Since 2006, genome-wide association studies of schizophrenia have led to the identification of numerous novel risk loci for this disease. However, there remains a geographical imbalance in genome-wide association studies, which to date have primarily focused on Western populations. During the last 6 years, genome-wide association studies in Han Chinese populations have identified both the sharing of susceptible loci across ethnicities and genes unique to Han Chinese populations. Here, we review recent progress in genome-wide association studies of schizophrenia in Han Chinese populations. Researchers have identified and replicated the sharing of susceptible loci, such as within the major histocompatibility complex, microRNA 137 (MIR137), zinc finger protein 804A (ZNF804A), vaccinia related kinase 2 (VRK2), and arsenite methyltransferase (AS3MT), across both European and East Asian populations. Several copy number variations identified in European populations have also been validated in the Han Chinese, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. However, these studies have identified some potential confounding factors, such as genetic heterogeneity and the effects of natural selection on tetraspanin 18 (TSPAN18) or zinc finger protein 323 (ZNF323), which may explain the population differences in genome-wide association studies. In the future, genome-wide association studies in Han Chinese populations should include meta-analyses or mega-analyses with enlarged sample sizes across populations, deep sequencing, precision medicine treatment, and functional exploration of the risk genes for schizophrenia.

INTRODUCTION

Schizophrenia is a common severe psychiatric disorder that affects ~1% of the world population with high heritability in the range of 64–81% and a complex genetic architecture. Schizophrenia is often characterized as a heterogeneous disorder, and its genetic basis has long been explored using family-based or twin-based studies. In early studies, linkage and candidate gene association studies implicated numerous putative risk chromosome loci for this disease. However, inconsistent findings resulting from limited biological information on single loci and inadequate sample sizes have sharply hampered the progress of these studies.

Since 2005, the strategy of genome-wide association studies (GWASs) has rapidly prompted additional studies examining the biological mechanism of other complex diseases. The success of GWASs has typically been evaluated based on the number of susceptible genes or risk loci discovered, representing just one achievement of the GWAS approach. Thus, it should be much more meaningful to replicate or validate the GWAS results of this review, which unravels causal genes of schizophrenia from GWAS risk loci across multi-ethnicities.

PROGRESS IN GWASS OF SCHIZOPHRENIA MAINLY IN EUROPEAN POPULATIONS

Common polymorphisms associated with schizophrenia in European Populations

In 2006, Mah et al. reported the first GWAS of schizophrenia, including 320 patients of European descent and 325 matched controls. They revealed that the semaphorin receptor plexin A2 (PLXNA2) may be a susceptible locus for this disease in people of European ancestry. To date, myriad risk loci for schizophrenia have been identified using GWAS approaches. Shifman et al. performed a GWAS for schizophrenia in 660 cases and 2271 controls of the Ashkenazi Jewish population and they identified the risk gene RELN. These authors have also validated RELN as a susceptible locus in four additional populations (2274 cases and 4401 controls), including 415 patients and 458 normal controls of Chinese ancestry. O’Donovan et al. carried out a GWAS of schizophrenia (479 cases, 2937 controls) in United Kingdom (UK) samples. They then validated suggestive loci in up to 16,726 additional subjects, which included individuals from China and Japan, as well as Ashkenazi Jews and outbred European populations. The number of Chinese individuals was 1034 cases.
In 2009, three GWAS studies from the ISC, SGENE, and MGS consortia individually implicated the major histocompatibility complex (MHC) region located on chromosome 6p22.1, transcription factor 4 (TCF4) and neurogranin (NRGN) as key susceptible genes for schizophrenia at significant levels of P < 5 × 10^{-8}. These findings also further supported the abnormal immune system and neurodevelopmental hypothesis of this disease. Subsequently, several independent studies have also replicated the MHC findings for schizophrenia across various populations. Moreover, meta-analyses (combining GWAS results) or mega-analyses (combining GWAS data), which dramatically enlarge the statistical power of a GWAS by pooling subjects, have played important roles in promoting worldwide GWASs of complex diseases into the new so-called “big data era.” In 2011, Steinberg et al. conducted a meta-analysis in a large replication sample and added vaccinia-related kinase 2 (VRK2) as well as replicating the MHC region and TCF4 associations.

In recent years, the largest and encouraging schizophrenia GWAS came from the Psychiatric Genomics Consortium (PGC). To date, the PGC (http://pgc.unc.edu) has involved more than 90 investigators from 40 countries, representing more than 400,000 human participants. PGC stage 2 (PGC2) has identified five novel loci (1p23.3 (MIR137), 2q32.3 (PCGEM1), 8p23.2 (CSMD1), 8q21.3 (MMP16), and 10q24.32-q24.33 (CNNM2/NT5C2)) in a large discovery sample of 21,856 individuals of European ancestry and a replication sample of 29,839 independent subjects. 1 year later, the PGC reported 13 novel schizophrenia loci (CACNA1C, CACNB2, ZNF323, etc.) from a much larger multi-stage GWAS (5001 cases and 6243 controls from Sweden followed by meta-analysis with a previous GWAS of 8832 cases and 12,067 controls and finally by replication of independent samples from 7413 cases, 19,762 controls and 581 parent-offspring trios). Recently, the PGC2 successfully identified 128 linkage disequilibrium (LD)-independent SNPs in 108 distinct loci using GWASs of 17,836 cases and 33,859 controls of European ancestry. The susceptible genes include some potential therapeutic targets (such as D2R; glutamate metabotropic receptor 3, GRM3) and genes involved in neurodevelopment, glutamatergic neurotransmission (for example, GRIN2A, GRIA1, and SRR), neuronal calcium signaling (for example, CACNA1C, CACNB2, and CAMKK2) and synaptic function and plasticity (for example, KCDT13, CNTN4, and MEF2C). These findings have provided new insights into the pathogenesis of schizophrenia. Table 1 showed the summary of progress in GWASs of schizophrenia mainly in European populations (Shifman et al. included 415 patients and 458 normal controls of Han Chinese; O’Donovan et al. included 1034 cases and 1034 normal controls). The plan for PGC3 will be to further enlarge the GWAS sample size to 100,000 cases and at least 20,000 subjects will be sequenced for 200 genes, and analyzes of the Network or Pathway, the PsychENCODE project, etc. will be performed.

Rare copy number variations (CNVs) of schizophrenia in European populations

Accumulating evidence suggested rare, large CNVs contribute to vulnerability for schizophrenia. To date, most of the evidence of CNVs has been reported from studies in populations with European ancestry. The 22q11.2 deletion was the first CNVs reported as implicated in schizophrenia, and the prevalence of 22q11.2 deletion in patients with SZ is about 0.3%. However, Rees et al. further showed that duplications of 22q11.2 may protect against schizophrenia. Moreover, micro-deletions at 1q21.1, 2p16.3, 3p24.1, 3q29, 4p16.3, 15q11.2, 15q13.3, 17p12, and duplications on 1p36.33, 15q13.1, 16p11.2, 16p11.2, 17q11.2, 17q12, and duplications on 1p36.33, 15q13.1, 16p11.2, 17q11.2, 17q12, and duplications on 1p36.33, 15q13.1, 16p11.2 have been identified to be associated with an increased risk of schizophrenia.

Functional exploration on GWAS-identified loci of schizophrenia in European Populations

Moreover, one of the striking aspects of efforts based on GWASs is to explore the potential functional implications for risk genes of schizophrenia. Last year, two other studies based on large-scale GWASs of schizophrenia were also convincing. Sekar et al. reported that complex variations of the complement component 4 (C4) gene may increase the genetic risk of schizophrenia and further explore the potential function contributing to the mechanism of schizophrenia. Another study identified a

![Fig. 1 Flow chart unraveling causal genes of schizophrenia from GWAS risk loci across multi-ethnicities](image-url)
human-specific arsenite methyltransferase (AS3MT) isoform that may be one of the molecular risk factors in the 10q24.32 schizophrenia-associated locus.20

However, the vast majority of susceptibility loci were identified in samples of European ancestry.4–14, 19, 20 The associated variants identified in European populations might not be associated with schizophrenia in other ancestry groups because of underlying genetic heterogeneity. Therefore, large-scale studies in non-European populations are necessary not only to investigate whether the previously identified loci can be generalized to non-European populations but also to identify new schizophrenia susceptibility loci. However, the European population accounts for non-European populations but also to identify new schizophrenia susceptibility loci. However, the European population accounts for the predominant findings, reflecting relatively larger sample sizes, improved collaborative mechanisms, etc. For example, the PGC3 groups are working on the meta-analyses across East Asian populations, included Shi et al.’s and Yue et al.’s GWAS data.15, 16

PROGRESS IN GWAS OF SCHIZOPHRENIA IN HAN CHINESE POPULATIONS

Common polymorphisms associated with schizophrenia in Han Chinese

Although GWASs of schizophrenia in non-European populations were limited to small sample sizes and have yielded few risk loci during the last 6 years, GWASs of Han Chinese populations have successfully identified both the sharing of susceptible genes of schizophrenia across ethnicities and genes unique to Han Chinese populations. There are many publications using GWASs and further analyzes exploring susceptible genes or loci in Han Chinese populations (Table 2). Most of these studies have focused on the replication or verification of the susceptible genes of schizophrenia in Han Chinese. To identify new common genetic risk factors, two research groups independently conducted GWASs in Han Chinese populations in 2011.15, 16 Yue et al. used 479 cases with schizophrenia and 1599 healthy control subjects, followed by 4027 individuals with schizophrenia and 5603 controls as a replication sample, particularly those of Northern Han Chinese descent. These researchers identified a previously unknown variation in a region of chromosome 11p11.2 as a novel susceptible locus for schizophrenia in Han Chinese populations and they also replicated the chromosome 6p22.1 finding from European populations that included the MHC region.15 Shi et al. compared the genomes of 3750 schizophrenia patients with those of 6468 controls comprising three subgroups (Northern, Central and, Southern populations). This study revealed two significantly associated regions, 8p12 (Wolf–Hirschhorn syndrome candidate 1-like 1, WHSC1L1; LSM1 homolog, mRNA degradation associated, LSM1) and 1q24.2 (mitochondrial ribonucleotide carrier 2, BRP44). The association of these two regions with schizophrenia was validated in another sample of 4383 schizophrenia cases and 4539 control subjects.16

Both studies also supported previous findings from European populations revealing that the region of chromosome 6, associated with MHC,27 may be involved in schizophrenia in Chinese populations as well.15, 16 The replication of the MHC locus and genes in this region is of great potential significance, suggesting vital etiological immune system mechanisms for this disease that need further consideration (CyranoSki, Nature News 2011: http://www.nature.com/news).

However, in 2013, Ma et al. did not replicate the findings of the two above mentioned GWASs in a sample of 976 unrelated schizophrenia cases and 1043 control subjects from Central China regions.37 Other studies have also reported different results than the above mentioned GWASs in Han Chinese or Europeans.38–53 The differences may reflect a relatively small power or sample size or high heterogeneity across subpopulations. Several other studies have attempted to replicate the findings of the two above mentioned GWASs in Han Chinese; however, the results remained inconsistent.

Some other recent studies have revealed surprising differences in GWAS-identified susceptibility genes or loci between European and East Asian populations. Luo et al. (2014) examined 30 GWAS-identified significant risk SNPs in Europeans and 10 SNPs in Han Chinese individuals; however, none of these genes was shared between these two geography regional populations.54 Liu et al. explored the evolutionary history of the tetraspanin 18 (TSPAN18) gene and subsequently observed the potential effects of a recent Darwinian-positive selection on the protective allele of rs11038172 in East Asians.55 These researchers deduced that natural selection may help to explain the strong genetic heterogeneity in schizophrenia risk and previous inconsistent association results for schizophrenia in both Europeans and East Asians.

Guan et al. assessed the initial GWAS and replicated 26 genetic variants in an independent sample of 1471 cases with schizophrenia and 1528 controls, identifying common variants on 17q25 and gene-gene interactions conferring risk of schizophrenia in Han Chinese. These authors also used the expression dataset to link tubulin-folding cofactor D (TBCD) and zinc finger protein 750 (ZNF750) mutations to disease susceptibility and the transcript levels in human brain tissues.53

Comparison of GWAS-identified common polymorphisms of schizophrenia between Han Chinese and European populations

Notably, there may be other factors reflecting the differences of GWAS-identified significant genes or loci for schizophrenia among subpopulations, such as clinical heterogeneity, relative small sample size, different genotyping methods, etc. In fact, Yu et al. recently completed a meta-analysis based on GWAS data from China in a relatively large sample (GWAS: 4384 cases and 5770 controls; Replication: 4339 cases and 7043 controls).56 These authors further used the PGC2 GWAS data to evaluate the polygenic risk scores (PRS) to compare the overall patterns of the results from the PGC schizophrenia analysis (discovery sample) with the results from independent Chinese analyzes (target sample). The Genome-wide Complex Trait Analysis (GCTA) was also used to estimate the percentage of phenotypic variance explained by common SNPs in a Chinese population. Both PGC and Yu’s studies identified several chromosome loci, including 2p16.1 (vaccinia related kinase 2, VRK2), 6p22.1 (gamma-aminobutyric acid type B receptor subunit 1, GABBR1) and 10q24.32 (arsenite methyltransferase, AS3MT; ADP ribosylation factor-like GTPase 3, ARL3), that might be susceptibility loci for schizophrenia in both European and Han Chinese subpopulations.56 Functional exploration suggested that VRK2 and ARL3 may play important roles in neurodevelopment.56 Without reference GWAS dataset in Han Chinese, Yu et al. used the PGC2 dataset to calculate a polygenic risk score (PRS) and found the PGC PRS valid to sample from Chinese (R2 = 1.7–5.7%).56 The use of meta-analyses or mega-analyses, including much larger sample sizes with high clinical quality (at least 50,000 – 100,000 pairs of schizophrenia patients and controls) across European and Asian populations or subpopulations, may explain the difference between populations. Table 3 showed the comparison of single-marker association results of schizophrenia in Chinese population and PGC2 sample. Researchers have identified the sharing of susceptible genes, such as MHC, MIR137, ZNF804A, VRK2, and AS3MT, across European and East Asian populations.

In further analyzes, Liu et al. used the GWAS dataset from three distinct populations (European Americans, Han Chinese, and African Americans) to explore potentially shared pathways.57 These authors found that five pathways (serotonergic synapse, ubiquitin-mediated proteolysis, hedgehog signaling, adipocytokine
Authors and publication	Diseases or traits	Sample sizes or datasets	Types of studies	Findings of studies
Li, T. et al. 2010 46	SCZ	2496 SCZ patients and 5184 controls of Chinese Han	Replication of a GWAS signal at MHC	TCF4 not NRGN associated with SCZ
Zeng, Z. et al. 2011 58	Bipolar disorder (BPD), SCZ, and major depressive disorder (MDD)	1139 BPD cases (645 type I); 1122 SCZ cases; 1122 MDD cases and 1138 controls	Meta-analysis and replication of a GWAS signal at DGKH	DGKH associated with bipolar disorder and SCZ
Ma, X. et al. 2011 55	Fluid intelligence in SCZ	98 SCZ cases and 60 controls	GWAS of SCZ phenotype	MSRA associated with fluid intelligence in SCZ
Yue, W. et al. 2011 13	SCZ	GWAS: 746 SCZ cases and 1599 controls; Replication: 4027 SCZ cases and 5603 controls	GWAS	6p22.1 (NRP1, ZKSCAN4, PGRD1) and 11p11.2 (TSPAN11) associated with risk of SCZ
Shi, Y. et al. 2011 16	SCZ	Discovery: 3750 SCZ cases and 6468 controls; Replication: 4383 cases and 4539 controls	GWAS	8p12 (WHSC1L1, LSI1) and 1q24.2 (BRP44) associated with risk of SCZ
Liou, Y.J. et al. 2012 68	Treatment Refractory SCZ (TRS)	795 TRS cases and 806 controls	GWAS of TRS	NFKB1 involved in development of TRS
Li, M. et al. 2012 59	SCZ	10 Chinese and 2 Japanese samples, including 8857 cases and 12,205 controls	Meta-analysis & Replication of a GWAS signal at ZNF804A	ZNF804A rs359895 not rs1344706 contributes to SCZ in Asian
Yuan, A. et al. 2012 20	SCZ	516 SCZ cases, 400 controls, and 81 trios with early onset SCZ probands	Replication of a GWAS signal at ANK3	ANK3 associated with SCZ
Ma, L. et al. 2013 37	SCZ	976 unrelated SCZ cases and 1043 controls	Replication of nine GWAS signals	negative
Zhang, Y. et al. 2013 36	SCZ	902 cases and 1091 controls	Replication of GWAS signal at 6p21-6p22.1	6p21-6p22.1 associated with SCZ
Yuan, J. et al. 2013 56	SCZ	1093 SCZ cases and 1022 controls	Replication of a GWAS signal at TSPAN18	Replication TSPAN18 rs835784 ‘A’ as risk allele of SCZ
Li, M. et al. 2013 40	SCZ	8982 cases and 12,342 controls	Meta-analysis & Replication of a GWAS signal at ZNF804A	Negative
Li, M. et al. 2013 41	SCZ	12,477 cases and 14,586 controls	Meta-analysis and replication of a GWAS signal at ZNF804A	Meta-analysis and replication of a GWAS signal at ZNF804A
Wong, E.H. et al. 2013 43	SCZ	GWAS: 498 SCZ cases and 2025 controls; Replication: 1027 cases and 1,005 controls	GWAS	Xq28 (RENBP, MECP2, and ARHGAP4) as susceptible loci of SCZ
Wang, Q. et al. 2013 34	Gray matter (GM) volume in SCZ	74 first-episode treatment-naive patients with SCZ and 51 controls	GWAS with GM volume as phenotype of SCZ	3 genes (TBXAS1, PKAIC2G, and HS3ST5) may predict changes of GM volume in SCZ
He, K. et al. 2013 32	SCZ and MDD	1235 cases with SCZ, 1045 with MDD and 1235 healthy controls	Replication of European GWAS signal at CACNA1C	CACNA1C as a risk gene for SCZ and MDD
Zheng, F. et al. 2014 55	SCZ	5897 schizophrenic patients and 6323 controls; 8222 SCZ cases and 24,661 healthy controls for meta-analysis	Replication and Meta-analysis of European GWAS signal at CACNA1C	CACNA1C associated with SCZ
Luo, X. et al. 2014 44	SCZ	In multiple independent populations (a total of 130,623 subjects)	Replication for two large-scale GWA expression studies	CAMKK2 may have roles in SCZ susceptibility
Yuan, J. et al. 2015 45	SCZ	506 SCZ cases and 522 healthy controls,	Meta-analysis of European GWAS signal at MIR137	Negative
Luo, X. et al. 2015 51	SCZ	Combined discovery and replication sample comprising 44,123 individuals	Meta-analysis of single-marker at ZNF323	ZNF323 is a susceptible gene of SCZ
Li, Z. et al. 2015 49	SCZ	3585 patients with SCZ and 5496 controls of Han Chinese	Replication of a GWAS signal at MIR137-mediated pathway	Two target genes of MIR137 (ITIH3/4 and CALM1) associated with SCZ
Su, L. et al. 2016 44	SCZ	700 SCZ patients and 700 controls (Zhuang: 300, Han: 400)	Replication of European GWAS signal at MAD1L	MAD1L1 associated with SCZ in Chinese Han
Authors and years or publication	Diseases or traits	Sample sizes or datasets^a	Types of studies	Findings of studies
---------------------------------	-------------------	-------------------------------------	-----------------	---------------------
Xiao, X. & Li, M. 2016⁵⁵	SCZ	3977 cases and 5589 controls of East Asian origin	Replication of previous GWAS signals	MPC2 (BRP44) is associated with SCZ
Guan, L. et al. 2016⁵³	SCZ	1471 SCZ cases and 1528 controls of Chinese Han	Replication of a GWAS signals at 17q25	17q25 (TBCD and ZNF750) associated with SCZ
Cohen, O.S. et al. 2016⁵⁸	SCZ	16 affected families and five independent replication samples totaling 4017 affected and 4704 unaffected individuals in Chinese Han	Replication of a GWAS signals at DRD2	DRD2 disrupts rs1076560(T) as one possible risk factor for SCZ
Yu, H. et al. 2016⁵⁹	Antipsychotic induced weight gain (WG)	GWAS: 534 SCZ patients; Replication: 547 SCZ patients.	GWAS pharmacogenetic of side effects of antipsychotics	PTPRD and GFPT2 were associated with WG of antipsychotic treatment
Liu, J. et al. 2016⁵⁵	Influence of positive selection on GWAS-identified SCZ risk SNPs	Two datasets: one is a summary list of the published GWAS data for SCZ, the other is PGC2 dataset.	GWAS-identified SCZ risk SNPs at TSPAN18 variants for samples of European and East Asian descent	TSPAN18 rs11038172 protective allele has experienced recent Darwinian positive selection in East Asians
Liu, B. et al. 2016⁶⁷	Cortical gyrification	Discovery dataset (N = 315); Replication dataset (N = 357)	Polygenic risk on cortical gyrification	Genetic risk for schizophrenia to cortical morphology
Yu, H. et al. 2016⁵⁶	SCZ and meta-analysis	GWAS: 4384 SCZ cases and 5770 controls; Replication: 4339 SCZ cases and 7043 controls.	GWAS and meta-analysis in Chinese Han; Polygenic risk score (PRS) using PGC data	2p16.1 (VRK2), 6p22.1 (GABBR1) and 10q24.32 (AS3MT, ARL3) associated with SCZ in Chinese Han; PRS (R2: 1.7-5.7%).
Liu, C. et al. (in the press)⁵⁷	GWAS pathway-based analysis in SCZ across 3 populations	5033 SCZ cases and 5332 controls. [Discovery: 972 cases and 1248 controls or European American (EA); 1125 cases and 1034 controls of Chinese Han (CH); 896 cases and 906 controls of African American (AA); Replication: 879 cases and 1132 controls of EA; 454 CH cases and 411 controls of CH]	255 KEGG pathways based on GWAS data across three populations.	Five pathways (serotonergic synapse, ubiquitin mediated proteolysis, hedgehog signaling, adipocytokine signaling and renin secretion) were shared across all three populations.

^a We just enrolled the studies with more than 500 pairs of cases and controls in Han Chinese population.
Table 3. Comparison of single-marker association results of schizophrenia in Chinese population and PGC2 sample

Chr	Position	SNP	A1	A2	Gene	OR	Authors and years	GWAS OR	P	
6	27248931	rs6932590	C	T	POM121L2	0.76	Li, et al. 2010	9.60E-04	1.12942	1.02E-20
6	32172993	rs3131296	A	G	NOTCH4	0.68	1.29E-06	NA	NA	
6	30321732	rs3130375	A	C	RPP21	0.69	1.76E-05	NA	NA	
18	53149021	rs2958182	A	T	TCF4	0.78	3.64E-06	0.95801	1.43E-04	
6	42775097	rs1170099	A	G	DGKH	1.61	Zeng, et al. 2011	5.00E-04	1.01298	6.55E-01
6	28125446	rs1233710	T	C	ZKSCAN4	0.79	Yue, et al. 2011	4.76E-11	1.03759	1.05E-01
6	28227604	rs1635	T	G	NKAPL	0.78	6.91E-12	1.04519	4.38E-02	
6	28259013	rs2142731	A	G	PGBD1	0.79	5.14E-09	NA	NA	
11	44843134	rs11038167	A	C	TSPAN18	1.29	Li, et al. 2011	1.09E-11	0.97229	4.12E-01
11	44855997	rs11038172	A	G	TSPAN18	1.25	7.21E-10	NA	NA	
11	44863818	rs835784	A	G	TSPAN18	1.27	2.73E-11	NA	NA	
11	167903079	rs10489202	A	C	BRP44	1.23	Shi, et al. 2011	9.50E-04	1.00995	4.27E-01
11	38031345	rs16887244	G	A	LSM1	0.84	1.27E-10	1.05527	1.51E-05	
11	38133793	rs1488935	T	C	WHSC1L1	0.85	5.06E-09	0.94129	2.17E-06	
11	44855597	rs11038172	G	A	TSPAN18	1.03	Li, et al. 2012	7.00E-03	0.96117	1.25E-03
11	44843134	rs11038167	C	A	TSPAN18	1.10	Ma, et al. 2013	2.60E-01	1.00995	4.27E-01
11	44855597	rs11038172	G	A	TSPAN18	1.07	2.59E-01	1.0014	9.68E-01	
11	44863818	rs835784	G	A	TSPAN18	0.94	6.20E-01	1.03179	4.04E-02	
11	167903079	rs10489202	G	T	BRP44	0.97	Ma, et al. 2013	2.60E-01	1.00995	4.27E-01
11	28227064	rs1635	G	T	NKAPL	0.97	4.62E-01	1.04519	4.38E-02	
11	38031345	rs16887244	A	G	LSM1	1.01	5.74E-01	0.94129	2.17E-06	
11	38031345	rs1488935	G	A	WHSC1L1	1.02	4.77E-01	1.05527	1.51E-05	
11	44855597	rs11038172	G	A	TSPAN18	0.94	1.83E-01	1.0141	9.68E-01	
11	44843134	rs11038167	C	A	TSPAN18	0.94	9.30E-02	0.97229	4.12E-01	
11	44863818	rs835784	G	A	TSPAN18	0.88	1.38E-01	1.01298	2.23E-01	
6	28215641	rs2235359	C	A	ZKSCAN4	1.22	Zhang, et al. 2013	1.00E-01	1.00995	4.27E-01
6	28222604	rs2142731	T	C	PGBD1	1.04	8.33E-01	NA	NA	
6	28227604	rs1635	G	T	NKAPL	0.97	4.62E-01	1.04519	4.38E-02	
8	38133793	rs1488935	G	A	WHSC1L1	1.01	5.74E-01	0.94129	2.17E-06	
11	44843134	rs11038167	A	C	TSPAN18	1.03	Li, et al. 2012	7.00E-03	0.96117	1.25E-03
12	2345295	rs1006737	A	G	CACNA1C	1.16	He, et al. 2013	1.08E-03	1.05887	1.44E-06
12	2350401	rs882195	G	C	CACNA1C	1.04	6.20E-03	0.97336	2.07E-02	
12	2496926	rs2887780	C	A	CACNA1C	0.90	2.25E-05	0.97336	2.07E-02	
signaling and renin secretion) were shared in the risk of schizophrenia across all three populations. Moreover, Cohen et al. primarily focused on the association of typical dopamine receptor D2 (DRD2) with schizophrenia. These studies enrolled 16 affected families and five independent replication samples, totaling 4017 affected and 4704 unaffected individuals in Han Chinese populations. They deduced that DRD2 disrupts rs1076560 (T allele) as a potential risk factor for schizophrenia in multiple subpopulations of Han Chinese.

Table 3 continued

Chr	Position	SNP	A1	A2	Gene	Chinese population	Authors and years	GWAS	PGC2 GWAS	
7	2004421	rs12666755	T	C	MAD1L1	Su, et al. 2016	0.87	6.60E-02	0.92951	2.48E-11
1	11856378	rs1801133	T	C	MTHFR	Guan, et al. 2016	0.977	7.97E-01	1.00682	5.51E-01
1	16790307	rs10489202	G	T	BRP44		1.081	3.48E-01	1.00995	4.27E-01
1	16797397	rs1060041	C	T	DCAF6		1.122	1.98E-01	1.01106	3.78E-01
1	16809103	rs11586522	C	A	GPR16		1.067	4.11E-01	1.00813	5.16E-01
3	15247377	rs1381094	A	G	P2RY1		0.860	1.45E-01	0.97424	5.49E-02
4	14171487	rs3111810	C	T	RPI1-669M16.1		1.005	9.99E-01	1.0016	8.88E-01
6	26158079	rs7749823	A	C	HIST1H2BD		0.982	9.75E-01	1.18329	7.30E-23
6	28215446	rs1233710	C	T	ZKSCAN4	Guan et al. 2016	0.930	3.26E-01	1.03759	1.05E-01
6	28272604	rs1635	G	T	NKPAL		0.933	3.49E-01	1.04519	4.35E-02

All positions are relative to UCSC hg19
Chr. chromosome, OR odds ratio, A12 reference and alternate allele, NA not available

GWAS of schizophrenia in Chinese
W Yue et al.

Published in partnership with the Schizophrenia International Research Society npj Schizophrenia (2017) 2

Rare CNVs of schizophrenia in Han Chinese
Except for common polymorphisms, increasing studies have also demonstrated that rare variations also contribute to schizophrenia susceptibility and the CNVs explain a proportion of missing heritability. However, only few studies of CNVs in Han Chinese population have been reported to date. For example, Zhao et al. screened deletions at 15q11.2 in 2058 schizophrenia patients and 3275 normal controls in Han Chinese population and then validated deletions. They identified that rare CNVs at 15q11.2...
are associated with schizophrenia, and found a significant increase of deletions in cases over controls.39 Li et al. performed a large-scale genome-wide CNV analysis on 6588 patients with schizophrenia and 11,904 control subjects of Han Chinese population. They validated several CNVs identified in European population, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. Furthermore, they identified three new potential loci: duplications at 1p36.32, 10p12.1, and 13q13.3. These findings provide further support for the role of CNVs in the etiology of schizophrenia in Han Chinese population.34

Progress on other genetic markers of schizophrenia in Han Chinese

miRNA or methylation studies have also been reported in the Han Chinese population. For example, Wei et al. reported that the up-regulation of miR-130b and miR-193a-3p may be state-independent biomarkers for schizophrenia.65 Zhang et al. showed that the dysregulation of miRNA systems undermines the inhibitory effects of miRNAs, resulting in the abnormal up-regulation of genome transcription in the development of schizophrenia.66 This same group also reported that transcriptional factors and microRNAs (miRNAs) may contribute to the development of schizophrenia and might also be relevant to the clinical treatment of the disease.67 Based on GWAS datasets, Luo et al. verified the association of calcium/calmodulin (CAM)-dependent protein kinase 2 (CAMKK2) with schizophrenia and subsequently observed that the T allele of rs1063843 is associated with a lower expression level of CAMKK2 in this disease.54 Luo et al. further explored the GWAS and expression data and observed that zinc finger protein 323 (ZNF323) may have brain expression Quantitative Trait Loci effects as a novel risk gene of schizophrenia. Moreover, ZNF323 showed positive selection based on compensatory advantage on pulmonary function.68 Based on GWAS datasets, researchers deduced that genetic markers of human evolution may be enriched in schizophrenia, which may well explain the differences of GWASs among ethnicities or subpopulations.69

However, studies on clinical phenotypes or endo-phenotypes could offer additional clues or suggestions for the mechanisms of complex diseases. Ma et al. suggested that the GWAS-identified risk gene, methionine sulfoxide reductase A (MSRA), may be associated with fluid intelligence in schizophrenia.70 Fluid intelligence is the capacity to reason and solve novel problems, independent of any knowledge from the past which usually be assessed with Cattell's Culture-Free Intelligence Test (CCFIT). Wang et al. reported that reduced gray matter (GM) volume was associated with polymorphisms in thromboxane A synthase 1 (TBXAS1), phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 gamma (PIK3C2G) and heparan sulfate-glucosamine 3-sulfotransferase 5 (HST5) in first-episode treatment-naive patients with schizophrenia.62 Liu et al. evaluated the effects of polygenic risk on cortical gyriﬁcation and provided some implications regarding differences in the genetic risk of individuals for schizophrenia to cortical morphology and brain development in Han Chinese population.71 Furthermore, some GWASs have been conducted to assess treatment or side effects in Han Chinese populations.

Some GWASs with limited sample sizes have led to a potential trend in precision medicine for antipsychotic therapy.63 Liu et al. suggested that rs28362691 in nuclear factor kappa B subunit 1 (NFKB1) might be involved in the development of treatment refractory schizophrenia in Han Chinese individuals.72 Yu et al. reported that protein tyrosine phosphatase, receptor type D (PTPRD) and glutamine-fructose-6-phosphate transaminase 2 (GFPT2) polymorphisms were associated with the weight gain effects of atypical antipsychotic medications.73 Both PTPRD and GFPT2 have been reported as susceptible genes of diabetes, suggesting a novel mechanism for weight gain induced through antipsychotic therapy. Thus, additional large-scale pharmacogenomics studies should be completed.

DISCUSSION

Sample sizes for GWASs and for pharmacogenomics

For international GWASs, the sample size of schizophrenia as the primary phenotype has been enlarged from 320 cases in the first GWAS to 35,476 cases with schizophrenia in the PGC24,74, and will be up to 100,000 cases in the PGC3 in the future.75

In a genome-wide pharmacogenomics study, McClay et al. reported 738 subjects with DSM-IV schizophrenia who took part in the Clinical Antipsychotic Trials of Intervention Effectiveness.76 To date, few genome-wide pharmacogenomics study in Han Chinese population has been published. Most of the pharmacogenetic studies focus on some candidate genes or pathways. Yu et al. used 534 patients in discovery sample to explore the body antipsychotic-induced weight gain.69 Yue et al. has just completed a pharmacogenomics study including 3003 patients with schizophrenia treated with 7 antipsychotic drugs for 6 weeks in Han Chinese population (unpublished data).

Genetic architecture of the schizophrenia disease in Chinese populations

Population structure can potentially cause inaccurate associations. Therefore, it is critical to understand the genetic structure of a population. The Han Chinese population is the largest ethnic group in the world, composing 20% of the world population, the Han Chinese population constitute more than 90% of China’s population. However, the Han Chinese has been largely under-represented in most of the GWASs. Considering modern human origins, the “Out-of-Africa” hypothesis has been supported by genetic and archeological evidences, however, the scenario of colonization of East Asia need further clarification. Genetic evidence has provided some indication that East Asia humans may migrate or come from through the following two roads: along the coast to south and Southeast Asia (the southern road), or through the Middle East to Central Asia (the northern road). As for Han Chinese substructure, Xu et al. reported that the Han Chinese population was intricately sub-structured, with the main observed locations, and examined the potential magnitude of Chinese population stratification. They finally revealed a one-dimensional “north-south” population structure and a close correlation between geography and the gene structure of the Han Chinese.77 Actually, in the 1000 Genomes project, the Chinese population was categorized under the generic terms of “Southern Han” and “Northern Han”. Therefore, in the genetic association studies Han of Chinese population, it should be ensured that homogeneous samples were recruited or analyzed. For example, to reduce the effects of population structure, Yu et al. performed a stratified GWAS of schizophrenia in Han Chinese population based on the North-South sub-population structures, and then combined the GWAS results by meta-analysis.78 Population structure analysis should be done before the analysis using Multidimensional Scaling Analysis or Principal Component Analysis, and should be used as a covariate. Moreover, the inflation factor or linkage disequilibrium-based regression score could also be performed to examine the effects of population structure on association results.
Heritability studies of schizophrenia in Han Chinese

In the 1970s, the Shanghai Polygenic Inheritance Collaborative Research Group investigated the heritability of schizophrenia in Chinese individuals using classical genetic methods (i.e., family surveys, twin and adoption studies) and estimated a heritability of 82.9% in the Chinese population.73 Subsequent epidemiologic study reported heritability for schizophrenia of 63 to 78% in Chinese individuals and heritability of 70% in Chinese children (Lou, 1983).74 Additionally, we previously estimated the heritability of schizophrenia in Chinese individuals and heritability of 70% in Chinese children. A study reported heritability for schizophrenia of 63 to 78% in Chinese children.40.2% (s.e. of 0.02) of the total variation was explained by population risk of 0.01, we estimated from GCTA software that 40.2% of schizophrenia due to common GWAS SNPs. Assuming a disease prevalence of 0.01, we estimated from GCTA software that 40.2% of the total variation was explained by common SNPs across the genome.56 It suggested that the variance in liability estimated from GCTA accounts for over 51.3% of the observed heritability (0.40/0.78). However, this SNP-based heritability analysis is still inaccurate, and a future twin meta-analysis could better estimate the heritability of schizophrenia in the Chinese population. Nevertheless, this analysis revealed that common SNPs also make substantial contributions to the risk for schizophrenia in the Han Chinese population, and there are additional schizophrenia susceptibility loci yet to be discovered, including both common and rare variants.

Support for GWASs of schizophrenia in Han Chinese in the future

In recent decades, the central government of China has launched several large projects for mental disorders. More than 140 new studies involving psychiatric genetic studies were funded through the National Natural Science Foundation of China or the Ministry of Science and Technology. The Precision Medicine Program and the National Key Research and Development Program of China on Chronic Diseases have approved four and six programs for psychiatric disorders, respectively. The Human Brain Project of China will also be launched in 2017.

The “National 686 Project” for the management of the severe psychiatric disorders, launched by the central government of China, has enrolled 5.4 million patients with severe psychiatric disorders, including schizophrenia, mental retardation, and epilepsy with psychiatric syndromes. The first guideline on improving mental health services was released on 19 Jan 2017, according to 22 ministries and, ministerial-level departments led by the National Health and Family Planning Commission (China Daily). All of the above findings suggest that multi-omics strategies will be helpful in the future for the exploration of the genetic background or mechanism for schizophrenia in China.

To coordinate research efforts in psychiatric genetics in China, a group of Chinese and foreign investigators have established an annual “Summit on Chinese Psychiatric Genetics” to present their latest research and to discuss the current state and future directions of this field. The Summit on Chinese Psychiatric Genetics has been held four times across China, and a session conference on the XXIV World Congress of Psychiatric Genetics was conducted in Israel in Oct 2016 (www.wcpg2016.org). The famous non-governmental organizations, such as Beijing Genomics Institute (http://www.genomics.cn/), CapitalBio Corporation (http://www.capitalbio.com/) and other biotech companies have made collaborative research efforts for psychiatric disorders with multiple research institutes in China.

Furthermore, Chinese researchers also have been establishing collaborations with international fellowships or scholars working on meta-analyses or mega-analyses in much larger samples across European and Asian populations. Thus, the GWAS findings will further contribute to the exploration of the mechanisms of schizophrenia and potential treatment targets of this complex disease.

CONCLUSIONS

Accompanied by the rapid development of international GWASs of schizophrenia, an expanded list of common risk loci were identified in Han Chinese populations. However, when the sample size or genetic statistic power increased, much more striking shared susceptible genes or loci were identified among European and East Asian populations. Moreover, there were susceptibility loci unique to Han Chinese. In conclusion, although many confounding factors may influence the results of GWASs of schizophrenia between European and Han Chinese populations or sub-populations of Han, several common or rare variations have also been identified that overlap in multi-ethnicities. Researchers have identified the sharing of susceptible genes, such as MHC, MIR137, ZNF804A, VRK2, and AS3MT, across European and East Asian populations. Several CNVs identified in European population have also been validated in Han Chinese, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1.

In the future, it should be helpful to use the meta-analyses or mega-analyses that include much larger sample sizes (at least 50,000 ~ 100,000 cases of schizophrenia and a considerable number of controls) across European and Asian populations or subpopulations. Moreover, other directions may include multi-omics methods, deep sequencing of the genome, precision medicine, and further functional exploration of risk genes to explain the mechanism of the disease.

AUTHOR CONTRIBUTIONS

W.Y. drafted the first version of the manuscript. X.Y. and D.Z. critically revised the manuscript for important intellectual content. All authors approved the final version for publication. We also thank for Prof. Lynn E DeLisi’s kindly help for this manuscript.

ADDITIONAL INFORMATION

Competing interests: The authors declare that they have no competing financial interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. Thaker, G. K. & Carpenter, W. T. Jr. Advances in schizophrenia. Nat. Med. 7, 667–671 (2001).
2. Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).
3. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).
4. Mah, S. et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol. Psychiatry 11, 471–478 (2006).
5. Shifman, S. et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet. 4, e28 (2008).
6. O’Donovan, M. C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008).
7. Shi, J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753–757 (2009).
8. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).
9. International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).
10. Steinberg, S. et al. Common variants at VRK2 and TCF4 confering risk of schizophrenia. Hum. Mol. Genet 20, 4076–4081 (2011).
11. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).
12. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).
13. Schizophrenia Working Group of the Psychiatric Genomics Consortium: Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

14. Cross-Disorder Group of the Psychiatric Genomics Consortium: Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

15. Yu, L. et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat. Genet. 43, 1228–1231 (2011).

16. Shi, Y. et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat. Genet. 43, 1224–1227 (2011).

17. Ikeda, M. et al. Genome-wide association study of schizophrenia in a Japanese population. Biol. Psychiatry 69, 472–478 (2011).

18. Kong, A. et al. Genome-wide association study with the risk of schizophrenia in a Korean population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171B, 257–265 (2016).

19. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

20. Li, M. et al. A human-specific ASMT isoform and BORCS5 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat. Med. 22, 649–656 (2016).

21. Bergen, S. E. & Petryshen, T. L. Genome-wide association studies of schizophrenia: does bigger lead to better results? Curr. Opin. Psychiatry 25, 76–82 (2012).

22. Corvin, A. & Sullivan, P. F. What next in schizophrenia genetics for the Psychiatric Genomics Consortium? Schizophr. Bull. 42, 538–541 (2016).

23. Karayiorgou, M. et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc. Natl. Acad. Sci. USA 92, 7612–7616 (1995).

24. Stone, J. L. et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

25. Rees, E. et al. Evidence that duplications of 22q11.2 protect against schizophrenia. Mol. Psychiatry 19, 37–40 (2014).

26. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

27. Levinson, D. F. et al. Copy number variants in schizophrenia: Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Am. J. Psychiatry 172, 774–783 (2014).

28. Kelly, J. L. et al. Rare CNVs and tag SNPs at 15q12.1 are associated with schizophrenia in the Han Chinese population. Schizophr. Bull. 39, 712–719 (2013).

29. Wei, H. et al. Detection of circulating miRNA levels in schizophrenia. Am. J. Psychiatry 172, 1141–1147 (2015).

30. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Mol. Psychiatry 21, 975–982 (2016).

31. Cross-Disorder Group of the Psychiatric Genomics Consortium: Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Nat. Genet. 43, 1228–1231 (2011).

32. Ingason, A. et al. Copy number variations of chromosome 16p13.1 region asso-

33. Su, L. et al. Genetic association of GWAS-supported MAD1L1 gene polymorphism rs12665575 with schizophrenia susceptibility in a Chinese population. Neuropsychol. Lett. 610, 98–103 (2016).

34. Zheng, F. et al. Further evidence for genetic association of CACNA1C and schizophrenia: new risk loci in a Han Chinese population and a meta-analysis. Schizophr. Res. 152, 105–110 (2014).

35. Zhang, Y. et al. Replication of association between schizophrenia and chromosome 6p21-p22.1 polymorphisms in Han Chinese population. PLoS ONE 8, e56732 (2013).

36. Yuan, J. et al. Lack of association between microRNA-137 SNP rs1625579 and schizophrenia in a replication study of Han Chinese. Mol. Genet. Genomics 290, 297–301 (2015).

37. Li, T. et al. Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese. Biol. Psychiatry 67, 671–673 (2010).

38. Li, Z. et al. Loci with genome-wide associations with schizophrenia in the Han Chinese population. Br. J. Psychiatry 207, 490–494 (2015).

39. Yuan, A. et al. ANK3 as a risk gene for schizophrenia: new data in Han Chinese and meta analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 997–1005 (2012).

40. Yuan, J. et al. Replication study confirms link between TSPAN18 mutation and schizophrenia in Han Chinese. PLoS ONE 8, e58785 (2013).

41. He, K. et al. CACNA1C, schizophrenia and major depressive disorder in the Han Chinese population. Br. J. Psychiatry 204, 36–39 (2014).

42. Luo, X. et al. Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Am. J. Psychiatry 171, 1244–1250 (2016).

43. Chen, J. et al. Genetic association of GWAS-supported MAD1L1 gene polymorphism rs12665575 with schizophrenia susceptibility in a Chinese population. Neuropsychol. Lett. 610, 98–103 (2016).

44. Chen, J. et al. Genetic association of GWAS-supported MAD1L1 gene polymorphism rs12665575 with schizophrenia susceptibility in a Chinese population. Neurosci. Lett. 610, 98–103 (2016).

45. Cui, D. & Jiang, K. Research in China on the molecular genetics of schizophrenia. Shanghai Arch. Psychiatry 24, 187–199 (2012).

46. Lou, H. M. An investigation of the heritability of schizophrenia in northeast China. Zhonghua Shen Jing Jing Shen Ke Za Zhi 16, 49–50 (1983).
