The Importance of Leukotrienes in Airway Inflammation in a Mouse Model of Asthma

By William R. Henderson, Jr.,* David B. Lewis,‡ Richard K. Albert,* Yu Zhang,‡ Wayne J.E. Lamm,* Gertrude K.S. Chiang,* Falaah Jones,* Pia Eriksen,* Ying-tzang Tien,† Mechthild Jonas,† and Emil Y. Chi~

From the *Department of Medicine, University of Washington, Seattle, Washington 98195; ‡Department of Pediatrics, University of Washington, Seattle, Washington 98195; and †Department of Pathology, University of Washington, Seattle, Washington 98195

Summary

Inhalation of antigen in immunized mice induces an infiltration of eosinophils into the airways and increased bronchial hyperreactivity as are observed in human asthma. We employed a model of late-phase allergic pulmonary inflammation in mice to address the role of leukotrienes (LT) in mediating airway eosinophilia and hyperreactivity to methacholine. Allergen intranasal challenge in OVA-sensitized mice induced LTB4 and LTC4 release into the airspace, widespread mucus occlusion of the airways, leukocytic infiltration of the airway tissue and bronchoalveolar lavage fluid that was predominantly eosinophils, and bronchial hyperreactivity to methacholine. Specific inhibitors of 5-lipoxygenase and 5-lipoxygenase-activating protein (FLAP) blocked airway mucus release and infiltration by eosinophils indicating a key role for leukotrienes in these features of allergic pulmonary inflammation. The role of leukotrienes or eosinophils in mediating airway hyperresponsiveness to allergen could not be established, however, in this murine model.

IgE-receptor-mediated activation of mast cells in the airways leads to oxygenation of arachidonic acid by 5-lipoxygenase and generation of leukotrienes (LT)1 (1,2). LTB4 stimulates leukocyte chemotaxis (3), and the cysteinyl leukotrienes C4, D4, and E4 induce bronchoconstriction (4,5), mucus secretion (2) and also promote eosinophil chemotaxis (6,7) and hydrostatic pulmonary edema formation (8,9). After inhalation of specific allergen, allergic individuals may have both an early and late asthmatic response. Mast cell-derived bronchoconstrictors such as histamine (10) and cysteinyl leukotrienes (11,12) likely contribute to the early bronchospastic response occurring within 30 min after allergen challenge. A late asthmatic phase occurs several hours after exposure to allergen and is of prolonged duration; an infiltration of the airway epithelium and bronchial fluid by eosinophils is characteristic of this phase (13,14).

The mouse is also susceptible to development of IgE-mediated allergic responses. The late-phase influx of eosinophils is reproduced in a murine model in which allergic airway disease develops after ovalbumin inhalation in mice previously sensitized to ovalbumin intraperitoneally (15). Increased airway responsiveness to methacholine (16) or acetylcholine (17) challenge also occurs in immunized mice after airway exposure to antigen. In a mouse model of allergen-induced airway inflammation, we examined the role of leukotrienes in mediating airway eosinophil infiltration, mucus release, and hyperresponsiveness to methacholine. We report that leukotrienes are key mediators of the mucus release and eosinophil infiltration of the airways, but not the airway hyperresponsiveness of the late phase asthma response.

Materials and Methods

Special Reagents. Crystalline OVA was obtained from Pierce Chem. Co. (Rockford, IL), aluminum potassium sulfate (alum) from Sigma Chem. Co. (St. Louis, MO), pyrogen-free distilled water from Baxter, Healthcare Corporation (Deerfield, IL), 0.9% sodium chloride (normal saline) from Lyphomed (Deerfield, IL), and TrappsolHPB-L100 (aqueous hydroxpropyl beta cyclodextrin; 45 wt/vol% aqueous solution) from Cyclodextrin Technologies Development Inc. (Gainesville, FL). The OVA (500 µg/ml in normal saline) was mixed with equal volumes of 10% (wt/vol) alum in distilled water. The mixture (pH 6.5 using 10 N NaOH) after incubation for 60 min at room temperature underwent centrifugation at 750 g for 5 min; the pellet was resuspended to the original volume in distilled water and used within 1 h.

Abbreviations used in the paper: alum, aluminum potassium sulfate; BAL, bronchoalveolar lavage; FLAP, 5-lipoxygenase-activating protein; i.n., intranasal; LT, leukotriene; PAS, periodic acid-Schiff.
The selective 5-lipoxygenase inhibitor zileuton (N-[1-benzo-3-thien-2-ylethyl]-N-hydroxyurea) (18) was kindly provided by Drs. Randy L. Bell and George W. Carter (Abbott Laboratories, Abbott Park, IL). The selective 5-lipoxygenase-activating protein (FLAP) inhibitor MK-886 (L-663,536;3-[1-(4-chlorobenzyl)-3-t-butyl-thio-1-isopropyl-indol-2-yl]-2-2-dimethylpropanoic acid) (19, 20) was generously provided by Dr. Anthony Ford-Hutchinson (Merck Frost Centre for Therapeutic Research, Pointe Claire-Dorval, Quebec, Canada). Zileuton was dissolved in Trappsol®; MK-886 was dissolved in dimethylsulfoxide (DMSO) and then diluted in normal saline, pH 7.0.

Animals. All animal use protocols were approved by the University of Washington Animal Care Committee. Female BALB/c mice (6–8 wk of age at purchase; D and K, Seattle, WA) were housed under conventional conditions for the studies.

Allergen Immunization/Challenge Protocol. Mice received an i.p. injection of 0.2 ml (100 μg) of OVA complexed with alum on day 0 and 14. On days 14, 25, 26, and 27, mice were anesthetized with 0.2 ml i.p. of ketamine (0.44 mg/ml)/xylazine (6.3 mg/ml) in normal saline before receiving an intranasal (i.n.) dose of 100 μg OVA in 0.05 ml normal saline on day 14 and an i.n. dose of 50 μg OVA in 0.05 ml normal saline on days 25, 26, and 27. Two control groups were used. The first group received normal saline with alum i.p. on days 0 and 14 and normal saline without alum i.n. on days 14, 25, 26, and 27. The second group received OVA with alum i.p. on days 0 and 14, OVA without alum i.n. on day 14, and normal saline alone on days 25, 26, and 27.

Leukotriene Inhibitor and LTδ4 Studies. To assess the role of 5-lipoxygenase products in airway inflammation, the 5-lipoxygenase inhibitor zileuton (35 mg/kg) or the FLAP inhibitor MK-886 (3 mg/kg) were given i.p. 30 min before each i.n. challenge on days 25, 26, and 27. In one set of animals, zileuton was also given on days 0 and 14 (before i.p. OVA). Zileuton at 35 mg/kg inhibits cysteinyl leukotriene release by ~95% in passively sensitized rats given BSA antigen i.p. (18). MK-886 at 3 mg/kg inhibits LTδ4 biosynthesis by 98% in inflamed rat paws given subplantar injection of thioglycollate following 6 h later by calcium ionophore A23187 treatment (20).

To assess the role of leukotrienes in airway mucus release, non-immunized mice received 0.1 ml i.n. of either LTδ4 (2.5 μg in 1% ethanol) or vehicle (1% ethanol). After 60 min, lung tissue was inflated by intravenous infusions of methacholine were determined in mice in vivo by a plethysmographic method modified from that previously described by Amdur and Mead (21) and Martin et al. (22). After pentobarbital (70–90 mg/kg, i.p.) anesthesia, the mice underwent thoracotomy with wide opening of the thorax, jugular vein cannulation with 8 cm silastic tubing, and tracheal intubation with an angled 18-gauge blunt needle. In one compartment (0.25 ml dead space) of a two chamber whole body plethysmograph, the animal was placed in a supine position and connected to a Harvard ventilator. Normal arterial blood gases were maintained by the following minute ventilation: tidal volume = 0.2 ml/20 gm, frequency 120 breaths/min, positive end-expiratory pressure 2.5–3 cm H₂O (23). Constant temperature in the plethysmograph was maintained by a copper mesh heat sink. Since the plethysmograph was a closed system, the change in lung volume (Δvol = P-box) of the mouse; P-box is equivalent to lung pleural pressure. The system was calibrated by syringe delivery of 0.2 ml air at a frequency of ~120/min. Rapid ambient pressure swings (e.g., door openings) in the first chamber were offset by reference of the transducer to the pressure in the second chamber. A microvalve with a time constant ~4.5 s was placed between the two compartments to correct for any temperature increases in the first chamber resulting from the body heat of the animal. A second microvalve with a longer time constant (~11 s) was open to ambient air to keep mean P-box close to zero. Pressure movements at the opening of the tracheal tube (P-t) were measured by another transducer, referenced to P-box to determine transpulmonary pressure (P-p = P-sw - P-box).

After initial inflation to a P-sw of 30–35 cm H₂O, the lungs were inflated at least once 1–2 min before each measurement to prevent partial collapse. An analog-to-digital data acquisition system (Strawberry Tree®) was employed to sample P-p and P-box at 5-ms intervals. The digital P-p data were then offset by 15 ms to bring it into phase with the P-box signal as determined by making a step change in P-box with no animal connected to the tracheal cannula. A smoothing function was applied to dampen the background noise in P-box.

\[
\left(\frac{X-1}{4} + 2X + (X+1)\right)
\]

where X is the flow at a specific time point. The change in volume from point-to-point/5 ms was used to calculate flow.

Data from seven consecutive breaths collected three times during the first 10 min were used to calculate basal pulmonary function. Methacholine was then infused by hand delivery into the jugular vein over 10 s at increasing concentrations (3, 12, 48, 120, and 480 μg/kg) after 10 min of ventilation. Intervals of 1.5–3 min between injections enabled pulmonary function to return to basal levels. Resistance (R), lung conductance (G L = 1/R), and dynamic compliance (\(C_{dyn}\)) were determined for both the control period and the peak response to each methacholine concentration that was seen during 30 s of monitoring post-injection to bracket the peak response. Tracheal tube resistance (0.63 cm H₂O × ml⁻¹ × s⁻¹) was subtracted from all airway resistance measurements. The difference in P-p and air flow at mid-tidal volume on inflation and deflation was used to calculate R. \(C_{dyn}\) was calculated as the change in tidal volume divided by the difference between P-p at end-inspiration and end-expiration when flow is zero. \(C_{dyn}\) was expressed as the percent of basal value. The methacholine dose which reduced G, and \(C_{dyn}\) to 75 and 50% of the control values (ED₂₅ and ED₅₀, respectively) was calculated from the log dose–peak response curves and expressed as the geometric mean + log SD. At the completion of pulmonary function testing, each mouse was exsanguinated by cardiac puncture.

Bronchoalveolar Lavage. After tying off the left lung at the mainstem bronchus, the right lung was lavaged three times with 0.4 ml of normal saline. Bronchoalveolar lavage (BAL) fluid cells from a 0.05–ml aliquot of the pooled sample were counted using a hemocytometer and the remaining fluid centrifuged at 4°C for 10 min at 200 g. The supernatant was stored at −70°C until eicosanoid analyses were performed. After resuspension of the cell pellet in normal saline containing 10% BSA, BAL cell smear were made on glass slides. To stain eosinophils, dried slides were stained with Discombe’s diluting fluid (0.05 % aqueous eosin and 5% [vol/vol] acetic acid in distilled water) (24) for 5–8 min, rinsed. 1484 Role of Leukotrienes in Allergic Airway Inflammation
with water for 0.5 min, and counterstained with 0.07% methyl-
blue for 2 min.

Lung Histology. After BAL, the trachea and left lung (upper
and lower lobes) were obtained and fixed in Carnoy's solution at
20°C for ~15 h. After embedding in paraffin, the tissues were cut
into 5-μm sections and stained with Discombe's solution and
counterstained with methylblue as described above. The
eosinophil number per unit airway area (2,200 μm²) was deter-
mimed by morphometry as previously described (25, 26). Airway
mucus was identified by the following staining methods: methyl-
blue, hematoxylin and eosin, mucicarmine, toluidine blue,
alcian blue, and alcian blue/periodic acid-Schiff (PAS) reaction
(27, 28). Mucin was stained with mucicarmine solution; metani-
yellow counterstain was employed. Mucin and sialic acid-rich
nonsulfated mucosubstances were stained metachromatically
with toluidine blue, pH 4.5. Acidic mucin and sulfated mucosub-
stances were stained with alcian blue, pH 2.5; nuclear fast red
counterstain was used. Neutral and acidic mucosubstances were
identified by alcian blue, pH 2.5, and PAS reaction. The degree
of mucus plugging of the airways (0.5–0.8 mm in diameter) was
also assessed by morphometry. The percent occlusion of airway
diameter by mucus was classified on a semiquantitative scale from
0 to ++++ as described in the Figure Legends. The histologic
and morphometric analyses were performed by individuals
blinded to the protocol design.

Assay of Airway Mucous Glycoproteins. Mucus glycoproteins in
BAL fluid were assayed by slot blotting and PAS staining as previ-
ously described (29, 30). Nitrocellulose membranes (0.2-μm pore
size; Schleicher & Schuell, Keene, NH) were wetted in distilled
water and then in normal saline before placement in a Minifold II
72-well slot blot apparatus (Schleicher & Schuell). The BAL fluid
samples (0.05 ml) and aliquots (0.05–0.75 ml) of a stock solution
(2 μg/ml) of human respiratory mucin glycoprotein (31) (kindly
provided by Dr. James Shelhamer) were blotted onto the nitro-
cellulose membranes by water suction vacuum, and mucus glyco-
proteins were visualized by PAS reaction. Reflectance densitom-
etry was performed to quantify the PAS staining. The images
were captured and digitized by a ScanJet IIc Scanner with HP
DeskScan II software (Microsoft® Windows™ Version) (Hewlett
Packard, Palo Alto, CA). This system was linked to a Dell Di-
dimension XPS P90 computer (Dell Corporation, Austin, TX) em-
ploying Image-Pro® Plus, Version 1.1 for Windows™ software
(Media Cybernetics, Silver Spring, MD). The images were as-
essed on a 256 gray level scale using a Dell UltraScan 17ES mon-
tor with extra high-resolution graphics mode (1,280 × 1,024
pixels, 78.9-kHz horizontal scanning frequency, 74-Hz vertical
scanning frequency). The integrated intensity of the PAS reactiv-
ity of the BAL samples was quantitated by comparison to the
standard curve for human respiratory mucin as previously de-
scribed (29).

Specific Antibody Levels. Previous studies have demonstrated
that i.p. immunization with OVA results in detectable levels of
OVA-specific IgE in the blood of BALB/c mice (32). Indirect
ELISA was employed to determine OVA-specific IgE serum anti-ody titers. ELISA plates (ICN, Costa Mesa, CA) were coated
with OVA (20 mg/ml) diluted in 0.1 M NaHCO3 buffer, pH 8.3
and incubated at 4°C for 18 h. After washing three times, the
plates were incubated with 1% BSA in PBS, pH 7.4, at 37°C for 2 h.
Serial dilutions of the serum samples in 1% BSA/PBS buffer were
added to the plates and incubated at 4°C for 18 h before washing
again. The wells were incubated with HRP-conjugated rat anti-
mouse IgE monoclonal antibody (PharMingen, San Diego, CA)
dilated in 50% goat serum (GIBCO BRL, Gaithersburg, MD)/
PBS buffer for 2 h at room temperature. 3,3′,5′,5′-tetracyanobenz-
zenediamide substrate was used to develop the wells with absorb-
ance determined at 610 nm. The internal standard in each assay
consisted of pooled serum from OVA-immunized BALB/c mice.

Eicosanoid Assays. BAL fluid was assayed for LTB4 and LTC4
in duplicate by RIA (33). LTB4 was assayed using a commercial
[3H]LTB4 RIA kit (NEN Research Products, Boston, MA). The
detection limit for LTB4 was 12.5 pg/0.1 ml sample. LTC4 was
obtained from Cayman Chemical Co. (Ann Arbor, MI) and
[3H]LTC4 from NEN Research Products (Boston, MA). Rabbit
antiserum against LTC4 (kindly provided by Drs. Robert W. Egan
and John L. Humes, Merck Institute for Therapeutic Research,
Rahway, NJ) had the following cross-reactivities at B/Bo 50%:
(5S, 6R)-LTC4, 100%; LTD4, 43%; 11-trans-LTD4, 47%; LTE4,
6%; LTE6, 50%; (5R, 6R)-LTC4, 100%; (5S, 6S)-LTC4, 1.7%;
(5R, 5S)-LTC4, 0.7%; LTC4-sulfone, 10%; LTD4-sulfone, 7%;
LTE4-sulfone, 0.4%; LTF4-sulfone, 1.0%; and LTD4, (5S, 6R)-
7,8,9,10,11,12,14,15-octahydro-LTC4, PGE2, PGF2α, glutathione,
5-HETE, and arachidonic acid each <0.2% (34). The LTC4 RIA
had a sensitivity of 20 pg/0.1 ml sample.

Statistical Analyses. The pulmonary function data were evalu-
ated by analysis of variance (ANOVA) using the protected least
significant difference method (Statview II, Abacus Concepts, Berke-
ley, CA). This method uses a multiple t statistic to evaluate all
possible pairwise comparisons and is applicable for both equal and
Figure 2. Histologic evidence of airway inflammation in OVA-treated and control mice: effect of 5-lipoxygenase inhibition. Lung tissue was obtained from sham-sensitized and saline-challenged mice (A), and OVA-immunized/challenged mice in the absence (B) or presence (C) of zileuton treatment. Lung sections were stained in Discombe's solution, counterstained with methylene blue, and examined by light microscopy as described in Materials and Methods. (A) The airway lumen (AL) is clear of mucus and cells in control mice. The bronchial epithelium is intact. Connective tissue cells but not leukocytes are present in the peribronchial interstitial space. (B) Large amounts of secreted mucus are identified in the lumen of the airways of the OVA-sensitized/challenged mice by methylene blue staining. Massive infiltration of the interstitial tissue by eosinophils and other inflammatory cells is noted (arrows). (C) Airway mucus release in the airway lumen (AL) is markedly reduced when the 5-lipoxygenase inhibitor zileuton is given before i.n. OVA. The infiltration of the interstitial tissue by eosinophils is also reduced after zileuton treatment compared to OVA-challenge alone (B). Bars, 100 μm.

Figure 3. Eosinophil infiltration of lung tissue and BAL fluid in OVA-treated mice. Lung tissue and BAL fluid cells from OVA-immunized/challenged mice were stained for eosinophils as described in Fig. 2 B. (A) Eosinophils (arrows) are the predominant inflammatory cell in the interstitial tissue of the airway. (B) Large accumulation of mucus (arrowheads) in the airway lumen is observed. Many goblet cells (*) are seen in the airway. Numerous eosinophils (arrowheads) are found in the mucus plug. (C) The majority of the BAL fluid cells are eosinophils (arrowheads). Alveolar macrophages (arrowheads) are also observed. Bars, (A) 50 μm; (B and C) 10 μm.
Figure 4. Mucus occlusion of lower airways in OVA-treated mice. Lower lobe tissue of the left lung from OVA-immunized/challenged mice was stained for mucus by mucicarmine (A), toluidine blue (B), alcian blue (C), and alcian blue/PAS (D) procedures as described in Materials and Methods. (A) Airway mucin is stained rose-red by mucicarmine, and interstitium is stained yellow by the metanil yellow counterstain. (B) Mucin and nonsulfated acidic mucosubstances are stained metachromatically red-purple by toluidine blue. (C) Acidic sulfated mucosubstances and mucins are stained blue by alcian blue, and nuclei are stained pink-red by the nuclear fast red counterstain. (D) Acidic and neutral mucosubstances are stained magenta by alcian blue/PAS. Bar, 100 μm.
unequal pair sizes. The other data are reported as the mean ± SE of the combined experiments. Differences were analyzed for significance (P <0.05) by Student's two-tailed t test for independent means.

Results

Allergen-Specific IgE Production. OVA-specific IgE (14.9 ± 3.5 U/ml, n = 5) was detected on day 28 in the blood of mice given i.p. OVA and alum on day 0 and 14 and i.n. OVA on days 25, 26, and 27. In contrast, control mice treated with i.p. saline and alum and i.n. saline (n = 6) had no detectable anti-OVA IgE.

Allergen-induced Eicosanoid Release in BAL Fluid. BAL fluid was obtained 24 h after the third i.n. administration of either OVA or saline in mice that had received i.p. either OVA or saline respectively and assayed for eicosanoids. The BAL fluid levels of the 5-lipoxygenase products LTB₄ (Fig. 1 A) and LTC₄ (Fig. 1 B) were 3.4-fold (P <0.03 compared to saline) and 5.0-fold (P <0.05, compared to saline) higher respectively in the OVA-immunized/challenged mice than in the mice receiving saline only. The selective 5-lipoxygenase inhibitor zileuton given 30 min before i.n. challenge with OVA on day 25, 26, and 27 significantly inhibited LTB₄ and LTC₄ release compared to mice challenged with i.n. OVA in the absence of zileuton (Fig. 1). The levels of LTB₄ and LTC₄ in the BAL fluid of OVA-immunized/challenged mice treated with zileuton were not significantly different from those of the saline control group (Fig. 1).

Allergen-induced Airway Inflammation. To assess allergen-induced airway inflammation histologically, lung tissue and BAL fluid were obtained on day 28, 24 h after the last of 3 sequential i.n. OVA challenges on days 25, 26, and 27. By light microscopy, prominent infiltration of the bronchial interstitium by eosinophils was observed (Figs. 2 B and 3 A). Eosinophil influx into the bronchial epithelial mucus layer (Fig. 3 B) and the BAL fluid (Fig. 3 C) was also noted. 63.6 ± 3.2% (n = 10) of the BAL fluid cells were eosinophils in OVA-sensitized/challenged mice compared to 0.8 ± 0.3% (n = 10) in saline-challenged control animals (P = 0.0001). Mucus occlusion of the airways occurred in immunized mice after bronchial challenge with OVA (Fig. 2 B). Airway mucus release in both lower (Fig. 5) pulmonary airways was identified by several histochemical staining procedures: mucin by mucicarmine stain (Figs. 4 A and 5 A), acidic nonsulfated mucosubstances by toluidine blue (Figs. 4 B and 5 B), acidic sulfated mucosubstances by alcian blue (Figs. 4 C and 5 C), and neutral and acidic mucosubstances by alcian blue/PAS reaction (Figs. 4 D and 5 D). Airway lumen occlusion by mucus was greater in the smaller diameter airways. These inflammatory changes were absent in i.n. saline-challenged control animals that had been treated i.p. with either saline (Fig. 2 A) or OVA (not shown) with alum.

Leukotriene Inhibition Blocks Eosinophil Infiltration and Mucus Accumulation in Airways. 5-Lipoxygenase inhibition by zileuton markedly reduced eosinophil influx into the lung tissue and BAL fluid of OVA-sensitized/challenged mice and also prevented airway mucus release in these animals (Fig. 2 C).

Eosinophil Infiltration. By morphometric analysis, the eosinophil influx into the lung interstitium was reduced 82% by zileuton treatment (P <0.006 compared to OVA without zileuton) (Fig. 6 A). The FLAP inhibitor MK-886 decreased the number of eosinophils in the BAL fluid by 86% (P <0.0004 compared to OVA without MK-886) (Fig. 6 B). The number of eosinophils per total lavage fluid collected is shown. *P value, Zileuton/OVA versus OVA.

Figure 5. Mucus release in upper airways in OVA-treated mice. Upper lobe lung sections from OVA-treated mice were stained histochemically for mucus as described in Fig. 4. The airways shown are larger in diameter and have a greater density of smooth muscle cells than the small airways seen in Fig. 4. (A) Mucicarmine staining (rose-red) of upper airway mucus is shown. (B) Metachromatic toluidine blue staining (red-purple) of nonsulfated acidic mucosubstances and mucus is demonstrated. (C) Acidic sulfated mucosubstances, hyaluronic acid, and sialomucins are stained blue by alcian blue. (D) Alcian blue/PAS staining (magenta) of neutral and acidic mucosubstances is shown. Bar, 200 μm.
Figure 7. Effect of 5-lipoxygenase inhibition on mucus accumulation in the airways of OVA-treated and control mice. The percent distribution of mucus occlusion of airways from sham-sensitized and saline-challenged mice (Saline; n = 8), and OVA-sensitized/challenged mice in the absence (OVA; n = 7) or presence (Zileuton/OVA; n = 7) of zileuton treatment. Mucus occlusion of airway diameter was assayed morphometrically as follows: 0, no mucus; +, ~10% occlusion; ++, ~30% occlusion; ++++, ~50% occlusion; ++++, ~80% occlusion;+++++, ~90-100% occlusion. 10 airways randomly distributed throughout the left lung of each mouse were assessed for mucus occlusion morphometrically.

B). The number of eosinophils in the BAL fluid from the OVA-sensitized/challenged mice treated with the FLAP inhibitor (0.57 ± 0.11 × 10^5, Fig. 6 B) was not significantly different from that in either sham-sensitized/saline-challenged (0.12 ± 0.02 × 10^5, Fig. 6 B) or OVA-immunized/saline-challenged (0.16 ± 0.03 × 10^5, not shown) control mice. Zileuton similarly decreased eosinophils recovered in the BAL fluid of OVA-sensitized/challenged mice by 91% (P = 0.0128 compared to OVA without zileuton; data not shown). Vehicle controls (Trappsof™ for zileuton studies, DMSO for MK-886 studies) did not affect the lung eosinophil infiltration observed in OVA sensitized/challenged mice.

Mucus Accumulation. Cross-sections of the upper and lower lobes of the left lung of OVA-treated and control mice were examined by light microscopy for mucus accumulation in the airways. By morphometric analysis, 68% of the airways of control mice treated with saline had no evidence of airway mucus release, and the remainder had only a small mucus layer observed (Fig. 7). In contrast, OVA-immunized/challenged mice had morphologic evidence for widespread mucus plugging of the airways. The majority (74%) of the airways of the OVA-treated mice had at least 30% occlusion of the airway lumen by mucus; 22% of the airways of these mice had 80% or greater mucus occlusion (Fig. 7). When the amount of mucus glycoprotein recovered in the BAL fluid was quantitated (Fig. 8), a sevenfold increase in airway mucin was demonstrated in OVA-treated mice compared to control mice (P = 0.00001 OVA versus saline). Zileuton-treatment blocked the airway mucus release in the OVA-treated mice (Figs. 2 C and 8). The importance of leukotrienes in airway mucus release was further demonstrated by the ability of LTD₄ administered exogenously by the i.n. route to induce airway mucus release (Fig. 9).

5-Lipoxygenase Inhibition Does Not Alter Allergen-induced Airway Hyperreactivity to Methacholine. Mice receiving i.p. and i.n. OVA had increased airway reactivity compared to control mice receiving saline; the OVA-treated mice required significantly lower concentrations of methacholine to decrease G⁹ (Fig. 10 A) and Cdyn (Fig. 10 B) than control mice that had been sham-sensitized and challenged with saline (Table 1) or OVA-immunized/saline challenged (not shown). Although leukotriene inhibition blocked airway eosinophil influx and mucus release in OVA-treated mice, zileuton given before OVA on day 25, 26, and 27 did not reduce airway hyperresponsiveness to methacholine in these

Figure 8. 5-Lipoxygenase inhibition blocks airway mucus release in OVA-treated mice. BAL fluid was obtained from sham-sensitized and saline-challenged mice (Saline; n = 4) and OVA-sensitized/challenged mice in the absence (OVA; n = 4) or presence (Zileuton/OVA; n = 4) of zileuton treatment. BAL fluid (0.05 ml) was blotted onto nitrocellulose with mucin visualized by PAS reaction and quantitated by an image analysis system as described in Materials and Methods. For a standard curve, human respiratory mucin (0.05–0.75 ml, 2 μg/ml) was similarly assayed. * value, Zileuton/OVA versus OVA.

Figure 9. LTD₄ induces airway mucus release. Upper airway tissue was obtained 60 min after i.n. challenge with LTD₄ (2.5 μg) and stained with hematoxylin and eosin. Mucus deposition (arrows) in the airway lumen (L) is shown. Airway mucus release was not observed in mice receiving i.n. vehicle alone (not shown). Bar, 200 μm.
Our studies demonstrate that leukotrienes are key mediators of allergen-induced airway eosinophil infiltration and mucus release but not the increased airway responsiveness to methacholine occurring in a mouse model of asthma. BALB/c mice given i.p. OVA in alum twice over a 14-d period followed by three i.n. doses of OVA on days 25, 26, and 27 of the protocol developed OVA-specific IgE and histologic and physiologic findings mimicking human asthma. In mice examined 24 h after the last i.n. administration of OVA on day 28, eosinophils were the predominant inflammatory cell in both the lung interstitial tissue and BAL fluid. Mucus occlusion of the airway lumen (lower >upper airways) in the OVA-treated mice was a prominent feature of this late-phase allergen-induced inflammatory process. Further, in vivo pulmonary function tests showed that the OVA-immunized/challenged mice reproducibly developed increased airway responsiveness to intravenous methacholine compared to controls.

In vitro and in vivo studies in animals and humans have suggested that leukotrienes play a role in the pathogenesis of allergic airway inflammation. Nocturnal levels of LTB_{4} (G_{L}) and (B) dynamic lung compliance (C_{dyn}) were calculated as described in Materials and Methods. The data are mean ± SE. *P <0.05 by ANOVA, Saline versus the OVA and Zileuton/OVA groups.

Table 1. Pulmonary Mechanics to Methacholine in OVA-treated Mice: Effect of Leukotriene Inhibition

Group	Conductance (GL)	Dynamic compliance (C_{dyn})					
	Basal	ED_{50} methacholine	Basal	ED_{50} methacholine			
	ml/s × cm H_{2}O	Geometric mean	Log SD	mu/g/kg	ml/s × cm H_{2}O	mu/g/kg	
Saline	1.30 ± 0.04	104*	0.29		0.028 ± 0.001	277*	0.29
OVA	1.22 ± 0.03	56	0.20		0.026 ± 0.001	107	0.19
Zileuton/OVA	1.24 ± 0.03	54	0.23		0.026 ± 0.001	111	0.21

Data represent mean ± SE. GL and C_{dyn} were determined in sham-sensitized and saline-challenged mice (Saline, n = 19), and OVA-sensitized/challenged mice in the absence (OVA; n = 18) or presence (Zileuton/OVA; n = 18) of zileuton treatment.

*P <0.05 vs both other groups (by ANOVA using the protected least significant difference method).
and cysteinyl leukotrienes are elevated in the BAL fluid of patients with nocturnal asthma compared to normal control subjects (35). Increased levels of LTB_4 and LTC_4 are recovered in the BAL fluid (11, 12) and elevated levels of the LTC_4 metabolite LTE_4 are detected in the urine (36) after endobronchial challenge with specific allergen compared to prechallenge levels of these eicosanoids. Similarly, in this mouse model of asthma, we found that levels of LTB_4 and LTC_4 were significantly increased in BAL fluid after airway allergen challenge; this release of leukotrienes was blocked by the specific 5-lipoxygenase inhibitor zileuton.

Various mediators including histamine, platelet-activating factor, prostaglandins, thromboxane A_2, and leukotrienes have been implicated in airway mucus release (37). Cysteinyl leukotrienes C_4 and D_4 stimulate mucus secretion from cat (38), dog (39), and guinea pig (40) trachea and bronchi in vivo and human bronchial explants in vitro (41, 42). We have demonstrated in mice that exogenous LTD_4 induces airway mucus release in vivo. When compared with other mucus secretagogues for inducing release of mucus glycoproteins from cultured human bronchial tissues, the rank order of potency (on a molar basis) is LTD_4 >LTC_4 >mono-hydroxyeicosatetraenoic acids >LTB_4 >PG A_2 = PG D_2 >PGE_1 = PGF_2α = PG I_2 >histamine (37, 43, 44). A striking finding of our study is that inhibition of leukotriene formation prevents allergen-induced mucus plugging of mouse airways in vivo. These results suggest that leukotrienes play a major role in this mucus secretory process.

LTB_4 is recognized as one of the most potent chemoattractants for leukocytes. LTB_4 promotes chemotaxis and chemokinesis of eosinophils from various animal species (45, 46) and humans (7, 47, 48). In patients with nocturnal asthma, the increased LTB_4 levels in nocturnal BAL fluid correlate significantly with the increased number of eosinophils recovered in these samples (35). The cysteinyl leukotrienes also exert potent chemotactic activity for eosinophils. LTD_4 promotes human eosinophil chemotaxis in vitro beginning at 10^-10 M (7). The specific LTD_4 receptor antagonist MK-571 significantly reduces OVA-induced eosinophil influx into guinea pig conjunctiva in vivo 17 h after allergen challenge (49). Inhalation of LTE_4 in patients with asthma significantly increases the number of eosinophils recovered in the airway lamina propria 4 h after LTE_4 challenge (6).

In our studies, inhibition of leukotriene release by either a 5-lipoxygenase inhibitor (zileuton) or FLAP inhibitor (MK-886) was found to significantly inhibit eosinophil infiltration into both airway interstitial tissue and the BAL fluid indicating an important role for leukotrienes in mediating allergic airway infiltration by eosinophils, a key feature of asthma. However, these data dissociate the airway eosinophil influx from the increased airway responsiveness to methacholine. Although leukotriene inhibition markedly reduced the eosinophil infiltration, such inhibition did not affect the bronchial hyperresponsiveness.

Other studies in both rats and mice have also suggested that BAL eosinophilia may be dissociated from airway hyperresponsiveness. When mononuclear cells isolated from peribronchial lymph nodes from OVA-sensitized Brown Norway rats were transferred to naive syngeneic recipients, the recipient rats after OVA aerosol challenge developed late asthma responses (50). In recipients of either sensitized or sham-sensitized mononuclear cells, the number of BAL fluid eosinophils increased at 32 h. A negative correlation between the number of BAL fluid eosinophils and airway responsiveness to methacholine was observed in these studies (50). In OVA-sensitized BALB/c mice, airway hyperresponsiveness to acetylcholine and an influx of eosinophils into the BAL fluid was observed 24 h after the last aerosol challenge with OVA (51). Although treatment with anti-IL-5 mAb during the systemic immunization period decreased BAL fluid eosinophils from 44 to 2%, no effect on the airway response to acetylcholine was seen (51). These results contrast, however, with studies employing IL-5 deficient mice in which eosinophilia was closely correlated with airway reactivity (52). Whereas, airway hyperreactivity to methacholine and airway eosinophilia were absent in aeroallergen-challenged OVA-sensitized IL-5 deficient mice, airway eosinophilia and hyperreactivity were restored with reconstitution of IL-5 production (52). Differences in conclusions regarding the role of eosinophils in airway responsiveness may be specific to the different antigen sensitization/immunization protocols and animal species employed in these studies. Further, many mechanisms other than leukotriene release could potentially mediate the observed pulmonary function changes (e.g., alteration in smooth muscle contractility, neuropeptides, muscarinic receptor defects) (53-55).

Our studies indicate that leukotriene inhibitors have a marked antiinflammatory effect on allergic lung inflammation in an animal model that reproduces many of the features of human asthma. These antiinflammatory actions may prove useful in the therapy of asthma and other inflammatory diseases.

We thank Dong Nguyen and Liou Tang for excellent technical assistance and Rachel Norris for typing this manuscript.

This work was supported by National Institutes of Health grants AI34578, AI17758, and HL30542.

Address correspondence to William R. Henderson, Jr., M.D., Room BB1333, Health Sciences, Department of Medicine, Box 356523, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195-6523. Dr.
References

1. Samuelsson, B., S.-E. Dahlén, J. Lindgren, C.A. Rouzer, and C.N. Serhan. 1987. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science (Wash. DC). 237:1171–1176.

2. Henderson, W.R., Jr. 1994. The role of leukotrienes in inflammation. Annu. Intern. Med. 121:684–697.

3. Ford-Hutchinson, A.W. 1990. Leukotriene B4 in inflammation. Crit. Rev. Immunol. 10:1–12.

4. Drazen, J.M., K.F. Austen, R.A. Lewis, D.A. Clark, G. Goto, A. Marfat, and E.J. Corey. 1980. Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc. Natl. Acad. Sci. USA. 77:4354–4358.

5. Dahlén, S.-E., G. Hansson, P. Hedqvist, T. Björck, E. Granström, and B. Dahlén. 1983. Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with release of leukotrienes C4, D4, and E4. Proc. Natl. Acad. Sci. USA 80:1712–1716.

6. Laitinen, I.A., A. Laitinen, T. Haathela, V. Viikka, B.W. Spur, and T.H. Lee. 1993. Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet. 341:989–990.

7. Spada, C.S., A.L. Nieves, A.H.-P. Krauss, and D.F. Woodward. 1994. Comparison of leukotriene B4, D4, and E4 effects on human eosinophil and neutrophil motility in vitro. J. Leukoc. Biol. 55:183–191.

8. Albert, R.K., G. Greenberg, R.J. Guest, D. Luchtel, and R.L. Bell. 1987. Elevated levels of leukotrienes C4 and D4 do not increase the pulmonary vascular filtration coefficient of excised guinea pig lungs. J. Appl. Physiol. 62:1–9.

9. Albert, R.A., W.J.E. Lamm, W.R. Henderson, and R.W. Bolin. 1989. Effect of leukotrienes B4, C4 and D4 on segmental pulmonary vascular pressures. J. Appl. Physiol. 66:458–464.

10. Casale, T.B., D. Wood, H.B. Richerson, S. Trapp, W.J. Metzger, D. Zavala, and G.W. Hunninghake. 1987. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness. J. Clin. Invest. 79:1197–1203.

11. Wenzel, S.E., G.L. Larsen, K. Johnston, N.F. Voelkel, and J.Y. Westcott. 1990. Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am. Rev. Respir. Dis. 142:112–119.

12. Wenzel, S.E., J.Y. Westcott, and G.L. Larsen. 1991. Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses. J. Allergy Clin. Immunol. 87:540–548.

13. Bousquet, J., P. Chanez, J.Y. Lacoste, G. Barnéon, N. Gharavan, I. Enander, P. Venge, S. Ahlstedt, J. Simony-Lafontaine, P. Godard, and F.-B. Michel. 1990. Eosinophilic inflammation in asthma. N. Engl. J. Med. 323:1033–1039.

14. Beasley, R., W.R. Roche, J.A. Roberts, and S.T. Holgate. 1989. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am. Rev. Respir. Dis. 139:806–817.

15. Nakajima, H., I. Iwamoto, S. Tomoe, R. Matsumura, H. Tomioka, K. Takatsu, and S. Yoshida. 1992. CD4+ T-lymphocytes and interleukin-5 mediate antigen-induced eosinophil infiltration into the mouse trachea. Am. Rev. Respir. Dis. 146:374–377.

16. Renz, H., R.H. Smith, J.E. Henson, B.S. Ray, C.G. Irvin, and E.W. Gelfand. 1992. Aerosolized antigen exposure without adjuvant causes increased IgE production and increased airway responsiveness in the mouse. J. Allergy Clin. Immunol. 89:1127–1138.

17. Gavett, S.H., D.J. O’Hearn, X. Li, S.-K. Huang, F.D. Finkelman, and M. Wills-Karp. 1995. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J. Exp. Med. 182:1527–1536.

18. Carter, G.W., P.R. Young, D.H. Albert, J. Bouska, R. Dyer, R.L. Bell, J.B. Summers, and D.W. Brooks. 1991. 5-Lipoxygenase inhibitory activity of zileuton. J. Pharmacol. Exp. Ther. 256:929–937.

19. Dixon, R.A.F., R.E. Diehl, E. Opas, E. Rands, P.J. Vickers, J.F. Evans, J.W. Gillard, and D.K. Miller. 1990. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature (Lond.). 343:282–284.

20. Gillard, J., A.W. Ford-Hutchinson, C. Shan, S. Charleson, D. Denis, A. Foster, R. Fortin, S. Leger, C. S. McFarlane, H. Morton et al. 1989. L-663,536 (MR-886)-(3-[1-(4-chlorobenzyl)-3-(4-buty1-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can. J. Pharmaco1. 67:456–464.

21. Amidur, M.O., and J. Mead. 1958. Mechanics of respiration in unanaesthetized guinea pigs. Am. J. Physiol. 192:364–368.

22. Martin, T.R., N.P. Gerard, S.J. Galli, and J.M. Drazen. 1988. Pulmonary responses to bronchoconstrictor agonists in the mouse. J. Appl. Physiol. 64:2318–2323.

23. Levitt, R.C., and W. Mitzner. 1988. Expression of airway hyperreactivity to acetylcholine as a simple autosomal recessive trait in mice. FASEB J. 2:2605–2608.

24. Basten, A., M.H. Boyer, and P.B. Beeson. 1970. Mechanism of eosinophilia. I. Factors affecting the eosinophilic response of rats to Trichinella spiralis. J. Exp. Med. 131:1271–1287.

25. Henderson, W.R., Jr., and E.Y. Chi. 1992. Degranulation of cystic fibrosis nasal polyp mast cells. J. Pathol. 166:395–404.

26. Su, M., E.Y. Chi, M.J. Bishop, and W.R. Henderson, Jr. 1993. Lung mast cells increase in number and degranulate during pulmonary artery occlusion/reperfusion injury in dogs. Am. Rev. Respir. Dis. 147:448–456.

27. Troyer, H. 1980. Carbohydrates. In Principles and Techniques of Histochemistry. Little, Brown, and Company, Boston, MA. 89–121.

28. Sheehan, D.C., and B.B. Harpback. 1980. Carbohydrates. In Theory and Practice of Histotechnology. Battelle Press, Columbus, OH. 159–179.

29. Henderson, D.J., D.F. Holmes, J.K. Sheehan, and I. Carlstedt. 1980. Carbohydrates. In Techniques of Histochemistry. Little, Brown, and Company, Boston, MA. 159–179.

30. Fung, D.C.K., M. Somerville, P.S. Richardson, and J.K. Eriksen's present address is the Department of Medicine, University of Copenhagen, Copenhagen, Denmark.

Received for publication 26 February 1996 and in revised form 25 June 1996.
Sheehan. 1995. Mucus glycoconjugate complexes released from feline trachea by a bacterial toxin. Am. J. Respir. Cell Mol. Biol. 12:296–306.
31. Logun, C., J. Mullol, D. Rieves, A. Hoffman, C. Johnson, R. Miller, J. Goff, M. Kaliner, and J.H. Shelhamer. 1991. Use of a monoclonal antibody enzyme-linked immunosorbent assay to measure human respiratory glycoprotein production in vitro. Am. J. Respir. Cell Mol. Biol. 5:71–79.
32. Mancino, D., and Z. Ovary. 1980. Adjuvant effects of amorphous silica and of aluminum hydroxide on IgE and IgG1 antibody production in different inbred mouse strains. Int. Arch. Allergy Appl. Immunol. 61:253–258.
33. Yong, E.C., E.Y. Chi, and W.R. Henderson, Jr. 1994. Toxoplasma gondii alters eicosanoid release by human mononuclear phagocytes: role of leukotrienes in interferon-γ-induced antitoxoplasma activity. J. Exp. Med. 180:1637–1648.
34. Rokach, J., E.C. Hayes, Y. Girard, D.L. Lombardo, A.L. Maycock, A.S. Rosenthal, R.N. Young, R.F. Zamboni, and H.J. Zweerink. 1984. The development of sensitive and specific radiommunoassays for leukotrienes. Prostaglandins Leukot. Med. 13:21–25.
35. Wenzel, S.E., J.B. Trudeau, D.A. Kaminsky, J. Cohn, R.J. Martin, and J.Y. Westcott. 1995. Effect of 5-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am. J. Respir. Crit. Care Med. 152:897–905.
36. Sladek, K., R. Dworski, G.A. Fitzgerald, K.L. Buitkus, F.J. Block, S.R. Marney, Jr., and J.R. Sheller. 1990. Allergen-stimulated release of thromboxane A2 and leukotriene E4 in humans. Effect of indomethacin. Am. Rev. Respir. Dis. 141:1441–1445.
37. Larvée, P., S.J. Levine, R.D. Rieves, and J.H. Shelhamer. 1994. Airway inflammation and mucous hypersecretion. In Airway Secretion. Physiological Bases for the Control of Mucous Hypersecretion. T. Takishima and S. Shimura, editors. Marcel Dekker, Inc., New York, NY. 469–511.
38. Peatfield, A. C., P. J. Piper, and P. S. Richardson. 1982. The effect of leukotriene C4 on mucin release into the cat trachea in vivo and in vitro. Br. J. Pharmacol. 77:391–393.
39. Johnson, H.G., and M.L. McNee. 1983. Secretagogue responses of leukotriene C4, D2, and comparison of potency in canine trachea in vivo. Prostaglandins. 25:227–243.
40. Hoffstein, S.T., P.E. Malo, P. Bugelski, and E.B. Wheeldon. 1990. Leukotriene D4 (LTD4) induces mucus secretion from goblet cells in the guinea pig respiratory epithelium. Exp. Lung Res. 16:711–725.
41. Marom, Z., J.H. Shelhamer, M.K. Bach, D.R. Morton, and M. Kaliner. 1982. Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. Am. Rev. Respir. Dis. 126:449–451.
42. Coles, S.T., K.H. Neill, L.M. Reid, K.F. Austen, and Y. Nii. 1983. Effects of leukotrienes C4 and D4 on glycoproteins and lysozyme secretion by human bronchial mucosa. Prostaglandins. 25:155–170.
43. Shelhamer, J.H., Z. Marom, and M. Kaliner. 1980. Immunologic and neuropharmacologic stimulation of mucus glycoproteins from human airways. J. Clin. Invest. 66:1400–1408.
44. Lundgren, J.M., and J.H. Shelhamer. 1990. Pathogenesis of airway mucus hypersecretion. J. Allergy Clin. Immunol. 85:399–419.
45. McEwen, B.J., B.P. Wilcock, and P. Eyre. 1990. The effect of leukotriene B4, leukotriene C4, zymosan activated serum, histamine, tabanid extract and N-formyl-methionyl-leucyl-phenylalanine on the in vitro migration of equine eosinophils. Can. J. Vet. Res. 54:400–404.
46. Sun, F.F., N.J. Crittenden, C.I. Czuk, B.M. Taylor, B.K. Stout, and H.G. Johnson. 1991. Biochemical and functional differences between eosinophils from animal species and man. J. Leukos. Biol. 50:140–150.
47. Czarnetzki, B.M., and T. Rosenbach. 1986. Chemotaxis of human neutrophils and eosinophils towards leukotriene B4 and its 2-ω-oxidation products in vitro. Prostaglandins. 31:851–858.
48. Moria, E., J.-M. Schröder, and E. Christophers. 1989. Differential sensitivities of purified human eosinophils and neutrophils to defined chemotaxins. Scand. J. Immunol. 29:709–716.
49. Chan, C.-C., K. McKee, P. Tagari, P. Chee, and A. Ford-Hutchinson. 1990. Eosinophil–eicosanoid interactions: inhibition of eosinophil chemotaxis in vivo by a LTD4 receptor antagonist. Eur. J. Pharmacol. 191:273–280.
50. Watanebe, A., P. Rossi, P.M. Renzi, L.-J. Xu, R.D. Guttmann, and J.G. Martin. 1995. Adptive transfer of allergic airway responses with sensitized lymphocytes in BN rats. Am. J. Respir. Crit. Care Med. 152:64–70.
51. Corry, D.B., H.G. Folkeson, M.L. Warnock, D.J. Erle, M.A. Matthay, J.P. Wiener-Kronish, and R.M. Locksley. 1996. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183:109–117.
52. Foster, P.S., S.P. Hogan, A.J. Ramsay, K.I. Matthaei, and J.G. Martin. 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity and lung damage in a mouse asthma model. J. Exp. Med. 183:195–201.
53. Skloot, G., S. Permutt, and A. Togias. 1995. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration. J. Clin. Invest. 96:2393–2403.
54. Ingram, R.H., Jr. 1991. Asthma and airway hyperresponsiveness. Annu. Rev. Med. 42:139–150.
55. Chapman, I.D., A. Foster, and J. Morley. 1993. The relationship between inflammation and hyperreactivity of the airways in asthma. Clin. Exp. Allergy. 23:168–171.