Antibody Screening Results for Anti-Nucleocapsid Antibodies Towards the Development of a SARS-CoV-2 Nucleocapsid Protein Antigen Detecting Lateral Flow Assay

David Cate, Helen Hsieh, Veronika Glukhova, Joshua D Bishop, H Gleda Hermansky, Brianda Barrios-Lopez, Ben D Grant, Caitlin E Anderson, Ethan Spencer, Samantha Kuhn, Ryan Gallagher, Rafael Rivera, Crissa Bennett, Sam A Byrnes, John T Connelly, Puneet K Dewan, David S. Boyle, Bernhard H Weigl, Kevin P Nichols

Submitted date: 09/01/2021 • Posted date: 11/01/2021
Licence: CC BY 4.0
Citation information: Cate, David; Hsieh, Helen; Glukhova, Veronika; Bishop, Joshua D; Hermansky, H Gleda; Barrios-Lopez, Brianda; et al. (2020): Antibody Screening Results for Anti-Nucleocapsid Antibodies Towards the Development of a SARS-CoV-2 Nucleocapsid Protein Antigen Detecting Lateral Flow Assay. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12709538.v2

The global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow immunoassay (LFA) tests in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA. We tested 1021 anti-nucleocapsid antibody pairs as LFA capture and detection reagents with the goal of highlighting pairs that have the greatest affinity for unique epitopes of the nucleocapsid protein of SARS-CoV-2 within the LFA format. In contrast to traditional antibody screening methods (e.g., ELISA, bio-layer interferometry), the method described here integrates real-time reaction kinetics with transport in, and immobilization directly onto, nitrocellulose. We have identified several candidate antibody pairs that are suitable for further development of an LFA for SARS-CoV-2.

File list (2)

Nucleocapsid antibody screening.pdf (348.74 KiB) view on ChemRxiv • download file
SI - Anti-Nucleocapsid Antibodies.pdf (1.11 MiB) view on ChemRxiv • download file
Antibody Screening Results for Anti-Nucleocapsid Antibodies Towards the Development of a SARS-CoV-2 Nucleocapsid Protein Analyte Detecting Lateral Flow Assay

David M. Cate1*, Helen V. Hsieh2, Veronika A. Glukhova1, Joshua D. Bishop1, Luis F. Alonzo1, H. Gleda Hermansky2, Brianda Barrios-Lopez2, Ben D. Grant1, Caitlin E. Anderson1, Ethan Spencer1, Samantha Kuhn1, Ryan Gallagher1, Rafael Rivera1, Crissa Bennett2, Samantha A. Byrnes1, John T. Connelly1, Puneet K. Dewan1, David S. Boyle3, Bernhard H. Weigl1, Kevin P. Nichols1

1 - Global Health Labs, 14360 SE Eastgate Way, Bellevue, WA 98007
2 - Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA 98007
3 - PATH, 2201 Westlake Ave, Seattle, WA 98121

* Corresponding Author: David Cate – david.cate@ghlabs.org

Abstract

The global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow immunoassay (LFA) tests in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA. We tested 1021 anti-nucleocapsid antibody pairs as LFA capture and detection reagents with the goal of highlighting pairs that have the greatest affinity for unique epitopes of the nucleocapsid protein of SARS-CoV-2 within the LFA format. In contrast to traditional antibody screening methods (e.g., ELISA, bio-layer interferometry), the method described here integrates real-time reaction kinetics with transport in, and immobilization directly onto, nitrocellulose. We have identified several candidate antibody pairs that are suitable for further development of an LFA for SARS-CoV-2.

Introduction

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic of COVID-19, infecting more than 81 million people worldwide in less than a year, and killing over 1.8 million persons by the end of 2020.1,2 Strategies to suppress transmission of SARS-CoV-2, the virus that causes COVID-19, have been constrained by limitations in the availability of tests that can detect viral infection early. The predominant test format used to detect SARS-CoV-2 is reverse transcriptase polymerase chain reaction (RT-PCR), conducted most on specimens collected from the nasopharynx or oropharynx of symptomatic or exposed individuals. Demand for RT-PCR testing for SARS-CoV-2 in most of the world has exceeded the available supply.

Diagnostic testing is central to detecting the virus in symptomatic and asymptomatic persons, or those identified as contacts exposed to COVID-19 cases, to guide community interventions that are predicted to contain ongoing transmission. The pandemic has resulted in unprecedented demand for the RT-PCR testing capacity of all countries. Demand for testing has been coupled with a global shortage of commercial kits, reagents, consumables, disruptions in the global transport networks, and exacerbated
by international competition for testing resources. Accordingly, even many high-income countries have inadequate RT-PCR testing capacity to effectively suppress ongoing transmission, and most low and middle-income countries (LMICs) are unlikely to be able to establish even minimally needed RT-PCR capacity in the immediate future.

Direct analyte-based tests for SARS-CoV-2 offer an attractive alternative solution to testing needs and possibly the only viable solution for most LMICs. Analyte tests, which detect the presence of viral proteins, can be directly conducted on biological samples, such as tissue swabbed from the anterior nasal cavity, oropharynx, or even directly on saliva. Such analyte tests already exist for influenza, strep throat, and other infectious diseases. Analyte tests in the LFA test format already have extremely high production capacities in the billions of units/year, are inexpensive and easy to use, return results in minutes, and crucially, like RT-PCR and unlike serological tests, can reveal an active infection.

The use case for a low-cost, highly accessible SARS-CoV-2 test is strong even if the test were to be less sensitive than current RT-PCR testing. Modeling shows that decentralized, point-of-care testing with rapid return of results would have greater potential impact on transmission than the absolute limit-of-detection of the test. These models build on the important observation that infectious viral particles have not been recovered below around 100 copies/mL.

Rapid analyte tests are beginning to enter the commercial market. Thus far, however, few analyte tests for SARS-CoV-2, compared to nucleic acid tests, have received authorization from regulatory authorities worldwide. Therefore, a concerted effort is underway to catalyze the development of analyte-based rapid diagnostic tests that require no or minimal instrumentation, and to prepare manufacturing capability to meet the needs of the larger global market. Required performance characteristics of a SARS-CoV-2 analyte detection assay have been published by the World Health Organization.

A key step in the development of an LFA is the selection of selective antibodies for the target of interest. To expedite this process, our group has pioneered a high-throughput, robotic, antibody-screening process directly on nitrocellulose. This method allows us to rapidly screen hundreds of combinations of antibodies more quickly than is typical of early-stage LFA development, while simultaneously utilizing nitrocellulose-specific reaction kinetics and flow rates that are difficult-to-impossible to mimic in other multiplexed analytical systems (e.g., ELISA, biolayer interferometry). Chemical gradients, residence times, binding orientations, affinity rates, drying and subsequent rehydration of reagents, and spatial distributions of antibodies are different in LFAs than in other immunoassays, and therefore, the best antibodies for LFAs may be different than for the best antibodies for ELISA, for example.

In this paper we describe the results of an extensive antibody screening effort that utilized our high-throughput, robotic, antibody-screening platform to screen through 1021 unique combinations of antibodies that target the SARS-CoV-2 nucleocapsid protein. Over the course of several months, as various SARS-CoV-2-related reagents became available, five screening rounds were conducted against a total of three different sources of SARS-CoV-2 nucleocapsid analyte. We primarily focused on the outcomes of three screening rounds (one each against different recombinant analytes and one against a diluted positive clinical positive pool) to highlight the differences in antibody pair rankings we obtained as a function of analyte variant.
Materials and Methods

Reagents and materials
The following LFA reagents were purchased: Triton X-100, Tween 20, 10× PBS, sucrose, and IGEPAL CA-630 from Sigma Aldrich (St. Louis, MO, USA); Surfactant 10G from Fitzgerald Industries (Acton, MA, USA); 20× Borate, pH 8.5 and 10× PBST from Thermo Fisher Scientific (Waltham, MA, USA); PBS tablets from VWR (Radnor, PA, USA); BSA from Seracare Life Sciences (Milford, MA, USA).

Recombinant SARS-CoV-2 nucleocapsid analytes were purchased from Acro Biosystems (Cat. No. NUNC5227), Creative Diagnostics (Cat. No. DAGC094), Genemedi (Cat. No. GMP-V-2019nCoV-N002), Genscript (Cat. No. Z03480-1), MyBiosource (Cat. No. MBS7135899), Sino Biological (Cat. No. 40588-V088), and The Native Analyte Co. (Cat. No. REC31812-100). Anti-SARS-CoV-2-nucleocapsid antibodies were sourced from many vendors; a complete list of antibodies screened in this work are provided in Table S1.

The following LFA materials were used for antibody screening: backed nitrocellulose (20 mm wide, CN95, Sartorius Lab Instruments GmbH & Co. KG, Otto-Brenner-Straße 20, Göttingen, Germany), conjugate pad (10 mm wide, No. 6613, Ahlstrom-Munksjö Oyj, Finland), sample pad (18 mm wide, Cat. No. 1281, Ahlstrom-Munksjö), wicking pad (14 mm wide, Cat. No. 440, Ahlstrom-Munksjö), cover tape (13 mm wide, Cat. No. 300H2, 3M, St. Paul, MN, USA) and backing card (50 mm wide, Cat. No. KN2211, Kenosha, Schweitzerlaan, The Netherlands).

All primers and probes, purified 2019-nCoV_N control plasmid, and Hs_RPP30 human control plasmid were purchased from IDT (Coralville, IA, USA). The Research Use Only (RUO) QIAamp Viral Mini Kit for RNA extraction was purchased from Qiagen (Hilden, Germany). The qScript XLT 1-Step RT-qPCR ToughMix was purchased from QuantaBio (Beverly, MA, USA). Molecular biology grade water was purchased from Fisher Scientific (Waltham, MA, USA).

A total of nine de-identified samples were purchased from Medix (Lombard, IL, USA). These samples included six SARS-CoV-2 positives and three negatives. All samples were de-identified and discarded after use and therefore did not require IRB approval.

RT-qPCR for detection of COVID-19 and quantification of SARS-CoV-2 viral load
The COVID-19 status of clinical samples used in this work was determined in-house using a multiplex RT-qPCR for the N1, N2, and RP targets. Briefly, 70 or 140 µL of sample was purified using the QIAamp Viral Mini Kit according to the manufacturer’s protocol and purified RNA was eluted in either 70 or 140 µL based on CDC recommendations. The multiplexed reaction was performed using the qScript master mix from QuantaBio with N1 and RP primers and probe concentrations of 500 nM and 250 nM (final) and N2 primers and probe concentrations of 2000 nM and 500 nM (final). The probes used were N1-FAM, N2-AlexaFluor594, and RP-Cy5. For each reaction, 5 µL of sample was added to 15 µL of amplification mix. Samples were classified as positive if both N1 and N2 targets were detected with Ct values below 40 cycles. Viral load was determined using a standard curve for the N1 target generated...
from purified 2019-nCoV_N control plasmid. The SARS-CoV-2 control plasmid from IDT was quantified in-house using the BioRad QX200 Digital Droplet PCR System.

Analyte selection using Octet
Antibody–analyte interactions were evaluated with an Octet RED96 biolayer interferometry instrument (Molecular Devices, Sartorius AG, Göttingen, Germany). All measurements were performed in 96-well microplates (Greiner Bio-one, Frickenhausen, Germany) at ambient temperature. Antibodies were loaded at 25 nM in 1× Kinetics Buffer for 120 seconds and captured using AMC tips for mouse antibodies, AHC tips for humanized recombinant antibodies, and Protein A tips for rabbit antibodies. Materials for the Octet were purchased from Molecular Devices. New sensors were used for every reaction and no tip regeneration was performed.

Typical immobilization levels were 1 ± 0.2 nm for monoclonal antibodies, and 2 nm for rabbit polyclonal antibodies. Following the load step, all sensors were equilibrated to baseline for 120 seconds in 1× Kinetics Buffer. An association step was performed for 300 seconds with analyte at 100 nM quantity, followed by 300 second dissociation into 1× Kinetics buffer.

Antibody/analyte evaluation by SDS-PAGE
Analytes were evaluated for purity and size using SDS-PAGE. Concentration was measured for all proteins using BCA assay (Thermo Pierce cat. 23225). Samples were premixed 1× NuPAGE LDS Sample Buffer (4×, Thermo Pierce cat. NP0007) and heated at 70°C for 10 minutes. Gels with a 4–12% Bis-Tris gradient were used to achieve separation. Coomassie Imperial Protein Stain (Thermo Pierce cat. 24615) was used to visualize bands. Novex Sharp Pre-stained protein standard (Thermo Fisher scientific) was used as a molecular weight marker.

Latex bead conjugation
For both test and control line detection conjugates, 400 nm carboxylic blue latex beads (Cat. No. CAB400NM, Magsphere, Pasadena CA, USA) were washed three times with 0.1 M MES buffer, pH 6. Then, latex beads were activated using EDC/NHS coupling reagents at 0.15 and 10 mg/mL respectively for 30 minutes. Afterwards, the blue latex particles were conjugated in 1× PBS, pH 7.2 to various anti-nucleocapsid antibodies at a w/w ratio of 30:1 and 10:1 (bead:antibody) for test and control line antibodies, respectively, for three hours. Finally, latex conjugates were quenched using 0.1 M ethanolamine before being washed and blocked with 6% (w/v) casein, final concentration 1.2%, overnight. The latex conjugates were stored in buffer containing 50 mM borate and 1% casein, pH 8.5. The latex conjugates were quantified using the spectrophotometer by measuring absorbance at 660 nm and comparing to absorbance of unconjugated beads.

LFA reagent deposition
Capture antibodies at 1 mg/mL in 1× PBS, pH 7.4 and 2.5% (w/v) sucrose were striped (ZX1010, BioDot, Irvine, CA, USA) on nitrocellulose CN95 and dried at 25°C for 30 min. The control line was striped at 0.75 mg/mL donkey anti-chicken IgY (Cat. No. 703-005-155, Jackson ImmunoResearch, West Grove, PA, USA). For antibody screening, the nitrocellulose was unblocked. The test and control lines were located at 8 mm and 13 mm from the upstream edge of the nitrocellulose membrane.
The conjugate pad was dip-coated with two blocking solutions. First, 6613 conjugate pads were soaked in a 0.05% (w/v) Tween 20 in diH2O solution for 15–20 seconds and dried at 40°C for 60 min. Pads were again soaked in 50 mM borate, pH 8.5; 0.25% (w/v) Triton X-100; 1% (w/v) Surfactant 10G; 1% (w/v) sucrose; and 6% (w/v) casein for another 15–20 seconds. The conjugate pad was dried for 60 min at 40°C before assembly.

LFA Assembly
Card assembly was performed on a clamshell laminator (Matrix 2210, Kinematic Automation, Sonora CA, USA). Pads were placed on the backing card in the following order: nitrocellulose, cover tape, conjugate pad, sample pad, wicking pad. Individual strips (3.3 mm wide) were cut with a Matrix 2360 sheet cutter (Kinematic Automation) and assembled in cassettes (proprietary design) using an assembly roller (YK725, Kinbio Tech Co., Shanghai, China).

Hamilton screening procedure
Antibody pairs were screened on an integrated robotic system used previously to test antibody performance directly on nitrocellulose. In this system, the Hamilton STAR automated liquid handling robot (Hamilton Company, Reno, NV, USA), camera (IDS UI-1460SE-C-H detector with a Tamron M118FM16 lens), custom plate that held up to 96 LFAs, and custom control software developed in-house were combined to allow rapid screening of antibody pairs directly in LFA format. The robot used 8-channel pipetting for parallel application to LFAs and the camera for imaging. The custom control software applied 1 µL of conjugate mix (0.15% anti-nucleocapsid-antibody–latex-bead test line conjugate and 0.1% or 0.05% chicken-IgY-antibody–latex-bead control line conjugate in 50 mM borate, pH 8.5) to the conjugate pad of the LFA. After a 10-minute delay to let the conjugate mix dry, 75 µL of sample, nucleocapsid protein, or buffer (2.5% BSA in PBST or 2.5% BSA and 1% IGEPAL in 1× PBS) was added to the sample pad. Images were acquired 20 minutes after sample addition. For each antibody pair, for positive and negative samples, four technical replicates were run in rounds with rNP, and three technical replicates were run in the round with pooled clinical samples.

Screening rNPs on LFAs
We conducted four rounds of testing using rNP as the target analyte, followed by one round using pooled NP positive swab samples from donors. The first round used the best-available-at-the-time rNP analyte, sourced from GeneMedi (GMP-V-2019nCoV-N002), at 50 ng/mL. The second through fourth rounds used a higher-affinity rNP analyte, sourced from Acro Biosystems (NUN-C5227), at 50, 25, and 10 ng/mL, respectively. The third and fourth rounds eliminated antibody pairs that performed poorly in the previous round and added new pairs as antibodies became commercially available. In other words, antibody pair combinations varied round-by-round. A complete list of pairs from all rounds is in Table S2.

Screening clinical samples on LFAs
In-house RT-qPCR was performed on banked nasopharyngeal clinical samples to confirm infection status prior to LFA testing (Table 1).

When testing clinical samples on the benchtop, test and control line conjugates were hand spotted prior to sample application. Four Ab pair conditions, of various levels of performance with rNP, were used for clinical sample validation. The test line conjugate was diluted to a final concentration of 0.10%
and control line chicken IgY conjugate to 0.15% in 50 mM borate, pH 8.5. First, 1 µL of conjugate mixture was pipetted onto the conjugate pad and allowed to dry at ambient temperature for 10 minutes prior to application of the sample. All samples were diluted 1:25 in sample buffer containing 2.5% BSA and 1% IGEPAL CA-630 in 1x PBS. Samples were incubated on ice for 30 minutes prior to use. Second, 75 µL of each sample diluted in sample buffer was added to the conjugate pad and run at ambient conditions inside a biosafety cabinet for 20 minutes prior to being read in an LFA reader (Axxin, Fairfield, Australia).

Clinical samples were pooled to conduct screening in Round 5 (Table S1). A 1:100 titration was confirmed to produce visibly weak signal intensity at the test line and was therefore used as the positive control antibody pair SiB-MM08 / SiB-R004 (capture antibody / detection antibody). Aliquots of 1:100 clinical pooled samples were prepared and stored at -80°C until thawed for a single experimental use, then discarded.

Data analysis

Image analysis for the integrated robotic system was performed with a custom Python-based tool developed in-house. This tool identified the test and control lines, measured nitrocellulose background intensity, and reported line strength as the height of the strip-width-averaged, background-subtracted, peak pixel intensity in the red image channel. Faulty LFAs were identified by weak control lines and removed as outliers, however outlier removal was rare, occurring in fewer than 2% of all LFAs tested.

Antibody pair rankings were determined by comparing mean test line strength from tests run with analyte-positive samples (signal, S) versus from tests run with analyte-negative samples (non-specific binding or noise, N). Two comparisons, or metrics, were used, signal divided by noise (S/N) and signal subtracted by noise (S−N). Both metrics were used to ensure the best pairs had both high positive control and low negative control signals.

Image analysis for LFAs run on the benchtop was performed using an LED-based LFA reader (Axxin). This reader reported test and control lines strengths on a different scale from our custom robot image analysis tool, but previous validation experiments indicate good correlation between the outputs of the two algorithms (data not shown).

Results and Discussion

We performed bio-layer interferometry on recombinant nucleocapsid proteins (rNP analytes) for the purpose of selecting the most “native-like” rNP analyte for early LFA antibody screening. We first used the estimated Rmax of five different rNP analytes to quantify binding affinity against a random selection of 21 anti-nucleocapsid-protein (α-NP) antibodies from seven vendors (Rockland, Novus Biologicals, Sino Biological, Creative Diagnostics, Bioss, Fitzgerald, and MyBiosource). Rmax as a metric was calculated based on the theoretical saturation of 100% of the bound antibody (ligand) with the rNP analyte. In practice, analyte binding sites are not completely occupied, so the measured saturation value is typically less than Rmax. Moreover, because Rmax is proportional to analyte size, we were also able to detect aggregation or multimer formation in solution. Theoretically, the closer—and more
predictable—values were to R_{max} the more likely the analyte was to interact with antibodies as expected.

Among the rNP analytes available at the beginning of screening, we selected the rNP analyte from Genemedi (GM-rNP) as the starting analyte because the average R_{max} for GM-rNP across 21 different α-NP antibodies was closest to its theoretical R_{max} (data not provided). We subsequently obtained an rNP analyte from Acro Biosystems (AB-rNP) and determined, using the available α-NP antibodies at that time and a similar kinetic analysis as above, that it produced higher-affinity antibody interactions (on aggregate) than GM-rNP. Additional discussion of the differences between the two rNP analyte sources can be found in the supplemental information. None of rNP analyte sources, however, allowed for testing the effects of the patient sample nasal matrix, so clinical SARS-CoV-2 patient nasopharyngeal swab samples stored in viral transport medium (VTM) were also sourced. Separate pools containing six high positives and six negatives (by qRT-PCR, Table 1) were diluted to create the additional analyte source.

Table 1 | Banked samples were used to compare performance of select anti-nucleocapsid antibody pairs in LFA. In total, six RT-qPCR-confirmed SARS-CoV-2 positives, three SARS-CoV-2 negatives, and two potential coronavirus cross-reactive samples were screened.

Clinical Pool	Patient ID/Cat. No.	Vendor	Volume ratio of pooled sample	SARS-CoV-2 qPCR Results (pos v neg)	SARS-CoV-2 Viral Load (c/µL)	MSD NP sample mean concentration (pg/mL)
+	352-COP-0023-0	LabCorp	0.18	+	2.58E+05	5.76E+05
+	352-COP-0050-0	LabCorp	0.23	+	3.99E+05	3.07E+05
+	352-COP-0056-0	LabCorp	0.088	+	5.58E+05	4.80E+05
+	352-COP-0090-0	LabCorp	0.16	+	9.79E+05	2.05E+05
+	352-COP-0099-0	LabCorp	0.18	+	1.69E+04	1.19E+05
+	352-COP-0100-0	LabCorp	0.16	+	7.26E+05	6.82E+05
-	352-CON-1001-0	LabCorp	0.17	-	-	0.00E+00
-	352-CON-1003-0	LabCorp	0.17	-	-	0.00E+00
-	352-CON-1005-0	LabCorp	0.17	-	-	0.00E+00
-	352-CON-1011-0	LabCorp	0.17	-	-	0.00E+00
-	352-CON-1012-0	LabCorp	0.17	-	-	0.00E+00
-	352-CON-1084-0	LabCorp	0.17	-	-	0.00E+00

The robotic screening system automated the first screening round against GM-rNP at 50 ng/mL in the round’s positive tests, and a buffer control in the round’s negative tests (Round 1). Subsequently, the robotic screening system automated three more rounds against AB-rNP at concentrations of 50, 25 and 10 ng/mL in each round’s positive tests, and a buffer control in each round’s negative tests (Rounds 2, 3, and 4, respectively). We stepped down the concentration of the AB-rNP in three successive rounds because as vendors developed (and we sourced) new α-NP antibodies, better antibody pairs emerged and the average signal intensity in the LFA tests reached the non-linear region of the response curve. The number of unique antibody pairs screened in all rNP rounds were 106, 150, 144, and 288, respectively. At the conclusion of each round, we carried over at least the top 20 antibody pairs by signal (average test line signal from positive LFA tests for a given pair) minus noise (average test line signal from negative LFA tests using a pair), or “$S-N$,” and signal divided by noise, or “S/N,” given
available stocks. Due to the time-dependent commercial availability of the antibodies, we considered Rounds 2 and 3 to be “weed-out” rounds and summarized their results in Figure S1. We subsequently considered Round 4 as a representative screen of the best-available-at-the-time antibodies against AB-rNP, in preference to Rounds 2 and 3.

After four rounds against the two rNP analytes, the robotic screening system automated a final round of screening against diluted, pooled, positive patient samples in the round’s positive tests, and diluted, pooled, negative patient samples in the round’s negative tests (Round 5). This last round screened the 26 antibodies which had not been previously dropped due to poor performance and for which we had sufficient stock (676 pairs). The purpose of this final screen was two-fold: (1) determine if relative performance of top pairs from rounds against the rNP analytes persisted in a round against clinical samples, and (2) we had the opportunity to compare, head-to-head, the relative performance of all α-NP antibody pairs. The only antibody pairs excluded from this round performed poorly in several prior rounds (rankings for all pairs in all rounds in Table S2). Additionally, three newly available antibodies were screened in the clinical pool round for the first time. Antibody pairs containing these antibodies performed well, appearing as a top-five pair twice (pair indices 736 and 608, Table S2) and nine times in the top 20 (pair indices 736, 608, 686, 30, 689, 708, 815, 416, and 171, Table S2). The five best antibody pairs against the diluted clinical sample pool (Round 5) are listed in Table 2 along with the top five pairs against GM-rNP (Round 1) and against the lowest-concentration of AB-rNP (Round 4). The top antibody pairs against the three different analyte sources are highlighted in the scatter plots (S−N vs. S/N) in Figure 1, and in the average of S−N and S/N rankings in Table S3.

![Figure 1](image)

Figure 1 | Performance of 1021 individual antibody pairs as a function of signal / noise and signal – noise. The pairs in the top 10 for both metrics are shown in the highlighted box.

Nine of the top-20 antibody pairs screened against GM-rNP and 15 of the top-20 pairs screened against the lowest concentration of AB-rNP were available to be screened against the diluted clinical sample pool. Of these 24 antibody pairs, few performed well in the screen against the diluted clinical sample pool. One of these 24 (pair index 900, Table S2) had an average rank (i.e. average of S−N rank and S/N rank) of 24.5 in the clinical sample screen, whereas the average rank of the other 23 pairs ranged from 110 to 671.5, with a median value of 336.5 (where the total number of pairs in this round was 676).
This disagreement highlighted the importance of using native analyte in realistic sample types when screening antibody pairs for assay development. We were unable to completely determine in the course of this work whether performance against GM-rNP or AB-rNP better predicted performance against the diluted clinical sample pool (although neither appeared to predict the latter results as noted above) because every round consisted of a slightly different set of antibodies (as antibodies became commercially available or became depleted from vendor stocks). Surrogate samples can provide the advantages of more reliable sourcing, more experimental control, and less expense than clinical samples. However, it can be difficult to create surrogate samples that are completely representative of real samples, not least due to patient-to-patient variability in the matrix. Additionally, we sourced clinical samples that were stored in VTM, which would not be the diluent used in a clinical LFA test. Nonetheless, we chose to move to the clinical samples at first availability, and to test the best-to-date antibodies still available against a diluted sample pool, to get as close to real samples as possible.

Table 2 | Antibody pairs in the top 20 for both S/N and S–N are ranked according to the round in which they were tested. Table S2 contains a complete list of all pairs that were screened.

Index	Capture antibody	Detection antibody	Average rank		
			Genemedi rNP	Acro rNP	Sample pool
870	Sino Biological 40143-MM08	Creative Diagnostics DCABH-4693	1.5	-	573
900	Sino Biological 40143-MM08	Sino Biological 40143-R004	2.5	-	28
897	Sino Biological 40143-MM08	Sino Biological 40143-MM05	4	12.5	328.5
940	Sino Biological 40143-R001	Sino Biological 40143-MM08	4	16	87
939	Sino Biological 40143-R001	Sino Biological 40143-MM05	7.5	13.5	-

Index	Capture antibody	Detection antibody	Average rank		
			Genemedi rNP	Acro rNP	Sample pool
614	Genemedi GMP-V-2019nCoV-Nab001	Sino Biological 40143-MM08	-	2.5	491
36	Bioss bsm-41411M	Sino Biological 40143-MM08	-	3	309
99	Bioss bsm-41413M	Sino Biological 40143-MM08	-	3.5	400.5
613	Genemedi GMP-V-2019nCoV-Nab001	Sino Biological 40143-MM05	-	4	221.5
585	Genemedi GMP-V-2019nCoV-Nab001	Creative Diagnostics CABT-CS037	-	5.5	671.5

Index	Capture antibody	Detection antibody	Average rank		
			Genemedi rNP	Acro rNP	Sample pool
630	Genemedi GMP-V-2019nCoV-Nab002	Genemedi GMP-V-2019nCoV-Nab001	-	-	1.5
807	MyBiosource MB5569961	Fitzgerald 10-2853	-	-	3.5
445	Fitzgerald 10-2854	MyBiosource MB5569939	-	-	5.5
736	MyBiosource MB5569937	Leinco LT7000	-	-	6.5
608	Genemedi GMP-V-2019nCoV-Nab001	Meridian Life Science 9548	-	-	7.5

While performance (by S–N or S/N) was not necessarily consistent across sample type, one important outcome of running a large antibody screen in an LFA format was the identification of pairs that non-specifically bind at the test line. Non-specific binding is a major problem for LFA tests, as they represent false positive results in real-world applications. Screening data from non-LFA formats sometimes does not predict non-specific binding in an LFA format, because of the unique interplay of flow dynamics and chemical kinetics across reagents and materials in an LFA. We have found that...
screening data from the high-throughput robotic platform does predict non-specific binding in the LFA even when screened with different sample matrices, such as clinical negatives at multiple dilutions (Figure S3). Additionally, several rounds of negative sample screening data can often be combined—even if positive samples are varied across rounds—if the negative samples are consistent across rounds, as was the case here. Combined negative sample data was used to remove pairs from contention when non-specific binding was greater than a chosen threshold (e.g., a nominal specificity target), which was helpful because the number of candidate pairs was large. This method reduced the likelihood that a high positive signal was primarily driven by non-specific binding (a false positive), which would incorrectly suggest that a candidate antibody pair deserved further optimization.

Conclusions

We screened 1021 α-NP antibody pairs against three sources of SARS-CoV-2 nucleocapsid protein, and identified multiple pairs, inclusive of antibodies from several different commercially available sources, as promising candidates towards the development of lateral flow assays for the detection of SARS-CoV-2. Further work is required for the development of a point-of-care test for SARS-CoV-2, though the high-performance antibodies identified in this work may hasten its development. The antibody pairs identified as top-ranking pairs against pooled clinical samples should be interpreted as worth further testing, not necessarily a precisely ordered list of the best candidate reagents for developing an LFA. The top-ranking pairs against clinical samples have demonstrated strong affinity for (some form of) native antigen in the context of lateral flow through nitrocellulose. However, we suggest that multiple of these top antibody pairs be tested further by anyone attempting to develop an LFA using these data, as the precise interaction of all assay components, materials, and methods (especially when different from the conditions in our tests) can affect pair performance.

Acknowledgements

Funding provided by The Global Good Fund and Global Health Labs, a nonprofit organization created by Gates Ventures and the Gates Foundation to develop innovative solutions to address unmet needs in primary health care centers and the last mile.
References

(1) Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N. Engl. J. Med.* 2020, 382 (8), 727–733. https://doi.org/10.1056/NEJMoa2001017.

(2) Coronavirus disease (COVID-19) Situation Report https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200723-covid-19-sitrep-185.pdf?sfvrsn=9395b7bf_2 (accessed Jul 23, 2020).

(3) Larremore, D. B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J. M.; Hay, J. A.; Tambe, M.; Mina, M. J.; Parker, R. Test Sensitivity Is Secondary to Frequency and Turnaround Time for COVID-19 Surveillance. *medRxiv* 2020, 2020.06.22.20136309. https://doi.org/10.1101/2020.06.22.20136309.

(4) He, X.; Lau, E. H. Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y. C.; Wong, J. Y.; Guan, Y.; Tan, X.; Mo, X.; Chen, Y.; Liao, B.; Chen, W.; Hu, F.; Zhang, Q.; Zhong, M.; Wu, Y.; Zhao, L.; Zhang, F.; Cowling, B. J.; Li, F.; Leung, G. M. Temporal Dynamics in Viral Shedding and Transmissibility of COVID-19. *Nat. Med.* 2020, 26 (5), 672–675. https://doi.org/10.1038/s41591-020-0869-5.

(5) Alexandersen, S.; Chamings, A.; Bhatta, T. R. SARS-CoV-2 Genomic and Subgenomic RNAs in Diagnostic Samples Are Not an Indicator of Active Replication. *medRxiv* 2020, 2020.06.01.20119750. https://doi.org/10.1101/2020.06.01.20119750.

(6) Expression of interest - FIND https://www.finddx.org/eoi-covid19-ag-rdt/ (accessed Jul 23, 2020).

(7) COVID-19 Target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.0.1 https://www.who.int/publications/m/item/covid-19-target-product-profiles-for-priority-diagnostics-to-support-response-to-the-covid-19-pandemic-v.0.1 (accessed Aug 8, 2020).

(8) Huynh, T.; Cate, D. M.; Nichols, K. P.; Weigl, B. H.; Anderson, C. E.; Gasperino, D. J.; Harston, S. P.; Hsieh, H. V.; Marzan, R.; Williford, J. R.; Oncina, C. I.; Glukhova, V. A. Integrated Robotic System for the Development Lateral Flow Assays. In *2019 IEEE Global Humanitarian Technology Conference, GHTC 2019*; Institute of Electrical and Electronics Engineers Inc., 2019. https://doi.org/10.1109/GHTC46095.2019.9033066.

(9) Byrnes, S. A.; Gallagher, R.; Steadman, A.; Bennett, C.; Rivera, R.; Ortega, C.; Motley, S. T.; Jain, P.; Weigl, B. H.; Connelly, J. T. Multiplexed and Extraction-Free Amplification for Simplified SARS-CoV-2 RT-PCR Tests. *medRxiv* 2020, 2020.05.21.20106195. https://doi.org/10.1101/2020.05.21.20106195.

(10) QIAamp Viral RNA Mini Handbook - QIAGEN https://www.qiagen.com/us/resources/resourcedetail?id=c80685c0-4103-49ea-aa72-8989420e3018&lang=en (accessed Jul 23, 2020).

(11) *CDC 2019-Novel Coronavirus (2019-NCoV) Real-Time RT-PCR Diagnostic Panel For Emergency Use Only Instructions for Use.*

(12) Bustin, S. A.; Benes, V.; Garson, J. A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M. W.; Shipley, G. L.; Vandesompele, J.; Wittwer, C. T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clin. Chem.* 2009, 55 (4), 611–622. https://doi.org/10.1373/clinchem.2008.112797.
Supplemental Information: Antibody Screening Results for Anti-Nucleocapsid Antibodies Towards the Development of a SARS-CoV-2 Nucleocapsid Protein Analyte Detecting Lateral Flow Assay

David M. Cate*, Helen V. Hsieh, Veronika A. Glukhova, Joshua D. Bishop, Luis F. Alonzo, H. Gleda Hermansky, Brianda Barrios-Lopez, Ben D. Grant, Caitlin E. Anderson, Ethan Spencer, Samantha Kuhn, Ryan Gallagher, Rafael Rivera, Crissa Bennett, Samantha A. Byrnes, John T. Connelly, Puneet K. Dewan, David S. Boyle, Bernhard H. Weigl, Kevin P. Nichols

1 - Global Health Labs, 14360 SE Eastgate Way, Bellevue, WA 98007
2 - Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA 98007
3 - PATH, 2201 Westlake Ave, Seattle, WA 98121

* Corresponding Author: David Cate – david.cate@ghlabs.org
Antibody Screening Rounds 1-4 with rNP analyte

Round 1 screened anti-nucleocapsid (α-NP) antibodies on LFAs, using an 11 × 11 grid to match α-NP antibodies in distinct immunoassay pairs. Not every antibody was in sufficient stock to test every possible antibody pair, so Round 1 screened 106 unique pairs out of a possible 121 pairs. For each antibody pair, one antibody was striped on nitrocellulose as a test line (the “capture” antibody) and the other was coupled to latex nanoparticles using EDC/NHS chemistry (the “detection” antibody). Round 1 used 50 ng/mL of the rNP analyte from Genemedi (GM-rNP). The negative control was 2.5% BSA in PBST. As anticipated, self-pairs did not perform well compared to non–self-pairs because the GM-rNP was monomeric and therefore likely to only contain a single copy of the sequence targeted by antibodies in the screen. Competition for the same epitope likely reduced the number of complete sandwich formation at the test line. Octet analysis also confirmed poor self-pair performance (data not shown). After completing Round 1, 75 antibody pairs were eliminated from further evaluation. To maintain a large antibody pair pool for subsequent rounds, antibodies from any pair in the top 20 for S−N or S/N were re-screened in Round 2, along with three newly available α-NP antibodies.

Round 2 screened 150 α-NP antibody pairs (out of a possible 195 pairs, due to availability of antibody stocks) selected from overlapping sets of 13 capture and 15 detection antibodies. Three antibodies were screened as capture only, five were screened as detection only, and ten were screened in both positions. Round 2 used 50 ng/mL of the rNP analyte from Acro Biosystems (AB-rNP). The negative control was 2.5% BSA in PBST. We switched to AB-rNP in Round 2 because we observed more consistent antibody binding (Octet measurement of binding saturation relative to R_max, data not provided) against a random selection of α-NP antibodies when compared head-to-head with GM-rNP. Additionally, AB-rNP was expressed in HEK293T cells whereas GM-rNP was produced in E. coli; therefore, we hypothesized that the mammalian cell expressed protein was most likely to display the biologically-relevant glycosylation patterns that viral proteins from infected human cells would express. All five top pairs from Round 1 were in the top 60% of performers in Round 2.

Round 3 screened 144 α-NP antibody pairs selected from overlapping sets of 12 capture and 12 detection antibodies. Three antibodies were screened as capture only, three were screened as detection only, and nine were screened in both positions. By the third round, seven antibody pairs were producing saturating signal intensity at the test line at 50 ng/mL, so we decided to reduce the concentration of AB-rNP from 50 to 25 ng/mL for Round 3 to increase selectivity and emphasize the highest-performing pairs.

Round 4 screened 288 α-NP antibody pairs selected from overlapping sets of 18 capture and 16 detection antibodies. Four antibodies were screened as capture only, two were screened as detection only, and 14 were screened in both positions. We decreased AB-rNP concentration again for Round 4, from 25 to 10 ng/mL. Because Round 4 contained the best-performing antibody pairs from Rounds 2 and 3, and comprised the most stringent screen against AB-rNP (i.e. lowest concentration of the analyte), we considered it as representative of the top collection of antibody pairs against AB-rNP. Results of the screening rounds against AB-rNP are visualized in the scatter plots (S−N vs. S/N) in Figure S1.

To demonstrate the difference between pairs identified as high, moderate, and low-performers in rounds using rNPs, we selected 16 pairs to check performance using banked clinical SARS-CoV-2 positive, negative, and potentially cross-reactive samples. The two cross-reactive samples tested were confirmed positive for non-SARS-CoV-2 coronavirus (types 229E and NL63). No additional optimization of the LFA was performed beyond basic steps such as blocking the conjugate pad. Results from this clinical comparison are shown in Figure S2. The top and bottom charts measure performance as a function of S−N and S/N, respectively. Signals were derived from three technical replicates on up to four positive clinical samples. Noise was pooled from three technical replicates across a blank sample and/or up to three negative clinical samples. Two additional positive clinical samples were tested but showed little-to-no response across all pairs and were excluded from the analysis. Finally, the S−N and S/N results corresponding to each positive sample were normalized by the logarithm of the viral load in each positive sample to allow for a more accurate performance comparison across test conditions.

The data showed that the best pairs (e.g. index pairs 567, 527) were at least 15-fold higher in S−N intensity, on average, across all positive samples when compared with LFA pairs identified in the screen as poor performers (e.g. index pairs
Signal intensities varied for different clinical positives, as expected, however 2/6 samples (pair indices 846 and 188, Table S1) were not visible on any LFA and were therefore excluded from analysis. A complete dataset is visualized in Figure S2. After dilution, the viral load of these two samples was $3\text{–}7\times10^4$ (c/µL), indicating the LOD of these LFAs, without additional optimization is roughly 1×10^5 c/µL. A previous paper from our group reported the optimization of a half-strip LFA targeting SARS-CoV-2 viral NP. There was no visible non-specific binding or cross-reactivity to related coronavirus samples 229E and NL63 (Figure S1), but additional screening of potential cross-reactivity should be performed on candidate pairs.

Interestingly, pairs testing well in Rounds 2–4 against the AB-rNP did not perform as well as expected in the clinical screen. Table S3 ranks pairs from the clinical screen as well as each pair’s ranking (avg. of S/N and S–N) in Rounds 1–4. Pairs 33, 70, 7, and 423, for example, were top-10 performers in one or more rounds, however in the clinical screening round, the average S–N intensity across all positive samples was 75-94% lower than the best performing pair (index pair 567). Specific antibodies (e.g. Bioss bsm-41411M) appeared to have higher affinity for AB-rNP but performed below expectation when they were included in pairs that were tested against banked clinical samples pairs.

Due to the differences in performance for pairs against rNP analytes and the clinical samples used in the limited clinical comparison, we conducted a further screening round using diluted clinical sample pools (one with six high positive samples and six negatives, as measured by qRT-PCR). Round 5 screened 676 α-NP antibody pairs selected one set of 26 antibodies. All antibodies in this round were screened in both capture and detection positions.
Table S1 | A list of anti-nucleocapsid antibodies and their commercial sources.

Antibody Cat. No.	Vendor	Host	Isotype
Ab01690-10.0	Absolute Antibody	humanized	IgG1, kappa
Ab01691-10.0		humanized	IgG1, kappa
bsm-41411M	mouse	IgG2b	
bsm-41412M	mouse	IgG2b	
bsm-41415M	mouse	IgG2b	
bsm-41413M	mouse	IgG2b	
bsm-41414M	mouse	IgG2b	
CABT-RM320	rabbit	IgG	
CABT-CS037	Creative Diagnostics	humanized	IgG
DCABH-4693	mouse	IgG1	
HM1066	mouse	IgG2a	
HM1054	mouse	IgG2b	
HM1055	mouse	IgG1	
HM1056	mouse	IgG1	
HM1057	mouse	IgG1	
HM1058	mouse	IgG1	
HM1063	mouse	IgG1	
HM1064	mouse	-	
HM1065	mouse	-	
HM1068	mouse	IgG	
HM1069	mouse	IgG	
348717	mouse	IgG1	
349082	mouse	IgG1	
10-CR9003M1	mouse	IgG2b	
10-CR9003M2	mouse	IgG1	
10 2860	murine ascites	IgG	
10 2861	murine ascites	IgG	
10 2856	murine ascites	IgG2b	
10 2857	murine ascites	IgG1	
348352	mouse	IgG1	
GMP-V-2019nCov-NAb001	Genemedi	humanized	IgG
GMP-V-2019nCov-NAb002	GMP-V-2019nCov-NAb002	humanized	sdFv-Fc
9547	Meridian Life Science	mouse	IgG
9548		mouse	IgG
MB5569951	Bioss Antibodies	mouse	mouse Mab
MB5569961	Bioss Antibodies	mouse	IgG
MB5569938	Bioss Antibodies	mouse	mouse Mab
MB5569937	MyBiosource	mouse	mouse Mab
MB5569939	MyBiosource	mouse	mouse Mab
MB5569961	Bioss Antibodies	mouse	IgG
NB100-56576	Novus Biological	rabbit	IgG
NB100-56683	Novus Biological	rabbit	IgG
NB100-56049	Novus Biological	rabbit	IgG
NB100-56576	Novus Biological	polyclonal rabbit	IgG
NB100-56683	Novus Biological	polyclonal rabbit	IgG
NB100-56049	Novus Biological	polyclonal rabbit	IgG
NBP2-24747	Novus Biological	monoclonal	IgG2b, kappa
NB100-56576	Novus Biological	polyclonal rabbit	IgG
NB100-56683	Novus Biological	polyclonal rabbit	IgG
NB100-56049	Novus Biological	polyclonal rabbit	IgG
40588-R0004	Sino Biological	monoclonal rabbit	IgG
40143-MM08	Sino Biological	monoclonal mouse	IgG
40143-R001	Sino Biological	monoclonal rabbit	IgG
40143-R019	Sino Biological	monoclonal rabbit	IgG
40143-R040	Sino Biological	monoclonal rabbit	IgG
40143-MM05	Sino Biological	monoclonal mouse	IgG
40143-R019	Sino Biological	monoclonal rabbit	IgG
PAB21469-250	The Native Antigen Co.	rabbit	IgG
Table S2 | Indexed list of antibody pairs screened in Rounds 1–5.

Index	Capture antibody	Detector antibody	Average rank			
1	Bioss bsm-41411M	Bioss bsm-41411M	round 1 74.5	round 2 82.5	round 3 122.5	round 4 302
2	Bioss bsm-41411M	Bioss bsm-41412M	- 11 28.5	- 29		
3	Bioss bsm-41411M	Bioss bsm-41413M	- 21 507.5			
4	Bioss bsm-41411M	Bioss bsm-41414M	- 60 33.5			
5	Bioss bsm-41411M	Bioss bsm-41415M	- 61.5 35			
6	Bioss bsm-41411M	Creative Diagnostics CABT-CS037	- 4 5.5 9	341.5		
7	Bioss bsm-41411M	Creative Diagnostics CABT-RM320	- 65	- -		
8	Bioss bsm-41411M	Creative Diagnostics DCABH-4693	- 14	- -		
9	Bioss bsm-41411M	East Coast Bio HM1054	- 21			
10	Bioss bsm-41411M	East Coast Bio HM1055	- 33.5			
11	Bioss bsm-41411M	East Coast Bio HM1056	- 162			
12	Bioss bsm-41411M	East Coast Bio HM1057	- 184			
13	Bioss bsm-41411M	East Coast Bio HM1058	- 74.5			
14	Bioss bsm-41411M	East Coast Bio HM1063	- 130.5			
15	Bioss bsm-41411M	East Coast Bio HM1064	- 85.5			
16	Bioss bsm-41411M	East Coast Bio HM1065	- 109.5			
17	Bioss bsm-41411M	East Coast Bio HM1066	- 111.5			
18	Bioss bsm-41411M	East Coast Bio HM1068	- 217.5			
19	Bioss bsm-41411M	East Coast Bio HM1069	- 75			
20	Bioss bsm-41411M	Fitzgerald 10-2853	- 454.5			
21	Bioss bsm-41411M	Fitzgerald 10-2854	- 417			
22	Bioss bsm-41411M	Fitzgerald 10-2856	- 448.5			
23	Bioss bsm-41411M	Fitzgerald 10-2857	- 642			
24	Bioss bsm-41411M	Fitzgerald 10-2860	- 351			
25	Bioss bsm-41411M	Fitzgerald 10-2861	- 321.5			
26	Bioss bsm-41411M	Genemedi GMP-V-2019nCoV-Nab001	- 135.5	296		
27	Bioss bsm-41411M	Genemedi GMP-V-2019nCoV-Nab002	- 51.5	309		
28	Bioss bsm-41411M	Leinco LT7000	- 437			
29	Bioss bsm-41411M	Meridian Life Science 9547	-	112		
30	Bioss bsm-41411M	Meridian Life Science 9548	-	11.5		

Index	Capture antibody	Detector antibody	Average rank					
31	Bioss bsm-41411M	MyBiosource MB569937	- 65					
32	Bioss bsm-41411M	MyBiosource MB569939	- 143					
33	Bioss bsm-41411M	MyBiosource MB569951	- 122.5					
34	Bioss bsm-41411M	MyBiosource MB569961	- 105.5					
35	Bioss bsm-41411M	Sino Biological 40143-MM05	- 9					
36	Bioss bsm-41411M	Sino Biological 40143-MM08	- 3					
37	Bioss bsm-41411M	Sino Biological 40143-R001	- 10					
38	Bioss bsm-41411M	Sino Biological 40143-R004	- 90.5					
39	Bioss bsm-41412M	Bioss bsm-41411M	- 59					
40	Bioss bsm-41412M	Bioss bsm-41412M	- 140					
41	Bioss bsm-41412M	Bioss bsm-41413M	- 77					
42	Bioss bsm-41412M	Bioss bsm-41414M	- 409.5					
43	Bioss bsm-41412M	Bioss bsm-41415M	- 108					
44	Bioss bsm-41412M	Creative Diagnostics CABT-CS037	- 112					
45	Bioss bsm-41412M	Creative Diagnostics DCABH-4693	- 74					
46	Bioss bsm-41412M	Fitzgerald 10-2853	- 162.5					
47	Bioss bsm-41412M	Fitzgerald 10-2854	- 283.5					
48	Bioss bsm-41412M	Fitzgerald 10-2856	- 632.5					
49	Bioss bsm-41412M	Fitzgerald 10-2857	- 363.5					
50	Bioss bsm-41412M	Fitzgerald 10-2860	- 112					
51	Bioss bsm-41412M	Fitzgerald 10-2861	- 404.5					
52	Bioss bsm-41412M	Genemedi GMP-V-2019nCoV-Nab001	-					
53	Bioss bsm-41412M	Genemedi GMP-V-2019nCoV-Nab002	-					
54	Bioss bsm-41412M	Leinco LT7000	- 168.5					
55	Bioss bsm-41412M	Meridian Life Science 9547	-					
56	Bioss bsm-41412M	Meridian Life Science 9548	-	160				
Index	Capture antibody	Detector antibody	Average rank					
-------	------------------	------------------	--------------					
	biosm-41412M	MyBiosource MB5596997	round 1 round 2 round 3 round 4 round 5					
57	biosm-41412M	MyBiosource MB5596999	- - - 180					
58	biosm-41412M	MyBiosource MB5596991	- - 101 210.5					
59	biosm-41412M	MyBiosource MB5596996	- - 138 461					
60	biosm-41412M	Sino Biological 40143-MM05	- 133 473.5					
61	biosm-41412M	Sino Biological 40143-MM08	- 99 271					
62	biosm-41412M	Sino Biological 40143-R001	- 36 24.5 430					
63	biosm-41412M	Sino Biological 40143-R004	- 42 438.5					
64	biosm-41412M	Biosm-41411M	- - - 643.5					
65	Biosm-41413M	Biosm-41412M	- - 72 171					
66	Biosm-41413M	Biosm-41413M	- - 90.5 463					
67	Biosm-41413M	Biosm-41414M	- - 42 438.5					
68	Biosm-41413M	Biosm-41415M	- - 457					
69	Biosm-41413M	Creative Diagnostics CABT-CS037	- 4.5 519.5					
70	Biosm-41413M	Creative Diagnostics DCABH-4693	- - 261.5					
71	Biosm-41413M	East Coast Bio HM1054	- - 41					
72	Biosm-41413M	East Coast Bio HM1055	- - 140.5					
73	Biosm-41413M	East Coast Bio HM1056	- - 44.5					
74	Biosm-41413M	East Coast Bio HM1057	- - 161					
75	Biosm-41413M	East Coast Bio HM1058	- - 62.5					
76	Biosm-41413M	East Coast Bio HM1063	- - 266.5					
77	Biosm-41413M	East Coast Bio HM1064	- - 40					
78	Biosm-41413M	East Coast Bio HM1065	- - 157					
79	Biosm-41413M	East Coast Bio HM1066	- - 214					
80	Biosm-41413M	East Coast Bio HM1069	- - 257.5					
81	Biosm-41413M	East Coast Bio HM1072	- - 243					
82	Biosm-41413M	Fitzgerald 10-2853	- - 579.5					
83	Biosm-41413M	Fitzgerald 10-2854	- - 454.5					
84	Biosm-41413M	Fitzgerald 10-2856	- - 231					
85	Biosm-41413M	Fitzgerald 10-2857	- - 373					
86	Biosm-41413M	Fitzgerald 10-2858	- -					
87	Biosm-41413M	Fitzgerald 10-2860	- - 68.5 82.5					
88	Biosm-41413M	Fitzgerald 10-2861	- - 134 - 474					
89	Biosm-41413M	Genemedi GMP-V-2019nCoV-Nab001	- - 128 47.5					
90	Biosm-41413M	Genemedi GMP-V-2019nCoV-Nab002	- - 38.5 591.5					
91	Biosm-41413M	Leinco LT7000	- - - 455					
92	Biosm-41413M	Meridian Life Science 9547	- - - 356					
93	Biosm-41413M	Meridian Life Science 9548	- - - 292					
94	Biosm-41413M	MyBiosource MB5596937	- - - 183					
95	Biosm-41413M	MyBiosource MB5596939	- - - 57.5					
96	Biosm-41413M	MyBiosource MB5596951	- - - 468					
97	Biosm-41413M	MyBiosource MB5599952	- - 138.5 142					
98	Biosm-41413M	Sino Biological 40143-MM05	- - 20.5 10.5 265					
99	Biosm-41413M	Sino Biological 40143-MM08	- - 3 3.5 400.5					
100	Biosm-41413M	Sino Biological 40143-R001	- - - 398					
101	Biosm-41413M	Sino Biological 40143-R004	- - 115 - 166.5					
102	Biosm-41413M	Biosm-41411M	- - 94.5 - 133.5					
103	Biosm-41413M	Biosm-41412M	- - 72.5 - 160.5					
104	Biosm-41413M	Biosm-41413M	- - 77.5 - 73.5					
105	Biosm-41413M	Biosm-41414M	- - 132 - 164					
106	Biosm-41413M	Biosm-41415M	- - - 114					
107	Biosm-41413M	Creative Diagnostics CABT-CS037	- - 75.5 - 480.5					
108	Biosm-41413M	Creative Diagnostics DCABH-4693	- - - 303					
109	Biosm-41413M	Fitzgerald 10-2853	- - - 297					
110	Biosm-41413M	Fitzgerald 10-2854	- - - 147					
111	Biosm-41413M	Fitzgerald 10-2856	- - - 276.5					
112	Biosm-41413M	Fitzgerald 10-2857	- - - 330.5					
113	Biosm-41413M	Fitzgerald 10-2860	- - - 555.5					
114	Biosm-41413M	Fitzgerald 10-2861	- - 42 - 364					
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	------------------	-------------------	---------	---------	---------	---------	---------	--------------
115	Bioss bsm-41414M	Genemedi GMP-V-2019nCoV-Nab001	-	-	81			136
116	Bioss bsm-41414M	Genemedi GMP-V-2019nCoV-Nab002	-	-	125	-		126
117	Bioss bsm-41414M	Leinco LT7000	-	-	-	-	-	133
118	Bioss bsm-41414M	Meridian Life Science 9547	-	-	-	212		
119	Bioss bsm-41414M	Meridian Life Science 9548	-	-	-	62		
120	Bioss bsm-41414M	MyBiosource MBSS69997	-	-	-	104.5		
121	Bioss bsm-41414M	MyBiosource MBSS69999	-	-	-	621		
122	Bioss bsm-41414M	MyBiosource MBSS69951	-	-	-	590		
123	Bioss bsm-41414M	MyBiosource MBSS69961	-	-	65	361.5		
124	Bioss bsm-41414M	Sino Biological 40143-MM05	-	-	84	-	550	
125	Bioss bsm-41414M	Sino Biological 40143-MM08	-	-	62.5	-	504.5	
126	Bioss bsm-41414M	Sino Biological 40143-R001	-	-	-	-	549	
127	Bioss bsm-41414M	Sino Biological 40143-R004	-	-	84	-	386.5	
128	Bioss bsm-41415M	Bioss bsm-41411M	-	81	-	-	592.5	
129	Bioss bsm-41415M	Bioss bsm-41412M	-	56.5	-	-	376	
130	Bioss bsm-41415M	Bioss bsm-41413M	-	-	-	-	144.5	
131	Bioss bsm-41415M	Bioss bsm-41414M	-	-	-	82.5		
132	Bioss bsm-41415M	Bioss bsm-41415M	-	91	-	-	96.5	
133	Bioss bsm-41415M	Creative Diagnostics CABT-CS037	-	56	-	-	315	
134	Bioss bsm-41415M	Creative Diagnostics DCABH-4693	-	103	-	-	427.5	
135	Bioss bsm-41415M	Fitzgerald 10-2853	-	-	-	-	514	
136	Bioss bsm-41415M	Fitzgerald 10-2854	-	-	-	246.5		
137	Bioss bsm-41415M	Fitzgerald 10-2856	-	60.5	-	-	472	
138	Bioss bsm-41415M	Fitzgerald 10-2857	-	98.5	-	-	588.5	
139	Bioss bsm-41415M	Fitzgerald 10-2860	-	-	-	209.5		
140	Bioss bsm-41415M	Fitzgerald 10-2861	-	-	-	314		
141	Bioss bsm-41415M	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	387	
Index	Capture antibody	Detector antibody	Average rank					
-------	------------------	------------------	--------------					
	Creative Diagnostics	Fitzgerald 10-2857	193					
165	CABT-CS037	-	-					
	Creative Diagnostics	Fitzgerald 10-2860	164					
166	CABT-CS037	-	-					
	Creative Diagnostics	Fitzgerald 10-2861	413.5					
167	CABT-CS037	-	-					
	Creative Diagnostics	Genemedi GMP-V-2019nCoV-Nab001	620.5					
168	CABT-CS037	-	-					
	Creative Diagnostics	Genemedi GMP-V-2019nCoV-Nab002	333					
169	CABT-CS037	-	-					
	Creative Diagnostics	Leinco LT7000	540.5					
170	CABT-CS037	-	-					
	Creative Diagnostics	Meridian Life Science 9547	25					
171	CABT-CS037	-	-					
	Creative Diagnostics	Meridian Life Science 9548	240					
172	CABT-CS037	-	-					
	Creative Diagnostics	MyBiosource MB569937	98					
173	CABT-CS037	-	-					
	Creative Diagnostics	MyBiosource MB569939	335					
174	CABT-CS037	-	-					
	Creative Diagnostics	MyBiosource MB569951	235.5					
175	CABT-CS037	-	-					
	Creative Diagnostics	MyBiosource MB569961	325.5					
176	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-MM05	636					
177	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-MM08	522.5					
178	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-R001	115					
179	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-R004	375					
180	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-R004	375					
181	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-R019	70.5					
182	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-R040	43					
183	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40588-T62	56					
184	CABT-CS037	-	-					
	Creative Diagnostics	Creative Diagnostics CABT-CS037	37					
185	CABT-CS037	-	-					
	Creative Diagnostics	Creative Diagnostics CABT-RM320	82					
186	CABT-CS037	-	-					
	Creative Diagnostics	DCABH-4693	47					
187	CABT-CS037	-	-					
	Creative Diagnostics	Sino Biological 40143-MM05	59.5					
188	Creative Diagnostics	Sino Biological 40143-MM08	33.5					
189	Creative Diagnostics	Sino Biological 40143-MM08	102.5					
190	Creative Diagnostics	Sino Biological 40143-MM08	46					
191	Creative Diagnostics	Sino Biological 40143-MM08	80.5					
192	Creative Diagnostics	Sino Biological 40143-MM08	99					
193	Creative Diagnostics	Sino Biological 40588-T62	83					
194	Creative Diagnostics	DCABH-4693	144.5					
195	Creative Diagnostics	DCABH-4693	497					
196	Creative Diagnostics	DCABH-4693	136.5					
197	Creative Diagnostics	DCABH-4693	523.5					
198	Creative Diagnostics	DCABH-4693	155					
199	Creative Diagnostics	DCABH-4693	216.5					
200	Creative Diagnostics	DCABH-4693	75.5					
201	Creative Diagnostics	DCABH-4693	492.5					
202	Creative Diagnostics	DCABH-4693	75.5					
203	Creative Diagnostics	Fitzgerald 10-2853	433.5					
204	Creative Diagnostics	Fitzgerald 10-2853	200					
205	Creative Diagnostics	Fitzgerald 10-2856	183.5					
206	Creative Diagnostics	Fitzgerald 10-2857	474.5					
207	Creative Diagnostics	Fitzgerald 10-2860	510.5					
208	Creative Diagnostics	Fitzgerald 10-2861	260					
209	Creative Diagnostics	Genemedi GMP-V-2019nCoV-Nab001	21					
210	Creative Diagnostics	Genemedi GMP-V-2019nCoV-Nab002	436.5					
211	Creative Diagnostics	Leinco LT7000	577					
Index	Capture antibody	Detector antibody	Average rank	round 1	round 2	round 3	round 4	round 5
-------	---------------------------	---------------------------	--------------	---------	---------	---------	---------	---------
211	Creative Diagnostics DCABH-4693	Meridian Life Science 9547	313	-	-	-	-	
212	Creative Diagnostics DCABH-4693	Meridian Life Science 9548	198.5	-	-	-	-	
213	Creative Diagnostics DCABH-4693	MyBiosource MBS699937	359	-	-	-	-	
214	Creative Diagnostics DCABH-4693	MyBiosource MBS699999	155.5	-	-	-	-	
215	Creative Diagnostics DCABH-4693	MyBiosource MBS699951	454	-	-	-	-	
216	Creative Diagnostics DCABH-4693	MyBiosource MBS69961	442	-	-	-	-	
217	Creative Diagnostics DCABH-4693	Sino Biological 40143-MM05	45.5	-	-	-	-	625.5
218	Creative Diagnostics DCABH-4693	Sino Biological 40143-MM08	31	-	-	-	-	263
219	Creative Diagnostics DCABH-4693	Sino Biological 40143-MM01	68.5	-	-	-	-	59
220	Creative Diagnostics DCABH-4693	Sino Biological 40143-MM04	53.5	-	-	-	-	409
221	Creative Diagnostics DCABH-4693	Sino Biological 40143-MM09	91	-	-	-	-	
222	Creative Diagnostics DCABH-4693	Sino Biological 40143-MM10	63.5	-	-	-	-	
223	Creative Diagnostics DCABH-4693	Sino Biological 40588-T62	60	-	-	-	-	
224	East Coast Bio HM1054	Bios bsm-411411M	20	-	-	-	-	
225	East Coast Bio HM1054	Creative Diagnostics CABT-CS037	45	-	-	-	-	
226	East Coast Bio HM1054 East Coast Bio HM1054	-	258	-	-	-	-	
227	East Coast Bio HM1054 East Coast Bio HM1055	-	202	-	-	-	-	
228	East Coast Bio HM1054 East Coast Bio HM1056	-	277	-	-	-	-	
229	East Coast Bio HM1054 East Coast Bio HM1057	-	222.5	-	-	-	-	
230	East Coast Bio HM1054 East Coast Bio HM1058	-	264	-	-	-	-	
231	East Coast Bio HM1054 East Coast Bio HM1063	-	131.5	-	-	-	-	
232	East Coast Bio HM1054 East Coast Bio HM1064	-	85.5	-	-	-	-	
233	East Coast Bio HM1054 East Coast Bio HM1065	-	172	-	-	-	-	
234	East Coast Bio HM1054 East Coast Bio HM1066	-	264	-	-	-	-	
235	East Coast Bio HM1054 East Coast Bio HM1068	-	251.5	-	-	-	-	
236	East Coast Bio HM1054 East Coast Bio HM1069	-	43	-	-	-	-	
237	East Coast Bio HM1054 Fitzgerald 10-2860	-	249.5	-	-	-	-	

Index	Capture antibody	Detector antibody	Average rank	round 1	round 2	round 3	round 4	round 5
238	East Coast Bio HM1054	Sino Biological 40143-MM05	16.5	-	-	-	-	
239	East Coast Bio HM1054	Sino Biological 40143-MM08	13	-	-	-	-	
240	East Coast Bio HM1055	Bios bsm-411411M	39.5	-	-	-	-	
241	East Coast Bio HM1055	Creative Diagnostics CABT-CS037	283.5	-	-	-	-	
242	East Coast Bio HM1055 East Coast Bio HM1054	-	230	-	-	-	-	
243	East Coast Bio HM1055 East Coast Bio HM1055	-	194	-	-	-	-	
244	East Coast Bio HM1055 East Coast Bio HM1056	-	266.5	-	-	-	-	
245	East Coast Bio HM1055 East Coast Bio HM1057	-	192.5	-	-	-	-	
246	East Coast Bio HM1055 East Coast Bio HM1058	-	217.5	-	-	-	-	
247	East Coast Bio HM1055 East Coast Bio HM1063	-	86.5	-	-	-	-	
248	East Coast Bio HM1055 East Coast Bio HM1064	-	138	-	-	-	-	
249	East Coast Bio HM1055 East Coast Bio HM1065	-	107	-	-	-	-	
250	East Coast Bio HM1055 East Coast Bio HM1066	-	183	-	-	-	-	
251	East Coast Bio HM1055 East Coast Bio HM1068	-	265	-	-	-	-	
252	East Coast Bio HM1055 East Coast Bio HM1069	-	205.5	-	-	-	-	
253	East Coast Bio HM1055 Fitzgerald 10-2860	-	116	-	-	-	-	
254	East Coast Bio HM1055 Sino Biological 40143-MM05	-	215.5	-	-	-	-	
255	East Coast Bio HM1055 Sino Biological 40143-MM08	-	96.5	-	-	-	-	
256	East Coast Bio HM1056	Bios bsm-411411M	70	-	-	-	-	
257	East Coast Bio HM1056	Creative Diagnostics CABT-CS037	246.5	-	-	-	-	
258	East Coast Bio HM1056 East Coast Bio HM1054	-	43.5	-	-	-	-	
259	East Coast Bio HM1056 East Coast Bio HM1055	-	229.5	-	-	-	-	
260	East Coast Bio HM1056 East Coast Bio HM1056	-	216.5	-	-	-	-	
261	East Coast Bio HM1056 East Coast Bio HM1057	-	191.5	-	-	-	-	
262	East Coast Bio HM1056 East Coast Bio HM1058	-	125.5	-	-	-	-	
263	East Coast Bio HM1056 East Coast Bio HM1063	-	85	-	-	-	-	
264	East Coast Bio HM1056 East Coast Bio HM1064	-	269.5	-	-	-	-	
265	East Coast Bio HM1056 East Coast Bio HM1065	-	47	-	-	-	-	
266	East Coast Bio HM1056 East Coast Bio HM1066	-	131	-	-	-	-	
267	East Coast Bio HM1056 East Coast Bio HM1068	-	156.5	-	-	-	-	
268	East Coast Bio HM1056 East Coast Bio HM1069	-	133	-	-	-	-	
269	East Coast Bio HM1056 Fitzgerald 10-2860	-	275	-	-	-	-	
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	------------------------	------------------------	---------	---------	---------	---------	---------	--------------
270	East Coast Bio HM1056	Sino Biological 40143-MM05				214.5		
271	East Coast Bio HM1056	Sino Biological 40143-MM08				48.5		
272	East Coast Bio HM1057	Bloss bsm-41411M				48.5		
273	East Coast Bio HM1057	Creative Diagnostics				74		
274	East Coast Bio HM1057 East Coast Bio HM1054		237					
275	East Coast Bio HM1057 East Coast Bio HM1055		149					
276	East Coast Bio HM1057 East Coast Bio HM1056		106.5					
277	East Coast Bio HM1057 East Coast Bio HM1057		181					
278	East Coast Bio HM1057 East Coast Bio HM1058		132.5					
279	East Coast Bio HM1057 East Coast Bio HM1063		263.5					
280	East Coast Bio HM1057 East Coast Bio HM1064		99					
281	East Coast Bio HM1057 East Coast Bio HM1065		227					
282	East Coast Bio HM1057 East Coast Bio HM1066		94.5					
283	East Coast Bio HM1057 East Coast Bio HM1068		87					
284	East Coast Bio HM1057 East Coast Bio HM1069		68.5					
285	East Coast Bio HM1057 Fitzgerald 10-2860		138					
286	East Coast Bio HM1057 Sino Biological 40143-MM05		93.5					
287	East Coast Bio HM1057 Sino Biological 40143-MM08		85.5					
288	East Coast Bio HM1058 Bloss bsm-41411M		85.5					
289	East Coast Bio HM1058 Creative Diagnostics		173.5					
290	East Coast Bio HM1058 East Coast Bio HM1054		235.5					
291	East Coast Bio HM1058 East Coast Bio HM1055		148					
292	East Coast Bio HM1058 East Coast Bio HM1056		245.5					
293	East Coast Bio HM1058 East Coast Bio HM1057		217.5					
294	East Coast Bio HM1058 East Coast Bio HM1058		250.5					
295	East Coast Bio HM1058 East Coast Bio HM1063		266					
296	East Coast Bio HM1058 East Coast Bio HM1064		256					
297	East Coast Bio HM1058 East Coast Bio HM1065		241					
298	East Coast Bio HM1058 East Coast Bio HM1066		66.5					
299	East Coast Bio HM1058 East Coast Bio HM1068		226.5					
300	East Coast Bio HM1058 East Coast Bio HM1069		104.5					
301	East Coast Bio HM1058 Fitzgerald 10-2860		221					

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	Average rank	
302	East Coast Bio HM1058	Sino Biological 40143-MM05					133	
303	East Coast Bio HM1058	Sino Biological 40143-MM08					265	
304	East Coast Bio HM1063	Bloss bsm-41411M					147.5	
305	East Coast Bio HM1063	Creative Diagnostics					75	
306	East Coast Bio HM1063 East Coast Bio HM1054		229					
307	East Coast Bio HM1063 East Coast Bio HM1055		119					
308	East Coast Bio HM1063 East Coast Bio HM1056		224					
309	East Coast Bio HM1063 East Coast Bio HM1057		127.5					
310	East Coast Bio HM1063 East Coast Bio HM1058		198					
311	East Coast Bio HM1063 East Coast Bio HM1063		35.5					
312	East Coast Bio HM1063 East Coast Bio HM1064		259.5					
313	East Coast Bio HM1063 East Coast Bio HM1065		211					
314	East Coast Bio HM1063 East Coast Bio HM1066		173.5					
315	East Coast Bio HM1063 East Coast Bio HM1068		263					
316	East Coast Bio HM1063 East Coast Bio HM1069		254.5					
317	East Coast Bio HM1063 Fitzgerald 10-2860		239					
318	East Coast Bio HM1063 Sino Biological 40143-MM05		71					
319	East Coast Bio HM1063 Sino Biological 40143-MM08		180					
320	East Coast Bio HM1064 Bloss bsm-41411M		50.5					
321	East Coast Bio HM1064 Creative Diagnostics		64.5					
322	East Coast Bio HM1064 East Coast Bio HM1054		105.5					
323	East Coast Bio HM1064 East Coast Bio HM1055		37					
324	East Coast Bio HM1064 East Coast Bio HM1056		110.5					
325	East Coast Bio HM1064 East Coast Bio HM1057		143.5					
326	East Coast Bio HM1064 East Coast Bio HM1058		234					
327	East Coast Bio HM1064 East Coast Bio HM1063		217.5					
328	East Coast Bio HM1064 East Coast Bio HM1064		282.5					
329	East Coast Bio HM1064 East Coast Bio HM1065		226					
330	East Coast Bio HM1064 East Coast Bio HM1066		210					
331	East Coast Bio HM1064 East Coast Bio HM1068		74					
332	East Coast Bio HM1064 East Coast Bio HM1069		226.5					
333	East Coast Bio HM1064 Fitzgerald 10-2860		41.5					
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	---------------------------	---------------------------	---------	---------	---------	---------	---------	--------------
334	East Coast Bio HM1064	Sino Biological 40143-MM05	-	-	-	96.5	-	
335	East Coast Bio HM1064	Sino Biological 40143-MM08	-	-	-	44.5	-	
336	East Coast Bio HM1065	Bios bsm-41411M	-	-	-	254	-	
337	East Coast Bio HM1065	Creative Diagnostics	-	-	-	214.5	-	
338	East Coast Bio HM1065	East Coast Bio HM1054	-	-	-	274	-	
339	East Coast Bio HM1065	East Coast Bio HM1055	-	-	-	73	-	
340	East Coast Bio HM1065	East Coast Bio HM1056	-	-	-	108.5	-	
341	East Coast Bio HM1065	East Coast Bio HM1057	-	-	-	139.5	-	
342	East Coast Bio HM1065	East Coast Bio HM1058	-	-	-	73.5	-	
343	East Coast Bio HM1065	East Coast Bio HM1063	-	-	-	29.5	-	
344	East Coast Bio HM1065	East Coast Bio HM1064	-	-	-	86	-	
345	East Coast Bio HM1065	East Coast Bio HM1065	-	-	-	202	-	
346	East Coast Bio HM1065	East Coast Bio HM1066	-	-	-	79.5	-	
347	East Coast Bio HM1065	East Coast Bio HM1068	-	-	-	210	-	
348	East Coast Bio HM1065	East Coast Bio HM1069	-	-	-	287	-	
349	East Coast Bio HM1065	Fitzgerald 10-2860	-	-	-	83	-	
350	East Coast Bio HM1065	Sino Biological 40143-MM05	-	-	-	97.5	-	
351	East Coast Bio HM1065	Sino Biological 40143-MM08	-	-	-	71.5	-	
352	East Coast Bio HM1066	Bios bsm-41411M	-	-	-	174	-	
353	East Coast Bio HM1066	Creative Diagnostics	-	-	-	167	-	
354	East Coast Bio HM1066	East Coast Bio HM1054	-	-	-	169	-	
355	East Coast Bio HM1066	East Coast Bio HM1055	-	-	-	200	-	
356	East Coast Bio HM1066	East Coast Bio HM1056	-	-	-	246	-	
357	East Coast Bio HM1066	East Coast Bio HM1057	-	-	-	123	-	
358	East Coast Bio HM1066	East Coast Bio HM1058	-	-	-	231	-	
359	East Coast Bio HM1066	East Coast Bio HM1063	-	-	-	200.5	-	
360	East Coast Bio HM1066	East Coast Bio HM1064	-	-	-	143	-	
361	East Coast Bio HM1066	East Coast Bio HM1065	-	-	-	242.5	-	
362	East Coast Bio HM1066	East Coast Bio HM1066	-	-	-	199.5	-	
363	East Coast Bio HM1066	East Coast Bio HM1068	-	-	-	150.5	-	
364	East Coast Bio HM1066	East Coast Bio HM1069	-	-	-	86.5	-	
365	East Coast Bio HM1066	Fitzgerald 10-2860	-	-	-	155	-	
Index	Capture antibody	Detector antibody	Average rank					
-------	------------------	------------------	--------------					
398	East Coast Bio HM1069	Sino Biological 40143-MM05	round 1 round 2 round 3 round 4 round 5					
399	East Coast Bio HM1069	Sino Biological 40143-MM08	173					
400	Fitzgerald 10-2853	Bioss bsm-41411M	216.5					
401	Fitzgerald 10-2853	Bioss bsm-41412M	47					
402	Fitzgerald 10-2853	Bioss bsm-41413M	31.5					
403	Fitzgerald 10-2853	Bioss bsm-41414M	162.5					
404	Fitzgerald 10-2853	Bioss bsm-41415M	580.5					
405	Fitzgerald 10-2853	Creative Diagnostics CABT-CS037	267					
406	Fitzgerald 10-2853	Creative Diagnostics DCABH-4693	240					
407	Fitzgerald 10-2853	Fitzgerald 10-2853	346					
408	Fitzgerald 10-2853	Fitzgerald 10-2854	669					
409	Fitzgerald 10-2853	Fitzgerald 10-2856	360.5					
410	Fitzgerald 10-2853	Fitzgerald 10-2857	183.5					
411	Fitzgerald 10-2853	Fitzgerald 10-2860	108.5					
412	Fitzgerald 10-2853	Fitzgerald 10-2861	296.5					
413	Fitzgerald 10-2853	Genemedi GMP-V-2019nCoV-Nab001	351					
414	Fitzgerald 10-2853	Genemedi GMP-V-2019nCoV-Nab002	668.5					
415	Fitzgerald 10-2853	Leinco LT7000	523					
416	Fitzgerald 10-2853	Meridian Life Science 9547	279.5					
417	Fitzgerald 10-2853	Meridian Life Science 9548	18.5					
418	Fitzgerald 10-2853	MyBiosource MB5569937	149.5					
419	Fitzgerald 10-2853	MyBiosource MB5569939	100					
420	Fitzgerald 10-2853	MyBiosource MB5569951	127.5					
421	Fitzgerald 10-2853	MyBiosource MB5569961	480					
422	Fitzgerald 10-2853	Sino Biological 40143-MM05	476					
423	Fitzgerald 10-2853	Sino Biological 40143-MM08	296					
424	Fitzgerald 10-2853	Sino Biological 40143-R001	426					
425	Fitzgerald 10-2853	Sino Biological 40143-R004	448					

Index	Capture antibody	Detector antibody	Average rank
426	Fitzgerald 10-2854	Bioss bsm-41411M	173.5
427	Fitzgerald 10-2854	Bioss bsm-41412M	216.5
428	Fitzgerald 10-2854	Bioss bsm-41413M	47
429	Fitzgerald 10-2854	Bioss bsm-41414M	31.5
430	Fitzgerald 10-2854	Bioss bsm-41415M	162.5
431	Fitzgerald 10-2854	Creative Diagnostics CABT-CS037	580.5
432	Fitzgerald 10-2854	Creative Diagnostics DCABH-4693	267
433	Fitzgerald 10-2854	Fitzgerald 10-2853	346
434	Fitzgerald 10-2854	Fitzgerald 10-2854	669
435	Fitzgerald 10-2854	Fitzgerald 10-2856	360.5
436	Fitzgerald 10-2854	Fitzgerald 10-2857	183.5
437	Fitzgerald 10-2854	Fitzgerald 10-2860	108.5
438	Fitzgerald 10-2854	Fitzgerald 10-2861	296.5
439	Fitzgerald 10-2854	Genemedi GMP-V-2019nCoV-Nab001	351
440	Fitzgerald 10-2854	Genemedi GMP-V-2019nCoV-Nab002	668.5
441	Fitzgerald 10-2854	Leinco LT7000	523
442	Fitzgerald 10-2854	Meridian Life Science 9547	279.5
443	Fitzgerald 10-2854	Meridian Life Science 9548	18.5
444	Fitzgerald 10-2854	MyBiosource MB5569937	149.5
445	Fitzgerald 10-2854	MyBiosource MB5569939	100
446	Fitzgerald 10-2854	MyBiosource MB5569951	127.5
447	Fitzgerald 10-2854	MyBiosource MB5569961	480
448	Fitzgerald 10-2854	Sino Biological 40143-MM05	476
449	Fitzgerald 10-2854	Sino Biological 40143-MM08	296
450	Fitzgerald 10-2854	Sino Biological 40143-R001	426
451	Fitzgerald 10-2854	Sino Biological 40143-R004	448
Index	Capture antibody	Detector antibody	Average rank
-------	-----------------	-------------------	--------------
	Fitzgerald 10-2856	Bioss bsm-41411M	43.5 32.5 274.5 557.5
452	Fitzgerald 10-2856	Bioss bsm-41412M	77.5 67.5 27.5
453	Fitzgerald 10-2856	Bioss bsm-41413M	- 38.5 297
454	Fitzgerald 10-2856	Bioss bsm-41414M	- 70.5 671.5
455	Fitzgerald 10-2856	Bioss bsm-41415M	- 39 - 486.5
456	Fitzgerald 10-2856	Creative Diagnostics CABT-CS037	19.5 26 41 545
457	Fitzgerald 10-2856	Creative Diagnostics CABT-RM320	102.5 - - -
458	Fitzgerald 10-2856	Creative Diagnostics DCABH-4693	36.5 - - 354.5
459	Fitzgerald 10-2856	East Coast Bio HM1054	- - 55
460	Fitzgerald 10-2856	East Coast Bio HM1055	- - 88.5
461	Fitzgerald 10-2856	East Coast Bio HM1065	- - 251
462	Fitzgerald 10-2856	East Coast Bio HM1057	- - 85
463	Fitzgerald 10-2856	East Coast Bio HM1058	- - 188
464	Fitzgerald 10-2856	East Coast Bio HM1063	- - 84
465	Fitzgerald 10-2856	East Coast Bio HM1064	- - 177.5
466	Fitzgerald 10-2856	East Coast Bio HM1065	- - 245
467	Fitzgerald 10-2856	East Coast Bio HM1066	- - 271
468	Fitzgerald 10-2856	East Coast Bio HM1068	- - 177.5
469	Fitzgerald 10-2856	East Coast Bio HM1069	- - 37.5
470	Fitzgerald 10-2856	Fitzgerald 10-2853	- - - 287.5
471	Fitzgerald 10-2856	Fitzgerald 10-2854	- - - 533
472	Fitzgerald 10-2856	Fitzgerald 10-2856	- 51 - 401.5
473	Fitzgerald 10-2856	Fitzgerald 10-2857	- 61.5 - 108
474	Fitzgerald 10-2856	Fitzgerald 10-2860	- - 260.5 142.5
475	Fitzgerald 10-2856	Fitzgerald 10-2861	- 63.5 - 543.5
476	Fitzgerald 10-2856	Genemedi GMP-V-2019nCoV-Nab001	- - 104 - 190
477	Fitzgerald 10-2856	Genemedi GMP-V-2019nCoV-Nab002	- - 55.5 - 556
478	Fitzgerald 10-2856	Leinco LT7000	- - - 382
479	Fitzgerald 10-2856	Meridian Life Science 9547	- - - 460.5
480	Fitzgerald 10-2856	Meridian Life Science 9548	- - - 219
481	Fitzgerald 10-2856	MyBiosource MB569937	- 107.5 - 257.5

Index	Capture antibody	Detector antibody	Average rank
482	Fitzgerald 10-2856	MyBiosource MB569937	- 89.5 - 141

Index	Capture antibody	Detector antibody	Average rank				
483	Fitzgerald 10-2856	MyBiosource MB569939	- 103.5 - - 9.5				
484	Fitzgerald 10-2856	MyBiosource MB569951	- 141 - - 204				
485	Fitzgerald 10-2856	MyBiosource MB569961	- 137 137.5 - 80				
486	Fitzgerald 10-2856	Sino Biological 40143-MM05	- 13.5 28.5 18 593				
487	Fitzgerald 10-2856	Sino Biological 40143-MM08	- 3.5 14 13.5 517				
488	Fitzgerald 10-2856	Sino Biological 40143-R001	- - - 470				
489	Fitzgerald 10-2856	Sino Biological 40143-R004	- 33.5 75.5 - 28.5				
490	Fitzgerald 10-2857	Bioss bsm-41411M	- - - - 131.5				
491	Fitzgerald 10-2857	Bioss bsm-41412M	- - - - 32.5				
492	Fitzgerald 10-2857	Bioss bsm-41413M	- - - - 245				
493	Fitzgerald 10-2857	Bioss bsm-41414M	- - - - 328.5				
494	Fitzgerald 10-2857	Bioss bsm-41415M	- 79 - 104				
495	Fitzgerald 10-2857	Creative Diagnostics CABT-CS037	- 57.5 - - 275.5				
496	Fitzgerald 10-2857	Creative Diagnostics CABT-RM320	- 113 - - -				
497	Fitzgerald 10-2857	Creative Diagnostics DCABH-4693	- 40.5 - - 252.5				
498	Fitzgerald 10-2857	Fitzgerald 10-2853	- - - - 485.5				
499	Fitzgerald 10-2857	Fitzgerald 10-2854	- - - - 437.5				
500	Fitzgerald 10-2857	Fitzgerald 10-2856	- 54.5 - - 163.5				
501	Fitzgerald 10-2857	Fitzgerald 10-2857	- 130 - - 172				
502	Fitzgerald 10-2857	Fitzgerald 10-2860	- - - - 46.5				
503	Fitzgerald 10-2857	Fitzgerald 10-2861	- - - - 566				
504	Fitzgerald 10-2857	Genemedi GMP-V-2019nCoV-Nab001	- - - - 525.5				
505	Fitzgerald 10-2857	Genemedi GMP-V-2019nCoV-Nab002	- - - - 141				
506	Fitzgerald 10-2857	Leinco LT7000	- - - - 93				
507	Fitzgerald 10-2857	Meridian Life Science 9547	- - - - 138.5				
508	Fitzgerald 10-2857	Meridian Life Science 9548	- - - - 128				
509	Fitzgerald 10-2857	MyBiosource MB569937	- 89.5 - - 141				
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5
-------	------------------------	------------------------	---------	---------	---------	---------	---------
510	Fitzgerald 10-2857	My Biosource MB569939	-	143	-	-	640
511	Fitzgerald 10-2857	My Biosource MB569951	-	-	-	-	319.5
512	Fitzgerald 10-2857	My Biosource MB569961	-	128.5	-	-	671.5
513	Fitzgerald 10-2857	Sino Biological 40143-MM05	-	126	-	-	647
514	Fitzgerald 10-2857	Sino Biological 40143-MM08	-	59	-	-	490
515	Fitzgerald 10-2857	Sino Biological 40143-R001	-	-	-	-	142
516	Fitzgerald 10-2857	Sino Biological 40143-R004	-	64.5	-	-	571
517	Fitzgerald 10-2860	Bioss bsm-41411M	-	-	69.5	208	
518	Fitzgerald 10-2860	Bioss bsm-41412M	-	-	-	-	604
519	Fitzgerald 10-2860	Bioss bsm-41413M	-	-	-	-	514
520	Fitzgerald 10-2860	Bioss bsm-41414M	-	-	-	-	323.5
521	Fitzgerald 10-2860	Bioss bsm-41415M	-	-	-	-	3.5
522	Fitzgerald 10-2860	Creative Diagnostics CABT-CS037	-	-	-	130	43.5
523	Fitzgerald 10-2860	Creative Diagnostics DCABH-4693	-	-	-	-	257
524	Fitzgerald 10-2860	East Coast Bio HM1054	-	-	-	-	250
525	Fitzgerald 10-2860	East Coast Bio HM1055	-	-	-	-	226.5
526	Fitzgerald 10-2860	East Coast Bio HM1056	-	-	-	-	64.5
527	Fitzgerald 10-2860	East Coast Bio HM1057	-	-	-	-	141.5
528	Fitzgerald 10-2860	East Coast Bio HM1058	-	-	-	-	72.5
529	Fitzgerald 10-2860	East Coast Bio HM1063	-	-	-	-	140
530	Fitzgerald 10-2860	East Coast Bio HM1064	-	-	-	-	180
531	Fitzgerald 10-2860	East Coast Bio HM1065	-	-	-	-	259
532	Fitzgerald 10-2860	East Coast Bio HM1066	-	-	-	-	240.5
533	Fitzgerald 10-2860	East Coast Bio HM1068	-	-	-	-	120
534	Fitzgerald 10-2860	East Coast Bio HM1069	-	-	-	-	26.5
535	Fitzgerald 10-2860	Fitzgerald 10-2853	-	-	-	-	627.5
536	Fitzgerald 10-2860	Fitzgerald 10-2854	-	-	-	-	43
537	Fitzgerald 10-2860	Fitzgerald 10-2856	-	-	-	-	227.5
538	Fitzgerald 10-2860	Fitzgerald 10-2857	-	-	-	-	434.5
539	Fitzgerald 10-2860	Fitzgerald 10-2860	-	-	-	245	613.5
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5
-------	----------------------------------	------------------------------------	---------	---------	---------	---------	---------
567	Fitzgerald 10-2861	Genemedi GMP-V-2019nCoV-Nab001	-	-	139.5	616.5	
568	Fitzgerald 10-2861	Genemedi GMP-V-2019nCoV-Nab002	-	-	128	518	
569	Fitzgerald 10-2861	Leinco LT7000	-	-	-	608.5	
570	Fitzgerald 10-2861	Meridian Life Science 9547	-	-	-	624	
571	Fitzgerald 10-2861	Meridian Life Science 9548	-	-	-	661	
572	Fitzgerald 10-2861	MyBiosource MBSS69937	-	-	-	666	
573	Fitzgerald 10-2861	MyBiosource MBSS69939	-	-	-	660.5	
574	Fitzgerald 10-2861	MyBiosource MBSS69951	-	-	-	16	
575	Fitzgerald 10-2861	MyBiosource MBSS69961	-	-	78	32.5	
576	Fitzgerald 10-2861	Sino Biological 40143-MM05	-	-	75.5	332.5	
577	Fitzgerald 10-2861	Sino Biological 40143-MM08	-	-	60.5	529	
578	Fitzgerald 10-2861	Sino Biological 40143-R001	-	-	108	53	
579	Fitzgerald 10-2861	Sino Biological 40143-R004	-	-	59	372.5	
580	Genemedi GMP-V-2019nCoV-Nab001	Bioss bsm-41411M	-	-	81.5	58.5	372.5
581	Genemedi GMP-V-2019nCoV-Nab001	Bioss bsm-41412M	-	-	34.5	17.5	
582	Genemedi GMP-V-2019nCoV-Nab001	Bioss bsm-41413M	-	-	23	399	
583	Genemedi GMP-V-2019nCoV-Nab001	Bioss bsm-41414M	-	-	51	33.5	
584	Genemedi GMP-V-2019nCoV-Nab001	Bioss bsm-41415M	-	-	-	74	
585	Genemedi GMP-V-2019nCoV-Nab001	Creative Diagnostics	-	-	19	5.5	671.5
586	Genemedi GMP-V-2019nCoV-Nab001	Creative Diagnostics	-	-	-	134	
587	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1054	-	-	-	16.5	
588	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1055	-	-	-	24.5	
589	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1056	-	-	-	89.5	

Average rank

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	
590	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1057	-	-	-	104.5		
591	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1058	-	-	-	70.5		
592	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1063	-	-	-	246		
593	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1064	-	-	-	37.5		
594	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1065	-	-	-	237		
595	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1066	-	-	-	235.5		
596	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1068	-	-	-	125		
597	Genemedi GMP-V-2019nCoV-Nab001	East Coast Bio HM1069	-	-	-	55.5		
598	Genemedi GMP-V-2019nCoV-Nab001	Fitzgerald 10-2853	-	-	-	128		
599	Genemedi GMP-V-2019nCoV-Nab001	Fitzgerald 10-2854	-	-	-	127.5		
600	Genemedi GMP-V-2019nCoV-Nab001	Fitzgerald 10-2856	-	-	-	426		
601	Genemedi GMP-V-2019nCoV-Nab001	Fitzgerald 10-2857	-	-	-	510		
602	Genemedi GMP-V-2019nCoV-Nab001	Fitzgerald 10-2860	-	-	-	238.5	139.5	
603	Genemedi GMP-V-2019nCoV-Nab001	Fitzgerald 10-2861	-	-	-	73.5	372.5	
604	Genemedi GMP-V-2019nCoV-Nab001	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	80.5	596	
605	Genemedi GMP-V-2019nCoV-Nab001	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	118.5	301	
606	Genemedi GMP-V-2019nCoV-Nab001	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	605.0		
607	Genemedi GMP-V-2019nCoV-Nab001	Leinco LT7000	-	-	-	196.5		
608	Genemedi GMP-V-2019nCoV-Nab001	Meridian Life Science 9547	-	-	-	8.5		
609	Genemedi GMP-V-2019nCoV-Nab001	MyBiosource MBSS69937	-	-	-	610.5		
610	Genemedi GMP-V-2019nCoV-Nab001	MyBiosource MBSS69939	-	-	-	250.5		
611	Genemedi GMP-V-2019nCoV-Nab001	MyBiosource MBSS69951	-	-	-	278		
612	Genemedi GMP-V-2019nCoV-Nab001	MyBiosource MBSS69961	-	-	-	118.5		
Index	Capture antibody	Detector antibody	Average rank					
-------	------------------	------------------	--------------					
			round 1	round 2	round 3	round 4	round 5	
613	Genemedi GMP-V-2019nCoV-Nab001	Sino Biological 40143-MM05	-	-	11	4	221.5	
614	Genemedi GMP-V-2019nCoV-Nab001	Sino Biological 40143-MM08	-	-	8.5	2.5	491	
615	Genemedi GMP-V-2019nCoV-Nab001	Sino Biological 40143-R001	-	-	-	-	88	
616	Genemedi GMP-V-2019nCoV-Nab001	Sino Biological 40143-R004	-	-	33	-	351	
617	Genemedi GMP-V-2019nCoV-Nab002	Bioss bsm-41411M	-	-	27.5	-	317	
618	Genemedi GMP-V-2019nCoV-Nab002	Bioss bsm-41412M	-	-	55	-	305.5	
619	Genemedi GMP-V-2019nCoV-Nab002	Bioss bsm-41413M	-	-	37	-	382.5	
620	Genemedi GMP-V-2019nCoV-Nab002	Bioss bsm-41414M	-	-	123.5	-	483.5	
621	Genemedi GMP-V-2019nCoV-Nab002	Bioss bsm-41415M	-	-	-	-	399.5	
622	Genemedi GMP-V-2019nCoV-Nab002	Creative Diagnostics CABT-CS037	-	-	34.5	-	202	
623	Genemedi GMP-V-2019nCoV-Nab002	Creative Diagnostics DCABH-4693	-	-	-	-	381	
624	Genemedi GMP-V-2019nCoV-Nab002	Fitzgerald 10-2853	-	-	-	-	452.5	
625	Genemedi GMP-V-2019nCoV-Nab002	Fitzgerald 10-2854	-	-	-	-	214	
626	Genemedi GMP-V-2019nCoV-Nab002	Fitzgerald 10-2856	-	-	-	-	453.5	
627	Genemedi GMP-V-2019nCoV-Nab002	Fitzgerald 10-2857	-	-	-	-	144.5	
628	Genemedi GMP-V-2019nCoV-Nab002	Fitzgerald 10-2860	-	-	-	-	316.5	
629	Genemedi GMP-V-2019nCoV-Nab002	Fitzgerald 10-2861	-	-	123.5	-	78	
630	Genemedi GMP-V-2019nCoV-Nab002	Genemedi GMP-V-2019nCoV-Nab001	-	-	130.5	-	1.5	
631	Genemedi GMP-V-2019nCoV-Nab002	Genemedi GMP-V-2019nCoV-Nab002	-	-	100.5	-	647	
632	Genemedi GMP-V-2019nCoV-Nab002	Leinco LT7000	-	-	-	-	50.5	
633	Genemedi GMP-V-2019nCoV-Nab002	Meridian Life Science 9547	-	-	-	-	392	
634	Genemedi GMP-V-2019nCoV-Nab002	Meridian Life Science 9548	-	-	-	-	427.5	
635	Genemedi GMP-V-2019nCoV-Nab002	MyBiosource MBSS69937	-	-	-	-	237.5	
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	------------------	------------------	---------	---------	---------	---------	---------	--------------
663	Leinco LT7000	MyBiosource	-	-	-	-	-	112
664	Leinco LT7000	MyBiosource	-	-	-	-	-	100.5
665	Leinco LT7000	Sino Biological	-	-	-	-	-	214.5
666	Leinco LT7000	Sino Biological	-	-	-	-	-	564
667	Leinco LT7000	Sino Biological	-	-	-	-	-	624.5
668	Leinco LT7000	Sino Biological	-	-	-	-	-	306.5
669	Meridian Life Science	Bioss bsm-41411M	-	-	-	-	-	564
670	Meridian Life Science	Bioss bsm-41412M	-	-	-	-	-	68.5
671	Meridian Life Science	Bioss bsm-41413M	-	-	-	-	-	552.5
672	Meridian Life Science	Bioss bsm-41414M	-	-	-	-	-	55.5
673	Meridian Life Science	Bioss bsm-41415M	-	-	-	-	-	170.5
674	Meridian Life Science	Creative Diagnostics	-	-	-	-	-	63.5
675	Meridian Life Science	Creative Diagnostics	-	-	-	-	-	75.5
676	Meridian Life Science	Fitzgerald 10-2853	-	-	-	-	-	116
677	Meridian Life Science	Fitzgerald 10-2854	-	-	-	-	-	270
678	Meridian Life Science	Fitzgerald 10-2856	-	-	-	-	-	499.5
679	Meridian Life Science	Fitzgerald 10-2857	-	-	-	-	-	533
680	Meridian Life Science	Fitzgerald 10-2860	-	-	-	-	-	465
681	Meridian Life Science	Fitzgerald 10-2861	-	-	-	-	-	593.5
682	Meridian Life Science	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	-	660
683	Meridian Life Science	Genemedi GMP-V-2019nCoV-Nab002	-	-	-	-	-	89
684	Meridian Life Science	Leinco LT7000	-	-	-	-	-	609
685	Meridian Life Science	Meridian Life Science	-	-	-	-	-	170

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
686	Meridian Life Science	Meridian Life Science	-	-	-	-	-	8
687	Meridian Life Science	MyBiosource	-	-	-	-	-	153.5
688	Meridian Life Science	MyBiosource	-	-	-	-	-	513.5
689	Meridian Life Science	MyBiosource	-	-	-	-	-	11.5
690	Meridian Life Science	MyBiosource	-	-	-	-	-	150
691	Meridian Life Science	Sino Biological	-	-	-	-	-	30
692	Meridian Life Science	Sino Biological	-	-	-	-	-	460
693	Meridian Life Science	Sino Biological	-	-	-	-	-	40
694	Meridian Life Science	Sino Biological	-	-	-	-	-	558.5
695	Meridian Life Science	Bioss bsm-41411M	-	-	-	-	-	617.5
696	Meridian Life Science	Bioss bsm-41412M	-	-	-	-	-	95.5
697	Meridian Life Science	Bioss bsm-41413M	-	-	-	-	-	448
698	Meridian Life Science	Bioss bsm-41414M	-	-	-	-	-	487.5
699	Meridian Life Science	Bioss bsm-41415M	-	-	-	-	-	207.5
700	Meridian Life Science	Creative Diagnostics	-	-	-	-	-	394
701	Meridian Life Science	Creative Diagnostics	-	-	-	-	-	143
702	Meridian Life Science	Fitzgerald 10-2853	-	-	-	-	-	249.5
703	Meridian Life Science	Fitzgerald 10-2854	-	-	-	-	-	358.5
704	Meridian Life Science	Fitzgerald 10-2856	-	-	-	-	-	192
705	Meridian Life Science	Fitzgerald 10-2857	-	-	-	-	-	235
706	Meridian Life Science	Fitzgerald 10-2860	-	-	-	-	-	473.5
707	Meridian Life Science	Fitzgerald 10-2861	-	-	-	-	-	487.5
708	Meridian Life Science	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	-	18
Index	Capture antibody	Detector antibody	Average rank	round 1	round 2	round 3	round 4	round 5
-------	------------------	--------------------------------	--------------	---------	---------	---------	---------	---------
709	Meridian Life Science 9548	Genemedi GMP-V-2019nCoV-Nab002		-	-	-	-	125.5
710	Meridian Life Science 9548	Leinco LT7000		-	-	-	-	469
711	Meridian Life Science 9548	Meridian Life Science 9547		-	-	-	-	583.5
712	Meridian Life Science 9548	Meridian Life Science 9548		-	-	-	-	492.5
713	Meridian Life Science 9548	MyBiosource MBS569939		-	-	-	-	347.5
714	Meridian Life Science 9548	MyBiosource MBS569939		-	-	-	-	372
715	Meridian Life Science 9548	MyBiosource MBS569939		-	-	-	-	50
716	Meridian Life Science 9548	MyBiosource MBS569961		-	-	-	-	190
717	Meridian Life Science 9548	Sino Biological 40143-MM05		-	-	-	-	142.5
718	Meridian Life Science 9548	Sino Biological 40143-MM08		-	-	-	-	416
719	Meridian Life Science 9548	Sino Biological 40143-R001		-	-	-	-	217.5
720	Meridian Life Science 9548	Sino Biological 40143-R004		-	-	-	-	82.5
721	MyBiosource MBS569937	Bios bsm-41411M		-	-	-	-	224
722	MyBiosource MBS569937	Bios bsm-41412M		-	-	-	-	8
723	MyBiosource MBS569937	Bios bsm-41413M		-	-	-	-	413.5
724	MyBiosource MBS569937	Bios bsm-41414M		-	-	-	-	374
725	MyBiosource MBS569937	Bios bsm-41415M		-	-	-	-	540
726	MyBiosource MBS569937	Creative Diagnostics CABT-CS037		-	-	-	-	83
727	MyBiosource MBS569937	Creative Diagnostics DCABH-4693		-	-	-	-	322.5
728	MyBiosource MBS569937	Fitzgerald 10-2853		-	-	-	-	606
729	MyBiosource MBS569937	Fitzgerald 10-2854		-	-	-	-	653.5
730	MyBiosource MBS569937	Fitzgerald 10-2856		-	-	-	-	506.5
731	MyBiosource MBS569937	Fitzgerald 10-2857		-	-	-	-	478
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	-----------------	----------------------	--------	--------	--------	--------	--------	--------------
755	MyBiosource	Fitzgerald 10-2854	-	-	-	-	15	
756	MyBiosource	Fitzgerald 10-2856	- 95	-	-	-	256	
757	MyBiosource	Fitzgerald 10-2857	- 135	-	-	-	350.5	
758	MyBiosource	Fitzgerald 10-2860	-	-	-	-	645	
759	MyBiosource	Fitzgerald 10-2861	-	-	-	-	647	
760	MyBiosource	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	512	
761	MyBiosource	Genemedi GMP-V-2019nCoV-Nab002	-	-	-	-	91.5	
762	MyBiosource	Leinco LT7000	-	-	-	-	180	
763	MyBiosource	Meridian Life Science 9547	-	-	-	-	262	
764	MyBiosource	Meridian Life Science 9548	-	-	-	-	257	
765	MyBiosource	MyBiosource MBS569937	-	-	-	-	365	
766	MyBiosource	MyBiosource MBS569939	-	-	-	-	541.5	
767	MyBiosource	MyBiosource MBS569951	- 101.5	-	-	-	148	
768	MyBiosource	MyBiosource MBS569961	-	-	-	-	582	
769	MyBiosource	Sino Biological 40143-MM05	- 95.5	-	-	-	477	
770	MyBiosource	Sino Biological 40143-MM08	- 64.5	-	-	-	71.5	
771	MyBiosource	Sino Biological 40143-RO01	-	-	-	-	426	
772	MyBiosource	Sino Biological 40143-RO04	- 69.5	-	-	-	469.5	
773	MyBiosource	Bioss bsm-41411M	-	-	-	-	162	
774	MyBiosource	Bioss bsm-41412M	-	-	-	-	662	
775	MyBiosource	Bioss bsm-41413M	-	-	-	-	595.5	
776	MyBiosource	Bioss bsm-41414M	-	-	-	-	426	
777	MyBiosource	Bioss bsm-41415M	-	-	-	-	206.5	

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
778	MyBiosource	Creative Diagnostics CABS-CS037	-	-	-	-	105.5	
779	MyBiosource	Creative Diagnostics CABS-RM320	-	-	-	-	107.5	
780	MyBiosource	Creative Diagnostics DCABH-4693	-	-	-	-	103	
781	MyBiosource	Fitzgerald 10-2853	-	-	-	-	311.5	
782	MyBiosource	Fitzgerald 10-2854	-	-	-	-	337	
783	MyBiosource	Fitzgerald 10-2856	-	-	-	-	496.5	
784	MyBiosource	Fitzgerald 10-2857	-	-	-	-	463.5	
785	MyBiosource	Fitzgerald 10-2860	-	-	-	-	311.5	
786	MyBiosource	Fitzgerald 10-2861	-	-	-	-	427.5	
787	MyBiosource	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	37.5	
788	MyBiosource	Genemedi GMP-V-2019nCoV-Nab002	-	-	-	-	80.5	
789	MyBiosource	Leinco LT7000	-	-	-	-	510	
790	MyBiosource	Meridian Life Science 9547	-	-	-	-	565	
791	MyBiosource	Meridian Life Science 9548	-	-	-	-	520	
792	MyBiosource	MyBiosource MBS569937	-	-	-	-	239	
793	MyBiosource	MyBiosource MBS569939	-	-	-	-	549.5	
794	MyBiosource	MyBiosource MBS569951	-	-	-	-	522	
795	MyBiosource	MyBiosource MBS569961	-	-	-	-	289.5	
796	MyBiosource	Sino Biological 40143-MM05	-	-	-	-	532	
797	MyBiosource	Sino Biological 40143-MM08	-	-	-	-	224.5	
798	MyBiosource	Sino Biological 40143-RO01	-	-	-	-	240	
799	MyBiosource	Sino Biological 40143-RO04	-	-	-	-	213	
800	MyBiosource	Bioss bsm-41411M	-	145	144	-	55.5	
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	------------------	------------------	---------	---------	---------	---------	---------	--------------
801	MyBiosource MB569961	Bioss bsm-41412M	-	-	131.5	-	600.5	821
802	MyBiosource MB569961	Bioss bsm-41413M	-	-	109.5	-	291	819
803	MyBiosource MB569961	Bioss bsm-41414M	-	-	78.5	-	461.5	816
804	MyBiosource MB569961	Bioss bsm-41415M	-	-	-	-	288	815
805	MyBiosource MB569961	Creative Diagnostics CABT-CS037	-	-	85.5	-	186	812
806	MyBiosource MB569961	Creative Diagnostics DCABH-4693	-	-	-	-	293	812
807	MyBiosource MB569961	Fitzgerald 10-2853	-	-	-	-	7.5	807
808	MyBiosource MB569961	Fitzgerald 10-2854	-	-	-	-	534.5	808
809	MyBiosource MB569961	Fitzgerald 10-2856	-	-	-	-	344.5	809
810	MyBiosource MB569961	Fitzgerald 10-2857	-	148	-	-	563.5	810
811	MyBiosource MB569961	Fitzgerald 10-2860	-	-	-	-	490	811
812	MyBiosource MB569961	Fitzgerald 10-2861	-	-	138	-	243.5	812
813	MyBiosource MB569961	Genemedi GMP-V-2019nCoV-Nab001	-	-	133	-	653.5	813
814	MyBiosource MB569961	Genemedi GMP-V-2019nCoV-Nab002	-	-	94.5	-	625	814
815	MyBiosource MB569961	Leinco LT7000	-	-	-	-	18	815
816	MyBiosource MB569961	Meridian Life Science 9547	-	-	-	-	382.5	816
817	MyBiosource MB569961	Meridian Life Science 9548	-	-	-	-	317.5	817
818	MyBiosource MB569961	MyBiosource MB569937	-	-	-	-	591	818
819	MyBiosource MB569961	MyBiosource MB569939	-	-	-	-	102.5	819
820	MyBiosource MB569961	MyBiosource MB569951	-	118.5	-	-	439.5	820
821	MyBiosource MB569961	MyBiosource MB569961	-	-	112.5	-	325	821
822	MyBiosource MB569961	Sino Biological 40143-MM05	-	55	102.5	-	379	822
823	MyBiosource MB569961	Sino Biological 40143-MM08	-	-	116.5	-	379	823

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
824	MyBiosource MB569961	Sino Biological 40143-MM05	-	-	-	-	656	824
825	MyBiosource MB569961	Sino Biological 40143-MM05	-	101	82	-	87	825
826	Novus Bio NB100-56683	Novus Bio NB100-56683	-	-	-	-	81	826
827	Novus Bio NB100-56683	Novus Biological 40143-MM05	-	-	-	-	87	827
828	Novus Bio NB100-56683	Novus Biological 40143-MM05	-	-	-	-	104.5	828
829	Novus Bio NB100-56683	Novus Biological 40143-MM05	-	-	-	-	100	829
830	Novus Bio NB100-56683	Novus Biological 40143-MM05	-	-	-	-	96	830
831	Novus Bio NB100-56683	Novus Biological 40588-T62	-	-	-	-	100	831
832	Sino Biological 40143-MM05	Bioss bsm-41411M	-	-	-	-	628	832
833	Sino Biological 40143-MM05	Bioss bsm-41412M	-	-	-	-	173.5	833
834	Sino Biological 40143-MM05	Bioss bsm-41413M	-	-	-	-	359.5	834
835	Sino Biological 40143-MM05	Bioss bsm-41414M	-	-	-	-	328.5	835
836	Sino Biological 40143-MM05	Bioss bsm-41415M	-	-	-	-	532.5	836
837	Sino Biological 40143-MM05	Creative Diagnostics CABT-CS037	-	-	-	-	27.5	837
838	Sino Biological 40143-MM05	Creative Diagnostics CABT-RM320	-	-	-	-	67.5	838
839	Sino Biological 40143-MM05	Creative Diagnostics DCABH-4693	-	-	-	-	24.5	839
840	Sino Biological 40143-MM05	Fitzgerald 10-2853	-	-	-	-	402	840
841	Sino Biological 40143-MM05	Fitzgerald 10-2854	-	-	-	-	266.5	841
842	Sino Biological 40143-MM05	Fitzgerald 10-2856	-	-	-	-	232.5	842
843	Sino Biological 40143-MM05	Fitzgerald 10-2857	-	-	-	-	488	843
844	Sino Biological 40143-MM05	Fitzgerald 10-2860	-	-	-	-	408.5	844
845	Sino Biological 40143-MM05	Fitzgerald 10-2861	-	-	-	-	368	845
846	Sino Biological 40143-MM05	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	562.5	846
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
--------	------------------	-------------------	---------	---------	---------	---------	---------	--------------
847	Sino Biological 40143-MM05	Genemedi GMP-V-2019nCoV-Nab002	75	60	54.5	120	102.5	27.5
848	Sino Biological 40143-MM05	Leinco LT7000	-	-	-	-	-	605
849	Sino Biological 40143-MM05	Meridian Life Science 9547	-	-	-	-	-	325
850	Sino Biological 40143-MM05	Meridian Life Science 9548	-	-	-	-	-	191.5
851	Sino Biological 40143-MM05	MyBiosource MBS69937	-	-	-	-	-	325
852	Sino Biological 40143-MM05	MyBiosource MBS69939	-	-	-	-	-	208
853	Sino Biological 40143-MM05	MyBiosource MBS69951	-	-	-	-	-	225
854	Sino Biological 40143-MM05	MyBiosource MBS69961	-	-	-	-	-	225
855	Sino Biological 40143-MM05	Novus Bio NB100-56683	102.5	-	-	-	-	212.5
856	Sino Biological 40143-MM05	Sino Biological 40143-MM05	66.5	-	-	-	-	580
857	Sino Biological 40143-MM05	Sino Biological 40143-MM08	30	-	-	-	-	235
858	Sino Biological 40143-MM05	Sino Biological 40143-R001	19.5	-	-	-	-	277.5
859	Sino Biological 40143-MM05	Sino Biological 40143-R004	29.5	-	-	-	-	277.5
860	Sino Biological 40143-MM05	Sino Biological 40143-R019	60	-	-	-	-	277.5
861	Sino Biological 40143-MM05	Sino Biological 40143-R040	37.5	-	-	-	-	277.5
862	Sino Biological 40143-MM05	Sino Biological 40588-T62	43	-	-	-	-	277.5
863	Sino Biological 40143-MM08	Bioss bsm-41411M	-	4.5	2.5	6	8	60
864	Sino Biological 40143-MM08	Bioss bsm-41412M	-	12.5	27	-	6	73
865	Sino Biological 40143-MM08	Bioss bsm-41413M	-	-	12	-	-	56
866	Sino Biological 40143-MM08	Bioss bsm-41414M	-	-	43.5	-	26	27
867	Sino Biological 40143-MM08	Bioss bsm-41415M	-	40	-	-	-	32
868	Sino Biological 40143-MM08	Creative Diagnostics CABT-CS037	25.5	46	47	212.5	65.5	212.5
869	Sino Biological 40143-MM08	Creative Diagnostics CABT-RM320	24	67.5	-	-	-	67.5

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
870	Sino Biological 40143-MM08	Creative Diagnostics DCABH-4693	1.5	9	-	-	-	2.5
871	Sino Biological 40143-MM08	East Coast Bio HM1054	-	-	-	-	-	41.5
872	Sino Biological 40143-MM08	East Coast Bio HM1055	-	-	-	-	-	41.5
873	Sino Biological 40143-MM08	East Coast Bio HM1056	-	-	-	-	-	41.5
874	Sino Biological 40143-MM08	East Coast Bio HM1057	-	-	-	-	-	41.5
875	Sino Biological 40143-MM08	East Coast Bio HM1058	-	-	-	-	-	41.5
876	Sino Biological 40143-MM08	East Coast Bio HM1063	-	-	-	-	-	41.5
877	Sino Biological 40143-MM08	East Coast Bio HM1064	-	-	-	-	-	41.5
878	Sino Biological 40143-MM08	East Coast Bio HM1065	-	-	-	-	-	41.5
879	Sino Biological 40143-MM08	East Coast Bio HM1066	-	-	-	-	-	41.5
880	Sino Biological 40143-MM08	East Coast Bio HM1068	-	-	-	-	-	41.5
881	Sino Biological 40143-MM08	East Coast Bio HM1069	-	-	-	-	-	41.5
882	Sino Biological 40143-MM08	Fitzgerald 10-2853	-	-	-	-	-	41.5
883	Sino Biological 40143-MM08	Fitzgerald 10-2854	-	-	-	-	-	41.5
884	Sino Biological 40143-MM08	Fitzgerald 10-2856	-	-	-	-	-	41.5
885	Sino Biological 40143-MM08	Fitzgerald 10-2857	-	-	-	-	-	41.5
886	Sino Biological 40143-MM08	Fitzgerald 10-2860	-	-	-	-	-	41.5
887	Sino Biological 40143-MM08	Fitzgerald 10-2861	-	-	-	-	-	41.5
888	Sino Biological 40143-MM08	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	-	41.5
889	Sino Biological 40143-MM08	Genemedi GMP-V-2019nCoV-Nab002	-	-	-	-	-	41.5
890	Sino Biological 40143-MM08	Leinco LT7000	-	-	-	-	-	41.5
891	Sino Biological 40143-MM08	Meridian Life Science 9547	-	-	-	-	-	41.5
892	Sino Biological 40143-MM08	Meridian Life Science 9548	-	-	-	-	-	41.5
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank
-------	------------------	------------------	--------	--------	--------	--------	--------	--------------
893	Sino Biological 40143-MM08	MyBiosource MB569937	133	-	-	-	611.5	
894	Sino Biological 40143-MM08	MyBiosource MB569939	83.5	-	-	-	266	
895	Sino Biological 40143-MM08	MyBiosource MB569951	116.5	-	-	-	380.5	
896	Sino Biological 40143-MM08	MyBiosource MB569961	-	-	104.5	-	73.5	
897	Sino Biological 40143-MM08	Sino Biological 40143-MM05	4	21.5	14	12.5	328.5	
898	Sino Biological 40143-MM08	Sino Biological 40143-MM08	35	43.5	40	54	461.5	
899	Sino Biological 40143-MM08	Sino Biological 40143-R001	28	-	-	-	526.5	
900	Sino Biological 40143-MM08	Sino Biological 40143-R004	2.5	25	86.5	-	28	
901	Sino Biological 40143-MM08	Sino Biological 40143-R019	51	-	-	-	-	
902	Sino Biological 40143-MM08	Sino Biological 40143-R040	38.5	-	-	-	-	
903	Sino Biological 40143-MM08	Sino Biological 40588-T62	26.5	-	-	-	-	
904	Sino Biological 40143-R001	Bioss bsm-41411M	-	13	6	22	601.5	
905	Sino Biological 40143-R001	Bioss bsm-41412M	-	21	30	-	558	
906	Sino Biological 40143-R001	Bioss bsm-41413M	-	-	72.5	-	83.5	
907	Sino Biological 40143-R001	Bioss bsm-41414M	-	-	64	-	620	
908	Sino Biological 40143-R001	Bioss bsm-41415M	-	52	-	-	495.5	
909	Sino Biological 40143-R001	Creative Diagnostics CABT-CS037	8.5	23.5	14	15	454.5	
910	Sino Biological 40143-R001	Creative Diagnostics CABT-RM320	93	123.5	-	-	-	
911	Sino Biological 40143-R001	Creative Diagnostics DCABH-4693	15	29.5	-	-	534	
912	Sino Biological 40143-R001	East Coast Bio HM1054	-	-	-	28	-	
913	Sino Biological 40143-R001	East Coast Bio HM1055	-	-	-	50.5	-	
914	Sino Biological 40143-R001	East Coast Bio HM1056	-	-	-	55	-	
915	Sino Biological 40143-R001	East Coast Bio HM1057	-	-	-	168	-	

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5	Average rank								
916	Sino Biological 40143-R001	East Coast Bio HM1058	-	-	-	-	214.5									
917	Sino Biological 40143-R001	East Coast Bio HM1063	-	-	-	-	112									
918	Sino Biological 40143-R001	East Coast Bio HM1064	-	-	-	-	77.5									
919	Sino Biological 40143-R001	East Coast Bio HM1065	-	-	-	-	236									
920	Sino Biological 40143-R001	East Coast Bio HM1066	-	-	-	-	153									
921	Sino Biological 40143-R001	East Coast Bio HM1068	-	-	-	-	102.5									
922	Sino Biological 40143-R001	East Coast Bio HM1069	-	-	-	-	150.5									
923	Sino Biological 40143-R001	Fitzgerald 10-2853	-	-	-	-	61									
924	Sino Biological 40143-R001	Fitzgerald 10-2854	-	-	-	-	108									
925	Sino Biological 40143-R001	Fitzgerald 10-2856	-	-	-	-	287.5									
926	Sino Biological 40143-R001	Fitzgerald 10-2857	-	-	-	-	275									
927	Sino Biological 40143-R001	Fitzgerald 10-2860	-	-	-	-	252	337								
928	Sino Biological 40143-R001	Fitzgerald 10-2861	-	-	-	-	120.5	416								
929	Sino Biological 40143-R001	Genemedi GMP-V-2019nCoV-Nab001	-	-	-	-	53.5	40								
930	Sino Biological 40143-R001	Genemedi GMP-V-2019nCoV-Nab002	-	-	-	-	48	570.5								
931	Sino Biological 40143-R001	Leinco LT7000	-	-	-	-	-	636.5								
932	Sino Biological 40143-R001	Meridian Life Science 9547	-	-	-	-	-	382								
933	Sino Biological 40143-R001	Meridian Life Science 9548	-	-	-	-	-	664.5								
934	Sino Biological 40143-R001	MyBiosource MB569937	-	-	-	-	134.5	-								
935	Sino Biological 40143-R001	MyBiosource MB569939	-	-	-	-	118	-								
936	Sino Biological 40143-R001	MyBiosource MB569951	-	-	-	-	123.5	-								
937	Sino Biological 40143-R001	MyBiosource MB569961	-	-	-	-	86	504								
938	Sino Biological 40143-R001	Novus Bio NB100-56683	-	-	-	-	76.5	-								
Index	Capture antibody	Detector antibody	Average rank	Average rank												
-------	-----------------------------	------------------------------	--------------	--------------												
			round 1	round 2	round 3	round 4	round 5					round 1	round 2	round 3	round 4	round 5
939	Sino Biological 40143-R001	Sino Biological 40143-MM05	7.5	13.5	19	13.5	-		962	Sino Biological 40143-R004	Leinco LT7000	-	-	-	-	413.5
940	Sino Biological 40143-R001	Sino Biological 40143-MM08	4	17.5	25	16	87		963	Sino Biological 40143-R004	Meridian Life Science 9547	-	-	-	-	497
941	Sino Biological 40143-R001	Sino Biological 40143-MM01	90.5	-	-	-	107		964	Sino Biological 40143-R004	Meridian Life Science 9548	-	-	-	-	250
942	Sino Biological 40143-R001	Sino Biological 40143-MM04	11.5	29.5	68.5	-	259.5		965	Sino Biological 40143-R004	MyBiosource MB569937	-	-	-	-	351.5
943	Sino Biological 40143-R001	Sino Biological 40143-MM09	82	-	-	-	-		966	Sino Biological 40143-R004	MyBiosource MB569939	-	-	-	-	577.5
944	Sino Biological 40143-R001	Sino Biological 40143-MM10	100.5	-	-	-	-		967	Sino Biological 40143-R004	MyBiosource MB569951	-	-	-	-	399
945	Sino Biological 40143-R001	Sino Biological 40588-T62	43.5	-	-	-	-		968	Sino Biological 40143-R004	MyBiosource MB569961	-	-	115	-	534.5
946	Sino Biological 40143-R004	Bioss bsm-41411M	-	-	57.5	-	527		969	Sino Biological 40143-R004	Sino Biological 40143-MM05	49	-	78.5	-	386.5
947	Sino Biological 40143-R004	Bioss bsm-41412M	-	-	87.5	-	32		970	Sino Biological 40143-R004	Sino Biological 40143-MM08	40	-	106.5	-	611.5
948	Sino Biological 40143-R004	Bioss bsm-41413M	-	-	117.5	-	289		971	Sino Biological 40143-R004	Sino Biological 40143-MM01	36.5	-	-	-	477
949	Sino Biological 40143-R004	Bioss bsm-41414M	-	-	118.5	-	402		972	Sino Biological 40143-R004	Sino Biological 40143-MM04	94.5	-	115	-	579.5
950	Sino Biological 40143-R004	Bioss bsm-41415M	-	-	-	-	412		973	Sino Biological 40143-R004	Sino Biological 40143-MM19	76	-	-	-	-
951	Sino Biological 40143-R004	Creative Diagnostics CABT-CS037	34.5	-	99	-	603.5		974	Sino Biological 40143-R004	Sino Biological 40143-MM39	34.5	-	-	-	-
952	Sino Biological 40143-R004	Creative Diagnostics CABT-RM320	80.5	-	-	-	-		975	Sino Biological 40143-R004	Sino Biological 40588-T62	40	-	-	-	-
953	Sino Biological 40143-R004	Creative Diagnostics DCABH-4693	45	-	-	-	121.5		976	Sino Biological 40143-R019	Novus Bio NB100-56683	78	-	-	-	-
954	Sino Biological 40143-R004	Fitzgerald 10-2853	-	-	-	-	237.5		977	Sino Biological 40143-R019	Sino Biological 40143-MM05	67.5	-	-	-	-
955	Sino Biological 40143-R004	Fitzgerald 10-2854	-	-	-	-	322		978	Sino Biological 40143-R019	Sino Biological 40143-MM05	94.5	-	-	-	-
956	Sino Biological 40143-R004	Fitzgerald 10-2856	-	-	-	-	617		979	Sino Biological 40143-R019	Sino Biological 40143-MM05	101	-	-	-	-
957	Sino Biological 40143-R004	Fitzgerald 10-2857	-	-	-	-	226.5		980	Sino Biological 40143-R019	Sino Biological 40143-MM05	55	-	-	-	-
958	Sino Biological 40143-R004	Fitzgerald 10-2860	-	-	-	-	150		981	Sino Biological 40143-R019	Sino Biological 40143-MM05	66	-	-	-	-
959	Sino Biological 40143-R004	Fitzgerald 10-2861	-	-	133.5	-	387.5		982	Sino Biological 40143-R040	Bioss bsm-41411M	-	24	20.5	-	-
960	Sino Biological 40143-R004	Genemedi GMP-V-2019nCoV-Nab001	-	-	141	-	599.5		983	Sino Biological 40143-R040	Bioss bsm-41412M	-	30.5	42	-	-
961	Sino Biological 40143-R004	Genemedi GMP-V-2019nCoV-Nab002	-	-	102.5	-	337.5		984	Sino Biological 40143-R040	Bioss bsm-41413M	-	-	64	-	-
Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5									
-------	------------------	------------------	---------	---------	---------	---------	---------									
985	Sino Biological 40143-R040	Novus Bio NB100-56683	87.5	-	-	-	-									
986	Sino Biological 40143-R040	Sino Biological 40143-MM05	21.5	31	21.5	-	-									
987	Sino Biological 40143-R040	Sino Biological 40143-MM08	11.5	3.5	16.5	-	-									
988	Sino Biological 40143-R040	Sino Biological 40143-R001	68	-	-	-	-									
989	Sino Biological 40143-R040	Sino Biological 40143-R004	29	38.5	88.5	-	-									
990	Sino Biological 40143-R040	Fitzgerald 10-2856	-	29.5	-	-	-									
991	Sino Biological 40143-R040	Fitzgerald 10-2857	-	53	-	-	-									
992	Sino Biological 40143-R040	Fitzgerald 10-2861	-	-	111	-	-									
993	Sino Biological 40143-R040	Genemedi GMP-V-2019nCoV-Nab001	-	-	56.5	-	-									
994	Sino Biological 40143-R040	Genemedi GMP-V-2019nCoV-Nab002	-	-	41	-	-									
995	Sino Biological 40143-R040	MyBiosource MB5699937	-	79	-	-	-									
996	Sino Biological 40143-R040	MyBiosource MB5699939	-	111	-	-	-									
997	Sino Biological 40143-R040	MyBiosource MB5699951	-	132	-	-	-									
998	Sino Biological 40143-R040	MyBiosource MB569961	-	144	96.5	-	-									

Index	Capture antibody	Detector antibody	round 1	round 2	round 3	round 4	round 5
1000	Sino Biological 40143-R040	Sino Biological 40143-MM05	21.5	31	21.5	-	-
1001	Sino Biological 40143-R040	Sino Biological 40143-MM08	11.5	3.5	16.5	-	-
1002	Sino Biological 40143-R040	Sino Biological 40143-R001	68	-	-	-	-
1003	Sino Biological 40143-R040	Sino Biological 40143-R004	29	38.5	88.5	-	-
Figure S1 | Performance of 523 individual antibody pairs, screened against one or more concentrations of the recombinant nucleocapsid (rNP) analyte from Acro Biosystems, as a function of signal / noise (S/N) and signal – noise (S−N). The number of antibody pairs tested against 50 ng/mL of this rNP analyte was 150, against 25 ng/mL was 144, and against 10 ng/mL was 288. Line intensities are shown as scatter plots for each of the three concentrations of this rNP analyte used against each set. Within each scatter plot, antibody pairs in the top 10 for both S/N and S−N against the corresponding concentration of this rNP analyte were overlaid with a semi-transparent box and numbered by their index (full list in Table 1si).
Table S3 | Antibody pairs performing in the top 20 by signal / noise (S/N) and signal – noise (S–N) in the clinical pool screen (Round 5). Pairs were ranked by average performance across the S/N and S–N metrics.

Index	Capture antibody	Detection antibody	Average rank
630	Genemedi GMP-V-2019nCoV-Nab002	Genemedi GMP-V-2019nCoV-Nab001	1.5
521	Fitzgerald 10-2860	Bioss bsm-41415M	3.5
445	Fitzgerald 10-2854	MyBiosource MB5569939	5.5
736	MyBiosource MB5569937	Leinco LT7000	7
807	MyBiosource MB5569961	Fitzgerald 10-2853	7.5
686	Meridian Life Science 9547	Meridian Life Science 9548	8
722	MyBiosource MB5569937	Bioss bsm-41412M	8
608	Genemedi GMP-V-2019nCoV-Nab001	Meridian Life Science 9548	8.5
483	Fitzgerald 10-2856	MyBiosource MB5569939	9.5
30	Bioss bsm-41411M	Meridian Life Science 9548	11.5
689	Meridian Life Science 9547	MyBiosource MB5569951	11.5
755	MyBiosource MB5569939	Fitzgerald 10-2854	15
574	Fitzgerald 10-2861	MyBiosource MB5569951	16
581	Genemedi GMP-V-2019nCoV-Nab001	Bioss bsm-41412M	17.5
548	Fitzgerald 10-2860	MyBiosource MB5569951	18
708	Meridian Life Science 9548	Genemedi GMP-V-2019nCoV-Nab001	18
815	MyBiosource MB5569961	Leinco LT7000	18
Table S4 | Antibody pairs selected after round 4—to be tested against selected clinical samples in benchtop experiments—are ranked according to average performance between S-N and S/N in that test. Average rank from all robot screening rounds are also shown.

Index	Capture antibody	Detection antibody	rd. 1	rd. 2	rd. 3	rd. 4	rd. 5	
900	Sino Biological 40143-MM08	Sino Biological 40143-R004	1	2.5	25	86.5	-	28
857	Sino Biological 40143-MM05	Sino Biological 40143-MM08	2	30	-	-	-	580
897	Sino Biological 40143-MM08	Sino Biological 40143-MM05	3	4	21.5	14	12.5	328.5
180	Creative Diagnostics CABT-CS037	Sino Biological 40143-R004	4.5	46.5	-	-	-	375
614	Genemedi GMP-V-2019nCoV-NAb001	Sino Biological 40143-MM08	5.5	-	-	8.5	2.5	491
6	Bioss bsm-41411M	Creative Diagnostics CABT-CS037	7.5	-	4	5.5	9	341.5
864	Sino Biological 40143-MM08	Bioss bsm-41412M	7.5	-	12.5	27	-	585.5
452	Fitzgerald 10-2856	Bioss bsm-41411M	8	-	43.5	32.5	274.5	557.5
65	Bioss bsm-41413M	Bioss bsm-41411M	9.5	-	-	36	24.5	430
487	Fitzgerald 10-2856	Sino Biological 40143-MM08	9.5	-	3.5	14	13.5	593
987	Sino Biological 40143-R040	Creative Diagnostics CABT-CS037	10.5	14	34.5	13.5	-	-
36	Bioss bsm-41411M	Sino Biological 40143-MM08	11	-	3	5.5	3	309
582	Genemedi GMP-V-2019nCoV-NAb001	Bioss bsm-41413M	11.5	-	-	23	-	399
827	Novus Bio NB100-56683	Sino Biological 40143-MM05	14.5	87	-	-	-	-
1014	Sino Biological 40588-T62	Novus Bio NB100-56683	14.5	100	-	-	-	-
100	Bioss bsm-41413M	Sino Biological 40143-MM08	16	-	3	3.5	400.5	-
Six antibody pairs were striped and capture and/or detectors in a lateral flow assay and screened with six RT-qPCR-confirmed SARS-CoV-2 banked clinical positive samples, three SARS-CoV-2-negative samples, and two potentially cross-reactive samples. Pairs 567 and 564 were chosen as relatively highly ranked pairs. Pairs 527 and 111 were chosen as middle ranked pairs. And, pairs 517 and 666 were chosen as low ranked pairs.
Figure S3 | Combining negative controls across several rounds of robotic screening data, benchtop tests with LFAs, and with diluted clinical negative samples shows that non-specific binding at the test line is predictable in the screening system. The black dotted line is the approximate threshold for test line visibility in an LFA.
