Correlation between neurological recovery and magnetic resonance imaging in Pott’s paraplegia

Anil Kumar Gupta1, Chandan Kumar1, Praveen Kumar, Ashok Kumar Verma, Rohit Nath1, Chaitanya D Kulkarni

ABSTRACT

Background: Spinal cord/nerve root compression secondary to a tubercular epidural abscess leads to neurological deficit. Depending on the extent and duration of compression, the end result after treatment may vary from complete recovery to permanent deficit. ASIA has been used extensively to correlate between MRI and neurological status due to traumatic spine injuries. MRI has stood as an invaluable diagnostic tool out of the entire range of current imaging modalities. However, in spite of considerable literature on the applications of MRI in spinal tuberculosis, there have been few studies to assess the relationship between the MRI findings and the neurological deficit as assessed by clinical examination.

Aims: The objective of this study was to ascertain whether the findings of magnetic resonance imaging (MRI) correlate well with the actual neurological recovery status using the American Spinal Injury Association impairment scale (ASIA) in patients with spinal compression secondary to tuberculous spondylitis.

Materials and Methods: 60 patients (mean age 43.6 years) diagnosed as spinal tuberculosis by MRI/cytology/histopathology were examined and classified into ASIA impairment scale A-E based on the ASIA and again reclassified after 6 months of therapy to assess functional recovery. Similarly, they underwent MR imaging at the start and at the completion of 6 months of therapy to assess the structural recovery. The MRI features of recovery were correlated with the actual neurological recovery as ascertained by the ASIA.

Results: Before starting treatment 1 patient (2.08%) was in ASIA A, 2 (4.16%) were in ASIA B, 9 (18.75%) were in ASIA C, 36 (75%) were in ASIA D and 12 (20%) were in ASIA E. There was a significant difference in the epidural abscess thickness, thecal compression and cord compression between ambulatory (ASIA D and ASIA E) and non ambulatory patients (ASIA A, ASIA B and ASIA C). After 6 months of therapy 30 (90%) patients in ASIA D and 5 (55.5%) in ASIA C had complete neurological recovery. Both patients from ASIA B improved to ASIA D. Single patient who was in ASIA A before treatment remained non ambulatory (ASIA C) after treatment. Overall 33 (78.5%) patients showed complete recovery at final follow up. Out of all the MRI features, only size of epidural abscess was found to be a poor prognostic factor for recovery of neurological deficit.

Conclusions: There are several parameters on MRI which correlate with the severity of neurological impairment according to ASIA score and resolution of those features on treatment is also correlated well with neurological recovery.

Key words: American Spinal Injury Association score, spinal tuberculosis, magnetic resonance imaging, paraplegia

MeSH terms: Spine, tuberculosis, magnetic resonance imaging, paraplegia

INTRODUCTION

Vertebral involvement in tuberculosis may lead to potentially catastrophic complications. Countries such as India particularly bear a heavy burden of this disease. Spinal cord/nerve root compression secondary to a tubercular epidural abscess leads to neurological deficit. Depending on the extent and duration of compression, the end result after treatment may vary from complete recovery to permanent deficit. Various grading systems like the Tuli grading system, Frankel grading system, American Spinal Injury Association impairment scale (ASIA), Nurick classification system Japanese Orthopedic Association scale etc., have been used for assessment of neurological deficit.
injury due to various disease processes. While ASIA has been used extensively to correlate between MRI and neurological status due to traumatic spine injuries very few studies have been done to evaluate its use in tuberculosis of the spine.

Imaging in spinal tuberculosis has evolved from the plain radiograph to MRI. Ever since its introduction, MRI has stood as an invaluable diagnostic tool out of the entire range of current imaging modalities.6-15 It has been extensively used in both diagnosis and followup of patients with tuberculous spondylitis. However, in spite of considerable literature on the applications of MRI in spinal tuberculosis, there have been few studies to assess the relationship between the MRI findings and the neurological deficit as assessed by clinical examination.

The purpose of this study was to establish a correlation between neurological recovery and MRI findings. Predictors for poor neurological recovery were also identified.

Materials and Methods

60 consecutive patients with tuberculosis of the spine proven on cytology/histopathology or clinicoradiologically (MRI) suspected were included in this prospective study conducted between 2010 and 2012, institutional review board approval and informed consent from all the patients were obtained.

Each patient underwent complete clinical and neurological examination and was classified according to the ASIA impairment scale [Table 1]. Each patient was assigned to a class ranging from A to E. Patients were also classified into non ambulatory (American Spinal Injury Association [ASIA] A, B and C) and ambulatory (ASIA D and E) groups. All patients were subjected to MRI at the beginning of study and 6 months after the start of treatment. MRI was done on a 1.5 T machine (Siemens Magnetom Symphony, Maestro Class, Germany). Key features of spinal involvement were and recorded.

All patients were started on anti tubercular treatment (ATT) comprising of isoniazid, rifampicin, pyrazinamide and ethambutol according to the body weight. 12 patients who met the criteria for surgical decompression according to Tuli’s middle path regimen, underwent anterolateral/ anterior decompression and abscess evacuation.

Patients were regrouped into new ASIA impairment scale at 6 months. A time span of 6 months of treatment duration and reassessment was chosen so as to have a reasonable duration for effect of treatment to be assessed.

All statistical calculations were done using the SPSS (version 16.0, Chicago, SPSS Inc. USA) software and level of significance was set at 0.05. For unpaired observations (ambulatory and non ambulatory) quantitative and qualitative data were confirmed to be parametric and analyzed with student t test and Fisher exact test respectively. For paired observations (before and after treatment) paired t test was used for quantitative data and Mc Nemar’s test was used for qualitative data.

Results

60 patients were evaluated. The mean age was 43.65 ± 16.88 years. There were 32 (53.33%) males and 28 (46.67%) females. Mean duration of illness at presentation was 2.75 ± 1.18 months. 10 patients were lost to followup and hence were not included in the final results.

Highest level of neurological involvement was cervical in 2 (3.3%) [Figure 1], thoracic in 36 (60%) [Figure 2] and lumbosacral in 10 (16.7%) [Figure 3]. Average number of affected vertebra were 2.86 (172 vertebra in 60 patients). Eight patients were excluded from evaluation of spinal cord parameters as the vertebral level of involvement was below L1.56.7% of the patients studied had involvement of the thoracic spine, 23.33% lumbar spine, 16.67% patients thoracolumbar spine (T12-L1) and 3.3% (n = 2) had cervical spine involvement. Isolated posterior element involvement was not seen in any patient.

Features in relation to cord compression included epidural abscess, thecal sac compression, presence or absence of cerebrospinal fluid (CSF) anterior to cord, cord compression and cord edema (defined as bright signal change on T2-weighted image). There was a significant difference in the epidural abscess thickness between the ambulatory and non ambulatory patients (P = 0.02).51 patients (85%) had thecal compression and 36 (69.2%) had cord compression. Significant difference was found in thecal compression and cord compression between ambulatory and non ambulatory patients (P = 0.003 and P = 0.000 respectively). Loss of CSF anterior to cord was seen in 76.67% with a significant difference between ambulatory and non ambulatory patients (P = 0.001) [Tables 2 and 3]. Before the start of

ASIA impairment scale	Before treatment %	After 6 months of treatment %
A	2.08 (1/60)	0.0 (0/50)
B	4.16 (2/60)	0.0 (0/50)
C	18.75 (9/60)	2 (5/50)
D	75.0 (36/60)	14 (7/50)
E	20 (12/60)	82 (41/50)

ASIA=American Spinal Injury Association.
Figure 1: Magnetic resonance imaging cervical spine sagittal T1W (a), sagittal T2W (b), coronal short tau inversion recovery (c), axial T1W (d), axial T2W (e) in a 35 year female presenting with upper and lower limb weakness. American Spinal Injury Association Class A. Tuberculous spondylitis involving C1-C2 and clivus (a-c). Periodontoid and epidural granulation tissue (6.0 mm in maximum thickness) extending up to C3 level (b). Basilar invagination and atlantoaxial dislocation with epidural granulation tissue causing kinking and compression of cervico medullary junction with compressive myelopathy.

Figure 2: Magnetic resonance imaging dorsal spine sagittal T1W (a), sagittal T2W (b), coronal short-tau inversion recovery (c), axial T1W (d), axial T2W (e) in a 48 year female presenting with back pain and fever, with weakness in both lower limbs. American Spinal Injury Association Class D. Multilevel tuberculous spondylitis of D7-D11 vertebral bodies and bilateral pedicles (a-c). Intervening intervertebral discs involved. Epidural collection extending from D8 to D10 level measuring 10 mm in maximum thickness (b and e) and causing cord compression. Pre and para vertebral collection extending from D7 to D11 level (c-e). Right loculated pleural collection noted (c).
decompression in the form of costotransversectomy, dural release, debridement and spinal fixation. After 6 months of therapy, 90.0% patients (n = 30) of ASIA D showed signs of complete neurological recovery. Out of nine patients initially classified as ASIA C 11.11% patients (n = 1) remained in ASIA C, while 22.22% patients (n = 2) recovered to ASIA D and 55.55% patients (n = 5) to ASIA E. Both patients from initial ASIA B moved to ASIA D. There was only one patient in ASIA A before treatment and even after surgical treatment remained non ambulatory (ASIA C).

At 6 months after therapy, mean epidural abscess thickness was 1.8 ± 1.34 mm. There was a significant difference between pretreatment and posttreatment epidural abscess thickness (P = 0.000).

Thecal sac compression significantly decreased from pretreatment level of 51/60 (85) to 10/50 (20) after 6 months (P = 0.000). Absent CSF anterior to cord decreased from 45/60 (75) to 8/50 (16). Cord compression decreased from 36/52 (69.2%) to 7/42 (16.7) after 6 months (P = 0.000). Cord edema showed a significant reduction from 39/52 (75) to 1/42 (2.4) after 6 months of therapy (P = 0.000).

After 6 months of therapy, 90.0% patients (n = 30) of ASIA D showed signs of complete neurological recovery. Out of nine patients initially classified as ASIA C 11.11% patients (n = 1) remained in ASIA C, while 22.22% patients (n = 2) recovered to ASIA D and 55.55% patients (n = 5) to ASIA E. Both patients from initial ASIA B moved to ASIA D. There was only one patient in ASIA A before treatment and even after surgical treatment remained non ambulatory (ASIA C).

At 6 months after therapy, mean epidural abscess thickness was 1.8 ± 1.34 mm. There was a significant difference between pretreatment and posttreatment epidural abscess thickness (P = 0.000).

Thecal sac compression significantly decreased from pretreatment level of 48 (80%) to 10 (20%) after 6 months (P = 0.000). Loss of CSF anterior to cord was absent in 46 (76.6%) patients in pretreatment stage and reduced to 8 (16%) patients after 6 months (P = 0.000). There was a significant reduction in number of patients with cord compression (pretreatment: 36 (69.23%), after 6 months treatment: 8 (19.04%), (P = 0.000). After 6 months of therapy cord edema was present in only one case (2.4%). Thus, after treatment 78.57% (33/42) of patients from all classes, present at followup showed complete resolution of deficit.

Out of all MRI features, only size of epidural abscess was found to be poor prognostic factor for non recovery of neurological deficit (P = 0.008).

Table 2: MRI features before and after treatment
MRI finding

Thecal sac compression
Absent CSF anterior to cord
Cord compression
Cord edema

Table 3: Size of epidural abscess and neurological status
Neurological status
Ambulatory
Nonambulatory
SD=Standard deviation

Figure 3: Magnetic resonance imaging lumbar spine sagittal T1W (a), sagittal T2W (b), coronal short-tau inversion recovery (c), axial T2W (d), axial T2W (e) in 30 year-old-male presenting with low grade back ache for 5 months progressing to bilateral lower limb weakness. American Spinal Injury Association Class D. Tuberculous spondylitis of L2, L3 and L4 vertebral bodies and bilateral pedicles with collapse (a-c). L3/4 disc shows diskitis, destruction and fluid intensity (b). Epidural abscess measuring 6.0 mm in maximal thickness (b). Bilateral paravertebral and iliopsoas abscess noted.
Pathological evolution of tuberculous lesion in the spine follows the same principles as elsewhere in the body and is characterized by caseous necrosis and destruction of tissues. In case of spinal tuberculosis, the spinal cord is susceptible to myelopathy secondary to compression from an epidural abscess. The abscess can arise from anywhere from the vertebral arch in relation to the cord and may present with specific symptoms depending on the site of cord compression. Cord compression can also result from a collapsed vertebra with dorsal fragment impinging on the cord. Nerve root compression may also result from a similar mechanism. Consequently, cord/nerve root compression leads to progressive neurological symptoms in the form of weakness, referred pain or loss of function. The deficit appears as spasticity and progresses to partial and total motor loss with gradual sensory deficit.16,17

In our study, 80\% (48/60) of the patients had neurological deficit at presentation. They were classified into ASIA impairment scale A-D. 20\% of the patients (12/60) had normal neurological status at presentation hence classified into ASIA E. Thus, most of our patients (60\%) had mild neurological deficit (ASIA D) with lower limb power >3/5 and normal anal tone. In a similar study, Khalid et al.18 showed mild neurological deficit in 75\% of their patients.

There have been reports of isolated posterior element involvement by Desai12 (8\%) and Gupta et al.19 (73\%), however, none of our patients showed isolated posterior element involvement. Out of 172 vertebrae affected in 60 patients, posterior element involvement was seen in 60 vertebrae (34.88\%). Cortical erosion of vertebrae was seen in all 60 patients. According to Sharif et al.,20 this is a very helpful point to differentiate tuberculosis spondylitis from pyogenic spondylitis. Further progression of the disease causes destruction of the vertebrae leading to anterior wedging with partial or complete collapse and kyphotic/kyphoscoliotic deformity, which was seen in 40\% (24/60) of our patients. Subligamentous spread of the lesion was seen in 45 patients (75.0\%). Jain et al.21 recorded 92\% and 49.2\% patients having subligamentous spread and kyphoscoliotic deformity and made an extensive review of such reports. Subligamentous spread of the lesion is characteristic of tuberculous spondylitis because the tubercle bacilli lack proteolytic enzymes to destroy the ligaments. Extension of the lesion with pre and paravertebral soft tissue involvement was seen in 88\% and 89\%, respectively in the form of granulation tissue and abscess. This figure is comparable to the study done by Jain et al.21

Epidural abscess was present in 56/60 patients (93.3\%) before treatment. Epidural abscess has been reported between 53.3\% and 100\% in various series.21-23 Thickness of epidural abscess in ambulatory patient group was (4.9 ± 2.9 mm) and in non ambulatory group it was (7.2 ± 3 mm). This difference was significant (\(P = 0.02\)). We found size of epidural abscess to be a poor prognostic factor for neurological recovery (\(P = 0.008\)). Four patients in our study who did not recover had epidural abscess size of 10.5 ± 1.73. This value is significantly more compared to patients who recovered (\(P = 0.001\)). This indicates significantly large size of epidural abscess as a causative factor for non recovery of neurological status.

Spinal cord involvement was very clearly seen on sagittal and axial MR images. 78.33\% (47/60) patients had thecal compression out of which 56.67\% had actual cord compression. Jain et al.21 in their study found altered cord signal intensity in 22.4\% (\(n = 11\)) of their cases. Six patients had complete resolution of edema on followup. They also stated that edema of the cord was compatible with good neurological recovery following treatment.
Patient Name	Age/sex	Highest level of compression	Treatment	Features before treatment - ASIA impairment scale and on MRI	Features after treatment - ASIA impairment scale and on MRI	Improvement
Usha Devi	35/F	C2	S+M	A 6 Present Absent Present	C 2 Absent Present Absent	Fair
Reeta Arya	62/F	T6	S+M	B 7 Present Absent Present	D 3 Present Absent Present	Good
Vimla	50/F	T2	S+M	B 5 Present Absent Present	D 2 Present Absent Present	Good
Jagdamba Devi	24/F	T3	S+M	C 6 Present Absent Present	E 0 Absent Present Absent	Excellent
Durga Taiwar	53/F	T4	S+M	C 6 Present Absent Present	E 0 Absent Present Absent	Excellent
Nayan Govind	54/M	L2	S+M	C 2 Present Absent NA	E 0 Absent Present Absent	Excellent
Parmeshwar S.61/M	60/M	L4	S+M	C 6 Present Absent NA	E 2 Absent Present Absent	Excellent
Matola	60/M	T8	S+M	C 10 Present Absent Present	D 2 Present Absent Present	Good
Ajit	62/M	T8	S+M	C 11 Present Absent Present	D 3 Present Absent Present	Good
R N Singh	26/M	T12	S+M	C 9 Present Absent Present	E 2 Absent Present Absent	Excellent
Sita	25/F	T5	S+M	C 5 Present Absent Present	E 0 Absent Present Absent	Excellent
Ram Pal	70/M	T2	S+M	C 13 Present Absent NA	C 4 Present Absent Present	None
Bharat Gupta	16/M	T1	M	D 4 Present Absent Present	E 0 Absent Present Absent	Excellent
Vijay Singh	60/M	T12-L1	M	D 5 Present Absent Present	E 1 Absent Present Absent	Excellent
Ramesh Singh	29/M	T7-9	M	D 4 Present Absent Present	E 0 Absent Present Absent	Excellent
Savita Singh	35/F	T4-8	M	D 9 Present Absent Present	E 2 Absent Present Absent	Excellent
Mahesh Doha	65/M	T11	M	D 4 Present Absent Present	E 3 Absent Present Absent	Excellent
Arti Garwa	53/F	T1	M	D 4 Present Absent Present	E 0 Absent Present Absent	Excellent
Anup Vardhan	40/M	L4	M	D 5 Present Absent NA	E 1 Absent Present Absent	Excellent
Priyadarshini	50/F	T7	M	D 4 Present Absent Present	E 0 Absent Present Absent	Excellent
Manisha	24/F	T11	M	D 6 Present Absent Present	E 1 Absent Present Absent	Excellent
Shilpa Sawant	19/F	T7-8	M	D 8 Present Absent Present	E 2 Absent Present Absent	Excellent
Hanhar	50/M	T12	M	D 8 Present Absent Present	E 1 Absent Present Absent	Excellent
Manna Lal	71/M	T8	M	D 9 Present Absent Present	D 4 Present Absent Present None	
Komal Devi	62/F	T4	M	D 4 Present Present Absent	E 0 Absent Present Absent	Excellent
Sharmila P.	52/F	T12	M	D 5 Present Absent Present	E 1 Absent Present Absent	Excellent
Kamlesh Singh	43/M	T7	M	D 6 Present Absent Present	E 1 Absent Present Absent	Excellent
Dharmendra	35/M	T11-L2	M	D 6 Present Absent Present	E 2 Absent Present Absent	Excellent
Muneshwar	30/M	L2	M	D 4 Present Absent NA	E 0 Absent Present Absent	Excellent
Maya Devi	48/F	T8-9	M	D 10 Present Absent Present	D 4 Present Absent Present None	
Beena	30/F	T10-conus	M	D 10 Present Absent Present	D 4 Present Present Absent None	
Suresh	80/M	Conus	M	D 5 Present Absent Present	E 1 Absent Present Absent	Excellent
Somwalli	55/F	T10-11	M	D 8 Present Absent Present	E 2 Absent Present Absent	Excellent
Sachin Singh	24/M	Cauda	M	D 9 Present Absent NA	E 4 Absent Present Absent	Excellent
Satish Singh	35/M	Conus	M	D 10 Present Absent Present	E 4 Present Present Absent None	
Akash Gang	36/M	T7-8	M	D 8 Present Absent Present	E 2 Absent Present Absent	Excellent
Akanksha G	22/F	T10	M	D 10 Present Absent Present	D 4 Present Present Absent None	
Badru Singh	40/M	T9-11	M	D 8 Present Absent Present	E 2 Absent Present Absent	Excellent

Contd...
Age/sex	Highest level of compression	Treatment	Features before treatment- ASIA impairment scale and on MRI	Features after treatment- ASIA impairment scale and on MRI	Improvement								
		ASIA	Epidural abscess thickness (mm)	Thecal compression	CSF thickness	Cord compression	ASIA	Epidural abscess thickness (mm)	Thecal compression	CSF thickness	Cord compression		
Jogeshwar 15/F	C5-6	M	D	7	Present	Absent	Present	E	2	Absent	Present	Absent	Excellent
Amar Singh 60/M	T12-L1	M	D	5	Present	Absent	Present	E	0	Absent	Present	Absent	Excellent
Amit Gupta 24/M	T9-10	M	D	5	Present	Absent	Present	E	0	Absent	Present	Absent	Excellent
Archana Singh 36/F	T9-10	M	D	7	Present	Absent	Present	E	2	Absent	Present	Absent	Excellent
Dinesh Katiyar 32/M	T9-10	M	D	3	Present	Absent	Present	-	-	-	-	-	
Divya Matey 65/F	T12	M	D	2	Present	Absent	Present	-	-	-	-	-	
Prem Chandra 64/M	T11 roots	M	D	2	Present	Absent	Present	-	-	-	-	-	
Mohd. Rizwan 65/M	T8	M	D	2	Present	Absent	Present	-	-	-	-	-	
Santosh 45/M	L1-2	M	D	5	Present	Absent	Present	-	-	-	-	-	
Kumar Shehnaz 45/F	Cauda	M	D	4	Present	Absent	NA	-	-	-	-	-	
Shama Begum 32/F	Not app	M	Not app	2	Absent	Present	Absent	Not app	0	Absent	Present	Absent	-
Priya Omer 28/F	Not app	M	Not app	1	Absent	Present	Absent	Not app	0	Absent	Present	Absent	-
Sarojini S. 40/F	Not app	M	Not app	3	Absent	Present	Absent	Not app	1	Absent	Present	Absent	-
Bindeshwari 60/M	Not app	M	Not app	4	Absent	Present	Absent	Not app	3	Absent	Present	Absent	-
Abida Khatoon 54/F	Not app	M	Not app	3	Absent	Present	Absent	Not app	1	Absent	Present	Absent	-
Ratnesh 51/M	Not app	M	Not app	4	Absent	Present	Absent	Not app	1	Absent	Present	Absent	-
Mahalaxmi 45/F	Not app	M	Not app	2	Absent	Present	Absent	Not app	0	Absent	Present	Absent	-
Shabana Alam 18/F	Not app	M	Not app	1	Absent	Present	Absent	Not app	0	Absent	Present	Absent	-
Noorie Khan 23/F	Not app	M	Not app	0	Absent	Present	Absent	-	-	-	-	-	
Jolie Dayal 23/F	Not app	M	Not app	0	Absent	Present	Absent	Not present for followup	-	-	-	-	
Chandini 28/F	Not app	M	Not app	0	Absent	Present	Absent	-	-	-	-	-	
Shiv Narayan 30/M	Not app	M	Not app	0	Absent	Present	Absent	-	-	-	-	-	

ASIA = American Spinal Injury Association, MRI = Magnetic resonance imaging, CSF = Cerebrospinal fluid, NA = Not app
Dunn et al. in their study found cord edema in 80% (n = 56) of patients. They also found a correlation of ambulatory status to cord signal changes to be significant. They could not find predictive features for this on MRI.

In our study, cord edema was present in 75% (n = 39/52) of patients before treatment which reduced to 2.4% (n = 1/42) after 6 months of treatment. Hence, we are also of the opinion that edema of the cord does not affect neurological recovery. Unlike Dunn et al., we could not find a significant correlation between cord edema and ambulatory status, but we also could not find it to be predictive for non-recovery. Both Jain et al. and Dunn et al. had no cases of myelomalacia (defined as low signal intensity on T1) in their series as they had no cases with long standing compression. We also could not find low signal intensity on T1 in any case as mean duration of illness at presentation was only 2.75 ± 1.18 months (range: 1-5 months).

Thus, in decreasing order of frequency the progression of compression was thecal compression, loss of CSF thickness, cord edema, and cord compression. This is understandable because not all cord compression lead on to a neurological deficit. According to Cotten et al., neurological deficit occurs only when there is more than 60% encroachment of the spinal canal above the level of the conus. Jain et al. reported up to 76% canal encroachment leads to no significant deficit. There has been no similar study in available literature that has documented the utility of ASIA grading system in followup of patients with spinal tuberculosis with demonstration of simultaneous structural recovery on MRI.

Hence, we can conclude that there are several parameters on MRI which correlate with the severity of neurological impairment according to ASIA score and resolution of those features on treatment is also correlated well with neurological recovery. However out of all those features recorded only epidural abscess size correlates with poor prognosis.

References

1. World Health Organization. Global Tuberculosis Report. WHO Library Cataloguing-in-Publication Data. Global tuberculosis report 2012 World Health Organization, Geneva 27, Switzerland; p: 107-128.

2. Jain AK. Tuberculosis of the spine: A fresh look at an old disease. J Bone Joint Surg Br 2010;92:905-13.

3. Tuli SM. Tuberculosis of Skeletal System. 2nd ed. New Delhi: Jaypee Brothers; 1996. p. 220.

4. Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Unger GH, et al. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 1969;7:179-92.

5. Ditunno JF Jr, Young W, Donovan WH, Creasey G. The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Paraplegia 1994;32:70-80.

6. Weaver P, Lifeso RM. The radiological diagnosis of tuberculosis of the adult spine. Skeletal Radiol 1984;12:178-86.

7. Modic MT, Feiglin DH, Piraino DW, Boumphrey F, Weinstein MA, Duchesneau PM, et al. Vertebral osteomyelitis: Assessment using MR. Radiology 1985;157:157-66.

8. Lifeso RM, Weaver P, Harder EH. Tuberculous spondylitis in adults. J Bone Joint Surg Am 1985;67:1405-13.

9. Sharif HS, Clark DC, Aabed MY, Haddad MC, al Deeb SM, Yaqub B, et al. Granulomatous spinal infections: MR imaging. Radiology 1990;177:101-7.

10. Boxer DI, Pratt C, Hine AL, McNicol M. Radiological features during and following treatment of spinal tuberculosis. Br J Radiol 1992;65:476-9.

11. Kim NH, Lee HM, Suh JS. Magnetic resonance imaging for the diagnosis of tuberculous spondylitis. Spine (Phila Pa 1976) 1994;19:2451-5.

12. Desai SS. Early diagnosis of spinal tuberculosis by MRI. J Bone Joint Surg Br 1994;76:863-9.

13. Shanley DJ. Tuberculosis of the spine: Imaging features. AJR Am J Roentgenol 1995;164:659-64.

14. Sternbach G, Percivall Pott: Tuberculous spondylitis. J Emerg Med 1996;14:79-83.

15. Cotten A, Flipo RM, Drouot MH, Maury F, Chastanet P, Duquesnoy B, et al. Spinal tuberculosis. Study of clinical and radiological aspects from a series of 82 cases. J Radiol 1996;77:419-26.

16. Jain AK, Sinha S. Evaluation of systems of grading of neurological deficit in tuberculosis of spine. Spinal Cord 2005;43:375-80.

17. Jain AK, Dhammi IK, Jain S, Kumar J. Simultaneously anterior decompresion and posterior instrumentation by extra pleural retroperitoneal approach in thoracolumbar lesions. Indian J Orthop 2010;44:409-16.

18. Khalid M, Siddiqui MA, Qaseem SM, Mittal S, Iraqi AA, Rizvi SA. Role of magnetic resonance imaging in evaluation of tubercular spondylitis: Pattern of disease in 100 patients with review of literature. J Nepal Med Assoc 2011;51:116-21.

19. Gupta RK, Agarwal P, Rastogi H, Kumar S, Phadke RV, Krishnani N. Problems in distinguishing spinal tuberculosis from neoplasia on MRI. Neuroradiology 1996;38 Suppl 1:S97-104.

20. Sharif HS, Morgan JL, al Shahed MS, al Thagafi MY. Role of CT and MR imaging in the management of tuberculous spondylitis. Radiol Clin North Am 1995;33:787-804.

21. Jain AK, Sreenivasan R, Saini NS, Kumar S, Jain S, Dhammi IK. Magnetic resonance evaluation of tubercular lesion in spine. Int Orthop 2012;36:261-9.

22. Gehlot PS, Chaturvedi S, Kashyap R, Singh V. Pott’s spine: Retrospective analysis of MRI scans of 70 cases. J Clin Diag Res. 2012 Nov; 6:1534-8.

23. Thrush A, Enzmann D. MR imaging of infectious spondylitis. AJNR Am J Neuroradiol. 1990;11:1171-1180.

24. Dunn R, Zondagh I, Candy S. Spinal tuberculosis: Magnetic resonance imaging and bone destruction in Pott’s paraplegia. Indian J Orthop 1987;21:234-346-73.

25. Jain AK, Aggarwal A, Mehrrota G. Correlation of canal encroachment with neurological deficit in tuberculous of the spine. Int Orthop 1999;23:85-6.

How to cite this article: Gupta AK, Kumar C, Kumar P, Verma AK, Nath R, Kulkarni CD. Correlation between neurological recovery and magnetic resonance imaging in Pott’s paraplegia. Indian J Orthop 2014;48:366-73.

Source of Support: Nil. Conflict of Interest: None.