Overview of studies of the vitamin D/vitamin D receptor system in the development of non-alcoholic fatty liver disease

Flavia Agata Cimini, Ilaria Barchetta, Simone Carotti, Sergio Morini, Maria Gisella Cavallo

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. NAFLD is known to be associated with obesity, type 2 diabetes, metabolic syndrome and increased cardiovascular events: for these reasons, it is becoming a global public health problem and represents an important challenge in terms of prevention and treatment. The mechanisms behind the pathogenesis of NAFLD are multiple and have not yet been completely unraveled; consequently, at moment there are not effective treatments. In the past few years a large body of evidence has been assembled that attributes an important role in hepatic aberrant fat accumulation, inflammation and fibrosis, to the vitamin D/vitamin D receptor (VD/VDR) axis, showing a strong association between hypovitaminosis D and the diagnosis of NAFLD. However, the data currently available, including clinical trials with VD supplementation, still provides a contrasting picture. The purpose of this editorial is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to VD/VDR, showing a strong association between hypovitaminosis D and the diagnosis of NAFLD. However, the data currently available, including clinical trials with VD supplementation, still provides a contrasting picture. The purpose of this editorial is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to VD/VDR. Based on recent data from literature, we focused in particular on the hypothesis that VDR itself, independently from its traditional ligand VD, may have a crucial function in promoting hepatic fat accumulation. This might also offer new possibilities for future innovative therapeutic approaches in the management of NAFLD.

Key words: Vitamin D; Vitamin D receptor; Non-alcoholic fatty liver disease; Type 2 diabetes

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
Core tip: In the last years, many evidences attribute to the vitamin D/vitamin D Receptor axis an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purpose of this editorial is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to vitamin D/vitamin D receptor (VD/VDR). We focused in particular on the hypothesis that VDR itself, independently from its traditional ligand VD, may play a crucial function in promoting hepatic fat accumulation, also offering new possibilities for innovative therapeutic approaches in the management of NAFLD.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is currently considered the most common chronic liver disease worldwide[1]. Recent epidemiologic studies report that the prevalence of NAFLD is increasing, starting from the currently estimated 25% in the general population[2,3], and rising dramatically in obese individuals[4], in subjects with type 2 diabetes (T2D)[5] and those with metabolic syndrome[6]. NAFLD is becoming a global public health problem[7]. In many countries the number of patients affected by the disease is rapidly growing, so that in the last years the disease has reached epidemic proportions. Moreover, several studies have shown increased cardiovascular events in NAFLD patients and demonstrated that NAFLD is an independent risk factor for cardiovascular mortality[8-10].

VITAMIN D AND NAFLD

In spite of the alarming prevalence and the clinical implications of NAFLD, the mechanisms underlying its development and progression are still not fully understood, and currently there are no effective treatments. Over the years many different pathophysiological theories have been put forward, leading to the most widely accepted hypothesis, “multiple parallel hits”[11]. According to this model the steps conducive to hepatic fat accumulation, inflammation and fibrosis are orchestrated by a delicate interplay of factors[11], and in this context the role of the vitamin D/vitamin D receptor (VD/VDR) axis has become an active area of research. Indeed, apart from its central role in bone and mineral homeostasis, VD is a molecule that exerts various effects on a number of biological systems; active VD in particular has been shown to regulate the immune system and to modulate insulin sensitivity in experimental models of metabolic diseases[12-14].

Numerous studies have demonstrated that low VD circulating levels are associated with obesity[15], metabolic syndrome[16-19], and T2D[20-22]. Investigations conducted in several adult populations also showed a strong association between hypovitaminosis D and the diagnosis of NAFLD[23-25]. This association was also confirmed in children, in which low VD levels were found to correlate with the histological severity of NAFLD independently from metabolic characteristics[26,27].

Data from animal studies further support the notion that the impairment of VD balance plays a role in the development of NAFLD. Roth and colleagues showed that in obese rats the lack of VD intake allowed the onset and progression of NAFLD, which was evaluated through liver histology demonstrating a higher NAFLD activity score and increased lobular inflammation[33]. Likewise, under experimental conditions, VD has been shown to have an anti-inflammatory effect, accompanied by a significant inhibition of the hepatic expression of pro-fibrotic mediators, such as platelet-derived growth factor and transforming growth factor. The anti-inflammatory effect was also demonstrated by the suppression of the production of collagen, α-smooth muscle actin and tissue inhibitors of metalloproteinase-1[34-37]. In addition, in a study conducted on mice with nonalcoholic steatohepatitis (NASH), phototherapy reduced hepatocyte inflammation and fibrosis and improved insulin resistance by increasing the serum active form of VD[38].
On the basis of these evidences and of both experimental and epidemiological data, VD has attracted the interest for a potential therapeutic option during NAFLD. However, up until now results from randomized clinical trials have failed to demonstrate the efficacy of VD supplementation in improving either fatty liver content, or the histological parameters of inflammation and fibrosis, or transaminases in the course of NAFLD and NASH.[39-45]

The clinical significance of VD in NAFLD is thus still controversial. A critical examination of the results from trials conducted so far may provide reasonable grounds for conducting further appropriately designed investigations (for example, personalized supplementation regimes in relation to VD levels at baseline and stage of liver damage, higher VD supplementation doses, longer periods of supplementation) before reaching any final conclusions on this topic. However, at present it is not possible to recognize which real benefits can be obtained from restoring optimal VD values in the case of chronic hepatic damage as a result of NAFLD.

ROLE OF VDR

In addition to the question of vitamin D, the role of VDR per se has been investigated in metabolic diseases, focusing in particular on its effect/expression in insulin sensitive tissues and organs, such as adipose tissue and the liver. In 2012, Barchetta et al.[51] demonstrated for the first time in humans the expression of VDR in different hepatic cell types and reduced VDR expression in the hepatic cells of patients with NASH. Since that time many studies have shown that in the liver VDR regulates necro-inflammation and fibrosis.[46-50]. Moreover, Arai et al.[51] recently demonstrated that, in patients with biopsy-proven NAFLD, polymorphisms of the VDR gene are associated with the severity of liver fibrosis.

Interestingly the data showed that not only VD, but also secondary hydrophobic bile acids, such as lithocholic acid, activate VDR in human hepatocytes.[52-53]. Bozic et al.[54] demonstrated that in animal models, the development of liver steatosis was blunted in the presence of VDR deletion. Notably, data obtained in mice exposed to a high fat diet showed an early induction of hepatic VDR expression in the presence of a fatty liver, followed by a trend towards VDR reduction in the long term, whereupon more severe inflammation and fibrosis occurred.[50]. In that same research, an expression analysis of genes related to lipid metabolism in mouse livers indicated that VDR might exert a pro-steatotic activity in the hepatocytes as results of both the activation lipogenic pathways and the inhibition of fat oxidation. Moreover, García-Monzón et al.[55] very recently demonstrated that hepatic angiopoietin-like protein 8 (ANGPTL8) expression is increased upon VDR activation. It is known that ANGPTL8 is a key regulator of triglycerides metabolism and that higher circulating ANGPTL8 levels are associated with the presence of NAFLD.[56-57]. These data suggest that VDR induction is more prominent in simple steatosis than in advanced liver damage, which is likely to indicate that VDR is induced at the early stages of the disease and does not require liver injury or fibrosis to have become established.

The overall data appear to support the hypothesis that, in the course of metabolic diseases, VDR itself, independently from its traditional ligand VD, may have a crucial function in promoting hepatic fat accumulation. Further studies should be oriented in this direction with a view to fully understanding the processes behind hepatic VDR activation and evaluating its role as a new target for innovative therapeutic approaches to the early management of NAFLD.

REFERENCES

1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. *Nat Rev Gastroenterol Hepatol* 2018; 15: 11–20 [PMID: 28936295 DOI: 10.1038/nrgastro.2017.109]

2. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S, Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. *Hepatology* 2016; 64: 1577–1586 [PMID: 27543837 DOI: 10.1002/hep.28785]

3. Younossi ZM, Koenig AH, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology* 2016; 64: 73–84 [PMID: 26707365 DOI: 10.1002/hep.28431]

4. Non-alcoholic Fatty Liver Disease Study Group. Lonardo A, Bellentani S, Argo CK, Ballestri S, Byrne CD, Caldwell SH, Cortez-Pinto H, Grieco A, Machado MV, Miele L, Targher G. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. *Dig Liver Dis* 2015; 47: 997-1008 [PMID: 26454786 DOI: 10.1016/j.dld.2015.08.004]

5. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenini L, Day C, Arcafo G. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. *Diabetes Care* 2007; 30: 1212-1218 [PMID: 17277038 DOI: 10.2337/dc06-2247]
Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. *Lancet Diabetes Endocrinol* 2014; 2: 901-910 [PMID: 24731669 DOI: 10.1016/S2213-4587(14)70032-4]

Estes C, Razavi H, Loomber R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. *Hepatology* 2018; 67: 123-133 [PMID: 28802062 DOI: 10.1002/hep.29466]

Targher G, Byrne CD, Lonardo A, Zoppini G, Barbuci C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. *J Hepatol* 2016; 65: 589-600 [PMID: 27227244 DOI: 10.1016/j.jhep.2016.05.017]

Mahfood Haddad T, Hamdeld S, Kamnanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. *Diabetes Metab Syndr* 2017; 11 Suppl 1: S209-S216 [PMID: 28017631 DOI: 10.1016/j.dsx.2016.12.033]

Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z. Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: A systematic review and meta-analysis. *Sci Rep* 2016; 6: 33386 [PMID: 27633274 DOI: 10.1038/srep33386]

Tlig H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. *Hepatitis* 2010; 52: 1836-1846 [PMID: 21038418 DOI: 10.1002/hep.24001]

Zhou QG, Hou FF, Guo ZJ, Liang M, Wang GB, Zhang X. 1,25-Dihydroxyvitamin D improved the free fatty-acid-induced insulin resistance in cultured C2C12 cells. *Diabetes Metab Res Rev* 2008; 24: 459-464 [PMID: 18551686 DOI: 10.1002/dmrr.873]

Parker L, Levinger I, Mousa A, Howlett K, de Courten B. Plasma 25-Hydroxyvitamin D is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner. *Nutrients* 2016; 8: pii: E631 [PMID: 27754561 DOI: 10.3390/nu8100631]

Elsewedy MM, Amin RS, Atiea HJL, Ali MA. Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats. *Biomed Pharmacother* 2017; 85: 155-159 [PMID: 27930980 DOI: 10.1016/j.biopha.2016.11.116]

Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S. Evidence for the alteration of the vitamin D-endocrine system in obese subjects. *J Clin Invest* 1985; 76: 370-373 [PMID: 29913480 DOI: 10.1172/jci119271]

Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. *Diabetes Care* 2005; 28: 1228-1230 [PMID: 15855599 DOI: 10.2337/diacare.28.5.1228]

Barchetta I, De Bernardinis M, Capoccia D, Baroni MG, Fontanara M, Fraisoli A, Morini S, Leonetti F, Cavallo MG. Hypovitaminosis D is independently associated with metabolic syndrome in obese patients. *PLoS One* 2013; 8: e68689 [PMID: 23935881 DOI: 10.1371/journal.pone.0068689]

Goldner WS, Stoner JA, Thompson J, Taylor K, Larson L, Erickson J, McBride C. Prevalence of vitamin D insufficiency and deficiency in morbidly obese patients: A comparison with non-obese controls. *Obes Surg* 2008; 18: 145-150 [PMID: 18771948 DOI: 10.1007/s11695-007-9315-8]

Botella-Carretero JJ, Alavez-Blasco F, Villafuerra JL, Balsa JA, Vázquez C, Escolar-Morreale HF. Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. *Clin Nutr* 2007; 26: 573-580 [PMID: 17624643 DOI: 10.1016/j.clnu.2007.05.009]

Palomer X, González-Clemente JM, Blanco-Vaca F, Mauricio D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. *Diabetes Obes Metab* 2008; 10: 185-197 [PMID: 18269634 DOI: 10.1111/j.1463-1326.2007.00710.x]

Boucher BJ. Vitamin D insufficiency and diabetes risks. *Curr Drug Targets* 2011; 12: 61-87 [PMID: 20795936 DOI: 10.2174/138945011793591653]

Lucato P, Solmi M, Maggi S, Bertocco A, Bano G, Trevisan C, Manzato E, Sergio G, Schofield P, Khiyami A, Brandt P, McCullough AJ, Dasarathy JS, Bhinder V, Periyalwar P, Allampati S, Hawkins C, McCullough AJ. Low vitamin D levels increase the risk of type 2 diabetes in older adults: A systematic review and meta-analysis. *Maturitas* 2017; 100: 8-15 [PMID: 28539181 DOI: 10.1016/j.maturitas.2017.02.016]

Targher G, Bertolini L, Scala L, Cigolini M, Zenari L, Falezza G, Arcaro G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. *Nutr Metab Cardiovasc Dis* 2007; 17: 517-524 [PMID: 16924317 DOI: 10.1016/j.numecd.2006.04.002]

Barchetta I, Angelico F, Del Ben M, Baroni MG, Pozzilli P, Morini S, Cavallo MG. Strong association between nonalcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. *BMI Med* 2011; 9: 85 [PMID: 21749681 DOI: 10.1186/1741-7015-9-85]

Jablonski KL, Jovanovich A, Holmen J, Targher G, McFann K, Kendrick J, Chonchol M. Low 25-hydroxyvitamin D level is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. *Obes Res Clin Pract* 2013; 7: e145-150 [PMID: 23606155 DOI: 10.1016/j.orecp.2012.01.004]

Dasarathy J, Periyalwar P, Allampati S, Bhinder V, Hawkins C, Brandt P, Khanyami A, McCullough AJ, Dasarathy S. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. *Liver Int* 2014; 34: e118-e127 [PMID: 24118743 DOI: 10.1111/liv.12312]

Rhee EJ, Kim MK, Park SE, Park CY, Baek HK, Lee WY, Kang MI, Park SW, Kim SW, Oh KW. High serum vitamin D levels reduce the risk for nonalcoholic fatty liver disease in healthy men independent of metabolic syndrome. *Endocr J* 2013; 60: 743-752 [PMID: 23415456 DOI: 10.1515/endocrj-2012-0387]

Wang D, Lin H, Xia M, Aleteng Q, Li X, Ma H, Pan B, Guo J, Gao X. Vitamin D Levels Are Inversely Associated with Liver Fat Content and Risk of Non-Alcoholic Fatty Liver Disease in Chinese Middle-Aged and Elderly Population: The Shanghai Changfeng Study. *PLoS One* 2016; 11: e0157515 [PMID: 27284686 DOI: 10.1371/journal.pone.0157515]

Zhai HL, Wang NJ, Han B, Li Q, Chen Y, Zhu CF, Chen YC, Xia FZ, Cang Z, Zhu CX, Lu M, Lu YL. Low vitamin D levels and non-alcoholic fatty liver disease, evidence for their independent association in men in East China: A cross-sectional study (Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China)). *Br J Nutr* 2016; 115: 1352-1359 [PMID: 26888280 DOI: 10.1017/S0007114516000386]

Nobili V, Giorgio V, Lucardo D, Bedogni G, Morino G, Alisi A, Cianfarani S. Vitamin D levels and liver histological alterations in children with nonalcoholic fatty liver disease. *Eur J Endocrinol* 2014; 170: 547-553 [PMID: 24812930 DOI: 10.1530/EJE-13-0690]
Vitamin D/vitamin D receptor in NAFLD

32 Manco M, Ciampalini P, Nobili V. Low levels of 25-hydroxyvitamin D(3) in children with biopsy-proven nonalcoholic fatty liver disease. *Hepatology* 2010; 51: 2229; author reply 2230 [PMID: 20513013 DOI: 10.1002/hep.23724]

33 Roth CL, Eilers CT, Figlewicz DP, Melhorn SJ, Morton GI, Hoofnagle A, Yeh MM, Nelson JE, Kowdley KV. Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and Toll-like receptor activation. *Hepatology* 2012; 55: 1103-1111 [PMID: 21994008 DOI: 10.1002/hep.24737]

34 Belfuss A, Sowa JP, Sydor S, Beste M, Bechmann LP, Schlattjan M, Syn WK, Wedemeyer I, Mathé Z, Jochem C, Gerken G, Gieseler RK, Canby A. Vitamin D counteracts fibrogenic TGF-β signaling in human hepatic stellate cells both receptor-dependently and independently. *Gut* 2015; 64: 791-799 [PMID: 25134788 DOI: 10.1136/gutjnl-2014-307024]

35 Abramovitch S, Dahan-Buchar L, Sharvit E, Weissman Y, Ben Tov A, Brazowski E, Reif S. Vitamin D inhibits proliferation and proinflammatory marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. *Gut* 2011; 60: 1728-1737 [PMID: 21810960 DOI: 10.1136/gut.2010.234666]

36 Abramovitch S, Sharvit E, Weissman Y, Bentov A, Brazowski E, Cohen G, Volofeovsky O, Reif S. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. *Am J Physiol Gastrointest Liver Physiol* 2015; 308: G112-G120 [PMID: 25214398 DOI: 10.1152/ajpgi.00312.2013]

37 Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M, Coulter S, He M, Scott C, Lau SL, Atkins AR, Barish GD, Gunton JE, Liddle C, Downes M, Evans RM. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. *Cell* 2013; 153: 601-613 [PMID: 23622244 DOI: 10.1016/j.cell.2013.03.029]

38 Nakano T, Cheng YF, Lai CY, Hwu LW, Chang YC, Deng JY, Huang YZ, Honda H, Chen KD, Wang CC, Chiu KW, Javan B, Eng HL, Goto S, Chen CL. Impact of artificial sunlight therapy on the progress of non-alcoholic fatty liver disease in patients. *J Hepatol* 2011; 55: 415-425 [PMID: 21184788 DOI: 10.1016/j.jhep.2010.11.028]

39 Sakpal M, Satsangi S, Mehta M, Dusaea A, Bhadada S, Das A, Dhiman RK, Chawla YK. Vitamin D supplementation in patients with nonalcoholic fatty liver disease: A randomized controlled trial. *JGHE Open* 2017; 1: 62-67 [PMID: 30483536 DOI: 10.1002/jgh3.12010]

40 Geier A, Eichinger M, Stimirmann G, Semela D, Tay F, Seifert B, Tischopp O, Bantel H, Jahn D, Marques Maggio E, Saleh L, Bischoff-Ferrari HA, Müllhäuser B, Dufour JF. Treatment of non-alcoholic steatohepatitis patients with vitamin D: a double-blind, randomized, placebo-controlled pilot study. *Scand J Gastroenterol* 2018; 53: 1114-1120 [PMID: 30270688 DOI: 10.1080/00365521.2018.1501091]

41 Barchetta I, Del Ben M, Angelico F, Di Martino M, Fraioli A, La Torre G, Saulel R, Perri L, Morini S, Tiberi C, Bertocci L, Cinmini FA, Panimolle F, Catalano F, Cataloni C, Baroni MG, Cavaigo MF. No effects of oral vitamin D supplementation on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. *BMJ Med* 2016; 14: 92 [PMID: 27535492 DOI: 10.1136/s12916-016-0638-y]

42 Dabbaghmanesh MH, Danafar F, Eshraghian A, Omrani GR. Vitamin D supplementation for the treatment of non-alcoholic fatty liver disease: A randomized double blind placebo controlled trial. *Diabetes Metab Syndr* 2018; 12: 513-517 [PMID: 29988137 DOI: 10.1016/j.dsx.2018.03.006]

43 Lorvand Amiri H, Pham A, Gordon A, Kemp W, Roberts SK. High-dose vitamin D supplementation and liver histology in NASH. *Clin Nutr* 2016; 36: 1490-1497 [PMID: 27720403 DOI: 10.1016/j.clnu.2016.09.020]

44 Kitson MT, Pinn A, Gordon A, Kemp W, Roberts SK. High-dose vitamin D supplementation and liver histology in NASH. *Gut* 2016; 65: 717-718 [PMID: 26294606 DOI: 10.1136/gutjnl-2013-304147]

45 Sharifi N, Amani R, Hajiani E, Cheraghian B. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. *Endocrine* 2014; 47: 70-80 [PMID: 24968737 DOI: 10.1007/s12020-014-0336-6]

46 Barchetta I, Carotti S, Labbadia G, Gentilecchi UV, Madao A, Angeli M, Silecchia G, Leonetti F, Fraoli A, Picardi A, Morini S, Cavaigo MG. Liver vitamin D receptor, CYPR2R1, and CYPR2A1 expression: Relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus. *Hepatology* 2012; 56: 2180-2187 [PMID: 22753133 DOI: 10.1001/hep.25930]

47 Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam N, Castilla EA, Kisseleva T, Karin M, Diaz-Meco MT, Moscat J. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. *Cancer Cell* 2016; 30: 595-609 [PMID: 27278806 DOI: 10.1016/j.cccel.2016.09.004]

48 Wahsh E, Abu-Elsaad N, El-Karef A, Ibrahim T. The vitamin D receptor agonist, calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in-vivo: An experimental study. *Eur J Pharmacol* 2016; 789: 362-369 [PMID: 27477355 DOI: 10.1016/j.ejphar.2016.07.052]

49 Petta S, Grimaldo S, Tripodo C, Cabibi D, Calvaruso M, Di Cristina A, Guarnotta C, Macaluso FS, Minissale MG, Marchesini G, Craxi A. The hepatic expression of vitamin D receptor is inversely associated with the severity of liver damage in genotype 1 chronic hepatitis C patients. *J Clin Endocrinol Metab* 2018; 100: 193-200 [PMID: 25268391 DOI: 10.1210/ajcp.2017-02757]

50 Bozic M, Guzmán C, Benet M, Sánchez-Camps S, García-Monzón C, Gari E, Gatius S, Valdivielso JM, Jover R. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis. *J Hepatol* 2016; 65: 748-757 [PMID: 27245340 DOI: 10.1016/j.jhep.2016.05.031]

51 Aral T, Atsukawa M, Tsutaba A, Koeda M, Yoshida Y, Okubo T, Nakagawa A, Ikawaka N, Kondo C, Nakatsu K, Masu T, Kato K, Shimada N, Hatori T, S domina N, Kage M, Iwakiri K. Association of vitamin D levels and vitamin D-related gene polymorphisms with liver fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease. *Dig Liver Dis* 2019; 51: 1036-1042 [PMID: 30683615 DOI: 10.1016/j.dld.2018.12.022]

52 Makishima M, Lu TT, Xiao W, Whitefield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. *Science* 2002; 296: 1313-1316 [PMID: 12013614 DOI: 10.1126/science.1070477]

53 Han S, Li T, Ellis E, Strom S, Chang YJ. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. *Mol Endocrinol* 2010; 24: 1151-1164 [PMID: 20371703 DOI: 10.1210/me.2009-0482]

54 García-Monzón C, Perez PD, Rey E, Marañón P, Del Pozo-Maroto E, Guzmán C, Rodríguez de Cía J
Casado-Collado AJ, Vargas-Castrillón J, Saez A, Miquilena-Colina ME, Lo Iacono O, Castell JV, González-Rodríguez Á, Jover R. Angiopoietin-Like Protein 8 Is a Novel Vitamin D Receptor Target Gene Involved in Nonalcoholic Fatty Liver Pathogenesis. *Am J Pathol* 2018; 188: 2800-2810 [PMID: 30248338 DOI: 10.1016/j.ajpath.2018.07.028]

Lee YH, Lee SG, Lee CJ, Kim SH, Song YM, Yoon MR, Jeon BH, Lee JH, Lee BW, Kang ES, Lee HC, Cha BS. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: Animal and human studies. *Sci Rep* 2016; 6: 24013 [PMID: 27045862 DOI: 10.1038/srep24013]

Mele C, Grugni G, Mai S, Vietti R, Aimaretti G, Scacchi M, Marzullo P. Circulating angiopoietin-like 8 (ANGPTL8) is a marker of liver steatosis and is negatively regulated by Prader-Willi Syndrome. *Sci Rep* 2017; 7: 3186 [PMID: 28600576 DOI: 10.1038/s41598-017-03538-7]

von Loeffelholz C, Pfeiffer AFH, Lock JF, Lieske S, Döcke S, Murahovschii V, Kriebel J, de Las Heras Gala T, Grafert H, Rudovich N, Stockmann M, Spranger J, Jahreis G, Bornstein SR, Lau G, Xu A, Schulz-Menger J, Exner I, Haufe S, Jordan J, Engeli S, Birkenfeld AL. ANGPTL8 (Betatrophin) is Expressed in Visceral Adipose Tissue and Relates to Human Hepatic Steatosis in Two Independent Clinical Collectives. *Horm Metab Res* 2017; 49: 343-349 [PMID: 28351093 DOI: 10.1055/s-0043-102950]
