Comment on “Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology”

http://dx.doi.org/10.1289/ehp.1511057

Refers to http://dx.doi.org/10.1289/ehp.1510041

In a recent Brief Communication, Calafat et al. expressed concern that epidemiological studies inappropriately assess exposure to nonpersistent chemicals such as bisphenol A (BPA) and phthalates by measuring chemical concentrations in serum and tissues. They assert that urine is the most scientifically valid matrix and that accurate measurement of other matrices is difficult due to contamination of samples and assays. We believe their assertions require clarification.

The scientifically appropriate matrix is determined by the study objectives. For population studies, we agree urine is an appropriate matrix to initially probe whether exposure to a nonpersistent chemical is associated with a disease or risk factor. However, Calafat et al. appear to target more than population studies. They illustrate the purportedly growing problem of non-urate measurement in epidemiology with a list of 80 studies, cited by PubMed identification numbers (PMIDs), which surprisingly includes pharmacokinetic and experimental studies.

Of these 80 studies, 35 arguably required non-urate matrices to achieve study objectives. For example, in five studies (PMIDs 10716589, 10964036, 11604266, 17661831, 23145999) the subjects were dialysis patients—i.e., people without normal capacity to produce urine. One study used a placenta perfusion system to examine phthalate distribution between maternal and fetal circulation (PMID 17049806). A dog study (PMID 23761051) found unmetabolized BPA was rapidly absorbed into circulation following sublingual administration. A human study (PMID 25337790) exposed participants to BPA-containing receipt paper and found a substantial increase of unmetabolized BPA in serum. It seems inconceivable to us that Calafat et al. would consider such studies inherently flawed.

For chemicals excreted in urine, the urinary concentration provides an estimate of exposure. However, the bioactive form in serum and tissue is what alters physiology. When a nonpersistent chemical is absorbed via the gut, first-pass metabolism by the liver can dramatically reduce the amount of unmetabolized compound reaching the bloodstream as compared with other routes (Søeborg et al. 2014). Therefore, for chemicals in widespread undocumented use—where route-of-exposure information is unavoidably incomplete—one cannot accurately predict the internal concentrations of the unmetabolized compounds with urine measurements and a model that includes only gut absorption. Such models may grossly underestimate internal bioactive dose from non-urate exposures and incorrectly suggest that measurement of higher-than-predicted serum concentrations is due to contamination.

In our view, Calafat et al. suggest that non-urate measurements are invariably contaminated. However, contamination cannot explain the results of the studies by Gayrard et al. (2013) and Hornemann et al. (2014), which demonstrated classic pharmacokinetic curves with logical interrelationships between the parent compound and metabolites. Furthermore, the proposition that contamination is unavoidable is contradicted by numerous studies spanning 15 years (von Saal and Welshons 2014). For example, in a paper coauthored by Calafat (Ye et al. 2013), the authors reported accurately measuring BPA in human serum after identifying and eliminating contamination. Subsequently, Vandenberg et al. (2014) reported a blinded study directed by the National Institutes of Health (NIH) in which several U.S. laboratories accurately measured BPA in human serum spiked by NIH personnel. Arguing that chemical X cannot be measured in tissue Y because of contamination is an odd position to take, given that eliminating sources of contamination is a normal part of the development and validation of any assay—as was clearly described by Ye et al. (2013).

In summary, without further clarification, the Brief Communication by Calafat et al. could easily be interpreted as proposing that human environmental studies of any kind must measure nonpersistent chemicals and metabolites only in urine if they are to be funded and published. Such an interpretation would greatly restrict our ability to move from surface-level exposure measures to internal dose, pharmacokinetics, and in vivo pathophysiology. Given the prominence of the authors in environmental health research, this issue needs to be clarified.

The authors declare they have no actual or potential competing financial interests.

Richard W. Stahlhut,1 Richard B. van Breeemen,2 Roy R. Gerona,3 Julia A. Taylor,1 Wade V. Welshons,4 and Frederick S. vom Saal1

1Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA; 2College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA; 3Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; 4Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA

Address correspondence to R. Stahlhut, Division of Biological Sciences, 1078 Lefevre Hall, University of Missouri–Columbia, Columbia, MO 65211 USA.

E-mail: stahlhur@missouri.edu

REFERENCES

Gayrard V, Lacroix MZ, Collet SH, Vique C, Bousquet-Melou A, Toutain P-L, et al. 2013. High bioavailability of bisphenol A from sublingual exposure. Environ Health Perspect 121:951–956, doi:10.1289/ehp.1206339.

Hornemann AM, von Saal FS, Nagel SC, Stahlhut RW, Moyer CL, Ellersieck MR, et al. 2014. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PLoS One 9:e110509, doi:10.1371/journal.pone.0110509.

Søeborg T, Frederiksen H, Andersson A-M. 2014. Considerations for estimating daily intake values of non-persistent environmental endocrine disruptors based on urinary biomonitoring data. Reproduction 147(4):455–463, doi:10.1530/REP-13-0458.

Vandenberg LN, Gerona RR, Kannan K, Taylor JA, van Breeemen RB, Dickinson CA, et al. 2014. A round robin approach to the analysis of bisphenol A (BPA) in human blood samples. Environ Health Glob Access Sci Source 13(1):25, doi:10.1186/1747-699X-13-25.

von Saal FS, Welshons WW. 2014. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine that BPA causes numerous hazards from multiple routes of exposure. Mol Cell Endocrinol 398(1–2):101–113, doi:10.1016/j.mce.2014.09.028.

Ye X, Zhou X, Hennings R, Kramer J, Calafat AM. 2013. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge. Environ Health Perspect 121(3):283–286, doi:10.1289/ehp.1206093.

Response to “Comment on ‘Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology’”

http://dx.doi.org/10.1289/ehp.1611282

Refers to http://dx.doi.org/10.1289/ehp.1510041

We appreciate the opportunity to respond to the letter from Stahlhut et al. regarding our Brief Communication. We stressed the importance of biospecimen integrity and the potential danger of unrecognized contamination of convenience samples, particularly with ubiquitous environmental chemicals such as bisphenol A (BPA) and phthalates.

We did not discuss the important area of experimental research and specifically pharmacokinetic studies, although we based our argument partly on knowledge of concentration changes in various compartments post-exposure. We agree that information from pharmacokinetic models is quite valuable and note that experimental studies that use isotope-labeled materials are not susceptible...
Correspondence

Correspondence

This is true for any matrix, including urine (Guidry et al. 2015; Koch et al. 2012), to ensure valid results.

R.A.R. is employed at the Silent Spring Institute, a 501(c)(3) public charity funded by federal grants and contracts, foundation grants, and private donations, including from breast cancer organizations. When this reply was written, M.P.L. was working part-time at Ramboll with support from 3M; however, the work on the reply was done solely with support by the National Institute of Environmental Health Sciences, where M.P.L. works as a government contractor. The authors certify that their freedom to design, conduct, interpret, and publish research was not compromised by any sponsor.

Antonia M. Calafat,1 Matthew P. Longnecker,2 Holger M. Koch,3 Shanna H. Swan,4 Russ Hauser,5 Lynn R. Goldman,6 Bruce P. Lanphear,7 Ruthann A. Rudel,8 Stephanie M. Engel,9 Susan L. Teitelbaum,4 Russ Hauser,5 Lynn R. Goldman,6 Bruce P. Lanphear,7 Ruthann A. Rudel,8 Stephanie M. Engel,9 Susan L. Teitelbaum,4 Ruthann A. Rudel,8 Stephanie M. Engel,9 Susan L. Teitelbaum,4

1Centers for Disease Control and Prevention, Atlanta, Georgia, USA; 2National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA; 3Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Universität Bochum, Bochum, Germany; 4Icahn School of Medicine at Mount Sinai, New York, New York, USA; 5Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA; 6Milken Institute School of Public Health, George Washington University, Washington, DC, USA; 7British Columbia Children’s Hospital, Vancouver, British Columbia, Canada; 8Silent Spring Institute, Boston, Massachusetts, USA; 9University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 10Mailman School of Public Health, Columbia University, New York, New York, USA

Address correspondence to M. Wolff, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., Box 1057, New York, NY 10029 USA.

E-mail: mary.wolff@mssm.edu

References

Guidry VT, Longnecker MP, Aase H, Eggesbo M, Zeiner P, Reichborn-Kjennerud T, et al. 2015. Measurement of total and free urinary phenol and paraben concentrations over the course of pregnancy: assessing reliability and contamination of specimens in the Norwegian Mother and Child Cohort Study. Environ Health Perspect 123(7):705–711, doi:10.1289/ehp.1408325.

Koch HM, Kalossa-Gehring M, Schrotter-Kermeri C, Angerer J, Brüning T. 2012. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: a retrospective exposure evaluation. J Expo Sci Environ Epidemiol 22(6):610–616, doi:10.1038/jes.2012.39.

Thayer KA, Doerge DR, Hunt D, Schurman SH, Twaddle NC, Churchwell MI, et al. 2015. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ Int 82:107–115, doi:10.1016/j.envint.2015.06.008.

Thayer KA, Taylor KW, Garantziotis S, Schurman S, Kissling GE, Hunt D, et al. 2016. Bisphenol A, bisphenol S, and 4-hydroxyphenyl 4-isopropoxyphenyl sulfone (BPSIP) in urine and blood of cashiers. Environ Health Perspect 124(4):437–444, doi:10.1289/ehp.1409427.