Survey of Plasmids in Various Mycoplasmas

R. HARASAWA, D.V.M., Ph.D., AND M.F. BARILE, Ph.D.

Mycoplasma Branch, Office of Biologics, Food and Drug Administration, Bethesda, Maryland

Received January 4, 1983

Thirty-three strains representing 15 distinct Mycoplasma, Acholeplasma, and Spiroplasma species were examined for the presence of plasmid DNA by agarose gel electrophoresis. The electrophoretic patterns of the DNAs of three strains, Mycoplasma sp. strain 747, Spiroplasma mirum strain SMCA, and M. hominis strain 1257, suggested the presence of a plasmid with molecular weights of approximately 70, 10, and 9 megadaltons, respectively. The functions of these plasmids are currently unknown.

INTRODUCTION

Although plasmids are commonly found in a variety of prokaryotes, there has been no systematic examination for plasmids in microorganisms belonging to the class Mollicutes except for the genus Spiroplasma [1,2]. Extrachromosomal DNA or plasmids have been detected in Mycoplasma arthritidis [3,4], M. hominis [5], Acholeplasma laidlawii [6,7], and from ten of twelve Spiroplasma strains tested from different sources [1,17].

Although the functions of these mycoplasma plasmids are unknown, their presence might provide a useful tool to study the genetic properties of this class of microorganisms.

MATERIALS AND METHODS

Cultivation of Mycoplasmas

The 33 strains examined are listed in Table 1 and represent 15 species (11 Mycoplasma, two Spiroplasma, and one Acholeplasma) and nine serotypes of Ureaplasma urealyticum. Mycoplasma sp. strain 747, isolated from the vagina of a baboon by M. Davidson, New York, was sent to H. Neimark, Brooklyn, who in turn sent it to us. Strain 747 has been found to be unrelated to the established species of Mycoplasma [Barile, Grabowski: unpublished observations]. Spiroplasma mirum strain SMCA was received from J.G. Tully, Bethesda, and M. hominis strain 1257 obtained from H. Morton, Philadelphia, PA. The Mycoplasma species were grown in mycoplasma broth (Baltimore Biological Laboratories, Cockeysville, MD) supplemented with 10 percent unheated horse serum (M.A. Bioproducts, Walkersville, MD), 5 percent yeast extract (Flow Laboratories, McLean, VA) and 1,000 units per ml of penicillin G potassium (Eli Lilly & Co., Indianapolis, IN), incubated at 35°C. Dextrose (Fisher Scientific Company, Fair Lawn, NJ) was added to broth for growth of the fermenters, and L-arginine monohydrochloride (Eastman Organic

Address reprint requests to: M.F. Barile, Ph.D., Mycoplasma Branch, Office of Biologics, Food and Drug Administration, Bethesda, MD 20205

Copyright © 1983 by The Yale Journal of Biology and Medicine, Inc.

All rights of reproduction in any form reserved.
TABLE 1
Mycoplasma Strains Investigated for the Presence of Plasmids

Species	Strains	Natural Habitat	Plasmid Presence
Mycoplasma mycoides subsp. mycoides	PG1	Cattle, contagious pleuropneumonia	–
	B3	Swine, nasal cavity	–
	UM30847	Goat	–
M. mycoides subsp. capri	PG3	Goat, pleuropneumonia	–
M. agalactiae	PG2	Sheep, contagious agalactia	–
M. bovis	Donetta	Cattle, exudate, mastitis	–
M. hominis	PG21	Human, rectal swab	–
	H34	Human, abdominal wound	–
	1257	Human, Reiters syndrome	+
M. pneumoniae	PI-1428	Human, primary atypical pneumonia	–
	M129	Human, primary atypical pneumonia	–
	FH	Human, primary atypical pneumonia	–
	B176	Human, primary atypical pneumonia	–
	Mac	Human, primary atypical pneumonia	–
M. fermentans	PG18	Human, ulcerative balanitis	–
M. capricolum	14	Goat	–
M. gallisepticum	PG31	Avian, trachea, chronic respiratory disease	–
M. arthritidis	PG6	Rat, knee joint	–
Mycoplasma sp.	M14	Irus macaque	–
	7457	Baboon, vagina	+
Ureaplasma urealyticum	Serotype 1	Human, nongonococcal urethritis	–
	Serotype 2	Human, nongonococcal urethritis	–
	Serotype 3	Human, nongonococcal urethritis	–
	Serotype 4	Human, nongonococcal urethritis	–
	Serotype 5	Human, nongonococcal urethritis	–
	Serotype 6	Human, urethra, Reiters syndrome	–
	Serotype 7	Human, urethra, Reiters syndrome	–
	Serotype 8	Human, nongonococcal urethritis	–
	Serotype 9	Human, nongonococcal urethritis	–
Spiroplasma citri	Maroc (R8)	Citrus plant, stubborn disease	–
S. mirum	SMCA	Rabbit tick pool, *Haemophysalis leporisalpaulstris*	+
Acholeplasma laidlawii	PG8	Sewage	–
	PG9	Sewage	–

Chemicals, Rochester, NY) was added for growth of the non-fermenting, arginine hydrolyzing mycoplasmas at final concentration of 1.0 percent and 0.2 percent, respectively. Ureaplasmas were grown in the 10-B medium formulation described by Shepard and Lunceford [8] and the two *Spiroplasma* species (*S. citri* and *S. mirum*) in SP4 broth described by Tully et al. [9]. Each culture produced from 1 to 5×10^6 color-changing units (CCU) per ml.

DNA Preparation

All mycoplasma cultures were screened for plasmids by using our modification of two methods, one reported by Hansen and Olsen [10] and the other by Kado and Liu [11]. Three other procedures [6,12,13] were used as well to examine 13 of the 33 strains. In brief, the organisms were harvested from 50 ml broth cultures by centrifugation at 10,000 rpm at 4°C for 30 minutes in a Sorvall SS34 rotor. The
mycoplasma cell pellet was suspended in 50 µl of TE buffer (50 mM tris[hydroxymethyl]aminomethane [Tris], BRL, Rockville, MD), pH 8.0, containing 10 mM ethylenediaminetetraacetate [EDTA], (Fisher Scientific Company, Fair Lawn, NJ) at 22–24°C. The cells were lysed by adding 0.5 ml of 1 percent (w/v) sodium dodecyl sulfate (SDS) (Bio-Rad Laboratories, Richmond, CA) in TE buffer, pH 12.4, followed by 8 cycles of heat pulse at 56°C for 30 seconds. The lysates were removed from the water bath and mixed gently by inverting the tubes quickly five times. The pH was reduced to 8.0 by adding 30 µl of 2M Tris, pH 7.0. The lysate was treated with ribonuclease A (Worthington Biochemical Corp., Freehold, NJ) at a final concentration of 50 µg per ml at 37°C for 30 minutes, and then added in equal volume to an unbuffered mixture of 1:1 parts distilled phenol (BRL, Rockville, MD) and chloroform (Fisher Scientific Company, Fair Lawn, NJ) in a 1.5-ml Eppendorf tube. The mixture was emulsified by shaking, and the aqueous phase was separated by centrifugation at 15,000 rpm for five minutes in an Eppendorf Microcentrifuge, model 5412. The upper aqueous phase was transferred to another microcentrifuge tube, constituting the DNA preparation.

Electrophoresis of DNA

Samples (35 µl) of the DNA preparation were mixed with a tracking dye solution (5 µl) consisting of 0.07 percent (w/v) bromophenol blue (Sigma Chemical Company, St. Louis, MO), 7.0 percent (w/v) SDS and 33 percent (v/v) glycerol (Fisher Scientific Company, Fair Lawn, NJ) in water. The resulting solution was applied to a gel slab containing 0.7 percent agarose (Type I, Low EEO, Sigma Chemical Company, St. Louis, MO) and Tris-borate buffer (89 mM Tris, 2.5 mM disodium EDTA, and 89 mM boric acid, pH 8.2) and electrophoresed in a BRL vertical gel electrophoresis apparatus model V16 at 110 volts for about three hours, or until the dye marker reached the bottom of the gel as described by Meyers et al. [14]. The gels were stained for 15 minutes with a 0.4 µg/ml aqueous solution of ethidium bromide (Sigma Chemical Company, St. Louis, MO), visualized with ultraviolet light, and photographed.

Escherichia coli strain V517 containing eight plasmids [15] and E. coli K-12, χ1849 bearing plasmid pBR322 (both obtained from B.M. Chassy, Bethesda, MD) were grown at 35°C in 10 ml of L-broth [16] supplemented with 0.01 percent DL-diaminopimelic acid (Sigma Chemical Company, St. Louis, MO). The E. coli cells were processed and subjected to gel electrophoresis as described above, and the bands produced were used as molecular weight reference markers for establishing the size of unknown mycoplasma plasmids.

RESULTS AND DISCUSSION

The results of the survey for the presence of plasmids in the 33 mycoplasma strains examined are given in Table 1. The electrophoretic patterns of the DNAs of three strains representing three species (Mycoplasma sp. strain 747, M. hominis strain 1257 (not shown), and S. mirum strain SMCA) [17] showed additional bands to those of chromosomal DNA, suggesting the presence of plasmids (Fig. 1). Extrachromosomal DNA bands were not detected in five strains of M. pneumoniae, including the two pathogenic strains PI-1428 and M129, nor in any of the nine human serotypes of Ureaplasma urealyticum. All other mycoplasma strains were also negative by the procedures used. Zouzias et al. [5] examined cultures of M. hominis, M. arthritidis, M. pneumoniae, and A. laidlawii (strain designations not given) for the presence of extrachromosomal DNA by electron microscopy and found a
plasmid only in *M. hominis*. In our study, only strain 1257 of *M. hominis* was positive; strains PG21 and H34 were negative for plasmids. Thus, there appears to be strain variation with regard to harboring plasmids.

It must be emphasized that the results obtained depend on the procedure used, e.g., plasmids were detected by using our modification of Hansen and Olsen [10] and Kado and Liu [11] procedures, but we failed to detect plasmids in two of the positive strains (747 and SMCA) using three other procedures [6,12,13]. Moreover, whereas Ranhand et al. [2] reported the presence of plasmids in the Maroc stain of *Spiroplasma citri*, we failed to detect the presence of plasmids in this strain under the conditions of our tests. Negative findings do not necessarily imply the absence of plasmids in the mycoplasmas tested, but rather that they were negative by the test procedures used.

Because viruses [18,19] and/or plasmids [2] have been commonly found in *Spiroplasma* and *Acholeplasma* species, it has been suggested that these extrachromosomal DNA components may pose difficult problems regarding the use of restriction enzymes for analysis of chromosomal DNA [20]. Conversely, since most *Ureaplasma* and *Mycoplasma* species tested appear to be free of viruses and plasmids, these species should lend themselves as excellent models for restriction enzyme studies and, in fact, experimental data support these conclusions [21,22].

The logarithmic plot of the relative migration of the reference *E. coli* plasmids and of the mycoplasma plasmids is shown in Fig. 2. Based on these values, the molecular weights of the *Mycoplasma* strain 747, *S. mirum* strain SMCA, and *M. hominis* strain 1257 plasmids were calculated to be approximately 70, 10, and 9 megadaltons (Mdal), respectively. The large size of the strain 747 plasmid was unexpected because the size of the mycoplasma genome itself is very small (5 × 10^6 Mdal), and because mycoplasma plasmids and viruses reported previously ranged from only 1.5 to 25.8 Mdal [2,19]. Thus, the strain 747 plasmid appears to be the largest extrachromosomal DNA particle as yet found in the class mollicutes. The molecular weight of the plasmids of *S. mirum* and *M. hominis* fall within the range of the cryptic plasmids isolated from other *Spiroplasma* and *Mycoplasma* species and strains [2,3,5]. Some of these plasmids were shown to be circular [2,4,5] and represent cryptic plasmids [2]. Some were detected by cesium chloride [3], or by

![Fig. 1. Agarose gel electrophoresis of plasmid DNA from cell lysates. Track (A), plasmid pBR322 of *E. coli* K-12 \(\times 18499\); (B), plasmids of *E. coli* V517; (C), plasmid of *Spiroplasma mirum* SMCA; (D), *Spiroplasma citri* Moroc; (E), same as (B); (F), plasmid of *Mycoplasma* sp. 747. The four smaller plasmids of *E. coli* V517 were not detected on these gels under the conditions of test.](image)
FIG. 2. Molecular weights of the plasmids of *Mycoplasma* sp. strain 747 and of *Spiroplasma mirum* (SMCA) were determined by using plasmids of *E. coli* V517 and χ1849 (pBR322) as references. Symbols: ○, four reference plasmids of *E. coli* V517: pVA517A (35.8 Mdal), pVA517B (4.8 Mdal), pV517C (3.7 Mdal), and pVA517D (3.4 Mdal); □, pBR322 (2.6 Mdal); ■, *Mycoplasma* sp. strain 747 plasmid; ■, *Spiroplasma mirum* strain SMCA plasmid; ▲, *Mycoplasma hominis* strain 1257.

ethidium bromide-cesium chloride or sucrose gradient centrifugation procedures [2]. The molecular masses of these plasmids were calculated to be 20 Mdal for *M. arthritidis* [4], 18 Mdal for *M. hominis* [5], and 16 and 30 Mdal [7] or 19 and 26 Mdal [23] for *A. laidlawii*. In addition, plasmids were detected in ten of twelve spiroplasma strains examined by Ranhand et al. [2]. Two to eight different size classes were present in each of the ten positive spiroplasma strains. The strains containing plasmids include *S. citri* strain C189; strains 4; 9; 608; 750; BC3 (honeybee), X (belonging to *S. citri* group), Cactus B (corn stunt), and Scaph. The molecular masses of the extrachromosomal bands from these ten spiroplasma strains ranged from 1 to 26 Mdal [2]. The genetic function of the plasmids isolated from mycoplasma remains to be determined.

ACKNOWLEDGEMENTS

We thank Bruce M. Chassy of the National Institute of Dental Research for supplying us with the strains of *E. coli* V517 and χ1849 and Roger M. Cole of the National Institute of Allergy and Infectious Diseases for technical discussions during the course of this work, and for his critical review of the manuscript.

REFERENCES

1. Archer DB, Best J, Barber C: Isolation and restriction mapping of a spiroplasma plasmid. J Gen Microbiol 126:511–514, 1981
2. Ranhand JM, Mitchell WO, Popkin TJ, et al: Covalently closed circular deoxyribonucleic acids in spiroplasmas. J Bacteriol 143:1194–1199, 1980
3. Haller GJ, Lynn EJ: Satellite DNA's in *Mycoplasma arthritidis* and a stable bacterial L form. Bacteriol Proc. Washington, DC, American Society for Microbiology, 1968, p 68
4. Morowitz HJ: The genome of mycoplasmas. In The Mycoplasmales and the L-phase of bacteria. Edited by L Hayflick. New York, Appleton-Century-Crofts, 1969, pp 405–412
5. Zouzias D, Mazaitis AJ, Simberkoff M, et al: Extrachromosomal DNA of *Mycoplasma hominis*. Biochim Biophys Acta 312:484–491, 1973
6. Currier TC, Nester EW: Isolation of covalently closed circular DNA of high molecular weight from bacteria. Anal Biochem 76:431–441, 1976
7. Dugle DL, Dugle JR: Presence of two DNA populations in *Mycoplasma laidlawii*. Canad J Microbiol 17:433–434, 1971
8. Shepard MC, Lunceford CD: Serologically typing of *Ureaplasma urealyticum* isolates from urethritis patients by an agar growth inhibition method. J Clin Microbiol 8:566, 1978

9. Tully JG, Whitcomb RF, Clark HF, et al: Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195:892–894, 1977

10. Hansen JB, Olsen RH: Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol 135:227–238, 1978

11. Kado CI, Liu S-T: Rapid procedures for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373, 1981

12. Colman A, Byers MJ, Primrose SB, et al: Rapid purification of plasmid DNAs by hydroxyapatite chromatography. Eur J Biochem 91:303–310, 1978

13. Holmes DS, Quigley M: A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197, 1981

14. Meyers JA, Sanchez D, Elwell LP, et al: Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol 127:1529–1537, 1976 (Erratum, J Bacteriol 129:1171, 1977)

15. Macrina FL, Kopecko DJ, Jones KR, et al: A multiple plasmid-containing *Escherichia coli* strain: convenient source of size reference plasmid molecules. Plasmid 1:417–420, 1978

16. Lennox ES: Transduction of linked genetic characters of the host by bacteriophage P1. Virol 1:190–206, 1955

17. Tully JG, Whitcomb RF, Rose DL, et al: *Spiroplasma mirum*, a new species from the rabbit tick (*Haemaphysalis leporispluastris*). Int J Syst Bact 32:92–100, 1982

18. Cole RM: Mycoplasma and Spiroplasma Viruses: Ultrastructure. In The Mycoplasmas, Vol 1. Cell Biology. Edited by MF Barile, S Razin. New York, Academic Press, 1979, pp 385–410

19. Maniloff J, Das J, Putzrath RM, et al: Mycoplasma and spiroplasma viruses: molecular biology. In The Mycoplasmas, Vol 1. Cell Biology. Edited by MF Barile, S Razin. New York, Academic Press, 1979, pp 411–430

20. Bove JM, Saillard C, Junca P, et al: Guanine-Plus-Cytosine Content, Hybridization Percentages, and EcoRI Restriction Enzyme Profiles of Spiroplasma DNA. Reviews Inf Dis Suppl 4:5129–5136, 1982

21. Chandler DKF, Razin S, Stephens EB, et al: Genomic and phenotypic analyses of *Mycoplasma pneumoniae* strains. Infect Immun 38:607–609, 1982

22. Razin S, Harasawa R, Barile MF: Cleavage patterns of the mycoplasma chromosome by restriction endonucleases as indicators of genetic relatedness among strains. Int J Syst Bacteriol 33:201–206, 1983

23. Das J, Maniloff J, Bhattacharjee SB: Dark and light repair in ultraviolet-irradiated *Acholeplasma laidlawii*. Biochim Biophys Acta 159:189–197, 1972