Face Recognition using Hough Peaks extracted from the significant blocks of the Gradient Image

Arindam Kar1, Debotosh Bhattacharjee2, Dipak Kumar Basu2, Mita Nasipuri2, Mahantapas Kundu2

1Indian Statistical Institute, Kolkata-700108, India
2Department of Computer Science and Engineering, Jadavpur University, Kolkata- 700032, India

Abstract— This paper proposes a new technique for automatic face recognition using integrated peaks of the Hough transformed significant blocks of the binary gradient image. In this approach firstly the gradient of an image is calculated and a threshold is set to obtain a binary gradient image, which is less sensitive to noise and illumination changes. Secondly, significant blocks are extracted from the absolute gradient image, to extract pertinent information with the idea of dimension reduction. Finally the best fitted Hough peaks are extracted from the Hough transformed significant blocks for efficient face recognition. Then these Hough peaks are concatenated together, which are used as feature in classification process. The efficiency of the proposed method is demonstrated by the experiment on 1100 images from the FRAV2D face database, 2200 images from the FERET database, where the images vary in pose, expression, illumination and scale and 400 images from the ORL face database, where the images slightly vary in pose. Our method has shown 93.3%, 88.5% and 99% recognition accuracy for the FRAV2D, FERET and the ORL database respectively.

Index Terms—Face recognition, Feature extraction, Gradient image, significant blocks, Hough transformation, Hough peaks.

I. INTRODUCTION

Automated processing of face images has been receiving increasing attention during the last few decades. Image matching is a fundamental aspect of many problems in computer vision, including object or scene recognition, solving for 3D structure from multiple images, stereo correspondence, and motion tracking. Feature selection is one of the most important steps for detection and classification problems. Good features should be discriminative, robust, easy to compute, and efficient. The Feature selection is specifically important for any face recognition scheme. The more significant facial features such as outline of hair and face, position of eyes, nose and mouth can be preserved by very small number coefficients. The raw pixel values of several image statistics such as colour, gradient and filter responses is the simplest choice for image features, has been used for many years in computer vision, e.g., [1-3]. The underlying motivations for our approach originate from the observation that humans achieve at least a basic level of categorization of faces “at a glance” even when images of very low resolution are used. Though human beings can detect and identify faces with no effort, building an automated system that accomplishes such objectives is very challenging. The challenges are even more profound when there are large variations due to illumination conditions, change in pose, facial expression. Of all image analysis of human face, feature extraction is of immense importance.

In order to construct the illumination cone, model based methods also require a set of training images for each subject. Furthermore, because of the complexity of light sources and illumination changes, how to compute and obtain physically implemented lower-dimensional subspaces basis images requires deep investigation.

Edge reflects the discontinuity of intensity distribution in an image. It contains contour, structure and shape information of objects in an image. Cognitive psychological studies indicated that human beings recognize line drawings as quickly and almost as accurately as gray-level pictures. Furthermore, edge is insensitive to illumination changes.

In particular, we propose an approach based on face similarity matching measure using Hough peaks [4] as the feature vector, and showed that this approach produces good recognition results even when less than 5% information of the original gray-scale image is retained after selection of the Hough peaks. Also in this paper a novel methodology applicable to face matching and fast screening of large facial databases is introduced. The proposed shape comparison method operates on edge maps and derives holistic similarity measures, yet, it does not require the solution of the correspondence problem. The use of edge images is important to introduce robustness against changes in illumination.

There are three main contributions in this paper. Firstly, the gradient of several image statistics is computed for an image of interest, such as the image descriptor. Instead of the joint distribution of the image statistics, we use the gradient change as our edge points for Hough transformation, so the dimension becomes much smaller and hence the computational cost is reduced which is independent of the size of the image. Secondly, applying Hough transformation only on the
few blocks of the binary gradient image makes the
computationally quite fast. As the block based facial
features are compared locally, instead of using a general
structure, allows to compare faces in terms of mouth,
nose and other features in presence of occlusion. Finally
we use the concept of clustering to find the centroid of
all the Hough peaks obtained for each block and
consider only the nearest two peaks instead of all the
peaks. This paper describes image features that have
many properties that make them suitable for matching
different images of an object. The features are invariant
to image scaling and rotation, and partially invariant
to change in illumination [5].

The remainder of this paper is organized as follows:
Section II describes the extraction of most significant
blocks from the binary gradient image of the facial
image. Section III details with Hough transformation
and selection of the Hough peaks from the selected
blocks. Section IV deals with the similarity measure
and classification rule. In Section V and VI we assess
the performance of the proposed method on the face
recognition task by applying it on the FERET [6],
FRAV2D [7] and the ORL face [8] databases and
finally by comparing with some of the most popular
face recognition schemes.

II. MAP OF AN IMAGE

A. Binary Gradient Image

In this section the gradient image I_G of an image (I) is
calculated by taking summation over the absolute of the
change of pixels in all the eight particular directions i.e.,
(north (N), northeast (NE), east (E), southeast (SE),
south (S), southwest (SW), west (W) and northwest
(NW)). The absolute binary gradient image I_{abs} is
considered by calculating the pixels of I_G those are
greater than the average of the mean and median of I_G.
The absolute gradient image is calculated as:

$$I_G(x,y) = \begin{vmatrix}
\text{abs}[I(x-1,y)-I(x,y)] + \text{abs}[I(x,y-1)-I(x,y)] + \\
\text{abs}[I(x+1,y)-I(x,y)] + \text{abs}[I(x,y+1)-I(x,y)] + \\
\text{abs}[I(x-1,y+1)-I(x,y)] + \text{abs}[I(x+1,y-1)-I(x,y)] + \\
\text{abs}[I(x-1,y-1)-I(x,y)] + \text{abs}[I(x+1,y+1)-I(x,y)]
\end{vmatrix}
$$

After calculating the gradient image, edge and Sobel
operators [9] are used to calculate the threshold value,
which in turn give a binary gradient image. The original
image and its corresponding binary gradient image are
shown in Fig. 1.(a) and Fig. 1. (b) respectively:

![Fig.1 (a)](image_url)
![Fig.1 (b)](image_url)

© 2011, IJARCSSE All Rights Reserved

The processed binary gradient mask images still shows
lines of high contrast in the image. So by using linear
structuring elements i.e. by dilation of the binary
gradient image, these linear gaps are removed. This is
very similar to the way by which human perceive the
face of other human being. From figure 1(b) it is clear
that the white portions of the binary gradient image,
where the change in contrast is very high, and are the
region of interest except those boundaries i.e., we are
interested to extract those regions that contains the
important similarities like nose, mouth, eye etc.

B. Extraction of Significant Blocks

The step for extracting the significant blocks from the
image is given below.

Blocks are generated randomly inside the absolute
gradient image I_G and are selected if:

a) The count of white pixels in the block is greater than
M % of the total pixels in the block, where M is the
mean of the pixel values of the binary gradient image.

b) If there is any overlap between a selected block and
a new block, then that particular block is selected for
which the count of white pixels is more.

The extracted significant k^{th} block for the i^{th} training
image is defined as $B_{ij} = (x_k, y_k)$. The
first two components represent the starting location of the
extracted block. These two components of feature
are very important during matching (comparison)
process. The remaining components are the elements of
the block.

d) This process of random block generation and
extraction is repeated for X times (say X=500000),
and the most significant blocks are selected from the
generated blocks in such a way that the blocks captures
the important facial features like nose, mouth, eye
brows, eyes etc and are in the range of 20-30% of the
total blocks in the image. The proposed gradient based
method reduces the number of edge pixels by as much
as 70-80%.

III. SIGNIFICANT BLOCK EXTRACTION

A. Hough tranformation

The Hough transform is widely used for shape analysis
in machine vision with its robustness to noise and high
efficiency. In this paper, we focus on the standard
Hough transform (SHT) [10], which is used to detect
straight lines. The SHT uses the parametric representation of a line:

$$\rho = x \cos \theta + y \sin \theta,$$

here ρ is the distance from the origin to the line along a
vector perpendicular to the line. θ is the angle of the
perpendicular projection from the origin to the line
measured in degrees clockwise from the positive x-axis.
The range of θ is $-90^\circ \leq \theta \leq 90^\circ$. The angle of the
line itself is $\theta + 90^\circ$ measured clockwise with respect
to the positive x-axis,

where ρ is the length of the perpendicular of a line
passing through (x,y) and subtending an angle θ with
are points with high information content of the face image.

IV. SIMILARITY MEASURE AND CLASSIFICATION
The dissimilarity measure between the \(i\)th testing and \(j\)th training images is measured as:
\[
D(i, j) = \frac{1}{B_i} \sum_{k=1}^{B_i} \max_{1 \leq l \leq B_j} \left\{ I(k, l) \chi^2(f_k, f_l) \right\},
\]
where \(B_i = \text{number of blocks in the } i\text{th testing image, and } B_j = \text{number of blocks in the } j\text{th training image.}

Here \(I(k, l)\) is defined in such a way that blocks of the training image which are not close enough to a block of the test image in terms of location are discarded, and the extracted features (Hough peaks) of those training blocks which are in the neighborhood of the testing blocks are only compared for finding the similarity measure. Thus, the method is shown in terms of both absolute illumination and facial expression.

The effectiveness of the proposed method has been successfully tested on face recognition using three databases, a) the whole ORL facial database, b) the FRAV2D database containing 1100 frontal face images corresponding to 100 subjects, c) The FERET database, containing 2200 frontal face images corresponding to 200 subjects, which are acquired under variable illumination and facial expression. The effectiveness of the method is shown in terms of both absolute performance indices and comparative performance against some popular face recognition schemes such as the PCA, LDA [13, 14], Gabor wavelets (GW) [15], edge based features, direct Hough transformation, and sub peaks of the Hough transformation [16].

A. Experiment on the ORL database
The whole ORL database is considered here. In the experiment each image is scaled to 92×112 with 256 gray levels. Fig. 4 shows all samples of one individual.
First two images of each individual are considered for training and the remaining images are used as testing samples.

Fig. 4. Demonstration images of one subject from the ORL database

B. Experiment on the FRAV2D database

The FRAV2D face database, employed in the experiment, consists of 1100 colour face images of 100 individuals, 11 images of each individual are taken, including frontal views of faces with different facial expressions, under different lighting conditions. All colour images are transformed into gray images and scaled to 92×112. Fig. 5 shows all samples of one individual. The details of the images are as follows: (A) regular facial status; (B) and (C) are images with a 15 turn with respect to the camera axis; (D) and (E) are images with a 30 turn with respect to the camera axis; (F) and (G) are images with gestures; (H) and (I) are images with occluded face features; (J) and (K) are images with change of illumination.

Fig 5. Demonstration images of one subject from the FRAV2D database

C. Experiment on the FERET database

The FERET database, employed in the experiment here, contains 2,200 facial images corresponding to 200 individuals with each individual contributing 11 images. The images in this database were captured under various illuminations that display, a variety of facial expressions and poses. As the images include the background and the body chest region, so each image is cropped to exclude those, and then scaled to 92×112.

Fig. 6 shows all samples of one individual. The details of the images are as follows: (A) regular facial status; (B) +15 pose angle; (C) -15 pose angle; (D) +25 pose angle; (E) -25 pose angle; (F) +40 angle; (G) -40 pose angle; (H) +60 pose angle; (I) -60 pose angle; (J) alternative expression; (K) different illumination.

Fig. 6. Demonstration images of an individual from the FERET database

D. Specificity and Sensitivity measure for the FRAV2D, FERET and the ORL dataset:

To measure the sensitivity and specificity [17] the dataset from the ORL, FRAV2D, & FERET database is prepared in the following manner. In the FRAV2D database for each individual a single class is constituted with 18 images in it. Thus, a total 100 class is obtained from the dataset of 1100 images of 100 individuals. Out of the 18 images in each class, 11 images are of a particular individual, and 7 images are of other individuals taken by permutation. Similarly 200 classes are obtained for the FERET dataset, each class having 18 images in it. Out of the 18 images in each class, 11 images are of a particular individual, and 7 images are of other individuals taken by permutation. For ORL database 40 classes are constructed with 15 images in each class. Out of the 15 images in each class, 10 images are of a particular individual, and 5 images are of other individuals. Using these datasets the true positive \(T_P\); false positive \(F_P\); true negative \(T_N\); false negative \(F_N\); are measured. For all the datasets, the first 2 images (A-B), of a particular individual are selected as training samples and the remaining images of that particular individual are used as positive testing samples. The negative testing is done using the images of the other individuals.

Table I: Specificity and Sensitivity measure of the FERET & FRAV2D dataset:

Total no. of classes=100, Total no. of images= 1800
FRAV2D
Using first 2 images of an individual as training images
FRAV2D test
Sensitivity = \(T_P / (T_P + F_N)\)
Thus for **FRAV2D database** considering the first 2 images (A-B) of a particular individual for training the achieved rates are:

- False positive rate = FP / (FP + TN) = 100% − Specificity = 7%
- False negative rate = FN / (TP + FN) = 100% − Sensitivity = 96.7%

Accuracy = \(\frac{(T_P + T_N)}{(T_P + T_N + F_P + F_N)} \) ≈ 96.3%.

For **FERET database** considering the first 2 images (A-B) of a particular individual for training the achieved rates are:

- False positive rate = FP / (FP + TN) = 100% − Specificity = 1%
- False negative rate = FN/(TP+ FN) = 100% − Sensitivity = 91.5%

Accuracy = \(\frac{(T_P + T_N)}{(T_P + T_N + F_P + F_N)} \) ≈ 93.75%.

For **ORL database** considering the first 2 images (A-B) of a particular individual for training the achieved rates are:

- False positive rate = FP / (FP + TN) = 100% − Specificity = 0%
- False negative rate = FN/(TP+ FN) = 100% − Sensitivity = 99%

Accuracy = \(\frac{(T_P + T_N)}{(T_P + T_N + F_P + F_N)} \) = 99.5%.

VI. RESULTS

Experimental results indicate that a) the extracted Hough peaks as features, from the proposed significant blocks of the absolute gradient image integrated together used for classification using the \(\chi^2 \) distance similarity measure achieved a verification rate which is as good as any previously used methods like PCA, LDA, Gabor wavelets for face recognition. It is also seen that significant block based binary gradient based feature extraction technique achieves the best accuracy, when peaks are selected from the Hough transformed blocks; b) During simulations, it is observed that the locations of significant blocks, found from the absolute binary gradient image of the face image, can give small deviations between different conditions (expression, illumination, having glasses or not, rotation, etc.), for the same individual. Therefore, an exact measurement of corresponding distances is not possible unlike the geometrical feature based methods; c) The computational time is significantly reduced by using only few significant blocks of the image, although the accuracy is not compromised; and finally d) selected of only those peaks from the Hough transformed block from the accumulation of peaks which are nearest to the centroid of the available peaks, and hence reduce the size of the feature vector. Extensive experiments indicate that the proposed method has achieved a much better performance than the previous variations of Hough transform. Further it also decreases the effect of occluded features. Table II shows the upper bound performances on the FERET, FRAV2D and ORL facial databases, which reflects that our proposed method achieves higher performance results. Thus the proposed algorithm deals with two of these problems, namely occlusion and illumination changes.

Experimental results on all the three databases taking first two images (A-B) as training face and the remaining images as testing images are shown below.

Table II. Performance results of well known face recognition algorithms together with the proposed method on FERET, ORL and FRAV2D respectively with the use of \(\chi^2 \) similarity measure.
CONCLUSION

The proposed technique as presented here obtains the absolute gradient of the original image in eight directions. From these gradient images only the informative significant blocks are extracted with our extraction technique, and are used, thus the number of edge points are drastically reduced which alleviate the computational and storage load, for real time applications. As only the significant blocks are used instead of the whole image, so in this approach the facial features are compared locally instead of a general structure, and hence allow us to make decision from the different parts of a face. As such it performs better in presence of occlusions. Again by selection of only those two peaks of the Hough transformed significant blocks that are nearest to the centroid of the available peaks further reduces the dimension of the feature vector and also enhances face recognition in presence of illumination and expression changes as a property of Hough transformation.

ACKNOWLEDGEMENT

Authors are thankful to a major project entitled “Design and Development of Facial Thermogram Technology for Biometric Security System,” funded by University Grants Commission (UGC), India and “DST-PURSE Programme” and CMATER and SRUVM project at Department of Computer Science and Engineering, Jadavpur University, India for providing necessary infrastructure to conduct experiments relating to this work. Dr. D.K. Basu would also like to thank the AICTE, New Delhi, INDIA for providing him an Emeritus Fellowship (F.No.1-51/RID/EF (13)/2007-2008).

REFERENCES

[1] R. Mar’ee, P. Geurts, J. Piater, and L. Wehenkel, “Random subwindows for robust image classification,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA. vol. 1, pp. 34 – 40, 2005.
[2] F. Porikli, “Integral histogram: A fast way to extract histograms in Cartesian spaces,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA. vol. 1, pp. 829 – 836, 2005.
[3] A. Ramisa, S. Vasudevan, D. Scharamuzzuza, R. M’antaras, and R. Siegwart, A tale of two object recognition methods for mobile robots, Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, 08193 Bellaterra, Spain.
[4] http://homepages.inf.ed.ac.uk/rbf/HPR2/hough.htm.
[5] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Intl. J. of Comp. Vision vol. 60, pp. 91 – 110, 2004.
[6] The Face recognition technology (FERET) database, available at: http://www.itl.nist.gov/iad/humanid/feret.
[7] Face Recognition and Artificial Vision group FRAV2D face database available at http://www.frv.es.
[8] The Oracle Research Laboratory Face Database of Faces, http://www.cam-orl.co.uk/facedatabase.html.
[9] H. B. Kekre, Ms. Saylee M. Gharge “Image Segmentation using Extended Edge Operator for Mammographic Images”, International Journal on Computer Science and Engineering Vol. 02, No. 04, 2010, 1086-1091.
[10] http://www.cs.may.ie/~johnmcd/SNHT/sld004.htm ln.
[11] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, “An Efficient k-Means Clustering Algorithm: Analysis and Implementation” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, July Y 2002.
[12] http://math.hws.edu/javanmath/ryan/ChiSquare.html.
[13] M. Turk, A. Pentland, “Eigenfaces for Recognition”, Journal of Cognitive Neuroscience, vol. 3, pp. 71 – 86. 0898-9299X, 1991.
[14] A. Pentland, B. Moghaddam, T. Starner, View Based and Modular Eigenspaces for Face Recognition, In Proceedings of Computer Vision and Pattern Recognition, pp. 84 – 91, 0-8186-5825-8, IEEE Computer Society, Seattle, USA, June 1994.
[15] C. Liu, H. Wechsler, Independent Component Analysis of Gabor Features for Face Recognition, IEEE Transactions on Neural Networks, vol. 14, no. 4, pp. 919–928, July 2003.
[16] Xiaohui Chen & Xiaojun Liu” A sub peak tracker based Hough transform for accurate and robust linear edge extraction” 2010 International Conference on Electrical and Control Engineering.
[17] http://www.lifenscience.com/bioinformatics/sensitivity- specificity-accuracy-and-relationship-between-them.