Hereditary Human Prion Diseases: an Update

Matthias Schmitz, Kathrin Dittmar, Franc Llorens, Ellen Gelpi, Isidre Ferrer, Walter J. Schulz-Schaeffer, Inga Zerr

Received: 5 January 2016 / Accepted: 3 May 2016 / Published online: 20 June 2016
© Springer Science+Business Media New York 2016

Abstract Prion diseases in humans are neurodegenerative diseases which are caused by an accumulation of abnormal, misfolded cellular prion protein known as scrapie prion protein (PrPSc). Genetic, acquired, or spontaneous (sporadic) forms are known. Pathogenic mutations in the human prion protein gene (PRNP) have been identified in 10–15 % of CJD patients. These mutations may be single point mutations, STOP codon mutations, or insertions or deletions of octapeptide repeats. Some non-coding mutations and new mutations in the PrP gene have been identified without clear evidence for their pathogenic significance. In the present review, we provide an updated overview of PRNP mutations, which have been documented in the literature until now, describe the change in the DNA, the family history, the pathogenicity, and the number of described cases, which has not been published in this complexity before. We also provide a description of each genetic prion disease type, present characteristic histopathological features, and the PrPSc isoform expression pattern of various familial/genetic prion diseases.

Keywords Hereditary human prion diseases · Creutzfeldt-Jakob disease · Fatal familial insomnia · Gerstmann-Sträussler-Scheinker syndrome

Abbreviations
- FFI Fatal familial insomnia
- PRNP Prion protein gene
- PrPSc Scrapie prion protein
- CJD Creutzfeldt-Jakob disease
- gCJD Genetic CJD
- sCJD Sporadic CJD
- OPRI Octa-peptide repeat insertion
- GSS Gerstmann-Sträussler-Scheinker syndrome

Introduction

Transmissible spongiform encephalopathies (TSE) or prion diseases are fatal neurodegenerative disorders, which are characterized by the aggregation and accumulation of misfolded scrapie prion protein (PrPSc) in brain tissue. TSE can occur spontaneously (sporadic), hereditary or acquired, most as iatrogenic cases. Hereditary prion diseases are categorized by certain clinical and pathological features as familial CJD (fCJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), or fatal familial insomnia (FFI). Since more than 50 % of those cases have been reported without a family history, the term “genetic CJD (gCJD)” is now being used more frequently than “fCJD” [1]. Genetic CJD describes a single CJD case, where a mutation in the PrP gene seems to make the conversion into the abnormal form more likely. In some cases, it is difficult to decide whether the mutation is pathogenic or only a polymorphism.
In contrast, in hereditary CJD or fCJD cases, the person has a family history of the disease and a positive test for a genetic mutation associated with CJD.

Since the sensitivity of most diagnostic tests (e.g., 14-3-3, RT-QuIC or MRI) is lower in some hereditary diseases such as FFI [2, 3] than in sporadic CJD (sCJD), a detailed clinical examination and clinical history is extremely important. A confirmed diagnosis of a hereditary prion disease requires the detection of a pathogenic PRNP mutation, a progressive neuropsychiatric disorder, and post mortem confirmation at autopsy [4].

The clinical onset of gCJD/fCJD usually occurs at an earlier age (between 30 and 70 years) compared to sCJD [5] and begins with memory impairment, confusion, myoclonus, and ataxia.

Several PRNP mutations (such as V210I or E200K) are associated with a variable disease onset and a heterogenic penetrance [6]. The penetrance of the disease increased with age, e.g., when mutation carriers survive to age over 80 years, the penetrance is almost 100 % [7]. In contrast, at an age of 70 years, the penetrance is markedly decreased [7].

In sCJD patients, the methionine/valine (M/V) polymorphism at codon 129 of PRNP has a major influence on the susceptibility to and the progression of the disease [8–10]. Similar to sCJD, the clinicopathological phenotype in gCJD/fCJD may also depend on the M/V polymorphism at codon 129 of the mutated allele, e.g., in E200K carriers [11]. In octa-peptide repeat insertion (OPRI) mutation carriers, PRNP codon 129 M/M carriers exhibit an earlier disease onset compared to M/V carriers [5, 12]. However, in most of the genetic cases the influence of the PRNP codon 129 polymorphism on the clinicopathological phenotype has not yet been described well because of the rareness of the cases.

In certain PRNP mutations, e.g., D178N, the codon 129 polymorphism may even determine two completely distinct phenotypes. Traditionally, the 178 mutation in association with methionine at codon 129 has been termed FFI, while a coupling with valine at codon 129 causes different pathology, so that the disease was called fCJD [13]. In addition to the gene polymorphism in PRNP, more than 50 mutations in the open reading frame of PRNP have been described.

In the present review, we provide an updated overview of the reported mutations, describe major differences in the PrPSc expression profile, and present characteristic histopathological features of selected genetic prion diseases.

Types of PRNP Mutations May Cause Different Kind of Prion Diseases

The 253 amino acid PrP is encoded by the second exon of PRNP [14]. All hereditary prion diseases are caused by a wide variety of mutations in the prion protein gene (PRNP), which is located on the short (p) arm of chromosome 20 (20p12), [15, 16]. All of these mutations are autosomal dominant. Among these mutations, point mutations in certain codons, multiple-point mutations, premature STOP codon mutations, or insertion/deletion of octa-peptide repeats in the N-terminal domain of PRNP have been reported [9, 17–19]. However, PRNP mutations also may appear spontaneously with an unknown family history or with an unknown phenotype.

Hereditary CJD Caused by Point or Insert Mutations

Genetic CJD can be caused by a variety of point mutations which are summarized in Table 1 or by insertion mutations in the octa-peptide region of PrP, summarized in Table 2 (Table 1 and 2). The most common mutations in the European population are mutations at codons 178, 200, and 210. Clinically and neuropathologically E200K and V210I resemble sCJD. The average age of onset is between 50 and 70 years of age, and the disease duration is often less than 6 months. The family history of V210I is relatively low (12 %) compared to E200K (49 %) [9].

In the E200K mutation carriers, immunohistochemical detection of PrPSc aggregates usually show indistinguishable pattern from sCJD (MM1) cases (Fig. 1a); some cases show stripe-like deposits of PrPrSc in the molecular layer of the cerebellum (Fig. 1b, c) [127]. Biochemical typing revealed different types of PrPSc which can be distinguished by the molecular weight (type 1 of 21 kDa, type 2 of 19 kDa) of the unglycosylated PrP isoform. V210I and E200K codon 129 MM carriers show a similar composition of the PrPSc isoform pattern, consisting of di-, mono-, and unglycosylated PrP (Fig. 4b). The PrP pattern is comparable to that of sCJD (MM1) patients (Fig. 4b). PrPSc type 1 is typically associated with fCJD E200K and V210I (PRNP codon 129 MM), while PrPSc type 2 is associated with fCJD E200K codon 129 VV (Fig. 4b).

Hereditary CJD Caused by STOP Codon Mutations

Some point mutations integrate a stop codon at different positions within PRNP resulting in the production of abnormal, truncated forms of PrP. STOP codon mutations are very rare in inherited prion diseases and they are accompanied by unusual phenotypes. Examples of STOP mutations are Y145X (tangle pathology), Q160X, Y163X, Y226X, or Q227X [18, 42, 46, 128]. Of these PRNP STOP mutations, Q160X and Q227X cause an Alzheimer disease-like pathology with either amyloid plaques, neurofibrillary tangle lesions, or both [18, 128].
Table 1 Overview of prion disease-associated point mutations

Codon	Change in DNA	Familial history	Pathologic	>1 case	Change in amino acid	PRNP codon 129	Disease	Reference
39	ccg → ctg	n.d.	n.d.	n.d.	Pro → Leu	n.d.	FTLD	[20, 21]
52	n.d.	n.d.	n.d.	No	Gln → Pro	MV	Atypical CJD	[22]
54	ggt → agt	No	No	Yes	Gly → Ser	MM	n.d.	[23]
84	n.d.	Yes	Yes	Pro → Ser	MV	GSS	[24]	
97	agt → atn	n.d.	n.d.	Ser → Asn	MM	Probable AD	[25]	
102	ccg → ctg	Yes	Yes	Pro → Leu	MM	GSS	[26, 27]	
105	cca → tca	Yes	Yes	Pro → Thr	VV	GSS	[28]	
105	cca → tca	n.d.	n.d.	Pro → Ser	VV	GSS	[29]	
114	ggt → gtt	Yes	Yes	Gly → Val	MM, MV	gCJD	[30]	
117	gca → gtt	Yes	Yes	Ala → Val	VV	GSS	[31, 32]	
127	ggc → gtc	n.d.	n.d.	Gly → Val	MM	Protective	against Kuru	[33–36]
131	gga → gta	Yes	Yes	Gly → Val	MM, MV	GSS	[37, 38]	
132	agt → att	n.d.	n.d.	Ser → Ile	MM	GSS	[39]	
133	gca → gtt	No	Yes	Ala → Val	MM	GSS	[40]	
142	ggc → agc	n.d.	Yes	Gly → Ser	MM, MV	n.d.	[23]	
145	tat → tag	Yes	n.d.	Tyr → Stop	MM	GSS, AD	[41, 42]	
148	cgt → cat	Yes	Yes	Arg → His	MM	fCJD	[43]	
160	caa → taa	Yes	Yes	Gln → Stop	MM, MV	Dementia	[44]	
163	tat → tag	n.d.	n.d.	Tyr → Stop	VV	GSS	[45–47]	
167	gat → nat	n.d.	n.d.	Asp → Asn	n.d.	n.d.	[23]	
167	gat → gtt	n.d.	n.d.	Asp → Gly	MM	n.d.	[23]	
171	aac → agc	n.d.	No	Asn → Ser	MM, MV	Unknown	[48]	
173	aac → aag	n.d.	n.d.	Asn → Lys	MV	n.d.	[22]	
176	gtt → ggg	Yes	No	Val → Gly	VV	Unusual GSS	[49]	
178-129V	gac → aac	Yes	n.d.	Asp → Asn	VV	fCJD	[50, 51]	
178-129M	gac → aac	n.d.	n.d.	Asp → Asn	MM	FFI	[52]	
180	gtc → atc	n.d.	Yes	Val → Ile	MM	gCJD	[53, 54]	
183	aca → acg	Yes	Yes	Thr → Ala	MM	fCJD	[55]	
187	cac → cgc	Yes	Yes	His → Arg	VV	Probable GSS	[56, 57]	
188	acg → aag	n.d.	n.d.	Thr → Lys	n.d.	gCJD	[44, 58]	
188	acg → gcc	Yes	Yes	Thr → Ala	MM	gCJD	[59]	
188	acg → agg	n.d.	Yes	Thr → Arg	VV	Criteria for CJD	[19, 60]	
193	acc → att	n.d.	n.d.	Thr → Ile	MM	Probable CJD	[61]	
196	gag → aag	Yes	Yes	Glu → Lys	MM, MV	fCJD	[62]	
196	gag → gcc	Yes	Yes	Glu → Ala	n.d.	gCJD	[63]	
198	ttc → gtc	n.d.	n.d.	Phe → Val	VV, MM	Probable AD	[24]	
198	ttc → tcc	Yes	Yes	Phe → Ser	MV	GSS	[64, 65]	
200	gag → aag	n.d.	n.d.	Glu → Lys	MV	fCJD	[66]	
200	gag → ggg	n.d.	Yes	Glu → Gly	MV	fCJD	[67]	
202	gac → aac	n.d.	n.d.	Asp → Asn	VV	GSS	[68]	
202	gac → gcc	n.d.	n.d.	Asp → Gly	VV	Slow progressive dementia syndrome	[69]	
203	gtt → att	n.d.	Yes	Val → Ile	MM	gCJD	[62, 70]	
203	gtt → gtt	n.d.	n.d.	Val → Gly	n.d.	Probable fCJD	[22]	
208	cg → cac	No	Yes	Arg → His	MM	gCJD	[71, 72]	
208	cgc → tgc	n.d.	n.d.	Arg → Cys	MM	Probable AD	[25]	
Further characteristic phenotypes such as cerebral amyloidosis can be observed in Y145X and Y226X carriers [18, 42], while Y163X is accompanied by chronic diarrhea with dysautonomia [46], suggesting a variable phenotype of certain PRNP mutation which is not always typical for a prion disease.

Insertion Mutations

Human PRNP consists of a nona-peptide (PQGGGTWGQ) followed by a tandem repeat of four copies of an octa-peptide (PHGGGWGQ). These repeats are located between amino acid residues 51 and 91. The normal structure of the five repeats has been designated R1-R2-R2-R3-R4. R1 encodes a nona-peptide, while R2 to R4 encode octa-peptides of the formula P(H/Q)GGG(−/G)WGQ.

By non-coding nucleotide differences, R2, R3, and R4 are each distinguished from R1. Patients with an octa-peptide repeat insertion (OPRI) may have either one or up to 12 additional octa-repeats in PRNP (Table 2). The cause of this extra repeat formation might be an unequal crossover and recombination [17].

The clinical picture of this group of patients (>30 cases) may range from that of classical CJD to that of a GSS-type illness of long duration [129]. In most cases, there is a correlation between the length of the inserts, the age of onset and the duration of the disease. With an increase in the insert numbers from one to seven, the duration of the illness can range from 5 to 120 months [15]. The majority of the patients have a chronic course with aphasia, apraxia, cerebral ataxia, extrapyramidal features, and memory loss [17, 116, 119]. However, patients with one, two, or four extra repeats may have a phenotype similar to sCJD [5]. The clinical pathological features of patients with five, six, seven, eight, and nine extra repeats are reminiscent of Gerstmann-Sträussler-Scheinker syndrome or atypical dementia [93, 130].

In octa-peptide repeat insertion patients, immunohistochemical detection of PrPSc aggregates usually show a patchy or tigroid pattern (Fig. 1d–h). Additionally, they may show coarse and plaque-like PrPSc deposits (Fig. 1g, in case of 4 OPRI) or a tigroid pattern (Fig. 1h, 5 OPRI) in the cerebellar cortex. The PrPSc aggregate pattern indicates a similar pattern comparable to sCJD VV2 patients (Fig. 1i). Most of the OPRI patients express the proteinase K-resistant PrPSc type 2 (Fig. 4b) according to the system described by Parchi et al. [10]. In single cases, PrPSc type 1 may be expressed, as shown for a 4-OPRI codon 129 MM (Fig. 4b).

Codon	Change in DNA	Familial history	Pathologic	>1 case	Change in amino acid	PRNP codon 129	Disease	Reference
209	gtg → atg	n.d.	n.d.	No	Val → Met	VV	n.d.	[23]
210	gtt → att	Yes	Yes	Yes	Val → Ile	MM	fCJD	[73, 74]
211	gag → cag	Yes	Possible	Yes	Glu → Gln	MM	fCJD	[62, 75]
211	gag → gac	n.d.	n.d.	n.d.	Glu → Asp	VV	gCJD	[76]
212	cag → cgc	n.d.	Yes	n.d.	Gln → Pro	MM, VV	GSS	[23]
215	atc → gtc	Yes	Yes	Yes	Ile → Val	MM	fCJD	[77]
217	cag → ccg	Yes	Yes	Yes	Gln → Arg	VV	GSS	[78]
218	tac → aac	Yes	Yes	Yes	Tyr → Asn	VV	GSS	[79]
219	gag → aag	n.d.	n.d.	Yes	Glu → Lys	MM	GSS	[80, 81]
226	tac → taa	No	Yes	No	Tyr → Stop	VV	GSS	[18, 80, 81]
227	cag → tag	No	Yes	No	Gln → Stop	VV	GSS	[18]
232	atg → agg	Yes	Yes	Yes	Met → Arg	MM	fCJD	[82–84]
238	cca → tca	Yes	Yes	Yes	Pro → Ser	MM	fCJD	[19]

Details about the gene codon, change in DNA sequence, familial history, pathology, number of cases, change in amino acid sequence, type of disease, and corresponding reference are indicated for each PRNP mutation. Lacking information is marked as not-described (n.d.)

FFI-Related Mutations

FFI, the most common genetic prion disease worldwide, typically begins with sleep and vigilance disturbances, cognitive deficits, spatial disorientation, hallucinations, autonomic disturbance, and motoric signs with an onset between 36 and 62 years (average: 56 years). FFI was reported initially as thalamic dementia [131, 132]. The duration of the disease depends on the codon 129 MV polymorphism and is between
6 and 72 months with an average duration of approximately 11 months in MM cases while MV cases exhibit an average disease duration of 23 months [3, 52, 133–135]. However, opposed to the first reported FFI patients, more recent studies indicated that the clinical course of patients with a FFI mutation resembled sCJD without any insomnia symptoms. These observations challenge the widely accepted assumption that codon 129 MM homozygosity is always related to a FFI phenotype [135, 136].

Typically, FFI patients exhibit severe neuronal loss in the anterior ventral and mediodorsal thalamic nuclei and the inferior olivary nucleus associated with prominent astrogliosis and microglial activation (Fig. 2a, b). In the cerebellum, extensive Purkinje cell loss can be observed frequently

Table 2	Overview of octa-peptide repeat deletion/insertion (OPRI) mutations					
Coding change	Insert	Sequence	PRNP codon 129	Disease	>1 cases	Reference
None	No	R1,R2,R3,R4	All	None	n.d.	[17]
24 bp deletion	−1	R1,R2,R3,R4	MM	fCJD-like	Yes	[87]
24 bp insertion	1	R1,R2,R3,R4	MM	fCJD	Yes	[86]
48 bp insertion	2	R1,R2,R3,R4	MM	fCJD	Yes	[86]
72 bp insertion	3	R1,R2,R3,R4	MM	fCJD	Yes	[86]
96 bp insertion	4	R1,R2,R3,R4	MM	fCJD	Yes	[86]
120 bp insertion	5	R1,R2,R3,R4	MM	fCJD	Yes	[86]
144 bp insertion	6	R1,R2,R3,R4	MM	fCJD	Yes	[86]
168 bp insertion	7	R1,R2,R3,R4	MM	fCJD	Yes	[86]
Details about the coding change, number of inserts, sequence change, codon 129 genotype, kind of disease, number of cases, and corresponding reference are indicated for each PRNP mutation. Lacking information is marked as not-described (n.d.).						
associated with axonal swelling in granule cell layer (torpedoes) (Fig. 2c).

Spongiform changes of the neuropil may be absent or only focally seen in the parahippocampal region (Fig. 2d). Abnormal PrPSc deposits can be absent (Fig. 2e) or only focally seen in areas with spongiform changes (Fig. 2f).

Biochemical typing of FFI reveals the expression of PrPSc type 2 (MW of unglycosylated PrP = 19 kDa). The amount of PrPSc in FFI is typically very low. Additionally, the resistance of PrPSc to proteinase K (PK) is decreased which makes it difficult to detect the proteinase-resistant fragments by Western blot (Fig. 4c). Protein aggregate filtration techniques may overcome these diagnostic problems [124].

In contrast, carriers of the PRNP D178N mutation, which exhibit PRNP codon 129V at the same allele, are classified as fCJD cases. This patient group shows a more abundant PK-resistant PrPSc banding pattern (Fig. 4a). The PrPSc isoform composition revealed an under-representation of the unglycosylated band at 21 kDa (PrPSc type 1) and an enrichment of PrPSc in certain brain regions, such as the parietal and frontal cortex compared to the occipital cortex, striatum, and cerebellum (Fig. 4a).

PRNP Mutations Causing GSS

GSS, originally described by Gerstmann et al. [137], has been associated with many different point mutations (e.g.,
mutations at codons 102, 105, 117, Y145 stop mutation etc. (Table 1) or insertional mutations of octa-peptide repeats (Table 2). The most common cause of GSS is a single base exchange at codon 102 which results in an amino acid residue change from proline to leucine (P102L). The onset of GSS occurs at an age between 40 and 60 years and the percentage of family history is 70% [9]. Clinically, GSS is associated with prominent ataxia. Dementia usually occurs at the late stage of the disease over a course of 1 to 7 years [15].

A characteristic feature of GSS is the appearance of large multicentric PrP-amyloid plaques, stained with hematoxylin-eosin, in the molecular layer of the cerebellum (Fig. 3a, b). Spongiform changes are frequently missing. In some GSS patients, the composite of the PrP plaques show a halo (Fig. 3a, d), but in others not (Fig. 3b, c, e, f).

Moreover, prominent neurofibrillary, tau-positive pathology has been observed in patients exhibiting a PRNP mutation at codon 105, 145, and 217 [42, 138, 139].

In Western blot, GSS patients and carriers of the PRNP P102L mutation typically show an additional proteinase K-resistant protein fragment of 7 to 10 kDa of molecular size. A proteinase K-resistant ladder-like PrPSc banding pattern may also occur in GSS patients (Fig. 4d).

PRNP Mutations with an Unknown Significance

Phenotypes of different PRNP mutations may be variable. The majority of PRNP mutations are related to a prion or a prion-like disease. However, certain PRNP mutations have also been described in non-prion disease patients. For example, the octa-repeat deletion around codon 82 with a familiar history is linked to phenotype which is similar to Alzheimer’s disease [140]. Another report described a family with a 288 base pair insertion consisting of 12 octa-peptide repeats which exhibited the clinical behavior changes and neuroimaging features of atypical frontotemporal dementia (FTD) cases [123]. Moreover, a recent report has even identified a PRNP variant, the G127V, which completely prevents prion disease as shown in mice but not yet in humans [35].
Fig. 3 Typical neuropathological features of GSS. a, b GSS plaques can be observed in the molecular layer of the cerebellum detectable by conventional hematoxylin-eosin staining. Spongiform changes are absent. Immunohistochemical anti-prion reactions show abundant multicentric plaques. In some cases, composite plaques show a halo (a, d), but in others not (b, e, f). c, d prion PET blot; prion aggregates in dark brown; e, f conventional anti-prion immunohistochemical staining revealed abundant pathological PrPSc deposits in gray matter (brown color reaction).

Fig. 4 Detection of PK-resistant PrPSc isoform profiles by Western blot in gCJD cases. a Analysis of PrPSc isoforms in different brain regions of an fCJD patient carrying the D178N-129 V mutation. The banding pattern of the D178N-129 V patient revealed an under-representation of the unglycosylated band at 21 kDa (prion type 1). b Western blot analysis (described previously [124, 125] of PrPSc profiles from the frontal cortex of different fCJD patients are classified according to their PrP type. E200K 129 M-, 4-OPRI 129 M-, and V210I 129 M carriers express PrPSc type 1 (unglycosylated PrP form: 21 kDa), while E200K 129 V, 4-OPRI 129 V, and 5-OPRI 129 M carriers exhibit PrPSc type 2 (unglycosylated PrP form: 19 kDa). In c, the PrPSc profile of an FFI patient, and in d, the PrPSc profile of a GSS patient is shown. While PrPSc in the FFI patient is less PK resistant with a low representation of the unglycosylated PrP band, the GSS mutation may cause the expression of a characteristic 7–10 kDa PrPSc fragment. Abbreviations: C control, Occ C occipital cortex, Str striatum, Cereb cerebellum, Par C parietal cortex, Front C frontal cortex, EC entorhinal cortex, Thal thalamus.
Conclusion

To date, more than 50 different mutations in PRNP that may result in diverse clinicopathological phenotypes have been documented. Some genetic cases (GSS) even show a co-pathology of PrPSc and amyloid beta plaques or neurofibrillary tangles. STOP mutations in the PRNP cause quite characteristic banding patterns of PK-resistant PrPSc in brain tissue. Since several PRNP mutations show a disease course resembling classical sCJD and appear to occur spontaneously with no family history and with a variable penetrance, they may remain undiscovered.

References

1. Imran M, Mahmood S (2011) An overview of human prion diseases. Virol J 8:559
2. Cramm M, Schmitz M, Zafar S, Karch A, Mitrova E, Schroeder B, Raaber E, Kuhn F, Satoh K, Collins S, Zerr I (2016) Stability and Reproducibility Underscore Utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease. Mol Neurobiol 53:1896–1904
3. Krasnianski A, Bartl M, Sanchez-Juan PJ, Heinemann U, Meissner B, Varges D et al (2008) Fatal familial insomnia: clinical features and early identification. Ann Neurol 63:658–661
4. WHO. (1998) Human transmissible spongiform encephalopathies. Wldy Epidemiol Rec 47:361–5
5. Gambetti P, Kong Q, Zou W, Parchi P, Chen S (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239
6. Mastrianni JA (2010) The genetics of prion diseases. Genet Med 12:187–195
7. Spudich S, Mastrianni JA, Wrensch M, Gabizon R, Meiner Z, Kahana I et al (1995) Complete penetrance of Creutzfeldt-Jakob disease in Libyan Jews carrying the E200K mutation in the prion protein gene. Mol Med 1:607–613
8. Kobayashi A, Teruya K, Matsuura Y, Shirai T, Nakamura Y, Yamada M et al (2015) The influence of PRNP polymorphisms on human prion disease susceptibility: an update. Acta Neuropathol 130:159–170
9. Kovács GG, Puopolo M, Ladogana A, Pocchiari M, Budka H, van Duijn C et al (2005) Genetic prion disease: the EUROCJD experience. Hum Genet 118:166–174
10. Parchi P, Giese A, Capellari S, et al (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233
11. Puoti G, Rossi G, Giaccone G, Awan T, Lievens PM, Defanti CA et al (2000) Polymorphism at codon 129 of PRNP affects the phenotypic expression of Creutzfeldt-Jakob disease linked to E200K mutation. Ann Neurol 48:269–270
12. Kaski DN, Pennington C, Beck J, Poulter M,Uphill J, Bishop MT, Linehan JM et al. (2011) Inherited prion disease with 4-octapeptide repeat insertion: disease requires the interaction of multiple genetic risk factors. Brain 134:1829–1838
13. Capellari S, Strammiello R, Savironi D, Kretzschmar H, Parchi P (2011) Genetic Creutzfeldt-Jakob disease and fatal familial insomn: insights into phenotypic variability and disease pathogenesis. Acta Neuropathol 121:21–37
14. Liao YC, Lebo RV, Clawson GA, Smuckler EA (1986) Human prion protein cDNA: molecular cloning, chromosomal mapping, and biological implications. Science 233:364–367
15. Brown K, Mastrianni J (2010) The prion diseases. J Geriatr Psychiatry Neurol 23:277–298
16. Jeong BH, Kim YS (2014) Genetic studies in human prion diseases. J Korean Med Sci 29:623–632
17. Goldfarb LG, Brown P, McCombie WR, Goldgaber D, Swergold GD, Wills PR et al (1991) Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci U S A 88:10926–10930
18. Jansen C, Parchi P, Capellari S, Vermeij AJ, Corrado P, Baas F et al (2010) Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP. Acta Neuropathol 119:189–197
19. Windl O, Giese A, Schulz-Schaeffer W, Zerr I, Skowrc K, Arendt S et al (1999) Molecular genetics of human prion diseases in Germany. Hum Genet 105:244–252
20. Bernardi L, Cupidi C, Frangipane F, Anfossi M, Gallo M, Comi ME; et al (2014) Novel N-terminal domain mutation in prion protein detected in 2 patients diagnosed with frontotemporal lobar degeneration syndrome. Neurobiol Aging 35:2657.e6–2657.e11
21. Oldoni E, Fumagalli GG, Serpente M, Fenoglio C, Scaroni M, Arighi A et al. (2016) PRNP P39L Variant is a Rare Cause of Frontotemporal Dementia in Italian Population. J Alzheimers Dis. 50:353–357
22. Schelze K, Stoeck K, Eigenbrod S, Grubbs-Frodl E, Raddatz LM, Ponto C et al (2013) Report about four novel mutations in the prion protein gene. Dement Geriatr Cogn Disord 35:229–237
23. Beck JA, Poulter M, Campbell TA, Adamson G, Uphill JB, Guerrero R et al (2010) PRNP allelic series from 19 years of prion protein gene sequencing at the MRC Prion Unit. Hum Mutat 31: E1551–E1563
24. Jones M, Odunsi D, p. Lissis D, Vincent A, Bishop M, Head MW et al (2014) Gerstmann-Sträussler-Scheinker disease: novel PRNP mutation and VGKC-complex antibodies. Neurology 82:2107–2111
25. Zheng L, Longfei J, Ying X, Xinqing Z, Haiqing S, Haiyan L et al (2008) PRNP mutations in a series of apparently sporadic neurodegenerative dementias in China. Am J Med Genet B Neuropsychiatr Genet 147:938–944
26. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD et al (1989) Linkage of a prion protein missense variant to Gerstmann-Sträussler syndrome. Nature 338:342–345
27. Iwasaki Y, Mori K, Tatsuno S, Mimuro M et al (2014) Gerstmann-Sträussler-Scheinker disease with P102L prion protein gene mutation presenting with rapidly progressive clinical course. Clin Neuropathol 33:344–353
28. Kitamoto T, Amano N, Terao Y, Nakazato Y, Ishikawa T, Mizutani T et al (1993) A new inherited prion disease (PrP-P105L mutation) showing spastic paraparesis. Ann Neurol 34:808–813
29. Rogaeva E, Zadikoff C, Ponesse J, Schmitt-Ulms G, Kawarai T, Sato C et al. (2006) Childhood onset in familial prion disease with a novel mutation in the PRNP gene. Arch Neurol 63:1016–1021
30. Tunnell E, Wollman R, Mallik S, Cortes CJ, Dearmond SJ, Reis DJ et al (2014) Gerstmann-Sträussler-Scheinker disease: novel PRNP mutation associated with atypical prion disease and a rare PrPSc conformation. Neurology 71:1431–1438
31. Rodriguez MM, Peoc’h K, Halák S, Bouchet C, Vemengo L, Mañana H et al (2005) A novel mutation (G114V) in the prion protein gene in a family with inherited prion disease. Neurology 64:1455–1457
32. Doh-ura K, Tateishi J, Kitamoto T, Sasaki H, Sakaki Y (1999) Creutzfeldt-Jakob disease patients with congophilic kuru plaques have the missense variant prion protein common to Gerstmann-Sträussler-Scheinker syndrome. Ann Neurol 27:121–126
33. Hsiao KK, Cass C, Schellenberg GD, Bird T, Devine GE, Wisniewski H et al (1991) A prion protein variant in a family with the telencephalic form of Gerstmann-Sträussler-Scheinker syndrome. Neurology 41:681–684
34. Mead S, Whitfield J, Poulter M, Shah P, Uphill J, Campbell T et al (2009) A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med 361:2056–2065
35. Asante EA, Smidak M, Grimshaw A, Houghton R, Tomlinson A, Jeelani A et al (2015) A naturally occurring variant of the human prion protein completely prevents prion disease. Nature 522:478–481
36. Zhou S, Shi D, Liu X, Liu H, Yao X (2016) Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep 6:21804
37. Panegyres PK, Toufexis K, Kakulas BA, Cernevakova L, Brown P, Ghetti B et al (2001) A new PRNP mutation (G131V) associated with Gerstmann-Sträussler-Scheinker disease. Arch Neurol 58:1899–1902
38. Jansen C, Voet W, Head MW, Parchi P, Yull H, Verrips A et al (2011) A novel seven-octapeptide repeat insertion in the prion protein gene (PRNP) in a Dutch pedigree with Gerstmann-Sträussler-Scheinker disease phenotype: comparison with similar cases from the literature. Acta Neuropathol 121:59–68
39. Hilton DA, Head MW, Singh VK, Bishop M, Ironside JW (2009) Familial prion disease with a novel severe to isoenceucine mutation at codon 132 or prion protein gene (PRNP). Neuroreport Appl Neurobiol 35:111–115
40. Rowe DB, Lewis V, Needham M, Rodriguez M, Boyd A, McLean C et al (2007) Novel prion protein gene mutation presenting with subacute PSP-like syndrome. Neurology 68:868–870
41. Kitamoto T, Iizuka R, Tateishi J (1993) An amber mutation of prion protein in Gerstmann-Sträussler-Scheinker syndrome with mutant PrP plaques. Biochem Biophys Res Comm 192:525–531
42. Ghetti B, Piccardo P, Spillantini MG, Ichimiyah Y, Porro M, Perini F et al (1996) Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci U S A 93:744–748
43. Pastore M, Chin SS, Bell KL, Dong Z, Yang Q, Yang L et al (2005) Creutzfeldt-Jakob disease (CJD) with a mutation at codon 148 of prion protein gene: relationship with sporadic CJD. Am J Pathol 167:1729–1738
44. Finch U, Muller-Thomsen T, Mann U, Eggers C, Marksteiner J, Meins W et al (2000) High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet 66:110–117
45. Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A et al (2009) Genetics and molecular pathogenetics of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130
46. Mead S, Gandhi S, Beck J, Caine D, Gajulapalli D, Carswell C et al (2013) A novel prion disease associated with diarrhea and autonomic neuropathy. N Engl J Med 369:1904–1914
47. Themistocleous AC, Krettzharm M, Hussain M, Palace J, Mead S, Bennett DL (2014) Late onset hereditary sensory and autonomic neuropathy with cognitive impairment associated with Y163X prion mutation. J Neurol 261:2230–2233
48. Samaia HB, Mari JJ, Vallaia HP, Moura RP, Simpson AJ, Brentani RR (1997) A prion-linked psychiatric disorder [letter]. Nature 390:241
49. Simpson M, Johannsen V, Boyd A, Khug G, Masters CL, Li QX et al (2013) Unusual clinical and molecular-pathological profile of Gerstmann-Sträussler-Scheinker disease associated with a novel PRNP mutation (V176G). JAMA Neurol 70:1180–1185
50. Gambetti P, Parchi P, Petersen RB, Chen SG, Lugaresi E (1995) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: clinical, pathological and molecular features. Brain Pathol 5:43–51
51. Kretzschmar HA, Neumann M, Stavrou D (1995) Codon 178 mutation of the human prion protein gene in a German family (Backer family): sequencing data from 72-year-old cellloidin-embedded brain tissue. Acta Neuropathol 89:96–98
52. Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, Montagna P et al (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258:806–808
53. Kitamoto T, Ohta M, Doh-ura K, Hitoshi S, Terao Y, Tateishi J (1993) Novel missense variants of prion protein in Creutzfeldt-Jakob disease or Gerstmann-Sträussler syndrome. Biochem Biophys Res Commun 191:709–714
54. Amano Y, Kimura N, Hanaoka T, Aso Y, Hirano T, Murai H et al (2013) Creutzfeldt-Jakob Disease with a prion protein gene codon 180 mutation presenting asymmetric cortical high-intensity on magnetic resonance imaging. Prion 7:29–33
55. Nittrini R, Rossemenz S, Passos-Bueno MR, da Silva LS, Lughetti P, Papadopoulos M et al (1997) Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Am J Hum Genet 42:138–146
56. Hall DA, Leechey MA, Filley CM, Steinbert E, Montine T, Schellenberg GD et al (2005) PRNP H187R mutation associated with neuropsychiatric disorders in childhood and dementia. Neurology 64:1304–1306
57. Colucci M, Moleres FJ, Xie ZL, Ray-Chaudhury A, Guttie S, Butefish C et al (2006) Gerstmann-Sträussler-Scheinker: a new phenotype with “curly” PrP deposits. J Neuropathol Exp Neurol 65:642–651
58. Chen C, Shi Q, Zhou W, Zhang XC, Dong JH, Hu QX et al (2013) Clinical and familial characteristics of eight Chinese patients with T188K genetic Creutzfeldt-Jakob disease. Infect Genet Evol 14:120–124
59. Collins S, Boyd A, Fletcher A, Byron K, Harper C, McLean CA et al (2000) Novel prion protein gene mutation in an octogenarian with Creutzfeldt-Jakob disease. Arch Neurol 57:1058–1063
60. Roebert S, Grabson-Frodl EM, Windi O, Krebs B, Xiang W, Vollmert C et al (2008) Evidence for a pathogenic role of different mutations at codon 186 or PRNP. PLoS One 3:e2147
61. Kotta K, Paspalitsis I, Bostantjopoulou S, Latsoudis H, Plaitakis A, Kazis D et al (2006) Novel mutation of the PRNP gene of a clinical CJD case. BMC Infect Dis 6:169
62. Peoc’h K, Manivet P, Beaudry P, Attane F, Besson G, Hannique D et al (2000) Identification of three novel mutations (E196K, V203L, E211Q) in the prion protein gene (PRNP) in inherited prion diseases with Creutzfeldt-Jakob disease phenotype. Hum Mutat 15:482
63. Zhang H, Wang M, Wu L, Zhang H, Jin T, Wu J et al (2014) Novel prion protein gene mutation at codon 196 (E196A) in a septuagenarian with Creutzfeldt-Jakob disease. J Clin Neurosci 21:175–178
64. Uflacker A, Doraiswamy PM, Rechitsky S, See T, Geschwind M, Unverzagt FW et al (2013) A naturally occurring variant of the human prion protein gene in a German family with Gerstmann-Sträussler-Scheinker disease. JAMA Neurol 71:484–486
65. Unverzagt FW, Farlow MR, Norton J, Dlouhy SR, Young K, Ghetti B (1997) Neuropsychological function in patients with Gerstmann-Sträussler-Scheinker disease from the Indiana kindred (F198S). J Int Neuropsychol Soc 3:169–178
66. Goldfarb LG, Korczyn AD, Brown P, Chapman J, Gadjeusk DC (1990) Mutation in codon 200 of scrapie amyloid precursor gene linked to Creutzfeldt-Jakob disease in Sephardic Jews of Libyan and non-Libyan origin. Lancet 336:637–638
67. Kim MO, Cali I, Oehler A, Fong JC, Wong K, See T et al (2013) Genetic CJD with a novel E200G mutation in the prion protein gene and comparison with E200K mutation cases. Acta Neuropathol Commun 1:80
81. Tanaka Y., Minematsu K., Moriyasu H., Yamaguchi T., Yutani C., Alzualde A., Indakoetxea B., Ferrer I., Moreno F., Barandiaran M., Pocchiari M., Salvatore M., Cutruzzola F., Genuardi M., Allocatelli R., Shi Q., Chen C., Wang XJ., Zhou W., Wang JC., Zhang BY. et al (2001) Mutation of the PRNP gene at codon 208 in familial Creutzfeldt-Jakob disease. Am J Med Genet 103:133

82. Peoc'h K., Levasseur E., Delmonte E., De Simone A., Laffont-Proust I., Privat N. et al (2012) Substitutions at residue 211 in the prion protein drive a switch between CJD and GSS syndrome, a new mechanism governing inherited neurodegenerative disorders. Hum Mol Genet 21:5417–5428

83. Muñoz-Nieto M., Ramonet N., López-Gastón JI., Cuadrado-Corales N., Calero O., Díaz-Hurtado M., Ipiens JR., Ramón y Cajal S., de Pedro-Cuesta J., Calero M. (2013) A novel mutation I1215V in the PRNP gene associated with Creutzfeldt-Jakob disease and Alzheimer’s diseases in three patients with divergent clinical phenotypes. J Neuro 260:77–84

84. Heredia S., Díaz F., Ribas R., Gómez-Hurtado P., López-González E., Lopez de Castro M., Concejally P., Sánchez R., Sánchez MA., Peoc'h K., Levasseur E., Delmonte E., De Simone A., Laffont-Proust I., Privat N. et al (2012) Substitutions at residue 211 in the prion protein drive a switch between CJD and GSS syndrome, a new mechanism governing inherited neurodegenerative disorders. Hum Mol Genet 21:5417–5428

85. Palmer MS., Mahal SP., Campbell TA., Hill AF., Sidle KC., Laplanche JL. et al (1993) Deletions in the prion protein gene are not associated with CJD. Hum Mol Genet 2:541–544

86. Laplanche JL., Delasnerie-Laupiri R., Giacaglì JP., Dussauzy M., Chatelain J., Lamy JM. (1995) Two novel insertions in the prion protein gene in patients with late-onset dementia. Hum Mol Genet 4:1109–1111

87. Goldfarb LG., Brown P., Little BW., Cervenakova L., Kenney K., Gibbs CJ. et al (1993) A new (two-repeat) octapeptide coding insertion mutation in Creutzfeldt-Jakob disease. Neurology 43:2392–2394

88. van Harten B., van Gool WA., Van Langen IM., Meijerink PH., Weinstein J. & C (2000) A new mutation in the prion protein gene: a patient with dementia and white matter changes. Neurology 55:1055–1057

89. Croes EA., Theuns J., Houwing-Duistermaat JJ., Durr B., Sleegers K., Roos R. et al (2004) Octapeptide repeat insertions in the prion protein gene and early onset dementia. J Neurol Neurosurg Psychiatry 75:1166–1170

90. Grasbon-Frodell E., Schmauzbauer R., Weber P., Krebs B., Windl O., Zerr I. et al (2004) A novel three-extra-repeat insertion in the prion protein gene (PRNP) in a patient with Creutzfeldt-Jakob disease. Neurogenetics 5:249–250

91. Yu SL., Jin L., Sy MS., Mei FH., Kang SL., Sun GH. et al (2004) Polymorphisms of the PRNP gene in Chinese populations and the identification of a novel insertion mutation. Eur J Hum Genet 12:867–870

92. Nishida Y., Sodeyama N., Tsuru S., Kitamoto T., Mizusawa H. (2004) Creutzfeldt-Jakob disease with a novel insertion and codon 219 Lys/Lys polymorphism in PRNP. Neurology 63:1978–1979

93. Rossi G., Giaccone G., Giampaolo L., Iussich S., Puoti G., Frigo M. et al (2000) Creutzfeldt-Jakob disease with a novel four extra-repeat insertion mutation in the PrP gene. Neurology 55:405–410

94. Campbell TA., Palmer MS., Will RG., Gibb WR. Luthert PJ., Collinge J. (1996) A prion disease with a novel 96-base pair insertion mutation in the prion protein gene. Neurology 46:761–766

95. Martinez-Saez E., Gelpi E., Rey MJ., Ferrer I., Botta-Orfila T. et al (2012) Hirano body-rich subtypes of Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 38:153–161

96. Yamagihara C., Yasuda M., Maeda K., Miyoshi K., Nishimura Y. (2002) Rapidly progressive dementia syndrome associated with a novel five extra repeat mutation in the prion protein gene. J Neurol Neurosurg Psychiatry 72:788–791

97. Cochran EJ., Bennett DA., Cervenakova L., Kenney K., Bernard B., Foster NL. et al (1996) Familial Creutzfeldt-Jakob disease with a five-repeat octapeptide insertion mutation. Neurology 47:727–733

98. Jansen C., van Swieten JC., Capellari S., Strammiello R., Parchi P., Rozemuller AJ. (2009) Inherited Creutzfeldt-Jakob disease in a Dutch patient with a novel five octapeptide repeat insertion and unusual cerebellar morphology. J Neurol Neurosurg Psychiatry 80:1386–1389

99. Skworeck KH., Windl O., Schulz-Schaeffer WJ., Giuse A., Bergk J, et al (1999) Familial Creutzfeldt-Jakob disease with a novel 120-bp insertion in the prion protein gene. Ann Neurol 46:693–700

100. Mee D, Webb TE, Campbell TA, Beck J, Linehan JM, Rutherford B, et al (2007) Inherited prion disease with 5-OPRI: phenotype modification by repeat length and codon 129. Neurology 69:730–738

101. Boedker M., Baker HF., Leach M., Lofthouse R., Ridley RM. et al (1992) Inherited prion disease with 144 base pair gene insertion. 1. Genealogical and molecular studies. Brain 15:675–685

102. Gelpi E., Kovacs GG., Ströbel T., Koperek O., Voigtlander T., Liberiski PP. et al (2005) Prion disease with a 144 base pair insertion: unusual cerebellar prion protein immunoreactivity. Acta Neuropathol 110:513–519
103. Owen F, Poulter M, Lofthouse R, Collinge J, Crow TJ, Risby D et al (1989) Insertion in prion protein gene in familial Creutzfeldt-Jakob disease. Lancet 1:51–52
104. Oda T, Kitamoto T, Tateishi J, Mitsuhashi T, Iwabuchi K, Haga C et al (1995) Prion disease with 144 base pair insertion in a Japanese family line. Acta Neuropathol Berl 90:80–86
105. Nicholl D, Windl O, de Silva R, Sawcer S, Dempster M, Ironside et al (2003) De novo seven extra repeat expanded seven extra-repeat insertion in PRNP. BMJ Case Rep 78:201
106. Capellari S, Vital C, Parchi P, Petersen RB, Ferrer X, Jarnier D et al (1997) Familial prion disease with a novel 144-bp insertion in the prion protein gene in a Basque family. Neurology 49:133–141
107. Vital A, Laplanche JL, Bastard JR, Xiao X, Zou WQ, Vital C (2011) A case of Gerstmann-Sträussler-Scheinker disease with a novel six octapeptide repeat insertion. Neuropathol Appl Neurobiol 37:554–559
108. Pietrini V, Puoti G, Limido L, Rossi G, Di Fede G, Giaccone G et al (2003) Creutzfeldt-Jakob disease with a novel extra-repeat insertion in the PRNP gene. Neurology 61:1288–1291
109. Brown P, Goldfarb LG, McCombie WR, Nieto A, Squillacote D, Sherremata W et al (1992) Atypical Creutzfeldt-Jakob disease in an American family with an insertion in the PRNP amyloid precursor gene. Neurology 42:422–427
110. Wang XF, Guo YJ, Zhang BY, Zhao WQ, Gao JM, Wan YZ et al (2003) Familial prion disease with a different 24 bp deletions in an atypical Alzheimer disease-like tau pathology and clinical phenotype. Ann Neurol 56:711–720
111. Cannella M, Martino T, Simonelli M, Ciammola A, Gradini R, Ciarmiello A et al (2009) De novo seven extra repeat expanded mutation in the PRNP gene in an Italian patient with early onset dementia. BMJ Case Rep 2009;bcf08.2008.0711
112. Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edstrom L et al (2001) Huntington disease phenocopy is a familial prion disease. J Neurol Sci 188:139–140
113. van Gool WA, Hensels GW, Hoogerwaard EM, Wijzer JH, Wesseling P, Bolhuis PA (1995) Hypokinesia and presenile dementia in a Dutch family with a novel insertion in the prion protein gene. Brain 118:1565–1571
114. Laplanche JL, Hachimi KH, Durieux I, Thuillet P, Defebvre L, Delasnerie-Lauprêtre N et al (1999) Prominent psychiatric features and early onset in an inherited prion disease with a new insertional mutation in the prion protein gene. Brain 122:2375–2386
115. Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edstrom L et al (2001) Huntington disease phenocopy is a familial prion disease. Am J Hum Genet 69:1385–1388
116. Duchen LW, Poulter M, Harding AE (1993) Dementia associated with a 216 base pair insertion in the prion protein gene. Clinical and neuropathological features. Brain 116:555–567
117. Krasemann S, Zerr I, Weber T, Poser S, Kretzschmar HA, Hunsmann G et al (1995) Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Mol Brain Res 34:173–176
118. Owen F, Poulter M, Collinge J, Leach M, Lofthouse R, Crow TJ et al (1992) A denting illness associated with a novel insertion in the prion protein gene. Brain Res Mol Brain Res 13:155–157
119. Sánchez-Valle R, Aróstegui JI, Yagüe J, Rami L, Lladó A, Molinuevo JL (2008) First demonstrated de novo insertion in the prion protein gene in a young patient with dementia. J Neurol Neurosurg Psychiatry 79:845–846
120. Kumar N, Boeve BF, Boot BP, Orr CF, Duffy J, Woodruff BK et al (2011) Clinical characterization of a kindred with a novel 12-octapeptide repeat insertion in the prion protein gene. Arch Neurol 68:1165–1170
121. Wemheuer WE, Wrede A, Gawinecka J, Zerr I, Schulz-Schaeffer W (2013) Filtration of protein aggregates increases the accuracy for diagnosing prion diseases in brain biopsies. J Neuropathol Exp Neurol 72:758–767
122. Schulz-Schaeffer WJ, Tschöke S, Krämer M, Grupe W, Hause-Reitner D, Giese A, Groschup MH, Kretzschmar HA (2000) The paraffin-embedded tissue blot detects PrP(Sc) early in the incubation time in prion diseases. Am J Pathol 156:51–56
123. Hope FC, Goodall JR, Parchi P, Yull JA, Mitrova E, Budka H (2003) Distinctive cerebellar immunoreactivity for the prion protein in familial (E200K) Creutzfeldt-Jakob disease. Acta Neuropathol 105:449–454
124. Jayadev S, Nochlin D, Poorkaj P, Steinbart EJ, Mastrianni JA, Parchi P et al (1996) Familial prion disease with Alzheimer disease-like tau pathology and clinical phenotype. Ann Neurol 49:649–657
125. Collinge J, Owen F, Poulter M, Leach M, Crow TJ, Rossor MN et al (1990) Prion dementia without characteristic pathology [see comments]. Lancet 336:7–9
126. Young K, Piccardo P, Dlouhy S, Bugiani O, Mutigliani F, Gb G (1999) The human genetic prion diseases. In: Harris DA (ed) Prions: molecular and cellular biology. Horizon Scientific Press, Wymondham, pp. 139–175
127. Lugaresi E, Medori R, Montagna P, Baruzzi A, Cortelli P, Lugaresi A et al (1986) Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nucleus. N Engl J Med 315:997–1003
128. Montagna P, Gambetti P, Cortelli P, Lugaresi E (2003) Familial and sporadic fatal insomnia. Lancet 2:167–176
129. Gambetti P, Parchi P, Chen SG (2003) Hereditary Creutzfeldt-Jakob disease and fatal familial insomnia. Clin Med Lab Med 23:43–64
130. Kretzschmar HA, Giese A, Zerr I, Windl O, Schulz-Schaeffer W, Skovron K et al (1998) The German FFI cases. Brain Pathol 8:559–561
131. Zerr I, Giese A, Windl O, Kropp S, Schulz-Schaeffer W, Riedemann C et al (1998) Phenotypic variability in fatal familial insomnia (D178N-129M) genotype. Neurology 51:1398–1405
132. Zarranz JJ, Dígon A, Atares B, Rodríguez-Martínez AB, Arce A, Carrera N et al (2005) Phenotypic variability in familial prion diseases due to the D178N mutation. J Neurol Neurosurg Psychiatry 76:1491–1496
133. Gerstmann J, Sträussler E, Scheinker I (1936) Über eine eigenartige hereditär-famiiläre Erkrankung des Zentralnervensystems. Z Ges Neurol Psychiatr 154:736–762
134. Giaccone G, Tagliavini F, Verga L, Frangione B, Farlow MR, Bugiani O et al (1990) Neurofi brillary tangles of the Indiana kindred of Gerstmann-Sträussler-Scheinker disease share antigenic determi nants with those of Alzheimer disease. Brain Res 530:325–329
135. Yamada M, Itoh Y, Inaba A, Wada Y, Takashima M, Satoe S et al (1999) An inherited prion disease with a PrP P105L mutation: clinicopathologic and PrP heterogeneity. Neurology 53:181–188
136. Perry RT, Go RC, Harrell LE, Acton RT (1995) SSCP analysis and diagnostic time in prion diseases. Am J Pathol 156:51–56
137. Wemheuer WE, Hachimi KH, Defebvre L, Thuillet P, Delasnerie-Lauprêtre N et al (1999) Prominent psychiatric features and early onset in a familial prion disease with a new insertional mutation in the prion protein gene. Brain 122:2375–2386
138. Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edstrom L et al (2001) Huntington disease phenocopy is a familial prion disease. Am J Hum Genet 69:1385–1388
139. Duchen LW, Poulter M, Harding AE (1993) Dementia associated with a 216 base pair insertion in the prion protein gene. Clinical and neuropathological features. Brain 116:555–567
140. Perry RT, Go RC, Harrell LE, Acton RT (1995) SSCP analysis and sequencing of the human prion protein gene (PRNP) detects two different 24 bp deletions in an atypical Alzheimer’s disease family. Am J Med Genet 60:12–18