A MYC/GCN2/eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer

Stefanie Schmidt1,2*, David Gay3*, Friedrich Wilhelm Uthe1,2*, Sarah Denk1,2, Madelon Paauwe3, Niels Matthes1,2, Markus Elmar Diefenbacher1, Sheila Bryson3, Fiona Clare Warrander3, Florian Erhard4, Carsten Patrick Ade1, Apoorva Baluapuri1, Susanne Walz5, Rene Jackstadt3, Catriona Ford3, Georgios Vlachogiannis6, Nicola Valeri6,7, Christoph Otto2, Christina Schülein-Völk1, Katja Maurus8, Werner Schmitz1, John Raymond Philip Knight3, Elmar Wolf1, Douglas Strathdee3, Almut Schulze1,8, Christoph-Thomas Germer2,8, Andreas Rosenwald8, Owen James Sansom3,9, Martin Eilers1,8§, and Armin Wiegering1,2,8§

1) Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
2) University Hospital Würzburg, Department of General, Visceral, Vascular and Pediatric Surgery, Würzburg, Germany
3) CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
4) Institute for Virology and Immunobiology, University of Würzburg, Versbacher Straße 7, 97078 Würzburg, Germany
5) Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
6) Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
7) Department of Medicine, The Royal Marsden NHS Trust, London, SW3 6JJ, UK
8) Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
9) Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK

*) These authors contributed equally to the work.
§) Correspondence: wiegering_a@ukw.de; martin.eilers@biozentrum.uni-wuerzburg.de

Key words: colorectal cancer, APC, MYC, translation, eIF2B5, eIF2α

Word count abstract: 150
Word count: 3841
Total number of figures: 8
Abstract

Tumours depend on altered rates of protein synthesis for growth and survival, suggesting that mechanisms controlling mRNA translation may be exploitable for therapy. Here, we show that loss of APC, which occurs almost universally in colorectal tumours, strongly enhances the dependence on the translation initiation factor eIF2B5. Depletion of eIF2B5 induces an integrated stress response and enhances translation of MYC via an internal ribosomal entry site. This perturbs cellular amino acid and nucleotide pools and strains energy resources and causes MYC-dependent apoptosis. eIF2B5 limits MYC expression and prevents apoptosis in APC-deficient murine and patient-derived organoids and in APC-deficient murine intestinal epithelia in vivo. Conversely, the high MYC levels present in APC-deficient cells induce phosphorylation of eIF2α via the GCN2 and PKR kinases. Pharmacological inhibition of GCN2 phenocopies eIF2B5 depletion and has therapeutic efficacy in tumour organoids, demonstrating that a negative MYC/eIF2α feedback loop constitutes a targetable vulnerability of colorectal tumours.
Introduction

Overall rates of cellular protein synthesis are regulated by extracellular and cell-intrinsic signals. Specifically, recognition of the mRNA cap structure by eIF4F as well as binding and recycling of the ternary complex (TC) are tightly controlled steps during translation initiation [1, 2]. In response to stress signals, eIF2α, a component of the TC, is phosphorylated [3]. This enhances its affinity for eIF2B, which sequesters phosphorylated eIF2α into an inactive complex, and disrupts TC formation [4-6]. Reduction in TC levels inhibits global translation initiation, but enhances translation of stress-responsive mRNAs via the integrated stress response (ISR) [3].

Virtually all colorectal cancers (CRC) harbor activating mutations in the WNT signaling pathway. Most frequently, this is due to deletion or loss-of-function mutations of the APC tumour suppressor [7], leading to an upregulation of the transcription factor MYC [8]. Restoration of Apc or deletion of Myc ablates tumourigenesis in mouse models of CRC [9, 10]. MYC induces transcription of genes encoding proteins of the translation machinery [7], and enhances global protein synthesis [8, 11-13]. Interfering with translation initiation or the mTOR-eEF2K axis controlling translational elongation is tolerated by normal tissues but prevents CRC growth, arguing that CRC depends on enhanced protein synthesis [1, 11, 14-16].

Here, we searched for specific dependencies of APC-deficient CRCs. Starting from an unbiased genetic screen, we identified a negative feedback loop, in which deregulated MYC expression and global translation in APC-deficient cells induce phosphorylation of eIF2α, which limits protein synthesis. Using mouse tumour models as well as murine and patient-derived organoids, we validated this dependency. Disrupting this circuit either genetically or by small molecule inhibitors of eIF2α kinases has therapeutic efficacy in APC-deficient tumours.
Results

Restoration of APC expression suppresses translation and anchorage-independent growth

To identify genes that are essential in APC-deficient cells, we engineered SW480 cells, harbouring truncating mutations in both APC alleles, to express full-length APC in a doxycycline-inducible manner (SW480^{TelOnAPC}) (Fig. 1a and Extended Data 1a,b). We designate these cells APC-deficient (APC^{def}) in the absence and APC-restored (APC^{res}) in the presence of doxycycline. In APC^{res} cells, β-catenin protein levels and mRNA expression of MYC, DKK1 and AXIN2 were significantly downregulated (Fig. 1a,b,c and Extended Data 1b,c). Gene set enrichment analysis (GSEA) of RNA-sequencing data showed that induction of APC represses multiple WNT- and MYC-regulated genes (Fig. 1d), including genes encoding proteins involved in translation (Fig. 1d and Supplementary Table 1) [17-20]. Consistent with these data and previous observations, global protein synthesis was enhanced in APC^{def} cells (Fig. 1e) [11]. Restoration of APC did not affect cell growth in two-dimensional culture conditions and did not induce apoptosis (Fig. 1f, and Extended Data 1d). In contrast, the number and size of APC^{res} colonies growing in an anchorage-independent manner, a hallmark of oncogenic transformation [21], were markedly reduced (Fig. 1g,h,i) [22].

APC-deficient CRC cells depend on physiological eIF2B5 levels

To identify genes required for the growth of APC^{def}, but not of APC^{res} cells, we performed a dropout screen and infected SW480^{TelOnAPC} cells with a lentiviral shRNA library targeting 5,000 potentially druggable genes encoding translation initiation and elongation factors as well as ribosomal proteins (Extended Data 1e,f). For each shRNA, relative enrichment or depletion after day 3 and day 15 of ethanol or doxycycline treatment was determined. Twenty-one shRNAs targeting luciferase, included as negative controls, were not selected against during growth of either APC^{def} or APC^{res} cells (Extended Data 1g). In contrast, four out of five shRNAs targeting PSMB2, encoding an essential component of the proteasome, led to growth disadvantage in both APC^{def} and APC^{res} cells (Extended Data 1h). Using a two-
fold difference in representation between APCdef and APCres cells at day 15, but not at day 3, we filtered for potential hits (FDR < 0.05). From these, we recovered nine genes that were targeted by at least two shRNAs (Extended Data 1i and Supplementary Table 2). Among them were shRNAs targeting \textit{BCL2L1}, which has previously been shown to be required for growth of cells with activating \(\beta\)-catenin mutations [23]. Notably, four out of five shRNAs targeting \textit{EIF2B5} were depleted specifically in APCdef cells, and showed the greatest difference in shRNA representation (Fig. 2a). Consistent with recovery as a hit, eIF2B5 depletion by an shRNA, used in the screen, suppressed growth of APCdef cells, but had only minor effects on APCres cells (Fig. 2b,c), despite similar knockdown efficiency (Fig. 2d,e).

eIF2B5 depletion in APCdef cells, but not in APCres cells, significantly increased the percentage of annexin V/PI-positive cells and the percentage of cells with a subG1 DNA content (Fig. 2f and Extended Data 2a).

Using a series of four shRNAs with different knockdown efficacy (Extended Data 2b), we established that differential apoptosis induction in APCdef and APCres cells correlated with the degree of eIF2B5 depletion (Extended Data 2c). Strong knockdown elicited by sh\textit{EIF2B5} #1 potently induced apoptosis in APCdef, but also to some degree in APCres cells. Moderate knockdown by sh\textit{EIF2B5} #3 induced apoptosis in APCdef, but had no effect on APCres cells. Weak knockdown (sh\textit{EIF2B5} #2, #4) induced little or no apoptosis in APCdef and APCres cells.

To validate that apoptosis is an on-target effect, we overexpressed an shRNA-resistant HA-tagged eIF2B5 (eIF2B5mut-HA). Neither sh\textit{EIF2B5} #1 nor #3 depleted HA-tagged exogenous eIF2B5, although they are functional since they reduced expression of endogenous eIF2B5 (Extended Data 2d,e). Accordingly, we observed no apoptosis in cells expressing eIF2B5mut-HA (Extended Data 2f). Finally, eIF2B5 depletion strongly suppressed growth of APC-deficient HT29 cells, but had a much weaker effect in APC-proficient HCT116 cells (Fig. 2g,h and Extended Data 2g).
Notably, APCdef and APCres cells express comparable eIF2B5 protein levels despite increased \textit{EIF2B5} mRNA levels in APCdef relative to APCres cells (Fig. 2d, e). Datasets from human CRCs show a moderate increase in \textit{EIF2B5} mRNA in CRC relative to normal tissue (Extended Data 2h). Histopathologic staining of human CRC samples revealed an enhanced eIF2B5 expression in tumours relative to mucosa (Fig. 2i). We concluded that physiological levels of eIF2B5 are required to suppress apoptosis in APC-deficient cells.

\textbf{eIF2B5 controls translation initiation and limits global protein synthesis}

eIF2B5 is the catalytic subunit of the decameric eIF2B complex [4, 24, 25], which is the guanine nucleotide exchange factor (GEF) for eIF2 that replaces GDP by GTP and enables binding of initiator methionyl transfer RNA (Met-tRNA\textsubscript{i}) to eIF2 (TC formation) [24, 26]. Accordingly, eIF2B5 depletion caused a relative increase in free 40S and 60S ribosomal subunits and a decrease in polysomal fractions (Fig. 3a and Extended Data 3a). To pinpoint the effect on translation initiation, we blocked the first translation elongation step by addition of harringtonine [27]. This led to an expected increase in 40S, 60S, and 80S monosomes and showed that eIF2B5 depletion strongly reduced the amount of 80S monosomes consistent with its effect on TC formation (Fig. 3a). Surprisingly, eIF2B5 knockdown elicited an increase in overall protein synthesis in both APCdef and APCres cells (Fig. 3b). This increase correlated with the degree of eIF2B5 knockdown (Extended Data 2b and 3b). In CRC cells, inhibition of initiation can be compensated by an increase in translation elongation driven via inhibition of eEF2K by S6K1 [11]. Accordingly, depletion of eIF2B5 strongly activated S6K1 in APCdef cells (Extended Data 3c).

Consistent with previous findings, eIF2\textalpha and its phosphorylated form are upregulated in tumour tissue [28] (Fig. 3c). In addition, eIF2B binds p-eIF2\textalpha with high affinity and antagonizes dephosphorylation and activation of eIF2\textalpha by PP1 [29]. Depletion of eIF2B5 led to dephosphorylation of eIF2\textalpha at S51, readily detectable in APCdef cells, while the effect in APCres cells was more variable (Fig. 3d and Extended Data 3d). To determine whether
Depletion of eIF2B5 limits PP1 binding to eIF2α, we immunoprecipitated eIF2α. Depletion of eIF2B5 strongly enhanced association of PP1 with eIF2α in APC^def, but much less so in APC^res cells (Fig. 3e). This mechanism is expected to reduce the sensitivity of translation initiation to inhibition by stress-related kinases.

Depletion of eIF2B5 causes MYC-driven apoptosis

To understand why eIF2B5 depletion causes apoptosis specifically of APC^def cells, we performed ribosome profiling of APC^def and APC^res cells to investigate a potential shift in the spectrum of translated mRNAs [30, 31]. We did not observe any differences in global ribosome association of mRNAs between eIF2B5-depleted APC^def and APC^res cells (Extended Data 3e and Supplementary Table 3). However, gene ontology analysis of ribosome-associated mRNAs revealed an enrichment of mRNAs associated with stress response and apoptotic signaling pathways upon eIF2B5 knockdown in APC^def, but less in APC^res cells (Extended Data 3f). This is consistent with observations that a reduction in TC formation induces an ISR resulting in a bypass of upstream open reading frames (uORFs) present in stress-responsive mRNAs such as that of the transcription factor ATF4 [2]. Indeed, inactivating mutations in eIF2B subunits in yeast lead to the induction of the ISR [32]. Accordingly, eIF2B5 knockdown induced ATF4 protein expression as well as enrichment of a consensus ATF4 target gene signature including *DDIT3*, *ATF3* and *ATF6*, in APC^def cells and this response correlates with the degree of eIF2B5 knockdown (Fig. 3f,g, Extended Data 3g and Supplementary Table 4).

Enhanced translation and defects in protein folding in the endoplasmic reticulum can activate two other stress signaling pathways, mediated by IRE1α and ATF6, as part of the unfolded protein response (UPR) [33]. Notably, while APC loss activated both the ISR and IRE1α as well as ATF6, evidenced by expression of UPR-associated genes (spliced *XBP1*, *GRP78* and unspliced *XBP1*), additional eIF2B5 depletion induced only the ISR (Extended Data 3h,i) [34].
ATF4 controls transcription of multiple stress-related genes, including GADD34 and ATF3, both of which were induced upon eIF2B5 knockdown in APC^{def}, but not in APC^{res} cells (Fig. 3h and Extended Data 3i). ATF3 is important for CHOP expression [35] and CHOP can drive apoptosis, eliminating cells after prolonged stress [36]. eIF2B5 depletion in APC^{def} cells induced CHOP expression to a similar extent as exposure to tunicamycin (Extended Data 4a), which blocks protein glycosylation and is an established inducer of an ISR [36]. These responses were attenuated in APC^{res} cells (Extended Data 4a). siRNA-mediated CHOP knockdown abolished its upregulation after eIF2B5 depletion in APC^{def} cells, but had only minor effects on the apoptotic response after eIF2B5 depletion (Extended Data 4b,c).

APC loss strongly enhances expression of MYC mRNA [9]. Since high MYC levels induce apoptosis [37], we tested whether MYC expression is differentially regulated after eIF2B5 knockdown. Upon eIF2B5 knockdown in APC^{def} cells, MYC protein levels were markedly upregulated, while MYC mRNA levels and protein stability remained unaltered (Fig. 4a and Extended Data 4d,e). MYC protein levels were also induced by shEIF2B5 #1, but not by shEIF2B5 #4 (Extended Data 4f,g). Similarly, MYC is upregulated after eIF2B5 knockdown in APC-deficient HT29 cells, but not in APC-proficient HCT116 cells (Extended Data 4h). Immunoprecipitation of 35S-methionine pulse-labelled MYC showed that eIF2B5 depletion enhanced MYC translation in APC^{def} cells (Fig. 4b). In apoptotic cells, translation of MYC is enhanced via an internal ribosomal entry site (IRES) [38, 39]. A specific inhibitor of MYC IRES-dependent translation, cymarine [40], decreased basal MYC expression and abolished its upregulation in response to eIF2B5 depletion in APC^{def} cells, but had no effect on two other short-lived proteins (Cyclin E, c-Fos) (Fig. 4c and Extended Data 5a). Furthermore, deleting an internal part of the MYC IRES by CRISPR/Cas9 abolished MYC induction upon eIF2B5 knockdown (Extended Data 5b,c,d). We concluded that depletion of eIF2B5 enhances IRES-dependent translation of MYC.
Depletion of MYC strongly reduced induction of apoptosis in response to eIF2B5 depletion in APCdef cells (Fig. 4d,e). It also decreased basal CHOP levels and compromised CHOP, ATF3 and GADD34 induction upon eIF2B5 knockdown (Fig. 4d and Extended Data 5e). We concluded that eIF2B5 downregulation increases MYC translation in APCdef cells, causing apoptosis. Since MYC mRNA and the ISR levels, which enhance MYC IRES translation, are lower in APCres cells, eIF2B5 depletion does not cause a similar MYC upregulation in these cells.

To understand how deregulation of protein synthesis and MYC expression contribute to apoptosis, we determined intracellular amino acid pools. Knockdown of eIF2B5 significantly reduced alanine, aspartate and glutamate levels (Fig. 5a). APC restoration or MYC depletion alleviated the effects of eIF2B5 depletion on aspartate and glutamate levels. Both amino acids are precursors for nucleotide synthesis, a highly energy-demanding process [41]. The corresponding biosynthetic enzymes are encoded by MYC target genes and several are induced following APC loss (Fig. 5b) [42]. Intriguingly, eIF2B5 depletion decreased tri-phosphorylated nucleotides in APCdef cells, which was lessened or abolished by APC restoration, indicative of a reduction in cellular energy charge (Fig. 5c). Consistent with these findings, eIF2B5 depletion strongly increased phosphorylated AMPK in APCdef, but not in APCres cells (Fig. 5d). We concluded that eIF2B5 depletion causes an APC-dependent perturbation of cellular amino acid and nucleotide pools and of energy homeostasis.

Physiological eIF2B5 levels are required for tumourigenesis driven by loss of APC

To demonstrate the effects of eIF2B5 depletion in a genetically defined setting, we used intestinal organoids [43, 44], generated from wild-type, Villin\textsuperscript{CreERApcfl/fl} or Villin\textsuperscript{CreERApcfl/flKrasG12D/+} mice and recombined them ex vivo by addition of 4-hydroxytamoxifen (4-OHT). Accordingly, MYC protein was induced in Cre-recombined organoids relative to wild-type counterparts (Extended Data 6a). Doxycycline-inducible eIF2B5 knockdown had no effect on the size of wild-type organoids, but dramatically reduced
the growth of VillinCre^{ER} Apc^{fl/fl} and VillinCre^{ER} Apc^{fl/fl} Kras^{G12D/+} organoids (Extended Data 6b,c,d), arguing that eIF2B5 levels are critical for the growth of Apc-deleted organoids. To validate our findings in a human setting, we used a panel of six patient-derived CRC organoids. All five APC-mutated organoids showed a reduction in viability after eIF2B5 knockdown, whereas one APC wild-type organoid did not (Extended Data 6e,f,g).

Since a complete Eif2b5 knockout is embryonically lethal [26], we characterized mice, in which one Eif2b5 allele has been disrupted by integration of a gene-trap vector generating Eif2b5^{+/tm1a(EUCOMM)Wtsi} mice, hereafter designated Eif2b5^{+/−} (Extended Data 7a). Eif2b5^{+/−} mice were born viable, at normal Mendelian ratios, were phenotypically indistinguishable from their Eif2b5^{+/+} littermates and displayed normal intestinal tissue architecture with no changes in cell size, survival, proliferation or differentiation (Extended Data 7b). Relative to wild-type littermates, Eif2b5^{+/−} mice displayed an approximately 50% reduction in eIF2B5 protein levels in all analyzed organs as well as in intestinal epithelial extracts (Fig. 6a and Extended Data 7c). These findings demonstrate that a 50% reduction in eIF2B5 is compatible with normal organismal development and physiology.

To determine whether eIF2B5 levels are critical for colorectal tumour development driven by Apc loss, we used mice carrying the conditional knockout Apc^{E80s} allele alone or in combination with a conditional allele encoding oncogenic Kras^{G12D} (VillinCre^{ER} Apc^{fl/fl} or VillinCre^{ER} Apc^{fl/fl} Kras^{G12D/+}) [9, 45-47]. Apc deletion and Kras mutation increased eIF2B5 protein levels more than two-fold in small intestinal epithelial extracts, similar to what we observed in human tumours (Fig. 6b). Histological staining confirmed reduced expression of eIF2B5 in intestinal epithelia of Eif2b5^{+/−} mice (Fig. 6c and Extended Data 7d). Levels of p-eIF2α were low in crypts in wild-type epithelia of small intestine and colon, whereas p-eIF2α was clearly detectable upon Apc deletion with or without activation of Kras^{G12D}, consistent with previous data that eIF2α phosphorylation increases during tumourigenesis (Fig. 6c and Extended Data 7d) [28]. In both genetic backgrounds, p-eIF2α staining intensity was reduced in Eif2b5^{+/−} mice relative to Eif2b5^{+/+} counterparts, supporting the tissue culture data (Fig. 6c
and Extended Data 7d). Loss of Apc led to massive tissue growth and a corresponding increase in BrdU incorporation in the intestine of Eif2b5^{+/−} mice, which were further enhanced upon simultaneous activation of oncogenic Kras^{G12D} (Fig. 6c,d and Extended Data 7d,e). These effects were significantly suppressed in the intestine of Eif2b5^{−/−} mice, both in the absence or presence of oncogenic Kras^{G12D} (Fig. 6c,d and Extended Data 7d,e). Cleaved caspase 3 increased robustly in VillinCre^{ER}Apc^{fl/fl}Eif2b5^{+/−} and VillinCre^{ER}Apc^{fl/fl}Kras^{G12D}Eif2b5^{+/−} compared to their Eif2b5^{+/+} counterparts (Fig. 6c,d and Extended Data 7d,e). Loss of Apc increases MYC levels which are further enhanced by introduction of a Kras^{G12D} allele in Eif2b5^{+/+} mice [9, 48]. While corresponding Eif2b5^{−/−} mice show a further increase of MYC-positive cells, this did not reach statistical significance (Fig. 6c,d and Extended Data 7d,e). Therefore, the basic mechanism we describe also operates in these cells; possibly, other ISR target proteins contribute to apoptosis induction aside from MYC.

To analyse the impact of eIF2B5 on long-term survival in an Apc-deficient mouse model, we crossed Apc^{Min/+} [49] mice to Eif2b5^{−/−} animals. Relative to Apc^{Min/+} littermates, Apc^{Min/+}Eif2b5^{−/−} animals had a significantly extended lifespan (median survival: 149 versus 127.5 days; Extended Data 8a,b). Importantly, organoids established from outgrowing tumours of both genotypes revealed no difference in p-eIF2α levels, protein synthesis rates and polysome/sub-polysome ratio (Extended Data 8c-f). Furthermore, Eif2b5^{−/−} tumours restored eIF2B5 expression to approximately 70% of wild-type levels, indicating that significant compensation had taken place during tumour evolution (Extended Data 8c,d).

Finally, acute deletion of both alleles of Eif2b5 in VillinCre^{ER}Apc^{fl/fl} mice decreased cell proliferation and concomitantly increased MYC expression (Extended Data 8g,h), confirming that targeting eIF2B5 can strongly affect tumour growth and raising the possibility that MYC translation is largely independent of eIF2B5 in vivo.
Since eIF2B5 cannot currently be targeted by small molecules, we tested whether inhibiting eIF2α phosphorylation can achieve similar therapeutic efficacy. Four kinases (EIF2AK1-4) phosphorylate eIF2α in response to distinct stresses [50]. Of these, HRI (heme-regulated inhibitor; EIF2AK1) restricts globin translation in erythrocytes upon heme depletion, and PERK (EIF2AK3) is activated in response to ER stress (see above). We therefore focused on PKR (EIF2AK2), activated by double-stranded RNA, and on GCN2 (EIF2AK4), activated by depletion of amino acids and uncharged tRNA pools [50]. Using antibodies that detect the phosphorylated, active forms, we found that GCN2 and, to a lesser degree, PKR are activated in APCdef compared to APCres cells (Fig. 7a). Intriguingly, MYC knockdown reduced the levels of phosphorylated PKR and essentially abolished GCN2 phosphorylation (Fig. 7a and Extended Data 9a).

Individual PKR or GCN2 knockdown suppressed the growth of APCdef cells to a variable extent (Extended Data 9b). However, genetic depletion of either GCN2 or PKR did not decrease p-eIF2α levels (Extended Data 9c), arguing that cells compensate for the lack of either kinase during genetic suppression. To test whether an acute inhibition of either kinase activity can mimic eIF2B5 depletion, we used small molecule inhibitors of GCN2 (A-92), PKR (C16), or PERK (GSK2606414, hereafter GSK'414) [50]. GCN2 or PKR inhibition suppressed the growth of APCdef cells, but had only minor effects on APCres cells (Fig. 7b). Both inhibitors induced apoptosis in a dose-dependent manner in APCdef cells, but to a much lesser degree in APCres cells, whereas inhibition of PERK had minor to no effects (Fig. 7c). In addition, A-92 reduced p-eIF2α levels, increased protein synthesis rates and induced MYC expression in APCdef cells, thereby phenocopying the effects of eIF2B5 depletion (Fig. 7d,e). These effects were less pronounced in response to PKR inhibition (Fig. 7f,g). Importantly, treatment of VillinCreERApcfl/fl or VillinCreERApcfl/flKrasG12D/+ organoids with GCN2 or PKR inhibitors suppressed organoid viability, whereas wild-type organoids were not affected (Fig. 8a,b). Similarly, eight APC-mutated patient-derived organoid lines were sensitive to GCN2 and PKR inhibition (Fig. 8c,d and Extended Data 10a). Furthermore, both inhibitors reduced p-
eIF2α levels in three human organoid lines, validating their on-target activity (Extended Data 10b). Finally, combining inhibitors with shRNAs that deplete the kinase not targeted by the inhibitor led to additive effects in apoptosis induction (Extended Data 10c). We concluded that primarily inhibition of GCN2, and to a lesser extent PKR, phenocopies eIF2B5 depletion and suppresses the growth of APC-mutated CRC.
Discussion

Loss of APC increases global translation rates, leading to a MYC-dependent transcriptional upregulation of multiple genes encoding proteins involved in mRNA translation. Using a newly-established APC-deficient CRC cell line that can be induced to re-express full-length APC, we uncovered a negative feedback loop which limits protein synthesis to prevent MYC-dependent apoptosis. We show that this is a vulnerability of APC-deficient CRC cells that can be targeted using small molecules.

Specifically, we found that the survival of APC-deficient cells strictly depends on physiological levels of the translation initiation factor eIF2B5. eIF2B5 depletion reduces the initiation of mRNA translation leading to an ISR that involves a stress-related translation program. In parallel, eIF2B5 depletion enhances MYC translation via a stress-responsive IRES in the 5'-UTR of the MYC mRNA. Induction of apoptosis upon eIF2B5 depletion depends on MYC upregulation; other proteins translated as part of the ISR may also contribute. In culture, eIF2B5 depletion induces apoptosis selectively in APC-deficient cells since loss of APC upregulates MYC mRNA levels [8]. Accordingly, Eif2b5+/- mice show a normal development but a strongly impaired hyperproliferation in response to Apc loss correlating with increased apoptosis.

The eIF2B complex binds tightly to eIF2 when eIF2α is phosphorylated [24], preventing dephosphorylation of eIF2α. In tumour cells, a significant fraction of eIF2α is phosphorylated and hence tightly bound to eIF2B. As a consequence, eIF2B5 depletion leads to increased rather than decreased, overall protein synthesis rates. This increase, in combination with a MYC-driven induction of genes encoding nucleotide biosynthesis enzymes, causes an imbalance in amino acid and nucleotide pools and strains cellular energy resources, leading to activation of AMPK upon eIF2B5 depletion in APC-deficient cells. Activation of AMPK is a critical mediator of MYC-driven apoptosis in epithelial cells [51, 52], suggesting that it contributes to MYC-dependent apoptosis upon eIF2B5 depletion.
Deregulated protein synthesis and the perturbation of amino acid pools activate the GCN2 kinase, which binds uncharged tRNAs in response to decreased amino acid levels and phosphorylates eIF2α [53]. Deregulation of MYC broadly stimulates RNA synthesis by all three RNA polymerases [17], suggesting that GCN2 provides a negative feedback signal that restricts MYC translation to couple MYC-driven RNA synthesis to the availability of amino acids (Fig. 8e). This notion is supported by previous observations implicating GCN2 in the control of MYC translation [54]. MYC also contributes to the activation of PKR and inhibition of PKR partially mimics the phenotype of GCN2 inhibition. Importantly, small molecule inhibitors of GCN2 and, to a lesser degree, of PKR phenocopies eIF2B5 depletion, arguing that inhibitors of either kinase are valid tools for the therapy of APC-deficient CRC. Since transcription of MYC is almost universally deregulated in human tumours, strategies that disrupt the negative MYC/GCN2/eIF2α feedback loop to induce apoptosis may be broadly applicable in human tumours.
Acknowledgements

This study was supported by grants from the Else-Kröner-Fresenius Foundation (2015_A57 to A.W.), the interdisciplinary center for clinical research of the Medical Faculty Würzburg (IZKF B-186 and B-335 to A.W.), European Research Council Grants “AuroMYC” (Advanced Grant to M.E.) and "ColonCan" (Starting Grant to O.J.S; 311301), a Cancer Research UK Grand Challenge grant (A25045 to O.J.S.), Cancer Research UK core funding (A17196 and A21139 to O.J.S) and the Deutsche Forschungsgemeinschaft (DFG) (WO 2108/1-1 to E.W., FOR2314 and KFO DFG EI 222/8-1 grants to M.E., FOR2314 and KFO DFG WI 5037/2-2 to A.W.) and the Wilhelm Sander-Stiftung (to M.E). S.W. is supported by the Comprehensive Cancer Center program of the German Cancer Aid (Deutsche Krebshilfe). Additional personal financial support was given by Mr. Kratz. The technical expertise of Sabine Roth, Barbara Bauer, Hecham Marouf and Cornelius Schneider is gratefully acknowledged. The invaluable support of the Histology Service, the Biological Services Unit, and all the core services at the Cancer Research UK Beatson Institute is greatly appreciated (Cancer Research UK core grant C596/A17196).

Author contributions

S.S., D.G., F.W.U., O.J.S, M.E. and A.W. conceived the project and directed experiments. Experiments were performed by S.S., D.G., F.W.U., S.D., M.P., N.M., S.B., C.F., F.C.W., C.P.A., A.B., R.J., C.S.-V., K.M., W.S., J.R.P.K., D.S., A.R. and A.W. Data were analysed and interpreted by S.S., D.G., F.W.U., S.D., M.P., C.P.A., F.E., W.S., E.W., A.S., A.R., O.J.S., M.E., A.W. Bioinformatical analysis was done by F.W.U., C.P.A., S.W. and F.E. Administrative, technical, or material support was given by M.E.D., S.B., F.C.W., G.V., N.V., C.O., E.W., D.S., C.-T.G., A.R., O.J.S. and M.E. S.S., D.G., E.W., C.-T.G., O.J.S, M.E. and A.W. wrote the manuscript. All authors reviewed and approved the manuscript.

Competing Interests
The authors declare no competing interests.
Figure legends

Figure 1: Restoration of APC expression suppresses translation and anchorage-independent growth.

(a) Immunoblot of SW480$^{\text{TetOnAPC}}$ cells after 48 h treatment with doxycycline (APC$^{\text{res}}$) or ethanol (APC$^{\text{def}}$), representative of three independent experiments with similar results.

(b) mRNA expression of APC in SW480$^{\text{TetOnAPC}}$ cells (96 h ethanol or doxycycline, respectively) analysed via qPCR (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(c) mRNA expression of WNT pathway target genes MYC, AXIN2, DKK1 in SW480$^{\text{TetOnAPC}}$ cells treated as described in (b) analysed via qPCR (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(d) RNA-sequencing followed by GSEA of gene expression changes in APC$^{\text{def}}$ and APC$^{\text{res}}$ cells (48 h ethanol and doxycycline, respectively). Enrichment plots of indicated gene sets are displayed (n = 3 biologically independent experiments). Calculation of the normalised enrichment score (NES) is based on a weighted running sum statistic and computed as part of the GSEA methodology [55]. A Kolmogorov-Smirnov test with 1,000 permutations was used to calculate P values that were then corrected for multiple testing using the Benjamini-Hochberg procedure (FDR).

(e) 35S-methionine labelling of APC$^{\text{def}}$ and APC$^{\text{res}}$ cells (72 h doxycycline). Incorporated radioactivity was measured by scintillation counting. Data show mean ± s.d. (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(f) Cumulative growth curve of APC$^{\text{def}}$ and APC$^{\text{res}}$ cells treated with doxycycline or ethanol, respectively. Data show mean ± s.d. (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(g) Anchorage-independent growth of APC$^{\text{def}}$ and APC$^{\text{res}}$ colonies. Colonies were grown over ten days, with fresh ethanol or doxycycline added every third day. Representative colonies are shown. Scale bars = 50 μM.
(h) Quantification of size of colonies from (g). Data show mean ± s.d. of all colonies counted
(n = 29 for APC^{def} and n = 25 for APC^{res}); unpaired, two-tailed t-test.

(i) Quantification of number of colonies from (g). Data show mean ± s.d. (n = 3 biologically
independent experiments); unpaired, two-tailed t-test.

Unprocessed immunoblots are shown in Source Data Figure 1.

Figure 2: APC-deficient CRC cells depend on physiological eIF2B5 levels.

(a) Plot documenting log_{2} fold change of all shRNAs included in the screen in APC^{res} versus
APC^{def} cells (median of n = 3 biologically independent experiments) with five shRNAs
targeting EIF2B5 shown in colour.

(b) Crystal violet staining of shCTR-transduced or eIF2B5-deplete APC^{def} and APC^{res} cells
(six days ethanol and doxycycline, respectively), representative of three biologically
independent experiments with similar results. Cells were lentivirally infected with shRNAs
targeting EIF2B5 or luciferase (shCTR).

(c) Relative number of shCTR-transduced or eIF2B5-depleted APC^{def} and APC^{res} cells
(seven days ethanol or doxycycline, respectively). Cell numbers were determined by staining
with Hoechst and high-content microscopy imaging. Data show mean ± s.d. (n = 3
biologically independent experiments); unpaired, two-tailed t-test.

(d) Immunoblot of shCTR-transduced or eIF2B5-depleted APC^{def} and APC^{res} cells (72 h
ethanol or doxycycline), representative of five independent experiments with similar results.

(e) EIF2B5 mRNA levels determined via qPCR from cells described in (d). Data show mean
± s.d. (n = 4 biologically independent experiments); unpaired, two-tailed t-test.

(f) Annexin V/PI FACS analysis of shCTR-transduced or eIF2B5-depleted APC^{def} and APC^{res}
cells (96 h ethanol or doxycycline, respectively). Data shown mean ± s.d. (n = 3 biologically
independent experiments); unpaired, two-tailed t-test.

(g) Immunoblot of shCTR-transduced or eIF2B5-depleted HT29 and HCT116 cells,
representative of two independent experiments with similar results. Cells were lentivirally
infected with shRNAs targeting EIF2B5 or luciferase (shCTR).
(h) Crystal violet staining of shCTR-transduced or eIF2B5-depleted HT29 and HCT116 cells, representative of two independent experiments with similar results.

(i) eIF2B5 staining of human CRC tumour tissue and normal mucosa (representative image of n = 10 biologically independent patients). Scale bars = 100 μm.

Unprocessed immunoblots are shown in Source Data Figure 2.

Figure 3: eIF2B5 controls translation initiation and limits global protein synthesis.

(a) Polysome profiling of shCTR-transduced and eIF2B5-depleted APC^{def} cells (72 h ethanol incubated with harringtonine for 0 s (left) and 180 s (right) before harvest. 40S, 60S, 80S monosomal and polysomal fractions are indicated. Data (0 s harringtonine) are representative of three independent experiments with similar results, 180 s harringtonine assay was performed once.

(b) 35S-methionine labelling of shCTR-transduced and eIF2B5-depleted APC^{def} and APC^{res} cells (72 h ethanol or doxycycline, respectively). Incorporated radioactivity was measured by scintillation counting. Data show mean ± s.d. (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(c) Total eIF2α and p-eIF2α S51 staining of human CRC tumour tissue and normal mucosa (representative image of n = 10 biologically independent patients). Scale bars = 100 μm.

(d) Immunoblot of shCTR-transduced and eIF2B5-depleted APC^{def} and APC^{res} cells (96 h ethanol or doxycycline, respectively), representative of three independent experiments with similar results. p-eIF2α S51 levels, relative to total eIF2α levels, are shown below the immunoblot.

(e) Immunoprecipitation of eIF2α in shCTR-transduced or eIF2B5-depleted APC^{def} and APC^{res} cells (72 h ethanol or doxycycline, respectively). As input, 3% of lysate was loaded. Proteins bound to eIF2α were detected by immunoblotting. Average levels of immunoprecipitated PP1 relative to immunoprecipitated eIF2α levels, normalised to input, are shown below (n = 2 biologically independent experiments). s.e. short exposition, l.e. long exposition.
(f) Immunoblot of shCTR-transduced or eIF2B5-depleted APCdef and APCres cells treated as described in (d), representative of three independent experiments with similar results.

(g) RNA-sequencing followed by GSEA of gene expression changes in shCTR-transduced or eIF2B5-depleted APCdef cells. Enrichment plot of a Reactome gene set representing an ATF4-dependent stress response is shown (n = 3 biologically independent experiments).

Statistical analysis was done as described in Fig. 1d.

(h) Immunoblot of shCTR-transduced or eIF2B5-depleted APCdef and APCres cells treated as described in (d), representative of three independent experiments with similar results.

Unprocessed immunoblots are shown in Source Data Figure 3.

Figure 4: Depletion of eIF2B5 causes MYC-driven apoptosis.

(a) Immunoblot of shCTR-transduced or eIF2B5-depleted APCdef and APCres cells (96 h ethanol or doxycycline, respectively), representative of three independent experiments with similar results.

(b) 35S-methionine pulse-labelling followed by immunoprecipitation with a MYC-specific antibody or control IgG in shCTR-transduced or eIF2B5-depleted APCdef and APCres cells (96 h ethanol or doxycycline, respectively). Protein synthesis inhibitor cycloheximide (CHX) was used as control. Radio-labelled MYC was detected by autoradiography. The arrow indicates the position of the specific MYC band. Average MYC levels are shown below the panel (n = 3 biologically independent experiments).

(c) Immunoblot of cymarine-treated (100 nM, 24 h) shCTR-transduced or eIF2B5-depleted APCdef and APCres cells (72 h ethanol or doxycycline, respectively), representative of two independent experiments with similar results. DMSO was used as solvent control.

(d) Immunoblot of shCTR-transduced and eIF2B5-depleted APCdef and APCres cells (96 h ethanol or doxycycline, respectively) upon MYC depletion, representative of two independent experiments with similar results. siRNA transfections were carried out using siCTR as non-targeting control or siMYC for 72 h.
(e) Annexin V/PI FACS of shCTR-transduced or eIF2B5-depleted APCdef and APCres cells treated as described in (d). Data show mean ± s.d. ($n = 3$ biologically independent experiments), unpaired, two-tailed t-test.

Unprocessed immunoblots are shown in Source Data Figure 4.

Figure 5: Depletion of eIF2B5 causes an imbalance in amino acid and nucleotide pools.

(a) Mass spectrometric analysis of intracellular alanine, aspartate and glutamate levels in shCTR-transduced or eIF2B5-depleted APCdef and APCres cells upon MYC depletion. siRNA transfections were carried out using siCTR as non-targeting control or siMYC for 72 h. Relative measured peak area normalised to protein concentration and total amino acid levels is shown. Peak area in APCdef cells transfected with siCTR was set to one. Data represent mean ± s.d. ($n = 6$ biologically independent experiments); unpaired, two-tailed t-test.

(b) MA plot of RNA-sequencing data of APCdef and APCres cells. Genes associated with inosine monophosphate (IMP)/purine biosynthesis (GO:0006188) are highlighted in red ($n = 3$ biologically independent experiments).

(c) Mass spectrometric analysis of intracellular nucleotide levels in shCTR-transduced and eIF2B5-depleted APCdef and APCres cells treated as described in (a). Relative measured peak area normalised to protein concentration is shown. Peak area in APCdef cells transfected with siCTR was set to one. Data represent mean ± s.d. ($n = 5$ biologically independent experiments); unpaired, two-tailed t-test.

(d) Immunoblot of shCTR-transduced or eIF2B5-depleted APCdef and APCres cells (96 h ethanol or doxycycline, respectively), representative of two independent experiments with similar results. As control for AMPK activation, cells were treated with AICAR (1 mM, 24 h).

Unprocessed immunoblots are shown in Source Data Figure 5.

Figure 6: Physiological eIF2B5 levels are required for tumourigenesis driven by loss of Apc.

(a) Immunoblot of small intestine (s.i.), colon, spleen and kidney from wild-type and $Eif2b5^{+/-}$ mice. Analysis was done once with one mouse per genotype.
(b) Immunoblot of intestinal epithelial extracts from mice of the indicated genotypes (left). Each lane represents one separate mouse of the relevant group. Immunoblot was performed once. Quantification of eIF2B5 protein levels, normalised to γ-tubulin (right). Data show mean ± s.d. (n = 3 biologically independent mice); one-tailed Mann-Whitney U test.

(c) Representative H&E-, eIF2B5-, p-eIF2α S51-, BrdU-, cleaved caspase 3-, and MYC-stained sections of small intestines from mice of the indicated genotypes. Mice were sampled four and three days post-induction, as described in Methods. Red bars indicate the length of the crypt (top panel). Scale bars = 100 μm.

(d) Graphs documenting the position of the highest BrdU-positive cell along the crypt-villus axis (top panel), the total number of cells staining positive for BrdU per half crypt (top middle panel), and the total number of cells per full crypt staining positive for cleaved caspase 3 (bottom middle panel) or MYC (bottom panel) in small intestines from mice of the indicated genotypes. Data were scored in 25 crypts per mouse in at least three biologically independent mice (n = 3 for highest BrdU-positive cell in wild-type and Eif2b5⁺, n = 5 for highest BrdU-positive cell in VillinCre^{ER}Apc^{fl/fl}Eif2b5⁺, n = 5 for BrdU staining in VillinCre^{ER}Apc^{fl/fl}Eif2b5⁺ and VillinCre^{ER}Apc^{fl/fl}Kras^{G12D}/Eif2b5⁺, n = 5 for cleaved caspase 3 staining in VillinCre^{ER}Apc^{fl/fl}Eif2b5⁺ and VillinCre^{ER}Apc^{fl/fl}Eif2b5⁺ mice, n = 6 for all other stainings and genotypes). Data show mean ± s.e.m.; one-tailed Mann-Whitney U.

Unprocessed immunoblots are shown in Source Data Figure 6.

Figure 7: Inhibition of PKR and GCN2 phenocopies eIF2B5 knockdown.

(a) Immunoblot of APC^{def} and APC^{res} cells upon siRNA-mediated knockdown of MYC (96 h ethanol or doxycycline, respectively), representative of two independent experiments with similar results. siRNA transfections were carried out using siCTR as non-targeting control or siMYC for 72 h.

(b) Crystal violet staining of APC^{def} and APC^{res} cells (seven days ethanol or doxycycline, respectively) in the presence of the following eIF2α kinase inhibitors for 96 h: A-92 (GCN2...
inhibitor), C16 (PKR inhibitor), GSK2606414 (PERK inhibitor, designated GSK414), representative of three independent experiments with similar results. DMSO was used as solvent control.

(c) Annexin V/PI FACS analysis of APC_{def} and APC_{res} cells (five days ethanol or doxycycline, respectively) treated with DMSO or inhibitors of GCN2 (A-92), PKR (C16), or PERK (GSK414) for 48 h at the indicated concentrations. Data show mean ± s.d. (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(d) Immunoblot of APC_{def} and APC_{res} cells (72 h ethanol or doxycycline, respectively) after DMSO or A-92 treatment (2 h), representative of two independent experiments with similar results. p-eIF2α S51 levels, relative to total eIF2α levels, are shown below the immunoblot.

(e) 35S-methionine labelling of APC_{def} and APC_{res} cells (96 h ethanol or doxycycline, respectively) treated with DMSO or GCN2 inhibitor A-92 for 48 h. Incorporated radioactivity was measured by scintillation counting. Data show mean ± s.e.m. (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

(f) Immunoblots of APC_{def} and APC_{res} cells (72 h ethanol or doxycycline, respectively) after DMSO or C16 treatment (2 h), representative of two independent experiments with similar results. p-eIF2α S51 levels, relative to total eIF2α levels, are shown below the immunoblot.

(g) 35S-methionine labelling of APC_{def} and APC_{res} cells (96 h ethanol or doxycycline, respectively) treated with DMSO or PKR inhibitor C16 for 48 h. Incorporated radioactivity was measured by scintillation counting. Data show mean ± s.e.m. (n = 3 biologically independent experiments); unpaired, two-tailed t-test.

Unprocessed immunoblots are shown in Source Data Figure 7.

Figure 8: Targeting PKR and GCN2 activity opens a therapeutic window in APC-loss driven CRC.

(a) Growth of murine organoids upon GCN2, PKR or PERK inhibition. Wild-type, VillinCre^{ER}Apc^{fl/fl} or VillinCre^{ER}Apc^{fl/fl}Kras^{G12D/+} organoids were grown for 72 h, then treated
with A-92, C16 or GSK'414 for 72 h. DMSO was used as solvent control. Representative pictures of one organoid line of each genotype. Scale bars = 200 μM.

(b) Viability of organoids treated as described in (a) assessed using CellTiter Blue assay. Data show mean of at least four technical replicates (black dots) of one line each, representative of two biologically independent organoid lines per genotype and experiments with similar results.

(c) Growth of one patient-derived organoid line treated with GCN2 (A-92) or PKR (C16) inhibitors. T4 organoid line was grown for two days, and then treated with DMSO, A-92 or C16 for 96 h at the indicated concentrations. Representative pictures from one experiment are shown. Scale bars = 200 μM.

(d) Quantification of viability of eight patient-derived CRC organoid lines assessed by CellTiter Blue assay. Organoids were treated as described in (c). Data show mean ± s.e.m (n = 8 independent organoid lines; T1, T2, T3, T4, T5, T11, T13, T15); unpaired, two-tailed t-test.

(e) Model explaining our findings. A MYC/GCN2/Elf2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in APC-deficient cells. In APC-proficient cells, transcription of the MYC gene is strongly suppressed, hence the dependence on this negative feedback loop is not shown.
References

1. Truitt, M.L., et al., Differential Requirements for eIF4E Dose in Normal Development and Cancer. Cell, 2015. 162(1): p. 59-71.
2. Jackson, R.J., C.U. Hellen, and T.V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol, 2010. 11(2): p. 113-27.
3. Pakos-Zebrucka, K., et al., The integrated stress response. EMBO Rep, 2016. 17(10): p. 1374-1395.
4. Jennings, M.D., et al., Fail-safe control of translation initiation by dissociation of eIF2alpha phosphorylated ternary complexes. Elife, 2017.
5. Kenner, L.R., et al., eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science, 2019. 364(6439): p. 491-495.
6. Adomavicius, T., et al., The structural basis of translational control by eIF2 phosphorylation. Nat Commun, 2019. 10(1): p. 2136.
7. CancerGenomeAtlasNetwork, Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7.
8. van de Wetering, M., et al., The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 2002. 111(2): p. 241-50.
9. Sansom, O.J., et al., Myc deletion rescues Apc deficiency in the small intestine. Nature, 2007. 446(7136): p. 976-5.
10. Dow, L.E., et al., Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer. Cell, 2015. 161(7): p. 1539-1552.
11. Faller, W.J., et al., mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 2015. 517(7535): p. 497-500.
12. Truitt, M.L. and D. Ruggero, New frontiers in translational control of the cancer genome. Nat Rev Cancer, 2017. 17(5): p. 332.
13. Truitt, M.L. and D. Ruggero, New frontiers in translational control of the cancer genome. Nat Rev Cancer, 2016. 16(5): p. 288-304.
14. Barna, M., et al., Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature, 2008. 456(7224): p. 971-5.
15. Thoreen, C.C., et al., A unifying model for mTORC1-mediated regulation of mRNA translation. Nature, 2012. 485(7396): p. 109-13.
16. Wiegering, A., et al., Targeting Translation Initiation Bypasses Signaling Crosstalk Mechanisms That Maintain High MYC Levels in Colorectal Cancer. Cancer Discov, 2015. 5(7): p. 768-81.
17. Dang, C.V., MYC on the path to cancer. Cell, 2012. 149(1): p. 22-35.
18. Sansom, O.J., et al., Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev, 2004. 18(12): p. 1385-90.
19. Willert, J., et al., A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol, 2002. 2: p. 8.
20. Bild, A.H., et al., Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006. 439(7074): p. 353-7.
21. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
22. Faux, M.C., et al., Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J Cell Sci, 2004. 117(Pt 3): p. 427-39.
23. Rosenbluh, J., et al., beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell, 2012. 151(7): p. 1457-73.
24. Jennings, M.D. and G.D. Pavitt, A new function and complexity for protein translation initiation factor eIF2B. Cell Cycle, 2014. 13(17): p. 2660-5.
25. Pavitt, G.D., Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. Wiley Interdiscip Rev RNA, 2018: p. e1491.
26. Hart, T., et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015. 163(6): p. 1515-26.
27. Fresno, M., A. Jimenez, and D. Vazquez, *Inhibition of translation in eukaryotic systems by harringtonine*. Eur J Biochem, 1977. 72(2): p. 323-30.
28. Lobo, M.V., et al., *Levels, phosphorylation status and cellular localization of translational factor eIF2 in gastrointestinal carcinomas*. Histochem J, 2000. 32(3): p. 139-50.
29. Crouch, D. and B. Safer, *The association of eIF-2 with Met-tRNAi or eIF-2B alters the specificity of eIF-2 phosphatase*. J Biol Chem, 1984. 259(16): p. 10363-8.
30. Ingolia, N.T., et al., *The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments*. Nat Protoc, 2012. 7(8): p. 1534-50.
31. Crouch, D. and B. Safer, *Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation*. Genome Biol, 2014. 15(10): p. 476.
32. Hinnebusch, A.G., *Translational regulation of GCN4 and the general amino acid control of yeast*. Annu Rev Microbiol, 2005. 59: p. 407-50.
33. Gardner, B.M., et al., *Endoplasmic reticulum stress sensing in the unfolded protein response*. Cold Spring Harb Perspect Biol, 2013. 5(3): p. a013169.
34. Hetz, C., E. Chevet, and S.A. Oakes, *Proteostasis control by the unfolded protein response*. Nat Cell Biol, 2015. 17(7): p. 829-38.
35. Jiang, H.Y., et al., *Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response*. Mol Cell Biol, 2004. 24(3): p. 1365-77.
36. Zinszner, H., et al., *CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum*. Genes Dev, 1998. 12(7): p. 982-95.
37. Murphy, D.J., et al., *Distinct thresholds govern Myc's biological output in vivo*. Cancer Cell, 2008. 14(6): p. 447-57.
38. Shi, Y., et al., *Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress*. Oncogene, 2016. 35(8): p. 1015-24.
39. Stoneley, M., et al., *c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis*. Mol Cell Biol, 2000. 20(4): p. 1162-9.
40. Didiot, M.C., et al., *Identification of cardiac glycoside molecules as inhibitors of c-Myc IRES-mediated translation*. J Biomol Screen, 2013. 18(4): p. 407-19.
41. Berg, J.M., J.L. Tymoczko, and L. Stryer, *Biochemistry*. Sixth ed. ed. 2007, New York: W. H. Freeman and company. 1 vol. (pagination multiple).
42. Zuber, J., et al., *RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia*. Nature, 2011. 478(7370): p. 524-8.
43. van de Wetering, M., et al., *Prospective derivation of a living organoid biobank of colorectal cancer patients*. Cell, 2015. 161(4): p. 933-45.
44. Sato, T., et al., *Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche*. Nature, 2009. 459(7244): p. 262-5.
45. el Marjou, F., et al., *Tissue-specific and inducible Cre-mediated recombination in the gut epithelium*. Genesis, 2004. 39(3): p. 186-93.
46. Shibata, H., et al., *Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene*. Science, 1997. 278(5335): p. 120-3.
47. Jackson, E.L., et al., *Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras*. Genes Dev, 2001. 15(24): p. 3243-8.
48. Adhikary, S. and M. Eilers, *Transcriptional regulation and transformation by Myc proteins*. Nat Rev Mol Cell Biol, 2005. 6(8): p. 635-45.
49. Su, L.K., et al., *Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene*. Science, 1992. 256(5057): p. 668-70.
50. Donnelly, N., et al., *The eIF2alpha kinases: their structures and functions*. Cell Mol Life Sci, 2013. 70(19): p. 3493-511.
51. Haikala, H.M., et al., *Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy*. Nat Commun, 2019. 10(1): p. 620.
52. Nieminen, A.I., et al., *Myt-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis*. Proc Natl Acad Sci U S A, 2013. 110(20): p. E1839-48.
53. Castilho, B.A., et al., *Keeping the eIF2 alpha kinase Gcn2 in check*. Biochim Biophys Acta, 2014. 1843(9): p. 1948-68.
54. Yue, M., et al., Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis. Cell Rep, 2017. 21(13): p. 3819-3832.
55. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50.
Figure 1

a Colony number

kDa	APC^{def}	APC^{res}
268	APC	β-catenin
100	β-actin	MYC
55		
40		

b Relative mRNA expression

- MYC
- DKK1
- AXIN2

c Relative mRNA expression

- MYC
- AXIN2
- DKK1

d Enrichment score

- Hallmark: MYC Targets V1
- NES: -2.31
 - FDR < 1.0e-4
- Reactome: Translation
- NES: -1.75
 - FDR 7.0e-2

e Relative 35S-Met incorporation

f Cells x 10^7

g Colony number

- APC^{def}
- APC^{res}

h Area x 10^3 [arbitr. units]

- APC^{def}
- APC^{res}

i Enrichment score

- NES: -1.75
- FDR 7.0e-2

Schmidt et al.
Figure 2

Panel a:
- Scatter plot showing the relationship between APCdef and APCres for shRNA knockdown of EIF2B5.
- The x-axis represents the median log\textsubscript{2}FC of APCdef, and the y-axis represents the median log\textsubscript{2}FC of APCres.
- The graph includes a legend indicating the color-coding for different shRNAs (1-5) and a gradient bar for the shRNA intensities.

Panel b:
- Images showing the cell culture results for different conditions:
 - APCdef and APCres cells
 - Images labeled with shCTR, shEIF2B5 #1, #2, #3, #4, #5

Panel c:
- Bar graph illustrating the relative cell number for APCdef and APCres conditions.
- Comparison between shCTR and shEIF2B5 #3 with significance levels:
 - P = 9.0e-4
 - P = 4.8e-1
 - P = 1.4e-1

Panel d:
- Western blot images showing expression of eIF2B5 and Vinculin for APCdef and APCres conditions.
- Marked kDa bands at 100 and 130.

Panel e:
- Bar graph showing relative eIF2B5 mRNA expression for different conditions.
- Comparison between shCTR and shEIF2B5 #3 with significance levels:
 - P = 5.9e-3
 - P = 1.8e-4
 - P = 1.5e-6

Panel f:
- Bar graph illustrating annexin V/PI-positive cell percentage for different conditions.
- Comparison between shCTR and shEIF2B5 #3 with significance levels:
 - P = 7.4e-3
 - P = 3.4e-2
 - P = 1.7e-1

Panel g:
- Western blot images showing expression of eIF2B5 and Vinculin for HT29 and HCT116 cell lines.
- Marked kDa bands at 100 and 130.

Panel h:
- Images showing cell culture results for different conditions:
 - HT29 and HCT116 cells
 - Images labeled with shCTR, shEIF2B5 #3

Panel i:
- Immunohistochemistry images illustrating eIF2B5 expression in Mucosa and Tumor regions.
- Scale bar indicated for magnification.
Figure 4

Schmidt et al.

(a) APCdef APCres

(b) IP Ig IP M C

(c) APCdef APCres

(d) siCTR si

(e) Annexin V/PI-pos. cells [%]

P = 0.035 P = 0.273 P = 0.118 P = 0.343
Figure 5

Schmidt et al.

(a) Normalised amino acid peak area

(b) Regulation: \(\frac{A_{P}^{def}}{A_{P}^{res}} \) vs expression [log2CPM]

(c) Normalised peak area

(d) Mass spectrometry analysis

- Protein kinase A (PKA)
- AMP-activated protein kinase (AMPK)
- p-AMP T172
- \(\beta \)-actin
Figure 6

(a) Western blot analysis of eIF2B5 and γ-tubulin in different tissues: s.i., colon, liver, spleen, kidney.

(b) Comparison of eIF2B5 levels in R and R fl/fl mice across different tissues: E25 and E25−/−.

(c) Immunohistochemical staining of ild-t pe, E25, elf2, S51, Brd, eIF2B5, and MC-positive cells in different tissues: E25 and E25−/−.

(d) Quantification of Brd-positive cells along the villus axis and Cleaved caspase 3-positive cells in different tissues: E25 and E25−/−.
Figure 8

(a) VillinCreER Apc^{fl/fl} and Apc^{fl/fl} Kras^{G12D/+} cell viability assay.

(b) Graph showing relative viability of wild-type, VillinCreER Apc^{fl/fl}, and VillinCreER Apc^{fl/fl} Kras^{G12D/+} cells treated with various compounds.

(c) Table showing concentrations of A-92 and C16.

(d) Graph showing relative viability of T4-treated cells with different concentrations of A-92 and C16.

(e) Schematic diagram illustrating the pathways of MYC transcription and translation in APC-deficient cells.
