The effect of chemical extraction with heat on the bamboo fibre strength

D L Zariatin\(^1\), A S Siregar \(^1\), A Suwandi \(^1\), R Fӧster \(^2\)

\(^1\)Mechanical Engineering, Universitas Pancasila, South Jakarta, 12640, Indonesia.
\(^2\)Mechanical Engineering, Beuth University of Applied Sciences, Berlin, 13353, Germany

E-mail: dedeliazariatin@univpancasila.ac.id

Abstract: Bamboo is a renewable material widely used as a reinforced composite. One of the steps in making bamboo composites is soaking or heating using NaOH. The process is intended to eliminate small animals that may live in the bamboo. The attainment of strength and toughness is the most crucial requirement in structural material. This study compared the Apus, Atter, and Black bamboo fiber's strength by administering several methods and applying three different extraction times. The methods are the 5% NaOH chemical extraction method at a temperature of 70°C (heated), the 5% NaOH chemical extraction method (permeated) at room temperature, and the extraction method without treatment nor administering heat. The highest tensile strength among the three methods for each Apus, Atter, and Black bamboo is 194.25 N/mm\(^2\), 142.67 N/mm\(^2\), and 178.46 N/mm\(^2\), respectively. Among the methods used in this research, heating the bamboo in 5% NaOH solution with a 70°C temperature is more effective than soaking it at room temperature. The strength was increased up to 112%, 98%, and 190% for Apus, Atter, and Black bamboo. Black bamboo shows a significant improvement by using a chemical extraction process.

1. Introduction
Bamboo is an environmentally friendly material and, comparable to several other materials, is sustainable renewable materials [1]. Bamboo is also interesting to study because it is one of the energy-saving materials [2],[3]. Bamboo can reduce greenhouse gas emissions in cities due to around 40% of concrete building materials [4]. The use of bamboo reduces forest damage as bamboo can be the best alternative wood material applied in various ways[5]. Bamboo has approximately 1600 species [6],[7], which has similar mechanical characteristics to wood and is a fast-growing plant [8],[9],[10] up to 100 cm/day[11]. Bamboo is also a perennial plant that can be harvested multiple times and has a high-quality cellulose fiber [12]. As mentioned earlier, the bamboo consists of a cellulose content of 40-55%, a hemicellulose content of 18-20.8%, and lignin content of 15-32.2% [13].

Bamboo has been widely used since the 21\(^{st}\) century as it is utilized from the emergence of several predicaments, namely from the environmental pollution to energy shortages[14]. Bamboo utilization or modeling has been widely implemented in various applications, both traditionally and conventionally, such as mat boards, laminated bamboo, bamboo scriber, and bamboo application fiber-reinforced composites[15][16][17].

Research on the bamboo application is expanding, such as in the manufacturing of ceramics[18], magnetic reconstituted bamboo boards[19], and ultrasonication method to improve the flexibility of bamboo fibers[20].
To develop bamboo composite material, several processes must be performed. Start from harvesting, extracting, drying, and preliminary processes to increase the bamboo resistance on pets, rotten, and weathering. Soaking the bamboo in NaOH is the standard way to improve the bamboo resistance. However, there is still a lack of information about the effect of NaOH on bamboo strength. This research aims to compare bamboo fibers’ strength by subjugating them with several methods and implementing various set times when the extraction is carried out.

2. Materials and Methods
In this research, three bamboo types of bamboo were tested, Apus/String (Gigantochloa apus), Atter/Sweet (Gigantochloa Atter), and Black bamboo (Phyllostachys nigra Munro). Each type of bamboo implemented two distinctive treatment process, which is:

1. Fiber treatment process through the medium of 5% NaOH chemical extraction method (permeated) with no heat added for 60, 90, and 120 minutes.
2. Fiber treatment process through the medium of 5% NaOH chemical extraction method at a set temperature of 70°C (heated) for 60, 90, and 120 minutes.

Before applying these methods, the bamboo nodes, outer and inner sheaths, were eliminated from the bamboo stem. The bamboo culm was cut into bamboo pieces with a length of 30 cm and an average thickness of 5 mm, as shown in Figure 1 (a) and (b). The bamboo pieces were then washed in clean water for approximately an hour and drained at room temperature for half an hour. Figure 1 (e) shows the mechanical extraction process performed with a rolling machine. The bamboo rolled several times to remove the water from the previous process and dried in the sun for a half-day, as shown in Figure 1 (f). Before chemical extraction, the bamboo pieces were sliced into the bamboo fiber with 1 mm of thickness.

The chemical extraction was performed in a 5% NaOH solution. The ratio between the bamboo fiber and the sodium hydroxide solution was 1:10, which means 10 mL of 5% NaOH solution applied for every 1 gram of bamboo fiber in 5 L of water. Then, the extraction begins for each method, which is heating at 70°C and soaking. Figure 1 (g) shows the heating process for bamboo fiber treatment,
where the bamboo was put inside a pan fill with NaOH solution, and the temperature was kept at 70°C. Figure 1 (h) shows the bamboo soaking process, so the NaOH solution permeated the bamboo. Other researchers had performed a chemical extraction method of 5% NaOH solution at the temperature of 70°C [18, 19]. However, there is a lack of information about the processing time on bamboo fiber strength. In this research, the extraction time is determined at 60, 90, and 120 minutes.

After the chemical extraction, the bamboo fiber was then washed with clean water, drained, and dried in the sun until the water content ranged 17%-20%, as shown in Figure 1(k). Figure 2 shows the stack of each type of bamboo ready to test. The tensile tests were performed according to the ASTM D3379-75 standard. There were 30 specimens tested for each treatment and extraction duration. In total, there are 300 specimens tested, including the specimens without treatment.

Figure 2. Stack of bamboo fiber: (a) Apus, (b) Atter, and (c) Black bamboo

3. Results and Discussions

In this research, fiber with no treatment was used to compare both chemical extraction treatments. Figure 3 shows the strength of each untreated type of bamboo fiber. It shows that Apus bamboo has the highest strength compare to Atter and Black Bamboo, up to 91.56 N/mm². Apus bamboo is 27.3% and 48.7% stronger than Atter and Black bamboo, respectively. This result consistent with the research performed by Rochim et al. [21], which found that the tensile strength of Apus bamboo is higher than Atter bamboo (Jawa bamboo) when performing the test in pieces of the bamboo specimen (not fiber). However, Abdullah et al.[22] found that the order of bamboos from the strongest among five different bamboo is Atter (Tameng), Apus, Kuning (Bambusa vulgaris schard var. Vitata), Gombong (Gigantochloa pseudoarundinacea), and Black bamboo. The research confirm that Black bamboo has a lower tensile strength.

Figure 3. The strength of bamboo without any treatment
Figure 4 shows that each bamboo type is the tensile test result for both treatments, soaking and heating the bamboo in 60, 90, and 120 minutes. Compare to the un-treated bamboo, the tensile strength for all the treated specimen is improving. However, the duration of treatment shows an ununiform pattern of the effect on the tensile strength. Figure 4 shows that the highest tensile strength was obtained by Apus bamboo with the 5% NaOH extraction method at the temperature of 70°C for 90 minutes, with a value of 194.25 N/mm². Meanwhile, the optimum tensile strength by soaking bamboo in 5% NaOH solution at room temperature achieved by Black bamboo up to 139.94 N/mm², with soaking duration for 60 minutes.

Table 1 shows the optimum and minimum improvement for each bamboo type. Soaking Apus bamboo at a room temperature of 5% NaOH solution for 120 minutes increases the strength up to 51%. The Apus bamboo strength increases more than 112% when the bamboo is heated in 5% NaOH solution with a temperature of 70°C for 90 minutes. However, soaking Apus bamboo for 90 minutes only improves 15% of its strength. For Atter bamboo, the optimum result was achieved 98% by a heating process for 90 min. Soaking Atter bamboo at room temperature for 60 min only increase 41% of the strength.

Table 1. The optimum and minimum result for each treatment

Optimum Result	Tensile Strength (N/mm²)	Soaking Time Duration	Improvement	Heating Tensile Strength (N/mm²)	Time Duration	Improvement
Apus	138.25	120 min	51%	194.25	90 min	112%
Atter	132.39	90 min	84%	142.67	90 min	98%
Black	139.94	60 min	127%	178.46	60 min	190%

Minimum Result	Tensile Strength (N/mm²)	Soaking Time Duration	Improvement	Heating Tensile Strength (N/mm²)	Time Duration	Improvement
Apus	105.73	90 min	15%	136.74	120 min	49%
Atter	101.29	60 min	41%	118.46	60 min	65%
Black	113.4	90 min	84%	170.33	60 min	177%
Black bamboo shows a significant improvement by 5% NaOH chemical extraction. Although the strength of untreated Atter bamboo is higher than Black bamboo, with chemical extraction, the strength of Atter bamboo is surpassed by Black bamboo, as shown in Figure 2. The strength of Black bamboo is improved by up to 190% with chemical extraction with heat for 60 minutes. The minimum result was obtained by 90 minutes soaking process.

Thus, from these results, it can be concluded that the use of 5% NaOH as an extractive substance remover provides evidence that the use of sodium hydroxide (NaOH) can increase the strength of bamboo fibers exceptionally. By making a visual comparison, the treated bamboo fibers are smoother and softer than the untreated ones. A 5% NaOH solution provides evidence that the resulting fiber has a non-coarse fiber characteristic.

4. Conclusion
Based on the experiment result, it can be concluded that the mechanical extraction method of 5% NaOH at the temperature of 70°C improved the fiber strength. The fiber tensile test results proved that the set time given to the bamboo extraction did not provide a consistent graph or value from the set of time given. Administering a high temperature at the time of extraction has a well-desired effect on the bamboo fibers. It might be because this process of elimination can draw out extractive substances thoroughly.

Acknowledgments
This research is funded by the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia with contract number 069/LL3/PG/2020.

References
[1] Tian L min, Kou Y feng and Hao J ping 2019 Axial compressive behaviour of sprayed composite mortar–original bamboo composite columns Constr. Build. Mater. 215 726–36
[2] Li N P, Long J B, Lin S, Li W and Shan Z 2012 Experimental and theoretical study on thermal and moisture characteristics of new-type bamboo structure wall J. Cent. South Univ. Technol. (English Ed. 19 600–8
[3] Li Y, Yao J, Li R, Zhang Z and Zhang J 2017 Thermal and energy performance of a steel-bamboo composite wall structure Energy Build. 156 225–37
[4] Macabutas E C and Tongco A F 2020 Determination of thermal conductivity of bamboo plyboard as thermal insulator for passive roof cooling Adv. Compos. Hybrid Mater.
[5] Nurdiah E A 2016 The Potential of Bamboo as Building Material in Organic Shaped Buildings Proc. Soc. Behav. Sci. 216 30–8
[6] Akinlabi E T, Anane-Fenin K and Akwada D R 2017 Bamboo The Multipurpose Plant
[7] Depuydt D E C, Billington L, Fuentes C, Sweygers N, Dupont C, Appels I, Ivens J and van Vuure A W 2019 European bamboo fibres for composites applications, study on the seasonal influence Ind. Crops Prod. 133 304–16
[8] Fang C H, Jiang Z H, Sun Z J, Liu H R, Zhang X B, Zhang R and Fei B H 2018 An overview on bamboo culm flattening Constr. Build. Mater. 171 65–74
[9] Chen M, Dai C, Liu R, Lian C, Yuan J, Fang C and Fei B 2020 Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers Ind. Crops Prod. 155 112787
[10] Liese W 2015 Bamboo The Plant and its Uses
[11] Li Z, Chen C, Mi R, Gan W, Dai J, Jiao M, Xie H, Yao Y, Xiao S and Hu L 2020 A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo Adv. Mater. 32 1–8
[12] Förster R, Loth A, Dahan D and Zariatin D L 2018 First investigations of renewable raw materials for engineering applications WCTE 2018 - World Conf. Timber Eng. 2–3
[13] Akhil K S, Sankar N and Chandrakaran S 2020 Use of bamboo mat as a potential soil reinforcement material – An experimental study Mater. Today Proc.
[14] Abdul Khalil H P S, Bhat I U H, Jawaid M, Zaidon A, Hermawan D and Hadi Y S 2012 Bamboo fibre reinforced biocomposites: A review Mater. Des. 42 353–68
[15] Adriant Z, Zariatin D L, Pancasila U and Sawah S 2019 The Effect of Mesh Size on Mechanical and Thermal Properties of Bamboo Composites J. Energy, Mech. Mater. Manuf. Eng. 10 1–13
[16] Mukbaniani O, Brostow W, Lobland H E H, Aneli J, Tatrishvili T, Markarashvili E, Dzidziguri D and Buzaladze G 2018 Composites containing bamboo with different Binders Pure Appl. Chem. 90 1001–9
[17] Sutikno, Pramujati B, Safitri S D and Razitania A 2018 Characteristics of natural fiber reinforced composite for brake pads material AIP Conf. Proc. 1983
[18] Olawale O 2020 Bamboo leaves as an alternative source for silica in ceramics using Box Benhken design Sci. African 8 e00418
[19] Yang L, Lou Z, Han X, Liu J, Wang Z, Zhang Y, Wu X, Yuan C and Li Y 2020 Fabrication of a novel magnetic reconstituted bamboo with mildew resistance properties Mater. Today Commun. 23 101086
[20] An X, Liu J, Liu L, Zhang H, Nie S, Cao H, Xu Q and Liu H 2020 Improving the flexibility of bamboo mechanical pulp fibers for production of high soft tissue handsheets Ind. Crops Prod. 150 112410
[21] Rochim A, Latifah K and Supriyadi B 2020 Characterization of Compression and Tensile Properties of Bamboo Jawa (Gigantochloa Atter) and Bamboo Apus (Gigantochloa Apus) for Application as Soil Reinforcement IOP Conf. Ser. Earth Environ. Sci. 498
[22] Abdullah A H D, Karlina N, Rahmattiya W, Mudaim S, Patimah and Fajrin A R 2017 Physical and mechanical properties of five Indonesian bamboos IOP Conf. Ser. Earth Environ. Sci. 60