Two-dimensional Frustrated Antiferromagnets (MCl)LaNb$_2$O$_7$ ($M = \text{Mn, Co, Cr}$)

A Kitada1,2, Y Tsujimoto1,2,3, T Yajima4, K Yoshimura2, Y Ajiro1, Y Kobayashi1 and H Kageyama1,2,4

1 Department of Energy and Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
2 Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
3 International Center for Young Scientists (ICYS), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
4 Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan

E-mail: kage@scl.kyoto-u.ac.jp

Abstract. Magnetic susceptibility and specific heat measurements have been performed on two-dimensional spin systems (M$^{2+}$Cl)LaNb$_2$O$_7$ ($M = \text{Mn (S = 5/2), Cr (S = 2), Co (S = 3/2)}$), prepared via a topotactic ion-exchange reaction. All three compounds establish antiferromagnetic order at $T_N = 53$ K, 61 K and 52 K, respectively for $M = \text{Mn, Co, Cr}$.

Together with $T_N = 78$ K for $M = \text{Fe (S = 2)}$, this result indicates that the T_N is not simply scaled by the magnitude of spin. In particular, the presence of strong spin-orbit interactions is suggested for (CoCl)LaNb$_2$O$_7$.

1. Introduction

Geometrically frustrated magnets have been received considerable interests over the last several decades. Among the models comprising of squares with some diagonal interactions are the J_1-J_2 model Li$_2$VO(Si, Ge)O$_4$ [1], the checkerboard model A_2Fe$_2$Fe$_2$O$_2$Q$_2$ ($A = \text{Sr and Ba; Q = S and Se}$) [2] and the Shastry-Sutherland SrCu$_2$(BO$_3$)$_2$ [3]. These materials show intriguing magnetic properties such as spin-disordered state and quantized magnetization plateaus to name only a few [3, 4].

Soft chemical methods offer promising routes to explore low-dimensional magnetic compounds, as thermodynamically metastable phases. Recently $S = 1/2$ layered copper oxyhalides (CuX)$_{A_{n-1}}B_nO_{3n+1}$ (where $X = \text{Cl, Br}$; $A = \text{La}^{3+}, \text{Ca}^{2+}, \text{Na}^+, ...$; $B = \text{Nb}^{4+}, \text{Ta}^{5+}, \text{Ti}^{4+}, ...$; $n = 2, 3$) were obtained by topotactic ion-exchange reactions, where the magnetic CuCl$_2$O$_2$ octahedral layers are separated by magnetically inert perovskite blocks [5-7]. Various exotic quantum magnetic phenomena have emerged from these quasi-two-dimensional magnets. The properties range from spin-singlet ground states based on quantum dimers in (CuCl)LaNb$_2$O$_7$ [8-12], stripe magnetic order with reduced magnetic moments in (CuBr)LaNb$_2$O$_7$ and (CuCl)LaTa$_2$O$_7$ [13, 14], quantum phase separation in the solid solution system (CuCl)La(Nb, Ta)$_2$O$_7$ [14, 15], to successive phase transitions and 1/3 magnetization plateaus in (CuBr)A$_2$B$_3$O$_{10}$ [16]. These interesting magnetic behaviors were interpreted...
as due to the presence of competing antiferromagnetic and ferromagnetic interactions within the CuX layer.

This ion-exchange strategy was expanded by replacing the copper by other transition-metal elements, yielding (MCl)LaNb2O7 (S = 3/2 for V2+ and Co2+, S = 2 for Cr2+ and Fe2+, and S = 5/2 for Mn2+) [17-19], (FeCl)Ca2Ta3O10 (S = 2) [7] and (NiCl)Sr2Ta3O10 (S = 1) [20]. However, only a little is still known about the spin number dependence of the magnetic properties of (MX)A+n−1BnO3n+1. In (NiCl)Sr2Ta3O10 magnetic long-range-order is significantly suppressed down to 50 K despite a large Weiss temperature θ of -125 K. Additionally, μSR measurements of (NiCl)Sr2Ta3O10 revealed the coexistence of the magnetically ordered and disordered states for 20 K < T < 50 K [20]. The antiferromagnetic transition temperatures T_N of (FeCl)LaNb2O7 and (MnCl)LaNb2O7 are suggested to be 78 K and 54 K [18, 19]. In this paper we report on the magnetic properties of (MCl)LaNb2O7 (M = Mn, Co, Cr).

2. Experimental

2.1. Synthesis

The synthesis of (MCl)LaNb2O7 (M = Mn, Co, Cr) is expressed as the following two-step ion-exchange reactions [17]:

$$RbLaNb2O7 + LiNO3 \rightarrow LiLaNb2O7 + RbNO3$$

$$LiLaNb2O7 + MCl2 \rightarrow (MCl)LaNb2O7 + LiCl$$

First, RbLaNb2O7 was prepared via a conventional high-temperature route, using stoichiometric amount of La2O3 (99.99% purity) and Nb2O5 (99.99%) and 25% molar excess of Rb2CO3 (99.9%). Second, LiLaNb2O7 was obtained from LiNO3 and RbLaNb2O7 in 10:1 molar ratio through the ion-exchange reaction (1) at 300 °C for 24 hours in air. The product was washed with warm water and then dried at 120 °C overnight. Third, LiLaNb2O7 was mixed with two-fold molar excess of ultradry MCl2 (M = Mn, Co, Cr; 99.9%) and pressed into pellets in an Ar-filled glove box (<1ppm O2/H2O). The ion-exchange reaction (2) was carried out in sealed, evacuated (<10-3 Torr) Pyrex tubes at 390 ~ 400 °C for 7 days, followed by washing with distilled water for M = Mn, Co and with ethanol for M = Cr to eliminate the excess MCl2 (M = Mn, Co, Cr) and LiCl, and dried at 120 °C overnight. The schematic structure is represented in figure 1.

2.2. Characterization

In-house X-ray diffraction study at room temperature confirmed the tetragonal symmetry with room-temperature cell constants: $(a, c) = (3.899 \text{ Å}, 12.04 \text{ Å}), (3.908 \text{ Å}, 11.63 \text{ Å}),$ and $(3.899 \text{ Å}, 11.97 \text{ Å})$ for M = Mn, Co and Cr, respectively, in good agreement with those previously reported [17]. Magnetic susceptibilities were studied using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design, MPMS) for a temperature range $T = 2$ – 300 K in a magnetic field $H = 0.1$ T. Specific heat measurements were performed by the thermal relaxation method in a T range between 4 K and 100 K in the absence of magnetic field using Physical Property Measurement System (PPMS, Quantum Design) at Institute for Solid State Physics, University of Tokyo. Hand-pressed pellets were attached to an alumina platform with a small amount of Apeizon N grease.

3. Results and Discussions

Figure 2(a) shows the temperature dependence of magnetic susceptibility χ_{raw} for (MnCl)LaNb2O7. A Curie-tail is seen below 30 K, which is most likely due to impurities and/or defects of Mn2+ ions in (MnCl)LaNb2O7, as was also present in the previous report [19]. Using the Curie equation $\chi_{imp} = C_{imp}/T$, we fitted the raw data χ_{raw} below 30 K and the best fit gave a small $C_{imp} = 0.12$ emu K$^{-1}$ mol$^{-1}$, corresponding to about 2.7% of noninteracting $S = 5/2$ Mn2+ ions. After subtracting this upturn, one obtains the intrinsic susceptibility χ_{spin}, where a broad maximum characteristic of low-dimensional magnet was centered at $T_{\chi_{max}} = 65$ K. Above 160 K, the inverse susceptibility χ_{spin}^{-1} (figure 2(b)) obey
a Curie-Weiss law, and the fitting gave the Curie constant $C = 4.38$ emu K$^{-1}$ mol$^{-1}$ together with $\theta = -131$ K with a slight temperature-independent impurity term of $\chi_0 = -4.0 \times 10^{-4}$ emu K$^{-1}$ mol$^{-1}$. The value of T^α_{max} is comparable with that previously reported (63 K) [19]. Moreover, the value of C obtained in this study is in excellent agreement with the theoretical value for 1 mol of $S = 5/2$ Mn$^{2+}$ ions (4.375 emu K$^{-1}$ mol$^{-1}$), while the one obtained in the previous study was a little larger (4.467 emu K$^{-1}$ mol$^{-1}$) [19]. However, the value of θ obtained in this study is somewhat smaller than the one obtained in the previous study (-145.7 K) [19]. This is probably because the value of C largely depends on the fitting range and the value of χ_0. It is also to be noted that C and θ are influenced by the way in which the Curie-tail at low temperature is subtracted from the raw data. The specific heat C_p at zero field is shown in figure 3. A tiny anomaly at around 53 K being located 15 K below T^α_{max} strongly indicates the occurrence of the antiferromagnetic phase transition. Indeed, this temperature is in excellent agreement with $T_N = 54$ K estimated from $d\chi/dT$ [19]. The anomaly in the specific heat is not so obvious probably because of the use of polycrystalline sample. We could not estimate magnetic specific heat C_m by subtracting lattice contribution βT^3 because this approximation should be valid up to around 30 K. The large difference between θ and T_N manifests two-dimensionality of the magnetic system and also certain frustrated interactions.

The specific heat C_p of $M = \text{Co}$ and Cr at zero field (figures 4 and 5) has a slight anomaly at 61 K and 52 K, respectively. As shown in figures 6(a) and 7(a), each magnetic susceptibility has, as in the case of $M = \text{Mn}$, a broad maximum at a slightly higher temperature of 67 K for $M = \text{Co}$ and 55 K for $M = \text{Cr}$, indicating that the anomaly in the specific heat is due to the magnetic phase transition. As is the case with $M = \text{Mn}$, we could not estimate magnetic specific heat C_m by subtracting lattice contribution βT^3. In the lower temperature region below this transition, the susceptibility grows considerably with decreasing temperature. However, in contrast to the case of $M = \text{Mn}$ as
demonstrated above, both materials exhibit another anomaly in a different manner: in (CoCl)LaNb2O7, a hysteresis behavior is observed below about 6 K, while in (CrCl)LaNb2O7 a cusp without hysteresis is observed at 3 K (see the insets of figures 6(a) and 7(a)). The low-temperature anomaly featured by the hysteresis between zero-field and field cooling processes is also seen in (FeCl)LaNb2O7 and was attributed to the second magnetic transition [18]. We would consider, however, that these low-temperature anomalies likely come from the defect of the magnetic ions in the crystal (and thus being extrinsic to the pure system) because the magnitude of the Curie-like tail has sample dependence. The estimation of the defect amount is not straightforward because of the presence of low-temperature anomalies. However, since the Co-, Cr- and Mn-samples have a similar size of the Curie-like tail, the amount of the magnetic defect should be roughly the same.

Figure 3. Temperature dependence of C_p for $M = $ Mn showing magnetic order at 53 K.

Figure 4. Temperature dependence of C_p for $M = $ Co showing magnetic order at 61 K.

Figure 5. Temperature dependence of C_p for $M = $ Cr showing magnetic order at 52 K.

Figure 6. (a) Temperature dependence of the susceptibility for $M = $ Co. Inset: enlarged plot of the susceptibility below 35 K. (b) Inverse susceptibility. The dotted line represents the Curie-Weiss fit.

Figure 7. (a) Temperature dependence of the susceptibility for $M = $ Cr. Inset: enlarged plot of the susceptibility below 30 K. (b) Inverse susceptibility. The dotted line represents the Curie-Weiss fit.
Given the lower temperature anomaly in these two materials, subtracting the Curie-like tail from the raw data would not be appropriate. Accordingly, the raw data were fitted to the Curie-Weiss formula in the temperature range above 90 K (Co) and 175 K (Cr). We obtained, for \(M = \text{Cr}, C = 3.24 \text{ emu K}^{-1} \text{ mol}^{-1}\), which agrees reasonably with the theoretical value for 1 mol of \(S = 2 \text{ Cr}^{2+}\) ions (3.0 \text{ emu K}^{-1} \text{ mol}^{-1}), indicating the completion of the ion-exchange reaction. Interestingly, the obtained value of \(C\) for \(M = \text{Co}\) is 2.775 \text{ emu K}^{-1} \text{ mol}^{-1}, which is significantly larger than the theoretical value for 1 mol of \(S = 3/2 \text{ Co}^{2+}\) ions (1.875 \text{ emu K}^{-1} \text{ mol}^{-1}), where \(g = 2\) is assumed. Thus orbital angular momentum should sizably contribute to the \(g\)-factor, resulting in a strong anisotropy in the Co moment due to spin-orbit interactions. Such a strong anisotropy has been observed in the \(\text{Co}^{2+}\)-containing compounds [21, 22]. The values of \(\theta\) for \(M = \text{Co and Cr}\) were, respectively, \(-77.95 \text{ K, -61 K}\), the magnitude of which is only slightly higher than \(T_N (61 \text{ K and 52 K})\). Here we would like to stress that the proximity between \(|\theta|\) and \(T_N\) does not mean that the frustration effect is negligible because when competing antiferromagnetic and ferromagnetic interactions are present (which is the case of the related systems), \(|\theta|/T_N\) cannot be a measure of frustration. Notably, recent reinvestigations of the structure of \((\text{CuCl})\La\text{Nb}_2\text{O}_7\) using a single crystal X-ray diffraction and the state-of-the-art structural analysis revealed the superstructure in the space group \(Pbam\), which accounts for the spin-singlet formation [12]. We suppose that there will be also a possibility that \(M\) and Cl atoms in the present compounds displace from the vertices of square lattice in an ordered manner, which might result in complex relationship between \(|\theta|\) and \(T_N\).

4. Conclusion
The two-dimensional antiferromagnets (\(M\text{Cl})\La\text{Nb}_2\text{O}_7\) \((M = \text{Mn} (S = 5/2), \text{Co} (S = 3/2) \text{ and Cr} (S = 2))\) obtained via a topotactic ion-exchange reaction are found to exhibit antiferromagnetic long range ordering at 53 K, 61 K and 52 K, respectively, indicating that the \(T_N\) is not simply scaled by the spin quantum number but affected by competing magnetic interactions and a possible formation of superstructure. A strong anisotropy was indicated in \((\text{CoCl})\La\text{Nb}_2\text{O}_7\), where the orbital degrees of freedom may affect the magnetic property. Further magnetic study is needed such as powder neutron diffraction.

Acknowledgments
This work was supported by Grants-in-Aid for Science Research (No. 19052004) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work was also supported by the Global COE Program “Integrated Material Science” (No. B-024) from MEXT of Japan. One of the authors (A. K.) was supported by JSPS for Young Scientists.

References
[1] Melzi R, Carretta P, Lascialfari A, Mambrini M, Troyer M, Mittlet P and Mila F 2000 Phys. Rev. Lett. 85 1318
[2] Kabbour H, Janod E, Corraze B, Danot M, Lee C, Whangbo M-H and Cario L 2008 J. Am. Chem. Soc. 130 8261
[3] Kageyama H, Nishi M, Aso N, Onizuka K, Yoshihama T, Nukui K, Kodama K, Kakurai K and Ueda Y 2000 Phys. Rev. Lett. 84 5876
[4] Onizuka K, Kageyama H, Narumi Y, Kindo K, Ueda Y and Goto T 2000 J. Phys. Soc. Jpn. 69 1016
[5] Kodenkandath T A, Lalena J N, Zhou W L, Carpenter E E, Sangregorio C, Falster A U, Simmons W B, O’Connor C J, Wiley J B 1999 J. Am. Chem. Soc. 121 10743
[6] Kodenkandath T A, Kumbhar A S, Zhou W L and Wiley J B 2001 Inorg. Chem. 40 710
[7] Kageyama H, Viciu L, Caruntu G, Ueda Y and Wiley J B 2004 J. Phys.: Condens. Matter 16 5585
[8] Kageyama H, Kitano T, Oba N, Nishi M, Nagai S, Hirota K, Viciu L, Wiley J B, Yasuda J, Baba Y, Ajiro Y and Yoshimura K 2005 J. Phys. Soc. Jpn. 74 1702
[9] Kageyama H, Yasuda J, Kitano T, Totsuka K, Narumi Y, Hagiwara M, Kindo K, Baba Y, Oba

5
N, Ajiro Y and Yoshimura K 2005 *J. Phys. Soc. Jpn.* **74** 1702

[10] Kitada A, Hiroi Z, Tsujimoto Y, Kitano T, Kageyama H, Ajiro Y and Yoshimura K 2007 *J. Phys. Soc. Jpn.* **76** 15523

[11] Yoshida M, Ogata N, Takigawa M, Yamaura J, Oba N, Kitano T, Kageyama H, Ajiro Y, and Yoshimura K 2007 *J. Phys. Soc. Jpn.* **76** 104703

[12] Tassel C, Kang J, Lee C, Hernandez O, Qiu Y, Paulus W, Collet E, Lake B, Guidi T, Whangbo M-H, Ritter C, Kageyama H and Lee S-H 2010 *Phys. Rev. Lett.* **105** 167205

[13] Oba N, Kageyama H, Kitano T, Yasuda J, Baba Y, Nishi M, Hirota K, Narumi Y, Hagiwara M, Kindo K, Saito T, Ajiro Y and Yoshimura K 2006 *J. Phys. Soc. Jpn.* **75** 113601

[14] Kitada A, Tsujimoto Y, Kageyama H, Ajiro Y, Nishi M, Narumi Y, Kindo K, Ichihara M, Ueda Y, Uemura Y J and Yoshimura K 2009 *Phys. Rev. B* **80** 174409

[15] Uemura Y J, Aczel A A, Ajiro Y, Carlo J P, Goko T, Goldfeld D A, Kitada A, Luke G M, MacDougall G J, Mihailescu I G, Rodriguez J A, Russo P L, Tsujimoto Y, Wiebe C R, Williams T J, Yamamoto T, Yoshimura K and Kageyama H 2009 *Phys. Rev. B* **80** 174408

[16] Tsujimoto Y, Kageyama H, Baba Y, Kitada A, Yamamoto T, Narumi Y, Kindo K, Nishi M, Carlo J P, Aczel A A, Williams T J, Goko T, Luke G M, Uemura Y J, Ueda Y, Ajiro Y and Yoshimura K 2008 *Phys. Rev. B* **78** 214410

[17] Viciu L, Caruntu G, Royant N, Koenig J, Zhou W L, Kodenkandath T A and Wiley J B 2002 *Inorg. Chem.* **41** 3385

[18] Viciu L, Koenig J, Spinu L, Zhou W L and Wiley J B 2003 *Chem. Mater.* **15** 1480

[19] Viciu L, Golub V O and Wiley J B 2003 *J. Solid State Chem.* **175** 88

[20] Tsujimoto Y, Kitada A, Uemura Y J, Goko T, Aczel A A, Williams T J, Luke G M, Narumi Y, Kindo K, Nishi M, Ajiro Y, Yoshimura K and Kageyama H 2010 *Chem. Mater.* **22** 4625

[21] Breed D J, Gilijamse K and Miedema A R 1969 *Physica* **45** 205

[22] Manaka H, Miyashita Y, Watanabe Y and Masuda T 2007 *J. Phys. Soc. Jpn.* **76** 085003