Modification of cement-bound mixtures with sodium formate additives for the construction of pavement bases at low air temperatures

E A Vdovin* and V F Stroganov

Kazan State University of Architecture and Engineering, 420043, Kazan, Zelenaya str., 1, Russia
*E-mail: vdivin007@mail.ru

Abstract. The paper considers the influence of an antifrosty additive of sodium formate (SF) on the kinetics of hardening of cement-bound mixes (CBM) in the bases of road pavements at air temperatures from 0°C to (-15) °C with a cement content of 7.0% and 10.0%. The authors establish that the highest intensity of CBM hardening was noted in the first 7 days of hardening, at which the strength was 50-60% of the strength of the material at the age of 28 days. The SF modifier provides an increase in compressive strength (Rcs) of the material depending on the amount of additive and air temperature. The study makes it possible to establish the optimal consumption of SF for different temperature regimes of hardening of mixtures and at the indicated cement contents. The use of SF provides a 30% set of strength at a temperature not lower than (-5) °C. Modification of CBM with additives of SF provides the opportunity to increase the volume of construction of pavement foundations by performing work during periods of the year with lower air temperatures.

1. Introduction
The development of the state’s transport system is determined by many factors, including volumes of road construction [1-4]. The increase in volumes is possible with the use of materials ensuring work in adverse conditions, especially at low air temperatures (below 0°C) [5-10]. Another direction in the development of the country’s transport strategy is the use of stone materials and soils modified with functional additives, reinforced with cement [11-33]. The use of anti-frost additives represented by a wide range of chemical compounds: chlorides, nitrates, nitrites, carbonates, sulfates and formates, etc., is known as functional additives for work at low air temperatures [34-42]. Taking into account chemical and environmental safety, compounds based on low molecular weight, low basic carboxylic acids have become very popular [42-45]. The most popular compound is sodium formate (SF) - the sodium salt of formic acid. Its widespread use as an antifrosty additive to cement concrete is well-known [46-47]. This substance has a relatively low freezing temperature, up to (-17) °C, which attracted the attention of specialists in the field of winter concreting. However, data on the use of SF in the road industry in literary sources are very scarce [48, 51].
Basing on the properties of SF and the relevance of its application to increase the volume of road construction, the following goal of the work is formulated: to study the dependences of the influence of antifrosty SF additives on the kinetics of CBM hardening in road surfaces at air temperatures from 0°C to (-15) °C with a cement content of 7.0% , 10.0% and determination of the feasibility of using a functional additive of SF when arranging CBM pavement layers at low temperatures.

2. Materials and methods
Studies were carried out on crushed stone mixtures of limestone and dolomite rocks, including substandard crushed stone of stone quarries of fractions (0-40) mm. The particle size distribution and physico-mechanical properties of the mixtures are shown in Tables 1 and 2.

Table 1. Granulometric composition of crushed stone mixture.
Maximum grain size, (mm)
40
40

Table 2. Physico-mechanical properties of crushed stone mixtures.
Fraction Size (mm)
0-40

To strengthen the mixtures we used the most recommended for road construction Portland cement brand CEM I 42.5N. The mineral and chemical compositions of cement clinker are shown in Tables 3 and 4.

Table 3. Mineral composition of cement clinker.
Name
Content, (%)

Table 4. The chemical composition of cement clinker.
Name
Content, (%)

As an antifrosty additive we used sodium formate acid (HCOONa). When selecting CBM formulations, the cement content was adopted taking into account the brand strength established for road pavement. The tests were carried out on mixtures with 7% and 10% cement by weight of the crushed stone mixture.

The temperature regime of CBM hardening was changed from 0 °C to (-15) °C. As a criterion for evaluating the effectiveness of antifrosty additives, we took an indicator of the set of compressive strength during 28-day hardening at a negative temperature. In accordance with the requirements of consumers, at least 30% of the brand strength should be provided at a temperature of (-15) °C (± 5) °C at 28 days of age. To compare the test results, the process of hardening of control mixtures was studied under normal conditions (+ 20 °C).

To manufacture the samples with dimensions of 15 * 15 * 15cm, we used metal molds lubricated with a release agent. The cement-bound mixture was compacted on a laboratory vibratory platform of
type S-I35-A, which provided vertical vibrations of the filled form with a frequency of 2900 ± 100 vibrations per minute and an amplitude of 0.5 ± 0.05 mm. After preliminary aging for 2-2.5 hours, the samples were placed in chambers with different temperature and humidity conditions: in a normal storage chamber (temperature 200°C, with a relative humidity of 95%), in refrigeration chambers with constant temperatures 0°C, (-5) 0°C, (-10) 0°C, (-15) 0°C.

The compressive strength of CBM samples was determined on an MS-500 press. The kinetic dependences of the compressive strength are constructed from the averaged values of the index in points for various amounts of the SF additive (Figure 1-2).

3. Results and discussion
Similarly to cement concrete, the highest rate of curing during compression of CBM was determined in the first 7 days of hardening (Figure 1-2). We found that mixtures, regardless of the content of the physical density and temperature, have a strength in the range of 50-60% of the strength of the material at the age of 28 days.

Figure 1. Hardening kinetics of CBM with the addition of SF and cement content of 7% at different temperatures.

The research revealed that the SF contributes to an increase in the strength of the material depending on the amount of added additive and the temperature of the outside air (Figure 3.4). In these figures, in addition to the curves of the dependences of the strength of the mixtures, lines of the levels of vintage strengths and the strength of the control mixtures are plotted, and the dotted lines indicate the minimum strengths at the age of 28 days, which should be provided with the introduction of an anti-frost additive.
Figure 2. Hardening kinetics of CBM with the addition of SF and cement content of 10% at different temperatures.

We determined that the use of SF provides a 30% set of strength at a temperature not lower than -5 °C (Figure 3.4). With a 7% cement content, the level of material strength is not lower than 40 MPa (grade M40) with SF 2.5–3.0% by weight of cement. For mixtures with a high cement consumption (10%), a lower addition of SF is required: 2–2.5% to achieve the M40 grade.

Figure 3. The dependence of the compressive strength of CBM on the amount of SF additives and temperature of hardening with a cement content in the mixture of 7%.

A further increase in SF of 3.5–4.0% in the mixture provides brand strength above 60 MPa (grade M60). Modification of CBM with additives of SF provides the ability to set the required strength for layers of pavement and increase the volume of road construction by performing work during periods of...
the year with lower air temperatures. Investigations (Figs. 3, 4) made it possible to establish the optimal SF consumption for temperature hardening mixtures from 0 °C to (-15) °C with a cement content of 7% and 10%.

![Graph](image)

Figure 4. The dependence of the compressive strength of CBM on the amount of SF additives and temperature of hardening with a cement content in the mixture of 10%.

Analyzing the data of kinetic and strong dependences (Figure 1-4), we should note that the addition of SF provides a greater increase in strength compared to cement, although the amount of functional modifier is much smaller in absolute value. An increase in cement content by almost 1.5 times (from 7% to 10%) practically does not change the level of material strength at low temperatures, while the strength of control samples CBM (hardening at 20 °C for 28 days) increased by 1.5 times.

Lowering the hardening temperature from 0 °C to (-15) °C provides a multiple (8-10 times) decrease in the strength of the material by 28 days. In the interval (-10) - (-15) °C, the used amount of SF 4.0-4.5% does not provide a noticeable increase in strength. The question of studying the effect of increased amounts of SF (more than 4.5%) in CBM compositions for pavement requires further study. Moreover, the modification of mixtures with the introduction of additional components of additives that can increase the hardening efficiency at temperatures below (-10) - (-15) 15° C and provide the specified construction and technical properties of pavement materials is of a great interest. The subsequent hardening of CBM at positive temperatures will provide further hardening, which is known from the theory and practice of winter concreting [36–38, 42], but requires research for CBM.

4. **Conclusion**

1. In accordance with the purpose of the work, the dependences of the effect of the antifreeze additive SF on the kinetics of hardening CBM in pavement bases at air temperatures from 0°C to (-15) °C with a cement content of 7.0%, 10.0% were studied. The highest rate of hardening of CBM is
determined in the first 7 days. It was found that mixtures, regardless of the content of the physical density and temperature, have a strength in the range of 50-60% of the strength of the material at the age of 28 days. It is determined that the use of SF provides a 30% set of strength at a temperature not lower than (-5) °C. At a 7% cement content, the level of material strength is not lower than 40 MPa (grade M40) with a pressure factor of 2.5-3.0% by weight of cement. For mixtures with a high cement consumption (10%), a lower addition is required: 2-2.5% to achieve the M40 grade. A further increase in the SF of 3.5-4.0% in the mixture provides brand strength above 60 MPa (grade M60). Investigations made it possible to establish the optimal consumption of SF for temperature hardening mixtures from 0 °C to (-15) °C and with a cement content of 7% and 10%.

2. We should note that it is advisable to use a functional SF additive when arranging CBM pavement layers at low temperatures, which under these conditions provides the opportunity to set the required strength for pavement layers and increase the volume of road construction by performing work during periods of the year with adverse conditions.

3. Attention should be paid to the prospects of the development of research on the use of antifreeze additives based on SF in CBM compositions for road pavements in the direction of study:
 - modification of the material with an increased amount of antifrosty additives;
 - the possibility of increasing the hardening efficiency at temperatures below (-10) - (-15) °C by adding additional components to the modifier;
 - the processes of subsequent hardening of the material in pavements at positive temperatures.

References
[1] D Ludlow V and Sakhriani C Wu 2019 Managing State Transportation Research Programs, TRB, Washington, D C, 164p
[2] A Kim, N Sadatsafavi, S D Anderson and P Bishop 2017 Preparing for the Future of Transportation Construction: Strategies for State Transportation Agencies, *Journal of Management in Engineering* 33(3)
[3] A Kim, N Sadatsafavi, S D Anderson and P Bishop 2017 Using Scenario Planning for Identifying Major Future Trends and Their Implications for State Transportation Agencies, International Conference on Sustainable Infrastructure 237-49
[4] S Kermanshachi, S D Anderson, P Goodrum, T R B Taylor 2017 Project Scoping Process Model Development to Achieve On-Time and On-Budget Delivery of Highway Projects, Transportation Research Record: *Journal of the Transportation Research Board*, 2630 147-55
[5] F M Sayfullina, L R Mustafina and D N Semenov 2018 Innovatsionnye tehnologii kak osnova ustoychivogo razvitiya dorozhnogo stroitelstva Voprosy innovatsionnoy ekonomiki, 8(4) 705-14
[6] M V Karmaza and R V Motylev 2018 Technologies for the use of antifrosty additives in winter concreting, International Conference Technical and Natural Sciences, *Journal of Technical and Natural Sciences*, 9. OEPS Inc, Berlin, Germany, 8-14
[7] R Myrdal 2007 Accelerating admixtures for concrete, SINTEF REPORT Building and Infrastructure Concrete and Innovation Center, Project, 3 1-35
[8] N R Panga and J A Naqash 2019 Development of high early strength in concrete incorporating alclofine and non-chloride accelerator, SN Applied Sciences
[9] Sh Gholami, J Hu, Y Kim and M Mamirov 2019 Performance of Portland Cement-Based Rapid-Patching Materials with Different Cement and Accelerator Types, and Cement Contents, Transportation Research Record: *Journal of the Transportation Research Board*
[10] N T Todd, P Suraneni and W Weiss 2017 Hydration of Cement Pastes Containing Accelerator at Various Temperatures: Application to High Early Strength Pavement Patching, Advances in Civil Engineering Materials
[11] S K Saxena, M Kumbar and N B Singh 2018 Effect of Alccofine powder on the properties of Pond fly ash based Geopolymer mortar under different conditions, *Environmental Technology and Innovation* 9 232-42

[12] B V Kavyateja, J G Jawahar and C Sashidhar 2019 Investigation on ternary blended self compacting concrete using fly ash and alccofine, *International Journal of Recent Technology and Engineering* 7 447-51

[13] L Hu, J Hao and L Wang 2014 Laboratory evaluation of cement treated aggregate containing crushed clay brick, *Journal of Traffic and Transportation Engineering (English Edition)* 1(5) 371-82

[14] A T Visser 2017 Potential of South African road technology for application in China, *Journal of Traffic and Transportation Engineering (English Edition)* 4(2) 113-7

[15] M Iwański, P Buczyński and G Mazurek 2016 Optimization of the road binder used in the base layer in the road construction, Construction and Building Materials, 125 1044-54

[16] H Ö Öz 2018 Properties of pervious concretes partially incorporating acidic pumice as coarse aggregate, Construction and Building Materials, 166 601-9

[17] V Mymrin, E K Aibuldinov, K Alekseev, V Petukhov, M A Avanci, A Kholodov, A Taskin, R E Catai and A Iarozinski 2019 Efficient road base material from Kazakhstan's natural loam strengthened by ground cooled ferrous slag activated by lime production waste, *Journal of Cleaner Production* 231 1428-36

[18] A Rana, P Kalla, H K Verma and J K Mohnot 2016 Recycling of dimensional stone waste in concrete: A review, *Journal of Cleaner Production* 135 312-31

[19] L D Poulidakos, C Papadaskalopoulou, B Hofko, F Gschösser, A C Falchetto, M Bueno, M Arraigada, J Sousa, R Ruiz, C Petit, M Loizidou and M N Part 2017 Harvesting the unexplored potential of European waste materials for road construction, *Resources, Conservation and Recycling* 116 32-44

[20] V Vishwakarma and D Ramachandran 2018 Green Concrete mix using solid waste and nanoparticles as alternatives – A review, *Construction and Building Materials* 162 96-103

[21] Absalyamova S et al 2016 "The impact of corruption on the sustainable development of human capital" *Journal of Physics: Conference Series* 738(1)

[22] F Autelitano and F Giuliani 2016, Electric arc furnace slags in cement-treated materials for road construction: Mechanical and durability properties, Construction and Building Materials, 113 280-9

[23] Em Mengue, H Mroueh, L Lancelot and R Medjo Eko 2017 Physicochemical and consolidation properties of compacted lateritic soil treated with cement, *Soils and Foundations* 57(1) 60-79

[24] Es Melesse, H Baaj, S Tighe, S Zupko, T Smith 2019 Charactrisation of full-depth reclaimed pavement materials treated with hydraulic road binders, *Construction and Building Materials* 226 778-92

[25] Op E Oluwatuyi, B O Adeola, El A Alhassan, Em S Nnochiri, Ab E Modupe, Ol O Elemile, T Obayanjuja and G Akerele 2018 Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction, *Case Studies in Construction Materials*, 9 e00191

[26] B Dolżycki and P Jaskula 2019 Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements, *Journal of Traffic and Transportation Engineering (English Edition)*, 6(4) 311-23

[27] D Ribeiro, R Néri and R Cardoso 2016 Influence of Water Content in the UCS of Soil-Cement Mixtures for Different Cement Dosages, *Procedia Engineering*, 143 59-66

[28] H Mola-Abasi and I Shooshpasha 2016 Influence of zeolite and cement additions on mechanical behavior of sandy soil, Journal of Rock Mechanics and Geotechnical Engineering, 8(5), 746-52
[29] H F Hassan, R Taha, A Al Rawas, B Al Shandoudi, Kh Al Gheithi, A M Al Barami 2005 Potential uses of petroleum-contaminated soil in highway construction, Construction and Building Materials, 19(8) 646-52
[30] V Angraini, Af Asadi, Ag Syamsir and B B K Huat 2017 Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber, Measurement 111 158-66
[31] L Nguyen, B Fatahi and H Khabbaz 2016 Predicting the Behaviour of Fibre Reinforced Cement Treated Clay, Procedia Engineering, 143 153-60
[32] M Rezaeian, P M Vaz Ferreira and Ab Ekinci 2019 Mechanical behaviour of a compacted well-graded granular material with and without cement, Soils and Foundations, 59(3) 687-98
[33] Th Lenoir, M Preteseille and S Ricordel 2016 Contribution of the fibre reinforcement on the fatigue behavior of two cement-modified soils, International Journal of Fatigue, 93(1) 71-81
[34] O N Ilina and N V Konovalov 2013 Dorozhno-stroitelnny material na osnov mestnykh mineralnykh materialov, obrabotannych kompleksnym vyazhushchim. Izvstiya KGASU, 2(24) s 295-300
[35] F Karagöl, R Demirboğa, M A Kaygusuz, M M Yadollahi and R Polat 2013 The influence of calcium nitrate as antifreeze admixture on the compressive strength of concrete exposed to low temperatures. Cold Regions Science and Technology, 89 30-5
[36] F Karagöl, R Demirboğa and K H Wahl 2015 Behavior of fresh and hardened concretes with antifreeze admixtures in deep-freeze low temperatures and exterior winter conditions, Construction and Building Materials, 76 388-95
[37] P C Aitcin and A B Eberhardt 2016 Historical background of the development of concrete admixtures, Science and Technology of Concrete Admixtures,
[38] R Polat 2016 The effect of antifreeze additives on fresh concrete subjected to freezing and thawing cycles, Cold Regions Science and Technology 127 10-7
[39] M Çulluan and M Arslan 2013 The effects of antifreeze use on physical and mechanical properties of concrete produced in cold weather, Composites Part B: Engineering 50 202-9
[40] R Demirboğa, F Karagöl, R Polat and M A Kaygusuz 2014 The effects of urea on strength gaining of fresh concrete under the cold weather conditions, Construction and Building Materials, 64 114-20
[41] M Çullu and M Arslan 2014 The effects of chemical attacks on physical and mechanical properties of concrete produced under cold weather conditions, Construction and Building Materials, 57 53-60
[42] N Xie, Yu Dang and X Shi 2019 New insights into how MgCl2 deteriorates Portland cement concrete, Cement and Concrete Research 120 244-55
[43] L Kivekäs 2019 Research and use of antifreeze admixtures in Finland
[44] J Suh, W S Yumb, Y Jeong, H Park, J E Oh 2019 The cation-dependent effects of formate salt additives on the strength and microstructure of CaO-activated fly ash binders, Construction and Building Materials, 194 92-101
[45] H Schreiberová, P Bílý, J Fládr, K Šeps, R Chylik and T Třtík 2019 Impact of the self-healing agent composition on material characteristics of bio-based self-healing concrete, Case Studies in Construction Materials, 11 e00250
[46] A Hartmann, M Khakhutov and J -Ch Buhl 2014 Hydrothermal synthesis of CSH-phases (tobermorite) under influence of Ca-formate, Materials Research Bulletin 51 389-96
[47] O Tene, Smes veshchestv, primenimaya, v chastnosti, v kachestve dobavki dlya betonnoy smesi: pat 2433096 Ros Federatsiya 2009134179/03
[48] O V Milovidova, V M Sychev, E V Rozhkov, S YU Pliner and S F SHmotev 2018 Sostav dlya stabilizatsii prirodnikh i tekhnogennykh gruntov: pat 2670468 Ros Federatsiya 0002670468
[49] V V CHelnokov 2016 Muravi, gryzushchie led, KHimiya i zhizn
[50] S V Gushchin and A A Drozd 2014 Vliyanie formiata natriya na tverdenie betona pri otritsatelnykh temperaturakh, Problemy sovremennogo betona i zhelezobetona, 6
[51] S V Lanovetskiy 2015 Issledovanie ustoychivosti peresyshchennykh rastvorov formiata natriya, Inzhenernyy vestnik Dona, 2(2)
[52] A V Kochetkov 2011 Otsenka sootvetstviya primeneniya formiata natriya v kachestve protivogololednogo materiala Zakonu «O tekhnicheskom regulirovanii», stroitelnye materialy, 7 44-6