Design, Simulation and Analysis of Junction Version Multi-Fin FINFET

K. Srinivasa Rao 1 · P. Vishnu Vandana 1

Received: 22 June 2021 / Accepted: 22 July 2021 / Published online: 6 August 2021
© Springer Nature B.V. 2021

Abstract
This paper presents a 3-D statistical simulation study of Multi-fin junction FinFET for different technology nodes 32 nm, 24 nm & 10 nm. For each and every technology node their corresponding Electrical parameters like on current (Ion), off current (Ioff), threshold voltage (Vth), are reported in the paper and also RF/Analog parameters like transconductance (gm), output conductance (gd), intrinsic gain (gm/gd) are reported. And also parameters like Electric field (E), Electron density (ne), Electron mobility (μ) which are measured across the device length are simulated. The proposed structure showed performance improvement in all the parameters when the technology node is decreased.

Keywords Technology node · Multi fin · On current · Off current · Trans conductance generation factor (TGF)

1 Introduction

Fin shaped Field effect transistor (FinFET) is one of the best alternative to replace a MOSFET, which is encountering the problem of short channel effects (SCE’s) [1–3]. SCE’s like Drain induced barrier lowering, hot carrier degradation, Velocity saturation had a huge impact on drain current of the MOSFET, when the technology node is decreased. In a FinFET, channel is surrounded by gate in the shape of a fin which increases the gate controllability on a channel thus overcoming the major problem caused by SCE’s. Finfet thus reducing the SCE’s increases the drain current [4].

Many alternative structures like Double gate MOSFET [5–7], Triple gate MOSFET [8], Tunnel FET [9], Gate all around FET’s [10] are proposed for reducing SCE’s. FinFET comes under the classification of a triple gate device. A FinFET with single tall fin along with SiO2 oxide layer is the first attractive way that was proposed to reduce the SCE’s [11]. FinFET can be used for both low power and high-power applications. Research is growing in a faster pace in the area of memory applications like SRAM by using FinFET [12].

FinFET with multiple fins show promising results in terms of power gain when compared to a single tall fin [13]. Using a metal gate gives better performance in terms of current driving capability. As the metal work function increases an improvement in the device performance can be observed [14, 15]. High k dielectrics are one best alternative for SiO2 as a gate insulator. As SiO2 after certain extent stop acting as an insulating layer because of tunneling effect, so as a replacement of SiO2, HfO2 is considered as an alternative [16, 17]. All the dielectric materials which have k value greater than 10 are considered as high k dielectrics. HfO2 has a dielectric constant value ranging from 20-25. Because of usage of HfO2, gate oxide leakage will be reduced and there will be increase in drain current. The proposed structure is having multiple fins, high k dielectric and also a metal gate so the structure inculcates the advantages of all the three parameters. So, the Multi fin junction FinFET with decreasing technology nodes will have better performance in terms of increased drain current [18]. RF/analog parameters like transconductance (gm), output conductance (gd), intrinsic gain (gm/gd), and Electric field(E), Electron density(ne), electron mobility (μ) along the device length in Multifin-FinFET structure are reported through sentaurus 3D TCAD simulator.

The paper is organized as follows. Section II gives the information of the device structure. It gives the brief out of materials used for device construction, range of doping concentrations used for source, drain and channels,
2 Device Structure & IT’S Dimensions

In this Paper FinFET is developed on a buried oxide layer \([19, 20]\) with 3 fins and considering copper as gate material. For 32nm we used \(\text{SiO}_2\) as oxide layer. But on reducing the technology node we considered \(\text{HfO}_2\) as oxide layer as on reducing the technology nodes Short channel effects come into picture so to overcome them insulating layer has been changed from \(\text{SiO}_2\) to \(\text{HfO}_2\). In this structure, the \(n^+\) source \(n^+\) drain regions are doped with concentration of \(10^{20}\ \text{cm}^{-3}\) and the \(p\)-type channel is doped with concentration of \(10^{15}\ \text{cm}^{-3}\) or both \(n^+\) and \(p^+\) regions uniform doping is considered. \([21]\)

The simulation of MULTI FIN FinFET for different technology nodes is carried out through Sentaurus TCAD Simulator. In the physics section, for carrier transport drift diffusion model is considered, as the doping concentration of source and drain is around \(10^{20}\ \text{cm}^{-3}\) which is high in number Fermi Dirac distribution is activated. Slot boom model is considered for Band Gap Narrowing effect.

Figure 1 shows the 3D view of a Multi fin FinFET and Figure 2 represents the 2D view Of a Multi fin FinFET The various dimensions considered for the Multifin-FinFET structure are: Thickness of fin \((T_{\text{Si}}) = 12\ \text{nm}\), Length of the gate \((L) = 30\ \text{nm}\), Height of fin \((H_{\text{fin}}) = 20\ \text{nm}\), Thickness of oxide structure is equal to \((t_{\text{ox}}) = 1.5\ \text{nm}\), and channel length is varied to 32nm,24nm and 10nm. For these three different cases all the RF/Analog parameters were simulated.

In this paper technology nodes has been decreased and results were observed. The code for the device is developed in Sentaurus structure editor and the graphs are observed in SVirtual. For observing the electrical characteristics PLT file is used and for observing the characteristics like electron mobility, electron density, electric field etc.TDR file is used in SVirtual.

The basic principle for the behavior of \(I_{\text{d}}-V_{\text{g}}\) simulation curves we observe in the section-3 is explained below When the Applied Gate Voltage is less than Threshold Voltage FINFET operates in cut off region and no channel is formed. As there is no formation of channel there is no movement of electrons and hence no drain current is observed.

When gate voltage is increased beyond threshold voltage, channel is formed between source and drain and there will be current flow from source to drain which keeps increasing when there is increase in drain current which is called Linear region. For a FINFET to get into linear region it requires lower gate voltage when compared to the conventional planar devices which results in lower circuit delay, lower leakage and higher performance.

At a Particular Gate Voltage, there will be no increase in the current from source to drain even though there is an increase in the drain current, which is called Saturation region. Equations mentioned below represent the drain current equations for a FINFET in linear region and saturation region respectively.
\[
I_{DS} \approx \mu C_{ins} V_{GS} - V_{TH} - \frac{V_{DS}}{L^2} V_{DS} \\
I_{DS} \approx \frac{\mu}{2L} C_{ins} (V_{GS} - V_{TH})^2
\]

Above two equations are generally used in long channel FINFET’s.

3 Results & Discussions

The impact of change in channel length with a metal (copper) gate on the device structure is demonstrated. The entire device structure is demonstrated at fixed value of V_{ds} (drain to source voltage) is taken as 0.75V

Figures 1, 2, 3, 4, 5, 6, 7 and 8 represent various input-output characteristics of the device and Figs. 9, 10 and 11 represent behavior of different parameters along the length of the device.

Table I mentioned below gives the information of On-current, Off Current andThreshold Voltage obtained for different technology nodes. Tables II and III are comparison of On-current and Off Current of the proposed device with References

From the tabular form we can clearly observe that On current has increased for 24nm when compared to 32nm by 1.47X and it has increased by 1.24X for 10nm when compared to 24nm and there is a decrease in off current when technology node is decreased from 32nm to 10nm. As there is a increase in on current and decrease in off current there will be a subsequent increase in drain current for 10nm when compared to 32 nm

The effect of decrease in channel length on transfer characteristics of Multifin-FinFET in linear scale is shown in Fig. 3. Increase in On current when the technology node is decreased is observed. Increase of threshold voltage when there is decrease in technology node is observed [24, 25].

Figure 4 mentioned above represents Gate Voltage vs Trans conductance. From Figure 4 it is clear that 10nm is giving better performance when compared to 32 nm. So device with less channel length has better performance.

From Fig. 3 it is clear that there is an improvement of 47% in drain current from 32 nm to 24 nm and also there is also an improvement of 23% from 24nm to 10nm in drain current.

Channel length	Ion(A)	Ioff(A)	Vth(V)
32 nm	3.6×10^{-2}	1.49×10^{-14}	0.72
24 nm	5.3×10^{-2}	7.81×10^{-15}	0.75
10 nm	6.6×10^{-2}	9.01×10^{-15}	0.8

Table II Comparison of ION, IOFF with Reference Paper 21

Ion(A)	Ioff(A)	Ref21,Ion(A)	Ref21,Ioff(A)
3.6×10^{-2}	1.49×10^{-14}	8.01×10^{-4}	1.04×10^{-8}

Trans conductance (gm) is used to define the gain of any circuit. Trans conductance is obtained by doing the 1st derivative of Id vs Vgs simulation. The highest value of gm is obtained in inversion region and which can be used for circuit applications [22, 23]. The trans conductance equation is given below

\[
g_m = \frac{\partial I_D}{\partial V_{gs}}
\]

Figure 5 represents drain voltage vs drain current. From results it is clear that 24nm drain current has been improved by 1.3X when compared to 32nm when drain current is measured across drain voltage similarly there is an improvement by 1.62X for 10 nm when compared to 24nm.

Vd vs Id simulation helps in finding out the output conductance. Output conductance is obtained by doing the 1st derivative of Vd vs Id graph. Formula for calculating output conductance is given by

\[
g_d = \frac{\partial I_D}{\partial V_{ds}}
\]

Figure 6 represents drain voltage vs output conductance. Here 10nm exhibits lower output impedance and 32nm represents higher output impedance. For a circuit to perform better especially for amplifier circuits they should have lower output impedance in order to increase the power. So 10nm provides better power as it have lower output impedance.

Figure 7 shown below represents the Gate voltage vs TGF (Transconductance generation factor). Mathematical formula for calculating TGF is given below

\[
TGF_{gd} = \frac{g_m}{\bar{I}_d}
\]

Transconductance generation factor (TGF) is used for checking the level of translation of trans-conductance for a certain level of drain current. TGF value is maximum at
starting of the inversion region. The system with higher values of TGF is used for microwave applications.

Figure 8 represents Gate Voltage vs Intrinsic gain. There is an improvement of gain in 10 nm by 4.4X when compared to 32nm. Mathematical Formula for intrinsic gain is mentioned below

\[
\text{Intrinsic gain} = \frac{g_m}{g_d}
\]

Figure 9 shows the electron density along length of the device. Electron density is observed in source drain and fin regions.

In source and drain regions electron density is 1e20 as source, drain regions are doped with phosphorus concentration(n-type material) and in fin region it has been decreased as it doped with boron concentration(p-type material). So, the resultant graph is of V-Shape. And the graphs for all the three technology nodes are almost similar.

E-Mobility is higher in the center region as when positive gate voltage is applied all the minority carrier electrons are attracted towards the gate where either side, the mobility of electrons is less. There is an improvement of electron mobility for 10nm when compared to 32nm by a factor of 1.35.

Tables II and III mentioned above clearly shows that the proposed device of Multi fin Structure shows a very good On current and Off Current when compared to the references.
Figure 11 shows the behavior of electric field along the length of the device. Electric field increases as the distance between source and drain decreases [26]. So as the technology node decreases the electric field increases, from figure it is clear that there is an increase of electric field by 2.6X for 10nm when compared to 32nm.

4 Conclusion

We have reported a statistical simulation study of different electrical parameters for different channel lengths 32nm, 24nm and 10nm through sentaurus TCAD simulator. It is observed that there is a subsequent increase of 47\% in On current from 32nm to 24nm and an increase of 24\% from 24nm to 10nm respectively. Intrinsic gain of 10nm is increased by 4.4X when compared to 32nm. Electric field is observed to be improved by a factor of 2.6 for 10nm when compared to 32nm. Electron mobility is increased by 1.35X for 10nm when compared to 32nm. Electron density is observed to be same for three technology nodes 32nm, 24nm and 10nm. From the above results it can be concluded that 10nm is exhibiting better performance when compared to 32nm.

Acknowledgements

This document is prepared with the support of NMDC, Department of ECE, NIT Silchar for providing necessary FEM tools.

Author’s Contributions

Author 1 (K. Srinivasa Rao): Conceived and designed the analysis, Contributed data and analysis tools, and wrote the paper. Author 2 (P. Vishnu Vandana): Performed the analysis, Calibrated the results, and wrote the paper.

Data Availability

There are no linked research data sets for this submission. The following reason is given: No data was used for the research described in the article.

Declarations

Conflict of Interest

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of
the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript:

Ethical Approval and Consent to participate “All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent “Informed consent was obtained from all individual participants included in the study.”

Research involving Huan Participants and/or Animals Not Applicable.

References

1. Xie Q, Lee C, Xu J, Wann C, Sun J-Y, Taur Y (2013) Comprehensive Analysis of Short-Channel Effects in Ultrathin SOI MOSFETs. IEEE Transactions on Electron Devices 60(6):1814–1819. https://doi.org/10.1109/TED.2012.2255878
2. A. Gill, C. Madhu and P. Kaur, “Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology,” 2015 annual IEEE India conference (INDICON), New Delhi, India, 2015, pp. 1–4. https://doi.org/10.1109/INDICON.2015.7443263
3. H. Kansal and A. S. Medury, “Short-Channel Effects and Sub-Surface Behavior in Bulk MOSFETs and Nanoscale DG-SOI-MOSFETs: A TCAD Investigation,” 2019 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 2019, pp. 1–2. https://doi.org/10.23919/SNW.2019.8782964
4. Sharma, Rupendra Gupta, Mridula Gupta, R.S. (2011). TCAD assessment of device design technologies for enhanced performance of nanoscale DG MOSFET. Electronic Devices, IEEE Transactions on. 58. 2936–2943. https://doi.org/10.1109/TED.2011.2160065
5. Colinge JP (2008) FinFETs and other Multi-gate transistors. Springer Science+ Business Media, New York, NY, USA
6. S. Veeraraghavan and J. G. Fossum, “Short-channel effects in SOI MOSFETs,” in IEEE Transactions on Electron Devices, vol. 36, no. 3, pp. 522–528, 1989, https://doi.org/10.1109/16.19963
7. V. Narendar, Shrey and N. K. Reddy, “Performance Enhancement of Multi-Gate MOSFETs Using Gate Dielectric Engineering,” 2018 International conference on computing, power and communication technologies (GCUCON), Greater Noida, India, 2018, pp. 924–928, https://doi.org/10.1109/GCUCON.2018.8674961
8. Xiaoping Liang and Yuan Taur, “A 2-D analytical solution for SCEs in DG MOSFETs,” in IEEE Transactions on Electron Devices, vol. 51, no. 9, pp. 1385–1391, 2004, https://doi.org/10.1109/TED.2004.832707
9. L. De Michielis, L. Lattanzio and A. M. Ionescu, “Understanding the Superlinear Onset of Tunnel-FET Output Characteristic,” in IEEE Electron Device Letters, vol. 33, no. 11, pp. 1523–1525, 2012, https://doi.org/10.1109/LED.2012.2212175
10. Quader, Sakib Siddik, Abhousain, N.M Ahmad Chowdhury, Iqbal. (2018). Channel Engineered Cylindrical Double Gate All Around FET For Low Power VLSI Applications. 1–4. https://doi.org/10.1109/IC4ME2.2018.8465589
11. W. P. Maszara and M. - Lin, “FinFETs - Technology and circuit design challenges,” 2013 proceedings of the ESSCIRC (ES-SCIRC), Bucharest, Romania, 2013, pp. 3–8, https://doi.org/10.1109/ESSCIRC.2013.6649058
12. Mohan, Lalit & Singh, Gurmohan Kaur, Manjit. (2015). FinFET based 6T SRAM Cell for Nanoscaled Technologies. International Journal of Computer Applications. 127. 5–10. https://doi.org/10.5120/ija2015090657
13. W. Yeh, W. Zhang, P. Chen and Y. Yang, “The Impact of Fin Number on Device Performance and Reliability for Multi-Fin Tri-Gate n- and p-Type FinFET,” in IEEE Transactions on Device and Materials Reliability, vol. 18, no. 4, pp. 555–560, Dec. 2018, https://doi.org/10.1109/TDMR.2018.2866800
14. H. Nam, C. Shin and J. Park, “Impact of the Metal-Gate Material Properties in FinFET (Versus FD-SOI MOSFET) on High-κ/Metal-Gate Work-Function Variation,” in IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 4780–4785, Nov. 2018, https://doi.org/10.1109/TED.2018.2872586
15. K. Ko, M. Kang, J. Jeon and H. Shin, “Compact Model Strategy of Metal-Gate Work-Function Variation for Ultrascaled FinFET and Vertical GAA FETs,” in IEEE Transactions on Electron Devices, vol. 66, no. 3, pp. 1613–1616, 2019, https://doi.org/10.1109/TED.2019.2891677
16. M. A. Pavanello, J. A. Martino, E. Simoen, R. Rooyackers, N. Colaert and C. Claeys, “Low Temperature Analog Operation of Triple-Gate FinFETs with HfO2 Dielectrics and TiN Gate Material,” 2006 IEEE international SOI Conference proceedings, Niagara Falls, NY, USA, 2006, pp. 73–74, https://doi.org/10.1109/SOL.2006.284439
17. R. Parihar, V. Narendard and R. A. Mishra, “Comparative Study of Nanoscale FinFET Structures for High-K Gate Dielectrics,” 2014 International conference on devices, circuits and communications (ICDCom), Ranchi, India, 2014, pp. 1–5, https://doi.org/10.1109/ICDC-Com.2014.7024708
18. Bhattacharya, Debajit & Jha, N.K.. (2014). FinFETs: From devices to architectures. Advances in Electronics. 2014. 1–21. https://doi.org/10.1155/2014/365689
19. W. Chang, C. Shih, J. Wu, S. Lin, L. Cin and W. Yeh, “Back-Biasing to Performance and Reliability Evaluation of UTBB FD-SOI, Bulk FinFETs, and SOI FinFETs,” in IEEE Transactions on Nanotechnology, vol. 17, no. 1, pp. 36–40, Jan. 2018, https://doi.org/10.1109/TNANO.2017.2706265
20. U. S. Kumar and V. R. Rao, “A Thermal-Aware Device Design Considerations for Nanoscale SOI and Bulk FinFETs,” in IEEE Transactions on Electron Devices, vol. 63, no. 1, pp. 280–287, 2016, https://doi.org/10.1109/TED.2015.2502062
21. Hirpara, Y., Saha, R. Analysis on DC and RF/Analog Performance in Multifin-FinFET for Wide Variation in Work Function of Metal Gate Silicon 13, 73–77 (2021). https://doi.org/10.1007/s12633-020-00408-2
22. Jaafar, Hind Aouaj, Abdellah Bouziane, Ahmed Iniguez, Benjamin. (2018). Analytical study of drain current and transconductance for a new cylindrical gate MOSFET structure. 1–5. https://doi.org/10.1109/ICOA.2018.8370495
23. A. Voicu-Spineanu, D. Dobrescu and L. Dobrescu, “Increased transconductance MOSFET device,” 2016 international semiconductor conference (CAS), Sinaia, Romania, 2016, pp. 179–182, https://doi.org/10.1109/CASCON.2016.7783079
24. Tsompatzoglou, Andreas Dimitriadis, C.A. Clerc, Raphael Pananakakis, G. Ghibaudo, Gerard. (2008). Threshold Voltage Model for Short-Channel Undoped symmetrical Double-Gate MOS-FETs. Electron Devices, IEEE Transactions on. 55. 2512–2516. https://doi.org/10.1109/TED.2008.927394
25. H. Kang, J. Han and Y. Choi, “Analytical Threshold Voltage Model for Double-Gate MOSFETs With Localized Charges,” in IEEE Electron Device Letters, vol. 29, no. 8, pp. 927–930, Aug. 2008, https://doi.org/10.1109/LED.2008.2000965
26. Liu XX, Jin Z, Xiaoshi Lee J (2019) A high-performance rectangular gate U Channel FETs with only 2-nm distance between source and drain contacts. Nanoscale Res Lett 14:43. https://doi.org/10.1186/s11671-019-2879-0

27. S. S. Zaman, P. Kumar, M. P. Sarma, A. Ray and G. Trivedi, “Design and Simulation of SF-FinFET and SD-FinFET and Their Performance in Analog, RF and Digital Applications,” 2017 IEEE international symposium on Nanoelectronic and information systems (iNIS), Bhopal, India, 2017, pp. 200–205, https://doi.org/10.1109/iNIS.2017.49

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.