Refinements of Milnor’s Fibration Theorem for Complex Singularities✩

J. L. Cisneros-Molina1, J. Seade*, J. Snoussi

Instituto de Matemáticas, Unidad Cuernavaca,
Universidad Nacional Autónoma de México,
Av. Universidad s/n, Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos, México

Abstract

Let X be an analytic subset of an open neighbourhood U of the origin 0 in \mathbb{C}^n. Let $f: (X, 0) \to (\mathbb{C}, 0)$ be holomorphic and set $V = f^{-1}(0)$. Let B_x be a ball in U of sufficiently small radius $\varepsilon > 0$, centred at $0 \in \mathbb{C}^n$. We show that f has an associated canonical pencil of real analytic hypersurfaces X_θ, with axis V, which leads to a fibration Φ of the whole space $(X \cap B_x) \setminus V$ over S^1. Its restriction to $(X \cap S_x) \setminus V$ is the usual Milnor fibration $\phi = \frac{f}{\|f\|}$, while its restriction to the Milnor tube $f^{-1}(\partial B_\eta) \cap B_x$ is the Milnor-Lê fibration of f. Each element of the pencil X_θ meets transversally the boundary sphere $S_x = \partial B_x$, and the intersection is the union of the link of f and two homeomorphic fibers of ϕ over antipodal points in the circle. Furthermore, the space \tilde{X} obtained by the real blow up of the ideal $(\text{Re}(f), \text{Im}(f))$ is a fibre bundle over $\mathbb{R}P^1$ with the X_θ as fibres. These constructions work also, to some extent, for real analytic map-germs, and give us a clear picture of the differences, concerning Milnor fibrations, between real and complex analytic singularities.

Key words: Real and complex singularities, Milnor fibration, rugose vector fields, stratifications, pencils, open-books.

2000 MSC: 32S05, 32S55.

Introduction

Milnor’s fibration theorem is a key-stone in singularity theory. This is a result about the topology of the fibres of analytic functions near their critical points.

✩Partially supported by CONACYT: G-36357-E, J-49048-F, U-55084, Mexico, DGAPA-UNAM: PAPIIT IN105806, IN102208, Mexico, by ICTP, Italy, and CNRS, France.

*Corresponding author

Email addresses: jlc@matcuer.unam.mx (J. L. Cisneros-Molina), jseade@matcuer.unam.mx (J. Seade), jsnoussi@matcuer.unam.mx (J. Snoussi)

1Regular Associate of the International Centre for Theoretical Physics, Trieste, Italy.
Let X be an analytic subset of an open neighbourhood U of the origin 0 in \mathbb{C}^n. Given $f : (X, 0) \to (\mathbb{C}, 0)$ holomorphic with a critical point at $0 \in X$ (in the stratified sense), there are two equivalent ways of defining its Milnor fibration.

The first was given in [22, Thm. 4.8] for X smooth and, as we show below, extends for arbitrary X: let B_ε be a closed ball of sufficiently small radius ε around $0 \in \mathbb{C}^n$ and let S_ε be its boundary sphere, let $L_X = X \cap S_\varepsilon$ be the link of X and let $L_f = f^{-1}(0) \cap S_\varepsilon$ be the link of f in X. Then the fibration is:

$$\phi = \frac{f}{|f|} : L_X \setminus L_f \to S^1.$$ \hspace{1cm} (1)

This fibration theorem, for general X, is implicit in the work of Lê Dũng Tráng [16] and a weaker form of it is also given in [8, Thm. 3.9].

The second version of the fibration theorem also originates in Milnor’s book [22]. For this, choose $\varepsilon >> \eta > 0$ sufficiently small and consider the Milnor tube

$$N(\varepsilon, \eta) = X \cap B_\varepsilon \cap f^{-1}(\partial \mathbb{D}_\eta),$$

where $\mathbb{D}_\eta \subset \mathbb{C}$ is the disc of radius η around $0 \in \mathbb{C}$. Then

$$f : N(\varepsilon, \eta) \to \partial \mathbb{D}_\eta,$$ \hspace{1cm} (2)

is a fibre bundle, isomorphic to the previous bundle [11, 2]. We notice that in his book, J. Milnor proves only that for X smooth, the fibres of (2) are isomorphic to those of (1), but he does not prove that (2) is actually a fibre bundle, a fact he certainly knew when f has an isolated critical point and $X = \mathbb{C}^n$ (see [21]). H. Hamm in [11] extended Milnor’s work to the case when $X \setminus f^{-1}(0)$ is non singular, and D.T. Lê [15, Thm. (1.1)] proved that (2) is a fibre bundle in full generality. We call (2) the Milnor-Lê fibration, to distinguish it from the equivalent fibration (1).

In this work we improve, or refine, these fibration theorems in five directions, given by Theorems 1, 2, 3, 5 and 6.

The starting point, that originates in [31, 26], is to notice that every holomorphic map f as above determines a canonical pencil of real analytic hypersurfaces, with axis $V = f^{-1}(0)$, and this pencil gives rise to both fibrations (1) and (2) as we explain below.

For simplicity, denote also by X the intersection $X \cap B_\varepsilon$. (See Section 1.2 for the definition of Whitney-strong stratifications.)

Theorem 1 (Canonical Decomposition). For each $\theta \in [0, \pi)$, let L_θ be the line through 0 in \mathbb{R}^2 with an angle θ (with respect to the x-axis). Set $V = f^{-1}(0)$ and $X_\theta = f^{-1}(L_\theta)$. Then one has:

2Throughout this article we speak of “equivalence” of these (and similar) fibrations. This statement must be made precise, since $N(\varepsilon, \eta)$ is compact and $L_X \setminus L_f$ is not; the second fibration must be restricted to L_X minus an open regular neighbourhood of L_f to have an actual equivalence, but this determines the whole fibration on $L_X \setminus L_f$ (see the proof of Theorem 2 in Section 5.1 below). The “equivalence” must be understood in this sense.
i) The X_θ are all homeomorphic real analytic hypersurfaces of X with singular set $\text{Sing}(V) \cup (X_\theta \cap \text{Sing}(X))$. Their union is the whole space X and they all meet at V, which divides each X_θ in two homeomorphic halves.

ii) If $\{S_\alpha\}$ is a Whitney stratification of X adapted to V, then the intersection of the strata with each X_θ determines a Whitney-strong stratification of X_θ, and for each stratum S_α and each X_θ, the intersection $S_\alpha \cap X_\theta$ meets transversally every sphere in B_ε centred at 0.

iii) There is a uniform conical structure for all X_θ, i.e., there is a (rugose) homeomorphism

$$h : (X \cap B_\varepsilon, V \cap B_\varepsilon) \to (\text{Cone}(L_X), \text{Cone}(L_f)),$$

which restricted to each X_θ defines a homeomorphism

$$X_\theta \cap B_\varepsilon \cong \text{Cone}(X_\theta \cap S_\varepsilon).$$

Theorem 2 (Fibration Theorem). One has a commutative diagram of fibre bundles

$$
\begin{array}{ccc}
(X \cap B_\varepsilon) \setminus V & \xrightarrow{\Phi} & S^1 \\
\Psi \downarrow & & \downarrow \pi \\
\mathbb{R}P^1 & \xrightarrow{\pi} & \mathbb{R}P^1
\end{array}
$$

where $\Psi(x) = (\text{Re}(f(x)) : \text{Im}(f(x)))$ with fibre $(X_\theta \cap B_\varepsilon) \setminus V$, $\Phi(x) = \frac{f(x)}{||f(x)||}$ and π is the natural two-fold covering. The restriction of Φ to the link $L_X \setminus L_f$ is the usual Milnor fibration ϕ in (1), while the restriction of Φ to the Milnor tube $f^{-1}(\partial B_\eta) \cap B_\varepsilon$ is the Milnor-Lê fibration (2) (up to multiplication by a constant), and these two fibrations are equivalent.

To prove Theorem 2 we introduce in Section 2.2 the spherefication of f, which is an auxiliary function defined by $F(x) = ||x|| \Phi(x) = ||x|| \frac{f(x)}{||f(x)||}$. This map has the property that its “Milnor tubes” are precisely the “Milnor fibrations on the spheres”. More precisely we have the following Fibration Theorem.

Theorem 3. For $\varepsilon > 0$ sufficiently small, one has a fibre bundle

$$F : ((X \cap B_\varepsilon) \setminus V) \rightarrow (D_\varepsilon \setminus \{0\}),$$

taking x into $||x|| \frac{f(x)}{||f(x)||}$, where D_ε is the disc in \mathbb{R}^2 centred at 0 with radius ε. Furthermore, the restriction of F to each sphere around 0 of radius $\varepsilon' \leq \varepsilon$ is a fibre bundle over the corresponding circle of radius ε', and this is the Milnor fibration ϕ in (1) up to multiplication by a constant.

Our proofs actually show:
Corollary 4. Let \(f : (X, \mathfrak{q}) \to (\mathbb{C}, 0) \) be as above, a holomorphic map with a critical point at \(\mathfrak{q} \in X \), and consider its Milnor fibration

\[
\phi = \frac{f}{|f|} : L_X \setminus L_f \to S^1.
\]

If the germ \((X, \mathfrak{q})\) is irreducible, then we have that every pair of fibres of \(\phi \) over antipodal points of \(S^1 \) are glued together along the link \(L_f \) producing the link of a real analytic hypersurface \(X_\theta \), which is homeomorphic to the link of \(\{ \text{Re} f = 0 \} \). Moreover, if both \(X \) and \(f \) have an isolated singularity at \(\mathfrak{q} \), then this homeomorphism is in fact a diffeomorphism and the link of each \(X_\theta \) is diffeomorphic to the double of the Milnor fibre of \(f \) regarded as a smooth manifold with boundary \(L_f \).

The above hypothesis of \(X \) being irreducible can be relaxed, assuming only that \(X \) and \(V \) do not share an irreducible component at the origin (see Remark 4.7).

Notice that for \(\theta = \pi/2 \) the corresponding variety \(X_\theta \) is \(\{ \text{Re} f = 0 \} \). Thus for instance, for the map \((z_1, z_2) \mapsto z_1^2 + z_2^3 \) one gets that the link of \(\text{Re} f \) is a closed, oriented surface in the 3-sphere, union of the Milnor fibres over the points \(\pm i \); an easy computation shows that it has genus \(q - 1 \). It would be interesting to study geometric and topological properties of the 4-manifolds one gets in this way, by considering the link of the hypersurface in \(\mathbb{C}^3 \) defined by the real part of a holomorphic function with an isolated critical point. For example, for the map \((z_1, z_2, z_3) \mapsto z_1^2 + z_2^3 + z_3^3 \), the corresponding 4-manifold is the double of the famous \(E_8 \) manifold with boundary Poincare’s homology 3-sphere.

In order to complete the proof of Theorem 1 we actually show (Section 3):

Theorem 5. Let \(\tilde{X} \) be the space obtained by the real blow-up of \(V \), i.e., the blow-up of \((\text{Re} f, \text{Im} f)\). The projection \(\Psi : \tilde{X} \to \mathbb{R}P^1 \) is a topological fibre bundle with fibre \(X_\theta \).

This result strengthens Theorem 2 and implies that all the hypersurfaces \(X_\theta \) are homeomorphic: Are they actually analytically equivalent? we do not know the answer. The proof of Theorem 5 (in Section 3) can be refined to prove also Theorem 2. However we prefer to give (in Section 3) a direct proof of Theorem 2 which is elementary and throws light into the understanding of Milnor-type fibrations for real analytic maps, that we envisage in Section 5. We consider real analytic map-germs from \(\mathbb{R}^n + 2 \) into \(\mathbb{R}^2 \). One has a canonical pencil \((X_\theta) \) associated to \(f \) as in the holomorphic case, but now the pencil may not have the uniform conical structure of Theorem 1. If it does, at least away from \(V \), then we say that \(f \) is \(d \)-regular; we give various examples of families of such singularities. We prove:

Theorem 6. Let \(f : (U, \mathfrak{q}) \to (\mathbb{R}^2, 0) \) be a locally surjective real analytic map with an isolated critical value at \(0 \in \mathbb{R}^2 \), \(U \) an open neighbourhood of \(\mathfrak{q} \) in \(\mathbb{R}^n + 2 \) and \(V = f^{-1}(0) \). Assume further that at \(\mathfrak{q} \) \(f \) has the Thom \(a_f \) property, it is \(d \)-regular and \(\dim V > 0 \). Then:
i) One has a Milnor-Lê fibration (a fibre bundle)

\[f : N(\varepsilon, \eta) \rightarrow \partial D_\eta, \]

where \(N(\varepsilon, \eta) = B_\varepsilon \cap f^{-1}(\partial D_\eta) \), is a Milnor tube for \(f; D_\eta \subset \mathbb{R}^2 \) is the disc of radius \(\eta \) around \(0 \in \mathbb{R}^2, \varepsilon >> \eta > 0 \). In fact this same statement holds for \(B_\varepsilon \cap f^{-1}(\partial D_\eta \setminus 0) \), which fibres over \(D_\eta \setminus 0 \).

ii) For every sufficiently small \(\varepsilon > 0 \) one has a commutative diagram of fibre bundles,

\[
\begin{array}{ccc}
\mathbb{B}_\varepsilon \setminus V & \overset{\Phi}{\longrightarrow} & S^1 \\
\downarrow{\psi} & & \downarrow{\pi} \\
\mathbb{R}P^1 & & \\
\end{array}
\]

which induces by restriction, a fibre bundle \(S_\varepsilon \setminus K_\varepsilon \overset{\phi}{\rightarrow} S^1 \) with \(\phi = f/|f| \) and \(K_\varepsilon = V \cap S_\varepsilon \).

iii) The two fibrations above, one on the Milnor tube, the other on the sphere, are equivalent.

We remark that in the holomorphic case, critical values must be isolated. This is not the case in general for real analytic maps into \(\mathbb{R}^2 \) (cf. for instance [25]). We remark also that if in Theorem 6 we remove the hypothesis that the image of \(f \) is a neighbourhood of \(0 \in \mathbb{R}^2 \), then the results are true restricting the fibrations to their images. This is carefully discussed in [6] where an example is given in [6, Remark 4.1].

The study of Milnor-type fibrations for real analytic mappings is a subject that goes back to Milnor’s work in [21, 22], and there are several recent papers on the topic. We refer to [32, 33] for overviews on this, and to [3, 19, 23, 25, 26, 28, 29] for more recent work. Notice also that part of the content of Section 5 generalises to real analytic map-germs \((X, 0) \rightarrow (\mathbb{R}^k, 0)\) with \(k \geq 2 \) and \(X \) singular.

The authors are grateful to professors Bernard Teissier, Lê Dũng Tráng and David Trotman for helpful conversations while preparing this article, and to Mihai Tibăr for pointing out a couple of gaps in the original manuscript, and helping us to fill up one of these gaps. The authors are also grateful to the referee for several important comments. The hospitality and support of the Abdus Salam ICTP (from Trieste, Italy) are acknowledged with thanks by the three authors. The first author also thanks Luis Hernández Hernández (from the University of Sheffield, U. K.) for providing him the right atmosphere while writing part of this article.

1. Preliminaries

This section contains well-know material about stratified analytic spaces.
1.1. Stratifications and Whitney conditions

Let \(\mathbb{F} \) be either the real or the complex numbers. A stratification of a subset \(X \) of \(\mathbb{F}^n \) is a locally finite partition \(\{S_\alpha\} \) of \(X \) into smooth, connected submanifolds of \(\mathbb{F}^n \) (called strata) which satisfy the Frontier Condition, that if \(S_\alpha \) and \(S_\beta \) are strata with \(S_\alpha \cap \overline{S_\beta} \neq \emptyset \), then \(S_\alpha \subset \overline{S_\beta} \).

When \(X \) is complex analytic, we say that a stratification \(\{S_\alpha\} \) is complex analytic if all the strata are analytic. In the real analytic case, we say that \(\{S_\alpha\} \) is subanalytic if each \(S_\alpha \), its closure \(\overline{S_\alpha} \) and \(\overline{S_\alpha} \setminus S_\alpha \) are subanalytic.

Now consider a triple \((y, S_\alpha, S_\beta) \), where \(S_\alpha \) and \(S_\beta \) are strata of \(X \) with \(y \in S_\alpha \subset \overline{S_\beta} \). We say that the triple \((y, S_\alpha, S_\beta) \) is Whitney regular if it satisfies the Whitney (b) condition:

i) given a sequence \(\{x_n\} \subset S_\beta \) converging in \(\mathbb{F}^n \) to \(y \in S_\alpha \) such that the sequence of tangent spaces \(T_{x_n}S_\beta \) converges to a subspace \(T \subset \mathbb{F}^n \); and

ii) a sequence \(\{y_n\} \subset S_\alpha \) converging to \(y \in S_\alpha \) such that the sequence of lines (secants) \(l_{x_i,y_i} \) from \(x_i \) to \(y_i \) converges to a line \(l \);

then one has \(l \subset T \).

By convergence of tangent spaces or secants we mean convergence of the translates to the origin of these spaces, so these are points in the corresponding Grassmannian.

There is also a Whitney (a) condition: in the above situation one has that \(T \) contains the space tangent to \(S_\alpha \) at \(y \). It is an exercise to show that condition (b) implies condition (a).

Definition 1.1. The stratification \(\{S_\alpha\} \) of \(X \) is Whitney regular (also called a Whitney stratification) if every triple \((y, S_\alpha, S_\beta) \) as above, is Whitney regular.

The existence of Whitney stratifications for every analytic space \(X \) was proved by Whitney in [37, Thm. 19.2] for complex varieties, and by Hironaka [12] in the general setting.

1.2. Whitney-strong stratifications

We now describe another regularity condition, defined by Verdier in [36], improving Kuo’s regularity condition in [14]. For this let \(A \) and \(B \) be vector subspaces of \(\mathbb{F}^n \), and let \(\pi_B \) be the orthogonal projection onto \(B \). We define the distance (or angle) between \(A \) and \(B \) by

\[
\delta(A, B) = \sup_{\|a\|=1} \text{dist}(a, B) = \sup_{\|a\|=1} \|a - \pi_B(a)\|. \tag{3}
\]

Notice that this is not symmetric in \(A \) and \(B \). Also, \(\delta(A, B) = 0 \) if and only if \(A \subseteq B \), and \(\delta(A, B) = 1 \) if and only if there exists \(a \in A \) such that \(a \perp B \). If \(B \) is a subspace of \(C \), then \(\delta(A, C) \leq \delta(A, B) \).
The Kuo-Verdier \((w)\) condition (also known as Whitney-strong condition) for a triple \((y, S_\alpha, S_\beta)\) as above is that there exists a neighbourhood \(U_y\) of \(y \in S_\alpha\) in \(\mathbb{F}^n\) and a constant \(C > 0\) such that
\[
\delta(T_y S_\alpha, T_x S_\beta) \leq C \|y' - x\|
\]
for all \(y' \in U_y \cap S_\alpha\) and all \(x \in U_y \cap S_\beta\).

Remark 1.2. Condition \((w)\) reinforces condition \((a)\), and for analytic stratifications condition \((w)\) implies condition \((b)\) ([34, Thm. (1.5)] or [14]). Moreover, for complex analytic stratifications, Teissier proved in [34] that conditions \((b)\) and \((w)\) are actually equivalent.

Definition 1.3. The stratification \(\{S_\alpha\}\) is said to be Whitney-strong if every triple \((y, S_\alpha, S_\beta)\) satisfies condition \((w)\).

The existence of Whitney-strong stratifications for all analytic spaces was proved by Verdier in [36, Thm. (2.2)], using Hironaka’s theorem of resolution of singularities. There are simpler proofs in [18, 7].

Theorem 1.4. Let \((X, 0)\) be a (real or complex) analytic germ in \(\mathbb{F}^n\), and let \(V\) be an analytic variety in \(X\). Then we can endow \(X\) with a locally finite Whitney-strong analytic stratification such that \(V\) is union of strata, \(X \setminus (V \cup \text{Sing}(X))\) is a stratum (possibly disconnected in the real case). We can further assume \(0\) is a stratum and there exists a sufficiently small ball \(B\) around \(0 \in \mathbb{F}^n\), such that each stratum contains \(0\) in its closure and is transverse to all the spheres in \(B\) centred at \(0\).

This yields (compare with [22, Thm. 10.2] and [4, Lemma 3.2]):

Theorem 1.5. For \(B\) as above, one has that the triple \((B, X \cap B, V \cap B)\) is homeomorphic to the cone over the triple \((\partial B, X \cap \partial B, V \cap \partial B)\).

Definition 1.6. A Whitney-strong stratification of \(X\) as in Theorem 1.4 will be called a Whitney stratification adapted to \(V\).

1.3. The Thom Property

We now look at regularity conditions for the space \(X\) relative to a function on it. This originates in the work of R. Thom [35].

Let \(X \subset U \subset \mathbb{C}^n\) be a complex analytic subspace of an open set \(U\) of \(\mathbb{C}^n\), and let \(f: (X, 0) \to (\mathbb{C}, 0)\) be a holomorphic function. Let \(\{S_\alpha\}_{\alpha \in A}\) be an analytic Whitney stratification of \(X\) and let \(\{T_\gamma\}_{\gamma \in G}\) be an analytic Whitney stratification of \(\mathbb{C}\). We say that the stratifications \(\{S_\alpha\}_{\alpha \in A}\) and \(\{T_\gamma\}_{\gamma \in G}\) give a Whitney stratification of \(f\) if for every \(\alpha \in A\) there exists \(\gamma \in G\) such that \(f\) induces a submersion from \(S_\alpha\) to \(T_\gamma\).

Consider the triple \((y, S_\alpha, S_\beta)\), with \(y \in S_\alpha \subset S_\beta\). Set \(f_\alpha^n = f_{|S_\alpha}(f(y))\), the fibre of \(f_{|S_\alpha}\) which contains \(y\).
We say that a triple \((y, S_\alpha, S_\beta)\) satisfies the **Thom \((a_f)\) condition** if for every sequence \(\{x_n\} \subset S_\beta\) converging in \(\mathbb{C}^n\) to \(y \in S_\alpha\), one has (when the limit exists):

\[
\lim_{n \to +\infty} \delta(T_y f_\alpha^n, T_x f_\beta^n) = 0.
\]

The triple satisfies the **Strict Thom \((w_f)\) condition** if there exists a neighbourhood \(\mathcal{V}_y\) of \(y \in S_\alpha\) in \(\mathbb{C}^n\) and a constant \(D > 0\) such that for all \(y' \in \mathcal{V}_y \cap S_\alpha\) and \(x \in \mathcal{V}_y \cap S_\beta\),

\[
\delta(T_y f_\alpha^n, T_x f_\beta^n) \leq D \|y' - x\|.
\]

Definition 1.7. We say that the stratification satisfies **Thom’s \((a_f)\) condition** (respectively **\((w_f)\) condition**) if every triple \((y, S_\alpha, S_\beta)\) satisfies condition \((a_f)\) (respectively \((w_f)\)).

Definition 1.8. We say that the map \(f\) on \(X\) has the **Thom property** (respectively the **strict Thom property**) if there is a Whitney stratification of \(f\) that satisfies Thom’s \((a_f)\) condition (respectively the \((w_f)\) condition).

Thom property for complex analytic maps was proved by Hironaka in [13, §5 Cor. 1]. The \((w_f)\) property was proved in [24] for the case \(X\) smooth (and complex) and in [3, Thm. 4.3.2] for the general complex analytic case. The corresponding statement is false in general for real analytic maps.

Remark 1.9. Let \(X \subset U \subset \mathbb{C}^n\) be a complex analytic subset of an open set \(U\) of \(\mathbb{C}^n\). Let \(f: (X, \mathfrak{0}) \to (\mathbb{C}, \mathfrak{0})\) be holomorphic. Let \(\{S_\alpha\}\) and \(\{T_\gamma\}\) be complex analytic Whitney stratifications of \(X\) and \(\mathbb{C}\) respectively, which define a stratification of \(f\). By [3, Rmk. 4.1.2, Thm. 4.2.1, Thm. 4.3.2] one has that this stratification of \(f\) satisfies conditions \((a_f)\) and \((w_f)\).

1.4. Stratified rugose vector fields

Let \(X \subset \mathbb{P}^n\) be equipped with a stratification \(\{S_\alpha\}\) and \(f: X \to \mathbb{R}\) an analytic function. The function \(f\) is a **rugose function** if for every stratum \(S_\alpha\) the restriction \(f|_{S_\alpha}\) is of class \(C^\infty\) and if for every \(y \in S_\alpha\) there exists a neighbourhood \(V\) of \(y\) and a constant \(C \in \mathbb{R}_+^*\), such that, for every \(y' \in V \cap S_\alpha\) and every \(x \in V \cap X\) we have

\[
|f(y') - f(x)| \leq C \|y' - x\|.
\]

Notice that a rugose function is continuous. A vector valued map is **rugose** if every coordinate function is rugose. A vector bundle \(F\) on \(X\) is **rugose** if the changes of charts are rugose.

Definition 1.10. A **rugose vector bundle** \(F\) on \(X\) tangent to the stratification \(\{S_\alpha\}\) is a vector bundle on \(X\) such that, for every stratum \(S_\alpha\) there is an injection \(i_\alpha: F|_{S_\alpha} \hookrightarrow TS_\alpha\) and if \(i: X \to \mathbb{P}^n\) is the inclusion, the vector bundle morphism \(F \to i^* T\mathbb{P}^n|_X\) induced by \(i\) and the \(i_\alpha\) is rugose.
A stratified vector field \(v \) on \(X \) is a section of the tangent bundle \(T\mathbb{F}^n|_X \), such that at each \(x \in X \), the vector \(v(x) \) is tangent to the stratum that contains \(x \).

A stratified vector field \(v \) is called rugose near \(y \in S_\alpha \), where \(S_\alpha \) is a stratum of \(X \), when there exists a neighbourhood \(W_y \) of \(y \) in \(\mathbb{F}^n \) and a constant \(K > 0 \), such that
\[
\|v(y') - v(x)\| \leq K\|y' - x\|,
\]
(4)
for every \(y' \in W_y \cap S_\alpha \) and every \(x \in W_y \cap S_\beta \), with \(S_\alpha \subset \bar{S}_\beta \).

Rugose vector fields play a key role in Verdier’s proof of the Thom-Mather isotopy theorems (see [36, §4]).

The following result of Verdier is important for this article. We include a slight modification of the proof given in [36, Prop. (4.6)] which is more suitable for our purposes.

Proposition 1.11 ([36, Prop. (4.6)]). Let \(X \) be a real analytic space and \(A \) a locally closed subset of \(X \) which is union of strata for some Whitney-strong stratification \(\{S_\alpha\} \). Let \(Y \) be a non-singular real analytic space, \(g: X \to Y \) a real analytic map whose restriction to each stratum is a submersion, and \(\eta \) a \(C^\infty \) vector field on \(Y \). Then there exists a rugose stratified vector field \(\xi \) on \(A \) that lifts \(\eta \), i.e., for each \(x \in A \) one has \(dg(\xi(x)) = \eta(g(x)) \).

Proof. Using a rugose partition of unity the problem is local on \(A \). Let \(x \in A \), by [36, Cor. (4.5)] there exists a neighbourhood \(V \) of \(x \) and a rugose vector bundle \(F \) on \(V \cap A \) tangent to the stratification \(\{S_\alpha \cap V\} \), which induces on the stratum \(S_x \cap V \) containing \(x \) the tangent bundle \(TS_x \). The map \(f \) induces a rugose vector bundle morphism \(Tf: F \to f^*TY \). Since \(f \) is a submersion on each stratum, \(Tf \) is surjective in \(x \), and therefore surjective on a neighbourhood of \(x \). Let \(K \) be the kernel of \(F \) which is the vertical subbundle of \(F \). Let \(H \) be a rugose horizontal subbundle of \(F \), that is, such that \(F = K \oplus H \). One way to construct such \(H \) is to endow \(F \) with a rugose metric and take \(H = K^\perp \). Hence \(Tf \) induces a rugose isomorphism from \(H \) to \(f^*TY \). The inverse image of \(f^*\eta \) by this isomorphism is a desired rugose stratified vector field. \(\Box \)

Remark 1.12. Notice that in the proof of Proposition 1.11, different choices of horizontal subbundles \(H \) of \(F \) give rise to different liftings of \(\eta \).

2. The uniform conical structure

Let \(\langle \cdot, \cdot \rangle \) be the Hermitian inner product on \(\mathbb{C}^n \). We consider \(\mathbb{C}^n \) as a 2\(n \)-dimensional Euclidean real vector space defining the Euclidean inner product as the real part \(\Re(\cdot, \cdot) \). Throughout this article, \(X \) is a complex analytic subset of an open set \(U \) around the origin \(\mathbf{0} \) of \(\mathbb{C}^n \). Let \(f: (X, \mathbf{0}) \to (\mathbb{C}, 0) \) be a non-constant holomorphic map and we equip \(X \) with a Whitney stratification adapted to \(V = f^{-1}(0) \). We let \(\mathbb{B} \) be a ball centred at \(\mathbf{0} \) of sufficiently small radius, so that \(f \) has no critical points in \(\mathbb{B} \setminus V \), each stratum in \(X \cap \mathbb{B} \) has \(\mathbf{0} \) in its closure and meets transversally every sphere in \(\mathbb{B} \) centred at \(\mathbf{0} \).
Recall that a point \(x \in X \cap \mathbb{B} \) is a critical point of \(f \), in the stratified sense, if \(x \) is a critical point of \(f \) restricted to the stratum which contains \(x \) (see for instance [10], Part 1 [2.1] for more on this subject). That is, if \(f \) is an extension of \(f \) to \(U \), then the kernel of \(df(x) \) contains the space tangent to the stratum. One has the analogous definition in the real analytic category (see [10]).

2.1. The canonical pencil of a holomorphic map

Given \(f \), we associate to it a 1-parameter family of real valued functions as follows. For each \(\theta \in [0, \pi) \), consider the real line \(L_\theta \subset \mathbb{R} \) passing through the origin with an angle \(\theta \) with respect to the real axis, measured in the usual way. Let \(L_\theta^\perp \) be the line orthogonal to \(L_\theta \) and let \(\pi_\theta : \mathbb{R} \to L_\theta^\perp \) be the orthogonal projection. Set \(h_\theta = \pi_\theta \circ f \), so that \(h_0 \) and \(h_\pi/2 \) are, respectively, the imaginary and real parts of \(f \). Hence \(\{ h_\theta \} \) is a 1-parameter family of real analytic functions and if we set \(X_\theta = h_\theta^{-1}(0) \), then each \(X_\theta \) is a real hypersurface.

The first two lemmas below are exercises and we leave the proofs to the reader. They prove part of statement i) of Theorem 1.

Lemma 2.1. The singular points of \(X_\theta \) are:

\[
\text{Sing } X_\theta = \text{Sing } V \cup (X_\theta \cap \text{Sing } X).
\]

Lemma 2.2. One has \(X \cap \mathbb{B} = \cup X_\theta \) and

\[
V = \cap X_\theta = X_{\theta_1} \cap X_{\theta_2},
\]

for each pair \(\theta_1 \neq \theta_2 \) (mod \(\pi \)).

Remark 2.3. We notice that each \(X_\theta \) is naturally the union of three sets: the points \(x \in X \cap \mathbb{B} \) such that \(f(x) = 0 \), i.e., \(x \in V \), and the points \(x \in X \cap \mathbb{B} \) such that \(f(x) \) is in one of the two half lines of \(L_\theta \setminus \{0\} \). Write this as:

\[
X_\theta = E_\theta \cup V \cup E_{\theta + \pi}.
\]

Similarly, if \(S = \partial \mathbb{B} \) one has:

\[
(X_\theta \cap S) = (E_\theta \cap S) \cup (V \cap S) \cup (E_{\theta + \pi} \cap S).
\]

Remark 2.4. Let \(\{ S_\alpha \} \) be a Whitney stratification of \(X \) adapted to \(V \). Since \(f : (X \cap \mathbb{B}) \setminus V \to \mathbb{C} \setminus \{0\} \) is a submersion on each stratum, then for each stratum \(\{ S_\alpha \} \subset X \setminus V \), the intersection \(S_\alpha \cap X_\theta \) is a differentiable manifold of real codimension 1 in \(\{ S_\alpha \} \).

The following lemma proves statement ii) of Theorem 1.

Lemma 2.5. There exists \(\varepsilon_0 > 0 \) such that given a Whitney stratification \(\{ S_\alpha \} \) of \(X \) adapted to \(V \), the intersection of the strata with each \(X_\theta \) determines a Whitney strong stratification of \(X_\theta \) such that for each stratum \(S_\alpha \neq \{0\} \) and each \(X_\theta \) one has that \(S_\alpha \cap X_\theta \) meets transversally every sphere in the ball \(\mathbb{B}_{\varepsilon_0} \) centred at \(0 \).
Proof. Since \(\bar{S}_\alpha \cap X_\theta = S_\alpha \cap X_\theta \), it is clear that the partition of \(X_\theta \) induced by the intersection with the strata \(\{ S_\alpha \} \) satisfies the frontier condition and defines a stratification of each \(X_\theta \). To see that this stratification of \(X_\theta \) is Whitney-strong, first note that by [11, Rem. (3.7)], \((X_\theta \setminus V) \cap S_\alpha \) is a Whitney-strong stratification of \(X_\theta \setminus V \), hence we just need to check condition \((w) \) for triples \((y, S_\alpha, (S_\beta \cap X_\theta)) \), with \(S_\alpha \subset V \) and \((S_\beta \cap X_\theta) \subset X_\theta \setminus V \). By Remark [11], \(f \) satisfies condition \((w_f) \), so there exists a neighbourhood \(\mathcal{V}_y \) of \(y \in S_\alpha \) in \(\mathbb{C}^n \) and a constant \(D > 0 \) such that for all \(y' \in \mathcal{V}_y \cap S_\alpha \) and \(x \in \mathcal{V}_y \cap S_\beta \),

\[
\delta(T_y S_\alpha, T_x f^\beta_x) \leq D \| y' - x \|.
\]

Since \(T_x f^\beta_x \subset T_x (S_\beta \cap X_\theta) \), for every \(y' \in \mathcal{V}_y \cap S_\alpha \) and \(x \in \mathcal{V}_y \cap (S_\beta \cap X_\theta) \),

\[
\delta(T_y S_\alpha, T_x (S_\beta \cap X_\theta)) \leq \delta(T_y S_\alpha, T_x f^\beta_x) \leq D \| y' - x \|.
\]

Therefore the triple \((y, S_\alpha, (S_\beta \cap X_\theta)) \) satisfies condition \((w) \). We claim that for each \(\theta \), each stratum \(S_\alpha \cap X_\theta \) meets transversally every sufficiently small sphere around \(\emptyset \). This is in fact an immediate consequence of [2, Lemma 2.4], which implies the existence of a continuous vector field \(v \) on \(\mathbb{B}_{\bar{z}_\alpha} \setminus V \) which is tangent to each \(S_\alpha \), tangent to each \(X_\theta \) and transverse to every sufficiently small sphere around \(\emptyset \).

\[\Box\]

2.2. The spherefication map

We now introduce an auxiliary function associated to \(f \), the spherefication, which is very helpful for studying Milnor fibrations.

As in Theorem 2, define \(\Phi : (X \cap \mathbb{B}_x) \setminus V \to \mathbb{S}^1 \) by \(\Phi(x) = \frac{f(x)}{\| f(x) \|} \). Define the real analytic map \(\mathfrak{F} : (X \cap \mathbb{B}_x) \setminus V \to \mathbb{C} \setminus \{0\} \), by

\[
\mathfrak{F}(x) = \| x \| \Phi(x) = \| x \| \frac{f(x)}{\| f(x) \|}.
\]

Notice that from the definition we have:

\[
\Phi = \frac{\mathfrak{F}(x)}{\| \mathfrak{F}(x) \|} = \frac{f(x)}{\| f(x) \|}. \tag{7}
\]

Also notice that given \(z \in \mathbb{C} \setminus \{0\} \) with \(\theta = \arg z \), the fibre \(\mathfrak{F}^{-1}(z) \) is the intersection of \(X_\theta \) with the sphere \(S_{|z|} \) of radius \(|z| \) centred at \(\mathbf{0} \), and \(\mathfrak{F} \) carries \(S_{|z|} \setminus V \) into the circle around \(0 \in \mathbb{R}^2 \) of radius \(|z| \). This motivates the following definition:

Definition 2.6. The analytic map \(\mathfrak{F} \) is called the spherefication of \(f \).

Lemma 2.7. Let \(\epsilon_0 > 0 \) as in Lemma 2, and let \(\{ S_\alpha \} \) be a Whitney stratification adapted to \(V \). Then the spherefication map \(\mathfrak{F} \) is a submersion on each stratum.
Proof. Let \(x \in S_\alpha \) and \(\theta = \arg f(x) \), then \(x \in S_\alpha \cap X_\theta \) and by Lemma 2.5 \(S_\alpha \cap X_\theta \) is transverse to the sphere \(S_{\|x\|} \) of radius \(\|x\| \). Hence there is a vector \(\mu \in T_x(S_\alpha \cap S_{\|x\|}) \) such that \(d_x\tilde{\mathcal{F}}|_{S_\alpha}(\mu) \) is a non-zero vector in \(T_{\tilde{\mathcal{F}}(x)}S^1_{\|x\|} \). On the other hand, since \(S_\alpha \) and \(S_{\|x\|} \) are transverse, there is a vector \(\nu \in T_xS_\alpha \) transverse to \(S_{\|x\|} \), and since the fibre of \(\tilde{\mathcal{F}} \) through \(x \) is contained in \(S_{\|x\|} \), we have that \(d_x\tilde{\mathcal{F}}|_{S_\alpha}(\nu) \) is a non-zero vector transverse to \(S^1_{\|x\|} \). \(\Box \)

Now we prove statement \(\text{(iii)} \) of Theorem 1. For this we use:

Proposition 2.8. Let \(\{S_\alpha\} \) be a Whitney stratification of \(X \) adapted to \(V \) and for each \(\theta \in [0, \pi) \) equip \(X_\theta \) with the stratification \(\{X_\theta \cap S_\alpha\} \) obtained by intersecting \(X_\theta \) with the strata of \(\{S_\alpha\} \). Then for every sufficiently small ball \(B_\varepsilon \) around \(\mathbf{0} \), there exists a stratified, rugose vector field \(\nu \) on \(X \cap B_\varepsilon \) which has the following properties:

i) It is radial, i.e., it is transverse to the intersection of \(X \) with all spheres in \(B_\varepsilon \) centred at \(\mathbf{0} \).

ii) It is tangent to the strata of each \(X_\theta \).

iii) \(\nu(\mathbf{0}) = 0 \).

Proof. Let \(u \) be the canonical radial vector field on \(\mathbb{C} \) given by \(u(z) = z \). Using \(\tilde{\mathcal{F}} \), by Proposition 1.14 we can lift \(u \) to a stratified rugose vector field \(\nu_\tilde{\mathcal{F}} \) on \((X \cap \mathbb{B}) \setminus V \), which satisfies

\[
d\tilde{\mathcal{F}}_x(\nu_\tilde{\mathcal{F}}(x)) = u(\tilde{\mathcal{F}}(x)),
\]

for every \(x \in (X \cap \mathbb{B}) \setminus V \), where \(d \) is the derivative. By the definition of \(\tilde{\mathcal{F}} \), the local flow associated to \(\nu_\tilde{\mathcal{F}} \) is transverse to all spheres in \(B_\varepsilon \) centred at \(\mathbf{0} \), and by construction, its integral paths move along \(X_\theta \setminus V \), i.e., it already satisfies conditions \(\text{(i)} \) and \(\text{(ii)} \) and it is rugose.

Recall that on \(X \) we have a rugose vector field \(v_{\text{rad}} \) which is radial at \(\mathbf{0} \), i.e., it is tangent to each stratum and transverse to all spheres around \(0 \), which gives the conical structure of \(X \) \(\text{(30, Prop. 3.1.7)} \). The idea to construct the vector field \(v \) satisfying the conditions of Proposition 2.8 is to glue the vector field \(\nu_\tilde{\mathcal{F}} \) on \((X \cap B_\varepsilon) \setminus V \) with the vector field \(v_{\text{rad}} \) on \(X \) in such a way that it keeps satisfying properties \(\text{(i)} \) and \(\text{(ii)} \). The problem is that \(v_{\text{rad}} \) may not be tangent to the strata of the \(X_\theta \), so we must modify it appropriately. We will denote the modified vector field by \(\tilde{v}_{\text{rad}} \). This will be a rugose vector field defined on \(X \cap B_\varepsilon \), which is radial on \(V \), tangent to each stratum \(X_\theta \cap S_\alpha \) and such that gluing \(\tilde{v}_{\text{rad}} \) and \(\nu_\tilde{\mathcal{F}} \) on \(X \setminus V \) by a rugose partition of unity, we obtain a vector field \(v \) with properties \(\text{(i)} \) to \(\text{(iii)} \). This is constructed as follows.

In the stratified radial vector field \(v_{\text{rad}} \) is constructed by induction on the dimension of the strata \(\text{(31, \S 1.5, Thm. 3.1.5)} \), and it is shown \(\text{(30, Prop. 3.1.7)} \) that it can be assumed to be rugose. We modify \(v_{\text{rad}} \) to have the desired property at each stage. To start the induction, define \(\tilde{v}_{\text{rad}}(\mathbf{0}) = 0 \) to get property \(\text{(iii)} \). Now suppose that we have constructed \(\tilde{v}_{\text{rad}} \) on the strata of dimension less than \(p \) and it is rugose, which is always possible by \(\text{(30, Prop. 3.1.7)} \).
Let S_β be a stratum of dimension p. Extend \tilde{v}_{rad} to a radial stratified rugose vector field v_{rad} on S_β as in [30, Thm. 3.1.5]. If $S_\beta \subset V$, for every $x \in S_\beta$ we define $\tilde{v}_{\text{rad}}(x) = v_{\text{rad}}(x)$. If $S_\beta \subset X \setminus V$, let $x \in S_\beta$ and denote by f^β_x the fibre of $|S_\beta$ which contains x, i.e., $f^\beta_x = f|x^{-1}(f(x))$. Since $f(x)$ is a regular value of $f|S_\beta$, f^β_x is a differentiable submanifold of S_β. Clearly $f^\beta_x \subset X_\theta \cap S_\beta \subset X_\theta \setminus V$ with $\theta = \arg f(x)$. Define the vector $\tilde{v}_{\text{rad}}(x)$ by projecting the vector $v_{\text{rad}}(x)$ to the tangent space $T_x f^\beta_x \subset T_x (X_\theta \cap S_\beta)$.

We claim that \tilde{v}_{rad} is also rugose. For this, let S_α be a stratum of dimension less than p such that $S_\alpha \subset S_\beta$ and let $y \in S_\alpha$. Since the stratification of f satisfies condition (w.f) (see Remark [14]), there exists a neighbourhood V_y of y where the following inequality is satisfied.

\[
\delta(T_{y'}f^\alpha_y, T_x f^\beta_x) \leq D\|y' - x\|,
\]

for all $y' \in V_y \cap S_\alpha$ and all $x \in V_y \cap S_\beta$.

On the other hand, since the vector field v_{rad} is rugose, there exists a neighbourhood W_y of y where the following inequality is satisfied

\[
\|v_{\text{rad}}(y') - v_{\text{rad}}(x)\| \leq K\|y' - x\|,
\]

for every $y' \in W_y \cap S_\alpha$ and every $x \in W_y \cap S_\beta$.

Let \mathcal{N}_y be an open ball around y such that $\mathcal{N}_y \subset V_y \cap W_y$ and set

\[
M = \sup_{y' \in \mathcal{N}_y \cap S_\alpha} \|v_{\text{rad}}(y')\|.
\]

Let $y' \in \mathcal{N}_y \cap S_\alpha$ and $x \in \mathcal{N}_y \cap S_\beta$.

Case 1: $S_\beta \subset V$.

Since in V the vector field \tilde{v}_{rad} equals v_{rad} and v_{rad} is rugose, by (8) we have

\[
\|\tilde{v}_{\text{rad}}(y') - \tilde{v}_{\text{rad}}(x)\| = \|v_{\text{rad}}(y') - v_{\text{rad}}(x)\| \leq K\|y' - x\|.
\]

Hence \tilde{v}_{rad} satisfies inequality (8) in \mathcal{N}_y.

Case 2: $S_\beta \subset X \setminus V$.

Let π be the orthogonal projection of \mathbb{C}^n onto $T_x f^\beta_x$. By (8) and (9) we have that

\[
\left\| \frac{v_{\text{rad}}(y') - \pi \left(\frac{v_{\text{rad}}(y')}{\|v_{\text{rad}}(y')\|} \right) }{\|v_{\text{rad}}(y')\|} \right\| \leq \delta(T_{y'}f^\alpha_y, T_x f^\beta_x) \leq D\|y' - x\|.
\]

Hence

\[
\|v_{\text{rad}}(y') - \pi(v_{\text{rad}}(y'))\| \leq \|v_{\text{rad}}(y')\|D\|y' - x\| \leq MD\|y' - x\|.
\]

(10)
On the other hand, since π is an orthogonal projection, by (9) one has:

$$\|\pi(v_{rad}(y')) - \pi(v_{rad}(x))\| \leq \|v_{rad}(y') - v_{rad}(x)\| \leq K\|y' - x\|. \quad (11)$$

Therefore using (10) and (11) we get:

$$\|\tilde{v}_{rad}(y') - \tilde{v}_{rad}(x)\| = \|v_{rad}(y') - \pi(v_{rad}(x))\|
\leq \|v_{rad}(y') - \pi(v_{rad}(y'))\| + \|\pi(v_{rad}(y')) - \pi(v_{rad}(x))\|
\leq (MD + K)\|y' - x\|.$$

Hence \tilde{v}_{rad} satisfies inequality (4) in N_y, proving that \tilde{v}_{rad} is rugose and therefore integrable [36, Prop. (4.8)].

Notice that when we modify the radial vector field v_{rad} to obtain \tilde{v}_{rad}, it may happen that $\tilde{v}_{rad}(x)$ is no longer transverse to the sphere, this is the case if the fibre through x is tangent to the sphere; it may even happen that $\tilde{v}_{rad}(x)$ vanishes.

Gluing \tilde{v}_{rad} and v_F on $X \setminus V$ by a rugose partition of unity we obtain a vector field v defined on all of \mathbb{B}_x with the desired properties.

Proof of iii) in Theorem 1. Recall that $\langle \cdot, \cdot \rangle$ is the Hermitian inner product on \mathbb{C}^n and that we consider \mathbb{C}^n as a $2n$-dimensional Euclidean real vector space defining the Euclidean inner product as the real part $\Re\langle \cdot, \cdot \rangle$. Let $r: \mathbb{C}^n \to \mathbb{R}$ be the real analytic function defined by $r(x) = \|x\|^2$. The real gradient of r is given by $\nabla r(x) = 2x$, so the chain rule for the derivative of r along a path $x = p(t)$ takes the form

$$\frac{dr(p(t))}{dt} = \Re\langle \frac{dp}{dt}, 2x \rangle. \quad (12)$$

We proceed as in the proof of [22, Thm. 2.10]: let v be the vector field constructed in Proposition 2.8. By property $\text{i)} v$ is a radial vector field pointing away from \mathbb{B}_x, thus we have that

$$\Re(v(x), x) > 0.$$

Normalise v by setting

$$\hat{v}(x) = v(x)/\Re(v(x), 2x).$$

Let $x = p(t)$ be a solution of the differential equation

$$\frac{dp(t)}{dt} = \hat{v}(p(t)). \quad (13)$$

Then by (12) we have that

$$\frac{dr}{dt}(x) = \Re(\hat{v}(x), 2x) = 1.$$

Therefore $r(p(t)) = t + \text{constant}$. Substracting a constant from the parameter t if necessary, we may suppose that

$$r(p(t)) = \|p(t)\|^2 = t.$$
By [22, p. 20], the solution \(p(t) \) can be extended through the interval \((0, \varepsilon^2)\).

For every \(a \in X \cap S_\varepsilon \) let \(p(t) = P(a, t) \) be the unique solution of (13) which satisfies the initial condition \(p(\varepsilon^2) = P(a, \varepsilon^2) = a \). Clearly this function \(P \) gives a rugose homeomorphism from the product \(L_X \times (0, \varepsilon^2) \) onto \((X \setminus \{0\}) \cap \mathbb{B}_\varepsilon \).

Since \(\hat{v} \) is a stratified vector field and \(V \) is a finite union of strata, any solution curve which touches a stratum \(S_\alpha \subset V \) must be contained in \(S_\alpha \subset V \). Therefore, \(P \) is in fact a rugose homeomorphism of pairs from \((L_X \times (0, \varepsilon^2), L_f \times (0, \varepsilon^2)) \) onto \(((X \setminus \{0\}) \cap \mathbb{B}_\varepsilon, (V \setminus \{0\}) \cap \mathbb{B}_\varepsilon) \).

Furthermore, since the vector field \(v(x) \) is tangent to the stratum \(X_\theta \cap S_\alpha \) of \(X_\theta \setminus V \) for all \(x \in X \cap S_\alpha \), every solution curve which touches \(X_\theta \cap S_\alpha \) must be contained in \(X_\theta \cap S_\alpha \). Hence \(P \) restricts to a rugose homeomorphism \((X_\theta \cap S_\alpha) \times (0, \varepsilon^2) \cong ((X_\theta \setminus \{0\}) \cap \mathbb{B}_\varepsilon) \) for every \(\theta \in [0, \pi) \).

Finally, note that \(P(a, t) \) tends uniformly to \(0 \) as \(t \to 0 \). Therefore the correspondence

\[
ta \to P(a, t), \quad 0 < t \leq 1, \quad a \in X \cap S_\varepsilon,
\]

extends uniquely to a homeomorphism from \(\text{Cone}(L_X) \) to \((X \cap \mathbb{B}_\varepsilon) \) and we arrive to statement (iii) in Theorem 1.

Remark 2.9. Notice that if \(X \setminus \{0\} \) is non-singular, the proof above leads to a smooth vector field having properties (i)–(iii) in Proposition 2.8. This yields to a diffeomorphism between \(X \setminus \{0\} \) and the cylinder \(L_X \times (-\infty, 0] \), where \(L_X \) is the link of \(X \), inducing for each \(\theta \) a diffeomorphism \(X_\theta \setminus \{0\} \cong L_{X_\theta} \times (-\infty, 0] \).

Let us denote by \(X_{(X \setminus V) \cap \mathbb{B}_\varepsilon} \) the decomposition of \((X \setminus V) \cap \mathbb{B}_\varepsilon \) as the union of all \((X_\theta \setminus V) \cap \mathbb{B}_\varepsilon \); similarly, denote by \(X_{L_X \setminus L_f} \) the decomposition of \(L_X \setminus L_f \) as the union of all \((X_\theta \cap \partial \mathbb{B}_\varepsilon) \setminus L_f \).

The following is an immediate consequence of the proof of Proposition 2.8

Corollary 2.10. The decomposition \(X_{(X \setminus V) \cap \mathbb{B}_\varepsilon} \) is homeomorphic to the cylinder \((X_{L_X \setminus L_f}) \times (-\infty, 0]\). Furthermore, if \(X \) is non-singular away from \(V \), then the above homeomorphism can be taken to be a diffeomorphism.

3. The Fibration theorems

In this section we prove Theorems 2 and 3. The proof of Theorem 3 is based on the results in Section 2 together with Lemmas 3.1 and 3.2 below, which are extensions of Milnor’s Lemmas 4.3 and 4.4 in [21] to the case of maps defined on singular varieties.

Throughout this section let \(\tilde{f} : U \to \mathbb{C} \) be an analytic extension of \(f \) to an open neighbourhood \(U \) of \(\{0\} \) in \(\mathbb{C}^n \).
Lemma 3.1. Let S_α be a stratum not contained in V, $x \in S_\alpha$ and let π_{α_x} be the orthogonal projection of \mathbb{C}^n onto T_xS_α. Let $p: [0, \varepsilon) \rightarrow S_\alpha$ be a real analytic path with $p(0) = \mathbf{0}$ such that, for each $t > 0$, the number $f(p(t))$ is non-zero and the vector $\pi_{\alpha_{p(t)}}(\text{grad log } \tilde{f}(p(t)))$ is a complex multiple $\lambda(t)\pi_{\alpha_{p(t)}}(p(t))$. Then the argument of the complex number $\lambda(t)$ tends to zero as $t \rightarrow 0$. In other words $\lambda(t)$ is non-zero for small positive values of t and $\lim_{t \rightarrow 0} \frac{\lambda(t)}{|\lambda(t)|} = 1$.

Proof. We follow the proof of [21, Lemma 4.4]. Consider the Taylor expansions

$$p(t) = \mathbf{a}t^k + \mathbf{a}_1t^{k+1} + \mathbf{a}_2t^{k+2} + \ldots,$$

$$f(p(t)) = \mathbf{b}t^l + \mathbf{b}_1t^{l+1} + \mathbf{b}_2t^{l+2} + \ldots,$$

$$\text{grad } \tilde{f}(p(t)) = \mathbf{c}t^m + \mathbf{c}_1t^{m+1} + \mathbf{c}_2t^{m+2} + \ldots,$$

where the leading coefficients \mathbf{a}, \mathbf{b} and \mathbf{c} are non-zero. (The identity $\frac{df}{dt} = \langle \frac{df}{\text{grad } \tilde{f}}, \text{grad } \tilde{f} \rangle$ shows that $\text{grad } \tilde{f}(p(t))$ cannot be identically zero.) The leading exponents k, l and m are integers with $k \geq 1$, $l \geq 1$ and $m \geq 0$. The series are all convergent say for $|t| < \varepsilon'$. To simplify notation, set $\pi_{\alpha_t} = \pi_{\alpha_{p(t)}}$. For each $t > 0$ we have

$$\pi_{\alpha_t}(\text{grad log } \tilde{f}(p(t))) = \lambda(t)\pi_{\alpha_t}(p(t)),$$

$$\pi_{\alpha_t}(\text{grad } \tilde{f}(p(t))) = \lambda(t)\pi_{\alpha_t}(p(t))\tilde{f}(p(t)).$$

The vector $\pi_{\alpha_t}(\text{grad } \tilde{f}(p(t)))$ is non-zero since f is a submersion on S_α. Hence there exists a smallest s such that $\pi_{\alpha_t}(\mathbf{c}_s) \neq 0$. On the other hand, the vector $\pi_{\alpha_t}(p(t))$ is non-zero since S_α is transverse to all the spheres centred at $\mathbf{0}$ of radius less than ε. Hence, there exists a smallest r such that $\pi_{\alpha_t}(\mathbf{a}_r) \neq 0$.

Therefore

$$\pi_{\alpha_t}(\mathbf{c}_s) t^{m+s} + \ldots = \lambda(t)\pi_{\alpha_t}(\mathbf{a}_r) t^{k+r} + \ldots \cdot \mathbf{b}' + \ldots$$

Comparing corresponding components of these two vector valued functions, we see that $\lambda(t)$ is a quotient of real analytic functions, and therefore it has a Laurent expansion of the form

$$\lambda(t) = \lambda_0 t^{m+s-k-r} \cdot (1 + d_1 t + d_2 t^2 + \ldots).$$

Furthermore the leading coefficients must satisfy the equation

$$\pi_{\alpha_t}(\mathbf{c}_s) = \lambda_0 \pi_{\alpha_t}(\mathbf{a}_r) \mathbf{b}_r.$$

Substituting this equation in the power series expansion of the identity

$$\frac{df(p(t))}{dt} = \langle \frac{dp}{dt}, \text{grad } \tilde{f}(p(t)) \rangle.$$

16
and noting that since $p(t) \in S_\alpha, t \in [0, \varepsilon)$, we have that $\frac{dp}{dt} \in T_{p(t)}S_\alpha$ and therefore $\pi_\alpha(\frac{dp}{dt}) = \frac{dp}{dt}$. Thus we obtain

$$\frac{df(p(t))}{dt} = \left< \pi_\alpha(\frac{dp}{dt}), \pi_\alpha(\text{grad} \tilde{f}(p(t))) \right>.$$

Therefore

$$(lb^{l-1} + \ldots) = \left< \pi_{\alpha}(ka^n t^{k-1} + \ldots, \pi_{\alpha}(c^m + \ldots) \right>,$$

$$= \left< k\pi_{\alpha}(a_r) t_k + r - 1 \ldots, \pi_{\alpha}(c_s) t_m + s \ldots \right>$$

$$= \left< k\pi_{\alpha}(a_r) t_k + r - 1 \ldots, \lambda_0 \pi_{\alpha}(a_r) \tilde{b} t_m + s \ldots \right>$$

$$= k \| \pi_{\alpha}(a_r) \|^2 \lambda_0 \tilde{b} t_k + r + m + s - 1 \ldots.$$

Comparing the leading coefficients it follows that

$$l = k \| \pi_{\alpha}(a_r) \|^2 \lambda_0$$

which proves that λ_0 is a positive real number. Therefore

$$\lim_{t \to 0} \arg \lambda(t) = 0,$$

which completes the proof of Lemma 3.1. \qed

Lemma 3.2. Let X be an analytic subset of an open neighbourhood U of the origin \mathbb{O} in \mathbb{C}^n. Let $f : (X, \mathbb{O}) \to (\mathbb{C}, 0)$ be holomorphic and set $V = f^{-1}(0)$. Let $\tilde{f} : U \to \mathbb{C}$ be an analytic extension of f to U. Let S_α be a stratum not contained in V, $x \in S_\alpha$ and let π_{α} be the orthogonal projection of \mathbb{C}^n onto T_xS_α. There exists a number $\varepsilon_0 > 0$ so that, for every $x \in S_\alpha$ with $\|x\| \leq \varepsilon_0$, the two vectors $\pi_{\alpha}(x)$ and $\pi_{\alpha}(\text{grad log} \tilde{f}(x))$ are either linearly independent over the complex numbers or else

$$\pi_{\alpha}(\text{grad log} \tilde{f}(x)) = \lambda \pi_{\alpha}(x)$$

where λ is a non-zero complex number whose argument has absolute value less than $\pi/4$.

Proof. The proof is the same as in [21, Lemma 4.3] defining

$$W = \{ z \in S_\alpha \mid \pi_{\alpha}(\text{grad log} \tilde{f}(z)) = \mu \pi_{\alpha}(z), \mu \in \mathbb{C} \}.$$

and using the analytic curve selection lemma [4, Prop. 2.2]. \qed

As in Milnor’s case, we have the following corollary as an immediate consequence.

Corollary 3.3. Let S_α be a stratum not contained in V. For every $x \in S_\alpha$ which is sufficiently close to the origin, the two vectors $\pi_{\alpha}(x)$ and $\pi_{\alpha}(i \text{grad log} \tilde{f}(x))$ are linearly independent over \mathbb{R}.

17
The vector $\pi_{\alpha,x}(x)$ is the normal vector in S_α of the codimension 1 submanifold $S_{||x||} \cap S_\alpha$ and the vector $\pi_{\alpha,x}(i \text{ grad } \log \hat{f}(x))$ is the normal vector in S_α of the codimension 1 submanifold $S_{\alpha} \cap X_\theta$. Therefore Corollary 3.3 gives another proof of the second statement of Theorem 1.11, that the intersection $S_\alpha \cap X_\theta$ meets transversally every sphere in B_ε centred at 0.

Proposition 3.4. There exists a complete, stratified, rugose, vector field w on $(X \cap B_\varepsilon) \setminus V$, tangent to all the spheres in B_ε centred at 0, and whose orbits are transverse to the $X_\theta \setminus V$ and permute them: for each fixed time t, the flow carries each $X_\theta \setminus V$ into $X_{\theta+t} \setminus V$, where the angle $\theta + t$ must be taken modulo π. In particular, for $t = \pi$ the flow interchanges the two halves of $X_\theta \setminus V$.

Proof. Let $\varepsilon_0 > 0$ as in Lemma 2.4. By Lemma 2.7 the map

$$\mathfrak{F} : (X \cap B_\varepsilon) \setminus V \to \mathbb{C} \setminus \{0\}$$

is a submersion on each stratum $S_{\alpha} \subset B_{\varepsilon_0}$.

Consider the vector field \tilde{w} on $\mathbb{C} \setminus \{0\}$ given by $\tilde{w}(z) = iz$, which is tangent to all the circles $S^1_{\eta} \subset \mathbb{C}$. By Proposition 1.11 we can lift \tilde{w} using \mathfrak{F}, to a stratified rugose vector field w on $(X \cap B_{\varepsilon_0}) \setminus V$. By [36, Prop. (4.8)] this vector field is integrable and since $d\mathfrak{F}_x(w(x)) = \tilde{w}(\mathfrak{F}(x))$, the integral curve $p(t)$ of w is sent by \mathfrak{F} to the circle $S^1_{||x||} \subset \mathbb{C}$ of radius $||x||$. Thus, $p(t)$ is transverse to X_θ with $\theta = \text{ arg } \mathfrak{F}(x)$. On the other hand, by the definition of \mathfrak{F}, we have that $p(t)$ lies in the sphere $S_{||x||} \subset \mathbb{C}^n$ and therefore w is tangent to all the spheres in B_{ε_0}. The solution $p(t)$ certainly exists locally and can be extended over some maximal open interval of \mathbb{R}.

Since $(X \cap B_\varepsilon) \setminus V$ is not compact, we have to guarantee that $p(t)$ cannot tend to V as t tends to some finite limit t_0, that is, that w is a complete vector field. The lifting w of the vector field \tilde{w} is not unique and it depends on the choice of a-horizontal subbundle H of the rugose vector field F tangent to the stratification $\{S_\alpha\}$ which induces the tangent bundle TS_α on a stratum $S_{\alpha} \cap V$ (see Remark 1.12). Hence we have to choose an appropriate horizontal subbundle H to ensure that the lifting w is complete. We do this as follows.

Let $\hat{f} : U \to \mathbb{C}$ be an analytic extension of f to an open neighbourhood U of 0 in \mathbb{C}^n. Let $\hat{V} = \hat{f}^{-1}(0)$, $\hat{\theta} = \pi_{\theta} \circ \hat{f}$ and define $\hat{X}_\theta = \hat{h}^{-1}_0(0)$. Following [22, §4], since $\hat{f} = |\hat{f}(x)| e^{i\theta(x)}$, we have that $\log \hat{f}(x) = \log|\hat{f}(x)| + i\theta(x)$, thus $\theta(x) = \Re(-i \log \hat{f}(x))$. Differentiating along a curve $x = p(t)$ we have that

$$\frac{d\theta(p(t))}{dt} = \Re \left(\frac{dp}{dt}, i \text{ grad } \hat{f}(x) \right). \quad (14)$$

Therefore, the vector $i \text{ grad } \log \hat{f}(x)$ is the real gradient of the real analytic function θ. Since the \hat{X}_θ’s are the fibres of θ the vector $i \text{ grad } \hat{f}(x)$ is normal to $\hat{X}_\theta(x)$.

On the other hand, $\log|\hat{f}(x)| = \Re(\log \hat{f}(x))$ and differentiating along a curve $x = p(t)$ we have that

$$\frac{d\log|\hat{f}(x)|}{dt} = \Re \left(\frac{dp}{dt}, \text{ grad } \log \hat{f}(x) \right). \quad (15)$$
Hence the vector \(\nabla \log \hat{f}(x) \) is the real gradient of the real analytic function \(\log|\hat{f}(x)| \). Since the Milnor tubes are the fibres of \(\log|\hat{f}(x)| \), the vector \(\nabla \log \hat{f}(x) \) is normal to the Milnor tube \(N(\varepsilon, |\hat{f}(x)|) \).

We have that \(X_\theta = X \cap \bar{X}_\theta \). Let \(S_\alpha \) be a stratum of \(X \) not contained in \(V \); notice that \(S_\alpha \cap X_\theta = S_\alpha \cap \bar{X}_\theta \). Consider \(x \in S_\alpha \cap X_\theta \) and let \(S_{\|x\|} \) be the sphere of radius \(\|x\| \) centred at 0. By the definition of \(\mathfrak{g} \) we have that the fibre of \(\mathfrak{g}|_{S_\alpha} \) which contains \(x \) is given by

\[
\mathfrak{g}|_{S_\alpha}^{-1}(\mathfrak{g}(x)) = S_\alpha \cap S_{\|x\|} \cap X_\theta. \tag{16}
\]

We denote this fibre by \(\mathfrak{g}_x^\alpha \). To simplify notation set \(S_{\|x\|}^\alpha = S_\alpha \cap S_{\|x\|}, X_\theta^\alpha = S_\alpha \cap X_\theta \) and \(N_\alpha^x = S_\alpha \cap N(\varepsilon, |\hat{f}(x)|) \). Let \(\pi_{\alpha_x} \) be the orthogonal projection of \(\mathbb{C}^n \) onto \(T_xS_\alpha \), then the vector \(\pi_{\alpha_x}(i \nabla \log \hat{f}(x)) \) is normal to \(\nabla \hat{f}(x) \), the vector \(\pi_{\alpha_x}(\nabla \log \hat{f}(x)) \) is normal to the Milnor tube \(N_\alpha^x \), and the vector \(\pi_{\alpha_x}(x) \) is normal to \(S_{\|x\|}^\alpha \). Denote by \(\text{span}_\mathbb{R}(\pi_{\alpha_x}(x), \pi_{\alpha_x}(i \nabla \log \hat{f}(x))) \) the real plane spanned by the vectors \(\pi_{\alpha_x}(x) \) and \(\pi_{\alpha_x}(i \nabla \log \hat{f}(x)) \).

By (16) we have that

\[
(T_x\mathfrak{g}_x^\alpha)^\perp = \text{span}_\mathbb{R}(\pi_{\alpha_x}(x), \pi_{\alpha_x}(i \nabla \log \hat{f}(x))),
\]

the orthogonal space is taken in the tangent space to the stratum.

As in \cite[Lem. 4.6]{22} we have to consider two cases:

Case 1: The vectors \(\pi_{\alpha_x}(x) \) and \(\pi_{\alpha_x}(\nabla \log \hat{f}(x)) \) are linearly independent over \(\mathbb{C} \).

We have that \(S_{\|x\|}^\alpha \) and \(N_\alpha^x \) are codimension 1 submanifolds of \(S_\alpha \) and the vectors \(\pi_{\alpha_x}(x) \) and \(\pi_{\alpha_x}(\nabla \log \hat{f}(x)) \) are respectively normal to them. Since these vectors are linearly independent over \(\mathbb{R} \), we have that \(S_{\|x\|}^\alpha \) and \(N_\alpha^x \) are transverse. Let \(M_\alpha^x \) be their intersection, which is a submanifold of \(S_{\|x\|}^\alpha \) of codimension 1. The fibre \(\mathfrak{g}_x^\alpha \) is also a codimension 1 submanifold of \(S_{\|x\|}^\alpha \).

Claim: The manifolds \(M_\alpha^x \) and \(\mathfrak{g}_x^\alpha \) are transverse in \(S_{\|x\|}^\alpha \).

Proof of Claim. Suppose they are not transverse, then \(T_xM_\alpha^x = T_x\mathfrak{g}_x^\alpha \), hence \((T_xM_\alpha^x)^\perp = (T_x\mathfrak{g}_x^\alpha)^\perp \). But

\[
(T_xM_\alpha^x)^\perp = \text{span}_\mathbb{R}(\pi_{\alpha_x}(x), \pi_{\alpha_x}(\nabla \log \hat{f}(x))),
\]

\[
(T_x\mathfrak{g}_x^\alpha)^\perp = \text{span}_\mathbb{R}(\pi_{\alpha_x}(x), \pi_{\alpha_x}(i \nabla \log \hat{f}(x))),
\]

here all the orthogonal spaces are considered in the tangent space to the stratum \(T_xS_\alpha \). Therefore the vector \(\pi_{\alpha_x}(x) \) is in the real plane generated by \(\pi_{\alpha_x}(\nabla \log \hat{f}(x)) \) and \(\pi_{\alpha_x}(i \nabla \log \hat{f}(x)) \), this implies that \(\pi_{\alpha_x}(x) \) is in the complex line generated by \(\pi_{\alpha_x}(\nabla \log \hat{f}(x)) \), which contradicts our original assumption. \(\blacksquare \)

Since \(M_\alpha^x \) and \(\mathfrak{g}_x^\alpha \) are transverse in \(S_{\|x\|}^\alpha \) there is a unique direction in \(T_xM_\alpha^x \) which is not in \(T_x\mathfrak{g}_x^\alpha \) and is orthogonal to \(T_x(M_\alpha^x \cap \mathfrak{g}_x^\alpha) \). Let \(\nu(x) \) be a unit
vector in this direction, then the real plane \(H_x = \text{span}_\mathbb{R} (\nu(x), \pi_{\alpha_x}(x)) \) is complementary to \(T_x S^\alpha_x \) in \(T_x S_\alpha \), that is

\[
T_x S_\alpha = T_x S^\alpha_x \oplus H_x.
\]

Let \(W \) be a neighbourhood of \(x \) where there is a rugose vector bundle \(F \) on \(W \cap X \) tangent to the stratification \(\{ S_\alpha \cap W \} \) which induces the tangent bundle \(T S_\alpha \) on the stratum \(S_\alpha \cap W \) \[20\] Cor. (4.5)]. Consider the rugose vector bundle morphism \(T \mathfrak{g} : F \to \mathfrak{g}^* TC \) induced by \(\mathfrak{g} \) and let \(K \) be its kernel. For a point \(x \in S_\alpha \) we have that \(F_x = T_x S_\alpha \) and the fibre \(K_x = T_x S_x \).

Let \(x' \in W \) and let \(\pi_{F_{x'}} \) be the orthogonal projection of \(\mathbb{C}^n \) onto the fibre \(F_{x'} \) of \(F \) at \(x' \). Since the vectors \(\pi_{\alpha_x}(x) \) and \(\pi_{\alpha_x} (\text{grad log } \tilde{f}(x)) \) are linearly independent over \(\mathbb{C} \), the vectors \(x' \) and \(\text{grad log } \tilde{f}(x') \) are also linearly independent over \(\mathbb{C} \) for every \(x' \) in a neighbourhood of \(x \) which we can assume is also \(W \). Then, by the previous arguments, there exists a unit vector \(\tilde{v}(x') \) tangent to the intersection \(M_{x'} \) of the sphere \(S_{\|x'\|} \) and the Milnor tube \(N_{\varepsilon, \|f(x')\|} \) and orthogonal to \(M_{x'} \cap \mathfrak{g}_{x'} \) where \(\mathfrak{g}_{x'} \) is the fibre of \(\mathfrak{g} \) which contains \(x' \).

Define \(H_{x'} = \pi_{F_{x'}} \left(\text{span}_\mathbb{R} (\tilde{v}(x'), x') \right) \). Notice that for \(x \in S_\alpha \) we have that \(\nu(x) = \pi_{\alpha_x} (\tilde{v}(x)) \) and \(\pi_{F_{x'}} = \pi_{\alpha_x} \), so both definitions of \(H_x \) coincide. Since \(H_x \) is complementary to \(K_x \) in \(F_x \), \(H_{x'} \) is also complementary to \(K_{x'} \) in \(F_{x'} \) for every \(x' \) in a neighbourhood of \(x \) which we can also assume is \(W \). Hence \(H \) is a horizontal subbundle of \(F \) and it gives a rugose stratified lifting \(w \) of \(\tilde{w} \) in \(W \).

Let \(p(t) \) be an integral curve of the vector field \(w \). Since \(d\mathfrak{g}_x(w(x)) = \tilde{w}(\mathfrak{g}_x(x)) \), we have that

\[
\theta(p(t)) = t + \text{constant},
\]

and by \([14]\),

\[
1 = \frac{d\theta(p(t))}{dt} = \Re \langle w(p(t)), i \text{ grad log } \tilde{f}(p(t)) \rangle
= \Re \langle w(p(t)), \pi_{F_{p(t)}} (i \text{ grad log } \tilde{f}(p(t))) \rangle.
\]

In particular we have that

\[
\Re \langle w(x), i \text{ grad log } \tilde{f}(x) \rangle = \Re \langle w(x), \pi_{F_x} (i \text{ grad log } \tilde{f}(x)) \rangle = 1. \tag{17}
\]

Notice that by definition, \(w(x) \in T_x S^\alpha_{\|x\|} \cap H_x \) and therefore it is a real multiple of the vector \(\nu(x) \). Since \(\nu(x) \) is tangent to the Milnor tube \(M_x^\alpha \) and \(\pi_{\alpha_x} (\text{grad log } \tilde{f}(x)) \) is normal to \(M_x^\alpha \), we have that

\[
\Re \langle w(x), \text{grad log } \tilde{f}(x) \rangle = \Re \langle w(x), \pi_{F_x} (\text{grad log } \tilde{f}(x)) \rangle = 0. \tag{18}
\]

Combining \((17)\) and \((18)\) we have that

\[
\langle w(x), i \text{ grad log } \tilde{f}(x) \rangle = 1,
\]

which implies that

\[
|\arg \langle w(x), i \text{ grad log } \tilde{f}(x) \rangle| < \frac{\pi}{4}. \tag{19}
\]

20
This condition certainly holds throughout a neighbourhood of x.

Case 2: The vector $\pi_{\alpha_x}(\text{grad } \tilde{f}(x))$ is equal to a multiple $\lambda \pi_{\alpha_x}(x)$.

In this case, the complex line generated by $\pi_{\alpha_x}(\text{grad } \tilde{f}(x))$ is the real plane $H_x = \text{span}_\mathbb{R} \left(\pi_{\alpha_x}(x), \pi_{\alpha_x}(i \text{ grad } \tilde{f}(x)) \right) = \text{span}_\mathbb{R} \left(\pi_{\alpha_x}(ix), \pi_{\alpha_x}(x) \right)$. Since H_x is the orthogonal space in T_xS_{α} to TS_{α}, H_x is complementary to TS_{α} in T_xS_{α}.

As before, let W be a neighbourhood of x where there is a rugose vector bundle F on $W \cap X$ tangent to the stratification $\{S_{\alpha} \cap W\}$ which induces the tangent bundle TS_{α} on the stratum $S_{\alpha} \cap W$. Consider the rugose vector bundle morphism $\tilde{T}g : F \to g^*T\mathbb{C}$ induced by g and let K be its kernel. For a point $x \in S_{\alpha}$ we have that $F_x = T_xS_{\alpha}$ and the fibre $K_x = T_x\tilde{\mathbb{C}}^\alpha$.

Let $x' \in W$ and let $\pi_{F_{x'}}$ be the orthogonal projection of \mathbb{C}^n onto the fibre F_x' of F at x'. Define $H_{x'} = \pi_{F_{x'}}(\text{span}_\mathbb{R}(ix', x'))$. For $x \in S_{\alpha}$ we have that $\pi_{F_x} = \pi_{\alpha_x}$, so both definitions of H_x coincide. Since H_x is complementary to K_x in F_x, $H_{x'}$ is also complementary to $K_{x'}$ in $F_{x'}$ for every x' in a neighbourhood of x which we can also assume is W. Hence H is a horizontal subbundle of F and it gives a rugose stratified lifting w of \tilde{w} in W.

Notice that by definition when $x \in S_{\alpha}$, $w(x) \in T_x\tilde{\mathbb{C}}^\alpha \cap H_x$, so there exists $k \in \mathbb{R}$ such that $w(x) = k\pi_{\alpha_x}(ix)$. Therefore we have:

\[
\langle w(x), i \text{ grad } \tilde{f}(x) \rangle = \langle w(x), \pi_{\alpha_x}(i \text{ grad } \tilde{f}(x)) \rangle = k\langle \pi_{\alpha_x}(ix), \pi_{\alpha_x}(i \text{ grad } \tilde{f}(x)) \rangle = k\langle \pi_{\alpha_x}(ix), \lambda \pi_{\alpha_x}(ix) \rangle = k\lambda \|\pi_{\alpha_x}(ix)\|^2.
\]

Since $d\tilde{g}_x(w(x)) = \tilde{w}(\tilde{g}(x))$, we have that

\[
\Re\langle w(x), i \text{ grad } \tilde{f}(x) \rangle = \Re\langle w(x), \pi_{\alpha_x}(i \text{ grad } \tilde{f}(x)) \rangle = 1, \quad (20)
\]

and by Lemma 3.2 and since k is real

\[
|\arg\langle w(x), i \text{ grad } \tilde{f}(x) \rangle| < \frac{\pi}{4}.
\]

Again, this condition holds throughout a neighbourhood of x and using a rugose partition of unity we obtain a global vector field w which lifts \tilde{w} and satisfies the following properties:

\[
\Re\langle w(x), i \text{ grad } \tilde{f}(x) \rangle = 1,
\]

\[
|\arg\langle w(x), i \text{ grad } \tilde{f}(x) \rangle| < \frac{\pi}{4}.
\]

Therefore

\[
|\Re\langle w(x), \text{ grad } \tilde{f}(x) \rangle| = |\Im\langle w(x), i \text{ grad } \tilde{f}(x) \rangle| < 1.
\]
To guarantee that $p(t)$ cannot tend to V as t tends to some finite limit t_0 is equivalent to insure that $f(p(t))$ cannot tend to zero, or that $|\log|f(p(t))||$ cannot tend to $-\infty$, as $t \to t_0$. But we have that

$$\left| \frac{d \log|f(p(t))|}{dt} \right| = \left| \frac{d \Re \log f(p(t))}{dt} \right| = |\Re \langle w(p(t)), \text{grad} \log \tilde{f}(p(t)) \rangle| < 1.$$

Hence $\log|f(p(t))| < t + \text{constant}$ and therefore $|f(p(t))|$ is bounded away from zero as t tends to any finite limit.

Taking $\varepsilon_0 > \varepsilon > 0$ we have that w satisfies the lemma on $(X \cap B_\varepsilon) \setminus V$. \(\square\)

We notice that Proposition 3.4 essentially proves that the map

$$\Psi : (X \cap B_\varepsilon) \setminus V \to \mathbb{R}P^1$$

in Theorem 2 is the projection map of a fibre bundle (see Section 3.1 below).

Proof of Theorem 2 That the restriction of $\tilde{\Psi}$ to each sphere around 0 of radius $\varepsilon' \leq \varepsilon$ is a fibre bundle over the corresponding circle of radius ε', is an immediate consequence of Proposition 3.4. The composition of this restriction with the radial projection of S^1_ε onto S^1 is the Milnor fibration ϕ in (1). To complete the proof we use the uniform conical structure given in Theorem 1-iii) which gives the local triviality of F over $B(V \setminus \{0\})$. \(\square\)

3.1. Proof of Theorem 2

Now consider the maps of Theorem 2: $\Psi(x) = (\text{Re}(f(x)) : \text{Im}(f(x)))$, and $\Phi(x) = \frac{f(x)}{|f(x)|}$. Notice that Φ is a lifting of Ψ to the double cover S^1 of $\mathbb{R}P^1$, so we have the following commutative diagram

$$
\begin{array}{ccc}
(X \cap B_\varepsilon) \setminus V & \xrightarrow{\Psi} & S^1 \\
\downarrow{\Phi} & & \downarrow{\Phi^{-1}} \\
\mathbb{R}P^1 & & \mathbb{R}P^1
\end{array}
$$

From Remark 2.3, for each $L_\theta \in \mathbb{R}P^1$ and each $\theta \in [0, 2\pi)$ one has,

$$\Psi^{-1}(L_\theta) = E_\theta \cup E_{\theta + \pi} \quad \text{and} \quad \Phi^{-1}(e^{i\theta}) = E_\theta.$$

The vector field w constructed in Proposition 3.4 provides topological trivialisations around the fibres of the maps Ψ and Φ, showing that both are fibre bundles, which proves the first statement of Theorem 2. That the restriction of Φ to the link of X is the classical Milnor fibration is immediate from Theorem 3.

Remark 3.5. If $X \setminus V$ is non-singular the flow obtained in Proposition 3.4 can be made C^∞, thus all the E_θ are diffeomorphic.
On the other hand, let D_η be a disc in \mathbb{C} of radius η where $\varepsilon >> \eta > 0$ and consider the Milnor tube $N(\varepsilon, \eta) = X \cap B_\varepsilon \cap f^{-1}(\partial D_\eta)$. Since the restriction of f to $(X \cap B_\varepsilon) \setminus V$ is a submersion on each stratum, we have that $\{ N(\varepsilon, \eta) \cap S_\alpha \mid S_\alpha \subset X \setminus V \}$ is a Whitney-strong stratification of $N(\varepsilon, \eta)$ Rem. (3.7). Since the stratification $\{ S_\alpha \}$ of X satisfies Thom’s (a_f) condition, if η is small enough, then all the fibres of f in $N(\varepsilon, \eta)$ are transverse to S_ε. Using Thom-Mather first Isotopy lemma and the transversality of the fibres with the boundary as in [15, §1], we obtain that the restriction of Φ to $N(\varepsilon, \eta)$,

$$\Phi: N(\varepsilon, \eta) \to S^1,$$

is also a fibre bundle. This map equals the restriction of f to $N(\varepsilon, \eta)$ followed by the radial projection of ∂D_η onto S^1, so this is the Milnor-Lê fibration [2] up to multiplication by a constant.

It remains to prove that the two fibrations [1] and [2] are equivalent. We need the following, which is a consequence of Lemma 2.7.

Proposition 3.6. Let $\{ S_\alpha \}$ be a Whitney stratification of X adapted to V and for each $\theta \in [0, \pi)$ equip X_θ with the stratification $\{ X_\theta \cap S_\alpha \}$ obtained by intersecting X_θ with the strata of $\{ S_\alpha \}$. Then for every sufficiently small ball B_ε around 0, there exists a stratified, rugose vector field \tilde{v} on $(X \cap B_\varepsilon) \setminus V$ which has the following properties:

i) It is radial, i.e., it is transverse to the intersection of X with all spheres in B_ε centred at 0.

ii) It is tangent to the strata of each $X_\theta \setminus V$.

iii) It is transverse to all the tubes $f^{-1}(\partial D_\eta)$.

Proof. Notice that the vector field v_ε in the proof of Lemma 2.5 already satisfies conditions [1] and [2] and is rugose. The aim now is to modify this vector field to insure that it satisfies also [3], being rugose.

Let ε_0 be as in Lemma 2.5. Let $\varepsilon_0 > \varepsilon > 0$ be small enough so that the restrictions of f and $\bar{\varepsilon}$ to $(X \cap B_\varepsilon) \setminus V$ are both submersions on each stratum; such an ε exists by the theorem of Bertini-Sard-Verdier [36, Thm. (3.3)]. Let u be the radial vector field in the proof of Theorem 3. Now we use f to lift u to a stratified rugose vector field v_f on $(X \cap B_\varepsilon) \setminus V$ such that, for every $x \in (X \cap B_\varepsilon) \setminus V$, we have:

$$df_x(v_f(x)) = u(f(x)).$$

The local flow associated to v_f is transverse to all Milnor tubes $f^{-1}(\partial D_\eta)$, while the one associated to v_ε is transverse to all spheres in B_ε centred at 0. The integral paths of both move along $X_\theta \setminus V$, i.e., along points where the argument θ of f does not change.

From the definitions of v_f and v_ε and the fact that each stratum $S_\alpha \cap X_\theta$ of X_θ is transverse to all the spheres (Lemma 2.5), one can see that the vectors $v_f(x)$ and $v_\varepsilon(x)$ cannot point in opposite directions for any $x \in (X \cap B_\varepsilon) \setminus V$. Hence adding up v_f and v_ε on $(X \cap B_\varepsilon) \setminus V$ we get a vector field \tilde{v} which satisfies the three properties of Proposition 3.6. □
Now let ϕ denote the restriction of Φ to $L_X \setminus L_f = S_\varepsilon \cap (X \setminus V)$, which defines the classical Milnor fibration. The flow associated to the vector field \tilde{v} in Proposition 3.6 defines in the usual way a homeomorphism between the fibre of $f^{-1}(e^{i\theta}) \cap B_\varepsilon$ and the portion of the fibre $\phi^{-1}(e^{i\theta})$ defined by the inequality $|f(x)| \geq \eta$.

To complete the proof we must show that the fibration defined by ϕ on $L_X \setminus L_f$ is equivalent to the restriction of ϕ to the points in the sphere satisfying $|f(x)| > \eta$. For this we use that since f satisfies Thom’s (a) condition, the restriction of f to $T(\varepsilon, \eta) = S_\varepsilon \cap f^{-1}(\mathbb{D}_\eta \setminus \{0\})$ is a submersion on each stratum.

Hence, again by Verdier’s result Proposition 1.11 we can lift the radial vector $u(z) = z$ on $\mathbb{D}_\eta \setminus \{0\}$ to a stratified, rugose vector field on $T(\varepsilon, \eta)$, whose flow preserves the fibres of ϕ and is transverse to the intersection with S_ε of all the Milnor tubes $f^{-1}(\partial \mathbb{D}_{\eta'})$ for all $0 < \eta' \leq \eta$. This gives the equivalence of the two fibrations, and therefore finishes the proof of Theorem 2.

4. A fibration theorem on the blow up

In this section we complete the proof of statement (i) of Theorem 1 by proving that the varieties X_θ are all homeomorphic. In order to do that, we realise the spaces X_θ as fibres of a topological fibre bundle.

A minimal way to obtain an unfolding of the pencil (X_θ) is achieved by the blow-up of its axis $V = f^{-1}(0)$. We produce in this way a new analytic space \tilde{X} with a projection to $\mathbb{R}P^1$ whose fibres are exactly the X_θ’s. The space \tilde{X} is equipped with a Whitney stratification obtained in a canonical way from the one on X. Using the Thom-Mather First Isotopy Lemma, we prove that \tilde{X} is a fibre bundle over $\mathbb{R}P^1$. This is a new Milnor-type fibration theorem in which we do not need any more to remove the zero locus of the function f.

4.1. The real blow up

As before, we consider a sufficiently small representative X of the complex analytic germ $(X, 0)$ and $f : (X, 0) \to (\mathbb{C}, 0)$ holomorphic. Set $V = f^{-1}(0)$ and consider the real analytic map

$$
\Psi : X \setminus V \to \mathbb{R}P^1,
\quad z \mapsto (\text{Re}(f(z)) : \text{Im}(f(z))).
$$

Let \tilde{X} be the analytic set in $X \times \mathbb{R}P^1$ defined by $\text{Re}(f)t_2 - \text{Im}(f)t_1 = 0$, where $(t_1 : t_2)$ is a system of homogeneous coordinates in $\mathbb{R}P^1$. The first projection induces a real analytic map:

$$
e_V : \tilde{X} \to X;
$$

this is the real blow-up of V in X. It induces a real analytic isomorphism $\tilde{X} \setminus e^{-1}_V(V) \cong X \setminus V$. The inverse image of V by e_V is $V \times \mathbb{R}P^1$.

The second projection induces a real analytic map:

$$
\tilde{\Psi} : \tilde{X} \to \mathbb{R}P^1,
$$

24
and one has: \(\tilde{\Psi} |_{\tilde{X} \setminus e^{-1}V(V)} = \Psi \circ e_V |_{\tilde{X} \setminus e^{-1}V(V)} \), i.e., \(\tilde{\Psi} \) extends \(\Psi \) to \(e^{-1}V(V) \cong V \times \mathbb{R}P^1 \). It is clear that each fibre \(\tilde{\Psi}^{-1}(t) \) is isomorphic to \(X_\theta \times \{t\} \), where \(\theta \) is the angle between the horizontal axis and the line represented by \(t \).

4.2. The fibration theorem on the blow up

We now prove Theorem 5, i.e., \(\tilde{\Psi} : \tilde{X} \to \mathbb{R}P^1 \), is a topological fibre bundle with fibres the \(X_\theta \).

For this, we consider a Whitney stratification \(\{S_\alpha\} \) of \(X \) adapted to \(V \). This induces a stratification \(\Sigma_\alpha \) on \(\tilde{X} \) defined by:

\[\Sigma_\alpha = e^{-1}V(S_\alpha) \]

We claim this stratification is Whitney regular. This is Proposition 4.3 at the end of the section, and we assume it for the moment.

Notice that the map \(\Psi \) restricted to each stratum \(\Sigma_\alpha \) has no critical point. In fact, outside \(e^{-1}V(V) \), \(\Psi \) coincides with \(\Psi \) (up to isomorphism), which is a submersion onto \(\mathbb{R}P^1 \) restricted to each stratum of \(X \setminus V \). On the other hand, the restriction of \(\tilde{\Psi} \) to a stratum contained in \(e^{-1}V(V) \) is surjective onto \(\mathbb{R}P^1 \) and is given by the second projection on the product \(V \times \mathbb{R}P^1 \).

In order to be able to apply Thom-Mather’s First Isotopy Lemma we need to restrict the map \(\tilde{\Psi} \) to a compact subset where it is a proper submersion (see [20, Proposition 11.1]).

Consider the closed ball \(\overline{B}_\varepsilon \) centred at \(0 \) with radius \(\varepsilon \), in the ambient space \(\mathbb{C}^n \). The intersection \(\tilde{X} \) with \(\overline{B}_\varepsilon \times \mathbb{R}P^1 \) is compact and hence the restricted map \(\tilde{\Psi} : \tilde{X} \cap (\overline{B}_\varepsilon \times \mathbb{R}P^1) \to \mathbb{R}P^1 \) is proper. This map is a submersion in the stratified sense if and only if the fibres of \(\tilde{\Psi} \) are transverse to \(S_\varepsilon \times \mathbb{R}P^1 \) or, equivalently, the spaces \(X_\theta \) are all transverse to \(S_\varepsilon \) for sufficiently small \(\varepsilon \). But this is already given by Lemma 2.5.

Theorem 5 obviously implies that the spaces \(X_\theta \) are all homeomorphic.

Remark 4.1. The usual proof of the Thom-Mather First Isotopy Lemma uses that the map \(\tilde{\Psi} \) is a proper submersion on each stratum, in order to lift vector fields from the target space, in this case \(\mathbb{R}P^1 \). In the case when both \(X \) and \(f \) have an isolated singularity at \(0 \), then each \(X_\theta \) also has an isolated singularity at \(0 \) and the canonical vector field on \(\mathbb{R}P^1 \cong S^1 \) can be lifted to a rugose vector field \(\tilde{v} \) on the blow-up \(\tilde{X} \), which is \(C^\infty \) away from the stratum \(\{0\} \times \mathbb{R}P^1 \) and leaves invariant the subspace \(V \times \mathbb{R}P^1 \). This will be used later, for proving Corollary 4.

Remark 4.2. Theorem 5 gives another proof that the stratification induced on the \(X_\theta \) is Whitney regular. Since Whitney regularity conditions are stable under transversality (see for example [8, Chap. 1 (1.4)]), the fibres of the projection \(\tilde{\Psi} : \tilde{X} \to \mathbb{R}P^1 \) inherit a Whitney regular stratification given by \(\{\Sigma_\alpha \cap \tilde{\Psi}^{-1}(t)\} \). Hence \(\{S_\alpha \cap X_\theta\} \) is a Whitney regular stratification of each \(X_\theta \).
4.3. An induced Whitney stratification on the blow up

The proposition below completes the proofs of Theorems 4.3 and 5.

Proposition 4.3. Consider a Whitney stratification \(\{ S_\alpha \} \) of a sufficiently small representative \(X \) of the germ \((X,0) \) adapted to \(V \). Then the partition \(\{ \Sigma_\alpha \} \) given by the inverse images by \(e_V \) of the strata \(S_\alpha \) is a Whitney stratification of \(\tilde{X} \).

Proof. Note that if \(S_\alpha \) is a stratum contained in \(V \), the corresponding stratum \(\Sigma_\alpha \subset \tilde{X} \) is \(S_\alpha \times \mathbb{R}P^1 \).

We first check that this partition of \(\tilde{X} \) satisfies the frontier condition. Let \(S_\alpha \) and \(S_\beta \) be strata contained respectively in \(V \) and \(\mathrm{Sing}(X) \), such that \(\Sigma_\alpha \cap \Sigma_\beta \neq \emptyset \). The corresponding strata in \(X \) satisfy the inclusion \(S_\alpha \subset S_\beta \).

Let \((y,t_1 : t_2) \) be a point of \(\Sigma_\alpha \), i.e. \(f(y) = 0 \) and \(y \in \overline{S_\beta} \). Since \(S_\beta \) is not contained in \(V \), the restriction of \(f \) to a neighbourhood of \(y \) in \(\overline{S_\beta} \) is surjective over a neighbourhood of the origin in \(\mathbb{C} \). Hence for every line \(L_\theta \subset \mathbb{R}^2 \) containing the origin, the intersection \(X_\theta \cap S_\beta \) has points \(y_n \) arbitrarily close to \(y \). Taking the line corresponding to the projective point \((t_1 : t_2) \), we obtain a sequence \((y_n,t_1 : t_2) \in \Sigma_\beta \) converging to \((y,t_1 : t_2) \).

In the other cases, it is clear that the frontier condition holds.

Now, we prove that this stratification is Whitney regular. Consider a stratum \(\Sigma_\alpha = S_\alpha \times \mathbb{R}P^1 \subset V \times \mathbb{R}P^1 \) and a stratum \(\Sigma_\beta \) not contained in \(V \times \mathbb{R}P^1 \) such that \(\Sigma_\alpha \subset \Sigma_\beta \). For the other cases it is easy to see that Whitney conditions hold.

Consider a sequence of points \((x_n,t_n) \in \Sigma_\beta \subset X \times \mathbb{R}P^1 \) converging to a point \((x,t) \in S_\alpha \times \mathbb{R}P^1 \) such that the sequence of tangent spaces \(T_n := T_{(x_n,t_n)} \Sigma_\beta \) converges to a linear space \(T \).

Lemma 4.4. For any \(b \in \mathbb{R} \) there exists a vector \(a \in \mathbb{C}^n \) such that the vector \((a,b) \in T \).

Proof. Consider the following commutative diagram:

\[
\begin{array}{ccc}
\tilde{X} & \xrightarrow{e_V} & X \\
\downarrow{} & & \downarrow{} \\
U \times \mathbb{R}P^1 \supset U & \xrightarrow{e_0} & U \subset \mathbb{R}^2
\end{array}
\]

where \(\psi \) is the real analytic map on \(X \) defined by \((\text{Re}(f), \text{Im}(f)) \), \(e_0 : \tilde{U} \to U \) is the blow-up of the origin in a neighbourhood \(U \) of \(0 \) in \(\mathbb{R}^2 \) and \(\pi \) is the pull-back of \(\psi \) by \(e_0 \).

Let us work on a local chart \(X \times \mathbb{R} \) of \(X \times \mathbb{R}P^1 \) near the point \((x,t) \). Call \((y_n,t_n) \in \tilde{U} \) and \((0,t) \in \{0\} \times \mathbb{R} \) the respective images of \((x_n,t_n) \) and \((x,t) \) by \(\pi \). The direction of the tangent space \(T_{(0,t)}(\{0\} \times \mathbb{R}) = \{0\} \times \mathbb{R} \) is naturally contained in the limit of directions of tangent spaces \(T_n := T_{(y_n,t_n)} \tilde{U} \). Hence, there exists a sequence of directions of lines \(l_n \subset T_n \) converging to \(\{0\} \times \mathbb{R} \).

Since the map \(\pi \) is a submersion at \((x_n,t_n) \), there exists a sequence of directions of lines \(h_n \subset T_n \) whose images by the tangent map to \(\pi \) at \((x_n,t_n) \) is \(l_n \).
Since \(l_n \) converges to \(\{0\} \times \mathbb{R} \), the limit \(h \) of \(h_n \) is not contained in \(\mathbb{C}^n \times \{0\} \). So there exists a vector \((a, b) \in T\) such that that \(b \neq 0 \).

\[\square\]

Lemma 4.5. The stratification \(\{\Sigma_\alpha\} \) satisfies Whitney’s \((a)\)-condition.

Proof. Under the previous notations, we need to prove that the direction of tangent space \(T_{(x,t)} \Sigma_\alpha \) is contained in \(T \).

Let us now describe the tangent space \(T_n \). Recall that the blow-up \(\tilde{X} \) is defined as the subspace of \(X \times \mathbb{RP}^1 \) given by the equation \(t_2 \operatorname{Re}(f) - t_1 \operatorname{Im}(f) = 0 \), where \((t_1 : t_2)\) are homogeneous coordinates in \(\mathbb{RP}^1 \).

Suppose the point \((x, t) \in S_\alpha \times \mathbb{RP}^1 \) lives in the local chart given by \(t_1 \neq 0 \) or, equivalently, \(\operatorname{Re}(f) \neq 0 \), and consider a holomorphic extension \(\tilde{f} \) of \(f \) to the ambient space \(\mathbb{C}^n \). Denote by \(f_1 \) and \(f_2 \) respectively the real and imaginary parts of \(\tilde{f} \).

We then have:

\[T_n = \{(a, b) \in T_{x_n} S_\beta \times \mathbb{R}, \langle \frac{t_2}{t_1} \operatorname{grad}_{x_n} f_1 - \operatorname{grad}_{x_n} f_2, a \rangle + f_1(x_n)b = 0 \} \]

where \(\langle \, , \, \rangle \) is the real scalar (or inner) product in a real vector space.

If we call \(u_n \) the vector \((\langle \frac{t_2}{t_1} \operatorname{grad}_{x_n} f_1 - \operatorname{grad}_{x_n} f_2, f_1(x_n) \rangle) \in \mathbb{C}^n \times \mathbb{R} \), \(L_n \) the line generated by \(u_n \) and \(N(L_n) \) its orthogonal linear space in \(\mathbb{C}^n \times \mathbb{R} \), then we can write:

\[T_n = (T_{x_n} S_\beta \times \mathbb{R}) \cap N(L_n). \]

We now prove that the sequence of lines \(L_n \) converges to a line \(L \) contained in \(\mathbb{C}^n \times \{0\} \). This is a consequence of the Lojasiewicz inequality \([17] \), p. 92.

In fact, if \(g \) is a real analytic map in a neighbourhood of a point \(p \in \mathbb{R}^n \) then there exist a neighbourhood \(p \in W \subset \mathbb{R}^n \) and \(0 < \theta < 1 \) such that, for any \(q \in W \) we have:

\[\|f(q) - f(p)\|^\theta \leq \|\operatorname{grad} f\|. \quad (21) \]

We will apply this inequality to \(f_1 \) in a neighbourhood of \(x \).

Since \(\tilde{f} \) is holomorphic, the vectors \(\operatorname{grad} f_1 \) and \(\operatorname{grad} f_2 \) are orthogonal and have the same module at any point, so:

\[\|\frac{t_2}{t_1} \operatorname{grad}_{x_n} f_1 - \operatorname{grad}_{x_n} f_2\|^2 = \|\operatorname{grad}_{x_n} f_1\|^2 \left(\frac{t_2}{t_1}\right)^2 + 1. \]

The function \(\tilde{f} \) being holomorphic, it has an isolated critical value at 0 and hence \(\operatorname{grad}_{x_n} f_1 \neq 0 \). So dividing the vector \(u_n \) by the module of \(\operatorname{grad}_{x_n} f_1 \) we have that

\[\frac{\|\frac{t_2}{t_1} \operatorname{grad}_{x_n} f_1 - \operatorname{grad}_{x_n} f_2\|}{\|\operatorname{grad}_{x_n} f_1\|} \]

tends to a non-zero value, while by the inequality \((21)\) one has:

\[\frac{\|f_1(x_n)\|}{\|\operatorname{grad}_{x_n} f_1\|} < \|f_1(x_n)\|^{1-\theta}, \]

27
and hence it tends to zero. So the sequence of lines L_n tends to a line L contained in $\mathbb{C}^n \times \{0\}$ and the normal spaces $N(L_n)$ converge to a linear space containing $\{0\} \times \mathbb{R}$.

We are now going to prove that the limit T of T_n is equal to the intersection of the limit of $T_{x_n} S_\beta \times \mathbb{R}$ with the normal space $N(L)$ to L in $\mathbb{C}^n \times \mathbb{R}$.

Since the linear space $N(L)$ is a hyperplane it is sufficient to show that the limit of $T_{x_n} S_\beta \times \mathbb{R}$ is not contained in $N(L)$, and then the limit of the intersection is the intersection of the limits.

By Lemma 4.4, for any $0 \neq b \in \mathbb{R}$ there exists a vector $a \in \mathbb{C}^n$ such that $(a, b) \in T$. Since S_β has real dimension at least two, then there exists $b \in \mathbb{R}$, $\neq 0$ and there exists $a \in \mathbb{C}^n$, $\neq 0$, such that $(a, b) \in T$.

So there exists a sequence $(a_n, b_n) \in T_n$ converging to (a, b). This means that $a_n \in T_{x_n} S_\beta$ and the scalar product $(a_n, b_n), u_n) = 0$. If we write $u_n = (u_{n,1}, u_{n,2}) \in \mathbb{C}^n \times \mathbb{R}$, then

$$b_n = -(a_n, \frac{u_{n,1}}{u_{n,2}}).$$

Since b_n converges to a non zero real value, the limit a of a_n is not orthogonal in \mathbb{C}^n to the limit D of lines generated by the vectors $\frac{u_{n,1}}{u_{n,2}}$. Notice that we have the equality $L = D \times \{0\}$. So for any $s \in \mathbb{R}$ the vector (a, s) is not orthogonal to the line L, and then

$$\lim T_{x_n} S_\beta \times \mathbb{R} \notin N(L).$$

We conclude that

$$T = ((\lim T_{x_n} S_\beta) \times \mathbb{R}) \cap N(L).$$

On the other hand, the direction of tangent space to Σ_α at (x, t) is given by:

$$T_{(x,t)} \Sigma_\alpha = T_x S_\alpha \times T_t \mathbb{P}^1.$$

Since the stratification $\{S_\alpha\}$ on X satisfies Whitney’s (a)-condition we have

$$T_x S_\alpha \subset \lim T_{x_n} S_\beta,$$

and hence we obtain

$$T_{(x,t)} \Sigma_\alpha \subset \lim T_{(x_n,t_n)} \Sigma_\beta,$$

which proves the (a)-condition.

We now finish the proof of Proposition 4.3. We use condition (a) to prove condition (b).

Keeping the previous notations, consider a sequence of points $(y_n, s_n) \in \Sigma_\alpha = S_\alpha \times \mathbb{P}^1$ converging to $(x, t) \in \Sigma_\alpha$ such that the sequence of lines l_n joining the points (x, t_n) and (y_n, s_n) in $\mathbb{C}^n \times \mathbb{R}$ converges to a line l. We need to prove that $l \subset T$.

Consider the line h_n generated in \mathbb{C}^n by the vector $x_n - y_n$. We can suppose the sequence of lines h_n converges to a line h. The lines h_n and h are respectively
the projection onto \mathbb{C}^n of the lines l_n and l. So if $(u, v) \in \mathbb{C}^n \times \mathbb{R}$ is a directing vector of the line l, then u is a directing vector of h.

Since the strata S_{α} and S_{β} satisfy Whitney’s (b)-condition, the line h is contained in $\lim T_x S_{\beta}$, and hence, there exists $v' \in \mathbb{R}$ such that the vector $(u, v') \in \mathbb{C}^n \times \mathbb{R}$ is actually in the limit T of tangent spaces T_x.

By Lemma 4.3, the real line $\{0\} \times \mathbb{R}$ is contained in T. So the vector $(u, v') + (0, v - v') \in T$, and we obtain $l \subset T$, completing the proof of Proposition 4.3.

4.4. Proof of Corollary 2

Recall from Remark 2.3 that we can write $X_\theta = E_\theta \cup V \cup E_\theta + \pi$. We see from the preceding lemma that E_θ and $E_\theta + \pi$ have a common border ∂V. It is in this sense that we say that they are glued together along ∂V forming the subspace X_θ.

Notice that the fibres of ϕ are precisely the intersections of the sphere $S_x = \{x \in \mathbb{C}^n : |x| = 1\}$ with the corresponding E_θ. So the fibres of ϕ over two antipodal points of S^1 are glued together along the link L_f forming the link $K_\theta = X_\theta \cap S_x$ of X_θ. The fact that the link K_θ is homeomorphic to the link of $\{\text{Re } f = 0\}$ is an immediate consequence of Theorem 3. Furthermore, if both X and f have an isolated singularity at 0, then by Remark 2.3, all $X_\theta \setminus \{0\}$ are actually diffeomorphic.

It remains to prove the last statement in Corollary 4, i.e., that if both X and f have an isolated singularity at 0, then the link K_θ of each X_θ is diffeomorphic to the double of the Milnor fibre of f. This follows from the previous discussion and the folklore theorem, that in this setting, Milnor’s fibration theorem gives an open-book decomposition of the sphere. In fact, from the discussion above (see equation (5) in Remark 2.3) we have:

$$K_\theta = (E_\theta \cap S_x) \cup (V \cap S_x) \cup (E_{\theta + \pi} \cap S_x).$$

Then, by Remark 4.1, we have that each K_θ is a smooth real analytic, oriented manifold of dimension $2\dim_{\mathbb{C}} X - 2$, obtained by gluing two Milnor fibres of
along their boundary by a smooth diffeomorphism, given by a smooth flow. Such a diffeomorphism is necessarily isotopic to the identity, and therefore each K_θ is diffeomorphic to the double of the Milnor fibre of f.

Remark 4.7. The hypothesis in Corollary 4 of X being irreducible avoids situations as in the following example. Let $g : \mathbb{C}^2 \to \mathbb{C}$ be defined by $g(x, y) = x \cdot y$. Its zero locus X consists of the two axis. Now let $f : X \to \mathbb{C}$ be given by $f(x, y) = x$. Then $V \subset X$ is the y-axe and each X_θ is

$$X_\theta = \{(x, y) \in \mathbb{C}^2 \mid x = 0 \text{ or } y = 0 \text{ and } x = te^{i\theta}, \ t \in \mathbb{R}\}.$$

One has $E_\theta \cup E_{\theta+\pi} = \{(x, y) \in \mathbb{C}^2 \mid y = 0 \text{ and } x = te^{i\theta}, \ t \in \mathbb{R}\}$. Thus no $z \in V \setminus \{0\}$ is in the closure of $E_\theta \cup E_{\theta+\pi}$.

Remark 4.8. If X is non-singular and f has an isolated critical point with respect to some Whitney stratification, then, as observed in [26], the family $\{X_\theta\}$ is (c)-regular in Bekka’s sense (see [1]). In this case, one can follow the method of [26] to construct two flows on the product $X_\theta \setminus \{0\} \times [0, \pi)$ which give on the one hand the transversality of the X_θ’s with the spheres, and on the other hand a flow interchanging the $X_\theta \setminus \{0\}$’s, as in Proposition 3.4. This is similar to what we do here on the blow-up, and in fact these considerations somehow inspired our constructions.

5. The real analytic case

We now look at real analytic mappings from the viewpoint of the previous sections. Let U be an open neighbourhood of the origin 0 in \mathbb{R}^{n+2} and let $f : (U, 0) \to (\mathbb{R}^2, 0)$ be a locally surjective, real analytic map. Set as before $V := f^{-1}(0)$ and denote by $K_\varepsilon = K$ the intersection $V \cap S_\varepsilon$. This is the link of V, which is independent of ε up to homeomorphism. We assume further that $0 \in \mathbb{R}^2$ is the only critical value of f, so the Jacobian matrix $Df(x)$ has rank 2 for all $x \in U \setminus V$.

5.1. The strong Milnor condition

We know from [21, 22] that if f has an isolated critical point at 0, then one has a fibration of the Milnor- Lê type [2], and this can always be taken into a fibration of the complement of K, $S_\varepsilon \setminus K \xrightarrow{\phi} S^1$. So K is a fibred knot. But we also know from [22] that the projection map ϕ can not be always taken to be the obvious map $f/|f|$. As noticed in [23], these remarks extend to the case when the real analytic map-germ f is assumed to have only an isolated critical value at $0 \in \mathbb{R}^2$ provided V has dimension greater than 0 and f has the Thom property, i.e., when there exists a Whitney stratification of U adapted to V, for which f satisfies Thom’s a_f-condition.

The following definitions extend those given in [27] when f has an isolated critical point.
Definition 5.1. Let \(f : (U, \mathcal{O}) \to (\mathbb{R}^2, 0) \) be a locally surjective real analytic map-germ.

i) We say that \(f \) has the Milnor-Lê property at \(0 \in U \subset \mathbb{R}^{n+2} \) if it has an isolated critical value at \(0 \in \mathbb{R}^2 \), \(V \) has dimension more than 0 and \(f \) has the Thom property.

ii) We say that \(f \) has the strong Milnor property if for every sufficiently small \(\varepsilon > 0 \) one has a \(C^\infty \) fibre bundle \(\mathbb{S}_\varepsilon \xrightarrow{\varphi} \mathbb{S}^1 \), where the projection map \(\varphi \) is \(f/|f| \). (If one considers map-germs defined on analytic varieties with singular set of dimension greater than 0, then this fibre bundle is required to be only continuous.)

5.2. \(d \)-Regularity for real analytic map-germs

Following the construction above of a canonical pencil for holomorphic maps, for each line \(L_\theta \) through \(0 \in \mathbb{R}^{2} \), let \(X_\theta = f^{-1}(L_\theta) \). One has:

Proposition 5.2. Each \(X_\theta \) is a real analytic hypersurface of \(U \), of codimension 1, such that:

- Their union is \(U \) and the intersection of any two distinct \(X_\theta \)'s is \(V \).
- Each \(X_\theta \) is non-singular away from the singular set of \(V \), \(\text{Sing}(V) \).

The proof is an exercise and we leave it to the reader.

Definition 5.3. The family \(\{X_\theta | L \in \mathbb{R}P^1\} \) is the canonical pencil of \(f \).

Definition 5.4. The map \(f \) is \(d \)-regular at \(0 \) if there exist a positive definite metric \(d : \mathbb{R}^{n+2} \to \mathbb{R} \), defined by some quadratic form, and \(\varepsilon > 0 \) such that every sphere (for the metric \(d \)) of radius \(\leq \varepsilon \) and centred at \(0 \) meets transversally each \(X_\theta \). If we want to emphasise the metric, then we say that \(f \) is \(d \)-regular at \(0 \) with respect to the given metric.

Examples 5.5. i) By [22] (see Lemma 2.5 above), every holomorphic germ \(f : (\mathbb{C}^n, \mathcal{O}) \to (\mathbb{C}, 0) \) is \(d \)-regular at \(\mathcal{O} \) for the usual metric.

ii) By [23], given holomorphic germs \(f, g : (\mathbb{C}^2, \mathcal{O}) \to (\mathbb{C}, 0) \) such that \(f \bar{g} \) has an isolated critical value at \(0 \in \mathbb{C} \), the map \(f \bar{g} \) is \(d \)-regular at \(\mathcal{O} \) for the usual metric. The same statement holds for the map \(f/g : (\mathbb{C}^n, \mathcal{O}) \to (\mathbb{C}, 0) \) if we further demand that the meromorphic germ \(f/g \) be semi-tame (see [25] for the definition and details).

iii) By [31], every twisted Pham-Brieskorn polynomial \(\bar{z}_1^{\sigma(1)} \bar{z}_2^{\sigma(2)} + \cdots + \bar{z}_n^{\sigma(n)} \), where \(\sigma \) is a permutation of \(\{1, \ldots, n\} \), is \(d \)-regular at \(\mathcal{O} \) for the usual metric. The same statement holds for all quasi-homogeneous singularities, since the \(\mathbb{R}^+ \)-orbits are tangent to the \(X_\theta \). This applies, for instance, to the singularities with polar action of \(\mathbb{Z}_2 \).

iv) By [26], every map-germ \(g : (\mathbb{R}^{n+2}, \mathcal{O}) \to (\mathbb{R}^2, 0) \) for which its pencil is \(c \)-regular (in the sense of K. Bekka) with respect to the control function defined by the metric \(d \), is \(d \)-regular. That was indeed one of the motivations to pursue this research in the real analytic setting.
5.3. The fibration theorem

Let us prove Theorem 6, stated in the introduction. Notice that statement i) is well-known (see for instance [25]), so we only need to prove statements ii) and iii).

Let us equip U with a Whitney stratification adapted to V, and consider the restriction of f to $B_{\varepsilon} \setminus V$, which is a submersion by hypothesis.

Define the real analytic map

$$F : \mathbb{B} \setminus V \rightarrow \mathbb{R}^2 \setminus \{0\}$$

by

$$F(x) = \frac{f(x)}{\|f(x)\|}.$$

Notice that given $y = F(x)$ in a line L_θ through 0, the fibre $F^{-1}(y)$ is the intersection of the corresponding element X_θ in the pencil with the sphere of radius $\|x\|$ centred at 0. Thus we call F the spherefication of f, as in the holomorphic case.

Lemma 5.6. If f is d-regular, then F is a submersion for all $x \in B_{\varepsilon} \setminus V$ with $\varepsilon > 0$ sufficiently small.

The proof of this lemma is exactly the same as in Lemma 2.7.

As in the holomorphic case, this lemma implies the proposition below; we leave the details to the reader. The only point to notice is that because we are assuming the ambient space U is smooth, the liftings we use of vector fields from $\mathbb{R}^2 \setminus 0$ to U can be taken to be C^∞ and we do not need to use Verdier’s theory of rugose vector fields.

Proposition 5.7. If f is d-regular for some metric d, then there exists $\varepsilon > 0$ sufficiently small, such that there exists C^∞ vector field on $\mathbb{B} \setminus V$ such that:

i) Each of its integral lines is contained in an element X_θ of the pencil;

ii) It is transverse to all d-spheres around 0; and

iii) It is transverse to all Milnor tubes $f^{-1}(\partial D_\delta)$, for all sufficiently small discs D_δ centred at $0 \in \mathbb{R}^2$.

Remark 5.8 (Uniform Conical Structure). Notice that d-regularity for f implies that its canonical pencil has a uniform conical structure away from V. In the holomorphic case one has uniform conical structure everywhere near 0, this is part of the content of Theorem 1. In the real analytic case envisaged here, one can prove this uniform conical structure everywhere near 0 if we further demand that f has the strict Thom property, which is automatic for holomorphic maps into \mathbb{C}.

32
Let us now prove Theorem 6. Recall that we are assuming \(f \) has the Thom \(a_f \) property. Thus for \(\varepsilon \gg \delta > 0 \) sufficiently small one has a solid Milnor tube,

\[
SN(\varepsilon, \delta) := \mathbb{B}_\varepsilon \cap f^{-1}(\mathbb{D}_\delta \setminus \{0\}),
\]

and a fibre bundle:

\[
f : SN(\varepsilon, \delta) \to \mathbb{D}_\delta \setminus \{0\},
\]

where \(\mathbb{B}_\varepsilon \) is the ball in \(\mathbb{R}^{n+2} \) of radius \(\varepsilon \) and centre \(\mathbf{0} \) and \(\mathbb{D}_\delta \) is the disc in \(\mathbb{R}^2 \) of radius \(\delta \) and centre \(\mathbf{0} \). The restriction of this locally trivial fibration to the boundary of \(\mathbb{D}_\delta \) gives the fibration in the first statement in Theorem 6.

Now let \(\pi_1 : \mathbb{D}_\delta \setminus \{0\} \to S^1 \) be defined by \(t \mapsto t/|t| \). Let \(\pi_2 : S^1 \to \mathbb{R}P^1 \) be the canonical projection, and set

\[
\Psi := \pi_2 \circ \pi_1 \circ f : SN(\varepsilon, \delta) \to \mathbb{R}P^1.
\]

This is a fibre bundle with fibres \(X_\theta \cap SN(\varepsilon, \delta) \), and it yields to statement (ii) in Theorem 6 restricted to the solid Milnor tube \(SN(\varepsilon, \delta) \). We now use the vector field in Proposition 5.7 to complete the proof of Theorem 6.

APPENDIX: Proof of Lemma 3.2

Here we use the notations and hypotheses of the lemma in question.

PROOF OF LEMMA 3.2. Suppose there were points \(z \in S_\alpha \) arbitrarily close to the origin with

\[
\pi_\alpha_z(\text{grad log } f(z)) = \lambda \pi_\alpha_z(z) \neq 0,
\]

and with \(|\arg \lambda| \) strictly greater than \(\pi/4 \). In other words, \(\lambda \) lies in the open half-plane

\[
\Re((1 + i)\lambda) < 0,
\]

or the open half-plane

\[
\Re((1 - i)\lambda) < 0.
\]

We want to express these conditions by real analytic equalities and inequalities, so as to apply the analytic curve selection lemma 4.

Let

\[
W = \{ z \in S_\alpha \mid \pi_\alpha_z(\text{grad log } f(z)) = \mu \pi_\alpha_z(z), \mu \in \mathbb{C} \}.
\]

Thus \(z \in W \) if and only if the equations

\[
\pi_{\alpha_z}(z)_j \left(\pi_{\alpha_z}(\text{grad } f(z))_j \right) = \pi_{\alpha_z}(z)_k \left(\pi_{\alpha_z}(\text{grad } f(z))_k \right),
\]

are satisfied, where the subindices \(j \) and \(k \) denote the \(j \)-th and \(k \)-th components.

Setting \(z_j = x_j + y_j \) and taking real and imaginary parts, we obtain a collection of real analytic equations in the real variables \(x_j \) and \(y_j \). This proves
that $W \subset S_\alpha \subset \mathbb{C}^n$ is a real analytic set. Note that a point $z \in S_\alpha$ belongs to W if and only if

$$\pi_\alpha \left(\text{grad } f(z) \right) / \bar{f}(z) = \lambda \pi_\alpha (z)$$

for some complex number λ. Multiplying by $\bar{f}(z)$ and taking the inner product with $\bar{f}(z) \pi_\alpha(z)$, we have

$$\left\langle \pi_\alpha \left(\text{grad } f(z) \right), \bar{f}(z) \pi_\alpha(z) \right\rangle = \left\langle \lambda \bar{f}(z) \pi_\alpha(z), \bar{f}(z) \pi_\alpha(z) \right\rangle$$

$$= \lambda \| \bar{f}(z) \pi_\alpha(z) \|^2.$$

In other words, the number λ, multiplied by a positive real number, is equal to

$$\lambda' = \left\langle \pi_\alpha \left(\text{grad } f(z) \right), \bar{f}(z) \pi_\alpha(z) \right\rangle.$$

Hence

$$\arg \lambda = \arg \lambda'.$$

Clearly λ' is a (complex valued) real analytic function of the real variables x_j and y_j. Now let U_+ (respectively U_-) denote the open set consisting of all z satisfying the real analytic inequality

$$\Re ((1 + i) \lambda'(z)) < 0$$

(respectively

$$\Re ((1 - i) \lambda'(z)) < 0$$

for U_-).

We have assumed that there exist points z arbitrarily close to the origin with $z \in W \cap (U_+ \cup U_-)$. Here by the analytic curve selection lemma (see for instance [4, Proposition 2.2]), there must exist a real analytic path

$$p : [0, \varepsilon) \to S_\alpha \subset \mathbb{C}^n$$

with $p(0) = 0$ and with either

$$p(t) \in W \cap U_+$$

for all $t > 0$, or

$$p(t) \in W \cap U_-$$

for all $t > 0$. In either case, for each $t > 0$ we get

$$\pi_\alpha \left(\text{grad } \log f(p(t)) \right) = \lambda \pi_\alpha (p(t))$$

with

$$|\arg \lambda(t)| > \pi/4$$

which contradicts Lemma 3.1.
References

[1] Karim Bekka. Regular quasi-homogeneous stratifications. In D. Trotman and L. C. Wilson, editors, *Stratifications, singularities and differential equations, II* (Marseille, 1990; Honolulu, HI, 1990), volume 55 of *Travaux en Cours*, pages 1–14. Hermann, Paris, 1997.

[2] Jean-Paul Brasselet, Lê Dũng Tráng, and José Seade. Euler obstruction and indices of vector fields. *Topology*, 39:1193-1208, 2000.

[3] Joël Briançon, Philippe Maisonobe, and Michel Merle. Localisation de systèmes différentiels, stratifications de Whitney et condition de Thom. *Invent. Math.*, 117(3):531–550, 1994.

[4] Dan Burghelea and Andrei Verona. Local homological properties of analytic sets. *Manuscripta Math.*, 7:55–66, 1972.

[5] José Luis Cisneros-Molina, Join theorem for polar weighted homogeneous singularities. In “Singularities II. Geometric and topological aspects”. Proceedings of the international conference in honor of the 60th Birthday of Lê Dũng Tráng, Cuernavaca, Mexico, January 2007. Ed. J.-P. Brasselet et al. AMS Contemporary Mathematics 475, 43-59 (2008).

[6] J. L. Cisneros-Molina, J. Snoussi, J. Seade, Milnor Fibrations and d-regularity for real analytic Singularities, Preprint, 2008, to appear in International Journal of Mathematics.

[7] Zofia Denkowska and Krystyna Wachta. Une construction de la stratification sous-analytique avec la condition (w). *Bull. Polish Acad. Sci. Math.*, 35(7-8):401–405, 1987.

[8] Alan H. Durfee. Neighborhoods of algebraic sets. *Trans. Amer. Math. Soc.*, 276(2):517–530, 1983.

[9] C. G. Gibson, K. Wirthmüller, A. A. du Plessis, E. N. Looijenga, Topological stability of Smooth Mappings, Lecture Notes in Mathematics 552, Springer Verlag, 1976.

[10] Mark Goresky and Robert MacPherson. *Stratified Morse theory*, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988.

[11] Helmut Hamm. Lokale topologische Eigenschaften komplexer Räume, *Math. Ann.*, 191:235–252, 1971.

[12] Heisuke Hironaka. Subanalytic sets. In *Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki*, pages 453–493. Kinokuniya, Tokyo, 1973.
[13] Heisuke Hironaka. Stratification and flatness. In *Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976)*, pages 199–265. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

[14] Tzee-Char Kuo. The ratio test for analytic Whitney stratifications. In *Proceedings of Liverpool Singularities-Symposium, I (1969/70)*, Lecture Notes in Mathematics, Vol. 192, pages 141–149, Berlin, 1971. Springer.

[15] Đặng Tráng Lê. Some remarks on relative monodromy. In P. Holm, editor, *Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976)*, pages 397–403. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

[16] Đặng Tráng Lê. Vanishing cycles on complex analytic sets. In "Various problems in algebraic analysis", Proc. Sympos., Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1975. *Sūrikaisekikenkyūsho Kōkyūroku*, (266):299–318, 1976.

[17] Stanisław Lojasiewicz. Ensambles semi-analytique. Cours donné à la Faculté des Sciences d’Orsay, poly­copié de l’I.H.E.S., Bures-sur-Yvette, France, 1965.

[18] Stanisław Lojasiewicz, Jacek Stasica, and Krystyna Wachta. Stratifications sous-analytiques. Condition de Verdier. *Bull. Polish Acad. Sci. Math.*, 34(9-10):531–539 (1987), 1986.

[19] David B. Massey. A Strong Lojasiewicz Inequality and Real Analytic Milnor Fibrations [arXiv:math/0703613] 2008.

[20] John Mather. Notes on Topological Stability. Harvard University, July 1970.

[21] John Milnor. On isolated singularities of hypersurfaces. Preprint June 1966. Unpublished.

[22] John Milnor. *Singular points of complex hypersurfaces*. Annals of Mathematics Studies, No. 61. Princeton University Press, Princeton, N.J., 1968.

[23] Mutsuo Oka. Topology of polar weighted homogeneous hypersurfaces Kodai Math. J. 31, No. 2, 163-182 (2008).

[24] Adam Parusiński. Limits of tangent spaces to fibres and the \(w_f \) condition. *Duke Math. J.*, 72(1):99–108, 1993.

[25] Anne Pichon, José Seade. Fibred Multilinks and singularities \(f\bar{g} \). Math. Ann. 342, 487-514 (2008).

[26] Maria Aparecida Soares Ruas and Raimundo Nonato Araújo dos Santos. Real Milnor fibrations and (c)-regularity. *Manuscripta Math.*, 117(2):207–218, 2005.
[27] Maria Aparecida Soares Ruas, José Seade, and Alberto Verjovsky. On real singularities with a Milnor fibration. In A. Libgober and M. Tibar, editors, *Trends in singularities*, Trends Math., pages 191–213. Birkhäuser, Basel, 2002.

[28] Raimundo Araújo dos Santos. Uniform (m)-condition and Strong Milnor fibrations. In “Singularities II. Geometric and topological aspects”. Proceedings of the international conference in honor of the 60th Birthday of Lê Dũng Tráng, Cuernavaca, Mexico, January 2007. Ed. J.-P. Brasselet et al. AMS Contemporary Mathematics 475, 189-198 (2008).

[29] Raimundo Araújo dos Santos, Mihai Tibăr. Real map germs and higher open books [arXiv:0801.3328]. 2008.

[30] Marie-Hélène Schwartz. *Champs radiaux sur une stratification analytique*, volume 39 of *Travaux en Cours [Works in Progress]*. Hermann, Paris, 1991.

[31] José Seade. Open book decompositions associated to holomorphic vector fields. *Bol. Soc. Mat. Mexicana (3)*, 3(2):323–335, 1997.

[32] José Seade. On Milnor’s Fibration Theorem for Real and Complex Singularities. In “Singularities in Geometry and Topology”, Proceedings of the Trieste Singularity Summer School and Workshop, *World Scientific*, 2007, p. 127-158.

[33] José Seade. *On the topology of isolated singularities in analytic spaces*, volume 241 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 2006.

[34] Bernard Teissier. Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney. In *Algebraic geometry (La Rábida, 1981)*, volume 961 of *Lecture Notes in Math.*, pages 314–491. Springer, Berlin, 1982.

[35] René Thom. Ensembles et morphismes stratifiés. *Bull. Amer. Math. Soc.*, 75:240–284, 1969.

[36] Jean-Louis Verdier. Stratifications de Whitney et théorème de Bertini-Sard. *Invent. Math.*, 36:295–312, 1976.

[37] Hassler Whitney. Tangents to an analytic variety. *Ann. of Math. (2)*, 81:496–549, 1965.