The effect of cement dust has been linked to many diseases but very few studies have been able to study the impact of cement on oxidative stress, inflammation and carcinogenesis in Port Harcourt. Therefore, this study was focus on assessing the effect of cement dust on total antioxidant status (TAS), inflammatory markers and cancer markers among cement loaders in Port Harcourt. The study was conducted in Port Harcourt among 100 cement loaders and 100 non-cement exposed individuals who made up the control group. Upon consenting to participate in the study, subjects were randomly selected for recruitment into the study. Five milliliters of blood was collected from each subject and was assayed for total antioxidant status (TAS) using enzymatic colorimetric method, IL-10, IL-1β, Neuron specific Enolase (NSE), C-Reactive protein (CRP), Vascular Endothelial Growth Factor A (VEGF-A) using ELISA technique. Results compared TAS, IL-10, IL-1β, NSE, CRP and VEGF-A levels between cement exposed group and control group. TAS result revealed that there was a significant decrease between in the exposed group (P-value=0.0011). CRP, result revealed that there was no significant difference between both groups (P-value=0.1103). IL-10, result revealed that there was a significant decrease in the exposed group (P-value=0.0030). IL-1β, result revealed that there was a significant increase in the exposed group (P-value=0.0012). VEGF-A result revealed that there was no significant difference between both
groups (P-value=0.653), NSE, result revealed that there was a significant increase in the exposed groups (P-value<0.0001). This study has shown that human exposure to cement dust increases oxidative stress, affects inflammatory responses and may increase the risk of cancer among cement workers in Port Harcourt.

Keywords: Cancer markers; cement dust; ELISA; inflammatory markers; oxidative stress.

1. INTRODUCTION

Cement is a fine particulate powder which arises from the crushing and grinding of limestone with quartz or other sources of silica, iron ore and other additives [1]. The raw materials (silica, iron ore, and other additives undergoes series of chemical reactions at very high temperature (~1450°C) to arrive at the finished product (cement). Different types of cement with varying compositions are available for different construction purposes. Molecules of principal value in cement essentially include 60-67% calcium oxide, 17-25 silicon oxide (SiO₂), 3-5% aluminium (Al) oxide, with some amount of iron oxide, chromium (Cr), potassium, sodium, sulphur and magnesium oxide (2.3). The production process of cement generates large quantity of dust during quarrying, grinding and when the finished cement is blended, packed and shipped [4]. The cement industry is considered as a major pollution problem because of dust and particulate matter emitted at various steps of cement production [5]. The cement dust generated and emitted in the production, packaging, shipping, and the use of cement has led to various health challenges [6]. The individual component of cement has been shown by studies to exert different health effects on those exposed to cement dusts. Aluminum for instance has been linked to a variety of brain illnesses, including Alzheimer's, Parkinson's, and multiple sclerosis [7]. A research carried out by Giorgianni shows that Aluminum alters cognitive responses, with the effects being more noticeable in complex processes [8]. A study conducted by Meo [9] revealed that cement dust penetrate the systemic circulation and so reach almost all of the body's organs, impacting various tissues such as the heart, liver, spleen, bone, muscles, and hairs, eventually changing their microstructure and physiological function [9]. Exposure to cement Aluminum (Al), iron (Fe), calcium (Ca), and silicon (Si) in the workplace has been linked to lower lung function indicators in exposed employees. Many studies have estimated the effects the exposure of cement has posed with the help of spirometric and radiologic methods. The process of inflammatory response of work place hazard to silica has been said to be found in some human body organs like skin, liver and lungs. When this is not checked, it might result to fibrosis, cancer or granulomatous diseases [10]. So many researchers have examined silica in staff of dust exposed production factories and lung cancer risk has been accounted for in some of these workers not all [11].

Merenu and his team discovered that exposure to emissions and cement dust particles have been noted to have caused damage to the health of many. Their study was focused on Sheep within or close to cement exposed area in Sokoto, Nigeria [12]. A proven theory from a research has verified that cement dust contact is capable of bringing along problems in peak expiratory flow (PEF) values in cement factory staff, exposed to cement dust [13]. Going by the studies conducted on this subject in other countries of the world and some part of the nation, some male subjects in Port Harcourt were evaluated for inflammatory, total antioxidant status and cancer makers among individuals exposed to cement dust, based on the number of hours they work.

The effect of cement dust has been linked to many diseases but very few studies have been able to study the impact of cement on oxidative stress, inflammation and carcinogenesis in Port Harcourt. Therefore, this study was focus on assessing the effect of cement dust on total antioxidant status, inflammatory markers and cancer markers among cement loaders in Port Harcourt.

2. MATERIALS AND METHODS

2.1 Study Design

A cross sectional study design was employed for this study. A convenient sampling size of 200 subjects was used. This research work was carried out on 200 male subjects; of which 100 were cement exposed healthy subjects working in one cement depot and eight loading sites and 100 were apparently healthy non exposed male subjects. The exposed subjects were selected
randomly. The medical history as well as the bio-
data, socio demographics, environmental and
lifestyle of the study subjects were obtained with
the use of a well structured questionnaire.

2.2 Study Area

The study was carried out in Port Harcourt
metropolis, Rivers State, Nigeria. Port Harcourt is
the capital and biggest city of Rivers State,
Nigeria with its geographic coordinates as
latitude: 4°46′38″ N, longitude: 7°00′48″ E and
elevation above sea level: 16 m = 52 ft. It lies
along the Bonny Stream and is situated in the
Niger Delta.

2.3 Study Population

This study involved 100 cement loaders who
worked in cement depots and shops, and
another 100 control subjects who were not
involved in the use of cement occupationally. The
biodata of the subjects were obtained using
questionnaire. Individuals involved in any
occupation that involves the use of cement, were
not recruited as control subjects. Informed
consent was also obtained from the subjects. All
subjects were apparently healthy.

2.4 Eligibility Criteria

2.4.1 Inclusion criteria

The cement loaders involved in the study were
those that had been exposed to cement dust for
a minimum period of three months, who gave
their consent to participate in this study and are
adults between the ages of 20 to 60 years of age.

The unexposed control subjects were apparently
healthy male subjects who reside outside the
vicinity of the cement exposed areas. Subjects
with no history or signs suggestive of respiratory,
haematologic, bone or liver diseases were
considered eligible and selected into both the
exposed and unexposed groups.

2.4.2 Exclusion criteria

Subjects with previous exposure to any
occupational agents other than cement silica etc.
were excluded from the study. Also, those with
history or diagnosed case of asthma or any
respiratory diseases or other diseases like
diabetes mellitus, pulmonary tuberculosis, having
history of acute or chronic infection or recent
case of hospitalization, and those with these
chronic illnesses were exempted from the
study.

Those who had worked for less than three
months as well as those who did not consent
were excluded from this study.

With the aid of questionnaire and interview, all
participating cement loaders were interviewed by
trained interviewers. All participants went through
medical assessment to rule out the presence of
diseases like asthma, diabetes, hypertension,
anemia, cancer, infections or those who have
recently had blood transfusion, thyroid and heart
problems. Participants with diseases, drug
therapy and alcohol, antioxidants, exposure to
deadly substances or radiation therapy were not
included in the study.

2.5 Sampling Technique

Simple random sampling technique was used for
subject recruitment to give everyone equal
chances of been recruited into the study in order
to rule out possible bias.

2.6 Sample Collection

After seeking consent and giving explanations,
venous blood samples were drawn from the
antecubital fossa of this study subjects using
vacutainer sample containers. This is in
accordance to the description given by
Cheesbrough, [14]. In the study, blood sample
(5ml) of the venous blood was drawn into plain
vacutainer bottles for the evaluation of Neuron
specific Enolase, C-Reactive protein, Vascular
Endothelial Growth Factor A, IL-1β, IL-10 and
Total antioxidative stress. The blood collected
allowed to clot and then spun at 4000rpm for 5
minutes to obtain the serum.

2.7 Laboratory Analysis

2.7.1 Determination of human VEGF-A
(Vascular Endothelial Cell Growth
Factor A)

Assay for human VEGF-A (Vascular endothelial
cell growth factor A) was performed using ELISA
kit.

2.7.2 Assay procedure for human VEGF-A
(Vascular endothelial cell growth factor
A)

The ELISA wells were determined for diluted
standard, blank and sample into the appropriate
wells (It was recommended that all samples and
standards be assayed in duplicate). The plate
was covered with the sealer provided in the kit. It was incubated for 90 minutes at 37°C. The solutions were added to the bottom of the micro plate well. Laying a hand on the inner wall was strictly avoided as that could result to foaming. From each well, the liquid was decanted. Washing was delayed for a while and 100µL of Biotynylated detection Antibody working solution was immediately added to each well. The plate was then covered with a new sealer and incubated for 1 hour at 37°C. From each well, the solution was decanted, 350µL of wash buffer was added to each well, soaked for an hour and the solution was aspirated or decanted from each well and was patted dry on an absorbent paper. These wash steps were repeated 3 times. To achieve these steps, a microplate washer could be used. Instantly, the test strips were used after the wash step. The wells were not allowed to get dry then 100µL of HRP Conjugate working solution was added to each well; the plate was covered with a brand new sealer and incubated for 30 minutes at 37°C. The solution was decanted from each well; the washing process was repeated for 5 minutes as it was done in step 3 and 90µL of the substrate reagent was added to each well. The plate was covered with a new sealer and incubated at 37°C for 15 minutes. Protecting the plate from light was very essential as the reaction period could be reduced or extended based on color change. This should not have been for more than 30 minutes. Prior to the OD measure, the Microplate reader was preheated for 15 minutes. To each well, the addition of stop solution was done exactly in the same order that the substrate solution was. Instantly, with a micro-plate reader set to 450nm, the optical density (OD value) of each well was determined.

2.7.3 Standard range for human vascular endothelial cell growth factor

31.25pg/mL to 2000pg/mL: This is the standard curve range for Human Vascular Endothelial Cell Growth Factor.

2.7.4 Calculation of results

The duplicate readings for each standard and samples were averaged and the average zero standard optical density then was subtracted. A four parameter logistic curve on log-log graph paper was plotted with standard concentration on the x-axis and OD values on the y-axis. The calculated concentration multiplied by the dilution factor was the test concentration.

2.7.5 Determination of human IL-1β (Interleukin 1 Beta) test

Assay for Human IL-1β (Interleukin 1 Beta) was determined using ELISA Kits (Engvall & Perlmann, 1971).

2.7.6 Procedure for human IL-1β (Interleukin 1 Beta) test

The ELISA wells were determined for diluted standard, blank and sample into the appropriate wells (It was recommended that all samples and standards be assayed in duplicate). The plate was covered with the sealer provided in the kit. It was incubated for 90 minutes at 37°C. The solutions were then added to the bottom of the micro plate well. Contact with the inner wall was strictly avoided as that could result to foaming. From each well, the liquid was decanted. Washing was delayed for awhile and 100µL of Biotynylated detection Ab working solution was immediately added to each well. The plate was the covered with a new sealer and incubated for 1 hour at 37°C. From each well, the solution was decanted, 350µL of wash buffer was added to each well, soaked for an hour and the solution was aspirated or decanted from each well and was patted dry on an absorbent paper. These wash steps were repeated 3 times. To achieve these steps, a microplate washer could be used. Immediately, the test strips were used after the wash step. The wells were not allowed to dry up and 100µL of HRP Conjugate working solution was added to each well, the plate was covered with a brand new sealer and incubated for 30 minutes at 37°C. The solution was decanted from each well; the washing process was repeated for 5 minutes as it was done in step 3 and after that, 90µL of the substrate reagent was added to each well. The plate was covered with a new sealer and incubated at 37°C for 15 minutes. Protecting the plate from light was vital as the reaction period could be reduced or extended based on color change. This should not have been for more than 30 minutes. Prior to the OD measure, the Microplate reader was then preheated for 15 minutes. To each well, the addition of stop solution was done exactly in the same order that the substrate solution was. Instantly, with a micro-plate reader set to 450nm, the optical density (OD value) of each well was determined.

2.7.7 Standard range for human IL-1β (Interleukin 1 Beta)

7.81pg/ml to 500 pg/ml: This is the standard curve range for Human IL-1β (Interleukin 1 Beta).
2.7.8 Calculation of results

The duplicate readings for each standard and samples were averaged and the average zero standard optical density then was subtracted. A four parameter logistic curve on log-log graph paper was plotted with standard concentration on the x-axis and OD values on the y-axis. The calculated concentration multiplied by the dilution factor was the test concentration.

2.7.9 Determination of human IL-10 (Interleukin 10) test

Assay for Human IL-10 (Interleukin 10) was determined with the use ELISA kit.

2.7.10 Procedure for human IL-10 (Interleukin 10) test

The ELISA wells for human IL-10 test were determined for diluted standard, blank, and sample into the appropriate wells (It was recommended that all samples and standards be assayed in duplicate). The plate was covered with the sealor provided in the kit. It was incubated for 90 minutes at 37°C. The solutions were righted to the bottom of the micro plate well. Tampering with the inner wall was strictly avoided as that could result to foaming. From each well, the liquid was decanted. Washing was delayed for a while and 100µL of Biotynylated detection antibody working solution was immediately added to each well. The plate was then covered with a new sealer and incubated for 1 hour at 37°C. From each well, the solution was decanted, 350µL of wash buffer was added to each well, soaked for an hour and the solution was aspirated or decanted from each well and was patted dry on an absorbent paper. These wash steps were repeated 3 times. To achieve these steps, a microplate washer could be used. At once, the test strips were used after the wash step. The wells were not allowed to get dry and then 100µL of HRP Conjugate working solution was added to each well, the plate was covered with a brand new sealer and incubated for 30 minutes at 37°C. The solution was decanted from each well; the washing process was repeated for 5 minutes as it was done in step 3. At this point, 90µL of the substrate reagent was added to each well. The plate was covered with a new sealer and incubated at 37°C for 15 minutes. Guarding the plate from light was very imperative as the reaction period could be reduced or extended based on color change. This should not have been for more than 30 minutes. Prior to the OD measure, the Microplate reader was preheated for 15 minutes.

To each well, the adding up of stop solution was done in the same order that the substrate solution was. Instantaneously, with a micro-plate reader set to 450nm, the optical density (OD value) of each well was determined.

Standard Range for Human IL-10 (Interleukin 10) 7.81pg/ml to 500pg/ml: This is the standard curve range for Human IL-10 (Interleukin 10).

2.7.11 Calculation of results

The duplicate readings for each standard and samples were averaged and the average zero standard optical density then was subtracted. A four parameter logistic curve on log-log graph paper was plotted with standard concentration on the x-axis and OD values on the y-axis. The calculated concentration multiplied by the dilution factor was the test concentration.

2.7.12 Determination of neuron specific enolase

Assay for Neuron Specific Enolase was performed with the use of ELISA kit.

2.7.13 Procedure for neuron specific enolase test

The ELISA wells were determined for diluted standard, blank, and sample into the appropriate wells (It was recommended that all samples and standards be assayed in duplicate). The plate was covered with the sealer provided in the kit. It was incubated for 90 minutes at 37°C. The solutions were added to the bottom of the micro plate well. Touching the inner wall was strictly avoided as that could result to foaming. From each well, the liquid was decanted. Washing was delayed for a while and 100µL of Biotynylated detection Antibody working solution was immediately added to each well. The plate was then covered with a new sealer and incubated for 1 hour at 37°C. From each well, the solution was decanted, 350µL of wash buffer was added to each well, soaked for an hour and the solution was aspirated or decanted from each well and was patted dry on an absorbent paper. These wash steps were repeated 3 times. To achieve these steps, a microplate washer could be used. Instantly, the test strips were used after the wash step. The wells were not allowed to get dry.
100µL of HRP Conjugate working solution was added to each well, the plate was covered with a brand new sealer and incubated for 30 minutes at 37°C. The solution was decanted from each well; the washing process was repeated for 5 minutes as it was done in step 3. Thereafter, 90µL of the substrate reagent was added to each well. The plate was covered with a new sealer and incubated at 37°C for 15 minutes. Protecting the plate from light was very important as the reaction period could be reduced or extended based on color change. This should not have been for more than 30 minutes. Prior to the OD measure, the Microplate reader was preheated for 15 minutes. To each well, the addition of stop solution was done in the same order that the substrate solution was. Instantly, with a microplate reader set to 450nm, the optical density (OD value) of each well was determined.

Standard Range for Human Neuron Specific Enolase 2.34ng/ml to 150ng/ml: This is the standard curve range for Neuron Specific Enolase.

2.7.14 Calculation of results

The duplicate readings for each standard and samples were averaged and the average zero standard optical density then was subtracted. A four parameter logistic curve on log-log graph paper was plotted with standard concentration on the x-axis and OD values on the y-axis. The calculated concentration multiplied by the dilution factor was the test concentration.

2.7.15 Determination of Human C - reactive protein (CRP)

Assay for C-Reactive Protein (CRP) was performed with the use of ELISA.

2.7.16 Assay procedure for C - reactive protein test

The ELISA wells were determined for diluted standard, blank and sample into the appropriate wells (It was recommended that all samples and standards be assayed in duplicate). The plate was covered with the sealer provided in the kit. It was incubated for 90 minutes at 37°C. The solutions were added to the bottom of the micro plate well. Touching the inner wall was strictly avoided as that could result to foaming. From each well, the liquid was decanted. Washing was delayed for awhile and 100µL of Biotinylated detection Antibody working solution was immediately added to each well. The plate was then covered with a new sealer and incubated for 1 hour at 37°C. From each well, the solution was decanted, 350µL of wash buffer was added to each well, soaked for an hour and the solution was aspirated or decanted from each well and was patted dry on an absorbent paper. These wash steps were repeated 3 times. To achieve these steps, a microplate washer could be used. Instantly, the test strips were used after the wash step. The wells were not allowed to get dry. 100µL of HRP Conjugate working solution was added to each well, the plate was covered with a brand new sealer and incubated for 30 minutes at 37°C. The solution was decanted from each well; the washing process was repeated for 5 minutes as it was done in step 3 then 90µL of the substrate reagent was added to each well. The plate was covered with a new sealer and incubated at 37°C for 15 minutes. Protecting the plate from light was very important as the reaction period could be reduced or extended based on color change. This should not have been for more than 30 minutes. Prior to the OD measure, the Microplate reader was preheated for 15 minutes. To each well, the addition of stop solution was done in the same order that the substrate solution was. Instantly, with a microplate reader set to 450nm, the optical density (OD value) of each well was determined.

Standard Range for Human C - reactive protein 0.39ng/ml to 25ng/ml: This is the standard curve range for Human C - reactive protein.

2.7.17 Calculation of results

The duplicate readings for each standard and samples were averaged and the average zero standard optical density then was subtracted. A four parameter logistic curve on log-log graph paper was plotted with standard concentration on the x-axis and OD values on the y-axis. The calculated concentration multiplied by the dilution factor was the test concentration.

2.7.18 Determination of total antioxidant status

This assay was performed using enzymatic colorimetric Method.

2.7.19 Total antioxidant status test

ABTS (1, 2'- Azino-di-(3-ethylbenzthiazoline sulphonate) is incubated with a peroxidase) (metmyoglobin) and H₂O₂ to produce the radical cation ABTS⁺. This has a stable blue green colour which is measured at 600-660nm.
Antioxidants in the sample, suppress the formation of this colour, to a degree which is proportional to their concentration.

2.7.20 Calculation of absorbances

\[A2-A1 = \Delta \text{Absorbance sample/Calibrator/Blank} \]

Results: \(\Delta \text{Abs} \) Sample/\(\Delta \text{Abs} \) Calibrator \(\times \) Calibrator concentration

Standard Range for Total Antioxidant Status 1.3mmol/l-2.3mmol/l: This is the standard curve range for Total Antioxidant Status.

2.8 Statistical Analysis

Data obtained were collated in Ms Excel and data was analyzed using SPSS version 23.0 for descriptive analysis (mean and standard deviation) and inferential statistics (T-test). Test significance was set at \(p \)-value<0.05.

3. RESULTS

3.1 Comparison of Total Antioxidant Status, Inflammatory and Cancers Parameters of Control and Exposed Subjects

Table 1 shows the comparison of TAS, inflammatory and cancer markers in exposed and control groups. TAS result revealed that there was a significant decrease between the exposed group (P-value=0.0011). CRP, result revealed that there was no significant difference between both groups (P-value=0.1103). IL-10, result revealed that there was a significant decrease in the exposed group (P-value=0.0030). IL-1β, result revealed that there was a significant increase in the exposed group (P-value=0.0012). VEGF-A result revealed that there was no significant difference between both groups (P-value=0.653). NSE, result revealed that there was a significant increase in the exposed groups (P-value=0.0001).

4. DISCUSSION

This study evaluated some inflammatory, total antioxidant status and cancer makers among individuals exposed to cement dust. In this study, 100 subjects between the ages of 20 and 60 years were selected from the population of interest (cement loaders) and 100 subjects were recruited from non-cement loaders population to form the control group.

The results from this study indicated that the exposed subjects had significantly lower TAS levels and IL-10 levels but significantly higher IL-1β levels and NSE levels. The levels of CRP and VEGF-A did not defer between the exposed and control subjects. The results from this study showed that the exposed subjects had significantly lower TAS than the control subjects. This observation indicates oxidative stress. Cement dust inhalation may have resulted to oxidative stress leading to significant decrease in TAS level among cement loaders in Port Harcourt. Ogunbileje et al. [15] and Obaji-Ogar et al. [16] stated that increased state of oxidative stress is associated with individuals exposed to cement dust and chronic exposure could lead to the depletion of antioxidants. This finding also agrees with the work of Salhen [17] who reported a decrease in antioxidation status parameters among Libyan cement factory workers. According to Bagchi et al. [18], chromium, which is one of the components of cement has been reported to be a potent oxidizing agent extremely harmful capable of causing oxidative stress and resultant organ damage. The penetration of Cr (VI) to very important organs like the kidney, the respiratory system (the lungs),

Table 1. Comparison of Total Antioxidant Status, Inflammatory and Cancers Parameters of Control and Exposed Subjects

Subjects	TAS (mmol/L)	CRP (ng/mL)	IL-10 (pg/mL)	IL-1β (pg/mL)	VEGF-A (pg/mL)	NSE (ng/mL)
Control (n=100)	2.18±0.76	7.90±5.87	18.98±16.24	3.20±0.88	364.34±237.60	2.79±0.85
Exposed (n=100)	1.84±0.46	6.62±4.57	13.13±10.73	3.71±1.26	350.83±182.86	3.98±2.44
T-value	4.605	1.604	3.004	3.20	0.451	4.02
P-value	<0.001	0.1103	0.0030	0.0012	0.653	<0.0001
Remark	S	NS	S	S	NS	S

Key: TAS- total antioxidant status, CRP- C-reactive protein, IL-10- interleukin 10, IL-1β- interleukin 1 beta, VEGF-A- vascular endothelial factor-A, NSE- neuron specific enolase, s-significant at \(p \)<0.05 and ns-not significant at \(p \)>0.05
and the liver can bring about harmful effects through the production of reactive oxygen species (free radicals) and resultant inflammatory response. Thus posit that high level of dust exposure has deleterious effects on blood and tissues which is attributed to elevated oxidative stress. IL-10 is a cytokine that exerts immunoregulatory effects. These immunoregulatory effects are broad and lead to attenuation of the expression of pro-inflammatory cytokine. In other words, IL-10 is predominantly anti-inflammatory cytokine [19]. Therefore, significantly reduced level of IL-10 in this study could be an indication of reduced anti-inflammatory condition of the exposed subjects. This finding agrees with the work of Fell et al. [20] who reported a similar finding in Norwegian cement production workers. IL-10 exhibits a circulation rhythm wherein its levels rise in the day time [21]. In consonance with this study, Fell et al. [20] reported low levels of IL-10 which they attributed to be due to inflammatory response or probably an indication of exposure to injurious substances. Although, this study expressed a reduction in the levels of VEGF-A among the cement dust exposed subjects compared to the non-exposed control group, it was not statistically significant. Soe et al. [22] stated in a study that in several malignancies, high VEGF expression has been linked to the occurrence of metastases and a poor prognosis. So in this study, exposure to cement may not have significantly impacted tendencies of carcinogenesis since VEGF-A did not significantly vary from the control group.

The exposed subjects in this study have significantly higher levels of IL-1 β and NSE. IL-1 β is a cytokine that mediates inflammatory response as reported by Lopex – Castejon and Brough, [23] and Villeneuve et al., (2018). The raised levels of IL-1 β may be due to inflammation, which resulted in the production of inflammatory markers including IL-1 β. The Neuron-specific enolase (NSE) is an isoenzyme of enolase that is known to be expressed in neurons and neuroendocrine cells [24]. Inhalation of silica, which is also found in cement, can lead to silicosis, which is a type of chronic pulmonary fibrosis [25]. Under normal physiological conditions, NSE is released into the extracellular space, but it is released and possibly upregulated when there is a damage or injury to the cell. Therefore, the raised levels of the NSE in this study are probably due to injury to the lung cells due to the inhalation of cement dust that may have occurred among the exposed subjects [27,28].

5. CONCLUSION

This study has revealed that exposure to cement dust can lead to increased oxidative stress which are the background causes for many chronic diseases and cancer. Also, the study has also shown that cement dust exposure triggers inflammatory responses. Although only one cancer marker levels was significant, key attention should be paid because of increased oxidative stress coupled with increase in NSE level can pose as risk for carcinogenesis.

6. RECOMMENDATION

The cement loaders should not only be educated on the importance of using adequate personal protective equipment (PPE), they should be provided with one considering that sometimes their wage may not be enough to cater for the PPE [29]. Updated scientific educational program delivered through the media to raise public health awareness of the effects of cement on those who are exposed to it is required.

CONSENT AND ETHICAL CLEARANCE

Ethical approval for this research was obtained from the Rivers State Health Research Ethics Committee. Permission was also gotten from the authorities of cement loading sites/shops and Dangote cement depot, RIVOC, Trans-Amadi, Port Harcourt. Informed consent was given by individuals before recruitment into the study.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Dunuweera SP, Rajapakse RMG. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Advances in Materials Science and Engineering. 2018;2(1):1-11.

2. Kakooei H, Gholami A, Ghasemkhani M, Hosseini M, Panahi D, Pouryaghoub G. Dust Exposure and Respiratory Health Effects in Cement Production. Acta Medica Iranica. 2012; 50(2):122-126.

3. Gbadebo AM, Bankole OD. Analysis of potentially toxic metals in airborne cement dust around Sagamu, Southwestern Nigeria. Journal of Applied Science. 2007; 7:35-40.

4. Fell AK, Möller A, Karl CN. Association between exposure in the cement production industry and non-malignant respiratory effects: A systematic review. British Medical Journal. 2016;7:4012-4028.

5. Friday ET, Alabi OJ, Akpa M. Investigation Effect of Free Radical Generated from Cement Dust on Antioxidant Enzymes Activities on Cement Factory Workers. International Journal of Biochemistry & Physiology. 2016;1(1):1-5.

6. Rahmani AH, Almatroudi A, BabikerAY, Khan AA, Alsafty MA. Effect of exposure to cement dust among the workers: An evaluation of health related complications. Journal of Medical Science. 2018;6(6):1159-1162.

7. Inan-Eroğlu E, Ayaz A. Is aluminum exposure a risk factor for neurological disorders? The Official Journal of Isfahan University of Medical Sciences. 2018;23:51-59.

8. Giorgianni CM, D’Arrigo G, Brecciaroli R, Abbate A, Spatari G, Tringali MA, Gangemi S, De Luca A. Neurocognitive effects in welders exposed to aluminium. Toxicology and Industrial Health. 2014;30(4):347-356.

9. Meo SA. Health hazards of cement dust. Saudi Medical Journal. 2004;25(9):1153-1159.

10. Ogumbilejo JO, Akinosun OM. Biochemical and haematological profile in nigerian cement factor/workers. Research Journal of Environmental Toxicology. 2011;5:133-144.

11. Malvezzi M, Negri E, Vecchia CL, Boffetta P. Risk factors for lung cancer worldwide. European Respiratory Journal. 2016;48:889-902.

12. Merenu IA, Omokhodion F, Mojiminiyi FBO, Ibrahim MTO. Effect of cement dust exposure on lung function among residents of Kalambaina Community in Sokoto State, Nigeria. Journal of Medical Sciences and Clinical Research. 2015;3(8):2455.

13. Omidianidost A, Gharavandi S, Azari M, Hashemiam A, Ghasemkhani M, Rajati E, Jabari M. Occupational exposure to respirable dust, crystalline silica and its pulmonary effects among workers of a cement factory in Kermanshali, Iran. Tanaffos. 2019;18(2):157-162.

14. Cheesbrough M. District laboratory practice in tropical countries, 2nd edition, Part 2. Cambridge: Cambridge University Press; 2010.

15. Ogumbilejo JO, Akinosun PA, Akinduti LA, Nwobi OM, Ejilude OA. Serum levels of some trace metals and leucocyte differential counts in Nigeria cement factory workers: Possible toxicity implications. Florida International Journal. 2010;2:53-58.

16. Obaji-Ogar LT, Nsonwu-Anyawu ACH, Odum FA. Oxidative DNA Damage and Pro-inflammatory Response in Chronic Exposure to Cement Dust. Asia Pacific Journal Medical Toxicology. 2020;9(1):3-10.

17. Salhen KSA. Assessment of oxidative stress, haematological, kidney and liver functions parameters of Libyan cement factory workers. Journal of American Science. 2004;10(5):58-65.

18. Bagchi D, Bagchi M, Stohs SJ. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Molecular and Cellular Biochemistry. 2001;222:1-2,149-158.

19. Steen EH, Wang X, Balaji S, Buttle MJ, Bollyky PL, Keswani SG. The role of the anti-inflammatory cytokine interleukin-10 in tissue inflammation. Advances in Wound Care. 2020;9 (4):184-198.

20. Fell AK, Noto H, Skogstad M. A cross-shift study of lung function, exhaled nitric-oxide and inflammatory markers in blood in Norwegian cement production workers. Journal of Occupational and Environmental Medicine. 2011;68:799–805.

21. Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human
immune system. Annals of the New York Academy of Science. 2010;1198:48-59.

22. Seo Y, Baba H, Fukuda T, Takashima M, Sugimachi K. High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer. 2000;88(10):2239–2245.

23. Lopez – Castejon G, Brough D. Understanding the Mechanism of IL-Iβ secretion. Cytokine & Growth Factor Review. 2011;22(4):189-195.

24. El-Maraghi S, Yehia H, Hossan H, Hazen Y, Yehia A, Mowafy H. The prognostic value of neuron specific enolase in head injury. The Egyptian Journal of Critical Care Medicine. 2013;1(1):25-32.

25. Haung H, Huang J, Xu X, Huang K, Lin Y, Lin J, Zhuang X. Serum, neuron-specific enolase: A promising biomarker of silicosis. World Journal of Clinical Cases. 2021; 9(5):1016-1025.

26. Bezek S, Biberthaler P, Martinez-Espina I, Bogner-Flatiz V. Pathophysiology and clinical implementation of traumatic brain injury biomarkers: Neuron-specific enolase. In WU, A.H.B. & Peacock, W.F. (Eds). Biomarkers for Traumatic Brain Injury (pp. 169-182). Cambridge: Elsevier; 2020.

27. Amadi AI, Dimkpa K. Towards waste minimization in wet Trades: Metrological based model of cement demand in Port Harcourt metropolis. The Environmental Studies Journal. 2020;3(1):61-76.

28. Mojekwu JN, Ademola I, Sode O. Analysis of the contribution of imported and locally manufactured cement to the growth of gross domestic production of Nigeria. African Journal of Business Management. 2013;7(5):360-371.

29. Wekke VO, Fiberesima D. Noise mapping around the host communities of the university of port harcourt, Nigeria. Arts & Humanities Open Access Journal. 2020; 4(2):43–48.

© 2022 Nyebuchi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/87571