The simulation solution of nonlinear problems of ergodic electric-power processes transformation

Alexander Bulgakov*
Donetsk National Technical University, 83001 Donetsk, Ukraine

Abstract. The algorithm for the simulation solution of the stochastic electric-power processes problems (quadratic inertial smoothing (QIS) and quadratic cumulative averaging (QCA)) has been stated. It includes simulation of initial process realizations, transformation of realizations and ensemble statistical analysis of these processes, as well as simulation quality check by the test problems. Peculiarities of skewness, kurtosis and rated maxima (quantiles) calculations based on the ensemble of the stochastic ergodic process realizations have been considered. Density and cumulative distribution function of the quadratic stochastic processes with normal distribution have been analyzed. Ensemble and single realization errors for rated maxima have been evaluated. It has been proposed to use test check with distribution quantiles when searching for simulation solution of QIS on the stage of quadratic transformation. Approximation of rated maxima using the gamma distribution law is given.

1 Introduction

The current standard for electromagnetic compatibility (EMC) [1] involves the principle of quadratic cumulative averaging [2] to take into account the inertia of objects. The rated maximum of half-hour load [3] also implements a cumulative principle. A simulation solution for a nonlinear problem has been proposed in [4] through the example of quadratic inertial smoothing (QIS) of stochastic electric-power processes. The inertial principle [5] is free from the disadvantages inherent in the cumulative principle of EMC evaluation. The standard [6] is based on the inertial principle of EMC interference evaluation. Some approximate approaches for solution of the problem have been considered in [7].

The detailed definition of numerical characteristics, cumulative function and density distribution for a random variable is given in [8-9] and for stochastic processes in [9-10]. In practice, as a rule, single realizations of stochastic ergodic processes are considered. The simulation solution implies the statistical manipulation of characteristics in the ensemble of stochastic process realizations. The presented material is based on the example of heating an object with the constant of inertia T.

2 A heat model

The superheat temperature of the object and the current are related by the linear differential equation

$$T \frac{d^2 \vartheta}{dt^2} + \vartheta = c_0 I^2 = c_0 z,$$

where $z = \vartheta = I^2$, and the coefficient c_0 is equal to the ratio of the continuous permissible (symbol \cap) temperature ϑ in °C to the square admissible continuous current I in amperes.

The mean temperature $\vartheta_e = c_0 I^2 = c_0 z_e$, ϑ_m is equal to the square effective value I_e (in short − effective, rms) or rms z_e of quadratic process $z(t)$.

They don’t depend on T.

In addition to the continuous permissible the maximum permissible temperature is standardized ϑ_M.

The rated maximum ϑ_M for stochastic process $\vartheta_M(t)$ is determined by a cumulative distribution function $F_{\vartheta_M}(\vartheta_M)$ from the equation

$$F_{\vartheta_M}(\vartheta_M) = 1 - E_e. \quad (3)$$

As a rule, a marginal probability E_e is taken in the range from 0.05 to 0.001 (for example, in [1] it is taken equal to 0.05 for the voltage quality indicators). If the rated maximum of the temperature ϑ_M exceeds the ϑ_M, then the object must be turned off.

Let us consider a probabilistic model of load variation [11-12]. The normal distribution law of the process $I(t)$ is characterized by the mean I_e and the standard deviation σ_I. An exponential autocorrelation function (CF) for the electric-power processes is proposed in [2]:

$$K_I(\tau) = \sigma^2_I \exp[-\alpha |\tau|]. \quad (4)$$

The parameter α is inverse to the correlation time τ_c.

An exponential-cosine CF is used in [12-13]:

* Corresponding author: bulgakov-work@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
\[K_r(t) = \sigma_i^2 \exp(-\alpha t) \cos(\beta t). \]

(5)

The parameter \(\beta \) characterizes the periodic component of the process. The effective current is

\[I_e = \left(I_i^2 + \sigma_i^2 \right)^{1/2}. \]

A per-unit system (pu, symbol \(* \)) is introduced for generalization. Base values are the correlation time \(\tau_c \) and standard deviation \(\sigma_i \). In per-unit system \(I_{rc} = I_e / \sigma_i \), \(\sigma_{rc} = 1 \), \(T_c = \alpha T_r \), \(\tau_c = \alpha \tau, \alpha = 1 \). After replacing in (1) \(I^2 \) with \(I_{rc}^2 / \sigma_{rc}^2 \), we obtain

\[\vartheta_{rc} = \vartheta_r / c_0 \sigma_i. \]

Taking into account that \(dt_{rc} = \alpha dT \) and \(T_r = \alpha T \) the equation (1) can be expressed as

\[T_r \vartheta_{rc} + \vartheta_{rc} = I_{rc}^2. \]

(6)

The per-unit system allows us to simulate the current for the values \(\alpha = 1 \), \(\sigma_{rc} = 1 \) and \(I_{rc} \) only. The resulting \(T_r \)-characteristics are universal. They cover any \(T, \alpha, I_e \) and \(\sigma_i \) values in actual values.

The block diagram of a heat model is shown in Figure 1. A stationary stochastic process \(I_i(t) \) is an input to the model. QIS transformation is implemented (block 2). A quadratic inertial process \(\vartheta_{rc}(t) \) is an output of block 2. In case of need square-rooting is performed to obtain a reduced inertial process \(I_{eT}(t) \).

\[I_i \rightarrow z_i = I_i^2 = \vartheta_{0r} \quad \text{QIS} \rightarrow 2 \]

Fig. 1. A heat model.

The exact solution for the distribution density of the process is unknown. Only some numerical characteristics can be determined precisely. For CF of the form (4) mean value is

\[\vartheta_{0r} = I_e^2 = I_i^2 + \sigma_i^2, \]

(7)

the standard deviation is

\[\sigma_{0r} = \sqrt{2} \sigma_i \sqrt{ \frac{\sigma_i^2}{1 + 2\alpha T_r} + \frac{2I_i^2}{1 + \alpha T_r} }, \]

(8)

in pu

\[\vartheta_{Tc} = I_e^2 = I_i^2 + \sigma_i^2, \quad I_i^2 + 1, \]

(9)

\[\sigma_{0Tc} = \sqrt{2} \sigma_i \sqrt{ \frac{\sigma_i^2}{1 + 2T_r} + \frac{2I_{rc}^2}{1 + T_r} } = \sqrt{2} \left\{ \frac{1}{1 + 2T_r} + \frac{2I_{rc}^2}{1 + T_r} \right\}. \]

(10)

3 Test problems

Subject to the existence of an inertia there can only be a simulation solution of the problem, so it is advisable to set high requirements for the quality of initial stochastic process realizations, as well as to verify the simulation solution on basis of test problems.

A test problem (a check) is the special case, which an exact analytic solution can be found for. In regard to QIS transformation of stochastic electric-power processes the two test problems are given in [4]: a quadratic inertial transformation and QIS transformation when the mean value of an initial process is equal to 0. In the first case an exact analytic solution is known after transformation (the process distribution law), in the second case – solution is given for moments of distribution.

3.1 Quadratic inertialless transformation

A quadratic process \(z(t) \) occurs at the output of block 1 (Fig.1). It is possible to verify the simulation quality at this stage. The calculation is performed for the ensemble simulation density and distribution function to compare them with the exact solution. It is also possible to evaluate errors of distribution moments though it is not necessary in this case.

The distribution density of a quadratic stationary stochastic process \(z = I_i^2 \) is given by the exact formula in [10]:

\[f_{c}(z)= \frac{1}{\sqrt{2\pi} \sigma_c \sqrt{z}} \times \left[\exp \left(\frac{-(z-I_i^2)\tau_{c}}{2\sigma_c^2} \right) + \exp \left(\frac{-(z+I_i^2)\tau_{c}}{2\sigma_c^2} \right) \right]. \]

(11)

The distribution density can be expressed through a hyperbolic function

\[f_{c}(z)= \frac{1}{\sqrt{2\pi} \sigma_c \sqrt{z}} \exp \left(\frac{-z+I_i^2}{2\sigma_c^2} \right) \cosh \left(\frac{I_i \sqrt{z}}{\sigma_c} \right). \]

(12)

Considering quadratic transformation \(z \geq 0 \).

Kolmogorov-Smirnov test gives evaluation in \(Y \)-direction of the distribution function \(F_c(z) \), but evaluation of maximum rated values in accordance with practical confidence principle [14] is performed in \(X \)-direction. The distribution can have a considerable length (Fig.2) in the area of the rated values (long «tails»). This can introduce a significant error. It is proposed to increase the accuracy in addition to the evaluation with Kolmogorov-Smirnov test further to test simulation solutions for quantiles of inertialless quadratic transformation.

3.2 QIS of zero-mean initial process

The second test check is run for \(T > 0 \). In this case the exact solution can only be found for the moments of a process distribution \(\vartheta_{rc}(t) \). In pu the dispersion

\[D_{0Tc} = D_{0c} \left[\sigma_i^2 = \mu_{0Tc} = \frac{2}{1 + 2T_r} + \frac{4I_{rc}^2}{1 + T_r} \right]. \]

(13)

where \(\mu_{0Tc} \) is the second central moment in pu. The mean value is determined by the formula (9).
4 Algorithm for the simulation solution

The main statements of the method to obtain the simulation solution of the QIS problem have been given in [4]. Let us state the algorithm taking into account that it is mostly common to use reduced values which are equidimensional with the initial process, in instances, when power quality factors are evaluated (a generalized model for EMC estimation is given in [15]).

1. The simulation of ensemble initial realizations of a stochastic process.
2. The verification and correction of mean values and standard deviations in the simulated initial realizations.
3. The verification of the correlation function (CF) reproduction precision.
4. The verification of the initial process distribution law.
5. The quadratic transformation of the process realizations.
6. The verification of the ensemble quadratic process distribution law and ensemble quantiles.
7. The inertial smoothing of the quadratic process realizations.
8. Obtaining a reduced inertial process.
9. The calculation of the process realizations numerical characteristics (mean value, standard deviation, variance, 3-d and 4-th order distribution moments).
10. Averaging to obtain the ensemble numerical characteristics.
11. The ensemble skewness and kurtosis calculation.
12. The calculation of the simulation density and cumulative distribution function of process realizations.
13. Averaging to obtain the ensemble simulation density and cumulative distribution function.
14. The quantiles calculation (rated maxima) of quadratic inertial or reduced inertial processes (using the ensemble cumulative distribution function).

5 Ensemble characteristics

The proposed algorithm contains the calculation of process numerical characteristics. The single realizations calculation (symbol ~) and ensemble averaging (symbol ^) are used. Such characteristics as skewness and kurtosis are useful for the test problem solutions, while they are not the ultimate goal of calculations. The calculation of the skewness and kurtosis is performed with ensemble averaged values of standard deviation, 3rd and 4th central moments:

\[
\hat{Sk} = \frac{\hat{\mu}_{3}^{x}}{\hat{\sigma}_{x}^{3}}, \quad \hat{Ex} = \frac{\hat{\mu}_{4}^{x}}{\hat{\sigma}_{x}^{4}} - 3.
\]

Required rated maxima are determined with an ensemble cumulative distribution function

\[
\hat{F}_{x}(z) = \frac{M[\tilde{F}_{x}(z)]}{M[\tilde{F}_{x}(z)]}.\]
6 Approximation by the gamma distribution law

The density can be approximated by dint of gamma distribution when $T = 0$:

$$f_{00}(\vartheta_0) = \frac{\lambda_0^n}{\Gamma(\eta)} \vartheta_0^{n-1} \exp\{-\lambda_0 \vartheta_0\}, \quad (20)$$

where $\Gamma(\eta)$ is complete gamma function determined by a dimensionless shape parameter η. The scale parameter λ has a dimension of $\frac{1}{(\text{pu})^2}$. Both parameters depend on the effective value I_c of the initial process $I(t)$ and standard deviation σ_i of the quadratic process $z(t)$. In case of the quadratic inertialess transformation:

$$\lambda = \frac{I_c^2}{\sigma_0^2} = \frac{I_c^2 + \sigma_i^2}{2\sigma_i^2 \left(\sigma_i^2 + 2I_c^2\right)};$$

$$\eta = \frac{I_c^4}{\sigma_0^2} = \frac{(I_c^2 + \sigma_i^2)^2}{2\sigma_i^2 \left(\sigma_i^2 + 2I_c^2\right)}. \quad (21)$$

Let us define numerical characteristics of the gamma distribution when approximating. The mean value is

$$\vartheta_{00} = \frac{\eta \lambda}{\lambda} = \frac{I_c^2}{\sigma_0^2} = I_c^2. \quad (22)$$

The standard deviation is

$$\sigma_{00} = \sqrt{\frac{\eta}{\lambda}} = \sqrt{\frac{2\sigma_i^2}{\sigma_i^2 + 2I_c^2}} \cdot \quad (23)$$

The skewness and kurtosis are

$$Sk = \frac{2}{\sqrt{\eta}} = \frac{2}{\frac{I_c^2}{\sigma_0^2}} = \frac{2}{\frac{I_c^2}{\sigma_i^2} + 2I_c^2};$$

$$Ex = \frac{6}{\eta} = \frac{6}{I_c^2/\sigma_0^2} = \frac{12\sigma_i^2 \left(\sigma_i^2 + 2I_c^2\right)}{(I_c^2 + \sigma_i^2)^2}. \quad (24)$$

If the mean value of the initial process is zero, the densities calculated according to the formulae (12) and (20) are exactly the same. But when $I_c > 0$, the distribution types are different (Fig.3).

For the problem under consideration the quality of the approximation is evaluated based on how accurately the inverse distribution of a quadratic process is reproduced when $E_x = 0.05$. The percentage error is calculated using a formula:

$$\delta = \left(\frac{\vartheta_{00}}{\vartheta_{00}} - 1\right) \times 100\%,$$

where ϑ is an exact solution according to (12), ϑ_{00} is an approximate solution according to (21). The calculation results for different mean values are given in Table 1.

Table 1. Errors of approximation: $T = 0$, $E_x = 0.05$.

I_{c0}, o.e.	ϑ_{00}	ϑ_{00}	δ, %
0	3.841	3.841	0
1	7.002	6.928	-1.057
2	13.285	13.366	0.61
3	21.575	21.804	1.061
4	31.867	32.183	0.992
5	44.154	44.528	0.847

While approximating the error when defining the rated maxima can be both negative and positive.

Let us consider the gamma distribution characteristics in case of a nonzero inertia. The distribution density when $T > 0$ is

$$f_{0T}(\vartheta_t) = \frac{\lambda^n}{\Gamma(\eta)} \vartheta_t^{n-1} \exp\{-\lambda \vartheta_t\}. \quad (26)$$

The parameters are defined according to the expressions:

$$\lambda = \frac{I_c^2}{\sigma_{0T}^2}, \quad \eta = \frac{I_c^4}{\sigma_{0T}^2}. \quad (27)$$

Taking into account (10), in pu

$$\lambda_* = \frac{I^2_c + 1}{1 + 2T_c} + \frac{4I^2_c}{1 + T_c},$$

$$\eta_* = \frac{(I^2_c + 1)^2}{2 + 4I^2_c}. \quad (28)$$

7 Simulation

The initial simulation process $I(t)$ consists of $m = 250$ realizations with $I_{c0} = 0$ and exponential CF. Single realization minimum and maximum values of z_m (Fig.4, large bright circles) were 3.613 and 4.044 pu.
Ensemble value $\hat{z}_m = 3.837 \text{ pu}^2$ (a large dark circle). The evaluation by formulas (12) gives the exact value equal to 3.841 pu^2.

The maximum and minimum ratio errors for the single realization rated maxima z_M were -5.94% and 5.29%. The ratio error for the ensemble was 0.104%. It confirms the necessity to use ensemble of realizations of a stochastic process in the simulation solution of nonlinear transformations of the stochastic power processes, because even inertialess nonlinear transformation of the estimated maxima for individual realizations are reproduced with considerable error.

Simulation skewness and kurtosis of a quadratic inertial process $\vartheta(t)$ taken over ensemble and realizations are given in Fig.5. The exact solution is calculated according to (17).

The distribution moments based on the single realizations differ greatly from the exact values. As it can be expected the dispersion for kurtosis is greater than the dispersion for skewness. The ensemble-averaged values of these characteristics are close to the exact values.

The simulation solution of the QIS problem is given in Fig.6 in the form of T_\ast-characteristic. The simulation is performed for every value of I_\ast. The results of the approximation with the help of the gamma distribution based on the formulae (26-28) are marked with circles.

The quantitative meanings of maxima and approximation errors are partially shown in Tables 2 and 3. It is necessary to point out that the approximation errors of the process rated maxima $\vartheta_{r,t}(t)$ when $E_x = 0.05$ do not exceed 1.2% as per their absolute value. At the same time when $E_x = 0.001$ the approximation quality essentially deteriorates. According to the experiment data there is no steady error reduction.
8 Conclusion

To increase the simulation solution accuracy of the nonlinear problems of ergodic electric-power process transformation it is reasonable to fulfill the statistical analysis of ensemble realizations rather than single realizations.

The rated maxima of the quadratic inertial process can be approximated by gamma distribution with a relatively low error when $E_s = 0.05$.

References

1. EN 50160:2010 Voltage characteristics of electricity supplied by public distribution networks.
2. A. Shydlovsky, E. Kourennyi, Introduction to the statistical dynamics of power supply systems (Kiev, Naukova dumka, 1984)
3. PUE 7th Edition, all sections and exhibits.
4. E. Kourennyi, E. Dmitrieva, A. Bulgakov, Proceedings of the RAS. Power Engineering, 4, 109-122 (2016)
5. E. Kourennyi, E. Dmitrieva, A. Lyutyi, A. Bulgakov, Electrical Technology Russia (The Electricity), 1, 12-20 (2016)
6. IEC 61000-4-15:2010, Electromagnetic compatibility (EMC)-Testing and measurement techniques – Flickermeter - Functional and design specifications
7. E. Kourennyi, A. Bulgakov, Russian Electromechanics, 5, 75-81 (2016)
8. E. Wentzel, Probability Theory (Moskow, Knorus, 2010)
9. A. Papoulis, S. Unnikrishna Pillai, Probability, Random Variables and Stochastic Processes, 4th ed. (New York, McGraw-Hill, 2002)
10. A. Sveshnikov, Applied methods of the theory of random functions (Moskow, Nauka, 1986)
11. Z. Tianshu,S. Wanxing, S. Xiaohui, M. Xiaoli, S. Changkai, UKSim 15th International Conference on Computer Modelling and Simulation, 519-524 (2013)
12. N. Malysheva, A. Pavlov, Dynamics of Systems, Mechanisms and Machines, 1-5 (2016)
13. A. Saltykov, Russian Electrical Engineering, 8, 454-456 (2008)
14. E. Dmitrieva, Electrical Technology Russia (The Electricity), 8, 15-21 (2008)
15. V. Kuznetsov, E. Kourennyi, A. Lyutyi, Electromagnetic compatibility. The nonsymmetry and nonsinusoidality of voltage (Donetsk, Nord press, 2005)