Do Sibilants Fly? Evidence from a Sound Symbolic Pattern in Pokémon Names

Abstract: Ancient writers, including Socrates and the Upanishads, argued that sibilants are associated with the notions of wind, air and sky. From modern perspectives, these statements can be understood as an assertion about sound symbolism, i.e., systematic connections between sounds and meanings. Inspired by these writers, this article reports on an experiment that tests a sound symbolic value of sibilants. The experiment is a case study situated within the Pokémonastics research paradigm, in which the researchers explore the sound symbolic patterns in natural languages using Pokémon names. The current experiment shows that when presented with pairs of a flying-type Pokémon character and a normal-type Pokémon character, Japanese speakers are more likely to associate the flying-type Pokémons with names that contain sibilants than those names that do not contain sibilants. As was pointed out by Socrates, the sound symbolic connection identified in the experiment is likely to be grounded in the articulatory properties of sibilants – the large amount of oral airflow that accompanies the production of sibilants. Various implications of the current experiment for the sound symbolism research are discussed throughout the article.

Keywords: sound symbolism, Japanese, sibilants, flying, Pokémonastics

1 Introduction

Socrates in Cratylus suggests that [s] (=σ) and [z] (=ζ) are suited for words that represent wind and vibration, because the production of these sounds accompanies strong breath (427). Likewise, the Upanishads, ancient Sanskrit texts, suggests that “[t]he mute consonants represent the earth, the sibilants the sky, the vowels heaven. The mute consonants represent fire, the sibilants air, the vowels the sun” (Aitareya Aranyaka III.2.6.2., emphasis ours).¹ These statements by the ancient writers concern what we now call “sound symbolism,” in which certain sounds directly represent certain meanings. The commonly held dictum in modern linguistic theories in the twentieth century, which is often attributed to Saussure (1916), is that the relationships between sounds and meanings are fundamentally arbitrary. However, as these ancient writers had already noticed, systematic relationships between sounds and meanings occur in some environments. For instance, nonce words containing the low back vowel [a] are often judged to be larger than nonce words containing the high front vowel [i] by speakers of many

¹ https://en.wikipedia.org/wiki/Sound_symbolism#the_Upanishads (last access, June 2020).
languages (Jespersen 1922, Sapir 1929, Newman 1933, Berlin 2006, Shinohara Kawahara 2016, among others). Another example is the bouba-kiki effect, in which sounds like [b] and [u] tend to be associated with round objects, whereas sounds like [k] and [i] tend to be associated with angular objects (Ramachandran and Hubbard 2001, D’Onofrio 2014). In recent years, the current fields of anthropology, linguistics, cognitive science and psychology have witnessed a dramatic rise of interests in sound symbolism (see, e.g., Nuckolls 1999, Dingemanse et al. 2015, Lockwood and Dingemanse 2015, Kawahara 2020a, for recent overviews).

This article reports on an experiment, which demonstrates that the intuitions expressed by Socrates and the Upanishads were correct, at least to some extent. We draw on a research paradigm now referred to as “Pokémonastics,” in which researchers explore sound symbolic patterns using Pokémon names across different languages (Shih et al. 2019). Pokémon is a game series in which players collect fictional creatures called Pokémon (itself truncation of poketto monsuutta “pocket monster”) and let them battle with other Pokémon. It was first released by Nintendo in 1996 and has now become a very popular game series in many parts of the world. Each Pokémon character has various attributes, including weight, height, strength parameters, evolution levels and types, the last of which is the main concern of the article.

The Pokémons research paradigm was initiated by Kawahara et al. (2018), who first pointed out that some linguistic parameters in the Japanese Pokémon characters’ names, including the number of voiced obstruents (=b, d, g, z) and the number of moras (=the basic counting units in Japanese: Otake et al. 1993), are significantly correlated with some Pokémon’s attributes, such as weight, height, strength parameters and evolution levels. A similar analysis has now been extended to the names of existing Pokémon characters in Cantonese, English, Korean, Mandarin and Russian (Shih et al. 2018, 2019). In addition, there have been several experimental studies that used nonexistent Pokémon characters to explore sound symbolic patterns; the target languages studied so far include Brazilian Portuguese (Godoy et al. 2019), English (Kawahara and Moore to appear) and Japanese (Kawahara and Kumagai 2019a, Kumagai and Kawahara 2019).

While studies within the Pokémons paradigm have been flourishing and revealing interesting sound symbolic patterns in natural languages, one aspect that remains underexplored is whether Pokémon types can be symbolically represented. Pokémon characters are classified into different types, such as dragon, electric, fairy, fire, ghost, grass, normal, water, etc. Hosokawa et al. (2018) first attempted to investigate this question and found that in the existing Japanese Pokémon names, bilabial consonants, such as [p] and [m], are overrepresented in the names of the fairy-type Pokémon, whereas voiced obstruents, such as [d] and [z], are overrepresented in the names of the dark, poison and ghost-type Pokémon (which Hosokawa et al. collectively refer to as the “villain”-type Pokémon).² The productivity of these sound symbolic patterns was confirmed by an experimental study with nonce words by Kawahara and Kumagai (2019b).

This question – whether Pokémon types can be symbolically represented – is an interesting topic of exploration, not just because Pokémon is fun material to study but also because it bears upon an important question in the studies of sound symbolism in general; namely, what kinds of semantic dimensions can be cued by sound symbolic patterns. Two semantic dimensions that have been studied extensively in the literature on sound symbolism so far are size and shape (Sidhu and Pexman 2018), but, currently, we barely understand what other semantic dimensions can be conveyed via sound symbolism in natural languages (Spence 2011, Lockwood and Dingemanse 2015, Westbury et al. 2018, Sidhu et al. 2019). For example, can freedom or justice be symbolically represented (Lupyan and Winter 2018)? The current study is a modest contribution to this general debate, inspired by the words of Socrates and the Upanishads.

To this end, we report on an experiment that examined whether sibilants (=coronal fricatives, including s and j in English, for example) can represent the flying type in the Pokémon world. To the best of our knowledge, sound symbolic values of sibilants have been understudied in the literature on

² This initial observation by Hosokawa et al. (2018) is explored in further detail by Uno et al. (2020).
sound symbolism. Coulter and Coulter (2010) argue that fricatives—a superset of sibilants—may be associated with images of smallness in English, due to their high-frequency energy. However, their experiment on price discount judgments targeting English speakers conflated the stop/fricative distinction with the vowel backness distinction, and as such, it is not clear whether their results can be unambiguously attributed to the sound symbolic values of fricatives. Kawahara and Moore (to appear) did not find a substantial difference between stops and fricatives in terms of how likely they are associated with larger, post-evolution Pokémon characters. In Lahu, there are many diminutive/affective words that contain sibilants followed by a certain type of diphthong (Matisoff 1994). In Japanese mimetic, onomatopoetic words, [s] can mean “light touch” or “friction” (Hamano 1998), e.g., *sara-sara* “lightly touching/smooth.” Hamano (1998) also contends that [s] can mean “absence of obstruction” or “ease of movement,” as in *sorori* “walking quietly” and *suku-suku* “growing healthy.” In a study of sound symbolism in general Japanese grammar, Makino (2007) points out that the suffix [-sii] ([ɕ] = a voiceless alveolo-palatal fricative) denotes emotive descriptions. None of these sound symbolic patterns, however, are directly related to the notion of flying (or sky or wind, for that matter), as the two aforementioned ancient writers noted.

Given that Socrates pointed out a possible sound symbolic association between sibilants and wind, and the Upanishads suggests a connection between sibilants on the one hand and sky and air on the other, perhaps we might observe that Pokémon character names with sibilants are also associated with the notion of flying.

In addition to bearing on the general question of which semantic dimensions can be represented via sound symbolism, the current hypothesis is interesting to test for another reason, because it concerns the question of phonetic grounding of sound symbolism. Many if not all sound symbolic patterns are based on iconic mapping between the phonetic properties of the sounds at issue and their meanings (Kawahara 2020a). For example, [a] is often judged to be larger than [i], and this sound symbolic pattern may hold because the oral aperture is much wider for the production of [a] than for [i] (Jespersen 1922, Sapir 1929). The intuitions expressed by Socrates and the Upanishads may likewise be grounded in the fact that the production of sibilants involves a large amount of oral airflow compared to the other types of sounds, as Socrates noticed (see Mielke 2011 for actual measurement data of oral airflow using nasometer). If the productivity of the sound symbolism between sibilants and the notion of flying can be confirmed, we would have yet another plausible instance of an iconic mapping between meanings and phonetic properties of sounds.

2 Methods

2.1 Task

The current experiment followed the format of the previous Pokémonastics experiments and studies of sound symbolic effects using Pokémon names (e.g., Kawahara and Kumagai 2019a,b, Kumagai and Kawahara 2019). Within each trial, a pair of two nonexistent Pokémon characters was presented together with a pair of nonce names. In the current experiment, visual cues consisted of one flying-type Pokémon and one normal-type Pokémon (the latter of which does not have specific outstanding characteristics). An illustrative sample pair of these characters is shown in Figure 1. Given two name choices, the task for the participants was to choose which name is better for the flying-type Pokémon character, and which name is better for the normal-type Pokémon character. The pictures of Pokémon were those that were drawn by *toto-mame*, a digital artist who draws original Pokémon characters.³ The pictures were used with the

³ For other pictures of nonexistent Pokémon drawn by this artist, see https://t0t0mo.jimdo.com (last access, June 2020).
The Pokémon character pictures drawn by toto-mame are not a priori assigned to a particular type. Hence, the third author, who is very familiar with the Pokémon game, chose those characters that were representative of the flying- and normal-type characters for this experiment. Most of the flying-type characters were bird-like creatures, while some of them looked like a flying insect. All of them had wings to make it clear to the participants that they actually fly. In the current experiment, a flying-type Pokémon appeared on the left, whereas a normal-type Pokémon appeared on the right, as in Figure 1.

2.2 Stimuli

Table 1 lists all the pairs of names used in the experiment. All the names were nonexisting words/names in Japanese. Two types of sibilants were tested in this experiment: [s] and [sh] (the latter of which is realized as an alveolo-palatal fricative in Japanese, which is written as [ɕ] in International Phonetic Alphabet: Vance 2008). We tested only the voiceless sibilants, because voiced sibilants convey other sound symbolic meanings, such as heaviness and evilness, in the Japanese Pokémon universe and elsewhere in the language (Hosokawa et al. 2018, Kawahara et al. 2018, Kawahara and Kumagai 2019b, Uno et al. 2020).

4 An anonymous reviewer pointed out that it would have been better if we actually showed that voiced fricatives are indeed not associated with the notion of flying. We would like to leave this task for future research.
The [s]-condition compared word-initial [s] against word-initial [t], and the latter of which is a consonant with the same place of articulation that minimally differs from [s] in terms of continuancy. In this condition, the target words also contained word-medial [c], whereas the comparison names contained word-medial [k]. In the [sh]-condition, word-initial [c] was compared against either word-initial [k] or [t]. [k] was generally used as a comparative baseline with [c], because it is a stop consonant that is produced at a point further back in the oral cavity (i.e. velar) than [s] or [t]; i.e., [s] and [t] are “front” consonants, whereas [c] and [k] are “back” consonants (Mann and Repp 1981, Kingston et al. 2011). [t] was used, however, when the use of [k] would have sounded too similar to real words in Japanese. The [c]-initial words also contained word-medial [s], which is allophonically produced as [c] before [i] in Japanese (Vance 2008). To minimize the sound symbolic effects of other consonants possibly affecting the results, the only non-target consonants that appeared in the stimuli were limited to [r] in the second syllable, and the vowel quality within each pair was controlled. Each condition had eight items. The experiment therefore consisted of 16 trials in total (8-item pairs × 2 conditions).

2.3 Procedure

The experiment was distributed online using SurveyMonkey. All the stimuli were written in the *katakana* orthography, which is the standard way to write nonce words in Japanese. Within each main trial, the participants were reminded that the pair consists of a flying-type Pokémon and a normal-type Pokémon, and they were asked to choose a better name for each type of character. Each trial used a different pair of characters; i.e., there were 16 pairs of visual stimuli as well. The order of trials was randomized per each participant. Before the experiment, they read through the consent form to participate in the web-based experiment. After the experiment, they provided some demographic information. One of the questions was about how familiar they are with the Pokémon game, and the participant responded to this question using a 7-point ordinal scale, in which higher values corresponded to more familiarity with Pokémon. In this scale, 1 was labeled “I have never played Pokémon,” 7 was labeled “Pokémon is my life” and 4 was labeled “so so.” The other numbers were not labeled. As *post hoc* questions, they were asked whether they had studied sound symbolism before and whether they participated in an experiment in which they named new Pokémon names, as in the current experiment. The participation in this experiment was completely voluntary, and there were no particular compensations for participating in this experiment.

2.4 Participants

Initially, the call for participants was circulated on various social networking services and via word of mouth, which resulted in 69 participants. We excluded those participants who either had studied sound symbolism before or had participated in a similar Pokémon naming experiment and used the data from the remaining 63 participants for the subsequent analysis (26 male, 36 female and 1 who did not identify the gender – the distribution of the age-groups is reported in the Appendix).

Someone later posted the link for the online survey on a website for Pokémon fans,⁵ and it was subsequently made into an online blog article, and more than 700 people participated in the experiment over a single night. Since the latter set would be likely to yield a statistically significant result due to large N, we analyzed the two data sets separately (henceforth, “the small data set” and “the large data set”). The small data set is comparable in size with the other previous Pokémonastics experiments. The large data set

⁵ http://pokemon-matome.net (last access, June 2020).
was also analyzed in this article to confirm the robustness of the target patterns with a much larger number of participants.

In the large data set, a total of 791 speakers completed the online experiment. After excluding those who had studied sound symbolism before or had participated in a Pokémon naming experiment, data from 776 participants entered into the following analysis (573 male, 192 female and 11 who did not identify their gender). Again the Appendix reports the distribution of age-groups of the large data set as well as the analysis of their possible effects on the sound symbolic effect under investigation.

2.5 Statistical analyses

The current experiment is, as described above, a two-alternative forced choice experiment. To statistically analyze the results obtained in this format, we followed the methodology proposed by Daland et al. (2011), which has advantages over other possible alternatives (see their footnote 5); concretely, each trial was split into two observations, each corresponding to one member of a stimulus pair. Since each trial consisted of a pair of stimuli, this splitting was necessary to use a linear mixed effects model with items as a random effect. A logistic linear mixed effects model (Jaeger 2008) was fit with the sound symbolic principle (i.e., sibilant = flying type) as a fixed factor and participant and item as random factors. The fixed factor was treatment coded. A model with maximum random structure with both slopes and intercepts was fit first (Barr 2013, Barr et al. 2013). In case the model with the maximum random structure did not converge, a simpler model with only random intercepts was then fit and interpreted.

3 Results

Figure 2 shows box plots illustrating the distributions of expected response ratios – in which names containing sibilants were associated with the flying type – in the small data set, both by participant (left) and by item (right). The grand averages are shown as white dots. The gray bars around the grand averages show the 95% confidence intervals. The grand averages in this data set are 0.80 and 0.69, respectively. The linear mixed effects logistic regression shows that the [s]-condition showed an average response that is significantly higher than the chance level ($\beta = 2.22$, s.e. = 0.15, $z = 15.21$, $p < 0.001$). The [sh]-condition also showed an average response that is significantly higher than the chance level ($\beta = 2.72$, s.e. = 0.42, $z = 6.48$, $p < 0.001$).

Figure 3 shows box plots illustrating the distribution of expected response ratios in the large data set. The grand averages for the large group data set are 0.75 and 0.59, respectively. The mixed effects logistic regression show that both the [s]-condition and the [sh]-condition exhibit expected response ratios that are significantly above the chance level ($\beta = 1.86$, s.e. = 0.14, $z = 13.12$, $p < 0.001$ and $\beta = 1.79$, s.e. = 0.11, $z = 15.51$, $p < 0.001$, respectively).

A post hoc inspection of the box plots in Figures 2 and 3 shows that names with initial [s] may have induced more flying responses than those with initial [c]. To access this observation statistically, we included the interaction between the sound symbolic principle and the [s] vs [c] difference in our models. The results show that this interaction term is not significant in either data set (the small data set: $\beta = 0.13$, s.e. = 0.20, $z = 0.61$, n.s.; the large data set: $\beta = -0.004$, s.e. = 0.05, $z = -0.08$, n.s., respectively), possibly due to fairly large variability across items in the [sh]-condition.

6 The model with random participant slopes did not converge, so we interpreted a model with random intercepts for participants only, along with random intercepts and slopes for items.
4 Discussion

The current experiment shows that Japanese speakers are more likely to associate the flying-type Pokémon characters with names that contain sibilants than those names that do not contain
sibilants. This result is likely to be due to the sound symbolic association between sibilants and the notion of flying, an association that is very similar to what Socrates and the Upanishads identified in their writings. The sound symbolic association is gradient rather than deterministic, as is usually the case for other sound symbolic connections (Dingemanse 2018, Kawahara et al. 2019), although inspection of the box plots shows that there were participants who always chose names with sibilants for the flying-type Pokémon.

One natural question that arises from this experimental result is whether sibilants are overrepresented in the flying-type of Pokémon characters in the existing set of Japanese Pokémon names. To address this question, we counted the total numbers of consonants as well as the number of voiceless sibilants in the flying-type and normal-type Pokémon. The results are shown in Table 2. The voiceless sibilants are not many in number, and no significant differences were found between the two types of Pokémon characters ($\chi^2(1) = 0.326$, n.s.). We also counted the number of those characters whose names contain voiceless sibilants in both the flying-type and normal-type characters. The results appear in Table 3, which again shows no substantial differences between two types ($\chi^2(1) = 0.41$, n.s.).

These analyses show that the sound symbolic connection that we identified above emerged in the experiment, without the distributional evidence in the existing Pokémon names. This result reminds us of cases in which phonetically natural phonological patterns emerge in nonce word experiments, without statistical evidence in the lexicon (e.g., Wilson 2006, Berent et al. 2007, Jarosz 2017, Garcia 2019). There are comparable cases from the studies of sound symbolism as well. For example, in the English Pokémon names, back vowels are not necessarily overrepresented for post-evolution characters (Shih et al. 2019). Nevertheless, when presented with a pair of nonce names, English speakers are more likely to associate names with [u] with post-evolution characters than names with [i] (Kawahara and Moore to appear). In Korean mimetic expressions, [a] and [o] are smaller than [u] and [a] in terms of their sound

As an anonymous reviewer reminded us, the current methodology (i.e., a two-alternative forced choice task), although it is widely used in studies on sound symbolism, has its limits in that there remains alternative possibilities which can explain the current results (e.g., those names without sibilants were associated with the normal type or they are negatively associated with the flying type; see Westbury et al. 2018 for extensive discussion on this methodological issue). While we acknowledge that these alternative explanations are possible, we doubt that for the case at hand, they are likely to be what underlies the current results, because there are no plausible sound symbolic principles, for example, that would connect voiceless stops with the normal-type Pokémon, which did not have outstanding characteristics in our experiment. A study with a different experimental format—e.g., presenting one stimulus per trial—would more directly address this potential concern, however. See Kawahara et al. (2020) for an experiment which found the sound symbolic connection between sibilants and the flying-type Pokémon using this format, although Kawahara et al. (2020) tested English speakers, not Japanese speakers.

Table 2: The distributions of voiceless sibilants and other consonants in the names of the flying-type and normal-type characters in Japanese. The analysis is based on the data from Kawahara et al. (2018), which includes all the characters up to the sixth generation

	Flying type	Normal type
Sibilants	15 (3.8%)	13 (3.1%)
Other consonants	377	407
Total	392	420

Table 3: The numbers of names that contain sibilants and those that do not in the flying-type and normal-type characters

	Flying type	Normal type
With sibilants	13 (19.4%)	13 (18.0%)
Without sibilants	54	59
Total	67	72
symbolic values (Kim 1977, Garrigues 1995), which goes counter to an otherwise cross-linguistically common observation that high vowels are generally judged to be smaller than nonhigh vowels (Sapir 1929 et seq.). However, Shinohara and Kawahara (2016) found that given nonce words, Korean speakers judge nonce words with high vowels to be smaller than those with low vowels, contrary to what we would expect from the lexical patterns. In short, as with these cases, the current experiment adds a new instance of sound symbolism that emerges in an experimental setting without overt evidence in the lexicon.

Another question that arises is whether showing the sound symbolic connection we identified in the current experiment requires exposure to the existing Pokémon names (some of which are quite sound symbolic, as other Pokémonastic studies have shown), or whether the participants know the sound symbolic connection between sibilants and the notion flying, independently of the exposure to Pokémon. If the first possibility is correct, then, those who are not familiar with Pokémon should show low expected response ratios, whereas those who are very familiar with Pokémon should show high expected response ratios. To address this question, Figure 4 plots the correlation between familiarity with Pokémon and expected response ratios for the [s]-condition and [sh]-condition separately, both in the small data set and in the large data set.

Significance of the correlation between the two measures was assessed using a Spearman test (a nonparametric correlation test, because the familiarity scale was ordinal). Neither correlation was significant for the small data set (the [s]-condition: $\rho = 0.05$ and the [sh]-condition: $\rho = -0.18$). The large data set also showed similar patterns. Due to the large N, the [sh]-condition showed a significant correlation (the [s]-condition: $\rho = -0.04$, n.s. and the [sh]-condition: $\rho = -0.08$, $p < 0.05$). However, the effect size (-0.08) is quite small. Overall, exposure to the existing Pokémon names does not seem to have affected the results, not positively at least. This result is in line with the results of other Pokémonastics experiments in that familiarity with Pokémon plays very little, if any, role for the judgment of sound symbolic patterns in new Pokémon names (e.g., Godoy et al. 2019, Kawahara and Kumagai 2019a,b; Kawahara and Moore to appear).

From the analyses above, we conclude that Japanese speakers associate names containing sibilants with the flying type of Pokémon, and this association holds regardless of whether the participants are familiar with Pokémon or not. As anticipated in the introduction, this sound symbolic association is likely to have its roots in the fact that the production of sibilants involves a large amount of oral airflow to create frication noise, compared to the other types of sounds (Mielke 2011) – we can “hear” the air blowing/moving in a sibilant sound, and if you are close enough to the speaker, you can even feel the air moving.

![Figure 4: Correlation between familiarity with Pokémon and expected response ratios. Left = the small data set; right = the large data set. The solid lines are linear regression lines. The gray areas represent the 95% confidence intervals.](image)
(cf. Gick and Derrick 2009, Derrick and Gick 2013). This result provides a new piece of support for the idea that at least a subset of sound symbolic patterns are grounded in their phonetic properties (Kawahara 2020a).

Furthermore, it may bear on an interesting question of how articulatory and/or acoustic features of sounds are iconically mapped onto their sound symbolic meanings. Jespersen (1922) and Sapir (1929), two pioneering studies of modern studies of sound symbolism, already entertained two hypotheses regarding why [a] tends to be judged to be larger than [i]. One is the articulation-based explanation – it is because the oral aperture is much wider for the production of [a] than for [i]. The other explanation is based on the acoustics – it is because the acoustic properties of [a] (more specifically, f0 and F2 in modern acoustic parlance) are lower than those for [i]. Ohala (1994) proposed a general theory of sound symbolism based on acoustic properties of sounds at issue, now known as the Frequency Code Hypothesis; those sounds with low-frequency energy tend to be judged to be large, because that is what physics tells us. If the sound symbolic nature of sibilants is grounded in the amount of oral airflow, as Socrates suggests, it implies that the sound symbolic association identified in the current experiment has its roots in the articulation of sibilants.

We note, however, that it is not impossible to imagine that since sibilants have energy concentration in the high-frequency region because of their very small resonance cavities (Johnson 2003), this “highness” is iconically mapped onto the notion of sky, and by extension, to the notion of flying. See Paraise et al. (2014) and references cited therein for the possible iconic connections between high-frequency sounds and the notion of elevation, which may also be relevant for the sound symbolic pattern that is identified in the current experiment. As both Jespersen (1922) and Sapir (1929) anticipated, the phonetic grounding of sound symbolism may be based on both articulation and acoustics.

Finally, we would like to point out one general virtue of using the Pokémon universe to explore sound symbolic patterns. As mentioned in Section 2, the link to our online experiment was shared on a website for Pokémon fans, and it was made into an online blog article, advertising that a linguistics professor was conducting an experiment on Pokémon. Consequently, we were able to obtain data from more than 700 participants over a single night. This fact in and of itself instantiates a research advantage, because it is rare to be able to obtain data from such a large number of participants during such a short period of time. Another related point that we would like to highlight is that a large number of people who are not in academia were interested in this project, so much so that they participated in the experiment without any compensation. Many participants reported in a free commentary section at the end of the experiment that they were curious about what the experiment was about and/or that they would like to know the results. Thus, this constitutes the evidence that Pokémonastics – studies of sound symbolism using Pokémon names – can be an effective means to popularize linguistic and psychology studies, which can also potentially be applied to teaching (see MacKenzie 2018, Kawahara 2019, Kawahara 2020b for related discussion).

5 Conclusion

The current experiment has demonstrated that Japanese speakers are more likely to associate the flying-type Pokémon characters with names containing sibilants than those names that do not contain sibilants, despite the fact that this connection between sibilants and the notion of flying does not hold among the

8 We assume that airflow and the notion of flying are closely related concepts.
9 There are sound symbolic patterns which do not have such apparent phonetic grounding—for example, the fact that the English sn- sequence is often used to represent words related to “nose” or “mouth” (e.g., snarl, sneeze, snore, snack, snicker, etc.; Bergen 2004) is unlikely to be grounded in how [s] and [n] are produced, or in their acoustic properties.
existing Pokémon names in Japanese. This sound symbolic association seems to hold regardless of whether the participants are familiar with the Pokémon game or not.

At the most general level, the issue that we addressed relates to the question of what kinds of semantic dimension can be represented via sound symbolism in natural languages. While the scope of our study is admittedly limited because it tested only one semantic dimension, the current study, building upon some previous observations (Hosokawa et al. 2018, Kawahara and Kumagai 2019b, Uno et al. 2020), found that a notion that is as complex as Pokémon type can be symbolically represented. The sound symbolic pattern that we identified is, as anticipated long ago by Socrates and the Upanishads, the connection between sibilants and flying. It is likely that this connection is grounded in the articulatory properties of sibilants, which involves a large amount of oral airflow that accompanies the production of these sounds to cause frication noise.

The current finding accords well with what Shih et al. (2019) conclude based on an extensive cross-linguistic comparison of Pokémon names. They observe that while in the real world we observe various types of sound symbolic effects to signal gender differences (see Sidhu and Pexman 2019 for a recent review), we do not observe robust sound symbolic effects to signal gender differences in the Pokémon world. Shih et al. (2019) argue that this difference arises because finding a mate is crucial for survival and reproduction in the real world, but this is not so much the case in the Pokémon world. This claim by Shih et al. is further supported by the fact that Pokémon strength status is actively signaled by way of sound symbolism across languages, and this is so because Pokémon characters routinely fight with each other. They conclude that sound symbolism is actively deployed to signal those attributes that are important for their lives in the given world (“survival of the fittest”; see also Uno et al. 2020). Types play a crucial role in Pokémon battles (e.g., flying types have advantages over grass types), and therefore, types do constitute an attribute that can or should be signaled by sound symbolism. In short, for humans, masculine and feminine sound symbolic names are important for procreation and survival; for Pokémon, the sound symbolic names to represent types are important for survival. Taken together with the previous studies, this result thus invites new research questions; can other Pokémon types be symbolically represented, and if so, how and in what languages?

Acknowledgments: We are grateful to Kimi Akita, Ola Ćwiek, Donna Erickson, Susanne Fuchs and two anonymous reviewers for their comments on previous versions of this paper and/or helpful discussions on some of the issues that are addressed in the paper. This research is supported by the JSPS grants #17K13448 and #18H03579. All remaining errors are ours.

References

Bankieris, Kaitlyn, and Julia Simner. 2015. What is the link between synaesthesia and sound symbolism? Cognition 136: 186–95.
Barr, Dale J. 2013. Random effects structure for testing interactions in linear mixed-effects models. Frontiers in Psychology 4: 328.
Barr, Dale J., Roger Levy, Christoph Scheepers, and Harry J. Tily. 2013. Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language 68: 255–78.
Berent, Iris, Donca Steriade, Tracy Lennertz, and Vered Vaknin. 2007. What we know about what we have never heard: evidence from perceptual illusions. Cognition 104: 591–630.
Bergen, Benjamin K. 2004. The psychological reality of phonaesthemes. Language 80: 290–311.
Berlin, Brent. 2006. The first congress of ethnozoological nomenclature. Journal of Royal Anthropological Institution 12: 23–44.
Coulter, S. Keith, and Robin A. Coulter. 2010. Small sounds, big deals: phonetic symbolism effects in pricing. Journal of Consumer Research 37(2): 315–28.
Daland, Robert, Bruce Hayes, James While, Marc Garellek, Andrea Davis, and Ingrid Normann. 2011. Explaining sonority projection effects. Phonology 28(2): 197–234.
Derrick, Donald, and Bryan Gick. 2013. Aerotactile Integration from distal skin stimuli. Multisensory Research 26: 405–16.
Dingemanse, Mark. 2018. Redrawing the margins of language: lessons from research on ideophones. *Glossa* 3(1): 4. doi: 10.5334/gjgl.444.

Dingemanse, Mark, Damián E. Blasi, Gary Lupyan, Morten H. Christiansen, and Padraic Monaghan. 2015. Arbitrariness, iconicity and systematicity in language. *Trends in Cognitive Sciences* 19(10): 603–15.

D’Onofrio, Annette. 2014. Phonetic detail and dimensionality in sound-shape correspondences: refining the *bouba*-kiki paradigm. *Language and Speech* 57(3): 367–93.

Garrigues, Stephen L. 1995. Mimetic parallels in Korean and Japanese. *Studies in Language* 19: 359–98.

Garcia, Guilherme Duarte. 2019. When lexical statistics and the grammar conflict: learning and repairing weight effects on stress. *Language* 95(4): 612–41.

Gick, Bryan, and Donald Derrick. 2009. Aero.

Hamano, Shoko. 1998. *Symbolic value of the vowel i in Linguistica: Selected papers in English, French and German*, vol. 1. 283–303. Copenhagen: Levin and Munksgaard.

Johnson, Keith. 2003. *Acoustic and auditory phonetics: 2nd edition*. Malden and Oxford: Blackwell.

Kawahara, Shigeto. 2019. Teaching phonetics through sound symbolism. *Proceedings of ISAPh*.

Kawahara, Shigeto. 2020a. Sound symbolism and theoretical phonology. *Language and Linguistic Compass*. doi: 10.1111/lnc.12372.

Kawahara, Shigeto. 2020b. Teaching and learning guide for “Sound symbolism and theoretical linguistics”. *Language and Linguistic Compass*. doi: 10.1111/lnc.12376.

Kawahara, Shigeto, and Gakuji Kumagai. 2019a. Expressing evolution in Pokémon names: experimental explorations. *Journal of Japanese Linguistics* 35(1): 3–38.

Kawahara, Shigeto, and Gakuji Kumagai. 2019b. Inferring Pokémon types using sound symbolism: the effects of voicing and labiality. *Journal of the Phonetic Society of Japan* 23(2): 111–6.

Kawahara, Shigeto, and Jeff Moore. to appear. How to express evolution in English Pokémon names. *Linguistics*.

Kawahara, Shigeto, Atsushi Noto, and Gakuji Kumagai. 2018. Sound symbolic patterns in Pokémon names. *Phonetica* 75(3): 219–44.

Kawahara, Shigeto, Hironori Katsuda, and Gakuji Kumagai. 2019. Accounting for the stochastic nature of sound symbolism using maximum entropy model. *Open Linguistics* 5: 109–20.

Kawahara, Shigeto, Gakuji Kumagai, and Mahayana C. Godoy. 2020. English speakers can infer Pokémon types based on sound symbolism. Ms. Keio University, Meikai University and Federal University of Rio Grande do Norte.

Kim, Kong-On. 1977. Sound symbolism in Korean. *Journal of Linguistics* 13: 67–75.

Kingston, John, Shigeto Kawahara, Daniel Mash, and Della Chambless. 2011. Auditory contrast versus compensation for coarticulation: data from Japanese and English listeners. *Language and Speech* 54(4): 496–522.

Klink, Richard R. 2009. Gender differences in new brand name response. *Marketing Letters* 20: 313–26.

Krause, Timothy Allen. 2015. *Sound effects: Age, gender, and sound symbolism in American English*: Portland State University Master’s thesis.

Kumagai, Gakuji, and Shigeto Kawahara. 2019. Effects of vowels and voiced obstruents on Pokémon names: Experimental and theoretical approaches [in Japanese]. *Journal of the Linguistic Society of Japan* 155: 65–99.

Lockwood, Gwilym, and Mark Dingemanse. 2015. Iconicity in the lab: a review of behavioral, developmental, and neuroimaging research into sound-symbolism. *Frontiers in Psychology* 6: 1246. doi: 10.3389/fpsyg.2015.01246.

Lupyan, Gary, and Bodo Winter. 2018. Language is more abstract than you think, or, why aren’t languages more iconic? *Proceedings of Royal Society B* 373: 20170137.

MacKenzie, Laurel. 2018. What’s in a name? Teaching linguistics using onomastic data. *Language (Teaching Linguistics)* 94: e1–e18.

Makino, Seichi. 2007. An argument for non-arbitrary relationship between sound and meaning in Japanese grammar. In *Japanese linguistics: European chapter*, ed. Yoshihiko Ikegami, Viktoria Eschbach-Szabo, and André Włodarczyk, 239–50. Tokyo: Kurosio.

Mann, Virginia, and Bruno Repp. 1981. Influence of preceding fricative on stop consonant perception. *Journal of the Acoustical Society of America* 69: 548–58.

Matisoff, James. 1994. Tone, intonation, and sound symbolism in Lahu: loading the syllable canon. In *Sound symbolism*, ed. Leane Hinton, Johanna Nichols, and John Ohala. Cambridge: Cambridge University Press.

Mielke, Jeff. 2011. A phonetically based metric of sound similarity. *Lingua* 122(2): 145–63.
Newman, Stanley. 1933. Further experiments on phonetic symbolism. *American Journal of Psychology* 45: 53–75.

Nuckolls, Janis B. 1999. The case for sound symbolism. *Annual Review of Anthropology* 28: 225–52.

Ohala, John. 1994. The frequency code underlies the sound symbolic use of voice pitch. In *Sound symbolism*, ed. Leane Hinton, Johanna Nichols, and John Ohala, 325–47. Cambridge: Cambridge University Press.

Otate, Takashi, Gyyo Hatano, Anne Cutler, and Jacques Mehler. 1993. Mora or syllable? Speech segmentation in Japanese. *Journal of Memory and Language* 32: 258–78.

Paraise, Cesare V., Katharina Knorre, and Marc O. Ernst. 2014. Natural auditory scene statistics shapes human spatial hearing. *Proceedings of National Academy of Sciences* 111(16): 6104–8.

Ramachandran, Vilayanur S., and Edward M. Hubbard. 2001. Synaesthesia – a window into perception, thought, and language. *Journal of Consciousness Studies* 8(12): 3–34.

Sapir, Edward. 1929. A study in phonetic symbolism. *Journal of Experimental Psychology* 12: 225–39.

Saussure, Ferdinand de. 1916. *Cours de linguistique générale*. Paris: Payot.

Shih, Stephanie S., Jordan Ackerman, Noah Hermalin, Sharon Inkelas, Hayeun Jang, Jessica Johnson, Darya Kavitskaya, Shigeto Kawahara, Miran Oh, Rebecca L. Starr, and Alan Yu. 2019. Cross-linguistic and language-specific sound symbolism: Pokémonastics. Ms. University of Southern California, University of California, Merced, University of California, Berkeley, KeIo University, National University of Singapore and University of Chicago.

Shih, Stephanie S., Jordan Ackerman, Noah Hermalin, Sharon Inkelas, and Darya Kavitskaya. 2018. Pokémonikers: a study of sound symbolism and Pokémon names. *Proceedings of LSA 2018*.

Shinohara, Kazuko, and Shigeto Kawahara. 2016. A cross-linguistic study of sound symbolism: the images of size. In *Proceedings of the Thirty Sixth Annual Meeting of the Berkeley Linguistics Society*, 396–410. Berkeley: Berkeley Linguistics Society.

Sidhu, David, and Penny M. Pexman. 2018. Five mechanisms of sound symbolic association. *Psychonomic Bulletin & Review* 25(5): 1619–43.

Sidhu, David, and Penny M. Pexman. 2019. The sound symbolism of names. *Current Directions in Psychological Science* 28(4): 398–402.

Spence, Charles. 2011. Crossmodal correspondences: a tutorial review. *Attention, Perception & Psychophysics* 73(4): 971–95.

Uno, Ryoko, Kazuko Shinohara, Yuta Hosokawa, Naho Ataumi, Gakuji Kumagai, and Shigeto Kawahara. 2020. What’s in a villain’s name? Sound symbolic values of voiced obstruents and bilabial consonants. *Annual Review of Cognitive Linguistics* 18(2).

Vance, Timothy. 2008. *The sounds of Japanese*. Cambridge: Cambridge University Press.

Westbury, Chris, Geoff Hollis, David M. Sidhu, and Penny M. Pexman. 2018. Weighting up the evidence for sound symbolism: Distributional properties predict cue strength. *Journal of Memory and Language* 99: 122–50.

Wilson, Colin. 2006. Learning phonology with substantive bias: an experimental and computational study of velar palatalization. *Cognitive Science* 30(5): 945–82.
Appendix

The participants for the current experiment had to be 18 years or older. One of the demographic information questions asked their age using a scale with nine categories, largely divided by a 5-year increment. The distributions of the age-groups in the small and large data sets are shown in Table 4.

While examining the effects of gender and age on sound symbolic effects was not something that was planned when we designed the experiment, since we obtained an unexpectedly high number of participants, we explored these effects using the large data set, as a post hoc data exploration. Figure 5 illustrates the effects of gender difference on expected response ratios, which does not show any substantial differences between the two genders. A simple regression analysis confirmed that the gender difference is not a significant factor in predicting the expected response ratios ($\beta = -0.001$, s.e. = 0.14, $t = -0.067$, n.s.).

Figure 6 shows the effects of age-groups on the expected response ratios. While Groups 7 (45–49) and 9 (above 60) show higher expected response ratios compared to the other groups, there do not seem to be systematic trends between age-groups and the expected response ratios. Table 4 shows that the numbers of participants in these two age-groups were not very high, and indeed, a Spearman correlation test reveals no significant correlation between age-groups and the expected response ratios ($p = 0.04$, n.s.).

Since our experiment did not carefully control the number of participants in each age-group, we certainly do not intend to claim that age does not generally affect sensitivities to sound symbolism. We simply note that in the current data set, we did not find positive evidence for the effects of age or gender

Age-group label	1	2	3	4	5	6	7	8	9
Age-group	18–19	20–24	25–29	30–34	35–39	40–44	45–49	50–59	Above 60
Small data set	9	25	2	11	1	3	3	6	3
Large data set	149	308	189	98	10	7	5	7	3

Figure 5: The effects of gender on expected response ratios in the large data set.

Figure 6: The effects of age-groups on the expected response ratios.
on sound symbolism. With this said, this topic (the effects of gender and age on sound symbolism) is one understudied area in the sound symbolism research (cf. Klink 2009, Bankieris and Simner 2015, Krause 2015) – since Pokémonastics experiments have a distinct advantage of being able to collect many data points, as the current experiment has shown, they may offer a useful tool in addressing this understudied topic in the future exploration.

Figure 6: The effects of age-groups on expected response ratios in the large data set. See Table 4 for which the age-group label corresponds to which age range.