Sequence analysis of the 5’ third of glycoprotein C gene of South American bovine herpesviruses 1 and 5

C.K. Traesel¹, L.M. Bernardes¹, F.R. Spilki², R. Weiblen¹ and E.F. Flores¹

¹Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
²Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brasil

Abstract

Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) share high genetic and antigenic similarities, but exhibit marked differences in tissue tropism and neurovirulence. The amino-terminal region of glycoprotein C (gC), which is markedly different in each of the viruses, is involved in virus binding to cellular receptors and in interactions with the immune system. This study investigated the genetic and antigenic differences of the 5’ region of the gC (5’ gC) gene (amino-terminal) of South American BoHV-1 (n=19) and BoHV-5 (n=25) isolates. Sequence alignments of 374 nucleotides (104 amino acids) revealed mean similarity levels of 97.3 and 94.2% among BoHV-1 gC (gC1), respectively, 96.8 and 95.6% among BoHV-5 gC (gC5), and 62 and 53.3% between gC1 and gC5. Differences included the absence of 40 amino acid residues (27 encompassing predicted linear epitopes) scattered throughout 5’ gC1 compared to 5’ gC5. Virus neutralizing assays testing BoHV-1 and BoHV-5 antisera against each isolate revealed a high degree of cross-neutralization between the viruses, yet some isolates were neutralized at very low titers by heterologous sera, and a few BoHV-5 isolates reacted weakly with either sera. The virus neutralization differences observed within the same viral species, and more pronounced between BoHV-1 and BoHV-5, likely reflect sequence differences in neutralizing epitopes. These results demonstrate that the 5’ gC region is well conserved within each viral species but is divergent between BoHV-1 and BoHV-5, likely contributing to their biological and antigenic differences.

Key words: gC amino-terminal; BoHV; Genetic diversity; Epitope prediction; Virus neutralization

Introduction

Bovine herpesviruses type 1 (BoHV-1) and 5 (BoHV-5) are important alphaherpesviruses of cattle, belonging to the family Herpesviridae, genus Varicellovirus (1). BoHV-1 is distributed worldwide – with the exception of some European countries that have eradicated the infection – and is associated with a variety of clinical manifestations including respiratory, genital disease, abortions (2,3), and rarely, neurological disease (4,5). This virus induces immune suppression, which initiates the bovine respiratory disease complex (6). BoHV-5 is the major agent of meningoencephalitis, a severe and often fatal disease primarily affecting calves and occurring predominantly in South America, especially Brazil and Argentina (3,5,7). BoHV-5 has occasionally been isolated from bull semen and other clinical conditions, including reproductive and respiratory disorders (8,9).

These viruses share many genetic and biological properties. Their double stranded DNA genomes encode approximately 70 products and present around 85% nucleotide (nt) similarity and 82% amino acid (aa) identity (10). As a consequence of the antigenic similarity, extensive serological cross-reactivity is observed between BoHV-1 and BoHV-5, posing problems for immunodiagnosis (5,11-14). Virion surface glycoproteins are major targets for the host immune system at both the humoral and cellular levels (15,16) and, as such, are particularly involved in this immunological cross-reactivity (17). These proteins are also important determinants of alphaherpesvirus tropism and pathogenesis, since they are responsible for the initial interactions with host cells by binding to cell surface receptors, attachment, fusion and entry into mammalian cells (18).

Glycoprotein C (gC), the major viral glycoprotein, is expressed at high levels in the BoHV-1 envelope and on the surface of infected cells (19,20). After post-transcriptional processing, BoHV-1 gC (gC1) is translated into a
508 aa polypeptide, whereas BoHV-5 gC (gC5) encodes 486 aa residues (10). It is a dimeric, type I transmembrane protein containing a cleavable amino-terminal (NH$_2$-t) signal, a highly hydrophilic glycosylated NH$_2$-t ectodomain, a single hydrophobic transmembrane domain, and a carboxy-terminal (COOH-t) hydrophilic region (20,21). The NH$_2$-t hydrophilic gC ectodomain is exposed on the surface of virions and infected cells, making it a major target for the immune system, particularly for antibodies (16,20,22). Based on competitive binding assays using gC-specific monoclonal antibodies (MAbs) and synthetic peptides, important antigenic domains have been mapped to the NH$_2$-t of gC, between gC1 amino acid residues 22 and 287 (16,18,23,24). Moreover, potential N-linked glycosylation sites were reported on gC1 amino acid residues 22 and 287 (16,18,23,24). More-over, potential N-linked glycosylation sites were reported on the surface of host cells (18). Sequences involved in receptor binding were identified in the NH$_2$-t region of gC1, and in which differences might influence neurotropism, neuroinvasiveness and neurovirulence, properties that are differentially expressed in BoHV-1 and BoHV-5 (26-28).

Although gC1 and gC5 are 75% identical, major differences have been identified at the NH$_2$-t third of the protein, especially between residues 1-123 (gC1) and 1-102 (gC5) (10,25). These differences may contribute to the distinct pattern of MAB binding to differences in cross-neutralization between BoHV-1 and BoHV-5 (17). Glycoprotein C also plays an important role in viral biology, mediating attachment of virions to heparan sulphate receptors on the surface of host cells (18). Sequences involved in receptor binding were identified in the gC NH$_2$-t ectodomain, in which differences might influence neurotropism, neuroinvasiveness and neurovirulence, properties that are differentially expressed in BoHV-1 and BoHV-5 (26-28).

Thus, this study was designed to analyze the 5′ region of the gC gene of a number of BoHV-1 and BoHV-5 isolates to further investigate the degree of variability of this region and possible associations between nucleotide/deduced amino acid sequences and viral phenotype.

Material and Methods

Forty-four bovine herpesvirus isolates were analyzed, including BoHV-1 and BoHV-5 field isolates obtained in Brazil, Uruguay, and Argentina from 1981 to 2010. After distinguishing BoHV-1 from BoHV-5 by differential PCR (4,29), viral DNA was amplified by PCR specific for the 5′ third of the gC gene, corresponding to the NH$_2$-t region of the gC protein. The 5′ gC amplicons were sequenced and the amino acid sequences were deduced for sequence comparison. In addition, a virus neutralization (VN) assay was performed using BoHV-1 and BoHV-5 specific antisera against each field isolate.

Viruses, cells and viral DNA extraction

Information about the viruses studied is summarized in Table 1. Virus isolation, amplification and biological cloning were performed in a Madin-Darby bovine kidney (MDBK)-derived cell line named CРИB (30). Total DNA was extracted from CРИB cells infected with each isolate using DNAzol reagent (Invitrogen, USA). The virus amplification, cloning, quantitation and DNA extraction procedures have previously been described in detail (30).

PCR amplification

The BoHV-1 and BoHV-5 isolates present in clinical samples were initially identified by PCR, as first described by Ashbaugh et al. (29) and modified by Silva et al. (4). The viral DNA was then amplified in a second PCR targeting the 5′ region of gC (nucleotides 1-533 of gC1 and 1-559 of gC5) using specific primers for each viral type: BoHV-1 5′-CACGGCTGAAACCAGAG-3′ (forward) and 5′-CAATCCGGGACCCGAAAG-3′ (reverse); BoHV-5 5′-TTTCTGGGCCGCAAACAGC-3′ (forward) and 5′-GAAAGACAGCAGGCCGGAGAAG-3′ (reverse). The PCR resulted in amplicons of 668 base pairs (bp) for BoHV-1 (genome AJ004801, GenBank, position 17,676-18,343) and 687 bp for BoHV-5 (genome AY261359, GenBank, position 18,492-19,178). The primers targeted the region located at the 5′ gC third, corresponding to nucleotides 1-533 (gC1) and 1-559 (gC5). All steps of the PCR amplification (primer design, PCR protocol, fragment visualization and controls) have already been described in detail (30), with minor modifications as follows. An annealing temperature of 55°C was used to amplify the 5′ gC1. For BoHV-5 isolates, a protocol was adapted using approximately 1 μg of total DNA as template in 48 μL of a mix containing ultrapure water, 25 or 50 μM of each primer, 0.4 or 0.56 mM of deoxyribonucleotides, 10% dimethylsulfoxide [6 or 8 mM of MgCl$_2$, 10% of dimethylsulfoxide [6 or 8 mM of MgCl$_2$, 10% of Tag 10 × buffer and 1 U of Taq DNA polymerase (Invitrogen)]. PCR conditions included a denaturation step of 5 min at 94°C, followed by 40 cycles of denaturation at 94°C for 50 s, annealing at 62°C for 55 s and a final extension at 72°C for 1 min.

Sequencing and 5′ gC sequences analysis

The PCR amplicons were purified using an Illustra™ GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare, UK), according to the manufacturer’s instructions. Sequencing reactions were performed twice and in both directions in an automatic sequencer ABI-PRISM 3100 Genetic Analyzer (Applied Biosystems, USA). DNA amplicons (30-60 ng) and 4.5 pmol of forward or reverse specific 5′ gC primers of each type (described above) were used for sequencing (for more sequencing details see (Ref. 31)).

The quality of nucleotide sequences and overlapping fragments of each sequence were assembled by the Staden Package, which was submitted for comparison with reference sequences of BoHV-1.1 (strain Cooper; GenBank no. AJ004801) and BoHV-5 (SV 507/99; GenBank no. AY261359) complete genomes, using the National Center for Biotechnology Information (NCBI) database and BLAST software (http://www.ncbi.nlm.nih.gov/BLAST/). Based on nucleotide sequences, amino sequences were translated in reading frame 1 on the direct strand by Sequence Manipulation Suite software version 2 (http://www.bioinformatics.org/sms2/) and evaluated for homology comparison by
protein BLAST. The nucleotide and deduced amino acid sequences of each isolate, and gC of reference sequences (GenBank ID AJ004801 and AY261359) were aligned and edited with the BioEdit Sequence Alignment Editor software suite, version 7.0.5.3 (USA), using ClustalW software (Ireland). The identity matrix was also obtained using

Virus	Classification	Clinical signs/material	Country/state	Year	GenBank ID
SV 56/90	BoHV-1	Genital/preputial lavage	BR/RS	1990	KJ143528
SV 453/93	BoHV-1	Genital/vaginal swab	BR/RS	1993	KJ143529
SV 1613/93	BoHV-1	Neurological/brain	BR/RS	1993	KJ143530
SV 265/96	BoHV-1	Respiratory/nasal swab	BR/RS	1996	KJ143531
EVI123/98	BoHV-1	Respiratory/nasal swab	BR/MS	1998	KJ143532
SV 609/03	BoHV-1	Neurological/brain	BR/RS	2003	KJ143533
SV 299/03	BoHV-1	Neurological/brain	BR/RS	2003	KJ143534
SV 47/05	BoHV-1	Neurological/brain	BR/RS	2005	KJ143535
SV 371/05	BoHV-1	Respiratory/nasal swab	BR/RS	2005	KJ143536
SV 63/06	BoHV-1	Neurological/brain	BR/RS	2006	KJ143537
SV 169/06	BoHV-1	Genital/vaginal swab	BR/RS	2006	KJ143538
SV 224/06	BoHV-1	Routine monitoring/semen	BR/SP	2006	KJ143539
SV 226/06	BoHV-1	Routine monitoring/semen	BR/SP	2006	KJ143540
SV 228/06	BoHV-1	Routine monitoring/semen	BR/SP	2006	KJ143541
SV 229/06	BoHV-1	Routine monitoring/semen	BR/SP	2006	KJ143542
SV 261/07	BoHV-1	Respiratory/nasal swab	BR/RS	2007	KJ143543
SV 167/10	BoHV-1	Neurological/brain	BR/RS	2010	KJ143544
SV 178/10	BoHV-1	Neurological/brain	BR/RS	2010	KJ143545
SV 194/10	BoHV-1	Neurological/brain	BR/RS	2010	KJ143546
Uruguay T2	BoHV-5	Neurological/brain	UY	1981	KJ143547
P 160/87	BoHV-5	Neurological/brain	BR/RJ	1987	KJ143548
EVI 88/95	BoHV-5	Neurological/brain	BR/MS	1995	KJ143549
EVI 340/96	BoHV-5	Neurological/brain	BR/MS	1996	KJ143550
EVI 345/96	BoHV-5	Neurological/brain	BR/MS	1996	KJ143551
ISO 169/96	BoHV-5	Neurological/brain	BR/SP	1996	KJ143552
A 613 (97/613)	BoHV-5	Neurological/brain	AR	1997	KJ143553
97/642	BoHV-5	Neurological/brain	AR	1997	KJ143554
SV 106/98	BoHV-5	Neurological/brain	BR/RS	1998	KJ143555
SV 507/99	BoHV-5	Neurological/brain	BR/RS	1999	KJ143556
002/00	BoHV-5	Neurological/brain	BR/RS	2000	KJ143557
SV 190/00A	BoHV-5	Neurological/brain	BR/MS	2000	KJ143558
SV 55/02	BoHV-5	Neurological/brain	BR/RS	2002	KJ143559
SV 437/04	BoHV-5	Neurological/brain	BR/RS	2004	KJ143560
SV 198/05	BoHV-5	Neurological/brain	BR/RS	2005	KJ143561
SV 41/06	BoHV-5	Neurological/brain	BR/MS	2006	KJ143562
SV 223/06	BoHV-5	Routine monitoring/semen	BR/SP	2006	KJ143563
SV 225/06	BoHV-5	Routine monitoring/semen	BR/SP	2006	KJ143564
SV 355/06	BoHV-5	Routine monitoring/semen	BR/SP	2006	KJ143565
SV 71/07 A	BoHV-5	Neurological/brain	BR/MS	2007	KJ143566
SV 71/07 D	BoHV-5	Neurological/brain	BR/MS	2007	KJ143567
SV 79/07	BoHV-5	Neurological/brain	BR/RS	2007	KJ143568
SV 102/07	BoHV-5	Neurological/brain	BR/RS	2007	KJ143569
SV 511/09	BoHV-5	Neurological/brain	BR/SP	2009	KJ143570
Uruguay T4	BoHV-5	Neurological/brain	UY (-)	KJ143571	

Brazilian states: RS: Rio Grande do Sul, SP: São Paulo, RJ: Rio de Janeiro, MS: Mato Grosso do Sul.
BioEdit software (30,31).

Phylogenetic analysis

Evolutionary analysis and phylogenetic reconstruction based on 5' gC nucleotide sequences were conducted in MEGA 5. The evolutionary history was inferred by using the Maximum Likelihood method based on the data-specific model, and the bootstrap values were calculated using 2000 replicates. The gC gene of reference sequences of BoHV-1 and BoHV-5 (GenBank ID AJ004801 and AY261359, respectively) were used in the reconstruction, as well as the pseudorabies virus (PRV) gC gene (GenBank no. AF403051) (30,31).

VN assays

Twenty BoHV-1 and 32 BoHV-5 isolates were selected for VN assays. Standard VN assays were performed in 96-well plates in duplicate. Two-fold dilutions of BoHV-1 or BoHV-5-specific antisera were incubated with 100 TCID₅₀/mL of Cooper (BoHV-1) or SV507/99 (BoHV-5) virus strains. Immune sera were obtained 21 days after the second injection.

Analysis of the 5’ third of gC and phylogeny

The 5’ third of the gC gene, a region corresponding to nucleotide positions 1-533 (gC1) and 1-562 (gC5), from 19 BoHV-1 and 25 BoHV-5 isolates/strains was sequenced. The length of edited sequences varied from 414 to 562 nt, corresponding to 137 to 187 aa. A consistent alignment of approximately 374 nt and 104 aa residues (starting at the first ATG) revealed a high degree of similarity among sequences within the same viral species, an average 97.3% of nucleotides and 94.2% of amino acids for BoHV-1; 96.8% of nucleotides and 95.6% of amino acids for BoHV-5 (Table 2). A sequence comparison between BoHV-1 and BoHV-5 revealed a lower degree of similarity (62% nucleotide and 53.3% amino acid). The partial alignment of amino acid sequences is shown in Figure 1.

A number of nucleotide substitutions and deletions were observed by aligning BoHV-1 and BoHV-5 sequences. Separate analysis of each species and comparing both species showed several point mutations, insertions and deletions. The alignment revealed a number of changes between both viruses species — including several deletions — that are responsible for the low similarity between BoHV-1 and BoHV-5 gC. Among BoHV-1 sequences, compared with the AJ00481 reference sequence, the isolates SV261/....07 and SV1613/93 harbored the highest number of changes; whereas SV71/07D, compared with GenBank sequence AY26135, was the most dissimilar BoHV-5. Many nucleotide changes were reflected in amino acid substitutions. A different amino acid pattern was observed between gC1 and gC5 sequences. It included amino acid substitutions from different chemical groups (e.g., exchange of nonpolar proline in 5’ gC1 by polar threonine in 5’ gC5, position 73; Figure 1) and a 5’ gC5 deletion in a predicted epitope region (position 88; Figure 1). A notable difference was the absence of 40 aa scattered throughout the BoHV-1 sequenced fragments that were present in all BoHV-5 isolates, including anchors for predicted epitopes, 27 of which are in BoHV-5 linear epitopes. These include major deletions between residues 38-47 that encompass a potential gC5 linear epitope and 118-133, as shown in Figure 1.

The phylogenetic tree reconstruction based on nucleotide sequences yielded two major clusters, allowing for the clear differentiation between BoHV-1 (n = 19) and BoHV-5 (n = 25) (Figure 2). Subtype differentiation was not possible by this sequence analysis.

VN assays

The results of VN assays demonstrated a high degree of cross-neutralization between BoHV-1 and BoHV-5. The isolates from both viral types were neutralized by homologous and heterologous antisera, in variable titers (Figure 3). Most BoHV-1 (Figure 3A) and BoHV-5 (Figure 3B) isolates were neutralized at the highest titers by the homologous antiserum (≥16); a few were neutralized at similar titers by both antisera (ranging from 8 to 32). Thus, the differences in...
VN titers between homologous vs heterologous serum-virus pairs ranged from none (identical titers) to 4 serum dilutions (BoHV-1 SV47/05), with most differences being of 1 dilution. Low antibody titers (£4) to heterologous serum were observed for some isolates, and in 9% of isolates (EVI340/96, SV198/05, SV71/07A, SV102/07), low titers against both sera were observed. These results confirm extensive serological cross-neutralization between BoHV-1 and BoHV-5, yet indicate the existence of antigenic differences. Some of these differences probably encompass epitopes involved in

Figure 1. Deduced amino acid sequence alignment of the 5' third of glycoprotein C gene of bovine herpesvirus 1 (BoHV-1, n = 19) and BoHV-5 (n = 25). Reference sequences of BoHV-1 and BoHV-5 (GenBank ID AJ004801 and AY261359) are included for comparison.
virus neutralization as demonstrated by the variable degree of virus neutralization by either BoHV-1 or BoHV-5 antisera.

Discussion

Bovine herpesviruses 1 and 5 are important pathogens of cattle, having either a virtually global distribution (BoHV-1) or a high prevalence in South America (BoHV-5). However, in spite of their importance and the critical role of gC in virus biology and its implications for diagnostic and immunization success, limited information is available on BoHV-1/BoHV-5 gC. Only 5 BoHV-1 and 3 BoHV-5 sequences covering residues 1-174 are available in GenBank. The lack of more consistent information on this gene product is due in part to technical difficulties in amplifying and sequencing this genomic region. Our data provides consistent 5’ gC sequence information on 44 isolates of both viral types. These data will contribute to the overall knowledge of this glycoprotein, which plays important roles in viral biology, interacts with the immune system, and represents major target antigens for immunodiagnostic tests and immunization strategies.

This study confirmed the high degree of 5’ gC similarity among isolates of each viral species and a low similarity between BoHV-1 and BoHV-5. The high gC conservation allows for phylogenetic differentiation of BoHV-1 and BoHV-5 (Figure 2). The main differences between gC1 and gC5 are located within the NH2-t third of the protein, notably at amino acid residues 1-123 of gC1 and 1-102 of gC5 (10,25). Our data extend these observations, showing that 5’ gC1 and 5’ gC5 differ substantially throughout the sequenced region, displaying a nucleotide similarity of 62% and amino acid similarity of 53.3%, slightly higher than the 45% nucleotide similarity found by Hecht et al. (32). The differences included several substitutions of amino acid residues from different chemical groups (Figure 1), which may result in differences in amino acid function (33). In contrast with previous data reporting a deletion of 35 amino acid residues in gC5 (10), our data showed the absence of about 40 residues throughout 5’ gC1 compared with 5’ gC5. Sequence differences were even observed between gC1 and gC5 predicted epitopes (33).

The differences observed between 5’ gC1 and 5’ gC5 sequences/epitopes may affect their antigenic/serological properties and may explain most antigenic differences detected in VN assays. Glycoprotein C is the major BoHV surface protein and is involved in attachment to cellular receptors and interactions with the immune system, acting as a major target for neutralizing antibodies (16,18,23,26), especially the exposed gC NH2-t ectodomain. Differences in the antigenic structures of gC1 and gC5 were previously demonstrated using a gC-specific MAb panel and assays of virus-neutralizing MAbs (17). Those findings confirmed that the gCs of each virus were very dissimilar and there was no cross-reactivity/neutralization by monospecific bovine antisera raised against the heterologous virus. Thus, the 5’ gC sequence differences likely explain the higher titers against homologous serum observed in this study, as well as some antigenic variation among isolates of the same species. In spite of important sequence differences in 5’ gC, VN assays revealed a high level of cross-neutralization between BoHV-1 and BoHV-5. It is reasonable to speculate that some cross-neutralization observed between BoHV-1 and BoHV-5 was due to the conserved epitopes in gC, in addition to neutralizing antibodies against other envelope glycoproteins (e.g., gB and gD), which are well conserved between BoHV-1 and BoHV-5 and also harbor neutralizing epitopes (10,24).

The antigenic similarity shared by these viruses (as shown here by VN assays) frequently hamper serological differentiation and might potentially interfere with control/eradication efforts (13,14). For many years, this antigenic relationship was a problem for virus identification, diagnosis and epidemiological studies because it hindered
differentiating these agents by routine immunodiagnostic tests (12,34). Interestingly, differences in 5′ gC of BoHV-1 and BoHV-5 may be further exploited for differential diagnosis. Due to its low similarity, 5′ gC has been used to differentiate BoHV-1 and BoHV-5 by molecular and antigenic methods. This is a target region for differential PCR, which can distinguish between BoHV-1 and BoHV-5 by variation in amplicon length (4,29,35). These viruses can also be differentiated by distinct patterns of MAb recognition (23,36). In spite of the genetic variability, 5′ gC may serve as an additional target genomic region for phylogenetic differentiation of BoHV-1 and BoHV-5 (Figure 2).

On the other hand, the antigenic similarity between BoHV-1 and BoHV-5 results in cross-protection, to a variable degree, by vaccines against either virus and may benefit control programs based on vaccination (11,14,37). In this sense, our results showed that all isolates cross-reacted extensively in vitro, the majority producing moderate to high neutralizing titers against the homologous and heterologous sera. However, low antibody titers to heterologous serum were observed for some isolates and, four of them (BoHV-5) were neutralized poorly by both sera. These results suggest that, in addition to antigenic variability, the susceptibility to neutralizing antibodies may vary among isolates.

Glycoprotein C of alphaherpesviruses is involved in receptor binding and virus attachment to the cell surface, thus assisting in the determination of tissue-cell tropism (18). Thus, the sequence differences between gC1 and gC5 shown in this study may contribute, in part, to the differences in tropism and virulence possessed by BoHV-1 and BoHV-5. The main phenotypic difference between these viruses in vivo is neurovirulence, a property more frequently associated with BoHV-5 (4,38). In this sense, it has been shown that differences in the quality of the heparin binding of gC1 and gC5 would affect neurotropism and neurovirulence (26,27). Nonetheless, gC seems not to be the sole determinant of the BoHV-5 neurovirulence phenotype, but is important for high levels of virus replication in the central nervous system and for full expression of virulence in rabbits (25-27). The binding to host cell receptor occurs at the gC NH2-t domain and apparently involves residues 172-323 (20,28). Although this specific region has not been sequenced in the present study, it is conceivable that the marked differences observed between 5′ gC1 and 5′ gC5 would somehow influence protein folding and tridimensional structure (changing binding sites) and, perhaps, influence binding to cell receptors. Results from the homologous human herpesvirus (HHV) gC indicated that binding of this protein to the cell surface involves more than a simple interaction with heparin, and showed that its NH2-t (residues 33-123) is important for efficient attachment to cells (39).

The 5′ region of gC gene sequences are very dissimilar between BoHV-1 and BoHV-5, but well conserved within the same viral species. In addition to the sequence differences in this region, high serologic cross-reactivity is observed between BoHV-1 and BoHV-5 isolates. However, a few
BoHV-5 isolates reacted weakly to either sera, which suggests a need for reevaluating immunization protocols with a single viral species. This study adds new information to the limited available genetic database on the 5’ gC gene and contributes more consistent information on the molecular and antigenic characteristics of BoHV-1 and BoHV-5.

Acknowledgments

Research supported by CNPq, E.F. Flores, R. Weiblen, and F.R. Spilki are CNPq research fellows.

References

1. Roizmann B, Desrosiers RC, Fleckenstein B, Lopez C, Minson AC, Studdert MJ. The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch Virol 1992; 123: 425-449, doi: 10.1007/BF01317726.
2. Bagust TJ. Comparison of the biological, biophysical and antigenic properties of four strains of infectious bovine rhinotracheitis herpesvirus. J Comp Pathol 1972; 82: 365-374, doi: 10.1016/0021-9975(72)90035-7.
3. Weiblen R, de Barros CS, Canabarro TF, Flores IE. Bovine meningoencephalitis from IBR virus. Vet Rec 1989; 124: 666-667, doi: 10.1136/vr.124.25.666-b.
4. Silva MS, Brum MC, Loreto EL, Weiblen R, Flores EF. Molecular and antigenic characterization of Brazilian bovine herpesvirus type 1 isolates recovered from the brain of cattle with neurological disease. Virus Res 2007; 129: 191-199, doi: 10.1016/j.virres.2007.07.014.
5. Del Medico Zajac MP, Ladelfa MF, Kotsias F, Muylkens B, Thiry J, Thiry E, et al. Biology of bovine herpesvirus 5. Zentralbl Veterinarmed B 1999; 46: 134-139, doi: 10.1016/S0378-1135(97)90014-X.
6. Jones C, Chowdhury S. A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2007; 8: 187-205, doi: 10.1017/S146662530700134X.
7. Salvador SC, Lemos RAA, Riet-Correa F, Roehe PM, Oso´rio ALAR. Meningoencephalitis in cattle caused by bovine herpesvirus-5 in Mato Grosso do Sul and São Paulo. Pesquisa Vet Brasil 1998; 18: 75-82.
8. Kirkland PD, Poynting AJ, Gu X, Davis RJ. Infertility and venereal disease in cattle inseminated with semen containing bovine herpesvirus type 5. Vet Rec 2009; 165: 111-113, doi: 10.1136/vetrech.165.4.111.
9. Oliveira MT, Campos FS, Dias MM, Velho FA, Freneau GE, Brito WM, et al. Detection of bovine herpesvirus 1 and 5 in semen from Brazilian bulls. Theriogenology 2011; 75: 1139-1145, doi: 10.1016/j.theriogenology.2010.11.025.
10. Delhon G, Moraes MP, Lu Z, Afonso CL, Flores EF, Weiblen R, et al. Genome of bovine herpesvirus 5. J Virol 2003; 77: 10339-10347, doi: 10.1128/JVI.77.19.10339-10347. 2003.
11. Cascio KE, Belkin EB, Schultheiss PC, Ames AD, Collins JK. Encephalitis induced by bovine herpesvirus 5 and protection by prior vaccination or infection with bovine herpesvirus 1. J Vet Diagn Invest 1999; 11: 134-139, doi: 10.1177/104063879901100208.
12. Bratanich AC, Sardi SI, Smitsaart EN, Schudel AA. Comparative studies of BHV-1 variants by in vivo - in vitro tests. Zentralbl Veterinarmed B 1991; 38: 41-48.
13. d’Offay JM, Ely RW, Baldwin CA, Whitnack DL, Stair EL, Collins JK. Diagnosis of encephalitic bovine herpesvirus type 5 (BHV-5) infection in cattle: virus isolation and immunohistochemical detection of antigen in formalin-fixed bovine brain tissues. J Vet Diagn Invest 1995; 7: 247-251, doi: 10.1177/104063879500700214.
14. Del Medico Zajac MP, Puntel M, Zamorano PI, Sadir AM, Romera SA. BHV-1 vaccine induces cross-protection against BHV-5 disease in cattle. Res Vet Sci 2006; 81: 327-334, doi: 10.1016/j.rvsc.2006.01.004.
15. Babiuk LA, L’Italien J, van Drunen Littel-van den Hurk S, Zamb T, Lawman JP, Hughes G, et al. Protection of cattle from bovine herpesvirus type I (BHV-1) infection by immunization with individual viral glycoproteins. Virology 1987; 159: 57-66, doi: 10.1016/0042-6822(87)90347-3.
16. Fitzpatrick DR, Redmond MJ, Attah-Poku SK, van Drunen Littel-van den Hurk S, Babiuk LA, Zamb TJ. Mapping of 10 epitopes on bovine herpesvirus type 1 glycoproteins gI and gIl. Virology 1990; 176: 145-157, doi: 10.1016/0042-6822(90)90239-N.
17. Collins JK, Ayers VK, Whetstone CA, van Drunen Littel-van den Hurk S. Antigenic differences between the major glycoproteins of bovine herpesvirus type 1.1 and bovine encephalitis herpesvirus type 1.3. J Gen Virol 1993; 74 (Part 8): 1509-1517, doi: 10.1099/0022-1317-74-8-1509.
18. Chowdhury SI. Fine mapping of bovine herpesvirus 1 (BHV-1) glycoprotein C neutralizing epitopes by type-specific monoclonal antibodies and synthetic peptides. Vet Microbiol 1997; 58: 309-314, doi: 10.1016/S0378-1135(97)00146-6.
19. van Drunen Littel-van den Hurk S, van den Hurk JV, Glichrist JE, Misra V, Babiuk LA. Interactions of monoclonal antibodies and bovine herpesvirus type 1 (BHV-1) glycoproteins: characterization of their biochemical and immunological properties. Virology 1984; 135: 466-479, doi: 10.1016/0042-6822(84)90220-1.
20. Fitzpatrick DR, Babiuk LA, Zamb TJ. Nucleotide sequence of bovine herpesvirus type 1 glycoprotein gII, a structural model for gII as a new member of the immunoglobulin superfamily, and implications for the homologous glycoproteins of other herpesviruses. Virology 1989; 173: 46-57, doi: 10.1016/0042-6822(89)90220-1.
21. Skoff AM, Holland TC. The effect of cytoplasmic domain mutations on membrane anchoring and glycoprotein processing of herpes simplex virus type 1 glycoprotein C. Virology 1993; 196: 804-816, doi: 10.1006/viro.1993.1538.
22. Liang X, Babiuk LA, Zamb TJ. Mapping of heparin-binding structures on bovine herpesvirus 1 and pseudorabies virus gII glycoproteins. Virology 1993; 194: 233-243, doi: 10.1006/viro.1993.1254.
between BHV-1.1 and BHV-1.2 strains. J Gen Virol 1999; 80 (Part 6): 1477-1483.

24. Marshall RL, Israel BA, Letchworth GJ III. Monoclonal antibody analysis of bovine herpesvirus-1 glycoprotein antigenic areas relevant to natural infection. Virology 1988; 165: 338-347, doi: 10.1016/S0042-6822(88)90578-8.

25. Chowdhury SI. Molecular basis of antigenic variation between the glycoproteins C of respiratory bovine herpesvirus 1 (BHV-1) and neurovirulent BHV-5. Virology 1995; 213: 558-568, doi: 10.1016/S0042-6822(95)80137-5.

26. Chowdhury SI, Lee BJ, Onderci M, Weiss ML, Mosier D. Neurovirulence of glycoprotein C(gC)-deleted bovine herpesvirus type-5 (BHV-5) and BHV-5 expressing BHV-1 gC in a rabbit seizure model. J Neurovirol 2000; 6: 284-295, doi: 10.3109/13550280009030754.

27. Liman A, Engels M, Meyer G, Ackermann M. Glycoprotein C of bovine herpesvirus 5 (BHV-5) confers a distinct heparin-binding phenotype to BHV-1. Arch Virol 2000; 145: 2047-2059, doi: 10.1007/s0070500070039.

28. Okazaki K, Honda E, Kono Y. Heparin-binding domain of bovid herpesvirus 1 glycoprotein gII. Arch Virol 1994; 134: 413-419, doi: 10.1007/BF01310578.

29. Ashbaugh SE, Thompson KE, Belknap EB, Schultheiss PC, Chowdhury S, Collins JK. Specific detection of shedding and latency of bovine herpesvirus 1 and 5 using a nested polymerase chain reaction. J Vet Diagn Invest 1997; 9: 387-394, doi: 10.1177/104063879700900408.

30. Traesel CK, Sa e Silva M, Spilki FR, Weiblen R, Flores EF. Nucleotide sequencing and phylogenetic analysis of the 3′ region of glycoprotein C gene of South American bovine herpesviruses 1 and 5. Res Vet Sci 2013; 94: 178-185, doi: 10.1016/j.resvety.2012.07.032.

31. Traesel CK, Sa e Silva M, Weiss M, Spilki FR, Weiblen R, Flores EF. Genetic diversity of 3′ region of glycoprotein D gene of bovine herpesvirus 1 and 5. Virus Genes 2014; 48: 438-447, doi: 10.1007/s11262-014-1040-5.

32. Hecht P, Engels M, Loepfe E, Ackermann M. Comparison of the glycoprotein gC genes of bovine and caprine herpesviruses. Immunobiology of viral infections. Proceedings of the 3rd Congress of the European Society for Veterinary Virology. Interlaken, September 4-7, 1994. Lyon: Fondation Marcel Mérieux; 1995. p 152-157.

33. Chasman D, Adams RM. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol 2001; 307: 683-706, doi: 10.1006/jmbi.2001.4510.

34. Varela AP, Holz CL, Cibulski SP, Teixeira TF, Antunes DA, Franco AC, et al. Neutralizing antibodies to bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) and its subtypes. Vet Microbiol 2010; 142: 254-260, doi: 10.1016/j.vetmic.2009.10.016.

35. Claus MP, Alfieri AF, Folgueras-Flatschart AV, Wosiacki SR, Medici KC, Alfieri AA. Rapid detection and differentiation of bovine herpesvirus 1 and 5 glycoprotein C gene in clinical specimens by multiplex-PCR. J Virol Methods 2005; 128: 183-188, doi: 10.1016/j.jviromet.2005.05.001.

36. Oldoni I, Weiblen R, Inkelnann MA, Flores EF. Production and characterization of monoclonal antibodies to a Brazilian bovine herpesvirus type 5. Braz J Med Biol Res 2004; 37: 213-221, doi: 10.1590/S0100-879X2004000200008.

37. Anziliero D, Santos CM, Brum MC, Weiblen R, Chowdhury SI, Flores EF. A recombinant bovine herpesvirus 5 defective in thymidine kinase and glycoprotein E is immunogenic for calves and confers protection upon homologous challenge and BoHV-1 challenge. Vet Microbiol 2011; 154: 14-22, doi: 10.1016/j.vetmic.2011.03.019.

38. Belknap EB, Collins JK, Ayers VK, Schultheiss PC. Experimental infection of neonatal calves with neurovirulent bovine herpesvirus type 1.3. Vet Pathol 1994; 31: 358-365, doi: 10.1177/03009858940310309.

39. Tal-Singer R, Peng C, Ponce De Leon M, Abrams WR, Banfield BW, Tufaro F, et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 1995; 69: 4471-4483.