Screening the Biosphere: The Fungicolous Fungus *Trichoderma phellinicola*, a Prolific Source of Hypophellins, New 17-, 18-, 19-, and 20-Residue Peptaibiotics\(^1\)

by Christian René Rührich\(^{a,b)}\), Anita Iversen\(^{b)}\), Walter Michael Jaklitsch\(^{c)}\), Hermann Voglmayr\(^{c)}\), Andreas Vilcinskas\(^{a,d)}\), Kristian Fog Nielsen\(^{b)}\), Ulf Thrane\(^{b)}\), Hans von Döhrn\(^{e)}\), Hans Brückner\(^{f)}\), and Thomas Degenkolb\(^{b,d)}\)

\(^{a)}\) Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: christian.roehrich@ime.fraunhofer.de; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: andreas.vilcinskas@ime.fraunhofer.de)

\(^{b)}\) Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU), Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: aive@bio.dtu.dk; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: kfn@bio.dtu.dk; U. T.: phone: +45-45252630, fax: +45-45884148, e-mail: ut@bio.dtu.dk)

\(^{c)}\) Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: walter.jaklitsch@univie.ac.at; H. V.: phone: +43-4277-54050, e-mail: hermann.voglmayr@univie.ac.at)

\(^{d)}\) Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU), Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: thomas.degenkolb@ernaehrung.uni-giessen.de)

\(^{e)}\) Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstraße 29, D-10587 Berlin (phone: +49-30-314-22697; fax: +49-30-314-24783; e-mail: doehren@chem.tu-berlin.de)

\(^{f)}\) Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-711-349919; e-mail: hans.brueckner@ernaehrung.uni-giessen.de)

To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus *Trichoderma phellinicola* (syn. *Hypocrea phellinicola*) growing on its natural host *Phellinus ferruginosus*. Results revealed that a particular group of non-ribosomal antibiotic polypeptides, peptaibiotics, which contain the non-proteinogenic marker amino acid, \(\alpha\)-aminoisobutyric acid, was biosynthesized in the natural habitat by the fungicolous producer and, consequently, released into the host. By means of liquid chromatography coupled to electrospray high-resolution time-of-flight mass spectrometry, we detected ten 20-residue peptaibols in the specimen. Sequences of peptaibiotics found *in vivo* were independently confirmed by analyzing the peptaibiome of an agar plate culture of *T. phellinicola* CBS 119283 (*ex-type*) grown under laboratory conditions. Notably, this strain could be identified as a potent producer of 39 new 17-, 18-, and 19-residue peptaibiotics, which

\(^1\) The term *residue* covers both \(\alpha\)-amino acids and the C-terminal \(\beta\)-amino alcohol.

\(^2\) These authors contributed equally to this work.

\(^3\) Visiting Professor at Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
display the same building scheme as the 20-residue peptaibols found in the specimen. Two of the 19-residue peptaibols are tentatively assigned to carry tyrosinol, a novel C-terminal residue, as deduced from high-resolution tandem mass-spectrometry data. For the new peptaibiotics produced by \textit{T. phellincola}, the name ‘hypophellin(s)’, based on the teleomorph name, is introduced.

\textbf{1. Introduction.} – 1.1. \textit{Fungi as a Prolific Source of Bioactive Natural Products.} The current estimate of the total number of fungal species ranges between 1.0 and 1.5 million [1], whereas the number of those validly described should now exceed only 98,000 [2]. Of the 33,500 bioactive microbial metabolites known to date, the fungal kingdom contributes ca. 15,600. Approximately 10,000 of them were shown to display anti-infective, antitumor, and/or antiviral activities. Microbial-derived drugs on the market comprise ca. 400–500 active pharmaceutical agents [3], including therapeutically relevant antibiotics of fungal origin such as \(\beta\)-lactams, fusidic acid, and griseofulvin, as well as the two immunosuppressants mycophenolic acid and cyclosporine A [4].

Given that less than 1\% of microorganisms visible under the microscope have been cultivated under laboratory conditions so far, microbial diversity provides an enormous, yet underestimated potential for future drug discovery [5] and in the search for new agricultural antibiotics [6].

1.2. \textit{The Potential of \textit{Trichoderma} Species as Biological Control Agents (BCAs).} Species of the ubiquitous fungal genus \textit{Trichoderma} and its \textit{Hypocrea} teleomorphs have attracted considerable interest in the past two decades because of the pivotal role of their secondary metabolites in the antagonistic activities of biocontrol species [7–9]. Most of them occur as opportunistic, plant (endo)symbionts [10], some of which exhibit pronounced antimicrobial activity towards economically important plant pathogens. Recent examples include:

- the hyperparasite \textit{Trichoderma stromaticum} (syn. \textit{Hypocrea stromaticica}), the active agent of ‘Tricovab’ a commercial formulation against \textit{Crinipellis} (syn. \textit{Moniliophthora}) \textit{perniciosa}, the Witches’ broom pathogen of cocoa (\textit{Theobroma cacao}) [11][12];
- \textit{T. paucisporum} and \textit{T. theobromicola}, displaying \textit{in vitro}-activities against frosty pod rot of cocoa, \textit{Moniliophthora roreri} [13];
- \textit{T. martiale}, which, in small-scale in \textit{situ} field trials, proved highly effective against black pod rot of cocoa caused by \textit{Phytophthora palmivora} [14].

The mode of action of phytoprotective \textit{Trichoderma} species is considered rather complex. Depending on the species or even strains investigated, the following mechanisms may contribute to the antagonistic potential towards plant pathogenic fungi:

\begin{itemize}
\item \textit{i}) Competition for nutrients and/or space, \textit{ii}) growth promotion of plants, especially colonization of roots, resulting in improved root and plant growth, \textit{iii}) induction of localized and systemic resistance responses in plants, \textit{iv}) mycoparasitism, \textit{v}) increase of uptake and concentration of nutrients by the plant, including the production of siderophores, and \textit{vi}) production of volatile and non-volatile antibiotics [10].
\end{itemize}
1.3. Peptaibiotics – Non-Ribosomally Biosynthesized Fungal Peptide Antibiotics Containing α,α-Dialkyl-α-amino Acids. During the past two decades, peptaibiotics have regained particular interest because of their unique bioactivities, resulting from their amphipathicity and helical conformations [15]. These are attributed to the presence of high proportions of peptide-bound α-aminoisobutyric acid (Aib), frequently accompanied by α- and/or l-isovaline (Iva) [16], and, in a few sequences, l-α-ethylnorvaline (EtNva), or 1-aminocyclopropane-1-carboxylic acid (Acc) [17]. The presence of these α,α-dialkyl-α-amino acids (Fig. 1, a) has been confirmed in acidic hydrolysates of more than 30 genera of fungi [18].

Peptaibiotics are defined as non-ribosomally biosynthesised, linear or cyclic polypeptide antibiotics of exclusively fungal origin which i) have a molecular weight between 500 and 2,200 Da, thus containing 4–21 residues; ii) show a high content of the marker Aib, as well as further α,α-dialkylamino acids; iii) are characterized by the presence of other non-proteinogenic amino acids and/or lipoamino acids; iv) possess an acylated N-terminus, and v) in the case of linear peptides, have a C-terminal residue that, in most of them, consists of a free or O-acetylated, amide-bonded β-amino alcohol. The C-terminus might also be an amine, amide, sugar alcohol, 2,5-diketopiperazine, a heterocyclic residue, or an amino acid with free carboxy terminus. The majority of Aib-containing peptides carry a C-terminal residue representing a β-amino alcohol. Only this group is referred to as peptaibols sensu stricto, whereas for the others the comprehensive name peptaibiotics is used [17].

1.4. Detection of Peptaibiotics in T. phellinicola Growing on Its Natural Host. The genus Trichoderma, which currently consists of ca. 200 validly described species the number of which increases continually [19–28], is generally recognized as the most prolific source of peptaibiotics [17]. However, reports on the detection of peptaibiotics in samples collected in the natural habitat of the producer(s) are rare. Most of the ca.

Residue	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Ac	Aib	Ala	(Vxx)	(Ser)²	(Ser)²	(Gly)²	(Vxx)															
Aib	Ala	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	(Ala)	(Glu)	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	(Ala)	(Glu)

Fig. 1. a) Structures and configurations of α,α-dialkylamino acids found in peptaibiotics. b) Building scheme of subfamily-I (SF1) peptaibiotics, produced by Hypocrea phellinicola. Variable positions are underlined. Minor sequence variations are parenthesized. Deletions of certain amino acid positions are highlighted in different shades: C-terminal deletions are highlighted in dark, deletions of Glu in medium, and deletions of [Aib/Ala]² in light gray. *) Deleted in 17-, 18-, and 19-residues hypophellins. †) Deleted in the 17-residue sequence 29. ‡) Deleted in 18-residue sequences 11, 12, and 28, and in the 17-residue sequence 29. §) Detected with DTU maXis gradient only. ¶) Detected with JLU micrOTOF-Q II gradient only.
1,000 individual sequences of peptaibiotics known to date have been sequenced in extracts of fungal cultures grown under artificial laboratory conditions.

The first example of peptaibiotics isolated from natural specimens were hypelcins A and B obtained from ca. 2 kg of dried, crushed stromata of Hypocrea peltata [29–31]. In 1997 and 1999, three reports were published on the isolation of peptaibiotics from fruiting bodies of Scleroderma texense, Tylopilus neofelleus, and Boletus sp., respectively; all being members of the Boletales [32–34]. However, in 2002, Kiet et al. [35] isolated chrysospermins A–D from the Vietnamese species Xerocomus langbianensis (Boletaceae, Boletales) and attributed the detection of these four 19-residue peptaibols [36] to an unrecognized infection of X. langbianensis with Sepedonium sp. This phenomenon was later commented on by Degenkolb et al. [37]. Finally, Neuhof et al. [39] corroborated the assumption of Kiet et al. [35] by analyzing four fruiting bodies of members of the order Boletales infected by Sepedonium chrysospermum and S. microspermum, respectively. Notably, all samples were screened positive for peptaibiotics of the chrysospermin type. In 2006, Lehr et al. [40] demonstrated that 16-residue peptaibols, the antiamoebins, were solely responsible for antibiosis in herbivore dung naturally colonized by or artificially inoculated with Stilbella fimetaria (syn. S. erythrocephala).

1.5. Bioactivities of Peptaibiotics from Trichoderma. Peptaibiotics are thus assumed to play a key role in the infection process of a host by a fungicolous species because of their unique ability of forming voltage-gated ion channels. This phenomenon is best described by the dipole flip-flop gating model in planar lipid bilayers [41]. Their well-documented membrane activity, however, may also account for other striking bioactivities, such as neurolepsy [42], inhibition of amyloid β-peptide formation [43], inhibition of HIV-1 integrase [44], suppression of tumor cells, targeted calcium-mediated apoptosis, and autophagy in human hepatocellular carcinoma cells [45], as well as induction of defence responses and systemic resistance in tobacco against tobacco mosaic virus [46] and programmed cell death in fungal plant pathogens [47].

1.6. Choice of the Model Organism. Trichoderma phellinicola, a recently described polyporicolous species, which specifically occurs on effused basidiomes of Phellinus spp., was chosen as a model organism. Specimens of H. phellinicola have so far been recorded from Austria, Denmark, Germany [20], and the Czech Republic (see Exper. Part). This species is possibly specific for Phellinus ferruginosus [20].

To confirm the above hypothesis of peptaibiotic production under in vivo conditions, a specimen of Trichoderma phellinicola growing on its host Phellinus ferruginosus, was screened for peptaibiotics. For comparison, the ex-type culture of T. phellinicola, CBS 119283 (=C.P.K. 2137), was investigated. Both morphs were analyzed using a peptaibiomics approach as described in [48–50].

2. Results. – 2.1. General Considerations. All 17-, 18-, 19-, and 20-residue sequences discussed below were obtained from Trichoderma phellinicola [20]. The name ‘hypophellins’ (HPHs), which covers the entirety of long-chain peptaibiotics (>17 residues) produced by this species, is proposed. We base this name on the teleomorph name Hypocrea phellinicola, which used to be the valid name of the holomorph in dual nomenclature [20]. The introduction of a new name for peptaibiotics from a phylogenetically well-defined species is more favorable than earlier names for many
of the 19- and 20-residue peptaibiotics mentioned below, viz. suzukacillins, trichocellins, trichokonins, and longibrachins, which were produced by phylogenetically undefined Trichoderma species with thus highly questionable names. The latter issue is further complicated by the fact that many of the peptaibiotic-producing Trichoderma strains reported in the literature have never been deposited in a public culture collection, or deposition was terminated [51].

Hypophellins are numbered consecutively with Arabic numbers as follows: i) sequences produced by the specimen; ii) sequences produced by the culture CBS 119283 grown and analyzed at JLU; iii) sequences produced by the culture CBS 119283 grown and analysed at DTU.

2.2. Peptaibiotic Pattern of the Teleomorph. Notably, the teleomorph of Trichoderma phellinicola proved to be a prolific source of ten 20-residue peptaibols, compounds 1–10, displaying the characteristic building scheme of subfamily I (SF1), one of the nine ‘peptaibol subfamilies’ (Fig. 1, b, and Tables 1 and 2), as introduced by Chugh and Wallace [52]4).

One Gln residue is found in position 7, and another one towards or at the C-terminus in position 18, whereas position 19 is either occupied by a third Gln or a Glu residue. A highly conserved Pro residue is located in position 14 of the peptide chain. All sequences have a Gly residue in position 11 and terminate in Pheol. At least seven, at most nine, residues are occupied by Aib. Variable amino acid residues are located in positions 2, 6, 17, and 18 (Fig. 1, b).

Most of the peptaibols sequenced resemble previously described compounds (Fig. 1, b, Table 1, and Fig. 2, a) such as longibrachins A and B [53], trichobrachins II [57], trichoaureocins [54], trichokonins [55][62][63], and suzukacillins A [60].

2.3. Peptaibiotic Pattern of the Culture. 2.3.1. General Considerations. As observed before [20], ascospores of T. phellinicola are unstable and die rapidly after collecting. This might have been the reason why no agar culture could be obtained from our specimen. As a substitute, the ex-type culture of T. phellinicola CBS 119283 (= C.P.K. 2137) was provided, and its peptaibiotic pattern was analyzed. Except for the two lipopeptaibols 48 and 49, the remaining compounds 11–47 represent the characteristic building scheme of SF1, resembling the previously described 20-residue peptaibols suzukacillins A, trichosporins B, and trichocellins A [60][61][64–67].

2.3.2. micrOTOF-Q II Screening. In contrast to the specimen analyzed, the ex-type plate culture grown and analyzed at the Justus Liebig University of Giessen (JLU) produced two new 18- and fifteen new 19-residue peptaibols, compounds 11–27, which lacked the [Ala/Aib]6 residue of the 20-residue peptaibols found in the specimen (Tables 3 and 4, and Fig. 2, b). The two truncated 18-residue sequences, compounds 11 and 12, terminated in free Gln. Sequences 14 and 16–27 carry a C-terminal Pheol. For compounds 13 and 15, a C-terminal tyrosinol residue (abbreviated as ‘Tyrol’) was tentatively deduced from HR-ESI-MS/MS data (Tables 3 and 4, Fig. 3).

4) These subfamilies were introduced at a time when the total number of peptaibiotics described did not exceed 200 sequences. As of October 2012, ca. 1,000 individual sequences are known, which also exhibit new building schemes and constituents. Consequently, there is an urgent need to reconsider this classification.
2.3.3. maXis Screening. All SF1 peptaibiotics, compounds 12, 14, 19, 28–47, of the ex-type plate culture grown and analyzed at DTU (Tables 5 and 6, and Fig. 2, c) exhibit the characteristic deletion of the Ala/Aib residue in position 6. However, different positional isomers and homologues were found, e.g., the 17-residue deletion sequence 29, lacking the C-terminal dipeptide [Gln18−Pheol19]. In compound 31, a Ser-residue was found in position 3, whereas compound 30 exhibited a Gly residue in position 4. Overall, the structural diversity of peptaibiotics produced by the two cultures was much higher as compared to the specimen: variable amino acid residues were in positions 2, 3, 4, 5, 6, 17, 18, and 20 (Fig. 1, b).

2.4. Lipopeptaibols as Trace Components in the Plate Cultures. Two lipopeptaibols, compounds 48 and 49, were produced as trace components in the DTU plate culture. Compound 49 probably represents trichogin A IV [68][69] or a positional isomer thereof. The new positionally isomeric compound 48, named ‘lipophellin 1’, is characterized by the deletion of [Gly] of compound 49 (Tables 5 and 6, and Fig. 2, c).

3. Discussion. – 3.1. Hypophellins, Novel Long-Chain Peptaibiotics from T. phellinicola. The most notable result of this investigation is, indeed, the unequivocal confirmation of peptaibiotic biosynthesis in the natural habitat of T. phellinicola growing on its host Phellinus ferruginosus, commonly known as the Rusty Porecrust.
We here describe for the first time the \textit{in vivo} detection of non-ribosomal peptide antibiotics5), which may significantly contribute to the complex interaction of a fungicolous ascomycete growing on its basidiomycetous host.

3.2. The Peptaibiome of the Specimen. The teleomorph produced a microheterogeneous mixture of ten 20-residue HPHs, four of which, 6, 8, 9, and 10, are new (Table 1). Compared to smaller sequences consisting of less than 17 residues, long-chain peptaibiotics display a higher membrane-pore-formation activity by several orders of magnitude 71.

Depending on the individual sequence, seven to nine Aib residues are present, which strongly promote the formation of helical structures, \textit{i.e.}, α- or 3_{10}-helices, and even mixed forms 72–74, which is due to the steric constraints imposed by the geminal Me groups of the Ca-atom 75. All of them exhibit the structurally important features, which are required for the formation of transmembrane ion channels in artificial lipid bilayer membranes, as compiled by Duclohier 76, and Duclohier and CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 793

\begin{table}[h]
\centering
\begin{tabular}{cccccccccc}
\hline
12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & Compound identical or positionally isomeric with Ref.
\hline
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol Longibrachin A I & [53]
 & Trichoaureocin 3 & [54]
 & Trichokonin VI (= gliodeliquescin A) & [55][56]
 & Trichobrachins II-5, II-6 & [57]
 & Trichobrachin Iib A & [58][59]
Lxx Aib Pro Vxx Aib Aib Glu Gln Pheol Longibrachin B II & [53]
 & Trichokonin VII & [55]
 & Trichoaureocin 4 & [54]
 & Suzukacillin A-10a & [60]
 & Trichobrachins II-7, II-8, II-9 & [57]
 & Trichobrachin Iib B & [58][59]
Lxx Aib Pro Vxx Aib Aib Vxx Glu Gln Pheol Longibrachin B III & [53]
 & Trichokonin VIII (= trichosporin B-IvE) & [55][61]
 & Trichoaureocin V & [54]
 & Trichobrachin Iib C & [58][59]
Lxx Aib Pro Vxx Aib Aib Vxx Glu Gln Pheol New (longibrachin IV: [Gln]$^{18} \rightarrow$[Glu]18) & [53]
 & Trichoaureocin VI & [54]
 & Trichobrachin Iib D & [58][59]
Lxx Aib Pro Vxx Aib Vxx Glu Gln Pheol New (homolog of 7) & [53]
 & Trichoaureocin VI & [54]
 & Trichobrachin Iib D & [58][59]
Lxx Aib Pro Vxx Aib Vxx Glu Gln Pheol New (homolog of 8) & [53]
 & Trichoaureocin VI & [54]
 & Trichobrachin Iib D & [58][59]
\hline
\end{tabular}
\caption{Compound identical or positionally isomeric with Ref.}
\end{table}

sequences. This applies to Tables 1, 3, and 5.

5) Hypophellins were simultaneously detected in an LC/MS/MS screening of 15 specimens belonging to nine \textit{Hypocrea} species, which have been collected in their natural habitat. Recently, a manuscript on the \textit{in vivo} detection of hypopulvins, novel peptaibiotics from the polyporicolous fungus \textit{H. pulvinata}, has been published. The results therein corroborate that peptaibiotics are produced by a fungicolous fungus during infection of its natural hosts 70.

50
Table 2. Diagnostic Fragment Ions of 20-Residue Peptaibiotics Detected in the Specimen of Hypoerea phellinicola (micrOTOF-Q II screening)

Diagnostic fragment ions Peaks [m/z]	2	3	4	5	6	7	8	9	10
[M + Na]^+									
a1	12345678910								
[M + H]^+									
a1									
a2	100.0808	100.0808	100.0808	100.0806	100.0809	100.0805	100.0808	n.d.	n.d.
a3	171.1191	171.1191	171.1191	171.1191	171.1191	171.1191	171.1191	171.1191	171.1191
a4	256.1657	256.1657	256.1662	256.1665	256.1668	256.1671	256.1674	256.1677	256.1680
a5	n.d.	n.d.	412.2735	412.2735	412.2735	412.2735	412.2735	412.2735	412.2735
b1	128.0758	128.0758	128.0762	128.0762	128.0762	128.0762	128.0762	128.0762	128.0762
b2	199.1102	199.1102	199.1102	199.1102	199.1102	199.1102	199.1102	199.1102	199.1102
b3	284.1604	284.1604	284.1615	284.1618	284.1621	284.1624	284.1627	284.1630	284.1633
b4	355.1982	355.1982	355.1982	355.1982	355.1982	355.1982	355.1982	355.1982	355.1982
b5	440.2121	440.2121	440.2121	440.2121	440.2121	440.2121	440.2121	440.2121	440.2121
b6	525.2839	525.2839	525.2839	525.2839	525.2839	525.2839	525.2839	525.2839	525.2839
b7	600.3431	600.3431	600.3431	600.3431	600.3431	600.3431	600.3431	600.3431	600.3431
b8	675.3937	675.3937	675.3937	675.3937	675.3937	675.3937	675.3937	675.3937	675.3937
b9	750.4441	750.4441	750.4441	750.4441	750.4441	750.4441	750.4441	750.4441	750.4441
b10	825.4941	825.4941	825.4941	825.4941	825.4941	825.4941	825.4941	825.4941	825.4941
y7	774.4598	774.4598	774.4598	774.4598	774.4598	774.4598	774.4598	774.4598	774.4598
y7 – H2O	756.4345	756.4345	756.4345	756.4345	756.4345	756.4345	756.4345	756.4345	756.4345
y7 – AA (20)	623.3596	623.3596	623.3596	623.3596	623.3596	623.3596	623.3596	623.3596	623.3596
y7 – AA (20-19)	495.3197	495.3197	495.3197	495.3197	495.3197	495.3197	495.3197	495.3197	495.3197
y7 – AA (20-18)	367.2398	367.2398	367.2398	367.2398	367.2398	367.2398	367.2398	367.2398	367.2398
y7 – AA (20-17)	282.1890	282.1890	282.1890	282.1890	282.1890	282.1890	282.1890	282.1890	282.1890

* a) n.d., Not detected.
A multitude of bioactivities has been described for 20-residue peptaibols of similar structure, which are compiled in Table 7.

3.3. The Peptaibiome of the Ex-Type Plate Culture. In contrast to what has been observed for the specimen, 20-residue peptaibols could not be detected. Instead, fifteen 19-residue peptaibols were detected in the micrOTOF-Q II screening and another eighteen in the maxis screening. Although sequences of 11–47 still exhibit the characteristic building scheme of SF1, they are distinguished from the 20-residue peptaibols of the teleomorph specimen by a deletion of the Aib/Ala residue in position 6 (Δ Ala/Aib6) of the peptide chain. This deletion, however, is predicted not to negatively influence the bioactivity of these long-chain peptaibols, as all important structural features are still present, which comply with the requirements for the formation of transmembrane ion channels in artificial lipid bilayer membranes [76], [77]. The three 18-residue sequences, 11, 12, and 28, exhibit a deletion of the C-terminal amino alcohol, whereas the dipeptide [Gln18–Pheol19] is deleted in 29, a 17-residue sequence. Truncated versions of SF1 peptaibols lacking the C-terminal amino alcohol or even the adjacent Gln residue have been reported before.

The ten 19-residue peptaibiotics, trichobrachins I (TB I), lacking the C-terminal Pheol residue, as well as the two 18-residue trichobrachins II-1 and -2 (TB II), which exhibit a deletion of the C-terminal dipeptide [Gln19–Pheol20], were shown to originate from 20-residue trichobrachins II (TB II) by enzymatic degradation. Two minor desPheol compounds F30, representing 1.3% of the alamethicin (ALM) mixture investigated, have been detected by non-aqueous capillary electrophoresis (NACE) coupled to electrospray mass spectrometry [94].

3.4. 1-Phenylalanyl as Constituent of Natural Products. C-Terminal 1-Phanol is commonly found in peptaibiotics but has also been infrequently reported as a constituent of other plant and fungal secondary metabolites such as N-benzoyl-1-phenylalaninol from Catharanthus pusillus [95] and Diospyros quaesita [96], O-acetyl-N-(N'-benzoyl-1-phenylalanyl)-1-phenylalaninol from Euphorbia fischeriana and E. kansui [97], and N-benzoyl-O-[N'-benzoyl-1-phenylalanyl]-1-phenylalaninol from Penicillium arenicola (syn. P. canadense) [98].

3.5. 1-Tyrosinol as a Constituent of Natural Products. To the best of our knowledge, neither d- nor l-tyrosinol has ever been reported as constituent of either linear or cyclic peptides of microbial origin, including peptaibiotics. However, l-tyrosinol is a ‘cryptic’ building block of the following natural products:

- farinosone C, an amide from Paecilomyces farinosus RCEF 0101 [99];
- cordyceamides A and B from a liquid culture of Cordyceps sinensis [100];
- preoxazinin-7, the linear precursor [101], and cyclic oxazinins from the digestive glands of Mytilus galioprovincialis [102], [103].

3.6. The Lifestyle of Trichoderma phellinicola: Findings and Thoughts. Taken these findings together, we dare predict a mycoparasitic lifestyle of the host-specific polyporicolous Trichoderma phellinicola:

It has been demonstrated by in vitro studies that chitinases and β-1,3-glucanases act synergistically with peptaibiotics in inhibiting spore germination and hyphal elongation of Botrytis cinerea. Parallel formation of hydrolytic enzymes and 19-residue antifungal

6) C-Terminal β-amino alcohols with the d-configuration have not yet been reported for peptaibiotics.
Fig. 2. Base-peak chromatograms (BPCs) of a) the H. phellinicola specimen screened with the micrOTOF-Q II, b) the H. phellinicola ex-type plate culture screened with the micrOTOF-Q II, and c) the H. phellinicola specimen screened with the maXis. †, co-eluting peptaibiotics, not sequenced; ‡, non-peptaibiotic metabolite.
trichorzianins A and B by the potent mycoparasite *Trichoderma atroviride*\(^7\)) is triggered in the presence of cell walls of plant-pathogenic fungi \[106\]. Trichorzianins have previously been shown to form voltage-gated ion channels in planar lipid bilayers \[107\] and to modify the membrane permeability of liposomes, and they are active against *Rhizoctonia solani* and *Phythophthora cactorum* \[108\]. Based on these findings, a model of how peptaibiotics such as trichorzianins and hydrolases interact synergistically was proposed.

First, the host cell wall is digested enzymatically; thereafter, peptaibiotics will penetrate the cell membrane to form ion channels. Cell leakage reduces the ability of the host to effectively repair its cell wall. Eventually, inhibition of chitin and \(\beta\)-glucan synthesis further amplifies the destructive effect of chitinases and \(\beta\)-1,3-glucanases \[108\]. These mechanisms, however, may also account for the recently published induction of programmed cell death in plant fungal pathogens \[47\] caused by the 20-residue peptaibol trichokonin VI (= gliodeliquescin A \[56\])\(^8\), from *T. koningii*, *T. pseudokoningii*, and *T. deliquescens* (syn. *Gliocladium deliquescens*) \[20\]. The presence of peptaibiotics was also shown to play a role in the induction of plant defence responses \[110\].

\(7\) The trichorzianin-producing strain ATCC 36042 (= CBS 391.92) was originally identified as *T. harzianum* \[104\] but later shown to belong to *T. atroviride* \[105\]. The high degree of misidentification of *Trichoderma* species prior to introduction of phylogenetic analysis is still regarded a major problem, unless authors describe how their cultures were identified \[17\].

\(8\) Gliodeliquescin A has been isolated from *Gliocladium deliquescens* NRRL 1086 \[109\] and not from NRRL 3091 \[56\]. According to phylogenetic data (18S-rRNA, and ITS 1 and 2), *G. deliquescens* NRRL 1086 (= CBS 228.48 = ATCC 10097) was re-identified as *G. viride* (www.straininfo.net/strains/260309).
Remarks on Non-Ribosomal Biosynthesis and Module Skipping by T. phellinicola. The exclusive production of 20-residue peptaibols by the T. phellinicola teleomorph indicates the presence of a 20-module NRPS. As the culture CBS 119283 has been shown to produce 17-, 18-, and 19-residue peptaibiotics only, it is likely to contain a 19-module NRPS, lacking the 6th module activating Ala or Aib. In addition, modules 3 and 4 show differing substrate specificities, as compared to the teleomorph, thus permitting the incorporation of Ala or Ser in position 3 and of Gly, Ala, or Ser in position 4, respectively. These findings indicate substantial variations in the sequences of the SF1-type peptaibol synthetases of both strains. As has been discussed in the case of SF4-type peptaibols, genes involved in secondary-metabolite products show a much broader sequential variety than housekeeping genes [50]. We here, indeed, find evidence for a significant structural variation within a large gene.

Experimental Part

Chemicals

All solvents used, MeCN (99.9%), MeOH (99.9%), CH₂Cl₂ (99.8%), and HCOOH (98%), were of LC/MS grade from Sigma-Aldrich (D-Steinheim). Water was purified by a Merck-Millipore Milli-Q Synthesis A10 system (D-Schwabach/Ts.).

Origin of Specimen

The teleomorphic specimen of Trichoderma phellinicola growing on its host Phellinus ferruginosus was collected in the ‘Národní park Podyji’ (Czech Republic, Moravia), near Hardegg at the bridge across the River Thaya, just across the border between Austria and the Czech Republic.
Origin of Trichoderma phellinicola CBS 119283 (ex-type). All details concerning this new species were given by Jaklitsch [20].

Extraction of Specimens. The teleomorph was extracted with CH$_2$Cl$_2$/MeOH 1:1 (v/v), the solvent was evaporated in vacuo (Rotavapor R-215, B/C-Bchi, D-Essen), and the extract was cleaned up over Sep-Pak Classic C$_18$ cartridges (Waters, D-Eschborn) as described by Krause et al. [48].

Cultivation and Extraction of Pure Cultures. Cultures of the specimen were grown on potato dextrose agar (PDA; Becton Dickinson, D-Heidelberg) at 23°C for 6 d. These subcultures were used for inoculation of the main cultures. After 10 d of cultivation at 23°C in the dark, main cultures were extracted as described for the teleomorph.

LC/MS Analysis. Two QTOF systems, both from Bruker Daltonic (D-Bremen) controlled by HyStar v. 3.2 were used. Both instruments were equipped with an orthogonal ESI source and coupled to a Dionex UltiMate 3000 UPLC (Dionex, D-Idstein).

System 1: high-resolution microTOF Q-II mass spectrometer. For separation, an Acclaim 120 C$_18$, 3 µm, 2.1 × 150 mm, column (Dionex, D-Idstein) at a flow rate of 0.25 ml/min \pm 1 and a temp. of 35°C was used. Eluent A consisted of H$_2$O +0.1% HCOOH and eluent B of 95% MeCN +0.1% HCOOH. Subsamples of 10 µl were injected. The column was held at 80% A/20% B for 5 min, then a gradient from 20% B to 100% over 55 min was applied. Thereafter, the column was held at 100% B for 15 min, returned to the start conditions in 1 min, and finally equilibrated for 14 min.

Samples were screened for peptaibiotics in the positive-ion mode using the following three-step routine procedure: first a full scan was recorded from m/z 50 to 3000. In System 1, this was followed by CID measurements from m/z 50 to 2000, recorded at energy of 150 eV. Finally, results of CID-MS were verified by MS/MS experiments on selected precursor ions. For precursors of m/z < 1000, a collision energy of 35 eV and precursor ions of m/z > 1500 at a collision energy of 40 eV. The isolation width for MS/MS experiments was set to ±1 Da.

Hypocrea phellinicola (microTOF-Q II screening)

12	13	14	15	16	17	18	19	20
Lxx Aib Pro Vxx Aib Vxx Gln Gln	New (trichocellin A-VI – [Aib]6 – Pheol)	[67]						
Lxx Aib Pro Vxx Aib Vxx Gln Gln	New (trichocellin A-VI – [Ala]6 – Pheol)	[67]						
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol	New							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	New							
System 2: The maXis 3G QTOF mass spectrometer operated at a resolution of 40,000 FWHM. An Acquity BEH300 C18, 1.7 μm, 2.1 × 150 mm, column (Waters, D-Eschborn) was used for separation, using H2O + 0.1% HCOOH (eluent A) and 100% MeCN + 0.1% HCOOH (eluent B). The flow rate was set to 0.3 ml/min and the temp. to 40°. The gradient started with 90% A/10% B and was changed to 50% A/50% B at 7 min, then to 30% A/70% B at 25 min, then raised to 100% B at 38 min, and held at 100% B until 41 min before setting to starting conditions from time 42 min to 46 min. Three ml were injected. MS were scanned in the m/z range of 100–2,000. Auto MS with precursor ion-dependent collision energy optimization was used for fragmentation in the range of 10–65 eV.

Data interpretation was performed using the DataAnalysis v. 4.0 software (Bruker Daltonic, D-Bremen). Use of high-resolution (HR) ESI-MS allowed the unequivocal sequencing of fragment-ion series according to the Roepstorff/Fohlman–Biemann nomenclature. In cases where the isomeric amino acids (Leu/Ile and Val/Iva, resp.) or the corresponding amino alcohols (Leuol/Ileol) with the same

Table 4. Diagnostic Fragment Ions of 18- and 19-Residue Peptaibiotics Detected in the Ex-Type Culture (CBS)

Diagnostic fragment ions	Peaks [m/z]	11	12	13	14	15	16	17	18
tR [min]		30.9–31.1	31.8–32.0	32.2–32.6	32.5–32.7	32.8–33.1	35.1–35.3	37.0–37.2	37.7–37.9
[M + Na]⁺	1768.9850	1783.0115	1918.0846	1932.0976	1932.1017	1918.0877	1888.0616	1902.0891	
[M + H]⁺	1747.0135	1761.0324	1896.0995	1910.1131	1910.1140	1896.1035	1866.0928	1880.1095	
a₁	100.0718	n.d.	n.d.	n.d.	n.d.	100.0720	100.0720	n.d.	
a₂	256.1647	256.1624	242.1508	256.1641	256.1707	242.1511	242.1506	256.1675	
a₃	n.d.	n.d.	n.d.	n.d.	327.1979	n.d.	n.d.	327.2046	
a₄	n.d.	n.d.	n.d.	n.d.	n.d.	398.2312	n.d.	n.d.	
b₁	128.0687	128.0658	128.0709	128.0708	128.0835	128.0715	128.0719	128.0721	
b₂	199.1075	199.1076	199.1109	199.1110	199.1116	199.1118	199.1115	199.1081	
b₃	284.1611	284.1617	270.1453	284.1622	284.1637	270.1434	270.1471	284.1634	
b₄	355.1972	355.1977	341.1846	355.2032	357.1765	341.1815	355.1988		
b₅(H₂O)	n.d.	n.d.	n.d.	n.d.	353.1758	n.d.	n.d.	n.d.	
b₆	426.2340	440.2546	426.2354	456.2441	440.2494	442.2277	426.2314	440.2546	
b₇	554.2840	568.3175	554.2840	584.3226	568.3175	570.2870	554.2989	568.3023	
b₈	639.3523	653.3691	639.3539	669.3625	653.3679	655.3443	639.3530	653.3685	
b₉	752.4400	766.4531	752.4386	782.4408	766.4563	766.4523	766.4519		
b₁₀	837.4860	851.5024	837.4880	867.4961	851.5028	853.4825	837.4896	851.5066	
b₁₁	894.5048	908.5271	894.5061	924.5223	908.5250	910.5022	894.5076	908.5242	
b₁₂	1007.5856	1021.6063	1007.5967	1037.6039	1023.5962	1027.6073	1007.5917	1021.6085	
b₁₃	1092.6441	1106.6573	1092.6442	1122.6523	1106.6575	1108.6413	1092.6474	1106.6629	
b₁₄(H₂O)	n.d.	n.d.	n.d.	n.d.	n.d.	1090.6265	1074.6077	1088.6332	
y₁	655.3841	655.3841	–	–	–	–	–	–	
y₂(–AA (18))	509.3130	509.3130	–	–	–	–	–	–	
y₃(–AA (18-17))	381.2540	381.2540	–	–	–	–	–	–	
y₄(–AA (18-16))	282.1709	282.1709	–	–	–	–	–	–	
y₅	–	–	804.4624	788.4706	804.4669	788.4697	774.4592	774.4593	
y₆(H₂O)	–	–	786.4472	770.4510	786.4438	770.4510	736.4383	756.4383	
y₇	–	–	637.3680	637.3708	637.3725	637.3705	623.3566	623.3559	
y₈(–AA (19))	–	–	509.3068	509.3140	509.3085	509.3103	495.2961	495.2962	
y₉(–AA (19-18))	–	–	381.2489	381.2515	381.2545	381.2513	367.2370	367.2373	
y₁₀(–AA (19-16))	–	–	282.1814	282.1814	282.1815	282.1815	282.1815	282.1815	

a) n.d., Not detected.
elemental composition could not be distinguished, the abbreviations Lxx, Vxx, and Lxxol were used instead [48–50].

This study was supported by the Hessian Ministry for Science and Art by a grant from the LOEWE-Schwerpunkt program ‘Insect Biotechnology’ to A. V. DTU acknowledges the grant from the Danish Research Council (FI 2136-08-0023) for the maXis QTOF system, and MYCORED (EC KBBE-2007-222690-2) for supporting A. I. Support by the Austrian Science Fund (FWF; project P22081-B17) is acknowledged by W. M. J. The authors are indebted to Prof. Dr. Hartmut Laatsch (Institute of Organic and Biomolecular Chemistry, University of Göttingen, Germany) for his valuable comments on the occurrence of tyrosinol as a constituent of natural products.

19	20	21	22	23	24	25	26	27
38.3–38.4	38.8–39.2	39.8–40.1	40.6–40.9	41.5–41.6	42.1–42.3	43.4–43.6	44.2–44.4	45.0–45.6
1902.0921	1916.1081	1917.1085	1930.1235	1931.1236	1944.1425	1958.1599	1958.1548	1972.1635
1880.1136	1894.1331	1895.1278	1908.1474	1909.1391	1922.1601	1936.1738	1936.1750	1950.1894
100.0721	100.0721	100.0747	100.0722	100.0722	n.d.	n.d.	n.d.	n.d.
242.1514	256.1682	256.1682	256.1677	256.1649	n.d.	n.d.	n.d.	n.d.
313.1832	327.2048	327.2049	327.2042	327.2050	n.d.	n.d.	n.d.	n.d.
n.d.	412.2533	412.2564	426.2817	n.d.	n.d.	n.d.	n.d.	n.d.
128.0722	128.0724	128.0718	128.0708	128.0712	128.0672	128.0701	128.0684	128.0684
199.1121	199.1081	199.1118	199.1083	199.1141	227.1404	241.1564	241.1564	241.1564
270.1476	284.1608	284.1608	284.1641	284.1631	[255]	[269]	312.1953	326.2055
341.1814	355.1988	355.1973	355.1972	355.1972	383.2306	397.2427	383.2297	397.2477
n.d.								
426.2314	440.2531	440.2513	454.2685	454.2686	468.2836	482.3001	482.2988	496.3148
554.2989	568.3022	568.3119	582.3249	582.3249	596.3361	610.3531	610.3608	624.3766
639.3513	653.3673	653.3654	667.3841	667.3836	681.3976	695.4131	695.4110	709.4286
752.4346	766.4605	766.4489	780.4662	780.4659	794.4802	808.4949	808.4934	822.5109
837.4888	851.5044	851.5023	865.5205	865.5199	879.5335	893.5492	893.5457	907.5631
894.5075	908.5234	908.5216	922.5386	922.5395	936.5517	950.5713	950.5659	964.5813
1007.5920	1021.6065	1021.6039	1035.6228	1035.6231	1049.6347	1063.6526	1063.6516	1077.6661
1092.6463	1106.6606	1106.6578	1120.6786	1120.6785	1134.6898	1148.7069	1148.7051	1162.7188
1074.6284	1088.6331	1088.6424	1102.6441	1102.6440	1116.6595	1130.6997	1130.7031	1144.7051
788.4710	788.4710	789.4647	789.4718	789.4597	788.4710	788.4705	788.4678	788.4668
770.4509	770.4509	771.4475	770.4508	771.4390	770.4507	770.4507	770.1538	770.1538
637.3707	637.3707	638.3638	637.3705	638.3574	637.3721	637.3678	637.3649	637.3676
509.3096	509.3096	510.3014	509.3108	510.2964	509.3105	509.3113	509.3093	509.3082
381.2513	381.2513	381.2483	381.2524	381.2520	381.2505	381.2508	381.2506	381.2492
n.d.	n.d.	282.1837	282.1813	282.1813	282.1813	282.1920	282.1781	282.1917
Table 5. Sequences of 10-, 11-, 17-, 18-, and 19-Residue Peptaibiotics Detected in the Ex-Type Culture (CBS)

No.	$t_{ ext{ex}}$ [min]	$[M + H]^+$	Residue	
			1 2 3 4 5 6 7 8 9 10 11	
28	10.8	1747.0131	Ac Aib Ala Aib Ala Aib – Gln Aib Lxx Aib Gly	
12	11.2	1761.0273	Ac Aib Ala Aib Ala Aib – Gln Aib Lxx Aib Gly	
14	12.2	1911.1213	Ac Aib Ala Aib Ser Aib – Gln Aib Lxx Aib Gly	
29	12.6	1632.9708	Ac Aib Ala Aib Ala Aib – Gln Aib Lxx Aib Gly	
30	13.0	1880.1000	Ac Aib Ala Aib Gly Aib – Gln Aib Lxx Aib Gly	
31	13.2	1882.0784	Ac Aib Ala Ser Ala Aib – Gln Aib Lxx Aib Gly	
19	13.5	1880.1008	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
32	14.1	1896.0964	Ac Aib Ala Ser Ala Aib – Gln Aib Lxx Aib Gly	
33	14.9	1880.1035	Ac Aib Ala Ala Ala Aib – Gln Aib Lxx Aib Gly	
34	15.5	1866.0863	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
35	15.9	1880.1012	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
36	16.2	1867.0706	Ac Aib Ala Ala Ala Aib – Gln Aib Lxx Aib Gly	
37	16.4	1880.1007	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
38	16.7	n.d.	Ac Aib Ala Aib Ala Aib – Gln Aib Lxx Aib Gly	
39	16.8	1880.1009	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
40	17.0	n.d.	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
41	17.2	1880.0997	Ac Aib Ala Ala Aib – Gln Aib Lxx Aib Gly	
42	17.5	1894.1210	Ac Aib Ala Aib Ala Vxx – Gln Aib Lxx Aib Gly	
43	17.7	1895.1007	Ac Aib Ala Aib Ala Aib – Gln Aib Lxx Aib Gly	
44	18.0	1894.1177	Ac Aib Ala Ala Aib Vxx – Gln Aib Lxx Aib Gly	
45	18.6	1908.1341	Ac Aib Ala Aib Ala Vxx – Gln Aib Lxx Aib Gly	
46	20.0	1922.1467	[227]$^\text{a}$ Aib Ala Aib – Gln Aib Lxx Aib Gly	
47	21.5	1936.1660	[241]$^\text{b}$ Aib Ala Aib – Gln Aib Lxx Aib Gly	
48	22.0	1009.7031	Oc$^\text{c}$ Aib Gly Lxx Aib – Gly Lxx Aib Gly Lxx Lxxol	
49	22.1–22.2	1066.7242	Oc Aib Gly Lxx Aib Gly Gly Lxx Aib Gly Lxx Lxxol	

$^\text{a}$) The N-terminal sequence of compound 46, which is represented by a mass difference of 227 Da, could 241 Da, could not be assigned. $^\text{b}$) Oc, Tentatively assigned as n-octanoyl residue.
of Hypocrea phellinicola (maXis screening)

12	13	14	15	16	17	18	19	20
Lxx Aib Pro Vxx Aib Aib Gln Gln	**New** (trichocellin A-V − [Ala]⁶ − Pheol) [67]							
Lxx Aib Pro Vxx Aib Vxx Gln Gln	**New** (trichocellin A-VI − [Ala]⁶ − Pheol) [67]							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New**							
Lxx Aib Pro Vxx Aib Vxx Gln Gln	**New** (12 − [Gln]³⁹)							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New** (17: [Ala]⁴ − [Gly]³)							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	**New**							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New** (trichosporin B-IVb − [Aib]⁶, trichosporin B-VIb − [Aib]⁶) [61]							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New**							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	**New** (positional isomer of 19, 37, and 41)							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	**New** (positional isomer of 17)							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	**New** (trichosporin B-Vla − [Aib]⁶, trichosporin B-VIb − [Aib]⁶) [61][66]							
Lxx Aib Pro Vxx Aib Aib Glu Gln Pheol	**New** (35: [Gln]³⁹ − [Glu]³⁹)							
Lxx Aib Pro Vxx Aib Vxx Glu Gln Pheol	**New** (positional isomer of 19, 33, and 41)							
Lxx Aib Pro Vxx Aib Aib Glu Gln Pheol	**New** (positional isomer of 35)							
Lxx Aib Pro Vxx Aib Vxx Glu Gln Pheol	**New** (trichosporin B-VIIa − [Aib]³) [66]							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New** (positional isomer of 19, 33, and 37)							
Lxx Aib Pro Vxx Aib Aib Gln Gln Pheol	**New**							
Lxx Aib Pro Vxx Aib Vxx Glu Gln Pheol	**New** (positional isomer of 40)							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New** (positional isomer of 45)							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New** (positional isomer of 44)							
Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol	**New**							

Trichogin A IV

Sequence 13 or 14 from *Trichoderma* cf. *strigosum* CBS 119777 [49]
Partial sequence 4 from *Hypocrea citrina* CBS 853.70 [48]
Partial sequence 4 from *Hypocrea vinosa* CBS 247.63 [48]

not be assigned. b) The N-terminal sequence of compound 47, which is represented by a mass difference of
Table 6. Diagnostic Fragment Ions of 10-, 11-, 17-, 18-, and 19-Residue Peptaibiotics Detected in the Ex-

Diagnostic fragment ions Peaks [m/z]⁺	28	12	14	28	30	31
t_R [min]	10.8	11.2	12.2	12.6	13.0	13.2
[M + H]⁺	1747.0131	1761.0273	1911.1213	1632.9708	1880.1000	1882.0784
b₁	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
b₂	284.1601	284.1607	284.1613	284.1609	284.1604	286.1389
b₃	355.1989	355.1980	371.1938	355.1975	341.1819	357.1760
b₁ – H₂O	n.d.	n.d.	438.2353	n.d.	412.2541	424.2167
b₅	440.2512	440.2509	456.2470	440.2506	426.2347	442.2296
b₇	568.3097	568.3098	584.3039	568.3096	554.2926	570.2869
b₉	653.3615	653.3626	669.3571	653.3619	639.3458	655.3404
b₉ – H₂O	n.d.	n.d.	n.d.	438.2353	n.d.	412.2541
b₁₀	908.5192	908.5208	924.5190	908.5199	894.5026	910.4971
b₁₁	1021.6077	1021.6046	1038.5981	1021.6053	1007.5901	1023.5860
b₁₂	1106.6578	1106.6578	1122.6537	1106.6590	1092.6412	1108.6356
b₁₂ – H₂O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
y₁	–	–	–	527.3191	–	–
y₁ – AA (17)	–	–	–	381.2497	–	–
y₁ – AA (17-16)	–	–	–	282.1814	–	–
y₁ – AA (17-15)	–	–	–	197.1287	–	–
y₁ – AA (17)	641.3626	655.3768	–	–	–	–
y₁ – AA (18)	495.2923	509.3095	–	–	–	–
y₁ – AA (18-17)	367.2353	381.2500	–	–	–	–
y₁ – AA (18-16)	282.1812	282.1816	–	–	–	–
y₁ – AA (18-15)	197.1274	197.1288	–	–	–	–
y₁ – H₂O	–	–	788.4676	–	788.4676	774.4501
y₁ – AA (19)	–	–	637.3673	–	637.3673	623.3515
y₁ – AA (19)	–	–	509.3117	–	509.3117	495.2926
y₁ – AA (19-18)	–	–	381.2509	–	381.2509	367.2344
y₁ – AA (19-17)	–	–	282.1814	–	282.1814	282.1813
y₁ – AA (19-16)	–	–	197.1284	–	197.1284	197.1270

* n.d., Not detected.
| Type | Culture (CBS 119283) of Hypocrea phellinicola (maXis screening) | | | | | |
|---|---|---|---|---|---|---|
| | 19 | 32 | 33 | 34 | 35 | 36 |
| | 13.5 | 14.1 | 14.9 | 15.5 | 15.9 | 16.2 |
| 1880.1008 | 1896.0964 | 1880.1035 | 1866.0863 | 1880.1012 | 1867.0706 |
| n.d. | n.d. | n.d. | 128.0697 | n.d. | n.d. |
| 199.1123 | 199.1123 | 199.1123 | 199.1074 | 199.1078 | 199.1078 |
| 270.1449 | 286.1389 | 270.1449 | 270.1449 | 284.1605 | 270.1438 |
| 341.1826 | 357.1760 | 341.1826 | 341.1819 | 355.1975 | 341.1816 |
| n.d. | 424.2191 | 408.2242 | 408.2280 | 422.2402 | n.d. |
| 426.2349 | 442.2296 | 426.2349 | 426.2349 | 440.2506 | 426.2354 |
| 554.2934 | 570.2869 | 554.2934 | 554.2933 | 568.3087 | 554.2932 |
| 639.3463 | 655.3404 | 639.3463 | 639.3465 | 653.3621 | 639.3461 |
| 752.4301 | 768.4257 | 752.4301 | 752.4303 | 766.4461 | 752.4295 |
| 837.4813 | 853.4789 | 837.4813 | 837.4833 | 851.4992 | 837.4824 |
| 894.5075 | 910.4971 | 894.5075 | 894.5044 | 908.5203 | 894.5037 |
| 1007.5825 | 1023.5860 | 1007.5825 | 1007.5891 | 1021.6041 | 1007.5911 |
| 1092.6420 | 1108.6370 | 1092.6440 | 1092.6432 | 1106.6582 | 1092.6413 |
| n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| | 788.4661 | 788.4667 | 788.4668 | 774.4504 | 774.4503 | 775.4366 |
| 637.3669 | 637.3683 | 637.3683 | 623.3499 | 623.3499 | 624.3356 |
| 509.3092 | 509.3078 | 509.3078 | 495.2931 | 495.2931 | 496.2769 |
| 381.2498 | 381.2500 | 381.2500 | 367.2337 | 367.2337 | 367.2337 |
| 282.1806 | 282.1815 | 282.1815 | 282.1812 | 282.1812 | 282.1814 |
| 197.1288 | 197.1286 | 197.1286 | 197.1284 | 197.1284 | 197.1287 |
Table 6 (cont.)

Diagnostic fragment ions	Peaks [m/z]a)	37	38	39	40	41	42
tR [min]	16.4	16.7	16.8	17.0	17.2	17.5	
[M + H]+	1880.1007	n.d.	1880.1009	n.d.	1880.0997	1894.1210	
b1	n.d.	n.d.	128.0701	128.0713	n.d.	n.d.	
b2	199.1075	199.1075	199.1077	199.1075	199.1075	199.1080	
b3	270.1444	284.1603	284.1602	284.1599	270.1444	284.1604	
b4	341.1819	355.1974	355.1975	355.1973	341.1819	355.1974	
b1 – H2O	n.d.	n.d.	422.2399	n.d.	n.d.	436.2493	
b5	426.2350	440.2504	440.2499	440.2504	426.2350	454.2659	
b6	554.2935	568.3091	568.3080	568.3086	554.2935	582.3240	
b7	639.3462	653.3619	653.3613	653.3615	639.3462	667.3770	
b8	752.4307	766.4459	766.4450	766.4452	752.4307	780.4612	
b9	837.4843	851.4983	851.4983	851.4987	837.4843	865.5140	
b10	894.5019	908.5197	908.5205	908.5230	894.5019	922.5363	
b12	1007.5901	1021.6066	1021.6041	1021.6054	1007.5901	1035.6190	
b12 – H2O	1092.6420	1106.6569	1106.6577	1106.6577	1092.6420	1120.6761	
y1	–	–	–	–	–	–	
y1 – AA (17)	–	–	–	–	–	–	
y1 – AA (17-16)	–	–	–	–	–	–	
y1 – AA (17-15)	–	–	–	–	–	–	
y1 – AA (18)	–	–	–	–	–	–	
y1 – AA (18-17)	–	–	–	–	–	–	
y1 – AA (18-16)	–	–	–	–	–	–	
y1 – AA (18-15)	–	–	–	–	–	–	
y1 – H2O	788.4660	775.4348	774.4505	788.4664	788.4664	774.4522	
y1 – H2O	637.3704	624.3348	623.3515	637.3670	637.3670	623.3499	
y1 – AA (19)	509.3084	469.2766	495.2929	509.3079	509.3079	495.2931	
y1 – AA (19-18)	381.2504	367.2338	367.2338	381.2493	381.2493	367.2337	
y1 – AA (19-17)	282.1808	282.1808	282.1807	282.1807	282.1807	282.1812	
y1 – AA (19-16)	197.1288	197.1283	197.1274	197.1282	197.1282	197.1284	

a) n.d., Not detected.
	43	44	45	46	47	48	49
	17.7	18.0	18.6	20.0	21.5	22.0	22.1–22.2
n.d.	128.0684	128.0684	n.d.	n.d.	n.d.	n.d.	n.d.
1895.1007	1894.1177	1908.1341	1922.1467	1936.1660	1009.7031	1066.7242	
199.1084	199.1074	199.1080	227.1386	241.1536	212.1663	212.1644	
284.1606	270.1440	284.1604	312.1916	326.2076	269.1858	269.1850	
355.1969	341.1818	355.1974	383.2288	397.2443	382.2698	382.2695	
n.d.	422.2401	436.2550	n.d.	n.d.	–	–	
1992.4998	440.2501	454.2659	468.2807	482.2975	467.3234	467.3230	
568.3077	568.3087	582.3240	596.3410	610.3540	524.3442	524.3428	
653.3609	653.3614	667.3770	681.3925	695.4084	637.4289	581.3654	
766.4466	766.4453	780.4612	794.4774	808.4926	722.4814	694.4498	
851.4985	851.4983	865.5140	879.5284	893.5450	779.5027	779.5029	
908.5184	908.5202	922.5363	936.5518	950.5672	892.5860	836.5243	
1021.6039	1021.6067	1035.6190	1049.6372	1063.6524	–	949.6064	
1106.6577	1106.6590	1120.6744	1134.6878	1148.7083	–	–	
1088.6389	n.d.	1102.6586	n.d.	n.d.	–	–	
789.4503	788.4660	788.4670	788.4660	788.4650	–	–	
638.3516	637.3677	637.3670	637.3677	637.3678	–	–	
510.2927	509.3076	509.3079	509.3076	509.3077	–	–	
381.2498	381.2495	381.2493	381.2495	381.2492	–	–	
282.1814	282.1807	282.1807	282.1807	282.1814	–	–	
197.1292	197.1284	197.1282	197.1284	197.1277	–	–	
Fig. 3. Sequencing of compounds 13 and 15 containing a new C-terminal residue with a peak at m/z 804.46, tentatively assigned as tyrosinol (Tyrol)
Table 7. Biological Activities of Selected 20-Residue Peptaibols Structurally Closely Related to Hypophellins

Peptaibols	Bioactivities reported	Ref.
Longibrachins	Ion-channel formation in BLM, antimycoplasmic	[53]
Suzukacillins	Antibacterial, antifungal	[78]
	Ion-channel formation in BLM	[79]
	Haemolysis of human erythrocytes	[80]
Trichoauracins	Haemolysis of sheep erythrocytes, antibacterial (g⁻)	[54]
Trichobrachins	Antibacterial (g⁻), antifungal	[57]
Trichocellins	Induction of Ca²⁺-dependent catecholamine secretion	[67]
	from bovine adrenal medullary chromaffin cells	
	Ion-channel formation in BLM	[81]
Trichokonins	Agonist towards Ca²⁺-channels in bullfrog cardiac myocytes	[55]
	Antibacterial (g⁻), antifungal	[82]
	Induction of defense responses and systemic resistance in	[46]
	tobacco against tobacco mosaic virus	
	Induction of apoptotic programmed cell death in fungal	[47]
	plant pathogens	
Trichosporins	Uncoupling of the respiratory activity of rat liver	[64]
B	mitochondria	[84]
	Induction of Ca²⁺-dependent catecholamine secretion	[85–87]
	from bovine adrenal medullary chromaffin cells	
	Ion-channel formation in BLM	[88]
	Antitrypanosomal	[66]
Paracelsins	Antibacterial (g⁻)	[89]
	Increasing digestibility of starch and cellulose in	[90]
	ruminants; haemolysis of human erythrocytes; acutely toxic	
	in mice (LD₅₀ 5 mg/kg, i.p.)	
	Mosquitocidal (larvae of Culex pipiens)	[91]
	Toxic against aquatic invertebrates (Daphnia magna,	[92]
	Artemisia salina)	[93]
	Ion-channel formation in BLM	[71]
	Antifungal	[93]

REFERENCES

[1] D. L. Hawksworth, *Mycol. Res*. 2001, 105, 1422.
[2] ‘Dictionary of Fungi’, 10th edn., Eds. P. M. Kirk, P. F. Cannon, D. W. Minter, J. A. Stalpers, CABI Europe, Wallingford, Oxon, 2008.
[3] J. Bérdy, *J. Antibiots*. 2012, 65, 385; corrigendum in *J. Antibiots*. 2012, 65, 441.
[4] H. Laatsch, ‘Antibase 2012 SciDex – The Natural Compounds Identifier’, Wiley-VCH, Weinheim, 2012.
[5] G. M. Cragg, P. G. Grothaus, D. J. Newman, in ‘Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives’, 4th edn., Ed. V. Cechinel-Filho, John Wiley & Sons, Hoboken, 2012, p. 1.
[6] J. Bérdy, *J. Antibiots*. 2005, 58, 1.
[7] F. Vinale, K. Sivasithamparam, E. L. Ghisalberti, R. Marra, S. L. Woo, M. Lorito, *Soil Biol. Biochem*. 2008, 40, 1.
[8] F. Vinale, K. Sivasithamparam, E. L. Ghisalberti, R. Marra, M. J. Barbetti, H. Li, S. L. Woo, M. Lorito, *Physiol. Mol. Plant Pathol*. 2008, 72, 80.
[9] G. E. Harman, M. A. Obregón, G. J. Samuels, M. Lorito, *Plant Dis*. 2010, 94, 928.
[10] G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, M. Lorito, *Nat. Rev. Microbiol*. 2004, 2, 43.
