Photoluminescent Enhancement by Effect of Incorporation Nickel in ZnO Films Grown

Delfino R. Gutiérrez-Olvera, Tomás Díaz-Becerril, Godofredo García-Salgado, Antonio Coyopol-Solís, Enrique Rosendo-Andrés, Reina Galeazzi-Isasmendi, Ramón Peña-Sierra, Crisóforo Morales-Ruiz, Roman Romano-Trujillo, and Fabiola G. Nieto-Caballero

Abstract — Microstructured films of undoped zinc oxide (ZnO) and ZnO doped with nickel (ZnO:Ni) were grown by hot filament chemical vapor deposition (HFCVD) technique on Si (100) substrates at 500 °C. Pellets of ZnO and ZnO:NiO as oxidant agent were used. A shift to the right around 0.17 degree of the X-Ray Diffraction pattern of the ZnO:Ni film was observed with respect to undoped ZnO films. Morphologically by Scanning Electron Microscopy was noticed a Core-Shell type growth in ZnO undoped and a nanostructured type (Nano-wire) in ZnO doped with Ni. Photoluminescence measurements showed an increase in the intensity of the green emission band of ZnO:Ni. It was attributed to defects of oxygen vacancies (V₀), zinc vacancies (V₉ₐ), zinc interstitials (Zₙ), oxygen interstitials (Oᵢ), and oxygen vacancies complex (VO complex) in the structure of the film. The incorporation of Ni atoms in the ZnO structure stresses the crystal lattice, leaving behind a large number of surface defects that increase the emission of PL.

Key word — Core-Shell, HFCVD, Nano-wires, Sea urchin, ZnO, ZnO:Ni.

I. INTRODUCTION

ZnO commonly crystallizes in a Wurtzite-type hexagonal structure at 300 K. It has a direct bandgap (E₉) of 3.3 eV as bulk material. It is a semiconductor with an n-type conductivity at room temperature [1]. This is mainly attributed to a large number of defects as oxygen vacancies (V₀) [2], zinc vacancies (V₉ₐ) [3], zinc interstitials (Zₙ) [4], and oxygen interstitials (Oᵢ) [5]. Several authors have reported a p-type conductivity obtained, only in laboratories, by doping ZnO with different elements of the periodic table and with different deposition techniques. For example, by pulse laser deposition (PLD), metalorganic molecular-beam epitaxy (MOMBE), radiofrequency magnetron sputtering (RF Magnetron Sputtering), and metalorganic chemical vapor deposition (MOCVD); ZnO was doped with Arsenic [6], Nitrogen [6], Phosphorus [7], and Nitrogen [7], respectively. However, these results have been difficult to replicate in order to achieve the desired homojunction. By another hand, different morphological growths have been reported, such as microwires [8], microribbons [9], microspheres [9], and even nanometric structures as nanoparticles [10], nanorods [11], and nanowires [12] of ZnO with the aim of manufacture different types of devices as gas sensors [13], light-emitting diodes [14] photodetectors [15], high electron mobility transistors (HEMT) [16], [17], field-effect transistors (FET) [18] and thin-film transistors (TFT) [19]. In this work, microsphere and sea urchin-type structures were found; the last structure is obtained when ZnO films are doped with Nickel. The obtaining process consists of the interactions of Ho with ZnO:NiO pellets for the generation of gaseous precursors and their subsequent deposit on silicon substrate using the HFCVD technique. This with the aim of improving the photoluminescence of ZnO for a possible application as light-emitting devices.

II. MATERIALS AND METHODS

ZnO films doped with Ni were grown from ZnO:NiO pellets with a mass ratio of 1:1, such pellets were used as a solid source which was obtained by compressing powders of ZnO (Mallinckrodt Chemical CAS 1314-13-2, St. Louis, MO, USA), and NiO (ALDRICH CAS 1313-99-1, St. Louis, MO, USA) at a pressure of 600 Kgf/cm. For the deposited films of undoped ZnO, the compressed powders of ZnO were used as solid sources. For deposits of the films, p-type silicon substrates of 1.5 cm², with a resistivity of 5-10 Ω-cm and <100> oriented were used. Films of ZnO:Ni were grown by the HFCVD method. Such technique involves heating up to 2000 °C a tungsten filament. The substrate is exposed to a region where H₂ species have higher kinetic energy because H₂ is thermally activated in the filament. This configuration can lead to greater interaction between the growth of ZnO and the H₂ species.

The following chemical reaction is proposed:

\[MO(g) + H₂(g) = M(s) + H₂O(g) \]

(1)
where MO is a Metal Oxide (ZnO or Nickel Oxide (NiO)), H₂ is molecular hydrogen, M is a Metal and, H₂O water molecule [20]. According to equation (1), it was expected that both metal Nickel (Ni) and Zinc (Zn) with lower melting points (mp) (1455 and 420 °C, respectively) than NiO and ZnO (1955 and 1974 °C, respectively) can be easily sublimed. Into the gaseous phase and under an oxidant atmosphere, NiO and ZnO films are expected to be grown over the substrate. The distance between the filament and the source was calibrated to reach a temperature of 500 °C on the substrate surface. The growth process was carried out as a result of the reactivity of the atmosphere into the HFCVD reactor which increases and promotes the precursor gas formation. In the experiment, a flow of hydrogen gas at a constant rate of 50 sccm through the filament for 60 s was used [21]. The hydrogen gaseous atmosphere used was of chromatographic grade supplied by INFRA. H₂ reacted with a ZnO: NiO source generates gas precursors.

![Fig. 1. The experimental arrangement at the center of the HFCVD system.](image)

To study the effect of doping in ZnO with Nickel, experiments were performed under the same conditions using an undoped ZnO pellet. The X-ray diffraction measurements were carried out on a Bruker AXS D8 Discovery (Billerica, MA, USA) diffractometer. Copper radiation with a wavelength of 1.54 Å, was used. PL spectra was obtained using a Fluoro max 3 system (HORIBA, Ltd., Kyoto, Japan), with an excitation wavelength of 330 nm. Morphological characterization of the microstructures was made with an AURIGA 3916–FESEM scanning electron microscope (Zeiss, Jena, Germany).

![Table 1: Experimental Details for the Growth of the Films](image)

Label	The Weight percentage ratio of ZnO:NiO	Substrate temperature	The time process
S0	1.0	500	1 min
S1	1:1	500	1 min

III. RESULTS AND DISCUSSION

A. X-ray Diffraction Analysis

Fig. 2 shows the diffractograms of the samples grown at 500 °C. The diffraction peaks located at 2(θ)=32°, 34.6°, 47.8°, 56.8°, 63.1°, 68° and 69.3° corresponding to the planes (100) (002) (101) (102) (110) (103) (112) and (201) of the hexagonal crystal structure of ZnO (ICDD #00-036-1451), indicated by a vertical red line. The peaks located at 2(θ) =36.4°, 39.2°, 43.3°, 54.5° and 70.8° match to the NiO planes (002), (100), (101), (102) and (110) corresponding to Zn in the hexagonal phase (ICDD # 00-001-1244), indicated by a vertical green line.

![Fig. 2. XRD pattern of the deposited at 500 °C S0 and S1.](image)

In XRD patterns from undoped ZnO film (labeled as S0) and ZnO: Ni films (labeled S1) the hexagonal phase of ZnO and Zn were observed. The analysis of the patterns showed a small shift to the left in the peaks of ZnO:Ni with respect to the diffraction peaks of the ZnO film. The effect is probably caused by a compression-type micro-stress attributed to the Ni atoms, that substitute Zn atoms inside the ZnO structure [22] or to the fact that the ionic radius of Ni (0.68 Å) is slightly bigger than the ionic radius of Zn (0.60 Å) [23].

B. Scanning Electron Microscopy (SEM)

In the SEM micrograph of undoped ZnO film Fig. 3(a), microsphere morphology on the surface of this structure a chain-like framework is observed. In the same way, this growth is shown in the deep of the microstructure. In Fig. 3(b), of the sample of ZnO:Ni, the morphology of microsphere type is shown. On the surface of the microstructure, a nano-wires structure type can be seen over all the surfaces of the film. In both processes the growth mechanism for these microstructures is as follows, first, the Zn atoms are dispersed on the substrate surface which was heated at 500 °C. The hot filament simultaneously heats the substrate and the source maintaining a temperature gradient between them, which facilitates the transport of the material. The Zn powders mp = 420 °C are the first to melt and aggregate to form droplets on the surface of the substrate. The decomposition of the surface is generated an atmosphere rich in oxygen inside the reaction chamber [24]. During the nucleation, the oxygen bound with Zn droplet forming Zn and ZnO Core-Shell. The difference between these processes consists of the function of the Ni atoms, that act as a catalyst, favoring the growth of ZnO nano-wire on the surface of the microsphere, forming shapes like a sea urchin [25] (see Fig 3(b)).

DOI: http://dx.doi.org/10.24018/ejers.2021.6.5.2550

Vol 6 | Issue 5 | August 2021
C. Energy Dispersive Spectroscopy (EDS) Analysis

EDS spectrum has been determined for different regions of the S0 and S1 films, see Table II. According to the analysis of the results, for undoped ZnO (S0) film the amount of Zn is bigger than the O. (on average 80 at% and 20 at%, respectively). The ZnO:Ni (S1) film can see a decrease in Zn and an increase in Ni (on average 80 at% and 0.3 at %, respectively). EDS analysis was performed inside the microsphere, S0 and S1 films rich in Zn were observed, (on average 80 at%). This ratifies the aforementioned.

TABLE II: THE ATOMIC PERCENTAGE OF UNDOPED ZNO AND ZNO:NI FILMS OBTAINED BY HFCVD TECHNIQUE

Label	Zn	O	Ni	Total
S0	80.34	19.66	-	100
S1	80.05	19.66	0.29	100

D. Photoluminescence (PL)

Fig. 4(a), are shown the PL-spectrum for the films of S0 and S1 at room temperature. The most notable effect of the incorporation of Ni in the ZnO matrix is the increase in the PL intensity emission band located at 410 and 700 nm (1.77 eV-3.02 eV). In addition, the maximum emission shifts to higher energy in S1. This could mean that there is an increase and/or introduction of Ni radiative centers in the ZnO. In Fig. 4(b), the deconvolution of the spectrum S1 was performed in order to obtain the bands that compose such spectrum. It was observed that the maximum emission is centered in the energy range of the green emission band, around 509-520 nm (2.45-2.39 eV). This optical behavior of ZnO is usually associated with the presence of several types of defects as V_O, V_Zn, Zn_, O_, O_Zn [26] or some metals transitions [24-26], generation recombination centers inside the bandgap (E_g) of the structure.

Hwang et al.[29] and Fedorov et al.[5], associate the green emission band to undoped ZnO with the presence of V_O and V_Zn [27],[30] that introduces deep acceptors in the E_g. Green luminescence is because of the electronic transition between shallow donors and deep acceptors.

The material Zn-rich guarantees the existence of V_O. The transition between those states and V_O (deep acceptor states) might be the origin of the increase in the green emission band. Additionally, a blue luminescence band emerges around 450 nm (2.21 eV) in the ZnO PL spectrum. Recently Zeng et al. [31] and Cao et al.[32], obtained visible dichromatic photoluminescence emitting in blue/violet, and green regions, introducing Zn defects in the ZnO structure.

IV. CONCLUSION

ZnO and ZnO:Ni films were grown using the HFCVD technique and pellets of ZnO and ZnO:NiO as oxidant agents. Probably Ni atoms modify the crystalline structure.
of ZnO since it causes a shift in the position of the diffraction peaks with respect to undoped ZnO. By SEM, shapes like a sea urchin due to the doping of ZnO were observed. The growth of these nanostructures resulted in a larger surface area, increasing the number of defects on the surface of the ZnO:Ni film compared to the undoped ZnO structures. The green-yellow emission band is due to defects in Zn, V0, O, O2−, and some VO complexes. This work shows the possibility of obtained ZnO:Ni films in a short time process that implies a lower cost for the manufacturing of the optoelectronic device.

ACKNOWLEDGMENT

The authors acknowledge with gratitude the: Dr. M. Aceves to the Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE) for the measurements of PL, and Dr. Jorge Roque to the Laboratorio Avanzado de Nanoscopía Electrónica (LANCE-CINVESTAV) for help in the measurements of SEM-EDS.

REFERENCES

[1] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 1–103, 2005.
[2] J. Wang, R. Chen, L. Xiang, and S. Komameni, “Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review,” Ceram. Int., vol. 44, no. 7, pp. 7357–7377, 2018.
[3] L. Umaralikhan and M. J. Ijzhar, “Green synthesis of ZnO and Mg doped ZnO nanoparticles, and its optical properties,” J. Mater. Sci. Mater. Electron., vol. 28, no. 11, pp. 7677–7685, 2017.
[4] C. C. Singh and E. Panda, “Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties,” J. Appl. Phys., vol. 123, no. 16, 2018.
[5] A. S. Fedorov, M. A. Visotin, A. S. Khotobina, A. A. Kuzubov, N. S. Mikhailova, and H. S. Hsu, “Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials,” J. Magn. Magn. Mater., vol. 440, pp. 5–9, 2017.
[6] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films,” J. Cryst. Growth, vol. 216, no. 1, pp. 330–334, 2000.
[7] K. H. Bang, D. K. Hwang, M. C. Park, Y. D. Ko, I. Yun, and J. M. Myoung, “Formation of p-type ZnO film on InP substrate by phosphor doping,” Appl. Surf. Sci., vol. 210, no. 3–4, pp. 177–182, 2003.
[8] Y.-Z. Li, Q.-J. Feng, B. Shi, C. Gao, D.-Y. Wang, and H.-W. Liang, “Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire,” Chinese Phys. B, vol. 29, no. 1, p. 18102, 2020.
[9] D. Alameri, L. E. Ocola, and I. Kuljanishvili, “Mask-free fabrication and chemical vapor deposition synthesis of ultrathin zinc oxide microribbons on Si/SiO2 and 2D substrates,” J. Vac. Sci. Technol. A, vol. 36, no. 5, p. 05G506, 2018.
[10] S. R. Christly, L. S. Priya, M. Durka, A. Dinesh, N. Babitha, and S. Arunadevi, “Simple Combustion Arson Synthesis, Structural, Morphological, Optical and Catalytic Properties of ZnO Nanoparticles,” J. NanoSci. Nanotechnol., vol. 19, no. 6, pp. 3564–3570, 2019.
[11] N. P. Shetti, S. D. Bukkigar, K. R. Reddy, C. V. Reddy, and T. M. Aminabhavi, “ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications,” Biosens. Bioelectron., vol. 141, no. March, p. 111417, 2019.
[12] W. A. Bhutto et al., “Controlled Growth of Zinc Oxide Nanowire Arrays by Chemical Vapor Deposition (CVD) Method,” J. Appl. Phys., vol. 19, no. 8, pp. 135–141, 2019.
[13] L. Martínez, D. Becerra, and V. Agarwal, “Dual layer ZnO configuration over nanostructured porous silicon substrate for enhanced memristive switching,” Superlattices Microstruct., vol. 100, pp. 89–96, 2016.
[14] M. Willander, M. A. Abbasi, K. Khan, M. Hussain, Z. H. Iquboto, and O. Nur, “UV detectors and LEDs in different metal oxide nanostructures,” Oxide-based Mater. Devices V, vol. 8987, p. 89871Y, 2014.
[15] Y. Ning, Z. Zhang, F. Teng, and X. Fang, “Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction,” Small, vol. 14, no. 13, pp. 1–9, 2018.
[16] F. Khan, W. Khan, and S. D. Kim, “High-performance ultraviolet light detection using nano-scale-fin isolation AlGaN/GaN heterostructures with ZnO nanorods,” Nanomaterials, vol. 9, no. 3, pp. 1–14, 2019.
[17] S. H. Park, “Properties of the Two-Dimensional Electron-Gas of a Hybrid MgZnO/InGaN/ZnO Heterostructure with an InGaAN Channel Layer,” J. Korean Phys. Soc., vol. 75, no. 4, pp. 326–330, 2019.
[18] K. Ding, V. Avrutin, N. Izumiyakaya, Ü. Özgür, and H. Morkoc, “Comparative study of BeMgZnO/ZnO heterostructures on c-sapphire and GaN by molecular beam epitaxy,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Films., vol. 38, no. 2, p. 23408, 2020.
[19] Y.-H. Yang, J. Li, Q. Chen, W.-Q. Zhu, X.-F. Li, and J.-H. Zhang, “Graphitic carbon nitride/polyvinylpyrrolidone composite dielectric for low-voltage flexible InZnO thin film transistor grown on a polyethylene terephthalate substrate,” IEEE Electron Device Lett., vol. 41, no. 3, pp. 381–384, 2020.
[20] H. G. Lintz, “Transition Metal Oxides: Surface Chemistry and Catalysis,” 1990, pp. 895–895.
[21] R. López, G. García, A. Coyopol, T. Díaz, and E. Rosendo, “Effect of nitrogen gas in the agglomeration and photoluminescence of Zn–ZnO nanowires after high-temperature annealing,” Rev. Mex. física, vol. 62, no. 1, pp. 1–4, 2016.
[22] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction, Third Edition.” Prentice-Hall, New York, 2001.
[23] R. Elilarrassi and G. Chandrasekaran, “Synthesis , Structural and Magnetic Characterization of Ni-Doped ZnO Dithial Magnetic Semiconductor,” Am. J. Mater. Sci., vol. 2, no. 3, pp. 46–50, 2012.
[24] Q. Ahsanulhaq, J. H. Kim, N. K. Reddy, and Y. B. Hahn, “Growth mechanism and characterization of rose-like microspheres and hexagonal microdisks of ZnO grown by surfactant-free solution method,” J. Ind. Eng. Chem., vol. 14, no. 5, pp. 578–583, 2008.
[25] S. H. Kim, A. Umar, and Y.-B. Hahn, “Growth and formation mechanism of sea-urchin like ZnO nanostructures on Si,” Korean J. Chem. Eng., vol. 23, no. 6, pp. 1069–1069, 2006.
[26] H.-M. Xiong, D. G. Shchukin, H. Mihwald, Y. Xu, and Y.-Y. Xia, “Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(II),” Angew. Chemie Int. Ed., vol. 48, no. 15, pp. 2727–2731, 2009.
[27] R. Janisch, P. Gopal, and N. A. Spaldin, “Transition metal-doped TiO2 and ZnO - Present status of the field.” J. Phys. Condens. Matter, vol. 17, no. 27, 2005.
[28] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, no. 7, pp. 943–945, 2001.
[29] D. K. Hwang et al., “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett., vol. 86, no. 15, pp. 1–3, 2005.
[30] F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, “The oxygen vacancy as the origin of a green emission in undoped ZnO,” Phys. Status Solidi Basic Res., vol. 226, no. 1, pp. 5–6, 2001.
[31] H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, and Y. Li, “Violet photoluminescence from shell layer of ZnO/ZnO core-shell nanoparticles induced by laser ablation,” Appl. Phys. Lett., vol. 88, no. 17, pp. 1–4, 2006.
[32] B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett., vol. 88, no. 161101, pp. 1–4, 2006.