Health influenced by genetics: A first comprehensive analysis of breast cancer high and moderate penetrance susceptibility genes in the Tunisian population

Maroua Boujemaa¹, Najah Mighri¹, Lotfi Chouchane²,³,⁴, Mohamed Samir Boubaker¹,⁵, Sonia Abdelhak¹, Hamouda Boussen¹,⁶, Yosr Hamdi¹,⁴,⁵⁺

¹ Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia, ² Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, United States of America, ³ Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, United States of America, ⁴ Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar, ⁵ Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia, ⁶ Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia

* yosr.hamdi@pasteur.utm.tn

Abstract

Significant advances have been made to understand the genetic basis of breast cancer. High, moderate and low penetrance variants have been identified with inter-ethnic variability in mutation frequency and spectrum. Genome wide association studies (GWAS) are widely used to identify disease-associated SNPs. Understanding the functional impact of these risk-SNPs will help the translation of GWAS findings into clinical interventions. Here we aim to characterize the genetic patterns of high and moderate penetrance breast cancer susceptibility genes and to assess the functional impact of non-coding SNPs. We analyzed BRCA1/2, PTEN, STK11, TP53, ATM, BRIP1, CHEK2 and PALB2 genotype data obtained from 135 healthy participants genotyped using Affymetrix Genome-Wide Human SNP-Array 6.0. Haplotype analysis was performed using Haplovew.V4.2 and PHASE.V2.1. Population structure and genetic differentiation were assessed using principal component analysis (PCA) and fixation index (FST). Functional annotation was performed using In Silico web-based tools including RegulomeDB and VARAdb. Haplotype analysis showed distinct LD patterns with high levels of recombination and haplotype blocks of moderate to small size. Our findings revealed also that the Tunisian population tends to have a mixed origin with European, South Asian and Mexican footprints. Our findings will help to better understand the genetic basis of breast cancer by guiding upcoming genome wide studies in the Tunisian population. Putative functional SNPs may be used to develop an
Introduction

Breast cancer is the most common malignancy among women and the first leading cause of cancer death in females worldwide [1]. In Tunisia, it represents 30% of all female malignancies, with an incidence of 30/100000 making it a major public health concern [2, 3]. It is also characterized by an early age at diagnosis, ten years younger than that observed in western countries [4, 5]. About 5–10% of all breast cancer cases can be attributed to hereditary factors and up to 30% of which are due to germline mutations in BRCA1/2 genes [6]. Other less frequently altered genes, namely CDH1, PTEN, STK11 and TP53, have been also found to increase breast cancer risk. Mutations in these genes account for approximately 5% of the familial breast cancer risk [7, 8]. In addition, more frequent, but less penetrant germline mutations have been identified in families with breast cancer in genes such as CHEK2, ATM, PALB2, and BRIP1 [9]. Breast cancer has a heterogeneous genetic component. The frequency and spectrum of mutations in predisposing genes vary widely among populations. Some mutations are observed in distinct populations and others are ethnic specific due to potential founder effect [10, 11]. This interethnic variability is highly influenced by the genetic background and the genetic structure of a given population that play an important role in disease susceptibility. Indeed, genetic patterns, including linkage disequilibrium (LD) profiles, haplotype structure and allele frequencies, differ from one ethnic group to another. Characterizing these genetic patterns may help to decipher the biological mechanisms behind breast cancer development [12].

Furthermore, Genome-wide association studies (GWAS) have successfully mapped thousands of loci associated with complex human diseases and phenotypes including breast cancer [13, 14]. So far, more than 170 common genetic variants associated with breast cancer risk have been identified. These common variants account for about 18% of the familial relative risk [14].

To translate GWAS findings into biological insights towards clinical applications, it is crucial to understand the functional impact of disease risk SNPs. These latter, often lie in non-coding regions, presumably in regulatory regions, such as distal enhancers, transcription factor (TF) binding sites, and accessible chromatin regions [15].

Various studies have shown that disease-associated variants were considerably enriched in regulatory elements that are widely spread across the human genome. Indeed, several variants for instance rs1198588 (located upstream MIR137HG), rs4442975 (LOC101928278) and rs117480515 (TNFAIP3) have been found to affect the TF binding sites and to regulate gene expression [15]. It was demonstrated also that rs4442975, which is associated with breast cancer, disrupts the recruitment of FOXA1 and interacts with the IGFBP5 promoter [16]. An increasing number of studies have also shown that genetic variations located within the 3’UTR region may disrupt existing or create new miRNA binding sites which promote disease development and cancer pathogenesis [17].

To this end, and to improve our knowledge on the genetic background and predisposition to breast cancer in the Tunisian population we have used genotype data of 135 healthy Tunisian individuals to characterize the genetic patterns of high and moderate penetrance breast cancer susceptibility genes and to assess the functional impact of non-coding SNPs identified within these genes.
Materials and methods

Studied population

The study cohort comprised a total of 135 healthy individuals (103 men and 32 women) originating from distinct regions of Tunisia. No evidence of personal or family history of breast or other malignancies have been detected in these families. Indeed, a detailed family history questionnaire was conducted in order to collect medical information (cancer and genetic diseases) of all family members including first, second- and third-degree relatives or any other family member with personal history of cancer. Accordingly, only subjects with no family history of cancer were selected.

Written informed consent was obtained from all subjects prior to specimen collection. This study was conducted in accordance with the ethical standards of Helsinki declaration and approved by the biomedical ethics committee of Institut Pasteur de Tunis (Tunis, Tunisia-Registration numbers, PV09/06 IRB# 0,000,000,044).

Genotyping data analysis and SNP selection

Genotyping data of high and moderate penetrance breast cancer susceptibility genes relative to 135 healthy participants previously investigated using Affymetrix Genome-Wide Human SNP Array 6.0 [18]. were analyzed. SNPs detected in each gene of interest namely BRCA1, BRCA2, PTEN, STK11, TP53, BRIP1, CHEK2 and PALB2 as well as those flanking 50kb on either side, covering the surrounding regulatory regions, were extracted using PLINK version 1.9 [19]. Variants deviating from the Hardy-Weinberg equilibrium (HW p-value cutoff $< 10^{-4}$) and with less than 75% of genotype data were excluded. A total of 387 variants were considered for further analysis. Genotype data, covering the selected SNPs, of individuals from 8 distinct populations of the 1000 genomes project Phase III were downloaded [20]. using the DataSlicer ensembl’s tool (https://www.ensembl.org/Homo_sapiens/Tools/DataSlicer). The 8 investigated populations are the followings: Utah Residents (CEPH) with Northern and Western European Ancestry (CEU), Han Chinese in Beijing, China (CHB), Gujarati Indian from Houston, Texas (GIH), Japanese in Tokyo, Japan (JPT), Luhya in Webuye, Kenya (LWK), Mexican Ancestry from Los Angeles USA (MXL), Toscani in Italia (TSI), Yoruba in Ibadan, Nigeria (YRI).

Haplotype analysis

Haploview version 4.2 was used for the analysis of LD patterns and haplotype blocks as well as for the detection of tagging SNPs based on the genotype data of the 135 healthy Tunisian subjects. LD blocks were defined according to the haplotype block definition of Gabriel which defines a pair of SNPs to be in "strong LD" if the one-sided upper 95% confidence bound on D' is > 0.98 and the lower bound is above 0.7 [21].

In each sample, the genotype frequencies for each SNP were checked for consistency between the observed values and those expected from Hardy-Weinberg equilibrium using the same software. We used the program PHASE version 2.1 in order to estimate haplotypes distribution of BRCA1 and BRCA2 genes using genotype data of tagging SNPs. PHASE implements a Bayesian statistical method for reconstructing haplotypes from population genotype data [22, 23]. The resulting haplotypes in addition to those of 8 populations (CEU, CHB, GIH, JPT, LWK, MXL, TSI and YRI) of the 1000 genomes project (constructed using PHASE2.1) were aligned with MEGA version 7 [24]. These haplotypes were then used to construct a haplotype network using Network software 5.0.0.1 (http://www.fluxus-engineering.com/netwinfo.htm) in order to assess intrapopulation variability in haplotype distribution. Only haplotypes having frequency $>1\%$ were considered for the Haplotype Network analysis.
Population structure and genetic diversity analysis

Population structure and genetic differentiation were evaluated using principal component analysis (PCA) and fixation index (FST).

PCA was performed using the toolset Plink1.9. The two first PCAs were then plotted using the ggplot2 R package [25]. When performing PCA analysis only SNPs with the following criteria were considered: HWE p-value > 0.0001, have a genotyping call rate of greater than 95%, MAF ≥0.05, and r² < 0.6. FST-values were calculated using Plink1.9 based on the method of Weir and Cockerham [19]. FST-values range from 0 to 1. High Fst implies a considerable degree of differentiation among populations while values near 0 indicate little genetic subdivision.

Functional effect prediction

To predict the functional impact of the studied SNPs and to identify functional variants that could contribute to disease risk, several In Silico prediction tools have been used. Since most of the variations covered by SNP arrays are non-coding, we have used tools and databases providing annotation information on non-coding SNPs.

To prioritize variations, we have proceeded as follows: 1) RegulomeDB, a database that annotates SNPs with known and predicted regulatory elements in the intergenic regions of the H. sapiens genome, was used to analyze the regulatory effects of noncoding variants [26].

2) Top ranked SNPs (RegulomeDB score = 1) were then investigated using the GTEx portal to evaluate the association of potential functional variants with gene expression in breast mammary tissue [27] 3) SNPnexus [28] and VARAdb [15] databases were used to annotate variations and to retrieve regulatory features of the investigated SNPs while SNPinfo web server was used to predict the potential miRNA binding sites (https://snpinfo.niehs.nih.gov/cgi-bin/snpinfo/snpfunc.cgi).

Statistical analysis

Comparison of allele frequencies of the candidate SNPs was performed using Chi-square test with one degree of freedom. Bonferroni’s adjustments were applied for the selected SNPs and a p-value < 0.05 was considered statistically significant.

miRNAs pathways investigation

We determined the pathways that are regulated by miRNA using miR+Pathway (http://www.insect-genome.com/miR-pathway) that provide information regarding miRNA-target interactions.

Results

In the current study, we have assessed linkage disequilibrium and haplotype diversity within high and moderate penetrance breast cancer susceptibility genes in the Tunisian population through the analysis of 387 SNPs identified in BRCA1, BRCA2, STK11, PTEN, TP53, ATM, BRIP1, CHEK2 and PALB2 genes.

We have also investigated the functional impact of the identified SNPs and selected putative functional variants that may contribute to disease susceptibility. Interpopulation variability between the Tunisian population and 8 other distinct populations of the 1000 genomes project was also assessed.
Haplotype analysis

Haplotype analysis was performed for each gene of interest. Linkage Disequilibrium (LD) profiles and haplotype structure within the Tunisian population and those of the 1000 genomes project are illustrated in Fig 1. In the Tunisian population, haplotype analysis revealed high levels of recombination across the investigated genes. In fact, most of the variations show low levels of LD and haplotype blocks are medium to small separated by recombination hotspots regions. The smallest blocks were observed in BRCA2, PTEN, STK11 and TP53 genes in favor of higher recombination rates in these genes compared to the others. When comparing haplotype structure of the characterized ethnicities we note that the Tunisian population tends to have LD patterns comparable to that observed in populations with African ancestries namely Yoruba in Ibadan, Nigeria and Luhya in Webuye, Kenya. However, the Tunisian population seems to have smaller haplotype blocks compared to all the other worldwide populations and this can be clearly observed in BRCA1, BRCA2 and ATM genes. Particularly for BRIP1 gene, LD patterns and haplotype blocks are more likely similar to those observed in American population with Mexican Ancestry. To assess the genetic diversity of the Tunisian population we

![Fig 1. LD patterns and haplotype structure of high and moderate penetrance breast cancer susceptibility genes in the Tunisian population and 8 populations of the 1000 genomes project. LD blocks were constructed using Haploview program version 4.2. In each box the intensity of the shadow represents the increasing strength of LD. White blank boxes represent lack of LD while dark boxes signify strong LD patterns. Tagging SNPs are highlighted in bold.](https://doi.org/10.1371/journal.pone.0265638.g001)
have built a haplotype network for the major susceptibility genes \textit{BRCA1} and \textit{BRCA2}. Haplotypes used to construct the network are given in S1 Table.

For the \textit{BRCA1} gene a total of 29 haplotypes were analyzed. The H1 haplotype was the most common (n = 511) occurring in all analyzed populations except that from Yoruba in Ibadan (Fig 2). The second most common haplotype was H2 (n = 252) and was observed across all populations included in this study. As shown in Fig 2 all haplotypes identified in the Tunisian population are shared with more than one other population. Three haplotypes namely H17, H21, and H25 are specific to those with African ancestry TUN-LWK-YRI. Regarding \textit{BRCA2} gene, 87 haplotypes were studied. The most frequent haplotype was H29 found in 4 populations CHB, GIH, JPT and MXL. Haplotypes H1, H3, H4, and H6 were found to be specific to the Tunisian population.

Furthermore, we have calculated allele frequencies and defined haplotype tagging SNPs (htSNPs) for each gene of interest (S2 and S3 Tables).

Population structure and genetic diversity analysis

To further investigate the genetic diversity of the Tunisian population and to assess its genetic ancestry, a PCA was performed. This latter showed that the Tunisian population is clustered...
with populations of European (CEU & TSI), South Asian (GIH), and Mexican ancestry (MXL) (Fig 3). The plot also clearly reveals that populations of African ancestry (LWK and YRI) are distinguished from non-African populations and form a distinct cluster.

Furthermore, we used Wright’s fixation index Fst to evaluate the genetic divergence among Tunisian and the other 8 worldwide populations (S1 Appendix). Fst values ranged from 0 to 0.496. The highest levels of differentiation were encountered in comparison with populations of African (YRI = 0.442 & LWK = 0.426) and East Asian (JPT = 0.469 & CHB = 0.364) ethnicity. These results support the findings of the PCA and indicate that the genetic background of the Tunisian population is closer to that of populations with non-African ancestry.

Functional annotation

The vast majority of SNPs characterized from genotyping data are localized in untranslated regions. Given that non-coding elements can have diverse roles in the regulation of protein-coding genes, we performed functional annotation using RegulomeDB to identify potential functional variants. RegulomeDB uses a scoring system to classify variations. Lower scores indicate increasing evidence for a variant to be located in a functional region [26]. To prioritize candidate functional variants only top ranked ones, those belonging to category 1, were considered for further analysis. These variations are likely to affect binding and are linked to the expression level of a target gene. These SNPs were then explored in the GTEx database to evaluate their association with gene expression in breast mammary tissue. Additional regulatory features were also assessed using SNP Nexus, VARAdb and SNPinfo web-based tools. A total of 28 potentially functional SNPs, with supporting evidence of regulatory functions were selected (Table 1).

In the BRCA1 gene, 6 putative functional variants were detected (Table 1). All these variations are associated with the expression levels of NBR2, a non–protein coding gene that resides adjacent to BRCA1. Furthermore, the 3 first SNPs (rs1043284, rs2271539, rs1567832) were located in typical enhancers and among these variants rs2271539 lies in H3K4me3 histone modification region. We have also found that rs8176318 sets in an open chromatin region while rs4793197 was located in enhancers targeting BRCA1, IFI35, VAT1 and RUNDCL genes. Additional in silico analysis showed that rs1043284, rs10840, rs8176318 are predicted to alter
Table 1. Putative functional SNPs identified in high and moderate penetrance breast cancer susceptibility genes.

Gene	Rs ID	RegulomeDB Score	GTEx-eQTL in Breast-Mammary tissue	Regulatory features	Putative altered miRNA binding sites
BRCA1	rs1043284	Id	NBR2 (p-value = 0.000031) and IFI35 (p-value = 9.3e-7)	Located in typical enhancers in breast epithelium tissue (ENCODE data)	hsa-miR-1321, hsa-miR-220c, hsa-miR-513a-5p, hsa-miR-513b, hsa-miR-556-5p, hsa-miR-659 (miRanda)
	rs2271539	f	NBR2 (p-value = 1.1e-20), CTD-3199J23.6 (p-value = 0.000017), LINCO00854 (p-value = 0.000025)	Located in typical enhancers in breast epithelium tissue (ENCODE data) and in regions with histone modifications with H3K4me3 mark (ENCODE & Roadmap data)	
	rs1567832	f	NBR2 (p-value = 1.2e-17), CTD-3199J23.6 (p-value = 7.8e-7), RUNDC1 (p-value = 0.000015), LINCO00854 (p-value = 0.000023)	Located in typical enhancers in breast epithelium tissue (ENCODE data)	hsa-miR-33a, hsa-miR-33b, hsa-miR-450a, hsa-miR-450b-5p, hsa-miR-507, hsa-miR-544, hsa-miR-663b, hsa-miR-892a (miRanda); mmu-miR-466a-5p, mmu-miR-466b-5p, mmu-miR-466c-5p, mmu-miR-466e-5p (Sanger)
	rs10840	f	NBR2 (p-value = 0.0000074), IFI35 (p-value = 2.2e-12)	Located in typical enhancers in breast epithelium tissue (ENCODE data)	
	rs176318	f	NBR2 (p-value = 6.1e-64), LINCO00854 (p-value = 3.2e-8), CTD-3199J23.6 (p-value = 3.6e-8), RND2 (p-value = 0.000016)	Located in open chromatin regions in fibroblast of mammary gland in primary cells (ENCODE data)	hsa-miR-1182, hsa-miR-149, hsa-miR-345, hsa-miR-544, hsa-miR-639 (miRanda); mmu-miR-540-5p (Sanger)
	rs4793197	f	NBR2 (p-value = 1.1e-20), CTD-3199J23.6 (p-value = 1.1e-8), LINCO00854 (p-value = 2.6e-8), RND2 (p-value = 0.0000074)	Located in enhancers targeting BRCA1, IFI35, VAT1, RUNDC1 genes in Breast Myoepithelial Primary Cells (Roadmap127 epigenome samples data)	
BRCA2	rs206336	f	No significant eQTLs	Located in typical enhancers in breast epithelium tissue (ENCODE data) and in regions with histone modifications with H3K4me3 mark (ENCODE & Roadmap data)	Located in open chromatin regions in breast tumors (TCGA data)
	rs206337	f	No significant eQTLs	Located in typical enhancers in breast epithelium tissue (ENCODE data) and in regions with histone modifications with H3K4me3 mark (ENCODE & Roadmap data)	Located in open chromatin regions in breast tumors (TCGA data) and in breast epithelium tissue (ENCODE data)
	rs798273	b	No significant eQTLs	Associated with CG030 gene expression in breast tumors (p-value = 0.000116) (PancanQTL data)	
STK11	rs2488	d	C19orf24 (p-value = 1.1e-18)	Located in super enhancers in breast epithelium tissue (ENCODE data) and in regions with histone modifications with H3K4me3 mark (ENCODE & Roadmap data)	Associated with CUL5 expression (p-value = 0.000575) in breast tumors (PancanQTL data)
TP53	rs1050540	f	EFNB3 (p-value = 0.000027)		hsa-miR-579 (miRanda)
	rs1050541	a	No significant eQTLs	Associated with ATM expression in breast tumors (p-value = 0.000362) (PancanQTL data)	hsa-miR-1224-5p, hsa-miR-1225a, hsa-miR-1255b, hsa-miR-1265, hsa-miR-1303, hsa-miR-1321, hsa-miR-765, hsa-miR-768-5p (miRanda)
ATM	rs228591	f	No Significant eQTLs		
	rs227073	f	No Significant eQTLs	Located in breast cancer-associated enhancer targeting ATM gene (DiseaseEnhancer data) Associated with CUL5 expression (p-value = 0.000575) in breast tumors (PancanQTL data)	
CHEK2	rs5752811	f	No Significant eQTLs	Located in super enhancers in Breast epithelium tissue (ENCODE data) Located in open chromatin regions in breast tumors (TCGA data) and in breast epithelium tissue (ENCODE data)	(Continued)
Gene	Rs ID	GTEx-eQTL in Breast-Mammary tissue	Regulatory features	miRNA binding sites	
------	-------	------------------------------------	---------------------	-------------------	
PALB2	rs11642434	Located in tumorigenesis-associated enhancer (EnDisease data)	Located in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	hsa-miR-136, hsa-miR-508-3p (miRanda); hsa-miR-181a-3p (TarBase)	
		Located in open chromatin regions in breast tumors (TCGA data)	Located in tumorigenesis-associated enhancer (EnDisease data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
		Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)	Located in tumorigenesis-associated enhancer (EnDisease data) and in regions with histone modifications in breast epithelium tissue with H3K4me3 mark (ENCODE& Roadmap data)		
the binding sites of several miRNAs including hsa-miR-149, hsa-miR-544 and hsa-miR-639. For BRCA2, 3 candidate variants were selected namely rs206336, rs206337 and rs798273. rs206336 and rs206337 were located in typical enhancers, in accessible chromatin regions and lie also in the H3K4me3 histone modification region. For STK11, rs12488 was associated with the expression levels of C19orf24 in both breast mammary tissue and breast tumors. It also sets in super enhancers and in chromatin regions with H3K4me3 mark.

Considering TP53 gene, rs1050540 was predicted to alter the binding sites of hsa-miR-579 while rs1050541 seems to affect the binding sites of 8 distinct miRNAs such as hsa-miR-1224-5p and hsa-miR-1265. For the ATM gene, rs228591 was found to be associated with ATM expression in breast tumors (p-value = 0.000362) and rs227073 was located in breast cancer-associated enhancer targeting ATM gene. In PALB2, 13 candidate functional variants were selected (Table 1). These latter were associated with gene expression of DCTN5 and were located in tumorigenesis-associated enhancers.

PALB2_rS6497674 was located in open chromatin regions, whereas rs380618 was located in chromatin regions with H3K4me3 mark. Interestingly, rs120963 was located in a tumorigenesis-associated enhancer, associated with histone mark H3K4me3 and was predicted to strongly affect the binding of 3 TFs TP53, STAT3 and CEBPG. It was also located in enhancers targeting PALB2, NDUFAB1, UBFD1, EARS2, DCTN5 and COG7 genes.

Allele frequency comparison between different ethnic groups

The pairwise comparison of allele frequencies of the candidate SNPs between the Tunisian population and those of the 1000 genomes project revealed significant differences in allele frequencies either with Africans, Europeans, Americans, or Asians (S4 Table). Taking the examples of rs1043284 and rs10840 in the BRCA1 gene, significant differences were observed with all populations except those from European ancestry. Nevertheless, for PALB2 gene allele frequencies of rs11642434, rs120963, rs420259, rs26760, rs35635 and rs26766 were significantly different from those observed in European ethnic populations. Moreover, compared to African populations, significant differences in allele frequencies were found for rs2271539, rs1567832, rs8176318, rs4793197 in BRCA1, rs1050541 in TP53, rs5752811 in CHEK2 and rs459894, rs426745, rs120963 in PALB2 gene. Furthermore, when considering all 1000 genomes project’s populations merged together we note that BRCA2_206336, BRCA2_206337, STK11_rS12488, ATM_rS228591 and ATM_rS227073 had allele frequencies specific to the Tunisian population.

miRNAs pathways investigation

In our study, several SNPs were found to alter the binding sites of miRNAs. Some of these miRNAs are involved in important pathways, such as the PI3-Akt signaling pathway, Ras signaling pathway, MAPK signaling pathway, P53 signaling pathway...ect (S5 Table). Moreover, several miRNAs involved in cancer pathways were identified. Interestingly, hsa-miR-136, hsa-miR-639 and hsa-miR-298 were found to regulate several cancer pathways such as breast, colorectal, pancreatic, gastric, and prostate cancer.

Discussion

Considerable progress has been made towards the understanding of the genetic basis of breast cancer [29]. So far, Genome-wide association studies have successfully identified more than 170 loci associated with breast cancer risk [14]. These risk-associated SNPs are usually not the causal ones, but they are in high LD with functional SNPs causative of the investigated phenotype [17, 29]. To identify functional SNPs, it is essential to consider the
haplotype structure of the studied population. This has been facilitated by genome sequencing projects including the International HapMap Project and the 1000 Genomes Project that have produced high quality genotyping data in large sample sizes of diverse human populations. This helps in identifying functional SNPs by using population-specific haplotype structures [17]. Unfortunately, North African populations are not represented in these projects hence the need to characterize the genetic risk loci and haplotype structure of susceptibility genes to better understand the GWAS findings. The clinical insights derived from GWAS findings have been limited given that most of the risk-associated SNPs have been mapped to non-coding regions and the interpretation of their functional impact remains challenging [13]. In the current report, we have characterized the LD patterns and haplotype blocks of high and moderate penetrance susceptibility breast cancer genes. We have also assessed the functional impact of the studied SNPs. Characterization of haplotype structures showed differences in LD patterns between genes with high levels of recombination and haplotype blocks of moderate to small size. These results are predictable given the fact that the African population is older than the other populations, in which there have been more recombination events resulting in smaller blocks [30]. These findings are also in accordance with previous reports where populations with African ancestry were found to have smaller blocks than non-African populations [17, 31]. In addition, variation in LD patterns between genes are expected. In fact, it was shown that the strength and the distance over which LD extends vary along chromosomes and from one region of the genome to another [32, 33]. Several factors seem to shape patterns of diversity and LD in the human genome. These included population size, genetic drift, selection, demographic factors and variable rates of mutation and recombination. We have also determined tagging SNPs constituted with the most informative markers that can be used in upcoming large-scale breast cancer association studies in Tunisia. In the current report tagging SNPs were used to construct a haplotype Network for BRCA genes that included genotypic data from Tunisia and from 8 other human populations. The most frequent haplotypes identified for each gene are probably the ancestral ones from which all others have derived. Moreover, Tunisian haplotypes showed a heterogeneous distribution, some are shared with different populations and others are unique to the Tunisian population. These results reflect the mosaic genetic structure of the Tunisian population which may explain the genetic heterogeneity of breast cancer in Tunisia. This observation was further confirmed with PCA and Fst estimation. In fact, our findings have revealed that the Tunisian population tends to have a mixed origin divergent from that of African populations. In fact, it was found to be clustered with populations of European, South Asian, and Mexican ancestry and showed a high level of differentiation with those of African ethnicity. This could be explained by migratory waives that occurred in Mediterranean countries. Indeed, throughout its history, Tunisia has witnessed invasions and several migratory flows in prehistoric and historic periods which contributed to its genetic diversity [34, 35]. Our findings are in accordance with previous studies investigating the genetic structure of the Tunisian population. In fact, it was demonstrated that the Tunisian population has an admixed genetic structure with prevalence of the Eurasian lineages, followed by the Sub-Saharan and North African ancestries [36, 37]. Furthermore, we have explored the functional impact of the studied SNPs and have selected 28 putative functional variants. These variations were located in transcriptional regulatory regions such as enhancers, TFs, accessible chromatin regions and miRNAs binding sites. An interesting variant was detected in BRCA1 gene rs8176318 that was associated with NBR2 gene expression in mammary tissue and was predicted to alter the bindings of 6 distinct miRNAs. NBR2 is a non–protein coding gene localized adjacent to the BRCA1 gene. The two genes are separated by only 218 base pairs and their transcription is divergent. Some studies have revealed that NBR2 and BRCA1 genes
may in fact, be reciprocally regulated. In a number of cell lines, higher levels of NBR2 expression are correlated with low BRCA1 levels. This could reflect competition between the promoters for RNA polymerase II and also suggests that activation of the NBR2 promoter could lead to decreased BRCA1 expression [38]. In light of these observations, we may hypothesize that SNPs found to be associated with increased NBR2 expression could be associated with downregulation of BRCA1 and hence with breast cancer risk. Nevertheless, and in a more recent study, Xiao et al. have shown that NBR2 encodes a long non-coding RNA and suppresses tumor development through regulation of adenosine monophosphate-activated protein kinase (AMPK) activation which means that downregulation of NBR2 gene may also predispose to cancer [39]. In a previous genome wide SNP genotyping study conducted by our group, a putative functional SNP “rs9911630” was also found to be associated with the expression levels of NBR2. This variant, and in addition to its functional impact contributed very significantly to the genetic variability between African and non-African populations [12]. BRCA1_rs8176318 that we are describing here has been reported as being associated with familial breast and ovarian cancer in Thai population and with triple negative disease among African American women [40]. It was also found to be associated with decreased BRCA1 expression in breast cancer cell lines, and with greater likelihood of having stage IV breast cancer [41]. It is well established that allele frequency varies between populations worldwide leading to variation in disease susceptibility. BRCA1_rs8176318 was identified with a relatively high frequency in Tunisian healthy individuals (27.6%). Comparison of allele frequency revealed statistically significant differences with African populations, YRI (12.5%), and LWK (11.1%), with respective p-values of 0.0004388 and 0.0001243. These results showed that the Tunisian population may have an increased breast cancer risk compared to populations from African ancestries. Likewise, among putative miRNAs disrupted by this variant, hsa-miR-149 was reported to be downregulated in breast tumors and it is usually recognized as a tumor suppressor with reduction in several cancers [42]. Furthermore, we have found that hsa-miR-639 regulates several cancer pathways including breast, endometrial, pancreatic, and colorectal cancer. It was also demonstrated that the up-regulation of this miRNA contributes to breast cancer invasion and metastasis [43]. Another interesting variant was identified in PALB2 gene rs120963. This SNP was predicted to strongly affect the binding of three TFs TP53, STAT3 and CEBPG. The tumor suppressor p53 is a DNA-binding transcription factor that plays a critical role in preventing cancer progression. Altering the binding of this TF may promote cancer growth [44]. This variant was also located in enhancers targeting PALB2, NDUFAB1, UBFD1, EARS2, DCTN5 and COG7 genes in breast myoepithelial primary cells. Enhancers can activate gene transcription by recruiting transcription factors, chromatin remodeling factors and RNA Polymerase II [45]. Single nucleotide variants in these regulatory elements might affect transcription factor bindings, and in turn, make an essential contribution to disease progression by altering the expression of the target genes [46]. This variant sites also in chromatin regions with the H3K4me3 mark. This latter is one of the epigenetic modifications to histone proteins [47] that is widely enriched at promoters and transcriptional start sites (TSS) of highly expressed genes [48]. It was shown that H3K4me3 interacts with chromatin remodelers and promotes recruitment of basic transcription factors to facilitate transcription activation [47, 49]. Along these lines, variations in tumor suppressor genes occurring in H3K4me3 domains may alter the accessibility of genes for transcription and promote cancer development and progression. Previous studies investigating PALB2_rs120963 have reported increased breast cancer risk associated with this variant [50, 51]. Comparison of allele frequency that we have conducted showed statistically significant differences between the Tunisian population and those of European and African ancestries. Several other candidate functional SNPs located in open chromatin
regions were identified such as BRCA2_rs206336 and CHEK2_rs5752811. Accessible chromatin represents the transcriptionally active state of each gene. It displays lower nucleosomal density or even nucleosome-free regions and captures more than 90% of TFs target regions [52, 53]. Variations identified within these regions may therefore affect gene expression by altering TFs bindings sites. These putative functional SNPs that we have characterized should be prioritized in upcoming association studies since they may act as genetic markers of cancer risk. In fact, they could serve to develop a polygenic risk score (PRS) specific to the Tunisian population which will help to improve breast cancer screening in Tunisian individuals. This PRS constitute an estimate of an individual’s genetic susceptibility to a trait or disease, estimated according to their genotype profile and relevant GWAS data [54]. In fact, combinations of known risk-associated variants might be useful tools in identifying individuals with relatively higher risk among general populations for targeted cancer prevention [55, 56]. Indeed, several previous studies have described a higher PRS among women diagnosed with breast cancer when compared to healthy individuals [57]. The correlation between the PRS and the genetic liability to disease has led to its routine application in biomedical research [54]. Implementing polygenic testing in the Tunisian population is of keen interest. It may help to resolve part of the missing heritability and to identify at risk women with uninformative genetic test results. This will revolutionize health services by providing personalized risk assessments within population breast screening programs [57].

Conclusions
In the current report characterization of the LD profiles and haplotype structures showed some substantial differences between the studied genes and also among populations. This underscores the need to characterize each locus of interest prior to association studies. Haplotype distribution was also heterogeneous, reflecting the mosaic structure of the Tunisian population. We have also provided an overview of the potential functional variants that could be associated with breast cancer risk in the Tunisian population and that may serve to develop a PRS leading to better disease prevention.

Supporting information
S1 Appendix. The fixation-index (Fst) analysis results.
(XLSX)
S1 Table. Aligned haplotypes with frequency >1% used for haplotype network construction.
(XLSX)
S2 Table. Allele frequencies of the investigated SNPs in the Tunisian population.
(XLSX)
S3 Table. Haplotype tagging SNPs of the high and moderate penetrance breast cancer susceptibility genes in the Tunisian population.
(XLSX)
S4 Table. Comparison of Allele frequencies of the 28 putative functional variants between the Tunisian population and 8 worldwide populations of the 1000 genomes project.
(XLSX)
S5 Table. Pathways regulated by disrupted miRNA.
(XLSX)
Acknowledgments

We would like to thank all participants for agreeing to take part in this study and all researchers, clinicians, technicians, and administrative staff who have enabled this work to be carried out.

Author Contributions

Conceptualization: Maroua Boujemaa, Yosr Hamdi.
Data curation: Maroua Boujemaa, Yosr Hamdi.
Formal analysis: Maroua Boujemaa, Najah Mighri, Yosr Hamdi.
Funding acquisition: Lotfi Chouchane, Sonia Abdelhak, Hamouda Boussen.
Investigation: Maroua Boujemaa, Najah Mighri, Yosr Hamdi.
Project administration: Yosr Hamdi.
Resources: Lotfi Chouchane, Mohamed Samir Boubaker, Sonia Abdelhak, Hamouda Boussen.
Software: Maroua Boujemaa.
Supervision: Mohamed Samir Boubaker, Sonia Abdelhak, Hamouda Boussen, Yosr Hamdi.
Validation: Maroua Boujemaa, Yosr Hamdi.
Visualization: Maroua Boujemaa, Yosr Hamdi.
Writing – original draft: Maroua Boujemaa.
Writing – review & editing: Maroua Boujemaa, Najah Mighri, Lotfi Chouchane, Mohamed Samir Boubaker, Sonia Abdelhak, Hamouda Boussen, Yosr Hamdi.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018; 68(6):394–424.
2. Missaoui N, Jaidene L, Abdelkrim SB, Abdelkader AB, Beizig N, Yaacoub LB, et al. Breast cancer in Tunisia: clinical and pathological findings. Asian Pac J Cancer Prev. 2011; 12(1):169–72. PMID: 21517252
3. Bouguerra H, Guissouma H, Labidi S, Stambouli N, Marrakchi R, Chouaib S, et al. Breast Cancer in Tunisia: Association of Body Mass Index with Histopathological Aspects of Tumors. Asian Pacific Journal of Cancer Prevention. 2014; 15(16):6805–10. https://doi.org/10.7314/apjcp.2014.15.16.6805 PMID: 25169529
4. Boussen H, Bouzaiehen H, Ben Hassouna J, Dhiab T, Khomsi F, Benna F, et al. Inflammatory breast cancer in Tunisia: epidemiological and clinical trends. Cancer. 2010; 116(11 Suppl):2730–5. Epub 2010/06/22. https://doi.org/10.1002/cncr.25175 PMID: 20603401.
5. Fourati A, Boussen H, El May MV, Goucha A, Dabbabi B, Gamoudi A, et al. Descriptive analysis of molecular subtypes in Tunisian breast cancer. Asia Pac J Clin Oncol. 2014; 10(2):e69–74. Epub 2012/11/28. https://doi.org/10.1111/ajco.12034 PMID: 23176549.
6. Economidou P, Dimitriadis G, Psyrri A. Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015; 41(1):1–8. Epub 2014/12/04. https://doi.org/10.1016/j.ctrv.2014.10.008 PMID: 25467110.
7. Jalkh N, Chouery E, Haidar Z, Khater C, Atallah D, Ali H, et al. Next-generation sequencing in familial breast cancer patients from Lebanon. BMC Med Genomics. 2017; 10(1):8. Epub 2017/02/17. https://doi.org/10.1186/s12920-017-0244-7 PMID: 28202063.
8. Melchor L, Bertie J. The complex genetic landscape of familial breast cancer. Hum Genet. 2013; 132(8):845–63. Epub 2013/04/05. https://doi.org/10.1007/s00439-013-1299-y PMID: 23552954.
9. Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013;2013:747318. Epub 2013/04/16. https://doi.org/10.1155/2013/747318 PMID: 23586058.

10. Mahfoudh W, Bouaouina N, Ahmed SB, Gabboj S, Shan J, Mathew R, et al. Hereditary breast cancer in Middle Eastern and North African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population. Mol Biol Rep. 2012; 39(2):1037–46. Epub 2011/05/24. https://doi.org/10.1007/s11033-011-0829-8 PMID: 21603858.

11. Kadouri I, Hubert A, Rotenberg Y, Hamburger T, Sagi M, Nechushtan C, et al. Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations. Journal of Medical Genetics. 2007; 44(7):467–71. https://doi.org/10.1136/jmg.2006.048173 PMID: 17307836

12. Hamdi Y, Ben Rekaya M, Jingxuan S, Nagara M, Messaoud O, Benammar Elgaaied A, et al. A genome wide SNP genotyping study in the Tunisian population: specific reporting on a subset of common breast cancer risk loci. BMC Cancer. 2018; 18(1):1295. https://doi.org/10.1186/s12885-018-5133-8 PMID: 30594178.

13. Cano-Gomez E, Trynka G. From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Frontiers in genetics. 2020; 11:424. https://doi.org/10.3389/fgene.2020.00424 PMID: 32477401.

14. Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomaki K, Andrulis IL, Anton-Culver H, et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun. 2019; 10(1):1741. https://doi.org/10.1038/s41467-018-08053-5 PMID: 30988301.

15. Pan Q, Liu YJ, Bai XF, Han XL, Jiang Y, Ai B, et al. VARAdb: a comprehensive variation annotation database for human. Nucleic Acids Res. 2021; 49(D1):D1431–D44. https://doi.org/10.1093/nar/gkaa922 PMID: 33095866.

16. Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal R, Desai K, et al. Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBS5 regulation. Nature communications. 2014; 5(1):1–12. https://doi.org/10.1038/ncomms5999 PMID: 25248036

17. Li MJ, Yan B, Sham PC, Wang J. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Briefings in bioinformatics. 2015; 16(3):393–412. https://doi.org/10.1093/bib/bbu018 PMID: 24916300.

18. Shan J, Mahfoudh W, Dsouza SP, Hassen E, Bouaouina N, Abdelhak S, et al. Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians. Breast Cancer Res Treat. 2012; 135(3):715–24. Epub 2012/08/23. https://doi.org/10.1007/s10549-012-2202-6 PMID: 22910930.

19. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015; 4(1):7.

20. Clarke L, Zheng-Bradley X, Smith R, Kulesha E, Xiao C, Toneva I, et al. The 1000 Genomes Project: data management and community access. Nature methods. 2012; 9(5):459. https://doi.org/10.1038/nmeth.1974 PMID: 22543379

21. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002; 296(5576):2225–9. https://doi.org/10.1126/science.1069424 PMID: 12029063

22. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics. 2001; 68(4):978–89. https://doi.org/10.1086/319501 PMID: 11254454

23. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. The American Journal of Human Genetics. 2005; 76(3):449–62. https://doi.org/10.1086/428594 PMID: 15700229

24. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution. 2016; 33(7):1870–4. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

25. Hadley W. Ggplot2: Elegant graphics for data analysis. Springer; 2016.

26. Boyle AP, Hong EL, Harirhan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome research. 2012; 22(9):1790–7. https://doi.org/10.1101/gr.137323.112 PMID: 22955989

27. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45(6):580–5. https://doi.org/10.1038/ng.2653 PMID: 23715323.

28. Oscanoa J, Sivapanal L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C. SNPnexus: a web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020; 48(W1):W185–W92. https://doi.org/10.1093/nar/gkaa420 PMID: 32496546.
29. Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics & Chromatin. 2015; 8:57. https://doi.org/10.1186/s13072-015-0050-4 PMID: 26719772.

30. Tishkoff SA, Williams SM. Genetic analysis of African populations: human evolution and complex disease. Nat Rev Genet. 2002; 3(8):611–21. Epub 2002/08/03. https://doi.org/10.1038/nrg865 PMID: 12154384.

31. Chimusa ER, Meintjies A, Tchanga M, Mulder N, Seoighe C, Soodyall H, et al. A genomic portrait of haplotype diversity and signatures of selection in indigenous southern African populations. PLoS Genet. 2015; 11(3):e1005052. https://doi.org/10.1371/journal.pgen.1005052 PMID: 25811879.

32. Sawyer SL, Mukherjee N, Pakstis AJ, Feuk L, Kidd JR, Brookes AJ, et al. Linkage disequilibrium patterns vary substantially among populations. Eur J Hum Genet. 2005; 13(5):677–86. https://doi.org/10.1038/sj.ejhg.5201368 PMID: 15657612.

33. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, et al. Linkage disequilibrium in the human genome. Nature. 2001; 411(6834):199–204. https://doi.org/10.1038/35075590 PMID: 11346797.

34. Mughal M. Tunisia. Routledge; 2013.

35. Romdhane L, Kefi R, Azaiez H, Halim NB, Dellagi K, Abdelhak S. Founder mutations in Tunisia: implications for diagnosis in North Africa and Middle East. Orphanet journal of rare diseases. 2012; 7(1):1–11. https://doi.org/10.1186/1750-1172-7-52 PMID: 22908982.

36. Kefi R, Hsouna S, Ben Halim N, Lasram K, Romdhane L, Messai H, et al. Phylogeny and genetic structure of Tunisians and their position within Mediterranean populations. Mitochondrial DNA. 2015; 26(4):593–604. https://doi.org/10.3109/19401736.2013.879649 PMID: 24491098.

37. Frigi S, Mota- Vieira L, Cherni L, van Oven M, Pires R, Boussetta S, et al. Mitochondrial DNA analysis of Tunisians reveals a mosaic genetic structure with recent population expansion. Homo: internationale Zeitschrift fur die vergleichende Forschung am Menschen. 2017; 68(4):298–315. https://doi.org/10.1016/j.jchb.2017.05.003 PMID: 28838744.

38. Mueller CR, Roskelley CD. Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Research. 2002; 5(1). https://doi.org/10.1186/bcr557 PMID: 12559046.

39. Xiao ZD, Liu X, Zhuang L, Gan B. NBR2: A former junk gene emerges as a key player in tumor suppression. Mol Cell Oncol. 2016; 3(4):e1187322. https://doi.org/10.1080/23723556.2016.1187322 PMID: 27652330.

40. Pelletier C, Speed WC, Paranjape T, Keane K, Blitzblau R, Hollestelle A, et al. Rare BRCA1 haplotypes including 3’UTR SNPs associated with breast cancer risk. Cell Cycle. 2011; 10(1):90–9. Epub 2010/12/31. https://doi.org/10.4161/cc.10.1.14359 PMID: 21191178.

41. Dorairaj JJ, Salzman DW, Wall D, Rounds T, Preskill C, Sullivan CA, et al. A germline mutation in the BRCA1 3’UTR predicts Stage IV breast cancer. BMC Cancer. 2014; 14:421. https://doi.org/10.1186/1471-2407-14-421 PMID: 24915755.

42. Zhi Y, Zhou H, Mubalake A, Chen Y, Zhang B, Zhang K, et al. Regulation and functions of MicroRNA-149 in human cancers. Cell proliferation. 2018; 51(5):e12465. https://doi.org/10.1111/cpr.12465 PMID: 29999552.

43. Li L, Qiu XG, Lv PW, Wang F. miR-639 promotes the proliferation and invasion of breast cancer cell in vitro. Cancer cell international. 2014; 14:39. https://doi.org/10.1186/1475-2867-14-39 PMID: 24917697.

44. Bao F, LoVerso PR, Fisk JN, Zhurkin VB, Cui F. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle. 2017; 16(21):2073–85. https://doi.org/10.1080/15384101.2017.1361064 PMID: 28820292.

45. Marsman J, Horsfield JA. Long distance relationships: enhancer–promoter communication and dynamic gene transcription. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2012; 1819(11–12):1217–27. https://doi.org/10.1016/j.bbagrm.2012.10.008 PMID: 23124110.

46. Zhang G, Shi J, Zhu S, Lan Y, Xu L, Yuan H, et al. DiseaseEnhancer: a resource of human disease-associated enhancer catalog. Nucleic Acids Res. 2018; 46(D1):D78–D84. https://doi.org/10.1093/nar/gkx920 PMID: 29059320.

47. Li S, Shen L, Chen KN. Association between H3K4 methylation and cancer prognosis: A meta-analysis. Thoracic cancer. 2018; 9(7):794–9. https://doi.org/10.1111/1759-7714.12647 PMID: 29737623.

48. Gopi LK, Kidder BL. Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatin domains. Nat Commun. 2021; 12(1):1419. https://doi.org/10.1038/s41467-021-21707-1 PMID: 33658503.

49. Sze CC, Ozark PA, Cao K, Ugarenko M, Das S, Wang L, et al. Coordinated regulation of cellular identity-associated H3K4me3 breadth by the COMPASS family. Science advances. 2020; 6(26):eaaz4764. https://doi.org/10.1126/sciadv.aaz4764 PMID: 32637595.
50. Chen P, Liang J, Wang Z, Zhou X, Chen L, Li M, et al. Association of common PALB2 polymorphisms with breast cancer risk: a case-control study. Clinical cancer research: an official journal of the American Association for Cancer Research. 2008; 14(18):5931–7. https://doi.org/10.1158/1078-0432.CCR-08-0429 PMID: 18794107.

51. Wu Y, Dong X, Wang Y, Wang Q, Gu H, Huang W. Association between rs120963, rs152451, rs249935, rs447529, rs8053188, and rs16940342 polymorphisms in the PALB2 gene and breast cancer susceptibility: a meta-analysis. Oncology research and treatment. 2018; 41(12):780–6. https://doi.org/10.1159/000492827 PMID: 30458447.

52. Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Epigenetics & chromatin. 2019; 12(1):27. https://doi.org/10.1186/s13072-019-0272-y PMID: 31053165.

53. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019; 20(4):207–20. https://doi.org/10.1038/s41576-018-0089-8 PMID: 30675018.

54. Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nature protocols. 2020; 15(9):2759–72. https://doi.org/10.1038/s41596-020-0353-1 PMID: 32709986.

55. Smyth C, Spakulova I, Cotton-Barratt O, Rafiq S, Tapper W, Upstill-Goddard R, et al. Quantifying the cumulative effect of low-penetrance genetic variants on breast cancer risk. Mol Genet Genomic Med. 2015; 3(3):182–8. https://doi.org/10.1002/mgg3.129 PMID: 26029704.

56. Sueta A, Ito H, Kawase T, Hirose K, Hosono S, Yatabe Y, et al. A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population. Breast Cancer Res Treat. 2012; 132(2):711–21. https://doi.org/10.1007/s10549-011-1904-5 PMID: 22160591.

57. Yanes T, Young MA, Meiser B, James PA. Clinical applications of polygenic breast cancer risk: a critical review and perspectives of an emerging field. Breast Cancer Res. 2020; 22(1):21. https://doi.org/10.1186/s13058-020-01260-3 PMID: 32066492.