Independent predictors and lymph node metastasis characteristics of multifocal papillary thyroid cancer

Li Genpeng, MD a,b, Lei Jianyong, MD a,b, You Jiaying, BS b, Jiang Ke, MD a, Li Zhihui, MD a,b, Gong Rixiang, MD a,b, Zhang Lihan, BS b, Zhu Jingqiang, MD a,b,∗

Abstract
The multifocal papillary thyroid cancer (PTC), with more aggressive and poorer prognosis, is not rare in papillary histotype. Few studies evaluated risk factors and lymph node metastasis in multifocal PTC. The aim of this present study focusing on risk factors and lymph node metastasis characteristics in multifocal PTC was expected to assist clinical decisions regarding surgery. It was a retrospective study. The 1249 consecutive patients with PTC were reviewed. Of these, 570 patients who met the criteria were selected: 285 with solitary papillary thyroid cancer and 285 with multifocal PTC. The risk factors and lymph node metastasis in multifocal PTC were investigated by univariate and multivariate analysis. Multifocal PTC showed a higher positive rate of capsular invasion, extrathyroidal extension, tumor size >10 mm, pathological T classification, N+ stage, local recurrence, and radioactive iodine ablation (RAI). Capsular invasion (hazard ratio [HR], 1.589; 95% confidence interval [CI], 1.352–1.984), advanced pathological T classification (HR, 3.582; 95% CI, 2.184–5.870), and pathological N+ stage (HR, 1.872; 95% CI, 1.278–2.742) were related to increased risk of multifocality and there was a significant increased HR for central neck compartment involvement in male sex (HR, 2.694; 95% CI, 1.740–4.169), advanced pathological T classification (HR, 2.403; 95% CI, 1.479–3.907) and multifocality (HR, 1.988; 95% CI, 1.361–2.906).

There is a significant association between capsular invasion, advanced pathological T classification, N+ stage, and multifocal PTC. Total thyroidectomy plus prophylactic bilateral central lymph node dissection should be recommended during surgery due to a stronger predilection for level VI lymph node metastasis in multifocal PTC.

Abbreviations: BMI = body mass index, C = clinical, LNM = lymph node metastasis, P N+ = pathological positive lymph node metastasis, PTC = papillary thyroid cancer, RIA = radioactive iodine ablation.

Keywords: lymph node metastasis, multifocality, papillary thyroid carcinoma

1. Introduction
The incidence of thyroid carcinoma has been increasing more rapidly than other cancers in recent decades,[1] largely because of the growing use of sensitive diagnostic tools, such as high-resolution ultrasound and fine-needle aspiration biopsy.[2–4] Among thyroid carcinomas, papillary thyroid cancer (PTC), the most common histotype (>85% of all registered cases), is largely responsible for the increased rates of thyroid cancer.[5] Although, it is suggested to be an indolent disease with a favorable prognosis, some tumors with certain clinicopathological features can still show aggressive behavior with poor prognosis.[6–7]

Papillary thyroid cancer often presents with multifocal tumors and unilateral or bilateral multifocal PTC is not rare. Clinically, the presence of ≥2 anatomically separated foci in the thyroid gland is defined as multifocal PTC; it most often presents as multiple microcarcinomas (maximum size of tumor ≤10 mm) and occasionally has visible lesions.[8] Multifocality may arise from intrathyroidal metastases from a single malignant clone, as well as multiple independent origins accompanied by intra-thyroidal metastasis.[9] The reported prevalence of multifocal PTC ranges from 18% to 87% depending on epidemiological and methodological factors.[10] It is well-established that PTC has a strong predilection for lymph node metastasis, most commonly to the central neck compartment (level VI) which are bordered by the hyoid bone superiorly, suprasternal notch inferiorly, and the carotid sheaths laterally.[11] Approximately, 30% to 90% of patients with PTC will have clinical or occult cervical lymph node involvement.[12] However, cervical lymph node involvement characteristics and risk factors in multifocal PTC are rarely mentioned. Accordingly, a retrospective analysis was performed to identify risk factors and lymph node metastasis characteristics in multifocal PTC that expect to inform clinical decision-making. This article mainly focuses on the association of multifocal PTC with central lymph node metastasis.
2. Patients and methods

We conducted a retrospective analysis. The medical records of PTC patients (N=1249) who underwent thyroidectomy plus lymph node dissection at the department of Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, between January 1, 2015 and December 31, 2015, were reviewed. Preoperative fine-needle aspiration biopsy and postoperative specimen were reviewed by 2 experienced pathologists in a blind fashion, who confirmed the diagnosis of PTC and the number of tumor foci. Patients who performed total thyroidectomy plus bilateral central neck dissection and identified with multifocal tumors from 18 to 80 years were selected (N=285). Meanwhile, an equal number of solitary PTC patients were chosen for comparison using a random number table. Those who underwent less-than-total thyroidectomy cases, unilateral central neck dissection and had ever neck surgery, radiation exposure, a definite or suspected family history of PTC, and incomplete medical records were not included. In present study, for multifocal tumors, the tumor with the maximum diameter was considered the primary tumor. Data on the patients’ clinical features (sex, age at diagnosis), tumor histological characteristics (maximum size of tumor, solitary or multifocal foci, Hashimoto thyroiditis, capsular invasion, extrathyroidal extension, pathological tumor stage), distant metastasis at diagnosis, radioactive iodine ablation, radioactive iodine ablation dose (mCi), local or distant recurrence, and died of thyroid cancer were extracted from the database. Local or distant recurrence was diagnosed by metastatic lymph node or multifocal tumors from 18 to 26 months, and mean time was 18.7 months. The histologic diagnosis was classified according to World Health Organization system. Tumor classification was standardized using the TNM system of the American Joint Committee on cancer (version 7). Univariate and multivariate analyses were performed, concentrating on risk factors and central neck compartment involvement characteristics in multifocal PTC.

Statistical analysis was performed using SAS9.3. Continuous variables with normal distribution are expressed as the mean±standard deviation, and continuous variables without normal distribution are expressed as medians. Categorical variables are presented as numbers. Continuous variables with normal distribution were compared using Student’s sample t test or analysis of variance. Categorical variables were compared using the chi-square test or Fisher exact chi-square test. A level of 5% was used to identify significant relationships. Independent predictors were determined by multivariable cox’s regression model based on the risk factors related to multifocality and central lymph node metastasis. P < .05 with a 95% confidence interval indicated statistical significance.

3. Results

3.1. Risk factors and independent predictors associated with multifocality

Clinical and pathological factors that could be associated with multifocality were investigated in this present study, including age, sex, body mass index (BMI), Hashimoto thyroiditis, capsular invasion, extrathyroidal extension, size of the largest focus, pathological T classification, pathological N+ stage, TNM stage, distant metastasis at diagnosis, local or distant recurrence, radioactive iodine ablation (RAI), RAI dose (mCi), died of thyroid cancer. No significant differences were found between the solitary and multifocality group in sex, height (cm), weight (kg), BMI (kg/m2), distant metastasis or distant recurrence, RAI dose (mCi), died of thyroid cancer, etc. (all P > .05; Table 1). Of the patients, however, a statistically differences were showed in the presence of autoimmune thyroid disease (76 vs 51), capsular invasion (226 vs

Table 1	The baseline demographics and tumor characteristics of patients with solitary and multifocal PTC.		
	Solitary group	**Multifocality group**	**P value**
Age at diagnosis (mean± SD, y)	43.3±11.5	45.3±10.5	.376
>45/≤45	120/165	135/150	.204
Sex (male/female)	77/208	83/202	.576
Height, cm	163.5±5.8	162.4±6.2	.687
Weight, kg	60.5±11.3	61.1±11.7	.762
BMI (>24<24kg/m²)	62/223	74/211	.238
Hashimoto thyroiditis (yes/no)	51/234	76/209	.012
Capsule invasion (yes/no)	140/145	226/59	<.0001
Extrathyroid extension (yes/no)	31/254	65/220	<.0001
Maximum diameter (mean± SD, mm)	12.1±5.5	13.9±5.4	.651
>10/≤10 mm	113/172	153/132	.0008
p T classification (T1/T2–T4)	147/135	233/52	<.0001
p N+ stage (N0/N1a/N1b)	141/104/40	84/131/70	<.0001
p TNM stage (I/II/III)	208/224/21	199/24/23/23	.613
Distant metastasis at diagnosis	2/283	5/280	.45
Recurrence			
Local recurrence	10/275	21/264	.042
Distant recurrence	0/285	0/285	
RAI	119/75	214/71	<.0001
RAI dose (median, mCi)	100	100	.478
Died of thyroid cancer	0/285	0/285	

BMI = body mass index, C = clinical, P = pathological, P N+ = pathological positive lymph node metastasis, RAI = radioactive iodine ablation.

*Statistically significantly differences.
Table 2
The multivariable Cox's proportional hazards regression model of multifocal PTC.

Variables	Hazard ratio	95% CI	P value
Hashimoto thyroiditis	1.078	0.762–1.589	.432
Capsule invasion	1.589	1.352–1.984	.043
Extrathyroid extension	1.367	0.826–2.623	.224
Maximum diameter (>10 mm)	1.174	0.808–1.707	.399
p T classification (T2–T4)	3.580	2.184–5.870	<.0001
P N+ stage	1.872	1.278–2.742	.002

P N+ = pathological positive lymph node metastasis, P = pathological.

Table 3
Univariate and multivariate analysis of the clinical and pathological factors that could be associated with central lymph node metastasis.

Variables	Univariate analysis	Multivariate analysis			
	P N+	P value	Hazard ratio	95% CI	P value
Age at diagnosis (>45/≤45)	162/189	.389			
Sex (male/female)	126/225	.0006*	2.694	1.740–4.169	<.0001*
BMI (>24/≤24 kg/m²)	84/267	.959			
Tumor size (>10/≤10 mm)	172/179	.157			
Focality (multifocal/unifocal)	207/144	<.0001*	1.988	1.361–2.906	.0004*
Hashimoto thyroiditis (yes/no)	72/279	.300			
Capsule invasion (yes/no)	278/73	<.0001*	1.309	0.807–2.124	.276
Extrathyroid extension (yes/no)	68/283	.041*	1.247	0.568–2.723	.586
p T classification (T1/T2–4)	287/64	.584			
p T classification (T1/T2–4)	53/208	<.0001*	2.403	1.479–3.907	.0004*

BMI = body mass index, C = clinical, P N+ = pathological positive lymph node metastasis.

*Statistically significantly different.
may have a higher lymph nodes metastasis rate of >50%. In our study population, 285 patients had multifocality, and 201 of these patients identified lymph node metastasis. The incidence of central lymph node involvement reached 70.5%. Due to the indolent nature of PTC, whether lymph node metastasis is a poor prognostic factor remains controversial. Several studies have treated lymph node metastasis as a sign of poor prognosis.18–21 Other reports, however, suggest that lymph nodes positivity has no long-term influence on patient prognosis.22,23 One factor that is well-established and widely adopted is that lymph node metastasis has a strong association with recurrence.24 Therefore, risk factors and tumor metastasis to the neck compartment in multifocal PTC were investigated.

In this present study, multifocality showed a higher positive rate of Hashimoto thyroiditis, capsular invasion, extrathyroidal extension, tumor size >10 mm, advanced p T classification, p N+ stage, local recurrence, RAI. There is a significant association between capsular invasion, advanced pathological T classification, pN+ stage, and multifocal PTC by multivariable Cox regression model. Meanwhile, univariate and multivariate analysis of the clinical and pathological factors associated with central lymph node metastasis showed that multifocality was one of independent risk factors for level VI lymph node metastasis. Multifocality increases the risk of metastasis to the central neck compartment in PTC.

The 2009 Revised American Thyroid Association (ATA) recommends therapeutic level VI dissections in patients with clinical evidence of lymph node involvement.25 However, the role for prophylactic level VI lymph node dissection remains largely controversial.26 Approximately, 30% to 90% of patients with PTC will have clinical or occult cervical lymph node involvement.27 Prophylactic central neck dissection increases the risk of postoperative complications, mainly hypoparathyroidism and laryngeal nerve injury.27 Therefore, some studies have recommended that prophylactic central neck dissection should only be considered in patients with high risk factors, such as male patients, younger patients, and those with larger tumor sizes and extrathyroidal extensions.28 However, prophylactic central neck dissection makes it possible for us to accurately assess the stage of tumors postoperation for evaluating the necessity of radioactive iodine therapy;28 there is an increased risk of complications in second operation when the tumor recurs in the central compartment.29 Importantly, prophylactic central neck dissection actually is relatively safe in the hands of an experienced surgeon and it can prevent recurrence and improves tumor-free or overall survival effectively due to removal of microscopic metastases in the central compartment lymph node.30

Like any other, this study has its limitations. Because this was a retrospective review, the data were retrospectively collected and analyzed. The selection of single patients may generate a selection bias. Furthermore, the sample size was not sufficiently large as only 570 patients were ultimately identified. Studies with larger sample sizes are needed to further confirm our predictive model. In addition, in Wang et al’s study,26 the insular histotype identified more poor prognosis and in Wang et al's study,31 patients with tall cell variant of PTC is more aggressive than classic PTC, being associated with increased incidence of multifocality, extrathyroidal extension, lymph node involvement, distant metastasis, and recurrence. The association of the subtype of PTC, such as follicular variant, diffuse sclerosing, insular, tall cell variant, columnar, etc., with multifocality and central lymph node metastasis did not conduct further exploration because of lacking a further subdivision of PTC in our institution. Lalmi et al32 suggest that the promising perspective applied to diagnosis and prediction of thyroid cancer lies in molecular biology test, however, gene mutation (BRAF, RAS, RET, TERT, gene rearrangements (RET/PTC), and immuno-histochemical markers were considered only the FNAB cannot give definite diagnosis at our center, the predictors of molecular biology also need further delineation. Taken together, multifocality was associated with more aggressive and poorer prognosis. Capsular invasion, advanced pathological T classification and N+ stage were independent predictors of multifocal PTC. Total thyroidectomy with prophylactic bilateral central lymph node dissection should be recommended during surgery in multifocal PTC due to a higher propensity for level VI lymph node metastasis.

References
1. McLeod DS, Sawka AM, Cooper DS. Controversies in primary treatment of low-risk papillary thyroid cancer. Lancet 2013;381:1046–57.
2. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 2009;115:3801–7.
3. Li N, Du XL, Reitzel LR, et al. Impact of enhanced detection on the increase in thyroid cancer incidence in the United States: review of incidence trends by socioeconomic status within the Surveillance, Epidemiology and End Results registry, 1980–2008. Thyroid 2013;23:103–10.
4. Siegel R, Ma J, Zou A, et al. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9–29.
5. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006;295:2164–7.
6. Koo SF, Lin SF, Chao TC, et al. Prognosis of multifocal papillary thyroid carcinoma. Int J Endocrinol 2013;2013:89382.
7. Khanafshar E, Lloyd RV. The spectrum of papillary thyroid carcinoma variants. Adv Anat Pathol 2011;18:90–7.
8. Kiriakopoulos A, Petralias A, Linos D. Multifocal versus solitary papillary thyroid carcinoma. World J Surg 2016;40:2139–43.
9. Lu Z, Sheng J, Zhang Y, et al. Closeness analysis of multifocal papillary thyroid carcinoma by using genetic profiles. J Pathol 2016;239:72–83.
10. Tam AA, Ozdemir D, Cuhaci N, et al. Association of multifocality, tumor number, and total tumor diameter with clinicopathological features in papillary thyroid cancer. Endocrine 2016;53:774–83.
11. Grottku S, Cornford L, Sywak M, et al. Routine level VI lymph node dissection for papillary thyroid cancer: surgical technique. ANZ J Surg 2007;77:203–8.
12. Caron NR, Clark OH. Papillary thyroid cancer: surgical management of lymph node metastases. Curr Treat Options Oncol 2005;6:111–22.
13. Wang W, Su X, He K, et al. Comparison of the clinicopathologic features and prognosis of bilateral versus unilateral multifocal papillary thyroid cancer: an updated study with more than 2000 consecutive patients. Cancer 2016;122:198–206.
14. Kim SK, Park I, Woo JW, et al. Total thyroidectomy versus lobectomy in conventional papillary thyroid microcarcinoma: analysis of 8,676 patients at a single institution. Surgery 2017;161:485–92.
15. Markovina S, Grigoby PW, Schwarz JK, et al. Treatment approach, surveillance, and outcome of well-differentiated thyroid cancer in childhood and adolescence. Thyroid 2014;24:1121–6.
16. Marczy PY, Thariat J, Peyrottes I, et al. Fulminant lethal spread of occult papillary microcarcinoma of the thyroid. Thyroid 2010;20:445–8.
17. Qiu N, Zhang L, Ji QH, et al. Number of tumor foci predicts prognosis in papillary thyroid cancer. BMC Cancer 2014;14:914.
18. Zayyadin MM, Feuer ID, Griffin MR, et al. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery 2008;144:1070–7. discussion 1077–8.
19. Léboulleux S, Rubino C, Baduin E, et al. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J Clin Endocrinol Metab 2005;90:5723–9.
20. Podnos YD, Smith D, Wageman LD, et al. The implication of lymph node metastasis on survival patients with well-differentiated thyroid cancer. Am Surg 2005;71:731–4.
21. Lundgren CI, Hall P, Dickman PW, et al. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer 2006;106:524–31.
[22] Hughes CJ, Shaha AR, Shah JP, et al. Impact of lymph node metastasis in differentiated carcinoma of the thyroid: a matched-pair analysis. Head Neck 1996;18:127–32.
[23] Riss JC, Peyrottes I, Chamorey E, et al. Prognostic impact of tumour multifocality in thyroid papillary microcarcinoma based on a series of 160 cases. Eur Ann Otorhinolaryngol Head Neck Dis 2012;129:175–8.
[24] Wang LY, Palmer FL, Nixon IJ, et al. Central lymph node characteristics predictive of outcome in patients with differentiated thyroid cancer. Thyroid 2014;24:1790–5.
[25] Cooper DS, Doherty GM, Haugen BR, et al. 2009 Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214.
[26] Sancho JJ, Lennard TWJ, Paunovic I, et al. Prophylactic central neck dissection in papillary thyroid cancer: a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg 2014;399:155–63.
[27] Ito Y, Uruno T, Nakano K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid 2003;13:381–7.
[28] Song CM, Lee DW, Ji YB, et al. Frequency and pattern of central lymph node metastasis in papillary carcinoma of the thyroid isthmus. Head Neck 2015;38:E412–6.
[29] Vini L, Hyer SL, Marshall J, et al. Long-term results in elderly patients with differentiated thyroid carcinoma. Cancer 2003;97:2736–42.
[30] Grubbs EG, Rich TA, Li G, et al. Recent advances in thyroid cancer. Curr Prob Surg 2008;45:156–230.
[31] Wang X, Cheng W, Liu C, et al. Tall cell variant of papillary thyroid carcinoma: current evidence on clinicopathologic features and molecular biology. Oncotarget 2016;7:40792–9.
[32] Lalmi F, Sadoul JL, Rohmer V. Thyroid cancers: from epidemiology to molecular biology. Ann Endocrinol (Paris) 2015;76(Suppl):519–28.