Dear Editor,

The clinical features of an uncommon hypersensitivity to neuroleptics were first described by Preston, and was subsequently known as neuroleptic malignant syndrome (NMS). The incidence of NMS report elsewhere is between 0.07% and the mortality rate is up to 25%. The condition appears to be an idiosyncratic reaction to a therapeutic dose of the antipsychotic drugs especially dopamine receptor antagonists and a dose relationship has been postulated. Despite the sporadic occurrence of NMS in our psychiatric units, no case has been reported from Nigeria.

A 21-year-old female nurse who was Gravida 1, Para 1+. She developed acute postpartum psychosis of manic type, two days following childbirth. She developed the psychosis on a background of normal personality and absence of any family history of psychiatric or neurological illness. She was initially admitted at a general hospital, where she works. On admission, she was given massive dose of chlorpromazine and paraldehyde intramuscularly (the relations could not ascertain the amount of dosage given). On the third day of admission, she became more restless, confused, pyrexic and developed generalized stiffness. She was transferred to another hospital where a lumbar puncture was done to exclude meningitis, but the cerebrospinal fluid was normal. She was then referred for electroencephalogram (EEG) to exclude organic brain disease.

By the time the patient was brought to the EEG clinic, her temperature was 42°C and she had marked body rigidity of plastic type with occasional choreiform movement of the limbs and in addition was comatose. Pulse rate was 110 per minute, regular and normal volume and blood pressure 140/95mmHg. The EEG showed diffuse mixture of fast and slow waves and the background activity consisted of muscle artifact on all channels and NMS was suspected.

Blood samples were taken for complete blood count, serum electrolytes and urea, liver function tests and serum creatine kinase. All neuroleptic drugs were discontinued and she was moved into an air-conditioned room and tepid sponged with water. Bromocriptine was commenced (10mg 6 hourly) along with 10mg diazepam 6 hourly and benzhexol 5mg 8 hourly. All the medications were given intramuscularly for the first 48 hours and orally by nasogastric tube.

By the second temperature dropped to 37.5°C, blood pressure remained 140/90 mmHg and level of consciousness improved. By this time laboratory results became available; haemogram was 11.5g/dl, white cell count 11.3 x 10^3/L; serum sodium was 140mmol/l, potassium 6.0mmol/l, urea 20mg%, aspartate transaminase 50 iu/l, erythrocyte sedimentation rate 22mm/hr and creatine kinase 3600 iu/l.

On the 4th day, temperature was normal, and she could recognize familiar people and was able to speak. Her body rigidity became less and she was able to walk with some help. By the 7th day, the patient started becoming restless and talkative, as a result she was placed on thioridazine 100mg 12 hourly. The physical and mental condition continued to improve and by the third week, she was well enough and was discharged home on thioridazine 100mg bd. She has remained well and now has 4 lovely children.

The clinical features, of hyperpyrexia, generalized body rigidity with choreiform movements of the limbs, elevation of creative kinase and evidence of acidosis following massive ingestion of neuroleptic is in conformity with the diagnosis of NMS, as reported elsewhere. The presence of abnormal EEG is additional finding in support of our diagnosis.

Because of the difficulty of availability of drugs such as dantrolene in our environment, we resorted to using a modified form of tepid sponging with ordinary water to facilitate lowering of the body temperature, and we advocate the use of this procedure especially in difficult environment such as is found in African regions. Attempt used at reducing the muscle rigidity was achieved by the use of benzodiazepines and anticholinergics which are easily available in our environment. The choice of thioridazine to treat her psychotic state was mainly for its anticholinergic advantage, which was facilitated by the addition of benzhexol. This combination we believed was relatively safer than other psychotropics available to us, as the result of treatment has shown.

B. A. Yakasai

Directorate of Medical Services, Headquarters, Nigerian Airforce, Abuja, Nigeria

References

1. Preston J. Central nervous system reaction to small dose of tranquiliser. American Practice and Digest of Treatment 1959; 10:627-630
2. Ohtsuka IH, Ogita K, Yagi G, Miura S, Koga Y. Neuroleptic malignant syndrome. Its present status in Japan and clinical problems. Foila Psychiatrca et Neurological Japonica 1977; 31: 565-576
3. Pope HG Jr, Keck PE Jr, McElroy SL. Frequency and representation of neuroleptic malignant syndrome in a large psychiatric hospital. Am J Psychiatry 1986; 143:1227-1232
4. Friedman JH, Davis R, Wegner RL. Neuroleptic malignant syndrome: the result of a 6 months prospective study of incidence in a state

LETTERS TO THE EDITOR

Neuroleptic Malignant Syndrome

A 21-year-old female nurse who was Gravida 1, Para 1+ developed acute postpartum psychosis of manic type, two days following childbirth. She developed the psychosis on a background of normal personality and absence of any family history of psychiatric or neurological illness. She was initially admitted at a general hospital, where she works. On admission, she was given massive dose of chlorpromazine and paraldehyde intramuscularly (the relations could not ascertain the amount of dosage given). On the third day of admission, she became more restless, confused, pyrexic and developed generalized stiffness. She was transferred to another hospital where a lumbar puncture was done to exclude meningitis, but the cerebrospinal fluid was normal. She was then referred for electroencephalogram (EEG) to exclude organic brain disease.

By the time the patient was brought to the EEG clinic, her temperature was 42°C and she had marked body rigidity of plastic type with occasional choreiform movement of the limbs and in addition was comatose. Pulse rate was 110 per minute, regular and normal volume and blood pressure 140/95mmHg. The EEG showed diffuse mixture of fast and slow waves and the background activity consisted of muscle artifact on all channels and NMS was suspected.

Blood samples were taken for complete blood count, serum electrolytes and urea, liver function tests and serum creatine kinase. All neuroleptic drugs were discontinued and she was moved into an air-conditioned room and tepid sponged with water. Bromocriptine was commenced (10mg 6 hourly) along with 10mg diazepam 6 hourly and benzhexol 5mg 8 hourly. All the medications were given intramuscularly for the first 48 hours and orally by nasogastric tube.

By the second temperature dropped to 37.5°C, blood pressure remained 140/90 mmHg and level of consciousness improved. By this time laboratory results became available; haemogram was 11.5g/dl, white cell count 11.3 x 10^3/L; serum sodium was 140mmol/l, potassium 6.0mmol/l, urea 20mg%, aspartate transaminase 50 iu/l, erythrocyte sedimentation rate 22mm/hr and creatine kinase 3600 iu/l.

On the 4th day, temperature was normal, and she could recognize familiar people and was able to speak. Her body rigidity became less and she was able to walk with some help. By the 7th day, the patient started becoming restless and talkative, as a result she was placed on thioridazine 100mg 12 hourly. The physical and mental condition continued to improve and by the third week, she was well enough and was discharged home on thioridazine 100mg bd. She has remained well and now has 4 lovely children.

The clinical features, of hyperpyrexia, generalized body rigidity with choreiform movements of the limbs, elevation of creative kinase and evidence of acidosis following massive ingestion of neuroleptic is in conformity with the diagnosis of NMS, as reported elsewhere. The presence of abnormal EEG is additional finding in support of our diagnosis.

Because of the difficulty of availability of drugs such as dantrolene in our environment, we resorted to using a modified form of tepid sponging with ordinary water to facilitate lowering of the body temperature, and we advocate the use of this procedure especially in difficult environment such as is found in African regions. Attempt used at reducing the muscle rigidity was achieved by the use of benzodiazepines and anticholinergics which are easily available in our environment. The choice of thioridazine to treat her psychotic state was mainly for its anticholinergic advantage, which was facilitated by the addition of benzhexol. This combination we believed was relatively safer than other psychotropics available to us, as the result of treatment has shown.

B. A. Yakasai

Directorate of Medical Services, Headquarters, Nigerian Airforce, Abuja, Nigeria

References

1. Preston J. Central nervous system reaction to small dose of tranquiliser. American Practice and Digest of Treatment 1959; 10:627-630
2. Ohtsuka IH, Ogita K, Yagi G, Miura S, Koga Y. Neuroleptic malignant syndrome. Its present status in Japan and clinical problems. Foila Psychiatrca et Neurological Japonica 1977; 31: 565-576
3. Pope HG Jr, Keck PE Jr, McElroy SL. Frequency and representation of neuroleptic malignant syndrome in a large psychiatric hospital. Am J Psychiatry 1986; 143:1227-1232
4. Friedman JH, Davis R, Wegner RL. Neuroleptic malignant syndrome: the result of a 6 months prospective study of incidence in a state
5. Gelebberg AJ, Bellhausen B, Wojcik JD, et al. A prospective survey of neuroleptic malignant syndrome in a short-term psychiatric hospital. Am J Psychiatry 1998; 155:171-178
6. Keck PE Jr, Sebastianelli J, Pope HG Jr, et al. Frequency and presentation of neuroleptic malignant syndrome in a psychiatric hospital. J Clin Psychiatry 1989;50:353-355
7. Keck PE Jr, Pope HG Jr, Cohen BM, et al. Risk factors for neuroleptic malignant syndrome: a case–control study. Arch Gen Psychiatry 1989;46:914-918
8. Cohen BM, Baldessarini RJ, Pope HG, Lipinski, JF. Neuroleptic malignant syndrome. New Engl J Med 1985; 313:1293
9. Kasantikul D, Kanachannakhin P. Severe catatonia and neuroleptic malignant syndrome: report of 3 cases. J Med Assoc 1999; 82: 942-946
10. Caroff SN. The neuroleptic malignant syndrome. J Clin Psychiat 1980;41:79-83
11. Delay J, Denikes P. Drug induced extrapyramidal syndromes. In: Vinkey D, Bruyn G (eds). Handbook of clinical neurology: Diseases of the basal ganglia. Elsevier, New York, 1968
12. Gonner F, Baumgartner R, Schupbach D, Merlo MC. Neuroleptic malignant syndrome during low dosed neuroleptic medication in first episode psychosis: a case report. Psychopharmacolog Berl 1999; 144:416-418

Follicular Thyroid Carcinoma Presenting With Skull Metastasis after 24 Years

Dear Editor,

Follicular thyroid carcinoma (FTC) originates in follicular cells and is the second most common cancer of the thyroid after the papillary carcinoma. The skeleton is one of the principal targets of metastasis from FTC. FTC with distant metastasis is considered a relatively progressive tumour associated with a poor five-year survival rate. A case of FTC presenting with skull metastases after 24 years of initial diagnosis is presented.

A 66-year-old male who had presented earlier in 1976 (twenty four years ago), at the surgical outpatient clinic of the University College Hospital, Ibadan, with a small soft tissue anterior neck swelling which was asymptomatic. Fine needle aspiration of the mass done at that time confirmed follicular thyroid carcinoma. The patient declined the option of total thyroidectomy, and was discharge against medical advice and was lost to follow up.

He later represented in the year 2000, on account of a huge progressive and painless swelling on the skull and anterior neck. The examination revealed an anterior scalp mass which was attached to the skull and measured 18x16x10cm, soft to firm in consistency. The anterior neck mass moved with act of swallowing and measured 20x18cm, soft to firm in consistency. The thyroid function test showed elevated T₃=233.6ml/dl (normal: 100-190ml/dl). The T₄, TSH, Ca²⁺ and PO₄²⁻ were normal.

The skull radiograph (Figure 1) showed a soft tissue mass overlying the left frontal bone. The Brain computed tomography (CT) scan (Figure 1) showed an enhancing soft tissue mass overlying the fronto-parietal bone with destruction of the underlying bone and some bone fragments were seen within it. There was no intracranial extension.

Radiograph of soft tissue of the neck showed a huge soft tissue mass in the anterior neck, more on the left side. No calcification or lucency was seen within it. There was associated retro-sternal extension with displacement of the trachea posteriorly and to the right side. The axial CT scan (Figure 1) slices of the neck showed an enhanced soft tissue mass on the left side of the thyroid bed, with associated hypodensity within it. The outline was smooth and there was compression of the trachea and displacement of both trachea and larynx to the right side. No underlying bone destruction was seen.

The lumbosacral spine radiograph showed metastatic destruction of the pedicle of L3 on the right, while the chest radiograph confirmed retrosternal extension of the neck mass.

Fine needle aspirations of thyroid and the skull frontal masses confirmed follicular thyroid carcinoma and metastases respectively.

Total thyroidectomy and left frontal craniectomy and tumor excision was done. The skull mass was seen to destroy the underlying bone with extension to the underlying dura matter. During the excision of the skull tumor, the patient developed uncontrolled bleeding and died of disseminated intravascular coagulopathy intraoperatively.

Figure 1: Plain skull radiograph (a), post contrast CT scan of the brain (b) and axial CT scan of the neck showing an enhanced soft tissue mass on the left side of thyroid bed and an are of hypodensity (arrow) within it (c)
FTC occurs more frequently in whites than in blacks and incidence is higher in women than men. FTC is common in all age groups, with a mean age of 49 years and an age range of 15-84 years. This case report is of the black race in a 66 years old male.

Follicular thyroid carcinomas (FTC) comprise 10% to 20% of all thyroid carcinomas and in areas of iodine deficiency this number may be increased. The thyroid gland is also particularly sensitive to the effects of ionizing radiation. Exposure to ionizing radiation results in a 30% risk for thyroid cancer and a history of head and neck X-ray taken especially during childhood, has been recognized as an important contributing factor for the development of thyroid cancer.

Chest radiograph, CT scan and MRI usually are not used in initial workup of a thyroid nodule, except in patients with a clear metastatic disease at presentation, as demonstrated by the patient in this case report. These tests are second-level diagnostic tools and are useful in preoperative patient assessment.

The soft tissue radiograph of the neck may show a soft tissue mass in the anterior neck displacing and compressing the trachea. There may be associated retrosternal extension with calcifications. This case report demonstrated all these features except calcifications. The typical appearances of a bony metastasis from thyroid carcinoma seen on plain radiograph could be an expansile, osteolytic lesion, which may be bubbly or have a blowout feature and often the lesion is solitary as seen in this case.

On ultrasonography, virtually all thyroid carcinomas are poorly echogenic with the majority showing some invasion into thyroid stroma and through the thyroid capsule on using high frequency probe in the ranged of 7.5 MHz. A characteristic feature of these lesions is the presence of small calcifications or psammoma bodies on the ultrasound scan.

The thyroid gland is well seen on CT due to its higher than average soft tissue attenuation, caused by the physiologically high iodine content of the gland. Thyroid adenomas and carcinomas are seen as soft tissue masses within the gland. Calcification and cyst formation is seen in both types of lesion and CT cannot reliably distinguish benign from malignant thyroid masses unless metastatic disease, bone or cartilage destruction or neurological involvement is identified in the latter. The retrosternal extension of thyroid mass can be demonstrated. Most of these features of CT scan were demonstrated in this case report.

Total thyroidectomy has become the routine procedure for treatment of FTC in Nigeria. About 4-6 weeks after surgical thyroid removal patients must have radioiodine examination to detect and destroy any metastases and any residual tissue in the thyroid. Therapy is administered until radioiodine uptake is completely absent. FTC prognosis is related to age, sex and staging of the disease. In general, if cancer is not extending beyond the capsule of the gland, life expectancy is minimally affected. Prognosis is better in female patients and in patients younger than 40 years. These findings were in sharp contrast to what was found in this report, in which the patient, a 66 year old male, lived with FTC without treatment for twenty four years after the initial diagnosis without symptoms. He only sought medical attention for cosmetic reasons on account of the neck and skull masses. The extensive search through available literature did not reveal report of similar case.

P. O. Ibinaiye, A. O. Adeyinka and M. O. Obajimi
Department of Radiology, University College Hospital, Ibadan, Nigeria

References

1. Smith JW, Vanderpluigm G, Vioedgraven HJ. Role of intergrins in the attachment of metastatic follicular thyroid carcinoma cell lines to bone. Thyroid 1998; 8:29-36
2. Zedenius J, Auer G, Backdahl M, et al. Follicular tumours of the thyroid gland: diagnosis, clinical aspects and nuclear DNA analysis. World J Surg 1992; 16:589-594
3. Ketiku KK. Thyroid carcinoma in Nigeria: review of management. Eur J Surg Oncol 1990; 16: 443-447