Ecology and niche assembly of *Campanula tommasiniana*, a narrow endemic of Mt Učka (Liburnian karst, north-western Adriatic)

Bоstжan Surina¹,²*, Andrej Martинич³

¹ Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
² Natural History Museum Rijeka, Lorenzov prolaz 1, 51000 Rijeka, Croatia
³ Zaloška cesta 78a, SI-1000 Ljubljana, Slovenia

Abstract – *Campanula tommasiniana* is a typical chasmophyte occupying calcareous rock crevices and cracks along a wide range of ecological gradients, demonstrating a high degree of ecological plasticity and stress tolerance with regards to abiotic factors. Generally, three ecologically and floristically distinct groups of stands were recognized and typified according to a sigmatistic approach: (a) *Seslerio juncifoliae-Campanuletum tommasinianae* ass. nov., with stands occupying higher elevated sites fully exposed to sun and strong winds; (b) *Seslerio autumnalis-Campanuletum tommasinianae* ass. nov., representing stands predominantly developed within thermophytic beech stands, semi- to fully-shaded by the tree canopy; (c) *Cystopteri fragilis-Campanuletum tommasinianae*, scio-phytic, stands adapted to moisture and cold with high frequency and coverage of bryophytes. Results of DCA analyses using a unimodal model suggest that *Campanula tommasiniana* is primarily a plant of open and exposed sites of higher elevation despite being most frequently found in rock crevices within thermophytic and altimontane beech forests.

Key words: *Campanula tommasiniana*, Campanulaceae, Dinaric Alps, ecology, endemic species, Liburnian karst, Mt. Učka, phytosociology

Introduction

The kaleidoscopic complexity of topographic, climatic and geological conditions in the Mediterranean results in a high degree of overall biodiversity and a rapid species turnover. The flora of the Mediterranean is, for example, the species-richer area in the Old World. Although the Mediterranean region represents less than 1.5% of the land area of the world, its flora comprises around 30,000 species and subspecies of flowering plants (Quezel 1985, Greuter 1991), more than 160 species of ferns, and hosts approximately 10% of all known species of ferns and flowering plants on Earth (Blondel and Aronson 1999). Around 80%
of all endemic taxa are to be found in the area (GOMEZ-CAMPO 1985). However, the main reason for such a high degree of biodiversity of flowering plants in Mediterranean is not the overall species richness of the area, but the high number of endemics, many of them restricted to one or only a few known localities with specifics in ecology (e.g., geology, soil type, relief, etc.) or geography (e.g., islands, mountains). Here, almost every island, regardless of its size, hosts at least some (indigenous) endemic taxa. Ecologically similar to islands, mountains promote speciation events too, which may result in there being up to 42% of endemics among the higher plants (MEDAIL and VERLAQUE 1997), although this rate may vary a lot (BLONDEL and ARONSON 1999).

One of the many local or regional endemics of the genus Campanula along the Adriatic coast (for the review see KOVAČIĆ 2004, PARK et al. 2006) is the chasmophytic C. tommasiniana Koch (in F. Schultz, Arch. Fl. Fr. et Allemagne 6. Cent., 229, 1852), a narrow endemic of Mt. Učka, located above Kvarner Bay in the Liburnian karst (north-western Adriatic). Along with Edraianthus wettsteinii subsp. lovcenicus and E. dinaricus (Campanulaceae), two narrow endemics of Mt Lovćen, above Kotor Bay, and Mt Mosor in central Dalmatia (WETTSTEIN 1887, JANCHEN 1910, MAYER and BLEČIĆ 1969, LAKUŠIĆ et al. 2009), respectively, and a few predominantly island populations of ambiguous taxonomic rank, e.g., Centaurea friderici, C. kartschiana, C. cuspidata (Asteraceae; e.g., TÉYBER 1913, GINZBERGER and TÉYBER 1921, GINZBERGER 1921, LOVRIĆ 1971, 1981, 1992), Brassica incana (Brassicaceae; e.g., GINZBERGER 1921) and Asperula staliana (Rubiaceae; e.g., KORICA 1975, LOVRIĆ and KORICA 1981, KORICA 1986) aggregates in north-western Adriatic and Dalmatia, C. tommasiniana is one of the most range-restricted taxa among the all adriatide (sensu TROTTER 1912), occupying an area of only 6.5 km² (SURINA 2013).

The data on ecology and niche assembly of Campanula tommasiniana, despite its being a prominent narrow endemic, are surprisingly scarce. According to HORVATIĆ (1963b), C. tommasiniana is a chasmophyte growing in calcareous rock crevices within thermophytic beech forests of the association Seslerio autumnalis-Fagetum, building an association Campanuletum tommasinianae-justinianae. However, results of a detailed survey of its distribution range and habitat preferences (SURINA 2013) suggest its great ecological plasticity, for it thrives in rock crevices of rocky outcrops and cliffs as well as within various types of forest stands (e.g., associations Fraxino orni-Quercetum ilicis, Querco-Carpinetum orientalis, Aristolochio luteae-Quercetum pubescentis, Seslerio autumnalis-Ostryetum, Seslerio autumnalis-Fagetum and Ranunculo platanifolii-Fagetum) along the whole elevational (vegetational) profile of the mountain’s eastern slopes (for detailed comments on vegetation profiles see ŠUGAR 1970, 1984). On western slopes, in contrast to the eastern, it rarely descends below 1000 m a.s.l. While commenting on the site ecology of Leontopodium alpinum on Mt. Učka, C. tommasiniana (as C. waldsteiniana!) has been recorded within the alliance Micromerion croaticae (ŠUGAR 1971).

With our research we aimed to get insights into site ecology, habitat preferences and niche assembly of Campanula tommasiniana.

Research area

The Učka mountain range rises above Kvarner Bay; between the Poklon pass (920 m a.s.l.) and Plomin Bay it forms a distinct ridge in a north-south direction along the north-eastern Istrian coast (NE Adriatic). The mountain’s highest peaks, Vojak (1396 m
Mt. Učka is one of the most renowned botanical sites in the Adriatic area (Topić et al. 2009) with a remarkable tradition of botanical exploration (e.g., Brana 2012, Trinajstić and Pavletić 2012). As a consequence, the mountain’s flora is rather well known, although the data on vegetation are somewhat scarce. From a biogeographical aspect and according to Šugar (1970, 1984, but with phytosociological nomenclature according to Vukelić 2012), vegetation types along an elevational profile of the mountain belong to two phytogeographical regions: (a) Mediterranean, further divided into eumediterranean (ass. Fraxino orni-Quercetum ilicis), submediterranean (ass. Querco-Carpinetum orientalis), both restricted to a narrow elevational belt on the mountain’s foothills, and epimediterranean (ass. Aristolochio luteae-Quercetum pubescentis) zones, and (b) Eurosibiric-Northamerican region, with paramediterranean (ass. Seslerio autumnalis-Fagetum) and illyric (alti-montane beech forests, ass. Ranunculo platanifolii-Fagetum) zones, both covering majority of the mountain range. Within eumediterranean and submediterranean subzones, stands with dominating Laurus nobilis in a tree layer (Fraxino orni-Quercetum ilicis fac. Laurus nobilis and Querco-Carpinetum orientalis lauretosum nobilis) are well developed locally on deeper and moister soils (Horvatić 1963a, Pelcer 1983). In comparison to other eastern Adriatic mountain ranges of the Dinaric Alps, the outstanding features of Mt. Učka are the homogenous and extensive forests both from the inland (western) and seaward (eastern) sides. Since 1999, the natural and cultural heritage of the area has been protected within Učka Nature Park (Narodne Novine 1999).

Materials and methods

In summer 2011, we recorded 112 relevés with *Campanula tommasiniana* through the whole distribution range of the species. The cover-abundance estimates were made accord-
ing to the Domi scale (sensu DAHL and HADAČ 1941) and the plot size used for sampling averaged 9 m² (the standard plot size for chasmophytic and scree stands, but see also CHYTRY and OTÝPKOVÁ 2003). Details of the phytosociological parameters of sites are given in Appendix 1 to On-line Supplement Tabs. 2–4. With each relevé, light conditions were roughly estimated as: open sites (no shading), semi-open sites (medium shading) and fully covered sites (full shading) by the canopy of the nearby forest vegetation. A complete floristic inventory is given in table 4, while taxa occurring only once in the analyses are listed in Appendix 2 to On-line Supplement Tabs. 2–4. The nomenclature and taxonomic source for the names of vascular plants was Flora Europaea (TUTIN et al. 2001), while the names of bryophytes were in agreement with the Catalogue of Mosses of Slovenia (MARTINČIČ 2003) and the Annotated Checklist of Slovenian Liverworths and Hornworts (MARTINČIČ 2011). All collected and identified bryophytes are stored in the herbarium of the Natural History Museum Rijeka (NHMR). Raunkiær’s life forms (RAUNKIÆR 1907), subsequently revised and modified by MÜLLER-DOMBOIS and ELLENBERG (1974), were adopted from PIGNATTI (2005) for vascular plants and HILL and PRESTON (1998), DULL et al. (1999) and MARTINČIČ (1966, 2003) for the bryophytes. Syntaxonomic groups in Tab. 4 were assigned primarily according to Flora alpina (AESCHIMANN et al. 2004), while in some cases we followed our own criteria. Coverage index (D_2, e.g. SURINA 2005) was calculated for life forms (Tab. 1) and each taxon (Tab. 4), respectively. Prior to numerical analysis, the original cover-abundance values for individual taxa were transformed accordingly (CURRAL 1987). Groups of vegetation types were ascertained using cluster and ordination analyses with the help of the programme package PAST (HAMMER et al. 2001). The arrangement of relevés was done according to the results of cluster analysis and diagnostic groups of species were tested by means of the SIMPER analysis (On-line Supplement Tabs. 1–4), an algorithm implemented in the programme package PAST, and constrained ordination analyses using species fit (of 25%) as an inclusion rule, characterized as the quality of the description of the »behaviour« of species values, derived from the particular combination of ordination axes (LEPS and ŠMILAUER 2003). In order to explain the variation in niche assembly by specific environmental and structural (phytosociological) parameters, unconstrained (DCA) and constrained (RDA, CCA) ordination analyses were performed, using the CANOCO computer programme (BRAAKTER and ŠMILAUER 2002). In order to determine the lengths of gradients, DCA analyses, detrended by segments, were initially performed and the models (linear, unimodal) used accordingly. The statistical significance (p < 0.02) of the site parameters was tested using the Monte Carlo test, with 499 permutations. Only the significant parameters were then analyzed together, with the aim of producing a general view of the environmental impact on floristic composition and structure of stands. For estimating the general environmental affinities of the relevés, indicator values (co-variables) for vascular plants were assigned according to PIGNATTI (2005) and passively projected into the ordination diagrams. The environmental value in a relevé (EV_w) was estimated as the weighted average of the indicator values of all present species, their abundances being used as weights (LEPS and ŠMILAUER 2003). The Kruskal–Wallis non-parametric test was used to test whether samples were taken from groups with equal median environmental values and a post-hoc test was carried out using Mann-Whitney’s pairwise comparisons. While defining the syntaxa we followed the sigmatistic-Braun-Blanquet approach (BRAUN-BLANQUET 1928), subsequently improved by WESTHOFF and VAN DER MAAREL (1973), and based on a revised association concept proposed by WILLNER (2006).
Tab. 1. Stand parameters of chasmophytic niche assemblages with *Campanula tommasiniana* on Mt. Učka (NW Adriatic)

Groups of assemblages	S	GM	GS	C	S	M	
Elevation (m)*	1116	1237	1260	1258	405	1033	1143
(760–1216)	(1188–1296)	(1140–1316)	(965–1380)	(396–420)	(827–1355)	(47–1375)	
Stoniness	70	80	70	70	45	60	50
(50–80)	(70–90)	(60–80)	(30–90)	(40–70)	(40–80)	(20–70)	
Coverage (%)*	30	20	25	30	35	25	30
Herb layer	(20–50)	(10–30)	(20–40)	(10–40)	(30–50)	(10–40)	(10–40)
Moss layer	1	1	1	8	35	20	40
(0–10)	(1–10)	(1–40)	(1–40)	(1–40)	(1–40)	(30–70)	
No. of vascular plants per rel.*	12	9	10.5	9	15	10	10
(8–17)	(6–17)	(6–20)	(6–15)	(11–23)	(5–21)	(4–16)	
No. of bryophytes per rel.*	7	2	4	8	7.5	11	11
(0–13)	(1–8)	(0–8)	(4–10)	(6–14)	(5–16)	(6–17)	
Total no. of vascular plants	46	45	45	52	45	81	54
Total no. of bryophytes	25	18	20	29	26	47	50

Life forms (no. of taxa/D%)	Hemicryptophytes	24 (52%)/89.2	26 (58%)/66.2	24 (53%)/71.3	62 (31%)/76.2	18 (40%)/46.4	54 (67%)/76.2	65 (35%)/79.9
	Phanerophytes	9 (20%)/11.3	6 (13%)/3.2	4 (9%)/3.3	5 (10%)/2.1	18 (40%)/38.5	12 (15%)/5.2	7 (13%)/1.4
	Chamaephytes	6 (13%)/27.8	9 (20%)/27.5	12 (27%)/20.9	8 (16%)/12.7	6 (13%)/12.5	4 (5%)/4.9	/
	Geophytes	6 (13%)/12.3	3 (7%)/4	2 (4%)/3.1	4 (8%)/4.1	3 (7%)/2.6	7 (9%)/9.1	8 (15%)/5.2
	Therophytes	1 (2%)/3.3	1 (2%)/1.4	3 (7%)/1.4	2 (4%)/4.1	/	4 (5%)/4.6	4 (7%)/13.3
No. of relevés	9	17	18	14	25	23		
Results

Niche selection and floristic assembly of stands

Campanula tommasiniana, inhabiting calcareous rock crevices and cracks from low elevated sites (47 m) to mountain tops (1390 m), is an edificatory vascular plant for chasmophytic assemblages. The total floristic assembly of stands, covering 10–80% (Me=35%) of the sampling plots, counts for 155 taxa of vascular plants and 77 taxa of bryophytes (two of them are lichenicolous fungi), with a median number of 12 (min=6, max=23) and 8 (min=0, max=17) taxa per plot, respectively (Tab. 4, On-line Supplement Tabs. 2–4). The coverage and number of taxa of vascular plants and bryophytes varies a lot between the sites (Tab. 1) and depends heavily on site ecology. Among the vascular plants, typical chasmophytes occur in more than one third of the relevés: *Campanula tommasiniana* (100%), *Asplenium ruta-muraria* (71), *A. trichomanes* (65), *Sesleria juncifolia* (57), *Atha manta turbith* (46) and *Cymbalaria muralis* (40), while among bryophytes the most frequent were *Tortella tortuosa* (71), *Ctenidium molluscum* (54), *Schistidium sp.* (54), *Neckera crispa* (51), *Homalothecium sericeum* (50), *H. philippeanum* (36) and *Plasteurhynchium striatulum* (35; Tab. 4). In number and coverage of vascular plant taxa, hemicryptophytes completely prevail and represent more than a half of all registered vascular plant taxa (D%=46.4–89.2), followed by phanerophytes (18%, D%=1.4–38.5), geophytes (15%, D%=2.6–12.3), therophytes (5%, D%=0–13.3) and chamaephytes (3%, D%=0–27.8).

Cluster and SIMPER analyses

Application of various algorithms and (dis)similarity measures yields very similar clustering topology. A dendrogram of chasmophytic stands from Mt. Učka shows two

Syntaxa	SJC	CfC	SaC
SJC			
CfC	80.44		
SaC	78.63	65.92	
groups of relevés (Fig. 1). In cluster »A«, 97 taxa of vascular plants, 34 taxa of bryophytes and 2 taxa of lichenicolous fungi are surveyed. Beside Campanula tommasiniana2–5(100%), Sesleria juncifolia3–6(90), Asplenium ruta-muraria+–3(71) and Athamanta turbiti+–4(69) completely prevail (Tab. 4, On-line Supplement Tabs. 2–4). Other relatively frequent vascular plants are Silene saxifraga subsp. hayekiana+–3(55), Micromeria thymifolia1–3(48), Asplenium trichomanes1–4(40) and Scrophularia laciniata+–3(36). The most frequent bryo-
Surina B., Martinčić A.

Mollusca flexicaule teris fragilis gata pervivum tectorum cricum montanum um coverage of (a) SjCG (On-line Supplement Tab. 2, rel. 10–44) is characterized by high frequency and occur in cluster »A« almost exclusively. Cluster »A« further divides into three sub-clusters:

- (a) SjCG (On-line Supplement Tab. 2, rel. 10–44) is characterized by high constancy, frequency and coverage of bryophytes, specially characterized by the presence and high coverage of sericeum floristic assemblages characterized by the presence and high coverage of bryophytes, particularly Ctenidium molluscum (19), Mycelis muralis (96), Senecio fuchsii (97), Primula auricula (30). In comparison to cluster »A«, bryophytes are much more frequent and abundant in SjCC (On-line Supplement Tab. 2); (b) SjCC (On-line Supplement Tab. 2, rel. 45–58), characterized by high con-

Cluster »B« represents less homogenous but more diverse floristic assembly; a total of 130 taxa of vascular plants and 56 taxa of bryophytes are registered. Along the

Cluster »B«. The most common taxa are Adenostyles glabra (30), Sesleria juncifolia +–3 (30). In comparison to cluster »A«, bryophytes are much more frequent and abundant in the most common taxa are Ctenidium molluscum (19), Neckera crispa +–3 (63) and Fissidens dubius +–3 (43); (c) SjCS (On-line Supplement Tab. 2, rel. 1–9), where Sedum album 1–3 (89) and Hymcera ruralis 1–3 (56) occur almost exclusively. Bryophytes are

Cluster »B«, Mycelis muralis, Plagiochilla porelloides +–3 (43), Cyclamen purpurascens +–3 (39), Valeriana tripteris +–3 (39), Senecio fuchsii +–3 (35), Pseudofumaria alba 1–3 (30), Saxifraga rotundifolia +–3 (30), Adenostyles glabra 1–3 (30), Sesleria juncifolia +–3 (30). In comparison to cluster »A«, bryophytes are much more frequent and abundant in the most common taxa are Ctenidium molluscum (19), Neckera crispa +–3 (63), Homalothecium philippeanum +–3 (57), Plasteyriechium striatum +–3(35), Radula complanata +–3 (57), Tortella tortuosa +–3 (52), Fissidens dubius +–1(48), Pollera platyphylia +–3 (45), Neckera complanata +–3 (49), Pseudoleskeella catenulata +–1 (49), Bryum sp. +–3 (35), Homalothecium sericeum +–3 (35), Anomodon viticulosus +–3 (30), Cololejeunea calcarea +–3 (30), Pedinophyllum interruptum +–3 (30), Mnium thomsonii 2–3 (30) etc. In cluster »B«, Mycelis muralis, Plagiochila porelloides +–3 (43), Mnium thomsonii, Quercus ilex +–1 (13), Galeobdolon flavidum +–3 (26) occur exclusively, while Cystopteris fragilis, Arabis alpina +–1(52), Coronilla emera subs. emeroides +–2 (19), Asparagus acutifolius +–1 (19), Hedera helix +–1 (13) occur almost exclusively. Here, three floristically well defined sub-clusters are recognized: (a) SaCM (On-line Supplement Tab. 4, rel. 7–31), representing floristic assemblages characterized by the presence and high coverage of Homalothecium sericeum +–1(84), Sesleria autumnalis +–1 (68) and Neckera bessert +–1 (52), Cyclamen purpurascens +–3 (72), Galeobdolon flavidum +–3 (32) and Mycelis muralis +–3 (48); (b) SaCS (On-line Supplement Tab. 4, rel. 1–6), a group of floristically quite distinct stands with high frequency, coverage and (almost) exclusive occurrence of Coronilla emera subs. emeroides +–3 (100), Asparagus acutifolius +–2 (100), Quercus ilex +–2 (66), Hedera helix +–1–3 (66), Lep-
ECOLOGY OF CAMPANULA TOMMASINIANA

todon smithii^{1–3}(66) and Salvia officinalis^{1–2}(50); (c) CfC, stands characterized by exclusiveness, highest frequency and coverage of Mycelis muralis^{1–3}(87), Cystopteris fragilis^{2–4}(83), Geranium robertianum^{1–3}(57), Arabis alpina^{1–3}(52), Plagiochila porelloides^{1–3}(43) and Mnium thomsonii^{1–3}(30; On-line Supplement Tab. 3).

Floristically, the cluster CfC which is the most different from cluster SjC (80.44%); the taxa that contribute most to dissimilarity are Sesleria juncifolia, Asplenium trichomanes, Cystopteris fragilis, Cymbalaria muralis, Mycelis muralis, Athamanta turbith, Globularia cordifolia, Asplenium ruta-muraria, Silene saxifraga subsp. hayekiana and Arabis alpina among the vascular plants, while among the bryophytes there are Necera crispa, Ctenidium molluscum, Homalothecium philippeanum, H. sericeum, Radula complanata, Tortella tortuosa and Schistidium sp. (Tab. 2). Cluster CfC differs significantly less from cluster SaC (65.92%) and the taxa that contribute most to dissimilarity are Neckera crispa, Ctenidium molluscum, Anomodon viticulosus and many other bryophytes, while among the vascular plants the most important differential taxa are Cystopteris fragilis, Cymbalaria muralis, Sesleria autumnalis, Mycelis muralis, Asplenium trichomanes, A. ruta-muraria, Arabis alpina and Cyclamen purpurascens. The average dissimilarity between clusters SjC and SaC is 78.63%, and the most important differential taxa are Sesleria juncifolia, S. autumnalis, Asplenium trichomanes, A. ruta-muraria, Globularia cordifolia etc. among vascular plants, and Neckera crispa, N. besseri, Anomodon viticulosus, Plasteurhynchium striatum, Ctenidium molluscum etc. among bryophytes.

Specifically, groups of assemblages within the cluster SjC (SjCS, SjCGM, SjCGS and SjCC (Fig. 1) appear to be floristically most similar with overall average dissimilarities ranging between 55.61 (between SjCGM and SjCGS) and 72.82% (between SjCS and SjCGS; On-line Supplement Tab. 1). Average dissimilarities between the cluster CfC and all the other groups of assemblages are in general high (72.26–84.52%), while the most distinct group of assemblages is represented by the group SaCS with the highest recorded dissimilarities (86.5% to SjCGM, 86.38% to SjCGS and 80.37% to SjCC). SaCS shows the lowest dissimilarity to SaCM (70.56%).

Ecology and vegetation typology of stands

Cluster topology (Fig. 1) reflects the ecology of chasmophytic assemblages well (Fig. 2). Cluster »A« (SjC) includes stands of sunny and exposed rocky outcrops and cliffs, while cluster »B« represents stands fully- (CfC) to semi-shaded (SaC) by the tree canopy (Fig. 2F). Unconstrained ordination analysis (Fig. 2A) explains 25.3% of variance along the first axis, where assemblages preferring sunny and exposed sites (SjC) are located on the left, while those occupying shaded and moist rock crevices (SaC, CfC) are on the lower right side of the diagram. The ecology of chasmophytic assemblages is even better reflected in results of constrained ordination analyses (Figs. 2B–F). CCA analysis of all assemblages (Fig. 2B) yields coverage (F = 5.56) and number of bryophyte taxa (2.42), elevation (5.47) and number of vascular plants (1.85) as statistically significant explanatory variables (p < 0.002). In coverage and number of respective bryophyte taxa assemblages of the cluster CfC, and partly of SaC dominate. These stands prefer sciophytic, moist, nutrient-rich and higher-elevated sites. In contrast, assemblages of cluster SjC, depauperate in number and coverage of bryophyte taxa, prefer open sites along the broad elevational range. Assemblages of the cluster SaC seem to be ecologically somewhat intermediate, preferring semi-
or fully shaded sites most commonly within thermophytic beech forests of the association *Seslerio autumnalis-Fagetum*. Elevation is negatively correlated with the number of vascular plant taxa, where a group of SaC assemblages from lower elevated sites is well differentiated from all other stands in floristic richness, distinct composition as well as most thermophytic site conditions.

Using an inclusion rule in order to define a subset of species that fit the quality criterion of representing the percentage of variability in species values explained by the explanatory variables, the following groups of species are identified (Fig. 2E): *Sesleria juncifolia, Athamanta cretensis, Silene saxifraga* subsp. *hayekiana, Globularia cordifolia* and *Campanula tommasiniana* for the group SjC; *Cystopteris fragilis, Mycelis muralis, Neckera crispa, Ctenidium molluscum, Geranium robertianum, Plagiochila porelloides, Brachythecium tommasinii* and *Plasteurhynchium striatum* for the group CfC; *Sesleria autumnalis, Fraxinus ornus, Ceterach officinarum, Leptodon smithii, Bromus erectus* and *Cololejeunea calcarae* for the group SaCM, and *Quercus ilex, Salvia officinalis, Coronilla emerus* subsp. *emeroides, Allium pulchellum* subsp. *carinatum, Asparagus acutifolius* and *Hedera helix* for the group SaCS.

The results of the non-parametric test for equal medians of environmental values of chasmophytic assemblages (Tab. 3) show significant differences (p < 0.05) in both site parameters and Pignatti’s indicator values (Tab. 3). Generally, moisture (U, H=87.94) and light conditions (L, 84.91) show the highest probability of non-equal medians of environmental values in the studied assemblages, followed by soil reaction (R, 80.78), coverage of bryophytes (76.61), nutrients (N, 67.85) and elevation (50.82). Post-hoc pairwise comparisons suggest that stands from the cluster »A« (SjC) significantly differ from all the other groups in light conditions, moisture, soil reaction, amount of nutrients and coverage of bryophytes. On the other hand, group CfC differs significantly from all the other groups in moisture and soil reaction, while the group SaC represents relatively mesophytic assemblages. According to initial cluster, and subsequent unconstrained and constrained ordination analyses, further easily recognized groups of assemblages are recognized based on specifics in site ecology and floristic assembly. Within the group SjC, a subset of stands SjCS, characterized by the presence and high coverage of *Sedum album, Satureja montana*.
Tab. 3. Results of Kruskal-Wallis tests and Mann-Whitney’s pairwise comparisons (post-hoc tests) of environmental affinities of the studied groups of chasmophytic assemblages with *Campanula tommasiniana* on Mt. Učka (NW Adriatic), based on environmental data, phytosociological parameters and Pignatti’s indicator values.

parameter	Syntaxa	Mann-Whitney’s pairwise comparisons Bonferroni corrected/uncorrected	Kruskal-Wallis test H/p						
		SjCS	SjCGM	SjCGS	SjCC	CjC	SaCS	SaCM	
Elevation	SjCS	0.0001	0.0001	0.0001	0.1159	0.002	0.6103	50.82* p < 0.05	
	SjCGM	0.0001	0.904	0.4871	0.0025	0.0004	0.0001	0.0002	
	SjCGS	0.01432	1	0.6768	0.0074	0.0001	0.0001	0.0002	
	SjCC	0.0198	1	1	0.0251	0.0001	0.0001	0.0001	
	CjC	1	0.5219	0.1539	0.5279	0.0001	0.0057		
	SaCS	0.0376	0.0085	0.0085	0.0130	0.0161	0.0001		
	SaCM	1	0.0016	0.0001	0.0078	0.1195	0.0038		
Cover. (%) of bryoph.	SjCS	0.0499	0.4075	0.0363	0.0001	0.075	0.0001		
	SjCGM	1	0.0801	0.0001	0.0001	0.0001	0.0001		
	SjCGS	1	1	0.0001	0.0001	0.0001	0.0001		
	SjCC	0.7628	0.0003	0.0133	0.0001	0.2373	0.0019	76.61* p < 0.05	
	CjC	0.0002	0.0001	0.0001	0.0001	0.136	0.0001		
	SaCS	1	0.0079	0.1817	1	1	0.4016		
	SaCM	0.0026	0.0001	0.0001	0.0403	0.0001	1		
L	SjCS	0.0015	0.0025	0.2439	0.0001	0.0018	0.0001		
	SjCGM	0.0309	0.0983	0.0027	0.0001	0.0001	0.0001		
	SjCGS	0.0534	1	0.0276	0.0001	0.0001	0.0001		
	SjCC	1	0.0573	0.5788	0.0001	0.0001	0.0001	84.91* p < 0.05	
	CjC	0.0001	0.0001	0.0001	0.0001	0.1386	0.3069		
	SaCS	0.0376	0.0086	0.0085	0.0130	1	0.3442		
	SaCM	0.0012	0.0001	0.0001	0.0001	1	1		
Tab. 3. – continued

parameter	Syntaxa	Mann-Whitney’s pairwise comparisons	Bonferroni corrected/uncorrected	Kruskal-Wallis test H/p					
		SJCS	SJCGM	SJCGS	SJCC	CFIC	SaCS	SaCM	
SjCS		0.0001	0.001	0.0025	0.0003	0.5169	0.1682		
SJCGM		0.0442	0.1734	0.0289	0.0001	0.0011	0.0001		
SJCGS		0.0001	1	0.0001	1	0.0001	0.0001		
R	SjCC	0.052	0.0037	0.0001	0.0057	0.0004	80.78	/p < 0.05	
	CFIC	0.0066	0.0001	0.0001	0.0002	0.0098	0.0001		
	SaCS	1	0.0235	0.0097	0.1203	0.2048	0.7172		
	SaCM	1	0.0003	0.0001	0.0009	0.0273	1		

N	SjCS	0.4502	0.5714	0.9246	0.0004	0.0445	0.0001		
	SJCGM	1	0.4485	0.5656	0.0001	0.0018	0.0001		
	SJCGS	1	1	0.9209	0.0001	0.0063	0.0001		
	SjCC	1	1	1	0.0001	0.0012	0.0002	67.85	/p < 0.05
	CfIC	0.0001	0.0001	0.0001	0.0002	0.0067	0.9122		
	SaCS	0.9436	0.0384	0.1325	0.2475	1	0.1110		
	SaCM	0.0039	0.0004	0.0009	0.0004	1	1		

U	SjCS	0.0407	0.0983	0.1472	0.0001	0.008	0.0001		
	SJCGM	0.0001	0.001	0.0001	0.0001	0.0004	0.0001		
	SJCGS	1	0.6571	0.0023	0.0001	0.0001	0.0001		
	CFIC	0.0012	0.0008	0.0001	0.0001	0.0004	0.001	87.94	/p < 0.005
	SaCS	0.1682	0.0085	0.0085	1	0.0088	0.012		
	SaCM	0.0011	0.0001	0.0006	0.0014	0.0213	0.0252		

SjCS – Seslerio juncifoliae-Campanuletum sedetosum; SJCGM – Seslerio juncifoliae-Campanuletum globularietosum var. Micromeria thymifolia; SJCGS – Seslerio juncifoliae-Campanuletum globularietosum var. Stachys subcrenata; CfIC – Cystopteri fragilis-Campanuletum; SaCS – Seslerio autumnalis-Campanuletum var. Salvia officinalis; SaCM – Seslerio autumnalis-Campanuletum var. Mycelis muralis. L – light conditions, R – soil reaction, N – nutrients, U – moisture. Values in bold are statistically significant.
Subsp. variegata and Syntrichia ruralis var. ruralis, prefers warmer, open to semi shaded and significantly lower-elevated sites and relatively lower soil pH reaction in an otherwise broad elevational range (Tab. 3, Figs. 2C, 3). SjCC subset is characterized by a significantly higher number and coverage of bryophytes, particularly Ctenidium molluscum, Neckera crispa and Fissidens dubius and prefers moister rock crevices in higher elevated sites. The two subsets, SjCGM and SjCGS, respectively, although differing well floristically, show the only significant differentiation in site moisture where the subset SjCGM, characterized by the presence and high coverage of Globularia cordifolia, Hieracium bupleuroides, Microseris thymifolia and Scrophularia laciniata, prefers slightly dryer and more exposed sites. Among the explanatory variables, four statistically significant parameters are identified by

![Box plots of environmental parameters (elevation, coverage of bryophytes) and Pignatti's indicator values (L – light conditions, R – soil reaction, N – nutrients, U – moisture) of floristically distinct chasmophytic assemblages with Campanula tommasiniana on Mt. Učka (NW Adriatic). Syntaxonomy (x-axis) is explained in the text below.](image-url)
CCA analysis (Fig. 2B): coverage (F=2.69) and number (1.80) of bryophytes, elevation (2.70) and number of vascular plants (2.00). Two subsets of assemblages are recognized within the group SaC (Fig. 2D, Tabs. 1, 3): SaCS, characterized by the exclusive occurrence, high frequency and coverage of *Coronilla emerus* subsp. *emeroides*, *Asparagus acutifolius*, *Quercus ilex*, *Hedera helix* and *Salvia officinalis*, developed on significantly drier and lower elevated sites; and SaCM, where the differential group of taxa is represented by *Cyclamen purpurascens*, *Galeobdolon flavidum* and *Mycelis muralis*, species otherwise frequent in the beech forest understorey. Here, CCA analysis (Fig. 2D) gives only elevation (F = 2.64) and number of bryophytes (1.74) as statistically significant explanatory variables.

Hemicryptophytes achieve the highest coverage in group StS and the lowest in groups SjCC and CfC (Tab. 1). Chamaephytes are most abundant in groups SjC, while they are absent in group CfC. In number and coverage of phanerophytes, the group SaCS departs significantly from all the other groups. Accordingly, no therophytes were surveyed in this group.

Syntaxonomy, nomenclature and typification of the syntaxa

We propose three new associations, seven new lower ranked syntaxa and the following classification scheme:

- Asplenietea trichomanis Br.-Bl. et Maire 1934 corr. Oberd. 1977
- Potentilletalia caulescentis Br.-Bl. in Br.-Bl. et Jenny 1926
- Potentillion caulescentis Br.-Bl. in Br.-Bl. et Jenny 1926
- Physoplexido-Potentillenion caulescentis Theurillat in Theurillat et al. 1995
- Seslerio juncifoliae-Campanuletum tommasinianae ass. nov. (SjC)
 - sedetosum albae subass. nov. (SjCS)
 - globularietosum cordifoliae subass. nova (SjCG)
 - var. *Micromeria thymifolia* var. nova (SjCGM)
 - var. *Stachys subcrenata* var. nova (SjCGS)
 - ctenidietosum mollusci subass. nova (SjCC)
- Moehringion muscosae Horvat et Horvatić 1962
 - Seslerio autumnalis-Campanuletum tommasinianae ass. nova (SaC)
 - (=Campanuletum tommasinianae-justinianae Horvatić 1960 nom. nud.)
 - var. *Salvia officinalis* (SaCS)
 - var. *Mycelis muralis* (SaCM)
- Cystopteri fragilis-Campanuletum tommasinianae ass. nova (CfC)

Characteristic group of taxa for the association Seslerio juncifoliae-Campanuletum are *Campanula tommasiniana*, *Sesleria juncifolia*, *Athamanta turbith* and *Silene saxifraga* subsp. *hayekiana* (Tab. 4, On-line Supplement Tab. 2); differential group of taxa for the subassociation *sedetosum* are *Sedum album*, *Satureja montana* subsp. *variegata* and *Sym- trichia ruralis* var. *ruralis*; differential group of taxa for the subassociation *globularietosum* are *Globularia cordifolia* and *Hieracium bupleuroides* (*Micromeria thymifolia*, *Scrophularia laciniata* and *Stachys subcrenata*, *Tortella densa* for the variants *Micromeria thymifolia* and *Stachys subcrenata*, respectively); differential group of taxa for the subassociation *ctenidietosum mollusci* are *Ctenidium molluscum*, *Neckera crispa* and *Fissidens dubius*. A characteristic group of taxa for the association *Seslerio autumnalis-Campanuletum* are
Tab. 4. Synoptic table of chasmophytic syntaxa with *Campanula tommasiniana* on Mt. Učka (NW Adriatic)

Association	Subassociation	S	SjC	C	Cfc	SaC										
Variant	**M**	**S**	**C**	**M**	**S**	**C**										
Characteristic and differential groups of taxa																
PPC Cam tom	*Campanula tommasiniana*	100	19	100	12	100	13	100	15	100	14	100	13	100	18	
ES Ses jun	*Sesleria juncifolia*	44	9	100	15	100	16	93	15	30	2	.	20	2		
PPC Ath tur	*Aethamanta turbith*	78	13	53	4	72	6	79	8	9	.	9	.	36	2	
PPC Sil sax	*Silene saxifraga subsp. hayekiana*	67	7	76	8	72	6	4	1	
KC Sed alb	*Sedum album*	89	10	7	2	.	.	.	20	1		
SS Sat mon	*Satureja montana*	67	8	18	1	6	1	14	2	.	83	7	24	2		
B Syn rur	*Syntrichia ruralis var. ruralis*	56	10	12	3	.	.	14	2	.	.	.	24	2		
ES Glo cor	*Globularia cordifolia*	.	88	9	89	9	14	1		
PC2 Hie bup	*Hieracium bupleuroides*	11	2	35	2	50	4	14	2	.	.	4	1			
PPC Mic thy	*Micromeria thymifolia*	44	6	94	10	17	1	36	3	.	.	4	1			
AT Scr lac	*Scrophularia laciniata*	33	2	53	4	17	1	43	3	.	.	12	1			
SS Sta sub	*Stachys subcrenata*	.	12	2	56	5	21	2			
B Tor den	*Tortella densa*		
B Cte mol	*Ctenidium molluscum*	11	2	18	5	11	3	93	13	100	14	50	7	64	6	
B Nec cri	*Neckera crispa*	22	4	6	2	17	4	64	9	96	15	17	2	76	10	
B Fis dub	*Fissidens dubius*	.	.	11	2	.	.	43	6	48	3	.	50	4	24	2
FS Myc mur	*Mycelis muralis*	87	7	.	.	48	4			
CF Cys fra	*Cystopteris fragilis*	7	1	.	83	8	.	8	2	
Tr Arab alp	*Arabis alpina*	14	2	52	4	.	.	.		
B Pla por	*Plagiochila pelludoideas*	43	3			
B Mni tho	*Mnium thomsonii*		
B Hom ser	*Homalothecium sericeum*	22	5	35	11	39	12	50	7	.	35	3	83	8	84	8
QP Ses aut	*Sesleria autumnalis*	11	1	6	1	.	.	14	2	22	1	.	100	6	60	6
Nec bes	*Neckera besseri*	22	3	6	1	.	.	13	2	.	50	9	52	5		
Association	Subassociation	S	M	G	S	C	FcC	S	M							
-------------	----------------	---	---	---	---	---	-----	---	---							
Co	Coreme						4	1	100	8						
PRa	Asp acu						4	1	100	6						
Qi	Que ile						67	3								
QF	Hed hel						67	3								
B	Lep smi	11	2	12	3		4	1	67	8						
Ss	Sal off						50	2								
AF	Cyc pur	22	2	6	1	7	2	39	3	33	72					
FS	Gal fla						9	1	32	2						

Other vascular plants

AT	Asp tri	67	10	35	3	22	2	50	4	100	11	83	6	92	11
AT	Asp rtm	100	8	76	7	44	3	79	7	96	8	17	2	64	6
GS	Tha min	33	2	12	2	44	4	29	2	4	1	33	2	12	1
CrP	Cym mur	33	2	24	1	11	1	50	3	91	8				
BV	Rha rup	33	5	18	1	6	1	7	2			33	2	16	2
EP	Cal var	22	2	24	2	11	2	14	2	9	2			8	2
Ss	Gal luc	44	2	12	2	6	1	29	3			33	1		
GS	Ant ram	11	2		17	2	29	3	9	1	17	2	24	2	
SS	All ter	22	2	18	1	39	2	14	2					24	2
ES	Ran car			6	1	11	1	36	2	22	2			8	1
Qp	Sor ari	11	1		11	1	7	1			17	2	4	1	
FB	Teu mon	22	2	18	2	50	4					33	2		
Qp	Fra orn	11	1				4	1	50	5	20	2			
Qp	Ost car	44	3			7	1			50	2	16	2		
AT	Sax pan		6	1	22	1	29	2	4	1					
Car len	Cardus tenaflor	11	1	35	2	17	2			8	1				
Tab. 4. – continued

Association	Subassociation	SjC	G	C	Cfc	SaC																		
VP	Hie mur																							
LPs	Ros dum	44	2	7	1	17																		
Pe1	Ker sax																							
Tr	Sen rup	11	6	7	1	17																		
AT	Cet off	56	1	7	1	17																		
ES	Sen abr																							
CF	Pse alb	22	1	7	1	17																		
VP	Val tri																							
AT	Sem tec																							
Qp	Ara tur																							
FB	Bro ere																							
PP	Ade gla																							
Ss	Cam mar	11	1	7	1	17																		
CF	Moe mus	22	1	7	1	17																		
Tr	Pel all	33	1	7	1	17																		
EP	Bups al																							
QF	Poa nem																							
BV	Rha sax																							
ES	Gen sym																							
VP	Cle alp																							
AT	Asp vir																							
QF	Car dig																							
M	Gal mol																							
Association	Subassociation	S	G	C	Cfc	SaC																		
-------------	---------------	---	---	---	-----	-----																		
CP	Cle vit			7	1																			
MA	Ver alb		6	1	4	1																		
Tr	Ger mac	44	6			4																		
PPc	Ara sco		39	3	29	3																		
TA	Ger rob			57	4	12																		
MA	Sax rot			30	3	4																		
Tr	Teu aur	33	3	12																				
MA	Sen fuc			35	2	20																		
FB	Car hum				50	8																		
GS	Ros pim		12	2	33	2																		
PPc	Cam jus			26	2	4																		
EP	All eri	33	2			4																		
PRa	Jun oxy				33	4																		
Tr	Cam coc			17	1	21																		
Pe1	Pri aur			13	2																			
AT	Pol vul			13	2	8																		
SS	Sat lib		12	1	11	2																		
Qp	Euo ver	11	1			20																		
QF	Gal syl			9	1	16																		
VP	Las kra			9	1	16																		
FB	All pul			4	1	33																		
Sc	Lig seg	22	2	6	1																			
ES	Leo alp		6	1	14	2																		
QF	Pyr pir	11	1			17																		
PPc	Cam pyr				17	4																		
Association	Subassociation	Variant	S	SjC	G	C	CfC	SaC																
-------------	---------------	---------	---	-----	---	---	------	-----																
Qp	**Acer obtusatum**	11 1					4 1																	
ES	**Phyteuma orbiculare**	. 6 1 6 1					4 1																	
AF	**Calamintha grandiflora**	. 4 1					4 1																	
FS	**Fagus sylvatica**	. 4 1					4 1																	
MA	**Thalictrum aquilegifolium**	. 4 1					4 1																	
AP	**Lamium maculatum**	22 4																						
KC	**Sedum sexangulare**	11 2																						
Eup sp	**Euphorbia sp.**	11 1																						
O	**Lilium bulbiferum**	11 1																						
M	**Lotus corniculatus**	11 1																						
AF	**Rhamnus fallax**	11 1																						
FB	**Globularia willkomii**	12 2																						
FB	**Dorycnium germanicum**	. 6 1																						
Fes sp	**Festuca sp.**	6 1																						
Ps	**Juniperus communis subsp. communis**	. 6 1																						
FS	**Laburnum alpinum**	6 1																						
FB	**Melica ciliata**	6 1																						
AT	**Dianthus sylvestris agg.**	. 11 1																						
Ss	**Genista sylvestris**	. 6 1																						
PPc	**Daphne alpina**	. 6 1																						
Pc2	**Potentilla caulescens**	. 6 1																						
EP	**Epipactis atrorubens**	. 7 1																						
ES	**Erigeron polymorphus**	. 7 1																						
FS	**Mercurialis perennis**	. 13 2																						
FS	**Epilobium montanum**	. 9 1																						
Association Subassociation	AT	TA	MA	Tr	TA	Hier sp	TA	Qp	PRa	Co	Sc	PPe	Qp	QP	QT	R	CrP	GS	Qp	QF	Qp	Qp		
-----------------------------	----	----	----	----	----	--------	----	----	-----	----	----	-----	----	----	----	---	----	----	----	----	----	----		
Variant	Sed his	Acer pseudoplatanus	Aconitum variegatum	Anthracus fumarioides	Aconcius dioicus	Hieracium sp.	Polystichum aculeatum	Tann communis	Cotinus coggyria	Lonicera etrusca	Viola alba subsp. scotophylla	Aethionema saxatile	Campanula fenestrellata subsp. istriaca	Tann communis	Cotinus coggyria	Lonicera etrusca	Viola alba subsp. scotophylla	Aethionema saxatile	Campanula fenestrellata subsp. istriaca	Tann communis	Cotinus coggyria	Lonicera etrusca	Viola alba subsp. scotophylla	
S
SjC
M
C	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
SaC

Tab. 4. – continued
Tab. 4. – continued

Association	Subassociation	Variant	S	M	G	S	M
FB	**Dia mon**	Dianthus monspessulanus
Qp	**Mer ova**	Mercurialis ovata	8
FB	**Lin cat**	Linum catharticum	12
Qp	**Cam per**	Campanula persicifolia	4
VP	**Ros pen**	Rosa pendulina	4
TG	**Vin hir**	Vincetoxicum hirundinaria	8
FB	**Ara hir**	Arabis hirsuta	4
Qp	**Cni sil**	Cnidium silaifolium	4
Tr	**Cys mon**	Cystopteris montana	4
AF	**Eup car**	Euphorbia cernioliaca	4
Qp	**Hyp mon**	Hypericum (montanum?)	4
FB	**Koe pyr**	Koeleria pyramidata	4
M	**Leo his**	Leontodon hispidus	4
	Ros sp	Rosa sp.	4
FS	**Sal glu**	Salvia glutinosa	4
AT	**Sed max**	Sedum maximum	4
Qp	**Tan cor**	Tanacetum corymbosum	4

B Bryophytes and lichens

Tor tor	Tortella tortuosa	67	9	82	31	78	21	86	13	52	4	67	7	72	6
Sch sp	Schistidium sp.	44	6	47	17	50	15	36	4	65	5	33	3	68	6
Hom phi	Homalothecium philippeanum	22	5	6	2	17	4	43	7	57	6	33	4	52	6
Tor nit	Tortella nitida	33	6	18	5	17	5	7	2	4	1	50	5	20	2
Bry sp	Bryum sp.	44	6	6	2	6	2	29	3	35	2	17	2	24	2
Hyp cup	Hypnum cupressiforme var. cupressiforme	11	2	6	2	6	2	21	2	4	1	33	3	24	2
Association Subassociation	S	M	G	C	CfC	SaC		
Pla str Plasterhynchium striatulum	11	2	6	1	7	1		
Enc str Encalypta streptocarpa	11	2	12	4	29	4		
Por pla Porella platyphilla	11	2	.	.	14	2		
Wei sp Weissia sp.	.	.	6	2	14	2		
Pse cat Pseudoleskea catenulata	.	.	6	2	14	2		
Ano vit Anomodon viticulosus	33	7	.	.	30	3		
Ort cup Orthotrichum cupulatum	44	10	18	6	.	4		
Rad com Radula complanata	29	4		
Col cal Cololejeunea calcarea	.	.	14	2	.	4		
Nec com Neckera complanata	.	.	.	7	1	39	2	
Dit fle Ditrichium flexicaule	11	2	.	28	8	29	4	
Sca sp Scapania sp.	.	17	5	7	2	.	4	
Wei con Weissia controversa var. controversa	22	3	6	2	.	.	4	
Hyp lac Hypnum cupressiforme var. lacunosum	.	6	2	11	3	.	4	
Enc vul Encalypta vulgaris	.	.	11	2	7	1	9	1
Nec pen Neckera pennata	
Ort ano Ortotrichum anomalum	
Myu jul Myurella julacea	.	6	1	7	1	.	13	2
Sco cir Scorpiurum circinatum	4	1	33	5
Sca asp Scapania aspera	.	.	6	2	21	4	.	.
Ped int Pedinophyllum interruptum	4	1
Ano att Anomodon attenuatus	9	2	.	4
Tor fra Tortella tortuosa var. fragillifolia	11	2	8	2
Bra tom Brachythecium tommasinii	22	2	.	8
Cir cra Cirriphyllum crassinervium	22	2	.	4

ECOLOGY OF CAMPANULA TOMMASINIANA
Association	Subassociation	Variant	S	M	G	C	S	M
Sci flo Eurhynchium flotowianum	SjC		7		1		4	
Ort int Orthothecium intricatum	SjC		4		1		4	
Fru dil Frullania dilatata	SjC		3		1		4	
Lep sp Leptogium sp.	SjC		1		1		4	
Tor bre Tortella tortuosa var.	SjC		3		1		4	
Lis tax Fissidens taxifolius	SjC		3		1		4	
Tor mur Tortulla muralis var.	SjC		3		1		4	
Gri pul Grimnica pulvinata	SjC		3		1		4	
Cam elo Campylium elodes	SjC		3		1		4	
Bar cro Barbula crocea	SjC		3		1		4	
Ort sp Ortotrichum sp.	SjC		3		1		4	
Dis cap Distichium capillacewn	SjC		3		1		4	
Jun sub Jungermannia subulata	SjC		3		1		4	
Mni mar Mnium marginatum	SjC		3		1		4	
Apo pub Apometzgeria pubescens	SjC		3		1		4	
Pia cus Plagiomnium cuspidatum	SjC		3		1		4	
Pla und Plagiomnium undulatum	SjC		3		1		4	
Tha alo Thannobryum alopecurum	SjC		6		1		7	
Thu tam Thu tidium tamariscinum	SjC		6		1		7	
Euc ver Eucladium verticillatum	SjC		6		1		7	
Eur str Eurhynchium striatum	SjC		6		1		7	
Mni ste Mnium stellare	SjC		6		1		7	
Hom lut Homalotheicum lutescens	SjC		6		1		7	
Bra sta Brachyhexium starkei	SjC		6		1		7	
Eur sch Eurhynchium schleicheri	SjC		6		1		7	
Tab. 4. – continued

Association	Subassociation	S	M	SjC	G	C	Cfc	SaC
Variant								
Met con	*Metzgeria conjugata*
Sol sac	*Solorina saccata*
Syn mon	*Syntrichia montana*	.	.		.	4	1	.
Leu sci	*Leucodon sciuroides*
Bar sp	*Barbula sp.*
Bra sal	*Brachythecium salebrosum*	.	.		.	17	2	.
Pre qua	*Preissia quadrenta*
Hyp and	*Hypnum andoi*
Hyp jut	*Hypnum julindicum*
Pte fil	*Pterigynandrum filiforme*
Sca aeq	*Scapania aequiloba*
Wei bra	*Weissia brachycarpa*

AF-Aremonio-Fagion; AP-Aegopodion podagriarum; B-Bryophytes and lichens; BV-Berberidion; CF-Cystopteridion fragilis; Co-Carpinion orientalis; CP-Crataeo-Prunetia; CrP-Centrantho rubri-Parietarion; EP-Erico-Prineta; FB-Festuco-Brometea; GS-Geranion sanguinei; LPs-Ligustro-Prunenion spinosas; Pc1-Potentilletalia caulescentis; PP-Petasition paradoxi; PPe-Physoplexido-Potentillion caulescentis; QF-Querco-Fagetea; Qi-Quercetea ilicis; Qp-Quercetalia pubescentis; ES-Elyno-Seslerietea; KC-Koelerio-Corynephoretea; M-Mollinio-Arrhenatheretalia; MA-Mulgedio-Aconitetea; SS-Saturejion subspicatae; Pc2-Potentillion caulescentis; O-Origanetalia vulgaris; PRA-Pistacio-Rhamneteae alaterni; Ps-Prunetalia spinosas; R-Rosmarinetalia; Sc-Stipetalia calamagrostis; AT-Asplenietea trichomanis; FS-Fagetalia sylvaticae; TA-Tilio-Acerion; TG-Trifolio-Geranietea; TR-Thlaspietea rotundifolii; Tr-Thlaspietalia rotundifolii; VP-Vaccinio-Piceetea.

SjCS – Sleserio juncifoliae-Campanuletum sedetosum; **SjCGM** – Sleserio juncifoliae-Campanuletum globularietosum var. Micromeria thyrsifolia; **SjCGS** – Sleserio juncifoliae-Campanuletum globularietosum var. Stachys subcrenata; **CfC** – Cystopteridi fragilis-Campanuletum; **SaCS** – Sleserio autumnalis-Campanuletum var. Salvia officinalis; **SaCM** – Sleserio autumnalis-Campanuletum var. Mycelis muralis.
Surina B., Martinčič A.

Campanula tommasiniana, Sesleria autumnalis, Homalothecium sericetum and Neckera besseri (Tab. 4, On-line Supplement Tab. 4); a differential group of taxa for the variant Salvia officinalis are Coronilla emerus subsp. emeroides, Quercus ilex, Asparagus acutifolius, Hedera helix, Leptodon smithii and Salvia officinalis, and for the variant Mycelis muralis: Cyclamen purpurascens, Mycelis muralis and Galeobdolon flavidum. A characteristic group of taxa for the association Cystopteris fragilis-Campanuletum are Campanula tommasiniana, Mycelis muralis, Cystopteris fragilis, Geranium robertianum, Arabis alpina, Plagiochila pellioideae and Mnium thomsonii (Tab. 4, On-line Supplement Tab. 3).

Characteristic and differential taxa for the newly described syntaxa are indicated in Fig. 2B.

Seslerio juncifoliae-Campanuletum tommasinianae ass. nov. globularietosum cordifoliace subass. nova var. Micromeria thymifolia var. nova. Nomenclatorial type for the association (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, eastern slope; elev. 1287 m, exp. ESE, incl. 90°; relevé area: 8 m², coverage of the relevé area: vascular plants-10%, bryophytes-1%; calcareous rocky outcrop not shaded by the tree canopy (rel. no 22 in On-line Supplement Tab. 2): Sesleria juncifolia 3, Campanula tommasiniana 4, Globularia cordifolia 3, Homalothecium sericeum 2, Micromeria thymifolia 2, Saxifraga paniculata 2, Scrophularia laciniata 2, Silene saxifraga subsp. hayekiana 2, Thymus sp. 2, Tortella nitida 2, Athamanta turbith 1, Carduus tenuiflorus 1, Hieracium bupleuroides 1, Syntrichia ruralis var. ruralis 1.

Seslerio juncifoliae-Campanuletum tommasinianae globularietosum cordifoliace subass. nova var. Stachys subcrenata var. nova. Nomenclatorial type for the variant (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, western slope; elev. 1278 m, exp. SSW, incl. 90°; relevé area: 10 m², coverage of the relevé area: vascular plants-20%, bryophytes-1%; calcareous rocky outcrop not shaded by the tree canopy (rel. no 38 in On-line Supplement Tab. 2): Campanula tommasiniana 4, Sesleria juncifolia 4, Asplenium ruta-muraria 3, Athamanta turbith 3, Ditrichium flexicaule 3, Globularia cordifolia 3, Tortella densa 3, T. tortuosa 3, Schistidium sp. 3, Senecio abrotanifolius 2, Silene saxifraga subsp. hayekiana 2, Stachys subcrenata 2, Teucrium montanum 2, Carduus tenuiflorus 1, Sempervivum tectorum 1, Primula auricula 1.

Seslerio juncifoliae-Campanuletum tommasinianae sedetosum albae subass. nova. Nomenclatorial type for the subassociation (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, eastern slope; elev. 760 m, exp. NE, incl. 85°; relevé area: 20 m², coverage of the relevé area: vascular plants-20%, bryophytes-10%; calcareous rock not shaded by the tree canopy (rel. no. 3 in On-line Supplement Tab. 2): Campanula tommasiniana 4, Sesleria juncifolia 4, Allium saxatile subsp. tergestinum 3, Anomodon viticulosus 3, Asplenium ruta-muraria 3, Athamanta turbith 3, Ceterach officinarum 3, Ctenidium molluscum 3, Ditrichium flexicaule 3, Homalothecium sericeum 3, Hypnum cupressiforme var. cupressiforme 3, Leptodon smithii 3, Neckera besseri 3, N. crispa 3, Orthotrichum cupulatum 3, Schistidium sp. 3, Silene saxifraga subsp. hayekiana 3, Syntrichia ruralis var. ruralis 3, Tortella tortuosa 3, Rhamnus rupestris 2, Sedum album 2, Allium ericetorum 1, Asplenium trichomanes 1, Satureja montana subsp. variegata 1.

Seslerio juncifoliae-Campanuletum tommasinianae ctenidietosum molluscii subass. nova. Nomenclatorial type for the subassociation (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, eastern slope; elev. 1235 m, exp. SE, incl. 85°; relevé area: 10 m², coverage of the relevé area: vascular plants-40%, bryophytes-10%; calcareous rock not shaded by the...
ECOLOGY OF CAMPANULA TOMMASINIANA

tree canopy (rel. no. 45 in On-line Supplement Tab. 2): Calamagrostis varia 4, Sesleria juncifolia 4, Asplenium ruta-muraria 3, A. trichomanes 3, Athamanta turbith 3, Campanula tommasiniana 3, Galium verrucosum 3, Anthericum ramosum 2, Bryum sp. 2, Ctenidium molluscum 2, Cymbalaria muralis 2, Euphrasia illyrica 2, Fissidens dubius 2, Homalothecium sericeum 2, Micromeria thymifolia 2, Neckera crispa 2, Saxifraga paniculata 2, Schistidium sp. 2, Scrobicularia laciniata 2, Sedum album 2, Senecio abrotanifolius 2, Syntrichia ruralis var. ruralis 2, Tortella tortuosa 2, Homalothecium philippaeum 1, Hypnum cupressiforme var. cupressiforme 1, Ranunculus carinatus 1, Silene saxifraga subsp. hayekiana 1, Thalictrum minus 1, Gentiana lutea subsp. symphyandra +.

Seslerio autumnalis-Campanuletum tommasinianae var. Mycelis muralis ass. and var. nova. Nomenclatorial type for the association and the variant (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, western slope; elev. 1055 m, exp. E, incl. 85°; relevé area: 18 m², coverage of the relevé area: vascular plants-40%, bryophytes-30%; calcareous rock fully shaded by the tree canopy (rel. no. 28 in On-line Supplement Tab. 4): Anomodon viticulosus 5, Neckera crispa 5, Campaula tommasiniana 4, Pseudofumaria alba 4, Asplenium trichomanes 3, Ctenidium molluscum 3, Cyclamen purpurascens 3, Galeobdolon flavidum 3, Geranium robertianum 3, Homalothecium sericeum 3, Mercurialis ovata 3, Moehringia muscosa 3, Mycelis muralis 3, Neckera besseri 3, Ne. complanata 3, Plasteu michledii 3, Porella platyphylla 3, Valeriana tripteris 3, Arabis turrita 2, Athamanta turbith 2, Brachythecium tommasinianum 1, Galium sylvaticum 1, Hypnum cupressiforme var. cupressiforme 1, Laserpitium krapfii 1, Radula complanata 1, Senecio fuchsiak 1, Sesleria autumnalis 1, S. juncifolia 1, Ceterach officinarum +, Peltaria aliiacea +.

Seslerio autumnalis-Campanuletum tommasinianae var. Salvia officinalis var. nova. Nomenclatorial type for the variant (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, eastern slope; elev. 1297 m, exp. NE, incl. 90°; relevé area: 18 m², coverage of the relevé area: vascular plants-30%, bryophytes-1%; calcareous rock semi shaded by the tree canopy (rel. no. 1 in On-line Supplement Tab. 4): Campanula tommasiniana 4, Coronilla emerus subsp. emeroides 3, Homalothecium sericeum 3, Leptodon smithii 3, Satureja montana subsp. variegata 3, Schistidium sp. 3, Teucrium montanum 3, Tortella nitida 3, Weisssia sp. 3, Arabis turrita 2, Asparagus acutifolius 2, Asplenium trichomanes 2, Bromus erectus agg. 2, Ceterach officinarum 2, Juniperus oxycedrus 2, Ostrya carpinifolia 2, Rhamnus rupestris 2, Sesleria autumnalis 2, Galium verrucosum 1, Hedera helix 1, Neckera besseri 1, Ortotrichium anomalum 1, Quercus ilex 1, Salvia officinalis 1, Thalictrum minus 1.

Cystopteri fragilis-Campanuletum tommasinianae ass. nova. Nomenclatorial type for the association (holotypus): Croatia, NW Adriatic, Liburnian karst, Mt. Učka, eastern slope; elev. 1297 m, exp. NE, incl. 90°; relevé area: 12 m², coverage of the relevé area: vascular plants-40%, bryophytes-60%; calcareous rock fully shaded by the tree canopy (rel. no. 3 in On-line Supplement Tab. 3): Neckera crispa 7, Pseudofumaria alba 7, Campanula tommasiniana 6, Ctenidium molluscum 6, Anomodon viticulosus 4, Brachythecium tommasinianum 4, Homalothecium sericeum 4, Mnium marginatum 4, Plasteu michledii 4, Saxifraga rotundifolia 4, Arabis alpina 3, Asplenium trichomanes 3, Bryum sp. 3, Cymbalaria muralis 3, Cystopteris fragilis 3, Geranium robertianum 3, Mnium thomsonii 3, Mycelis muralis 3, Neckera pinnata 3, Ped-paddingium interruptum 3, Plagiochila pelliooides 3, Pseudoleskeella catenulata 3, Schistidium sp. 3, Asplenium ruta-muraria 2, Adenostyles glabra 1, Anomodon attenuatus 1, Epilobium montanum 1, Neckera complanata 1,
Campanula tommasiniana inhabits rock crevices that are remarkably diverse in the number of vascular plants and bryophytes. The number of coverage vascular plants vs. bryophytes varies substantially and depends much on microsite conditions; bryophytes prevail over vascular plants in fully shaded and moist microsites, e.g. in group of assemblages CfC (Cystopteridi-Campanuletum), while in open and exposed sites (SjC – Seslerio juncifoliae-Campanuletum), vascular plants completely prevail over bryophytes. In our survey, one new bryophyte, Tortella densa, was recorded for Croatia for the first time and the finding was reported in detail elsewhere (SURINA and MARTINČIČ in ELLIS et al. 2012).

In comparable studies (but inferred from a different number of samples/relevés; bryophytes and lichens excluded) botanists found a considerably lower number of vascular plant taxa in niche assemblies of chasmophytic narrow endemics. For example: PIGNATI and PIGNATTI (1978), for Campanula morettiana, restricted to the Italian Dolomites, in an elevational range between 1730–2450 m, recorded 38 taxa of vascular plants in 15 relevés (5–15 per rel., median=8), while the accompanying flora of geographically even more restricted Moehringia tommasinii (Caryophyllaceae) from northern Istria, in an elevational range between 150–360 m, numbers 32 taxa of vascular plants recorded in 9 relevés (4–13 per rel., median=11) (MARTINI 1990). However, in a detailed study on the phytosociological characteristics of the sites of Moehringia villosa (DASKOBLER 2000), restricted to the southern Julian Alps and the adjacent Prealps, 156 taxa of vascular plants in 88 relevés (5–30 per rel., median=15) sampled in an elevational range between 430–1830 m were recorded, which is comparable to the results of our study. Both Campanula tommasiniana and Moehringia villosa occupy rock crevices of relatively broad elevational range, forming floristically and ecologically well characterized but different syntaxa. According to the results of an extensive study (LAVERGNE et al. 2004), endemic taxa compared to widespread congeners differ in a number of ecological characteristics (their habitat in terms of abiotic and community characteristics) and biological traits (floral traits and the size and maternal fertility of individual plants), but not in levels of herbivory and levels of ecophysiological traits (specific leaf area, leaf dry matter content, leaf nitrogen concentration, and rates of photosynthesis). The principal component of the difference concerns the occurrence of endemic taxa in rocky and steep slopes in low, open habitats rather than forest vegetation (compare GROVE and RACKHAM 2003, QUEZÉL and MEDAIL 2003), with low species richness, regardless of geological bedrock. Highly specialized conditions in the physical environment select for these differences in small, ecologically and taxonomically isolated (endemic) populations, since rock crevices and scree experience a range of microclimatic conditions that are very different from both level rocky terrain and horizontal landscapes with soil. However, Campanula tommasiniana, despite being almost an obligate chasmophyte (see SURINA 2013), indicates a remarkable ability to adapt to various abiotic factors, but a relatively low number of taxa per microsite suggests low biotic competitiveness. In contrast to the similarly rich floristic assembly of Moehringia villosa, the niche assembly of Campanula tommasiniana constitutes only three taxa of vascular plants, all rock dwellers: Campanula tommasiniana, Asplenium trichomanes, A. ruta-muraria)
conditions and moisture. According to field diagnostics, results of numerical and statistical analyses based on groups of characteristic and differential taxa among vascular plants, bryophytes as well as site ecology, three floristically and ecologically well defined groups of assemblages are identified. The assemblage Sj-C – Seslerio juncifoliae-Campanuletum is the most homogenous in terms of floristical composition, while the assemblage CfC – Cystopteri-Campanuletum has the most uniform site ecology. This reflects also the life form spectrum, where chamaephytes, adapted to open sites, do not thrive at all in the assemblage Cystopteri-Campanuletum.

Our research proved the high diagnostic values of bryophytes for the delimitation of groups of assemblages based on floristic composition. Several taxa occur exclusively or almost exclusively in floristically and ecologically well differentiated groups of assemblages. However, their diagnostic values for site conditions are less significant, a fact already stressed and discussed by Surina and Martinčić (2012).

Results of our analyses suggest that Campanula tommasiniana is a chasmophyte of open and exposed habitats in the altimontane to subalpine vegetation belt, a similar niche preference (see Horvatić 1931) also for the closely related (see Park et al. 2006, Liber et al. 2008) but allopatric C. waldsteiniana, another endemic of the north-western Dinaric Alps.

Campanula tommasiniana experiences a range of microclimatic conditions along ecological gradients building three floristically and ecologically well defined and differentiated groups of chasmophytic assemblages, suggesting its high ecological plasticity and abiotic stress tolerance. Hence, the reason for its limited range, restricted to an area of 6–7 km², remains a puzzling question. Another stenoendemic, Hladnikia pastinacifolia (Apiaceae), a monotypic species with even narrower distribution area, restricted to a few localities of the Trnovski gozd plateau in north-western Dinaric Alps (Mayer 1960, Čušin 2004), colonizes an even broader range of habitats – stony grasslands, rock crevices and screes (Šaja et al. 2012), reflecting an ability to adapt to a variety of both abiotic and biotic factors. Nevertheless, H. pastinacifolia, like Campanula tommasiniana, remains confined to an extremely narrow distribution area, despite the many available habitats in the vicinity, also without any reasonable explanation.

Nomenclatorial and synsystematic issues

Stands with Campanula tommasiniana were first mentioned by Horvatić (1944), who recognized its diagnostic value and distinct floristic assemblages, naming the association Campanuletum tommasinianae Horvatić 1944. In the 1960s Horvatić mentioned and cited the association’s name as Campanuletum tommasinianae-justinianae Horvatić 1960 (Horvatić 1960, 1963b). He found Campanula tommasiniana, C. justiniana, Hieracium bifidum and H. amplexicaule subsp. petraeum (recte H. bupleuroides) to be regionally characteristic taxa for the association occurring on calcareous cliffs and blocks within the thermophytic beech forests of the association Seslerio autumnalis-Fagetum. He classified it within the alliance Moehringion muscosae. To that end, Trinajstić (2008) in his Plant Communities of Croatia, without giving a specific reason, found the valid publication for the association Horvatić’s treatise from 1963. However, neither a supplementary analytical and/or synoptic table nor designation of a type relevé were provided, and both botanists failed to describe the association according to the rules of phytosociological nomenclature (compare Weber et al. 2000). Beside purely nomenclatorial issues, our results show significantly more com-
plex problems in syntaxonomics of communities with *Campanula tommasiniana*. Since three groups of assemblages are easily recognized, both floristically and ecologically, and even classified in two different alliances, we find the validation of the name and the description of additional syntaxa based on a sound association concept (WILLNER 2006), and following the rules of phytosociological nomenclature (WEBER et al. 2000), to be fully justified. While we find the differentiation and status of the newly described syntaxa not questionable, their syntaxonomic position within higher ranked syntaxa remains problematic. Hence our proposal is still only preliminary since it is evident that earlier attempts (e.g., HORVAT 1962, HORVATIĆ 1963b, TRINAJSTIĆ 1980, TRINAJSTIĆ 2008) at stabilization of a chasmophytic syntaxonomic system in the northern Adriatic do not suffice, and therefore a thorough numerical revision is required.

Acknowledgements

Florijan Tomc and Filip Starčević (both Učka Nature Park, Liganj), Marko Randić (Public Institution »Priroda«, Rijeka) and Željka Modrić Surina (Natural History Museum Rijeka, Rijeka) helped substantially during the field work. Borut Kružič (Natural History Museum Rijeka, Rijeka) offered technical help in data digitalization. Igor Dakskobler (Institute of Biology, Science and Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana) helped with some literature data and gave plenty of advice in floristic data treatment, while Željka Modrić Surina, Antun Alegro and Toni Nikolić (both University of Zagreb, Faculty of Science, Department of Botany and the Botanical garden, Zagreb) commented on previous version of the manuscript. Many thanks to all of them. The research was financially supported by Učka Nature Park and Natural History Museum Rijeka (project no. 641-01/11-01/01, 2156/02-06-02/1-11-6).

References

AESCHIMANN, D., LAUBER, K., MOSSER, D. M., THEURILLAT, J.-P., 2004: Flora alpina. Band 1–3. Haupt Verlag, Bern, Stuttgart, Wien.
BLONDEL, J., ARONSON, J. C., 1999: Biology and Wildlife of the Mediterranean Region. Oxford University Press, Oxford.
BRAAKTER, J. F. C., ŠMILAuer, P., 2002: CANOCO Reference Manual and CanoDraw for Windows. User’s guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca, NY, USA), New York.
BRANA, S., 2012: J. H. Zanichelli (1622–1729) and the first floristical investigations of Mt. Učka (in Croatian). In: ARKO-PIJEVAC, M., SURINA, B. (eds.), Natural history researches of the Rijeka region. II. Prirodoslovna biblioteka 15, 29–40. Prirodoslovni muzej Rijeka, Rijeka.
BRAUN-BLANQUET, J., 1928: Pflanzensoziologie. Springer, Berlin.
CHYTRY, M., OTÝPKOVA, Z., 2003: Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science 14, 563–570.
CURRAL, J. E. P., 1987: A transformation of the Domin scale. Plant Ecology 72, 81–87.
ČUŠIN, B., 2004: *Hladnikia pastinacifolia* Rchb. (in Slovenian). In: ČUŠIN, B. (ed.), NATURA 2000 in Slovenia. Vascular plants, 107–113. Založba ZRC, Ljubljana.
DAHL, E., HADAČ, E., 1941: Strandgesellschaften der Insel Ostoy im Oslofjord. Eine pflanzensoziologische Studie. Nytt Magasin for Naturvidenskapene B 82, 251–312.

DAKSKOBLER, I., 2000: Phytosociological characteristics of the sites of the endemic *Moehringia villosa* (Wulfen) Fenzl (*Caryophyllaceae*) (in Slovenian). Razprave IV. razreda SAZU 51, 41–93.

DÜLL, R., PAVLETIĆ, Z., MARTINIČ, A., 1999: Checklist of the Yugoslavian bryophytes. In: DÜLL, R., GANEVA, A., MARTINIČ, A., PAVLETIĆ, Z. (eds.), Contributions to the bryoflora of former Yugoslavia and Bulgaria, 1–94. IDH-Verlag, Bad Münstereifel.

ELLIS, L. T., ALEGRIO, A., BEDNAREK-OCHYRA, H., OCHYRA, R., BERGAMINI, A., COGONI, A., ERZBERGER, P., GORSKI, P., GREMMIEN, N., HESPEHOL, H., VIEIRA, C., KURBATOVA, L. E., LEBOUVIER, M., MARTINIČ, A., ASTHANA, A. K., GUPTA, R., NATH, V., NATECHEVA, R., GANEVA, A., ÖZDEMIR, T., BATAN, N., PLAŠEK, V., PORLEY, R. D., RANDIĆ, M., SAWICKI, J., SCHRODER, V., SERGIO, C., SMITH, V. R., SOLLMAN, P., STEFANUT, S., STEVENSON, C. R., SUAREZ, G. M., SURINA, B., UYAR, G., MODRČI SURINA, Ž., 2012: New national and regional bryophyte records 31. Journal of Bryology 34, 123–134.

GAJIĆ-ČAPKA, M., CINDRIĆ, K., MIHAJLOVIĆ, D., 2008: Precipitation. Climate atlas of Croatia 1961–1990. 1971–2000, 43–59. Državni hidrometeorološki zavod, Zagreb.

GINZBERGER, A., 1921: Beitrag zur Kenntnis der Flora der Scoglien und kleineren Inseln Süd-Dalmatiens. Österreichische Botanische Zeitschrift 70, 233–248.

GINZBERGER, A., TEYBER, A., 1921: Über einige *Centaurea*-Arten der adriatischen Küsten und Inseln. II. Zur Kenntnis der Systematik und geographischen Verbreitung des Formenkreises von *Centaurea Friderici* Vis. und *Centaurea crithmifolia* Vis. Österreichische Botanische Zeitschrift 70, 29–46.

GOMEZ-CAMPO, C., 1985: Plant conservation in the Mediterranean area. Dr. W. Junk, Dordrecht, Boston, Lancaster.

GREUTER, W., 1991: Botanical diversity, endemism, rarity and extinction in the Mediterranean area: an analysis based on the published volumes of Med-Checklist. Botanica Chronica 10, 63–79.

GROVE, A. T., RACKHAM, O., 2003: The Nature of Mediterranean Europe. An Ecological History. Yale University Press, New Haven, London.

HAMMER, O., HARPER, D. A. T., RYAN, P. D., 2001: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 1–9.

HILL, M. O., PRESTON, C. D., 1998: The geographical relationships of British and Irish bryophytes. Journal of Bryology 20, 127–226.

HORVAT, I., 1931: Vegetation studies in mountains of Croatia. II. Scree and rock-crevices communities (in Croatian). Rad Jugoslavenske akademije znanosti i umjetnosti 241, 147–206.

HORVAT, I., 1962: Mountain vegetation of west Croatia (in Croatian). Acta Biologica II 30, 1–179.

HORVATIĆ, S., 1944: Plant life of Istria (in Croatian). Alma Mater Croatica 1–4, 45–56.

HORVATIĆ, S., 1960: Contribution to the knowledge of vegetation in Southem part of Primorje area in Croatia (in Croatian). Ljetopis Jugoslavenske akademije znanosti i umjetnosti 66, 302–308.

ECOLOGY OF *CAMPANULA TOMMASINIANA*
SURINA B., MARTINČIĆ A.

HORVATIĆ, S., 1963a: Phytogeography and delimitation of Primorje area in the light of contemporary phytosociological research (in Croatian). Acta Botanica Croatica 22, 27–81.

HORVATIĆ, S., 1963b: Vegetation map of the island of Pag with an overview of vegetation of the Primorje area (in Croatian). Prirodoslovna istraživanja 33, 1–187.

JANCHEK, E., 1910: Edraianthus-Arten der Balkanländer. Mitteilungen des Naturwissenschaftlichen Vereines an der Universität Wien 8, 1–40.

KORICA, B., 1975: Variabilité et écologie du complexe d’Asperula staliana. Phyton 17, 137–149.

KORICA, B., 1986: Endemic taxa of the Asperula staliana (Rubiaceae) agg. on Adriatic islands (in Croatian). Radovi Jugoslavenske akademije znanosti i umjetnosti 424, 357–400.

KOVAČIĆ, S., 2004: The genus Campanula L. (Campanulaceae) in Croatia, circum-Adriatic and west Balkan region. Acta Botanica Croatica 63, 171–202.

LAKUSIĆ, D., RAKIĆ, T., STEFANOVIĆ, S., SURINA, B., STEVANOVIĆ, V., 2009: Edraianthus x lakusicii (Campanulaceae) a new intersectional natural hybrid: morphological and molecular evidence. Plant Systematics and Evolution 280, 77–88.

LAVERGNE, S., THOMPSON, J. D., GARNIER, E., DEBUSSCHE, M., 2004: The biology and ecology of endemic and widespread plants: A comparative study of trait variation in 20 congeneric pairs. Oikos 107, 505–518.

LEPŠ, J., ŠMILAUSER, P., 2003: Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.

LIBER, Z., KOVAČIĆ, S., NIKOLIĆ, T., LIKIĆ, S., RUŠAK, G., 2008: Relations between western Balkan endemic Campanula L. (Campanulaceae) lineages: Evidence from chloroplast DNA. Plant Biosystems 142, 40–50.

LOVRIĆ, A. Ž., 1971: Sur la Centaurea kartschiana du Kvarner. Acta Botanica Croatica 30, 135–139.

LOVRIĆ, A. Ž., 1992: Biosystematics, endemism and synecology of the genus Centaurea in the Primorje karst area (in Croatian). Bilten Ekologa 5, 101–106.

LOVRIĆ, A. Ž., KORICA, B., 1981: Adriatic endemics. 1. Speciation centers and origin of relics. Rapport Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 27, 64–65.

MARTINČIĆ, A., 1966: Elements of the Yugoslav bryoflora with remarks on their chorology and ecology (in Slovenian). Razprave IV razreda SAZU 9, 5–70.

MARTINČIĆ, A., 2003: Annotated checklist of Slovenian mosses (Bryopsida). Hacquetia 2, 91–166.

MARTINČIĆ, A., 2011: Annotated checklist of Slovenian liverworts (Marchantiophyta) and hornworts (Anthocerotophyta). Scopolia 72, 1–38.

MARTINI, F., 1990: Distribution and Phytosociological Behaviour of Moehringia tommosiniti March. Studia Geobotanica 10, 119–132.

MAYER, E., 1960: Südöstliches Alpenvorland – ein pflanzengeographisches Prachtgebiet. Jubiläumsjahrbuch des Ver.z.Shutz.d.Alpenpflanzen und – Tiere 25, 1–9.
ECOLOGY OF CAMPANULA TOMMASINIANA

MAYER, E., BLEČIĆ, V., 1969: Zur Taxonomie und Chorologie von Edraianthus sectio Uni-flori. Phyton 13, 241–247.

MEDAIL, F., VERLAQUE, V., 1997: Ecological characteristics and rarity of endemic plants from S. E. France and Corsica. Implications for biodiversity conservation. Biological Conservation 80, 269–281.

MÜLLER-DOMBOIS, D., ELLENBERG, H., 1974: Aims and methods in vegetation ecology. John Wiley & Sons, New York.

NARODNE NOVINE, 1999: Uredba o osnivanju Javnostanove »Park prirode Učka« (NN 096/1999).

PARK, J.-M., KOVAČIĆ, S., LIBER, Z., EDDIE, W. M. M., SCHNEEWEISS, G. M., 2006: Phylogeny and Biogeography of Isophyllous Species of Campanula (Campanulaceae) in the Mediterranean Area. Systematic Botany 31, 862–880.

PELCER, Z., 1983: Phytosociological characteristics of stands of bay Laurel in the areas of Istria and Kvarner (in Croatian). Zbornik radova Zbornika o Robertu Visianiju Šibenčaninu, Šibenik, 229–235.

PIGNATTI, S., 2005: Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39, 1–97.

PIGNATTI, E., PIGNATTI, S., 1978: Über die Campanula morettiana – Vegetation in den Dolomiten. Poročila Vzhodnoalpsko-dinarskega društva za proučevanje vegetacije 14, 279–291.

QUEZÉL, P., 1985: Definition of the Mediterranean region and origin of its flora. In: GOMEZ-CAMPO, C. (ed.), Plant conservation in the Mediterranean area, 9–24. Dr. W. Junk, Dordrecht.

QUEZÉL, P., MEDAIL, F., 2003: Ecologie et biogéographie des forests du bassin méditerranéen. Elsevier, Paris.

RADIVIĆ, J., 1981: Endemic taxa of the genus Centaurea in Biokovo mountain range (in Croatian). Acta Biokовica 1, 71–145.

RAUNKIÆR, C., 1907: Planterigets Livsformer og deres Betydning for Geografien. Gyldendalske Boghandel-Nordisk Forlag, Kobenhavn and Kristiania.

SURINA, B., 2005: Subalpine and alpine vegetation of the Krn area in the Julian Alps (in Slovenian). Scopolia 57, 1–222.

SURINA, B., MARTINČIČ, A., 2012: Chasmopyhtes on screes? A rule and not an exception in the vegetation of the Karst (southwest Slovenia). Plant Biosystems 146, 1078–1091.

SURINA, B. 2013: Discovery, updated distribution area and habitat preferences of Campanula tommasiniana, a narrow endemic of Mt Učka (Liburnian karst, north-western Adriatic). Natura Croatica 22, 171–180.

ŠAINA, N., KAVAR, T., ŠUŠTAR-VOZLIČ, J., KALIGARIČ, M., 2012: Population genetics of the narrow endemic Hladnikia pastinacifolia Rchb. (Apiaceae) indicates survival in siru during the Pleistocene. Acta Biologica Cracoviensia, Series Botanica 54, 1–13.

ŠIČIĆ, D., PLENIČAR, M., 1975: Supplement to geological map Ilirska Bistrica L 33–89 (in Croatian). Savezni geološki zavod, Beograd.
SURINA B., MARTINČIĆ A.

ŠIKIĆ, D., PLENIĆAR, M., ŠPARICA, M., 1967: Basic geological map 1:100000 L 33–89 Ilirska Bistrica. Institut za geološka istraživanja, Zagreb, Geološki zavod, Ljubljana, Zagreb.

ŠIKIĆ, D., POLŠAK, A., 1973: Supplement to geological map Labin L 33–101 (in Croatian). Savezni geološki zavod, Beograd.

ŠIKIĆ, D., POLŠAK, A., MAGAŠ, N., 1963: Basic geological map 1:100000 L 33–101 Labin. Institut za geološka istraživanja Zagreb, Beograd.

ŠUGAR, I., 1970: Vegetation profile of Mt. Učka with the vegetation map of the area (in Croatian). Poročila Vzhodnoalpsko-dinarskega društva za proučevanje vegetacije 11, 213–218.

ŠUGAR, I., 1971: Mt. Učka – a new locality for edelweiss (Leontopodium alpinum Cass. var. krasense (Derg.) Hay.) in Croatia. Acta Botanica Croatica 30, 153–156.

ŠUGAR, I., 1984: New insights into the vegetation and phytogeography of the Istrian peninsula (in Croatian). Acta Botanica Croatica 43, 225–234.

TEYBER, A., 1913: Beitrag zur Flora Österreichs. Österreichische Botanische Zeitschrift 58, 486–493.

TOPIĆ, J., NIKOLIĆ, T., VUKOVIĆ, N., 2009: Učka and Ćićarija (in Croatian). In: NIKOLIĆ, T., TOPIĆ, J., VUKOVIĆ, N. (eds.), Importan plant areas in Croatia, 423–430. Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu i Školska knjiga d.o.o., Zagreb.

TRINAJSTIĆ, I., 1980: Aperçu syntaxonomique de la vegetation des rochers de l’espace Adriatique. Studia Geobotanica 1, 203–212.

TRINAJSTIĆ, I., 2008: Plant communities of Croatia. Akademija šumarskih znanosti, Zagreb.

TRINAJSTIĆ, I., PAVLETIĆ, Z., 2012: History of botanical researches in the Croatian part of the Istrian peninsula (in Croatian). In: ARKO-PIJEVAC, M. SURINA, B. (eds.), Natural history researches of the Rijeka region. II. Prirodoslovna biblioteka 15, 15–28. Prirodoslovni muzej Rijeka, Rijeka.

TROTTER, A., 1912: Gli elementi Balcanico-Orientali della Flora Italiana e l’ipotesi dell’»Adriatide«. Atti del Reale Istituti d’incoraggiamento di Napoli.Serie VI, 9, 1–119.

TUTIN, T. G., HEWGOOD, V. H., BURGES, N. A., VALENTINE, D. H., WALTERS, S. M., WEBB, D. A., 2001: Flora Europaea on CD-ROM. Cambridge University Press, Cambridge.

VUKELIĆ, J., 2012: Forest vegetation of Croatia (in Croatian). Sveučilište u Zagrebu, Šumarski fakultet, Državni zavod za zaštitu prirode, Zagreb.

WEBER, H. E., MORAVEC, J., THEUILLAT, J.-P., 2000: International Code of Phytosociological Nomenclature. 3rd edition. Journal of Vegetation Science 11, 739–768.

WESTHOFF, V., VAN DER MAAREL, E., 1973: The Braun-Blanquet approach. In: WHITTAKER, R. H. (ed.), Ordination and Classification of Communities. Handbook of Vegetation Science 5., 619–726. Dr. W. Junk b.v.-Publishers, The Hague.

WETTSTEIN, R., 1887: Monographie der Gattung Hedraeanthus. Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse 53, 185–212.

WILLNER, W., 2006: The association concept revisited. Phytocoenologia 36, 67–76.

ZANINOVIC, K., 2008: Air temperature. Climate atlas of Croatia 1961–1990. 1971–2000., 27–41. Državni hidromeeteorološki zavod, Zagreb.