Temporal-Spatial Simulation of Landscape Variations Using Combined Model of Markov Chain and Automated Cell

Gholamzadeh Forozan1 · Mohammad Reza Elmi1 · Ali Talebi1 · Mohammad Hossein Mokhtari1 · Saeed Shojaei2

Received: 4 April 2019 / Accepted: 18 January 2020 / Published online: 1 April 2020
© The Author(s) 2020

Abstract
Classification and preparation of land use map are the most commonly used methods in remote sensing data. Numerous advanced classification methods have been developed in a recent year. Among those methods, one can name support vector machine. Identifying land cover changes can play an important role in future decisions of regional managers. Therefore, the present study aimed at employing CA–Markov model to present a powerful but simple model for simulation and prediction of Yazd city. Accordingly, first, satellite images of 2000, 2005, 2010, and 2016 were classified by SVM method, and then land use maps of Yazd city were extracted. The results of the detection of changes indicated the expansion of residential areas and the reduction of dry land and vegetation during a 16-year period. Prediction of land use development in 2040 using CA–Markov model with a kappa coefficient of 84.43 shows the high accuracy of this model. Besides, the urban land use area shows 18,432 hectares increase in 2040 compared to 2010, while the area of dry land uses (− 15,570) rocky areas (− 186) and vegetation (− 2658) hectares decrease compared to 2010. Moreover, the results of CA–Markov model indicated the development of Yazd city by degradation of vegetation.

Keywords Modeling · Urban growth · CA–Markov · Support vector machine

1 Introduction

The nature of ground is not constant and always changes. Detecting land use changes and reviewing its trends are one of the basic requirements for managing and evaluating natural resources (Fathizad et al. 2017; Hamidy et al. 2016; Alipur et al. 2016). Monitoring land use changes in
Remote sensing is of central importance because of certain features such as wide visibility, integration, the use of various electromagnetic energy components to record phenomena, short return periods, the possibility of using hardware and software, low cost and faster inspection (Hamidy et al. 2016; Kermani and Rohrbach 2018; Shojaei et al. 2018; Nasiri et al. 2017; Reinsma 2019). Remote sensing is of central importance because of certain features such as wide visibility, integration, the use of various electromagnetic energy components to record phenomena, short return periods, the possibility of using hardware and software, low cost and faster inspection (Hamidy et al. 2016; Kermani and Rohrbach 2018; Shojaei et al. 2018; Nasiri et al. 2017; Reinsma 2019). Remote sensing is of central importance because of certain features such as wide visibility, integration, the use of various electromagnetic energy components to record phenomena, short return periods, the possibility of using hardware and software, low cost and faster inspection (Hamidy et al. 2016; Kermani and Rohrbach 2018; Shojaei et al. 2018; Nasiri et al. 2017; Reinsma 2019). Remote sensing is of central importance because of certain features such as wide visibility, integration, the use of various electromagnetic energy components to record phenomena, short return periods, the possibility of using hardware and software, low cost and faster inspection (Hamidy et al. 2016; Kermani and Rohrbach 2018; Shojaei et al. 2018; Nasiri et al. 2017; Reinsma 2019).
cover changes of Pearl River between 1977 and 2003 and to predict the changes for 10 years. They classified images using supervised classification with maximum likelihood method. Then, they were evaluated the accuracy of obtained maps by random sampling and selecting 690 samples in field observation. The results showed 91.5 and 86.8% accuracy for classified maps of 1977 and 2003, respectively. After classification of land use and cover changes between 1977 and 2003, a comparison method was performed to identify the urban expansion trend and degradation of agricultural lands between 1990 and 2000. Finally, urban expansion was predicted for 2008 and 2013 using Markov chain and CA–Markov. In the present study, land use changes of Yazd city was performed using SVM method and prediction of these changes for 2040 was done by CA–Markov model.

2 Materials and Method

2.1 Study Area

Yazd city with 2397 km² is located between the latitude of 29° 52′–33° 27′ N and longitude 52° 55′–56° 37′ E. Due to the location of Yazd city in desert margin, it has dry climate. Also, due to the lack of raining, no vegetation can be seen in this area. Figure 1 shows the location of study area.

2.2 Land Use Map

In the present study, sensor data of TM (2000 and 2010), ETM + (2005), and OLI (2016) were used to extract land use map (a 16-year period). The satellite images of May and June was used because of vegetation cover in spring. These images had a proper condition in terms of the lack of cloud cover and rainfall. Detailed data are presented in Table 1.

To prepare the data for processing, after preparation of satellite data, geometric correction operations and dereferencing were performed using road network vector layer and satellite imagery of the area. Spectral correction of images also was done to enhance the phenomenon and increase the quality of images and remove the adverse effects of light and atmosphere on them. Then, the band 4–3–2 false-color composite (RGB) was formed using the correlation between bands and classification was conducted by SVM method.

Table 1 Properties of used images

Row	Sensor	Band	Row	Date
1	TM	1, 2, 3, 4, 5, 7	38–162	2000-5-25
2	ETM	1, 2, 3, 4, 5, 7	38–162	2005-6-16
3	TM	1, 2, 3, 4, 5, 7	38–162	2010-5-5
4	OLI	2, 3, 4, 5, 6, 7, 8	38–162	2016-4-19

According to the objective of the present research and vegetation type in the area, four categories including residential, dry, vegetation, and cliff areas were identified and classified. To ensure the classification, a comparison was made between land use map and field observations. In the present study, random sampling method was employed to classify...
data. Samples were selected based on land use map and field observation randomly.

2.3 Estimation of Produced Map Accuracy

To evaluate the accuracy of the classification, the error matrix, the statistical parameters of the overall accuracy, producer accuracy, user accuracy, kappa coefficient, total kappa, user error, producer error, and total error were calculated, and then the majority filter was applied to obtain a uniform image and the removal of dispersed pixels over the images of the classification (Fig. 2).

2.4 Support Vector Machine (SVM)

Statistical learning theory-based SVM method is a non-parametric supervised statistical method (Pao 1989), in which the samples that form the classes’ boundaries is obtained using all bands and an optimization algorithm and then an optimal linear decision-making boundary is calculated to separate the classes. These samples are support vectors (Keshavarz and Yazdi 2005) (Fig. 3).

As shown in Fig. 2, binary samples are called support vectors, and the optimal margin method is used to calculate the decision boundary of two distinct classes. To calculate the margin, all class + 1 samples are placed on one side and all class − 1 samples on the other side of the boundary. Besides, to calculate decision-making boundary, the distance between the closest training samples of both classes in the vertical direction of the decision boundary should be maximized (Keshavarz and Yazdi 2005). By parallel expansion of decision boundary from both sides through two lines to pass through the closest samples of two classes, optimal hyperplane boundary is formed, which a boundary with the maximum is spacing between two classes. Those two parallel lines are called marginal hyperplanes. For pixels outside the marginal hyperplanes, Eq. 1 is applied.

For class pixels,

$$W^T x + W_{n+1} = -1 \tag{1}$$

where x is a decision boundary, W^T threshold, W is a perpendicular n-dimensional vector to the decision boundary (Goodarzi Mehr et al. 2012).

2.5 Modeling Using CA–Markov model

Markov chain and CA are both discrete dynamic models in time and position. Producing no geographic perceptions is the inherent problem of the Markov chain. Although the probability of conversion on each basic node may be accurate, it lacks stochastic space distribution within each land use group, i.e., there is no spatial component in the modeling output. As a result, CA–Markov is a proper method for spatial–temporal dynamic modeling of use and cover.
changes and remote sensing method and GIS data can effectively contribute to this model (Li and Reynolds 2000). In CA–Markov model, Markov chain converts the temporal changes between land cover/use class based on probabilities, while spatial changes are controlled by local rules determined by CA (Eastman 2006). To monitor the spatial patterns of land cover and land use in Yazd, Markov chain model was first used to create the transmission probability matrix and the area of the transmission of various land cover classes, which provides more detailed information on the transfer between classes in different types of land cover. Subsequently, the prediction of land cover changes using the CA–Markov model and based on the probability of a transmission derived from the Markov chain analysis, which could give us a simulation map for land cover in the future. In this research, first, the necessary changes and corrections of images were performed in the ArcGIS 10.2 software, and then models of IDRISI software were used to simulate land use changes in Yazd area.

3 Results

3.1 Image Classification

In the present study, according to a review of previous studies, SVM method was employed to classification. Based on the familiarity with the study area also field observation four class including vegetation, dry, cliff, and residential land use were identified. The images of 2000, 2005, 2010, and 2016 can be seen in Figs. 4, 5, 6, and 7, respectively.

3.2 Validation

The necessity of using any kind of satellite image processed-land use map is its accuracy. An error matrix was used to assess the accuracy of land use/land cover maps in 2016 by ground control points (100 points). Besides, false-color composite image interpretation, land use map provided by the Natural Resources Administration of Yazd and Google Earth (areas that have not changed over time) (255 truth ground points for each year) and error matrix were used for accuracy of images classification (maps related to years 2000, 2005, and 2010). The results showed the highest accuracy for a map of 2016 derived from the processing of OLI
sensors images with 0.9126 kappa coefficient, and 93.57 total accuracy, which followed by a map of 2005 derived from the processing of ETM+ sensors images with 0.8877 kappa coefficient, and 91.57 total accuracy. Table 2 shows producer and user’s accuracy.

The results of area measurement of land use in the study area and mentioned time intervals are presented in Table 3.

The results of area measurement indicated the increased area of vegetation, residential, and cliff area; and decreased area of drylands in the first 5 years. After 2005, except for

Year/use	2000 (hectares)	2005 (hectares)	2010 (hectares)	2016 (hectares)
Dry lands	63,003	59,115	56,720	53,038
Residential areas	6548	9852	14,193	19,823
Vegetation	6412	6805	4986	3118
Rocky area	2259	2450	2323	2243

Land uses	Dry	Urban	Vegetation	Cliff
Changes in the area of land use in 2000 and 2005				
2000	63,003	6548	6412	2259
2005	59,115	9852	6805	2450
Changes in area of each land use	−3888	+3304	+393	+191
Changes in the area of land use in 2005 and 2010				
2005	59,115	9852	6805	2450
2010	56,720	14,193	4986	2323
Changes in area of each land use	−2395	+4341	−1819	−127
Changes in the area of land use in 2010 and 2016				
2010	56,720	14,193	4986	2323
2016	53,038	19,823	3118	2243
Changes in area of each land use	−3682	+5630	−1868	−80
Changes in the area of land use in 2016 and 2000				
2000	63,003	6548	6412	2259
2016	53,038	19,823	3118	2243
Changes in area of each land use	−9965	+13,275	−3294	−16

| Table 5 Likelihood transition matrix of land use between 2000 and 2005 |
|---------------------------|-----------------|-----------------|-----------------|-----------------|
| Type of class | Dryland | Residential area| Vegetation | Cliff area |
| 2000–2005 | | | | |
| Dry land | 0.9270 | 0.0412 | 0.0238 | 0.0080 |
| Residential area | 0.0006 | 0.9986 | 0.0007 | 0.0007 |
| Vegetation | 0.0703 | 0.0961 | 0.08246 | 0.0073 |
| Rocky area | 0.1145 | 0.0444 | 0.0004 | 0.8407 |
the residential areas that had a significant increase, the rest of the lands, especially vegetation, declined significantly. Overall, over 16 years, residential areas have increased by more than 13,000 hectares, which has significant increase compared to the first year (6548 hectares), but vegetation decreased from 6412 hectares to 3118 hectares compared to 2000.

Then, in this research, the horizontal alignment method was used to detect changes using the comparison method after classification. An assessment of land use change between 2000 and 2016 showed that an increase in the area occurred in the built areas (13,275 ha), as well as the decrease in the area in the dry (9965 ha), vegetation (3294 ha), and rocky (16 hectares) areas.

As shown in Table 4, the largest increase in the area occurred in the built areas. During 16 years, 13,275 hectares of land uses (10,310 hectares of drylands and 2654.55 hectares of vegetation) have been converted to residential areas. The results of land use changed during the studied years are presented as the following diagram.

The results showed significant development in Yazd city because of an increase in immigration. Therefore,

Table 6 Area of processed and predicted classes using CA–Markov model for 2010

Land use class	Hectares and predicted percentage for 2010	Hectares and processed percentage for 2010	Area difference
	Hectares %	Hectares %	Hectares
Dry lands	56,103 71.7	56,720 72.5	−617
Residential area	13,952 17.8	14,193 18.1	−241
Vegetation	5746 7.3	4986 6.3	760
Rocky area	2421 3.09	2323 2.9	98

Fig. 8 Predicted land use map for 2010 using CA–Markov model

Table 7 A matrix of transition probability obtaining from CA–Markov model for areas of land use changes in 2040

Areas of land use class in 2040 (ha and %)
Year Unit Drylands Residential area Vegetation Rocky area
2040 Hectares % 40,533 32,384 3088 2235
% 51.8 41.4 3.9 2.8

Fig. 9 The 2040-predicted land use map using CA–Markov model
fundamental change occurred in the city’s inner texture and structure. Also, an increase in immigration resulted in changes in vegetation boundaries (agricultural and dry land). In addition, vegetation was reduced during the period, and most of it was captured by the developed regions.

3.3 Modeling the Land Use Changes Using CA–Markov model

The land cover maps of 2000 and 2005 were used to predict the land cover of 2010. This is done to determine the validity and efficiency of the model in prediction and modeling by mapping from the model and the map of the actual land cover. The result of the implementation phase of the Markov chain analysis, a transition likelihood matrix is a transmitted area matrix. Table 5 shows the likelihood transition matrix of land use between 2000 and 2005.

The results of evaluating the prediction accuracy with the Markov chain model using the 2010 land use map are presented in Table 6.

To validate the Markov chain model, simulated land use map by the model and real map resulting from 2010 classification were compared. Kappa coefficient derived from error matrix between the mentioned maps was obtained to be 84.43%. Besides, the difference between the estimated and processed area of 2010 is shown in Table 6.

Then, data including land use/cover map of 2005 as the base map and 2000–2005 transformation matrix of areas were combined in IDRISI Selva software using the spatial function of CA to predict land use map of 2010. Kappa coefficient derived from error matrix between the modeling-based map and land use map of 2010 was 84.43%. Besides, the difference between the predicted and processed area of 2010 is shown in Table 6. The map obtained from validation of CA–Markov model for 2010 is presented in Fig. 8.

3.4 Modeling the Land Use Changes Using CA–Markov model for 2040

The land cover maps of 2000 and 2016 were used to predict the land cover of 2040 (Fig. 9). Table 7 shows the matrix of transition probability for land use changes during the statistical years of 2010–2040 using Markov chain method.

4 Discussion and Conclusion

Classification of land cover using satellite images is one of the most important applications of remote sensing and most of the algorithms have been developed for this purpose. In the present study, SVM algorithm was employed as a classification method of satellite images. Besides, in this research, CA–Markov model was used to evaluate the trend of land use changes and predict this trend for the arid area of Yazd city. Based on the results of evaluating the land use changes between 2000 and 2016, a significant increase in the area of residential area (13,275 ha) and a decrease in the area of drylands (9965 ha), vegetation cover (3294 ha), and rocky area (16 ha) were observed. The largest increase in the area occurred in residential areas. During 16 years, 13,275 hectares of land uses (10,310 hectares of drylands and 2654.55 hectares of vegetation) have been converted to residential areas. The prediction of land use changes of 2010 was performed using the status transformation matrix for 2000–2005. The differences between the various classes of land use were very low, which indicated the effectiveness of the Markov model in the simulation of user variations. To validate the model, a comparison was made between the stimulated land use map and an actual classified map of 2010. The Kappa coefficient indicates the higher capability of CA–Markov model for simulation of land use changes in Yazd city. The CA–Markov model was used to prepare the simulation map of 2040. Based on the area obtained from each use in 2040, the land use of dry land, rocky areas, and vegetation is decreasing and urban lands are increasing compared to 2010. Hence, the area of dry, rocks, and vegetation uses has decreased by 15,570, 186 and 2658 hectares in 2040 compared to 2010, and in 2040 the urban land has increased by 18,432 hectares compared to 2010. The results showed significant development in Yazd city because of an increase in immigration. Therefore, fundamental changes occurred in the city’s inner texture and structure. Peterson et al. (2009) evaluated the trend and pattern of forest cover changes using logistic regression and CA–Markov models to manage the forest in Baykal Lake, south of Siberia. They modeled the forest cover of the area in 2003 using images from different sensors of Landsat in two periods of 1989–1975 and 1990–2001. Finally, with the help of simulated models, it was concluded that some types of trees whose developmental trend is expected with significant decline requires a proper forestry management. Arabi Aliabad et al. (2018) investigated the land use changes and the way of using lands by remote sensing data of 1973 and 2010. Besides, they simulated the urban growth of Mumbai city for the 10-year period from 2020 to 2030. The results of detecting changes showed that the highest growth rates occurred between 1973 and 1990, with city growth rates of 142 percent. In contrast, the city growth rate between 1990 and 2001 and between 2001 and 2010 were 40 and 38%. The most affected lands were dry lands. The results of the model showed that urban growth will continue in the next 2 decades, so that in 2020 and 2030, the city will have 26% and 12% growth rate (Most of these changes will be along the north). Iranmehr (2014) used Landsat images of TM, ETM+, and OLI related to years of 1985, 2003, and 2013.
to identify and predict the land use and cover around Zayanderud. First, all pre-processed images were reconstructed and then hybrid classification method was applied. Finally, land use and cover maps were prepared for each year. After estimating the accuracy of the resulting maps using error matrix, the comparison method after classification was used to detect changes. The results showed that the most urban development occurred between 1985 and 2003 with an average of 952 hectares per year and the least growth occurred between 2003 and 2013 with an area of about 552 hectares each year. Moreover, a combined model of CA–Markov was employed to predict the city development of 2013. Then, the obtained map was compared with other maps related to 2013 to evaluate the capability of a model for predicting changes. Finally, urban areas map was predicted for 2040. The results showed 85,247 hectares growth in the urban area.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Achau AL, Aju CD, Suresh V, Manoharan TP, Reghunath R (2019) Spatio-temporal analysis of road accident incidents and delineation of hotspots using geospatial tools in Thiruvur District, Kerala, India. KN J Cartogr Geogr Inf 69(4):255–265
Aliabad FA, Shojaei S (2019) The impact of drought and decline in groundwater levels on the spread of sand dunes in the plain in Iran. Sustain Water Resour Manag 5(2):541–555
Aliabad FA, Shojaei S, Zare M, Ekhtesasi MR (2018) Assessment of the fuzzy ARTMAP neural network method performance in geological mapping using satellite images and Boolean logic. Int J Environ Sci Technol 16(7):3829
Alipur H, Zare M, Shojaei S (2016) Assessing the degradation of vegetation of arid zones using FAO–UNIP model (case study: Kashan zone). Model Earth Syst Syst 2(4):195
Arkhi S (2015) Detection of land use/cover change by object-oriented processing of satellite images using Idriisi selva software: case study: Abadan Area. Q. J. Geogr Inf. Eureka 24, No. 95, autumn 94
Eastman JR (2006) Idrisi Andes. Guide GIS Image Process 2006:87–131
Fan F, Wang Y, Wang Z (2008) Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM + images. Environ Monit Assess 137:127–147
Fathizad H, Tazeh M, Kalantari S, Shojaei S (2017) The investigation of spatiotemporal variations of land surface temperature based on land use changes using NDVI in southwest of Iran. J Afr Earth Sc 134:249–256
Goodarzi MS, Abbaspour RA, Ahdadnezhad V, Khakbaz B (2012) Comparison of supporting vector machine method with maximum likelihood and neural network method for separation of lithological units. Iran Geol Q 22(6):92
Haack BN, Rafter A (2006) Urban growth analysis and modeling in the Kathmandu Valley, Nepal. Habitat Int 30(4):1056–1065
Hamidy N, Alipur H, Nasab SNH, Yazdani A, Shojaei S (2016) Spatial evaluation of appropriate areas to collect runoff using analytic hierarchy process (AHP) and geographical information system (GIS) (case study: the catchment “Kasef” in Bardaskan. Model Earth Syst Environ 2(4):172
Iranmehr M (2014) Detection of land cover changes around the Zayanderud River, the Thesis of Master’s Degree, Faculty of Natural Resources, Isfahan University of Technology
Kermank H, Rohrbach A (2018) Orientation-control of two plasmonically coupled nanoparticles in an optical Trap. ACS Photonics 5(11):4660–4667
Keshavarz A, Yazdi G (2005) A fast support vector machine-based algorithm for classification of hyperspectral images using spatial correlation. J Electr Eng Comput Eng Iran 1(3):44
Li H, Reynolds JF (2000) Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined markov and cellular automaton approach. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis Publishers, Boca Raton, pp 211–230
Makroni S, Sabzgabaii Gh.R, Soltaniyan S (2016) Detection of land use change process in hooralazim wetland using remote sensing and geographic information systems. Remote sensing and geographic information system in natural resources (seventh/third year) autumn 2016
Nasiri A, Shirokova VA, Zareie S, Shojaei S (2017) Assessment of the status and intensity of water erosion in the river basin Delichai (Iranian territory) using GIS model. Int Multidiscip Sci GeoConf SGEM 17(52):89–96
Pao YH (1989) Adaptive pattern recognition and neural networks. Addison-Wesley Longman Publishing Co.,Inc, Boston
Peterson LK, Bergen KM, Brown DG, Vashchuk L, Blam Y (2009) Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. For Ecol Manage 257:911–922
Petropoulos GP, Kalaitzidis C, Vadrevu KP (2012) Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput Geosci 41:99–107
Reinsma R (2019) Correction to: prototypical peripheral toponym pairs expressing the concept ‘All Over the Country’ as a part of the mental map. KN J Cartogr Geogr Inf 2019:1
Rizk Hegazy I, Rashed M (2015) Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int J Sustain Built Environ 4(1):117–124
Shojaei S, Alipur H, Ardakani AHH, Nasab SNH, Khosravi H (2018) Locating Astragalus hysopogeton Bunge appropriate site using AHP and GIS. Spatial Inf Res 26(2):223–231