The angular momentum of a magnetically trapped atomic condensate

P. Zhang,1 H. H. Jen,1 C. P. Sun,2 and L. You1,3

1School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
2Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100080, China
3Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China

(Dated: October 11, 2018)

For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT), we concentrate on the conserved quantity

\[L_z \]

studied earlier in Ref. [5]. While Ho and Shenoy mainly studied the orbital angular momentum component in an IPT [3], instead we concentrate on the conserved quantity, the sum \((J_z)\) or difference \((D_z)\) for a QT or a IPT.

This paper is organized as follows. We first consider a spin-1 condensate in a QT. Making use of an effective energy functional appropriate for the adiabatic approximation [5], we prove \(J_z \in [-1, 1]\) with the actual value determined by the angle between the z-axis and the direction of the B-field. We then generalize to the spin-F case. Finally, our result is extended to an IPT.

The Hamiltonian of a spin-1 atomic condensate with \(N\) atoms in a magnetic trap is \(H = H_S + H_T\) with the single atom part

\[H_S = \int \frac{\psi^†(\vec{r}) \left[-\frac{\hbar^2}{2M} + \mu_{B} g_{F} \vec{B} \cdot \vec{n}(\vec{r}) \right] \psi(\vec{r}) d\vec{r}, \]

and the atom-atom interaction Hamiltonian

\[H_T = \sum_{m,n,p,q} \int \frac{\psi^†_{m}(\vec{r}) \psi^†_{n}(\vec{r}) V_{pq}(\vec{r},\vec{r}′) \psi_{p}(\vec{r}) \psi_{q}(\vec{r}′) d\vec{r} d\vec{r}′. \]

\(\psi(\vec{r}) = [\psi_{-1}(\vec{r}), \psi_0(\vec{r}), \psi_{+1}(\vec{r})]^{\text{T}}\) denotes the annihilation field operator for the z-quantized \(F_z\)-component of \(m, n, p, q \in \pm 1\). \(M\) is the atomic mass, and \(\mu_{B}\) is the Bohr magneton. \(B(\vec{r})\) and \(\vec{n}(\vec{r})\) denote the strength and direction of the local B-field. \(h = 1\) is assumed. The Landé g factor is \(g_F = 1 = -1/2\).

Within the mean field approximation, the field operator \(\psi(\vec{r})\) is replaced by its average \(\langle \psi(\vec{r}) \rangle\). To introduce the adiabatic approximation, we define a group of normalized scalar wave functions \(\varphi_u(\vec{r})\):

\[\langle \psi(\vec{r}) \rangle = \sum_{b=0,\pm 1} \sqrt{N} \xi^B(b, \vec{r}) \varphi_b(\vec{r}), \]

where \(\xi^B(b, \vec{r})\) is the eigenstate of the \(B\)-quantized spin component \(\vec{F} \cdot \vec{n}(\vec{r})\) with eigenvalue \(b\), satisfying the relations \(\vec{F} \cdot \vec{n}(\vec{r})\xi^B(b, \vec{r}) = b \xi^B(b, \vec{r})\) and \(\xi^B(b, \vec{r})\xi^B(b′, \vec{r}) = \delta_{b, b′}\). In the \(z\)-quantized representation, it takes the form \(\xi^B(b, \vec{r}) = [\xi^B_z(b, \vec{r}), \xi^B_0(b, \vec{r}), \xi^B_z(b, \vec{r})]^{\text{T}}\). In this study, it is important to distinguish \(\xi^B(b, \vec{r})\) from the eigenstates \(\xi_z(0, \pm 1)\) of \(F_z\) with eigenvalues \(0, \pm 1\). In explicit
form, we have $\xi_1(-1) = [1, 0, 0]^T$, $\xi_2(0) = [0, 1, 0]^T$, and $\xi_3(1) = [0, 0, 1]^T$.

A magnetic dipole precesses around the direction of a B-field. Majorona transitions between different $\xi_{B}(\theta, \phi)$ states can be neglected when $B(\vec{r})$ is large enough. Thus the atomic hyperfine spin adiabatically freezes in the low-field seeking state $\xi_{B}(-1, \vec{r})$ during the trapped center of mass motion, and $\varphi_{-1}(\vec{r}) = \varphi(\vec{r})$ and $\varphi_{0+1}(\vec{r}) = 0$. Similarly the z-quantized mean field becomes

$$\hat{\psi}(\vec{r}) = \sqrt{N} \xi_{B}(-1, \vec{r}) \varphi(\vec{r}),$$

with $\varphi(\vec{r})$ a B-quantized scalar function.

Substituting Eq. (2) into the expression of H, we can obtain the expression of the condensate energy E_{ad} as a functional of the scalar wave function $\varphi(\vec{r})$: $E_{ad}[\varphi] = \sum_{m=0}^{\infty} \langle \psi(z) | \varphi(\vec{r}) \rangle_{g\xi_z}(m)$ gives

$$\langle \psi(z) | \varphi(\vec{r}) \rangle_{g\xi_z}(m) = \sqrt{N} \xi_{B}(-1, \vec{r}) \varphi_{\beta}(\rho, z) \exp(is\phi),$$

which is an eigenstate of J_z with an eigenvalue s, i.e.,

$$J_z \langle \psi(z) | \varphi(\vec{r}) \rangle_{g\xi_z}(m) = s \langle \psi(z) | \varphi(\vec{r}) \rangle_{g\xi_z}(m),$$

because of Eq. (4).

Equation (5) and the expansion $\langle \psi(z) | \varphi(\vec{r}) \rangle_{g\xi_z}(m)$ gives

$$\langle \psi(z) | \varphi(\vec{r}) \rangle_{g\xi_z}(m) = \sqrt{N} \xi_{B}(-1, \vec{r}) \varphi_{\beta}(\rho, z) \exp(is\phi)$$

with $b_m = \xi_{B}(-1, \vec{r}) \varphi_{\beta}(\rho, z) \exp(is\phi)$ with any integer m, the energy functional E_{ad} satisfies

$$E_{ad}[\varphi_{\beta}(\rho, z) \exp(is\phi)] = E_{ad}[\varphi_{\beta}] + \Delta E_{m}[\varphi_{\beta}],$$

with $E_{ad}[\varphi_{\beta}] = \int d\vec{r} \varphi_{\beta}^* \varphi_{\beta} |(m^2 + 4m \cos \beta)/(2M^2)|$. In addition to the centrifugal term proportional to m^2, a term linear in m appears due to the $A \cdot \nabla$ term in E_{ad}.

In the following we show that the above linear term is important for the value s, which we determine with a variational approach. Because E_{ad} takes its minimal value in the state $\varphi_{\beta} \exp(is\phi)$, we have $E_{ad}[\varphi_{\beta} \exp(is\phi)] \leq E_{ad}[\varphi_{\beta} \exp(is\chi) \exp(is\phi)]$. Together with Eq. (8), we find the necessary condition satisfied by s: $\Delta E_{ad}[\varphi_{\beta}] \leq \Delta E_{m}[\varphi_{\beta}]$ or $|s + C| \leq 1/2$, where the coefficient C is defined as

$$C = \frac{\int d\vec{r} \varphi_{\beta}^* \varphi_{\beta} |(m^2 + 4m \cos \beta)/(2M^2)|}{\int d\vec{r} \varphi_{\beta}^* \varphi_{\beta} |(1/\rho^2)|}.$$
We now generalize our result to atoms with an arbitrary F and inside any axially symmetric B-fields. Analogously we can prove that the value s of J_z in the ground state satisfies the necessary condition
\[
|s - \eta_F F| \leq 1/2,
\] (9)
and $s \in [-F, F]$ with $\eta_F = \text{sign}(g_F)$. The result of $s \in [-F, F]$ and the conservation of J_z is independent of the form of the atomic interaction potential. Although its strength g_F does affect the wave function shape, thus can influence the value of s through the factor B.

The condition Eq. (9) also allows for a rough estimate of L_z. A straightforward calculation gives $\langle L_z \rangle = s - \eta_F F \int d\vec{r} |\psi_0(\rho, z)|^2 \cos \beta(\rho, z)$ for the spinor mean field $\langle \psi(\vec{r}) \rangle$. Neglecting the correlation between ρ and $\beta(\rho, z)$ as before, the value of $\langle L_z \rangle$ becomes approximately $s - \eta_F FC$, which lies always in the region $[-1/2, 1/2]$ according to Eq. (9). Therefore, the value $\langle L_z \rangle$, or the weighted average of the winding numbers, is generally a small number, despite the winding number $s - m$ itself, for the component $\langle \psi_m(\vec{r}) \rangle$, may take any integer in the region $[-2F, 2F]$. We find $\langle F_z \rangle = \eta_F F \int d\vec{r} \hat{\sigma}_z |\psi_0(\rho, z)|^2 \cos \beta(\rho, z)$ from the expression of $\langle L_z \rangle$, a qualitative reflection that atomic hyperfine spin is aligned ($g_F > 0$) or anti-aligned ($g_F < 0$) with respect to the local B-field.

Our result above allows for the direct creation of vortex states in a quadrupole trapped atomic condensate. For example, assume a spin-1 condensate in a QT plus an “optical plug” [8] satisfies $V_o(\rho, z) = V_o(\rho, -z)$, then we find $C = 0$ and $s = 0$ due to the spatial reflection symmetry about the $x-y$ plane. The ground state components $\langle \psi_{m}(\vec{r}) \rangle$ then automatically carry persistent currents with winding numbers ± 1 according to Eq. (9). In addition, the low field seeking atoms are trapped near the x-y plane at $z = 0$ because $|B(\vec{r})|$ is an increasing function of z. The populations for the three z-quantized states, determined by $E^B(\vec{r})$ and $\xi^z_\pm(1, -\vec{r})$, are of the same order of magnitudes. Therefore, when a ground state condensate in the “plugged” QT is created, its ± 1 components $\langle \psi_{\pm 1}(\vec{r}) \rangle$ are single quantized vortex states and can be directly resolved with a Stern-Gerlach B-field as used in Ref. [8].

The qualitative example above is confirmed by the numerical solution for a condensate of 5×10^6 23Na atoms in a quadrupole plus a plug trap. We take $B^f = 22$ Gauss/cm and $V_o = U_o \exp[-\rho^2/\sigma^2]$ with $U_o = (2\pi)8 \times 10^4$Hz and $\sigma = 7.4 \mu$m. The ground state distribution $p_1 = \int d\vec{r} |\psi_{1}(\vec{r})|^2$ is found to be $p_{\pm 1} = 27.2\%$ and $p_0 = 45.6\%$. The phase and density distributions for the three components $\langle \psi_{0, \pm 1}(\vec{r}) \rangle$ are shown in Fig. 1 (a, b).

We also can expand the ground state $\langle \psi(\vec{r}) \rangle_g$ in terms of the eigenstates $\xi_x(m)$ of F_x with eigenvalues m: $\langle \psi(\vec{r}) \rangle_g = \sum_{m=0,\pm 1} \sqrt{N} \langle \psi_m(\vec{r}) \rangle \xi_x(m)$. We then immediately note that $\langle \psi^{(z)}(\vec{r}) \rangle_g$ is a superposition of vortex states with definite winding numbers 0 or ± 1, e.g., $\langle \psi^{(z)}(\vec{r}) \rangle_g = \langle \sqrt{N/\sqrt{2}} |0(\rho, z) e^{i\phi} - b_{1}(\rho, z) e^{-i\phi} | \rangle$. The density distribution of $\langle \psi^{(z)}(\vec{r}) \rangle_g$ as shown in Fig. 1 (c) clearly illustrates the interference pattern along the \hat{e}_{ϕ} direction. As is demonstrated in Fig. 1 (c), the middle panel for $|\langle \psi^{(z)}(\vec{r}) \rangle|^2$ clearly displays the double peak structure along the azimuthal direction, arising from the interference of the terms proportional to $e^{\pm \phi}$. Thus, if a Stern-Gerlach B-field is used to separate the x-quantized components $\langle \psi_m(\vec{r}) \rangle_g$, a superposition of vortices with different winding numbers would be obtained.

We now extend our result for an axially symmetric magnetic trap to the widely used IPT whose B-field possesses a different symmetry. In the region near the z-axis, $\vec{B}(\vec{r}) = B^i(\cos(2\beta) \hat{e}_\rho - \sin(2\beta) \hat{e}_\phi + h\hat{z})$, the angle $\beta(\rho, z)$ between the local B-field and the z-axis satisfies $\cos \beta(\rho, z) = h/\sqrt{p^2 + h^2}$. In this case J_z is no longer conserved due to the lack of the SO(2) symmetry. However, we find that D_z is now conserved because it commutes with $\hat{F}_x, \hat{B}(\vec{r})$. Therefore, we can select the low field seeking hyperfine spin state $\xi^F(\eta_F, \vec{r})$ as the eigenstate of D_z with an eigenvalue $-\eta_F F$, the same spin state as used in Ref. [8], again defined through

\[\xi^F(\eta_F, \vec{r}) = \frac{|\langle \psi^{(z)}(\vec{r}) \rangle |}{\sqrt{\int d\vec{r} |\psi^{(z)}(\vec{r})|^2}}.\]
a rotation $\hat{\xi}^B(\eta_F, \vec{r}) = \exp[-i\vec{F} \cdot \hat{n}_\perp \beta(\xi^z(\eta_F, F))$. For $h > 0$, we find the induced gauge potential becomes

$$A(\vec{r}) = -\eta_F F(1 - \cos(\beta(\rho, z)))\hbar e/\rho.$$

Adopting the same notation as before we denote

$$\langle \hat{\psi}(\vec{r}) \rangle_g = \sqrt{N}\phi_0(\vec{r})\xi^B(\eta_F, \vec{r}).$$

Interestingly we find $E_{\rm ad}[\phi(\rho, \phi, z)] = E_{\rm ad}[\phi(\rho, \phi + \theta, z)]$ remains satisfied, and the ground state takes the form $\phi_0 = \phi_0(\rho, z)\exp(\pm i\phi)$. Therefore $\langle \hat{\psi}(\vec{r}) \rangle_g$ is the eigenstate of D_z with an eigenvalue $d = u - \eta_F F$, and its components $\langle \hat{\psi}_m^{(z)}(\vec{r}) \rangle_g = \sqrt{N}b_m'(\rho, z)e^{imu \beta(\xi^z(\eta_F, F))}$ analogously carry a persistent current with a winding number $m + u - \eta_F F$. Here $b_m' = \xi^z_m(m)e^{-iFz\beta(\xi^z(\eta_F, F))}$. This result is consistent with the ground state vortex phase diagram for an $F = 1$ condensate found numerically in the $z = 0$ plane of an IPT. The conservation of D_z as found by us, however, calls for a simpler labelling of each vortex phase because only one of three integers (m_1, m_0, m_{-1}) is independent, as with Eq. (15) of Ref. [10].

Following the same reasoning as before, we find

$$|d + \eta_F F(1 - C)| \leq 1/2,$$

for $d \neq \eta_F F$, and $d \in [-F, F]$ or the value of D_z in the ground state lies in the region $[-F, F]$.

In an IPT, atoms are trapped near the z-axis where the B-field is essentially along the z-axis direction and $\xi^B(\eta_F, \vec{r})$ is approximately the eigenstate $\xi^z(\eta_F, F)$. L_z then is essentially always zero corresponding to a ground state without a vortex. The angular momentum difference D_z then becomes $d = -\eta_F F$.

Several previous proposals [11] and experiments [12] on creating vortex states unknowingly have
[5] T. Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 2595 (1996).
[6] T. H. Bergeman et al., J. Opt. Soc. Am. B 6, 2249 (1989).
[7] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).
[8] D. S. Naik and C. Raman, Phys. Rev. A 71, 033617 (2005).
[9] A. E. Leanhardt et al., Phys. Rev. Lett. 90, 140403 (2003).
[10] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. Lett. 90, 200401 (2003).
[11] T. Isoshima et al., Phys. Rev. A 61, 063610 (2000).
[12] A. E. Leanhardt et al., Phys. Rev. Lett. 89, 190403 (2002).