The endocannabinoid system – current implications for drug development

C. J. Fowler

From the Department of Integrative Medical Biology, Umeå University, Umeå, Sweden

Abstract. Fowler CJ (Umeå University, Umeå, Sweden). The endocannabinoid system – current implications for drug development (Review). J Intern Med 2021; 290:2–26. https://doi.org/10.1111/joim.13229

In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with Δ⁹-tetrahydrocannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.

Keywords: Δ⁹-tetrahydrocannabinol, anxiety, cannabinoid receptors, endocannabinoid, fatty acid amide hydrolase, pain.

Introduction

Cannabis sativa has been used for recreational and medicinal purposes for centuries [1]. Following the identification of the structure of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic ingredient in cannabis [2] and the identification and cloning of a cannabinoid (CB) receptor in the late 1980s–early 1990s [3,4], anandamide (arachidonoylethanolamide, AEA) was identified as an endogenous CB receptor ligand in 1992 [5] followed by 2-arachidonoylglycerol (2-AG) in 1995 [6,7] (for a review of the discovery of the structure of plant-derived (phyto-) and endogenous cannabinoids, see [8]). Since then, a massive scientific effort has delineated the ‘endocannabinoid’ (eCB) system, and how it can be modulated pharmacologically. In the present review, the current state of the art with respect to drug development in the eCB system is discussed, primarily with respect to the treatment of pain.

The eCB system

In this review, the eCB system is defined as the CB receptors, the main eCB ligands AEA and 2-AG, and their synthetic and degradative enzymes. This can be considered as the minimalist approach, since other endogenous CB ligands have been described [8], as have other targets for AEA and 2-AG, such as the transient potential receptor vanilloid 1 (TRPV1) [9] (for a review of the extended eCB system, see [10]), but it is of necessity in order to keep this review to a manageable size. Using the minimalist definition, pharmacological manipulation can be considered in terms of directly acting compounds (i.e. those interacting directly with the CB receptors as agonists, neutral antagonists, inverse agonists, biased agonists, or allosteric modulators) and of indirectly acting compounds (i.e. those affecting the concentration of eCBs available to interact with the receptor). These will be considered, in turn, together with a description of the targets themselves.
CB receptors

The name 'CB receptors' is something of a misnomer, since it implies that they are a receptor for cannabinoids. Whilst this of course is true for eCBs and for synthetic cannabinoids designed to target the receptor, most of the 110 or so phytocannabinoids [11] do not in fact interact with CB receptors. The International Union of Pharmacology recommends that novel receptors are named after the endogenous agonist, or the appropriate collective term when a family of related substances may interact with the receptor' [12]. CB receptors are admittedly not novel, but naming them after the endogenous agonist with the highest efficacy would suggest the use of 2-AG₁ and 2-AG₂ for CB₁ and CB₂ receptors, respectively. Such a change in nomenclature would resolve the confusion, but is unlikely to be particularly popular.¹

CB₁ receptors, the receptor subtype mediating the psychotropic effects of THC, are found in high abundance (at concentrations similar to those of striatal dopamine receptors) in the brain [13]. The distribution is, however, heterogeneous, with high expression being found in regions such as the substantia nigra, moderate expression in the hippocampus and low expression in the thalamus and pons [13]. The distribution of receptors reflects the myriad pharmacological effects of THC on perception, cognition, anxiety, gait, et cetera [14,15], whilst the low expression in the medullary nuclei [13] means that respiration is largely unaffected. CB₁ receptors are found on presynaptic nerve terminals, where they regulate neurotransmitter release, and a key role of 2-AG in the brain is to act as a retrograde transmitter, whereby postsynaptic 2-AG release results in activation of presynaptic CB₁ receptors which in turn inhibit the release of the neurotransmitter from the presynaptic nerve terminal [16] It would be wrong, however, to consider CB₁ receptors as exclusively neuronal in the brain, since functional CB₁ receptors are also expressed on astrocytes [17] It would also be incorrect to consider CB₁ receptors as being restricted to the brain and spinal cord – they have a wide distribution in the periphery with important functional properties in, for example, the autonomic nervous system, the gastrointestinal tract, adipose tissue, and bone [18-20] CB₂ receptors, first cloned in 1993 [21], are primarily found in immune cells (including microglia) but are also found in sensory, enteric and some central neurons [14,22].

CB receptors are G protein coupled receptors coupling primarily to G₁/G₉ and producing inhibitory effects on adenylyl cyclase and calcium channels as well as activating potassium channels and the mitogen activated kinase pathway [14]. However, the signalling produced by CB receptor activation is nuanced, given the presence of functionally active intracellular receptors [23,24], receptor heterodimerization [25], regulation by receptor-interacting proteins [26], coupling to different signalling pathways at different receptor expression levels [27] and negative-feedback mechanisms [28]. This has been extensively investigated in tumour cells, where both mitogenic and apoptotic effects mediated by CB receptors have been reported in the literature (e.g. [29,30]; for schematics showing the complex effects of cannabinoids upon intracellular signalling and the results thereof in cancer cells, see Fig. 1 of [31] and [32]).

A final note in this section concerns possible additional CB receptors, such as the orphan receptor GPR55, which, when transfected into human embryonic kidney cells, was originally reported to bind and respond (increased GTP₇S binding) to THC, AEA, 2-AG and some synthetic cannabinoid receptor ligands [33]. However, these data are controversial [34] and the International Union of Pharmacology, in their review in 2010, argued that the current data were insufficient to warrant the expansion of CB receptors to include additional receptors [35], and GPR55 remains an orphan receptor [36].

CB receptor ligands

Table 1 shows a selection of CB receptor ligands based upon their source and pharmacological effects. The discovered ligands run the entire gamut from pure agonists to inverse agonists and have been invaluable in characterizing the roles played by CB₁ and CB₂ receptors in the body. For readers unused to the terms 'inverse agonists' and 'biased agonists', see Fig. 1 for a mechanistic explanation.
The prototypical CB receptor ligand is of course THC, which acts as a partial agonist at CB₁ and CB₂ receptors [37]. This differs from the synthetic compounds such as 5F-CUMYL-PICA and MDMB-FUBINACA and MDMB-CHIMICA which have been rationally designed as recreational drugs [38] and which generally have greater efficacy than THC [38–40]. This difference in efficacy, together with potential off-target effects of the compounds per se and/or their metabolites and impurities in the preparations, accounts for the more severe adverse effects of such compounds, including ‘zombie-like’ behaviours, hallucinations, neurological disturbances and possibly even death [41–43].

Clinical use of THC, cannabidiol (CBD) and cannabis-based medicines

Synthetic THC (dronabinol) and nabilone, a close analogue of THC, have long been used for the treatment of anorexia in AIDS patients and for chemotherapy-induced nausea and vomiting, and more recently, nabiximols (an oromucosal spray with plant-derived THC and CBD) has been approved for the adjunctive treatment of spasticity in multiple sclerosis and in Canada for the treatment of pain associated with multiple sclerosis and cancer. CBD has recently been approved as an orphan drug in Europe and the USA as an add-on treatment of Dravet and Lennox-Gastaut syndromes although its efficacy is more likely due to effects upon ion channels than upon CB receptors [44–46]. Pharmacokinetic interactions with the first-line drug clobazam secondary to inhibition by CBD of CYP3A4 and CYP2D6 have been described [see [46]], but the clinical significance of this with respect to the beneficial effects of CBD in these rare syndromes is as yet unclear.

There is an increasing acceptance in different countries, driven more by societal rather than by rigorous evidence-based scientific considerations, to allow the compassionate use of medicinal cannabis. The degree of such acceptance varies considerably from country to country [see [47] for a discussion with respect to the status in Europe of cannabis-based medicines for the treatment of chronic pain as of 2017]. An important aspect is the difference in benefit as perceived by specialists and by the patients themselves. Thus, with respect to the use of cannabinoids and cannabis for non-cancer pain, a recent meta-analysis [48] of 47 randomized controlled trials reported a number needed to treat (NNT) for a 30% reduction pain of...
For a 50% reduction in pain, the active treatment was not significantly better than placebo. Put another way, the benefit corresponded to ~3 mm greater than placebo on a 100 mm visual analogue scale [48]. The number needed to treat to harm (with respect to all-cause adverse effects) was 6 (95% confidence interval 5–8). The authors concluded that ‘it appears unlikely that cannabinoids are highly effective medicines for CNCP’ (chronic non-cancer pain) [48]. Contrast this with a survey of 1748 Australian participants using cannabis preparations for pain, mental health, sleep problems and neurological conditions, where a very large majority of participants reported very much or much improved symptoms as a result of their cannabis use [49]. Their reported adverse effect profile (approximately $\frac{3}{4}$ of the participants reported increased appetite; $\frac{2}{3}$ drowsiness; $\frac{2}{5}$ ocular irritation; $\frac{3}{8}$ lack of energy; $\frac{1}{3}$ memory impairment; $\frac{1}{6}$ palpitations, paranoia; $\frac{1}{8}$ confusion, decreased appetite; $\frac{1}{10}$ dizziness; $\frac{1}{10}$ anxiety being the most common [49]) was the expected profile for THC-containing preparations [14,15]. The study was undertaken prior to Australian legislation allowed prescription of cannabis-based medicines, but a follow-up study taken after the legislation produced similar findings, albeit with the interesting observation that only 2.4% of the participants had used legally prescribed medical cannabis [50]. There were several reasons for this, but almost half of the respondents stated that they did not know a medical practitioner willing to subscribe medicinal cannabis, and $\frac{1}{8}$ did not

Table 1. CB receptor ligands

Mechanism	Endogenous compounds	Phyto-cannabinoids	Synthetic ligands
Partial non-selective agonist	AEA [188–190]	THC [37]	
Full non-selective agonists	2-AG [189,190]		CP55,940 [188]
			5F CUMYL-PICA [39]
Selective CB₁ receptor agonists	ACEA [191]		O-1812 [192]
Selective CB₂ receptor agonists	JWH133 [193]		A-796260 [61]
Biased CB receptor agonists	EG-018 [187]		PNR-4-20 [70]
			LY2828360 [72]
Non-selective neutral antagonist	THCV^a [194]		AM4113 [195]
CB₁ receptor-selective neutral antagonist			AM4113 [195]
Selective CB₁ receptor inverse agonists	Hemopressin [196]		Rimonabant (SR171416A) [197]
			AM251 [198]
Selective CB₂ receptor inverse agonists	SR144528 [199]		AM630 [200]
CB₁ receptor allosteric modulators	Pregnanolone [28]	CBD^b [202]	Org27569 [203]
	Lipoxin A4 [201]		PSNCBM-1 [204]
			GAT100 [205]

The references refer to the characterization of efficacies of the compounds rather than to their first discovery. Thus for example, rimonabant was initially described as a CB₁ receptor-selective antagonist [206], before being recategorized later as an inverse agonist. Note also that in <i>vitro</i> efficacies are not always mirrored in <i>vivo</i> (see [45]).

^aΔ⁹-tetrahydrocannabivarin; efficacy refers to CB₁ receptors.
^bCannabidiol.
want the healthcare providers to know about their use of medicinal cannabis. This is problematic, since it raises the spectre of prescribed drug-medical cannabis interactions, not least secondary to the inhibitory effects of CBD on the CYP oxidase enzymes, that could be detrimental to the well-being of the patient.

To readers who are not clinicians (including this author, who is a basal pharmacologist by trade), the large difference between the findings of [48] and [49] may be puzzling. Randomized clinical trials, when conducted well, provide good evidence for efficacy without problems of bias, but the patients that are recruited and the study conditions that are implemented may not mirror the real world. On the other hand, studies like [49] show use of medicines that unselected patients have chosen and, in this case, dosed individually to suit themselves, but bias such as selection and reporting bias is a real issue (see Table 2 as a theoretical illustration, with emphasis on the word ‘theoretical’, of reporting bias).

Whatever the explanation(s) for the difference between [48] and [49] (and other studies), they highlight a gap between recommendations of health specialists (for example, the Faculty of Pain Medicine of the Australian and New Zealand College of Anaesthetists who state ‘At the present time, the scientific evidence for the efficacy of cannabinoids in the management of people with chronic non-cancer pain is insufficient to justify endorsement of their clinical use’ [51]) and changes in the legal status of medicinal cannabis in many countries [47], with general practitioners caught in the middle [52,53]. Two quotes are worth citing to illustrate this dilemma: ‘Unless we learn from the history of opioids and their use, we run the risk of replicating a non-evidence based approach to pain therapy’ [15%] [28%] [31%] [19%] [6%] [1%] [0.2%]	10.0	11.5	12.0	12.5	13.0	13.5	14.0
Number [%] of individuals:	+ placebo effect x repliers	686	836	153	47	16	6
% of participants responding to questionnaire (‘repliers’)	(90%) (48%)	(9%)	(3%)	(0.9%)	(0.3%)	(0.2%)	

The simulation models a situation where a questionnaire is posted targeting individuals who have accessed a treatment paradigm without involvement of the health profession. A series of 5000 randomly generated data points following a normal distribution of 0 ± 1 (standard deviation) was used to simulate a perceived change following the treatment paradigm for 5000 individuals, assuming that the paradigm is without any benefit. The number [%] of data points within the ranges shown in the Table are determined, with each range being characterized as a given level of ‘perceived benefit’.

Next, an average placebo effect of + 1 unit is included (by random generation of 5000 data points following a normal distribution of +1 ±1), which increases the total % of cases in the +++ and ++ groups from 11% (treatment paradigm) to 43% (treatment paradigm + placebo effect). Finally, a reporting bias has been added, assuming that the individuals with extreme outcomes in the generated data are more likely to fill out the questionnaire (‘repliers’) to tell people about the beneficial effects, or to warn people about the negative outcome, than those where outcomes were marginal at best. The numbers shown in the ‘+ placebo effect x repliers’ are the + placebo effect data multiplied by the % repliers, and is the result that study designers would obtain. The % reply rates chosen are not unreasonable if the treatment paradigm in question was illegal at the time of the study, so participants may have been reticent to respond to the survey unless they felt that the outcomes were extreme and thereby worth reporting. With these reply rates, the % of cases in the +++ and ++ groups is 87% of the total number of repliers. It is important to stress that this simulation is not designed to dismiss studies of this type as merely reflecting a placebo effect + a reporting bias, but rather to highlight the importance of consideration of bias in their interpretation.
management (with cannabis, my note), which will ultimately let down patients in need' [54] and 'important that health providers understand that their patients' experiences of medical cannabis may not accord with reported clinical findings' [49].

Two other issues should be mentioned: whether or not THC enhances the analgesic effects of opioids and whether or not the changes in legislation have impacted the opioid epidemic in the USA. With respect to the former, population and observational studies have given conflicting results [55,56], and in their review, Babalonis and Walsh [57] concluded that 'the extant controlled clinical data do not support the role of cannabinoids for opioid replacement or opioid-sparing effects when treating opioid use disorder or chronic pain'. With respect to the latter, data suggesting this to be the case in USA states that adopted medical cannabis early was not found in states that changed their medical cannabis laws at a later date, possibly because of the degree of regulation of dispensaries was different in the later states [58]. The type of opioid in question was also an important parameter in determining the impact of cannabis on opioid-based overdoses and deaths [58].

Peripheral restricted CB receptor agonists and CB2 receptor-selective agonists

The unwanted central effect profile of THC places a ceiling on dosage. In order to avoid this issue, a peripherally restricted CB1 and CB2 receptor agonist, AZD1940, was developed and investigated clinically in acute pain (lower third molar surgical removal, capsaicin-induced pain and hyperalgesia) [59,60]. In both cases, the effects of AZD1940 were not better than placebo, a perhaps unsurprising result given the doubtful efficacy of THC itself in acute pain [57].

CB2 receptor-selective agonists do not produce the central effects of THC and are in theory a potentially attractive approach to therapies whereby engagement of this target can lead to beneficial outcome. At the outset, this approach looked very promising, with several different CB2 receptor-selective agonists producing beneficial effects in animal models of chronic inflammatory, neuropathic, postoperative and osteoarthritic pain [61–64]. However, the trial ended at the clinic. To my knowledge, the only published clinical studies for a CB2 receptor-selective agonist or biased agonist are those of Ostenfeld et al. [65] who reported that GW842166 was not efficacious in acute pain (third molar extraction) and Pereira et al. [66] who in an abstract reported a lack of efficacy of LY2828360 in osteoarthritic knee pain. The 'loss in translation' between preclinical promise and clinical reality is not restricted to CB2 receptor agonists but is a general problem [67]. One of several factors in play concerns the predictive validity of the preclinical animal models, which usually measure evoked hypersensitivity, which is only one (and not the most important) aspect of the pain seen in human neuropathic pain [68] (for a discussion of the preclinical and clinical disparity with respect to CB2 receptor agonists, see [69]).

Biased agonists as a way forward?

The notion that biased agonists can produce different degrees of activation along different pathways is attractive for drug development, particularly if such an approach can discriminate beneficial from adverse effects. CB receptor biased agonists have been investigated with respect to tolerance upon chronic use. Thus Ford et al. [70] described a non-selective CB receptor agonist, PNR-4-20, that stimulated G-protein mediated signalling but was less efficacious for β-arrestin 2 recruitment in Chinese hamster ovary cells transfected with human CB1 receptors. β-arrestin 2 recruitment correlates with agonist-induced internalization of CB1 receptors [71], and PNR-4-20 treatment of the cells caused and less down-regulation and desensitization of CB1 receptors than the 'balanced' agonist CP-55940 [72]. Another compound, LY2828360, produced biased signalling and a lower degree of CB2 receptor internalisation than CP55,940 [72]. In vivo, PNR-4-20 produced less tolerance to its hypothermic effect than seen with THC and the non-selective agonist JWH-018, and also produced less inverse agonist-induced withdrawal symptoms than JWH-018 following repeated exposure [70]. Although early days, these data suggest that a biased partial CB1 receptor agonist might be useful as a THC-mimic but with more moderate issues of tolerance and withdrawal effects than THC itself.

CB1 receptor inverse agonists and allosteric modulators

The pharmacology and clinical outcome of CB1 receptor inverse agonists and potential follow-up compounds has been reviewed recently [19] and so will only be dealt with briefly here. The well-known effects of THC upon appetite (the 'munchies') raises
the possibility that blockade of eCB signalling could provide a useful way to produce weight reduction. Over the years, it has been established that the eCB system effects food intake and metabolism not only due to central mechanisms mediated by CB1 receptors, but also by peripheral mechanisms, not least due to the CB1 receptor expression on adipocytes [19]. A series of clinical trials led to the approval in Europe in 2006 of rimonabant for the treatment of obesity. Other CB1 receptor-selective inverse agonists (taranabant, otenabant, ibipinabant and surinabant) were also undergoing clinical trials for treatment of obesity and as an aid to smoking cessation. However, the field imploded when rimonabant was withdrawn from the market due to an unacceptable risk of psychiatric side-effects, in particular anxiety and depressive symptoms [73]. It is possible that peripherally restricted CB1 receptor antagonists / inverse agonists may be a way around this issue, and such compounds have been described in the literature [19]. An alternative approach is the use of CB1 receptor allosteric negative modulators, which produce a less draconian modulation of CB1 receptor signalling than inverse agonists, and thereby may produce a more acceptable wanted : adverse effect profile [74], the operative word here being ‘may’.

Endocannabinoid synthesis and degradation: targets for indirectly acting compounds

AEA belongs to the family of endogenous N-acylethanolamines (NAEs) and the canonical pathway for NAE synthesis was established by Schmid and colleagues well before AEA was discovered [75–77]. In this pathway, N-acylphosphatidylethanolamines (NAPEs) are formed by the transacylation of membrane phosphatidylethanolamine containing phospholipids. NAPEs are then hydrolysed by NAPE-hydrolysing phospholipase D (NAPE-PLD) to form the NAEs (see Fig. 2). Three comments should be made:

- Genetic deletion or inhibition of NAPE-PLD reduces NAE levels in the brain, and its inhibition influences emotional behaviour in mice [78,79]. However, there are alternative synthetic pathways (reviews, see [80,81]).

- AEA synthesis is ‘on demand’ and is controlled by the environment. Thus, for example, treatment of cortical neuronal cultures with the combination of glutamate and the acetylcholine receptor agonist carbachol increases AEA formation in a manner blocked by buffering of intracellular calcium [82]. NAPE-PLD itself can be regulated by bile acids [83] and inflammatory stimuli [84].

- As implied by the fact that the canonical pathway was established prior to the discovery of AEA, the output of the pathway is not AEA alone but a family of NAEs, of which the most abundant are palmitoylethanolamide (PEA), oleoylethanolamide (OEA) and stearoylethanolamide (SEA). Indeed, in most tissues, levels of PEA, OEA and SEA are much higher than the levels of AEA, a notable exception being the mouse uterus, where AEA is predominant and where its levels are inversely associated with uterine receptivity [85]. These compounds do not interact directly with CB receptors. However, they are biologically active, the most studied being PEA which produces anti-inflammatory effects mediated by activation of peroxisome proliferator-activated receptor α and other targets, and which has been reported to have beneficial effects upon pain in humans (reviews, see [86,87]).

The synthesis of 2-AG (shown schematically in Fig. 2) has similarities to AEA synthesis in that there is a canonical pathway mediated by diacylglycerol lipases (DAGLs) as well as alternative pathways [80,81]; that its synthesis and release is on demand although release from preformed pools has been postulated [88]; that synthesis of 2-AG is accompanied by synthesis of close homologues such as 2-oleoylglycerol and 2-palmitoylglycerol that can modulate the activity of 2-AG [89,90]; and that the expression of DAGL, at least at the level of mRNA, can be regulated by inflammatory mediators [91]. In the brain, DAGL inhibition affects retrograde signalling and neuroinflammatory responses [92,93].

The mechanism(s) responsible for the release and uptake of eCBs have been a matter of contention for many years. The two current trains of thought are that there is a bidirectional transport across the plasma membrane that is either mediated by an as yet unknown protein or alternatively that the current evidence is consistent with simple diffusion across the plasma membrane [94,95]. What is clear is that following uptake, AEA is transported within the cell by carrier proteins such as fatty acid binding protein 5, and that an inhibitor of this protein, when given intracerebroventricularly, increases brain AEA, OEA and PEA but not 2-AG levels [96]. WOBE437, a potent inhibitor of AEA
uptake has been described and shown to be active in a mouse model of monoarthritis [97].

Much more is known about the hydrolytic enzymes for AEA and 2-AG. Fatty acid amide hydrolase (FAAH), was discovered and characterized originally with PEA and OEA as substrates [98,99]. It has a wide substrate specificity and can hydrolyse N-acylamides and N-acyltaurines as well as NAEs [100,101]. Examples of FAAH inhibitors (of which there are many [102]) are shown in Table 3.

A second FAAH, termed FAAH-2, has been identified [103]. The enzyme, which is found in humans 2 is somewhat the poor cousin to FAAH in terms of research interest: a PubMed search conducted in October 2020 with the search term “FAAH-2” returned 7 results, as compared with 1706 results for FAAH.

Fig. 2 AEA and 2-AG turnover starting from the appropriate NAPE and diacylglycerol (DAG), respectively. The thick arrows show the canonical pathway, with alternate pathways (reviewed in [80,81]) for the synthesis and degradation being shown with the thin arrows. Abbreviations (when not given in the text): AA, arachidonic acid; EA, ethanolamide; GE, glyceryl ester. Note that the PG-EA, PG and PG-GE species shown is F₂α, but the corresponding D₂ and E₂ species are also formed. Note also that the PG-GEs rapidly isomerize to form the corresponding PG-1-GEs, and this form dominates in PG-GE preparations that are commercially available.
but not in mice or rats, hydrolyses oleamide as effectively as FAAH. However, this is not the case for AEA. Defining the rate of oleamide as unity for both enzymes, the relative rates of hydrolysis of AEA are 1.75 and 0.054, respectively [103]. A third hydrolytic enzyme, N-acylethanolamine-hydrlysing acid amidase (NAAA) was described at the turn of the century. This enzyme, which unlike FAAH has a pH optimum ~ 5 (as opposed to ~ 9 for FAAH), is found at high concentrations in macrophages, and hydrolys PEA more avidly than AEA [104]. The relative activities of FAAH, FAAH-2 and NAAA are shown in Fig. 3a and examples of the relative selectivity of some FAAH inhibitors for this enzyme vs. FAAH-2 are shown in Fig. 3b.

The ability of the different enzymes to hydrolyse AEA means at least in theory that their relative contribution in a given tissue will be dependent upon their relative expression. This has not been explored in any great detail, but in T84 human colon cells, expression of FAAH and NAAA is very similar at the mRNA level, but inhibition of FAAH by URB597 produces a robust increase in AEA and other NAE levels, whereas the NAAA inhibitor pentadecylamine produces a much smaller, albeit significant increase [105].

In vivo, treatment with either URB597 or PF-3845 increases AEA but not PEA levels in the colon of mice with trinitrobenzene sulfonic acid-induced colitis, whereas the reverse is seen following treatment with the NAAA inhibitor AM9053 [106].

FAAH can also hydrolyse 2-AG [107] although in the brain, the primary hydrolytic enzyme is monoacylglycerol lipase [108]. The development of FAAH and MAGL-selective inhibitors (reviewed in [102], see Table 3) has provided an invaluable tool in

Table 3. Examples of FAAH, MAGL (monoacylglycerol lipase) and dual-action inhibitors

Enzyme targeted	Reversible inhibitors	Irreversible inhibitors
FAAH-selective	OL-135 [126]	URB597 [133]
	AZ513 [207]	PF-3845 [127]
	SSR411298 [208]	PF-04457845 [128]
		JNJ-1661010 [129]
		JNJ-42165279 [130]
MAGL-selective	Compound 21 of [209]a	JZL184 [212]
	Compound 20b of [210]b	KML29 [213]
	Compound 26 of [211]c	ABX-1431 [176]
FAAH/MAGL	Compound 8 of [214]d	JZL195 [110]
FAAH/TRPV1	N-arachidonoylserotonin [164]e	OMDM-198 (?)[165]f
FAAH/COX	Ibu-AM5 [150]	ARN2508 [152]
	Flu-AM1 [151]	
FAAH-sEHg®	Compound 11 of [169]h	

For the FAAH irreversible compounds, the irreversibility is generally determined by use of dialysis or substrate dilution experiments and the demonstration of time-dependent inhibition. However, use of long dialysis times suggest that compounds like JNJ-1661010 may be a slowly reversible compound despite covalent interaction with FAAH [215]. ASP3652 has been described as such a compound [216], although to my knowledge the data supporting this claim has not been published.

*aBenzo [d][1,3] dioxol-5-ylmethyl 6-[(1,1'-biphenyl)-4-yl]hexanoate.
*b[(Z)-4-[4,40''-dimethoxy-(1,1':4',1''-terphenyl)-2'-yl]methylene]-2-methylxazol-5(4H)-one.
*c(4-Benzylpiperidin-1-yl)(5-(4-hydroxyphenyl)-1-(3-methylbenzyl)-1H-pyrazol-3-yl)methanone.
*d(±)-oxiran-2-ylmethyl 6-(1,1'-Biphenyl)-4-yl)hexanoate.
*eReference is for the first report of its actions towards FAAH.
*fOMDM-198 is compound 10 in this reference. The mechanism of action was not determined, hence the question mark by the name, but I have classified it as irreversible on the basis of it being a carbamate compound.
*gSoluble epoxide hydrolase.
*h1-(4-(trifluoromethoxy)phenyl)-4-(3-((5-(trifluoromethyl)pyridin-2-yl)oxy)benzyl)piperidine-1-carboxamide.
demonstrating that AEA and 2-AG are not simply alternate eCBs within a given system, but in fact play separate physiological roles. Thus, for example, in rodents trained to discriminate THC from vehicle, URB597 does not substitute for THC [109]. In mice, the MAGL-selective inhibitor JZL184 produces a partial substitution for THC whilst KML29 showed no substitution [110,111]. However, administration of either a non-selective FAAH/MAGL inhibitor (JZL195), the combination of URB597 and JZL184, or the administration of JZL184 to FAAH-/- mice substituted for THC in this test [109,110].

Two other hydrolytic enzymes, the α/β-hydrolase domain 6 and 12 (ABHD6 and 12) are also shown in Fig. 2. In brain homogenates, they are minor contributors to 2-AG hydrolysis [108]. However, in mouse brain neurons in primary culture, ABHD6 contributes significantly to 2-AG hydrolysis [112]; even more so in the mouse BV2 microglial cell line where MAGL is not expressed [112]; and in the human SH-SY5Y neuroblastoma cell line, the mRNA levels of ABHD6 and ABHD12 are much greater than those of MGLL, coding for MAGL [113]. The ABHD6 inhibitor WWL70 produces biological effects in vivo, but interpretation of these effects is hampered by an off-target effect of the compound upon the biosynthesis of prostaglandin E2 [114]. However, other inhibitors have been developed [115] and will hopefully give more information as to the importance of this 2-AG hydrolytic pathway in vivo. Mutations in ABHD12 cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract), a neurodegenerative disease [116]. ABHD12 can hydrolyse other lipids in addition to 2-AG, not least lyso-phosphatidylserine, and a recent paper utilizing mice lacking ABHD12 and the lysophospholipid acyltransferase LPCAT3 has suggested that dysfunction in the regulation of lyso-phosphatidylserines underlies PHARC [117].

The above discussion has considered the hydrolytic enzymes as ways to remove AEA and 2-AG, but MAGL also has an anabolic function. Thus, in several cancer cell lines, MAGL acts to catalyse the production of long-chain fatty acids from the corresponding monoacylglycerols, and this provides an energy source for the cells that aids their proliferation in vivo in xenograft models [118,119]. In the brain, MAGL-catalysed hydrolysis of 2-AG provides a key source of arachidonic acid needed for prostaglandin production in neuro-inflammatory disorders [120]. AEA and 2-AG are also substrates for cyclooxygenase-2 (COX-2),
FAAH inhibitor (comparator)	ClinicalTrials.gov protocol; trial design	Disorder; Dose regime	Registered primary aim	Outcome of primary aim	Comments	Ref.
PF-04457845 (naproxen) (placebo)	Sponsor: Pfizer NCT00981357; randomized double-blind double-dummy crossover: drug followed by placebo and vice versa	Osteoarthritis of the knee; PF: 4 mg once daily Nap: 500 mg b.i.d.	Efficacy vs. placebo in the WOMAC\(^b\) pain sub-score; safety and tolerability of PF-04457845 in the patients	PF-04457845 (N = 35) showed no reduction in the WOMAC pain sub-score compared to placebo after 2 weeks of treatment. Naproxen was effective at a decision criterion ‘90% sure the compound is better than placebo’ (N = 36)	The dose regime used gave a large (>95%) reduction in leukocyte FAAH activity and increased plasma NAE levels (12-fold for AEA, 3.3-fold for PEA and 8.9-fold for OEA). The percent of patients who used rescue medication was the same in the placebo and PF-04457845 arms of the trial (59%)	[149]
ASP3652 (placebo)	Sponsor: Astellas Pharma Inc. NCT01391338; randomized double-blind adaptive parallel assignment	Men with chronic abacterial prostatitis or chronic pelvic pain syndrome; 25, 75, 150, 300 mg b.i.d. or 300 mg once daily	Change from baseline in the NIH-CPSI total score after 12 weeks of treatment	For all five dose regimes (N = 26–52), no significant difference in the change in baseline to that seen with placebo (N = 53) was found	‘dose-dependent increase of endocannabinoid plasma levels’ reported, but data not shown\(^d\)	[217]
ASP3652 (placebo)	Sponsor: Astellas Pharma Europe B.V. NCT01613586; randomized double-blind adaptive parallel assignment	Women with bladder pain syndrome / interstitial cystitis; 50, 150 or 300 mg b.i.d.	Change from baseline in Mean Daily Pain (MDP) after 12 weeks of treatment	For all three dose regimes (N = 49–90), no significant difference in the change in baseline to that seen with placebo (N = 75) was found	Dose-dependent increase of endocannabinoid plasma levels, up to a maximum increase of approximately four times their baseline level’ reported, but data not shown	[218]
FAAH inhibitor (comparator)	ClinicalTrials.gov protocol; trial design	Disorder; Dose regime	Registered primary aim	Outcome of primary aim	Comments	Ref.
---------------------------	--	----------------------	-----------------------	-----------------------	----------	------
ASP8477 (placebo) Sponsor: Astellas Pharma Europe B.V.	NCT02065349; screening-, single-blind titration and maintenance-, double-blind randomized treatment (‘dbrt’) - and follow-up periods	Painful diabetic peripheral neuropathy or postherpetic neuralgia; 20 or 30 mg b.i.d.	Change in mean of 24-hour average pain intensity, Numeric pain rating scale (NPRS) from baseline to the last three days of the 21-day dbrt period	No significant difference in the primary endpoint was seen between the ASP8477- (N = 31) and placebo- (N = 32) treated patients who completed the double-blind part of the study during single-blind period, mean plasma AEA levels increased from 0.45 ± 0.18 ng mL\(^{-1}\) (SD, N = 113) at baseline to 2.96 ± 0.68 ng mL\(^{-1}\) (N = 110) 4 h post-dose on day 14. PEA and OEA levels were also increased. 59% (ASP8477) and 41% (placebo) of the patients used concomitant pain medication during the dbrt period	[219]	
V158866 (placebo) Sponsor: Vernalis (R&D) Ltd	NCT01748695 randomized double-blind crossover	Neuropathic pain due to spinal cord injury. 450 mg once daily	Mean Pain Intensity (NRS) over last 7 days of treatment compared to placebo (total treatment time 4 weeks)	No significant difference between active treatment and placebo was seen (N = 25; 14 placebo then V158866; 11 V158866 then placebo)	[220]	
SSR411298 (placebo) Sponsor: Sanofi	NCT01439919; randomised double-blind parallel assignment	Adjunctive treatment for persistent cancer pain 200 mg once daily	Numeric Rating Scale (NRS) compared to placebo after 4 weeks of treatment	No results posted, other than that the actual enrolment into the study was 5 individuals	The study was terminated ‘due to strategic reasons’	[221]
FAAH inhibitor (comparator)	ClinicalTrials.gov protocol; trial design	Disorder; Dose regime	Registered primary aim	Outcome of primary aim	Comments	Ref.
---------------------------	--	----------------------	-----------------------	-----------------------	----------	------
IW-6118 (placebo) naproxen	Pharmaceuticals, Inc. NCT01107236; randomized double-blind parallel assignment	Otherwise healthy patients undergoing third molar extraction.	Safety assessments after single dose	No results posted, other than that the actual enrolment into the study was 90 individuals	[222]	

- Studies [149,217–220] also reported safety data: in general, the compounds were well-tolerated by the patients.
- Western Ontario and McMaster Universities Osteoarthritis Index.
- National Institutes of Health-Chronic Prostatitis Symptom Index.
- The authors also reported a post hoc subgroup analysis indicating that micturition outcomes (reduction in voids per 24 h) were improved in all the five dose regimes compared to placebo in a subset of patients with increased voiding frequency (see [223] for a critical discussion with respect to post hoc subgroup analyses).
- *These are for the double-blind period. Patients who did not tolerate the higher dose were given the lower dose."
- Efficacy will be assessed in an exploratory manner.
- The sponsor does not mention the compound on their website, so presumably it has been dropped.
lipoxygenases and CYP450 oxidases to produce biologically active compounds [80,81,121,122]. Most work on these has been undertaken on the COX-2-derived prostaglandins (PGs), the PG-ethanolamides (PG-EAs, prostamides) and the PG glyceryl esters, which show both pro- and anti-inflammatory activities (review see [123]). Thus, for example, Gatta et al. [124] showed that kaolin/\(\lambda\)-carrageenan-induced inflammation of the knee resulted in increased levels of PGF\(_2\alpha\)-EA in the rat spinal cord, and that in control animals, the spinal administration of this prostamide increased the firing of dorsal horn nociceptive neurons. In contrast, PGD\(_2\)-GE, but not PGD\(_2\), decreases the mechanical hyperalgesia and oedema produced by intraplantal injection of \(\lambda\)-carrageenan in mice [125].

Translation, or lack thereof, of FAAH inhibitors to the clinic for the treatment of pain

Preclinical studies with FAAH inhibitors showed great promise with respect to pain, since different classes of compounds showed efficacy in animal models of persistent, visceral, inflammatory and/or neuropathic pain [126–131] (for details of all the studies in pain models with FAAH inhibitors up to 2015, see Tables 1-5 of [132]), without producing THC-like behaviours [110,133], substitution for THC in drug discrimination tests [109], or reinforcing behaviour in squirrel monkeys trained to self-administer THC or cocaine [134]. A molecular genetic study associating a FAAH gene polymorphism with pain sensitivity [135] and a recent case report of a woman with pain insensitivity who had a heterozygous microdeletion downstream from the 3’ end of FAAH [136] also tie in FAAH with pain.

The initial clinical studies with FAAH inhibitors in healthy volunteers indicated that compounds such as PF-04457845, V158866 and JNJ-42165279 were well tolerated, increased plasma AEA and other NAE levels, and, in the case of PF-04457845, did not produce cognitive effects [137–139] consistent with the pre-clinical studies. JNJ-42165279 was also found to produce a profound occupancy of brain FAAH and to increase AEA levels in the cerebrospinal fluid [139]. However, the Phase 2 clinical studies with FAAH and pain have been a disappointment, with several studies showing a negative outcome (Table 4). This somewhat depressing picture was compounded in 2016 when a Phase I multiple ascending dose trial of Bial’s FAAH inhibitor BIA 10-2474 resulted in severe neurological adverse effects and one death [140]. Such a tragedy was unexpected, given that all other FAAH inhibitors are well tolerated by patients (as had lower doses of BIA 10-2474 been in previous cohorts). These severe adverse effects are likely related to off-targets of BIA 10-2474 and/or its metabolite(s) [141,142], possibly coupled to an overly rapid sequential dosing protocol [143]. When the tragedy unfolded, the US Food and Drug Administration halted ongoing clinical trials with FAAH inhibitors, but later concluded that ‘based on the available information . . . BIA 10-2474 exhibits a unique toxicity that does not extend to other drugs in the class, called fatty acid amide hydrolase (FAAH) inhibitors’. [144].

Alternative approaches to harness FAAH inhibition for the treatment of pain

The above discussion would suggest that FAAH inhibition *per se* is not a useful approach to treat pain despite the promising preclinical data. The predictive validity of the standard pain models has

Table 5. Possible reasons for the lack of efficacy of FAAH inhibitors in clinical trials of pain

Hypothesis	Potential solutions
FAAH is not a suitable target in the pain types investigated	MAGL inhibitors
Suboptimal increase in AEA due to alternative catabolic pathways or due to deleterious effects of products of such pathways	Dual-action compounds inhibiting FAAH and the additional pathway (NAAA, FAAH-2, COX-2) or the receptor for the downstream product (PGF\(_2\alpha\)-EA)
Increased AEA levels alone are not sufficient to alleviate pain, and other members of the extended eCB system need also to be potentiated sufficiently	NAAA or MAGL inhibitors ± FAAH inhibitors
Beneficial effects of the increased AEA concentrations are negated by effects at TRPV1 receptors	Dual-action FAAH inhibitor / TRPV1 antagonists
been discussed earlier with respect to CB2 receptor agonists, and it is notable that in a model of non-evoked pain (burrowing behaviour in a monosodium iodoacetate model of osteoarthritis at a time-point where the pain is mainly mediated by inflammation), the FAAH inhibitor PF-04457845 was not effective, in contrast to ibuprofen, celecoxib and an antibody to tumour necrosis factor-α [145]. Animal models aside, Table 5 summarizes some possible explanations as to why FAAH inhibitors per se were ineffective in clinical pain as a way of introducing possible ways forward.

The simplest explanation is that FAAH does not engage the target sufficiently at the doses used. Two of the clinical trials with FAAH inhibitors in pain reported increases in plasma AEA levels (Table 4), but that does not prove target engagement elsewhere. In extremis, the body may already have undertaken locally what the FAAH inhibitor was meant to do. This is in admittedly in the realm of speculation, but FAAH expression and activity in human lymphocytes is decreased following 24 h in vitro treatment with either interleukin-12 or interferon-γ and increased with interleukins 4 and 10 [146], so the enzyme is clearly sensitive to the inflammatory environment. An increased AEA concentration is not a universal response to FAAH inhibition: for example, intraplantally administered URB597 does not increase levels of AEA in the hind paw of rats with spinal nerve ligation whereas an increase is seen for sham-operated rats [147].

A variation of the above relates to the alternative catabolic pathways shown in Fig. 2, namely that AEA levels are increased as a result of FAAH inhibition, but the increase is insufficient due to its removal by other enzymes. In this respect, Benson et al. [148] modelled the data from the PF-04457845 clinical trial of Huggins et al. [149]

Fig. 4 Structures of dual-action FAAH / COX inhibitors based upon a) ibuprofen and b) flurbiprofen [150–153].
and suggested that plasma AEA time curve following PF-04457845 treatment, which included a long plateau region, could not be adequately described without evoking an additional fatty acid amide hydrolase (FAAH)-independent clearance process. Of course, the model is only as good as the assumptions made, but it motivates consideration of blockade of other AEA-catabolic enzymes in addition to FAAH. Benson et al. [148] suggested that NAAA could be the enzyme responsible for removal of AEA following FAAH inhibition by PF-04457845. An alternative could be that inhibition of both FAAH and FAAH-2 is required in humans. PF-3845, a potent and highly selective FAAH inhibitor with a structural similarity to PF-04457845, does not inhibit FAAH-2 (IC₅₀ value > 10 µmol L⁻¹) [127]. Since rats and mice do not express FAAH-2 [103], this pathway would not be operative in the animal pain models.

COX-2 may also provide an important alternative pathway for AEA following FAAH inhibition in the patients investigated in the clinical trials, not least since it is induced in inflammatory conditions. FAAH - COX dual-action inhibitors have been designed [150–153], based upon increasing the modest FAAH inhibitory potencies of the profen class (ibuprofen [154], flurbiprofen) of non-steroidal anti-inflammatory drugs (NSAIDs) whilst retaining their COX inhibitory potency (Fig. 4). In experimental animals, two of the compounds (Ibu-AM5 and ARN2508) are biologically active in vivo, but do not cause gastric ulcers when given acutely, in contrast to the NSAIDs ibuprofen and ketorolac [152,155]. This may be due to their FAAH-inhibitory properties, since FAAH inhibitors (or genetic deletion of FAAH) protect against NSAID-induced acute gastric ulcers in experimental animals [131,156]. Ibu-AM5 and (R)-Flu-AM1 also show an interesting property first described for (R)-profens [157], namely that they inhibit COX-2-catalysed cyclooxygenation of eCBs more potently than the corresponding cyclooxygenation of arachidonic acid [151,158]. Most recently, ATB-352, a hydrogen sulphide-releasing analogue of ketoprofen that does not cause gastrointestinal ulceration [159] has been shown potently to inhibit FAAH and to reduce mechanical alldynia in a model of postoperative pain in a CB₁-receptor mediated manner [160]. Compounds inhibiting FAAH and the PGF₂α-REA receptor have also been described [161] (q.v. the pro-algesic effects of PGF₂α-REA [124]).

Another potential explanation for the poor outcomes in the clinical trials with FAAH is that potentiation of 2-AG rather than AEA may be more important in some pain syndromes. Like FAAH inhibitors, selective MAGL inhibitors have been shown to produce potentially beneficial effects in models of visceral, inflammatory and neuropathic pain (see Tables 1–5 of [132]), but to my knowledge clinical data for MAGL inhibitors is not yet available with respect to pain. Additionally, compounds inhibiting both MAGL and FAAH could be considered, although it is hard to see the advantage of such compounds vs. THC, given that they produce similar behavioural effects at least in animal models [109,110].

An alternative possibility is that in humans, the pain regulatory response is a combination of effects produced by both AEA and PEA, since these are both produced at the same time (see above), and since PEA has anti-inflammatory and analgesic properties (see [86]). In this case, the argument would be that FAAH inhibition increases NAE levels, but that the increase in PEA levels is insufficient to mitigate the pain. Selective NAAA inhibitors have been described and have been shown to produce beneficial effects in animal models of inflammatory pain (for an example, see [161]) and so it would clearly be of interest to investigate whether the combination of an FAAH and an NAAA inhibitor is beneficial in human pain.

The final suggestion listed in Table 5 can be linked to an observation using cultured rat primary sensory neurons that in inflammatory conditions, the efficacy of AEA for TRPV1 is increased [163]. This raises the possibility that in the clinical trials, the beneficial effects produced by increasing AEA concentrations secondary to FAAH inhibitor are negated by TRPV1 effects mediated by this eCB or other NAEs such as OEA [149]. This would motivate clinical studies of FAAH inhibitors together with TRPV1 antagonists or alternatively dual-action compounds with FAAH inhibitory and TRPV1-antagonistic actions. Such molecules have been designed [164,165] and shown to be active in animal pain models [166,167]. Inhibition of FAAH and soluble epoxide hydrolase may also be a useful combination [168] and molecules inhibiting both enzymes have been described [169].

Other potential indications for FAAH inhibitors

The observations that the adverse effects profile of the CB₁ receptor inverse agonist rimonabant had...
an unacceptable incidence of anxiety and depression [73] raises the possibility that FAAH inhibitors, by raising endogenous AEA-mediated tonus, could have useful anti-anxiety and antidepressive properties. Indeed, potentially useful effects of FAAH inhibitors in a number of different animal models of anxiety, depression and compulsive behaviour have been reported (review see [170]).

With respect to treatment of major depressive disorder, two studies have been registered at ClinicalTrials.gov, one with SSR411298 (Sanofi, ClinicalTrials.gov NCT00822744, double blind, placebo-controlled, 8-week treatment in elderly patients with escitalopram as comparison), and one with JNJ-42165279 (Janssen Research & Development, LLC, ClinicalTrials.gov NCT02498392, double-blind placebo-controlled study in patients with major depressive disorder with anxious stress). To my knowledge, results of these studies have not yet been published in peer-reviewed journals, although Mandrioli and Mercolini [171] reported that SSR411298 was not more effective than placebo in the NCT00822744 trial and that its development for this indication has been discontinued.

More information is available concerning the potential of FAAH inhibitors for treatment of social anxiety and post-traumatic stress disorder. With respect to the former, a double-blind placebo-controlled study of JNJ-42165279 in social anxiety disorder has just been published [172]. In this study JNJ-42165279 or placebo was given for 12 weeks, and the primary outcome measure was change from baseline in the Liebowitz Social Anxiety scale. No significant difference was seen in the primary outcome measure, although a secondary outcome, the percentage of patients with a ≥ 30 improvement in baseline, was significantly higher than placebo (44% vs 24%, P = 0.04). On the basis of measurement of trough plasma concentrations of the drug and plasma AEA concentrations (which were highly correlated), the authors argued that the dose used (25 mg once daily) might have not been sufficient and they intend to investigate a different dose regime (25 mg b.i.d.) [172].

With respect to post-traumatic stress disorder (PTSD), no ongoing trials are listed on ClinicalTrials.gov (search word ‘FAAH’) as of November 2020, but an interesting double-blind, placebo-controlled study on the effects of PF-04457845 (4 mg day⁻¹ for 10 days) on fear extinction and stress responses in healthy individuals has been published [173]. On days 9 and 10 after the start of treatment, which for PF-04457845 was sufficient to increase plasma AEA levels by an order of magnitude, the patients undertook a series of behavioural tests including eyelblink responses to a 50 ms burst of white noise and an aversive sound of nails across a chalkboard as unconditioned stimulus, and mental arithmetic tests with ‘negative socioevaluative feedback’. An affective image task was undertaken before and after the stress tests and the control tasks [173]. PF-04457845 did not affect acquisition of conditioned fear but promoted recall of fear extinction memory when tested on the second day. The negative affect understandably produced by the stress paradigm was also attenuated for the negative images in the image bank used. These data raise the possibility that FAAH inhibition may be a potentially useful treatment for at least some of the symptoms of PTSD. The authors of [172] also reported that they are ‘initiating trials in PTSD with increased doses’ of JNJ-42165279.

FAAH inhibitors may also be useful for cannabis use disorder. Thus, PF-04457845 (4 mg day⁻¹) was found to reduce cannabis withdrawal symptoms and subsequent cannabis use (as assessed by self-reported cannabis use and measurement of the urinary levels of the THC metabolite THC-COOH) in men with cannabis use disorder, leading to the authors to conclude that PF-04457845 ‘might represent an effective and safe approach for the treatment of cannabis use disorder’ [174].

An MAGL inhibitor, LuAG06466 is early on in its clinical development, also with PTSD and other neurological/psychiatric disorders as potential indications [175] (for a review on the potential of agents affecting the eCB system as treatments for neurological disorders, see [10]). I presume LuAG06466 is the same compound as ABX-1431 [176] which had undergone some initial trials in patients with Tourette Syndrome or Chronic Motor

3The link to a press release by Sanofi given in this paper is no longer active, but the press release stating that “Two projects in Phase II were discontinued. Data … on SSR411298 in major depressive disorders, did not support progression to Phase III trials” can be found at http://www.news.sanofi.us/press-releases?item=118522 (URL checked 12 November 2020).
Tic Disorder [177], and a study to determine whether the compound produces tolerance in patients with neuropathic pain [178]. The latter is an important consideration given that the first selective MAGL inhibitor, JZL184, produced behavioural tolerance and down regulation of CB1 receptors in mice upon repeated administration [179].

Conclusions
The present article has aimed to present the current state of the art of drug development in the eCB field. Despite the setbacks in the clinical trials for pain with CB2 receptors and FAAH inhibitors, the area remains active, and of necessity, I have not taken up potential indications in areas such as migraine, Parkinson’s disease, multiple sclerosis, inflammatory bowel disease and cancer (reviews, see [10,31,180–182]) or with respect to the treatment of cannabis use disorder or cannabis-induced hyperemesis syndrome [183,184]. Similarly, the increasing use of markers of the eCB system in PET studies [139,185] is a fascinating area of research whereby CB1 receptor, FAAH and MAGL ligands have been adopted to probe the eCB system in the human brain. It is to be hoped that the rate of discoveries made in the quarter of a century or so since the identification of the eCBs AEA and 2-AG will continue over the next twenty-five years and, not least, result in the clinical use of novel drugs modulating the eCB system.

Acknowledgments
As the author heads towards his retirement in 2021, he would like to take this opportunity to thank all those researchers in the endocannabinoid field whose work has been a source of inspiration over the years.

Author contribution
Christopher Fowler: Conceptualization (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Visualization (lead); Writing-original draft (lead); Writing-review & editing (lead).

Conflict of interest statement
The author has nothing to declare.

Funding
This work has not received any specific grants.

References
1 Mechoulam R. The pharmacohistory of Cannabis Sativa. In Mechoulam R ed. Cannabis as therapeutic agents. Boca Raton, FL: CRC Press, 1986; 1–19.
2 Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86: 1645–6.
3 Devane W, Dysarz F, Johnson R, Melvin L, Howlett A. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34: 605–13.
4 Matsuda L, Lolait S, Brownstein M, Young A, Bonner T. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561–4.
5 Devane W, Hanus L, Breuer A et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946–9.
6 Sugiuara T, Kondo S, Sugukawa A et al. 2-Arachidonylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995; 215: 89–97.
7 Mechoulam R, Ben-Shabat S, Hanus L et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50: 83–90.
8 Mechoulam R, Hanus L. A historical overview of chemical research on cannabinoids. Chem Phys Lipids 2000; 108: 1–13.
9 Zygmunt P, Petersson J, Andersson D et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999; 400: 452–7.
10 Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nature Rev Neurol 2020; 16: 9–29.
11 Gülck T, Lindberg MB. Phytocannabinoids: origins and biosynthesis. Trends Plant Sci 2020; 25: 985–1004.
12 Vanhouffe PM, Humphrey PPA, Spedding MX. International Union of Pharmacology recommendations for nomenclature of new receptor subtypes. Pharmacol Rev 1996; 48: 1–2.
13 Herkenham M, Lynn AB, Little MD et al. Cannabinoid receptor localization in brain. Proc Natl Sci USA 1990; 87: 1932–6.
The endocannabinoid system and drug development / C. J. Fowler

14 Howlett A, Barth F, Bonner T et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002; 54: 161-202.
15 Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 2003; 42: 327-60.
16 Kreitzer A, Regehr W. Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 2002; 12: 324-30.
17 Navarrete M, Araque A. Endocannabinoids mediate neuronal-astrocyte communication. Neuron 2008; 57: 883-93.
18 Trautman SM, Sharkey KA. The endocannabinoid system and its role in regulating the intrinsic neural circuitry of the gastrointestinal tract. Int Rev Neurobiol 2015; 125: 85-126.
19 Cinar R, Iyer MR, Kunos G. The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther 2020; 208: 107447.
20 Idris AI, Ralston SH. Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol 2012; 3: 136.
21 Munro S, Thomas K, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61-5.
22 Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 2010; 160: 467-79.
23 Rozenfeld R, Devi LA. Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J 2008; 22: 2311-22.
24 Bénard G, Massa F, Puente N et al. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci 2012; 15: 558-64.
25 Hudson BD, Hébert TE, Kelly MEM. Ligand- and heterodimer-directed signaling of the CB1 cannabinoid receptor. Mol Pharmacol 2010; 77: 1-9.
26 Smith TH, Sim-Selley LJ, Selley DE. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery? Br J Pharmacol 2010; 160: 454-66.
27 Cudaback E, Marrs W, Moeller T, Stella N. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. PLoS One 2010; 5: e8702.
28 Vallée M, Vittiello S, Belloccchio L et al. Pregnenolone can protect the brain from cannabinoins intoxication. Science 2014; 343: 94-8.
29 Sánchez M, Ruiz-Llorente L, Sánchez A, Díaz-Laviada I. Activation of phosphoinositide 3-kinase/PKB pathway by CB1 and CB2 receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell Signal 2003; 15: 851-9.
30 Galve-Roperh I, Sánchez C, Cortés M, Gómez del Pulgar T, Izquierdo M, Guzman M. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Med 2000; 6: 313-9.
31 Hinz B, Ramer R. Anti-tumour actions of cannabinoids. Br J Pharmacol 2019; 176: 1384-94.
32 Alhauyuke M, Stafberg L, Karlsson J, Halin Bergström S, Fowler C.J. Effects of orthotopic implantation of rat prostate tumour cells upon components of the N-acylthanolamine and monoacylglycerol signalling systems: an mRNA study. Sci Rep 2020; 10: 6314.
33 Ryberg E, Larsson N, Sjögren S et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 2007; 152: 1092-101.
34 Ross RA. The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 2009; 30: 156-63.
35 Pertwee RG, Howlett AC, Abood ME et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 2010; 62: 588-631.
36 Alexander SP, Christopoulos A, Davenport AP et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol 2019; 176: S83.
37 Sim LJ, Hampson RE, Deadwyler SA, Childers SR. Effects of chronic treatment with A^δ-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPS autoradiography in rat brain. J Neurosci 1996; 16: 8057-66.
38 Alam RM, Keating JJ. Adding more “spice” to the pot: A review of the chemistry and pharmacology of newly emerging heterocyclic synthetic cannabinoid receptor agonists. Drug Test Anal 2020; 12: 297-315.
39 Gamage TF, Farquhar CE, Lefever TW et al. Molecular and behavioral pharmacological characterization of abused synthetic cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI, CUMYL-PICA, and S-Fluoro-CUMYL-PICA. J Pharma col Exp Ther 2018; 365: 437-46.
40 Patel M, Maning JJ, Finlay DB et al. Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists. Biochem Pharmacol 2020; 175: 113871.
41 Waugh NJ, Najafi J, Hawkins L et al. Epidemiology and clinical features of toxicity following recreational use of synthetic cannabinoid receptor agonists: a report from the United Kingdom National Poisons Information Service. Clin Toxicol 2016; 54: 512-8.
42 Kraemer M, Boehmer A, Madea B, Maas A. Death cases involving certain new psychoactive substances: a review of the literature. Forensic Sci Internat 2019; 298: 186-267.
43 Sholler DJ, Huestis MA, Amendola B, Vandre R, Cooper ZD. Therapeutic potential and safety considerations for the clinical use of synthetic cannabinoids. Pharmacol Biochem Behav 2020; 199: 173059.
44 Boleti APA, Frihling BEF, E Silva PS et al. Biochemical aspects and therapeutic mechanisms of cannabinoid in epilepsy. Neurosci Biobehav Rev, in press. https://doi.org/10.1016/j.neubiorev.2020.09.027.
45 McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabinoid and A^δ-tetrahydrocannabinin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 2015; 172: 737-53.
46 Anderson LL, Absalon NL, Abelev SV et al. Coadministered cannabinoid and clozapam: Preclinical evidence for both pharmacodynamic and pharmacokinetic interactions. Epilepsia 2019; 60: 2224-34.
47 Krcevska-Sikvarev N, Wells C, Häuser W. Availability and approval of cannabis-based medicines for chronic pain management and palliative/supportive care in Europe: A survey of the status in the chapters of the European Pain Federation. Eur J Pain 2018; 22: 440-54.
48 Stockings E, Campbell G, Hall WD et al. Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain 2018; 159: 1932-54.
49 Lintzeris N, Driels J, Elias N, Arnold JC, McGregor IS, Allsop DJ. Medicinal cannabis in Australia, 2016: the
Cannabis as Medicine Survey (CAMS-16). Med J Aust 2018; 209: 211–6.

50 Lintzeris N, Mills L, Suraev A et al. Medical cannabis use in the Australian community following introduction of legal access: the 2018–2019 Online Cross-Sectional Cannabis as Medicine Survey (CAMS-18). Harm Reduct J 2020; 17: 37.

51 Faculty of Pain Medicine, Australian and New Zealand College of Anaesthetists. Statement on “Medical Cannabis” with particular reference to its use in the management of patients with chronic non-cancer pain. Document PM10, 2019. Available at https://preview.tinyurl.com/yxyxh68 (URL checked and tinyurl generated 27 October 2020).

52 Arnold JC, Nation T, McGregor IS. Prescribing medicinal cannabis. Aust Prescr 2020; 43: 152–9.

53 Karanges EA, Suraev A, Elias N, Manocha R, McGregor IS. Knowledge and attitudes of Australian general practitioners towards medicinal cannabis: a cross-sectional survey. BMJ Open 2018; 8: e022101.

54 Hamilton I, Gage SH. A painful lesson: are we repeating previous mistakes in pain management? Lancet Public Health 2018; 3: e309.

55 Campbell G, Hall WD, Peacock A et al. Effect of cannabis use in people with chronic non-cancer pain prescribed opioids: findings from a 4-year prospective cohort study. Lancet Public Health 2018; 3: e341–e350.

56 Lake S, Walsh Z, Kerr T et al. Frequency of cannabis and illicit opioid use among people who use drugs and report chronic pain: A longitudinal analysis. PLoS Med 2019; 16: e1002967.

57 Babaloni S, Walsh SL. Therapeutic potential of opioid/cannabinoid combinations in humans: Review of the evidence. Eur Neuropsychopharmacol 2020; 36: 206–16.

58 Powell D, Parcula RL, Jacobson M. Do medical marijuana laws reduce addictions and deaths related to pain killers? J Health Econ 2018; 58: 29–42.

59 Kalliomaki J, Segerdahl M, Webster L et al. Evaluation of the analgesic efficacy of AZD1940, a novel cannabinoid agonist, on post-operative pain after lower third molar surgical removal. Scand J Pain 2013; 4: 17–22.

60 Kalliomäki J, Annas P, Huizara K et al. Evaluation of the analgesic efficacy and psychoactive effects of AZD1940, a novel peripherally acting cannabinoid agonist, in human capsaicin-induced pain and hyperalgesia. Clin Exp Pharmacol Physiol 2013; 40: 212–8.

61 Yao B, Hsieh G, Frost J et al. In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models. Br J Pharmacol 2008; 153: 390–401.

62 Clayton N, Marshall F, Bountra C, O’Shaughnessy C. CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain 2002; 96: 253–60.

63 Ibrahim M, Deng H, Zvironok A et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 2003; 100: 10529–33.

64 Elmes S, Winyard L, Medhurst S et al. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat. Pain 2005; 118: 327–35.

65 Ostenfeld T, Price J, Albanese M et al. A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW942166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. Clin J Pain 2011; 27: 668–76.

66 Pereira A, Chappell A, Dethy J et al. Abstract P11-1. A proof-of-concept (POC) study including experimental pain models (EPMs) to assess the effects of a CB2 agonist (LY2828360) in the treatment of patients with osteoarthritic (OA) knee pain. Clin Pharm Ther 2013; 93 (Suppl 1): S56–S57.

67 Woolf CJ. Overcoming obstacles to developing new analgesics. Nat Med 2010; 16: 1241–7.

68 Percie du Sert N, Rice AS. Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br J Pharmacol 2014; 171: 2951–63.

69 Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 2014; 86: 430–7.

70 Ford BM, Franks LN, Tai S et al. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development. Pharmacol Res 2017; 125: 161–77.

71 Daigle T, Kwon M, Mackie K. Regulation of CB1 cannabinoid receptor internalization by a promiscuous phosphorylation-dependent mechanism. J Neurochem 2008; 106: 70–82.

72 Lin X, Dhopeshwarkar A, HuiBrege T, Mackie K, Hohmann AG. Slowly signaling G protein-biased CB2 cannabinoid receptor agonist LY2828360 suppresses neuropathic pain with sustained efficacy and attenuates morphine tolerance and dependence. Mol Pharmacol 2018; 93: 49–62.

73 Christensen R, Bartels KP, Bartels EM, Blididal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007; 370: 1706–13.

74 Hryhorowicz S, Kaczmarek-Ryś M, Andrzejewska A et al. AllostERIC modulation of cannabinoid receptor 1- current challenges and future opportunities. Int J Mol Sci 2019; 20: 5874.

75 Natarajan V, Reddy PV, Schmid PC, Schmid HHO. N-Acyltion of ethanolamine phospholipids in canine myocardium. Biochim Biophys Acta 1982; 712: 342–55.

76 Natarajan V, Schmid P, Reddy P, Zuzaarte-Augustin M, Schmid H. Biosynthesis of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem 1983; 41: 1303–12.

77 Schmid P, Reddy P, Natarajan V, Schmid H. Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem 1983; 258: 9302–6.

78 Leung D, Saghatelian A, Simon G, Cravatt B. Inactivation of N-acetylphosphatidylethanolamine phospholipase D reveals multiple mechanisms for the bioactivation of endocannabinoids. Biochemistry 2006; 45: 4720–6.

79 Mock ED, Mustafa M, Gunduz-Cinar O et al. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nature Chem Biol 2020; 16: 667–75.

80 Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabi- noids. Pharmacol Res 2013: e1002967.

81 Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid turnover. Adv Pharmacol 2017; 80: 31–66.

82 Stella N, Piomelli D. Receptor-dependent formation of endogenous cannabinoids in cortical neurons. Eur J Pharmacol 2001; 425: 189–96.
83 Magotti P, Bauer I, Igarashi M et al. Structure of human N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: regulation of fatty acid ethanolamine biosynthesis by bile acids. Structure 2015; 23: 598–604.

84 Zhu C, Solorzano C, Sahar S et al. Proliferative stimuli control N-acylphosphatidylethanolamine-specific phospholipase D expression in macrophages. Mol Pharmacol 2011; 79: 786–92.

85 Schmid P, Paria B, Krebsbach R, Schmid H, Dey S. Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation. Proc Natl Acad Sci USA 1997; 94: 4188–92.

86 Gabrielson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharm 2016; 82: 932–42.

87 Rankin L, Fowler CJ. The basal pharmacology of palmitoylethanolamide. Int J Mol Sci 2020; 21: 7942.

88 Alger BE, Kim J. Supply and demand for endocannabinoids. Trends Neurosci 2011; 34: 304–15.

89 Ben-Shabat S, Fride E, Shekstn T et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoylglycerol cannabinoid activity. Eur J Pharmacol 1998; 353: 23–31.

90 Murataeva N, Dhopeshwarak A, Yin D et al. Where’s my entourage? The curious case of 2-oleoylglycerol, 2-linolenoylglycerol, and 2-palmitoylglycerol. Pharmacol Res 2016; 110: 173–80.

91 Karlsson J, Gouveia-Figueira S, Alhouayek M, Fowler CJ. Effects of tumour necrosis factor α upon the metabolism of the endocannabinoid anandamide in prostate cancer cells. PLoS One 2017; 12: e0185011.

92 Szabo B, Urbanski M, Bisogno T et al. Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 2006; 577: 263–80.

93 Ogasawara D, Deng H, Viader A et al. Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc Natl Acad Sci U S A 2016; 113: 26–33.

94 Nicolussi S, Gertsch J. Endocannabinoid transport revisited. Vitam Horm 2015; 98: 441–85.

95 Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 2013; 280: 1895–904.

96 Peng X, Studholme K, Kanjiya MP et al. Fatty-acid-binding protein inhibition produces analgesic effects through peripheral and central mechanisms. Mol Pain 2017; 13: 1–16.

97 Reynoso-Moreno I, Chicca A, Flores-Soto ME, Viveros-Paredes JM, Gertz J. The endocannabinoid reuptake inhibitor WOBEA37 is orally bioavailable and exerts indirect polypharmacological effects via different endocannabinoid receptors. Front Mol Neurosci 2018; 11: 180.

98 Bachur N, Udenfriend S. Micromolar synthesis of fatty acid amides. J Biol Chem 1966; 241: 1308–13.

99 Schmid P, Zuurarte-Augustin M, Schmid H. Properties of rat liver N-acylethanolamine amidohydrolase. J Biol Chem 1985; 260: 14145–9.

100 Boger D, Fecik R, Patterson J, Miyauchi H, Patricelli M, Cravatt B. Fatty acid amide hydrolase substrate specificity. Bioorg Med Chem Letts 2000; 10: 2613–6.

101 McKinney M, Cravatt B. Structure-based design of a FAAH variant that discriminates between the N-acyl ethanolamine and taurine families of signaling lipids. Biochemistry 2006; 45: 9016–22.

102 Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors. J Med Chem 2017; 60: 4–46.

103 Wei B, Mikkelsen T, McKinney M, Lander E, Cravatt B. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 2006; 281: 36569–78.

104 Ueda N, Yamanaoka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmityloethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem 2001; 276: 35552–7.

105 Alhouayek M, Rankin L, Gouveia-Figueira S, Fowler CJ. Interferon γ treatment increases endocannabinoid and related N-acylethanolamine levels in T84 human colon carcinoma cells. Br J Pharmaco 2019; 176: 1470–80.

106 Alhouayek M, Bottemanne P, Subramanian KV et al. N-Acylethanolamide-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and contrahacts murine colitis. Faseb J 2015; 29: 650–61.

107 Goparaju S, Ueda N, Yamaguchi H, Yamamoto S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Letts 1998; 422: 69–73.

108 Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 2007; 14: 1347–56.

109 Wiley JL, Walentiny DM, Wright MJ Jr et al. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents. Eur J Pharmaco 2014; 737: 97–105.

110 Long JZ, Nomura DK, Vann RE et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci U S A 2009; 106: 20270–5.

111 Ignatowska-Jankowska BM, Ghosh S, Crowe MS et al. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br J Pharmaco 2014; 171: 1392–407.

112 Marrs WR, Blankman JL, Horne EA et al. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci 2010; 13: 951–7.

113 Szeremeta J, Karlsson J, Alhouayek M, Fowler CJ. Low mRNA expression and activity of monoacylglycerol lipase in human SH-SYSY neuroblastoma cells. Prostagl Oth Lipid Med 2019; 142: 59–67.

114 Tanaka M, Moran S, Wen J et al. WWL70 attenuates PGE2 production derived from 2-arachidonoylglycerol in microglia by ABHD6-independent mechanism. J Neuroinflammation 2017; 14: 7.

115 Hsu K-L, Tsuboi K, Chang JW et al. Discovery and optimization of piperidyl-1,2,3-triazole ureas as potent, selective, and in vivo-active inhibitors of sfs/hydrazone domain containing 6 (ABHD6). J Med Chem 2013; 56: 8270–9.

116 Fiskerstrand T, HMida-Ben Brahim D, Johansson S et al. Mutations in ABHD12 cause the neurodegenerative disease...
The endocannabinoid system and drug development / C. J. Fowler

PHARC: An inborn error of endocannabinoid metabolism. Am J Hum Genet 2010; 87: 410–7.

117 Ichiu TA, Reed A, Ogasawara D et al. ABHD12 and LPCAT3 interplay regulates a lyso-phosphatidlyserine-C20:4 phosphatidylycerine lipid network implicated in neurological disease. Biochemistry 2020; 59: 1793–9.

118 Nomura DK, Long JZ, Niessen S, Hoover HS, Ng S-W, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140: 49–61.

119 Nomura DK, Lombardi DP, Chang JW et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol 2011; 18: 846–56.

120 Nomura DK, Morrison BE, Blankman JL et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 2011; 334: 809–13.

121 Snider NT, Walker VJ, Hollenberg PF. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome p450 monoxygenases: physiological and pharmacological implications. Pharmacol Rev 2010; 62: 136–54.

122 Urquhart P, Nicolau A, Woodward DF. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases. Biochim Biophys Acta 2015; 1851: 366–76.

123 Alhouayek M, Muccioli GG. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 2014; 35: 284–92.

124 Gatta L, Piscitelli F, Giordano C et al. Discovery of prostamide P2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. PLoS One 2012; 7: e31111.

125 Buisseret B, Guillemot-Legris O, Muccioli GG, Alhouayek M. Prostaglandin D2-glycerol ester decreases carrageenan-induced inflammation and hyperalgesia in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864: 609–18.

126 Lichtman A, Leung D, Shelton C et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 2004; 311: 441–8.

127 Ahn K, Johnson D, Mileni M et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol 2009; 16: 411–20.

128 Johnson D, Stiff C, Lazerwith S et al. Discovery of PF-04457845: a highly potent, orally bioavailable, and selective urea FAAH inhibitor. ACS Med Chem Letts 2011; 2: 91–6.

129 Karbarz M, Luo L, Chang L et al. Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-y]-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase. Anesth Analg 2009; 108: 316–29.

130 Keith JM, Jones WM, Tichenor M et al. Preclinical characterization of the FAAH inhibitor JNJ-42165279. ACS Med Chem Lett 2015; 6: 1204–8.

131 Naidu P, Booker L, Cravatt B, Lichtman A. Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther 2009; 329: 48–56.

132 Fowler CJ. The potential of inhibitors of endocannabinoid metabolism for drug development: a critical review. Handb Exp Pharmacol 2015; 231: 95–128.
inhibitors for pain. CPT Pharmacometrics Syst Pharmacol 2014; 3: e91.

149 Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomized, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 2012; 153: 1837–46.

150 Holt S, Paylor B, Boldrup L et al. Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin. Eur J Pharmacol 2007; 565: 26–36.

151 Gouveia-Figueira S, Karlsson J, Deplano A et al. Characterisation of (R)-2-(2-fluorobiphenyl-4-yl)-N-[3-methylpyridin-2-yl]propanamide as a dual fatty acid amide hydrolase: cyclooxygenase inhibitor. PLoS One 2015; 10: e0139212.

152 Sasso O, Migliore M, Habrant D et al. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug-dependent gastrointestinal damage. FASEB J 2019; 29: 2616–27.

153 Deplano A, Karlsson J, Svensson M et al. Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen. J Enzyme Inhib Med Chem 2020; 35: 815–23.

154 Fowler C, Tiger G, Stenstrom G. Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure-activity relationship. J Pharmacol Exp Ther 1997; 283: 729–34.

155 Cocco M, Congiu C, Onnis V, Morelli M, Cauli O. Synthesis of ibuprofen heterocyclic amides and investigation of their analgesic and toxicological properties. Eur J Med Chem 2003; 38: 513–8.

156 Sasso O, Bertorelli R, Bandiera T et al. Peripheral FAAH inhibition causes profound anciociception and protects against endomethacin-induced gastric lesions. Pharmacol Res 2012; 65: 553–63.

157 Duggan KC, Hermanson DJ, Musee J et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxidation by COX-2. Nat Chem Biol 2011; 7: 803–9.

158 Fowler CJ, Bjorklund E, Lichtman AH, Naidu PS, Congiu C, Onnis V. Inhibitory properties of ibuprofen and its amide analogues towards the hydrolysis and cyclooxygenation of the endocannabinoid anandamide. J Enzyme Inhib Med Chem 2013; 28: 172–82.

159 Gemici B, Elaheikh W, Feitosa KB, Costa SK, Muscara MN, Wallace JL. H2S-releasing drugs: anti-inflammatory, cyto-protective and chemopreventatively. Nitric Oxide 2015; 46: 25–31.

160 Costa SKPF, Muscara MN, Allain T et al. Enhanced analgesic effects and gastrointestinal safety of a novel, hydrogen sulfide-releasing anti-inflammatory drug (ATB-352): a role for endogenous cannabinoids. Antioxid Redox Signal 2020; 33: 1003–9.

161 Ligresti A, Martos J, Wang J et al. Prostanoid F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition. Br J Pharmacol 2014; 171: 1408–19.

162 Bonezzi FT, Sasso O, Pontis S et al. An important role for N-acylethanolamine acid amidase in the complete Freund’s adjuvant rat model of arthritis. J Pharmacol Exp Ther 2016; 356: 656–63.

163 Singh Tahim A, Sântâpa P, Nagy I. Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience 2005; 136: 539–48.

164 Bisogno T, Melck D, De Petrocellis L et al. Arachidonoylslerotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 1998; 248: 515–22.

165 Morera E, De Petrocellis L, Morera L et al. Synthesis and biological evaluation of piperezinyl carboxamides and ureas as fatty acid amide hydrolase (FAAA) and transient receptor potential (TRP) channel dual ligands. Bioorg Med Chem Lett 2009; 19: 6806–9.

166 Costa B, Bettoni I, Petrosino S, Comelli F, Giagnoni G, Di Marzo V. The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. Pharmacol Res 2010; 61: 537–46.

167 Malek N, Mrugala M, Makuch W et al. A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis. Pain 2015; 156: 890–903.

168 Sasso O, Wagner K, Morisseau C, Inceoglu B, Hammock BD, Piomelli D. Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive. Pharmacol Res 2015; 97: 7–15.

169 Kodani SD, Wan D, Wagner KM, Hwang SH, Morisseau C, Hammock BD. Design and potency of dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. ACS Omega 2018; 3: 14076–86.

170 Fowler CJ. The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs – a practical view. Eur Neuropsychopharmacol 2015; 25: 749–62.

171 Mandrioli R, Mercolini L. Discontinued anxiolytic drugs (2009–2014). Exp Opin Investig Drugs 2015; 24: 557–73.

172 Schmidt ME, Liebowitz MR, Stein MB et al. The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: a double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacology. https://doi.org/10.1038/s41386-020-00888-1.

173 Mayo LM, Axratin A, Lindé J et al. Elevated anandamide, enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid amide hydrolase: a randomized, controlled experimental medicine trial. Biol Psychiatry 2020; 87: 538–47.

174 D’Souza DC, Cortes-Briones J, Creatura G et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry 2019; 6: 35–45.

175 https://www.lundbeck.com/global/brain-disorders/pipeline (URL checked 13 November 2020).

176 Cisar JS, Weber OD, Clapper JR et al. Identification of ABX-1431&draw=2&rank=5 (URL checked 13 November 2020).

177 https://clinicaltrials.gov/ct2/show/NCT03625453?term=ABX-1431&draw=2&rank=5 (URL checked 13 November 2020).
https://clinicaltrials.gov/ct2/show/NCT03447756?term=ABX-1431&draw=2&rank=1. (URL checked 13 November 2020)

Schlosburg JE, Blankman JL, Long JZ et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 2010; 13: 1113–9.

Tassorelli C, Greco R, Silberstein SD. The endocannabinoid system in migraine: from bench to pharmacy and back. Curr Opin Neurol 2019; 32: 405–12.

Ambrose T, Simmons A. Cannabis, cannabinoids, and the endocannabinoid system-is there therapeutic potential for inflammatory bowel disease? J Crohns Colitis 2019; 13: 525–35.

Fowler CJ. Delta9-tetrahydrocannabinol and cannabinoid as potential curative agents for cancer: A critical examination of the preclinical literature. Clin Pharmacol Ther 2015; 97: 587–96.

Sabioni P, Le Foll B. Psychosocial and pharmacological interventions for the treatment of cannabis use disorder. F1000Res 2018; 7: 173.

Wagner S, Hoppe J, Zuckerman M, Schwarz K, McLaughlin J. Efficacy and safety of topical capsaicin for cannabinoid hyperemesis syndrome in the emergency department. Clin Toxicol (Phila) 2020; 58: 471–5.

Sloan ME, Grant CW, Gowin JL, Ramchandani VA, Le Foll B. Endocannabinoid signaling in psychiatric disorders: a review of positron emission tomography studies. Acta Pharmacol Sin 2019; 40: 342–50.

Violin JD, Lefkowitz RJ. β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 2007; 28: 416–22.

Wouters E, Walraed J, Robertson MJ et al. Assessment of biased agonism among distinct synthetic cannabinoid receptor agonist scaffolds. ACS Pharmacol Trans Sci 2020; 3: 285–95.

Selley DE, Stark S, Sim LJ, Childers SR. Cannabinoid receptor stimulation of guanosine-5′-O-[3H]thiophospho- phate binding in rat brain membranes. Life Sci 1996; 59: 659–68.

Sugiura T, Kodaka T, Nakane S et al. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues and related compounds. J Biol Chem 1999; 274: 2794–801.

Sugiura T, Kondo S, Kishimoto S et al. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamide or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 2000; 275: 605–12.

Hillard CJ, Manna S, Greenberg MJ et al. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 1999; 289: 1427–33.

Di Marzo V, Bisogno T, De Petrocellis L et al. Highly selective CB1 cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor “hybrid” ligands. Biochem Biophys Res Commun 2001; 281: 444–51.

Huffman J, Liddle J, Yu S et al. 3-(1’,1’-Dimethylbutyl)-1-deoxy-Δ9-THC and related compounds: synthesis of selective ligands for the CB2 receptor. Bioorg Med Chem 1999; 7: 2905–14.

Pertwee RG, Thomas A, Stevenson LA et al. The psychoactive plant cannabinoid, Δ9-tetrahydrocannabinol, is antagonized by Δ6- and Δ8-tetrahydrocannabinolvarin in mice in vivo. Br J Pharmacol 2007; 150: 586–94.

Sink K, McMahon P, Wood JAT et al. The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008; 33: 946–55.

Heimann A, Gomes I, Dale C et al. Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci USA 2007; 104: 20588–93.

Bouaboula M, Perrachon S, Milligan L et al. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem 1997; 272: 22330–9.

Vásquez C, Navarro-Polanco RA, Huerta M et al. Effects of cannabinoids on endogenous K+ and Ca2+ currents in HEK293 cells. Can J Physiol Pharmacol 2003; 81: 436–42.

Portier M, Rinaldi-Carmona M, Pecceu F et al. SR 144528, an antagonist for the peripheral cannabinoid receptor that behaves as an inverse agonist. J Pharmacol Exp Ther 1999; 288: S82–9.

Ross R, Brockie H, Stevenson L et al. Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656 and AM630. Br J Pharmacol 1999; 126: 665–72.

Pampiona FA, Ferreira J, Menezes de Lima O et al. Antinflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A 2012; 109: 21134–9.

Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 2015; 172: 4790–805.

Price M, Bailie G, Thomas A et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 2005; 68: 1484–95.

Horswill JG, Bali U, Shaaban S et al. Highly selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Sci Rep 2018; 8: 2416.
A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. *Angew Chem* 2014; **53**: 13765–70.

Development of terphenyl-2-methyloxazol-5(4H)-one derivatives as selective reversible MAGL inhibitors. *J Enzyme Inhib Med Chem* 2017; **32**: 1240–52.

Discovery of 1,5-diphenylpyrazole-3-carboxamide derivatives as potent, reversible, and selective monoacylglycerol lipase (MAGL) inhibitors. *J Med Chem* 2018; **61**: 1340–54.

Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. *Nat Chem Biol* 2009; **5**: 37–44.

Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. *Chem Biol* 2012; **19**: 579–88.

Structure-activity relationship of a new series of reversible dual monoacylglycerol lipase/fatty acid amide hydrolase inhibitors. *J Med Chem* 2012; **55**: 824–36.

Piperidinyl thiazole isoxazolines: a new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties. *Bioorg Med Chem Lett* 2016; **26**: 2965–73.

Safety, tolerability, pharmacokinetics, and pharmacodynamics of ASP3652, a reversible fatty acid amide hydrolase inhibitor, in healthy, nonelderly, Japanese men and elderly, Japanese men and women: a randomized, double-blind, placebo-controlled, single and multiple oral dose, phase I study. *Clin Ther* 2020; **42**: 906–23.

Fatty acid amide hydrolase inhibitor treatment in men with chronic prostatitis/chronic pelvic pain syndrome: an adaptive double-blind, randomized controlled trial. *Urology* 2017; **103**: 191–7.

An adaptive randomized clinical trial in interstitial cystitis/bladder pain syndrome evaluating efficacy of ASP3652 and the relationship between disease characteristics and Hunner’s lesions. *World J Urol* 2020. https://doi.org/10.1007/s00345-020-03372-z.

The MOBILE study-A phase IIa enriched enrollment randomized withdrawal trial to assess the analgesic efficacy and safety of ASP8477, a fatty acid amide hydrolase inhibitor, in patients with peripheral neuropathic pain. *Pain Med* 2017; **18**: 2388–400.

https://www.clinicaltrials.gov/ct2/show/results/NCT01748695 (URL last checked 7 December 2020).

https://clinicaltrials.gov/ct2/show/NCT01439919 (URL last checked 7 December 2020).

https://clinicaltrials.gov/ct2/show/NCT01107236 (URL last checked 7 December 2020).

Treating Individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. *Lancet* 2005; **365**: 176–86.