Calorie Restriction Reduces the Influence of Glucoregulatory Dysfunction on Regional Brain Volume in Aged Rhesus Monkeys

Auriel A. Willette,1,2,3 Barbara B. Bendlin,1,3 Ricki J. Colman,4 Erik K. Kastman,1,3 Aaron S. Field,5 Andrew L. Alexander,2 Aadhavi Sridharan,1,3,6 David B. Allison,7 Rozalyn Anderson,1,4 Mary-Lou Voytko,8 Joseph W. Kemnitz,4,9,10 Richard H. Weindruch,1 and Sterling C. Johnson1,2,3,4,6

Insulin signaling dysregulation is related to neural atrophy in hippocampus and other areas affected by neurovascular and neurodegenerative disorders. It is not known if long-term calorie restriction (CR) can ameliorate this relationship through improved insulin signaling or if such an effect might influence task learning and performance. To model this hypothesis, magnetic resonance imaging was conducted on 27 CR and 17 control rhesus monkeys aged 19–31 years from a longitudinal study. Voxel-based regression analyses were used to associate insulin sensitivity with brain volume and microstructure cross-sectionally. Monkey motor assessment panel (nMAP) performance was used as a measure of task performance. CR improved glucoregulation parameters and related indices. Higher insulin sensitivity predicted more gray matter in parietal and frontal cortices across groups. An insulin sensitivity × dietary condition interaction indicated that CR animals had more gray matter in hippocampus and other areas per unit increase relative to controls, suggesting a beneficial effect. Finally, bilateral hippocampal volume adjusted by insulin sensitivity, but not volume itself, was significantly associated with nMAP learning and performance. These results suggest that CR improves glucose regulation and may positively influence specific brain regions and at least motor task performance. Additional studies are warranted to validate these relationships.

Diabetes 61:1036–1042, 2012

Lower insulin sensitivity and reduced insulin-mediated glucose uptake can adversely impact the brain. Glucoregulatory dysfunction is related to less gray matter (GM) volume cross-sectionally and longitudinally in medial temporal lobe, prefrontal cortex, and other areas impacted by normal aging, neurovascular disorders, and Alzheimer disease (AD). Such relationships are seen in both rhesus monkeys (1) and humans (2,3). Importantly, insulin-signaling dysfunction in AD patients can negatively influence brain volume in the absence of type 2 diabetes (3), suggesting that mild to moderate glucoregulatory perturbation may be detrimental over time. Studies in rodents show that mediod temporal lobe and prefrontal cortex have dense insulin receptor staining and may rely on insulin signaling for optimal glucose uptake and utilization (2,4). AD is characterized by reduced insulin sensitivity, transcription of mitochondrial metabolism genes, and central glucose uptake (5,6). Lower insulin sensitivity may pathogenically affect the brain through microvascular disease (7), increased production of advanced glycation end products and free radicals (8,9), or lower cerebral blood flow and glucose transport (10).

Despite these relationships between insulin signaling and brain, studies vary widely in the glucoregulatory measures and brain areas that are assessed (11). It is therefore of interest to use voxel-wise analysis methods (12) to investigate where insulin sensitivity variation is associated with regional volume or tissue microstructure across the brain. Our group has previously reported on the longitudinal effects of calorie restriction (CR) regarding glucose regulation in aged rhesus macaques since middle age (13–15). CR led to improved glucose tolerance and higher insulin sensitivity, effects that may benefit areas like hippocampus and prefrontal cortex and mediate improved task learning and performance. This cohort therefore afforded a unique opportunity to look at the effects of CR on glucose regulation and its association with brain and behavior in a primate species.

In this study, an index of insulin sensitivity, SI, was derived from a glucose tolerance test. This measure represents the ability of insulin to promote glucose uptake and inhibit hepatic glucose production (13,16). Insulin sensitivity in the periphery and brain strongly correspond (17). We hypothesized that higher SI would predict more GM volume in brain areas with dense insulin receptor staining and that are affected by insulin signaling dysregulation (2,18–21). Furthermore, it has been well established that CR in nonhuman primates has several beneficial effects related to glucose regulation, such as improved vascular health, lower triglycerides, and other factors that delay age-associated pathogenesis (22). Thus, we tested the interaction between SI and dietary condition, to see if CR monkeys exhibited more volume or tissue density per SI unit increase versus controls beyond the association between SI and brain seen across both dietary groups. In other words, this interaction tested if there was a region-specific beneficial effect for restricted animals. Several
insulin signaling, glycination, and vascular measures were tested as potential mediating factors (1,8). Finally, due to hippocampus being susceptible to glucoregulatory dysfunction (3) and its role in AD, we performed a region of interest (ROI) analysis limited to that region. The ROI analysis, which was independent from the voxel-wise results (23), tested the extent to which predicted changes in hippocampus specific to S1 were associated with visuomotor performance on the monkey motor assessment panel (mMAP) (24,25). The hippocampus is in part involved in learning new spatiomotor sequences (26).

RESEARCH DESIGN AND METHODS

Subjects. Forty-four rhesus monkeys (Macaca mulatta) between 19 and 31 years of age were included in this study. Seventeen animals were fed ad libitum for approximately 8 h/day, whereas the remaining 27 subjects were fed 30% fewer calories relative to their own baseline intake. Length of CR diet was 12–17 years and initiated in middle age. Demographic data are available in Table 1. These monkeys were the remaining subjects of a longitudinal CR project begun at the Wisconsin National Primate Research Center in 1989. Details of the CR manipulation, housing, and husbandry have been described previously (13,27).

Magnetic resonance imaging preprocessing. Preprocessing of magnetic resonance imaging data (MNI) was conducted in SPM8 (12). For the purposes of this report, this type of regression technique produces t-statistic, color-coded result maps that are the product of a regression model performed at every voxel in the brain for a given modality. Continuous groups of voxels that attain statistical significance, called clusters, will thus overlap with and implicate different brain regions. In this study, volumetric or diffusion tensor-imaging scans were entered as the dependent variable. The independent variable was S1. Covariates included age at scan, sex, dietary condition, and the S1 term when testing an interaction (see below). Analyses of volume additionally covaried a global index of either gray or white matter (25). Our primary analysis of interest was testing a S1 × dietary condition interaction. If CR animals showed more volume or microstructure per S1 unit change beyond the association seen with S1 alone, suggesting a further beneficial effect. The voxel and cluster level thresholds were set at P < 0.005 (uncorrected) and P < 0.05 (corrected). Type 1 error was minimized by first using an omnibus F-contrast (P < 0.05, uncorrected) for S1, dietary condition, and S1 × dietary condition to mask subsequent contrasts, followed by Monte Carlo simulations to estimate cluster sizes that would occur due to chance (25,30). Clusters required 280 contiguous voxels to reach significance at P < 0.05 (corrected). Reported whole-brain cluster coordinates correspond to the Saleem-Logothetis atlas (35) and are displayed on the 112RM-ML template image (28). Standard rhesus monkey atlases were used to identify fibers (36) and subcortical structures (37).

Statistical analyses: brain-physiology and brain-behavior associations. fMRI results were conducted using SPSS 18.0 (SPSS Inc., Chicago, IL) at α = 0.05. Logarithmic transformations were used to adjust nonnormally distributed in-1037
dices. ANOVA tested group differences for demographic and biological variables. Multiple regression was used to determine which basal and frequently sampled glucose tolerance test variables significantly explained error variance in the S1 association and interaction voxel-wise analyses. The first regression block included HOMA-IR to account for basal insulin sensitivity. The second block contained a priori variables of interest directly related to S1: basal glucose and insulin, compensatory pancreatic sensitivity represented by Disposition Index (13), and glycosylated hemoglobin levels. The third block contained the vascular risk factor homocysteine.

Brain-behavior mediational models tested whether or not S1-predicted variation in brain was correlated with motor learning and performance. To avoid circular analysis (25), an independent canonical analysis was used to derive mean image signal (e.g., mean GM volume) within the bilateral hippocampus. S1 was then linearly regressed onto the hippocampal signal. The Pearson’s statistic was then used to correlate the predicted change in hippocampal volume due S1 with the mean number of seconds it took for a monkey to complete the fine motor portion of the curved rod mMAP task during initial acquisition (i.e., the learning phase) and when the animal reached proficiency (25).

RESULTS

Subject characteristics and biological indices. See Table 1 for descriptive data and statistics. The mean age, sex composition, and total brain volume of the two dietary
diabetes.diabetesjournals.org DIABETES, VOL. 61, MAY 2012 1037

Glucoregulatory impairment. Animals were classified by an expert (R.J.C.) as having normal, prediabetic/at-risk, or type 2 diabetes-like profiles using established criteria (15).

Anatomical region of interest: hippocampus. In order to independently test (23) if glucoregulatory dysfunction might influence motor learning via S1 predicted variation in brain, an expert (A.A.W.) drew a mask around the 112RM-ML atlas to isolate the bilateral hippocampus using methods previously described (34). Mean GM volume was extracted from the ROI for all normalized monkey brains and was used in conjunction with S1 to predict performance on a motor task described next.

Motor learning and performance. It was of interest to see if the relationship between insulin signaling and hippocampal volume predicted changes in motor task learning and performance. To this end, our cohort has previously been tested on the mMAP (25), which required subjects to retrieve an appetitive stimulus from a flat platform, straight rod, or curved rod (24). An automated system recorded the number of seconds necessary to reach from the home cage to the first area of the affixed apparatus (reaction time), from the first to second area (coarse motor movement), and from the second area to a small receptacle that held the stimulus (fine motor movement). We used fine motor performance data from the most difficult task (i.e., curved rod), because CR animals acquire and perform this task more quickly than controls (25). Animals did not differ on simpler tasks. To test our hypothesis regarding insulin signaling and hippocampal volume, these performance measures were correlated with hippocampal volume adjusted or not adjusted by S1. The sample size for these analyses and data was 26 animals (CR: n = 7; CR: n = 19).
conditions did not differ. CR monkeys showed expected benefits in insulin signaling and related indices (22).

Prediabetic and diabetic glucoregulatory impairment.

Six controls and zero CR monkeys were classified as having preclinical (n = 4) or diabetes-like glucoregulatory dysfunction (n = 2). Diagnosis was not a significant covariate in regression analyses.

Regional GM: \(S_I \) association. To examine the association of \(S_I \) on regional GM, \(S_I \) was regressed onto GM volume voxels across all subjects. As indicated in Fig. 1A–C (yellow-orange areas) and Table 2, higher \(S_I \) predicted more GM in motor and somatosensory cortices. Fig. 1G depicts this relationship by illustrating the correlation between \(S_I \) and the voxel with the highest (peak) \(t \)-statistic located in left primary motor cortex. The association of \(S_I \) and GM was comparable for both control (\(R^2 = 0.516; P < 0.001 \)) and CR (\(R^2 = 0.324; P < 0.001 \)) monkeys.

Regional GM: predictors of \(S_I \) association. Measurements directly or indirectly related to glucoregulation that are described in Table 1 may elucidate potential mechanisms underlying the relationship between \(S_I \) and regional GM. Therefore, follow-up multiple linear regression was conducted. The dependent variable was the predicted volume change in left motor cortex shown in Fig. 1G. Different regression models using stepwise, forward, or enter methods produced similar results (data not shown). The final adjusted regression model predicted 20.7% of the variance across both groups [\(F(6,35) = 4.170; P < 0.01 \)]. Although the influence of \(S_I \) on GM was not significantly mediated by HOMA-IR or basal glucose, increased basal insulin was modestly related to less GM (\(R^2 = 0.133; P < 0.05 \)). Higher levels of homocysteine (\(R^2 = 0.169; P < 0.05 \)) and glyco-sylated hemoglobin (\(R^2 = 0.148; P < 0.05 \)) were also associated with less frontal GM volume.

Regional GM: \(S_I \times \) dietary condition. Given the salubrious effects of CR on vascular health and metabolic indices related to improved glucose regulation (22), we tested for a similar beneficial effect on the brain in CR monkeys. Thus, this contrast examined if CR monkeys had more GM volume per unit increase in \(S_I \) compared with controls beyond the association with \(S_I \) alone, suggesting a protective effect. As shown in Table 2 and depicted in Fig. 1A (purple areas), voxel clusters were present in bilateral anterior hippocampus and both inferior and middle temporal gyri. The interaction is represented in Fig. 1H using the peak \(t \)-statistic voxel. CR monkeys showed more GM as \(S_I \) increased (\(R^2 = 0.159; P < 0.05 \)). For controls, however, higher \(S_I \) unexpectedly corresponded to less GM (\(R^2 = 0.449; P < 0.01 \)). To validate this result, a mean index of \(S_I \) was calculated using data from all glucose tolerance tests since the start of the project in 1989, which was up to 14 assessments depending on the length of time an animal spent in the study. This index or area under the curve estimates resulted in clusters and graphs similar to those produced using the \(S_I \) value nearest to the MRI scan date (data not shown). Additional significant brain areas found in the interaction analysis were caudal perirhinal, entorhinal, and parahippocampal cortices, insula, amygdala, temporal pole, anterior cingulate cortex, and orbital and medial prefrontal cortices (Fig. 1A–F).

Regional GM: predictors of \(S_I \times \) dietary condition effect. Multiple linear regression was simultaneously performed on each dietary condition group to detect mediators that might explain the \(S_I \times \) dietary condition interaction effect. The dependent variable was the predicted change in hippocampal GM depicted in Fig. 1H. The same regression model was used as in the \(S_I \) association analysis (see research design and methods). Table 3 indicates the result. Fig. 2A–C shows that control monkeys had strong associations between HOMA-IR, basal insulin, or basal glucose and GM related to the interaction. Fig. 2D–F shows nonsignificant relationships for the same variables in CR monkeys.

S\(_I \) predicted variation in hippocampus GM and fine motor performance. We finally wished to test if predicted changes in hippocampal GM related to \(S_I \) were associated with mMAP fine motor performance during the curved rod task (24). An independent analysis was conducted using \(S_I \) measured at the time closest to scan in 7 controls and 19 CR monkeys that had successfully learned the task. As reported elsewhere (25), this task was chosen because CR monkeys performed it significantly more quickly during acquisition (CR: 4.84 s; control: 6.26 s) and after gaining proficiency (CR: 3.08 s; control: 3.73 s).

Table 1

Demographics, total brain volume, and glucoregulatory values for control and CR monkeys

Demographics and global volume	Control	Range	CR	Range	\(P \) value
Age (years)	23.84 ± 2.79	19–27	24.32 ± 2.77	19–31	NS
Sex (male/female) (n)	7/10	NA	11/16	NA	NS
Body weight (kg)	12.39 ± 2.84	9–19	8.94 ± 1.71	6–12	0.001
Total brain volume (mm³)	86.80 ± 10.56	67–105	82.45 ± 9.20	56–99	NS

Physiological indices					
Basal glucose (mg/dL)	82.56 ± 41.77	52–218	60.78 ± 7.44	51–82	0.009
Basal insulin (µU/mL)	47.81 ± 50.47	4–199	19.26 ± 17.93	4–82	0.009
Disposition Index \((IA_{0.30}/AG_{0.30}/I_b)\)	1.93 ± 1.52	138–5,705	4,214 ± 2,411	106–12,483	0.001
HbA1c (%)	10.48 ± 4.41	7–22	8.59 ± 1.56	5–12	0.043
Homocysteine (µmol/L)	8.16 ± 3.30	5–15	9.88 ± 5.09	5–24	NS
HOMA-IR \((IG_b×I_b)/405\)	8.62 ± 7.63	0.51–28	2.99 ± 2.86	0.50–12	0.001
\(S_I \) \((µU/mL × 10^{12} \text{ min}^{-1})\)	3.28 ± 2.31	0.23–7	7.44 ± 4.11	0.61–16	0.001

The unit of measurement, mean ± SD, and range for a given variable is noted for control and then CR monkeys. Insulin sensitivity, as assessed by \(S_I \), quantitatively represents the capacity of insulin to stimulate glucose uptake and inhibit glucose production. Disposition Index represents pancreatic insulin sensitivity and is calculated as the ratio of insulin secretion to glucose uptake 0–30 min after glucose bolus as compared to prechallenge insulin levels. Basal glucose, basal insulin, and HOMA-IR are based on samples collected before glucose bolus administration. Glucoregulatory data besides basal measures near the time of scan were not available for one CR and one control monkey. ANCOVA was used to test for dietary group effects.
DISCUSSION

We hypothesized that higher insulin sensitivity, indexed by S_t, would predict more GM or denser microstructure in brain regions that are influenced by insulin signaling and impacted by neurodegenerative and neurovascular disorders. Across CR and control subjects, higher S_t was associated with more GM volume in somatosensory and motor cortices. These areas have low insulin receptor density relative to medial temporal lobe and prefrontal cortex in rodents (38). Interestingly, S_t interacted with dietary condition, for which CR monkeys with higher S_t had significantly more GM in hippocampus, insula, prefrontal cortex, and other regions with a high density of insulin receptors. Higher S_t among controls was unexpectedly related to less GM in these regions. Models suggest that prediabetes or type 2 diabetes in controls did not influence this result. Similar relationships between impaired glucose regulation and brain volume have been seen in AD patients with no history of type 2 diabetes (3). As such, mild to moderate insulin signaling dysregulation may negatively affect key brain areas.

Although the relationship between S_t and GM among controls in the interaction was unexpected, it is not likely due to assay error or a sudden change in glucoregulatory dynamics. A similar interaction result was found when using a mean S_t index derived from every glucose tolerance test conducted since 1989. More importantly, an estimate of basal insulin resistance, HOMA-IR, corresponded to less hippocampal GM in controls, a result that has been observed in humans (21). No relationship was seen between S_t and white matter volume or tissue microstructure, which may reflect the role of insulin-like growth factor signaling rather than insulin in mediating oligodendrocyte development and growth factor-mediated preservation (39). Although tissue microstructure is negatively impacted by type 2 diabetes (40), it may be due to vascular pathology or other consequences instead of antecedent decreases in insulin sensitivity.

Our results suggest that there is wide variation in how insulin signaling may affect energy metabolism and other functions in brain. The central action of insulin on reducing oxidative damage or maintaining synaptic plasticity appears to be area-specific due to receptor density and binding dynamics (2,17,38). For example, intracerebrovascular treatment of rats with low doses of streptozotocin, which is normally toxic to pancreatic insulin-secreting cells and creates a diabetes-like state, reduced downstream phosphatidylinositol-3 kinase activity primarily in hippocampus but to a much lesser extent in frontal cortex without affecting peripheral glucose regulation (41). Intracerebrovascular administration of insulin also affected adenosine 5'-triphosphate storage in hippocampus but not parietotemporal cortex (4).

By extension, the relatively moderate relationship between higher S_t and more GM in motor and somatosensory areas may be due to indirect mechanisms attributed to higher insulin concentrations. Chronic peripheral hyperinsulinemia is typically characterized by hyperglycemia and breakdown of the epithelial vasculature. Levels of glycosylated hemoglobin and homocysteine, a biomarker for vascular health, were significant mediators of the association between S_t and GM. In brain, it is conceivable that a microvascular insult combined with other neuro-pathologies might synergistically reduce perfusion and glucose transport into parenchyma, leading to damage (42). For example, streptozotocin alone in transgenic APP/PSI mice produced more advanced glycation end products in microvasculature and worse spatial performance; similar pathophysiological effects were also seen in human cerebrovascular cells exposed to streptozotocin and amyloid β (9).

The interaction of S_t and GM between dietary groups revealed several important findings related to insulin signaling and brain in CR versus control monkeys. Ameliorative effects may be due to the direct action of insulin, although CR may act through related mechanisms such as less atherogenic dyslipidemia, lower expression of

FIG. 1. The relationship between S_t and regional GM volume across subjects and an $S_t \times$ dietary condition interaction testing such an association for each dietary group. S_t near the time of scan was not available for one control and one CR monkey. Sixteen controls and 26 CR monkeys were analyzed. Higher S_t for both control and CR monkeys (yellow-orange color) corresponded to more GM in parietal and frontal cortices (A–C). For the interaction, CR animals showed more GM per unit increase in S_t compared with controls in hippocampus, temporal pole, agranular insula, striatum, prefrontal cortices, and anterior cingulate cortex (purple color. A–F). To illustrate these results, a representative voxel from each analysis was graphed, both for the association of S_t across groups (G) and the interaction between groups (H). A sagittal view of the brain depicts the location of the coronal slices in A–F along a posterior-anterior axis. Color bars and color maps represent t values. GM volume is depicted in arbitrary units (A.U.). Brains are oriented such that the left hemisphere is on the left side. Unadjusted hippocampal volume was not related to motor learning ($R^2 = 0.034$; not significant) or proficient ($R^2 = 0.01$; not significant) mMAP performance. By contrast, when first adjusting hippocampal volume by S_t, this brain measure significantly explained 12% of the variance for mMAP performance during the acquisition phase ($P = 0.042$) and 24.1% ($P = 0.005$) after monkeys became proficient at the task (25).

Regional white matter, diffusion tensor imaging, and S_t analyses. No clusters exceeded the minimum number of voxels required for type 1 error correction in white matter volume or diffusion tensor imaging modalities.
The relationship between an index of insulin sensitivity, SI, and GM volume across subjects (SI association) and between the control and CR groups (SI × dietary condition interaction). For a given voxel-wise analysis, a given term was regressed onto each GM voxel in the brain. The voxel threshold for statistical significance was P < 0.005. Type 1 error was minimized when considering groups of contiguous, statistically significant voxels called clusters in different brain regions. Specifically, using Monte Carlo simulations, clusters had to exceed a number of voxels (cluster size) such that clusters generated from the data had a P < 0.05 of occurring by chance. For larger clusters, results are displayed for the maximally significant voxel followed by voxels from nearby regions. Coordinates refer to the sagittal, coronal, and axial planes of the Saleem-Logothetis atlas for rhesus macaques. L, left; R, right.

TABLE 3
Significant predictors of SI × dietary condition interaction with regional GM

Dietary condition	Variable	B	SE b	β	t
	Constant	1.889	0.412		
	HOMA-IR	-0.013	0.004	-0.526*	-3.097
	DI	-3.515E-5	1.069E-5	-0.286*	-3.284
Control	I_b	0.402	0.067	0.877	5.990
	G_b	-1.780	0.248	-0.969	-7.185
	HbA1c	1.000	0.132	0.794	7.589
	Homocysteine	0.011	0.009	0.198	1.194
	Constant	0.053	0.833		
	HOMA-IR	0.017	0.019	0.502	0.905
	DI	9.296E-6	9.018E-6	0.229	1.031
Calorie restriction	I_b	-0.169	0.178	-0.539	-0.539
	G_b	0.125	0.492	0.064	0.064
	HbA1c	-0.182	0.282	-0.150	-0.150
	Homocysteine	-0.001	0.005	-0.037	-0.156

Multiple regression was used to assess which glucoregulatory variables from a frequently sampled glucose tolerance test mediated the SI × dietary condition interaction effect. Specifically, using data from a representative voxel in left anterior hippocampus, glucoregulatory measures were regressed onto the predicted change in GM due to insulin sensitivity for control or CR monkeys. For the final control model, the adjusted R² of the mediation model was 0.889 [F(4,15) = 25.137; P < 0.001]. For the final CR mediational model, the adjusted R² was 0.142 [F(5,25) = 0.378; NS]. DI, Disposition Index; G_b, basal glucose; HbA1c, glycosylated hemoglobin; I_b, basal insulin. *P ≤ 0.05. †P < 0.01. ‡P ≤ 0.001.
glucoregulatory dysfunction, brain, and behavior. As SI increases during CR, there might be less hippocampal atrophy over time that could positively influence task learning and performance. A comparable increase in insulin sensitivity among controls, by contrast, may be detrimental to hippocampus and could negatively affect mMAP performance. There are several limitations that should be noted. It is not yet clear if improved peripheral insulin signaling in primates reflects similar processes in the brain. It must also be established if the relationship between insulin sensitivity and GM primarily reflects glucose uptake dynamics or other functions of insulin. For controls, the discrepancy between HOMA-IR and SI findings for GM warrant caution in interpretation, although several measures of insulin sensitivity produced the same result. Given that CR monkeys have less age-related morbidity and mortality (15), there may also be a survivor bias that influenced the voxel-wise results. This bias may make current results more conservative, however, given that surviving controls are likely more resilient to age-related pathophysiology. Regarding mediational models, glucoregulatory variables are sometimes multicollinear and may affect the interpretation of coefficients but not the overall model. Although basal insulin and HOMA-IR were very highly correlated (data not shown), this relationship is sensible both physiologically and statistically. Finally, the existing data are cross-sectional, and causation cannot be inferred.

In summary, increased SI among CR monkeys was associated with more GM in parietofrontal cortices, hippocampus, and other regions that vary in insulin receptor density and signaling. Among controls, higher SI showed a positive relationship with GM volume in parietofrontal cortices with low insulin receptor density, but predicted less GM in structures and areas that have high receptor density. CR or CR mimetics may benefit some specific brain regions and aspects of task learning and performance. Nevertheless, additional studies are needed to validate and clarify the association between glucoregulatory dysfunction and GM volume.

ACKNOWLEDGMENTS
This study was supported in part by the National Institutes of Health grants RR-000167, AG-011915, AG-000213, GM-007507, MH-085051, and MH-062015. This study was also supported with resources and facilities at the William S. Middleton Memorial Veterans Hospital. This research was conducted in part at a facility constructed with support from Research Facilities Improvement Program grants RR-15459-01 and RR-020141-01.

No potential conflicts of interest relevant to this article were reported.

A.A.W. researched the data, analyzed the data, and wrote the manuscript. B.B.B., E.K.K., A.S.F., A.L.A., A.S., D.B.A., R.A., and M.-L.V. offered expertise and reviewed and edited the manuscript. J.W.K. researched the glucoregulation data in addition to offering expertise and editing the manuscript. R.J.C., R.H.W., and S.C.J. contributed resources and reviewed and edited the manuscript. S.C.J. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The authors thank R. Fisher of the University of Wisconsin-Madison and the Waisman Center for Brain Imaging at the University of Wisconsin-Madison for assistance.

REFERENCES
1. Blalock EM, Grandin R, Chen KC, et al. Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys. J Neurosci 2010;30:6058–6071
2. Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004;3:169–178
3. Burns JM, Donnelly JE, Anderson HS, et al. Peripheral insulin and brain structure in early Alzheimer disease. Neurology 2007;69:1094–1104
4. Henneberg N, Hoyer S. Short-term or long-term intracerebroventricular (i.c.v.) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosci Lett 1994;175:153–156
5. Mattson MP, Pedersen WA, Duan W, Cunness C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann N Y Acad Sci 1999;893:154–175
6. Liang WS, Reimann EM, Valla J, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 2008;105:4441–4446
7. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607
8. Schmidt AM, Horii O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 1994;14:1521–1528
9. Burdo JR, Chen Q, Calecutt NA, Schubert D. The pathological interaction between diabetes and presymptomatic Alzheimer’s disease. Neurobiol Aging 2000;30:1910–1917
10. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002;441:1–14
11. van Harten B, de Leeuw FE, Weinstein HC, Scheltens P, Biessels GJ. Brain imaging in patients with diabetes: a systematic review. Diabetes Care 2006;29:2539–2545
12. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–821
13. Khennita JW, Roecker EB, Weinandrach R, Elson DF, Baum ST, Bergman RN. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am J Physiol 1994;266:E540–E547
14. Gredl TA, Colman RJ, Roecker EB, et al. Dietary restriction and glucose regulation in aging rhesus monkeys: a follow-up report at 8.5 yr. Am J Physiol Endocrinol Metab 2011;12:381–E757
15. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and rhesus in rhesus monkeys. Science 2009;325:201–204
16. Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989;38:1512–1527
17. Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neurplast 2005;12:311–328
18. Dulell R, Schroch H, Kuschinsky W, Hoyer S. Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 1994;12:737–743
19. Henneberg N, Hoyer S. Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 1995;21:63–74
20. Whitwell JL, Jack CR Jr. Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging 2005;16:409–425
21. Easgon NL, Kenna HA, Wroodie TE, et al. Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging 2011;32:1942–1948
22. Rezai S, Martin FP, Shammanugayagam D, Colman RJ, Nicholson JK, Weinandrach R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 2009;44:356–362
23. Kriegeskorte N, Lindquist MA, Nichols TE, Polakrzak RA, Vul E. Everything you never wanted to know about circular analysis, but were afraid to ask. J Cereb Blood Flow Metab 2010;30:1551–1557
24. Gash DM, Zhang Z, Umbarger G, et al. An automated movement assessment panel for upper limb motor functions in rhesus monkeys and humans. J Neurosci Methods 1999;89:111–117
25. Kastman EK, Willette AA, Coe CL, et al. A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 2010;30:7940–7947
26. Gheyese F, Van Opstal F, Roggenman C, Van Waevelde H, Fias W. Hippocampal contribution to early and later stages of implicit motor sequence learning. Exp Brain Res 2010;202:705–807
27. Ramsey JJ, Colman RJ, Binkley NC, et al. Dietary restriction and aging in rhesus macaques: the University of Wisconsin study. Exp Gerontol 2000;35:1131–1149
28. McLaren DG, Kosmatka KJ, Oakes TR, et al. A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage 2009;45:52–59
29. Bassler PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995;8:333–344
30. Willette AA, Gallagher C, Bendlin BB, McLaren DG, Kastman EK, Canu E, Kosmatka KJ, Field AS, Alexander AJL, Colman RJ, et al. Homeostasy, neural atrophy, and the effect of caloric restriction in rhesus monkeys. Neurobiol Aging 2012;33:670–680
31. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007;38:95–113
32. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol 1979;236:E667–E677
33. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–419
34. Knickmeyer RC, Stynar M, Short SJ, et al. Maturational trajectories of cortical brain development through the pubertal transition: unique species and sex differences in the monkey revealed through structural magnetic resonance imaging. Cereb Cortex 2010;20:1053–1063
35. Saleem KS, Pauls JM, Augath M, et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 2002;34:685–700
36. Schmahmann J, Pandya J. Fiber Pathways of the Brain. New York, Oxford University Press, 2006
37. Paxinos G, Huang X-F, Toga A. The Rhesus Monkey Brain in Stereotaxic Co ordinates. Orlando, Academic Press, 2000
38. Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 1991;36:343–362
39. McMorris FA, Mozell RL, Carson MJ, Shinar Y, Meyer RD, Marchetti N. Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors. Ann N Y Acad Sci 1993;692:321–334
40. Yao PL, Javier DC, Ryan CM, et al. Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus. Diabetesobesity 2010;53:229–2306
41. Malkovic-Pericnic M, Trihl F, Schmidt M, Hoyer S, Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 2006;96:1005–1015
42. de la Torre JC. Cerebrovascular and cardiovascular pathology in Alzheimer’s disease. Int Rev Neurobiol 2009;84:35–48
43. Reddy KJ, Singh M, Bangit JR, Batsell RR. The role of insulin resistance in the pathogenesis of atherosclerotic cardiovascular disease: an updated review. J Cardiovasc Med (Hagerstown) 2010;11:633–647
44. Orosco M, Rouch C, Grillois D, et al. Effects of insulin on brain monoamine metabolism in the Zucker rat: influence of genotype and age. Psychoneuroendocrinology 1991;16:537–546
45. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchesky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 2008;11:693–700
46. Gazdag AC, Sullivan S, Khennita JW, Cartee GD. Effect of long-term caloric restriction on GLUT4, phosphatidylinositol-3 kinase p85 subunit, and insulin receptor substrate-1 protein levels in rhesus monkey skeletal muscle. J Gerontol A Biol Sci Med Sci 2000;55:B44–B446; discussion B47–B48
47. Anson RM, Guo Z, de Cabo R, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 2005;109:6216–6220

1042 DIABETES, VOL. 61, MAY 2012 diabetes.diabetesjournals.org