Impact of preoperative muscle quality on postoperative severe complications after radical gastrectomy for gastric cancer patients

Ryota Matsui1,2, Noriyuki Inaki1,2, Toshikatsu Tsuji1

1Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
2Department of Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan

Correspondence
Noriyuki Inaki, Department of Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
Email: n.inaki@viola.ocn.ne.jp

Abstract

Background: Preoperative sarcopenia is an important risk factor for postoperative complications in patients with gastric cancer. However, the relationship between muscle quality and postoperative complications in patients with gastric cancer is inadequately studied. Therefore, we investigated the impact of preoperative muscle quality on severe postoperative complications after radical gastrectomy.

Methods: A total of 840 patients who underwent radical gastrectomy for p-stages I–III primary gastric cancer between April 2008 and June 2018 with preoperative computed tomography (CT) scans and body composition analysis were included. We measured intramuscular adipose tissue content (IMAC) as an indicator of muscle quality. A higher IMAC signified a poorer quality. All statistical analyses were performed with EZR, and a P-value < 0.05 was considered statistically significant.

Results: The low-IMAC and high-IMAC groups had 422 (50.2%) and 418 (49.8%) patients, respectively. The latter were older (P < 0.001), had higher body mass index (BMI) (P < 0.001), and higher rates of chronic kidney disease (CKD) (P = 0.002) and diabetes (P < 0.001). They had lower skeletal muscle indexes (SMI) (P = 0.011) and higher visceral fat areas (VFA) (P < 0.001). They also experienced more intraoperative blood loss (P < 0.001) and greater complications (P = 0.016). Multivariate analysis showed that high-IMAC was an independent risk factor for severe complications (odds ratio: 2.260, 95% confidence interval: 1.220-4.190, P = 0.010).

Conclusions: Poor preoperative muscle quality is an independent risk factor for severe postoperative complications after radical gastrectomy in patients with gastric cancer.

KEYWORDS

gastric cancer, intramuscular adipose tissue content, muscle quality, postoperative severe complication
1 | INTRODUCTION

In 2010 the European Working Group on Sarcopenia in Older People announced a consensus on the definition of sarcopenia as a syndrome characterized by the loss of skeletal muscle mass. Use of preoperative body composition analysis has increased and many studies report that loss of skeletal muscle mass appears to increase postoperative complications in patients with gastric cancer. Systematic reviews have also found reduced preoperative skeletal muscle mass to be an independent risk factor for postoperative complications in patients with gastric cancer. Although the reported prevalence of preoperative sarcopenia in patients with gastric cancer varies widely from 7% to 70%, body composition analysis is considered an important tool for predicting postoperative complications.

The European Working Group on Sarcopenia in Older People revised its guidelines in 2018 and included reduced skeletal muscle quality in addition to reduced quantity to confirm the diagnosis of sarcopenia. Recently, studies have been published linking poor skeletal muscle quality to postoperative complications in patients with gynecologic cancer, colorectal cancer, and hepatocellular carcinoma. The relationship between muscle quality and postoperative complications in patients with gastric cancer is inadequately studied. As muscle quality is thought to decrease in correlation with age, with the increasing number of elderly patients, there is a need to develop and refine tools to assess muscle quality.

Our objective was to study the impact of preoperative muscle quality on severe postoperative complications after radical gastrectomy in patients with gastric cancer. This is important as severe postoperative complications are known predictors of poor prognosis. Our hypothesis was that poor preoperative muscle quality increases severe postoperative complications in patients with gastric cancer.

2 | MATERIALS AND METHODS

2.1 | Study design

This was a retrospective study conducted at the Ishikawa Prefectural Central Hospital. Patients who underwent radical gastrectomy for p-stages I–III primary gastric cancer between April 2008 and June 2018 with preoperative computed tomography (CT) scans that allowed body composition analysis were included. We excluded patients with residual gastric cancer, cancers of other organs, performance status ≥2, preoperative gastrointestinal obstruction, patients who underwent different surgical procedures, patients who received neoadjuvant chemotherapy, and those with insufficient data.

2.2 | Data collection

Skeletal muscle quality, visceral fat mass, and skeletal muscle mass were measured on preoperative CT images using the graphic analysis software ZioStation (ZIOSOFT). For muscle quality, CT values (Hounsfield units: HUs) of the regions of interest were measured at the umbilical level, and the intramuscular adipose tissue content (IMAC) was calculated by dividing the CT value of the multifidus muscles by that of subcutaneous fat, as in previous studies. Visceral fat area (VFA), defined as HUs of −150 to −50, was measured at the umbilical level and skeletal muscle, defined as HUs of −29 to 150, at the level of the third lumbar vertebra. Skeletal muscle mass index (SMI) was calculated by dividing the cross-sectional muscle mass area by height in meters squared.

2.3 | Cut-off values of IMAC and SMI to define sarcopenia

Cut-off values for IMAC and SMI were estimated separately for men and women from the median. The cut-off value for IMAC was −0.430 for men, and −0.310 for women. Patients below the cut-off were categorized as low-IMAC, and patients above as high-IMAC. A higher IMAC indicated poorer muscle quality. The cut-off value for SMI was calculated as 43.08 cm²/m² for men and 33.73 cm²/m² for women. Similar to IMAC, patients below the cut-off were categorized as low-SMI, and patients above as high-SMI. In addition, we also evaluated previously reported cut-off values for SMI and IMAC to diagnose sarcopenia in patients with gastric cancer.

2.4 | Outcome

The primary outcome was Clavien-Dindo classification (CD) grade 3a or higher severe postoperative complications, and the secondary outcomes were operating time, intraoperative blood loss, length of postoperative hospital stay, total postoperative complications, and infectious complications. Postoperative complications were defined as CD grade 2 or higher complications that occurred within 30 postoperative days. The high- and low-IMAC groups were compared with regard to postoperative outcomes, and a multivariate analysis of risk factors was carried out for severe complications.

2.5 | Clinicopathological variables

The variables analyzed were sex, age, body mass index (BMI), surgical procedure, surgical approach, pathological stage, lymph node dissection, comorbidities, SMI, and VFA. Chronic kidney disease (CKD) was defined as an estimated glomerular filtration rate <60 mL/min/1.73 m², diabetes as either having a history of treatment or preoperative HbA1c ≥6.5%, chronic obstructive pulmonary disease as FEV1.0% <70% on spirometry, congestive heart failure as either having a history of treatment or ejection fraction <50% on the echocardiogram.
2.6 | Statistical analyses

Patient characteristics and postoperative outcomes between the high- and low-IMAC groups were compared using the Mann-Whitney U-test for continuous variables, and the chi-square test or Fisher's exact test for categorical variables. Logistic regression analysis was used for univariate analyses to identify the factors with \(P \)-values <0.05, on which multivariate analysis was performed and odds ratios (OR) were calculated. All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University), which is based on R (The R Foundation for Statistical Computing) and R commander,28 and a \(P \)-value < 0.05 was considered statistically significant.

3 | RESULTS

3.1 | Patient characteristics

A total of 840 eligible patients were enrolled. The cut-off values for diagnosing sarcopenia and prevalence are shown in Table 1. With our cut-off values, of the 840 patients, 418 patients (49.8%) were allocated to the low-IMAC group and 422 patients (50.2%) were allocated to the high-IMAC group. Patient characteristics are shown in Table 2. The high-IMAC group was older (\(P < 0.001 \)) and had a higher BMI (\(P < 0.001 \)). As for comorbidities, more patients in the high-IMAC group had CKD (\(P = 0.002 \)) and diabetes (\(P < 0.001 \)). In terms of body composition, the high-IMAC group had a lower SMI (\(P = 0.011 \)) and higher VFA (\(P < 0.001 \)).

3.2 | Comparison of postoperative outcomes after radical gastrectomy

Comparisons between the high- and low-IMAC groups for postoperative outcomes are shown in Table 3. There was no difference in operating time and length of postoperative hospital stay. Intraoperative blood loss was higher in the high-IMAC group (\(P < 0.001 \)). The high-IMAC group not only had more severe postoperative complications (\(P = 0.002 \)), but also had a larger number of total complications (\(P = 0.016 \)) and more infectious complications (\(P = 0.024 \)). As for the breakdown of complications, there were more intra-abdominal abscesses and anastomotic leakages in the high-IMAC group (\(P = 0.052 \) and \(P = 0.034 \), respectively).

3.3 | Independent risk factors of severe complications

There were 55 (6.5%) severe postoperative complications. The results of the analyses of risk factors for severe complications are shown in Table 4. In the univariate analysis, being male (\(P = 0.006 \)), age >70 years (\(P = 0.007 \)), open surgery (\(P = 0.005 \)), p-stage \(\geq III \) (\(P = 0.039 \)), CKD (\(P = 0.046 \)), and high-IMAC (\(P = 0.002 \)) were significant. Multivariate analysis revealed that being male (OR: 2.890, 95% CI: 1.330-6.290, \(P = 0.008 \)), open surgery (OR: 1.960, 95% CI: 1.050-3.640, \(P = 0.033 \)), and high-IMAC (OR: 2.260, 95% CI: 1.220-4.190, \(P = 0.010 \)) were significant independent risk factors.

4 | DISCUSSION

Our study has shown that poor muscle quality determined on preoperative CT images can predict an increase in postoperative complications such as infectious complications and anastomotic leakages, and is an independent risk factor for severe complications after radical gastrectomy. There are a few points that require further discussion. First is why poor muscle quality leads to severe postoperative complications, second, the relationship between poor muscle quality

| TABLE 1 | Cut off values for diagnosing sarcopenia and prevalence for each |
|---------|-------------------|------------------|-------------------|
| SMI: |
Prado et al	52.4	38.5	84.6% (711/840)
Martin et al	53.0 for BMI \(\geq 25 \)	41	70.4% (591/840)
Afremov et al	43.0 for BMI \(\leq 25 \)		
Sakurai et al	43.2	34.6	52.9% (444/840)
Zhuang et al	40.8	34.9	43.2% (363/840)
Iritani et al	36	29	16.1% (135/840)
This study	43.08	33.73	50.0% (420/840)

| IMAC: |
| Waki et al | -0.2541 | -0.1095 | 12.3% (103/840) |
| This study | -0.43 | -0.31 | 50.2% (422/840) |

Abbreviations: SMI, skeletal muscle mass index (cm\(^2\)/m\(^2\)); BMI, body mass index (kg/m\(^2\)); IMAC, intramuscular adipose tissue content.
and intra-abdominal infections and anastomotic leakages, and finally, why low SMI was not a risk factor for complications.

Two methods are used to evaluate muscle quality using CT images. The first is to measure muscle attenuation directly with CT values (HUs). The second method is to calculate the IMAC as we have done. In a study of patients with gynecologic cancer, Silva et al found that having more muscle with reduced attenuation was an independent predictor for surgical complications.16 Hamaguchi et al pointed out that measuring skeletal muscle area on CT imaging may not always be accurate because the measured area also includes intramuscular adipose tissue content, and that since IMAC is calculated as the ratio of CT values between skeletal muscle and subcutaneous fat, it reflects not only intramuscular adipose tissue content, but also muscle mass.19 It could be that IMAC accurately assesses the difference between muscle and fat and may be an even more effective tool than SMI to measure decrease in muscle mass, although we calculated the cut-off values of IMAC and SMI using the same method. The cytokine interleukin-15 (IL-15), which is required for the development and survival of natural killer lymphocytes, is highly expressed in skeletal muscle tissue.36 As natural killer lymphocyte-mediated cytotoxicity and cytokine secretion controls infections and cancers,37 decreased muscle mass could lead to increased susceptibility to infections and affect cancer prognosis. Since IMAC is also reported to be a significant predictor of both muscle strength and mobility,18 high-IMAC probably leads to increased complications because it reflects not only a decrease in muscle quality, but also a decrease in muscle mass.

In a meta-analysis, Kamarajah et al reported that reduced skeletal muscle mass leads to increase in major complications and mortality.13 In another meta-analysis, Yang et al found that preoperative loss of skeletal muscle mass increases postoperative pneumonia and paralytic ileus, but not intra-abdominal infections and anastomotic leakages.38 In the previously mentioned studies by Waki et al22 and Zhang et al26, reduced muscle quality predicted postoperative complications after gastrectomy, but the breakdown was not specified.

TABLE 2 Patient characteristics

	Low-IMAC (N = 418)	High-IMAC (N = 422)	P value
Gender			
Male	287 (68.7%)	286 (67.8%)	0.824
Female	131 (31.3%)	136 (32.2%)	
Age, mean ± SD	63.09 ± 11.68	69.91 ± 9.24	<0.001
Body Mass Index, mean ± SD	22.13 ± 3.06	23.76 ± 3.28	<0.001
Surgical approach			
Laparoscopic surgery	328 (78.5%)	323 (76.5%)	0.51
Open surgery	90 (21.5%)	99 (23.5%)	
Surgical procedure			
Distal gastrectomy	281 (67.2%)	290 (68.7%)	0.758
Proximal gastrectomy	40 (9.6%)	37 (8.8%)	
Total gastrectomy	97 (23.2%)	95 (22.5%)	
Pathological stage			
I	287 (68.7%)	278 (65.9%)	0.678
II	64 (15.3%)	68 (16.1%)	
III	67 (16.0%)	76 (18.0%)	
Lymph node dissection			
D1+	248 (59.3%)	271 (64.4%)	0.136
D2	170 (40.7%)	150 (35.6%)	
Comorbidity			
CKD	50 (12.0%)	83 (19.7%)	0.002
COPD	81 (19.4%)	93 (22.0%)	0.35
Diabetes	47 (11.2%)	91 (21.6%)	<0.001
CHF	20 (4.8%)	19 (4.5%)	0.871
SMI (cm²/m²), median (range)	41.35	39.25 (5.17-83.96)	0.011
Low SMI	187 (44.7%)	233 (55.2%)	0.003
VFA (cm²/m²), median (range)	60.45	103.92 (1.52-289.79)	<0.001

Abbreviations: CHF, chronic heart failure; SMI, skeletal muscle mass index; VFA, visceral fat area; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; IMAC, intramuscular adipose tissue content; SD, standard deviation.
Herrod et al reported that poor muscle quality was associated with an increased risk of anastomotic leakage, which was also seen in our study. The mechanisms by which reduced muscle quality causes anastomotic leakage may be different than those by which reduced muscle mass causes them and further research is needed.

Finally, we would like to consider our method for evaluating muscle quality and suggest ideas for further research. IMAC is reported to be an effective way of assessing muscle quality. It is thought to be a predictor of postoperative complications, but there is no consensus on cut-off values. Most previous studies have drawn receiver-operating characteristics curves to determine cut-off values, and cut-off values in males were always higher than in females; however, the reported values vary widely. Although we defined it by the median, cut-off values may differ according to the situation, and further research is needed to clarify the appropriate values for patients with gastric cancer. Our study has indicated that high-IMAC is a predictor of major postoperative complications. Thus, an interventional trial on the impact of preoperative physical therapy to improve muscle quality would be interesting. High-IMAC reflects not only a decrease in skeletal muscle mass, but also an increase in fat mass. Preoperative exercise and increased protein intake for the former, and preoperative exercise and weight loss for the latter may be necessary. It should also be noted that the prevalence of sarcopenia based on the cut-off values of IMAC obtained in this study is extremely high, so there are potentially many patients who require preoperative intervention.

This study has some limitations. First, it was a single-institutional retrospective study. A multi-institutional study is desirable to confirm the relationship between poor muscle quality and postoperative outcomes and to examine the validity of the cut-off values used in this study. Second, the mechanisms by which poor muscle quality leads to increased postoperative complications are unknown, and more basic research is needed.

TABLE 3 Comparison of postoperative outcomes after radical gastrectomy

	Low-IMAC (N = 418)	High-IMAC (N = 422)	P value
Operating time (min), median (range)	250.0 (90.0-525.0)	252.5 (60.0-630.0)	0.509
Intraoperative blood loss (g), median (range)	15.0 (1.0-1480.0)	20.0 (2.0-2920.0)	0.001
Postoperative hospital stay (days), median (range)	14.0 (5.0-141.0)	15.0 (4.0-143.0)	0.438
Postoperative complications			
Pneumonia	7 (1.7%)	13 (3.1%)	0.258
Incisional SSI	12 (2.9%)	12 (2.8%)	1
Intra-abdominal abscess	29 (6.9%)	46 (10.9%)	0.052
Pancreatic fistula	17 (4.1%)	20 (4.7%)	0.737
Anastomotic leakage	13 (3.1%)	27 (6.4%)	0.034
Infectious complications	49 (11.7%)	73 (17.3%)	0.024
Severe complications	16 (3.8%)	39 (9.2%)	0.002
Total complications	63 (15.1%)	91 (21.6%)	0.016

Note: Abbreviations: IMAC, intramuscular adipose tissue content; SSI, surgical site infection.

ACKNOWLEDGEMENTS

We would like to thank Dr Shoryoku Hino for the appropriate advice on statistical analysis.

DISCLOSURE

Conflict of Interest: The authors declare no conflicts of interest.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author Contribution: All authors participated in the following: Substantial contributions to the study conception and design, data acquisition or analysis, and data interpretation; Drafting the manuscript or reviewing it critically for important intellectual content; Approval of the final version of the manuscript. The main role of the authors was as follows: Guarantor of the integrity of the entire study: Noriyuki Inaki. Study conception and design: Ryota Matsui and Noriyuki Inaki. Literature search: Ryota Matsui. Clinical studies: All authors. Data collection: Ryota Matsui and Toshikatsu Tsuji. Statistical analysis: Ryota Matsui. Manuscript preparation: Ryota Matsui and Noriyuki Inaki. Manuscript review: All authors.

ETHICS

All experimental protocols described in this study: were approved by the Institutional Ethical Review Committee of Ishikawa Prefectural Central Hospital (authorization number: 1057); met the ethical guidelines of the Japan Ministry of Health, Labour, and Welfare for Medical and Health Research Involving Human Subjects; and conformed to the provisions of the Declaration of Helsinki. The opt-out recruitment method was applied to provide all patients an opportunity to decline to participate.

STATEMENT OF INFORMED CONSENT

Informed consent was obtained from all individual participants included in the study.
TABLE 4 Results of univariate and multivariate analyses of severe complications

Variables	Univariate analysis	Multivariate analysis				
	OR	95% CI	P value	OR	95% CI	P value
Gender						
Female	1			1		
Male	2.89	1.350-6.210	0.006	2.89	1.330-6.290	0.008
Age (years)						
<70	1			1		
≥70	2.15	1.240-3.750	0.007	1.71	0.953-3.080	0.072
Surgical procedure						
Distal gastrectomy	1			1		
Total gastrectomy	1.71	0.949-3.080	0.074			
Surgical approach						
Laparoscopic surgery	1			1		
Open surgery	2.27	1.280-4.010	0.005	1.96	1.050-3.640	0.033
Pathological stage						
<III	1			1		
≥III	1.92	1.030-3.590	0.039	1.44	0.730-2.840	0.292
Lymph nodes dissection						
D1+	1			1		
D2	1.38	0.797-2.390	0.25			
Chronic kidney disease						
Absent	1			1		
Present	1.91	1.010-3.610	0.046	1.4	0.711-2.740	0.333
Diabetes						
Absent	1			1		
Present	1.82	0.963-3.440	0.065			
COPD						
Absent	1			1		
Present	1.48	0.795-2.740	0.217			
Chronic heart failure						
Absent	1			1		
Present	2.21	0.828-5.890	0.114			
SMI (cm²/m²)						
High SMI						
Low SMI	1			1		
This study cut-off	0.89	0.515-1.540	0.676			
Prado’s cut-off	0.804	0.394-1.640	0.549			
Martin’s cut-off	0.785	0.441-1.400	0.411			
Sakurai’s cut off	0.92	0.532-1.590	0.765			
Zhuang’s cut off	0.868	0.497-1.520	0.619			
Iritani’s cut off	1.33	0.670-2.650	0.413			
IMAC						
Low IMAC	1			1		
High IMAC						
This study cut-off	2.56	1.410-4.650	0.002	2.26	1.220-4.190	0.01
Waki’s cut off	1.44	0.682-3.030	0.34			

Abbreviations: OR, odds ratio; CI, confidence interval; COPD, chronic obstructive pulmonary disease; SMI, skeletal muscle mass index; IMAC, intramuscular adipose tissue content.
Author (Year)	Country	Design	Type of patients	Sample size (male/ female)	Criteria (Cut off value)	Prevalence	Postoperative short-term outcomes
Harimoto N (2018)	Japan	Retrospective	Patients with hepatic resection	146 (104/ 40)	IMAC: Male: −0.730 Female: −0.502	26.70% (39/ 146)	Increased total postoperative complications, Longer operation time/hospital stays
Hamaguchi Y (2016)	Japan	Retrospective	Hepatocellular carcinoma	492 (403/ 89)	IMAC: Male: −0.324 Female: −0.138	44.50% (219/ 492)	Increased infectious complications/major postoperative complications
Hamaguchi Y (2015)	Japan	Retrospective	Hepatocellular carcinoma	477 (389/ 88)	IMAC: Male: −0.324 Female: −0.138	43.80% (209/ 477)	Increased operative blood loss.
Okumura S (2015)	Japan	Retrospective	Pancreatic cancer	230 (124/ 106)	IMAC: Male: −0.343 Female: −0.256	61.70% (142/ 230)	No difference in severe complications
Waki Y (2019)	Japan	Retrospective	Gastric cancer	370 (256/ 114)	IMAC: Male: −0.2541 Female: −0.1095	25.10% (93/ 370)	Increased intraoperative blood loss and total postoperative complications, Longer postoperative hospital stays.
Zhang Y (2018)	China	Retrospective	Gastric cancer	156 (115/ 41)	Muscle attenuation: Male: 44.4 HU Female: 39.3 HU	84.00% (131/ 156)	Increased total postoperative complications, Longer postoperative hospital stays.
Okumura S (2016)	Japan	Retrospective	Extrahepatic biliary cancer	207 (111/ 96)	IMAC: Male: −0.341 Female: −0.096	44.00% (91/ 207)	Increased severe complications/pancreatic fistula after PD
Okugawa Y (2018)	Japan	Retrospective	Colorectal cancer	308 (183/ 125)	IMAC: Male: −0.360 Female: −0.240	49.70% (153/ 308)	Increased infectious complications
Horii N (2020)	Japan	Retrospective	Colorectal liver metastasis	115 (79/ 39)	IMAC: Male: −0.335 Female: −0.258	55.70% (64/ 115)	Increased severe complications
Okumura S (2017)	Japan	Retrospective	Intrahepatic cholangiocarcinoma	109 (67/ 42)	Muscle attenuation: Male: 38.3 HU Female: 31.0 HU	48.60% (53/ 109)	No difference in postoperative complications and operative mortality
Herrod PJJ (2019)	UK	Retrospective	Colorectal cancer	169 (91/ 78)	Psoas density: Both: 44.5 HU	30.20% (51/ 169)	Increased severe complications/anastomotic leakage

Abbreviations: HU, Hounsfield units; IMAC, intramuscular adipose tissue content; PD, pancreateoduodenectomy.
REFERENCES

1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

2. Fukuda Y, Yamamoto K, Hiraat M, Nishikawa K, Nagatsuma Y, Nakayama T, et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer. 2016;19(3):986–93.

3. Chen FF, Zhang FY, Zhou XY, Shen X, Yu Z, Zhuang CL. Role of frailty and nutritional status in predicting complications following total gastrectomy with D2 lymphadenectomy in patients with gastric cancer: a prospective study. Langenbecks Arch Surg. 2016;401(6):813–22.

4. Wang SL, Zhuang CL, Huang DD, Pang WY, Lou N, Chen FF, et al. Sarcopenia adversely impacts postoperative clinical outcomes following gastrectomy in patients with gastric cancer: a prospective study. Ann Surg Oncol. 2016;23(2):556–64.

5. Zhuang CL, Huang DD, Pang WY, Zhou CJ, Wang SL, Lou N, et al. Sarcopenia is an independent predictor of severe postoperative complications and long-term survival after radical gastrectomy for gastric cancer: analysis from a large-scale cohort. Medicine (Baltimore). 2016;95(13):e3164.

6. Zhou CJ, Zhang FM, Zhang FY, Yu Z, Chen XL, Shen X, et al. Sarcopenia: a new predictor of postoperative complications for elderly gastric cancer patients who underwent radical gastrectomy. J Surg Res. 2017;211:137–46.

7. Lu J, Zheng ZF, Li P, Xie JW, Wang JB, Lin JX, et al. Novel preoperative skeletal muscle measure as a predictor of postoperative complications, long-term survival and tumor recurrence for patients with gastric cancer after radical gastrectomy. Ann Surg Oncol. 2018;25(2):439–48.

8. Mirkin KA, Luke FE, Gangi A, Pimienta JM, Jeong D, Hollenbeak CS, et al. Sarcopenia related to neoadjuvant chemotherapy and perioperative outcomes in resected gastric cancer: a multi-institutional analysis. J Gastrointest Oncol. 2017;8(3):589–95.

9. Shi B, Liu S, Chen J, Liu J, Luo Y, Long L, et al. Sarcopenia is associated with perioperative outcomes in gastric cancer patients undergoing gastrectomy. Ann Nutr Metab. 2019;75(4):213–22.

10. Sierzeza M, Chrzan R, Wiktorowicz M, Kolodziejczyk P, Richter P. Prognostic and predictive implications of sarcopenia in Western patients undergoing gastric resections for carcinoma of the stomach. J Surg Oncol. 2019;120(3):473–82.

11. Lin J, Zhang W, Chen W, Huang Y, Wu R, Chen X, et al. Muscle mass, density, and strength are necessary to diagnose sarcopenia in patients with gastric cancer. J Surg Res. 2019;241:141–8.

12. Simonsen C, de Heer P, Bjerre ED, Suettet C, Højman P, Pedersen BK, et al. Sarcopenia and postoperative complication risk in gastrointestinal surgical oncology: a meta-analysis. Ann Surg. 2018;268(1):58–69.

13. Kamarajah SK, Bundre J, Tan BHL. Body composition assessment and sarcopenia in patients with gastric cancer: a systematic review and meta-analysis. Gastric Cancer. 2019;22(1):10–22.

14. Shen Y, Hao Q, Zhou J, Dong B. The impact of frailty and sarcopenia on postoperative outcomes in older patients undergoing gastrectomy surgery: a systematic review and meta-analysis. BMC Geriatr. 2017;17(1):188.

15. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

16. Silva de Paula N, de Aguiar BK, Azevedo Aredes M, Villaça CG. Sarcopenia and skeletal muscle quality as predictors of postoperative complication and early mortality in gynecologic cancer. Int J Gynecol Cancer. 2018;28(2):412–20.

17. Boer BC, de Graaff F, Brusse-Keizer M, Bouman DE, Slump CH, Sleen-Velantijn M, et al. Skeletal muscle mass and quality as risk factors for postoperative outcome after open colon resection for cancer. Int J Colorectal Dis. 2016;31(6):1117–24.

18. Harimoto N, Hoshino H, Muranushi R, Hagiwara K, Yamanaka T, Ishii N, et al. Skeletal muscle volume and intramuscular adipose tissue are prognostic predictors of postoperative complications after hepatic resection. Anticancer Res. 2018;38(8):4933–9.

19. Hamaguchi Y, Kaido T, Okumura S, Kobayashi Y, Fujimoto Y, Ogawa K, et al. Muscle atrophy is an independent predictor of postoperative complications in patients with hepatocellular carcinoma. World J Surg. 2016;40(8):1959–68.

20. Hamaguchi Y, Kaido T, Okumura S, Ito T, Fujimoto Y, Ogawa K, et al. Preoperative intramuscular adipose tissue content is a novel prognostic predictor after hepatectomy for hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2015;22(6):475–85.

21. Okumura S, Kaido T, Hamaguchi Y, Fujimoto Y, Masui T, Mizumoto M, et al. Impact of preoperative quality as well as quantity of skeletal muscle on survival after resection of pancreatic cancer. Surgery. 2015;157(6):1088–98.

22. Waki Y, Iino T, Makuuchi R, Notsu A, Kamiya S, Tanizawa Y, et al. Impact of preoperative skeletal muscle quality measurement on long-term survival after curative gastrectomy for locally advanced gastric cancer. World J Surg. 2019;43(12):3083–93.

23. Wang S, Xu L, Wang Q, Li J, Bai B, Li Z, et al. Postoperative complications and prognosis after radical gastrectomy for gastric cancer: a systematic review and meta-analysis of observational studies. World J Surg Oncol. 2019;17(1):52.

24. Jiang N, Deng JY, Ding XW, Zhang L, Liu HG, Liang YX, et al. Effect of complication grade on survival following curative gastrectomy for carcinoma. World J Gastroenterol. 2014;20(25):8244–52.

25. Shimada H, Fukagawa T, Haga Y, Oba K. Does postoperative morbidity worsen the oncological outcome after radical surgery for gastrointestinal cancers? A systematic review of the literature. Ann Gastroenterol Surg. 2017;1(1):11–23.

26. Zhang Y, Wang JP, Wang XL, Tian H, Gao TT, Tang LM, et al. Computed tomography-quantified body composition predicts short-term outcomes after gastrectomy in gastric cancer. Curr Oncol. 2018;25(5):e411–e422.

27. Nishigori T, Tsunoda S, Obama K, Hisamori S, Hashimoto K, Itatani K, et al. Optimal cutoff values of skeletal muscle index to define sarcopenia for prediction of survival in patients with advanced gastric cancer. Ann Surg Oncol. 2018;25(12):3596–603.

28. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.

29. Okumura S, Kaido T, Hamaguchi Y, Fujimoto Y, Kobayashi A, Iida T, et al. Impact of the preoperative quantity and quality of skeletal muscle on outcomes after resection of extrahepatic biliary malignancies. Surgery. 2016;159(3):821–33.

30. Ogawara Y, Toiyama Y, Yamamoto A, Shigemori T, Kitamura A, Ichikawa T, et al. Close relationship between immunological/inflammatory markers and myopenia and myosteatosis in patients with colorectal cancer: a propensity score matching analysis. JPNJ Parenter Enteral Nutr. 2019;43(4):508–15.

31. Horii N, Sawada Y, Kumamoto T, Tsuji M, Murakami T, Yabushita Y, et al. Impact of intramuscular adipose tissue content on short- and long-term survival after radical resection for gastric cancer: a systematic review and meta-analysis. Ann Surg Oncol. 2016;23(2):556–64.

ORCID

Ryota Matsui https://orcid.org/0000-0003-0541-2357
Noriyuki Inagi https://orcid.org/0000-0002-4241-5015
Toshikatsu Tsuji https://orcid.org/0000-0002-3430-0568
long-term outcomes of hepatectomy for colorectal liver metastasis: a retrospective analysis. World J Surg Oncol. 2020;18(1):68.

32. Okumura S, Kaido T, Hamaguchi Y, Kobayashi A, Shirai H, Fujimoto Y, et al. Impact of skeletal muscle mass, muscle quality, and visceral adiposity on outcomes following resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017;24(4):1037–45.

33. Herrod PJJ, Boyd-Carson H, Doleman B, Trotter J, Schlichtemeier S, Sathanapally G, et al. Quick and simple: psoas density measurement is an independent predictor of anastomotic leak and other complications after colorectal resection. Tech Coloproctol. 2019;23(2):129–34.

34. Brøns C, Grunnet LG. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? Eur J Endocrinol. 2017;176(2):R67–78.

35. Fiorillo C, Rosa F, Quero G, Menghi R, Doglietto GB, Alfieri S. Postoperative hyperglycemia in nondiabetic patients after gastric surgery for cancer: perioperative outcomes. Gastric Cancer. 2017;20(3):536–42.

36. Lutz CT, Quinn LS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging (Albany NY). 2012;4(8):535–46.

37. Al-Attar A, Presnell SR, Casey JL, Long DE, Walton RG, Sexton M, et al. Human body composition and immunity: visceral adipose tissue produces IL-15 and muscle strength inversely correlates with NK cell function in elderly humans. Front Immunol. 2018;9:440.

38. Yang Z, Zhou X, Ma B, Xing Y, Jiang X, Wang Z. Predictive value of preoperative sarcopenia in patients with gastric cancer: a meta-analysis and systematic review. J Gastrointest Surg. 2018;22(11):1890–902.

39. Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Shirai H, Yao S, et al. Preoperative visceral adiposity and muscularity predict poor outcomes after hepatectomy for hepatocellular carcinoma. Liver Cancer. 2019;8(2):92–109.

40. Kaibori M, Ishizaki M, Iida H, Matsui K, Sakaguchi T, Inoue K, et al. Effect of intramuscular adipose tissue content on prognosis in patients undergoing hepatocellular carcinoma resection. J Gastrointest Surg. 2015;19(7):1315–23.

How to cite this article: Matsui R, Inaki N, Tsuji T. Impact of preoperative muscle quality on postoperative severe complications after radical gastrectomy for gastric cancer patients. Ann Gastroenterol Surg. 2021;00:1–9. https://doi.org/10.1002/ags3.12452