Dynamic proteome allocation regulates the profile of interaction of auxotrophic bacterial consortia

D. Reyes-González¹, H. De Luna-Valenciano¹,², J. Utrilla¹, M. Sieber³, R. Peña-Miller² and A. Fuentes-Hernández¹

¹Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
²Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
³Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany

Received: 11 January 2022
Accepted: 25 March 2022

Microbial ecosystems are composed of multiple species in constant metabolic exchange. A pervasive interaction in microbial communities is metabolic cross-feeding and occurs when the metabolic burden of producing costly metabolites is distributed between community members, in some cases for the benefit of all interacting partners. In particular, amino acid auxotrophies generate obligate metabolic inter-dependencies in mixed populations and have been shown to produce a dynamic profile of interaction that depends upon nutrient availability. However, identifying the key components that determine the pair-wise interaction profile remains a challenging problem, partly because metabolic exchange has consequences on multiple levels, from allocating proteomic resources at a cellular level to modulating the structure, function and stability of microbial communities. To evaluate how ppGpp-mediated resource allocation drives the population-level profile of interaction, here we postulate a multi-scale mathematical model that incorporates dynamics of proteome partition into a population dynamics model. We compare our computational results with experimental data obtained from co-cultures of auxotrophic Escherichia coli K12 strains under a range of amino acid concentrations and population structures. We conclude by arguing that the stringent response promotes cooperation by inhibiting the growth of fast-growing strains and promoting the synthesis of metabolites essential for other community members.
1. Introduction

Bacterial cells rarely live in isolation, but coexist in communities composed of a genetically diverse assembly of different individuals, with interactions mediated by the exchange of small molecules. Genetically diverse populations tend to exhibit increased resilience to invasion [1] and to environmental perturbations [2–4], as well as to enable the implementation of division of labour strategies [5–8]. In particular, cross-feeding interactions can increase the diversity of the community and lead to metabolic cooperation [9,10] by changing the population’s dynamics and composition [1,11]. If the consumption of a metabolite benefits one of the interacting partners and is detrimental for the other, it is referred to as parasitism [12], while if it also benefits the metabolite-producing population, then the community is said to be mutualistic [13,14].

Crucially, metabolic exchange mediated by the environment is not always associated with a benefit for the community [15,16]. Moreover, metabolic interactions are not static but condition specific [17–20], resulting from metabolic shifts [21] and trade-offs between different microbial growth traits [22]. Previous studies have shown that in high-nutrient environments, diversity is reduced and interactions tend to be antagonistic [2,16,23], thus increasing susceptibility to invasion by defectors [24,25]. By contrast, nutrient obligate cross-feeding interactions have been shown to become more cooperative in low-nutrient environments, both in natural communities [26] and in synthetic systems [2,18,27–29].

But a key cellular process occurs under amino acid starvation. In environments where nutrients are scarce, cells regulate their global metabolism to shut down growth and increase the synthesis of limiting metabolites [30,31]. This dynamic partition of the proteome is mediated by two small nucleotides collectively referred to as ppGpp. This alarmone is known to modify the expression of hundreds of genes [32,33], including those responsible for the synthesis of the translation machinery [34]. Indeed, altering the normal levels of ppGpp was shown to produce several growth impairments and lethal phenotypes [35]. On the other hand, ppGpp regulation enables a dynamic proteome allocation that can be used to tune the concentration of ribosomes to maximize growth [36] and increase adaptation to fluctuating environments [37]. Furthermore, the stringent response is also known to increase survival to nutrient starvation [38,39], by allocating a large fraction of the proteome towards metabolite production at the expense of ribosomal synthesis [38,40–42].

The objective of this paper is to evaluate how dynamic proteome allocation in response to nutrient limitation impacts the population dynamics of a syntropic community. The paper is structured as follows. First, we will postulate a dynamic proteome partition model that provides estimates on growth and amino acid production rates, which are then used by a population dynamics model to evaluate how different environmental conditions result in different interaction profiles at a population level. We validate our theoretical predictions with an experimental model system consisting of different mutants of Escherichia coli K12 growing under a range of amino acid concentrations. This library of strains contains deletions in genes encoding for the production of essential amino acids, thus producing a syntropic interaction when grown in co-culture. Finally, we use the multi-scale model to evaluate computationally how ppGpp produces a dynamic proteome allocation that can drive the diversity and productivity of a syntropic community.

2. Modelling bacterial growth under resource limitation

The development of genomic and bioinformatic tools has enabled researchers to comprehensively quantify the interaction between genes, proteins, reactions and metabolites, thus providing information that can be used to postulate and analyse genome-scale models [43]. These models aim to predict bacterial phenotypes by assuming an internal quasi-steady-state equilibrium and optimizing fluxes from the stoichiometry of every known metabolic reaction occurring within the cell. Multiple extensions have been proposed to evaluate how fluxes are exchanged between individuals, and from an individual to multiple interacting species [21,44–49]. By incorporating diffusion of cells and molecules in space and time, computational models based on dynamic flux balance analysis can be extended to include multiple bacterial types interacting through the environment [46,50].

The aim of the mathematical model postulated in this paper is to predict the population dynamics that emerge from the metabolic exchange between individuals in the community. This problem spans multiple levels of complexity: from metabolic regulation occurring at a cellular level in response to environmental perturbations (e.g. changes in biotic and abiotic conditions) to ecological constraints resulting from the interaction between cells and their local environment (e.g. uptake or secretion of nutrients). A wide range of mathematical modelling approaches have been used to study metabolic
interactions in complex microbial communities, for instance by postulating mechanistic population dynamic models that can be used to evaluate the eco-evolutionary dynamics, although they are often limited by modelling and parametric uncertainties [51]. Other studies have posed coarse-grained models that associate growth rate with how bacterial cells allocate resources towards protein synthesis and metabolic functions [41,52–55].

A common assumption of constraint-based models is that the proteome can be divided into three different functional sectors [40]: the ribosomal sector (hereafter denoted with R), which includes not only ribosomes, but also other associated molecules (initiation factors, elongation factors, tRNA synthases); the metabolic sector (represented with E), which encloses catabolic and anabolic proteins, constitutively expressed proteins, and particularly, the necessary enzymes to grow in specific media. As illustrated in figure 1a, we further divide sector E into two sub-sectors: y for the energetic cost of amino acid production, and E for the remaining catabolic and anabolic reactions occurring inside the cell. A third sector (denoted Z) encompasses all the genes not associated with growth rate, including housekeeping genes. Therefore, we consider that $Z + (E + y) + R = 1$.

A recent study incorporated dynamic metabolic adaptation into a consumer-resource framework [56] to show that the structure and composition of competitive communities are highly influenced by the

Figure 1. Proteome dynamics model. (a) The overall proteome comprises three main sectors: housekeeping proteins denoted as Z, ribosomal proteins as R and metabolism and nutrient uptake as E. The latter sector is further divided into E and y to consider the production of amino acid Y at a rate β. (b) Dynamics of proteome sectors are driven by the availability of glucose (S) and an essential amino acid (X). Growth rate is proportional to sector R, which in turn activates ppGpp during the stringent response, thus inhibiting transcription ribosomal mRNAs and promoting synthesis of metabolites from sector E. (c) Bacterial growth rate (λ) obtained numerically for a range of amino acid and glucose concentrations. (d) mRNA concentrations in time of different proteome sectors (purple for mE and blue for mR) under different nutrient conditions: low-resource ($S = 0.5$, dotted lines) and rich substrate ($S = 10$, solid lines). (e) Protein concentrations for each sector (E in purple, y in dark red and R in blue). In environments with low concentrations of amino acids (indicated as poor, dotted lines), ppGpp (Γ, in pink) inhibits the production of ribosomal proteins and promotes the synthesis of metabolites. (f) Fraction of proteome occupied for different sectors (E in purple and R in blue). In high-nutrient environments (solid lines), a large proteome fraction is allocated for sector R, while in environments with low concentrations of amino acids (indicated as poor, dotted lines) the fraction allocated for sector E increases, thus inhibiting growth and promoting the production of the exchanged metabolite.
metabolism of member species [21,42]. Here, we use a similar approach to evaluate the role of dynamic proteome allocation in the resulting interaction profile exhibited by a co-culture of auxotrophic strains. First, as other studies [21,40,41], we assume that sector Z remains constant through time and we focus on evaluating the role of nutrient availability in the temporal dynamics of sectors E and R. Figure 1b shows a schematic diagram of our proteome partition model, illustrating that the size of each sector is regulated by the input of substrate (e.g. glucose, denoted by S) and an essential metabolite (e.g. an amino acid, with concentration denoted by X). We model the input of glucose and amino acid into the cell as a saturating function, which depends on both the concentration of S and X, which, for simplicity, we assume are consumed at the same rate:

\[u(S, X) = \frac{\mu(S \cdot X)}{k + (S \cdot X)}, \]

where \(\mu \) and \(k \) are parameters denoting the maximum uptake rates and half-saturation constants, respectively.

To overcome the negative effects associated with carbon and amino acid starvation, bacterial cells encode a well-conserved stress signalling pathway known as the stringent response [32,57]. The main effector of this response is the alarmone ppGpp, with a time-dependent concentration we denote by \(\Gamma(t) \). Crucially, synthesis and degradation of ppGpp depend on nutrient availability; if too many resources are being used to produce proteins for growth, RelA detects empty tRNAs and enhances the production of ppGpp, which in turn reshapes the proteome by enhancing the synthesis of metabolites from the E sector [57].

In our proteome partition model, we consider that ppGpp is produced at a rate \(\theta = \theta_b + F(\theta_r, R) \), where \(\theta_b \) represents the basal transcription rate, and \(F(\theta_r, R) \) an inducible rate that increases monotonically with respect to \(R \). So, if \(\delta_r \) denotes a constant degradation rate of the alarmone, then the dynamics of ppGpp regulation can be modelled as

\[\frac{d\Gamma}{dt} = \theta_b + \frac{\theta_r R}{1 + R} - \delta_r \Gamma. \]

To model the effect of ppGpp in the size of each proteome sector, we consider that \(\Gamma \) induces the transcription of genes of the E sector when too many resources are used by the R sector. In consequence, transcription of the ribosomal sector is suppressed under amino acid limitation [31,57]. In our model, we denote with \(\eta_E \) and \(\eta_R \) the mRNA degradation rates of the E sector and R sector. Basal transcription of genes encoding for proteins belonging to sectors E and R occurs at a maximum rate \(\theta_E \) and \(\theta_R \), while ppGpp-inducible transcription of sectors E and R is represented by \(\theta_E \) and \(\theta_R \), respectively. So, if \(\omega \) and \(n \) represent Hill parameters describing the interaction between ppGpp and each sector of the proteome, then the temporal dynamics of mRNAs belonging to sectors E and R can be written as

\[\frac{dm_E}{dt} = \theta_E \left(\frac{\Gamma^n}{(\omega^n + \omega^n)} \right) + \theta_E u(S, X) - \eta_E m_E \]

and

\[\frac{dm_R}{dt} = \theta_R \left(\frac{\omega^n}{(\omega^n + \omega^n)} \right) + \theta_R u(S, X) - \eta_R m_R. \]

Now, let us assume that the synthesis of each metabolite is associated with a cost in terms of energy consumption [41,42]. In particular, we model biosynthesis of the focal amino acid by dividing the E sector into two sub-sectors: \(E \) and \(y \). Sub-sector \(E \) encompasses the majority of catalytic reactions in the cell, and the \(y \) sub-sector describes the energetic cost of producing amino acid \(Y \) and releasing it into the environment (figure 1a). Therefore, the translation rate of each mRNA, \(\kappa_E \) and \(\kappa_R \), depends on \(J_E \) and \(J_R \), which indicate the proportion of ribosomes that are actively translating the mRNAs of each sector. Finally, if \(\varphi \) denotes the fraction of sector E that is used for the synthesis of metabolites in sub-sector \(y \), and \(\delta_E \) and \(\delta_R \) denote degradation rates of proteins from each sector, we can describe the dynamics of different proteome sectors using the following equations:

\[\frac{dE}{dt} = (1 - \varphi)(\kappa_E \cdot m_E) \left(\frac{1 - E}{R \cdot J_E} \right) - \delta_E E, \]

\[\frac{dy}{dt} = \varphi(\kappa_E \cdot m_E) \left(\frac{1 - y}{R \cdot J_E} \right) - \delta_E y \]

and

\[\frac{dR}{dt} = \kappa_R \cdot m_R \left(\frac{1 - R}{R \cdot J_R} \right) - \delta_R R. \]
By numerically solving equations (2.1)–(2.6), we obtain the temporal dynamics of mRNA and protein concentrations under different environmental conditions. In particular, figure 1d,e shows a comparison of dynamics exhibited under high- and low-resource conditions (with parameter values described in table 1). Note how, in nutrient-rich conditions, overall production of proteins and mRNAs is promoted, while under resource limitation metabolic activity is reduced and, crucially, ppGpp allocates a larger fraction of the proteome to the E sector. Therefore, under amino acid starvation, growth rate is reduced and synthesis of essential metabolites is enhanced, as illustrated in figure 1e.

3. Modelling population dynamics of an auxotrophic consortium

In this section, we will postulate a simple population dynamics model that will allow us to evaluate temporal changes in the abundance of different strains growing in co-culture. First, let us represent with $B_x(t)$ the density of a bacterial population auxotrophic to amino acid X at time $t \in [0, T]$, and with $B_y(t)$ the density of a strain auxotrophic to amino acid Y.

Our model considers that growth rate of strain B_x is a Monod function, $\mu_x(S, X) = \lambda \cdot S / (K + S)$, with growth rate λ and a half-saturation constant represented with K. Previous studies have shown that the concentration of ribosomal proteins is proportional to the cell’s growth rate [38,58], so we use the proteome partition model to obtain $\lambda = k_1 \cdot \lambda$, where k_1 is a proportionality constant and λ is computed by interpolating the surface shown in figure 1c with the current environmental concentration of glucose (with a concentration denoted with S) and amino acid X (for which strain B_x...
is auxotrophic). Then growth rate of strain B_x can be modelled with a growth function $G_x(S, X) = c U_x(S, X)$, where c denotes a resource conversion parameter into biomass. Similarly, growth rate of strain B_y can be written as $G_y(S, Y) = c U_y(S, Y)$.

We also consider that amino acid X is produced by strain B_y in surplus and exported into the environment at a rate β_x. Similarly, B_x exports into the environment amino acid Y at a rate β_y. Note that this rate includes both production and export of amino acid into the environment, which we consider to be proportional to the size of sub-sector y of E. Therefore, we consider that production of amino acid Y by strain B_x occurs at a rate $\beta_y = k_2 \cdot \beta_y$, where β_y is obtained from the proteome partition model and k_2 is a parameter denoting the conversion of ATP into Y molecules (analogous for the production rate of X).

In summary, the population dynamics of the cross-feeding interaction illustrated in figure 2a can be described with the following differential equations:

\[
\begin{align*}
\frac{dS}{dt} &= -(U_x(S, X) \cdot B_x + U_y(S, Y) \cdot B_y) S, \\
\frac{dX}{dt} &= \beta_x \cdot G_x(S, Y) \cdot B_y - U_x(S, X) \cdot B_x, \\
\frac{dY}{dt} &= \beta_y \cdot G_y(S, X) \cdot B_x - U_y(S, Y) \cdot B_y, \\
\frac{dB_x}{dt} &= G_x(S, X) \cdot B_x \\
\frac{dB_y}{dt} &= G_y(S, Y) \cdot B_y,
\end{align*}
\]

with initial conditions $(S^0, X^0, Y^0, B_x^0, B_y^0)$.
We use a sequential multi-scale modelling approach to integrate both models. First, we compute λ and β using the proteome partition model for a range of glucose and amino acid concentrations. Then we discretize the interval $[0, T]$ in regular sub-intervals $[t_i, t_{i+1})$ and, for each time step, we numerically solve equations (3.1)–(3.5) assuming that growth and production rates are constant during this time interval. From the concentration of each nutrient in the environment at time t_{i+1}, we interpolate the surface shown in figure 1c and obtain λ_{i+1} and β_{i+1}, which are then used to solve the population dynamics model in the next sub-interval. This iterative process allows us to model the dynamics of each sub-population based on instantaneous growth and production rates.

Figure 2b shows a numerical realization of the multi-scale model in a low-resource environment ($S_0 = 1, X_0 = 0.2, Y_0 = 0.5$). As the concentration of amino acids is initially very low, then growth of both populations is limited. However, as the population increases in density, the concentration of X and Y increases, thus promoting growth of both coexisting sub-populations until S is depleted and the population reaches stationary phase. Note how this feedback between the ecological and proteomic models results in values for λ and β that change in time, as the concentration of resource changes due to consumption and production.

To compare growth in the mixed culture with respect to that observed when each strain is grown in isolation, we consider that the initial population is composed of equal densities of both strains and solve the system forward for T units of time. We then compare the final density with that observed in a similar numerical experiment that considers that each strain is growing in isolation. As expected, figure 2c shows that mono-cultures present impaired growth while, under the same environmental conditions but with both strains present, the model shows an exponentially growing population that is glucose-limited, instead of limited by amino acids.

We repeated this numerical experiment for a range of initial fractions of both strains and quantified the profile of interaction from the bacterial density observed at the end of the experiment. This allowed us to determine the relative density of the co-culture compared to that expected if there was no metabolic interaction between members of the community. Figure 2d shows that the resulting interaction profile is concave, indicating a positive interaction between both strains. In the following section, we will estimate experimentally the profile of interaction for a collection of auxotrophic strains.

4. Positive interactions are common in an experimental auxotrophic system

In the past decade, a series of studies have used synthetic communities to study the rules of community assembly under controlled laboratory conditions (see [59–61] for comprehensive reviews on the topic). For instance, a previous study assembled synthetic communities of *E. coli* to understand how communities with different levels of complexity can establish metabolic cross-feeding interactions based on the syntropic exchange of amino acids [29].

Here, we use a similar experimental approach, and use strains of *Escherichia coli* K-12 obtained from the Keio collection [62], with different amino acid auxotrophies conferred by the deletion of the following genes: glyA, hisB, ilvA, leuB, metA, pheA, thrC, trpC and tyrA. Moreover, we use fluorescent markers to measure species abundances at the end of the experiment, thus enabling us to differentiate between mutualism and parasitism in mixed cultures. We validated that each strain exhibits impaired growth unless the amino acid auxotrophy is complemented, either by externally supplementing the amino acid or when paired with a different mutant.

In general, we consider that positive interactions arise when one species promotes the growth of another one (e.g. niche expansion [63,64] or enhancing nutrient availability [15,65]), or negative when an individual in the community inhibits another member’s growth rate (e.g. nutrient sequestration [66,67] or toxin production [68]). Similar to the computational experiments, we characterized the pairwise interaction profile between strains by measuring the optical density (OD_{630}) exhibited by a 50–50 co-culture. By subtracting the mean density of both strains grown in isolation, we obtain the relative optical density (ΔOD_{630}). Table 2 summarizes the relative optical density obtained for all pair-wise interactions. Note that, although most of them are positive (e.g. ΔglyA–ΔtyrA, ΔmetA–ΔtyrA and ΔpheA–ΔhisB have the highest positive relative density), only a few co-cultures exhibit a negative relative density (ΔpheA–ΔthrC and ΔglyA–ΔhisB).

Figure 3a shows the optical density of all 36 co-cultures with 11 different initial abundances of each strain, from 100% of one strain, to 100% of its partner (see Methods). Although some interactions are positive (e.g. ΔpheA–ΔhisB, ΔglyA–ΔtyrA, ΔleuB–ΔtyrA, ΔmetA–ΔtyrA), not all interaction profiles are
Figure 3. Interaction profiles of E. coli strains with different amino acid auxotrophies. Each strain contains a deletion in genes encoding essential metabolites: $\Delta glyA$, $\Delta hisB$, $\Delta ilvA$, $\Delta leuB$, $\Delta metA$, $\Delta pheA$, $\Delta thrC$, $\Delta trpC$ and $\Delta tyrA$. (a) Each box illustrates growth (measured as OD$_{630}$ after 48 h) in terms of the initial fraction of each strain in the co-culture. Solid line illustrates a quadratic fit ($ax^2 + bx$) and blue areas the standard deviation over the mean. The colour of each box is proportional to the relative density exhibited by a 50–50 co-culture of both strains; white denotes a neutral interaction, while darker shades of purple denote larger values of ΔOD$_{630}$. In our data, only $\Delta leuB$–$\Delta metA$ exhibits negative relative densities, and is represented in light green. (b) Network of pair-wise interactions. Each node represents a mutant strain and the width of the edge is proportional to the strength of the interaction. Only edges with an α larger than the mean are shown (highlighted in yellow are auxotroph pairs that will later be analysed in more detail). (c) Optimal initial frequency in two-member cross-feeding communities. Each dot represents the initial frequency in co-culture that maximizes density, and error bars denoting the standard deviation over the mean ($N = 4$). Rows correspond to each pair of strains (e.g. if LW has an optimal frequency of 85%, this implies that the co-culture that maximizes OD is composed of 85% of $\Delta leuB$ and 15% of $\Delta thrC$).

concave, suggesting that not all co-cultures can establish a cross-feeding interaction (e.g. $\Delta metA$–$\Delta glyA$, $\Delta thrC$–$\Delta ilvA$, $\Delta leuB$–$\Delta metA$, $\Delta leuB$–$\Delta trpC$). We performed a quadratic fit ($ax^2 + bx$) to these experimental interaction profiles, and used α to quantify the degree of pair-wise interaction, whereby high values of α are correlated with enhanced cooperative growth. Table 2 shows the values of α obtained for each pair, as well as its corresponding R^2. Figure 3b shows an α-interaction network, showing that all auxotrophic strains are able to establish a productive consortium with at least another mutant, albeit with variable interaction strengths.

Note that, despite positive interactions being prevalent throughout the network, certain strains were more successful in establishing positive interactions (e.g. $\Delta leuB$, $\Delta pheA$, $\Delta trpC$) than others (e.g. $\Delta metA$, $\Delta glyA$). This is consistent with previous studies that have shown that the biosynthetic cost of producing an amino acid correlates with the capacity of establishing cross-feeding interactions with other auxotroph strains [29]. In our data, mutant $\Delta leuB$ has the higher number of cross-feeding interactions, and is also auxotrophic to the most expensive amino acid when considering the cellular abundances of amino acids [69].

To quantify cooperative growth as a function of the relative abundance of each strain, we subtract the final optical density observed for each population with the expected final optical density if there was no metabolic interaction between both strains (the line of additivity, obtained by interpolating the optical density in each mono-culture). Figure 4a illustrates the profile of interaction obtained for a co-culture of $\Delta leuB$ and $\Delta tyrA$. A consequence of the biosynthetic costs of producing both amino acids is that the productivity is maximized with $\Delta leuB$ at 70% and $\Delta tyrA$ at 30% (relative density at 70–30 is 37% larger than at 50–50). We estimated the optimal initial frequency for all 36 auxotroph pairs and observed that growth of the co-culture was maximized at different initial frequencies, as illustrated in figure 3c. It is important to note that the optimal initial ratio is not necessarily the final strain frequency that maximizes productivity of the consortia.
5. Cooperative growth is enhanced under amino acid starvation

As we are interested in evaluating how amino acid availability modifies the profile of interaction, we performed high-throughput experiments on a two-dimensional range of externally supplemented amino acids. The basal concentration of each amino acid was obtained from a computational genome-scale metabolic model (iML1515) that provides estimates on the concentration of amino acid necessary...
to grow a dry weight of bacteria [70,71] (see Methods; 16.91 mg l\(^{-1}\) of leucine, 7.15 mg l\(^{-1}\) of tyrosine and 8.75 mg l\(^{-1}\) of phenylalanine). We performed amino acid checkerboards in triplicate for mono-cultures of \(\Delta leuB\), \(\Delta tyrA\) and \(\Delta pheA\), as well as for two co-cultures \(\Delta leuB\)–\(\Delta tyrA\) and \(\Delta leuB\)–\(\Delta pheA\).

Figure 5a illustrates the relative density obtained for \(\Delta leuB\)–\(\Delta tyrA\) growing under different concentrations of both amino acids (from 0 to a fourfold increase in the basal concentration of each amino acid). As anticipated by previous studies, cooperative growth increased when an amino acid was at a low concentration, independently of the concentration of the other metabolite. In particular, our data show that relative densities are maximized at low concentrations of tyrosine and intermediate concentrations of leucine, consistent with leucine being more costly than tyrosine in terms of the number of glucose molecules necessary to produce the amount of amino acids in a cell [69].

To validate that growth is indeed limited by the environmental concentration of the exchanged metabolite, we externally supplemented glucose and amino acid and estimated the resulting relative density. Data are summarized in table 3, showing significant differences between amino acid treatments (\(p\)-value < 0.001 for \(\Delta leuB\)–\(\Delta tyrA\) co-culture and \(p\)-value < 0.001 for \(\Delta leuB\)–\(\Delta pheA\) co-culture; Welch two sample \(t\)-test), but not between glucose treatments (\(p\)-value > 0.01 for \(\Delta leuB\)–\(\Delta tyrA\) co-culture and \(p\)-value > 0.001 for \(\Delta leuB\)–\(\Delta pheA\) co-culture; Wilcoxon rank sum test).

Moreover, to experimentally determine the relative abundances of strains in the consortia, we introduced constitutively expressed genes encoding for different fluorescent markers (mCherry and CFP, as detailed in table 4). This allowed us to estimate the final abundance of each strain from the normalized fluorescent intensity. Indeed, figure 4d shows the population exhibits high levels of mCherry fluorescence in co-cultures where \(\Delta leuB\) is dominant, and in cyan for initial frequencies that contain mostly bacterial type \(\Delta tyrA\).

From these normalized fluorescent data, we estimated the relative abundance of each strain in an experiment inoculated with a 50–50 co-culture of both strains and evaluated the interaction between environmental conditions and population structure. For instance, the checkerboard depicted in figure 5b suggests that the concentration of tyrosine is an important factor driving the structure of the population; at high concentrations, both strains coexist at similar proportions, while at intermediate

![Figure 4](image-url)
cell performs better in co-culture, at the expense of the other strain, and mutualistic community: same environmental conditions. This allowed us to characterize the pair-wise interaction of the sub-populations and compared its growth relative to the corresponding mono-culture under the same environmental conditions. This allowed us to characterize the pair-wise interaction of the sub-populations and compared its growth relative to the corresponding mono-culture under the same environmental conditions.

Figure 5. Amino acid checkerboard experiments. (a) Matrix of relative densities performed under different amino acid concentrations (leucine and tyrosine, in units of basal concentration). Purple boxes represent high relative density values, white if the interaction is additive, and green boxes correspond to negative relative densities. (b) Matrix of the relative abundances estimated using fluorescent intensity, in orange when a majority of the population is \(\Delta \text{tyrA} \), and in blue when the population consists mainly of \(\Delta \text{leuB} \) cells. (c) Interaction profiles for different amino acid concentrations (mutualism in purple, parasitism in light purple and competition in green). (d) Relative density checkerboard obtained by exposing a co-culture of \(\Delta \text{leuB} \) and \(\Delta \text{pheA} \) to a range of leucine (L) and phenylalanine (F). (e) Relative abundance between \(\Delta \text{leuB} \) (in blue) and \(\Delta \text{pheA} \) (in orange). (f) Interaction profile between \(\Delta \text{leuB} \) and \(\Delta \text{pheA} \) also shows that mutualism (in purple) is established mainly at low amino acid concentrations.

Table 3. Mean and standard deviation of final OD\(_{630}\) of the co-cultures \(\Delta \text{leuB} - \Delta \text{tyrA} \) and \(\Delta \text{leuB} - \Delta \text{pheA} \).

co-culture	treatment	mean OD\(_{630}\)	s.d.
\(\Delta \text{leuB} - \Delta \text{tyrA} \)	M9 2 g l\(^{-1}\) glucose	0.178250	0.009601
\(\Delta \text{leuB} - \Delta \text{tyrA} \)	M9 4 g l\(^{-1}\) glucose	0.202250	0.008496
\(\Delta \text{leuB} - \Delta \text{tyrA} \)	M9 6 g l\(^{-1}\) glucose	0.211000	0.011424
\(\Delta \text{leuB} - \Delta \text{tyrA} \)	high amino acids 2 g l\(^{-1}\) glucose	0.502000	0.069954
\(\Delta \text{leuB} - \Delta \text{tyrA} \)	high amino acids 4 g l\(^{-1}\) glucose	0.484750	0.054669
\(\Delta \text{leuB} - \Delta \text{tyrA} \)	high amino acids 6 g l\(^{-1}\) glucose	0.478750	0.025849
\(\Delta \text{leuB} - \Delta \text{pheA} \)	M9 2 g l\(^{-1}\) glucose	0.144750	0.056800
\(\Delta \text{leuB} - \Delta \text{pheA} \)	M9 4 g l\(^{-1}\) glucose	0.207500	0.008732
\(\Delta \text{leuB} - \Delta \text{pheA} \)	M9 6 g l\(^{-1}\) glucose	0.235250	0.016873
\(\Delta \text{leuB} - \Delta \text{pheA} \)	high amino acids 2 g l\(^{-1}\) glucose	0.570750	0.52875
\(\Delta \text{leuB} - \Delta \text{pheA} \)	high amino acids 4 g l\(^{-1}\) glucose	0.480500	0.019033
\(\Delta \text{leuB} - \Delta \text{pheA} \)	high amino acids 6 g l\(^{-1}\) glucose	0.026818	0.016300

At high tyrosine concentrations, the relative abundance of \(\Delta \text{leuB} \) increases with respect to \(\Delta \text{tyrA} \). By contrast, the concentration of leucine appears to be less relevant for the resulting population structure. Based on the optical density and the relative abundance of each strain, we then estimated the density of each sub-population and compared its growth relative to the corresponding mono-culture under the same environmental conditions. This allowed us to characterize the pair-wise interaction of the community: mutualistic when both strains grow better together than in isolation, parasitism when one cell performs better in co-culture, at the expense of the other strain, and competition when both mono-cultures grow better than the mixed population. Figure 5c shows that competitive interactions are dominant at high levels of both amino acids, while parasitic interactions can be found at intermediate
amino acid concentrations. As expected, mutualistic interactions are prevalent at low concentrations of supplemented amino acids, particularly of tyrosine.

Finally, to evaluate the generality of this pattern, we performed another checkerboard experiment with the co-culture ΔleuB and ΔpheA. Similar to the previous auxotrophic pair, figure 5d–f shows that, in this case, the region of coexistence appears to be smaller, with ΔleuB being more abundant than ΔpheA in environments where both amino acids were externally supplemented. Also, as with the ΔleuB–ΔtyrA pair, mutualistic interactions can be found predominantly in experiments with low amino acid concentrations (in this case, leucine and phenylalanine), while competitive interactions are established at intermediate amino acid concentration (due to glucose becoming the limiting nutrient).

6. Stringent response promotes metabolic cooperation, in theory

Our experimental data suggest the amino acid availability is the key factor driving the nature of pair-wise interactions. To evaluate if our multi-scale model exhibits qualitatively similar patterns, we simulated the addition of different concentrations of amino acid, and measured the resulting relative density when grown in mono-culture or in a mixed population. Figure 6a shows the density of each strain in a low-amino-acid environment. In this case, the benefit of metabolic cross-feeding is high and both strains grow better together than separately. As we increase the concentration of both amino acids, we transition from a parasitic interaction (figure 6b) whereby only \(B_y \) benefits from growth in co-culture to a competitive interaction where both strains grow better separately than in a mixed population (figure 6c).

This transition from mutualism to competition is also clear in the computational checkerboard experiment illustrated in figure 6d. As in the experimental data, in environments saturated with amino acids, the benefit of metabolic cross-feeding diminishes and glucose becomes the limiting growth factor. As anticipated by previous studies [2,18,27–29], cooperative growth is maximized at low amino acid concentrations (figure 6e). Crucially, it is precisely at low amino acid concentrations where ppGpp reshapes the proteome to suppress growth, and regulate the metabolism to overcome nutrient starvation. In this context, we were interested in evaluating the effect of removing ppGpp-induced transcription at a cellular level in the profile of interaction exhibited by the population.

In our model, this can be achieved by reducing R-induced synthesis of ppGpp (\(\theta_i \)). In particular, we evaluated how the profile of the interaction changed when considering a reduced induction of ppGpp by repeating the computational checkerboard experiment with \(\theta_i = 1.5 \). As expected, the region of cooperativity presents a significant reduction in area (figure 6f). Similarly, the relative density of the co-culture also presents an overall reduction when reducing ppGpp-induction. Figure 6g shows that the region of positive values decreases considerably, producing competitive interactions in zones where the interaction was previously mutualistic.

strain ID/Δ gene	amino acid auxotrophy	source
ΔpheA	phenylalanine	Keio collection
ΔglyA	glycine	Keio collection
ΔhisB	histidine	Keio collection
ΔileB	isoleucine	Keio collection
ΔleuB	leucine	Keio collection
ΔmetA	methionine	Keio collection
ΔthrC	threonine	Keio collection
ΔtrpC	tryptophan	Keio collection
ΔtyrA	tyrosine	Keio collection
ΔleuB – mCherry	leucine	this study
ΔtyrA – eCyan	tyrosine	this study
ΔpheA – mCherry	phenylalanine	this study
ΔleuB – eCyan	leucine	this study
Figure 6. ppGpp modulates the profile of interaction in cross-feeding communities. (a) Bacterial densities obtained by simulating the multi-scale model in an environment with low glucose and amino acid concentrations \((S_0 = 1, X_0 = 1, Y_0 = 1, \text{ with } \theta_i = 15.2)\), and inoculated with a 50–50 co-culture (solid lines) or with each strain in isolation (dotted lines). Both strains \((B_x, B_y)\) in blue and orange, respectively, exhibit increased growth than expected in isolation (mutualism). (b) At intermediate amino acid concentrations \((S_0 = 1, X_0 = 1.5, Y_0 = 1.5)\), only \(B_y\) benefits from coexisting with \(B_x\) (parasitism). (c) In high amino acid environments \((S_0 = 1, X_0 = 2, Y_0 = 2)\), both strains show reduced growth compared to the mono-cultures (competition). (d) Profile of interaction determined for a range of both amino acids (mutualism in dark purple, parasitism in light purple and competition in green). (e) Relative density for a range of both amino acids (positive interactions and negative interactions in gradients of purple and green, respectively). (f) Computational amino acid checkerboard generated with \(\theta_i = 1.5\) shows that the region of mutualism and parasitism reduces when limiting induction of ppGpp. (g) Relative density under different initial amino acid conditions for strains with reduced ppGpp-induced synthesis. (h) Relative density as a function of ppGpp synthesis, \(\theta_i\), shows that dynamic proteome allocation promotes cooperative growth.

The relevance of ppGpp regulation in the community dynamics is twofold: (1) it reduces growth rate of any fast-growing strain and (2) it allocates more resources for production of the exchanged metabolite. Both of these effects are beneficial for the community, as illustrated by the increase in relative density as a function of \(\theta_i\) shown in figure 6h. In the absence of ppGpp-induced regulation \((\theta_i = 0)\), cooperative communities can be driven to collapse due to the over-production of ribosomal proteins and a general increase in gene transcription \([30,72]\). The community also collapses in environments with low amino acid concentrations if ppGpp regulation overcompensates to nutrient starvation and allocates too many resources for the synthesis of metabolites at the expense of growth. At high amino acid concentrations, the effect of ppGpp in the community dynamics is less evident as, independently of the value of \(\theta_i\), both strains grow better in isolation than in co-culture.

In principle, it would be possible to test this modelling prediction experimentally, for instance by engineering strains with modified ppGpp synthesis. This could be achieved with either genetic or post-translational modification that modifies the expression of \(relA\) and \(spoT\) \([32,35]\). It is important to mention, however, that previous studies have shown that strains with knockouts in \(relA\) and \(spoT\) are auxotrophic to multiple amino acids, mainly due to the role of ppGpp as a regulatory molecule in the transcription of genes involved in amino acid biosynthesis pathways.

7. Discussion

A benefit of living in a community is that populations can perform a wide range of functions that are not achievable by any member species alone, as observed in the microbiota of soil \([73,74]\), water \([20,75]\) and the human gut \([76]\). Metabolic interactions within microbial communities are mediated by the cellular state of each member, but also by the diversity and abundance of each species \([77]\), as well as by the extracellular environmental conditions \([78,79]\). It has been shown that population dynamics and evolutionary dynamics occur at similar time scales, so drive community dynamics is also susceptible to be tuned by evolution \([80,81]\). On the one side, cross-feeding interactions can become unstable through the appearance of defectors, although adaptive evolution and precise environmental control present an opportunity for artificially selecting microbial communities with specific functions \([61,82–84]\).
Moreover, recent studies have shown that ecological interactions are significantly modified by the metabolism of individual members of the community [42,85–87]. Bacteria can modify the local environment by secreting toxins or growth-promoting molecules, thus modulating the metabolism of other members of the community. Therefore, metabolic exchange results in a network of pair-wise interactions that can drive the stability and function of polymicrobial communities [29,88], as well as the community dynamics [82,89,90]. Crucially, the competitive or cooperative nature of these interactions depends upon the environmental conditions and the population structure.

For instance, mutualism can be beneficial when a secreted metabolite is toxic for some members of the community but is consumed by other individuals, thus promoting growth of the metabolite-producing population and reducing the toxin’s detrimental effect on the community [9,91]. Other examples of mutualism can be found in spatially explicit [92] and fluctuating environments [93]. In this paper, we focus on studying a ubiquitous form of mutualistic interaction: the exchange of essential amino acids within mixed populations [94–96]. A previous experimental evolution study found that if amino acids are present in the environment in high concentrations, then bacterial populations rapidly lost the ability to autonomously synthesize the supplemented amino acids [97]. This strong selection for the loss of biosynthetic functions is a consequence of auxotrophic mutants exhibiting increased fitness over the prototrophic strain when the focal metabolite is present in the environment [98].

To overcome the complexity of natural microbial communities, previous studies have used synthetic microbial systems to evaluate a community’s capacity to exchange metabolites in controlled environmental conditions [10,46], as well as to evaluate the functional diversity and the role of the environment in community assembly [60,99]. But even simple microbial consortia can present complex ecological dynamics and can be dominated by high-order interactions [59]. Furthermore, reducing community complexity in engineered synthetic consortia can be counter-productive, as a reduction in genetic diversity and functional redundancy can negatively impact the community’s stability. Indeed, in the absence of functional redundancy, removing a member of the consortium can drive the entire population to extinction [21]. We believe this observation is fundamental for designing stable synthetic communities.

In this paper, we combined experiments with multi-scale modelling to evaluate the role of dynamic proteome allocation in the interaction profile exhibited by auxotrophic communities. Both our model and experimental data validate previous studies showing that cooperative interactions are prevalent under nutrient starvation, while competitive interactions are more common in rich environments. Furthermore, numerical simulations of our computational model suggest that suppressing dynamic proteome allocation has the effect of reducing yield of the community, a consequence of the rapid growth and consumption of exchanged metabolites when amino acids are rare. Altogether, we conclude that dynamic proteome allocation is an important factor driving the productivity and interaction profile of cross-feeding microbial communities.

8. Methods

8.1. Strains and media

All strains used in this study were obtained from the Keio collection [62], each one with different amino acid auxotrophy conferred by the deletion of the following genes: glyA, hisB, ilvA, leuB, metA, pheA, thrC, trpC and tyrA. The genotype of the strains was validated by colony PCR with two different strategies: (1) using for each strain primers located upstream (forward) and downstream (reverse) of the deletion site (band corresponding to the kanamycin resistance cassette) and (2) with the first forward of each gene and the first k1 reported in the construction of the collection that it aligns within the kanamycin resistance cassette.

To estimate fluorescent intensities in co-culture, we transformed the strains ΔtyrA, ΔpheA and ΔleuB with a multicopy plasmid assembled by the Golden Gate Cloning technique [100], using the following bioparts from the MoClo kit: pTU1-A-lacZ (vector), pBP-J23100 (promoter), pBP_BBa_B0034 (RBS), pBP-ORF-eCFP (eCyan fluorescent protein) or pBP-ORF-mCherry (mCherry fluorescent protein) and pBP-BBa_B0015 (terminator).

For mono-cultures and co-culture experiments, we selected a single colony of each strain and grew them in LB medium for 16 h with 40 μg ml⁻¹ of kanamycin, then harvested by centrifuging at 14 000 r.p.m. for 10 min, washed twice with M9 medium salts (7 g 1⁻¹ K₂HPO₄, 2 g 1⁻¹ KH₂PO₄, 0.58 g 1⁻¹
Na₃C₆H₅O₇·1 H₂O, 1 g l⁻¹ (NH₄)₂SO₄ and 0.1 g l⁻¹ MgSO₄ and suspended in M9 medium with glucose (2 g l⁻¹). Before inoculation all strains were adjusted at 0.3 of OD 630 nm (optical density was measured using a BioTek EL×808 plate reader in 96-well plates).

We determined critical amino acid concentrations using the metabolic model iML1515 [70,71]. To determine the amino acid concentration (AC) in milligrams per litre to grow a dry weight of bacteria (RDW) [70,71] we used the following expression: AC [mg l⁻¹] = (RDW ⋅ (0.295) ⋅ ACMW), where ACMW is the amino acid molecular weight.

8.2. Pair-wise interaction assays

To evaluate the growth of the strains (mono-cultures) in medium with the amino acid that compensates their auxotrophy we performed kinetic cultures using microplates with 20 μl of cells and 180 μl of M9-glucose media (M9 salts supplemented with 2, 4 or 6 g l⁻¹ of glucose and each amino acid: 16.91 mg l⁻¹ of leucine, 7.15 mg l⁻¹ of tyrosine and 8.75 mg l⁻¹ of phenylalanine [70,71]). Each amino acid was supplemented in 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 times the basal concentration for each amino acid (concentrations calculated according to iML1515 model [70]). All plates were incubated at 37°C with continuous shake for 24 h in a BioTek EL×808 plate reader. We measured OD₆₃₀ every 20 min. Using 0 and 3 times the basal concentration of leucine and tyrosine in minimal media with 2, 4 and 6 g l⁻¹ of glucose we compared the final OD of our co-culture $Δ$leuB–$Δ$tyrA (50–50) demonstrating growth differences between M9 and M9 supplemented with amino acids (table 3).

To characterize the profile of interaction, we estimated the final density of 36 co-cultures with 11 different initial frequencies between both strains: 200:0, 180:20, 160:40, 140:60, 120:80, 100:100, 80:120, 60:140, 40:160, 20:180 and 0:200 μl. Initial bacterial densities were adjusted in M9-glucose media without amino acids before inoculation, with experiments performed in 96-well plates and incubated at 37°C with 100 r.p.m. orbital shake. Optical density at 630 nm (OD₆₃₀) was measured at different time-points (24, 48 and 72 h). To measure difference in growth rate at the 11 initial frequencies, we evaluated the growth of the co-culture $Δ$leuB–mCherry and $Δ$tyrA–eCyan in minimal media with 0 amino acids, and measured the optical density every 20 min using a microplate reader (BioTek ELx808). Maximum growth rate was estimated with the slope of a linear fit performed to the exponential phase of the optical density plot (log(OD₆₃₀)).

For checkerboard experiments, we inoculated two 50–50 co-cultures, with $Δ$leuB–mCherry and $Δ$tyrA–eCyan and $Δ$pheA–mCherry and $Δ$leuB–eCyan, into a 96-well plate with minimal medium supplemented with a range of leucine and tyrosine and a range of leucine and phenylalanine. For all amino acids, we used concentrations from 0 to 4 times, increasing each 0.25, according to the basal concentration for each amino acid. OD and fluorescence were measured at 0, 24 and 48 h using a fluorescent plate reader (BioTek Synergy H1). To estimate the relative frequency of different strains in co-culture, we used a flow cytometer (Beckman Coulter with 20000 events in each environmental condition).

8.3. Computational experiments

Numerical simulations of the model were performed in Julia using DifferentialEquations.jl [101]. Unless stated otherwise, parameter values used are summarized in table 1. Data analysis was performed in Matlab and Python using standard libraries.

Data accessibility. All data and code used in this study are available in a public repository [102]. Data and relevant code for this research work are stored in GitHub: https://github.com/ccg-esb-lab and have been archived within the Zenodo repository: https://doi.org/10.5281/zenodo.6344915.

Authors’ contributions. D.R.-G.: conceptualization, data curation, formal analysis, investigation, writing—original draft, writing—review and editing; H.d.L.-V.: conceptualization, formal analysis, investigation, software, visualization, writing—original draft, writing—review and editing; J.U.: investigation, writing—review and editing; M.S.: investigation, writing—review and editing; R.P.-M.: conceptualization, formal analysis, investigation, visualization, writing—original draft, writing—review and editing; A.F.-H.: conceptualization, data curation, formal analysis, investigation, project administration, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. D.R.-G. is a doctoral student in Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, and received fellowship 572373 from CONACYT. H.d.L.-V. is a graduate student in Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México. H.d.L.-V. and R.P.-M. were supported by PAPIIT-UNAM (grant no. IN209419). R.P.-M. also received funding by CONACYT Ciencia.
References

1. Herren CM. 2020 Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities. Proc. R. Soc. B 287, 20192945. (doi:10.1098/rspb.2019.2945)

2. Hoek TA, Axelöd K, Biancalani T, Yurtsev EA, Liu J, Gore J. 2016 Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540. (doi:10.1371/journal.pbio.1002540)

3. Rodríguez-Verdugo A, Vulin C, Ackermann M. 2019 The rate of environmental fluctuations shapes ecological dynamics in a two-species microbial system. Ecol. Lett. 22, 838–846. (doi:10.1111/ele.13244)

4. Oña L, Kost C, 2020 Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. bioRxiv. (doi:10.1101/2020.05.15.098103)

5. Bell T, Newman JA, Silverman BW, Turner SL, Dal Co A, Brannon C, Ackermann M. 2018 Cooperation increases the cooperation in microbial communities. Mol. Syst. Biol. 6, 407. (doi:10.1038/msb.2018.66)

6. Fritts RK et al. 2020 Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME J. 14, 2816–2828. (doi:10.1038/s41396-020-00737-5)

7. MacLean RC, Fuentes-Hernandez A, Greig D, Hurst LD, Gudej J. 2010 A mixture of ‘cheats’ and ‘co-operators’ can enable maximal group benefit. PLoS Biol. 8, e1000486. (doi:10.1371/journal.pcbi.1000486)

8. Ratzke C, Barriere J, Gore J. 2020 Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383. (doi:10.1038/s41559-020-1099-4)

9. Freilich S et al. 2011 Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589. (doi:10.1038/ncomms11597)

10. Hammurkar SP, Chacon JM, Harcombe WR. 2019 A shared limiting resource leads to competitive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771. (doi:10.1111/1462-2920.14493)

11. Gilbert JA et al. 2012 Defining seasonal marine microbial community dynamics. ISME J. 6, 296–308. (doi:10.1038/ismej.2011.107)

12. Enke TN, Leventhal GE, Metzger M, Saavedra JT, Cordevos OX. 2018 Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 1. (doi:10.1038/s41467-017-02088-w)

13. Pacciani-Mori L, Giornetto A, Souweis S, Mainan A. 2020 Dynamic metabolic adaptation can promote species coexistence in competitive microbial communities. PLoS Comput. Biol. 16, e1008796. (doi:10.1371/journal.pcbi.1008796)

14. Bussi-Man J, Shaknovich EI. 2018 Growth tradeoffs produce complex microbial communities on a single limiting resource. Nat. Commun. 9, 3214. (doi:10.1038/s41467-018-05703-6)

15. Monaco H, Sereno T, Liu K, Reager C, Deforet M, Xavier JB. 2020 Spatial-temporal dynamics of a microbial cooperative behavior robust to cheating. bioRxiv. (doi:10.1101/2020.01.23.914481)

16. Mommen B, Waite AJ, Shou W. 2013 Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960. (doi:10.7554/eLife.00960)

17. Sun Z, Koffel T, Stump SM, Grimaud GM, Klausmeier CA. 2019 Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheats. J. Theor. Biol. 465, 63–77. (doi:10.1016/j.jtbi.2019.01.009)

18. Zelezniak A, Sheridan S, Paul R. 2014 Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes. PLoS Comput. Biol. 10, e1003572. (doi:10.1371/journal.pcbi.1003572)

19. Shou W, Ram S, Vilas JM. 2007 Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1887–1888. (doi:10.1073/pnas.0610575104)

20. Harcombe WR et al. 2014 Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115. (doi:10.1016/j.celrep.2014.03.070)

21. Moo MT, Collins JI, Church GM, Wang HH. 2014 Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156. (doi:10.1073/pnas.1406541111)

22. Steinchen W, Zegarra V, Range G. 2020 pppGpp: magic modulators of bacterial physiology and metabolism. Front. Microbiol. 11, 2072. (doi:10.3389/fmicb.2020.02072)

23. Hauyruilu V, Atkinson GC, Murakami KS, Tenison T, Gerdes K. 2015 Recent functional insights into the role of pppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309. (doi:10.1038/nrmicro3448)

24. Traxler ME et al. 2008 The global pppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol. Microbiol. 68, 1128–1148. (doi:10.1111/j.1365-2958.2008.06229.x)

25. Sanchez-Vazquez P, Dewey CN, Kitten N, Ross W, Gourse RL. 2019 Genome-wide effects on Escherichia coli transcription from pppGpp binding to its two sites on RNA polymerase. Proc. Natl Acad. Sci. USA 116, 8310–8319. (doi:10.1073/pnas.1819826116)

26. Paul BJ, Ross W, Gaal T, Gourse RL. 2004 RNA transcription in Escherichia coli. Annu. Rev. Genet. 38, 749–770. (doi:10.1146/annurev.genet.38.072002.091347)

27. Xiao H, Kalmann M, Ikehara X, Zemel S, Glaser G, Cashel M. 1991 Residual guanosine 3',5'-bispyrophosphate synthetic activity of rpoN null mutants can be eliminated by spoF null mutations. J. Biol. Chem. 266, 5986–5990. (doi:10.1016/S0021-9258(96)70494-5)

28. Bosdriesz E, Molenaar D, Teusink B, Bruggeman FA. 2015 How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J. 282, 2029–2044. (doi:10.1111/febs.13258)
37. Balakrishnan R, de Silva RT, Hwa T, Cremer J. 2021 Suboptimal resource allocation in changing environments constrains resistance and growth in bacteria. Mol. Syst. Biol. 17, e10597. (doi:10.15252/msb.202110597)

38. Wu C, Balakrishnan R, Mori M, Manzanarez G, Zhang Z, Hwa T. 2021 Cellular perception of growth rate and the mechanistic origin of bacterial growth laws. bioRxiv. (doi:10.1101/2021.10.16.646049)

39. Schofield WB, Zimmermann-Kogadave M, Zimmermann M, Barry NA, Goodman AL. 2018 The stringent response determines the ability of a commensal bacterium to survive starvation and to persist in the gut. Cell Host Microbe 24, 120–132. (doi:10.1016/j.chom.2018.06.002)

40. Scott M, Gunderson CW, Mateescu EM, Zhang Z, et al. 2020 Growth-dependent bacterial susceptibility to ribosome-targeting antibiotics. Mol. Syst. Biol. 11, 796. (doi:10.15252/msb.2020499)

41. Klitgord N, Segrè D. 2010 Environments that induce synthetic microbial ecosystems. Mol. Syst. Biol. 6. (doi:10.1038/msb.2010.159)

42. Basan M, Urrutia A, Silva-Andrade C, Martín AJ, Garido D. 2021 Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput. Struct. Biotechnol. J. 20, 79–89. (doi:10.1016/j.csbi.2021.12.006)

43. Basam M et al. 2015 Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104. (doi:10.1038/nature15765)

44. Zomorrodi AR, Islam MM, Maranas CD. 2014 d-Protoc. platform for the computation of microbial metabolic interactions in the gut microbiota. MSystems 5, 1192588 (doi:10.1101/2021.10.05.2588)

45. Zimmermann M, Barry NA, Goodman AL. 2018 Predicting the dynamics of bacterial growth in bacteria. Proc. Nat. Acad. Sci. USA 115, 9377–9382. (doi:10.1073/pnas.1730993115)

46. Klitgord N, Segrè D. 2010 Environments that induce synthetic microbial ecosystems. Mol. Syst. Biol. 6. (doi:10.1038/msb.2010.159)

47. König J, Scott M, Evans MR, Allen RJ. 2021 Iron limitation by Pseudomonas aeruginosa ISM198. (doi:10.1101/2020.06.24.169474)

48. Maitra A, Dill KA. 2016 Modeling the evolution and ecology of bacterial warfare. Nat. Rev. Gen. 17, 5809(74)90449-5 (doi:10.1038/nrg.2016.94)

49. Diener C, Gibbons SM, Resendis-Antonio O. 2020 Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol. J. 9, 1105–1114. (doi:10.1002/biot.20200267)

50. King ZA et al. 2016 BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522. (doi:10.1093/nar/gkv1049)

51. Maitra A, Dill KA. 2016 Modeling the evolution and ecology of bacterial warfare. Nat. Rev. Gen. 17, 5809(74)90449-5 (doi:10.1038/nrg.2016.94)

52. Pollak S, Graña A, Sato Y, Schwartzman J, Lu L, Cordero OK. 2020 Public good exploitation in natural bacterioplankton communities. bioRxiv. (doi:10.1101/2020.12.13.422583)

53. Finkelshtein A, Roth D, Ben Jacob E, Ingham CJ. 2019 Predicting the dynamics of bacterial growth in bacteria. Proc. Nat. Acad. Sci. USA 115, 9377–9382. (doi:10.1073/pnas.1730993115)

54. Cordero OX. 2020 Public good exploitation in microbial systems. Nat. Rev. Microbiol. 18, 936–946. (doi:10.1038/s41579-018-01591-9)

55. Kaleta C, Schäuble S, Rinas U, Schuster S. 2013 Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol. J. 9, 1105–1114. (doi:10.1002/biot.201200267)

56. Dukovski I et al. 2021 A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082. (doi:10.1038/s41596-021-00993-3)

57. Garcia-Bayona L, Comstock LE. 2018 Bacterial antibiotic antagonism in host-associated microbial communities. Science 361, eaat2456. (doi:10.1126/science.aat2456)

58. Granna ET, Meiller-Legrand TA, Foster KR. 2019 The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537. (doi:10.1016/j.cub.2019.04.024)
84. Shibasaki S, Mitri S. 2020 Controlling evolutionary dynamics to optimize microbial bioremediation. *Evol. Appl.* 13, 2460–2471. (doi:10.1111/eva.13050)

85. Bajic D, Sanchez A. 2020 The ecology and evolution of microbial metabolic strategies. *Curr. Opin. Biotechnol.* 62, 123–128. (doi:10.1016/j.copbio.2019.09.003)

86. Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. 2015 Metabolic dependencies drive species co-occurrence in diverse microbial communities. *Proc. Natl Acad. Sci. USA* 112, 6449–6454. (doi:10.1073/pnas.1421834112)

87. Rivett DW, Bell T. 2018 Abundance determines the functional role of bacterial phylotypes in complex communities. *Nat. Microbiol.* 3, 767–772. (doi:10.1038/s41564-018-0180-0)

88. Niehaus L et al. 2019 Microbial coexistence through chemical-mediated interactions. *Proc. Natl Acad. Sci. USA* 116, 15 979–15 984. (doi:10.1073/pnas.1906172116)

89. Piccardi P, Vessman B, Mitri S. 2019 Toxicity drives facilitation between 4 bacterial species. *Proc. Natl Acad. Sci. USA* 116, 15 979–15 984. (doi:10.1073/pnas.1906172116)

90. D’Souza G, Kost C. 2016 Experimental evolution of metabolic dependency in bacteria. *PLoS Genet.* 4, 1006364. (doi:10.1371/journal.pgen.1006364)

91. Zengler K, Zaramela LS. 2018 The social network of microorganisms: how auxotrophies shape complex communities. *Nat. Rev. Microbiol.* 16, 383–390. (doi:10.1038/s41579-018-0004-5)

92. Johnson WM et al. 2020 Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities. *FEMS Microbiol. Ecol.* 96, fiaa115. (doi:10.1093/femsme/fiaa115)

93. D’Souza G, Waschima S, Pande S, Bohl K, Kaleta C, Kost C. 2014 Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. *Evolution* 68, 2559–2570. (doi:10.1111/evol.12468)

94. Marsland III R, Cui W, Goldford J, Sanchez A, Korolev K, Mehta P. 2019 Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. *PLoS Comput. Biol.* 15, e1006793. (doi:10.1371/journal.pcbi.1006793)

95. Moore SJ et al. 2016 EcoFlex: a multifunctional MoClo kit for *E. coli* synthetic biology. *ACS Synth. Biol.* 5, 1059–1069. (doi:10.1021/acssbio.6b00031)

96. Reyes-González D, Luna HD, Utrilla J, Sieber M, Peña R, Fuentes-Hernández A. 2022 Dynamic proteome allocation regulates the profile of interaction of auxotrophic bacteria consortia. *Zenodo Repository.* (doi:10.5281/zenodo.6344915)