3D-Quantitative Structure Metabolism Relationship (QSMR) Studies of CYP3A4 Substrates

Ramesh M*, Prasad V. Bharatam
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S. A. S. Nagar (Mohali)-160 062, India

ABSTRACT

3D-Quantitative structure metabolism relationship studies were conducted on the substrates of CYP3A4 based on CoMFA. The CoMFA model was found to be successful in the prediction of catalytic activity of CYP3A4 substrates, with a cross-validated correlation co-efficient (q^2) of 0.593 and a non-cross validated correlation co-efficient (r^2) of 0.994. The CoMFA model was also validated with the training and test set of CYP3A4 substrates. The model helped to understand the structural features that are involved in CYP3A4 mediated drug metabolism. Therefore, the model can be subjected to the initial stage of the drug discovery processes for developing the therapeutic analogs with the improved CYP3A4 mediated metabolic profiles.

Keywords: 3D-QSMR, CoMFA, Drug metabolism, CYP3A4

*Corresponding Author Email: shreeramesh@gmail.com
Received 22 September 2018, Accepted 31 December 2018
INTRODUCTION

Cytochromes P450 (CYPs) are the family of catalytic enzymes involved in drug metabolism. CYPs constitute heme at the active site and are mostly present in the liver cells of the human body. CYP3A4 is a predominant drug metabolizing enzyme and metabolizes over 50% of clinically administered drugs.\(^1\)\(^-\)\(^2\) The active site of CYP3A4 constitutes hydrophobic amino acid residues. The substrates which are undergoing CYP3A4 mediated metabolism are hydrophobic in nature.\(^2\) CYP3A4 catalyzes the oxidation of endogenous as well as exogenous substrates during the metabolism. The oxidative reactions of CYP3A4 includes (i) C-oxidation (ii) N-demethylation (iii) O-demethylation (iv) S-oxidation, etc. These reactions are grouped as a phase-I metabolic reactions.\(^1\),\(^3\) The phase-I metabolic reactions generate various metabolites which are therapeutically inactive in most of the cases. In few cases; the metabolites are converted into reactive species and these reactive metabolites are toxic.\(^4\)

3D-Quantitative structure metabolism relationship (QSMR) is a useful approach in quantifying the bio-activity and this approach can be employed in the absence of target information. Comparative molecular field analysis (CoMFA) is one of the types of 3D-QSMR and is used to describe the impact of structural features on bio-activity. CoMFA relates the 3D-steric and electrostatic properties of small organic molecules against bio-activity by means of mathematical equations. The approach assumes that the therapeutic and metabolic activity of molecules is due to changes in the size, shape or substituent of the core moiety while binding to the macromolecule. These changes are determined using a reference molecule and are computed in the form of steric and electrostatic field properties. Then, these field properties are correlated with the metabolic activity using partial least squares analysis (PLS) to generate a CoMFA model.

A few 3D-QSAR studies were reported for CYP3A4 in the literature. Roy et al.\(^5\) reported QSAR model for the inhibitors of CYP3A4 by employing twenty-eight structurally diverse compounds. The model was developed to investigate the electronic, spatial, topological and thermodynamic descriptors using Cerius 2 software.\(^5\) The techniques like stepwise multiple linear regression (MLR), PLS, artificial neural networks (ANN), etc. were employed. All the models indicated the importance of partition co-efficient (log \(P\)), electronic and topological parameters. Further, the model was also validated with a test set. In another study, Ekins et al.\(^6\) constructed a 3D-hypothesis consisting of two hydrogen bond acceptors, one hydrogen bond donor and one hydrophobic region. The inter-feature distance of hydrogen bond acceptor-hydrogen bond acceptor, hydrophobe-hydrogen bond acceptor, and hydrogen bond donor-hydrogen bond acceptor was found to be
respectively 7.7, 6.6 and 6.4 Å. The significance of the model was validated and subjected to predict the K_m values. Further, the common feature hypothesis model was also generated for the activators of CYP3A4. The model suggested that the activators of CYP3A4 possess multiple hydrophobic regions which are away from the metabolic site.\(^6\)

The reported QSMR studies on CYP3A4 were mostly focused on descriptors or pharmacophoric features of the inhibitors. These studies help independently to understand the specific role of the enzyme on drug metabolism. However, the metabolic process of CYP3A4 varies from one substrate/inhibitor to another. The influence of steric and electrostatic properties of substrates on the catalytic activity has not been established. This prompts to conduct a study with a diverse dataset of molecules and such types of studies are necessary to identify the primary metabolic reactions of new chemical entity (NCE). In this work, the development of the CoMFA model was attempted for the substrates of CYP3A4 and this study will be useful to identify the primary metabolic reaction in a quantitative manner.

MATERIALS AND METHOD

All the computational studies were performed on SYBYL6.9 software installed on Silicon Graphics Octane2 workstation, running under the IRIX 6.5 operating system.\(^7\)

Dataset selection

Training set and a test set of CYP3A4 substrates were selected from the literature where the information regarding the site of metabolism (SOM), metabolites and catalytic activity (K_m values) were reported. The substrates included in this study constitute structural as well as therapeutic diversity since our focus was emphasized to study the metabolic activity of therapeutic drugs. Training set and a test set of CYP3A4 substrates respectively constitute 34, 15 metabolic reaction pathways (Table 2 and Table 3).

Ligand pre-processing

The 3D-structure of CYP3A4 substrates was built using *sketch molecule* panel implemented in SYBYL software. The *in-built* structures were energetically minimized by Powell method with a convergence criterion of 0.05 kcal/mol using Tripos force field. Gasteiger charge was assigned for all the substrates to calculate the partial atomic charges. The optimized 3D-structures were stored in SYBYL database as .mol2 files.

Molecular alignment

The accuracy of the CoMFA model and the prediction of the stereoelectronic region directly depends upon the molecular alignment. The relative alignment of all the dataset of compounds to
the template molecule was carried out using Atom-based alignment. The molecules were aligned against the template based on experimentally reported SOMs. To perform molecular alignment, the most active molecule of the data set, tofisopam (I) was used as a template. The alignment of a dataset of molecules with the template molecule was carried out such that SOM of template molecule matched with the SOM of dataset of other molecules. This alignment reflects the native binding mode of CYP substrates since SOM of substrates moves close to the heme at the active site of CYPs during the process of drug metabolism.

Comparative molecular field analysis

CoMFA calculates the steric fields using a Lennard-Jones potential and electrostatic fields using a Coulomb potential. The field properties were calculated with a combination of steric and electrostatic molecular fields. The fields were sampled at each point of regularly spaced grids of 2.0 Å. A sp3 carbon atom with a charge of +1 was used as a probe to calculate the field properties. The CoMFA cut off value (i.e., 30 kcal/mol) was set to steric and electrostatic fields. The CoMFA-STD method in SYBYL was used to scale the field properties.

Partial least square analysis

The calculated field properties were correlated with the catalytic activity (pK_m) using PLS approach. The optimum number of components was determined by leave-one-out (LOO) cross-validation using a maximum of 6 principal components. To avoid the over fitted 3D-QSMR, the optimum number of components were derived from analysis with a highest q2 value of the training set. This procedure speeds up the analysis and reduces the noise to generate a robust CoMFA model. During the PLS analysis, the CoMFA field properties were used as the independent variables and metabolic activity was used as the dependent variable. The best CoMFA model was chosen out of several models on the basis of a cross-validation approach.

Statistical significance

The statistical significance of CoMFA model was determined by computing (i) cross-validated leave-one-out correlation co-efficient (q^2) (ii) non-cross validated correlation co-efficient (r^2) (iii) optimum number of components (iv) boots trapping runs ($R^2 bs^k$). Several CoMFA models were generated and only the robust model was chosen for further analysis. The CoMFA model was considered to be robust when ($q^2 > 0.5$) and ($r^2 > 0.9$).

RESULTS AND DISCUSSION

Statistical significance of comparative molecular field analysis
Several CoMFA models were generated for the substrates of CYP3A4 on the basis of QSMR approach. However, only the robust model was chosen for further analysis. The representative CoMFA model of CYP3A4 was found to be statistically significant with a cross-validated correlation co-efficient (q^2) of 0.593. In addition, a non-cross validated correlation co-efficient (r^2) value was computed and was also found to be significant ($r^2=0.994$). The statistical summary of the CoMFA model was depicted in Table 1. Further, the CoMFA model was subjected to predict the metabolic/catalytic activity of training set molecules and the model was found to be predictive of catalytic activity of CYP3A4 substrates (Figure 1, Table-2).

Table 1. The statistical significance of the CoMFA model for the substrates of CYP3A4

No.	Validation parameters	Statistical significance
1.	Cross validated correlation co-efficient (q^2)	0.593
2.	Non-cross validated correlation co-efficient (r^2)	0.994
3.	Optimum number of components (Noc)	6
4.	Standard error of estimate (SEE)	0.062
5.	Standard error of prediction (SEP)	0.598
6.	F value	751.452
7.	Contribution of steric	70.10
8.	Contribution of electrostatic	29.90
9.	Boots trapping runs (R^2 bsk)	0.998
Table 2: Prediction of metabolic activity of CYP3A4 substrates (Training set) using CoMFA

No.	CYP3A4 substrates	Types of metabolic reactions	Observed Activity (pK_m)	Predicted Activity (pK_m)	Residuals (observed-predicted)	References
1.	adinazolam	N-dealkylation	4.68	4.67	0.01	Ref. 11
2.	albendazole	S-oxidation	5.00	5.00	0.00	Ref. 12
3.	amiodarone	N-demethylation	4.27	4.26	0.01	Ref. 13
4.	amitriptyline	N-demethylation	4.04	3.93	0.11	Ref. 14
5.	astemizole	6-hydroxylation	5.01	5.04	-0.03	Ref. 15
6.	celecoxib	Hydroxylation	4.74	4.73	0.01	Ref. 16
7.	(S)-chloroquine	N-desethylation	5.30	5.29	0.01	Ref. 17
8.	cilostazol (OPC13217)	Hydroxylation	5.27	5.23	0.04	Ref. 18
9.	cilostazol (OPC13226)	Hydroxylation	5.25	5.26	-0.01	Ref. 18
10.	(S)-citalopram	N-dealkylation	3.23	3.26	-0.03	Ref. 19
11.	clozapine	N-demethylation	3.64	3.59	0.05	Ref. 20
12.	dasatinib (M20)	Hydroxylation	5.22	5.23	-0.01	Ref. 21
13.	(R)-dihydrobromperidol	Oxidation	4.29	4.19	0.10	Ref. 22
14.	(S)-dihydrobromperidol	Oxidation	4.47	4.36	0.11	Ref. 22
15.	(R)-dihydrohaloperidol	Oxidation	4.04	4.20	-0.16	Ref. 22
16.	(S)-dihydrohaloperidol	Oxidation	4.40	4.36	0.04	Ref. 22
17.	erlotinib	O-dealkylation	5.76	5.77	-0.01	Ref. 23
18.	(R)-fluoxetine	N-demethylation	4.47	4.44	0.03	Ref. 24
19.	(S)-fluoxetine	N-demethylation	4.47	4.46	0.01	Ref. 24
20.	(R)-ketamine	N-demethylation	3.15	3.29	-0.14	Ref. 25
21.	(S)-ketamine	N-demethylation	3.40	3.35	0.05	Ref. 25
22.	(R)-lansoprazole	Hydroxylation	4.57	4.58	-0.01	Ref. 26
23.	(R)-lansoprazole	S-oxidation	4.42	4.46	-0.04	Ref. 26
24.	(S)-lansoprazole	Hydroxylation	4.49	4.49	0.00	Ref. 26
25.	(S)-lansoprazole	S-oxidation	4.82	4.77	0.05	Ref. 26
26.	laquinimod	Hydroxylation	5.77	5.77	0.00	Ref. 27
27.	(R)-omeprazole	Hydroxylation	3.50	3.50	0.00	Ref. 28
28.	(R)-omeprazole	S-Oxidation	4.08	4.09	-0.01	Ref. 28
29.	(S)-omeprazole	Hydroxylation	3.44	3.49	-0.05	Ref. 28
	Compound	Reaction Type	Calcd	Expd	RSD	Reference
---	------------------	---------------	-------	--------	-------	------------
30.	(S)-omeprazole	S-oxidation	4.08	4.10	-0.02	Ref. 28
31.	perphenazine	N-dealkylation	5.10	5.11	-0.01	Ref. 29
32.	(R,R)-reboxetine	O-dealkylation	4.74	4.76	-0.02	Ref. 30
33.	(S,S)-reboxetine	O-dealkylation	4.80	4.80	0.00	Ref. 30
34.	(R)-tofisopam	O-dealkylation	6.05	6.12	-0.07	Ref. 31

(Template)
Validation of the CoMFA model with the test set

A test set was created to validate the CoMFA model. The test set comprises a structurally diverse class of therapeutic drugs which were reported as CYP3A4 substrates. Test set molecules were assigned to Gasteiger charge and aligned with respect to the template molecule. The alignment was carried out such that the reported SOM of the test set molecules matched with the template molecule. These test set molecules were stored separately in SYBYL database and the catalytic activity was predicted using the representative CoMFA model. The model predicted the catalytic activity of the test set successfully (Table 3).

Table 3: Prediction of metabolic activity of CYP3A4 substrates (Test set) using CoMFA

No.	CYP3A4 substrates	Types of metabolic reactions	Observed activity (pKₘ)	Predicted activity (pKₘ)	Residuals (observed-predicted)	References
1.	alfentanil	N-dealkylation	4.85	4.52	0.33	Ref.32
2.	clobazam	N-demethylation	4.53	4.20	0.33	Ref.33
3.	dextromethorphan	N-demethylation	4.25	4.31	-0.06	Ref.34
4.	ezlopitant alkene (CJ-12458)	Hydroxylation (CP-611781)	4.66	4.50	0.16	Ref.35
5.	ezlopitant alkene (CJ-12458)	Hydroxylation (CP-616762)	4.62	4.50	0.12	Ref.35
6.	ezlopitant	Oxidation (CJ-12458)	5.04	5.03	0.01	Ref.36
7.	ezlopitant	Oxidation (CJ-12764)	4.95	5.03	-0.08	Ref.36
8.	felodipine	Aromatization	4.57	4.64	-0.07	Ref.37
9.	midazolam (1-OH)	Hydroxylation	5.05	5.06	-0.01	Ref.38
10.	midazolam (4-OH)	Hydroxylation	4.53	4.44	0.09	Ref.37,38,39
11.	nifedipine	Aromatization	4.67	4.59	0.08	Ref.37
12.	propofol	Hydroxylation	4.37	4.68	-0.31	Ref.40
13.	sildenafil	N-dealkylation	3.65	3.80	-0.15	Ref.41
14.	voriconazole	Hydroxylation	4.95	4.73	0.22	Ref.42
15.	voriconazole	N-oxidation	3.63	3.77	-0.14	Ref.42
Figure 1: Observed and predicted K_m values (pK_m values) for the substrates of CYP3A4 (Training set)

Contour map analysis

Figure 2: CYP3A4 substrates: (R)-tofisopam (1) and (S)-citalopram (2)

In the contour maps, the compound with the highest metabolic activity ((R)-tofisopam) and lowest metabolic activity ((S)-citalopram) among the training set molecules were investigated (Figure 2). The fused nucleus of (R)-tofisopam occupied the sterically favored green region (Figure 3a). This describes the highest metabolic activity of (R)-tofisopam (Table 1). Inversely, N-methyl structural unit of ((S)-citalopram) occupied the sterically disfavored yellow region of contour maps and this demonstrates the observed lower metabolic activity of (S)-citalopram (Table 1; Figure 3b). The visual inspection of the steric and electrostatic contour maps of the CoMFA models towards CYP substrates may guide the medicinal chemists to make a substitution pattern in those positions of the molecular skeleton which occupies favored / disfavored region. This further leads to develop a
therapeutic molecule with an altered metabolic activity. Finally, the work presented here enabled us to propose the stereoelectronic regions which are affecting the CYP metabolic activity. This can be relevant to develop the therapeutic analogs with the efficient metabolic profiles.

![Figure 3: Contour map analysis of CYP3A4 substrates: (a) (R)-tofisopam (1) and (b) (S)-citalopram (2)](image)

CONCLUSION

CoMFA was performed for the substrates of CYP3A4. The CoMFA model was found to be statistically significant in predicting the catalytic activity. Further, the model was also validated with the training and test set of molecules. The obtained model helped to explain the stereoelectronic structural features that are responsible for the CYP3A4 mediated metabolism. The information obtained from the contour map analysis of CYP3A4 substrates could be useful to design the therapeutic analogs with efficient metabolic profiles.

ACKNOWLEDGEMENT

The authors acknowledge the Department of Science and Technology (DST), New Delhi, India for providing the funds to carry out the research work reported in this article.

REFERENCES

(1) Ortiz de Montellano PR. Cytochrome P450: structure, mechanism and biochemistry. 3rd ed. Kluwer Academic/Plenum Publishers; New York, 2005.

(2) Ramesh M, Bharatam PV. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes. Eur J Med Chem 2014, 71:15-23.

(3) Gibson GG, Skett P. Introduction to drug metabolism. 3rd ed. Nelson Thornes Publisher; Cheltenham, 2001.
(4) Guengerich FP, MacDonald JS. Applying mechanisms of chemical toxicity to predict drug safety. Chem Res Toxicol 2007, 20:344-369.

(5) Roy K, Pratim Roy P. Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. Eur J Med Chem 2009, 44:2913-2922.

(6) Ekins S, Bravi G, Wikel JH, Wrighton SA. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther 1999, 291:424-433.

(7) SYBYL, version 6.9; Tripos Inc, St Louis, 2007.

(8) Haji-Momenian S, Rieger JM, Macdonald TL, Brown ML. Comparative molecular field analysis and QSAR on substrates binding to cytochrome P450 2D6. Bioorg Med Chem 2003, 11:5545-5554.

(9) Patrick GL. An introduction to medicinal chemistry. 1st ed. Oxford University Press; New York, 2005.

(10) Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988, 110:5959-5967.

(11) Venkatakrishnan K, Von Moltke LL, Duan SX, Fleishaker JC, Shader RI, Greenblatt DJ. Kinetic characterization and identification of the enzymes responsible for the hepatic biotransformation of adinazolam and N-desmethylandinazolam in man. J Pharm Pharmacol 1998, 50:265-274.

(12) Rawden HC, Kokwaro GO, Ward SA, Edwards G. Relative contribution of cytochromes P-450 and flavin-containing monooxygenases to the metabolism of albendazole by human liver microsomes. Br J Clin Pharmacol 2000, 49:313-322.

(13) Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T. A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor. Drug Metab Dispos 2000, 28:1303-1310.

(14) Olesen OV, Linnet K. Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology 1997, 55:235-243.

(15) Matsumoto S, Yamazoe Y. Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol 2001, 51:133-142.
(16) Tang C, Shou M, Mei Q, Rushmore TH, Rodrigues AD. Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J Pharmacol Exp Ther 2000, 293:453-459.

(17) Kim KA, Park JY, Lee JS, Lim S. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 2003, 26:631-637.

(18) Hiratsuka M, Hinai Y, Sasaki T, Konno Y, Imagawa K, Ishikawa M, Mizugaki M. Characterization of human cytochrome P450 enzymes involved in the metabolism of cilostazol. Drug Metab Dispos 2007, 35:1730-1732.

(19) Von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RI. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001, 29:1102-1109.

(20) Linnet K, Olesen OV. Metabolism of clozapine by cDNA-expressed human cytochrome P450 enzymes. Drug Metab Dispos 1997, 25:1379-1382.

(21) Wang L, Christopher LJ, Cui D, Li W, Iyer R, Humphreys WG, Zhang D. Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos 2008, 36:1828-1839.

(22) Takeshita M, Miura M, Ohkubo T, Sugawara K. Asymmetric redox reactions in human liver stereoselective oxidation of optically active dihydrohaloperidols, dihydrobromoperidols and stereospecific reduction of haloperidol and bromoperidol. Enantiomer 2000, 5:189-195.

(23) Li J, Zhao M, He P, Hidalgo M, Baker SD. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 2007, 13:3731-3737.

(24) Margolis JM, O'Donnell JP, Mankowski DC, Ekins S, Obach RS. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos 2000, 28:1187-1191.

(25) Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, Iga T. Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 2001, 29:887-890.

(26) Kim KA, Kim MJ, Park JY, Shon JH, Yoon YR, Lee SS, Liu KH, Chun JH, Hyun MH, Shin JG. Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos 2003, 31:1227-1234.
(27) Tuvesson H, Hallin I, Persson R, Sparre B, Gunnarsson PO, Seidegard J. Cytochrome P450 3A4 is the major enzyme responsible for the metabolism of laquinimod, a novel immunomodulator. Drug Metab Dispos 2005, 33:866-872.

(28) Abelo A, Andersson TB, Antonsson M, Naudot AK, Skanberg I, Weidolf L. Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 2000, 28:966-972.

(29) Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol 2000, 50:563-571.

(30) Wienkers LC, Allievi C, Hauer MJ, Wynalda MA. Cytochrome P-450-mediated metabolism of the individual enantiomers of the antidepressant agent reboxetine in human liver microsomes. Drug Metab Dispos 1999, 27:1334-1340.

(31) Cameron MD, Wright J, Black CB, Ye N. In vitro prediction and in vivo verification of enantioselective human tofisopam metabolite profiles. Drug Metab Dispos 2007, 35:1894-1902.

(32) Klees TM, Sheffels P, Dale O, Kharasch ED. Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos 2005, 33:303-311.

(33) Giraud C, Tran A, Rey E, Vincent J, Treluyer JM, Pons G. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19. Drug Metab Dispos 2004, 32:1279-1286.

(34) Huang W, Lin YS, McConn DJ, Calamia JC, Totah RA, Isoherranen N, Glodowski M, Thummel KE. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 2004, 32:1434-1445.

(35) Obach RS. Cytochrome P450-catalyzed metabolism of ezlopitant alkene (CJ-12,458), a pharmacologically active metabolite of ezlopitant: enzyme kinetics and mechanism of an alkene hydration reaction. Drug Metab Dispos 2002, 30: 1512-1522.

(36) Obach RS. Metabolism of ezlopitant, a nonpeptidic substance P receptor antagonist, in liver microsomes: enzyme kinetics, cytochrome P450 isoform identity, and in vitro-in vivo correlation. Drug Metab Dispos 2000, 28:1069-1076.

(37) Galetin A, Clarke SE, Houston JB. Quinidine and haloperidol as modifiers of CYP3A4 activity: multisite kinetic model approach. Drug Metab Dispos 2002, 30, 1512-1522.

(38) Yamaori S, Yamazaki H, Suzuki A, Yamada A, Tani H, Kamidate T, Fujita K, Kamataki T. Effects of cytochrome b(5) on drug oxidation activities of human cytochrome P450 (CYP) 3As: similarity of CYP3A5 with CYP3A4 but not CYP3A7. Biochem Pharmacol 2003, 66:2333-2340.
(39) Kudo S, Odomi M. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol 1998, 54: 253-2599.

(40) Murayama N, Minoshima M, Shimizu M, Guengerich FP, Yamazaki H. Involvement of human cytochrome P450 2B6 in the omega- and 4-hydroxylation of the anesthetic agent propofol. Xenobiotica 2007, 37:717-724.

(41) Hyland R, Roe EGH, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol 2001, 51:239-248.

(42) Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol 2007, 73:2020-2026.