Improvement of garment assembly line efficiency using line balancing technique

Ocident Bongomin1 | Josphat I. Mwasiagi1 | Eric O. Nganyi1 | Ildephonse Nibikora2

1Department of Manufacturing, Industrial and Textile Engineering, Moi University, Eldoret, Kenya
2Department of Polymer, Industrial and Textile Engineering, Busitema University, Tororo, Uganda

Abstract
The current competitiveness of garment manufacturing industries is highly dependent on ability to improve efficiency and effectiveness of resource utilization through proper application of industrial engineering techniques such as line balancing and time study. However, very few apparel industries have comprehended industrial engineering function due to little knowledge on practical application of industrial engineering techniques. The present study aimed at balancing a trouser assembly line using the ranked positional weight technique to increase the line efficiency as well as minimize the number of workstations without violating the constraints: precedence relations, cycle time, and resource type. The empirical study was conducted at Southern Range Nyanza Limited (NYTIL) garment manufacturing facility to demonstrate the practical application of ranked positional weight line balancing technique. Results showed that ranked positional weight method is suitable only for assembly line balancing with no constraint on the resource. However, most complex garment assembly lines consist of a number of different machine types rendering ranked positional weight method practically ineffective for improving line efficiency of a complex garment assembly line. Therefore, profound line balancing using simulation-based optimization to improve the line efficiency of complex garment assembly line should be investigated.

KEYWORDS
assembly line, heuristic line balancing, line efficiency, performance indicators, ranked positional weight, resource constraints

1 INTRODUCTION

Garment manufacturing is one of the oldest, largest, labor intensive, and most dependable industries for developing countries in terms of export-oriented industrialization.1 In this new era of industrial revolution and tough competition,2 it is not just a matter of being the best but to survive long enough in the world market. Thus, for garment manufacturers to remain competitive in the global market, they must be able to respond rapidly to changes in customer demand by improving their productivity3,4 and efficiency.5 This is because productivity and efficiency are the major aspects that determine...
the profits gained or success of any business. Therefore, design of the assembly line and continuous improvement in manufacturing to attain excellence is a requirement since it gives a cutting edge over competitors.

Southern Range Nyanza Limited (NYTIL) is a vertically integrated textile industry with garment manufacturing as the most crucial department in this firm. This is because garment manufacturing is a value addition process and increases profits for this company. However, the production managers in garment manufacturing are frequently faced with the issue of being unable to complete the orders at the scheduled time due to unavailability of a line balancing procedure that could encompass the stochastic nature of the sewing process. The stochastic task time is normally caused by variability of sewing times, machine breakdowns, correcting defective products, and operator breakings such as for changing bobbins and drinking water. Efficient garment manufacturing can be achieved through proper design of paced assembly or sewing line.

Assembly line design problem consists of grouping and assigning a given set of tasks to a number of workstations so as to reduce idle time, labor cost, and maximize the throughput as well as improve line efficiency without violating the number of precedence constraints. This problem is also known as the assembly line balancing problem. Assembly line balancing problems are among the well-known problems in manufacturing systems that belong to non-polynomial (NP)-hard class of problems or complex combinatorial problem. This has captured the interest of researchers in the recent years. In essence, several techniques have been developed and adopted in solving the assembly line balancing problem. The most commonly applied line balancing techniques in apparel industry include heuristics, metaheuristics, simulation, and hybrid approaches. The heuristic approach bases on logic (simple priority rules) and common sense rather than on mathematical proof and is capable of generating one or a few feasible solutions. The most commonly used heuristic line balancing method in apparel industry is ranked positional weight. Although heuristic is one of the oldest line balancing techniques, its application in apparel industries are enormous. This is because heuristic technique provides a simple and better way to plan the sewing lines within a reasonable time than other line balancing techniques. Despite it being an old line balancing technique, very few garment manufacturing industries have comprehended heuristic method due to inadequacy of information and literature on its practical applications.

In this study, deterministic task time has been assumed in garment assembly line balancing with the simplest heuristic technique known as ranked positional weight. The current paper demonstrates line balancing using ranked positional weight with consideration of resource constraint and it is organized as follows: Section 2 briefly provide the relevant literature on the study, while section 3 describes the objective and the methodology of the study. Finally, section 4 presents the results and discussions on the different line balancing scenarios.

2 LITERATURE REVIEW

Time study is the work measurement technique to determine the baseline for future improvement. It measures the time necessary for work process to be completed using the best ways. Collecting times data are absolute requirements for improving the efficiency of operations in a production system. Time study has been used by a number of researchers for productivity and efficiency improvement. For instance, Starovoytova studied rotary screen printing operation in a textile industry so as to improve the operators' performance efficiency. While Khatun studied the effect of time and motion study on productivity in garment sector. Nabi et al. on the other hand undertook a time study to determine the standard minute value (SMV), which was subsequently used to eliminate bottlenecks, reduce idle time, and improve efficiency.

At present, line balancing techniques have received much attention than other line efficiency and process improvement techniques such as lean manufacturing (VSM), Lean-six sigma, Six sigma, and hybrid approach (lean manufacturing and line balancing).

Line balancing techniques involve several constraints that have to be put into consideration for example task assignment, task precedence, cycle time, and resource constraints. This makes line balancing an NP-hard or complex combinatorial problem. Vast researchers have applied line balancing technique for improving performance of assembly lines. Fathi et al. investigated the efficiency of the most commonly used performance measures for minimizing the number of workstations in addressing simple assembly line balancing problem for both straight and U-shaped lines. Kayar and Akalin compared heuristic and simulation methods applied to the apparel line balancing problem. The authors postulated that both techniques can be used efficiently for balancing of an assembly line.
A number of authors focused their studies on comparison of the different techniques for heuristic line balancing. Tomar and Manoria\(^42\) for example applied heuristic-based ranked positional weight method, largest candidate rule, and Computer Method for Sequencing Operations for Assembly Lines (COMSOAL) method to increase the efficiency of an assembly line. Their report showed that all heuristic rules can produce good solutions for the straight-line balancing problem. A similar comparative evaluation was performed by Türkmên et al\(^{15}\) who concluded that all heuristic line balancing techniques could be applied to readymade garment assembly line. Similarly, Jha and Khan\(^{43}\) made a comparison between largest candidate rule, Kilbridge and wester column method and ranked positional weight method. The authors hinted that all the three methods showed better efficiency. However, they reiterated that largest candidate rule is superior to the other methods. In addition, Haq et al.\(^{44}\) compared ranked positional weight method, critical path method, and the shortest processing time. The authors inferred that ranked positional weight method assumes deterministic task time and provides acceptable solution that can solve assembly line balancing problem. In another such concerted investigation by Khan and Jha,\(^{45}\) it was reported that the standard operating time can be well evaluated with the application of ranked positional weight method in the production line.

 Ranked positional weight method also known as Helgeson and Birnie was coined by Helgeson and Birnie at General Electric Company in 1961.\(^{46}\) It is one of the most commonly used heuristic line balancing techniques that has drawn the interest of researchers in the recent years\(^{47}\) because of its capability of providing higher line efficiency than the other counterparts such as probabilistic line balancing technique, Hoffman method, and Kilbridge and wester column method.\(^{24,48}\) Several studies have applied ranked positional weight method for improving efficiency and productivity of garment assembly line. For example, Ikhsan et al.\(^{16}\) used ranked positional weight method for allocation of work elements or tasks to specific workstations. The authors obtained the line efficiency of 84.86% and balance delay of 15.14%. Karabay\(^{49}\) compared ranked positional weight method with two manual or practical line balancing techniques. The author achieved line efficiency of 95.1% and smoothness index of 19.84, which was quite superior than the two manual line balancing techniques. Based on the cited studies, ranked positional weight technique was noted to be suitable for improving garment assembly line efficiency. In essence, ranked positional weight heuristic line balancing technique was used to achieve improved line efficiency of a complex trouser assembly line in this study.

3 | OBJECTIVE AND METHODOLOGY

3.1 | Objective

This research was conducted in Southern Range Nyanza Limited (NYTIL) to balance its garment assembly line using the ranked positional weight method so as to minimize the number of workstations as well as increase line efficiency without violating the precedence relations, cycle time, and resource constraints.

3.2 | Data collection

The data obtained included qualitative and quantitative primary and secondary data. Primary data were obtained through observations, process mapping, time study, and interviews with the trouser sewing line supervisors. They included product model, trouser assembly line, processing time for each task, production process cycle time of each work station, number of operators, number of workstations, production process flow, and current line balancing conditions. Secondary data on the other hand included a brief history and organizational structure of the company, production capacity, production planning data, effective working hours, schedule weekdays, table rating factors, journals, articles, and research results on the theme line balancing. Further, ABC classification method was applied to prioritize the assembly line for the study. Three product models (cap, trouser, and jacket) were identified with their respective assembly lines. By applying ABC classification method with A-priority given to trouser, B-priority to jacket, and C-priority to cap, only trouser with its assembly line was selected for the study. This selection of the product model was solely based on these criteria: (i) potential to improve overall operations, (ii) potential to impact other products, (iii) economic consideration. Table 1 describes the trouser part (Figure 1) and the required quantity per trouser. The stopwatch time study technique was used to measure operation time for each task element involved in trouser assembly line. For this purpose, continuous stopwatch method was used, and 20 measurements were taken for each task.
Trouser part	Part name	Quantity required per trouser
a.	Right flybox	1
b.	Second adjustable with lock	2
c.	Left flybox	1
d.	Front part	2 (left and right)
e.	Knee patch	2 (left and right)
f.	Side pocket	2 (left and right)
g.	Bottom rope	2 (left and right)
h.	Back part	2 (left and right)
i.	Hip pocket	2 (left and right)
j.	Hip flap	2 (left and right)
k.	1st adjustable without lock	2
l.	Waist band	1
m.	Small loop	7
n.	Big loop	7
o.	Button	19
p.	Knee flap	2 (left and right)
q.	Knee pocket	2 (left and right)
r.	Back patch	2 (left and right)
s.	Company tag and size label	2 (tags) and 2 (size label)

TABLE 1 Trouser parts to assembled

3.3 Data processing

Data processing was performed on trouser assembly line time study data. The stages of data processing were carried out as follows;

3.3.1 Calculation of normal time

Normal time is a time when operators start to finish the job without any interference. It is calculated using Equation (1).

\[
\text{Normal time} = \text{Average observed time} \times \text{Rating factor} \tag{1}
\]

The operators’ performances were rated in the range of 75%, 85%, 95%, 105%, 115%, and 125% based on their speed of working and skill level.

3.3.2 Calculation of standard time

Standard time is the requisite time taken by an average skilled operator, working at a normal pace, to perform a specified task using a prescribed method. The calculation of standard time involves computation of time in which the normal time job is multiplied by a factor predetermined allowances as shown in Equation (2).

\[
\text{Standard time} = \text{Normal time} \times (1 + \text{allowances}) \tag{2}
\]

Allowances considered in this study include personal and fatigue allowances, and machine allowances (Table 2). Personal and fatigue are 11% and 9% for women and men, respectively. Adapted from Babu.
3.4 | Performance indicator calculation

The performance measures: number of workstations, cycle time, idle time, efficiency, balance delay, and smoothness index were first determined for the initial line balancing condition.

3.4.1 | Minimum number of workstations

The theoretical minimum number of workstations \((N_t) \) that satisfy workstation cycle time constraints is calculated by Equation (3).

\[
N_t = \frac{\text{total work content time}}{\text{cycle time}}
\]

(3)
3.4.2 | Cycle time

The cycle time is an amount of time for which a job remains in a workstation. It is also defined as “time gap between two successive products coming out from the assembly line” and it is calculated using Equation (4).

\[
\text{Cycle time} = \frac{\text{Production Time per day}}{\text{Unit required per day}}
\]

(4)

3.4.3 | Idle time

This is the period in which no operations are held at a station after all operations are completed, and the workpiece stays idle until being moved to the next station. It is calculated using Equation (5).

\[
\text{Total Idle time} = (\text{Number of workstation} \times \text{Cycle time}) - \text{Total standard time}
\]

(5)

3.4.4 | Balance delay (BD) or loss of balance (LB)

This is the ratio of total idle time over the total time spend on the assembly line. It is defined by Equation (6).

\[
BD = \frac{(\text{Number of tasks} \times \text{Cycle Time}) - \text{Total work content time}}{\text{Number of tasks} \times \text{cycle time}} \times 100
\]

(6)

3.4.5 | Line efficiency

This is the ratio of total workstations time to the cycle time multiplied by the number of workstations. Line efficiency is the most important performance indicator of any assembly line, and it is calculated employing either Equation (7) or (8).

\[
\text{Line efficiency} = (100 - \text{balance delay})
\]

(7)

Or

\[
= \frac{\text{Total work content time}}{\text{number of task} \times \text{cycle time}} \times 100
\]

(8)

3.4.6 | Smoothness index

This is the SD of work distribution between the workstations

\[
\text{Smoothness index} = \sqrt{\frac{\sum_{i=1}^{m} ((T_{\text{Smax}}) - (T_{Si}))^2}{m}}
\]

(9)

where \(Si \) addresses workstation \(i \), \(T_{Si} \) is the total processing times of the tasks assigned to workstation \(Si \), \(m \) is the number of workstations, \(T_{\text{Smax}} \) is the maximum workstation time selected from among the workstations total time.

3.5 | Line balancing

After knowing the condition of the initial state trouser assembly lines, line balancing was performed by using heuristic-based ranked positional weight method. The following procedures for ranked positional weight method were adopted in this study\(^{47,51}\).
In the present study, ranked positional weight method as illustrated in Figure 2 was applied to balance trouser assembly line in two different scenarios as follows:

Scenario 1: Line balancing was done without violating cycle time and precedence constraints.
Scenario 2: Line balancing was done without violating the cycle time, machine type, or resource constraints and precedence constraints.

RESULTS AND DISCUSSION

4.1 Initial line balancing condition

Table 3 shows the calculated standard time for each task, the task precedence relation, and the ranked positional weight for each task. The solution table (see Appendix) for ranked positional weight was also developed. The precedence diagram (Figure 3) shows the relation between 65 tasks (numbers above or below the circles) assigned to 61 workstations (number in the circles). The workstations are linked by the arrows to show how tasks are performed following precedence relation. The precedence relation is the order or sequence by which tasks are supposed to be performed by the operators or helpers on the assembly line.
TABLE 3 Standard time trouser assembly line

Task number	Task descriptions	Resource	Precedence relation	ST (minute)	RPW
1	Buttonhole on left flybox	BH	-	0.315	24.959
2	Front rise overlocks	3thread O/L	1	0.283	24.644
3	Knee patch attaches	SN/L	2	0.929	24.361
4	Side pocket flatlock	F/L	-	0.352	23.982
5	Side pocket overlocks	5 thread O/L	4	0.198	23.631
6	Right flybox overlock	5 thread O/L	-	0.334	22.498
7	Side pocket attaches	SN/L	3–5	0.577	23.432
8	Side pocket topstitches	SN/L	7	0.691	22.855
9	Right flybox attach	SN/L	6–8	0.701	22.164
10	Fly attach	SN/L	9	0.695	21.463
11	Front prep bundling	Helper	10	0.373	20.767
12	Back marking	Helper	-	0.214	23.987
13	Back patch pressing	Helper	-	1.356	25.128
14	Back patch attaches	SN/L	12-13	0.534	23.773
15	Hip pocket cutting	AWM	14	0.247	23.239
16	Hip pocket overlocks	5 thread O/L	15	0.927	22.992
17	Hip flap folding	Helper	-	0.216	22.461
18	Buttonhole on hip flap	BH	17	0.187	23.245
19	Hip flap runstitch	SN/L	18	0.331	23.058
20	Hip flap turning	TM	19	0.240	22.727
21	Hip flap topstitches	SN/L	20	0.421	22.487
22	Hip pocket finish &	SN/L	16-21	0.730	22.065
23	Hip flap attaches	SN/L	22	0.582	21.336
24	Back prep bundling	Helper	23	0.359	20.754
25	Front & back matching	Helper	11-24	0.432	20.395
26	Side seam overlocks	5 thread O/L	25	1.531	19.963
27	Side seam topstitches	F/A	26	1.091	18.431
28	Knee pocket marking	Helper	27	0.362	17.341
29	Knee pocket folding	Helper	-	0.235	22.095
30	Knee pocket topstitch	SN/L	29	1.163	21.860
31	Knee pocket tacking	SN/L	30	0.558	20.697
32	Knee pocket overlocks	3 thread O/L	31	0.238	20.139
33	Knee pocket hemming	SN/L	32	1.270	19.901
34	Knee pocket ironing	Iron press	33	1.652	18.631
35	Knee pocket attaches	SN/L	28-34	1.251	16.979
36	Knee flap folding	Helper	-	0.403	17.294
37	Buttonhole on k. flap	BH	36	0.202	16.891
38	Knee flap runstitch	SN/L	37	0.221	16.689
39	Knee flap turning	TM	38	0.349	16.468
40	Knee flap topstitches	SN/L	39	0.392	16.119

(Continues)
Task number	Task descriptions	Resource	Precedence relation	ST (minute)	RPW
41	Knee flap attaches	SN/L	35–40	1.721	15.728
42	Bar tacking	BT	41	1.560	14.007
43	Back rise overlocks	5 thread O/L	42	0.658	12.447
44	Back rise topstitches	DN/L	43	0.576	11.789
45	Big loop matching	Helper	-	0.076	12.028
46	Big loop runstitch	SN/L	45	0.260	11.951
47	Big loop turning	TM	46	0.151	11.691
48	Big loop topstitches	SN/L	47	0.233	11.540
49	Big loop button hole	BH	48	0.095	11.307
50	Small loop runstitch	LM	-	0.149	13.181
51	Small, big loop, and waist band attach	SN/L	44-49-50	1.819	13.031
52	Waist band topstitch	SN/L	51	1.129	11.213
53	Waist band closing	SN/L	52	1.474	10.084
54	Small loop tacking	SN/L	53	1.685	8.609
55	Inseam overlock	5 thread O/L	54	0.548	6.924
56	Trouser turning	Helper	55	0.355	6.376
57	inseam topstitch	F/A	56	0.671	6.021
58	Adjustable prep	Helper	-	0.142	5.492
59	1st adjustable attach	SN/L	57-58	1.252	5.350
60	Button hole on bottom	BH	59	0.523	4.098
61	Adjustable hemming	SN/L	58	0.164	3.739
62	second adjustable attach	SN/L	60-61	0.688	3.575
63	Bottom rope attach	Helper	62	0.884	2.691
64	Bottom hemming	SN/L	63	0.913	1.808
65	Final bar tacking	BT	64	0.895	0.895
	Total time			41.763	

Abbreviations: BH, button hole machine; BT, bartack machine; DN/L, double needle lockstitch; F/A, feed of arm; LM, loop stitching machine; O/L, overlock machine; RPW, ranked positional weight; SN/L, single needle lockstitch; ST, standard time; TM, turning machine.

The calculation of performance indicators for the initial condition is presented as follows.

a. Number of workstations
 \[= 61 \]

b. Cycle time
 \[= 8 \times \frac{60}{250} \]
 \[= 1.92 \]

c. Theoretical minimum number of workstations
 \[= \frac{41.763}{1.92} \]
 \[= 22 \]

d. Total idle time
 \[= (61 \times 1.92) - 41.763 \]
 \[= 75.357 \]

e. Balance delay
 \[= \frac{(61 \times 1.92 - 41.763)}{61 \times 1.92} \times 100 \]
 \[= 64.34\% \]

f. Line efficiency
 \[= (100-64.34)\% \]
 \[= 35.66\% \]
4.2 | Ranked positional weight line balancing for scenario 1

Ranked positional weight was used to assign tasks to the workstations without violating cycle time (1.92 minutes) and task's precedence relation. The results of the line balancing are presented in Table 4 and illustrated in Figure 4. The workstation total time is summation of each task time assigned in the specified workstation. As shown in Table 4, 65 tasks were assigned to 27 workstations with the total workstations time of 41.763 minutes and the total idle time of 10.077 minutes. However, only workstations number 9, 15, 25, and 27 contributed most to the total idle time. The precedence relations of the 65 assigned tasks in 27 workstations are illustration in Figure 4.

The calculation of performance indicators for scenario 1 is as presented below:

a. Number of workstations
 = 27
b. Cycle time
 = 1.92
c. Total idle time = 27 x 1.92 − 41.763
 = 10.077
d. Balance delay = \(\frac{27 \times 1.92 - 41.763}{27 \times 1.92} \) x 100
 = 19.44%
e. Line efficiency = (100 − 19.44)%
 = 80.56%
f. Smoothness index = \(\sqrt{(1.671 - 1.884)^2 + \cdots + (0.895 - 1.884)^2} \)
 = 2.51.
Workstation number	Task(s) assigned to workstation	Workstation total time (min(s))	Workstation idle time (min(s))
1	13, 1	1.671	0.249
2	2, 3, 12	1.426	0.494
3	14, 17, 7, 18, 15	1.761	0.159
4	19, 4, 16	1.610	0.310
5	8, 20, 5, 6, 21	1.884	0.036
6	9, 29, 22	1.666	0.254
7	30, 10	1.858	0.062
8	23, 11, 24, 31	1.872	0.048
9	25, 32	0.67	1.25
10	26	1.531	0.389
11	33	1.27	0.650
12	34	1.652	0.267
13	27, 28, 36	1.856	0.064
14	35, 37, 38	1.674	0.246
15	39, 40	0.741	1.179
16	41	1.721	0.199
17	42, 50	1.709	0.211
18	51	1.819	0.101
19	43, 45, 46, 44	1.57	0.350
20	47, 48, 49, 52	1.608	0.312
21	53	1.474	0.446
22	54	1.685	0.235
23	55, 56, 57, 58	1.716	0.204
24	59, 60	1.775	0.145
25	61, 62	0.852	1.068
26	63, 64	1.797	0.123
27	65	0.895	1.025
	41.763	**10.077**	

4.3 Ranked positional weight line balancing for scenario 2

In the second scenario, the line balancing was done using ranked positional weight without violating workstation cycle time (1.92 minutes), task precedence relation, and resource (machine type and helpers or operators) constraints. The results of line balancing with scenario 2 are presented in Table 5. As shown, 65 trouser assembly line tasks were assigned in 39 workstations with total workstations time of 41.763 minutes and total idle time of 33.117 minutes. The idle time for workstations number 5, 6, 8, 10, 19, 21, 24, 26, 27, 28, 29, 33, 34, 36, 37, 38, and 39 remained very high because of the restrictions on the resource (machine type and helpers) and the precedence relations. The precedence diagram illustrating the relations between 65 tasks in 39 workstations was presented as shown in Figure 5.

The calculation of performance indicators for scenario 2 is presented as follows:

a. Number of workstations
 = 39

b. Cycle time
 = 1.92
c. Total idle time = $39 \times 1.92 - 41.763 = 33.117$

d. Balance delay = $\frac{39 \times 1.92 - 41.763}{39 \times 1.92} \times 100 = 44.23\%$

e. Line efficiency = $100 - \text{Balance delay} = (100 - 44.23) = 55.77\%$

f. Smoothness index = $\sqrt{(1.356 - 1.858)^2 + \cdots + (0.895 - 1.858)^2} = 5.71.$

Table 6 compares the initial condition/scenario and the two scenarios from ranked positional weight line balancing technique using the performance indicators: number of workstations, total idle time, balance delay, line efficiency, and smoothness index. From Figure 6, it was observed that scenario 1 produced the most well-balanced assembly line with very low smoothness index (2.51) and high line efficiency (80.56%). This confirmed that minimization of workstations contributes to increase of line efficiency and reduction of smoothness index. The closer the smoothness to zero, the better the line balancing. This result is in accordance to the study conducted by Karabay49 and Ikhsan et al16 that achieved line efficiency of 95.1% and 84.86%, respectively. When the resource constraint is put into consideration, it was difficult to achieve high line efficiency and low smoothness index as with scenario 2. This is because resource constraint normally restricts the number of tasks to be allocated in the workstations even if the cycle time and precedence relations are satisfied. This result confirmed that the power and effectiveness of ranked positional weight method for line balancing decreases as the number of constraints to be considered increases. Therefore, the result of this study is in agreement with the study by Türkmen et al.,15 which stressed that as the number of operations and workstations gets higher, applying heuristic line balancing methods also gets harder, more complex and suffer lower efficiency because of the basic obstacle of their applicability.
Workstation number	Task(s) assigned to workstation	Workstation total time (min(s))	Workstation idle time (min(s))
1	13	1.356	0.564
2	1, 18, 37, 49, 60	1.322	0.598
3	2, 5, 6, 32	1.053	0.867
4	3, 14	1.463	0.457
5	12, 17, 29	0.665	1.255
6	4	0.352	1.568
7	7, 19, 8	1.599	0.321
8	15	0.247	1.673
9	16	0.927	0.993
10	20, 39, 47	0.74	1.18
11	21, 9, 22	1.852	0.068
12	30, 10	1.858	0.062
13	23, 31	1.140	0.780
14	11, 24, 25	1.164	0.756
15	26	1.531	0.389
16	33	1.27	0.650
17	34	1.652	0.268
18	27	1.091	0.829
19	28, 36	0.765	1.155
20	35	1.251	0.669
21	38, 40	0.613	1.307
22	41	1.721	0.199
23	42	1.56	0.36
24	50	0.149	1.771
25	51	1.819	0.101
26	43	0.658	1.262
27	45, 56, 58	0.576	1.344
28	46, 48	0.493	1.427
29	44	0.576	1.344
30	52	1.129	0.791
31	53	1.474	0.446
32	54	1.685	0.235
33	55	0.548	1.372
34	57	0.671	1.249
35	59	1.252	0.668
36	61, 62	0.852	1.068
37	63	0.884	1.036
38	64	0.913	1.007
39	65	0.895	1.025

Total time = 41.763 33.117
FIGURE 5 Precedence diagram for scenario 2

TABLE 6 Comparison of line balancing scenarios

S/N	Performance indicators	Initial scenario	Scenario 1	Scenario 2
1.	Number of workstations	61	27	39
2.	Total idle time (min)	75.36	10.08	33.12
3.	Balance delay (%)	64.34	19.44	44.23
4.	Line efficiency (%)	35.66	80.56	55.77
5.	Smoothness index	10.18	2.51	5.71

5 | CONCLUSIONS

The aim of this study was to improve a complex trouser assembly line efficiency using ranked positional weight heuristic method and examine its applicability under two-line balancing scenarios (without and with resource constraint). It was found that ranked positional weight method produces a well-balanced assembly line with higher line efficiency when there is no consideration of resource constraint in each workstation. However, it produces low line efficiency when there is resource constraint. This confirmed the ineffectiveness of using ranked positional weight method for complex garment assembly line balancing, which normally consists of more than one resource type rendering line balancing with no resource constraint practically impossible. This limit the applicability of ranked positional weight technique for achieving greater improvement in line efficiency. Nevertheless, this technique can easily be applied to improve the efficiency of a garment assembly line with few and identical machines especially in knit wear garment manufacturing. However,
FIGURE 6 Comparison of the three scenarios based on five performance indicators

Performance indicators	initial Scenario	Scenario 1	Scenario 2
Number of workstations	61	27	39
Idle time	75.36	10.08	33.12
Balance delay	64.34	19.44	44.23
Line efficiency	35.66	80.56	55.77
Smoothness index	10.18	2.51	5.71

profound line balancing using simulation-based optimization to improve the efficiency of trouser assembly line should be investigated.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support from ACE II-PTRE of Moi University (Credit No. 5798-KE), Kenya towards the research project. Furthermore, the authors acknowledge the management of Southern Range Nyanza Limited (NYTIL) for allowing the research to be conducted in their company.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS

Ocident Bongomin: Conceptualization-Lead, Formal analysis-Lead, Investigation-Lead, Methodology-Lead, Project administration-Lead, Writing-original draft-Lead, Writing-review & editing-Lead. Josphat I. Mwasagi: Conceptualization-Supporting, Formal analysis-Supporting, Investigation-Equal, Methodology-Supporting, Project administration-Supporting, Supervision-Lead, Visualization-Supporting, Writing-original draft-Supporting, Writing-review & editing-Supporting. Eric Nganyi: Conceptualization-Supporting, Formal analysis-Supporting, Investigation-Equal, Methodology-Supporting, Project administration-Supporting, Supervision-Lead, Writing-original draft-Supporting, Writing-review & editing-Supporting. Ildephonse Nibikora: Conceptualization-Supporting, Formal analysis-Equal, Investigation-Supporting, Methodology-Supporting, Project administration-Supporting, Supervision-Lead, Writing-original draft-Supporting, Writing-review & editing-Supporting.

ORCID

Ocident Bongomin https://orcid.org/0000-0002-0430-2722
REFERENCES

1. Abtew MA, Kumari A, Babu A, Hong Y. Statistical analysis of standard allowed minute on sewing efficiency in apparel industry. *Autex Res J*. 2019;0:1-7. https://doi.org/10.2478/aut-2019-0045.

2. Bongomin O, Ocen GG, Nganyi EO, Musinguzi A, Omara T. Exponential disruptive technologies and the required skills of industry 4.0. *J Eng*. 2020;2020:1-17. https://doi.org/10.1155/2020/4280156

3. Nann K, Aung Y, Tun YY. Assembly line balancing to improve productivity using work-sharing method in garment factories. *Int J Trend Sci Res Develop*. 2019;3(5):1582-1587. https://doi.org/10.31142/ijtscr26656.

4. Nabi F, Mahmud R, Islam MM. Improving sewing section efficiency through utilization of worker capacity by time study technique. *Int J Textile Sci*. 2015;4(1):1-8. https://doi.org/10.5923/j.textile.20150401.01.

5. Yasir ASHM, Mohamed NMZN. Assembly line efficiency improvement by using WITNESS simulation S Conference Series. *IOP Mater Sci Eng* 2018;319(012004):0-11. https://doi.org/10.1088/1757-899X/319/1/012004, 012004

6. Senthilraja V, Aravindan P, Sathesh Kumar A. Man power productivity improvement through operator engagement time study. In: *1st International Conference on Recent Research in Engineering and Technology* 2018. Vol 4. Tamil Nadu, India: Explanations on Engineering Letters; 2018:1052-1065.

7. Rane AB, Sudhaker DS, Sunnapwar VK, Santosh R. Improving the performance of assembly line: Review with case study. *Int Conf Nascent Technol Eng Field*. 2015;2015:1-14. https://doi.org/10.1109/ICNTE.2015.7029913.

8. Wickramasekara AN, Perera HSC. An improved approach to line balancing for garment manufacturing. *Vjm*. 2016;02(1):23-40.

9. Urban TL, Chiang W. Designing energy-efficient serial production lines: The un paced synchronous line-balancing problem. *Eur J Operat Res*. 2015;000:1-13. https://doi.org/10.1016/j.ejor.2015.07.015.

10. Dang QV, Pham K. Design of a footwear assembly line using simulation-based ALNS. *13th Global Conference on Sustainable Manufacturing—Decoupling Growth from Resource Use*. Vol 40. Binh Duong, Vietnam: Procedia CIRP; 2016:596-601. https://doi.org/10.1016/j.procir.2016.01.140.

11. Make MRA, Rashid MFFA, Razali MM. A review of two-sided assembly line balancing problem. *Int J Adv Manuf Technol*. 2016;89:1743-1763. https://doi.org/10.1007/s00170-016-9158-3.

12. Dinh MH, Truong VL, Pha TT, Nguyen VD, Do PT, Nguyen DN. Simulated annealing for the assembly line balancing problem in the garment industry. *The Tenth International Symposium on Information and Communication Technology (SoICT 2019)*, December 4–6, 2019, *Hanoi - Ha Long Bay, Viet Nam*. New York, NY: Association for Computing Machinery; 2019:36-42. https://doi.org/10.1145/3368926.3369698/0.

13. Ghadiri M, Ali N, Kashan H, Mahdi S. A novel competitive hybrid approach based on grouping evolution strategy algorithm for solving U-shaped assembly line balancing problems. *Product Eng*. 2018;12:555-566. https://doi.org/10.1007/s11740-018-0836-x.

14. Rossoni M, Colombo G, Ippolito M, Furini F, Ascher AE. Assembly line balancing and configuration: An alternative approach for design and planning. *International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*. Charlotte, NC: ASME; 2017:1-9.

15. Türkmen A, Yesil Y, Kayar M. Heuristic production line balancing problem solution with MATLAB software programming. *Int J Cloth Sci Technol*. 2016;28(6):750-779. https://doi.org/10.1108/IJCST-01-2016-0002.

16. Ikhsan S, Anastasia TU, Prasetio A, Albaladejo M, Guo FK. Production layout improvement by using line balancing and systematic layout planning (SLP) at PT. XYZ. *IOP Conf Series: Mater Sci Eng*. 2018;309(012116):1-7. https://doi.org/10.1088/1757-899X/309/1/012116.

17. Kharuddin MH, Ramli MF, Masran MH. Line balancing using heuristic procedure and simulation of assembly line. *Indonesian J Elect Eng Comput Sci*. 2020;17(2):774-782. https://doi.org/10.11591/ijeecs.v17.i2.pp774-782.

18. Yemane A, Gebremicheal G, Meraha T, Hailemicheal M. Productivity improvement through line balancing by using simulation modeling (case study Alarma garment factory). *J Optimizat Indus Eng*. 2019;13(1):153-165. https://doi.org/10.22094/JOIE.2019.567816.1565.

19. Simea H, Janab P, Pangha D. Feasibility of using simulation technique for line balancing in apparel industry. *Procedia Manuf*. 2019;30:300-307. https://doi.org/10.1016/j.promfg.2019.02.043.

20. Areagi W, Serajul H, Ivan M. Optimal layout design by line balancing using simulation modeling. *Proceedings of the International Conference on Industrial Engineering and Operations Management*. Bogotá, Colombia: IEOM society international; 2017: 228-245.

21. Qattawi A, Madathil SC. Assembly line design using a hybrid approach of lean manufacturing and balancing models. *Product Manuf Res*. 2019;7(1):125-142. https://doi.org/10.1080/21693277.2019.1604274.

22. Grzechwa W. *Assembly Line—Theory and Practice*. Rijeka, Croatia: InTech; 2011.

23. Islam S, Sarkar S, Parvez M. Production efficiency improvement by using tecnomatix simulation software and RPWM line balancing technique: A case study. *Am J Ind Bus Manag*. 2019;9:809-820. https://doi.org/10.4236/ajibm.2019.94054.

24. Kayar M, Akalin M. Comparing heuristic and simulation methods applied to the apparel assembly line balancing problem. *Fibres Tex East Eur*. 2016;2(116):131-137. https://doi.org/10.5604/12303666.1191438.

25. Chen JC, Chen C-C, Su L-H, Wu H-B, Sun C-J. Assembly line balancing in garment industry. *Expert Syst Appl*. 2012;39(11):10073-10081. https://doi.org/10.1016/j.eswa.2012.02.055.

26. Chen JC, Chen C, Yuan C, et al. Assembly line balancing problem of sewing lines in garment industry. *Int Conf Ind Eng Operat Manag*. Bali, Indonesia: Elsevier; 2014:1215-1225. https://doi.org/10.1016/j.eswa.2012.02.055.

27. Nallusamy S, Muthamizhmaran S. Enhancement of productivity and overall equipment efficiency using time and motion study technique—A review. *Adv Eng Forum*. 2016;14:55-62. https://doi.org/10.4028/www.scientific.net/AEF.14.59.
28. Immawan T, Kurniawan R. Analysis of line balance sound board glue production on assembly grand piano process: Case study PT Yamaha Indonesia idle time. In: Adv Ergonomics Manuf. 2016;349-359. https://doi.org/10.1007/978-3-319-41697-7.
29. Ortiz CA. Kaizen Assembly: Designing, Constructing, and Managing a Lean Assembly Line. Vol 27. Boca Raton, FL: Taylor & Francis; 2006. doi:https://doi.org/10.1108/aa.2007.03327aae.001
30. Starovoytova D. Time-study of rotary-screen-printing operation time-study of rotary-screen-printing operation. Indus Eng Lett. 2017;07(04):24-35.
31. Khatun MM. Effect of time and motion study on productivity in garment sector. Int J Scient Eng Res. 2014;5(5):825-833.
32. Mothilal B, Prakash C. Fashion technology & textile engineering implementation of lean tools in apparel industry to improve productivity and quality. Current Trends in Fashion Technology & Textile Engineering. 2018;4(1):9-14. https://doi.org/10.19080/CTFTTE.2018.04.555628.
33. Kays HME, Prodhan S, Karia N, Karim ANM, Sharif SB. Improvement of operational performance through value stream mapping and Yamazumi chart: A case of Bangladeshi RMG industry. Int J Recent Technol Eng. 2019;8(4):11977-11986. https://doi.org/10.35940/ijrte.D9926.118419.
34. Klimecka-tatar D, Shinde V. Improvement of manual assembly line based on value stream mapping (VSM) and effectiveness coefficient. Quality Production Improvement. Sciendo. Vol 1; 2019:537-544. https://doi.org/10.2478/cqpi-2019-0072.
35. Gouveia M. Improving manual assembly lines devoted to complex electronic devices by applying lean tools. Proc Manuf. 2018;17:663-671. https://doi.org/10.1016/j.promfg.2018.07.153.
36. Eugenia M, Barrientos S, Hinojosa VA, et al. Line balancing in assembly line. A case study. Proceedings of the International Conference on Industrial Engineering and Operations Management. Paris, France: IEOM Society International; 2018:2476-2486.
37. Wang C, Liu C. An empirical study of the machine assembly efficiency improvement based on lean six sigma technique. TEM J. 2019;8(2):471-476. https://doi.org/10.18421/TEM82-21.
38. Mridha JH, Hasan SMM, Shahjalal M, Ahmed F. Implementation of six sigma to minimize defects in sewing section of apparel industry in Bangladesh. Global J Res Eng. 2019;19(3):1-8.
39. Nagi M, Chen FF, Wan H. Throughput rate improvement in a multiproduct assembly line using lean and simulation modeling and analysis. Proc Manuf. 2017;11:593-601. https://doi.org/10.1016/j.promfg.2017.07.153.
40. Zhang Z, Cheng W. Improved heuristic procedure for mixed-model U-line balancing problem with fuzzy times. Proceedings of China Modern Logistics Engineering. Chengdu, China: Springer Berlin Heidelberg; 2015:395-406. https://doi.org/10.1007/978-3-662-44674-4.
41. Fathi M, Fontes DBMM, Moris MU, Gholakhoo M. Assembly line balancing problem: A comparative evaluation of heuristics and a computational assessment of objectives. J Model Manag. 2017;13:1-22. https://doi.org/10.1108/JMM2-03-2017-0027.
42. Tomar A, Manoria A. Increasing line efficiency with COMSOAL, RPW and LCR methods of assembly line balancing problem. Int J Soft Hard Res Eng. 2016;4(1):23-27.
43. Jha PS, Khan MS. An experimental study on the automotive production line using assembly line balancing techniques. Int J Mech Eng Technol. 2017;8(3):22-33. http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=8&IType=3.
44. Haq WU, Kaushik A, Taquee M. An improvement in assembly line balancing problem using critical path model. Int J Adv Res Develop. 2017;2(5):382-387.
45. Khan MS, Jha S. Evaluation of standard time with the application rank positional weighted method in the production line. Int J Mech Product Eng Res Develop. 2017;7(2):73-80.
46. Rahman M, Nur F, Talaputra S. An integrated framework of applying line balancing in apparel manufacturing organization: A case study. J Mech Eng. 2014;ME 44(2):117-123.
47. Mahmut Kayar MA. A research on the effect of method study on production volume and assembly line efficiency. TEKSTİL Ve KONFEKSİYON. 2014;24(6):228-239.
48. Eryuruk SH, Kalaoglu F, Baskak M. Assembly line balancing in a clothing company. FIBRES & TEXTILES in Eastern Europe. 2008;16(1):93-98.
49. Karabay G. A comparative study on designing of a clothing assembly line. Tekstil Ve Konfeksiyon. 2014;24(1):124-133.
50. Babu VR. Industrial Engineering in Apparel Production. New Delhi, India: Woodhead Publishing India Pvt. Ltd; 2012. doi:https://doi.org/10.1533/9780857095541
51. Ghutukade ST, Sawant SM. Use of ranked position weighted method for assembly line balancing. Int J Adv Eng Res Studies. 2013;01-03.

AUTHOR BIOGRAPHY

Bongomin Ocident is a Postgraduate Student pursuing Master of Science degree in Industrial Engineering from the Department of Manufacturing, Industrial and Textile Engineering at Moi University, Kenya. He holds a Bachelor's degree in Textile Engineering from Busitema University-Uganda. Recently, he obtained short course training certificate on rapid prototyping for Internet of Things (IoT) from University of Rwanda-College of Science and Technology, Kigali, Rwanda. Short course training certificate on Mechatronics Engineering from Moi University, School of Engineering, Eldoret, Kenya. His research areas are Operation research, Process Simulation, Process Modeling, Process Optimization, Industry 4.0, Assembly line balancing and design, Time and motion study, Advanced manufacturing and maintenance systems, Industrial design and automation.
APPENDIX

Ranked positional weight solution table.

1–65 along the first column represent the tasks numbers and along the first row represent the tasks precedence relation. The last column of the solution table is the ranked positional weight (RPW) for each task. The sign (*) represent the task time of the precedence task and the summation of each precedence task time (*) give the ranked positional weight of the specified task number.