ABSTRACT

Rituximab is a chimeric monoclonal antibody directed at the CD20 molecule on the surfaces of some but not all B cells. It depletes almost all peripheral B cells, but other niches of B cells are variably depleted, including synovium. Its mechanism of action in rheumatoid arthritis (RA) is only partially understood. Rituximab was efficacious in clinical trials of patients with RA, including those who are methotrexate naïve, those with an incomplete response to methotrexate, and those with an incomplete response to tumor necrosis factor inhibitors. The need for a concomitant traditional disease-modifying drug, the optimal dose of rituximab, and the optimal interval for retreatment remain somewhat uncertain. Rituximab seems to be most efficacious in seropositive patients and those with an incomplete response to only one tumor necrosis factor inhibitor. Rituximab has a reasonable safety profile, with a small risk of serious infectious events, which is stable over time and repeat courses. Opportunistic infections are rare. Reactivation of hepatitis B remains a concern. The possible association of rituximab and progressive multifocal leukoencephalopathy may still require vigilance. Malignancies and cardiovascular events do not appear to be increased. Infusion reactions are more likely with the initial infusion, and are usually mild. Rituximab may cause hypogammaglobulinemia, but any risk of subsequent risk of increased infectious events is not yet well established. Before initiating rituximab, patient screening for hypersensitivity to murine proteins, infections, congestive heart failure, pregnancy, and hypogammaglobulinemia is imperative. Vaccinations should be administered prior to treatment whenever possible. Rituximab has been a significant addition to the rheumatologists’ armamentarium for the treatment of RA.

M. D. Cohen
Professor Emeritus Mayo Clinic, Rochester, USA
E-mail: mcohen@rheumdoc.net

E. Keystone
University of Toronto, Toronto, Canada

E. Keystone
The Rebecca MacDonald Centre for Arthritis and Autoimmune Diseases, Mount Sinai Hospital, Toronto, Canada
Keywords: Rheumatoid arthritis; Rituximab

INTRODUCTION

Rituximab remains a unique therapeutic option for the treatment of rheumatoid arthritis. There is now a rich literature regarding its efficacy and safety. Questions remain, however, about its exact mechanism of action in RA, the most appropriate dosing schedule, and which RA patients might benefit the most from its use. All of these aspects of rituximab for RA are reviewed in this article.

MECHANISMS OF ACTION

Rituximab is a monoclonal antibody directed at the CD20 molecule on the surfaces of some B cells. It is a chimeric product consisting of approximately 20% mouse and 80% human protein. Rituximab depletes mature B cells and pre-B cells through memory B cell stages, but stem cells, pro-B cells, terminally differentiated plasma cells, and plasmablasts do not express CD20 and are not depleted [1, 2]. Intravenous rituximab in RA patients results in almost complete depletion of peripheral B cells and variable depletion of B cells in synovium and other sites such as lymphoid tissue and bone marrow [2, 3]. Clinical response correlates to some degree with synovial tissue B cell depletion and perhaps with peripheral B cell depletion [3–6]. Reconstitution of B cells post rituximab results in immature, naïve B cells, but in many patients it leads to relapse of clinical disease [3]. Rituximab depletes B cells by several mechanisms, including mediation of antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and B cell apoptosis [2]. Precisely how B cell depletion results in clinical efficacy in RA is incompletely understood, but the effects may be mediated via B cell antigen presentation ability, B cell production of cytokines, and B cell production of autoantibodies such as rheumatoid factor [1, 2].

Compliance with Ethical Guidelines

This article is based on previously conducted studies and does not involve any new studies of human or animal subjects performed by any of the authors.

APPROVAL

Rituximab has been approved by the US Food and Drug Administration and the European Medicines Agency in Europe for the treatment of RA in patients with an incomplete response or intolerance to tumor necrosis inhibitors (TNFi). It is licensed as two intravenous 1 gm infusions separated by 2 weeks with concomitant methotrexate (MTX) and with intravenous corticosteroid premedication [7].

EFFICACY

Rituximab has been established as efficacious and safe in RA in combination with MTX and disease-modifying antirheumatic drugs (DMARDs) [8–14] The rituximab-MTX combination was initially demonstrated to be superior than either drug as monotherapy (DANCER), and premedication with 100 mg of methylprednisolone did not affect the achievement of the primary endpoint [9]. In two subsequent trials (SERENE, MIRROR), rituximab plus MTX was superior to methotrexate plus placebo, and two doses of 1000 mg were marginally clinically different
than two doses of 500 mg [10, 11]. Both rituximab doses were similar to MTX + placebo with regards to safety.

In patients with an incomplete response to TNFi, rituximab + MTX has also been established as safe and efficacious [12–14]. In the REFLEX trial, the rituximab-treated group (2 × 1000 mg) was clinically superior at week 24, and a significant percentage of placebo-treated patients were capable of being rescued by subsequent rituximab [12]. In addition, subsequent courses of rituximab were also safely and efficaciously administered. At 2 years, radiographic progression was significantly reduced in the rituximab-treated group compared to the placebo group [13]. In a later trial (SUNRISE), rituximab was clinically superior to placebo, and retreatment at 6 months was superior to a single course at 1 year [14].

A phase 3 trial (IMAGE) also demonstrated the efficacy of rituximab in early RA patients who were MTX-naïve [15]. Rituximab was used in 2 × 500 and 2 × 1000 mg doses in this trial, and although clinical efficacy was similar, a significant reduction in radiographic damage was only seen in the latter treatment group at 1 year. At 2 years, however, the lower-dose group also demonstrated a reduction in radiographic damage compared to the placebo group [16]. The study was insufficiently powered to differentiate statistically between the two rituximab doses.

Rituximab has been studied in combination with TNFi agents, and the numerical risk of serious adverse events was only slightly increased, but without a significant increase in efficacy [17].

Rituximab has been combined with DMARDs other than MTX to achieve clinical efficacy [18]. Certainly leflunomide seems to be a viable alternative [18, 19].

Although rituximab is approved in combination with MTX, rituximab was used as monotherapy in the original phase 2 trial, and the response was superior to placebo for ACR20 responses but not for higher-level responses. A later study also found rituximab monotherapy to be efficacious, but the authors concluded that it should only be used for selected patients [19]. A large registry review found that rituximab combined with MTX or leflunomide was superior to rituximab monotherapy, although another registry found monotherapy to be reasonably efficacious [18, 20]. Rituximab monotherapy is therefore not usually recommended except for exceptional circumstances.

Given the data cited from the DANCER, SERENE, and IMAGE trials, there has been controversy over the optimal rituximab dose. While it appeared that the 2 × 1000 mg and 2 × 500 mg doses may be equivalent with respect to improvement in signs and symptoms, the 2 × 1000 mg dose showed better “high hurdle” outcomes. The 2 × 1000 mg rituximab dose demonstrated a more rapid inhibition of radiographic damage compared to the lower dose, and there was also a trend for more radiographic inhibition with the higher dose. To date, there are no data concerning the ability of the 2 × 500 mg dose to inhibit radiographic progression in TNF-inadequate responders. Bredemeier et al. conducted a meta-analysis of four rituximab studies which utilized the two doses and concluded that there were no significant differences in the clinical responses. There were limitations in the analysis, however; the main being the comparison of heterogeneous populations, including populations in which rituximab is not licensed for use: in MTX-naïve patients. Also, in this analysis, some of the included studies were only powered to detect a
difference between the rituximab dose and placebo, not between the two drug doses, and the results of the non-inferiority analyses were not consistent for all outcomes [21]. A large registry review was somewhat less certain about any differences between doses, but in an incisive editorial there was a call for more studies to address the appropriate rituximab dose issue [22, 23]. Whether or not the higher dose needs to be continued throughout all treatment courses once a targeted response is achieved is also uncertain. With regards to the question of retreatment dosing, an open label prospective non-inferiority study by Mariette et al. revealed that, in patients who achieved a EULAR good/moderate response 6 months after an initial 1000 mg × 2 rituximab dose, retreatment with a single 1000 mg rituximab dose was non-inferior to retreatment with a 1000 mg dose × 2 dose regimen [24].

A number of studies have demonstrated that rituximab is more efficacious in seropositive (rheumatoid factor (RF) and anti-citrullinated peptide antibody (ACPA) RA patients [25–27]. Data from large registries also suggest superior clinical efficacy [28–32]. In the REFLEX trial, a response was seen in seropositive (rheumatoid factor) and to a lesser extent in seronegative patients, but a significant reduction in radiographic patients was only seen in the seropositive group [11, 30]. In the REFLEX SERENE, and IMAGE studies, seropositivity for RF and ACPA was associated with a superior clinical response to rituximab [31]. A vigorous analysis of the question of antibody status and response was carried out in a meta-analysis of four trials (REFLEX, DANCER, IMAGE, and SERENE) by Isaacs et al. [25]. When a fixed-effect model was used, the results indicated a benefit with rituximab in seropositive patients compared to seronegative patients, but with a modest reduction in DAS28-ESR of 0.35 units, although heterogeneous indices suggested significant uncertainty in the overall-effect model.

Response to rituximab has also been reported to be more efficacious in patients who have failed only one TNFi, as opposed to those who have failed more than one [28, 30]. A number of studies have attempted to compare the use of rituximab in TNFi-incomplete responders versus switching to another TNFi, and although the results of many of these studies favor rituximab, they have not all been large, blinded, or direct comparisons and have not led to an accepted consensus [32–37]. Given the pending patent expiration, any further, more rigorous studies are unlikely to be conducted.

Biomarkers and genetic markers have also been postulated to affect the clinical response to rituximab. Among others, these include Fc-gamma receptor type IIIA polymorphism, promoter polymorphism of the B-cell activation factor gene, baseline numbers of CD27+ memory cells, and levels of B cell chemokines [38–41]. B cell subset numbers have been reported to predict responsiveness to rituximab, but whether or not any of these factors will ultimately be widely available or practical remains to be determined [42, 43].

RETREATMENT WITH RITUXIMAB

In clinical trials (SERENE, MIRROR, DANCER), repeat rituximab dosing was allowed every 6 months [9–11]. Typical clinical responses from rituximab are usually seen 3–4 months after the initial infusions, although the concomitant corticosteroids may provide a very early, transient effect [7]. The duration of the effect is quite variable, so the optimal timing for retreatment is difficult to predict. Repopulation of B cells after rituximab usually requires 6–9 months, but is also variable [1, 4].
The US package insert for rituximab suggests that rituximab can be given not sooner than every 4 months according to clinical evaluation. Several retreatment options have been studied. A review of retreated patients from the clinical trials suggested that the fixed-interval (24 week) treat to target strategy was superior to one which retreated patients at the discretion of the physician (prn) [44]. In this retrospective pooled analysis, baseline disease characteristics were thought to be generally well balanced, but those patients receiving prn retreatment were more likely to have established RA with a median 8.5 years of disease and were more likely to be TNF-inadequate responders, while those patients retreated using a treat to target approach were more likely to have a shorter disease duration with a median of 3.6 years of disease and to be biologic-naïve. That the differences between the two groups may have influenced the results remains a significant possibility. A prospective study demonstrated that rituximab retreatment was deemed necessary at around 8 months [45]. The latest European consensus statement suggests that retreatment in initial responders should be considered at 24 weeks in patients who do not achieve low disease activity or remission, and that it should be delayed otherwise until disease activity flares [7].

Whether or not initial nonresponders should be retreated remains somewhat uncertain [46, 47]. While data from the SUNRISE study demonstrated a low response overall to repeat treatment in initial rituximab nonresponders, repeat treatment was superior to a single course [14]. Analysis of data from the MIRROR study demonstrated that 46% of patients failing to achieve an ACR20 response after initial treatment achieved at least an ACR20 response at 48 weeks following their second treatment course [11]. In the analysis by Vital et al., a proportion of the patients not responding to an initial rituximab course exhibited improvement following an additional course [46]. These data suggest that an additional course of treatment within 24 weeks might be carefully considered in initial rituximab nonresponders, in contrast to the published guidelines which state that alternative treatment agents should probably be considered in initial nonresponders.

SAFETY OF RITUXIMAB

In two of the clinical trials, a numerically higher rate of serious infections, but not opportunistic infections including tuberculosis, was reported in patients receiving the 2×1000 mg dose compared to placebo, 4.7 compared to 3.2/100 patient years in DANCER and 5.2 compared to 3.7 patient years in REFLEX [8, 11]. In the IMAGE trial, however, the rate of serious infections was lower in both of the rituximab treatment arms compared to placebo [15]. In addition, a meta-analysis did not report an increased risk of serious infections in rituximab-treated patients compared to placebo-treated patients [48]. Data from a large French registry observed a slightly increased rate of serious infections in rituximab-treated patients in the first 6 months of treatment, comparable to the rate reported in randomized clinical trials [49]. With regards to serious infections requiring hospitalization, a study concluded that the rate of such infections with rituximab was comparable to that seen with the TNFi infliximab [50].

Van Vollenhoven et al. have recently reported a pooled analysis of the long-term safety of rituximab in global clinical trials over 9.5 and then 11 years [51, 52]. The initial published data included 3194 patients and 11,962 patient years. Overall, infections (in >5%) reported in the rituximab-treated
patients were upper respiratory infections, nasopharyngitis, urinary tract infections, bronchitis, sinusitis, diarrhea, and gastroenteritis. The most common serious infection was pneumonia, with an overall serious infection rate of 3.94/100 patient years, and this was comparable to the rate of patients treated with MTX + placebo at 3.79/100 patient years. Importantly, the risk of serious infections was stable over time, even with multiple courses of treatment. There were two cases of tuberculosis (TB), no cases of extrapulmonary TB, no cases of atypical TB, and other opportunistic infections were very rare. There were no cases of hepatitis B reactivation, but one case of de novo hepatitis B. Rates of herpes zoster infection were 9.0/1000 patient-years, but this was comparable to the MTX + placebo-treated patients (11.7/100 patient-years) and the general RA population (11.5 patient-years).

Another paper reported three cases of TB and five cases of non-TB mycobacterial infections in a survey of rituximab-treated RA patients [53]. A previously mentioned report included patients with TB treated with rituximab without reactivation [49]. A recent study of 56 rituximab-treated patients at high risk for TB did not report any reactivation [54]. The risk of hepatitis C reactivation seems uncertain [55].

Progressive multifocal leukoencephalitis (PML) is a progressive infection caused by the JC virus, and cases of PML have been reported in RA patients treated with rituximab [56–59]. A recent review in abstract form cited a total of 11 cases of PML in RA patients treated with all biologics, with rituximab being the most recently administered biologic in most of these [58]. In many of the reported cases, there had been previous treatment with immunosuppressive medications. The true incidence of PML in RA is still uncertain, but a large registry reported on 66,278 RA patients, with a rate of PML of 1.0/100,000 person-years as compared to that for the general population, 0.3/100,000 person-years [59]. In the European consensus statement regarding the use of rituximab in RA, the risk of PML was judged as small, but without an identified risk profile for the development of PML, vigilance was advised [7]. Given the relative paucity of PML cases in RA despite the increasing numbers of patients receiving rituximab in surveillance databases, the concern regarding PML may be waning.

The risk of malignancy does not appear to be increased in the clinical trials with very small numbers of cases, although patients with a known previous malignancy are usually excluded and the trials are of relatively short duration. In the pooled analysis, rituximab was not associated with an increased risk of any malignancy when compared to age- and sex-matched standard incidence ratios [51]. The calculated incidence rate of any malignancy was 0.69/100 patient-years. The most common solid malignancy was breast cancer. In addition, there was no evidence of an increased risk of malignancy with cumulative exposure to rituximab. Other reviews have also not found an increase in malignancies [60, 61]. A French registry review also reported no significant increase in malignancies in a rituximab-treated RA patient cohort [62]. A recent comparative effectiveness study comparing the potential risk of cancer across biologic and non-biologic DMARDs reported that the risk of any cancer with rituximab was similar to that with methotrexate [63]. In a recent abstract, the German registry reported that RA patients with a history of lymphoma, solid malignancies, or skin cancer do not have higher rates of recurrence when treated with rituximab in comparison to non-biologic DMARDs [64].
With regards to cardiovascular risk, which is increased in patients with RA regardless of treatment, myocardial infarction was the most frequent cardiovascular event reported in the pooled analysis of long-term safety data [47]. The event rate was 0.41/100 patient-years compared to 0.27/100 patient-years in the MTX + placebo-treated patients. This rate was similar to that reported in other RA patients treated with DMARDS and TNFi [65, 66]. The risk of stroke was similar in both groups and also similar to other published data [67]. Currently, there are no data showing that rituximab is associated with deterioration of cardiac function. Patients with significant uncontrolled cardiac disease were excluded from the major clinical trials in RA because of concerns about potential cardiac complications associated with infusion reactions.

Infusion-related reactions (IRR) have been reported in all of the clinical trials of rituximab in RA. In the pooled analysis of long-term safety, the rate of IRR was 2.3% during the first infusion of the first course and decreased with each subsequent infusion [51]. Most of the IRR were judged as mild to moderate and were rarely serious (<1%). The most common reactions included headache, pruritis, throat irritation, flushing, rash, changes in blood pressure, and fever. The DANCER trial included premedication with 100 mg of intravenous methylprednisolone, which was concluded to reduce the frequency and severity of the initial infusion reactions without contributing to the primary clinical endpoint [8]. This premedication is now part of the approval for each cycle of rituximab, although whether or not it is required for all late cycles has not been determined [7]. The routine use of antihistamines and/or paracetamol is not required, but may be useful for mild IRR [7].

Although rituximab does not affect immunoglobulin-secreting plasma cells, repeated courses of rituximab in RA have caused hypoglobulinemia [51]. A registry review demonstrated that a low IgG level before rituximab treatment was a risk factor for serious infections [49]. In the clinical trials, a low IgG level was an exclusion criterion and prohibited trial entry, but low immunoglobulins, IgM > IgG, were observed. An analysis of three randomized controlled trials of rituximab included 1039 patients, and 10.3% had a low IgM at week 24, but this increased to 18.5% with a second cycle and 23.5% after a third cycle of therapy [68]. Similarly, 1.5% had a low IgG at week 24; 4.3% and 5.9% with subsequent cycles of therapy. Despite these findings, the rates of serious infections were 5.6 and 4.8/100 patient-years for IgM and IgG respectively, and the rate in patients with normal immunoglobulins was comparable at 4.7/100 patient-years [6]. In the pooled analysis of long-term rituximab safety, 22.4% developed a low IgM level and 3.5% a low IgG level [51]. No increases in overall infection rates were observed in patients during or after the development of low IgM or IgG levels, but for IgG these rates were higher than in patients who never developed a low IgG. With the small numbers of patients with low IgG levels, no placebo comparator, and difficulties determining when immunoglobulin levels decreased, analysis of the data was thought to be limited [51]. The European guidelines regarding rituximab treatment suggest monitoring of immunoglobulin levels, with close monitoring for infection in those patients with low IgG levels [7].

ANTI-RITUXIMAB ANTIBODIES

In the randomized, controlled trials, the incidence of human anti-chimeric antibodies (HACA) varied from 2.7% to 7.1% [9–15]. In the pooled analysis of long-term rituximab safety,
11% of rituximab-treated patients were found to have HACAs during at least one visit [51]. These and other studies have found no relationship between HACA and the dose of rituximab administered, any specific clinical manifestations, the ability to deplete B cells, the frequency of infusion reactions, the clinical efficacy of the initial dosing, or the efficacy of retreatment [51, 68, 69].

Biologic DMARD Therapy Post-Rituximab

In a study concerning patients in whom an insufficient response was obtained with rituximab, switching from rituximab to a TNFi was relatively safe and not associated with an increase in infections [70]. In this study, the TNFi were initiated at least 4 months after rituximab, and the rate of serious infections was similar to that expected when TNFi are initiated in biologic-naïve DMARD RA patients. Similarly, the pooled analysis of long-term rituximab safety data concluded that the use of subsequent biologics was not associated with an increase in the serious infection rate [51].

Other Treatment Considerations

Given all of these safety concerns, prior to initiating rituximab in RA patients, a careful medical history and physical examination should be undertaken to determine potential contraindications. Some of these include hypersensitivity to murine proteins, serious active infection, significant congestive heart failure, and pregnancy [7]. In addition to routine laboratory testing, baseline immunoglobulin levels should be measured, since low IgG levels are associated with a higher risk of infection, and the use of rituximab in patients with existing hypogammaglobulinemia should be considered with caution or avoided [7]. Hepatitis B and C serologies should be undertaken, because reactivation of hepatitis B surface Ag negative but hepatitis B core Ab positive disease has been rarely reported [71, 72]. Those patients who are HBsAg and anti-HBc negative should consider vaccination before rituximab is initiated, and those patients who are HBsAg and/or anti-HBc positive should not be given rituximab or they should be referred to a hepatologist for consideration of prophylactic treatment before rituximab is considered. HBsAg-negative but anti-HBc-positive patients should have HBV DNA titers and, if undetectable, rituximab might be considered, particularly after a hepatologist administers prophylactic antiviral therapy and with close monitoring of HBV DNA levels [7]. With regards to hepatitis C (HCV), rituximab has been used successfully to treat HCV-induced cryoglobulinemia, suggesting its safety with HCV. Rheumatologists should screen for HCV only to refer patients to hepatologists for treatment using interferon-free regimens [55].

Patients who have been treated with TNFi should have previously been evaluated for TB, but due to the observation that there is no evidence for an increased frequency of TB in RA patients treated with rituximab, screening patients for tuberculosis is not currently thought to be necessary [7].

Vaccinations in RA patients should be considered before rituximab, including pneumococcal, influenza, tetanus toxoid, and hepatitis B, and these are recommended at least 4 weeks before the initiation of rituximab [7]. Diminished humoral responses to influenza and pneumococcus have been reported in RA patients on rituximab + methotrexate, so immunization while on rituximab therapy may not be effective [73–75]. Live vaccines are not recommended.
Lastly, as currently recommended, rituximab infusion requires 4.25 h for the initial infusion and 3.25 h for subsequent infusions. This regimen is based on the rituximab usage in non-Hodgkins lymphoma, where the incidence of IRR is much higher than that observed in RA [76]. Long infusion times and frequent infusion rate changes are not only inconvenient but increase infusion center costs. Several studies have attempted to increase the rate of rituximab infusion after the initial infusion, with reported success [76–80]. In a recent study, infusion over 2 h was well tolerated and not associated with an increased rate of IRR [76]. Rapid infusion protocols, however, require further testing before general acceptance will be achieved.

CONCLUSION

Rituximab has been a significant addition to the shortlist of biologic agents approved for the treatment of RA. It has a unique mechanism of action, it has been established as relatively safe, and the details regarding screening, dosing, and follow-up are becoming better understood. Rituximab is an important option for selected RA patients, and is most effective in those who are seropositive and have been exposed to one TNFi. As with all biologics for RA, further information regarding the safety of rituximab over longer periods of time will be critical. Future studies will hopefully determine exactly where rituximab will be placed in the evolving treatment paradigm for rheumatoid arthritis.

ACKNOWLEDGMENTS

No funding or sponsorship was received for this study or publication of this article. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on the article. Changes resulting from comments received were made by the authors based on their scientific and editorial merit. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Conflict of Interest. Marc D. Cohen has nothing to disclose. Edward Keystone has received funding from Abbott Laboratories, Amgen Inc., AstraZeneca Pharma, Bristol-Myers Squibb, F. Hoffmann–La Roche Inc., Janssen Inc., Lilly Pharmaceuticals, Novartis Pharmaceuticals, Pfizer Pharmaceuticals, UCB. Consulting agreements/advisory board membership: Abbott Laboratories, AstraZeneca Pharma, Biotest, Bristol-Myers Squibb, F. Hoffmann–La Roche Inc., Genentech Inc., Janssen Inc., Lilly Pharmaceuticals, Merck.

Compliance with Ethical Guidelines. This article is based on previously conducted studies and does not involve any new studies of human or animal subjects performed by any of the authors.

Open Access. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
REFERENCES

1. Leandro MJ, Cooper N, Cambridge G, Ehrensein MR, Edwards JC. Bone-marrow B-lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology (Oxford). 2007;46(1):29–36.

2. Pescovitz MD. Rituximab, an anti-CD20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6(5 Pt 1):859–66.

3. Nakou M, Katsikas G, Sidiropoulos P, et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res Ther. 2009;11:R131.

4. Roll P, Palanichamy A, Knietz C, Dorner T, Tony HP. Regeneration of B cell subsets after transient depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum. 2006;54(8):2377–86.

5. Vital EM, Rawstron AC, Dass S, et al. Reduced-dose rituximab in rheumatoid arthritis: efficacy depends on degree of B cell depletion. Arthritis Rheum. 2011;63(3):603–8.

6. Thurlings RM, Vos K, Wijbrandts CA, Zwinderman AH, Gerlag DM, Tak PP. Synovial tissue response to rituximab; mechanisms of action and identification of biomarkers of response. Ann Rheum Dis. 2008;67(7):917–25.

7. Buch MH, Smolen JS, Betteridge N, Rituximab Consensus Expert Committee. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(6):909–20.

8. Edwards JC, Szczepanski Szczekolni J, et al. Efficacy of B-cell targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med. 2004;350(25):2572–81.

9. Emery P, Fleischmann R, Filipowicz-Sosnowska A, DANCER Study Group, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIIB randomized double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 2006;54(5):1390–400.

10. Emery P, Deodhar A, Rigby WF, et al. Efficacy and safety of different doses and retreatment of rituximab: a randomized, placebo-controlled trial in patients who are biological naive with active rheumatoid arthritis and an inadequate response to methotrexate (Study Evaluating Rituximab’s Efficacy in methotrexate iNadequate rEsponders (SERENE)). Ann Rheum Dis. 2010;69(9):1629–35.

11. Rubbert-Roth A, Tak PP, Zerbini C, MIRROR Trial Investigators, et al. Efficacy and safety of various repeat treatment dosing regimens of rituximab: a randomized placebo-controlled trial in patients with active rheumatoid arthritis: results of a phase III randomized study (MIRROR). Rheumatology (Oxford). 2010;49(9):1683–93.

12. Cohen SB, Emery P, Greenwald MW, REFLEx Trial Group, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multi-center, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at 24 weeks. Arthritis Rheum. 2006;54(9):2793–806.

13. Cohen SB, Keystone E, Genevese MC, et al. Continued inhibition of structural damage over 2 years in patients with rheumatoid arthritis treated with rituximab in combination with methotrexate. Ann Rheum Dis. 2010;69(6):1158–61.

14. Mease PJ, Cohen S, Gaylis NB, et al. Efficacy and safety of retreatment in patients with rheumatoid arthritis with previous inadequate response to tumor necrosis factor inhibition: results from the SUNRISE trial. J Rheumatol. 2010;37(5):917–22.

15. Tak PP, Rigby WF, Rubbert-Roth A, IMAGE Investigators, et al. Inhibition of joint damage and improved clinical outcomes with rituximab plus methotrexate in early active rheumatoid arthritis: the IMAGE trial. Ann Rheum Dis. 2011;70(1):39–46.

16. Tak PP, Rigby WF, Rubbert-Roth A, et al. Sustained inhibition of progressive joint damage with rituximab plus methotrexate in early active rheumatoid arthritis: 2-year results from the randomized controlled trial IMAGE. Ann Rheum Dis. 2012;71(3):351–7.

17. Greenwald MW, Shergy WJ, Kaine JL, Sweetser MT, Gilder K, Linnick MD. Evaluation of the safety of rituximab in combination with a tumor necrosis factor inhibitor and methotrexate in patients with active rheumatoid arthritis: results from a randomized controlled trial. Arthritis Rheum. 2011;63(3):622–32.

18. Chatzidionysiou K, Lie E, Nasanov E, et al. Effectiveness of disease-modifying antirheumatic drug co-therapy with methotrexate and leflunomide in rituximab-treated rheumatoid arthritis patients: results of a 1-year follow-up study from the CERRERRA collaboration. Ann Rheum Dis. 2012;71(3):374–7.
19. Richter A, Strangfeld A, Herzer P, et al. Sustainability of rituximab therapy in different treatment strategies: results of a 3-year followup of a German biologics register. Arthritis Care Res. 2014;66:127–33.

20. Soliman MM, Hyrich KL, Lunt M, et al. Effectiveness of rituximab in patients with rheumatoid arthritis: observational study from the British Society for Rheumatology Biologics Register. J Rheumatol. 2012;39(2):240–6.

21. Bredemeier M, de Oliveira FK, Rocha CM. Low-versus high-dose rituximab for rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res. 2014;66(2):228–35.

22. Chatzidionysiou K, Lie E, Nasonov E, et al. Efficacy of different doses of rituximab for the treatment of RA: data from the CERERRA Collaboration (abstract). Ann Rheum Dis. 2012;71(Suppl):62.

23. Van Vollenhoven RF. More or less rituximab? Biology and clinic, regulators and researchers. Arthritis Rheum. 2011;63(3):594–6.

24. Mariette X, Rouanet S, Sibilia J, et al. Evaluation of low-dose rituximab for the retretment of patients with active rheumatoid arthritis: a non-inferiority randomized controlled trial. Ann Rheum Dis. 2014;73(8):1508–14.

25. Isaacs JD, Cohen SB, Mery P, et al. Effect of baseline rheumatoid factor and anti-citrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann Rheum Dis. 2013;72:329–36.

26. Lal P, Su Z, Holweg CT, et al. Inflammation and autoantibody markers identify rheumatoid arthritis patients with enhanced clinical benefit following rituximab treatment. Arthritis Rheum. 2011;63(12):3681–91.

27. Narvaez J, Diaz-Torre C, Ruiz JM, et al. Predictors of response to rituximab in patients with active rheumatoid arthritis and inadequate response to anti-TNF agents or traditional DMARDs. Curr Opin Rheumatol. 2011;23(6):591–7.

28. Quartuccio L, Fabris M, Salvin S, et al. Rheumatoid factor positivity rather than anti-CCP positivity, a lower disability and a lower number of anti-TNF agents failed are associated with response to rituximab in rheumatoid arthritis. Rheumatology. 2009;48:1557–9.

29. Coudere M, Mathieu S, Pereira B, Glace B, Soubrier M. Predictive factors of rituximab response in rheumatoid arthritis: results from a French university hospital. Arthritis Care Res. 2013;65(4):648–52.

30. Chatzidionysiou K, Lie E, Nasonov E, et al. Highest clinical effectiveness of rituximab in autoantibody-positive patients with rheumatoid arthritis and in those for whom no more than one previous TNF antagonist has failed. Ann Rheum Dis. 2011;70(9):1575–80.

31. Strangfeld A, Eveslage M, Kekow J, et al. Effectiveness of treatment with rituximab depends on autoantibody status—results from 2 years of experience in the German biologics register RABBIT (abstract). Arthritis Rheum. 2009;60:S1695.

32. Emery P, Gottenberg JE, Rubbert-Roth A, et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann Rheum Dis. 2015;74:979–84.

33. Chatzidionysiou K, van Vollenhoven RF. Rituximab versus anti-TNF in patients who previously failed one TNF inhibitor in an observational cohort. Scand J Rheumatol. 2013;42(3):190–5.

34. Salliot C, Finckh A, Katchamart W, et al. Indirect comparisons of the efficacy of biologic antirheumatic agents in rheumatoid arthritis in patients with an inadequate response to conventional disease-modifying drugs or to an anti-tumour necrosis factor agent: a meta-analysis. Ann Rheum Dis. 2011;70:266–71.

35. Schoels M, Aletaha D, Smolen JS, et al. Comparative effectiveness and safety of biologic treatment options after tumour necrosis factor alpha inhibitor failure: a systematic review and indirect pairwise meta-analysis. Ann Rheum Dis. 2012;71:1303–8.

36. Gomez-Reino JJ, Maneiro JR, Ruiz J, et al. Comparative effectiveness of switching to alternative tumour necrosis factor (TNF) antagonists versus switching to rituximab in patients with rheumatoid arthritis who failed previous TNF antagonists: the MIRAR Study. Ann Rheum Dis. 2012;71:1861–4.

37. Finckh A, Ciurea A, Bruhlart L, et al. Which subgroup of patients with rheumatoid arthritis benefits from switching to rituximab versus alternative anti-tumour necrosis factor (TNF) agents after previous failure of an anti-TNF agent? Ann Rheum Dis. 2010;69:387–93.

38. Ruysen-Witrand A, Rouanet S, Combe B, et al. Fc-gamma receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875–7.
39. Ruyssen-Witrand A, Rouanet S, Combe B, et al. Association between −871C>T promoter polymorphism in the B-cell activating factor gene and the response to rituximab in rheumatoid arthritis patients. Rheumatology. 2013;52(4):636–41.

40. Sellam J, Rouanet S, Handel-Chavez H, et al. Blood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 2011;63(12):3692–701.

41. Sellam J, Rouanet S, Handel-Chavez H, et al. CCL19, a B cell chemokine, is related to the decrease in of blood memory B cells and predicts the clinical response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 2013;65(9):2253–61.

42. Dass S, Rawstron AC, Vital EM, et al. Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum. 2008;58(10):2993–9.

43. Roll P, Dorner T, Tony HP. Anti-CD20 therapy in patients with rheumatoid arthritis: predictors of response and B cell subset regeneration after treatment. Arthritis Rheum. 2008;58(6):1566–75.

44. Emery P, Mease PJ, Rubbert-Roth A, et al. Retreatment with rituximab based on a treat-to-target approach provides better disease control than treatment as needed in patients with rheumatoid arthritis: a retrospective pooled analysis. Rheumatology (Oxford). 2011;50(12):2223–32.

45. Haroui B, Bokarewa M, Kallmeyer I, Bykerk V, RESET Investigators. Safety and effectiveness of rituximab in patients with rheumatoid arthritis following an inadequate response to 1 prior tumor necrosis factor inhibitor: the RESET Trial. J Rheumatol. 2011;38(12):2548–56.

46. Vital EM, Dass S, Rawstron AC, et al. Management of nonresponse to rituximab in rheumatoid arthritis: predictors and outcome of retreatment. Arthritis Rheum. 2010;2010(62):1273–9.

47. Thurlings RM, Vos K, Gerlag DM, et al. Disease-activity guided rituximab therapy in rheumatoid arthritis: the effects of retreatment in initial nonresponders versus initial responders. Arthritis Rheum. 2008;58:3657–64.

48. Salliot C, Dougados M, Gossec L, et al. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomized, placebo-controlled trials. Ann Rheum Dis. 2009;68(1):25–32.

49. Gottenberg JE, Ravaud P, Bardin T, AutoImmunity and Rituximab Registry and French Society of Rheumatology, et al. Risk factors for severe infections in patients with rheumatoid arthritis treated with rituximab in the Autoimmunity and Rituximab Registry. Arthritis Rheum. 2010;62(9):2625–32.

50. Curtis JR, Xie F, Chen L, et al. The comparative risk of serious infections among rheumatoid arthritis patients starting or switching biologic agents. Ann Rheum Dis. 2011;70(8):1401–6.

51. Van Vollenhoven RF, Emery P, Bingham CO, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5 year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013;72(9):1496–502.

52. Van Vollenhoven RF, Emery P, Co Bingham, et al. Long-term safety of rituximab: pooled analysis of the rheumatoid arthritis global clinical trial program over 11 years (abstract). Arthritis Rheum. 2014;66:2342.

53. Winthrop KL, Yamashita S, Beekmann SE, et al. Mycobacterial and other serious infections in patients receiving anti-tumor necrosis factor and other newly approved biologic therapies: case finding through the Emerging Infections Network. Clin Infect Dis. 2008;46:1738–40.

54. Chen YM, Chen HH, Lai KL, et al. The effects of rituximab therapy on released interferon-gamma levels in the QuantiFeron assay among RA patients with different status of Mycobacterium tuberculosis infection. Rheumatology. 2013;52(4):694–704.

55. Ennishi D, Yokoyama M, Terui Y, et al. Does rituximab really induce hepatitis C reactivation? J Clin Oncol. 2008;26:4695–6.

56. Clifford DB, Ances B, Costello C, et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol. 2011;68(9):1156–64.

57. Bharat A, Xie F, Baddley JW, et al. Incidence and risk factors for progressive multifocal leukoencephalopathy among patients with selected rheumatic diseases. Arthritis Care Res. 2012;64(4):612–5.

58. Molloy E, Calabrese LH. Progressive multifocal leukoencephalopathy associated with biologic therapy in rheumatic diseases: strengthening association with rituximab (abstract). Arthritis Rheum. 2014;66:5837.

59. Arkema EV, van Vollenhoven RF, Askling J, ARTIS Study Group. Incidence of progressive multifocal leukoencephalopathy in patients with rheumatoid arthritis: a national, population-based study. Ann Rheum Dis. 2012;71(11):1865–7.
60. Hainsworth JD. Safety of rituximab in the treatment of B cell malignancies: implications for rheumatoid arthritis. Arthritis Res Ther. 2003;5(Suppl):12–16.

61. Kimby E. Tolerability and safety of rituximab (MabTher). Cancer Treat Rev. 2005;31:456–73.

62. Slimani S, Lukas C, Combe B, et al. Rituximab in rheumatoid arthritis and the risk of malignancies: report from a French cohort. Jt Bone Spine. 2001;78:484–7.

63. Solomon DH, Kremer JM, Fisher M, et al. Comparative cancer risk associated with methotrexate, other non-biologic and biologic disease-modifying anti-rheumatic drugs. Semin Arthritis Rheum. 2014;43(4):489–97.

64. Strangfeld AP, Pattloch A, Herzer D, et al. Risk of cancer recurrence or new tumors in RA patients with prior malignancies treated with various biologic agents. Arthritis Rheum. 2013;65(10 Suppl):S806.

65. Solomon DH, Goodson NJ, Katz JN, et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis. 2006;65:1608–12.

66. Dixon WG, Watson KD, Lunt M, et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumour necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56:2905–12.

67. Gabriel SE. Cardiovascular morbidity and mortality in rheumatoid arthritis. J Am Med. 2008;121:59–14.

68. Keystone E, Fleischmann R, Emery P, et al. Safety and efficacy of additional courses of rituximab in patients with active rheumatoid arthritis: an open-label extension analysis. Arthritis Rheum. 2007;56(12):3896–908.

69. Thurlings RM, Teng O, Vos K, et al. Clinical response, pharmacokinetics, development of human anti-chimeric antibodies and synovial tissue response to rituximab therapy in patients with rheumatoid arthritis. Ann Rheum Dis. 2009;68:1090141.

70. Genovese MC, Breedveld FC, Emery P, et al. Safety of biological therapies following rituximab treatment in rheumatoid arthritis patients. Ann Rheum Dis. 2009;68:1894–7.

71. Ghrenassia E, Mekinian A, Rouaghe S, Ganne N, Fain O. Reactivation of resolved hepatitis B during rituximab therapy for rheumatoid arthritis. J Bone Spine. 2012;79(1):100–1.

72. Pyrpasopoulou A, Douma S, Vassiliadis T, et al. Reactivation of chronic hepatitis B virus infection following rituximab administration for rheumatoid arthritis. Rheumatol Int. 2011;31(3):403–4.

73. Oren S, Mandelboim M, Braun-Moscovici Y, et al. Vaccination against influenza in patients with rheumatoid arthritis: the effects of rituximab on the humoral response. Ann Rheum Dis. 2008;67(7):937–41.

74. Van Assen S, Holvast A, Benne CA, et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 2010;62(1):75–81.

75. Bingham CO, Looney RJ, Deodhar A, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 2010;62(1):64–74.

76. Pritchard CH, Greenwald M, Kremer JM, et al. Safety of infusing rituximab at a more rapid rate in patients with rheumatoid arthritis: results from the RATE-RA study. BMC Musculoskelat Disord. 2014;15:177–81.

77. Can M, Alibaz-Oner F, Yimaz-Oner S, et al. Accelerated infusion rates of rituximab are well-tolerated and safe in rheumatology practice: a single-center experience. Clin Rheumatol. 2013;32(1):87–90.

78. Larsen JL, Jacobsen S. Rapid infusion with rituximab: short term safety in systemic autoimmune diseases. Rheumatol Int. 2013;33(2):529–33.

79. Bukh G, Larsen SS, Rasmussen MS. Very fast infusion-rate of rituximab for rheumatoid arthritis is well tolerated and safe. Ann Rheum Dis. 2011;70(Suppl):754.

80. Faraawi R, Roth K. Experience with accelerated rituximab infusion for rheumatoid arthritis in a single community practice. Ann Rheum Dis. 2010;69(Suppl):383.