Identification and in silico analysis of cattle DExH/D box RNA helicases

Manish Kumar Suthar, Mukul Purva, Sunil Maherchandani and Sudhir Kumar Kashyap*

Abstract
The helicases are motor proteins participating in a range of nucleic acid metabolisms. RNA helicase families are characterized by the presence of conserved motifs. This article reports a comprehensive in silico analysis of Bos taurus DExH/D helicase members. Bovine helicases were identified using the helicase domain sequences including 38 DDX (DEAD box) and 16 DHX (DEAH box) members. Signature motifs were used for the validation of these proteins. Putative sub cellular localization and phylogenetic relationship for these RNA helicases were established. Comparative analysis of these proteins with human DDX and DHX members was carried out. These bovine helicase have been assigned putative physiological functions. Present study of cattle DExH/D helicase will provides an invaluable source for the detailed biochemical and physiological research on these members.

Keywords: RNA helicases, DEAD box, Bioinformatics, Bovine, Bos taurus

Background
A fundamental cellular action of RNA helicases is to unwind nucleic acid duplexes and thus, they are required for different cellular processes involving RNA. Among these helicases several members perform their functions in pre-mRNA processing and ribosome biogenesis (Linder 2006). The DEAD and DEAH are the subgroups of the DExH/D family (Staley and Guthrie 1998). The DDX code is used for DEAD box and DHX is used for DEAH box. The basis of nomenclature of these DExH/D helicases is the composition of conserved amino acids in their motif II. DEAD-box and DEAH-box, helicases have D-E-A-D (Asp, Glu, Ala and Asp) and D-E-A-H (Asp, Glu, Ala and His) amino acids respectively at this motif. These proteins have role in RNA metabolism viz. transcription, translation, RNA editing and folding, nuclear transport, RNA degradation and RNA-ribosomal complex formations (Linder and Daugeron 2000; Patel and Donmez 2008). Alignments of the protein sequences obtained from various organisms have revealed nine highly conserved motifs in DEAD-box proteins (Q, I, Ia, Ib, and II–VI) and eight in DEAH-box proteins I, Ia, Ib, II, III, IV, V and VI (Tuteja and Tuteja 2004a, 2004b; Tanner et al. 2003). Among these motifs, motif II (or Walker B motif) along with motif I (or Walker A motif) and Q-motif are necessary for ATP binding and hydrolysis (Tanner et al. 2003) whereas, motifs Ia, Ib, II, IV and V may be involved in RNA binding (Svitkin et al. 2001).

Genome sequencing of variety of organisms have revealed the presence of different numbers of DExH/D helicases. In a genome-wide comparative study 161, 149, 136 and 213 different RNA helicase genes have been identified in Arabidopsis thaliana, Oryza sativa, Zea mays and Glycine max respectively (Xu et al. 2013). Also, ...
31 DEAD and 14 DEAH putative RNA helicases have been reported from human beings (Umate et al. 2011).

Recently, Steimer and Klostermeier summarised involvement of RNA helicases in infection and diseases (Steimer and Klostermeier 2012). For example dysregulation of these helicases has been linked to a wide variety of cancers. In addition, these proteins have a role in the replication of viruses such as Foot and mouth disease virus infection in cattle and HIV virus in human beings. RNA helicases A (DHX9) has been associated with cattle FMD disease (Radi et al. 2012; Lawrence and Rieder 2009). We can reveal prognostic and diagnostic markers and identify potential drug targets by characterizing these helicases.

Cattle are economically important domesticated ungulates. Phylogenetic analysis has shown a distant clad for cattle as compared to humans and rodents (Murphy et al. 2004) and around 800 breeds have been established serving as resource for the genetics of complex traits studies. The genome sequence for domesticated cattle (Bos taurus) was assembled and published in 2009 (The Bovine Genome Sequencing and Analysis Consortium 2009). The sequence reveals presence of a minimum 22,000 genes in cattle. In the present study, sequenced cattle genome was used to evaluate the number of DEAD-box and related family proteins which might be present, along with their phylogeny. The composition of these bovine motor proteins have also been analysed. In silico analysis of bovine DExH/D helicases provided the putative role of these proteins in various RNA metabolism processes which might be operating in Bos taurus.

Methods

Database search and enlistment of RNA helicases

The sequences for DExH/D family members encoded by Bos taurus were downloaded from NCBI/BLAST (http://www.ncbi.nlm.nih.gov). Amino acid sequence of eIF4A1 (Swiss-Prot Id-Q3SZ54) was obtained first from Swiss-Prot using the key words eIF4A1 Bos taurus. The input sequence so obtained was used in the Cow RefSeq protein database available at NCBI/BLAST home. The cow genome sequences were searched using program BLASTP-Compare protein sequence against ‘BLAST Cow sequences’ resource. Finally tentative lists of DExH/D family members were compiled and all proteins (DExH/D family members) were assigned unique Swiss-Prot IDs, protein names and gene names. After identification of bovine RNA helicases their phylogenetic analysis was carried out along with helicases of other animals of veterinary importance like horse, pig and sheep. For this key words DEAD and DEAH helicase along with animal name were used to download homologs from pig, horse and sheep from Swiss-Prot database for phylogenetic analysis of these DExH/D helicases vis a vis bovine helicases. The amino acid sequences of both families of RNA helicases were aligned and the neighbour-joining method in MEGA 5.0 was applied to examine their evolutionary relationship (Tamura et al. 2011).

Specific sequences of Bos taurus were used for BLASTP search against human homologs as described above to compare their homology. Protein sequences were validated by the presence of signature motifs. Predictive molecular weight and isoelectric point for the RNA helicases were calculated from Sequence Manipulating Suite (http://www.bioinformatics.org/sms2/). Protein localization was studied using WoLF PSORT (http://www.gen-script.com/psort/wolf_psort.html) program.

Motif identification and phylogenetic analysis

The signature motifs for the protein family were identified. Protein sequences of DEAD and DEAH members were first aligned using ClustalW2 program available at http://www.ebi.ac.uk/Tools/msa/clustalw2/ and alignment files were downloaded. Conserved motifs in bovine DExH/D were also identified using the MEME suite (version 4.9.1) at meme.ncbi.nlm/meme/cgi-bin/meme.cgi. Finally list of signature motifs was generated. Phylogenetic analysis was performed using MEGA5 program (http://www.megasoftware.net/) by the Neighbour-Joining method (NJ) with parameters; complete deletion option, p-distance and bootstrapping method with 1000 replicates (Tamura et al. 2011). Final image was obtained using the MEGA5 program. Domain analysis was performed using the program Scan Prosite (http://expasy.org) and these domain structures were used in the figures.

Results and discussion

Identification and validation of Bos taurus DExH/D family members

Genomes of all organisms have genes encoding RNA helicases. Although various comprehensive analyses of these helicases are available in various organisms, limited studies have been conducted on the role of RNA helicases in cattle. The studies of biological function of cattle RNA helicases can unravel their roles and can help in understanding different diseases in cattle and also help in improving economically important traits. Fifty four DEXH/D family members of RNA helicases were identified in Bos taurus in the present study, amongst which 38 members belonged to DDX family (DEAD) (Table 1) and 16 members to DHX family (DEAH) of RNA helicases (Table 2). Further analysis of cattle helicase sequences with MEME suite suggested the pattern of amino acids occurrence in signature motifs validating the protein family members. Besides characteristic residues of
motifs, some residues were found to be conserved around each motif of various DExH/D family members. The 38 bovine DDX members identified were DDX1, DDX3X, DDX3Y, DDX4, DDX5, DDX6, DDX10, DDX17, DDX18, DDX19A, DDX19B, DDX20, DDX21, DDX23, DDX24, DDX25, DDX27, DDX28, DDX31, DDX39A, DDX39B, DDX41, DDX42, DDX43, DDX46, DDX47, DDX49, DDX50, DDX51, DDX52, DDX53, DDX54, DDX55, DDX56, DDX57, DDX58, DDX59, DDX60, DDX61, DDX62, DDX63, DDX64, DDX65, DDX66, DDX67, DDX68, DDX69, DDX70, DDX71, DDX72, DDX73, DDX74, DDX75, and DDX76.

Table 1 Summary of the features of the Bovine DDX member proteins

Bos Taurus	Human	Isoelectric point	Molecular weight (kDa)	Localization	% Coverage with human	% Identity with human
DDX1	DDX1	7.23	82.43	C,N	100	97
DDX3X	DDX3X	7.2	73.15	N	100	99
DDX3Y	DDX3Y Isoform2	7.39	73.17	N	100	91
DDX4	DDX4 Isoform1	5.96	79.46	N,C	100	91
DDX5	Dead box polypeptide S	9.21	69.16	N	100	100
DDX6	DDX6	8.93	54.39	N	99	99
DDX10	DDX10	9.17	101.18	N	100	89
DDX17	DDX17 Isoform1	8.75	72.33	N,C	100	99
DDX18X1	DDX18	10.04	75.13	N,M	100	90
DDX19A	DDX19A	6.72	54.00	C,N	100	97
DDX19B	DDX19B Isoform1	8.54	54.46	M,N,C	95	98
DDX20	Dead box polypeptide 20	6.77	92.71	N,C	100	88
DDX23	DDX23	10.22	95.67	N	100	99
DDX24	DDX24	10.01	94.53	N	100	81
DDX25	DDX25	6.33	54.63	C,N	100	93
DDX27	DDX27	9.89	87.10	N	100	95
DDX28	DDX28	10.75	60.02	M,C,N	99	85
DDX31	DDX31	10.43	80.87	N	99	79
DDX39A	DDX39A	5.39	49.15	C,N	100	96
DDX39B	DDX39B	5.38	48.97	C,N	100	99
DDX41	DDX41	6.94	69.83	C,N,M	100	99
DDX42	DDX42	7.28	107.56	N,C	96	95
DDX43	Dead box polypeptide 43	8.77	72.04	N	99	76
DDX46	DDX46IsoformX1	9.87	117.46	N,C	100	99
DDX47	DDX47IsoformX1	9.64	50.92	N	100	96
DDX49	DDX49	9.82	44.39	C,N,M	99	91
DDX50	Dead box polypeptide 50	9.64	82.60	N,C	100	97
DDX51	DDX51	7.56	60.69	N,C	98	82
DDX52	DDX52	10.32	67.52	N,C	100	91
DDX53	DDX53	9.88	68.47	N	99	68
DDX54	DDX54	10.68	102.72	N	94	90
DDX55	DDX55	9.83	68.61	N,C	100	94
DDX56	DDX56Isoform1	9.02	61.27	N,C,M	100	93
DDX59	DDX59	8.03	67.45	N,C	100	77
EIF4A1	EIF4A1Isoform1	5.12	46.15	N	100	100
EIF4AII	EIF4AII	5.13	46.41	N	100	100
EIF4A-III	EIF4A-III	6.69	46.85	N,M	100	99
Nucleolar RNA Hel2	Isoform1(DDX21)	9.87	87.25	N,C	100	89

N, M and C represent Nuclear, Mitochondrial and Cytoplasmic localization, respectively
Table 2 Summary of the features of the Bovine DHX member proteins

Bos Taurus	Human	Isoelectric Point	Molecular weight (kDa)	Localization	% Coverage with human	% Identity with human
DHX8	DHX8	8.33	140.28	N	99	98
DHX9	Helicase A	6.88	141.97	N	90	95
DHX15	DHX15	7.48	90.95	N	100	99
DHX16	DHX16 Iso1	6.39	119.88	N,C	100	98
DHX29	DHX29	8.67	155.28	N	99	93
DHX30	DHX30 Iso1	8.61	135.97	M,C,N	100	97
DHX32	DHX32	4.79	83.88	C,N	100	89
DHX33	DHX32 Iso1	9.23	79.75	N	98	92
DHX34	DHX34	7.96	128.80	N	100	88
DHX35	DHX35 Iso1	8.66	78.89	N	99	96
DHX36	DHX36 Iso1	7.87	114.85	N,M	100	92
DHX37	DHX37	8.93	129.02	N,C,M	100	85
DHX38	PRP16	6.55	140.19	N	100	95
DHX40	DHX40 Iso1	8.83	88.52	N	100	99
DHX57	DHX57	7.69	155.76	N	96	91
DHX58	DHX58	8.63	77.19	C,N	100	83

N, M and C represent Nuclear, Mitochondrial and Cytoplasmic localization, respectively.

DDX56, DDX59, eIF4AII, eIF4AIII and eIF4A1II (Table 1). In all, 9 motifs (Q, I, Ia, Ib, II, IV, V and VI) were identified in these proteins which are shown in Fig. 1. The signature motifs in DDX protein showed consensus sequences as GFxxPxxIQ (Q), AxxGxGKT (I), PTRELA (Ia), TGGR (Ib), DExD (II), SAT (III), FVxT (IV), RGxD (V) and HRxGRxxR (VI). In the case of DDX49 three motifs namely; TGGR, DExD and SAT were found missing (Fig. 1). The 16 DHX members that could be identified were DHX8, DHX9, DHX15, DHX16, DHX29, DHX30, DHX32, DHX33, DHX34, DHX36, DHX37, DHX38, DHX39, DHX40, DHX57 and DHX58 (Fig. 2). Consensus sequences GxxGxGKT (I), TQPRRV (Ia), TDGML (Ib), DExH (II), SAT (III), FVxT (IV), RGxD (V) and HRxGRxxR (VI) were found in the members of DHX proteins. Some motifs in two DHX members i.e. DHX32 and DHX58 were not found (Fig. 2). In protein DHX32, SAT, TNIASET and QRxGRAGR motifs were absent, and instead of motif DExH; DDIIH motif was observed. In DHX58 conserved motif DECH was observed and remaining motifs were missing. QRxGRAGR motif was not observed in the DHX38 protein (Fig. 2). Four members i.e. DHX32, DHX58, DHX38, and DDX49 showed variable conserved motifs and need biochemical evidence for confirmation. Figure 3 describes patterns in different motifs of DDX and DHX helicases using Hidden Markov Model (HMM). In Fig 3a, b position specific probability is represented by the size of particular amino acid residue in different motifs, larger the size more will be probability of occurrence.

Phylogenetic analysis

Phylogenetic analysis of DExH/D helicases was performed to elucidate evolutionary relationship. On analysing bovine helicase with that of horse, pig and sheep (Fig. 4a, b) it was observed that some DEAD box helicase family members could be subdivided into nine subgroups in all the species taken into consideration. However, DDX 6, DDX 10, DDX 11, DDX 24, DDX 26, DDX 27, DDX28, DDX 31, DDX 41, DDX 47, DDX49, DDX 51, DDX52, DDX 54, DDX 56, DDX 58 and DDX 59 members of DEAD box of all these species could not be included in above nine subgroups (Fig. 4a). Similarly, DHX family members could also be subdivided into four subgroups for all the species (Fig. 4b). However, DHX15, DHX32 and DHX40 could not be included in the any of these four subgroups (Fig. 4b). The extent of similarity indicates toward conserved structure of DExH/D helicases in all the species studied during evolution but their functions remained to be defined by biochemical analysis. In second analysis, relationship amongst bovine helicases was carried out (Fig. 5a, b for DDX and DHX respectively). Phylogenetic analysis established close relationship between different members. The closely related members within DDX subfamily are DDX17-DDX5, DDX43-DDX53, DDX42-DDX46, DDX43-DDX3X-DDX3Y, DDX41-DDX59, DDX39A-DDX39B, DDX19A-DDX19B, eIF4A members, DDX10-DDX18, DDX56-DDX51, DDX47-DDX49, DDX27-DDX54 and DDX50-DDX21. Similarly, within DHX members DHX8-DDX16, DHX33-DDX35, DHX15-DDX32 and
Protein ID and Conserved Motifs

Protein ID	I	La	Ib	II	III	IV	V	VI
DXA6								
DXA10								
DXA18								
DXA25								
DXA27								
DXA28								
DXA31								
DXA34								
DXA38								
DXA41								
DXA42								
DXA43								
DXA44								
DXA45								
DXA49								
DXA50								
DXA51								
DXA52								
DXA53								
DXA54								
DXA55								
DXA56								
DXA57								
DXA58								
DXA59								
DXA60								

Fig. 1 The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DDX proteins.
DHX36-DHX57 show close relationship. All these members occur as separate clades.

In Silico Characterization of Bovine DExH/D family members

Putative molecular weights and isoelectric points of bovine DExH helicases were determined in silico (Tables 1 and 2). Similarly predictive subcellular localizations of these proteins were examined (Tables 1 and 2). These helicases varied in their isoelectric point and molecular subunit mass. Isoelectric point of DDX members varied from 5.12 (EIF4AI) to 10.68 (DDX54) whereas pI for DHX members ranged between 4.79 (DHX32) and 9.23 (DHX33). 24 DDX and 8 DHX members had pI above 8. Molecular mass for these helicases ranged between 44.39 kDa (DDX49) and 117.46 kDa (DDX46) in case of DDX members and between 77.19 kDa (DHX58) and 155.76 kDa (DHX57) for DHX members. The predictive pI value and molecular mass will help in isolation and purification leading to further characterization of these helicases. Analysis with WoLF PSORT program indicated that cattle RNA helicases are localized in the nucleus, cytoplasm and mitochondria (Tables 1 and 2).

Comparative analysis of human and bovine DExH/D family members and putative function assignment

Bos taurus has a 2.86 billion bp long genome with a minimum of 22,000 genes (The Bovine Genome...
Sequencing and Analysis Consortium 2009). Similarly, 2.91 billion bp long human genome has around 20,000–25,000 genes (International Human Genome Sequencing C 2004). Cattle genome encodes all orthologs of human DExH/D family members. Bovine DEAD box RNA helicases has typically Q motif, ATP binding and Helicase C-terminal domains as found in human helicases. Domain structures of bovine DExH/D RNA helicases as compared with that of human helicases indicated high similarity between the two species (Figs. 6 and 7). Despite this identity DDX17, DDX18, DDX24, DDX27, DDX31, DDX42, DDX49, DDX51, DDX53 and DDX54 show difference in positions of domains as compared to human helicases (Fig. 6). In bovine DDX49 typically overlapping of ATP binding and Helicase domain was observed. Interestingly, both bovine and human DHX32 showed only ATP binding domain and no other domain was observed. Further, levels of homology amongst human and bovine DExH/D RNA helicases are shown in Tables 1 and 2. Bovine DEAD helicases showed high similarity with their human counterpart (identity 76–100 %).

The higher similarity of these bovine helicases with well characterized human helicases can help to predict their functions in cattle developmental processes also. The putative functions of these helicases have been summarized in Tables 3 and 4. The importance of DExH/D RNA helicases in environmental stress is becoming evident (Shih and Lee 2014). DDX1, 3, 5, 6, 17, 21, 24, 47, DHX9 and DHX36 are associated with various viral infections. Similarly DDX6 and DDX19 are associated with neurological disorders, as summarised previously (Steimer and Klostermeier 2012). This manuscript presents first report on genome-wide comprehensive analysis of bovine DExH/D helicases providing valuable information regarding classification and putative function of these RNA helicases, essential for growth and development. Identification of bovine counterparts of helicases associated with various stress and diseases can be exploited as prognostic and diagnostic markers.

Conclusions

Bos taurus genome encodes 54 DExH/D family members (38 DDX and 16 DHX). Present work describes their evolutionary relationship, putative functions, p1, molecular weight and localization. Despite high similarity with well characterized counterparts, for some members, functions could not be predicted which needs further analysis. Hence, this study emphasises towards some bovine DExH/D members requiring further biological characterisation. Similarly, bovine DDX49 and DHX32 need biochemical characterization as they showed unique properties. Association analysis of these members with different abiotic and biotic stress may facilitate new diagnostic markers and drug targets.
Fig. 5 Phylogenetic analysis of Bovine DExH/D helicases. a and b represent analysis of bovine DEAD and DEAH respectively.
Fig. 6 Schematic diagrams of domain organisation in bovine DEAD helicases. Domain analysis was conducted using Scan Prosite (http://expasy.org). The domain structures were downloaded and used for figure generations. The number shown in black and red colour indicates the amino acids spanning motifs in bovine and Human DEAD box proteins.
Fig. 7 Schematic diagrams of domain organisation in bovine DEAH helicases. Domain analysis was conducted using Scan Prosite (http://expasy.org). The domain structures were downloaded and used for figure generations. The number shown in black and red colour indicates the amino acids spanning motifs in bovine and Human DEAH box proteins.
Protein	Function	Ref.
DDX1	Associated with ARE mediated mRNA decay	Chou et al. (2013)
DDX3X, DDX3Y	DDX3X can bind with DNA, RNA splicing, nuclear transport of RNA and translational regulation	Franca et al. (2007); Rosner and Rinkevich (2007)
DDX4	Bovine vasa homolog (BVH) and is expressed in gonads	Bartholomew and Parks (2007)
DDX5, DDX17	Splicing and transcriptional regulation	Aboeuf et al. (2002)
DDX6	Spermatogenesis and localized in spermatogenic cells	Kawahara et al. (2014)
DDX10	Ribosome assembly	Savitsky et al. (1996)
DDX18	Hematopoiesis and deletion resulted into p-53 depended cell arrest in G1	Payne et al. (2011)
DDX19	m-RNA nuclear transport by remodelling of RNP particles through nuclear pore complex	Collins et al. (2009)
DDX20	Transcriptional regulation, splicing process and mi-RNA pathway	Takata et al. (2012)
DDX23	Pre-mRNA splicing	Ismaili et al. (2001)
DDX24	Innate immune signalling regulation	Ma et al. (2013)
DDX25	Posttranscriptional regulations of genes for spermatid elongation & completion of spermatogenesis	Dufau and Tsai-Morris (2007)
DDX27	ND	
DDX28	Cellular division	Loo et al. (2012)
DDX31	Transcription of rRNA gene and assembly of 60 s ribosomal subunit	Bish and Vogel (2014)
DDX39	mRNA splicing, genome integrity and telomere protection	Yoo and Chung (2011)
DDX41	Type 1 interferon response	Zhang et al. (2011a)
DDX42	Function as chaperon	Uhlmann-Schiffler et al. (2006)
DDX43	ND	
DDX46	Pre-mRNA splicing	Hozumi et al. (2012)
DDX47	Pre-RNA processing	Sekiguchi et al. (2006)
DDX49	ND	
DDX51	Ribosome synthesis and formation of 3′end of 28S rRNA	Srivastava et al. (2010)
DDX52	ND	
DDX53	ND	
DDX54	Maintenance of central nervous system	Zhan et al. (2013)
DDX55	ND	
DDX56	Assembly of pre-ribosomal particles	Zirves et al. (2000)
DDX59	Pathogenesis of orofaciiodigital syndrome	Shamseldin et al. (2013)
eIF4A	eIF4F complex formation and facilitates translation	Harms et al. (2014)
Nucleolar RNA Hel2 (DDX21)	RNA processing during interphase of mitosis	De Weyer et al. (2012)
Table 4 Putative functions of DHX members

Protein	Function	Ref.
DHX8	Mitosis and involved in mRNA splicing	English et al. (2012)
DHX9	RNA induced silencing complex (RISC) loading factor	Fu and Yuan (2013)
DHX15	RNA virus sensing and activating immune system	Lu et al. (2014)
DHX16	Splicing	Gencheva et al. (2010)
DHX29	Protein synthesis	Pisareva et al. (2008)
DHX30	Mitochondrial DNA replication	Zhou et al. (2008)
DHX32	Lymphocyte differentiation and T cell apoptosis	Huang et al. (2009)
DHX33	rRNA transcript and nucleolar organizer	Zhang et al. (2011b)
DHX34	NMD (nonsense-mediated mRNA decay)	Anastasaki et al. (2011)
DHX35	ND	
DHX36	Viral nucleic acid sensors, affinity towards G4-quadruplex	Fullam and Schroder (2013)
DHX37	Glycinergic synaptic transmission and associated motor behaviour	Hirata et al. (2013)
DHX38	Associated with retinitis pigmentosa	Ajmal et al. (2014)
DHX40	Pre mRNA splicing and ribosome biogenesis	Xu et al. (2002)
DHX57	ND	
DHX58	Innate antiviral immune response	Li et al. (2009)

Authors' contributions
MKS designed, performed experiments, analysed data and prepared manuscript; MP performed experiments; SM analysed and reviewed manuscript data; SKK supervised all experiments. All authors read and approved the final manuscript.

Acknowledgements
The present work was supported by grants from RKVY (Rashtriya Krishi Vikas Yojna) Bio-Informatics Project (RAJUVAS CSA-RKVY-1(11)).

Competing interests
The authors declare that they have no competing interests.

References
Ajmal M, Khan MI, Neveling K, Khan YM, Azam M, Waheed NK, Hamel CP, Ben-Yosef T, De Baele E, Koenenkoop RK, Collin RW, Qamar R, Cremers FP (2014) J Med Genet 51:444–448
Anastasaki C, Longman D, Capper A, Patton EE, Caceres JF (2011) Ddx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish. Nucleic Acids Res 39:3686–3694
Auboeuf D, Honig A, Berget SM, O'Malley BW (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298:416–419
Barthalomew RA, Marks JE (2007) Identification, localization, and sequencing of fetal bovine VASA homolog. Anim Reprod Sci 101:241–251
Bish R, Vogel C (2014) RNA binding protein-mediated post-transcriptional gene regulation in medulloblastoma. Mol Cells 37:357–364
Carathers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133
Chou CF, Lin WJ, Lin CC, Luber CA, Godbout R, Mann M, Chen CY (2013) DEAD box protein DDX1 regulates cytoplasmic localization of KSRP. PLoS One 8:e73572
Collins R, Karlberg T, Letiho L, Schultz P, van den Berg S, Dahlgren LG, Hammarstrom M, Weigelt J, Schuler H (2009) The DEXD/H-box RNA helicase DDX19 is regulated by an (alpha)-helical switch. J Biol Chem 284:10296–10300
Cordin O, Baneroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37
De Wever V, Lloyd DC, Nasa I, Nimick M, Trinkle-Mulcahy L, Gourlay R, Monroe N, Moorhead GB (2012) Isolation of human mitotic protein phosphatase complexes: identification of a complex between protein phosphatase 1 and the RNA helicase Ddx21. PLoS One 7:e35910
Dufau ML, Tsai-Morris CH (2007) Gonadotropin-regulated testicular helicase (GRTH/DDX25): an essential regulator of spermatogenesis. Trends Endocrinol Metab 18:314–320
Fay F, Hoon EM, Cai G, Su AI, Schadt EE, Lamb J, Reynolds JH (2005) Large-scale functional annotation of human genes by expression profiling and bioinformatic analysis. Nat Biotechnol 23:1019–1026
Franca R, Prokopenko I, Olenchuk V, Bellocco E, Betta S, Maga G (2005) Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity. Proteins 67:1128–1137
Fu Q, Yuan YA (2013) Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9). Nucleic Acids Res 41:3457–3470
Fullam A, Schroder M (2013) DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta 1829:854–865
Gencheva M, Lin TY, Wu X, Yang L, Richard C, Jones M, Lin SB, Lin RJ (2010) Nuclear retention of unspliced pre-mRNAs by mutant DHX16/hPRP2, a spliceosomal DEAH-box protein. J Biol Chem 285:35624–35632
Harms U, Andreou AZ, Gubaev A, Kostermeier D (2014) eIF4f, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res 42:7911–7922
Hartung F, Pichova H, Puchta H (2000) Molecular characterisation of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res 28:4275–4282
Hirata H, Ogino K, Yamada K, Leacock S, Harvey RJ (2013) Defective escape behavior in DEAH-box RNA helicase mutants improved by restoring glycinergic receptor expression. J Neurosci 33:14638–14644
Hosszu S, Szebeni J, Nemesi T (2004) The DEAD box protein DDX5 regulates cytoplasmic localization of KSRP. EMBO J 23:239–248
Huang C, Liang X, Huang R, Zhang Z (2009) Up-regulation and clinical relevance of novel helicase homologue DHX32 in colorectal cancer. J. Exp. Clin. Cancer Res 28:11
Huang H, Jiang X, Huang R, Zhang Z (2009) Up-regulation and clinical relevance of novel helicase homologue DHX32 in colorectal cancer. J. Exp. Clin. Cancer Res 28:11
Ishimi M, Itoh M, Kikuchi Y (2012) DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish. PLoS One 7:e33675
Huang C, Liang X, Huang R, Zhang Z (2009) Up-regulation and clinical relevance of novel helicase homologue DHX32 in colorectal cancer. J. Exp. Clin. Cancer Res 28:11
Ishimi M, Itoh M, Kikuchi Y (2012) DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish. PLoS One 7:e33675
Huang C, Liang X, Huang R, Zhang Z (2009) Up-regulation and clinical relevance of novel helicase homologue DHX32 in colorectal cancer. J. Exp. Clin. Cancer Res 28:11
International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945
Ismail N, Sha M, Gustafson EH, Konarska MM (2001) The 100 kDa US snRNP protein (hPrp28p) contacts the 5' splice site through its A'TPase site. RNA 7:182–193
Kawahara C, Yokota S, Fujita H (2014) DDx6 localizes to nuage structures and the anulus of mammalian spermatogenic cells. Histochim Cell Biol 141:111–121

Lawrence P, Rieder E (2009) Identification of RNA helicase A as a new host factor in the replication cycle of foot-and-mouth disease virus. J Virol 83:11356–11366

Li X, Ranjith-Kumar CT, Brooks MT, Dharmiah S, Herr AB, Kao C, Li P (2009) The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J Biol Chem 284:13881–13891

Linder P (2006) DEAD-box proteins: a family affair–active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180

Linder P, Daugeron MC (2000) Are DEAD-box proteins becoming respectable helicases? Nat Struct Biol 7:97–99

Loo LW, Cheng J, Tirkkonen M, Lum-Jones A, Seifried A, Dunklee LM, Church JM, Gryfe R, Weisberger DJ, Haile RW, Gallinger S, Duggan DJ, Thibodeau SN, Casey G, Le Marchand L (2012) cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS One 7:e30477

Lu H, Lu N, Weng L, Yuan B, Liu YJ, Zhang Z (2014) DHX15 senses double-stranded RNA in myocardial dendritic cells. J Immunol 193:1364–1372

Ma Z, Moore R, Xu X, Barber GN (2013) DDx24 negatively regulates cytosolic RNA-mediated innate immune signaling. PLoS Pathog 9:e1003721

Murphy WJ, Fvezzar PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639

Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem 281:18265–18268

Payne EM, Bolli N, Rhodes J, Abdel-Wahab OI, Levine R, Hedvat CV, Stone R, Khanna-Gupta A, Sun H, Kanik JP, Gazda HT, Beggs AH, Cotter FE, Look AT (2011) Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML. Blood 118:903–915

Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (2008) Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135:1237–1250

Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336

Radi M, Falchi F, Garbelli A, Samuele A, Bernardo V, Paolucci S, Baldanti F, Uhlmann-Schiffler H, Jalal C, Stahl H (2006) Ddx42p—a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 34:10–22

Rosner A, Rinkevich B (2007) The DDX3 subfamily of the DEAD box helicases: Annu Rev Biophys 37:317–336

Raddi M, Falchi F, Garbelli A, Samuele A, Bernardo V, Paolucci S, Baldanti F, Schenone S, Manetti F, Maga G, Botta M (2012) Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg Med Chem Lett 22:2094–2098

Rosner A, Ronkevich B (2007) The DDx3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem 14:2517–2525

Savitsky K, Ziv Y, Bar-Shira A, Gilad S, Tagle DA, Smith S, Uziel T, Sfez S, Nahmias J, Sartiel A, Eddy RL, Shows TB, Collins FS, Shiloh Y, Rotman G (1996) A new molecular motor protein with RNA chaperone activities. Nucleic Acids Res 34:10–22

Shamseldin HE, Rajab A, Alhashem A, Al-Shidi T, Alamro R, Al-Jabri S, Alkuraya FS (2013) Mutations in DDX59 implicate RNA helicase protein Ddx51 acts in 3′ end maturation of 28S rRNA by promoting the specific dissociation functions. Mol Cell 8:251–262

Tanner NK, Linder P (2001) DEAD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262

Tanner NK, Cordin O, Banroques J, Doeer M, Linder P (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11:127–138

The Bosvme Genome Sequencing and Analysis Consortium (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528

Tuteja N, Tuteja R (2004a) Proakaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848

Tuteja N, Tuteja R (2004b) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863

Uhlmann-Schiffer H, Jalal C, Stahl H (2006) Ddx42p—a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 34:10–22

Umata P, Tuteja N, Tuteja R (2011) Genome-wide comprehensive analysis of human helicases. Comput Biol Chem 41:118–137

Xu J, Wu H, Zhang C, Cao Y, Wang L, Zeng L, Ye X, Wu Q, Dai J, Xie Y, Mao Y (2002) Identification of a novel human DDX40 gene, a new member of the DEAH-box protein family. J Hum Genet 47:681–683

Xu R, Zhang S, Huang J, Zheng C (2013) Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa. PLoS One 8:e79882

Yoo HH, Chung JK (2011) Requirement of DDX39 DEAD box RNA helicase for genome integrity and telomere protection. Aging Cell 10:557–571

Zhan R, Yamamoto M, Ieki T, Yoshida N, Tanaka K, Morisaki H, Seiwa C, Yamamoto Y, Kawano H, Tsuruo Y, Watanabe K, Asou H, Aiso S (2013) A DEAD-box RNA helicase Ddx54 protein in oligodendrocytes is indispensable for myelination in the central nervous system. J Neurosci 33:153–168

Zhang Y, Yuan B, Mao L, Lu N, Kim T, Liu YJ (2011a) The helicase DDx41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12:959–965

Zhang Y, Forys JT, Miceli AP, Gwinn AS, Weber JD (2011b) Identification of DHX33 as a mediator of rRNA synthesis and cell growth. Mol Cell Biol 31:4676–4691

Zhou Y, Ma J, Bushan Roy B, Wu JY, Pan Q, Rong L, Liang C (2008) The packaging of human immunodeficiency virus type 1 RNA is restricted by overexpression of an RNA helicase DHX33. Virology 372:97–106

Zirres RF, Elbrächter J, Kniesel S, Schmidt-Zachmann MS (2000) A novel helicase-type protein in the pathogenesis of orofaciodigital syndrome. Am J Hum Genet 93:555–560

Shih J, Lee YW (2014) Human DEAD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 436:45–58

Srivastava L, Lapik YR, Wang M, Pestov DG (2010) Mammalian DEAD box protein Ddx51 acts in 3′ end maturation of 28S RNA by promoting the release of 8S snoRNA. Mol Cell Biol 30:2947–2956

Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

Steimer L, Kostemer NR (2012) RNA helicases in infection and disease. RNA Biol 9:751–771

Svitrina YV, Pause A, Haghhighat A, Pyronnet S, Witherell G, Belfsham GJ, Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA S′ secondary structure. RNA 7:382–394

Takata A, Otsuka M, Yoshikawa T, Kishikawa Y, Kudo Y, Goto T, Yoshida H, Koke K (2012) A miRNA machinery component DDx20 controls NF-κB via microRNA-140 function. Biochem Biophys Res Commun 420:564–569

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

Submit your manuscript to a SpringerOpen journal and benefit from: ▶ Convenient online submission ▶ Rigorous peer review ▶ Immediate publication on acceptance ▶ Open access: articles freely available online ▶ High visibility within the field ▶ Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com