Staphylococcal trafficking and infection – from ‘nose to gut’ and back

Elisa J.M. Raineri a, Dania Altulea a,b, and Jan Maarten van Dijl a, #

a Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

b Present address: Department of Internal Medicine and Transplantation Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

#Address correspondence to: J.M. van Dijl, tel. +31-50-3615187, E-mail: j.m.van.dijl01@umcg.nl

One sentence summary: Here, we review the roles of different reservoirs in the human body in the onset of infections caused by the pathogen Staphylococcus aureus with focus on mechanisms of bacterial trafficking and the switch between colonization and infection.
Abstract

Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections world-wide. The challenge in treating S. aureus infection is linked to the development of multi-drug resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body, and the subsequent immune responses.

Keywords
Reservoir; colonization; infection; gut; nasopharynx; immune cells.
Introduction

Staphylococcus aureus is an opportunistic human pathogen that is infamous for causing community- and hospital-acquired infections. When *S. aureus* unfolds its pathogenic nature, it can cause many pathologies including infections of the skin, wounds, soft tissues, bloodstream, bones and lungs. In addition, the contamination of food products with *S. aureus* may lead to serious cases of gastroenteritis. In recent years, *S. aureus* has become the leading cause of blood stream infections (Turner et al. 2019; Guimaraes et al., 2019; Thwaites and Gant 2011). The treatment of such staphylococcal infections is, unfortunately, becoming increasingly difficult due to the emergence of multiple drug-resistance, which is best-exemplified by the methicillin-resistant *S. aureus* (MRSA) lineages (Corey 2009; Thwaites and Gant 2011). Once *S. aureus* is in the blood stream, it can reach the different tissues and organs of the human body, thereby causing metastatic infections. Due to its resistance to most clinically approved antibiotics, treatment of *S. aureus* infections and eradication of this pathogen from the human body is often incomplete, leading to recurrent infections (Foster et al. 2017). However, the persistence of *S. aureus* in the body is not only related to drug resistance, but also to effective mechanisms employed by the pathogen to evade the human immune defenses and its ability to hide in particular ‘protective’ niches (Kubica et al. 2008; Thwaites and Gant 2011; Horn et al. 2017; Mekonnen et al. 2018). This is remarkably underscored by the fact that *S. aureus* is capable of surviving inside immune cells like monocytes, macrophages and granulocytes, and even in dendritic cells (Horn et al. 2017; Balraadjsing et al. 2019).

Due to its high adaptability to different environmental conditions, the opportunist *S. aureus* has become an integral part of the human microbiome, where it can persist asymptotically for prolonged periods of time. Here one has to differentiate between persistent carriers, who are always colonized by *S. aureus*, and intermittent carriers, who present *S. aureus* with varying frequency (Wertheim et al. 2005; van Belkum 2016; Mulcahy and McLoughlin 2016a). However, the difference between persistent and intermediate carriage is vague, because *S. aureus* may be hiding at body sites that are not sampled at the time of examination. For instance, in most studies, samples are taken from the anterior nares or the skin, whereas the
perineum and gastrointestinal tract are less frequently sampled sites where *S. aureus* often resides (Acton et al. 2009; Sakr et al. 2018). In particular, intestinal carriage can occur in the absence of nasal carriage, whereas nasal carriage has been associated with increased *S. aureus* intestinal carriage (Acton et al. 2009). The non-carriers are the remaining part of the population, representing a minority of people where *S. aureus* is hardly ever detectable. The latter does however not rule out the possible existence of hidden reservoirs. Also, the non-carriers usually show significant anti-staphylococcal immunoglobulin levels, suggesting that they have a history of contacts with the pathogen, including incidental contaminations and perhaps minor infections that passed unnoticed (Verkaik et al. 2009; Sollid et al. 2014).

The skin and the mucosa of the human body are usually regarded as physical barriers against external insults, but they actually represent networks of effector cells and molecular mediators that constitute a complex immune system. Once these protective barriers of the human body are breached, for instance by trauma, surgery or viral infections, the underlying body layers are exposed, granting easy and rapid access for pathogens like *S. aureus* to deep-seated tissues and the bloodstream (Abdallah, Mijouin, and Pichon 2017). This opens the gate for dissemination of *S. aureus* throughout the body with serious health hazards. For example, the epithelial cell layer of the human lung forms an important primary barrier against infection. However, upon a breach of this barrier, or during the early stages of tissue regeneration, the options to mount effective responses to the staphylococcal insult are inadequate (Palma Medina et al. 2020). Likewise, the dynamics of *S. aureus* infection of endothelial cells was shown to be highly dependent on the integrity of the endothelial barrier (Raineri et al. 2020). In recent years, the numbers of surgical interventions in different parts of the human body have steeply increased due to aging of the population, with MRSA being one of the most frequently encountered causative agents of surgical site infections (Fukuda et al. 2020).

Once the epithelial or endothelial barriers have been breached, the innate and adaptive immune defenses impose the main barriers against invasive staphylococcal infections of deeper-seated tissues and the blood stream. The interaction between the immune system and *S. aureus* can go in two directions. In one scenario the
bacteria are effectively killed by the complement system or phagocytic immune cells, leading to the prevention of infectious disease. Alternatively, the bacteria manage to evade the immune defenses, either by killing of phagocytes, intra-phagocyte survival, intracellular persistence (within the cytoplasm or organelles), or biofilm formation, which will lead to asymptomatic colonization of the host, chronic infection or fulminant pathology (Voyich et al. 2005; Bhalla, Aron, and Donskey 2007; Thurlow et al. 2011; Flannagan, Heit, and Heinrichs 2015; Thammavongsa et al. 2015; Lubkin and Torres 2017; Darisipudi et al. 2018). Throughout its evolution, S. aureus has acquired a plethora of factors that allow this pathogen to evade, manipulate and subvert the host immune defenses, making it one of the most successful pathogens ever (Thammavongsa et al. 2015).

Upon contact with the human host, the bacterial cells need to establish firm interactions with cell surfaces, tissues or implanted devices, in order to colonize the host for extended periods of time (Sakr et al. 2018). Over the past decades, much research has been focused on S. aureus colonization of the most common endogenous niches, especially the nasopharynx and oral cavity, while the frequency of intestinal colonization has remained relatively underestimated. The aim of this review is to focus attention on the endogenous reservoirs of S. aureus in the human host. We highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the more intensely investigated nasopharyngeal and oral S. aureus reservoirs. From its different ecological niches, the pathogen can disseminate to other parts of our body as schematically represented in Figure 1. In this context, we address the interactions of S. aureus with different types of blood cells as possible vehicles for staphylococcal dissemination.

The human nasopharynx and oral cavity

The nasal cavity is a complex structure of the human body where several bacteria reside, and the composition of its microbiota changes in function of time and the human host characteristics. This compartment is lined by a keratinized stratified squamous epithelium in the anterior part and by a columnar ciliated epithelium in the inner part (Figure 2A) (Weidenmaier 2012). S. aureus persistently colonizes the nasopharynx of approximately one fifth of the human population. A higher rate of
nasal colonization is found in children, amounting around 45% in the first weeks of life. However, \textit{S. aureus} nasal carriage decreases with time (Wertheim et al. 2005). Furthermore, the nasal carriage rate is determined by sex, ethnicity, age, history of disease and the immunity of the human host (Sakr et al. 2018; Liu et al. 2015). Host genetic determinants were shown to be important for \textit{S. aureus} nasal colonization, but the microbiota also influences \textit{S. aureus} abundance in the nasopharynx (Liu et al. 2015). In case of persistent colonization, it was observed that \textit{S. aureus} can show a niche adaptation to the host environment, but the presence of single nucleotide polymorphisms (SNPs) and of genetic variations in the host genome may influence the colonization outcome (Mulcahy and McLoughlin 2016). For example, such variations were detected in genes encoding IL-4, C-reactive proteins, Toll-like receptors (TLR), mannose-binding lectin and the DEFB1 defensin of persistent \textit{S. aureus} nasal carriers (Shepherd and McLaren 2020; Mulcahy and McLoughlin 2016a). Furthermore, the \textit{S. aureus} strains isolated from nasal human carriers were shown to have an effect on the local immune response in the nose. For example, this was observed in nasal epithelial cells, where the human β-defensin was down-regulated, or where the up-regulation of TLR-2 was delayed (Quinn and Cole 2007). Next to the nasal cavity, the oral cavity and perioral regions are also important niches from where \textit{S. aureus} can disseminate to other body sites and take part in certain oral diseases. This view was underscored by screening for MRSA and MSSA in the oral cavity, which allowed the detection of strains that would have been overlooked by only sampling the nasal cavity (McCormack et al. 2015; Kearney et al. 2020).

The transmission of bacteria residing in the nasal and oral cavities mainly occurs via direct or indirect interpersonal contacts (e.g. mother-infant contacts or contacts with health care workers) and is facilitated by nose picking, airborne saliva droplets and contaminated surfaces (Wertheim et al. 2004; Sakr et al. 2018). The resulting colonization of the nasal mucosa could, in many instances, be linked with the development of \textit{S. aureus} bacteremia (von Eiff and Peters 2001; Wertheim et al. 2005; Sakr et al. 2018). For example, 15% of a cohort of pre-clinical medical students in Nepal displayed nasal \textit{S. aureus} colonization and, importantly, screening for nasal colonization helped to decrease the transmission of \textit{S. aureus} from community to hospital settings (Ansari et al. 2016). During the early steps of
colonization, *S. aureus* adhesins will establish interactions with host cell molecules of the skin and mucosa. For instance, this can occur via the binding of the cell wall-anchored ClfB and IsdA proteins to the cornified envelope of the stratum corneum, or via cell wall-anchored proteins with the host cell receptor SREC-I that is present on the surface of ciliated epithelial cells (Weidenmaier 2012; Leonard, Petrie, and Cox 2019). When colonizing the nasopharynx, *S. aureus* will interact both with the squamous epithelium and with the cells of the ciliated columnar epithelium in the inner nasal cavity (Figure 2A). Additionally, *S. aureus* adheres to the mucosa in the nasopharynx via adhesin-receptor interactions of bacterial proteins and the carbohydrate moiety in the mucin (Shuter, Hatcher, and Lowy 1996).

Next to the extracellular location of colonizing *S. aureus*, an intracellular localization of this bacterium has been observed in both epithelial and endothelial cells, and even in inflammatory cells such as mast cells (Ou et al. 2016; Sakr et al. 2018). Importantly, the intracellular survival of *S. aureus* in cells of the nasal cavity, including the nasal epithelium (Figure 2A), glandular cells and myofibroblastic cells, was shown to be a determinant for recurrent infections in patients with *S. aureus* rhinosinusitis (Clement et al. 2005). Such findings suggest an important role for the nasal mucosa as a silent intracellular reservoir for bacterial survival leading to recurrent infections (Clement et al. 2005; Jeon et al. 2020). Development of infection from endogenous sources is also believed to occur in ventricular assist device infections. In fact, the endogenous presence of *S. aureus* in the nasopharynx, was shown to be a risk factor for ventricular assist device infection, which usually occurs from 7 weeks to 1 year after the implantation (Nurjadi et al. 2020). These evidences of intracellular survival of *S. aureus* inside non-phagocytic cells of the nasal tissues and of intracellular survival in phagocytic cells could be a starting point for so-called silent intracellular trafficking of *S. aureus* from the nasal cavity to other body sites and the onset of infection. This will depend on factors that diminish the nasal barrier homeostasis over time and influence the entry of immune cells that can serve as carriers of the intracellular *S. aureus*.
The human gut

The human gut is an organ that serves multiple functions in the absorption of water, the digestion and uptake of nutrients, and in shaping the immune system. These functions are supported by a plethora of different gut-resident micro-organisms that actually outnumber the total number of human cells more than 10-fold (Thursby and Juge 2017). In a healthy individual, the intestinal barriers provide the body with an effective defense line against environmental factors and the gut-resident microbiota, which includes many different opportunistic pathogens (Kamada et al. 2013). At the same time, the intestinal barriers allow important crosstalk between the gut microbiota and the immune system (Takiishi, Fenero, and Câmara 2017). The human gastrointestinal tract is covered by a mucus layer, which maintains a homeostatic relationship with our gut microbiota and prevents the translocation of microbes to the underlying tissues. Intestinal mucus is made of a glycoprotein network with a host-specific glycan structure which, if disrupted, allows bacterial invasion of the epithelium causing inflammation and infection (Schroeder 2019). S. aureus interacts with the mucus layer and this layer seems to be required to establish intestinal colonization. In fact, it has been shown that cecal mucus facilitates colonization of the intestinal tract by MRSA in a murine model (Gries, Pultz, and Donskey 2005). Below the mucus layer there is the intestinal epithelium, which is composed of a single layer of multiple cells and junctions that separate the gut lumen from the underlying lamina propria. The lamina propria contains immune cells, including dendritic cells, macrophages and neutrophils. In particular, the dendritic cells and neutrophils may travel to underlying blood and lymph vessels (Takiishi, Fenero, and Câmara 2017). Due to this structure of the gut, there is a close connection between different parts of the gut, blood vessels and more distant body sites, where immune cells may not only serve as messengers of signals and guardians against infectious agents, but also as ‘trojan horses’ that give S. aureus access to otherwise well-guarded body sites (Figure 2B) (Suzuki 2013).

The gastrointestinal (GI) tract is colonized by a large number of microorganisms, including bacteria and fungi. These microbes will start to colonize the human GI tract immediately after birth. During adulthood the complexity of the microbiota in the GI
tract increases, and the respective microorganisms evolve different interactions between each other and with the human host. In recent years it has become increasingly clear that *S. aureus* is a common bowel colonizer in infants, which may affect the host’s immune system (Acton et al. 2009). However, also in healthy adults and hospitalized patients *S. aureus* is a regular resident of the gut (Benito et al. 2015; Claassen-Weitz et al. 2016; Dong et al. 2018). The frequency of carriage in healthy individuals and patients is about 20% on average, but the actual carriage numbers may vary depending on the health condition and age. In particular, the human host responses play decisive roles in the outcome of colonization, and the intestinal colonization by *S. aureus* is therefore considered as an important risk factor for infection, as is the case for all intestinal pathogens (Gagnaire et al. 2017; 2019; Pickard et al. 2017; Dong et al. 2018).

From the gut, *S. aureus* can in principle reach other body sites through translocation across the mucosa and epithelium. This may relate to increased intestinal permeability caused by regular epithelial regeneration, diminished gut health due to inflammatory disorders or infection, or surgery. Alternatively, *S. aureus* translocation may follow active damage of the epithelium through the secretion of inflammatory compounds, allergens or toxic products (Lee, Moon, and Kim 2018). This view is supported by *in vitro* experiments showing that *S. aureus* α-toxin can perturb the barrier function in Caco-2 epithelial cell monolayers by altering the junctions between the cells (Kwak et al. 2012). In addition, the bacterial translocation may be facilitated by changes in the intestinal microbiota and a host immune failure. For example, in patients with intestinal bowel disease (IBD), there is an increased intestinal permeability which triggers a cascade of events resulting in increased bacterial growth and risk of sepsis (Kumar et al. 2020). Notably, it was shown that staphylococcal superantigens are not causing the lesions of IBD, but *S. aureus* infection can occur during the time course of IBD (M. Chiba, S. Hoshina, M. Kono, M. T 2001). Alternatively, gut-resident *S. aureus* may be (self-)transmitted to the perineum, skin, mouth or nasopharynx of the carrier and subsequently cause infections. Likewise, intestinal colonization will contribute to environmental contamination and staphylococcal dissemination (Acton et al. 2009). In turn, this can lead to fecal-oral transmission to other individuals via contaminated drinking water or food (Kadariya, Smith, and Thapaliya 2014). Moreover, intestinal *S. aureus*
colonization may enhance community- and nosocomial transmission and represents a serious risk factor for infections (Vesterlund et al. 2006; Bhalla, Aron, and Donskey 2007; van Belkum 2016; Gagnaire et al. 2017; 2019). For instance, it was shown that diarrheal stools of patients colonized with MRSA have an important impact on the environmental contamination with these multiple drug-resistant variants, and it has even been evidenced that the intestinal tract could provide a potential reservoir for the much feared emergence of vancomycin resistant S. aureus (Claassen-Weitz et al. 2016).

In early life, S. aureus may employ different (indirect) pathways to translocate from and to the human gut. These include vertical mother-to-infant transmission, parental skin contact, breastfeeding with the use of immune cells as trojan horses, saliva and food (Lindberg et al. 2004; Thwaites and Gant 2011; Benito et al. 2015; Claassen-Weitz et al. 2016; Sakr et al. 2018). Early life has been shown to be an important period for the correct establishment of the gut microbiota and vertical mother-to-infant microbial transmission has an important role in the initial colonization of the neonatal gut. In fact, in the first year of a newborn’s life, the gut microbiota dramatically changes through interactions with the developing immune system in the gut (Thursby and Juge 2017). Accordingly, S. aureus was shown to be common in the gut of infants (Lindberg et al. 2004, 2011; Nowrouzian et al. 2019). Additionally, the characterization of S. aureus strains isolated from feces of healthy neonates showed how breast-feeding can contribute to early S. aureus intestinal colonization, which may influence development of the immune system (Benito et al. 2015). In particular, it has been proposed that dendritic cells could be involved in the transfer of maternal bacterial strains to the infant gut through an entero-mammary pathway (Figure 1) (Rodríguez 2014). Furthermore, a high rate of S. aureus colonization of the infant gut by flora from the parental skin was reported, which seems to relate to an inadequate competition with other gut-resident bacteria (Lindberg et al. 2011; Nowrouzian et al. 2019; Lindberg et al. 2004).

With adulthood the intestinal carriage of S. aureus decreases probably due to the increased complexity of the adult microbiota, which provides protection against colonization of the GI tract by exogenous micro-organisms (Lindberg et al. 2004; 2011; Gagnaire et al. 2017; Dong et al. 2018). In this context it is noteworthy that the
presence of endogenous lactic acid bacteria can decrease *S. aureus* colonization of the human intestinal mucus (Vesterlund et al. 2006). More recently, it was shown that the Gram-positive bacterial spore former *Bacillus subtilis* may contribute to the elimination of intestinal *S. aureus* through secretion of the lipopeptide fengycin, which interferes with the quorum-sensing that is fundamental to *S. aureus* colonization (Piewngam et al. 2018). Additionally, saliva and the binding of salivary proteins to *S. aureus* is thought to play an important role in preventing systemic infections (Heo et al. 2013). Nonetheless, it should be noted that *S. aureus* developed resistance to the antimicrobial activities of important saliva components, such as the human lysozyme and degradation products of this enzyme that function as cationic antimicrobial peptides, as exemplified by the LP9 peptide (Herbert et al. 2007). In addition, it has been shown in a murine model that *S. aureus* GI tract colonization can be modulated through the staphylococcal cell wall teichoic acid, capsule, and surface proteins (Misawa et al. 2015). The latter observations provide insights into the various mechanisms that *S. aureus* employs to become an effective gut colonizer.

The endogenous carriage of *S. aureus* is a potential risk factor for frail hospitalized individuals. In particular, clinical studies have shown that carriage of MSSA or MRSA may lead to the development of community- or hospital-acquired infections in patients (Wolkewitz et al. 2011; de Kraker, Wolkewitz, et al. 2011; de Kraker, Davey, et al. 2011). In this context, *S. aureus* gut reservoirs appear to contribute substantially to the risk of infection and, in general, the endogenous reservoirs have important implications for hospital epidemiology (van Belkum 2016). A study on a long-term hospital outbreak of ST228 MRSA showed that it depended on asymptomatic intestinal carriage and on lack of identification of carriers over time (Senn et al. 2016). Furthermore, a meta-analysis of 712 studies has indicated that the intestinal carriage rate in healthy adults is approximately 13.8% for *S. aureus* in general, and 1.4% for MRSA (Gagnaire et al. 2017). Although in healthy newborns, the carriage rate of *S. aureus* in general is approximately 38.5% with 7.3% for MRSA, in children the carriage rate of *S. aureus* was shown to decrease to 23.4% with 3.1% for MRSA. The specimens considered in this study were from fecal, rectal, perineal and rectovaginal origin (Gagnaire et al. 2017). In another analysis, the intestinal *S. aureus* carriage in healthy Chinese individuals in the community was
found to decrease with age, with the highest prevalence (6.15%) in youth, and the lowest (2.7%) prevalence in the elderly (Dong et al. 2018). The specimens considered in this study were only from fecal origin. A third systematic review investigating the presence of *S. aureus* in feces from hospitalized individuals and healthy individuals in the community, which involved different study population settings, estimated the overall carriage rate at 26% of which 86% was MSSA and 10% was MRSA (Claassen-Weitz et al. 2016). Lastly, a study on 363 ICU patients estimated the prevalence of *S. aureus* carriage from nasal samples (28%) and rectal samples (14%). Importantly, this study documented endogenous infection in patients with both rectal and nasal carriage, or with rectal *S. aureus* carriage only (Gagnaire et al. 2019).

In case bacteria reach the inner layers of the human gastrointestinal tract, they will have to interact with cells of the immune system (Figure 2B), which may involve endocytosis and subsequent destruction by phagocytes. However, the internalized *S. aureus* may survive inside professional phagocytes and dendritic cells, and the bacteria may even multiply intracellularly (Kubica et al. 2008; Horn et al. 2017; Stagg 2018; Balraadjsing et al. 2019). This phenomenon is referred to as the silent survival of *S. aureus*, and several studies have provided evidence for a silent migration of *S. aureus* inside immune cells, leading to its dissemination to various parts of the human body (Thwaites and Gant 2011; Rodriguez 2014; Krezalek et al. 2018; Zhu et al. 2020). Recent studies also hypothesized that MRSA may travel from the gut to a wound via blood cells, for instance neutrophils, thereby causing post-operative wound infection (Krezalek et al. 2018; Zhu et al. 2020) (Figure 3).

In recent years, several studies investigated the possible impact of the human gut microbiota on distant organs, including the lungs. Accordingly, the possible cross-talk between the gut microbiota and the lungs seems to have a role in the onset of some lung infections, such as *S. aureus* pneumonia. In fact, the gut-lung axis involves the circulation of lymphocytes, inflammation mediators (e.g. endotoxins), microbial metabolites, cytokines and hormones via the lymph and blood flow, reaching both the lungs and the gut (Figure 1) (Budden et al. 2017; Zhang et al. 2020; Sencio, Machado, and Trottein 2021). Additionally, the intestinal microbiota is known to balance between pro-inflammatory and regulatory responses, thereby shaping the
host’s immune system (Belkaid and Hand 2014). This gut-lung interaction can proceed in two ways. Firstly, the gut microbiota may play a direct role in *S. aureus* pneumonia and, secondly, the presence of *S. aureus* in the gut microbiota may indirectly influence the course of certain respiratory conditions caused by (other) bacteria and viruses (Wang et al. 2013; Gauguet et al. 2015; Zhang et al. 2020; Sencio, Machado, and Trottein 2021). The latter idea is supported by the observation that *S. aureus* colonization of the upper respiratory mucosa can decrease influenza-mediated lung immune injury. In fact, *S. aureus* recruits peripheral monocytes into the alveoli, leading to their polarization into M2 alveolar macrophages through Toll-like receptor 2 signalling which, in turn, will inhibit influenza-mediated inflammation (Wang et al. 2013). These observations call for further investigations on the relationships between *S. aureus* gut colonization and respiratory disease development to increase our understanding of the roles of *S. aureus* in the gut-lung axis.

The switch between colonization and disease: the role of the bacteria and the human host

As described in the previous paragraphs, *S. aureus* plays an important role as a colonizer of the human host since an early age. However, this bacterium is also known for its pathogenicity as a causative agent of mild to more serious skin, soft tissue or surgical site infections, which may also lead to invasive diseases, such as blood stream infections, endocarditis and sepsis (Wertheim et al. 2005; Corey 2009; Anderson and Kaye 2009; Fukuda et al. 2020). The relationships between colonization and disease in the human body, and the switch in between the two conditions is a multifactorial and complex process, which is still not fully understood (Mulcahy and McLoughlin 2016). In recent years, several studies suggested that colonization strains can be a potential reservoir for infection, and this hypothesis was based on the observation that strains causing blood stream infection in patients were clonally identical to the *S. aureus* isolates from the anterior nares of the respective patients (von Eiff and Peters 2001; Sakr et al. 2018; Bode et al. 2010). Furthermore, it was reported that nasal carriers have a significantly greater risk of contracting bacteremia, and that the majority (>80%) of nosocomial *S. aureus* bacteremia cases are caused by invasion of the endogenous colonizing strain (Brown et al. 2014).
study where asymptptomatically colonizing *S. aureus* USA300 was tracked at different body sites (nose, throat, perirectal region) after an initial infection showed that clonal isolates of this lineage continued to colonize people up to a year after the initial infection. However, the remaining bacteria experienced the loss or gain of plasmids and mobile genetic elements (eg. SCCmec), or particular mutations in the accessory gene regulator (agr) operon (Read et al. 2018).

The molecular factors that influence the switch of *S. aureus* from colonizer to pathogen are dependent on both the bacteria and the human body (Table 1) (Brown et al. 2014; Mulcahy and McLoughlin 2016; Balasubramanian et al. 2017). In general, *S. aureus* is equipped with an adequate repertoire of immune evasive molecules (de Jong, van Kessel, and van Strijp 2019; Cheung, Bae, and Otto 2021). In addition, under selective pressure the bacteria will acquire genomic variation and display phenotypic changes. The acquired genomic variations may lead to altered virulence, antibiotic resistance and better replication or adaptation to a new anatomical niche of the human host and can be brought about by SNPs or mobile genetic elements, such as bacteriophages, plasmids and transposons (Young et al. 2012; Fitzgerald 2014; Lindsay 2014; Messina et al. 2016; Giulieri et al. 2018; Guérillot et al. 2019). Different *S. aureus* strains display distinct expression of virulence factors, which are the key players for survival at different body sites and pathogenesis (Zhao et al. 2019; 2020). These virulence factors can be either bacterial cell surface-associated or secreted proteins (Dreisbach et al. 2020). Virulence factors have disparate roles, which can promote immune evasion, adhesion and invasion of the host cells, or host cell injury and cell death (Sibbald et al. 2006; de Jong, van Kessel, and van Strijp 2019). For example, several *S. aureus* toxins are involved in disease pathogenesis, including pore-forming toxins (PFTs), α-toxin and the bicomponent leukocidins, which bind to membrane-associated receptors in the host cells. These toxins show differences in host cell lysis, which can be attributed to cell type specificity in toxin binding and synergies between different toxins (Berube and Bubeck Wardenburg 2013; Seilie and Bubeck Wardenburg 2017; Spaan, van Strijp, and Torres 2017). The acquisition of genomic mutations can also be related to a more invasive behavior. For example, SNPs in the fibronectin-binding protein A (FNBPA), which binds to human fibronectin, were linked to an increased risk of cardiac device infection (Hos et al. 2015). Another study showed that some
strains that colonize and infect the human skin present mutations (SNPs) in metabolic genes like the *fumC* gene for class II fumarate hydratase (Acker et al. 2019). The transition of an asymptotically carried MSSA population to a fatal bloodstream infection was shown to be associated with only few mutations, found for example in the AraC transcriptional regulator of stress response and pathogenesis (Young et al. 2012). A possible causal relationship between genetic mutations with biofilm formation and with infection was shown in recent works based on the rise of mutations in the *agr* genes (Suligoy et al. 2018; Tan et al. 2018; Gor et al. 2019). For example, it was shown that some Agr-negative strains are phase variants due to reversible genetic mutations in the *agr* locus and that these Agr-negative strains are able to revert their Agr phenotype (Gor et al. 2019). These findings can be related to the hypothesis that over a period of time, *S. aureus* colonizing the human host will acquire genetic variations associated with infection at the colonization site. This will then lead to the emergence of bacteria causing infection phenotypes when an unknown trigger is perceived by the bacteria (Fitzgerald et al. 2014). For this reason, when an infection occurs, it is interesting to know what type of host immune failures occurred to allow *S. aureus* invasion and to identify the nature of the unknown trigger.

With respect to human factors involved in the switch from colonizer to pathogen, it is important to consider the host variations in the response to infection due to the state of the immune system, previous diseases, the immune history, sex, interactions with other pathogens in the human body, and SNPs in specific human genes (Table 1) (Sollid et al. 2014; Messina et al. 2016; Mulcahy and McLoughlin 2016b; Ruimy et al. 2010). For example, human leukocyte antigen (HLA) class II polymorphisms determine the response to bacterial superantigens, which is also related to a different T-cell proliferation and cytokine production (Shepherd and McLaren 2020). An epidemiological and microbiological study highlighted that the predominant factor determining persistent colonization by *S. aureus* was apparently a specific set of genetic polymorphisms in the host genes for the C-reactive protein (CRP) and interleukin 4 (IL-4) (Shepherd and McLaren 2020). Additionally, the presence of SNPs in cytokine genes, such as IL6, TNF, IL10, IL17A, IFNG and in the inhibitory toll-like receptor TLR10, seem to play a role in the susceptibility to complicated skin infections (Stappers et al. 2014; Stappers et al. 2015). Important differences between
nasal *S. aureus* carriers and non-carriers were related to polymorphisms in soluble or membrane-bound molecules, such as TLR9, the glucocorticoid receptor and the β-defensin 1 (Sakr et al. 2018). Several pathological conditions affecting the immune system, such as leukopenia, were shown to lead to a different *S. aureus* disease severity and infection outcome (Khanafer et al. 2013). Lastly, a study in mice unveiled the important role of neutrophil influx in the depletion of *S. aureus* from sites of infection (Archer, Harro, and Shirtliff 2013).

Recent studies have shown that both the immune imprint of the bacteria and the host-responses during an asymptomatic period of colonization, involving both the activation of the innate immune responses and of cell-mediated adaptive immune responses, seem to be very important for the human host (Verkaik et al. 2009; Brown et al. 2014; Teymournejad and Montgomery 2021). In addition, the interplay with the co-existing microbiota also influences colonization and immune regulation. In a study on patients with *S. aureus* bacteremia, distinctive patterns in the human antibody response to endogenous versus exogenous infection were observed between carriers and non-carriers (Kolata et al. 2011). Several studies showed heterogeneity in the humoral immune response against different staphylococcal antigens among *S. aureus* carriers and non-carriers (Dryla et al. 2005; Verkaik et al. 2009; Ghasemzadeh-Moghaddam et al. 2017). In nasal carriers, lower mortality rates were observed upon *S. aureus* bacteremia compared to non-carriers. This could be linked to a crosstalk of the bacteria and the immune system during colonization, resulting in an immunological advantage (Mulcahy and McLoughlin 2016a). A low Th1 to Th17 cytokine mRNA ratio was shown to be predictive of *S. aureus* carriage in volunteers after whole blood stimulation (Nurjadi et al. 2016). Neonatal mucosal colonization by *S. aureus* strains with certain combinations of genes specifying superantigens and adhesins may result in immune stimulation which, in turn, can result in a strengthening of the epithelial barrier that counteracts the development of atopic eczema (Nowrouzian et al. 2019). Together, these studies imply a close connection between the host responses during colonization and the subsequent development of infection in response to a “trigger”. Future human studies should therefore be conducted to investigate the role of the immune imprint of *S. aureus* during gut colonization next to the nasal colonization and the subsequent development of infection. This could help answering the question of
whether colonization with *S. aureus* may actually have certain advantages for the human host, particularly by modulating the course of *S. aureus* infection, or even infection by other bacterial or viral pathogens.

S. aureus is a known causative agent of post-operative wound infections and infections of implants in the human body (Figure 3). In fact, MRSA is one of the leading bacteria causing surgical site infections (Fukuda et al. 2020; Anderson and Kaye 2009). *S. aureus* preponderates in orthopedic or cardiac surgery settings, where biofilm can form on implanted materials at different time intervals after the surgery. Early onset infections may be a consequence of contamination during surgery. However, some studies have shown that in certain patients who develop MRSA infections, wound cultures did not reveal intraoperative MRSA contamination at the time of wound closure immediately after the surgery (Morton et al. 2016; Krezalek et al. 2018; Zhu et al. 2020). This is suggestive of infections through another route. In fact, endogenous carriage of MRSA was shown to be a risk factor for the development of surgical site infections, but how the pathogen travels to the surgical site is still controversial. Several studies have proposed a relationship with blood cells, such as neutrophils, that could serve as vectors to carry *S. aureus* to the site of the surgical wound (Krezalek et al. 2018; Thwaites and Gant 2011; Greenlee-Wacker et al. 2014; Zhu et al. 2020). This hypothesis could be extended also to other immune cells, as it is known that *S. aureus* is not only internalized by the relatively short-lived neutrophils, but also by cells with a longer lifetime like monocytes, macrophages and dendritic cells (Kubica et al. 2008; Horn et al. 2017; Balraadjsing et al. 2019). The mobile immune cells can move within localized or extended areas of the human body, thereby leading to dissemination of the *S. aureus* infection (Kubica et al. 2008; Thwaites and Gant 2011). Future studies, including the labeling of infected immune cells and tracking their possible migration to surgical sites in an appropriate animal model could be conducted to obtain a better understanding of the possible spread of infection through the movement of immune cells with intracellular bacteria to sites of inflammation (Krezalek et al. 2018; Zhu et al. 2020). In recent years, various tools have been developed, which may allow to perform such investigations. These include fluorescently labeled antibiotics (e.g. vancomycin), or monoclonal antibodies that specifically target *S. aureus* (van Oosten et al. 2013; Romero Pastrana et al. 2018; Zoller et al. 2019; Park et al.
However, the limitation of these probes is that they mainly recognize extracellular bacteria, so they would allow the detection of bacteria only once they are released from the silent carrier at new colonization sites or sites of infection. Nanoparticle-based probes were reported to allow improved intracellular detection and they may display enhanced bactericidal activity (Hussain et al. 2018; Zhou et al. 2018). Another parameter that needs to be taken into consideration is the signal emitted by the probe and the imaging tool that allows its visualization. For bacterial detection in tissues or infected cells *ex vivo* several fluorescence-based approaches, such as microscopy or flow cytometry, have been used in different studies (Zhu et al. 2020; Krezalek et al. 2018). *In vivo* experiments to track the bacterial migration inside human cells are more challenging as it requires a technique that allows to image the bacteria through different tissues. In particular, fluorescent light has a tissue penetration of up to ~10 mm, depending on the wavelength (van Oosten et al. 2015; Ordonez et al. 2019). Nuclear imaging techniques, such as positron emission tomography (PET), take advantage of the fact that the emitted radiation by PET tracers has a very high tissue penetration (Ordonez and Jain 2018). Another parameter that needs to be taken into consideration is the bacterial load that needs to be detected as this will influence the signal intensity and the distribution of the emitted signal across the body of an experimental animal. Several options are currently explored for the non-invasive detection of staphylococcal infections, and preclinical studies have shown that this is highly feasible in the case of infections of the skin, muscles and implanted biomaterials. However, further advances with respect to sensitivity and resolution are needed, before these techniques can also be employed to visualize silent intracellular trafficking of *S. aureus* inside blood cells. Perhaps the currently most feasible approach would be to collect immune cells from an experimental animal, infect these cells *in vitro* with bacteria that have been labeled with a PET tracer, reintroduce the infected immune cells into the animal at different body sites, and follow the fate of the bacteria using a sensitive micro-PET system.

In the context of surgical site infections and infections of implanted medical devices, it is also important to consider the interaction between *S. aureus* and the related bacterium *Staphylococcus epidermidis*. *S. epidermidis* is part of the human microbiota, colonizing mostly the mucosa and skin. This bacterium is particularly well
adapted for colonization of the relatively dry niches of the human skin, because it can withstand conditions with low water activity (de Goffau et al. 2009; Goffau, van Dijl, and Harmsen 2011). However, it was shown that skin colonization by *S. epidermidis* is not entirely symbiotic for the human host, since particular strains of *S. epidermidis* can cause infection and may even modulate *S. aureus* colonization (Brown and Horswill 2020; Sabaté Brescó et al. 2017; Du et al. 2021). For instance, *S. epidermidis* is infamous for its tight adherence to implanted medical devices and the formation of thick biofilms that are hard to eradicate by antimicrobial therapy. Moreover, the dispersal of *S. epidermidis* bacteria from biofilms on medical implants was shown to cause bacteremia. The high ability of *S. epidermidis* to easily form biofilms is a major reason why this bacterium is a predominant cause of post-operative infections (Nguyen, Park, and Otto 2017; Sabaté Brescó et al. 2017). In contrast to *S. aureus*, which produces a broad range of different virulence factors, *S. epidermidis* has a relatively limited repertoire of virulence factors and, accordingly, it displays a much lower invasive behavior (Namvar et al. 2014; Sabaté Brescó et al. 2017; Nguyen, Park, and Otto 2017). For example, compared to *S. aureus* the toxin production by *S. epidermidis* is mostly limited to phenol-soluble modulins (PSMs). In fact, the most important facilitators of *S. epidermidis* pathogenicity are molecules promoting adhesion to native and protein-coated surfaces, and factors necessary for the formation and maturation of biofilms (Otto 2009; Namvar et al. 2014; Büttner, Mack, and Rohde 2015; Sabaté Brescó et al. 2017; Du et al. 2021). Additionally, *S. epidermidis* was shown to form small colony variants (SCVs) with lowered metabolic activity upon internalization by host cells, allowing intracellular survival and persistence (Kahl, Becker, and Löffler 2016; Sabaté Brescó et al. 2017). However, the mechanisms of intracellular *S. epidermidis* persistence are less well characterized than those of *S. aureus*. Still, intracellular persistence of *S. epidermidis* was demonstrated for dendritic cells, macrophages, fibroblasts and osteoblasts (Sabaté Brescó et al. 2017; Magryś et al. 2018; Balraadjsing et al. 2019; Fisher and Patel 2020). The latter studies also showed that intracellular *S. epidermidis* can reside in phagolysosomes and escape into the extracellular environment upon host cell death (Magryś et al. 2018; Perez and Patel 2018). It was also proposed that this mechanism could lead to the formation of biofilms on implants and cause late-onset implant-associated infections (Perez and Patel 2018).
S. aureus and innate immune cells: the strategies for survival and bacterial dissemination

The interaction between *S. aureus* and immune cells in different parts of the human body is fundamental not only during infection of tissues and the bloodstream, but also during colonization of the nasopharynx, gut and lungs. These interactions may in fact enhance *S. aureus* virulence, internalization or colonization, or they may promote other cellular activities and inflammation (Table 2). During its evolution, *S. aureus* evolved multiple factors to help evade the innate immune defenses and to colonize the human host. In the first line of defense, innate immune cells play fundamental roles in detecting and mediating bacterial infection. In fact, cells such as granulocytes (basophils, neutrophils and eosinophils), dendritic cells, monocytes, macrophages, neutrophils and natural killer cells have a fundamental role in disease development (Greenlee-Wacker et al. 2014; Melehani et al. 2015; Flannagan, Heit, and Heinrichs 2015; Berends et al. 2019). Additionally, blood cells with their movement throughout the human body can facilitate *S. aureus* intracellular survival, leading to dissemination to other body sites and development of innate immune memory (Kubica et al. 2008; Thwaites and Gant 2011; Mulcahy and McLoughlin 2016a; Krezalek et al. 2018; Zhu et al. 2020). Even platelets can play roles that impact on *S. aureus* survival (Ali et al. 2017).

Neutrophils are the primary mediators of the innate host defenses against bacterial, viral and fungal pathogens that take place before the more complex humoral and lymphocyte cellular processes of acquired immunity can act against an infection. The key functions of neutrophils are chemotaxis, phagocytosis, production of reactive oxygen species (ROS), production of cytokines/chemokines, secretion of peptides and enzymes during the process of degranulation, and release of neutrophil extracellular traps (NETs) (Spaan, Surewaard, et al. 2013; Malech, DeLeo, and Quinn 2014). The neutrophils are produced both from progenitors in the bone marrow and certain extramedullary tissues. When neutrophils mature, they exist primarily as free-flowing in the intravascular blood pool. However, after activation, neutrophils migrate from the vasculature through the blood vessel to a site of infection (Rigby and DeLeo 2012). In fact, neutrophils continuously transmigrate through the junctional epithelium protecting the oral mucosal barrier, but they can also
be rapidly recruited to the nasal airways in case of infection (Moutsopoulos and Konkel 2018; Ge et al. 2020). Additionally, neutrophils are the sentinels that can kill luminal gut bacteria if they translocate across the epithelium and invade the mucosa. Neutrophils can also migrate to the apical surface of the lung epithelium and, upon trans-epithelial migration, they can eliminate invading pathogens (Fournier and Parkos 2012; Adams, Espicha, and Estipona 2021). Lastly, neutrophil influx is also essential for bacterial clearance during cutaneous wound healing (Kim et al. 2008). *S. aureus* can interact with the neutrophils at different body sites, such as the bloodstream, or the tissues of the skin, nose, mouth, gut and lungs (Kim et al. 2008; Thwaites and Gant 2011; Uriarte, Edmisson, and Jimenez-Flores 2016; Ge et al. 2020; Zhu et al. 2020). When *S. aureus* is opsonized either by complement and/or immunoglobulins, this may lead to phagocytosis of the bacteria. However, *S. aureus* can effectively evade the different immune defence mechanisms, such as neutrophil recruitment, chemotaxis, priming, activation, production of ROS and neutrophil effector functions, cell lysis and apoptosis (Guerra et al. 2017; Kobayashi, Malachowa, and DeLeo 2018; Cheung, Bae, and Otto 2021). For example, this bacterium can prevent the neutrophils from migrating to the site of infection through the secretion of superantigen-like proteins 5 and 10 (SSL5 and SSL10), formyl peptide receptor-like inhibitory proteins (FLIPr and FLIPr-like), and the chemotaxis inhibitory protein of *S. aureus* (CHIPS) (Cole et al. 2001). Additionally, the evasion of neutrophil killing is achieved by regulated expression of virulence factors, bacterial cell membrane modifications, or the production of particular enzymes. For example, *S. aureus* targets bactericidal mechanisms that follow phagocytosis with proteases such as aureolysin, with proteins such as staphylokinase, with superoxide dismutases such as SodA and SodM, and with catalases such as KatA (Guerra et al. 2017). Additionally, *S. aureus* is able to cleave neutrophil-derived antimicrobial peptides rendering them inactive, to produce nucleases that degrade the NETs and allow escape from these DNA traps, and also to trigger the caspase-3-mediated death of neutrophils (Wertheim et al. 2005). Production of toxins, including leukocidins that bind to specific receptors on the immune cells is also a mechanism of immune evasion, which may lead to neutrophil lysis (Spaan, van Strijp, and Torres 2017). The effects of PVL, LukED, HlgAB, HlgCB and LukAB have been studied for different types of immune cells (DuMont et al. 2013; Spaan, Henry, et al. 2013; Melehani et al. 2015; Spaan, van Strijp, and Torres 2017; Tromp et al. 2018). In
contrast to PVL, PSMs are also important toxins of *S. aureus* and they are not species specific. There are four types of PSMs known in *S. aureus*, namely the PSMα, PSMβ, PSMmec and PSMγ. It was shown that the PSMα proteins have cytolytic activity towards neutrophils, particularly PSMα3 (Wang et al. 2007; Surewaard et al. 2013). Another important feature of PSMα is that, if there is enough intracellular production of PSMα in the phagosome, it will cause neutrophil lysis and bacterial survival, which will contribute to bacterial dissemination (Grosz et al. 2014). Consistent with these staphylococcal immune evasion mechanisms, it was observed that individuals with congenital defective mutations that lead to severe neutropenia, neutrophil granule disorders, defective neutrophil chemotaxis or defective ROS-mediated killing, were apparently more sensitive to *S. aureus* infections (Bouma et al. 2010; Miller and Cho 2011; Miller et al. 2020). As neutrophils are mobile elements that can rapidly transmigrate from the blood stream to deeper tissues, in some studies it was proposed that they may even represent a protective niche where *S. aureus* could hide to evade antimicrobial therapy, and that they may also serve as a trojan horse by which the bacterium can travel from the blood stream to surgical sites causing an infection (Thwaites and Gant 2011; Krezalek et al. 2018; Zhu et al. 2020). Lastly, it is also important to consider the lifespan of neutrophils to better understand their possible role as trojan horses. In fact, several studies focused on neutrophil kinetics in peripheral blood, using radioactive or stable isotope labeling, which showed that their lifespan can vary from a few hours to several days (Hidalgo et al. 2019). However, even though the mechanisms of survival and the presence of intracellular *S. aureus* inside neutrophils were clearly demonstrated in *vitro*, for example in studies using polymorphonuclear neutrophils, and *ex vivo* using tissues from patients or from animal models, only few studies focused on the trafficking and the role of neutrophils as an intracellular reservoir that leads to the development of infections *in vivo* (Gresham et al. 2000; Thwaites and Gant 2011; Greenlee-Wacker et al. 2014; Horn et al. 2017; Moldovan and Fraunholz 2019). Recent, studies involving animal models, showed the silent trafficking of intracellular MRSA in neutrophils from the gut environment to the wound, without the development of sepsis or bacteremia, thereby causing post-operative wound infection or prosthetic joint infection (Krezalek et al. 2018; Zhu et al. 2020).
Monocytes are bone marrow-derived leukocytes, which move into the blood stream and can migrate into tissues and differentiate into monocyte-derived macrophages or monocyte-derived dendritic cells. These cells have the ability to balance between tolerance and immunity. In fact, once an infection occurs monocytes are recruited into the blood stream and they play a role both in the inflammatory and anti-inflammatory processes that take place during the immune response (Serbina et al. 2008; Guilliams et al. 2014). The extravasation of monocytes from the blood stream leads to an immune cell population composed of monocytes, tissue-resident macrophages and intestinal or lung dendritic cells. The intestinal dendritic cells are concentrated in the lamina propria of the gut while, in the human respiratory tract, alveolar or interstitial macrophages and lung dendritic cells are encountered (Coombes and Powrie 2008; Bain and Mowat 2014; Kopf, Schneider, and Nobs 2015). Additionally, the oral and nasal mucosal barriers harbor dendritic cells, macrophages, and recruited monocytes that have specific roles in protecting the mucosa against bacterial infections (Zhang et al. 2016; Moutsopoulos and Konkel 2018). *S. aureus* can interact with monocytes in the blood stream, but also with macrophages and dendritic cells in the tissues of the skin, the nasal and oral cavities, the gut and the lungs (Balraadjsing et al. 2019; Musilova et al. 2019; Kearney et al. 2020; Pidwill et al. 2021). Altogether, monocytes and macrophages are involved in phagocytosis and intracellular killing of microorganisms. When *S. aureus* is confronted by these cells, the bacteria may be killed by several mechanisms, either extracellularly through capture in macrophage extracellular traps (mETs), degranulation and the action of antimicrobial peptides and ROS, or intracellularly in phagosomes through the concerted actions of ROS, reactive nitrogen species (RNS), acidic pH, enzymes and nutrient restriction (i.e. ‘nutritional immunity’) (Flannagan, Heit, and Heinrichs 2015; Pidwill et al. 2021). On the contrary, extracellular *S. aureus* can kill macrophages or employ different escape mechanisms to survive phagocytosis. For example, *S. aureus* can survive in subcellular organelles of macrophages, especially phagosomes and vacuoles, without affecting the viability of the cells, but the bacterium may also replicate intracellularly and cause death of the macrophage (Kubica et al. 2008; Pidwill et al. 2021). The *S. aureus* bacteria that have escaped from the macrophages can travel through the bloodstream and may cause infection at other body sites. Additionally, the presence of *S. aureus* may influence macrophage polarization and secretion of
either pro-inflammatory cytokines or anti-inflammatory cytokines (Flannagan, Heit, and Heinrichs 2015; Flannagan, Heit, and Heinrichs 2016; Chan et al., 2018; Feuerstein et al. 2020; Flannagan and Heinrichs 2020; Pidwill et al. 2021). In particular, the monocyte immune response in terms of pro-inflammatory cytokine production was shown to be lowered by MRSA with the sequence type ST80 (Kolonitsiou et al. 2019). The immune evasion mechanisms that S. aureus can employ to evade macrophage function are very diverse, ranging from host cell intoxication with leukotoxins (e.g. PSMs, leukocidins and hemolysins), avoidance of phagocytosis by complement inhibition or opsonin interference, bacterial cell surface modifications, high resistance to ROS and RNS through the production of antioxidant activities (e.g. staphyloxanthin and the lactate dehydrogenase Ldh1), to the overcoming of nutritional immunity by the capture of nutrients from the host (Koziel et al. 2009; Loffler et al. 2010; Thomsen et al. 2014; Flannagan, Heit, and Heinrichs 2015). Lastly, it was observed that S. aureus can activate a TLR2-dependent endosomal signaling pathway upon internalization by monocytes, which allows the bacterium to use the host signaling for its own proliferation in the human body (Musilova et al. 2019). The survival of S. aureus over time inside monocytes and macrophages may allow the bacteria to withstand antibiotic therapy, which can subsequently lead to a relapse of infection and bacterial dissemination (Kubica et al. 2008; Thwaites and Gant 2011; Lacoma et al., 2017; Peyrusson et al. 2020). In fact, intracellular S. aureus persister cells in monocytes and macrophages were shown to remain metabolically active, and to display an altered transcriptomic profile associated with multidrug tolerance upon antibiotic exposure (Peyrusson et al. 2020). As pointed out above for neutrophils, the lifespan of blood cells is an important parameter to consider when studying S. aureus intracellular survival and dissemination. In this respect it is noteworthy that the life of monocytes is very short (~24 h), while macrophages have a longer lifespan, ranging from months to years (Guerra et al. 2017; Patel et al. 2020). Interestingly, there is so far no published evidence that monocytes and macrophages could be involved in the silent intracellular trafficking of S. aureus, as was shown for neutrophils.

Dendritic cells are bone marrow-derived leukocytes, which circulate in the blood stream and subsequently reach lymphoid organs (e.g. the spleen, thymus and lymph nodes) as well as non-lymphoid organs (e.g. the skin). In the skin, dendritic cells can
mature and then enter the lymphatic vasculature to be transported to the lymph nodes, where they may present antigens to B and T cells. Migration is a key important feature of the dendritic cells. Additionally, dendritic cells form a family of antigen-presenting cells that are present in almost all tissues of the body, where they serve to capture bacteria and other pathogens. Subsequently, these dendritic cells present the antigens of the captured pathogens to initiate tolerogenic immune responses. For this reason, dendritic cells are described as ‘immune saviors’ that form a connection between the innate and adaptive immune systems, inducing both primary and secondary immune responses (Geissmann 2007; Liu and Nussenzweig 2010; Worbs, Hammerschmidt, and Förster 2017). Intestinal dendritic cells are responsible for establishing tolerance towards the microbiota, but also initiating immune responses against mucosal pathogens (Sun, Nguyen, and Gommernan 2020). Also in the mucosa of the lungs, oral cavity and nasal cavity, the dendritic cells play important roles in the protection against pathogens and the development of tolerogenic immune responses (Cutler and Jotwani 2006; Lee et al. 2015; Cook and MacDonald 2016). Compared to human monocytes and macrophages, human dendritic cells kill internalized pathogens at relatively low efficiency. Nonetheless, dendritic cells are able to take up S. aureus, lyse the bacteria and present bacteria-derived peptides on MHC class II molecules to T cells and initiate a specific immune response (Darisipudi et al. 2018; Balraadjsing et al. 2019). However, it was shown that S. aureus can mount diverse defensive mechanisms to avoid opsonization, phagocytosis and proteolytic degradation by dendritic cells, and that S. aureus manipulates the dendritic cells with the final aim of surviving their insults (Darisipudi et al. 2018). For example, S. aureus can evade or modulate dendritic cell responses by intensifying their pro-inflammatory response in an antigen non-specific manner through the production of superantigens (SAgs) that cross-link T cell receptors with MHC class II molecules on the dendritic cells. In turn, this may lead to higher pro-inflammatory cytokine production and a status of shock or cell death (Voorhees et al. 2011; Schindler et al. 2012; Balraadjsing et al. 2019). Furthermore, S. aureus produces several pore-forming toxins, such as leukocidins, that can directly kill dendritic cells or diminish dendritic cell-mediated activation of CD4+ T lymphocytes, thereby weakening the development of adaptive immunity (Darisipudi et al. 2018; Berends et al. 2019). Intracellularly, S. aureus can escape from the phagosomes of dendritic cells, to be released into the cytoplasm and subsequently the extracellular...
environment. However, *S. aureus* can also change the pH of the phagosomes by producing urease and preventing their lysis (Bore et al. 2007; Darisipudi et al. 2018). Therefore, the possibility of silent intracellular presence of *S. aureus* in dendritic cells may be considered as a means of survival and dissemination, especially since these cells are highly mobile inside the human body, circulating in the blood and lymphatic system. Although not yet demonstrated for *S. aureus*, some studies have evidenced the physiological translocation of non-pathogenic bacteria from the gut lumen, via dendritic cells and CD18+ cells, to other locations in the body, including lactating mammary glands (Rodríguez 2014). Additionally, dendritic cells were shown to represent a niche for other bacterial pathogens during the early stages of infection and for the subsequent pathogen dissemination (Bar-Haim et al. 2008; Reizis 2011; Aulicino et al. 2018). Lastly, various labeling approaches have shown that the rates of survival of different dendritic cell subsets from different lymphoid organs can vary substantially, but with a maximum survival of 14 days (Kamath et al. 2002). In view of this relatively long survival period, combined with the possibility of intracellular survival of *S. aureus*, it seems important to consider also dendritic cells as potential trojan horses for this pathogen.

Platelets play an important role in haemostasis and immunity. These cells circulate in blood, surveying the vasculature for haemostatic and immune threats. In fact, platelets interact with the leukocytes and have a role in both the innate and adaptive immune responses. These anucleate cells are relatively short-lived, as they can last only around 10 days before being removed in the liver and spleen. Platelets can modulate the inflammatory response in different ways, especially by expressing TLRs, promoting NETs formation by neutrophils, promoting or decreasing the activity of other immune cells of the innate and adaptive immune systems, by inducing thrombocytopenia, and by secreting cytokines and chemokines (Kapur et al. 2015; Ali et al. 2017; Li, Zarbock, and Hidalgo 2017; Deppermann and Kubes 2018). For example, platelets can express immunoreceptors and they have the capacity to store various types of bioactive and inflammatory molecules that are released upon their activation following endothelial injury. The latter molecules are stored as granules, including the dense (δ-), alpha (α-), or lysosomal (λ-) granules (Smyth et al. 2009). Additionally, they have a direct effector function against the invading microbes through complex receptor-ligand interactions. Examples of these receptors are
complement receptors FcγRIIa, TLRs, GPIIb-IIIa, and GPIb (Hamzeh-Cognasse et al. 2015). *S. aureus* interacts with platelets in the vasculature and platelets can protect the host against *S. aureus* infection and bacteremia, for instance by directly killing the bacteria in a thrombin-dependent manner, which appears to be an actin-dependent process (Wuescher, Takashima, and Worth 2015; Ali et al. 2017). Of note, the bactericidal activity of platelets seems to be independent of reactive oxygen metabolites (Ali et al. 2017). Additionally, the platelets may manage to enhance phagocytosis, restrict the intracellular replication of *S. aureus* in macrophages through IL-1β, and round up the bacteria and force them into clusters, thereby promoting easier recognition and engulfment by macrophages (Ali et al. 2017). However, some bacterial factors induce the inhibition of platelet function, such as the staphylococcal enterotoxin B (SEB), extracellular fibrinogen-binding protein (Efb) and staphylokinase (Hamzeh-Cognasse et al. 2015). The *S. aureus* α-toxin, which binds to the receptor ADAM10, alters platelet activation and induces neutrophil inflammatory pathways that effect severe human sepsis (Powers et al. 2015). No evidence for intracellular survival of *S. aureus* inside platelets or platelet-mediated silent bacterial dissemination and release to other body sites was so far reported. However, the role of platelets is fundamental for the interaction between *S. aureus* and other immune cells, such as macrophages, neutrophils and dendritic cells (Johannson, Shannon, and Rasmussen 2011; Ali et al. 2017; Nishat, Wuescher, and Worth 2018).

Natural killer cells belong to the lymphocytes of the innate immune system that control microbial infections by limiting their spread and subsequent tissue damage. These cells have a regulatory role in the interactions with dendritic cells, macrophages, T cells and endothelial cells with the final outcome of limiting or increasing the immune responses. The natural killer cells are produced in the bone marrow, subsequently access the lymphatic circulation and then spread throughout the lymphoid and non-lymphoid tissues. Of note, these cells can also develop and mature in secondary lymphoid tissues, such as the tonsils, spleen, and lymph nodes (Vivier et al. 2008; Vogel et al. 2014; Abel et al. 2018). Natural killer cells can also reach the blood stream and be disseminated to the lungs, the gut, and the nasal and oral cavities via this route. The lifespan of natural killer cells in the human body is around 15 days (Vogel et al. 2014). Natural killer cells are activated directly or
indirectly by interactions with other immune cells, cytokines and bacteria. In fact, natural killer cells can either exert a non-cytolytic control of pathogen replication, or display a direct microbicidal activity towards different bacteria or infected bacterial cells through different mechanisms, including the secretion of molecules stored in cytotoxic granules, production of antimicrobial peptides and the activation of death-inducing receptors in other cells with internalized bacteria (Zucchini et al. 2008; Schmidt et al. 2016). *S. aureus* can interact with natural killer cells at the different afore-mentioned body sites where they exert a sentinel role (Kamoda et al. 2008; Small et al. 2008; Reinhardt et al. 2015; Johansson et al. 2016; Nowicka 2018; Theresine, Patil, and Zimmer 2020; Jang et al. 2021). As for other leukocytes, *S. aureus* is able to evade and manipulate natural killer cells. For example, pore-forming leukocidins, such as LukED, were shown to target natural killer cells (Reyes-Robles et al. 2013). The bicomponent pore-forming toxins (HlgAB and HlgCB) encoded by *hlg* genes were also shown to have activity towards natural killer cells and, in fact, an HlgABC challenge caused the lysis of natural killer cells (Hodille et al. 2020). Also, *S. aureus* β-hemolysin directly upregulates the expression of IFN-γ in human natural killer cells, and this may actually contribute to the pathogenesis of *S. aureus* (Guan et al. 2021). However, no evidence of natural killer cell-mediated silent *S. aureus* dissemination and release at other body sites was so far reported, notwithstanding the fundamental role of natural killer cells in the interactions between *S. aureus* and other immune cells of the innate and adaptive immune system (Small et al. 2008; Souza-Fonseca-Guimaraes, Adib-Conquy, and Cavaillon 2012).

Altogether, it seems that an ‘appropriate’ interaction of *S. aureus* with blood cells is not only fundamental for the bacterial survival upon invasion, but also for its dissemination throughout the human body. *S. aureus* strains have acquired various tools to use the different immune cells as vectors. Whether immune cells will transport *S. aureus* over short or long distances inside the human body will depend on different parameters, including the natural lifespan of the different types of immune cells, their localization to certain body sites, tissues, the blood-stream or lymphatic vessels, and obviously their survival upon *S. aureus* internalization.
Concluding remarks

Over the past decade, an increasing number of studies has demonstrated the high impact of endogenous *S. aureus* reservoirs on the dissemination of this pathogen through the human body and on the development of infection. Moreover, several studies have advanced our understanding of the interactions of *S. aureus* and various types of blood cells that serve to maintain the homeostasis of the human body upon entry of pathogenic bacteria. Furthermore, much information has been gathered on how the bacteria can escape our immune defenses and even hide within blood cells, leading to an immune imbalance and disease development. Nonetheless, many questions have remained unanswered and further investigations should be performed to better understand the mechanisms underlying the transformation of *S. aureus* from a colonizer into dangerous pathogen. In this respect, our present knowledge of the different *S. aureus* reservoirs in the human body is still very incomplete, especially where it concerns the GI tract. For example, related to identifying the presence of *S. aureus* in the human gut, the precise procedure for its detection is crucial, since the absolute numbers of this bacterium may be low compared to other gut-resident microbes. In addition, *S. aureus* bacteria are quite robust and resilient to the applied lysis protocols, which may introduce a bias in the detection of its DNA through metagenomics approaches. These factors are likely to lead to an under-appreciation of *S. aureus* presence in the human gut, and they underpin the need for culture-based quantification of the relative abundance of this bacterium amongst the gut microbiota in different human populations. Additionally, longitudinal studies should be conducted to investigate, over time, the immune imprint of *S. aureus* during both nasopharynx and GI tract colonization to the subsequent development of infections that emerge from these endogenous reservoirs. To date, most of the available information on *S. aureus* colonization is related to nasal carriage only, or to the presence of *S. aureus* in chronic wounds or the lungs of cystic fibrosis patients. Large-scale systematic studies on other *S. aureus* reservoirs, especially the gut, still need to be carried out. Also, more studies could be conducted over-time on known intestinal *S. aureus* carriers to better understand whether intestinal carriage does significantly contribute to the onset of infections as this was previously done for nasal carriers. Studies
using intestinal in vitro and ex vivo models could be conducted to elucidate the mechanisms of S. aureus interaction with the different cells present in the GI tract. Additionally, studies on the local immune response after nasal colonization, and on the synergistic effects of the nasal microbiota are also necessary to better understand the interactions between the bacteria in the nasopharynx and the human host. A related question that needs to be explored more in depth concerns the role of blood cells as trojan horses for bacterial dissemination through the human body. Novel sensitive technologies and experimental set-ups to track infected blood cells are needed to further investigate the extent to which circulating blood cells carry S. aureus, especially in relation to nasal and intestinal carriage of this pathogen. In this respect, most hypotheses are focused on neutrophils only, but these immune cells are relatively short-lived. In particular, investigations on the possible roles of other types of blood cells, such as dendritic cells, monocytes, macrophages and natural killer cells as silent carriers of S. aureus will be highly relevant. A better understanding of such mechanisms of S. aureus dissemination within the body will be highly relevant for the prevention of post-operative wound infections and infections of prosthetic implants. A clear link between endogenous reservoirs and post-operative wound infection has already been established, but too little is presently known about the routes that S. aureus takes from its site of residence to a surgical wound or a prosthetic implant. Lastly, to prevent infections, it will be important to know at which stage the human immune defenses fail, and which of the many S. aureus factors implicated in immune evasion are decisive in the fight against infection within the human body. Only then will we be able to fully appreciate the invasive behavior of S. aureus, the nature of the unknown triggers that transform the colonizer into the pathogen, and the best ways to prevent and treat infections.

Availability of data and Materials
Not applicable

Conflict of interest
The authors declare that they have no financial and non-financial competing interests in relation to the documented research.
Funding
E.J.M.R. received funding from CEC MSCI-ITN grant 713482 (ALERT).

Authors’ contribution
E.J.M. Raineri drafted the manuscript. D. Altulea collected literature and contributed manuscript sections. E.J.M. Raineri and D. Altulea prepared the Figures. J.M. van Dijl supervised the project. All authors, critically revised the manuscript, gave final approval and agree to be accountable for all aspects of the review.

Acknowledgements
We thank Marines du Teil Espina for stimulating discussions and for help in making the Figures, and we thank Marina López-Álvarez for stimulating discussions.

References
Abdallah, Florence, Lily Mijouin, and Chantal Pichon. 2017. “Skin Immune Landscape: Inside and Outside the Organism.” Mediators of Inflammation 2017. https://doi.org/10.1155/2017/5095293.

Abel, Alex M., Chao Yang, Monica S. Thakar, and Subramaniam Malarkannan. 2018. “Natural Killer Cells: Development, Maturation, and Clinical Utilization.” Frontiers in Immunology 9: 1869. https://doi.org/10.3389/fimmu.2018.01869.

Acker, Karen P., Tania Wong Fok Lung, Emily West, Joshua Craft, Apurva Narechania, Hannah Smith, Kelsey O’Brien, et al. 2019. “Strains of Staphylococcus Aureus That Colonize and Infect Skin Harbor Mutations in Metabolic Genes.” iScience 19: 281–90. https://doi.org/10.1016/j.isci.2019.07.037.

Acton, D. S., M. J. Tempelmans Plat-Sinnige, W. van Wamel, N. de Groot, and A. van Belkum. 2009a. “Intestinal Carriage of Staphylococcus Aureus: How Does Its Frequency Compare with That of Nasal Carriage and What Is Its Clinical Impact?” European Journal of Clinical Microbiology & Infectious Diseases 28: 115. https://doi.org/10.1007/s10096-008-0602-7.

Adams, Walter, Taylor Espicha, and Janine Estipona. 2021. “Getting Your Neutrophil: Neutrophil Transepithelial Migration in the Lung.” Infection and Immunity, February, IAI.00659-20, iai;IAI.00659-20v1. https://doi.org/10.1128/IAI.00659-20.

Ali, Ramadan A., Leah M. Wuescher, Keith R. Dona, and Randall G. Worth. 2017. “Platelets Mediate Host-Defense against S. Aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.” Journal of Immunology 198: 344–51. https://doi.org/10.4049/jimmunol.1601178.
Anderson, Deverick J., and Keith S. Kaye. 2009. “Staphylococcal Surgical Site Infections.” Infectious Disease Clinics of North America 23: 53–72. https://doi.org/10.1016/j.idc.2008.10.004.

Ansari, Shamshul, Rajendra Gautam, Sony Shrestha, Safiur Rahman Ansari, Shankar Nanda Subedi, and Muni Raj Chhetri. 2016. “Risk Factors Assessment for Nasal Colonization of Staphylococcus Aureus and Its Methicillin Resistant Strains among Pre-Clinical Medical Students of Nepal.” BMC Research Notes 9: 214. https://doi.org/10.1186/s13104-016-2021-7.

Archer, Nathan K., Janette M. Harro, and Mark E. Shirtliff. 2013. “Clearance of Staphylococcus Aureus Nasal Carriage Is T Cell Dependent and Mediated through Interleukin-17A Expression and Neutrophil Influx.” Infection and Immunity 81: 2070–75. https://doi.org/10.1128/IAI.00084-13.

Aulicino, Anna, Kevin C. Rue-Albrecht, Lorena Preciado-Llanes, Giorgio Napolitani, Neil Ashley, Adam Cribbs, Jana Koth, et al. 2018. “Invasive Salmonella Exploits Divergent Immune Evasion Strategies in Infected and Bystander Dendritic Cell Subsets.” Nature Communications 9: 4883. https://doi.org/10.1038/s41467-018-07329-0.

Bain, Calum C, and Allan McI Mowat. 2014. “Macrophages in Intestinal Homeostasis and Inflammation.” Immunological Reviews 260: 102–17. https://doi.org/10.1111/imr.12192.

Balasubramanian, Divya, Lamia Harper, Bo Shopsin, and Victor J. Torres. 2017. “Staphylococcus aureus Pathogenesis in Diverse Host Environments.” Pathogens and Disease 75: ftx005. https://doi.org/10.1093/femspd/ftx005.

Balraadjsing, Payal P., Esther C. de Jong, Willem J. B. van Wamel, and Sebastian A. J. Zaat. 2019. “Dendritic Cells Internalize Staphylococcus Aureus More Efficiently than Staphylococcus Epidermidis, but Do Not Differ in Induction of Antigen-Specific T Cell Proliferation.” Microorganisms 8: 19. https://doi.org/10.3390/microorganisms8010019.

Bar-Haim, Erez, Orit Gat, Gal Markel, Hila Cohen, Avigdor Shafferman, and Baruch Velan. 2008. “Interrelationship between Dendritic Cell Trafficking and Francisella Tularensis Dissemination Following Airway Infection.” PLoS Pathogens 4: e1000211. https://doi.org/10.1371/journal.ppat.1000211.

Belkaid, Yasmine, and Timothy Hand. 2014. “Role of the Microbiota in Immunity and Inflammation.” Cell 157: 121–41. https://doi.org/10.1016/j.cell.2014.03.011.

Belkum, Alex van. 2016. “Hidden Staphylococcus Aureus Carriage: Overrated or Underappreciated?” MBio 7: e00079-16, /mbio/7/1/e00079-16.atom. https://doi.org/10.1128/mBio.00079-16.
Benito, Daniel, Carmen Lozano, Esther Jiménez, Mar Albújar, Adolfo Gómez, Juan M. Rodriguez, and Carmen Torres. 2015. “Characterization of Staphylococcus Aureus Strains Isolated from Faeces of Healthy Neonates and Potential Mother-to-Infant Microbial Transmission through Breastfeeding.” FEMS Microbiology Ecology 91: fiv007. https://doi.org/10.1093/femsre/fuab041.

Berends, Evelien T. M., Xuhui Zheng, Erin E. Zwack, Mickaël M. Ménager, Michael Cammer, Bo Shopsin, and Victor J. Torres. 2019. “Staphylococcus Aureus Impairs the Function of and Kills Human Dendritic Cells via the LukAB Toxin.” MBio 10: e01918-18, /mbio/10/1/mBio.01918-18.atom. https://doi.org/10.1128/mBio.01918-18.

Berube, B. J., and J. Bubeck Wardenburg. 2013. “Staphylococcus Aureus Alpha-Toxin: Nearly a Century of Intrigue.” Toxins (Basel) 5: 1140–66. https://doi: 10.3390/toxins5061140.

Bhalla, Anita, David C Aron, and Curtis J Donskey. 2007. “Staphylococcus Aureus Intestinal Colonization Is Associated with Increased Frequency of S. Aureus on Skin of Hospitalized Patients.” BMC Infectious Diseases 7: 105. https://doi.org/10.1186/1471-2334-7-105.

Bode, Lonneke G M, Diana Bogaers, Annet Troelstra, and Alex van Belkum. 2010. “Preventing Surgical-Site Infections in Nasal Carriers of Staphylococcus Aureus.” N Engl j Med, 362: 9-17. https://doi: 10.1056/NEJMoA0808939.

Bore, Erlend, Solveig Langsrud, Øyvind Langsrud, Tone Mari Rode, and Askild Holck. 2007. “Acid-Shock Responses in Staphylococcus Aureus Investigated by Global Gene Expression Analysis.” Microbiology 153: 2289–2303. https://doi.org/10.1099/mic.0.2007/005942-0.

Bouma, Gerben, Phil J. Ancliff, Adrian J. Thrasher, and Siobhan O. Burns. 2010. “Recent Advances in the Understanding of Genetic Defects of Neutrophil Number and Function.” British Journal of Haematology 151: 312–26. https://doi.org/10.1111/j.1365-2141.2010.08361.x.

Brown, Aisling F., John M. Leech, Thomas R. Rogers, and Rachel M. McLoughlin. 2014. “Staphylococcus Aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design.” Frontiers in Immunology 4: 507. https://doi.org/10.3389/fimmu.2013.00507.

Brown, Morgan M., and Alexander R. Horswill. 2020. “Staphylococcus Epidermidis—Skin Friend or Foe?” PLOS Pathogens 16: e1009026. https://doi.org/10.1371/journal.ppat.1009026.

Budden, Kurtis F., Shaan L. Gellatly, David L. A. Wood, Matthew A. Cooper, Mark Morrison, Philip Hugenholtz, and Philip M. Hansbro. 2017. “Emerging Pathogenic Links between Microbiota and the Gut–Lung Axis.” Nature Reviews Microbiology 15: 55–63. https://doi.org/10.1038/nrmicro.2016.142.
Bütter, Henning, Dietrich Mack, and Holger Rohde. 2015. “Structural Basis of Staphylococcus Epidermidis Biofilm Formation: Mechanisms and Molecular Interactions.” *Frontiers in Cellular and Infection Microbiology* 5: 14. https://doi.org/10.3389/fcimb.2015.00014.

Chan, Liana C, Maura Rossetti, Lloyd S Miller, Scott G Filler, Colin W Johnson, Hong K Lee, Huiyuan Wang, et al. n.d. 2018. “Protective Immunity in Recurrent Staphylococcus Aureus Infection Reflects Localized Immune Signatures and Macrophage-Conferred Memory.” *Proc Natl Acad Sci U S A.* 115: E11111-E11119. https://doi: 10.1073/pnas.1808353115.

Cheung, Gordon Y. C., Justin S. Bae, and Michael Otto. 2021. “Pathogenicity and Virulence of *Staphylococcus Aureus.*” *Virulence* 12: 547–69. https://doi.org/10.1080/21505594.2021.1878688.

Claassen-Weitz, Shantelle, Adebayo O. Shittu, Michelle R. Ngwarai, Lehana Thabane, Mark P. Nicol, and Mamadou Kaba. 2016. “Fecal Carriage of Staphylococcus Aureus in the Hospital and Community Setting: A Systematic Review.” *Frontiers in Microbiology* 7: 449. https://doi.org/10.3389/fmicb.2016.00449.

Clement, Sophie, Pierre Vaudaux, Patrice Francois, Jacques Schrenzel, Elzbieta Huggler, Sandy Kampf, Christine Chaponnier, Daniel Lew, and Jean-Silvain Lacroix. 2005. “Evidence of an Intracellular Reservoir in the Nasal Mucosa of Patients with Recurrent *Staphylococcus Aureus* Rhinosinusitis.” *The Journal of Infectious Diseases* 192: 1023–28. https://doi.org/10.1086/432735.

Cole, A. M., S. Takh, A. Oren, D. Yoshioka, Y. H. Kim, A. Park, and T. Ganz. 2001. “Determinants of Staphylococcus Aureus Nasal Carriage.” *Clin Diagn Lab Immunol* 8: 1064–69. https://doi.org/10.1128/cdli.8.6.1064-1069.2001.

Cook, Peter C., and Andrew S. MacDonald. 2016. “Dendritic Cells in Lung Immunopathology.” *Seminars in Immunopathology* 38: 449–60. https://doi.org/10.1007/s00281-016-0571-3.

Coombes, Janine L., and Fiona Powrie. 2008. “Dendritic Cells in Intestinal Immune Regulation.” *Nature Reviews Immunology* 8: 435–46. https://doi.org/10.1038/nri2335.

Corey, G. R. 2009. “Staphylococcus Aureus Bloodstream Infections: Definitions and Treatment.” *Clin Infect Dis* 48 Suppl 4: S254-9. https://doi.org/10.1086/598186.

Cutler, C.W., and R. Jotwani. 2006. “Dendritic Cells at the Oral Mucosal Interface.” *Journal of Dental Research* 85: 678–89. https://doi:10.1177/154405910608500801

Darisipudi, Murthy, Maria Nordengrün, Barbara Bröker, and Vincent Péton. 2018. “Messing with the Sentinels—The Interaction of Staphylococcus Aureus with Dendritic Cells.” *Microorganisms* 6: 87. https://doi.org/10.3390/microorganisms6030087.
Deppermann, Carsten, and Paul Kubes. 2018. “Start a Fire, Kill the Bug: The Role of Platelets in Inflammation and Infection.” *Innate Immunity* 24: 335–48. https://doi.org/10.1177/1753425918789255.

Dong, Danfeng, Qi Ni, Chen Wang, Lihua Zhang, Zhen Li, Cen Jiang, Enqiang Mao, and Yiping Peng. 2018. “Effects of Intestinal Colonization by Clostridium Difficile and Staphylococcus Aureus on Microbiota Diversity in Healthy Individuals in China.” *BMC Infectious Diseases* 18: 207. https://doi.org/10.1186/s12879-018-3111-z.

Dreisbach, Annette, Min Wang, Magdalena M. van der Kooi-Pol, Ewoud Reilman, Dennis G. A. M. Koedijk, Ruben A. T. Mars, José Duipmans, et al. 2020. “Tryptic Shaving of *Staphylococcus Aureus* Unveils Immunodominant Epitopes on the Bacterial Cell Surface.” *Journal of Proteome Research* 19: 2997–3010. https://doi.org/10.1021/acs.jproteome.0c00043.

Dryla, Agnieszka, Sonja Prustomersky, Dieter Gelbmann, Markus Hanner, Edith Bettinger, Béla Kocsis, Tamás Kustos, Tamás Henics, Andreas Meinke, and Eszter Nagy. 2005. “Comparison of Antibody Repertoires against Staphylococcus Aureus in Healthy Individuals and in Acutely Infected Patients.” *Clinical Diagnostic Laboratory Immunology* 12: 387–98. https://doi.org/10.1128/CDLI.12.3.387-398.2005.

Du, Xin, Jesper Larsen, Min Li, Axel Walter, Christoph Slavetinsky, Anna Both, Patricia M. Sanchez Carballo, et al. 2021. “Staphylococcus Epidermidis Clones Express Staphylococcus Aureus-Type Wall Teichoic Acid to Shift from a Commensal to Pathogen Lifestyle.” *Nature Microbiology* 6: 757–68. https://doi.org/10.1038/s41564-021-00913-z.

DuMont, A. L., P. Yoong, C. J. Day, F. Alonzo, W. H. McDonald, M. P. Jennings, and V. J. Torres. 2013. “Staphylococcus Aureus LukAB Cytotoxin Kills Human Neutrophils by Targeting the CD11b Subunit of the Integrin Mac-1.” *Proceedings of the National Academy of Sciences* 110: 10794–99. https://doi.org/10.1073/pnas.1305121110.

Eiff, Christof Von, and Georg Peters. 2001. “Nasal Carriage as a Source of Staphylococcus Aureus Bacteremia.” Study Group. N Engl J Med. 344: 11-6. https://doi: 10.1056/NEJM2001010434440102.

Feuerstein, Reinhild, Aaron James Forde, Florens Lohrmann, Julia Kolter, Neftali Jose Ramirez, Jakob Zimmermann, Mercedes Gomez de Agüero, and Philipp Henneke. 2020. “Resident Macrophages Acquire Innate Immune Memory in Staphylococcal Skin Infection.” *ELife* 9: e55602. https://doi.org/10.7554/eLife.55602.

Fisher, Cody, and Robin Patel. 2020. “Rifampin, Rifapentine, and Rifabutin Are Active against Intracellular Periprosthetic Joint Infection-Associated *Staphylococcus Epidermidis*.” *Antimicrobial Agents and Chemotherapy* 65: e01275-20. /aac/65/2/AAC.01275-20.atom. https://doi.org/10.1128/AAC.01275-20.

Flannagan, Ronald, Bryan Heit, and David Heinrichs. 2015. “Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus Aureus.” *Pathogens* 4: 826–68. https://doi.org/10.3390/pathogens4040826.
Flannagan, Ronald S, and David E Heinrichs. 2020. “Macrophage-driven Nutrient Delivery to Phagosomal Staphylococcus Aureus Supports Bacterial Growth.” EMBO Reports 21: e50348. https://doi.org/10.15252/embr.202050348.

Flannagan, Ronald S., Bryan Heit, and David E. Heinrichs. 2016. “Intracellular Replication of Staphylococcus Aureus in Mature Phagolysosomes in Macrophages Precedes Host Cell Death, and Bacterial Escape and Dissemination: S. Aureus Replicates in Mature Phagolysosomes in Macrophages.” Cellular Microbiology 18: 514–35. https://doi.org/10.1111/cmi.12527.

Foster, Timothy J. 2017. “Antibiotic Resistance in Staphylococcus Aureus. Current Status and Future Prospects.” FEMS Microbiology Reviews 41: 430–49. https://doi.org/10.1093/femsre/fux007.

Fournier, B M, and C A Parkos. 2012. “The Role of Neutrophils during Intestinal Inflammation.” Mucosal Immunology 5: 354–66. https://doi.org/10.1038/mi.2012.24.

Fukuda, Haruhisa, Daisuke Sato, Tetsuya Iwamoto, Koji Yamada, and Kazuhiko Matsushita. 2020. “Healthcare Resources Attributable to Methicillin-Resistant Staphylococcus Aureus Orthopedic Surgical Site Infections.” Scientific Reports 10: 17059. https://doi.org/10.1038/s41598-020-74070-4.

Gagnaire, Julie, Elisabeth Botelho-Nevers, Patricia Martin-Simoes, Jérôme Morel, Fabrice Zéni, Nicolas Maillard, Christophe Mariat, et al. 2019. “Interplay of Nasal and Rectal Carriage of Staphylococcus Aureus in Intensive Care Unit Patients.” European Journal of Clinical Microbiology & Infectious Diseases 38: 1811–19. https://doi.org/10.1007/s10096-019-03613-z.

Gagnaire, Julie, Paul O. Verhoeven, Florence Grattard, Josselin Rigaill, Frédéric Lucht, Bruno Pozzetto, Philippe Bertholot, and Elisabeth Botelho-Nevers. 2017. “Epidemiology and Clinical Relevance of Staphylococcus Aureus Intestinal Carriage: A Systematic Review and Meta-Analysis.” Expert Review of Anti-Infective Therapy 15: 767–85. https://doi.org/10.1080/14787210.2017.1358611.

Gauguet, Stefanie, Samantha D’Ortona, Kathryn Ahnger-Pier, Biyan Duan, Neeraj K. Surana, Roger Lu, Colette Cywes-Bentley, et al. 2015. “Intestinal Microbiota of Mice Influences Resistance to Staphylococcus Aureus Pneumonia.” Edited by B. A. McCormick. Infection and Immunity 83: 4003–14. https://doi.org/10.1128/IAI.00037-15.

Ge, Chenghao, Ian R. Monk, Sarah C. Monard, James G. Bedford, Jessica Braverman, Timothy P. Stinear, and Linda M. Wakim. 2020. “Neutrophils Play an Ongoing Role in Preventing Bacterial Pneumonia by Blocking the Dissemination of Staphylococcus Aureus from the Upper to the Lower Airways.” Immunology & Cell Biology 98: 577–94. https://doi.org/10.1111/imcb.12343.

Geissmann, Frederic. 2007. “The Origin of Dendritic Cells.” Nature Immunology 8: 558–60. https://doi.org/10.1038/ni0607-558.
Ghasemzadeh-Moghaddam, H., W. van Wamel, A. van Belkum, R. A. Hamat, and V. K. Neela. 2017. “Differences in Humoral Immune Response between Patients with or without Nasal Carriage of Staphylococcus Aureus.” European Journal of Clinical Microbiology & Infectious Diseases 36: 451–58. https://doi.org/10.1007/s10096-016-2817-3.

Giulieri, Stefano G., Sarah L. Baines, Romain Guerillot, Torsten Seemann, Anders Gonçalves da Silva, Mark Schultz, Ruth C. Massey, Natasha E. Holmes, Timothy P. Stinear, and Benjamin P. Howden. 2018. “Genomic Exploration of Sequential Clinical Isolates Reveals a Distinctive Molecular Signature of Persistent Staphylococcus Aureus Bacteraemia.” Genome Medicine 10: 65. https://doi.org/10.1186/s13073-018-0574-x.

Goffau, Marcus C. de, Jan Maarten van Dijl, and Hermie J. M. Harmsen. 2011. “Microbial Growth on the Edge of Desiccation.” Environmental Microbiology 13: 2328–35. https://doi.org/10.1111/j.1462-2920.2011.02496.x.

Goffau, Marcus C. de, Xiaomei Yang, Jan Maarten van Dijl, and Hermie J. M. Harmsen. 2009. “Bacterial Pleomorphism and Competition in a Relative Humidity Gradient.” Environmental Microbiology 11: 809–22. https://doi.org/10.1111/j.1462-2920.2008.01802.x.

Gor, Vishal, Aya J. Takemura, Masami Nishitani, Masato Higashide, Veronica Medrano Romero, Ryosuke L. Ohniwa, and Kazuya Morikawa. 2019. “Finding of Agr Phase Variants in Staphylococcus Aureus.” MBio 10: e00796-19, /mbio/10/4/mBio.00796-19.atom. https://doi.org/10.1128/mBio.00796-19.

Greenlee-Wacker, Mallary C., Kevin M. Rigby, Scott D. Kobayashi, Adeline R. Porter, Frank R. DeLeo, and William M. Nauseef. 2014. “Phagocytosis of Staphylococcus Aureus by Human Neutrophils Prevents Macrophage Efferocytosis and Induces Programmed Necrosis.” The Journal of Immunology 192: 4709-17. https://doi.org/10.4049/jimmunol.1302692.

Gresham, Hattie D., Jon H. Lowrance, Tony E. Caver, Bridget S. Wilson, Ambrose L. Cheung, and Frederik P. Lindberg. 2000. “Survival of Staphylococcus Aureus Inside Neutrophils Contributes to Infection.” The Journal of Immunology 164: 3713–22. https://doi.org/10.4049/jimmunol.164.7.3713.

Gries, Delores M., Nicole J. Pultz, and Curtis J. Donskey. 2005. “Growth in Cecal Mucus Facilitates Colonization of the Mouse Intestinal Tract by Methicillin-Resistant Staphylococcus Aureus.” The Journal of Infectious Diseases 192: 1621–27. https://doi.org/10.1086/491737.

Grosz, Magdalena, Julia Kolter, Kerstin Papatka, Ann-Cathrin Winkler, Daniel Schäfer, Som Subra Chatterjee, Tobias Geiger, et al. 2014. “Cytoplasmic Replication of Staphylococcus Aureus upon Phagosomal Escape Triggered by Phenol-Soluble Modulin α.” Cellular Microbiology 16: 451–65. https://doi.org/10.1111/cmi.12233.
Guan, Zhangchun, Yu Liu, Chenghua Liu, Huting Wang, Jiannan Feng, and Guang Yang. 2021. “Staphylococcus Aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56bright NK Cells.” Frontiers in Cellular and Infection Microbiology 11: 658141. https://doi.org/10.3389/fcimb.2021.658141.

Guérillot, Romain, Xenia Kostoulias, Liam Donovan, Lucy Li, Glen P. Carter, Abderrahman Hachani, Koen Vandelannoote, et al. 2019. “Unstable Chromosome Rearrangements in Staphylococcus Aureus Cause Phenotype Switching Associated with Persistent Infections.” Proceedings of the National Academy of Sciences 116: 20135–40. https://doi.org/10.1073/pnas.1904861116.

Guerra, Fermin E., Timothy R. Borgogna, Delisha M. Patel, Eli W. Sward, and Jovanka M. Voyich. 2017. “Epic Immune Battles of History: Neutrophils vs. Staphylococcus Aureus.” Frontiers in Cellular and Infection Microbiology 7: 286. https://doi.org/10.3389/fcimb.2017.00286.

Guilliams, Martin, Florent Ginhoux, Claudia Jakubzick, Shalin H. Naik, Nobuyuki Onai, Barbara U. Schraml, Elodie Segura, Roxane Tussiwand, and Simon Yona. 2014. “Dendritic Cells, Monocytes and Macrophages: A Unified Nomenclature Based on Ontogeny.” Nature Reviews Immunology 14: 571–78. https://doi.org/10.1038/nri3712.

Guimaraes, Alessander O, Yi Cao, Kyu Hong, Oleg Mayba, Melicent C Peck, Johnny Gutierrez, Felicia Ruffin, et al. n.d. “A Prognostic Model of Persistent Bacteremia and Mortality in Complicated Staphylococcus Aureus Bloodstream Infection.” Clin Infect Dis. 68: 1502-1511. https://doi:10.1093/cid/ciy739

Hamzeh-Cognasse, Hind, Pauline Damien, Adrien Chabert, Bruno Pozzetto, Fabrice Cognasse, and Olivier Garraud. 2015. “Platelets and Infections – Complex Interactions with Bacteria.” Frontiers in Immunology 6: 82. https://doi.org/10.3389/fimmu.2015.00082.

Heo, Seok-Mo, Kyoung-Soo Choi, Latif A. Kazim, Molakala S. Reddy, Elaine M. Haase, Frank A. Scannapieco, and Stefan Ruhl. 2013. “Host Defense Proteins Derived from Human Saliva Bind to Staphylococcus Aureus.” Infection and Immunity 81: 1364–73. https://doi.org/10.1128/IAI.00825-12.

Herbert, Silvia, Agnieszka Bera, Christiane Nerz, Dirk Kraus, Andreas Peschel, Christiane Goerke, Michael Meehl, Ambrose Cheung, and Friedrich Götz. 2007. “Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci.” PLoS Pathogens 3: e102. https://doi.org/10.1371/journal.ppat.0030102.

Hidalgo, Andrés, Edwin R. Chilvers, Charlotte Summers, and Leo Koenderman. 2019. “The Neutrophil Life Cycle.” Trends in Immunology 40: 584–97. https://doi.org/10.1016/j.it.2019.04.013.

Hodille, Elisabeth, Adriana Plesa, Eve Bourrelly, Lucie Belmont, Cédric Badiou, Gerard Lina, and Oana Dumitrescu. 2020. “Staphylococcal Panton–Valentine
Leucocidin and Gamma Haemolysin Target and Lyse Mature Bone Marrow Leucocytes.” *Toxins* 12: 725. https://doi.org/10.3390/toxins12110725.

Horn, Jessica, Kathrin Stelzner, Thomas Rudel, and Martin Fraunholz. 2017. “Inside Job: Staphylococcus Aureus Host-Pathogen Interactions.” *International Journal of Medical Microbiology* 308: 607-624. https://doi.org/10.1016/j.ijmm.2017.11.009.

Hos, Nina J., Siegbert Rieg, Winfried V. Kern, Daniel Jonas, Vance G. Fowler, Paul G. Higgins, Harald Seifert, and Achim J. Kaasch. 2015. “Amino Acid Alterations in Fibronectin Binding Protein A (FnBPA) and Bacterial Genotype Are Associated with Cardiac Device Related Infection in Staphylococcus Aureus Bacteraemia.” *Journal of Infection* 70: 153–59. https://doi.org/10.1016/j.jinf.2014.09.005.

Hussain, Sazid, Jinmyoung Joo, Jinyoung Kang, Byungji Kim, Gary B. Braun, Zhi-Gang She, Dokyoung Kim, et al. 2018. “Antibiotic-Loaded Nanoparticles Targeted to the Site of Infection Enhance Antibacterial Efficacy.” *Nature Biomedical Engineering* 2: 95–103. https://doi.org/10.1038/s41551-017-0187-5.

Jang, Kyoung Ok, Youn Woo Lee, Hangeun Kim, and Dae Kyun Chung. 2021. “Complement Inactivation Strategy of Staphylococcus Aureus Using Decay Accelerating Factor and the Response of Infected HaCaT Cells.” *International Journal of Molecular Sciences* 22: 4015. https://doi.org/10.3390/ijms22084015.

Jeon, Yung Jin, Chan Hee Gil, Jina Won, Ara Jo, and Hyun Jik Kim. 2020. “Symbiotic Microbiome Staphylococcus Aureus from Human Nasal Mucus Modulates IL-33-Mediated Type 2 Immune Responses in Allergic Nasal Mucosa.” *BMC Microbiology* 20: 301. https://doi.org/10.1186/s12866-020-01974-6.

Johansson, Daniel, Oonagh Shannon, and Magnus Rasmussen. 2011. “Platelet and Neutrophil Responses to Gram Positive Pathogens in Patients with Bacteremic Infection.” Edited by Stefan Bereswill. *PLoS ONE* 6: e26928. https://doi.org/10.1371/journal.pone.0026928.

Johansson, Maria A., Sophia Björkander, Manuel Mata Forsberg, Khaleda Rahman Qazi, Maria Salvary Celades, Julia Bittmann, Matthias Eberl, and Eva Sverremark-Ekström. 2016. “Probiotic Lactobacilli Modulate Staphylococcus Aureus-Induced Activation of Conventional and Unconventional T Cells and NK Cells.” *Frontiers in Immunology* 7: 273. https://doi.org/10.3389/fimmu.2016.00273.

Jong, Nienke W. M. de, Kok P. M. van Kessel, and Jos A. G. van Strijp. 2019. “Immune Evasion by Staphylococcus Aureus.” *Microbiology Spectrum* 7 (2). https://doi.org/10.1128/microbiolspec.GPP3-0061-2019.

Kadariya, Jhalka, Tara C. Smith, and Dipendra Thapaliya. 2014. “Staphylococcus Aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health.” *BioMed Research International* 2014: 1–9. https://doi.org/10.1155/2014/827965.
Kahl, Barbara C., Karsten Becker, and Bettina Löffler. 2016. “Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections.” Clinical Microbiology Reviews 29: 401–27. https://doi.org/10.1128/CMR.00069-15.

Kamada, Nobuhiko, Grace Y. Chen, Naohiro Inohara, and Gabriel Núñez. 2013. “Control of Pathogens and Pathobionts by the Gut Microbiota.” Nature Immunology 14: 685–90. https://doi.org/10.1038/ni.2608.

Kamath, Arun T., Sandrine Henri, Frank Battye, David F. Tough, and Ken Shortman. 2002. “Developmental Kinetics and Lifespan of Dendritic Cells in Mouse Lymphoid Organs.” Blood 100: 1734–41. https://doi.org/10.1182/blood.V100.5.1734.h81702001734_1734_1741.

Kamoda, Yuji, Hiroshi Uematsu, Akihiro Yoshihara, Hideo Miyazaki, and Hidenobu Senpuku. 2008. “Role of Activated Natural Killer Cells in Oral Diseases,” Jpn J Infect Dis. 61: 469-74.

Kapur, Rick, Anne Zufferey, Eric Boilard, and John W. Semple. 2015. “Nouvelle Cuisine: Platelets Served with Inflammation.” The Journal of Immunology 194: 5579–87. https://doi.org/10.4049/jimmunol.1500259.

Kearney, A., P. Kinnevey, A. Shore, M. Earls, T.T. Poovelikunnel, G. Brennan, H. Humphreys, and D.C. Coleman. 2020. “The Oral Cavity Revealed as a Significant Reservoir of Staphylococcus Aureus in an Acute Hospital by Extensive Patient, Healthcare Worker and Environmental Sampling.” Journal of Hospital Infection 105: 389–96. https://doi.org/10.1016/j.jhin.2020.03.004.

Khanafer, Nagham, Nicolas Sicot, Philippe Vanhems, Oana Dumitrescu, Vanina Meyssonier, Anne Tristan, Michèle Bès, et al. 2013. “Severe Leukopenia in Staphylococcus Aureus-Necrotizing, Community-Acquired Pneumonia: Risk Factors and Impact on Survival.” BMC Infectious Diseases 13: 359. https://doi.org/10.1186/1471-2334-13-359.

Kim MH, Liu W, Borjesson DL, Curry FR, Miller LS, Cheung AL, Liu FT, Isseroff RR, Simon SI. “Dynamics of Neutrophil Infiltration during Cutaneous Wound Healing and Infection Using Fluorescence Imaging | Elsevier Enhanced Reader.” https://doi.org/10.1038/sj.jid.5701223.

Kobayashi, Scott D., Natalia Malachowa, and Frank R. DeLeo. 2018. “Neutrophils and Bacterial Immune Evasion.” Journal of Innate Immunity 10: 432–41. https://doi.org/10.1159/000487756.

Kolata, Julia, Lonneke G. M. Bode, Silva Holtfreter, Leif Steil, Harald Kusch, Birte Holtfreter, Dirk Albrecht, et al. 2011. “Distinctive Patterns in the Human Antibody Response to Staphylococcus Aureus Bacteremia in Carriers and Non-Carriers.” PROTEOMICS 11: 3914–27. https://doi.org/10.1002/pmic.201000760.

Kolonitsiou, Fevronia, Matthaios Papadimitriou-Olivgeris, Anastasia Spiliopoulou, Eleanna Drougka, Eleni Jelastopulu, Evangelos D. Anastassiou, and Iris Spiliopoulou. 2019. “Methicillin-Resistant Staphylococcus Aureus ST80 Induce
Lower Cytokine Production by Monocytes as Compared to Other Sequence Types.” *Frontiers in Microbiology* 9: 3310. https://doi.org/10.3389/fmicb.2018.03310.

Kopf, Manfred, Christoph Schneider, and Samuel P Nobs. 2015. “The Development and Function of Lung-Resident Macrophages and Dendritic Cells.” *Nature Immunology* 16: 36–44. https://doi.org/10.1038/ni.3052.

Koziel, Joanna, Agnieszka Maciag-Gudowska, Tomasz Mikolajczyk, Małgorzata Bzowska, Daniel E. Sturdevant, Adeline R. Whitney, Lindsey N. Shaw, Frank R. DeLeo, and Jan Potempa. 2009. “Phagocytosis of Staphylococcus Aureus by Macrophages Exerts Cytoprotective Effects Manifested by the Upregulation of Antiapoptotic Factors.” Edited by Adam J. Ratner. *PLoS ONE* 4: e5210. https://doi.org/10.1371/journal.pone.0005210.

Kraker, Marlieke E. A. de, Peter G. Davey, Hajo Grundmann, and on behalf of the BURDEN study group. 2011. “Mortality and Hospital Stay Associated with Resistant Staphylococcus Aureus and Escherichia Coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe.” *PLoS Medicine* 8: e1001104. https://doi.org/10.1371/journal.pmed.1001104.

Koziel, Joanna, Agnieszka Maciag-Gudowska, Tomasz Mikolajczyk, Małgorzata Bzowska, Daniel E. Sturdevant, Adeline R. Whitney, Lindsey N. Shaw, Frank R. DeLeo, and Jan Potempa. 2009. “Phagocytosis of Staphylococcus Aureus by Macrophages Exerts Cytoprotective Effects Manifested by the Upregulation of Antiapoptotic Factors.” Edited by Adam J. Ratner. *PLoS ONE* 4: e5210. https://doi.org/10.1371/journal.pone.0005210.

Krezałek, Monika A., Sanjiv Hyoju, Alexander Zaborin, Emeka Okafor, Laxmi Chandrasekar, Vítas Bindokas, Kristina Guyton, et al. 2018. “Can Methicillin-Resistant Staphylococcus Aureus Silently Travel From the Gut to the Wound and Cause Postoperative Infection? Modeling the ‘Trojan Horse Hypothesis’.” *Annals of Surgery* 267: 749–58. https://doi.org/10.1097/SLA.0000000000002173.

Kubica, Malgorzata, Krzysztof Guzik, Joanna Koziel, Miroslaw Zarebski, Walter Richter, Barbara Gajkowska, Anna Golda, et al. 2008. “A Potential New Pathway for Staphylococcus Aureus Dissemination: The Silent Survival of S. Aureus Phagocytosed by Human Monocyte-Derived Macrophages.” Edited by Robin May. *PLoS ONE* 3: e1409. https://doi.org/10.1371/journal.pone.0001409.

Kumar, Manish, Aralia Leon Coria, Steve Cornick, Björn Petri, Shyamchand Mayengbam, Humberto B. Jijon, France Moreau, Jane Shearer, and Kris Chadee. 2020. “Increased Intestinal Permeability Exacerbates Sepsis through Reduced Hepatic SCD-1 Activity and Dysregulated Iron Recycling.” *Nature Communications* 11: 483. https://doi.org/10.1038/s41467-019-14182-2.

Kwak, Young-Keun, Elena Vikström, Karl-Eric Magnusson, Beatrix Vécsey-Semjén, Patricia Colque-Navarro, and Roland Möllby. 2012. “The Staphylococcus Aureus Alpha-Toxin Perturbs the Barrier Function in Caco-2 Epithelial Cell Monolayers by Altering Junctional Integrity.” *Infection and Immunity* 80: 1670–80. https://doi.org/10.1128/IAI.00001-12.
Lacoma, A., V. Cano, D. Moranta, V. Regueiro, D. Domínguez-Villanueva, M. Laabei, M. González-Nicolau, V. Ausina, C. Prat, and J. A. Bengoechea. 2017. “Investigating Intracellular Persistence of *Staphylococcus Aureus* within a Murine Alveolar Macrophage Cell Line.” *Virulence* 8: 1761–75. https://doi.org/10.1080/21505594.2017.1361089.

Lee, Bonggi, Kyoung Mi Moon, and Choon Young Kim. 2018. “Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals.” *Journal of Immunology Research* 2018: 2645465. https://doi.org/10.1155/2018/2645465.

Lee, H, D Ruane, K Law, Y Ho, A Garg, A Rahman, D Esterházy, et al. 2015. “Phenotype and Function of Nasal Dendritic Cells.” *Mucosal Immunology* 8: 1083–98. https://doi.org/10.1038/mi.2014.135.

Leonard, Allison C., Laurenne E. Petrie, and Georgina Cox. 2019. “Bacterial Anti-Adhesives: Inhibition of *Staphylococcus Aureus* Nasal Colonization.” *ACS Infectious Diseases* 5: 1668–81. https://doi.org/10.1021/acsinfecdis.9b00193.

Li, Jackson LiangYao, Alexander Zarbock, and Andrés Hidalgo. 2017. “Platelets as Autonomous Drones for Hemostatic and Immune Surveillance.” *Journal of Experimental Medicine* 214: 2193–2204. https://doi.org/10.1084/jem.20170879.

Lindberg, E., I. Adlerberth, B. Hesselmar, R. Saalman, I.-L. Strannegard, N. Aberg, and A. E. Wold. 2004. “High Rate of Transfer of *Staphylococcus Aureus* from Parental Skin to Infant Gut Flora.” *Journal of Clinical Microbiology* 42: 530–34. https://doi.org/10.1128/JCM.42.2.530-534.2004.

Lindberg, E., I. Adlerberth, P. Matricardi, C. Bonanno, S. Tripodi, V. Panetta, B. Hesselmar, R. Saalman, N. Aberg, and A. E. Wold. 2011. “Effect of Lifestyle Factors on *Staphylococcus Aureus* Gut Colonization in Swedish and Italian Infants.” *Clinical Microbiology and Infection* 17: 1209–15. https://doi.org/10.1111/j.1469-0691.2010.03426.x.

Lindsay, Jodi A. 2014. “*Staphylococcus Aureus* Genomics and the Impact of Horizontal Gene Transfer.” *International Journal of Medical Microbiology* 304: 103–9. https://doi.org/10.1016/j.ijmm.2013.11.010.

Liu, Cindy M., Lance B. Price, Bruce A. Hungate, Alison G. Abraham, Lisbeth A. Larsen, Kaare Christensen, Marc Stegger, Robert Skov, and Paal Skytt Andersen. 2015. “*Staphylococcus Aureus* and the Ecology of the Nasal Microbiome.” *Science Advances* 1: e1400216. https://doi.org/10.1126/sciadv.1400216.

Liu, Kang, and Michel C. Nussenzweig. 2010. “Origin and Development of Dendritic Cells.” *Immunological Reviews* 234: 45–54. https://doi.org/10.1111/j.0105-2896.2009.00879.x.

Loffler, B., M. Hussain, M. Grundmeier, M. Bruck, D. Holzinger, G. Varga, J. Roth, B. C. Kahl, R. A. Proctor, and G. Peters. 2010. “*Staphylococcus Aureus* Panton-
Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils.” *PLoS Pathog* 6: e1000715. https://doi.org/10.1371/journal.ppat.1000715.

Lubkin, Ashira, and Victor J. Torres. 2017. “Bacteria and Endothelial Cells: A Toxic Relationship.” *Current Opinion in Microbiology* 35: 58–63. https://doi.org/10.1016/j.mib.2016.11.008.

M. Chiba, S. Hoshina, M. Kono, M. T. 2001. “*Staphylococcus Aureus* in Inflammatory Bowel Disease.” *Scandinavian Journal of Gastroenterology* 36: 615–20. https://doi.org/10.1080/00365520117407.

Magryś, Agnieszka, Kamil Deryło, Agnieszka Bogut, Alina Olender, and Marek Tchórzewski. 2018. “Intraphagolysosomal Conditions Predispose to *Staphylococcus Epidermidis* Small Colony Variants Persistence in Macrophages.” *PLOS ONE* 13: e0207312. https://doi.org/10.1371/journal.pone.0207312.

Malech, Harry L., Frank R. DeLeo, and Mark T. Quinn. 2014. “The Role of Neutrophils in the Immune System: An Overview.” *Methods in Molecular Biology* 1124: 3–10. https://doi.org/10.1007/978-1-62703-845-4_1.

McCormack, M.G., A.J. Smith, A.N. Akram, M. Jackson, D. Robertson, and G. Edwards. 2015. “*Staphylococcus Aureus* and the Oral Cavity: An Overlooked Source of Carriage and Infection?” *American Journal of Infection Control* 43: 35–37. https://doi.org/10.1016/j.ajic.2014.09.015.

Mekonnen, Solomon A., Laura M. Palma Medina, Corinna Glasner, Eleni Tsompanidou, Anne de Jong, Stefano Grasso, Marc Schaffer, et al. 2017. “Signatures of Cytoplasmic Proteins in the Exoproteome Distinguish Community- and Hospital-Associated Methicillin-Resistant *Staphylococcus Aureus* USA300 Lineages.” *Virulence* 8: 891–907. https://doi.org/10.1080/21505594.2017.1325064.

Mekonnen, Solomon A., Laura M. Palma Medina, Stephan Michalik, Marco G. Loreti, Manuela Gesell Salazar, Jan Maarten van Dijl, and Uwe Völker. 2018. “Metabolic Niche Adaptation of Community- and Hospital-Associated Methicillin-Resistant *Staphylococcus Aureus*.” *Journal of Proteomics* 193: 154-161. https://doi.org/10.1016/j.jprot.2018.10.005.

Melehani, Jason H., David B. A. James, Ashley L. DuMont, Victor J. Torres, and Joseph A. Duncan. 2015. “*Staphylococcus Aureus* Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC When Extracellular, but Not Intracellular.” *PLoS Pathogens* 11: e1004970. https://doi.org/10.1371/journal.ppat.1004970.

Messina, Julia A., Joshua T. Thaden, Batu K. Sharma-Kuinkel, and Vance G. Fowler Jr. 2016. “Impact of Bacterial and Human Genetic Variation on *Staphylococcus Aureus* Infections.” *PLoS Pathogens* 12: e1005330. https://doi.org/10.1371/journal.ppat.1005330.
Miller, Lloyd S., and John S. Cho. 2011. “Immunity against Staphylococcus Aureus Cutaneous Infections.” *Nature Reviews. Immunology* 11: 505–18. https://doi.org/10.1038/nri3010.

Miller, Lloyd S, Vance G Fowler, Sanjay K Shukla, Warren E Rose, and Richard A Proctor. 2020. “Development of a Vaccine against Staphylococcus Aureus Invasive Infections: Evidence Based on Human Immunity, Genetics and Bacterial Evasion Mechanisms.” *FEMS Microbiology Reviews* 44: 123–53. https://doi.org/10.1093/femsre/fuz030.

Misawa, Yoshiki, Kathryn A. Kelley, Xiaogang Wang, Linhui Wang, Wan Beom Park, Johannes Birtel, David Saslowsky, and Jean C. Lee. 2015. “Staphylococcus Aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins.” Edited by Andreas Peschel. *PLOS Pathogens* 11: e1005061. https://doi.org/10.1371/journal.ppat.1005061.

Moldovan, Adriana, and Martin J. Fraunholz. 2019. “In or out: Phagosomal Escape of Staphylococcus Aureus.” *Cellular Microbiology* 21: e12997. https://doi.org/10.1111/cmi.12997.

Morton, Ryan P., I. Josh Abecassis, Josiah F. Hanson, Jason Barber, John D. Nerva, Samuel N. Emerson, Chibawanye I. Ene, et al. 2016. “Predictors of Infection after 754 Cranioplasty Operations and the Value of Intraoperative Cultures for Cryopreserved Bone Flaps.” *Journal of Neurosurgery* 125: 766–70. https://doi.org/10.3171/2015.8.JNS151390.

Moutsopoulos, Niki M., and Joanne E. Konkel. 2018. “Tissue-Specific Immunity at the Oral Mucosal Barrier.” *Trends in Immunology* 39: 276–87. https://doi.org/10.1016/j.it.2017.08.005.

Mulcahy, Michelle E., and Rachel M. McLoughlin. 2016a. “Host–Bacterial Crosstalk Determines Staphylococcus Aureus Nasal Colonization.” *Trends in Microbiology* 24: 872–86. https://doi.org/10.1016/j.tim.2016.06.012.

Musilova, Jana, Michelle E. Mulcahy, Marieke M. Kuijk, Rachel M. McLoughlin, and Andrew G. Bowie. 2019. “Toll-like Receptor 2–Dependent Endosomal Signaling by Staphylococcus Aureus in Monocytes Induces Type I Interferon and Promotes Intracellular Survival.” *Journal of Biological Chemistry* 294: 17031–42. https://doi.org/10.1074/jbc.RA119.009302.

Namvar, Amirmorteza Ebrahimzadeh, Sara Bastarahang, Niloufar Abbasi, Ghazaleh Sheikhi Ghehi, Sara Farhadbakhtiarian, Parasoo Arezi, Mahsa Hosseini, Sholeh Zaeemi Baravati, Zahra Jokar, and Sara Ganji Chermahin. 2014. “Clinical Characteristics of Staphylococcus Epidermidis: A Systematic Review.” *GMS Hygiene and Infection Control* 9: Doc23. https://doi.org/10.3205/dgkh000243.

Nguyen, Thuan H., Matthew D. Park, and Michael Otto. 2017. “Host Response to Staphylococcus Epidermidis Colonization and Infections.” *Frontiers in Cellular and Infection Microbiology* 7: 90. https://doi.org/10.3389/fcimb.2017.00090.
Nishat, Sharmeen, Leah M. Wuescher, and Randall G. Worth. 2018. “Platelets Enhance Dendritic Cell Responses against *Staphylococcus Aureus* through CD40-CD40L.” Edited by Nancy E. Freitag. *Infection and Immunity* 86: e00186-18, /iai/86/9/e00186-18.atom. https://doi.org/10.1128/IAI.00186-18.

Nowicka, Danuta. 2018. “NK and NKT-Like Cells in Patients with Recurrent Furunculosis.” *Arch Immunol Ther Exp.* 66: 315-319. https://doi: 10.1007/s00005-017-0500-8

Nowrouzian, F.L., A. Ljung, S. Nilsson, B. Hesselmar, I. Adlerberth, and A.E. Wold. 2019. “Neonatal Gut Colonization by *Staphylococcus Aureus* Strains with Certain Adhesins and Superantigens Is Negatively Associated with Subsequent Development of Atopic Eczema.” *British Journal of Dermatology* 180: 1481–88. https://doi.org/10.1111/bjd.17451.

Nurjadi, Dennis, Marlon Kain, Patrick Marcinek, Marika Gaile, Klaus Heeg, and Philipp Zanger. 2016. “Ratio of T-Helper Type 1 (Th1) to Th17 Cytokines in Whole Blood Is Associated With Human β-Defensin 3 Expression in Skin and Persistent *Staphylococcus Aureus* Nasal Carriage.” *Journal of Infectious Diseases* 214: 1744–51. https://doi.org/10.1093/infdis/jiw440.

Nurjadi, Dennis, Katharina Last, Sabrina Klein, Sébastien Boutin, Bastian Schmack, Florian Mueller, Klaus Heeg, Arjang Ruhiparwar, Alexandra Heininger, and Philipp Zanger. 2020. “Nasal Colonization with *Staphylococcus Aureus* Is a Risk Factor for Ventricular Assist Device Infection in the First Year after Implantation: A Prospective, Single-Centre, Cohort Study.” *Journal of Infection* 80: 511–18. https://doi.org/10.1016/j.jinf.2020.02.015.

Oosten, Marleen van, Markus Hahn, Lucia M.A. Crane, Rick G. Pleijhuis, Kevin P. Francis, Jan Maarten van Dijl, and Goofzen M. van Dam. 2015. “Targeted Imaging of Bacterial Infections: Advances, Hurdles and Hopes.” *FEMS Microbiology Reviews* 39: 892–916. https://doi.org/10.1093/femsre/fuv029.

Oosten, Marleen van, Tina Schafer, Joost A. C. Gazendam, Knut Ohlsen, Eleni Tsonpanidou, Marcus C. de Goffau, Hermie J. M. Harmsen, et al. 2013. “Real-Time in Vivo Imaging of Invasive, and Biomaterial-Associated Bacterial Infections Using Fluorescently Labelled Vancomycin.” *Nature Communications* 4: 2584. https://doi.org/10.1038/ncomms3584.

Ordonez, Alvaro A., and Sanjay K. Jain. 2018. “Pathogen-Specific Bacterial Imaging in Nuclear Medicine.” *Seminars in Nuclear Medicine* 48: 182–94. https://doi.org/10.1053/j.semnuclmed.2017.11.003.

Ordonez, Alvaro A., Mark A. Sellmyer, Gayatri Gowrishankar, Camilo A. Ruiz-Bedoya, Elizabeth W. Tucker, Christopher J. Palestro, Dima A. Hammoud, and Sanjay K. Jain. 2019. “Molecular Imaging of Bacterial Infections: Overcoming the Barriers to Clinical Translation.” *Science Translational Medicine* 11: eaax8251. https://doi.org/10.1126/scitranslmed.aax8251.
Otto, Michael. 2009. “Staphylococcus Epidermidis – the ‘Accidental’ Pathogen.” Nature Reviews. Microbiology 7: 555–67. https://doi.org/10.1038/nrmicro2182.

Ou, Judy, Amanda Drilling, Deepti Singhal, Neil C.-W. Tan, Deanna Wallis-Hill, Sarah Vreugde, Alkis J. Psaltis, and Peter-John Wormald. 2016. “Association of Intracellular Staphylococcus Aureus with Prognosis in Chronic Rhinosinusitis.” International Forum of Allergy & Rhinology 6: 792–99. https://doi.org/10.1002/alr.21758.

Palma Medina, Laura M., Ann-Kristin Becker, Stephan Michalik, Kristin Surmann, Petra Hildebrandt, Manuela Gesell Salazar, Solomon A. Mekonnen, Lars Kaderali, Uwe Völker, and Jan Maarten van Dijl. 2020. “Interaction of Staphylococcus Aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration.” ACS Infectious Diseases, 6: 2279-2290. https://doi.org/10.1021/acsinfecdis.0c00403.

Park, Howard Y., Stephen D. Zoller, Vishal Hegde, William Sheppard, Zachary Burke, Gideon Blumstein, Christopher Hamad, et al. 2021. “Comparison of Two Fluorescent Probes in Preclinical Non-Invasive Imaging and Image-Guided Debridement Surgery of Staphylococcal Biofilm Implant Infections.” Scientific Reports 11: 1622. https://doi.org/10.1038/s41598-020-78362-7.

Peyrusson, Frédéric, Hugo Varet, Tiep Khac Nguyen, Rachel Legendre, Odile Sismeiro, Jean-Yves Coppée, Christane Wolz, Tanel Tenson, and Françoise Van Bambeke. 2020. “Intracellular Staphylococcus Aureus Persisters upon Antibiotic Exposure.” Nature Communications 11: 2200. https://doi.org/10.1038/s41467-020-15966-7.

Pickard, Joseph M., Melody Y. Zeng, Roberta Caruso, and Gabriel Núñez. 2017. “Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease.” Immunological Reviews 279: 70–89. https://doi.org/10.1111/imr.12567.

Pidwill, Grace R., Josie F. Gibson, Joby Cole, Stephen A. Renshaw, and Simon J. Foster. 2021. “The Role of Macrophages in Staphylococcus Aureus Infection.” Frontiers in Immunology 11: 620339. https://doi.org/10.3389/fimmu.2020.620339.

Piewngam, Pipat, Yue Zheng, Thuan H. Nguyen, Seth W. Dickey, Hwang-Soo Joo, Amer E. Villaruz, Kyle A. Glose, et al. 2018. “Pathogen Elimination by Probiotic
Bacillus via Signalling Interference.” Nature 562: 532–37. https://doi.org/10.1038/s41586-018-0616-y.

Powers, Michael E., Russell E.N. Becker, Anne Sailer, Jerrold R. Turner, and Juliane Bubeck Wardenburg. 2015. “Synergistic Action of Staphylococcus Aureus α-Toxin on Platelets and Myeloid Lineage Cells Contributes to Lethal Sepsis.” Cell Host & Microbe 17: 775–87. https://doi.org/10.1016/j.chom.2015.05.011.

Quinn, Gerry A, and Alexander M Cole. 2007. “Suppression of Innate Immunity by a Nasal Carriage Strain of Staphylococcus Aureus Increases Its Colonization on Nasal Epithelium.” Immunology 122: 80–89. https://doi.org/10.1111/j.1365-2567.2007.02615.x.

Ray, A. J., N. J. Pultz, A. Bhalla, D. C. Aron, and C. J. Donskey. 2003. “Coexistence of Vancomycin-Resistant Enterococci and Staphylococcus Aureus in the Intestinal Tracts of Hospitalized Patients.” Clinical Infectious Diseases 37: 875–81. https://doi.org/10.1086/377451.

Read, Timothy D., Robert A. Petit, Zachary Yin, Tuyaa Montgomery, Moira C. McNulty, and Michael Z. David. 2018. “USA300 Staphylococcus Aureus Persists on Multiple Body Sites Following an Infection.” BMC Microbiology 18: 206. https://doi.org/10.1186/s12866-018-1336-z.

Reinhardt, Renate, Stephanie Pohlmann, Holger Kleinertz, Monika Hepner-Schefczyk, Andreas Paul, and Stefanie B. Flohé. 2015. “Invasive Surgery Impairs the Regulatory Function of Human CD56bright Natural Killer Cells in Response to Staphylococcus Aureus. Suppression of Interferon-γ Synthesis.” PLOS ONE 10: e0130155. https://doi.org/10.1371/journal.pone.0130155.

Reizis, Boris. 2011. “Intracellular Pathogens and CD8+ Dendritic Cells: Dangerous Liaisons.” Immunity 35 (2): 153–55. https://doi.org/10.1016/j.immuni.2011.08.003.

Rigby, Kevin M., and Frank R. DeLeo. 2012. “Neutrophils in Innate Host Defense against Staphylococcus Aureus Infections.” Seminars in Immunopathology 34: 237–59. https://doi.org/10.1007/s00281-011-0295-3.

Rodríguez, Juan M. 2014. “The Origin of Human Milk Bacteria: Is There a Bacterial Entero-Mammary Pathway during Late Pregnancy and Lactation?” Advances in Nutrition 5: 779–84. https://doi.org/10.3945/an.114.007229.

Romero Pastrana, Francisco, John M. Thompson, Marjolein Heuker, Hedzer Hoekstra, Carly A. Dillen, Roger V. Ortines, Alyssa G. Ashbaugh, et al. 2018. “Noninvasive Optical and Nuclear Imaging of Staphylococcus-Specific Infection with a Human Monoclonal Antibody-Based Probe.” Virulence 9: 262–72. https://doi.org/10.1080/21505594.2017.1403004.

Ruimy, Raymond, Cécile Angebault, Félix Djossou, Claire Dupont, Loïc Epelboin, Sophie Jarraud, Laurence Armand Lefèvre, et al. 2010. “Are Host Genetics the Predominant Determinant of Persistent Nasal Staphylococcus Aureus Carriage in Humans?” The Journal of Infectious Diseases 202: 924–34. https://doi.org/10.1086/655901.
Sabaté Brescó, Marina, Llinos G. Harris, Keith Thompson, Barbara Stanic, Mario Morgenstern, Liam O’Mahony, R. Geoff Richards, and T. Fintan Moriarty. 2017. “Pathogenic Mechanisms and Host Interactions in Staphylococcus Epidermidis Device-Related Infection.” Frontiers in Microbiology 8: 1401. https://doi.org/10.3389/fmicb.2017.01401.

Sakr, Adèle, Fabienne Brégeon, Jean-Louis Mège, Jean-Marc Rolain, and Olivier Blin. 2018. “Staphylococcus Aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections.” Frontiers in Microbiology 9: 2419–2419. https://doi.org/10.3389/fmicb.2018.02419.

Schindler, Daniela, Maximiliano G. Gutierrez, Andreas Beineke, Yvonne Rauter, Manfred Rohde, Simon Foster, Oliver Goldmann, and Eva Medina. 2012. “Dendritic Cells Are Central Coordinators of the Host Immune Response to Staphylococcus Aureus Bloodstream Infection.” The American Journal of Pathology 181: 1327–37. https://doi.org/10.1016/j.ajpath.2012.06.039.

Schmidt, Stanislaw, Evelyn Ullrich, Konrad Bochennek, Stefanie-Yvonne Zimmermann, and Thomas Lehrnbecher. 2016. “Role of Natural Killer Cells in Antibacterial Immunity.” Expert Review of Hematology 9: 1119–27. https://doi.org/10.1080/17474086.2016.1254546.

Schroeder, Bjoern O. 2019. “Fight Them or Feed Them: How the Intestinal Mucus Layer Manages the Gut Microbiota.” Gastroenterology Report 7: 3–12. https://doi.org/10.1093/gastro/goy052.

Seilie, E. Sachiko, and Juliane Bubeck Wardenburg. 2017. “Staphylococcus Aureus Pore-Forming Toxins: The Interface of Pathogen and Host Complexity.” Seminars in Cell & Developmental Biology 72: 101–16. https://doi.org/10.1016/j.semcdb.2017.04.003.

Sencio, Valentin, Marina Gomes Machado, and François Trottein. 2021. “The Lung–Gut Axis during Viral Respiratory Infections: The Impact of Gut Dysbiosis on Secondary Disease Outcomes.” Mucosal Immunology 14: 296–304. https://doi.org/10.1038/s41385-020-00361-8.

Senn, Laurence, Olivier Clerc, Giorgio Zanetti, Patrick Basset, Guy Prod’hom, Nicola C. Gordon, Anna E. Sheppard, et al. 2016. “The Stealthy Superbug: The Role of Asymptomatic Enteric Carriage in Maintaining a Long-Term Hospital Outbreak of ST228 Methicillin-Resistant Staphylococcus Aureus.” MBio 7: e02039-15, /mbio/7/1/e02039-15.atom. https://doi.org/10.1128/mBio.02039-15.

Serbina, Natalya V., Ting Jia, Tobias M. Hohl, and Eric G. Pamer. 2008. “Monocyte-Mediated Defense Against Microbial Pathogens.” Annual Review of Immunology 26: 421–52. https://doi.org/10.1146/annurev.immunol.26.021607.090326.
Shepherd, Freya R., and James E. McLaren. 2020. “T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion.” *International Journal of Molecular Sciences* 21: 6144. https://doi.org/10.3390/ijms21176144.

Shuter, J, V B Hatcher, and F D Lowy. 1996. “Staphylococcus Aureus Binding to Human Nasal Mucin.” *Infection and Immunity* 64: 310–18. https://doi.org/10.1128/IAI.64.1.310-318.1996.

Sibbald, M. J. J.B., A. K. Ziebandt, S. Engelmann, M. Hecker, A. de Jong, H. J. M. Harmsen, G. C. Raangs, et al. 2006. “Mapping the Pathways to Staphyloccocal Pathogenesis by Comparative Secretomics.” *Microbiology and Molecular Biology Reviews* 70: 755–88. https://doi.org/10.1128/MMBR.00008-06.

Small, Cherrie-Lee, Sarah McCormick, Navkiran Gill, Kapilan Kugathasan, Michael Santosuosso, Nickett Donaldson, David E. Heinrichs, Ali Ashkar, and Zhou Xing. 2008. “NK Cells Play a Critical Protective Role in Host Defense against Acute Extracellular *Staphylococcus Aureus* Bacterial Infection in the Lung.” *The Journal of Immunology* 180: 5558–68. https://doi.org/10.4049/jimmunol.180.8.5558.

Smyth, S. S., R. P. McEver, A. S. Weyrich, C. N. Morrell, M. R. Hoffman, G. M. Arepally, P. A. French, H. L. Dauerman, and R. C. Becker. 2009, “Platelet Functions beyond Hemostasis.” *J Thromb Haemost* 7: 1759–66. https://doi.org/10.1111/j.1538-7836.2009.03586.x.

Sollid, J.U.E., A.S. Furberg, A.M. Hanssen, and M. Johannesssen. 2014. “Staphylococcus Aureus: Determinants of Human Carriage.” *Infection, Genetics and Evolution* 21: 531–41. https://doi.org/10.1016/j.meegid.2013.03.020.

Souza-Fonseca-Guimaraes, Fernando, Minou Adib-Conquy, and Jean-Marc Cavaillon. 2012. “Natural Killer (NK) Cells in Antibacterial Innate Immunity: Angels or Devils?” *Molecular Medicine* 18: 270–85. https://doi.org/10.2119/molmed.2011.00201.

Spaan, András N., Jos A. G. van Strijp, and Victor J. Torres. 2017. “Leukocidins: Staphylococcal Bi-Component Pore-Forming Toxins Find Their Receptors.” *Nature Reviews Microbiology* 15: 435–47. https://doi.org/10.1038/nrmicro.2017.27.

Spaan, András N., Bas J.G. Surewaard, Reindert Nijland, and Jos A.G. van Strijp. 2013. “Neutrophils Versus Staphylococcus Aureus: A Biological Tug of War.” *Annual Review of Microbiology* 67: 629–50. https://doi.org/10.1146/annurev-micro-092412-155746.

Spaan, András N., Thomas Henry, Willemien J.M. van Rooijen, Magali Perret, Cédric Badiou, Piet C. Aerts, Johan Kemmink, et al. 2013. “The Staphylococcal Toxin Panton-Valentine Leukocidin Targets Human C5a Receptors.” *Cell Host & Microbe* 13: 584–94. https://doi.org/10.1016/j.chom.2013.04.006.

Stagg, Andrew J. 2018. “Intestinal Dendritic Cells in Health and Gut Inflammation.” *Frontiers in Immunology* 9: 2883. https://doi.org/10.3389/fimmu.2018.02883.
"Staphylococcus Aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection | Elsevier Enhanced Reader." n.d. Accessed May 20, 2021. https://doi.org/10.1016/j.chom.2013.09.005.

Stappers, M. H. T., Y. Thys, M. Oosting, T. S. Plantinga, M. Ioana, P. Reimnitz, J. W. Mouton, M. G. Netea, L. A. B. Joosten, and I. C. Gyssens. 2014. “Polymorphisms in Cytokine Genes IL6, TNF, IL10, IL17A and IFNG Influence Susceptibility to Complicated Skin and Skin Structure Infections.” European Journal of Clinical Microbiology & Infectious Diseases 33: 2267–74. https://doi.org/10.1007/s10096-014-2201-0.

Stappers, Mark H. T., Marije Oosting, Mihai Ioana, Peter Reimnitz, Johan W. Mouton, Mihai G. Netea, Inge C. Gyssens, and Leo A. B. Joosten. 2015. “Genetic Variation in TLR10, an Inhibitory Toll-Like Receptor, Influences Susceptibility to Complicated Skin and Skin Structure Infections.” The Journal of Infectious Diseases 212: 1491–99. https://doi.org/10.1093/infdis/jiv229.

Suligoy, Carlos M., Santiago M. Lattar, Mariângeles Noto Llana, Cintia D. González, Lucía P. Alvarez, D. Ashley Robinson, Marisa I. Gómez, Fernanda R. Buzzola, and Daniel O. Sordelli. 2018. “Mutation of Agr Is Associated with the Adaptation of Staphylococcus Aureus to the Host during Chronic Osteomyelitis.” Frontiers in Cellular and Infection Microbiology 8: 18. https://doi.org/10.3389/fcimb.2018.00018.

Sun, Tian, Albert Nguyen, and Jennifer L. Gommerman. 2020. “Dendritic Cell Subsets in Intestinal Immunity and Inflammation.” The Journal of Immunology 204: 1075–83. https://doi.org/10.4049/jimmunol.1900710.

Surewaard, B. G. J., C. J. C. de Haas, F. Vervoort, K. M. Rigby, F. R. DeLeo, M. Otto, J. A. G. van Strijp, and R. Nijland. 2013. “Staphylococcal Alpha-Phenol Soluble Modulins Contribute to Neutrophil Lysis after Phagocytosis.” Cellular Microbiology 15: 1427–37. https://doi.org/10.1111/cmi.12130.

Suzuki, Takuya. 2013. “Regulation of Intestinal Epithelial Permeability by Tight Junctions.” Cellular and Molecular Life Sciences 70: 631–59. https://doi.org/10.1007/s00018-012-1070-x.

Takiishi, Tatiana, Camila Ideli Morales Fenero, and Niels Olsen Saraiva Câmara. 2017. “Intestinal Barrier and Gut Microbiota: Shaping Our Immune Responses throughout Life.” Tissue Barriers 5: e1373208. https://doi.org/10.1080/21688370.2017.1373208.

Tan, Li, Si Rui Li, Bei Jiang, Xiao Mei Hu, and Shu Li. 2018. “Therapeutic Targeting of the Staphylococcus Aureus Accessory Gene Regulator (Agr) System.” Frontiers in Microbiology 9: 55. https://doi.org/10.3389/fmicb.2018.00055.

Teymournejad, Omid, and Christopher P. Montgomery. 2021. “Evasion of Immunological Memory by S. Aureus Infection: Implications for Vaccine Design.” Frontiers in Immunology 12: 633672. https://doi.org/10.3389/fimmu.2021.633672.
Thammavongsa, Vilasack, Hwan Keun Kim, Dominique Missiakas, and Olaf Schneewind. 2015. “Staphylococcal Manipulation of Host Immune Responses.” Nature Reviews Microbiology 13: 529–43. https://doi.org/10.1038/nrmicro3521.

Theresine, Maud, Neha D. Patil, and Jacques Zimmer. 2020. “Airway Natural Killer Cells and Bacteria in Health and Disease.” Frontiers in Immunology 11: 585048. https://doi.org/10.3389/fimmu.2020.585048.

Thomsen, Isaac P., Ashley L. DuMont, David B. A James, Pauline Yoong, Benjamin R. Saville, Nicole Soper, Victor J. Torres, and C. Buddy Creech. 2014. “Children with Invasive Staphylococcus Aureus Disease Exhibit a Potently Neutralizing Antibody Response to the Cytotoxin LukAB.” Edited by S. R. Blanke. Infection and Immunity 82: 1234–42. https://doi.org/10.1128/IAI.01558-13.

Thurlow, Lance R., Mark L. Hanke, Teresa Fritz, Amanda Angle, Amy Aldrich, Stetson H. Williams, Ian L. Engebretsen, Kenneth W. Bayles, Alexander R. Horswill, and Tammy Kielian. 2011. “Staphylococcus Aureus Biofilms Prevent Macrophage Phagocytosis and Attenuate Inflammation in Vivo.” Journal of Immunology 186: 6585–96. https://doi.org/10.4049/jimmunol.1002794.

Thursby, Elizabeth, and Nathalie Juge. 2017. “Introduction to the Human Gut Microbiota.” Biochemical Journal 474: 1823–36. https://doi.org/10.1042/BCJ20160510.

Thwaites, Guy E., and Vanya Gant. 2011. “Are Bloodstream Leukocytes Trojan Horses for the Metastasis of Staphylococcus Aureus?” Nature Reviews Microbiology 9: 215–22. https://doi.org/10.1038/nrmicro2508.

Tromp, Angelino T., Michiel Van Gent, Pauline Abrial, Amandine Martin, Joris P. Jansen, Carla J. C. De Haas, Kok P. M. Van Kessel, et al. 2018. “Human CD45 Is an F-Component-Specific Receptor for the Staphylococcal Toxin Panton–Valentine Leukocidin.” Nature Microbiology 3: 708–17. https://doi.org/10.1038/s41564-018-0159-x.

Turner, Jerrold R. 2009. “Intestinal Mucosal Barrier Function in Health and Disease.” Nature Reviews Immunology 9: 799–809. https://doi.org/10.1038/nri2653.

Turner, Nicholas A., Batu K. Sharma-Kuinkel, Stacey A. Maskarinec, Emily M. Eichenberger, Pratik P. Shah, Manuela Carugati, Thomas L. Holland, and Vance G. Fowler. 2019. “Methicillin-Resistant Staphylococcus Aureus: An Overview of Basic and Clinical Research.” Nature Reviews Microbiology 17: 203–18. https://doi.org/10.1038/s41579-018-0147-4.

Uriarte, Silvia M., Jacob S. Edmisson, and Emeri Jimenez-Flores. 2016. “Human Neutrophils and Oral Microbiota: A Constant Tug-of-War between a Harmonious and a Discordant Coexistence.” Immunological Reviews 273: 282–98. https://doi.org/10.1111/imr.12451.
Verkaik, Nelianne J., Corné P. de Vogel, Hélène A. Boelens, Dorothee Grumann, Theo Hoogenboezem, Cornelis Vink, Herbert Hooijkaas, et al. 2009. “Anti-Staphylococcal Humoral Immune Response in Persistent Nasal Carriers and Noncarriers of Staphylococcus Aureus.” *Journal of Infectious Diseases* 199: 625–32. https://doi.org/10.1086/596743.

Vesterlund, Satu, Matti Karp, Seppo Salminen, and Arthur C. Ouwehand. 2006. “Staphylococcus Aureus Adheres to Human Intestinal Mucus but Can Be Displaced by Certain Lactic Acid Bacteria.” *Microbiology* 152: 1819–26. https://doi.org/10.1099/mic.0.28522-0.

Vivier, Eric, Elena Tomasello, Myriam Baratin, Thierry Walzer, and Sophie Ugolini. 2008. “Functions of Natural Killer Cells.” *Nature Immunology* 9: 503–10. https://doi.org/10.1038/ni1582.

Vogel, B, K Tennert, F Full, and A Ensser. 2014. “Efficient Generation of Human Natural Killer Cell Lines by Viral Transformation.” *Leukemia* 28: 192–95. https://doi.org/10.1038/leu.2013.188.

Voorhees, Timothy, Jihoon Chang, Yongxue Yao, Mark H. Kaplan, Cheong-Hee Chang, and Jeffrey B. Travers. 2011. “Dendritic Cells Produce Inflammatory Cytokines in Response to Bacterial Products from Staphylococcus Aureus-Infected Atopic Dermatitis Lesions.” *Cellular Immunology* 267: 17–22. https://doi.org/10.1016/j.cellimm.2010.10.010.

Voyich, Jovanka M., Kevin R. Braughton, Daniel E. Sturdevant, Adeline R. Whitney, Battouli Saïd-Salim, Stephen F. Porcella, R. Daniel Long, et al. 2005. “Insights into Mechanisms Used by Staphylococcus Aureus to Avoid Destruction by Human Neutrophils.” *The Journal of Immunology* 175: 3907–19. https://doi.org/10.4049/jimmunol.175.6.3907.

Wang, Jian, Fengqi Li, Rui Sun, Xiang Gao, Haiming Wei, Lan-Juan Li, and Zhigang Tian. 2013. “Bacterial Colonization Dampens Influenza-Mediated Acute Lung Injury via Induction of M2 Alveolar Macrophages.” *Nature Communications* 4: 2106. https://doi.org/10.1038/ncomms3106.

Wang, Rong, Kevin R Braughton, Dorothee Kretschmer, Thanh-Huy L Bach, Shu Y Queck, Min Li, Adam D Kennedy, et al. 2007. “Identification of Novel Cytolytic Peptides as Key Virulence Determinants for Community-Associated MRSA.” *Nature Medicine* 13: 1510–14. https://doi.org/10.1038/nm1656.

Weidenmaier, Christopher. 2012. “Staphylococcus Aureus Determinants for Nasal Colonization”. Trends Microbiol. 20: 243-50. https://doi.org/10.1016/j.tim.2012.03.004.

Wertheim, H. F., M. C. Vos, A. Ott, A. van Belkum, A. Voss, J. A. Kluytmans, P. H. van Keulen, C. M. Vandenbroucke-Grauls, M. H. Meester, and H. A. Verbrugh. 2004. “Risk and Outcome of Nosocomial Staphylococcus Aureus Bacteraemia in Nasal Carriers versus Non-Carriers.” *Lancet* 364: 703–5. https://doi.org/10.1016/s0140-6736(04)6897-9.
Wertheim, Heiman FL, Damian C Melles, Margreet C Vos, Willem van Leeuwen, Alex van Belkum, Henri A Verbrugh, and Jan L Nouwen. 2005. “The Role of Nasal Carriage in Staphylococcus Aureus Infections.” The Lancet Infectious Diseases 5: 751–62. https://doi.org/10.1016/S1473-3099(05)70295-4.

Wolkewitz, M., U. Frank, G. Philips, M. Schumacher, P. Davey, on behalf of the BURDEN study group, U. Frank, et al. 2011. “Mortality Associated with In-Hospital Bacteraemia Caused by Staphylococcus Aureus: A Multistate Analysis with Follow-up beyond Hospital Discharge.” Journal of Antimicrobial Chemotherapy 66: 381–86. https://doi.org/10.1093/jac/dkq424.

Worbs, Tim, Swantje I. Hammerschmidt, and Reinhold Förster. 2017. “Dendritic Cell Migration in Health and Disease.” Nature Reviews Immunology 17: 30–48. https://doi.org/10.1038/nri.2016.116.

Wuescher, L. M., A. Takashima, and R. G. Worth. 2015. “A Novel Conditional Platelet Depletion Mouse Model Reveals the Importance of Platelets in Protection against Staphylococcus Aureus Bacteremia.” J Thromb Haemost 13: 303–13. https://doi.org/10.1111/jth.12795.

Xiong, Huizhong, and Eric G. Pamer. 2015. “MONOCYTES AND INFECTION: MODULATOR, MESSENGER AND EFFECTOR.” Immunobiology 220: 210–14. https://doi.org/10.1016/j.imbio.2014.08.007.

Young, B. C., T. Golubchik, E. M. Batty, R. Fung, H. Larner-Svensson, A. A. Votintseva, R. R. Miller, et al. 2012. “Evolutionary Dynamics of Staphylococcus Aureus during Progression from Carriage to Disease.” Proceedings of the National Academy of Sciences 109: 4550–55. https://doi.org/10.1073/pnas.1113219109.

Zhang, Dapeng, Sha Li, Ning Wang, Hor-Yue Tan, Zhimin Zhang, and Yibin Feng. 2020. “The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases.” Frontiers in Microbiology 11: 301. https://doi.org/10.3389/fmicb.2020.00301.

Zhang, N., K. Van Crombruggen, E. Gevaert, and C. Bachert. 2016. “Barrier Function of the Nasal Mucosa in Health and Type-2 Biased Airway Diseases.” Allergy 71: 295–307. https://doi.org/10.1111/all.12809.

Zhao, Xin, Monika A. Chlebowicz-Flissikowska, Min Wang, Elias Vera Murguia, Anne de Jong, Dörte Becher, Sandra Maaß, Girbe Buist, and Jan Maarten van Dijl. 2020. “Exoproteomic Profiling Uncovers Critical Determinants for Virulence of Livestock-Associated and Human-Originated Staphylococcus Aureus ST398 Strains.” Virulence 11: 947–63. https://doi.org/10.1080/21505594.2020.1793525.

Zhao, Xin, Laura M. Palma Medina, Tim Stobernack, Corinna Glasner, Anne de Jong, Putri Utari, Rita Setroikromo, et al. 2019. “Exoproteome Heterogeneity among Closely Related Staphylococcus Aureus T437 Isolates and Possible Implications for
Virulence.” *Journal of Proteome Research* 18: 2859–74. https://doi.org/10.1021/acs.jproteome.9b00179.

Zhou, Kaixiang, Chao Li, Dongmei Chen, Yuanhu Pan, Yanfei Tao, Wei Qu, Zhenli Liu, Xiaofang Wang, and Shuyu Xie. 2018. “A Review on Nanosystems as an Effective Approach against Infections of *Staphylococcus Aureus*.” *International Journal of Nanomedicine* 13: 7333–47. https://doi.org/10.2147/IJN.S169935.

Zhu, Hongyi, Hanqiang Jin, Changqing Zhang, and Ting Yuan. 2020. “Intestinal Methicillin-Resistant *Staphylococcus Aureus* Causes Prosthetic Infection via ‘Trojan Horse’ Mechanism: Evidence from a Rat Model.” *Bone & Joint Research* 9: 152–61. https://doi.org/10.1302/2046-3758.94.BJR-2019-0205.R1.

Zoller, Stephen D., Howard Y. Park, Tove Olafsen, Charles Zamilpa, Zachary D. C. Burke, Gideon Blumstein, William L. Sheppard, et al. 2019. “Multimodal Imaging Guides Surgical Management in a Preclinical Spinal Implant Infection Model.” 4: e124813. https://doi.org/10.1172/jci.insight.124813.

Zucchini, Nicolas, Karine Crozat, Thomas Baranek, Scott H Robbins, Marcus Altfeld, and Marc Dalod. 2008. “Natural Killer Cells in Immunodefense against Infective Agents.” *Expert Review of Anti-Infective Therapy* 6: 867–85. https://doi.org/10.1586/14787210.6.6.867.
Figure 1. Routes of *S. aureus* acquisition, dissemination in the human body and transmission. *S. aureus* can enter the human body via direct or indirect interpersonal contacts, contaminated food products, trauma and surgery. Following contamination and colonization, *S. aureus* may be disseminated to different body sites. As a consequence, *S. aureus* may reside in the nasal cavity, oral cavity, gut and lungs, or on the skin. Translocation of *S. aureus* between these different sites may relate to changes in the complexity of the nasal, oral, gut, lung or skin microbiota, infectious...
diseases, trauma or surgery. Immune cells in the mucosa, in tissues, the vasculature and lymphatic system can contribute to the staphylococcal dissemination within the body. Transmission of *S. aureus* to newborns may take place through breast feeding and parental skin contact. Lastly, the bacterium can be disseminated from the gut into the environment, which may lead to its transmission to other individuals via the fecal-oral route. Arrows indicate directions of bacterial dissemination, and solid lines mark relevant anatomical sites.
Figure 2. A proposed model for *S. aureus* colonization of the nasopharynx and the human gut, and mechanisms that promote bacterial dissemination to various parts of the human body. (A) *S. aureus* frequently resides both in the nasal and oral cavities. In the nasopharynx *S. aureus* interacts with different cells of the epithelium, the mucus layer, co-resident nasal microbiota and immune cells. These interactions and factors, such as active disruption of the nasal barrier by other microorganisms, host-immune failure and inflammation may help *S. aureus* to translocate into deeper seated tissues, cavities and blood vessels, and from there to other body sites. (B) Following ingestion, surgery or translocation from the bloodstream or lymphatic system, *S. aureus* may reach the gut. Upon gut colonization, *S. aureus* interacts with the mucus layer, different cells of the intestinal epithelium, co-resident gut microbiota and immune cells. These interactions and factors, such as active disruption of the gut barrier by other microorganisms, host-immune failure, changes in the gut permeability due to inflammation and gut health (e.g. dysbiosis) may help *S. aureus* to translocate from the mucus layer into deeper-seated tissues and blood vessels. However, the mechanisms that allow *S. aureus* to colonize the human gut or to breach the human gut barrier need to be further investigated.
Figure 3. Schematic representation of post-surgical wound infection caused by *S. aureus*. (A) Early onset infections may be a consequence of wound contamination during surgery. Superficial surgical site infections affect the epidermis, dermis and subcutaneous tissue, but they may progress to deep-seated soft tissues and the blood stream. (B) Surgical wounds may also be contaminated with *S. aureus* through a hematogenous route, which can explain late-onset infections after wound closure. In this case, the blood-borne *S. aureus* may originate from endogenous bacterial reservoirs in the nasopharynx, mouth, lungs or gut. Conceivably, this involves *S. aureus* hiding inside immune cells that are recruited to the surgical site and serve as Trojan horses.
Table 1. Determinants for the *S. aureus* switch from colonizer to pathogen
Bacterial factors

- Virulence factors; e.g. regulators of gene expression, surface-associated and secreted virulence factors, and small molecules
- MGEs; e.g. bacteriophages, pathogenicity islands, staphylococcal cassette chromosomes; plasmids and transposons
- Variations in the bacterial genome; e.g. clonal variations, gene level variations and single nucleotide variations
- Metabolic adaptations to different niches of the human body; e.g. for adaptation to the nasal environment and intracellular adaptation
- Bacterial load; e.g. by influencing the immune clearance, defining a persistent or intermittent carrier
Immune cells

Neutrophils
- Body sites: vasculature, oral and nasal cavity, gut and lungs
- Movement: Highly mobile | - Extracellular antimicrobial killing:
- NETs and degranulation
- Phagocytosis and bacterial killing | - S. aureus from the extracellular environment evades the immune cells’ killing mechanisms and can mediate cell lysis
- S. aureus survival within the phagosome and/or intracellular replication
- S. aureus escapes from the phagosome, proliferates in the cytosol, causes host cell lysis and escapes | - Thwaites et al. 2011
- Krezalek et al. 2018
- Zhu et al. 2020 |
| Monocytes | - Lifespan: relatively brief, until ≈24h
- Body sites & movement: mobile in the vasculature | - Extracellular antimicrobial killing
- Phagocytosis and bacterial killing | - S. aureus from the extracellular environment evades the immune cells’ killing mechanisms and can mediate cell lysis
- S. aureus intracellular survival | - No published evidence for S. aureus
- Publications on other pathogens (e.g. Listeria, Mycobacterium) |
| Macrophages | - Lifespan: relatively long, from months to years
- Body sites: oral and nasal cavity, gut and lungs
- Movement: Limited within the tissues | - Extracellular antimicrobial killing:
- NETs and degranulation
- Phagocytosis and bacterial killing | - S. aureus from the extracellular environment evades the immune cells’ killing mechanisms and can mediate cell lysis
- S. aureus survival within the phagosome and/or intracellular replication
- S. aureus escapes from the phagosome, proliferates in the cytosol, causes host cell lysis and escapes | - No published evidence for S. aureus |
| Dendritic cells | - Lifespan: ≈ 10 days
- Body sites & movement: mobile in the vasculature | - Bacterial uptake: cause bacterial lysis and present bacteria-derived peptides on MHC class II molecules to T cells and initiate specific immune responses | - S. aureus from the extracellular environment evades the immune cells’ killing mechanisms and can mediate cell lysis
- S. aureus escapes from the phagosome, persists intracellularly or is released into the cytosol and subsequently into the extracellular environment | - No published evidence for S. aureus
- Evidences for other pathogens (e.g. Salmonella, Mycobacterium) |
| Platelets | - Lifespan: until ≈ 15 days
- Body sites & movement: highly mobile vasculature, oral and nasal cavity, gut and lungs | - Direct antimicrobial activity by killing extracellular bacteria, or indirect antimicrobial activity by modulating immune responses in different ways | - S. aureus from the extracellular environment can inhibit and modulate platelet function | - No evidence and unlikely due to size constraints |
| Natural killer cells | - Lifespan: until ≈ 15 days
- Body sites & movement: highly mobile vasculature, oral and nasal cavity, gut and lungs | - Direct antimicrobial activity by killing the bacteria or the infected cells
- Indirect antimicrobial activity by stimulating the activity of other immune cells | - S. aureus from the extracellular environment evades the immune cells’ killing mechanisms, can manipulate the host cells and can cause host cell lysis | - No published evidence for S. aureus or other bacterial pathogens |

Table 2. Overview of possible interactions between S. aureus and innate immune cells.