Occurrence and bacterial loads of Bartonella and haemotropic Mycoplasma species in privately owned cats and dogs and their fleas from East and Southeast Asia

Aya Attia Koraney Zarea1,2 | Marcos Antonio Bezerra-Santos1 | Viet-Linh Nguyen3 | Vito Colella4 | Filipe Dantas-Torres5 | Lenaig Halos6,7 | Frederic Beugnet6 | Maria Tempesta1 | Domenico Otranto1,8 | Grazia Greco1

1Department of Veterinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
2Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre (NRC), Cairo, Egypt
3Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
4Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
5Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil
6Boehringer Ingelheim Animal Health, Lyon, France
7Bill & Melinda Gates Foundation, Seattle, Washington, USA
8Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran

Correspondence
Grazia Greco, Veterinary Medicine Department, University of Bari, S.p. 62 per Casamassima, Km 3, 70010, Valenzano, Bari, Italy
Email: grazia.greco@uniba.it

Abstract
Bartonella spp. and haemoplasmas are pathogens of veterinary and medical interest with ectoparasites mainly involved in their transmission. This study aimed at molecular detection of Bartonella spp. and haemoplasmas in cats (n = 93) and dogs (n = 96), and their related fleas (n = 189) from countries in East and Southeast Asia. Ctenocephalides felis was the dominant flea species infesting both cats (97.85%) and dogs (75%) followed by Ctenocephalides orientis in dogs (18.75%) and rarely in cats (5.2%). Bartonella spp. DNA was only detected in blood samples of flea-infested cats (21.51%) (p < .0001, OR = 27.70) with Bartonella henselae more frequently detected than Bartonella clarridgeiae in cat hosts (15.05%, 6.45%) and their associated fleas (17.24%, 13.79%). Out of three Bartonella-positive fleas from dogs, two Ct. orientis fleas carried Bartonella vinsonii subsp. berkhoffii and Bartonella clarridgeiae, while the 3rd flea (Ct. felis) carried Candidatus Bartonella merieuxii. Felines represented a risk factor for Bartonella spp. infections, where fleas collected from cats (32.25%) presented an increased likelihood for Bartonella spp. occurrence (p < .0001, OR = 14.76) than those from dogs (3.13%). Moreover, when analysing infectious status, higher Bartonella spp. DNA loads were detected in fleas from bacteraemic cats compared to those from non-bacteraemic ones (p < .05). The haemoplasma occurrence was 16.13% (15/93) and 4.17% (4/96) in cat and dog blood samples from different countries (i.e. Indonesia, Malaysia, the Philippines, Taiwan and Thailand), with cats more at risk of infection (p < .01, OR = 5.96) than dogs. Unlike Bartonella spp., there was no evidence for flea involvement in the haemoplasmas’ transmission cycle, thus supporting the hypothesis of non-vectorial transmission for these pathogens. In conclusion, client-owned cats and dogs living in East and Southeast Asia countries are exposed to vector-borne pathogens with fleas from cats playing a key role in Bartonella spp. transmission, thus posing a high risk of infection for humans sharing the same environment.
Asia is experiencing a rapid increase in the number of dogs and cats kept as family pets. Although these animals provide substantial positive psychological and physiological benefits to their owners (Chongsuvivatwong et al., 2011), companion dogs and cats might act as reservoirs of several zoonotic agents and represent a risk to human health in Asia (Barrs et al., 2010; Colella et al., 2020; Duong et al., 2016; Kosoy & Goodrich, 2019; Nguyen et al., 2020). Moreover, climatic and environmental conditions of East (EA) and Southeast Asia (SEA) countries are suitable for the arthropod proliferation, including fleas that are often involved in the transmission of pathogens of medical and veterinary interest (Chandra et al., 2016; Greco, Brianti, et al., 2019; Watanabe, 2012; Yuan et al., 2011). Consequently, many domestic cats and dogs are exposed to haemoplasmas (Assarasakorn et al., 2012; Chang et al., 2006; Chomel et al., 1999; Inoue et al., 2009; Jensen et al., 2000; Kim et al., 2009; Maruyama et al., 2001; Singer et al., 2020; Yuan et al., 2011; Zhang et al., 2019).

However, no studies have investigated the relative contribution of dogs, cats and fleas in the transmission cycle of Bartonella spp. in the area. Haemotropic mycoplasmas (‘haemoplasmas’) are not-yet cultured bacteria of the genus Mycoplasma (Neimark et al., 2001). Based on phylogeny (rather than pathogenicity or host specificity), haemoplasmas are split into two groups, namely the haemominutum group and the haemofelis group (Peters et al., 2008; Tasker, Helps, Day, Harbour, et al., 2003). Mycoplasma haemofelis (Mhf), Candidatus Mycoplasma haemominutum (CMhm) and Candidatus Mycoplasma turicensis (CMT) are the species mainly detected in cats, while Mycoplasma haemocanis (Mhc) and Candidatus M. haemotaparvum (CMhp) are detected in dogs (Messick et al., 2002; Sykes et al., 2004; Sykes et al., 2005; Willi et al., 2006). These microorganisms attach and grow on the surfaces of the erythrocytes causing from chronic infections to life-threatening haemolytic anaemia (Kirchhoff et al., 1984; Messick, 2004; Sykes, 2010; Tasker, 2010). Furthermore, the detection of Mycoplasma haemofelis-like organisms and CMhp in HIV-positive immunocompromised patients from Brazil and Africa raises questions on the zoonotic potential of these pathogens (Dos Santos et al., 2008; Maggi et al., 2013; Tasker et al., 2010).

Currently, the transmission route of haemoplasmas remains a matter of debate, although fleas or ticks have been hypothesized as natural vectors (Novacco et al., 2010; Senevratna et al., 1973; Woods et al., 2005). Nevertheless, direct transmission through bites and blood transfusion have also been described (Tasker, 2010; Willi et al., 2007). Few studies have investigated the occurrence of haemoplasmas in EA and SEA, and have reported high prevalence in community dogs (40%), stray cats (23% to 38%) and client-owned cats (23%) and their fleas (34%) from Thailand (Assarasakorn et al., 2012; Do et al., 2020; Huggins et al., 2019; Kaewmengkol et al., 2017) as well as in free-ranging dogs (~13%) from Cambodia (Huggins et al., 2021; Inpankaew et al., 2016).

**KEYWORDS**
Bartonella spp., Candidatus Bartonella merieuxii, flea, East and Southeast Asia, haemoplasmas

**Impacts**
- *Bartonella* and haemoplasmas are pathogens impacting animal and public health.
- Companion animals living in East and Southeast Asia countries are exposed to *Bartonella* and haemoplasma infections with cats more at risk than dogs.
- Fleas serve as active vectors of Bartonella spp., but unlikely of haemoplasmas.

1 | INTRODUCTION
This study aimed to investigate the occurrence of Bartonella spp. and haemoplasmas in dogs, cats and fleas to understand their relative contribution in the epidemiology of these pathogens in East and Southeast Asia.

2 | MATERIALS AND METHODS

2.1 | Study area and samples

Animals and fleas included in the study represent a randomly selected sub-sample (n = 189; 92 cats and 93 dogs) from a larger number of animals enrolled in a previous multi-centre survey consisting of privately owned animals (i.e. 1229 dogs and 1152 cats) from China, Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand and Vietnam (Colella et al., 2020; Nguyen et al., 2020). Animal selection was performed according to the presence of flea infestation. The minimum sample size (92 cats and 93 dogs) was estimated based on the assumptions of the confidence level of 95%, an accepted error of 7% and a minimum expected prevalence of 15% for Bartonella species/haemotropic Mycoplasma infections. Blood samples and fleas (one for each animal) were collected from the animals (n = 93 cats, 96 dogs). Each animal was infested with a range of 1 to 3 fleas. Animals with history of regular outdoor access and having not received recent antiparasitic treatments were enrolled. Data on the animal age, gender, clinical signs and flea species were recorded. All fleas were molecularly and morphologically identified at the species level as described elsewhere (Colella et al., 2020).

2.2 | Molecular investigation for Bartonella spp. and haemoplasmas

2.2.1 | DNA extraction

Blood (100μl) and flea (individual) samples were subjected to the extraction of genomic DNA using protocols previously described (Colella et al., 2020; Nguyen et al., 2020). DNA was eluted in 100μl of AE buffer and carefully quantified using the fluorometric Qubit® dsDNA HS (High Sensitivity) Assay kit. DNA (10μl) from each sample was used to run the qPCR/cPCR assays listed in Table 1. Animal species DNA targets were amplified using dog’s SSR and cat’s SSR primers respectively (Abdel-Rahman et al., 2009).

2.2.2 | Molecular detection, quantification and identification of Bartonella spp

All DNA samples were subjected to the molecular screening using Bartonella genus-specific quantitative real-time PCR (qPCR) assay targeting the transfer-mRNA ssrA (ssrA) gene (Diaz et al., 2012) (Table 1). Furthermore, Bartonella DNAs loads for each flea and blood sample were calculated by using the standard curve generated with different 10-fold dilutions (0.1 Log_{10} to 9 Log_{10} copies per 10μl) of the plasmid DNA encoding a 300-bp B. henselae ssrA gene fragment. qPCR amplification was conducted in multiplate PCR plates (Bio-Rad™) using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad™). For Bartonella species identification and typing, the ssrA qPCR positive samples were further subjected to different additional conventional PCR (cPCR) assays, that amplify ssrA, 16S rRNA and 16-23S intergenic spacer (ITS) target fragments (Table 1) (Bergmans et al., 1996; Diaz et al., 2012; Diniz et al., 2007; Sander et al., 1998). Reference strains B. clarridgeiae (MH348146), B. henselae (MH350809), B. rochalimae (MK780191) and B. vinsonii subsp. berkholfii (MK773857) were used as positive controls for each cPCR. ssrA and ITS cPCR-positive products were subjected to purification using the NEB Exo-SAP PCR purification kit (New England Biolabs, Inc.) prior to the sequencing by Eurofins Genomics.

2.2.3 | Molecular detection, quantification and identification of the haemoplasma species

For the haemoplasmas’ detection, all the DNA samples were screened by using two generic haemoplasma haemofelis and haemominutum group-specific qPCR assays targeting the 16S rRNA (Tasker et al., 2010) (Table 1). Furthermore, haemoplasma DNA loads for each flea and blood sample were calculated by using the standard curves generated with different 10-fold dilutions (0.1 Log_{10} to 9 Log_{10} copies per 10μl) of the plasmid DNAs encoding the 16S rRNA fragments from M. haemofelis and C. M. haemominutum, according to protocol previously described (Tasker, Helps, Day, Gruffydd-Jones, & Harbour, 2003). Furthermore, for haemoplasma species differentiation each positive sample was submitted to an additional 16S rRNA amplification (cPCR) (Criado-Fornelio et al., 2003) and the products of expected sizes were purified using the NEB Exo-SAP PCR purification kit (New England Biolabs, Inc.) and sequenced by Eurofins Genomics.

All Bartonella spp. and haemoplasma DNA sequences were first edited and then subjected to a preliminary analysis using Local Basic Alignment Tool (BLAST) and aligned against the closely related sequence homologous using the ClustalW application within the Geneious® 10.3.1 software package (Biomatters Ltd.).

2.3 | Statistical analysis

An animal or flea sample was considered Bartonella spp. and/or haemoplasma infected if it was positive in the ssrA qPCR and/or in the 16S rRNA qPCR assays respectively (Diaz et al., 2012; Tasker et al., 2010). Exact binomial 95% confidence intervals (CIs) were used to calculate the infection rates. Fisher’s exact / Chi squared tests with Yate’s correction (χ²) and odds ratio (OR) were used to analyse the differences of pathogen detections in blood and flea samples and risk factors. The non-parametric Mann–Whitney U and/or the Kruskal–Wallis tests were used to compare bacterial loads (expressed in Log_{10} DNA copies/10μl) for both Bartonella and haemoplasma species from animal
| Target                  | Target gene | Primer name                                      | bp   | %Reaction efficiency \((R^2)\) | References               |
|------------------------|-------------|-------------------------------------------------|------|--------------------------------|--------------------------|
| *Bartonella genus*     | ssrA        | ssrA-F: GCTATGGTAATAAAATGACATGAATTA A          | 300  | 94.84 (0.99)                   | Diaz et al., 2012        |
|                        |             | ssrA-R: GCTTCGTTTGCCAGGTG                      |      |                                |                          |
|                        |             | Probe: ACCCGGCTTAAACCTGCGACG                   |      |                                |                          |
|                        | ITS         | 325-F: CTTAGATGATGATCCAAGCCTTGTGCGGCGG         | 408–673 |                               |                          |
|                        |             | 1100-R: GAACCGAGGACCCCTGTGCTTTGCAAAGC A       |      |                                |                          |
| *B. henselae*          | pap31       | Bh-F: TAAGGGTGAATAACTGATCGGAAGA T               | 185  |                                | Diniz et al., 2007       |
|                        |             | 668-R: CACCACCGCAAATAAGGCGATMAY               |      |                                |                          |
| *B. henselae* typing  | 16S         | 16S-F: AGAGTTTGATCCTGGCCTCAG                   | 185  |                                | Bergmans et al., 1996;   |
|                        |             | BH1-R: CCGATATAATCTTCTCCTATAA                 |      |                                | Sander et al., 1998      |
|                        |             | BH2-R: CCGATAAATCTTCTCCAAT                   |      |                                |                          |
| *Haemoplasmas spp.*    | 16S rRNA    | HBT-F: ATACGGCCCATAATCTCTACG                   | 595–618 |                               | Criado-Fornelio et al., 2003 |
|                        |             | HBT-R: TGCTCCACCTTTGCTCA                    |      |                                |                          |
| *Haemofelis group*     | 16S rRNA    | F: GGAGCGGTTGGAATGTGAG                       | 114  | 98.2 (0.99)                    | Tasker et al., 2010      |
|                        |             | R: GGGGATCTAATCCATTGTCG                     |      |                                |                          |
|                        |             | Probe: TYAGAACACCAGAGCGGCAAGGCG              |      |                                |                          |
| *Haemominutum group*   | 16S rRNA    | F: GGGCCAAGTCAGATGCTATC                      | 139  | 97.4 (0.99)                    |                         |
|                        |             | R: CGCCATTCGCCCTTTATCT                     |      |                                |                          |
|                        |             | Probe: TACCATTTAGCACCTTYGCGACCC            |      |                                |                          |
| *Cat*                  | SSR         | F: CTCATTGTACGATCTTACCC                     | 672  |                                | Abdel-Rahman et al., 2009 |
| *Dog*                  | SSR         | F: GGAATGTGTTGACTAGTACTAAAGA                | 808  |                                |                          |
|                        |             | R: GTAGATGTGTTAATAACTAGTACTAAGA             |      |                                |                          |
and flea samples as well as to assess the relationships between animal host status and their associated fleas for each bacterial species. Significant differences were set at \( p \leq 0.05 \). All statistical analyses were performed using IBM SPSS Statistics software, version 25.

3 | RESULTS

3.1 | Animals and ectoparasites

Out of the 93 cats (35 females and 58 males), with age ranging from 2 months to 18 years old (median: 12 months; mode: 24 months), the majority (70.97%) was from urban areas in good health status (Table 2). Out of the 96 dogs, equally distributed for gender and with age ranging from 2 months to 18 years old (median and mode: 36 months), the majority (94.79%) was in good condition (Table 2). The collected fleas were identified as Ct. felis in cats (91/93, 97.85%) and dogs (72/96, 75%), followed by Ct. orientis in dogs (23/96, 23.96%). Furthermore, Xenopsylla (X.) cheopis and Ct. canis were sporadically detected in cats (2/93, 2.14%) and dogs (1/96) (Table 2).

3.2 | Detection and quantification of Bartonella spp. DNA

All DNA samples were positive for the species-specific DNA fragment, confirming the quality of DNA extraction and the absence of DNA inhibitors. The reaction efficiency of the qPCR ssrA assay was 94.84%, slope \(-3.45, r^2 = 0.977, y\)-intercept 41.50.

Bartonella spp. DNA was detected in 20/93 (21.51%, 95% CI = 13.15–29.86) cat blood samples, but in none of those of dogs \( p < 0.0001 \), OR = 27.70 (Tables 3–5). Out of 189 fleas, 30/93 (32.26%, 95% CI = 22.76–41.76) from cats and 3/96 (3.12%, 95% CI = 0.00–6.61) from dogs were Bartonella spp. positive, with evidence for Bartonella spp. infection more frequent in fleas from cats than from dogs \( p < 0.0001 \), OR = 14.76 (Tables 3–5). The combined ssrA and 16S rRNA/ITS typing revealed that B. henselae I was the dominant species in cat blood samples, with prevalence of 13.98% (13/93, 95% CI = 1.46–11.44) and B. henselae II 1.08% (1/93) (Tables 3 and 4). A similar trend was observed in fleas collected from cats with B. henselae I (16/93, 17.20%, 95% CI = 9.53–24.88) most frequent than B. clarridgeiae (13/93, 13.98%, 95% CI = 6.93–21.03) and B. henselae II (1/93, 1.08%, 95% CI = 0.00–3.17) (Table 4). Furthermore, out of 20 bacteremic cats, 11 were infested with Bartonella-positive fleas of which 8 and 3 pairs hosting B. henselae I and B. clarridgeiae, respectively, but one cat hosting different Bartonella spp. than its flea (B. henselae I vs. B. clarridgeiae) (Tables 3 and 4).

Out of the 3 Bartonella spp.-positive fleas from dogs, two from Thailand, Ct. orientis (#40) and Ct. felis (#41), carried B. vinsonii subsp. berkhoffii III and B. clarridgeiae DNA respectively (Tables 3 and 4). The positive flea (Ct. felis) (#39) from Indonesia carried C. B. merieuxii DNA displaying the ssrA sequence identical to clones previously detected from domestic and wild canids in Iran, Iraq and Italy (Chomel et al., 2012; Greco et al., 2021; Greco, Szamard, et al., 2019) (Table 3).

The Bartonella spp. bacterial loads determined in the positive cats ranged from 1.03 to 4.28 Log\(_{10}\) (mean: 2.33 ± 0.88; median: 2.28) DNA copies/10\(^μ\)l with no significant differences for gender (Mann–Whitney U test [MWU], \( p = .69 \)), age (MW, \( p = .91 \)), and the presence for sign of fever (MWt, \( p = .674 \)) or enlarged lymph nodes (MWt, \( p = .12 \)). Furthermore, no differences in bacterial loads were observed between the cats according to the identified Bartonella species (MWt, \( p = .84 \)).

The bacterial loads in Bartonella-infected fleas from cats ranged from 1.18 to 7.33 Log\(_{10}\) (mean: 3.62 ± 3.29 DNA copies/10\(^μ\)l, with no statistically significant association with gender (MWt, \( p = .13 \)). Furthermore, although there was no statistically significant association (\( p = .065 \)), B. henselae-infected fleas displayed higher bacterial loads (0.65 to 7.33 Log\(_{10}\) [mean: 4.08 ± 2.05; median: 4.9] DNA copies/10\(^μ\)l) than those infected with B. clarridgeiae (0.68 to 7.21 Log\(_{10}\) [mean: 2.72 ± 1.97; median: 2.02] DNA copies/10\(^μ\)l).

When comparing Bartonella spp. infectious rates, statistically significant higher Bartonella spp. DNA loads \( p = .038 \) were detected in fleas than in host cats (Figure 1a,b). Noteworthy, fleas from bacteraemic cats had higher Bartonella spp. loads (range: 1.43–7.33 DNA copies/10\(^μ\)l, mean: 4.5 ± 2.19; median: 5.15) than fleas from non-bacteraemic ones (range: 1.18–5.84 DNA copies/10\(^μ\)l, mean: 3.03 ± 1.6; median: 2.34; MWt, \( p < .05 \)) (Figure 2a). No

| TABLE 2 Number and characteristics of animals and their fleas from East and Southeast Asia |
|------------------------------------|-----------------|-----------------|
| Cats n (%) N = 93 | Dogs n (%) N = 96 |
| Age in months (median/ mode) (range) | (12/24) (2–216) | (36/36) (2–216) |
| Gender | | |
| Male | 58 (62.36) | 46 (47.91) |
| Female | 35 (37.63) | 50 (52.17) |
| Husbandry | | |
| Urban area | 66 (70.97) | 56 (58.33) |
| Rural area | 27 (29.03) | 40 (41.67) |
| Temperature | | |
| Fever | 13 (13.99) | 5 (5.2) |
| No fever | 80 (86.02) | 91 (94.79) |
| Lymph node | | |
| Enlarged | 8 (8.06) | 10 (10.42) |
| Normal | 85 (91.94) | 86 (91.67) |
| Flea species | | |
| Ct. felis | 91 (97.85) | 72 (75) |
| Ct. orientis | 1 (1.07) | 23 (23.96) |
| Ct. canis | 1 (1.04) | |
TABLE 3 *Bartonella* and haemotropic *Mycoplasma* species detected in cats, dogs and their fleas from countries in East and Southeast Asia

| No | Country     | Animal and flea ID | *Bartonella* spp | Haemoplasma   |
|----|-------------|-------------------|------------------|---------------|
|    |             |                   | Animal host | Flea | Locus | Accession number | Animal host | Flea |
| 1  | Indonesia   | Cat-25            | Bh I       | Bh I | ITS   | ns            |             |      |
| 2  | Indonesia   | Cat-26            | Bh I       | Bh I | ITS   | ns            |             |      |
| 3  | Indonesia   | Cat-27            | Bh I       | Bh I | ITS   | ns            |             |      |
| 4  | Indonesia   | Cat-28            | Bh I       | Bh I | ITS   | ns            |             |      |
| 5  | Indonesia   | Cat-31            | Bh I       | Bh I | ITS   | ns            |             |      |
| 6  | Indonesia   | Cat-32            | Bh I       | Bh I | ITS   | ns            |             |      |
| 7  | Indonesia   | Cat-37            | Bc         | Bc   | ssrA  | MZ327707<sup>1</sup> |             |      |
| 8  | Indonesia   | Cat-39            | Bc         | Bc   | ITS   | MZ323351<sup>1</sup> |             |      |
| 9  | Indonesia   | Cat-48            | Bh I       | Bh I | ITS   | MZ323358<sup>1</sup> |             |      |
| 10 | Indonesia   | Cat-65            | Bh I       | Bh I | ITS   | ns            |             |      |
| 11 | Taiwan      | Cat-01            | Bh I       | Bc   | ns    |              |             |      |
| 12 | Taiwan      | Cat-03            | Bc         | Bc   | ssrA  | MZ327706<sup>1</sup> |             |      |
| 13 | Taiwan      | Cat-44            | Bh I       | ITS  | MZ323357<sup>1</sup> |             |      |
| 14 | Philippines | Cat-51            | Bc         | ITS  | MZ323355<sup>1</sup> | Mhf & CMhm  |             |      |
| 15 | Philippines | Cat-103           | Bc         | ITS  | MZ323352<sup>1</sup> | Mhf        |             |      |
| 16 | Philippines | Cat-104           | Bc         | ns   |       |             |             |      |
| 17 | Malaysia    | Cat-01            | Bh I       | ns   |       |             |             |      |
| 18 | Malaysia    | Cat-04            | Bh I       | ns   |       | Mhf         |             |      |
| 19 | Malaysia    | Cat-40            | Bh I       | ITS  |       |             |             |      |
| 20 | China       | Cat-139           | Bh II      | ns   |       |             |             |      |
| 21 | China       | Cat-152           | Bc         | ITS  | MZ323354<sup>1</sup> |             |      |
| 22 | China       | Cat-239           | Bh II      | ns   |       |             |             |      |
| 23 | Singapore   | Cat-18            | Bc         | ssrA | MZ327703<sup>1</sup> |             |      |
| 24 | Vietnam     | Cat-30            | Bh I       | ns   |       | CMhm        |             |      |
| 25 | Vietnam     | Cat-34            | Bh I       | ns   |       | CMhm        |             |      |
| 26 | Vietnam     | Cat-47            | Bh I       | ns   |       |             |             |      |
| 27 | Taiwan      | Cat-02            | Bh I       | ns   |       |             |             |      |
| 28 | Taiwan      | Cat-06            | Bc         | ITS  | MZ323353<sup>1</sup> |             |      |
| 29 | Philippines | Cat-46            | Bc         | ns   |       |             |             |      |
| 30 | Philippines | Cat-101           | Bc         | ns   |       |             |             |      |
| 31 | Indonesia   | Cat-24            | Bc         | ssrA |       |             |             |      |
| 32 | Indonesia   | Cat-29            | Bh I       | ssrA | MZ327701<sup>1</sup> |             |      |
| 33 | Indonesia   | Cat-35            | Bh I       | ns   |       |             |             |      |
| 34 | Indonesia   | Cat-42            | Bh I       | ns   |       |             |             |      |
| 35 | Indonesia   | Cat-53            | Bc         | ssrA | MZ327705<sup>1</sup> | CMhm        |             |      |
| 36 | Thailand    | Cat-78            | Bh I       | ns   |       |             |             |      |
| 37 | Thailand    | Cat-89            | Bc         | ITS  | ns   |             |             |      |
| 38 | Philippines | Cat-91            | Bc         | ITS  | ns   | Mhf         |             |      |
| 39 | Indonesia   | Dog-50            | CBm        | ssrA | MZ327699<sup>1</sup> |             |      |
| 40 | Thailand    | Dog-96            | Bvb        | ssrA | MZ327700<sup>1</sup> |             |      |
| 41 | Thailand    | Dog-105           | Bc         | ssrA | MZ327704<sup>1</sup> | Mhc         |             |      |
| 42 | Malaysia    | Cat-14            |             |      |       | CMhm        |             |      |
| 43 | Indonesia   | Cat-13            |             |      |       | CMhm        |             |      |

(Continues)
TABLE 3 (Continued)

| No | Country     | Animal and flea ID | Bartonella spp | Haemoplasma |
|----|-------------|--------------------|---------------|-------------|
|    |             |                    | Animal host   | Flea        | Accession number | Animal host | Flea |
| 44 | Indonesia   | Cat-36             |               |             | C               |             | Mhm |
| 45 | Philippines | Cat-07             |               |             | C               |             | Mhm |
| 46 | Philippines | Cat-40             |               |             | Mhf             |             |     |
| 47 | Philippines | Cat-41             |               |             | C               |             | Mhm |
| 48 | Philippines | Cat-42             |               |             | Mhf             |             |     |
| 49 | Philippines | Cat-58             |               |             |                |             | Mhm |
| 50 | Philippines | Cat-105            |               |             | C               |             | Mhm |
| 51 | Taiwan      | Cat-14             |               |             | C               |             | Mhm |
| 52 | Taiwan      | Cat-41             |               |             | C               |             | Mhm |
| 53 | Indonesia   | Cat-44             |               |             | C               |             | Mhm |
| 54 | Vietnam     | Cat-09             |               |             | C               |             | Mhm |
| 55 | Vietnam     | Cat-29             |               |             | C               |             | Mhm |
| 56 | Vietnam     | Cat-38             |               |             | C               |             | Mhm |
| 57 | Taiwan      | Dog-45             |               |             | Mhc             |             |     |
| 58 | Taiwan      | Dog-93             |               |             | Mhc             |             |     |
| 59 | Philippines | Dog-02             |               |             | Mhc             |             |     |
| 60 | Philippines | Dog-40             |               |             | C               |             | Mhp |

Note: Bh I, B. henselae genotype I; Bh II, B. henselae genotype II; Bc: B. clarridgeiae; Bvb: B. vinsonii subsp. berkoffii; CB: Candidatus Bartonella mericxii; CMhm: Candidatus Mycoplasma haemominutum; CMhp: Candidatus Mycoplasma haemoparvum; Mhc: Mycoplasma canis; Mhf: Mycoplasma haemofelis. Locus submitted for sequence analyses from flea (†), and animal host ($)..

Abbreviation: ns, not submitted.

differences for Bartonella spp. loads were detected in host cats based on the infection status of their fleas (MWt, p = .97) (Figure 2b).

The Bartonella spp. DNA loads of cats that harboured infected fleas did not display significant differences from those of cats with Bartonella-negative fleas (MWt, p = .748). Finally, low Bartonella spp. DNA loads were detected in the 3 positive fleas collected from dogs, with copy numbers ranging from 0.46 to 1.34 log\(_{10}\) (mean: 0.97 log\(_{10}\) ± SD 0.46; median: 1.12) DNA copies/10\(^6\).

3.3 Detection and quantification of haemoplasma DNA

The efficiency of the two haemoplasma qPCR (16S rRNA) assays was more than 97% (Table 1). Haemoplasma DNA was detected in 16.13% (15/93, 95% CI = 8.65−23.60) of the cats, with CMhm in 8 (8.6%, 95% CI = 2.90−14.30), Mhf in 6 (6.45%, 95% CI = 1.46−11.44) and mixed infection in one (1.08%) (Tables 3 and 4). In dogs, Mhc was the only species detected (4/96, 4.17%, 95% CI = 0.17−8.16). Furthermore, CMhm was detected in all of the positive fleas from cats (7/93, 7.53%, 95% CI = 2.16−12.89) and CMhp was detected in a flea from a dog (1.04%) (Table 3 and 4).

When comparing animal sources, haemoplasma occurrence was significantly more frequent in blood (p < .006, OR = 5.96) and flea (p = .02, OR = 7.73) samples from cats rather than from dogs (Table 5). No significant relationships were observed in cats for age (p = .17), gender (p = .70) or fever (p = .08) (Table 5).

The haemoplasma DNA loads determined in the positive cats ranged from 0.283 to 7.10 log\(_{10}\) (mean: 4.20 log\(_{10}\) ± SD 2.28; median: 4.5) DNA copies/10\(^6\), with no significant differences for gender (MWt, p = .22), age (MWt, p = .51) or the presence of clinical signs (MWt, p > .1). The bacterial loads in haemoplasma-infected fleas collected from cats ranged from 0.039 to 2.5 log\(_{10}\) (mean: 0.848 log\(_{10}\) ± SD 0.673; median: 0.716) DNA copies/10\(^6\) with no difference for flea gender (MWt, p > .1). Statistically significant higher haemoplasma DNA loads (MWt, p = .003) were detected in host cats than in fleas (Figure 3a,b). Furthermore, no haemoplasma-positive cats hosted infected fleas or vice versa. In dogs, haemoplasma DNA loads ranged from 0.57 to 7.14 log\(_{10}\) DNA copies/10\(^6\) (mean: 3.07 ± SD 2.43; median: 2.66) in dog hosts (all of them infected with Mhc), and 0.55 log\(_{10}\) DNA copies/10\(^6\) in the sole positive flea (Ct. felis) from a dog that was infected with CMhm.

4 Discussion

In the present study, the occurrence and bacterial loads of Bartonella and haemotropic Mycoplasma species in both privately owned cats and dogs and their fleas from several EA and SEA countries were determined. Ctenocephalides felis was the dominant flea species...
| Pathogen                        | Blood samples n (%) | Flea n (%) | Prevalence CI (95%) | Blood samples n (%) | Flea n (%) | Prevalence CI (95%) |
|--------------------------------|---------------------|------------|--------------------|---------------------|------------|--------------------|
| **Prevalence for any pathogen** | 32 (34.41)          | 35 (37.63) | 24.75– 44.06       | 4 (4.17)            | 4 (4.17)   | 0.17– 8.16         |
| **Bartonella spp.**            |                     |            |                    |                     |            |                    |
| **B. henselae**                | 20 (21.51)          | 30 (32.26) | 13.15–29.86        | 14 (15.05)          | 16 (17.20) | 6.93–21.03         |
| **B. henselae I**              | 13 (13.98)          | 16 (17.20) | 6.93–21.03         | 1 (1.08)            | 1 (1.08)   | 0.00–3.17          |
| **B. henselae II**             | 1 (1.08)            | 13 (13.98) | 1.46–11.44         | 6 (6.45)            | 6 (6.45)   | 1.46–11.44         |
| **B. clarridgeiae**            | 6 (6.45)            | 13 (13.98) | 1.46–11.44         |                     |            |                    |
| **B. vinsonii subsp. berkoffii**|                     |            |                    |                     |            |                    |
| **C. B. merieuxii**            |                     |            |                    |                     |            |                    |
| **Haemotropic Mycoplasma spp.**|                     |            |                    |                     |            |                    |
| **CMhm**                       | 15 (16.13)          | 7 (7.53)   | 8.65–23.60         | 8 (8.6)             | 2 (2.15)   | 2.90–14.30         |
| **Mhf**                        | 6 (6.45)            | 7 (7.53)   | 1.46–11.44         | 1 (1.08)            | 1 (1.08)   | 0.00–3.17          |
| **CMhm & Mhf**                 | 1 (1.08)            |            |                    |                     |            |                    |
| **Mhc**                        |                     |            |                    | 1 (1.04)            | 1 (1.04)   | 0.00–3.07          |
| **CMhp**                       |                     |            |                    |                     |            |                    |
| **Mixed infections**           |                     |            |                    |                     |            |                    |
| **B. henselae I & CMhm**       |                     |            |                    | 2 (2.15)            |            | 0.00–5.10          |
| **B. henselae I & Mhf**        | 1 (1.08)            |            | 0.00–3.17          |                     |            |                    |
| **B. clarridgeiae & Mhf**      | 1 (1.08)            |            | 0.00–3.17          |                     |            |                    |
| **B. clarridgeiae, Mhf & CMhm**| 1 (1.08)            |            | 0.00–3.17          |                     |            |                    |
infesting cats (97.85%) and dogs (75%) as already reported worldwide including Asia (Assarasakorn et al., 2012; Calvani et al., 2020; Colella et al., 2020; Nguyen et al., 2020; Rust, 2005; Tsai, Huang, et al., 2011; Wells et al., 2012). Moreover, Ct. orientis, also called the Asian flea, was detected in dogs (23.96%) as already described in Malaysia (Kernif et al., 2012) and Thailand (Changbunjong et al., 2009).

**TABLE 5 Association between pathogen status and variables**

| Variable Category | Frequency (n) | Prevalence (%) CI | Fischer’s p Value | χ² | OR | CI 95% OR |
|-------------------|---------------|-------------------|-------------------|----|----|---------|
| Animal species harbouring at least one m.o | | | | | | |
| Cat | 32/93 | 34.41 (24.75–44.06) | .0001 | 12.056 | 4.06–35.84 |
| Dog | 4/96 | 4.17 (0.17–8.16) | Ref | | |
| Fleas harbouring at least one m.o | | | | | | |
| Cat fleas | 35/93 | 37.63 (27.79–47.48) | .0001 | 13.897 | 4.69–41.09 |
| Dog fleas | 4/96 | 4.17 (0.17–8.16) | Ref | | |
| Bartonella spp. | | | | | | |
| Animal source | | | | | | |
| Cat | 20/93 | 21.51 (13.15–29.86) | .0001 | 27.70 | 3.64–210.20 |
| Dog | 0/96 | Ref | | | |
| Bartonella spp. in cat | | | | | | |
| Age ≤1 | 8/46 | 17.39 (6.44–28.34) | Ref | | | |
| ≥1 | 12/47 | 25.5 (13.7–38) | .33 | | | |
| Husbandry | | | | | | |
| Urban | 12/66 | 18.18 (21.96–44.71) | .22 | | | |
| Rural | 8/27 | 29.6 (12.41–46.85) | Ref | | | |
| Gender | | | | | | |
| Male | 12/58 | 20.69 (10.26–31.11) | .8 | | | |
| Female | 8/35 | 22.86 (8.95–36.77) | Ref | | | |
| Fever yes | 2/13 | 15.38 (0.00–35.00) | Ref | | | |
| no | 18/80 | 22.5 (13.35–31.65) | .5 | | | |
| Lymph node Enlarged | 4/8 | 50 (15.35–84.65) | .13 | | | |
| Normal | 16/85 | 18.82 (10.51–27.13) | Ref | | | |
| Animal source of positive fleas | | | | | | |
| Cat | 30/93 | 32.26 (22.76–41.76) | .0001 | 14.76 | 4.31–50.46 |
| Dog | 3/96 | 3.125 (0.00–6.61) | Ref | | | |
| Bacteraemic cats harbouring infected fleas | | | | | | |
| Yes | 12/20 | 60 (38.53–81.47) | <.0001 | 22.37 | 12.19 | 3.83–38.78 |
| No | 8/73 | 10.96 (3.79–18.12) | Ref | | | |
| Haemoplasmas spp. | | | | | | |
| Animal source | | | | | | |
| Cat | 15/93 | 16.13% (8.65–23.60) | .006 | 5.96 | 1.66–21.35 |
| Dog | 4/96 | 3.13 (0.17–8.16) | Ref | | | |
| Haemoplasmas in cats | | | | | | |
| Age ≤1 | 5/46 | 10.87 (1.87–19.86) | Ref | | | |
| ≥1 | 10/47 | 21.28 (9.58–32.98) | .172 | | | |
| Husbandry | | | | | | |
| Urban | 10/66 | 15.15 (6.50–23.80) | .68 | | | |
| Rural | 5/27 | 18.52 (3.87–33.17) | Ref | | | |
| Gender | | | | | | |
| Male | 10/58 | 17.24 (7.52–26.96) | .70 | | | |
| Female | 5/35 | 14.29 (2.69–25.88) | Ref | | | |
| Fever yes | 0/13 | Ref | | | | |
| no | 15/80 | 18.75 (10.20–27.30) | .088 | | | |
| Animal source of positive fleas | | | | | | |
| Cat | 7/93 | 7.53 (2.16–12.89) | .027 | 7.73 | 0.93–64.13 |
| Dog | 1/96 | 1.04 (0.00–3.07) | | | | |
| Bacteraemic cats harbouring infected fleas | | | | | | |
| Yes | 0/15 | Ref | | | | |
| No | 0/78 | Ref | | | | |
| Bacteraemic dogs harbouring infected fleas | | | | | | |
| Yes | 0/4 | Ref | | | | |
| No | 1/92 | 1.09 (0.00–3.21) | | | | |

Note: Significant values are displayed in bold. Abbreviation: m.o: microorganism.
ZAREA ET AL.

Bartonella henselae and possibly B. clarridgeiae, other than B. koelereae, are the agents of the cat scratch disease (CSD). Their prevalence rates might differ according to the geographic areas and climate conditions often overlapping the flea occurrence values (Yuan et al., 2011). In our study, the DNA of Bartonella species, including B. henselae and B. clarridgeiae, was detected in cats and fleas. The overall prevalence of Bartonella spp. in cat blood samples (21.51%) was consistent with previous surveys conducted in pet cats from Taiwan (19.1% to 22%) (Chang et al., 2006; Jensen et al., 2000; Maruyama et al., 2001) and Thailand (17%) (Assarasakorn et al., 2012), lower than in the Philippines (28.9%) (Chomel et al., 1999) and Korea (33.3%) (Kim et al., 2009), and higher than in China (3.94% to 12.7%)

**FIGURE 1** Bartonella spp. loads, expressed as \(\log_{10}\) DNA copy number/10\(\mu\)l, in blood and flea samples collected from cats from East (EA) and Southeast Asia (SEA). Boxes represent IQRs, and horizontal black thick lines represent median values. Vertical lines (whiskers) represent the distribution of maximum and minimum values (Mann–Whitney U test, \(p = .038\))

**FIGURE 2** Bartonella spp. loads in cats and their fleas from East (EA) and Southeast Asia (SEA). Boxes represent IQRs, and horizontal black thick lines represent median values. Vertical lines (whiskers) represent the distribution of maximum and minimum values. The values on the y axis are expressed as \(\log_{10}\) DNA copy number/10\(\mu\)l. Panel a represents the Bartonella spp. loads in fleas according to the infectious status of their cats (Mann–Whitney U test, \(p = .04\)). Panel b represents the Bartonella spp. loads in cats according to infectious status of their fleas (Mann–Whitney U test, \(p = .97\))
(Yuan et al., 2011; Zhang et al., 2019). The prevalence of Bartonella spp. DNA (32.26%) in fleas from cats was similar to data available from Thailand, Japan and Australia (Assarasakorn et al., 2012; Barrs et al., 2010; Ishida et al., 2001). In detail, B. henselae genotype I was dominant in cats (13.98%) and their associated fleas (17.20%) while B. henselae genotype II was less frequent (1.08%) in both. A similar distribution of genotype I was reported from South East Asian countries (Chang et al., 2006; Chomel et al., 1999; Inoue et al., 2009; Jensen et al., 2000; Maruyama et al., 2000), in contrast to the European countries or USA where genotype II was dominant (Arvand et al., 2001; Chomel et al., 2002; Greco, Brianti, et al., 2019; Otranto et al., 2017). Furthermore, B. clarridgeiae occurrence in cats and their associated fleas (6.45%, 13.98%) overlapped that of previous studies (0.6 to 4.5%, 14%) in the area (Assarasakorn et al., 2012; Inoue et al., 2009; Kim et al., 2009).

Cats are the primary reservoir host for different Bartonella species that are mostly transmitted among cats by fleas (Breitschwerdt et al., 2010; Chomel et al., 1996; Chomel et al., 2006). Our study provides evidence that flea-infested cats in urban areas of SEA represent a risk for Bartonella spp. infection for other cats and for their owners thus posing a potential threat to human health. When quantifying Bartonella spp. DNA, significant higher loads were detected in fleas rather than in host cats ($p = .038$), supporting the role of fleas as amplifier hosts. Indeed the capability of B. henselae to replicate in the gut of Ct. felis was previously observed (Bouhsira et al., 2013; Higgins et al., 1996; Rust & Dryden, 1997). Furthermore, significant higher DNA copy numbers were detected in Bartonella-positive fleas collected from bacteraemic cats than from non-bacteraemic ones ($p < .05$) possibly related to their role as Bartonella spp. accumulator following repeated blood meals on infected cat hosts (Bouhsira et al., 2013; Breitbucherdt & Kordick, 2000; Gutierrez et al., 2015; Higgings et al., 1996; Rust & Dryden, 1997). The finding of Bartonella spp. negative cats hosting positive fleas suggests transient bacteraemia with undetectable levels of the pathogens at the time of arthropod sampling or early infection (Gutiérrez et al., 2015; La Scola et al., 2002; Lappin & Hawley, 2009). Nonetheless, Bartonella-negative cats with positive fleas may also be possible flea transfer from infected to non-infected cat.
Similar to a previous study performed in shelter cats from Brazil (Raimundo et al., 2019), age and gender were not risk factors for *Bartonella* infection in cats, although the sample selection method, which was based on the flea infestation status of the animals’ enrolment, might have biased this observation. Indeed, it has been reported that the juvenile cats are more at risk to be found infected with CSD agents (Bergmans et al., 1996; Chomel et al., 1995; Greco, Brianti, et al., 2019; Zangwill et al., 1993).

Compared to cats, no risk for *Bartonella* spp. occurrence was observed in dogs being undetected in blood samples, and rare in their fleas. Similarly, in previous studies these bacteria were not detected in urban or rural dogs from Vietnam, Korea and China (Shenzhen) (Brenner et al., 2013; Suh et al., 2017; Zhang et al., 2019), and were found with low prevalence in Thailand (0.3%-4.6) (Billeter et al., 2012; Inoue et al., 2009; Taiwan (1.7%) (Tsai, Chang, et al., 2011) and the Philippines (2.6%) (Singer et al., 2020). Conversely, higher occurrence (16%) was reported from a restricted sample of pet dogs that visited a veterinary teaching hospital in Korea as a likely result of selection bias (Kim et al., 2009). However, the occurrence of *Bartonella* spp. infection in the studied dogs cannot be excluded since *B. claridgeiae* and *B. vinsonii* subsp. *berkhoffii* infection in their associated fleas, *Ct. felis* and *Ct. orientis* was herein recorded similar to previous reports (Billeter et al., 2012; Kernif et al., 2012). To the best of our knowledge, C. B. merieuxii was herein detected for the first time in fleas, particularly, *Ct. felis*. This *Bartonella* species had already been detected in the blood of canids including dogs in Iran, jackals in Iraq and wolves in Italy (Chomel et al., 2012; Greco et al., 2021; Greco, Sazmand, et al., 2019).

The low frequency of *Bartonella* spp. infection generally recorded in domestic dogs suggests that these animals may be accidental hosts, rather than primary reservoirs in the cycle of *Bartonella* spp. (Breitschwerdt et al., 2010; Brenner et al., 2013; Chomel et al., 2006; Kaiser et al., 2011). Moreover, the higher frequencies (20% to 60%) recorded in stray and hunting dogs (Ebani et al., 2015; Greco, Sazmand, et al., 2019) compared to urban ones, as observed in the present study, suggest that wild wildlife and their ectoparasites are the sources for the infection as documented by the detection of *Bartonella* spp. in wild canids, including foxes, wolves or jackals (Chomel et al., 2012; Greco et al., 2021; Hodžić et al., 2018).

Haemoplasma infection is common in cats and dogs worldwide (Biondo et al., 2009; Greco, Brianti, et al., 2019; Latrofa et al., 2020; Otranto et al., 2017; Sykes, 2010; Ravagnan et al., 2017; Roura et al., 2010). In the present study, 16.13% of the cats were positive for *Mycoplasma* spp. with *M. hofmanni* (8.6%) more frequent than *M. haemofelis* (6.45%), similar to previous studies conducted in Thailand (Do et al., 2020, 2021; Kaewmongkol et al., 2020), South Korea (Hwang et al., 2016) and China (Kaewmongkol et al., 2017; Liu et al., 2016; Zhang et al., 2021). Moreover, *M. hofmanni* was the only *Mycoplasma* species detected in fleas from cats (7.53%), in line with what was previously described in UK and Australia (Barris et al., 2010). *Mycoplasma haemocanis* was the sole species identified in dogs (4.16%) similar to several studies conducted in Thailand (Kaewmongkol et al., 2017; Liu et al., 2016), Japan (Sasaki et al., 2008), Italy (Ravagnan et al., 2017) and the USA (Compton et al., 2012). However, *CMh* was detected only in one *Ct. felis* flea (1.16%) collected from a dog from the Philippines confirming the presence of the species in the area according to a previous report from the Thailand (Liu et al., 2016).

Altogether, our results show that cats from SEA are more at risk for haemoplasma infection (p < .01, OR = 5.96) rather than dogs. Worldwide, haemoplasma prevalence in cats varies according to several determinants including gender (male cats at higher risk of infection than female), lifestyle, infestation by ectoparasites or concurrent infections (i.e. FIV in cats) (Assarasakorn et al., 2012; Bergmann et al., 2017; Díaz-Regañaon et al., 2018; Do et al., 2020; Tasker et al., 2004; Willi et al., 2006). As far as risk factors, age (p = .1) and gender (p = .7) were not relevant for haemoplasma occurrence in cats as already observed in cats from Ontario (Kamrani et al., 2008).

Although it is still debatable how feline or canine hemoplasmas are transmitted, vector transmission through fleas or ticks (Lappin et al., 2006; Willi et al., 2007) has been hypothesized. In our study no haemoplasma-positive cat had positive fleas or vice versa suggesting that the fleas may be feeding on different cats as already supposed (Assarasakorn et al., 2012). Furthermore, *CMh* DNA loads in fleas were substantially lower than (p = .003) those in cats, indicating a minor role of these ectoparasites as vectors, and a possible role of direct transmission (i.e. fighting) for these pathogens, as suggested in previous studies (Greco, Brianti, et al., 2019; Museux et al., 2009; Woods et al., 2005). Accordingly, *Mhc* prevalence was higher in Japanese fighting dogs than in other individuals of the same species, but with different lifestyles (Sasaki et al., 2008).

### 5 | CONCLUSIONS

Privately owned cats and dogs living in East and Southeast Asia countries are exposed to *Bartonella* spp. and haemoplasma infections, with felines more likely to harbour these pathogens than canines (p < .0001). Noteworthy, the data presented strengthen that fleas serve as active vectors of *Bartonella* spp., but unlikely for haemoplasmas, in the area. Furthermore, we report the first detection of *C. B. merieuxii* in a female *Ct. felis* flea from an Indonesian dog. Also, this is the first study detecting different haemotropic *Mycoplasm* species from Indonesia (cats and their fleas), the Philippines (cat, dog, and fleas), Taiwan (cats and dogs) and Vietnam (cat fleas).

### ACKNOWLEDGEMENTS

The authors are grateful to Do Yew Tan (Boehringer Ingelheim Animal Health, Lyon, France), Fang Fang (School of Animal Science and Technology, Guangxi University, Nanning, China), Wisnu Nurcahyo (Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakata, Indonesia), Upik Kesumawati Hadi (Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia), Virginia Venturina (College of Veterinary Science & Medicine, Central Luzon State University, Nueva Ecija, Philippines), Kenneth Boon Yew Tong (Animal & Avian Veterinary Clinic, Singapore, Singapore),
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Approval for this study was obtained from the Animal Ethics Committee of the Veterinary Medicine Department of the University of Bari, Italy (Prot. no. 13/17). All animal owners have read, approved and signed owner informed consent containing information on study procedures and aims.

ORCID
Aya Attia Koraney Zarea https://orcid.org/0000-0003-2290-1988
Marcos Antonio Bezerra-Santos https://orcid.org/0000-0003-0575-6758
Domenico Otranto https://orcid.org/0000-0002-7518-476X
Grazia Greco https://orcid.org/0000-0002-4338-6746

REFERENCES
Abdel-Rahman, S. M., El-Saadani, M. A., Ashry, K. M., & Haggag, A. S. (2009). Detection of deuteration and identification of cat’s, dog’s, donkey’s and horse’s meat using species-specific PCR and PCR-RFLP techniques. Australian Journal of Basic and Applied Sciences, 3(3), 1716–1719.
Álvarez-Fernández, A., Breitschwerdt, E. B., & Solano-Gallego, L. (2018). Bartonella infections in cats and dogs including zoonotic aspects. Parasites & Vectors, 11(1), 1–21. https://doi.org/10.1186/s13071-018-3152-6
Arvand, M., Klose, A. J., Schwartz-Porsche, D., Hahn, H., & Wendt, C. (2001). Genetic variability and prevalence of Bartonella henselae in cats in Berlin, Germany, and analysis of its genetic relatedness to a strain from Berlin that is pathogenic for humans. Journal of Clinical Microbiology, 39(2), 743–746. https://doi.org/10.1128/JCM.39.2.743-746.2001

[Correction added on July 04, 2022 after first online publication: Funding information under CRUI-CARE Agreement has been updated.]
Colella, V., Nguyen, V. L., Tan, D. Y., Lu, N., Fang, F., Zhijuan, Y., Wang, J., Liu, X., Chen, X., Dong, J., Nurcayho, W., Hadi, U. K., Venturina, V., Tong, K., Tsai, Y. L., Tawethawongsawat, P., Tiwanathanagorn, S., Le, T. Q., Bui, K. L., ... Halos, L. (2020). Zoonotic vector borne pathogens and ectoparasites of dogs and cats in Eastern and Southeast Asia. *Emerging Infectious Diseases*, 26(6), 1221–1233. https://doi.org/10.3201/eid2606.191832

Compton, S. M., Maggi, R. G., & Breitschwerdt, E. B. (2012). *Candidatus Mycoplasma haemotaparum and Mycoplasma haemocanis* infections in dogs from the United States. *Comparative Immunology, Microbiology and Infectious Diseases*, 35(6), 557–562. https://doi.org/10.1016/j.cimid.2012.06.004

Criadó-Fornelio, A., Martínez-Marcos, A., Buling-Saraña, A., & Barba-Carretero, J. C. (2003). Presence of *Mycoplasma haemofelis, Mycoplasma haemominutum* and piroplasmids in cats from southern Europe: A molecular study. *Veterinary Microbiology*, 93(4), 307–317. https://doi.org/10.1016/S0378-1135(03)00044-0

Diaz, M. H., Bai, Y., Malania, L., Winchell, J. M., & Kosoy, M. Y. (2012). Development of a novel genus-specific real-time PCR assay for detection and differentiation of *Bartonella* species and genotypes. *Journal of Clinical Microbiology*, 50(5), 1645–1649. https://doi.org/10.1128/JCM.06621-11

Díaz-Regañón, D., Villaescusa, A., Ayllón, T., Rodríguez-Franco, F., García-Sancho, M., Aguilla, B., & Sainz, A. (2018). Epidemiological study of hematopoeotic Mycoplasmas (hemoplasmas) in cats from central Spain. *Parasites & Vectors*, 11(1), 140. https://doi.org/10.1186/s13071-018-2740-9

Diniz, P. P., Maggi, R. G., Schwartz, D. S., Cadenas, M. B., Bradley, J. M., Hegarty, B., & Breitschwerdt, E. B. (2007). Canine bartonellosis: Serological and molecular prevalence in Brazil and evidence of co-infection with *Bartonella henselae* and *Bartonella vinsonii* subsp. *berkhoffii*. *Veterinary Research*, 38(5), 697–710. https://doi.org/10.1051/vetres:2007023

Do, T., Kamyngkird, K., Bui, L. K., & Inpankaew, T. (2020). Genetic characterization and risk factors for feline hemoplasma infection in semi-domesticated cats in Bangkok, Thailand. *Veterinary World*, 13(5), 975–980. https://doi.org/10.14202/vetworld.2020.975-980

Dos Santos, A. P., dos Santos, R. P., Biondo, A. W., Dora, J. M., Goldani, L. Z., de Oliveira, S. T., de Sá Guimarães, A. M., Timenetsky, J., de Morais, H. A., González, F. H., & Messick, J. B. (2008). Hemoplasma infection in HIV-positive patient, Brazil. *Emerging Infectious Diseases*, 14(12), 1922–1924. https://doi.org/10.3201/eid1412.080964

Duong, V., Tarantola, A., Ong, S., Mey, C., Choeneu, R., Ly, S., Bourhy, H., Dussart, P., & Buchy, P. (2016). Laboratory diagnostics in dog-mediated rabies: An overview of performance and a proposed strategy for various settings. *International Journal of Infectious Diseases*, 46, 107–114. https://doi.org/10.1016/j.ijid.2016.03.016

Ebani, V. V., Bertelloni, F., Turchi, B., Filogari, D., & Cerri, D. (2015). Molecular survey of tick-borne pathogens in kloid ticks collected from hunted wild animals in Tuscany, Italy. *Asian Pacific Journal of Tropical Medicine*, 8(9), 714–717. https://doi.org/10.1016/j.apjt.2015.07.033

Greco, G., Brianti, E., Buonavoglia, C., Carelli, G., Pollmeier, M., Schunack, B., Dowgier, G., Capelli, G., Dantas-Torres, F., & Otranto, D. (2019). Effectiveness of a 10% imidacloprid 4.5% flumethrin polymer matrix collar in reducing the risk of bartonellosis. *Parasites & Vectors*, 12(1), 1–10. https://doi.org/10.1186/s13071-018-3257-y

Greco, G., Sz Amanda, Goudartzalejerd, A., Zolhavarieh, S. M., Decaro, N., Lapsley, W. D., Otranto, D., & Chomel, B. (2019). High prevalence of Bartonella sp. in dogs from Hamadan, Iran. *American Journal of Tropical Medicine and Hygiene*, 104(4), 749–752. https://doi.org/10.4269/ajtmh.19-0345

Greco, G., Zarea, A., Sgroi, G., Tempesta, M., D’ Alessio, N., Lanave, G., Bezza-Santos, M. A., Iatta, R., Veneziavo, V., Otranto, D., & Chomel, B. (2021). Zoonotic Bartonella species in Eurasian wolves and other free-ranging wild mammals from Italy. *Zoonoses and Public Health*, 68(4), 316–326. https://doi.org/10.1111/zph.12827
Tasker, S., Helps, C. R., Day, M. J., Gruffydd-Jones, T. J., & Harbour, D. A. (2003). Use of real-time PCR to detect and quantify Mycoplasma haemofelis and “Candidatus Mycoplasma haemominutum” DNA. *Journal of Clinical Microbiology*, 41(1), 439–441. https://doi.org/10.1128/JCM.41.1.439-441.200

Tasker, S., Helps, C. R., Day, M. J., Harbour, D. A., Shaw, S. E., Harrus, S., Baneth, G., Lobetti, R. G., Malik, R., Beauvais, J. P., Belford, C. R., & Gruffydd-Jones, T. J. (2003). Phylogenetic analysis of hemoplasma species: an international study. *Journal of Clinical Microbiology*, 41(8), 3877–3880. https://doi.org/10.1128/JCM.41.8.3877-3880.2003

Tasker, S., Peters, I. R., Mumford, A. D., Day, M. J., Gruffydd-Jones, T. J., Day, S., Pretorius, A. M., Birtles, R. J., Helps, C. R., & Neimark, H. (2010). Investigation of human haemotropic Mycoplasma infections using a novel generic haemoplasma qPCR assay on blood samples and blood smears. *Journal of Medical Microbiology*, 59(Pt 11), 1285–1292. https://doi.org/10.1099/jmm.0.021691-0

Tsai, Y. L., Chang, C. C., Chuang, S. T., & Chomel, B. B. (2011). *Bartonella* species and their ectoparasites: selective host adaptation or strain selection between the vector and the mammalian host? *Comparative Immunology, Microbiology and Infectious Diseases*, 34(4), 299–314. https://doi.org/10.1016/j.cimid.2011.04.005

Tsai, K. H., Huang, C. G., Fang, C. T., Shu, P. Y., Huang, J. H., & Wu, W. J. (2011). Prevalence of *Rickettsia felis* and the first identification of *Bartonella henselae* Fizz/CAL-1 in cat fleas (Siphonaptera: Pulicidae) from Taiwan. *Journal of Medical Entomology*, 48(2), 445–452. https://doi.org/10.1603/ME10022

Vieira-Damiani, G., Diniz, P. P., Pitassi, L. H., Sowy, S., Scorpio, D. G., Lania, B. G., Drummond, M. R., Soares, T. C., Barjas-Castro, M., Breitschwerdt, E. B., Nicholson, W. L., & Velho, P. E. (2015). Bartonella claridgeiae bacteriaemia detected in an asymptomatic blood donor. *Journal of clinical microbiology*, 53(1), 352–356.

Watanabe, M. (2012). Main pet Arthropod-borne diseases in Asia. 9th Merial Symposium on Parasitosis and Arthropod-Borne Diseases. Tokyo 6th, 18–21.

Wells, K., Beaucournu, J. C., Durden, L. A., Petney, T. N., Lakim, M. B., & O’Harra, R. B. (2012). Ectoparasite infestation patterns of domestic dogs in suburban and rural areas in Borneo. *Parasitology Research*, 111(2), 909–919. https://doi.org/10.1007/s00436-012-2917-7

Willi, B., Boretti, F. S., Baumgartner, C., Tasker, S., Wenger, B., Cattori, V., Meli, M. L., Reusch, C. E., Lutz, H., & Hofmann-Lehmann, R. (2006). Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland. *Journal of Clinical Microbiology*, 44(3), 961–969. https://doi.org/10.1128/JCM.44.3.961-969.2006

Willi, B., Boretti, F. S., Meli, M. L., Bernasconi, M. V., Casati, S., Hegglin, D., Puorger, M., Neimark, H., Cattori, V., Wengi, N., Reusch, C. E., Lutz, H., & Hofmann-Lehmann, R. (2007). Real-time PCR investigation of potential vectors, reservoirs, and shedding patterns of feline hemotropic mycoplasmas. *Applied and Environmental Microbiology*, 73(12), 3798–3802. https://doi.org/10.1128/AEM.02977-06

Woods, J. E., Brewer, M. M., Hawley, J. R., Wisnewski, N., & Lappin, M. R. (2005). Evaluation of experimental transmission of *Candidatus Mycoplasma haemominutum* and *Mycoplasma haemofelis* by *Ctenocephalides felis* to cats. *American Journal of Veterinary Research*, 66(6), 1008–1012. https://doi.org/10.2460/ajvr.2005.66.1008

Yuan, C., Zhu, C., Wu, Y., Pan, X., & Hua, X. (2011). Bacteriological and molecular identification of *Bartonella* species in cats from different regions of China. *PLoS Neglected Tropical Diseases*, 5(9), e1301. https://doi.org/10.1371/journal.pntd.0001301

Zangwill, K. M., Hamilton, D. H., Perkins, B. A., Regnery, R. L., Plikaytis, B. D., Hadler, J. L., Cartter, M. L., & Wenger, J. D. (1993). Cat scratch disease in Connecticut. Epidemiology, risk factors, and evaluation of a new diagnostic test. *The New England Journal of Medicine*, 329(1), 8–13. https://doi.org/10.1056/NEJM199307013290102

Zhang, X. L., Li, X. W., Li, W. F., Huang, S. J., & Shao, J. W. (2019). Molecular detection and characterization of *Bartonella* spp. in pet cats and dogs in Shenzhen, China. *Acta Tropica*, 197, 105056. https://doi.org/10.1016/j.actatropica.2019.105056

Zhang, Y., Zhang, Z., Lou, Y., & Yu, Y. (2021). Prevalence of hemoplasmas and *Bartonella* species in client-owned cats in Beijing and Shanghai, China. *Journal of Veterinary Medical Science*, 83(5), 793–797. https://doi.org/10.1292/jvms.20-068

**SUPPORTING INFORMATION**

Additional supporting information may be found in the online version of the article at the publisher’s website.