Therapeutic alternatives in the management of osteoradionecrosis of the jaws. Systematic review

Gisela CV Camolesi 1, Karem L. Ortega 2, Janaina Braga Medina 3,4, Luana Campos 5,6, Alejandro I Lorenzo Pouso 7, Pilar Gándara Vila 8, Mario Pérez Sayáns 8

1 DDS. Assistant Professor of Specialization in Oral Maxillofacial Surgery at Foundation for Scientific and Technological Development of Dentistry, University of São Paulo, Brazil
2 PhD, DDS. Department of Stomatology, School of Dentistry, University of São Paulo, Brazil
3 DDS. Department of Stomatology, School of Dentistry, University of São Paulo, Brazil
4 Division of Dentistry, Mario Covas State Hospital of Santo André, São Paulo, Brazil
5 PhD, DDS. Department of Post-graduation in Implantology, University of Santo Amaro, School of Dentistry. São Paulo, Brazil
6 Oral medicine, Brazilian Cancer Control Institute. São Paulo, Brazil
7 DDS. Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes). Faculty of Medicine and Dentistry Universidade de Santiago de Compostela, Spain
8 PhD, DDS. Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes). Faculty of Medicine and Dentistry Universidade de Santiago de Compostela, Spain

Correspondence:
Entrerríos s/n,
Santiago de Compostela
C.P. 15782, Spain
perezsayans@gmail.com

Received: 03/07/2020
Accepted: 28/09/2020

Abstract
Background: to systematically review the literature, comparing the healing of osteoradionecrosis (ORN) among the therapeutic alternatives: surgical, pharmacological and combined.
Material and Methods: The review was organized according to the PRISMA protocol with regards to the following PICO question: patients with ORN of the jaws (P=Patient); all interventions reported (I = intervention); between all therapies (C=Comparison); healing of lesions (O=outcome).
Results: Surgical treatment was the most common choice (46.3%) followed by pharmacological treatment, exclusively (25.9%) or combined (26.9%). Treatment exclusively by surgical intervention seems to be most effective option, with 51.2% of the lesions healed, OR for healing of 5.7 (CI95% 1.9-16.9, p=0.002). Only 1 case (0.9%) corresponded to low level laser therapy.
Conclusions: It seems clear that early intervention with conservative surgical combined with pharmacological methods improves the prognosis of ORN.

Key words: Osteoradionecrosis, radiotherapy bone necrosis, hyperbaric oxygen, pentoxifylline, teriparatide, low level laser therapy.
Introduction
Radiotherapy (RT) alone or in combination with chemotherapy or surgery is an established form of therapy for the treatment of head and neck cancer (1). Nonetheless, it has significant limitations due to its short-term (such as mucositis, dry mouth and loss of taste) and long-term (subcutaneous soft-tissue fibrosis, neck muscle atrophy, swallowing abnormality, carotid damage, trismus, radiation caries, and osteoradionecrosis (ORN) side effects (2,3). Despite the use of 3D conformal RT (3D-CRT) and Intensity Modulated RT (IMRT), ORN of the jaws remains one of the most common resulting complications (4,5). The reported incidence of ORN in the population of irradiated head and neck patients is rather variable, ranging from 4.7% to 37.5% and it is considered a late event, with the vast majority of cases occurring in the first 3 years following treatment (6,7). ORN can occur spontaneously due to genetic factors related to the TGF-β1 gene (8), or it can be the result of trauma (tooth extraction and denture-related irritations are common causes). Due to its low vascular nature and thicker cortical, mandibular ORN is more common than maxillary ORN (9-13). It is defined as irradiated and exposed bone tissue which fails to heal over a period of 3 months, without the presence of a residual or recurrent tumour (9,10,14,15). Although ORN can be observed without presenting bone exposure (16), normally clinically, it can range from a small area of intraoral bone exposure to extraoral fistulas and even pathological fractures. Pain, swelling, difficulties in mastication and tissue necrosis. The pathogenesis of ORN remains unknown. Marx's initial proposal -the theory of hypoxia, hypovascularity and hypocellularity (3 Hs) leading to a non-healing wound- has recently been questioned, and likewise, it has not been supported by the results of several subsequent studies (9,18,19). In 2004, Delanian (20) proposed the radiation-induced fibroatrophic process (RIF) theory, which includes the formation of free radicals, endothelial dysfunction, inflammation, microvascular thrombosis, fibrosis, remodelling, and eventually bone and tissue necrosis.

The chosen treatment is based on the stage of the disease, as well as patient-related factors, however, the cure actually is not the desired outcome in the treatment of ORN, it is the abolition of symptoms and progression that is the goal. Several therapies have already been reported which have led to widespread opinions, nonetheless, there is still no universally accepted approach. More traditional or early-stage approaches include conservative treatments with oral hygiene control; hyperbaric oxygen (HBO) (prophylactically or therapeutically); the use of antibiotics over a variable period of time (although ORN is not an infectious process per se); and surgical debridement. Surgical management may be classified into minor and major procedures (21). In order to achieve satisfactory results, cases which do not respond to conservative treatment choices or those which present more advanced stages are treated with surgical resection, with or without the reconstruction of vascularised tissue (21). All of these treatments were guided mainly by Marx's theory (9). More recently and in light of the pathophysiology of the disease proposed by Delanian (20), pharmacological treatment with pentoxifylline-tocopherol with or without clodronate (PENTOCLO) (22), teriparatide (23) and low-level laser therapy (LLLT) (24) have been introduced. Therefore, the aim of this paper is to systematically review the literature, comparing the healing of ORN with all the reported therapies: surgical, pharmacological and combined.

Material and Methods
- Protocol and registration
The design of this study was registered in PROSPERO (Ref. 159983). This review was carried out following the PRISMA guidelines and according to the PICO method (25): patients with ORN of the jaws (P=Patient); all interventions related (I = intervention); between all therapies (C=Comparison); healing of lesions (O=outcome).
- Selection criteria, sources of information and search
We conducted a bibliographic search in PubMed, Web of Science, Scopus, LiLACS, OVID, EMBASE, Cochrane Library, Clinical Trials, the five WHO regional bibliographic databases (AIM, LILACS, IMEMR, IMSEAR, WPRIM), and the Conference Proceedings Citation Index in order to identify relevant studies on ORN of the jaws between the first records found in the database and November 2019.
- Inclusion criteria: All of the articles on case series, case reports, cohort studies, and case and control studies with no language limitation were included.
- Exclusion criteria: Articles which do not deal with RT-induced osteonecrosis; unavailable abstract; complete maxillectomy; other systematic reviews; studies that have not been conducted on humans.
- Selection of studies: Two independent researchers, MPS and GCVC, analysed the abstracts of the articles obtained in the search which had met the search criteria, that is to say, texts that dealt with patients with ORN of the jaws and their management. Both of the researchers subsequently read the full article in order to determine whether or not it met the inclusion criteria. A third researcher, LC, acted as a mediator in the case of any disputes.

Data collection process: Data from all the articles was collected by both researchers independently (in duplicate) and this data was corroborated by the third party who acted as a mediator in case of discrepancy or lack of agreement.
- Study variables
The following information was extracted from each study: First author, year of publication, type of study, location of cancerous lesion, dose used in RT, management of the lesion (surgical, pharmacological or combined), location (maxilla, jaw), region (anterior, posterior), quantity (single, multiple), and also the time from the end of RT to the diagnosis of ORN, time until healing, maximum follow-up time, and finally whether or not there were any recurrences.

- Risk of bias
The methodological quality and the risk of bias of the included studies were assessed using the Newcastle-Ottawa scale (NOS)(26). For studies, cohorts and cases and controls, which amounted to 4.6% of the included studies, the original NOS scale was used, and for the remaining 95.4%, that is to say, the case series and case report studies, Pierson and Bradford Hills’ modified NOS scale (27) was used. This analysis was carried out independently by each of the two researchers and in the case of any disagreements the third researcher acted as a mediator.

- Statistical analysis
All of the variables were collected in a database and were analysed with SPSS v. 24.0 (IBM Inc., Madrid, Spain). Basic descriptive statistics were used for the univariate description, these included the mean, standard deviation, frequency and percentage. The relationship between the different categorical variables and healing was evaluated using Pearson's Chi-square. The relationship between the healing and the type of treatment and the quantitative variables was studied by using the ANOVA test to compare the means. The influence of the treatment type on the progression of ORN was assessed by using a univariate logistic regression analysis. The significance level was established at $p \leq 0.05$.

Results
The search process involved a total of 3,861 articles. After removing duplicates, 2,722 articles remained; of these, 1,769 were subsequently excluded because they did not meet the inclusion criteria (Fig. 1). After fully reading the 542 articles, it was determined that 110 studies met all of the inclusion criteria and these were included.

Four of the articles were rated as high quality (3.6%), 103 as medium quality (93.6%), and 3 as low quality (2.7%) (Table 1). The summary of the data of all of the patients that was extracted from the studies is depicted in Table 2, and the full descriptive results can be found in Table 3.

Fig. 1: PRISMA flow diagram.
Table 1: Classification of the studies in terms of risk of bias according to the NOS scale.

Author	Year	Number of Patients	Assessment
Alam et al.	2009	33	Medium
Ang et al.	2003	21	Medium
Baron et al.	2016	5	Medium
Baumann et al.	2010	63	Medium
Beech et al.	2016	1	Medium
Bettoni et al.	2019	11	Medium
Bettoni et al.	2019	49	Medium
Bianco et al.	2019	8	Medium
Bohn et al.	2015	3	Medium
Bouguila et al.	2015	22	Medium
Breik et al.	2019	2	Medium
Cannady et al.	2010	53	Medium
Cha et al.	2018	2	Medium
Chandarana et al.	2013	12	Medium
Chang et al.	2001	29	Medium
Chang et al.	2011	35	High
Chen et al.	2014	153	Medium
Chen et al.	2016	105	High
Chen et al.	2018	1	Medium
Chen et al.	2019	1	Medium
Chiapasco et al.	2006	59	Medium
Choi et al.	2014	1	medium
Chronopoulos et al.	2015	115	Medium
Coskunfirat et al.	2004	12	Medium
Curi et al.	1997	104	Medium
Curi et al.	2000	18	Medium
Curi et al.	2007	5	Medium
D’Hauthuille et al.	2008	59	Medium
Dai et al.	2015	120	Medium
Danielsson et al.	2019	17	Medium
David et al.	2001	51	Medium
De Felice et al.	2016	36	Medium
Delanian et al.	2005	18	Medium
Delanian et al.	2011	54	Medium
Dicleman et al.	2017	27	Medium
Dissard et al.	2019	27	Medium
D’Souza et al.	2007	23	Medium
D’Souza et al.	2009	58	Low
D’Souza et al.	2014	71	Medium
Epstein et al.	1997	26	Medium
Etezadi et al.	2013	1	Medium
Fan et al.	2016	31	Medium
Freiberger et al.	2009	65	Medium
Gal et al.	2003	30	Medium
Gallegos et al.	2015	25	Medium
Gallesio et al.	2015	10	Medium
Gavriel et al.	2017	21	Medium
Gevorgyan et al.	2013	14	Medium
Gupta et al.	2013	33	Medium
Haffey et al.	2019	8	Medium
Hamilton et al.	2012	14	Medium
Harris M et al.	1992	24	Medium
Hayashi et al.	2015	13	Medium
Hirsch et al.	2008	305	High
Table 1 cont.: Classification of the studies in terms of risk of bias according to the NOS scale.

Authors	Year	NOS	Bias
Ioannides et al.	1994	28	Medium
Jacobson et al.	2010	1	Medium
Jenwitheesuk et al.	2018	84	Medium
Jisander et al.	1999	8	Medium
Kahenasa et al.	2012	1	Medium
Kildal et al.	2001	1	Medium
Kim et al.	2016	8	Medium
Kobayashi et al.	2000	4	Medium
Kraeima et al.	2018	3	Medium
Kumar et al.	2018	25	Low
LaDow C.S et al.	1950	1	Medium
Lyons et al.	2013	30	Medium
Magremanne M et al.	2018	1	Medium
Mainous et al.	2015	1	Low
Mainous et al.	2014	2	Medium
Man et al.	1975	14	Medium
Manimaran et al.	1973	1	Medium
Manzano et al.	2019	20	Medium
Manzon et al.	2015	2	Medium
Mao et al.	2004	11	Medium
Marwan et al.	1983	58	Medium
Marx RE et al.	2017	150	Medium
Mc Leod et al.	2012	12	Low
Milani et al.	2019	1	Medium
Militisakh et al.	2005	9	Medium
Moran et al.	1987	1	Medium
Mounsey et al.	1993	41	Medium
Mücke et al.	2013	94	Medium
Nabil et al.	2012	10	Medium
Nakatsuka et al.	1996	9	Medium
Notani et al.	2003	87	Medium
Oh et al.	2009	114	Medium
Obha et al.	2013	12	Medium
Patel et al.	2016	62	Medium
Piccin et al.	2016	1	Medium
Pinto et al.	2017	21	High
Porcaro et al.	2015	1	Medium
Reuther et al.	2003	68	Medium
Ribeiro et al.	2018	20	Medium
Robard et al.	2014	27	Medium
Rommel et al.	2018	15	Medium
Santamaria et al.	1998	12	Medium
Scala et al.	2010	1	Medium
Shaha et al.	1998	6	Medium
Shan et al.	2015	5	Medium
Shimizu et al.	2012	2	Medium
Southerland et al.	1993	1	Medium
Suh et al.	2010	40	Medium
Sullivan et al.	1989	17	Medium
Teixeira et al.	1991	8	Medium
Van Merkesteyn et al.	1994	1	Medium
Van Merkesteyn et al.	1995	29	Medium
Vudiniabola et al.	2000	14	Medium
Wong et al.	1997	32	Medium
Woo et al.	2016	1	Medium
Young et al.	2016	4	Medium
Table 2: Descriptive summary of all of the articles.

Author	Year	Location of the cancerous lesion	RT dose (Gy)	ORN management	ORN location	ORN region	ORN lesions	Time from RT to ORN months	Healing	Follow-up time months	ORN recurrences
Alam et al.	2009	1,3,5,6,9	-	Surgical	Jaw	Anterior and Posterior	Multiple	47	No	-	Yes
Ang et al.	2003	3,6,7,9,10	60	Combined	Multiple	-	Single	48	No	79	Yes
Baron et al.	2016	12,1,9,4,2	-	Surgical	Jaw	Anterior and Posterior	Multiple	63.6	Yes	48	No
Baumann et al.	2011	-	66.5	Surgical	Jaw	Anterior and Posterior	Multiple	-	Yes	72	No
Beech et al.	2016	2	-	Surgical	Jaw	Posterior	Single	60	Yes	-	No
Bettoni et al.	2019	1,13,8,7,2	-	Surgical	Jaw	-	Single	48.5	Yes	83	No
Bettoni et al.	2019	-	63.6	Combined	Jaw	Anterior and Posterior	Multiple	57	No	-	Yes
Bianco et al.	2019	7,14,9,15,16,8	78	Pharmacological	Multiple	-	Multiple	23.2	Yes	12	No
Bohn et al.	2016	4,13,2	55.4	Pharmacological	Jaw	Anterior and Posterior	Multiple	72	Yes	12	No
Bouguila et al.	2015	5,13	72	Combined	-	-	-	48	Yes	-	No
Breik et al.	2019	9,2	70	Pharmacological	Jaw	Posterior	Single	10	Yes	-	No
Cannady et al.	2016	2	60	Pharmacological	Jaw	Posterior	Single	180	Yes	-	No
Chen et al.	2014	8, 2, 9, 7, 4, 16, 18, 15	67.7	Surgical	Jaw	-	Single	-	Yes	-	No
Chang et al.	2011	13, 20, 4, 2, 19, 16, 15, 9	67.4	Surgical	Jaw	-	Single	46	Yes	36	No
Chang et al.	2018	5	-	Surgical	Jaw	Posterior	Single	29.8	Yes	-	No
Chen et al.	2016	13, 20, 4, 2, 19, 16, 15, 9	74	Combined	Jaw	Posterior	Multiple	72	Yes	8	No
Chang et al.	2019	2	72	Pharmacological	Multiple	Anterior and Posterior	Multiple	60	Yes	-	No
Chiapascco et al.	2006	11,2,4,10	53.5	Surgical	Multiple	Anterior and Posterior	Single	-	Yes	120	No
Choi et al.	2014	9	-	Surgical	Multiple	-	Single	84	Yes	-	No
Chronopoulos et al.	2015	4,2,6	63.4	Combined	Jaw	Anterior and Posterior	Single	-	No	Yes	No
Coskunfirat et al.	2004	5,3,10,2,21	65	Surgical	Multiple	-	Multiple	-	Yes	62	No
Curi et al.	1997	13, 2, 20, 4, 16, 15, 8, 5, 6, 7,22	60	Combined	Multiple	-	Single	18	No	12	Yes
Curi et al.	2000	13, 2, 20, 4, 16, 15, 8, 9	6.2	Pharmacological	Multiple	-	Single	27.9	Yes	24.8	No
Curi et al.	2007	2,16,4	65	Surgical	Jaw	Anterior and Posterior	Single	45.6	Yes	-	No
D’Hauthuille et al.	2008	-	-	Surgical	Jaw	Anterior and Posterior	Single	-	Yes	-	No
Dai et al.	2015	2,23, 4, 11, 10, 20, 16, 6, 22	68.1	Surgical	Multiple	Anterior and Posterior	Multiple	36	No	-	Yes
Danielsson et al.	2019	9,1,2,19,12	68	Surgical	Jaw	-	Single	37.2	No	12	Yes
David et al.	2001	2,4, 16, 8, 19, 5, 11	51.8	Pharmacological	Jaw	-	Single	32	No	108	Yes
De Felice et al.	2016	3, 8, 7, 22, 28, 29	66.3	Combined	Multiple	Anterior and Posterior	Multiple	6	No	-	Yes
Delanian et al.	2005	3,8	65	Pharmacological	Jaw	Posterior	Single	7.25	Yes	-	No
Delanian et al.	2011	3,8	62.5	Pharmacological	Jaw	-	Single	15.5	Yes	36	No
Dieleman et al.	2017	4, 1, 2, 15, 14	60	Combined	Jaw	-	-	36	Yes	24	No
Dissard et al.	2019	2, 4, 3, 8, 18	65	Pharmacological	Jaw	Anterior and Posterior	Multiple	87.5	Yes	24	No
Table 2 cont.: Descriptive summary of all of the articles.

Authors	Year	Sample Size	Type	Treatment	Follow-up	Success Rate	Relapse Rate			
D’Souza et al.	2007	3, 8, 7, 18	Combined	Jaw	Single	48	Yes	30	No	
D’Souza et al.	2009	-	Pharmacological	-	-	Yes	-	No		
Epstein et al.	1997	9	Combined	-	-	50 No	123 Yes			
Etezadi et al.	2013	-	Surgical	Jaw	Posterior	Multiple	-	Yes	- No	
Fan et al.	2016	5, 4, 15, 2, 17, 8, 1, 9, 16, 7, 22	Surgical	Jaw	-	76.3	Yes	72 No		
Freiberger et al.	2009	9, 12, 1, 18	Combined	Jaw	Anterior and Posterior	Multiple	73.3	Yes	56 No	
Gal et al.	2003	-	Combined	-	-	-	No	- Yes		
Gallegos et al.	2007	3, 8, 7	-	Pharmacological	Jaw	Posterior	Single	-	No	36 Yes
Gallesio et al.	2014	22, 14, 16, 28, 30	Surgical	Jaw	Posterior	Single	-	Yes	12 No	
Gavriel et al.	2003	-	Surgical	-	-	No	- Yes			
Gallegos et al.	2015	9, 2, 15, 18, 16, 19	Pharmacological	Jaw	Multiple	-	Single	12	Yes	25.2 No
Epstein et al.	2009	2, 4, 16, 7, 8, 18, 3	Combined	Jaw	Posterior	Single	-	No	36 Yes	
Haffey et al.	2019	1, 18, 19, 28	Surgical	-	-	Yes	63 No			
Hamilton et al.	2012	-	Combined	Jaw	Posterior	Multiple	19.8	Yes	- No	
Harris M et al.	1992	-	Surgical	Jaw	Anterior and Posterior	Single	-	Yes	- No	
Hayashi et al.	2015	7, 24, 16, 3, 11, 20, 8, 5, 18, 12	Pharmacological	Jaw	Multiple	Anterior and Posterior	Multiple	-	No	- Yes
Hirsch et al.	2008	-	Surgical	Jaw	Anterior and Posterior	Single	-	Yes	- No	
Ioannides et al.	2013	2, 4, 9, 20, 18	Surgical	Jaw	Anterior and Posterior	Multiple	-	Yes	84 No	
Jacobson et al.	2010	-	Surgical	Jaw	Posterior	Multiple	-	Yes	- No	
Jenwithbesuk et al.	2018	5, 3, 23	Pharmacological	Jaw	-	Multiple	-	Yes	6 No	
Jisander et al.	1999	-	Combined	Jaw	Posterior	Multiple	119	Yes	93 No	
Kahnasen et al.	2018	9, 1	Pharmacological	Jaw	Posterior	Single	6	Yes	- No	
Kildal et al.	2001	28	Surgical	Jaw	Posterior	Multiple	84	Yes	- No	
Kim et al.	2016	5, 19, 12, 18	Surgical	Jaw	Anterior and Posterior	Single	-	Yes	85 No	
Kobayashi et al.	2000	2, 19, 8	Surgical	Jaw	Posterior	Single	-	Yes	41 No	
Kraeima et al.	2018	4	Combined	Jaw	Posterior	Single	11.5	No	- Yes	
Kumar et al.	2018	1, 4, 9, 2, 11, 7, 10	Surgical	Multiple	Anterior and Posterior	Single	48	Yes	- No	
LaDow C.S et al.	1950	9	Surgical	Jaw	Posterior	Single	36	Yes	- No	
Lyons et al.	2013	4, 2, 16, 31, 14, 10, 3, 8, 18, 15	Surgical	Jaw	Multiple	-	-	No	- No	
Magremanne M et al.	2018	8	Pharmacological	Jaw	Posterior	Single	42	Yes	6 No	
Mainous et al.	1973	4	Pharmacological	Jaw	Anterior and Posterior	Single	17	Yes	- No	
Mainous et al.	1974	2, 4, 20, 9, 15	Pharmacological	Jaw	Anterior and Posterior	Single	-	Yes	- No	
Man et al.	2015	14, 11	Surgical	Jaw	-	Single	-	Yes	- No	
Manimaran et al.	2014	16, 9	Combined	Jaw	Posterior	Single	36	Yes	24 No	
Manzano et al.	2019	4, 5, 14, 19, 8, 1	Combined	Multiple	Anterior and Posterior	Multiple	6.5	No	- Yes	
Manzon et al.	2015	11	Surgical	Jaw	-	Single	-	Yes	- No	
Table 2 cont.: Descriptive summary of all of the articles.

Authors	Year	Location	Treatment	Location	Follow-up	Outcome	Outcome Description	
Mao et al.	2004	-	Surgical	-	-	Yes	- No	
Marwan et al.	2017	1, 8, 4, 23	Surgical	-	-	Yes	- No	
Marx RE et al.	1983	-	Combined	Jaw	Anterior and Posterior	Single	- Yes 67 No	
Mc Leod et al.	2012	2	Pharmacological	Jaw	Anterior and Posterior	Single	40 Yes 2 No	
Milani et al.	2019	23, 3, 8, 29	Pharmacological	Jaw	Posterior	Single	60 Yes 12 No	
Militisakh et al.	2005	1	Surgical	Jaw	Anterior and Posterior	Single	14 Yes 3 No	
Moran et al.	2012	2, 4, 19	55	Surgical	Jaw	Anterior and Posterior	Single	33 No 372 Yes
Mouney et al.	1993	4, 2, 10	47.5	Pharmacological	Jaw	Anterior and Posterior	Multiple	39 No 3 Yes
Mücke et al.	2013	5, 2	69.3	Combined	Multiple	-	- 12 Yes	
Nabil et al.	2012	2, 8	-	Surgical	Multiple	Anterior and Posterior	Multiple	No 48 Yes
Nakatsuka et al.	1996	2, 22, 20, 13, 19	80	Surgical	Jaw	Anterior and Posterior	Multiple	61 Yes 2 No
Notani et al.	2003	2, 4, 15, 9, 19, 14, 6, 5, 121, 18, 13	90	Combined	Jaw	-	Single	444 No
Oh et al.	2009	2, 8, 16, 10	8.4	Combined	Jaw	-	Single	33 No 372 Yes
Ohba et al.	2013	8, 3, 6, 5	64	Pharmacological	Jaw	Anterior and Posterior	Single	13 Yes 30.3 No
Patel et al.	2016	8	-	Pharmacological	Jaw	-	Single	- Yes 5 No
Piccin et al.	2016	4, 2, 17	70	Combined	Jaw	Posterior	Single	- Yes 2 No
Pinto et al.	2017	16	65.6	Surgical	Jaw	-	- Single	40 Yes
Porcaro et al.	2015	2, 4, 14, 9, 16, 7, 13, 28	90	Surgical	Maxilla	Posterior	Single	24 No 12 Yes
Reuther et al.	2003	-	60	Combined	Multiple	-	Single	13 No 2 Yes
Ribeiro et al.	2018	3, 8	72	-	Multiple	Anterior and Posterior	Single	24 Yes 2 No
Robard et al.	2014	4, 27, 11, 9, 23, 8, 2	95	Surgical	Jaw	Anterior and Posterior	Single	60 Yes 3 No
Rommel et al.	2018	15, 16, 5, 12, 2, 4, 19	-	Surgical	Jaw	-	- Yes 5 No	
Santamaria et al.	1998	2	60.35	Surgical	Jaw	Anterior and Posterior	Single	13 Yes 45 No
Scala et al.	2010	2, 1, 4	66	Pharmacological	Jaw	-	Multiple	48 Yes 24 No
Shaha et al.	1998	5, 8, 2	69.5	Surgical	Jaw	Anterior and Posterior	Single	104.5 Yes 80 No
Shan et al.	2015	5	66	Surgical	Jaw	Posterior	Multiple	104.5 Yes 90 No
Shimizu et al.	2012	2, 4	63	Surgical	Jaw	Anterior and Posterior	Single	48 Yes 2 No
Southerland et al.	1993	-	84	Combined	Jaw	Posterior	Multiple	- Yes 5 No
Suh et al.	2010	-	-	Surgical	Jaw	-	Single	- No 17.4 Yes
Sullivan et al.	1989	2, 1, 17	-	Surgical	Jaw	-	- Yes 5 No	
Teixeira et al.	1991	18	78.3	Combined	Jaw	-	Single	- Yes 2 No
Van Merkestein et al.	1994	4, 2, 16, 15, 19, 9, 5, 13, 18, 26	67	Combined	Jaw	Posterior	Multiple	2 Yes 6.5 No
Van Merkestein et al.	1995	-	75	Combined	Jaw	-	Single	72 No 84 Yes
Vudiniabola et al.	2000	4, 2, 20, 14, 16, 9, 15, 8, 24, 7, 25	58	Combined	Multiple	-	Single	183 Yes 156 No
Wong et al.	1997	9	64	Pharmacological	Jaw	Anterior and Posterior	Single	36 No 3 No
Woo et al.	2016	-	72	Surgical	Jaw	Posterior	Single	- Yes 2 No
Young et al.	2016	-	-	Pharmacological	Jaw	-	- Yes 5 No	

Location of the cancerous lesion: 1. Base of the Tongue, 2. Tongue, 3. Oral cavity, 4. Floor of the mouth, 5. Nasopharynx, 6. Hypopharynx, 7. Larynx, 8. Oropharynx, 9. Amygdalin fossa, 10. Maxilla, 11. Jaw, 12. Submandibular gland, 13. Lips, 14. Alveolar ridge, 15. Retromolar trigone, 16. Soft palate, 17. Hard palate, 18. Parotid gland, 19. Oral mucosa, 20. Gingiva, 21. Nasolacrimal conduct, 22. Maxillary sinus, 23. Cheek, 24. Epiglottis, 25. Pyriform sinus, 26. Sublingual gland, 27. Uvula, 28. Minor salivary glands, 29. Major salivary glands, 30. Thyroid, 31. Tonsil.
Table 3: Descriptive summary of extracted categorical variables.

Variable	N	%
Treatment group		
Surgical medical treatment	109	99.08
LLLT	001	0.92
Treatment type		
SURGICAL	051	46.8
PHARMACOLOGICAL	028	25.6
COMBINED	030	27.6
Surgical treatment		
FREE FLAP	053	60.2
PEDICULATED SOFT TISSUE	006	6.8
ARTIFICIAL DERMAL SKIN	001	1.1
DEBRIDEMENT	020	22.7
BLOCK GRAFT	001	1.1
SEGMENTAL OSTEOTOMY	007	7.9
Total	088	100.0
Pharmacological treatment and hyperbaric medicine		
PENTOCLO	005	8.5
PENTOXIFYLLINE	006	10.2
ANTIBIOTICS AND ANTISEPTICS ALONE	002	3.4
PRGF	005	8.5
HBO	033	55.9
OZOSAN	002	3.4
TERIPARATIDE	002	3.4
COMBINED (2 OR MORE)	003	5.2
Total	058	100.0
ORN Location		
JAW	079	71.8
MAXILLA	002	1.8
MULTIPLE	020	18.2
NOT SPECIFIED	009	8.2
Total	110	100.0
Mandibular region		
POSTERIOR	025	22.7
ANTERIOR-POSTERIOR	037	33.6
NOT SPECIFIED	048	43.6
Total	110	100.0
Number of lesions		
SINGLE	068	61.8
MULTIPLE	028	25.5
NOT SPECIFIED	014	12.7
Total	108	100.0
Healing		
NO HEALING	026	23.6
HEALING	084	76.4
Total	109	100.0
With regards to the characteristics of the ORN found, 9 (8.2%) of the articles did not specify the location of the lesion. Out of the 81 articles with a single lesion, 2 of them presented in the maxilla (1.8%), 79 in the jaw (71.8%), and 20 (18.2%) presented in both jaws. With regards to the number of lesions, 61.8% of the articles described single lesions, 25.5% described multiple simultaneous lesions, and in 12.7% of the articles this was not specified. In 22.7% of the cases, the lesions appeared solely in the posterior region, however in 33.6% of the cases these appeared both in the anterior and posterior sectors.

As far as the mean onset time, there was a significant variability in with a range from 2 months to 183 months, however the mean was 45.7 months (SD=36.2), that is to say 3.8 years. Evidently the appearance of the lesions depends on the maximum follow-up time, which, in this systematic review was broad and variable, ranging from 6 to 444 months, with a mean of 58.9 months (SD=76.5). In terms of the therapeutic alternatives used, the surgical treatment was the most common choice representing 45.5% of cases, and pharmacological treatment, exclusively or combined, was the least common, with 26.1% and 28.4% of cases respectively. Only one study, that is to say 0.90% corresponded to the treatment of ORN by LLLT. Radical surgical treatment with free flap was the most used surgical alternative in 60.2% of the cases, followed by debridement (curettage and/or sequestrectomy or marginal resection) in 22.7%. In terms of exclusively pharmacological treatments, HBO accounted for 58.3%, followed by the use of pentoxifylline, with or without clodronate in 21.6% of the cases. The systematic review shows an overall healing of 77.2% of the lesions.

The healing of the ORN lesions is understood as the absence of relapse during the follow-up period, which as shown before, is very variable. This healing appears to vary depending on the type of treatment performed. Out of 88 cases which were treated by surgical intervention, only 73.7 % of the cases were cured, and likewise, 70.0% of the 60 cases, which were treated by pharmacological means were cured. Broadly speaking, treatment exclusively by surgical intervention seems to be effective option, with 51.2% of the lesions healed, whereas only 28.6% of the lesions of patients who were treated exclusively by pharmacological means, and 17.9% of the lesions in patients who underwent combined medical-surgical treatment ($p=0.002$) were healed. In the study conducted with LLLT therapy combined with antimicrobial photodynamic therapy (aPDT), 20 patients were treated and 100% of the patients were cured.

Statistically significant differences between healing and the type of surgical treatment were not observed, however, as we can see in Table 4, statistically significant differences were observed when using pharmacological treatment, Table 4. Pentoxifylline with/without clodronate made a major and significant contribution to the healing in 84.6 % of the cases where was used, with HBO healed in 62.8 % of the cases, whereas other alternatives, such as the exclusive use of antibiotics/anti-inflammatories/antiseptics failed in 100 % of the patients ($p=0.043$). By performing a binomial logistic regression analysis, we verified that the type of treatment is the only statistically significant factor related to healing. Therefore, taking the combined medical-surgical treatment as a reference, exclusive surgical treatment shows an OR for healing of 5.7 (CI95% 1.9-16.9, $p=0.002$) and 5.7 for pharmacological treatment (CI95% 1.5-20.2, $p=0.009$). Given that only one study was treated with LLLT, this has been excluded from the equation.

Table 4: Comparison of the healing process according to the different types of treatment gathered for ORN. AAA (Antibiotics, anti-inflammatories, antiseptics); PRGF (platelet rich growth factor).

Surgical treatment	Total	p value						
Pediculated soft tissue	**Artificial dermal skin**	**Debridement**	**Block graft**	**Segmental Osteotomy**				
NO HEALING	12 (52.2%)	2 (8.7%)	0	6 (26.1%)	0	3 (13.0%)	23 (100.0%)	0.811
HEALING	41 (63.1%)	4 (6.2%)	1 (1.5%)	14 (21.5%)	1 (1.5%)	4 (6.2%)	65 (100.0%)	
Total	53 (60.2%)	6 (6.8%)	1 (1.1%)	20 (22.7%)	1 (1.1%)	7 (7.9%)	88 (100.0%)	

Pharmacological treatment	Total	p value						
AAA	PRGF	HBO	Teriparatide	Combined				
NO HEALING	2 (11.1%)	2 (11.1%)	0	13 (72.2%)	0	1 (5.5%)	18 (100.0%)	0.043
HEALING	11 (26.2%)	0	5 (11.9%)	22 (52.4%)	2 (4.8%)	2 (4.8%)	42 (100.0%)	
Total	13 (21.6%)	2 (3.3%)	5 (8.3%)	35 (58.3%)	2 (3.3%)	3 (5.0%)	60 (100.0%)	
ORN management

Discussion

ORN is a serious complication which is difficult and expensive to treat (21). In order to manage the disease in its early stages, the treatment must be conservative. The authors recommend oral hygiene, optimisation of the nutritional condition and a multidisciplinary management, which includes minor surgery, how the dental extraction, or debridement of the necrotic tissue and antibiotics (28).

In the 1960s, after its implementation by Marx (9), HBO began to be used as an additional treatment for ORN, as a complement for soft tissue flaps and in the management of radiated tissues. Although HBO initially showed promising results in the treatment of ORN (11), today’s literature shows very disparate results in the use of this technique (29).

In the advanced stages or recurrences of the disease, a surgical reconstruction of the jaw is performed by means of the surgical resection and immediate transfer of the tissue to the disease, especially in stage III (30). The reconstruction of a free flap in the radiated jaw is difficult. The identification and dissection of the receiving vessels can be arduous and it requires for vessels to be selected from outside of the radiated field, generally from the contralateral neck (13).

Furthermore, it is an expensive procedure, due to hospital stay (21). Recently factors like appearance, swallowing, and chewing that interfere with the quality of life were analyzed and showed that the approach with adequate debridement, resection, and reconstruction may greatly improve QOL (31). The surgical treatments identified in the studies include sequestrectomy and debridement (32), free flap (33), pediculate soft tissue (34) and block grafting (35).

In this review, 21.6% of the studies presented ORN cases, which were treated with pentoxifylline and PENTOCLO. This management is used in both the early and advanced stages of the disease. The combined medical therapy showed a recovery rate of 88.9 % in the 13 presented studies, and in just 11.1 % of them (2 studies), the disease progressed and subsequent surgery was necessary for healing. Some of these studies presented patients whose recovery had already failed with other conservative therapies, such as the study conducted by Delanian (22), in which 16 out of 18 patients completely recovered and, out of these, 14 were fully recovered within 7 months. In 2011 (36), a subsequent study conducted by the same researchers on refractory ORN of the jaw treated by means of HBO and surgical intervention, studied the combination of pentoxifylline and vitamin E, together with clodronate, antibiotics and steroids as treatment. All of the patients (100 %) presented with a complete regression of the exposed bone and were fully recovered within 2 years after treatment, with 50 % of the patients recovering in just 6 months.

In research performed by D'Souza (7), the results of ORN patients who had received medical treatment with pentoxifylline, tocopherol and doxycycline were compared with those of patients who had been treated with HBO. 25% and 51% of the patients respectively showed a progression of the disease and required free flap reconstruction. Furthermore, in the group of patients that received medical treatment there were no recurrences of ORN following the resection and the free flap reconstruction, in comparison with a 20% recurrence in the group treated with HBO. This confirms the current understanding of the pathophysiology of ORN based on the fibrosis induced by radiation.

Recently, other alternatives for the management of ORN have been discussed in the literature, and these include plasmatic factors modified in all their versions (PRGF, PLT-gel, L-PRF), Teriparatide and LLLT. With regards to plasma rich in growth factors (PRGF), its use was suggested following reports in which it was demonstrated that its application as filling material in surgeries and pre-prosthetic implants presented excellent adjuvant and regenerative proprieties (37). The RIF process reduces the level of expression of the transforming growth factor beta (TGF-β). The use of PRGF formulations is based on the premise that the growth factors contained in platelet granules, which are released after activation are beneficial to improving the tissue regeneration (37). In a study, which was performed by Gallesio on 10 patients (38), on day 14 after surgery, the treated area presented complete wound closure. Cha (23), presented a study in which Teriparatide -a recombinant human parathyroid hormone- was used, demonstrating its beneficial effects on bone regeneration of ORN of the jaw in advanced stages. However, the studies performed on rat models have shown a theoretical risk of osteosarcoma, therefore confirming the need for further studies (39).

The only LLLT report found in our review dated back to 2018 (24). The effectiveness of LLLT is supported by studies in which its effects on the healing process of the oral mucosa are highlighted. These studies have also demonstrated that it minimises the exudative phase, boosts healing and leads to the proliferation and transformation of fibroblasts and myofibroblasts that help in tissue repair, due to the release of growth factors (40). Ribeiro (24) presented a protocol for management with LLLT, in which the 20 treated patients presented with the pathology in early to advanced stages. 100 % of the reported cases were healed with no recurrence during the two follow-up years. This therapy is also non-invasive, atraumatic and no significant associated adverse effects have been reported in the literature.

Among the limitations to this systematic review, it is important to mention that it mostly consists of a retrospective group of cases and case reports, therefore mean-
ing that their heterogeneous nature and the absence of randomised trials is a limiting factor. As a consequence of these disadvantages, the possibility of carrying out a more objective analysis in which more powerful conclusions are drawn would prove challenging. The results obtained out of all of the different treatments proposed for ORN, seem to indicate that the combined surgical and/or pharmacological treatment (PENTOMO-CLO), is the treatment of choice and offers better healing rates. In case of recurrence, there is some evidence that resection surgery and reconstruction may also be considered, respecting the particular circumstances in which each should be used. What seems clear is that early intervention with conservative surgical and pharmacological methods improves the prognosis of ORN. In an attempt to expand less invasive treatment methods, we suggest more studies for conservative surgical management of hard tissue associated with LLLT therapy, based on controlled clinical studies, with well-distinguished control groups are necessary in order to establish a more efficient therapeutic pattern.

References
1. Ray-Chaudhuri A, Shah K, Porter RJ. The oral management of patients who have received radiotherapy to the head and neck region. Br Dent J. 2013;214:387-93.
2. Abed H, Reilly D, Burke M, Daly B. Patients with head and neck cancers’ oral health knowledge, oral health-related quality of life, oral health status, and adherence to advice on discharge to primary dental care: A prospective observational study. Observational Study. 2019;39:593-602.
3. Kim BJ, Kang HG, Lee SW, Jung J, Lee MH, Kang DW, et al. Changes in the Common Carotid Artery after Radiotherapy: Wall Thickness, Calcification, and Atherosclerosis. J Clin Neurol. 2018;14:35-42.
4. Murthy V, Gupta T, Kadam A, Ghosh-Laskar S, Budrukkar A, Phuralapatram R, et al. Time trial: A prospective comparative study of the time-resource burden for three-dimensional conformal radiotherapy and intensity-modulated radiotherapy in head and neck cancers. J Cancer Res Ther. 2009;5:107-12.
5. Clark CH, Miles EA, Urbano MTG, Bhide SA, Bidmed AM, Harrison KJ, et al. Pre-trial quality assurance processes for an intensity-modulated radiation therapy (IMRT) trial: PARSPORT, a UK multicentre Phase III trial comparing conventional radiotherapy and parotid-sparing IMRT for locally advanced head and neck cancer. Br J Radiol. 2009 Jul;82:585-94.
6. Nabil S, Ramlı R. The use of buccal fat pad flap in the treatment of osteoradionecrosis. Int J Oral Maxillofac Surg. 2012;41:1426-6.
7. D’Souza J, Lowe D, Rogers SN. Changing trends and the role of medical management on the outcome of patients treated for osteoradionecrosis of the mandible: Experience from a regional head and neck unit. Br J Oral Maxillofac Surg. 2014;52:356-62.
8. Lyons AJ, West CM, Risk JM, Slevin NJ, Chan C, Crichton S, et al. Osteoradionecrosis in Head-and-Neck Cancer Has a Distinct Genotype-Dependent Cause. Int J Radiat Oncol. 2012;82:1479-84.
9. Marx RE. Osteoradionecrosis: A new concept of its pathophysiology. J Oral Maxillofac Surg. 1983;41:283-8.
10. Epstein JB, Wong FL, Stevenson-Moore P. Osteoradionecrosis: clinical experience and a proposal for classification. J Oral Maxillofac Surg. 1987;45:104-10.
11. Mainous EG. Hyperbaric oxygen in total rehabilitation of patients with mandibular osteoradionecrosis. Int J Oral Surg. 1974;3:297-301.
12. Santamaria E, Wei FC, Chen HC. Fibula osteoseptocutaneous flap for reconstruction of osteoradionecrosis of the mandible. Plast Reconstr Surg. 1998;101:921-9.
13. Ang E, Black C, Irish J, Brown DH, Gullane P, O’Sullivan B, et al. Reconstructive options in the treatment of osteoradionecrosis of the craniomaxillofacial skeleton. Br J Plast Surg. 2003;56:92-9.
14. Marx RE, Johnson RP. Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol. 1987;64:379-90.
15. London SD, Park SS, Gampper TJ, Hoard MA. Hyperbaric oxygen for the management of radionecrosis of bone and cartilage. Laryngoscope. 1998;108:1291-6.
16. Lyons A, Osher J, Warner E, Kumar R, Brennan PA. Osteoradionecrosis—A review of current concepts in defining the extent of the disease and a new classification proposal. Br J Oral Maxillofac Surg. 2014;52:392-5.
17. Epstein JB, Robertson M, Emerton S, Phillips N, Stevenson-Moore P. Quality of life and oral function in patients treated with radiotherapy for head and neck cancer. Head Neck. 2001;23:389-98.
18. Shaw RJ, Butterworth C. Hyperbaric oxygen in the management of late radiation injury to the head and neck. Part II: prevention. Br J Oral Maxillofac Surg. 2011;49:9-13.
19. McLeod NMH, Bater MC, Brennan PA. Management of patients at risk of osteoradionecrosis: results of survey of dentists and oral & maxillofacial surgery units in the United Kingdom, and suggestions for best practice. Br J Oral Maxillofac Surg. 2010;48:301-4.
20. Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol. 2004;73:119-31.
21. Patel V, Ormondroyd L, Lyons A, McGurk M. The financial burden for the surgical management of osteoradionecrosis. Br Dent J. 2017;222:177-80.
22. Delanian S, Depondt J, Lefaix JL. Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: A phase II trial. Head Neck. 2005;27:114-23.
23. Cha YH, Hong N, Rhee Y, Cha IH. Teriparatide therapy for severe, refractory osteoradionecrosis of the jaw. Osteopors Int. 2018;29:987-92.
24. Ribeiro GH, Minamisako MC, Rath IBD, Santos AMB, Simeoes A, Pereira KCR, et al. Osteoradionecrosis of the jaws: case series treated with adjuvant low-level laser therapy and antimicrobial photodynamic therapy. J Appl Oral Sci. 2018;26:e20170172.
25. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.
26. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:605-5.
27. Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound care. 2015;4:560-82.
28. Chronopoulos A, Zarra T, Tröltzsch M, Mahaini S, Ehrenfeld M, Otto S. Osteoradionecrosis of the mandible: A ten year single-center retrospective study. J Craniomaxillofac Surg. 2015;43:837-46.
29. Sultan A, Hanna GJ, Margalit DN, Chau N, Goguen LA, Marty FM, et al. The Use of Hyperbaric Oxygen for the Prevention and Management of Osteoradionecrosis of the Jaw: A Dana-Farber/ Brigham and Women’s Cancer Center Multidisciplinary Guideline. Oncologist. 2017;22:343-50.
30. Jacobson AS, Buchbinder D, Urken ML. Reconstruction of bilateral osteoradionecrosis of the mandible using a single fibular free flap. Laryngoscope. 2010;120:273-5.
31. Danielsson D, Munck-Wikland E, Hagel E, Halle M. Quality of life after microvascular mandibular reconstruction for osteoradionecrosis—A prospective study. Head Neck. 2019;41:2225-30.
32. Mucke T, Koschinski J, Rau A, Loefelbein DJ, Deppe H, Mitch- ell DA, et al. Surgical outcome and prognostic factors after treat- ment of osteoradionecrosis of the jaws. J Cancer Res Clin Oncol. 2013;139:389-94.
33. Chang DW, Oh HK, Robb GL, Miller MJ. Management of ad-
advanced mandibular osteoradionecrosis with free flap reconstruction. Head Neck. 2001;23:830-5.
34. Woo SH. Buccinator Myomucosal Flap for Treatment of Osteoradionecrosis of the Mandible. Clin Exp Otorhinolaryngol. 2016;9:85-8.
35. Etezadi A, Ferguson H, Emam HA, Walker P. Multiple Remediation of Soft Tissue Reconstruction in Osteoradionecrosis of the Mandible: A Case Report. J Oral Maxillofac Surg. 2013;71:e1-6.
36. Delanian S, Chatel C, Porcher R, Depondt J, Lefaix JL. Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): A phase II trial. Int J Radiat Oncol Biol Phys. 2011;80:832-9.
37. Batstone MD, Cosson J, Marquart L, Acton C. Platelet rich plasma for the prevention of osteoradionecrosis. A double blinded randomized cross over controlled trial. Int J Oral Maxillofac Surg. 2012;41:2-4.
38. Gallesio G, Del Fabbro M, Pol R, Mortellaro C, Mozzati M. Conservative treatment with plasma rich in growth factors-Endoret for osteoradionecrosis. J Craniofac Surg. 2015;26:731-6.
39. Andrews EB, Gilsenan A, Midkiff K, Harris D. Challenges in studying very rare cancer outcomes and infrequent exposures: example of teriparatide and osteosarcoma. Ann Epidemiol. 2016;26:751-3.
40. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, et al. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg. 2004;22:241-7.

Funding
None declared.

Conflict of interest
None declared.

Authors contributions
Gisela CV Camolesi: Was responsible for acquisition of data: literature search, analysis and interpretation of data collected and drafting of article.
Karem L. Ortega: Was responsible for the final approval of manuscript.
Janaina Braga Medina: Was responsible for the final approval of manuscript.
Luana Campos: Was responsible for the analysis and interpretation of data collected, and final approval of manuscript.
Alejandro I Lorenzo Pouso: Was responsible for the final approval of manuscript.
Pilar Gándara Vila: Was responsible for the final approval of manuscript.
Mario Pérez Sayáns: Was responsible for conception and design of review, acquisition of data: literature search, analysis and interpretation of data collected, drafting of article and/or critical revision, final approval of manuscript.