Physiological testosterone attenuates profibrotic activities of rat cardiac fibroblasts through modulation of nitric oxide and calcium homeostasis

Cheng-Chih Chung1,2,3, Yung-Kuo Lin1,2,3, Yu-Hsun Kao4,5, Shyh-Hsiang Lin6 and Yi-Jen Chen2,3,4,7

1) Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
2) Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
3) Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
4) Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
5) Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
6) School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
7) Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

Abstract. Testosterone deficiency is associated with poor prognosis among patients with chronic heart failure (HF). Physiological testosterone improves the exercise capacity of patients with HF. In this study, we evaluated whether treatment with physiological testosterone contributes to anti-fibrogenesis by modifying calcium homeostasis in cardiac fibroblasts and we studied the underlying mechanisms. Nitric oxide (NO) analyses, calcium (Ca2+) fluorescence, and Western blotting were performed in primary isolated rat cardiac fibroblasts with or without (control cells) testosterone (10, 100, 1,000 nmol/L) treatment for 48 hours. Physiological testosterone (10 nmol/L) increased NO production and phosphorylation at the inhibitory site of the inositol trisphosphate (IP3) receptor, thereby reducing Ca2+ entry, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression, type I and type III pro-collagen production. Non-physiological testosterone-treated fibroblasts exhibited similar NO and collagen production capabilities as compared to control (testosterone deficient) fibroblasts. These effects were blocked by co-treatment with NO inhibitor (L-NG-nitro arginine methyl ester [L-NAME], 100 μmol/L). In the presence of the IP3 receptor inhibitor (2-aminoethyl diphenylborinate [2-APB], 50 μmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar phosphorylated CaMKII expression. When treated with 2-APB or CaMKII inhibitor (KN93, 10 μmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar type I, and type III collagen production. In conclusion, physiological testosterone activates NO production, and attenuates the IP3 receptor/Ca2+/entry/CaMKII signaling pathway, thereby inhibiting the collagen production capability of cardiac fibroblasts.

Key words: Fibroblasts, Testosterone, Ca2+/calmodulin-dependent protein kinase II, Nitric oxide, Inositol trisphosphate

TESTOSTERONE DEFICIENCY is a common manifestation in men with heart failure (HF) [1]. Testosterone deficiency increases mortality and hospitalization risks and reduces the exercise capacity in patients with chronic HF [2-5]. In men with HF, testosterone deficiency is associated with diastolic dysfunction [6], which is regulated by collagen accumulation in the myocardium [7]. Multiple clinical HF trials have proven that physiological testosterone replacement improves exercise capacity [8-12]. Cardiac fibrosis is associated with poor HF prognosis and low exercise capacity [13, 14]. Physiological testosterone can reduce the collagen production capability of cardiac fibroblasts and attenuate cardiac fibrosis in HF, aging, and castrated animals [15-18]. However, the mechanisms underlying the antifibrotic effects of physiological testosterone warrant further elucidation.

Physiological testosterone can increase nitric oxide (NO) levels in aortic endothelial cells [19] and reduce...
calcium (Ca²⁺) mobilization, involved in pro-fibrotic signaling [20], in smooth muscle cells [21]. The purpose of the current study was to clarify whether physiological testosterone regulates cardiac fibrogenesis by inhibiting the Ca²⁺ signaling pathway through the activation of NO signaling and to study the underlying mechanisms.

Materials and Methods

Cardiac fibroblast isolation

The study was approved by the local ethics review board (approval number: LAC-2019-0508). All animals received human care. Cardiac fibroblasts were isolated from male Sprague-Dawley rats (weighing 300–350 g) and cultured in Dulbecco’s modified Eagle’s medium by using a method described previously [18]. In brief, the hearts were mounted on a Langendorff apparatus and perfused with phosphate-buffered saline (PBS) containing 0.02% collagenase (Sigma, St. Louis, MO, USA) at 37°C for 35 minutes. Then, the left ventricle was chopped and shaken in PBS until single fibroblasts were obtained. The vimentin-positive and CD31-negative cells were sub-cultured and plated at a density of 1 × 10⁶ cells/cm² on culture dishes. Cardiac fibroblasts were then cultured with serum-free medium for 24 hours before each treatment.

NO measurement

For NO measurement, DAF-2 DA was performed through fluorescence microscopy as previously described [22]. In brief, testosterone-deficient cardiac fibroblasts (control cells) were treated with or without testosterone (10, 100, 1,000 nmol/L) for 24 hours. The fibroblasts were stained with DAF-2 DA (5 μmol/L, Abcam, Cambridge, UK) for 10 minutes in the dark and then washed with PBS. Fluorescence imaging was performed using an Evos FL microscope (Thermo Fisher Scientific, Pittsburgh, PA, USA) with an excitation wavelength of 470 nm and emission wavelength of 515 nm. Protein content from the cell lysate of each treatment was used for normalization.

Western blotting

Western blotting was performed as described previously [23]. In brief testosterone-deficient cardiac fibroblasts (control cells) were incubated in serum-free medium for 24 hours followed by treatment with or without testosterone (10, 100, 1,000 nmol/L, Sigma), NO inhibitor (L-NG-nitro arginine methyl ester [L-NAME], 100 μmol/L, Sigma), inositol trisphosphate (IP3) receptor inhibitor (2-aminoethyl diphenylborinate [2-APB], 50 μmol/L, Sigma), or Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) inhibitor (KN93, 10 μmol/L, Sigma) for 48 hours. Cells of interest were lysed in radioimmunoprecipitation assay buffer in the presence of 150 mmol/L NaCl, 0.5% sodium deoxycholate, 1% NP40, 50 mmol/L Tris pH 7.4, 0.1% sodium dodecyl sulfate (SDS) and protease inhibitor cocktails (Sigma). The proteins were fractionated using 10% SDS-polyacrylamide gel electrophoresis and transferred onto an equilibrated polyvinylidene difluoride membrane (Amersham Biosciences, Buckinghamshire, UK). The membranes were then incubated with primary antibodies against pro-collagen type III (1:1,000, monoclonal, clone number: FH-7A, Abcam), collagen type IA1 (1:500, monoclonal, clone number: 3G3, Santa-Cruz Biotechnology, Santa Cruz, CA, USA), phosphorylated IP3 receptor (1:1,000, polyclonal, Cell Signaling Technology, Beverly, MA, USA) and phosphorylated-CaMKII (1:2000, polyclonal, Abcam) and secondary antibodies. Bound antibodies were visualized using the ECL detection system (Millipore, Darmstadt, Germany) and analyzed on AlphaEaseFC software (Alpha Innotech, San Leandro, CA, USA). β-actin (Sigma) was used as a loading control to confirm equal protein loading and then normalized to the value of control cells.

Intracellular Ca²⁺ imaging

Ca²⁺ imaging was conducted as described previously [24]. In brief, cardiac fibroblasts treated with or without 10, 100, 1,000 nmol/L testosterone for 24 hours on a coverslip (1 × 1 cm) were incubated with 5 μmol/L fura-2-acetoxymethyl ester (Life Technologies, Carlsbad, CA, USA) and 2.5 μg/mL Pluronic F-127 (20% solution in dimethyl sulfoxide, Sigma) in a Ca²⁺-free solution with (in mmol/L) KH2PO4 1.2, NaCl 120, MgSO4 1.2, KCl 5.4, HEPES 6, glucose 10 (pH 7.40) for 30 minutes at 36°C with 5% CO2. Fura-2 fluorescence images were taken with a polychrome V monochromator (Till Photonics, Munich, Germany) mounted on an upright Leica DMI 3000B microscope (Leica Microsystems, Buffalo
Grove, IL, USA) with dual excitation wavelengths (340, and 380 nm) and an emission wavelength of 510 nm. MetaFluor software (version 7.7.9.0, Molecular Devices, Sunnyvale, CA, USA) was used for fura-2 image analysis. The ratio of fluorescence from excitation at 340 nm (F_{340}) to F_{380} was used as a marker of the relative level of intracellular Ca^{2+}. To measure Ca^{2+} entry, cells were first exposed to the Ca^{2+}-free solution for 3 minutes followed by the endoplasmic reticulum (ER) Ca-ATPase inhibitor (Thapsigargin, 2.5 μmol/L, Sigma) co-treatment for ER Ca^{2+} store depletion. After the intracellular Ca^{2+} surge from ER Ca^{2+} leak induced by thapsigargin returned to a steady-state, the extracellular Ca^{2+} concentration was increased to 2 mmol/L to measure Ca^{2+} entry through store-operated channels. The change in intracellular Ca^{2+} (ΔF_{340/380}) from the steady-state post-ER Ca^{2+}-induced intracellular Ca^{2+} surge to the plateau state under 2 mmol/L Ca^{2+} solution was used to represent Ca^{2+} entry.

Statistical analysis

All quantitative data are expressed as means ± standard errors of the mean. The paired t-test and one way repeated-measures analysis of variance with post hoc Fisher’s least significant difference test were performed using PASW Statistics (version 18.0, IBM SPSS, Chicago, Illinois, USA) to compare cardiac fibroblasts under different conditions. A p value of <0.05 was considered statistically significant.

Results

NO signal pathway in testosterone-treated cardiac fibroblasts

As illustrated in Fig. 1, physiological testosterone (10 nmol/L)-treated cardiac fibroblasts exhibited higher NO content but lower pro-collagen type I and type III production than testosterone-deficient (control) fibroblasts. However, non-physiological testosterone (100, 1,000 nmol/L)-treated fibroblasts exhibited similar NO and collagen production capabilities as compared to control (testosterone-deficient) fibroblasts. Physiological testosterone not only reduced pro-collagen and phosphorylated CaMKII expression, but also increased phosphorylation at the inhibitory site of IP3 receptor, which could be blocked by L-NAME co-treatment (Fig. 2).

Ca^{2+} signal pathway in testosterone-treated cardiac fibroblasts

In the presence of 2-ABP (50 μmol/L, an IP3 receptor inhibitor), the control and physiological testosterone-treated fibroblasts exhibited similar production of type I, type III collagen, and expression of phosphorylated CaMKII, suggesting that physiological testosterone reduced the profibrotic activities of testosterone-deficient fibroblasts by attenuating the IP3 signaling pathway (Fig. 3). The fura-2 fluorescence image experiments revealed that physiological testosterone-treated fibroblasts exhibited decreased Ca^{2+} entry than testosterone-deficient fibroblasts (Fig. 4). In the presence of KN93 (10 μmol/L, a CaMKII inhibitor), the control and testosterone-treated fibroblasts exhibited similar type I and type III collagen production, suggesting that physiological testosterone reduced the profibrotic activities of cardiac fibroblasts by attenuating the CaMKII signaling pathway (Fig. 5).

Discussion

Physiological testosterone can alleviate cardiac fibrosis in HF rats [15]. In this study, we treated testosterone-deficient fibroblasts (control cells) with non-physiological testosterone (100, and 1,000 nmol/L) and physiological testosterone (10 nmol/L), which is within the range of plasma concentration (8 to 15 nmol/L) of testosterone in male rats [25-30]. We found that physiological testosterone (10 nmol/L) significantly activated NO signaling and reduced collagen production in rat cardiac fibroblasts. NO signaling attenuates the collagen production capability of fibroblasts [22]. Physiological Testosterone attenuates cardiomyocyte senescence by enhancing NO signaling [25]. Moreover, testosterone deficiency led to endothelial dysfunction by reducing NO production [31]. In addition, the anti-fibrotic effects of physiological testosterone can be attenuated using L-NAME, which indicated that testosterone exerts its anti-fibrotic effects through the NO signaling pathway. Differently, non-physiological testosterone (100, and 1,000 nmol/L)-treated fibroblasts exhibited similar collagen and NO production capabilities as compared to control (testosterone-deficient) fibroblasts. Similarly, treatment of physiological testosterone increased endothelial NO synthase (eNOS) activities but administration of non-physiological testosterone reduced eNOS gene expression in endothelial cells [32, 33]. These findings suggest that testosterone at different concentrations may exert dissimilar effects on cardiac fibroblasts. Accordingly, it is critical to provide the optimal (physiological) concentrations of testosterone for the treatment of androgen deficiency in clinical practice.

The Ca^{2+} signaling pathway is the downstream profibrotic signal pathway of multiple cytokines [34, 35]. Ang II induced profibrotic cellular activities in fibroblasts by releasing the Ca^{2+} intracellular store thereby activating the MAPK signaling pathway [36]. Ca^{2+} influx can be initiated through the IP3 signal pathway. Activation of IP3 signaling induces ER Ca^{2+} leak, thereby activating membrane store-operated Ca^{2+} channels such as transient...
receptor potential (TRP) channels and Ca$^{2+}$ entry [37, 38]. Ang II upregulates the interaction between IP3-induced ER Ca$^{2+}$ leak and membrane store-operated Ca$^{2+}$ channels, leading to enhanced fibroblast activities [39]. In the present study, physiological testosterone significantly reduced Ca$^{2+}$ entry. In addition, L-NAME blocked physiological testosterone-activated phosphorylation at the inhibitory site of the IP3 receptor, which indicated that NO, produced by physiological testosterone, may inactivate the IP3-induced Ca$^{2+}$ signal pathway. Protein

![Fig. 1 Effects of physiological and non-physiological testosterone on nitric oxide (NO) production of cardiac fibroblasts. (A) Fluorescence photographs and average data of DAF-2 DA, a marker of NO generation and average data of the fluorimetric dye DAF-FM DA, a marker of intracellular NO levels in testosterone-deficient cardiac fibroblasts (control cells) treated with or without physiological testosterone (10 nmol/L) and non-physiological (100 and 1,000 nmol/L) for 24 hours ($n = 6$ experiments). (B) Examples and averaged data of the expression of pro-collagen type I and type III production in testosterone-deficient (control cells) and testosterone (10, 100, and 1,000 nmol/L)-treated cardiac fibroblasts ($n = 6$ experiments). β-actin was used as a loading control. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.005$.]
kinase G, the downstream signaling molecule of the NO/cGMP signal pathway [40], phosphorylates the IP3 receptor thereby inactivating IP3-induced Ca2+ signaling [41]. Furthermore, protein kinase G can inactivate TRP channels [42]. Moreover, we found that 2-APB with and without physiological testosterone reduced the profibrotic activities of cardiac fibroblasts to similar degrees. These findings indicated that physiological testosterone reduced fibroblast activities through the regulation of IP3 signaling. However, since there are many types of receptors, pathway, and ion channels involved in intracellular calcium concentration, the finding in this study is only one of the mechanisms of cardiac fibrosis. Modulation of Ca2+ entry through TRP channels is also crucial in atrial fibrogenesis or anti-atrial fibrosis therapy [22, 43]. TRP channel inhibitor reduced Ang II-induced collagen production and Ca2+ entry in atrial fibroblasts [44].

The Ca2+ signal pathway activates the profibrotic signal pathway through the binding of Ca2+ and calmodulin-induced CaMKII auto-phosphorylation [45, 46]. Activated CaMKII plays a pivotal role in collagen production in fibroblasts [47]. CaMKII inhibition by KN93 or genetically knocked-down CaMKII can attenuate pathological remodeling-induced cardiac fibrosis [48, 49]. In this study, we found that physiological testosterone reduced phosphorylated CaMKII, which was blocked by L-NAME. In addition, in the presence of 2-APB or KN93, control and physiological testosterone-treated fibroblasts exhibited similar pro-fibrotic activities.

In conclusion, as summarized in Fig. 6, physiological testosterone activates NO production and attenuates the IP3 receptor/Ca2+ entry/CaMKII signaling pathway thereby inhibiting the collagen production capability of cardiac fibroblasts.

Fig. 2 Effects of L-NG-nitro arginine methyl ester (L-NAME), a nitric oxide inhibitor on physiological testosterone-treated cardiac fibroblasts

Examples and averaged data of the expression of pro-collagen type I, and type III, phosphorylation at the inhibitory site of the inositol trisphosphate (pIP3) receptor, and phosphorylation of the Ca2+/calmodulin-dependent protein kinase II (pCaMKII) in testosterone-deficient (control cells) and testosterone (10 nmol/L)-treated cardiac fibroblasts treated with and without L-NAME (100 μmol/L) for 48 hours (n = 6 experiments). β-actin was used as a loading control. * p < 0.05, ** p < 0.01, *** p < 0.005.
Fig. 3 Effects of 2-aminoethyl diphenylborinate (2-APB), an inositol trisphosphate receptor inhibitor, on physiological testosterone-treated cardiac fibroblasts. Examples and averaged data of the expression of pro-collagen type I, and type III production, and phosphorylated Ca\(^{2+}\)/calmodulin-dependent protein kinase II (pCaMKII) in testosterone-deficient (control cells) and testosterone (10 nmol/L)-treated cardiac fibroblasts treated with and without 2-APB (50 μmol/L) for 48 hours (n = 6 experiments). β-actin was used as a loading control. **p < 0.01, ***p < 0.005.

Fig. 4 Ca\(^{2+}\) entry in physiological testosterone-treated cardiac fibroblasts. Representative intracellular Ca\(^{2+}\) tracing indicating intracellular Ca\(^{2+}\) imaging (left panels) from testosterone-deficient (control), and physiological testosterone-treated (10 nmol/L) cardiac fibroblasts. Cells already been treated for 48 hours, were first incubated with a Ca\(^{2+}\)-free solution for 3 minutes followed by cotreatment with the endoplasmic reticulum (ER) Ca-ATPase inhibitor (thapsigargin, 2.5 μmol/L) for ER Ca\(^{2+}\) store depletion. After the intracellular Ca\(^{2+}\) surge from ER Ca\(^{2+}\) leak induced by thapsigargin was returned to the steady-state, the extracellular Ca\(^{2+}\) concentration was then increased to 2 mmol/L to measure Ca\(^{2+}\) entry through store-operated channels. Ca\(^{2+}\) entry was noted after an increase in extracellular Ca\(^{2+}\) to 2 mmol/L. The right panel shows the average change in intracellular Ca\(^{2+}\) (ΔF\(_{340}/F_{380}\)) from the steady-state post ER Ca\(^{2+}\)-induced intracellular Ca\(^{2+}\) surge to the plateau state under treatment with 2 mmol/L Ca\(^{2+}\) solution of testosterone-deficient (n = 31 from 3 rats) and testosterone-treated (n = 29 from 3 rats) cardiac fibroblasts. Physiological testosterone significantly reduced Ca\(^{2+}\) influx in testosterone-deficient cardiac fibroblasts. ***p < 0.005.
Fig. 5 Effects of KN93, a Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, on physiological testosterone-treated cardiac fibroblasts. Examples and averaged data of the expression of the pro-collagen type I, and type III production in testosterone-deficient (control cells) and testosterone (10 nmol/L)-treated cardiac fibroblasts treated with and without KN93 (10 μmol/L) for 48 hours (n = 5 experiments). β-actin was used as a loading control. * p < 0.05, ** p < 0.01, *** p < 0.005.

Fig. 6 Illustration of the proposed molecular mechanism underlying the anti-fibrotic effects of physiological testosterone on cardiac fibroblasts. Physiological testosterone increases nitric oxide (NO) production, and attenuates the inositol trisphosphate (IP3) receptor signaling pathway thereby reducing Ca\(^{2+}\) entry, phosphorylated Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII) expression and collagen production in testosterone-deficient cardiac fibroblasts.

Acknowledgments

The authors acknowledge the technical services provided by the Taipei Medical University (TMU) Core Facility for Ca\(^{2+}\) image experiments. The authors acknowledge the Laboratory Animal Center at TMU for technical support in fibroblasts isolation experiment.
Funding

This work was supported by the Taipei Medical University – Wan Fang Hospital (105TMU-WFH-15) and the Ministry of Science and Technology of Taiwan (MOST 108-2314-B-038-117-MY3).

Disclosure

None of the authors have any potential conflicts of interest associated with this research.

References

1. Deng C, Zhang Z, Li H, Bai P, Cao X, et al. (2019) Analysis of cardiovascular risk factors associated with serum testosterone levels according to the US 2011–2012 National Health and Nutrition Examination Survey. Aging Male 22: 121–128.
2. Yoshihisa A, Suzuki S, Sato Y, Kanno Y, Abe S, et al. (2018) Relation of testosterone levels to mortality in men with heart failure. Am J Cardiol 121: 1321–1327.
3. Jankowska EA, Biel B, Majda J, Szklarska A, Lopuszanska M, et al. (2006) Anabolic deficiency in men with chronic heart failure: prevalence and detrimental impact on survival. Circulation 114: 1829–1837.
4. Han Y, Sun W, Sun G, Hou X, Gong Z, et al. (2017) A 3-year observation of testosterone deficiency in Chinese patients with chronic heart failure. Oncotarget 8: 79835–79842.
5. dos Santos MR, Sayegh ALC, Groehs RV, Fonseca G, Trombeta IC, et al. (2015) Testosterone deficiency increases hospital readmission and mortality rates in male patients with heart failure. Arq Bras Cardiol 105: 256–264.
6. Ćulić V, Bušić Ž (2015) Testosterone may influence left ventricular diastolic function depending on previous myocardial infarction and smoking. Int J Cardiol 186: 67–71.
7. Hutchinson KR, Lord CK, West TA, Stewart JA Jr (2013) Cardiac fibroblast-dependent extracellular matrix accumulation is associated with diastolic stiffness in type 2 diabetics. PLoS One 8: e72080.
8. Malkin PJ, Pugh PJ, West JN, van Beek EJ, Jones TH, et al. (2006) Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J 27: 57–64.
9. Pugh PJ, Jones RD, West JN, Jones TH, Channer KS (2004) Testosterone treatment for men with chronic heart failure. Heart 90: 446–447.
10. Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, et al. (2009) Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol 54: 919–927.
11. Iellamo F, Volterrani M, Caminiti G, Karam R, Massaro R, et al. (2010) Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol 56: 1310–1316.
12. Mirdamadi A, Garakaryaghi M, Pourmoghadass A, Bahmani A, Mahmoudi H, et al. (2014) Beneficial effects of testosterone therapy on functional capacity, cardiovascular parameters, and quality of life in patients with congestive heart failure. Biomed Res Int 2014: 392432.
13. Kim KH, Kim HM, Park JS, Kim YJ (2019) Differential transcriptome profile and exercise capacity in cardiac remodeling by pressure overload versus volume overload. J Cardiovasc Imaging 27: 50–63.
14. Zannad F, Alla F, Dousset B, Perez A, Pitt B, et al. (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Circulation 102: 2700–2706.
15. Kang NN, Fu L, Xu J, Han Y, Cao JX, et al. (2012) Testosterone improves cardiac function and alters angiotensin II receptors in isoproterenol-induced heart failure. Arch Cardiovasc Dis 105: 68–76.
16. Regouat N, Cheboub A, Benahmed M, Belarbi A, Hadji-Bekkouche F (2018) Effect of testosterone supplementation on nitroso-redox imbalance, cardiac metabolism markers, and S100 proteins expression in the heart of castrated male rats. Andrology 6: 74–85.
17. Chen FF, Song FQ, Chen YQ, Wang ZH, Li YH, et al. (2019) Exogenous testosterone alleviates cardiac fibrosis and apoptosis via Gas6/Axl pathway in the senescent mice. Exp Gerontol 119: 128–137.
18. Chung CC, Hsu RC, Kao YH, Liou JP, Lu YY, et al. (2014) Androgen attenuates cardiac fibroblasts activations through modulations of transforming growth factor-β and angiotensin II signaling. Int J Cardiol 176: 386–393.
19. Campelo AE, Cutini PH, Massheimer VL (2012) Cellular actions of testosterone in vascular cells: mechanism independent of aromatization to estradiol. Steroids 77: 1033–1040.
20. Tanaka N, Morita T, Nezu A, Tanimura A, Mizoguchi I, et al. (2003) Thrombin-induced Ca2+ mobilization in human gingival fibroblasts is mediated by protease-activated receptor-1 (PAR-1). Life Sci 73: 301–310.
21. Hu Z, Ma R, Gong J (2016) Investigation of testosterone-mediated non-transcriptional inhibition of Ca2+ in vascular smooth muscle cells. Biomed Rep 4: 197–202.
22. Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, et al. (2018) Factor Xa inhibition by rivaroxaban regulates fibrogenesis in human atrial fibroblasts with modulation.
of nitric oxide synthesis and calcium homeostasis. J Mol Cell Cardiol 123: 128–138.

23. Chung CC, Kao YH, Yao CJ, Lin YK, Chen YJ (2017) A comparison of left and right atrial fibroblasts reveals different collagen production activity and stress-induced mitogen-activated protein kinase signalling in rats. Acta Physiol (Oxf) 220: 432–445.

24. Qi XY, Huang H, Ordog B, Luo X, Naud P, et al. (2015) Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling. Circ Res 116: 836–845.

25. Altieri P, Barisone C, Lazzarini E, Garuti A, Bezante GP, Christoffersen B, Raun K, Svendsen O, Fledelius C, Kataoka T, Hotta Y, Maeda Y, Kimura K (2017) Testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes. J Am Heart Assoc 5: e002383.

26. Ganesan K, Balachandran C, Manohar BM, Puvanakrishnan R (2012) Effects of testosterone, estrogen and progesterone on TNF-α mediated cellular damage in rat arthritic synovial fibroblasts. Rheumatol Int 32: 3181–3188.

27. Christoffersen B, Raun K, Svendsen O, Fleidelius C, Golozoubova V (2006) Evaluation of the castrated male Sprague-Dawley rat as a model of the metabolic syndrome and type 2 diabetes. J Int Obes (Lond) 30: 1288–1297.

28. Latifi R, Lodhi GM, Aslam M (2008) Effects of amloidipine on serum testosterone, testicular weight and gonado-somatic index in adult rats. J Ayub Med Coll Abbottabad 20: 8–10.

29. Giton F, Sirab N, Franck G, Gervais M, Schmidlin F, et al. (2015) Evidence of estrone-sulfate uptake modification in young and middle-aged rat prostate. J Steroid Biochem Mol Biol 152: 89–100.

30. Sakamura A, Pitla S, Putcha UK, Jayapal S, Pothana S, et al. (2016) Transient decrease in circulatory testosterone and homocysteine precedes the development of metabolic syndrome features in fructose-fed Sprague Dawley rats. J Nutr Metab 2016: 7510840.

31. Kataoka T, Hotta Y, Maeda Y, Kimura K (2017) Testosterone deficiency causes endothelial dysfunction via elevation of asymmetric dimethylarginine and oxidative stress in castrated rats. J Sex Med 14: 1540–1548.

32. Goglia L, Tosi V, Sanchez AM, Flamini MI, Xu XD, et al. (2010) Endothelial regulation of eNOS, PAI-1 and t-PA by testosterone and dihydrotestosterone in vitro and in vivo. Mol Hum Reprod 16: 761–769.

33. Skogastierna C, Hotzen M, Rane A, Ekstroem L (2014) A supraphysiological dose of testosterone induces nitric oxide production and oxidative stress. Eur J Prev Cardiol 21: 1049–1054.

34. Mukherjee S, Kolb MR, Duan F, Janssen LJ (2012) Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts. Am J Respir Cell Mol Biol 46: 757–764.

35. Mukherjee S, Duan F, Kolb MR, Janssen LJ (2013) Platelet derived growth factor-evoked Ca2+ wave and matrix gene expression through phospholipase C in human pulmonary fibroblast. Int J Biochem Cell Biol 45: 1516–1524.

36. Olson ER, Shamhart PE, Naugle JE, Meszaros JG (2008) Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cδ and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 51: 704–711.

37. Huang TY, Lin YH, Chang HA, Yeh TY, Chang YH, et al. (2018) STIM1 knockout enhances PDGF-mediated Ca2+ signaling through upregulation of the PDGFR-PLCγ-STIM2 cascade. Int J Mol Sci 19: 1799.

38. Kapur NK, Qiao X, Paruchuri V, Mackey EE, Daly GH, et al. (2014) Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc 3: e009965.

39. Zhang B, Jiang J, Yue Z, Liu S, Ma Y, et al. (2016) Store-Operated Ca2+ Entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts. J Pharmacol Sci 132: 171–180.

40. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62: 525–563.

41. El-Daher SS, Patel Y, Siddiqua A, Hassock S, Edmunds S, et al. (2000) Distinct localization and function of 1,4,5-IP3 receptor subtypes and the 1,3,4,5-IP4 receptor GAP1IP4IP in highly purified human platelet membranes. Blood 95: 3412–3422.

42. Yao X (2007) TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handb Exp Pharmacol 179: 527–540.

43. Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, et al. (2020) Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. Lab Invest 100: 285–296.

44. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, et al. (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126: 2051–2064.

45. Means AR (2000) Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol 14: 4–13.

46. Monaco S, Illario M, Rusciano MR, Gragnaniello G, Di Spigna G, et al. (2009) Insulin stimulates fibroblast proliferation through calcium-calmodulin-dependent kinase II. Cell Cycle 8: 2024–2030.

47. Zhang W, Chen DQ, Qi F, Wang J, Xiao WY, et al. (2010) Inhibition of calcium-calmodulin-dependent kinase II suppresses cardiac fibroblast proliferation and extracellular matrix secretion. J Cardiovasc Pharmacol 55: 96–105.

48. Zhong P, Quan D, Qi F, Wang J, Yao X, et al. (2017) Role of CaMKII in free fatty acid/hyperlipidemia-induced cardiac remodeling both in vitro and in vivo. J Mol Cell Cardiol 109: 1–16.

49. Kreusser MM, Lehmann LH, Wolf N, Keranov S, Jungmann A, et al. (2016) Inducible cardiomyocyte-specific deletion of CaM kinase II protects from pressure overload-induced heart failure. Basic Res Cardiol 111: 65.