Introduction

The outbreak of coronavirus disease 2019 (COVID-19) in December 2019, has rapidly spread to 220 countries and regions, leading to the global pandemicity. According to the latest data from World Health Organization (WHO), over 562 million people have been diagnosed and over six million people have died from COVID-19 up to July 22, 2022. To cope with the epidemic and severity of COVID-19, many countries accelerated research of diagnosis, vaccination and therapeutics, which cause a surge in the number of clinical studies on COVID-19 in a short time. From January 1, 2020 to May 6, 2020, 1694 clinical trials related to COVID-19 were authorized and can be found in five international clinical trial registries. However, a study from the British Medical Journal (BMJ) suggested that the large amount of studies on COVID-19 resulted in increased difficulty to respond quickly and effectively to devise an appropriate crisis response.
strategy to the novel coronavirus, which had also hugely impacted the mental health of health-care employees due to overload of work and exhaustion under the COVID-19 pandemic. As high-level evidence in evidence-based medicine, a systematic review (SR) acts as a bridge to connect research outcomes and clinical practice, providing a reference for clinical practitioners to contribute quick and accurate decisions. Although the methodology of SR is relatively mature, its updating mechanism for publication is immature. Once literature been published, only a few SRs were updated within two years. Most SRs failed to incorporate new evidence timely, resulting in their conclusions differing from the true effect of interventions.

To solve the delayed update of publication analyzed in SRs and accurately reflect the effect of interventions on COVID-19, Elliott et al proposed the concept of a living systematic review (LSR) in 2014, and defined it as a “systematic review which was continually updated, incorporating relevant new evidence as it becomes available”. Elliott et al suggested, an acceptable and appropriate LSR required to follow three criteria: (1) the review question is a particular challenge and its solution needs to be priorities to decision-making; (2) the existing evidence is insufficient and uncertain for questions to be solved; (3) the emerging evidence is likely to impact conclusions of the LSR. However, some studies showed that LSRs might face unexpected challenges and difficulties under the COVID-19 pandemic with a changeable epidemiological landscape and substantial clinical uncertainty.

Therefore, this systematic review analyzes and summarizes the characteristics of LSRs for COVID-19, which aims to identify potential problems and provide references to further improve the quality of LSRs for COVID-19.

Methods
This study was a systematic review and conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Six databases were searched systematically, including Medline, Excerpta Medica (Embase), Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Database and China Science and Technology Journal Database (VIP), as of May 16, 2022. The search strategy was specific for each database and included a combination of the medical subject headings and free text terms for “living systematic review” or “living system review” or “living system evaluation” or “living systematic evaluation” or “living meta-analysis”.

This manuscript included all the living systematic reviews for COVID-19 and was not limited by language. Two researchers independently screened the studies. When two researchers had opposite opinions, disputes were decided by the third researcher. EndNote™ X8 software was used for deduplication and back-to-back screening by two researchers.

The information extraction table was designed in advance, and the pretest was conducted with 10% of the included LSR. Two researchers extracted the information of the included LSR back-to-back, and the extracted results were compared by the third researcher. The information extraction table included three parts: (1) general characteristics: title, author, published year, country, institution, name and impact factor of journal, topic, population, quality assessment tool, etc; (2) methodology of LSR: type of LSR, registration information, search methods, search frequency, data synthesis methods, updated frequency, etc; (3) transitioning LSR out of living mode: time or criteria for transitioning LSR out of living mode.

Searched records were managed by EndNote™ V.X9, Clarivate, Philadelphia, Pennsylvania, USA. Statistical analysis was done by MS Excel 2019. Descriptive analysis and tables were used to present the results. Binary variables (such as first institution’s country, study topics and study population) were displayed in frequency and percentage. Continuous variables (such as impact factor, search frequency, screening frequency, update frequency) were displayed in mean, standard deviation and range. Due to the large heterogeneity of LSR included in this study, meta-analysis was not intended to be performed in this study.

Results
Study Selection
A total of 1132 studies were initially included. After excluding duplicate studies, 1043 studies remained. After reading the title, abstract and full text, 64 studies were included. A summary of the study selection process is reported in Figure 1.
Basic Information of LSR for COVID-19

Most (89.1%) LSRs were published in SCI journal. The impact factor published in SCI journals ranged from 1.04 to 39.89, with an average of 11.72 and a standard deviation of 11.30. The impact factor of 64.1% studies was >5, the impact factor of 17.2% studies was >15. LSRs were published in journals with high impact factor, which indicated COVID-19 related studies have attracted much attention from readers (Table 1). In addition, the included LSRs were distributed in 19 countries and regions around the world, covering high-income countries, upper-middle-income countries, low-middle-income countries and low-income countries.

The study topics covered all aspects of the health-care field, including prevalence, clinical manifestation, etiology, prevention, diagnosis, treatment, and prognosis. The topic most studied (40.6%) was the treatment of COVID-19. The population most studied (76.6%) was general COVID-19 patients, but there were fewer (6.3%) studies concerning pregnant
women \(^{16,17,30,78}\) and children \(^{28,30,77,78}\) with COVID-19, even no study concerning the elderly with COVID-19. (Table 1, Supplementary Material Table 1)

Methodology of LSR for COVID-19
In the production phase of LSR, most of the LSRs registered \(^{16–22,25,26,28–33,35,37,39–42,45–62,65–67,69–73,76–79}\) (81.2%) and wrote the protocol \(^{16–35,37,39–43,45–67,69–73,67,69–73,76–79}\) (92.2%) before the study started. Less than one third of the LSRs searched the Chinese database \(^{16–18,23,25,34,35,43,46,48,57,62–64,70,79}\) (25%), and less than half of the LSRs searched the preprint database \(^{16,20,21,23–26,28,37,39,40,43,45,46,48,51,53,57,62–64,67,68,73,76,77,79}\) (42.2%), and two-thirds of the LSRs searched

Category	Characteristic	Number	Percentage
Impact factor of published journal	Non-SCI	7	10.9%
	IF ≤5	16	25%
	<5 IF ≤10	26	40.6%
	<10 IF ≤15	4	6.3%
	IF ≥15	11	17.2%
	UK	11	17.2%
	Germany	10	15.6%
	Canada	9	14.1%
	US	6	9.3%
	Chile	5	7.8%
	Brazil	3	4.7%
	China	2	3.1%
	France	2	3.1%
	Netherlands	2	3.1%
	Switzerland	2	3.1%
	Denmark	2	3.1%
	Saudi Arabia	2	3.1%
	Spain	2	1.6%
	Czech Republic	1	1.6%
	Uruguay	1	1.6%
	Tanzania	1	1.6%
	Italy	1	1.6%
	Ireland	1	1.6%
	South Africa	1	1.6%
Study topics	Prevalence	4	6.3%
	Clinical spread	6	9.4%
	Epidemic spread	11	17.2%
	Etiology	3	4.7%
	Prevention	6	9.4%
	Diagnosis	3	4.7%
	Treatment	26	40.6%
	Prognosis	3	4.7%
	Others	5	7.8%
Study population	General patients with COVID-19	49	76.6%
	Children with COVID-19	4	6.3%
	Pregnant with COVID-19	4	6.3%
	Elderly with COVID-19	0	0%
	Healthy people	5	7.8%
	Health-care workers	4	6.3%
COVID-19 databases16,17,20–23,27,30,32,33,37–42,44–46,48,49,51–54,56,58–64,67,69–77,79 (67.2\%) (\textbf{Supplementary Material Table 2}). More than half (51.6\%) of LSRs used the same frequency to search different databases regularly16–18,20,24–26,30,32,35–37,39,40,43–46,48,49,51,52,55,59,61,62,66–69,73,74,79 and the frequency of searches ranged from once a day to once every six months, with an average of once every 28 days, with a standard deviation of 42.68 (\textbf{Supplementary Material Table 3}). Seventy-nine point seven percent of LSRs did not report screening frequency.16–31,33–36,38,39,42–48,50,51,53–55,57–59,61–64,66,69–72,74–79 Less than one-third (19.5\%) of LSRs took into account the possible false-positive probability of repeated meta-analyses.23,42,46,48,56,63,64 Methods of data synthesis included traditional meta-analysis methods (80.5\%) and nontraditional meta-analysis methods (19.5\%), which respectively referred to “the statistical methods for meta-analysis in the Cochrane Guidelines for Systematic Reviews” and “use of meta-analytic methods to adjust for frequent updating, such as Bayesian, trial sequential analysis, sequential meta-analysis, the Shuster method, Law of the iterated logarithm2–4,19. Only 34.4\% of LSRs reported time or criteria for transitioning LSR out of living mode.16,17,19,21–24,45,52,54–56,58,62–64,66,70–72,76,81–83 (\textbf{Supplementary Material Table 4}). Among them, the time to exit “living” mode is from one to two years, the average exit time is 1.78 years, and the standard deviation is 0.42. (\textbf{Table 2})

In the review, publish and update phase of LSR, only a small number (7.8\%) of LSRs had relatively stable peer reviewers.23,42,43,63,64 All the LSRs presented the results to readers through journals. But there were still 23.4\% of LSRs that showed the results through a more convenient and quick way (website or software).23,26,32,37,38,42,46,48,50,52,54,56,63,64,71,72 Thirty-four point 4\% of LSRs were updated regularly.16,18,19,21,23,26,27,31,35,37,45,50–52,54,56,62,64,65,74,78 The update frequency of LSRs ranged from weekly to annually, with an average of every 95 days, with a standard deviation of 80.51. Seventy-six point six\% of LSRs were never updated (\textbf{Table 2, Supplementary Material Tables 1} and \textbf{5}). In addition, less than one-fifth (18.8\%) of LSRs used technology in the production process,22,23,27,37,45,56,58,64,70–72,76 and most of them (10.9\%) were in the search process.22,37,45,58,70–72 (\textbf{Table 2})

Discussion

This study systematically reviewed 64 LSRs for COVID-19 and analyzed the characteristics of LSR for COVID-19. Meanwhile, we found unsolved challenges in LSRs by summarizing their basic information and methodology of LSRs. Consequently, we generated some suggestions to improve efficiency and quality of LSRs for COVID-19 with regard to these challenges.

It was noteworthy that 18.8\% of LSRs for COVID-19 were not registered in advance, which might be the reason for the existence of partial LSRs for COVID-19 repeated in similar topics. For example, three similar LSRs in the clinical topic of remdesivir for COVID-19 were found.26,71,74 In the meantime, three similar LSRs on the topic of cell therapy for COVID-19 also occurred.47,58,63 Potential reasons for the replication might be that some authors considered publishing the study without registration could be quicker, especially under the requirement of numerous SRs applications for registration under the COVID-19 pandemic.80 Although registration might delay publication of LSRs, to improve the quality of LSRs and reduce replicated publications, it was still recommended that LSRs should be registered prior to commencement.81–83

Brierley et al found that nearly 37.5\% of the COVID-19 studies were published in the preprint database,84 but only 42.2\% of LSRs for COVID-19 searched the preprint database. This might be due to concerns that preprints were not as reliable as peer-reviewed articles,85 and relying on preprints to draw conclusions could cause unstable practical expressions in clinical practice. However, Brierley et al’s study demonstrated that there was no qualitative difference after tracking COVID-19 preprints and final published versions.84 Therefore, considering the complicated and time-consuming progression of traditional peer review to be published and the urgency of COVID-19 pandemic, we suggested that LSRs for COVID-19 considered searching preprint databases, to open up the possibility of providing timely potential solutions for clinical challenges from COVID-19.

Among 38 LSRs for COVID-19, the average search frequency was 28 days, similar to the monthly search frequency suggested by Cochrane Guidance and Lansky.12,86 However, searching monthly was still difficult to persist in most studies. In studies by Cochrane Guidance12 and Millard,8 hours of monthly search could be as high as 32 hours, along with the aggravated workload. Regarding to the elevated time consumption for research of COVID-19, the establishment of COVID-19 Comprehensive Database became increasingly important in the development of LSRs.7,12,87–89 The L-OVE
COVID-19 platform, which obtained information from the Epistemonikos database and used artificial intelligence and expert opinions, integrates the information and releases the heavy workload on data search and organization for the researcher.14,90 The L-OVE COVID-19 platform was characterized with real-time updating of COVID-19 studies, Pierre et al and Butcher et al demonstrated that the L-OVE COVID-19 platform had a very good sensitivity for identifying studies evaluating interventions for COVID-19.89,91 To improve work efficiency, LSR for COVID-19 should search a comprehensive database of COVID-19.

Among 20 LSRs for COVID-19, the average search frequency was 95 days, much higher than the yearly update suggested by Créquit et al,92 indicating that research evidence was produced rapidly under the COVID-19 pandemic.

Table 2 Methodology of LSR for COVID-19

Category	Characteristic	Number	Percentage
Registration information	Registration	52	81.2%
Type of LSR	Protocol	59	92.2%
	Living network meta-analysis	5	7.8%
	Living systematic review and meta-analyses	35	54.7%
	Living systematic review only	24	37.5%
Database for literature search	Preprint database	27	42.2%
	COVID-19 Database	44	68.8%
	Chinese database	16	25.0%
Search frequency	Search different databases with different frequencies	5	7.8%
	Search all databases with the same frequency	33	51.6%
	Not mentioned	26	40.6%
Screening frequency	Mentioned	13	20.3%
	Not mentioned	51	79.7%
Methods of data synthesis	Traditional meta-analysis methods	33	80.5%
	Nontraditional meta-analysis methods	8	19.5%
Transitioning LSR out of living mode	Specify when to quit living mode	9	14.1%
	Clarify the criteria for exiting living mode	10	15.6%
	Specify when to quit living mode and clarify the criteria for exiting living mode	3	4.7%
	Not mentioned	42	65.6%
Editorial and peer review	Stable peer reviewera	5	7.8%
	Not mentioned	59	92.2%
Presentation ways to the reader	Peer-reviewed journals	64	100%
	Peer-reviewed journals and websites	12	18.8%
	Peer-reviewed journals, websites and software	3	4.7%
Timing of updates	Regular	22	34.4%
	When the criteria were met	25	39.1%
	Regular + when the criteria were metb	4	6.3%
	Not mentioned	13	20.3%
Number of updates	0	49	76.6%
	1	10	15.6%
	2	2	3.1%
	3	3	4.7%
Technological enablers	Search	7	10.9%
	Eligibility assessment	5	7.8%
	Data extraction or collection	1	1.5%
	Quality evaluation	0	0.00%
	Synthesis	0	0.00%

Notes: a“Stable peer reviewer“ meant that the LSR had relatively stable reviewers, who could review in a short time after the new manuscript was submitted. b“Regular + when the criteria are met“ meant that the LSR would be updated regularly, but if new evidence could change the conclusion, even if the specified update date was not met, the LSR would also be updated.
However, frequent updates which is premature could drain the research team’s resources and ultimately lead to the disruption of the LSR, which is a problem that would be magnified especially during the COVID-19 pandemic. Therefore, LSRs should have an appropriate update frequency in combination with comprehensive research focusing on this newly emerged evidence.

Subsequently, we found that only about one-third of COVID-19 LSRs reported a time or criterion for exiting living mode, and the remaining COVID-19 LSRs did not report or even consider this matter. It was impossible to stay in living mode in terms of time or funding. Therefore, clear time or criterion for exiting living mode is as important as deciding to start living mode in an LSR, especially under the COVID-19 pandemic when it was hard to predict when new evidence would emerge. Taken together, authors of the LSR should periodically review the clinical topics of interest, the speed and amount of new evidence produced, and its own resources, and then combine the above points to decide whether to transition LSR out of living mode.

Meanwhile, we found only 18.8% of LSRs for COVID-19 used machine automation to increase productivity. Thomas et al believed that human resources were scarce resources in LSR, so use of machine automation could improve the feasibility and sustainability of LSR. Automation could assist with some LSR tasks, including searching, eligibility assessment, data extraction or collection, quality evaluation, and synthesis. However, Thomas et al and Tercero-Hidalgo et al also recognized that the existing automation technology was only suitable for the early stages of the LSR production process (ie searching, eligibility assessment, etc), and the automation technology in the later stages of the LSR production process still required further research and development. Therefore, we propose LSR should be developed with automated techniques.

In addition, the poor reporting quality of the 64 LSRs for COVID-19, especially the part of the methodology of LSR, were observed. Iannizzi et al suggested that transparent and traceable reporting of changes in LSR methods became challenging under the COVID-19 pandemic. One of the reasons for this challenge might be currently no reporting guideline for LSRs. Although the PRISMA statement was updated in 2020, it emphasized that when used for LSRs, some additional obstacles need to be addressed. Four key modules assessed in traditional SRs (publication format, work processes, author team management, and statistical methods) could not be evaluated in PRISMA 2020 statement for LSRs. Therefore, the evaluation process following PRISMA 2020 statement only promises the reporting quality of LSR as a traditional SR, but not the reporting quality of a “living” SR. Fortunately, the deficiency of PRISMA 2020 statement was noticed by the PRISMA team. The specific protocol of PRISMA for LSR had been published, and it is claimed that PRISMA for LSR would be part of the PRISMA extension.

In contrast, there are still several limitations in this study. First, the methodological quality and reporting quality of LSR has not been considered in this study. Although the recently updated PRISMA 2020 statement claimed that it could be used for LSR, there were still some additional problems. Moreover, the commonly used methodological quality assessment tools AMSTAR 2 and ROBIS were not suitable for LSR. Second, this study did not identify the optimal search frequency, update frequency, and appropriate technological enablers. In the future, we could focus on developing appropriate PRISMA for LSR and exploring suitable search frequency, update frequency, and more available technological enablers, which may improve the quality of LSR.

Conclusion

LSRs are high-quality, up-to-date online summaries of health research, updated as new research becomes available, and enabled by improved production efficiency. Transparent reporting of changes in methodology between review updates is essential. And transparent reporting is needed to avoid biases in the review process. But most of the LSRs for COVID-19 were incomplete in reporting on the “living” process. This could reduce the confidence of health-care providers and policy makers in the results of COVID-19 LSRs, thereby hindering the translation of evidence on COVID-19 LSR into clinical practice. The results of this work not only provide an evidential foundation for PRISMA for the LSR development team, but also make recommendations for further applications of LSR under COVID-19.
Disclosure

Zhe Chen and Jiefeng Luo should be considered as co-first authors. The authors report no conflicts of interest in this work.

References

1. CNN health. Tracking Covid-19’s global spread; 2022. Available from: https://edition.cnn.com/interactive/2020/health/coronavirus-maps-and-cases/. Accessed May 16, 2022.

2. World Health Organization. WHO coronavirus disease (COVID-19) dashboard; 2022. Available from: https://covid19.who.int/. Accessed August 1, 2022.

3. Cai X, Fry CV, Wagner CS. International collaboration during the COVID-19 crisis: autumn 2020 developments. *Scientometrics*. 2021;126(4):3683–3692. doi:10.1007/s11192-021-03873-7

4. Else H. How a torrent of COVID science changed research publishing in seven charts. *Nature*. 2020;588(7839):553. doi:10.1038/d41586-020-03564-y

5. Ramanan M, Stolz A, RooplaSingh R, et al. An evaluation of the quality and impact of the global research response to the COVID-19 pandemic. *Med J Aust*. 2020;213(8):380–80.e1. doi:10.5694/mja2.50790

6. Casiglioni V, De Nard F, De Vita V, et al. Too much information, too little evidence: is waste in research fuelling the covid-19 infodemic? *BMJ*. 2020;370:m2672. doi:10.1136/bmj.m2672

7. Elliott JH, Turner T, Clavisi O, et al. Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap. *PLoS Med*. 2014;11(2):e1001603. doi:10.1371/journal.pmed.1001603

8. Millard T, Synnot A, Elliott J, et al. Feasibility and acceptability of living systematic reviews: results from a mixed-methods evaluation. *Syst Rev*. 2019;8(1):325–425. doi:10.1186/s13643-019-1248-5

9. Iannuzzi C, Akl EA, Kahale LA, et al. Methods and guidance on conducting, reporting, publishing and appraising living systematic reviews: a scoping review protocol. *F1000Res*. 2021;10:802–902. doi:10.12688/f1000research.55108.1

10. Ji DH. A brief introduction of living systematic review. *Chin J Evid Based Med*. 2020;20(2):244–248.

11. Jadad AR, Cook DJ, Jones A, et al. Methodology and reports of systematic reviews and meta-analyses: a comparison of Cochrane reviews with articles published in paper-based journals. *JAMA*. 1998;280(3):278–280. doi:10.1001/jama.280.3.278

12. Brooker J, Synnot A, McDonald S et al. Guidance for the production and publication of Cochrane living systematic reviews: Cochrane Reviews in living mode; 2019. Available from: https://community.cochrane.org/sites/default/files/uploads/inline-files/Transform/201912_LSR_Revised_Guidance.pdf. Accessed March 9, 2022.

13. Negriini S, Ceravolo MG, Côté P, et al. A systematic review that is “rapid” and “living”: a specific answer to the COVID-19 pandemic. *J Clin Epidemiol*. 2021;138:194–198. doi:10.1016/j.jclinepi.2021.05.025

14. Iannuzzi C, Dorando E, Burns J, et al. Methodological challenges for living systematic reviews conducted during the COVID-19 pandemic: a concept paper. *J Clin Epidemiol*. 2021;141:82–89. doi:10.1016/j.jclinepi.2021.09.013

15. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b3724. doi:10.1136/bmj.b3724

16. Allotey J, Chatterjee S, Kew T, et al. SARS-CoV-2 positivity in offspring and timing of mother-to-child transmission: living systematic review and meta-analysis. *BMJ*. 2021;376:e076966. doi:10.1136/bmj-2021-076966

17. Allotey J, Fernandez S, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. *PLoS Med*. 2021;18(8):e1003735. doi:10.1371/journal.pmed.1003735

18. Amorim, A, Santos J, Normando AG, Carvalho da Silva RL, et al. Oral manifestations in patients with COVID-19: a 6-month update. *J Dent Res*. 2021;100(12):1321–1329. doi:10.1177/00220345211029637

19. Ansems K, Grundeis F, Dahms K, et al. Remdesivir for the treatment of COVID-19. *Cochrane Database Syst Rev*. 2021;8(8):Cd014962. doi:10.1002/14651858.Cd014962

20. Assimwe IG, Pushpakom S, Turner RM, et al. Cardiovascular drugs and COVID-19 clinical outcomes: a living systematic review and meta-analysis. *Br J Clin Pharmacol*. 2021;87(12):4534–4545. doi:10.1111/bcp.14927

21. Baladia E, Pizarro AB, Ortiz-Muñoz L, et al. Vitamin C for COVID-19: a living systematic review. *Medwave*. 2020;20(6):e7978. doi:10.5867/medwave.2020.06.7978

22. Bartoszko JJ, Siemieniuk RAC, Kum E, et al. Prophylaxis against covid-19: living systematic review and network meta-analysis. *BMJ*. 2021;373(949). doi:10.1136/bmj.n949

23. Bell V, Wade D. Mental health of clinical staff working in high-risk epidemic and pandemic health emergencies: a rapid review of the evidence and living systematic review. *Soc Psychiatry Psychiatr Epidemiol*. 2021;56(1):1–11. doi:10.1007/s00127-020-01990-x

24. Bonardi O, Wang Y, Li K, et al. Effects of COVID-19 mental health interventions among children, adolescents, and adults not quarantined or undergoing treatment due to COVID-19 infection: a systematic review of randomised controlled trials. *The Canadian Journal of Psychiatry*. 2022;67(5):336–350. doi:10.1177/0008486217070648

25. Brummer LE, Katzenschläger S, Gaedert M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: a living systematic review and meta-analysis. *PLoS Med*. 2021;18(8):e1003735. doi:10.1371/journal.pmed.1003735

26. Buitrago-Garcia D, Egli-Gany D, Cournotte MJ, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis. *PLoS Med*. 2020;17(9):e1003346. doi:10.1371/journal.pmed.1003346

27. Bwire GM, Njoro B, Mwakawanga DL, et al. Possible vertical transmission and antibodies against SARS-CoV-2 among infants born to mothers with COVID-19: a living systematic review. *J Med Virol*. 2021;93(3):1361–1369. doi:10.1002/jmv.26622

28. Cares-Marambio K, Montenegro-Jiménez Y, Torres-Castro R, et al. Prevalence of potential respiratory symptoms in survivors of hospital admission after coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. *Chron Respir Dis*. 2021;18:14799731211002240. doi:10.1177/14799731211002240
30. Centeno-Tablante E, Medina-Rivera M, Finkelstein JL, et al. Transmission of SARS-CoV-2 through breast milk and breastfeeding: a living systematic review. *Ann N Y Acad Sci*. 2021;1484(1):32–54. doi:10.1111/nyas.14477
31. Ceravolo MG, Andreotti E, Arienti C, et al. Rehabilitation and COVID-19: rapid living systematic review by cochrane rehabilitation field - third edition. *Eur J Phys Rehabil Med*. 2021;57(5):850–857. doi:10.2376/si1975-9087.21.07301-9
32. Davidson M, Menon S, Chaimani A, et al. Interleukin-1 blocking agents for treating COVID-19. *Cochrane Database Syst Rev*. 2022;1(1):Cd015308. doi:10.1002/14651858.Cd015308
33. Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. *Cochrane Database Syst Rev*. 2020;6(6):Cd013652. doi:10.1002/14651858.Cd013652
34. Dong F, Liu H-L, Dai N, et al. A living systematic review of the psychological problems in people suffering from COVID-19. *J Affect Disord*. 2021;292:172–188. doi:10.1016/j.jad.2021.05.060
35. Dzinamarira T, Nkambule SJ, Hlongwa M, et al. Risk factors for COVID-19 infection among healthcare workers. A first report from a living systematic review and meta-analysis. *Saf Health Work*. 2022. doi:10.1016/j.shaw.2022.04.001
36. Elvidge J, Summerfield A, Nichols D, et al. Diagnostics and treatments of COVID-19: a living systematic review of economic evaluations. *Value Health*. 2022;25(5):773–784. doi:10.1016/j.jval.2022.01.001
37. Ghosn L, Chaimani A, Evrenoglou T, et al. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. *Cochrane Database Syst Rev*. 2021;3(3):Cd013881. doi:10.1002/14651858.Cd013881
38. Gómez-Ochoa SA, Franco OH, Rojas LZ, et al. COVID-19 in health-care workers: a living systematic review and meta-analysis of prevalence, risk factors, clinical characteristics, and outcomes. *Am J Epidemiol*. 2021;190(1):161–175. doi:10.1093/aje/kwa191
39. Griesel M, Wagner C, Mikolajewska A, et al. Inhaled corticosteroids for the treatment of COVID-19. *Cochrane Database Syst Rev*. 2022;3(3):Cd015125. doi:10.1002/14651858.Cd015125
40. Harder T, Koch J, Vyen-Bonnet S, et al. Efficacy and effectiveness of COVID-19 vaccines against COVID-19 infection: interim results of a living systematic review, 1 January to 14 May 2021. *Euro Surveill*. 2021;26(28). doi:10.2807/1560-7917.es.2021.26.28.2100563
41. Harder T, Külper-Schiek W, Reda S, et al. Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection with the Delta (B.1.617.2) variant: second interim results of a living systematic review and meta-analysis. *Euro Surveill*. 2021;26(41). doi:10.2807/1560-7917.es.2021.26.41.2100920
42. Helfand M, Fiordalisi C, Wiedrick J, et al. Risk for reinfection after SARS-CoV-2: a living, rapid review for American College of Physicians. *Medwave*. 2020. doi:10.1136/esmedwaveopenrep.1933.1
43. Hernandez AV, Roman YM, Pasupuleti V, et al. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. *Ann Intern Med*. 2020;173(4):287–296. doi:10.7326/m20-2496
44. Hussain S, Riad A, Singh A, et al. Global prevalence of COVID-19-associated mucormycosis (CAM): living systematic review and meta-analysis. *J Fungi*. 2021;7(11). doi:10.3390/jof1109085
45. John A, Eyles E, Webb RT, et al. The impact of the COVID-19 pandemic on self-harm and suicidal behaviour: update of living systematic review. *F1000Res*. 2020;9:1097. doi:10.12688/f1000research.25522.2
46. Juul S, Nielsen EE, Feinberg J, et al. Interventions for treatment of COVID-19: a living systematic review with meta-analyses and trial sequential analyses (The LIVING Project). *PLoS Med*. 2020;17(9):e1003293. doi:10.1371/journal.pmed.1003293
47. Kirkham AM, Monaghan M, Bailey AJM, et al. Mesenchymal stem/stromal cell-based therapies for COVID-19: first iteration of a living systematic review and meta-analysis: mSCs and COVID-19. *Cytotherapy*. 2022. doi:10.1016/j.jcyt.2021.12.001
48. Korang SK, von Rohden E, Veroniki AA, et al. Vaccines to prevent COVID-19: a living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials. *PLoS One*. 2022;17(1):e0260733. doi:10.1371/journal.pone.0260733
49. Kreuzberger N, Hirsh C, Chai KL, et al. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. *Cochrane Database Syst Rev*. 2021;9(9):Cd013825. doi:10.1002/14651858.CD013825
50. Langford BJ, So M, Raybardhan S, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. *Clin Microbiol Infect*. 2020;26(12):1622–1629. doi:10.1016/j.cmi.2020.07.016
51. Mackey K, King VJ, Gurlay S, et al. Risks and impact of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on SARS-CoV-2 infection in adults: a living systematic review. *Ann Intern Med*. 2020;173(3):195–203. doi:10.7326/m20-1515
52. Maguire BJ, McLean ARD, Rashan S, et al. Baseline results of a living systematic review for COVID-19 clinical trial registrations. *BMJ Global Health*. 2020;5(11). doi:10.1136/bmjgh-2020-005427
53. Michelen M, Manoharan L, Elkeir N, et al. Characterising long COVID: a living systematic review. *BMJ Global Health*. 2021;6(9). doi:10.1136/bmjgh-2021-005427
54. Migone SJ, Menone S, Arancio O, et al. The role of asymptomatic and pre-symptomatic infection in SARS-CoV-2 transmission—a living systematic review. *Cytokine*. 2022;168:105876. doi:10.1016/j.jcmi.2021.01.011
55. Muller AK, Milby KM, Caparrozo A, et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: a living systematic review and meta-analysis. *PLoS One*. 2021;16(6):e0253894. doi:10.1371/journal.pone.0253894
56. McNicholas S, Vanmunster SM, de Jong R, et al. The impact of COVID-19 on hospitalisation and mortality in patients aged ≥80 years: a living systematic review and meta-analysis. *Ann Intern Med*. 2020;173(3):195–203. doi:10.7326/m20-1515
57. Michelen M, Manoharan L, Elkeir N, et al. Characterising long COVID: a living systematic review. *BMJ Global Health*. 2021;6(9). doi:10.1136/bmjgh-2021-005427
58. O’Byrne L, Webster KE, MacKeith S, et al. Interventions for the treatment of persistent post-COVID-19 olfactory dysfunction. *J Affect Disord*. 2021;274(4):511–519. doi:10.1016/j.jad.2021.01.011
59. Rada G, Corbalán J, Rojas P. Cell-based therapies for COVID-19: a living, rapid review. *Medwave*. 2020;20(11):e8079. doi:10.5867/medwave.2020.11.8078
60. Rocha APD, Atallah ÁN, Pinto A, et al. COVID-19 and patients with immune-mediated inflammatory diseases undergoing pharmacological treatments: a rapid living systematic review. *Sao Paulo Med J*. 2020;138(6):515–520. doi:10.1590/1516-3180.2020.0421.R2.10092020
61. Schlesinger S, Neuenschwander M, Lang A, et al. Risk phenotypes of diabetes and association with COVID-19 severity and death: a living systematic review and meta-analysis. *Diabetologia*. 2021;64(7):1480–1491. doi:10.1007/s00125-021-05458-8
Chen et al

62. Schümann MJ, Khabas J, Solo K, et al. Ventilation strategies for severe acute respiratory syndrome. *Intensive Care Med* 2020;46(6):1062–1074. doi:10.1007/s00134-020-06571-8

63. Siemieniuk RA, Bartoszko JJ, Díaz Martinez JP, et al. Antibody and cellular therapies for treatment of COVID-19: a living systematic review and meta-analysis. *BMJ* 2021;374:n2231. doi:10.1136/bmj.n2231

64. Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for COVID-19: a living systematic review and meta-analysis. *BMJ* 2020;370:m2980.

65. Silveira FM, Mello ALR, da Silva Fonseca L, et al. Morphological and tissue-based molecular characterization of oral lesions in patients with COVID-19: a living systematic review. *Arch Oral Biol* 2022;136:105374. doi:10.1016/j.archoralbio.2022.105374

66. Soto-Cámara R, García-Santa-Basilla N, Onnubi-Balicén H, et al. Psychological Impact of the COVID-19 pandemic on out-of-hospital health professionals: a living systematic review. *J Clin Med* 2021;10(23). doi:10.3390/jcm10235578

67. Stroehlein JK, Wallqvist J, Iannuzzi C, et al. Vitamin D supplementation for the treatment of COVID-19: a living systematic review. *Cochrane Database Syst Rev* 2021;5(5):Cd015043. doi:10.1002/14651858.Cd015043

68. Telyejh IM, Kashour R, Riaz M, et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis, first update. *Clin Microbiol Infect* 2021;27(8):1076–1082. doi:10.1016/j.cmi.2021.04.019

69. Valk SJ, Piechotta V, Chai KL, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. *Cochrane Database Syst Rev* 2020;5(5):Cd013600. doi:10.1002/14651858.Cd013600

70. Verdejo C, Vergara-Merino L, Meza N, et al. Macrolides for the treatment of COVID-19: a living systematic review. *Medwave* 2020;20(11):e8074. doi:10.5867/medwave.2020.11.8073

71. Verdugo-Paiva F, Acula MP, Solà I, et al. Remdesivir for the treatment of COVID-19: a living systematic review. *Medwave* 2020;20(11):e8080. doi:10.5867/medwave.2020.11.8080

72. Verdugo-Paiva F, Izcovitch A, Raguza M, et al. Lopinavir-ritonavir for COVID-19: a living systematic review. *Medwave* 2020;20(6):e7966.

73. Wagner C, Griesel M, Mikolajewska A, et al. Systemic corticosteroids for the treatment of COVID-19. *Cochrane Database Syst Rev* 2021;8(8):Cd014963. doi:10.1002/14651858.Cd014963

74. Wilt TJ, Kaka AS, MacDonald R, et al. Remdesivir for adults with COVID-19: a living systematic review for American College of Physicians practice points. *Ann Intern Med* 2021;174(2):209–220. doi:10.7326/m20-5752

75. Webster KE, O'Byrne L, MacKeith S, et al. Interventions for the prevention of persistent post-COVID-19 olfactory dysfunction. Interventions for the prevention of persistent post-COVID-19 olfactory dysfunction. *Cochrane Database Syst Rev* 2021;7(7):Cd013877. doi:10.1002/14651858.Cd013877.pub2

76. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: a critical appraisal. *Cochrane Database Syst Rev* 2020;12(12):Wd000492. doi:10.3389/fmed.2020.100042

77. Yang J, D’Souza R, Kharrat A, et al. Coronavirus disease 2019 pandemic and pregnancy and neonatal outcomes in general population: a living systematic review and meta-analysis. *Acta Obstet Gynecol Scand* 2022;101(1):7–24. doi:10.1111/aogs.14277

78. Zhang X, Shang L, Fan G, et al. The efficacy and safety of Janus kinase inhibitors for patients with COVID-19: a living systematic review and meta-analysis. *Front Med* 2021;8:600492. doi:10.3389/fmed.2021.600492

79. Dotto L, Kinalski MA, Machado PS, et al. The mass production of systematic reviews about COVID-19: an analysis of PROSPERO records. *J Evid Based Med* 2021;14(1):56–64. doi:10.1111/jebm.12426

80. Sideris S, Papageorgiou SN, Eliades T. Registration in the international prospective register of systematic reviews (PROSPERO) of systematic review protocols was associated with increased review quality. *J Clin Epidemiol* 2018;103:103–110. doi:10.1016/j.jclinepi.2018.01.003

81. Chien PF, Khan KS, Siassakos D. Registration of systematic reviews: PROSPERO. *Clinical Epidemiology* 2022:14. doi:10.7189/medwave.2020.11.8080

82. Thomas J, Noel-Storr A, Marshall I, et al. Living systematic reviews: 2. Combining human and machine effort. *Cochrane Database Syst Rev* 2019;101(1):7–24. doi:10.1111/jebm.12426

83. Dotto L, Kinalski MA, Machado PS, et al. The mass production of systematic reviews about COVID-19: an analysis of PROSPERO records. *J Evid Based Med* 2021;14(1):56–64. doi:10.1111/jebm.12426

84. Sideris S, Papageorgiou SN, Eliades T. Registration in the international prospective register of systematic reviews (PROSPERO) of systematic review protocols was associated with increased review quality. *J Clin Epidemiol* 2018;103:103–110. doi:10.1016/j.jclinepi.2018.01.003

85. Chien PF, Khan KS, Siassakos D. Registration of systematic reviews: PROSPERO. *Clinical Epidemiology* 2022:14. doi:10.7189/medwave.2020.11.8080

86. Sideris S, Papageorgiou SN, Eliades T. Registration in the international prospective register of systematic reviews (PROSPERO) of systematic review protocols was associated with increased review quality. *J Clin Epidemiol* 2018;103:103–110. doi:10.1016/j.jclinepi.2018.01.003

87. Thomas J, Noel-Storr A, Marshall I, et al. Living systematic reviews: 2. Combining human and machine effort. *J Clin Epidemiol* 2017;91:31–37. doi:10.1016/j.jclinepi.2017.08.011

88. Chou R, Dana T, Shetty KD. Testing a machine learning tool for facilitating living systematic reviews of chronic pain treatments. In: *AHQR Methods for Effective Health Care*. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020.

89. Butcher R, Sampson M, Coulban RJ, et al. The currency and completeness of specialized databases of COVID-19 publications. *J Clin Epidemiol* 2022;147:52–59. doi:10.1016/j.jclinepi.2022.03.006

90. Rada G, Pérez D, Araya-Quintanilla F, et al. Epistemonikos: a comprehensive database of systematic reviews for health decision-making. *BMJ Med Res Methods* 2020;20(1):286. doi:10.1136/bmjmedresmethods-2019-001157-x

91. Pierre O, Riveros C, Charpy S, et al. Secondary electronic sources demonstrated very good sensitivity for identifying studies evaluating interventions for COVID-19. *J Clin Epidemiol* 2021;141:46–53. doi:10.1016/j.jclinepi.2021.09.022

92. Créquit P, Martin-Montoya T, Attiche N, et al. Living network meta-analysis was feasible when considering the pace of evidence generation. *J Clin Epidemiol* 2019;108:10–16. doi:10.1016/j.jclinepi.2018.12.008

93. Tercero-Hidalgo JR, Khan KS, Bueno-Cavanillas A, et al. Artificial intelligence in COVID-19 evidence syntheses was underutilized, but impactful: a methodological study. *J Clin Epidemiol* 2022;148:124–134. doi:10.1016/j.jclinepi.2022.04.027

94. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71–n71. doi:10.1136/bmj.n71
95. Whiting P, Savović J, Higgins JP, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. *J Clin Epidemiol.* 2016;69:225–234. doi:10.1016/j.jclinepi.2015.06.005

96. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ.* 2017;358:j4008. doi:10.1136/bmj.j4008