Safety and efficacy of tiotropium Respimat versus HandiHaler in patients naive to treatment with inhaled anticholinergics

a post hoc analysis of the TIOSPIR trial

Wise, Robert; Calverley, Peter Ma; Dahl, Ronald; Dusser, Daniel; Metzdorf, Norbert; Müller, Achim; Fowler, Andy; Anzueto, Antonio

Published in:
n p j Primary Care Respiratory Medicine

DOI:
10.1038/npjpcrm.2015.67

Publication date:
2015

Document version
Final published version

Document license
CC BY

Citation for published version (APA):
Wise, R., Calverley, P. M., Dahl, R., Dusser, D., Metzdorf, N., Müller, A., Fowler, A., & Anzueto, A. (2015). Safety and efficacy of tiotropium Respimat versus HandiHaler in patients naive to treatment with inhaled anticholinergics: a post hoc analysis of the TIOSPIR trial. n p j Primary Care Respiratory Medicine, 25, [15067]. https://doi.org/10.1038/npjpcrm.2015.67

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 06. May. 2020
Safety and efficacy of tiotropium Respimat versus HandiHaler in patients naive to treatment with inhaled anticholinergics: a post hoc analysis of the TIOSPIR trial

Robert Wise, Peter MA Calverley, Ronald Dahl, Daniel Dusser, Norbert Metzdorf, Achim Müller, Andy Fowler and Antonio Anzueto

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) who were naive to anticholinergics before the TIOtropium Safety and Performance In Respimat (TIOSPIR) trial may reflect patients seen in practice, in particular in primary care. In addition, investigating safety in these patients avoids the potential bias in patients who previously received anticholinergics and may be tolerant of their effects.

AIMS: The aim of this study was to evaluate whether patients naive to anticholinergic therapy who were treated with tiotropium Respimat 2.5 or 5 μg had different safety and efficacy outcomes than patients treated with tiotropium HandiHaler 18 μg.

METHODS: A post hoc analysis of patients who were not receiving anticholinergics before TIOSPIR (N = 6,966/17,135) was conducted. Primary end points were risk of death from any cause and risk of COPD exacerbation. Secondary outcomes included severe exacerbation and major adverse cardiovascular events (MACE). Additional analysis of exacerbations was carried out in anticholinergic-naive patients with moderate (GOLD II) disease.

RESULTS: Anticholinergic-naive patients had less severe disease than the total TIOSPIR population. Discontinuations because of anticholinergic side effects were infrequent (0.9% overall). Similar to the primary study, patients in the tiotropium Respimat groups had no difference in the risk of death or risk of any or severe exacerbation than patients treated with tiotropium HandiHaler. Risk of MACE was similar across the Respimat and HandiHaler groups. Rates of exacerbations in the subgroup of patients with moderate disease were similar across the Respimat and HandiHaler groups.

CONCLUSIONS: Tiotropium Respimat and HandiHaler have similar safety and efficacy profiles in patients who are naive to anticholinergic therapy.

npj Primary Care Respiratory Medicine (2015) 25, 15067; doi:10.1038/npjpcrm.2015.67; published online 5 November 2015

INTRODUCTION

Tiotropium (SPIRIVA, Boehringer Ingelheim Pharma & Co KG, Ingelheim am Rhein, Germany) is a once-daily, long-acting, anticholinergic bronchodilator available in two formulations: dry powder via HandiHaler (18 μg once daily) and as an aqueous solution via the Respimat Soft Mist Inhaler (5 μg two puffs of 2.5 μg once daily). Tiotropium HandiHaler 18 μg and tiotropium Respimat 5 μg have demonstrated similar improvements in lung function, symptoms and quality of life3-6 and have similar pharmacokinetic profiles in patients with chronic obstructive pulmonary disease (COPD).7

Queries around the safety of Respimat8-10 were addressed in the TIOtropium Safety and Performance In Respimat (TIOSPIR; NCT01126437) trial11—the largest long-term, randomised, double-blind trial in patients with COPD performed to date. The trial showed similar safety and exacerbation efficacy profiles for tiotropium Respimat 2.5 μg and 5 μg compared with HandiHaler 18 μg.

A common criticism of randomised clinical trials (RCTs) is that the selected patient populations may not be truly representative of patients seen in routine clinical practice—in particular, patients treated in primary care.12-14 A unique characteristic of TIOSPIR was the liberal inclusion criteria that were chosen to select a typical COPD patient population, including patients with a wide range of disease severities, as well as patients with stable cardiac disease.11

TIOSPIR also included a large population of patients with COPD who were naive to anticholinergic treatment at baseline. This represents an important patient group that may be highly representative of patients commonly seen in primary care. Patients within the primary TIOSPIR study who were previously treated with anticholinergics might be seen to constitute a selected population with a higher tolerance to anticholinergic effects and could have introduced a selection bias in the analysis of tiotropium’s safety. Therefore, it is conceivable that the anticholinergic-naive group might have been at an increased risk of side effects commonly associated with the class and may have responded differently to treatment with tiotropium Respimat or HandiHaler.

To investigate this possibility, this post hoc analysis of the TIOSPIR trial studied whether patients who had not previously

1Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 2Respiratory Medicine, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK; 3Allergy Centre, Odense University Hospital, Odense C, Denmark; 4Service de Pneumologie, Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; 5Medical Affairs, Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany; 6Global Clinical Operations, Biometry and Data Management, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany; 7Medical Affairs, Boehringer Ingelheim Pharma Ltd, Bracknell, UK and 8Department of Medicine, Pulmonary Critical Care Center, University of Texas Health Science Center, San Antonio, TX, USA.

Correspondence: R Wise (rwise@jhmi.edu)

Received 2 April 2015; revised 14 August 2015; accepted 15 September 2015
received anticholinergic therapy and who were treated with Respimat 2.5 or 5 μg had different safety and/or efficacy outcomes compared with patients treated with HandiHaler 18 μg.

MATERIALS AND METHODS

Study design

TIOSPIR was a large (N = 17,135) long-term (2–3 years), randomised, double-blind, double-dummy, parallel-group, actively controlled, event-driven trial in patients with COPD.[1,10] Patients received once-daily Respimat 2.5 μg (two puffs of 1.25 μg) or 5 μg (two puffs of 2.5 μg) or once-daily HandiHaler 18 μg. Primary outcomes were time to death from any cause and time to first COPD exacerbation. Secondary outcomes included time to severe (hospitalised) exacerbations and time to major adverse cardiovascular events (MACE). The study design has been described previously.[1,15]

Study population

Patients had a diagnosis of COPD with forced expiratory volume in 1 s (FEV1) ≤70% of forced vital capacity, FEV1 ≤70% predicted and ≥10 pack-years of smoking history, were aged ≥40 years and were permitted to use their usual background treatment for COPD other than anticholinergics. All patients (including those with premature discontinuation) were followed up for vital status until the end of the study.

At enrolment, patients were asked to provide details of COPD and other medication received within the past 2 months. For this post hoc subgroup analysis, patients were included if they were not receiving short- or long-acting inhaled anticholinergics during the 2 months before the start of the trial.

Statistical analysis

Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using a Cox-proportional hazards regression model (without covariate adjustment). Rate ratios and 95% CI were used to compare incidence rates. Negative binomial regression models were used to compare event rates.

For analysis of death (including fatal MACE), events occurring during treatment and vital status follow-up (vital status analysis) were considered. For all other analyses (including MACE and COPD exacerbations), only events with onset in the on-treatment period were noted (on-treatment analysis). An on-treatment sensitivity analysis was conducted for time to death. Subgroup analyses by patient characteristics at baseline were conducted for time to death and exacerbation risk.

RESULTS

Study population

Overall, 6,966 patients naive to anticholinergic treatment at baseline (Respimat 2.5 μg n = 2,345; Respimat 5 μg n = 2,312; HandiHaler 18 μg n = 2,309) were randomised and treated for a mean follow-up duration of 834 days. A total of 541 (23.1%), 517 (23.1%) and 500 (21.7%) patients in the Respimat 2.5 μg, 5 μg and HandiHaler 18 μg groups, respectively, prematurely discontinued from the study. Discontinuation attributed to anticholinergic side effects occurred in 0.7 and 1.0% of patients in the Respimat 2.5 and 5 μg groups, respectively, and 0.9% of patients in the HandiHaler group.

Patient baseline demographics and characteristics were similar in the three groups (Table 1). Most patients were Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages II (48.8%) and III (38.4%). The majority of patients (77.3%) were receiving pulmonary medication at baseline; approximately half of the patients were taking an inhaled corticosteroid or long-acting β2-agonist (50.2% and 51.6%, respectively) (Table 1). Of the patients who reported symptoms of breathlessness (n = 6,688; 96.1%), the majority were classified as modified Medical Research Council (mMRC) scale 1 (n = 2,694, 40.3%) or scale 2 (n = 2,486, 37.2%) (Table 1). Approximately 8–9% of patients had a history of cardiac arrhythmia (Table 1). A total of 3,349 (48.1%) patients had ≥1 COPD exacerbation in the year before the study (Table 1).

Variable	Tiotropium	Tiotropium	Tiotropium	
	Respimat	Respimat	HandiHaler	
	2.5 μg	5 μg	18 μg	
(n = 2,344)	(n = 2,309)	(n = 2,307)		
Gender, n (%)	Male	1,686 (71.9)	1,694 (73.4)	1,641 (71.1)
Mean age, years (s.d.)	64.1 (9.3)	64.0 (9.2)	64.1 (9.2)	
Smoking history, mean pack-years (s.d.)	26.1 (5.7)	26.0 (5.7)	26.1 (5.8)	
FEV1, % predicted	48.7 (14.1)	48.8 (13.9)	48.8 (14.2)	
β2-Agonist	50.2	51.6	50.2	
LABA	51.0	50.9	51.0	
IBI	11.1	11.1	11.1	
IV	370 (16.1)	370 (16.1)	331 (14.4)	
Gold stage, n (%)	0	200 (8.7)	216 (9.4)	
< 2	75 (3.1)	72 (3.1)	75 (3.1)	
≥ 2	687 (28.3)	701 (29.3)	698 (29.8)	
Ratio of FEV1 to FVC	0.512 (0.116)	0.511 (0.114)	0.511 (0.113)	

Abbreviations: BMI, body mass index; CAD, coronary artery disease; CV, cardiovascular; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease; ICS, inhaled corticosteroid; IVH, ischaemic heart disease; LABA, long-acting β2-agonist; MI, myocardial infarction; mMRC, modified Medical Research Council; SABA, short-acting β2-agonist; s.d, standard deviation.

Safety

Risks of death (measured as time to death, vital status analysis) and the adjudicated causes of death were similar between both doses of Respimat and HandiHaler 18 μg (Figures 1a, b; Table 2). Similar results were obtained for an on-treatment sensitivity analysis of time to fatal adverse event (Respimat 2.5 μg versus Respimat 5.0 μg: HR (95% CI) 1.21 (0.95, 1.54); Respimat 2.5 μg versus HandiHaler 18 μg: HR (95% CI) 1.11 (0.87, 1.40); Respimat 5 μg versus HandiHaler 18 μg: 0.91 (0.71, 1.17)). Subgroup analyses (including cardiac history at baseline and pulmonary comodication at baseline) showed no difference between groups.

Risk of first MACE (on-treatment analysis) was similar for Respimat 2.5 μg and 5.0 μg versus HandiHaler 18 hr (HR (95% CI): 1.11 (0.81, 1.51) P = 0.523, and HR (95% CI) 1.20 (0.88, 1.63) P = 0.244.
respectively; Figure 1c). Rates of fatal MACE (vital status analysis) were similar in each of the treatment groups (Figure 1d; Table 2). Efficacy

Risk of exacerbation (measured as time to first exacerbation, on-treatment analysis) showed no significant difference between the Respimat groups and HandiHaler 18 μg (Figure 2a; Table 3). The risk of moderate-to-severe and severe (hospitalised) exacerbations was also similar across groups (Figure 2b; Table 3).

Exacerbation risk did not differ between treatments in any of the patient subgroups. Patients with less impaired lung function...
GOLD stage II) responded equally to Respimat and HandiHaler with respect to the rate of any exacerbation, moderate-to-severe exacerbations and severe exacerbations (Table 3). As might be expected, patients in the GOLD stage II category experienced fewer exacerbations than the overall population of anticholinergic-naive patients (Table 3).

DISCUSSION

Main findings

The present study showed that patients with COPD who were naive to anticholinergic treatment at baseline, and who were treated with Respimat 2.5 or 5 μg, were at a similar risk of mortality and adverse cardiac events as patients receiving HandiHaler 18 μg.

Table 2. Incidence of adjudicated causes of mortality and fatal MACE in anticholinergic-naive patients

Variable	Tiotropium Respimat 2.5 μg	Tiotropium Respimat 5 μg	Tiotropium HandiHaler 18 μg	Rate ratio (95% CI)
Total patients with deaths	169 (3.2)	149 (2.8)	159 (3.0)	1.05 (0.84, 1.30)
Patients with fatal MACE	49 (0.9)	49 (0.9)	43 (0.8)	1.12 (0.75, 1.69)
Adjudicated causes of death				
Cardiac disorders				
General disorders including sudden (cardiac) death				
Neoplasms benign, malignant and unspecified				
Respiratory, thoracic and mediastinal disorders				
COPD (PT)				
Infections and infestations				
Gastrointestinal disorders				

Abbreviations: CI, confidence interval; COPD, chronic obstructive pulmonary disease; MACE, major adverse cardiovascular event; MedDRA, Medical Dictionary for Regulatory Activities; PT, preferred term; SOC, system organ class. Data shown are n (rate per 100 patient-years). Risk-adjusted rates of adjudicated causes of death by treatment, MedDRA (version 16.0, MedDRA MSSO, McLean, VA, USA) SOC and PT. Vital status analysis. MACE included stroke, myocardial infarction, sudden death, cardiac death, sudden cardiac death or fatal event in the SOCs for cardiac and vascular disorders.

Figure 2. Kaplan–Meier plots showing time to (a) first exacerbation, and (b) first severe (hospitalised) exacerbation. Data for patients with event are n (%). COPD exacerbations were defined as the worsening of two or more major respiratory symptoms (dyspnoea, cough, sputum, chest tightness or wheezing) with a duration of at least 3 days requiring specified treatment changes: (a) mild exacerbations: a newly prescribed maintenance bronchodilator; (b) moderate exacerbations: a prescription for antibiotics, systemic glucocorticoids or both; (c) severe exacerbations: hospitalisation. Abbreviations: CI, confidence interval; COPD, chronic obstructive pulmonary disease. Six patients (Respimat 2.5 μg, one patient; Respimat 5 μg, three patients; HandiHaler 18 μg, two patients) from sites with data irregularities were excluded from analyses. On-treatment analyses (from randomisation to drug stop+1 day).
Compared with the overall population, the present patient subgroup was similar to the TIOSPIR primary study population with regards to baseline characteristics; however, mortality rates during the study were slightly lower. It is likely that patients who were anticholinergic naive at baseline had less severe disease than the overall population; indeed, a slightly higher percentage of patients was classified as GOLD stage II. In addition, patients in the anticholinergic-naive subgroup were receiving fewer cardiovascular medications at baseline, indicating fewer cardiovascular comorbidities. Together, this may have contributed to the lower mortality rates observed. Nevertheless, the results of this post hoc analysis of TIOSPIR were consistent with the main study findings. In addition, the analysis addresses concerns that the safety of tiotropium Respimat could not be completely demonstrated in TIOSPIR because of a potentially selected population with a higher tolerance to anticholinergic effects at baseline.

Interpretation of findings in relation to previously published work COPD is a heterogeneous disease comprising a wide range of clinical phenotypes that may respond differently to treatment.16 Not all of these phenotypes (particularly patients with mild COPD) are represented within populations included in RCTs. Indeed, a common criticism of evidence-based medicine is that it is not known how well RCT evidence applies to COPD patients typically seen within clinical practice.12–14

In a comparison of primary care data from the Uncovering and Noting Long-term Outcomes in COPD (UNLOCK) database with six large RCTs of patients with COPD, significant differences were observed with respect to baseline characteristics.13 Patients included in the RCTs tended to be younger, were predominantly male and had significantly worse lung function and quality-of-life scores than primary care patients. Disparities were also observed with respect to exacerbations: a lower mean exacerbation rate per year and lower number of patients with ≥ 1 or ≥ 2 exacerbations

Variable	Tiotropium Respimat 2.5 μg ($n = 2,344$)	Tiotropium Respimat 5 μg ($n = 2,309$)	Tiotropium HandiHaler 18 μg ($n = 2,307$)	Hazard ratio (95% CI); P-value	
All patients					
Any exacerbation	Patients with event, n (%)	979 (41.8)	923 (40.0)	948 (41.1)	1.04 (0.95, 1.14); $P = 0.359$
No. of events	2,022	2,002	1,955		
Adjusted rate of events/patient-year (95% CI)	0.45 (0.42, 0.48)	0.45 (0.42, 0.48)	0.44 (0.41, 0.47)		
Moderate-to-severe exacerbation	Patients with event, n (%)	957 (40.8)	902 (39.1)	926 (40.1)	1.04 (0.95, 1.14); $P = 0.364$
No. of events	1,968	1,956	1,902		
Adjusted rate of events/patient-year (95% CI)	0.43 (0.40, 0.47)	0.44 (0.41, 0.47)	0.43 (0.40, 0.46)		
Severe (hospitalised) exacerbations	Patients with event, n (%)	282 (12.0)	250 (10.8)	255 (11.1)	1.10 (0.93, 1.30); $P = 0.277$
No. of events	406	376	363		
Adjusted rate of events/patient-year (95% CI)	0.09 (0.08, 0.11)	0.09 (0.08, 0.10)	0.08 (0.07, 0.10)		

GOLD stage II subgroup

Any exacerbation	Patients with event, n (%)	442 (38.6)	391 (34.8)	426 (37.1)	1.05 (0.92, 1.20); $P = 0.472$
No. of events	851	809	837		
Adjusted rate of events/patient-year (95% CI)	0.38 (0.34, 0.42)	0.37 (0.34, 0.42)	0.38 (0.34, 0.42)		
Moderate-to-severe exacerbation	Patients with event, n (%)	428 (37.3)	380 (33.9)	415 (36.2)	1.04 (0.91, 1.19); $P = 0.546$
No. of events	822	781	817		
Adjusted rate of events/patient-year (95% CI)	0.36 (0.33, 0.40)	0.36 (0.32, 0.40)	0.37 (0.33, 0.41)		
Severe (hospitalised) exacerbations	Patients with event, n (%)	84 (7.3)	61 (5.4)	78 (6.8)	1.07 (0.79, 1.46); $P = 0.650$
No. of events	116	84	113		
Adjusted rate of events/patient-year (95% CI)	0.05 (0.04, 0.07)	0.04 (0.03, 0.05)	0.05 (0.04, 0.07)		

Abbreviations: CI, confidence interval; GOLD, Global Initiative for Chronic Obstructive Lung Disease.
being observed in the UNLOCK population. A further interesting observation from the UNLOCK analysis is that patients with GOLD stage I or II COPD comprised 20.7% and 53.3%, respectively, of the total UNLOCK population. This compares with a complete absence of patients at GOLD stage I and 45% of patients at GOLD stage II in the combined RCTs, normally caused by exclusion criteria for mild patients. In the TIOSPIR anticholinergic-naive subgroup, 0.3% patients were at GOLD stage I (because of the inclusion of patients with an FEV\textsubscript{1} percent predicted of < 70%) and 48.8% patients were at GOLD stage II. Thus, almost half of the patients in this subgroup were considered to have moderate COPD. Comparison of other baseline characteristics from the TIOSPIR anticholinergic-naive subgroup with those from the UNLOCK cohort and combined RCTs indicate that this subgroup may have greater similarity to the UNLOCK population than other large COPD trials. Fewer patients in the anticholinergic subgroup had also experienced one or more exacerbation in the year before the study (48%) than patients from other large RCTs (59%), thus better reflecting the UNLOCK population (44%; Supplementary Table 1). Together, these comparisons indicate that the anticholinergic-naive subgroup from TIOSPIR may better reflect patients observed in primary care than patients typically randomised to other large COPD trials.

The primary efficacy outcome from TIOSPIR was time to first COPD exacerbation. Exacerbations are an important component of COPD, having a significant impact on disease progression and health status, as well as increasing the risk of further exacerbations and death. Thus, the prevention of exacerbations is a primary goal in COPD management. Tiotropium Respimat and HandiHaler have been shown to reduce COPD exacerbations versus placebo and other therapies, including among subgroups of patients.

In subgroup analyses of the Prevention Of Exacerbations with Tiotropium in COPD (POET-COPD) study, tiotropium HandiHaler reduced the number of exacerbations per patient-year by 16% versus control in patients naive to maintenance therapy before the study. In subgroup analyses of the Prevention Of Exacerbations with Tiotropium in COPD (POET-COPD) study, tiotropium HandiHaler significantly prolonged the time to first exacerbation (HR (95% CI), 0.88 (0.79, 0.99); P = 0.028) and first severe exacerbation (HR (95% CI), 0.66 (0.48, 0.91); P = 0.012) in GOLD stage II patients, and significantly reduced the annual exacerbation rate (rate ratio [95% CI], 0.77 (0.63, 0.94); P = 0.012) in maintenance therapy-naive patients, when compared with salmeterol. Before TIOSPIR, the relative efficacy of exacerbation reduction by Respimat and HandiHaler was unknown. In this current post hoc analysis, the incidence of exacerbations was shown to be similar among anticholinergic-naive patients who were treated with either Respimat or HandiHaler. Furthermore, the subgroup analysis of exacerbation risk in GOLD stage II patients shows that Respimat and HandiHaler have similar efficacy profiles in patients with less impaired lung function or health status.

Further evidence for tiotropium’s safety was provided by the low incidence of discontinuations observed in each of the treatment groups because of anticholinergic side effects. Other clinical studies of tiotropium in COPD have reported similarly low rates of discontinuation because of undesirable effects such as dry mouth, occurring in 0.1% of patients treated with tiotropium Respimat 5 μg (5 clinical trials) and 0.2% of patients treated with tiotropium HandiHaler 18 μg (28 clinical trials).

Strengths and limitations of this study
A key limitation of the study is that it was a post hoc analysis rather than a prespecified subgroup analysis. Nevertheless, being one of the largest, long-term, randomised trials of a broad range of patients with COPD, TIOSPIR lends itself to statistically powerful subgroup analyses.
Tiotropium in anticholinergic-naive COPD patients
R Wise et al

5 Keating GM. Tiotropium Respimat® Soft Mist inhaler: a review of its use in chronic obstructive pulmonary disease. Drugs 2014; 74: 1801–1816.
6 Tashkin DP, Celli B, Senn S, Burkart D, Kesten S, Menjoge S et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 2008; 359: 1543–1554.
7 Hultfeldt JM, Sharma A, van Noord JA, Cornelissen PJ, Derom E, Towse L et al. Pharmacokinetics and pharmacodynamics of tiotropium solution and tiotropium powder in chronic obstructive pulmonary disease. J Clin Pharmacol 2014; 54: 405–414.
8 Boehringer Ingelheim: Tiotropium (Spiriva) Respimat: evaluation of fatal events.
9 Boehringer Ingelheim Ltd. 2010. Available at: http://trials.boehringer-ingelheim.com/content/dam/internet/opu/clinicaltrial/com_EN/results/Pooled%20analysis/PA_205.372_251_252_254_255_U10-3255-01.pdf
10 Singh S, Loke YK, Enright PL, Furberg CD. Mortality associated with tiotropium in chronic obstructive pulmonary disease: systematic review and mixed treatment comparison meta-analysis of randomised controlled trials. Thorax 2013; 68: 48–56.
11 Wise RA, Anzueto A, Cotton D, Dahl R, Devins T, Disse B et al. Tiotropium Respimat inhaler and the risk of death in COPD. N Engl J Med 2013; 369: 1491–1501.
12 Herland K, Akselsen JP, Skjonsberg OH, Bjørner L. How representative are clinical study patients with asthma or COPD for a larger ‘real life’ population of patients with obstructive lung disease? Respir Med 2005; 99: 11–19.
13 Kruis AL, Stallberg B, Jones RC, Tsiligianni IG, Lisspers K, van der Molen T et al. Primary care COPD patients compared with large pharmaceutically-sponsored COPD studies: an UNLOCK validation study. PLoS ONE 2014; 9: e90145.
14 Travers J, Marsh S, Caldwell B, Williams M, Aldington S, Weatherall M et al. External validity of randomized controlled trials in COPD. Respir Med 2007; 101: 1313–1320.
15 Wise RA, Anzueto A, Calverley P, Dahl R, Dusser D, Pledger G et al. The Tiotropium Safety and Performance in Respimat Trial (TIOSPIR), a large scale, randomized, controlled, parallel-group trial-design and rationale. Respir Res 2013; 14: 40.
16 Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest 2002; 121(Suppl): 1215–1265.
17 Celli BR, Barnes PJ. Exacerbations of chronic obstructive pulmonary disease. Eur Respir J 2007; 29: 1224–1238.
18 Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57: 847–852.
19 Soler-Cataluna JJ, Martinez-Garcia MA, Roman SP, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005; 60: 925–931.
20 Global Initiative for Chronic Obstructive Lung Disease (GOLD): Global strategy for the diagnosis, management, and prevention of COPD. Available at: http://www.goldcopd.org/guidelines-global-strategy-for-diagnosis-management.html, 2015.
21 Baber MD, Tashkin D, Siafkas N, Dahl R, Touse L, Massey D et al. A one-year trial of tiotropium Respimat plus usual therapy in COPD patients. Respir Med 2010; 104: 1460–1472.
22 Decramer M, Anzueto A, Kerwin E, Kaelin T, Richard N, Crater G et al. Efficacy and safety of umeclidinium plus vilanterol versus tiotropium, vilanterol, or umeclidinium monotherapies over 24 weeks in patients with chronic obstructive pulmonary disease: results from two multicentre, blinded, randomised controlled trials. Lancet Respir Med 2014; 2: 472–486.
23 Decramer ML, Chapman KR, Dahl R, Frith P, Devouassoux G, Fritscher C et al. Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. Lancet Respir Med 2013; 1: 524–533.
24 Niewoehner DE, Rice K, Cote C, Paulson D, Cooper JA Jr, Korducki L et al. Prevention of exacerbations of chronic obstructive pulmonary disease with a once-daily inhaled anticholinergic bronchodilator: a randomized trial. Ann Intern Med 2005; 143: 317–326.
25 Troosters T, Celli B, Lystig T, Kesten S, Mehra S, Tashkin DP et al. Tiotropium as a first maintenance drug in COPD: secondary analysis of the UPLIFT trial. Eur Respir J 2010; 36: 65–73.
26 Vogelmeier C, Hederer B, Glaab T, Schmidt H, Rutten-van Molken MP, Beeh K et al. Tiotropium versus salmeterol on exacerbations: GOLD II and maintenance therapy naive patients. Respir Med 2013; 107: 75–83.
27 Vogelmeier C, Fabbri LM, Rabe KF, Beeh KM, Schmidt H, Metzdorf N et al. Effect of tiotropium vs. salmeterol on exacerbations: GOLD II and maintenance therapy naive patients. Respir Med 2013; 209.
28 Wedzicha JA, Decramer M, Ficker JH, Niewoehner DE, Sandstrom T, Taylor AF et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med 2013; 1: 199–209.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies the paper on the npj Primary Care Respiratory Medicine website (http://www.nature.com/npjpcrm)