DEVELOPMENT OF A COORDINATION METHOD FOR EFFECTIVE DECISION-MAKING IN A HIERARCHICAL MULTILEVEL INDUSTRIAL SYSTEM

In modern conditions of manufacturing the ever increasing size of enterprises leads to objective changes in the interdependence of their subordinated structures. The resulting complexity requires modernization of the process management systems. One important direction in this modernization is the development of effective methods of coordination. Therefore, this article addresses the problem of coordination in decision making among a group of autonomous production units. The object of study is the local decision making process on a dairy plant, which operate with three production lines. The subject of study is the coordination of operations when there is only one packaging machine. The objective of this work is to increase the overall effectiveness index of a system of production units by means of optimal resource allocation and synchronization of operations of technological processes. For effective coordination it is proposed a method that ensures the optimization of processes while considering the particular preferences of each local decision-making unit. For each subordinated decision unit or coordinator, an objective function measures the effectiveness of the subprocesses activities. The coordinator affects the lower-level decision-making so that the performance of the whole system is optimized. It incorporates a hierarchical multilevel system for the management of activities, and the detailed mathematical modeling of the sequencing of operations. The method proposed is based on the theory of fuzzy sets and fuzzy logic. The decision-making process is accomplished by a minimax estimation of the membership functions. The coordinated operations give as result a higher global effectiveness. Additionally, for the comparison of preferences, the normalized criteria of effectiveness based on the technological characteristics of each process are suggested.

Keywords: coordination of subprocess, fuzzy method, hierarchical multilevel system, decision-making.

NOMENCLATURE

opt is an optimal (desired or acceptable) value of the performance of the whole system for the problem being solved;

\(B_i \) is a volume of buffer \(i \);
\(B_{\text{max}} \) is a maximum capacity of the temporary stores;
\(C \) is a production cost;
\(E \) is a effectiveness criterion of the system;
\(\text{eff} \) is a value of a normalization constant;
\(K_c \) is a central coordinator;
\(K_{1,3} \) are the subordinated coordinators;
\(K_p \) is a coordinator of the packing device;
\(P \) is a revenue;
\(p_i \) is a performance of the production lines;
\(p_{e} \) is a performance of the packing device;
\(R_f \) is a finished product;
\(R_o \) is a raw material;
\(R_{\alpha} \) is a coordination vector (resource allocation);
\(S \) is a vector of sequencing of activities;
\(T \) is a completion time;
\(t_{01} \) is a start time of the first subprocess;
\(t_{0m} \) is a start time of operation of the packing and transfer device;
\(t_{ij} \) is a buffer \(i \) loading time;
\(t_{f} \) is a moment of completion of the process;
\(t_{i} \) is a start moment of the process;
\(t_{u} \) is a buffer \(i \) unloading time;
\(t_{uf} \) is an end time of operation of the packing and the transfer device;
\(t_{p} \) is a processing time;
\(X_{\alpha} \) is a decision vector (raw material request);
\(\alpha_{i} \), \(\lambda_{i} \) are coordination variables;
\(\sigma_{pi} \) is a measure that takes into account the statistical characteristics of the subprocess.

© Bayas M. M., 2015
DOI 10.15588/1607-3274-2015-1-11
INTRODUCTION

In modern conditions of manufacturing the ever increasing size of enterprises leads to objective changes in the interdependence of their subordinated structures. The resulting complexity requires modernization of the process management systems. One important direction task in this modernization is the development of effective methods of coordination.

The objective of this paper is to increase the overall effectiveness index of a system of production units by means of optimal resource allocation and synchronization of operations of technological processes.

1 PROBLEM STATEMENT

Given a system comprised of a set of subprocesses (production lines) $<SP_1, SP_2, ..., SP_n>$ with the inputs (raw material) $<R_{p1}, R_{p2}, ..., R_{pn}>$ intermediate outputs (produced units) $<R_{u1}, R_{u2}, ..., R_{un}>$ and the following restrictions: buffers $<B_1, B_2, ..., B_m>$ production line performances $<p_1, p_2, ..., p_m>$ performance of a shared single packing and transfer mechanism p_s. Taking into account the physical and technical constraints the problem of system coordination is to find a decision vector $<R_{01}, R_{02}, ..., R_{0n}>$ in order to obtain $E = F(\text{eff})\rightarrow \text{opt}$, where in E is the effectiveness criterion of the system and eff the effectiveness criteria of the different subprocesses.

As the object of study let’s consider the problem of coordination of local decisions of a dairy plant, which produces three types of dairy products. The technological process of preparation and packaging of milk is a complex technological task automation, which should provide some technological operations: receiving, separation, homogenization, normalization, packaging and packing. Each operation is a time-consuming process that requires continuous monitoring. The objective of the management system is the coordination of the operations when there is only one packaging machine. The presence of only one packaging device makes it very difficult the parallel operation of all the lines, and therefore it leads to downtime and loss of profits. Figure 1 shows the typical scheme of coordination of the dairy plant.

2 REVIEW OF THE LITERATURE

The problem of development of science-based hierarchical management systems becomes relevant in a continuous adaptation of modern industries to external changes. It is important to highlight the Mesario’s theory of management of hierarchical multilevel systems [1] among one of the most significant developments in the field of hierarchical structures of a different nature. Also significant contributions were made in the work of the following researchers, T. Malone and K. Crowston, A. A. Voronin, S. P. Mishin, V. N. Burkova, D. A. Novikov, M. B. Gubko, M. J. Beckmann and several other researchers [2–9]. The basis of most of these works on classical is the methods of mathematical programming, game theory, the theory of dynamic systems. The study of hierarchical systems has a number of basic problems of operation and control. In particular, the problem of decomposition of the system, the task of coordinating the system, the task of accounting for uncertainty of parameters and variables in hierarchical decision-making systems are of interest [10].

The coordination method of the multi-level hierarchical system, of course, has an impact on its most important characteristics, such as efficiency, reliability, and cost. Therefore, the determination of the optimal coordination method is an important task in the design of complex process control systems [1–10].

The principal methods focus mostly on iterative and non-iterative algorithms for deterministic coordination. However, the variety of problems of coordination, the large size of the problem, the uncertainty in estimating the state of the coordinated processes requires further research. In particular, the published studies do not consider the problem of resource allocation in relation to the task of synchronizing parallel processes [10–13].

3 MATERIALS AND METHODS

The main task in the development of a multi-level system is the specification of system elements. In the simplest case, a coordinator K can be modeled by input/output relation $K \subset I \times O$, I is the set of inputs and O the set of outputs. In most cases, the mapping from one set to another is not expressed explicitly. The input and output variables and parameters of the coordinators are showed in fig. 2.
One key factor in process management systems is the performance analysis. This analysis ensures that the system meets the technical requirements; the final products are delivered on time, and manufactured within reasonable costs. For each subordinated decision unit or coordinator, an objective function eff, measures the effectiveness of the subprocesses activities and is a function of the sub-systems input and output variables. The objective of the coordinator is to affect the lower-level decision-making so that the performance of the whole system is optimized. Having a performance index for each subprocess allows to make the sub-system decision-making problems independent from each other and to remove the possible «conflicts» caused by the interconnections between the sub-systems.

The full use of productive capacity is an objective optimization of industrial processes. The amount of resources allocated to each subprocess determines the degree of utilization. However, if the assignment exceeds the performances then the lines work in low-efficiency regimes. The efficiency criterion must, therefore, consider these factors, equation (1):

$$
\text{eff}_i = \text{eff}_0 \exp \left[-\frac{\left(X_i - T_i \right)}{p_i} \right] \frac{2}{\sigma p_i}.
$$

One of the issues when measuring effectiveness criteria of the different subprocesses concerns the scale, fig. 3. Scaling coefficients are used to represent all numerical quantities to comparable orders of magnitude; in this case they are normalized to one.

To formalize the effectiveness criterion of the packing and transfer device, it is necessary to formulate the model of the process, a Gantt chart is shown in fig. 4.

A wide range of problems, including the coordination of production activities are solved using search methods. These methods aim to find an optimal solution within a search space Ω, defined by a series of constraints. In most cases, the search requires high computational costs. Analytical methods, such as gradient-based methods are not applicable when the space is multidimensional search or the task has a combinatorial nature. For this reason researchers prefer heuristic methods such as genetic algorithms or random search methods [10, 12–14].

Then the criterion of effectiveness of the packing machine can be written as follows in the equation (2):

$$
\text{eff}_4 = \frac{\sum_{i=1}^{n} \frac{R_i}{p_i}}{t_{fu} - t_{ou}}.
$$

The task of the coordinator of the packing machine is to minimize coefficient eff_4. The sequencing of the operations is carried out as follows:

1. Finding the number k of subprocesses that can work in parallel, equation (3):
The coordination can be achieved through the variation of the quantities stored in temporary spaces and the variation of the performance of the lines. By the introduction of the coordination variables \(\alpha_i \) for temporary store \(B \) and \(\lambda_i \) for machines performance, equation (11) can be rewritten in the parametric form as the equation (12):

\[
\min \left\{ \sum_{i=1}^{n} t_i (\alpha_i, \lambda_i) - (n-1) \sum_{i=1}^{n} \alpha_i B \max_j \lambda_i, p_i \right\},
\]

s.t.

\[
\alpha \in [\alpha_{\min}, \alpha_{\max}],
\]

\[
\lambda \in [\lambda_{\min}, \lambda_{\max}].
\]

The values \(\alpha_{\min}, \alpha_{\max}, \lambda_{\min}, \lambda_{\max} \), ensure that the subprocesses operate in the rank of better efficiency. Equation (13) is solved either by genetic algorithms or a random search method, based on sampling and local search.

As the criterion for evaluating the effectiveness of the upper-level coordinator, it is proposed the relationship between the net profit and maximum completion time in the equation (14):

\[
E = \frac{P - C}{T}.
\]

It is worth noting that the execution time \(T \) depends on the amount of raw material, designated by each line and its technical parameters. Thus, the selected criterion is a function of the resources allocated to each line and the sequencing of operations.

The overall decision-making is based on the coordination of the decision of the subprocesses. These decisions are the result of the optimization procedures. The value of optimization problems can be modiﬁed with a set of weight coefﬁcients, in order to make the subprocesses decision problems independent from each other.
When designing complex systems, there is often ambiguity in one or more of the following elements: constraints, demands or objectives. This imprecision arises because of the scarcity of information or the same nature of processes, which does not allow a satisfactory formulation of the design goals, and thus the inability to assess the relative importance objectives.

4 EXPERIMENTS

To coordinate the making decision process of the object of this study it applied the proposed a mechanism based on fuzzy sets [11]. Formulating a fuzzy coordination problem entails developing membership functions μ for each constraint and each objective. It is important that the membership functions are normalized to comparable value, usually 1. The membership function of a subprocess is the coordination function of that subprocess. On the other hand, the criteria of effectiveness, which act as the degree of satisfaction of the subprocess is the coordination function.

It is desirable to find a solution that maximizes the value of each criterion. However, such a situation occurs only in ideal cases, therefore, for real problems a compromise solution is required. This leads to the need to specify the sequence of application of the criteria and the relative importance. The minimax criterion for the solution of the decision-making problem allows overcoming the disadvantages that appear when applying the additive and multiplicative indicators. The intersection of the membership function of subprocesses objectives, including the upper-level coordinator, yields the membership function of the system:

$$\mu_g = \min(\mu_0, \mu_1, \mu_2, \ldots, \mu_n).$$ \hspace{1cm} (15)

The value that maximizes the global decision is defined as follows:

$$\max_{x \in X} \mu_g(x) = \max_{x \in X} \min_{\mu_0, \mu_1, \mu_2, \ldots, \mu_n} \mu_g(x).$$ \hspace{1cm} (16)

The block diagram shows the management process, with the resolution of optimization problems of local subprocesses and the coordination of the isolated solutions.

1. Begin.
2. Selection of the solution vector.
3. Selection of weight coefficients.
4. For $i=1$ to n subprocess:
 a) assigning solution vector to lower levels subsystems;
 b) solution of local optimization problems;
 c) calculation of membership functions.
5. End for.
6. Calculation of the global membership function μ_g.
7. If $\mu_g < \min_{\mu_i}$ repeat from step 2.
8. End.

5 RESULTS

Figures 6 and 7 show the evolution of the values of the coefficient of effectiveness as a function of the iterations of the process of coordination. The top figure corresponds to system index and lower figure to subprocesses. At the point of coordination, all subprocesses operate within the ranges set forth in the optimization process and under these conditions the overall effectiveness is higher for the case with coordination compared with the case without coordination.

6 DISCUSSION

The results fully support that coordination has a positive effect on the performance of control systems. However, the determination of the effectiveness criteria exerts a large influence on the results. For example, if to take the balance of the criteria of effectiveness as the stopping condition then in the second iteration the program would have stopped. This fact would have led to a suboptimal result as it is clearly illustrated in Figures 6–7. Another important aspect that we have found is the stability of the algorithm. Even though, the behavior of the curves for the indices of effectiveness for each subsystem seems to be erratic, the overall result has a monotonous improvement in each iteration. The method was developed with the characteristics and peculiarities of a specific application under certain conditions; therefore is necessary to take into consideration these conditions for other applications.

CONCLUSION

A fuzzy method for the coordination of the activities of a dairy plant was developed. It incorporates a hierarchical multilevel system for the management of activities, and the detailed mathematical modeling of the sequencing of operations. The decision-making process was accomplished by a minimax estimation of the membership functions. The coordinated operations give as result a higher global effectiveness.
ACKNOWLEDGMENTS
This work was supported by the grant «The Ministry of Higher Education, Science, Technology and Innovation» SENESCYT «Ecuador, and is sponsored by the University of Santa Elena» «UPSE», Ecuador.

REFERENCES
1. Месарович М. Теория иерархических многоуровневых систем / М. Месарович, Д. Мако, И. Такахара. – М. : Мир, 1973. – 344 с.
2. Ладанюк О. А. Автоматизированное управление взаимосвязанными подсистемами технологических комплексов пищевых производства: диссертация на соискание ученого ступени канд. техн. наук / О. А. Ладанюк. – К. : 1996. – 176 с.
3. Бурков В. Н. Основы математической теории активных систем / В. Н. Бурков. – М. : Наука, 1977. – 255 с.
4. Новичков Д. А. Механизмы функционирования многоуровневых организационных систем / Д. А. Новичков. – М. : Фонд «Проблемы управления», 1999. – 150 с.
5. Beckmann M. Management production function and the theory of the firm / M. Beckmann // Journal of Economic Theory. – 1977. – № 14 – Р. 1–18.
6. Goubko M. V. Optimal hierarchies of control for cost functions presentable as sum of homogenous functions. / M. V. Goubko // Automation and Remote Control. – 2010. – Vol. 71, № 9.– Р. 1913–1926.
7. Mishin S. P. Optimal stimulation in multilevel hierarchical structures. / S. P. Mishin // Automation and Remote Control 65, 2004. – № 5. – Р. 768–789.
8. Воронин А. А. Оптимальные иерархические структуры / А. А. Воронин, С. П. Мишин. – М. : ИПУ РАН, 2003. – 210 с.
9. Malone T. W. The interdisciplinary study of coordination / T. W. Malone, K. Crowston // ACM Comput. Surveys. – 1994. – Vol. 26, № 1. – Р. 87–119.
10. Dubovoy V.M. Decision-making in the management of branched technological processes: monograph / M. Dubovoy, G. V. Derman, I. V. Pulypenko, M. M. Bayas. – Vinnitsa : VNTU, 2013. – 223 s.
11. Власенко А. М. Координация решений о распределении ресурсов на основе генетического алгоритма / А. М. Власенко, В. М. Дубовей // Информатіві технології та комп'ютерна інженерія. – 2014. – № 2. – С. 4–12.

Article was submitted 07.11.2014. After revision 22.12.2014.
кожного підпорядкованого блоку прийняття рішень або координатора, цільова функція вимірює ефективність діяльності підпроцесів. Координатор впливає на процес прийняття рішень більш низького рівня так, що продуктивність системи в цілому оптимізується. Координатор містить ієрархічну багаторівневу систему для керування діяльністю, а також детальне математичне моделювання послідовності операцій. Запропонований метод заснований на теорії нечітких множин і нечітких логік. Процес прийняття рішень здійснюється за допомогою мінімаксного оцінювання функції належності. Координовані операції дають як результат більш високу глобальну ефективність. Крім того, для порівняння переваг запропоновані нормовані критерії ефективності, засновані на технологічних характеристиках кожного процесу.

Ключові слова: координація підпроцесу, нечіткий метод, ієрархічна багаторівнева система, прийняття рішень.

REFERENCES
1. Mesarovich M., Mako D., Takahara I. Theory of hierarchical multilevel systems. Moscow, Mir, 1973, 344 p.
2. Ladanyuk O. A. Automated control of interconnected subsystems technological systems of food production: disertatsiya robot zdobuttya Naukova stage cand. tehn. Sciences. Kiev, 1996, 176 p.
3. Burkov V. N. Foundations of the mathematical theory of active systems. Moscow, Nauka, 1977, 255 p.
4. Novikov D. A. Mechanisms of multilevel organizational systems. Moscow, Foundation «Problems of Controls», 1999, 150 p.
5. Beckmann M. Management production function and the theory of the firm. Journal of Economic Theory, 1977, No. 14, P. 1–18.
6. Goubko M. V. Optimal hierarchies of control for cost functions presentable as sum of homogenous functions, Automation and Remote Control, 2010, Vol. 71, No. 9, pp. 1913–1926.
7. Mishin S. P. Optimal stimulation in multilevel hierarchical structures, Automation and Remote Control 65, 2004, No. 5, pp. 768–789.
8. Voronin A. A., Mishin S. P. Optimal hierarchical structure. Moscow, ICS RAS, 2003, 210 p.
9. Malone T. W., Crowston K. The interdisciplinary study of coordination, ACM Comput. Surveys, 1994, Vol. 26, No. 1, pp. 87–119.
10. Dubovoy V. M., Derman G. Y., Pylypenko I. V., Bayas M. M. Decision-making in the management of branched technological processes: [monograph]. Vinnitsa, VNTU, 2013, 223 c.
11. Ladanyuk A. P. Smityuh Y., Vlasenko L. O. [that in.]. Systemic analiz folding systems upravlіnnya: nавч. posib. Kiev, NUHT, 2013, 274 p.
12. Bayas M. M., Dubovoy V. M. Efficient Resources Allocation in Technological Processes Using Genetic Algorithm, Middle-East Journal of Scientific Research, 2013, Vol. 14, No. 1, pp. 1–4. DOI: 10.5829 / idosi.mejsr.2013.14.1.16313.
13. Bayas M. M., Dubovoy V. M. Efficient Resources Allocation in Technological Processes Using an Approximate algorithm based on Random Walk, International Journal of Engineering and Technology, 2013, Vol. 5, No. 5, pp. 4214–4218.
14. Bayas M. M., Dubovoy V. M. Coordination resource allocation decisions based on genetic algorithm, Informatychnі technologії that Komp’yuternі inzheneriі, 2014, No. 2, pp. 4–12.