Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

Jens Behrmann*, Paul Vicol*, Kuan-Chieh Wang*, Roger Grosse, Jorn Jacobsen

Slides by: Paul Vicol
Outline

- Motivation
- Lipschitz Properties of INN Building Blocks
- Controlling Global Stability
- Controlling Local Stability
 - Bi-directional finite differences regularization
 - Normalizing Flow Regularization
- Experiments
 - Instability on OOD Data
 - Non-invertibility within the dequantization region
 - Memory-efficient gradient computation
- Summary and Practical Takeaways
● Motivation
 ● Lipschitz Properties of INN Building Blocks
 ● Controlling Global and Local Stability
 ○ Bi-directional finite differences regularization
 ○ Normalizing Flow Regularization
● Experiments
 ○ Instability on OOD Data
 ○ Non-invertibility within the dequantization region
 ○ Memory-efficient gradient computation
● Summary and Practical Takeaways
Applications of INNs

- The application space for invertible neural networks (INNs) is growing rapidly
 - Training generative models with exact likelihoods --- normalizing flows
 - Computing memory-saving gradients
 - Increasing posterior flexibility in VAEs
 - Solving inverse problems
 - Analyzing adversarial robustness

- However, as practitioners apply off-the-shelf INNs to new problems w/ new objectives, they often run into stability issues that break the models
 - Even worse, many of these failures are not immediately apparent during training
Applications of INNs

- The application space for invertible neural networks (INNs) is growing rapidly
 - Training generative models with exact likelihoods --- normalizing flows
 - Computing memory-saving gradients
 - Increasing posterior flexibility in VAEs
 - Solving inverse problems
 - Analyzing adversarial robustness

Our Focus

- However, as practitioners apply off-the-shelf INNs to new problems w/ new objectives, they often run into stability issues that break the models
 - Even worse, many of these failures are not immediately apparent during training
• Typically, we *store the intermediate activations of a neural net in memory* to compute gradients in the backward pass

• Activation memory is often a limiting factor when using:
 1. Large images (e.g., medical images)
 2. Large minibatches
 3. Deep models
Memory-Efficient Gradient Computation

With an INN, you don’t need to store intermediate activations in memory
 ○ You can reconstruct activations during the backward pass, trading off reduced memory for increased computation

Key assumption: the INN is numerically stable, so that the reconstructed activations are equivalent to the ones from the forward pass
Motivation: Issues with Memory-Saving Gradients

- We can save memory by discarding activations, and recomputing them in the backward pass, e.g., “memory-saving gradients”
- Measure the quality of the memory-saving gradient by computing the angle to the true gradient (that is computed using stored activations)
Motivation: Issues with Memory-Saving Gradients

- We can save memory by discarding activations, and recomputing them in the backward pass, e.g., “memory-saving gradients”
- Measure the quality of the memory-saving gradient by computing the angle to the true gradient (that is computed using stored activations)

Exploding inverses in affine models lead to highly inaccurate gradients

NaN gradients from here on
Motivation: Issues with Memory-Saving Gradients

- We can save memory by discarding activations, and recomputing them in the backward pass, e.g., “memory-saving gradients”
- Measure the quality of the memory-saving gradient by computing the angle to the true gradient (that is computed using stored activations)

Exploding inverses in affine models lead to highly inaccurate gradients

Foreshadowing: We provide a regularizer that stabilizes affine models and allows for training with memory-saving gradients
Motivation: Instability on OOD Data

- Pre-trained affine Glow models are **not numerically invertible on OOD data!**
 - The exploding inverse will also impact likelihoods on OOD samples, making these models **ill-suited for likelihood-based OOD detection**
- Pre-trained Residual Flows do not suffer from this issue

Out-of-Distribution (OOD) Datasets

Original	Reconstructed
CIFAR-10	
SVHN	
Uniform	
Places	

Dataset	Glow	ResFlow		
	% Inf	Err	% Inf	Err
CIFAR-10	0	6.3e-5	0	2.9e-2
Uniform	100	-	0	1.7e-2
Gaussian	100	-	0	7.2e-3
Rademacher	100	-	0	1.9e-3
SVHN	0	5.5e-5	0	7.3e-2
Texture	37.0	7.8e-2	0	2.0e-2
Places	24.9	9.9e-2	0	2.9e-2
tinyImageNet	38.9	1.6e-1	0	3.5e-2
Different tasks have different stability requirements:

- **Memory-Saving Gradients**
 - Only require the model to be invertible on the training data, to reliably compute gradients
 - Local stability

- **Normalizing Flows**
 - Require the model to be invertible on training and test data, and for many applications on out-of-distribution data
 - Global stability
Outline

● Motivation
● Lipschitz Properties of INN Building Blocks
 ○ Controlling Global and Local Stability
 ○ Bi-directional finite differences regularization
 ○ Normalizing Flow Regularization
● Experiments
 ○ Instability on OOD Data
 ○ Non-invertibility within the dequantization region
 ○ Memory-efficient gradient computation
● Summary and Practical Takeaways
Bi-Lipschitz Continuity

Lipschitz forward \(\checkmark \)
Lipschitz inverse \(\times \)

Lipschitz forward \(\times \)
Lipschitz inverse \(\checkmark \)

Lipschitz forward \(\checkmark \)
Lipschitz inverse \(\checkmark \)

- Small change in input → small change in output
- Small change in output → small change in input
- Bi-Lipschitz continuous functions: changes bounded in both directions
Definition 1 (Lipschitz and bi-Lipschitz continuity). A function $F : \mathbb{R}^d \to \mathbb{R}^d$ is called Lipschitz continuous if there exists a constant $L =: \text{Lip}(F)$ such that:

$$
\|F(x_1) - F(x_2)\| \leq L\|x_1 - x_2\|, \quad \forall \, x_1, x_2 \in \mathbb{R}^d.
$$

(1)

If an inverse $F^{-1} : \mathbb{R}^d \to \mathbb{R}^d$ and a constant $L^* =: \text{Lip}(F^{-1})$ exists such that:

$$
\|F^{-1}(y_1) - F^{-1}(y_2)\| \leq L^*\|y_1 - y_2\|, \quad \forall \, y_1, y_2 \in \mathbb{R}^d,
$$

(2)

then F is called bi-Lipschitz continuous. Furthermore, F or F^{-1} is called locally Lipschitz continuous in $[a, b]^d$, if the above inequalities hold for x_1, x_2 or y_1, y_2 in the interval $[a, b]^d$.

Bi-Lipschitz Continuity

Definition 1 (Lipschitz and bi-Lipschitz continuity). A function $F : \mathbb{R}^d \to \mathbb{R}^d$ is called Lipschitz continuous if there exists a constant $L =: \text{Lip}(F)$ such that:

$$
\|F(x_1) - F(x_2)\| \leq L\|x_1 - x_2\|, \quad \forall x_1, x_2 \in \mathbb{R}^d.
$$

If an inverse $F^{-1} : \mathbb{R}^d \to \mathbb{R}^d$ and a constant $L^* =: \text{Lip}(F^{-1})$ exists such that:

$$
\|F^{-1}(y_1) - F^{-1}(y_2)\| \leq L^*\|y_1 - y_2\|, \quad \forall y_1, y_2 \in \mathbb{R}^d,
$$

then F is called bi-Lipschitz continuous. Furthermore, F or F^{-1} is called locally Lipschitz continuous in $[a, b]^d$, if the above inequalities hold for x_1, x_2 or y_1, y_2 in the interval $[a, b]^d$.

- Computations in deep learning are carried out in limited precision → numerical error is always introduced in both the forward and inverse passes
- Instability in either pass can amplify the imprecision, making an analytically-invertible network numerically non-invertible!
Additive Coupling

\[F(x)_{I_1} = x_{I_1} \]
\[F(x)_{I_2} = x_{I_2} + t(x_{I_1}) \]

Affine Coupling

\[F(x)_{I_1} = x_{I_1} \]
\[F(x)_{I_2} = x_{I_2} \odot g(s(x_{I_1})) + t(x_{I_1}) \]

The difference between these coupling blocks is this scaling

Theorem 1

1. **Affine blocks have strictly larger bi-Lipschitz bounds** than additive blocks.
2. There is a **global bi-Lipschitz bound for additive blocks**, but **only local bounds for affine blocks**.
Affine blocks can have arbitrarily large singular values in the Jacobian of the inverse mapping
- We call this *exploding inverses*
- Thus, they are more likely to be numerically non-invertible than additive blocks

Controlling stability requires different approaches for additive vs affine blocks
- Additive blocks have global bounds
- Affine blocks are not globally bi-Lipschitz
Outline

● Motivation
● Lipschitz Properties of INN Building Blocks
● Controlling Global and Local Stability
 ○ Bi-directional finite differences regularization
 ○ Normalizing Flow Regularization
● Experiments
 ○ Instability on OOD Data
 ○ Non-invertibility within the dequantization region
 ○ Memory-efficient gradient computation
● Summary and Practical Takeaways
Controlling Global Stability

- Can control the Lipschitz constant of t, which guarantees stability
- On the other hand, spectral normalization does not provide guarantees for affine blocks, as they are not globally bi-Lipschitz due to the dependence on the range of the inputs x
 - Inputs to the first layer are usually bounded by the nature of the data
 - But obtaining bounds for the intermediate activations is less straightforward

Additive Coupling

$$F(x)_{I_1} = x_{I_1}$$
$$F(x)_{I_2} = x_{I_2} + t(x_{I_1})$$

Affine Coupling

$$F(x)_{I_1} = x_{I_1}$$
$$F(x)_{I_2} = x_{I_2} \circ g(s(x_{I_1})) + t(x_{I_1})$$

Spectral Normalization

- Can control the Lipschitz constant of t, which guarantees stability
- On the other hand, *spectral normalization does not provide guarantees for affine blocks*, as they are not globally bi-Lipschitz due to the dependence on the range of the inputs x
Controlling Global Stability

Additive Coupling

\[F(x)_{I_1} = x_{I_1} \]
\[F(x)_{I_2} = x_{I_2} + t(x_{I_1}) \]

Affine Coupling

\[F(x)_{I_1} = x_{I_1} \]
\[F(x)_{I_2} = x_{I_2} \odot g(s(x_{I_1})) + t(x_{I_1}) \]

Modified Affine Scaling

- A natural way to increase stability of affine blocks is to consider different elementwise scaling \(g \).
- Avoiding scaling by small values strongly influences the inverse Lipschitz bound.
- **One option:** adapt the sigmoid scaling to output values in a restricted range such as \((0.5, 1)\) rather than \((0, 1)\).
 - This improves stability, but does not completely erase qualitative stability issues.
Bi-Directional Finite Differences Regularizer

- Penalty terms on the Jacobian can be used to enforce local stability
- If F is Lipschitz continuous and differentiable, then we have:

$$\text{Lip}(F) = \sup_{x \in \mathbb{R}^d} \|J_F(x)\|_2 = \sup_{x \in \mathbb{R}^d} \sup_{\|v\|_2 = 1} \|J_F(x)v\|_2$$

 Spectral norm of the Jacobian
 =
 The largest singular value

- We introduce a second approximation using finite differences:

$$\sup_{x \in \mathbb{R}^d} \sup_{\|v\|_2 = 1} \|J_F(x)v\|_2 \approx \sup_{x \in \mathbb{R}^d} \sup_{\|v\|_2 = 1} \frac{1}{\varepsilon} \|F(x) - F(x + \varepsilon v)\|_2$$

 Finite Differences Regularization
Influence of Normalizing Flow Loss on Stability

- The training objective itself can impact local stability
- Consider the commonly-used normalizing flow objective:

\[
\log p_\theta(x) = \log p_Z(F_\theta(x)) + \log |\det J_{F_\theta}(x)|
\]

- The log-determinant can be expressed as:

\[
\log |\det J_{F_\theta}| = \sum_{i=1}^{d} \log \sigma_i(x)
\]

Minimizing the NLL involves minimizing the sum of the log singular values

- Due to the slope of the log function, small singular values are avoided
Influence of Normalizing Flow Loss on Stability

- The training objective itself can impact local stability
- Consider the commonly-used normalizing flow objective:

\[
\log p_\theta(x) = \log p_Z(F_\theta(x)) + \log |\text{det } J_{F_\theta}(x)|
\]

- When using \(Z \sim \mathcal{N}(0, I) \) as the base distribution, we minimize:

\[
-\log p_Z(F_\theta(x)) \propto \|F_\theta(x)\|_2^2
\]

- This bounds the L2 norm of the outputs of F
- Avoids large singular values
Outline

- Motivation
- Lipschitz Properties of INN Building Blocks
- Controlling Global and Local Stability
 - Bi-directional finite differences regularization
 - Normalizing Flow Regularization
- Experiments
 - Instability on OOD Data
 - Non-invertibility within the dequantization region
 - Memory-efficient gradient computation
- Summary and Practical Takeaways
Instability on OOD Data

- Affine models can become non-invertible outside the data domain.
- Using modified sigmoid scaling in (0.5, 1) helps stabilize the model, but it still suffers from exploding inverses in OOD regions.
- Residual Flows have low reconstruction error globally.

Toy 2D Data

Reconstruction errors for different architectures

![Reconstruction Errors](image_url)
Non-Invertible Inputs within the Dequantization Distribution

- When we train NFs, we *dequantize* the input data x by adding uniform noise $x + \epsilon$.

Q: Is it possible to get unlucky when sampling the noise, obtaining a non-invertible $x + \epsilon$?

A: Yes, using the invertibility attack we found that there are non-invertible inputs in the dequantization distribution.

- Sampling such a dequantization may cause training to break.
I Find Your Lack of Stability Disturbing

- *No built-in mechanism* to avoid unstable inverses in standard classification/regression
I Find Your Lack of Stability Disturbing

- *No built-in mechanism* to avoid unstable inverses in standard classification/regression

\[
\begin{align*}
F(x) & \xrightarrow{y} F^{-1}(y) \\
\mathcal{X} & \xrightarrow{x} \mathcal{Y}
\end{align*}
\]

- Adding regularization via the *normalizing flow loss with a small coefficient stabilizes the inverse mapping*
Memory-Saving Gradients on CIFAR-10

Model	Regularizer	Inv?	Test Acc	Recons. Err.	Cond. Num.	Min SV	Max SV
Additive Conv	None	✓	89.73	4.3e-2	7.2e+4	6.1e-2	4.4e+3
	FD	✓	89.71	1.1e-3	3.0e+2	8.7e-2	2.6e+1
	NF	✓	89.52	9.9e-4	1.7e+3	3.9e-2	6.6e+1
Affine Conv	None	X	89.07	Inf	8.6e+1	1.9e-12	1.7e+3
	FD	✓	89.47	9.6e-4	1.6e+2	9.6e-2	1.5e+1
	NF	✓	89.71	1.3e-3	2.2e+3	3.5e-2	7.7e+1

- Additive-coupling models are **numerically stable even without regularization**
- **Unregularized affine models are unstable** due to exploding inverses
 - The singular value of the Jacobian of the inverse mapping is large
- Both **finite-differences and normalizing flow regularizers stabilize the affine model**
 - Reducing the condition number of the mapping
Summary & Practical Takeaways

● INNs enable generative modeling with exact likelihoods and computing memory-saving gradients
 ○ But the advantages of INNs rely on the assumption that the models are numerically invertible

● Tasks have different stability requirements
 ○ Memory-saving gradients only require local stability on the training data
 ○ NFs applied to test data & OOD data should ideally be stable globally

● INN architectures have different stability properties
 ○ Residual Flows are based on stability as a fundamental design principle
 ○ Additive and affine coupling models have different theoretical properties --- affine models have no global Lipschitz bounds

● Exploding inverses occur when the singular values of the Jacobian of the inverse mapping can become arbitrarily large

● Regularization can be used to stabilize INNs and avoid exploding inverses
Thank you!