Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes

Alessandra Buonanno, Yi Pan, Harald P. Pfeiffer, Mark A. Scheel, Luisa T. Buchman, and Lawrence E. Kidder

Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742
Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, CA 91125
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853

(Dated: May 12, 2009)

We calibrate the effective-one-body (EOB) model to an accurate numerical simulation of an equal-mass, non-spinning binary black-hole coalescence produced by the Caltech-Cornell collaboration. Aligning the EOB and numerical waveforms at low frequency over a time interval of \(\sim 1000M \), and taking into account the uncertainties in the numerical simulation, we investigate the significance and degeneracy of the EOB adjustable parameters during inspiral, plunge and merger, and determine the minimum number of EOB adjustable parameters that achieves phase and amplitude agreements on the order of the numerical error. We find that phase and fractional amplitude differences between the numerical and EOB values of the dominant gravitational wave mode \(h_{22} \) can be reduced to 0.02 radians and 2%, respectively, until a time 20\(M \) before merger, and to 0.04 radians and 7%, respectively, at a time 20\(M \) after merger (during ringdown). Using LIGO, Enhanced LIGO and Advanced LIGO noise curves, we find that the overlap between the EOB and the numerical \(h_{22} \), maximized only over the initial phase and time of arrival, is larger than 0.999 for equal-mass binary black holes with total mass 30–150\(M_\odot \). In addition to the leading gravitational mode (2, 2), we compare the dominant subleading modes (4, 4) and (3, 2) for the inspiral and find phase and amplitude differences on the order of the numerical error. We also determine the mass-ratio dependence of one of the EOB adjustable parameters by calibrating to numerical inspiral waveforms for black-hole binaries with mass ratios 2:1 and 3:1. The results presented in this paper improve and extend recent successful attempts aimed at providing gravitational-wave data analysts the best analytical EOB model capable of interpolating accurate numerical simulations.

PACS numbers: 04.25.D-, 04.25.dg, 04.25.Nx, 04.30.-w

I. INTRODUCTION

The first-generation gravitational-wave detectors — the Laser Interferometer Gravitational Wave Observatory (LIGO) [1, 2], GEO [3] and Virgo [4] — have operated at design sensitivity for a few years, providing new upper limits for several astrophysical sources. They are now undergoing an upgrade to Enhanced LIGO and Virgo\(^7\); this will improve their sensitivity by a factor of \(\sim 2 \). The second-generation interferometers, Advanced LIGO [5] and Advanced Virgo, will start operating in 2013-2015 with an overall improvement in sensitivity by a factor of \(\sim 10 \), thus increasing the event rates for many astrophysical sources by a factor of one thousand.

One of the most promising sources for these detectors is the inspiral and merger of compact binary systems of black holes. The search for gravitational waves (GWs) from coalescing binaries and the extraction of parameters are based on the matched-filtering technique [6, 7], which requires a rather accurate knowledge of the waveform of the incoming signal [8]. In particular, the detection and subsequent data analysis of GW signals are made by using a bank of templates modeling the GWs emitted by the source.

The effective-one-body (EOB) formalism was introduced [9, 10] as a promising approach to describe analytically the inspiral, merger, and ringdown waveforms emitted during a binary merger. Necessary inputs for the EOB approach include high-order post-Newtonian (PN) results [11] for two-body conservative dynamics, radiation-reaction force, and gravitational waveforms. For compact bodies, the PN approximation is essentially an expansion in the characteristic orbital velocity \(v/c \) or, equivalently, in the gravitational potential, \(GM/(rc^2) \), with \(r \) the typical separation and \(M \) the total binary mass. The EOB approach, however, does not use the PN results in their original Taylor-expanded forms (i.e., as polynomials in \(v/c \)), but instead in some resummed forms [9, 10, 12–17]. The latter are designed to incorporate some of the expected non-perturbative features of the exact results.

As it is now possible to produce very accurate numerical simulations of comparable mass binary black-hole coalescences (see e.g. [18–25]), we can compare in detail the EOB predictions with numerical results, and when necessary, introduce new features into the EOB model in order to improve its agreement with the numerical results. This is an important avenue to LIGO, GEO and Virgo template construction, as eventually thousands of waveform templates may be needed to detect the GW signal within the detector noise, and to extract astrophysical information from the observed waveform. Given the high computational cost of running the numerical simulations, template construction is currently an impossible demand for numerical relativity alone.

This paper builds upon a rather successful recent effort [22, 26–31] aimed at producing the best analytical
EOB model able to interpolate accurate numerical simulations. Other approaches based on phenomenological waveforms have also been proposed [32, 33]. Here we calibrate the EOB model to the most accurate numerical simulation to date of an equal-mass, non-spinning binary black-hole merger, that has been produced with a pseudospectral code by the Caltech-Cornell collaboration [21, 23]. Taking into account the uncertainties in the numerical simulation, we investigate the significance and degeneracy of the EOB adjustable parameters and determine the minimal number of adjustable parameters that achieves as good agreement as possible between the numerical and EOB GW’s phase and amplitude. In addition to the leading GW mode \((l, m) = (2, 2)\), we also compare the leading subdominant modes \((4, 4)\) and \((3, 2)\). By reducing the phase difference between the EOB and numerical inspiral waveforms of black-hole binaries with mass ratios \(q = m_1/m_2\) of 2:1 and 3:1, we explore the dependence of one of the adjustable parameters on the symmetric mass ratio \(\nu = m_1 m_2/(m_1 + m_2)^2\).

The paper is organized as follows. In Sec. II, we briefly review the EOB dynamics and waveforms. In Sec. III, we calibrate the EOB model to the numerical simulation of an equal-mass non-spinning binary black-hole coalescence and determine the region of the parameter space of the EOB adjustable parameters that leads to the best agreement with the numerical results. We also discuss the impact of our results on data analysis, and calibrate the EOB model with inspiral waveforms from accurate numerical simulations of non-spinning black hole binaries with mass ratios 2:1 and 3:1. Sec. IV summarizes our main conclusions. Finally, the Appendix compares the numerical \(h_{\ell m}\) extracted with the Regge-Wheeler-Zerilli (RWZ) formalism with the \(h_{\ell m}\) obtained by two time integrals of the Newman-Penrose (NP) scalar \(\Psi_4^{\ell m}\).

II. EFFECTIVE-ONE-BODY MODEL

In this section we briefly review the EOB dynamics and waveforms, focusing mainly on the adjustable parameters. More details can be found in Refs. [9, 10, 13, 15, 22, 26, 28–31]. Here we follow Refs. [22, 28].

A. Effective-one-body dynamics

We set \(M = m_1 + m_2\), \(\mu = m_1 m_2/M = \nu M\), and use natural units \(G = c = 1\). In absence of spins, the motion is constrained to a plane. Introducing polar coordinates \((r, \Phi)\) and their conjugate momenta \((p_r, p_\Phi)\), the EOB effective metric takes the form [9]

\[
\frac{ds_{eff}^2}{dt} = -A(r) dt^2 + \frac{D(r)}{A(r)} dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta \, d\Phi^2 \right).
\]

(1)

Following Ref. [16, 34], we replace the radial momentum \(p_r\) with \(p_{r*}\), the conjugate momentum to the EOB toise radial coordinate \(r_*\):

\[
\frac{dr_*}{dr} = \sqrt{\frac{D(r)}{A(r)}}.
\]

(2)

In terms of \(p_{r*}\), the non-spinning EOB Hamiltonian is [9]

\[
H_{\text{real}}(r, p_r, p_\Phi) \equiv \hat{\mu} \hat{H}_{\text{real}}
= M \sqrt{1 + 2\nu \left(\frac{H^{\text{eff}} - \hat{\mu}}{\mu} \right) - M},
\]

(3)

with the effective Hamiltonian [9, 13, 34]

\[
H^{\text{eff}}(r, p_r, p_\Phi) \equiv \mu \hat{H}^{\text{eff}}
= \mu \sqrt{p_{r*}^2 + A(r) \left[1 + \frac{p_{r*}^2}{r^2} + 2(4 - 3\nu) \nu \frac{p_{r*}^4}{r^2} \right]}.
\]

(4)

The Taylor-approximants to the coefficients \(A(r)\) and \(D(r)\) can be written as [9, 13]

\[
A_k(r) = \sum_{i=0}^{k+1} \frac{a_i(\nu)}{r^i},
\]

(5)

\[
D_k(r) = \sum_{i=0}^{k} \frac{d_i(\nu)}{r^i}.
\]

(6)

The functions \(A(r)\), \(D(r)\), \(A_k(r)\) and \(D_k(r)\) all depend on the symmetric mass ratio \(\nu\) through the \(\nu\)-dependent coefficients \(a_i(\nu)\) and \(d_i(\nu)\). These coefficients are currently known through 3PN order (i.e. up to \(k = 4\)) and can be read from Eqs. (47) and (48) in Ref. [22]. Previous investigations [15, 22, 28–31] have demonstrated that, during the last stages of inspiral and plunge, the EOB dynamics can be adjusted closer to the numerical simulations by including in the radial potential \(A(r)\) a pseudo 4PN (p4PN) coefficient \(a_5(\nu)\). This coefficient has so far been treated as a linear function in \(\nu\), i.e. \(a_5(\nu) = \lambda_0 \nu + \lambda_1 \nu\), with \(\lambda_0\) a constant\(^1\). In this paper, however, we shall also explore the possibility of going beyond this linear dependence, such that

\[
a_5(\nu) = \nu (\lambda_0 + \lambda_1 \nu),
\]

(7)

where \(\lambda_0\) and \(\lambda_1\) are constants. In order to assure the presence of a horizon in the effective metric (1), a zero needs to be factored out from \(A(r)\). This is obtained by applying a Padé resummation [13]. The Padé coefficients for the expansion of \(A(r)\) and \(D(r)\) at p4PN order are denoted \(A_4^1(r)\) and \(D_4^0(r)\), and their explicit form can be found from Eqs. (54) and (59) in Ref. [22].

\(^1\) Note that \(\lambda_0\) was denoted \(\lambda\) in Ref. [28], and \(a_5\) in Refs. [22, 29–31].
The EOB Hamilton equations are written in terms of the reduced (i.e., dimensionless) quantities \tilde{H}^{real} [defined in Eq. (3)], $\tilde{t} = t/M$, and $\tilde{\Omega} = \Omega M$ [10]:

\[
\begin{align*}
\frac{dr}{dt} &= \frac{A(r)}{\sqrt{D(r)}} \frac{\partial \tilde{H}^{\text{real}}}{\partial p_r}(r, p_r, p_\phi), \\
\frac{d\Phi}{dt} &= \frac{\partial \tilde{H}^{\text{real}}}{\partial p_\phi}(r, p_r, p_\phi), \\
\frac{dp_r}{dt} &= \frac{A(r)}{\sqrt{D(r)}} \left[-\frac{\partial \tilde{H}^{\text{real}}}{\partial r}(r, p_r, p_\phi) + \tilde{F}_r(r, p_r, p_\phi) \right], \\
\frac{dp_\phi}{dt} &= \tilde{F}_\phi(r, p_r, p_\phi),
\end{align*}
\]

with the definition $\tilde{\Omega} \equiv d\Phi/d\tilde{t}$. Furthermore, for the Φ component of the radiation-reaction force we use the non-Keplerian Padé-approximant to the energy flux [12, 35]

\[
\tilde{F}_\phi = \frac{n^2}{k^4} F^4_a = -\frac{v^3}{\nu v_\phi} F^4_a(V_\phi; \nu, v_\text{pole}),
\]

where $v_\Omega \equiv \tilde{\Omega}^{1/3}$, $V_\phi \equiv \tilde{\Omega} r_\Omega$, and $r_\Omega = r_{\psi}(r, p_\phi)^{1/3}$. Here ψ is defined by Eqs. (66)–(68) of Ref. [22]. As the EOB Hamiltonian is a deformation of the Schwarzschild Hamiltonian, the exact Keplerian relation $\tilde{\Omega}^2 r_\Omega^3 = 1$ holds. The quantity F^4_a in Eq. (12) is given by Eqs. (39) and (40) in Ref. [22] and it uses the Taylor-expanded energy flux (as given by Eq. (19) in Ref. [22]) in the form

\[
F^4_a(\nu) = \frac{323105549467}{3178375200} + \frac{232597}{4410} \gamma_E - \frac{1369}{126} \pi^2
\]

\[
+ \frac{294}{1568} \log 2 - \frac{47385}{323597} \log 3 + \frac{4410}{1568} \log v_\Omega
\]

\[
+ \nu A_8,
\]

where we combine the known test-mass-limit terms [36] with a p4PN adjustable parameter A_8 [22].

The radial component of the radiation-reaction force $\tilde{F}_r(r, p_r, p_\phi)$ in Eq. (10) was neglected in previous studies [22, 26, 28–31] because Ref. [10] showed that for quasi-circular motion, in some gauges, it can be set to zero. Furthermore, it was shown in Ref. [10] that if the motion remains quasi-circular even during the plunge, $\tilde{F}_r(r, p_r, p_\phi)$ does not affect the dynamics considerably. However, since we are trying to capture effects in the numerical simulations which go beyond the quasi-circular motion assumption, we find it interesting to add

\[
\tilde{F}_r(r, p_r, p_\phi) \quad \text{[see Eq. (3.18) of Ref. [10] and the discussion around it].}
\]

We set

\[
\tilde{F}_r(r, p_r, p_\phi) = a_{\text{RR}}^{\text{F}_r}(\nu) \frac{\hat{r}}{r^2 \tilde{\Omega}} \tilde{F}_\phi(r, p_r, p_\phi),
\]

where $a_{\text{RR}}^{\text{F}_r}(\nu)$ is an adjustable parameter.

Finally, the tangential force described by Eq. (12) applies only to quasi-circular motion. This tangential force could also in principle contain terms describing the departure from quasi-circular motion during the last stages of inspiral and plunge. There are several ways to include such non-quasi-circular (NQC) terms [15, 22, 31]; here we do so by replacing the quantity \tilde{F}_ϕ on the right-hand side of Eq. (11) [but not the \tilde{F}_ϕ on the right-hand side of Eq. (14)] with $\text{NQC}\tilde{F}_\phi$, where

\[
\text{NQC}\tilde{F}_\phi \equiv \tilde{F}_\phi \left(1 + a_{\text{RR}}^{\text{F}_\phi}(\nu) \frac{\hat{r}^2}{(r\Omega)^2} \right),
\]

and $a_{\text{RR}}^{\text{F}_\phi}(\nu)$ is an additional adjustable parameter. The form of this NQC correction will be discussed further in Sec. III B. Note that alternative NQC terms have been proposed in the literature—for example, in Ref. [15] the authors used $p_\phi^2/(p_\phi^2/r_\Omega^2)$ while Ref. [31] employed $p_\phi^2/(r\Omega)^2$. In summary, in the notation of Ref. [22], the EOB model used here is $n^2 F_a^4/H_4$ with adjustable parameters \{$a_5(\nu), v_\text{pole}(\nu), a_{\text{RR}}^{\text{F}_r}(\nu), a_{\text{RR}}^{\text{F}_\phi}(\nu), A_8$\}.

B. EOB waveform: Inspiral & Plunge

Having the inspiral dynamics in hand, we need to compute the gravitational waveform $h_{\ell m}$. Reference [21] compared the numerically extracted gravitational waveform h_{22} to the PN result with amplitude expressed as a Taylor-expansion [37, 38]; even when expanded to 3PN order, the amplitude disagreed by about one percent at times several hundred M before merger. As previous investigations [29–31] have shown, more accurate agreement with the numerical h_{22} amplitude can be obtained by applying several resummations to the Taylor-expanded h_{22} amplitude. These resummations have recently been improved using results in the quasi-circular test-particle limit [17]. We follow Ref. [17] and write the EOB modes $h_{\ell m}$ as

\[
\hat{h}_{22}(t) = -\frac{8M}{R} \sqrt{\frac{\pi}{5}} \nu e^{-2i\Phi} V_\Phi^2 F_{22}, \quad (16a)
\]

\[
\hat{h}_{44}(t) = -\frac{64M}{9R} \sqrt{\frac{\pi}{7}} \nu(1 - 3\nu) e^{-4i\Phi} V_\Phi^4 F_{44}, \quad (16b)
\]

\[
\hat{h}_{32}(t) = -\frac{8M}{3R} \sqrt{\frac{\pi}{7}} \nu(1 - 3\nu) e^{-2i\Phi} V_\Phi^2 F_{32}, \quad (16c)
\]

where R is the luminosity distance from the binary, and with

\[
F_{\ell m} = \begin{cases}
\hat{H}_{\ell m} T_{\ell m} (\rho_{\ell m}) e^{i\beta_{\ell m}} & (\ell + m \text{ even}) \\
\hat{J}_{\ell m} T_{\ell m} (\rho_{\ell m}) e^{i\beta_{\ell m}} & (\ell + m \text{ odd})
\end{cases}
\]

\[
(\ell + m \text{ even}) \\
(\ell + m \text{ odd})
\]

\[
(\ell + m \text{ odd})
\]
where \(\tilde{H}_{\text{eff}} \) and \(\tilde{J}_{\text{eff}} \) are effective sources that in the test-particle, circular-motion limit contain a pole at the EOB light ring (photon orbit); here \(\tilde{H}_{\text{eff}} \) is given in Eq. (4), and \(\tilde{J}_{\text{eff}} = p_{\phi} v_{\Omega} \) is equal to the orbital angular momentum \(p_{\phi} \) normalized to the circular-orbit Newtonian angular momentum \(v_{\Omega} \). The quantities \(T_{\ell m}, \delta_{\ell m}, \rho_{\ell m}, \rho'_{\ell m} \) can be read from Eqs. (19), (20), (23), (25), (C1), (C4) and (C6) in Ref. [17], respectively. More specifically, \(T_{\ell m} \) is a resummed version [16] of an infinite number of leading logarithms entering the tail effects; \(\delta_{\ell m} \) is a supplementary phase [16] which corrects the phase effects not included in the complex tail factor; \(\rho_{\ell m} \) and \(\rho'_{\ell m} \) are the resummed expressions of higher-order PN effects as recently proposed in Ref. [17] in the test-particle circular-orbit limit. The latter resummation was proposed to cure, among other effects, the linear growth with \(\ell \) of the IPN corrections in the Taylor-expanded amplitude.

Furthermore, motivated by the PN expansion for generic orbits, to include NQC effects in \(h_{\ell m} \) we write

\[
\begin{align*}
\hat{h}^{\text{insp-plunge}}_{\ell m} &= \hat{h}_{\ell m} + \hat{h}^{\text{merge}}_{\ell m} + \hat{h}^{\text{ringdown}}_{\ell m}
\end{align*}
\]

for each mode \((\ell, m) \), denoted as \(\hat{h}_{\ell m} \), \(\hat{h}^{\text{merge}}_{\ell m} \), and \(\hat{h}^{\text{ringdown}}_{\ell m} \), respectively. More specifically, \(\hat{h}_{\ell m} \) is built as follows [10, 26, 28, 30, 31, 35]. For each mode \((\ell, m) \) we write

\[
\begin{align*}
\hat{h}_{\ell m} &= \hat{h}^{\text{insp-plunge}}_{\ell m} + \hat{h}^{\text{merge}}_{\ell m} + \hat{h}^{\text{ringdown}}_{\ell m}
\end{align*}
\]

The merger-ringdown waveform in the EOB approach is built as follows [10, 26, 28, 30, 31, 35]. For each mode \((\ell, m)\) we write

\[
\begin{align*}
h^{\text{merge-RD}}_{\ell m}(t) &= \sum_{n=0}^{N-1} A_{\ell mn} e^{-i\sigma_{\ell mn}(t-t_{\text{match}}^{\ell m})},
\end{align*}
\]

where \(n \) is the overtone number of the Kerr quasi-normal mode (QNM), \(N \) is the number of overtones included in our model, and \(A_{\ell mn} \) are complex amplitudes to be determined by a matching procedure described below. The quantity \(\sigma_{\ell mn} = \omega_{\ell mn} - i\alpha_{\ell mn} \), where the oscillation frequencies \(\omega_{\ell mn} > 0 \) and the inverse decay-times \(\alpha_{\ell mn} > 0 \), are numbers associated with each QNM. The complex frequencies are known functions of the final black-hole mass and spin and can be found in Ref. [39]. The final black-hole masses and spins can be obtained from several fitting formulae to numerical results [28, 34, 40, 41]. Here we use the more accurate final black-hole mass and spin computed in Ref. [23]: \(M_{\text{BH}}/M = 0.95162 \pm 0.00002 \), \(a/M_{\text{BH}} = 0.68646 \pm 0.00004 \). While these numbers differ from the predictions of the fitting formulae in Ref. [28] by only 0.3%, such disagreement would be noticeable in our comparison. The matching time \(t_{\text{match}}^{\ell m}(\nu) \) is an adjustable parameter that will be chosen to be very close to the EOB light-ring [10] when matching the mode \(h_{22} \).

The complex amplitudes \(A_{\ell mn} \) in Eq. (19) are determined by matching the EOB merger-ringdown waveform with the EOB inspiral-plunge waveform. In order to do this, \(N \) independent complex equations are needed. In Refs. [10, 26, 28, 30, 35], the \textit{comb matching} approach was introduced. In this approach, \(N \) equations are obtained at \(N \) points evenly sampled in a small time interval \(\Delta t_{\text{match}}^{\ell m} \) centered at \(t_{\text{match}}^{\ell m} \)

\[
\begin{align*}
\frac{d^k}{dt^k} h^{\text{insp-plunge}}_{\ell m}(t_{\text{match}}^{\ell m}) &= \frac{d^k}{dt^k} h^{\text{merge-RD}}_{\ell m}(t_{\text{match}}^{\ell m}),
\end{align*}
\]

and we denote this approach \textit{point matching}. In Refs. [30, 31], the \textit{comb matching} approach was introduced. In this approach, \(N \) equations are obtained at \(N \) points evenly sampled in a small time interval \(\Delta t_{\text{match}}^{\ell m} \) centered at \(t_{\text{match}}^{\ell m} \)

\[
\begin{align*}
h^{\text{insp-plunge}}_{\ell m}(t_{\text{match}}^{\ell m} + \frac{2k - N + 1}{2N - 2} \Delta t_{\text{match}}^{\ell m}) &= h^{\text{merge-RD}}_{\ell m}(t_{\text{match}}^{\ell m} + \frac{2k - N + 1}{2N - 2} \Delta t_{\text{match}}^{\ell m}),
\end{align*}
\]

Finally, the (inspiral-plunge-merger-ringdown) EOB waveform reads

\[
\begin{align*}
h_{\ell m}(t) &= h^{\text{insp-plunge}}_{\ell m}(t_{\text{match}}^{\ell m} - t) + h^{\text{merge-RD}}_{\ell m}(t - t_{\text{match}}^{\ell m}).
\end{align*}
\]
It is worth noticing that the lowest frequency among the eight QNMs included in our merger-ringdown waveform is $M\omega_{227} \sim 0.44$, which is larger than the EOB inspiral-plunge waveform frequency $M\omega(t_{\text{match}}^{22}) \sim 0.36$. Therefore, generically the EOB GW frequency will grow very rapidly from $M\omega \sim 0.36$ to $M\omega \sim 0.44$ immediately after the matching time, and this growth can be much more rapid than what is seen in the numerical simulation. We find that we can avoid this rapid growth by carefully fine-tuning the matching interval $\Delta t_{\text{match}}^{22}$, and this is what we do for the comparisons presented here. Quite interestingly, we find that the h_{22} matching can be made much less sensitive to $\Delta t_{\text{match}}^{22}$ if we include a pseudo QNM that has a frequency $M\omega(t_{\text{match}}^{22}) \sim 0.36$ and a decay time comparable to that of the highest overtone $\tau_{227} \sim 0.7M$. We refer to this QNM as pseudo because its frequency and decay time do not coincide with any of the QNMs of our final Kerr BH [39, 43]. Although we do not use this pseudo QNM in the present analysis, we expect that its inclusion can help when matching higher modes of equal and unequal mass binaries and we shall consider it in the future.

III. CALIBRATING THE EFFECTIVE-ONE-BODY WAVEFORMS TO NUMERICAL RELATIVITY SIMULATIONS

We shall now calibrate the EOB model against a numerical simulation of an equal-mass non-spinning binary black hole. This simulation was presented as run “30c1/N6” in Scheel et al. [23], and the inspiral part of the waveform was used in previous comparisons with PN models [21, 22]. In addition to the NP scalars Ψ_4^{22} extracted from this simulation, we will be using gravitational waveforms $h_{\ell m}$ extracted with the RWZ formalism [44–47]. The Appendix discusses details of the numerical implementation used to obtain $h_{\ell m}$ from the RWZ scalars, and presents a comprehensive comparison of the numerical Ψ_4^{22} and RWZ $h_{\ell m}$ waveforms. Consistency between the two wave-extraction schemes is good, with phase differences less than 0.02 radians for the $(2,2)$ mode until about a time $20M$ after the peak of h_{22}.

Because we have more experience with the NP scalars during the inspiral, and because Ψ_4^{22} appears to behave better than RWZ h_{22} during ringdown (see Fig. 14 in the Appendix), we prefer to use the numerical Ψ_4 data. Therefore, during the inspiral phase, we will calibrate the EOB adjustable parameters by comparing the second time derivative of EOB h_{22} against the numerical Ψ_4^{22}. During the plunge-merger phase, when the time derivatives of the waveform vary most rapidly, it is more difficult to calibrate the EOB h_{22} since the resummation techniques in the EOB model were aimed at providing us with the best h_{22}. Therefore, around time of merger, we shall calibrate the EOB h_{22} to the RWZ h_{22}. Note also that data analysis is based on $h_{\ell m}$, further motivating our choice to build the best EOB model for $h_{\ell m}$. Nevertheless, after calibration, in Sec. III C, we show comparisons of the EOB waveforms with both the numerical RWZ h_{22} and Ψ_4^{22}. The ringdown part of the numerical waveform is not used in the calibration of the EOB parameters; the QNMs are determined solely from the mass and spin of the final hole.

A. Waveform alignment and uncertainties in numerical waveforms

As previous investigations [21, 26, 31, 48, 49] have shown, the phase error between two waveforms depends crucially on the procedure used to align them in time and phase. For the *inspiral phase*, we shall adopt here the alignment procedure introduced in Ref. [22] (see also Ref. [33]) that consists of minimizing the quantity

$$\Xi(\Delta t, \Delta \phi) = \int_{t_1}^{t_2} \left[\phi_1(t) - \phi_2(t - \Delta t) - \Delta \phi \right]^2 dt,$$ \hspace{1cm} (23)

over a time shift Δt and a phase shift $\Delta \phi$, where $\phi_1(t)$ and $\phi_2(t)$ are the phases of the two waveforms. This alignment procedure has the advantage of averaging over the numerical noise and residual eccentricity when aligning numerical and EOB waveforms. The range of integration (t_1, t_2) is chosen to be as early as possible, where we expect the PN-based EOB waveform to be most valid, but late enough so that it is not contaminated by the junk radiation present in the numerical initial data. Moreover, the range of integration should be large enough for the integral to average over noise and residual eccentricity. Here we fix $t_1 = 1040M$ and $t_2 = 2260M$ (measured from the start of the numerical waveform), so that we include three full cycles of phase oscillations due to eccentricity.

Using this alignment procedure, we estimate the errors on the numerical Ψ_4^{22} by comparing Ψ_4^{22} computed at different numerical resolutions and/or using different extrapolation procedures. In particular, Fig. 1 summarizes the phase errors for a set of numerical Ψ_4^{22} computed in Ref. [23]. The numerical waveform labeled “N6, n=3” (identical to the run “30c1/N6, n=3” from [23]) is the reference numerical waveform used throughout this paper unless otherwise noted. This waveform is the most accurate waveform from Ref. [23], extracted at various radii and then extrapolated to infinity. The waveforms with different values of n vary the order of the extrapolation and are used to quantify the uncertainty in the phase due to extrapolation, while those labeled by N5 (as opposed to N6) are from a simulation with a lower numerical resolution and are used to quantify the uncertainty due to numerical truncation errors. Figure 1 also includes a comparison between waveforms extracted at finite coordinate radius $r_{\text{ex}} = 225M$.

Extrapolation with $n = 2$ leads to systematic errors in the extrapolated waveform (see, Fig. 10 of Ref. [21]), which in turn results in a systematic error in $\Delta \phi$. Therefore, the blue dashed line in Fig. 1 represents a possibly
FIG. 1: **Numerical error estimates.** Phase difference between numerical Ψ^{22}_t waveforms, when aligned using the same procedure as employed for the EOB-NR alignment [see Eq. (23)]. “N6” and “N5” denote the highest- and next-to-highest numerical resolution, n denotes the order of extrapolation to infinite extraction radius, and ”$r = 225M$” denotes waves extracted at finite radius $r = 225M$. The data are smoothed with a rectangular window of width $10M$; the light grey dots represent the unsmoothed data for the N5-N6 comparison at $r_{ex} = 225M$.

overly conservative error estimate. The feature of the solid brown curve around $t \approx 3700M$ is due to an issue with data processing of the lower resolution 'N5' run.

The primary use of Fig. 1 is to assess numerical errors relevant for the calibration of the EOB *inspiral* phase. By construction of the alignment procedure, this figure shows the numerical errors for waveforms that are aligned in the interval $[t_1, t_2]$, several orbits before merger. Calibrating the EOB inspiral phase in this manner is appropriate, because it ensures that early in the inspiral, the EOB-model and the numerical simulation agree well, i.e. that we expect little de-phasing at lower frequencies. This is important for waveform templates of low mass binaries, where the early inspiral waveform lies in LIGO’s sensitive frequency band.

Figure 1 shows that the numerical Ψ_2^{22} waveforms are accurate to a few hundredths of a radian until very close to merger, when compared with our alignment procedure. Furthermore, Fig. 15 in the Appendix demonstrates that NP and RWZ waveforms differ by only 0.02 radians through inspiral and merger. Therefore, we shall adopt a deviation of 0.02 radians between EOB- and NR inspiral-waveforms as our goal for the EOB inspiral calibration. The horizontal line in Fig. 1 indicates this phase difference of 0.02 radians and it will be our requirement when calibrating the EOB values of Ψ^{22}_t. The numerical phase errors exceed 0.02 radians at times $t = 3600M, 3850M, 3900M$ and $3933M$, respectively, and so our goal will be for EOB to agree to 0.02 radians at least up to $t \approx 3900M$. The choice of 0.02 radians is motivated by the goal of bringing the disagreement between the EOB and numerical phases *at least* to the level of the numerical error (see Fig. 15).

B. Tuning the adjustable parameters of the equal-mass effective-one-body dynamics

We divide the adjustable parameters into two groups and tune them separately in two steps. The first group of EOB-*dynamics* parameters includes \{$a_\nu(\nu), v_{pole}(\nu), a_\ell^\nu(\nu) \times a_\ell^\nu(\nu), A_8$\}. These parameters determine the inspiral and plunge dynamics of the EOB model and affect the merger-ringdown waveform only indirectly through the waveform’s phase and frequency around the matching point. [Note that we refer to the inspiral phase independent of the parameters $a_i^{h_{2m}}$, see Eq. (18).] These parameters are calibrated to the numerical NP Ψ^{22}_t. The second group of EOB-*waveform* parameters includes \{$a_i^{h_{2m}}$, $t_{match}(\nu)$, and $\Delta t_{match}^{\ell m}(\nu)$\}, and affect only the plunge-merger-ringdown but not the inspiral EOB waveform. These parameters are calibrated to the numerical RWZ h_{22}. All the possible adjustable parameters of the EOB model employed in this paper are summarized in Table I. In the first step of our calibration procedure, we reduce the phase difference before merger by tuning the EOB-dynamics parameters. In the second step, we use these fixed values of the EOB-dynamics parameters, and tune the EOB-waveform parameters.

![Table I: Summary of all possible adjustable parameters of the EOB model considered in this paper. As we shall discuss in the main text, we will not need all of these parameters. In particular, we find that for the black-hole binary simulations investigated here, the choices $a_i^{h_{2m}}(\nu) = a_i^{RR}(\nu), A_8 = 0, t_{match}(\nu)$ at the peak of the EOB orbital frequency, allow the numerical and EOB values of the GW phase and amplitude to agree within numerical error. Furthermore, we find that for an equal-mass black-hole binary coalescence it is sufficient to set $a_\nu(\nu) = v_{pole}(\nu)$, $\Delta t_{match}^{\ell m} \approx 0$ and \{see Eq. (7) with $\lambda_1 = 0$\}, and calibrate λ_0, $v_{pole}(1/4)$, $\Delta t_{match}^{22} (1/4)$ and $a_i^{h_{22}}(1/4)$. For an equal-mass black-hole binary coalescence it is even possible to calibrate only one EOB-dynamics adjustable parameter, λ_0 [see Eq. (7)] and let $v_{pole} \rightarrow \infty$. Finally, for an unequal-mass binary inspiral it is sufficient either to set $\lambda_1 = 0$, use the value of λ_0 from the equal-mass binary case, and calibrate $v_{pole}(\nu)$, or alternatively to set $v_{pole} \rightarrow \infty$ and calibrate both λ_0 and λ_1 in $a_\nu(\nu)$ [see Eq. (7)].](attachment:table_i.png)
radiation-reaction parameters a_{RR}^{ψ} and a_{RR}^{χ} are introduced to adjust the dynamics of late inspiral when we expect that the quasi-circular assumption is no longer valid. The p4PN parameters in the energy flux, A_s, also influences the entire evolution, but we find that A_s is strongly degenerate with $a_{5}(1/4)$ throughout the inspiral until a time $\sim 100M$ before merger. Based on these considerations, we shall tune $a_{5}(1/4)$ and v_{pole} first and consider a_{RR}^{ψ}, a_{RR}^{χ} and A_s only when exploring how to further improve the late evolution.

Therefore, in our first step, we set $a_{RR}^{\psi}(1/4) = a_{RR}^{\chi}(1/4) = A_s = 0$ and vary $a_{5}(1/4)$ and $v_{pole}(1/4)$. Applying the alignment procedure presented at the beginning of Sec. III A, we shift each EOB Ψ_{22}^{4} in time and phase to agree with the reference numerical waveform at low frequency, and determine the time when the phase difference between the numerical and EOB Ψ_{22}^{4} waveforms becomes larger than 0.02 radians. We denote this reference time as t_{ref}.

Figure 2 is a contour plot of the time t_{ref} in the $a_{5}(1/4)$–$v_{pole}(1/4)$ parameter space. For all points inside the largest contours (blue curves), the associated EOB Ψ_{22}^{4} phase evolutions agree with the numerical ones up to $t = 3660M$, which is the earliest reference time considered in Sec. III A. In order to get EOB models that have phase differences less than 0.02 radians until $t = 3900M$, $a_{5}(1/4)$ and $v_{pole}(1/4)$ have to be inside the innermost two separate thin contours (red curves). One might view these contours as encompassing all values of $a_{5}(1/4)$ and $v_{pole}(1/4)$ that are consistent with the numerical inspiral waveform, given the fixed choices of the various other EOB parameters. There are $a_{5}(1/4)$ and $v_{pole}(1/4)$ values that make the EOB phase differences less than 0.02 radians until $t = 3933M$, but not less than 0.02 radians until $t = 3933M$ (the latest reference time). We find that phase errors of the EOB Ψ_{22}^{4} corresponding to the upper left contours in Fig. 2 grow rapidly after $t = 3900M$, whereas phase errors of EOB Ψ_{22}^{4} corresponding to the lower right contours grow only mildly until around $t = 3940M$. For this reason, we shall restrict the tuning of the other adjustable parameters to the lower right region of Fig. 2 inside the innermost contour. As a reference set, we choose $a_{5}(1/4) = 6.344$ and $v_{pole}(1/4) = 0.85$.\footnote{We note that in Ref. [28], the authors suggested as best value $a_{5}(1/4) = 15$. However, the EOB model used in Ref. [28] differs from the one employed in this paper, the main difference being the GW energy flux. More importantly, the procedure used in Ref. [28] to calibrate $a_{5}(1/4)$ was different. It was based on maximized overlaps with white noise. The best value for $a_{5}(1/4)$ was obtained by requiring large overlaps, say ≥ 0.0975, for several mass ratios and (ℓ, m) modes (see Fig. 2 in Ref. [28]). Finally, the accuracy of the numerical waveforms employed in this paper differ from the ones in Ref. [28].}. Note that the latter value is rather different from the value obtained in Ref. [31] when $a_{5}(1/4) = 6.25$ is used. This is due to differences between the EOB models — for example Ref. [31] employs the Padé-resummed GW energy flux with constant logarithms, whereas we use the Padé-resummed GW energy flux with factorized logarithms.

Quite interestingly, looking more closely at the red lines in the right corner of Fig. 2, as v_{pole} increases, we find another possible reference set $a_{5}(1/4) = 4.19$ and $v_{pole} \rightarrow \infty$. With this choice, the pole in the Padé flux of Eq. (12) disappears.

In order to understand whether further tunings of radiation-reaction effects by adjusting the parameters $(v_{pole}, a_{RR}^{\psi}, a_{RR}^{\chi}, A_s)$ can modify the phasing during plunge, we compute how sensitive the phasing is to radiation-reaction effects once the binary has passed the last stable orbit (LSO) defined as $(\partial H^{\text{eff}}/\partial r)_{\text{LSO}} = (\partial^2 H^{\text{eff}}/\partial r^2)_{\text{LSO}} = 0$. Reference [50] pointed out that the phasing during the plunge is not affected much by radiation reaction, but driven mostly by the conservative dynamics. We want to quantify the latter statement more fully.

In order to do this, we need to define when the plunge starts. In the absence of radiation reaction, the plunge starts beyond the LSO where $r = r_{\text{LSO}}$, $\omega = \omega_{\text{LSO}}$ and $p_{\psi} = p_{\psi}^{\text{LSO}}$. But in the presence of radiation reaction, Ref. [10] observed that there is not a unique t_{LSO} at which the conditions $r = r_{\text{LSO}}$, $\omega = \omega_{\text{LSO}}$ and $p_{\psi} = p_{\psi}^{\text{LSO}}$ are satisfied. In fact, the above conditions may happen at different times (see Fig. 12 in Ref. [10]). Indeed, for
During plunge is more sensitive to adjustable parameters that with radiation reaction, the energy flux is shut down at several EOB orbital frequencies. The vertical line marks the maximum EOB orbital frequency.

the case \(a_5(1/4) = 6.344 \) and \(v_{\text{pole}}(1/4) = 0.85 \) (\(A_8 = 0, a_{\text{RR}} = 0 \) and \(a_{\text{PR}} = 0 \)), we show the phase difference between the numerical and EOB mode \(h_{22} \) versus the numerical GW frequency \(M\omega_{22} \) for EOB models in which the GW energy flux is shut down at several EOB orbital frequencies. This study suggests that it is difficult to modify the behaviour of the EOB phasing during plunge by tuning only the adjustable parameters entering the radiation-reaction terms or the GW energy flux, \(a_{\text{RR}}(\nu) \), \(a_{\text{PR}}(\nu) \) and \(A_8, v_{\text{pole}}(\nu) \). The behaviour of the EOB phasing during plunge is much more sensitive to adjustable parameters in the EOB conservative dynamics, e.g., \(a_5(\nu) \) at 4PN order or \(a_6(\nu) \) at 5PN order, etc. However, the parameters \(a_i(\nu) \) also affect the phasing during the very long inspiral, and a careful tuning is needed to reach excellent agreement both during inspiral and plunge.

Nevertheless, it is possible to modify the behaviour of the EOB phasing during the late inspiral by tuning \(A_8, a_{\text{PR}}(1/4) \) and \(a_{\text{RR}}(1/4) \) together with \(a_5(1/4) \) and \(v_{\text{pole}}(1/4) \). As an example of this, we redo the contour plot shown in Fig. 2, but with \(a_{\text{PR}}(1/4) = 0.5 \) instead of zero. The result is shown as dashed curves in Fig. 4. We still find EOB models that have phase differences less than 0.02 radians until \(t = 3900M \). In particular, with the reference value \(v_{\text{pole}}(1/4) = 0.85 \) and choosing \(a_5(1/4) = 6.013 \), we find that the behaviour of the EOB phasing is substantially modified only for the last 40\(M \) of evolution before merger. In this case, the change in phase difference is in the range of 0.01–0.1 radians, and the slope of phase difference at the matching point can change sign. Similar results are obtained when repeating this analysis with \(a_{\text{RR}}(1/4) \) or \(A_8 \) different from zero. We also observe that the effect on the dynamics of the adjustable parameter \(a_{\text{RR}}(1/4) \) is almost equivalent to the effect of the adjustable parameter \(a_{\text{PR}}(1/4) \), except for a minus sign and a different scaling. So it is not necessary to consider both of these radiation-reaction adjustable parameters.

Although time consuming, in principle it is possible to perform a comprehensive search over the complete set of the EOB-dynamics parameters \(a_5(\nu) \), \(v_{\text{pole}}(\nu) \), \(A_8, a_{\text{PR}}(\nu) \) or \(a_{\text{RR}}(\nu) \). However, at this point there is no need...
We notice that this excellent agreement is due to the presence in ρ_{22} of test-particle corrections through 5PN order. Were the test-particle corrections through 4PN or 5PN orders not included, the disagreement at the peak would become 4.9% and 11.3%, respectively.\footnote{In Ref.\cite{17} (see Fig. 10 therein and discussion around it) the authors pointed out that the difference between h_{22} amplitudes computed with the test-particle corrections through 3PN, 4PN or 5PN orders, differ only by a few percent. However, this statement was obtained for circular orbits until the LSO frequency $M\Omega = 0.097$. Our Fig. 5 extends beyond that frequency (the latter corresponds to $t = 3914M$ in the figure).}

Figure 5 also shows the EOB amplitudes of Eq. (16a) when the Padé-resummations P_1^1 and P_2^1 of ρ_{22} suggested in Ref.\cite{17} are applied. In these cases, the EOB peak amplitude almost coincides in time with the numerical peak amplitude, but the relative difference in the value of the peak amplitude is rather large. However, those large differences may be resolved if the resummed version of the GW energy flux \cite{17} consistent with the resummed h_{em} were used. Figure 5 also contains the EOB h_{22} amplitude with NQC terms as suggested in Refs.\cite{30, 31} [see Eq.\ (12) in Ref.\cite{31}]. The relative difference with the numerical amplitude is $\sim 20\%$ at the peak. It is rather interesting to observe, as pointed out in Ref.\cite{31}, that by aligning the numerical and EOB waveforms at low frequency, we find that the peak of the numerical h_{22} coincides with the peak of the EOB orbital frequency. Here, to improve the amplitude agreement during plunge and merger, we include the NQC corrections of Eq. (18). We fix two of the adjustable parameters, $a_{1}^{\text{h}_{22}}$ and $a_{2}^{\text{h}_{22}}$, by requiring that a local extremum of the EOB h_{22} amplitude occurs at the same time as the peak of the EOB orbital frequency (i.e., the EOB light-ring), and that the EOB amplitude at the peak coincides with the numerical amplitude at the peak. In fact, we expect that in the near future, the peak of the numerical h_{22} will be able to be predicted by numerical relativity with high accuracy for several mass ratios. Thus, the peak can be fit with a polynomial in v. (Preliminary studies which use results from Ref.\cite{28} confirm this expectation.) The other two adjustable parameters, i.e., $a_{3}^{\text{h}_{22}}$ and $a_{4}^{\text{h}_{22}}$, are calibrated to the numerical results to further reduce the disagreement. Specifically, we do a two-parameter least-square-fit of the ratio of the numerical RWZ and EOB h_{em} on Eq. (18) in which $a_{1}^{\text{h}_{22}}$ and $a_{2}^{\text{h}_{22}}$ are fixed as functions of $a_{3}^{\text{h}_{22}}$ and $a_{4}^{\text{h}_{22}}$ by the requirements described above. We notice that the strategy of improving the amplitude agreement followed in this paper might change in the future, when accurate numerical unequal-mass black-hole binary inspiral-merger-ringdown waveforms become available. A smaller number of adjustable parameters might suffice if more requirements on the EOB model itself can be imposed or if a different matching procedure, such as the one suggested in Ref.\cite{51}, is employed.

to further improve the EOB evolution close to merger, and achieve better agreement with the equal-mass, non-spinning numerical data, since the agreement is already at the level of the numerical error. Thus, in the following, we shall use the values of $a_{5}(1/4) = 6.344$ and $v_{\text{pole}}(1/4) = 0.85$ is used. We show the EOB amplitudes without the NQC terms and the EOB amplitude with the NQC terms suggested in Ref.\cite{31}, where the NQC parameters take the values $a = 0.75$ and $\epsilon = 0.09$. When the NQC corrections are not included, we show the EOB amplitude of Eq. (16a) which uses the resummation procedure of Ref.\cite{17}, and also the EOB amplitudes of Eq. (16a) when the Padé-resummations P_1^1 and P_2^1 of ρ_{22} suggested in Ref.\cite{17} are applied. Note that in this plot, the EOB amplitudes do not contain the merger-ringdown contribution.

We shall now discuss the EOB model with reference values $a_{5}(1/4) = 6.344$ and $v_{\text{pole}}(1/4) = 0.85$, and tune the EOB-waveform adjustable parameters. We shall comment at the end of this section on the results when the other reference values $a_{5}(1/4) = 4.19$ and $v_{\text{pole}}(1/4) \to \infty$ are used. In Fig. 5 we compare the numerical and EOB h_{22} amplitudes with and without including NQC terms. The agreement of the numerical amplitude with the EOB amplitude of Eq. (16a) without NQC terms, which uses the resummation procedure of Ref.\cite{17}, is rather remarkable. The relative difference at the peak is only $\sim 1.5\%$, and the EOB peak amplitude occurs only $\sim 6M$ before the numerical peak amplitude.

We shall now discuss the EOB model with reference values $a_{5}(1/4) = 6.344$ and $v_{\text{pole}}(1/4) = 0.85$ are used. We show the EOB amplitudes without the NQC corrections and the EOB amplitude with the NQC terms suggested in Ref.\cite{31}, where the NQC parameters take the values $a = 0.75$ and $\epsilon = 0.09$. When the NQC corrections are not included, we show the EOB amplitude of Eq. (16a) which uses the resummation procedure of Ref.\cite{17}, and also the EOB amplitudes of Eq. (16a) when the Padé-resummations P_1^1 and P_2^1 of ρ_{22} suggested in Ref.\cite{17} are applied. Note that in this plot, the EOB amplitudes do not contain the merger-ringdown contribution.

![Figure 5](image-url)
C. Comparing the gravitational-wave modes h_{1mn} of equal-mass coalescing black-hole binaries

In this section, we focus on the model whose EOB-dynamics and EOB-waveform adjustable parameters were calibrated to numerical RWZ h_{22} and NP Ψ_4^{22} in Sec. III B. Using this EOB model, we generate the GW modes h_{22}, h_{32} and h_{44} and compare them to the corresponding numerical modes. We choose these three modes because they are the most dominant ones for an equal-mass, non-spinning black-hole binary.

In Fig. 6, we show the numerical and EOB mode h_{22} aligned with the procedure of Sec. III A. Using the reference values $a_5(1/4) = 6.344$ and $v_{\text{pole}}(1/4) = 0.85$, we find that the best phase and amplitude agreement is obtained when the matching occurs at an interval of $\Delta t_{\text{match}} = 3.0 M$ ended at $t_{\text{match}}^{22} = 3942.5 M$, i.e., at the peak of $M \Omega$, with $a_1^{h_{22}}(1/4) = -2.23$ and $a_2^{h_{22}}(1/4) = 31.93$, $a_3^{h_{22}}(1/4) = 3.66$ and $a_4^{h_{22}}(1/4) = -10.85$. The phase difference is strictly within ± 0.02 radians until the merger, i.e., the peak of h_{22}, which happens at $t = 3942.5 M$ (early numerical data contaminated by junk radiation was discarded until $t = 200 M$). The relative amplitude difference is also within ± 0.02 in this range. The phase difference becomes 0.04 radians at $t = 3962 M$, before a rather large error starts contaminating the numerical h_{22}. A more careful tuning on the EOB-waveform adjustable parameters could further improve the phase agreement. However, we do not think it is worthwhile to improve the agreement at this point since we are only examining the equal-mass case. Note that the relative amplitude difference becomes $\sim 7\%$ at $t = 3962 M$, and increases during the ringdown.

The numerical GW strain h_{22} plotted in Fig. 6 is computed using RWZ wave extraction. During the ringdown, this waveform is noisier than the extracted NP scalar Ψ_4^{22} (see the Appendix). Therefore, in Fig. 7, we compare the numerically extracted Ψ_4^{22} with the second time derivative h_{22} of the EOB waveform. Overall, the agreement is much better than for the comparison of h_{22} in Fig. 6. Phase and relative amplitude differences are smaller than 0.002 during most of the inspiral, and remain smaller than 0.01 up to $t = 3920 M$. In the interval around merger, $t = 3930 M$ to $3960 M$, the agreement is slightly worse than in Fig. 6; the disagreement in this region is caused by the differences between the inspiral EOB h_{22} and numerical NP Ψ_4^{22} frequencies, as discussed at the beginning of Sec. III.

In the ringdown region, $t > 3960 M$, Fig. 7 shows excellent agreement, and this agreement persists until late times. In contrast to the h comparison shown in Fig. 6, in Fig. 7 both phase and amplitude differences remain bounded; during the ringdown, the phase difference between EOB h_{22} and Ψ_4^{22} oscillates around 0.08 radians,
and the amplitude differs by about 8%. Apart from small oscillations likely caused by gauge effects (see the Appendix), $\Delta \phi$ remains constant to an excellent degree during about 9 ringdown oscillations, i.e. during an accumulated phase of about 56 radians. If the quasi-normal mode frequency used in the EOB ringdown waveform were different from the numerical ringdown frequency by as little as 0.1%, a linearly accumulating phase-difference of ~ 0.056 radians would accumulate, which would be clearly noticeable in the lower right panel of Fig. 7. Thus, we find agreement at the 0.1% level between the numerical quasi-normal mode frequency and the prediction based on final mass and spin of the numerical simulation.

In Fig. 8, we compare the amplitude and frequency of numerical and EOB h_{22} waveforms together with the orbital frequency of the EOB model. The peak of the latter is close to the EOB light ring, and is aligned with both the EOB and numerical h_{22} amplitudes (as required by our choice of $a_i^{h_{22}}$ and $a_i^{h_{24}}$). During the ringdown, the frequency computed from the numerical h_{22} shows increasingly large oscillations. We also plot the frequency computed from the numerical $\Psi_4^{h_{22}}$ mode. This frequency shows much smaller, and bounded, oscillations deep into the ringdown regime.

Having constructed our EOB waveform purely by considering the (2,2) mode, we now discuss agreement between higher modes of the EOB model and the numerical simulation. Figure 9 shows phase and amplitude differences for the two next largest modes, the (4,4) and the (3,2) mode. The EOB model is identical to the one that has been calibrated to agree with the (2,2) mode, and the parameters $a_i^{h_{22}}$ and $a_i^{h_{24}}$, which appear in Eq. (18) to correct the amplitude of the higher-order modes for non-

quasi-circular motion, are set to zero. But although the EOB model has not been calibrated in any way to match the higher-order modes, the agreement between numerical and EOB waveforms shown in Figure 9 is rather good for $t \lesssim 3700 M$. In fact, the differences between EOB and NR modes are comparable to the estimated numerical errors in these modes (as estimated by convergence tests between different numerical resolutions, and the comparison between the numerical h and Ψ_4 waveforms which are presented in the Appendix. Around $t \approx 3700 M$, the numerical (3,2) and (4,4) modes begin to show additional features, which we believe are unphysical, and are described in more detail in the Appendix. These features prevent a meaningful comparison of the (3,2) and (4,4) modes at later times.

Figure 10 shows amplitude and frequency of the (4,4) and (3,2) modes for both the EOB model and the numerical simulation for the last few hundred M of inspiral. This figure begins approximately where the NR-EOB differences in Fig. 9 exceed the vertical scale of that figure. The EOB amplitude and phase follow roughly the average of numerical results, which show oscillations resulting from numerical errors. At earlier times, the EOB and NR amplitudes, phase and frequencies track each other very closely, as can be seen from Fig. 9. Please compare also with Fig. 8 which plots the frequencies for the (2,2) mode.

Finally, in Fig. 11, we show the numerical and EOB mode h_{22} using the reference values $a_5(1/4) = 4.19$ and $v_{\text{pole}} \to \infty$. In this case we find that the best phase and amplitude agreement is obtained when the matching occurs over a range of $\Delta t_{\text{match}} = 2.2 M$ ended at the peak
of $M\Omega$, with $a_1^{h22}(1/4) = -2.50$ and $a_2^{h22}(1/4) = 35.43$, $a_3^{h22}(1/4) = 4.91$ and $a_4^{h22}(1/4) = -32.40$. Comparing the result with that of Fig. 6, we notice that the phase and amplitude differences are only slightly worse than the reference model of Fig. 6, but still within numerical error.

D. Impact on data analysis

Using the EOB model with reference values $a_5(1/4) = 6.344$ and $v_{\text{pole}}(1/4) = 0.85$, we now quantify the disagreement between numerical and EOB waveforms by calculating their maximized overlaps which are important for analysis of data [52] from GW detectors. Here we restrict ourselves to the dominant mode h_{22}. Given two time-domain waveforms $h_1(t)$ and $h_2(t; t_0, \phi_0)$ generated with the same binary parameters, the maximized overlap, otherwise known as a fitting factor (FF), is given explicitly by [27]

$$
\text{FF} \equiv \max_{t_0, \phi_0} \frac{\langle h_1, h_2(t_0, \phi_0) \rangle}{\sqrt{\langle h_1, h_1 \rangle \langle h_2(t_0, \phi_0), h_2(t_0, \phi_0) \rangle}},
$$

(24)

where

$$
\langle h_1, h_2 \rangle \equiv 4 \Re \int_0^\infty \frac{\tilde{h}_1(f)\tilde{h}_2(f)}{S_h(f)} df.
$$

(25)

Here $\tilde{h}_i(f)$ is the Fourier transform of $h_i(t)$, and $S_h(f)$ is the detector’s power spectral density. We compute the FFs for binary black holes with total mass $30–150M_\odot$, using LIGO, Enhanced LIGO and Advanced LIGO noise curves 6, and find in all cases FFs larger than 0.999. Note that the FFs are computed maximizing over time of arrival and initial phase, but not over the binary parameters. We note that FF ≥ 0.999 gives a mismatch $\epsilon \equiv 1 – \text{FF}$ between the numerical and the analytical h_{22} of $\epsilon_{\text{NR}} \sim \epsilon_{\text{EOB}} \lesssim 0.001$. For the noise curves of LIGO, Enhanced LIGO and Advanced LIGO, we find that the mismatch between all extrapolated numerical waveforms h is less than 0.0001 for black-hole binaries with a total mass of $30–150M_\odot$. If we take this mismatch as an estimate of the difference between the numerical and the exact physical waveforms, we have $\epsilon_{\text{NR}} \leq 0.0001$. The mismatch between the exact and the analytical h_{22} is therefore $\epsilon_{\text{EOB}} \leq 0.0017$. This mismatch is smaller than the bound 0.0055 presented in Ref. [8], and therefore our EOB model is sufficiently accurate for GW detection in LIGO, Enhanced LIGO, and Advanced LIGO.

6 For LIGO, we use the analytic fit to the LIGO design power spectral density given in Ref. [53]: for Enhanced LIGO, we use the power spectral density given at http://www.ligo.caltech.edu/~rana/NoiseData/S6/DCnoise.txt; for Advanced LIGO, we use the broadband configuration power spectral density given at http://www.ligo.caltech.edu/advLIGO/scripts/ref_des.shtml
E. Unequal mass inspiraling binary black holes

As a check of the robustness of our EOB model calibrated to numerical waveforms of equal-mass black-hole binaries, we extend the model to a set of unequal-mass black-hole binaries by comparing numerical and EOB $Ψ_{x}^{q}$ inspiraling waveforms for mass ratios 2:1 and 3:1. These simulations were performed with the Caltech-Cornell SpEC code, last about eight orbits and have phase errors similar to the equal mass simulation discussed so far. Details of simulations will be published separately. In the case of mass ratios 1:1, 1:2, 1:3, and the ratios 2:1 and 3:1. Choosing parameters outside this range reduced to values smaller than the numerical error. If we require phase differences on the order of the numerical error.

In Figs. 12 and 13, we compare the numerical and EOB $Ψ_{x}^{q}$ waveforms and their amplitude and phase differences for binaries with mass ratios $q = m_{1}m_{2}$ of 2:1 and 3:1. The alignment procedure of Sec. III A was used with $t_{2} = 310M$ and $t_{2} = 930M$. The figures also show the numerical phase error obtained from runs with two different numerical resolutions. The specifics of these numerical runs will be published separately. In the case of mass ratios $q = 2:1$ and 3:1, we find that by tuning $v_{\text{pole}}(r)$, the difference between numerical and EOB waveforms can be reduced to values smaller than the numerical error. The best values of v_{pole} find are $v_{\text{pole}} = 0.76 \pm 0.01$ for mass ratio 2:1, and $v_{\text{pole}} = 0.70 \pm 0.01$ for mass ratio 3:1. Choosing parameters outside this range results in differences between numerical and EOB waveforms that are at least twice the numerical error. Combining v_{pole} values for mass ratios 1:1, 1:2, 1:3, and the test-particle limit, we find a least-square fitting formula $v_{\text{pole}}(r) = 0.57 - 0.65(\pm 0.35)r + 7.0(\pm 1.5)r^{2}$.

Finally, we observe that the phase and amplitude differences between numerical and EOB waveforms can be reduced to values smaller than the numerical error, if we choose the EOB reference model of Sec. III B where we set $v_{\text{pole}} \to \infty$ and let $a_{5}(r) = r(\lambda_{0} + \lambda_{1} r)$. In particular, calibrating the mass ratio 2:1 and 3:1, we find $a_{5}(r) = -7.3(\pm 0.1) + 95.6(\pm 0.3)r$. These EOB models agree with the numerical data as well as the EOB models shown in Figs. 12 and 13.

We note that with our choice of the GW energy flux (factorized logarithms and $t_{\text{iso}} = 1$), the best fit to numerical flux has $v_{\text{pole}}(0) = 0.57$, which differs slightly.

FIG. 12: EOB–NR comparison for a BH binary with mass ratio 2 : 1. The upper panel shows the numerical and EOB mode $Ψ_{x}^{q}$, and the lower panel shows phase and amplitude differences between EOB and numerical run. The dashed brown line is the estimated phase-error of the numerical simulation, obtained as the difference between simulations at high resolution ’N6’ and lower resolution ’N5’.

IV. CONCLUSIONS

In this paper, building upon recent, successful results [17, 22, 26–31] of the EOB formalism [9, 10, 13–15], we have concentrated on the EOB model denoted Φ_{3}/H_{4} in Ref. [22], with adjustable EOB-dynamics and EOB-waveform parameters defined in Table I. We have calibrated this EOB model to a very accurate numerical simulation of an equal-mass non-spinning binary black-hole coalescence [23].

When comparing EOB and numerical waveforms, or when comparing numerical waveforms with each other, we determine the arbitrary time offset and phase offset between the waveforms by minimizing the phase differences between the waveforms over a time interval of $\sim 1000M$ at low frequency, where the PN-based EOB waveforms are expected to be most accurate [22]. Compared to aligning waveforms at a particular time or frequency, this procedure is less sensitive to numerical noise and residual eccentricity.

Among the EOB-dynamics adjustable parameters $\{a_{5}(1/4), v_{\text{pole}}(1/4), a_{\text{RR}}^{E}(1/4), a_{\text{RR}}^{F}(1/4), A_{8}\}$, the parameters $a_{5}(1/4)$ and $v_{\text{pole}}(1/4)$ have the largest effect upon the long inspiral phase. Thus, we set $\{a_{\text{RR}}^{E}(1/4) = 0, a_{\text{RR}}^{F}(1/4) = 0, A_{8} = 0\}$ in our EOB model, and we considered the phase difference between the numerical and
Mass ratio 3:1

EOB Ψ_{22}^{22} as a function of the parameters $a_5(1/4)$ and $v_{\text{pole}}(1/4)$. This phase difference increases with time, so we have sought parameters for which this phase difference remains small for as long a time as possible. We found regions of the $(a_5(1/4), v_{\text{pole}}(1/4))$ parameter space where this phase difference is less than 0.02 radians either until $t = 282M$ or until $t = 42M$ (red curves) before the time when the numerical h_{22} reaches its maximum amplitude (see blue and red curves in Fig. 2), respectively.

Moreover, building on Refs. [10, 50], we have found that the EOB-dynamics adjustable parameters entering the GW energy flux cannot modify the phase of the EOB Ψ_{22}^{22} during the plunge and close to merger. This is because any modification of the GW energy flux beyond the LSO has negligible effect on the phasing, as the evolution is driven mostly by the conservative part of the dynamics. We also found that A_8 is strongly degenerate with $a_5(1/4)$ until almost 100M before merger, and that $a_{\text{HR}}^R(1/4)$ and $a_{\text{HR}}^L(1/4)$ have an almost equivalent effect on the phasing, except for a minus sign and a different scaling. Overall, for the equal-mass non-spinning case, we have found that the EOB-adjustable parameters $\{a_{\text{HR}}^R(1/4), a_{\text{HR}}^L(1/4), A_8\}$ have a minor effect in reducing the phase and amplitude differences between the EOB model and the numerical simulation (see also Fig. 4). To achieve differences on the order of the numerical error, we can restrict ourselves to the EOB parameter space with $\{a_{\text{HR}}^R(1/4) = 0, a_{\text{HR}}^L(1/4) = 0, A_8 = 0\}$.

Furthermore, using our alignment procedure, we have found that the peak of the numerical h_{22} coincides with the peak of the EOB orbital frequency, confirming what was pointed out in Ref. [31]. As in Ref. [31], we require that the EOB dominant mode h_{22} peaks at the maximum of the EOB orbital frequency (i.e., the EOB light-ring). We also require that the EOB amplitude at the peak coincides with the numerical amplitude at the peak. In fact, we expect that in the near future, the peak of the numerical h_{22} will be able to be predicted by numerical relativity with high accuracy for several mass ratios. Thus, the peak can be fit with a polynomial in ν. (Preliminary studies which use results from Ref. [28] confirm this expectation.) These requirements determine the EOB-waveform parameters $a_{h_{22}}(1/4)$ and $a_{h_{22}}(1/4)$. To further improve the agreement close to merger, we then tune $a_{h_{22}}(1/4)$, $a_{h_{22}}(1/4)$, and $\Delta h_{22}^{\text{match}}(1/4)$, so that the phase and amplitude differences between the EOB and numerical h_{22} are minimized. In particular, we found that this happens if $\Delta h_{22}^{\text{match}}(1/4)$ is chosen to be around $3M$ (while $\mathcal{t}_{\text{match}}(1/4)$ is fixed at the maximum of the EOB orbital frequency \mathcal{M}^2). For the EOB reference model with $a_5(1/4) = 6.344$ and $v_{\text{pole}} = 0.85$, we have found that the phase and amplitude differences between EOB and numerical h_{22} waveforms are 0.02 radians and 2%, respectively, until 20M before merger, and 0.04 radians and 7%, respectively, during merger and early ringdown, until the numerical h_{22} starts to be affected by numerical oscillations (see Fig. 6). These agreements were obtained by comparing EOB and numerical values of h_{22}, the latter having been extracted from the RWZ scalars. We also compared the EOB and numerical Ψ_{22}^{22}. In this case, the agreement is even better during the long inspiral and through the late ringdown, with phase and amplitude disagreements of 0.02 radians and 2% until 20M before merger, and 0.08 radians and 8%, respectively, during merger and early ringdown (see Fig. 7). However, around the transition between plunge and ringdown, the EOB h_{22} has some oscillations because the EOB resummation provides us with h_{22}, whereas when taking time derivatives of h_{22} non-resummed higher order PN terms are generated, spoiling in part the agreement of h_{22}.

Quite interestingly, we have found that phase and amplitude differences between EOB and numerical waveforms can also be reduced to numerical errors, at least during the inspiral, if we let $v_{\text{pole}} \to \infty$ and calibrate the coefficients λ_0 and λ_1 in $a_5(\nu) = \nu(\lambda_0 + \lambda_1 \nu)$, see Fig. 11.

For data analysis purposes, we have also computed the maximized overlaps or fitting factors (FFs) between the EOB reference model with $a_5(1/4) = 6.344$ and $v_{\text{pole}} = 0.85$ and numerical h_{22}. We maximized only over the initial phase and time of arrival. We have found that for black-hole binaries with total mass 30–150M_\odot, using LIGO, Enhanced LIGO and Advanced LIGO noise curves, the FFs are larger than 0.999. We have also computed the FFs between values of numerical h_{22} that were computed in slightly different ways (e.g., different num-

FIG. 13: EOB–NR comparison for a BH binary with mass ratio 3 : 1. The upper panel shows the numerical and EOB mode Ψ_{22}^{22}, and the lower panel shows phase and amplitude differences between EOB and numerical run. The dashed brown line is the estimated phase-error of the numerical simulation, obtained as the difference between simulations at high resolution ‘N6’ and lower resolution ‘N5’.
merical resolutions, different extraction procedures), and
have estimated the mismatch between the exact and EOB
h_{22}. We have concluded, in the spirit of Ref. [8], that our
analytical h_{22} satisfies the requirements of detection with
LIGO, Enhanced LIGO and Advanced LIGO.

Finally, to test the robustness of the EOB model, we have
also compared it to a few equal-mass subdominant
modes (ℓ, m), notably (4, 4) and (3, 2), and to the
dominant mode (2, 2) of a set of unequal-mass inspiraling
binaries. Without changing the EOB-dynamics adjustable
parameters, we have found that, in the equal-mass case,
the phase and amplitude differences of EOB and numerical
h_{44} and h_{32} are within the numerical errors through-
out the inspiral (see Figs. 9 and 10). Furthermore, in the
unequal-mass case, we have found that we can reduce the
phase difference of the EOB and numerical Ψ_4 of inspir-
aling binaries of mass ratios 2:1 and 3:1 on the order of
10^{-4} (see Figs. 12 and 13). This can be obtained either
(i) by setting $a_3(\nu) = \nu \lambda_0$ with λ_0 fixed by
the equal-mass case, and calibrating $v_{\text{pole}}(\nu)$, or (ii)
by letting $v_{\text{pole}} \to \infty$ and calibrating $a_5(\nu)$.

In the near future, we plan to compare the non-
spinning EOB model defined in this paper to a larger set
of accurate numerical simulations of black-hole bi-
inary coalescences (for both equal and unequal-mass
binaries), and complete the tuning of all the EOB-
dynamics and -waveform adjustable parameters. In par-
cular, we expect to improve the EOB plunge-merger-
ringdown matching either by reducing the number of
EOB-waveform adjustable parameters or by employing
different matching procedures or GW energy fluxes.

While polishing this manuscript for publication, an in-
dependent calibration of the EOB model which uses the
equal-mass binary black-hole data of the Caltech-Cornell
collaboration employed in this paper and made public on
January 20, 2009 appeared on the archives [54].

Acknowledgments

We thank Oliver Rinne for his work on implement-
ing Regge-Wheeler-Zerilli wave extraction, and Fan Zang
for extrapolating waveforms to infinite extraction radius.
We also thank Emanuele Berti and Evan Ochsner for
useful discussions, and Emanuele Berti for providing us
with the quasi-normal mode frequencies and decay times
used in this paper. A.B. and Y.P. acknowledge support
from NSF Grant No. PHY-0603762. L.B., L.K., H.P.,
and M.S. are supported in part by grants from the Sher-
man Fairchild Foundation to Caltech and Cornell, and
from the Brinson Foundation to Caltech; by NSF Grants
No. PHY-0601459, No. PHY-0652995, and No. DMS-
0553302 at Caltech; by NSF Grants No. PHY-0652952,
No. DMS-0553677, and No. PHY-0652929 at Cornell.

APPENDIX: COMPARING DIFFERENT
METHODS OF COMPUTING $h_{\ell m}$

The analysis in Sec. III relies to some extent on the GW
strain h extracted from the numerical simulation. Earlier
papers describing generation of the numerical data [21–
23] focused on the behavior of the NP scalar Ψ_4, and
performed comparisons to PN theory based on the num-
ernal Ψ_4.

We have two means of computing a GW strain h from
the numerical simulations. The first is a double time
integration of Ψ_4, exploiting the relation

$$\Psi_4 = \hat{h}. \quad (A.1)$$

[Note that throughout this Appendix, we suppress in-
dices ℓm denoting the components of the decomposition
into spin-weighted spherical harmonics. Thus, Eq. (A.1)
is meant to apply to each complex component (ℓ, m).
For each time integration [and each mode (ℓ, m)], a
complex integration constant needs to be determined.
These constants are fixed with the procedure described
in Sec. II of Ref. [22], in which a certain functional of
temporal variations of the amplitude of the integrated
data is minimized. The minimization is performed over
25 separate integration intervals $[t_1, t_2]$ with $t_1/M =
1000, 1100, \ldots, 1400$ and $t_2/M = 2600, 2700, \ldots, 3000$.
We then compute the time average of these 25 integrated
waveforms, and we use this time average, which we de-
note as $\int \Psi_4$, as the GW strain. Note that we perform
the above operations on the numerical Ψ_4 data after it
has been extrapolated to infinite extraction radius.

Our second means of extracting a GW strain is us-
ing the RWZ equations [44, 45] generalized to arbitrary
spherically symmetric coordinates, as formulated by Sar-
bach & Tiglio [46]. An advantage to the Sarbach & Tiglio
formalism in contrast to the more widely-used Zerilli-
Moncrief formalism ([55] and references therein) is that
in the former case, the GW strain is obtained directly
from the gauge-invariant RWZ scalars (at leading order
in the inverse radius), without any time integration.
With Oliver Rinne, we have implemented the Sarbach & Tiglio
formalism for a Minkowski background in standard coordi-
nates in the Caltech-Cornell spectral code [47]. From
the RWZ scalars (extracted at finite radii), we compute
the GW strain and then extrapolate to infinite extraction
radius in order to obtain the final waveform h_{RWZ}.

In order to gain insight into the accuracy and re-
lability of the computed GW strain, we explore the dif-
terences between waveforms extracted with either technique
(see also [56] for a similar comparison). Figure 14 shows
the real part of the numerical $(2, 2)$ mode. On the scale
of the full waveform, no disagreement between h_{RWZ} and
$\int \Psi_4$ is visible. However, the lower two panels of Fig. 14
show differences between h_{RWZ} and Ψ_4 deep in the
ring-
down phase: While Ψ_4 continues to decay exponentially
through many orders of magnitude, h_{RWZ} exhibits notice-
able deviation from a pure exponential decay at about a
Re(h) R/M
-0.4
-0.3

l, m

FIG. 14: The (l, m) = (2, 2) mode of the numerical waveform.

tenth of peak amplitude. Decay of \(h_{RWZ} \) stops completely at about one per cent of peak amplitude.

We suspect that this unexpected behavior is caused by gauge effects: All simulations in the numerical relativity community are performed using gauges in which the coordinates dynamically respond to the changing geometry, so as to avoid pathologies such as coordinate singularities. Ideally, the procedures used to extract gravitational radiation from the source. Gauge effects are expected to manifest themselves differently in NP and RWZ wave extraction techniques, so by comparing the results of these two extraction techniques, we can get a handle on the size of our uncertainties that arise from gauge effects.

Therefore, we will examine the differences between the numerical \(h_{RWZ} \) and \(\Psi_4 \). Using (A.1), we can compute a meaningful difference in two ways. The first way is to differentiate \(h_{RWZ} \) twice and compute

\[
\Delta \phi_{NP} = \arg(h_{RWZ}) - \arg(h_{RWZ})
\]

\[
\frac{\Delta A_{NP}}{A} = \frac{|\Psi_4| - |\mathring{h}_{RWZ}|}{(|h_{RWZ}| + |\Psi_4|)/2}.
\]

The subscript 'NP' indicates that the comparison is made on the level of the NP scalars, i.e. \(\Psi_4 \) appears undifferentiated on the right-hand-sides. The second way is to time-integrate \(\Psi_4 \) and to calculate

\[
\Delta \phi_{RWZ} = \arg(\int \Psi_4) - \arg(h_{RWZ})
\]

\[
\frac{\Delta A_{RWZ}}{A} = \frac{|\int \Psi_4| - |\mathring{h}_{RWZ}|}{(|h_{RWZ}| + |\int \Psi_4|)/2}.
\]

The results of these comparisons are presented in Fig. 15. An examination of this figure reveals several properties of the extracted \(\Psi_4 \) and \(h_{RWZ} \) waveforms. First, we note that during the inspiral and merger (up to \(t \approx 3960M \), that is 18M after the peak of \(h_{RWZ} \)), the RWZ and NP waveforms agree to better than 0.02 radians. \(\Delta \phi_{NP} \) contains more noise because noise is amplified by the double time differentiation to compute \(\mathring{h} \), and because \(\Psi_4 \) is contaminated by junk-radiation from the initial data up to time \(t \approx 1000M \). The blue lines in this plot have been smoothed (by convolution with a Gaussian of width 5M) to reduce the effect of noise due to junk radiation. (The grey data in the background represents the unsmoothed data.)

FIG. 15: Phase and relative amplitude difference between the \((l, m) = (2, 2) \) modes of the RWZ waveform \(h_{RWZ} \) and NP scalar \(\Psi_4 \).[see Eqs. (A.2)–(A.5)]. The right panel shows an enlargement of merger and ringdown, with the dotted vertical lines indicating time of maximum of \(|\Psi_4| \), and where \(|\Psi_4| \) has decayed to 10% and 1% of the maximal value. (The blue lines are smoothed; the grey data in the background represents the unsmoothed data.)
sustainable to the noise introduced by junk radiation. Unfortunately, because of an imperfect choice of integration constants for the time integration, $\int \int \Psi_4$ does not precisely oscillate around zero at all times. This results in oscillations of $\Delta \phi_{\text{RWZ}}$ and $\Delta A_{\text{RWZ}}/A$ during the inspiral; the frequency of these oscillations coincides with the GW frequency. The choice of integration constants, however, is good enough to confine these oscillations to less than about 0.02 radians in phase and 0.5 per cent in amplitude during the inspiral.

Around merger, differences of the wave strain, i.e. $\Delta \phi_{\text{RWZ}}$ and $\Delta A_{\text{RWZ}}/A$, begin to grow, and during ringdown this growth accelerates. This large disagreement is caused by two effects. The first effect is the contamination of h_{RWZ} in the ringdown phase, presumably by gauge effects, as shown in Fig. 14. The second effect is related to the time integration used to obtain $\int \int \Psi_4$. During the inspiral phase, with an appropriate choice of integration constants the average value of $\int \int \Psi_4$ is very nearly zero (see top left panel of Fig. 15). Thus, the inspiral phase fixes all integration constants. When we now extend the integration through merger and ringdown, we find that $\int \int \Psi_4$ during ringdown has a contribution that grows linearly in time. Because the desired oscillatory part of $\int \int \Psi_4$ decays exponentially, this linearly growing contribution contaminates $\arg \int \int \Psi_4$ to an increasing degree as time increases. The linearly growing contribution to $\int \int \Psi_4$ is just barely visible in the top panel of Fig. 14; for the $(3,2)$ and $(4,4)$ modes discussed below, it will be much more obvious.

When matching an analytical model waveform to numerical results, one must choose whether to match to Ψ_4, $\int \int \Psi_4$, or h_{RWZ}, and we have just seen that these three numerical waveforms differ by systematic effects that arise from properties of the numerical simulation. Given Figs. 14 and 15, it appears that Ψ_4 is preferable over $\int \int \Psi_4$ because Ψ_4 lacks the low-frequency oscillations during inspiral that are introduced in $\int \int \Psi_4$ by time integration, and furthermore Ψ_4 lacks the linear drift during the ringdown. Similarly, Ψ_4 has an advantage over h_{RWZ} because it has much cleaner behavior during ringdown (see Fig. 14).

We now turn our attention to the next largest mode, $(l, m) = (4, 4)$, which is shown in Figure 16. Concentrating on the top panel first, we see that $\int \int \Psi_4$ agrees with h_{RWZ} very well for a large fraction of the inspiral. However, for $t \lesssim 1000M$ and $t \gtrsim 3900M$, $\int \int \Psi_4$ contains contributions that grow linearly in time. Note that these contributions cannot be removed by a different choice of integration constants, because integration constants result in addition of a linear term $a + bt$ uniformly at all times. Hence, if the integration constants were changed to yield agreement for $t \lesssim 1000M$, the linearly growing discrepancy would appear at $t \gtrsim 1000M$. The reason that the transition is around $t \sim 1000M$ may be related to the so-called junk radiation that is present in numerical simulations, and arises because the initial data do not correspond precisely to a snapshot of an evolution. A small fraction of the outgoing junk radiation is reflected when passing through the outer boundary. The reflected waves pass through the computational domain

![FIG. 16: The $(l, m) = (4, 4)$ mode of the numerical waveform.](image)

![FIG. 17: Phase and relative amplitude difference between the $(l, m) = (4, 4)$ modes of the RWZ waveform h_{RWZ} and NP scalar Ψ_4, cf. Eqs. (A.2)–(A.5) The right panels shows an enlargement of merger and ringdown, with the dotted vertical line indicating the position of the maximum of $|\Psi_4|$](image)
at retarded time $t \approx 1000 M$. While the reflected junk radiation is small, apparently it is sufficient to contaminate $\int \int \Psi_4$, as seen in the top left panel of Fig. 16.

Around merger, $t \approx 3950 M$, $\int \int \Psi_4$ picks up another linearly growing contribution which renders $\int \int \Psi_4$ basically useless during merger and ringdown. This contamination might be related to oscillations in Ψ_4 and h_{RWZ} that become visible at $t \gtrsim 3750 M$ (see middle and lower panel of Fig. 16). It is presently unclear what causes these effects, but we conjecture that they are related to gauge effects that influence either our current wave-extraction procedure, or our current wave-extrapolation procedure. It is quite possible that a refined understanding of gauge effects will reduce these features in the future.

Because of the apparent contamination of the waveforms for early and late times, we will restrict the EOB-NR comparison of the higher order modes to the time interval $1000 \lesssim t/M \lesssim 3600$. Figure 17 shows that within this interval, Ψ_4 and h_{RWZ} agree to better than 0.02 radians in phase and 1% in amplitude.

Finally, Figures 18 and 19 present an analogous comparison for the $(l, m) = (3, 2)$ mode. Qualitatively, these figures are similar to Figs. 16 and 17. Agreement between Ψ_4 and h_{RWZ} is very good for the time interval $1000 \lesssim t/M \lesssim 3700 M$, with the phases differing by less than 0.1 radians and the amplitudes by less than about 1%. The larger disagreement might be due to the smaller amplitude of the $(3, 2)$ mode of Ψ_4 during the inspiral phase relative to the $(4, 4)$ mode. One potentially interesting difference between the $(4, 4)$ and $(3, 2)$ modes lies in the relative size of the variations in $|h_{\text{RWZ}}|$ and $|\Psi_4|$ in the time range $3700 \lesssim t/M \lesssim 3900 M$: For the $(4, 4)$ mode, variations in $|\Psi_4|$ are clearly smaller than variations in $|h_{\text{RWZ}}|$ (see Fig. 16. For the $(3, 2)$ mode this is reversed, with $|h_{\text{RWZ}}|$ showing somewhat smaller variations than $|\Psi_4|$.

\[\text{(1,m)} = (3,2) \]

\[\text{FIG. 18: The } (l, m) = (3, 2) \text{ mode of the numerical waveform.} \]

\[\text{FIG. 19: Phase difference between the } (l, m) = (3, 2) \text{ modes of the RWZ waveform } h \text{ and NP scalar } \Psi_4, \text{ cf. Eqs. (A.2)–(A.5). The right panels shows an enlargement of merger and ringdown, with the dotted vertical line indicating the position of the maximum of } |\Psi_4|. \]

\[\text{[1] B. C. Barish and R. Weiss, Phys. Today } 52, 44 (1999). \]
\[\text{[2] S. J. Waldman (LIGO Scientific Collaboration), Class. Quantum Grav. } 23, \text{ S653 (2006).} \]
\[\text{[3] S. Hild (LIGO Scientific Collaboration), Class. Quantum Grav. } 23, \text{ S643 (2006).} \]
\[\text{[4] F. Acernese, P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, S. Avino, D. Babusci, G. Ballardin, F. Barone, L. Barsotti, et al., Class. Quantum Grav. } 23, \text{ S635 (2006).} \]
\[\text{[5] P. Fritschel, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, edited by M. Cruise and P. Saulson (2003), vol. 4856 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 282–291, gr-qc/0308090v1.} \]
\[\text{[6] L. S. Finn, Phys. Rev. D } 46, \text{ 5236 (1992).} \]
\[\text{[7] L. S. Finn and D. F. Chernoff, Phys. Rev. D } 47, \text{ 2198 (1993).} \]
\[\text{[8] L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev.} \]
