diagram commutes because \(\varphi\) is \(C(X)\)-linear. By [13, Theorem 2.2], two \(*\)-homomorphisms \(1 \otimes \text{id}, \text{id} \otimes 1: M_{\langle n \rangle} \rightarrow M_{\langle n \rangle} \otimes M_{\langle n \rangle}\) are homotopic. So the upper and lower square of the diagram commute up to homotopy, and commutes in the level of \(K\)-groups.

Second, we show the vertical map \(\text{id} \otimes 1 \otimes \text{id}: O_F \otimes M_{\langle n \rangle} \rightarrow O_F \otimes M_{\langle n \rangle} \otimes M_{\langle n \rangle}\) induces an isomorphism of the \(K\)-groups. One has an isomorphism \(\psi: M_{\langle n \rangle} \rightarrow M_{\langle n \rangle} \otimes M_{\langle n \rangle}\). By [13, Theorem 2.2], two maps \(1 \otimes \text{id}\) and \(\psi\) are homotopic. So the map \(K_0(\text{id} \otimes 1 \otimes \text{id}) = K_0(\text{id} \otimes \psi)\) is an isomorphism.

Finally, we show \((1 - [F_r])K^0(X) \otimes \mathbb{Z}_{\langle n \rangle} = (1 - [F_R])K^0(X) \otimes \mathbb{Z}_{\langle n \rangle}\). An exact sequence \(0 \rightarrow K_{F_r} \otimes M_{\langle n \rangle} \rightarrow T_{F_r} \otimes M_{\langle n \rangle} \rightarrow O_F \otimes M_{\langle n \rangle} \rightarrow 0\) gives a 6-term exact sequence, and we have the following exact sequence:

\[K_0(C(X)) \otimes \mathbb{Z}_{\langle n \rangle} \overset{\phi}{\rightarrow} K_0(C(X)) \otimes \mathbb{Z}_{\langle n \rangle} \overset{\phi_{\theta_F \otimes \text{id}}}{\rightarrow} K_0(O_F \otimes M_{\langle n \rangle}).\]
So we have \(\text{Ker} K_0(\theta_{F_r} \otimes \text{id}) = (1 - [F_r])K^0(X) \otimes \mathbb{Z}_{(n)} \). This gives the conclusion because the diagram below commutes by the above argument:

\[
\begin{array}{ccc}
K_0(C(X)) \otimes \mathbb{Z}_{(n)} & \xrightarrow{\text{K}_0(\text{id} \otimes \theta_{F_r})} & K_0\left(\mathcal{O}_{F_r} \otimes M_{(n)} \right) \\
\downarrow & & \downarrow \text{K}_0(\phi) \\
K_0(C(X)) \otimes \mathbb{Z}_{(n)} & \xrightarrow{\text{K}_0(\text{id} \otimes \theta_{F_r})} & K_0\left(\mathcal{O}_{F_r} \otimes M_{(n)} \right).
\end{array}
\]

We define an equivalence relation \(\sim_n \) in \(\tilde{K}^0(X) \otimes \mathbb{Z}_{(n)} \).

Definition 4.6. Let \(a \) and \(b \) be elements in \(\tilde{K}^0(X) \otimes \mathbb{Z}_{(n)} \). Then \(a \sim_n b \) if there exists \(z \in \tilde{K}^0(X) \otimes \mathbb{Z}_{(n)} \) satisfying \((a + b) - (a + z) = (n + b) \).

All elements of \(\tilde{K}^0(X) \otimes \mathbb{Z}_{(n)} \) are nilpotent by [16, Chap.II, Theorem 5.9]. The relation \(\sim_n \) is well-defined because \((1 - z) \) has the inverse \(\sum_{k=0}^{\infty} z^k \).

Lemma 4.7. Let \(X \) be a connected compact Hausdorff space, and let \(F_r \) and \(F_R \) be vector bundles of rank \(n+1 \) and \(nR+1 \) respectively with \((n, r) = (n, R) = 1 \). If \((1 - [F_r])K^0(X) \otimes \mathbb{Z}_{(n)} = (1 - [F_R])K^0(X) \otimes \mathbb{Z}_{(n)} \), we have \([F_r]r^{-1} \sim_n [F_R]R^{-1} \).

Proof. By assumption we have \(h \in K^0(X) \otimes \mathbb{Z}_{(n)} \) satisfying \((nr + [F_r])h = (nR + [F_R]) \). A split exact sequence \(0 \to K^0(X) \otimes \mathbb{Z}_{(n)} \to K^0(X) \otimes \mathbb{Z}_{(n)} \to K^0(\{pt\}) \otimes \mathbb{Z}_{(n)} \rightarrow 0 \) yields \(h - R/r \in K^0(X) \otimes \mathbb{Z}_{(n)} \). So we have \((n + [F_r]r^{-1})(1 + \frac{1}{r}(h - R/r)) = (n + [F_R]) \).

By Lemma 4.5 and Lemma 4.7, the map \(I_n : \mathcal{O}(X)_n \ni [\mathcal{O}_{F_r} \otimes M_{(n)}] \mapsto [[F_r]r^{-1}] \in \tilde{K}^0(X) \otimes \mathbb{Z}_{(n)} \sim_n \) is well-defined.

Lemma 4.8. Let \(X \) be a finite dimensional compact connected Hausdorff space. Then the map \(I_n \) is surjective, and we have

\[
|X, \text{BAut} \mathcal{O}_{n+1}]| \geq |\mathcal{O}(X)_n| \geq |\tilde{K}^0(X) \otimes \mathbb{Z}_{(n)}| \sim_n .
\]

Proof. Every element of \(\tilde{K}^0(X) \otimes \mathbb{Z}_{(n)} \) is of the form \(\frac{1}{r} \otimes x \) where \((n, r) = 1 \) and \(x \in \tilde{K}^0(X) \). By [15, Section 9, Theorem 1.2], we have \(R \in \mathbb{N} \) satisfying \(\tilde{K}^0(X) = \{ [E] \in \tilde{K}^0(X) \mid \text{rank } E = nR+1 \} \). So we have a vector bundle of rank \(nR+1 \), \(F_{R} \) with \(RX = [F_{R}] \). Therefore we have \(I_n([F_{R}]) = [\frac{1}{R} \otimes x] \). By [14, Theorem 1.4], one has \(\mathcal{O}(X)_n \subseteq [X, \text{BAut} \mathcal{O}_{n+1}] \). This proves the lemma.

Let \(R \) be a commutative algebra. A filtration of \(R \) is a sequence of subalgebras

\[
\cdots R_{k+1} \subseteq R_k \subseteq \cdots \subseteq R_1 = R
\]

with \(R_p \subseteq R_{p+q} \). Let \(X \) be a finite CW-complex. Then the group \(\tilde{K}^0(X) \) is a finitely generated commutative group by induction argument of attaching cells. The algebra \(\tilde{K}^0(X) \) has a filtration

\[
0 = K^0_m(X) \subseteq \cdots \subseteq K^0_0(X) = \tilde{K}^0(X)
\]

by [3, Section 2.1]. Consider a sequence of \(k \)-skeleta \(\{pt\} = X_0 \subseteq X_1 \subseteq \cdots \subseteq X_m = X \). Then we define \(K^0_k(X) \) by \(\text{Ker}(\tilde{K}^0(X) \to K^0(X_k)) \). If the cohomology groups of a finite CW-complex \(X \) have no torsion, one has \(\text{Tor}(K^0_k(X)/K^0_{k+1}(X), \mathbb{Z}_n) = 0 \) by [3, Section 2.3] and [3, Section 2.4]. Moreover Dadarlat shows in his proof of [12, Theorem 5.3] that if the cohomology groups of the space \(X \) have no \(n \)-torsion, one has \(\text{Tor}(K^0_k(X)/K^0_{k+1}(X), \mathbb{Z}_n) = 0, m \geq k \). The proof of the following lemma is the same as in the proof of [12, Lemma 5.2].

Lemma 4.9. Let \(R \) be a filtered commutative ring with \(0 = R_m \subseteq R_{m-1} \subseteq \cdots \subseteq R_1 = R \) and such that \(R \) is finitely generated as an additive group. If \(\text{Tor}(R_k/R_{k+1}, \mathbb{Z}_n) = 0 \) for every \(k \), we have \(|(R \otimes \mathbb{Z}_n)|/ \sim_n \geq |R \otimes \mathbb{Z}_n| \).
Corollary 4.10. Let X be a finite CW-complex. Suppose $\text{Tor}(H^*(X), \mathbb{Z}_n) = 0$. Then we have

$$|\tilde{K}^0(X) \otimes \mathbb{Z}(n)/\sim_n| \geq |\tilde{K}^0(X) \otimes \mathbb{Z}_n|.$$

We need the following proposition.

Proposition 4.11 ([12, Proposition 5.1]). Let X be a finite CW-complex. Then we have

$$|\tilde{H}^\text{even}(X, \mathbb{Z}_n)| \geq |X, \text{BAut} \mathcal{O}_{n+1}|,$$

where $\tilde{H}^\text{even}(X, \mathbb{Z}_n) := \prod_{k \geq 1} H^{2k}(X, \mathbb{Z}_n)$.

Now we show the following theorem.

Theorem 4.12. Let X be a finite CW-complex. Suppose $\text{Tor}(H^*(X), \mathbb{Z}_n) = 0$. Then the map $I_n : \mathcal{O}(X)_n \to \tilde{K}^0(X) \otimes \mathbb{Z}(n)/\sim_n$ is bijective, and we have

$$|[X, \text{BAut} \mathcal{O}_{n+1}]| = |\mathcal{O}(X)_n| = |\tilde{H}^\text{even}(X, \mathbb{Z}_n)|.$$

Proof. By Corollary 4.10 we have $|\tilde{K}^0(X) \otimes \mathbb{Z}(n)/\sim_n| \geq |\tilde{K}^0(X) \otimes \mathbb{Z}_n|$. By Lemma 4.8 we have $|[X, \text{BAut} \mathcal{O}_{n+1}]| \geq |\tilde{K}^0(X) \otimes \mathbb{Z}(n)/\sim_n|$. From Proposition 4.11 we have $|\tilde{H}^\text{even}(X, \mathbb{Z}_n)| \geq |[X, \text{BAut} \mathcal{O}_{n+1}]|$, and Theorem 4.3 yields $|[X, \text{BAut} \mathcal{O}_{n+1}]| = |\mathcal{O}(X)_n| = |\tilde{H}^\text{even}(X, \mathbb{Z}_n)|$.

References

[1] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. I, Osaka J. Math. 2 (1965), 71–115.

[2] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. II, Osaka J. Math. 3 (1966), 81–120.

[3] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. 3 (1961), 7–38.

[4] B. Blackadar, K-theory for operator algebras, 2nd ed., Math. Sci. Inst. Publ., vol. 5, Cambridge University Press, Cambridge, 1998.

[5] N. P. Brown and N. Ozawa, C*-algebras and finite dimensional approximations, vol 88. Amer. Math. Soc., 2008.

[6] J. Cuntz, K-theory for cerain C*-algebras, Ann. of Math. (2) 113 : 1 (1981), 181–197.

[7] J. Cuntz, On the homotopy groups of the space of endomorphisms of a C*-algebra (with applications to topological Markov chains), Operator algebras and group representations, vol. I (Neptun, 1980), 124–137, Monogr. Stud. Math. 17, Pitman, Boston, MA, 1984.

[8] J. F. Davis and P. Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35. Amer. Math. Soc, Providence, RI, 2001.

[9] M. Dadarlat, The homotopy groups of the automorphism groups of Kirchberg algebras, J. Noncommut. Geom. 1 (2007), no. 1, 113–189.

[10] J. Dixmier, Les C*-algebres et leurs representations, 2nd ed., Cahiers Scientifiques 29, Gauthier-Villars, Paris, 1969. Reprinted by Editions Jacques Gabay, Paris, 1996. Translated as C*-algebras, North-Holland, Amsterdam, 1977.

[11] M. Dadarlat and U. Pennig, A Dixmier-Douady theory for strongly self-absorbing C*-algebras, J. Reine Angew. Math. 718 (2016), 153–181.

[12] M. Dadarlat, The C*-algebra of a vector bundle, J. Reine Angew. Math. 670 (2012), 121–143.

[13] M. Dadarlat and W. Winter, On the KK-theory of strongly self-absorbing C*-algebras, Math. Scand. 104 (2009), no. 1, 95–107.
[14] M. Dadarlat, Continuous fields of C*-algebras over finite dimensional spaces, Adv. Math. 222 (2009), no. 5, 1850–1881.
[15] D. Husemoller, Fibre bundles third edition., Grad. Texts Math. 20, Springer-Verlag, New York 1994.
[16] M. Karoubi, K-theory, Grundl. Math. Wiss. 226, Springer-Verlag, Berlin 1978.
[17] T. Katsura, On C*-algebras associated with C*-correspondences, Journal of Functional Analysis. 217 (2004), 366–401.
[18] N. C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49–114.
[19] M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by \(\mathbb{Z} \), Fields Inst. Commun. 12 (1997), 189–212.
[20] M. Rørdam, F. Larsen and N. J. Laustsen, An introduction to K-theory for C*-algebras, London Mathematical Society Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000.
[21] I. Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, Mathematical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998.
[22] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor, Duke. Mathematical. Journal. vol. 55, no. 2, (1987), 431–474.
[23] C. Schochet, Topological methods for C*-algebras , IV : Mod p homology, Pacific J. Math. 114 : 2 (1984), 447–469.
[24] T. Sogabe, The homotopy groups of the automorphism groups of Cuntz-Toeplitz algebras, preprint, arXiv:1903.02796
[25] A. S. Toms and W. Winter, Strongly self-absorbing C*-algebras, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3999–4029.
[26] W. Winter, Strongly self-absorbing C*-algebras are \(\mathbb{Z} \)-stable, J. Noncommut. Geom. 5 (2011), no. 2, 253–264.