ON COSET N-VALUED TOPOLOGICAL GROUPS
ON S^3 AND $\mathbb{R}P^3$

Dmitry V. Gugnin

To my son Vanya

Recall the notion of an n-valued topological group (see an overview [1]).

Definition 1. A Hausdorff path-connected topological space X with a base point $e \in X$, together with an n-valued continuous multiplication $\mu: X \times X \rightarrow \text{Sym}^n X = X^n/S_n$ and a continuous involution $\text{inv}: X \rightarrow X$, $\text{inv}(e) = e$, is called an n-valued topological group, if the following conditions hold true:

1. $\mu(x, \mu(y, z)) = \mu(\mu(x, y), z) \in \text{Sym}^n X$ for all $x, y, z \in X$;
2. $\mu(x, e) = \mu(e, x) = [x, x, \ldots, x]$ for all $x \in X$;
3. $\mu(x, \text{inv}(x)) \ni e$ if $\mu(\text{inv}(x), x) \ni e$ for all $x \in X$.

We will use the following construction of a coset n-valued groups (see [1]).

Let us take an arbitrary compact connected Lie group W and any subgroup $G \subset \text{Aut}(W)$ of order n in its automorphism group. Denote by X the quotient space W/G and by $\pi: W \rightarrow X$ the canonic projection. Then the space X can be endowed with a natural structure of an n-valued topological group with the identity $e = \pi(e_W)$, the inverse map $\pi(\pi(w)) = \pi(w^{-1})$ and multiplication $\mu(\pi(a), \pi(b)) = [\pi(ag_1(b)), \pi(ag_2(b)), \ldots, \pi(ag_n(b))]$ for all $a, b \in W$, where $G = \{g_1, g_2, \ldots, g_n\}$.

In dimension 3 there are only three compact connected Lie groups: $T^3, Sp(1) \rtimes SO(3)$. The aim of the research is to describe all coset n-valued topological groups, arising from $Sp(1)$ and $SO(3)$.

It is known that any automorphism $\varphi: SO(3) \rightarrow SO(3)$ is an inner conjugation by an element $g \in SO(3)$, which is 1-1 correspondence to φ. Therefore the group $\text{Aut}(SO(3))$ coincides with $SO(3)$. Also the classical isomorphism $Sp(1)/\{1, -1\} \cong SO(3)$ implies that any automorphism $\psi: Sp(1) \rightarrow Sp(1)$ is an inner conjugation by an element $\pm q \in Sp(1)$. Hence the group $\text{Aut}(Sp(1))$ coincides again with $SO(3)$.

Let us use the well known classification of finite subgroups in $SO(3)$.

1. C_n, a cyclic group, generated by a n-fold rotation about a line;
2. D_m, $n = 2m$, a dihedral group, generated by an n-fold rotation about a line, and a reflection in a line (half-turn) which is orthogonal to the first line;
3. T, $n = 12$, the group of orientation-preserving symmetries of a regular tetrahedron;
4. O, $n = 24$, the group of orientation-preserving symmetries of a cube;
5. I, $n = 60$, the group of orientation-preserving symmetries of a regular icosahedron.

The following fact is known:

Fact 1. For an arbitrary smooth connected orientable manifold $M^m, m = 2, 3$ and any finite group G, acting on M^m smoothly, effectively and orientation-preserving, the orbit space $X = M^m/G$ is a topological orientable m-dimensional manifold.
Therefore, if a coset topological group X is derived from $Sp(1)$ or $SO(3)$, then X is an orientable connected compact topological 3-manifold.

Theorem 1. Let $W = Sp(1)$ and $G \subset \text{Aut}(Sp(1)) = SO(3)$ — an arbitrary finite subgroup of order n. Then the coset n-valued topological group $Sp(1)/G$ is homeomorphic to S^3.

The case of a 2-valued coset group structure on S^3 was introduced by V.M. Buchstaber in 1993.

Theorem 2. Let $W = SO(3)$ and $G \subset SO(3)$ — an arbitrary finite subgroup of order n. If n is even, then the coset group $SO(3)/G$ is homeomorphic to S^3. And if n is odd, then the coset group $SO(3)/G$ is homeomorphic to $\mathbb{R}P^3$.

Proof of theorem 1. It is obvious that the action of the group G preserves the real part of quaternions $x \in Sp(1)$, fix points ± 1, and also preserves the standard metric of the sphere $S^3 = Sp(1)$. It follows that the quotient space $Sp(1)/G$ is the (unreduced) suspension over the quotient space S^2/G, where S^2 is a sphere of purely imaginary quaternions of unit length. By the fact that the action of the group G is smooth and orientation-preserving and due to fact 1, the quotient space S^2/G is a compact orientable surface M^2. As the map $S^2 \to M^2 = S^2/G$ has a nonzero degree, then the genus of a surface M^2 could not increase, so $M^2 = S^2$. \(\square\)

Proof of theorem 2. Let us take a finite subgroup $G \subset SO(3)$ of order n. Denote by $2G$ its preimage under the canonic epimorphism $Sp(1) \to SO(3)$. Set $G = \{g_1, g_2, \ldots, g_n\}$ and $2G = \{\pm q_1, \pm q_2, \ldots, \pm q_n\}$. The quotient space $SO(3)/G$ may be derived from the universal cover $SO(3) = Sp(1) = S^3$ by the following action of a finite group $\tilde{G} := G \times C_2$, $C_2 = \{1, -1\}$. Namely, $(g, \varepsilon)(x) := \varepsilon(q, xq^{-1})$, for all $x \in Sp(1)$ and $\varepsilon \in \{1, -1\}$. The required orbit space $Sp(1)/\tilde{G}$ could be reached into two steps. Firstly, we need to get the quotient space $Sp(1)/\tilde{G} \cong S^3$. Secondly, we need to factorize the obtained sphere S^3 by an involution τ, which arise from antipodal involution $x \mapsto -x$ on $Sp(1)$. It is clear, that the involution τ preserves the orientation.

Classical S.Illman’s theorem \[2\] states that for any smooth manifold M^m and any finite group F, which acts smoothly on M^m, there exists a triangulation of M^m for which the action of F is simplicial. It follows that the involution $\tau: S^3 \to S^3$ is simplicial.

F.Walhadsen’ theorem \[3\] states that any preserving orientation simplicival involution of the sphere S^3 is conjugated in the group of homeomorphisms to one of standard involutions: $(y_1, y_2, y_3, y_4) \mapsto (-y_1, -y_2, -y_3, -y_4)$ (no fixed points), or $(y_1, y_2, y_3, y_4) \mapsto (-y_1, -y_2, y_3, y_4)$ (there are fixed points). In the first case the orbit space S^3/τ is $\mathbb{R}P^3$. In the second case $S^3/\tau \cong S^3$.

So, to prove our theorem 2 it is sufficient to obtain a criteria for the involution τ to have fixed points. The desired existence of fixed points for τ is equivalent to the fact that for some $g_i, 1 \leq i \leq n$, the element $(g_i, -1) \in \tilde{G}$ possesses at least one fixed point $x \in Sp(1)$, i.e. a point $x \in Sp(1)$ with the condition $-q_i x q_i^{-1} = x$.

Consider the equation $q x q^{-1} = -x$ on the group $Sp(1)$ for a given $q \in Sp(1)$. Since $\text{Re}(q x q^{-1}) = \text{Re}(x)$, then a solution x of our equation could be only a purely imaginary quaternion of unit length. It is known, that the epimorphism $Sp(1) \to SO(3)$ maps a quaternion $q \in Sp(1)$ onto the element $g \in SO(3)$ such that $g(x) = q x q^{-1}$, where x is an arbitrary purely imaginary quaternion of unit length. As any element $g \in SO(3)$ is a rotation about a line by some angle, then the equation $g(x) = -x$ has a solution iff g is a rotation by the angle π, i.e. $g^2 = e$. Since $g \in G$, then the sought condition is equivalent to the order of the group G be even. \(\square\)

The author is deeply grateful to the corresponding member of RAS, Professor V.M. Buchstaber for fruitful discussions and an instant interest to the research, and to Associate Professor I.Yu. Limonchenko for reading the manuscript and making valuable comments.
References

[1] V. M. Buchstaber, *n-Valued Groups: Theory and Applications*, Mosc. Math. J., 6:1 (2006), 57–84

[2] S. Illman, *Smooth Equivariant Triangulations of G-Manifolds for G a Finite Group*, Math. Ann., 233 (1978), 199–220

[3] F. Waldhausen, *Über Involutionen Der 3-Sphäre*, Topology, 8 (1969), 81–91

D. V. Gugnin
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
E-mail: dmitry-gugnin@yandex.ru