Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis

Caihong Weng1,2, Xiaowei Peng1,2 and Yejun Han1,2*

Abstract
Lignin, the most abundant renewable aromatic compound in nature, is an excellent feedstock for value-added bioproducts manufacturing; while the intrinsic heterogeneity and recalcitrance of which hindered the efficient lignin biorefinery and utilization. Compared with chemical processing, bioprocessing with microbial and enzymatic catalysis is a clean and efficient method for lignin depolymerization and conversion. Generally, lignin bioprocessing involves lignin decomposition to lignin-based aromatics via extracellular microbial enzymes and further converted to value-added bioproducts through microbial metabolism. In the review, the most recent advances in degradation and conversion of lignin to value-added bioproducts catalyzed by microbes and enzymes were summarized. The lignin-degrading microorganisms of white-rot fungi, brown-rot fungi, soft-rot fungi, and bacteria under aerobic and anaerobic conditions were comparatively analyzed. The catalytic metabolism of the microbial lignin-degrading enzymes of laccase, lignin peroxidase, manganese peroxidase, biphenyl bond cleavage enzyme, versatile peroxidase, and β-etherize was discussed. The microbial metabolic process of H-lignin, G-lignin, S-lignin based derivatives, protocatechuic acid, and catechol was reviewed. Lignin was depolymerized to lignin-derived aromatic compounds by the secreted enzymes of fungi and bacteria, and the aromatics were converted to value-added compounds through microbial catalysis and metabolic engineering. The review also proposes new insights for future work to overcome the recalcitrance of lignin and convert it to value-added bioproducts by microbial and enzymatic catalysis.

Keywords: Lignin, Depolymerization, Enzymatic degradation, Lignin-derived aromatics, Metabolic pathways, Value-added bioproducts, Biosynthesis

Background
Converting the renewable biomass to chemicals and fuels is an attractive and green method for the sustainable environment development. Lignocellulose, the most abundant renewable resource in nature, is mainly composed of cellulose, hemicellulose, and lignin [1]. Cellulose and hemicellulose can be degraded into monosaccharides by enzymatic hydrolysis [2–5] and fermented to various bioproducts [6, 7], while most lignin cannot be utilized efficiently. Large amounts of lignin have been formed and estimated to be in the range 5–36 × 10^8 tons annually [8]. Among them, the biomass refinery and pulp/paper industries contribute about 6.2 × 10^7 and 5 × 10^7 tons of lignin per year, respectively, including kraft lignin, lignosulfonate, and soda lignin [9]. In most cases, lignin is currently used for energy supply or discarded as waste. Lignin is a promising feedstock to produce biofuels and biochemicals owing to its high carbon-to-oxygen ratio and rich aromatic skeleton. To exploit lignin valorization, it is an urgent need to understand the degradation
process and develop efficient metabolic pathway for conversion.

Lignin is an amorphous heteropolymer consisting of three phenylpropanoid units of guaiacyl alcohol, \(p \)-c Coumaryl alcohol, and syringyl alcohol, which are connected by the chemical bonds of aryl ether (\(\beta-O-4 \)), phenylcoumaran (\(\beta-5 \)), resinol (\(\beta-\beta \)), biphenyl ether (\(5-O-4 \)), and dibenzodioxocin (\(5-5 \)) [10] (Fig. 1). The complex structure and recalcitrance of lignin are the main challenges for its efficient depolymerization and utilization. Currently, thermochemical and biological approaches are the main methods for lignin depolymerization. Thermochemical processes including pyrolysis (thermolysis), gasification, hydrogenolysis, and chemical oxidation require stringent conditions, intensive energy input, and expensive facilities [11]. In contrast, the bioprocessing of lignin...
has the advantage of high specificity, low-energy input, and cost-effectiveness [12]. The bioprocessing treatment with microorganism normally include two steps: native lignin is firstly degraded to heterogeneous aromatics, which then enter the central carbon metabolism [13]. So far, a large number of microorganisms including fungi and bacteria have been found to be able to degrade and metabolize lignin.

Lignin is mainly depolymerized by extracellular oxidases secreted by microorganisms such as lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), dye-decolorizing peroxidase (DyP), and laccase [14]. During the oxidation process, the unstable free radicals produced by the oxidase can attack lignin, and cleave the chemical bonds [15]. The resulted aromatic compounds were further metabolized by microbes via the enzymatic reactions [16] and β-ketoadipate pathway, and finally converted to valuable products. To now, lignin has been successfully manufactured into value-added products of polyhydroxyalkanoates (bioplastic) [17], lipids (often used as biofuel) [18], animal feed additive [19], pesticides [20], compost (generally as fertilizers) [21], vanillin [22], and muconic acid [23].

In the present review, we focused on the bioprocessing of lignin and bioconverting it to value-added bioproducts. The most recent development on lignin depolymerization by microorganisms, the microbial secreted oxidases, and the decomposition mechanism were summarized. Additionally, the metabolism of lignin-derived aromatics in different microorganisms was illustrated and the production of value-added products through microbial metabolic engineering was proposed.

Lignin depolymerization by microorganisms and enzymes

Lignin depolymerization by fungi

The depolymerization of lignin is critical for lignin utilization, and diverse lignin-degrading enzymes and metabolic system of microorganism have been evolved for lignin degradation and conversion [24]. Fungi are the most effective lignin-degrading microorganisms, which can secrete a variety of lignin-degrading enzymes. According to the degradation mechanism of lignin, the lignin-degrading fungi mainly include three types: white-rot, brown-rot, and soft-rot fungi [25]. Among the three lignin-degrading fungi, only white-rot fungi can completely degrade lignin to CO₂ and H₂O [26], and the typical fungi for lignin degradation are shown in Table 1.

White-rot fungi

White-rot fungi are the main lignin degradation microorganism in nature, and its degradation ability is better than brown-rot and soft-rot fungi [25]. The lignin-degrading white-rot fungi include most strains of basidiomycetes and a few species of ascomycetes [27]. Among white-rot fungi, the species of Cerioporiopsis subvermispora, Phellinus pini, Ganoderma australe, and Phlebia tremellosa specifically degrade lignin and hemicellulose but not cellulose. However, other strains such as Phanerochaete chrysosporium, Trametes versicolor, Heterobasidion annosum, and Irpex lacteus are can simultaneously degrade cellulose, hemicellulose, and lignin [28, 29]. The main extracellular enzymes secreted by white-rot fungi for lignin-degrading were oxidases and peroxidases. The oxidative reactions catalyzed by oxidoreductase for lignin decomposition include the cleavage of carbon–carbon bonds and ether linkages, and the removal of side chain and aromatic rings [30].

P. chrysosporium is a model white rot fungus for lignin degradation, which has been applied for biological pretreatment of lignocellulosic biomass [31, 32]. The

Table 1 Fungi degradation of lignin in various biomass sources

Microorganisms	Strains	Biomass materials	Lignin degradation	Ref
White-rot fungi	*Phanerochaete chrysosporium*	Wheat straw and cornstalk	30% and 34.3%	[31, 32] (Singh et al., Zhao et al.)
	Pleurotus ostreatus	Rice straw	41%	[154] (Taniguchi et al.)
	Lentinula edode LE16	Sugarcane bagasse	87.6%	[34] (Dong et al.)
	Phlebia sp. MG-60	Oak wood	40.7%	[35] (Kamei et al.)
	Cerioporiopsis subvermispora	Pinus taeda wood chips	22%	[36] (Guerra et al.)
	Trametes versicolor	Radiata pine wood chips	22%	[155] (Shirkavand et al.)
	Dichomitus squalens	Wheat straw	34.1%	[44] (Kněžević et al.)
Brown-rot fungi	*Gloeophyllum trabeum*	Wafers of spruce wood	16%	[42] (Ye et al.)
	Fomitopsis pinicola	Wheat straw	32.4%	[44] (Kněžević et al.)
	Polyporus ostreiformis	Rice straw	18.6%	[156] (Dey et al.)
enzymes of MnP and LiP produced by *P. chrysosporium* degrade lignin in a non-specific oxidative way [33]. The fungi of *Lentinula edode* LE16 and *Pleurotus ostreatus* PO45 were also found to degrade lignin of sugarcane bagasse by producing polyphenol oxidase (PPO) and MnP [34]. Some white rot fungal species can produce laccase and peroxidases for lignin oxidation and decomposition. Lignin of oak wood was directly converted to ethanol by fermentation with *Phlebia* sp. MG-60, and MnP and laccase were identified in the culture [35]. *Subvermispora* was applied for *Pinus taeda* wood chips bioprocessing in solid-state fermentation, the lignin of which was mainly degraded by the β-O-aryl ether cleavage by the MnP and laccase [36]. The laccase (Lcc1) isolated from *Ganoderma tsugae* can promote lignin decomposition, mycelium growth, pigment formation, and stipe elongation [37]. The lignin degradation property of white-rot fungi makes it useful in the biopulping process of paper industry. In addition, white-rot fungi have been applied to other industrial fields: bioremediation of soil and water and bio refineries of biomass [38, 39].

Brown-rot fungi and soft-rot fungi Brown-rot fungi grow primarily on softwoods and represent 7% of wood-rotting basidiomycetes. The fungi can rapidly hydrolyze the component of cellulose and hemicellulose while just partially oxidize lignin. Brown-rot fungi were found to degrade lignin through hydroxyl radicals produced via Fenton oxidation chemistry [40]. The extracellular hydroquinones generated by brown-rot fungi can reduce Fe$^{3+}$ of Fe–oxalate complex to Fe$^{2+}$, which then reacts with hydrogen peroxide (H$_2$O$_2$) to generate hydroxyl radicals. The oxidized quinone can be converted to hydroquinone and achieve redox cycling [41].

Gloeophyllum trabeum can non-selectively break the intermonomer side-chain linkages of lignin, and its fermentation can cause 16% of lignin loss in spruce wood [42]. Yelle et al. [43] found that the content of the arylglycerol-β-aryl ether linkage of lignin decreased when aspen wood was treated with *Postia placenta*, which can produce an extracellular Fenton system and break lignin with hydroxyl radicals. It was identified that 32.4% of lignin was degraded by *Fomitopsis pinicola* after fermented for 2 weeks [44].

In addition to brown-rot fungi, soft-rot fungi can also degrade lignin by attacking the syringyl units [30]. Soft-rot fungi mainly include *Ascomycetes* and *Deuteromycetes* and preferentially degrade hardwood [45]. The soft-rot fungi *Aspergillus niger* and *Penicillium chrysogenum* were found to degrade pine and sycamore wood [46], and some soft-rot fungi can degrade vanillic acid and phenols rapidly [47]. While little is known about the enzymes of soft-rot fungi involved in degrading lignin, it was suggested that soft-rot fungi might modify rather than mineralize lignin.

Lignin depolymerization by bacteria

Apart from fungi, bacteria with lignin degradation ability have been identified from different habitats such as soil, rotten wood, wastewater treatment plant, and animal gut [48]. Although the lignin degradation performance of bacteria is inferior to fungi, bacteria have stronger environmental adaptability. Recent studies reported that *Actinobacteria*, *Proteobacteria*, and *Firmicutes* are major lignin-degrading bacteria [49]. Bacteria grow on lignin secrete oxidative enzymes to break lignin with the presence of oxygen. Moreover, lignin can be degraded by extreme anaerobic conditions, and the bacteria with capability of decomposing lignin are listed in Table 2.

Aerobic bacteria Bacterial lignin depolymerization primarily occurs under aerobic conditions [50].

Table 2 Bacteria degradation of lignin in various biomass sources

Microorganisms	Strains	Biomass materials	Lignin degradation	Ref
Aerobic bacteria				
Streptomyces viridosporus T7A		Softwood spruce, hardwood maple and grass	30.9%, 32%, and 44.2%	[52] (Antai, Crawford)
Rhodococcus Jostii RHA1		Soluble and lignin-rich stream	18.9%	[55] (Salvachúa et al)
R. pyridinivorans CCZU-B16		Alkaline lignin	30.2%	[128] (Chong et al.)
Pseudomonas putida KT2440		Alkaline pretreated liquor	~ 30%	[58] (Salvachúa et al.)
P. putida NX-1		Kraft lignin	28.5%	[59] (Xu et al.)
Comamonas sp. B-9		Kraft lignin	45%	[61] (Chai et al.)
Bacillus licheniformis L1		Alkaline lignin	38.9%	[62] (Zhu et al.)
Bacillus amyloliquefaciens SL-7		Tobacco straw lignin	28.55%	[63] (Mei et al.)
Faculative anaerobe bacteria				
Enterobacter lignolyticus SCF1		Alkaline lignin	56%	[66] (DeAngelis et al)
Acetobacterium sp		Kraft lignin	24.9%	[71] (Duan et al.)
Extremophile bacteria				
Caldicellulosiruptor kronotskyensis		Natural rice straw	52.5%	[74] (Peng et al.)
Arthrobacter sp. C2		Sodium lignin sulfonate	40.1%	[75] (Jiang et al.)

Weng et al. Biotechnol Biofuels (2021) 14:84

Page 4 of 22

Streptomyces and Rhodococcus of Actinobacteria are typical bacteria for lignin degradation. *Streptomyces viridiscors* T7A decompose lignin by extracellular enzymes secreted by filamentous form [13]. *S. viridiscors* T7A can degrade lignin of native wheat straw, and the guaiacyl units reduced [51]. Approximately 30 ~ 45% of the lignin from softwood, hardwood, and grass was removed after fermentation with *S. viridiscors* T7A and *S. setonii* 7SVi2 for 12 weeks [52]. *Rhodococcus* is considered as a robust microorganism for lignin breakdown, as it has excellent tolerance and hydrolytic activity for toxic metabolites. The polychlorinated biphenyl-degrading soil bacterium *R. jostii* RHA1 can convert kraft lignin and wheat straw to aromatic dicarboxylic acids and vanillin, and around 19% of lignin can be utilized [53–55]. The dyp-type peroxidase DypB from *R. jostii* RHA1 was identified to break β-aryl ether linkage in lignin model compound [56]. *R. erythropolis* isolated from wood and soil also showed high degrading activity on nitrated-lignin of wheat straw [57]. The Proteobacteria containing *Pseudomonas*, *Pandoraea*, and *Comamonas* genus, etc. were applied for lignin depolymerization. It was found that ~ 30% lignin of alkaline pretreated liquor (APL) were depolymerized and catabolize by *P. putida* KT2440 and *P. putida* mt-2 [58]. *P. putida* NX-1 could utilize kraft lignin as the sole carbon source for cell growth and secrete extracellular ligninolytic enzymes [59]. *P. putida* is an excellent chassis bacterium for converting lignin-derived aromatics to bio-based products through metabolic engineering. *Pandoraea* sp. B-6 was also found to efficiently degrade kraft lignin and produce low-molecular-weight aromatic and acid-type compounds [60]. The decolorization and depolymerization of kraft lignin by *Comamonas* sp. B-9 were 54% and 45%, respectively, after 7 days of treatment [61]. *Bacillus* genus of *Firmicutes* with lignin-degrading ability was identified through high-throughput sequencing. Fifteen kinds of phenol ring aromatic compounds were generated from alkaline lignin processed with *Bacillus ligniniphilus* L1 [62]. Three kinds of lignin degradation pathways of gentisate, benzoic acid, and β-keto adipate were identified in *Bacillus* through genomic and proteomic analysis. *Bacillus amyloliquifica cien*s SL-7 can grow on tobacco straw lignin and secreted ligninolytic enzymes [63].

Anaerobic bacteria In addition to aerobic bacteria, anaerobic bacteria have been identified to convert lignin and its derived aromatics to methane and carbon dioxide. The degradation performance of modified lignin under anaerobic conditions is better than that of natural lignin, which has a high degree of methoxylation [64]. The methoxy group is the main attacking point for many bacteria during anaerobic degradation of methoxylated aromatics. The anaerobic process of lignin degradation mainly includes demethoxylation, aromatic ring cleavage, and methanogenesis [65]. Lignin-derived aromatics was converted to methane by anaerobically digestion by methanogenic microbial communities [66]. Many bacteria have been identified to be capable of degrading lignin in anaerobic environments. A facultative anaerobe *Enterobacter lignolyticus* SCF1 was isolated from tropical forest soil with alkali-treated lignin as the sole carbon source [67]. The genes of catalase/peroxidase and glutathione S-transferases for lignin degradation via 4-hydroxyphenylacetate pathway were up-regulated by transcriptomic and proteomic analyses [68]. *Tolomonas lignolytica* BRL6-1 and *Klebsiella* sp. strain BRL6-2 were isolated and characterized as anaerobic lignin-degrading bacteria, and several putative enzymes for lignin degrading were identified [69, 70]. *Acetoanaerobium* sp. WJDL-Y2 was identified from the sludge of a pulp and paper mill, which can oxidize kraft lignin to low-molecular-weight aromatic and acid compounds such as syringic acid, furanic acid, and hexanoic acid [71].

Extremophile bacteria With the special enzymes and metabolic pathways, the extremophile bacteria were more competitive for lignin degradation and utilization. The thermophilic bacteria showed promising potential for the degradation and transformation of lignin. The Dyp-type peroxidase from *Thermobifida fusca* can degrade kraft lignin and oxidize a β-aryl ether lignin model compound [72]. When the hardwood of *Populus trichocarpa* was processed with the anaerobic thermophile *Clostridium thermocellum*, the β-O-4 linkage content was reduced and syringyl/guaiacyl (S/G) ratio in lignin was increased [73]. The extremely thermophilic bacterium *Caldicellulosiruptor kronotskyensis* can degrade natural rice straw without pretreatment, and produce solubilized carbohydrates, organic acids, and lignin-derived aromatics [74]. Besides, lignin degradation was also detected by a psychrotrophic bacteria *Arthrobacter* sp. C2 at low temperature, and the intermediates of acids, phenols, aldehydes, and alcohols were identified after the treatment [75].

Lignin depolymerization by enzymes The microbial degradation of lignin was conducted by a serious of oxidative enzymes. An increasing number of lignin-degrading enzymes have been discovered and applied in the processes of lignin depolymerization and mineralization from fungi and bacteria As the major enzymes for lignin degradation, phenol oxidase (laccase) and heme-containing peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase) have attracted considerable attention [76]. The in vitro enzymatic synthesis has been applied for lignin conversion, which avoids the cell culture, obstacle of substrate transport, and NAD(P)H and ATP imbalance [77].
properties of typical ligninolytic enzymes are listed in Table 3, and the reactions and catalytic mechanisms were discussed.

Laccase

Laccase is a multi-copper oxidase present in fungi, plants, and bacteria, and the fungal laccase usually has higher reduction potential than that of plants and bacteria. The structure of laccase from *Trametes versicolor* has been characterized (Fig. 2a) [78]. It contains approximately 500 amino acid residues and three copper sites: type 1 (one Cu atom), type 2 (one Cu atom), and type 3 (two Cu atoms) per molecule of laccase. In the reaction catalyzed by type1 laccase, four electrons are transferred to the tri-nuclear center via a His–Cys–His tripeptide pathway. Both phenolic and non-phenolic compounds can be degraded by laccase with oxygen as a final electron acceptor (Fig. 3a) [79]. The oxidation of phenolic substrates by laccase forms phenoxyl free radical as an unstable intermediate, which then promotes Cα oxidation, alkyl-aryl cleavage, and Cα-Cβ cleavage [80]. Laccase needs to cooperate with the mediators like 1-hydroxybenzotriazole (HBT), 3-hydroxyanthranilic acid (HAA), and 2, 2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in degrading non-phenolic substrates. The oxidized non-phenolic compounds coupled with mediators can promote the aromatic ring cleavage, Cα-Cβ cleavage, Cα oxidation, and β ether cleavage [81]. It is generally agreed that mediators enhance the oxidation capabilities of laccase and help overcome the steric hindrance existing between laccase and substrate. With the help of these mediators, laccase also can be applied in delignification process. The laccase of *Trametes villosa* could remove about 48% and 32% of lignin, respectively, from *Eucalyptus globulus* and *Pennisetum purpureum* feedstocks with 2.5% HBT as a mediator [82]. Different methods have been carried out to improve laccase yield of microbes including novel fermentation methods, genetic modifications, and addition of cofactors or inducer. Previous studies also found that the microbes can still degrade lignin in the absence of laccase, which suggested that laccase is the essential enzyme for lignin depolymerization [83, 84].

Lignin peroxidase (LiP)

LiP is a glycoprotein with molecular mass of 38–43 kilodalton (kDa) and isoelectric point (pi) of 3.3–4.7 [76]. The crystal structure of LiP in *P. chrysosporium* was mainly constituted of α-helices (Fig. 2b) [85], and there are two calcium ions and four disulfide bonds to stabilize the three-dimensional structure. The active site of LiP is composed of a heme-containing iron atom. The trp171 residue conserved in LiP sequences is essential for the catalytic activity of LiP. LiP oxidizes both non-phenolic and phenolic compounds with H₂O₂ and veratryl alcohol (VA) as electron donor and cofactor (Fig. 3b). Generally, the enzymatic reaction of LiP-mediated lignin degradation consists of one oxidation and two reduction steps. The oxoferryl iron porphyrin radical cation [Fe(IV)=O⁺] is formed by the oxidation of ferric [Fe(III)] LiP along with the reduction of H₂O₂ to water. Then, [Fe(IV)=O] was converted to two [Fe(IV)=O] through two consecutive one-electron reduction steps and complete catalytic cycle [86, 87]. LiP can degrade a variety of phenolic and nonphenolic compounds.

Table 3 Characteristics and reaction of major ligninolytic enzymes [157, 158]

Enzyme	Source	Substrate	General reaction
Laccase EC 1.10.3.2	Widely distributed in fungi and bacteria (e.g., Ascomycetes, Basidiomycetes and Streptomycyes)	Phenolic compounds, aromatic amines and dye molecules	4 benzenediol + O₂ ⇌ 4 benzo-semiquinone + 2H₂O
Lignin peroxidase EC 1.11.1.14	White rot fungal genera (e.g., Bjerkandera, Phanerochaete, Phlebia and Trametes)	Phenols, aromatic amines, aromatic ethers and polycyclic aromatics	1,2-bis(3,4-dimethoxyphenyl)propane-1,3-diol + H₂O₂ ⇌ 3,4-dimethoxybenzaldehyde + 1-(3,4-dimethoxyphenyl)ethane-1,2-diol + H₂O
Manganese peroxidase EC 1.11.1.13	Wood and litter-decomposing white rot fungi (e.g., Dichomitus squalens, Agaricus bisporus and Agrocybe praecox)	Phenolic compounds	2Mn(III) + 2H₂ + H₂O₂ ⇌ 2Mn(II) + 2H₂O
Versatile peroxidase EC 1.11.1.16	White rot species (e.g., Pleurotus ostreatus, Bjerkandera adusta)	High-redox-potential aromatic compounds and recalcitrant dyes	(1) Reactive Black S + H₂O₂ ⇌ oxidized Reactive Black S + 2 H₂O
(2) Donor + H₂O₂ ⇌ oxidized donor + 2 H₂O			
Dye-decolorizing peroxidase EC 1.11.1.19	Fungi and bacteria (e.g., Ascomycetes, Basidiomycetes and Bacillus)	Dye compounds, carotenoids and phenolics	Reactive Blue S + 2 H₂O ⇌ phthalate + 2,2′-disulfonyl azobenzene + 3-[4-amino-6-chloro-1,3,5-triazin-2-yl]amine + benzenesulfonate + 2 H₂O
compounds, and hence, it is a candidate for lignin depolymerization. Compared to other peroxidases, LiP is the major enzyme responsible for lignin degradation due to its high reduction potential. It was found that LiP produced in liquid-state fermentation of *Aspegillus oryzae* CGMCC 5992 showed high activity on lignin of corn stover pretreated with H$_2$O$_2$ [88], and the addition of mineral nutrients and gene modification were conducted to enhance LiP yield.

Fig. 2 Structures of ligninolytic enzymes. The red, yellow, and green colored regions represent α-helix, β-sheet, and random coil, respectively. a Laccase (PDB ID: 1GYC) from *Trametes versicolor* [78] has a well-conserved active site with four copper, and T1 copper is connected to the trinuclear cluster by a His-Cys-His tripeptide. b LiP (PDB ID: 1LGA) of *Phanerochaete chrysosporium* [85] contains two calcium ions, four disulfide bonds, and a heme-containing one iron atom as its active site. c MnP (PDB ID: 1YYD) from *P. chrysosporium* [89] shows the active sites of Glu35, Glu39, and Asp179 residues as well as the Mn$_{3+}$ ion. d VP (PDB ID: 2BOQ) of *Pleurotus eryngii* [94] exhibits an Mn$_{3+}$-binding site and an external Trp residue. The electron transfer pathway towards heme is obtained directly from Mn$_{3+}$ or relatively long range from Trp.

Fig. 3 Catalytic mechanism of ligninolytic enzymes mediated lignin degradation. a Laccases not only directly oxidize phenolic compounds, but also degrade non-phenolic substrates of lignin in the presence of chemical mediators [79]. Molecular oxygen is reduced into water. b LiP indirectly degrades lignin via oxidizing veratryl alcohol to the corresponding diffusible cation radical as a direct oxidant on lignin. Two electrons of the native ferric enzyme are oxidized by H$_2$O$_2$ to form compound one, which receives one electron to form compound two. Finally, compound two is returned to the resting native ferric state by gaining one more electron from the reducing substrate [86, 87]. c MnP oxidizes the one-electron donor Mn$_{3+}$ to Mn$_{4+}$, which in turn oxidizes a large number of phenolic substrates. The native ferric enzyme initially reacts with H$_2$O$_2$ to form compound one, and an Mn$_{4+}$ ion donates one electron to the porphyrin intermediate to form compound two. The native enzyme is similarly produced from compound two by obtaining one electron from Mn$_{3+}$ [90, 91]. d The basic catalytic cycle of VP is similar to the MnP and LiP with the two intermediary compounds one and two.
a Laccase

H₂O → Laccase → Mediator → Lignin
O₂ → Oxidized laccase → Oxidized mediator → Deploymerized products

b Lignin peroxidase

(LiP)P-Fe(III) → (LiP)P-Fe(IV)
Native LiP → Compound I

(LiP)P-Fe(IV)
Substrate → Veratryl alcohols → Veratryl alcohols

(c) Manganese peroxidase

(MnP)P-Fe(III) → (MnP)P-Fe(IV)
Native MnP → Compound I

(MnP)P-Fe(IV)
Substrate → Mn³⁺ → Mn²⁺ → Substrate

(d) Versatile peroxidase

(VP)P-Fe(III) → (VP)P²Fe(IV)=O
Native VP → Compound I

(VP)P-Fe(IV)=O
Substrate → Mn³⁺ → Mn²⁺ → Substrate
Manganese peroxidase (MnP)
MnP is a glycosylated heme-protein with a molecular weight of 45~60 kDa [76], and it is the main ligninolytic peroxidase of basidiomycetes. The crystal structure of MnP from *P. chrysosporium* was published and presents similarities to Lip (Fig. 2c) [89], and it includes an Mn$^{2+}$ ion, one heme propionate, and the side chains of Glu35, Glu39, and Asp179. The lignin degradation catalyzed by MnP includes both oxidation and reduction steps (Fig. 3c). MnP initiates the catalytic cycle by binding H$_2$O$_2$ to the native ferric enzyme. Afterward, MnP oxidizes Mn$^{2+}$ to Mn$^{3+}$ in the presence of chelators, and the generated Mn$^{3+}$ then convert lignin phenolic compounds to phenoxy-radicals. The organic acid chelators like oxalate and malonate can stabilize Mn$^{3+}$ and stimulate the enzyme activity [90, 91]. Similar to LiP, MnP plays an important role in the initial depolymerization of lignin. Moreover, it was found that adding MnP to the culture medium can accelerate lignin depolymerization. It was found that MnP can promote lignin degradation and methane yield, and 68.4% of lignin from municipal solid waste was removed by MnP [92].

Versatile peroxidase (VP)
VP is a unique lignin-degrading enzyme and is found in white-rot fungal genera *Pleurotus* and *Bjerkandera* [93]. The crystal structure of VP from *Pleurotus eryngii* is similar to LiP and MnP of *P. chrysosporium* (Fig. 2d) [94]. An Mn$^{2+}$-binding site was found in the protein structure allowing a direct transfer of electrons to the heme. And a tryptophan residue revealed the possibility of long-range electron transfer to oxidate aromatic compounds at the protein surface. VP has a broad substrate preference as containing a heme access channel, a catalytic tryptophan, and an Mn oxidation site. VP is termed as hybrid peroxidase, which exhibits similar catalytic mechanisms with both LiP and MnP (Fig. 3d). However, VP can degrade directly high reduction potential substrates without the presence of VA and oxidizing Mn$^{2+}$ independently, which is different from MnP and LiP [95]. VP has obtained research interests in biotechnological applications and genetic manipulations due to its special bifunctionality. The VP of *Physioporus vitreus* was used to reduce the saccharification recalcitrance and improve the enzymatic biodegradation of lignin-derived aromatic compounds as carbon and energy sources for cell growth and value-added products accumulation [109]. Biological lignin degradation usually include three stages: lignin depolymerization by microorganisms yields a heterogeneous mixture of low-molecular-weight aromatic compounds, which have certain toxicity and inhibit the growth of microorganisms. In nature, several bacteria have been reported to use the lignin-derived aromatics as carbon and energy sources for cell growth and value-added products accumulation [109]. Biological lignin degradation usually include three stages: lignin depolymerization by microorganisms yields a heterogeneous mixture of low-molecular-weight aromatic compounds, which have certain toxicity and inhibit the growth of microorganisms. In nature, several bacteria have been reported to use the lignin-derived aromatics as carbon and energy sources for cell growth and value-added products accumulation [109]. Biological lignin degradation
depolymerization, aromatics catabolism, and ring cleavage, the carbon of aromatic compounds ultimately integrates into TCA cycle (Fig. 5). The degradation of lignin produces three categories of monolignols (G-lignin, H-lignin, and S-lignin), which can be assimilated by various bacteria through different metabolic pathways.

Degradation of H-lignin-based derivatives

The H-lignin-based derivatives (p-coumaric acid) possess simple structure and low lignin content, which accounts for 0.3%, 1.7%, 2.8%, and 2.8% of the lignin in poplar (hardwood), pine (softwood), corn (monocotyledon), and Arabidopsis (dicotyledon), respectively [110]. Generally, the degradation pathways of p-coumaric acid in bacteria can be categorized as CoA-dependent β-oxidation pathway, CoA-dependent non-β-oxidation pathway, and CoA-independent pathway [111]. The generated intermediate of 4-hydroxybenzoic acid undergoes a hydroxylation reaction to form protocatechuic acid (BADH). The generated protocatechuic acid is converted to the central intermediate vanillic acid by LiGW and LiGW2 (two decarboxylase enzymes) [106, 108].

Degradation of G-lignin-based derivatives

The G-lignin-based derivatives (ferulic acid) have a methoxy group on the aromatic ring, which constitutes 37.8%, 98.3%, 38.3%, and 77.1% of the lignin in poplar, pine, corn, and Arabidopsis respectively [110]. Ferulic acid can be converted to the intermediate vanillic acid via CoA-dependent non-β-oxidation pathway, and then to 4-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated p-hydroxybenzoic acid is oxidized to p-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated p-hydroxybenzoic acid undergoes a hydroxylation reaction to form protocatechuic acid [115]. Besides the protocatechuic pathway, new gentisate pathway for 4-hydroxybenzoic acid metabolism has been found in Haloarcula sp. strain D1, Bacillus licheniphilus L1, and Candida parapsilosis [62, 116, 117].

Degradation of G-lignin-based derivatives

The G-lignin-based derivatives (ferulic acid) have a methoxy group on the aromatic ring, which constitutes 37.8%, 98.3%, 38.3%, and 77.1% of the lignin in poplar, pine, corn, and Arabidopsis respectively [110]. Ferulic acid can be converted to the intermediate vanillic acid via CoA-dependent non-β-oxidation pathway, and then to 4-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated p-hydroxybenzoic acid is oxidized to p-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated p-hydroxybenzoic acid undergoes a hydroxylation reaction to form protocatechuic acid (BADH). The generated protocatechuic acid is converted to the central intermediate vanillic acid by LiGW and LiGW2 (two decarboxylase enzymes) [106, 108].

Degradation of G-lignin-based derivatives

The G-lignin-based derivatives (ferulic acid) have a methoxy group on the aromatic ring, which constitutes 37.8%, 98.3%, 38.3%, and 77.1% of the lignin in poplar, pine, corn, and Arabidopsis respectively [110]. Ferulic acid can be converted to the intermediate vanillic acid via CoA-dependent non-β-oxidation pathway, and then to 4-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated p-hydroxybenzoic acid is oxidized to p-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated protocatechuic acid is converted to the central intermediate vanillic acid by LiGW and LiGW2 (two decarboxylase enzymes) [106, 108].

Degradation of G-lignin-based derivatives

The G-lignin-based derivatives (ferulic acid) have a methoxy group on the aromatic ring, which constitutes 37.8%, 98.3%, 38.3%, and 77.1% of the lignin in poplar, pine, corn, and Arabidopsis respectively [110]. Ferulic acid can be converted to the intermediate vanillic acid via CoA-dependent non-β-oxidation pathway, and then to 4-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated p-hydroxybenzoic acid is oxidized to p-hydroxybenzoic acid by benzaldehyde dehydrogenase (BADH). The generated protocatechuic acid is converted to the central intermediate vanillic acid by LiGW and LiGW2 (two decarboxylase enzymes) [106, 108].
Fig. 5 General route of lignin valorization via biochemical system. Lignin is first depolymerized via microorganisms and funneling various lignin-derived aromatics into protocatechuic acid and catechol. The central intermediates can be eventually converted to value-added compounds via aromatic ring cleavage and TCA cycle.

Fig. 6 Degradation pathways for lignin-based aromatic compounds. H-lignin (p-coumaric acid) can be degraded to protocatechuic acid through three different pathways: CoA-independent pathway, CoA-dependent non-β-oxidation pathway, and CoA dependent β-oxidation pathway [111]. The degradation pathway of G-lignin (ferulic acid) can be divided into non-oxidative decarboxylation pathway, CoA-dependent non-β-oxidation pathway, CoA-dependent β-oxidation pathway, and side chain reduction pathway [118]. These four pathways are all transformed into vanillic acid involved with different intermediates and enzymes. S-lignin (syringic acid) is assimilated into 4-oxalomesaconate derived from the protocatechuic acid 4, 5-cleavage pathway via a series of enzyme reactions [120].
Finally, the vanillin dehydrogenase (vdh) oxidizes vanillin to vanillic acid, which is further decomposed to protocatechuic acid by vanillate-O-demethylase (vanAB) [119]. The understanding of metabolic pathways in related strains will help to increase the yield of products from ferulic acid through metabolic engineering.

Degradation of S-lignin-based derivatives
The S-lignin-based derivatives (syringic acid) contain two methoxy groups in its aromatic ring, which makes them more difficult to be degraded than G- and H-lignins. The S-lignin occupies 61.9%, 0.58.9%, and 20.1% of the lignin in poplar, pine, corn, and Arabidopsis, respectively [110]. Compared with ferulic acid and p-coumaric acid, only a few microbes such as Sphingomonas sp. SYK-6 strain can metabolize syringic acid [120]. The demethylation of syringic acid is catalyzed to 3-O-methylgallate (3MGA) by tetrahydrofolate-dependent O-demethylase (DesA). The produced 3MGA can be converted to gallic acid (GA) and 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2, 4-dienoate [120, 121], which are further transformed to protocatechuic acid by vanillate-O-demethylase (vanAB) [119].

Degradation of protocatechuic acid and catechol
Both protocatechuic acid and catechol are key intermediates in the metabolism of lignin-based aromatic compounds. The dioxygenase enzymes exercising ortho (intradiol) or meta (extradiol) catalyze the aromatic ring cleavage of protocatechuic acid and catechol [120]. Catechol and protocatechuate are first transformed to cis, cis-muconate, and 3-carboxy-cis, cis-muconate through ortho-cleavage by O2-dependent dioxygenase. Muconates were converted to β-ketoate, which reacts with succinyl-CoA and form succinate and β-ketoacid-CoA [109]. The final product acetyl-CoA was produced from β-ketoacid-CoA and coenzyme A. The meta-cleavage pathways of catechol and protocatechuate are different due to the structural symmetry aspects. The meta-cleavage pathway of protocatechuate was classified into 2, 3 meta-cleavage and 4, 5 meta-cleavage. The 2-hydroxy-5-carboxymuconic semialdehyde was produced in the 2, 3 meta-cleavage pathway of protocatechuate, and finally yield pyruvate and acetyl-CoA. The 2-hydroxy-4-carboxymuconic semialdehyde was produced from 4, 5 meta-cleavage of protocatechuate and eventually generate two pyruvate molecules [124] (Fig. 7). With the cleavage of aromatic ring, the produced intermediates succinate, acetyl-CoA, and pyruvate enter the central metabolism. In short, the metabolism of microorganisms for lignin-based compounds provides an platform for value-added bioproducts’ synthesis.

Bioconverting lignin to value-added bioproducts by microbial catalysis and metabolic engineering
In the traditional biomass refining process, the complex structure of lignin makes it difficult to be converted into high-value products like carbohydrates. With the elucidation of the structure of lignin and the microbial metabolism of lignin, it is possible to convert lignin into high value-added products through biological methods (Table 4).

Lipids
The demand for biofuel is expected to grow further due to the increasing global population and depleting fossil resources. Microorganisms can transform lignin to lipids as biofuel. Oleaginous microbes can generate high biomass with more than 20% lipids [125]. The metabolic route of lignin bioconversion to lipid includes four steps (Fig. 8): (1) degradation of low-molecular-weight lignin to its derivatives and other aromatics; (2) catabolism of the aromatic compounds to catechol or protocatechuate; (3) yield acetyl-CoA through aromatic ring cleavage and β-ketoate pathway; (4) lipid biosynthesis.

Rhodococcus species has been applied for converting lignin and aromatics to lipids; the 4-hydroxybenzoic acid and vanillic acid to triacylglycerols by R. opacus DSM 1069 and PD630 strains, which accumulated lipid about 20% of the dry cell weight (DCW) under nitrogen-limiting conditions [126]. R. rhodochrous could produce more lipids when cultivated with aromatic compounds and glucose [127]. The alkali, kraft, and ethanol organosolv lignin have also been applied for lipid production with bacteria catalysis. The alkali lignin (4 g L⁻¹) could be degraded by R. pyridinivorans CCZUB16 with a lipid yield of 52% [128]. The oxygen-pretreated kraft lignin was utilized by R. opacus DSM 1069 for lipid production, which was up to 14.21% of CDW and mainly include palmitic (46.9%) and stearic (42.7%) acids [129]. It was found that low-molecular-weight lignin compounds could be assimilated to form lipids more efficiently during the bacterial fermentation. Different strategies have been developed to reduce inhibition and increase lipids yield of microorganism with lignin as substrate. Laccase can synergize with R. opacus PD630 for lipid production with insoluble kraft lignin as substrate [130]. The co-fermentation of wild-type R. opacus PD630 and engineered R. jostii RHA1 VanA⁻ produces higher lipids than single
strain fermentation [131]. The yeast *Trichosporon cutaneum* ACCC 20,271 was able to grow with 4-hydroxybenzaldehyde as the sole carbon source, and accumulate 0.85 g L\(^{-1}\) of lipid [132]. *Lentinus tigrinus* can accumulate 20% of lipid content in DCW using sunflower seed husks hydrolysates as substrate [133].

Polyhydroxyalkanoates (PHAs)

Polyhydroxyalkanoates (PHAs) are polyesters synthesized in cells as carbon and energy storage materials in granular forms by various microorganisms under nutrient imbalance conditions. With excellent biocompatibility and biodegradability, PHAs have been widely used in biomedicine, bioplastics, and nanotechnology [134, 135]. In nature, many bacteria have developed metabolic pathways for converting lignin to PHAs with short-, medium-, or long-chain length (scl, mcl, and lcl). The lignin derivatives can be metabolized to acetyl-CoA for PHA synthesis (Fig. 8).

Currently, the PHA productions from lignin or lignin-related aromatic compounds have been achieved in various bacteria. The aramatics of *p*-coumarate and ferulate can be converted to mcl-PHA by *P. putida* KT2440, and comparable mcl-PHA was also accumulated with APL as substrate [136]. The marine bacterium *Oceanimonas doudoroffii* can synthesize PHA from lignin and its derivatives such as sinapinic acid and syringic acid [137]. The untreated kraft lignin (5 g L\(^{-1}\)) was converted to PHA (128 mg L\(^{-1}\)) by *Cupriavidus basilensis* B-8, and PHA concentration was up to 319.4 mg L\(^{-1}\) through fed batch fermentation [138]. System biology approach was developed to enhance PHA production from kraft lignin with *P. putida* A514, and the PHA content reached 73.5% (DCW), in which the dye peroxidase-based enzymatic system was optimized, and enzymes were overexpressed to promote central metabolism, and the β-oxidation of fatty acids were up-regulated to maximize carbon flux into PHA synthesis [139]. Besides improving the lignin utilization capability of related bacteria, lignin pretreatments were also applied to improve PHA production. *P. putida* KT2440 accumulate higher production of PHA from lignin pretreated with H\(_2\)SO\(_4\) and NaOH [140]. The generated PHA can be converted to diverse chemicals precursors like alkenoic acids and hydrocarbons, which indicated that the lignin can be converted to biomaterials, chemical precursors, and fuel-range hydrocarbons.

Vanillin

As lignin has the unique aromatic structure, some value-added intermediates can be accumulated in the process of
lignin degradation and metabolism. Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most important aromatic compounds and has been widely applied to food, cosmetics, pharmaceutical, and other industries [141]. Vanillin is usually extracted from natural plant or synthesis through chemical synthesis, and biosynthesis of vanillin with lignin as a feedstock is a clean and promising method. In the metabolic process of lignin, vanillin can be released from lignin through depolymerization or produced from ferulic acid through microbial catalysis (Fig. 8). A microbial fuel cell system was designed for depolymerizing lignin and produces vanillin through oxidative reaction [142]. Vanillin can be produced from ferulic acid with *Bacillus subtilis*, *Streptomyces*, and *Amycolatopsis* sp. [143].

Metabolic engineering has been developed to improve the yield of vanillin in microorganisms. It has been reported that vanillin accumulation in *Amycolatopsis* sp. ACTT 39,116 was achieved by the deletion of *vdh* gene, which encodes NAD-dependent vanillin dehydrogenase for converting vanillin to vanillic acid, and the mutant strain produced 6.5 mM vanillin with 2 mM ferulic acid as substrate [144]. *P. putida* KT2440 was optimized to convert 86% of ferulic acid to vanillin with low by-product, in which strong tac promoter was applied to enhance the expression of *fcs* and *ech* [117]. With excellent antimicrobial, antioxidant properties, and low toxicity, *p*-hydroxybenzoic acid and pyrogallol are produced from lignin and its derivative [145, 146].

Table 4 Bioconversion of lignin to value-added products by bacteria

Products	Strains	Carbon source	Yield	Ref
Lipids	*Rhodococcus opacus* DSM 43205	Biomass gasification wastewater	62.8% DCW	[159] (Goswami et al.)
	R. pyridinivorans CCZUB16	Alkali lignin	52% DCW	[128] (Chong et al.)
	R. opacus DSM 1069	O2 pretreated kraft lignin	14.21% DCW	[129] (Wei et al.)
	R. opacus PD630	Lignin from combinatorial pretreatment	1.83 g L−1	[160] (Liu et al.)
	R. opacus Xsp8	Kraft lignin hydrolysate	45.8% DCW	[153] (Kurosawa et al.)
	R. rhodochrous ATCC 2198	4-Hydroxybenzoic acid, vanillic acid and glucose	> 40% DCW	[127] (Shields-Menard et al.)
	R. opacus DSM 1069 and PD630	4-Hydroxybenzoic acid and vanillic acid	20% DCW	[126] (Kosa, Ragauskas)
	R. opacus PD630 and *R. jostii* RHA1 VanA	Alkali-extracted corn stover lignin	39% DCW	[131] (He et al.)
PHAs	*Trichosporon cutaneum* ACCC 20271	4-Hydroxybenzoaldehyde	0.85 g L−1	[132] (Hu et al.)
	Pseudomonas putida KT2440	Alkaline-pretreated liquor	34–39% DCW	[136] (Linger et al.)
	Ralstonia eutropha	Bagasse hydrolysate	6.06 g L−1	[161] (Yu, Stahl)
	Azotobacter beijerincki	Cor pith	2.4 g L−1	[162] (Prabu, Murugesan)
	Engineered *P. putida* A514	Kraft lignin	75 mg L−1	[139] (Wang et al.)
	Oceanomonas doudoroffii	Lignin and its derivatives	0.2% DCW	[137] (Numata, Morisaki)
	Cupriavidus basilensis B-8	Kraft lignin	319.4 mg L−1	[138] (Shi et al.)
Vanillin	*R. jostii* RHA04S	Wheat straw lignocellulose	96 mg L−1	[53] (Sainsbury et al.)
	Bacillus subtilis	Ferulic acid	0.89 g L−1	[143] (Chen et al.)
	Streptomyces sannanensis MTCC 6637	Wheat bran	0.708 g L−1	[163] (Chattopadhyay et al.)
	Shewanella putrefaciens	Lignin extracted from wheat straw	275 mg L−1	[142] (Sharma et al.)
	Engineered *P. putida* KT2440	Ferulic acid	0.86 g L−1	[119] (Graf, Altenbuchner)
	Cis,cis-muconate	*p*-Coumaric acid	50 g L−1	[142] (Sharma et al.)
	P. putida KT2440-C1242	*p*-Coumaric acid	50 g L−1	[142] (Sharma et al.)
	Recombinant *C. glutamicum* MA-2	Lignin hydrolysate and Catechol	1.8 g L−1 and 85 g L−1	[22] (Becker et al.)
	Recombinant *E. coli*	Catechol	59.0 g L−1	[149] (Kaneo et al.)
	P. putida MA-9	Softwood lignin hydrolysate	13 g L−1	[164] (Kohlstedt et al.)
	Sphingobium sp. SME257/pTS084	Hardwood lignin hydrolysate	26.8 mg L−1	[165] (Sonoki et al.)

Cis, cis-muconate (cis, cis-MA)

Cis, cis-muconate (cis, cis-MA) is a six-carbon di-unsaturated dicarboxylic acid and a direct precursor for adipic acid and terephthalic acid, which are mainly used to produce polymers including nylon, polyurethane, and polyethylene terephthalate (PET) [147]. *Cis, cis-MA* has been conventionally produced through chemical synthesis using petroleum-based feedstocks and generating toxic intermediates. Therefore, production of *cis, cis-MA* from lignocellulosic biomass provides a feasible alternative
strategy to alleviate the environmental issues in chemical synthesis. Lignin-based aromatics was converted to \textit{cis}, \textit{cis}-MA by microbial catalysis, which is a crucial intermediate of aromatics metabolism. The \textit{cis}, \textit{cis}-MA was accumulated and secreted into the culture broth when its degradation route was disrupted (Fig. 8). The engineered strains such as \textit{P. putida}, \textit{Amycolatopsis} sp, \textit{E. coli}, and \textit{Corynebacterium glutamicum} have been reported to produce high MA yields from lignin-based aromatics. The production of \textit{cis}, \textit{cis}-MA from \textit{p}-coumaric acid with the engineered \textit{P. putida} KT2440 reached 50 g L$^{-1}$, in which two associated proteins (EcdBD) were co-expressed and

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{Simple metabolic route for producing valuable compounds from lignin-derived aromatics. Lignin monomers are converted to acetyl-CoA as a final intermediate of protocatechuic acid metabolism in β-ketoadipate pathway. Lipid and polyhydroxyalkanoates are generated from the significant intermediate of acetyl-CoA via natural catabolic pathways in \textit{Rhodococcus opacus} (pink) and \textit{Pseudomonas putida} KT2440 (orange), respectively [58, 126]. \textit{Rhodococcus} sp. RHA1 is engineered to accumulate a significant amount of vanillin from ferulic acid by deleting vanillin dehydrogenase (Vdh) gene (green). \textit{cis}, \textit{cis}-muconate has been proved to improve its yield in the engineered strain of \textit{P. putida} by deletion of muconate cycloisomerase ($CatB$) gene and insertion of protocatechuic decarboxylase ($AroY$) gene (blue) [59].}
\end{figure}
a global regulator of carbon catabolite repression was eliminated [148]. Becker et al. [22] engineered the C. glutamicum MA-2 strain with the elimination of muconate cycloisomerase (catB) and overexpression of catechol-1 and 2-dioxygenase (catA), which produces respective 85 g L\(^{-1}\) and 1.8 g L\(^{-1}\) \textit{cis}, \textit{cis}-MA from catechol and hydrothermal pretreated softwood lignin. Similar \textit{E. coli} was constructed by expressing the catA gene from \textit{P. putida} mt-2 and produced 59 g L\(^{-1}\) \textit{cis}, \textit{cis}-MA from catechol with a molar yield of 100% in a fed-batch fermentation [149].

The dicarboxylic acids like pyridine-2, 4-dicarboxylic acid (2, 4-PDCA) and pyridine-2, 5-dicarboxylic acid (2, 5-PDCA) can also be produced from lignin and serve as building blocks for polyamides and polyesters [150]. The bacterium \textit{R. jostii} RHA1 metabolize lignin through the \(\beta\)-ketoadipate pathway. The metabolic pathways of \textit{R. jostii} RHA1 were engineered by insertion of genes ligAB-encoding protocatechuate 4,5-dioxigenase and protocatechuate 2,3-dioxygenase, and 80 mg L\(^{-1}\) 2,4-PDCA and 125 mg L\(^{-1}\) 2,5-PDCA were produced when cultured on minimal media containing 1% wheat straw lignocellulose [54].

Conclusions

Lignin is the most abundant aromatic biopolymer in nature and an excellent substrate for value-added bio-products synthesis. Bioprocessing with microorganisms and enzymes is a clean and efficient method for lignin utilization, while the low efficiency of lignin valorization is a challenge in the process. The pretreatment can break lignin to small fragments, which can improve the bioavailability of which to microorganisms [151]. The oxidase secreted by microorganisms are crucial for lignin degradation, which has been applied to improve lignin the bioavailability and depolymerization in vitro [152]. The cell growth inhibition by lignin-derived aromatics is another issue in lignin bioprocessing and utilization. The strategies including microorganisms acclimation and fed-batch operation have been applied to mitigate the inhibitory effects of aromatic compounds [153]. The elucidation of the pathway for lignin degradation and metabolism and its aromatic compounds provide an platform for lignin depolymerization and biotransformation into value-added products through metabolic engineering. Further research on microbial metabolic engineering and industrial process scale-up are still required to realize the efficient lignin depolymerization and value-added products’ biosynthesis.

Abbreviations

- MnP: Manganese peroxidase
- LiP: Lignin peroxidase
- VP: Versatlie peroxidase
- DyP: Dye-decolorizing peroxidase
- TCA: Tricarboxylic acid cycle
- PPO: Polyphenol oxidase
- H\(_2\)O\(_2\): Hydrogen peroxide
- APL: Alkaline pretreated liquor
- DADH: D-amino acid oxidase
- TAA: Threonine aminotransferase
- TRP: Triptophan
-

References

1. Chaunahan PS. Role of various bacterial enzymes in complete depolymerization of lignin: a review. Biocatal Agric Biotechnol. 2020;23:101498. https://doi.org/10.1016/j.bcab.2020.101498.

2. Peng X, Qiao W, Mi S, Jia X, Su H, Han Y. Characterization of hemicelluloses and celluloses from the extremely thermophilic bacterium \textit{Caldicellulosiruptor owensensis} with potential application for bioconversion of lignocellulosic biomass without pretreatment. Biotechnol Biofuels. 2015;8:131. https://doi.org/10.1002/btbr.26578.

3. Peng X, Su H, Mi S, Han Y. A multifunctional thermophilic glyc oxide hydrolase from \textit{Caldicellulosiruptor owensensis} with potential applica tions in production of biofuels and biochemicals. Biotechnol Biofuels. 2016;9:98. https://doi.org/10.1186/s13068-016-0509-y.

4. Han Y, Dodd D, Hespen CW, Ohene-Adjei S, Schroeder CM, Mackie RI, et al. Comparative analyses of two thermophilic enzymes exhibiting...
44. Knežević A, Milovanović I, Stajić M, Lončar N, Brčeski I, Vukojević J, et al. Lignin degradation by selected fungal species. Bioresearch Technol. 2013;138:117–23. https://doi.org/10.1016/j.biortech.2013.03.182.

45. Kuhad RC. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol. 1997;57:57–125.

46. Hamed SAM. In-vitro studies on wood degradation in soil by soft-rot fungi. Aspergillus niger and Penicillium chrysogenum. Int Biodeterior Biodegrad. 2013;78:98–102. https://doi.org/10.1016/j.ibiod.2012.12.013.

47. Aarti MVA, Agastian P. Lignin degradation: a microbial approach. South Indian J Biol Sci. 2015;1:19–27. https://doi.org/10.22025/sijbisl/2015/v1/I100405.

48. Xu R, Zhang K, Liu P, Han H, Zhao S, Sakade A, et al. Lignin depolymerization and utilization by bacteria. Bioresearch Technol. 2018;269:557–66. https://doi.org/10.1016/j.biortech.2018.08.118.

49. Bugg TD, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. https://doi.org/10.1016/j.cobiotech.2010.10.009.

50. Zimmermann W. Degradation of lignin by bacteria. J Biotechnol. 1990;13:119–30. https://doi.org/10.1016/0168-1656(90)90098-V.

51. Zeng J, Singh D, Laskar DD, Chen S. Degradation of native wheat straw lignin by Streptomyces viridosporus T7A. Int J Environ Sci Technol. 2012;10:165–74. https://doi.org/10.1007/s13762-012-0085-z.

52. ANITA. Degradation of softwood, hardwood, and grass lignocellulosics by two streptomycetes strains. Appl Environ Microbiol. 1981;42:378–80.

53. Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Ellis LD, et al. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol. 2011;22:1394–7. https://doi.org/10.1021/cb100505a.

54. Mycroft Z, Gomis M, Mines P, Law P, Bugg TDH. Biocatalytic conversion of lignin degradation by selected fungal species. Bioresour Technol. 2015;189:3–15. https://doi.org/10.1016/j.biortech.2015.03.011.

55. Billings AF, Fortney JL, Hazen TC, Simmons B, Davenport KW, Goodwin L, et al. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. Stand Genomic Sci. 2012;2:90. https://doi.org/10.1016/j.sgs.2012.07.001.

56. Xu Z, Qin L, Cai M, Hua W, Jin M. Biodegradation of kraft lignin by newly isolated anaerobic bacterial strain, Actcroanaerobium sp. WDL-Y2. Lett Appl Microbiol. 2016;62:55–62. https://doi.org/10.1111/lam.12508.

57. Kawai S, Iwatsuki M, Nakagawa M, Inagaki M, Hamabe A, Ohashi H. An evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Stand Genomic Sci. 2011;5:69–83. https://doi.org/10.4549/sgs1300872-140-1-19.

58. Deangelis KL, Sharma D, Varney R, Simmons B, Isern NG, Markillie LM, et al. Evidence supporting dissipitiatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol. 2013;4:280. https://doi.org/10.3389/fmicb.2013.00280.

59. Jiang C, Cheng Y, Zang H, Chen X, Wang Y, Zhang Y, et al. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresearch Technol. 2015;175:182–3. https://doi.org/10.1016/j.biortech.2014.10.082.

60. Khan MU, Ahring BK. Lignin degradation under anaerobic digestion. Influence of lignin modifications—a review. Biomass Bioenergy. 2018;128:103525. https://doi.org/10.1016/j.biombioe.2018.103525.

61. Kato S, Chino K, Kamimura N, Masai E, Yamoto I, Kamaqata Y. Methanogenic degradation of lignin-derived monomeric compounds by microbial enrichments from rice paddy field soil. Sci Rep. 2015;5:14295. https://doi.org/10.1038/srep14295.

62. Deangelis KL, D’Haeseleer P, Chivian D, Fortney JL, Khudyakov J, Simmons B, et al. Complete genome sequence of Enterobacter lignolyticus SCF1. Stand Genomic Sci. 2011;5:69–83. https://doi.org/10.4549/sgs1300872-140-1-19.
84. Martinez D, Larrodo LF, Putnam N, Gelpke MD, Huang K, Chapet J, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 2004;22:695–700. https://doi.org/10.1038/nbt6967.

85. Poulos TL. Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem. 1993;268:4429–40.

86. Francesca GM, Lanzalunga O, Lapri A, Piparo MGL, Mancinelli S. Isotope-effect profiles in the oxidative N-Demethylation of N,N-Dimethylaniline catalysed by lignin peroxidase and a chemical model. Eur J Org Chem. 2001;2001:2305–10.

87. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, et al. Enzymatic degradation of lignin in soil: a review. Sustainability. 2019;11:1163. https://doi.org/10.3390/su11071163.

88. Zhang Z, Xia L, Wang F, Lv P, Zhu M, Li J, et al. Lignin degradation in corn stalk by combined method of H2O2 hydrolysis and Aspergillus oryzae CGMCC5992 liquid-state fermentation. Biotechnol Biofuels. 2015;8:183. https://doi.org/10.1186/s13068-015-0362-4.

89. Sundaramoorthy M. High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry. 2005;44:6463–70. https://doi.org/10.1021/bi041731e.

90. Hofrichter M. Review: lignin metabolism by Sphingomonas paucimobilis SYK-6: cloning and sequencing of the lignin biphenyl-specific O-Demethylation (LigX) gene. Appl Environ Microbiol. 2000;66:1215–32. https://doi.org/10.1128/AEM.66.5.1215-1232.2000.

91. Peper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–91. https://doi.org/10.1007/s00253-004-1810-4.

92. Sonoki T. Coexistence of different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SYK-6 cloning and sequencing of the lignin biphenyl-specific O-Demethylation (LigX) gene. Appl Environ Microbiol. 1996;62:2520–7.

93. Hofrichter M. New and classic families of secreted fungal heme oxygenases. J Mol Biol. 2005;354:385–402. https://doi.org/10.1016/j.jmb.2005.09.047.

94. Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martinez M, et al. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol. 2005;345:385–402. https://doi.org/10.1016/j.jmb.2005.09.047.

95. Camarero S. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase activity and lignin peroxidase substrate interaction sites. J Biol Chem. 1999;274:10324–30. https://doi.org/10.1074/jbc.274.15.10324.

96. Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, et al. A novel and versatile lignin degradation pathway in Sphingobium xen-placecens. FEMS Microbiol Lett. 2012;332:68–75. https://doi.org/10.1007/s13068-017-0906-x.

97. Mohoric M, Bencina M, Friedrich J, Jerala R. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Biotechnol Lett. 2009;100:851–8. https://doi.org/10.1007/biotech. 2008.07.005.

98. Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V. Enzymatic cleavage of lignin β-O-4-ary ether bonds via net internal hydrogen transfer. Genc Chem. 2013;15:1373. https://doi.org/10.1039/c3gc40295a.

99. Sato Y, Moriiuchi H, Hishiyama S, Otuka Y, Oshima K, Kasai D, et al. Identification of three alcohol dehydrogenase genes involved in the catabolism of 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylation systems. Appl Microbiol Biotechnol. 2014;98:1349–53. https://doi.org/10.1007/s00253-014-5680-5.

100. Gall DL, Ralph J, Donohue TJ, Noquera DR. A group of sequence-related sphingomoinid enzymes catalyzes cleavage of beta-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers. Environ Sci Technol. 2014;48:12454–63. https://doi.org/10.1021/es503886d.

101. Picart P, Muller C, Mottweiler J, Wiermans L, Bolm C, Dominguez de Maria P, et al. From gene towards selective biomass valorisation: bacterial β-ethersases with catalytic activity on lignin-like polymers. Chemsuschem. 2014;7:3164–71. https://doi.org/10.1002/cssc.201402465.

102. Chio C, Sain M, Qn W. Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev. 2019;107:232–49. https://doi.org/10.1016/j.rser.2019.03.008.

103. Munch E, Vanholme R, Cypl C, Liu S, Lu F, Goeminne G, et al. Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigG and LigS from Sphingomonas paucimobilis SYK-6. Plant Biotechnol J. 2017;15:581–93. https://doi.org/10.1111/pbi.12655.

104. Pandey MPK, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34:29–41. https://doi.org/10.1002/ceat.201000270.
120. Kasai D, Masai E, Miyauki K, Katayama Y, Fukuda M. Characterization of
the 3-O-methylgallic dioxigenase gene and evidence of multiple 3-O-
methylgallic catalytic pathways in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2004;186:4951–9. https://doi.org/10.1128/JB.186.15.
4951-4959.2004.
121. Kasai D, Masai E, Miyauki K, Katayama Y, Fukuda M. Characterization
of the gallate dioxigenase gene: three distinct ring cleavage dioxigenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. J Bacteriol. 2005;187:5067–74. https://doi.org/10.
1128/JB.187.18.5067-5074.2005.
122. Fuchs G, Boll M, Heider J. Microbial degradation of aromatic com-
ponents—from one strategy to four. Nat Rev Microbiol. 2011;9:803–16. https://doi.org/10.1038/nrmicro2652.
123. Johnson CWB, Beckham GT. Aromatic catabolic pathway selection for
optimal production of pyruvate and lactate from lignin. Metab Eng. 2015;28:240–7. https://doi.org/10.1016/j.menb.2015.01.005.
124. Liang MH, Jiang JG. Advancing oleaginous microorganisms to
produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002.
125. Kosa M, Ragauskas AJ. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem. 2015;17:2784–9. https://doi.org/10.
1039/C5GC00422E.
126. Shields-Menard SA. The effects of model aromatic lignin compounds
on growth and lipid accumulation of Rhodococcus rhodochrous. Int Biodeterior Biodegrad. 2017;121:79–90. https://doi.org/10.1016/j.
bide.2017.03.023.
127. Chong GG, Huang XJ, Dj IH, Xu DZ, He YC, Pei YN, et al. Biodegradation
of alkaline lignin by a newly isolated Rhodococcus pandinivorans CCZU-
B16. Bioprocess Biosyst Eng. 2018;41:501–10. https://doi.org/10.
s00449-013-1060-x.
128. Shi Y. Characterization and genomic analysis of kraft lignin biodegrada-
tion by the beta-proteobacterium Cupriavidus basilensis B8-1. Biotechnol Biofuels. 2013;6.1. https://doi.org/10.1186/1754-6834-6-1.
129. Wang X. Simultaneous improvements of Pseudomonas cell growth and
polyhydroxyalkanoate production from a lignin derivative for lignin-
consolidated bioprocessing. Appl Environ Microbiol. 2018;84:1469. https://doi.org/10.1128/AEM.01469-18.
130. Treuer FD, Hixon ML, Shin G, Weng X, Hao N, Yoo CG, et al. Synergistic
maximization of the carbohydrate output and lignin processability by
combinatorial pretreatment. Green Chem. 2017;19:4939–55. https://doi.org/10.1039/c7gc02057k.
131. Ma XK, Dauquis AJ. Effect of bioconversion conditions on vanillin
production by Amycolatopsis sp. ATCC 3916 through an analysis of competing by-product formation. Bioprocess Biosyst Eng. 2014;37:891–
9. https://doi.org/10.1007/s00449-013-1060-x.
132. Sharma RK, Mukhopadhyay D, Gupta P. Microbial fuel cell-mediated
lignin depolymerization: a sustainable approach. J Chem Technol Biotechnol. 2019;94:927–32. https://doi.org/10.1002/jctb.5841.
133. Poblete-Castro I, Binger D, Rodrigues A, Becker J, Martins dos Santos VA,
Ferreira AMC. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol. 2005;43:985–
1015. https://doi.org/10.1016/j.fct.2005.01.020.
134. Liang MH, Jiang JG. Advancing oleaginous microorganisms to
produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002.
135. Liang MH, Jiang JG. Advancing oleaginous microorganisms to
produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002.
136. Johnson CWB, Beckham GT. Aromatic catabolic pathway selection for
optimal production of pyruvate and lactate from lignin. Metab Eng. 2015;28:240–7. https://doi.org/10.1016/j.menb.2015.01.005.
137. Liang MH, Jiang JG. Advancing oleaginous microorganisms to
produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002.
138. Liang MH, Jiang JG. Advancing oleaginous microorganisms to
produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002.
158. Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6:e03170. https://doi.org/10.1016/j.heliyon.2020.e03170.

159. Goswami L, Tejas Namboodiri MM, Vinod Kumar R, Pakshirajan K, Pugazhenth G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energ. 2017;105:400–6. https://doi.org/10.1016/j.renene.2016.12.044.

160. Liu ZH, Xie S, Lin F, Jin M, Yuan JS. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnol Biofuels. 2018;11:21. https://doi.org/10.1186/s13068-018-1021-3.

161. Yu J, Stahl H. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol. 2008;99:8042–8. https://doi.org/10.1016/j.biortech.2008.03.071.

162. Prabu CS. Effective utilization and management of cori industrial waste for the production of poly-β-hydroxybutyrate (PHB) using the bacterium Azotobacter Beijerincki. Int J Environ Res. 2010;4:519–24.

163. Chattopadhyay P, Banerjee G, Sen SK. Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis. J Clean Prod. 2018;182:272–9. https://doi.org/10.1016/j.jclepro.2018.02.043.

164. Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng. 2018;47:279–93. https://doi.org/10.1016/j.ymben.2018.03.003.

165. Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, et al. Glucose-free cis, cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. ACS Sustain Chem Eng. 2017;6:1256–64. https://doi.org/10.1021/acssuschemeng.7b03597.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.