EQUIVARIANT UNIRATIONALITY OF DEL PEZZO SURFACES OF DEGREE 3 AND 4

ALEXANDER DUNCAN

Abstract. A variety X with an action of a finite group G is said to be G-unirational if there is a G-equivariant dominant rational map $V \to X$ where V is a faithful linear representation of G. This generalizes the usual notion of unirationality. We determine when X is G-unirational for any complex del Pezzo surface X of degree at least 3.

1. Introduction

Recall that a variety X is unirational if there exists a dominant rational map $\mathbb{A}^n \to X$ where \mathbb{A}^n is an affine space. If a variety X has an action of a finite group G, then X is G-unirational if there exists a dominant rational G-equivariant map $V \to X$ where V is a faithful linear representation of G. When G is trivial, the linear representation is just an affine space and we recover the usual notion of unirationality.

One application of G-unirationality is the construction of versal or generic objects in algebra and number theory. For example, consider the following classical result of Hermite [Her61]. For any separable field extension L/K of degree 5 of a field K of characteristic not 2, there exists a generator $x \in L$ whose minimal polynomial has the form

$$x^5 + bx^3 + cx + c = 0$$

where b and c are elements in K (see [Kra06] for a modern exposition and [Cor76] for an alternate proof). The original proof reduces to the following:

Theorem 1.1 (Hermite). Let X be the Clebsch diagonal cubic surface given by

$$\sum_{i=1}^{5} x_i = \sum_{i=1}^{5} x_i^3 = 0$$

in \mathbb{P}^4, and let S_5 act on X by permutations of the coordinates x_1, \ldots, x_5. There exists a dominant rational S_5-equivariant map $V \to X$ where V is a linear representation of S_5. In other words, X is S_5-unirational.

2010 Mathematics Subject Classification. 14M20, 14L30, 14J26.

The author was partially supported by National Science Foundation RTG grant DMS 0943832.
Both Hermite and Coray’s proofs take advantage of special features of the Clebsch surface which do not generalize to other surfaces. In this paper, we characterize equivariant unirationality for all complex del Pezzo surfaces of degree \(d \geq 3 \). In particular, we obtain a new proof of Theorem 1.1.

Before stating the main theorem, we discuss connections between the equivariant and arithmetic notions of unirationality. The geometric action of the group \(G \) is analogous to the arithmetic action of the absolute Galois group of the base field. In [DR11], this analogy is made precise (using the term “\(G \)-very versal” instead of “\(G \)-unirational”). One can transform results about arithmetic unirationality into results about equivariant unirationality, and vice versa. Consequently, while our main focus in this paper is the base field \(\mathbb{C} \), most of our constructions use, or are inspired by, arithmetic results.

In the arithmetic situation, if a variety is \(k \)-unirational, then \(X \) has a smooth rational \(k \)-point. For geometrically unirational varieties, it is still an open question whether the converse is true. However, in particular we have the following from Theorems 29.4 and 30.1 of [Man86]:

Theorem 1.2 (Manin). Let \(X \) be a del Pezzo surface of degree \(d \geq 3 \) over a field \(k \) of characteristic 0. Then \(X \) is \(k \)-unirational if and only if \(X \) has a rational \(k \)-point.

Now, consider a del Pezzo surface \(X \) of degree \(d \geq 3 \) with a faithful \(G \)-action. Naively, one might expect that the corresponding equivariant result would be that \(X \) is \(G \)-unirational if and only if it has a \(G \)-fixed point. Indeed, using the machinery of [DR11], one can show that the existence of \(G \)-fixed point implies that \(X \) is \(G \)-unirational (see Corollary 2.2). However, the other direction of the naive analog fails in general. For example, the Clebsch cubic (1.1) is \(S_5 \)-unirational but has no \(S_5 \)-fixed points.

Nevertheless, if one assumes that \(G \) is abelian then \(X \) is \(G \)-unirational if and only if \(G \) has a fixed point (see Corollary 2.6). This provides an obstruction for \(G \)-unirationality: every abelian subgroup must have a fixed point. This turns out to be the only obstruction for del Pezzo surfaces of degree \(d \geq 3 \).

Theorem 1.3. Let \(X \) be a del Pezzo surface of degree \(d \geq 3 \) with a faithful \(G \)-action. Then the following are equivalent.

(a) \(X \) is \(G \)-unirational.
(b) \(X \) has an \(A \)-fixed point for all abelian subgroups \(A \) in \(G \).
(c) \(X \) is \(G_p \)-unirational for all Sylow \(p \)-subgroups \(G_p \) and all primes \(p \).
(d) \(X \) is \(G_p \)-unirational for all Sylow \(p \)-subgroups \(G_p \) and all primes \(p \) dividing \(d \).

Remark 1.4. For del Pezzo surfaces of degree \(d \geq 3 \), being \(G \)-unirational is equivalent to being \(G \)-versal (see Proposition 2.1). We emphasize \(G \)-unirationality in this paper because it is a stronger property and is more geometric.
Remark 1.5. For $d \geq 6$, Theorem 1.3 is obtained by revisiting the classification of finite groups of essential dimension 2 in [Dun13]. The case of $d = 5$ is implicit in the proof of Theorem 6.5(c) of [BR97]. Other results on the G-versality (and hence G-unirationality) of these surfaces can be found in [Tok04, Tok05, Tok06, Ban07, Ban08].

Remark 1.6. Condition (c) is closely related to the existence of a 0-cycle of degree 1 in the arithmetic setting (see Section 8 of [DR11]). One might ask if the existence of a 0-cycle of degree 1 implies the existence of a rational point, but this is false even for geometrically rational surfaces (see [CTC79]). However, for a del Pezzo surface X of degree $d \geq 4$ over a perfect field k, there is a rational k-point as soon as there is a rational L-point for a finite extension L/k of degree prime to d (see [Cor77]). Using this fact, one can prove the equivalence of conditions (a), (c), and (d) in Theorem 1.3 for $d \geq 4$, however one cannot conclude anything about condition (b).

For cubic hypersurfaces (in particular, for del Pezzo surfaces of degree 3) it was conjectured by Cassels and Swinnerton-Dyer that the existence of a 0-cycle of degree coprime to 3 implies the existence of a rational point (see [Cor76]). Theorem 10.5 of [DR11] shows that, for $d = 3$, the equivalence of conditions (a), (c), and (d) in Theorem 1.3 follow from this conjecture. Consequently, Theorem 1.3 can be viewed as evidence for the conjecture.

Remark 1.7. For degree $d = 2$, a version of Theorem 1.2 is known to apply when the rational point lies outside of a certain closed subscheme (see [STVA13, FvL14]). However, the fixed points of G-actions often lie on this subscheme (see cases 2A and 2B of Theorem 1.1 of [DD14]). Theorem 1.3 does not hold for $d = 2$, as the following example shows.

Example 1.8. Consider the del Pezzo surface X of degree 2 given by

$$x_4^2 = x_1^3x_2 + x_2^3x_3 + x_3^3x_1$$

in the weighted projective space $\mathbb{P}(1 : 1 : 1 : 2)$, which has automorphism group $C_2 \times \text{PSL}_2(\mathbb{F}_7)$ (see Table 8.9 of [Dol12]). In particular, X has a faithful action of a finite group $G \simeq C_2 \times (C_7 \times C_3)$. One checks that every abelian subgroup A of G has a fixed point on X, so condition (b) from Theorem 1.3 holds.

However, the essential dimension of G is greater than 2 (see Definition 2.8). This follows by Lemma 7.2 and Theorem 3.1 of [KLS09]. We conclude that X is not G-unirational and that Theorem 1.3 fails for $d = 2$.

Remark 1.9. For degree $d = 1$, there is always a canonical point on X. In particular, if Theorem 1.2 were true in this case then every del Pezzo G-surface of degree 1 would be G-unirational and Theorem 1.3 would be true in this case as well. However, Theorem 1.2 is completely open for minimal surfaces of degree 1.
In Section 2, we recall the structure theory of del Pezzo surfaces and some useful facts about equivariant unirationality. In Section 3, we prove that G-unirationality of a cubic surface reduces to consideration of H-unirationality where H is a subgroup of G of index 2. We then show how this can be used to reprove Theorem 1.1. In Section 4, we identify four families of actions by elementary abelian groups on del Pezzo surfaces which do not have fixed points. These will turn out to be the only obstructions to equivariant unirationality for degree ≥ 3 (see Theorem 4.6). In Sections 5–7, we prove Theorem 1.3 by proving Theorem 4.6.

2. Preliminaries

Throughout, a k-variety is a geometrically integral scheme of finite type over a field k of characteristic 0. A k-variety X is k-unirational if there exists a dominant rational map $\mathbb{A}^n_k \to X$ defined over k. A variety, surface, or curve, without explicit reference to a base field, will have base field $k = \mathbb{C}$.

2.1. Del Pezzo surfaces. A del Pezzo surface X is a smooth projective surface whose anticanonical class $-K_X$ is ample. The degree $d = K_X^2$ of a del Pezzo surface is an integer $1 \leq d \leq 9$. Except for $\mathbb{P}^1 \times \mathbb{P}^1$ in degree 8, every del Pezzo surface is isomorphic to \mathbb{P}^2 blown up at $9 - d$ points.

For degree $d \leq 5$, the automorphism group $\text{Aut}(X)$ of X induces a faithful action on $\text{Pic}(X)$. In fact, there is an injective homomorphism

$$\text{Aut}(X) \hookrightarrow W(E_n)$$

where $W(E_n)$ is the Weyl group of a simple root system of type E_n (by convention, $E_5 = D_5$, $E_4 = A_4$).

Let X be a smooth projective surface with a faithful action of a finite group G. We say that X is a minimal G-surface if any equivariant birational morphism $X \to X'$ is an isomorphism, where X' is another G-surface. By blowing down G-stable sets of skew (-1)-curves, every rational G-surface is equivariantly birationally equivalent to a minimal rational G-surface. All minimal rational G-surfaces are either

- del Pezzo G-surfaces with $\text{Pic}(X)^G \cong \mathbb{Z}$, or
- conic bundle G-surfaces, where there is an equivariant morphism to \mathbb{P}^1 with rational general fiber and $\text{Pic}(X)^G \cong \mathbb{Z}^2$.

2.2. Equivariant Unirationality. Let X be a variety with an action of a finite group G. The variety X is G-weakly versal if, for every faithful G-variety Y, there exists an equivariant rational map $Y \to X$. The variety X is G-versal if, for every non-empty G-invariant open subset U of X, the variety U is G-weakly versal.

The primordial example of a G-versal variety is a linear representation of G. Thus, for X to be G-weakly versal, it suffices to find just one equivariant rational map $V \to X$ where V is a faithful linear representation. In particular, X is G-weakly versal as soon as it has a G-fixed point.
We have the following series of implications:

$$G\text{-unirational} \implies G\text{-versal} \implies G\text{-weakly versal}$$

which correspond to the implications:

$$k\text{-unirational} \implies X(k) \text{ Zariski-dense in } X \implies X(k) \neq \emptyset$$

in the arithmetic setting.

In our context, these three things are all equivalent:

Proposition 2.1. Let X be a del Pezzo surface of degree ≥ 3 with an action of a finite group G. The following are equivalent:

(a) X is G-unirational,
(b) X is G-versal,
(c) X is G-weakly versal.

Proof. We note that the property of being a del Pezzo surface of a given degree is a geometric property. In other words, all twisted forms of a given del Pezzo surface of degree d are also del Pezzo surfaces of degree d. The proposition now follows by using Theorem 1.2 in combination with Theorem 1.1 of [DR11].

A very useful corollary of this proposition is the following:

Corollary 2.2. Let X be a del Pezzo surface of degree ≥ 3 with an action of a finite group G. If X has a G-fixed point, then X is G-unirational.

The following well-known fact is a consequence of the holomorphic Lefschetz fixed-point formula.

Proposition 2.3. If X is a complete smooth rational surface with an action of a finite cyclic group G, then X has a G-fixed point.

Corollary 2.4. Let X be a del Pezzo surface of degree ≥ 3 with an action of a finite cyclic G. Then X is G-unirational.

The following proposition is a useful method for producing fixed points (Proposition A.2 of [RY00]):

Proposition 2.5 (Going-Down). Suppose $X \dasharrow Y$ is a G-equivariant rational map of G-varieties where G is abelian. If X has a smooth G-fixed point and Y is proper, then Y has a G-fixed point.

In particular, Proposition 2.5 implies that the existence of a G-fixed point is an equivariant birational invariant of smooth, proper G-varieties. Since a linear representation always has a smooth fixed point, we have the following:

Corollary 2.6. If X is a proper G-unirational variety and G is abelian, then X has a G-fixed point.
One might wonder how much the definition of G-unirationality depends on
the particular choice of linear representation V. In general, a G-unirational
variety might have larger dimension than some faithful linear representa-
tion, so one cannot simply take any representation. However, the following
consequence of the No-Name Lemma (see [Dom08]) shows that this is not a
significant problem.

Proposition 2.7. If X is G-unirational, then for any faithful linear rep-
resentation V of G, there exists a G-equivariant dominant rational map
$V \times \mathbb{A}^n \to X$ for some affine space \mathbb{A}^n where G acts trivially on \mathbb{A}^n.

Finally, it is useful to point out the following definition:

Definition 2.8. The essential dimension of a finite group G, denoted $\text{ed}(G)$,
is the minimal dimension of a faithful G-unirational variety.

The finite groups of essential dimension 2 were classified in Theorem
1.1 of [Dun13]. Thus, we know the groups G for which a G-unirational sur-
face exists, but we do now know whether a given G-surface is G-unirational.

3. A CONSTRUCTION FOR CUBIC SURFACES

The following is a well-known fact about arithmetic cubic hypersurfaces
(see, for example, Proposition 2.2 of [Cor76]).

Proposition 3.1. Let X be a cubic hypersurface over a field k. If X has a
K-point for a quadratic extension field K/k, then X has a k-point.

By Theorem 1.2 k-unirationality of a cubic surface (a del Pezzo surface
of degree 3) is equivalent to the existence of a smooth rational k-point, so
we have the following equivariant analog:

Theorem 3.2. Let X be a smooth cubic surface with a faithful action of
a finite group G. Suppose H is a subgroup of G of index 2. If X is H-
unirational then X is G-unirational.

Proof. The following proof was suggested to the author by Z. Reichstein.
We use the machinery of [DR11]. Let $T \to \text{Spec}(K)$ be a G-torsor for some
extension field K/\mathbb{C}. By Theorem 1.1 of [DR11], we want to show that the
twisted variety T_X is K-unirational. By Theorem 1.2 showing that T_X has
a K-point is sufficient. The inclusion $H \subset G$ induces an exact sequence

$$H^1(K, H) \to H^1(K, G) \to H^1(K, C_2)$$

in Galois cohomology. Since the image of T in $H^1(K, C_2)$ is split over a
field extension L/K of degree 1 or 2, the torsor T_L descends to an H-torsor
$S \to \text{Spec}(L)$. In particular, $(T_X)_L \simeq T_L \simeq S_X$. By our assumption, we
know that S_X is L-unirational for any H-torsor $S \to \text{Spec}(L)$. Thus, $(T_X)_L$
has an L-point. By Proposition 3.1 we conclude that T_X has a K-point as
desired. \Box
Remark 3.3. Note that the same proof also works for cubic hypersurfaces in higher dimensions under some mild technical hypotheses (see Theorem 10.5 of [DR11]).

Theorem 1.1 follows quite easily from Theorem 3.2. However, one can extract a purely geometric argument without explicit use of Galois cohomology, which we believe is of independent interest. The following proof does not rely on [DR11].

Proof of Theorem 1.1. There are two Galois conjugate 3-dimensional faithful representations of A_5; pick one of them. Projection from the origin produces a dominant rational A_5-equivariant map

$$\alpha : \mathbb{C}^3 \to \mathbb{P}^2$$

and thus, by construction, \mathbb{P}^2 is A_5-unirational. There is a unique A_5-orbit containing exactly 6 points in \mathbb{P}^2. Blowing up these points gives an A_5-equivariant birational map

$$\beta : \mathbb{P}^2 \to X$$

to a smooth cubic surface X. The composition $\psi = \beta \circ \alpha$ shows that X is A_5-unirational.

The Clebsch diagonal cubic surface is the only smooth cubic surface with a faithful A_5-action; indeed, it is the only one with a C_5-action (see Theorem 9.5.8 of [Dol12]). One can also see this directly by computing the invariants of degree 3 of the 4-dimensional representations of A_5. In any case, the surface X described above must be the Clebsch.

At this point, we can conclude that X is S_5-unirational by Theorem 3.2. Instead, we will supply a more elementary argument. Only the very last step requires the group to be S_5, so until then we will use $H = A_5$ and $G = S_5$ to emphasize the parallels with Theorem 3.2.

By Proposition 2.7, we may assume that we have an H-equivariant dominant rational map

$$\psi : V \to X$$

where V is a faithful linear representation of G (this is a linear representation of H by restriction). We want to construct a G-equivariant dominant rational map $V \to X$.

Let $\sigma \in G$ be any element such that $\sigma \notin H$. Since H has index 2 in G, $\sigma^2 \in H$ and G is a disjoint union of the cosets H and σH. Define a G-action on $X \times X$ via

$$g(x, y) = \begin{cases} (gx, gy) & \text{if } g \in H \\ (gy, gx) & \text{if } g \in \sigma H \end{cases}$$

where $g \in G$ and $(x, y) \in X \times X$. The G-variety $X \times X$ can be viewed as an equivariant analog of the Weil restriction of a quadratic extension. Note that the diagonal embedding $X \to X \times X$ is G-equivariant.
We now construct a G-equivariant map $\tau : V \to X \times X$ using ψ. We define

$$\tau(v) := (\sigma \psi(\sigma^{-1} v), \psi(v))$$

for every $v \in V$ which is in the domain of definitions of both ψ and $\psi \circ \sigma^{-1}$.

We claim that τ is G-equivariant. Indeed, for $h \in H$, we have

$$\tau(hv) = (\sigma \psi(\sigma^{-1} hv), \psi(hv)) = (\sigma \sigma^{-1} h \sigma \psi(\sigma^{-1} v), h \psi(v)) = h \tau(v)$$

and, for σ, we have

$$\tau(\sigma v) = (\sigma \psi(v), \psi(\sigma v)) = \sigma \tau(v).$$

We have checked equivariance on the generating set, thus we may conclude that τ is G-equivariant.

Consider the “third intersection map” $\omega : X \times X \to X$ which takes a general pair of points (x, y) to the unique third point on X lying on the line through x and y in \mathbb{P}^1. The map ω is a well-defined dominant rational map by Lemma 3.2 of [Kol02]. Note that since G carries the line through x and y to the line through $g(x)$ and $g(y)$, we see that ω is G-equivariant.

We would like to form the composition $\omega \circ \tau$ so we need to check that it is well-defined. The indeterminacy locus of ω contains only points $(x, y) \in X \times X$ such that either the line \overline{xy} is undefined or the line \overline{xy} lies on X. The first case corresponds to the diagonal subvariety $X \subset X \times X$, while the second case occurs only when both x and y lie on one of the 27 lines.

If the image of τ is contained in the diagonal, then ψ is already G-equivariant and we are done. Thus, we may assume that the image of τ is not contained in the diagonal. Since ψ is dominant, τ is dominant on each of the factors of $X \times X$. Thus the image of τ contains a point (x, y) where $x \neq y$ and x is not on one of the 27 lines. In particular, the image of τ intersects the domain of definition of ω non-trivially. Thus we have a rational G-equivariant map $\psi' = \omega \circ \tau : V \to X$.

It remains to show that $\psi' = \omega \circ \tau$ is dominant. For this last argument, we require $G = S_5$. First, note $\text{im}(\psi')$ cannot be a point since X has no S_5-fixed points. If $\text{im}(\psi')$ is a curve then it must be birational to \mathbb{P}^1. But \mathbb{P}^1 does not carry a faithful action of S_5 and the non-faithful actions (either trivial or via an involution) have fixed points. Thus ψ' is dominant since the image must have dimension 2.

4. **Obstructions to Equivariant Unirationality**

In this section, we discuss some examples of G-actions on del Pezzo surfaces X where G is abelian, but G has no fixed points on X. These surfaces are not G-unirational in view of Corollary 2.6.

The plane Cremona group $\text{Cr}(2)$ is the set of birational automorphisms of a rational surface. For every finite subgroup G of $\text{Cr}(2)$, there exists a smooth proper surface X with a G-action (indeed, we can assume X is a del Pezzo surface or a conic bundle). Since G-unirationality is an equivariant birational invariant, it makes sense to ask about G-unirationality for a
finite subgroup G of the Cremona group without specifying the surface. We may find the following groups in the classifications of Blanc [Bla06], and Dolgachev and Iskovskikh [DI09].

Any subgroup G of the plane Cremona group which contains one of the groups described in the following examples cannot be G-unirational. Consequently, we may view them as obstructions to G-unirationality.

Example 4.1 (Obstruction A). Consider $X \cong \mathbb{P}^1 \times \mathbb{P}^1$ and $G = \langle g_1, g_2 \rangle \cong C_2^2$ with action:

\[
g_1 : (x_1 : x_2) \times (y_1 : y_2) \mapsto (x_2 : x_1) \times (y_1 : y_2)
g_2 : (x_1 : x_2) \times (y_1 : y_2) \mapsto (x_1 : x_2) \times (y_1 : y_2)
\]

where $(x_1 : x_2) \times (y_1 : y_2)$ are coordinates on X. There are no G-fixed points on X. Up to conjugacy in Aut(X), there are two other actions of G on $\mathbb{P}^1 \times \mathbb{P}^1$ which do not have fixed points. However, all three of these subgroups correspond to one conjugacy class in Cr(2), denoted P1.22.1 using Blanc’s notation.

Example 4.2 (Obstruction B). Consider $X \cong \mathbb{P}^2$ and $G = \langle g_1, g_2 \rangle \cong C_3^2$ with action:

\[
g_1 : (x_1 : x_2 : x_3) \mapsto (x_2 : x_3 : x_1)
g_2 : (x_1 : x_2 : x_3) \mapsto (x_1 : \epsilon x_2 : \epsilon^2 x_3)
\]

where ϵ is a primitive third root of unity. This surface has no G-fixed points. Its conjugacy class in Cr(2) is denoted 0.V9 in Blanc’s notation.

Before describing the next two examples, we prove the following lemma.

Lemma 4.3. An automorphism g of a smooth genus 1 curve E has a fixed point if and only if g is not a non-trivial translation.

Proof. Pick an origin for the group law making E an elliptic curve. Recall that the automorphism group of an elliptic curve is a semidirect product of the translation group with the group of group automorphisms. Indeed, every automorphism h has the form $h(x) = g(x) + a$ where g is a group automorphism of E and a is an element of E. To find the fixed points we set $h(x) = x$ and solve $x - g(x) = a$ for x. If g is trivial, then h is a translation. Otherwise, the map $x \mapsto x - g(x)$ is non-constant and $x - g(x) = a$ has a solution. \(\square\)

Example 4.4 (Obstruction C). Here X is a del Pezzo surface of degree 4 and $G = \langle g_1, g_2 \rangle \cong C_2^2$ acts on X where the fixed points of g_1 are an elliptic curve E and g_2 acts on E as translation by a 2-torsion element. These examples form a family of conjugacy classes denoted C2,2 in Blanc’s notation.

Example 4.5 (Obstruction D). Here X is a del Pezzo surface of degree 3 and $G = \langle g_1, g_2 \rangle \cong C_3^2$ acts on X where the fixed points of g_1 are an
elliptic curve \(E \) and \(g_2 \) acts on \(E \) as translation by a 3-torsion element. These examples form a family of conjugacy classes denoted 3.33.2 in Blanc’s notation.

For any rational \(G \)-surface \(X \), we say that \(X \) has obstruction \(A \) (resp. \(B, C, D \)) if there exists a subgroup \(H \) of \(G \) such that \(X \) is \(H \)-equivariantly birationally equivalent to an \(H \)-surface in one of the corresponding examples above. Equivalently, considering \(G \) has a subgroup of the Cremona group, we say \(G \) has a given obstruction if it contains a subgroup conjugate to one of those in the above examples.

To prove Theorem 1.3, we will instead prove the following:

Theorem 4.6. Let \(X \) be a del Pezzo surface of degree \(d \geq 3 \) with a faithful \(G \)-action. Then \(X \) is \(G \)-unirational if and only if it satisfies the condition given in Table 1.

Degree	Form	\(G \)-unirational
9	\(\mathbb{P}^2 \)	no obstruction B
8	\(\mathbb{P}^1 \times \mathbb{P}^1 \)	no obstruction A always
7	\(\mathbb{F}_1 \)	always
6	\(\mathcal{M}_{0,5} \)	always
5	\(\mathcal{M}_{0,5} \)	always
4	cubic	no obstruction A or C
3	cubic	no obstruction B or D

Table 1. Obstructions to equivariant unirationality

Note that in Theorem 1.3 (a) implies all the other statements. All of the statements imply the lack of obstructions found in Table 1. Thus, Theorem 4.6 implies Theorem 1.3. To prove Theorem 4.6, we must show that the obstructions are the only obstructions to \(G \)-unirationality.

5. **Degree \(d \geq 5 \)**

Proof of Theorem 4.6 for \(d \geq 6 \). Aside from \(\mathbb{P}^1 \times \mathbb{P}^1 \) there is only one surface of degree 8; it is \(\mathbb{P}^2 \) with a single point blown up. Blowing down the resulting exceptional divisor is an equivariant operation which provides a \(G \)-fixed point on \(\mathbb{P}^2 \) so this surface is always \(G \)-unirational.

In degree 7, we have \(\mathbb{P}^2 \) blown up at two points. The strict transform of the line between these two points can be blown down to a \(G \)-fixed point on \(\mathbb{P}^1 \times \mathbb{P}^1 \), so this is always \(G \)-unirational as well. It remains only to consider the surfaces \(\mathbb{P}^2, \mathbb{P}^1 \times \mathbb{P}^1 \) and the del Pezzo surface of degree 6.

All of these surfaces are toric varieties. By Corollary 3.6 of [Dun13], we see that (a) and (c) of Theorem 1.3 are equivalent (recall that \(G \)-versal and \(G \)-unirational are equivalent here by Proposition 2.1). In particular, we may assume that \(G \) is a \(p \)-group.
By Proposition 3.10 of [Dun13], any p-group acts on a smooth toric surface as a subgroup of $(\mathbb{C}^\times)^2 \rtimes H$ where H is a finite subgroup of $\text{GL}_2(\mathbb{Z})$. Since any finite subgroup of $\text{GL}_2(\mathbb{Z})$ has order divisible by 2 or 3, if G is a p-group where $p \geq 5$ then G is a subgroup of $(\mathbb{C}^\times)^2$. We conclude that X is always G-unirational for $p \geq 5$ by Lemma 3.8 of [Dun13]. Thus, it suffices to assume that G is a 2-group or a 3-group.

From Lemma 4.2 of [Dun13], for a 3-group G, X is G-unirational if and only if X does not have obstruction B. From Lemma 4.3 of [Dun13], for a 2-group G, X is G-unirational if and only if X does not have obstruction A. It remains to show that \mathbb{P}^2 never has obstruction A and $\mathbb{P}^1 \times \mathbb{P}^1$ never has obstruction B. The del Pezzo surface of degree 6 may have either obstruction. The group H for \mathbb{P}^2 has class G_4 in the notation of [Dun13]. Its 2-subgroups have class G_{12}, thus the conditions of Lemma 4.3 of [Dun13] always hold and \mathbb{P}^2 never has Obstruction A.

The group H for $\mathbb{P}^1 \times \mathbb{P}^1$ has class G_2 in the notation of [Dun13]. Its 3-subgroups are trivial, thus the conditions of Lemma 4.2 of [Dun13] always hold and $\mathbb{P}^1 \times \mathbb{P}^1$ never has Obstruction B. □

The central idea for the case $d = 5$ is contained in the proof of Theorem 6.5(c) of [BR97]. For completeness, we reproduce it here in more geometric language.

Proof of Theorem 6.6 for $d = 5$. Recall that the del Pezzo surface X of degree 5 is isomorphic to $\overline{M}_{0,5}$, the moduli space of stable curves of genus 0 with 5 marked points. We will show that X is G-unirational for the entire automorphism group $G \simeq S_5$. There is an evident S_5-equivariant dominant rational map $(\mathbb{P}^1)^5 \to X$ using the moduli space interpretation. Noting that $(\mathbb{P}^1)^5$ is S_5-equivariantly birationally equivalent to the standard permutation representation on S_5, we see that X is S_5-unirational. □

6. **Degree 4**

Let X be a del Pezzo surface of degree 4. We recall a description of their structure and their automorphism groups from Section 6.4 of [DI09]. In appropriate coordinates, they may be cut out by the equations

$$x_1^2 + \cdots + x_5^2 = a_1 x_1^2 + \cdots a_5 x_5^2 = 0$$

in \mathbb{P}^4 where a_1, \ldots, a_5 are distinct complex parameters.

The group of automorphisms of $\text{Pic}(X)$ which preserve the intersection form is isomorphic to the Weyl group $W(D_5)$ of the root system D_5. We have $W(D_5) \simeq C_2^4 \rtimes S_5$. The orthogonal complement K_X^\perp of K_X in $\text{Pic}(X)$ is a lattice of rank 5. The group S_5 permutes a basis of K_X^\perp and elements of C_2^4 change the sign of an even number of those basis vectors. The automorphism group of X has a faithful action on $\text{Pic}(X)$ thus we have $\text{Aut}(X) \to W(D_5)$.

Let N denote the normal subgroup of $W(D_5)$ isomorphic to C_2^4. The action of N can be realized on every surface X by changing the sign of an even number of the coordinates x_i. We will denote involutions in N using
the notation ι_A where A is the subset of $\{1, \ldots, 5\}$ corresponding to the coordinates whose sign is changed. If A is a subset with an odd number of elements, then we define $\iota_A = \iota_{\bar{A}}$ where \bar{A} is the complement of A in $\{1, \ldots, 5\}$.

Within the group N, an involution is of the first kind if it changes the sign of 4 variables; the involution ι_i fixes the elliptic curve $x_i = 0$. An involution is of the second kind if it changes the sign of 2 variables; the involution ι_{ij} where $i \neq j$ fixes a set of 4 points given by $x_i = x_j = 0$.

Lemma 6.1. The conjugacy classes of subgroups of N which are isomorphic to C_2^2 are determined by the number of elements of each kind and are listed in Table 2 with the given interpretations.

Type	1st Kind	2nd Kind	Interpretation	[Bla06]
I	2	1	has fixed points	C.22
II	1	2	obstruction C	C.2.2
III	0	3	obstruction A	P1.22.1

Table 2. Conjugacy classes of N isomorphic to C_2^2

Proof. Since the action is diagonal in the basis given by x_1, \ldots, x_5, one sees that these are the only possibilities by inspection. The fixed points must correspond to eigenvalues of the group action, and we conclude that only subgroups of Type I have fixed points on X.

For Type II, the involution of the first kind fixes pointwisely an elliptic curve E, but the involutions of the second kind do not fix any points on E. By Lemma 4.3, we conclude that this must be obstruction C.

For Type III, we find that $\text{Pic}(X)^G \cong \mathbb{Z}^3$. Thus X is not minimal and we may equivariantly blow down some exceptional curves. Since the existence of a fixed point is an equivariant birational invariant of a smooth surface, X is equivariantly birational to a del Pezzo surface of degree ≥ 5 without fixed points. The only possibility is that X has obstruction A. □

The possible splittings $S_5 \subset W(D_5)$ correspond to a choice of geometric marking of 5 skew exceptional curves. Thus, any splitting $S_5 \subset W(D_5)$ has the following interpretation. The surface X is obtained by blowing up a set of 5 points in general position on \mathbb{P}^2. These points sit on a unique conic C. Each automorphism of C which preserves the 5 points extends to an automorphism of \mathbb{P}^2 and to the blowup X. Note that not all subgroups of S_5 can be realized on every surface. Indeed, the images of the map $\text{Aut}(X) \to S_5$ can only be trivial, C_2, S_3, C_4 or D_{10}. Moreover, the involutions in the image of $\text{Aut}(X) \to S_5$ are all conjugate to the permutation $(12)(34)$.

Lemma 6.2. Let X be a del Pezzo surface of degree 4 with a faithful action of a finite group G. The group G has a fixed point if and only if G does not contain a subgroup of Type II or III.
Proof. Let K be the kernel of $G \to S_5$ and H be its image.

If K has rank 3 or 4 then it must contain a subgroup of Type II or III. It remains to consider K which is of Type I, is cyclic or is trivial. In addition, we may assume H is non-trivial. We will show that all groups G satisfying these conditions have a fixed point.

If K is of Type I then $K = \langle \iota_1, \iota_2 \rangle$ after a change of coordinates. In this case, H is isomorphic to C_2 or S_3. Let L be the preimage in $\text{Aut}(X)$ of H in S_5. Let K' be the group $\langle \iota_{12}, \iota_{23} \rangle$. The group K' is an H-invariant complement to K in N on which H acts faithfully.

Since K is normal in L, the set S of K-fixed points on X is L-stable. Explicitly, the set S consists of the 4 points $(\pm a : \pm b : \pm c : 0 : 0)$ for some values a, b, and c in \mathbb{C} and all possible sign combinations. Note that every non-trivial element of K' acts on S without fixed point. We have an embedding $L/K \hookrightarrow S_4$ where K' maps to the subgroup given by $\langle (12)(34), (13)(24) \rangle$. Thus the image of G in L/K must act on the 4 points via an involution conjugate to (12) or as a subgroup isomorphic to S_3. These always leave at least one point fixed in S. We conclude that G must fix a point on X in this case.

We now consider the case where K is cyclic. If K is an involution of the second kind, then again H is isomorphic to C_2 or S_3 and we may apply the reasoning above.

If K is of the first kind, then there is an G-invariant genus 1 curve E which is fixed pointwise by K. The only possibilities for H leaving K invariant are cyclic groups C_2, C_3 or C_4. If $H \simeq C_3$ then G is cyclic and we have a fixed point. Otherwise, the only way for G not to have a fixed point is for the action of H on E to be translation. If H acts by translation then it contains an involution which acts by translation since H has order 2 or 4. However, i_{12} and i_{13} do not fix points on E and so must generate the entire group $E[2]$ of 2-torsion automorphisms. Since these elements do not map non-trivially to H, the group H cannot act by translation.

It remains to consider K trivial. For H cyclic, the surface X must have a fixed point, so only $H \simeq S_3$ and $H \simeq D_{10}$ remain. Since all elements of order 5 or 3 each form a single conjugacy class in $W(D_5)$ we may assume H contains $r = (12345)$ or $r = (134)$. There is also an element in H of the form $s = \iota_A(25)(34)$ where A is a $(25)(34)$-invariant subset of $\{1, 2, 3, 4, 5\}$. We require $srsr = 1$, thus $\iota_A(\iota_A) = 1$. The subset $A = \emptyset$ is the only subset with an even number of elements which is both $(25)(34)$-invariant and r-invariant. Thus G can be identified with a subgroup of S_5 in $W(D_5)$.

Thus, G permutes 5 skew lines in X. These can be blown down to 5 points on a conic in \mathbb{P}^2. The actions of S_3 or D_{10} on \mathbb{P}^2 fix a point outside of the invariant conic, so we conclude that X has a G-fixed point. \qed
Theorem 4.6 (and thus Theorem 1.3) in degree 4 is an immediate consequence of Lemmas 6.1 and 6.2. In fact, we obtain an additional characterization of G-unirationality in this case:

Corollary 6.3. Suppose X is a del Pezzo surface of degree 4 with a faithful G-action. Then X is G-unirational if and only if X has a G-fixed point.

7. Degree 3

We now consider del Pezzo surfaces of degree 3; in other words, smooth cubic surfaces in \mathbb{P}^3. Throughout this section X is a smooth cubic surface with a faithful G-action.

The classification of automorphism groups of smooth cubic surfaces can be found in Table 9.6 of [Dol12]. The set of isomorphism classes affording a given group of automorphisms can be written down explicitly as families depending on parameters. For certain special values of the parameters, the corresponding family may acquire additional automorphisms. In this case, we say the original automorphism group A *specializes* to the larger automorphism group B and write $A \rightarrow B$. (See also the discussion preceding Proposition 2.3 of [DDT14].)

For the convenience of the reader, in Figure 1, we list all the possible automorphism groups of cubic surfaces along with their specializations. Here $H_3(3)$ is the Heisenberg group of 3×3 unipotent matrices over \mathbb{F}_3.

![Figure 1. Automorphism groups of cubic surfaces and their specializations.](attachment:image.png)

From Section 9.5.1 of [Dol12], the conjugacy classes of cyclic subgroups in $W(E_6)$ all correspond to distinct conjugacy classes in $\text{PGL}_4(\mathbb{C})$ whenever they act on a cubic surface. The number of elements from each conjugacy class in each family of automorphisms can be found in Table 1 of [Hos97]. We will only be interested in the conjugacy classes of cyclic groups of order 3. In the notation of [Car72], the class $3A_2$ has eigenspaces of dimensions...
1, 3; the class A_2 has eigenspaces of dimensions 2,2; and the class $2A_2$ has eigenspaces of dimensions 1,1,2.

A cubic surface X is cyclic if it is a triple cover of \mathbb{P}^2 branched over a smooth cubic curve E. A cyclic surface can always be written in the form

$$x_1^3 + x_2^3 + x_3^3 + x_4^3 + \alpha x_1 x_2 x_3 = 0$$

in \mathbb{P}^4 for some parameter α. For a generic parameter α, the automorphism group is $\text{Aut}(X) \simeq H_3(3) \rtimes C_2$. For special values of α (for example $\alpha = 0$), X may have additional automorphisms.

An important special case of the cyclic surfaces is the Fermat cubic surface given by

$$x_1^3 + x_2^3 + x_3^3 + x_4^3 = 0$$

in \mathbb{P}^4. The automorphism group of the Fermat cubic surface is isomorphic to $C_3^2 \rtimes S_4$ where the subgroup C_3^2 acts by multiplying the coordinates x_i by a primitive third root of unity ϵ and S_4 acts by permuting the coordinates $\{x_i\}$.

Lemma 7.1. The conjugacy classes of subgroups of $\text{PGL}_4(\mathbb{C})$ which are isomorphic to C_3^2 are listed in Table 2. The table also lists the number of elements in each conjugacy class. Each group acts only on smooth cubic surfaces with the given interpretation.

Type	$3A_2$	$2A_2$	A_2	Interpretation	[Bla06]
I	4	2	2	has fixed points	3.33.1
II	2	6	0	obstruction D	3.33.2
III	0	4	4	obstruction B	0.V9

Table 3. Conjugacy classes C_3^2 in $\text{PGL}_4(\mathbb{C})$

Proof. We begin with conjugacy in $\text{PGL}_4(\mathbb{C})$. We follow the approach from pg. 500 of [DI09]. Since the kernel of the map $\text{SL}_4(\mathbb{C}) \to \text{PGL}_4(\mathbb{C})$ has order coprime to 3, we may assume that G has a preimage in $\text{SL}_4(\mathbb{C})$ consisting of diagonal matrices. Consider the characters of G acting on the given basis in \mathbb{F}_3^4. Since the product of the characters must be trivial, we may identify them with the space \mathbb{F}_3^4 viewed as an S_4-module. There are 13 one-dimensional subspaces of \mathbb{F}_3^4 since $\mathbb{F}_2(\mathbb{F}_3)$ as 13 elements. They have 3 orbits represented by $\langle (1, 2, 0, 0) \rangle$, $\langle (1, 1, 1, 0) \rangle$ and $\langle (1, 1, 2, 2) \rangle$ in \mathbb{F}_3^4. These correspond to Types I–III respectively.

We now describe how these groups act on a cubic surface X. In each of these examples, $D(a, b, c, d)$ denotes a diagonal matrix with entries (a, b, c, d) and ϵ is a primitive third root of unity.

For Type I, the matrices $D(1, 1, 1, \epsilon)$ and $D(1, 1, \epsilon, 1)$ generate the group $G \simeq C_3^2$. Here X has up to three G-fixed points on the line $x_3 = x_4 = 0$.

For Type II, the matrices $D(\epsilon, \epsilon, \epsilon, 1)$ and $D(1, \epsilon, \epsilon^2, 1)$ generate the group $G \cong C_3^2$. The group G acts on the variables x_i via distinct characters so the fixed points must be one of $(1 : 0 : 0 : 0)$, ..., $(0 : 0 : 0 : 1)$. The invariant monomials for this group action are

$$x_1^3, x_2^3, x_3^3, x_4^3, x_1x_2x_3. $$

If the resulting cubic surface is smooth then all but $x_1x_2x_3$ must appear in the corresponding cubic form. Note that the point $(1 : 0 : 0 : 0)$ cannot lie on the surface since x_4^3 is the only monomial which is non-zero at this point. Similarly, none of the other points lie on the surface and we conclude that the action has no fixed points. The matrix $D(\epsilon, \epsilon, \epsilon, 1)$ fixes pointwisely a smooth cubic curve and thus, by Lemma 4.3, this group must be obstruction D.

For Type III, the matrices $D(\epsilon, \epsilon^2, 1, 1)$ and $D(1, 1, \epsilon, \epsilon^2)$ generate the group $G \cong C_3^2$. The invariant monomials for this group action are

$$x_1^3, x_2^3, x_3^3, x_4^3. $$

and we conclude that there are no fixed points by the same argument as Type II. Let \mathbb{P}^2 have an action of G without fixed points (in other words, the surface from Obstruction B). One checks that on \mathbb{P}^2 there are only 2 G-orbits consisting of precisely 3 points each. Blowing up these 6 points we obtain a cubic surface. Since Type I and Type II have already been described, we conclude that the surface of Type III has obstruction B. □

Lemma 7.2. If G is a 3-group with an action on a cubic surface X, then either G has a fixed point or it contains a subgroup of Type II or III.

Proof. The automorphism group of the Fermat cubic has a Sylow 3-subgroup P isomorphic to $C_3^3 \times C_3$ where the normal subgroup C_3^3 acts diagonally and the quotient C_3 acts by permuting the first three basis vectors. Recall that $W(E_6)$ has order $51840 = 2^7 \times 3^4 \times 5$. Since P has order 3^4 and $\text{Aut}(X) \hookrightarrow W(E_6)$, any 3-group acting on a cubic surface is isomorphic to a subgroup of P.

We will show that all subgroups G of P are either cyclic, of Type I, or contain a subgroup of Type II or III. For a different surface, the particular embedding of G into $\text{PGL}_4(\mathbb{C})$ may be different, but the conjugacy classes of all the elements must be the same. Since cyclic groups and Type I groups always have fixed points, this suffices to prove the lemma.

First, we note that if G is 3-elementary abelian then either G is cyclic, is of Type I–III, or has rank 3. If G has rank 3 then it contains subgroups of Type II and III. Suppose G is abelian with an element of order 9. Note that the only element of C_3^3 which is centralized by the permutation action of (123) is $D(\epsilon, \epsilon, \epsilon, 1)$. An element g of order 9 must be of the form $h(123)$ where h is an element of the diagonal group C_3^3. Any element that commutes with g must be a power of $D(\epsilon, \epsilon, \epsilon, 1)$, so we conclude that the cyclic group C_9 is the only abelian group acting on a cubic surface that is not 3-elementary.
It remains to consider non-abelian groups. Since the full group P contains subgroups of types II and III, it suffices to consider non-abelian groups of order 27. There are only 2 such groups, and each has a unique faithful 3-dimensional representation up to Galois conjugacy.

The first group has 3-dimensional representation given by:

$$\left\langle g = \begin{pmatrix} \zeta_9 & 0 & 0 \\ 0 & \zeta_9^4 & 0 \\ 0 & 0 & \zeta_9^7 \end{pmatrix}, h = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle$$

where ζ_9 is a root of unity. The subgroup $\langle g^3, h \rangle$ is of type II.

The other non-abelian group of order 27 is given by:

$$\left\langle g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon^2 \end{pmatrix}, h = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle.$$

The subgroup $\langle g, ghg^{-1}h^{-1} \rangle$ is of type II.

\[\square\]

Lemma 7.3. Suppose X is a smooth cubic surface with an action of a finite group G. If G is a subgroup of S_5 then X is G-unirational.

Proof. By Theorem 3.2 it suffices to consider groups G which do not have subgroups of index 2. Thus, G is one of C_3, C_5, A_4 or A_5. The cyclic groups have fixed points so they are G-unirational. The group A_5 only occurs on the Clebsch cubic surface which is A_5-unirational by Hermite’s theorem. It remains to consider $G \simeq A_4$.

There is a unique faithful irreducible representation σ of A_4 of dimension 3. Fixing a basis $\{x_1, x_2, x_3\}$, the group is generated by the two maps

$$g: (x_1, x_2, x_3) \mapsto (-x_1, -x_2, x_3)$$
$$h: (x_1, x_2, x_3) \mapsto (x_2, x_3, x_1).$$

The action of A_4 on \mathbb{P}^3 is of the form $\sigma \oplus \chi$ where χ is a 1-dimensional representation with basis element x_4. The semi-invariants of σ of degree ≤ 3 are

$$1, \ x_1^2 + x_2^2 + x_3^2, \ x_1x_2x_3.$$

We conclude that X is of the form

$$F = ax_1^3 + bx_4(x_1^2 + x_2^2 + x_3^2) + cx_1x_2x_3$$

for some parameters a, b, c and that χ must be the trivial representation.

For general parameters a, b, c, the cubic surface X is non-singular. By construction, this family contains all smooth cubic A_4-surfaces. In particular, a general cubic A_4-surface deforms to the Clebsch cubic surface. There are 6 skew lines invariant under A_5 on the Clebsch surface, so they are a fortiori invariant under A_4. Thus we obtain an A_4-invariant set of 6 lines on any cubic A_4-surface. These lines must also be skew since the intersection form is preserved by the deformation. We have an A_4-equivariant birational
equivalence with \(\mathbb{P}^2 \). The \(A_4 \)-action on \(\mathbb{P}^2 \) lifts to \(\mathbb{C}^3 \) so we conclude that \(X \) is \(A_4 \)-unirational. \(\square \)

Finally, we prove the main theorem for degree \(d = 3 \).

Proof of Theorem 4.6 for \(d = 3 \). We simply need to prove that obstructions B and D are the only obstructions to \(G \)-unirationality.

Consulting Figure 1, we find that all cubic \(G \)-surfaces fall into three (overlapping) cases: either \(G \subset S_5 \), \(G \) is a cyclic group, or \(X \) is a cyclic surface. In the first two cases, the surface is \(G \)-unirational unconditionally. The first case follows from Lemma 7.3. The second case follows since every cyclic group has a fixed point.

It remains only to consider the case where \(X \) is a cyclic surface. First, we consider the case where \(X \) is not the Fermat cubic. In this case \(\text{Aut}(X) \cong H_3(3) \rtimes \langle g \rangle \) where \(g \) is an element of order 2 or 4. In either case, by Theorem 3.2 we may assume \(G \subset H_3(3) \). The implication now follows from Lemma 7.2 since all cyclic and Type I groups have fixed points.

It remains to consider the Fermat cubic. We have an exact sequence

\[1 \to K \to G \to H \to 1 \]

where \(K \) is a subgroup of \(C_3^3 \) and \(H \) is a subgroup of \(S_4 \). By Theorem 3.2 it suffices to assume that \(H \) is trivial, \(C_3 \) or \(A_4 \). We may again handle the cases when \(H \) is trivial or \(C_3 \) via Lemma 7.2.

Only the case \(H \cong A_4 \) remains. The only \(A_4 \)-invariant subgroups \(K \) of \(C_3^3 \) are the trivial group and the full group \(C_3^3 \). If \(K \) is trivial then \(X \) is \(G \)-unirational by Lemma 7.3. If \(K \) is \(C_3^3 \) then \(G \) contains a subgroup of Type II. \(\square \)

Acknowledgements. The author would like to thank I. Dolgachev for useful discussions, and Z. Reichstein for helpful comments, especially a simplification of the proof of Theorem 3.2.

References

[Ban07] Shinzo Bannai. Construction of versal Galois coverings using toric varieties. Osaka J. Math., 44(1):139–146, 2007.

[Ban08] Shinzo Bannai. Versal Galois covers, versal \(G \)-varieties and the Cremona group of the plane. PhD thesis, Tokyo Metropolitan University, 2008.

[Bla06] Jérémie Blanc. Finite abelian subgroups of the Cremona group of the plane. PhD thesis, Université de Genève, 2006.

[BR97] Joe Buhler and Zinovy Reichstein. On the essential dimension of a finite group. Compositio Math., 106(2):159–179, 1997.

[Car72] Roger Carter. Conjugacy classes in the Weyl group. Compositio Math., 25:1–59, 1972.

[CTC79] Jean-Louis Colliot-Thélène and Daniel Coray. L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques. Compositio Math., 39(3):301–332, 1979.

[Cor76] Daniel Coray. Algebraic points on cubic hypersurfaces. Acta Arith., 30(3):267–296, 1976.
Cor77] Daniel Coray. Points algébriques sur les surfaces de del Pezzo. C. R. Acad. Sci. Paris Sér. A-B, 284(24):A1531–A1534, 1977.

DD14] Igor Dolgachev and Alexander Duncan. Fixed points of a finite subgroup of the plane Cremona group, 2014. [arXiv:1408.4042 [math.AG]]

DI09] Igor Dolgachev and Vasily Iskovskikh. Finite subgroups of the plane Cremona group. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, volume 269 of Progr. Math., pages 443–548. Birkhäuser Boston Inc., Boston, MA, 2009.

Dol12] Igor Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge, 2012.

Dom08] Mátéyás Domokos. Covariants and the no-name lemma. J. Lie Theory, 18(4):839–849, 2008.

DR11] Alexander Duncan and Zinovy Reichstein. Versality of algebraic group actions and rational points on twisted varieties, 2011. [arXiv:1109.6093v4 [math.AG]] (To appear in J. Algebraic Geom.).

Dun13] Alexander Duncan. Finite groups of essential dimension 2. Comment. Math. Helv., 88(3):555–585, 2013.

FvL14] Dino Festi and Ronald van Luijk. Unirationality of del Pezzo surfaces of degree two over finite fields, 2014. [arXiv:1408.0269 [math.AG]]

Her61] Charles Hermite. Sur l’invariant du dix-huitième ordre des formes du cinquième degré. J. Crelle, 59:304–3–5, 1861.

Hos97] Toshio Hosoh. Automorphism groups of cubic surfaces. J. Algebra, 192(2):651–677, 1997.

KLS09] Hanspeter Kraft, Roland Lötscher, and Gerald W. Schwarz. Compression of finite group actions and covariant dimension. II. J. Algebra, 322(1):94–107, 2009.

Kol02] János Kollár. Unirationality of cubic hypersurfaces. J. Inst. Math. Jussieu, 1(3):467–476, 2002.

Kra06] Hanspeter Kraft. A result of Hermite and equations of degree 5 and 6. J. Algebra, 297(1):234–253, 2006.

Man86] Yuri Manin. Cubic forms, volume 4 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, 1986. Algebra, geometry, arithmetic, Translated from the Russian by M. Hazewinkel.

RY00] Zinovy Reichstein and Boris Youssin. Essential dimensions of algebraic groups and a resolution theorem for G-varieties. Canad. J. Math., 52(5):1018–1056, 2000. With an appendix by János Kollár and Endre Szabó.

STVA13] Cecília Salgado, Damiano Testa, and Anthony Várilly-Alvarado. On the unirationality of del Pezzo surfaces of degree two, 2013. [arXiv:1304.6798 [math.AG]].

Tok04] Hiro-o Tokunaga. Note on a 2-dimensional versal D_8-cover. Osaka J. Math., 41(4):831–838, 2004.

Tok05] Hiro-o Tokunaga. 2-dimensional versal S_4-covers and rational elliptic surfaces. In Singularités Franco-Japonaises, volume 10 of Sémin. Congr., pages 307–322. Soc. Math. France, Paris, 2005.

Tok06] Hiro-o Tokunaga. Two-dimensional versal G-covers and Cremona embeddings of finite groups. Kyushu J. Math., 60(2):439–456, 2006.