Adverse health correlates of intimate partner violence against older women: Mining electronic health records

Serhan Yılmaz1, Erkan Gunay2, Da Hee Lee3, Kathleen Whiting4, Kristin Silver5, Mehmet Koyuturk1,6, Gunnur Karakurt7*

1 Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, United States of America, 2 Emergency Department, Şişli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey, 3 Osteopathic Medicine and Public Health, Des Moines University, Des Moines, IA, United States of America, 4 Neuroscience Program, Uniformed Services University, Washington, DC, United States of America, 5 Behavioral Health, Center of Outpatient Education, VA Northeast Ohio Healthcare System, Cleveland, OH, United States of America, 6 Center for Proteomics & Bioinformatics, Case Western Reserve University, Cleveland, OH, United States of America, 7 Department of Psychiatry, Case Western Reserve University, Cleveland, OH, United States of America

* gkk6@case.edu

Abstract

Intimate partner violence (IPV) is often studied as a problem that predominantly affects younger women. However, studies show that older women are also frequently victims of abuse even though the physical effects of abuse are harder to detect. In this study, we mined the electronic health records (EHR) available through IBM Explorys to identify health correlates of IPV that are specific to older women. Our analyses suggested that diagnostic terms that are co-morbid with IPV in older women are dominated by substance abuse and associated toxicities. When we considered differential co-morbidity, i.e., terms that are significantly more associated with IPV in older women compared to younger women, we identified terms spanning mental health issues, musculoskeletal issues, neoplasms, and disorders of various organ systems including skin, ears, nose and throat. Our findings provide pointers for further investigation in understanding the health effects of IPV among older women, as well as potential markers that can be used for screening IPV.

Introduction

Intimate Partner Violence (IPV) is a devastating public health problem and affects millions of women globally each year. According to recent statistics, about a quarter of women in the US experience severe physical violence from their partner in their lifetime [1]. This rate varies from 15 percent to 71 percent around the world [2]. IPV can be broadly defined as “abusive behaviors perpetrated by someone who is or was involved in an intimate relationship with the victim” [1]. IPV involves physical, emotional, sexual harm to the victim-survivor [1, 3]. Other common forms of abuse include psychological/emotional maltreatment through behaviors that causes emotional pain or injury with verbal threats, berating, harassment, or intimidation,
economic deception, and willful negligence [4–6]. The reported adverse health effects of IPV extend from minor injuries and cuts, chronic conditions to acute severe injuries, and even death [7–10]. Past research additionally indicated that mental health-related issues such as depression, anxiety, post-traumatic stress disorder (PTSD), substance abuse, and suicide are widely observed among survivors of IPV [11, 12].

IPV has been studied mainly as a problem that predominantly affects younger women. The U.S. Department of Health and Human Services recommends IPV screening for women and girls ages 15–46. While much evidence exists documenting the most severe forms of relationship violence that are directed against women of childbearing age, older women are also vulnerable to IPV at an increasing rate [7, 13, 14]. Older adult women report that nonphysical abuse can also be harmful to the victim’s mental and physical health [15]. Neglect, defined as the failure of a caregiver to fulfill his/her duties, including behaviors such as withholding food or medication, also affects older women and can also have detrimental health effects [4, 6].

It can be challenging to detect the physical effects of IPV among older women, since they are naturally more prone to injury and ailment [8, 16]. Furthermore, as health declines over the years, health care providers may mistake the signs of abuse as normal wear and tear to physical and mental health. Limited research on the health of older female victims of partner violence shows that health problems reported by older women are concordant with the general population [10, 17]. Older women who report nonphysical abuse such as seclusion or exclusion, financial exploitation also report that these forms of abuse adversely affects their well being [5, 15, 18]. However, there is limited information on the specific health consequences of IPV on aging women [19–21]. In this paper, we aim to identify health correlates of IPV that are specifically common in older adult women.

A complicating factor for researchers and service professionals is the lack of coordination between the fields of IPV and older adult abuse. The lack of conceptual clarity on older women abuse intersecting with IPV presents many challenges to understanding victims’ experiences and providing necessary support [22]. Barriers to diagnosis and treatment include the victim’s fear of reprisal by the abuser, victim denial or shame, inexperience and lack of knowledge by health care personnel, and the ageist attitude of society [16]. Furthermore, older adult women who are being abused may not be as familiar with the language or concepts used to describe violence and may not have the willingness or ability to disclose such events [23]. Finally, the victim may feel too ashamed to admit the abuse is occurring or may be frightened by the prospect of living alone after many years of co-dependence [23]. All these barriers make this population harder to reach and may prevent the victim from asking for help or making any progress toward leaving their abuser. For these reasons, identification of potential health-related markers of IPV in older women can also be useful for clinicians, care providers, and service professional to identify potential signs of IPV and develop strategies to follow up accordingly.

We take a data-driven approach to identify the health correlates of IPV against older women. Specifically, we aim to answer the following questions:

1. What are the conditions that are observed commonly in women (particularly older women) who suffer from IPV?
2. Which of these conditions are more frequently observed in older women as compared to younger women?

To answer these questions, we utilize electronic health records (EHRs) provided by the IBM Explorys Therapeutic Dataset [24]. IBM Explorys is a private Electronic Health Record (EHR) database, which pools data from more than 8 billion ambulatory visits to more than 40
US healthcare networks including diverse institutions and points of care [25]. It is a browser-based search engine with query options of various diagnostic categories based on ICD-9/10 codes. Cohorts include data on diagnoses, findings, and demographics. In this paper, we use diagnostic data we obtain by querying this tool. Throughout this paper, we refer to diagnoses, findings, and demographics returned by Explorys as "terms".

Records for patients 18 years or older seen in multiple healthcare systems from 1999 to 2019 are included in the database. Data are standardized and normalized using common ontologies, searchable through a HIPAA-compliant, patient de-identified web application (Explore; Explorys Inc). The diversity of pooled data in IBM Explorys is aimed at reflecting the full real-world healthcare continuum, while the large patient cohort enhances statistical power. Moreover, it allows flexible queries to acquire data that represent a specific population (such as older women who suffer from IPV). To identify records that belong to older women, we query the database for women age 65 and over. Accordingly, we use the term "older adult" throughout the paper to indicate adults with the chronological age 65 and over.

While the richness of data and the flexibility of queries in IBM Explorys provide unprecedented opportunities for mining data to identify previously unreported associations, there are important computational and statistical challenges due to the employed privacy measures: (i) IBM Explorys does not provide access to individual records and allows querying of the records only in the form of number of records, and (ii) the number of records provided in query results are rounded to the nearest ten, posing further challenges to assess statistical significance because of the additional uncertainty due to. For these reasons, it is not straightforward to accurately identify associated diagnostic terms and/or conditions in a robust manner using IBM Explorys data.

Here, we develop a general framework that is designed to utilize EHR data (specifically from IBM Explorys) to identify conditions that exhibit stronger association with the condition of interest (intimate partner violence) in one population (e.g., older women) as compared to another population (e.g., younger women). We refer to such conditions as differentially co-morbid. To address the challenges that stem from the privacy measures of Explorys while providing a robust and easy-to-interpret framework, we: (i) systematically quantify the association of each condition with a target condition of interest (e.g., IPV) in a data-agnostic manner, (ii) compute confidence intervals that take into account the overall rarity of the conditions and the errors to ensure statistical rigor, and (iii) classify the conditions into categories (e.g., high, medium, low prevalence) to provide easy to interpret results. This framework is illustrated in Fig 1.

Materials & methods

Data collection

IBM Explorys Therapeutic Dataset provides the Explorys Cohort Discovery tool which allows the submission of a query by specifying demographic criteria and/or keywords (for findings or diagnoses) to acquire a subpopulation. As a response, the cohort discovery tool forms a cohort that contains the number of records in the specified subpopulation for each finding and/or diagnosis terms in the database. Throughout this paper, we refer to these diagnoses as terms.

We investigate the potential health correlates of IPV in two populations: (i) Older women population of 65+ years of age and Background (BG) population of women 18–65 years of age. We query the Explorys Cohort Discovery tool to generate cohorts of interest (provided as S1 Data) corresponding to these two populations (Fig 1a), which are specified as follows:
• **BG Cohort**: All records of women 18–65 years of age with a diagnosis of a disease.

• **IPV Cohort**: All records of women 18–65 years of age containing “Domestic Abuse” in the findings field. It correspond to a subpopulation of the BG Cohort having IPV.

• **Senior Cohort**: All records of women 65+ years of age with a diagnosis of a disease.

• **SeniorIPV Cohort**: All records of women 65+ years of age containing “Domestic Abuse” in the findings field. It correspond to a subpopulation of the Senior Cohort having IPV.

Querying and cohort formation

We ran all queries in June 2019. Each query result (i.e., cohort) X contains the following information: (1) Cohort size N_X indicating the total number of records in X, (2) a list of terms T (there are around 18000 terms in the database), and (3) a frequency table $f_X(t)$ that contains for each term $t \in T$ the number of records $f_X(t)$ identified with t (Fig 1b). We provide the frequency tables of all cohorts in S1 Data. To denote the number of records in a population of interest Z (Senior or BG), we use the following notation:

- N_Z: Total number of records in population Z.
- $N_Z(IPV)$: Number of records in population Z having “Domestic Abuse” as a finding. This number is equal to cohort sizes N_{IPV} and $N_{SeniorIPV}$ respectively for BG and senior populations.
• N_Z(t): Number of records diagnosed with t in population Z. This is directly obtained from term frequency table f_Z.

Assessment of co-morbidity

Constructing contingency tables. For each population of interest Z (Senior or BG) and term t, we construct a 2 × 2 contingency table (Fig 1c). This table contains the number of records in Z for all combinations of the existence and absence of IPV and term t variables, i.e.:

- N_Z(t, IPV): Number of records diagnosed with t and has “Domestic Abuse” as a finding. This number is directly obtained from term frequency table of IPV for population Z.
- N_Z(¬t, IPV) = N_Z(IPV) − N_Z(t, IPV): Number of records in population Z not diagnosed with t but contains “Domestic Abuse” as a finding.
- N_Z(t, ¬IPV) = N_Z(t) − N_Z(t, IPV): Number of records in population Z diagnosed with t but does not contain “Domestic Abuse” as a finding.
- N_Z(¬t, ¬IPV) = N_Z(t) + N_Z(¬t, IPV) − N_Z(IPV) − N_Z(t): Number of records in population Z not diagnosed with t and does not contain “Domestic Abuse” as a finding.

Computing co-morbidity scores. For population Z (either senior or background), we consider a term t to be co-morbid if, in this population, IPV and t are significantly more frequently observed together rather than separately. We quantify this using the co-morbidity score C(t|Z), which is defined as the log-odds ratio LOR(t, IPV|Z):

\[
LOR(t, IPV|Z) = \text{log}\left(\frac{N_Z(t, IPV)N_Z(¬t, ¬IPV)}{N_Z(¬t, IPV)N_Z(t, ¬IPV)}\right)
\]

\[
= \text{log}_2(N_Z(t, X)) + \text{log}_2((N_Z - N_Z(t) - N_Z(IPV) + N_Z(t, IPV))
\]

\[\quad - \text{log}_2(N_Z(t) - N_Z(t, IPV)) - \text{log}_2(N_Z(IPV) - N_Z(t, IPV)) \]

(1)

As shown in Fig 1d, LOR(t, IPV|Z) increases monotonically as the frequency of term t in Z\IPV subpopulation goes up compared to the frequency of term t in Z\IPV subpopulation.

Accounting for variance. To account for the variability in the estimation of LOR(t, IPV|Z), we compute a standard error SE(t, IPV|Z) as follows:

\[
SE(t, IPV|Z) = \sqrt{\frac{1}{N_Z(t, IPV)} + \frac{1}{N_Z(¬t, IPV)} + \frac{1}{N_Z(t, ¬IPV)} + \frac{1}{N_Z(¬t, ¬IPV)}} \ln(2)
\]

(2)

Next, we compute 1−α level confidence interval as follows:

\[
LOR_{\text{min}}(t, IPV|Z) = LOR(t, IPV|Z) - z_αSE(t, IPV|Z)
\]

\[
LOR_{\text{max}}(t, IPV|Z) = LOR(t, IPV|Z) + z_αSE(t, IPV|Z)
\]

(3)

where \(z_α \) is a critical value obtained from normal inverse cumulative distribution (e.g., \(z_0.05 = 1.96 \) for \(α = 0.05 \)). Throughout this paper, we use \(α = 0.05 \) and 95% confidence intervals to determine the statistical significance of the terms.

Accounting for measurement error due to rounding. The confidence interval shown in Eq 3 accounts for variance but does not take into account the measurement error due to
rounding of the number of records. For example, if Explorys returns the number of records $N_t(t, IPV) = 10$ for a term t, this indicates the actual number of records can be anywhere between 5 and 15. For terms with relatively low frequencies, this can potentially alter the log-odds ratio a substantial amount. In order to take the additional uncertainty due to rounding into account, we compute an augmented confidence interval using a Monte-Carlo simulation: First, we sample each number of records N_t from $[N_t-5, N_t+5]$ uniformly at random and take 100 samples. Next, we use multiple imputation methods [26] to get an estimate of a standard error on LOR that accounts for the rounding of the counts as follows:

1. For each sample i separately, compute the $LOR_{(i)}(t, IPV|Z)$ and the corresponding standard error $SE_{(i)}(t, IPV|Z)$
2. Compute the corrected log odds ratio $LOR(t, IPV|Z) = \sum_{i=1}^{100} LOR_{(i)}(t, IPV|Z)/100.$
3. Compute within variability $V(t, IPV|Z) = \sum_{i=1}^{100} SE_{(i)}^2(t, IPV|Z)/100.$
4. Compute between variability $B(t, IPV|Z) = \sum_{i=1}^{100} (LOR(t, IPV|Z) - LOR_{(i)}(t, IPV|Z))^2/99.$
5. Compute the corrected standard error $SE(t, IPV|Z) = \sqrt{V(t, IPV|Z) + \frac{100}{101} B(t, IPV|Z)}$

The confidence intervals are then computed with standard errors corrected for the rounding of the numbers.

Accounting for detection bias in health records. We suspect that EHR databases and hospital records may suffer from a detection bias due to difficulties in diagnosis (e.g., if a severe condition is detected, more medical tests may be performed which can lead to the detection of more terms. Otherwise, there is less attention and many terms go unnoticed). Thus, if not addressed, this bias could lead to an over-estimation in our co-morbidity scores (log-odds ratios) [27]. To help address this issue, we make an estimate μ of the detection bias on the log odds ratios by looking at the distribution of the co-morbidity scores across all terms (see Fig 2). Based on this estimation, we compute a corrected co-morbidity score $\hat{C}(t|Z)$ that takes

![Fig 2. The distributions of co-morbidity and differential co-morbidity scores in Senior and Background (BG) populations. (Left & Middle panels) The distribution of the raw co-morbidity scores (i.e., odds ratios) for all terms in Senior and Background populations. The geometric mean of the co-morbidity scores across all terms is used to determine the null level accounting for the detection bias (OR=3 is the mean across all terms as opposed to the OR = 1 natural level). The null hypothesis thresholds to determine Minor/Moderate/High co-morbidity terms are marked on the histograms (OR = 3/5/10). (Right panel) The distribution of the differential co-morbidity scores for all terms. Since there is not a notable shift in the histogram, OR = 1 is considered as the null level for differential co-morbidity. OR: Odds ratio.](https://doi.org/10.1371/journal.pone.0281863.g002)
into account a detection bias of level μ as follows:

$$\tilde{C}(t|Z) = C(t|Z) - \mu$$

(4)

Thus, we consider OR=μ as a more appropriate null hypothesis level (as opposed to “OR = 1” natural level) in the presence of a detection bias of magnitude μ. To estimate the magnitude of the detection bias μ, we consider the geometric average of the raw co-morbidity scores over all terms as a guideline (mean odds ratio is respectively: 3.16 and 3.18 for Senior and Background populations, Fig 2). Thus, we consider $\mu = 3$ as the null level indicating no co-morbidity. Here, our reasoning is that if all terms exhibit a strong association (as indicated by the mean co-morbidity score), this association is likely not due to an inherent co-morbidity in the population, but rather is related to record keeping or the detection of the terms (for example, if a patient has a severe condition like IPV, more inquiry and more medical tests may be applied, thus leading to a greater fraction of the terms to be detected).

Accounting for multiple comparisons. Our aim in this study is to identify terms with highest co-morbidity and estimate a lower bound on their effect size. For this purpose, we utilize confidence intervals (CIs) and rank the terms according to the lower bound of their interval. However, this process causes a multiple comparisons problem: After such a sorting is applied and top terms are taken, the confidence intervals are no longer valid (not valid in the sense that lower bound of the interval no longer imply statistical significance). To overcome this issue, we aim to bound the false discovery rate (FDR) of the findings (note that we aim to bound FDR as opposed to the family-wise error rate to avoid being overly stringent while determining the significant terms, thus we bound the average number of false discoveries and not the probability of making a false discovery). For this purpose, we utilize the Benjamini-Hochberg (BH) procedure [28] in combination with a more recent work [29] that correct the false coverage rate (FCR) of the confidence intervals for a given selection of significant items obtained from BH procedure (shortly BH-selected FCR corrected CIs). This process goes:

1. Determine a null hypothesis (e.g., OR = 1) and compute p-values.
2. Apply BH-procedure and find significant terms at α level. Suppose R out of M terms are deemed significant.
3. Correct the CIs of these significant terms, simply by constructing a CI at $1-\alpha R/M$ level (instead of at $1-\alpha$ level).

Here, to avoid specifying a fixed null hypothesis (from which we could only learn that null hypothesis is satisfied or not), we extend this process for a series of null hypotheses: OR = μ^*. As the null level μ^*, we practically consider all levels (sampled logarithmically in 0.01 intervals) and apply BH-procedure for each level μ^*. Next, for each term t, we find the highest $\mu^*(t)$ a term would be deemed significant (after BH correction) and construct the corresponding FCR corrected confidence intervals. Note that, the lower bound of these corrected intervals (equal to $\mu(t)$) answers the question:

- “What is the maximum level μ^* a term t would be deemed significant after correcting for FDR?”

Thus, this allows us to avoid relying on arbitrary significance thresholds (e.g., OR = 10), and allows us to answer questions like “Which terms would no longer be deemed significant if we selected the significance threshold to be OR = 10.1 instead?” simply by looking at the confidence intervals. To summarize, the process that we apply to take into account of multiple comparisons is as follows:
1. Repeat BH-procedure for testing \(OR = \mu^* \) for all logarithmically spaced \(\mu^* \) with 0.01 intervals (in log2 base).

2. For each term \(t \), find the maximum \(\mu(t) \) a term \(t \) would be deemed significant at \(\alpha = 0.05 \) level (after the BH-procedure), and take note of the number of terms \(R(t) \) that are identified as significant at \(\mu(t) \) level.

3. Sort the terms in descending order according to \(\mu(t) \).

4. For each term, construct confidence intervals at \(1 - \alpha R(t)/M \) level that are corrected to bound FDR (for the most significant top \(k \) terms for any \(k \)). Since the distribution of log-odds ratio is symmetric and we know the lower bound \(\mu(t) \), the upper bound of this interval can also be obtained from \(\sqrt{2LOR(t|IPV|Senior) - \log_2(\mu(t))} \).

Assessment of differential co-morbidity

One of the objectives of this study is to uncover terms that are frequently observed together with IPV in older women population more so than the background population. To this end, we compute a differential co-morbidity score \(DC(t) \) (Fig 1e) compared to the background (BG) population:

\[
DC(t) = C(t|Senior) - C(t|BG) = LOR(t, IPV|Senior) - LOR(t, IPV|BG)
\]

(5)

Since the older women and background populations are independent, the standard error of the differential co-morbidity for term \(t \) can be computed as follows:

\[
\sigma(t) = \sqrt{SE^2(t, IPV|Senior) + SE^2(t, IPV|BG)}
\]

(6)

Using the standard error, we compute the corrected confidence intervals for the differential co-morbidity as detailed in "Accounting for multiple comparisons" section. Overall, we consider a term \(t \) to be differentially co-morbid with high confidence if \(DC_{min}(t) \) is greater than zero. Otherwise, we conclude that it has a low confidence level to make a judgement.

Experimental setting

The datasets obtained from IBM Explorys system contain information about a total of 18863 terms. We assess the co-morbidity of these terms with IPV in the older women population as well as the background (BG) population. For each term \(t \), we compute co-morbidity scores \(C(t|Senior) \), \(C(t|BG) \) and the differential co-morbidity score \(DC(t) \) for the difference between senior and background populations. For each co-morbidity score, we compute the corresponding 95% augmented confidence intervals (corrected to bound the false discovery rate) to assess the statistical significance. We consider a co-morbidity score to be invalid if the confidence interval does not have a finite range (e.g., when the term frequency is zero in one or more cohorts).

To make the interpretation of the results easier, we consider three null levels for the co-morbidity scores (OR = 3/5/10) and label the significant findings (at \(\alpha = 0.05 \) level after accounting for FDR via BH-procedure) as respectively Minor/Moderate/Highly co-morbid terms. Note that, for Minor co-morbidity, the null level is selected to be OR = 3 (as opposed to OR = 1) to take into account the detection bias.
Results

Medical terms that are co-morbid in older victims of IPV

We identify 2057 and 5464 valid terms for older women (senior) and background populations respectively (2039 of these are valid for both). The difference in the number of valid terms is likely due to the difference in cohort sizes as the background population has around 2.5 times more number of records than the older women population (13164960 vs. 5253320).

First, we start by investigating the terms that are statistical significant (for null hypothesis $\text{OR} = 1$, $\alpha = 0.05$, after FDR is bounded using BH-procedure) and we observe a rather interesting result: In both populations, almost all valid terms are deemed statistically significant (4664 terms for background, and 1681 terms for senior population). To investigate whether this is a result of a detection bias in our dataset, we examine the distribution of the co-morbidity scores across all terms in Fig 2. As it can be seen, the distribution of the co-morbidity scores are considerably shifted to the right and are approximately centered around $\text{OR} = 3$ for both senior and background populations (geometric mean for the odds ratio is respectively: 3.16 [1.42, 5.66] and 3.18 [1.84, 4.79] for senior and background populations). This suggests that $\text{OR} = 3$ can be considered as a more natural null level for assessing the co-morbidity with IPV in this dataset, explaining why there are so many significant terms when tested for $\text{OR} = 1$. Note that, we do not observe any notable shift in the distribution of the differential co-morbidity scores (Fig 2 right panel) since the effect of the bias seems approximately equal for senior and background populations which cancels out when we take the difference.

Overall, when we look at the terms with high co-morbidity, we identify respectively 199, 64 and 13 terms with minor, moderate and high co-morbidity in the senior population (and 905, 420 and 165 terms in the background population). Here, we mainly focus on the highly co-morbid terms in the senior population and report the top 20 terms in Table 1 sorted by the minimum bound of their 95% confidence intervals (after they are corrected to bound the false coverage rate). We provide the remaining terms identified as co-morbid in S2 Data. For each term, we provide both the raw co-morbidity scores and their corrected versions where the expected portion of the association due to detection bias is removed (by dividing the raw co-morbidities to $\text{OR} = 3$).

In Fig 3, we visualize the significant findings and compare their co-morbidities in senior and background population. We observe that while most of the terms that are highly co-morbid in senior population are also highly co-morbid in background population, there are some terms with notably higher co-morbidity in the senior population. Next, we focus on such terms exhibiting differential co-morbidity.

Terms with a higher co-morbidity in older victims of IPV compared to younger victims

We find that there are 162 terms with significant differential co-morbidity (exhibiting higher association with IPV in the older women population). Since there is a large number of findings and these consist of many similar terms (e.g., there is a term for “severe depression” and another for “severe major depression”), we manually annotate and group these based on their general categories and report a few selected term from each category in Table 2. Note that, while making this selection, we take into account of borderline cases by looking at their confidence intervals and also consider the overall co-morbidity of the terms in background and senior populations. Here, we mainly focus on the terms that exhibit significant co-morbidity in senior population in addition to being deferentially co-morbid (corresponding to upper right side in Fig 3). We provide the remaining terms and their assigned categories in S3 Data.
Discussion

Much of the past research on IPV is based on data from younger women. However, recent studies demonstrated that the older women in growing numbers are also often victims of physical and nonphysical forms of IPV (e.g., emotional, psychological and economic abuse) [7, 13, 14, 30, 31]. Our aim in this study was to investigate the health correlates of IPV among older women. We presented a general framework that is designed to utilize electronic health record (EHR) data to identify health correlates of a condition of interest (e.g., IPV) that is specific to a target population (e.g., older women). We mined the EHR data that is available through IBM Explorys, a database containing demographic and diagnostic information gathered from diverse institutions across the United States. The data is analyzed by systematically assessing associations of medical terms, computing confidence intervals that take into account the rounding errors, and classifying the terms into confidence levels.

Based on the analysis in our previous study [27] and looking at the distributions of the co-morbidity scores (in Fig 2), we reason that the over-population of the terms deemed as significant using the standard approach (i.e., testing for $OR = 1$ at 0.05 level accounting for FDR) is likely because of a detection bias in the health records. The presence of a severe condition like IPV would naturally warrant more exploration during the screening and this can result in more terms to be detected (including those that would otherwise undetected). Thus, this can cause an artificial association with IPV that is not representative of the inherent population.
Our initial analyses regarding the co-morbid terms in Senior population indicated that substance abuse and poisoning associated with substances are significantly co-morbid with IPV in older women (Table 1). This finding is particularly strong in that 17 of the top 20 terms that are co-morbid with IPV are substance abuse related, while the remaining 3 are directly associated with abuse (history of abuse, maltreatment syndromes, and history of physical abuse). It is important to note that screening for substance abuse and medication overuse among older women with a history of IPV is critical since these terms are highly correlated.

In contrast to terms with significance co-morbidity with IPV, terms with significant differential co-morbidity with IPV (in older women as compared to the background population) were more diverse (Table 2). Specifically, we identified 161 diagnostic terms that exhibited a significantly stronger association with IPV in older women as compared to the background population. These terms included history of abuse, those related to mental health (21 terms) and substance use issues (5), neoplasm, tumors and growths (26 terms), musculoskeletal issues (25 terms), disorders (20 terms), skin problems (11 terms), ear, nose and throat issues (11 terms), inflammation (7), neurological conditions (6), immune problems (5), women’s health (OB-GYN) (5 terms), infectious disease (4 terms), procedures (4 terms), eye disease (3 terms), drug interactions (3 terms), acute conditions (2 terms) and other conditions (3 terms).

Our detailed analysis indicated that mental health conditions such as major depression in partial remission, adjustment disorder with mixed emotional features, chronic post-traumatic stress disorder, anxiety disorder, mood disorder are more likely to occur among older women who have been abused by their partners as compared to younger women. Also continuous opioid dependence, and alcohol intoxication were also found to be differentially co-morbid with IPV in older women as compared to the background population. Past research reports that IPV is associated with an increased likelihood of clinical depression and suicide attempts.
Table 2. Terms that exhibit higher co-morbidity with IPV in older women population compared to the background (BG) population. For each term, we provide the co-morbidity scores for Senior and BG populations (after correcting for detecting bias), and the differential co-morbidity score. For each co-morbidity score, we report the following: The point estimate (odds ratio), 95% augmented confidence interval corrected to bound FDR, and the corresponding co-morbidity level. The co-morbidity levels are abbreviated: H for high, M for moderate, and m for minor. All 20 reported terms are identified as differentially co-morbid with high confidence (this indicates that they exhibit higher association with IPV in older women population compared to the BG population in a statistically significant manner). See S3 Data for a full list of terms identified as significant and their assigned categories. OR: Odds ratio, IPV: Intimate partner violence.

Category	Term Description	Corrected Co-morbidity in Population Z	Differential Co-morbidity	Number of Records						
		Senior	Background (BG)	Senior vs. BG	BG	IPV	Senior	Senior IPV		
Drug Interactions	Poisoning caused by anticonvulsant	16.8	[5.4, 52.2] H	4.7	3.61	[1.27, 10.25]	26920	190	5100	20
Substance Use Issues	History of abuse	30.5	[9.3, 99.8] H	5.7	5.38	[1.58, 18.32]	36660	310	2780	20
Substance Use Issues	Continuous opioid dependence	13.0	[4.3, 39.0] H	3.6	3.64	[1.26, 10.51]	25590	140	6750	20
Substance Use Issues	Alcohol intoxication	9.8	[3.5, 27.5] H	4.1	2.38	[1.02, 5.55]	68940	420	8650	20
Mental Health	Chronic post-traumatic stress disorder	9.4	[4.0, 21.9] H	3.5	2.68	[1.24, 5.82]	136510	680	14260	30
Mental Health	Major depression in partial remission	5.2	[2.1, 12.8] M	1.2	4.30	[1.31, 14.15]	31750	60	16870	20
Muscle Skeletal Issues	Adjustment disorder with mixed emotional features	3.9	[1.6, 9.5] m	1.1	3.62	[1.25, 10.44]	77440	130	22080	20
Mental Health	Generalized anxiety disorder	1.9	[1.3, 2.8] m	1.1	1.70	[1.10, 2.63]	578410	910	211620	80
Mental Health	Chronic mood disorder	1.9	[1.3, 2.9] m	1.2	1.55	[1.01, 2.39]	473480	830	176180	70
Mental Health	Anxiety disorder	1.7	[1.2, 2.3] m	1.2	1.40	[1.02, 1.92]	1718770	2420	624790	170
Disorders	Injury of ligament of hand	4.9	[1.9, 12.2] M	2.0	2.48	[1.02, 5.98]	90940	270	17730	20
Disorders	Synovitis	1.8	[1.0, 3.0] m	0.8	2.32	[1.19, 4.35]	188300	220	101300	40
Disorders	Acquired deformity of joint of foot	1.4	[0.9, 2.2]	0.5	2.64	[1.31, 5.33]	176850	150	159380	50
Disorders	Hypoglycemia	2.1	[1.1, 3.8] m	1.1	1.96	[1.00, 3.86]	104830	170	64730	30
Disorders	Developmental disorder	2.3	[1.0, 5.0] m	0.8	2.86	[1.12, 7.30]	425210	510	36860	20
Disorders	Nutritional disorder	1.0	[0.8, 1.3]	0.5	2.01	[1.31, 3.10]	1289750	950	980750	170
Disorders	Vitamin D deficiency	0.9	[0.7, 1.2]	0.5	1.99	[1.28, 3.10]	911940	640	669660	120
Skin Problem	Tinea pedis	2.4	[1.1, 5.5] m	0.8	3.22	[1.15, 9.03]	67660	80	34850	20
Infectious disease	Infectious disease of lung	1.9	[1.1, 3.2] m	0.9	2.09	[1.08, 4.03]	78290	110	96360	40
Women’s Health	Pelvic injury	1.8	[1.1, 3.0] m	1.0	1.76	[1.01, 3.07]	612530	890	102340	40
Neurological	Migraine	1.6	[1.1, 2.4] m	0.9	1.80	[1.12, 2.87]	1122900	1390	208030	70
Neoplasm/Tumor	Neoplasm of stomach	1.7	[0.8, 3.6]	0.4	4.75	[1.21, 18.72]	35500	20	51160	20
ENT issues	Posterior rhinorrhea	1.4	[0.7, 2.9]	0.5	3.10	[1.12, 8.56]	96150	70	59130	20
Inflammation	Pharyngitis	1.3	[0.9, 1.8]	0.7	1.75	[1.10, 2.78]	1893860	1830	263480	70

Among women in general [11]. A systematic exploration of the predominant mental health conditions of older women abuse and psychological well-being demonstrates that depression, anxiety, and post-traumatic stress disorder are among prevalent problems [32]. Also, in-depth interviews conducted with abused women aged from 63 to 79 found that older abused women are more prone to symptoms related to mental health issues like anxiety, depression, and negative view of self [33]. Similarly, clinical and case-controlled studies indicated poor mental health, particularly depression and dementia as common problems in geriatric clinics among abused older people [34]. It is possible that these conditions are partially related to the isolation of older adults [35, 36]. Moreover, the isolation coupled with IPV likely makes older people more prone to depression. Specifically, we observe that older victims of IPV suffer from major depression roughly 4 times more than younger women (95% confidence interval: [1.35, 11.71]).

Findings also indicated that musculoskeletal issues such as acquired deformity of joint of foot, acquired deformity of the lower limb, injury of ligament of hand, flexion deformity,
polyarthropathy are terms that are more prevalent in the older IPV victims population as compared to the background population (Table 2). This is also consistent with prior research reporting that older adults may come into the emergency department due to fall injuries that could be linked to IPV. Although older women are naturally prone to musculoskeletal issues and osteoporosis resulting in loss of mobility and physical independence, this rate is even higher among older women with a history of IPV. It is possible that a physical trauma as a result of IPV may negatively impact the already vulnerable musculoskeletal system through scaring from an injury, inflammatory disease or hyperglycemia, which we also observed more frequently among older women with a history of abuse, doubling the risk of muscle musculoskeletal issues that are functionally limiting and physically debilitating [37–39]. Injuries are more common among terms that are more co-morbid in the older women population as compared to the background population (Table 2). This is also consistent with prior research reporting that older adults may come into the emergency department due to fall injuries that could be linked to IPV [5]. A Nationwide Emergency Department Sample from 2006 to 2009 revealed that there were approximately 28,000 ED visits per year due to IPV [40]. Older adults, in particular, may come into the ED due to fall injuries that could be linked to IPV [6, 12]. Therefore, the emergency department (ED) provides a valuable opportunity to identify and treat this at-risk population [6].

Another important category that emerged as differentially co-morbid with IPV in older women was neoplasms and tumors, with neoplasm of stomach showing significant differential co-morbidity. Past researchers including Cesario et al. [41] interviewed three hundred abused women to explore the link between cancer and IPV. They found that abused women reported 10 times higher levels of a diagnosis of cervical cancer than the general population. Past research also suggested a link between breast cancer and IPV [42]. Researchers also discovered that cancer patients with history of IPV were twice more likely to develop estrogen and/or progesterone negative tumor receptors than patients without IPV history [42]. As concordant with our mental health related findings (Table 2), IPV is frequently linked with higher levels of perceived stress, PTSD and depression [43]. These conditions have been thought to be linked to cancer progression by mediating the link through increasing the vulnerability through smoking, alcohol consumption, and obesity. Furthermore, cancer survivorship is negatively affected by IPV through delays in screenings, diagnosis and treatment as well as women’s ability to cope with and recover [44]. Consequently, while our finding on the high differential co-morbidity of neoplasm of stomach is a new finding that is not reported in the literature, there is strong support for multiple links between IPV and other cancers that warrants further investigation of the relationship between IPV and neoplasm of stomach in older women.

The generality of the diagnostic terms affecting multiple organ systems demonstrates the importance of Family Health and Wellness Clinics and Women’s Health Clinics as critical fields to detect IPV. In addition, the basic routine health care visits for most women are critical for a first line of defense against more serious IPV-related injury and ailment, especially considering the finding that 84% of women who confide in someone about the abuse choose to tell their health care provider [45]. Past research also indicated that as older people need longer recovery time, health outcomes of abuse in later life could be more overwhelming [46]. Furthermore, as one of the front lines of treatment, the ED provides a safe environment for older adult victims to seek help. It can also serve as a point of contact for the effective distribution of referral information, as health care professionals have unique access in the ED to otherwise hard-to-reach victims [6, 9]. However, ED screening has some limitations. For example, screening windows for IPV in the ED may be too brief to determine the extent, forms and the effects of the IPV. It can also be difficult to conduct interventions in such a time-sensitive and public environment [17, 47]. Findings of this study reinforce the necessity to have screening
measures at place in the emergency department for women of all ages, regardless of whether they present with trauma injuries. The high percentage of women who suffer emotional and physical abuse makes it imperative that interventions exist for women with history of IPV.

Limitations
As discussed in the Introduction, there are multiple barriers to the reporting and identification of IPV in all women, which may be accentuated for older women. While one motivation for this study is to identify potential markers of IPV to help overcome these barriers, it is important to note that these barriers also impose limitations on the data we analyze in this study. To be more specific, the cases of IPV that are reported in the EHR database can be subject to detection bias, e.g., more severe cases of IPV may be over-represented in our cohorts. Thus the associations we identify here may be associated with severe IPV as opposed to more common forms of IPV and emotional abuse.

Another limitation of our findings is that they do not provide causal interpretations of the associations that are identified. Since the data is cross-sectional and is provided in summaries (i.e., no sample-specific data is available), our findings are limited to high-level associations. Since sample-specific data is not available, we are not able to perform cluster analyses or develop supervised models that can be test with cross-validation, posing limitations to the interpretation and validation of our findings. For these reasons, dedicated data collection efforts that target specific populations, take into account longitudinal patterns, and investigate causal relationships are needed to further characterize the mechanisms of these associations. Our findings can provide useful starting points for such studies.

Conclusion
In conclusion, this study investigates the medical conditions (terms) that are associated with IPV in older women. There are many potential factors that may contribute to the increasing rates of reported violence amongst the older adult population. Clinicians must be aware of IPV for proper care of older adult patients, especially for those with suspicious symptoms. We expect that terms that are identified in this study could be useful for screening IPV in older women and facilitate timely interventions. Furthermore, the prevalence estimations provided in this study could give insight about the risk of IPV in both older and younger women populations. Evaluations on IPV could be conducted on all women that present to the Health Care System including the emergency department settings, family medicine department settings, women’s health clinics, and nursing homes or retirement communities. Such efforts can lead to reduced recurrence of violence, improved mental health and overall higher quality of life among this vulnerable population.

Supporting information
S1 Data.
(XLSX)
S2 Data.
(XLSX)
S3 Data.
(XLSX)
S1 File.
(ZIP)
Author Contributions

Conceptualization: Serhan Yılmaz, Erkan Gunay, Da Hee Lee, Kathleen Whiting, Mehmet Koyuturk, Gunnur Karakurt.

Data curation: Serhan Yılmaz, Gunnur Karakurt.

Formal analysis: Serhan Yılmaz, Mehmet Koyuturk.

Funding acquisition: Mehmet Koyuturk, Gunnur Karakurt.

Investigation: Serhan Yılmaz, Erkan Gunay, Mehmet Koyuturk, Gunnur Karakurt.

Methodology: Serhan Yılmaz, Mehmet Koyuturk, Gunnur Karakurt.

Project administration: Kathleen Whiting, Gunnur Karakurt.

Resources: Kristin Silver, Gunnur Karakurt.

Supervision: Erkan Gunay, Mehmet Koyuturk, Gunnur Karakurt.

Validation: Serhan Yılmaz, Erkan Gunay, Da Hee Lee, Gunnur Karakurt.

Visualization: Serhan Yılmaz, Mehmet Koyuturk.

Writing – original draft: Serhan Yılmaz, Erkan Gunay, Da Hee Lee, Kathleen Whiting, Kristin Silver, Mehmet Koyuturk.

Writing – review & editing: Serhan Yılmaz, Kathleen Whiting, Kristin Silver, Mehmet Koyuturk.

References

1. Breiding M, Basile KC, Smith SG, Black MC, Mahendra RR. Intimate partner violence surveillance: Uniform definitions and recommended data elements. Version 2.0. 2015.

2. García-Moreno C, Jansen HA, Ellsberg M, Heise L, Watts CH, et al. Prevalence of intimate partner violence: findings from the WHO multi-country study on women’s health and domestic violence, The lancet. 2006; 368(9543):1260–1269. https://doi.org/10.1016/S0140-6736(06)69523-8

3. Smith S, Zhang X, Basile KC, Merrick MT, Jing W, Kresnow MJ, et al. The NationalIntimate Partner and Sexual Violence Survey (NISVS): 2015 Data Brief—Updated Release. Atlanta, GA: National Center for Injury Prevention and Control, Centers for Disease Control and Prevention. 2018.

4. Hullick C, Carpenter CR, Critchlow R, Burkett E, Arendts G, Nagaraj G, et al. Abuse of the older person: Is this the case you missed last shift? Emergency medicine Australasia: EMA. 2017; 29(2):223. https://doi.org/10.1111/1742-6723.12756 PMID: 28273679

5. Allison E, Ellis P, Wilson S. Elder abuse and neglect; the emergency medicine perspective. European journal of emergency medicine: official journal of the European Society for Emergency Medicine. 1998; 5(3):355–363. https://doi.org/10.1097/00063110-199809000-00013 PMID: 9827840

6. Pathak N, Dhairyawan R, Tariq S. The experience of intimate partner violence among older women: A narrative review. Maturitas. 2019; 121:63–75. https://doi.org/10.1016/j.maturitas.2018.12.011 PMID: 30704567

7. Black M, Basile K, Breiding M, Smith S, Walters M, Merrick M, et al.. National intimate partner and sexual violence survey: 2010 summary report; 2011.

8. Ho CS, Wong SY, Chiu MM, Ho R, et al. Global prevalence of elder abuse: A metaanalysis and meta-regression. East Asian archives of psychiatry. 2017; 27(2):43. PMID: 29652497

9. Nelson HD, Nygren P, McInerney Y, Klein J. Screening women and elderly adults for family and intimate partner violence: a review of the evidence for the US Preventive Services Task Force. Annals of Internal Medicine. 2004; 140(8):387–396. https://doi.org/10.7326/0003-4819-140-5-200403020-00015 PMID: 14996681

10. Campbell JC. Health consequences of intimate partner violence. The lancet. 2002; 359(9134):1331–1336. https://doi.org/10.1016/S0140-6736(02)08336-8 PMID: 11965295

11. Karakurt G, Smith D, Whiting J. Impact of intimate partner violence on women’s mental health. Journal of family violence. 2014; 29(7):693–702. https://doi.org/10.1007/s10896-014-9633-2 PMID: 25313269
12. Nelson HD, Bougatsos C, Blazina I. Screening women for intimate partner violence: a systematic review to update the US Preventive Services Task Force recommendation. Annals of internal medicine. 2012; 156(11):796–808. https://doi.org/10.7326/0003-4819-156-11-201206050-00447 PMID: 22565034

13. Taverner T, Baumbusch J, Taipale P. Normalization of neglect: a grounded theory of RNs’ experiences as family caregivers of hospitalized seniors. Canadian Journal on Aging/La Revue canadienne du vieillissement. 2016; 35(2):215–228. https://doi.org/10.1017/S0714980816000179 PMID: 27223578

14. Gunay E, Lee DH, Karakurt G. Intimate Partner Violence among the Elderly in the City of Cleveland; 2015.

15. Dunlop DD, Song J, Amtson EK, Semanik PA, Lee J, Chang RW, et al. Sedentary time in US older adults associated with disability in activities of daily living independent of physical activity. Journal of Physical activity and Health. 2015; 12(1):93–101. https://doi.org/10.1123/jpah.2013-0311 PMID: 24510000

16. Hirst SP, Penney T, McNeill S, Boscart VM, Podnieks E, Sinha SK. Best-practice guideline on the prevention of abuse and neglect of older adults. Canadian Journal on Aging/La Revue canadienne du vieillissement. 2016; 35(2):242–260. https://doi.org/10.1017/S0714980816000209 PMID: 27086668

17. Amstadter AB, Begle AM, Cisler JM, Hernandez MA, Muzzy W, Acierino R. Prevalence and correlates of poor self-rated health in the United States: the national elder mistreatment study. The American Journal of Geriatric Psychiatry. 2010; 18(7):615–623. https://doi.org/10.1097/JGP.0b013e3181ca7ef2 PMID: 20220579

18. Beach SR, Liu PJ, DeLiem a M, Iris M, Howe MJ, Conrad KJ. Development of short-form measures to assess four types of elder mistreatment: Findings from an evidence-based study of APS elder abuse substantiation decisions. Journal of elder abuse & neglect. 2017; 29(4):229–253. https://doi.org/10.1080/08946566.2017.1398171 PMID: 2890799

19. Paranjape A, Sprauve-Holmes NE, Gaughan J, Kaslow NJ. Lifetime exposure to family violence: implications for the health status of older African American women. Journal of Women’s Health. 2009; 18(2):171–175. https://doi.org/10.1089/jwh.2008.0850 PMID: 19183088

20. Neglect, Abuse and Violence Against Older Women. United Nations; 2013. Available from: https://www.un.org/esa/socdev/documents/ageing/neglect-abuse-violence-older-women.pdf.

21. Mouton CP, Rovi S, Furniss K, Lasser NL. The associations between health and domestic violence in older women: results of a pilot study. Journal of women’s health & gender-based medicine. 1999; 8(9):1173–1179. https://doi.org/10.1089/jwh.1.1999.8.1173 PMID: 10595330

22. Crockett C, Brandt B, Dabby FC. Survivors in the margins: The invisibility of violence against older women. Journal of Elder Abuse & Neglect. 2015; 27(4-5):291–302. https://doi.org/10.1080/08946566.2015.1090361 PMID: 26371877

23. Milberger S, Israel N, LeRoy B, Martin A, Potter L, Patchak-Schuster P. Violence against women with physical disabilities. Violence and Victims. 2003; 18(5):581. https://doi.org/10.1891/088670030780928080 PMID: 14695023

24. IBM Explorys Therapeutic Dataset; https://www.ibm.com/downloads/cas/NNPN9J9Q.

25. IBM Explorys EHR Solutions.; https://www.ibm.com/products/explorys-ehr-data-analysis-tools.

26. Liu X. Methods and applications of longitudinal data analysis. Elsevier; 2015.

27. Yılmaz S, Alghamdi B, Singuri S, Hacialiöfendioglu AM, Özcan T, Koyutürk M, et al. Identifying health correlates of intimate partner violence against pregnant women. Health information science and systems. 2020; 8(1):1–13. https://doi.org/10.1007/s13755-020-00124-6 PMID: 33088491

28. Benjamin Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological). 1995; 57(1):289–300.

29. Benjamin Y, Yekutieli D. False discovery rate--adjusted multiple confidence intervals for selected parameters. Journal of the American Statistical Association. 2005; 100(469):71–81. https://doi.org/10.1198/016214504000001907

30. Karakurt G, Silver KE. Emotional abuse in intimate relationships: The role of gender and age. Violence and victims. 2013; 28(5):804–821. https://doi.org/10.1891/0886-6708-vv-d-12-00041 PMID: 24364124

31. Mezey NJ, Post LA, Maxwell CD. Redefining intimate partner violence: Women’s experiences with physical violence and non-physical abuse by age. International Journal of Sociology and Social Policy. 2002; 22(7/8):122–154. https://doi.org/10.1108/01443330201790120

32. Comijs HC, Penninx BW, Knipscheer KP, van Tilburg W. Psychological distress in victims of elder mistreatment: The effects of social support and coping. The Gerontologists of Gerontology Series B: Psychological Sciences and Social Sciences. 1999; 54(4):P240–P245. https://doi.org/10.1093/geronb/54B.4. P240 PMID: 12382593
33. McGarry J, Simpson C, Hinchliff-Smith K. The impact of domestic abuse for older women: a review of the literature. Health & social care in the community. 2011; 19(1):3–14. https://doi.org/10.1111/j.1365-2524.2010.00964.x PMID: 21040066

34. Dyer CB, Pavlik VN, Murphy KP, Hyman DJ. The high prevalence of depression and dementia in elder abuse or neglect. Journal of the American Geriatrics Society. 2000; 48(2):205–208. https://doi.org/10.1111/j.1532-5415.2000.tb03913.x PMID: 10682951

35. Frost MH, Willette K. Risk for abuse/neglect: Documentation of assessment data and diagnoses. Journal of Gerontological Nursing. 1994; 20(8):37–45. https://doi.org/10.3928/0098-9134-19940801-08 PMID: 8077628

36. Gerino E, Caldarera AM, Curti L, Brustia P, Rollè L. Intimate partner violence in the golden age: Systematic review of risk and protective factors. Frontiers in psychology. 2018; 9:1595. https://doi.org/10.3389/fpsyg.2018.01595 PMID: 30233454

37. Boulton AJ, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, et al. Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists. Diabetes care. 2008; 31(8):1679–1685. https://doi.org/10.2337/dc08-9021 PMID: 18663232

38. Cheuy VA, Hastings MK, Commean PK, Mueller MJ. Muscle and joint factors associated with foot deformity in the diabetic neuropathic foot. Foot & ankle international. 2016; 37(5):514–521. https://doi.org/10.1177/1071100715621544 PMID: 26666675

39. Gheno R, Cepparo JM, Rosca CE, Cotten A. Musculoskeletal disorders in the elderly. Journal of clinical imaging science. 2012; 2. https://doi.org/10.4103/2156-7514.99151 PMID: 22919553

40. Davidov DM, Larrabee H, Davis SM. United States emergency department visits coded for intimate partner violence. The Journal of emergency medicine. 2015; 48(1):94–100. https://doi.org/10.1016/j.jemermed.2014.07.053 PMID: 25282121

41. Cesario SK, McFarlane J, Nava A, Gilroy H, Maddoux J. Linking Cancer and Intimate Partner Violence. Clinical journal of oncology nursing. 2014; 18(1). https://doi.org/10.1188/14.CJON.65-73 PMID: 24476727

42. Jetelina KK, Carr C, Murphy CC, Sadeghi N, S Lea J, Tiro JA. The impact of intimate partner violence on breast and cervical cancer survivors in an integrated, safety-net setting. Journal of Cancer Survivorship. 2020; 14(6):906–914. https://doi.org/10.1007/s11764-020-00902-x PMID: 32671556

43. Coker AL, Follingstad D, Garcia LS, Williams CM, Crawford TN, Bush HM. Association of intimate partner violence and childhood sexual abuse with cancer-related well-being in women. Journal of Women’s Health. 2012; 21(11):1180–1188. https://doi.org/10.1089/jwh.2012.3708 PMID: 22946631

44. Modesitt SC, Gambrell AC, Cotrill HM, Hays LR, Walker R, Shelton BJ, et al. Adverse impact of a history of violence for women with breast, cervical, endometrial, or ovarian cancer. Obstetrics & Gynecology. 2006; 107(6):1330–1336. https://doi.org/10.1097/01.AOG.0000217694.18062.91

45. Daoud N, Kraun L, Sergienko R, Batat N, Shoham-Vardi I, Davidovich N, et al. Patterns of healthcare services utilization associated with intimate partner violence (IPV): Effects of IPV screening and receiving information on support services in a cohort of perinatal women. PloS one. 2020; 15(1):e0228088. https://doi.org/10.1371/journal.pone.0228088 PMID: 32004325

46. Winterstein T, Eisikovits Z. The experience of loneliness of battered old women. Journal of Women & Aging. 2005; 17(4):3–19. https://doi.org/10.1300/J074v17n04_02 PMID: 16418132

47. Ernst AA, Weiss SJ. Intimate partner violence from the emergency medicine perspective. Women & health. 2002; 35(2-3):71–81. https://doi.org/10.1300/J013v35n02_05 PMID: 12201511