Reciprocal relationship between expression of hypoxia inducible factor 1α (HIF-1α) and the pro-apoptotic protein Bid in ex vivo colorectal cancer

MM Seenath1,2, D Roberts1, C Cawthorne1, MP Saunders3, GR Armstrong4, ST O'Dwyer2, IJ Stratford5, C Dive1,5,6 and AG Renehan6,1,2

1Clinical and Experimental Pharmacology, Paterson Institute of Cancer Research, Manchester, UK; 2Department of Surgery, Christie Hospital NHS Foundation Trust, Manchester, UK; 3Department of Clinical Oncology, Christie Hospital NHS Foundation Trust, Manchester, UK; 4Department of Histopathology, Hope Hospital, Salford, UK; 5School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK; 6School of Cancer and Imaging Sciences, University of Manchester, Manchester, UK

Hypoxia inducible factor 1 (HIF-1) represses the transcription of pro-apoptotic bid in colorectal cancer cells in vitro. To assess the clinical relevance of this observation, HIF-1α and Bid were assessed in serial sections of 39 human colorectal adenocarcinomas by immunohistochemistry. In high HIF-1α nuclear-positive cell subpopulations, there was a significant reduction in Bid expression (ANOVA, P = 0.04). Given the role of Bid in drug-induced apoptosis, these data add impetus to strategies targeting HIF-1 for therapeutic gain.

British Journal of Cancer (2008) 99, 459–463. doi:10.1038/sj.bjc.6604474 www.bjcancer.com
Published online 22 July 2008
© 2008 Cancer Research UK

Keywords: colorectal cancer; tumour hypoxia; Bid; HIF-1α

Approximately 30–50% of patients diagnosed with colorectal cancer (CRC) (35,000 new cases per year in the United Kingdom) will either present with or develop distant metastases. For these patients, management with combination chemotherapy offers survival prolongation (Saunders and Iveson, 2006), but the disease course is frequently characterised by acquired drug resistance manifesting as tumour progression and the need to alter treatment. Tumour hypoxia and suppression of apoptosis are important drivers of drug (Makin and Dive, 2003; Shannon et al, 2003) and radiotherapy (Saunders et al, 2002) resistance in solid tumours. The transcription factor, hypoxia inducible factor-1 (HIF-1), consists of α and β subunits: the former is ubiquitinated and degraded in normoxia but stabilised in hypoxia; the latter is constitutively expressed independent of oxygen (Semenza, 2003). Under hypoxic conditions, HIF-1α is translocated to the cell nucleus where it dimerises with HIF-1β to bind hypoxia-responsive elements (HRE) in target gene promoters. Hypoxia inducible factor-1 targets encode multiple components of adaptive pathways, including increased glucose uptake, pH stabilisation (via carbonic anhydrase (CA-IX) (Wykoff et al, 2000), and regulation of apoptosis (Greijer and van der Wall, 2004).

Of the Bcl-2 family of apoptosis regulatory proteins, pro-apoptotic Bid is of particular interest as it links the mitochondrial (intrinsic)- and death receptor (extrinsic)-driven apoptotic pathways (Andersen et al, 2005; Letai, 2008). In exploring links between tumour hypoxia and apoptosis, we previously demonstrated that HIF-1α repressed transcription of bid in CRC cell lines in vitro (Erler et al, 2004). Moreover, a reciprocal relationship was demonstrated between hypoxic regions and Bid expression in CRC xenografted tumours (Erler et al, 2004). This study sought to determine the clinical significance of these observations and examined the relationship between the number of cells with stabilised nuclear HIF-1α and Bid expression in ex vivo CRC tissue. To assess HIF-1 functionality, nuclear HIF-1α expression was examined in parallel with CA-IX.

MATERIALS AND METHODS

Patients

Tissues from 39 patients with colorectal adenocarcinoma were used from the joint Christie Hospital and Hope Hospital CRC tissue banks (Manchester, UK) under ethical approvals (LREC-02/051; 03/SM/449). Clinical details have been published previously (Renehan et al, 2000; Bibi et al, 2006). All samples were from luminal tumour edges and processed, formalin-fixed, and paraffin-embedded using standard operational procedures.

Immunohistochemical staining and analysis

Antibodies used were mouse monoclonal anti-human HIF-1α (610958, diluted 1:100, BD Biosciences, Oxford, UK); goat polyclonal anti-human Bid (1:50, Santa Cruz Biotechnology, CA, USA); and mouse anti-human CA-IX (anti-MN 75, 1:20, kindly
Figure 1 Experimental controls for immunohistochemistry. (A) Substitution of the primary antibody with mouse IgG1 at the same dilution was used as a negative control in all experiments. (B) Normal large bowel mucosa was an additional IgG1-negative control. (C) Representative immunostaining for HIF-1α demonstrating immunopositivity in close proximity to blood vessels (arrows). Both nuclear and cytoplasmic staining is seen. (D) and (E) Formalin-fixed and paraffin-embedded pellets of HT-29 human colorectal cancer cells previously cultured for 16 h in normoxic or hypoxic conditions (1% O2.) and stained for HIF-1α. Only nuclear staining, as seen in hypoxic cells, was considered positive; we considered the diffuse cytoplasmic staining in normoxic cells as nonspecific, reasoning that HIF-1α is not transcriptionally active in cytosol. (F) and (G) Formalin-fixed and paraffin-embedded pellets of Bid knockout and wild-type mouse embryonic fibroblasts (kindly provided by SJ Korsmeyer, Harvard Medical School, Boston, MA, USA) were used as positive and negative controls for Bid. Pellets were processed identical to that for human tumour specimens. (H–J) Bid immunostaining in human adenocarcinomas with representative sections of weak (score 1), moderate (score 2), and strong (score 3) staining. The magnification bar for all sections is 50 μm.
A series of experiments were repeated for paired HIF-1α and Bid immunostaining, antigen retrieval was by microwaving in 10 mM citrate buffer (pH 6.0 ± 2 ± 10 min), and the Tyramide Signal Amplification System (NEN Life Sciences, Boston, MA, USA) was used to optimise HIF-1α staining. All staining was completed using diaminobenzidine (EnVision HRP kit, Dako, Cambridge, USA) for 2–3 min before counterstaining with haematoxylin. A variety of approaches were used to control the experiment (see legend, Figure 1). Batch-to-batch variation was assessed using two regions with clear high or low nuclear HIF-1α expression, comparing sections from these with each batch.

Hypoxia inducible factor-1α expression was heterogeneous both within and between tumours. To quantify this, a scoring system was developed with nuclear HIF-1α expression as a continuous variable, and the number of immunopositive cells expressed per area (see below). Immunopositivity was defined as strong nuclear staining; cytoplasmic staining alone was considered negative. The mean HIF-1α score was based on the average of three counts. A pilot study identified that all tumours were HIF-1α immunopositive, but that high- and low-positive subpopulations existed using a cutoff of 20 positive cells per 40 000 μm² (200 × 200).

Expression scores for Bid and CAIX were semiquantitative based on stain intensity (Rhodes et al, 2000). Bid was assigned as weak, moderate, or strong (scored as 1, 2, or 3, respectively). For CA-IX, some tumours exhibited no staining and, therefore, the scores included zero. From these scores, a consensus of three observers was taken.

To quantify specifically the relationship between nuclear HIF-1α and Bid expression, a technique of paired same area serial analysis was developed. Each specimen was sectioned to produce serial slides 4 μm apart. Slides were viewed and imaged using a Nikon E600 microscope (× 100 magnification). A 200 × 200 μm² boxed area of high HIF-1α staining was selected and an identical box placed on the corresponding area on the Bid slide. This procedure was repeated for low HIF-1α areas resulting in 78 paired analyses. A series of experiments were repeated for paired HIF-1α and CA-IX.

Assessment of internal validity

Interobserver variations were assessed to confirm the validity of our analytic approaches. The number of nuclear HIF-1α-immunopositive cells within each boxed area was counted independently by three observers (MMS, MPS, and CD). For Bid and CA-IX, tumour images were randomised before the same observer assessed staining within the assigned boxes.

Statistical analysis

Distributions of mean nuclear HIF-1α were skewed, and were therefore log-transformed. Comparisons of means used univariate and multivariate analysis of variance (ANOVA). Other immunostaining scores were treated as ordinal. Interobserver variation of continuous data (mean nuclear HIF-1α) was assessed using intraclass correlations: for ordinal data (Bid and CA-IX), χ-correlations were performed. All analyses were performed using STATA (version 9.0, College Station, TX, USA).

RESULTS

Immunopositivity for nuclear HIF-1α was present in all adenocarcinomas but was heterogeneous within tumours. Hypoxia inducible factor-1α staining was noted adjacent to areas of necrosis but also adjacent to blood vessels (Figure 1C). Bid immunostaining was diffuse non-nuclear and positive in all sections but its intensity varied between tumours (Figure 1E).

Areas of high HIF-1α immunopositivity were often associated with low Bid expression, whereas areas of low HIF-1α immunopositivity were associated with variable Bid expression. This was quantified as follows: for high-HIF-1α areas, there was a stepwise reduction in Bid expression with increasing mean HIF-1α positivity (ANOVA, P = 0.04) (Figure 2A). This relationship was absent for low HIF-1α areas.

Mean HIF-1α immunopositivity correlated with the total number of epithelial cells per square (r = 0.86, P < 0.001), that is,
cell density. To assess this further, a multivariate ANOVA model was generated, and demonstrated the attenuation of the extent of inverse association between mean HIF-1α and Bid expression in the high HIF-1α subpopulations (P = 0.07).

In the assessment of HIF-1 functionality, there was coincident staining of mean HIF-1α immunopositivity with CA-IX immunopositivity (ANOVA, P = 0.06) (Figure 2B).

Internal validity
The intraclass correlation for HIF-1α immunopositivity counts (among high HIF-1α areas) was 0.77 (95 confidence interval: 0.67 – 0.88), with an estimated reliability of 91%. The k-correlations for observer 1 vs 2, 1 vs 3, and 2 vs 3 were as follows: Bid: 0.72, 0.72, and 0.83; CA-IX: 0.55, 0.75, and 0.56, respectively.

DISCUSSION
We purposefully limited our clinical study design to test a single hypothesis that HIF-1 represses bid transcription leading to reduced Bid expression in ex vivo CRC having shown that hypoxia-driven downregulation of Bid occurred via a HIF-1-dependent pathway in CRC cell lines in vitro. We had demonstrated in vitro that this mechanism was operational during hypoxic resistance to etoposide and oxaliplatin, which was overcome to a degree by forced maintained expression of Bid. When CRC lines were xenografted into CD1 nude mice, a striking reciprocal relationship was observed between the hypoxia marker pimonidazole, which formed a penumbra adjacent to necrotic regions (Erler et al, 2004). However, although the tumour–xenograft model is widely used for preclinical testing of anticancer agents, it has two key limitations – first, the degree of hypoxic resistance to etoposide and oxaliplatin, which was currently in early clinical trial (Semenza, 2003; Melillo, 2007). Hypoxia inducible-factor-1 inhibition could potentially ablate several adaptive responses that allow tumour cell survival under conditions of compromised oxidative phosphorylation. Negating HIF-1 functions improves response to therapy (Hussein et al, 2006) and small-molecule HIF-1 inhibitors are currently in early clinical trial (Semenza, 2003; Melillo, 2007).

The data presented here give additional impetus to targeting HIF-1 for therapeutic gain, as it is predicted to increase Bid levels and, in turn, reduce the threshold for apoptosis.

ACKNOWLEDGEMENTS
We acknowledge the following funding: MMS was funded by Christie Hospital NHS Foundation Trust, Manchester; CC and the running costs for this project were supported by Cancer Research UK (C147 held by CD). DR was funded by a CR-UK project grant (C84/A43394) held by IJS, who is supported by an MRC programme grant (G6500366). AGR is an HEFCE-funded senior lecturer.

Conflict of interest
The authors state no conflict of interest.

REFERENCES
Andersen MH, Becker JC, Straten P (2005) Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4: 399 – 409
Bibi R, Pranesh N, Saunders MP, Wilson MS, O’Dwyer ST, Stern PL, Renehan AG, Dive C (2004) Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 24: 2875 – 2889
Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57: 1009 – 1014
Hussein D, Estlin EJ, Dive C, Makin GW (2006) Chronic hypoxia promotes hypoxia-inducible factor-1alpha-dependent resistance to etoposide and vincristine in neuroblastoma cells. Mol Cancer Ther 5: 2241 – 2250
Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8: 121 – 132
Makin G, Dive C (2003) Recent advances in understanding apoptosis: new therapeutic opportunities in cancer chemotherapy. Trends Mol Med 9: 251 – 255
Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26: 341 – 352
Merigli S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Hypoxia inhibits p21-mediated apoptosis through adenosine-mediated phosphorylation of dead in glioblastoma cells. Mol Pharmacol 72: 162 – 172
Rhodes A, Jasani B, Balaton AJ, Miller KD (2000) Immunohistochemical demonstration of oestrogen and progesterone receptors: correlation of standards achieved on in house tumours with that achieved on external
quality assessment material in over 150 laboratories from 26 countries.

J Clin Pathol 53: 292 – 301

Saunders M, Iveson T (2006) Management of advanced colorectal cancer: state of the art. *Br J Cancer* 95: 131 – 138

Saunders MP, Patterson AV, Stratford IJ (2002) Programming of radiotherapy and sensitization. In *Oxford Textbook of Oncology*, Souhami RL, Tannock I, Hohenberger P, Horiot J-C (eds) 2nd edn, Vol. 1, pp 459 – 474. Oxford: Oxford University Press

Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. *Nat Cell Biol* 4: 842 – 849

Semenza GL (2003) Targeting HIF-1 for cancer therapy. *Nat Rev Cancer* 3: 721 – 732

Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. *Cancer Treat Rev* 29: 297 – 307

Welsh SJ, Powis G (2003) Hypoxia-inducible factor as a cancer drug target. *Curr Cancer Drug Targets* 3: 391 – 405

Wilson JW, Nostro MC, Balzi M, Faraoni P, Cianchi F, Becciolini A, Potten CS (2000) Bcl-w expression in colorectal adenocarcinoma. *Br J Cancer* 82: 178 – 185

Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. *Cancer Res* 60: 7075 – 7083

Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. *Cancer Treat Rev* 29: 297 – 307

Welsh SJ, Powis G (2003) Hypoxia-inducible factor as a cancer drug target. *Curr Cancer Drug Targets* 3: 391 – 405

Wilson JW, Nostro MC, Balzi M, Faraoni P, Cianchi F, Becciolini A, Potten CS (2000) Bcl-w expression in colorectal adenocarcinoma. *Br J Cancer* 82: 178 – 185

Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. *Cancer Res* 60: 7075 – 7083