Large-scale simulations with chiral symmetry

JLQCD Collaboration: T. Kanekoa,b,†, S. Aokic, G. Cossua, H. Fukayad, S. Hashimotoa,b and J. Noakia

a High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
b School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Sokendai), Ibaraki 305-0801, Japan
c Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
d Department of Physics, Osaka University, Osaka 560-0043, Japan

We carry out a comparative study among five-dimensional formulations of chirally symmetric fermions about the algorithmic performance, chiral symmetry violation and topological tunneling to find a computationally inexpensive formulation with good chiral symmetry. With our choice of the lattice action, we have launched large-scale simulations on fine lattices aiming at a precision study of light and heavy quark physics. We report on the comparative study, current status of the large-scale simulations, and preliminary results on the residual quark mass and auto-correlation.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

*Speaker.
†E-mail: takashi.kaneko@kek.jp

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
http://pos.sissa.it/
1. Introduction

In the last several years, we performed an extensive study of QCD vacuum and light hadron physics by using the overlap action which exactly preserves chiral symmetry \[1\]. Our next target is a precision study of heavy flavor physics in collaboration with flavor factory experiments, such as the SuperKEKB / Belle II experiment, for a stringent test of the Standard Model.

Since the overlap action is computationally too expensive to simulate small lattice spacings \(a \ll m_{c}^{-1}\) on reasonably large lattices, we carried out a systematic comparative study of a class of five-dimensional formulations that approximately satisfy the Ginsparg-Wilson relation to construct a computationally cheap formulation with good chiral symmetry. In this article, we report on the comparative study and the status of the on-going large-scale simulations with our choice of the lattice action.

2. Comparative study

We test five-dimensional fermion formulations \[2\] in this comparative study. The four-dimensional effective Dirac operator is given by

\[
\frac{1 + m_q}{2} \gamma_5 \varepsilon_M(H_M),
\]

where the Hermitian kernel operator \(H_M\) and the approximation of its sign function \(\varepsilon_M\) can be chosen by tuning parameters appearing in the five-dimensional Dirac operator. Popular choices of \(H_M\) are the Wilson kernel \(H_W = \gamma_5 D_W\), where \(D_W\) is the Wilson-Dirac operator, for the overlap fermions, and the Shamir kernel \(H_T = \gamma_5 D_W / (2 + D_W)\) for the standard domain-wall fermions. We also test a scaled Shamir kernel \(2H_T\) \[2\]. While \(2H_T\) has the same condition number as \(H_T\), its low-lying eigenvalues are scaled up by a factor of 2. These kernels are combined with the Zolotarev (\(\varepsilon_Z\)) and polar decomposition (\(\varepsilon_p\)) approximations. By applying up to 6 level stout smearing \[3\] \((N_{\text{smr}} = 0, 3, 6)\), we test 8 different formulations listed in Table 1.

Table 1: Simulation setup in our comparative study. The first three columns show our choices of the five-dimensional formulation: the number of smearing \(N_{\text{smr}}\), kernel operator \(H_M\) and sign function approximation \(\varepsilon_M\). We also list simulation parameters, namely \(\beta\) and the bare quark mass in lattice units \(a m_{ud}\), as well as results for \(a^{-1}\) and \(M_{\pi}\).

\(N_{\text{smr}}\)	\(H_M\)	\(\varepsilon_M\)	\(\beta\)	\(a^{-1}\) [GeV]	\(a m_{ud}\)	\(M_{\pi}\) [MeV]
0	\(H_W\)	\(\varepsilon_Z\)	4.27	1.98(6)	0.0095, 0.0060, 0.0035	463(17), 375(17), 346(25)
0	\(H_T\)	\(\varepsilon_Z\)	4.11	1.92(6)	0.0200, 0.0120, 0.0065	543(18), 419(15), 318(15)
0	\(H_T\)	\(\varepsilon_p\)	4.11	1.97(5)	0.0200, 0.0090, 0.0040	623(19), 483(16), 400(15)
0	\(2H_T\)	\(\varepsilon_p\)	4.11	1.94(6)	0.0200, 0.0120, 0.0065	554(18), 434(17), 356(16)
3	\(H_W\)	\(\varepsilon_Z\)	4.29	1.94(6)	0.0145, 0.0090, 0.0050	472(18), 401(17), 330(17)
3	\(H_T\)	\(\varepsilon_p\)	4.18	2.00(8)	0.0250, 0.0170, 0.0090	534(23), 423(20), 374(23)
3	\(2H_T\)	\(\varepsilon_p\)	4.18	2.06(9)	0.0250, 0.0170, 0.0090	524(24), 469(24), 364(25)
6	\(2H_T\)	\(\varepsilon_p\)	4.18	2.11(6)	0.0250, 0.0170, 0.0090	511(17), 430(16), 337(20)
Large-scale simulations with chiral symmetry

T. Kaneko

Figure 1: Left panel: number of MD steps $N_{\text{MD}, P=0.80}$ to attain 80% acceptance rate. Data for different formulations are plotted in different symbols as a function of M_{π}^2. Right panel: CG iteration count N_{inv} as a function of M_{π}^{-2}.

Figure 2: A measure of CPU cost per HMC trajectory $N_{\text{MD}, P=0.80} N_{\text{inv}}$. The left panel shows all data, whereas the right panel is an enlargement of a region of small $N_{\text{MD}, P=0.80} N_{\text{inv}}$ to focus on computationally cheaper formulations.

We carry out numerical simulations of two-flavor QCD by using these formulations and the tree-level Symanzik gauge action to study the performance of the Hybrid Monte Carlo (HMC) algorithm, chiral symmetry violation and topological tunneling. On a $16^3 \times 32$ lattice, we simulate three pion masses in the range of $300 \lesssim M_{\pi}[\text{MeV}] \lesssim 600$ at a single lattice cut-off around $a^{-1} \simeq 2$ GeV. The fifth dimensional size is set to $N_5 = 12$. We set the range of the Zolotarev approximation $\varepsilon_{\varepsilon}(x)$ to $x \in [0.2, 7.0]$ ($[0.4, 7.0]$) for H_W without (with) smearing, and $[0.1, 1.5]$ for H_T. Our statistics are 1,000 trajectories in each simulation. Parameters and results for a^{-1} and M_{π} are summarized in Table 1, where $r_0 = 0.462(11)/4$ fm [4] is used as input to fix a.

In each simulation, we keep the acceptance rate of $P \simeq 0.7 - 0.9$ using a moderately small step size $\Delta \tau$ for the Molecular Dynamics (MD) integration. The number of the MD steps to attain a reference value $P = 0.8$, which is denoted by $N_{\text{MD}, P=0.80}$ in the following, is estimated from the relations holding at small $\Delta \tau$

$$P = \text{erfc} \left(\frac{1}{2} \sqrt{\Delta H} \right), \quad \langle \Delta H \rangle \propto \Delta \tau^4, \quad (2.2)$$

3
where $\langle \Delta H \rangle$ represents the Monte Carlo average of the change of the Hamiltonian due to the discretized MD integration. Figure 1 compares $N_{\text{MD}, p=0.80}$ and the iteration count for CG per MD step, denoted by N_{inv}, among the tested formulations. We observe that these two measures of the CPU cost significantly decrease by i) switching from H_W to (2)H_T, ii) switching from ϵ_Z to ϵ_p, and iii) applying smearing ($N_{\text{smr}} \geq 3$). On the other hand, there is no large difference in these measures between Shamir-type kernels (H_T and $2H_T$) and between $N_{\text{smr}} = 3$ and 6.

The product $N_{\text{MD}, p=0.80}N_{\text{inv}}$ can be considered as a measure of the CPU cost per HMC trajectory. As plotted in Fig. 2, the overlap formulation, namely the combination of H_W and ϵ_Z, turns out to be computationally very demanding. We can achieve about a factor of 20 acceleration at $M_\pi \approx 400$ MeV: a factor of 5 by using (2)H_T and ϵ_p, and an additional factor of 4 by smearing. We may expect even bigger gain at smaller quark masses.

These computationally cheaper formulations are, however, off from practical use, if they largely violate chiral symmetry. We compare residual quark mass m_{res} in Fig. 3. Since the min-max approximation can satisfy $|\epsilon_Z(x)|^2 \sim 1$ in its approximation range, ϵ_Z leads to the least m_{res} at a given N_{smr}. With our choice of $N_S = 12$, however, $|\epsilon_p(x)|^2$ largely deviates from unity at $x \lesssim 0.3$,
Large-scale simulations with chiral symmetry
T. Kaneko

Table 2: Status of our simulations at \(a^{-1} \approx 2.4 \) GeV. The third column shows the choice of the MD integrator, namely the leap-frog (LF) or Omelyan (O) integrator. We also list time per HMC trajectory on the whole machine of BlueGene/Q at KEK in the last column.

\(am_{ud} \)	\(am_s \)	MD	\(N_{MD} \)	traj	\(P \)	\(\langle \Delta H \rangle \)	\(\langle e^{-\Delta H} \rangle \)	min/traj
0.019	0.040	LF	10	3000	0.78(1)	0.19(1)	0.99(1)	2.7
0.012	0.040	LF	13	2000	0.78(1)	0.17(1)	1.00(1)	3.5
0.012	0.040	O	3	1000	0.89(1)	0.07(2)	1.01(1)	2.0
0.007	0.040	LF	16	1000	0.74(1)	0.23(2)	1.04(1)	4.4
0.007	0.040	O	4	2000	0.90(1)	0.06(1)	1.00(1)	2.6
0.019	0.030	LF	10	3000	0.79(1)	0.17(1)	1.00(1)	2.8
0.012	0.030	LF	13	2000	0.79(1)	0.14(1)	1.02(1)	3.6
0.012	0.030	O	3	1000	0.88(1)	0.10(3)	1.00(1)	2.0
0.007	0.030	LF	16	2000	0.72(1)	0.27(2)	1.00(2)	4.5
0.007	0.030	O	4	1000	0.89(1)	0.08(2)	0.99(1)	2.6

where thin-link kernels have many low-lying modes as shown in Fig. 3. Scaling of the kernel \((H_T \rightarrow 2H_T)\) and smearing \((N_{smr}=3)\) are very effective to suppress these low-lying modes leading to an order of magnitude smaller \(m_{res}\) compared to the standard domain-wall fermions. Larger \(N_{smr}\) is better in reducing \(m_{res}\) but may distort short distance physics. We refer to Ref. [5] for more detailed discussions.

Figure 4 shows examples of the Monte Carlo history of the topological charge \(Q\). A low-lying eigenvalue flips its sign along a tunneling between topological sectors. While scaling and smearing suppress the low-lying modes, the comparison in Fig. 4 suggests that these techniques do not prevent the topological tunneling at \(a^{-1} \approx 2\) GeV.

From this comparative study, we conclude that the combination of \(2H_T\) and \(\varepsilon_p\) with \(N_{smr}=3\) is the best choice among the tested formulations.

3. Large-scale simulations

We have launched large-scale simulations of \(N_f = 2+1\) QCD with good chiral symmetry, namely with \(m_{res}\) well below the physical up and down quark mass \(m_{ud,phys}\). The tree-level Symanzik gauge action is combined with the fermion formulation chosen by the comparative study to be consistent with our \(O(a^2)\)-improvement program for heavy quark physics [6]. For controlled continuum and chiral extrapolations, we are planning to simulate the pion masses of 500, 400, 300 MeV (and even smaller) at four values of the lattice cut-off \(a^{-1} \approx 2.4, 3.0, 3.6\) and 4.8 GeV. Finite volume effects are suppressed to 1–2% level by keeping \(M_\pi L \gtrsim 4\). These simulations are being carried out on BlueGene/Q at KEK (6 racks with a peak speed of 1.258 PFLOPS).

Table 2 shows the current status of our simulations on a \(32^3 \times 64 \times 12\) lattice at \(\beta = 4.17\), where \(a^{-1}\) determined from \(r_0\) is expected to be \(\approx 2.4\) GeV. The three values of the bare light quark mass \(m_{ud}\) correspond to \(M_\pi \approx 500, 400\) and 300 MeV, whereas we take two strange quark masses \((m_s’\)s) near its physical value \(m_{s,phys}\). We employ the Hasenbusch preconditioning [7] with the mass parameter \(am' = 0.150\) for two degenerate light flavors, and the rational HMC algorithm [8] for the

5
Table 3: Status of our simulations at $a^{-1} \simeq 3.6$ GeV.

am_{ud}	am_s	am'	N_{MD}	traj	P_{HMC}	$\langle \Delta H \rangle_{\min/\text{traj}}$
0.0120	0.0250	0.10	4	430	0.84(2)	0.10(2) 3.6
0.0080	0.0250	0.08	4	330	0.85(2)	0.06(2) 4.2
0.0042	0.0250	0.04	4	235	0.92(3)	0.04(2) 5.9
0.0120	0.0180	0.10	4	–	–	–
0.0080	0.0180	0.08	4	260	0.86(1)	0.05(1) 4.3
0.0042	0.0180	0.04	4	280	0.86(3)	0.02(2) 6.0

single strange flavor. We had started our simulations with the simple leap-frog MD integrator, which was later switched to the Omelyan integrator \[9\] leading to a factor of 2 speed-up. We keep reasonably high acceptance rate $P \simeq 0.7 - 0.9$ and confirm that $\langle e^{-\Delta H} \rangle = 1$ derived from the area preserving property of HMC is well satisfied.

We are also carrying out simulations at a larger lattice cut-off $a^{-1} \simeq 3.6$ GeV ($\beta = 4.35$) on $48^3 \times 96 \times 8$. The current status is summarized in Table 3. We increase the unit trajectory length to $\tau = 2$ based on our preparatory study on the auto-correlation (see below). Our choice of the fermion action as well as careful tuning of m' at each m_{ud} enable us to achieve the high acceptance rate $P \gtrsim 0.85$ with small $N_{MD} = 4$. We expect half a year to accumulate 10,000 MD time on this large volume by using BlueGene/Q at KEK. This will be accelerated by further optimization of our simulation code \[10\].

We plot m_{res} from these simulations in Fig. 5, where the renormalization factor to the $\overline{\text{MS}}$ scheme at 2 GeV is roughly estimated by matching our estimate of the bare value of $m_{s,phys}$ with a world average \[11\] in that scheme. It turns out that $m_{res} \simeq 0.5$ MeV at $a^{-1} \simeq 2.4$ GeV with $N_5 = 12$. At $a^{-1} \simeq 3.6$ GeV, m_{res} is even smaller ($\simeq 0.1$ MeV) with smaller $N_5 = 8$. While these m_{res}'s are already much smaller than $m_{ud,phys}$, we are considering to further reduce m_{res} by reweighting \[12\].

In Fig. 6, we compare the topological tunneling at $a^{-1} \sim 2.4$ and 3.6 GeV. The auto-correlation largely increases by approaching the continuum limit with the unit trajectory length τ held fixed. As suggested in Ref. \[13\], we observe that topology changes more frequently with larger τ in our study in quenched QCD at a similar cut-off $a^{-1} \simeq 3.5$ GeV. This observation leads us to increase τ when exploring a^{-1} above 2.4 GeV to accelerate our Monte Carlo sampling of topological sectors.

In this article, we reported on our new project of large-scale simulations of $N_f = 2+1$ QCD with good chiral symmetry. The lattice action is chosen by the comparative study to reduce m_{res} well below the physical quark masses and achieve a factor of 20 acceleration compared to the overlap formulation. We are planning to accumulate high statistics of 10,000 MD time for a precision study.
of QCD. Our preliminary results on the light hadron physics were presented at this conference [14].

Numerical simulations are performed on Hitachi SR16000 and IBM System Blue Gene Solution at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation Program (No. 12/13-04). This work is supported in part by the Grants-in-Aid for Scientific Research (No. 21674002, 25287046), the Grant-in-Aid for Scientific Research on Innovative Areas (No. 2004: 20105001, 20105002, 20105003, 20105005, 23105710), and SPIRE (Strategic Program for Innovative Research).

References

[1] S. Aoki et al. (JLQCD and TWQCD Collaborations), Prog. Theor. Exp. Phys., 01A106 (2012). See also X. Feng, PoS LATTICE 2013, 008; X. Feng et al., ibid., 480; T. Iritani et al., ibid., 376 (in these proceedings).
[2] R.C. Brower, H. Neff and K. Orginos, Nucl. Phys. (Proc.Suppl.) 140, 686 (2005); arXiv:1206.5214 [hep-lat].
[3] C. Morningstar and M. Peardon, Phys. Rev. D 69, 054501 (2004).
[4] C. Aubin et al. (MILC Collaboration), Phys. Rev. D 70, 094505 (2004).
[5] S. Hashimoto et al. (JLQCD Collaboration), PoS LATTICE 2013, 431 (in these proceedings).
[6] Y-G. Cho et al. (JLQCD and UKQCD Collaborations), PoS LATTICE 2013, 255 (in these proceedings).
[7] M. Hasenbusch, Phys. Lett. B 519, 177 (2001).
[8] I. Horváth, A.D. Kennedy and S. Sint, Nucl. Phys. (Proc.Suppl.) 73, 834 (1999).
[9] I.P. Omelyan, I.M. Mryglod and R. Folk, Phys. Rev. E 65, 056706 (2002); T. Takaishi and P. de Forcrand, Phys. Rev. E 73, 036706 (2006).
[10] G. Cossu et al. (JLQCD Collaboration), PoS LATTICE 2013, 482 (in these proceedings).
[11] G. Colangelo et al. (FLAG working group of FLAVIANET), Eur. Phys. J. C 71, 1695 (2011).
[12] H. Fukaya et al. (JLQCD Collaboration), PoS LATTICE 2013, 127 (in these proceedings).
[13] S. Schäfer, R. Sommer, F. Virotta (ALPHA Collaboration), Nucl. Phys. B 845, 93 (2011); Lüscher and Schäfer, JHEP 1107, 036 (2011).
[14] J. Noaki et al. (JLQCD Collaboration), PoS LATTICE 2013, 263 (in these proceedings).