Are interventions for low-income groups effective in changing healthy eating, physical activity and smoking behaviours? A systematic review and meta-analysis

Eleanor R Bull,1 Stephan U Dombrowski,2 Nicola McCleary,3 Marie Johnston3

ABSTRACT

Objective: To conduct a systematic review and meta-analysis examining the effectiveness of behavioural interventions targeting diet, physical activity or smoking in low-income adults.

Design: Systematic review with random effects meta-analyses. Studies before 2006 were identified from a previously published systematic review (searching 1995–2006) with similar but broader inclusion criteria (including non-randomised controlled trials (RCTs)). Studies from 2006 to 2014 were identified from eight electronic databases using a similar search strategy.

Data sources: MEDLINE, EMBASE, PsycINFO, ASSIA, CINAHL, Cochrane Controlled Trials, Cochrane Systematic Review and DARE.

Eligibility criteria for selecting studies: RCTs and cluster RCTs published from 1995 to 2014; interventions targeting dietary, physical activity and smoking; low-income adults; reporting of behavioural outcomes.

Main outcome measures: Dietary, physical activity and smoking cessation behaviours.

Results: 35 studies containing 45 interventions with 17 000 participants met inclusion criteria. At postintervention, effects were positive but small for diet (standardised mean difference (SMD) 0.22, 95% CI 0.14 to 0.29), physical activity (SMD 0.21, 95% CI 0.06 to 0.36) and smoking (relative risk (RR) of 1.59, 95% CI 1.34 to 1.89). Studies reporting follow-up results suggested that effects were maintained over time for diet (SMD 0.16, 95% CI 0.08 to 0.25) but not physical activity (SMD 0.17, 95% CI −0.02 to 0.37) or smoking (RR 1.11, 95% CI 0.93 to 1.34).

Conclusions: Behaviour change interventions for low-income groups had small positive effects on healthy eating, physical activity and smoking. Further work is needed to improve the effectiveness of behaviour change interventions for deprived populations.

INTRODUCTION

Health outcomes are strongly correlated with social position in societies across the western world: individuals from deprived backgrounds die younger and experience a greater proportion of their lives with a disability.1–5 In the most deprived areas of England, for example, life expectancy is approximately 8 years less, and disability-free life expectancy 15 years less than in the least deprived areas.6 Among several deprivation indicators, a person’s individual or household income is widely recognised as being strongly positively correlated with health outcomes.3 The social gradient in health is predicted to steepen further despite policy efforts aimed at maximising equality.2–5

Behaviours linked to health, particularly healthy eating, physical activity and smoking, show a similar social gradient to health outcomes. Consumption of tobacco, a poor diet and a lack of physical activity are major risks...
to premature morbidity and mortality. People of lower socioeconomic status are more likely to smoke, be sedentary and eat a poor diet compared with those of higher socioeconomic status. These behaviours have been suggested as mediators of the link between social position and health outcomes.

Changing health behaviours

Given the potential improvements that changes in behaviour can bring to health, health research and clinical practice devotes considerable time and effort to behavioural interventions. For instance, stopping smoking increases life expectancy at any age and halves the risk of cardiovascular disease within 1 year. Experts agree that major improvements in public health will be brought about through behavioural changes in the population. Targeting behaviour change efforts at people at the lower end of the income spectrum is seen as a major means to reducing health inequalities. Gruer et al (ref 12, p.5) for instance argued that “the scope for reducing health inequalities related to social position [...] is limited unless many smokers in lower social positions can be enabled to stop smoking.”

Health behaviour change in low-income populations

Existing behaviour change support for those disadvantaged by income may not be fit for purpose. Evidence suggests that people from low-income groups are more difficult to identify and successfully recruit to general population interventions. Moreover, it has been suggested that low-income populations may achieve poorer behaviour change outcomes following interventions compared with more affluent participants, resulting in poorer health outcomes and potentially leading to intervention-generated inequalities.

In studies targeted at the whole population rather than specific subgroups, Michie et al have argued that observed differences in outcomes between socioeconomic groups may reflect baseline differences in health behaviours, and that the interventions themselves may be effective across the socioeconomic spectrum. In their review of interventions targeted specifically at those disadvantaged by income, examining controlled studies (with or without random allocation) published between 1995 and 2006, they found 15 relevant studies with 17 available comparisons. Approximately half of interventions were reported as effective relative to controls, but no meta-analysis was performed to estimate an overall effect size. At present, there is a lack of evidence on the effectiveness of interventions specifically targeting health behaviour change in low-income individuals.

The aim of the current systematic review is to build on Michie et al’s work by (A) providing an updated review including studies published since 2006, (B) including only randomised controlled trials (RCTs) and (C) applying meta-analysis to estimate intervention effect sizes. We investigated whether studies of interventions targeted at participants from low-income groups are effective in changing diet, physical activity or smoking behaviour.

METHODS

Eligibility criteria

A protocol for this review is not publicly available; however, this article does reflect the relevant components of the PRISMA checklist for the reporting of systematic reviews. The article was submitted with a copy of the checklist confirming this.

Studies included in this review had to meet the following inclusion criteria:

- **Population**: Adults aged 18 years and over, of low income and from the general population. Studies were considered to target a low-income group if they explicitly referred to their participants as ‘low income’. General population was defined as not belonging to a specific clinical group, such as those with diabetes or cardiovascular disease. Pregnant and overweight individuals were not considered to belong to a clinical group and were therefore included.

- **Interventions**: Interventions targeting a change in smoking, eating and/or physical activity behaviours. Studies could target a single behaviour or multiple behaviours in any combination.

- **Study design**: Published RCTs and cluster RCTs (cRCTs). Control condition could be no intervention, a less intense intervention or an intervention with different content.

- **Outcomes**: Behavioural outcomes relevant to smoking cessation, healthy eating and physical activity with no restrictions on length of follow-up. Self-reported individual-level behaviour, more ‘objective’ measures of behaviour and measures of behavioural change were all included, as in Michie et al. Studies were excluded if reported data were unsuitable for meta-analysis.

- **Date**: 1995–2014. Studies published from 1995 to 2006 were identified by screening Michie et al, the primary search included studies published between January 2006 and July 2014. We chose to focus on studies published within the previous two decades to ensure relevance to current financial, social, health and healthcare climates.

- **Language**: English language: in line with Michie et al’s review.

Search strategy

We used studies from 1995 to 2006 which had been identified by Michie et al’s review rather than running the search again because the previous review’s search criteria were similar but broader than our own and should therefore include all articles relevant to the current review. Specific search strategies were created (see online supplementary file 1) to search for studies published since Michie et al’s review of 1995–2006 papers. We searched eight databases: MEDLINE, EMBASE, PsycINFO, ASSIA, CINAHL, Cochrane Controlled Trials, Cochrane...
Systematic Reviews and DARE Electronic Databases. Search strategies were based on Michie et al and included three components: low-income population terms (eg, low-income, poverty, social class or socio-economic status), terms for the three targeted health behaviours (eg, physical activity, diet, smoking cessation, lifestyle, health behaviour or weight reduction) and intervention-relevant terms (eg, behaviour/behaviour change, health program, intervention, health promotion or program evaluation). The specific strategies were iteratively created and tailored to each database’s reference terms with an experienced NHS Clinical Librarian (PM). One author (ERB) initially ran the final searches on 1 December 2011 (January 2006–December 2011) and updated the search using the same search terms in the same databases on 10 July 2014 (December 2011–July 2014). In addition to the primary search, we checked the bibliography of each included study.

Study selection

One author (ERB) used the current review’s inclusion criteria to screen the full texts of the 13 studies published between 1995 and 2006 included in Michie et al.25 For the studies published from 2006 onwards ERB, NM and SUD initially screened titles and abstracts, and obtained potentially relevant studies for full-text screening. If no abstract was available the full text was scanned at this first screening stage. If no full text was retrieved, or screening information was missing, ERB contacted the corresponding study author requesting further information. NM and ERB double screened a random sample of 10% of titles and abstracts from the studies from 2006 onwards which they had not previously screened (n=257), agreement with the primary screener was 96%. Later in the screening process, NM screened a random sample of 10% of full-text articles assessed (n=12), agreement was 92%. The small number of disagreements were resolved through discussion.

Data collection process

Data were extracted using a prespecified and piloted data extraction form based on Davidson et al’s26 criteria, including study design, target behaviour, participants, recruitment strategies, intervention content and outcome data. Risk of bias in individual studies was assessed based on standard criteria adapted from Avenell et al.27 Where published online supplementary materials were available they were used to assist data extraction (these are referred to in online supplementary table S1), and if information was missing, the corresponding author was contacted. When interventions targeted more than one behaviour, then data were extracted for the different behaviours separately. ERB, SUD, NM and MJ jointly extracted the outcome data.

Data were extracted for all reported time points. The primary outcome was behaviour or behaviour change following the end of the intervention. For the dichotomous smoking outcomes proportions were extracted (eg, per cent of sample reporting smoking abstinence for the past 7 days). For continuous diet and physical activity outcomes means and SDs were extracted (eg, mean portions of fruit and vegetables consumed per week). Where there was a choice of outcome measures, the outcome chosen was the primary behavioural outcome measure specified by the authors, measured by the most objective means (eg, accelerometer data were preferred to self-reported minutes of physical activity) and adjusted for baseline differences if this had been seen as necessary by the authors.

Synthesis of results

Data from included studies were meta-analysed in RevMan (V5.2) using random effect models. For outcomes where a reduction (eg, mean percentage calories in fat) signifies a change in a healthy direction, data were reverse-scored before being entered for meta-analysis. For continuous diet and physical activity outcomes, standardised mean differences (SMD) were calculated using Hedges’ g to express the difference between the means for the intervention and control groups in SD units. For dichotomous smoking outcomes, we calculated relative risk (RR) of smoking abstinence and applied the Cochran-Mantel-Haenszel test.

Where studies had multiple comparisons (several intervention arms or reported outcomes for different behaviours) or were cRCTs, we adjusted participant numbers in line with Cochrane recommendations where possible.30 We conducted meta-analyses for the three behaviours separately at two time points: the most proximal time point postintervention and the longest follow-up time point where reported. A 95% CI was used and p<0.05 was taken as significant. We assessed variation in effect size between studies using the I2 statistic, with an I2 >50% interpreted as indicating the presence of heterogeneity.27 Following Cochrane Handbook recommendations,30 we compared independent subgroups of studies differing for two clinically relevant characteristics: interventions targeting women only versus a mixed sex sample, and interventions targeting a single behaviour versus multiple behaviours. Publication bias was assessed by visually inspecting funnel plots.

RESULTS

Study selection

A flow diagram is presented in figure 1. We identified 3999 references from the database search (including the updated search: numbers for this search are given in figure 1) along with the 13 studies identified in Michie et al’s23 review. After removing 1383 duplicates and excluding 2439 references on the basis of title and abstract screening 130 full texts were screened, of which 120 full texts were successfully retrieved, as 8 articles had no full text and 2 were irretrievable. Full-text screening initially led to the inclusion of 32 studies. Three further studies were identified from title screening reference
sections, so that 35 studies with 45 comparisons met inclusion criteria.25 31–71

Study characteristics

Participant identification and recruitment

Studies initially identified low-income participants through their place of residence (ie, living within an identified deprived area), by belonging to certain ethnic groups identified by the authors as suffering income inequality, being registered on a financial support programme, through belonging to a health clinic serving disadvantaged groups, by their employment (working in a manual workplace) or by an indicator of income (eg, quintile on the electoral role). Online supplementary table S1 describes how each study defined its study population as ‘low income’. Twenty-three studies reported having measured participants’ income as part of the study. Varying thresholds and income groupings were applied, but most commonly, incomes below US$15–US$20 000 (approximately £8840–£11 800) per year were considered ‘low’ and most studies reported that the majority of participants were in this category. Of the remaining 12 studies, 8 recruited participants from financial support programmes which required beneficiaries’ earnings to be equivalent or near to official US poverty levels (which vary over time and depending on the individual’s household size), 2 reported that the majority of participants held a manual, low wage occupation and the final 2 studies reported that participants’ neighbourhoods had a high proportion of residents living in poverty.

Following initial identification, participants were recruited through face-to-face contact, via letter, telephone, via media advertisement or most commonly a mixture of methods. Face-to-face opportunities described were door-to-door neighbourhood recruitment, organisation of a community health fair, invitation at medical or social services appointments, or through presentations at schools or other community groups. Telephone calls were usually a follow-up method of contact. Media advertisements included posters in community venues, newspaper, radio and television advertisements. In the majority of cases, it was the study investigators who initiated these recruitment activities. Timeframe of recruitment varied from 1 day to over 2 years. Techniques used to engage low-income groups in participating were poorly specified: those most commonly reported were offers of material incentives (eg, vouchers for signing up), prompts and cues (eg, a fridge magnet with the study telephone number) or social support to facilitate participation (eg, advising about crèche facilities).

Study design and participant characteristics

The characteristics of the 35 included studies are summarised in online supplementary table S1. The majority (k=30) were conducted in the USA; the remaining studies were from the UK (k=3), Australia (k=1) and Chile (k=1). Twenty-eight studies were RCTs; seven were cRCTs. Studies took place in community (k=22), healthcare (k=12) or workplace (k=1) settings. Seven studies tested a dietary intervention, 15 studies tested a physical activity intervention, and the remaining 6 tested interventions for multiple behaviours (5 tested diet and physical activity interventions, 1 tested diet and smoking interventions). Three studies had multiple intervention arms for one behaviour. In total, this yielded 16 interventions for the dietary meta-analysis, 12 interventions for physical activity meta-analysis and 17 for smoking meta-analysis. Each study randomised between 27 and 2549 participants, yielding a total of exactly 17 000 participants across the 35 studies. Of the 34 studies specifying participants’ sex, 19 targeted women exclusively and no study sampled only men. Women formed 72.4% of all participants. Mean average age of participants was 38.6, this ranged from 22.0 to 66.2 across study subgroups.
Intervention content

The content of interventions varied from provision of tailored self-help materials, to individual counselling or group programmes, but was often complex and poorly described (see online supplementary table S1). Control groups in the intervention tended to receive usual care, a less intense version of the intervention or an inactive version (eg, non-tailored materials). Intervention duration varied from a single episode to 2 years; the mode duration was 3 months. The intervention facilitator was described in 18 studies. In 13 studies this was either a routine healthcare provider such as a nurse or general medical practitioner, or a ‘non-routine’ healthcare provider such as a psychologist, dietician or smoking counsellor. Of the remaining five studies, the facilitator was a peer educator in three studies and a study administrator in two.

Intervention outcomes

Twenty-one studies assessed the behavioural outcome using self-report; 14 studies included an objective measure relating to behaviour such as biochemically confirmed smoking cessation. For dietary interventions, the primary outcome was fruit and vegetables consumed, grams of fat, dietary risk assessment score (which estimates saturated fat and cholesterol intake) or calories from fat consumed per day. For physical activity, studies reported a wider range of outcomes including mean number of minutes or hours of moderate physical activity per week, metres walked in 6 min, or metabolic equivalent minutes of activity per week. Smoking studies reported the number of participants who were abstinent from smoking, such as for the past 7 days, postpartum or for the previous 6 months. Studies differed in the delay between end of the intervention and most proximal assessment: this ranged from a few hours up to 8 months. Fourteen studies included follow-up data beyond the end of intervention time point. Overall 19.8% participants did not complete final assessments.

Risk of bias within studies

Online supplementary table S2 details the risk of bias assessment of the included studies. Risk of bias was variable. The majority of studies did not describe random allocation concealment procedures, provided numbers but not reasons for dropouts, did not mention blinding of any party and stated having used intention-to-treat analyses. There is therefore some risk of bias particularly during randomisation and surrounding blinding.

Quantitative data synthesis: effectiveness of interventions

Diet

Study outcomes are included in online supplementary table S3. The 16 dietary interventions were found to have an SMD of 0.22 (95% CI 0.14 to 0.29, I²=48%; figure 2). Eight dietary interventions provided longer term follow-up data, for 6–12 months postbaseline with combined SMD of 0.16 (95% CI 0.08 to 0.25, I²=41%).

Physical activity

Twelve physical activity interventions yielded an SMD of 0.21 (95% CI 0.06 to 0.36, I²=76%; figure 3). Three interventions provided longer term follow-up data 6–8 months postbaseline with a combined SMD of 0.17 (95% CI −0.02 to 0.37, I²=0%).

Subgroup analyses for heterogeneity suggested SMDs were not different (p=0.48) in four interventions targeting women only (SMD 0.14, 95% CI 0.00 to 0.27, I²=0%) compared with eight with a mixed sex sample (SMD 0.24, 95% CI −0.02 to 0.49, I²=90%). Effects were larger (p<0.001) in seven interventions targeting physical activity only (SMD 0.32, 95% CI 0.18 to 0.45, I²=32%) than five interventions targeting multiple behaviours including physical activity (SMD 0.00, 95% CI −0.07 to 0.08, I²=0%).

Figure 2

Standardised mean differences immediately postintervention for studies focusing on dietary change (ordered by effect size).

Bull ER, et al. BMJ Open 2014;4:e006046. doi:10.1136/bmjopen-2014-006046

Open Access on November 27, 2022 by guest. Protected by copyright.
Smoking

Seventeen smoking interventions were found to have a RR of smoking abstinence of 1.59 (95% CI 1.34 to 1.89, I²=40%; figure 4). Ten interventions provided longer term follow-up data for 3–12 months postbaseline. Positive intervention effects were not maintained; RR of smoking abstinence was 1.11 (95% CI 0.93 to 1.34, I²=15%).

Publication bias

Visual inspection of funnel plots showed little evidence of publication bias.

DISCUSSION

Summary of evidence

We systematically reviewed the effectiveness of interventions targeted at changing the diet, physical activity or smoking of low-income groups. The review updates and extends a previous narrative review by including recently published studies; incorporating RCTs only and applying meta-analysis to examine intervention effect.

We identified 35 studies containing 45 dietary, physical activity and smoking interventions. Studies used a wide range of methods to identify and engage low-income participants. Most studies were conducted in the USA, contained mostly women and were often delivered by a healthcare professional. The quality of studies was variable with some risk of bias identified.

Our meta-analysis estimated a postintervention SMD of 0.22 for diet, 0.21 for physical activity interventions and a RR of smoking abstinence of 1.59 for smoking interventions. This means that the interventions had small positive effects on behaviour relative to controls. For studies reporting follow-up data, the small positive effects were maintained for diet (SMD 0.16) but not physical activity (SMD 0.17) or smoking cessation (RR 1.11). However long-term effects are based on a small subset of studies. Our exploration of the variation between physical activity interventions suggested that studies which focused on a single behaviour were more effective.

Implications of findings

We found small intervention effects on the behaviour of low-income groups compared with controls. For healthy eating, this was equivalent to intervention groups eating just under half a portion of fruit and vegetables more...
than controls each day. Similar reviews not targeting low-income participants tend to report larger effects: four such reviews targeting adults in the general population reported larger effects for diet (SMD 0.31), physical activity (SMD 0.28–0.32) and smoking (RR 2.17) interventions. Although true comparison is not possible unless the same interventions were compared in different population groups, this does suggest that interventions may be less effective for low-income populations. If other population groups benefit more from current interventions, even than those specifically targeted at low-income groups, then we can expect an overall gradual widening of health inequalities, as has been reported. Clearly research with more effective interventions is needed, including RCTs conducted in the UK, to increase our understanding of ‘what works’ for low-income groups.

Our analysis of the variation in physical activity studies showed a trend towards studies being more effective if they target a single behaviour than two behaviours. In addition, only one smoking study targeted both smoking and diet and this was the study with the lowest overall effect size. This resonates with the argument that human self-regulation draws on limited resources which may be best applied to one behaviour change target at a time. In contrast, physical activity studies including women only did not seem to vary widely in effectiveness from those with a mixed sex sample. Nevertheless there may be other unexplored sources of heterogeneity including other aspects of the delivery of interventions, such as those in the TIDIER checklist or use of techniques from the recently published Behaviour Change Technique taxonomy v1.

Limitations
This study was a systematic but not exhaustive review, for instance not including informally published reports or ‘grey literature’, which tend not to be indexed within conventional databases. It limited its scope to RCTs and cluster RCTs to gather the highest quality evidence available, but some authors argue that reviewers should include less well-controlled studies because they often have enhanced external validity. In common with similar reviews methodological quality of studies was variable: for example, few studies blinded participants, facilitators or outcome assessors to treatment group. However, blinding of treatment condition in behavioural interventions is notoriously difficult: this is a criticism common to many similar reviews. Definitions of and thresholds for ‘low income’ varied somewhat between studies, reflecting the fact that there is no one agreed-on ‘cut-off’ for low income. We specified that the term ‘low income’ had to be used to refer to participants for studies to be included, since this is a relevant deprivation indicator in our financial and social context, perhaps more so than others such as education level. However, relevant papers not using this term may have been missed, particularly studies from some settings (eg, perhaps a church setting) where income may have been less likely to have been measured than others (eg, the workplace). Nevertheless, our review did identify studies using a wide range of concepts to target low socioeconomic status, such as area of residence, belonging to certain ethnic groups, belonging to a health clinic serving disadvantaged groups, as well as concepts directly linked to low income, such as indicator of income. Therefore, using the term ‘low income’ allowed us to implement a clear, objective and replicable criterion for including studies in the review, while also allowing us to capture studies considering low socioeconomic status in a variety of ways.

Additionally, the majority of studies were conducted in the USA, limiting generalisability to the UK context, although effect sizes for the UK studies fell within the typical range. Interventions were generally poorly specified. Categorisation or coding of control group content was not possible, even though studies show that this may vary substantially and influence intervention outcomes. Our review is also limited in scope to studies written in the English language. A final caveat for our findings is that while we excluded a study where the authors advised us that the data were zero-inflated, this may have been true of other studies.

CONCLUSIONS
This systematic review with meta-analysis of randomised controlled interventions to improve the diet, physical activity or smoking behaviour of low-income groups found small positive effects of interventions on behaviour compared with controls, which persisted over time only for diet. Despite research highlighting the urgent need for effective behaviour change support for people from low-income groups to assist in reducing health inequalities, this review suggests that our current interventions for low-income groups are positive, but small, risking ‘intervention-generated inequalities’. Policy makers and practitioners alike should seek improved interventions for disadvantaged populations to change health behaviours in the most vulnerable people and reduce health inequalities.

Acknowledgements The authors are grateful for the assistance of Mr Paul Manson, NHS Grampian Clinical Librarian, in the design of search strategies. They would also like to sincerely thank Professor Susan Michie, University College London, Dr Linda Leighton-Beck, NHS Grampian Keep Well Programme Director and Mrs Dorothy Ross-Archer, NHS Grampian Keep Well Programme Manager. Finally, they are also very grateful to the study authors who kindly provided additional data or advice for the review.

Contributors ERB and MJ had the original idea for the paper and designed the review method and analyses. ERB, SUD, NM and MJ participated in study selection and data extraction. ERB and SUD conducted statistical analysis. ERB, SUD, NM and MJ participated in writing the manuscript. ERB is the guarantor for the study.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
Open Access

Competing interests ERB is an employee of NHS Grampian. SJD is an employee of University of Stirling. NM is a PhD student at the University of Aberdeen. MJ is an emeritus professor at University of Aberdeen.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Office for National Statistics. Inequality in Disability-free life expectancy by area deprivation: England, 2002–05 and 2006–09. 2012. http://www.ons.gov.uk/ons/dcp171778_265133.pdf (accessed on November 27, 2022).

2. Marmot M, Atkinson T, Bell J, et al. Fair society, healthy lives: the Marmot Review: strategic review of health inequalities in England post-2010. London: The Marmot Review, 2010.

3. Adler N, Boyce W, Chesney M, et al. Socioeconomic inequalities in health: no easy answers. J Am Med Assoc 1993;269:1405–10.

4. Department of Health. Choosing health. London: Stationery Office, 2004. (White paper)

5. Scottish Government. Equally well: report of the ministerial task force on health inequalities. Edinburgh: The Stationery Office, 2008.

6. Mokdad A, Marks J, Stroup D, et al. Actual causes of death in the United States, 2000. JAMA 2004;291:1238–45.

7. World Health Organisation. The world health report 2002. Geneva: World Health Organisation, 2002.

8. Stamatakis E. Obesity, eating and physical activity. In: Bajekal M, et al. editors. The world health report 2002. Geneva: World Health Organisation, 2002.

9. Drewnowski A, Specter S. Poverty and obesity: the role of energy density and energy costs, Am J Clin Nutr 2004;79:6–16.

10. Whiteley E, Batty GD, Hunt K, et al. The role of health behaviours across the life course in the socioeconomic patterning of all-cause mortality: the west of Scotland twenty-07 prospective cohort study. Ann Behav Med 2014;47:148–57.

11. Hart C, Gruer L, Watt G. Cause specific mortality, social position, and obesity among women who had never smoked: 28 year cohort study. BMJ 2011;342:d3785.

12. Gruer L, Hart CL, Gordon DS, et al. Effect of tobacco smoking on survival of men and women by social position: a 28 year cohort study. BMJ 2009;338:480.

13. Doll R, Peto R, Baker F, et al. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ 2004;328:1519.

14. House of lords: Science and technology select sub-committee. Securing good health for the whole population: final report. London: Stationery Office, 2004.

15. Anderson A. Dietary interventions in low-income women: issues for UK Policy. Nutr Bull 2007;32:15–20.

16. Marcus B, Williams D, Dubbert P, et al. Physical activity intervention studies: what we know and what we need to know. A scientific statement from the American Heart Association council on nutrition, physical activity, and metabolism (subcommittee on physical activity); council on cardiovascular diseases in the young; and the interdisciplinary working group on quality of care and outcomes research. Circulation 2006;114:2739–52.

17. Shah LM, Anora V, King A, et al. The presence of tobacco cessation programs is not sufficient for low-income hospitalized smokers. Arch Intern Med 2009;169:902–3.

18. Hiscock R, Judge K, Bauld L. Social inequalities in quitting smoking: what factors moderate the relationship between socioeconomic position and smoking cessation? J Public Health 2011;33:39–47.

19. Niederepp J, Fiore MC, Baker TB, et al. Smoking-cessation media campaigns and their effectiveness among socioeconomically advantaged and disadvantaged populations. Am J Public Health 2008;98:916–24.

20. Chesterman J, Judge K, Bauld L, et al. How effective are the English smoking treatment services in reaching disadvantaged smokers? Addiction 2005;100:36–45.

21. White M, Adams J, Heywood P. How and why do interventions that increase health overall widen inequalities within populations? In: Barbones S, ed. Health, inequality and public health. Bristol: Policy Press, 2009:65–81.

22. Michel S, Jochelson K, Markham WA, et al. Low-income groups and behaviour change interventions: a review of intervention content, effectiveness and theoretical frameworks. J Epidemiol Community Health 2009;63:610–22.

23. National Institute of Health and Clinical Excellence (NICE). Behaviour change at population, community and individual levels (Public Health Guidance 6). London: NICE, 2007.

24. Armitage CJ, Arden MA. A volitional help sheet to increase physical activity in people with low socioeconomic status: a randomised exploratory trial. Psychol Health 2010;25:1129–44.

25. Davidson K, Goldstein M, Kaplan R, et al. Evidence-based behavioural medicine: what is it and how do we achieve it? Ann Behav Med 2003;26:161–71.

26. Avenell A, Broom J, Brown T, et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess 2004;8:1–182.

27. Hedges L. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Behav Stat 1981;6:107–28.

28. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst 1959;22:719–48.

29. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.

30. Aholwalia JN, Noll E, Kaur H, et al. Pathways to health: cluster-randomized trial to increase fruit and vegetable consumption among smokers in public housing. Health Psychol 2007;26:214–21.

31. Okuyemi KS, James AS, Mayo MS, et al. Pathways to health: a cluster randomized trial of nicotine gum and motivational interviewing for smoking cessation in low-income housing. Health Educ Behav 2007;34:43–54.

32. Auslander W, Haire-Joshu D, Houston C, et al. A controlled evaluation of staging dietary patterns to reduce the risk of diabetes in African-American women. Diabetes Care 2002;25:909–14.

33. Chang MW, Nitzke R. Design and outcomes of a mothers in motion behavioral intervention pilot study. J Nutr Educ Behav 2010;42(3 Suppl):S11–21.

34. Chang MW, Brown R, Nitzke S. Participant recruitment and retention in a pilot program to prevent weight gain in low-income overweight and obese mothers. BMC Public Health 2009;9:424.

35. Elder J, Ayala G, Campbell N, et al. Long-term effects of a communication intervention for Spanish dominant Latinas. Am J Prev Med 2006;31:159–66.

36. Simmons K, Stoddard W, Statistiche R, et al. Cancer prevention among working class, multietnic adults: results of the healthy directions-health centers study. Am J Public Health 2005;95:1200–5.

37. Gans KM, Ritica PM, Stroila LO, et al. Effectiveness of different methods for delivering tailored nutrition education to low-income, ethnically diverse adults. Int J Behav Nutr Phys Act 2009;6:24.

38. Jackson RA, Stotland NE, Caughey AB, et al. Improving diet and exercise in pregnancy with Video Doctor counseling: a randomized trial. Patient Educ Couns 2011;83:203–9.

39. Keyserling TC, Samuel-Hodge CD, Jilcott SB, et al. Randomized trial of a clinic-based, community-supported, lifestyle intervention to improve physical activity and diet: the North Carolina enhanced WISEWOMAN project. Prev Med 2008;46:499–510.

40. Jilcott SB, Keyserling TC, Samuel-Hodge CD, et al. Linking clinical care to community resources for cardiovascular disease prevention: the North Carolina Enhanced WISEWOMAN project. J Womens Health 2008;15:569–83.

41. Nitzke S, Kritsch K, Boeckner L, et al. A stage-tailed multi-modal intervention increases fruit and vegetable intakes of low-income young adults, Am J Health Promot 2007;22:6–14.

42. Nitzke S, Kritsch K, Lohe B, et al. Extension and research professionals join forces to address a critical nutrition issue. J Extension 2009;47:10204.

43. Sanchez-Johnsen LA, Stolley MR, Fitzgibbon ML. Diet, physical activity, and breast health intervention for Latina women. Hispanic Health Care Int 2006;4:101–10.

44. Steptoe A, Perkins-Porras L, McKay C, et al. Behavioural counselling to increase consumption of fruit and vegetables in low-income adults: randomised trial. BMJ 2003;326:855.
Supplementary File 1: Example Search Strategy

Medline Database 1st December 2011

Step	Search Term	Count
1	exp poverty/	18153
2	exp poverty areas/	2800
3	exp social class/	15096
4	exp social conditions/	3188
5	"low income".ti,ab.	10169
6	1 or 2 or 3 or 4 or 5	40230
7	exp Life Style/	37377
8	exp weight gain/	14266
9	exp overweight/	77138
10	exp Weight Loss/	17681
11	exp obesity/	75542
12	exp food habits/	10789
13	exp fruit/	32639
14	exp vegetables/	47553
15	exp exercise/	45754
16	exp diet therapy/	16335
17	exp diet/	82764
18	exp Smoking/pc, px, th [Prevention & Control, Psychology, Therapy]	13314
19	exp smoking cessation/	14366
20	exp "Tobacco Use Cessation"/	14858
21	exp "Tobacco Use Disorder"/	5420
22	exp health behavior/	58129
23	"health behavio*".ti,ab.	6627
24	7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23	83647
25	exp program development/	16327
26	exp program evaluation/	40639
27	exp intervention studies/	4265
28	exp health promotion/	32938
29	25 or 26 or 27 or 28	83647
30	6 and 24 and 29	728
31	limit 30 to (english language and yr=":2006 -Current")	425
Table 1: Study characteristics: organised by behavioural target and then by alphabetical order of lead study author

Study ID, additional references, year and country of publication	Study design	Participants randomised	Intervention description	Control description	Primary outcome	Main outcome time point and follow-up (weeks)
DIET						
Ahluwalia (diet) Supplemented by Okuyemi et al. (2007)	cRCT	▪ 173 smokers in a low-income public housing development<br▪ 52 m, 121 f<br▪ Mean age = 48 (13.1)<br▪ 72.9-74.2% had individual income ≤$800/month	Motivational interviewing counselling, provision of fruit and vegetables, a cookbook and educational videos	Motivational interviewing for smoking and nicotine gum (see Ahluwalia smoking)	SR Portions of fruit and vegetables per day, last 7 days	6 months
2007 USA						
Auslander	cRCT	▪ 294 low-income overweight African American women<br▪ Mean age ranged from 40.2 (8.2) to 41.2 (7.8)<br▪ 60-70% below the poverty line (not defined). Mean family income $1,367.8 ±$1,047.0 to $1,619.1 ± $1,206.7/month	Culturally-tailored peer-led dietary change program	No intervention until after final follow-up	SR mean % of calories from fat	Posttest: 3 month post baseline<br6 month post baseline follow-up
Study	Type	Interventions	Measures	Timepoints		
-------	------	---------------	----------	------------		
Chang (diet)\(^{34}\) Supplemented by Chang et al. 2009\(^{35}\) 2010 USA	RCT	129 overweight and obese mothers from WIC sites Mean age ranged from 25.12 (4.10) - 25.53 (3.94). 18-34. Income not reported but mothers eligible for the Women, Infants and Children Supplemental Food and Nutrition Program (WIC) so have a household ≤185% of the federal poverty level, which in 2010 was $3677/month for a family of four\(^*\)	DVD, peer support group and telephone calls	Usual care	SR cups of fruit and veg per day	2 month, 8 month 8 month follow-up
Elder\(^{36}\) (2 arms) 2006 USA	RCT	257 low-income, Spanish-dominant Latina women Mean age = 39.71 (9.93) 53% had an individual income <$2000/month	Tailored intervention: Tailored mailed materials Promotora intervention: Tailored materials and weekly home visits/telephone support	Non tailored, off the shelf materials	SR Mean grams of fat per day	M2 12 weeks M3 timepoint ‘6 m post-intervention’ M4 timepoint ‘12m post-intervention’
Study	Type	Randomised Controlled Trial (RCT)	Description	Intervention	Control	Endpoint
-------	------	-----------------------------------	-------------	-------------	---------	----------
Emmons (diet)\(^{37}\)	cRCT	1954 low-income multi-ethnic adults				
- 747 m, 1469 f
- Age range 18-75
- Income not reported but all participants lived in neighbourhoods classed as ‘impoverished’ (≥20% live below the federal poverty level) | Behavioural counselling, telephone support and mailings | Usual care: Not well specified | SR Fruit and veg servings per day | 4 month service
7 months follow-up |
| Gans\(^{38}\) (3 arms) | RCT | 1841 low-income ethnically diverse adults
- 275 m, 1566 f
- Mean age = 40.4 (12.9), 18-52
- 56.4% individual income <$20,000/year | Multiple Tailored (MT) intervention:
4 tailored mailed educational packages + a DVD
Multiple Re-tailored (MTI) intervention:
4 tailored educational packages based on telephone reassessments + a DVD | Non tailored nutrition information | SR Fruit and veg servings per day | 4 month service
7 months follow-up |
| Study | Intervention Details | Study Details | Counselling | Usual Care | End Point Data | Follow-Up Data |
|-------|----------------------|---------------|-------------|------------|----------------|----------------|
| **Jackson (diet)\[^{39}\]**
2011
USA | - 321 ethnically diverse low-income pregnant women
- Mean age 26.5 (6)
- Income not reported, but 85% of women received Medicaid, which in 2011 required pregnant women to have an individual income \(\leq \$1862/\text{month} \) | RCT | Counselling via a virtual video-doctor | Usual care: prenatal care appointment | SR fruit and vegetable intake per day | 4 weeks |
| **Keyserling (diet)\[^{40}\]**
Supplemented by Jilcott et al. (2006)\[^{41}\]
2008
USA | - 236 low-income women from the WISEWOMAN program
- Mean age ranged from 52 (0.64) – 54 (0.66).
- Eligible for study if at or below 200% of the federal poverty level. 93-96% of participants had household income \(\leq \$30,000/\text{year} \) | RCT | Counselling | Mailed diet and exercise leaflets | End point data: objectively measured fruit and veg intake, via median serum carotenoids (ug/dL). Follow-up data: fruit and vegetable consumption via Dietary Risk Assessment (score range 0-103,) | 6 month assessment 12 month assessment |
| Study | Design | Participants | Intervention | Assessment | Outcome | Duration |
|-------|--------|--------------|--------------|------------|---------|----------|
| Nitzke et al. 2007 | RCT | 2024 low-income young adults
- 786 m, 1238 f
- Mode age 18. Age range 18-24.
- 60% had individual income <$800/month | Tailored nutrition materials
Non-tailed materials | SR Fruit and vegetable intake per day | 12 months assessment |
| Parra-Medina 2011 | RCT | 226 low-income African American women
- Aged 35 and over, mode age range 35-49, mean not specified
- 50% had annual income <$20,000 | Stage-matched provider counselling and assisted goal setting plus 12 months of telephone counselling and tailored newsletters | Stage-matched provider counselling and assisted goal setting | SR dietary risk assessment score (rated between 0 and 104, where lower scores equal a lower intake of saturated fat and cholesterol) | 12 month assessment |
| Sanchez-Johnsen 2006 | RCT | 27 overweight Latina women
- Mean age ranged from 43.2 (6.3) to 44.9 (8.2). 35-65
- 52% family income <$16,000/year | Diet classes | Mailed health education | SR fruit and veg servings per day | 6 week assessment |
| Steptoe 2003 | RCT | 271 adults from deprived areas
- Sex not specified
- Age range: 18-70
- 68% had an individual income £400 ($640) /week | Behavioural counselling sessions, tailored to motivation level | Non-tailed nutrition education counselling | SR fruit and veg servings per day | 12 months |
| **Tessaro**²⁷ | RCT | 395 low-income women
Mean age 50.25
67% household income <$20,000/year | Computer-based interactive nutrition intervention | No intervention: waiting list control | SR fruit and veg servings per day | 3 months |
|---|---|---|---|---|---|---|
| **Physical Activity** | | | | | | |
| **Armitage**²⁵ | RCT | 68 manual workers
35 m, 33 f
Mean age = 27 (12.71)
Income not reported, though all had manual or clerical job roles | Volitional help sheet with implementation intentions | Help sheet without implementation intentions | SR metabolic equivalent minutes exercise per week (MET minutes) | 1 month |
| **Chang** (Physical activity)³⁴
Supplemented by Chang et al. 2009³⁵
2010 | RCT | See Chang (diet) above for description of the study’s participants | DVD, peer support group and telephone calls | Usual care | SR metabolic equivalent minutes exercise per week (MET minutes) | 2 months
8 month follow-up |
| **Dangour**⁴⁸
Supplemented by Dangour et al. (2007)⁴⁹
2011 | cRCT | 1897 older adults registered with health centres in low-middle socioeconomic status municipalities
656 m, 1346 f | Physical activity program | Educational materials on healthy eating, and information about healthcare | Objectively measured walking capacity: metres walked in six minutes | 24 month assessment |
| Country | Study Type | Randomized Controlled Trial (RCT) | Description | Treatment | Control | Outcome Measure | |
|---|---|---|---|---|---|---|---|
| Chile | | | Mean age ranged from 66.1 (0.9) – 66.2 (1.0). 64-67.9 | Tailored weight loss intervention | Usual care | provision |
| | | | Income not reported, but all attended health centres where median 9.2% of the population live in poverty (per capita income less than twice the price of a basic basket of food in Chile) | | | |
| Dutton | RCT | 2007 USA | 158 overweight low-income African American women | Behavioural counselling and telephone support and mailings | Usual care | SR hours exercise per week Post-treatment |
| Emmons | eRCT | 2005 USA | See Emmons (diet) above for description of the study’s participants | Counselling via a virtual video-doctor | Usual care? Not well specified | Mean hours per week of physical activity Endpoint |
| Emmons | cRCT | 2005 USA | See Emmons (diet) above for description of the study’s participants | Behavioural counselling and telephone support and mailings | Usual care? Not well specified | Mean hours per week of physical activity Endpoint |
| Jackson | RCT | 2011 USA | See Jackson (diet) above for description of the study’s participants | Counselling via a virtual video-doctor | Usual care: pre-natal care appointment | SR minutes per week of physical activity 4 weeks |
| Keyserling| RCT | 2011 USA | See Keyserling (diet) above for description of the study’s participants | Counselling | Mailed leaflets | Objectively measured PA; accelerometer 6 month assessment |
| Study | Design | Country | Participants | Description | Intervention | Measures | Follow-Up |
|-------|--------|---------|--------------|-------------|--------------|----------|-----------|
| Supplemented by Jilcott et al. (2006) | RCT | USA | 266 inactive Latina women | Tailored Spanish-language mailings of physical activity and individualised feedback reports | SR minutes of moderate to vigorous physical activity per week | 6 months post-intervention outcome |
| Marcus | RCT | USA | 266 inactive Latina women | Tailored Spanish-language mailings of physical activity and individualised feedback reports | SR minutes of moderate to vigorous physical activity per week | 6 month post-intervention outcome |
| Olvera | cRCT | USA | 46 low-income Latina mothers | Exercise and counselling | Same but 12 not 36 sessions | 12 week assessment |
| Pekmezci | RCT | USA | 93 Underactive Latina women | Tailored monthly mailings on physical activity | 6 monthly mailings on other topics | 6 months |
| Sanchez-Johnsen | RCT | USA | See Sanchez-Johnsen (diet) above for description of the study’s participants | Exercise classes | Mailed health education | 6 week assessment |
Whitehead35 2007 USA

- **RCT**
- 206 low-income African Americans
 - 36 m, 171 f
 - Average age 50
 - 64% household income <$1000/month

| Mailed tailored physical activity information | Mailed non tailored information about a low-sodium diet | SR time spent in physical activities for last 7 days, yielding an estimated caloric expenditure | 1 month assessment follow-up |

SMOKING

Ahluwalia31 (Smoking) Supplemented by Okuyemi et al. 200732 2007 USA

- **RCT**
- 173 smokers in a low-income public housing development
 - 52 m, 121 f
 - Mean age = 48 (13.1)
 - 72.9-74.2% had individual income ≤$800/month

| Motivational interviewing counselling for smoking and nicotine replacement therapy (NRT) | Motivational interviewing counselling, provision of fruit and vegetables, a cookbook and educational videos (see Ahluwalia, diet, above) | Biochemically confirmed smoking abstinence 7 days | 6 month assessment |

Andrews56 Supplemented by Andrews et al.

- **RCT**
- 103 African American women from a subsidised housing development.

| Counselling, NRT and community health worker | Smoking print materials, group education on | Biochemically confirmed smoking abstinence 7 days | 6 month assessment |
Study	Design	Country	Age and Income Information	Intervention	Outcome	Follow-Up
Bullock³⁵ 2007 USA	RCT	695 women attending Women Infant and Children Nutritional Supplement (WIC) clinic				
Mean age = 22 (4.6)
Income not reported but all women were eligible for WIC program so have household monthly gross income of ≤185% of the federal poverty level (see also Chang participant description) | Social Support (SS) intervention: Telephone calls from a nurse and 24 access through a pager
Social Support plus booklets (SS+B) intervention: Same with eight mailed booklets on stopping smoking in pregnancy
Booklets alone (B) control intervention: Eight mailed booklets on stopping smoking in pregnancy
Control (C) intervention: no intervention | Biochemically confirmed smoking abstinence for previous 7 days
End of pregnancy (T2)
Post-delivery follow up (T3) |

| Dornelas³⁹ 2006 USA | RCT | 105 pregnant smokers from a non-profit tertiary care community hospital
Mean age = 26.1 (5.8), 18-42
49% household income of ≤$15,000/year.
Counselling session and telephone follow-up | Usual care: standard smoking cessation advice
Biochemically confirmed smoking abstinence for previous 7 days
End of pregnancy assessment
Six months post-partum follow- |
Author	Year	Country	Study Design	Participants	Intervention	Outcome Measure	Follow-up
Fang	2006	USA	RCT	66 low-income Chinese and Korean smokers			
63 m, 3 f							
Mean age ranged from 43.97 (17.21) to 48.35 (16.47)							
68% had individual income ≤$15,000/year	Motivational interviewing style session + NRT						
General health counselling, an educational booklet + NRT	SR smoking abstinence, last 7 days	1 week assessment					
1 month and 3 month follow-up							
Froelicher	2010	USA	cRCT	60 African Americans from a low-income neighbourhood with high health disparities			
17 m, 43 f							
Mean age = 46 (10.8)							
55.9-61.5% individual income <$15,000/year	Smoking cessation program and tobacco industry and media messages hand-outs						
Standard smoking cessation program and written hand-outs	Biochemically confirmed abstinence	6 month assessment					
12 months follow-up							
Gordon	2010	USA	cRCT	2549 smokers visiting public dental clinics serving people of low-income			
1241 m, 1508 f
Mean age = 40.5 (12.6)
Income not reported but participants at or below 200% of the federal poverty threshold as | Brief smoking advice
Usual care | SR smoking abstinence for last 6 months | 7.5 months end point |
defined by the US Census Bureau 2006-8. This equates to an individual income ≤ $19,600/year.*

Study	Design	Country	Sample Size	Participant Characteristics	Intervention Details	Outcome Measures	Follow-up	Notes
Liles*	RCT	USA	150	150 low-income mothers who smoke from WIC programme				
Mean age 30.1 (7.1)								
Income not reported but all eligible for WIC program so have household monthly gross income of ≤185% of the federal poverty level (see also Chang participant description)	Counselling to decrease second-hand smoke exposure	Not specified	Biochemically confirmed quit for at least 7 days over study period	18 month assessment				
Miller*	RCT	Australia	1377	1377 disadvantaged smokers				
Age not specified								
Income not reported but all participants were eligible for an Australian Government concession card, which currently requires an individual income of <$2,072AUS/month ($1948 US dollars)**	Availability of a quitline and NRT	Availability of a quitline without NRT	SR smoking abstinence: previous day	3 month assessment				
6 months and 12 months follow-up								
Okuyemi*	RCT		430	430 homeless adult smokers	Multi session	Standard care of	Biochemically	8 weeks (post-
Year	Location	Study Design	Participants	Intervention	Follow-up	Outcome		
------	----------	--------------	--------------	--------------	-----------	---------		
2013	USA		63.5% had a monthly family income <$400	motivational interviewing intervention and NRT	26 weeks (follow-up)	confirmed smoking abstinence: previous seven days		
2010	USA	RCT	251 low-income pregnant ex-smokers	Motivation and problem solving intervention	Biochemically confirmed smoking abstinence following delivery of baby	Follow-up week 26 post-partum		
2000	USA	RCT	214 medicaid-eligible female smokers of childbearing age	3 months of telephone support and NRT	Biochemically confirmed smoking abstinence: previous seven days	3 months		
2005	USA	RCT	330 low-income women smokers	3 months of telephone support for psychosocial issues surrounding quitting and NRT	NRT only	3 months		

Note: NRT stands for Nicotine Replacement Therapy.
Study	Year	Country	RCT Type	Description	Intervention Details	Outcome Measures	Follow-up Details
Sykes	2001	UK	RCT	260 adult smokers from a deprived area, 94 m, 166 f, Age not specified, Income not reported, 42% in manual occupation or unemployed and therefore defined as ‘low-income’	Quit for life self-help cognitive behavioural programme, Usual care ‘stopping smoking made easier’ booklet	Biochemically confirmed smoking abstinence: previous seven days	Follow-up outcome point
Volpp	2006	USA	RCT	179 low-income veteran smokers, 168 m, 10 f, Mean age ranged from 52.7 to 53.1, 49.7% household income <$15,000/year	Free smoking cessation program +financial incentives for attending class and quitting smoking, The same program without incentives	Biochemically confirmed smoking abstinence: previous seven days	30 day assessment, 6 months follow-up
Wu	2009	USA	RCT	139 low-income Chinese American smokers, 107 m, 15 f, Mean age ranged from 43.9 (12.1) – 45 (12.8), 72%-77% individual income <$20,000/year	Motivational interviewing counselling for smoking, General health counselling	Biochemically confirmed quit at follow-up	6 month assessment

Note: RCT=randomised controlled trial. cRCT=cluster randomised controlled trial. SR=self-reported. If a study had multiple arms testing interventions for one behaviour, they are listed under one section in the table. If the study included interventions with the same participants for more than one behaviour, the characteristics for each
intervention are reported separately for the relevant behavioural target *Source: http://familiesusa.org/product/federal-poverty-guidelines retrieved 14.06.14 ** Source: http://www.humanservices.gov.au/customer/enablers/centrelink/low-income-health-care-card/income-test, retrieved 14.06.14
Table 2: Risk of bias for individual studies, in alphabetical order (following Avenell et al. 2004).

Lead study author	Quality of random allocation concealment	Description of withdrawals and drop outs	Intention to treat analysis?	Participants blinded to treatment status?	Intervention facilitators blinded to treatment status?	Outcome assessors blinded to treatment status?
1 Ahluwalia^{31,32}	A	Numbers and reasons	Yes	Bi	C	C
2 Andrews^{56,57}	C	Numbers stated only	Yes	Bi	Bi	Bi
3 Armitage²⁵	C	Numbers stated only	Yes	Ai	Ai	C
4 Auslander³³	C	Numbers stated only	No	Bi	Bi	Bi
5 Bullock⁵⁸	Bi	Numbers and reasons	Yes	Ai	C	Ai
6 Chang^{34,35}	Bi	Numbers and reasons	No	Ai	Ai	Bi
7 Dangour^{48,49}	Bi	No numbers given	Yes	C	C	Ai
8 Dornelas⁵⁹	Bi	Numbers and reasons	Yes	Bi	Bi	Bi
9 Dutton⁵⁰	Bi	Numbers and reasons	Not clear	C	C	C
10 Elder⁵⁶	Bi	Numbers and reasons	No	C	C	C
11 Emmons³⁷	Bi	Numbers stated only	Yes	Bi	Bi	Bi
12 Fang⁶⁰	C	Not mentioned	Yes	C	C	C
13 Froelicher⁶¹	Bi	Numbers stated only	Yes	C	C	Bii
14 Gans⁴⁸	A	Numbers and reasons	Yes	Bi	Bi	Aii
15 Gordon⁶²	Bi	Numbers stated only	No	Bi	Bi	Bi
16 Jackson⁵⁹	A	Numbers and reasons	Yes	C	Ai	C
17 Keyserling^{40,41}	A	Numbers and reasons	Yes	Bi	Bi	Bi
18 Liles⁶⁴	Bi	Numbers stated only	Yes	Bi	Bi	Ai
19 Marcus⁵¹	Bi	Numbers and reasons	Yes	Bi	Bi	Aii
No.	Study	Quality of random allocation concealment	Blinding			
-----	-------	---	----------			
20	Miller	Numbers stated only	Yes			
21	Nitzke	Numbers stated only	Yes			
22	Okuyemi	Numbers and reasons	Yes			
23	Olvera	Numbers and reasons	No			
24	Parra-Medina		Yes			
25	Pekmezi	Numbers and reasons	Yes			
26	Reitzel	Numbers stated only	Yes			
27	Sanchez-Johnsen	NA	No			
28	Steptoe	Numbers stated only	Yes			
29	Tessaro	Numbers stated only	No			
30	Solomon	Numbers stated only	Yes			
31	Solomon	Numbers stated only	Yes			
32	Sykes	Numbers stated only	Yes			
33	Volpp	Numbers stated only	Yes			
34	Whitehead		Yes			
35	Wu	Numbers and reasons	No			

Note. NA = not applicable

Quality of random allocation concealment:
A = good attempt at concealment
Bi = states random allocation but no description given
Bii = attempt at concealment but real chance of disclosure of assignment prior to formal trial entry
C = definitely not concealed

Blinding:
A_i = action taken at blinding likely to be effective
A_{ii} = blinding stated but no description given
B_i = no mention of blinding
B_{ii} = attempt at blinding but reason to think it may not have been successful
C = not blinded
Table 3: Intervention outcomes: organised by behavioural target and then by alphabetical order of lead study author

Study reference and follow-up point	Outcome measure	Control group baseline mean (SD/SE)	Intervention group baseline mean (SD/SE)	Control group endpoint mean (SD/SE) or proportion abstinent from smoking	Intervention group endpoint mean (SD/SE) or proportion abstinent from smoking	Follow-up outcome mean (SD/SE) or proportion abstinent from smoking	Intervention effect as reported in the paper
DIET							
Ahluwalia31,32	SR Portions of fruit and vegetables per day, last 7 days	2.17 (1.63)	2.06 (1.73)	2.44 (2.42)	3.10 (2.48)	Mixed linear model found significant difference between groups (p=.04)	
Auslander33	SR mean % of calories from fat	36%	35.9%	35.6%	32.1%	ANCOVA test and post-hoc tests revealed significant difference between intervention and control group at 3 month post test [t=-4.01 p<.01] and 6 month follow-up [2.50 p<.05]	
Chang34,35	SR cups of fruit and vegetables per day	4.25 (2.91)	4.87 (4.41)	4.73 (3.41)	6.33 (3.42)	General linear mixed model found no significant intervention effect at either time point p>.05	
Study	Participants	Time Point	Endpoint	Mean (SE)	Significance		
-------	---------------	------------	----------	-----------	--------------		
Elder	M2 time point 12 weeks	SR Mean grams of fat per day	56.8 (SD25.2)	49.1 (SE1.9)	Tailored IV group 49.8 (SE2) Promotora IV group 43.1 (SE1.9)		
Emmons	(diet) Endpoint	SR Fruit and veg servings per day	3.19 (SE0.062)	3.13 (SE0.064)	3.57 (SE 0.064)		
Gans	(3 arms)	SR Fruit and veg servings per day	NS	Change from baseline 0.42 (2.51)	Change from baseline 0.24 (2.52)		

- Significant differences between groups reported at M2: $F(2.309)=3.73, p=0.025$
- Group differences were not maintained at M3 or M4 (not further specified).

- Significantly greater changes in IV group than C group $p=.005$
- At 4 months significant differences between C and ST
| 4 months | MT IV group | MTI IV group | ST IV group | MTIV 0.68 (2.63), MTI IV 0.49 (2.58) ST 0.58 (2.69) | | |
|---|---|---|---|---|---|---|
| 0.72 (2.55) | 0.36 (2.58) | 0.92 (2.92) | | (p=.01), ST and MTI (p=.01), MT and MTI (p=.01), C and MT (p=.05) |
| **Jackson** | **SR fruit and vegetable intake per day** | 3.3 (1.7) | 3.0 (1.6) | 3.1 (1.5) |
| 4 weeks | change of -0.2 (1.5) | 3.44 (1.6) | change of +0.44 (1.6) | - |
| **Keyserling** | **End point data: objectively measured fruit and veg intake, via median serum carotenoids (ug/dL)** | 3.8(SE0.05) | 3.8(0.06) | 3.9 (SE0.03) |
| (diet) | Follow-up data: fruit and vegetable consumption via Dietary Risk Assessment (score range 0-103, | | | 4.0 (SE0.03) |
| 6 month assessment | | | | | 12 month assessment: C 32.8(SE0.7) IV 29.2 (SE0.7) |
| | | | | | Marginally significant difference between adjusted mean objective measures at 6 month assessment (p=.05) |
| | | | | | Significant difference at follow-up12 month assessment for Dietary Risk Scores (p<.001) |
| Study | Intervention | Outcome Measure | Baseline Mean (SD) | Post-intervention Mean (SD) | P-value | Findings |
|------------------------|--------------|--|--------------------|----------------------------|---------|--|
| Nitzke 12 months | Daily fruit and vegetable intake, servings | 4.72 (2.61) | 4.75 (2.86) | 4.60 (2.45) | 4.90 (2.35) | - |
| | | | | | | • Significant intervention effect from ANOVA [F=3.49, p<.05] |
| Parra-Medina 12 months | Dietary risk assessment score (rated between 0 and 104, where lower scores equal a lower intake of saturated fat and cholesterol) | 32.1 (8.5) | 32.0 (9.1) | 26.8 (7.3) | 21.3 (6.9) | - |
| | | | | | | • Mean reductions in dietary risk assessment score were significantly greater amongst intervention participants (p<.001) |
| Sanchez-Johnsen 6 weeks | SR fruit and veg servings per day | 6.11 (3.11) | 5.66 (3.80) | 4.63 (2.51) | 5.33 (3.40) | - |
| | | | | | | • ANOVA test suggested significant intervention effect [F=4.716, p=.04] |
| Steptoe 12 months | SR fruit and veg servings per day | 3.67 (2.0) | 3.6 (1.81) | 0.87 (2.22) | 1.49 (2.2) | - |
| | | | | | | • Significant difference in change =0.62 servings, [p=.021, 95% CI 0.09 to 1.13] |
| Tessaro 67 | SR fruit and veg | 3.87 (1.90) | 3.90 (1.89) | 3.55 (2.24) | 3.74 (2.11) | - |
| | | | | | | • Paired t test indicated no |
| 3 months | servings per day | | | | | significant difference between 3 month follow-up scores ($p=.32$) |
|---|---|---|---|---|---|---|

PHYSICAL ACTIVITY

Armitage²⁵	**1 month**	**SR metabolic equivalent minutes exercise per week (MET mins)**	896.89 (1657.94)	733.12 (945.15)	868.33 (1659.01)	1080.62 (1317.70)	-
Chang^{34,35}	**(Physical activity) 2 months**	**SR metabolic equivalent minutes exercise per week (MET mins)**	27.28 (29.85)	29.76 (26.74)	33.51 (29.34)	41.09 (29.87)	8 month follow-up C 36.02 (29.3) IV 53.20 (30.24)
---	---	---	---	---	---	---	---
Dangour^{38,49}	**24 month assessment**	**Objectively measured walking capacity: metres walked in six minutes**	452.8 (78.4)	447.9 (72.4)	432.8 (77.8)	466.5 (86.7)	
---	---	---	---	---	---	---	---
Dutton⁵⁰	**Post-treatment**	**SR hours exercise per week**	NS	NS	Mean change from baseline: 0.59 (10.99)	Mean change from baseline: 0.75 (7.58)	
---	---	---	---	---	---	---	---

- Significant intervention effect according to ANCOVA analysis [$F(1,66)=7.28$, $p=.009$]

- General linear mixed model, no significant effect at 2 months (effect size $d=0.25$, CI -0.24 to 0.74) or at 8 months (effect size $d=0.57$, CI -0.04 to 1.18)

- Significant difference between groups ($p=.001$)

- ANOVA test found no significant difference between conditions ($p=.65$)
| Study | Measure Description | Baseline Mean (SD or SE) | Follow-up Mean (SD or SE) | Change (SD or SE) | Significance Notes | | |
|---|---|---|---|---|---|---|---|
| Emmons et al. | SR Mean hours per week | 4.93 (SE0.16) | 4.8 (SE0.16) | 4.91 (SE0.16) | 4.77 (0.17). |
| | No significant differences between groups at follow-up | | | | [p=.51] |
| Jackson et al. | SR minutes per week of physical activity | 122 (SD not reported) | 127 (SD not reported) | 136 (135) | [change of 14] |
| | Means not significantly different at 4 week follow-up according to an unpaired Student’s t-test [p=.42] |
| Keyserling et al.| Objectively measured PA; accelerometer moderate minutes per day | 13(SE1.2) | 11.6 (SE1.3) | 11.7(SE1.1) | 12.2(SE1.1) |
| | Not significantly different according to ANCOVA, at 6 months [p=.74] or 12 month follow-up [p=.33] |
| Marcus et al. | SR moderate to vigorous minutes of physical activity per week | 3.02 (10.3) | 1.87 (6.86) | 32.98 (82.82) | 73.36 (89.73) |
| | Intervention group significantly more active than control group at 6 months, according to a longitudinal regression controlling for baseline differences (p<.001) |
| Olvera et al. | SR activity level on a scale from 0 (sedentary) to 7 (vigorous) | 1.2 (1.5) | 1.4 (0.9) | 1.2 (0.9) | 2.1 (1.6) |
| | No significant effect according to ANCOVA [F 1.35, p=2.57, d=.4] |
| Pekmezci et al. | SR minutes of | 11.88 | 16.56 | 96.79 (118.49) | 147.27 (241.55) |
| | No significant between group | | | | |
| | | | | | | |
|----------------|---|---|---|---|---|---|
| **Sanchez-Johnsen**⁴⁵ | (Physical activity) 6 week assessment | SR times engaged in activity designed to improve fitness on a scale from 1 (0 times) to 9 (more than 7 times) | 2.11 (2.18) | 2.11 (1.75) | 2.98 (2.48) | 3.66 (1.78) | • No significant difference according to ANCOVA \[F=0.634, p=.434\] |
| **Whitehead**³⁵ | 1 month assessment | SR time spent in physical activities for last 7 days, yielding an estimated caloric expenditure | 2507.82 (SE 2.64) | 2507.35 (2.55 SE) | 2506.72 (2.65) | 2511.76 (2.56) | • A doubly multivariate ANOVA with planned comparisons showed significant differential group changes at 1 month \[F(1,205)=17.98, p<.001\] and 6 months \[F(1,205)=4.07, p<.05\] |
| **SMOKING** | | | | | | |
| **Ahluwalia**^{31,32} | (Smoking) 6 month | Biochemically confirmed smoking | All smoked at baseline | All smoked at baseline | 9 of 93 abstinent | 4 of 57 abstinent | • Adjusted Mantel-Haenszel chi-square statistic revealed no significant difference between |
| Study | Time Point | Methodology | Abstinence | p Value |
|-------|------------|-------------|------------|---------|
| Andrews | 6 month assessment | Biochemically confirmed smoking abstinence 7 days | 3 of 52 abstinent | p=.73 |
| Bullock | 2 arms | Biochemically confirmed smoking abstinence last 7 days | B control group: 27 of 141 (12%); C control group: 22 of 128 (17%) | - |
| Dornelas | End of pregnancy assessment | Biochemically confirmed smoking abstinence for previous 7 days | - | - |
| Fang | 1 week | SR smoking abstinence, last 7 days | - | - |

Notes:
- Odds ratio 4.9, CI -1.51 to 15.89
- Main effect of intervention group variable in multiple regression, p=.001.
- Likelihood ratio chi-square not significantly different X²=1.33, p=.72 at T2 end of pregnancy X²=1.39, p=.71 at T3 post-delivery follow-up
- Significant difference at end of pregnancy assessment only, according to chi-squared test X²=5.94(1), p=.015.
| Study | Assessment | Days | Follow-up | Chi-square Test | p Value | Finding |
|---------------|-----------------------------|--------|----------------------------|-----------------|---------|--|
| Froelicher | 6 month assessment | - | 3 of 26 | X^2(1)=2.51 | .11 | Not significantly different – not further specified. |
| Gordon | 7.5 months endpoint | - | 8 of 439 | F(1,12)=14.62 | <.01 | Significant between groups effect |
| Liles | 18 month assessment | - | 5 of 74 | Fisher’s exact test: difference statistically significant p=.029 |
| Miller | 3 month assessment | - | 97 of 377 | Chi squared test: significant difference reported at 3 and 6 month assessment [p≤.001] but not at 12 months [p value not specified] |
| Okuyemi | Biochemically confirmed abstinence | - | 19 of 214 | No significant group |
| Study | Follow-up | Subject | Outcome | Description | Difference | Note |
|-------|-----------|---------|---------|-------------|------------|------|
| Reitzel 2006 | 8 weeks (post-intervention) | confirmed smoking abstinence: previous seven days | 12 of 214 IV 20 of 216 | difference according to chi squared test at week 8 ($p=0.89$) or week 26 ($p=0.15$) | 19 of 115 31 of 136 | • Main effect of treatment approached significance according to a continuation ratio logit model [$X^2(1)=3.10$, $p=.08$] |
| Solomon 2000 | 3 months | Biochemically confirmed smoking abstinence following delivery of baby | 58 of 159 | Significant difference at 3 months [$p=.035$] according to Chi square test but not at 6 month follow-up [p value not specified] | 30 of 108 44 of 106 | • Experimental condition strongest predictor in logistic regression at 3 months: OR 2, CI 1.09 TO 3.68. Not a significant predictor at 6 month follow-up (not further specified) |
| Solomon 2005 | 3 months | SR smoking abstinence, last 7 days | 48 of 159 IV 65 of 171 | | 58 of 159 82 of 171 | • |
| Study | Follow-up/Assessment | Smoking Abstinence: Previous Seven Days | Follow-up/Assessment | Smoking Abstinence: Previous Seven Days | 6 months | Significance |
|--------|----------------------|--|----------------------|--|----------|--------------|
| Sykes | Follow-up | Biochemically confirmed smoking | - | - | 6 of 107 | 21 of 122 |
| | | abstinence: previous seven days | | | | Significant difference compared to controls [X^2(2)=22.339, p<.001] |
| Volpp | 30 day assessment | Biochemically confirmed smoking | - | - | 4 of 87 | 15 of 92 |
| | | abstinence: previous seven days | | | | 6 months |
| | | | | | | Significant difference at 30 day assessment according to Chi squared test [X^2=6.46, p=.01], but not at 6 month assessment [X^2 = 0.31, p=0.57] |
| Wu | 6 month assessment | Biochemically confirmed quit at follow- | - | - | 20 of 62 | 40 of 60 |
| | | up | | | | Significant difference according to logistic regression, OR 4.32, CI: 2.01 to 9.27, p<.001 |

Note. SR=self-reported NS=not specified, C=control group IV=intervention group SE=standard error, OR=odds ratio, CI=confidence interval. p<.05 was considered statistically significant. Unless otherwise specified, in smoking interventions no participants were abstinent from smoking at baseline.