On Lithium-6 as a Diagnostic of the Lithium-enrichment Mechanism in Red Giants

Claudia Aguilera-Gómez1, Julio Chanamé2,3, and Marc H. Pinsonneault4

1 Departamento de Ciencias Físicas Universidad Andrés Bello, Fernandez Concha 700, 759-1538, Las Condes, Santiago, Chile; craguile@uc.cl
2 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
3 Millennium Institute of Astrophysics, Santiago, Chile
4 Department of Astronomy The Ohio State University, Columbus, OH 43210, USA

Received 2020 May 27; revised 2020 June 16; accepted 2020 June 16; published 2020 July 6

Abstract

High lithium-7 (7Li) abundances in giants are indicative of nonstandard physical processes affecting the star. Mechanisms that could produce this signature include contamination from an external source, such as planets, or internal production and subsequent mixing to the stellar surface. However, distinguishing between different families of solutions has proven challenging, and there is no current consensus model that explains all the data. The lithium-6 (6Li) abundance may be a potentially important discriminant, as the relative 6Li and 7Li abundances are expected to be different if the enrichment were to come from internal production or from engulfment. In this work, we model the 6Li and 7Li abundances of different giants after the engulfment of a substellar mass companion. Given that 6Li is more strongly affected by Galactic chemical evolution than 7Li, 6Li is not a good discriminant at low metallicities, where it is expected to be low in both star and planet. For modeled metallicities ([Fe/H] > −0.5), we use a “best-case” initial 6Li/7Li ratio equal to the solar value. 6Li increases significantly after the engulfment of a companion. However, at metallicities close to solar and higher, the 6Li signal does not last long in the stellar surface. As such, detection of surface 6Li in metal-rich red giants would most likely indicate the action of a mechanism for 6Li enrichment other than planet engulfment. At the same time, 6Li should not be used to reject the hypothesis of engulfment in a 7Li-enriched giant or to support a particular 7Li-enhancement mechanism.

Unified Astronomy Thesaurus concepts: Red giant stars (1372); Solar-planetary interactions (1472); Lithium stars (927); Low mass stars (2050); Stellar evolutionary models (2046)

1. Introduction

Lithium-7, one of the two stable isotopes of lithium (Li), was produced right after the Big Bang, and it is used to understand element production in the early universe (Coc et al. 2014), diagnose mixing in stellar interiors (Pinsonneault 1997), and study galactic chemical evolution (Prantzos et al. 2017), among other applications.

In low-mass stars, Li is destroyed in the interior during the main sequence. When stars evolve to the red giant branch (RGB), during the first dredge-up the outer convection zone deepens in mass, diluting the 7Li left close to the stellar surface. For this reason, high 7Li abundances in giants require the presence of nonstandard mechanisms modifying the abundance of the star.

One possible explanation for high surface 7Li in red giants relies on the efficient transport by extra mixing of 7Li produced through the Cameron– Fowler mechanism (Cameron & Fowler 1971). Another explanation for the enhanced 7Li is the contamination from a source that preserves or creates 7Li, such as supernovae (Martin et al. 1994) or substellar companions (e.g., Siess & Livio 1999). An evolved companion, such as an asymptotic giant branch star, which produces 7Li during its thermal pulses (Sackmann & Boothroyd 1992) could also be a source of Li. However, the small fraction of Li-rich giants that have been searched for binary companions do not seem to show evidence of them (Aguilera-Gómez 2018, Chapter 3.1). Further work is needed to test this possibility for the majority of red giants.

In Aguilera-Gómez et al. (2016a), we modeled the engulfment of different planets and brown dwarfs by giant stars. We found that engulfment of substellar companions (SSCs) can explain 7Li abundances as high as A(7Li) = 2.2,5 and that the threshold for defining what is enriched and what is normal depends on stellar mass and metallicity. In addition, as giants with higher surface 7Li are found in nature (e.g., Yan et al. 2018; Deepak & Reddy 2019), Aguilera-Gómez et al. (2016a) concluded that different 7Li-enrichment mechanisms are needed to explain the entire population. Recent survey data provide additional observational support for these conclusions (Martell et al. 2020).

Other observational indicators can be used to distinguish between 7Li replenishment scenarios. The evolutionary phase of the enriched giants is an important indicator of the physical conditions where the enrichment is produced. Some works, such as Deepak & Reddy (2019) and Casey et al. (2019), argued that most of these unusual giants are located in the horizontal branch. This could point to a mechanism of 7Li enrichment working close to the RGB tip or during the helium flash. On the other hand, measurements of the stellar rotation (Carberg et al. 2012), beryllium surface abundance (Takeda & Tajitsu 2017), and carbon isotopic ratio (Tayar et al. 2015) could all be fundamental in finding the mechanism behind the 7Li enrichment.

Another potentially important probe could be 6Li, the far-less-abundant stable isotope of Li, thought to be primarily produced by cosmic-ray spallation (4Meneguzzi et al. 1971).

As 6Li is destroyed in stellar interiors at even lower temperatures than those required to burn 7Li (Brown & Schramm 1988), standard stellar evolutionary models predict much more severe burning of 6Li than 7Li at any evolutionary
state (Proffitt & Michaud 1989), and very low surface 6Li abundances during the RGB.

In contrast, planets and brown dwarfs preserve their initial 6Li, so the abundance of this isotope should be higher in giants that have engulfed their companions. On the contrary, the Cameron–Fowler mechanism is not able to produce 6Li. Thus, it may be possible to use 6Li to identify candidates of planet engulfment (Charbonnel & Balachandran 2000).

6Li can also be produced in stellar flares (Montes & Ramsey 1998) and Galactic cosmic-ray interaction with the interstellar medium (Fields & Olive 1999). It is possible that the Sun is producing 6Li through flares, based on the high abundances found on the lunar soil (Chaussidon & Robert 1999). However, no 6Li is found in the surface of the Sun, implying that even if some part of the 6Li created is preserved in the photosphere, it is not enough to be measured. In giants, there is an additional difficulty, given the large convective envelope that would dilute the 6Li created by any mechanism, complicating its detectability.

Given the complications associated with the production of 6Li through flares, engulfment is one of the more cited 6Li-enrichment mechanisms in the literature. Also, because of the large contrast of 7Li pre- and post-engulfment, the planet signal could be easier to detect than that of 7Li. However, at lower metallicities, chemical evolution effects predict very low birth planetary abundances and the fragility of 6Li implies that it could be burned even where 7Li is stable. To analyze if 6Li can effectively be used as a diagnostic of engulfment for all giants, we model the 7Li abundance after the engulfment of SSCs of different properties (Section 2). The resulting 7Li surface abundance (Section 3) shows that stellar metallicity plays an important role in the burning of 6Li under convective conditions, with higher-metallicity stars very rapidly burning their original 6Li and that deposited by the planet. Consequently, the absence of this isotope in the surface of 7Li-rich giants cannot be used to reject the SSC engulfment hypothesis. We analyze in detail this result in Section 4, to finally summarize in Section 5.

2. Models

We follow a similar procedure to that described in Aguilera-Gómez et al. (2016a). We refer the reader to that work for an in-depth analysis of the assumptions, the calculation of point of SSC dissipation in stellar interiors, and the parameters used in our grid of stellar models.

In summary, we use a post-processing approach, where standard stellar evolution models are used as a base to later implement the engulfment and thus there is no feedback from the planet ingestion process. Standard stellar models are obtained with the Yale Rotating Evolutionary code (Pinsonneault et al. 1989).

The modeled stellar mass goes from 1.0 to 2.0 M_\odot. Metallicities range from $[\text{Fe/H}] = -0.5$ to $[\text{Fe/H}] = 0.18$ and giants are evolved to the tip of the RGB. We do not consider lower metallicities because the normal Galactic chemical evolution trends would predict a smaller than solar birth $^6\text{Li}/^7\text{Li}$ ratio. In such stars, an engulfed planet is likely to supply little 6Li due to its low birth 7Li. Thus, the low overall 6Li would make this signal impossible to observe. Low-metallicity stars are also known to experience severe in situ Li depletion on the giant branch. This combination makes 6Li a poor discriminant for metal-poor progenitors, and we therefore focus on higher-metallicity stars.

The 6Li in stellar interiors is burned through the reaction

$$^6\text{Li} + \text{H} \rightarrow ^3\text{He} + ^4\text{He},$$

with reaction rates from Lamia et al. (2013).

Regarding the stellar initial 6Li abundance in our models, we consider a fixed meteorite Li isotopic ratio $^6\text{Li}/^7\text{Li} = 0.082$ (Chaussidon & Robert 1998). Because 6Li should increase with metallicity due to the contribution of cosmic-ray spallation (e.g., Prantzos 2012), the birth 6Li is expected to be lower at lower metallicity. We therefore regard this as an optimistic case scenario, where engulfed objects will give the maximum signal. We note, however, that our differential depletion calculations are independent of the assumed birth ratio, given that the 6Li and 7Li depletion factors, defined as the fraction of initial Li remaining in the surface of the star, are independent of the birth values.

The initial 6Li value is set before the expected phase of Li burning in the pre-main sequence; thus, the Li isotopic ratio can drastically change in this phase. Figure 1 shows the burning of Li in the pre-main sequence for stars of different mass and metallicities of $[\text{Fe/H}] = -0.5$ (top) and $[\text{Fe/H}] = 0.0$ (bottom panel). Higher-mass stars preserve their $^6\text{Li}/^7\text{Li}$, while there is more burning in solar-metallicity stars. Li$_{\text{i0}}$ here is the meteoritic Li abundance assumed.

To better control for the effect of Li burning previous to the RGB phase, we quantify the Li abundances at the zero-age main sequence. Although there is some burning of 6Li during the main sequence, the main depletion process takes place before that. Figure 2 shows the 7Li and 6Li depletion factors at the zero-age main sequence, for stars of different masses and
metallicities. There is little to no depletion at higher masses, but important depletion for 6Li at low masses at any metallicity. 7Li also burns considerably in low-mass stars at higher metallicities.

For the SSC, we use a fixed ratio between 6Li mass fraction and metals equal to the solar system meteoritic value. Thus, all SSCs have the same X\textsubscript{6Li} but could have a different metal content, changing its mass fraction of 6Li. The metal content of SSCs depends on their mass. Details can be found in Aguilera-Gómez et al. (2016a). Results from that work show that very massive brown dwarfs dissolve in the stellar radiative interior rather than in the convective envelope. Because of that, we decide to model SSC masses up to 15 J\textsubscript{up}. At higher metallicities the maximum mass of a companion that still dissolves in the convective zone increases (Aguilera-Gómez et al. 2016b).

3. 6Li Abundance Evolution

We begin by considering the engulfment of four SSCs by 1.3 M\textsubscript{☉} and 1.8 M\textsubscript{☉} red giants of [Fe/H] = −0.5, and a 1.7 M\textsubscript{☉} of [Fe/H] = 0.05. The companions correspond to a 15 M\textsubscript{☉} brown dwarf with Z = Z\textsubscript{☉}, a 15 M\textsubscript{☉} brown dwarf with Z = 2.5Z\textsubscript{☉}, a Jupiter-like planet with Z = 2.5Z\textsubscript{☉}, and an Earth-like planet (Z = 1).

Several different engulfment times were modeled. However, since the 6Li abundance post-engulfment can change due to burning at any time and due to dilution during the first dredge-up, we show the case of engulfment right after the end of the first dredge-up. This way, the effects of standard dilution are not present anymore, and the evolution of 6Li post-engulfment is simpler to interpret.

The evolution of the 6Li/7Li surface ratio for these stars can be seen in Figure 3 as a function of luminosity and log g. The 6Li in the main sequence can be lower than the meteoritic value due to pre-main-sequence burning. The 6Li/7Li ratio decreases during the first dredge-up (log g ∼ 3.5), as expected. This is produced because right below the convective envelope, 6Li burns more rapidly than 7Li. When the first dredge-up mixes that material into the surface, the 6Li is reduced by a larger amount than 7Li.

The ratio 6Li/7Li increases after the engulfment of planets (at log g ∼ 2.9 in Figure 3). The 6Li enrichment is larger for...
the brown dwarf with high Z, while Earth-like planets barely increase the original 6Li.

For these giants 6Li burning can be significant during the dredge-up and RGB. We see this in the $\varepsilon M_{1.7}$ star in Figure 3. Thus, there are some differences in the stellar 6Li after engulfment when planets are accreted at different locations along the RGB. Later engulfment times imply larger 6Li, a difference that can be considerable when burning is significant in the star. Notice, however, that even in the best-case scenario in terms of engulfment time, the values of 6Li are still extremely low after burning proceeds.

The resulting 6Li is mass and metallicity dependent. In Figure 3, we see almost no burning post-engulfment in the 1.8 M_\odot, $[\text{Fe/H}] = -0.5$ giant and severe burning in the 1.7 M_\odot, metal-rich star.

Figure 4 shows a map of $^{6}\text{Li}/^{6}\text{Li}_0$, the ratio between current 6Li abundance to the meteoritic 6Li, in standard stars of different masses and metallicities, without planet engulfment. We obtain in our models the 6Li abundance at the tip of the RGB in stars of the grid (small circles in the figure), that is then interpolated to produce the color-coded map. In metal-poor stars, a small amount of 6Li is found in the surface, even without engulfment. However, metal-rich stars (solar metallicity and higher) reach the RGB with low 6Li, which decreases even more after the first dredge-up where 6Li is also burned under convective conditions, vanishing completely.

We present a similar map of $^{6}\text{Li}/^{6}\text{Li}_0$ for stars of different masses and metallicities in Figure 4, bottom right panel, now considering the engulfment of a 15 M_\odot brown dwarf enhanced in metals at the end of the first dredge-up.

Comparing this to the bottom left panel of Figure 4, 6Li can increase significantly with engulfment. However, for metal-rich stars, the incorporated 6Li is rapidly burned and would not be observed in the stellar surface. This becomes important when distinguishing 7Li-enrichment mechanisms, since most of these giants are metal-rich.

We compiled a catalog of observed giants with measured 7Li, where no upper limits are considered, and show their metallicities in the histogram of Figure 4, top right panel. These measurements are obtained from the literature, and as such are not homogeneous. Additionally, some of these sources only report their Li-rich giants. As 7Li-rich giants seem to be more metal-rich, this could bias our compilation to higher metallicities. The catalog includes giants from Gilroy (1989), Brown et al. (1989), Jasniwicz et al. (1999), Gonzalez et al. (2009), Kumar et al. (2011), Pace et al. (2012), Carlberg et al. (2012, 2016), Lebzelter et al. (2012), Martell & Shetrone (2013), Liu et al. (2014), Adamow et al. (2014), Böcek Topcu et al. (2015), Luck (2015), Delgado Mena et al. (2016), Casey et al. (2016), Smiljanic et al. (2018), and Deepak & Reddy (2019).

6 In Aguilera-Gómez et al. (2016a) we find that not reporting the entire sample makes it harder to account for the full phenomenology creating Li-enriched giants.
In this histogram, most of the stars with measured 6Li are metal-rich. The peak of this distribution is located at a metallicity at which 4Li burns rapidly, with no 6Li in the stellar surface, as we can see contrasting this distribution with the color map in the bottom panel. Thus, we would not expect to find 6Li in most of the observed giants, even if they have engulfed an SSC previously. The limiting metallicity at which 6Li could never be detected post-engulfment due to its rapid burning increases with mass.

If 6Li is burned in the star the signal of SSCs would not be detected. In contrast, the 7Li after engulfment could be preserved during the entire RGB phase if no extra mixing decreases its abundance. This could be the case for more metal-rich stars, where extra mixing seems to be less efficient (Shetrone et al. 2019) and suggests that even if the giant accreted a planet, its 7Li abundance could be high, while its 6Li remains low.

4. Discussion

As expected, 6Li can increase in a low-mass giant after the engulfment of SSCs. However, 6Li is rapidly burned in stars of higher metallicity, indicating that the absence of this isotope does not discard the possibility that the star accreted an SSC, but if there was an engulfment event, it did not occur recently. The destruction of this isotope at a faster rate than the 7Li leads to low 6Li, regardless of the $A(^7$Li), not rejecting the engulfment possibility (Drake et al. 2002). This point therefore becomes a crucial one in the quest for the sources of 7Li enrichment in giants, as most of the giants that have measured 7Li have higher metallicities. If 6Li were to be seen at high metallicity, then its most likely explanation is a source other than an accreted SSC.

At the same time, only the 7Li-rich giants with $A(^7$Li) < 2.2 can be explained by the engulfment of SSC (Aguilera-Gómez et al. 2016a). Therefore, the presence or absence of 6Li in stars of higher 7Li abundance (e.g., Monaco et al. 2014) does not give any information on this particular enrichment mechanism.

In contrast, if 7Li is detected in a relatively metal-poor giant with $A(^7$Li) < 2.2, this could be due to the recent engulfment of an SSC. Enrichment could explain both the high 7Li and 6Li abundances at the same time, but there could also be independent explanations for the enrichment of each isotope.

From a purely observational point of view, detecting the 6Li isotope can be particularly hard, as it manifests itself as a subtle asymmetry of the 7Li line at \sim6708 Å. Even a Li isotopic ratio as high as solar can be hard to detect at solar-like metallicities due to convective line asymmetries and blends with other lines. There is a small region of parameter space where the increase in 6Li could be detected, i.e., in higher-mass RGB stars engulfing brown dwarfs companions. These hypothetical detections of 6Li would be especially interesting in giants with $A(^7$Li) < 2.2. Giants with more 7Li (and stronger 7Li lines, where the 7Li could be more easily detected) can be excluded as engulfment candidates solely based on their 7Li abundances (Aguilera-Gómez et al. 2016a).

Not only is the 6Li detection observationally hard, but also, as the stellar mass increases, the lifetime a star spends on its RGB phase decreases considerably. Thus, it is very unlikely to find the higher-mass objects that could retain part of their 6Li signature.

An interesting solar-metallicity Li-enriched giant is presented by Mott et al. (2017), who report a Li isotopic ratio close to the solar meteoritic ratio, and as such it is an interesting case to analyze. These high abundances are difficult to explain both with stellar flares and accretion of SSCs. To get to this very high ratio, a large amount of material would need to be accreted and, at solar metallicity, any 6Li donated by a companion to the star is burned very rapidly. As such, we confirm the calculations by Mott et al. (2017) that led them to suggest that engulfment is an unlikely explanation for this particular star.

5. Summary

The fragile 6Li isotope is destroyed at even smaller temperatures than 7Li. As such, stellar evolution theory predicts giants with small 6Li abundances. The 6Li could increase after the engulfment of SSCs, making 6Li to appear as a good diagnostic for an engulfment event in giants.

In this work, we modeled the 6Li and 6Li/7Li of a giant, which increases after the engulfment of a companion. We demonstrate that metal-rich stars very rapidly burn this 6Li. Given that no 6Li can be found in metal-rich giants even after planet engulfment, its abundance should not be used as a way to distinguish between different 7Li-enrichment mechanisms nor as a method to reject the planet engulfment hypothesis. Moreover, enrichment of 6Li in low-mass metal-rich giants is likely not due to planet engulfment. There is only a very low probability that we find such an extremely recent engulfment event, where 6Li is still not burned completely.

Stars with $A(^7$Li) > 2.2 could not be explained by planet accretion on the basis of their 7Li alone. Thus, measurements of 6Li in these stars do not indicate anything about the 7Li-enrichment mechanism. In contrast, finding stars with high abundances of both 7Li and 6Li in a certain metallicity range could point to a recent engulfment event. However, a combination of mechanisms, one to enhance 7Li and another to increase the 6Li, is still possible, especially if the star is metal-rich and its 6Li is much less likely to be explained by accretion.

In conclusion, we advise caution when using 6Li as a diagnostic of engulfment or when using it to favor a scenario of 7Li enrichment over others.

We thank the referee for suggestions that helped improve the manuscript. We thank G. Somers for his help with YREC. C.A. G. acknowledges support from the National Agency for Research and Development (ANID) FONDECYT Postdoctoral Fellowship 2018 Project 3180668. J.C. acknowledges support from CONICYT project Basal AFB-170002 and by the Chilean Ministry for the Economy, Development, and Tourism’s Programa Iniciativa Científica Milenio grant IC 120009, awarded to the Millennium Institute of Astrophysics. M.H.P. acknowledges support from NASA grant 80NSSC19K0597.

ORCID iDs

Claudia Aguilera-Gómez @ https://orcid.org/0000-0002-9052-382X
Julio Chanamé @ https://orcid.org/0000-0003-2481-4546
Marc H. Pinsonneault @ https://orcid.org/0000-0002-7549-7766
References

Adamów, M., Niedzielski, A., Villaver, E., Wołoszczak, A., & Nowak, G. 2014, A&A, 569, A55
Aguilera-Gómez, C. 2018, External Mechanisms (Cham: Springer).
Aguilera-Gómez, C., Chanamé, J., Pinsonneault, M. H., & Carlberg, J. K. 2016a, ApJ, 829, 127
Aguilera-Gómez, C., Chanamé, J., Pinsonneault, M. H., & Carlberg, J. K. 2016b, ApJL, 833, L24
Böcek Topcu, G., Afşar, M., Schaeuble, M., & Sneden, C. 2015, MNRAS, 446, 3562
Brown, J. A., Sneden, C., Lambert, D. L., & Dutchover, E., Jr. 1989, ApJS, 71, 293
Brown, L., & Schramm, D. N. 1988, ApJL, 329, L103
Cameron, A. G. W., & Fowler, W. A. 1971, ApJ, 164, 111
Carlberg, J. K., Cunha, K., Smith, V. V., & Majewski, S. R. 2012, ApJ, 757, 109
Carlberg, J. K., Smith, V. V., Cunha, K., & Carpenter, K. G. 2016, ApJ, 818, 25
Casey, A. R., Ho, A. Y. Q., Ness, M., et al. 2019, ApJL, 880, 125
Casey, A. R., Ruchti, G., Masseron, T., et al. 2016, MNRAS, 461, 3336
Charbonnel, C., Balachandran, S. C., et al. 2000, A&A, 359, 563
Chaussidon, M., & Robert, F. 1999, Natur, 402, 270
Chaussidon, M., & Robert, F. 1999, Natur, 402, 270
Coc, A., Uzan, J.-P., & Vangioni, E. 2014, JCAP, 10, 050
Deepak, & Reddy, B. E. 2019, MNRAS, 484, 2000
Delgado Mena, E., Tsantaki, M., Sousa, S. G., et al. 2016, A&A, 587, A66
Drake, N. A., de la Reza, R., da Silva, L., & Lambert, D. L. 2002, AJ, 123, 2703
Fields, B. D., & Olive, K. A. 1999, NewA, 4, 255
Gilroy, K. K. 1989, ApJ, 347, 835
Gonzalez, O. A., Zoccali, M., Monaco, L., et al. 2009, A&A, 508, 289
Jasniewicz, G., Parthasarathy, M., de La Verney, P., & Thévenin, F. 1999, A&A, 342, 831
Kumar, Y. B., Reddy, B. E., & Lambert, D. L. 2011, ApJL, 730, L12
Lamia, L., Spitaleri, C., Pizzzone, R. G., et al. 2013, ApJ, 768, 65
Lebzelter, T., Utenthaler, S., Busso, M., Schuhrheide, M., & Aringer, B. 2012, A&A, 538, A36
Liu, Y. J., Tan, K. F., Wang, L., et al. 2014, ApJ, 785, 94
Luck, R. E. 2015, AJ, 150, 88
Martell, S., Simpson, J., Balasubramaniam, A., et al. 2020, arXiv:2006.02106
Martell, S. L., & Shetrone, M. D. 2013, MNRAS, 430, 611
Martin, E. L., Rebolo, R., Casares, J., & Charles, P. A. 1994, ApJ, 435, 791
Meneguzzi, M., Audouze, J., & Reeves, H. 1971, A&A, 15, 337
Monaco, L., Boffin, H. M. J., Bonifacio, P., et al. 2014, A&A, 564, L6
Montes, D., & Ramsey, L. W. 1998, A&A, 340, L5
Mott, A., Steffen, M., Caffau, E., Spada, F., & Strassmeier, K. G. 2017, A&A, 604, A44
Pace, G., Castro, M., Meléndez, J., Théado, S., & do Nascimento, J.-D., Jr. 2012, A&A, 541, A150
Pinsonneault, M. 1997, ARA&A, 35, 557
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJL, 338, 424
Prantzos, N. 2012, A&A, 542, A67
Prantzos, N., de Laverny, P., Guiglion, G., Recio-Blanco, A., & Worley, C. C. 2017, A&A, 606, A132
Profitt, C. R., & Michaud, G. 1989, ApJ, 346, 976
Sackmann, I.-J., & Boothroyd, A. I. 1992, ApJL, 392, L71
Shetrone, M., Tayar, J., Johnson, J. A., et al. 2019, ApJ, 872, 137
Siess, L., & Livio, M. 1999, MNRAS, 308, 1133
Snijders, R., Franciosini, E., Bragaglia, A., et al. 2018, A&A, 617, A4
Takeda, Y., & Tajitsu, A. 2017, PASJ, 69, 74
Tayar, J., Ceillier, T., García-Hernández, D. A., et al. 2015, ApJ, 807, 82
Yan, H.-L., Shi, J.-R., Zhou, Y.-T., et al. 2018, NatAs, 2, 790

The Astrophysical Journal Letters, 897:L20 (6pp), 2020 July 1

Aguilera-Gómez, Chanamé, & Pinsonneault