Clinical applications of gamma delta T cells with multivalent immunity

Drew C. Deniger¹, Judy S. Moyes² and Laurence J. N. Cooper²,³ *

¹ Surgery Branch, National Cancer Institute, Bethesda, MD, USA
² Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
³ The University of Texas Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, Houston, TX, USA

Keywords: cancer, immunotherapy, γδ T cells, adoptive T-cell therapy, T-cell receptor, allogeneic transplantation, chimeric antigen receptors, artificial APC

INTRODUCTION

γδ T cells possess a combination of innate and adaptive immune cell qualities rendering them attractive for immunotherapy (1–3). They can produce inflammatory cytokines, directly lyse infected or malignant cells, and establish a memory response to attack pathogens upon re-exposure. γδ T cells are defined by expression of γ and δ heterodimer of T cell receptor (TCR) chains (TCRγδ/TCRαβ) that directs intracellular signaling through associated CD3 complexes (4). The γδ T-cell lineage (1–5% of circulating T cells) can be contrasted to the more prevalent αβ T cell lineage (~90%) in peripheral blood, which expresses TCRα/TCRβ heterodimers and also signals through associated CD3 complexes (5, 6). CD4 and CD8 co-receptors on αβ T cells assist binding of TCRαβ chains to the major histocompatibility complex (MHC) presenting processed peptides (7–9). In contrast, TCRγδ directly binds to an antigen’s superstructure independent of the MHC/peptide complexes and, as a result, CD4 and CD8 are uncommon on γδ T cells (10, 11). Given that antigen recognition is achieved outside of MHC/peptide-restriction, γδ T cells have predictable immune effector functions mediated through their TCR and have potential use as universal (“off-the-shelf”) allogeneic T-cell therapies (12).

Functional responses by γδ T cells can be stratified by the variable (V) region of the TCRδ chain. In humans, the TCRδ locus (TRD) lies within the TCRα locus (TRA). Three unique Vδ alleles, TRDV1, TRDV2, and TRDV3, code for TCRδ1, TCRδ2, and TCRδ3, respectively. Additionally, shared Vδ and Vα variable regions exist in TRDV4/TRAV14, TRDV5/TRAV29, TRDV6/TRAV23, TRDV7/TRAV36, and TRDV8/TRAV38-2 loci. Recombination of these shared Vδ alleles with a TRα junction region (TRAJ) results in TCRα14, TCRα29, TCRα23, TCRα36, TCRα52, and TCRα53, respectively.

Abbreviations: 2M3B1PP, 2-methyl-3-butenyl-1-phosphonate; AML, acute myeloid leukemia; BrHPP, bromohydrin pyrophosphate; CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; EOC, epithelial ovarian cancer; FCL, follicle center lymphoma; GI-cancer, cancers from the gastrointestinal tract; HIV, human immunodeficiency virus; HRPC, hormone-refractory prostate cancer; IC, immunocytonia; MM, multiple myeloma; MZL, mantle zone lymphoma; N/D, not determined; NHL, T-cell non-Hodgkin lymphoma; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; TBI, total body irradiation; T-SPL, secondary plasma cell leukemia; Zol, zolezolid acid.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 03 September 2014 | Accepted: 23 November 2014 | Published online: 11 December 2014

Copyright © 2014 Deniger, Moyes and Cooper. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
and TCRα38-2, respectively, but recombination of these shared V alleles with TRD junction (TRDJ) and diversity (TRDD) regions results in TCRα4, TCRβ5, TCRγ6, TCRδ7, and TCR88, respectively (13). Expression of TCRγδ heterodimers on the T-cell surface in the thymus inhibits recombination of TCRδ-chain locus during the CD4^negCD8^neg stage thereby committing the T cell to the γδ T-cell lineage (14). This double negative status is typically maintained upon exit from the thymus, most likely because co-receptors are dispensable for functional TCRγδ binding to antigens (15). However, the thymus is not required to complete all γδ T-cell development, as many γδ T cells directly take up residence in peripheral tissues following exit from the bone marrow and exhibit immediate effector functions against pathogens (16). Thymus-independent “resident” γδ T cells can be found in the mucosa, tongue, vagina, intestine, lung, liver, and skin and can comprise up to 50% of the T-cell populations in intestinal epithelial lymphocytes (17, 18). In contrast, circulating γδ T cells can be found in the blood and lymphoid organs, and are dominated by γδ T cells preferentially expressing TCRγδ2 (commonly referred to as V82 cells). Indeed, γδ T cells expressing the TCRδ1 isotype (commonly referred to as V81 cells) are frequently found within tissues (19, 20). V82 cells have preferred pairing with TCRγ9 (Vγ9Vδ2 cells), but broad γ-chain pairing is observed in V81 cells and V81^HSVδ2^HSV^neg^ cells, a generic grouping of all other non-V81/V82 T cells (12, 19). Therefore, γδ T cells are distributed across an array of anatomical locations with a range of TCRγδ variable region expression.

Human TCRγδ ligands are MHC/peptide complex-independent and are therefore conserved amongst unrelated individuals. Most of the known human ligands are specific for TCRδ1 or TCRδ2. TCRγ1/TCRδ1 (alternatively termed Vγ1Vδ1) heterodimers have specificity for MHC Class-I chain-related A (MICA) (21, 22), a molecule participating in evasion of immune surveillance following viral infection and expressed on tumor cells as it is involved in the cellular stress response (23). MICA is also one of the ligands for NKG2D, which is expressed on γδ T cells, αβ T cells, and natural killer (NK) cells (23, 24). Both Vγ1Vδ1 and Vγ2Vδ1 recognize non-polymorphic MHC molecule CD1c (25), and Vγ5Vδ1 is a receptor for α-galactosylceramidase-CD1d complexes commonly described in the activation of natural killer T (NKT) cells which, like γδ T cells, have both innate and adaptive immune functions and recognize conserved ligands amongst unrelated individuals (26, 27). γδ T cells can have specificity for virus as cytomegalovirus (CMV)-reactive Vγ8Vδ1 cells have been isolated from umbilical cord blood from infected newborns (28). V81 cells have also been associated with immunity to human immunodeficiency virus (HIV), but the precise HIV ligands for TCRδ1 have not been determined (29). Bacterial alkylamines and Listeria monocytogenes are recognized by V82 cells when paired with Vγ2 (30–32). Vγ9Vδ2 cells are the most extensively studied sub-group of human γδ T cells and their ligands include phosphoantigens [isopentenyl pyrophosphate (IPP)], F1-ATPase expressed on the cell surface, apolipoprotein A-I, and Mycobacterium tuberculosis (33–37). Moreover, Vγ9Vδ2 cells controlled and prevented lethal Epstein–Barr virus (EBV)-transformed leukemia xenografts in immunocompromised mice (4), and in vitro and in vivo data suggested that V81 cells are also specific for EBV (38, 39). In contrast to V81 and V82 cells, very little is known about human γδ T cells expressing other TCRγδ alleles except for indirect evidence of V83 cell’s immunity against CMV and HIV (40, 41). Given the multivalent nature of γδ T cells, harnessing γδ T cells populations with polyclonal TCR repertoire is attractive for adoptive immunotherapy.

γδ T-CELL CLINICAL EXPERIENCE

Immunotherapy with γδ T cells requires their activation and expansion as they comprise only a small percentage of circulating T cells. Interleukin-2 (IL-2) and activating CD3 antibody (OKT3), commonly used for the propagation of αβ T cells directly from peripheral blood mononuclear cells (PBMC), do not reliably expand γδ T cells without further manipulation and so alternative approaches are needed. Aminobisphosphonates, e.g., Zoledronic Acid (Zol), used in the treatment of bone-related diseases, e.g., osteoporosis, resulted in in vivo propagation of γδ T cells, and the use of aminobisphosphonates has been subsequently translated into laboratory practice to grow γδ T cells ex vivo (Figure 1A) (42, 43). Aminobisphosphonates inhibit cholesterol synthesis and result in the accumulation of phosphoantigen intermediates in the mevalonate–CoA pathway, including IPP, a ligand for Vγ9Vδ2 (44). However, only the Vγ9Vδ2 T-cell subset is reactive to cells treated with phosphoantigens (45, 46). Synthetic phosphoantigens, e.g., bromohydrin pyrophosphate (BrHPP) (47) and 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP) (48), can mimic aminobisphosphonates and stimulate Vγ9Vδ2 T cells for proliferation.

These reagents have been transitioned to the clinic for investigational treatments of cancer and HIV (Table 1) (49, 50). Six trials have evaluated the ability of aminobisphosphonates or BrHPP to generate in vivo expansions of Vγ9Vδ2 T cells to fight leukemia/lymphoma (51, 52), melanoma (53), renal cell carcinoma (RCC) (54), hormone-refractory prostate cancer (HRPC) (55), breast cancer (56), and HIV (57). These trials established safety of large Vγ9Vδ2 T cell expansions in vivo and generated a total of nine objective responses (11.3%; N = 80) but no complete responses (CR) as anti-tumor therapies. Six clinical trials have used either Zol, BrHPP, or 2M3B1PP to expand autologous Vγ9Vδ2 T cells ex vivo and these cells were directly infused (three trials with added IL-2 infusion and three without) for treatment of RCC (57–59), non-small cell lung cancer (NSCLC) (60, 61), and colorectal cancer (CRC) (62). Direct infusion of Vγ9Vδ2 T cells was established as a safe regimen and a total of eight objective responses (11.3%; N = 71) were detected, including one CR (1.4%; N = 71) (62). Three trials have evaluated the combination of adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells followed by Zol administration to boost their in vivo proliferation. Multiple myeloma (63), RCC (64), and multiple metastatic tumors (melanoma, CRC, gastrointestinal tumors, ovarian cancer, breast cancer, cervical cancer, and bone cancer) (65) were treated with this combination, which was established to be safe, and four objective responses (13.8%; N = 29) were observed, two of which were CRs (6.9%; N = 29) treating intermediate-stage RCC (64) and breast cancer (65). Thus, adoptive transfer and in vivo expansions of Vγ9Vδ2 T cells are safe therapeutic modalities and can result in objective clinical responses in the treatment of cancer.
Allogeneic γδ T cells have also been infused but were part of heterogeneous cell populations (Table 1). Patients with acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) were treated with αβ T cell-depleted hematopoietic stem cell transplant (HSCT), which resulted in 100 objective responses (65%; N = 153) with 36 durable CRs (24%; N = 153) (66–69). These complete remissions could be directly correlated to the elevated persistence of donor-derived Vδ1 cells in the peripheral blood of the patients, suggesting that these cells were involved in long-term clearance of leukemia. Increases in peripheral Vδ1 cells have also been correlated with CMV re-activation in patients with leukemia following allogeneic HSCT (40, 70). Most recently, haploidentical PBMC were depleted of CD4+ and CD8+ cells using magnetic beads and were administered to patients with refractory hematological malignancies followed by Zol and IL-2 infusions (71). Three of the four patients treated experienced short-lived CRs (2, 5, and 8 months) and the other patient died of infection 6 weeks after treatment. Expansion of γδ T cells was observed the week after treatment suggesting that they may have directed the anti-tumor response. Currently, clinical trials of direct infusion of activated, homogenous populations of Vδ1 cells, or other non-γδVβ2 cells have yet to be undertaken but hold promise as future avenues of medical intervention.
Table 1 | Clinical responses from γδ T cells.

Year	Treatment	Disease (N)	Total (N)	OR (%)	CR (%)	Reference
1996	Allogeneic HSCT depleted of αβ T cells with TBI	ALL 74	43/74 (58%)	25/43 (58%)	(68)	
2003	Pamidronate and IL2	MM (8) 19	3/19 (16%)	0/19 (0%)	(51)	
2007	Zol vs. Zol and IL2	HRPC (18) 18	3/18 (17%)	0/18 (0%)	(54)	
2007	2M3B1PP-expanded autologous Vδ2 T cells and IL2	RCC (7) 7	3/7 (43%)	0/7 (0%)	(57)	
2007	Allogeneic HSCT depleted of γδ T cells	ALL (77) 153	100/153 (65%)	36/153 (24%)	(66)	
2008	BrHPP-expanded Vδ2 T cells and IL2	RCC (10) 10	0/10 (0%)	0/10 (0%)	(58)	
2009	Zol and IL2	HIV (10) 10	N/D	N/D	(56)	
2009	Zol-expanded Vγ9Vδ2 T cells, Zol, and IL2	MM (6) 6	0/6 (0%)	0/6 (0%)	(63)	
2010	Zol-expanded Vγ9Vδ2 T cells	NSCLC (10) 10	0/10 (0%)	0/10 (0%)	(60)	
2010	Zol and IL2	Breast cancer (10) 10	1/10 (10%)	0/10 (0%)	(55)	
2010	BrHPP-expanded Vδ2 T cells and IL2	RCC (18) 28	0/28 (0%)	0/28 (0%)	(59)	
2011	Zol-expanded Vγ9Vδ2 T cells	NSCLC (15) 15	0/10 (0%)	0/10 (0%)	(61)	
2011	BrHPP-expanded Vδ2 T cells, Zol, and IL2	RCC (11) 11	1/11 (9%)	1/11 (9%)	(64)	
2011	Zol and IL2	RCC (12) 12	0/12 (0%)	0/12 (0%)	(53)	
2011	Zol-expanded Vγ9Vδ2 T cells and Zol	Melanoma (7) 18	3/12 (25%)	1/12 (8%)	(65)	
2012	Zol and IL2	RCC (7) 21	2/21 (10%)	0/21 (0%)	(52)	
2013	Zol-expanded Vγ9Vδ2 T cells	CRC (6) 6	5/6 (83%)	1/6 (17%)	(62)	
2014	CD4/CD8-depleted haploidentical PBMC, Zol, and IL2	T-NHL (1) 4	3/4 (75%)	3/4 (75%)	(71)	

A survey was taken of clinical trials that reported the use of aminobisphosphonates, synthetic phosphoantigens, direct infusion of ex vivo expanded γδ T cells, combinations of aminobisphosphonates/synthetic phosphoantigens/ex vivo expanded γδ T cells, and allogeneic transplants containing γδ T cells. The year reported is the year of publication. The total number (N) of each disease treated and overall patients treated with each regimen are reported. Overall responses (OR) and complete responses (CR) from these reports are listed as numbers of patients responding over total patients with frequencies of response below. The OR was pooled partial and complete responses by RECIST (when applicable and reported) or by disease-free progression (when RECIST was not applicable or reported). References to the clinical trials are included in the far right column.
EX VIVO PROPAGATION OF NON-Vγ9Vδ2 γδ T CELLS

Populations of γδ T cells outside of the Vγ9Vδ2 subset have been grown with immobilized TCRγδ agonists. Plate-bound recombinant MICA and immobilized IL-2 were used to sustain the proliferation of γδ T-cell cultures ex vivo from epithelial ovarian cancer and CRC tumor infiltrating lymphocytes (TILs) and resulted in high frequencies of Vδ1 cells (Figure 1B) (72). In addition, plate-bound pan-TCRγδ-specific antibody and IL-2 led to proliferation of both Vδ2 and Vδ1 cells (Vδ2 >> Vδ1) from peripheral blood derived from both healthy donors and patients with lung cancer or lymphoma (Figure 1C, top) (73, 74). Similarly, OKT3 has been used in combination with IL-2 and IL-4 to stimulate CD4/CD8-depleted T cells from healthy peripheral blood, which resulted in expansion of Vδ2 and Vδ1 cells (Vδ2 > Vδ1), albeit with reduced cell numbers compared to the TCRγδ monoclonal antibody (mAb)-stimulated cells (Figure 1C, middle) (75). A more complex cocktail of cytokines [IL-2, IL-12, and IFN-γ (IFNγ)] has also been used with OKT3 and CD2-specific antibodies to expand γδ T cells, but the Vδ repertoires were not reported (Figure 1C, bottom) (76).

Transition of these immobilized antigens and antibodies into clinical manufacture will streamline the application of these expansion strategies for γδ T cells and could be the source of clinical trials with non-Vγ9Vδ2 cells.

Highly polyclonal γδ T cells have been generated through coculture of patient or healthy donor γδ T cells with irradiated artificial antigen presenting cells (aAPC), IL-2, and IL-21 (77–80). The aAPC (clone#4) are derived from the chronic myelogenous leukemia (CML) cell line K562 following genetic modification with T-cell co-stimulatory molecules (CD86 and CD137L), Fc receptors for antibody loading (introduced CD64 and endogenous CD32), antigens (CD19), and cytokines (a membrane-bound IL-15), and have been produced as a master cell bank (MCB) (81). This MCB is currently used in the production of αβ T cells for cancer treatment in clinical trials at MD Anderson (NCT01653717, NCT01619761, NCT00968760, and NCT01497184) (79, 82, 83). γ-irradiation of aAPC prior to co-culture with T cells subjects the aAPC to death (typically at or within 3 days) thereby reducing the risk for unintended transfer of this tumor cell line into recipients (83). Deniger et al. demonstrated that circulating γδ T cells, containing a polyclonal TCRγδ repertoire, could be isolated from healthy donor venipuncture or umbilical cord blood by “unlabeled/negative” magnetic bead selection and recursively stimulated with irradiated aAPC, IL-2, and IL-21 (Figure 1D, top). The aAPC-expanded γδ T cells proliferated to numbers sufficient for clinical use while maintaining the expression of most TRDV and TRGV alleles and demonstrating TCRδ surface expression of Vδ1 > Vδ1negVδ2neg > Vδ2 (77). These polyclonal γδ T-cell cultures displayed broad tumor reactivity as they were able to lyse leukemia, ovarian cancer, pancreatic cancer, and colon cancer cells. Separation of the polyclonal cultures by TCRδ surface expression showed that each T-cell subset had anti-tumor reactivity and that a polyclonal γδ T-cell population led to the superior survival of mice with established ovarian cancer xenografts. Propagation of Vδ1negVδ2neg cells had not been previously achieved and this was the first evidence of the functional activity of this γδ T-cell sub-population. In a similar study, Fisher et al. isolated polyclonal γδ T cells from PBMC of healthy donors or patients with neuroblastoma by first depleting monocytes followed by “positive/labeled” selection with anti-TCRγδ-hapten antibody and anti-hapten microbeads (Figure 1D, bottom) (79). This study made use of the Fc receptors on the aAPC surface to load anti-TCRγδ antibody where isolated γδ T cells were co-cultured with the antibody-loaded aAPC. These expanded γδ T cells expressed multiple TRDV and TRGV alleles with surface TCRδ expression of Vδ2 > Vδ1 > Vδ1negVδ2neg. Using this mode of expansion, Vδ1 and Vδ2 were mediators of antibody-independent (AIC) and antibody-dependent cellular cytotoxicity (ADCC), respectively, to neuroblastoma tumor cells (as predicted by whether or not they expressed Fc receptor CD16). aAPC-expanded polyclonal γδ T cells could be used for anti-tumor therapies because aAPC are currently available as a clinical reagent. However, human application of aAPC/mAb-expanded γδ T cells could depend on interest in the use of the current MCB of aAPC, generation of new MCB of aAPC at institutions where there are currently none, and production of γδ T cell agonist antibodies in good manufacturing practice (GMP) conditions. Clinical testing of these cells could potentially lead to more widespread acceptance and use of γδ T cells as adoptive cellular therapies.

Given that the aAPC can sustain the proliferation of non-Vγ9Vδ2 cells to large quantities, there is opportunity for clinical translation, laboratory testing of subsets to elucidate their functions, and correlative studies. A limiting factor in studying γδ T cells has been the lack of TCRδ and TCRγδ isotype-specific antibodies outside of specificity for TCRδ1, TCRδ2, TCRγ9, and TCRδ3 (where commercially available). Mice can now be immunized to generate mAb specific for desired TCRδ/γ isoforms where commercial and academic use of these detection antibodies can have tangible outcomes, including diagnostic and/or prognostic profiling of γδ T cells resident within tumors. γδ T-cell clones could be generated through co-culture of single γδ T cells with aAPC, and this can facilitate studies to determine Vδ/Vγ pairing, corresponding TCRγδ ligands, and pathogenic reactivity. The ligands on the K562-derived aAPC that TCRγδ binds are not currently known. Likely candidates include IPP and MICA/B for TCRδ and TCRδ3, respectively (22, 35). Elucidation of these interactions could assist attempts to tailor the design of the aAPC for total γδ T-cell expansion, propagation of a particular γδ T-cell lineage, or polarization toward a certain γδ T-cell phenotype (84). As an example, CD27neg and CD27+ γδ T cells are associated with IL17 and IFNγ production, respectively (85–87), leading to the conclusion that expression of CD70, the CD27 ligand, on aAPC could potentially polarize these T cells toward a desired cytokine output. Thus, aAPC could be an excellent source for the study of fundamental γδ T-cell immunobiology and could yield answers not currently accessible because of limited starting cell numbers and ineffective polyclonal expansion protocols.

GENETIC MODIFICATION OF γδ T CELLS FOR THERAPEUTIC USE

γδ T cells are also amenable to genetic modification allowing for the introduction of genes to improve their therapeutic function. For instance, re-directed specificity of T cells can also be accomplished through the introduction of recombinant TCRs with defined antigen specificity. The conventional thought is
that transfer of TCRα/TCRβ genes into γδ T cells or transfer of TCRγ/TCRδ genes into αβ T cells would not cause mis-pairing with the TCRα/TCRβ and TCRγ/TCRδ heterodimers, thereby mitigating the risk of generating inappropriate pairings such as TCRα/TCRδ, TCRα/TCRγ, TCRβ/TCRγ, or TCRγ/TCRδ heterodimers with unknown specificity (88). This mis-pairing hypothesis was modeled in mice with the ovalbumin-specific αβ TCR OT-I, which resulted in re-directed specificity of murine γδ T cells toward ovalbumin peptide, but whether or not the TCRs were actually mis-paired was not reported (89). Vγ2Vδ2 cells have been expanded with 2M3B1IP and infected with γ-retrovirus to transduce TCRβ chains with specificity toward MAGE-A4 peptide, but co-transduction with CD8 was required in order to transfer significant MHC Class-I-restricted recognition of MAGE-A4 peptide-pulsed tumor cells (90, 91). Similar MAGE-A4 peptide, but co-transduction with CD8 was required for them to react to antigen-appropriate tumor cells (92). In contrast to the above reports of introducing αβ TCRs into γδ T cells, the Vγ9Vδ2 TCR has been transferred into αβ T cells and rendered both CD4+ and CD8+ T cells reactive to multiple tumor cell lines (93). Chemotherapy (temozolomide)-resistant γδ T cells have been generated by lentiviral transduction of (6)-alkylguanine DNA alkyltransferase into Vγ9Vδ2 cells expanded on Zol (94). Chimeric antigen receptors (CARs) can be introduced into T cells and re-direct the T cell toward a specific antigen. CARs are formed by fusing a single chain antibody to one or more T-cell intracellular signaling domains, e.g., CD3ξ, CD28, and/or CD137 (95). The antibody confers specificity through its variable regions toward a particular antigen, e.g., CD19, GD2, HER2, etc., and CAR binding to the antigen transmits intracellular T-cell signals for antigen-dependent proliferation, cytokine production, and cytolyis (96, 97). Following expansion on Zol, Vγ9Vδ2 cells were efficiently transduced to express CD19+ and GD2-specific CARs with γ-retroviral vectors and displayed re-directed specificity toward CD19+ and GD2+ tumor targets, respectively (98). Zol and γ-retroviruses engineered to transduce CD19- and GD2-specific CARs are available for human application, but have not been combined in a clinical trial to date. Thus, subsets of γδ T cells are amenable to viral gene transfer to improve their therapeutic impact.

In contrast to γ-retroviruses and lentiviruses, which require cell division for efficient transduction, non-viral Sleeping Beauty (SB) transposition transfers genes into quiescent T cells and allows manipulation of cells that are difficult to culture ex vivo (99–102). SB transposase enzyme was originally derived from fish that were undergoing active transposition in their evolutionary maturation and was adapted for human application (103). In short, a DNA transposon with flanking inverted repeats and direct repeats is ligated into the human genome at TA dinucleotide repeats by the SB transposase enzyme (104). TA dinucleotide repeats are widely distributed in the human genome, yielding potential for random integration into the genome, and have been shown to be safe in regards to transgene insertion in pre-clinical studies (99, 101, 105). This is of particular importance in gene therapy as inappropriate integration at gene start sites or promoters, within exons, or even distal to genes within enhancers or repressors may cause cellular transformation. Lentiviruses and γ-retroviruses have higher efficiency in transgene delivery than SB, but these vectors are known to integrate near genes or within genes (97). Application of SB to human clinical-grade T cells has been reduced to practice as a two DNA plasmid system, where one plasmid contains the SB transposon with the transgene of interest, e.g., CAR, and the other plasmid encodes a hyperactive SB transposase (106). Electro-transfer of the DNA plasmids by nucleofection into circulating (quiescent) PBMC results in transient expression of SB transposase that then ligates the transposon into the genome using a "cut-and-paste" mechanism. As soon as the SB transposase mRNA is degraded translation of SB transposase protein is halted, thereby negating additional transposition events. T cells with stable CAR expression can be encouraged through the co-culture of T cells on irradiated aAPC that express antigen for the CAR (83). This process, originally developed for αβ T cells, has been adapted for expression of CAR in γδ T cells (78). Resting PBMCs were electroporated with CD19-specific CAR transposon and SB11 transposase plasmids and sorted the following day to deplete non-γδ T cells with magnetic beads from the transfected mixture. Isolated γδ T cells were reversively stimulated with CD19+ aAPC along with IL-2 and IL-21, which resulted in the outgrowth of CAR+ γδ T cells with a highly polyclonal TCRγδ repertoire. Endogenous leukemia reactivity by the aAPC-expanded γδ T cells was improved through expression of CD19-specific CAR rendering these T cells bi-specific through CAR and TCRγδ. SB transposon and transposase are available as clinical reagents; therefore, clinical trials can test the safety and efficacy of bi-specific CAR+ γδ T cells.

CONCLUDING REMARKS

Given that γδ T cells are unlikely to cause graft-versus-host disease (GVHD) because their TCR ligands (IPP, MICA, etc.) are not MHC-restricted, γδ T cells (with or without genetic modification) could be generated from healthy donors in a third party manufacturing facility and given in the allogeneic setting as an "off-the-shelf" therapeutic. Additionally, a "universal" bank of polyclonal γδ T cells could be established that was known to have high anti-tumor immunity or contain a particular set frequency of Vδ1, Vδ2, and Vδ116Vδ2268 populations to achieve superior efficacy (66). This could have specialized application in cases where T cells were difficult to manufacture, e.g., high tumor burden in blood or after extensive systemic (lymphodepleting) chemotherapy. Polyclonal γδ T cells could also be used as front-line therapy before addition of HSCT, CAR+ T cells, TILs, etc. in order to prime the tumor microenvironment for other adaptive immune cells with broader tumor specificity or to reveal neo-tumor antigens, including somatic non-synonymous mutations expressed only in the tumor (107–109). If immunity is restored in the recipients then the 3rd party γδ T-cell graft may be rejected, but there may still be a therapeutic window before this occurs. Both pro-tumor and anti-tumor effects of γδ T cells infiltrating the tumor microenvironment have been described (110, 111), and whether or not these cells could be useful for therapy could be delineated following expansion of γδ T cells from solid tumors on aAPC, which have been shown to expand TIL (αβ T cells) from metastatic melanoma (112). Tumor lysis by γδ T cells could lead to other resident cell types, e.g., NK cells, macrophages, αβ T cells, etc., to have renewed...
reactivity to the malignancy (113). Indeed, B-ALL cell lines coated with mAb were lysed by CD16 + V9V82 cells via ADCC, and subsequently the Vγ9Vδ2 had antigen presenting cell function to generate antigen-specific CD8 + T cell responses to known B-ALL peptides, e.g., PAX5 (114, 115). Unknown is whether γδ T cells will be subjected to inhibition by regulatory T cells or other immunosuppressive forces. Some γδ T cells have been reported to have immunosuppressive function, and it would be of interest to identify these cells and eliminate them from the adoptive T-cell product prior to infusion (116). In summary, administration of graded doses of autologous and allogeneic, even 3rd party, γδ T cells in humans have tested and will continue to evaluate the ability of these lymphocytes to home and recycle effector function of γδT cells will be subjected to inhibition by regulatory T cells or other immunosuppressive forces. Some γδ T cells have been reported to have immunosuppressive function, and it would be of interest to identify these cells and eliminate them from the adoptive T-cell product prior to infusion (116). In summary, administration of graded doses of autologous and allogeneic, even 3rd party, γδ T cells in humans have tested and will continue to evaluate the ability of these lymphocytes to home and recycle effector function of γδ T cells in humans have tested and will continue to evaluate the ability of these lymphocytes to home and recycle effector function in the tumor microenvironment. Given the development of aminobisphosphonates, synthetic phosphoantigens, immobilized antibody product prior to infusion (116). In summary, administration of graded doses of autologous and allogeneic, even 3rd party, γδ T cells in humans have tested and will continue to evaluate the ability of these lymphocytes to home and recycle effector function in the tumor microenvironment. Given the development of aminobisphosphonates, synthetic phosphoantigens, immobilized antibody.

REFERENCES

1. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T-cells to immunology. Nat Rev Immunol (2013) 13(2):88–100. doi:10.1038/nri3384
2. Kabelitz D, Gammal T cells to immunology. Nat Rev Immunol (2013) 13(2):88–100. doi:10.1038/nri3384
3. Hannani D, Ma Y, Yamazaki T, Dechanet-Merville J, Kroemer G, Zitvogel L. Harmsing gammal T cells in anticaner immunotherapy. Trends Immunol (2012) 33(5):199–206. doi:10.1016/j.it.2012.01.006
4. Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, et al. Targeted activation of human Vγ9Vδ2 T cells controls Epstein-Barr virus-induced B-cell lymphoproliferative disease. Cancer Cell (2014) 26(4):565–76. doi:10.1016/j.ccr.2014.07.026
5. Smith-Garvin JE, Karetzky GA, Jordan MS. T-cell activation. Annu Rev Immunol (2009) 27:591–619. doi:10.1146/annurev.immunol.021908.132706
6. Kalyan S, Kabelitz D. Defining the nature of human gammal T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol (2013) 10(1):21–9. doi:10.1038/cmi.2012.44
7. Koretzky GA. Multiple roles of CD4 and CD8 in T-cell activation. J Immunol (2010) 185(5):2643–4. doi:10.4049/jimmunol.1009076
8. Van Laethem F, Tikhonova AN, Singer A. MHC restriction is imposed on a diverse T-cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends Immunol (2012) 33(9):437–41. doi:10.1016/j.it.2012.05.006
9. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol (2002) 2(5):309–22. doi:10.1038/nri7978
10. Sato K, Ohtsuka K, Watanabe H, Asakura K, Abe T. Detailed characterization of gamma delta T cells within the organs in mice: classification into three groups. Immunology (1995) 88(3):380–7.
11. Kabelitz D, Kalyan S, Oberg IH, Wesch D. Human Vdelta2 versus non-Vdelta2 gammal T cells in antitumor immunity. Onc Immunol (2013) 2(3):23304. doi:10.4161/omi.23304
12. Kabelitz D, Wesch D, He W. Perspectives of gammal delta T cells in tumor immunology. Cancer Res (2007) 67(15):58–60. doi:10.1158/0008-5472.CAN-06-3069
13. Lefranc MP. Nomenclature of the human T-cell receptor genes. Curr Protoc Immunol (2001) Appendix 10. doi:10.1002/0471142735.imam0s40
14. Xiong N, Rault DH. Development and selection of gammal T cells. Immunol Rev (2007) 215:15–31. doi:10.1111/j.1600-6065.2006.00478.x
15. Hayday AC. Gammal T cells and the lymphoid stress-surveillance response. Immunology (2009) 31(2):184–96. doi:10.1111/j.1600-6065.2009.00806
16. Hao J, Wu X, Xia S, Li Z, Wen T, Zhao N, et al. Current progress in gammal T-cell biology. Cell Mol Immunol (2010) 7(6):409–13. doi:10.1038/cmi.2010.50
17. Ishikawa H, Naito T, Iwanaga T, Takahashi-Iwanaga H, Suematsu M, Hibi T, et al. Curricular vitae of intestinal intraepithelial T cells: their developmental and behavioral characteristics. Immunol Rev (2007) 215:154–65. doi:10.1111/j.1600-6065.2006.00474.x
18. Carding SR, Egan PJ. Gammal T cells: functional plasticity and heterogeneity. Nat Rev Immunol (2002) 2(5):336–45. doi:10.1038/nri7978
19. Bonneville M, O’Brien RL, Born WK. Gammal T-cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol (2010) 10(7):467–78. doi:10.1038/nri2781
20. Choodeczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epithelial gammal T-cell TCRRs. Nat Immunol (2012) 13(3):272–82. doi:10.1038/ni.2249
21. Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T, et al. Crystal structure of a gammal T-cell receptor specific for the human MHC class I homolog MICA. Proc Natl Acad Sci U S A (2011) 108(6):2414–9. doi:10.1073/pnas.1015433108
22. Li J, Cai L, He W. Distinct pattern of human Vdelta1 gammal T cells recognizing MICA. Cell Mol Immunol (2005) 2(4):253–8.
23. Bauer S, Groh V, Wu J, Steinele A, Philips JH, Lanier LL, et al. Activation of NK cells and T cells by NKGD2, a receptor for stress-inducible MICA. Science (2009) 298(5582):727–9. doi:10.1126/science.1155427
24. Wrede P, Shojaii H, Schittek B, Gieseler F, Wollenberg B, Kalhoff H, et al. Ilysis of a broad range of epithelial tumour cells by human gammal delta T cells: involvement of NKGD2 ligands and T-cell receptor- versus NKGD2-dependent recognition. Scand J Immunol (2007) 66(2–3):320–8. doi:10.1111/j.1365-3083.2007.01963.x
25. Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, et al. Self-recognition of CD1 by gammal/delta T-cell implications for innate immunity. J Exp Med (2000) 191(6):937–48. doi:10.1084/jem.191.6.937
26. Ulbrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, et al. CD1d-lipid antigen recognition by the gammal/delta TCR. Nat Immunol (2013) 14(11):1357–45. doi:10.1038/ni.2713
27. Paget C, Chow MT, Duret H, Mathurral S, Smyth MJ. Role of gammal T cells in alpha-galactosylceramide-mediated immunity. J Immunol (2012) 188(8):3928–39. doi:10.4049/jimmunol.1103582
28. Vermeulen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van Roysselle M, et al. Human cytomegalovirus elicits fetal gammal delta T-cell responses in utero. J Exp Med (2010) 207(4):807–17. doi:10.1084/jem.20090348
29. Wesch D, Hinz T, Kabelitz D. Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals. Int Immunol (1998) 10(8):1067–75.
Adoptive immunotherapy improves treatment of canine non-Hodgkin lymphoma post chemotherapy. *Sci Rep* (2012) 2:249. doi:10.1038/srep00249

Singh H, Figliola MJ, Dawson MJ, Olivesares S, Zhang L, Yang G, et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using sleeping beauty system and artificial antigen presenting cells. *PloS One* (2013) 8(5):e64138. doi:10.1371/journal.pone.0064138

Huls MH, Figliola MJ, Dawson MJ, Olivesares S, Kebreria P, Shapll EJ, et al. Clinical application of sleeping beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. *J Vis Exp* (2013) 72:e50070. doi:10.3791/50070

Rushworth D, Jena B, Olivesares S, Maiti S, Briggs N, Somanchi S, et al. Universal artificial antigen presenting cells to selectively propagate T cells expressing chimeric antigen receptor independent of specificity. *J Immunother* (2014) 37(4):204–203. doi:10.1097/CJIO.0000000000000332

Caccamo N, La Mendola C, Orlando V, Meraviglia S, Todaro M, Stassi G, et al. Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. *Blood* (2011) 118:129–38. doi:10.1182/blood-2011-01-331298

Debarros A, Chaves-Ferreira M, d'Orey F, Ribot JC, Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human gammadelta peripheral blood lymphocytes. *J Immunol* (2011) 81(1):195–201. doi:10.1074/jilip.2010040905

Ribot JC, deBarros A, Pang DJ, Neve JF, Peppazek V, Roberto SJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol (2009) 10(4):42–37. doi:10.1038/ni.1717

Heenksmker MH. T-cell receptor gene transfer for the treatment of leukemia and other tumors. *Haematologica* (2010) 95(1):15–9. doi:10.3324/haematol.2009.016022

den van der Vekten LT, Gecocis M, Swart E, Falkenburg BH, Schumacher TN, Heemskerkh MH. Alpha beta T-cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. *J Immunol* (2009) 82(1):164–70. doi:10.4049/jimmunol.82.1.164

Hiss A, Nishikawa H, Hiyamara M, Kitano S, Okamoto S, Chono H, et al. Rapid alphabeta TCR-mediated responses in gammadelta T cells transduced with cancer-specific TCR genes. *Gene Ther* (2009) 6(5):620–8. doi:10.1038/gt.2009.6

Muraiyama M, Tanaka Y, Yagi J, Uchiyama T, Ogasaw Karitumtumor activity and some immunological properties of gammadelta T-cells from patients with gastrointestinal carcinomas. *Anticancer Res* (2008) 28(3B):2921–31

den van der Vekten LT, Hagedoorn RS, van Loenen MM, Willemsen R, Falkenburg BH, Heemskerk MH. Alphabeta T-cell receptor engineered gammadelta T cells mediate effective anti-leukemic reactivity. *Cancer Res* (2006) 66(38):3311–7. doi:10.1158/0008-5472.CAN-05-4190

Marco-Malina V, Heijhuurs S, van Buuren M, Harkamp L, Strand S, Sebasteyn Z, et al. Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadelta T-cell receptor. *Blood* (2011) 118(1):50–9. doi:10.1182/blood-2010-12-325993

Deniger DC, Switzer K, Mi T, Maiti S, Hurton L, Singh H, et al. Bispecific T-cell therapies.

Diagram:

- **Diagram 1:** Overview of the Principles of Adoptive T Cell Cancer Therapy, showing the interactions between T cells, cancer cells, and artificial antigen-presenting cells.

- **Diagram 2:** Flowchart of the Adoptive T Cell Cancer Therapy Process, including stages such as T cell harvesting, ex vivo expansion, antigen recognition, and in vivo transfer.

- **Diagram 3:** Comparative Effectiveness of Different T Cell Therapies, highlighting the advantages and disadvantages of various strategies.

Table 1: Summary of Key Studies on Adoptive T Cell Cancer Therapy

Study	Summary	Methodology	Outcome
Study 1	Improved survival rates	Ex vivo expansion, artificial antigen-presenting cells	Significant improvement
Study 2	Enhanced tumor regression	CRT therapy combined with T cell therapy	Partial remission
Study 3	Reduced metastasis risk	Genetic modification of T cells	Complete response

Figure 1: Graph of T cell therapy outcomes over time, showing a steep increase in efficacy over 10 years.

Figure 2: Heatmap of T cell therapy success rates across various cancer types, with higher success rates observed in hematological malignancies.

Figure 3: Radar chart illustrating the variability of T cell therapy responses across different patient populations.
99. Hackett PB Jr, Aronovich EL, Hunter D, Urense M, Bell JB, Kass SJ, et al. Efficacy and safety of sleeping beauty transposon-mediated gene transfer in preclinical animal studies. Curr Gene Ther (2011) 11(5):341–9. doi:10.2174/156652311797415827

100. Hackett PB, Largaespada DA, Cooper LJ. A transposon and transposase system for human application. Mol Ther (2010) 18(4):674–83. doi:10.1038/mt.2010.2

101. Hackett PB, Largaespada DA, Switzer KC, Cooper LJ. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res (2013) 161(4):265–83. doi:10.1016/j.trsl.2012.12.005

102. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother (2013) 36(2):112–23. doi:10.1097/JIT.0b013e3182811ce9

103. Wadman SA, Clark KL, Hackett PB. Fishing for answers with transposons. Mar Biotechnol (NY) (2005) 7(3):135–41. doi:10.1007/s10126-004-0068-2

104. Liu G, Aronovich EL, Cui Z, Whitley CB, Hackett PB. Excision of sleeping beauty transposons: parameters and applications to gene therapy. J Gene Med (2004) 6(5):574–83. doi:10.1002/jgm.486

105. Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrog SC, Largaespada DA, et al. Target-site preferences of sleeping beauty transposons. J Mol Biol (2005) 346(1):161–73. doi:10.1016/j.jmb.2004.09.086

106. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, et al. Redirecting specificity of T-cell populations for CD19 using the sleeping beauty system. Cancer Res (2008) 68(8):2961–71. doi:10.1158/0008-5472.CAN-07-5600

107. Tran E, Rosenberg SA. T-cell therapy against cancer mutations. Oncotarget (2014) 5(13):4579–80.

108. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science (2014) 344(6184):641–5. doi:10.1126/science.1251102

109. Robbins PF, Lu YC, El-Gamil M, Li YF, Gros G, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med (2013) 19(6):747–52. doi:10.1038/nm.3161

110. Peng G, Wang HY, Peng W, Kinwa Y, Yoo KH, Wang RF. Tumor-infiltrating gamma/delta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity (2007) 27(2):334–48. doi:10.1016/j.immuni.2007.05.020

111. Raspollini MR, Castiglione F, Rossi Degl’innocenti D, Amunni G, Villanacci A, Garbini F, et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol (2005) 16(4):590–6. doi:10.1093/annonc/dmi112

112. Forget MA, Malu S, Liu H, Toth C, Maiti S, Kale C, et al. Activation and propagation of tumor-infiltrating lymphocytes on clinical-grade designer artificial antigen-presenting cells for adoptive immunotherapy of melanoma. J Immunother (2014) 37(9):448–60. doi:10.1097/JIT.0000000000000556

113. Anderson J, Gustafsson K, Himoudi N. Licensing of killer dendritic cells in mouse and human: functional similarities between IKDC and human blood gammmadelta T-lymphocytes. J Immunotoxical (2012) 9(3):259–66. doi:10.3109/154767691X.2012.685528

114. Himoudi N, Morgenstern DA, Yan M, Verner B, Saraiva L, Wu Y, et al. Human gammadelta T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J Immunol (2012) 188(4):1708–16. doi:10.4049/jimmunol.1102654

115. Anderson J, Gustafsson K, Himoudi N, Yan M, Henrijrans J. Licensing of gammmadeltaT cells for professional antigen presentation: a new role for antibodies in regulation of antitumor immune responses. Oncoimmunology (2012) 1(9):1652–4. doi:10.4161/onci.21971

116. Kang N, Tang L, Li X, Wu D, Li W, Chen X, et al. Identification and characterization of Foxp3(+) gammmadelta T cells in mouse and human. Immunol Lett (2009) 125(2):165–73. doi:10.1016/j.imlet.2009.06.005

Conflict of Interest Statement: Dr. Cooper founded and owns InCellerate, Inc. He has patents with Sangamo BioSciences with artificial nucleases. He consults with Targazine, Inc. (formerly American Stem cells, Inc.), GE Healthcare, Ferring Pharmaceuticals, Inc., and Bristol-Myers Squibb. He receives honoraria from Miltenyi Biotec. Other authors declare no other competing financial interests.

Received: 29 September 2014; accepted: 28 November 2014; published online: 11 December 2014.

Citation: Deniger DC, Moyes JS and Cooper LJN (2014) Clinical applications of gamma/delta T-cell therapies. Front. Immunol. 5:636. doi:10.3389/fimmu.2014.00636

This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology.

Copyright © 2014 Deniger, Moyes and Cooper. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.