Table 2. Description of 3,140 COVID-19 Infections in Employees from 3/2020 to 4/2021

Variable	N	(%)
Age		
18-25	405	13.0
26-35	1054	33.8
36-45	625	20.0
46-55	579	18.6
56-65	187	12.7
65+	91	2.9
Initial Symptoms*		
Congestion or Runny Nose	810	25.8
Headache	709	22.6
Cough	654	20.8
Muscle or Body Aches	533	17.0
Sore Throat	441	14.0
Fatigue	378	12.0
Fever or Chills	288	9.2
Other*	149	4.7
New Loss of Taste or Smell	139	4.6
Nausea or Vomiting	97	3.1
Shortness of Breath or Difficulty Breathing	74	2.4
Diarrhea	57	1.8
Asymptomatic	269	8.6
Worked during infectious window	2518	80.8
Worked during pre-symptomatic window***	1337	44.5
Worked with symptoms	1341	43.6
Quarantined prior to symptom onset	219	7.2
Tested negative followed by a positive test	63	2.0
Severe disease	70	2.3
Reinfection	21	0.7
Attribution		
Community	1146	52.4
Unknown, likely community	129	12.0
Unknown	1057	31.7
Workplace	308	0.8
Workplace-patient	81	2.4
Workplace-employee	223	7.2
Workplace-visitor	5	0.2

*Initial symptoms included all symptoms that the employee reported on the first day of symptom onset, therefore making the denominator greater than 3,140 symptoms.
**Examples of “Other” symptoms include loss of appetite, night sweats, abdominal pain, diziness
***Defined as 2 calendar days prior to the onset of symptoms.

Methods. We prospectively tracked and traced COVID-19 infections among employees across our health system and university. Each employee with a confirmed positive test and 3 presumed positive cases were interviewed with a standard contact tracing template that included descriptive variables such as high-risk behaviors and contacts, dates worked while infectious, and initial symptoms. Using this information, the most likely location of infection acquisition was adjudicated (Table 1). We compared behavior frequency between community and unknown, likely community and community and unknown cases using descriptive statistics.

Table 3. Risk Factors for Community, Likely Community, and Unknown Cases

Risk Factor	Community N=1669	Unknown, Likely Community N=129	Unknown N=5057
Travel within 24 days	385 (23.4)	36 (27.9)	213 (42.0)
Masked gatherings (e.g., church)	937 (56.9)	73 (56.6)	543 (51.4)
Unmasked gatherings/activities	745 (46.3)	61 (37.4)	395 (37.4)

Figure 1. Percent of students from each campus and sports team screened per week offered.

Number of SARS-CoV-2 cases among employees between 3/2020 and 4/2021 by month and stratified according to clinical employee working in the healthcare system, non-clinical employee employed by the healthcare system, and university employee.

Results. From 3/2020 to 4/2021 we identified 3,140 COVID-19 infections in 3,119 employees out of a total of 34,562 employees (9.0%) (Figure 1). Of those 3,119 employees, 1,685 (54.0%) were clinical employees working in the health system, 916 (29.4%) were non-clinical employees working in the health system, and 518 (16.6%) were university employees. Descriptive characteristics for the COVID-19 infections and adjudications are outlined in Table 2. Severe disease among employees was significantly less frequent compared to patients in the health system (15.3% vs 22.2%, p< 0.01). The frequency of travel within 14 days, masked gatherings and unmasked gatherings/activities was not significantly different between the community and unknown, likely community groups or the community and unknown groups (Table 3).

Conclusion. The majority of COVID-19 infections were linked to acquisition in the community, and few were attributed to workplace exposures. Employees with unknown sources of COVID-19 participated in higher-risk activities at approximately the same frequency as employees with community sources of COVID-19. The most frequently reported initial symptoms were mild and non-specific and rarely included fever. Despite a comprehensive testing and benefit program, a large proportion of COVID-positive employees worked with symptoms, highlighting ongoing challenges with presenceism in healthcare.

Disclosures. Rebekah W. Moehring, MD, MPH. UpToDate, Inc. (Other Financial or Material Support, Author Royalties)

379. Abstract For Comparison of Mandatory vs Non-Mandatory Compliance Rates For SARS-CoV-2 Testing in Grades K-12

Jennifer Veltman, MD, PhD; Philip Papayannis, Medical Student; Alex Dubov, Ph.D; Wayne State University School of Medicine, Detroit, Michigan; Loma Linda University School of Medicine, Loma Linda, California; Loma Linda University, Loma Linda, California

Session: P 16. COVID-19 Epidemiology and Screening

Background. Rapid testing to identify asymptomatically infected students with SARS-CoV-2 in elementary schools has been suggested as a possible method to reduce risk for in person instruction. As of August 3, 2020 (updated on January 25, 2021), California schools who obtained a waiver to conduct in-person instruction are not required to have mandatory testing for asymptomatic students, except for high contact sports which are required to undergo weekly testing. We explored the uptake of voluntary vs mandatory testing in a private waivered school.

Methods. Between the dates January 25, 2021 to April 16, 2021, the K-12 school superintendent sent an email to all parents outlining the voluntary testing program with a link to the on-line sign up and consent form. All students were offered weekly self-collected anterior nares BinaxNOW Rapid Antigen Test. Signed parental consent was required and tests were performed at the school. Students participating in contact sports were required to undergo testing the week a varsity game was played as a condition of participation. Data was gathered from the school administration and de-identified.

Results. K-5 Lower school had a school population of 448 students. Testing was offered on 8 weeks during the period of 2/15-2/19 to 4/5-4/9. 2 students (0.45%) receive screening on the week of 3/22-3/26. The other seven weeks when screening was offered on 8 weeks during the period of 2/15-2/19 to 4/5-4/9. 2 students (0.45%) receive screening on the week of 3/22-3/26. The other seven weeks when screening was offered 0 students received screening, 6-12 Upper school had a school population of 360 enrolled students. Testing was offered 3/8-3/12 and 3/15-3/19. The upper school had 22 students (6.11%) receive testing on the week of 3/8-3/12 and 21 students (5.83%) on the week of 3/15-3/19. Contact sports teams had 67 students on their roster. Weekly testing was offered from 3/22-3/26 to 4/12-4/16. Contact sports teams had 10 students (14.93%) receive testing on the week of 3/22-3/26, 33 students (52.24%) on the week of 4/5-4/9, and 32 students (49.25%) on the week of 4/12-4/16.

Conclusion. Voluntary SARS-CoV-2 screening was not a feasible approach for detection of asymptomatically infected individuals due to low uptake, however in the same school, mandatory testing had high uptake and would be a feasible strategy.

Disclosures. All Authors: No reported disclosures

380. Environmental Contamination with SARS-CoV-2 in Nursing Homes

Lona Mody, MD, MS1; Kristen Gibson, MPH1; Liza Bautista, MD2; Karen Neesh, MSN, CNP1; Ana Montoya, MD, MPH1; Grace Jeng, MD1; John Mills, MD1; Lillian Min, MD, MS2; Julia Mantey, MPH, MUP1; Mohammed Kabeto, MS1; Andrej Galecki, MD, PhD1; Marco Cassone, MD, PhD2; Emily T. Martin, PhD, MPH1; University of Michigan, Ann Arbor, Michigan; University of Michigan School of Medicine, Ann Arbor, MI.