Ethnobotany of edible plants in Muang District, Kalasin Province, Thailand

NATTHAKIT PHATLAMPHU1, SURAPON SAENSOUK1,*, PIYAPORN SAENSOUK2, AUEMPORN JUNSONGDUANG3

1Program of Biodiversity, Walai Rukhavje Botanical Research Institute, Mahasarakham University. Kham Riang, Kantharawichai, Maha Sarakham, 44150, Thailand. *email: surapon.s@msu.ac.th
2Department of Biology, Faculty of Sciences, Mahasarakham University. Kham Riang, Kantharawichai, Maha Sarakham, 44150, Thailand
3Program of Biology, Department and Science and Technology, Faculty of Liberal of Art and Science, Roi Et Rajabhat University. Ko Kaeo, Salephum, Roi Et 45120, Thailand

Abstract. Phatlamphu N, Saensouk S, Saensouk P, Junsongduang A. 2021. Ethnobotany of edible plants in Muang District, Kalasin Province, Thailand. Biodiversitas 22: 5432-5444. Edible plants have been used as a food source and have had other purposes since ancient times, but urbanization and modernization might be obscuring traditional knowledge. Therefore, this research aimed to conduct a study on the ethnobotany of indigenous people in Muang District, Kalasin Province based on edible plants by focusing on their specific uses. Data was collected through semi-structured interviews and focus group discussions from March 2019 to February 2021. Quantitative analysis was applied using the Cultural Important Index (CI), Fidelity Level (FL) and Informant Consensus Factor (ICF). Cluster analysis based on the Jaccard’s Similarity Index (JI) was calculated for the similarity of edible plant uses in four communities as follows: urban/semi-urban (UB), forest community (FC), wetland community (WC) and community in valley (CV). There were 140 edible plant species that belonged to 125 genera and 62 families. The most important edible plants species were Tamarindus indica which had a CI of 2.65 followed by Bambusa bambos (2.00) and Citrus hystrix (1.90). The highest FL value is given for 51 edible plant species with 100% FL. The ICF is a range of 0 to 1; the most consensus of ailment categories was the treatment of wound (ICF = 1.00). The JI varied between 0.2640 and 0.2971; the highest JI was the pairs of WC and FC. UPGMA cluster analysis indicated that UB is isolated as they have less similarity to other communities. The results show a risk of traditional knowledge loss due to the expansion of the economic system at all levels and the advancement of modern medicine.

Keywords: Edible plants, ethnobotany, Isan region, Kalasin Province, Similarity Index

INTRODUCTION

Plants are a special kingdom of organisms as they can produce their own energy through the main elements and sunlight, and they offer benefits to other kingdoms of life. Humans have used plants as food, drugs and to meet other needs since ancient times (Fernando 2012; Katiyar et al. 2021; Saensouk and Saensouk 2021). However, the species diversity of plants gives a variety of plant uses depending on their form and culture in each region around the world. Therefore, edible plants have other essential uses in addition to food for people (Saensouk et al. 2016; Saisor et al. 2021).

Thailand is a country in Southeast Asia, which is located in the tropical zone and comprised of several distinct geographic regions; this has resulted in rich biodiversity in Thailand. From past to present, Thai people have used natural products. Several things had been made from the wild ingredients that are fundamental factors in human life (foods and medicines) and as tools to solve basic problems, such as the creation of artifacts or houses that are built from different hardwood plant species, and these help people seek a better livelihood. This is reflected by Thailand having been historically a country with extensive knowledge of traditional plant uses (Robinson 2007).

The Northeast of Thailand or “Isan Region” is the largest and most populous region in Thailand (25,000 km²), and is located on the part of the Khorat Plateau (14-19ºN, 101-106ºE) (Cheonkwon et al. 2021). There are 11 main ethnic groups of indigenous people in the Isan region, and the biggest group is the Thai Isan (Thai Lao) which is characterized by the settlement of two ethnic groups between Thai and Lao people (United Nations 2011). This is a reason for the knowledge sharing by local people on the properties of food and traditionally used plants. For over four decades, rice farming has become the main commercial crop of the Isan Region (Cramb 2020). The Isan region has undergone a major change in the structure of land uses due to socio-economic drivers and the large industry in agriculture (Grünbüehl 2003). There is an area cultivated to grow cash crops that provides a major source of agricultural raw materials (such as sugarcane, cassava, rubber, rice, etc.) as inputs for nearby factories. This has a huge effect on land-use change to that of the indigenous people.
Kalasin is one of 20 provinces in the Isan Region that faces a problem about traditional knowledge loss caused by land-use change and the expansion of the economy and utility system, which is in accordance with other ethnobotanical studies in Thailand and other countries (Kayani et al. 2015; Khuankaew et al. 2014; Reyes-Garcia et al. 2013; Srithi et al. 2009). Some parts of forest areas have been turned into cultivation areas and housing, which might be the cause of the loss of diversity in edible plant species.

Therefore, the ethnobotany of edible plants in Muang District, Kalasin Province, was surveyed to study the plant species diversity and their uses with a focus on local cultural values, and then this information was applied to sustain the use of the resources and for nature conservation. In addition, more benefits for the people could be developed their own traditional knowledge.

MATERIALS AND METHODS

Study area
Kalasin Province is located in the center of northeastern Thailand (16°25’56.5”N 103°30’28.3”E) (Figure 1). Kalasin is covered by a hilly landscape with dispersed ponds and swamps. The total area is 6,936 square kilometers. Normally, the weather is hot in the summer and quite cold in the winter. Muang District has an area of around 691.524 square kilometers. The area consists of valleys and plains with an altitude of around 140-250 meters above sea level.

There are mixed social patterns between urban and rural populations with 146,194 people in 17 sub-districts. Most of the population works in agriculture-related jobs (Kalasin Provincial Office SIPD 2013).

Data collection
The ethnobotany of edible plants in Muang District, Kalasin Province was collected between March 2019 and February 2021. The uses of edible plants were collected by the semi-structured interview method through randomly selected key participants (Numpulsuksant et al. 2021; Saisor et al. 2021; Susandarini et al. 2021) and focus group discussions with 40 informants from 17 sub-districts by random selection of 2-5 people per sub-district. In addition, to the local name and questionnaire about the parts of the edible plants used and consumption methods, their properties when the plants are used to cure diseases and heal patients were collected.

Specimen collection and identification
Plant specimens were collected from fields. Voucher specimens were deposited at the Mahasarakham University Herbarium. Plants specimens were identified to their scientific name based on the information from previous studies in Kalasin and other regions in Northeastern Thailand, using the available literature on plant diversity or the Flora of Thailand book, and verified using an online database, Plants of the World Online or POWO (Kew Science 2021).

Figure 1. Sub-district level map of Muang district, Kalasin Province, Thailand (Kalasin Provincial Office SIPD 2013)
Quantitative analysis

The analysis of the quantitative data was performed using the ethnobotanical index to calculate the Cultural Importance Index (CI) (Sutjaritjai et al. 2019) and Jaccard’s Similarity Index (JI) (Silalahi and Nisyawati 2018).

Cultural importance index; CI

The Cultural Importance Index (CI) was used to demonstrate how important the edible plant was for people based on the data from the questionnaire and interviews about species that were used in daily lives (Tardio et al. 2008) and formulated as follows:

$$ CI = \frac{\sum_{i=1}^{Nc} \sum_{j=1}^{N} UR_{ij}}{Nc} $$

Where NC is the total number of use categories, UR is the total number of use reports and N is the total number of informants. Therefore, the CI index is the sum of the proportion of informants that mention each of the edible plant species for their use categories.

Fidelity level; FL

Fidelity level is used to analyze the most interesting plant species that were used to cure disease in each ailment category (Friedmann et al. 1986; Numpulsuksant et al. 2021).

$$ \%FL = \left(\frac{Np}{N} \right) \times 100 $$

When Np is the number of used reports of that plant species in that ailment, and N is the total number of plant species in that ailment.

Informant consensus factor; ICF

The Informant consensus factor is used to test an agreement of informants (Trotter and Logan 1986). The higher ICF (near 1) means that informants use the plant to treat the same ailments (Heinrich et al. 1998).

$$ IAR = \frac{(Nur - Nt)}{(Nur - 1)} $$

When Nur is the used-report of the specific use of the plant in each ailment, and Nt is the total number of plant species used in each ailments

Jaccard’s Similarity Index; JI

Jaccard’s Similarity Index (JI) were calculated to compare the edible plant utilization in four areas that were dominated by their unique geographic patterns when the local people in Muang District live near natural resources or in areas that are economic zones, as follows: urban/semi-urban (UB), forest community (FC), wetland community (WC) and community in valley (CV). This will help to focus on differences in plant utilization between the four community areas located in different ecosystems and species similarities among the communities were analyzed with UPGMA cluster analysis (Hammer et al. 2001). The formulae are as follows:

$$ JSC = c / (a + b + c) $$

When a is the number of edible plant species used in area A, b is in area B and c is the number of edible plant species used in both areas A and B (Jaccard 1902).

RESULTS AND DISCUSSION

Number of species uses and edible plant families

We found 140 edible plant species belonging to 125 genera and 62 families. The Fabaceae had the highest number (14 species) of edible plant species followed by Lamiaceae and Zingiberaceae (seven species in each family) and Apiaceae (six species) (Table 1). This was in accordance with Thongpukdee et al. (2014) who stated that Fabaceae had the highest number of species members utilized as vegetables in Huai Mek District, Kalasin Province. Punchay et al. (2020) stated that Fabaceae and Zingiberaceae had the highest number of edible plants used by two ethnic groups of local people (Thai Karen and Lawa) from northern Thailand. In a previous study, Cruz-Garcia et al. (2016) indicated that Fabaceae was the most common family found in rice field ecosystems in Kalasin Province. This confirms other ethnobotany research projects (Junsongduang et al. 2013; Ong and Kim 2017; Pholhiamhan et al. 2017). Fabaceae is of great ethnobotanical importance in indigenous and urban communities throughout the world, and this family is one of the largest plant families in the world, including 751 genera and 19,500 species (Christenhusz and Byng 2016; Mólares and Ladio 2011). This family has been widely used for food consumption and a variety of other purposes by people. In this study, Fabaceae was used as food by indigenous and urban communities, and some species are used by folk healers for the treatment of different diseases (Rahman and Parvin 2014). This was in accordance with other research projects on Fabaceae state that legume species are more intimated to the indigenous people and important to the health of people around the world (Gwalwanshi et al. 2014; Oladeji et al. 2021; Sutjaritjai et al. 2019). While, thirty-two plant families gave the lowest number of edible plant species (one species each) and they were used by a smaller number of people.

The sub-district with the highest number of edible plant species was Klang Muen (107 species) followed by Phu Por and Lam Khlong giving 98 and 96 species, respectively. Most of the edible plants found in Klang Muen and Lam Klong are not used for food, but rather by the folk healers who still keep and transfer the traditional medicine knowledge to their descendants in those two sub-districts in Muang District, Kalasin Province. Most of the edible plant species found in Phu Por were used for food. Phu Por is a sub-district located in the crop-valley ecosystem which is distant from the local market, and the main occupation of the people in Phu Por is agricultural. They plant a lot of home gardens for food supply adapted to the season and environment aspects. Whereas, Loup sub-district has the lowest number (61 species). However, the number of edible plant species found in Loup was not different from five other sub-districts, such as Nuea (63 species), Phai (64 species) and Phu Din, Nong Kung and
Khamin (65 species) (Figure 2). In addition, 51 species of edible plant were used in all sub-districts and 35 species were used in only a single sub-district (Figure 3). Therefore, from the results shown in Figure 2 and Figure 3 it can be concluded that there are unnoticed able differences in the number of edible plants used when compared to the number of edible species based on the sub-district administrative/municipality area.

Table 1. Twelve most common plant families are used by local people in Muang District, Kalasin Province, Thailand

Family	Number of species
Fabaceae	15
Lamiaceae, Zingiberaceae	7
Apiaceae	6
Solanaceae	5
Amaryllidaceae, Apocynaceae, Asteraceae, Cucurbitaceae, Euphorbiaceae, Moraceae, Poaceae	4
Acanthaceae, Anacardiaceae, Annonaceae, Malvaceae, Myrtaceae, Rhamnaceae, Rutaceae	3
Areceae, Bignoniaceae, Brassicaceae, Meliaceae, Menispermaceae, Phyllanthaceae, Piperaceae, Smilacaceae	2
Alismataceae, Amaranthaceae, Araceae, Basellaceae, Caricaceae, Celastraceae, Cleoformaceae, Clusiaeae, Colchicaceae, Connaraceae, Convolvulaceae, Costaceae, Dracaenaceae, Fagaceae, Hypericaceae, Irvingiaceae, Lauraceae, Lecythidaceae, Loganiaceae, Lythraceae, Melastomaceae, Muntingiaceae, Musaceae, Nelumbonaceae, Nymphaeaceae, Opiliaceae, Oxalidaceae, Plantaginaceae, Polygonaceae, Sapindaceae, Sapotaceae, Simaroubaceae	1

Figure 2. Number of edible plants used by local people in 17 sub-districts in Muang District, Kalasin Province, Thailand

Figure 3. Frequency of occurrence of edible plants species in 17 sub-districts in Muang District, Kalasin Province, Thailand
Cultural important index (CI)

The edible plants that were used in several categories and mentioned by a high number of informants tended to have high CI values. On the other hand, the edible plant species with the lowest CI values were used by a few people. *Tamarindus indica* had the highest CI (2.65) followed by *Bambusa bambos* (2.00) and *Citrus hystrix* (1.90). *Tamarindus indica* is the edible plant used as a fruit, and their young leaves can be used in cooking to give a sour flavor by transforming into a tamarind pulp. Moreover, *T. indica* can be used for other purposes. Their fruit can be used as a laxative; the heartwood is used as a traditional way to care for women after giving birth. Tamarind’s stem can be used to make furniture, tools and for building a residence. In addition, tamarind is used in local beliefs, including worship or ceremonies in the Isan traditional culture. Several people grow tamarind trees at the front of their house, as they believe that tamarind would help the inhabitant get respect from other people. While *B. bambos* was used for its shoots for foods and its stem can be used for several purposes. According to an ethnobotany study of bamboo used in the Sangiresses (North Celebes), bamboo can be used as a construction material, handicraft, furniture and food (Liana et al. 2017). *Citrus hystrix* has its fruit and leaves used by cooks to make food fragrant and appetizing. In traditional medicine, *C. hystrix* is used as an ingredient in a traditional formula to make Thai herbal compress balls (Wongpanit et al. 2018) which are steamed before being applied to the human body in traditional Thai massages. Moreover, *C. hystrix* is also used to prevent malodor, which is caused by bacteria (Khuntayaporn and Sukserworaopong 2017). The lowest CI (0.03) was found for 20 species of edible plants that were used in traditional ways to cure sicknesses which are known by only a few informants who are elder folk healers (Table 2). Therefore, this is a key conclusion about the conservation of local wisdom when the knowledge is only kept by a few people and there is a risk of knowledge loss due to the development of public health systems where people can access good quality primary health care and antibiotics. Similarly, with the ethnobotany of traditional medicinal plants studied the Dayak Desa community in Sintang (West Kalimantan, Indonesia) and the traditional study of medicinal plants in Kampung Masjid Ijok (Perak, Malaysia), the traditional knowledge of the medicinal plants was only known by the older generation and there is a risk of knowledge loss due to modern medicine and a change in health care culture (Supiandi et al. 2019; Ramli et al. 2021).

Fidelity level (FL) and Informant consensus factor (ICF)

Two folk healers and their patients have used 68 edible plants as their traditional medicinal remedies (48.22% of total edible species found in a study area) to cure diseases and any symptoms separated for 15 major ailment categories based on National List of Essential Medicines (Natural Drug Information 2013) (Table 3). Fifty-one species were given 100% of FL when they were used in a single category; for example, *Curcuma comosa* are applied to rejuvenate a woman as the traditional postpartum healing (Noomhorm et al. 2014), *Thumbergia laurifolia* is used to neutralize in some venomous insects (Vongthip et al. 2021), etc. Meanwhile, the ICF varied between 0.00-1.00; the highest value was giving a high degree of consensus for injuries when *Chromolaena odorata* was used to stop bleeding after small accidents (Pandith et al. 2013). However, the lower FL means that a plant species is being used for many ailments and the lowest ICF was recorded for seven categories (ICF = 0) when the number of plant use-record was equal to the number of plant species, these results shown that the variety of plant uses in each lowest categories and their properties are known by a few numbers of informants, nor people have less knowledge about traditional medicine (Inta et al. 2013).

Figure 4. Edible plant parts used in Muang District, Kalasin Province, Thailand
Table 2. Family and scientific names of edible plant species used in Maung District, Kalasin Province, Thailand

Family	Scientific name	Local name	FL (%)	Instruction	CI	Collector no.
Acanthaceae	Andrographis paniculata	Fa thalai chon	Me	Boil whole plant to cough relief.	0.25	Phatlamphu097
Acanthaceae	Barleria lupulina	Salet phang phon	Me	Pound leaf and mix with alcohol to cure the skin disease.	0.18	Phatlamphu098
Acanthaceae	Thunbergia laurifolia	Rang chueng	Me	Pound leaf with water and masking to treat the venomous.	0.10	Phatlamphu099
Alismataceae	Limnocharis flava	Phak pai	Fo	Eaten fresh as vegetable.	0.98	Phatlamphu139
Amaranthaceae	Achyranthes aspera	Phan ngu	Me	Boil and drink for diuresis.	0.03	Phatlamphu129
Amaryllidaceae	Allium ascalonicum	Homdaeng	Fo	Used as food ingredients.	1.00	Phatlamphu028
Amaryllidaceae	Allium fistulosum	Hombua	Fo	Eaten as vegetable or used as food ingredients.	1.00	Phatlamphu029
Amaryllidaceae	Allium sativum	Kra thiam	Fo, Me	Eaten as vegetable or used as food ingredients, Boil the dry false stem and dry leaf mix with water and bath to treat the skin disease.	1.08	Phatlamphu031
Amaryllidaceae	Allium tuberosum	Kui chai	Fo	Eaten as vegetable or used as food ingredient.	0.15	Phatlamphu030
Anacardiaceae	Gluta ustata	Rak yai	Me	Boil bark and drink to cure stomachache.	0.10	Phatlamphu091
Anacardiaceae	Mangifera indica	Mak muang	Fo	Eaten as fruit.	1.00	Phatlamphu135
Anacardiaceae	Spondias pinnata	Mak kok	Fo	Used as food flavoring.	0.65	Phatlamphu049
Annonaceae	Annona squamosa	Makkhieb	Fo, Me	Eaten as fruit, rubbing dry fruit mix with water to cure abscess.	0.13	Phatlamphu138
Annonaceae	Polysaltha debilis	Klui tao	Me	Boil whole plant and drink to cure diarrhea.	0.03	Phatlamphu14
Annonaceae	Polysaltha everta	Nom noi	Me	Boil root and drink abdominal distention.	0.05	Phatlamphu115
Apiceae	Anethem graveolens	Thian khaopluiek	Fo	Eaten as vegetable or used as food ingredient.	1.00	Phatlamphu017
Apiceae	Aiptm graveolens	Khuen-chai	Fo	Eaten as vegetable or used as food ingredient.	0.35	Phatlamphu018
Apiceae	Centella asiatica	Bua bok	Fo	Eaten as vegetable.	0.38	Phatlamphu004
Apiceae	Coriandrum sativum	Phak chi	Fo	Eaten as vegetable or used as food ingredient.	0.98	Phatlamphu015
Apiceae	Eryngium foetidum	Hom phe	Fo	Eaten as vegetable or used as food ingredient.	1.00	Phatlamphu016
Apiceae	Oenanthe javanica	Phak chi lom	Fo	Eaten as vegetable.	0.93	Phatlamphu019
Apocynaceae	Carissa carandas	Nam daeng	Fo	Eaten as fruit.	0.15	Phatlamphu133
Apocynaceae	Cryptoplepis buchananii	Thao en on	Me	Boil hardwood and drink to cough relief	0.08	Phatlamphu116
Apocynaceae	Myriopteron extensum	Cha em	Fo	Boil leaf mix with water and bath to rejuvenate as the traditional postpartum healing	0.13	Phatlamphu076
Araceae	Annona squamosa	Makkhieb	Fo, Me	Eaten as fruit, rubbing dry fruit mix with water to cure abscess.	0.13	Phatlamphu138
Araceae	Cocos nucifera	Mak phrao	Fo	Eaten as fruit.	1.00	Phatlamphu005
Asteraceae	Artemisia lactiflora	Ching-chii-chai	Fo	Eaten as vegetable or used as food ingredient.	0.05	Phatlamphu075
Asteraceae	Blumea balsamifera	Nat yai	Me	Bring leaf lie by the fire as the traditional postpartum healing.	0.25	Phatlamphu120
Asteraceae	Chromolaena odorata	Sap suea	Me	Boil fresh root and drink to cure stomachache.	0.03	Phatlamphu121
Asteraceae	Phleum indica	Khlu	Me	Squash leaf mix with water to cure hemorrhoid.	0.03	Phatlamphu118
Athyriaceae	Didiplazium esculentum	Phak kut khaao	Fo	Eaten as vegetable.	0.15	Phatlamphu079
Basellaceae	Basella alba	Phak plang	Fo	Eaten as vegetable.	0.18	Phatlamphu080
Bignoniaceae	Dolichandrone serrulata	Khie Na	Fo	Eaten as vegetable.	0.35	Phatlamphu078
Bignoniaceae	Oroxyclus indicum	Lin fah	Fo	Used as food ingredients.	0.88	Phatlamphu026
Family	Species	Common Name	Sex	Arrival Rate	Uses	
----------------	--------------------------------	-------------	-----	--------------	--	
Brassicaceae	Brassica oleracea	Phak kha na	Fo	-	Eaten as vegetable, used as food ingredient.	
					0.93 Phatlamphu020	
	Rutippa indica	Phak lin pee	Fo	-	Eaten as vegetable.	
					0.05 Phatlamphu048	
Caricaceae	Carica papaya	Makhoong	Me	100	Eaten as vegetable, used as food ingredient, their resin to cure skin	
					1.03 Phatlamphu054	
Celastraceae	Salacia chinensis	Kamphaeng Chet Chan	Me	100	Used stem as the crude drug ingredient to cure hemorrhoid.	
					0.05 Phatlamphu123	
Cleomaceae	Cleome gynandra	Phak sian	Fo	-	Eaten as vegetable or used as food ingredient.	
					0.85 Phatlamphu067	
Clusiaceae	Garcinia cambodia	Maksommmong	Fo	-	Eaten as vegetable.	
					0.03 Phatlamphu074	
Colchicaceae	Gloriosa superba	Dong dueng	Me	100	Used whole plant as the crude drug ingredient to cure mumps (parotitis).	
					0.03 Phatlamphu119	
Connaraceae	Ellipanthus tomentosus	Kham rok	Me	100	Boil hardwood and drink to cure stomachache.	
					0.05 Phatlamphu132	
Convulvulaceae	Ipomoea aquatica	Phak bung	Fo	-	Eaten as vegetable, used as food ingredient.	
					1.00 Phatlamphu046	
Costaceae	Cheilocostus speciosus	Ueang mai na	Me	100	Boil hardwood and drink to cure dysuria.	
					0.03 Phatlamphu111	
Cucurbitaceae	Coccinia grandis	Phak tam lueng	Fo	-	Eaten as vegetable, used as food ingredient.	
					1.00 Phatlamphu047	
Cucurbitaceae	Cucurbita moschata	Makuay	Fo	-	Used as food ingredient.	
					1.00 Phatlamphu072	
Cucurbitaceae	Momordica charantia	Mraa khi nok	Fo	-	Eaten as vegetable, used as food ingredient.	
					0.23 Phatlamphu021	
Cucurbitaceae	Trichosanthes cucumerina	Buap	Fo	-	Used as food ingredient.	
					0.03 Phatlamphu073	
Dracaenaceae	Dracaena cochinchinensis	Chan Daeng	Me	100	Used hardwood as the crude drug ingredient to cure influenza.	
					0.03 Phatlamphu094	
Euphorbiaceae	Cladogyynos orientalis	Chetta phung khi	Me	100	Boil hardwood and drink to cure stomachache.	
					0.03 Phatlamphu095	
Euphorbiaceae	Croton persimilis	Plao yai	Me	100	Bring leaf lie by the fire as the traditional postpartum healing.	
					0.08 Phatlamphu092	
Euphorbiaceae	Euphorbia hirta	Nam nom ratchasi	Me	100	Boil hardwood and drink to cough relief.	
					0.05 Phatlamphu093	
Euphorbiaceae	Suregada multiflora	Khon thong phayabat	Me	100	Used hardwood as the crude drug to cure kidney disease.	
					0.03 Phatlamphuo96	
Fabaceae	Acacia pennata	Phak kha	Fo	-	Used as food ingredient.	
					1.00 Phatlamphu052	
Fabaceae	Acrocarpus fraxinifolius	Sado chang	Me	100	Used hardwood as the crude drug to cure kidney disease.	
					0.03 Phatlamphu130	
Fabaceae	Butea monosperma	Charn	Me	100	Used hardwood as the crude drug to cure kidney disease.	
					0.03 Phatlamphu023	
Fabaceae	Caesalpinia sappan	Fang	Me, Dy	50	Used hardwood as the crude drug ingredient to cure influenza.	
					0.15 Phatlamphu024	
Fabaceae	Cassia fistula	Khon	Me, Cu	100	Used stem as the crude drug ingredient to cure hemorrhoid.	
					1.00 Phatlamphu077	
Fabaceae	Clitoria ternatea	Anchan	Me, Dy	100	Bring hardwood lie by the fire as the traditional postpartum healing,	
					0.40 Phatlamphu077	
Fabaceae	Codariocalyx gyroides	Ton khoa chi	Me	100	Pound flower with water as shampoo.	
					0.15 Phatlamphu122	
Fabaceae	Leucaena leucocephala	Phak kased	Fo	-	Eaten as vegetable, used as food ingredient.	
					1.00 Phatlamphu053	
Fabaceae	Neptunia prostrata	Phak khrachet	Fo	-	Used as food ingredient.	
					0.80 Phatlamphu128	
Fabaceae	Pilhecellobium dulce	Mak kham thet	Fo	-	Eaten as fruit.	
					1.00 Phatlamphu071	
Fabaceae	Senna alata	Chumhet thet	Me	100	Used leaf as the crude drug ingredient to cure ringworm.	
					0.08 Phatlamphu006	
Fabaceae	Senna siamea	Khi lek	Fo, Me	100	Used as food ingredient, boil and drink as a laxative.	
					1.53 Phatlamphu025	
Fabaceae	Sesbania gradiiflora	Khae	Fo	-	Used as food ingredient.	
					0.83 Phatlamphu050	
Fabaceae	Tamarindus indica	Mak kham	Fo, Me, Eq, Cu	67	Bring hardwood lie by the fire as the traditional postpartum healing, boil and mix with water and bath to wound healing (medicine).	
					2.65 Phatlamphu022	
					Eaten as fruit and as a laxative. Eaten as fruit, used as food ingredient (food and medicine).	
					Used stem for building house or equipment, local people grown Mak kham (tamarind) at the front of their house as they believe that Mak kham would help the inhabitant get respect from other people (local belief).	
Family	Species	Local Name	Part Used	Description	Value	
-----------------	--------------------------------	------------	-----------	--	--------	
Fagaceae	Castanopsis piriformis	Kho hin	Me	Bring root by the fire as the traditional postpartum healing, boil and mix with water and bath to wound healing (medicine).	0.15	
Hypericaceae	Cratoxylum formosum	Phak Tio	Fo, Dy	Eaten as vegetable, used bark as the dyer.	0.93	
Lamiaceae	Mentha × cordifolia	Phak sern	Fo	Eaten as vegetable, used as food ingredient.	1.00	
Lamiaceae	Ocimum × africanum	Maeng lak	Fo	Used as food ingredient.	1.00	
Lamiaceae	Ocimum basilicum	Horapha	Fo	Eaten as vegetable, used as food ingredient.	1.00	
Lamiaceae	Ocimum tenufolium	Ka phrao	-	-		
Lamiaceae	Orthosiphon aristatius	Phayab mek	Me	Used stem as the crude drug ingredient to muscle pains relief.	0.03	
Lamiaceae	Pogostemon cablin	Pim sen	Me	Used stem as the crude drug ingredient to muscle pains relief.	0.03	
Lamiaceae	Vitex pinnata	Tin nok	Me	Boil hardwood and root and drink to cure stomachache.	0.03	
Lauraceae	Cinnamomum camphora	Karabun	Me	Boil hardwood and root and drink to cure diabetes.	0.05	
Lecythidaceae	Careya arborea	Kradon	Fo	-		
Loganiaceae	Strychnos nux-blanda	Tumka Khao	Me	Bring hardwood lie by the fire as the traditional postpartum healing, boil and mix with water and bath to wound healing and drink as Lactagogue.	0.03	
Lythraceae	Punica granatum	Mak pila	Fo, Me	Boil leaf to cure diarrhea.	0.38	
Malvaceae	Bombax ceiba	Ngio pa	Me	Boil bark mix with water and drink as a blood tonic.	0.05	
Malvaceae	Helicteres isora	Po bit	Me	Boil bark mix with water and drink as a blood tonic.	0.05	
Melastomataceae	Osbeckia stellata	En a khon	Me	Pound root with water and masking to treat the venomous, drink as an antidote.	0.05	
Meliaceae	Acadirachta indica	Sadao	Fo	Eaten as vegetable.	1.00	
Meliaceae	Diosylynum parasiticum	Langsat	Fo	Eaten as fruit.	0.10	
Menispermae	Cissampelos pareira	Krung kha mao	Me	Rubbing root and bark mix with water and drink to as a blood tonic.	0.10	
Menispermae	Tiliacora triandra	Ya nang	Fo	Used leaf as food ingredient.	1.00	
Moraceae	Artocarpus heterophyllus	Khanun	Fo, Dy, Cu	Eaten as fruit, used resin as a dyer, local people grown Khanun (jackfruit) at the front of their house as they believe that Khanun would help the inhabitant get support from other people in work life (local belief).	1.35	
Moraceae	Ficus sarmentosa	Ma krathueb rong	Me	Boil bark mix with water and drink as a blood tonic.	0.03	
Moraceae	Morus alba	Mon	Fo	Boil bark mix with water and drink as a blood tonic.	0.10	
Moraceae	Streblus asper	Khoi	Me	Used wood as a dental care.	0.05	
Muntingiaceae	Muntingia calabura	Mak khop	Fo	Eaten as fruit.	1.00	
Musaceae	Musa × paradisica	Khai namwa	Fo, Me, Dyn Cu	Eaten as fruit, used as crude drug flavoring, used resin as a dyer, used their fruit and aerial part in the auspicious ceremony.	1.50	
Myrtaceae	Psidium guajava	Mak see da	Fo	Eaten as fruit.	1.00	
Myrtaceae	Syzygium antisepticum	Phak mek	Fo	Eaten as vegetable.	1.00	
Myrtaceae	Syzygium camini	Wa	Fo	Eaten as fruit.	0.58	
Nelumbonaceae	Nelumbo nucifera	Bua luang	Fo	Eaten as fruit.	0.70	
Nelumbonaceae	Nymphaea pubescens	Bua sai	Fo	Eaten as vegetable.	0.70	
Opiliaceae	Melientha suavis	Phak wan	Fo	Eaten as vegetable.	0.88	
Family	Species	Common Name	Main Use	Notes		
-------------------------	--------------------------------	-------------	---	--		
Solanaceae	Solanum lasiocarpum	Phrik	Eaten as vegetable	Boil and drink as a traditional postpartum healing.		
Solanaceae	Solanum heterodoxum	MakUaek	Eaten as vegetable	Boil and drink as a traditional postpartum healing.		
Solanaceae	Solanum lycopersicum	Maklen	Eaten as vegetable	Boil and drink as a traditional postpartum healing.		
Solanaceae	Capsicum annuum	Phrik	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Solanaceae	Capsicum fruticosum	Phrik	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Sapindaceae	Ziziphus oenoplia	Kham suea khrong	Boil fruit mix with water and drink as a blood tonic	Boil and drink as a traditional postpartum healing.		
Morinda citrifolia	Morinda citrifolia	Yo	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Citrus hystrix	Citrus hystrix	Bak krut	Used leaf as food ingredient, cut fruit into pieces and mix with other crude drug ingredients as compress ball ingredient to pain relief in Thai Massage.			
Citrus aurantiifolia	Citrus aurantiifolia	Bak nai	Used fruit as food ingredient, used fruit as the crude drug to cure kidney disease.			
Clausena wallichii	Clausena wallichii	Song fa	Boil fruit mix with water and drink as a blood tonic	Boil and drink as a traditional postpartum healing.		
Xantholos cambodianna	Xantholos cambodianna	Tan nom	Boil fruit mix with water and drink as a blood tonic	Boil and drink as a traditional postpartum healing.		
Eurycoma longifolia	Eurycoma longifolia	Pla lai phueak	Boil fruit mix with water and drink as a blood tonic	Boil and drink as a traditional postpartum healing.		
Smilax corbularia	Smilax corbularia	Khao yen nua	Boil fruit mix with water and drink as a blood tonic	Boil and drink as a traditional postpartum healing.		
Smilax glabra	Smilax glabra	Khao yen nua	Boil fruit mix with water and drink as a blood tonic	Boil and drink as a traditional postpartum healing.		
Capsicum annuum	Capsicum annuum	Phrik	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Solanum heterodoxum	Solanum heterodoxum	MakUaek	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Solanum lycopersicum	Solanum lycopersicum	Maklen	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Capsicum annuum	Capsicum annuum	Phrik	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Solanum heterodoxum	Solanum heterodoxum	MakUaek	Used as food ingredient	Boil and drink as a traditional postpartum healing.		
Solanum lycopersicum	Solanum lycopersicum	Maklen	Used as food ingredient	Boil and drink as a traditional postpartum healing.		

Notes:
- Boil root and drink as a blood tonic.
- Boil root and drink as a traditional postpartum healing.
- Eaten as vegetable, used as food ingredient.
- Eaten as vegetable, used as food ingredient.
- Boil and drink as a blood tonic.
- Boil and drink as a traditional postpartum healing.
- Eaten as vegetable, used as food ingredient.
- Boil and drink as a traditional postpartum healing.
- Eaten as vegetable, used as food ingredient.
- Boil and drink as a traditional postpartum healing.
- Eaten as vegetable, used as food ingredient.
| Family | Species | Common Name | Category | Usage |
|--------------|--------------------------------|-------------|----------|--|
| Solanaceae | Solanum stramoniifolium | Mak khaeng | Fo, Me | Bring hardwood lie by the fire as the traditional postpartum healing (medicine). |
| | | | | 50 Used fruit as food ingredient, cut fruit into pieces and mix with other crude drug ingredients as compress ball ingredient to pain relief in Thai Massage (medicine). |
| Sterculiaceae| Mansonia gagei | Chan Hom | Me | Eaten as vegetable, used as food ingredient (food). |
| Zingiberaceae| Alpinia galanga | Kha | Fo | Used as food ingredient. |
| Zingiberaceae| Boesenbergia rotunda | Krachai | Fo | Used as food ingredient. |
| Zingiberaceae| Curcuma comosa | Wan chak motluk | Me | Used root as crude drug ingredient to pain relief. |
| Zingiberaceae| Curcuma longa | Khamin | Fo, Me | Used rhizome as crude drug ingredients as compress ball ingredient to pain relief in Thai Massage. |
| Zingiberaceae| Curcuma sessilis | Krachiao | Fo | Eaten as vegetable. |
| Zingiberaceae| Kaempferia galanga | Pro hom | Fo | Eaten as vegetable. |
| Zingiberaceae| Zingiber montanum | Wan fai | Me | Used rhizome as crude drug ingredients as compress ball ingredient to pain relief in Thai Massage. |

Note: Use categories: Fo: Food, Me: Medicine, Dy: Dyer, Co: Cosmetic, Eq: Equipment, Cu: Culture, Deodorize: De
The preparation processes or end to have a higher number of edible plant species used were in the same folk medical remedies. This is the reason that they had similar knowledge about edible plant usage to cure diseases, and two communities that had folk healers who had traditional knowledge about edible plant usage can be grown in home gardens as important habitats and also in nature conservations, and this is an important factor that ensures rural communities have more edible species in their area (Barbhuiya et al. 2015; Panyadee et al. 2019). However, there is the possibility that the similarity of edible plant uses in Muang District, Kalasin Province are not dependent on the different land uses only, and that communities with a folk healer tend to have a higher number of edible plant uses than the communities without a person with traditional knowledge (Mollik et al. 2010; Biswas et al. 2011). Therefore, it can be concluded that traditional healers are important for plant diversity based on their benefits.

Table 3. Informant consensus factor (ICF) of used-categories

Used-categories	Treated ailments	Number of use-report	Number of species	ICF
Injuries	Wound, pains	4	2	1.00
Headache	Pain	4	2	0.67
Neutralize, antidote	Venomous insect bite	6	3	0.60
Pregnancy/Birth/Puerperium	Rejuvenate after giving child	35	16	0.56
Skin disorders	Wound, Pain, irritated relief	6	4	0.33
Muscle and skeleton disorders	Muscle pain relief	13	10	0.25
Respiration system	Cough, fever, influenza	12	10	0.18
Digestion system	Diarrhea, Flatulence, stomach ache	17	15	0.13
Endocrine system	Diabetes	1	1	0.00
Urinary system	Dysuria	2	2	0.00
Malignant tumor, Cancer	Supportive treatment	3	3	0.00
Blood tonic		6	6	0.00
Element tonic, body strength	Body nourishment	7	7	0.00
Infection	Abscess, Hemorrhoids	6	6	0.00
Other	Crude drug flavouring	2	2	0.00

Table 4. Jaccard’s Similarity Index for pairs of communities in the sample of edible plants used in Muang District, Kalasin Province, Thailand

	Urban & semi-urban	Wetland community	Forest community	Community in valley
Urban & semi-urban	-	0.2829	0.2640	0.2863
Wetland community	-	-	0.2971	0.2877
Forest community	-	-	-	0.2770
Community in valley	-	-	-	-

Jaccard’s Similarity Index (JI)

This comparative study classified 17 sub-districts in Muang District, Kalasin Province with their dominant spatial features based on land location or land use pattern into four communities. The JI values were low to average, and varied between 0.2640 and 0.2971 (Table 4). UPGMA cluster analysis showed that the communities with the closest number of edible plant species used were in the same groups, such as WC FC and CV. The cluster diagram separated UB from the other communities to an isolated position, which is apparent from the different land uses (Figure 5). The highest JI was for the pair of WC and FC (0.2971). This shows that these two communities were the most similar community pair as WC and FC were the only two communities that had folk healers who had traditional knowledge about edible plant usage to cure diseases, and they had similar practices for the preparation processes or the same folk medical remedies. This is the reason that these communities have the highest number of edible plant species in both communities (113 and 107 species, respectively). The lowest JI was for the pair of UB and FC (0.2640) when the number of edible plant species used in the capital of the province and the adjacent area is low (71 species), and the people in UB do not use the edible plants for several purposes. For example, Muang and Loup, which are neighboring sub-districts to the capital of the province, both sub-districts are the location of important places in Kalasin Province, such as the government complex, academic institute, factories and economic zones (municipal market, convenience and department store, restaurants, etc.). This is similarly, to a comparative study using JI values and UPGMA cluster analysis that provided numerical and graphic illustrations of medicinal plant species used in 17 Karen villages in northern Thailand (Tangjitman et al. 2013). Moreover, the edible plants that are used for traditional treatments can be grown in home gardens as important habitats and also in nature conservation, and this is an important factor that ensures rural communities have more edible species in their area (Barbhuiya et al. 2015; Panyadee et al. 2019). However, there is the possibility that the similarity of edible plant uses in Muang District, Kalasin Province are not dependent on the different land uses only, and that communities with a folk healer tend to have a higher number of edible plant uses than the communities without a person with traditional knowledge (Mollik et al. 2010; Biswas et al. 2011). Therefore, it can be concluded that traditional healers are important for plant diversity based on their benefits.
The result of this ethnobotanical study shows that the edible plants used in Muang District, Kalasin Province tend to be at risk of traditional botanical knowledge loss due to the expansion of urban areas and the accessibility to modern medicine, and this might have an effect on the diversity of edible plant species that are used as medicine. However, WC, FC and CV represent communities in which people still keep strong knowledge about edible plants that can be used as food and grown in nature and home gardens. This indicates that the indigenous people in Muang District, Kalasin Province have automatically transferred their knowledge of their food culture to their descendants, while knowledge of traditional medicine has not been shared from the old generation to the younger people widely. Therefore, we should be concerned that there is a great amount of knowledge that will forever be lost in the near future; recognition should be given to traditional medicine knowledge and natural resources management by education and providing information or the training programs by the agencies involved. Beyond that, the edible plants could have their appearance transformed to be valuable products for further study. This would help people to secure their income and other benefits that can be obtained from the edible plants.

ACKNOWLEDGEMENTS

We fully acknowledge the key informants of Muang District, Kalasin Province, Thailand for sharing their local knowledge on the use of plants. This study was financially supported by Mahasarakham University, Thailand. We are extremely grateful to Walai Rukhavej Botanical Research Institute, Mahasarakham University for allowing us to use their facilities during the field work. Without their contribution, this study would have been impossible, thanks to Dr. Jolyon Dodgson for language editing and suggestions to improve the manuscript.

REFERENCES

Barbhuiya AR, Sahoo UK, Upadhayya K. 2016. Plant Diversity in the Indigenous Home Gardens in the Eastern Himalayan Region of Mizoram, Northeast India. Ecol Bot 70 (2): 115-131. DOI: 10.1007/s12231-016-9349-8.

Bhatta H, Sharma YP, Manhas RK, Kumar K. 2018. Traditionally used wild edible plants of district Udhampur, J&K, India. J Ethnobiol Ethnomed 14 (1): 1-13. DOI: 10.1186/s13002-018-0272-1.

Binus A, Haq WM, Akber M, Ferdausi D, Seraj S, Jahan F. Chowdhury AR, Rahmatullah M. 2011. Survey of medicinal plants used by folk medicinal practitioners of Paschim Shrawa and Palodi Villages of Gaurnadi Upazila in Barisal District, Bangladesh. Am-Eurasian J Sustain Agric 5 (1): 15-22.

Cheenkwan S, Fox JM, Rambo AT. 2014. Agriculture in the mountains of Northeastern Thailand: Current situation and prospects for development. Mt Res Dev 34 (2): 95-106. DOI: 10.1659/MRD-JOURNAL-D-13-00121.1.

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261 (3): 201-217. DOI: 10.11646/phytotaxa.261.3.1.

Cramb R. 2020. White gold: The commercialisation of rice farming in the lower Mekong Basin. Palgrave Macmillan, London. DOI: 10.1007/978-981-15-0998-8.

Cruz-Garcia GS, Struijk PC, Johnson DE. 2016. Wild harvest: distribution and diversity of wild food plants in rice ecosystems of Northeast Thailand. NJAS - Wageningen J Life Sci 78: 1-11. DOI: 10.1016/j.njas.2015.12.003.

Fernando WGD. 2012. Plants: An international scientific open access journal to publish all facets of plants, their functions and interactions with the environment and other living organisms. Plants 1 (1): 1-5. DOI: 10.3390/plants1010001.

Grünbühel CM, Haberl H, Schandl H, Winiwarter V. 2003. Socio-economic metabolism and colonization of natural processes in sangaeng village: Material and energy flows, land use, and cultural change in Northeast Thailand. Hum Ecol 31 (1): 53-86. DOI: 10.1023/A:1022882107419.

Gwalwanshi DR, Vyas D, Biswas AJ, Salunkhe O, Tiwari P. 2014. Ethnomedicinal and ecological studies on Fabaceae of Runj Forest Panna (Mtp), India. Int J Recent Sci Res 5 (7): 1264-1269.

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 1-9.

Ista A, Trisonthi P, Trisonthi C. 2013. Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. J Ethnopharmacol 149 (2013): 344-354. DOI: 10.1016/j.jep.2013.06.047.

Jaccard P. 1902. Lois de distribution florale dans l’alpine regions of Pakistan. J Ethnobiol Ethnomed 14 (1): 1-13. DOI: 10.1186/s13002-015-0272-1.

Kayani S, Ahmad M, Sultana S, Shinwari ZK, Zafar M, Yaseen G, Hussain M, Bibi T. 2015. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. J Ethnopharmacol 164: 186-202. DOI: 10.1016/j.jep.2015.02.004.

Kew Science. 2021. World Checklist of Selected Plant Families (WCSP).

Khuankaew S, Srithi K, Tiansawat P, Jampeetong A, Inta A, Wangpakapattanawong P. 2014. Ethnobotanical study of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. J Ethnobiol Ethnomed 149 (2013): 344-354. DOI: 10.1016/j.jep.2013.06.047.

Maes Home Gardens in the Eastern Himalayan Region of Mizoram, Northeast India. Ecol Bot 70 (2): 115-131. DOI: 10.1007/s12231-016-9349-8.

Mizoram, Northeast India. Econ Bot 70 (2): 115-131. DOI: 10.1007/s12231-016-9349-8.

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261 (3): 201-217. DOI: 10.11646/phytotaxa.261.3.1.

Cramb R. 2020. White gold: The commercialisation of rice farming in the lower Mekong Basin. Palgrave Macmillan, London. DOI: 10.1007/978-981-15-0998-8.

Cruz-Garcia GS, Struijk PC, Johnson DE. 2016. Wild harvest: distribution and diversity of wild food plants in rice ecosystems of Northeast Thailand. NJAS - Wageningen J Life Sci 78: 1-11. DOI: 10.1016/j.njas.2015.12.003.

Fernando WGD. 2012. Plants: An international scientific open access journal to publish all facets of plants, their functions and interactions with the environment and other living organisms. Plants 1 (1): 1-5. DOI: 10.3390/plants1010001.

Grünbühel CM, Haberl H, Schandl H, Winiwarter V. 2003. Socio-economic metabolism and colonization of natural processes in sangaeng village: Material and energy flows, land use, and cultural change in Northeast Thailand. Hum Ecol 31 (1): 53-86. DOI: 10.1023/A:1022882107419.

Gwalwanshi DR, Vyas D, Biswas AJ, Salunkhe O, Tiwari P. 2014. Ethnomedicinal and ecological studies on Fabaceae of Runj Forest Panna (Mtp), India. Int J Recent Sci Res 5 (7): 1264-1269.

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 1-9.

Ista A, Trisonthi P, Trisonthi C. 2013. Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. J Ethnopharmacol 149 (2013): 344-354. DOI: 10.1016/j.jep.2013.06.047.

Jaccard P. 1902. Lois de distribution florale dans l’alpine regions of Pakistan. J Ethnobiol Ethnomed 14 (1): 1-13. DOI: 10.1186/s13002-015-0272-1.

Kayani S, Ahmad M, Sultana S, Shinwari ZK, Zafar M, Yaseen G, Hussain M, Bibi T. 2015. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. J Ethnopharmacol 164: 186-202. DOI: 10.1016/j.jep.2015.02.004.

Kew Science. 2021. World Checklist of Selected Plant Families (WCSP).

Khuankaew S, Srithi K, Tiansawat P, Jampeetong A, Inta A, Wangpakapattanawong P. 2014. Ethnobotanical study of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. J Ethnobiol Ethnomed 149 (2013): 344-354. DOI: 10.1016/j.jep.2013.06.047.
plants used by Tai Yai in Northern Thailand. J Ethnopharmacol 151 (2): 829-838. DOI: 10.1016/j.eph.2013.11.033.

Khuntayaporn P, Sukriraworapong J. 2017. Efficacy of essential oil formulations against malodor causing bacteria. Pharm Sci Asia 44 (4): 209-216. DOI: 10.29090/psta.2017.04.209.

Liana A, Parnomo P, Sumardi I, Daryono BS. 2017. Ethnobotany of Bamboo in Sanggirese, North Celebes. Biosaiensitika: Int J Biol Edu 9 (1): 81. DOI: 10.15294/biosaiensitika.v9i1.7405.

Menendez-Baceta G, Aceituno-Mata L, Tardito J, Reyes-Garcia V, Parado-de-Santayana M. 2012. Wild edible plants traditionally gathered in Gorbeialdea (Biscay, Basque Country). Genet Resour Crop Evol 59 (7): 1329-1347. DOI: 10.1007/s10722-011-9760-z.

Molares S, Ladio A. 2012. The usefulness of edible and medicinal Fabaceae in Argentine and Chilean Patagonia: Environmental availability and other sources of supply. Evidence-Based Complement Altern Med 2012. DOI: 10.1155/2012/901918.

Mollik MAH, Hossan MS, Paul AK, Taufiq-Ur-Rahman M, Jahangir R, Rahmatullah M. 2010. A comparative analysis of medicinal plants used by folk medicinal healers in three districts of Bangladesh and Inquiry as to mode of selection of medicinal plants. Ethnobot Res Appl 8: 195-218. DOI: 10.17348/era.8.0.195-218.

Mustafa B, Hajdari A, Krasniq F, Hoxha E, Ademi H, Quave CL, Pironi A. 2012. Medical ethnobotany of the Albanian Alps in Kosovo. J Ethnobiol Ethnomed 8: 1-14. DOI: 10.1186/1746-4269-8-6.

Noomhorn N, Chun-Ju C, Che-Sheng W, Jir-You W, Jui-Liang C, Ling-Ming T, Wei-Shone C, Jen-Hwey C, Yi-Ming S. 2014. In vitro and in vivo effects of Xanthorrhizol on human breast cancer MCF-7 cells treated with Tamoxifen. J Pharmacoil Sci 125 (4): 375-385. DOI: 10.1254/ps.14024FP.

Numpulsukant W, Saensouk S, Saensouk P. 2021. Diversity and ethnobotanical study of medicinal plants in Ban Hua Kua, Khok Nhong Phok forest, Kosum Phisai District, Northeastern Thailand. Biodiversitas 22 (10): 4336-4348. DOI: 10.13057/biodiv/d221026.

Silalahi M, Nisyawati. 2018. The ethnobotanical study of edible and medicinal plants in the home garden of Batak Karo sub-ethnic in North Sumatra, Indonesia. Biodiversitas 19 (1): 229-238. DOI: 10.13057/biodiv/d190131.

Sriti K, Balslev H, Wanggakapattanawong P, Srisanga P, Trisonthi C. 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J Ethnopharmacol 123 (2): 335-342. DOI: 10.1016/j.jep.2009.02.035.

Suptiardi MI, Mahanal S, Zabaida S, Julung H, Ege B. 2019. Ethnobotany of traditional medicinal plants used by Dayak Desa community in Sintang, West Kalimantan, Indonesia. Biodiversitas 20 (5): 1264-1270. DOI: 10.13057/biodiv/d200516.

Susandarini R, Khasanah U, Rosalila N. 2021. Ethnobotanical study of medicinal plants used as food and for maternal health care by the Malays communities in Kampar Kiri Hulu, Riau, Indonesia. Biodiversitas 22 (6): 3111-3120. DOI: 10.13057/biodiv/d220613.

Sutjarntai N, Wanggakapattanawong P, Balslev H, Inta A. 2019. Traditional uses of Leguminosae among the Karen in Thailand. Plants 8 (12). DOI: 10.3390/plants8120600.

Tongjitman K, Wongsawad C, Winjichayanan P, Sukkho T, Kamkwong P, Pongamornkul W, Trisonthi C. 2013. Traditional knowledge on medicinal plant of the Karen in northern Thailand: A comparative study. J Ethnopharmacol 150 (1): 232-243. DOI: 10.1016/j.jep.2013.08.037.

Tardio J, Paro-de-Santayana M. 2008. Cultural importance indices: A comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ Bot 62 (1): 24-39. DOI: 10.13057/biodiv/d220801.

Trotter RT, Logan MH. 2019. Informants consensus: A new approach for identifying potentially effective medicinal plants. In: Ekin NL (ed) Plants in Indigenous Medicine and Diet. Redgrave Publishing, New York, Bedford Hill. DOI: 10.4324/9781135006385-8.

Vongthip W, Sillapachaiyaporn K, Kyu-Won K, Sukprasamsap M, Tencommao T. 2021. Thunbergia laurifolia leaf extract inhibits glutamate-induced neurotoxicity and celldeth by morphotyp signaling. Antioxidants 10 (11): 1678. DOI: 10.3390/antiox10111678.

United Nations CERD. 2011. Number of ethnic group population in the northeast (Esan) by language family group. Reports submitted by States parties under article 9 of the Convention. International Convention on the Elimination of All Forms of Racial Discrimination. United Nations, Bangkok.

Wongpant B, Chotikamans S, Roddecha S, Tantayotai P, Sriyiriyaman Y. 2018. Study of mathematical models in hot air drying of herbs in herbal compress ball. MATEC Web Conf 187: 1-5. DOI: 10.1051/matecconf/201818701002.