The electronic structure of two-dimensional (2D) materials are inherently prone to environmental perturbations, which may pose significant challenges to their applications in electronic or optoelectronic devices. A 2D material couples with its environment through two mechanisms: local chemical coupling and nonlocal dielectric screening effects. The local chemical coupling is often difficult to predict or control experimentally. Nonlocal dielectric screening, on the other hand, can be tuned by choosing the substrates or layer thickness in a controllable manner. Therefore, a compelling 2D electronic material should offer band edge states that are robust against local chemical coupling effects. Here it is demonstrated that the recently synthesized MoSi$_2$N$_4$ is an ideal 2D semiconductor with robust band edge states protected from capricious environmental chemical coupling effects. Detailed many-body perturbation theory calculations are carried out to illustrate how the band edge states of MoSi$_2$N$_4$ are shielded from the direct chemical coupling effects, but its quasiparticle and excitonic properties can be modulated through the nonlocal dielectric screening effects. This unique property, together with the moderate band gap and the thermodynamic and mechanical stability of this material, paves the way for a range of applications of MoSi$_2$N$_4$ in areas including energy, 2D electronics, and optoelectronics.
RESULTS
Electronic and structural properties of MoSi2N4: from monolayer to bulk

The crystal structure of the newly synthesized monolayer MoSi2N4 is shown in Fig. 1, which can be considered as an MoN2 layer sandwiched between two SiN layers. The optimized in-plane lattice constant for monolayer MoSi2N4 is 2.896 Å, which is consistent with an earlier report.14 The distance between two Si layers is 5.99 Å, which also agrees with experiment.14 The strong polar covalent bonding and the relatively thick layer structure provide an energetically and mechanically stable structure for potential applications.

Such a multi-atomic layer structure also offers the possibility of having protected band edge states from weak interfacial chemical coupling if these states are primarily derived from orbitals of the interior atoms. To investigate such possibility, we carry out DFT calculations of the layer-dependent electronic structure of MoSi2N4. We first construct six bilayer structures and the corresponding bulk structures with different stacking patterns. The structures are optimized using the PBE functional with the DFT-D3 correction to account for the interlayer vdW interaction. Details of the optimized structures are shown in the Supplementary Fig. 1 and Supplementary Table 1. The calculated inter-layer separation ranges from 3.270 to 2.825 Å for the bilayer structure, and 3.222 to 2.807 Å for the bulk phase. Not surprisingly, the lowest energy structures have the smallest interlayer separations. Table 1 compares the calculated interlayer separation d and binding energy of the most stable bilayer and bulk MoSi2N4 with a few selected layered materials. Experimental values for the bulk phase is 3.202 Å, which also agrees with experiment.14

The calculated PBE band gap of MoSi2N4 is 1.77 eV, which is 20 meV smaller than that of the monolayer structure, respectively. The DFT-PBE band structures of the five metastable structures for the bilayer and bulk phases are shown in Supplementary Figure 2.

Before we proceed, we briefly discuss the spin-orbit coupling (SOC) effect in this system. The PBE band structure of monolayer MoSi2N4 calculated with SOC included is shown with red dotted lines in Fig. 2(a). The SOC effects result in a splitting of 130 meV of the valence band at the K point; the SOC effects on the CBM (at the K point) and VBM (Γ) states are negligible. These results agree well with experiment.14

Robust band edge states protected from interfacial chemical coupling

The negligible layer dependence of the calculated DFT gap strongly hints at the presence of robust near-edge electronic states that are shielded from interfacial chemical coupling. This is only possible if the band edge states are derived primarily from interior (i.e., Mo and interior N atoms) atomic orbitals. In order to gain further understanding, we show in Fig. 3 (a) the decomposition of the Kohn-Sham wave functions near the band gap into contributions from atomic orbitals. It is obvious that the band edge states are largely derived from Mo d orbitals with a small admixture of other atomic orbitals. This is also clearly seen in Fig. 3 (b) and (c), in which we show the isosurface charge density plots of the band edge states at the K point: the charge density of the band edge states mainly locates inside the MoSi2N4 layer. Considering the relatively thick monolayer structure and the fact that Mo d orbitals are fairly localized, interlayer chemical coupling effects on the band edge states are greatly reduced.

The presence of small admixtures of atomic orbitals derived from Si and surface N atoms in the band edge states explains the slight layer-dependent DFT band structure and band gap as shown in Fig. 2 and Table 2. Interlayer chemical coupling (hybridization) will occur for states which have significant contributions from outer atomic orbitals. Interestingly, these states are either significantly above or below the band gap. Therefore, MoSi2N4 offers an exciting material system with band

![Fig. 1 Side view and top view of the crystal structure of monolayer MoSi2N4. The surface and interior N atoms are shown with red and blue colors, respectively.](image-url)

| Table 1. Comparison between the calculated interlayer binding energy (E_{bind} = (2E_{monolayer} - E_{bilayer})/A, in meV Å⁻²) and interlayer separation d (in Å) of MoSi2N4 with a few selected layered materials using the PBE functional with the DFT-D3 correction. |
|-----------------|-----------------|-----------------|-----------------|
| MoSi2N4 | MoS2 | WS2 | Black phosphorus |
| Binding Energy | 43.8 | 39.2 | 41.9 | 33.3 | 30.2 | 27.7 |
| Exp. | – | – | – | – | – | – |
| Bilayer d | 2.825 | 2.944 | 3.012 | 3.182 | 3.202 | 3.206 |
| Bulk d Theory | 2.807 | 2.921 | 2.951 | 3.194 | 3.187 | 3.097 |
| Exp. | – | 2.975 | 3.019 | 3.101 | – | – |

Experimental results for MoS2, WS2, and black phosphorus are taken from refs. 40–42, respectively.
that the quasiparticle or excitonic properties of MoSi2N4 are not surface or interfacial perturbations. This does not mean, however, unique layered material with band edge states protected from strongly renormalize the fact, substrate or layer-dependent dielectric screening effects can affected by nonlocal interlayer or substrate coupling effects. In experiment, substrate or interlayer screening effects can serve as an effective means to modulate the quasiparticle and optical excitonic properties can be modulated through engineering the dielectric screening, as we will discuss in the next section.

It should be pointed out that fully converged GW calculations for 2D materials remain a challenge due to the large cell size and the unusual analytical behaviors of 2D dielectric functions and electron self-energies, which make conventional GW calculations using the band-by-band summation and the uniform Brillouin zone (BZ) integration approach rather inefficient. Our work takes advantage of the recent code developments

In addition, the combined subsampling and analytical BZ integration approach

greatly improves the efficiency of the BZ integration of the quasiparticle self-energy. In this work, the self-energy integration in the BZ is carried out using a 6 × 6 × 1 k-grid with four subsampling points; these parameters are sufficient to converge the GW band gap to within 0.03 eV as discussed in our previous publications. We have also tested the convergence of the calculated results with respect to the thickness of the vacuum layer. More detail of the convergence test of our GW and BSE calculations can be found in Supplementary Figs. 3 and 4.

Layer-dependent electron-hole excitations and optical properties

Now we investigate the layer-dependent e-h excitations and optical properties of MoSi2N4. The quasiparticle properties are calculated within the GW approximation as described in the previous section, and the e-h excitation spectra are obtained by solving the Bethe-Salpeter equation (BSE), which is transformed into a simplified eigenvalue problem after decoupling the e-h interactions, thus the quasiparticle and excitonic properties of 2D materials. For instance, the quasiparticle band gap (from 2.82 to 2.41 eV) is still possible with the choice of substrate and/or layer thickness. Similarly, excitonic properties can be modulated through engineering the dielectric screening, as we will discuss in the next section.

The GW band gaps (in eV) are calculated at the DFT-PBE level. Experimental results for MoS2, WS2, black phosphorous, C3N, and C6B are taken from refs. 3,5,9,14, respectively.

Table 2. Interlayer chemical coupling effects on the band gap of MoSi2N4 compared with other layered materials.

Layer	MoSi2N4	MoS2	WS2	Black phosphorus	C3N	C6B
Monolayer	1.79	1.72	1.96	0.83	0.39	0.64
Bilayer	1.77	1.26	1.45	0.48	0.13	0.10
Bulk	1.70	0.88	0.98	0.04	−0.98	−0.68

The band gaps (in eV) are calculated at the DFT-PBE level. Experimental results for MoS2, WS2, black phosphorous, C3N, and C6B are taken from refs. 3,5,9,14, respectively.

Layer-dependent quasiparticle properties: tailoring the electronic structure with nonlocal dielectric screening effects

Our results have unequivocally demonstrated that MoSi2N4 is a unique layered material with band edge states protected from surface or interfacial perturbations. This does not mean, however, that the quasiparticle or excitonic properties of MoSi2N4 are not affected by nonlocal interlayer or substrate coupling effects. In fact, substrate or layer-dependent dielectric screening effects can strongly renormalize the e-e or e-h interactions, thus the quasiparticle and excitonic properties of 2D materials. Fortunately, unlike local chemical coupling, which is challenging to control in experiment, substrate or interlayer screening effects can serve as an effective means to modulate the quasiparticle and optical properties of 2D materials. To this end, we first carry out fully converged GW calculations for monolayer, bilayer, and bulk MoSi2N4, aiming at illustrating the dielectric screening effects on the quasiparticle properties, in particular, the quasiparticle band gap of MoSi2N4.
In our calculations, four (eight) valence and four (eight) conduction states are included in the expansion of the excitonic wave functions for the monolayer (bulk or bilayer) MoSi$_2$N$_4$, which should be adequate to cover excitations of up to at least 6 eV. We have also carried out calculations using more valence and conduction bands; the results for low energy excitations are practically unchanged as shown in Supplementary Table 3. The contribution to an excitonic state $|j>$ from e-h pairs in the BZ can be conveniently visualized using the k-dependent excitonic amplitude function $|A_k^j|^2 = \sum_{vc} |A_{vc,k}^j|^2$. The imaginary part of the frequency-dependent macroscopic dielectric function including the excitonic effects is then given by (using atomic units)

$$\varepsilon_2(\omega) = \frac{16\pi^2}{\omega^2} \sum_S |\tilde{\lambda} \cdot <0|\bar{S}|S>|^2 \delta(\omega - \Omega^2)$$

where $\tilde{\lambda}$ is the unit vector of the polarization direction of light and \bar{v} is the velocity operator. A Gaussian smearing of width 25 meV is used in the calculation of $\varepsilon_2(\omega)$.

Figure 5 compares the calculated $\varepsilon_2(\omega)$ for monolayer (a), bilayer (b), and bulk (c) MoSi$_2$N$_4$. We include results calculated with (blue) and without (black) e-h interaction. Including the e-h interaction not only significantly shifts the absorption edge but also produces prominent excitonic absorption peaks. Note that it is well-known that the dielectric function is volumetric, therefore it scales with the thickness of the vacuum layer for 2D systems26–28. However, the excitonic features (i.e., the position and relative strength of the excitonic peaks) can be compared directly with experiment as long as the results are adequately converged with respect to the interlayer separation. The first absorption peak (i.e., peak A) at 2.50 eV for the monolayer MoSi$_2$N$_4$ arises from two degenerate excitonic states, to be compared with the reported first optical absorption peak at 2.21 eV14. In addition to the underlying accuracy of the theory, factors that may contribute to the difference between experiment and theory include temperature and SOC effects; both effects turn to shift the absorption energy downwards. It is interesting that two excitonic states can give rise to such a strong absorption. The k-resolved e-h pair

Layer	Indirect gap $\Gamma \rightarrow K$ (eV)	Direct gap at K (eV)
Monolayer	1.79	2.03
Bilayer	1.77	2.09
Bulk	1.70	2.10

Figure 3. Atomic character of the near band edge states of MoSi$_2$N$_4$. a Decomposition of Bloch wave function of MoSi$_2$N$_4$ into atomic contributions, b the isosurface charge density plot ($\rho = 0.02e/Å^3$) for the top of the valence band at the K point, and c the isosurface charge density plot for the bottom of the conduction band at the K point.

Figure 4. GW band structures for MoSi$_2$N$_4$ from monolayer to bulk. a–c represent the GW band structure of monolayer, bilayer, and bulk MoSi$_2$N$_4$, respectively. Important electron and hole states involved in the optical transitions that give rise to the A (red), B (green), and C (blue) low energy absorption peaks in monolayer MoSi$_2$N$_4$ are also shown.
amplitudes $|A^S|^2$ for these two excitonic states are shown in Fig. 5 (d). It is clear that the dominant contribution to the first two excitonic states comes from the $e-h$ pairs near the minimum direct gap at the K and K’ points [see Fig. 4 (a) for the quasiparticle band structure of monolayer MoSi$_2$N$_4$]. This is very similar to that in monolayer MoS$_2$. Therefore, for the A excitons, we can define a non-interacting electron-hole pair excitation gap $E^\text{non-int} = E^\omega_{QP} - E^\omega_{QP}$, which is the minimum quasiparticle band gap at the K point. Measuring from this non-interacting electron-hole pair excitation gap, we obtain the exciton binding energy of about 0.63 eV for the first two excitonic states. A more rigorous definition for the exciton binding energy is the difference between the mean quasiparticle excitation gap (for a given excitonic state) and the excitonic eigenvalue, i.e.,

$$E^\text{bnd} = \sum_{vc k} |A^S|^2 \left(E^\omega_{QP} - E^\omega_{QP} \right) - \Omega^S.$$

(4)

Using this definition, we obtain an exciton binding energy of 0.78 eV for the A exciton for the monolayer MoSi$_2$N$_4$.

Peak B (at around 2.79 eV) consists of eight energetically close lying (i.e., nearly degenerate) excitonic states; these excitonic states are derived from $e-h$ pairs around the Γ point and near the K (K’) point with close quasiparticle band gaps. This can be clearly seen in Fig. 5 (e), which shows $\sum_{k \in C} |A^S|^2$, summation of the k-resolved $e-h$ amplitudes of the eight excitonic states that contribute to the B absorption peak. Another pronounced absorption peak (peak C) appears at about 2.97 eV. This absorption peak comprises ten bright excitonic states. The summation of the $e-h$ amplitudes, $\sum_{k \in C} |A^S|^2$, of these states is shown in Fig. 5 (f), suggesting that this absorption peak primarily originates from $e-h$ pairs states with wave vectors near the Γ point along the Γ-M directions, forming a ring-like structure around the Γ point with a small mixture of $e-h$ pairs near the K (K’) point. These features are consistent with the GW band structure shown in Fig. 4. Note that SOC effect is not included in these calculations. Including SOC will result in a double-peak structure of the first excitonic peak with a splitting of about 130 meV. The SOC splitting for the B and C peaks, however, is substantially smaller (about 50 meV). This is because the $e-h$ pairs involved in the formation of the excitons that are responsible for the B and C absorption peaks spread out near the Γ and K (K’) points [see Fig. 5(e) and (f)] where the SOC splitting is significantly reduced at the one-particle level as we have discussed earlier.

Figure 5 (b) and (c) show the imaginary part of the dielectric function of the bilayer and bulk phases. Similar to the case of the monolayer, three strong low energy absorption peaks can be clearly identified for the bilayer system. Due to the increasingly stronger dielectric screening, therefore weakened $e-h$ interaction, the calculated exciton binding energies decrease to 0.40 eV and 0.12 eV for the bilayer and bulk phases, respectively. The position of the absorption peak A shifts slightly upwards with the increasing layer thickness: 2.50 eV for monolayer, 2.53 eV for bilayer, and 2.59 eV for bulk. These shifts, however, are likely within the numerical accuracy of the calculations. The fairly stable optical band gap (with respect to the layer thickness) can be traced to the fact that the band edge states of MoSi$_2$N$_4$ are protected from the interlayer coupling, as we have discussed in sections II A and B. Additional results comparing the percentage absorbance between the monolayer and bilayer MoSi$_2$N$_4$, and the imaginary part of the dielectric function calculated using a larger broadening parameter of 40 meV are shown in Supplementary Figs. 6 and 7.

Compared with other 2D materials, the DFT band gap of MoSi$_2$N$_4$ does not experience a significant reduction with the increasing number of layers, as shown in Table 3. The calculated DFT direct gap at the K point actually increases slightly from 2.03 eV (monolayer) to 2.10 eV (bulk). The GW quasiparticle correction and the excitonic binding energy partially cancel out, as shown in Table 4. This leads to a net correction to the optical excitation gap ($\Delta E = E^\text{bnd} - E^\omega_{QP}$) (from the DFT value) that is nearly unchanged going from monolayer to bulk. As a result, the optical gap of MoSi$_2$N$_4$ is also rather insensitive to the number of layers or environmental perturbations, which may be advantageous for applications that require a stable optical gap. We would like to emphasize that the partial cancellation between the quasiparticle self-energy correction and the exciton binding energy alone cannot fully explain a stable optical gap in this system. There are plenty of example of 2D materials with significant layer dependent optical gaps; examples include GeSe and black phosphorus, and C$_3$N and C$_3$B.

Finally, we summarize in Fig. 6 the evolution of indirect minimum band gap, the direct band gap at the K point, and the optical gap as a function of the number of layers. As we have discussed earlier, the band gap of MoSi$_2$N$_4$ calculated at the PBE level is surprisingly stable thanks to the protected band edge states that are not susceptible to interlayer chemical coupling. Including the nonlocal self-energy correction within the GW approximation, however, leads to a significant layer-dependent quasiparticle band gap. Therefore, MoSi$_2$N$_4$ provides an interesting material system with robust band edge states that are spared from undesirable chemical coupling, but at the same time, tunable quasiparticle and excitonic properties through dielectric (or Coulomb) engineering.
be modulated through the nonlocal dielectric screening effects, as the one often carries out the calculations on a relative coarse density. To alleviate the computational burden of BSE calculations, to those in MoS2 and other well-studied layered materials, but pave the way for applications of MoSi2N4 in areas including band gap and the thermodynamic and mechanical stability, may through the choice of appropriate substrate and/or controlling the interior atomic orbitals (i.e., Mo and interior N atoms) and thus are shielded from surface or interfacial chemical perturbations.

Before we conclude, we would like to mention that calculations of e-h excitations at the GW-BSE level are extremely difficult to converge19,29,31, especially with respect to the k-point sampling density. To alleviate the computational burden of BSE calculations, one often carries out the calculations on a relative coarse k-grid, the e-h kernel matrices are then interpolated to finer k-grids to obtain the final results. For the monolayer and bilayer structures, the e-h interaction kernel matrices are first calculated using a coarse 24 × 24 × 1 k-grid, the results are then interpolated onto a fine 72 × 72 × 1 k-grid from which the e-h excitations and optical absorption are obtained. For the bulk system, we use an 18 × 18 × 2 coarse k-grid and a 36 × 36 × 8 fine k-grid in our calculations. We have carefully tested the convergence of our results with respect to the k-point sampling density (Supplementary Table 2, Supplementary Figs. 4 and 5). We believe the results should converge to within about 50 meV. We have also tested the adequacy of the number of valence and conduction bands included in the expansion of the excitonic wave functions (Supplementary Table 3).

Discussion

We have performed detailed first-principles calculations for the newly discovered layered material MoSi2N4. We find that the interlayer binding energy between MoSi2N4 layers is comparable to those in MoS2 and other well-studied layered materials, but the calculated DFT-PBE band gap of MoSi2N4 is barely affected by the interlayer interaction, in stark contrast to other layered materials. Detailed analyses reveal that the wave functions of the band edge states of MoSi2N4 are derived primarily from interior atomic orbitals (i.e., Mo and interior N atoms) and thus are shielded from surface or interfacial chemical perturbations. The quasiparticle and excitonic properties of MoSi2N4 can still be modulated through the nonlocal dielectric screening effects, as demonstrated by our GW-BSE calculations. The quasiparticle band gap of MoSi2N4 varies from 2.82 eV for the monolayer to 2.41 eV for the bulk phase. Interestingly, the optical band gap actually increases slightly with the increasing number of layers, changing from 2.50 eV (monolayer) to 2.60 eV (bulk). Our findings suggest that MoSi2N4 offers robust band edge states that are largely protected from undesirable environmental chemical interactions. The quasiparticle and excitonic properties can then be solely tuned by nonlocal screening effects, which can be achieved through the choice of appropriate substrate and/or controlling the layer thickness. This unique property, together with the moderate band gap and the thermodynamic and mechanical stability, may pave the way for applications of MoSi2N4 in areas including energy, 2D electronics, and optoelectronics.

METHODS

First-principles GW and GW-BSE calculations

Structural optimizations for the monolayer, bilayer, and bulk phase MoSi2N4 with different layer stacking patterns are carried out using the Vienna ab initio simulation package (VASP)32,33. The Perdew-Burke-Ernzerhof (PBE)34,35 functional is used for the basic electronic band structure calculations, and the DFT-D3 correction of Grimme et al.18 is employed in structural optimizations to account for the van der Waals (vdW) interactions. To minimize the fictitious interaction between periodic image layers, a vacuum layer of over 20 Å is included in the unit cell of monolayer and bilayer systems.

The layer-dependent quasiparticle and optical properties of MoSi2N4 are calculated using the BerkeleyGW package46 within the GW37 and Bethe-Salpeter equation (BSE)47 approach. Norm-conversing pseudopotentials58 are used for GW calculations, with semicore states (i.e., 4s and 4p) of Mo included as valence electrons. Cutoff for the plane wave expansion of the Kohn-Sham wave functions is set at 125 Ry, and that for the dielectric function is 50 Ry. We use the Hybertsen–Louie generalized plasmon-pole model (HL-GPP)57 to extend the static dielectric function to finite frequencies. For GW calculations of monolayer and bilayer systems, the truncated Coulomb potential62 is used to eliminate the artificial image interactions. We employed two recently implemented accelerated methods21,22, which greatly improve the efficiency of fully converged GW calculations for 2D systems. These two methods address two fundamental bottlenecks of GW calculations of 2D materials, leading to an overall speed-up factor of over three orders of magnitude compared with the conventional approaches as we have discussed in earlier publications21,22. Other computational details have been discussed in Results and Discussion, and also in Supplementary Information.

DATA AVAILABILITY

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Received: 28 December 2021; Accepted: 25 May 2022; Published online: 15 June 2022

REFERENCES

1. Das, S., Robinson, J. A., Dubey, M., Terrones, H. & Terrones, M. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annu. Rev. Mater. Res. 45, 1–27 (2015).

2. Avsar, A. et al. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020).

3. Wu, Y. et al. Remarkable Band-Gap Renormalization via Dimensionality of the Layered Material C\textsubscript{2}B. Phys. Rev. Appl. 14, 014073 (2020).

4. Yan, J. et al. Stacking-Dependent Interlayer Coupling in Trilayer MoS\textsubscript{2} with Broken Inversion Symmetry. Nano Lett. 15, 8135 (2015).

5. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

6. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

7. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

8. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

9. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

10. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus. Nano Lett. 17, 4706–4712 (2017).

11. Winther, K. T. & Thygesen, K. S. Band structure engineering in van der Waals heterostructures via dielectric screening: the GW2 method. 2D Mater. 4, 025059 (2017).

12. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

13. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).
14. Hong, Y. L. et al. Chemical vapor deposition of layered two-dimensional MoS2-N4 materials. *Science* **369**, 670–674 (2020).
15. Mortazavi, B. et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. *Nano Energy* **82**, 105716 (2021).
16. Li, S. et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. *Phys. Rev. B* **103**, 035308 (2021).
17. Yu, G. et al. Combined subsampling and analytical integration for efficient large-scale GW calculations for 2D systems. *npj Comput. Mater.* **6**, 118 (2020).
18. Rasmussen, F. A., Schmidt, P. S., Winther, K. T. & Thygesen, K. S. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene. *Phys. Rev. B* **94**, 155406 (2016).
19. Rost, A. et al. Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures. *2D Mater.* **4**, 022004 (2017).
20. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. *Phys. Rev. Lett.* **111**, 216805 (2013).
21. Luo, N. et al. Saddle-Point Excitons and Their Extraordinary Light Absorption in 2D β-Phase Group-IV Monochalcogenides. *Adv. Funct. Mater.* **28**, 1804581 (2018).
22. da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. *Phys. Rev. B* **95**, 035109 (2017).
23. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **50**, 1471 (1994).
24. Perdew, J. P. & Yue, W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. *Phys. Rev. B* **33**, 8800–8802 (1986).
25. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
26. Deslippe, J. et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. *Comput. Phys. Commun.* **183**, 1269–1289 (2012).
27. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. *Phys. Rev. B* **34**, 5459–5453 (1986).
28. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. *Phys. Rev. B* **43**, 1993–2006 (1991).
29. Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. *Phys. Rev. B* **73**, 233103 (2006).
30. Carpenter, J. A. & Peralta, L. The crystal structure of molybdenite. *J. Am. Chem. Soc.* **45**, 1466–1471 (1923).
31. Schulte, W. J., Deboer, J. L. & Jellinek, F. Crystal-Structures of Tungsten Disulfide and Diselenide. *J. Solid State Chem.* **70**, 207–209 (1987).