Data Article

Experimentally determined trace element partition coefficients between hibonite, melilite, spinel, and silicate melts

D. Loroch*, S. Klemme, J. Berndt, A. Rohrbach

Institute for Mineralogy, University of Münster, Corrensstrasse 24, 48149 Münster, Germany

A R T I C L E I N F O

Article history:
Received 24 September 2018
Received in revised form
18 October 2018
Accepted 22 October 2018
Available online 27 October 2018

A B S T R A C T

This article provides new data on mineral/melt partitioning in systems relevant to the evolution of chondrites, Calcium Aluminum-Rich Inclusions (CAI) in chondrites and related meteorites. The data set includes experimentally determined mineral/melt partition coefficients between hibonite (CaAl12O19), melilite (Ca2(Al,Mg)2SiO7), spinel (MgAl2O4) and silicate melts for a wide range of trace elements: Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U. The experiments were performed at high temperatures (1350 °C < T < 1550 °C) and ambient pressure. The experimental run products were analyzed using electron microprobe (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The partition coefficients for 38 trace elements were calculated from the LA-ICP-MS data.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	More specific subject area	Earth Sciences
		Experimental petrology, Geochemistry, Planetology, Planetary sciences

* Corresponding author.

E-mail addresses: d.loroch@uni-muenster.de (D. Loroch), Stephan.klemme@uni-muenster.de (S. Klemme), jberndt@uni-muenster.de (J. Berndt), arno.rohrbach@uni-muenster.de (A. Rohrbach).
Type of data	Table, figure
How data was acquired | High-temperature furnace: Gero GmbH, Germany (University of Münster)
Scanning electron microscope (SEM) JEOL JSM-6610 LV in high vacuum mode equipped with EDX system (University of Münster)
Electron microprobe analysis (EMPA): JEOL JXA-8530F Hyperprobe equipped with a field emission gun (University of Münster)
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): Thermo element sector field – ICP-MS with Photon Machines Analyte G2 laser ablation system (University of Münster)

Data format | Major element data of minerals and quenched melts: data in .xlsx format
Trace element data of minerals and quenched melts: data in .xlsx format
Mineral/melt trace element partition coefficients: data in .xlsx format
Mineral/mineral trace element partition coefficients: data in .xlsx format

Experimental features | High temperature experiments were run at high temperatures to equilibrate hibonite, melilite, and spinel, with silicate melts. The experimental run products were mounted in epoxy resins and polished using a variety of diamond pastes. The mounts were carbon coated, and major elements were analyzed using EMPA techniques. Subsequently, trace element concentrations of minerals and glasses within the samples were determined using LA-ICP-MS techniques.

Data accessibility | Supplementary materials

Value of the data

- The new trace element partition coefficients supplement the existing database of mineral/melt partition coefficients of minerals that are frequently found in Ca- and Al-rich inclusions in chondritic meteorites.
- The new trace element partition coefficients between hibonite, melilite and spinel and silicate melts may be used to test whether these minerals crystallized from or equilibrated with a silicate melt or whether they condensed from a vapor phase.
- This partition coefficient data set is based on experiments under oxidizing conditions, since preliminary experiments under reducing conditions, which would have been more relevant to solar nebula processes, resulted in crystals which were too small to be analyzed.
- Our mineral/mineral partition coefficients may be used to test whether hibonite, melilite and spinel are in thermodynamic equilibrium or not.

1. Data

In this article, we report new experimentally determined trace element partition coefficients between hibonite (CaAl$_{12}$O$_{19}$), melilite (Ca$_2$(Al,Mg)$_2$SiO$_7$), spinel (MgAl$_2$O$_4$), and silicate melts at high temperatures (Tables 3 and 4). Data were generated using high temperature experiments, which were characterized using electron microprobe and LA-ICP-MS methods (Tables 1 and 2).
Table 1
Major element concentrations of minerals and quenched silicate melts determined by EMPA. All values are given in wt%.

Sample	MgO wt%	S.D.	Al₂O₃ wt%	S.D.	SiO₂ wt%	S.D.	CaO wt%	S.D.	TiO₂ wt%	S.D.
H1-Ti2-R3	1.50 ± 0.14	86.8 ± 0.1	0.86 ± 0.14	8.33 ± 0.10	1.77 ± 0.21					
H1-Ti5-R4	2.01 ± 0.13	85.1 ± 0.7	0.64 ± 0.13	8.36 ± 0.08	3.16 ± 0.41					
H1-Ti5-R5	2.02 ± 0.47	84.9 ± 1.6	0.70 ± 0.17	8.39 ± 0.06	3.19 ± 0.97					
H2-Ti2-R2	1.87 ± 0.06	85.7 ± 0.3	1.22 ± 0.12	8.27 ± 0.09	1.84 ± 0.05					
H2-Ti2-R3	1.96 ± 0.28	85.5 ± 2.0	1.12 ± 0.25	8.29 ± 0.14	2.23 ± 0.62					
H2-Ti5-R4	2.41 ± 0.07	83.8 ± 0.3	0.90 ± 0.19	8.30 ± 0.09	3.61 ± 0.16					
H2-Ti5-R5	2.53 ± 0.18	83.6 ± 0.8	0.91 ± 0.15	8.34 ± 0.07	3.86 ± 0.57					
H3-Ti5-R4	2.37 ± 0.06	84.8 ± 0.4	0.81 ± 0.11	8.27 ± 0.09	3.57 ± 0.10					
H3-Ti5-R5	2.79 ± 0.11	82.7 ± 0.9	0.96 ± 0.39	8.39 ± 0.10	4.37 ± 0.41					

Table 2
Trace element concentrations of minerals and quenched silicate melts determined with LA-ICP-MS. All values are given in µg/g.

Sample	Mg g/g	S.D.	Al g/g	S.D.	Si g/g	S.D.	Ca g/g	S.D.	Ti g/g	S.D.
H1-Ti2-R3	13.367	± 2518	15263	± 2195	14105	± 3235	14245	± 2822	17157	± 3259
H1-Ti5-R4	7058	± 1008	3778	± 668	4712	± 780	5629	± 863	9282	± 1272
H1-Ti5-R5	59563	± 2104	59749	± 2163	59697	± 2172	59707	± 2166	9234	± 2095
H2-Ti2-R2	30.6	± 2.8	28.2	± 2.1	28.3	± 2.2	28.7	± 2.0	28.3	± 1.9
H2-Ti2-R3	11302	± 1412	21355	± 1797	19485	± 2546	12899	± 1736	14804	± 1124
H2-Ti5-R4	2099	± 28123	2099	± 28123	2099	± 28123	2099	± 28123	2099	± 28123
H2-Ti5-R5	3082	± 3.3	358	± 0.8	358	± 0.8	358	± 0.8	358	± 0.8
H2-Ti2-R2	52.9	± 841	4192	± 758	5382	± 9282	59349	± 2095	35977	± 2119
H2-Ti2-R3	541	± 41	0.3	± 0.2	0.3	± 0.2	0.3	± 0.2	0.3	± 0.2
H2-Ti5-R4	533	± 0.5	192	± 1.4	192	± 1.4	192	± 1.4	192	± 1.4
H2-Ti5-R5	613	± 0.6	18.9	± 4.3	18.9	± 4.3	18.9	± 4.3	18.9	± 4.3
	H1-T2-R3	H1-T2-R4	H2-T2-R3	H1-T5-R3	H1-T5-R4	H2-T5-R3	H1-T5-R5	H2-T5-R4	H2-T5-R5	
---------	----------	----------	----------	----------	----------	----------	----------	----------	----------	
S.	±	±	±	±	±	±	±	±	±	
Nb.	±	±	±	±	±	±	±	±	±	
Yb.	±	±	±	±	±	±	±	±	±	
Eu.	±	±	±	±	±	±	±	±	±	
Ce.	±	±	±	±	±	±	±	±	±	
Lu.	±	±	±	±	±	±	±	±	±	
Zr.	±	±	±	±	±	±	±	±	±	
Y.	±	±	±	±	±	±	±	±	±	
Sr.	±	±	±	±	±	±	±	±	±	
Sr.	±	±	±	±	±	±	±	±	±	
Ta.	±	±	±	±	±	±	±	±	±	
Hf.	±	±	±	±	±	±	±	±	±	
W.	±	±	±	±	±	±	±	±	±	
H.	±	±	±	±	±	±	±	±	±	
Cr.	±	±	±	±	±	±	±	±	±	
Ni.	±	±	±	±	±	±	±	±	±	
Cu.	±	±	±	±	±	±	±	±	±	
Zn.	±	±	±	±	±	±	±	±	±	
Ga.	±	±	±	±	±	±	±	±	±	
Ge.	±	±	±	±	±	±	±	±	±	
Pb.	±	±	±	±	±	±	±	±	±	
Th.	±	±	±	±	±	±	±	±	±	
U.	±	±	±	±	±	±	±	±	±	

Table 2 (continued)

	H3-T3-R4	H3-T3-R5	H3-T5-R3	H3-T5-R4	H3-R8	H3-R8	Mel3-R9	
µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	
Mg.	16888 ± 2734	29955 ± 5971	55758 ± 10561	2525 ± 242	166434 ± 36418	b.d.l	124887 ± 9030	176044 ± 17334
Si.	17111 ± 2303	7555 ± 1188	110371 ± 14987	104108 ± 13955	b.d.l	b.d.l	b.d.l	b.d.l
Ca.	59120 ± 2034	59935 ± 2154	290740 ± 12078	292070 ± 9299	1627 ± 681	1872 ± 554	1044 ± 348	b.d.l
Sc.	44.5 ± 2.7	52.8 ± 3.9	189 ± 14	3.23 ± 0.36	15.4 ± 2.2	33.6 ± 2.1	16.8 ± 1.3	b.d.l
Ti.	21275 ± 1994	29299 ± 3489	57273 ± 4394	3.78 ± 1.35	b.d.l	16.2 ± 4.8	372 ± 34	b.d.l
V.	16.3 ± 1.2	7.1 ± 0.74	109 ± 9	0.39 ± 0.09	1.04 ± 0.50	4.79 ± 0.39	0.62 ± 0.24	b.d.l
Cr.	24.9 ± 6.3	23.7 ± 8.3	b.d.l	b.d.l	18.5 ± 9.8	25.5 ± 6.7	b.d.l	b.d.l
Co.	142 ± 9	196 ± 11	686 ± 38	18.2 ± 1.1	3577 ± 467	1409 ± 94	413 ± 39	b.d.l
Ni.	144 ± 25	207 ± 78	1206 ± 354	17.5 ± 5.9	12392 ± 5282	3732 ± 515	1098 ± 216	b.d.l
Cu.	10.4 ± 10	5.93 ± 0.87	93.8 ± 9.9	2.42 ± 0.32	122 ± 17	73.3 ± 5.3	7.87 ± 1.01	b.d.l
Zn.	8.41 ± 2.71	8.75 ± 3.25	73.0 ± 25.4	1.45 ± 0.70	137 ± 48	37.1 ± 9.2	9.32 ± 3.82	b.d.l
Ga.	236 ± 12	244 ± 17	815 ± 47	112 ± 6.6	577 ± 69	258 ± 12	373 ± 21	b.d.l
Ge.	6.28 ± 1.74	8.93 ± 2.46	2.73 ± 0.92	13.3 ± 5.5	b.d.l	5.03 ± 2.20	b.d.l	b.d.l
Pb.	b.d.l	b.d.l	b.d.l	0.14 ± 0.06	0.82 ± 0.34	b.d.l	0.27 ± 0.15	b.d.l
Sr.	86.3 ± 4.1	107 ± 5	422 ± 21	110 ± 5	b.d.l	5.02 ± 0.41	b.d.l	b.d.l
Y.	28.7 ± 1.7	270 ± 2.2	189 ± 12	93.2 ± 4.1	4.59 ± 0.18	0.20 ± 0.08	b.d.l	b.d.l
Zr.	23.0 ± 1.4	34.0 ± 2.7	169 ± 13	b.d.l	b.d.l	6.04 ± 1.75	b.d.l	b.d.l
Nb.	12.6 ± 0.7	21.4 ± 1.4	117 ± 8	0.03 ± 0.02	0.14 ± 0.07	1.18 ± 0.09	0.03 ± 0.03	b.d.l
Rh.	6.31 ± 0.81	8.78 ± 1.51	45.2 ± 5.4	0.05 ± 0.02	b.d.l	9.49 ± 0.81	14.4 ± 1.5	b.d.l
Cs.	b.d.l	b.d.l	1.53 ± 1.00	0.08 ± 0.03	b.d.l	b.d.l	b.d.l	b.d.l
Ba.	9.20 ± 1.06	4.85 ± 1.04	61.9 ± 10.5	1.15 ± 0.23	1.60 ± 0.79	3.65 ± 0.68	0.88 ± 0.35	b.d.l
La.	319 ± 13	336 ± 19	1176 ± 53	51.2 ± 1.7	1.10 ± 0.11	b.d.l	b.d.l	b.d.l
Ce.	359 ± 16	379 ± 20	1522 ± 69	74.1 ± 2.6	0.03 ± 0.06	0.19 ± 0.01	0.02 ± 0.03	b.d.l
Table 2 (continued)

	Hibonite	**Melilite**	**Spinel**	**Silicate Melt**				
	H3-Ti5-R4	H3-Ti5-R5	H1-Ti2-R3	H3-R8	H2-R8	H3-R8	Mel3-R9	
	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.
Pr	244 ± 12	269 ± 14	1258 ± 57	76.6 ± 2.7	b.d.l	0.08 ± 0.01	0.03 ± 0.02	0.13 ± 0.09
Nd	215 ± 11	237 ± 17	1082 ± 63	91.1 ± 3.9	0.15 ± 0.24	0.13 ± 0.02	0.13 ± 0.09	0.24 ± 0.05
Sm	158 ± 9	182 ± 16	630 ± 61	129 ± 6.6	0.50 ± 0.30	0.24 ± 0.05	0.05 ± 0.05	0.05 ± 0.08
Eu	87.6 ± 4.5	98.8 ± 16	555 ± 30	93.0 ± 3.6	b.d.l	0.07 ± 0.01	0.03 ± 0.03	0.09 ± 0.14
Gd	87.6 ± 6.4	104 ± 9	525 ± 38	124 ± 6.6	b.d.l	0.25 ± 0.03	0.09 ± 0.14	0.09 ± 0.07
Tb	56.4 ± 3.1	64.5 ± 5.1	392 ± 23	107 ± 4	0.06 ± 0.04	0.12 ± 0.01	0.03 ± 0.02	0.10 ± 0.02
Dy	31.8 ± 2.2	34.7 ± 3.8	189 ± 17	78.2 ± 3.4	0.10 ± 0.19	0.12 ± 0.02	0.04 ± 0.04	0.04 ± 0.04
Ho	31.6 ± 1.8	33.8 ± 3.3	222 ± 15	93.8 ± 3.9	0.05 ± 0.04	0.10 ± 0.01	0.05 ± 0.02	0.05 ± 0.02
Er	13.2 ± 0.9	12.7 ± 1.5	101 ± 10	44.8 ± 2.0	0.14 ± 0.11	0.10 ± 0.01	0.08 ± 0.04	0.08 ± 0.03
Tm	9.54 ± 0.57	8.28 ± 0.84	77.5 ± 5.9	36.5 ± 1.4	0.11 ± 0.05	0.06 ± 0.01	0.08 ± 0.03	0.08 ± 0.03
Yb	14.0 ± 1.1	10.7 ± 1.2	109 ± 11	54.7 ± 2.3	0.17 ± 0.17	0.14 ± 0.02	0.16 ± 0.08	0.16 ± 0.08
Lu	12.3 ± 0.7	8.70 ± 0.80	101 ± 7	46.7 ± 1.9	0.14 ± 0.06	0.12 ± 0.01	0.15 ± 0.03	0.15 ± 0.03
Hf	32.4 ± 2.2	53.4 ± 4.8	200 ± 15	0.05 ± 0.02	0.29 ± 0.17	0.14 ± 0.02	0.16 ± 0.07	0.16 ± 0.07
Ta	35.9 ± 2.0	70.5 ± 5.6	313 ± 18	0.02 ± 0.01	0.07 ± 0.04	0.20 ± 0.01	0.03 ± 0.02	0.03 ± 0.02
W	1.62 ± 0.23	1.57 ± 0.29	6.59 ± 1.4	0.03 ± 0.03	0.27 ± 0.14	0.31 ± 0.02	0.07 ± 0.05	0.07 ± 0.05
Pb	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l
Th	68.4 ± 3.5	74.2 ± 6.4	490 ± 29	9.05 ± 0.35	0.06 ± 0.03	0.95 ± 0.07	0.01 ± 0.01	0.01 ± 0.01
U	0.05 ± 0.02	0.03 ± 0.01	0.13 ± 0.10	0.00 ± 0.00	b.d.l	b.d.l	b.d.l	b.d.l

	Spinel	**Silicate Melt**				
	Mel3-R11	Mel3-R12				
	µg/g	µg/g				
Mg	186262 ± 33494	181809 ± 31474				
Si	1293 ± 336	1010 ± 304				
Ca	b.d.l	1190 ± 339				
Sc	13.1 ± 2.2	12.4 ± 1.7				
Ti	369 ± 57	333 ± 48				
V	0.54 ± 0.24	0.58 ± 0.23				
Cr	10.1 ± 4.65	b.d.l				
Co	425 ± 70	425 ± 51				
Ni	1014 ± 251	1030 ± 223				
Cu	73.2 ± 10.6	26.3 ± 3.0				
Zn	23.5 ± 5.0	15.4 ± 4.0				
Ga	369 ± 60	413 ± 49				
Ge	b.d.l	b.d.l				
Rb	0.44 ± 0.18	b.d.l				
Sr	0.72 ± 0.38	b.d.l				
Y	0.10 ± 0.06	0.07 ± 0.05				
Zr	0.09 ± 0.07	138 ± 7				
Nb	0.03 ± 0.02	110 ± 5				
Rh	32.9 ± 6.4	61.6 ± 60				
Cs	0.24 ± 0.12	b.d.l				
Ba	0.44 ± 0.05	106 ± 5				
La	50.3 ± 2.0	67.9 ± 2.5				
Ce	0.03 ± 0.03	0.04 ± 0.02				
Pr	0.06 ± 0.03	0.02 ± 0.02				
Nd	0.10 ± 0.09	0.09 ± 0.08				
Sm	0.16 ± 0.11	0.09 ± 0.07				
Eu	0.04 ± 0.05	106 ± 5				
Gd	0.12 ± 0.7	124 ± 8				
Tb	0.01 ± 0.02	0.04 ± 0.02				
Dy	0.08 ± 0.06	0.06 ± 0.05				
Ho	0.05 ± 0.02	0.02 ± 0.01				
Er	0.07 ± 0.05	0.10 ± 0.05				
Spinel	H3-Ti5-R4	H3-Ti5-R5	H3-R8	Mel3-R9	Mel3-R11	Mel3-R12
--------	-----------	-----------	-------	---------	----------	----------
µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g
S.D.	S.D.	S.D.	S.D.	S.D.	S.D.	S.D.
Tm 0.05	0.05	0.05	0.05	0.05	0.05	0.05
Yb 0.07	0.07	0.07	0.07	0.07	0.07	0.07
Lu 0.10	0.10	0.10	0.10	0.10	0.10	0.10
Hf 0.04	0.04	0.04	0.04	0.04	0.04	0.04
Ta 0.01	0.01	0.01	0.01	0.01	0.01	0.01
W 0.03	0.03	0.03	0.03	0.03	0.03	0.03
Pb b.d.	0.07	0.07	0.07	0.07	0.07	0.07
Th b.d.	0.01	0.01	0.01	0.01	0.01	0.01
U 0.01	0.01	0.01	0.01	0.01	0.01	0.01

Silicate Melt
H3-Ti5-R4
µg/g
S.D.
Tm 0.05
Yb 0.07
Lu 0.10
Hf 0.04
Ta 0.01
W 0.03
Pb b.d.
Th b.d.
U 0.01
Table 3
Mineral-melt partition coefficients including the available literature data. The 1e represents the mean absolute standard error on the average and “n” stands for the number of analyzes that had been incorporated in the calculations for the D-values in the form of “n” of the mineral vs. “n” of the silicate melt.

	H1-Ti2-R3		H1-Ti5-R4		H1-Ti5-R5		H2-Ti2-R2		H2-Ti2-R3	
D-Value	σ	n								
Mg	1.86 ± 0.21	5/6	2.68 ± 0.22	6/6	2.98 ± 0.40	6/6	0.92 ± 0.11	6/6	1.12 ± 0.12	6/6
Si	0.045 ± 0.004	5/6	0.027 ± 0.003	5/6	0.031 ± 0.003	5/6	0.033 ± 0.003	5/6	0.051 ± 0.004	5/6
Ca	0.29 ± 0.01	5/6	0.31 ± 0.01	5/6	0.28 ± 0.01	6/6	0.34 ± 0.01	6/6	0.32 ± 0.01	6/6
Sc	0.18 ± 0.01	5/6	0.19 ± 0.01	6/6	0.17 ± 0.01	6/6	0.20 ± 0.01	6/6	0.18 ± 0.01	6/6
Ti	0.91 ± 0.06	5/6	0.68 ± 0.03	6/6	0.67 ± 0.05	6/6	1.08 ± 0.07	6/6	1.21 ± 0.05	6/6
V	0.033 ± 0.002	5/6	0.020 ± 0.001	6/6	0.019 ± 0.001	6/6	0.044 ± 0.002	6/6	0.049 ± 0.002	6/6
Cr	1.63 ± 0.05	5/6	2.40 ± 0.08	6/6	1.65 ± 0.23	6/6	0.62 ± 0.11	6/6	0.77 ± 0.12	6/6
Ni	0.16 ± 0.01	5/6	0.18 ± 0.01	6/6	0.18 ± 0.01	6/6	0.069 ± 0.003	6/6	0.12 ± 0.01	6/6
Cu	3.37 ± 0.05	4/5	3.53 ± 0.06	6/6	4.32 ± 1.07	2/5	2.21 ± 0.37	4/5	2.44 ± 0.35	5/6
Zn	2.56 ± 0.08	6/6	1.81 ± 0.05	6/6	1.95 ± 0.07	6/6	1.66 ± 0.05	6/6	2.44 ± 0.07	6/6
Ga	2.99 ± 0.74	3/1	3.80 ± 0.56	4/6	3.08 ± 0.83	3/4	3.76 ± 0.84	5/3	3.89 ± 0.92	6/3
Nb	0.087 ± 0.003	5/6	0.083 ± 0.003	6/6	0.075 ± 0.003	6/6	0.20 ± 0.01	6/6	0.19 ± 0.01	6/6
Rh	19.4 ± 1.5	5/6	13.6 ± 1.1	6/6	19.8 ± 2.5	6/6	1.97 ± 0.17	6/6	–	0/6
Cs	0.031 ± 0.003	4/6	0.027 ± 0.003	6/6	0.029 ± 0.003	6/6	0.025 ± 0.004	6/6	0.026 ± 0.003	6/6
La	7.52 ± 0.19	5/6	4.29 ± 0.09	6/6	5.17 ± 0.15	6/6	7.07 ± 0.17	6/6	8.44 ± 0.20	6/6
Ce	4.49 ± 0.11	5/6	2.89 ± 0.07	6/6	3.05 ± 0.10	6/6	5.18 ± 0.13	6/6	5.82 ± 0.14	6/6
Pr	4.68 ± 0.12	5/6	2.94 ± 0.08	6/6	3.23 ± 0.12	6/6	5.29 ± 0.13	6/6	5.69 ± 0.14	6/6
Nd	3.97 ± 0.12	5/6	2.52 ± 0.07	6/6	2.69 ± 0.10	6/6	4.60 ± 0.14	6/6	4.75 ± 0.14	6/6
Sm	1.96 ± 0.07	5/6	1.36 ± 0.04	6/6	1.34 ± 0.06	6/6	2.56 ± 0.09	6/6	2.43 ± 0.08	6/6
Eu	1.35 ± 0.04	5/6	0.95 ± 0.03	6/6	0.93 ± 0.04	6/6	1.83 ± 0.05	6/6	1.66 ± 0.05	6/6
Gd	1.11 ± 0.04	5/6	0.84 ± 0.03	6/6	0.81 ± 0.05	6/6	1.58 ± 0.05	6/6	1.36 ± 0.04	6/6
Tb	0.65 ± 0.02	5/6	0.50 ± 0.01	6/6	0.48 ± 0.02	6/6	1.00 ± 0.03	6/6	0.83 ± 0.03	6/6
Dy	0.43 ± 0.02	5/6	0.32 ± 0.01	6/6	0.31 ± 0.02	6/6	0.67 ± 0.03	6/6	0.55 ± 0.02	6/6
Ho	0.28 ± 0.01	5/6	0.21 ± 0.01	6/6	0.20 ± 0.01	6/6	0.45 ± 0.02	6/6	0.38 ± 0.01	6/6
Er	0.18 ± 0.01	5/6	0.15 ± 0.01	6/6	0.13 ± 0.01	6/6	0.30 ± 0.01	6/6	0.25 ± 0.01	6/6
Tm	0.11 ± 0.00	5/6	0.075 ± 0.002	6/6	0.077 ± 0.003	6/6	0.19 ± 0.01	6/6	0.15 ± 0.01	6/6
Yb	0.069 ± 0.003	5/6	0.052 ± 0.002	6/6	0.050 ± 0.003	6/6	0.12 ± 0.01	6/6	0.098 ± 0.004	6/6
Lu	0.053 ± 0.002	5/6	0.036 ± 0.001	6/6	0.035 ± 0.002	6/6	0.088 ± 0.003	6/6	0.072 ± 0.003	6/6
Table 3 (continued)

Hibonite

	H1-Ti2-R3	H1-Ti5-R4	H1-Ti5-R5	H2-Ti2-R2	H2-Ti2-R3					
	D-Value	σ	n							
Hf	0.49 ± 0.2	5/6	0.47 ± 0.2	6/6	0.42 ± 0.2	6/6	0.66 ± 0.2	6/6	0.57 ± 0.2	6/6
Ta	0.35 ± 0.1	5/6	0.35 ± 0.1	6/6	0.33 ± 0.1	6/6	0.74 ± 0.2	6/6	0.70 ± 0.2	6/6
W	0.012 ± 0.004	5/6	0.007 ± 0.003	4/6	0.009 ± 0.002	4/6	0.053 ± 0.013	4/6	0.042 ± 0.008	6/6
Pb	–	0/4	–	0/3	–	1/0	–	0/6	–	0/2
Th	1.56 ± 0.05	5/6	0.86 ± 0.02	6/6	0.81 ± 0.03	6/6	2.30 ± 0.08	6/6	2.01 ± 0.07	6/6
U	–	0/6	0.021 ± 0.015	1/6	–	0/6	0.038 ± 0.010	3/6	0.047 ± 0.018	3/6

Hibonite

	H2-Ti5-R4	H2-Ti5-R5	H3-Ti5-R4	H3-Ti5-R5	Ø Hibonite				
Mg	1.47 ± 0.13	6/6	1.63 ± 0.26	6/6	1.04 ± 0.10	6/6	1.52 ± 0.25	6/6	1.69 ± 0.57
Si	0.032 ± 0.003	6/6	0.028 ± 0.002	6/6	0.11 ± 0.01	6/6	0.050 ± 0.004	6/6	0.045 ± 0.011
Ca	0.35 ± 0.01	6/6	0.33 ± 0.01	6/6	0.31 ± 0.01	6/6	0.29 ± 0.01	6/6	0.31 ± 0.02
Sc	0.17 ± 0.01	6/6	0.17 ± 0.01	6/6	0.22 ± 0.01	6/6	0.23 ± 0.01	6/6	0.19 ± 0.02
Ti	0.87 ± 0.04	6/6	0.91 ± 0.06	6/6	0.74 ± 0.04	6/6	1.01 ± 0.07	6/6	0.90 ± 0.15
V	0.039 ± 0.002	6/6	0.028 ± 0.002	6/6	0.098 ± 0.004	6/6	0.040 ± 0.002	6/6	0.041 ± 0.006
Cr	–	1/0	–	1/0	4.59 ± 2.21	5/1	4.15 ± 0.05	6/6	1.53 ± 0.14
Co	1.46 ± 0.05	6/6	1.61 ± 0.05	6/6	0.90 ± 0.03	6/6	4.15 ± 0.05	6/6	1.53 ± 0.14
Ni	1.26 ± 0.11	6/6	1.33 ± 0.27	6/6	0.73 ± 0.07	6/6	1.15 ± 0.25	6/6	1.18 ± 0.51
Cu	0.13 ± 0.01	6/6	0.14 ± 0.01	6/6	0.15 ± 0.01	6/6	0.12 ± 0.01	6/6	0.14 ± 0.02
Zn	3.73 ± 1.01	2/5	2.68 ± 0.41	5/6	1.49 ± 0.26	5/6	2.27 ± 0.45	5/5	2.89 ± 1.51
Ga	2.18 ± 0.06	6/6	2.21 ± 0.09	6/6	1.72 ± 0.05	6/6	2.33 ± 0.09	6/6	2.10 ± 0.19
Ge	3.57 ± 0.61	4/6	4.56 ± 1.00	3/4	2.00 ± 0.36	4/5	3.82 ± 0.78	3/5	3.39 ± 2.02
Rb	0.86 ± 0.29	1/6	0.81 ± 0.25	1/6	–	0/6	–	0/6	0.83 ± 0.38
Sr	0.57 ± 0.02	6/6	0.56 ± 0.02	6/6	0.48 ± 0.01	6/6	0.55 ± 0.02	6/6	0.53 ± 0.04
Y	0.23 ± 0.01	6/6	0.19 ± 0.01	6/6	0.22 ± 0.01	6/6	0.17 ± 0.01	6/6	0.23 ± 0.02
Zr	0.18 ± 0.01	6/6	0.19 ± 0.01	6/6	0.18 ± 0.01	6/6	0.27 ± 0.01	6/6	0.21 ± 0.02
Nb	0.11 ± 0.00	6/6	0.10 ± 0.00	6/6	0.14 ± 0.00	6/6	0.22 ± 0.01	6/6	0.13 ± 0.01
Rh	29.2 ± 2.7	6/6	21.2 ± 2.2	6/6	8.93 ± 0.73	6/6	30.0 ± 3.4	6/6	22.1 ± 5.5
Cs	–	0/0	–	0/0	–	0/0	–	0/0	–
Ba	0.028 ± 0.003	5/6	0.028 ± 0.003	6/6	0.095 ± 0.005	6/6	0.043 ± 0.004	5/6	0.037 ± 0.012
La	5.76 ± 0.13	6/6	6.91 ± 0.21	6/6	3.33 ± 0.08	6/6	4.83 ± 0.16	6/6	5.92 ± 0.43
Ce	4.16 ± 0.10	6/6	4.47 ± 0.13	6/6	2.20 ± 0.06	6/6	2.90 ± 0.09	6/6	3.91 ± 0.29
Pr	4.08 ± 0.11	6/6	4.49 ± 0.13	6/6	2.37 ± 0.07	6/6	3.12 ± 0.10	6/6	3.99 ± 0.31
Element	D-Value	σ	n	D-Value	σ	n	D-Value	σ	
---------	---------	----	----	---------	----	----	---------	----	
Mg	0.50			7.78	±0.12	2/6	0.21	±0.01	6/5
Si	0.028			0.70	±0.08	2/6	0.68	±0.06	6/5
Ca	0.30			1.42	±0.05	2/6	1.50	±0.03	6/5
Sc	0.46			1.12	±0.07	2/6	0.012	±0.001	6/5
Ti	1.29			4.60	±0.29	2/6	0.027	±0.010	1/5
V	5.78			0.57	±0.04	2/6	0.002	±0.000	6/5
Cr	–			–		0/0	–		
Co	–			6.07	±0.27	2/6	0.13	±0.00	6/5
Ni	–			4.25	±0.98	2/6	0.17	±0.03	4/5
Cu	–			1.32	±0.10	2/6	0.044	±0.003	6/5
Zn	–			17.9	±6.5	1/5	0.48	±0.18	2/5
Ga	–			8.47	±0.39	2/6	0.81	±0.03	6/5
Ge	0.78			–		0/3	1.21	±0.27	4/5
Rb	–			–		0/6	0.36	±0.16	1/5
Sr	0.62			2.24	±0.09	2/6	0.52	±0.01	6/5
Y	–			1.17	±0.06	2/6	0.58	±0.02	6/5
Zr	0.35			1.22	±0.07	2/6	–		
Nb	0.27			1.06	±0.05	2/6	0.0003	±0.0001	2/5
Rh	–			123	±13	2/6	0.32	±0.08	3/5
Cs	–			1.00		1/0	–		
Ba	0.030			0.53	±0.06	2/6	0.009	±0.001	6/5

Hibonite

Kennedy et al. 1994

Element	D-Value	σ
Mg	0.50	
Si	0.028	
Ca	0.30	
Sc	0.46	
Ti	1.29	
V	5.78	
Cr	–	
Co	–	
Ni	–	
Cu	–	
Zn	–	
Ga	–	
Ge	0.78	
Rb	–	
Sr	0.62	
Y	–	
Zr	0.35	
Nb	0.27	
Rh	–	
Cs	–	
Ba	0.030	

Melilitel

Beckett & Stolper 1994

Element	D-Value	σ
Mg	0.50	
Si	0.028	
Ca	0.30	
Sc	0.46	
Ti	1.29	
V	5.78	
Cr	–	
Co	–	
Ni	–	
Cu	–	
Zn	–	
Ga	–	
Ge	0.78	
Rb	–	
Sr	0.62	
Y	–	
Zr	0.35	
Nb	0.27	
Rh	–	
Cs	–	
Ba	0.030	

Note:

- D-Value and σ values are provided for each element in the table.
- The data includes information on the concentration of various elements in the Hibonite and Melilitel samples, with σ values indicating the precision or uncertainty of the measurements.
- The table format and structure are designed to facilitate comparison and analysis of the datasets.
| Element | D-Value | σ | n |
|---------|---------|-----|-----|
| La | 5.50 | | |
| Ce | 4.50 | | |
| Pr | 3.80 | | |
| Nd | 3.20 | | |
| Sm | 1.65 | | |
| Eu | 1.25 | | |
| Gd | 1.03 | | |
| Tb | 0.62 | | |
| Dy | 0.36 | | |
| Ho | 0.25 | | |
| Er | 0.22 | | |
| Yb | 0.21 | | |
| Lu | 0.075 | | |
| Hf | 0.73 | | |
| Ta | 0.097 | | |
| W | 0.093 | | |
| Pb | – | 0/4 | 0/5 |
| Th | 0.080 | | |

Melilite

Element	D-Value	σ	n
Mg	–		
Si	–		
Ca	–		
Sc	–		
Ti	–		
V	–		
Cr	–		
Co	–		
Ni	–		
Cu	–		

Spinel

Element	D-Value	σ	n						
Mg	–								
Si	–								
Ca	–								
Sc	–								
Ti	–								
V	–								
Cr	–								
Co	–								
Ni	–								
Cu	–								
Element	Mel3-R11-Spinel	Mel3-R12-Spinel	Ø Spinel	Lundstrom et al. 2006					
---------	----------------	----------------	----------	---------------------					
	D-Value	σ	n	D-Value	σ	n	D-Value	σ	n
Zn	–	–	20.9 ± 7.9	4/6	12.2 ± 2.4	6/5	3.60 ± 0.90	8/5	
Ga	–	–	2.77 ± 0.40	4/7	1.85 ± 0.06	6/5	2.65 ± 0.09	8/5	
Ge	–	–	2.41 ± 1.20	1/2	–	–	0.5 ± 0.23	1/5	
Rb	0.013 ± 0.002	1.20 ± 0.52	6/5	0.51 ± 0.33	1/5	0.52 ± 0.23	1/5		
Sr	0.93 ± 0.00	0.68 ± 0.02	0.024 ± 0.002	1/5	–	–	0.5 ± 0.23	1/5	
Y	0.22 ± 0.00	–	0.025 ± 0.001	1/5	0.0007 ± 0.0002	3/5			
Zr	0.002 ± 0.0000	–	0.042 ± 0.012	1/5	–	–	0.5 ± 0.23	1/5	
Nb	0.003 ± 0.001	0.0009 ± 0.0003	2/7	0.011 ± 0.001	2/5	0.0001 ± 0.0001	1/5		
Rh	–	–	59.1 ± 5.4	6/5	52.1 ± 3.8	8/5			
Cs	0.003 ± 0.001	–	0/1	–	0/0				
Ba	0.018 ± 0.001	0.010 ± 0.005	1/7	0.029 ± 0.001	1/5	0.003 ± 0.001	1/5		
La	0.35 ± 0.00	0.056 ± 0.006	–	0.0009 ± 0.0000	3/5	–	0/5		
Ce	0.053 ± 0.002	0.0001 ± 0.0003	1/7	0.001 ± 0.0000	3/5	0.0001 ± 0.0001	1/5		
Pr	–	–	0.0007 ± 0.0000	4/5	0.0002 ± 0.0001	1/5			
Nd	0.066 ± 0.013	0.0008 ± 0.0013	1/7	0.001 ± 0.0000	4/5	0.0007 ± 0.0003	2/5		
Sm	0.38 ± 0.00	0.072 ± 0.003	0.002 ± 0.0000	4/5	0.0002 ± 0.0003	1/5			
Eu	0.067 ± 0.005	–	0.0006 ± 0.0000	4/5	0.0002 ± 0.0002	1/5			
Gd	–	–	0.002 ± 0.0000	4/5	0.0004 ± 0.0004	2/5			
Tb	–	–	0.0003 ± 0.0001	2/7	0.0009 ± 0.0000	4/5	0.0001 ± 0.0000	5/5	
Dy	–	–	0.0006 ± 0.0001	1/7	0.0010 ± 0.0001	3/5	0.0003 ± 0.0002	3/5	
Ho	–	–	0.0002 ± 0.0000	4/5	0.0006 ± 0.0000	4/5	0.0002 ± 0.0000	6/5	
Er	–	–	0.001 ± 0.0000	4/5	0.0003 ± 0.0000	4/5	0.0003 ± 0.0000	8/5	
Tm	–	–	0.0008 ± 0.0000	4/5	0.0003 ± 0.0000	4/5	0.0003 ± 0.0000	8/5	
Yb	0.13 ± 0.00	0.019 ± 0.011	0.0008 ± 0.0000	2/7	0.0008 ± 0.0001	4/5	0.0007 ± 0.0001	6/5	
Lu	–	–	0.0006 ± 0.0001	4/5	0.0008 ± 0.0000	6/5	0.0006 ± 0.0001	8/5	
Hf	–	–	0.0001 ± 0.0001	2/7	0.001 ± 0.0000	5/5	0.0009 ± 0.0001	8/5	
Ta	–	–	0.0005 ± 0.0003	1/7	0.002 ± 0.0000	2/5	0.0002 ± 0.0001	2/5	
W	0.002 ± 0.001	0.002 ± 0.0000	1/7	0.002 ± 0.0000	2/5	0.0003 ± 0.0001	4/5		
Pb	–	–	0.004 ± 0.0002	1/7	0.009 ± 0.0000	4/5	0.0001 ± 0.0000	2/5	
Th	–	–	0.0004 ± 0.0000	4/5	0.0001 ± 0.0000	2/5	0.0001 ± 0.0000	2/5	
U	–	–	0.0002 ± 0.0000	1/7	0.029 ± 0.0029	1/5	–		

Element	Mel3-R11-Spinel	Mel3-R12-Spinel	Ø Spinel	Lundstrom et al. 2006							
	D-Value	σ	n	D-Value	σ	n	D-Value	σ	n		
Mg	3.99 ± 0.51	–	6/6	–	–	6/6	4.97 ± 0.71	2/6	6/12	7.00 ± 2.20	8/6
Si	0.008 ± 0.002	1/6	0.0005 ± 0.0001	2/12	0.014 ± 0.005	3/6					
Ca	0.063 ± 0.005	6/6	0.005 ± 0.0001	2/12	0.007 ± 0.003	3/6					
Sc	0.028 ± 0.002	6/6	0.025 ± 0.0002	6/12	0.048 ± 0.009	3/6					
Ti	0.002 ± 0.001	1/6	0.001 ± 0.0001	1/12	0.007 ± 0.006	3/6					
Cr	–	6/0	–	–	6/0	–	–	–	–	–	–
Element	Mel3-R11-Spinel	Mel3-R12-Spinel	Ø Spinel	Lundstrom et al. 2006							
---------	-----------------	-----------------	----------	----------------------							
Co	3.70 ± 0.26	4.85 ± 0.26	6.74 ± 1.26	–							
Ni	13.8 ± 2.3	12.6 ± 1.4	22.7 ± 9.5	–							
Cu	0.42 ± 0.03	0.41 ± 0.02	0.85 ± 0.19	–							
Zn	6.65 ± 0.91	4.80 ± 0.51	9.65 ± 5.04	–							
Ga	2.77 ± 0.20	2.69 ± 0.13	2.55 ± 0.45	–							
Ge	–	0/6	1.47 ± 0.97	–							
Rb	1.01 ± 0.42	–	0.94 ± 0.76	–							
Sr	0.0002 ± 0.0001	–	0.013 ± 0.007	–							
Y	0.0005 ± 0.0003	0.0006 ± 0.0003	0.003 ± 0.004	0.00004 ± 0.00001							
Zr	–	0/6	0.008 ± 0.007	–							
Nb	–	0/6	0.001 ± 0.0001	0.00000 ± 0.00000							
Rh	69.3 ± 7.4	39.9 ± 11.8	55.1 ± 18.5	–							
Cs	–	–	0.014 ± 0.009	–							
Ba	–	0/6	0.009 ± 0.000	0.000003 ± 0.000004							
La	–	0/6	0.003 ± 0.000	–							
Ce	0.0002 ± 0.0001	0.0001 ± 0.0001	0.001 ± 0.0005	–							
Pr	0.0005 ± 0.0001	0.0001 ± 0.0001	0.0004 ± 0.0005	–							
Nd	0.0007 ± 0.0006	0.0004 ± 0.0003	0.0007 ± 0.0015	0.0003 ± 0.0004							
Sm	0.0008 ± 0.0004	0.0003 ± 0.0001	0.001 ± 0.002	–							
Eu	–	0/6	0.003 ± 0.0005	–							
Gd	–	0/6	0.001 ± 0.001	–							
Tb	0.0000 ± 0.0001	0.0002 ± 0.0000	0.0003 ± 0.0006	–							
Dy	0.0007 ± 0.0006	0.0004 ± 0.0002	0.0006 ± 0.0013	–							
Ho	0.0003 ± 0.0001	0.0001 ± 0.0000	0.0003 ± 0.0002	–							
Er	0.0004 ± 0.0001	0.0004 ± 0.0001	0.0006 ± 0.0006	0.0003 ± 0.0001							
Tm	0.0003 ± 0.0001	0.0004 ± 0.0001	0.0005 ± 0.0003	–							
Yb	0.0004 ± 0.0005	0.0005 ± 0.0002	0.0006 ± 0.0010	–							
Lu	0.0006 ± 0.0001	0.0002 ± 0.0000	0.0006 ± 0.0002	–							
Hf	0.0003 ± 0.0004	0.0007 ± 0.0003	0.001 ± 0.001	0.001 ± 0.000							
Ta	0.0001 ± 0.0003	0.0001 ± 0.0001	0.0005 ± 0.0019	0.0001 ± 0.0001							
W	0.0003 ± 0.0005	0.0002 ± 0.0000	0.0010 ± 0.0020	–							
Pb	–	0/2	3.47 ± 1.11	3.47 ± 1.11							
Th	0/6	0.0000 ± 0.0000	0.002 ± 0.003	0.0006 ± 0.0000							
U	0.001 ± 0.0001	–	0.015 ± 0.021	0.0003 ± 0.0002							

1 The D-values for melilite are directly influenced by the initial Ti concentration within the starting mixture. As far as two samples are appropriate enough to show, it could be that a higher Ti concentration is enhancing the incorporation possibilities for several elements.

2 The D-values for spinel are influenced by the very different starting compositions in respect to the aluminum and magnesium content between the starting mixtures H2, H3 and Mel3 (cf. Table 5)
Table 4
Mineral-mineral partition coefficients with corresponding 1σ error as the mean absolute standard error of the average.

	Hibonite/Melilite		Hibonite/Spinel		Melilite/Spinel	
	D-Value	σ	D-Value	σ	D-Value	σ
Mg	0.42	± 0.16	0.24	± 0.11	0.57	± 0.20
Si	0.066	± 0.018	3.37	± 1.47	51.3	± 20.2
Ca	0.21	± 0.01	46.6	± 21.5	217	± 100
Sc	0.34	± 0.04	2.54	± 0.58	7.56	± 1.62
Ti	0.39	± 0.15	18.8	± 4.7	48.6	± 20.0
V	0.14	± 0.03	5.91	± 4.98	41.0	± 34.3
Cr	–	–	–	–	–	–
Co	0.49	± 0.05	0.23	± 0.05	0.46	± 0.09
Ni	0.53	± 0.28	0.052	± 0.031	0.097	± 0.050
Cu	0.20	± 0.04	0.16	± 0.04	0.80	± 0.20
Zn	0.32	± 0.23	0.30	± 0.22	0.95	± 0.70
Ga	0.45	± 0.05	0.82	± 0.16	1.82	± 0.34
Ge	2.81	± 1.79	2.31	± 2.06	0.82	± 0.58
Rb	2.31	± 1.48	0.89	± 0.83	0.39	± 0.36
Sr	0.38	± 0.03	40.1	± 21.6	105	± 56
Y	0.26	± 0.03	29.9	± 26.1	116	± 101
Zr	0.17	± 0.02	9.79	± 1.63	56.6	± 8.1
Nb	0.25	± 0.09	–	–	–	–
Rh	0.18	± 0.06	0.40	± 0.17	2.23	± 0.94
Cs	–	–	–	–	–	–
Ba	0.14	± 0.05	2.60	± 1.85	19.2	± 12.6
La	0.50	± 0.04	64.20	± 522	12.915	± 706
Ce	0.50	± 0.04	–	–	–	–
Pr	0.48	± 0.04	–	–	–	–
Nd	0.47	± 0.05	–	–	–	–
Sm	0.43	± 0.05	–	–	–	–
Eu	0.41	± 0.04	–	–	–	–
Gd	0.42	± 0.05	–	–	–	–
Tb	0.37	± 0.04	–	–	–	–
Dy	0.34	± 0.05	–	–	–	–
Ho	0.27	± 0.04	997	± 848	3651	± 3086
Er	0.23	± 0.04	287	± 273	1247	± 1178
Tm	0.18	± 0.02	222	± 135	1238	± 740
Yb	0.15	± 0.02	–	–	–	–
Lu	0.12	± 0.01	103	± 37	876	± 303
Hf	0.40	± 0.13	–	–	–	–
La	0.35	± 0.08	–	–	–	–
W	0.073	± 0.066	–	–	–	–
Pb	–	–	–	–	–	–
Th	0.45	± 0.05	–	–	–	–
U	–	–	–	–	–	–

2. Experimental design, materials, and methods

2.1. Starting materials

The starting materials compositions are given in Table 5. Starting materials H1 and H2 are based on the starting materials Hib-1 and Hib-6 of Beckett and Stolper [1], our H3 is based on the HB-1 starting material of Kennedy et al. [2]; our starting materials Mel1, Mel2 and Mel3 are similar to the starting materials used by Kuehner et al. ([3], AK40), Beckett and Stolper ([1], AK80) and Lundstrom et al. (CAI-Glass, [4]). In total six different starting material mixtures were prepared from high purity oxides and carbonates. The resulting mixtures were homogenized in an agate mortar under acetone and were subsequently fused in a large Pt-crucible at 1500 °C for at least 3 h in a Linn VMK (Linn GmbH, Eschenfelden, Germany) high temperature box furnace. The resulting silicate glasses
were reground using the same agate mortar with acetone and the resulting powders were doped with 200 µg/g each of Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U, using ICP-MS standard solutions (1000 µg/ml, Alfa Aesar, Germany). However, Ti was added to the hibonite starting mixtures (H1-Ti2, H1-Ti5, H2-Ti2, H2-Ti5 and H3-Ti2, H3-Ti5) using high purity TiO2 (Alfa Aesar, Germany).

2.2. Experimental techniques

Experiments were conducted in a vertical tube furnaces (Gero GmbH, Neuhausen, Germany) at atmospheric pressure. We used the so-called “wire-loop technique” [5–7] where small amounts of starting material powder are mixed with an organic glue (UHU Gmbh, Flinke Flasche, Germany) and suspended on a 0.1 mm thick Pt wire. The loops are about 3 mm in diameter each. Using a homemade platinum wire “chandelier”, several samples could be run simultaneously. The samples were placed in the hot zone of the furnace at 800 °C. The temperature paths were designed so that the samples were first heated to temperatures well above the liquidus (i.e. 1550 °C, T\text{max} in Table 6), the run was left at 1550 °C (T\text{max} in Table 6) for at least 8–10 h, and then slowly cooled down to the final run temperature (T\text{quench}) to equilibrate crystals with melts. Most experimental runs were performed with a single cooling ramp, whereas some experiments (H1-Ti5-R5, H2-Ti5, H3-Ti2, H2-Ti5 and H3-Ti2, H3-Ti5) using high purity TiO2 (Alfa Aesar, Germany).

Table 5

Material	SiO2 [wt%]	MgO [wt%]	Al2O3 [wt%]	CaO [wt%]	TiO2 [wt%]	MnCO3 [wt%]	GeO2 [wt%]	K2CO3 [wt%]
H1	28.2	0.86	42.9	27.3	–	0.17	0.42	0.15
H1-Ti2	27.7	0.84	42.0	26.8	1.99	0.17	0.41	0.15
H1-Ti5	26.8	0.82	40.7	25.9	4.99	0.16	0.40	0.14
H2	31.9	1.89	41.3	25.1	–	0.17	0.30	0.25
H2-Ti2	31.3	1.85	40.5	24.6	1.95	0.17	0.29	0.25
H2-Ti5	30.4	1.80	39.2	23.9	4.90	0.16	0.29	0.24
H3	29.5	2.11	39.7	27.8	–	0.25	0.40	0.30
H3-Ti2	28.8	2.06	38.8	27.1	2.23	0.24	0.39	0.29
H3-Ti5	28.0	2.01	37.8	26.4	4.87	0.24	0.38	0.29
Mel1	29.9	6.30	21.9	40.8	–	0.54	0.24	0.35
Mel2	39.6	11.3	7.52	40.1	–	0.72	0.46	0.35
Mel3	32.9	8.88	26.4	29.1	1.62	0.33	0.47	0.29

were reground using the same agate mortar with acetone and the resulting powders were doped with 200 µg/g each of Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U, using ICP-MS standard solutions (1000 µg/ml, Alfa Aesar, Germany). However, Ti was added to the hibonite starting mixtures (H1-Ti2, H1-Ti5, H2-Ti2, H2-Ti5 and H3-Ti2, H3-Ti5) using high purity TiO2 (Alfa Aesar, Germany).

2.3. Analytical techniques

Major elements analyses were performed with a JXA-8530F Hyperprobe field emission electron beam microprobe analyzer (EMPA) at the University of Münster. Operating at 15 kV acceleration voltage, a beam diameter of 3 µm and 5 nA beam current for the silicate melts and 15 nA for the
Table 6
Experimental run conditions. All samples were inserted into the furnace at 800 °C and heated to T_{max} with the rate of 100 °C/h. For experiments with complex heating cycles the intermediate steps are given as well. The total duration of the experiments also includes the time for reaching T_{max} and the time at T_{quench}.

Sample	Starting Mix	Run	Heating cycles	T_{max} [°C]	Time [h]	Cooling rate [°C/h]	T_1 [°C]	Time [h]	Heating rate [°C/h]	T_2 [°C]	Time [h]	Cooling rate [°C/h]	T_{quench} [°C]	Total Time [h]	Phases
H2-Ti2-R2	H2	R2		1550	8	-	-	-	-	-	-	5	1450	117.0	hib, gl
H1-Ti2-R3	H1	R3		1550	8	-	-	-	-	-	-	1	1350	333.5	hib, mel, gl
H2-Ti2-R3	H2	R3		1550	8	-	-	-	-	-	-	1	1350	333.5	hib, gl
H1-Ti5-R4	H1	R4		1550	8	-	-	-	-	-	-	5	1450	139.5	hib, gl
H2-Ti5-R4	H2	R4		1550	8	-	-	-	-	-	-	5	1450	139.5	hib, gl
H3-Ti5-R5	H3	R4		1550	8	-	-	-	-	-	-	5	1450	139.5	hib, gl
H1-Ti5-R5	H1	R5		1550	8	5	1350	40	50	1437	24	2	1350	305.7	hib, gl
H2-Ti5-R5	H2	R5		1550	8	5	1350	40	50	1437	24	2	1350	305.7	hib, gl
H3-Ti5-R5	H3	R5		1550	8	5	1350	40	50	1437	24	2	1350	305.7	hib, gl
H2-R8	H2	R8		1550	10	5	1350	10	50	1450	10	2	1350	140.0	an, sp, gl
H3-R8	H3	R8		1550	10	5	1350	10	50	1450	10	2	1350	140.0	mel, sp, gl
Mel3-R9	Mel3	R9		1550	10	5	1350	10	50	1450	10	2	1200	142.5	mel, sp, gl
Mel3-R11	Mel3	R11		1550	8	-	-	-	-	-	-	3	1200	193.0	sp, gl
Mel3-R12	Mel3	R12		1550	8	-	-	-	-	-	-	3	1000	211.0	sp, gl

an = anorthite, gl = glass, hib = hibonite, mel = melilite, sp = spinel
minerals. We used a five WDX detector setup with two TAP crystals (Mg, Al), two PET (Ca, Si) and one LiF crystal (Ti). Natural and synthetic materials that were used for standardization are: jadeite (Na2O), kyanite (Al2O3), sanidine (K2O), Cr-diopside (Cr2O3), diopside (CaO), San Carlos olivine (MgO), fayalite (FeO), hypersthene (SiO2), rhodonite (MnO) and rutile (TiO2). A number of secondary standards (chromite, olivine, cr-diopside) were measured as unknowns to monitor external precision and accuracy.

Trace elements were measured by with a ThermoFisher Element II sector field ICP-MS coupled to a Photon Machines AnalyteG2 ArF Excimer laser at the University of Münster, operating with a 4 J/cm² laser fluency and a repetition rate of 5 Hz. A HelEx 2-volume sample cell was used which holds up to 8 one-inch diameter mounts, 6 thin sections and additional reference materials. Prior to sample analyses, the system was tuned with the NIST SRM 612 for high sensitivity, stability, and low oxide rates (232Th16O/232Th < 0.2%). Spot sizes for analysis were between 35 and 50 μm in diameter, while the 50 μm where mainly used for the silicate glasses. Total measurement time was 75 s with 40 s ablation time on the sample and 20 s on the background, the wash out delay was 15 s.

The NIST 612 standard glass [8] was used as an external standard and the BIR-1G [8] and BCR-2G [8] were analyzed as unknowns over the course of this study to monitor precision and accuracy. Twelve sample measurements were bracketed by three measurements of the NIST 612 glasses. For the hibonite and melilitic crystals, 43Ca was used as an internal standard, for spinel 26Mg and for the silicate melts 29Si was used internal standard element.

Acknowledgments

Our thanks go to B. Schmitte and M. Trogisch for sample preparation and support during EMPA and LA-ICP-MS measurements. Moreover, we would also like to thank members of the mechanical workshops at Münster University (M. Feldhaus, J. Kemmann, P. Weitkamp, H. Heying) for their sterling efforts in the labs. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR170). This is TRR 170 Publication no. 52.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.100.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.100.

References

[1] J.R. Beckett, E. Stolper, Stability of hibonite, melilitic and other aluminous phases in silicate melts: implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites, Meteoritics 29 (1994) 41–65.
[2] A.K. Kennedy, G.E. Lofgren, G.J. Wasserburg, Trace-element partition-coefficients for perovskite and hibonite in meteorite compositions, Chem. Geol. 117 (1994) 379–390.
[3] S.M. Kuehner, J.R. Laughlin, L. Grossman, M.L. Johnson, D.S. Burnett, Determination of trace-element mineral liquid partition-coefficients in melilitic and diopside by ion and electron-microprobe techniques, Geochim. Cosmochim. Acta 53 (1989) 3115–3130.
[4] C.C. Lundstrom, A.L. Sutton, M. Chaussidon, W.F. McDonough, R. Ash, Trace element partitioning between type BCAI melts and melilitic and spinel: implications for trace element distribution during CAI formation, Geochim. Cosmochim. Acta 70 (2006) 3421–3435.
[5] A. Borisov, H. Palme, B. Spettel, Solubility of Pd insilicate melts: implications for core formation in the Earth, Geochim. Cosmochim. Acta 58 (1994) 705–716.
[6] C.H. Wijbrans, S. Klemme, J. Berndt, C. Vollmer, Experimental determination of trace element partition coefficients between spinel and silicate melt: the influence of chemical composition and oxygen fugacity, Contrib. Miner. Pet. 169 (2015) 45–77.

[7] C. Beyer, J. Berndt, S. Tappe, S. Klemme, Trace element partitioning between perovskite and kimberlite to carbonatite melt: new experimental constraints, Chem. Geol. 353 (2013) 132–139.

[8] K. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hoffman, GeoReM: a new geochemical database for reference materials and isotopic standards, Geostand. Geoanal. Res. 29 (2007) 333–338.