Qualitative characteristics analysis of Hippophae salicifolia D. Don (Seabuckthorn) populations in Himachal Pradesh

Sumit Nangla, HP Sankhyan, Sanjeev Thakur, Bhupender Dutt and Neerja Rana

DOI: https://doi.org/10.22271/chemi.2020.v8.i5v.10531

Abstract
To determine the variation among different populations and growing plants for qualitative characteristics of plant, leaves, thorns, fruits (berries) and seeds, five female plants of Hippophae salicifolia D. Don at each site were selected at the time of fruit set i.e., during August-September, when male and female could be differentiated. The selected plants were used for the assessment the qualitative variation of Hippophae salicifolia D. Don in Spiti valley and Baspa valley. Variation in qualitative traits of different sites of Hippophae salicifolia D. Don within and between different populations were studied. All the qualitative characters showed significant variation among and between different populations. Based on qualitative characters of different population of different sites, the population of Badseri and Kupa sites were found more promising for growth habit, plant vigour, density of shoot, number of thorns and length of thorns. Due to tremendous variability in population, the population can be used for future variability approaches and breeding programmes and for preparation of DUS guidelines of this species. It is suggested that for further propagation programmes, gene pools from Sangla should be used and it can be planted on wastelands to develop grazing areas for sheep and goats and harvesting of fruits for Seabuckthorn value addition chain.

Keywords: Hippophae salicifolia D. Don, willow leaved seabuckthorn, qualitative characteristics, variation, plant vigour, DUS guidelines, gene pools, population

Introduction
Seabuckthorn (Genus Hippophae) is a berry-bearing, hardy shrub of the family Elaeagnaceae, naturally distributed in Asia and Europe and also introduced in North and South America. It includes 4 species (Hippophae rhamnoides, Hippophae salicifolia, Hippophae tibetana and Hippophae neurocarpa) and further 9 subspecies of Hippophae rhamnoides are reported so far from many parts of world. It is a unique and valuable plant resource currently cultivated in various parts of the world. The natural habitat of seabuckthorn extends widely in China, Mongolia, Russia, and most parts of North Europe. It can withstand extreme temperatures from -43ºC to 40ºC and is considered to be drought resistant. The cold deserts in Himachal Pradesh are found in the districts of Lahaul and Spiti, parts of Kinnaur and Pir Panjal region of Chamba. These areas are characterized by high ridges, difficult terrains with ice field, perpetual snow covered peaks and hostile climate. Among various indigenous and under exploited plant resources of high mountain area, Seabuckthorn (Hippophae salicifolia D. Don) is one of the best solution and can certainly metamorphose the ecology of Cold Desert by reclaiming these bare fragile mountains. Willow leaved Seabuckthorn and indigenous source locally Sutz/Sarla offers an opportunity to maintain more sustainable livelihood qualities as well as unique option for the simultaneous management of several problems. Seabuckthorn has outstanding qualities such as capability to grow and survive under adverse climatic conditions, extensive root system with soil binding ability/ soil stabilization/ control of river bank/ water retention, nitrogen fixing (60-100 kg / ha / year), higher vitamin-C content and economic value of fruit and seed oil , excellent fodder and fuel wood qualities, wider application in food, cosmetics, beverages, medicines and other pharmaceutical products, excellent fencing hedge and social fencing. Though seabuckthorn is widely found under agroforestry system as well as...
Material and Methods

The present investigation was carried out in the fields of Baspa valley of District Kinnaur and Spiti valley of District Lahaul and Spiti as well as in the laboratories of the Department of Tree Improvement and Genetic Resources, Department of Basic Sciences, Department of Environmental Science and Department of Silviculture and Agroforestry, College of Forestry at the Main Campus, Nauni, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India during the period, years 2018-2020. Baspa valley of Kinnaur and Spiti valley of Lahaul and Spiti districts of Himachal Pradesh were surveyed for the occurrence of Hippophae salicifolia D. Don plant species, after proper identification of plants and population with selection of three natural populations in each valley and from which population five plants were selected, marked and taken for further investigation and recording qualitative characteristics. Experimental sites/populations were taken viz., Kuppa, Badseri, Chitkul of Baspa valley in the District Kinnaur and Mane, Shiego and Gii in Spiti valley in District Lahaul and Spiti, Himachal Pradesh. Five female plants of Hippophae salicifolia D. Don at each site, i.e., population were selected at the time of fruit set, i.e., during August-September, when male and female could be differentiated. The selected plants were used for the assessment the qualitative variation of Hippophae salicifolia D. Don in Baspa valley of Kinnaur and Spiti Valley of Lahaul and Spiti. Leaves and berries were taken and carried from experimental sites to laboratory of Department of Tree improvement and Genetic Resources, College of Forestry, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh for further study of qualitative variation and preparation of morphological descriptors and fodder quality analysis in laboratories and the departments. Altitude of populations ranged from 2590m amsl to 3538m amsl in the study area at different sites of Himachal Pradesh.

Observations on the following morphological characteristics were recorded from naturally occurring populations and individuals, i.e., within population (Five individuals from each population)

- Plant: Sex.
- Plant: Growth type.
- Plant: Vigour
- Plant: Density of shoot.
- Plant: Position of inflorescence.
- Plant: One year old shoot thickness.
- Plant: Number of thorns per shoot.
- Plant: Length of thorn on shoot.

- Leaf characters
 - Leaf blade: Shape.
 - Leaf blade: Size
 - Leaf blade: Margin, i.e., undulation of margin.
 - Leaf blade: Green colour and intensity of green colour of upper side.
 - Leaf blade: Pubescence of lower side.

- Flower and fruit characteristics
 - Time of beginning of flowering.
 - Time of beginning fruit ripening.
 - Fruit: Colour of skin.
 - Fruit: Shape.
 - Fruit: Pubescence.
 - Fruit: Length of stalk.
 - Fruit: Size (width).

- Seed characteristics
 - Seed: colour.
 - Seed: Shape of seed tip.

Recording observation on qualitative characteristics and their expression with code/notes

Sr. No.	Qualitative Characteristics	States	Code/ Notes
1.	Plant Sex	Female	1
	Male	2	
2.	Plant Growth type	Tree	1
	Small Tree	2	
	Shrub	3	
3.	Plant Vigour	Weak	1
	Medium	2	
	Strong	3	
	Sparse (1-7)	1	
	Medium (7-14)	2	
	Qualitative Characters		
---	-----------------------	---	
5.	Position of Inflorescence		
	Dense (>14)	3	
	On one year shoots	1	
	Both on one year shoots and older shoots	2	
6.	One Year Old Shoot Thickness		
	Thin (1-2mm)	1	
	Medium(2.1-4mm)	3	
	Thick(>4mm)	5	
7.	Thorniness		
	Absent (0)	0	
	Sparse/Few (1-2)	3	
	Medium (2-5)	5	
	Abundant/Dense (>5)	7	
8.	Length of Thorn		
	Short (1-8mm)	1	
	Medium (8-16mm)	3	
	Long (>16mm)	5	
9.	Leaf Blade Shape		
	Linear	1	
	Lanceolate	2	
	Ovate	3	
10.	Leaf Blade Size		
	Small (1-3.82cm²)	1	
	Medium (3.83-5.85cm²)	3	
	Large (>5.85cm²)	5	
11.	Undulation of Leaf Margin		
	Absent	1	
	Present	2	
12.	Intensity and Green Colour of upper side		
	Light Green	1	
	Medium Green	2	
	Dark Green	3	
	Other (specify)	99	
13.	Pubescence of Lower Side		
	Weak	1	
	Medium	2	
	Strong	3	
14.	Fruit Size		
	Small (5.29-6.07mm)	1	
	Medium(6.07-6.85mm)	3	
	Large(6.85-7.63mm)	5	
15.	Fruit Colour		
	Yellow	1	
	Orange	3	
	Red	5	
	Deep red	7	
	Purple	9	
	Other (specify)	99	
16.	Fruit Shape		
	Round	3	
	Oval	5	
	Long	7	
	Other (specify)	99	
17.	Fruit Pubescence		
	Weak	1	
	Medium	3	
	Strong	5	
18.	Fruit Length of Stalk		
	Short (upto 4mm)	1	
	Medium (4-6cm)	3	
	Long (>6mm)	5	
19.	Time of Beginning of Flowering		
	March	1	
	April	3	
	May	5	
	Other (Specify)	7	
20.	Time of Beginning of Fruit Ripening		
	August	1	
	September	3	
	October	5	
	Other (Specify)	7	
21.	Seed Colour		
	Light Brown	1	
	Brown	3	
	Dark Brown	5	
22.	Seed Tip Shape		
	Pointed	1	
	Round	3	
	Depressed	5	

Result and Discussion

Qualitative Characters

Growth habit and plant vigour

The growth habit among the population studied was either found to vary from small tree and shrub (Table 1). The KP3, SP1, SP2, SP3, SP4 and SP5 were shrub types, whereas the other genotypes of between population were small tree type. The plant vigour was found to vary from weak, medium and strong (Table 1). KP3, CP3 and MP1 were weak plant vigour, whereas KP1, KP2, KP4, KP5, BP1, CP4, GP2, GP4, GP5, MP2, MP3, MP4, SP1, SP2, SP3, SP4 and SP5 were Medium type. On the other hand, BP2, BP3, BP4, BP5, CP1, CP2,
CP5, GP1, GP3 and MP5 had strong plant vigour. From inclusive study, 60 per cent of population was found to be small tree type and rest 40 per cent was shrub type, however 56.6 per cent population had medium vigour, 33.3 per cent strong and only 10 per cent population showed weak shoot vigour (Fig- 1, 2).

Density of shoot

The character density of shoot showed a wide variation between as well as among population, which varied from sparse, medium and dense (Table 1). The population KP1, BP4, CP1, CP4, GP1, GP2, GP4, MP1, MP2, MP3, MP4, MP5, SP1, SP2, SP3, SP4 and SP5 showed sparse shoot density whereas, KP1, KP2, KP3, BP2, BP3, CP2, CP3, CP5, GP3 had medium shoot density. On the other hand, the population KP5, BP1 and BP5 showed dense shoot density. From the Table 2, it is clear that, 60 per cent of population showed sparse shoot density, 30 per cent were medium and 10 per cent of population showed dense shoot density (Fig 3).

Table 1: Variation in morphological descriptors in plant sex, growth habit, plant vigour, density of shoot and position of inflorescence among and between selected Seabuckthorn (*Hippophae salicifolia* D. Don) populations in Himachal Pradesh

Populations	Plant Sex	Growth Habit	Plant Vigour	Density of Shoot	Position of Inflorescence
KP1	Female	Small Tree	Medium	Sparse	On one year old shoot
KP2	Female	Small Tree	Medium	Medium	On one year old shoot
KP3	Female	Small Tree	Weak	Medium	On one year old shoot
KP4	Female	Small Tree	Medium	Medium	On one year old shoot
KP5	Female	Small Tree	Medium	Dense	On one year old shoot
BP1	Female	Small Tree	Medium	Dense	On one year old shoot
BP2	Female	Small Tree	Strong	Medium	On one year old shoot
BP3	Female	Small Tree	Strong	Medium	On one year old shoot
BP4	Female	Small Tree	Strong	Dense	On one year old shoot
BP5	Female	Small Tree	Strong	Sparse	On one year old shoot
CP1	Female	Small Tree	Strong	Sparse	On one year old shoot
CP2	Female	Small Tree	Strong	Medium	On one year old shoot
CP3	Female	Small Tree	Weak	Medium	On one year old shoot
CP4	Female	Small Tree	Medium	Sparse	On one year old shoot
CP5	Female	Small Tree	Strong	Medium	On one year old shoot
GP1	Female	Small Tree	Strong	Sparse	On one year old shoot
GP2	Female	Small Tree	Medium	Sparse	On one year old shoot
GP3	Female	Small Tree	Strong	Medium	On one year old shoot
GP4	Female	Small Tree	Medium	Sparse	On one year old shoot
GP5	Female	Small Tree	Medium	Sparse	On one year old shoot
MP1	Female	Small Tree	Weak	Sparse	On one year old shoot
MP2	Female	Small Tree	Medium	Sparse	On one year old shoot
MP3	Female	Small Tree	Medium	Sparse	On one year old shoot
MP4	Female	Small Tree	Medium	Sparse	On one year old shoot
MP5	Female	Small Tree	Strong	Sparse	On one year old shoot
SP1	Female	Shrub	Medium	Sparse	On one year old shoot
SP2	Female	Shrub	Medium	Sparse	On one year old shoot
SP3	Female	Shrub	Medium	Sparse	On one year old shoot
SP4	Female	Shrub	Medium	Sparse	On one year old shoot
SP5	Female	Shrub	Medium	Sparse	On one year old shoot

K- Kupa, B-Badseri, C- Chitkul, G- Giu, M- Mane, S- Shiego, P- Plant
Fig 2: Morphological descriptor of plant vigour among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)

Plant sex and position of inflorescence
All the 100 per cent studied population had female type of plant sex (Table 1). On the other hand, the position of inflorescence in 100 per cent population on one-year old shoot was recorded.

One-year old shoot thickness
The pertinent data is presented in Table 2. For the said parameter, the thickness was varied from thin, thick and medium among and between population. Among all the investigated population, 30 per cent were thick one-year old shoot, 56.6 per cent had medium thickness and 13.3 per cent showed thin one-year old shoot thickness. The shoot thickness of population KP1, MP4, SP4 and SP5 was thin whereas it was medium in KP2, KP3, KP4, KP5, BP2, BP3, BP4, BP5, CP3, CP4, CP5, GP1, GP4, GP5, MP1, MP3 and MP5. On the other hand, the thick shoot was found in BP1, CP1, CP2, GP2, GP3, MP2, SP1, SP2 and SP3 (Fig 4).

Number of thorns
The range of the number of thorns varied from absent, few, medium and dense (Table 2). From the recorded data, 16.6 per cent of population showed absence of thorns whereas, 56.6 per cent population had medium number of thorns and only few thorns were present in 20 per cent of population. The said character was absent in BP2, BP4, BP5, CP2 and CP5 population whereas KP1, KP2, KP3, KP4, KP5 and GP4 had few number of thorns. On the other hand, BP1, BP3, CP1, CP3, CP4, GP2, GP5, MP1, MP2, MP3, MP4, MP5, SP1, SP2, SP3, SP4, and SP5 population showed medium number of thorns, whereas it was dense in GP1 and GP3 (Fig 5).

Length of thorn
Length of thorn (Table 2) ranged from short, medium, long and absent. The said character was absent in BP2, BP4, BP5, CP2 and CP5 population and it was short in KP1, KP2, KP3, KP4, KP5, BP1, BP3, SP1, SP2, SP3, SP4 and SP5. On the other hand, the length of thorn was medium in CP3, CP4, GP1, GP2, GP3, GP4 and GP5 whereas it was long in CP1, MP1, MP2, MP3, MP4 and MP5 respectively. From the mentioned data, 40 per cent population had short length of thorn whereas, 20 per cent of population with long length of thorn was found (Fig 6).

Fig 3: Morphological descriptor of density of shoot among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)
Leaf blade shape, leaf blade size and undulation of margin
The data leaf blade shape, leaf blade size and undulation of margin is detailed in Table 3. All the 100 per cent studied population showed linear leaf blade shape. The leaf blade size ranged from small, medium and large. Population KP2, KP3, KP5, BP1, NP3, BP4, BP5, CP3, CP4, CP5, GP1, GP2, GP3, GP4, GP5, MP1, MP4, MP5, SP1, SP2, SP3, SP4 and SP5 showed small size of leaf blade whereas in KP1, KP4, BP2, CP2 and MP2 medium leaf blade size was recorded. On the other hand, large size leaf blade was noticed in CP1 and MP3. The data on leaf blade size showed that 16.6 per cent population was with small size blade, 76.7 per cent had medium size and only 6.6 per cent population showed large leaf blade size respectively. The undulation of margin was absent in all 100 per cent among and between studied population (Fig7).
Green colour intensity and pubescence on the lower side

The green colour intensity ranged from medium green, dark green and light-yellow green. Among studied population, 73.3 per cent showed medium green colour intensity whereas MP1 had dark green colour intensity and MP4, MP5, SP1, SP2, SP3, SP4 and SP5 showed light yellow green colour intensity which accounts for 23.3 per cent of total population. The character pubescence on lower side was present in 100 per cent of studied population (Table 3, Fig 8).

Table 3: Variation in morphological descriptors in leaf blade shape, leaf blade size, undulation of margin, green colour intensity and pubescence on lower side among and between selected Seabuckthorn (*Hippophae salicifolia* D. Don) populations in Himachal Pradesh.

Populations	Leaf Blade Shape	Leaf Blade Size	Undulation of Margin	Green Colour Intensity	Pubescence on lower side
KP1	Linear	Medium	Absent	Medium Green	Present
KP2	Linear	Small	Absent	Medium Green	Present
KP3	Linear	Small	Absent	Medium Green	Present
KP4	Linear	Medium	Absent	Medium Green	Present
KP5	Linear	Small	Absent	Medium Green	Present
BP1	Linear	Small	Absent	Medium Green	Present
BP2	Linear	Medium	Absent	Medium Green	Present
BP3	Linear	Small	Absent	Medium Green	Present
BP4	Linear	Small	Absent	Medium Green	Present
BP5	Linear	Small	Absent	Medium Green	Present
CP1	Linear	Large	Absent	Medium Green	Present
CP2	Linear	Medium	Absent	Medium Green	Present
CP3	Linear	Small	Absent	Medium Green	Present
Fruit size and fruit shape

The character fruit size and fruit shape are detailed in Table 4. The fruit size showed wide variation ranged from small, medium and large. The fruit size was large, in population KP1, GP4, MP1, MP3 and MP4 whereas it was medium in KP2, KP3, KP4, BP2, BP4, BP5, CP3, CP5, GP1, GP3, GP5, MP2, MP5, SP1 and SP5. The small size fruit were also recorded in population KP5, BP1, BP3, CP1, CP2, CP4, GP2, SP2, SP3 and SP4 respectively. From the investigated data, a total of 36.6 per cent had small fruit size, 46.6 per cent had medium fruit size and only 16.6 per cent of population showed large size of fruits (Fig 9, 10).

The character fruit shape varied from round to oval. All the studied population had round fruit shape which accounts for 93.3 per cent of population except MP2 and MP3 which had oval fruit shape.

Table 4: Variation in morphological descriptors in fruit size, fruit shape, fruit colour, fruit pubescence and fruit length of stalk among and between selected Seabuckthorn (*Hippophae salicifolia* D. Don) populations in Himachal Pradesh

Populations	Fruit Size	Fruit Shape	Fruit Colour	Fruit Pubescence	Fruit stalk length
KP1	Large	Round	Yellow-Orange	Weak	Short
KP2	Medium	Round	Yellow-Orange	Weak	Medium
KP3	Medium	Round	Yellow-Orange	Weak	Medium
KP4	Medium	Round	Yellow-Orange	Weak	Long
KP5	Small	Round	Yellow-Orange	Weak	Medium
BP1	Small	Round	Yellow-Orange	Weak	Medium
BP2	Medium	Round	Yellow-Orange	Weak	Medium
BP3	Small	Round	Yellow-Orange	Weak	Long
BP4	Medium	Round	Yellow-Orange	Weak	Medium
BP5	Medium	Round	Yellow-Orange	Weak	Medium
CP1	Small	Round	Yellow-Orange	Weak	Medium
CP2	Small	Round	Yellow-Orange	Weak	Medium
CP3	Medium	Round	Yellow-Orange	Weak	Medium
CP4	Small	Round	Yellow-Orange	Weak	Medium
CP5	Medium	Round	Yellow-Orange	Weak	Medium
GP1	Medium	Round	Orange-Red	Weak	Medium
GP2	Small	Round	Orange-Red	Weak	Medium
GP3	Medium	Round	Orange-Red	Weak	Medium
GP4	Large	Round	Orange-Red	Weak	Medium
GP5	Medium	Round	Orange-Red	Weak	Medium
MP1	Large	Round	Yellow-Orange	Weak	Long
MP2	Medium	Oval	Orange-Red	Weak	Long
MP3	Large	Oval	Orange-Red	Weak	Long
MP4	Large	Round	Orange-Red	Weak	Long
MP5	Medium	Round	Orange-Red	Weak	Long
SP1	Medium	Round	Orange	Weak	Short
SP2	Small	Round	Orange	Weak	Short
SP3	Small	Round	Orange	Weak	Short
SP4	Small	Round	Orange	Weak	Short
SP5	Medium	Round	Orange	Weak	Short
Fig 7: Morphological descriptor of leaf blade size among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)

Fig 8: Morphological descriptor of green colour intensity among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)

Fig 9: Morphological descriptor of fruit size among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)
Fruit colour, fruit pubescence and fruit stalk length

The plants taken for study showed considerable variation among themselves (Table 4). The fruit colour ranges from yellow orange, orange red and orange. The population KP1, KP2, KP3, KP4, KP5, BP1, BP2, BP3, BP4, BP5, CP1, CP2, CP3, CP4 and CP5 showed yellow orange fruit colour whereas in GP1, GP2, GP3, GP4, GP5, MP2, MP3, MP4 and MP5 recorded orange red colour. The orange colour of population SP1, SP2, SP3, SP4 and SP5 was also observed. From the mentioned record, 53.3 per cent population was with yellow orange colour, 30 per cent was with orange red and rest 16.6 per cent showed orange colour of fruits (Fig 11).

![Morphological descriptor of fruit shape among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)](image1)

Fig 10: Morphological descriptor of fruit shape among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)

![Morphological descriptor of fruit colour among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)](image2)

Fig 11: Morphological descriptor of fruit colour among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)

![Morphological descriptor of fruit stalk length among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)](image3)

Fig 12: Morphological descriptor of fruit stalk length among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)
The fruit pubescence was recorded weak in all 100 per cent individuals of investigated population. The fruit length of stalk ranged from short, medium and long. The short fruit stalk length was observed in population KP1, SP1, SP2, SP3, SP4 and SP5 whereas in KP2, KP3, KP5, BP1, BP2, BP4, BP5, CP1, CP2, CP3, CP4, CP5, GP1, GP2, GP3 and GP4 recorded medium fruit stalk length. The remaining population KP4, BP3, MP1, MP2, MP3, MP4 and MP5 long fruit stalk length was observed. On an average, 23.3 per cent of population had short fruit stalk, 53.3 per cent had medium stalk length and 23.3 per cent population was with long fruit stalk length (Fig 12).

Time of beginning of flowering and time of beginning of fruit ripening

The characters time of beginning of flowering and time of beginning of fruit ripening showed no variations (Table 5) as the flowering began in the month of April-May in 100 per cent of population and the fruit ripening began in the month of September in all the studied among and between population except MP1 and SP1, where the fruit ripening was started in month of October (Fig 13).

Populations	Time of Beginning of Flowering	Time of Beginning of Fruit ripening
KP1	April-May	September
KP2	April-May	September
KP3	April-May	September
KP4	April-May	September
KP5	April-May	September
BP1	April-May	September
BP2	April-May	September
BP3	April-May	September
BP4	April-May	September
BP5	April-May	September
CP1	April-May	September
CP2	April-May	September
CP3	April-May	September
CP4	April-May	September
CP5	April-May	September
GP1	April-May	September
GP2	April-May	September
GP3	April-May	September
GP4	April-May	September
GP5	April-May	September
MP1	April-May	September-October
MP2	April-May	September
MP3	April-May	September
MP4	April-May	September
MP5	April-May	September
SP1	April-May	September-October
SP2	April-May	September
SP3	April-May	September
SP4	April-May	September
SP5	April-May	September

Seed colour and shape of seed tip

The parameter seed colour varied from brown to dark brown in colour (Table 6). All the studied population, 90 per cent had brown seed colour except MP1, MP2, MP3, MP4 and MP5 which showed dark brown seed colour. The shape of seed tip was pointed in all the 100 per cent studied population (Fig 14).

Populations	Seed Colour	Shape of Seed tip
KP1	Brown	Pointed
KP2	Brown	Pointed
KP3	Brown	Pointed
KP4	Brown	Pointed
KP5	Brown	Pointed
BP1	Brown	Pointed
BP2	Brown	Pointed
BP3	Brown	Pointed
BP4	Brown	Pointed
BP5	Brown	Pointed
CP1	Brown	Pointed
CP2	Brown	Pointed

Table 5: Variation in morphological descriptors in time of beginning of flowering and time of beginning of fruit ripening among and between selected Seabuckthorn (*Hippophae salicifolia* D. Don) populations in Himachal Pradesh.

Table 6: Variation in morphological descriptors in seed colour and shape of seed tip among and between selected Seabuckthorn (*Hippophae salicifolia* D. Don) populations in Himachal Pradesh.
	Color	Shape
CP3	Brown	Pointed
CP4	Brown	Pointed
CP5	Brown	Pointed
GP1	Brown	Pointed
GP2	Brown	Pointed
GP3	Brown	Pointed
GP4	Brown	Pointed
GP5	Brown	Pointed
MP1	Dark Brown	Pointed
MP2	Dark Brown	Pointed
MP3	Dark Brown	Pointed
MP4	Dark Brown	Pointed
MP5	Dark Brown	Pointed
SP1	Brown	Pointed
SP2	Brown	Pointed
SP3	Brown	Pointed
SP4	Brown	Pointed
SP5	Brown	Pointed

Fig 13: Morphological descriptor of time of beginning of fruit ripening among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)

Fig 14: Morphological descriptor of Seed colour among and between population of *Hippophae salicifolia* D. Don (Seabuckthorn)
Similar plant growth habit from shrub to tree and plant height up to 6 m was recorded by Yadav et al. (2006) \cite{6} and tree vigour medium to strong was studied by Rati and Radukanu, (2018) \cite{4}. Nawaz et al. (2018) \cite{3} also showed dark green colour intensity of leaf on ventral surface than dorsal surface. The linear shape of leaf blade was also studied by Mir et al. (2018) \cite{2}. The flowering behaviour in present study was recorded as the time of beginning of flowers was April to May in among and between the population, similar findings were also reported by Kaushal and Sharma (2012) \cite{1}. Similar variation was also recorded in a study conducted by Nawaz et al. (2018) \cite{3} also found strong orange yellow colour in ripened berries of seabuckthorn. Yadav et al., (2006) \cite{6} reported almost similar fruit shape round to ovate respectively. The variation in seed characters are in line with the findings of Mir et al., (2018) \cite{2}; Kaushal and Sharma (2012) \cite{1} for seed colour that ranged from greyish brown or dark brown respectively.

On the basis of qualitative characters, the population of Badseri and Kupa sites are found more promising for growth habit, plant vigour, density of shoot, number of thorns and length of thorns. It is also suggested that for further propagation programmes, genepool from Sangla Valley should be used.

Acknowledgments
The authors are very thankful to the Dean, College of Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India for providing facilities to work in the different laboratories of the Departments in the College of Forestry for qualitative characters analysis.

References
1. Kaushal M, Sharma PC. Seabuckthorn (Hippophae sp.): A Potential Nutritional Goldmine of Western Himalayas. Forestry Bulletin. 2012; 12:65-68.
2. Mir NA, Geelani SM, Bhat RA, Qadri H, Beigh BA. Seabuckthorn (Hippophae species.): A Unique high altitude multipurpose plant species growing in cold regions. International Journal of Plant Research in Science and Engineering. 2018; 7:1941-1952.
3. Nawaz MA, Krutovsky KV, Mueller M, Gailing O, Khan AA, Buerkert A et al. Morphological and genetic diversity of seabuckthorn (Hippophae rhamnoides L.) in the Karakoram Mountains of Northern Pakistan. Diversity. 2018; 10:2-23.
4. Rati IV, Raducanu D. Description of some patented and certified seabuckthorn cultivar in Bacau county. Biology 2018; 27:19-25.
5. Sankhya HP, Thakur S, Sharma SS, Negi A. Analysis on morphological descriptors of Seabuckthorn (Hippophae rhamnoides L.) in cold desert eco-system of Himachal Pradesh. International Journal of Fauna and Biological Studies 2018; 5:136-139.
6. Yadav VK, Sah VK, Singh AK, Sharma SK. Variations in morphological and biochemical characters of Seabuckthorn (Hippophae salicifolia D. Don) populations growing in Harsil area of Garhwal Himalaya in India. Tropical Agricultural Research and Extension. 2006; 9:1-7.