Cold, clumpy accretion onto an active supermassive black hole

Grant R. Tremblay1,2, J. B. Raymond Oonk3,4, Françoise Combes5, Philippe Salomé5, Christopher P. O’Dea6,7, Stefi A. Baum6,8, G. Mark Voit9, Megan Donahue9, Brian R. McNamara10, Timothy A. Davis11, Michael A. McDonald12, Alastair C. Edge13, Tracy E. Clarke14, Roberto Galván–Madrid2,15, Malcolm N. Bremer16, Louise O. V. Edwards1, Andrew C. Fabian17, Stephen Hamer5, Yuan Li18, Anâelle Maury19, Helen R. Russell17, Alice C. Quillen20, C. Megan Urry1, Jeremy S. Sanders21 & Michael W. Wise3

Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales1-3. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas4. Recent theory5-7 and simulations8-10 instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift $z = 0.0821$) giant elliptical galaxy surrounded by a dense halo of hot plasma11-13. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre14, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core15. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations16 of warmer atomic gas at extremely high spatial resolution17, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

We observed the Abell 2597 BCG (Fig. 1) with the Atacama Large Millimeter/submillimeter Array (ALMA), enabling us to create a three-dimensional map of both the location and motions of cold gas at uniquely high sensitivity and spatial resolution. The ALMA receivers were sensitive to emission from the $J = 2–1$ rotational line of the carbon monoxide (CO) molecule. Such CO(2–1) emission is used as a tracer of the cold, clumpy accretion flow into the galaxy at about $300 \mathrm{km} \mathrm{s}^{-1}$ towards the black hole at its core. The observations reveal that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations16 of warmer atomic gas at extremely high spatial resolution17, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

We observed the Abell 2597 BCG (Fig. 1) with the Atacama Large Millimeter/submillimeter Array (ALMA), enabling us to create a three-dimensional map of both the location and motions of cold gas at uniquely high sensitivity and spatial resolution. The ALMA receivers were sensitive to emission from the $J = 2–1$ rotational line of the carbon monoxide (CO) molecule. Such CO(2–1) emission is used as a tracer of the cold, clumpy accretion flow into the galaxy at about $300 \mathrm{km} \mathrm{s}^{-1}$ towards the black hole at its core. The observations reveal that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations16 of warmer atomic gas at extremely high spatial resolution17, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

The continuum-subtracted CO(2–1) images (Fig. 2) reveal that the filamentary emission line nebula that spans the galaxy’s innermost $\sim 30 \mathrm{kpc}$ (Fig. 1b) consists not only of warm ionized gas18-20, but also cold molecular gas. In projection, the optical emission line nebula is co-spatial and morphologically matched with CO(2–1) emission detected at a significance between $\gtrsim 3 \sigma$ (in the outer filaments) and $\gtrsim 20 \sigma$ (in the nuclear region) above the background noise level. The warm ionized nebula is therefore likely to have a substantial molecular component, consistent with results for other similar galaxies21. The total measured CO(2–1) line flux corresponds to a molecular hydrogen gas mass of $M_\text{H}_2 = (1.8 \pm 0.2) \times 10^7 M_\odot$, where M_\odot is the mass of the Sun. The critical (minimum) density for CO(2–1) emission requires that the volume filling factor of this gas be very low, of the order of a few percent. The projected spatial coincidence of both the warm ionized and cold molecular nebulae therefore supports the long-envisaged hypothesis that the ionized gas is merely the warm ‘skin’ surrounding far colder and more massive molecular cores22,23, whose outer regions are heated by intense radiation from the environment in which they reside. Rather than a monolithic, kiloparsec-scale slab of cold gas, we are more likely to be observing a projected superposition of many smaller, isolated clouds and filaments.

The data unambiguously show that cold molecular gas is falling inward along a line of sight that intersects the galaxy centre. We know this because the ALMA beam that is co-spatial with the millimetre continuum source, the radio core, and the isophotal centre of the galaxy reveals strong, redshifted continuum absorption (Fig. 3b), found by extracting the CO(2–1) spectrum from this central beam. This reveals at least three deep and narrow absorption lines (Fig. 3c), with redshifted line centres at $+240, +275$, and $+335 \mathrm{km} \mathrm{s}^{-1}$ relative to the systemic (stellar) velocity of the galaxy, all within an angular (physical) region of $0.715'' \times 0.533''$ (1 kpc $\times 0.8$ kpc).

These absorption features arise from cold molecular clouds moving towards the centre of the galaxy, via either radial or inspiralling trajectories. They manifest as continuum absorption because they cast ‘shadows’ along the line of sight as the clouds eclipse or attenuate about $\sim 20\%$ (or about 2 mJy) of the millimetre synchrotron continuum source, which serves as a bright backlight (13.6 mJy at rest-frame 230 GHz). The synchrotron continuum is emitted by jets launched from the accreting supermassive ($\sim 3 \times 10^8 M_\odot$; ref. 13) black hole in the galaxy’s active nucleus (Fig. 4). The absorbers must therefore be located somewhere between the observer and the galaxy centre, falling deeper into the galaxy at about $+300 \mathrm{km} \mathrm{s}^{-1}$ towards the black hole at its core.

1Yale Center for Astronomy and Astrophysics, Yale University, 52 Hillhouse Avenue, New Haven, Connecticut 06511, USA. 2European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany. 3ASTRON, Netherlands Institute for Radio Astronomy, PO Box 2, 7990 AA Dwingeloo, the Netherlands. 4Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden, The Netherlands. 5Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), Observatoire de Paris, PSL Research University, 75014 Paris, France. 6Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada. 7School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, New York 14623, USA. 8Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, New York 14623, USA. 9Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824-2320, USA. 10Department of Physics, Durham University, Durham DH1 3LE, UK. 11Naval Research Laboratory Remote Sensing Division, Code 7213, 4555 Overlook Avenue Southwest, Washington DC 20375, USA. 12Instituto de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Ganadería), 58089 Morelia, Michoacán, Mexico. 13H. W. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK. 14Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA, UK. 15Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, Michigan 48109, USA. 16Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, 18080 Granada, Spain. 17Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), Observatoire de Paris, PSL Research University, 75014 Paris, France. 18Instituto de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Ganadería), 58089 Morelia, Michoacán, Mexico. 19Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu CNRS—Université Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette, France. 20Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA. 21Max-Planck-Institut für Extraterrestrische Physik, 85748 Garching bei München, Germany.

© 2016 Macmillan Publishers Limited. All rights reserved

LETTER
This radial speed is roughly equal to the expected circular velocity in the nucleus, consistent either with a nearly radial orbit, or with highly non-circular motions in close proximity to the galaxy's core.

Gaussian fits to the spectral absorption features reveal narrow linewidths of $\sigma_v \lesssim 6\, \text{km}\,\text{s}^{-1}$, which means the absorbers are more probably spatially compact, with sizes that span tens (rather than hundreds or thousands) of parsecs. The shapes of the absorption lines remain roughly the same regardless of how finely the spectra are binned, suggesting that the absorbers are probably coherent structures, rather than a superposition of many smaller absorbers unresolved in velocity space. If each absorption feature corresponds to one coherent cloud, and if those clouds roughly obey size–linewidth relations for giant molecular clouds in the Milky Way, they should have diameters not larger than $\sim 40\, \text{pc}$. If in virial equilibrium, molecular clouds this size would have masses of the order of 10^5–$10^6\, M_\odot$, and if in rough pressure equilibrium with their ambient multiphase (10^3–$10^7\, \text{K}$) environment, they

must have high column densities of the order of $N_{\text{H}} \approx 10^{22}$–$10^{24}\, \text{cm}^{-2}$ so as to maintain pressure support. The thermal pressure in the core of Abell 2597 BCG is nearly $3,000\, \text{times}$ greater than that for the Milky Way, however, which means the absorbing clouds may be much smaller.

The absorbers have optical depths in the range $0.1 \lesssim \tau_{\text{CO}(2–1)} \lesssim 0.3$. The physical resolution of the ALMA data is larger than the synchrotron background source, which means that the optical depth is probably contaminated by an unresolved, additive superposition of both emission and absorption within the beam. Compact, dense cold clouds are nevertheless likely to be optically thick, which may mean they eclipse the continuum source with an optical depth of unity but a small covering factor of roughly 0.2. Especially when considering beam contamination by emission, the covering factor cannot be known with certainty, as this depends on the unknown geometry of the absorbing and emitting regions within the ALMA beam.

This geometry can be constrained, however, given existing Very Long Baseline Array (VLBA) radio observations at extremely high spatial resolution. These data resolve the 1.3 GHz and 5 GHz radio continuum source down to scales of 25 pc, revealing a highly symmetric, 100–pc-scale jet about a bright radio core (Fig. 4c). Just as we have found in cold molecular gas, inflowing warmer atomic hydrogen gas (H I) has previously been found in absorption against this parsec-scale jet, corroborating prior reports of inflowing atomic gas at lower spatial resolutions. The inflow velocity of this gas matches that seen...
inward-moving, clumpy distribution of molecular clouds within a few hundred parsecs of an accreting supermassive black hole. The result augments a small but growing set of known molecular absorption systems\(^9\)–\(^2_\text{9}\) whose black hole proximity is less well constrained. The infalling clouds in Abell 2597 BCG are probably a few to tens of parsecs across and therefore massive (perhaps \(10^8–10^9\) \(M_\odot\) each). If they are falling directly towards the black hole, rather than bound in a non-circular orbit that tightly winds around it, they could supply an upper-limit accretion rate of the order of \(\sim 0.1\) to a few solar masses per year, depending on the three-dimensional distribution of infalling clouds. If most of the clouds are instead locked in non-circular orbits around the black hole, the fuelling rate would depend on the gas angular momentum, and the local supply of torques that might lessen it. Simulations suggest\(^9,16,14\) that such torques may be plentiful, as they predict a stochastic ‘rain’ of thermal instabilities that condense from all directions around the black hole, promoting angular momentum cancellation via tidal stress and cloud–cloud collisions. Even highly elliptical cloud orbits should therefore be associated with significant inward radial motions. The clouds might fall onto the accretion disk itself, or into a clumpy rotating ring akin to the ‘torus’ invoked in AGN unification models\(^5\).

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 17 December 2015; accepted 22 March 2016.

1. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007).
2. McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14, 055023 (2012).
3. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
4. Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952).
5. Pizzolato, F. & Soker, N. On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005).
6. Voit, G. M., Donahue, M., Bryan, G. L. & McDonald, M. Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–205 (2015).
7. Voit, G. M., Bryan, G. L., O’Shea, B. W. & Donahue, M. Precipitation-regulated star formation in galaxies. Astrophys. J. 808, L30 (2015).
8. Sharma, P., McCourt, M., Quataert, E. & Parrish, I. J. Thermal instability and the feedback regulation of hot haloes in clusters, groups, and galaxies. *Mon. Not. R. Astron. Soc.* **420**, 3174–3194 (2012).

9. Gaspari, M., Ruszkowski, M. & Oh, S. P. Chaotic cold accretion on to black holes. *Mon. Not. R. Astron. Soc.* **432**, 3401–3422 (2013).

10. Li, Y. & Bryan, G. L. Modeling active galactic nucleus feedback in cool-core clusters: the formation of cold clumps. *Astrophys. J.* **789**, 153 (2014).

11. McNamara, B. R. et al. Discovery of ghost cavities in the X-ray atmosphere of Abell 2597. *Astrophys. J.* **562**, L149–L152 (2001).

12. Clarke, T. E., Sarazin, C. L., Blanton, E. L., Neumann, D. M. & Kassim, N. E. Low-frequency radio observations of X-ray ghost bubbles in A2597: a history of radio activity in the core. *Astrophys. J.* **625**, 748–753 (2005).

13. Tremblay, G. R. et al. Multiphase signatures of active galactic nucleus feedback in Abell 2597. *Mon. Not. R. Astron. Soc.* **424**, 1026–1041 (2012).

14. Gaspari, M., Brighenti, F. & Temi, P. Chaotic cold accretion on to black holes in rotating atmospheres. *Astron. Astrophys.* **579**, A62 (2015).

15. Tremblay, G. R. et al. Residual cooling and persistent star formation amid active galactic nucleus feedback in Abell 2597. *Mon. Not. R. Astron. Soc.* **424**, 1042–1060 (2012).

16. O’Dea, C. P., Baum, S. A. & Gallimore, J. F. Detection of extended H i absorption toward PKS 2322–123 in Abell 2597. *Astrophys. J.* **436**, 669–677 (1994).

17. Taylor, G. B., O’Dea, C. P., Peck, A. B. & Koekemoer, A. M. H i Absorption toward the nucleus of the radio galaxy PKS 2322–123 in A2597. *Astrophys. J.* **512**, L27–L30 (1999).

18. O’Dea, C. P., Baum, S. A., Mack, J., Koekemoer, A. M. & Laor, A. Hubble Space Telescope STIS far-ultraviolet observations of the central nebula in the cooling-core clusters A1795 and A2597. *Astrophys. J.* **612**, 131–151 (2004).

19. Oonk, J. B. R., Hatch, N. A., Jaffe, W., Bremer, M. N. & van Weeren, R. J. Far-ultraviolet emission in the A2397 and A2204 brightest cluster galaxies. *Mon. Not. R. Astron. Soc.* **414**, 2309–2336 (2013).

20. Tremblay, G. R. et al. Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies. *Mon. Not. R. Astron. Soc.* **451**, 3768–3800 (2015).

21. Salomé, P. et al. A very extended molecular web around NGC 1275. *Astron. Astrophys.* **531**, A85 (2011).

22. Jaffe, W., Bremer, M. N. & Baker, K. H i and Hα in the envelopes of cooling flow central galaxies. *Mon. Not. R. Astron. Soc.* **360**, 748–762 (2005).

23. Salomé, P. et al. Cold molecular gas in the Perseus cluster core. Association with X-ray cavity, Hα filaments and cooling flow. *Astron. Astrophys.* **454**, 437–445 (2006).

24. Smith, E. P., Heckman, T. M. & Illingworth, G. D. Stellar dynamics of powerful radio galaxies. *Astrophys. J.* **356**, 399–415 (1990).

25. Larson, R. B. Turbulence and star formation in molecular clouds. *Mon. Not. R. Astron. Soc.* **194**, 809–826 (1981).

26. Solomon, P. M., Rivolo, A. R., Barrett, J. & Yahil, A. Mass, luminosity, and line width relations of Galactic molecular clouds. *Astrophys. J.* **319**, 730–741 (1987).

27. Wiklind, T. & Combes, F. Molecular absorption and its time variations in Centaurus A. *Astron. Astrophys.* **324**, 51–64 (1997).

28. Espada, D. et al. Disentangling the circumnuclear envoirs of Centaurus A. II. On the nature of the broad absorption line. *Astrophys. J.* **720**, 666–676 (2010).

29. David, L. P. et al. Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. *Astrophys. J.* **792**, 94 (2014).

30. Urry, C. M. & Padovani, P. Unified schemes for radio-loud active galactic nuclei. *Publ. Astron. Soc. Pacif.* **107**, 803–845 (1995).

Acknowledgements ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. We are grateful to the European ALMA Regional Centres, particularly those in Garching and Manchester, for their dedicated end-to-end support of data associated with this paper. We thank R. Larson for discussions. G.R.T. acknowledges support from National Aeronautics and Space Administration (NASA) through Einstein Postdoctoral Fellowship Award Number PF-150128, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. F.C. acknowledges the European Research Council (ERC) for the Advanced Grant Program no. 267399-Momentum. B.R.M. is supported by a grant from the Natural Sciences and Engineering Research Council of Canada. T.A.D. acknowledges support from a Science and Technology Facilities Council (STFC) Ernest Rutherford Fellowship. A.C.E. acknowledges support from STFC grant ST/L00075X/1. A.C.F. and H.R.R. acknowledge support from ERC Advanced Grant Program no. 340442-Feedback. M.N.B. acknowledges funding from the STFC. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 Base funding.

Author Contributions G.R.T. was principal investigator on the original proposal, performed the data analysis, and wrote the paper. J.B.R.O., T.A.D., R.G.M. and A.M. were substantially involved in planning both scientific and technical aspects of the proposal, while T.A.D. and R.G.M. contributed ALMA data reduction and analysis expertise once the data were obtained. J.B.R.O., F.C. and P.S. invested substantial time in analysis of the data. Substantial scientific feedback was also provided over many months by F.C., J.B.R.O., C.P.O., S.A.B., G.M.V., M.D., B.R.M., M.A.M., T.E.C., H.R., A.C.E. and A.C.F., while all other co-authors discussed the results and commented on the manuscript.

Author Information This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00988.S. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to G.R.T. (grant.tremblay@yale.edu).
METHODS

Observations, data reduction, and analysis. The new ALMA data presented in this paper were obtained in Cycle 1 with the use of 29 operational antennae in the 12 m Array. ALMA’s Band 6 heterodyne receivers were tuned to a frequency of 213 GHz, sensitive to the J = 2–1 rotational line transition of carbon monoxide at the redshift of the Abell 2597 BCG (z = 0.0821). The ALMA correlator, set to Frequency Division Mode (FDM), delivered a bandwidth of 1.875 MHz per (baseband) with a 0.488 MHz channel spacing, for a maximum spectral resolution of about 2 km s\(^{-1}\). One baseband was centered on the CO(2–1) emission line, while the other three basebands sampled the local continuum. Maximum antenna baselines extended to ~1 km, delivering an angular resolution at 213 GHz of ~0.3" within a ~28" primary beam (field of view). ALMA observed the Abell 2597 BCG, located at RA 23h 25m 20s, dec. –12° 07’ 38” (J2000), for a total of ~3 h over three separate scheduling blocks executed between 17 and 19 November 2013. The planet Neptune and quasars J2258 – 2758 and J2331 – 1556 were used for amplitude, flux, and phase calibration. The data were reduced using CASA version 4.2 with calibration and imaging scripts kindly provided by the ALMA Regional Centers (ARC’s) in both Garching, Germany and Manchester, UK. Beyond the standard application of the phase calibrator solution, we iteratively performed self-calibration of the data using the galaxy’s own continuum, yielding a ~14% decrease in RMS noise to a final value of 0.16 mJy per 0.715” x 0.533” beam per 40 km s\(^{-1}\) channel. There is effectively no difference in CO(2–1) morphology between the self-calibrated and non-self-calibrated data cubes. Measurement sets were imaged using ‘natural’ visibility weighting and binning to either 5 km s\(^{-1}\), or 40 km s\(^{-1}\), as indicated in the figure legends. The figures presented in this Letter show only continuum-subtracted, pure CO(2–1) line emission. The rest-frame 230 GHz continuum observation is dominated by a bright (13.6 mJy) point source associated with the AGN (detected at ~2000s), serving as the bright ‘background’ against which the continuum absorption features presented in this Letter were observed. The continuum bandwidth is a factor of 38 narrower than the CO(2–1) extended emission at ~10" that extends along the galaxy’s dust lane, to be discussed in a forthcoming paper.

Adoption of a systemic velocity. Interpretation of gas motions relative to the stellar component of a galaxy requires adoption of a systemic (stellar) velocity to be used as a ‘zero point’ marking the transition from blue- to redshift. All CO(2–1) line velocities discussed in this Letter are set relative to 213.04685 GHz, where observed CO(2–1) emission peaks. This frequency corresponds to 12CO(2–1) (rest-frame emission peaks. This frequency corresponds to 12CO(2–1) (rest-frame) and continuum-only signals, respectively, and CO(2–1) is the optical depth of the CO(2–1) absorption feature.

The stellar velocity dispersion of the BCG is 33 \(\sigma_v\) = 60 km s\(^{-1}\) (that is, \(\sigma_v\) = 63 \(\pm 2\) km s\(^{-1}\)). The uncertainty means they could be on a nearly radial orbit (though their transverse velocity cannot be known with this single observation).

Estimating physical properties of the redshifted absorbing molecular gas. We have estimated a rough upper-limit size of the absorbing clouds assuming the widely adopted Larson et al. \(\rho_\text{HI}/\rho_\text{H}2\) conversion factor, and that independently suggests that the inward moving molecular clouds must be in close proximity to the black hole. If our line of sight is representative, and therefore a ‘pencil beam’ sample of a three-dimensional spherical distribution of clouds, the total mass of cold gas contained within this distribution should grow as:

\[
M \approx 10^5 M_\odot \times \frac{r}{1 \text{kpc}} \times \left(\frac{N_H}{10^{22} \text{cm}^{-2}} \right)
\]

where \(f_c\) is the covering factor and \(r\) is the radius of an imaginary thin spherical shell of molecular gas with column density \(N_H\). If such a shell had a covering factor of 1, a radius of 1 kpc, and a column density of 10^{22} cm\(^{-2}\), then the total mass of molecular hydrogen contained within that shell would be roughly one billion solar masses. A column density in excess of 10^{23} cm\(^{-2}\) requires this distribution to be contained within a sphere of radius < 1 kpc, lest the limit set by the total mass of molecular hydrogen in the galaxy be violated. If the characteristic column density is 10^{23} cm\(^{-2}\), for example, this mass must be contained within a sphere of radius 300 pc, or else its total mass would exceed the 1.8 \times 10^8 M_\odot of cold gas present in the galaxy.

Codes, software, and data availability. Codes that we have written to both reduce and analyze the data presented in this Letter have been made publicly available at https://github.com/granttremblay/Tremblay_Nature_ALMA_Abell2597. Also available at https://casa.nrao.edu/. Plots were made using both Python’s MatPlotLib and Vizier, which is available at http://hgle.org/vizier/.