T- and B-Cell Immune Responses of Patients Who Had Undergone Colectomies to Oral Administration of \textit{Salmonella enterica} Serovar Typhi Ty21a Vaccine

Jan Kilhamn, Samuel B. Lundin, Hans Brevinge, Ann-Mari Svennerholm, and Marianne Jertborn

Department of Medical Microbiology and Immunology and Göteborg University Vaccine Research Institute—GUVAX, Department of Infectious Diseases, and Department of Surgery, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden

Received 19 September 2002/Returned for modification 21 November 2002/Accepted 4 March 2003

The capacity of an oral live attenuated \textit{Salmonella enterica} serovar Typhi Ty21a vaccine to induce immune responses in patients who had undergone colectomies because of ulcerative colitis was evaluated, and these responses were compared with those of healthy volunteers. Purified CD4\(^+\) and CD8\(^+\) T cells from peripheral blood were stimulated in vitro by using the heat-killed Ty21a vaccine strain, and the proliferation and gamma interferon (IFN-\(\gamma\)) production were measured before and 7 or 8 days after vaccination. \textit{Salmonella}-specific immunoglobulin A (IgA) and IgG antibody responses in serum along with IgA antibody responses in ileostomy fluids from the patients who had undergone colectomies were also evaluated. Three doses of vaccine given 2 days apart failed to induce proliferative T-cell responses in all the six patients who had undergone colectomies, and increases in IFN-\(\gamma\) production were found only among the CD8\(^+\) cells from three of the patients. In contrast, both proliferative responses and increased IFN-\(\gamma\) production were observed among CD4\(^+\) and CD8\(^+\) T cells from 3 and 6 of 10 healthy volunteers, respectively. \textit{Salmonella}-specific IgA and/or IgG antibody responses in serum were observed for five (56\%) of nine patients who had undergone colectomies and in 15 (88\%) of 17 healthy volunteers. In ileostomy fluids, significant anti-\textit{Salmonella} IgA antibody titer increases were detected in six (67\%) of nine patients who had undergone colectomies. The impaired T- and B-cell immune responses found after vaccination in the circulation of patients who have undergone colectomies may be explained by a diminished colonization of the Ty21a vaccine strain due to the lack of a terminal ileum and colon.

The induction and dissemination of immune responses after oral administration of enteric vaccines in healthy humans have been extensively studied (2, 12–14, 21, 30). However, there is a paucity of studies done with individuals suffering from diseases that may influence the induction of mucosal immune responses. Patients who have undergone colectomies, e.g., due to inflammatory bowel diseases, malignant tumors, or polyps on the colon, may potentially have an impaired ability to develop B- and T-cell responses to antigens presented in the distal ileum and colon.

In typhoid fever, the pathogenesis includes a preferential colonization and penetration of bacteria at the level of the terminal ileum and colon as shown in animal models (7) and studies of typhoid fever in humans (9, 19). A live typhoid vaccine could therefore be a suitable model antigen to address studies of typhoid fever in humans (9, 19). A live typhoid vaccine could therefore be a suitable model antigen to address the role of terminal ileum and colon in the induction of mucosal immune responses in humans after oral vaccination. The live attenuated \textit{Salmonella enterica} serovar Typhi vaccine strain Ty21a (8) has been extensively studied with regard to its safety and immunogenicity in healthy volunteers (14, 15, 30). After oral immunization, circulating vaccine-specific B-cell responses are observed in over 50\% of healthy volunteers, with peak responses seen 6 to 8 days after the first vaccine dose (14). Serum antibody responses are reported in approximately 60\% of the volunteers after vaccination (6, 14, 16). More recently, proliferative responses and production of gamma interferon (IFN-\(\gamma\)) in vaccinated healthy volunteers following antigen stimulation of peripheral blood lymphocytes have been demonstrated (24, 28, 30).

The aim of this study was to examine the T- and B-cell responses to oral \textit{S. enterica} serovar Typhi Ty21a vaccine in a group of patients who had undergone colectomies because of ulcerative colitis and to compare their immune responses with those found for a group of healthy volunteers given the same vaccine. Vaccine-specific CD4\(^+\) and CD8\(^+\) T-cell responses in peripheral blood were analyzed along with immunoglobulin A (IgA) and IgG antibody responses in serum. For the patients who had undergone colectomies, the vaccine-specific IgA antibody responses in ileostomy fluids were also studied.

MATERIALS AND METHODS

\textbf{Study design.} Nine adult patients (two of whom were women), aged 36 to 56 years (mean age, 45 years), who had undergone colectomies due to ulcerative colitis, were recruited from the regular follow-up program for patients with inflammatory bowel disease at the Department of Surgery of the Sahlgrenska University Hospital in Göteborg. Continence surgery had been performed 1 to 20 years earlier (mean, 11.3 years) by the construction of a pelvic pouch with an ileoanal anastomosis. All patients had had very similar amounts of small bowel...
Each individual received, 2 days apart, a total of three doses of a live attenuated S. enterica serovar Typhi Ty21a vaccine (Vivotif; Swiss Serum and Vaccine Institute Berne, Bern, Switzerland). The vaccine was ingested orally in the form of enteric-coated capsules containing at least 2 x 10^6 bacteria per capsule.

Collection of specimens. To obtain peripheral blood mononuclear cells (MNCs), 50 ml of heparinized venous blood was collected from six of the patients who had undergone colectomies and from 10 of the healthy volunteers prior to the first immunization (day 0), and then 7 or 8 days after the onset of vaccination. Serum specimens were obtained from nine patients who had undergone colectomies and served as controls to the patients who had undergone colectomies. None of the individuals had a history of typhoid fever or had previously been vaccinated against typhoid fever. All individuals agreed to participate in the study, which was undertaken with due approval from the Human Research Ethical Committee at the Medical Faculty, Göteborg University.

RESULTS

T-cell immune responses. The T-cell immune responses in peripheral blood after oral immunization with a live attenuated S. enterica serovar Typhi Ty21a vaccine were studied for six patients and 10 healthy volunteers by measuring the proliferative responses and IFN-γ production after stimulation of purified CD4+ and CD8+ cells with heat-killed Ty21a bacteria. Three doses of vaccine failed to induce any proliferative responses among the various T-cell subsets from the patients, and increases in IFN-γ production were found only among the stimulated CD8+ cells from three (50%) of the patients (Table 1 and Fig. 1). In contrast, 6 (60%) of the 10 healthy volunteers displayed a proliferative response in CD8+ cells (P = 0.034 versus patients; Fisher’s exact test, two-sided), and for 3 of them a proliferative response was also observed for CD4+ cells; the magnitude of the responses among responders was 20-fold for CD8+ cells and 3-fold for CD4+ cells. Increases in IFN-γ production were observed for CD4+ and CD8+ T cells from three and six of the healthy volunteers, respectively (Table 1 and Fig. 1).

The mucosal T-cell response in the distal ileum of the patients who had undergone colectomies was also assessed by obtaining ileal pouch biopsy specimens from three of them. The low cell yield did not allow the use of immunomagnetic
TABLE 1. IFN-γ production and proliferative responses of peripheral blood CD4⁺ and CD8⁺ T cells from patients who have undergone colectomies and healthy volunteers after three oral administrations of S. enterica serovar Typhi Ty21a vaccine

T-cell population and type of response	T-cell response	Patients	Healthy volunteers	
	Frequency (no. of responders/no. tested)ᵃ	Magnitude (fold increase)	Frequency (no. of responders/no. tested)ᵃ	Magnitude (fold increase)
CD4⁺	IFN-γ productionᵇ	0/6	3/10	3.8
	Proliferationᵇ	0/6	3/10	3.0
CD8⁺	IFN-γ productionᵇ	3/6	6/10	8.4
	Proliferationᵇ	0/6	6/10	20

ᵃ Responders were defined as having a greater-than-twofold increase in IFN-γ production or proliferative response between pre- and postimmunization specimens.
ᵇ For responding subjects 7 or 8 days after the first vaccine dose compared to preimmunization values.
ᶜ IFN-γ production was expressed as the ratio of the amount of released IFN-γ in cell culture supernatants stimulated with Ty21a bacteria to the amount stimulated with PHA.
ᵈ Proliferation was expressed as net counts per minute by subtracting the median counts per minute for a set of unstimulated cell cultures from the median counts per minute for a corresponding set of cell cultures stimulated with Ty21a bacteria.
ᵉ The frequency of both IFN-γ production and proliferation was 5/10 for CD4⁺ cells and 8/10 for CD8⁺ cells of healthy volunteers.

The present study shows that the oral live attenuated S. enterica serovar TyphiTy21a vaccine has the capacity to induce local B-cell immune responses in the intestines of patients who have undergone colectomies whereas their T- and B-cell immune responses in the circulation were considerably weaker than those of healthy volunteers. Although this study included only a limited number of subjects, we found consistent trends indicating that the antigen-specific immune responses are diminished in patients who have undergone colectomies. We consider it unlikely that other differences between these patients and healthy volunteers, e.g., age, gender, and ongoing medication, could explain the observations. Our findings suggest that the impaired responsiveness, in particular among the T cells, may be of relevance for the future use of live vaccine strains which predominantly colonize the colon, e.g., different genetically attenuated Salmonella and Salmonella vector vaccines including CVD 906, CVD 908, and BRD 509 (17, 20, 26). The observations are also of importance for patients who have undergone colectomies. No proliferative responses could be detected after vaccination, and stimulation of the intestinal MNCs with heat-killed Ty21a bacteria did not result in any significant increases in IFN-γ production (data not shown). Low levels of IFN-γ, IL-4, IL-10, and transforming growth factor β were detected in some of the ileostomy fluids obtained from the patients before immunization, but there were no appreciable changes in cytokine content seen after administration of Ty21a vaccine.

B-cell immune responses. In accordance with the T-cell immune responses seen in peripheral blood after vaccination, the antibody responses in serum were also weaker in the patients than in the healthy volunteers (Table 2). Thus, increases in Salmonella-specific IgA and/or IgG antibody titers were observed for five (56%) of nine patients and for 15 (88%) of 17 healthy volunteers. The magnitudes of the Salmonella IgA as well as the IgG antibody responses were significantly lower for the patients than for the healthy volunteers (Table 2).

To evaluate the ability of the Ty21a vaccine to induce a mucosal B-cell response in the intestines of patients who had undergone colectomies, vaccine-specific IgA antibodies in ileostomy fluids were also measured. Three doses of vaccine induced significant increases in the ratio of Salmonella-specific IgA antibody titers to total IgA concentrations in six (67%) of nine patients, and the maximal geometric mean increase for responders was 12-fold. Peak intestinal IgA antibacterial responses were seen on days 21 to 35 after the onset of vaccination for five of the patients and on day 8 for one patient (Table 3).

![Image](https://example.com/image.png)
undergone colectomies and who are receiving the oral Ty21a vaccine as immunoprophylaxis against typhoid fever before traveling to areas of endemicity.

The pathogenesis of *Salmonella* serovar Typhi is characterized by mucosal invasion and systemic spreading. For protection against serovar Typhi infection, both mucosal and serum antibodies as well as T-cell responses are considered to be important (20). In the present study, strong local IgA responses were observed in ileostomy fluids from 67% of the patients given the oral Ty21a vaccine. Similar frequencies of *Salmonella* IgA antibody responses in the jejunal fluids of healthy volunteers after oral immunization with the same and other derivatives of Ty21a vaccine have been reported (6, 27). In contrast to the comparable immune responses induced by Ty21a vaccine in the intestines of healthy subjects and those who have undergone colectomies, the vaccine did not seem to be as effective in inducing serum antibody responses in patients as in healthy volunteers. Increases in *Salmonella*-specific IgA and/or IgG antibody titers were seen less frequently in patients, and the magnitudes of the responses were significantly lower than those observed for healthy volunteers after vaccination. Interestingly, a similar response pattern with strong vaccine-specific IgA antibody titer rises in ileostomy fluids and more-modest antibody responses in serum were found when an oral inactivated recombinant B subunit whole-cell cholera vaccine was given to patients who had undergone colectomies (18). A deficiency in the uptake of vaccine components by cells presenting them to the systemic immune system may explain the weak serum responses to enteric vaccines in patients who have undergone colectomies.

Although the relative importance of T-cell responses in typhoid fever has been emphasized for several years, only a few studies have characterized the responses in humans after oral typhoid vaccination, and the studies performed have evaluated the responses in healthy volunteers only (24, 26, 28, 30). In the present study, no proliferative responses were observed among circulating T cells from patients who had undergone colectomies, and vaccine-induced IFN-γ production was found only for CD8+ cells from three of the patients on day 7 or 8 after immunization with the Ty21a vaccine. In contrast, a proliferative response and/or increased IFN-γ production was observed for CD4+ cells in 50% of the healthy volunteers and for CD8+ cells in 80% of the healthy volunteers. The Ty21a vaccine-induced T-cell responses observed in our study were comparable to results obtained in other studies using the Ty21a vaccine (30) or other oral live attenuated serovar Typhi vaccine strains (26). Separation of the T cells into CD4+ and CD8+ cell subsets, obtained by using immunomagnetic cell sorting techniques before assessing immune responses, was recently described for healthy volunteers given the Ty21a vaccine (22, 24). In the study by Lundin et al. (22), responses were seen among both circulating CD4+ and CD8+ cells, although the CD8+ cells produced the highest amounts of IFN-γ, and peak T-cell responses were reported on days 7 to 14 after the onset of vaccination. Salerno-Goncalves et al. (24) showed that CD8+ T cells isolated from Ty21a vaccinees are not only able to lyse serovar Typhi-infected blasts but are also potent producers of IFN-γ. A significant association between the frequency of IFN-γ-secreting cells and cytotoxic T-lymphocyte activity was also demonstrated.

According to data from humans challenged with live *Salmonella* serovar Typhi bacteria, the terminal ileum and colon are involved in the early phases of typhoid fever (9). Moreover, recently published studies of the intestinal histopathology in humans with complications of typhoid fever requiring surgery have shown that bowel perforations were identified exclusively in the last 60 cm of the ileum (5), and in cases with bleeding and intussusception only the terminal ileum and colon were involved (19). All our patients had undergone colectomies and continent surgery with resection of approximately 10 cm of the ileum (9).

Table 2

Immunization group	Frequency (no. of responders/ no. tested) (%)	Geometric mean maximal titer (95% confidence interval) before immunization for the whole group of subjects.	Fold increase for all subjects (responding subjects)
Colectomized patients	5/9 (56)	91 (51–160) 140 (79–260) 1.6 (2.2)	2/9 (22) 320 (180–560) 390 (250–600) 1.3 (2.7)
Healthy volunteers	14/17 (82) 230 (100–500) 1,100 (550–2,300) 5.0 (6.6)	9/17 (53) 500 (300–850) 1,200 (600–2,300) 2.6 (4.3)	

The frequency of responders in the two groups was compared with Fisher’s exact test (two-sided). The differences were not significant.

Table 3

Days post-immunization	Anti-*Salmonella* IgA titer/total IgA concn (U mg⁻¹)	Frequency (no. of responders/ no. of patients)	Fold increase^d
0	0.39 (0.15–1.0)	3	2.3 15
7 or 8	0.91 (0.49–1.7)	3/9	3.5 6.9
21	1.2 (0.47–3.2)	6/8	3.8 7.1
35	1.5 (0.76–2.9)	6/9	3.8 7.1

The vaccine was administered orally on days 0, 2, and 4.

^a Geometric mean anti-*Salmonella* O-9, 12 IgA antibody titer/total IgA concentration (95% CI) for all subjects. The values have been multiplied by 10.

^b Responders were defined as having a greater-than-twofold increase in the ratio of specific IgA antibody titer to total IgA concentration between pre- and postimmunization specimens. One volunteer did not deliver specimens on day 21.

^c Geometric mean increase in the ratio of anti-*Salmonella* O9 and O12 IgA antibody titer to total IgA concentration.

^d
the distal ileum. The impaired T- and B-cell responses observed in the circulation of patients who have undergone colectomies suggest that the terminal ileum and colon may be of importance in the induction of systemic immune responses to the Ty21a vaccine. For these patients, the total gastrointestinal transit time is considerably shorter than for healthy individuals (1, 29) and the mucosal area, where colonization with Ty21a bacteria preferentially seems to occur, is reduced. Thus, it is likely that a possible diminished colonization of the Ty21a vaccine strain in patients who have undergone colectomies would result in a limited “spill-over” of antigen to the circulation and also in an impaired presentation of antigen to non-mucosal immune cells. The impaired T-cell responses found after vaccination may also be due to the fact that patients with ulcerative colitis have some form of deficiency in the antigen presentation. However, recently it was shown that peripheral blood dendritic cells from patients with ulcerative colitis rather had increased stimulatory capacities compared to such cells from healthy controls (10). It has also been shown that CD8+ peripheral blood cells from patients with inactive ulcerative colitis and an intact colon have an increased capacity for IFN-γ production when cocultured with intestinal epithelial cells (4). Furthermore, the prevaccination levels of IFN-γ production in the patients participating in the present study did not differ from those observed for a group of healthy volunteers.

ACKNOWLEDGMENTS

This work was supported by grants from the Swedish Medical Research Council (16X-09084) and the Medical Faculty, Göteborg University. The financial support to GUVAX from the Knut and Alice Wallenberg foundation is gratefully acknowledged.

We are grateful to Elisabeth Lindholm and Harriet Törnqvist for collecting the specimens and to Camilla Johansson and Kerstin Andersson for skillful technical assistance.

REFERENCES

1. Abrahamsson, H., S. Antov, and I. Bosaes. 1988. Gastrointestinal and colonic segmental transit time evaluated by a single abdominal x-ray in healthy subjects and constipated patients. Scand. J. Gastroenterol. Suppl. 152:72–80.
2. Ahren, C., C. Wennérås, J. Holmgren, and A.-M. Svennerholm. 1993. Intestinal antibody response after oral immunization with a prototype cholera B subunit-colonization factor antigen enterotoxigenic Escherichia coli vaccine. Vaccine 11:929–934.
3. Bergquist, C., E.-L. Johansson, T. Lagergård, J. Holmgren, and A. Rudin. 1997. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect. Immun. 65:2676–2684.
4. Bisping, G., N. Lagering, S. Lutke-Brintrup, H. G. Paule, G. Schrummann, W. Domschke, and T. Kucharzík. 2001. Patients with inflammatory bowel disease (IBD) reveal increased induction capacity of intracellular interferon-γ (IFN-γ) in peripheral CD8+ lymphocytes co-cultured with intestinal epithelial cells. Clin. Exp. Immunol. 123:15–22.
5. Chatterjee, H., S. Jagdish, D. Pai, N. Satish, D. Jayadev, and P. S. Reddy. 2001. Changing trends in outcome of typhoid ileal perforations over three decades in Pondicherry, Trop. Gastroenterol. 22:155–158.
6. Forrest, B. D. 1992. Indirect measurement of intestinal immune responses to an orally administered attenuated bacterial vaccine. Infect. Immun. 60:2023–2029.
7. Gaines, S., H. Sprinz, J. G. Tally, and W. D. Tigges. 1968. Studies on infection and immunity in experimental typhoid fever. VII. The distribution of Salmonella typhi in chimpanzee tissue following oral challenge, and the relationship between the numbers of bacilli and morphologic lesions. J. Infect. Dis. 118:293–300.
8. Germanier, R., and E. Furer. 1975. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 131:553–558.
9. Hornick, R. B., S. E. Greisman, T. E. Woodward, H. L. DuPont, A. T. Hawkins, and M. J. Snyder. 1970. Typhoid fever: pathogenesis and immunologic control. N. Engl. J. Med. 282:686–691, 739–746.
10. Ikekda, Y., F. Akbar, H. Matsui, and M. Onji. 2001. Characterization of antigen-presenting dendritic cells in the peripheral blood and colonic mucosa of patients with ulcerative colitis. Eur. J. Gastroenterol. Hepatol. 13:841–850.
11. Jertborn, M., A.-M. Svennerholm, and J. Holmgren. 1986. Saliva, breast milk, and serum antibody responses as indirect measures of intestinal immunity after oral cholera vaccination or natural disease. J. Clin. Microbiol. 20:203–209.
12. Jertborn, M., A.-M. Svennerholm, and J. Holmgren. 1992. Safety and immunogenicity of an oral recombinant cholera B subunit-whole cell vaccine in Swedish volunteers. Vaccine 10:130–132.
13. Jertborn, M., A.-M. Svennerholm, and J. Holmgren. 1996. Intestinal and systemic immune responses in humans after oral immunization with a bivalent B subunit-O1/O139 whole cell cholera vaccine. Vaccine 14:1459–1465.
14. Kantele, A. 1990. Antibody-secreting cells in the evaluation of the immunogenicity of an oral vaccine. Vaccine 8:321–326.
15. Kantele, A., M. Häkkinnen, Z. Moldoveanu, A. Lu, E. Savilahti, R. D. Alvarez, S. Michalek, and J. Mestecky. 1998. Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentality within the common mucosal immune system in humans. Infect. Immun. 66:5630–5635.
16. Kantele, A., and P. H. Mäkelä. 1991. Different profiles of the human immune response to primary and secondary immunization with an oral Salmonella typhi ty21 vaccine. Vaccine 9:423–427.
17. Karem, K. L., S. Kanangat, and B. T. Rouse. 1996. Cytokine expression in the gut associated lymphoid tissue after oral administration of attenuated Salmonella vaccine strains. Vaccine 14:1495–1502.
18. Kilhamn, J., H. Brevinge, A.-M. Svennerholm, and M. Jertborn. 1998. Immune responses in ileostomy fluid and serum after oral cholera vaccination of patients colectomized because of ulcerative colitis. Infect. Immun. 66:385–399.
19. Kraus, M. D., B. Amatya, and Y. Kimura. 1999. Histopathology of typhoid enteritis: morphologic and immunophenotypic findings. Mod. Pathol. 12: 949–955.
20. Levine, M. M. 1999. Typhoid fever vaccines, p. 78–814. In S. A. Plotkin and W. A. Orenstein (ed.), Vaccines. W. B. Saunders, Philadelphia, Pa.
21. Li, A., T. Pal, U. Forsum, and A. A. Lindberg. 1992. Safety and immunogenicity of the live oral auxotrophic Shigella flexneri SFL124 in volunteers. Vaccine 10:395–404.
22. Lundin, B. S., C. Johansson, and A.-M. Svennerholm. 2002. Oral immunization with a Salmonella enterica serovar Typhi vaccine induces specific circulating mucosa-homing CD4+ and CD8+ T cells in humans. Infect. Immun. 70:5622–5627.
23. Nordström, I., M. Quinding, B. Kjellson, A. Kila, E. Ahlfors, J. Holmgren, and C. Czerkinsky. 1990. Thermolysin treatment: an improved dispersion technique for isolating functional lymphoid cells from human intestinal tissues, p. 103–104, In T. T. MacDonald, S. J. Chalchamme, P. W. Bland, C. R. Stokes, R. V. Heatley, and A. Mowat (ed.), Advances in mucosal immunology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
24. Salerno-Gonzalves, R., M. F. Pasetti, and M. B. Sztein. 2002. Characterization of CD8+ effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J. Immunol. 169:2196–2203.
25. Svennerholm, A.-M., M. Jertborn, L. Gotheors, A. M. Kariim, D. A. Sack, J. and Holmgren, 1984. Mucosal antiscl and antibacterial immunity after cholera disease and after immunization with a combined B subunit-whole cell vaccine, J. Infect. Dis. 149:884–893.
26. Sztein, M. B., S. S. Wasserman, C. O. Tacket, R. Edelman, D. Hone, A. A. Lindberg, and M. M. Levine. 1994. Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J. Infect. Dis. 170:1508–1517.
27. Tacket, C. O., G. Losonsky, D. N. Taylor, L. S. Baron, D. Kopceko, S. Cryz, and M. M. Levine. 1991. Lack of immune response to the Vi component of a Vi-positive variant of the Salmonella typhi live oral vaccine strain Ty21a in human studies. J. Infect. Dis. 163:901–904.
28. Tagliabue, A., L. Nencioni, A. Caffarena, L. Villa, D. Boraschi, G. Cazzola, and S. Cavaliere. 1985. Cellular immunity against Salmonella typhi after live oral vaccine. Clin. Exp. Immunol. 62:242–247.
29. Takesue, Y., Y. Sakashita, S. Akagi, Y. Murakami, H. Ohge, Y. Inamura, Y. Horikawa, and T. Yokoyama. 2001. Gut transit time after ileal pouch-anal anastomosis using a radiopaque marker. Dis. Colon Rectum 44:1808–1813.
30. Virut, J. F., D. Favre, B. Wegmuller, C. Herzog, J. U. Que, S. J. Cryz, and A. P. Lang. 1999. Mucosal and systemic immune responses in humans after primary and booster immunizations with orally administered invasive and non invasive live attenuated bacteria. Infect. Immun. 67:3680–3685.