EQUIVARIANT BUNDLES AND CONNECTIONS

INDRANIL BISWAS AND ARJUN PAUL

Abstract. Let X be a connected complex manifold equipped with a holomorphic action of a complex Lie group G. We investigate conditions under which a principal bundle on X admits a G–equivariance structure.

1. Introduction

Let G a complex Lie group and X a connected complex manifold equipped with a holomorphic action of G
$$\rho : G \times X \rightarrow X.$$ Let E_H be a holomorphic principal H–bundle on X, where H is a connected complex Lie group. Given these, we construct a short exact sequence of holomorphic vector bundles
$$0 \rightarrow \text{ad}(E_H) \rightarrow \text{At}_\rho(E_H) \rightarrow q : X \times g \rightarrow 0,$$
where g is the Lie algebra of G and $\text{ad}(E_H)$ is the adjoint vector bundle for E_H. The above vector bundle $\text{At}_\rho(E_H)$ is a subbundle of the vector bundle $\text{At}(E_H) \oplus (X \times g)$, where $\text{At}(E_H)$ is the Atiyah bundle for E_H (see (2.9)). A holomorphic G–connection on E_H is defined to be a holomorphic splitting of the above exact sequence. In other words, a holomorphic G–connection on E_H is a holomorphic homomorphism of vector bundles from the trivial vector bundle with fiber g
$$h : X \times g \rightarrow \text{At}_\rho(E_H)$$
such that $q \circ h = \text{Id}_{X \times g}$.

Consider the pullback ρ^*E_H as a holomorphic family of principal H–bundles on X parametrized by G. Let
$$\mu : g = T_eG \rightarrow H^1(X, \text{ad}(E_H))$$
be the infinitesimal deformation map for this family, where $e \in G$ is the identity element. We prove that E_H admits a holomorphic G–connection if and only if $\mu = 0$ (see Lemma 2.2).

Let G be the complex Lie group consisting of all pairs of the form (y, z), where

- $z \in G$ such that the holomorphic principal H–bundle $(\rho^*E_H)|_{\{z\} \times X} \rightarrow X$ is holomorphically isomorphic to E_H, and
- $y : E_H \rightarrow (\rho^*E_H)|_{\{z\} \times X}$ is a holomorphic isomorphism of principal H–bundles.

2010 Mathematics Subject Classification. 32M10, 32L05, 14M17.

Key words and phrases. Group action, principal bundle, Atiyah bundle, G–connection.
This group G has natural actions on both X and E_H. We show that E_H has a tautological holomorphic G–connection whose curvature vanishes identically (see Proposition 3.3). From this proposition it follows that every G–equivariant principal H–bundle on X has a holomorphic G–connection whose curvature vanishes identically (Lemma 4.1).

Finally, assume that G is semisimple and simply connected. Then E_H admits a G–equivariant structure if and only if E_H admits a holomorphic G–connection (Theorem 4.3). Theorem 4.3 implies that E_H admits a G–equivariant structure if and only if the holomorphic principal H–bundle $(\rho^*E_H)|_{\{z\}\times X}$ over X is holomorphically isomorphic to E_H for all $z \in G$ (Corollary 4.4).

Equivariant bundles with invariant connections are investigated in [BU] using a Jordan algebraic approach.

2. Atiyah exact sequence and group action

2.1. Atiyah exact sequence. Let H be a connected complex Lie group; its Lie algebra will be denoted by \mathfrak{h}. Let X be a connected complex manifold; its holomorphic tangent bundle will be denoted by TX. Take a holomorphic principal H–bundle on X

$$p : E_H \longrightarrow X.$$ (2.1)

Let

$$\psi : E_H \times H \longrightarrow E_H$$ (2.2)

be the action of H on E_H. We note that $p \circ \psi = p \circ p_{E_H}$, where $p_{E_H} : E_H \times H \longrightarrow E_H$ is the natural projection, and the action of H on each fiber of p is transitive and free. Let

$$dp : TE_H \longrightarrow p^*TX$$ (2.3)

be the differential of p, where TE_H is the holomorphic tangent bundle of E_H. Its kernel

$$T_{rel} := \text{kernel}(dp) \subset TE_H$$

is known as the relative tangent bundle for p. So we get a short exact sequence of holomorphic vector bundles on E_H

$$0 \longrightarrow T_{rel} \longrightarrow TE_H \xrightarrow{dp} p^*TX \longrightarrow 0.$$ (2.4)

The differential of ψ in (2.2) produces a homomorphism from the trivial vector bundle on E_H with fiber \mathfrak{h}

$$E_H \times \mathfrak{h} \longrightarrow TE_H$$

which identifies T_{rel} with $E_H \times \mathfrak{h}$.

The action ψ in (2.2) produces an action of H on the total space of TE_H. The quotient

$$\text{At}(E_H) := (TE_H)/H$$

is a holomorphic vector bundle on $E_H/H = X$, which is known as the Atiyah bundle At. Let

$$\text{ad}(E_H) := E_H \times^H \mathfrak{h} \longrightarrow X$$ (2.5)
be the adjoint vector bundle for E_H which is associated to it for the adjoint action of H on \mathfrak{h}. The action of H on TE_H preserves the subbundle T_{rel}. Using the above identification of T_{rel} with $E_H \times \mathfrak{h}$, we have

$$T_{rel}/H = \text{ad}(E_H).$$

So after taking quotient by H, the exact sequence in (2.4) produces a short exact sequence of holomorphic vector bundles on X

$$0 \longrightarrow \text{ad}(E_H) \xrightarrow{\iota} \text{At}(E_H) \xrightarrow{d'p} TX \longrightarrow 0,$$

which is known as the Atiyah exact sequence At; the above homomorphism $d'p$ is given by dp in (2.3).

A C^∞ connection on E_H compatible with its holomorphic structure is a C^∞ splitting of the exact sequence in (2.6). A holomorphic connection on E_H is a holomorphic splitting of this exact sequence At.

2.2. Atiyah bundle for group action. Let G be a complex Lie group acting holomorphically on the left of X with

$$\rho : G \times X \longrightarrow X$$

being the map giving the action. The Lie algebra of G will be denoted by \mathfrak{g}. The differential of ρ in (2.7) produces a \mathcal{O}_X–linear homomorphism from the trivial vector bundle on X with fiber \mathfrak{g}

$$d'\rho : X \times \mathfrak{g} \longrightarrow TX,$$

where \mathcal{O}_X is the sheaf of holomorphic functions on X. We note that the image of $d'\rho$ need not be a subbundle of TX.

Consider the holomorphic homomorphism of vector bundles

$$\rho' : \text{At}(E_H) \oplus (X \times \mathfrak{g}) \longrightarrow TX,$$

where $d'p$ and $d'\rho$ are constructed in (2.6) and (2.8) respectively. We note that ρ' is surjective because $d'p$ is surjective. Define the subsheaf

$$\text{At}_\rho(E_H) := (\rho')^{-1}(0) \subset \text{At}(E_H) \oplus (X \times \mathfrak{g})$$

which is in fact a subbundle because ρ' is surjective.

We have two homomorphisms

$$\iota_0 : \text{ad}(E_H) \longrightarrow \text{At}_\rho(E_H), \quad v \longmapsto (\iota(v), 0),$$

where ι is constructed in (2.6), and

$$q : \text{At}_\rho(E_H) \longrightarrow X \times \mathfrak{g}, \quad (v, w) \longmapsto w,$$

where $v \in \text{At}(E_H)$ and $w \in X \times \mathfrak{g}$. Consequently, there is a short exact sequence of holomorphic vector bundles on X

$$0 \longrightarrow \text{ad}(E_H) \xrightarrow{\iota_0} \text{At}_\rho(E_H) \xrightarrow{q} X \times \mathfrak{g} \longrightarrow 0.$$

A holomorphic splitting of (2.10) is a holomorphic homomorphism of vector bundles

$$h : X \times \mathfrak{g} \longrightarrow \text{At}_\rho(E_H)$$
such that $q \circ h = \text{Id}_{X \times \mathfrak{g}}$.

Definition 2.1. A holomorphic G–connection on E_H is a holomorphic splitting of (2.10).

A holomorphic section of $\text{At}(E_H)$ defined over an open subset $U \subset X$ is a H–invariant holomorphic vector field on $p^{-1}(U)$, where p is the projection in (2.11). The Lie bracket of two H–invariant holomorphic vector fields on $p^{-1}(U)$ is again a H–invariant holomorphic vector field on $p^{-1}(U)$. Therefore, the sheaf of holomorphic sections of $\text{At}(E_H)$ has the structure of a Lie algebra. This and the complex Lie algebra structure of \mathfrak{g} together produce a complex Lie algebra structure on the sheaf of holomorphic sections of $\text{At}_\rho(E_H)$.

Since the adjoint action of H on \mathfrak{h} preserves its Lie algebra structure, every fiber of the vector bundle $\text{ad}(E_H)$ in (2.5) is a Lie algebra isomorphic to \mathfrak{h}. We note that the above Lie algebra structure on the fibers of $\text{ad}(E_H)$ coincides with the one given by the Lie bracket of sections of $T\text{rel}$ (see (2.4) for $T\text{rel}$).

The homomorphism ι_0 in (2.10) is compatible with the Lie bracket operations on the sections of $\text{ad}(E_H)$ and $\text{At}_\rho(E_H)$. Similarly, the homomorphism q is also compatible with the Lie bracket operations on the sections of $\text{At}_\rho(E_H)$ and $X \times \mathfrak{g}$.

Let $h : X \times \mathfrak{g} \longrightarrow \text{At}_\rho(E_H)$ be a holomorphic G–connection on E_H. For any two holomorphic sections s and t of the trivial holomorphic vector bundle $X \times \mathfrak{g}$ defined over an open subset $U \subset X$, consider

$$K(h)(s, t) := [h(s), h(t)] - h([s, t]) \in \Gamma(U, \text{At}_\rho(E_H)) .$$

Since the homomorphism q in (2.10) is compatible with the Lie algebra structures, it follows that $q(K(h)(s, t)) = 0$. Hence $K(h)(s, t)$ lies in the image of $\text{ad}(E_H)$. We have

$$K(h)(f s, t) = f K(h)(s, t)$$

for any holomorphic function f defined on U. Also, clearly we have

$$K(h)(s, t) = -K(h)(t, s) .$$

Combining all these it follows that

$$K(h) \in H^0(X, \text{ad}(E_H) \otimes \bigwedge^2 (X \times \mathfrak{g})^*) = H^0(X, \text{ad}(E_H)) \otimes \bigwedge^2 \mathfrak{g}^* . \quad (2.11)$$

This section $K(h)$ will be called the curvature of the holomorphic G–connection h on E_H.

2.3. Criterion for connection

Henceforth, we will always assume that the complex manifold X is compact.

The space of all infinitesimal deformations of the holomorphic principal H–bundle E_H are parametrized by $H^1(X, \text{ad}(E_H))$. Therefore, given any holomorphic principal H–bundle \widetilde{E}_H on $T \times X$ with T being a complex manifold, and a holomorphic isomorphism of E_H with $\widetilde{E}_H|_{\{t\} \times X}$, where $t \in T$ is a fixed point, we have the infinitesimal deformation homomorphism

$$T\text{rel} \longrightarrow H^1(X, \text{ad}(E_H)) ,$$

where $T\text{rel}$ is the fiber at t of the holomorphic tangent bundle TT of T.
Let $\rho^*E_H \longrightarrow G \times X$ be the pulled back holomorphic principal H–bundle, where ρ is the map in (2.7). Considering it as a holomorphic family of principal H–bundles on X parametrized by G, we have the infinitesimal deformation homomorphism

$$\mu : \mathfrak{g} = T_eG \longrightarrow H^1(X, \text{ad}(E_H)).$$

(2.12)

Lemma 2.2. The principal H–bundle E_H admits a holomorphic G–connection if and only if $\mu = 0$.

Proof. Let

$$H^0(X, \text{At}_\rho(E_H)) \xrightarrow{\mu_1} H^0(X, X \times \mathfrak{g}) = \mathfrak{g} \xrightarrow{\mu_2} H^1(X, \text{ad}(E_H))$$

(2.13)

be the long exact sequence of cohomologies associated to the short exact sequence in (2.10).

We will show that the above homomorphism μ_2 coincides with μ in (2.12). This requires recalling the construction of μ. Take any $v \in \mathfrak{g}$. Let \tilde{v} be a holomorphic vector field defined around the identity element $e \in G$ such that $\tilde{v}(e) = v$. Take open subsets $\{U_i\}_{i \in I}$ of $G \times X$ such that

1. $\{e\} \times X \subset \bigcup_{i \in I} U_i$, and
2. for each $i \in I$, the vector field $(\tilde{v}, 0)$ on U_i lifts to a H–invariant vector field \tilde{v}_i on $(\rho^*E_H)|_{U_i}$; we choose such a vector field for each $i \in I$. (Here 0 denotes the zero vector field on X.)

Now for each ordered pair $(i, j) \in I \times I$, consider the vector field

$$\tilde{v}_i - \tilde{v}_j$$

on $p^{-1}(U_i \cap U_j \cap \{e\} \times X) \subset E_H$, where p is the projection in (2.11). They form a 1–cocycle with values in $\text{ad}(E_H)$. The corresponding cohomology class in $H^1(X, \text{ad}(E_H))$ is $\mu(v)$. From this it is straight–forward to check that μ coincides with μ_2 in (2.13).

First assume that $\mu_2 = 0$. So μ_1 in (2.13) is surjective. Fix a complex linear subspace $S \subset H^0(X, \text{At}_\rho(E_H))$ such that the restriction

$$\mu_0 := \mu_1|_S : S \longrightarrow \mathfrak{g}$$

is an isomorphism. Now define

$$h : X \times \mathfrak{g} \longrightarrow \text{At}_\rho(E_H), \quad (x, v) \longmapsto (\mu_0)^{-1}(v)(x).$$

Clearly, we have $q \circ h = \text{Id}_{X \times \mathfrak{g}}$, where q is the homomorphism in (2.10). Hence h defines a holomorphic G–connection on E_H.

Conversely, let $h : X \times \mathfrak{g} \longrightarrow \text{At}_\rho(E_H)$ be a holomorphic G–connection on E_H. Let

$$h_* : H^0(X, X \times \mathfrak{g}) \longrightarrow H^0(X, \text{At}_\rho(E_H))$$

(2.14)

be the homomorphism induced by h. Since $\mu_1 \circ h_* = \text{Id}_{H^0(X \times \mathfrak{g})}$, where μ_1 is the homomorphism in (2.13), it follows that μ_1 is surjective. Hence from the exactness of (2.13) we conclude that $\mu_2 = 0$. □
2.4. Homomorphisms and induced connection. Let
\[f : G_1 \longrightarrow G \]
be a holomorphic homomorphism of complex Lie groups. Using \(f \), the action of \(G \) on \(X \) produces an action of \(G_1 \) on \(X \). More precisely,
\[\rho_1 : G_1 \times X \longrightarrow X, \quad (g, x) \mapsto \rho(f(g), x), \]
where \(\rho \) is the map in (2.7), is a holomorphic action of \(G_1 \) on \(X \). The Lie algebra of \(G_1 \) will be denoted by \(g_1 \). Let
\[df : g_1 \longrightarrow g \]
be the homomorphism of Lie algebras associated to \(f \). From the construction of At \(\rho_1(E_H) \) in (2.9) it follows that
\[\text{At}_{\rho_1}(E_H) = \{(y, z) \in \text{At}_{\rho}(E_H) \oplus (X \times g_1) \mid q(y) = (\text{Id}_X \times df)(z)\}, \quad (2.15) \]
where \(q \) is the homomorphism in (2.10).

Lemma 2.3. A holomorphic \(G \)-connection \(h \) on \(E_H \) induces a holomorphic \(G_1 \)-connection \(h_1 \) on \(E_H \). The curvature \(K(h_1) \) coincides with the image of \(K(h) \) under the homomorphism
\[H^0(X, \text{ad}(E_H)) \otimes \bigwedge^2 g^* \longrightarrow H^0(X, \text{ad}(E_H)) \otimes \bigwedge^2 g_1^* \]
given by the identity map of \(H^0(X, \text{ad}(E_H)) \) and the homomorphism
\[\bigwedge^2 g^* \longrightarrow \bigwedge^2 g_1^* \]
induced by the dual homomorphism \((df)^* : g^* \longrightarrow g_1^*\).

Proof. Consider the description of \(\text{At}_{\rho_1}(E_H) \) in (2.15). Let
\[h_1 : X \times g_1 \longrightarrow \text{At}_{\rho_1}(E_H) \]
be the homomorphism defined by
\[z \mapsto (h((\text{Id}_X \times df)(z)), z) \in \text{At}_{\rho}(E_H) \oplus (X \times g_1). \]
Then \(h_1 \) is a holomorphic \(G_1 \)-connection on \(E_H \). Its curvature \(K(h_1) \) is as described in the lemma. \(\square \)

3. Connection and lifting an action

As before, \(X \) is equipped with a holomorphic action of \(G \), and \(E_H \) is a holomorphic principal \(H \)-bundle on \(X \).

Let \(\text{Aut}(E_H) \) denote the group of all holomorphic automorphisms of the principal \(H \)-bundle \(E_H \) over the identity map of \(X \). In other words, an element \(g \in \text{Aut}(E_H) \) is a biholomorphism \(E_H \xrightarrow{g} E_H \) such that

1. \(p \circ g = p \), where \(p \) is the projection in (2.7), and
2. \(\psi(g(z), y) = g(\psi(z, y)) \) for all \((z, y) \in E_H \times H\), where \(\psi \) is the action in (2.2).
This Aut(E_H) is a complex Lie group. Its Lie algebra is $H^0(X, \text{ad}(E_H))$; the Lie algebra structure on the fibers of ad(E_H) produces a complex Lie algebra structure on $H^0(X, \text{ad}(E_H))$.

Consider the action ρ in (2.7). For any $z \in G$, let $$\rho_z : X \to X$$ (3.1) be the holomorphic automorphism defined by $x \mapsto \rho(z,x)$.

Let $G_1 \subset G$ (3.2) be the subset consisting all $z \in G$ such that the pulled back principal H–bundle $\rho^*_z E_H$ is holomorphically isomorphic to E_H over the identity map of X. So $z \in G_1$ if and only if there is a holomorphic automorphism of the principal H–bundle E_H over the automorphism ρ_z of X. Let \mathcal{G} denote the space of all pairs of the form (y,z), where $z \in G_1$, and $$y : E_H \to E_H$$ is a holomorphic automorphism of the principal H–bundle over the automorphism ρ_z of X. We observe that \mathcal{G} is equipped with the group operation defined by $$(y', z') \cdot (y, z) = (y' \circ y, z'z),$$ while the inverse is the map $(y, z) \mapsto (y^{-1}, z^{-1})$. Therefore, \mathcal{G} fits in the following short exact sequence of groups

$$0 \to \text{Aut}(E_H) \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} G_1 \to 0,$$

(3.3)

where $\beta(y, z) = z$ and $\alpha(t) = (t, e)$ with e being the identity element of G_1. There is a complex Lie group structure on \mathcal{G} which is uniquely determined by the condition that (3.3) is a sequence of complex Lie groups.

The Lie algebra structure on the sheaf of sections of $\text{At}_\rho(E_H)$ produces the structure of a complex Lie algebra on $H^0(X, \text{At}_\rho(E_H))$.

Proposition 3.1. The Lie algebra of \mathcal{G} is canonically identified with the above Lie algebra $H^0(X, \text{At}_\rho(E_H))$.

Proof. The Lie algebra of \mathcal{G} will be denoted by $\tilde{\mathfrak{g}}$. We will show that there is a natural homomorphism from $\tilde{\mathfrak{g}}$ to $H^0(X, \text{At}_\rho(E_H))$.

First observe that the group \mathcal{G} has a tautological action on the total space E_H. Indeed, the action of $(y, z) \in \mathcal{G}$ sends any $x \in E_H$ to $y(x) \in E_H$. It is straIGHT-forward to check that this defines a holomorphic action of \mathcal{G} on E_H. From the definition of \mathcal{G} it follows immediately that this action of \mathcal{G} commutes with the action of H on E_H. Consequently, we get a homomorphism of complex Lie algebras

$$h' : \tilde{\mathfrak{g}} \to H^0(X, \text{At}(E_H)).$$

Now define

$$h_1 : \tilde{\mathfrak{g}} \to H^0(X, \text{At}_\rho(E_H)), \quad v \mapsto (h'(v), d\beta(v)) \in H^0(X, \text{At}(E_H)) \oplus \mathfrak{g},$$

(3.4)
where \(d\beta : \tilde{\mathfrak{g}} \rightarrow \text{Lie}(G_1) \hookrightarrow \mathfrak{g} \) is the homomorphism of Lie algebras associated to \(\beta \) in (3.3); it is straight-forward to check that
\[
(h'(v), d\beta(v)) \in H^0(X, \text{At}_\rho(E_H)) \subset H^0(X, \text{At}(E_H)) \oplus \mathfrak{g};
\]
see (2.9). Clearly, \(h_1 \) is an injective homomorphism of complex Lie algebras.

To prove that \(h_1 \) is surjective, take any \(w \in H^0(X, \text{At}(E_H)) \). Let \(t \mapsto \varphi^t_w, t \in \mathbb{C}, \) be the 1–parameter family of biholomorphisms of \(E_H \) associated to \(w \). We note that \(\varphi^t_w \) exists because \(X \) is compact and \(w \) is \(H \)–invariant. Since \(w \) is fixed by the action of \(H \) on \(E_H \), it follows immediately that the biholomorphism \(\varphi^t_w \) commutes with the action of \(H \) on \(E_H \) for every \(t \).

Now assume that there is an element \(v \in \mathfrak{g} \) such that \((w, v) \in H^0(X, \text{At}_\rho(E_H)) \subset H^0(X, \text{At}(E_H)) \oplus \mathfrak{g} \) (see (2.9)). Let \(t \mapsto \exp(tv), t \in \mathbb{C}, \) be the 1–parameter subgroup of \(G \) associated to \(v \). Now we observe that \((\varphi^t_w, \exp(tv)) \in \mathcal{G} \). Indeed, this follows from the fact that the vector field on \(E_H \) given by \(w \) projects to the vector field on \(X \) given by \(v \). Consequently, the above element \((w, v) \in H^0(X, \text{At}_\rho(E_H)) \) lies in the image of the homomorphism \(h_1 \) in (3.4). Hence \(h_1 \) is surjective. \(\square \)

In the proof of Proposition 3.1 we saw that \(\mathcal{G} \) has a tautological action on \(E_H \). Let \(\eta : \mathcal{G} \times E_H \rightarrow E_H \) be this action.

Lemma 3.2. There is a natural holomorphic isomorphism of vector bundles
\[
\text{At}_\eta(E_H) \rightarrow \text{ad}(E_H) \oplus (X \times H^0(X, \text{At}_\rho(E_H))),
\]
where \(X \times H^0(X, \text{At}_\rho(E_H)) \) is the trivial vector bundle on \(X \) with fiber \(H^0(X, \text{At}_\rho(E_H)) \), and \(\text{At}_\eta(E_H) \) is constructed as in (2.9).

Proof. Since \(\text{At}_\eta(E_H) \) has a natural projection to \(X \times \tilde{\mathfrak{g}} \) (see (2.10)), and Proposition 3.1 identifies \(\tilde{\mathfrak{g}} \) with \(H^0(X, \text{At}_\rho(E_H)) \), we obtain a projection
\[
q_1 : \text{At}_\eta(E_H) \rightarrow X \times H^0(X, \text{At}_\rho(E_H)).
\]

The action of \(\mathcal{G} \) on \(X \) factors through the action of \(G \) on \(X \). Recall the description of \(\text{At}_\eta(E_H) \) given in (2.15). Consider the projection
\[
q' : \text{At}_\rho(E_H) \oplus (X \times \tilde{\mathfrak{g}}) = \text{At}_\rho(E_H) \oplus (X \times H^0(X, \text{At}_\rho(E_H))) \rightarrow \text{At}_\rho(E_H)
\]
that sends any \((z, (x, s))\), where \(x \in X, z \in \text{At}_\rho(E_H)_x \) and \(s \in H^0(X, \text{At}_\rho(E_H)) \), to \(z - s(x) \in \text{At}_\rho(E_H)_x \). From (2.15) it follows immediately, that
\[
q \circ (q'|_{\text{At}_\eta(E_H)}) = 0,
\]
where \(q \) is the projection in (2.10). Therefore, the restriction \(q'|_{\text{At}_\eta(E_H)} \) produces a homomorphism
\[
q_2 : \text{At}_\eta(E_H) \rightarrow \text{kernel}(q) = \text{ad}(E_H). \tag{3.5}
\]
Now it is straight-forward to check that the composition
\[q_2 \oplus q_1 : \text{At}_\eta(E_H) \to \text{ad}(E_H) \oplus (X \times H^0(X, \text{At}_\rho(E_H))) , \]
is an isomorphism. \hfill \Box

Proposition 3.3. The principal H–bundle E_H has a tautological holomorphic G–connection. The curvature of this holomorphic G–connection on E_H vanishes identically.

Proof. Let $\iota' : \text{ad}(E_H) \to \text{At}_\eta(E_H)$ be the natural inclusion (see (2.10)). For the homomorphism q_2 in (3.5), we have
\[q_2 \circ \iota' = \text{Id}_{\text{ad}(E_H)} . \]
Therefore, kernel(q_2) provides a holomorphic splitting of the analog of the short exact sequence (2.10) for $\text{At}_\eta(E_H)$. In other words, kernel(q_2) defines a holomorphic G–connection on E_H.

Since the homomorphism q_2 preserves the Lie algebra structure on the sheaf of sections of $\text{At}_\eta(E_H)$ and $\text{ad}(E_H)$, it follows that the sheaf of sections of kernel(q_2) is closed under the Lie algebra structure on the sheaf of sections of $\text{At}_\eta(E_H)$. Therefore, the curvature of the holomorphic G–connection on E_H defined by kernel(q_2) vanishes identically. \hfill \Box

4. **Equivariant bundles and connection**

Now-onwards, we assume that the Lie group G is connected.

An equivariance structure on the principal H–bundle E_H is a holomorphic action of G on the total space of E_H
\[\rho_E : G \times E_H \to E_H \]
such that

1. $p \circ \rho_E = \rho \circ (\text{Id}_G \times p)$, where p and ρ are the maps in (2.1) and (2.7) respectively, and
2. $\rho_E \circ (\text{Id}_G \times \psi) = \psi \circ (\rho_E \times \text{Id}_H)$ as maps from $G \times E_H \times H$ to E_H, where ψ is the action in (2.2).

An equivariant principal H–bundle is a principal H–bundle with an equivariance structure.

Lemma 4.1. Let (E_H, ρ_E) be an equivariant principal H–bundle. Then E_H has a tautological holomorphic G–connection. The curvature of this holomorphic G–connection vanishes identically.

Proof. Note that for any $g \in G$, the map
\[\rho_E^g : E_H \to E_H , \enspace z \mapsto \rho_E(g, z) , \]
is an automorphism of the principal H–bundle E_H over the automorphism ρ_g of X in (3.1). Therefore, the group G_1 in (3.2) coincides with G. In fact, the above map
\[g \mapsto \rho_E^g \]
is a homomorphism
\[\beta_E : G \rightarrow \mathcal{G} \]
such that \(\beta \circ \beta_E = \text{Id}_G \), where \(\beta \) is the homomorphism in (3.3).

Consider the tautological holomorphic \(\mathcal{G} \)-connection in Proposition 3.3. In view of the above homomorphism \(\beta_E \), using Lemma 2.3 it produces a holomorphic \(G \)-connection. From Lemma 2.3 it also follows that the curvature of this holomorphic \(G \)-connection vanishes identically. \(\square \)

The following is a converse of Lemma 4.1.

Lemma 4.2. Let \(h : X \times \mathfrak{g} \rightarrow \text{At}_\rho(E_H) \) be a holomorphic \(G \)-connection on \(E_H \) such that the curvature vanishes identically. Assume that \(G \) is simply connected. Then there is an equivariance structure
\[\rho_E : G \times E_H \rightarrow E_H \]
such that the holomorphic \(G \)-connection associated to it by Lemma 4.1 coincides with \(h \).

Proof. Recall that \(H^0(X, \text{At}_\rho(E_H)) = \tilde{\mathfrak{g}} = \text{Lie}(\mathcal{G}) \) by Proposition 3.1. Let
\[h_* : \mathfrak{g} = H^0(X, X \times \mathfrak{g}) \rightarrow H^0(X, \text{At}_\rho(E_H)) = \tilde{\mathfrak{g}} \]
be the \(\mathbb{C} \)-linear map induced by \(h \). Since the curvature of the holomorphic \(G \)-connection \(h \) vanishes identically, it follows that \(h_* \) is a homomorphism of Lie algebras. As \(G \) is simply connected, there is a unique holomorphic homomorphism of complex Lie groups
\[\gamma : G \rightarrow \mathcal{G} \]
such that the differential \(d\gamma(e) : \mathfrak{g} \rightarrow \tilde{\mathfrak{g}} \) coincides with \(h_* \). Now \(\gamma \) produces an equivariance structure on \(E_H \); recall that \(\mathcal{G} \) acts on \(E_H \). The corresponding holomorphic \(G \)-connection given by Lemma 4.1 clearly coincides with \(h \). \(\square \)

4.1. The group \(G \) is semisimple. We now assume that \(G \) is a semisimple and simply connected affine algebraic group defined over \(\mathbb{C} \).

The following theorem show that holomorphic \(G \)-connections produce \(G \)-equivariance structures.

Theorem 4.3. Let \(E_H \) be a holomorphic principal \(H \)-bundle on \(X \) admitting a holomorphic \(G \)-connection \(h \). Then \(E_H \) admits an equivariance structure
\[\rho_E : G \times E_H \rightarrow E_H . \]

Proof. Consider the homomorphisms \(\mu_1 \) and \(h_* \) constructed in (2.13) and (2.14) respectively. Since
\[\mu_1 \circ h_* = \text{Id}_{H^0(X, X \times \mathfrak{g})} = \text{Id}_{\mathfrak{g}} , \]
we know that the Lie algebra homomorphism \(\mu_1 \) is surjective. As \(\mathfrak{g} \) is semisimple, there is a Lie subalgebra
\[\mathcal{S} \subset H^0(X, \text{At}_\rho(E_H)) \]
such that the restriction
\[\hat{\mu} := \mu_1|_S : S \rightarrow H^0(X, X \times g) = g \]
is an isomorphism \[\text{[Bo, p. 91, Corollaire 3]}\]. Fix a subspace \(S \) as above. Define \(\hat{h} \) to be the composition
\[H^0(X, X \times g) = g \xrightarrow{\hat{\mu}^{-1}} S \hookrightarrow H^0(X, \text{At}_\rho(E_H)) \].

Since \(\hat{\mu} \) is a homomorphism of Lie algebras, it follows that \(\hat{h} \) is a holomorphic \(G \)–connection on \(E_H \) such that the curvature vanishes identically. Now the theorem follows from Lemma \[\text{4.2}\].

Corollary 4.4. Let \(E_H \) be a holomorphic principal \(H \)–bundle on \(X \) such that the pulled back principal \(H \)–bundle \(\rho^*_zE_H \) is holomorphically isomorphic to \(E_H \) for every \(z \in G \), where \(\rho_z \) is defined in \[\text{(3.1)}\]. Then \(E_H \) admits an equivariance structure.

Proof. Since \(\rho^*_zE_H \) is holomorphically isomorphic to \(E_H \) for all \(z \in G \), it follows that the infinitesimal deformation map \(\mu \) in \[\text{(2.12)}\] is the zero homomorphism. Therefore, \(E_H \) admits a holomorphic \(G \)–connection by Lemma \[\text{2.2}\]. Now Theorem \[\text{4.3}\] completes the proof. \(\square \)

5. Some examples

5.1. Trivial action.
Consider the trivial action of \(G \) on \(X \). So \(\rho(g, x) = x \) for all \(g \in G \) and \(x \in X \). In this case
\[\text{At}_\rho(E_H) = \text{ad}(E_H) \oplus (X \times g) \].

Therefore, a holomorphic \(G \)–connection on \(E_H \) is a holomorphic homomorphism \(X \times g \rightarrow \text{ad}(E_H) \). Note that there is a tautological holomorphic \(G \)–connection on \(E_H \) given by the zero homomorphism from \(X \times g \) to \(\text{ad}(E_H) \).

5.2. Trivial tangent bundle.
Let \(X \) be a compact complex manifold such that the holomorphic tangent bundle \(TX \) is holomorphically trivial. Then a theorem of Wang says that there is a complex connected Lie group \(G \) and a discrete subgroup \(\Gamma \subset G \), such that \(X \) is biholomorphic to \(G/\Gamma \) \[\text{[Wa, p. 774, Theorem 1]}\]. Fix an isomorphism of \(X \) with \(G/\Gamma \). Let \(\rho \) be the left translation action of \(G \) on \(G/\Gamma = X \). In this case, the homomorphism \(d^\rho \) in \[\text{(2.8)}\] is an isomorphism. Therefore, the Atiyah exact sequence in \[\text{(2.6)}\] coincides with the exact sequence in \[\text{(2.10)}\].

Consequently, holomorphic \(G \)–connections on \(E_H \) are same as holomorphic connections on \(E_H \).
5.3. **Smooth toric variety.** Let X be a smooth complex projective toric manifold such that the subvariety $D \subset X$ where the torus action is not free is actually a simple normal crossing divisor. Then the logarithmic tangent bundle $TX(-\log D)$ is holomorphically trivial [BDP, p. 317, Lemma 3.1(2)]. Therefore, the holomorphic G–connections on E_H are the logarithmic connections on E_H singular over D. Hence [BDP, p. 319, Proposition 3.2] follows from Lemma 4.1. We note that [BDP, p. 324, Theorem 4.2] can also be proved modifying the proof of Theorem 4.3.

5.4. **Homogeneous manifolds.** Let M be a closed subgroup of a complex connected Lie group G. The group G acts on $X := G/M$ as left–translations. The left–translation action of G on itself will be denoted by θ. Consider the short exact sequence in (2.10) over X. Pull this exact sequence back to G by the quotient map $q : G \rightarrow G/M$. Note that this pullback is of the form

$$0 \rightarrow \text{ad}(q^*E_H) \rightarrow \text{At}_\theta(q^*E_H) \rightarrow G \times \mathfrak{g} \rightarrow 0,$$

where \mathfrak{g} is the Lie algebra of G. Observe that (5.1) coincides with the Atiyah exact sequence for q^*E_H.

Now consider the right–translation action of M on G. Since q^*E_H is pulled back from G/M, it follows that q^*E_H is a M–equivariant principal H–bundle on G.

From the above observation that (5.1) is the Atiyah exact sequence for q^*E_H it follows that the holomorphic G–connections on E_H are precisely the M–equivariant holomorphic connections on the M–equivariant principal H–bundle on q^*E_H.

REFERENCES

[At] M. F. Atiyah, Complex analytic connections in fibre bundles, *Trans. Amer. Math. Soc.* **85** (1957), 181–207.

[BDP] I. Biswas, A. Dey and M. Poddar, Equivariant principal bundles and logarithmic connections on toric varieties, *Pacific Jour. Math.* **280** (2016), 315–325.

[BU] I. Biswas and H. Upmeier, Homogeneous holomorphic hermitian principal bundles over hermitian symmetric spaces, *New York Jour. Math.* **22** (2016), 21–47.

[Bo] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285, Hermann, Paris 1960.

[Wa] H.-C. Wang, Complex parallisable manifolds, *Proc. Amer. Math. Soc.* **5** (1954), 771–776.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: indranil@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: apmath90@math.tifr.res.in