Between two worlds: Cova Eirós and the Middle-Upper Palaeolithic transition in NW Iberia

Arturo de LOMBERA-HERMIDA, Xose-Pedo RODRÍGUEZ-ÁLVAREZ, Alicia AMEIJENDA IGLESIAS, Mikel DÍAZ RODRÍGUEZ, Iván REY-RODRÍGUEZ, Irene VALVERDE TEJEDOR, Augusto PÉREZ-ALBERTI, Pedro P. CUNHA, Hugo BAL GARCÍA, Xes ALDEA MOREIRA, Cristian LORENZO SALGUEIRO, Tania MOSQUERA CASTRO & Ramón FÁBREGAS VALCARCE
Between two worlds: Cova Eirós
and the Middle-Upper Palaeolithic transition in NW Iberia

Arturo de LOMBERA-HERMIDA
Grupo de Estudos para a Prehistoria do Noroeste Ibérico-Arqueoloxía, Antigüidade e Territorio (GEPN-AAT), Dpto. Historia, Universidade de Santiago de Compostela (Spain)
arturode.lombera@usc.es (corresponding author)

Xose-Pedro RODRÍGUEZ-ÁLVAREZ
Universitat Rovira i Virgili, Departament d’Història i Història de l’Art, Tarragona (Spain)
and Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona (Spain)

Alicia AMEIJENDA IGLESIAS
Mikel DÍAZ RODRÍGUEZ
Grupo de Estudos para a Prehistoria do Noroeste Ibérico-Arqueoloxía, Antigüidade e Territorio (GEPN-AAT), Dpto. Historia, Universidade de Santiago de Compostela (Spain)

Iván REY-RODRÍGUEZ
HNHP UMR 7194, CNRS / Muséum National d’Histoire Naturelle / UPVD / Sorbonne Universités, Paris (France)
and Sezione di Scienze Preistoriche e Antropologiche, Dipartimento di Studi Umanistici, Università degli Studi di Ferrara (Italy)

Irene VALVERDE TEJEDOR
Grupo de Estudos para a Prehistoria do Noroeste Ibérico-Arqueoloxía, Antigüidade e Territorio (GEPN-AAT), Dpto. Historia, Universidade de Santiago de Compostela (Spain)
and Sezione di Scienze Preistoriche e Antropologiche, Dipartimento di Studi Umanistici, Università degli Studi di Ferrara (Italy)

Augusto PÉREZ-ALBERTI
Cross-Research in Environmental Technologies (CRETUS) - Universidade de Santiago Compostela (Spain)

Pedro P. CUNHA
University of Coimbra, Department of Earth Sciences, MARE - Marine and Environmental Sciences Centre (Portugal)

Hugo BAL GARCÍA
Grupo de Estudos para a Prehistoria do Noroeste Ibérico-Arqueoloxía, Antigüidade e Territorio (GEPN-AAT), Dpto. Historia, Universidade de Santiago de Compostela (Spain)
ABSTRACT

Iberia, a natural cul-de-sac peninsula, plays a major role in the study of the Neanderthals demise and its eventual relationship with the spread of Anatomically Modern Humans (AMH) in Europe. The site of Cova Eirós (Galicia, Spain), located in NW Iberia, contains Middle and Upper Palaeolithic levels, based on the cultural remains recovered at the site. No human remains directly associated with those levels were discovered yet. The available radiocarbon dates from the levels 2 (c. 35 ka cal BP, Early Upper Palaeolithic) and 3 (c. 41 ka cal BP, Late Middle Palaeolithic), point to a late survival of Neanderthal groups in North Iberia and to a relative quick arrival of the AMH, c. 35-36 ka cal BP, with respect to other territories of the Iberian Peninsula. The archaeological record shows clear differences between the Middle and the Upper Palaeolithic occupations, regarding raw-material acquisition, lithic technology and subsistence strategies. The location of Cova Eirós in the westernmost margin of the Cantabrian Rim and in the Atlantic Façade, makes this site a key place to understand the spread of the first AMH and the progressive demise of Neanderthal populations.

KEY WORDS

Middle-Upper Palaeolithic transition, Mousterian, Aurignacian, quartz industries, zooarchaeology, Northwestern Iberia.
INTRODUCTION

The debate on the Middle to the Upper Palaeolithic transition in the Iberian Peninsula has a long tradition because of its implications for understanding the demise of Homo neanderthalensis in Europe, where several models (climatic, ecological, interspecific competitiveness, etc.) have been proposed (Straus 2005, 2012; Vaquero Rodríguez 2006; Finlayson & Carrión 2007; Bernaldo de Quirós & Mallo-Fernández 2009). Among them, the Ebro Frontier stands out: according to Zilhão (2000, 2006), the Ebro River was a long-standing “biogeographic barrier”, which implied a millennial coexistence between populations of H. sapiens and H. neanderthalensis in the NE sector of the Iberian Peninsula. This model has been discussed, partly due to some troublesome stratigraphic features of the key sites. In the last decade, new archeo-stratigraphic revisions of the reference sequences (Vaquero Rodríguez 2006; Vaquero et al. 2006; Martínez-Moreno et al. 2010; Mallol et al. 2012; Garralda et al. 2014) and, especially, the application of new pre-treatments for radiocarbon dating have made possible to calibrate and specify the chronological context of the Middle-Upper Palaeolithic transition. As a result, late Mousterian levels of Cantabrian sites with quite recent dates have been significantly revised and/or questioned due to problems related to their stratigraphic context (Jórís & Street 2008; Maroto et al. 2012; Santamaría Álvarez & de la Rasilla Vives 2013; Higham et al. 2014; Wood et al. 2014, 2016; Menéndez et al. 2017; Gutiérrez-Zugasti et al. 2018 inter alia). In contrast, South Iberian sites show ages later than 30 ky BP (Finlayson et al. 2006; Zilhão et al. 2017), implying a survival of the Middle Palaeolithic groups quite a long time after the first arrival and settlement of Homo sapiens in the north. In Cantabria, only the Esquivelle sequence (Cantabria) seems to support late dates for the Mousterian groups (Baena et al. 2012; Baena-Preysler et al. 2019).

Placed at the end of the coastal Cantabrian Rim, NW Iberia is an important area for understanding the timing of the Neanderthal demise and the first dispersal of AMH out of the Franco-Cantabrian region (e.g. Haws et al. 2010; Cunha et al. 2019). From that western outpost, the Miño River and the adjacent Cenozoic basins are the natural corridors leading to the Atlantic shores (de Lombera-Hermida et al. 2015). Unfortunately, the Iberian NW is defined by the predominance of a Paleozoic substratum that, due to the acidity of its soils, prevents the conservation of organic materials in open-air sites. In addition, the undulating orography, that favors erosive and morphogenetic processes, severely thwarts the preservation of archaeological records. On the other hand, in NW Iberia the raw material availability is almost restricted to vein quartz and quartzite. Thus, the application of conventional Upper Palaeolithic typological schemes is very limited. These determining factors lead to lithic assemblages with formal and typological peculiarities that may hinder a precise chrono-cultural ascription.

In this paper we intend to shed light on the transition from the Middle to the Upper Palaeolithic in NW Iberia, based on the stratigraphic sequence of the Cova Eirós site. We will focus specifically on the study of the archaeological records from Level 2 (Early Upper Palaeolithic) and Level 3 (Late Middle Palaeolithic).

COVA EIRÓS SITE

The Cova Eirós site is located in Cancelo (a village of the Triacastela municipality) (Lugo, Spain) (UTM X: 646.855; UTM Y: 4.736.428) (Fig. 1). The cave entrance is on the NNW slope of Monte Penedo in Serra do Ouribio, at 785 m a.s.l. and 25 m above a stream, the Arroyo de Bezas. The Cova Eirós karstic system is part of the Cándana Limestone Series, formed during the Lower Cambrian. The cave is 312 m long and the entrance, where the Palaeolithic groups settled; currently is 2 m high by 3.5 m wide, narrowing after the first 7 m into a 15 m long neck (Rodríguez-Álvarez et al. 2011; de Lombera-Hermida et al. 2014). Then, the cave continues inwards in a NNW direction in a series of three overlapping levels of galleries. The Palaeolithic engravings and paintings spread along the main Hall and Gallery (de Lombera-Hermida & Fábregas-Valcarce 2013; Fábregas-Valcarce et al. 2015; Steelman et al. 2017).

STRATIGRAPHIC CONTEXT

The cave entrance of the Cova Eirós contains an excavated sedimentary succession up to c. 2 m thick. According to a GPR survey, the maximum thickness of the sedimentary succession that covers the limestone basement is c. 3.4 m.

From the surface of the sedimentary infill to the lower level of the present excavated sequence, several archaeological levels (layers) were defined (referred as A, B, 1, 2, 3, 4 and 5, from top to bottom), in which the respective depositional facies were identified (Fig. 2).

Level 5
Coarse silt with dispersed very angular pebbles of limestone. Currently under excavation.

Level 4
Three layers were identified:

Layer 4AI. Very fine sand to coarse silt with dispersed rounded pebbles of limestone and schist, but also very angular pebbles of limestone; thickness: 5 cm. Contains a Mousterian industry with expedient, Levallois and discoidal products.

Layer 4C. Very coarse silt with widespread carbonate concretions and rounded pebbles of schist and limestone, but also very angular pebbles of limestone; thickness: 8-14 cm. Contains a Mousterian industry with Levallois production.

Layer 4AS. Coarse silt with some dispersed rounded pebbles of white quartz, quartzite, schist and limestone (clasts usually of 3 cm, sometimes reaching 12 cm), but also very angular pebbles and cobbles of limestone; thickness: 7-12 cm. Contains a Mousterian industry with Levallois and discoidal production.
Level 3
Three layers were identified:

Layer 3C. Coarse silt, with dispersed very angular small pebbles of limestone and some small carbonate micritic concretions and laminations; thickness: <12 cm. Contains a Mousterian industry with Levallois and discoidal production.

Layer 3B. Very fine sand with dispersed very angular pebbles and cobbles of limestone (usually 2 cm, but reaching 10 cm); thickness: 8-10 cm. Contains a Mousterian industry with Levallois and discoidal production.

Layer 3A. Fine to very fine sand, with dispersed very angular pebbles and cobbles of limestone (usually 2 cm, but reaching 10 cm), more abundant at the base; thickness: <16 cm. Contains an Aurignacian industry with bladelet production.

Layer 2A. Very fine sand to coarse silt, with dispersed very angular small pebbles to cobbles of limestone (up to 10 cm) and some small carbonate concretions; thickness: 6-20 cm. Contains an Aurignacian industry with bladelet production and expedient knapping methods.

Layer 2B. Fine sand, with dispersed very angular small pebbles of limestone. Horizontal lamination; thickness: 5-10 cm. Contains a Gravettian industry with bladelet production.

Layer 1B. Very fine sand, with dispersed very angular, very small pebbles of limestone. Horizontal lamination; thickness: 5-10 cm. Contains a Gravettian industry with bladelet production, backed elements and points.

Layer 1A. Aeolian sands, with horizontal lamination. The lower part of this layer displays alternations of medium to fine sands passing upwards to fine sands, showing curved laminations. A middle stratigraphic level contains angular limestone cobbles to boulders. The upper part of the layer comprises fine sand with dispersed very angular very small pebbles of limestone; thickness: 10-40 cm. No artefacts were found.

Level B
Two layers were identified:

Layer Ba. Very fine aeolian sands, with dispersed very angular small pebbles of limestone. It contains organic microaggregates and buried superficial organic horizons, interpreted as a paleosol; thickness: 2-4 cm. Contains a Late Magdalenian industry with bladelet production, small backed tools and points.

Layer B. It comprises aeolian fine sediments, namely very fine sand at the base passing upwards to very coarse silt; displays horizontal lamination; thickness: 30-50 cm. No artefacts were found.

Layer A1 and A2. These uppermost layers are extensive and have a gentle slope towards the inside of the cave. They consist of very poorly sorted silts to very fine sands with dispersed very angular cobbles to boulders of limestone and some cobbles of quartzite (these anthropically transported). Medieval pottery and structures were found.

The lower and upper boundaries of each layer are irregular. The most significant sedimentary disconformities are those, respectively, at the lower boundaries of layers A1 and 2B. The studied succession shows evidences of several sedimentary processes: 1) very angular limestone clasts (pebbles to boulders) that fell from the ceiling and walls of the cave are mainly observed in layers 3A, 2B, 2A and B. Layer 1A, very rich in very angular boulders of limestone, probably recording a geliflaction maximum period, related to an extreme cold event; 2) silting by karstic laminar flow along the cave gallery (specialy 1B, 1A, and Ba); 3) deposition of aeolian sands transported from the outside area of the cave entrance (layers 4, 3, 2, 1B, B and specially 1A); 4) depositional influence of periods of superficial cover by snow (horizontal alignment of geliflacts) is interpreted for layers 2B and B; 5) accumulation of scree talus at the cave entrance (layers A2 and A1).

CHRONOLOGICAL FRAMEWORK
Several Radiocarbon and OSL dates are available for this stratigraphic sequence (Table 1). Currently, an ambitious program is being carried out in order to obtain a robust basis for the establishment of the chronological framework between the last occupations of Neanderthals and the first occurrence of H. sapiens at Cova Eíros. The combination of OSL and radiocarbon dates applying ultrafiltration protocols (Higham et al. 2011, 2014) seeks to establish a time frame as accurate as possible.

For Level 2, the OSL date provided a value of 32.8 ± 2.5 kyrs BP (MAD-5611BIN), consistent with the radiocarbon data (Beta – 254280) of 36.1-35.0 kyrs cal BP, giving a chronological range for the Level 2 occupations that correlate to the last part of Marine Isotope Stage (MIS) 3, placing them between GIS 7 and GIS 6.

However, dating of Level 3 is problematic due to the discrepancy observed between the first OSL dates and subsequent results of the palaeoenvironmental and sedimentological studies. Initially, for Level 3 two dates were obtained by OSL at the Universidad Autónoma de Madrid (UAM): 87540 ± 6112 yrs BP (MAD-5951BIN) and 84807 ± 4919 yrs BP (MAD-5612BIN). Therefore, the Neanderthal occupations of Level 3 would be placed at the MIS 5b interstadial, defined in the Iberian northwest by a temperate and humid climate, with abundant deciduous taxa (Ramil Rego et al. 2005; Roux et al. 2005; Fletcher et al. 2010; Ramil-Regó et al. 2010). However, the study of small mammals and herpetofauna showed that the palaeoenvironmental differences between
Between two worlds: Cova Eirós and the Middle-Upper Palaeolithic transition in NW Iberia

the levels of the Middle and Upper Palaeolithic of Cova Eirós were not as drastic as one might expect between a temperate interglacial period (MIS 5, Level 3) and a period marked by progressive cooling (MIS 3, Level 2) (Ramil-Rego et al. 2005, 2010; Rey-Rodríguez et al. 2016). Given this situation, new samples collected from the top part of Level 3 were sent to the Oxford Radiocarbon Accelerator Unit (ORAU). The new radiocarbon dating places the Level 3 occupations at around 41 kyrs cal BP (Table 1) offering a parsimonious interpretation with the archaeological and palaeoenvironmental data of Levels 2 and 3 (Rey-Rodríguez et al. 2016). This new radiocarbon age points to a very late survival of Neanderthal communities in NW Iberia compared to that established for the Cantabrian region (Higham et al. 2014; Marín-Arroyo et al. 2018). Incoming radiocarbon and OSL dates will help us to better define the chronology of the Level 3 of Cova Eirós.

TABLE 1. — Absolute dates obtained from the stratigraphic sequence located at the entrance of Cova Eirós (from bottom to top). Calibration was made using Oxcal 4.3 (Ramsey 2009) applying the calibration curves defined by Reimer et al. (2016).

| Level   | Ref. Lab.   | Method | Sample  | Years BP  | Years cal BP/ cal AD | Reference                  |
|---------|-------------|--------|---------|-----------|----------------------|----------------------------|
| Level 3 | MAD-5612BIN | OSL    | Sediment| 84,807 ± 4919 | –                     | Rodríguez-Álvarez et al. 2011 |
| Level 3 | MAD-5951BIN | OSL    | Sediment| 87,540 ± 6112 | –                     | Inedit                     |
| Level 3 | OxA-30471   | C14-AMS| Bone    | 35,190 ± 700  | –                     | Inedit                     |
| Level 2 | Beta - 254280| C14-AMS| Bone    | 31,690 ± 240  | 41,299-38,390 cal BP  | Rodríguez-Álvarez et al. 2011 |
| Level 2 | MAD-5611BIN | OSL    | Sediment| 32,787 ± 2478 | –                     | Inedit                     |
| Level 1 | MAD-5603BIN | OSL    | Sediment| 17,020 ± 1321 | –                     | Rodríguez-Álvarez et al. 2016 |
| Level B | Beta - 308859| C14-AMS| Charcoal| 120,40 ± 50   | 14,045 - 13,755 cal BP | Fábregas Valcarce et al. 2012 |
| Surface Level (UA6) | Beta - 308578 | C14-AMS| Charcoal| 104,00 ± 50   | 901 - 1033 cal AD       | Fábregas Valcarce et al. 2012 |

MATERIAL AND METHODS

In this paper we study the archeo-paleontological materials from levels 2 and 3 of Cova Eirós, recovered during the 2008-2014 fieldwork seasons. The analysis of Level 2 is complete, but the excavations of Level 3 continued into 2018. Osteological remains coming from the archaeological levels 2 and 3 of Cova Eirós have been studied from a taphonomical

FIG. 1. — A, View of the current archaeological excavations at the entrance of Cova Eirós; B, location of Cova Eirós and the Cancelo Valley; C, view of the Cova Eirós cave in Monte Penedo and the Oribio Range in the background (1440 m a.s.l.).
and zooarchaeological perspective. NISP, MNE, MNI, %MAU were calculated and age profiles estimated based on eruption and weath stages of teeth, bone tissue and epiphysis fusion (Klein et al. 1981; Hillson 2016). Macroscopical and microscopic analyses were carried out on all the bones, teeth and antler surfaces. Cutmarks (Binford 1981; Shipman & Rose 1983; Shipman et al. 1984; Fernández-Jalvo & Andrews 2016) and bone breakage patterns (Blumenschine & Selvaggio 1988; Fernández-Jalvo et al. 1996; Díez et al. 1999; Rosell Ardèvol 2001) were studied. Carnivore damage such as chewing, furrows, scores and digestion were analysed. Epiphysis/diaphysis ratio and (vertebrae+ribs)/(limb bones) ratio were calculated to evaluate carnivore activity and hominin/carnivore competition (Domínguez-Rodrigo & Piqueras 2003). Post-depositional evidence consists of trampling, burn, manganese and weathering.

Moreover, in this paper we study the small-vertebrate remains from the excavation campaigns carried out between 2009 and 2014. The sample of small vertebrates from levels 2 and 3 has a number of identified specimens (NISP) of 208, which corresponds to a minimum number of individuals (MNI) of 129, representing at least 18 taxa (Rey-Rodríguez 2014). The sample of small vertebrates from levels 2 and 3 of Cova Eirós, the use of quartz and quartzite stands out. For the study of quartz, we distinguish between xenomorphic quartz according to the macroscopic texture (anhedral) and automorphic (euhedral) quartz. Quartz is represented by its long (67 mm and 86 mm long, they could be related to retouching and tool kit maintenance.

The study of the lithic industry has been carried out under a processual chaîne opératoire approach (Pelegrín et al. 1988), based on the attributes established by the Logical Analytical System (LAS, Carbonell et al. 1983, 1992) for the analysis of the exploitation and shaping processes. Typological aspects were recorded according to the analytical typology of G. Laplace (Laplace & Saenz de Buruaga 2000). In levels 2 and 3 of Cova Eirós, the use of quartz and quartzite stands out. For the study of quartz, we distinguish between xenomorphic (anhedral) and automorphic (euhedral) quartz. Quartz artefacts were therefore placed into four morpho-structural groups on the basis of the presence/absence of grainy texture and of internal flaws or cleavage planes: NN (no grain, no plane), NY (no grain, plane), YN (grainy, no plane) and YY (grainy, plane). In this way, we identify two main types of xenomorphic quartz according to the macroscopic texture they display: granular textured quartz (YY and YN groups) and macrocrystalline quartz (NN and NN groups). This classification on the basis of quartz formation and mechanical properties makes it possible to recognize the technological or economic criteria applied to the selection of artefacts in accordance with the prevalent technical needs of prehistoric communities (Martínez Cortizas & Llana Rodríguez 1996; de Lombera Hermida 2009). The morphotechnic analysis of the artefacts allows us to infer the exploitation and shaping strategies that define each lithic assemblage.

RESULTS

The Level 3 of Cova Eirós

Lithic assemblage

The analyzed lithic assemblage is composed of 520 artefacts, mostly belonging to the layer 3A, although the inventory of this layer amounts to more than 1900 lithics. Xenomorphic quartz was the most commonly used raw material in Level 3 (89.4%), followed by quartzite (9.0%), automic quartz (1.4%) and limestone (with a single element) (Table 2). Fundamentally, there is a use of raw materials from the local environment (0-5 km), mainly from secondary deposits in the nearby riverbeds: the coarse and medium grained quartzites belong to the Upper Càndana formations (Lower Cambian). Only the fine-grained varieties of quartzite, defined by their high metamorphism, are allochthonous (Armorican Quartzite, 10-20 km away). The overrepresentation of good quality products in quartz (mostly morphostructural group NN) and fine-grained quartzite over natural occurrences in the secondary deposits highlights the application of selective criteria during lithic supply. In the lithic assemblage knapping products (87.7%) are predominant over the elements related to percussion (2.5%), shaping (6.4%) and production (2.9%). The presence of natural Bases (manuports and percussive elements) is scarce (n = 13; 2.5%). Only five of them show clear percussion marks and given the small size of the percussive material, with an average length between 67 mm and 86 mm long, they could be related to retouching and tool kit maintenance.

There is a differential management of the raw materials according to their local or allochthonous provenance and quality. The different stages of the chaîne opératoire are complete only in those raw materials of local origin, i.e., the NY xenomorphic quartz and the medium and coarse-grained varieties of quartzite. The cores recovered in this level (n = 13) are on those materials, the artefacts show a higher presence of cortical surfaces and there is a larger representation of knapping debris. On the other hand, the reduction sequences among fine-grained quartzites and NN xenomorphic quartz are fragmented, being only represented by medium-sized knapping products (flakes) and/or scarce elements related to retouching processes.

Despite the small number of cores, a wide variety of knapping methods is reported at Level 3 either by the presence of cores or the final products. They are defined by a mixture of expedient reduction methods (bipolar-on-anvil reduction, longitudinal, orthogonal and centripetal) and structured and hierarchical methods implying a higher volumetric and...
Between two worlds: Cova Eirós and the Middle-Upper Palaeolithic transition in NW Iberia

FIG. 2. — A, Stratigraphic section of Cova Eirós (west section); B, stratigraphic column of the excavated sedimentary infill, at the entrance of the Cova Eirós cave. Abbreviations: U, levels and layers; T, thickness; L, lithology; 1, gravel; 2, pebbly sand; 3, sand; 4, silt; 5, angular clast of limestone; 6, round clast of quartzite/quartz; 7, depositional lamination; 8, paleosoil; 9, muddy microaggregates; 10, organic microaggregates; 11, carbonate concretion; 12, maximum pebble size; 13, C14 age; 14, Thermo-luminescence (TL) age; 15, new sediment sample for sedimentological characterization and Optically Stimulated Luminescence (OSL) dating. The types of lithic industries associated with each archaeological level are indicated. C, grid of the archaeological excavation at the entrance of the Cave.

COMPTES RENDUS PALEVOL • 2021 • 20 (42)
The objective is obtaining flakes of different sizes and with predetermined and standardized morphologies and morphopotentials. Meanwhile, expedient strategies are mainly applied on local quartz and quartzite. Pebbles are initially knapped following longitudinal strategies that later yield orthogonal and centripetal morphologies, denoting a continuum between the reduction sequences based on the maximum perimeter, faciality and volumetric profit of cores and taking advantage of the cortical surfaces and scars as striking surfaces (i.e., de Lombera-Hermida et al. 2011).

Most of the production is focused on obtaining small flakes in xenomorphic quartz, through an exploitation based on the bifacial centripetal reduction of the cores that, in advanced stages, give rise to orthogonal trifacial and multifacial strategies. These methods fall within the variability of the centripetal schemes (Mourre 2003) but without fully showing the volumetric structuring of the discoidal method. The bipolar-on-anvil reduction (n = 3) is applied exclusively on quartz as a complementary method aimed at the obtaining of small sized flakes (Fig. 3).

The application of structured and complex reduction strategies is attested by the discoidal, centripetal hierarchized (Levallois) and Kombewa products. The discoidal method is represented mainly by cordal and debordant flakes clearly linked to this method of exploitation in xenomorphic quartz (groups NN and NY) and, to a lesser extent, the so-called pseudo-Levallois points in fine-grained quartzite. Only a NY quartz core and a fragmented core in quartzite were recovered. Besides, two NY quartz cores show clear hierarchization of the flaking surfaces, focused in the preferential exploitation of those without internal flaws. Nevertheless, there is no configuration of the latero-transversal surfaces (i.e., Hopkinson et al. 2013). The application of the Levallois method sensu stricto at Level 3 of Cova Eirós is attested by the predetermined products (preferential flakes and points) made on fine-grained quartzite or high-quality xenomorphic quartz (NN group). The use of the recurrent centripetal and point Levallois methods can be inferred thanks to the characteristics of these products (Boëda 1994). The absence of cores on these raw material varieties and the scarce number of predetermining elements related to this method are indications of the spatial fragmentation of their operative chains. These Levallois products could be considered as mobile and curated tools but, on the contrary, no maintenance or shaping retouch usually aimed at increasing the tool’s life is observed (Dibble 1987; Kuhn 1992; Turq et al. 2013). The Kombewa method is only documented by final products. As stated before, despite the scarcity of cores in the assemblage a wide variety of exploitation methods is reported. The fragmented nature of their knapping sequences (mostly represented by final and diagnostic products) and the scarcity of predetermining products suggest that the lithic reduction was performed outside the cave as a result of different knapping sequences, and not as a continuum during the reduction processes (especially those on fine-grained quartzite).

The knapping products are the predominant elements in the lithic assemblage of Level 3 (87.7%). The percentages of morphological predetermination (hierarchical centripetal/Levallois, discoidal and Kombewa). The objective is obtaining flakes of different sizes and with predetermined and standardized morphologies and morphopotentials. Meanwhile, expedient strategies are mainly applied on local quartz and quartzite. Pebbles are initially knapped following longitudinal strategies that later yield orthogonal and centripetal morphologies, denoting a continuum between the reduction sequences based on the maximum perimeter, faciality and volumetric profit of cores and taking advantage of the cortical surfaces and scars as striking surfaces (i.e., de Lombera-Hermida et al. 2011). Most of the production is focused on obtaining small flakes in xenomorphic quartz, through an exploitation based on the bifacial centripetal reduction of the cores that, in advanced stages, give rise to orthogonal trifacial and multifacial strategies. These methods fall within the variability of the centripetal schemes (Mourre 2003) but without fully showing the volumetric structuring of the discoidal method. The bipolar-on-anvil reduction (n = 3) is applied exclusively on quartz as a complementary method aimed at the obtaining of small sized flakes (Fig. 3).

The application of structured and complex reduction strategies is attested by the discoidal, centripetal hierarchized (Levallois) and Kombewa products. The discoidal method is represented mainly by cordal and debordant flakes clearly linked to this method of exploitation in xenomorphic quartz (groups NN and NY) and, to a lesser extent, the so-called pseudo-Levallois points in fine-grained quartzite. Only a NY quartz core and a fragmented core in quartzite were recovered. Besides, two NY quartz cores show clear hierarchization of the flaking surfaces, focused in the preferential exploitation of those without internal flaws. Nevertheless, there is no configuration of the latero-transversal surfaces (i.e., Hopkinson et al. 2013). The application of the Levallois method sensu stricto at Level 3 of Cova Eirós is attested by the predetermined products (preferential flakes and points) made on fine-grained quartzite or high-quality xenomorphic quartz (NN group). The use of the recurrent centripetal and point Levallois methods can be inferred thanks to the characteristics of these products (Boëda 1994). The absence of cores on these raw material varieties and the scarce number of predetermining elements related to this method are indications of the spatial fragmentation of their operative chains. These Levallois products could be considered as mobile and curated tools but, on the contrary, no maintenance or shaping retouch usually aimed at increasing the tool’s life is observed (Dibble 1987; Kuhn 1992; Turq et al. 2013). The Kombewa method is only documented by final products. As stated before, despite the scarcity of cores in the assemblage a wide variety of exploitation methods is reported. The fragmented nature of their knapping sequences (mostly represented by final and diagnostic products) and the scarcity of predetermining products suggest that the lithic reduction was performed outside the cave as a result of different knapping sequences, and not as a continuum during the reduction processes (especially those on fine-grained quartzite).

The knapping products are the predominant elements in the lithic assemblage of Level 3 (87.7%). The percentages of morphological predetermination (hierarchical centripetal/Levallois, discoidal and Kombewa). The objective is obtaining flakes of different sizes and with predetermined and standardized morphologies and morphopotentials. Meanwhile, expedient strategies are mainly applied on local quartz and quartzite. Pebbles are initially knapped following longitudinal strategies that later yield orthogonal and centripetal morphologies, denoting a continuum between the reduction sequences based on the maximum perimeter, faciality and volumetric profit of cores and taking advantage of the cortical surfaces and scars as striking surfaces (i.e., de Lombera-Hermida et al. 2011). Most of the production is focused on obtaining small flakes in xenomorphic quartz, through an exploitation based on the bifacial centripetal reduction of the cores that, in advanced stages, give rise to orthogonal trifacial and multifacial strategies. These methods fall within the variability of the centripetal schemes (Mourre 2003) but without fully showing the volumetric structuring of the discoidal method. The bipolar-on-anvil reduction (n = 3) is applied exclusively on quartz as a complementary method aimed at the obtaining of small sized flakes (Fig. 3).

The application of structured and complex reduction strategies is attested by the discoidal, centripetal hierarchized (Levallois) and Kombewa products. The discoidal method is represented mainly by cordal and debordant flakes clearly linked to this method of exploitation in xenomorphic quartz (groups NN and NY) and, to a lesser extent, the so-called pseudo-Levallois points in fine-grained quartzite. Only a NY quartz core and a fragmented core in quartzite were recovered. Besides, two NY quartz cores show clear hierarchization of the flaking surfaces, focused in the preferential exploitation of those without internal flaws. Nevertheless, there is no configuration of the latero-transversal surfaces (i.e., Hopkinson et al. 2013). The application of the Levallois method sensu stricto at Level 3 of Cova Eirós is attested by the predetermined products (preferential flakes and points) made on fine-grained quartzite or high-quality xenomorphic quartz (NN group). The use of the recurrent centripetal and point Levallois methods can be inferred thanks to the characteristics of these products (Boëda 1994). The absence of cores on these raw material varieties and the scarce number of predetermining elements related to this method are indications of the spatial fragmentation of their operative chains. These Levallois products could be considered as mobile and curated tools but, on the contrary, no maintenance or shaping retouch usually aimed at increasing the tool’s life is observed (Dibble 1987; Kuhn 1992; Turq et al. 2013). The Kombewa method is only documented by final products. As stated before, despite the scarcity of cores in the assemblage a wide variety of exploitation methods is reported. The fragmented nature of their knapping sequences (mostly represented by final and diagnostic products) and the scarcity of predetermining products suggest that the lithic reduction was performed outside the cave as a result of different knapping sequences, and not as a continuum during the reduction processes (especially those on fine-grained quartzite).

The knapping products are the predominant elements in the lithic assemblage of Level 3 (87.7%). The percentages of morphological predetermination (hierarchical centripetal/Levallois, discoidal and Kombewa). The objective is obtaining flakes of different sizes and with predetermined and standardized morphologies and morphopotentials. Meanwhile, expedient strategies are mainly applied on local quartz and quartzite. Pebbles are initially knapped following longitudinal strategies that later yield orthogonal and centripetal morphologies, denoting a continuum between the reduction sequences based on the maximum perimeter, faciality and volumetric profit of cores and taking advantage of the cortical surfaces and scars as striking surfaces (i.e., de Lombera-Hermida et al. 2011). Most of the production is focused on obtaining small flakes in xenomorphic quartz, through an exploitation based on the bifacial centripetal reduction of the cores that, in advanced stages, give rise to orthogonal trifacial and multifacial strategies. These methods fall within the variability of the centripetal schemes (Mourre 2003) but without fully showing the volumetric structuring of the discoidal method. The bipolar-on-anvil reduction (n = 3) is applied exclusively on quartz as a complementary method aimed at the obtaining of small sized flakes (Fig. 3).

The application of structured and complex reduction strategies is attested by the discoidal, centripetal hierarchized (Levallois) and Kombewa products. The discoidal method is represented mainly by cordal and debordant flakes clearly linked to this method of exploitation in xenomorphic quartz (groups NN and NY) and, to a lesser extent, the so-called pseudo-Levallois points in fine-grained quartzite. Only a NY quartz core and a fragmented core in quartzite were recovered. Besides, two NY quartz cores show clear hierarchization of the flaking surfaces, focused in the preferential exploitation of those without internal flaws. Nevertheless, there is no configuration of the latero-transversal surfaces (i.e., Hopkinson et al. 2013). The application of the Levallois method sensu stricto at Level 3 of Cova Eirós is attested by the predetermined products (preferential flakes and points) made on fine-grained quartzite or high-quality xenomorphic quartz (NN group). The use of the recurrent centripetal and point Levallois methods can be inferred thanks to the characteristics of these products (Boëda 1994). The absence of cores on these raw material varieties and the scarce number of predetermining elements related to this method are indications of the spatial fragmentation of their operative chains. These Levallois products could be considered as mobile and curated tools but, on the contrary, no maintenance or shaping retouch usually aimed at increasing the tool’s life is observed (Dibble 1987; Kuhn 1992; Turq et al. 2013). The Kombewa method is only documented by final products. As stated before, despite the scarcity of cores in the assemblage a wide variety of exploitation methods is reported. The fragmented nature of their knapping sequences (mostly represented by final and diagnostic products) and the scarcity of predetermining products suggest that the lithic reduction was performed outside the cave as a result of different knapping sequences, and not as a continuum during the reduction processes (especially those on fine-grained quartzite).

The knapping products are the predominant elements in the lithic assemblage of Level 3 (87.7%). The percentages of
FIG. 3. — Lithic industry from Level 3: A, centripetal hierarchized core on quartz; B, C, preferential Levallois flakes on quartzite; D-G, Levallois flakes on quartz; H, I, bifacial centripetal and discoidal cores on quartz; J, quartzite flake; K-M, discoidal flakes on quartz and quartzite (M); N, O, bipolar core and product; P, kombewa flake on quartzite; Q, denticulated tool on quartz; R, S, becs on quartz; T, cleaver on quartzite. Scale bars: 5 cm.
fractured products (broken flakes and fragments of flakes) and knapping debris are high (14.8%, 12.5% and 29.3%, respectively), due to the majoritarian use of xenomorphic quartz. The typometric analysis of the complete flakes indicates that the products obtained through these strategies are small sized -usually under 30 mm in length (average 20.3 × 19.3 × 7.9 mm)-, though some larger quartzite and Levallois flakes are reported as well (46.2 × 39.2 × 11.5 mm). The percentages of bifaceted (24.2%) and multifaceted (14.3%) butts among flakes are significant, mainly related to the discoidal and Levallois products.

The shaping strategies are focused exclusively on the retouching of non-cortical flakes (6.3% of the total) of larger dimensions, both in quartz and quartzite (31.4, 26.2 × 10.7 mm and 57.2 × 57.6 × 18.3 mm, respectively). A significant aspect of this lithic assemblage is the nearly absence of retouching of fine-grained quartzites, which may indicate their use for specific and short activities, without major interest in extending the life of these artifacts. From the typological point of view, Level 3 is very conditioned by the predominance of xenomorphic quartz and the low entity of the retouching sequences. The denticulate group is majoritarian (66.7%), especially with regard to notches (33.3%) and denticulated side scrapers (22.2%). Interestingly, one cleaver on quartzite was recovered.

Summing up, the lithic collection of Level 3 of Cova Eirós displays a series of particular characteristics with respect to other Iberian Middle Palaeolithic sites, conditioned by the predominance of xenomorphic quartz as raw material. It is defined by the differential management strategy of the assorted variety of raw materials according to their quality and mechanical characteristics based on the selection criteria in supply areas, the spatial fragmentation of chaînes opératoires and the application of knapping strategies aimed at the maximization of the raw material. These strategies are similar to those identified in other regions with similar lithological constraints (Jaubert 1997; Faivre et al. 2013). The use of longitudinal and discoidal methods can be considered as an adaptive response of Neanderthal groups to mediocre raw materials (Delagnes & Rendu 2011; de Lombera Hermida et al. 2011; Daffara et al. 2018). Nevertheless, at Cova Eiros the Levallois production in good quality xenomorphic quartz shows that the raw material is not an unsurmountable constraint and reflects the knapper’s deep knowledge of the mechanical characteristics of the stone varieties and its adaptation to the technical requirements of the operative chains. Although occasionally, its application in Levels 3 and 4 of Cova Eiros (Fábregas-Valcarce et al. 2012) and in other Middle Palaeolithic sites (Mourre 1996; Duran & Soler 2006; Aubry et al. 2016) shows that raw material constraints can be overcome by blank selection and expertise (Eren et al. 2014).

**Zoarchaeology**

The faunal assemblage of Level 3 amounts to more than 3100 effective, from which a sample of 703 elements are considered in this study. The taxonomic identification index is almost 25% (NISP = 174) with a minimum number of 13 species. Of the total NISP, about 90% are bones (NISP = 627), 11% are teeth (NISP = 75) and 0.1% correspond to antler remains (NISP = 1). Among the remains without anatomical identification, 360 fragments (51%) have been classified by weight sizes (Table 3).

The MNE of Level 3 is 253, underlining the widespread prevalence of the cranial skeleton (44%), followed by axial skeleton (13%), phalanges (9%), metapods (7%) and inferior appendicular skeleton (7%). The distribution of MNE by taxa shows a clear predominance of cave bear (n = 77), followed by chamois (n = 20), deer (n = 17), ibex (n = 9) and roe deer (n = 7). The MNI of Level 3 is 50. The predominant species is *Ursus spelaeus* Rosenmüller-Heinroth, 1794, with a total of 12 individuals (24% of the total identified). The rest of the taxa have an MNI of less than 10: *Cervus elaphus* Linnaeus, 1758 has an MNI = 5 (10%), *Rupicapra rupicapra* Linnaeus, 1758 has 4 individuals (8%) and *Capreolus capreolus* Linnaeus, 1758 has an MNI = 2 (3%). Among carnivores, no species has more than one individual.

The age of death could be calculated for 80% of the total MNI (n = 40), which represents a very high percentage of identification for a Pleistocene faunal complex. We have observed a predominance of adult individuals (53%) over sub-adults (25%, with a total of ten individuals), neonates (20%) and just one senile specimen.

Faunal remains showing cut marks amount to a 6% of the total NISP, 6% of the total MNI and 4% of the total number of elements (eMNE). These are mainly related to the cranial skeleton (44%), followed by axial skeleton (13%), phalanges (9%), metapods (7%) and inferior appendicular skeleton (7%). The use of blank selection and expertise (Eren et al. 2014).
FIG. 4. — **A-C**, *Cervus elaphus* (Linnaeus, 1758) antler tip showing antropic breakage marks and details of the incisions under binocular stereo microscope (B, C); **D-F**, striae of the tip under ESEM; **G**, *Panthera leo spelaea* (Goldfuss, 1810) rib showing cutmarks; **H, I**, detail of the cutmarks under binocular stereo microscope; **J**, furrows on a diaphysis of a metapod belonging to a medium sized animal; **K**, digestion marks made by carnivores. Scale bars: **A, B, F, I**, 3 cm; **C, 300 μm; D, H, 20 μm; **E, 100 μm; G, 0,5 mm; **J, 2 mm.
importance of values obtained; a projectile point (T ejero et al. 2016). The marks and their characteristics seem to indicate that it is quite irregular. The morphology of the tip, the location of the marks, and their activity seem to indicate that it is a discard produced during the preparation and realization of a projectile point (T ejero et al. 2016).

In Level 3, carnivores represent 36% of the MNE. They are accumulating and modifying agents of the faunal assemblage and their activity is documented in 9% of the total remains (NR = 60). The evidences attributed to the corrosive action of salivary enzymes (29%), digested remains (16%), furrows (15%), pits (13%) and scores (11%) stand out. Punctures and generalized gnawing accounts for almost 7% of total marks (Fig. 4).

Faunal studies indicate an important specific biodiversity, related to interspersed forest environments and open humid areas, rocky areas and steep slopes. The frequency in the distribution of Ursus spelaeus remains stands out, although this is logical given that caves are the natural habitat of this species. The skeletal representation by species and weight size shows significant differences between the distribution of ungulates and carnivores: ungulates have a pattern characterized by the predominance of heads and legs, while among the carnivores the presence of axial and cranial skeleton elements stands out. The analysis of the cut marks shows a recurrent consumption of ungulates of small, large and very large size and of medium and small size carnivores, the latter indicating that the use by hominids of meat coming from carnivores is not occasional.

The scarcity of skeletal remains of scavenged carnivores, the relative abundance of low survival elements, the high level of fragmentation and low relative frequency of epiphysis indicate a very intensive use of faunal resources by hominins. These hominids occupied the cave intensively but with periods of temporary abandonment, in which the intrusions of carnivores in the cave would be frequent to scavenge the broken carcasses.

### Small mammals and palaeoenvironmental reconstruction

The species that are represented in the Level 3 are: Arvicolinae (Miller, 1908), Microtus oeconomus (Pallas, 1776), Myotis myotis/blythii (Borkhausen, 1797/Tomes, 1857), Myotis sp. and Sorex minutus (Linnaeus, 1766), but the most abundant are the common vole (Microtus arvalis; 15%), the Lusitanian pine vole (Microtus (Terricola) lusitanicus; 15%), the field vole (Microtus agrestis; 15%) and the northern water vole (Arvicola amphibius; 6%) (Table 4).

Regarding the palaeoclimatic conditions, Mutual Ecogeographic Range (MER) (Blain et al. 2016) and the Bioclimatic Model (BM) results suggested that the precipitation was higher and the temperatures lower than nowadays (Table 5). This Mousterian level has a habitat dominated by woodland (46%), associated with species such as Apodemus sylvaticus (Linnaeus, 1758) and Myotis myotis/blythii. The proportion of open humid habitat (26%) is also noticeable, due to the presence of taxa such as Rana temporaria (Linnaeus, 1758), Microtus (Terricola) lusitanicus (Gerbe, 1879) and Arvicolinae (Linnaeus, 1758). Arvicolinae is only present in this level, which is important because this taxon is always associated with stable water sources near the cave. This explains the percentage of aquatic environments (11%) found in Level 3.

Also, relevant is the presence of the taxon Chironomys nivalis (Martins, 1842), with Central European requirements (3.6%), and Microtus oeconomus (1.8%). The snow vole (Chionomys nivalis) is associated with high mountains, and the presence of

### Table 4 — Number of identified specimens (NISP), minimum number of individuals (MNI) and percentage of the MNI (%) for the small vertebrates from level 3 of Cova Eirós. Bold: totals and subtotals.

| Taxa                        | NISP | MNI | %    |
|-----------------------------|------|-----|------|
| Rana temporaria (Linnaeus, 1758) | 2    | 2   | 3.64 |
| Rodentia indet.             | 2    | 0   | 0.00 |
| Apodemus sylvaticus (Linnaeus, 1758) | 3    | 2   | 3.64 |
| Arvicolinae (Linnaeus, 1758)  | 5    | 3   | 5.45 |
| Arvicolinae (Miller, 1908)  | 4    | 3   | 5.45 |
| Chironomys nivalis (Martins, 1842) | 3    | 2   | 3.64 |
| Microtus (Terricola) lusitanicus (Gerbe, 1879) | 12   | 8   | 14.55 |
| Microtus agrestis (Linnaeus, 1761) | 15   | 8   | 14.55 |
| Microtus arvalis (Pallas, 1779) | 16   | 8   | 14.55 |
| Microtus arvalis-agrestis (Pallas, 1779/Linnaeus, 1761) | 2    | 2   | 3.64 |
| Microtus oeconomus (Pallas, 1776) | 1    | 1   | 1.82 |
| Myotis myotis/blythii (Borkhausen, 1797/Tomes, 1857) | 3    | 2   | 3.64 |
| Myotis sp.                  | 1    | 1   | 1.82 |
| Chiroptera indet.           | 3    | 3   | 5.45 |
| Rhinolophus ferrumequinum (Schreiber, 1774) | 1    | 1   | 1.82 |
| Sorex minutus (Linnaeus, 1766) | 3    | 2   | 3.64 |
| Sorex sp.                  | 7    | 5   | 9.09 |
| Talpa cf. occidentalis (Cabrera, 1907) | 2    | 2   | 3.64 |
| Total                      | 85   | 55  | 100.00 |

### Table 5. — Values of temperature and precipitation for Cova Eirós Level 3 obtained by the Mutual Climatic Range method and the Bioclimatic Model. Abbreviations: MAP, mean annual precipitation; MAT, mean annual temperature; Max, maximum of values obtained; Min, minimum of values obtained; MTC, mean temperature of coldest month; MTW, mean temperature of warmest month; SD, standard deviation of values obtained; Δ, difference between the values obtained by analysing the small mammals from Cova Eirós and current values.

| Mutual Ecogeographic Range | Bioclimatic model |
|---------------------------|-------------------|
| MAT                       | 8.18              |
| SD                        | 1.17              |
| Max                       | 10                |
| Min                       | 7                 |
| Δ                         | -2.92             |
| MTW                       | 15.82             |
| SD                        | 0.98              |
| Max                       | 18                |
| Min                       | 15                |
| Δ                         | -1.28             |
| MTC                       | 1.36              |
| SD                        | 1.36              |
| Max                       | 4                 |
| Min                       | 0                 |
| Δ                         | -4.54             |
| MAP                       | 1827              |
| SD                        | 480               |
| Max                       | 2500              |
| Min                       | 800               |
| Δ                         | 794               |

Two transversal incisions and straight/sinusuous delineation have also been found at the top of the antler tip. The bottom line is rounded, broad and irregular, so we discard that are cut marks. The tip has marginal micro-striations and the surface is quite irregular. The morphology of the tip, the location of the marks and their characteristics seem to indicate that it is a discard produced during the preparation and realization of a projectile point (T ejero et al. 2016).
of this taxon in the Iberian Peninsula is restricted to rocky areas (Palombo & Sardella 2007). Microtus oeconomus, lives in open, cool environments (Cuenca-Bescós et al. 2009).

The faunal diversity of Level 3 indicates that Cova Eirós is located in a rich and varied environment from the point of view of resources and landscape (ecotope) (Valverde 2019). The balance between forest or open areas species (cervids, bovids, equidae) and taxa from more rugged environments (caprids and chamois) may be indicative of the exploited territory by the Neanderthals, more open to the West and rugged to the East. These aspects are corroborated by the study of the small mammals of Level 3, where the presence of Microtus arvalis, Microtus agrestis and Microtus (Terricola) lusitanicus shows a predominance of forest and open wet habitats (Rey-Rodríguez et al. 2016). Few direct palaeobotanical data are available for Level 3, as pollen analyzes are ongoing. The anthropological study denotes an absolute predominance of Pinus sylvestris Linnaeus, 1753 (Martín Seijo 2013) and pollen studies of the marine, coastal and continental deposits of NW Iberia for this period indicate an alternation in the expansion of the mixed forest (deciduous Quercus) during interstadials with that of the semi-desert vegetation for the stadial phases (Artemisia, Chenopodiaceae and Ephedra distachya (Linnaeus, 1753) (Sánchez Goñi et al. 2008; Harrison & Sanchez Goñi 2010; Fletcher et al. 2010). Glacial and periglacial studies in the NW point out that in the final moments of MIS3 moisture increases and glaciers reach their maximum extension (Pérez Alberti et al. 2011; Oliva et al. 2019). Summing up, paleoclimatic approaches and radiometric dating place Level 3 occupations in interstadial phases of MIS 3 (GI 11-GI 10), with annual average temperatures lower than nowadays’ but greater rainfall, with a trend towards cooler conditions (Rey-Rodríguez et al. 2016; Viana-Soto & Pérez-Alberti 2019).

The hominin occupations of Level 3

The technological and zooarchaeological features of the Level 3 point to repeated short-term occupations by Neanderthal groups at Cova Eirós, alternating with the use of the cavity by bears and carnivores as a place of hibernation, breeding and den. Although there is little evidence of a direct competition between human groups and carnivores or ursids (Valverde 2019) (Fig. 5), human occupations are a factor of concurrence and pressure upon those cave animals (González-Fortes et al. 2016; Romandini et al. 2018). Anthropogenic cutmarks on Ursus spelaeus and Panthera leo spelaea (Goldfuss, 1810) remains show that despite the alleged carnivore/human alternation in the habitat, at Cova Eirós Neanderthal groups were at the top of the trophic pyramid (Figs 4; 5). The presence of fauna belonging to different environments mark two clear mobility axes in terms of the foraging range of these Neanderthal groups: forested and mountainous environments. Moreover, the non-residential nature of occupations, the low density of artefacts, the spatial fragmentation of the chain operatores and scarce evidences of lithic production (only on materials retrieved close by) are indicative of the high mobility of these communities.

Zooarchaeological studies and the noticeable presence of lithic points with evidence of their use as projectile elements underscore the hunting nature of the occupations (Lazuén Fernández et al. 2011). The diversity of species represented in the faunal record suggests the existence of mixed hunting strategies, without specialization in a particular species. The transport pattern is based on the selection of the nutritionally richer anatomical parts (heads and limbs), especially among larger animals. The importance of flakes with good dihedral edges for direct use and the presence of a quartzite cleaver could be related to the processing of carcasses in situ (Terradillos-Bernal & Diez-Fernández-Lomana 2012; Claud et al. 2015). This statement is consistent with the traceological data, which identifies butchery activities related to the first processing of the animals such as dismemberment, carcass opening or butchering/defleshing (Lazuén Fernández et al. 2011). Thus, the larger percussive material could be linked to the faunal exploitation as evidenced by the high fragmentation of the bones and the frequency of cones and percussion flakes on the diaphyses. On the other hand, the typological diversity of the lithic assemblage and functional studies also point to the development of complementary domestic activities at the site, such as skin processing and woodworking (Lazuén Fernández et al. 2011; Márquez et al. 2017).

The Level 2.

Lithic assemblage

The lithic material ascribed to Level 2 of Cova Eirós consists of 536 artefacts mostly belonging to the layer 2A (n = 488). Xenomorphic quartz is the main raw material used (92%), while automorphic quartz accounts for just 3%. Other raw materials employed are quartzite (5%), flint (2%) and schist (<1%) (Table 6). The predominance of local raw materials is indicative of a low investment in terms of transportation by these groups. In sharp contrast, flint and automorphic quartz are only represented by retouched flakes, predetermined elements and no cortical products, indicating their greater mobility and that they are partially worked materials or blanks (quartz prisms) that these groups carry with them. While rare, their presence highlights a greater effort at source surveying since the natural occurrences of automorphic prisms within quartz dikes and chert linked to the Vegadeo Limestone Formation are scarce and/or have low perceptibility in the landscape (de Lombera-Hermida et al. 2016). The latter materials are linked to the production of the Upper Palaeolithic tool assemblage.

Knapping products predominate (88%) over the elements linked to percussion (2%), shaping (3%) and exploitation (3%) (Table 6). The different stages of the operative chains are only complete in xenomorphic and automorphic quartz. The presence of elements related to percussion activities is limited (n = 12, 2%) and only two of them show clear stigmas. For these percussion elements, quartz and quartzite from the immediate surroundings, with average dimensions between 52 and 67 mm long, are mainly used. Surprisingly, given the relative abundance of bipolar-on-anvil products in the assemblage, neither anvils nor hammerstones linked to this percussion technique were reported.
Cores at Level 2 are scarce \((n = 10)\) and defined by their small size. They are exclusively on xenomorphic quartz, with just one made of an automorphic quartz prism. This fact, together with the large representation of knapping debris and the presence of cortical surfaces on flakes endorse the interpretation of in situ knapping of local xenomorphic quartz. The knapping strategies correspond to two types of productions: xenomorphic quartz (mainly from the NY group) and quartzite aimed at flake production, being dominant. The second type, less abundant, focuses on the production of bladelets.

The reduction methods are characterized by their expedient nature, focused on the production of flakes by bipolar-on-anvil technique \((n = 5)\) and longitudinal and orthogonal strategies \((n = 2)\). In a technological context defined by the low supply and technological investment, the application of the bipolar reduction constitutes a strategy to maximize raw material and recycle flakes or cores for production (i.e., de la Peña Alonso 2015). The presence of discoidal knapping is hardly attested by a few flakes. The application of expedient knapping strategies and bipolar reduction is aimed at obtaining small and micro-formats, not exceeding 60 mm of maximum length. The small dimension of the flakes in xenomorphic quartz \((15.7 \times 15.1 \times 5.9 \text{ mm in average})\) stands out, while the quartzite flakes are wider than long \((27.5 \times 41.5 \times 12 \text{ mm})\). As such, there is a strong tendency in the lithic collection of Level 2 towards miniaturization, especially among the xenomorphic quartz items (Pargeter 2016). Unlike other Upper Palaeolithic sites, the bipolar-on-anvil strategy is not focused on the production of bladelets (Klaric 2009) but in the making of small flakes, characterized by their crushed lineal and punctiform striking platforms \((7\% \text{ and } 9\% \text{ of the flakes, respectively})\) (Fig. 6).

The production of bladelets is attested by a core and several products in automorphic quartz, flint and xenomorphic quartz (NN group). The production of bladelets in automorphic quartz is limited by the small size and mechanic properties of quartz prisms (Aubry et al. 2009; Rodríguez-Rellán 2016; Tardy et al. 2016). Thus, bladelets, with frequent distal knapping fractures, do not go beyond 30 mm long by 8 mm wide.

Shaped tools are scarce \((2\%)\), made on xenomorphic quartz, automorphic quartz and flint (a retouched fragment). Interestingly, no retouched objects in quartzite have been recovered. There are two groups among the retouched flakes: notches, denticulate, side scrapers, burin and becs, made on the blanks of large flakes with no cortical surfaces and in xenomorphic quartz of the NY group; on the other hand, the few truncated and backed bladelets, are made of automorphic quartz and xenomorphic quartz of the NN group. The absence of retouching flakes in automorphic quartz suggests that these objects were introduced already worked to the site. Therefore, the typological variety of the retouched flakes in Level 2 is restricted and dependent on the weight of the so-called “substrate tools”.

The lithic assemblage from Level 2 is hardly diagnostic when compared to other collections of the Cantabrian Upper Palaeolithic. It is defined by the predominance of xenomorphic quartz, the application of bipolar-on-anvil technique and expedient handknapping strategies.
scarce typological standardization. However, there are two qualitative aspects that depart from the Middle Palaeolithic industries: there is a diversification of the lithological repertoire by incorporating exotic raw materials such as automorphic quartz and flint; it is remarkable, too, the occurrence of bladelets. Although the microlaminar production is only attested by a core and some products, it is a significant component, choosing those raw materials of greater quality and homogeneity (the automorphic quartz and the xenomorphic quartz of the NN group) (Fig. 6).
The scarcity of the lithic assemblage and the absence of diagnostic elements from a typological point of view (Dufour bladelets, etc.) does not allow the assignment of this archeological level to any of the technocomplexes defined within the Aurignacian. Therefore, the ascription of the Level 2 collection to the (Evolved) Aurignacian is based on the presence—although testimonial—of the laminar knapping and on the numerical dates.

Zoarchaeology

1122 faunal remains were recovered from Level 2: 268 of them (24%) have been specifically assigned to a minimum number of 18 taxa. Among those without anatomical identification, 639 fragments (57%) were classified by weight size. Taking into account the NISP, the species with the highest representation is Ursus spelaeus (12%), followed by Cervus elaphus (4%) and Rupicapra rupicapra (3%) (Table 7). The rest of the taxa have a very low presence, barely reaching ten anatomical remains, except Capreolus capreolus (NISP = 17). Regarding the presence of carnivores, the only species that has a NISP>10 is Canis lupus Linnaeus, 1758 (NISP = 11).

The MNE of Level 2 is 418, underlining the widespread presence among the remains of small size (41%), followed by medium (22%) and large (22%). From a taxonomic perspective, the distribution of cut marks is concentrated among ungulates (11%) of large, medium and small sizes: Bos primigenius (Bojanus, 1827), Cervus elaphus (Linnaeus, 1758) and Rupicapra rupicapra (Schinz, 1838). It is important to remark the finding of a group of incisions on a phalanx of Panthera pardus Linnaeus, 1758.

In determining the existence and degree of anthropic activity on a faunal collection, the processes of intentional fragmentation by hominids in order to access the marrow are considered: 115 remains (NR) of the Level 2 show modifications related to this activity and we have identified percussion cones (44%), cortical flakes (30%), pressure fractures (8%), percussion impacts (8%), parasitic splinters (6%) and medullary flakes (2%). Carnivorous activity has been observed there in 10% of the total NR (NR = 116). We have identified marks attributed to the corrosive action of salivary enzymes (27%), crenulated edges (17%), digested remains (21%), imprints (12%), grooves (10%) and depressions (8%) (Fig. 7).
FIG. 6. — Lithic industry form Level 2: A, multifacial, multipolar core on quartz; B-D, quartz flakes; E, F, quartzite flakes; G-L, bipolar cores and flaking products on quartz; M, burin on quartz; N, notch on chert; O, truncated flake on quartz; P, core on automorphic quartz; Q, bladelet on automorphic quartz; R, fragmented bladelet on xenomorphic quartz; S, truncated bladelet on automorphic quartz; T, bladelets on chert and xenomorphic quartz; U, proximal and mesial fragments of bladelets on xenomorphic quartz. Scale bars: A-O, 5 cm; P-U, 2 cm.
TABLE 8. — Representation of the number of identified specimens (NISP), minimum number of individuals (MNI) and the percentage of the MNI (%) for the small vertebrates from Level 2 of Cova Eirós. Bold: totals and subtotals.

| Taxa                          | NISP | MNI | %   |
|-------------------------------|------|-----|-----|
| Rana temporaria (Linnaeus, 1758) | 5    | 5   | 6.76|
| Vipera sp.                    | 3    | 1   | 1.35|
| Rodentia indet.               | 5    | 0   | 0.00|
| Apodemus sylvaticus (Linnaeus, 1758) | 8  | 4   | 5.41|
| Arvicola amphibius (Linnaeus, 1758) | 12 | 7   | 9.46|
| Chionomys rivalis (Martins, 1842) | 4   | 3   | 4.05|
| Microtus (Terricola) lusitanicus (Gerbe, 1879) | 25 | 16  | 21.62|
| Microtus agrestis (Linnaeus, 1761) | 15 | 8   | 10.81|
| Microtus arvalis (Pallas, 1779) | 33 | 18  | 24.32|
| Microtus arvalis-agrestis (Pallas, 1779/ Linnaeus, 1761) | 5  | 4   | 5.41|
| cf. Miniopterus sp.           | 1    | 1   | 1.35|
| Chiroptera indet.             | 1    | 1   | 1.35|
| Rhinolophus ferrumequinum (Schreber, 1774) | 1  | 1   | 1.35|
| Sorex sp.                     | 2    | 2   | 2.70|
| Talpa cf. occidentalis (Cabrera, 1907) | 1 | 1   | 1.35|
| Erinaceus europaeus (Linnaeus, 1758) | 2  | 2   | 2.70|
| Total                         | 123  | 74  | 100.00|

According to the zooarchaeological analysis, the anthropic management of faunal resources corresponds to a model of exploitation of small, medium and large carcasses with a predominance of cranial and appendicular elements, especially metapods and phalanges. There are certain differences in the anatomical representation between ungulates and carnivores, in addition to differences in weight sizes. Carnivores have an anatomical profile based on cranial elements, especially teeth. Ungulates have a more varied MNE, in which cranial remains, femur, ulna and metapods stand out. By weight size, most of the categories have a high percentage of teeth, cranial and appendicular remains. The strong fracture index in fresh, especially in diaphysis of long bones indicates a very intensive use of the carcasses, common to all weight categories. The distribution and frequency of the cut marks shows that several processing activities of the faunal remains were developed in the cave, such as skinning, evisceration or butchering. Finally, a U. spelaeus decidual canine showing man made wear in the internal face, indicates an anthropic modification whose intentionality is uncertain (Fábregas Valcare et al. 2012) (Fig. 7D). In addition to the hominins, the carnivores acted as modifying agents of faunal remains in Level 2 and bites, diaphyseal cylinders, grooves, imprints and depressions have been identified. The frequency and dimensions of the teeth marks allow to establish the small and medium size of the predators.

Small mammals and palaeoenvironmental reconstruction

The most abundant species in this level are the common vole (Microtus arvalis 24%), the Lusitanian pine vole (Microtus (Terricola) lusitanicus 22%), the field vole (Microtus agrestis 11%) and the northern water vole (Arvicola amphibius; 10%) (Table 8). The small vertebrates Vipera sp., cf. Miniopterus sp. and Erinaceus europaeus are represented only in the Level 2.

Regarding the palaeoclimatic conditions, Mutual Ecogeographic Range (MER) (Blain et al. 2016) and the Bioclimatic Model (BM) (Hernández Fernández 2001; Hernández Fernández et al. 2007) yield results suggesting that the precipitation was higher and the temperatures lower than nowadays (Table 9). The small vertebrates Vipera sp., cf. Miniopterus sp. and Erinaceus europaeus are represented only in the Level 2.

The palaeoenvironmental reconstruction, as shown by the Habitat Weighting method (Evans et al. 1981; Andrews 2006; modified by Blain et al. 2008; López-García 2011), suggests a mixture of woodland and open humid habitats, but there is also a significant proportion of rocky areas found in both levels (2 and 3). According to the data obtained from small vertebrates, during the hominin occupations of Level 2 the main types of habitats are woodland (47%) followed by open humid (32%), reflecting the species found in this level, such as Microtus arvalis, Microtus agrestis and Microtus (Terricola) lusitanicus. The other types of habitats are rocky (14%), open dry (6%) and water (2%).

Palaeoclimatic reconstruction and numerical dating place Level 2 occupations at interstadial phases of MIS3 (GI7-GI6), with annual average temperatures lower than today’s, but greater rainfall (Rey Rodríguez et al. 2016). The palynological studies of the marine, coastal and continental deposits of the Iberian Northwest for this period indicate a shift from the mixed forest expansion (deciduous Quercus) during the interstadials to the semi-desert vegetation for the stadials (Artemisia, Chenopodiaceae and Ephedra distachya) (Fletcher & Sánchez Goñi 2008; Sánchez Goñi et al. 2008; Harrison & Sánchez Goñi 2010; Ramil-Rego et al. 2010). Glacier studies in the NW of the Iberian Peninsula stipulate that during these final phases of MIS3, with remarkable moisture and cold conditions, glaciers still maintain their maximum extension (Pérez Alberti et al. 2011; Oliva et al. 2019).
FIG. 7. — A, B, Anthropogenic bone breakage evidences; C, third phalanx of an Ursus spelaeus Rösenmuller-Heinroth, 1794 with carnivore marks; D-F, deciduous lower incisive of Ursus spelaeus showing working and abrasion marks in its lingual face; G, H, atrophic canine teeth of a Cervus elaphus Linnaeus, 1758 (buccal and lingual faces) with perforation marks and details under ESEM (I, J); K, ulna of a Cervus elaphus with possible anthropogenic marks; L, possible abrasion on the distal metaphysis under binocular stereo microscope; M, N, possible use marks. Photos: D-F, Marta Pérez Rama, Universidade de Coruña. Scale bars: A-C, K, 3 cm; D, 1 cm; E-H, 5 mm; I, J, 300 μm; L, M, 2 mm; N, 1 mm.
The hominin occupations of Level 2

Several features of the archaeological record of Level 2 indicate that the human occupations at Cova Eirós had little impact. The lithic management strategies (characterized by the transformation of immediate resources and the predominance of expedient reduction approaches), along with the low density of artefacts point to short and repeated visits to the cave by AMH. On the other hand, the presence of raw materials whose outcrops are located 15-20 km to the NEE (chert) and faunal remains corresponding to forested and mountainous environments hint at the exploitation of a wider economic territory.

The hunting strategies are not specialized in a particular species, although cervids (Cervus elaphus, Capreolus capreolus) and chamois predominate among the ungulates. In the lithic assemblage, the items that can be directly linked to hunting activities do not have an outstanding representation, but the abundance of small flakes with suitable cutting edges can be related to the processing of carcasses in situ, which is consistent with cutting and percussion marks found in the faunal assemblage, indicating butchering activities (Valverde 2019). Despite the high degree of fragmentation of the faunal remains, the percussive material of the lithic set is scarce and small in size and weight.

Therefore, the Level 2 occupations of Cova Eirós can be interpreted as opportunistic and seasonal visits, framed in a context of high logistic mobility (Binford 1978). This would facilitate the alternation of human and carnivorous occupations in the cavity. In fact, Level 2 shows the highest number of carnivore species and faunal remains. Although no direct interaction between humans and carnivores has been identified (except in the specific case of the Panthera pardus phalax), the presence of bites and traces of digestion of bone elements may indicate secondary access by the carnivores to the faunal remains left behind by the humans (Valverde 2019).

DISCUSSION

The chronometry of levels 3 and 2 of Cova Eirós is relevant to the discussion about the Middle-Upper Palaeolithic transition in the Iberian Peninsula. According to the radiocarbon dates, the Neanderthal occupations on top of Level 3 took place at a late stage of MIS 3 and its lithic assemblage falls within the variability observed for the European Late Middle Palaeolithic sites (Ríos Garázar 2008; Carrión-Santafé et al. 2008; de la Torre et al. 2013). For northwest Iberia, the Middle Palaeolithic records are characterized by the use of local raw materials based on the management of xenomorphic quartz, the predominance of expedient, centripetal and discoidal exploitation strategies and the production of small retouched flakes (de Lombera Hermida et al. 2008, 2011; Aubry et al. 2016; Vaquero et al. 2018). The Levallois component in these assemblages is very restricted but is particularly associated to those quartzite varieties of better aptitude for knapping (i.e., fine-grained Armorican quartzite) (de Lombera Hermida 2005; Rodríguez-Álvarez et al. 2008; Matias 2016).

At a regional level, in relation to the Cantabrian Rim and the Atlantic façade, these Mousterian occupations stand out for their location in mountain environments at medium-high altitude (reaching 800-1000 m above sea level, Thiébaut et al. 2012; Alcaraz-Castaño et al. 2017; Domingo et al. 2017). This shows similarities with other MIS 4-3 Iberian sites characterized by their short duration, seasonal nature and high mobility that lead to spatial fragmentation of the chaîne opératoire and transport of certain varieties of raw material. These patterns have been described in the Middle Palaeolithic occupations identified in levels B and D of Axlor (Ríos-Garázar 2012), Llonín (Sanchis et al. 2019), level 130 of Mirón (Marín-Arroyo et al. 2020) or upper levels of Esquilleu (Baena et al. 2012), as well as in other sites such as Teixoneres (Rosell et al. 2010, 2017) or Valdegoba (Terradillos-Bernal & Díez Fernández-Lomana 2018), for example.

Although the chronological position of the Level 3 must be confirmed by further radiometric dates, the radiocarbon dating (OxA-30471) offers a range of 41,299-38,390 yrs cal BP (GS 12-G10). As stated before, this chronological ascription to MIS 3 is consistent with the small mammals and paleoenvironmental data, although future radiocarbon dates must be obtained for corroborating this hypothesis. In accordance with it, the Neanderthal occupations of the top of Level 3 of Cova Eirós, would post-date the last occurrence of the final Mousterian in the northern Iberian Peninsula (estimated around 47.8-44.4 yrs cal BP; Higham et al. 2014; Marín-Arroyo et al. 2018) and would be contemporary to those estimated for the late Chatelperronian and the initial Aurignacian in the Cantabrian region (43.3-40.5 yrs cal BP; Wood et al. 2014, 2016; Marín-Arroyo et al. 2018). As such, considering the Esquilleu sequence too (Baena-Pylesler et al. 2019), Cova Eirós seems to corroborate the late survival of Neanderthal groups in mountain regions of North Iberia. The fluctuations of MIS 3 had an undoubted influence on Neanderthal populations (Melchionna et al. 2018), forcing them to adapt their subsistence and territorial strategies, as indicated by the intensification in the processing and caloric utilization of faunal resources (Hodgkins et al. 2016), the change from residential models to patterns of high logistic mobility, and the occupation of peripheral and mountainous areas, as the Level 3 of Cova Eirós also points at (Vaquero et al. 2006; Baena et al. 2012; Baena-Pylesler & Carrión-Santafé 2013).

As for the Early Upper Palaeolithic, the radiocarbon dating of Level 2 of Cova Eirós offers a chronological range between 35.3-34.7 yrs cal BP (GI 7-6). These occupations would correspond to an advanced stage of the Aurignacian. However, it is difficult to establish a net differentiation between the early and evolved Aurignacian based only on typology, since in some cases the assemblages have few pieces, are ambiguous or come from ancient excavations (Bernaldo de Quiros & Maillo-Fernández 2009; Gutiérrez-Zugasti et al. 2018). Based on the study by Marín-Arroyo et al. (2018) on a large sample of Cantabrian Middle and Upper Palaeolithic sites, the dates of Level 2 of Cova Eirós are contemporary to other lithic assemblages assigned to the Evolved Aurignacian
Between two worlds: Cova Eiros and the Middle-Upper Palaeolithic transition in NW Iberia

(GI8-GS6) such as Ekain IXb, Atizbitarte III Vb and La Viña XII-XI. One point to consider is the altitude of Cova Eiros (785 m a.s.l.), since most Cantabrian sites are located at levels below 400 m a.s.l. which would indicate the occupation of mountainous spaces, at least on a seasonal basis, by these human groups during the early Upper Palaeolithic (Fig. 8).

This chronological framework offers interesting implications for the study of the first Upper Palaeolithic settlement in the northwest of the Iberian Peninsula. At the regional level, the numerical dates from the Cova Eiros Level 2 and the technological features of its lithic assemblage shed light on the cultural ascription of the close-by cave of A Valiña (Lugo, Galicia), defined by an expedient and ambiguous lithic assemblage. Initially ascribed to the early Upper Palaeolithic and Chatelperronian complex (Llana Rodríguez et al. 1996; Villar Quinteiro 1997), subsequent reviews considered it as possibly late Mousterian (Vaquero et al. 2006; Maíllo Fernández 2008). However, we must take into account the similarities between the lithic assemblages from A Valiña and the Level 2 of Cova Eiros, their occupation patterns and the absolute dating. If we consider the contemporaneity between the dates of Level 2 of Cova Eiros (Beta-254280, Table 1) and the date directly linked to the level of hominin occupation of A Valiña (GrA-3014: 31600 ± 250 BP, 34.123-32.987 cal BP, Llana Rodríguez et al. 1996; Fernández Rodríguez 2000), the most parsimonious hypothesis is to reestablish its ascription to the initial Upper Palaeolithic (Aurignacian sensu lato). In addition, the radiometric date available for Level IV of A Valiña is far from the proposed chronological range for the Cantabrian Chatelperronian (42.4-41.4 kyr cal BP, Marín-Arroyo et al. 2018). Thus, we might put forward that A Valiña and Level 2 of Cova Eiros are the only early Upper Palaeolithic evidences in NW Iberia.

The chronology and the location of these sites are key to understanding the tempo of the advance of AMH in western Iberia. An east-west progression has been proposed for their entry into the Cantabrian region, the first arrival being dated around 43.3-40.5 kyr cal BP (Castillo, 16, Labeko Koba VII) (Wood et al. 2016; Marín-Arroyo et al. 2018). The move towards the west Cantabrian might be related to the demographic increase of these groups and their expansion during the advanced stages of the Aurignacian (Marín-Arroyo et al. 2018; Schmidt & Zimmermann 2019). If we take into account the radiocarbon dating of A Valiña and Level 2 of Cova Eiros, the first evidence of the AMH in the Northwest would be at the end of GI7 or early GS7. In that sense, the small mammal data point to an interstadial of MIS 3, which, based on dating, would be more consistent with the GI7 (Rey-Rodríguez et al. 2016).

A Valiña and Cova Eiros are both located in the mountainous foothills bordering the inner depressions of Galicia, at medium altitude levels (400-800 m a.s.l.). Considering their...
location we could formulate some hypotheses about the routes of entry of modern humans in the NW of the Iberian Peninsula, always with the caution that the scarcity of archaeological sites demands (Fábregas-Valcarce & de Lombera-Hermida 2010). One of the natural routes for the arrival into the NW would be along the Cantabrian Rim that reaches up to the Northeast of Galicia, and then gradually descending to the south by the periphery of the Cenozoic basins and the mountain ranges. The placement of Cova Eirós, in the Navia/Miño interfluve, could indicate another possible direct route of penetration to the interior of the NW during the initial Upper Palaeolithic: the Navia Valley. Thenceforth the Miño valley makes way to the Atlantic shore but we must bear in mind, anyway, the high incidence of glacial and periglacial conditions at these mountain areas (Oliva et al. 2019).

The chronological and contextual data from the north of Portugal and the Atlantic façade are more problematic due to the scarcity of sedimentary records and the high incidence of erosive processes (Aubry et al. 2006, 2011). In central Portugal the youngest Middle Palaeolithic site is recorded in the Lower Tejo River terrace T6, at Foz do Enxarrique -linked to cold and dry conditions and recently dated by OSL at 44 ± 3 kyrs (Cunha et al. 2019)- and the Mira Nascente coastal site dated also by OSL around 42-40 kyrs (Haws et al. 2010). Only for the case of Gruta de Oliveira (level 8), with dates around 37.1-35.7 kyrs cal BP (Angelucci & Zilhão 2009) some coexistence with AMH could have taken place. Although some researchers defend the presence of groups ascribed to the Aurignacian II (or evolved Aurignacian) (Zilhão et al. 2010, 2017), other authors consider that the first settlement of Homo sapiens on the Atlantic façade occurred in the initial moments of the Gravettian, around 33.5-33.0 kyrs cal BP (Bicho et al. 2015, 2017). Nevertheless, the recent dates from Cardina-Salto do Boi point to the late survival of Neanderthal groups and an AMH arrival around 34.0-38.4 kyrs BP (OSL date)- linked to an Aurignacian industry, at least for the north of Portugal (Aubry et al. 2019, 2020a, b; this volume). Finally, the recently published dates from Lapa do Pica-reiro, in central Portugal, suggest an early arrival of Homo sapiens in the Atlantic façade, around 41.1-38.1 Ka cal BP (Haws et al. 2020). The route of this entry is unclear. For the interior of the Iberian Peninsula, the arrival of AMH is not adequately contrasted neither in the inland Meseta until 25.5 ka cal BP (Alcaraz-Castaño et al. 2013, 2017) nor in the middle Tejo valley (Benedetti et al. 2019). In that sense, both the northwest and the Atlantic façade do not show the immediate appearance of the AMH after the last Neanderthal occupations, instead a spatial and chronological gap seemingly existing in the north-south direction.

Therefore, the expansion of the AMH groups to the west and south of the Iberian Peninsula implies a mosaic model and does not seem to be so swift and should be linked to the conditions of the biogeographic changes and fluctuations that define the late MIS 3, especially in relation to the period between the interstadials GI8-GI7 and the expansion of steppe formations (Zilhão et al. 2010; Haws 2012).

CONCLUSIONS

The richness and chrono-stratigraphic definition of the archaeological record from Cova Eirós give a more complete vision about the technology and subsistence strategies of the last Neanderthal and the first AMH groups that occupied the Iberian northwest. The archaeological data, as defined by the exploitation of local raw materials, and the subsistence and settlement patterns reflect the flexibility of the late Middle and early Upper Palaeolithic groups regarding the lithological and geographical constraints of this land.

The chronological and palaeoenvironmental data help us to understand the relationship between the fluctuations of the human groups and the shifts of the climatic conditions. The radiometric data from the Level 3 indicate a late survival of Neanderthal groups (c. 40 kyrs cal BP) in the mountainous regions. After a first entry of the AMH to the west of the Cantabrian Rim (Nalón valley), dated 43.3-40.5 kyrs cal BP, the modern human groups linked to the Advanced Aurignacian probably did not occupy the coves of northwest Iberia (Cova Eirós and A Valiña) until the changes associated with the G18 and G17 (35.3-34.7 kyrs cal BP), but a more detailed dating strategy is sorely needed. The Upper Palaeolithic settlement of the westernmost part of Iberia will not take a firm hold until the arrival of the Gravettian groups, around 33.5 kyrs cal BP. This preliminary interpretation is obviously conditioned by the existence of geographical gaps (west of the Asturian region and northern Portugal, territories lacking limestone formations), the different intensity of research and the scarcity of sedimentary deposits with extensive records belonging to this period. But new research from these regions will provide complementary information about the demise of the Neanderthal groups and its relationship to the dispersal of the Homo sapiens across the Iberian Peninsula.

Acknowledgements

The archaeological works at Cova Eirós have been funded by Consellería de Cultura da Xunta de Galicia (2015-2019) and Ministry of Science (PID2019-107480GB-I00). This research paper is a result of the Workshop “II Xornadas sobre o Paleolítico do Noroeste. De costa a costa: Os Territorios Paleolíticos entre as beiras cantábrica e atlántica” held in Triacastela in 2017 and funded by Xunta de Galicia and GDR Ribeira Sacra-Courel. Rey-Rodriguez is beneficiary of a PhD scholarship funded by the Erasmus Mundus Program (IDQP). X.P. Rodríguez-Alvarez research is also supported by the AGAUR (SGR 2017-1040) and the URV (2019PFR-URV-91) projects. The Institut Català de Paleoecologia Humana i Evolució Social (IPHES) has received financial support from the Spanish Ministry of Science and Innovation through the “María de Maeztu” program for Units of Excellence (CEX2019-000945-M). This work was also funded by the Fundação para a Ciência e Tecnologia (FCT), through: 1) National funds, from the project UIDB/MAR/04292/2020 — MARE; and 2) a Sabbatical grant (ref. SFRH/BSAB/150395/2019) held by Pedro P. Cunha (Programa Operacional Capital Humano). Joel Carvalho helped in the Sedimentology Laboratory-University Coimbra.
DE LOMBERA HERMIDA A., DE LOMBERA HERMIDA A., RODRÍGUEZ-ÁLVAREZ X. P. & FÁBREGAS-VALCARCE R. 2015. — Evolución de los patrones de asentamiento de los yacimientos paleolíticos de la Depresión de Monforte de Lemos (Lugo, Galicia). Sésima 27: 267-297.

DE LOMBERA HERMIDA A., RODRÍGUEZ-RELLÁN C. & VAQUEIRO RODRÍGUEZ M. 2016. — El sílex en el NW de la Península Ibérica. Un estado de la cuestión. Cuadernos de Prehistoria y Arqueología de Granada 26: 137-155.

DELAGNES A. & RENDU W. 2011. — Shifts in Neandertal mobility, technology and subsistence strategies in western France. Journal of Archaeological Science 38: 1771-1783. https://doi.org/10.1016/j. jas.2011.04.007

DIBBLE H. L. 1987. — The Interpretation of Middle Paleolithic Scraper Morphology. American Antiquity 52: 109-117.

DIEZ J. C., FERNÁNDEZ-JALVO Y., ROSSELL J. & CÁCERES I. 1999. — Zooroarchaeology and taphonomy of Aurora Stratrum (Gran Dolina, Sierra de Atapuerca, Spain). Journal of Human Evolution 37: 623-652. https://doi.org/10.1006/jhev.1999.0346

DOMÍNGO L., RODRÍGUEZ-GÓMEZ G., LIBANO I. & GÓMEZ-OLIVENCIA A. 2017. — New insights into the Middle Pleistocene paleoecology and paleoenvironment of the Northern Iberian Peninsula (Punta Lucero Quarry site, Biscay): A combined approach using mammal remains and resource availability modeling. Quaternary Science Reviews 169: 243-262. https://doi.org/10.1016/j.quascirev.2017.06.008

DOMÍNGUEZ-RODRIGO M. & PIQUERAS A. 2003. — The use of tooth pits to identify carnivore taxa in toto-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaeological Science 30: 1385-1391. https://doi.org/10.1016/S0305-4403(03)00027-X

DONJAN J.-P. & SOLER N. 2006. — Variabilidad de las modalidades de debitage and de las producciones lithicos dans les industries moustériennes de la grotte de l’Abreda, sector alpha (Sernyá, España). Bulletin de la Société Préhistorique Française 103: 241-262.

EREN M. I., ROOS C. I., STORY B. A., VON CRAMON-TAUBADEL N. & SCHULTZ D. J. 2014. — The role of raw material differences in stone tool shape variation: an experimental assessment. Journal of Archaeological Science 42: 472-487. https://doi.org/10.1016/j.jas.2014.05.034

EVANS E. M. N., VAN COUVERING J. A. H. & ANDREWS P. 1981. — Palaeoecology of Miocene sites in Western Kenya. Journal of Human Evolution 10: 99-116. https://doi.org/10.1016/S0047-2481(84)80027-9

FÁBREGAS-VALCARCE R. & DE LOMBERA HERMIDA A. 2010. — El Paleolítico superior en Galicia a la luz de las últimas investigaciones. En, MANZANO X. (ed.), Paleolítico Superior Peninsular. Nuevos Datos Del Siglo XXI. Homenaje Al Profesor Javier Fortea. Monografías SERP Universitat de Barcelona, Barcelona: 255-270.

FÁBREGAS-VALCARCE R., DE LOMBERA HERMIDA A., GONZÁLEZ M. R., VAQUERO RODRÍGUEZ M., PÉREZ RAMA M., GRANDAL D’ANGLADE A., RODRÍGUEZ ÁLVAREZ X. P., ALONSO FERNÁNDEZ S. & AMEIJENDA IGLESIAS A. 2012. — Ocupaciones prehistóricas e históricas nas cavidades das Serras Orientais galegas. As covas de Eiriós (Triacastela) e Valdava (Becerrera). Gallaecia 31: 19-46.

FÁBREGAS-VALCARCE R., DE LOMBERA HERMIDA A., VÍNAS VALVERDU R., RODRÍGUEZ ÁLVAREZ X. P. & SOARES FIGUEIREDO S. 2015. — Throwing light on the hidden corners. New data on Paleolithic art from NW Iberia, in BUENO- RAMÍREZ P. & BAHN P. (eds.), Prehistoric Art as Prehistoric Culture. Studies in Honour of Professor Rodrigo de Balbin-Behmann. Archaeopress, Oxford: 171-181.

FAIVRE J.-P., TURQU A., BOURGUIGNON L., COLOINE D., JARRY M. & JAUBERT J.-P. 2013. — Le Paléolithique moyen du Quercy : comportements technologiques et variabilité et de productions lithiques, in JARRY M., BRUGAUX-J.-P. & FERRIER C. (eds), Modalité d’occupation et exploitation des milieux au Paléolithique dans le...
MARTÍN SEIJO M. & MAROTO J., VAQUERO M., ARRIZABALAGA Á., BAENA J., BAQUEDANO E., MALLOL C., HERNÁNDEZ C. M. & MACADO J. MAÍLLO FERNÁNDEZ J. M. LÓPEZ-GARCÍA J. M. Lombera-Hermida A. de ALONSO FERNÁNDEZ S. & VAQUERO RODRÍGUEZ M. Universidad de Santiago de Compostela, Santiago de Compostela, Spain. Conocimiento de combustibles e producción de manufacturas en Prehistoria funcional de una muestra musteriense en cuarzo del Abrigo ternary International chronology: New assessments from Northern Iberia. JORDÁ J., JULIÁ R., MONTES R., VAN DER PLICHT J., RASINES P. & TABRIA, Spain). Small vertebrates (Amphibia, Squamata, Mammalia) from the superior de la Península Ibérica. Evolución de la diversidad taxonómica durante el Pleistoceno superior de Compostela: 97-112. Chesa, A. de MARTINI M. (ed), 1996. — Secuencia paleoambiental y cultural de la cueva de A Valiña (Castroverde, Lugo): Una ocupación chalcolíndrica en Galicia, in PÉREZ ALBERTI A., DÍAZ M. V, MARTINI I. P., PASCUCCI V. & PARGETER J. M. (eds), 2011. — La gestión del utilaje de piedra tallada en el Paleolítico medio de Galicia. El nivel 3 de Cova Eirós. Trabajos de Prehistoria 68: 237-258. LLANAS RODRÍGUEZ C., VILLAR QUINTERO R. & MARTÍNEZ CORTIZAS A. (eds), Dinámica y Evolución de Medios Cuaternarios. Xunta de Galicia, Santiago de Compostela: 97-112. LOPEZ-GARCÍA J. M. 2008. — Evolución de la diversidad taxonómica de los micromamíferos en la Península Ibérica y cambios paleoambientales durante el Paleolítico Superior. Unpublished PhD thesis, Departamento d’Història i Història de l’Art. Universitat Rovira i Virgili, Tarragona, 407 p. LOPEZ-GARCÍA J. M. 2011. — Los micromamíferos del Paleolítico superior de la Península Ibérica. Evolución de la diversidad taxonómica y cambios paleoambientales y paleoclimáticos, Departamento d’Història i Història de l’Art, Editorial Académica Española, Saarbrücken, 416 p. LOPEZ-GARCÍA J. M., BLAIN H., CUENCA BESCUO C., ALONSO C., ALONSO FERNÁNDEZ S. & VAQUERO RODRÍGUEZ M. 2011. — Small vertebrates (Amphibia, Squamata, Mammalia) from the late Pleistocene-Holocene of the Valdavara-i cave (Galicia, north-western Spain). Geobios 44: 253-269. https://doi.org/10.1016/j.gebios.2010.10.001 MAILLO FERNÁNDEZ J. M. 2008. — El Chalcolíndrico en el Noroeste de la Península Ibérica. Fèrvedors 5: 127-136. MAILLO C., HERNÁNDEZ C. M. & MACHADO J. 2012. — The significance of stratigraphic discontinuities in Iberian Middle-Upper Paleolithic transitional sites. Quaternary International 275: 4-13. https://doi.org/10.1016/j.quaint.2011.07.026 MARÍN-ARROYO A. B., RIOS-GARAZAR J., STRAUS L. G., JONES J. R., DE LA RASILLA M., GONZÁLEZ MORALES M. R., RICHARDS M. A., ALTUNA M., MARIEZUKRENA K. & OCIO D. 2018. — Chronological reassessment of the Middle to Upper Palaeolithic transition and Early Upper Palaeolithic cultures in Cantabrian Spain. PLoS ONE 13: e0194708. https://doi.org/10.1371/journal.pone.0194708 MARÍN-ARROYO A. B., GEILING J.-M., JONES J. R., GONZÁLEZ MORALES M. R., STRAUSS L. G. & RICHARDS M. P. 2020. — The Middle to Upper Palaeolithic transition at El Mirón cave (Cantabria, Spain). Quaternary International 544: 23-31. https://doi.org/10.1016/j.quaint.2017.07.007 MAROTO J., VAQUERO M., ARREZABALAGA Á., BAENA J., BAQUEDANO E., JORDIA J., JULIA R., MONTS L., VAN DER Plicht J., RASINES P. & WOOD R. 2012. — Current issues in late Middle Paleolithic chronology: New assessments from Northern Iberia. Quaternary International 247: 15-25. https://doi.org/10.1016/j.quaint.2011.07.007 MÁRQUEZ B., BAQUEDANO E., PEREZ-GONZALEZ A. & ARSUAGA J. L. 2017. — Dentículos, muescas: ¿para qué sirven? Estudio funcional de una muestra misteriosa en cuarzo del Abrigo de Navalmaillo (Pinilla del Valle, Madrid, España). Trabajos de Prehistoria 74: 26-46. https://doi.org/10.3989/tp.2017.12182 MARTÍN SEIJO M. 2013. — A Xestión do bosque e do monte dende a idade de Ferro á época romana no noroeste da península ibérica. Conxunto de combustibles e produción de manufacturas en un medio rural del Paleolítico superior. Unpublished PhD thesis, Departamento de Historia, Universidade de Santiago de Compostela, Santiago de Compostela, 709 p. MARTINEZ-MORENO J., MORA R. & IGNACIO DE LA T. 2010. — The Middle-to-Upper Palaeolithic transition in Cova Gran (Catalunya, Spain) and the extinction of Neanderthals in the Iberian Peninsula. Journal of Human Evolution 58: 211-226. https://doi.org/10.1016/j.jhevol.2009.09.002 MARTÍNEZ CORTIZAS A. & LLANA RODRÍGUEZ L., GARCÍA-RUIZ J. M., ANDRÉS N., CARASCOSA R. M., PEDRAZA J., PÉREZ-ALBERTI A., VALCARCEL M. & MOLLON Y. P. 2018. — Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 496: 146-154. https://doi.org/10.1016/j.palaeo.2018.01.031 MENENDEZ M., ALVAREZ-ALONSO D., DE ANDRÉS-HERRERO M., CARRAL P., GARCÍA SÁNCHEZ E. M. QUESADA J. & ROJO J. 2017. — The Middle to Upper Paleolithic transition in La Güelda cave (Asturias, Northern Spain). Quaternary International 474: 71-84. https://doi.org/10.1016/j.quaint.2017.08.061 MOURRE V. 1996. — Les industries en Quartz au Paleolitique. Terminología, Methodología et Tecnología. Paleos 8: 205-223. MOURRE V. 2003. — Discorde ou pas Discorde ? Réflexions sur la pertinence des critères techniques définissant le debitage Discorde, in PERESANI M. (ed.), Discoid Lithic Technology, Advances and Implications. Archaeopress (BAR International Series 1120), Oxford: 1-18. OLIVA M., PALACIOS D., FERNÁNDEZ-FERNÁNDEZ J. M., RODRÍGUEZ-RODRÍGUEZ L., GARCÍA-RUIZ J. M., ANDRÉS N., CARASCOSA R. M., PEDRAZA J., PÉREZ-ALBERTI A., VALCARCEL M. & MOLLON Y. P. 2019. — Late Quaternary glacial phases in the Iberian Peninsula. Earth-Science Reviews 192: 564-600. https://doi.org/10.1016/j.earscirev.2019.03.015 PALOMBO M. & SARDIELLA R. 2007. — Biochronology and bio-chron boundaries: A real dilemma or a false problem? Quaternary International 160: 30-42. PARGETER J. 2016. — Lithic miniaturization in Late Pleistocene southern Africa. Journal of Archaeological Science: Reports 10: 221-236. https://doi.org/10.1016/J.JASREP.2016.09.019 PELEGRIN J., CARLIN C. & BODU P. 1988. — Chaînes opératoires: un outil pour le préhistorien,. in TIXIER J. (ed.), (Technology Préhistorique. CNRS, Paris: 55-62. PÉREZ ALBERTI A., DÍAZ M. V, MARTINI I. P., PASCUCCI V. & ANDREUCCI S. 2011. — Upper Pleistocene glacial valley- conjunction sediments at Pias, Trevínca Mountains, NW Spain, in MARTINI I.P., FRENCH H. M. & PÉREZ ALBERTI A. (eds), Ice-Marginal and Periglacial Processes and Sediments. Geological Society, Special publication. No. 354., London: 93-110. RAMÍREZ-REGO P., IRARIET M. J., MUÑOZ SOBRINO C. & GÓMEZ ORELLANA L. 2005. — Cambio climático y dinámica temporal del paisaje y de los hábitats en las ecorregiones del NW de la Península Ibérica durante el Paleolítico superior. Munibe 57: 537-551. RAMÍREZ-REGO P., GÓMEZ-ORELLANA L. & MUÑOZ SOBRINO C. 2010. — Cambio climático durante el último ciclo glacial-interglacial en el NW Ibérico, in BETTENCOURT A., ISABEL A. M. & MONTERO-ROMANES (eds), Variedades Paleoen Ambiental E Evolución Antrópica No Cuaternario Do Oxidente Peninsular. APEQ - Associação Portuguesa para o Estudo do Quaternário C.T.C.E.M - Centro de Investigação Transdisciplinar “Cultura, Espace e Medio Ambiente”, 2012, 2018. RAMSEY C. B. 2009. — Bayesian analysis of radiocarbon dates. Radiocarbon 51 (1): 337-360. https://doi.org/10.2458/azu_js_rc.v51i1.3494
ROUCOUX K. H., DE ABREU L., SACKLEON N. J. & TZEDAKIS P. C.

RODRÍGUEZ -ÁLVAREZ  X. P., FÁBREGAS -VALCARCE  R., LAZUÉN FERNÁNDEZ T., DÍEZ-FERNÁNDEZ -LOMANA J.-C., BERNA R. & SERRAT D.

SANCHEZ GOÑI M. F., LANDAS A., FLETCHER W. J., NAUGHTON F., DESPRAT S. & DUPRAT J. 2008. — Contrastings impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27: 1136-1151. https://doi.org/10.1016/j.quascirev.2008.03.003

SANTAMARÍA ÁLVAREZ D. & DE LA RASILLA VIVES M. 2013. — Darato el final del Paleolítico med in la Península Ibérica. Problemas metodológicos y límites de la interpretación. Trabajos de Prehistoria 70: 241-263.

SCHMIDT I. & ZIMMERMANN A. 2019. — Population dynamics and socio-spatial organization of the Aurignacian: Scalable quantitative demographic data for western and central Europe. PLoS ONE 14: e0211562.

SEVILLA P. 1988. — Estudio paleontológico de los Quirópteros del Cretacenero español. Paleontología i Evolució 22: 113-233.

SHIMPA N. & BECK J. W., BLACKWELL P. G., RAMÍRERAS HOYOS O. 

SHIMPA N., FOSTER G. & SCHEININGER M. 1984. — Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11: 307-325. https://doi.org/10.1016/0305-4403(83)90008-9

SIERRA H., DÍEZ-FERNÁNDEZ -LOMANA J.-C., RODRÍGUEZ-ÁLVAREZ X. P., CARRERA-RAMÍREZ F., RUBIO-MORA R.-M. & FÁBREGAS-VALCARCE R. 2017. — Cova Eirós: An integrated approach to dating the earliest known cave art in NW Iberia. Radio carbon 59 (1): 151-164. https://doi.org/10.1017/RDC.2017.4

SILVER TA. 2005. — A mosaic of change: the Middle–Upper Paleolithic transition as viewed from New Mexico and Iberia. Quaternary International 137: 47-67. https://doi.org/10.1016/J.QUAINT.2004.11.019

SILVER TA. 2012. — The emergence of modern-like forager capacities & behaviors in Africa and Europe: Abrupt or gradual, biological or demographic? Quaternary International 247: 350-357. https://doi.org/10.1016/j.quaint.2010.10.002

SANTAMARÍA ÁLVAREZ D. & DE LA RASILLA VIVES M. 2013. — Darating el final del Paleolítico med in la Península Ibérica. Problemas metodológicos y límites de la interpretación. Trabajos de Prehistoria 70: 241-263.

SCHMIDT I. & ZIMMERMANN A. 2019. — Population dynamics and socio-spatial organization of the Aurignacian: Scalable quantitative demographic data for western and central Europe. PLoS ONE 14: e0211562.

SEVILLA P. 1988. — Estudio paleontológico de los Quirópteros del Cretacenero español. Paleontología i Evolució 22: 113-233.

SHIMPA N. & BECK J. W., BLACKWELL P. G., RAMÍRERAS HOYOS O.

SHIMPA N., FOSTER G. & SCHEININGER M. 1984. — Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11: 307-325. https://doi.org/10.1016/0305-4403(83)90008-9

SIERRA H., DÍEZ-FERNÁNDEZ -LOMANA J.-C., RODRÍGUEZ-ÁLVAREZ X. P., CARRERA-RAMÍREZ F., RUBIO-MORA R.-M. & FÁBREGAS-VALCARCE R. 2017. — Cova Eirós: An integrated approach to dating the earliest known cave art in NW Iberia. Radiocarbon 59 (1): 151-164. https://doi.org/10.1017/RDC.2017.4

SILVER TA. 2005. — A mosaic of change: the Middle–Upper Paleolithic transition as viewed from New Mexico and Iberia. Quaternary International 137: 47-67. https://doi.org/10.1016/J.QUAINT.2004.11.019

SILVER TA. 2012. — The emergence of modern-like forager capacities & behaviors in Africa and Europe: Abrupt or gradual, biological or demographic? Quaternary International 247: 350-357. https://doi.org/10.1016/j.quaint.2010.10.002

TARDY N., VOSGES J. & VAROUTSIKOS B.

TRAVERS T., PATRONS D’APROFITAMENT DE LES BIOMASSES DE MAQUETZALE A., CARRIÓN MARCO Y., TERRADILLOS -BERNAL M. & D ÍEZ-FERNÁNDEZ -LOMANA J.-C.

TRUMBOLI B., PÓLVORA D., ESTEBAN R., SANCHEZ GOÑI M. F., LANDAS A., FLETCHER W. J., NAUGHTON F., DESPRAT S. & DUPRAT J. 2008. — Contrastings impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27: 1136-1151. https://doi.org/10.1016/j.quascirev.2008.03.003

TURÓN C., PÉREZ RIPOLI M., CARBON MARCO Y., DUARTE E. & DE LA RASILLA M. 2019. — Neanderthal and carnivore activi ties at Llionin Cave, Asturias, northern Iberian Peninsula: Faunal study of Mousterian levels (MIS 3). Comptes Rendus Palevol 18: 113-141. https://doi.org/10.1016/j.crpv.2018.06.001

TURÓN C., PÉREZ RIPOLI M., CARBON MARCO Y., DUARTE E. & DE LA RASILLA M. 2019. — Neanderthal and carnivore activi ties at Llionin Cave, Asturias, northern Iberian Peninsula: Faunal study of Mousterian levels (MIS 3). Comptes Rendus Palevol 18: 113-141. https://doi.org/10.1016/j.crpv.2018.06.001

TURÓN C., PÉREZ RIPOLI M., CARBON MARCO Y., DUARTE E. & DE LA RASILLA M. 2019. — Neanderthal and carnivore activi ties at Llionin Cave, Asturias, northern Iberian Peninsula: Faunal study of Mousterian levels (MIS 3). Comptes Rendus Palevol 18: 113-141. https://doi.org/10.1016/j.crpv.2018.06.001

TURÓN C., PÉREZ RIPOLI M., CARBON MARCO Y., DUARTE E. & DE LA RASILLA M. 2019. — Neanderthal and carnivore activi ties at Llionin Cave, Asturias, northern Iberian Peninsula: Faunal study of Mousterian levels (MIS 3). Comptes Rendus Palevol 18: 113-141. https://doi.org/10.1016/j.crpv.2018.06.001

TURÓN C., PÉREZ RIPOLI M., CARBON MARCO Y., DUARTE E. & DE LA RASILLA M. 2019. — Neanderthal and carnivore activi ties at Llionin Cave, Asturias, northern Iberian Peninsula: Faunal study of Mousterian levels (MIS 3). Comptes Rendus Palevol 18: 113-141. https://doi.org/10.1016/j.crpv.2018.06.001
Lombera-Hermida A. de et al.

Valverde I. 2019. — Patrones de aprovechamiento faunístico y estrategias de subsistencia durante la transición Paleolítico medio-superior en el NO peninsular. Unpublished PhD thesis, Universidad de Santiago de Compostela. Universidade de Santiago de Ferrara, Santiago de Compostela, 339 p.

Vaquero M., Maroto J., Arrizabalaga Á., Baena J., Baquedano E., Carrion E., Jordá I., Martínón-Torres M., Menéndez M., Montes Barquín R. & Rosell Ardevol J. 2006. — The Neanderthal Modern Human meeting in Iberia: A critical view of the cultural geographical and chronological data, in Conard N. J. (ed.), When Neanderthals and Modern Humans Met. Kerns Verlag, Tübingen: 419-439.

Vaquero M., Van Der Made J., Blain H. A., Ibáñez N., López-García J. M., Rivals F., Alonso S., Ameijenda A., Bennàsar M., Fernández-García M., De Lombera-Hermida A. & Valverde I. 2018. — Fauna, environment and human presence during MIS5 in the North of Spain: The new site of Valdavara 3. Comptes Rendus Palevol 17: 557-593. https://doi.org/10.1016/j.crpv.2018.03.004

Vaquero Rodríguez M. 2006. — El tránsito Paleolítico Medio/ Superior en la Península Ibérica y la Frontera del Ebro: comentario a Zilhão (2006). Pyrenae 37: 107-129.

Viana-Soto A. & Pérez-Alberti A. 2019. — Periglacial deposits as indicators of paleotemperatures. A case study in the Iberian Peninsula: The mountains of Galicia. Permafrost and Periglacial Processes 30: 374-388. https://doi.org/10.1002/ppp.2026

Villar Quintero R. 1997. — El Paleolítico Superior y Epipaleolítico en Galicia. Zephyrus 50: 71-106.

Wood R. E., Arrizabalaga A., Camps M., Fallon S., Iriarte-Chiapusso M. J., Jones R., Maroto J., De la Rasilla M., Santamaría D., Soler J., Soler N., Villaluenga A. & Higham T. F. G. 2014. — The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L’Arbreda, Labeko Koba and La Viña. Journal of Human Evolution 69: 91-109. https://doi.org/10.1016/j.jhevol.2013.12.017

Wragg Sykes R. M. 2015. — To see a world in a hafted tool: birch pitch composite technology, cognition and memory in Neanderthals, in Coward F., Wenban-Smith F., Pope M. & Hosfield R. (eds), Settlement, Society and Cognition in Human Evolution: Landscapes in Mind. Cambridge University Press, Cambridge: 117-137. https://doi.org/10.1017/CBO9781139208697.008

Zilhão J. 2000. — The Ebro Frontier: A Model for the Late Extinction of Iberian Neanderthals, in Stringer C. B., Barton R. N. & Finlayson J. (eds.), Neanderthals on the Edge. Oxbow Books, Oxford: 111-121.

Zilhão J. 2006. — Chronostratigraphy of the Middle-to-Upper Palaeolithic Transition in the Iberian Peninsula. Pyrenae 37: 7-84.

Zilhão J., Davis S. J. M., Duarte C., Soares A. M. M., Steier P. & Wild E. 2010. — Pego do Diabo (Loures, Portugal): Dating the Emergence of Anatomical Modernity in Westernmost Eurasia. PLoS One 5: e8880. https://doi.org/10.1371/journal.pone.0008880

Zilhão J., Anesin D., Aubry T., Badal E., Cabanes D., Kehl M., Klasek N., Lucena A., Martín-Lerma I., Martínez S., Matias H., Susini D., Steier P., Wild E. M., Angelucci D. E., Villaverde V. & Zapata J. 2017. — Precise dating of the Middle-to-Upper Palaeolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3: e00435. https://doi.org/10.1016/j.heliyon.2017.e00435

Submitted on 5 March 2020; accepted on 5 July 2020; published on 8 November 2021.