CONTINUED FRACTIONS AND HEAVY SEQUENCES

MICHAEL BOSHERNITZAN AND DAVID RALSTON

(Communicated by Michael T. Lacey)

Abstract. We initiate the study of the sets \(\mathcal{H}(c) \) for real \(x \) for which the sequence \((kx)_{k \geq 1} \) consistently hits the interval \([0, c)\) at least as often as expected (i.e., with frequency \(\geq c \)). More formally,

\[
\mathcal{H}(c) \overset{\text{def}}{=} \left\{ \alpha \in \mathbb{R} \mid \text{card} \left(\{1 \leq k \leq n \mid \langle k\alpha \rangle < c \} \right) \geq cn, \text{ for all } n \geq 1 \right\},
\]

where \(\langle x \rangle = x - [x] \) stands for the fractional part of \(x \in \mathbb{R} \).

We prove that, for rational \(c \), these sets \(\mathcal{H}(c) \) are of positive Hausdorff dimension and, in particular, are uncountable. For integers \(m \geq 1 \), we obtain a surprising characterization of the numbers \(\alpha \in \mathcal{H}(1/m) \) in terms of their continued fraction expansions: The odd entries (partial quotients) of these expansions are divisible by \(m \). The characterization implies that \(x \in \mathcal{H}(m) \) if and only if \(1/m \in \mathcal{H}(m) \), for \(x > 0 \). We are unaware of a direct proof of this equivalence without making use of the mentioned characterization of the sets \(\mathcal{H}(m) \).

We also introduce the dual sets \(\hat{\mathcal{H}}(m) \) of reals \(y \) for which the sequence of integers \(([k/m]y)_{k \geq 1} \) consistently hits the set \(m\mathbb{Z} \) with the at least expected frequency \(1/m \) and establish the connection with the sets \(\mathcal{H}(m) \):

\[
\text{If } xy = m \text{ for } x, y > 0, \text{ then } x \in \mathcal{H}(m) \iff y \in \hat{\mathcal{H}}(m).
\]

The motivation for the present study comes from Y. Peres’s ergodic lemma.

1. Notation and Results

We write \(\mathbb{R} \supset \mathbb{Q} \supset \mathbb{Z} \supset \mathbb{N} \) for the sets of real numbers, rational numbers, integers and positive integers respectively.

In the paper we initiate the study of the sets \(\mathcal{H}(c) \), \(0 < c < 1 \), of \(x \in \mathbb{R} \) for which the sequence \((kx)_{k \geq 1} \) (viewed mod 1) consistently hits the interval \([0, c)\) at least as often as expected. More formally,

\[
\mathcal{H}(c) = \left\{ \alpha \in \mathbb{R} \mid \text{card} \left(\{1 \leq k \leq n \mid \langle k\alpha \rangle < c \} \right) \geq cn, \text{ for all } n \in \mathbb{N} \right\},
\]

where \(\langle x \rangle = x - [x] \) stands for the fractional part of \(x \in \mathbb{R} \). Define

\[
\mathcal{H}(1/m) = \mathcal{H}(\frac{1}{m}), \text{ for } m \in \mathbb{N}.
\]

Received by the editors October 24, 2007, and, in revised form, March 7, 2008.
2000 Mathematics Subject Classification. Primary 11K38, 11J71, 37A30.
The second author was supported in part by NSF VIGRE grant DMS–0240058.
©2009 American Mathematical Society
Reverts to public domain 28 years from publication
The following notation will be used for CF (continued fraction) expansions of finite length $n + 1$:

$$[a_0, a_1, a_2, \ldots, a_n]_↓ = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots + \frac{1}{a_n}}}$$

or of infinite length

$$[a_0, a_1, a_2, \ldots]_↓ = \lim_{n \to \infty} [a_0, a_1, a_2, \ldots, a_n]_↓,$$

where $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{N}$ for $k \geq 1$.

For some basic facts and standard notation from the theory of CFs we refer to [5] or [4]. (The first few pages in either book should suffice for our purposes.)

Every irrational number has a unique infinite CF expansion, and every rational number has exactly two finite CF expansions

$$[a_0, a_1, a_2, \ldots, a_{n-1} + 1]_↓ = [a_0, a_1, a_2, \ldots, a_{n-1}, 1]_↓,$$

(with the lengths being two consecutive integers, n and $n + 1$).

Definition 1. By the odd CF (odd continued fraction) expansion (of $\alpha \in \mathbb{R}$) we mean the CF expansion of length $L \in \{\infty, 1, 3, 5, \ldots\}$. Similarly, in the even CF expansions one assumes $L \in \{\infty, 2, 4, 6, \ldots\}$.

This way every number $\alpha \in \mathbb{R}$ has unique both odd and even CF expansions; the two coincide if and only if α is irrational. The sequence of (CF) convergents for α,

$$\delta_k(\alpha) = [a_0, a_1, \ldots, a_k]_↓,$$

$0 \leq k < L$,

can be alternatively defined as the sequence of rational numbers $\delta_k = \frac{p_k}{q_k}$ with numerators and denominators $p_k = p_k(\alpha)$, $q_k = q_k(\alpha)$ determined by the recurrence relations

$$
\begin{cases}
 p_k = a_k p_{k-1} + p_{k-2}, \\
 q_k = a_k q_{k-1} + q_{k-2},
\end{cases}
$$

for $2 \leq k < L$,

and the initial conditions $p_0 = a_0; q_0 = 1; p_1 = a_0 a_1 + 1; q_1 = a_1$.

The following theorem provides a criterion for the relation $\alpha \in \mathcal{H}_m$ to hold (see [2]).

Theorem 1. Let $\alpha \in \mathbb{R}$ and assume that $\alpha = [a_0, a_1, a_2, \ldots]_↓$ is its odd CF expansion (i.e., of the length $L \in \{\infty, 1, 3, 5, \ldots\}$). Let $m \in \mathbb{N}$ be given. Then the following three conditions are equivalent:

(C1) $\alpha \in \mathcal{H}_m$.

(C2) $m \mid a_k$, for all odd k, $1 \leq k < L$.

(C3) $m \mid q_k$, for all odd k, $1 \leq k < L$, where $q_k = q_k(\alpha)$ are the denominators of the convergents for α; see (2).

Remark 1. For $m = 1$ the above theorem holds trivially because $\mathcal{H}_1 = \mathbb{R}$. It also holds trivially for $\alpha \in \mathbb{Z}$ (in this case $L = 1$).

Examples.

(1) $\alpha = \frac{3}{4}$. The odd CF expansion is $[1, 2, 1]_↓$, $L = 3$, $a_1 = 2$.

Thus $\frac{3}{4} \in \mathcal{H}_m$ if and only if $m = 1$ or 2.
(2) \(\alpha = \frac{\sqrt{5}}{2} \). The odd CF expansion is \([1, 8, 2, 8, 2, 8, \ldots] \), \(L = \infty \), \(a_1 = a_3 = a_5 = \cdots = 8 \).

Thus \(\frac{\sqrt{5}}{2} \in \mathcal{H}_m \) if and only if \(m = 1, 2, 4 \) or 8.

Corollary 1. \(\mathcal{H}_m \cap \mathcal{H}_n = \mathcal{H}_{\text{LCM}(m, n)} \), for all \(m, n \in \mathbb{N} \).

Corollary 2. For real \(\alpha > 0 \) and \(m \in \mathbb{N} \), we have \(\alpha \in \mathcal{H}_m \) if and only if \(\frac{1}{m\alpha} \in \mathcal{H}_m \).

Both corollaries follow directly from the equivalence of \((C1)\) and \((C2)\) in Theorem 1; the proof of Corollary 2 also uses the identity

\[
(4) \quad m [x_0, mx_1, x_2, mx_3, x_4, mx_5, \ldots] = [mx_0, x_1, mx_2, x_3, mx_4, x_5, \ldots].
\]

In the next three theorems we classify the numbers in the sets \(\mathcal{H}_m \), \(m \in \mathbb{N} \):

\[
(5) \quad \mathcal{H}_m = \{ \alpha \in \mathbb{R} \mid \text{card}(\{1 \leq k \leq n \mid [k\alpha] \in m\mathbb{Z}\}) \geq \frac{n}{m}, \text{ for all } n \in \mathbb{N} \}.
\]

Theorem 2. For \(\alpha \in \mathbb{R} \) and \(m \in \mathbb{N} \), we have \(\alpha \in \mathcal{H}_m \iff m\alpha \in \mathcal{H}_m \).

The proof of Theorem 2 is derived from the comparison \((1)\) and \((5)\) and taking in account that, for \(x \in \mathbb{R} \), \(\langle x \rangle \in [0, 1/m) \iff [mx] \in m\mathbb{Z} \).

Note that we establish another, deeper connection (than the one indicated in Theorem 2) between the sets \(\mathcal{H}_m \) and \(\mathcal{H}_m \) in Theorem 4 below.

The following result provides an explicit description of the sets \(\mathcal{H}_m \).

Theorem 3. Let \(m \in \mathbb{N} \), \(\alpha \in \mathbb{R} \) and assume that \(\alpha = [a_0, a_1, a_2, \ldots] \) is its even CF expansion (of the length \(L \in \{\infty, 2, 4, 6, \ldots\} \)). Let \(m \in \mathbb{N} \) be given. Then the following three conditions are equivalent:

\begin{itemize}
 \item [(C1)] \(\alpha \in \mathcal{H}_m \).
 \item [(C2)] \(m \mid a_k \), for all even \(k \), \(0 \leq k < L \).
 \item [(C3)] \(m \mid p_k \), for all even \(k \), \(0 \leq k < L \) where \(p_k = p_k(\alpha) \) are numerators of the convergents for \(\alpha \); see \((3)\).
\end{itemize}

The proof of Theorem 3 easily follows from Theorems 1 and 2 using the identity

\[
(4) \quad m \left[\frac{x_0}{m}, \frac{x_1}{m}, \frac{x_2}{m}, \frac{x_3}{m}, \frac{x_4}{m}, \ldots\right] = \left[m^2x_0, \frac{x_1}{m}, \frac{x_2}{m}, \frac{x_3}{m}, \frac{x_4}{m}, \ldots\right].
\]

Alternatively, Theorem 3 can be derived from the following.

Theorem 4. For \(\alpha > 0 \) and \(m \in \mathbb{N} \), we have \(\alpha \in \mathcal{H}_m \iff \frac{1}{m\alpha} \in \mathcal{H}_m \).

Theorem 4 follows from Corollary 2 and identity \((4)\).

The proof of Theorem 4 will be provided in the next section. We also prove (Theorems 5 and 6) that

\[
\mathcal{H}(\frac{n}{m}) \supset \mathcal{H}(\frac{1}{\alpha}) = \mathcal{H}_m,
\]

for arbitrary \(n, m \in \mathbb{N} \), \(n < m \), and conclude that, for rational \(c \), \(0 < c < 1 \), the sets \(\mathcal{H}(c) \) have a positive Hausdorff dimension (Corollary 3).

Finally, in the last section we discuss briefly the motivation behind our study.

2. **Proof of Theorem 1**

The proof is subdivided into several lemmas, some of which are of independent interest. Let \(\mathbb{I}_{0,1} \) stand for the open unit interval \((0, 1)\). For \(n \in \mathbb{N} \), \(\alpha > 0 \) and \(c \in \mathbb{I}_{0,1} \), consider the following finite subsets of \(\mathbb{N} \):

\[
(6) \quad S(n, \alpha) \overset{\text{def}}{=} \{ k \in \mathbb{N} \mid k\alpha < n \}
\]
and

\[(7) \quad S(n, \alpha, c) \overset{\text{def}}{=} \{ k \in S(n, \alpha) \mid \langle k \alpha \rangle < c \} = \{ k \in \mathbb{N} \mid k \alpha < n \land \langle k \alpha \rangle < c \}. \]

It is easy to see that

\[(8) \quad \text{card}(S(n, \alpha)) = \left\lceil \frac{n}{\alpha} \right\rceil - \right. \]

and

\[(9) \quad \text{card}(S(n, \alpha, c)) = \left\lceil \frac{c}{\alpha} \right\rceil + \sum_{k=1}^{n-1} \left(\left\lceil \frac{k+c}{\alpha} \right\rceil - \left\lceil \frac{k}{\alpha} \right\rceil \right), \]

where \(\left\lceil x \right\rceil^\sim\) stands for the largest integer smaller than \(x \in \mathbb{R}\):

\[(10) \quad \left\lceil x \right\rceil^\sim = \begin{cases}
\left\lceil x \right\rceil & \text{if } x \notin \mathbb{Z} \\
 x - 1 & \text{if } x \in \mathbb{Z}.
\end{cases} \]

We observe the following.

Lemma 1. Given \(\alpha > 0\) and \(c \in \mathbb{I}_{0,1} = (0, 1)\), the following two conditions are equivalent:

1. \(\alpha \in \mathcal{H}(c)\);
2. \(\text{card}(S(n, \alpha, c)) \geq c \times \text{card}(S(n, \alpha))\), for all \(n \in \mathbb{N}\).

Proof. The claim of Lemma 1 follows directly from the definitions of the sets \(\mathcal{H}(c), S(n, \alpha)\) and \(S(n, \alpha, c)\) (see (1), (6), (7)). \(\square\)

Lemma 2. Let \(\alpha, \beta > 0\) and \(c \in \mathbb{I}_{0,1}\). Assume that the following two conditions are met:

\[(11) \quad (1) \quad \frac{1}{\alpha} - \frac{1}{\beta} \in \mathbb{Z} \quad \text{and} \quad (2) \quad \frac{1}{\alpha} - \frac{1}{\beta} \in \mathbb{Z}. \]

Then:

(A) \(\text{card}(S(n, \alpha)) - \text{card}(S(n, \beta)) = \frac{n(\beta - \alpha)}{\alpha \beta}\);

(B) \(\text{card}(S(n, \alpha, c)) - \text{card}(S(n, \beta, c)) = \frac{c n(\beta - \alpha)}{\alpha \beta}\);

(C) \(\alpha \in \mathcal{H}(c) \iff \beta \in \mathcal{H}(c)\).

Proof. The claims (A) and (B) of the lemma follow from formulae (8), (9) and the obvious implications

\(x - y \in \mathbb{Z} \iff \langle x \rangle = \langle y \rangle \iff \left\lceil x \right\rceil^\sim - \left\lceil y \right\rceil^\sim = x - y.\)

Finally, (C) follows from (A), (B) and Lemma 1. \(\square\)

The next lemma is just a specification of Lemma 2.

Lemma 3. Let \(\alpha, \beta > 0, c \in \mathbb{I}_{\alpha, \beta}, m \in \mathbb{N}\) be given and assume that the following two conditions are met:

(a) \(\frac{1}{\alpha} - \frac{1}{\beta} \in m \mathbb{Z}\), \quad (b) \(mc \in \mathbb{N}\).

Then \(\alpha \in \mathcal{H}(c)\) if and only if \(\beta \in \mathcal{H}(c)\).

Proof. We need only validate condition (2) of Lemma 2. It follows from (a) that \(\frac{1}{\alpha} - \frac{1}{\beta} = km\), for some \(k \in \mathbb{Z}\). But then \(\frac{1}{\alpha} - \frac{1}{\beta} = ckm = k(mc) \in \mathbb{Z}\), in view of (b). The proof is complete. \(\square\)
For $\alpha \in \mathbb{R}$, denote by $L(\alpha)$ the length of the odd CF expansion of $\alpha = [a_0(\alpha), a_1(\alpha), \ldots]$. Observe that $L(\alpha) = 1$ if and only if $\alpha \in \mathbb{Z}$; otherwise $L(\alpha) \geq 3$. Define the map $\phi : \mathbb{R} \to \mathbb{R}$ by the rule

$$
\phi(\alpha) = \begin{cases}
\frac{1}{(\alpha)} = [a_1, a_2, \ldots] & \text{if } \alpha \notin \mathbb{Z}, \\
0 & \text{if } \alpha \in \mathbb{Z}.
\end{cases}
$$

One easily verifies that for $\alpha = [a_0, a_1, a_2, \ldots] \notin \mathbb{Z}$, one has $\phi^2(\alpha) = [a_2, \ldots];$ i.e., ϕ^2 removes the first two entries (partial quotients) in the odd CF expansion of any noninteger.

Next we introduce the sets

$$\mathbb{R}(m) \overset{\text{def}}{=} \{ \alpha \in \mathbb{R} \setminus \mathbb{Z} \mid a_1(\alpha) \in m\mathbb{N} \} \cup \mathbb{Z}, \quad m \in \mathbb{N}.$$

Lemma 4. Let $m \in \mathbb{N}$, $c \in \mathbb{I}_{0,1}$ and assume that $mc \in \mathbb{N}$. Then, for every $\alpha \in \mathbb{R}(m)$,

$$\alpha \in \mathcal{H}(c) \iff \phi^2(\alpha) \in \mathcal{H}(c).$$

Proof. Denote $\beta = \phi^2(\alpha)$ and $u = \frac{1}{c} - \frac{1}{(\beta)} = -a_1$. Since $\alpha \in \mathbb{R}(m)$, we conclude that $m|u$ and use Lemma 3 to complete the proof of Lemma 4 $\alpha \in \mathcal{H}(c) \iff \langle \beta \rangle \in \mathcal{H}(c) \iff \beta \in \mathcal{H}(c).$ \hfill \square

It turns out that Lemma 4 can be used to explicitly exhibit uncountable subsets of $\mathcal{H}(c)$, for $c \in \mathbb{I}_{0,1} \cap \mathbb{Q}$. ($\mathbb{Q}$ stands for the set of rational numbers.) Those are the sets

$$\mathbb{R}_m \overset{\text{def}}{=} \{ \alpha \in \mathbb{R} \mid \phi^{2k}(\alpha) \in \mathbb{R}(m), \text{ for all } k \geq 0 \}, \quad m \in \mathbb{N}$$

(see Theorem 5 below).

The following lemma provides an alternative, more explicit description of the classes \mathbb{R}_m.

Lemma 5. Let $m \in \mathbb{N}$ and assume that $\alpha \in \mathbb{R}$ is given in terms of its odd CF expansion $\alpha = [a_0, a_1, \ldots]_\uparrow$ of length $L = L(\alpha) \in \{ \infty, 1, 3, \ldots \}$. Then $\alpha \in \mathbb{R}_m$ if and only if $a_k \in m\mathbb{Z}$, for all odd $k < L$.

Proof. The proof follows directly from the nature of the map ϕ^2 and the trivial fact that $\mathbb{Z} \subset \mathbb{R}(m)$. \hfill \square

Examples.

1. $\alpha = \frac{3}{4}$. The odd CF expansion is $[1, 2, 1]_\uparrow$, $L = 3$, $a_1 = 2$. Thus $\frac{3}{4} \in \mathbb{R}_m \iff m = 1$ or 2.

2. $\alpha = \frac{\sqrt{5} - 1}{2}$. The odd CF expansion is $[1, 8, 2, 8, 2, \ldots]_\uparrow$, $L = \infty$, $a_1 = a_3 = a_5 = \cdots = 8$. Thus $\frac{\sqrt{5} - 1}{2} \in \mathbb{R}_m \iff m = 1, 2, 4$ or 8.

Theorem 5. Let $m \in \mathbb{N}$, $c \in \mathbb{I}_{0,1} = (0, 1)$ and assume that $cm \in \mathbb{N}$. Then $\mathbb{R}_m \subset \mathcal{H}(c)$.

Proof of Theorem 5. Recall that $\mathbb{Q} \subset \mathbb{R}$ stands for the set of rational numbers. We prove that

$$\alpha \in \mathbb{R}_m \implies \alpha \in \mathcal{H}(c).$$
Case 1. $L < \infty$, i.e. $\alpha \in \mathbb{Q}$. The proof goes by induction in $L = L(\alpha) \in \{1, 3, 5, \ldots \}$.
If $L = 1$, then $\alpha \in \mathbb{Z}$ and one has both $\alpha \in \mathbb{R}_m$ and $\alpha \in \mathcal{H}(c)$. For the
inductional step, we use Lemma 4 and the obvious fact that $\phi^2(\mathbb{R}_m) \subset \mathbb{R}_m$ (see
(13) and Lemma 5).

Case 2. $L = \infty$, i.e. $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ (α is irrational). The proof uses an approximation
argument. For a subset $S \subset \mathbb{R}$, denote by \overline{S} the closure of S in \mathbb{R}. Next we validate
the following inclusion:

$$\mathcal{H}(c) \cap (\mathbb{R} \setminus \mathbb{Q}) \subset \mathcal{H}(c)$$ (for $c \in \mathbb{Q} \cap (0, 1)$).

Indeed, it follows from (14) that $\mathcal{H}(c) = \bigcap_{n \in \mathbb{N}} \mathcal{H}(c, n)$, where
$$\mathcal{H}(c, n) = \{ \alpha \in \mathbb{R} \mid \text{card}(\{1 \leq m \leq n \mid \langle m\alpha \rangle < c\}) \geq cn\}$$
is a finite union of intervals of the form $[u, v)$ with rational endpoints u, v:
$$u, v \in \bigcup_{0 \leq r < s \leq n} \left\{ \frac{r}{s}, \frac{r+\epsilon}{s} \right\} \subset \mathbb{Q}$$
because $c \in \mathbb{Q}$. In particular, for all $n \geq 1$,
$$\mathcal{H}(c, n) \cap (\mathbb{R} \setminus \mathbb{Q}) \subset \mathcal{H}(c, n).$$

The proof of (14) is completed as follows:

$$\mathcal{H}(c) \cap (\mathbb{R} \setminus \mathbb{Q}) = \bigcap_{n \in \mathbb{N}} (\mathcal{H}(c, n) \cap (\mathbb{R} \setminus \mathbb{Q})) \subset \left(\bigcap_{n \in \mathbb{N}} (\mathcal{H}(c, n)) \right) \cap (\mathbb{R} \setminus \mathbb{Q})$$

$$= \bigcap_{n \in \mathbb{N}} (\mathcal{H}(c, n) \cap (\mathbb{R} \setminus \mathbb{Q})) \subset \bigcap_{n \in \mathbb{N}} \mathcal{H}(c, n) = \mathcal{H}(c).$$

Next one considers the sequence $\delta_{2k} = \delta_{2k}(\alpha), k \geq 0$, of even CF convergents
of α (with $L(\delta_{2k}) = 2k + 1$, an odd number). By what has been proven in Case 1,
$\delta_{2k} \in \mathbb{R}_m \cap \mathbb{Q} \subset \mathcal{H}(c)$, for all $k \geq 0$. Since
$$\lim_{k \to \infty} \delta_{2k} = \alpha \in \mathbb{R} \setminus \mathbb{Q},$$
the proof is complete in view of (14). □

Corollary 3. Let $C \subset \mathbb{Q} \cap \mathbb{N}$ be a finite subset of rational numbers. Then the
intersection $\bigcap_{c \in C} \mathcal{H}(c)$ is an uncountable set of positive Hausdorff dimension.

Proof. Let $m \in \mathbb{N}$ be a common denominator for all the numbers $c \in C$. Then
$$\mathbb{R}_m \subset \bigcap_{c \in C} \mathcal{H}(c),$$
in view of Theorem 5.

The set \mathbb{R}_m is clearly uncountable, and it is easily seen to have a positive Haus-
dorff dimension. (One way to see it is to observe that it contains the set \mathbb{R}_m of
all numbers of the form $[0, m, a_1, m, a_2, m, \ldots]_1$, where $a_i \in \{1, 2\}$. This set is the
disjoint union of its images under the two contractions:
$$f_i(x) = \frac{1}{m + \frac{1}{x}}, \quad i = 1, 2,$$
and therefore must be of positive Hausdorff dimension (see Chapter 9 in [2]). □

Corollary 4. $\mathbb{R}_m \subset \mathcal{H}_m$, for all $m \in \mathbb{N}$.

Proof of Corollary 4. Take $c = \frac{1}{m}$ in Theorem 5 (Recall that $\mathcal{H}_m = \mathcal{H}(\frac{1}{m})$.) □

As is pointed out in Section 1, the inclusion in Corollary 4 can be reversed.

Theorem 6. $\mathbb{R}_m = \mathcal{H}_m$, for all $m \in \mathbb{N}$.
We first need to prove the following:

Lemma 6. \(\mathcal{H}_m \subset \mathbb{R}(m), \) for all \(m \in \mathbb{N}. \)

Proof of Lemma 6. Since \(\mathbb{Z} \subset \mathbb{R}(m) \) (see (12)), it suffices to prove that if \(\alpha \in (\mathbb{R} \setminus \mathbb{Z}) \cap \mathcal{H}_m, \) then \(\alpha \in \mathbb{R}(m). \) We assume without loss of generality that \(\lfloor \alpha \rfloor = 0 \) (otherwise replacing \(\alpha \) by \(\langle \alpha \rangle \)). Let \([0, a_1, a_2, \ldots] \) be the odd CF expansion of \(\alpha. \)

We have to show that \(m \mid a_1. \) If not, then \(a_1 \equiv r \pmod{m}, \) for some integer \(r, \) \(1 \leq r \leq m - 1. \) Define \(\beta \in \mathbb{R} \) by its CF expansion \([0, r, a_2, a_3, \ldots] \), with all the entries \(a_k, \) for \(k \neq 1, \) being the same as in the CF expansion of \(\alpha. \)

Then, with \(c = \frac{1}{m}, \) we easily validate the conditions of Lemma 3. Indeed, \(\alpha \in \mathcal{H}_m = \mathcal{H}(c), mc = 1 \in \mathbb{N} \) and \(\frac{1}{m} - \frac{r}{m} = a_1 - r \in m\mathbb{Z}. \) By Lemma 3, \(\beta \in \mathcal{H}(c) = \mathcal{H}_m, \) which is impossible because \(\beta = \langle \beta \rangle > \frac{1}{r+1} \geq \frac{1}{m} = c, \) so that the relation \(\beta \in \mathcal{H}(c) \) contradicts (11) for \(n = 1. \)

Proof of Theorem 6. In view of Corollary 4, we only have to establish the inclusion \(\mathcal{H}_m \subset \mathbb{R}_m. \) Let \(\alpha \in \mathcal{H}_m \) be given. We claim that then

\[
\phi^{2k}(\alpha) \in \mathbb{R}(m) \cap \mathcal{H}_m, \quad \text{for all } k \geq 0.
\]

The proof goes by induction in \(k. \) For \(k = 0, \) (15) holds in view of Lemma 6. For the inductive step, we use Lemmas 4 and 6. This completes the proof of (15).

Now we are ready to complete the proof of Theorem 6 in the introduction. The main part of the work has already been done: Theorem 6 is a rephrasing of the equivalence \((C1) \iff (C2). \)

It remains to prove the equivalence of the following two conditions:

\[
(C2) \quad m \mid a_k, \quad \text{for all odd } k, 1 \leq k < L.
\]

\[
(C3) \quad m \mid q_k, \quad \text{for all odd } k, 1 \leq k < L.
\]

The proof goes by induction in \(k. \) For \(k = 1 \) the equivalence is immediate because \(q_1 = a_1. \)

Now assume that both \((C2) \) and \((C3) \) hold for some odd \(k = n < L - 2. \) It suffices to show that

\[
m \mid a_{n+2} \iff m \mid q_{n+2}.
\]

From the identity \(q_{n+2} = a_{n+2}q_{n+1} + q_n \) we derive the congruence \(q_{n+2} \equiv a_{n+2}q_{n+1} \pmod{m}, \) so that the implication \(\implies \) is immediate. The opposite implication is also valid because \(q_{n+2}, q_{n+1} \) are relatively prime.

3. Motivation: Heavy sequences

The following result by Y. Peres is closely related to the Maximal Ergodic Theorem:

Lemma 7 (Peres). Let \(T : X \to X \) be a continuous transformation of a compact space, and let \(\mu \) be a probability measure preserved by \(T. \) For every continuous \(g : X \to \mathbb{R} \) there exists some \(x \in X \) such that

\[
\forall N \in \mathbb{N} \quad \frac{1}{N} \sum_{n=0}^{N-1} g(T^n x) \geq \int_X g d\mu.
\]
Example 2. Fix parameter

\[
\mathcal{H}^f_T = \{ x \in X : S_n(x) - n \int_X f \, d\mu \geq 0, \quad \forall n \in \mathbb{N} \}.
\]

Then Lemma 4 tells us that in this situation, for any \(f \in L^1(X, \mu) \), \(\mathcal{H}^f_T \neq \emptyset \).

We also say that there is some point \(x \) whose orbit is heavy for \(f \). If \(f \) is the characteristic function of a set \(A \), we will generally simply refer to “the heavy set of \(A \)”, or call a sequence “heavy for \(A \)”. Restricting ourselves only to the reals modulo one, \(\mathbb{R}/\mathbb{Z} = S^1 \), we derive the following results:

Example 1. Fix \(\alpha \in S^1 \). Then for any closed subset \(A \subset S^1 \), there exists some point \(x \) whose orbit is heavy for \(A \).

The previous example can be viewed as the following: for any choice of a closed set \(A \subset S^1 \) and leading coefficient \(\alpha \), there exists some choice of \(\beta \) such that the polynomial \(\alpha n + \beta \), considered modulo one, is heavy for \(A \). This example may be generalized as follows:

Example 2. Fix \(\alpha \in \mathbb{R} \), a closed set \(A \subset S^1 \), and a choice of \(k \in \mathbb{N} \). Then there exists a choice of coefficients \(a_0, a_1, \ldots, a_{k-1} \) such that the sequence

\[
\{ \alpha n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0 \}_{n=0}^{\infty}
\]

is heavy for \(A \) (when taken modulo one). For details on how to derive this sequence as the orbit of a measure preserving system, we refer the reader to pp. 35–37 in \cite{3} or, for a more detailed derivation of heaviness properties, to \cite{7}.

Finally, the reader may be tempted to try to generalise the results of Theorem 3 and Example 1 to claim that the set

\[
\mathcal{H}[A] \overset{\text{def}}{=} \{ x \in S^1 \mid \text{the sequence } (kx)_{k\geq 1} \text{ is heavy for } A \}
\]

is always nonempty. This cannot be done.

Example 3. There exists a closed set \(A \subset S^1 \), a finite union of closed intervals, whose measure is larger than \(1/3 \), such that \((x \in A) \Rightarrow (2x \notin A, 3x \notin A)\). In particular, for such an \(A \) one has \(\mathcal{H}[A] = \emptyset \).

The measure of the set \(A \) in the above example can be made arbitrarily close to \(\frac{1}{3} \). For details, see \cite{7}, where techniques from ergodic theory are used (in a nonconstructive way) to establish the existence of such a set \(A \).

We have examples of closed subintervals \(J \subset (0, 1) \subset S^1 \) for which the set \(\mathcal{H}[J] \) is countable or finite \((J = \left[\frac{1}{3}, \frac{2}{3} \right] \) and \(J = \left[\frac{2}{3}, \frac{3}{3} \right] \), respectively). We don’t know whether it can be made empty.

Note that the subject of our paper is somehow related to that in \cite{1}, where some sufficient conditions for the one-sided boundedness of the sequence

\[
\text{card}(\{1 \leq k \leq n \mid \langle k\alpha \rangle < c \}) - cn
\]
have been established (cf. equation (1)). All our results are new and imply some of the results in [1].

REFERENCES

[1] Y. Dupain, T. Vera Sós, On the one-sided boundedness of discrepancy-function of the sequence \{na\}, Acta Arith. 37 (1980), 363–374. MR598889 (82c:10058)

[2] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., 1990. MR1062577 (92k:28008)

[3] H. Furstenberg, Recurrence in ergodic theorem and combinatorial number theory, Princeton University Press, 1981. MR603625 (82c:28010)

[4] A. Y. Khinchin, Continued Fractions, The University of Chicago Press, 1964. MR0161833 (28:5037)

[5] S. Lang, Introduction to Diophantine Approximations, Springer-Verlag, 1995. MR1348400 (96h:11067)

[6] Y. Peres, A combinatorial application of the maximal ergodic theorem, Bull. London Math. Soc. 20 (1988), 248–252. MR931186 (89e:28033)

[7] D. Ralston, Heaviness—An Extension of a Lemma of Y. Peres, Houston Journal of Mathematics. To appear.

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77005
E-mail address: michael@rice.edu

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77005
Current address: Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus, Ohio 43210