Effect of Addition of Zn, Cysteine, PGF2α and their Combination on Holstein Bulls Cooled Semen in vitro

M. R. G. Al-Dahan¹, A. F. Majeed*² and M. A. Abed¹
¹Dept. Animal Production- College of Agriculture/ University of Anbar
²Dept. Surgery and Obstetrics- College of Veterinary Medicine / University of Fallujah
*Corresponding Author: email: al-majeed@uoffallujah.edu.iq

Abstract

The study was conducted to investigate the effect of addition of zinc sulphate, cysteine, Prostaglandin Fα (PGF2α) and their combination to the diluted semen on semen characteristics of Holstein bulls after different periods of cooling. The study was conducted on Artificial insemination Center/ Directorate of Animal Resources/ Ministry of Agriculture at Abu-Graib at the west of Baghdad during the period of Aug. 2019 to the Dec. 2019. Seven Holstein bulls were used, Aged between 2.5- 3 years. Semen was collected via Artificial Vagina one ejaculate per a week for three months. Fresh semen was evaluated which were of bad grand pooled semen were divided into 5 parts. The first part (T1) only diluted semen (Tris) serve as a control. The 2nd part (T2) added 0.576 mmol/ ml of zinc sulphate to diluted semen. The 3rd part (T3) added 5 mmol/ ml of cysteine to diluted semen. The 4th part (T4) added 37.5 pg/ ml of PGF2α to diluted semen to diluted semen. The 5th part (T5) added a combination of previous components to the diluted semen. Then the semen evaluated at 5C° after 24, 48 and 72 hrs. The results showed that the addition of zinc sulphate on cooled diluted semen have no significant difference between different periods in the percent of sperm individual motility. Addition of zinc sulphate and cysteine showed a significant increase (P<0.05) in the percent of sperm liveability. The addition of a combination (zn sulphate, cysteine and PGF2α) showed a significant decrease (P<0.05) in sperm abnormalities percent especially at 5C°. The results also showed the addition of zinc sulphate and PGF2α increase the percent of HOST (Hypo-osmotic swelling test) of spermatozoa at 48 hrs. after cooling, zinc sulphate addition showed a significant increase (P<0.05) at 5C° during as comported with other cooled period in the HOST. The addition of zinc sulphate showed a significant increase in cell membrane integrity at 5C° cooled semen. It was concluded that addition of antioxidant and hormone might improve semen quality of Holstein bulls.

Keywords: Zn, Cysteine, PGF2α, cooled semen, in vitro, Holstein bulls.

تأثير إضافة الزنك، المستسين، والبروستكلاندين وخلطتها إلى السائل المنوي المبرد مختبرياً لثيران الهولشتاين

أجريت هذه الدراسة لمعرفة مدى تأثير إضافة كل من الزنك، والمستسين والبروستكلاندين فيلجأ إلى خليطهم إلى السائل المنوي المبرد مختبرياً لثيران الهولشتاين.

1. مادة الدراسة

تم استخدام ثيران هولشتاين من مزرعة الثروة البيئية/وزارة الزراعة في منطقة أبو غريب غرب بغداد للفترة من كانون الثاني 2019 إلى شباط 2020. أجريت هذه الدراسة لمعرفة مدى تأثير إضافة كل من الزنك، المستسين والبروستكلاندين (PGF2α) وخلطتها إلى السائل المنوي المبرد مختبرياً لثيران الهولشتاين.

2. الطرق المستخدمة

أجريت هذه الدراسة على ثيران هولشتاين من فئة البقرات المستأنسة من نوعية بولهامس، المعروفة بوجود خصائص جيدة للسهم، خلال الفترة من كانون الثاني 2019 إلى شباط 2020. تم استخراج العينة من البقرة أسبوعياً لمدة ثلاث أشهر، وتقييم السائل المنوي المبرد مختبرياً بطرق مختلفة.

3. النتائج

- تم اكتشاف أن إضافة الزنك إلى السائل المنوي المبرد له تأثير إيجابي على خصائص السائل المنوي، حيث تبين أن إضافة 0.576 mmol/ ml من الزنك إلى السائل المنوي المبرد ينتج عنه زيادة في نسبة الحركة الفردية للثيران (P<0.05).
- تم اكتشاف أن إضافة المستسين له تأثير إيجابي على خصائص السائل المنوي، حيث تبين أن إضافة 5 mmol/ ml من المستسين إلى السائل المنوي المبرد ينتج عنه زيادة في نسبة الحركة الفردية للثيران (P<0.05).
- تم اكتشاف أن إضافة PGF2α له تأثير إيجابي على خصائص السائل المنوي، حيث تبين أن إضافة 37.5 pg/ ml من PGF2α إلى السائل المنوي المبرد ينتج عنه زيادة في نسبة الحركة الفردية للثيران (P<0.05).
- تم اكتشاف أن إضافة الخليط من الزنك والمستسين وPGF2α له تأثير إيجابي على خصائص السائل المنوي، حيث تبين أن إضافة 37.5 pg/ ml من الزنك و5 mmol/ ml من المستسين و37.5 pg/ ml من PGF2α إلى السائل المنوي المبرد ينتج عنه زيادة في نسبة الحركة الفردية للثيران (P<0.05).

4. الختام

تم استنتاج أن إضافة الزنك، المستسين والبروستكلاندين وخلطتها إلى السائل المنوي المبرد له تأثير إيجابي على خصائص السائل المنوي. كما تم استنتاج أن إضافة PGF2α له تأثير إيجابي على خصائص السائل المنوي. النتائج هذه جيدة لتمكين الباحثين من استكمال الدراسة وتطويرها في المستقبل.

5. السماح

تم رفع النتائج بموافقة من إدارة المختبرات والبحثية في مزرعة الثروة البيئية/وزارة الزراعة في منطقة أبو غريب غرب بغداد.
Introduction

Artificial insemination plays an important role in genetic improvement in dairy bulls via which a single ejaculate from bull could inseminate many cows. Cooling of semen storage facilitates semen transport for a distances and enables extension of superior genetic merit. Cooling have an exert effect on physiological as well as certain chemical stress on sperm cell (Chatterje et al., 2001). These stress may be induced by oxidative stress by free radical (Salvader et al., 2006). Sperm cells have a high content of unsaturated fatty acid but not an antioxidant in it's cell membrane, So the cell membranes is highly sensitive to the lipid peroxidation via free radical and H$_2$O$_2$ (Sinha et al., 1996).

Cellular damage resulted from oxidative stress due to reactive oxygen species (ROS) produced from cell components of semen during cooling. It may leads to decrease in motility and fertility during storage, while it may cause low temperature on structure of membrane of sperm destabilization (Mustafa and Necmettin, 2007).

The present study aimed to study the effect of addition of antioxidant such as zinc sulphate, cysteine and PGF2α on bull diluted and cooled semen.

Materials and Methods

The current study was carried out to investigate the effect of addition of zinc sulphate, cysteine, Prostaglandin F2α and their combination to diluted semen on semen characteristics of Holstein bulls after different periods of cooling.

The study was conducted on seven Holstein bulls, Aged between 2.5- 3 years, presented at Artificial insemination centers/ Directorate of Animal Resources/ Ministry of Agriculture at Abu- Graib at the west of Baghdad during the period from December 2019 to August 2019.

Semen was collected by Artificial Vagina one ejaculate per a week for three months. Fresh semen was evaluated which were of bad grade. Pooled semen were divided into five parts. The 1st part (T$_1$) only diluted semen (Tris-based extender) serve as a control. The 2nd part (T$_2$) added 0.576 mmol/ ml of zinc sulphate to diluted semen. The 3rd part (T$_3$) added 5 mmol/ ml of cysteine to diluted semen. The 4th part (T$_4$) added 37.5 pg/ ml of PGF2α to diluted semen. The 5th part (T$_5$) added a combination of previous components to the diluted semen. Then the semen was evaluated on 5°C and after 24, 48, and 72 hrs. of cooling. The following parameters of semen were evaluated: Mass and Individual motility according to (5). Sperm abnormalities and a live spermatozoa according to (6). Measurements of sperm concentration with spectrophotometer according to the method of (7). Spermatozoal plasma membrane integrity percent were (HOST) calculated according to the method of (8). Acrosomal integrity percent using Gemi stain according to the method of (9).

Statistical analysis were used according to SAS (10) and Duncan multiple range test(11).

Results and Discussion

Table-1 showed semen parameters of fresh semen of Holstein bulls which is of bad quality. These parameters includes: ejaculate volume, mass motility, individual motility, liveability of spermatozoa, sperm concentration, sperm abnormalities, plasma membrane integrity and acrosomal integrity (Al).

Table-2 showed the effect of different treatment on different periods on individual motility of Holstein bulls semen. It has been shown that there was no significant difference between the five treatment during the periods of cooling at 5C°, 24, 48 and 72 hrs. on the percent of individual motility of spermatozoa, although there was mathematical difference between treatments. While there was a significant superiority during periods for the some treatment (P<0.01) at 5C° as compared with the periods of control, PGF2α, zinc sulphat and their combination. Cysteine treatment showed no differences during different periods of cooling at the same treatment. this superiority might be due to that the best temperature of preservation in cooling at 4-5 C° for several days (12, 13, 14).

These results a greed with (15) who claimed that the quality of semen decrease with the time of preservation till 48 hrs. according to the liveability of spermatozao and the effect of preservation temperature.

Table- 3 showed the effect of different treatment on liveability of spermatozao of Holstein bull after different periods of cooling. The results showed that the percent of spermatozao liveability is highly significant (P<0.05) in zinc sulphate and cysteine treatments as compared
with control one. While there was no differences with PGF2α and combination treatments at 5°C of cooling. These differences has been explained by (16) who added 1 mg/ ml of zinc to the semen and observed no changes in the motility and the percent of forward movement as compared with other treatments. The results agreed with (17) who explained that zinc have the ability to protect sulfhydryl group (Sh) from oxidation enhance the synthesis of molecules rich with (Sh) which reduce glutathione and melatonin which acts as antioxidant. (18) reported that addition of zinc in a concentration of 0.8 mg/ ml to the bulls semen improve the concentration of spermatozoa and the acrosomal integrity of the sperms. The results of our study disagreed with (19) who observed that addition of high levels of zinc (50, 100 and 150) mmol/ ml to the diluted semen of Holstein bulls have no effect on morphology and motility of spermatozoa as compared with control one.

It has been reported that high concentration of zinc might decrease oxygen consumption in sperm cell respiration that affect motility. These variation might be due to differences in the concentration added by the workers (20).

Also the results agreed with (21) who explained that cysteine act on glutathione peroxidase that improve the content of spermatozoa from glutathione. It is also act on reduction of reactive oxygen species (ROS) and decrease lipid and nucleic acid oxidation that percent damage occurred to the head and protect the plasma membranes and mitochondria of sperm cells. The results of cysteine disagreed with the (22) who reported the negative effect of addition of cysteine in a high concentration (12 and 15) mmol/ ml to the semen of Jersy bulls.

Table-4 showed the effect of different treatments on the percent of sperm cells abnormalities of Holstein bulls semen after different periods of cooling. It has been observed that there was a significant decrease (P<0.05) in the percent of sperm abnormalities at the combination treatment and PGF2α as compared with other treatments and different periods at 5°C and 24 hrs. This superiority of combination might be due to the synergistic effect between the components. The zinc showed a great effect on growth of the testes, spermatogenesis and the activity of spermatozoa, in addition to its action as antioxidant (17, 23). Cysteine acts as a reducing agent to ROS free radicals and decrease the lipid and nucleic acid oxidation with protection of head, plasma membrane and mitochondria of spermatozoa (24). (25) showed that addition of PGF2α in a concentration of 37.5 pg/ ml to the diluted and cooled semen improved semen characteristic of Holstein-Fresian bulls. Other workers showed a decrease in sperm abnormalities after addition of PGF2α to the semen of Fri-Raraan cross-Breed (26).

There was no information available on addition of this combination to the semen of bulls. It has been observed that the best temperature of preservation for cooled semen at 4-5 C° (13, 14). The quality of semen reduced with the time of preservation till 48 hrs. according on the nature of diluent, temperature and the method of preparation of the diluent (15).

Table-5 showed the effect of different periods of cooling on hypo-osmotic swelling test (HOST) plasma membrane sperm cell integrity. The results showed that the zinc sulphate treatment differ significantly (P<0.05) from that of the combination while showed no differences with the control, PGF2α and cysteine treatment for the same periods of preservation at 5°C. This might be due to that the zinc protect sulfhydryl group protein from oxidation and acts to synthesized molecules rich in (Sh) that decrease the glutathione and melatonin which plays a role as antioxidant (17).

Our results a greed with the (27) who explained that addition of zinc leads to increase the integrity of spermatozoal cell membrane and reduce the damage of DNA of the cells. Similar results have been reported by (19) who observed that addition of zinc in concentration of (50, 100 and 150) mmol/ ml semen diluent of Holstein bulls increase the cell membrane integrity of the spermatozoa. Also (28) observed that addition of yeast enhanced with zinc and selenium to the ram ration leads to improvement of reproductive performance of the ram's (includes: ejaculate volume, individual motility, mass motility, liveability and concentration of spermatozoa). The results also showed there was a significant difference (P<0.05) in the characteristic of HOST between zinc and cysteine as compared with the PGF2α and the combination treatments during the period of preservation at 24 hrs. The superiority of cysteine treatments might be
due to its action to protect the plasma membrane of bulls spermatozoa (29). This is also in accordance with (30) who explained that addition of cysteine to Tris dilute of Holstein bulls semen leads to improvement of semen parameters. The results also agreed with (25) on the effect of PGF2α and zinc significantly (P<0.05) during cooled preservation at 48 her.

Table-6 showed the effect of different treatment after different periods of cooling on acrosomal integrity (AI) of Holstein bulls semen. The results showed that semen examined at 5°C the zinc treatments showed significant difference (P<0.05) in acrosomal integrity (AI) as compared with control, PGF2α and combination treatment.

This might be due to the effect of zinc on lipid fluidity that affect stability of biological membrane and it is also participate and play a role in sperm capacitation and acrosomal reaction (31). These results agreed with (32) who reported that zinc additives protect sperm cells from bacterial infection and prevent chromosomal damage. Similar observations have been made by (18).

Conclusion

It was concluded from this study that addition, of zinc sulphate, cysteine, PGF2α to the Holstein bulls semen improve the characteristics of semen parameters.

Table (1) semen characteristics of Holstein bulls (Mean ± SE)
Characteristics

Volume (ml)
Mass motility (%)
Individual motility (%)
Liveability of spermatozoa (%)
Sperm concentration (million/ml)
Sperm abnormalities (%)
Plasma membrane integrity (HOST) (mOsm/L)
Acrosomal integrity (AI) (%)

Table (2) Effect of treatment and time on the individual motility of sperm in the ejaculate of Holstein bulls after different periods of cooling (Mean ± SE)
Treatment

Control
Zinc sulphate
Cysteine
PGF2α
Combination
Level of significance

*The different capital letters refer to significant differences between different periods (raw) at (P≤0.01) NS= Non-significant.
Table (3) Effect of treatment and time on the liveability of spermatozoa in the semen of Holstein bulls after different periods of cooling (Mean ± SE)

Treatment	5 C°	24 hrs.	48 hrs.	72 hrs.	Level of significance
Control	74.41 ± 1.67	72.89 ± 5.00	71.10 ± 3.79	68.57 ± 3.08	N.S
Zinc sulphate	80.90 ± 1.53	79.00 ± 1.02	77.20 ± 1.76	77.00 ± 2.87	N.S
Cysteine	77.50 ± 1.40	75.43 ± 1.79	74.70 ± 2.88	72.89 ± 2.53	N.S
PGF2α	76.41 ± 1.37	74.00 ± 2.51	72.10 ± 2.33	72.00 ± 2.44	N.S
Combination	76.91 ± 1.75	76.00 ± 1.83	73.25 ± 3.13	70.78 ± 2.80	N.S

*The different small letters refer to significant differences between different treatment groups (column) at (P≤0.05)
**NS= Non-significant.

Table (4) Effect of treatment and time on the Sperm abnormalities in the semen of Holstein bulls after different periods of cooling (Mean ± SE)

Treatment	5 C°	24 hrs.	48 hrs.	72 hrs.	Level of significance
Control	9.83 ± 0.88	14.33 ± 1.05	15.50 ± 1.53	19.42 ± 2.44	**
Zinc sulphate	9.00 ± 0.82	14.89 ± 0.90	16.50 ± 1.34	19.12 ± 2.07	**
Cysteine	9.10 ± 1.14	16.62 ± 1.95	17.22 ± 1.81	18.57 ± 2.09	**
PGF2α	9.12 ± 0.41	12.67 ± 1.06	16.70 ± 1.32	16.87 ± 1.95	**
Combination	6.16 ± 0.93	13.89 ± 1.33	15.10 ± 1.86	16.00 ± 2.04	**

*The different small letters refer to significant differences between different treatment groups (column) at (P≤0.05)
**The different capital letters refer to significant differences between different periods (raw) at (P≤0.01)
NS= Non-significant.
Table (5) Effect of treatment and time on the (HOST) in the semen of Holstein bulls after different periods of cooling (Mean ± SE)

Treatment	5°C	24 hrs.	48 hrs.	72 hrs.	Level of significance
Control	68.50 ± 1.29	68.00 ± 1.47	67.00 ± 1.82	65.71 ± 2.24	N.S
	ab	ab	b	b	
Zinc sulphate	73.33 ± 2.04	73.30 ± 1.09	73.29 ± 1.55	71.62 ± 2.12	**
	a	a	a	a	
Cysteine	71.70 ± 1.56	69.43 ± 0.99	68.62 ± 1.95	66.44 ± 1.16	**
	ab	a	ab	b	
PGF2α	68.83 ± 1.83	66.80 ± 2.61	66.75 ± 2.69	64.87 ± 1.51	N.S
	ab	b	a	b	
Combination	67.67 ± 2.09	67.67 ± 1.85	66.33 ± 2.71	66.25 ± 2.65	N.S
	b	b	b	a	
Level of significance	*	*	*	*	--

*The different small letters refer to significant differences between different treatment groups (column) at (P≤0.05)

**The different capital letters refer to significant differences between different periods (raw) at (P≤0.01)
NS= Non-significant.

Table (6) Effect of treatment and time on the Acrosomal integrity (AI) in the semen of Holstein bulls after different periods of cooling (Mean ± SE)

Treatment	5°C	24 hrs.	48 hrs.	72 hrs.	Level of significance
Control	69.83 ± 1.58	71.22 ± 2.68	68.50 ± 2.17	68.00 ± 1.94	N.S
	b	ab	ab	a	
Zinc sulphate	74.36 ± 1.27	75.55 ± 2.29	73.00 ± 1.54	72.37 ± 2.27	N.S
	a	a	a	a	
Cysteine	70.70 ± 1.11	70.87 ± 1.84	70.71 ± 1.73	68.78 ± 1.40	N.S
	ab	a	a	a	
PGF2α	70.08 ± 1.04	69.67 ± 2.14	69.50 ± 2.25	67.20 ± 1.59	N.S
	b	ab	a	ab	
Combination	69.50 ± 1.70	70.50 ± 1.74	66.67 ± 2.06	66.25 ± 2.49	N.S
	b	ab	b	a	
Level of significance	*	*	*	*	--

*The different small letters refer to significant differences between different treatment groups (column) at (P≤0.05)

NS= Non-significant.

References
1. Chatterjee S., de Lamirande, E., Gagnon, C. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol. Reprod. Dev. 2001, 60(4): 498- 506.
2. Salvador, I., Yániz, J., Viudes-de-Castro, M. P., Gómez, E. A., Silvestre, M. A. Effect of solid storage on caprine semen conservation at 5°C. Theriogenology, 2006 66(4): 974-981.
3. Sinha, M. P., Sinha, A. K., Singh, B. K., Prasad, R. L. The effect of glutathione on the motility, enzyme leakage and fertility of frozen goat semen. Anim. Reprod. Sci., 1996. 41(3-4): 237-243.
4. Bucak, M. N., Tekin. N. Protective effect of taurine, glutathione and trehalose on the
liquid storage of ram semen. Small Rumin. Res., 2007, 73 (1-3): 103- 108.
5. Walton, A. Technique of artificial insemination. mp. Bur. Anim. Genet, P. 56. 1933.
6. Swanson, E. W., Bearden, H. J. An eosin-nigrosin stain for differentiating live and dead bovine spermatozoa. J. Anim. Sci., 1951, 10(4): 981-987.
7. Hancock, J. L. A staining technique for the study of temperature-shock in semen. Nature, 1951, 167(4243): 323-324.
8. Jeyendran, R. S., Van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G., Zaneveld, L. J. D. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Reproduction, 1984, 70(1): 219-228.
9. Kovacs, A., Foote, R. H. Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotech. Histochem., 1992, 67(3): 119-124.
10. SAS. Statistical analysis system. User's Guide. Statistical. Version 9th ed., SAS. Inst. Inc. Cary N. C., USA. 2012.
11. Duncan, D. Multiple range and multiple F-test. Biometrics. 11: 1-24. 1955.
12. Munsi, M. N., Bhuiyan, M. M. U., Majumder, S., Alam, M. G. S. Effects of exogenous glutathione on the quality of chilled bull semen. Reprod. Domest. Anim., 2007, 42(4): 358- 362.
13. Yániz, J. L., Santolaria, P., Marco-Aguado, M. A., López-Gatius, F. Use of image analysis to assess the plasma membrane integrity of ram spermatozoa in different diluents. Theriogenology, 2008, 70(2): 192-198.
14. Azawi, O. I., Hussein, E. Kh. Effect of vitamins C or E supplementation to Tris diluent on the semen quality of Awassi rams preserved at 5 °C. Vet. Res. Forum, 2013, 4 (3): 157- 160.
15. Crespilho, A. M., Papa, F. O., Santos, M. de P., de Sa Filho, M. F. Use of cooled bull semen as a strategy to increase the pregnancy rate in fixed-time artificial insemination programs-case report. Am. J. Anim. Vet. Sci., 2012, 7(4): 175- 179.
16. Kirilova, I., Ivanova-Kicheva, M., Daskalova, D., Gradinarska, D., Kukov, A., Dimitrov, P., Hristova, E. The role of antioxidants and biologically active substances on the motility and speed parameters of buffalo bull spermatozoa after cryopreservation. Bulgarian J. Agric. Sci., 2015, 21 (1): 209-214.
17. Marreiro, D. D., Cruz, K. J., Morais, J. B., Beserra, J. B., Severo, J. S., de Oliveira, A. R. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel.), 2017, 6(2): 24.
18. Anchordoquy, J. P., Anchordoquy, J. M., Lizzaraga, R. M., Nikoloff, N., Pascua, A. M., Furnus, C. C. The importance of trace minerals copper, manganese, selenium and zinc in bovine sperm-zona pellucida binding. Zygot., 2019, 27(2): 89- 96.
19. Farhadi, F., Armin, T., Malek, S. The effect of adding different levels of zinc sulfate to semen diluent on quality of frozen-thawed sperm in bull. Iranian J. Anim. Sci., 2015, 45(4): 335- 342.
20. Colagar, A. H., Marzony, E. T., Chaichi, M. J. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr. Res., 2009, 29: 82-88.
21. Zhu, Z., Ren, Z., Fan, X., Pan, Y., Lv, S., Pan, C., Lei, A., Zeng, W. Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages. PLoS One, 2017, 12(7): 1-19.
22. Bhardwaz, A., Pandey, A. K., Sharma, U., Razzaque, W. A. A., Gupta, S. K., Kumar, Sh., Kumar, S. Effect of cysteine hydrochloride on post thaw viability and acrosomal integrity of Jersey bull semen. Vet. Pract., 2016, 17(2): 227- 228.
23. Dance, A., Thundathil, J., Blondin, P., Kastelic J. Enhanced early-life nutrition of Holstein bulls increases sperm production potential without decreasing postpubertal semen quality. Theriogenology. 2016, 86(3): 687- 694.
24. Zhao, J., Dong, X., Hu, X., Long, Z., Wang, L., Liu, Q., Sun, B., Wang, Q., Wu, Q., Li, L. Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis. Scientific Reports, 2016, 6 (22386): 1- 10.
25. Majeed, A. F., Omar, A. A., Ahmed, K. D., Mahmood, R. S., Hassan, R. M. Effect of addition of prostaglandin PGF2α and
oxytocin in vitro to diluted and cooled semen of Friesian bull. Euphrates J. Agric. Sci. Sec. Vet. Conf., College of Agriculture/ Al-Qasim Green University, 22-23/11/2017, PP. 563-568.

26. Jalmeria, N. S., Panth, S., Pandita, S., Roy, A. K., Ashutosh, M., Mohanty, T. K., Bhakat, M., Punetha, M., Gupta, D. Seasonal variations in hormones and enzymes of seminal plasma and its relationship with semen quality in crossbred cattle bulls. Biol. Rhythm Res., 2018, PP. 1-11.

27. Omu, A. E., Al-Azemi, M. K., Kehinde, E. O., Anim, J. T., Oriowo, M. A., Mathew, T. C. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med. Princ. Pract., 2008, 17(2): 108-116.

28. Aremmt, M. K. J. Effect of yeast (Saccharomyces Cerevisiae) enriched selenium or zinc in some physiological and reproductive traits of local sheep males. MSc. Thesis, College of Agricultural, University of Anbar. 2019.

29. Taşdemir, U., Tuncer, B. P., Büyükleblebici, S., Özgürtarş, T., Durmaz, E., Üyukleblebici, O. Effects of various antioxidants on cryopreserved bull sperm quality. Kafkas Univ. Vet. Fak. Derg., 2014, 20(2): 253-258.

30. Güngör, Ş., Ata, A., İnanç, M. & Kastelic, J. Effect of various antioxidants and their combinations on bull semen cryopreservation. Turk. J. Vet. Anim. Sci., 43: 590-595. 2019.

31. Andrews, J. C., Nolan, J. P., Hammerstedt, R. H., Bavister, B. D. Role of zinc during hamster sperm capacitation. Biol. Reprod., 1994, 51(6): 1238-1247.

32. Khan, M. S., Zaman, S., Sajjad M, Shoaib M., Gilani G. Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int. J. Appl. Bas. Med. Res., 2011, 1(2): 93-96.