Epidemiology of Pediatric Trauma in the Kingdom of Bahrain: A National Pediatric Trauma Registry Pilot Study

Jay Chieh Liu Jr. (✉ 16121406@rcsi.com)
Royal College of Surgeons in Ireland - Bahrain https://orcid.org/0000-0002-7205-3828

Aieshah A. Ismael
Royal College of Surgeons in Ireland and Medical University of Bahrain

Ayesha Zaidi
RCSI and MUB: Royal College of Surgeons in Ireland and Medical University of Bahrain

Ban W. Sha’ban
RCSI and MUB: Royal College of Surgeons in Ireland and Medical University of Bahrain

Shaikha Ebrahim Almutawa
Mohammed Bin Khalifa Bin Salman Al Khalifa Specialist Cardiac Center

Asad Amin Chatha
Salmaniya Medical Complex

Feras H. Abuzeyad
King Hamad University Hospital

Ruqaya Isa Jaafar
Salmaniya Medical Complex

Salah Ali Alghanem
Bahrain Defence Force Royal Medical Services

Ghada Al Qassim
Bahrain Defence Force Royal Medical Services

Nitya Kumar
RCSI and MUB: Royal College of Surgeons in Ireland and Medical University of Bahrain

Martin Corbally
King Hamad University Hospital

Original Contribution

Keywords: Trauma registry, pediatric trauma, global health, trauma epidemiology, Bahrain, motor vehicle collision, seatbelt, drowning, surgery admission

DOI: https://doi.org/10.21203/rs.3.rs-134762/v1
Abstract

Background: A pediatric trauma registry for the Kingdom of Bahrain would be a novel public health tool for the population and would distinguish the Bahraini health system from other health systems in the region by joining the few systems that have implemented surveillance. The aim of this study was to explore the epidemiology of pediatric trauma at the national level and to uncover the potential obstacles to implementation of a sustainable national registry.

Methods: This multicenter observational cross-sectional study was conducted in the Kingdom of Bahrain using data from the Pediatric Trauma Registry (PTR), which was a short-term paper-based prospective trauma registry based in the pediatric emergency departments of the three national referral hospitals in the Kingdom. By simultaneously collecting data from all three trauma hospitals in the country, it was assumed that during the data collection period all major pediatric trauma patients in the country would be captured by the study, and that the data collected would provide national estimates of trauma. Inclusion criteria for the study was any individual under the age of 14, that arrived at the emergency department seeking care for injuries sustained from trauma.

Results: A total of 1,328 patients were included in the study. Sixty nine percent of patients were treated and discharged from the ED, 30.5% were admitted to the hospital, admitted for surgery, or seen by a specialist, and 0.5% were deceased. The percentage of patients documented as unrestrained during MVC was 92.5%, and amongst those involved in MVC, 12% were ejected from the cabin of the vehicle.

Conclusions: There are significant implications that this study holds for policy implementation and practice surrounding injury prevention in the Kingdom of Bahrain. Low documented seatbelt utilization and high proportion of ejection amongst MVC victims warrant immediate public health policies. Despite being rare, drownings and near drownings carried half the mortality in the study, and thus public health policy aimed at preventing drownings should be implemented. Public health educational campaigns would also be well suited with this evidence to protect children from sustaining such injuries.

Background

Amongst children globally, trauma is a major cause of mortality and morbidity (1, 2). Trauma registries are able to provide accurate prospective trauma epidemiology data which can empower hospital-based trauma care systems to improve their services and enable governmental authorities to pass effective injury prevention legislation through evidence-based decision making (3). A pediatric trauma registry for the Kingdom of Bahrain would be a novel public health tool for the population and would distinguish the Bahraini health system by allowing it to join systems in the region, such as Saudi Arabia, Qatar, and Iran, who have implemented surveillance systems.

Data from the Global Burden of Diseases, Injuries and Risk Factors Study 2010 (4) indicates that high income countries in the Arab world, such as Bahrain, have experienced a reduction in mortality and morbidity of preventable and infectious diseases over the previous two decades.
However, in the last two years, public health researchers and officials in Bahrain studying motor vehicle collisions (MVCs) have specifically requested for action to be taken in the surveillance of pediatric injuries from MVCs (5). Current literature demonstrates that MVCs persist as a leading cause of death and disability adjusted life years (DALYs) (6, 7).

In 2013, young Bahrainis were found to be 3.5 times more likely to perish in an MVC compared to the general population. Additionally, it was found that young Bahraini males were 6 times more likely to die in an MVC than young Bahraini females (8). At the time, a call for the implementation of a trauma surveillance system in the country was made, to further explore these trends. In addition to the evolving trends in MVCs, there is also evidence that suggests the incidence of physical child abuse in Bahrain may be rising (9). A National Bahraini pediatric trauma registry would be invaluable in identifying at-risk groups within the pediatric population and illuminating areas where implementing intervention programs and policy changes can be most effective.

Evidence from countries with established permanent trauma registries illustrates that performing multi-pronged trauma prevention programs to reduce pediatric deaths from trauma is not only possible, but also very reproducible (10). A trauma registry study in Qatar, a neighboring country with comparable epidemiological trends, found that head injuries, long bone injuries, and polytrauma were the most common pediatric injuries, while also finding evidence of seasonality in pediatric trauma incidence (11). Overall the knowledge deficit surrounding the epidemiology of trauma in the Arab World leaves policy makers unaware of the extent to which preventable trauma burdens the society (7).

The success of the registry in Qatar, as well as the trauma surveillance system in the neighboring Kingdom of Saudi Arabia, suggests that initiation of such a registry in Bahrain is possible.

Ideally this type of trauma registry would be a permanent national surveillance tool that constantly produces prospective data dynamically. This study established a short-term pilot registry to produce an initial data set to analyze, while also uncovering the pragmatic obstacles that may arise with installation of a long term and sustainable pediatric trauma registry.

Additionally, recent developments in emergency medicine, graduate medical education, and trauma care in Bahrain’s major governmental hospitals make installation of a prospective data collection system perfectly poised to guide subsequent advancements in the trauma system (12, 13).

Methods

Registry Development

This multicenter observational cross-sectional study was conducted in the Kingdom of Bahrain using data from the Pediatric Trauma Registry (PTR), which was a short-term paper-based prospective trauma registry based in the pediatric emergency departments of the three national referral hospitals in the
Kingdom. It follows the “Strengthening the Reporting of Observational Studies in Epidemiology” (STROBE) guidelines for the reporting of its research findings (14).

Prior to initiation of the registry the research team met with hospital administrators at each of the participating institutions to discuss details of the study. Each of the collaborating hospitals had a delegated research coordinator to oversee the data collection process, to ensure production of high-quality data, and to troubleshoot and document any obstacles that arose during data collection. Each institution had department wide training of all emergency physicians so that all staff were familiar with the study, and knowledgeable about when and how to complete the paper registry forms. Registry forms were exclusively completed in English by the emergency physician evaluating the patient.

Inclusion criteria for the study was any patient that is under the age of 14, that arrived at the emergency department seeking care for injuries sustained from trauma. Exclusion criteria was patients with an uncertain mechanism of injury.

The PTR collected information on patient demographics, mechanism of injury, injury descriptions, ED interventions, and disposition of all pediatric trauma patients presenting to the pediatric emergency department during the study period. The data collection tool incorporated components from trauma registry forms used previously by Duron et al in Peru, the Pan-American Trauma Society, and the World Health Organization, while also being adapted for use in the Bahraini health system (15).

Operationalization of all relevant variables on the registry form were discussed with the data collection teams prior to the implementation, and multiple editions of the data collection tool were created and refined to ensure local appropriateness and ease of use. For example, ED physicians requested that gunshot wounds and animal bites be removed from the checkbox options for MOI as these are incredibly rare in the locale, and that sports injuries be added for ease of use. To ensure standardization of the data captured, multiple training sessions were held with the ED staff of each participating trauma center prior to the starting data collection.

Forms were completed exclusively by the physicians who rendered care to the patients in the Emergency Department upon initial presentation. The duration of data collection was three months (91 days in total), commencing on September 20th, 2018, and concluding on December 20th, 2018 (Fig. 1).

Registry forms were collected daily and then subsequently entered into a computerized database and double entered to assure accuracy.

Study Setting and Population

Bahrain is an island nation situated in the Persian Gulf, off the coast of Saudi Arabia. It is a member state of the Gulf Cooperative Council, and is a high-income country based on GDP per capita. As of 2014 the estimated population of Bahrain was 1.316 million, with 25.9% of the population being under the age of 19, and 54.4% of the population being non-Bahraini (16). The health system in Bahrain is rapidly developing, and medical records are in the process of transitioning from paper to electronic medical
record keeping. The study population consisted of pediatric trauma patients who presented to the pediatric emergency departments of the three major trauma hospitals in Bahrain: Salmaniya Medical Complex, King Hamad University Hospital, and Bahrain Defense Force Hospital.

Salmaniya Medical Complex (SMC) is the largest health care facility in the kingdom with an ED bed capacity of 85. Bahrain Defense Force Hospital (BDF) is the second largest hospital in the country, and its emergency department has 31 beds. The King Hamad University Hospital (KHUH) Emergency Department has a total of 45 beds. All three hospitals are fully equipped tertiary care trauma centers with modern facilities capable of handling any major pediatric trauma and rendering surgical critical care. BDF hospital houses the designated burn unit for the country.

By simultaneously collecting data from all three trauma hospitals in the country, it was assumed that during the data collection period all major pediatric trauma patients in the country would be captured by the study, and that the data collected would provide national estimates of trauma. Minor injuries treated in local clinics were not captured by this study design. Traumatic prehospital pediatric mortality was also monitored by collaborators in the EMS system, and no such events reported in Bahrain during the study period.

Statistical Analysis

Categorical variables have been described as frequencies and column percentages, and continuous variables have been reported as medians and interquartile ranges. Data on characteristics of the patients have been stratified on age categories given the physiological differences between patients in these categories. Differences between characteristics of trauma patients and age categories was assessed using chi-squared test for categorical variables and Kruskal Wallis test for continuous variables. To enable comparison of vitals across age categories, the values were first classified into normal/abnormal using age-specific cut-offs for Pulse, RR, SaO2, SBP and temperature, and the proportion of patients who were found to have abnormal values of these variables for their age, is reported in the results (17). Computation of age-specific pediatric trauma score (ASPTS) was done using a 2-step process. First step involved comparing each patient’s GCS, SBP, pulse and RR to age-specific thresholds as defined by Potoka et al and assigning a score to these individual variables (18). In the second step, the sum of GCS, SBP, pulse and RR scores was taken to arrive at the ASPTS score for each patient. All analyses were performed using STATA version 13.1.

Results
Table 1
Demographics (N = 1328)

Variable	Number of Patients	Percentage of Patients
Male	880	66.3
Female	448	33.7
< 1 year	23	1.73
1 to 4 years	454	34.18
5 to 9 years	450	33.88
10–14 years	401	30.19
Bahrain	1128	84.94
Asia Pacific	56	4.22
EU/USA	9	0.68
North Africa	22	1.66
Other GCC	12	0.9
Unknown	25	1.88
West Asia	76	5.72

Characteristics of Pediatric Trauma Patients Upon Admission

Results shown are stratified by age categories because of the physiological differences between children of these age categories, as is also evident from the tests of comparison in Tables 1 and 2. Table 1 outlines the patient socio-demographic information and characteristics upon admission. There was a notable split in the ratio between males and females in the study, with a 2:1 male to female ratio being demonstrated. Majority of the sample was composed of Bahrain Nationals (1128/1328, 84.9%), with the remainder of the sample being composed by Western Asia, Asia Pacific, North Africa, GCC, EU/USA, or Unknown nationalities.

The severity of traumatic brain injury in terms of Glasgow Coma Scale (GCS) categories was mild for most subjects (Table 1), although 3 patients (0.7%) in the age category of 1 to 4 years had very severe injury, as did 2 children (0.6%) in the age category of 10–14 years. For most younger children, the injury took place at home (60.9% in < 1-year old’s, 76% in 1 to 4 year old’s and 48.2% in 5 to 9 year old’s), whilst school was the most common location (39.1%) where injuries took place for children in the oldest age category. Injuries caused on the road were also notably high in all age categories. The most common mechanism of injury was related to falls (753 out of 1328, 56.7%) and the relative proportion of children with this injury decreased with increasing age categories, with the highest proportion being in the
youngest age category (73.9%) and lowest being in the oldest age category (50.4%). The majority of injuries were accidents, sparring 0.5% each in the older categories and 1% in the 1 to 4-year category, which resulted from intentional self-harm. Occurrence of abnormal vitals was computed by comparing values for vitals with age-specific thresholds and categorizing the patients into normal and abnormal for their age. Proportion of abnormal vitals was highest in infants – 41.7% of them presented with abnormal pulse, abnormal respiratory rate was found in 87.5% of infants, abnormal systolic blood pressure in 77.8%, abnormal oxygen saturation in 8.3%, and 11.1% of the infants presented with fever. Older children had significantly lower occurrence of abnormal vitals compared to infants.
Table 2
Characteristics of Pediatric Trauma Patients Upon Admission (N = 1328)

Variable	< 1 year (n = 23)	1 to 4 years (n = 454)	5 to 9 years (n = 450)	10–14 years (n = 401)	p value
Sex (n = 1328)					
Male [n = 880; 66.3%]	16 (69.6%)	285 (62.8%)	297 (66%)	282 (70.3%)	0.135
Female [n = 448; 33.7%]	7 (30.4%)	169 (37.2%)	153 (34%)	119 (29.7%)	
Nationality (n = 1328)					
Bahraini (n = 1128; 84.9%)	20 (87%)	389 (85.7%)	386 (85.8%)	333 (83%)	0.649
Non-Bahraini (n = 200; 15.0%)	3 (13%)	65 (14.3%)	64 (14.2%)	68 (17%)	
GCS category (n = 1169)					
Mild [13 to 15] (n = 1,160; 99.23%)	17 (100%)	401 (98.9%)	401 (99.8%)	341 (99.1%)	0.838
Moderate [9 to 12] (n = 2; 0.17%)	0 (0%)	1 (0.2%)	0 (0%)	1 (0.3%)	
Severe [6 to 8] (n = 2; 0.17%)	0 (0%)	1 (0.2%)	1 (0.2%)	0 (0%)	
Very Severe [3 to 5] (n = 5; 0.42%)	0 (0%)	3 (0.7%)	0 (0%)	2 (0.6%)	
Location of injury (n = 1328)					
Home (n = 683; 51.42%)	14 (60.9%)	345 (76.0%)	217 (48.2%)	107 (26.7%)	< 0.0001
School(n = 236; 17.77%)	0 (0%)	2 (0.4%)	77 (17.1%)	157 (39.1%)	
Road (n = 137; 10.31%)	4 (17.4%)	29 (6.4%)	52 (11.6%)	52 (13.0%)	
Other (n = 272; 20.48%)	5 (21.7%)	78 (17.2%)	104 (23.1%)	85 (21.2%)	
Mechanism of Injury (n = 1328)					
Fall Injury (n = 750; 56.48%)	17 (73.9%)	289 (63.0%)	245 (54.4%)	202 (50.4%)	< 0.0001
Blunt Trauma (n = 153; 11.52%)	0 (0%)	34 (7.5%)	63 (14.0%)	56 (14.0%)	
Variable	< 1 year (n = 23)	1 to 4 years (n = 454)	5 to 9 years (n = 450)	10–14 years (n = 401)	p value
--	-------------------	------------------------	------------------------	-----------------------	---------
Road Traffic Accident (RTA) (n = 79; 5.95%)	2 (8.7%)	18 (4.0%)	29 (6.4%)	30 (7.5%)	
Injury Type	Count	%			
---	-------	-------			
Sports Injury (n = 76; 5.72%)	1 (4.3%)	2 (0.4%)	16 (3.6%)	57 (14.2%)	
Crush Injury (n = 67; 5.05%)	0 (0%)	32 (7.0%)	17 (3.8%)	18 (4.5%)	
Eye Injury (n = 48; 3.61%)	0 (0%)	7 (1.5%)	27 (6.0%)	14 (3.5%)	
Foreign Body (n = 48; 3.61%)	1 (4.3%)	17 (3.7%)	21 (4.7%)	9 (2.2%)	
Laceration (n = 44; 3.31%)	0 (0%)	16 (3.5%)	19 (4.2%)	9 (2.4%)	
Burn (n = 36; 2.71%)	2 (8.7%)	22 (4.8%)	9 (2.0%)	3 (0.7%)	
Ingestion Injury (n = 21; 1.58%)	0 (0%)	15 (3.3%)	3 (0.7%)	3 (0.7%)	
Drowning/Near-Drowning (n = 6; 0.45%)	0 (0%)	5 (1.1%)	1 (0.2%)	0 (0%)	
Apparent Intent (n = 1202)					
Accident (n = 1,153; 95.92%)	18 (94.7%)	405 (98.1%)	383 (95.0%)	347 (94.5%)	
Assault (n = 41; 3.41%)	1 (5.3%)	4 (1.0%)	18 (4.5%)	18 (5.0%)	
Intentional Self Harm (n = 8; 0.67%)	0 (0%)	4 (1.0%)	2 (0.5%)	2 (0.5%)	
Ambulance Utilization (n = 1248)					
Yes (n = 47; 3.77%)	2 (10.5%)	15 (3.5%)	12 (2.8%)	18 (4.8%)	
No (n = 1201; 96.23%)	17 (89.5%)	410 (96.5%)	416 (97.2%)	358 (95.2%)	
Age-Specific Pediatric Trauma Score (ASPTS)					
ASPTS < 10	2 (28.6%)	7 (3.0%)	10 (4.4%)	6 (2.5%)	
Median (interquartile range)					
Pulse (n = 884)					
Abnormal (n = 159)	5 (41.7%)	52 (16.7%)	35 (12.5%)	67 (24%)	
Normal (n = 725)	7 (58.3%)	260 (83.3%)	246 (87.5%)	212 (76%)	
RR (n = 801)					
Abnormal (n = 464)	7 (87.5%)	176 (62.6%)	127 (49.6%)	154 (60.2%)	
Normal (n = 337)	1 (12.5%)	105 (37.4%)	129 (50.4%)	102 (39.8%)	
SaO2 (n = 868)					
Abnormal	1 (8.3%)	4 (1.3%)	2 (0.7%)	0 (0%)	
	Normal (n = 783)	Systolic Blood Pressure (n = 783)	Abnormal (n = 360)	Normal (n = 423)	Febrile (n = 892)
----------------	------------------	----------------------------------	-------------------	------------------	------------------
	11 (91.7%)	299 (98.7%)	130 (50.8%)	100%	Yes (n = 6)
		281 (99.3%)	84 (32.4%)	171 (67.1%)	1 (11.1%)
		270 (100%)	139 (52.8%)	124 (47.2%)	0.001
			7 (77.8%)	2 (22.2%)	
			130 (50.8%)	126 (49.2%)	8 (88.9%)
			84 (32.4%)	171 (67.1%)	317 (99.7%)
			139 (52.8%)	124 (47.2%)	282 (99.7%)
			0	0.001	279 (98.9%)

Diagnosis, Treatment, and Hospital Admission

Diagnostic imaging was performed on 707 (53.2%) of the patients in the study, with 261 (37.3%) of these patients having positive trauma related findings on at least one imaging modality performed (i.e. X-Ray, CT Scan, or sonography for trauma). The likelihood of positive trauma findings upon imaging was not significantly different by age category.

Administration of systemic analgesia was positively correlated with age, with 89.8% of patients in the 10–14 age category receiving analgesia within the emergency department. Systemic analgesia included any analgesia used on the WHO pain control ladder, (i.e. NSAIDS, Morphine, etc.) (19). Fracture management was the most common intervention in the 10–14 age group (158 [76.3%]), while wound management was the most common ED intervention performed on all other age categories. Antibiotic prescription was infrequent in the sample, however the 5–9 age category had significantly elevated incidence of receiving antibiotics. This correlates with the elevated incidence of receiving wound care in this age group.

Regarding invasive ED interventions, six patients received ACLS trauma resuscitation after presenting to the ED in traumatic cardiac arrest, and none of these patients survived the event. Admission to the hospital ward was uncommon, with only 19 patients being admitted to medicine, however 82 patients were admitted for surgery. The < 1 age category was significantly more likely to be admitted for surgery (26.1%) than any other age category. Also of note, is that all 7 of the children placed under the care of child protective services were in the 1–4 year old age category. The majority of the patients in the study were treated and discharged from the ED (69%).

a: values are frequencies and column percentages for categorical variables, and medians and interquartile ranges for continuous variables.

b: p values reported are for Chi-square for categorical variables, and for Kruskal Wallis tests for continuous variables.
Table 3
Hospital Interventions & Outcomes (N = 1328) a,b

Variable	<1 year (n = 23)	1 to 4 years (n = 454)	5 to 9 years (n = 450)	10–14 years (n = 401)	p value
Imaging done (n = 1,328)					
Yes (n = 707; 53.23%)	12 (52.2%)	178 (39.2%)	215 (47.8%)	302 (75.3%)	0
No (n = 621; 46.76%)	11 (47.8%)	276 (60.8%)	235 (52.2%)	99 (24.7%)	
Positive Trauma Findings Amongst Those with Imaging (n = 707)					
Yes (n = 261; 36.91%)	5 (41.7%)	60 (33.7%)	78 (36.3%)	118 (39.1%)	0.672
No /Unknown (n = 446; 63.08)	7 (58.3%)	118 (66.3%)	137 (63.7%)	184 (60.9%)	
Emergency Department Interventions (n = 666; 50.15%)					
ACLS/Trauma Resuscitation (n = 6; 0.90%)	1 (25.0%)	3 (1.3%)	1 (0.4%)	1 (0.5%)	<0.0001
Fracture Management (n = 319; 47.9%)	1 (25.00%)	70 (31.0%)	90 (39.3%)	158 (76.3%)	
Wound Management (n = 303; 45.50%)	2 (50.0%)	139 (61.5%)	119 (52.0%)	43 (20.8%)	
Fracture + Wound Management (n = 5; 0.75%)	0 (0%)	2 (0.9%)	1 (0.4%)	2 (1.0%)	
Activated Charcoal (n = 1; 0.15%)	0 (0%)	1 (0.4%)	0 (0%)	0 (0%)	
Child Protective Services (n = 7; 1.05%)	0 (0%)	7 (3.1%)	0 (0%)	0 (0%)	
Antibiotics (n = 25; 3.75%)	0 (0%)	4 (1.8%)	18 (7.9%)	3 (1.4%)	
Systemic Analgesia (n = 649; 48.87%)	4 (57.1%)	183 (64.2%)	207 (71.4%)	255 (89.8%)	
Hospital Disposition					
Hospital Admission (n = 19)	0 (0%)	11 (2.4%)	5 (1.1%)	3 (0.7%)	0.166
Admission to Surgery (n = 82)	6 (27.3%)	23 (5.1%)	32 (7.3%)	21 (5.2%)	<0.0001
Mortality (n = 6)	1 (4.5%)	4 (0.9%)	0 (0%)	1 (0.2%)	0.006

a: values are frequencies and column percentages for categorical variables, and medians and interquartile ranges for continuous variables.
Motor Vehicle Collisions

MVC included any MOI involving a vehicle, including both passengers in vehicles, and pedestrians struck by vehicles. The risk of suffering an MVC was positively correlated with age, with 38.5% of patients in the 10–14 age category and 2.6% of patients in the >1 age category.

Pedestrians struck were more likely to be males than females (83.6% vs. 16.2%, respectively). However, females were more likely to suffer in a vehicle collision (56.1%) when compared with males (43.9%). Overall, male children were more likely to suffer an MVC (62.8%). The majority of the burden associated with both vehicle collisions (80.5%) and pedestrians struck (67.6%) were shouldered by Bahraini nationals. [MOU1]

In terms of ED interventions, systemic analgesia was administered to a third of MVC patients. There was no statistically significant difference in systemic analgesia administration for different age categories of patients who suffered an MVC. Imaging was done on 59% of MVC patients and positive trauma related imaging findings were found in 28.3% of patients. Patients involved in vehicle collisions were more likely to arrive at the ED via ambulance when compared with patients who were struck by a vehicle (35.9% vs 20% respectively).

BDF hospital received the most MVC patients in both the pedestrian struck (54%) and vehicle collision (63.4%) subcategories when compared with the other two hospitals involved in receiving pediatric trauma. The majority (95.7%) of patients who suffered a MVC presented to the ED with a mild GCS score (13–15). However, two patients presented with signs of severe brain injury (GCS of 3–5). Both these patients were pronounced dead in the ED. [MOU2]

For patients who were involved in vehicle collisions, it was noted that 20.5% were front seat passengers. In Bahrain, the minimum legal age for a front seat passenger is 10 years. During the study, we identified one front seat passenger who suffered a vehicle collision who was under 10 years of age. A third of the vehicle collisions occurred at high speed (> 40 km/h) and 15.4% of collisions had airbag deployment. Furthermore, seat belt utilization was reported to be extremely low (7.7%) with ejection from the vehicle cabin occurring in 12.8% of passengers.

Four patients were admitted to the hospital and 12 were admitted to surgery amongst those in MVC. Six death pronouncements were made in the ED due to trauma during this pilot study, half of which were due
to MVCs. One occurred due to a pedestrian being struck. The other two were passengers in vehicles, one of which suffered ejection from the vehicle cabin.

Table 4
Characteristics of Road Traffic Injury Patients (N = 78)a,b

Variable	Pedestrian Struck (n = 37)	Vehicle Collision (n = 41)	Total RTA (n = 78)	p value
Sex				

a,b
Category	Male	Female	Total	P-value	
Gender					
Male	31 (83.8%)	6 (16.2%)	37 (83.8%)	0.002	
Female	18 (43.9%)	23 (56.1%)	41 (43.9%)		
Age					
<1	0 (0%)	2 (4.9%)	2 (2.6%)	0.002	
1 to 4 years	3 (8.1%)	15 (36.6%)	18 (23.1%)		
5 to 9 years	20 (54.0%)	8 (19.5%)	28 (35.9%)		
10–14 years	14 (37.8%)	16 (39.0%)	30 (38.5%)		
Nationality					
Bahraini	25 (67.6%)	33 (80.5%)	58 (74.4%)	0.192	
Non-Bahraini	12 (32.4%)	8 (19.5%)	20 (25.6%)		
Hospital					
Salmaniya Medical Complex	14 (37.8%)	11 (26.8%)	25 (32%)	0.582	
Bahrain Defense Force Hospital	20 (54%)	26 (63.4%)	46 (59%)		
King Hamad University Hospital	3 (8.1%)	4 (9.8%)	7 (9%)		
Ambulance utilization (n = 74)					
Yes	7 (20%)	14 (35.9%)	21 (28.4%)	0.13	
No	28 (80%)	25 (64.1%)	53 (71.6%)		
GCS category (n = 70)					
Mild (13 to 15)	32 (94.2%)	35 (97.2%)	67 (95.7%)	0.583	
Moderate (9 to 12)	1 (2.9%)	0 (0%)	1 (1.4%)		
Severe (6 to 8)	0 (0%)	0 (0%)	0 (%)		
Very Severe (3 to 5)	1 (2.9%)	1 (2.8%)	2 (2.9%)		
Pulse (n = 57)					
Abnormal	5 (19.2%)	6 (19.3%)	11 (19.3%)	0.991	
Normal	21 (80.7%)	25 (80.6%)	46 (80.7%)		
RR (n = 48)					
	Abnormal	Normal			
------------------	----------	--------	--------	--------	-------
Abnormal	9 (40.9%)	13 (50%)	22 (45.8%)	0.529	
Normal	13 (59.1%)	13 (50%)	26 (54.2%)		

	SaO2 (n = 55)				
Abnormal	0 (0%)	0 (0%)	0 (0%)		
Normal	24 (100%)	31 (100%)	55 (100%)		

	SBP (n = 55)				
Abnormal	12 (48%)	19 (63.3%)	31 (56.4%)	0.254	
Normal	13 (52%)	11 (36.7%)	24 (43.6%)		

	Febrile (n = 56)				
Yes	0 (0%)	1 (3.1%)	1 (1.8%)	0.382	
No	24 (100%)	31 (96.9%)	55 (98.2%)		

	ASPTS (n = 48)				
ASPTS < 10	1 (4.3%)	0 (0.0%)	1 (2.1%)	0.292	

	Imaging done				
yes	28 (75.7%)	18 (43.9%)	46 (59%)	0.004	
No	9 (24.3%)	23 (56.1%)	32 (41%)		

	Trauma Related Imaging findings (n = 261)				
Yes	9 (32.1%)	4 (22.2%)	13 (28.3%)	0.466	
No / Unknown	19 (67.9%)	14 (77.8%)	33 (71.7%)		

	ED interventions				
ACLS/Trauma Resuscitation	2 (18.2%)	2 (28.6%)	4 (22.2%)	0.849	
Fracture Management	3 (27.3%)	2 (28.6%)	5 (27.8%)		
Wound Management	6 (54.5%)	3 (42.9%)	9 (50.0%)		
Systemic Analgesia (n = 24)	12 (32.4%)	12 (29.3%)	24 (30.8%)	0.762	

	Hospital Disposition				
Hospital Admission	2 (5.7%)	2 (5.1%)	4 (5.4%)	0.911	
Admission to Surgery	7 (20.0%)	5 (12.8%)	12 (16.2%)	0.403	
----------------------	-----------	-----------	------------	-------	
Mortality	1 (2.7%)	2 (4.9%)	3 (3.8%)	0.618	
Seating (N = 39)					
Front seat	NA	8 (20.5%)	NA	-	
Back seat	NA	31 (79.5%)	NA		
Children under 10 yrs seated in front seat	NA	1 (2.5%)	NA		
MVC Descriptors					
High Speed (> 40 km/H)	NA	12 (30.8%)	NA	-	
Unrestrained	NA	36 (92.3%)	NA	-	
Ejection	NA	5 (12.8%)	NA	-	
Airbag Deployment	NA	6 (15.4%)	NA	-	

a: values are frequencies and column percentages for categorical variables, and medians and interquartile ranges for continuous variables.

b: p values reported are for Chi-square for categorical variables, and for Kruskal Wallis tests for continuous variables.

Discussion

Demographics and Hospital Presentation

When looking at patient characteristics, similar gender distributions have been observed in trauma studies around the GCC region. One study conducted by Alyafei et al outlined that in a pediatric trauma registry in Qatar, 82.8% of the injuries were amongst male patients (11) Additionally, a study conducted by Alghnam et al found that 85% of the MVC injuries in Saudi Arabian general population were in males (20). These findings are in line with the results of this study, where 66.3% of the study sample is male.

While the general population of Bahrain is composed significantly by non-nationals, this is not reflected in the pediatric population as the majority of non-bahrainis are migrant workers who are of above legal working age and do not add to the pediatric population. This may help to explain why Bahraini children represent the majority of the patients presenting to the ED in the study.

Most pediatric patients arrived at the ED by private vehicle, with only 3.76% being brought to the ED by ambulance. In the United States, it was estimated that 8% of all-comers in the pediatric ED in the United States were brought in by ambulance, with the significant majority of those patients presenting for traumatic injury (21, 22). Ambulance use for pediatric patients in the study sample was significantly lower than other high-income countries (22). EMS in the Kingdom of Bahrain
has since been revitalized with the official launch of the National Ambulance Project in June 2019, however none of the patients in our study had access to this service, as data collection concluded in December of 2018 (23).

Repeat visitation was investigated, as “Hospital shopping” was raised as a concern by local ED staff during registry implementation. None of the patients in the study presented to multiple hospital EDs within 24 hours of an injury. 15 individuals were identified as having presented to the ED twice during the study, however these were all separate injuries and treated as different events in the registry.

ASPTS < 10 has been used previously as an indicator of severe trauma presentation, and has been documented to be a strong predictor of mortality. The number of patients in the dataset with ASPTS < 10 was low (25 [1.88%]). ASPTS was found to be < 10 significantly more frequently in the < 1 age category (28.6%) demonstrating higher trauma severity amongst patients in that age category. This can also be explained by the increased frequency of abnormal vital signs in the age category.

Mechanism of Injury

Analysis has demonstrated that outcomes of pediatric trauma injuries have a gender and mechanism-specific pattern in Bahrain. This discrepancy is particularly evident when considering MVCs. Male children were found to have significantly higher odds of being struck as pedestrians when compared with females in the study sample (odds ratio: 6.6 [95% CI: 2.0–23.1]; p-value = 0.000).

Albeit infrequent, MVCs put children in need of emergent surgical management and prolonged hospital care (15% of surgical admissions occurred due to MVCs). Bahrainis had significantly lower odds of being in an MVC compared to non-Bahrainis (odds ratio: 0.49 [95% CI: 0.28–0.88]; p-value = 0.0071), who were almost twice as likely to be in an MVC. MVCs were identified as one of the most common (50%) mechanisms of injury leading to pediatric mortality. Furthermore, it was found that seat belt utilization was extremely low, with a very high portion of the sample population involved in MVC being unrestrained during the collision (93.2%).

Previous estimates of seatbelt utilization in the GCC already are significantly lower than those of other high income countries, however these findings are much lower than even those estimates (24). These findings highlight the importance and need for targeted interventions and injury control programs.

Drownings and near drownings were rare events, however they caused half of the mortality and significant morbidity in the study population. Six patients experienced drowning/near-drowning; half of them were pronounced deceased in the ED, two were admitted to the PICU, and one was admitted to the pediatric ward. Given the poor outcomes associated with these types of events, robust prevention practices can have a dramatic impact in reducing the incidence of drownings.

Fall injuries accounted for the majority of the MOI for patients presenting to the ED (56.48%), and was negatively correlated with increasing age, which is typically expected given developmental norms.
However, the portion of ED presentations attributed to falls is concerningly higher than what was found in previous articles studying the same age categories (25, 26).

While falls accounted for the majority of injuries across age categories, sports injuries were the second leading MOI for the oldest age group (14.2%). This likely coincides with the introduction of sporting events and intramural athletics in this age category.

The vast majority of injuries documented in this study were accidental (95.52%), and occurred in the home (51.42%). However, seven patients in the study were placed under the care of child protective services. Based on previous studies in Bahrain, only 10% of child abuse victims are placed in child protective services, thus it is possible that this figure does not fully capture the extent of injuries caused by physical child abuse (9)(27). Only 3.4% of injuries in the study were reported as non-accidental injury.

Burn injuries were not common (n = 36), but have been previously associated with non-accidental injuries despite all of the burn injuries in this study having been reported as accidental (9). One patient of the 36 who sustained burned injuries was placed under child protective services.

Limitations

This trauma registry is the first such initiative in the country of Bahrain, however, there are certain limitations in the present body of work which can pave the way for further large-scale research. First and foremost, data was captured exclusively for patients presenting to the ED at major trauma centers. All minor trauma that was not deemed severe enough to warrant presentation to an emergency department, or which presented to a local clinic for care, was not captured in this study. Using a paper-based data collection tool that was completed by the ED physician placed forms at risk of physical damage to the paper forms and poor capture of data due to being misplaced. Because data was collected for only three months, the study was unable to investigate the impact of seasonality on pediatric trauma in Bahrain. Lastly, the participating hospitals in this study were all government/military hospitals and we could not capture the trauma trends in minor trauma cases that present to exclusively private hospitals.

Registry Sustainability

Several obstacles to the implementation of a sustainable registry were uncovered over the course of the study. The most glaring, is the necessity for the national registry to be incorporated into electronic medical records. Paper based registry forms demanded a tremendous amount of effort and resources which were taxing both on the ED staff as well as the research team. Efforts to streamline data collection into the patient charts should be made a priority, as it would be the most robust and efficient method of surveillance. The current move towards electronic medical records in the country makes implementation of a comprehensive national trauma registry well poised to be incorporated into current efforts.

Investment of funding into the creation of designated support staff to create and maintain a trauma surveillance system would additionally be a crucial next step for injury surveillance in Bahrain. The addition of this workload onto existing hospital staff would not be feasible in the current system.
addition, trauma data is currently siloed independently, both by institutions and by prehospital vs. in-hospital record systems. A sustainable national injury surveillance system would need to collect and aggregate the data from all these institutions and have the respective institutions invest by creating methods by which this data can be shared securely and without risk.

Conclusions

There are significant implications that this study holds for policy implementation and practice surrounding injury prevention in the Kingdom of Bahrain. Having documented the low estimates of seat belt utilization is amongst pediatric MVC, and subsequently how frequently pediatric MVC victims are ejected from the cabin of the vehicle, a call to action to implement immediate public health policies to protect children from the morbidity and mortality associated with MVC in the country is warranted.

Similarly concerning is the high morbidity and mortality associated with drownings and near-drownings in the country. Despite being rare, these injuries carried half the mortality in the study, and thus public health policy aimed at preventing drownings should be implemented.

Beyond policy changes, public health educational campaigns would also be well suited with this evidence to inform the public about ways by which children can be protected from sustaining such injuries.

The PTR in Bahrain was a step forward in understanding pediatric trauma, however more studies exploring the epidemiology of trauma in the Kingdom of Bahrain are necessary to guide specific targeted interventions, and to evaluate how prevention policies are impacting injury trends. A national injury surveillance system would be well poised to address the gaps in knowledge uncovered by the PTR study by enabling Bahrain to advance its trauma system, and serving to protect the children in Bahrain from suffering preventable injuries.

Declarations

Ethical Approval and Consent to Participate

Ethics approval was granted by the Research Ethics Committees (REC) at each of the three hospitals involved in the study, the King Hamad University Hospital REC, Salmaniya Ministry of Health REC, Bahrain Defence Force REC(#2018-248), as well as the Royal College of Surgeons in Ireland – Bahrain REC. Consent was not deemed as applicable by the four local ethics committees, as the data was completely deidentified prior to analysis.

Consent for Publication

Consent for publication is not applicable, as all data was deidentified by the research team prior to analysis.
Availability of Supporting Data

The dataset used and analysed during the current study is available from the corresponding author upon reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Funding

No source of funding was provided to the research team.

Authors Contributions

JL designed the study and oversaw data collection, analysis, and contributed to writing the manuscript.

AI and AC participated in overseeing data collection, recruitment of hospital staff contributors, and participated in manuscript drafting. BS and SEA contributed significantly to data entry, validation, and analysis, as well as conducting literature review and contributed to creation of the figures and tables for the manuscript.

FA, RJ, SAA, GQ, and MC are all heads of department at the respective facilities where the study was conducted, and were involved with the initial study design, design of the data collection tool, conceptual input in the manuscript, and final editing of the manuscript.

AZ and NK are the researchers who conducted the analysis of the dataset and contributed significantly to the writing of the manuscript, specifically in regard to the analysis and results sections.

All authors read and approved the final manuscript.

Acknowledgments

The authors would like to acknowledge the ED staff members as all three participating hospitals who volunteered their time to help with the data collection process, without their contributions this study would not have been possible.

References
1. Haagsma JA, Graetz N, Bolliger I, Naghavi M, Higashi H, Mullany EC, et al. The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Inj Prev. 2016;22(1):3-18.

2. Ameratunga SN, Peden M. World report on child injury prevention: a wake-up call. Injury. 2009;40(5):469-70.

3. Moore L, Clark DE. The value of trauma registries. Injury. 2008;39(6):686-95.

4. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-128.

5. Awadhalla MS, Asokan GV, Matooq A, Kirubakaran R. Declining trends in injuries and ambulance calls for road traffic crashes in Bahrain post new traffic laws of 2015. J Epidemiol Glob Health. 2016;6(2):59-65.

6. Mokdad AH, Jaber S, Aziz MI, AlBuhairan F, AlGhaithi A, AlHamad NM, et al. The state of health in the Arab world, 1990-2010: an analysis of the burden of diseases, injuries, and risk factors. Lancet. 2014;383(9914):309-20.

7. Asim M, El-Menyar A, Al-Thani H, Abdelrahman H, Zarour A, Latifi R. Blunt traumatic injury in the Arab Middle Eastern populations. J Emerg Trauma Shock. 2014;7(2):88-96.

8. Hamadeh RR, Ali NM. Fatalities from road traffic accidents among the young in Bahrain. East Mediterr Health J. 2013;19(10):854-60.

9. Al-Mahroos F, Al-Amer E. Child physical abuse in Bahrain: a 10-year study, 2000-2009. East Mediterr Health J. 2012;18(6):579-85.

10. Harvey A, Towner E, Peden M, Soori H, Bartolomeos K. Injury prevention and the attainment of child and adolescent health. Bull World Health Organ. 2009;87(5):390-4.

11. Alyafei KA, Toaimah F, El Menyar A, Al Thani H, Youssef B, Mollazehi M, et al. Analysis of pediatric trauma data from a hospital based trauma registry in Qatar. Int J Crit Illn Inj Sci. 2015;5(1):21-6.

12. Abuzeyad F, Alqasem L, Al Farras MI, Al Jawder SS, Al Qasim G, Alghanem S. Emergency Medicine in the Kingdom of Bahrain. Int J Emerg Med. 2018;11(1):4.

13. Nwomeh BC, Lowell W, Kable R, Haley K, Ameh EA. History and development of trauma registry: lessons from developed to developing countries. World J Emerg Surg. 2006;1:32.

14. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370(9596):1453-7.

15. Duron V, DeUgarte D, Bliss D, Salazar E, Casapia M, Ford H, et al. Implementation and analysis of initial trauma registry in Iquitos, Peru. Health Promot Perspect. 2016;6(4):174-9.

16. General Directorate of Statistics. Bahrain in Figures, Central Informatics Organization 2016 [Available from: www.data.gov.bh.

17. Lissauer T. Illustrated textbook of paediatrics. 5th ed. London, England: Elsevier Science; 2017.
18. Potoka DA, Schall LC, Ford HR. Development of a novel age-specific pediatric trauma score. J Pediatr Surg. 2001;36(1):106-12.

19. Yang J, Bauer BA, Wahner-Roedler DL, Chon TY, Xiao L. The Modified WHO Analgesic Ladder: Is It Appropriate for Chronic Non-Cancer Pain? J Pain Res. 2020;13:411-7.

20. Alghnam S, Palta M, Hamedani A, Remington PL, Alkelya M, Albedah K, et al. In-hospital mortality among patients injured in motor vehicle crashes in a Saudi Arabian hospital relative to large U.S. trauma centers. Inj Epidemiol. 2014;1(1):21.

21. Augustine JJ. Emergency Medical Services Arrivals, Admission Rates to the Emergency Department Analyzed. ACEPNow. 2014.

22. Shah MN, Cushman JT, Davis CO, Bazarian JJ, Auinger P, Friedman B. The epidemiology of emergency medical services use by children: an analysis of the National Hospital Ambulatory Medical Care Survey. Prehosp Emerg Care. 2008;12(3):269-76.

23. Abuzeyad FH, Al Qasim G, Alqasem L, Al Farras MI. Evolution of emergency medical services in the Kingdom of Bahrain. Int J Emerg Med. 2020;13(1):20.

24. Abbas AK, Hefny AF, Abu-Zidan FM. Seatbelt compliance and mortality in the Gulf Cooperation Council countries in comparison with other high-income countries. Ann Saudi Med. 2011;31(4):347-50.

25. Aoki M, Abe T, Saitoh D, Oshima K. Epidemiology, Patterns of treatment, and Mortality of Pediatric Trauma Patients in Japan. Sci Rep. 2019;9(1):917.

26. Nesje E, Valoy NN, Kruger AJ, Uleberg O. Epidemiology of paediatric trauma in Norway: a single-trauma centre observational study. Int J Emerg Med. 2019;12(1):18.

27. Bahrain RLS. Bahrain Child Protection Act. 2012 June 2018.

Figures

![Timeline of PTR Implementation](image)

Figure 1

Timeline of PTR Implementation
Image not available with this version

Figure 2

Patient Enrollment and Outcomes