Citation analysis of the most influential publications on whiplash injury
A STROBE-compliant study
Shuxi Ye, MDa, Qin Chen, MDa, Ning Liu, MDa, Rongchun Chen, MDa, Yaozhong Wu, MDa,b,*

Abstract
Whiplash injury is a common diagnosis and causes substantial economic burden. Numerous papers have been published to provide new insights into whiplash injury. However, so far there has not been a comprehensive analysis of the most influential publications on whiplash injury. This study aimed to determine the 100 most cited publications on whiplash injury and analyze their characteristics. A keyword search was conducted using the Web of Science database. The top 100 cited publications relevant to whiplash injury were gathered. The main characteristics including title, year of publication, citation, authorship, journal, country, institution, and topic were generated. The number of citations of the top 100 cited publications ranged from 82 to 777. Fifteen countries contributed the top 100 publications. Australia had the largest number of publications (26), followed by the United States (21), and Canada (12). The majority of the publications were from Europe (40) and North America (33). A total of 19 institutions and 17 authors published more than one publication. The University of Queensland (16) and the author Sterling M (7) had the leading publication record. This is the first citation analysis to identify and characterize the highest impact researches on whiplash injury. The present analysis provides the most influential studies on whiplash injury, and reveals the leading journals, counties, institutions, and authors with special contributions in this filed. The list may serve as an archive of historical development of whiplash injury and a basis for further research.

Abbreviation: NEJM = The New England Journal of Medicine.
Keywords: citation analysis, publication, Whiplash injury

1. Introduction
Whiplash injury is a common trauma caused by rapid acceleration-deceleration movements of the head and neck. The annual incidence of whiplash injury is estimated to be 328 to 677 per 100,000 inhabitants. It most commonly occurs in road traffic accidents, involving more than 80% of persons in motor vehicles collision. Whiplash-associated disorders are used to describe neck pain and clusters of physical and psychological symptoms experienced after a whiplash injury. Approximately 50% of individuals suffer from persistent pain 1 year after whiplash injury, and as many as 25% of them develop a long-term complex pain related disability. The annual economic cost of whiplash injury is estimated to be $3.9 billion in the United States.

A large number of papers on whiplash injury have been published in the journals to share new knowledge in this filed. Among the numerous papers, some important publications may play a vital role in the progress of whiplash injury research. However, there is a lack of studies to identify these most influential publications in the field of whiplash injury.

The number of citations is an important indicator for the academic impact of the publications. Citation analysis has been widely performed in multiple disciplines to quantitatively and qualitatively analyze important information of certain topic. Citation analysis of the most influential publications have been carried out in many filed. However, there have been few studies regarding the most cited publications on whiplash injury. The purpose of the present study was to determine the 100 most cited publications on whiplash injury and analyze their characteristics.

2. Methods
Ethical approval was not required because this work did not contain any studies with patients or animals. The Web of Science database was used for this citation analysis. The keywords included “whiplash,” “whiplash injury,” whiplash injuries,” “whiplash-associated disorder,” and “whiplash-associated disorders.” The literature search was carried out on January 6th, 2022. No limitation was used in the publication time or article type. The searching results ranked by the citation count of the publications. Two authors independently

The authors have no funding and conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

*a Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China.
*Correspondence: Yaozhong Wu, Department of Spine Surgery, Ganzhou People’s Hospital, No 16, Meguan Road, Ganzhou 341099, China (e-mail: wuyaozhong1986@hotmail.com).

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Ye S, Chen Q, Liu N, Chen R, Wu Y. Citation analysis of the most influential publications on whiplash injury: A STROBE-compliant study. Medicine 2022;101:39(e30850).
Received: 22 August 2022 / Received in final form: 30 August 2022 / Accepted: 31 August 2022
http://dx.doi.org/10.1097/MD.00000000000030850
Table 1

The 100 most cited publications on whiplash injury.

Rank	Author (first)	Yr	Article	Journal	Citation number	Citation density
1	Spitzer WO	1995	Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management	Spine	777	31.08
2	Cassidy JD	2000	Effect of eliminating compensating “whiplash” and suffering on the outcome of insurance claims for whiplash injury	NEJM	445	22.25
3	Caffey J	1974	The whiplash shaken infant syndrome: manual shaking by the extremities with whiplash-induced intracranial and intracoeal bleedings, linked with residual permanent brain damage and mental retardation	Pediatrics	412	8.96
4	Lord SM	1996	Percutaneous radio-frequency neurotomy for chronic cervical zygapophysyal joint pain	NEJM	408	17.00
5	Barnsley L	1994	Whiplash injury	Pain	325	12.50
6	Sterling M	2003	Sensory hypersensitivity occurs soon after whiplash injury and is associated with poor recovery	Pain	315	18.53
7	Lord SM	1996	Chronic cervical zygapophysial joint pain after whiplash. A placebo-controlled trolled prevalence study	Spine	298	12.42
8	Banic B	2004	Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia	Pain	295	18.44
9	Barnsley L	1995	The prevalence of chronic cervical zygapophysial joint pain after whiplash injury	Spine	287	11.48
10	Schelten-Beeters	2003	Prognostic factors of whiplash-associated disorders: a systematic review of prospective cohort studies	Pain	287	16.88
11	Schrader H	1996	Natural evolution of late whiplash syndrome outside the medicolegal context	Lancet	270	11.25
12	Carroll LJ	2008	Course and prognostic factors for neck pain in whiplash-associated disorders (WAD): results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders	Spine	261	21.75
13	Guthkelch AN	1971	Infantile subdural hematoma and its relationship to whiplash injuries	BMJ	245	5.00
14	Radanov BP	1995	Long-term outcome after whiplash injury: A 2-year follow-up considering features of injury mechanism and somatic, radiologic, and psychosocial findings	Medicine	243	9.72
15	Jull G	2004	Impairment in the cervical flexors: a comparison of whiplash and insidious onset neck pain patients	J Rehabil Med	227	13.35
16	Treleaven J	2003	Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error	J Neurol Neurosurg Psychiatry	208	9.90
17	Sterling M	2005	Physical and psychological factors predict outcome following whiplash injury	Pain	226	15.07
18	Curatolo M	2001	Central hypersensitivity in chronic pain after whiplash injury	Clin J Pain	214	11.26
19	Obelieniene D	1999	Pain after whiplash: a prospective controlled inception cohort study	J Neurol Neurosurg Psychiatry	184	3.54
20	Sterling M	2003	Development of motor system dysfunction following whiplash injury	Pain	197	11.59
21	Om'maya AK	1968	Whiplash injury and brain damage: an experimental study	JAMA	184	3.54
22	Scott D	2005	Widespread sensory hypersensitivity is a feature of chronic whiplash-associated disorder but not chronic idiopathic neck pain	Clin J Pain	178	11.87
23	Sterling M	2006	Physical and psychological factors maintain long-term predictive capacity post-whiplash injury	Pain	177	12.64
24	Kamper SJ	2008	Course and prognostic factors of whiplash: a systematic review and meta-analysis	Pain	176	14.67
25	Hadley MN	1989	The infant whiplash-shake injury syndrome: a clinical and pathological study	Neurosurgery	174	5.61
26	Gonzalez-Iglesias J	2009	Short-term effects of cervical kinesio tapping on pain and cervical range of motion in patients with acute whiplash injury: a randomized clinical trial	J Orthop Sports Phys Ther	168	15.27
27	Koelbaek Johansen M	1999	Generalised muscular hyperalgesia in chronic whiplash syndrome	Pain	166	7.90
28	McLean SA	2005	The development of persistent pain and psychological morbidity after motor vehicle collision: integrating the potential role of stress response systems into a biopsychosocial model	Psychoem Med	165	11.00
29	Om'maya AK	1971	Tolerances for cerebral concussion from head impact and whiplash in primates	J Biomech	162	3.31
30	D'Alba PT	2001	Cervical range of motion discriminates between asymptomatic persons and those with whiplash	Spine	161	8.47
31	Radanov BP	1991	Role of psychosocial stress in recovery from common whiplash [see comment]	Lancet	158	5.45
32	Sullivan MA	2006	A psychosocial risk factor—targeted intervention for the prevention of chronic pain and disability following whiplash injury	Clin J Pain	152	6.08
33	Lord SM	1995	The utility of comparative local anesthetic blocks versus placebo-controlled blocks for the diagnosis of cervical zygapophysial joint pain	Spine	152	12.67
34	Holm LW	2008	The burden and determinants of neck pain in whiplash-associated disorders after traffic collisions: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders	Spine	150	7.14
35	Kaneoka K	1999	Motion analysis of cervical vertebrae during whiplash loading	Spine	144	11.08
36	Jull G	2007	Does the presence of sensory hypersensitivity influence outcomes of physical rehabilitation for chronic whiplash? A preliminary RCT	Pain		

(Continued)
Table 1 (Continued)

Rank	Author (first)	Yr	Article	Journal	Citation number	Citation density
37	Heikkila H	1998	Cervicocephalic kinesthetic sensitivity, active range of cervical motion, and oculomotor function in patients with whiplash injury	Arch Phys Med Rehabil	144	6.55
38	Nederhand MJ	2004	Predictive value of fear avoidance in developing chronic neck pain disability: consequences for clinical decision making	Arch Phys Med Rehabil	142	8.88
39	Gay JR	1953	Common whiplash injuries of the neck	JAMA	140	2.09
40	Borchgrevink GE	1998	Acute treatment of whiplash neck sprain injuries. A randomized trial of treatment during the first 14 days after a car accident	Spine	140	6.36
41	Davis SJ	1991	Cervical spine hyperextension injuries: MR findings	Radiology	139	4.79
42	Mealy K	1986	Early mobilization of acute whiplash injuries	BMJ	138	4.06
43	Loudon JK	1997	Ability to reproduce head position after whiplash injury	Spine	138	6.00
44	Elliott J	2006	Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders: a magnetic resonance imaging analysis	Spine	137	9.79
45	Grauer JN	1997	Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels	Spine	136	5.91
46	Sterling M	2003	The development of psychological changes following whiplash injury	Pain	135	7.94
47	Pearson AM	2004	Facet joint kinematics and injury mechanisms during simulated whiplash	Spine	132	8.25
48	Barnesley L	1994	Lack of effect of intrarticular corticosteroids for chronic pain in the cervical zygapophyseal joints	NEJM	130	5.00
49	Jull G	2000	Deep Cervical Flexor Muscle Dysfunction in Whiplash	J Musculoskelet Pain	127	6.35
50	Wallis BJ	1997	Resolution of psychological distress of whiplash patients following treatment by radiofrequency neurotomy: a randomized, double-blind, placebo-controlled trial	Pain	126	5.48
51	Winkelstein BA	2000	The cervical facet capsule and its role in whiplash injury: a biomechanical investigation	Spine	122	6.10
52	Nederhand MJ	2000	Cervical muscle dysfunction in the chronic whiplash associated disorder grade II (WAD-II)	Spine	114	5.70
53	Keich H	2005	Reduced cold pressor pain tolerance in non-recovered whiplash patients: a 1-year prospective study	Eur J Pain	112	7.47
54	Heikkila H	1996	Cervicocephalic kinesthetic sensibility in patients with whiplash injury	Scand J Rehabil Med	112	4.67
55	Hoving JL	2003	Validity of the neck disability index, Northwick Park neck pain questionnaire, and problem elicitation technique for measuring disability associated with whiplash-associated disorders	Pain	110	6.47
56	Hendriks EJ	2005	Prognostic factors for poor recovery in acute whiplash patients	Pain	110	7.33
57	Radaanov BP	1994	Relationship between early somatic, radiological, cognitive and psychosocial findings and outcome during a 1-year follow-up in 117 patients suffering from common whiplash	Br J Rheumatol	109	4.19
58	Schmand B	1998	Cognitive complaints in patients after whiplash injury: the impact of malingered injury	J Neurol Neurosurg Psychiatry Neurology	108	4.91
59	Sturzenecker M	1994	Presenting symptoms and signs after whiplash injury: the influence of accident mechanisms	J Neurol Neurosurg Psychiatry	107	4.12
60	Maimaris C	1988	“Whiplash injuries” of the neck: a retrospective study	Injury	106	3.31
61	Evans RW	1992	Some observations on whiplash injuries	Neurol Clin	106	3.79
62	Ronnen HR	1996	Acute whiplash injury: is there a role for MR imaging?—a prospective study of 100 patients	Radiology	104	4.33
63	Van Oosterwijk J	2013	Evidence for central sensitization in chronic whiplash: a systematic literature review	Eur J Pain	103	14.71
64	Treleaven J	2006	The relationship of cervical joint position error to balance and eye movement disturbances in persistent whiplash	Man Ther	103	7.36
65	Sterling M	2004	Characterization of acute whiplash-associated disorders	Spine	102	6.38
66	Ettlin TM	1992	Cerebral symptoms after whiplash injury of the neck: a prospective clinical and neuropsychological study of whiplash injury	J Neurol Neurosurg Psychiatry	102	3.64
67	Stewart MJ	2007	Randomized controlled trial of exercise for chronic whiplash-associated disorders	Pain	101	7.77
68	Rosenfeld M	2000	Early intervention in whiplash-associated disorders: a comparison of 2 treatment protocols	Spine	101	5.05
69	Herren-Gerber R	2004	Modulation of central hypersensitivity by nociceptive input in chronic pain after whiplash injury	Pain Med	101	6.31
70	Gotten N	1956	Survey of 100 cases of whiplash injury after settlement of litigation	JAMA	101	1.58
71	Jonsson H Jr	1994	Findings and outcome in whiplash-type neck distortions	Spine	99	3.81
72	Passatore M	2006	Influence of sympathetic nervous system on sensorimotor function: whiplash-associated disorders (WAD) as a model	Eur J Appl Physiol	97	6.93
73	Siegmund GP	2001	Mechanical evidence of cervical facet capsule injury during whiplash: a cadaveric study using combined shear, compression, and extension loading	Spine	96	5.05
74	Brault JR	2000	Cervical muscle response during whiplash: evidence of a lengthening muscle contraction	Clin Biomech	96	4.80

(Continued)
reviewed the publications for their relevance to whiplash injury. Disagreements were resolved by discussion. A third author was invited to make a final decision when necessary. The top 100 cited publications on whiplash injury were included in this study.

Data extractions were conducted by 2 independent authors. Disagreements between authors were resolved by consensus. The following information was extracted and analyzed: title, year of publication, citation, authorship, journal, country, institution, and topic. The study topic contained etiology, treatment, risk factors, measurement, epidemiology and general to whiplash injury. The countries were classified into high-income, middle-income and low-income countries in terms of the World Bank income criteria (www.worldbank.org). Citation density (citation count/ the number of years since the paper was published) and the average citation were also analyzed.

3. Results

Citation count of the top 100 cited publications ranged from 82 to 777 with a mean number of 153. The most cited paper was published in the journal Spine in 1995, and had the highest number of citation density (31.08). The main information of these publications was listed in Table 1. The oldest and most recent publications were published in 1953 and 2013, respectively. All publications in the top 100 list were written in English.

The number of publications per decade was summarized in Figure 1. Half (50) of the total publications were published in the 2000s, followed by the 1990s (36). The publications in the 1970s had the highest number of average citations (273.00), followed by 1960s (184.00).

Thirty-seven journals contributed the top 100 publications. These journals included the general medical journals, such as The New England Journal of Medicine (NEJM), Lancet, Journal of the American Medical Association (JAMA), and The New England Journal of Medicine (NEJM).
of the American Medical Association, and British Medical Journal, and subspecialty spine and pain journals. There were 19 journals published more than one paper, which was listed in Table 2. The journal *Spine* published far more papers (23) than other journals, followed by *Pain* (18). The NEJM with the highest impact factor (70.670) had the highest average citation (327.67), followed by *Lancet* (214.00).

There were 15 countries producing the top 100 publications. All the countries were high-income countries. These countries were shown in Table 3. Australia was the leader according to the number of publications (26), followed by the United States (21), and Canada (12). With respect to continental distribution, the majority of the 100 publications were from Europe (40), North America (33) and Oceania (26). Only one publication was from Asia. No publications were from South America or Africa.

A total of 53 institutions contributed the 100 publications. There were 19 institutions producing at least 2 publications. These institutions were depicted in Table 4. The University of Queensland had the leading publication record (16), followed by University of Newcastle (6). When considering the average citations, McGill University (319.33) ranked first, followed by University of Newcastle (266.67), and University of Alberta (265.00).

Some first authors were shown more than 1 time in the 100 most influential publications. These authors were summarized in Table 5. Sterling M with 7 publications was the leader.

![Figure 1](image-url). The number of publications per decade on whiplash injury.

Table 2

Journals with more than one publication on whiplash injury.

Journal	Number of articles	Total citation	Average citation	Impact factors
Spine	23	3843	167.09	2.903
Pain	18	3163	175.72	6.029
Journal of Neurology Neurosurgery and Psychiatry	4	512	128.00	8.272
NEJM	3	983	207.67	70.670
Clinical Journal of Pain	3	544	181.33	2.893
JAMA	3	425	141.67	51.273
Archives of Physical Medicine and Rehabilitation	3	370	123.33	2.697
Journal of Orthopaedic & Sports Physical Therapy	3	348	116.00	3.058
Lancet	2	428	214.00	59.102
BMJ	2	383	191.50	27.604
Manual Therapy	2	342	171.00	2.622
Journal of Rehabilitation Medicine	2	313	156.50	1.907
Journal of Biomechanics	2	250	125.00	2.576
Radiology	2	243	121.50	7.608
European Journal of Pain	2	215	107.50	3.188
Neurology	2	198	99.00	8.889
Injury	2	188	94.00	1.834
Journal of Clinical Epidemiology	2	181	90.50	4.650
Clinical Biomechanics	2	179	89.50	1.977

BMJ = British Medical Journal, JAMA = Journal of the American Medical Association, NEJM = The New England Journal of Medicine.
To our knowledge, the current study is the first to cite publications from main journals in their specialty. This was proved in many citation analyses. The publica-
tion production on surgery by decade reached a peak in the 1970s. The 1980s contributed the most publications in burns and knee research. The largest number of the top 100 cited publications on imaging and spine were both published in the 1990s. However, the present study demonstrated that the 2000s was the most prolific decade. The increasing number of publications and the progress of quality of publications may be important reasons for this finding. Another explanation may be that the Quebec Task Force redefined the whiplash and its management in 1995, which may promote the development of whiplash injury research.

All the top 100 papers published in English, which may prove that English was the most influential language in academic community. The journal *Spine* produced the majority of publications, followed by *pain*. This demonstrated that these journals have the greatest impact in the field of whiplash injury. There may be some reasons for this finding. First, the researchers have a tendency to submit their important work to these subspecialty journals. Second, the authors tend to cite publications from main journals in their specialty. In addition, we found that 4 leading general medicine journals, including *NEJM*, *Lancet*, *Journal of the American Medical Association*, and *British Medical Journal*, produced at least 2 of the most influential publications on whiplash injury. This indicates some papers on whiplash injury are of high quality, and could be accepted in the highest impact general journals.

A total of 15 countries produced the top 100 publications, which might suggest that the most influential publications still centered in a few countries. These countries were classified into high-income countries. It may indicate that the economic situation of the countries plays a vital role in conducting the high impact work. In addition, we found that no publications were from South America and Africa. This result may reflect that the quality of papers from these areas is still lag behind that from the other regions.

Table 3

Country	Number of articles	Total citations	Average citations
Australia	26	4756	182.92
United States	21	2820	134.29
Canada	12	2362	196.83
Switzerland	8	1329	166.13
Sweden	8	880	110.00
Netherlands	6	865	144.17
Norway	4	593	148.25
United Kingdom	4	527	131.75
Denmark	3	369	123.00
Belgium	3	278	92.67
Lithuania	1	208	208.00
Spain	1	168	168.00
Japan	1	150	150.00
Ireland	1	138	138.00
Italy	1	97	97.00

With respect to the topics, there were 27 publications centered in a few countries. These countries were classified into high-income countries. It may indicate that the economic situation of the countries plays a vital role in conducting the high impact work. The present study demonstrated that the 2000s was the most prolific decade. The increasing number of publications and the progress of quality of publications may be important reasons for this finding. Another explanation may be that the Quebec Task Force redefined the whiplash and its management in 1995, which may promote the development of whiplash injury research.

Table 4

Institution	Number of articles	Total citations	Average citations
The University of Queensland	16	2643	165.19
University of Newcastle	6	1600	266.67
University of Berne	4	617	154.25
Yale University School of Medicine	4	446	111.50
McGill University	3	958	319.33
University of Alberta	3	785	265.00
University Hospital of Bern	3	610	203.33
University Hospital Trondheim	2	410	205.00
National Institutes of Health	2	346	173.00
Hull Royal Infirmary	2	339	169.50
University of Sydney	2	277	138.50
Roessingh, Research and Development	2	256	128.00
University Hospital of Northern Sweden	2	256	128.00
Karolinska Institutet	2	247	123.50
Aarhus University	2	203	101.50
Vrije Universiteit Brussel	2	194	97.00
University of Gothenburg	2	188	94.00
Biomechanics Research & Consulting, Inc	2	180	90.00
Western University	2	180	90.00

4. Discussion

Whiplash injury is a commonly diagnosed trauma, which causes pain, functional limitations, and even prolonged disability with considerable economic burden. The study determined and characterizing the top 100 cited publications on whiplash injury, aimed to give a general insight into the most influential publications, and to help future studies in this filed. Such analysis had been performed in a large number of fields. To our knowledge, the current study is the first citation analysis on the top 100 cited publications in the field of whiplash injury.

The citation count of the top 100 influential publications may be different in different specialties. The number of citations of the 100 most cited publications on diabetes ranged from 1121 to 10292, and that on Parkinson’s disease ranged from 669 to 6902. The difference of the citation count may be attributed to multiple factors such as the number of researchers and the size of total publications in specific filed.

It is believed that old papers had advantages in receiving more citations due to the long time after publication. This was proved in many citation analyses. The publication production on surgery by decade reached a peak in the 1970s. The 1980s contributed the most publications in burns and knee research. The largest number of the top 100 cited publications on imaging and spine were both published in the 1990s. However, the present study demonstrated that the 2000s was the most prolific decade. The increasing number of publications and the progress of quality of publications may be important reasons for this finding. Another explanation may be that the Quebec Task Force redefined the whiplash and its management in 1995, which may promote the development of whiplash injury research.

All the top 100 papers published in English, which may prove that English was the most influential language in academic community. The journal *Spine* produced the majority of publications, followed by *pain*. This demonstrated that these journals have the greatest impact in the field of whiplash injury. There may be some reasons for this finding. First, the researchers have a tendency to submit their important work to these subspecialty journals. Second, the authors tend to cite publications from main journals in their specialty.

In addition, we found that 4 leading general medicine journals, including *NEJM*, *Lancet*, *Journal of the American Medical Association*, and *British Medical Journal*, produced at least 2 of the most influential publications on whiplash injury. This indicates some papers on whiplash injury are of high quality, and could be accepted in the highest impact general journals.

A total of 15 countries produced the top 100 publications, which might suggest that the most influential publications still centered in a few countries. These countries were classified into high-income countries. It may indicate that the economic situation of the countries plays a vital role in conducting the high impact work. In addition, we found that no publications were from South America and Africa. This result may reflect that the quality of papers from these areas is still lag behind that from the other regions.
It is very interesting to find that Australia was the most prolific countries on whiplash injury, and the United States ranked second. The greatest power of the United States has been proved in nearly all the medical fields. However, this phenomenon was not found in the field of whiplash injury. This may suggest that the some institutions and researchers in Australia are very interested in whiplash injury, and have a great priority in this field.

The current study had some limitations, which had been demonstrated in pervious citation analysis. First, there were no golden indicators for assessing the impact of publications despite the number of citations were widely used in citation analysis. The influential papers with low citations may not be included in this study. Second, the recent papers had a tendency to receive lower citations, and the old publications may have an accumulated effect in the citation count. The influential publications published in recent years may not be included. Third, the effect of self-citation on the number of citations could not be eliminated in this study, which may increase the citation count. Fourth, the Web of Science database was use as the literature source. The citation count of publications may be different in other database when conducting citation analysis on the same topic.

5. Conclusion
This is the first citation analysis to identify and characterize the highest impact researches on whiplash injury. The present study provides the 100 most cited publications, and summarizes the impact journals, counties, institutions, authors with leading publication records. The list may be functioned as an archive of the influential studies on whiplash injury, and a basis for further research in this field.

Author contributions:
Conceptualization: Shuxi Ye, Yaohong Wu.
Investigation: Shuxi Ye, Qin Chen, Ning Liu.
Methodology: Rongchun Chen.
Project administration: Yahong Wu.
Supervision: Yaohong Wu.
Writing – original draft: Shuxi ye, Ning Liu, Rongchun Chen.
Writing – review & editing: Yaohong Wu, Qin Chen.

References
[1] Cassidy JD, Carroll LJ, Cote P, et al. Effect of eliminating compensation for pain and suffering on the outcome of insurance claims for whiplash injury. N Engl J Med. 2000;342:1179–86.
[2] Al-Khazali HM, Ashina H, Iljazi A, et al. Neck pain and headache following whiplash injury: a systematic review and meta-analysis. Pain. 2020;161:880–8.
[3] Cassidy JD, Carroll LJ, Cote P, et al. Does multidisciplinary rehabilitation benefit whiplash recovery?: Results of a population-based incidence cohort study. Spine (Phila Pa 1976). 2007;32:126–31.
[4] Spitzer WO, Skovron ML, Salmi LR, et al. Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine (Phila Pa 1976). 1995;20:1S–73S.
[5] Kamper SJ, Rebbeck TJ, Maher CG, et al. Course and prognostic factors of whiplash: a systematic review and meta-analysis. Pain. 2008;138:617–29.
[6] Ricciardi L, Stifano V, D’Arrigo S, et al. The role of non-rigid cervical collar in pain relief and functional restoration after whiplash injury: a systematic review and a pooled analysis of randomized controlled trials. Eur Spine J. 2019;28:1821–8.
[7] Freeman MD, Croft AC, Rossignol AM. “Whiplash associated disorders: redefining whiplash and its management” by the Quebec Task Force. A critical evaluation. Spine (Phila Pa 1976). 1998;23:1043–9.
[8] Bannister G, Amrufey R, Kelley S, et al. Whiplash injury. J Bone Joint Surg Br. 2009;91:845–50.
[9] Garfield E. Citation analysis as a tool in journal evaluation. Science. 1972;178:471–9.
[10] Zhou JJ, Koltz MT, Agarwal N, et al. 100 most influential publications in scoliosis surgery. Spine (Phila Pa 1976). 2017;42:336–44.
[11] Zhao X, Guo L, Lin Y, et al. The top 100 most cited scientific reports focused on diabetes research. Acta Diabetol. 2016;53:13–26.
[12] Xue JH, Hu ZP, Lai P, et al. The 100 most-cited articles in Parkinson’s disease. Neurol Sci. 2018;39:1537–45.
[13] Virk SS, Yu E. The top 50 articles on minimally invasive spine surgery. Spine (Phila Pa 1976). 2017;42:513–9.
[14] Varzgalis M, Bowden DJ, Mc Donald CK, et al. A bibliometric analysis of the citation classics of acute appendicitis. Ann Med Surg (Lond). 2017;19:45–50.
[15] Ruegsegger N, Ahmad SS, Benneker LM, et al. The 100 most influential publications in cervical spine research. Spine (Phila Pa 1976). 2016;41:538–48.
[16] Li H, Zhao X, Zheng P, et al. Classic citations in main primary health care journals: a PRISMA-compliant systematic literature review and bibliometric analysis. Medicine (Baltim). 2015;94:e2219.
[17] Joyce CW, Kelly JC, Sugrue C. A bibliometric analysis of the 100 most influential papers in burns. Burns. 2014;40:30–7.
[18] Jia Z, Ding F, Wu Y, et al. The 50 most-cited articles in orthopaedic surgery from Mainland China. Clin Orthop Relat Res. 2015;473:2423–30.
[19] Huo YQ, Pan XH, Li QB, et al. Fifty top-cited classic papers in orthopedic elbow surgery: a bibliometric analysis. Int J Surg. 2015;18:28–33.
[20] Huang W, Wang L, Wang B, et al. Top 100 cited articles on back pain research: a citation analysis. Spine (Phila Pa 1976). 2016;41:1683–92.
[21] Das JP, Aherne E, Kavanagh E. Imaging of the Spine: a bibliometric analysis of the 100 most-cited articles. Spine (Phila Pa 1976). 2019;44:1593–8.
[22] Brinjikji W, Klunder A, Kallmes DF. The 100 most-cited articles in the imaging literature. Radiology. 2013;269:272–6.
[23] Badhiwala JH, Nassiri F, Witiw CD, et al. Highly cited works in spinal disorders: the top 100 most cited papers published in Spine Journals. Spine (Phila Pa 1976). 2018;43:1746–55.
[24] Ahmad SS, Evangelopoulos DS, Abbassan M, et al. The hundred most-cited publications in orthopaedic knee research. J Bone Joint Surg Am. 2014;96:e190.
[25] Long X, Huang JZ, Ho YS. A historical review of classic articles in surgery field. Am J Surg. 2014;208:841–9.
[26] Murray MR, Wang T, Schroeder GD, et al. The 100 most cited spine articles. Eur Spine J. 2012;21:2059–69.
[27] Zhang Y, Wumaier M, He D, et al. The 100 top-cited articles on spinal deformity: a bibliometric analysis. Spine (Phila Pa 1976). 2020;45:275–83.
[28] Ding F, Jia Z, Liu M. National representation in the spine literature: a bibliometric analysis of highly cited spine journals. Eur Spine J. 2016;25:830–5.