Potential of refused derived fuel in Jakarta

H Widyatmoko¹, M M Sintorini¹*, E Suswantoro¹, E Sinaga² and N Aliyah³

¹ Department of Environmental Engineering, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia
² Environmental Health, Universitas Indonesia, Jakarta, Indonesia
³ Environmental Health, Institut Kesehatan Indonesia, Jakarta, Indonesia

*sintorini@trisakti.ac.id

Abstract. Refuse Derived Fuel (RDF) is a formed from Municipal Solid Waste combustible material that has a high heating value fraction to produce energy. The study aimed to explore the potential of RDF from Jakarta as the energy raw material. For this purpose, 24 samples of RDF were taken from Bantar Gebang for briquetting and the analysis of moisture, ash, and calor in the physical chemistry laboratories. The calor difference of 1,815.8 cal/g between briquettes and the total component of RDF is based on analysis errors of the homogenization process. With the 25% efficiency from RDF to energy, 8,051.25 cal/g results 2,339.3 kWh/ton. The conversion of energy (kWh) per day= 8,291.650 tones/day x 2,339.335 kWh/ton = 19,396,902.46 kWh/day or as much as energy needed by 905,213 middle-class households with energy needs of 642.84 kWh/month. 34% of waste in Jakarta can be recycled meanwhile the other 66% in form of waste residue is transported and processed at final processing facility.

1. Introduction
Waste management requires technology and data of waste source, type of waste, waste composition, and waste characteristics [1]. The current waste management method applied in Indonesia is a mixture of convensional system and additional system known as Integrated Waste Treatment Plant (IWTP). In IWTP facility, a number of waste sorting systems into organic and non-organic waste and waste recycling are already applied. Usable waste component will be resold, meanwhile organic waste is processed into compost and its residue is reprocessed into Refuse Derived Fuel (RDF) that has large potential to produce energy [2].

Refuse Derived Fuel (RDF) is a Municipal Solid Waste (MSW) based fuel where metal, glass, and other non-organic compounds are removed by filtering them through 2 inches filtration system with 95% of particle size [3,4]. Other RDF standards [4,5] are determined based on their heat, water content, and ash content as shown in the following Table 1.

2. Research objective
The objective of this research is to acknowledge heat potential of Refuse Derived Fuel generated from waste residue as energy source, by compressing it into briquettes.
Table 1. Quality standard RDF in Europe.

Parameter	Finland	Italy	United Kingdom
Heat Value (MJ/kg)	13 - 16	15	18.7
Water Content (%/w)	25 - 35	25 maks	7 - 28
Ash Content (%/w)	5 - 10	20	12
Sulphur (%/w)	0.1 - 0.2	0.6	0.1 - 0.5
Chlorine (%/w)	0.3 - 1.0	0.9	0.3 - 1.2

3. Research methods

Waste samples are taken from the Bantargebang Final Processing Site which receives waste from DKI Jakarta area. The generation, composition and heat value of waste is processed based on primary and secondary data which includes: measurement of waste density, composition of waste residue, measurement of water content and ash content of residual waste and measurement of heat value of waste residue [6,7].

The measurement of waste density and composition of waste follows the rules in SNI 19-3694-1994 [5]. For the calculation of the composition of waste used wet units, do the separation of components of paper waste, plastic bottles, glass bottles, tetrapack paper, styrofoam, sanitary pads/pampers, organic waste, food scraps, plastic bags, cloth, and rubber [8].

The mass balance of waste is made to see the recycling potential of each type of waste. The recycling percentage of each type of waste is obtained from research and interviews with waste scavengers or waste goods collectors. Based on this percentage, the amount of waste that can be recycled and the residue generated and needs to be disposed at Final Processing Site (FPS) is obtained [9].

Water content determination is defined according to SNI 03-1971-1990. 10 grams samples were placed in a porcelain cup, heated at 105°C for 3 hours and weighed after 30 minutes cooling in the desiccator [5].

Ash content determination is according to ASTM E 830-87 standards [4]. 200-grams of RDF briquettes made from high color waste residues and organic waste components that have been treated on carbonization process to produce charcoal, then treated on 50 mesh, mixed with starch adhesive with a ratio of 20% of briquette mixture weight [2]. Mixed briquette mixture is put into a cylindrical mold then manually pressed to reduce water content, dried in the sun for 7 days, weighed and tested for water content, ash content, and calor [1,10,11].

4. Results and discussion

The analysis result from Jakarta areas is also shown in the following Table 2.
Table 2. Waste residue from Jakarta.

No	Sample	Calor Value (calori/gr)	Water Content (%W)	Ash Content (%W)
1	Textile 1	7,194.1375	21.7927	23.2381
2	Paper 1	5,869.8341	14.1268	24.1388
3	Plastic 1	5,364.6905	10.9891	23.2924
4	Styro foam 1	5,581.9653	12.3452	25.3772
5	Organic 1	6,776.1492	24.8475	21.8920
6	Pampers 1	6,184.8216	28.7819	24.8195
7	Textile 2	7,087.0985	21.3215	21.3215
8	Paper 2	5,790.2706	16.9628	23.5623
9	Plastic 2	6,419.8345	11.9903	19.9877
10	Styro foam 2	5,526.0056	12.8629	24.6629
11	Organic 2	6,927.8943	27.0270	24.6961
12	Pampers 2	6,206.0265	28.8235	24.5829
13	Textile 3	7,402.1374	23.7722	20.8776
14	Paper 3	6,371.1377	14.8871	23.5837
15	Plastic 3	5,612.4709	15.0194	24.9433
16	Styro foam 3	5,826.0052	18.0835	24.1106
17	Organic 3	6,899.9830	27.6984	24.8915
18	Pampers 3	6,387.8944	27.6875	22.9878
19	Mix 1	6,496.0263	18.1162	23.2188
20	Mix 2	6,382.1375	16.9780	23.5809
21	Mix 3	6,471.1377	16.5668	23.4714

Table 3. Average water content, ash content, and heat value of waste components in Jakarta.

Components	Water Content (%)	Ash Content (%)	Heat Value (kal/gr)
Plastic Bag	12.43	23.27	6,216.6
Tetrapack Paper	15.79	23.88	5,951.21
Styrofoam	13.86	25.11	5,686.2
Fabric	22.72	22.33	7,036.9
Organic and Food Wastes	19.94	24.3	5,926.83
Sanitary Pads/Diapers	27.13	23.31	6,171.9
Rubber	23.05	26.17	6,808.57
Total	134.92	168.37	43,798.21
Average	19.27	24.05	6,256.89

4.1. Briquette heat value potential analysis

The following table shows laboratory analysis of heat value, water content, and ash content of briquette sample.

Table 4. Waste residue briquette analysis result.

Components	Analysis Result
Water Content	33.86 %
Ash Content	44.72 %
Heat Value	9,867.10 (kal/gr)
Water content and organic component are highly affecting heat value and ash content. The estimated analysis deviation of 22.55% because of different difficulty level of each components during homogenization process [12].

By acknowledging the utilized briquette heat value of 8051.25 kal/gr. The Total waste sampling residue in DKI Jakarta is at 8,291,650 kg/hari, therefore, the potential heat value of the produced briquette is: Briquette Heat Value = 8,051.25 kal/gr = 9,357.3416 kWh/tons.

According to Central Bureau of Statistics Jakarta is occupied by 9,607,787 people. This research acts as preliminary research on waste residue processing into energy source in form of Refuse Derived Fuel (RDF), by forming the residue into briquettes [7].

A good briquette comes with a smooth surface and does not leave black marks. Besides that, as fuel, briquette should be able to fulfill the following criterias: 1. Easy to ignite, 2. Gas emission from combustion process is non toxic, 3. Waterproof and not moldy if stored for a long period, and 4. Demonstrates good combustion force.

Briquettes are widely used as cooking fuel to replace oil and gas fuels. The advantages of using briquettes are more economical (inexpensive), tasteless and odorless, high flame heat, non-toxic, environmentally friendly, not fast becoming ash, and the raw material for making briquettes is easily available.

Briquettes are categorized according to its type, namely non-carbonized briquettes and carbonized briquettes.

4.1.1. According to its type (treatment):
- Non-carbonized briquettes
- Carbonized briquettes

4.1.2. According to its shape. Briquettes are formed according to the needs of its users, so there are various kinds of briquettes based on their shape, namely egg shape, pillow shape, dome shape, ellipse shape, walnut shape, jengkol seed shape, wasp nest/hexagon shape, cube shape, cylindrical round shape, and other shapes.

4.1.3. According to its material
- Coal briquettes
- Biocoal briquettes
- Biomasses briquettes

The factors that need to be considered in briquette making are materials and adhesive compound. Briquette can be formed from one or several types of high heat value materials. As comparison, minimum standard heat value of coal is 4.400 Kal/g (Minister of Energy and Human Resource Regulation Number 047 Year 2006).

The following Table 6 contains survey result on tenement occupants regarding electricity monthly payments required to be paid off to National Electricity Company.

With the assumption that conversion efficiency into electricity is as much as 25%, therefore = 25% x 9,357.3416 kWh/tons = 2,339.3354 kWh/tons.

Table 5. Briquette heat value.

Location	Heat Value per Component (kal/gr)	Briquette Heat Value (kal/gr)	Average Heat Value (kal/gr)	Heat Value Difference (kal/gr)	Analysis Deviation (%)
DKI Jakarta	6,235.39	9,867.12	8,051.25	1,815.86	22.55%

With the assumption that conversion efficiency into electricity is as much as 25%, therefore = 25% x 9,357.3416 kWh/tons = 2,339.3354 kWh/tons.
Waste residue generation from sampling result is as much as 224.5 kg/day or 2,245 tons/day, therefore, energy potential (kWh) per day = 8,291.650 tons/day x 2,339.335 kWh/tons = 19,396,902.46 kWh/day.

Table 6. Electricity utilization in tenements.

No	Electricity Bill (Rp)/month	User ID
1	111,227	5471.0239.700
2	236,933	5471.0238.7063
3	210,068	5471.0238.7048
4	61,363	5471.0238.7089
5	30,95	5471.0234.8292
6	81,132	5471.0238.7071
7	88,735	5471.0238.9830
8	44,319	5471.0237.3790
9	162,929	5471.0234.0476
10	53,76	5471.0238.9814
11	385,697	5471.0236.1308
12	45,143	5471.0234.8306
13	8,357	5471.045.3860
14	68,46	5471.0245.3878
15	8,703	5471.0280.5455
16	16,896	5471.0280.5463
17	355,369	5471.0245.3886
18	54,267	5471.0247.3693
19	32,978	5471.0247.3723
20	17,633	5471.0247.3731
21	58,829	5471.0247.3749
22	64,404	5471.0247.3756
23	46,664	5471.0247.3685
24	65,925	5471.0247.3707
25	117,12	5471.0247.3715
26	5,069	5472.0001.7792
27	18,432	5471.0234.8314
28	102,927	5471.0233.6455
29	213,733	5471.0239.0718
30	507,003	5471.0239.0734
31	118,641	5471.0234.8322
32	5,242	5471.0236.1294
33	53,253	5471.0238.9806

Average 104,6109394

If assumed that electricity consumption in simple household is 642.84 kWh/month or 21.428 kWh/day, the total energy potential can provide electricity needs for = 19,396,902.46 kWh/day: 21.428 kWh/day/house = 905,213 houses.

5. Conclusion
- 34% of waste in Jakarta can be recycled meanwhile the other 66% in form of waste residue is transported and processed at final processing facility.
- We can see a difference between heat value per component with briquette heat value of 1,815.86 kal/gr. From this difference, we can say that the probability of analysis mistake is as
much as 22.55% caused by sample homogenization. Based on that the average briquette heat value is at 8,051.25 kal/ gr.

- If we assume that electricity requirement in simple housing is as much as 642.84 kWh/month or 21.428 kWh/day, the potential energy can provide = 19,396,902.46 kWh/day: 21.428 kWh/day/house = 905,213 houses.
- The number of simple tenements that can be fueled by RDF is = 19,396,902.46 kWh per day: 1.47 kWh per day = 13,854,930 tenements.

After conducting this research, there are several suggestions which are: A further research on waste component heat residue, briquette heat value, waste residue heat value, and waste residue processing into briquettes, including its economic calculation are recommended as alternative fuel development.

References
[1] Ganesh T, Vignesh P and Arun Kumar G 2013 Refuse derived fuel to electricity International Journal of Engineering Research & Technology (IJERT) 29
[2] Muthuraman M, Namioka T and Yoshikawa K 2010 A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Processing Technology 91(5) 550-558
[3] Brás I, Silva M E, Lobo G, Cordeiro A, Faria M and de Lemos L T 2017 Refuse derived fuel from municipal solid waste rejected fractions-a case study Energy Procedia 120 349-356.
[4] Gold J 2012 Waste to Energy: Europe and the United States. Submitted as Coursework for PH240 (Stanford University, Fall 2012)
[5] National Standardization Agency 2008 SNI 3242:2008: Waste management in Settlements Republic of Indonesia Government Regulation Number 81 Year 2012 (Management of Household Waste and Wastes Similar to Household Waste)
[6] Annisa B 2016 Scenarios tackling municipal solid waste (MSW) flow into landfill based on MFA-STAT integrative method towards building sustainable city in Indonesia In 2nd International Conference on Civil Engineering Research (ICCE)
[7] Damanhuri E and T Padmi 2010 Waste Management (Module: Institut Teknologi Bandung)
[8] National Standardization Agency 1995 SNI 19-3964-1995: The method of taking and measuring examples of the generation and composition of urban waste
[9] M Chaerul and A K Wardhani 2020 Refused derived fuel (RDF) from urban waste using biodrying process: review Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan 17(1) 62-74
[10] Zahra F 2012 Analysis of Depok Waste into Refuse Derived Fuel (RDF) (Case Study: Pondok Terong and Kampung Sasak Waste Processing Units) (Universitas Indonesia)
[11] Paramita W, Hartono D M and Soesilo T E B 2018 Sustainability of Refuse Derived Fuel Potential from Municipal Solid Waste for Cement’s Alternative Fuel in Indonesia (A Case at Jeruklegi Landfill, in Cilacap) In IOP Conference Series: Earth and Environmental Science 159(1) 012027
[12] Arifianzi Q O, Abidin M R, Nugrahani E F and Ummatin K K 2018 Experimental Investigation of a Solar Greenhouse Dryer Using Fiber Plastic Cover to Reduce the Moisture Content of Refuse Derived Fuel in an Indonesian Cement Industry In 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE) 1-5