Supplement of

Functionality-based formation of secondary organic aerosol from \textit{m}-xylene photooxidation

Yixin Li et al.

Correspondence to: Renyi Zhang (renyi-zhang@tamu.edu)

The copyright of individual parts of the supplement might differ from the article licence.
Figure S1. Schematic representation of the experimental setup. DMA for differential mobility analyzer; ID-CIMS for ion drift – chemical ionization mass spectrometry; APM for aerosol particle mass analyzer, TD-ID-CIMS for thermal desorption – ion drift – chemical ionization mass spectrometry; SMPS for scanning mobility particle sizer; and CRD for cavity ring-down spectroscopy. Monodispersed seed particles consisting of ammonium bisulfate, ammonium sulfate, and sodium chloride were exposed to oxidation products between m-xylene by OH and in the absence/presence of NH$_3$ vapors inside a 1 m3 reaction chamber. RH was regulated between 10% and 70%, and T was maintained at 298 K. The gaseous concentrations of the oxidation products and particle properties, such as density, chemical composition, growth, and single scattering albedo, were simultaneously quantified by ID-CIMS, APM, TD-ID-CIMS, SMPS, and CRD-Nephelometer, respectively.
Figure S2. (a) The initial oxidation steps for OH oxidation of m-xylene leading to the formation of m-xylene-OH adducts, dimethylphenol, OH-m-xylene-O₂ peroxo radicals, and methylbenzaldehyde. (b) Multi-generation products from m-xylene-OH photooxidation. The letters of P1, P2, and P3 denote the products of first, second, and third generation of reactions with OH, respectively. The compounds in each box are lumped in kinetic simulation with the rate constant with OH (k), wall loss rate constant (k_{w}), and uptake rate constant (k_{p}) listed in Table S1. The numbers denote the mass to charge ratio (m/z).
Figure S3. Temporal evolutions of additional P2 (a) and P3 (b) concentrations from m-xylene oxidation. The number denotes m/z value of the compound on ID-CIMS. The experiments were carried out on (NH₄)₂SO₄ seed particles with 19 ppb NH₃ and at 298 K and RH = 90%. Initiation of photooxidation by ultraviolet light occurred at t = 0.
Figure S4. Pathways for oligomerization. The mechanisms leading to formation of particle-phase oligomers from α-dicarbonyls, γ-dicarbonyls, tricarbonyls, and epoxide detected by TD-ID-CIMS.
Figure S5. Pathway for BrC formation. The mechanisms leading to formation of particle-phase nitrogen-containing organics (NCO) from α-dicarbonyls, γ-dicarbonyls, tricarbonyls, and epoxide.
Table S1. Parameters for kinetic model simulation of gas-phase concentrations. Reaction rate constants are taken from MCM V3.3.1 (Jenkin et al., 2003). The relations between products from each generation are provided in Figure S1b. $k_n = k_n[OH]$ denotes the pseudo-first order rate constant of each oxidation step. $l_n = kW_n + k_p$ is the overall loss rate of each species.

	$k_1 (\times 10^{-12} \text{ cm molecule}^{-1} \text{ s}^{-1})$	$k_{w1}(\times 10^{-4} \text{ s}^{-1})$
P1		
1a	4.0	6.84
1b	0.94	3.6

	$k_2 (\times 10^{-12} \text{ cm molecule}^{-1} \text{ s}^{-1})$	$k_{w2}(\times 10^{-4} \text{ s}^{-1})$	$k_{p2}(\times 10^{-4} \text{ s}^{-1})$
P2			
2a	38.2	1.8	
2b	25.5	13.1	16.3
2c	25.5	11.9	3.3
2d	6.7	12.9	3.5
2e	12.9	5.9	0.92

	$k_3 (\times 10^{-12} \text{ cm molecule}^{-1} \text{ s}^{-1})$	$k_{w3}(\times 10^{-4} \text{ s}^{-1})$	$k_{p3}(\times 10^{-4} \text{ s}^{-1})$
P3			
3a	205	7.5	6.8
3b	360	5.0	3.3
3c	360	2.4	2.5
3e	12.9	6.3	0.92

\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_1')(k_3' + l_2' - k_1')} \]
\[\frac{k_1'k_2'[A]_0}{(k_2' + l_1' - k_1')(k_2' + l_2' - k_1')} \]
\[\frac{k_1'k_2'[A]_0}{(k_2' + l_1' - k_1')(k_2' + l_2' - k_1')} \]
\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_3')(k_3' + l_2' - k_3')} \]

\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_1')(k_3' + l_2' - k_3')} \]
\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_1')(k_3' + l_2' - k_3')} \]
\[\frac{k_1'k_2'[A]_0}{(k_2' + l_1' - k_1')(k_2' + l_2' - k_1')} \]
\[\frac{k_1'k_2'[A]_0}{(k_2' + l_1' - k_1')(k_2' + l_2' - k_1')} \]

\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_3')(k_3' + l_2' - k_3')} \]
\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_3')(k_3' + l_2' - k_3')} \]
\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_3')(k_3' + l_2' - k_3')} \]

\[\frac{k_1'k_2'[A]_0}{(k_3' + l_2' - k_3')(k_3' + l_2' - k_3')} \]
Table S2. Mass peak assignments for oligomeric products detected by TD-ID-CIMS.

m/z	MW	Formula	
		Methylglyoxal	
Dimers			
145	144	C₆H₆O₄	
163	162	C₆H₁₀O₅	
181	180	C₆H₁₂O₆	
Trimers			
217	216	C₉H₁₀O₆	
235	234	C₉H₁₄O₇	
253	252	C₉H₁₆O₈	
		Glyoxal	
Dimers			
117	116	C₄H₄O₄	
135	162	C₄H₆O₅	
153	180	C₄H₈O₆	
Trimers			
175	174	C₆H₆O₆	
193	192	C₆H₈O₇	
211	210	C₆H₁₀O₈	
		γ-dicarbonyls	
Monomers			
85	84	C₄H₄O₂	
99	98	C₅H₆O₂	
Dimers			
143	142	C₆H₆O₄	
157	156	C₇H₈O₄	
169	168	C₈H₈O₄	
197	196	C₁₀H₁₂O₄	
Epoxide			
141	140	C₇H₆O₃	
155	154	C₈H₁₀O₃	
Table S3. Mass peak assignments for nitrogen-containing organics (NCO) from α-dicarbonyls n-heterocycles and γ-carbonyls n-chains detected by TD-ID-CIMS.

m/z	MW	Formula	Compound
83	82	C₄H₆N₂	![Methylglyoxal_n-heterocycles_1](image)
125	124	C₆H₈ON₂	![Methylglyoxal_n-heterocycles_2](image)
251	250	C₆H₁₀O₅	![Methylglyoxal_n-heterocycles_3](image)
69	68	C₃H₄N₂	![Glyoxal_n-heterocycles_1](image)
97	96	C₄H₄ON₂	![Glyoxal_n-heterocycles_2](image)
142	141	C₆H₇O₂N	![γ-carbonyls_n-chains_1](image)
156	155	C₇H₉O₂N	![γ-carbonyls_n-chains_2](image)
196	195	C₄H₆O₂N₂	![γ-carbonyls_n-chains_3](image)
Table S4. Mass peak assignments for organic acids and PAQ detected by TD-ID-CIMS.

m/z	MW	Formula	Compound
89	88	C₃H₄O₃	
113	112	C₃H₄O₃	
115	114	C₃H₆O₃	
125	124	C₇H₈O₂	
127	126	C₅H₆O₃	
129	128	C₆H₈O₃	
131	130	C₅H₆O₄	
137	136	C₈H₈O₂	
139	138	C₈H₁₀O₂	
151	150	C₈H₆O₃	
153	152	C₈H₈O₃	
155	154	C₈H₁₀O₃	
167	166	C₈H₆O₄	
171	170	C₈H₁₀O₄	
Table S5. The percent contributions of COOs from \textit{m}-xylene-OH oxidation to the particle-phase mass intensity. GL: glyoxal, MG: methylglyoxal, GL+MG: cross-reaction of glyoxal and methylglyoxal. Note that the cross-reaction products of γ-carbonyls/tricarbonyls with α-dicarbonyls are summed into the contribution of γ-carbonyls/tricarbonyls. The experiments were carried on (NH$_4$)$_2$SO$_4$ seed particle with 19 ppb of NH$_3$.

Condensable oxidized organics	Oligomerization	NCO formation	Total
GL	3%	3%	6%
MG	10%	12%	22%
γ-dicarbonyls	7%	8%	15%
epoxide	2%	0.3%	2%
Carboxylates			47%
PAQ			8%
Table S6. Saturation vapor pressures (P_s) of dicarbonyls, organic acids, and PAQ.

Compound	P_s (atm, 298 K)
Dicarbonyls	
Glyoxal	2.3×10^{-2}
Methylglyoxal	1.6×10^{-1}
Methylbutenedial	3.9×10^{-4}
Organic acids	
Toluic acid	1.1×10^{-5}
4-Oxo-2-pentenoic acid	6.6×10^{-6}
Acetylpyruvic acid	
Pyruvic acid	6.1×10^{-4}
Glyoxylic acid	1.9×10^{-3}
PAQ	
Dihydroxy dimethyl benzene	1×10^{-7}
Trihydroxy dimethyl benzene	8×10^{-9}
Hydroxy dimethyl quinone	3×10^{-7}
Table S7. Measured gaseous concentrations of condensable oxidized organics from \textit{m}-xylene-OH oxidation at 10% and 70% RH.

m/z	Average Concentration (ppb)	Ratio (R_c)	
	10% RH	70% RH	
Dicarbonyls			
59	1.3	0.51	
73	3.4	1.0	2.8 ± 0.5
99	4.2	1.7	
Carboxylate acids			
89	2.1	0.69	
113	4.1	1.6	
115	3.7	1.4	
117	2.0	0.52	
119	1.1	0.31	
127	3.3	1.18	
129	1.3	0.36	
137	0.42	0.19	3.2 ± 0.8
139	2.5	1.11	
143	1.5	0.40	
151	2.7	0.59	
153	0.66	0.35	
159	1.3	0.36	
161	0.97	0.25	
199	3.3	0.90	
PAQ			
155	0.47	0.23	
171	0.39	0.21	1.9 ± 0.1
187	0.3	0.16	
Nitrophenols			
154	1.4	0.7	
168	1.0	0.4	2.6 ± 0.7
184	0.5	0.15	
m-Xylene			
Initial	1936	1936	
Final	1330	1363	
Table S8. Density of identified major SOA components by TD-ID-CIMS.

Compounds	m/z	Density (g cm$^{-3}$)
Methylimidazole	83	1.03
Methylglyoxal	73	1.05
butenedial	85	1.06
4-Oxo-2-pentenoic acid	115	1.2
Imidazole	69	1.23
Pyruvic acid	89	1.25
Benzoic acid	123	1.27
Glyoxal	59	1.27
Dihydroxy toluene	125	1.29
Acetylpyruvic acid	131	1.3
Glyoxylic acid	75	1.38
Trihydroxy toluene	141	1.4
Glyoxal oligomers	175	1.71
2-hydroxy-5-methylquinone	139	1.4
Oxalic acid	91	1.9
Methylglyoxal oligomers	127	1.9
Table S9. Measured uptake coefficient (γ) for COOs on ammonium sulfate seed particles in the presence of ammonia. $D_o =$ initial diameter, $D_p =$ final diameter after the exposure time of dt, $N =$ the particle number concentration, $S =$ average particle surface area, and $[A] =$ average concentration of species A. FR = percent contributions to the particle-phase mass intensity (Table S5).

Species	D_o (nm)	D_p (nm)	S (10^{-5} cm2 cm$^{-3}$)	$[A]$ (ppb)	FR	γ (10^{-3})
RH = 70%						
Glyoxal	100.0	240.8	1.72	0.51	5.7%	8.0 ± 2.2
Methylglyoxal	100.0	240.8	1.72	1.0	22%	13 ± 3
γ-Dicarbonyls	100.0	240.8	1.72	1.7	11%	3.0 ± 0.5
Toluic acid	100.0	240.8	1.72	0.19	0.5%	1.0 ± 0.2
Pyruvic acid	100.0	240.8	1.72	0.69	3.6%	2.9 ± 0.4
4-Oxo-2-pentenoic acid	100.0	240.8	1.72	1.4	7.7%	2.5 ± 0.4
3-Methyl-4-Oxo-2-pentenoic acid	100.0	240.8	1.72	0.40	1.8%	2.2 ± 0.5
PAQ	100.0	240.8	1.72	0.60	8.0%	5.3 ± 1.8
Nitrophenol†	100.0	229.0	1.57	1.3	5.6%	1.7 ± 0.3
RH = 10%						
Glyoxal	100.0	310.0	2.31	1.3	0.9%	0.74 ± 0.30
Methylglyoxal	100.0	310.0	2.31	3.4	3.9%	1.0 ± 0.5
γ-Dicarbonyls	100.0	310.0	2.31	4.2	2.1%	0.37 ± 0.12
Toluic acid	100.0	310.0	2.31	0.42	0.6%	0.99 ± 0.21
Pyruvic acid	100.0	310.0	2.31	2.1	7.5%	2.8 ± 0.6
4-Oxo-2-pentenoic acid	100.0	310.0	2.31	3.7	12.2%	2.3 ± 0.5
3-Methyl-4-Oxo-2-pentenoic acid	100.0	310.0	2.31	1.3	4.1%	2.0 ± 0.5
PAQ	100.0	310.0	2.31	1.2	8.4%	4.6 ± 1.5
Nitrophenol†	100.0	303.5	2.20	2.9	8.2%	1.7 ± 0.2

*Measured in the presence of 100 ppb NO$_x$.

S15
Table S10. Average uptake coefficients (γ) over all identified species of each type of condensable oxidized organics from m-xylene-OH oxidation at 10% and 70% RH.

COO type	10% RH	70% RH
m-Xylene		
Dicarbonyls	0.7 ± 0.3	8.0 ± 3.7
Carboxylic acids	2.0 ± 0.7	2.1 ± 0.8
PAQ	4.6 ± 1.5	5.3 ± 1.8
Nitrophenols	1.7 ± 0.2	1.7 ± 0.3
Toluene		
Dicarbonyls	0.7 ± 0.2	7.8 ± 1.9
Carboxylic acids	1.8 ± 0.3	2.0 ± 0.4
PAQ	4.2 ± 1.5	5.0 ± 1.5
Nitrophenols	1.6 ± 0.3	1.6 ± 0.3