Smoking is indisputably the major cause of chronic obstructive pulmonary disease (COPD) and lung cancer. However, COPD is independently associated with lung cancer risk, even after adjusting for smoking history, suggesting common pathologies beyond smoke exposure (1–4). Elucidating the key mechanisms linking the two diseases may lead to identification of modalities for lung cancer chemoprevention and the development of biomarkers to better ascertain lung cancer risk.

Although the study of mechanisms shared between COPD and lung cancer is evolving, several general theories are emerging. Hypotheses include genetic predisposition, enhanced oxidative stress and chronic inflammation, accelerated cellular aging, and extracellular matrix (ECM) pathology, among others. Genome-wide association studies have shown a handful of risk regions associated with both diseases (5, 6). Cigarette smoking leads to the accumulation of reactive oxygen and nitrogen species in the lung. COPD-associated airway and parenchymal damage, mucus alterations, mitochondrial dysfunction, and inflammation may enhance this accumulation, supporting an environment that cannot appropriately expel carcinogens or respond to damaged cells (7–10). The resultant oxidative stress leads to irreversible cellular and DNA damage, activating both inflammatory pathways that contribute to COPD-associated chronic inflammation and proliferative pathways that contribute to tumorigenesis and cancer progression (8, 10). Furthermore, the chronic inflammation that is a hallmark of COPD is increasingly recognized as a contributor to lung cancer pathogenesis, with immune checkpoint inhibitors transforming lung cancer therapeutics (11, 12). Both lung cancer and COPD also primarily affect an aging population. As this clinical observation suggests, accelerated cellular aging as a result of telomere shortening, oxidative stress-induced DNA damage, and arrested cell growth (senescence) is common to both of these diseases (13, 14).

Another potential area of COPD–cancer overlap is the stroma. The stroma is composed of ECM and connective tissue cells such as fibroblasts and mesenchymal stromal cells, and serves mainly to support the structural stability and functionality of tissues (15). The stroma and associated cells in the stromal and tumor microenvironment (e.g., immune and endothelial cells) are now recognized as being intimately involved in tumor development, progression, and therapeutic responses (15, 16). The stromal compartment is also a key contributor to COPD pathogenesis, in that altered and excessive ECM production and degradation contribute to emphysema.

In a study presented in this issue of the Journal, Sandri and colleagues (pp. 348–358) used a multi-omics approach to examine how differences in lung function affect stromal signaling in lung cancer (17). They examined gene expression by total mRNA sequencing, gene translational efficiency by polysome profiling, and protein expression by mass spectrometry–based proteomics in tumor-adjacent lung tissue (primarily stromal profiling) and matched samples from participants without cancer. Samples from patients with and without cancer were matched based on lung function ranging from normal to severe airflow obstruction. They first show that cancer-associated alterations in the proteome are dependent on lung function. They then suggest that these proteome alterations are predominantly due to changes in mRNA translational efficiency. They found an enrichment in differentially translated, but not expressed, mRNA levels for the interaction between lung function and cancer across all genes and secondarily in the genes with altered proteins. Based on a series of pathway analyses, they go on to suggest that different cancer-associated mechanisms are important in participants with different degrees of lung function. For instance, they show that a fibrotic ECM pathway is associated with declining lung function and translational efficiency, whereas a senescence pathway is associated with better lung function and overall gene expression.

The agreement between the results from proteomic and polysome RNA sequencing shows a strength of using multi-omics datasets derived from the same subjects, which is becoming more common in genomics studies (18, 19). They used two methods to validate the omics results, including Western blotting of two proteins, CAV1 and SFXN3, although they do not specify how they chose these two proteins. In addition, immunofluorescence in lung tissue highlighted IL-6 and BMP-1, which were selected to represent two identified gene ontologies.

In this study, the authors used advanced genomics technologies, and they should be commended for their detailed reporting of the laboratory and analysis methods used. To make such reporting easier in the future, the American Thoracic Society’s Section on Genetics and Genomics recently published a workshop report on high-throughput sequencing research, including a list of best practices, that can serve as a checklist for readers and journal reviewers (20). The datasets generated in the current study will be made publicly available, to allow further exploration of the results.

The major limitation of this paper is the small sample size (58 subjects with proteomics data and 32 with RNA sequencing). It is not clear how these sample sizes were selected out of the much larger Lung Tissue Research Consortium. Small sample sizes may be prone to both false-negative and false-positive results. Current RNA-sequencing and proteomics studies in lung disease now include hundreds or thousands of subjects (21, 22), which is still small compared with genome-wide association studies, which include hundreds of thousands of subjects (23, 24).

Testing for gene expression-by-environment interactions is difficult, as currently available RNA-sequencing analysis methods, such as DESeq2 and limma/voom, do not allow for such assessment (25, 26). To overcome this limitation, Sandri and colleagues tested for interactions between FEV1 and cancer, not interactions between

---

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Originally Published in Press as DOI: 10.1164/rccm.201901-0156ED on February 12, 2019
FEV₁ and gene expression differences between cancer and controls. Direct testing of interactions in RNA-sequencing data is an active area of methods development.

Despite the findings that gene expression patterns differed based on FEV₁, it is unlikely that the physiologic impairment in lung function leads to changes in the biologic mechanisms. FEV₁ is more likely a surrogate for emphysema or pathologic changes in the airway, both of which have been proposed to affect lung cancer development (3). Future studies should directly assess emphysema and airway disease based on preoperative chest computed tomography imaging.

Sandri and colleagues have added to a growing body of work interrogating the COPD–lung cancer connection. As the authors have demonstrated, high-throughput technologies provide ever-improving avenues to investigate pathologies associated with important clinical questions. In future studies, multi-omics data could be exploited to ascertain the contribution of COPD-related pathology to premalignant and tumor microenvironments in many ways. For example, pharmacogenomics approaches could be used to identify pathologic pathways (e.g., immune responses) that may be directly modifiable by available therapeutics. Alternatively, machine learning and classification approaches could be used to identify COPD-relevant cancer risk biomarkers. As the costs of high-throughput technologies continue to decrease, we are likely to see an explosion of data available to address these and other critical issues related to the care of patients.

Author disclosures are available with the text of this article at www.atsjournals.org.

Stephanie Christenson, M.D., M.A.S.
Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
University of California, San Francisco
San Francisco, California

Craig P. Hersh, M.D., M.P.H.
Channing Division of Network Medicine
Brigham and Women’s Hospital
Boston, Massachusetts

ORCID IDs: 0000-0003-1550-2815 (S.C.); 0000-0002-1342-4334 (C.P.H.).

References

1. Wasswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin RD. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax 2005; 60:570–575.

2. Hohberger LA, Schroeder DR, Bartholmai BJ, Yang P, Wendt CH, Bitterman PB, et al. Correlation of regional emphysema and lung cancer: a lung tissue research consortium-based study. J Thorac Oncol 2014;9:639–645.

3. Young RP, Duan F, Chiles C, Hopkins RJ, Gamble GD, Greco EM, et al. Airflow limitation and histology shift in the national lung screening trial: the NLST-ACRIN cohort substudy. Am J Respir Crit Care Med 2015;192:1060–1067.

4. Hopkins RJ, Duan F, Chiles C, Greco EM, Gamble GD, Aberle D, et al. Reduced expiratory flow rate among heavy smokers increases lung cancer risk: results from the National Lung Screening Trial-American College of Radiology Imaging Network Cohort. Ann Am Thorac Soc 2017;14:392–402.

5. Yang IA, Holloway JW, Fong KM. Genetic susceptibility to lung cancer and co-morbidities. J Thorac Dis 2013;5:S454–S462.

6. Wang H, Yang L, Deng J, Wang B, Yang X, Yang R, et al. Genetic variant in the 3’-untranslated region of VEGFR1 gene influences chronic obstructive pulmonary disease and lung cancer development in Chinese population. Mutagenesis 2014;29:311–317.

7. Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol 2004;4:641–648.

8. Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer 2013;13:233–245.

9. Kesimer M, Ford AA, Cepepe A, Radiocini G, Cao R, Davis CW, et al. Airway mucin concentration as a marker of chronic bronchitis. N Engl J Med 2017;377:911–922.

10. Wiegman CH, Michaeloudakis C, Haji G, Narang P, Clarke CJ, Russell KE, et al.; COPDMAP. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015;136:769–780.

11. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436–444.

12. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015;348:56–61.

13. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001;98:12072–12077.

14. Kumar M, Seeger W, Voswinckel R. Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2014;51:323–333.

15. Valkenborg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma and co-morbidities. J Thorac Dis 2013;5:S454–S462.

16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.

17. Sandri BJ, Masvidal L, Murie C, Bartish M, Avdulov S, Higgins L, et al. Distinct cancer-promoting stromal gene expression depending on lung function. Am J Respir Crit Care Med 2019;200:348–358.

18. Seo M, Qiu W, Bailey W, Criner GJ, Dransfield MT, Furbihrigge AL, et al. Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. J Mol Med (Berl) 2018;96:1375–1385.

19. Li CX, Wheelock CE, Skold CM, Wheelock AM. Integration of multi-omics datasets enables molecular classification of COPD. Eur Respir J 2018;51:1701930.

20. Hersh CP, Adcock IM, Celedón JC, Cho MH, Christiani DC, Himes BE, et al. High-throughput sequencing in respiratory, critical care, and sleep medicine research: an Of ficial American Thoracic Society Workshop Report. Ann Am Thorac Soc 2019;16:1–16.

21. Sun W, Kechris K, Jacobson S, Drummond MB, Hawkins GA, Yang J, et al.; SPIROMICS Research Group; COPDGene Investigators. Common genetic and epigenetic polymorphisms influence blood biomarker measurements in COPD. PLoS Genet 2016;12:e1006011.

22. Parker MM, Chase RP, Lamb A, Reyes A, Safarli A, Yung JH, et al. RNA sequencing identifies novel non-coding RNA and exon-specific effects associated with cigarette smoking. BMC Med Genomics 2017;10:58.

23. Sakomsakolpat P, Prokopenko D, Lamontagne M, Reeves NF, Guyatt AL, Jackson VE, Hobbs BD, et al. Expanded genetic landscape of chronic obstructive pulmonary disease reveals heterogeneous cell type and phenotype associations. bioRxiv 2018:355644. DOI: https://doi.org/10.1101/355644.

24. Shirine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne C, et al. New genetic signals for lung function highlight pathways and pleiotropy, and chronic obstructive pulmonary disease associations across multiple ancestries. bioRxiv 2018;343293. DOI: https://doi.org/10.1101/343293.

25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with Deseq2. Genome Biol 2014;15:550.

26. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.