‘In general, how do you feel today?’ – self-rated health in the context of aging in India

Siddhivinayak Hirve*

Vadu Rural Health Program, KEM Hospital, Pune, India

This thesis is centered on self-rated health (SRH) as an outcome measure, as a predictor, and as a marker. The thesis uses primary data from the WHO Study on global AGEing and adult health (SAGE) implemented in India in 2007. The structural equation modeling approach is employed to understand the pathways through which the social environment, disability, disease, and sociodemographic characteristics influence SRH among older adults aged 50 years and above. Cox proportional hazard model is used to explore the role of SRH as a predictor for mortality and the role of disability in modifying this effect. The hierarchical ordered probit modeling approach, which combines information from anchoring vignettes with SRH, was used to address the long overlooked methodological concern of interpersonal incomparability. Finally, multilevel model-based small area estimation techniques were used to demonstrate the use of large national surveys and census information to derive precise SRH prevalence estimates at the district and sub-district level. The thesis advocates the use of such a simple measure to identify vulnerable communities for targeted health interventions, to plan and prioritize resource allocation, and to evaluate health interventions in resource-scarce settings. The thesis provides the basis and impetus to generate and integrate similar and harmonized adult health and aging data platforms within demographic surveillance systems in different regions of India and elsewhere.

Keywords: self-rated health; aging; mortality; disability; reporting heterogeneity; India

*Correspondence to: Siddhivinayak Hirve, KEM Hospital Research Center, Rasta Peth, Pune 411001, India, Email: sidbela@vsnl.com

Received: 23 November 2013; Revised: 25 February 2014; Accepted: 22 March 2014; Published: 22 April 2014

This thesis takes place in the context of a rapidly aging population in India as seen from a persistently high (> 30%) percentage decadal growth in its elderly population over the last few decades despite a steady decline in the overall percentage decadal growth from 24.8% in 1971 to 17.6% in 2011. India’s elderly population has grown four-fold in the last 50 years and with current trends projected to triple to about 300 million by 2050 (1). India is set to alter its status from that of a young population to an aging population by 2030, yet it may be debated whether it has the requisite policies and infrastructures in place to address the growing needs and challenges of the elderly (2). The majority of elders are outside the social safety net, and they face economic, health, and emotional insecurity and inequity that pose a challenge to an already overburdened societal system (3). The new millennium has seen a concerted global effort to mainstream aging into the development agenda, and countries have agreed to link questions of aging to frameworks for social and economic development and human rights (4). Yet, a decade later, aging population concerns suffer lack of attention, resources, and political visibility. Questions that need answers to formulate policies on successful aging are seemingly endless and complex. Additionally, population aging research has largely been in the domain of demographers and economists focused on living arrangements of the elderly (5), risk factors, disease, and disability arising from obesity and age-related degenerative conditions (6, 7). Until recently, the lack of a globally harmonized data infrastructure that could simultaneously explore all the key life domains of the elderly – work history, leisure, income, wealth, social and emotional securities, health behaviors, disease, disability, health care utilization, cognition, ability to perform activities of daily living, life satisfaction, quality of life (QOL), and subjective wellbeing – has been a major drawback to a more holistic approach to research on successful population aging.

Self-rated health (SRH) is a complex latent construct commonly used to assess health and wellbeing (8). It refers to a survey technique where individuals assess their own...
health by answering a single global health question ‘In
general, how would you rate your health today?’ or a
series of questions such as ‘In the last 30 days, how
much difficulty did you have in moving around?, ’... with
remembering things?’, and so on that are typically struc-
tured on a Likert scale (9). Though the exact wordings and
response options of SRH have varied between surveys
making direct comparisons difficult, it essentially assesses
the same phenomenon across different settings (10). The
individual chooses a self-rating response by a cognitive
process that is inherently subjective as well as contextual –
the physiological, biological, and emotive experiences and
expectations influenced by the contextual social environ-
ment (11). It is an all-inclusive, sensitive yet non-specific
measure that assesses health and predicts health outcomes
in ways that are still unclear (12). Such a simple, yet
poorly understood, cost-effective self-perception measure
has immense practical utility in assessing elderly health
and health care (13, 14) substituting other more expensive
and invasive measures in resource-scarce settings.

Scope and setting
Figure 1 defines the scope of this thesis. It uses newer
advances in statistical approaches to explore three distinct
yet interlinked thematic tracks centered on SRH as an
‘outcome’ measure; SRH as a ‘predictor’ variable; and SRH
as a ‘marker’ variable. Table 1 summarizes the thematic
tracks. The first theme uses the structural equation model-
ing approach (15) to understand pathways through which
the social environment, functional disability, and disease
experience influence SRH as well as mediate the effects of
age and sex on SRH. The second theme builds further on
examining the role of SRH and the influence of disability
in predicting mortality using the conventional Cox pro-
portional hazards modeling approach (16). The third
theme addresses the methodological concern of interper-
sonal comparability of SRH. It uses a hierarchical ordered
probit (HOPIT) modeling approach to combine informa-
tion from anchoring vignettes to identify and correct self-
rating responses for reporting heterogeneity (17). Finally,
a fourth theme validates the use of national surveys to
derive precise estimates of SRH at the district and sub-
district level using random effects model based small area
estimation techniques (18).

The thesis is grounded in the Vadu community compris-
ing of more than 100,000 population residing in 22 villages
in the rural Pune district in Maharashtra in India (Fig. 2).
The Vadu community has been under health and demo-
graphic surveillance (HDSS) since 2002 wherein a biannual
household census enumerates all births, deaths, and mig-
trations and ascertainment of cause of death. The World Health
Organization (WHO) study on global aging and adult
health (SAGE) was administered to a multistage stratified
cluster random sample of 7,150 individuals aged 50 years
and above at the national level in 2007–08. It was also
administered to a simple random sample of 321 individuals
aged 50 years and above from the Vadu community. SAGE
collected information on household and individual socio-
demographic characteristics, work history, SRH, func-
tional health state, health behaviors, chronic illnesses,
health care utilization, social cohesion, QOL, and subjec-
tive wellbeing (Appendix) (19). Furthermore, an abridged
version (SRH, functional health state, QOL, and subjective
wellbeing) of the SAGE survey was administered to an
independent random sample of 5,432 individuals aged
50 years and above in the same Vadu community (20).

Fig. 1. Framework for scope of the thesis.
Individuals graded their ability to perform tasks in eight functional domains of health (mobility, affect, self-care, cognition, pain, interpersonal relationships, sleep and vision). Each domain included two self-rating questions—one for a lower and another for a higher level of functional ability. A total of 10 anchoring vignettes in two functional domains were administered to each individual at random. After each vignette, the same question as the two self-rating questions was asked. Individuals rated their self and vignette assessments on a five-point ordinal scale of increasing difficulty. Three additional measures—WHO Health State score, WHO Disability Assessment Schedule (DAS) score, and the WHO QOL score—were derived from the questions on limitations in functional ability and subjective wellbeing. The SAGE dataset was further enhanced by linking it with the HDSS dataset for individual and household sociodemographic characteristics and to identify deaths among study participants in the 4 years subsequent to the SAGE survey.

The sociodemographic characteristics of the individuals included in the abridged version and the full version of the SAGE survey were similar to that of the Vadu population from which they were sampled. However, the Vadu SAGE participants were significantly older and less educated compared to the participants of the national SAGE survey. Table 1 summarizes the main findings of the thesis.

SRH as an outcome

Globally, there is a large body of literature on the psychosocial and socioeconomic determinants of SRH. It is known to worsen as age advances, and women...
are more likely to report poor SRH compared to men (21–23). Limitations in physical and mental function – sleep, mobility, cognition – are strongly associated with poor SRH (24–26). Widowhood, lack of education, and lower levels of social networking and social cohesion are known to be associated with poor SRH (27–31). Health behaviors and absence of chronic illness predict physical function and contribute to good SRH in old age (32–34). However, the pathways through which these variables influence SRH are not known.

We tested a simple theory where individual socio-demographic characteristics influenced QOL and SRH through intermediate mediators such as functional ability and social cohesion (Fig. 3) (35). Older individuals reported significantly poorer SRH and QOL that was mediated through limitations in functional ability. Individuals with higher education and with a regular income had higher levels of social networking/social cohesion that in turn had a positive effect on QOL and SRH. However, the direct effect of socioeconomic status on SRH or QOL was not significant. Smoking or tobacco consumption was associated with at least one chronic illness which in turn was associated with poor QOL and SRH – this association was, however not significant.

SRH as a predictor

A strong association between poor SRH and risk of mortality, independent of age, sex, income, education, social networking, health behavior, and chronic disease, is consistently reported from Europe and North America (36–38) and in Asia (39, 40). A meta-analysis of 22 studies shows a two-fold increase in all-cause mortality for persons who report poor SRH (41). There is some evidence from developed countries that high levels of disability and morbidity, and poor physical and cognitive function may influence this association (42, 43). It is unclear to what extent disability and the social environment alters the predictive ability of SRH on mortality.

In our study, men who reported poor/very poor SRH had a three-fold higher hazard for mortality compared to those who reported good/very good SRH independent of age, disability, and socioeconomic characteristics (44). A similar trend was seen for women but was not significant for women after adjusting for disability (Fig. 4). Lack of spousal support increased the mortality hazard by 67% in men and 71% in women. Disability significantly increased the mortality hazard in both men and women independent of age. Mortality hazard was not significantly influenced by education and socioeconomic status. There was no significant interaction between the sociodemographic covariates (spousal support, education, socioeconomic status) or disability and SRH in predicting mortality in either men or women.

SRH as a marker

Can a self-rating of one’s own health be a valid marker of health? Given identical true health levels, will two individuals necessarily rate their health with identical response options? When an individual is asked to self-rate his health with a discrete response on an ordinal scale, the
Fig. 3. Structural equation model for SRH. Standardized coefficients (effects) are in parenthesis. Latent variables are depicted as ovals and observed variables as rectangles. Final model $\chi^2 = 409.87$, df = 271; RMSEA = 0.041.
Source: Hirve et al., (35).

Fig. 4. Hazard ratio for mortality. Reference categories are ‘good/very good SRH’, ‘50–59 years age’, ‘spousal support’, ‘primary or less education’, and ‘poorest socioeconomic quintile’.
response is analyzed with the assumption that it represents his ‘true’ health measured on an underlying latent interval scale. The individual uses some response category cut-points that are unknown to the researcher to categorize his discrete response. For such analysis, the tendency is to assume that all individuals use the same cut-points. However, there is a large body of evidence to suggest that individuals and groups interpret and choose response categories very differently. Two individuals or groups of individuals with identical health levels may rate their own health differently or vice versa, based on their understanding, expectation, and experience of their own health (45). This difference in reporting style referred to as reporting heterogeneity unless recognized and corrected for can lead to misleading comparisons (46). Anchoring vignettes is a strategy used in recent years to identify and overcome the problem of reporting heterogeneity in self-rating responses (47). It has increasingly been used in the last decade to improve interpersonal comparability of self-rating responses in the areas of political efficacy, work disability, job and life satisfaction, and health and health system responsiveness (48–52).

Our study administered vignettes for each of the eight health domains separately as it was felt that the single SRH question is too complex and multidimensional for a concept to be captured by a brief vignette. Our study uses the HOPIT modeling approach to combine information from the anchoring vignettes for mobility and cognition to identify and estimate the response category cut-points and then correct the self-rating response for reporting heterogeneity (17). Our study showed strong evidence of reporting heterogeneity in their self-rating responses largely driven by age, sex, and socioeconomic status. Individuals with higher socioeconomic status and higher education significantly lowered the response category cut-points for cognition, that is, they were more likely to be ‘demanding’ in self-rating their cognitive ability compared to lower socioeconomic status and less educated respondents. After correction for reporting heterogeneity, women, older individuals and those from lower socioeconomic background, were significantly more likely to report greater difficulty in mobility. A similar pattern was seen for cognition self-rating but was not significant.

Large area–small area comparison of SRH estimates

The national SAGE survey, though rich in information, lacked adequate precision at the district or sub-district level and is of limited value for local micro-planning and resource allocation. On the contrary, the demand for district- or sub-district-level information has greatly increased due to decentralized health micro-planning and decision making in India. Small area estimation are a broad range of statistical techniques that borrows strength by using information about the variable from other similar or related small areas or from information in the same area collected in the past, and thus effectively increase the sample size at the small area level. This information is then combined into the estimation process through a model that links the related small areas through the use of auxiliary information (most often census information) that is available at the small area level (18). Small area estimation has been used to estimate small area disease burden (53–56), disability (57), unmet needs (58), vaccine coverage (59), identify communities at risk for targeted health interventions (60–63) and for understanding geographical disparities, income inequity and poverty (64, 65). The two main challenges of small area estimation are calculating the estimate with any level of precision given the small sample size at the small area level and estimation of its prediction error and there is no consensus on which small area estimation technique provides the most precise estimate with the smallest prediction error. There are few studies that compare small area estimates derived indirectly from large area surveys with those derived directly from small area surveys.

We derived ‘good SRH’ prevalence for each district of Maharashtra and for the Vadu community at the sub-district level using four different small area estimation techniques, namely, indirect synthetic estimate based on an age–sex fixed effects model; best linear unbiased linear prediction (BLUP) estimates derived using two routines – xtmelogit and glamm; and the hierarchical Bayes (HB) estimate, based on a multilevel model. We then compared these small area estimates with the direct weighted survey estimate. The state-level SRH prevalence was 23% (95% credible interval: 20–27%). The district-level SRH prevalence ranged from 5 to 47% with wide intervals reflecting the small sample size at the district level. The district-level indirect synthetic estimate was about 23% with minimal variation between the districts. The district-level BLUP and the HB estimates ranged from 8 to 38%. The HB estimates had wider intervals compared to the BLUP estimates. The correlation between the BLUP and HB estimates was 0.95 while that between the BLUP/HB estimates and the direct survey estimate was 0.75 (Fig. 5). The direct survey estimate of ‘good SRH’ prevalence in the Vadu community was 50%, the BLUP and HB estimates were 46%, whereas the indirect synthetic estimate was 23%. Our study shows that the indirect synthetic estimate though intuitive and easy to derive was imprecise as it assumed that the difference in the SRH prevalence was solely due to age–sex differences in the district populations (66). This assumption is incorrect as SRH is known to vary by contextual factors operating at the area level (67). On the other hand, the multilevel model allowed contextual factors to influence the SRH estimates and provide increased accuracy of standard errors. The BLUP estimate is relatively robust to variations in the sample size of each small area as the
model estimates based on fewer observations are ‘shrunk’ towards the global mean for the data (68). BLUPs are a useful smoothing tool. The shrinkage property keeps them from over fitting the data. On the other hand, the HB approach treats both the fixed effects and random effects parameters as random and assumes a joint distribution for these parameters. Modeling is carried out in several stages that are easier to understand even if the model fitting process is complicated. HB estimates have smaller mean square errors and account for the uncertainty in the prediction error than corresponding BLUP estimates. However, the HB estimates are computationally complex and are sensitive to the specification of their priors and use Markov Chain Monte Carlo simulations to approximate the posterior distributions of the parameter estimates.

Critiques and debates
Despite its widespread use as a measure of health and its established value as a predictor for adverse health outcomes, SRH as a marker of the individual’s true health
often tends to be viewed by many with skepticism. This skepticism is underpinned in the larger debate between perceptions versus observation; between the emic and the etic perspective. The prevailing view, largely influenced by a commentary by Amartya Sen in the British Medical Journal in 2002, is that self-reports of illness and health are misleading, as socially disadvantaged individuals from low- and middle-income settings fail to perceive and report illness or health deficits because an individual's assessment of their health is directly contingent on their social experience (69). Sen, therefore, argues that perceptions and self-reports of health (the emic perspective) can be misleading and obfuscate the true extent of health deficit that is more likely to be captured through external more objective assessments (etic perspective). The authors of another study that could not detect a social gradient in a mother’s report of her child’s diarrhea also argued that reported measures of morbidities are misleading (70). The counterview is that SRH as a marker of true health is valid and of value by itself, as it is the perception that largely shape and determine an individual's health behavior and health seeking behavior. However, the concern with SRH is not its validity in itself but its interpersonal comparability (12). It is therefore essential to identify and correct for the reporting heterogeneity inherent in any self-rating response before making any comparisons.

Another area of debate has been the reference time for the self-assessment questions. A global measure of health should ideally reflect a cumulative measure of the individual’s health and hence by implication should be insensitive to short-term changes in health. If the time reference for the global health question is short as in our study wherein we asked ‘In general, how would you rate your health, today?’ the response is likely to be affected by short-term fluctuations in health like mild illness or even some cyclical variation in wellbeing like menstruation. This can add noise in the ability of SRH to predict long-term outcomes such as mortality. Researchers have tried to address this concern by specifying different time anchors, say a month, for the SRH question while others have used different terms – perceived general health which is more global in its meaning and predicts long-term health outcomes to distinguish from perceived current health that predicts health care utilization and medication use (71). A stable alternative may be to ask the SRH questions with a broader time frame – maybe a week or a month, though this is a topic for further research.

In a nutshell . . . so, what next?

This thesis establishes the value and utility of including SRH questions as a measure of health and predictor of mortality within survey settings or demographic surveillance systems in the context of aging in India. It advocates the use of such a simple measure in survey settings to identify vulnerable communities for targeted health interventions, plan and prioritize resource allocation, and evaluate health interventions in resource-scarce settings. It provides evidence to promote social policy and program interventions aimed to increase social networking and social participation especially among those socially disadvantaged and elderly. The thesis highlights the need to identify and correct SRH responses for reporting heterogeneity to improve its interpersonal comparability. Finally, it demonstrates the potential of using information from large national surveys for planning and evaluation of policies and programs at the district and sub-district level.

This thesis also raises and leaves unanswered questions – especially questions on the sensitivity of SRH to gradual changes in health state. How does the individual’s SRH response change with gradual deterioration of his health over a long period? How quickly or slowly does it change? How much does health need to decline or detrimental factors need to cumulate to effect a change in the SRH response? What determines or triggers this change? Is a change in SRH a better predictor for adverse health outcomes? How does an individual’s expectation of his health modulate the effect of his health experiences on SRH? How do experiences and expectations interplay to generate the considered SRH response? How and why do contextual factors influence SRH? How can the interpersonal and cross-cultural comparability of SRH be further improved? These questions are crucial to the understanding of SRH and some may be answered when the second round of SAGE is implemented in the same cohort.

Finally, I hope this thesis provides the basis and impetus to generate and integrate similar and harmonized adult health and aging data platforms within demographic surveillance systems in different regions of India and elsewhere. I hope it raises awareness and stimulates the scientific community and policy makers to prioritize and mainstream successful aging into the national research and development agenda of low- and middle-income countries that are witness to rapidly aging populations.

Acknowledgements

HDSS, Vadu, is a member of the INDEPTH Network. I thank my group of supervisors – Nawi Ng, Sig Wall, Yulia Blomstedt, and Steve Tollman for their guidance. I thank Johan HL Oud, Lisa Berkman, Emese Verdes, Sonnath Chatterjee, Penelope Vounatsou, and my supervisors for their contribution to the individual manuscripts that are part of the thesis. I thank my colleagues in Vadu and KEM Hospital Research Center – Sanjay Juvekar, Trupti Joshi, Pallavi Lele, Dhiraj Agrawal, Sonnath Sambhudas – and our field investigators who made this study possible. And above all, thanks are due to our Vadu community and its elderly for this opportunity to learn from them.

Conflict of interest and funding

The PhD research work has been financed by the Umeå Centre for Global Health Research, Umeå University, with
support from FAS, the Swedish Council for Working Life and Social Research (Grant No. 2006-1512) through its fellowship. This thesis uses data from the WHO Study on Global AGEing (SAGE). SAGE is supported by the US National Institute on Aging through Interagency Agreements (OGHA 04034785; YA1323-08-CN-0020; Y1-AG-1005-01) and through a research grant (R01-AG034479).

References

1. Bloom DE. India’s baby boomers: dividend or disaster? Curr Hist 2011; 110: 143–9.
2. World Bank (2001). India: the challenge of old age income security, finance and private sector development, South Asia Region, Report 22034. Washington, DC: World Bank.
3. Alam M. Ageing, old age income security and reforms: An exploration of Indian situation. Econ Polit Wkly 2004; 39: 3731–40.
4. United Nations (2002). Report of the second world assembly on ageing: Madrid, 8–12 April 2002. New York: United Nations.
5. Bongaarts J, Zimmer Z. Living arrangements of older adults in the developing world an analysis of demographic and health survey household surveys. J Gerontol B Psychol Sci Soc Sci 2002; 57: S145–57.
6. Griffiths R, Good W, Watson N, O’Donnell H, Fell P, Shakespeare J. Depression, dementia and disability in the elderly. Br J Psychiatry 1987; 150: 482–93.
7. Manton KG. Recent declines in chronic disability in the elderly US population: risk factors and future dynamics. Annu Rev Public Health 2008; 29: 91–113.
8. Fayers PM, Sprangers MA. Understanding self-rated health. Lancet 2002; 359: 187–8.
9. World Health Organization. Common instruments for health survey household surveys. J Gerontol B Psychol Sci Soc Sci 2002; 57: S145–57.
10. Jylha M. What is self-rated health and why does it predict mortality? Towards a unified conceptual model. Soc Sci Med 2009; 69: 307–12.
11. World Health Organization. Common instruments for health survey household surveys. J Gerontol B Psychol Sci Soc Sci 2002; 57: S145–57.
12. Manton KG. Recent declines in chronic disability in the elderly US population: risk factors and future dynamics. Annu Rev Public Health 2008; 29: 91–113.
13. Jylha M. What is self-rated health and why does it predict mortality? Towards a unified conceptual model. Soc Sci Med 2009; 69: 307–12.
14. Manton KG. Recent declines in chronic disability in the elderly US population: risk factors and future dynamics. Annu Rev Public Health 2008; 29: 91–113.
15. Jylha M. What is self-rated health and why does it predict mortality? Towards a unified conceptual model. Soc Sci Med 2009; 69: 307–12.
16. World Health Organization. Common instruments for health survey household surveys. J Gerontol B Psychol Sci Soc Sci 2002; 57: S145–57.
17. Tandon A, Murray CJ, Salomon JA, King G. Statistical models for enhancing cross-population comparability. In: CJ Murray, DB Evans, eds. Health systems performance assessment: debates, methods and empiricism. Geneva: World Health Organization; 2003, pp. 727–46.
adults and elderly in India: a structural equation modelling approach. Soc Indic Res 2013; 117: 105–19. DOI: 10.1007/s11205-013-0334-7.

36. Idler EL, Benyamini Y. Self-rated health and mortality: a review of twenty-seven community studies. J Health Soc Behav 1997; 38: 21–37.

37. Benyamini Y, Idler E. Community studies reporting association between self-rated health and mortality: additional studies, 1995 to 1998. Res Aging 1999; 21: 392–401.

38. Mossey JM, Shapiro E. Self-rated health: a predictor of mortality among the elderly. Am J Public Health 1982; 72: 800–8.

39. Frankenberg E, Jones NR. Self-rated health and mortality: does the relationship extend to a low income setting? J Health Soc Behav 2004; 45: 441–52.

40. Ng N, Hakimi M, Santos AS, Byass P, Wilopo S, Wall S. Is self-rated health an independent index for mortality among older people in Indonesia? PLoS One 2012; 7: DOI: 10.1371/journal.pone.0035308.

41. DeSalvo KB, Blosner N, Reynolds K, He J, Muntner P. Mortality A meta-analysis. J Gen Intern Med 2006; 21: 267–75.

42. Nybo H, Petersen HC, Gaist D, Jeune B, Andersen K, McGue M, et al. Predictors of mortality in 2,249 nonagenarians – the Danish 1905-Cohort Survey. J Am Geriatr Soc 2003; 51: 1365–73.

43. Emmelin M, Weinhall L, Stegmayr B, Dahlgren L, Stenlund H, Wall S. Self-rated ill-health strengthens the effect of biomedical risk factors in predicting stroke, especially for men – an incident case referent study. J Hypertens 2003; 21: 887–96.

44. Hirve S, Juvekar S, Sambhudas S, Lele P, Blomstedt Y, Wall S, et al. Does self-rated health predict death in adults aged 50 years and above in India? Evidence from a rural population under health and demographic surveillance. Int J Epidemiol 2012; 41: 1719–27.

45. Jylha M, Guralnik JM, Ferrucci L, Jokela J, Heikkinen E. Is self-rated health comparable across cultures and genders? J Gerontol B Psychol Sci Soc Sci 1998; 53: S144–52.

46. Bago d’Uva T, O’Donnell O, van Doorslaer E. Differential health reporting by education level and its impact on the measurement of health inequalities among older Europeans. Int J Epidemiol 2008; 37: 1375–83.

47. Murray CJ, Ozaltin E, Tandon A, Salomon JA, Sadana R, Chatterjee S. Empirical evaluation of the anchoring vignettes approach in health surveys. In: CJ Murray, DB Evans, eds. Health systems performance assessment: debates, methods and empiricism. Geneva: World Health Organization; 2003, pp. 369–99.

48. King G, Murray CJ, Salomon JA, Tandon A. Enhancing the validity and cross-cultural comparability of measurement in survey research. Am Polit Sci Rev 2004; 98: 191–207.

49. Christensen K, Herskind AM, Vaupel JW. Why Danes are smug: comparative study of life satisfaction in the European Union. BMJ 2006; 333: 1289–91.

50. Kaptein A, Smith J, Van Soest A. Vignettes and self-reports of work disability in the US and the Netherlands. Am Econ Rev 2007; 97: 461–73.

51. Kristensen N, Johansson E. New evidence on cross-country differences in job satisfaction using anchoring vignettes. Labor Econ 2008; 15: 96–117.

52. Rice N, Robone S, Smith PC. International comparison of public sector performance: the use of anchoring vignettes to adjust self-reported data. Evaluation 2010; 16: 81–101.

53. Congdon P. Estimating diabetes prevalence by small area in England. J Public Health (Oxf) 2006; 28: 71–81.

54. Hudson CG. Validation of a model for estimating state and local prevalence of serious mental illness. Int J Methods Psychiatr Res 2009; 18: 251–64.

55. Thomas TL, Nandram B. Predicting incidence and asymptomatic rates for chlamydia in small domains. J Adv Nurs 2010; 66: 2650–8.

56. Mendez-Luck CA, Yu H, Meng YY, Jhawar M, Wallace SP. Estimating health conditions for small areas: asthma symptom prevalence for state legislative districts. Health Serv Res 2007; 42: 2389–409.

57. Jia H, Muennig P, Borawski E. Comparison of small-area analysis techniques for estimating county-level outcomes. Am J Prev Med 2004; 26: 453–60.

58. Amoako Johnson F, Padmadas SS, Chandra H, Matthews Z, Madise NJ. Estimating unmet need for contraception by district within Ghana: an application of small-area estimation techniques. Popul Stud (Camb) 2012; 66: 105–22.

59. Elberth JM, Hossain MM, Tiro JA, Zhang X, Holt JB, Vernon SW. Human papillomavirus vaccine coverage among females aged 11 to 17 in Texas counties: an application of multilevel, small area estimation. Womens Health Issues 2013; 23: e131–41.

60. Cui Y, Baldwin SB, Lightstone AS, Shih M, Yu H, Teutsch S. Small area estimates reveal high cigarette smoking prevalence in low-income cities of Los Angeles county. J Urban Health 2012; 89: 397–406.

61. Li W, Kelsey JL, Zhang Z, Lemon SC, Mezgebu S, Boddie-Willis C, et al. Small-area estimation and prioritizing communities for obesity control in Massachusetts. Am J Public Health 2009; 99: 511–19.

62. Asiimwe JB, Jehopio P, Atuhaire LK, Mbonye AK. Examining small area estimation techniques for public health intervention: lessons from application to under-5 mortality data in Uganda. J Public Health Policy 2011; 32: 1–15. DOI: 10.1057/jphp.2010.46.

63. Knutson K, Zhang W, Tabnak F. Applying the small-area estimation model to estimate a population eligible for breast cancer detection services. Prev Chronic Dis 2008; 5(1). Available from: http://www.cdc.gov/pcd/issues/2008/08_0144.htm [cited 2014 Mar 7].

64. Hudson CG, Soskolne V. Disparities in the geography of serious mental illness in Israel. Health Place 2012; 18: 898–910.

65. Elbers C, Lanjouw JO, Lanjouw P. Applying the small-area estimation technique for under-five mortality data in Ghana: an application of small-area estimation techniques. Soc Sci Med 2002; 54: 931–7.

66. Sen A. Health: perception versus observation. BMJ 2002; 324: 753–5.

67. Manesh AO, Sheldon TA, Pickett KE, Carr-Hill R. Accuracy of public sector performance: the use of anchoring vignettes to measure poverty and inequality. Econometrica 2003; 71: 355–64.

68. Schaible WL. Indirect estimators in US federal programs. New Y ork: Springer; 1996.

69. Macintyre S, Ellaway A, Cummins S. Place effects on health: how can we conceptualise, operationalise and measure them? J Public Health Policy 2002; 23(3): 270–84.

70. Sen A. Health: perception versus observation. BMJ 2002; 324: 753–5.

71. Twigg L, Moon G. Predicting small area health-related behaviour: a comparison of multilevel synthetic estimation and local survey data. Soc Sci Med 2002; 54: 931–7.

72. Manesh AO, Sheldon TA, Pickett KE, Carr-Hill R. Accuracy of child morbidity data in demographic and health surveys. Int J Epidemiol 2008; 37: 194–200.

73. Fielding R, Li J. A validation of the concept of current perceived health and the Current Perceived Health-42 (CPH-42) questionnaire. Qual Life Res 1997; 6: 35–42.
Appendix

Summary of measures included in the full version of the SAGE survey
(adapted from source: http://www.who.int/healthinfo/sage/SAGE_Waves0_1_SummaryMeasures.pdf)

Domain	Household measures
Household identification, contact and sampling details	Identification and contact details; structure of household; dwelling characteristics; improved water, sanitation and cooking facilities
Transfers and support Networks	Family, community, and government assistance into and out of the household; informal personal care provision/receipt
Assets, income and Expenditure	List of household assets; sources and amount of household income; improved household expenditure on food, goods and services, health care
Household care and health insurance	Persons in household needing care; mandatory and voluntary health insurance coverage

Domain

Individual measures

Sociodemographic characteristics	Sex, age, marital status, education, ethnicity/background, religion, language spoken, area of residence, employment, and education of parents
Work history and benefits	Length of time worked, reasons for not working, type of employment, mode of payment, hours worked
Health states and descriptions	Overall self-rated health; eight self-rated health domains (affect, mobility, sleep/energy, cognition, interpersonal activities, vision, self-care and pain); 12-item WHO Disability Assessment Schedule, Version 2 (WHODAS-II); activities of daily living (ADLs); instrumental activities of daily living (IADLs); vignettes on health state descriptions
Anthropometrics, performance tests and biomarkers	Measured blood pressure; self-report and measured height and weight; measured waist and hip circumference; timed walk; near and distant vision tests; grip strength, executive functioning (verbal recall, digit span forwards and backwards, verbal fluency); spirometry; non-fasting finger prick blood sample (stored at -20C) as dried blood spots
Risk factors and preventive health behaviors	Smoking, alcohol consumption, fruit and vegetable intake, physical activity (GPAQ)
Chronic conditions and health services coverage	Self-reported and symptomatic reporting of arthritis, stroke, angina (Rose Questionnaire), asthma, and depression (ICD-10, DSM-IV). Self-reporting of diabetes, chronic lung disease, hypertension, cataracts, oral health, injuries, and cervical, and breast cancer screening
Health care utilization	Past need for health care, reasons for health care or for not receiving health care, inpatient and outpatient health care: number of admissions/visits within the past 3 years (inpatient) or 1 year (outpatient), reasons for admission/visit, details of hospital or provider, costs of hospitalization or health care visit, satisfaction with treatment, health system responsiveness, vignettes for responsiveness of health services
Social cohesion	Community involvement and social networks, perceptions of other people and institutions, safety in local area, stress, interest in politics and perceptions of government
Subjective wellbeing and quality of life	Perceptions about quality of life and wellbeing, 8-item WHO Quality of Life measure (WHO-QOL), Day Reconstruction Method (DRM)
Impact of caregiving	Household members needing care, type of care required, length of time spent on care, costs of care, impact of providing care on career wellbeing