TUTORIAL

Quantitative Systems Pharmacology and Physiologically-Based Pharmacokinetic Modeling With mrgsolve: A Hands-On Tutorial

Ahmed Elmokadem¹, Matthew M. Riggs¹ and Kyle T. Baron¹,*

mrgsolve is an open-source R package available on the Comprehensive R Archive Network. It combines R and C++ coding for simulation from hierarchical, ordinary differential equation–based models. Its efficient simulation engine and integration into a parallelizable, R-based workflow makes mrgsolve a convenient tool both for simple and complex models and thus is ideal for physiologically-based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) model. This tutorial will first introduce the basics of the mrgsolve simulation workflow, including model specification, the introduction of interventions (dosing events) into the simulation, and simulated results postprocessing. An applied simulation example is then presented using a PBPK model for voriconazole, including a model validation step against adult and pediatric data sets. A final simulation example is then presented using a previously published QSP model for mitogen-activated protein kinase signaling in colorectal cancer, illustrating population simulation of different combination therapies.

MRGSOLVE STRUCTURE

mrgsolve is distributed as an R package that is freely available on the Comprehensive R Archive Network (CRAN; https://cran.r-project.org/web/packages/mrgsolve/index.html). The mrgsolve package uses Livermore Solver for Ordinary Differential Equations, an ordinary differential equation (ODE) solver from the ODEPACK¹ library, which is interfaced with R through the Rcpp² package. C++ classes were developed to abstract solver setup, data sets and records, and pharmacokinetic (PK) dosing events. S4 classes and methods were created to represent the model in R as an updatable object. The modeler creates a model specification file consisting of R and C++ code that is parsed, compiled, and dynamically loaded into the R session. Input data are passed in, and simulated data are returned as R objects, so disk access is never required during the simulation cycle after compiling. The resulting computational efficiency facilitates model exploration and application both during model development and decision-making phases of a drug development program. mrgsolve features include the following:

- NM-TRAN-like input data sets³
- Bolus, infusion, compartment on/off, and reset functionality
- Bioavailability, absorption lag, steady-state, interdose interval, additional doses, model event times
- Multivariate normal random effects simulated using RcppArmadillo⁴
- Compatible with parameter estimation and design packages in R (nlme,⁵ saemix,⁶ PopED,⁷ PFIM⁸)
- Integration with data summary (dplyr⁹) and plotting (ggplot,⁹ lattice¹⁰) packages
- Parallelization with existing R infrastructure (mclapply¹¹) or Sun Grid Engine (qapply¹²)
- Compatible with output from many different model estimation platforms
- Easily integrated with Shiny¹³ to create interactive model-visualization applications

In addition to its release on CRAN, active development of mrgsolve is documented on GitHub (https://github.com/metrumresearchgroup/mrgsolve), with input and contributions encouraged and welcomed from the pharmacometrics modeling and simulation community.

MODELING AND SIMULATION WORKFLOW

The general modeling and simulation workflow includes an integration of mrgsolve with other packages available in R to script, in a traceable and reproducible manner, customized data handling, model development and simulation, summarization, and visualization (Figure 1). The model code and script to fully implement and reproduce a simple example is available in the associated GitHub repository (https://github.com/metrumresearchgroup/cptpsp-tutorial-2019). The two main pieces of the mrgsolve component of this workflow, model specification and simulation, are discussed in more detail in the next sections.

Model specification

The mrgsolve model specification file contains a description of the model components in different blocks. It takes

¹Metrum Research Group, Tariffville, Connecticut, USA. *Correspondence: Kyle T. Baron (kyleb@metrumrg.com)
Received: July 19, 2019; accepted: August 23, 2019. doi:10.1002/psp4.12467
a mixture of C++ and R syntax. The primary components include blocks for: model parameters ([PARAM]), state variables ([INIT], [CMT]), the ODEs ([ODE]), and outputs ([TABLE], [CAPTURE]). Each of these blocks is described in more detail and summarized (Table 1) in the next sections.

Parameters. The parameter block [PARAM] is used to list an updatable set of name–value pairs. Although the name “parameter” may have a certain connotation in the modeling world, in mrgsolve a “parameter” could be any category of numeric data: covariates (e.g., WT, AGE, SEX), flags, and other numeric data that we commonly call “parameter” (e.g., CL or VC).

Although there may be multiple [PARAM] blocks in a model, once compiled they become condensed to a single parameter list stored in the model object. The names and values of all parameters must be declared for the model to be compiled. For example:

```
[PARAM] CL = 1, VC = 20, KA = 1.2
KM = 25, VMAX = 400, FLAG = 1, WT = 80
SEX = 0, N = sqrt(25)
```

Notably, although a default value for each parameter must be declared for compilation at model compile time, the value of any parameter may be updated without recompiling the model using either the param() function during simulation execution or through an input data set.

State variables. Similar to the parameter list, the model state variables or compartments list is a series of name–value pairs that define the number, names, and initial conditions of each state variable (compartment) in the model. Compartments are declared in one of two code blocks: [INIT] or [CMT]. Nominal initial values must be supplied for each compartment. The main difference between [INIT] and [CMT] is that [CMT] assumes a default initial value of 0 for each compartment; thus only compartment names are entered. When using [INIT], both names and values must be explicitly stated for each compartment. The initial values for each compartment can be queried with the init() function. For example:

```
[CMT] GUT CENT RESP
or
[INIT] GUT = 0, CENT = 0, RESP = 25
```

ODEs. The [ODE] block is where the ordinary differential equations are defined. For each compartment, the value of the differential equation needs to be assigned to dxdt_CMT, where CMT is the name of the compartment. The dxdt_equation may be a function of model parameters (via [PARAM]), the current value of any compartment (CMT), or any user-derived variable. For example:
Table 1 mrgsolve code blocks description

Code block	Syntax	Comments
[PROB]	Text	Used to make notes about the model with no restrictions on the text entered.
[PARAM]	R	Used to define the parameter list in the model.
[CMT]	Text	Used to declare the names of all compartments in the model. Initial values are assumed to be 0.
[INIT]	Text	Used to declare the names and initial values of all compartments in the model.
[ODE]	C++	Used to define model differential equations.
[TABLE]	C++	Used to interact with parameter, compartment values, and other user-defined variables after the system advances to the next time.
[MAIN]	C++	This code block has two main purposes:
• Derive new algebraic relationships between parameters, random, effects and other derived variables		
• Set the initial conditions for model compartments		
For users who are familiar with NONMEM, [MAIN] is similar to MPK.		
The [MAIN] function gets called just prior to advancing the system from the current time to the next time for each record in the data set. [MAIN] also gets called several times before starting the problem and just prior to simulating each individual in the population. Finally, it gets called every time the model initial conditions are queried with init().		
[GLOBAL]	C++	This block is for writing C++ code that is outside of [MAIN], [ODE] and [TABLE]. There is no artificial limit on what sort of C++ code can go in [GLOBAL]; however, there are two more common uses:
• Write #define preprocessor statements		
• Define global variables, usually variables other than double, bool or int		
[PREAMBLE]	C++	This block is called once in two different settings:
• Immediately prior to starting the simulation run		
• Immediately prior to calling [MAIN] when calculating initial conditions		
[PREAMBLE] is a function that allows you to set up your C++ environment. It is only called one time during the simulation run (right at the start). The code in this block is typically used to configure or initialize C++ variables or data structures that were declared in [GLOBAL].		
[OMEGA]	Text	Used to enter variance/covariance matrices for subject-level random effects drawn from multivariate normal distribution.
All random effects are assumed to have a mean of 0.		
[SIGMA]	Text	Use this block to enter variance/covariance matrices for within-subject random effects drawn from multivariate normal distribution.
All random effects are assumed to have a mean of 0. |

[CMT] GUT CENT

[ODE]
dxdt_GUT = -KA*GUT;
dxdt_CENT = KA*GUT - KE*CENT;

Because the [ODE] block is written in C++, a semicolon is required at the end of each statement.

It is important to make sure that there is a dxdt_ expression defined for every compartment listed in [CMT] or [INIT], even if it is dxdt_CMT = 0. The [ODE] function is called repeatedly (at each solver step) during a simulation run. For computational efficiency it is recommended that any calculations that do not rely on recalculation at each step be included outside of [ODE], e.g., in the [MAIN] block where derived quantities also can be calculated (Table 1). Notably, any calculation that depends on an amount in a compartment and determines the dxdt_ expression in a model must be written in [ODE]. For example:

[CMT] CENT RESP

[PARAM] VC = 100, KE = 0.2, KOUT = 2, KIN = 100
[ODE]
double CP = CENT/VC;
double INH = CP/(IMAX+CP);
dxdt_CENT = -KE*CENT;
dxdt_RESP = KIN*(1 - INH) - RESP*KOUT;

Note that in the [ODE] block new C++ variables must be declared as double with the semicolon at the end of each line.

Outputs. When a simulation is run in mrgsolve, the time progression of the state variables (compartments) at each specified time point is returned by default. Any other variable of interest can be returned using the [CAPTURE] block that will add additional columns to the default output capturing these variables. Often users need to interact with parameters, compartment values, and other user-defined variables after the system advances to the next time to generate new variables. The block [TABLE] can be used for this purpose and the newly generated variables can be subsequently captured in [CAPTURE]. Example:

[TABLE] double CP = CENT/VC;
[CAPTURE] CP

The [TABLE] block also uses C++ syntax, so new variables must be declared (double) and statements must end with semicolons. For convenience, the user can simply use the capture type declaration in [TABLE], and this variable would automatically be integrated in the output without the need for a [CAPTURE] block. Example:

[TABLE] capture CP = CENT/VC;

Following is a complete example of a model specification file code for a one-compartment PK model with oral absorption:
This complete model example is saved as model/pk1.cpp in the associated GitHub repository (https://github.com/metrumresearchgroup/cptpsp-tutorial-2019). Additional references include a summary of the model blocks (Table 1) and the mrgsolve user guide: https://mrgsolve.github.io/user_guide/index.html.

Creating a model object

Prior to simulation, a model object is created to contain the mrgsolve model using the mread() function. This function will read, parse, compile, and load the model to create a model object to be used for running simulations. As an example, the following code snippet will read in the one-compartment model pk1 saved in the relative path ../model:

```r
library(mrgsolve)
mod <- mread("pk1", "./../model")
```

To get information about the model, type `mod` in the R console:

```
----- mrgsolve model object (unix) -----
project: /model
source:        pk1.cpp
shared object: pk1-so-19a57a5032b

  time:          start: 0 end: 24 delta: 1
    add: <none>
tscale: 1
compartments:  GUT CENT [2]
parameters:    CL VC KA [3]
omega:         0x0
sigma:         0x0
solver:        atol: 1e-08 rtol: 1e-08
maxsteps:      5000 hmin: 0 ahmax: 0
```

To review the model parameter values, the user can use the `param()` function as:

```r
param(mod)
Model parameters (N=3):
  name value . name value
CL  1 | VC  20
KA  1 | .  .
```

Note that the `param()` function can be used to explore model parameter values as above or to update those values with new values as mentioned previously. For example, if the user wants to update the CL value, the command to be used is: `param(mod, CL = 2)`.

Setting an intervention

Setting an intervention, similar to a dosing event, can be done by creating an event object using the `ev()` function:

```r
evnt <- ev(amt = 100, ii = 24, addl = 9)
```

This command creates the `evnt` object that defines a dose (amt) of 100 to be taken every day (ii; interdose interval) for 10 days (addl; nine additional doses). Intentional similarities between mrgsolve and NONMEM (ICON Development Solutions, Gaithersburg, MD) annotations were purposeful and allow, for example, the use of NM-TRAN formatted data as input into the simulations. By default, the dose will go into compartment 1, which is the first compartment to be declared in the [INIT] or [CMT] blocks. In this example, that is the gut compartment GUT. To specify a different compartment, the user can use the `ev()` function `cmt` argument with the specific compartment number or name.

Simulating

The created model and event objects are passed to the `mrgsim()` function to run the simulation. The code below takes advantage of the `magrittr` syntax (%>% available as part of the tidyverse suite; installation and loading of the required packages is also documented and scripted through code; see mrgsolveIntro_script.R in the GitHub repository) to pass the model `mod` and the event object into the `mrgsim()` function for simulation:

```r
out <- mod %>% ev(evnt) %>% mrgsim(end = 480, delta = 0.1)
```

The simulation output (a data frame of simulated values) is saved to the object `out`. Two elements of the simulation time grid—`end` and `delta`—are illustrated in the example code. These define the output end time and the interval between output time points, respectively. Other elements are `start` that defines the start time and `add` that defines any arbitrary vector of additional times to simulate. For an example of the simulation output, `head(out)` returns:

```
  ID  time    GUT    CENT    CP
  1   1.000 0.00000 0.0000000 0.0000000
  2   1.000 100.0000 0.0000000 0.0000000
  3   1.01 90.48374 9.492112 0.4746056
  4   1.02 81.87308 18.033587 0.9016794
  5   1.03 74.08182 25.715128 1.285756
  6   1.04 67.03200 32.618803 1.6309401
```

Note that the output captures the values for the two model compartments GUT and CENT as well as the captured plasma concentration CP. The same `out` object can be used to plot simulation results (Figure 1) with the function `plot(out)`.
PBPK APPLICATION: VORICONAZOLE

Advancements in computation capabilities have contributed to an increased use of PBPK models in recent years. These are typically mamillary models, with individual compartments representing different tissues and organs in the body. The PK of the drug of interest is described via a series of ODEs with the rates controlled by physiological properties of the species (e.g., organ volumes and blood flows) and the physicochemical properties of the drug (e.g., lipophilicity, unbound fraction, and pKₐ). Being based on first principles makes PBPK models particularly useful in running simulations when there are little or no clinical data available as in the case of special populations such as neonates, children, and pregnant women.

Implementation of a previously developed voriconazole PBPK model in mrgsolve is used as a demonstration. The PBPK model structure (Figure 2) included assumptions that the compartments were well stirred and that the transfer of drug between these compartments was flow limited. The specific organ subscript notations follow the same notations in Figure 2.

Eqs. 1–5 represent the generic ODEs for noneliminating, eliminating, arterial, venous, and lung compartments, respectively, where Aᵥ is the amount of drug in tissue T; Qᵥ is the blood flow to that tissue; Cᵥ and Cₐ are the drug concentrations in the arterial and venous blood compartments, respectively; Kpᵥ is the tissue:plasma partition coefficient; BP is the blood:plasma concentration ratio; CLᵥ is the tissue clearance; and fᵤ is the unbound fraction of drug. The specific organ subscript notations follow the same notations in Figure 2.

The parameters required to populate the aforementioned equations were collected as follows: (i) physiological parameters including organ volumes (needed to calculate drug concentrations) and organ blood flows for the typical 30-year-old adult male and 5-year-old male child were collected from the International Commission on Radiological Protection Publication 89, (ii) Kᵥ values for each tissue were computed using the Poulin and Theil calculation method with inputs of drug physicochemical properties (logP, pKₐ, fᵤ, and BP) and the different tissue fractional composition (water, neutral, and phospholipids) to calculate Kp values as follows:

\[K_p = \frac{P_{o:w} (f_{nl} + 0.3f_{pht}) + (f_{nt} + 0.7f_{php})}{P_{o:w} (f_{nl} + 0.3f_{pht}) + (f_{nt} + 0.7f_{php})} f_u + \frac{P_{o:w} (f_{nl} + 0.3f_{pht}) + (f_{nt} + 0.7f_{php})}{P_{o:w} (f_{nl} + 0.3f_{pht}) + (f_{nt} + 0.7f_{php})} f_u \]

where Eqs. 6 and 7 were used to calculate Kp values for nonadipose and adipose tissues, respectively. Pₗ is the n-octanol:buffer partition coefficient of the nonionized species and Dₗ is the olive oil:buffer partition coefficient of both the nonionized and ionized species at pH 7.4. fᵢ is the unbound fraction of drug.

Additional details and examples are available on the mrgsolve GitHub page (https://github.com/metrumresearchgroup/mrgsolve) and vignettes (https://mrgsolve.github.io/vignettes/).
are the fractional volumes of neutral lipids, phospholipids, and water, respectively. f_u is the unbound fraction of drug. The subscripts t and p indicate tissue and plasma, respectively.

To calculate the *in vivo* hepatic clearance (CL$_i$) for voriconazole, *in vitro* hepatic metabolism data were used as follows:

$$
\text{CL}_{i,t} = \frac{\text{CL}_{i,t,\text{mic}}}{f_{u,t,\text{mic}}} \cdot \text{MPPGL} \cdot W_i
$$

(8)

$$
\text{CL}_{i,t,\text{mic}} = \frac{V_{\text{max,}\text{Li},t,\text{mic}}}{K_{m,t,\text{mic}}}
$$

(9)

where CL$_i$ is the *in vitro* microsomal clearance, $f_{u,t,\text{mic}}$ is the free fraction of the drug in the *in vitro* microsomal system, MPPGL is mg microsomal proteins per gram liver, W_i is liver weight, $V_{\text{max,}\text{Li},t,\text{mic}}$ and $K_{m,t,\text{mic}}$ are the hepatic maximum rate of clearance and Michaelis-Menten constant estimated from the *in vitro* system, respectively.

PBPK model building in mrgsolve

Two files were created to build the PBPK model: a model specification file for the ODE-based model and an R script file to compile the model and run simulations. In the associated GitHub repository (https://github.com/metrumresearchgroup/cptpsp-tutorial-2019), these files can be found under `model/voriPBPK.cpp` and `script/voriPBPK_script.R`, respectively. In the model specification file, the main blocks needed to define the model were [PARAM], [CMT], [MAIN], [ODE], and [TABLE] blocks; typically a user will start with the [CMT] and [ODE] blocks and then walk back to populating the necessary components as parameters and derived parameters required to run the ODEs. Model compartments for the current example were declared according to Figure 3:

![Figure 3](image)

Figure 3 Model validation against observed data. Voriconazole plasma concentration-time profiles for 4 mg/kg intravenous infusion dosing for adults (a) and children (b). The plots show the observed data (black dots) and the corresponding predictions from the adult and pediatric models (black lines). Error bars represent standard deviation.
Voriconazole concentrations in different tissues were also declared in the [ODE] block because they were dependent on the state variables governed by the previous ODEs. For example, the muscle drug concentration was declared as:

```plaintext
double Cmuscle = MUSCLE/Vmu;
```

Organ volumes, blood flows, body weight, voriconazole absorption rate constant, unbound fraction, in vitro hepatic metabolism parameters, calculated Kp, and blood:plasma concentration ratio BP were directly declared in the [PARAM] block (see voriPBPK.cpp in the GitHub repository).

In the [MAIN] block, derived parameters included arterial and venous blood volumes, blood flow to the liver, volume and blood flow to the rest of the body compartment, and in vivo hepatic clearance as follows:

```plaintext
double Vve = 0.705*Vbl; //venous blood volume
double Var = 0.295*Vbl; //arterial blood volume
double Vre = WEIGHT -(Vli+Vki+Vsp+Vhe+Vlu+Vbo+Vmu+Vad+ VguWall+Vbl); //volume of rest of the body compartment
double Qli = Qgu + Qsp + Qha; //hepatic blood flow
double Qre = Qli -(Qli + Qki + Qbo + Qhe + Qmu + Qad + Qbr); //rest of the body blood flow
double CL_Li = ((VmaxH/KmH)*MPPGL*Vli*1000 *60*1e-6) / fumic; ///(L/hr) hepatic clearance
```

Finally, in the [TABLE] block, voriconazole plasma concentration can be captured to be part of the output as:

```plaintext
[TABLE] capture CP = Cvenous/BP;
```

Model validation

After model building, the following step would be to use the associated R script voriPBPK_script.R to compile the model and run simulations for model validation against the observed data. The script starts by cleaning up the working space and loading the necessary libraries. Then the adult model was compiled using the mread() function as follows:

```plaintext
modA <- mread("../model/voriPBPK")
```

This command compiles the adult model and saves it as modA object. The param() function was used to generate the pediatric model. First, a pedPhys object was created that was a named list of the curated pediatric physiological parameters and then a new pediatric model was generated by updating the adult model as follows:

```plaintext
modP <- param(modA, pedPhys)
```

Note that the updated parameter object needs to be a named list with the same parameter names as declared in the [PARAM] block.

Similarly, the Kp values can be updated to reflect the calculated values using the Poulin and Theil method as previously described. To make this calculation process seamless and easily applicable to drugs other than voriconazole, an R script (calcKp_PT.R) was created that contains the function calcKp_PT(). This function takes any drug’s physicochemical properties and returns a named list that can be directly used to update the PBPK model object. The function also needs fractional tissue composition data as another input. These data were digitized from the Poulin and Theil publication and saved as data/tissue_comp_PT.csv. Voriconazole, the Kp updating was done by first reading in the tissue composition data, sourcing the calcKp_PT() function, calculating the Kp values, and saving them as a named list Kp, then finally updating the model objects:

```plaintext
tissueComp <- read.csv("../data/tissue_comp_PT.csv")
# tissue composition
source("calcKp_PT.R")
Kp <- calcKp_PT(LogP=2.56, pKa=1.76, fup=0.42, BP=1, type=3, dat=tissueComp)
modA <- param(modA, Kp)
modP <- param(modP, Kp)
```

where the calcKp_PT() argument type was set to 3 for monoprotic base (see calcKp_PT.R for more details).

Next, simulations can be run to validate the model predictions against the digitized observed data from the Zane and Thakker publication (digitization was done using webplotdigitizer: https://automeris.io/WebPlotDigitizer/). The following two sets of clinical data were used for validation: (i) an adult 4 mg/kg intravenous infusion dose infused over an hour twice a day for a week and (ii) a pediatric 4 mg/kg intravenous infusion dose infused with a rate of 3 mg/kg/hour twice a day for a week. Steady-state simulations were run for both populations under the

```plaintext
where the calcKp_PT() argument type was set to 3 for monoprotic base (see calcKp_PT.R for more details).

Next, simulations can be run to validate the model predictions against the digitized observed data from the Zane and Thakker publication (digitization was done using webplotdigitizer: https://automeris.io/WebPlotDigitizer/). The following two sets of clinical data were used for validation: (i) an adult 4 mg/kg intravenous infusion dose infused over an hour twice a day for a week and (ii) a pediatric 4 mg/kg intravenous infusion dose infused with a rate of 3 mg/kg/hour twice a day for a week. Steady-state simulations were run for both populations under the
same conditions as the observed data, and the simulation objects `simA` (for adults) and `simP` (for children) were created as follows:

```r
Adult
simA <-
 modA %>%
 ev(cmt="VEN", amt=4*73, rate=4*73, ii=12,
 addl=13, ss=1) %>%
 mrgsim(delta = 0.1, end = 12)

Child
simP <-
 modP %>%
 ev(cmt="VEN", amt=4*19, rate=3*19, ii=12,
 addl=13, ss=1) %>%
 mrgsim(delta = 0.1, end = 12)
```

In the previous simulations, the function `ev()` was used to set the dosing events for the simulations as previously described. The simulation results were then plotted against the observed data and were shown to match well with the latter (Figure 3). As mentioned previously, the workflow in R could also be utilized to wrap the model objects within other R functions to run sensitivity analyses to pinpoint the most influential parameters (e.g., FME\textsuperscript{22} and sensitivity\textsuperscript{23} package functions) or to further tune the model predictions via parameter optimization. 

**QSP APPLICATION: MITOGEN-ACTIVATED PROTEIN KINASE**

Using the same approach, a QSP application is demonstrated in mrgsolve using the mitogen-activated protein kinase (MAPK) model published by Kirouac et al.\textsuperscript{24} (Figure 4). The authors were interested in the clinical responses to therapy in colorectal cancer caused by a V600E/K mutation in the cytosolic kinase BRAF, which renders the kinase constitutively active and hence activates the downstream MEK and extracellular-signal-regulated kinase (ERK) signaling. BRAF and MEK inhibitors were found to be effective in V600E mutant melanoma, but these agents showed only a moderate effect in colorectal cancer. The purpose of the QSP model was to build a signaling cascade for MAPK (Figure 4) to assess the effect of introducing an ERK inhibitor as a monotherapy or in combination regimens with other agents on tumor size in colorectal cancer.\textsuperscript{24}

**QSP model building in mrgsolve**

A mrgsolve model file was generated programatically from the Systems Biology Markup Language file attached to the Kirouac et al.\textsuperscript{24} publication. The translation code was written in R and utilized an R interface to libSBML as linked from https://sbml.org. The translated model specification file `model/mapkQSP.cpp` in the associated GitHub

![Figure 4 MAPK quantitative systems pharmacology model signaling network. Gray, red, and yellow nodes represent MAPK signaling pathway, regulatory feedback, and alternative signaling pathway components. Image was reproduced from 24 under a Creative Commons Attribution 4.0 International License. DUSP, dual-specificity phosphatase; EGFR, epidermal growth factor receptor; ERK, extracellular-signal-regulated kinase; FOXO, forkhead box protein; MAPK, mitogen-activated protein kinase; PI3k, phosphatidylinositol-3-Kinase; RTK, receptor tyrosine kinase.](image-url)
repository contained the usual mrgsolve blocks [INIT], [PARAM], [ODE], and [TABLE], where the model compartments with their initial conditions, parameters, ODEs, and outputs were declared. A new [GLOBAL] block (see Table 1) was added to the specification file to define a Hill equation that would be used in the [ODE] block as follows:

```
GLOBAL

double HillEQ(double x, double k, double tau) {
 double a = pow(std::max(x,0.0),k);
 return a/(pow(tau,k) + a);
}
```

The virtual population of 1,000 randomly sampled parameter values included as a supplement file in the Kirouac et al. publication was saved as data/s10vpop_pk.RDS. One set of these parameter values was used as a placeholder in the specification file [PARAM] block. For more details about the model structure and parameter values, please refer to mapkQSP.cpp in the associated GitHub repository.

Comparing different therapeutic combinations

The model was then used to compare the responses to different regimens of mono and combination drug therapies with and without an ERK inhibitor. The proposed drugs were the BRAF inhibitor vemurafenib (VEMU), the MEK inhibitor cobimetinib (COBI), the epidermal growth factor receptor antibody cetuximab (CETUX), and the ERK inhibitor GDC-0994 (GDC). The clinical dosing regimens for COBI and GDC were daily dosing of 60 and 400 mg, respectively, with 21/7-day on/off cycles, whereas for VEMU and CETUX the dosing was continuous 960 and 450 mg twice daily and weekly, respectively.24 These dosing regimens were implemented in the mapkQSP_script.R as follows:

```
ERK inhibitor - GCD-994 (GDC) - Compartment 12
dataG <- ev(cmt = 12, amt = 400, ii = 1, addl = 20)
dataG <- seq(dataG, wait = 6, dataG)
MEK inhibitor - cobimetinib (COBI) - Compartment 10
dataCO <- mutate(dataG, cmt=10, amt=60)
EGFR inhibitor - cetuximab (CETUX) - Compartment 7
dataCE <- ev(cmt=7, amt=450, ii=7, addl=7)
BRAF inhibitor - vemurafenib (VEMU) - Compartment 8
dataV <- ev(cmt=8, amt=960, ii=0.5, addl=120)

regimen combine function
comb <- function(...) {
 x <- lapply(list(...), as.data.frame)
 bind_rows(x) %>% arrange(time)
}

simulation function
sim <- function(Data,Vp,Mod) {
 Mod %>%
 ev(as.ev(Data)) %>%
 mrgsim(idata=Vp, end=-1, add = 56) %>%
 filter(time==56)
}

create dataframe with all scenarios
sims <-
 tribble(
 ~label, ~object,
 "No Treatment", data0, "VEMU", dataV,
 "CETUX", dataCE, "COBI", dataCO,
 "GDC", dataG,
 "CETUX+VEMU", comb(dataCE, dataV), "CETUX+COBI", comb(dataCE, dataCO),
 "CETUX+GDC", comb(dataCE, dataG),
 "VEMU+COBI", comb(dataV, dataG),
 "VEMU+GDC", comb(dataV, dataG),
 "COBI+GDC", comb(dataCO, dataG),
 "CETUX+VEMU+COBI", comb(dataCE, dataV, dataCO),
 "CETUX+VEMU+GDC", comb(dataCE, dataV, dataG),
 "CETUX+COBI+GDC", comb(dataCE, dataCO, dataG),
 "VEMU+COBI+GDC", comb(dataV, dataCO, dataG),
 "CETUX+VEMU+COBI+GDC", comb(dataCE, dataV, dataCO, dataG)
) %>% mutate(object = map(object,as.data.frame))

simulate
sims <- mutate(sims, out = parallel::mclapply(object, sim, Vp =vp, Mod = mod))
```
The end time for all simulations was 56 days (8 weeks) because this is the time when the tumor size response is assessed.24 The results for all simulations were summarized in Figure 5, which was used as model verification as a reproduction of figure 6B from Kirouac et al.24 The figure depicts the noticeable impact of the ERK inhibitor GDC on tumor size either as a mono or combination therapy (red boxplots). The overall response rate (ORR) to GDC as a monotherapy or as a GDC + COBI combination therapy was quantified in the full virtual population vs. a subset of the population where tumor size was strongly dependent on MAPK signaling (represented by higher WOR parameter values). In the R/mrgsolve workflow, this was done as follows:

```r
ORR in full population: GDC +/- COBI
sms %>%
 filter(label %in% c("GDC", "COBI+GDC")) %>%
 group_by(label) %>%
 summarise(orr = mean(TUMOR < 0.7)) ## ORR
in select patients:
GDC +/- COBI

vp_select <- filter(vp, wOR > median(wOR))
cerv_run <-
sims %>%
 select(label,object) %>%
 filter(label %in% c("GDC", "COBI+GDC")) %>%
 mutate(out = parallel::mclapply(object,sim,
 Vp = vp_select,Mod = mod)) %>%
 select(label, out) %>%
 unnest()
cerv_run %>%
 group_by(label) %>%
 summarise(orr = mean(TUMOR < 0.7))
```

Results traceably, and in an open-source platform, reproduced the previously predicted ORR in the full population (14% and 35.2% for GDC and GDC+COBI, respectively), and a more significant ORR on the MAPK-dependent subpopulation (28.7% and 70.5% for GDC and GDC+COBI, respectively) with the combination therapy approximating the ORR reached with BRAFV600E mutation melanoma patients (~70%).24 Complete reproduction of this example in mrgsolve is available in the following vignette: https://github.

![Figure 5](image-url) **Figure 5** Effect of different drug combinations on tumor size. Normalized tumor size at week 8 is plotted against each of the 16 corresponding drug combinations. Gray dots and overlaid boxplots represent simulated tumor sizes with combinations containing GDC highlighted in red. Horizontal black line represents tumor size reduction of 30%. CETUX, cetuximab; COBI, cobimetinib; GDC, GDC-0994; VEMU, vemurafenib.
Supporting Information. Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (www.psp-journal.com).

Supplementary Materials. mrgsolve model code for physiologically-based pharmacokinetic and quantitative systems pharmacology example models.

Funding. No funding was received for this work.

Conflict of Interest. The authors declared no competing interests for this work.

1. Hindmarsh, A.C. ODEPACK, a systematized collection of ODE solvers. In Scientific Computing, MACS Transactions on Scientific Computation, Vol. 1 (eds. Stepleman, R.S. et al) 55–64 (North-Holland, Amsterdam, The Netherlands, 1983).
2. Eddelbuettel, D. Seamless R and C++ integration With Rcpp (Springer Science & Business Media, Berlin, Germany, 2013).
3. Beal, S.L. & Sheiner, L.B. NONMEM Users Guide (University of California, San Francisco, CA, 1992).
4. Eddelbuettel, D. & Sanderson, C. RcppArmadillo: accelerating R with high-performance C++ linear algebra. Comput. Stat. Data Anal. 71, 1054–1063 (2014).
5. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D.; R Core Team. nlme: linear and nonlinear mixed effects models <https://CRAN.R-project.org/package=nlme> (2019).
6. Comets, E., Lavenu, A. & Lavielle, M. Parameter estimation in nonlinear mixed effect models: PFIM 3.0. Comput. Methods Programs Biomed. 98, 55–65 (2010).
7. Nyberg, J., Ueckert, S., Strömberg, E.A., Hennig, S., Karlsson, M.O. & Hooker, A.C. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput. Methods Programs Biomed. 108, 789–805 (2012).
8. Bazzoli, C., Retout, S. & Mentré, F. Design evaluation and optimisation in multiple response nonlinear mixed effect models using saxmix, an R implementation of the SAEM algorithm [internet]. J. Stat. Softw. 80 (2017). https://doi.org/10.18637/jss.v080.i03.
9. Wickham, H. tidyverse: easily install and load the “Tidyverse” <https://CRAN.R-project.org/package=tidyverse> (2017).
10. Lattice Nordhausen, K. Multivariate data visualization with R by Deepayan Sarkar. Int. Stat. Rev. 440(2008). https://doi.org/10.1111/j.1751-5823.2008.00062_5.x.
11. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018). https://www.R-project.org/
12. Gentzsch, W. Sun Grid Engine: towards creating a compute power grid. Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid. https://doi.org/10.1109/ccgrid.2001.923173
13. Chang, W., Cheng, J., Allaire, J.J., Xie, Y. & McPherson, J. shiny: web application framework for R <https://CRAN.R-project.org/package=shiny> (2019).
14. Bache, S.M. & Wickham, H. magrittr: a forward-pipe operator for R <https://CRAN.R-project.org/package=magrittr> (2014).
15. Zane, N.R. & Thakker, D.R. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin. Pharmacokinet. 53, 1171–1182 (2014).
16. Thompson, M.D. & Beard, D.A. Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport. J. Pharmacokinet Pharmacodyn. 38, 405–421 (2011).
17. Zhuang, X. & Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B. 6, 430–440 (2016).
18. Jones, H. & Rewland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometr Syst Pharmacol. 2, e63 (2013).
19. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann. ICRP. 32, 5–265 (2002).
20. Poulin, P. & Theil, F.-P. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci. 91, 129–156 (2002).
21. Yanni, S.B., Arnaert, P.P., Augustijns, P., Ibrahim, J.G., Benjamin, D.K. Jr & Thakker, D.R. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP3A4 and flavin-containing monooxygenase 3. Drug Metab. Dispos. 38, 25–31 (2010).
22. Sootaert, K. & Petzoldt, T. Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. J. Stat. Softw. 33 (2010). https://doi.org/10.18637/jss.v033.i03.
23. Iooss, B. et al. Sensitivity: global sensitivity analysis of model outputs <https://CRAN.R-project.org/package=sensitivity> (2018).
24. Kirouac, D.C. et al. Clinical responses to ERK inhibition in BRAFV600E-mutant colorectal cancer predicted using a computational model. NPJ Syst. Biol. Appl. 3, 14 (2017).

© 2019 Metrum Research Group. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.