The apolipoprotein E ε4 allele-dependent relationship between serum lipid levels and cognitive function: A population-based cross-sectional study

Shan Wei1 | Ling Gao1 | Yu Jiang1 | Suhang Shang1 | Chen Chen1 | Liangjun Dang1 | Jin Wang1 | Kang Huo1 | Jingyi Wang2 | Qiumin Qu1

1 The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
2 Huxian Hospital of Traditional Chinese Medicine, Xi’an, China

Correspondence
Shan Wei, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.
Email: 1377076729@qq.com

Abstract
Background: Till now, the effect of serum lipid levels on cognitive function is still controversial. The apolipoprotein E ε4 (APOE) allele is the most critical genetic risk factor for Alzheimer’s disease and cognitive impairment. Additionally, APOE ε4 allele has a major impact on lipid metabolism. The aim of this study was to investigate the APOE genotype-dependent relationship between peripheral serum lipid levels and cognitive impairment.

Method: 1273 subjects aged 40-86 years participated in this cross-sectional study. Serum lipid levels and the APOE genotype were detected. Mini-mental state examination was used to diagnose the cognitive impairment or not. Univariate and multivariate analyses were used to analyze the relationships between APOE genotype, serum lipid levels and cognition function.

Result: After controlling for all possible covariates, a significant interaction between low serum high density lipoprotein and the APOE ε4 allele on cognitive impairment (Wald’s chi-square=4.269, df=1, OR=20.094, p=0.039) (Table 1) was found in the total participants. In APOE ε4 carriers, low serum high density lipoprotein was positively associated with cognitive impairment (Wald’s chi-square=8.200, df=1, OR=60.335, p=0.004) (Table 2), and serum high density lipoprotein levels were positively correlated with Mini-mental state examination score (r=0.217, df=176, p=0.004). There was no significant correlation between serum total cholesterol, low-density lipoprotein, triglycerides levels and cognitive impairment in either the total participants or APOE ε4 carriers/non-carriers. (Figure 1).

Conclusion: APOE ε4 carriers, but not non-carriers, with lower serum high-density lipoprotein had a higher prevalence of cognitive impairment and a lower Mini-mental state examination score. These results suggest that the APOE ε4 allele may affect the relationship between serum lipid levels and cognitive impairment. However, the specific mechanism needs to be further elucidated.
FIGURE 1

TABLE 1

Table 1. The relationships between serum lipid parameters and cognitive impairment with binary logistic regression in the total samples
Model 1
High TC
High TG
High LDL-c
Low HDL-c
Model 2
High TC
High TG
High LDL-c
Low HDL-c
Model 3
High TC
High TC by APOE ε4 status
High TG
High TG by APOE ε4 status
High LDL-c by APOE ε4 status
High LDL-c by APOE ε4 status
Low HDL-c
Low HDL-c by APOE ε4 status

Binary logistic regression model was used for data analysis, df=1.
APOE ε4 carrier status: dummy coded with ε4 carriers=1, non-carriers=0.
Model 1 was adjusted for age, gender and education years.
Model 2 was adjusted for age, gender, education years, smoking, drinking, intensity of physical activity, body mass index, log-transformed fasting blood glucose, mean arterial pressure, pulse rate, heart disease and APOE ε4 carrier status.
Model 3 was adjusted for the covariates included in model 2 as well as the interaction terms of APOE ε4 carrier status by serum lipids.
Table 2. The relationships between serum lipid parameters and cognitive impairment with binary logistic regression in the subgroups according APOE e4 status.

Participants	B	SE	Wald's chi-square	OR	95%CI	P-value
APOE e4 carriers						
Model 4						
High TC	-0.716	0.545	1.724	0.489	0.168-1.423	0.189
High TG	0.098	0.556	0.031	1.103	0.371-3.284	0.860
High LDL-c	0.166	0.618	0.072	1.181	0.352-3.965	0.788
Low HDL-c	3.172	1.203	6.957	23.847	2.259-251.772	0.008
Model 5						
High TC	-0.946	0.594	2.540	0.388	0.121-1.243	0.111
High TG	-0.238	0.615	0.150	0.788	0.236-2.628	0.698
High LDL-c	0.060	0.665	0.008	1.062	0.288-3.914	0.928
Low HDL-c	4.100	1.432	8.200	60.335	3.646-998.364	0.004
APOE e4 non-carriers						
Model 4						
High TC	-0.103	0.245	0.176	0.902	0.558-1.458	0.675
High TG	-0.247	0.270	0.840	0.781	0.460-1.325	0.359
High LDL-c	-0.219	0.376	0.339	0.803	0.384-1.680	0.561
Low HDL-c	-0.453	1.057	0.184	0.636	0.080-5.043	0.668
Model 5						
High TC	-0.052	0.250	0.043	0.950	0.582-1.549	0.836
High TG	-0.176	0.283	0.385	0.839	0.482-1.461	0.535
High LDL-c	-0.166	0.383	0.187	0.847	0.400-1.795	0.665
Low HDL-c	-0.254	1.062	0.057	0.776	0.097-6.221	0.811

Binary logistic regression model was used for data analysis, df=1. Model 4 and 5 were analyzed in APOE e4 carriers. Model 6 and 7 were analyzed in APOE e4 non-carriers.

APOE e4 carrier status: dummy coded with e4 carriers=1, non-carriers=0.

Model 4 and 6 were adjusted for age, gender, education years.

Model 5 and 7 were adjusted for age, gender, education years, smoking, drinking, intensity of physical activity, body mass index, log-transformed fasting blood glucose, mean arterial pressure, pulse rate and heart disease.