Multi-locus phylogeny of *Pleosporales*: a taxonomic, ecological and evolutionary re-evaluation

Y. Zhang¹, C.L. Schoch², J. Fournier³, P.W. Crous⁴, J. de Gruyter³, ⁴, ⁵, J.H.C. Woudenberg⁴, K. Hirayama⁶, K. Tanaka⁶, S.B. Pointing¹, J.W. Spatafora⁷ and K.D. Hyde⁸, ⁹*

¹Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China; ²National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 36 Center Drive, MSC 6510, Bethesda, Maryland 20894-6510, U.S.A.; ³Las Muns, Rimont, Arlège, F 09420, France; ⁴CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; ⁵Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands; ⁶Faculty of Agriculture & Life Sciences, Hiroshi University, Bunkyo-cho 3, Hiroshi, Aomori 036-8561, Japan; ⁷Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97333, U.S.A.; ⁸School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand; ⁹International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China 650034

*Correspondence: Kevin D. Hyde, kdyhde2@gmail.com

Abstract: Five newly introduced families: *Spatafora*⁷ and K.D. Hyde⁸, ⁹*

Recent phylogenetic studies indicated that *Pleosporales* has undergone great changes in the last half century. The name *Pleosporales* was first proposed in 1955 by Luttrell to accommodate members of *Dothideomycetes* having ascomata with pseudoparaphyses amongst the asci, and seven families, i.e. *Botryosphaeriaceae*, *Didymosphaeriaceae*, *Herpotrichiellaceae*, *Lophiostomataceae*, *Mesnieraceae*, *Pleosporaceae* and *Venturaceae* were included. Luttrell (1973) redefined the concept of *Pleosporales* based on ascomatal morphology, ascal arrangement in locules, presence or absence of hamathecal tissue, shape of papilla or ostioles, ascospore features and type of habitats, and added three more families, i.e. *Dimeriaceae*, *Mycoporaceae* and *Sporormiaceae*. The morphology of the pseudoparaphyses was given much importance at the ordinal level classification when Barr (1987) introduced *Melanommales* to accommodate pleosporalean taxa with trabeculate pseudoparaphyses (Sporormia-type centrum development) as compared to cellular pseudoparaphyses (*Pleospora*-type centrum development) possessed by other members of *Pleosporales*. Due to the lack of a Latin description in the original publication, *Pleosporales* was formally established in 1987 (Barr 1987b), and was characterised by perithecioid ascomata with conspicuous ocular chambers and apical rings. Nutritional shifts in *Pleosporales* likely occurred from saprotrophic to hemibiotrophic or biotrophic.

INTRODUCTION

Pleosporales is the largest order in the class *Dothideomycetes*, with a reported 23 families, 332 genera and more than 4 700 species (Kirk et al. 2008), or 19 families and 174 genera in Lumbsch & Huhndorf (2007)*. Members of *Pleosporales* can be endophytes or epiphytes (Huang et al. 2008, Sánchez Márquez et al. 2008, Tao et al. 2008), parasitic on green leaves or stems (Wetzel et al. 1999, Solomon et al. 2006), lichenicolous (Calatayud et al. 2001), saprobic on dead leaves or stems in terrestrial or aquatic environments (Cámara et al. 2002, Ramesh et al. 2003, Kadse et al. 2008, Zhang et al. 2008b, 2009a), or occur on animal dung (Kruys et al. 2006, Kruys & Weedin 2009).

The circumscription of *Pleosporales* has undergone great changes in the last half century. The name *Pleosporales* was first proposed in 1955 by Luttrell to accommodate members of *Dothideomycetes* having ascomata with...
Coccoideaceae, Cucurbitariaceae, Dacampiaceae, Hysteriaceae, Leptosphaeriaceae, Micropelidaceae, Parodiellaceae, Phaeosphaeriaceae, Phaeotrichaceae, Pleomassariaceae, Polystomellaceae, Pyrenophoraceae, Tuberiaceae, Vizellaceae. Recent phylogenetic analysis based on DNA sequence data however, have indicated that the Pleospora-type and Sporormia-type of centrum development (cellular versus trabeculate pseudoparaphyses) are not natural groupings, as taxa with these centrum types are dispersed in phylogenetic trees (Liew et al., 2000, Lumbsch & Lindemuth 2001). Thus members of Melanomatales were assigned to Pleosporales, and consequently, Melanomatales was treated as a synonym of Pleosporales (Eriksson 2006). Nineteen families have been assigned to Pleosporales in Kirk et al. (2001), 13 in Eriksson (2006), and 19 in Lumbsch & Huhndorf (2007).

One important reason for the unstable circumscriptions in the traditional classification of the Pleosporales is that the value given to the various morpho-characters, even those used at high-level classification, has proven to be overstated. For instance, fruiting-body shapes, i.e. cleistotheciod, perithecioid and apothecioid, previously considered sanctum at class level classification, were found to have undergone convergent evolution (Hawksworth & Lagreca 2007), as can be seen across Ascomycota (Schoch et al. 2009a). Another important distinguishing character, ascus type, has been reported to be phylogenetically misleading in numerous natural groups (Schmitt & Lumbsch 2004, Wedin et al. 2005, Lumbsch et al. 2007). Indeed, several DNA sequence based phylogenetic reconstructions have shown that ascospore morphology has little phylogenetic significance at familial or generic level classification (Cous et al. 2003, Schmitt & Lumbsch 2004, Kodueba et al. 2006, Wang et al. 2007, Zhang et al. 2009b). Consequently, an increasing number of taxa designated only by morphological characterisations in Pleosporales have been reported to be polyphyletic, such as the families Pleosporaceae (Kodueba et al. 2006), Melanomataaceae (Liew et al. 2000, Wang et al. 2007) and genera Massariosphaeria (Wang et al. 2007), Melanomma (Wang et al. 2007), Massarina and Lophiostoma (Liew et al. 2002, Zhang et al. 2009b).

Various anamorph genera have been recorded in Pleosporales and include both hyphomycetes and coelomycetes. Anamorph genera are often associated with multiple teleomorph genera, and in many cases anamorph relationships described in older literature have not yet been tested with DNA sequence data (Farr et al. 1989, de Gruyter et al. 2009). In the few cases where this was done, anamorph genera such as Ampelomyces, Ascochyta, Coniothyrium and Phoma proved to be polyphyletic and associated with multiple teleomorph genera (Aveskamp et al. 2008, de Gruyter et al. 2009).

Besides the morphological characters used in traditional taxonomy, several other biological characters have been used to define families. For instance, metabolite production and substrate staining reactions have been shown to be phylogenetically informative in xylariaceous and pleosporalean taxa (Stadler et al. 2001, 2004, 2007, Stadler & Fournier 2006, Bitzer et al. 2008, Zhang et al. 2009a). Host spectrum has been used to distinguish between Phaeosphaeria and Leptosphaeria (Holm 1957, Shoemaker & Babcock 1989), and anamorphic stages have been used to distinguish Pleospora and Lewia (Simmons 1986, 2007).

Since the first attempts at a classification of the order Pleosporales it has been a challenge to address the enormous diversity in biology, morphology and ecology within a stable classification. Thus, in molecular studies comprehensive taxon sampling is essential in order to avoid biased conclusions. To counteract this, a large number of taxa from various families and habitats, in particular generic types were included in the present phylogenetic analysis. The aims of the present investigation are: 1) to build up an overall molecular phylogenetic framework based on a multi-gene analysis showing the interfamilial relationships in the Pleosporales; 2) to re-evaluate the significance of morphological or ecological characters used in phylogeny and taxonomy of the order; and 3) to redefine hypotheses for evolutionary trends in the Pleosporales.

MATERIALS AND METHODS

Collection and examination of specimens

Twenty-eight fresh specimens were collected in Europe (the majority from France) during 2004 to 2008 by J. Fournier, and returned to the laboratory for examination. In most cases ascomata were collected directly on natural wood without incubation. The samples were processed and examined following the method described in Tsui et al. (2000). Colonies were sub-cultured onto 2 % potato-dextrose agar (PDA), synthetic nutrient-poor agar (SNA), 2 % malt extract agar (MEA), and oatmeal agar (OA) (Crous et al. 2009b), and incubated under continuous near-UV light at 25 °C to promote sporulation. Observations and photographs were prepared from material mounted in water, congo red, cotton blue, chlorazol black, aqueous nigrosin, lactic acid or Indian ink. Additional cultures used in this study were obtained from the Centraalbureau voor Schimmelcultures (CBS) in Utrecht, the Netherlands. Nomenclatural novelties and descriptions were deposited in MycoBank (Crous et al. 2004).

Fungal isolates and DNA extraction

Total genomic DNA was extracted from mycelia following the protocols as outlined by Cai et al. (2006) and Shenoy et al. (2007). A second set of DNA samples were obtained following DNA extraction protocols outlined in Schoch et al. (2007). In cases where no cultures could be obtained, a Forensic Kit (UltraClean™ Forensic Kit, Cambio) was used to extract DNA from specimens directly.

DNA amplification and sequencing

DNA amplification was performed by PCR. For partial large subunit (28S, LSU) nuclear rDNA amplification (nu-rDNA), LROR and LR5 primers (Vilgalys & Hester 1990) were used. Primer pairs NS1 (28S, LSU) nuclear rDNA amplification (nu-rDNA), LROR and LR5 were used for partial large subunit DNA amplification and sequencing. DNA amplification was performed by PCR. For partial large subunit (28S, LSU) nuclear rDNA amplification (nu-rDNA), LROR and LR5 primers (Vilgalys & Hester 1990) were used. Primer pairs NS1 and NS4 were used to amplify a region from the small subunit (18S, SSU) of the nu-rDNA (White et al. 1990). The fRPB2-5F and fRPB2-7Cr primers were used for the amplification of the partial RNA polymerase second largest subunit (RPB2) (Liu et al. 1999). The EF1-α-F and EF1-α-R primers were used to amplify a region from the translation elongation factor 1-alpha gene (TEF1) (Schoch et al. 2006) and the RPB1-Ac and RPB1-Cr primers were used for RPB1 region (Schoch et al. 2009; this volume). The amplification reaction for partial LSU, SSU and TEF1 nu-rDNA genes was performed in a 50 μL reaction volume as outlined by Jeewon et al. (2004) and Shenoy et al. (2007): 1 × PCR buffer, 0.2 mM dNTPs, 0.3 μM of each primer; 1.5 mM MgCl₂, 0.8 units Taq polymerase and 5–10 ng gDNA. The PCR thermal cycle programme for partial LSU nu-rDNA amplification was as follows: 95 °C for 3 min, followed by 34 cycles of denaturation at 95 °C for 1 min, annealing at 52 °C for 30 s and elongation at 72 °C for 1 min.
with a final extension step of 72 °C for 10 min (Vigalys & Hester 1990). The PCR thermal cycle programme for the partial RPB2 gene amplification consisted of 95 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 1 min, annealing at 55 °C for 2 min and elongation at 72 °C for 90 s, with a final extension step of 72 °C for 10 min (Liu et al. 1999). The PCR products, spanning approximately 700 bp (TEF1), 900 bp (partial LSU) and 1200 bp (partial SSU and RPB2), were checked on 1 % agarose electrophoresis gels stained with ethidium bromide. The PCR products were then purified using minicolumns, purification resin and buffer according to the manufacturer’s protocols (GFX PCR DNA and Gel Band Purification Kit, Amersham Biosciences, Buckinghamshire, U.K.). DNA sequencing was performed using the above-mentioned primers in an Applied Biosystem 3730 DNA analyser at the Genome Research Centre, the University of Hong Kong.

Sequence alignment and phylogenetic analyses

Sequences were obtained from WASABI (Kauff et al. 2007) as well as from previous publications (e.g. Lutzoni et al. 2004, Schoch et al. 2009b). Taxa was aligned by using default options for a simultaneous method of estimating alignments and tree phylogenies, SATé (Liu 2009b). Taxa was aligned by using default options for a simultaneous method of estimating alignments and tree phylogenies, SATé (Liu et al. 2009). Protein coding fragments were translated in BioEdit v. 7.0.1 (Hall 2004) and aligned within SATé as amino acids. These were aligned with their respective DNA sequences using the RevTrans 1.4 Server (Wernersson & Pedersen 2003). Subsequently, newly generated sequences were added to this initial alignment with MAFFT v. 6.713 (Katoh et al. 2009).

A supermatrix of five genes (LSU, SSU, TEF1, RPB1, RPB2) consisting of 47 % gaps and undetermined characters across 171 taxa was obtained. Most taxa had at least two genes present – except for a set of nine taxa with closely related species needed to confirm their identity (Table 1 - see online Supplementary Information).

Conflict tests

Conflict tests were conducted by selecting single gene data sets and doing comparisons on a gene-by-gene basis applying the bootstrapping criterion in RAxML v. 7.0.4 (Stamatakis et al. 2008), using the CIPRES 2.1 webportal (Miller et al. 2009) to produce trees of comparative gene sets where all taxa have the gene present. Comparisons between two sets of gene trees were done using a script (compat.py; Kauff & Lutzoni 2002) obtained through the Lutzoni lab website (www.lutzonilab.net/downloads/index.shtml) to detect taxa within clades with a cut-off value of 70 %. This is also performed as in Schoch et al. (2009).

A phylogenetic analysis was performed using RAxML v. 7.2.2 (Stamatakis 2006) applying unique model parameters for each gene and codon. The data set was thus partitioned in 11 partitions as previously done in Schoch et al. (2009b). In addition a general time reversible model (GTR) was applied with a discrete gamma distribution and four rate classes. One hundred successive most likely tree searches were done in RAxML under the same model, each one starting from a randomised tree with joint branch length optimisation and a rapid hill climbing option. Bootstrap pseudoreplicates were performed 145 times using the fast bootstrapping option and a frequency-based bootstrapping criterion (Stamatakis et al. 2008). These were plotted above the nodes in the most likely tree obtained earlier. The values below the nodes are percentages of 500 jacknife resamplings performed in TNT for MS windows with a new technology search set to 20 (Goloboff et al. 2008).

RESULTS AND DISCUSSION

DNA phylogeny

The tree presented in Fig. 1 represents the most complete phylogeny of Pleosporales produced to date. In addition it contains the members of other potential orders in Pleosporomycetidae and Dothideomycetes for outgroup comparisons. The tree was rooted with two Anthonomycetes as outgroups, Opegrapha varia and O. dolomitica (not shown). The supermatrix analysed in this study produced 4 290 distinct alignment patterns distributed as follows across the various partitions: SSU – 563, LSU – 807, RPB1 codon1 – 232, RPB2 codon2 – 198, RPB1 codon3 – 333, RPB2 codon1 – 467, RPB2 codon2 – 404, RPB2 codon3 – 614, TEF1 codon1 – 185, TEF1 codon2 – 176 and TEF1 codon3 – 311. The highest scoring likely tree had a log likelihood of -107754.307532.

Families of Pleosporales

In total, 151 taxa (171 strains) of Ascomycota (including the outgroups Opegrapha dolomitica and O. varia) were included in the analysis. It comprises 149 taxa (169 strains) of Dothideomycetes, of which 129 taxa (148 strains) were Pleosporales. The Pleosporales formed a well-supported clade (Fig. 1). The pleosporalean taxa comprised of representatives from 59 pleosporalean genera out of about 200 known genera (ca. 30 %), with 39 generic types of Pleosporales included in the analysis. As shown in Fig. 1, Pleosporales can be subdivided into 17 clades with more than 70 % ML bootstrap (MBL) or 65 % Jackknife (JK); 15 representing familial ranks, i.e. Agilaceae, Delitschiaeae, Didymellaceae, Lepotosphaeriaceae, Lophiotomataceae s. str., Massarinaceae, Melanommataceae, Montagnulaceae, Phaeosphaeriaceae, Pleosporaceae, Sporormiaceae, Trematosphaeriaceae and Massariaceae (Lumbsch & Huhndorf 2007, Kirk et al. 2008), as well as Amniculicolaceae and Lentitheciaceae, which are newly introduced in this paper. Based on the multi-gene phylogenetic data generated here, a new circumscription of Pleosporales is given as follows:

Pleosporales Lutr. ex M.E. Barr, *Prodromus to class Loculoascomycetes*: 67. 1987. emend.

Hemibiotrophic, saprobic, hypersaprobic, or lichenised. Habitats in freshwater, marine or terrestrial environment. Ascomata perithecioid, rarely cleistothecoid, immersed, erumpent to superficial, globose to subglobose, or lenticular to irregular, with or without conspicuous papilla or ostioles. Ostioles with or without paraphyses. Peridium usually composed of a few layers of cells with various shapes and structures. Hamathecium persistent, filamentous, very rarely decomposing. Asci bitunicate, fissitunicate, cylindrical, clavate to obclavate, with or without pedicel.

Anamorphs: Acroconidiellina, Alternaria, Aposphaeria, Ascochyta, Ascochyttella, Bipolaris, Ceratophoma, Coniothyrium, Corynespora, Curvularia, Cytoptea, Drechslera, Exserohilum, Hendersonia, Leptophoma, Metabolotryon, Microsphaeropsis, Myxococcus, Nigroentilocus, Nimbya, Phoma, Pilimmyces, Pleurophomopsis, Prosthemium, Pseudospiroplas, Pyrenochaeta, Scolocosporiella, Scolicosporium, Shearia, Sphaerellopsis, Stagonospora, Steganosporium, Stemphylium and Tiarospora (www.cbs.knaw.org).
Pleosporaceae

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Phaeosphaeria herpotricha	M	P	Fi	>3	H	Y	
Phaeosphaeria nigra	M	M	P	Fi	>3	H	Y
Phaeosphaeria elongata	M	M	P	Fi	>3	H	Y
Phaeosphaeria typharam	S	S	P	NF	>3	H/Y	
Phaeosphaeria sp.	M	M	P	Fi	>3	H	Y
Phaeosphaeria nodorum	M	M	P	Fi	>3	H	Y

Phaeosphaeriaceae

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Phaeosphaeria nodorum	M	P	Fi	>3	H	Y	
Phaeosphaeria truncata	M	M	P	Fi	>3	H	Y
Phaeosphaeria aphidiformis	S	S	P	NF	>3	H/Y	
Phaeosphaeria avencaria	M	M	P	Fi	>3	H	Y
Phaeosphaeria sp.	M	M	P	Fi	>3	H	Y

Didymellaceae

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Didymella bryoniae	M	P	Fi	>3	H	Y	
Didymella sphaericus	M	M	P	Fi	>3	H	Y
Didymella sp.	S	S	P	NF	>3	H/Y	

Coniothyrium
genera

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Coniothyrium palmarum	M	M	P	Fi	>3	H	Y
Coniothyrium sp.	S	S	P	NF	>3	H/Y	
Coniothyrium sp.	M	M	P	Fi	>3	H	Y
Coniothyrium sp.	S	S	P	NF	>3	H/Y	

Phaeosphaeria
genera

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Phaeosphaeria sp.	M	M	P	Fi	>3	H	Y
Phaeosphaeria sp.	S	S	P	NF	>3	H/Y	
Phaeosphaeria sp.	M	M	P	Fi	>3	H	Y
Phaeosphaeria sp.	S	S	P	NF	>3	H/Y	

Ophiostomataceae

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Ophiostoma herpotricha	M	P	Fi	>3	H	Y	
Ophiostoma nigra	M	M	P	Fi	>3	H	Y
Ophiostoma elongata	M	M	P	Fi	>3	H	Y
Ophiostoma typharam	S	S	P	NF	>3	H/Y	
Ophiostoma sp.	M	M	P	Fi	>3	H	Y
Ophiostoma nodorum	M	M	P	Fi	>3	H	Y
Ophiostoma sp.	S	S	P	NF	>3	H/Y	

Montagulaceae

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Montagula arundinearum	M	P	Fi	>3	H	Y	
Montagula sp.	S	S	P	NF	>3	H/Y	
Montagula sp.	M	M	P	Fi	>3	H	Y
Montagula sp.	S	S	P	NF	>3	H/Y	

Fungi
genera

Species	Ascus	Ascosporae	SZ	SO	SP	ST	CL
Didymella bryoniae	M	P	Fi	>3	H	Y	
Didymella sphaericus	M	M	P	Fi	>3	H	Y
Didymella sp.	S	S	P	NF	>3	H/Y	
Didymella sp.	M	M	P	Fi	>3	H	Y
Didymella sp.	S	S	P	NF	>3	H/Y	

Phylogenetic relationships

Fig 1. RAAML tree with bootstrap values after 1000 pseudo replications on the nodes. The values below the nodes are percentages of 500 jackknife resamplings. Pleospora-like leaves highlighted in red and bold are marine or maritime taxa, in blue and bold are freshwater taxa, and others are terrestrial ones. Relevant biological or morphological characters plotted on the leaves are abbreviated as follows: Biology: Mono – monocotyledons; Dico – dicotyledons; Gy – Gymnosperm; SF – Stream foam; ? – unknown; X – no information. Morphology: SZ – size, OS – ostiole, SP – shape, ST – septum, CL – colour: Ascusoma size: S – small (<300 µm), M – medium (300 µm < diam < 600 µm), L – large (diam > 600 µm); ostiole: P – pore-like ostiole, Sl – slit-like ostiole, Nil – no opening. Ascospore shape: Fi – filiform, Fu – fusiform, NF – narrowly fusiform, BF – broadly fusiform, Cy – cylindrical; ascospore septum: 1 – one transverse septum, 2 – two transverse septae, 3 – three transverse septa, 3+ – more than three transverse septa, M – muriform, Ap – apiosporous; ascospore colour: H – hyaline, B – brown, PB – pale brown, RB – reddish brown, DB – dark brown, Y – yellow, PY – pale yellow, ? – characters unknown. -- -- anamorph strain.
Pleosporineae

Pleosporineae contains many notorious plant pathogens, most belonging to one of four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. These four families cluster together with high support (MLB = 99 %, JK = 92 %) (Fig. 1). Most taxa in these families are associated with living plants and many are serious plant pathogens (Shoemaker & Babcock 1989, Ueng et al. 2003, Rouxel & Balesdent 2005). Examples of important plant pathogens representing the different families are Cochliobolus heterostrophus (Pleosporaceae), the cause of southern corn leaf blight on maize (White 1999), Phaeosphaeria nodorum (anamorph Stagonospora nodorum) the cause of wheat glume blotch (Vergnes et al. 2006, Rouxel & Balesdent 2005). Because of their economic importance, members of Pleosporineae have already been subject to extensive molecular phylogenetic and pathogenic investigations over several decades (Wehmeyer 1961, Shoemaker 1976, 1984a, Shoemaker & Babcock 1985, Simmons 1986, Barr 1992). This includes studies on taxonomy, fungus-host interactions, biochemistry and genomics. Recently, the production of full genome data sets have spurred renewed interest in species such as Stagonospora nodorum (Solomon et al. 2006, Hane et al. 2007), Leptosphaeria maculans (Rouxel & Balesdent 2005), and Alternaria brassicicola (Pedras et al. 2009). The designation of Pleosporineae was first proposed by Barr (1979) to accommodate fungi having “globose, depressed, conic or vertically elongated ascomata, with a peridium equal in thickness or thickened at the lower sides”. Six families were included, viz. Mesnieraceae, Phaeosphaeriaceae, Pleosporaceae, Pyrenophoraceae, Tubulifloraceae and Venturiaceae (Barr 1979). The findings here support previous phylogenetic studies in concluding that the ordinal type, Pleosporaceae, and the families Phaeosphaeriaceae, Leptosphaeriaceae and Didymellaceae form a robust clade, and consistently occupy the terminal branches of pleosporalean dendrograms (Liew et al. 2000, Kodseue et al. 2006, Krusy et al. 2006, Schoch et al. 2006, de Gruyter et al. 2006). Thus Pleosporineae is emended here to accommodate these four families. Many anamorphic stages of the Pleosporineae are coelomyceteous genera, which includes Ascochyta, Chalospororhiza, Ditylenchus, Microsphaerops, Pleurophoma, Phoma, and Stagonospora (de Gruyter et al. 2009). However, hyphomyceteous anamorphs such as Bipolaris, Alternaria or Stemphylium are also included (Simmons 1986).

Pleosporineae Barr, Mycologia 71: 947. 1979. emend.

Mostly hemibiotrophic or saprobic, rarely symbiotic. Ascomata perithecioid, immersed, erumpent to superficial; globose to subglobose, ovoid or obpyriform. Hamathecium broadly to narrowly trabeculate or cellular pseudoparaphyses, rarely deliquescent at maturity. Asci bitunicate, fissitunicate, usually basal, rarely extending laterally, cylindrical, clavate to oblong. Ascospores mostly pigmented, rarely hyaline, one- to multi-septate or multinucleate, symmetrical or rarely assymetrical. Anamorphs: Acroconidiellina, Alternaria, Ascochyta, Ascochyttella, Bipolaris, Coniothyrium, Curvularia, Drechslera, Exserohilum, Leptosphaeria, Metaboltron, Nimbya, Phoma, Pithomyces, Scolecosporiella, Stagonospora, Stemphylium and Tiarospora (www.cbs.knaw.nl/databases/anateleo.htm 04-2009, www.indexfungorum.org/ 12-2009, www.mycobank.org/DefaultPage.aspx 12-2009).

Clade I Phaeosphaeriaceae

The clade of Phaeosphaeriaceae (MLB = 92 %, JK = 83 %) comprises 19 taxa including the generic types of Amarenomyces (A. ammophilae), Entodesmium (E. rude) and Setomelanomma (S. holmi), as well as the species Leptosphaeria derasa, Ophiopsphaerella herpotricha and some other Phaeosphaeria species, such as P. avenaria, P. eustoma and P. nodorum (Fig. 1). This clade could be further subdivided into four subclades, i.e. I-A–D. Of these, I-A comprises species of Ophiopsphaerella and Phaeosphaeria; and I-B–D Phaeosphaeria species.

Phaeosphaeriaceae is an important family in the Pleosporales, comprising 19 genera and 394 species (Kirk et al. 2008), with many plant pathogens or forming associations with plants (Shoemaker & Babcock 1989, Carson 2005, Stukenbrock et al. 2006). Phaeosphaeriaceae was introduced by Barr (1979) based on a pseudoparenchymatous peridium almost equal in thickness, and narrowly fusiform or filiform, hyaline, pale brown or rarely dark brown ascospores, and was assigned under Pleosporales sensu Barr. The anamorphs are coelomycetes. Fourteen genera were included, viz. Comocladithra, Didymella, Euderluca, Heptameria, Leptosphaeria, Loculohypoxylon, Metameris, Microthelia, Nodulosphaeria, Ophiobolus, Paraphaeosphaeria, Rhopograps, Scirhodothids and Teichospora (Barr 1979). Subsequent phylogenetic studies indicated that the Phaeosphaeriaceae is heterogeneous, and Leptosphaeriaceae was introduced to accommodate species related to Leptosphaeria (Barr 1987a), which is supported by subsequent phylogenetic results (Fig. 1; Khashnobish & Shearer 1996, Câmara et al. 2002, de Gruyter et al. 2009).

Phaeosphaeria, as the familial type of Phaeosphaeriaceae, was first introduced by Miyake (1909), but was regarded as a synonym of Leptosphaeria for a long time. Holm (1957) noticed the presence of pseudoparaphyses in the generic type of Phaeosphaeria (P. oryzae), reinstated Phaeosphaeria, assigned some Leptosphaeria (s. 1) species with relatively small ascomata which occurred on monocotyledons to Phaeosphaeria, and treated 17 species. Subsequently, more species and information were added (Hedjaroude 1968, Leuchtmann 1984, Shoemaker & Babcock 1989). In a world monograph, 114 species of Phaeosphaeria were described, and they were further divided into 6 subgenera, viz. Ovispora, Fusisor, Phaeosphaeria, Spathispora, Vigaspisora and Sicispora, based on differences in ascospore shape and the number of septa (Shoemaker & Babcock 1989). Many species of Phaeosphaeria have characteristic gelatinous sheaths on spores, and some are dicyosporous (Eriksson 1967). Currently, ca. 80 species are accepted under Phaeosphaeria, and many of them have Stagonospora anamorphs (Kirk et al. 2008).

Two of the three strains in subclade I-B are isolated from maritime environments; e.g. P. ammophilae from beach grass Ammophila arenaria and Phaeosphaeria spartiinae from stems of Spartina alterniflora in estuarine salt marshes. A strain of Phaeosphaeria caricis (CBS 120249) used here was isolated from Typha latifolia occurring in or near freshwater. All species in the other three subclades (I-A, C–D, Fig. 1) are associated
with terrestrial or near freshwater grasses such as *P. elongata* with *Miscanthus sinensis*, *P. juncofila* with *Juncus articulatus* and *Ophiopsphaerella herpotricha* with *Bromus erectus*. The only exception is *Phaeosphaeria spartincola*, which was isolated from salt marsh grass (*Spartina alterniflora*).

Amarenomyces was separated from *Phaeosphaeria* (as Amarenomyces *ammonilae*) based on its multilayered endotunica and large and thick-walled, sheathed ascospores (Eriksson 1981). However, its relationship with other *Phaeosphaeria* species is supported in this study. Thus *Amarenomyces* is treated as a synonym of *Phaeosphaeria*. *Entodesmium* is exclusively associated with legumes, and is traditionally assigned to *Lophiostomataceae* based on its periphysate papilla (Eriksson & Hawksworth 1990, Barr 1992). But its immersed ascomata, non-compressed papilla and thin peridium, plus the multiseptate, lightly pigmented ascospores, which break up into part-spores support its inclusion in *Phaeosphaeriaceae*. In particular, *Entodesmium multiseptatum* and *E. nieslemanum* were originally described as a *Leptosphaeria* species (Shoemaker 1984b), indicating their similarity with *Phaeosphaeria* which is commonly confused with *Lentosphaeria* (Shoemaker 1984a, Shoemaker & Babcock 1989).

Notes: Although members of the *Phaeosphaeriaceae* are usually known as saprobes or parasites of plants or other fungi, the strain of *Phaeosphaeria luctuosa* (CBS 308.79) in this clade is recorded as an endophyte in *Zea mays*. In addition, the inclusion of *Entodesmium rude* in this clade indicates the ascospores of this family can be filiform.

Currently accepted genera: *Ophiopsphaerella*, *Phaeosphaeria*, *Entodesmium* and *Setomelanomma*.

Anamorphs: *Ampelomyces*, *Chaetosphaeronema*, *Coniothyrium*, *Phoma*, *Plenodomus*, *Stagonospora* and *Wojnowicia* (Leuchtmann 1984, de Gruyter et al. 2009).

The genera *Ampelomyces*, *Coniothyrium*, *Phoma* and *Plenodomus* are polyphyletic (de Gruyter et al. 2009). The generic type species *Ampelomyces quisqualis* clustered in the *Phaeosphaeriaceae*, whereas *A. quericus* grouped in the *Didymellaceae*. The type species of the genera *Phoma*, *Coniothyrium* and *Plenodomus* clustered in the *Didymellaceae* and *Leptosphaeriaceae* respectively. Although *Chaetosphaeronema* was associated with *Ophiobolus* (Petrak 1944), this teleomorph-anamorph relation has not been confirmed. An isolate preserved as *Trematophoma* sp. was found in the *Phaeosphaeriaceae* (de Gruyter et al. 2009); however, its identity needs to be studied in more detail.

Clade II Pleosporaceae

Pleosporaceae (Clade II), including the generic type of *Pleospora* — *P. herbarum*, forms a robust clade (MLB = 100 %, JK = 100 %), and comprises four subclades as well, i.e. II-A–D. Clade II-A, including the generic type – *Cochliobolus heterostrophus* represents *Cochliobolus*, II-B comprises two taxa, i.e. *Pleospora herbarum* and the anamorphic *Dendryphiella arenaria* (*Scolesterolosidium arenaria*), which represents *Pleospora*, II-C represents anamorphic fungi – *Alternaria*, and II-D contains the generic type – *Pyrenophora phaeocomes*, represents *Pyrenophora*.

Pleosporaceae comprises 36 genera and 769 species (Kirk et al. 2008) and is the largest family in *Pleosporales*. Members have been reported as plant parasites or saprobes occurring on herbaceous or woody plant leaves or stems (Sivasenans 1984). *Pleosporaceae* was introduced by Nitschke (1869), which had been assigned to *Sphaeriales* based on the immersed ascomata and presence of pseudoparaphyses, then to *Pseudospherales* (Theissen & Sydow 1917, Wehmeyer 1975), and the name of *Pseudospherales* subsequently was replaced by *Pleosporales* (Luttrell 1955). Morphology of ascospores, i.e. shape, colour, septation and presence or absence of sheaths has been emphasised in defining the circumscriptions of genera under *Pleosporaceae* (Luttrell 1955, 1973, Wehmeyer 1961, 1975, von Arx & Müller 1975, Sivasenans 1984, Barr 1987b, Aberl 2003). The polyphyletic nature of *Pleosporaceae* has been indicated in previous investigations, and some genera have been assigned to other families, such as *Leptosphaerulina* to *Leptosphaeriaceae*, and *Macroventuria* to *Phaeosphaeriaceae* (Kodsueb et al. 2006). In this study however, the generic types of both *Macroventuria* (*M. anomochaeta*) and *Lephtosphaerulina* (*L. australis*) cluster within the *Didymellaceae*, as previously recorded (de Gruyter et al. 2009).

The current clade of *Pleosporaceae*, comprising the generic types of *Cochliobolus* (*C. heterostrophus*), *Pleospora* (*P. herbarum*) and *Pyrenophora* (*P. phaeocomes*), represents the core members of *Pleosporaceae*, and are mostly plant pathogens (Fig. 1). Species in subclades II-A and II-D are exclusively associated with monocotyledons, such as *Pyrenophora tritici-repentis* with wheat and *P. phaeocomes* with *Festuca rubra*. *Pleospora herbarum* (Clade II-B) has been recorded as associates of numerous monocotyledons and dicotyledons, while the strain of *Dendryphiella arenaria* is from the root zone soil of beachgrass (*Amphophila arenaria*). Subclade II-C comprises two *Alternaria* species and one *Alllewia* species, of which *Alternaria maritima* was isolated from submerged wood in seawater, *A. alternata* is generally occurring on all kinds of substrates, and *Alllewia eureka* is associated with terrestrial dicotyledons.

Notes: Members of this clade mostly have middle-sized ascomata, and the hyaline and filiform ascospores possessed by *Setosphaeria monoceras* expanded the familial concept from “brown” by Cannon & Kirk (2007) to “hyaline or brown”.

Currently accepted genera: *Alllewia*, *Lewia*, *Cochliobolus*, *Pleospora*, *Pyrenophora* and *Setosphaeria*.

Anamorphs: *Alternaria*, *Ascochyta*, *Bipolaris*, *Curvularia*, *Drechslera*, *Embellisia*, *Exserohilum*, *Phoma* and *Stemphylium* (Simmons 1986, 1989, 1990, Cannon & Kirk 2007, Aveskamp et al. 2008, de Gruyter et al. 2009).

Most of the anamorphs in the *Pleosporaceae* are hyphomycetes. Both *Ascochyta* and *Phoma* species have been described in the *Pleosporaceae*. However, the generic type species, *Ascochyta pisi* and *Phoma herbarum*, belong to the *Didymellaceae* (de Gruyter et al. 2009).
Clade III Leptosphaeriaceae

The clade containing members of Leptosphaeriaceae is sister to the Pleosporaceae, but receives poor statistical support (Fig. 1), indicating the need for more thorough analysis. It comprises the generic types of Leptosphaeria (D. exigua) and Neophaeosphaeria (N. filamentosa), as well as other taxa from numerous groups, such as Coniothyrium palmarum, L. maculans (Leptosphaeriaceae) and Pyrenochaeta nobilis (Herpotrichia, Melanommataceae).

The Leptosphaeriaceae is likely paraphyletic (Schoch et al. 2009a; this volume). This taxon was separated from the Pleosporaceae and formally introduced by Barr (1987a) based on its “coelomycetous anamorphs” and “narrower and thinner-walled ascii” (Barr 1987b), and supported by phylogenetic data (Dong et al. 1998). Initially, five genera, i.e. Curreya, Didymolepta, Heptameria, Leptosphaeria and Ophiobolus, were accepted under Leptosphaeriaceae (Barr 1987b), while Eriksson & Hawksworth (1990) only accepted Leptosphaeria and Ophiobolus under this family. The Leptosphaeriaceae only comprises some species of Leptosphaeria and Neophaeosphaeria filamentosa, as well as the anamorph Coniothyrium palmarum. Pyrenochaeta nobilis also clustered in the Leptosphaeriaceae. However, this species probably represents a closely related subclade (de Gruyter et al. 2009).

Morphologically, Leptosphaeriaceae is mostly comparable with Phaeosphaeriaceae, and numerous characters have been used to distinguish them at generic or family level. For instance, anamorphic states (Câmara et al. 2002), peridium structure (Khoshnabish & Shearer 1996, Câmara et al. 2002) and host spectrum (Câmara et al. 2002) have all been proposed in distinguishing Leptosphaeria s. str. and Phaeosphaer. Of these characters, the host preference of Leptosphaeria on dicotyledons in contrast to Phaeosphaeria on monocotyledons has been widely reported (Eriksson 1967, Hedjaroude 1968, Eriksson 1981, Shoemaker & Babcock 1989). Currently, six of the eight species included in Leptosphaeriaceae (Fig. 1) have dicotyledonous hosts, while Coniothyrium palmarum is associated with palms. Thus present results further support the fact that the host spectrum has phylogenetic significance to some degree (Câmara et al. 2002, Voigt et al. 2005).

Currently accepted genera: Leptosphaeria and Neophaeosphaeria.

Anamorphs: Chaetodiplodia, Coniothyrium, Phoma, Plectophomella and Pyrenochaeta (Wehmeyer 1975, de Gruyter et al. 2009).

The genus Chaetodiplodia has been recorded as an anamorph of Leptosphaeria (Wehmeyer 1975), but not confirmed. A Chaetodiplodia sp. isolate clustered in the Leptosphaeriaceae (de Gruyter et al. 2009); however the identity of this strain is uncertain.

Clade IV Didymellaceae

The Didymellaceae (Clade IV) receives high bootstrap support, and includes the generic types of Didymella (D. exigua), Macroventuria (M. innumerosum), Monascostroma (M. innumerosum), Leptosphaerulina (L. australis) and Platychora (P. ulmi), as well as some species of Phoma and Ascochyta (Fig. 1).

This family was introduced to accommodate some species of Phoma and their phylogenetically closely related anamorphic taxa, as well as telemorphs such as Didymella and Leptosphaerulina (de Gruyter et al. 2009, Woudenberg et al. 2009). The generic types of Platychora, Monascostroma and Macroventuria are also located in Clade IV. In particular, both Platychora ulmi and Monascostroma innumerosum have immersed ascomata and clavate asci with lightly pigmented, 1-septate ascospores, and they form a robust subclade (Fig. 1), which most likely represents a single genus. When compared with M. innumerosum, the apiosporous ascospores are the most striking character of Platychora ulmi. Thus the symmetry of ascospores might have no phylogenetic significance at the generic level.

What is most interesting is that Leptosphaerulina argentinensis forms a robust clade with two strains of L. australis. Although L. argentinensis can be distinguished from L. australis by its larger ascospores, their morphological similarity can not be ignored (Graham & Luttrell 1961). Thus this subclade most likely represents a species complex for L. australis.

Most species in this clade are associated with dicotyledons, such as Macroventuria anomochaeta with Medicago sativa, Phoma cucurbitacearum with Cucurbita spp., Didymella exigua with Rumex arifolius, Leptosphaerulina argentinensis with Lonicera periclymenum and Ascochyta pisii with Pisum sativum, while Leptosphaerulina australis and Phoma herbarum are associated with a wide range of hosts including dicotyledons and monocotyledons.

Notes: Besides the characters described by de Gruyter et al. (2009), members of Didymellaceae are also mostly hemibiotrophic or saprobic, and have sometimes setose ascomata, persistent or deliquescing pseudoparaphyses and fusiform, symmetric or apiosporous ascospores.

Currently accepted genera: Didymella, Leptosphaerulina, Macroventuria, Monascostroma and Platychora.

Anamorphs: Chaetosbolisia, Diplodina, Microsphaeropsis and Phoma (Aveskamp et al. 2008, de Gruyter et al. 2009).

The genus Phoma is subdivided in nine sections with telemorphs in the genera Didymella, Leptosphaeria, Mycosphaerella and Pleospora (Boerema 1997). Molecular studies confirmed the polyphylectic character of Phoma in the Pleosporineae (de Gruyter et al. 2009). The generic type, Phoma herbarum, grouped in the Didymellaceae, and therefore, Phoma species in the Didymellaceae are considered as Phoma s. str. (de Gruyter et al. 2009). The taxonomy of Phoma species in the Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae needs further study.

Clade V Lentitheciaceae

The clade of Lentitheciaceae comprises the generic type Lentithecium fluitatile, as well as L. arundinaceum, Stagonospora macrocynidia, Wettsteinia lacinosa, Keisslerella cladophila, and the bambusicolous species Katumotoa bambusicola and Ophiophaerella sasicola, which receives high bootstrap support (MLB = 100 %, JK = 100 %). The telemorphs have lenticular ascomata, trabeculate to broadly cellular pseudoparaphyses, cylindrical to clavate asci with short pedicles, uni-, 3- to multiseptate, fusiform or filiform ascospores. Based on morphological characters and current molecular phylogenetic results, a new family — Lentitheciaceae is introduced to accommodate them.

This clade is further subdivided into two groups. One subclade comprises Lentithecium arundinaceum, Katumotoa bambusicola, W. lacinus, Ophiophaerella sasicola and Stagonospora macrocynidia (Clade V-A), while the other subclade (Clade
V-B) comprises *L. fluviatil* and *L. aquaticum* with Keissleriella cladophila basal to both. Species of Clade V-A exclusively occur on monocotyledons, such as Lentithecium arundinaceum and Stagonospora macroycnidia which are isolated from Phragmites sp. and Wettsteinina lacustris which is record on Schoenoplectus sp. The strain of *W. lacustris* (CBS 618.86) used here was isolated from Schoenoplectus lacustris, and both Ophiophaerea sasicala (from Sasa senanensis) and Katumotoa bambusica (from Sasa kuniensis) are bambusicolous. In contrast, species of Clade V-B seem to be exclusively associated with dicotyledonous woody substrates in freshwater environments, i.e. *L. aquaticum* and *L. fluviatil* are from submerged wood of Fraxinus sp. and Populus sp. from France, respectively. The habit details of the Keissleriella cladophila strain (CBS 104.55) used here are unknown, but it was isolated from dicotyledonous woody plants (*Smilax parvifolia*) in Pakistan.

The relatively larger ascomata (500–600 vs. 300–400 µm) and the sheathed ascospore of Ophiophaerea sasicala make it readily distinguishable from *O. herpotricha*, and the latter is morphologically similar to the generic type of Ophiophaerea (*O. graminicola*).

The identification of the strain of Wettsteinina lacustris (CBS 618.86) used here could not be verified. According to Shoemaker & Babcock (1989, p. 1596) however, the collections studied by Leuchtmann (collector of CBS 618.86) under this name, represent “a good Massarina”, which is “not conspecific with Wettsteinina”. Thus the strain of CBS 618.86 most likely is of Massarina s. l., which is closely related to Lentithecium. Both Ophiophaerea sasilica and Katumotoa bambusica are bambusicolous, and they have lenticular ascomata with a simple peridium structure, as well as numerous persistent pseudoparaphyses. All of these characters fit in the traditional concept of Lentithecium. However, their ascospores are asymmetrical (*K. bambusicola*) or filiform (*Ophiophaerea sasicala*), which differs from the symmetrical and cylindrical to fusiform ascospores possessed by other species of Lentithecium (Nagasawa & Otani 1997, Tanaka & Harada 2005a).

Lentithecium Yin. Zhang, C.L. Schoch, J. Fourn., Crous & K.D. Hyde, fam. nov. MycoBank MB515470.

Aquaticus vel terristrius. Saprophytus. Ascomata immensa, lenticulare, solitaria vel disseminata, nigra. Asci bitunicati, fissitunicati, clavati vel oblongato- cylindricali, pedicellati. Ascosporae cylindrica vel fusiforme vel filiforme, uniseptatae vel aliunquando 3-septatae cum supra-maturae, parce multiseptatum, hyalinae vel fulvum.

Terrestrial habitat. Saprobic. Ascomata immersed, lenticular, solitary or scattered. *Peridium* comprising a few layers of thin-walled cells. *Asci* bitunicate, fissitunicate, cylindro-clavate to cylindro-oblong, short pedicellate. *Ascosporae* fusiform or filiform, hyaline to pale yellow, 1-septate, constricted at the septum, sometimes becoming 3-septate when mature, rarely multiseptate.

Type genus: Lentithecium K.D. Hyde, J. Fourn. & Yin. Zhang.

Notes: Lentithecium was introduced to accommodate some freshwater taxa as lenticular ascomata and hyaline, 1-septate ascospores (Zhang et al. 2009b). Wettsteinina lacustris, Ophiophaerea sasicala, and the anamorphic Stagonospora macroycnidia, as well as Keissleriella cladophila and Katumotoa bambusica are also included in this clade. The strain of Wettsteinina lacustris used here may be misidentified (see comments above). However, they all have immersed and lenticular ascomata, with thin peridium usually almost equal in thickness, short pedicellate asci and fusiform or filiform, hyaline or rarely lightly pigmented, 1- to multi-septate ascospores. Phylogenetically, they form a robust clade separating them from all other pleosporalean families. Thus a new family, Lentithecaceae, is introduced to accommodate these species of Massarina s. l., a “genus” which should contain species from numerous genera.

Currently accepted genera: Lentithecium, Katumotoa and ? Keissleriella.

Anamorph: ? Stagonospora macroycnidia.

The genus Stagonospora is polyphyletic and considered as the anamorph of Phaeosphaeria (Leuchtmann 1984), while a strain of Stagonospora macroycnidia used here clusters in Lentithecaceae in this study.

Clade VI Massarinaceae

The Massarinaceae clade comprises the generic types of Massarina (*M. eburnea* and *Byssothecium* (*B. cirincans*), as well as *M. cisti* and *M. igniaria*, and receives high bootstrap support (MLB = 100 %, JK = 97 %). Massarinaceae was introduced to accommodate species having immersed, flattened or sphaerical ascomata with or without clypeus, trabeculate or cellular pseudoparaphyses, clavate to cylindro-clavate asci, hyaline, fusiform to narrowly fusiform, 1- to 3-septate ascospores with or without sheath. Five genera were accepted, i.e. *Keissleriella*, *Massarina*, *Metasphaeria*, *Pseudotrichia* and *Trichometasphaeria* (Munk 1956). This family name has not been commonly used and the familial type — Massarina has usually been placed under the Lophiostomataceae (Bose 1961, Eriksson & Yue 1986, Barr 1987b, 1990). The polyplethic nature of *Massarina* has been noted (Liew et al. 2002, Zhang et al. 2009b), and a narrow concept of *Massarina* was accepted, which comprises the generic type (*M. eburnea*) and morphologically similar species (e.g. *M. cisti*) (Zhang et al. 2009b). The strain of *Byssothecium cirincans* (CBS 675.92) in this clade is unverified, thus its status remains unresolved (see comments by Zhang et al. 2009b). *Massarina s. str.* comprising *M. cisti*, *M. eburnea* and *M. igniaria* is confirmed based on these five nuclear loci, which represents a separate branch in Pleosporales.

Massarinaceae Munk, Friesia 5: 305. 1956. emend.

Terrestrial habitat. Saprobic. Ascomata immersed, erumpent to superficial with small to wide papila, solitary or scattered. Pseudoparaphyses cellular to narrowly cellular. Asci clavate to cylindrical, with short pedicels. Ascosporae fusiform to broadly fusiform, hyaline or brown, 1- to 3-septate, with or without sheaths.

Currently accepted genera: ? Byssothecium and *Massarina*.

Anamorph: Periconia.

The hyphomycete genus *Periconia* is polyplethic, and in the *Massarinaceae* associated with Didymosphaeria (Booth 1968). The coelomycete genus *Neottiosporina* has not been associated with a teleomorph. In this study however, a strain of *N. paspali* grouped in the *Massarinaceae*.
Clade VII Montagnulaceae

The well-supported clade of Montagnulaceae (MLB = 100 %, JK = 100 %) comprises the generic types of Bimuria (B. novae-zelandiae), Didymocrea (D. saddasivani), Karstenula (K. rhodostoma) and Paraphaeosphaeria (P. michotii), as well as some species of Kalmusia, Paraconiothyrium, Letendraea and Montagnula. Based on the morphological and ecological similarities, Phaeosphaeria brevispora was assigned to Kalmusia (see comments below). Species in this clade can be saprobic (Kalmusia scabrispora, Phaeosphaeria brevispora and Bimuria novae-zelandiae), plant pathogenic (Paraphaeosphaeria michotii) or mycoparasitic (Paraconiothyrium minutans) (Fukuhara 2002, Verkley et al. 2004). Montagnulaceae was introduced by promoting the heterogeneric Montagnula to familial level, which contains species with three types of ascospores, i.e. muriiform (Montagnula), phagmosporous (Kalmusia) and didymosporous (Didymosphaerella) (Barr 2001).

Paraphaeosphaeria has been treated as a segregate of Leptosphaeria based on its swollen cell above the A1 septum and a longer more highly septate upper part and Coniothyrium s. l. anamorphs (Eriksson 1967). By analysing the ITS and 18S rDNA sequences, Paraphaeosphaeria was shown to be polyphylectic, and a narrow generic concept accepted (Câmara et al. 2001). The familial placement of Paraphaeosphaeria under Montagnulaceae is verified in this study.

Remarkably, our phylogenetic results indicated that the generic type of Bimuria, B. novae-zelandiae is included in this group. Bimuria novae-zelandiae was initially isolated from soil in a barley field in New Zealand, and is characterised by a very thin peridium, mostly 2-spored, fissitunicate asci and muriiform, dark brown, verrucose ascospores, which is considered somewhat comparable with Montagnula (Hawksworth et al. 1979). The thick carbonaceous peridium, however, distinguishes Montagnula from Bimuria. In addition, the ascospores of Montagnula are discharged forcibly through the ostiole instead of simply deliquescing and gathering at the apex of the ascomata as happens in Bimuria (Hawksworth et al. 1979). Because of its unique morphological characters, the familial placement of this genus has been debatable and it has been placed in Pleosporaceae by Hawksworth et al. (1979), in Phaeosphaeriaceae by Barr (1987b) and in Melanommataceae by Lumbsch & Huhndorf (2007). In agreement with previous phylogenetic studies (Schoch et al. 2006), its affinity to other members of Montagnulaceae is noted here.

The generic type of Karstenula (K. rhodostoma) clusters in this group, which is characterised by immersed ascomata, usually with a wide ostiolar opening, narrowly cellular pseudoparaphyses, cylindrical asci with short pedicels, and reddish-brown, muriiform ascospores (information obtained from type material). Traditionally, Karstenula has been assigned to Melanommataceae, but the immersed ascomata, narrowly cellular pseudoparaphyses and reddish-brown, muriiform ascospores fit the definition of Montagnulaceae (Barr 2001), and this placement is confirmed by the present phylogenetic data (Fig. 1). The clade also contains sequences of Didymocrea saddasivani (Zopfiaceae) obtained from GenBank, confirming the polyphyly of Zopfiaceae, and its placement in relation to Bimuria, as noted before (Kruys et al. 2006).

The fact that this species produces ostensibly unisuniculate asci within ascostromatic ascomata makes it especially interesting (Rogerson 1970, Parguey-Leduc & Janex-Favre 1981).

Notes: The 2- or 3-spored ascus possessed by Bimuria novae-zelandiae is another unique character in Montagnulaceae.

Clade VIII Trematosphaeriaceae

The generic type of Trematosphaeria (T. pertusa) and the marine fungus, Halomassarina thalassiae, form a well supported clade (MLB = 100 %, JK = 100 %), and represent a pleosporalean family, Trematosphaeriaceae. Details of this family are addressed by Suetrong et al. 2009; this volume).

Clade IX Melanommataceae (syn. Pleomassariaceae)

Currently accepted genera: Bimuria, Didymocrea, ? Kalmusia, Karstenula, ? Letendraea, ? Montagnula and Phaeosphaeria. Anamorph: Paraconiothyrium (Verkley et al. 2004).

Kalmusia brevispora (Nagas. & Y. Otani) Yin. Zhang, Kaz. Tanaka, C.L. Schoch, comb. nov. MycoBank MB515474. Basionym: Phaeosphaeria arundinacea var. brevispora Nagas. & Y. Otani, Rep. Tottori Mycol. Inst. 15: 38. 1977.

Notes: Morphological characters of Phaeosphaeria brevispora, such as the immersed ascomata with clypei, thin peridium, clavate asci with relatively long pedicels, and the reddish-brown, verrucose ascospores constitute at the primary septum, fit Kalmusia well. Phylogenetically, P. brevispora and K. scabrispora form a robust clade. In particular, both of these two species occur on Sasa sp. (Tanaka & Harada 2004, Tanaka et al. 2005b).

Differing from other terrestrial members of this clade, both Beverwykella pulmonaria and Monotosporella tuberculosis are from freshwater. A Phoma-like anamorph (Aposphaeria ?) has been reported for Melanomma pulvis-pyrius (Chesters 1938, Sivanesan 1994). Both Beverwykella pulmonaria and Monotosporella tuberculosis are aquatic hyphomycetous fungi isolated from Europe (Netherlands and U.K., respectively), which indicates that the anamorphs of Melanommataceae should include hyphomycetes as well.

Genera currently accepted: ? Herpotrichia, Melanomma and Pleomassaria.
Anamorphs: Aposphaeria (or Phoma-like according to Chesters 1938), Beverwykella pulmonaria, Monotospora tuberculata, Prosthennium and ? Pyrenocheaeta (Sivanesan 1984, Paavolainen et al. 2000).

The genus Pyrenocheaeta is polyphyletic (de Gruyter et al. 2009), and the generic type species P. nobilis grouped in the Leptosphaeriaceae in this study.

Clade X Sporormiaceae

The Sporormiaceae including the generic types of Preussia (P. funiculata) and Westerdykella (W. ornata), and some other species such as Sporormiella minima, Preussia lignicola, P. tenticola and Westerdykella cylindrica form a well-supported clade (MLB = 98 %, JK = 82 %). The Sporormiaceae is the largest coprophilous family of Pleosporales, which contains 10 genera and 143 species (Kirk et al. 2008). The absence of periphyses and well-developed apical rings together with ascomata with or without ostioles, ascospores with or without germ slits have been used to distinguish the Sporormiaceae from other coprophilous families, such as the Deltitciaceae and the Phaeotrichiaceae (Barr 2000, Krüys et al. 2006). Phylogenetic analysis based on ITS-nLSU rDNA, mtSSU rDNA and ß-tubulin sequences indicated that compared to the genes or phylogenetic analyses are needed to separate those genera. All three species were collected in Europe, and stain the woody substrate purple, which could be indicative of metabolite activity (Zhang et al. 2009a). Metabolites have rarely been used in the phylogeny and taxonomy of Pleosporales, but it is widely used in the taxonomy of xylariaceous taxa (Stadler et al. 2004, Bitzer et al. 2008). In addition, all species in this clade are from freshwater environments, which may indicate this as a unique ecological habit for the Amniculicolaceae.

Amniculicolaceae Yin. Zhang, C.L. Schoch, J. Fourn., Crous & K.D. Hyde, fam. nov. MycoBank MB515469.

Aquaticus. Saprobius. Ascomata globosa vel subglobosa vel lenticular, nigra, solitaria, immersa vel partim immersa vel superficialia. Apex productum. Peridium exilis. Trabeeculae, hyalinae, gelatinae circumdatae. Asci, 8-spori, cylindrical vel clavati, fissitunicati, brevi pedicellati. Ascosporeae, fusiforme vel peranguste fusiforme, unisepatae vel multisepatae vel muriforme, hyalinae vel pallide brunneae vel nufrobrunneae, tunica gelatinosa praeditae. Substratum malvaceo purpureus.

Freshwater habitat. Saprobius. Ascomata solitary, scattered, or in small groups, immersed, erumpent, or nearly superficial, globose, subglobose to lenticular; surface black, roughened; apex elongated. Peridium thin. Pseudoparaphyses trabeicate, embedded in mucilage. Asci 8-spored, bitunicate, fissitunicate, cylindrical to clavate, short pedicellate, with an ocellar chamber. Ascospores fusiform or narrowly fusiform, hyaline, pale or reddish-brown, one to multi-septate or muriform, constricted at the median septum, usually surrounded by an irregular, hyaline gelatinous sheath. Ascomata usually stain the woody substrate in shades of purple.

Type genus: Amniculicola Yin. Zhang & K.D. Hyde.

Currently accepted genera: Amniculicola, Murispora and Neomassariosphaeria.

Anamorphs: ? Anguillulospora longissima, Spirosphaera cupreorufescens and Repetophragma ontariense (Zhang et al. 2009a).

Murispora Yin. Zhang, J. Fourn. & K.D. Hyde, gen. nov. MycoBank MB515472.

Etymology: Named after its muriform ascospores.

Aquaticus. Saprobius. Ascomata immersa vel partim immersa vel superficialia. Peridium exilis. Trabeeculae, hyalinae, gelatinae circumdatae. Asci, 8-spori, clavati vel late clavati, fissitunicati; brevi pedicellati. Ascosporeae, fusiforme, muriforme, brunneae, tunica gelatinosa praeditae. Substratum malvaceo purpureus.

Freshwater habitat. Saprobius. Ascomata scattered, or in small groups, immersed, erumpent, or nearly superficial, globose to subglobose, wall black, roughened; apex weakly papillate, conical to laterally flattened. Peridium thin. Pseudoparaphyses trabeicate, embedded in mucilage. Asci 8-spored, bitunicate, fissitunicate, oblong to clavate, short pedicellate, with an ocellar chamber. Ascospores fusiform, pale or reddish brown, muriform, constricted at the median septum, usually surrounded by an irregular, hyaline, gelatinous sheath. Ascomata stain the woody substrate purple.
Type species: *Murispora rubicunda* (Niessl) Yin. Zhang, J. Fourn. & K.D. Hyde.

Note: The studied specimens from which the cultures were obtained are identified in the sense used by Webster (1957), who studied the type specimens, while they might be referred to *Pleospora rubelloloides* sensu Crivelli (1983).

Murispora rubicunda (Niessl) Yin. Zhang, J. Fourn. & K.D. Hyde, comb. nov. MycoBank MB515477.

Basionym: *Pleospora rubicunda* Niessl, Notiz. Pyr.: 31. 1876.
≡ *Massariosphaeria rubicunda* (Niessl) Crivelli, Über die Heterogene AscomycetenGattung Pleospora Rabh.: 144. 1983.
≡ *Karstenella rubicunda* (Niessl) M.E. Barr, N. Amer. Fl., Ser. 2 (New York): 52. 1990.

Neomassariosphaeria Yin. Zhang, J. Fourn. & K.D. Hyde, gen. nov. MycoBank MB515473.

Etymology: “Neo-” meaning “new”, named after its similarity with *Massariosphaeria*.

Aquatic. Saprophyticus. Ascomata dispergere vel gregariculus, immersa vel parim immersa. Apex productum. Peridium exilis. Trabeulae, hyalinae vel gelatinosa praeditae. Substratum plerumque purpureus.

Aquatic. Saprobic. Ascomata scattered or in small groups, immersed to erumpent, subglobose to lenticular; wall black, apex elongated. *Peridium* thin. *Pseudoparaphyses* trabeculate, embedded in mucilage. *Asci* 8-spored, bitunicate, fissitunicate, breve pedicellati. *Ascosporae*, peranguste fusiforme, multiseptatae, hyalinae vel rufobrunneus, tunica circumdatae. *Asci*, 8-spori, clavati vel late clavati, fissitunicati, breve pedicellati.

Neomassariosphaeria Yin. Zhang, J. Fourn. & K.D. Hyde, comb. nov. MycoBank MB515478.

Basionym: *Leptosphaeria typhicola* P. Karst., Bidrag Kännedom Finlands Natur Folk. 23: 100. 1873.
≡ *Phaeosphaeria typhicola* (P. Karst.) Hedg., Sydowia 22: 86. 1969.
≡ *Massariosphaeria typhicola* (P. Karst.) Leuchtm., Sydowia 37: 168. 1984.
≡ *Chaetomastia typhicola* (P. Karst.) M.E. Barr, Mycotaxon 34: 514. 1989.

Neomassariosphaeria grandispora (Sacc.) Yin. Zhang, J. Fourn. & K.D. Hyde, comb. nov. MycoBank MB515478.

Basionym: *Leptosphaeria grandispora* Sacc., Michelia 1: 341. 1878.
≡ *Metasphaeria grandispora* (Sacc.) Sacc., Syll. Fung. 2: 181. 1883.
≡ *Massariosphaeria grandispora* (Sacc.) Leuchtm., Sydowia 37: 172. 1984.
≡ *Lophiotrema grandispora* (Sacc.) Shoemaker & C.E. Babc., Sydowia 37: 172. 1989.

Notes: Although the living habit of *Neomassariosphaeria grandispora* (CBS 613.86) can not be clarified, the fresh water habit of species under this clade seems characteristic (see comments by Zhang et al. 2009a). In addition, the ascomata of telemorphs usually stain the woody substrate purple. Their morphological characters, however, vary greatly. For instance, *Amniculicola* species have cylindrical asci, while *N. grandispora*, *N. typhicola* and *Murispora rubicunda* have clavate asci. *Amniculicola* species have hyaline, fusiform 1- or rarely 3-septate ascospores, while the ascospores of *N. typhicola* and *N. grandispora* are narrowly fusiform and multisepate, but ascospores of *N. typhicola* are brown and *N. grandispora* are hyaline. The ascospores of *M. rubicunda* are brown and muriiform. Based on their phylogenetic affinity and morphological distinctions, two new genera, i.e. *Murispora* (based on *Pleospora rubicunda*) and *Neomassariosphaeria* (based on *Massariosphaeria typhicola*) and a new family, *Amniculicolaceae*, are introduced.

Clade XII Lophiostomataceae (uncertain)

The *Lophiostomataceae* comprises some *Lophiostoma* species, such as *L. caullum*, *L. semiliberrum*, *L. arundinis*, *L. compressum*, *L. viridarium* and *L. macrostomoides* (MLB = 100 %, JK = 89 %) while *L. fuckelii* is basal (MLB = 94 %, JK = 77 %), as previously reported (Tanaka & Hosoya 2008, Zhang et al. 2009b).

Traditionally, *Lophiostomataceae* comprised some other genera with various morphological characters, such as *Entodesmium* and *Lophionema* with filiform ascospores, and *Herpoticinia* and *Lophiotrema* with fusiform, brown or hyaline, 1-septate ascospores are usually multisepate when senescent (Sivanesan 1984, Holm & Holm 1988). The present phylogeny does not support their placement in *Lophiostomataceae*. The paragynetic nature of *Lophiostomataceae* has been previously noted (Schoch et al. 2006), and Clade XII is likely to represent the narrow concept of *Lophiostomataceae*, although it is still too early to draw this conclusion until verified sequences of the generic type of *Lophiostoma* (L. *macrostomum*) are obtained (see comments by Zhang et al. 2009b).

Geographically, most species used in this study are from European locations such as Switzerland (*Lophiostoma caullum*, *L. arundinis* and *L. compressum*), Sweden (*L. semiliberrum*) and France (*L. viridarium*, *L. compressum* and *L. macrostomoides*). *Lophiostoma fuckelii*, the only strain from South Africa, diverged earlier than all other members (Fig. 1).

Lophiostomataceae s. str. Sacc., Syll. Fung. 2: 672. 1883. emend.

Terrestrial or aquatic habitat. Saprobic. Ascomata perithecoid, medium to large-sized, solitary or scattered, immersed to erumpent or rarely superficial with protruding, compressed papilla and slit-like ostioles. *Pseudoparaphyses* numerous, narrowly cellular. Asci cylindrical to cylindro-clavate, with short pedicels. Ascosporae fusiform to narrowly fusiform, and mostly multisepate and heavily pigmented, sometimes with longitudinal septa in one or two cells, rarely 1-septate and hyaline, with or without sheath.

Currently accepted genus: *Lophiostoma* s. str.

Anamorphs: Reported as *Pleurophomopsis*-like (Leuchtmann 1985).

Clade XIII Massariaceae

The well-supported clade of the *Massariaceae* comprises the generic type of *Massaria* (*M. inquinans*) as well as species of *Roussosella* and *Arthopyrenia* that form a robust clade. The phylogeny in Fig. 1 includes the generic type of *Massaria — M. inquinans*. Morphologically, all of them have immersed ascomata,
pseudoparaphyses from abundant to rare, asci from cylindrical to clavate, ascospores from hyaline to reddish-brown, 1- or 3-septate.

Traditionally, Massariaceae (Melanommatales) is defined as having large ascomata, a peridium comprising compact, small cells, trabeculate pseudoparaphyses, large, and symmetric distoseptate ascospores usually surrounded with a sheath (Barr 1979). Based on these characters, six genera were included, i.e. Aglaospora, Caryospora, Dothivalaria, Massaria, Titanella and Zopfia (Barr 1979). Massaria inquinans and Aglaospora profusa are the generic types of Massariaceae and Aglaospora respectively, and they share numerous morphological characters, such as the large, immersed ascomata, trabeculate pseudoparaphyses, cylindrical asci with large and conspicuous apical rings and large, reddish-brown, 3-distoseptate ascospores (Shoemaker & Leclair 1975). The phylogenies here exclude the placement of Aglaospora under Massariaceae, and the placement of other four traditional genera under Massariaceae, i.e. Caryospora, Dothivalaria, Titanella and Zopfia can not be verified here either.

Massariaceae Nitschke, Verh. Naturhist. Vereines Preuss. Rheinl. 26: 73. 1869.

Note: Members of this clade are mostly saprobic.

Currently accepted genera: ? Arthopyrenia, Massaria, ? Roussoeilla.

Anamorph: ? *Torula herbarum*.

Clade XIV

The current phylogenetic data show that *Lophiotrema* as well as the generic types of *Lophiotrema* (*L. nucula*), *Verruculina* (*V. enalii*), *Ulospora* (*U. bilgramii*), *Lepidosphaeria* (*L. nicotiae*) and *Xenolophium* (*X. applanatum*) cluster apart from the clade of *Lophiotomataceae s. str*. Members of this clade are all saprobos, but have diverse morphological characters. *Lophiotrema* was introduced as a genus closely related to *Lophiostoma*, but having hyaline ascospores, and was assigned to *Lophiotomataceae* (Saccardo 1878, Holm & Holm 1988). The relatively smaller ascomata, peridium of almost equal in thickness, and the hyaline, 1-septate ascospores have been used to distinguish *Lophiotrema* from *Lophiostoma* (Holm & Holm 1988, Yuan & Zhao 1994, Kirk *et al*. 2001). The peridium concept, however, is not supported by the lectotype specimen, which has a flattened, thin-walled base (Zhang *et al*. 2009b). Species with brown ascospores are found in *Lophiotrema* based on molecular phylogenetic results (Zhang *et al*. 2009b).

Lepidosphaeria, *Ulospora* and *Verruculina* are all genera of the *Testudinaceae*, which is characterised by the cleistothecioid ascomata, 1-septate, brown, glabrous or ornamented ascospores (von Arx 1971). The size, shape and ornamentation of the ascospores serve as the distinguishing character between different genera (von Arx 1971, von Arx & Müller 1975, Hawksworth 1979). Based on the present phylogenetic result, these three genera of *Testudinaceae* are closely related. In addition, the non-ostiolate ascomata of the *Testudinaceae* provides evidence that taxa with cleistothecioid fruiting bodies have evolved from taxa with perithecioid ones in the *Pleosporales*.

The diverse morphological characters possessed by members of clade XIV might indicate that they are from more than one family. A more firmly stated hypothesis can only be obtained by further phylogenetic study which should include more genera and related species.

Lophiotrema Sacc., Michelia 1: 338, 1878. *emend*.

Saprobic. *Ascomata* perithecioid, mostly immersed, rarely erumpent; globose, subglobose or ovoid. *Hamathecium* of broadly to narrowly trabeculate or cellular pseudoparaphyses, persistent. *Asci* bitunicate, fissitunicate, cylindrical to clavate. Ascospores mostly hyaline, rarely brown, 1-septate, smooth.

Anamorph: unknown.

Lophiotrema neoarundinaria (Ellis & Everh.) Yin. Zhang, Kaz. Tanaka & K.D. Hyde, *comb. nov*. MycoBank MB515475. Basionym: *Didymosphaeria arundinariae* Ellis & Everh., N. Amer. Pyren. (Newfield): 732. 1892.

≡ *Microthelia arundinariae* (Ellis & Everh.) Kuntze, Revis. gen. pl. (Leipzig) 3: 498. 1896.
≡ *Massarina arundinariae* (Ellis & Everh.) M.E. Barr, Mycotaxon 45: 211. 1992.
≡ *Lophiostoma arundinariae* (Ellis & Everh.) Aptroot & K.D. Hyde, in Hyde, Wong & Aptroot, Fungal Divers. Res. Ser. 7: 107. 2002.

Note: To avoid the duplication with *Lophiotrema arundinariae* Rehm, a new name – *Lophiotrema neoarundinaria* is proposed here.

Lophiotrema rubi (Fuckel) Ying. Zhang, C.L. Schoch & K.D. Hyde, *comb. nov*. MycoBank MB515476. Basionym: *Massaria rubi* Fuckel, Jahrb. Nassauischen Vereins Naturk. 25–26: 303. 1871.

≡ *Massarina rubi* (Fuckel) Sacc., Syll. Fung. (Abellini) 2: 155. 1883.
≡ *Didymelina rhaphithamni* Keissl., Nat. Hist. Juan. Fernandez Easter Lsl. 2: 480. 1927.
≡ *Mycosphaerella rhaphithamni* (Keissl.) Petr., Ann. Mycol. 38: 221. 1940.
≡ *Massarina emergens* (P. Kunt.) L. Holm, Les Pleosporaceae: 149. 1957.
≡ *Lophiostoma rubi* (Fuckel) E.C.Y. Liew, Aptroot & K.D. Hyde, Mycologia 94: 812. 2002.

Clade XV Aigialaceae

The generic type of *Aigialus* (*A. grandis*) and *Lophiostoma mangrovei* form a well-supported cluster, which represents a marine pleosporalean family, *Aigialaceae*. This new family is addressed by Suetrong *et al*. (2009; this volume).

Clade XVI Delitschiaceae

The generic type of *Delitschia* (*D. didyma*) and *D. winteri*, represent *Delitschiaceae* and form a robust clade that diverges before all other members of *Pleosporales*. The *Delitschiaceae* is a small group of coprophilous fungi, which comprises three genera (i.e. *Delitschia*, *Ohleriella* and *Semidelitschia*) and 54 species (Barr *et al*. 2008). This family was introduced to accommodate coprophilous pleosporalean species with periphysate ostiole, wide ascus endotunica, conspicuous apical ring and heavily pigmented 1- to multisepitate ascospore with germ slits in each cell (Barr 2000).

The presence of a large ocellar chamber with an apical ring in the ascus is the most striking character of most members of *Delitschiaceae* as well as species in clade XVII, *Aglaospora profusa*. These two clades are consistently the earliest diverging lineage in *Pleosporales* as in several other phylogenies (Kruys *et al*. 2006, Schoch *et al*. 2006).
Fig. 2. A. Xenolophium applanatum. Ascomata on the host surface. Note the slit-like ostiole. B. Trematosphaeria pertusa. Ascomata on the host surface. Note the pore-like ostiole. C, E, H. Murispora rubicunda. C. Ascomata on the host surface. Note the purple woody substrate. E. Clavate 8-spored asci with short pedicels in pseudoparaphyses. H. Muriform ascospore with wide mucilaginous sheath. D. I. Trematosphaeria sp. D. Fusiform mature or immature 8-spored asci with pseudoparaphyses. I. Multiseptate dark brown ascospore. F. Neomassariosphaeria grandispora. Ascosporas with sheath. G. Aglospora profusa. Apical apparatus. Note the conspicuous apical ring. J. Amniculicola immersa. Hyaline fusiform ascospores in ascus. Scale bars; A–C = 100 μm, D–J = 20 μm.
SUMMARY

Phylogeny

The results presented here indicate that nutritional modes and environmental habits may have phylogenetic significance in Pleosporales, although more extensive statistical analyses remain to be done. Host spectrum (monocotyledon/dicotyledon) appears closely related to the phylogeny of plant associated fungi or plant pathogens (e.g. in Pleosporineae). Of the morphological characters, the size, shape and immersion degree of ascomata, ostiole characters and ascule shape can be of phylogenetic significance to varying degrees. The purple staining nature of the substrate found in some Amniculicolaceae might indicate that secondary metabolites have phylogenetic significance for this group.

However, even closely related species can exhibit diverse morphologies. Ascospores can vary from 1- to multiseptate to even muriform, hyaline to pigmented in many families, such as Amniculicolaceae (given as an example in Fig. 2), Lophiotomaceae s. str., Melanommataceae and Didymellaceae. From an evolutionary perspective, the “bipolar symmetrical ascospore tends to be correlated to passive dispersal”, and “the colour, size, shape and texture of spores should be viewed as probable functional adaptations modified in evolution by requirements of liberation, of flotation in fluids, and ultimately of deposition and survival” (Ingold 1971, Gregory 1973, Hawksworth 1987). Thus ascospore shape should be viewed as a highly adaptive character that can obscure underlying relationships.

Evolutionary trends

Most plant pathogens in Pleosporales belong to Pleosporineae, which tends to occupy the terminal branches on the Pleosporales tree (Fig. 1). On the other hand, a clade of coprophilous fungi — Delitschiaceae — consistently occurs as an early-diverged lineage compared to all other pleosporalean members, with numerous other saprotrophic members interspersed. Parasitic fungi are usually considered as “highly specialised”, and may require nutritional shifts from several other modes (Cain 1972, Heath 1987, Berbee 2001, Sung et al. 2008). This may indicate that Pleosporales originated from saprotrophic fungi, and that the transition from saprotrophic to necrotrophic and hemibiotrophic (or biotrophic) is likely, in agreement with earlier ideas (Lewis 1974, Cooke 1977, Cooke & Whipps 1986), also mirroring what is seen in the Capnodiales phylogeny (Crous et al. 2009a, Schoch et al. 2009a; this volume).

It is remarkable that as with the Delitschiaceae, Agleaspora profusa is also an early diverging lineage. Members of both Delitschiaceae and Agleaspora have a striking morphological character in having a large apical apparatus, which is rare in Pleosporales. According to the hypothesis of Hawksworth (1987), “……foremost of these trends is the loss of apical apparatus associated with a change from active to passive discharge of the ascospores…….”. Thus this striking apical apparatus might further indicate the plesiomorphic status of both Delitschiaceae and Agleaspora, supporting the premise that the ancestor of Pleosporales was saprobic with a well-developed apical ring.

Shortcomings and further work

Attempts to write a familial dichotomous key based on the present phylogenetic data has proven to be unsuccessful. The traditional keys rely on single morpho-characters, which are polyphyletic. Thus it appears to be impossible to find any single criterion which can be used to key out a family in such a way as to include all genera or species belonging to it, without incorporating the genus or species in several places in the key, as have been mentioned by Cain (1972).

Compared with the ca. 3 000 reported species in Pleosporales, the 130 species (< 5 %) used in present investigation are far from sufficient to obtain a comprehensive phylogenetic survey for the genetic diversity in the order, but will hopefully provide a framework for directing further work. Members of some families, such as Curvibatiriaecae and Diademaceae, are absent from our analysis, thus their status remains unresolved. In particular, erroneous strains or names in databases and culture collections necessitate verification, and circumscriptions of families within the clades currently remain preliminary. Importantly, this data set is geographically biased as most strains originated from temperate areas in the Northern Hemisphere, mainly Europe. Obtaining correctly identified fungal strains from various locations is crucial for further molecular phylogenetic investigations, necessitating the consistent analysis and interpretation of large taxon datasets.

It seems clear that most morphological criteria used by traditional taxonomy for Pleosporales at various taxonomic levels (such as genus or family) do not strictly correlate with distinct evolutionary groups. We will therefore have to rely on expanding our base of knowledge in ecology, biochemistry and other biological fields, to supplement the genetic information. The expected expansion in pleosporalean genome sequences makes this especially important.

ACKNOWLEDGEMENTS

The authors thank O.E. Eriksson for his comments on a draft version of this script, as well as two other anonymous reviewers. Dr Shaun Pennycook is thanked for his valuable suggestions on nomenclature. The University of Hong Kong is thanked for providing YZ with a postgraduate scholarship. Work performed by CLS after 2006 was supported in part by the Intramural Research Program of the NIH, National Library of Medicine. This work was funded by a grant from NSF to JWS and to CLS until 2008 (DEB 0717476).

REFERENCES

Abler SW (2003). Ecology and Taxonomy of Leptosphaerulina spp. associated with Turfgrasses in the United States (Master’s thesis). Blacksburg, Virginia: Virginia Polytechnic Institute and State University.

An JA von (1971). Testudininaeae, a new family of Ascomycetes. Persoonia 6: 365–369.

An JA von (1974). The Genera of Fungi Sporulating in Pure Culture. Edn 2. Vaduz; J. Cramer.

An JA von, Müller E (1975). A re-evaluation of the bitunicate ascomycetes with keys to families and genera. Studies in Mycology 9: 1–159.

Aveskamp MM, Gruyter J de, Crous PW (2008). Biology and recent developments in the Genera of Fungi Sporulating in Pure Culture. Edn 2. Vaduz; J. Cramer.

Barr ME (1979). A classification of Lociulcomycetes. Mycologia 71: 935–957.

Barr ME (1983). The ascomycete connection. Mycologia 75: 1–13.

Barr ME (1987a). New taxa and combinations in the loculcomycetes. Mycotaxon 29: 501–505.

Barr ME (1987b). Prodromus to Class Lociulcomycetes. Published by the Author, Amherst, Massachusetts; University of Massachusetts, U.S.A.

Barr ME (1990). North American flora, Melanommatales (Lociulcomycetes). Series II, part 13: 1–129.

Barr ME (1992). Additions to and notes on the Phaeosphaeriaceae (Pleosporales, Lociulcomycetes). Mycologia 43: 371–400.

Barr ME (2000). Notes on coprophilous bitunicate Ascomycetes. Mycotaxon 76: 105–112.

Barr ME (2001). Montagrulaceae, a new family in the Pleosporales, and lectotypification of Didymosphaerella. Mycologia 77: 193–200.

Berbee ML (2001). The phylogeny of plant and animal pathogens in the Ascomycota. Physiological and Molecular Plant Pathology 59: 165–187.
Voigt K, Cozijnsen AJ, Kroymann R, Poggeler S, Howlett BJ (2005). Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and beta-tubulin sequences. *Molecular Phylogenetics and Evolution* 37: 541–557.

Wang HK, Aptroot A, Crous PW, Hyde KD, Jeewon R (2007). The polyphyletic nature of Pleosporales: an example from Massariosphaeria based on rDNA and RBP2 gene phylogenies. *Myological Research* 111: 1269–1276.

Webster J (1957). *Pleospora straminis, P. rubelloides and P. rubicunda*: three fungi causing purple-staining of decaying tissues. *Transactions of the British Mycological Society* 40: 177–186.

Wedin M, Wiklund E, Crewe A, Domg H, Ekman S, Schmitt I, Nyberg A, Schmitt I, Lumbsch HT (2005). Phylogenetic relationships of Lecanoromyces (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. *Myological Research* 109: 159–172.

Wehmeyer LE (1961). *A world monograph of the genus Pleospora and its segregates*. University of Michigan Press, Ann Arbor, Michigan.

Wehmeyer LE (1975). *The pyrenomycetous fungi*. *Mycologia Memoir* 6: 1–250.

Wernersson R, Pedersen AG (2003). RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. *Nucleic Acids Research* 31: 3537–3539.

White DG (1999). *Compendium of Corn Diseases*. 3rd edn. The American Phytopathological Society, St. Paul, MN, U.S.A.

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR Protocol: a guide to methods and applications* (Innis MA, Gelfand DH, Sninsky JS, White TJ, eds). San Diego: Academic Press, San Diego: 315–322.

Woudenberg JHC, Aveskamp MM, Gruyter J de, Spiers AG, Crous PW (2009). Multiple Didymella teleomorphs are linked to the *Phoma clematidina* morphotype. *Persoonia* 22: 56–62.

Yuan Z-Q, Zhao Z-Y (1994). Studies on lophiostomataceous fungi from Xinjiang, China. *Sydowia* 46: 162–184.

Zhang Y, Fournier J, Crous PW, Hyde KD (2009a). Phylogenetic and morphological assessment of two new species of *Amniculicola* and their allies (*Pleosporales*). *Persoonia* 23: 48–54.

Zhang Y, Fournier J, Pointing SB, Hyde KD (2009b). Are *Melanomma pulvis-pyrius* and *Trematosphaeria pertusa* congeneric? *Fungal Diversity* 33: 47–60.

Zhang Y, Jaewon R, Fournier J, Hyde KD (2009b). Multi-gene phylogeny and morphotaxonomy of *Amniculicola lignicola*: a novel freshwater fungus from France and its relationships to the *Pleosporales*. *Myological Research* 112: 1186–1194.

Zhang Y, Wang HK, Fournier J, Crous PW, Pointing SB, Hyde KD (2009b). Towards a phylogenetic clarification of *Lophiotoma* / *Massarina* and morphologically similar genera in the *Pleosporales*. *Fungal Diversity* 38: 225–251.
SUPPLEMENTARY INFORMATION

Table 1. Isolates used in this study and their GenBank accession numbers. Name changes from their originals are indicated in brackets and newly generated sequences are indicated in bold.

Classification	Species name	Culture/voucher	SSU	LSU	RPB1	RPB2	TEF1
Agialaceae	Aigialus grandis	JK 5244A	GU296131	GU301793	GU371762		
	Astrosphaeriella aggregata	MAFF 239486	AB524450	AB524591	AF242264	AB539092	AB539105
	Rimora mangrovei (as Lophiostoma mangrovei)	JK 5246A	GU296193	GU301868	GU371759		
Amniculicolaceae	Amniculicola immersa	CBS 123083	GU456295	FJ795498	GU456358	GU456273	
	Amniculicola lignicola	CBS 123092	EF493861	EF493863	EF493862	EF456128	
	Amniculicola parva		GU296134	FJ795497	GU349065		
	Neomassariosphaeria grandispora	CBS 613.86	GU296172	GU301842	GU371725	GU371725	GU349036
	Neomassariosphaeria tephicola	CBS 123126	GU296174	FJ795004	GU371795		
	Muriispora rubicunda	IFRD 2017	GU456308	FJ795507	GU456289		
Delitschiaceae	Delitschia didyma 1	UME 31411	DQ384090				
	Delitschia didyma 2 (duplicate)	UME 31411	AF242264	DQ384090	DQ677975	DQ677922	
	Delitschia winteri	CBS 225.62	DQ678026	DQ678077	DQ677975	DQ677922	
Didymellaceae	Ascochyta pisi	CBS 126.54	DQ678018	DQ678070	DQ677967	DQ677913	
	Didymella exigua	CBS 183.55	GU296147	GU357800	GU371764		
	Didymella bryoniae	CBS 133.96	GU456335	GU371767			
	Leptosphaerulina argentinensis	CBS 569.94	AY849947	GU357859	GU349008		
	Leptosphaerulina australis 1	CBS 311.51-T	FJ795500	GU345357	GU456272		
	Leptosphaerulina australis 2	CBS 317.83	GU296160	GU301830	GU371790	GU349070	
	Macroventuria arnomochea	CBS 525.71	AY878736	GU456315	GU456346	GU456262	
	Monasostroma innumerosum	CBS 345.50	GU296179	GU301850	GU349033		
	Phoma complanata	CBS 268.92	EUT54081	EUT54180	GU371778	GU349078	
	Phoma exigua	CBS 431.74	EUT54084	EUT54183	GU371789	GU349080	
	Phoma glomerata	CBS 528.66	EUT54184	GU371781	GU349081		
	Phoma herbarum	CBS 276.37	DQ678014	DQ678066	GU357792	DQ677962	DQ677909
	Phoma zeal-maydis	CBS 588.69	EUT54093	EUT54192	GU371782	GU349082	
	Platychora ulmi	CBS 361.52	EF114726	EF114702			
Lentitheciaceae	Katumotoa bambusicolor	JCM 13131, MAFF	AB524454	AB524595	AB539095	AB539108	
	Keissleriella cladophila	CBS 104.55	GU296155	GU301822	GU371735	GU349043	
	Lentithecium aquaticum	CBS 123099	FJ795477	FJ795434	FJ795455	GU349068	
	Lentithecium arundinaceum 1	CBS 123131	GU456298	GU456320	GU456281		
	Lentithecium arundinaceum 2	CBS 619.86	DQ813513	DQ813599	FJ795473		
	Lentithecium fluviatile(as Massarina fluviatile)	CBS 122367	FJ795493	GU456290			
	Ophiopsphaerella sasicala	JCM 13134, MAFF	AB524458	AB524599	AB539098	AB539111	
	Stagonospora macropycnidia	OSC 100965	GU296198	GU301873	GU349026		
	Wettsteinin acidus	CBS 618.86	DQ678023	DQ677972	DQ677919		
Leptosphaeriaceae	Coniothyrium palmarum	CBS 400.71	DQ678008	DQ677653	DQ677956	DQ677930	
	Leptosphaeria biglobosa	CBS 303.51	GU301826	GU349010			
	Leptosphaeria dolichum	CBS 505.75	GU296159	GU349096			
	Leptosphaeria drysia	CBS 643.86	GU301828	GU349009			
	Leptosphaeria maculans	DAOM 229267	DQ470993	DQ470946	DQ471136	DQ471062	
	Neophaeosphaeria filamentososa	CBS 102202	GU387516	GU387577	GU371773	GU349084	
Classification	Species name	Culture/voucher	SSU	LSU	RPB1	RPB2	TEF1
-----------------------------	--------------------	----------------	----------------	----------------	-----------	-----------	-----------
	Phoma heteromorphospora	CBS 115.96	EU754089	EU754188	GU371775	GU349077	
	Pyrenochaeta nobilis	CBS 407.76	DQ678096	DQ677991	DQ677936		
Lophiostomataceae s. str.	Lophiostoma arundinis	CBS 621.86	DQ782383	DQ782384	DQ782386	DQ782387	
	Lophiostoma caulum 1	CBS 623.86	FJ795479	FJ795436	FJ795456		
	Lophiostoma caulum 2	CBS 624.86	GU301832				
	Lophiostoma compressum 1	IFRD 2014	FJ795486	FJ795437	FJ795457		
	Lophiostoma compressum 2	IFRDCC2081	GU456321				
	Lophiostoma crenatum	CBS 629.86	DQ678017	DQ678069	DQ677965	DQ677912	
	Lophiostoma fuckelii	CBS 101952	FJ795496	DQ399531	FJ795472		
	Lophiostoma macrostomoides	CBS 123097	FJ795482	FJ795439	FJ795458		
	Lophiostoma semiliberum	CBS 626.86	FJ795484	FJ795441	FJ795460		
	Lophiostoma viridarium	IFRDCC2090	FJ795486	FJ795443	FJ795468		
Massariaceae	Arthopyrenia salicis 1	CBS 368.94	AY538333	AY538339	GU371814		
	Arthopyrenia salicis 2	1994Coppins	AY607730				
	Massaria inquinans	CBS 122369	GU456300	GU456322	GU456282		
	Pleosporales sp. 1 (as Thelenella luridella)	CBS 101277	GU456309				
	Roussella hystericoides 1	JCM 13126, MAFF 239636	AB524480	AB524621	AB539101	AB539114	
	Roussella hystericoides 2	CBS 125434	AB524481	AB524622	AB539102	AB539115	
	Roussella postulans	JCM 13127, MAFF 239637	AB524482	AB524623	AB539103	AB539116	
	Roussellopsis tosaensis	NBRC 106245	AB524625		AB539104	AB539117	
	Torula herbarum	CBS 379.58	GU456362				
Massarinae	Byssothecium ciricnans	CBS 675.92	AY016339	AY016357	DQ767646		
	Massarina cisti	CBS 266.62	FJ795490	FJ795447	FJ795464		
	Massarina elburnea	CBS 473.64	AF164367	FJ795449	FJ795466		
	Massarina igniaria	CBS 845.96	FJ795494	FJ795452	FJ795469		
	Neotiosporina papall	CBS 331.37	EU754073	EU754172	GU371779	GU349079	
Melanomataceae	Beveneykella pulmonaria	CBS 283.53		GU301804	GU371768		
	Herpotrichia diffusa	CBS 250.62	DQ678019	DQ678071	DQ677968	DQ677915	
	Herpotrichia juniperi	CBS 202.31	DQ678029	DQ678080	DQ677978	DQ677925	
	Melanomma pulvis-pyrius 1	CBS 109.77	FJ201987	FJ201986	GU456359	GU456274	
	Melanomma pulvis-pyrius 2	CBS 124080	GU456302	GU456323	GU456350	GU456265	
	Monotosporella tuberculata	CBS 256.84	GU301851		GU349006		
	Pleomassaria siparia	CBS 279.74	DQ678027	DQ678078	DQ677976	AY544726	
Sporomiaceae	Preussia funiculata	CBS 659.74	GU296187	GU301864	GU371799	GU349032	
	Preussia lignicola (as Sporormia lignicola)	CBS 264.69	GU296197	GU301872	GU371765	GU349027	
	Preussia terricola	DAOM 230091	AY544726	AY544686	DQ471137	DQ470895	DQ471063
	Sporormiella minima	CBS 524.50	DQ678003	DQ678056	DQ677950	DQ677897	
	Westerdykella cylindrica	CBS 454.72	AY016355	AY004343	DQ471168	DQ470925	DQ497610
	Westerdykella ornata	CBS 379.55	GU296208	GU301880	GU371803	GU349021	
Montagnulaceae	Bimunia novae-zelandiae	CBS 107.79	AY016338	AY016356	DQ471159	DQ470917	DQ471087
	Didymocrea sadasivani	CBS 438.65	DQ384066	DQ384103			
	Kalmusia brevispora 1	NBRC 106240	AB524459	AB524600	AB539100	AB539113	
	Kalmusia brevispora 2	MAFF 239276	AB524460	AB524601	AB539099	AB539112	
	Kalmusia scabrispora 1	NBRC 106237	AB524453	AB524594	AB539094	AB539107	
Table 1. (Continued).

Classification	Species name	Culture/voucher	SSU	LSU	RPB1	RPB2	TEF1
Pleosporaceae	Aleuca eureka	DAOM 192275	DQ677984	DQ678044	DQ677838	DQ677883	
	Alternaria alternata	CBS 916.96	DQ678031	DQ678082	DQ677980	DQ677927	
	Alternaria maritima	CBS 126.60	GU456294	GU456317	GU456347		
	Cochliobolus heterostrophus	CBS 134.39	AY544727	AY546465	DQ477990	DQ477603	
	Cochliobolus sativus	DAOM 226212	DQ677985	DQ678045	DQ677939		
	Phoma betae	CBS 109410	EU754079	EU754178	GU371774	GU349075	
	Pyenophora herbarum	CBS 714.68	DQ767648	DQ768049	DQ71163	DQ677888	
	Pyenophora phaeocomes	DAOM 222769	DQ499565	DQ499596	DQ497614	DQ497607	
	Pyenophora tritici-repentis 1 (as Pyenophora trichostoma)	OSC 100066	AY544672			DQ677882	
	Pyenophora tritici-repentis 2 (as Pyenophora trichostoma)	CBS 392.54				GU349017	
	Pyenophora tritici-repentis 3	CBS 328.53				GU349029	
	Scolobasidium arenarium (as Dendryphiella arenaria)	CBS 181.58	DQ471022	DQ470971	GU349071	DQ470924	DQ677890
	Setosphaeria monoceras	CBS 154.26	AY016352	AY016368			
	Scolecobasidium arenarium	CBS 110217	GU296196	GU301871	GU371800	GU349028	

Phaeosphaeriaceae
Classification	Species name	Culture/voucher	SSU	LSU	RPB1	RPB2	TEF1
Trematosphaeriaceae	*Asteromassaria pulchra*	CBS 124082	GU296137	GU301800	GU371772	GU349066	
	Halomassarina thalassiae (as Massarina thalassiae)	JK 5262D	GU301816				GU349011
	Trematosphaeria pertusa 1	CBS 122368	FJ201991	FJ201990	FJ795476	GU456276	
	Trematosphaeria pertusa 2	CBS 122371	FJ201992	FJ201993	GU371801	GU349085	
Pleosporales Incertae sedis	*Aglaospora profusa 1*	CBS 123109	GU296130	GU301792			GU349062
	Aglaospora profusa 2	CBS 123129	GU456293	GU456316			GU456280
	Byssolophis sphaerioides	IFRDCC 2053	GU296140				
	Lepidosphaeria nicotiae	CBS 101341	DQ678067	DQ677963	DQ677910		
	Lophiotrema brunneosorum	CBS 123095	FJ795487	FJ795444			GU349071
	Lophiotrema lignicola	CBS 123094	FJ795489	FJ795445			GU349072
	Lophiotrema neoarundinaria 1	NBRC 106238	AB524455	AB524596			GU339097
	Lophiotrema neoarundinaria 2	MAFF 239461	AB524456	AB524597			GU339096
	Massaria anomia	CBS 591.78	GU296169	GU301839	GU349062		GU349073
	Massarina rubi	CBS 691.95	GU456301				
	Massariosphaeria phaseospora	CBS 611.86	GU296173	GU301843	GU349074		
	Munkvalssaria rubra	CBS 109605	GU456303	GU456324	GU456339	GU456344	GU456260
	Thyristaria rubronotata	CBS 419.85	GU301875				GU349002
	Ulospora bilgramii	CBS 110021	DQ678025	DQ677974	DQ677921		
	Valaria insitiva	CBS 123098	GU456310	GU460204			GU456264
	Valaria insitiva	CBS 123125	GU456311	GU460205	GU456353	GU456268	
	Verruculina enalia	JK 5235A	DQ678028	DQ677977	DQ677924		
	Xenolophium applanatum	CBS 123123	GU456312	GU456329	GU456354	GU456269	
	Xenolophium applanatum	CBS 123127	GU456313	GU456330	GU456355	GU456270	
Botryosphaeriales (outgroup)	*Botryosphaeria dothidea*	CBS 115476	DQ677998	DQ678051	GU357802	GU371774	DQ67637
	Botryosphaeria tsuage	CBS 171.55	DQ678009	DQ678061	GU357796	GU371774	DQ677904
	Guignardia gaultheriae	CBS 447.70	DQ678089	DQ677987			GU349071
	Guignardia bidwellii	CBS 237.48	DQ678034	DQ678085	GU357794		
Dothideales (outgroup)	*Dothidea hippochaës*	CBS 188.58	U42475	DQ678048	GU357801	GU371774	DQ677887
	Phaeosclera dematicides	CBS 157.81	GU296184	GU301855	GU357764	GU349047	
	Dothidea samtuci	DAO 123130	AY544722	AY544681			GU349066
Hysteriales (outgroup)	*Psilotogonium clavisporum*	CBS 123339	FJ161157	FJ167526	FJ161124	FJ161105	
	Hysteriales sp. 1	CBS 243.34	GU456297	GU456319	GU456338	GU456343	GU456259
	Hysterinum angustatum	CBS 236.34	GU397359	GU161180	GU456341		
Jahnulales (outgroup)	*Jahnula seychellensis*	SS2113.1	EF175644	EF175665			
	Jahnula aquatica	R89-1	EF175633	EF175655			
	Aliquandostipite khaoiyaiensis	CBS 118232	AF201453	GU301796			GU349048
Mytilinidiales (outgroup)	*Mytilinidion andinense*	CBS 123562	FJ161159	FJ161199	FJ161125	FJ161107	
	Lophium mytilinum	CBS 269.34	DQ678030	DQ678081	GU456342		DQ677926
Table 1. (Continued).

Classification	Species name	Culture/voucher	SSU	LSU	RPB1	RPB2	TEF1
Venturiaceae	Venturia pyrina	ATCC 38995			EF114714		
	Venturia inaequalis	CBS 476.61		GU456336		GU456288	
	Metacoleroa diciei	medipc					
Arthoniomycetes	Opegrapha dolomitica	DUKE 0047528	DQ883706	DQ883717	DQ883714	DQ883732	
(outgroup)	Opegrapha varia	DUKE 0047526					
				FJ772242	FJ772243	FJ772244	

Public culture collections and herbaria: ATCC: American Type Culture Collection, Virginia, U.S.A.; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; DUKE: Duke University Herbarium Durham, North Carolina, U.S.A.; IFRD: International Fungal Research & Development Centre, Chinese Academy of Forestry, Kunmin, People’s Republic of China; JCM: Japan Collection of Microorganisms, RIKEN BioResource Center, Japan; MAFF: Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Japan; OSC: Oregon State University Herbarium, Corvallis, Oregon, U.S.A.; NBRC: National Institute of Technology and Evaluation, Chiba, Japan; UME: Umeå University Herbarium, Umeå, Sweden.