Tuning long-range fermion-mediated interactions in cold-atom quantum simulators

Javier Argüello-Luengo, 1,∗ Alejandro González-Tudela, 2,† and Daniel González-Cuadra 3,4,‡

1ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
2Institute of Fundamental Physics IFIMM-CSIC, Calle Serrano 113b, 28006 Madrid, Spain.
3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
4Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior. Fermionic atoms in ultracold atomic mixtures can act as mediators, giving rise to long-range RKKY-type interactions characterized by the dimensionality and density of the fermionic gas. Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions, extending the existing quantum simulation toolbox. In particular, we include an additional optical lattice for the fermionic mediator, as well as anisotropic traps to change its dimensionality in a continuous manner. This allows us to interpolate between power-law and exponential decays, introducing an effective cutoff for the interaction range, as well as to tune the relative interaction strengths at different distances. Finally, we show how our approach allows to investigate frustrated regimes that were not previously accessible, where symmetry-protected topological phases as well as chiral spin liquids emerge.

Introduction.- Long-range interactions between ultra-cold atoms are known to be the source of exotic many-body phenomena, including supersolid [1–6], magnetic [7–12] and topological phases [13–23], soliton trains [24–27], quantum droplets [28–30], or roton spectra [31, 32]. Besides, if the long-range interactions appear between fermionic atoms, they can be harnessed to build analogue simulators for quantum chemistry [33–35] and high-energy physics [36–39]. Unfortunately, these interactions do not appear naturally between neutral atoms, since they generally interact through (local) elastic collisions [40]. This is why finding ways to engineer and control effectively such long-range atomic interactions is one of the most pressing issues in atomic physics nowadays.

As it occurs in nature, a conventional way of obtaining long-range interactions is through the exchange of mediating particles. For example, the exchange of photons through the atomic optical transitions leads to dipolar interactions ($1/r^3$) in the case of highly magnetic [41–43] and Rydberg atoms [44–47], or dipolar molecules [48–51]. One can extend their range by shaping the photonic field with cavities [51–55] or nanophotonic structures [56–58]. However, such photon-mediated interactions are accompanied by dissipation, which needs to be controlled to profit from them. An orthogonal direction that is recently being considered consists in using fermionic atoms in atomic mixtures as mediators [26, 32, 59–70]. Such fermion-mediated interactions have been predicted [66, 67, 71] to lead to the Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interactions appearing in solids [72–74], which have a power-law, oscillating nature, fixed by the dimensionality and density of the Fermi gas. With the recent experimental observation of such interactions [26, 69], a timely question that has been scarcely explored [32] is how one can further tune those interactions to be able to explore new phenomenology with them.

Figure 1. (a) Two bosonic atoms (white) separated by distance r and trapped in an optical lattice (red) experience an effective long-range interaction mediated by a Fermi gas trapped in an harmonic potential (blue). (b) The contact Bose-Fermi interactions (g_{bf}) virtually populates the conduction band of the Fermi gas. (c) An additional oscillatory potential induces a gap between the valence and conduction bands. (d) By controlling the strength of the trapping potential in an orthogonal direction, ω_{c}/ω_{h}, one can continuously tune the dimension of the Fermi gas from 1D to 2D, introducing additional modulating frequencies as will be shown in Fig. 4.

In this work, we take advantage of the flexibility offered by ultracold atomic platforms to control the range and shape of long-range fermion-mediated interactions, going beyond the conventional RKKY-type interactions encountered in solid-state systems. This allows us to design a quantum simulation toolbox that can be used to prepare, for instance, frustrated phases that are not accessible using other approaches. The paper is organized as follows. First, we review how to derive the effective fermion-mediated RKKY interactions for a Fermi-Bose mixture of ultracold atoms. We then introduce an additional optical potential for the Fermi gas and show how the range of the interactions can be interpolated from a power law...
to an exponential decay by tuning the ratio between the periodic potential and the confining harmonic trap. This allows at the same time to select the ratios between interactions at different distances within a non-vanishing range. We then show how, for a hardcore bosonic chain immersed in the fermionic cloud, the resulting interactions can be used to prepare frustrated phases with non-trivial topological properties. Finally, we explore an extra tuning knob by continuously changing the dimensionality of the cloud using different harmonic frequencies in each spatial direction. This control allows one to further tune the interaction ratios which, as we indicate, might be useful to obtain 2D chiral spin liquid phases [75].

Effective fermion-mediated interactions.- Let us consider an atomic mixture as depicted in Fig. 1(a), where one species corresponds to non-interacting spinless fermions trapped by an harmonic potential,

\[V(x,y,z) = \frac{m_f}{2} \left[\alpha_\omega^x x^2 + \alpha_\omega^y y^2 + \alpha_\omega^z z^2 \right] . \tag{1} \]

The fermionic Hamiltonian reads \(\hat{H}_f = \sum_n \epsilon_n \hat{c}_n^\dagger \hat{c}_n \), where \(\epsilon_n^{(1)} \) is the (creation) annihilation operators associated with the \(n \)-th eigenstate of this oscillator, with energy \(\epsilon_n \). For concreteness, and without lack of generality, we assume that the other atomic species is bosonic and it is trapped in an optical lattice, \(V_{opt}(r) \), with fixed lattice spacing \(d \). While Pauli blocking prevents s-wave interactions among spin-polarized fermion, one can still account for boson-boson and boson-fermion collisions. This leads to a bosonic Hamiltonian of the form,

\[\hat{H}_b = \int dr \phi^\dagger(r) \left(-\frac{\hbar^2}{2m_b} \nabla^2 + V_{opt}(r) \right) \phi(r) + g_{bs} \int dr \phi^\dagger(r) \phi^\dagger(r) \phi(r) \phi(r) , \tag{2} \]

and a Bose-Fermi density-density interaction,

\[\hat{H}_f = g_{bf} \int dr \phi^\dagger(r) \psi^\dagger(r) \phi(r) \psi(r) , \tag{3} \]

where the field operator \(\phi(r) [\psi(r)] \) describes the annihilation of a boson [fermion] and \(g_{bf}(\Delta \omega) \) is the bosonic (interspecies) coupling constant, which is experimentally tunable through magnetic Feshbach resonances [76].

To obtain the effective fermion-mediated interaction, we assume that i) the fermionic timescales are much faster than the bosonic ones, \(\tau_b \ll \hbar \omega_{\omega,\nu,\xi} \); ii) the \(N \) fermionic atoms are occupying all states up to the Fermi energy, \(\varepsilon_F = \varepsilon_N \), so that the state can then be written as \(|\Omega\rangle = \prod_{n=1}^N |\varepsilon_n\rangle |0\rangle \). With these assumptions, and taking \(\hat{H}_0 = \hat{H}_b + \hat{H}_f \) as the unperturbed Hamiltonian and \(\hat{H}_I \) as a perturbation, we obtain an effective potential for the bosons [66],

\[\hat{H}_{eff} = \varepsilon_F + \hat{H}_b + G \int dr dr' F_{r,r'} \phi^\dagger(r) \phi^\dagger(r') \phi(r) \phi(r') , \tag{4} \]

where \(G = 2m_f g_{bf}^2 / (\hbar^2 \alpha^2) \) and \(\alpha^2 = [\hbar^2 / 2m_b \omega F]^{1/2} \). Here, the last term arises from the second-order perturbation \(\sum_{m,j} \left| \langle m | \hat{H}_0 | j \rangle \right|^2 / (E_m - \varepsilon_F) \), where the initial state \(|j\rangle = |\Omega\rangle |\{ r_b \} \rangle \) belongs to the ground-state manifold of \(\hat{H}_0 \) for bosonic atoms placed in positions \(\{ r_b \} \), and \(|m\rangle = \hat{c}^\dagger_{m} \hat{c}_{m} |\Omega\rangle |\{ r_b \} \rangle \) is a particle-hole excited state outside the manifold, with energy \(E_m \). Note that due to the conservation of fermionic parity, fermions needs to be exchanged twice to generate a potential, unlike photons which can be exchanged only once. This has important implications for the sign and shape of \(F_{r,r'} \) [77]. Interestingly, this mediated potential only depends on the bosonic separation \(F_{r,r'} \approx F(|r - r'|) \).

Since it will be useful to interpret the results of this manuscript, let us review here the properties of an untrapped free Fermi gas with energy dispersion \(\varepsilon_k^0 = \frac{\hbar^2 k^2}{2m_f} \), which provides a first approximation in the limit \(N \gg 1 \). Analytical expressions in this limit can be found in all spatial dimensions [73, 78, 79]. For example, in the one-dimensional case \((N \omega_b \ll \omega_{\omega,\nu,\xi}) \), \(F(r) \) expands in the limit \(k_{F}r \gg 1 \) as [78]:

\[F_{1D}(r) \propto -\frac{1}{k_{F}r} \left(\cos (2k_{F}r) + \frac{\sin (2k_{F}r)}{2k_{F}r} \right) , \tag{5} \]

whereas in the two-dimensional case \((\omega_b \ll \omega_{\omega,\nu,\xi}/N) \), it expands as [79]:

\[F_{2D}(r) \propto -\frac{\pi^2}{r} \left(\sin (2k_{F}r) - \frac{\cos (2k_{F}r)}{4k_{F}r} \right) . \tag{6} \]

In both dimensions, the interactions share some common features: i) the fermion-mediated interactions are attractive in the limit \(r \to 0 \), regardless of the sign of \(g_{bf} \). The mean-field intuition is that, for \(g_{bf} > \langle 0 \rangle \), the Fermi gas tends to avoid (be attracted to) the bosons, reducing (increasing) the fermionic density, and thus, the bosons feel more attracted to this place. ii) Asymptotically, they lead to longer range interactions \(\sim r^{-1} \) (1D) and \(\sim r^{-2} \) (2D) than dipolar ones (\(\sim r^{-3} \)). iii) The interactions oscillate with an effective length inversely proportional to the Fermi momentum, \(k_F = \sqrt{2m_f \varepsilon_F} \). Thus, choosing the wavevector of the bosonic optical lattice potential \(k_L \), one can induce (anti-)ferromagnetic interactions if \(k_L = (2k_F) \), or incommensurate ones (\(k_L/k_F \in \mathbb{Z} \)).

For a sufficiently deep optical lattice for the bosons, only its lowest motional bands get populated. Wannier functions \(w_j(r) \) centered at the lattice sites \(j \) become a convenient description for the bosonic fields, \(\phi(r) = \sum_j w_j(r) \hat{b}_j \). Projecting in this basis the effective Hamiltonian (4), one obtains an extended Bose-Hubbard model,

\[\hat{H}_{eff} = -\hbar \sum_{j \neq j'} \hat{b}_j^\dagger \hat{b}_j + U_b / 2 \sum_j \hat{b}_j^\dagger \hat{b}_j^\dagger \hat{b}_j \hat{b}_j - 1 + \sum_{j \neq j'} u_{j,j'} \hat{b}_{j}^\dagger \hat{b}_{j'} \hat{b}_{j'}^\dagger , \tag{7} \]

with nearest-neighbor tunneling strength \(t \) and on-site interaction \(U_b = g_{bf} \int dr |w_j(r)|^4 \). Here, \(\hat{b}_{j}^\dagger \) are the (creation) annihilation operators of a bosonic atom on site \(j \), \(\hat{b}_{j}^\dagger \hat{b}_{j} = \hat{b}_{j} \hat{b}_{j}^\dagger \) is the bosonic number operator, and the effective potential \(u_{j,j'} \) terms can be obtained from the perturbed potential (4) as

\[u_{j,j'} = G \int dr dr' F(|r - r'|) |w_j(r)|^2 |w_j(r')|^2 . \tag{8} \]
V appearing in a 1D Fermi gas for two values of V_t, partially decaying Yukawa-like interaction when kodic potential tends to (exponentially) cut the range of the ratio pes with the N without (red) an extra periodic trap of strength V_a. (c) and third V_b/V_h (d) neighbour interactions as a function of V_p/V_h and the effective lattice spacing k_Fd. Here, the bosonic Wannier function $w_f(r)$ is approximated by a gaussian distribution with $w_{width}/d = 0.17$, consistent with a lattice wavelength $\lambda = 784.7$ nm for 87Rb [80] and trapping depth $s = 12$. We also took $N = 200$, $k_p x_p = 13.2$, and scattering length $\eta d = 25 a_0$.

Controlling the range of the interactions. - We now show how the range of the effective interactions can be controlled by adding a periodic potential $V_p \sin^2(k_p x)$ to the previous fermionic trap in the 1D case, $V(x) = V_h (x/x_p)^2$, where $V_h = \hbar \omega / 4$, as illustrated in Fig. 1(c). In the following, we fix the number of fermionic atoms, while we vary the ratio V_p/V_h by modifying the depth of the periodic potential. It is expected that a value of $V_p \neq 0$ opens up a gap in the energy dispersion of the fermionic excitations, introducing a cutoff in the interaction range if the Fermi energy lies within the band gap (see Fig. 1(b)). This is guaranteed by choosing an appropriate wavevector k_p for the fermionic optical lattice, such that $k_p x_p \sim \sqrt{N}$ and the oscillatory potential maximally hybridizes with the $N-1$ nodes of the highest occupied state.

In Fig. 2(a), we show the fermion-mediated interaction appearing in a 1D Fermi gas for two values of V_p/V_h corresponding to the pure harmonic case ($V_p/V_h = 0$, dashed green) and a ratio $V_p/V_h = 400$ (solid red). We observe how the periodic potential tends to (exponentially) cut the range of the interaction, inducing a purely positive potential for distances $k_F r > 2$. In Fig. 2(b), we plot the maximum relative values of the fermion-mediated interactions at the oscillations for increasing values of V_p/V_h, where it is more evident the transition from a power-law decay for small V_p/V_h, to an exponentially decaying Yukawa-like interaction when V_p/V_h is large. We can therefore control the effective interaction range, given by the exponential decay length ℓ, which is exponentially reduced by V_p/V_h, as $\ell \sim e^{-V_p/V_h}$ (inset).

Besides, playing with the effective lattice separation of the bosonic species $k_F d$ (which can be controlled through the frequency of the harmonic trap, adjusting k_p, accordingly), one can identify diverse choices of induced interactions, as we illustrate in Figs. 2 (c-d). There, we see for example that there are regions for V_p/V_h and $k_F d$ (coloured in white) where the potential for the nearest and next-nearest neighbours coincide $t_2 \approx t_1$, while interactions among longer distance atoms are very weak, $t_3 \approx 0$. This is important, as such potentials can be the source of frustrated quantum many-body phases.

Quantum simulation toolbox for frustrated phases. - To illustrate the last point, we analyze the phase diagram of a 1D chain of hardcore bosons ($U_b/t_b \rightarrow \infty$) whose interactions are mediated by a 1D Fermi gas. The different phases can be distinguished using the structure factor,

$$ S(q) = \frac{1}{L} \sum_{i,j} \langle \delta \hat{n}_i^b \delta \hat{n}_j^b \rangle e^{iq(r_i-r_j)}, $$

where $\delta \hat{n}_i^b = \hat{n}_i^b - \rho$ and $\rho = 1/L \sum_i \langle \hat{n}_i^b \rangle$ is the bosonic density. Using a density-matrix renormalization group (DMRG) al-
algorithm [81] with fixed bond dimension $D = 200$, we calculate the ground state of a periodic chain with $L = 60$ sites and half-occupation, $\rho = 1/2$. Fig. 3(b) shows how, for $V_F/V_b = 0$, $S(q)$ develops a clear peak at a certain value q_0 that varies with kFd. The value at the peak $S_{\text{max}} = S(q_0)$ can be used as an order parameter, revealing in this case a staircase structure where every step corresponds to a charge density wave (CDW) phase with long-range order in the atomic density. For each of them, the order is characterized by the momentum q_0, and we labelled these phases as CDW$_q$. As an example, we depict in Fig. 3(a) the real-space density for CDW$_q$.

In Fig. 3(c), we can observe how the situation changes as we increase the value of V_F/V_b. If the amplitude of the periodic potential is sufficiently large, a disordered phase emerges where every step corresponds to a charge density wave (CDW) phase with long-range order in the atomic density. For each of them, the order is characterized by the momentum q_0, and we labelled these phases as CDW$_q$. As an example, we depict in Fig. 3(a) the real-space density for CDW$_q$.

2D regimes in Figs. 4(b-d). Note that the dependence on N is introduced because the crossover is expected in the limit $\omega_z/\omega_x \sim N$, where the energy of the highest-energy state is not enough to induce an excitation in the z-direction, and the interaction becomes effectively 1D. We observe that the interpolation is more intricate than initially expected. While in the limits $\omega_z/\omega_x \gg 1$ one recovers the expected 1D (2D) RKKY-type interactions, the intermediate dimensions acquire additional beating oscillations due to the presence of different harmonics in the potentials. This is more evident in Fig. 4(e), where we plot the corresponding cosine transform $\tilde{F}(k)$. The frequency $2k_F$ appears in all intermediate dimensions and, through a careful analysis, we observe that additional frequencies appear associated to discrete values $k_{2\pi} = 2k_0[1 - n\omega_z/\omega_x]$. The larger the value of ω_z/ω_x, the smaller is the contribution associated to smaller frequencies (as longer effective lengths that cannot fit the constrained direction vanish).

Despite the apparent complexity of the fermion-mediated interactions within this dimensional crossover, they might lead to the appearance of novel many-body phases difficult to obtain otherwise. For example, recent works have shown how chiral spin liquids can appear for hardcore bosons in kagome lattices with long-range interactions where the second and third neighbor terms are similar and the nearest neighbor

\[F(r) = \frac{\omega_z}{(\omega_x N)} + k_z d, \]
interaction cancels, i.e., \((v_2 \approx v_1 \text{ and } v_1 = 0) \) [75], a regime that is typically hard to access with conventional approaches. In Fig. 4(f,g), we make a search whether such regime would be accessible through this dimensional crossover, and find that indeed there are configurations where \(v_1 \approx 0 \) (see contour line), while \(v_2 \approx v_1 \) (green marker). Although further analysis is required, specially to account for the effect of further-range interactions in the phase diagram, our results show a promising avenue to investigate magnetic frustration and spin liquids states in 2D ultracold atomic mixtures using tunable long-range interactions.

Conclusions. - We provide two strategies to control fermion-mediated interactions in ultracold atomic mixtures by modifying the fermionic confinement potential. First, we add an extra periodic potential to open a gap in the fermionic band. Then, we continuously modify the effective dimension of the fermionic gas by using anisotropic traps. In both cases, we characterize the emergent long-range interactions, obtaining a very versatile control over their range and shape. Finally, we consider different examples where this extended quantum simulation toolbox can lead to the exploration of frustrated quantum many-body phases that are not easily accessible with other approaches. Given the recent experiments in this direction [26, 69], and the relatively simple tools that our proposal demands, we expect our results to guide near-future experiments on the topic.

ACKNOWLEDGMENTS

We are indebted to J. I. Cirac, V. Kasper and M. Lewenstein for very insightful discussions on the topic. JAL acknowledges support from ‘la Caixa’ Foundation (ID 100010434) through the fellowship LCF/BQ/ES18/11670016, Severo Ochoa Grant CEX2019-000910-S [MCIN/AEI/10.13039/501100011033], Generalitat de Catalunya (CERCA program), Fundació Cellex and Fundació Mir-Puig. AGT acknowledges support from CSIC Research Platform on Quantum Technologies PTI-001, from Spanish project PGC2018-094792-B-I00 (MCIU/AEI/FEDER, EU), and from the Proyecto Sinérgico CAM 2020 YZ20/TCS-6545 (NanoQuCoCM). DGC is supported by the Simons Collaboration on Ultra-Quantum Matter, which is a grant from the Simons Foundation (651440, P.Z.).

[1] H. P. Bächler and G. Blatter, *Supersolid versus phase separation in atomic boson-fermion mixtures*, Phys. Rev. Lett. 91, 130404 (2003).

[2] V. W. Scarola and S. Das Sarma, *Quantum phases of the extended boson-hubbard hamiltonian: Possibility of a supersolid state of cold atoms in optical lattices*, Phys. Rev. Lett. 95, 033003 (2005).

[3] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner, *Supersolid formation in a quantum gas breaking a continuous translational symmetry*, Nature 543, 87 (2017).

[4] L. Tanzi, E. Lucioni, F. Famá, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, *Observation of a dipolar quantum gas with metastable supersolid properties*, Phys. Rev. Lett. 122, 130405 (2019).

[5] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau, *Transient supersolid properties in an array of dipolar quantum droplets*, Phys. Rev. X 9, 011051 (2019).

[6] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino, *Long-lived and transient supersolid behaviors in dipolar quantum gases*, Phys. Rev. X 9, 021012 (2019).

[7] A. Micheli, G. K. Brennen, and P. Zoller, *A toolbox for lattice-slip models with polar molecules*, Nature Physics 2, 341 (2006).

[8] R. Barnett, D. Petrov, M. Lukin, and E. Demler, *Quantum magnetism with multicomponent dipolar molecules in an optical lattice*, Phys. Rev. Lett. 96, 190401 (2006).

[9] A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, *Tunable superfluidity and quantum magnetism with ultracold polar molecules*, Phys. Rev. Lett. 107, 115301 (2011).

[10] M. Maik, P. Hauke, O. Dutta, J. Zakrzewski, and M. Lewenstein, *Quantum spin models with long-range interactions and tunnelling: a quantum monte carlo study*, New Journal of Physics 14, 113006 (2012).

[11] R. M. W. van Bijnen and T. Pohl, *Quantum magnetism and topological ordering via rydberg dressing near forster resonances*, Phys. Rev. Lett. 114, 243002 (2015).

[12] A. W. Glaetzle, M. Dalmonte, N. Rath, C. Gross, I. Bloch, and P. Zoller, *Designing frustrated quantum magnets with laser-dressed rydberg atoms*, Phys. Rev. Lett. 114, 173002 (2015).

[13] S. R. Manmana, E. M. Stoudenmire, K. R. A. Hazzard, A. M. Rey, and A. V. Gorshkov, *Topological phases in ultracold polar-molecule quantum magnets*, Phys. Rev. B 87, 081106 (2013).

[14] N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M. Läuchli, J. Ye, and M. D. Lukin, *Realizing fractional chern insulators in dipolar spin systems*, Phys. Rev. Lett. 110, 185302 (2013).

[15] N. Y. Yao, M. P. Zuletel, D. M. Stamper-Kurn, and A. Vishwanath, *A quantum dipolar spin liquid*, Nature Physics 14, 405 (2018).

[16] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H. P. Bächler, T. Lahaye, and A. Browaeys, *Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms*, Science 365, 775 (2019).

[17] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S. Sachdev, *Quantum phases of rydberg atoms on a kagome lattice*, PNAS 118, (2021).

[18] R. Verresen, M. D. Lukin, and A. Vishwanath, *Prediction of toric code topological order from rydberg blockade*, Phys. Rev. X 11, 031005 (2021).

[19] G. Semeghini, H. Levine, A. Keseling, S. Ebadi, T. T. Wang, D. Bluveinstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, *Probing topological spin liquids on a programmable quantum simulator*, Science 374, 1242 (2021).
[56] J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, Quantum many-body models with cold atoms coupled to phononic crystals, Nat. Phot. 9, 326 (2015).
[57] A. González-Tudela, C.-L. Hung, D. Chang, J. Cirac, and H. Kimble, Subwavelength vacuum lattices and atom-atom interactions in two-dimensional phononic crystals, Nat. Photon. 9, 320 (2015).
[58] D. Chang, J. Douglas, A. González-Tudela, C.-L. Hung, and H. Kimble, Colliguum: Quantum matter built from nanoscopic lattices of atoms and photons, Rev. Mod. Phys. 90, 031002 (2018).
[59] S. T. Chui and V. N. Ryzhov, Collapse transition in mixtures of bosons and fermions, Phys. Rev. A 69, 043607 (2004).
[60] K. Günter, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger, Bose-Fermi Mixtures in a Three-Dimensional Optical Lattice, Phys. Rev. Lett. 96, 180402 (2006).
[61] S. Sinha and K. Sengupta, Phases and collective modes of a hardcore Bose-Fermi mixture in an optical lattice, Phys. Rev. B 79, 115124 (2009).
[62] T. Best, S. Will, U. Schneider, L. Hackermüller, D. Van Oosten, I. Bloch, and D. S. Lühmann, Role of interactions in Rb87-K40 Bose-Fermi mixtures in a 3D optical lattice, Phys. Rev. Lett. 102, 030408 (2009).
[63] A. Mering and M. Fleischhauer, Fermion-mediated long-range interactions of bosons in the one-dimensional bose-fermi-hubbard model, Phys. Rev. A 81, 011603 (2010).
[64] T. P. Polak and T. K. Kopec, Zero-temperature phase diagram of Bose-Fermi gaseous mixtures in optical lattices, Phys. Rev. A 81, 043612 (2010).
[65] I. Ferrier-Barbut, M. Delahaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem, F. Chevy, and C. Salomon, A mixture of Bose and Fermi superluids, Science 345, 1035 (2014).
[66] S. De and I. B. Spielman, Fermion-mediated long-range interactions between bosons stored in an optical lattice, Appl. Phys. B: Lasers Opt. 114, 527 (2014).
[67] D. Suchet, Z. Wu, F. Chevy, and G. M. Bruun, Long-range mediated interactions in a mixed-dimensional system, Phys. Rev. A 95, 043643 (2017).
[68] B. J. DeSalvo, K. Patel, J. Johansen, and C. Chin, Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate, Phys. Rev. Lett. 119, 233401 (2017).
[69] H. Edri, B. Raz, N. Matzliah, N. Davidson, and R. Ozeri, Observation of Spin-Spin Fermion-Mediated Interactions between Ultracold Bosons, Phys. Rev. Lett. 124, 163401 (2020).
[70] D. C. Zheng, C. R. Ye, L. Wen, and R. Liao, Polarizing the medium: Fermion-mediated interactions between bosons, Phys. Rev. A 103, L021301 (2021).
[71] D. H. Santamore and E. Timmermans, Fermion-mediated interactions in a dilute Bose-Einstein condensate, Phys. Rev. A 78, 013619 (2008).
[72] T. Kasuya, A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model, Prog. Theor. Phys. 16, 45 (1956).
[73] M. A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 96, 99 (1954).
[74] K. Yosida, Magnetic Properties of Cu-Mn Alloys, Phys. Rev. 106, 893 (1957).
[75] W. Zhu, S. S. Gong, and D. N. Sheng, Interaction-driven fractional quantum Hall state of hard-core bosons on kagome lattice at one-third filling, Phys. Rev. B 94, 035129 (2016).
[76] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).
[77] Q. D. Jiang, On the sign of fermion-mediated interactions, Phys. Rev. B 103, L121107 (2021).
[78] T. M. Rusin and W. Zawadzki, On calculation of RKKY range function in one dimension, J. Magn. Magn. Mater. 441, 387 (2017).
[79] B. Fischer and M. W. Klein, Magnetic and nonmagnetic impurities in two-dimensional metals, Phys. Rev. B 11, 2025 (1975).
[80] L. Hruby, N. Dogra, M. Landini, T. Donner, and T. Esslinger, Metastability and avalanche dynamics in strongly correlated gases with long-range interactions, PNAS 115, 3279 (2018).
[81] J. Hauschild and F. Pollmann, Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy), SciPost Phys. Lect. Notes , 5 (2018).
[82] C. Lacroix, P. Mendels, and F. Mila, Introduction to frustrated magnetism: materials, experiments, theory, Vol. 164 (Springer Science & Business Media, 2011).
[83] S. Julià-Farré, D. González-Cuadra, A. Patscheider, M. J. Mark, F. Ferlaino, M. Lewenstein, L. Barbiero, and A. Dauphin, Revealing the topological nature of the bond order wave in a strongly correlated quantum system, arXiv e-prints , arXiv:2112.08785 (2021).
[84] T. Mishra, J. Carrasquilla, and M. Rigol, Phase diagram of the half-filled one-dimensional t-s-v′ model, Phys. Rev. B 84, 115135 (2011).
[85] Y. Hatsugai, Quantized berry phases as a local order parameter of a quantum liquid, J. Phys. Soc. Jpn. 75, 123601 (2006).
[86] M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Flux insertion, entanglement, and quantized responses, J. Stat. Mech: Theory Exp. 2014, P10007 (2014).
[87] D. González-Cuadra, P. R. Grzybowski, A. Dauphin, and M. Lewenstein, Strongly correlated bosons on a dynamical lattice, Phys. Rev. Lett. 121, 090402 (2018).
[88] D. González-Cuadra, A. Dauphin, P. R. Grzybowski, P. Wójcik, M. Lewenstein, and A. Bermudez, Symmetry-breaking topological insulators in the z2 bose-hubbard model, Phys. Rev. B 99, 045139 (2019).
[89] D. González-Cuadra, A. Bermudez, P. R. Grzybowski, M. Lewenstein, and A. Dauphin, Intertwined topological phases induced by emergent symmetry protection, Nat. Commun. 10, 2094 (2019).
[90] D. González-Cuadra, A. Dauphin, P. R. Grzybowski, M. Lewenstein, and A. Bermudez, Dynamical solitons and boson fractionalization in cold-atom topological insulators, Phys. Rev. Lett. 125, 265301 (2020).
[91] D. González-Cuadra, A. Dauphin, P. R. Grzybowski, M. Lewenstein, and A. Bermudez, 2π solitons in intertwined topological phases, Phys. Rev. B 102, 245137 (2020).
[92] T. Chanda, R. Kraus, G. Morigi, and J. Zakrzewski, Self-organized topological insulator due to cavity-mediated correlated tunneling, Quantum 5, 501 (2021).
[93] T. Chanda, D. González-Cuadra, M. Lewenstein, L. Tagliacozzo, and J. Zakrzewski, Devil’s staircase of topological Peierls insulators and Peierls supersolids, SciPost Phys. 12, 76 (2022).
[94] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hwu, M. Mark, S. Hoinka, M. Lingham, P. Hannaford, and C. I. Vale, Crossover from 2D to 3D in a weakly interacting fermi gas, Phys. Rev. Lett. 106, 105304 (2011).
[95] K. Martiyanov, V. Makhalov, and A. Turlapov, Observation of a two-dimensional fermi gas of atoms, Phys. Rev. Lett. 105, 030404 (2010).