Indirect signatures for axion(-like) particles

K Zioutas1,2, K Dennerl3, M Grande4, DHH Hoffmann5, J Huovelin6,
B Lakic7, S Orlando8, A Ortiz9, Th Papaevangelou2, Y Semertzidis10,
Sp Tzamarias11 and O Vilhu6

1Department of Physics, University of Patras, Greece
2CERN, Geneva, Switzerland
3MPE, Garching, Germany
4RAL, Chilton, Didcot, UK
5IKP, TU-Darmstadt, Darmstadt, Germany
6Observatory, University of Helsinki, Finland
7RBI, Zagreb, Croatia
8INAF - Osservatorio Astronomico di Palermo, Italy
9High Altitude Observatory/N.C.A.R., Boulder, CO, USA
10BNL, New York, USA
11HOU, Greece

E-mail: zioutas@physics.upatras.gr

Abstract. Magnetic field dependent transient solar observations are suggestive for axion-photon oscillations with light axion(-like) particle involvement. Novel dark-moon measurements with the SMART X-ray detectors can be conclusive for radiatively decaying massive exotica like the generic solar Kaluza-Klein (KK) axions. Furthermore, the predicted intrinsic strong solar magnetic fields could be the reason of enhanced low energy axion production. Such an axion component could be the as yet unknown origin of the strong quiet Sun X-ray luminosity at energies below ~ 1 keV. Solar axion telescopes should lower their threshold, aiming to copy processes that might occur near the solar surface, be it due to spontaneous or magnetically induced radiative decay of axion(-like) particles. This is motivated also by the recent claim of an axion-like particle detection by the laser experiment PVLAS.

1. Introduction

This work refers to astrophysical observations of unknown origin, which can be explained with the involvement of axions or other particles with similar properties, which we call generically as axion(-like). We recall that stellar observations and theory on stellar evolution cannot be reconciled with stars having atmospheres that emit X-rays [1]. More specifically, the mechanism that heats the solar corona to some MK remains elusive, even though many possible mechanisms of coronal heating have been widely discussed in literature [2]. This is the solar corona problem, i.e. what is the origin of the sudden increase of the temperature of the solar atmosphere by a factor of ~ 200? At first sight this implies a violation of the second law of thermodynamics. A similar behaviour is encountered also at the Earths atmosphere some 50 to 100 km height. However, the solar irradiation is at the origin of the temperature and density profiles of the terrestrial atmosphere, which resembles the solar chromosphere-corona region. This similar behaviour is suggestive for some kind of solar self-irradiation. The radiative decay of gravitationally trapped massive particles of the type Kaluza-Klein axions, created by the Sun
itself, were considered as the generic source that heats the solar atmosphere continuously [3]. However, such particles fail to explain transient solar phenomena, asking for an additional X-ray source.

2. Related astrophysical observations

2.1. X-rays and solar magnetic field

There is strong observational evidence that (transient) solar X-ray emission correlates with the local magnetic field \((B)\). Magnetic fields of several kGauss exist in sunspots, which are places of enhanced solar activity. It is widely accepted that the magnetic field plays a crucial role in heating the solar corona, though the exact energy release mechanism is still unknown and remains a nagging unsolved problem in astrophysics.

These magnetic field related solar X-rays make an additional component of the solar X-ray luminosity. Having in mind the working principle of an axion magnetic helioscope like CAST [4], it is suggestive to assume that the celebrated solar axions with an energy below \(\sim 10\ \text{keV}\), streaming out of the hot solar core, are converted into X-rays, with the Primakoff effect occurring at the local field, which might take place more efficiently inside the extended surface solar magnetic fields. Note that the axion-to-photon oscillation probability depends on the transverse magnetic field component squared. Interestingly, some relevant observations [5] arrived to a soft X-ray intensity dependence on \(B^2\) of the surface magnetic field, which fits the axion-to-photon conversion inside \(B\). A similar \(B^2\)-dependence of the X-ray intensity was observed also in ref. [6], without arriving to more insight on the nature of such an apparent relationship.

The long-term evolution of an isolated Active Region (AR7978) during solar minimum in 1996, could be observed over few months [7] confirming the above results in a more direct way. Outside flaring times, the soft X-ray luminosity from this long lived active region, provided (see Fig. 1):

\[L_x \sim B^{1.94\pm0.12}. \]

It is worth stressing that in axion helioscopes, like CAST, in the case of an axion signal, its \(B^2\)-dependence should be the ultimate method for axion identification.

Furthermore, what triggers the energy release of solar flares is still elusive. It is worth further following these strong X-ray emitting events also within the axion scenario, since they correlate with the solar surface magnetic field.

2.2. Anticorrelation of sunspot brightness with X-rays

For sunspots, a number of fundamental questions remains unanswered, asking for an additional mechanism, which might go beyond the conventional reasoning, being based on the magnetic field inhibited convection below those places.

Inside a magnetic field, the Primakoff effect can give rise to axion-to-photon conversion as well as to photon-to-axion back-conversion as soon as photons start appearing. If the axion-photon oscillation length is much shorter than the field length, one ends up with a mixture of axions and photons with similar intensity each, even starting only either with axions or with photons. This implies that part of the solar luminosity in the visible, which is streaming out from the few 100 km thick photosphere, can be temporally decreased locally, if a magnetic field with appropriate strength, inclination and length intervenes, while environmental conditions like plasma frequency, etc., can play an important role too. Each of these parameters can give rise to local/transient effects.

Interestingly, the lower light intensity from sunspots decreases with the surface magnetic field in the range 1.5 to 3.5 kGauss by as much as \(\sim 50\%\) (see Fig. 5.4 in [8]). In the axion scenario, the decreased intensity can be due to photons escaping into axion(-like) particles
inside \(B \). Following our evaluation, this magnetic field behaviour shows a \(B^2 \) dependence, which is characteristic for a photon-to-axion conversion. In fact, the corona above sunspots is hotter and their photosphere underneath is cooler than near quiet sun regions, respectively [9]. At first sight, the observed behaviour between two very near solar places appears contradictory. But, within the axion scenario, it is consistent, at least qualitatively: the photosphere cools because some of its photons in the visible escape as axions, while the corona gets heated by the increased X-ray emission due to enhanced axion-to-(X-ray photon) conversion inside the surface Sunspot field, as energetic axions are streaming out of the Sun.

3. Intrinsic solar magnetic fields

So far, the estimated solar axion production does not take into account intrinsic magnetic fields, which might reach huge strengths (see for example [10]). Once the local plasma frequency \(\omega_{\text{plasma}} \) fits the axion rest mass, enhanced coherent photon-to-axion conversion might take place inside the magnetic field. The maximum coherence length can be equal to the photon mean free path length, i.e. a few cm inside the core to some 100 km near the surface of the Sun, provided the quasi resonance condition \(\hbar \omega_{\text{plasma}} \approx m_{\text{axion}} c^2 \) applies. In particular, for axions of the KK-type, the enhanced production due to a quasi continuous resonance crossing can occur across the whole Sun. Such a process can modify the solar axion energy spectrum, depending on the field strength and its topology. Thus, a strong magnetic field outside the hot core can enhance the production of lower energy axions. The steeply increasing soft quiet Sun X-ray luminosity (of unknown origin) fits such an axion–magnetic-field scenario, being suggestive for further investigations.

4. Conclusions

Since \(\sim 70 \) years the origin of the solar X-ray emission remains elusive within conventional astrophysics. Solar observations together with laboratory results favour novel (in)direct axion measurements in a wide energy bandwidth, utilizing various type of telescopes. Thus, axion helioscopes should reach the lowest possible threshold. The discussed sunspot observations along with the recent claim by PVLAS for an axion-like signal, motivate measurements in the visible. The search for decaying massive exotica can be performed also with X-ray telescopes in space. We mention the dark-moon observations with the SMART observatory: the signal depends linearly on its distance to the dark-moon, while the unknown background coming from the Moon surface is distance independent. This allows to perform conclusive background subtracted searches for massive (solar) exotica.

The observed \(B^2 \)-dependence of enhanced solar X-ray emission from the corona above sunspots, and, the surface brightness suppression from these as yet mysterious places, suggest that magnetic field related axion interactions could also be at work. This is then a second axion related solar X-ray component, explaining thus transient/local phenomena of unknown origin. Note, the coupling of massive solar axions of the KK-type to the magnetic field is strongly suppressed, failing to explain dynamical solar phenomena.

Observations from places beyond our Sun, like the Galactic Center, or, the Inter Cluster Medium, are of not minor mystery, since it is difficult to reconcile simple physics like escaping velocity, gas thermodynamics, etc., with expectation. Obviously, if we ignore, for example, a quasi electromagnetic interaction of the ubiquitous dark matter exotica, we end up with an unpredictable behaviour.

Acknowledgments

This work was partially supported by the ILIAS (Integrated Large Infrastructures for Astroparticle Science) project funded by the EU under contract EU-RII3-CT-2004-506222.
Figure 1. Soft X-ray emission as a function of the local magnetic field of the Active Region AR7978 during solar minimum in 1996. The derived slope is close to 2. This figure has been taken from ref. [7] (Permission by Lidia van Driel-Gesztelyi).

References
[1] Acton L W 1996 Magnetodynamic Phenomena in the Solar Atmosphere 3
[2] Priest E R, Longcope D W and Heyvaerts J 2005 ApJ. 624 1057
[3] Zioutas K, Dennerl K, Hoffmann D H H and Papaevangelou Th 2004 Science 306 1485 and references therein
[4] Zioutas K et al [CAST Collaboration] 2005 Phys. Rev. Lett. 94 121301 and references therein
[5] Benevolenskya E et al 2002 ApJL. 571 181
[6] Wolfson R, Roald C B, Sturrock P A 2000 ApJ. 539 995
[7] Van Driel-Gesztelyi L, Demoulin P, Mandrini C H, Harra L and Klimchuk J A 2003 ApJ. 586 579
[8] Solanki S K 2003 A. A. Rev. 11 153
[9] Nindos A, Kundu M R, White S M, Shibasaki K and Gopalswamy N 2000 ApJ Suppl. 130 485
[10] Couvidat S, Turck-Chieze S and Kosovichev AG 2003 ApJ. 599 1434