The KCTD family of proteins: structure, function, disease relevance

Zhepeng Liu1†, Yaqian Xiang2† and Guihong Sun1*

Abstract
The family of potassium channel tetramerization domain (KCTD) proteins consists of 26 members with mostly unknown functions. The name of the protein family is due to the sequence similarity between the conserved N-terminal region of KCTD proteins and the tetramerization domain in some voltage-gated potassium channels. Dozens of publications suggest that KCTD proteins have roles in various biological processes and diseases. In this review, we summarize the character of Bric-a-brack, Tram-track, Broad complex (BTB) of KCTD proteins, their roles in the ubiquitination pathway, and the roles of KCTD mutants in diseases. Furthermore, we review potential downstream signaling pathways and discuss future studies that should be performed.

Keywords: KCTD, BTB domain, Adaptor

Introduction
The human potassium (K+) channel tetramerization domain (KCTD) family of proteins consists of 26 members that share sequence similarity with the cytoplasmic domain of voltage-gated K+ channels (Kv channels) [1-3]. The KCTD proteins have relatively conserved N-terminal domains and variable C-termini. Comparative analyses of the conserved N-terminal sequence suggest the presence of a common Bric-a-brack, Tram-track, Broad complex (BTB) domain, which is also known as the POZ domain. The BTB domain is a versatile protein-protein interaction motif that facilitates homodimerization or heterodimerization. A variety of functions have been identified for the BTB domain-containing KCTD proteins. These functions include transcriptional repression [4,5], cytoskeleton regulation [6], tetramerization and gating of ion channels [7,8], and interaction with the cullin E3 (Cul3) ubiquitin ligase complex [9,10]. In this review, we will summarize the homology between KCTD family members and some of the key features of KCTD proteins. We will also discuss the roles of mutant KCTDs in disease.

BTB domain and homology between KCTD family members
The human genome includes approximately 400 BTB domain-containing proteins. The BTB domain is a highly conserved motif of about 100 amino acids and can be found at the N-terminus of C2H2-type zinc-finger transcription factors and in some actin-binding proteins [11]. BTB domain-containing proteins include transcription factors, oncogenic proteins, ion channel proteins, and KCTD proteins [2,12-14]. Many BTB domain-containing proteins contain one or two additional domains, such as kelch repeats, zinc-finger domains, FYVE (Fab1, YOTB, Vac1, and EEA1) fingers which is a novel zinc finger-like domain found in several proteins involved in membrane trafficking, or ankyrin repeats [15]. These special domains provide unique characteristics and functions to the BTB proteins. The BTB domain facilitates protein-protein interactions between KCTD proteins to allow self-assembly or with non-BTB-domain-containing proteins to promote oligomerization [15]. The X-ray crystal structure of KCTD5 also revealed assemblies of five subunits while tetramers were anticipated [16]. A variety of functional roles of KCTD proteins have been identified by different signal pathways, including sonic hedgehog (Shh) [17-19], Wnt/beta-catenin [20], FGF [1], and GABA signaling [21-24]. Alignment of the amino acids in the potassium tetramerization domains of all known KCTD proteins demonstrates that most KCTD proteins can be divided into seven groups by amino acid sequences.

* Correspondence: ghsunlab@whu.edu.cn
† Equal contributors
1 School of Basic Medical Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
Full list of author information is available at the end of the article

© 2013 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The A-group contains KCTD9, KCTD17, KCTD5, and KCTD2. The B-group contains KCTD10, KCTD13, and TNFAIP1. The C-group contains KCTD7 and KCTD14. The D-group contains KCTD8, KCTD12, and KCTD16. The E-group contains KCTD11, KCTD21, and KCTD6. Members of the F-group include KCTD1 and KCTD15. And the final group is the G-group, which contains KCTD20, KCTD18, and KCTD19. KCTD4 do not belong to these seven groups (Figure 1). The evolutionary tree of the KCTD family proteins is similar to the group that Skoblov M et al. built [25]. We also suggest that homologous KCTD members may share similar functional roles in proliferation, transcription, protein degradation, regulation of G-protein coupled receptors and other molecular or biological processes.

KCTD proteins as adaptor molecules

BTB-domain-containing KCTD proteins may act as adaptors for interactions between the Cul3 ubiquitin ligase and its substrates. Thus, BTB KCTD proteins may facilitate successful ubiquitination of substrate proteins [26]. Cul3 is one of seven human cullin proteins (Cul1, Cul2, Cul3, Cul4A, Cul4B, Cul5, and Cul7). Most cullins form complexes with substrate proteins by interacting with the BTB domains of adaptor proteins [3]. Thus, the BTB domain is important for the process of ubiquitination and protein degradation. Ubiquitination involves a three-step enzymatic cascade, which is initially activated by ubiquitin-activating enzyme (E1). The substrate is then transferred to ubiquitin-conjugating enzyme (E2) and is finally linked with ubiquitin ligase (E3) [27]. Various cellular functions, including cell proliferation, differentiation, apoptosis, and protein transport, involve protein ubiquitination and de-ubiquitination [28]. Bioinformatics and mutagenesis analyses have demonstrated that the best-characterized member of the KCTD family, KCTD11/REN, is expressed as two alternative variants, sKCTD11 and lKCTD11. Despite the fact that both variants possess a BTB domain in the N-terminus, only the lKCTD11 form has a complete BTB domain. Intriguingly, this has not disturbed the cul3-binding activity of sKCTD11. KCTD11/REN also

Figure 1 A paralogues tree of the KCTD family proteins as cullin ligase adaptor and their substrate. Left: A paralogues tree built using entire amino acid sequences of the KCTD family proteins; Right: the family of KCTD proteins corresponding to cullin and their substrate.
mediates histone deacetylase (HDAC1) ubiquitination and degradation via cullin binding, resulting in reduced Hh/Gli signaling [18]. The KCTD21 and KCTD6 have also been found to have the same features as KCTD11 [29]. Thus, KCTD21 and KCTD6 may also facilitate protein degradation and reduced cellular signaling due to associations with ubiquitin ligases. KCTD5 and KCTD7 have also been shown to function as substrate-specific adaptors for cullin3-based E3 ligases [3,30,31]. In addition, KCTD7 has been shown to increase potassium conductance due to increased proteasome degradation of an unidentified substrate [30]. Thus, several members of the KCTD family function as critical adaptor molecules for ubiquitin-mediated protein degradation. This function ultimately results in the modulation of important downstream signaling pathways and biological processes. As can be seen from Figure 1, cullin is fairly widely interaction with the family of KCTD proteins. In the future, this novel substrate of KCTD will help to understand the function of the complex of CUL3 –BTB.

KCTDs and disease
KCTD proteins have essential roles in proliferation, differentiation, apoptosis, and metabolism. Improper regulation of KCTD genes has been associated with various diseases, including medulloblastoma [32], breast carcinoma [33], obesity [34,35], and pulmonary inflammation [36]. Many studies show associations between mutations in individual KCTD genes or allelic loss of KCTDs with specific diseases. For example, a homozygous mutation (R99X) in exon 2 of KCTD7 has been described in progressive myoclonic epilepsy (PME) [37]. A second homozygous missense mutation (R94W) in exon 2 of KCTD7 has also been found in PME [38]. In addition, a heterozygous missense mutation (R84W) and a large heterozygous deletion of exons 3 and 4 of KCTD7 have also been reported in patients with PME [30,31]. Allelic deletion of human KCTD11 at chromosomal location 17p13.2 has been found in medulloblastoma [19,39]. In addition, gene copy number variants (CNVs) of KCTD13 mapping to chromosomal location 16p11.2 are considered to be major genetic causes of macrocephaly and microcephaly. Overexpression of KCTD13 induces microcephaly, whereas suppression of the same locus results in a macrocephalic phenotype [40]. Missense mutations in KCTD10 occur in Scalp-ear-nipple (SEN) syndrome [41]. Single nucleotide polymorphisms (SNPs) of KCTD10 (i5642G - > C and V206VT - > C) are associated with altered concentrations of HDL cholesterol, particularly in subjects with high levels of carbohydrate intake [42]. KCTD13 mutations affect proliferation, differentiation, apoptosis, and metabolism in different tissues. For example, the CNVs of KCTD13 affect the balance of proliferation and apoptosis in neuronal progenitor cells. In addition, deletions in KCTD11 abrogate inhibition of Shh signaling at the outer to inner external granule layer-granule cell progenitor (EGL GCP) transitions by affecting expression of Gli1 and Gli2 [19]. Deletions in KCASH, KCTD21, or KCTD6 block interactions with ubiquitination

| Table 1 KCTD proteins and related diseases |
|-----------------|-----------------|--|------------------|
| Disease | KCTD - related | Function of KCTD proteins in disease | Reference |
| Cancer | KCTD12 | biomarker | Ref. [43] |
| Gastrointestinal stromal tumor | KCTD10 | prognostic biomarker | |
| Medulloblastoma | KCTD11 | Suppress Histone Deacetylase and Hedgehog activity in medulloblastoma | Ref. [17]; Ref. [19]; Ref. [39]; |
| KCTD21 | KCTD6 | | |
| Neurological disease | KCTD7 | KCTD7 mutations might be a recurrent cause of PME | Ref. [30]; Ref. [31]; Ref. [37]; Ref. [38]; |
| Progressive Myoclonic Epilepsy (PME) | | overexpression microcephaly phenotype | Ref. [40] |
| Abnormal Head Size | KCTD13 | underexpression macrocephaly phenotype | |
| Metabolic disorder | KCTD10 | KCTD10 (V206VT - > C and i5642G - > C) may contribute to the variation in HDL-cholesterol concentrations, particularly in subjects with high carbohydrate intakes. | Ref. [42] |
| HDL cholesterol concentration | | | |
| Others | KCTD2 | Production of erythropoietin (EPO) was significantly inhibited when CEBPG, KCTD2, and TMEM183A were knocked down | Ref. [44] |
| Influence EPO production | KCTD9 | The overexpressed KCTD9 activates NK cell in peripheral blood and liver in HBV-ACLF, which contributes to liver injury | Ref. [45]; Ref. [46] |
| Live injury of HBV-ACLF | KCTD12 | Risk modifier | Ref. [22] |
| Chronic Tinnitus syndrome | KCTD1 | missense mutation in KCTD1 causes SEN syndrome | Ref. [41] |
| Scalp-ear-nipple(SEN) | | | |
enzymes, preventing degradation of HDAC1. This leads to increased acetylation of Gli1 and increased Hh/Gli signaling, which drives uncontrolled proliferation and development and progression of medulloblastoma [17,39]. Not only mutant KCTD could cause diseases, but also the change of KCTD expression involved in different diseases [22,43–46]. All of the diseases related with KCTD proteins have been list in a Table 1 to make the family more convenient for further study.

Conclusion
There are some features of KCTDs that have not been reviewed in this article. For example, KCTD8, -12, -12b, and-16 form functional oligomers with the GABAB receptor, resulting in the modulation of important signaling pathways [21–24,47]. In addition, the PDIP1 family members (KCTD10, KCTD13, and TNFAIP1) are tumor necrosis factor-inducible proteins that can stimulate the activity of DNA polymerase in DNA replication and repair pathways [48]. Furthermore, interactions between KCTD1, KCTD15, and AP-2 repress the transcriptional activity of AP-2a [13]. Finally, KCTD1 has been shown to interact with PrP C [49]. In the review, we summarize the BTB characteristics of the KCTD proteins, their roles in the ubiquitination pathway, and the relevance of KCTD mutations in various diseases. The review highlight the extraordinary possibility of the interaction of cullin-KCTDs to target substrates for ubiquitin-dependent degradation. If BTB-containing KCTD proteins can assemble into Cul3-based complexes, we estimate KCTD proteins can recruit substrates into ubiquitin system. We specifically discuss the role of KCTD1 in the ubiquitination pathway via interaction with cul3. We also hypothesize that KCTD1 mediate prion protein into ubiquitination signal pathway, and de-regulation of the KCTD1 mediated prion protein ubiquitination might be both a cause and result of prion disease. Furthermore, we speculate that members of the same subgroups may have similar roles in biological processes or molecular signaling pathways. We believe that further investigations into the functions of individual KCTD family members are warranted, particularly within the context of specific diseases as described here.

Abbreviations
KCTD: Potassium channel tetramerization domain; BTB: Bric-a-brack, Tran-mack, Broad complex; Cul3: Cullin 3 ubiquitin ligase; Shh: Sonic hedgehog; E1: Ubiquitin-activating enzyme; E2: Ubiquitin-conjugating enzyme; E3: Ubiquitin ligase; HDAC: Histone deacetylase; PME: Progressive myoclonic epilepsy; CNV: Copy number variant; SEN: Scalp-ear-nipplesyndrome; SNP: Single nucleotide polymorphism; ECL: External granule layer-granule cell progenitor; KCASH: KCTD containing, Cul3 adaptor, suppressor of Hedgehog; TNFAIP1: Tumor necrosis factor alpha-induced protein 1.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ZP, YX, and GS co-wrote this review. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 30870113 and 31370187).

Author details
1School of Basic Medical Sciences, Wuhan University, Wuhan 430072, People’s Republic of China. 2Jinhu University of Technology, No.33 xiangshan avenue, Jingmen 448000, People’s Republic of China.

Received: 7 October 2013 Accepted: 4 November 2013
Published: 24 November 2013

References
1. Takahashi C, Suzuki T, Nishida E, Kusakabe M: Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. Int J Dev Biol 2012, 56(6):393–402.
2. Mei F, Xiang J, Han S, He Y, Lu Y, Xu J, Guo D, Xiao G, Tien P, Sun G: Expression, purification, and secondary structure characterization of recombinant KCTD1. Biochemistry (Moscow) 2012, 77(8):941–945.
3. Bayon Y, Trindad AG, De la Puerta ML, Del Carmen RM, Rogetz J, Rojas A, De Pereda JM, Rahmouni S, Williams S, Matsuzawa S, et al: KCTD5, a putative substrate adaptor for cul3 ubiquitin ligases. FEBS J 2008, 275(15):3900–3910.
4. Melnick A, Ahmad KF, Arai S, Polinger A, Ball H, Borden KL, Carli GW, Privé GG, Licht JD: In-depth mutational analysis of the prionopathic yeast zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol Cell Biol 2000, 20(17):6550–6567.
5. Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL, Mayer S, Takahashi K, Licht JD, Privé GG: Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell Biol 2003, 23(15):5511–5564.
6. Kang MK, Nakayama K, Nakayama M: Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A 2004, 101:2046–2051.
7. Kreusch A, Paffinger PJ, Stevens CF, Choe S: Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 1998, 392(6679):945–948.
8. Minor DL, Lin YF, Mobley BC, Averal A, Jan YN, Jan LY, Berger JM: The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 2000, 102(5):657–670.
9. Pintard L, Willems A, Peter M: Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 2004, 23(8):1681–1687.
10. Reik W: BTB proteins as henchmen of Cul3-based ubiquitin ligases. Nat Cell Biol 2005, 7(11):926–931.
11. Bardwell VJ, Treisman R: The POZ domain: a conserved protein-protein interaction motif. Genes Dev 1994, 8(16):1664–1677.
12. Conale S, Prone L, Di Marcello M, De Smaele E, Greco A, Maizza D, Moretti M, Altero V, Vitagliano L, Di Gaetano S, De Pereda JM, Rahmouni S, Williams S, Matsuzawa S, et al: Molecular organization of the cullin 3 ligase adaptor KCTD11. Biochem Cell Biol 2011, 89(4):715–724.
13. Ding X, Luo C, Zhou J, Zhang Y, Hu X, Zhou F, Ren K, Gan L, He A, Zhu J, et al: The interaction of KCTD1 with transcription factor AP-2alpha inhibits its transactivation. J Cell Biochem 2009, 106(2):285–295.
14. Ding XF, Luo C, Ren KQ, Zhang J, Zhou JL, Hu X, Liu RS, Wang Y, Gao X: Characterization and expression of a human KCTD1 gene containing the BTB domain, which mediates transcriptional repression and homocromic interactions. DNA Cell Biol 2008, 27(5):257–266.
15. Stogios PJ, Downa GS, Jaubil JJ, Nandra SK, Privé GG: Sequence and structural analysis of BTB domain proteins. Genome Biol 2005, 6(10):R82.
16. Dementieva IS, Terezhko V, McCrossan ZA, Solomaha E, Araki D, Xu C, Grigorieff N, Goldstein SA: Pentameric assembly of potassium channel tetramerization domain-containing protein 5. J Mol Biol 2009, 387(1):175–191.
17. De Smaele E, Di Marcello M, Moretti M, Pelli1 M, Occhione MA, Infante P, Cucchi D, Greco A, Pietrosanti L, Todoric J, et al: Identification and characterization of KCASH2 and KCASH3, 2 novel Cul3-BTB adaptors suppressing histone deacetylation and Hedgehog activity in medulloblastoma. Neoplasia 2011, 13(4):374–385.
18. Canettieri LDM, Greco A, Coni S, Antonacci L, Infante P, Pietrosanti EDS L, Ferreti E, Miele E, Pelli1 M, De Simone G, Pedone PG, EM, Giorgi A,
Steinkühler C, Vitaliano L, Pedone C, Schinin IS ME, Gulino A: Histone deacetylase and Cullin3-RN(KCTD11) ubiquitin ligase interplay regulates hedgehog signalling through GlI acetylation. Nat Cell Biol 2010, 12:132–142.

19. De Smale E, Di Marcolliu L, Ferretti E, Scepriani I, Alesse E, Gulino A: Chromosome 17 deletion in human medulloblastoma: a missing checkpoint in the Hedgehog pathway. Cell Cycle 2004, 3(12):1263–1266.

20. Dutta S, Dawid IB: Kctd15 inhibits neural crest formation by attenuating Wnt/beta-catenin signaling output. Development 2010, 137(18):3013–3018.

21. Sand PG, Langguth B, Itzhacki J, Bauer A, Geis S, Cardenas-Conejo ZE, Pimentel V, Kleinejung T: Resequencing of the auxiliary GABA(B) receptor subunit gene KCTD12 in chronic tinnitus. Front Syst Neurosci 2012, 6:41.

22. Metz M, Gassmann M, Falk B, Scharen-Wemers N, Bettler B: Distribution of the auxiliary GABA(R) receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. J Comp Neurol 2011, 519(14):1435–1454.

23. Schwenk J, Metz M, Zelles G, Turecek R, Fritzius T, Besserwitz I, Quajer V, Falk B, Gassmann M, Bettler B: Opposite effects of KCTD6 subunit domains on GABA(B) receptor-mediated desensitization. J Biol Chem 2012, 287(47):39869–39877.

24. Schwenk J, Metz M, Zelles G, Turecek R, Fritzius T, Besserwitz I, Quajer V, Falk B, Gassmann M, Bettler B: Opposite effects of KCTD6 subunit domains on GABA(B) receptor-mediated desensitization. J Biol Chem 2012, 287(47):39869–39877.

25. Sand PG, Langguth B, Itzhacki J, Bauer A, Geis S, Cardenas-Conejo ZE, Pimentel V, Kleinejung T: Resequencing of the auxiliary GABA(B) receptor subunit gene KCTD12 in chronic tinnitus. Front Syst Neurosci 2012, 6:41.

26. Metz M, Gassmann M, Falk B, Scharen-Wemers N, Bettler B: Distribution of the auxiliary GABA(R) receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. J Comp Neurol 2011, 519(14):1435–1454.