LIMITING ABSORPTION PRINCIPLE
AND SINGULAR SPECTRUM

NURULLA AZAMOV

ABSTRACT. In this paper I give an explicit construction of an analogue of
eigenspace for points of singular spectrum of a self-adjoint operator. This con-
struction is based on an abstract version of homogeneous Lippmann-Schwinger
equation.

1. INTRODUCTION

Let \mathcal{H} and \mathcal{K} be (complex separable) Hilbert spaces, H_0 a self-adjoint operator
on \mathcal{H} and $F: \mathcal{H} \to \mathcal{K}$ a bounded operator with zero kernel and co-kernel such that
the sandwiched resolvent
$$T_z(H_0) = F(H_0 - z)^{-1}F^*$$
is compact. One says that the limiting absorption principle (LAP) holds at a real
number λ if the norm limit
$$T_{\lambda+i0}(H_0) := \lim_{y \to 0^+} T_{\lambda+iy}(H_0)$$
exists. Usually LAP means that such limit exists for a.e. λ in some open interval,
but for the present purpose it suffices to consider it at a single point. It may well
happen that the limit (1) does not exist. In this case there are two scenarios: it is
possible that the limit
$$T_{\lambda+i0}(H_r),$$
exists for at least one real number $r \in \mathbb{R}$, or otherwise. In the first scenario the
limit exists for all real r except some discrete set of values, called coupling resonance
points. In the first of these scenarios λ is called a semi-regular point of the pair
H_0, F, and in the second λ is called essentially singular. For a semi-regular point λ
the kernel, denoted
$$\Upsilon_{\lambda+i0}(H_r),$$
of the operator $1 - r T_{\lambda+i0}(H_r)$ is well-defined for non-resonance values of r and in
that case it does not depend on the choice of such r. The aim of this paper is to
prove the following theorem. At the end of this introduction I make some remarks
explaining why such a theorem is interesting.

2000 Mathematics Subject Classification. Primary 47A40;
Key words and phrases. Lippmann-Schwinger equation, singular spectrum.
Theorem 1.1. Assume the above about H_0 and F. Suppose there exists a function g from $L^1(\mathbb{R}, (1 + x^2)^{-1} \, dx)$ such that for a.e. λ

$$\sup_{y \in [0, 1]} \| T_{\lambda+iy}(H_0) \| \leq g(\lambda).$$

Then for a semi-regular point λ

$$\bigcap_{\lambda \in O} FEO(H_0)H = \Upsilon_{\lambda+i0}(H_0),$$

where the intersection is over all open neighbourhoods of λ.

Theorem 1.1 immediately implies the following theorem which gives a partial positive solution to [1, Subsection 15.9, Conjecture 7].

Theorem 1.2. Assume the premise of Theorem 1.1. If $\chi \in H$ obeys $F\chi \in \Upsilon_{\lambda+i0}(H_0)$ then $H_0 \chi = \lambda \chi$.

Thus, given the condition (4), Theorems 1.2 and [1, Theorem 4.1.1] assert that

$$FV(\lambda, H_0) = \Upsilon_{\lambda+i0}(H_0) \cap \text{ran}(F),$$

where $V(\lambda, H_0)$ is the eigenspace of H_0 corresponding to an eigenvalue λ.

Remark 1. Assuming that the rigging F is bounded, the vector space $\text{ran}(F)$ endowed with the graph-norm, is a Hilbert space naturally isomorphic to H, the isomorphism being given by F itself. The equality (5) asserts that the eigenvectors of H_0 corresponding to an eigenvalue λ can be interpreted as those elements of $\Upsilon_{\lambda+i0}(H_0)$ which belong to the image of F. Vectors from $\Upsilon_{\lambda+i0}(H_0)$ which do not belong to $\text{ran}(F)$ can therefore be interpreted as generalised eigenvectors of H_0. Moreover, these generalised eigenvectors are F-images of elements of the singular subspace of H_0.

Remark 2. Instead of the straight line (2) we could have worked with the line $H_r = H_0 + rF^*JF$, where J is any bounded self-adjoint operator on K such that for some $r \in \mathbb{R}$ the limit

$$T_{\lambda+i0}(H_0 + rF^*JF)$$

exists (such operators J are called regular directions), — proof is exactly the same. But as far as Theorem 1.1 is concerned, this makes no difference since the solution set (3) to the equation

$$(1 - rT_{\lambda+i0}(H_0 + rF^*JF))u = 0$$

does not depend on a choice of a regular direction J and a non-resonant value of r, see [1]. Another reason for considering the direction Id instead of an arbitrary J is that if the limit (4) exists for some bounded J then it also exists for the identity operator $J = \text{Id}$, see [2].

Remark 3. The equation (7) is nothing else but the homogeneous version of an abstract Lippmann-Schwinger equation, see e.g. [4, §4.3] or [7]. For a semi-regular energy λ, the limit $T_{\lambda+i0}(H_0)$ fails to exist if and only if the equation (7) has a non-zero solution. The solutions can be interpreted as bound states or meta-stable states (also called resonances) of H_0 with energy λ, where bound states correspond to elements of (5).

Remark 4. Theorem 1.1 is not unrelated to the well-known Simon-Wolff criterion [6], see also [5]. This relation will soon be discussed elsewhere.
2. Proof of Theorem

Lemma 2.1. Let $H_1 = H_0 + V$. For any $w \in \rho(H_0)$ and $z \in \rho(H_1)$

$$\tag{8} (w-z)R_w(H_0)R_z(H_1) = -R_z(H_1) + R_w(H_0) \left[1 - VR_z(H_1) \right].$$

Proof. Using the second resolvent identity

$$R_w(H_0) = (1 - R_w(H_1)V)^{-1}R_w(H_1)$$

we rewrite $R_w(H_0)$ in terms of $R_w(H_1)$ with the aim to use next the first resolvent identity:

$$(w-z)R_w(H_0)R_z(H_1) = (w-z)(1 - R_w(H_1)V)^{-1}R_w(H_1)R_z(H_1)$$

$$= (1 - R_w(H_1)V)^{-1} \left[R_w(H_1) - R_z(H_1) \right]$$

$$= R_w(H_0) - (1 - R_w(H_1)V)^{-1}R_z(H_1).$$

Since $(1 - R_w(H_1)V)^{-1} = 1 + R_w(H_0)V$, this gives

$$(w-z)R_w(H_0)R_z(H_1) = R_w(H_0) - (1 + R_w(H_0)V)R_z(H_1)$$

$$= -R_z(H_1) + R_w(H_0) \left[1 - VR_z(H_1) \right].$$

\[\square\]

We only need to prove the inclusion

$$\tag{9} \mathcal{Y}_{\lambda+i0}(H_0) \subseteq \bigcap_{\lambda \in \mathcal{O}} \overline{FE_O(H_0)H},$$

since the other inclusion was proved in \[1\]. Let $u \in \mathcal{Y}_{\lambda+i0}(H_0)$, that is,

$$\tag{10} (1 - sT_{\lambda+i0}(H_s))u = 0.$$

Since solutions of \[10\] do not depend on the choice of a non-resonant value of s, without loss of generality we can assume that $s = 1$, in particular assuming that this value is non-resonant. Let

$$f_{\lambda+iy} := R_{\lambda+iy}(H_1)F^*u.$$

Our aim is to show that for small enough $y > 0$ the spectral representation of the vector $f_{\lambda+iy}$ with respect to H_0 is concentrated near λ.

Lemma 2.2. For $\lambda, x \in \mathbb{R}$ and $y > 0$ we have

$$\Im\langle f_{\lambda+iy}, R_{x+iy}(H_0) f_{\lambda+iy} \rangle$$

$$\tag{11} = (x - \lambda)^{-1} \Im \left((x - \lambda - 2iy)^{-1} \left[\ldots \left[u, \left[u, T_{\lambda+iy}(H_1)u \right] \right] \right] \right),$$

where

$$\ldots = -T_{\lambda+iy}(H_1) + T_{x-iy}(H_0)[1 - T_{\lambda+iy}(H_1)].$$
Proof. Using (8), we have
\[(x - \lambda)R_{x+iy}(H_0)\lambda+i\gamma = (x - \lambda)R_{x+iy}(H_0)R_{\lambda+i\gamma}(H_1)F^*u\]
\[= \left(-R_{\lambda+i\gamma}(H_1) + R_{x+iy}(H_0)\left[1 - F^*FR_{\lambda+i\gamma}(H_1)\right]\right)F^*u\]
\[= -f_{\lambda+i\gamma} + R_{x+iy}(H_0)F^*\left[u - T_{\lambda+i\gamma}(H_1)u\right].\]
Taking the scalar product of both sides of (12) with \(\langle f_{\lambda+i\gamma} \rangle\) and then taking the imaginary part of the resulting scalar products we get
\[(x - \lambda)\Im \langle f_{\lambda+i\gamma}, R_{x+iy}(H_0)f_{\lambda+i\gamma} \rangle = \Im \langle R_{\lambda+i\gamma}(H_0)f_{\lambda+i\gamma}, F^*\left[u - T_{\lambda+i\gamma}(H_1)u\right] \rangle.
Using (8) again, we transform the first argument of the last scalar product as follows:
\[R_{x-i\gamma}(H_0)f_{\lambda+i\gamma} = R_{x-i\gamma}(H_0)R_{\lambda+i\gamma}(H_1)F^*u\]
\[= (x - \lambda - 2i)\gamma^{-1} \times \left[-R_{\lambda+i\gamma}(H_1) + R_{x-i\gamma}(H_0)\left(1 - F^*FR_{\lambda+i\gamma}(H_1)\right)\right]F^*u.
Hence, denoting by \([\ldots]\) the expression in the last pair of square brackets, we get from (13)
\[(x - \lambda)\Im \langle f_{\lambda+i\gamma}, R_{x+i\gamma}(H_0)f_{\lambda+i\gamma} \rangle
= \Im \langle (x - \lambda - 2i)\gamma^{-1} [\ldots] F^*u, [u - T_{\lambda+i\gamma}(H_1)u] \rangle,
\]
as required.
\[\text{Lemma 2.3. Under the premise of Theorem 1.1 for any } \delta > 0 \]
\[\lim_{y \to 0^+} \int_{R \setminus (\lambda - \delta, \lambda + \delta)} \Im \langle f_{\lambda+i\gamma}, R_{x+i\gamma}(H_0)f_{\lambda+i\gamma} \rangle \, dx = 0.
Proof. We will use (11) for the integrand. The contribution of the summand
\(-T_{\lambda+i\gamma}(H_1)\) in \([\ldots]\) to the limit (10) is clearly zero. Thus, introducing the notation
\[\chi_{\lambda+i\gamma} := \left[1 - T_{\lambda+i\gamma}(H_1)\right]u,
\]
it suffices to prove that the limit of the integral of
\[(x - \lambda)^{-1} \Im \langle (x - \lambda - 2i)\gamma^{-1} \langle x - i\gamma(H_0)\chi_{\lambda+i\gamma}, \chi_{\lambda+i\gamma} \rangle \rangle\]
over \(x \notin (\lambda - \delta, \lambda + \delta)\) goes to zero.
By (11), the vector \(\chi_{\lambda+i\gamma}\) converges to zero as \(y \to 0^+\). Thus, by the assumption (4), the integrand converges to zero for a.e. \(x \notin (\lambda - \delta, \lambda + \delta)\). Moreover, by the same assumption we can apply the Lebesgue Dominated Convergence Theorem to interchange the limit \(y \to 0^+\) with the integration.

Now we can complete proof of Theorem 1.1. By Stone’s formula, the integral of
\[\pi^{-1} \Im R_{x+i\gamma}(H_0)\]
on the complement of \((\lambda - \delta, \lambda + \delta)\) converges strongly to
\[E_{R \setminus (\lambda - \delta, \lambda + \delta)}(H_0) + \frac{1}{2} E_{(\lambda - \delta, \lambda + \delta)}(H_0),\]
as \(y \to 0^+ \). Combining this with (15) gives
\[
\text{(16)} \quad E_{\mathbb{R} \setminus (\lambda - \delta, \lambda + \delta)}(H_0)f_{\lambda + iy} \to 0
\]
as \(y \to 0^+ \).

In order to prove the inclusion (11), it suffices to show that for any \(\varepsilon > 0 \) and \(\delta > 0 \) there exists \(\psi \in E_{(\lambda - \delta, \lambda + \delta)}(H_0) \) such that the distance between \(u \) and \(F\psi \) is less than \(\varepsilon \). We claim that for small enough \(y > 0 \) the choice
\[
\psi = E_{(\lambda - \delta, \lambda + \delta)}f_{\lambda + iy}
\]
works. Indeed,
\[
\|u - F\psi\| = \|u - FE_{(\lambda - \delta, \lambda + \delta)}f_{\lambda + iy}\|
\leq \|u - Ff_{\lambda + iy}\| + \|Ff_{\lambda + iy} - FE_{(\lambda - \delta, \lambda + \delta)}f_{\lambda + iy}\|
\leq \|u - T_{\lambda + iy}(H_1)u\| + \|F\|\|f_{\lambda + iy} - E_{(\lambda - \delta, \lambda + \delta)}f_{\lambda + iy}\|.
\]
Since \(u \) is a solution to (10) (with \(s = 1 \)), for all small enough \(y > 0 \) the first summand is \(< \varepsilon/2 \). By (16), for all small enough \(y > 0 \) the second summand is also \(< \varepsilon/2 \).

Proof is complete.

Acknowledgements. I thank my wife for financial support during the work on this paper.

References

[1] N. A. Azamov, Spectral flow inside essential spectrum, Dissertationes Math. 518, 1-156 (2016)
[2] N. A. Azamov, Spectral flow inside essential spectrum IV: \(F^*F \) is a regular direction, arXiv: 2109.10545
[3] N. A. Azamov, Spectral flow inside essential spectrum VI: on essentially singular points, arXiv: 2110.08699
[4] F. A. Berezin, M. A. Shubin, Schrödinger equation, Dordrecht; Boston: Kluwer Academic Publishers, 1991
[5] B. Simon, Trace Ideals and their Applications, Second edition, Math. Surveys Monogr. (Amer. Math. Soc., 2005)
[6] B. Simon, T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math. 39 (1986), 75–90
[7] J. R. Taylor, Scattering theory, John Wiley & Sons, Inc. New York

Independent scholar, Adelaide, SA, Australia
Email address: azamovnurulla@gmail.com