Article

Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete

Irene Christoforidi 1,2, Dimitrios Kollaros 1, Thrasyvoulos Manios 1 and Ioannis N. Daliakopoulos 1, *

1 Department of Agriculture, Hellenic Mediterranean University, 71410 Heraklion, Greece
2 Farm Directorate, Hellenic Mediterranean University, 71410 Heraklion, Greece
* Correspondence: idaliak@hmu.gr

Abstract: Drought and salinity are two of the most urgent challenges faced in Mediterranean ecosystems, equally impacting natural systems, agricultural crops, and urban green. While many technical and soft approaches have been proposed to anticipate, mitigate, and remediate these impacts, a class of solutions has possibly been in front of us all along. Native Mediterranean fauna is well adapted, and when properly established still has unexploited conservation, restoration, and production diversification potential. Here, we outline the results of a long-term experiment taking place on the island of Crete, Greece that started in 1996 and involves over 70 native Mediterranean plants planted and monitored in various green spaces (private, shared, public) and a university campus under a diversity of adverse topographies (e.g., coastal, steep slopes), soils (e.g., disturbed, nutrient-deficient), and microclimatic conditions, taking various plant formations and serving various functions. After plant establishment, drought and salinity resistance were evaluated by gradually exposing plants (n = 5249) to deficit irrigation and saline environmental conditions, and plants were followed up for at least 5 years to empirically assess their ability to cope with abiotic stress. From the Mediterranean plants that were planted and tested, 52 were singled out because of their resistance and additional favorable traits. Motivated by this long-term assessment, a systematic literature review was conducted using the protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) to validate empirical results, determine which were still unexplored, and bring to light additional uses. Results showed that 41 of the plants included in this research have significant medicinal properties, 26 have nutritional uses, 17 industrial uses, and 18 have evidence of cosmetology uses. Additionally, the empirical assessment gave new evidence of at least 40 new species–trait combinations. By formally documenting the characteristics of these native Mediterranean plants, this work highlights their versatile traits, and the prospect of creating new uses and value chains enables, for the first time their inclusion in planting-decision support systems and aims to increase demand and facilitate the scaling up of native greening in the context of sustainable land and water management within and beyond the Mediterranean basin.

Keywords: Mediterranean plants; tolerance; abiotic stress; nutrition; industrial; cosmetics; medicinal

1. Introduction

Climate change is expected to have a significant impact on global hydroclimatic patterns [1,2]. The Mediterranean coast and islands will be at the epicenter of these changes [3,4], with climate-model projections indicating a strong susceptibility to water stress [5,6] and a corresponding increase in the frequency and intensity of droughts [7]. It is characteristic that for the climatic scenario Representative Concentration Pathway (RCP) 8.5, the end of the 21st century finds most of the Mediterranean regions drier by at least one category on the aridity index scale [8]. Increasing irrigation to cover vegetation evapotranspiration requirements under the low natural leaching frequency experienced in arid zones will inadvertently lead to salinity accumulation in the soil [9]. In the Mediterranean regions, this is already a harsh reality [10], with 25% of irrigated
agricultural land being affected by a significant level of salinization, leading to moderate soil degradation [11]. It is therefore evident that droughts, heat extremes, and soil salinization are among the most urgent challenges faced in the Mediterranean.

The effects of drought and salinity on growth and physiological activity of plants can be temporary or permanent and may even impact production sustainability, especially in southern Mediterranean areas [12–14]. In agricultural land, drought and salinity force farmers to switch crops or cultivation systems, which can increase production costs or lead to crop-yield reduction [15]. Furthermore, in urban green spaces (UGSs), rather than following scientific approaches [16–18], the selection of plants is usually based mainly on aesthetic value, without assigning significant weight to their water and salinity stress tolerance. Besides the resulting increased maintenance costs and water consumption, these plants suffer a limited life span and are projected to be the first to perish under current pressures or during future increased extremes [2,8]. Under these circumstances, plant selection is crucial in all human-managed ecosystems, both for the sustainability of the ecosystem and the derived ecosystem services (ESSs) relevant to biomass production, as well as water and soil management [19].

Natural adaptation solutions already exist in the genetic pool of the Mediterranean flora itself, which thrives in a variety of habitats ranging from the most fertile areas to steep slopes with shallow drained soils. For example, Mediterranean plants show a reduction of leaves or seasonal dimorphism where the large winter leaves turn into small and fluffy leaves in the summer to adapt to prolonged dry and hot periods [20–22]. In addition, these species are constantly subject to other environmental pressures, such as long sunlight hours and nutrient deficiency, and have developed the ability to survive activating adaptation mechanisms and strategies [23,24]. Mediterranean vegetation (garrigue, maquis and Mediterranean forests), evergreen shrubs, and trees with leathery leaves (hardwoods), are found even beyond the Mediterranean basin [22,25]. Many of these native plant species have important medicinal and therapeutic properties [26–28], high nutritional value [29,30], high cultivation value, and various uses from the past to the present. In addition, many of the native plants are characterized by special ornamental value (e.g., flower, foliage, shoot color) and find many uses in landscape architecture [22]. In many cases, these species are hiding in plain sight, and are thus sporadically studied, with some of their traits—mainly those associated with their nutritional and aesthetic value—being neglected. These traits and uses, which could also be interesting as alternative and sustainable crops, have only been sporadically documented and while several plant databases (e.g., [31–34]) and plant selection tools (e.g., [35–38]) exist, to our knowledge no work has focused on Mediterranean plants.

Here, we outline the results of a long-term quantitative but mostly qualitative assessment, which started in 1996 and involves over 70 native Mediterranean plants planted and monitored in private green spaces, shared private green spaces (e.g., hotel gardens), public green spaces, and a university campus under different soil and microclimatic conditions on the island of Crete, Greece. Motivated by this long-term assessment, a systematic literature review of these plants was conducted to validate empirical results, determine which were still unexplored and bring to light additional uses that could motivate their wider adoption. We aspire that this work pushes further the conversation for the value of native species and provides a backdrop for better informed vegetation selection in agriculture, urban landscaping, and ecosystem restoration actions.

2. Materials and Methods

2.1. Case Study

The island of Crete has an area of 8335 km2 and is the fifth-largest island in the Mediterranean, with over 600,000 inhabitants. Crete has a Mediterranean climate, characterized by cool wet winters and long, hot, and very dry summers [39]. The mountains of the island affect the weather variability, influencing the intensity and direction of the prevailing winds. The northern coasts are affected in the summer by the annual winds (meltemia with NE
or NW direction), which are hot and dry. In addition, southern regions of the island are
affected in the winter by southern dry and warm winds originating from Africa [40]. The
island receives an average of 7.7 billion m3 of rainfall, of which only 10–15% ends up in
surface runoff, while 68–76% evapotranspires and 14–17% infiltrates [41]. Crete, like other
Mediterranean islands, is highly dependent on groundwater resources, a problem that is
already exacerbated by rising temperatures due to climate change [41]. The soils of Crete
are mainly of limestone origin, deep, moderate, shallow, rocky, and well drained [42,43].
The main sources of soil salinity in Crete include coastal alluvium soils and proximity to the
sea. In addition, the extremely rugged nature, dissolution, and erosion of limestone rock
have created a wide variety of karst features [44] that often control the inflow of seawater
into the coastal aquifer and pose challenges to hydrogeological modeling [45].

2.2. Plant Species Selection Criteria

From over 70 native Mediterranean plants that were planted and tested (near the
sea, slopes, nutrient-deficient soils, plant formations, plant uses etc.; see Section 2.3—
Empirical Assessment), 52 were selected because of their various favorable traits, elabo-
rated upon later in this paper. The rest were excluded due to unfavorable traits, such as
unpleasant smell (e.g., *Artemisia arborescens* L., *Allium ampeloprasum* L.), thorns or
thorny shoots (e.g., *Onopordum illyricum* L., *Genista acanthoclada* DC.) and poor ornamental
value (e.g., *Erigeron bonariensis* L.). The 52 native Cretan plants (most of them native to the
Mediterranean region) used in the field research were 15 trees, such as *Ceratonia siliqua* L.,
Cupressus sempervirens L., and *Laurus nobilis* L., 16 shrubs, such as *Arbutus unedo* L.,
Myrtus communis, *Nerium oleander*, and 21 herbaceous, such as *Borago officinalis* L.,
Salvia fruticosa, *Sideritis syriaca* subsp. *Syriaca* L., and *Thymbra capitata* (L.) Cav. From the plants used in the
research, endemic on the island of Crete are *Zelkova abelicea* (Lam.) Boiss., *Ebenus cretica*,
Campanula cretica (A.DC.) D.Dietr., *Origanum dictamnus* L., and *Petromarula pinnata* L. A.DC.

2.3. Empirical Assessment

In October 1996, research began to evaluate the tolerance of several native plants and
the ornamental value and uses in landscape architecture, which continues until today. The
plantings took place in coastal areas, lowland and mountainous, with various microclimatic
peculiarities across Crete (Figure 1). The plants were planted in urban, semiurban, and
rural areas, in hotels, gardens, private and public spaces, school and church yards, squares,
arheological sites, parks, sections of Motorway 90 (known as Northern Road Axis of
Crete), shared, public–private open spaces of apartment buildings, terraces, verandas, tree
planting of community roads, etc. Among the green spaces documented here, 17 are private
green spaces planted exclusively with native plants of Crete, 32 are private green spaces
planted with mixed native (majority) and imported plants, and 26 are public green spaces
planted mainly with native plants of Crete, all covering an area over 500 m2 each. Of
these green spaces, 20% are located in urban, 75% in semiurban, and 5% in natural areas
(e.g., rural roadside tree lines). Documented green areas (private and public) with a total
area of more than 0.2 ha are shown in Figure 1. In all cases, introduced native plants were at
least one year old, depending on the requirements of the respective landscape architecture
design, and planting was avoided during summer. Plants were introduced individually,
in groups, clusters, tree lines, hedges, borders, rock gardens, flower beds, in free planting,
or in combination with structural elements, etc., which allowed later determination of
optimal configurations for each species. Irrigation in all green spaces was carried out using
micro-irrigation techniques with emitters and driplines.

Drought resistance evaluation was carried out by gradually reducing the frequency of
irrigation with irrigation extent depending on local soil conditions. Irrigation frequency
started from once every second day for the first three months after planting, reduced to 2 to
3 times per week depending on seasonal climatic conditions until year 3 of establishment,
进一步减少到1到2次每周直到第5年，最终}

...
drought-resistant plants such as *Nerium oleander* L., *Ceratonia siliqua* L., and others. This gradual reduction of irrigation was intended to force plants to stimulate the development of a stronger root system [22,46]. During the experiment, it was unnecessary and exceedingly rare to give additional irrigation (except of the irrigation model mentioned) during the summer months after prolonged high temperatures (heatwaves). Supplementary irrigation was applied mainly to plants smaller than the fifth year of planting and in regions with difficult soil and microclimatic conditions. For the purposes of this study, plants that could withstand irrigation only in the summer months or less after the 5th year of establishment were considered drought-tolerant. Salinity tolerance was assessed at the green spaces located on the coastal front, which is directly exposed to various types of salt loading, such as sea salt aerosol, saline groundwater, sedimentary brines, etc. [11]. For the purposes of this study, plants that could withstand direct exposure to this environment for over 5 years were considered salinity-tolerant.

![Figure 1](image.png)

Figure 1. Private and public green spaces with an area of more than two acres that participated in the research evaluation of uses of native Mediterranean plants in landscape architecture. Shown green spaces (year of establishment) are: a. SPGS (2001), b. PGS (1997), c. HMU (2021), d. HMU (2021), e. PGS (2000), f. PGS (1998), g. PGS (1996), h. SPGS (1997), i. PubGS (2018), j. PGS (1997), k. and l. SPGS (1999), m. PGS (1996), n. PGS (1998), o. PGS (2002), p. HMU (2001), q. SPGS (1998), r. PubGS (2000), s. HMU (2021) and t. PGS (1999), where PGS: undisclosed private green space, SPGS: undisclosed shared private green space (e.g., hotel, apartment, restaurant), PubGS: public green space, HMU: Hellenic Mediterranean University.

The scope of this work was to use native plants with reduced requirements, surviving under adverse conditions, without evaluating the growth rate. While imported species were also assessed, their evaluation is beyond the scope of this research. Nevertheless, for the sake of providing a comprehensive picture some of the problems experienced with nonnative plants are also discussed. Eventually, evaluation took place by checking the fulfillment of the requirements of the landscape architecture plan and with qualitative results based on interviews of owners of private green spaces and visitors of public and common-use green spaces.

2.4. Systematic Review

A systematic review was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) method consisting of a checklist and a four-step process with key elements for a transparent and reproducible reporting of a systematic review [47]. The steps of PRISMA are: (1) search (the search string and database types are defined), (2) evaluation (inclusion and exclusion of literature items as well as quality assessment criteria are predetermined), (3) synthesis (data are extracted and categorized), (4) analysis (results and conclusions are presented) [48].
3. Results
3.1. Empirical Assessment

From 1996 until today, 52 native Cretan plants were investigated, planted, and tested for their tolerance and uses. The private and public landowners were very positive about the use of native plants in their areas of ownership or responsibility, as they were informed about the advantages of native plants and witnessed good aesthetic results. Native plants were assessed for shapes and forms not typically practiced and not documented in previous research. The pruning method determined the dimensions of the crown of a plant, influencing its use depending on the desired aesthetic and functional result. Native plants with small foliage and slow growth rates gave impressive results, such as the *Querqus ilex* L. tree, which was formed into a spherical bush (Figure 2).

![Native Mediterranean plants](image)

Figure 2. Native Mediterranean plants formed: *Querqus ilex* L. in (a) free and (b) spherical form. *Myrtus communis* L. in (c) a hedge and (d) spherical form. (e) *Pistacia lentiscus* L. as formed plant, (f) and *Rhamnus alaternus* L. as a hedge. Photos: I. Christoforidi.

Based on this assessment, Table 1 provides an overview of the possible shapes, forms, and functions of 52 native plants that are relevant to landscape architecture applications. From the list presented in Table 1, the most common forms were group or cluster planting, and pot planting (possible for all 52 plants, and for 45 out of 52 plants, respectively), and the rarest form that of high hedges (only seen in 15 out of 52 plants). The least frequent function was that of providing shade (13 plants), since it is also limited to trees. The plants with the highest diversity in shapes, forms, and functions were *Tamarix parviflora* DC., *Rosmarinus officinalis* L., *Quercus coccifera* L., *Pistacia lentiscus* L., *Nerium oleander* L., *Limoniastrum monopetalum* (L.) Boiss., *Ebenus cretica* L., and *Crithmum maritimum* L. The least versatile was *Petromarula pinnata* (L.) A. DC. (suggested only for group or cluster planting in flower beds, and rock gardens) and *Rhamnus alaternus* L. (suggested only for group or cluster planting, pot planting, and high hedges).

3.2. Systematic Review

Using the above empirical assessment as a starting point, information was collected from published literature databases accessible online (Science Direct, PubMed, Springer, and Google Scholar) and books (Greek and English) using keywords based on the genera and species of the 52 native Mediterranean plants. From the search results (6750) and 17 books and from those selected from publications in peer-reviewed scientific journals and plant databases (1120), duplicate entries were found (24). After reviewing the scientific publications, only the relevant publications were included (313), of which 38 concerned adverse soil and climatic condition tolerance, 62 of nutritional value, 161 medicinal use, 25 industrial application, and 27 cosmetology and dyeing application (Figure 3).
Table 1. Suggested use and function of native Mediterranean plants in landscape architecture. IP: individual planting; CL: group or cluster planting; PP: pot plant; LH: low hedge; HG: hedge; TL: tree line; FB: flower bed; RG: rock garden; TS: tree for shade; GC: ground cover or slope cover.

Plant	IP	CL	PP	LH	HG	TL	FB	RG	TD	GC
Acer sempervirens L.	X	X		X		X	X			
Arbutus unedo L.		X				X	X			
Calicotome villosa (Poir.) Link	X			X		X	X			
Campanula carpatica (A.DC.) Dieter.	X				X					
Capparis spinosa L.	X					X	X			
Ceratonia silique L.	X									
Cercis siliquastrum L.	X									
Cicerbita spinosa L.		X			X	X				
Cistus creticus ssp. Creticus L. 1762		X								
Crithmum maritimum		X								
Cupressus sempervirens L.	X			X						
Dactylis carota ssp maximus (Desf.) Ball		X			X	X				
Ebenus cretica L.		X								
Foeniculum vulgare Hill.		X								
Helichrysum orientale (L.) Gaertn		X				X	X			
Hypericum perforatum L.	X			X		X	X			
Juniperus oxycedrus L.	X					X	X			
Laurus nobilis L.	X									
Lavandula stoechas L.		X								
Limonium monopetalum (L.) Boiss.	X					X	X			
Lupinus angustifolius L.		X								
Medicago arborea L.	X									
Melissa officinalis L.	X									
Muscari comosum (L.) Perl.	X					X				
Myrtus communis L.	X									
Narcissus tazetta L.	X									
Nerium oleander L.	X									
Origanum dictamnus L.	X									
Origanum onites L.	X									
Pancrenium maritimum L.	X									
Petromarula pinifolia (L.) A.DC.	X									
Phallusus rupestris. sp. graccus Batt.	X			X			X	X		
Phyllisca latifolia L.	X									
Phoenix theophrastii Greuter	X									
Pinus pinea L.	X									
Pistacia lentiscus L.	X					X	X			
Pistacia terebinthus L.	X			X						
Quercus coccifera L.	X				X	X				
Quercus ilex L.	X			X						
Rhamnus alaternus L.	X					X	X			
Rhamnus communis L.	X					X	X			
Rosmarinus officinalis L.	X				X	X				
Salvia fruticosa Mill.	X			X						
Sambucus nigra L.	X			X						
Satureja thymbra L.	X			X						
Sideritis ovina ssp. ovina L.	X			X						
Spartium junceum L.	X			X						
Styphion officinalis L.	X			X						
Tamarix parviflora DC.	X			X						
Thymbra capitata (L.) Cav.	X			X						
Vitex agnus-castus L.	X			X						
Zelkova abelicea (Lam.) Boiss.	X			X						

3.3. Abiotic Stress Tolerance

From the 52 plant species of this study, 29 plants were selected for long-term assessment and systematic literature review and were evaluated for abiotic stress tolerance. From these 29 Mediterranean plants, evidence has been documented (Table 2) of their tolerance to salinity (17 cases from the literature and 23 cases from the empirical assessment), tolerance to drought (21 cases from the literature and 27 cases from the empirical assessment), tolerance to nutrient-deficient soils (15 cases from the literature and 24 cases from the empirical assessment), and frugality (9 cases from the literature and 29 cases from the empirical assessment). In limited cases (6 for salinity, e.g., *Borago officinalis* L., 9 for drought, e.g., *Cichorium spinosum* L., and 5 for nutrient-deficiency, e.g., *Hypericum perforatum* L.), they were neither tested in this study nor found in the literature (column NT marked in Table 2), which means that potential properties of these plants still need to be investigated. According to the systematic review and assessment, the most tolerant trees in all salinity, drought, nutrient-deficient soils and with few maintenance requirements were the native Mediterranean *Tamarix parviflora* DC., *Ceratonia silicaria* L., *Pinus pinea* L., *Cercis siliquastrum* L., *Cupressus sempervirens* L. and *Juniperus oxycedrus* L., Examples of native Mediterranean bushes and shrubs tolerant in all salinity, drought, nutrient-deficient soils and with few requirements were *Nerium oleander* L., *Limoniastrum monopetalum* (L.) Boiss., *Spartium junceum* L., and *Rhamnus alaternus* L. (Table 2). Figure 4 shows an example of a cut-and-fill restoration.
project that took place on high-limestone soils in HMU, where 566 individual plants from 15 native Mediterranean species (mostly *Tamarix parviflora* DC., *Nerium oleander* L., *Cercis siliquastrum* L., *Viburnum tinus* L., *Ceratonia siliqua* L., *Pistacia lentiscus* L., *Rosmarinus officinalis* L., and *Hedera helix* L.) and 5 alien species (mostly *Elaeagnus pungens* C. P. Thunb. Ex A. Murray, *Lantana camara* L., and *Metrosideros excelsa* Soland. Ex Gaertn.). After five years, native plants have survived and are resistant to arid, nutrition-deficient soils, reducing soil erosion. In addition, some alien species have also survived, but the results are not shown in the present study.

Figure 3. Diagram of the PRISMA method to search for resistance to adverse conditions for native plants and for added values: nutritional, medical, industrial, cosmetology and dye use.

3.4. Additional Value of Mediterranean Plants

3.4.1. Nutrition

International gastronomy is often associated with the ethnobotanical background and especially the use of plants that combine beneficial properties (such as medicinal herbs) while reducing the use of salt in the preparation of dishes and increasing consumer acceptance and appreciation [30,94]. In this sense, Mediterranean plants are of great interest because of their important nutritional value and central role in the Mediterranean diet and its many health benefits [95]. Edible parts from native plants are usually leaves (e.g., *Crithmum maritimum* L., *Rosmarinus officinalis* L., *Borago officinalis* L., *Thymbra capitata* (L.) Cav.) flowers (e.g., *Borago officinalis* L., *Origanum onites* L.), fruits (e.g., *Arbutus unedo* L., *Myrtus communis* L., *Capparis spinosa* L.), and bulbs (e.g., *Muscari comosum* (L.) Parl.). Many ways exist for using or cooking these plants, which can be dried, boiled, cooked in pies, used for tea, salads, and cooked with meat, fish, snails, etc. (Figure 5). Many of the edible native Mediterranean plants can also be grown in private gardens, flower beds, pots or planters, green roofs that produce food, and even in semiurban or urban areas in public or private spaces [96,97]. In addition, the food industry and many new diet trends use native Mediterranean plants for their antioxidant properties for immediate consumption or...
consumption after food processing [26–28,98]. According to the literature, in some native Mediterranean plants, e.g., *Daucus carota* L., the whole plant is edible [99] or can also be used for beverage, e.g., *Arbutus unedo* L. and *Myrtus communis* L. [100–105]. To the authors’ knowledge, 26 of the plants included in this research have nutritional uses (Table 3), but it is possible that more are used and not published.

Table 2. Tolerance of native plants of Crete to abiotic stress drivers. PR: number of samples assessed in the present research, NT: black dots indicate that plant has not tested in the literature or the present study. The number of plants varies in some species according to the needs of the green space.

Plant	Salinity	Drought	Nutrient Deficiency	Frugal
Borago officinalis L.	[50]	[49]	15	[49,50]
Calicotome villosa	80	[52]	85	[53,54]
Capparis spinosa L.	45	[55,56]	50	[55,56]
Ceratonia silique L.	180	[57]	250	[58,59]
Cercis siliqueastrum L.	40	[61]	50	[62]
Cichorium spinosum L.	25	[63]	34	[64]
Citrihumum maritimum L.	42	[65,66]	42	[67]
Cupressus sempervirens L.	90	[67,68]	240	[67,69]
Dausus carote ssp. Maximus (Desf.)				
Ball 1878				
Helichrysum orientale (L.) Gaertn	18	[70]	25	[71]
Hypericum perforatum L.				
Laurus nobilis L.	22	[72]	22	[73]
Lavandula stoechas L.				
Limoniastrum monopetalum (L.) Boiss.	130	[75,76]	121	[75,76]
Lupinus angustifolius L.	25	[77]	25	[78]
Mecsi cardio comosum (L.) Parl.	22	[79]	22	[80]
Nerium oleander L.	980	[67,80]	720	[67]
Origanum dictamnus L.				
Origanum onites L.	85	[81]	135	[82]
Phagnalon rupestre sp. gracum Batt.	24	[83]	24	[84]
Psephiros latifolia L.	12	[84]	12	[85]
Pinus pinea L.	55	[86]	85	[87]
Pistacia lentiscus L.	320	[88]	350	[89]
Rhamnus alaternus L.	650	[86]	500	[87]
Rosmarinus officinalis L.	350	[67,90]	450	[88]
Satureja thymbra L.	120	[89]	182	[89]
Spartium junceum L.	62	[86,90]	200	[86,90]
Tamarix parviflora DC.	180	[93]	180	[94]

Figure 4. Restoration of a cut-and-fill project in highly calcaric soils in HMU. Native Mediterranean (a) *Tamarix parviflora* DC. rooted on the almost vertical slope, (b) *Nerium oleander* L., (c) *Cercis siliquastrum* L., (d) *Viburnum tinus* L., and alien e) *Elaeagnus pungens* C. P. Thunb. Ex A. Murray and (f) *Lantana camara* L. can be distinguished. Scale on the right is approximate. Photo: I. Daliakopoulos.
3.4. Additional Value of Mediterranean Plants

3.4.2. Medicine

Native plants of the Mediterranean region are used for nutrition in Mediterranean diet and contribute significantly to maintaining good health and preventing serious chronic diseases [26–28,106]. Free radicals hinder many biological processes, and are the source of damage to lipids, proteins, membranes, and nucleic acids, thus causing a variety of diseases such as atherosclerosis, inflammation, cancer, cardiovascular disease, etc. [107]. A variety of plant products have important antiviral and anti-inflammatory effects against diseases that relate to free radicals, due to their contents in phenolic compounds, such as flavonoids, phenolic acids, tannins, and phenolic diterpenes [107]. In the last 2 decades, special emphasis has been placed on the natural antioxidant activity offered by the consumption of several native plants, which are rich in omega 3 fatty acids and antioxidants [108].

People in ancient times used plant parts for therapeutic purposes. The parts of the plants used in traditional medicine are mainly leaves, stems with leaves or upper part, seeds, flowers, buds, bark, bulbs, roots etc. with the leaves being usually the most widely used [109]. In addition, essential oils, produced from a variety of Mediterranean plants are secondary metabolites of plants that have various pharmacological properties, mainly antioxidants, antimicrobials or immunomodulators [110]. In our research, we worked on searching literature references for the 41 native Mediterranean plants for their significant medicinal properties (Table S1) and therapeutic activity in a variety of diseases, contributing significantly to human health and well-being. Table S1 lists the medicinal properties of these native plants, but it is possible that there are more and not published.

3.4.3. Industry

Besides nutritional value, the food industry takes advantage of the important antimicrobial activity of many native Mediterranean plants. For example, *Borago officinalis* L. has been used as a natural preservative in fresh pasta [111] and sausage production [112],

![Figure 5. Examples of Mediterranean plants used in culinary products.](image)

(a) Dried *Origanum onites* L. and *Rosmarinus officinalis* L. leaves on bread crust, (b) fresh *Foeniculum vulgare* Hill. leaves on sardines, (c) *Crataegus monogyna* on cheese spread, (d) *Salvia fruticosa* Mill. on stew, (e) *Borago officinalis* L. in omelet. Photos: I. Christoforidi.

Figure 5. Examples of Mediterranean plants used in culinary products. (a) Dried *Origanum onites* L. and *Rosmarinus officinalis* L. leaves on bread crust, (b) fresh *Foeniculum vulgare* Hill. leaves on sardines, (c) *Crataegus monogyna* on cheese spread, (d) *Salvia fruticosa* Mill. on stew, (e) *Borago officinalis* L. in omelet. Photos: I. Christoforidi.
and *Rosmarinus officinalis* L. as a preservative in various types of processed meat (pork, beef, lamb, and poultry), and fish [113,114]. Beyond the food industry, the gum that is produced from the carob seeds after peeling and grinding has been used in the production of photographic film, matches, paints, inks, and adhesives [115]. Also, generally, plant colors can come from different parts, for example the leaves (*Rubia tinctorum* L.), roots (*Berberis cretica* L.), bark (*Quercus ilex* L.), and petals (*Dictyria viscosa* (L.) Greuter), and contribute various colours such as blue (*Olea europaea* L.), red (*Rubia tinctorum* L.), yellow (*Berberis cretica* L.), green (*Dictyria viscosa* (L.) Greuter), brown (*Quercus ilex* L.), etc. [116], and have been traditionally used (and in some cases still are) for dyeing fibres or fabrics of animal and plant origin (e.g., *Hypericum perforatum* L. [117], *Phillyrea latifolia* L. [118], *Quercus ilex* L. [116], *Spartium junceum* L. [119]). In our research, we worked on searching literature references for the 52 native Mediterranean plants and we found evidence for industrial use for 17 plants shown on Table 4, but it is possible that there are more and not published. The plants with the most industrial uses and better documentation in the literature are *Borago officinalis* L., *Ceratonia siliqua* L., *Myrtus communis* L., and *Rosmarinus officinalis* L.

3.4.4. Cosmetology

In cosmetic production from plants leaves, flowers, essential oils, plant extracts and other selected ingredients of natural origin are used. They are used for many cosmetic productions that are used in face, hair, and body care products, such as soaps, shower gels, face, body creams, waxes, perfumes, sunscreens, shampoos, hair conditioners, hair masks, moisturizing lotions, soothing massage oils, etc. Natural cosmetics are products whose effectiveness is attributed to their herbal ingredients and the native plants of the Mediterranean offer proven uses or perspectives of innovation at various levels. A variety of products have now been marketed, utilizing, and highlighting the uses of Mediterranean plants (e.g., BioSelect, Athens, GR; Agrecofarms, Rethymno, GR; Cretanbee, Agios Nikolaos, GR). Evidence of cosmetology use of 18 native Mediterranean plants is shown in Table 5, but it is possible that there are more which have not been published.

Table 3. Nutritional use of Mediterranean plants in the literature.

Plant	Indicative References of Nutritional Value
Arbutus unedo L.	[103,120]
Borago officinalis L.	[111,121,122]
Capparis spinosa L.	[123,124]
Ceratonia siliqua L.	[125–129]
Cichorium spinosum L.	[63]
Crataegus monogyna	[130,131]
Crithmum maritimum L.	[132]
Daucus carota sap maximus (Desf.) Ball	[99,133,134]
Foeniculum vulgare Hill.	[135]
Juniperus oxycedrus L.	[136]
Laurus nobilis L.	[137,138]
Lavandula stoechas L.	[139]
Limoniastrum monopetalum (L.) Boiss.	[140–142]
Lupinus angustifolius L.	[143–146]
Melissa officinalis L.	[147]
Muscaria comosaum (L.) Parl.	[79,148]
Myrtus communis L.	[104,105,149,150]
Origanum dictamnus	[50,151–155]
Origanum onites L.	[154–156]
Pinus pinea L.	[157]
Pistacia lentiscus L.	[158–160]
Pistacia terebinthus L.	[161–165]
Rosmarinus officinalis L.	[113,114,166–168]
Salvia fruticosa Mill.	[169]
Satureja thymbra L.	[170]
Thymbra capitata (L.) Cav.	[171–173]
Table 4. Industrial use of Mediterranean plants in the literature.

Plant	Indicative Reference of Industrial Use
Borago officinalis L.	[111,112,174]
Ceratonia siliqua L.	[115,128,129]
Crithmum maritimum L.	[175]
Hypericum perforatum L.	[117]
Juniperus oxycedrus L.	[176]
Laurus nobilis L.	[138]
Myrtus communis L.	[104,105,149,150,177]
Origanum onites L.	[156]
Phillyrea latifolia L.	[118]
Pinus pinea L.	[178]
Pistacia lentiscus L.	[160]
Pistacia terebinthus L.	[179]
Quercus ilex L.	[116]
Rosmarinus officinalis L.	[113,114,166–168]
Satureja thymbra L.	[180]
Spartium junceum L.	[119]
Thymbra capitata (L.) Cav.	[172,173]

Table 5. Mediterranean plants in cosmetology in the literature.

Plant	Indicative Reference of Cosmetology Use
Capparis spinosa L.	[55,181]
Ceratonia siliqua L.	[128]
Crithmum maritimum L.	[175,182,183]
Daucus carota ssp maximus (Desf.) Ball	[133,134]
Foeniculum vulgare Hill.	[184]
Helichrysum orientale (L.) Gaertn	[185]
Juniperus oxycedrus L.	[136]
Laurus nobilis L.	[138,186]
Lavandula stoechas L.	[139]
Myrtus communis L.	[104,105,149,150]
Origanum onites L.	[155]
Phillyrea latifolia L.	[118]
Pistacia lentiscus L.	[160]
Pistacia terebinthus L.	[165]
Rhamnus alaternus L.	[187]
Rosmarinus officinalis L.	[166–168]
Satureja thymbra L.	[188,189]
Spartium junceum L.	[90]

4. Discussion

Nowadays, many of the native plants used in the past have gained the interest of the wider scientific community by presenting a variety of uses, which can be a very interesting cultivation proposal for an innovative and sustainable economy. Current trends in the food science industry and consumers’ preferences for diversified diets suggest the consumption of many native Mediterranean plants not only as diet complements but also as healthy medicinal foods for targeted conditions. The current movement in the industry of food science, as well as consumer preference for higher dietary diversification, point to the consumption of many native Mediterranean plants not just as dietary supplements, but also as healthy “prescription” diets for targeted conditions. These plants with limited needs for irrigation and high resistance to adverse conditions are considered as commercial cultivation of major importance. The increased consumption of insufficient water in many arid regions of the planet, can function as a deterrent to many inadequate or demanding imported plant species. In the Mediterranean region, with the forthcoming climate change and increase of temperature and drought, there is growing interest in native Mediterranean
plants, which have already been tested in extreme temperature and dry conditions. In addition, the native plants are offered for several profitable business crops and also plantings in the urban environment with significant, positive ESSs.

In the empirical assessment part of this work, 52 native Mediterranean plants were evaluated for use primarily in landscape architecture. According to interviews of owners of private green spaces and visitors of public and common use green spaces where this vegetation was established, it was notable that native Mediterranean plants fulfill the aesthetic purpose and can be used in private and public green spaces. The adequate aesthetic value of Mediterranean plants for public and private green spaces has been previously demonstrated in the literature [17,18,190], and can be attributed to their full harmonization with the natural landscape and the capacity to blend in, update and preserve cultural heritage, thus appealing to non-material criteria. For example, trees such as *Cercis siliquastrum* L., *Sambucus nigra* L., *Styrax officinalis* L., and shrubs such as *Nerium oleander* L., *Calicotome villosa* (Poir.) Link, *Limoniastrum monopetalum* (L.) Boiss., *Vitex agnus-castus* L., and herbaceous plants such as *Daucus carota*ssp maximus (Desf.) Ball, *Borago officinalis* L. and *Campanula cretica* (A.DC.) D.Dietr. combine an impressive flowering and ornamental foliage suitable for a variety of uses in landscape architecture. Apart from their aesthetic value, adaptation to adverse soil and climatic conditions and irrigation limitations, frugal plant protection and maintenance, significantly reduce maintenance costs and make native Mediterranean plants ideal for use in UGSs. For these plants, deficit irrigation may inhibit growth and result to a stable compact plant form, and facilitate easier landscape management [191].

Furthermore, according to our systematic review and assessment, 29 of the discussed native Mediterranean plants were evaluated as tolerant to abiotic stress. Despite the different microclimatic conditions in every region in the Mediterranean basin, plants tolerant in abiotic stress, are preferable and more effective for farmers and landscapers. In Mediterranean regions, drought stress limits plant growth, and survival is threatened due to lack of rainfall and high temperatures in summer that impose extreme stress conditions [8,191] and a critical threat to world food security in the future. Also, coastal alluvium soils and proximity to the sea, increase salinity and stress to the plants. In our research, many of the Mediterranean plants that have been studied show significant resistance to drought, sea water spray, salinity, planting near the sea and strong winds. The continuing trend of global warming is predicted to cause significant changes in the climatic characteristics of several regions and in particular, the Mediterranean region it is expected to undergo a significant reduction in rainfall with more extremely dry and hot periods [192]. In Mediterranean areas, agriculture and green spaces will have to suffer drier, hotter, and longer summers, and therefore more attention should be given to water use and plant selection.

Alien flora and imported plant species were also assessed and compared with native plants. Some of the problems experienced with nonnative plants were in terms of increased maintenance costs (irrigation, nutrition, plant protection, cultivation requirements) and resistance to current microclimatic conditions (drought, poor soils, salinity, planting near the sea, strong winds, etc.). Moreover, many plants dried up completely from the first year (or second summer if planting took place late with lower temperatures), like *Leptospermum* sp., which gradually stopped being used in Crete, especially in some costal arias. Nonnative plants that survived faced increased problems with calcareous soil (e.g., *Callistemon* sp. *Camellia* sp.) or entomological infestations (e.g., *Pittosporum* sp.) or problems with their extensive root system and the unsuitable planting sites (e.g., *Ficus* sp.) or maintenance problems (e.g., *Yucca* sp.). In addition, some imported plants have caused extent entomological problems by invasive alien pests, such as *Rhynchophorus ferrugineus*, which has caused enormous damages to cultivated palms across the Mediterranean [193]. Furthermore, some nonnative plants such as *Eucalyptus* sp. and *Ailanthus altissima* (Miller) Swingle, have become weeds [194,195], and pose threats to the local ecosystem because of their efficiency in abstracting water (to the extent that they are a known threat to infrastructure and monuments), as well as allelopathic effects due their high concentration in terpenes [196] and
quassinoids [197], respectively. For this reason, before planting it is always advisable to consult the most recent alien species list [198], and also consider which native species can substitute this alien counterpart in terms of functions and aesthetic result, as shown in Table 6. Nevertheless, substitution of such species is not always straightforward as they now also carry some cultural value, and a landscape architecture study is required on a case-by-case basis.

The establishment of native Mediterranean plants in the Mediterranean biome for cultivation or landscaping of UGSs can significantly contribute to biodiversity conservation [199] and the restoration of ecological balance. Their proven tolerance to conditions of increased salinity and drought, renders them imperative for the success and sustainability of ecosystem restoration actions, and the exploitation of low-productivity or marginal land, now as well as under future climate induced stresses. This way the employment of native Mediterranean plants offers superior, long-term, and cost-effective regulatory ecosystem services (ESSs) [200] and ecological benefits [201], and leads to healthier local communities and positive effects on their well-being [202–204].

Table 6. Proposals for replacement of some invasive plants with native Mediterranean plants with similar functions. Invasive plants listed in [195] and [203] for Crete and Greece, respectively.

Invasive Species	Native Species	Cypressus sempervirens L.	Sambucus nigra L.	Quercus ilex L.	Tamarix parviflora DC.	Ceris siliquastrum L.	Pistacia terebinthus L.	Styrax officinalis L.	Pinus pinea L.	Acer sempervirens L.	Laurus nobilis L.	Ceratonia silique L.	Nerium oleander L.	Medicago arborea L.	Vitex agnus-castus L.
Acacia farnesiana (L.) Willd.	X	X	X	X	X	X	X	X	X	X	X	X	X		
Acacia saligna (Labill.) H. Wendl.	X	X	X	X	X	X	X	X	X	X	X	X	X		
Ailanthus altissima (Miller) Swingle	X	X	X	X	X	X	X	X	X	X	X	X	X		
Eucalyptus sp.	X	X	X	X	X	X	X	X	X	X	X	X	X		
Lantana camara L.	X	X	X	X	X	X	X	X	X	X	X	X	X		
Robinia pseudoacacia L.	X	X	X	X	X	X	X	X	X	X	X	X	X		
Solanum elaeagnifolium Cav.	X	X	X	X	X	X	X	X	X	X	X	X	X		
Tamarix arborescens (Ehrenb.) Bunge	X	X	X	X	X	X	X	X	X	X	X	X	X		

Finally, the need of natural capital protection and ESSs is crucial achieving the goals of sustainable development. At the same time, there is a global need for solutions based on nature to significantly alleviate pressures on environmental, economic, and social challenges. Native Mediterranean plants offer superior nature-based solutions, ranging from UGSs, applications to reforestation programs, and community forestry, and expanding their applications is well aligned with European Union (EU) actions focused on a smart, sustainable, and inclusive economy, with strategies for biodiversity and green infrastructure in the context of the Europe 2020 development strategy [205].

5. Conclusions

This work provides a framework for organizing native Mediterranean vegetation properties and functions that can be used as a basis for prioritizing and selecting native plants for various land-management purposes, such as landscaping, agriculture, and ecosystem restoration in the Mediterranean. Through the application of this framework on the island of Crete, we highlight the multiple positive properties and diverse functions of native Mediterranean plants, both for agriculture and UGSs, and in the context of ecosystem preservation, ecosystem restoration, and crop production for diverse applications and markets (nutrition, medicine, industry, and cosmetology). For these prospects to flourish, a better understanding of a significant number of species still needs to be investigated for their tolerance to abiotic factors and possibly for other alternative uses. For native Mediterranean plants to be widely adopted, besides the need for wider dissemination, several barriers still need to be overcome, such as the availability of plants that are trade-licensed and compliant
with cultivation protocols, the capacity of local communities to implement sustainable plant establishment and appreciate the upgraded ESSs, the availability of financial and policy tools for the implementation, and eventually access to postharvest and market solutions.

Supplementary Materials: The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/land1112038/s1, Table S1: Medicinal uses of Mediterranean plants in the literature.

Author Contributions: Conceptualization, I.C., I.N.D., and D.K.; methodology, I.C., I.N.D., D.K., and T.M.; validation, I.C.; formal analysis, I.C.; investigation, I.C.; resources, I.C.; data curation, I.C.; writing—original draft preparation, I.C. and I.N.D.; writing—review and editing, I.C., I.N.D., and D.K.; visualization, I.C. and I.N.D.; supervision, I.N.D. and D.K.; funding acquisition, I.N.D. and T.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work has received funding from REACT4MED: Inclusive Outscaling of Agro-Ecosystem Restoration Actions for the Mediterranean. The REACT4MED Project (grant agreement 2122) is funded by PRIMA, a program supported by Horizon 2020.

Data Availability Statement: Data available on request.

Acknowledgments: The authors thank the land managers of the green spaces used in this study for agreeing to participate and sharing their perspective.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilbashi, A.; et al. Changing Climate Both Increases and Decreases European River Floods. *Nature* 2019, 573, 108–111. [CrossRef] [PubMed]

2. Kreibich, H.; van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazziolli, M.; Sairam, N.; Abebu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The Challenge of Unprecedented Floods and Droughts in Risk Management. *Nature* 2022, 608, 80–86. [CrossRef] [PubMed]

3. Nerantzaki, S.D.; Efstathiou, D.; Giannakis, G.v.; Kritsotakis, M.; Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K.; Nikolaidis, N.P. Climate Change Impact on the Hydrological Budget of a Large Mediterranean Island. *Hydrol. Sci. J.* 2019, 64, 1190–1203. [CrossRef]

4. Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for Drought Assessment in the Mediterranean Region under Future Climate Scenarios. *Earth Sci. Rev.* 2020, 210, 103348. [CrossRef]

5. Ludwig, R.; Roson, R.; Zografos, C.; Kallis, G. Towards an Inter-Disciplinary Research Agenda on Climate Change, Water and Security in Southern Europe and Neighboring Countries. *Environ. Sci. Policy* 2011, 14, 794–803. [CrossRef]

6. Koutroulis, A.G.; Tsanis, I.K.; Daliakopoulos, I.N.; Jacobs, D. Impact of Climate Change on Water Resources Status: A Case Study for Crete Island, Greece. *J. Hydrol.* 2013, 479, 146–158. [CrossRef]

7. Dai, A. Increasing Drought under Global Warming in Observations and Models. *Nat. Clim. Change* 2012, 3, 52–58. [CrossRef]

8. Daliakopoulos, I.N.; Panagea, I.S.; Tsanis, I.K.; Grillakis, M.G.; Koutroulis, A.G.; Hessel, R.; Mayor, A.G.; Ritsema, C.J. Yield Response of Mediterranean Rangelands under a Changing Climate. *Land Degrad. Dev.* 2017, 28, 1962–1972. [CrossRef]

9. Perri, S.; Molini, A.; Hedin, L.O.O.; Porporato, A.M. Contrasting Effects of Aridity and Seasonality on Global Salinization. In *Proceedings of the AGU Fall Meeting*; New Orleans, LA, USA, 13–17 December 2021.

10. Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S. Towards Adaptation of Agriculture to Climate Change in the Mediterranean. *Reg. Environ. Change* 2011, 11, 159–166. [CrossRef]

11. Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.G.; Kourialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The Threat of Soil Salinity: A European Scale Review. *Sci. Total Environ.* 2016, 573, 727–739. [CrossRef]

12. Marañón-Jiménez, S.; Asensio, D.; Sardans, J.; Zuccarini, P.; Ogaya, R.; Mattana, S.; Peñuelas, J. Seasonal Drought in Mediterranean Soils Mainly Changes Microbial C and N Contents Whereas Chronic Drought Mainly Impairs the Capacity of Microbes to Retain, *P. Soil Biol. Biochem.* 2022, 165, 108515. [CrossRef]

13. Trabelsi, L.; Gargouri, K.; Ben Hassena, A.; Mbada, C.; Ghrab, M.; Ncube, B.; Van Staden, J.; Gargouri, R. Impact of Drought and Salinity on Olive Water Status and Physiological Performance in an Arid Climate. *Agric. Water Manag.* 2019, 213, 749–759. [CrossRef]

14. Villani, L.; Castelli, G.; Piemontese, L.; Penna, D.; Bresci, E. Drought Risk Assessment in Mediterranean Agricultural Watersheds: A Case Study in Central Italy. *Agric. Water Manag.* 2022, 271, 107748. [CrossRef]

15. Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. *Agronomy* 2019, 9, 295. [CrossRef]
45. Malagò, A.; Efstatithou, D.; Bouraoui, N.; Nikolaides, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional Scale Hydrologic Modeling of a Karst-Dominant Geomorphology: The Case Study of the Island of Crete. *J. Hydrol.* 2016, 540, 64–81. [CrossRef]

46. Tsantilis, D. Crete a Continent on an Island. National History Museum-University of Crete, Typpokreta: Heraklion, Greece, 2014. (In Greek)

47. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. *J. Clin. Epidemiol.* 2009, 62, e1–e54. [CrossRef] [PubMed]

48. Mengist, W.; Soromessa, T.; Legese, G. Method for Conducting Systematic Literature Review and Meta-Analysis for Environmental Science Research. *MethodsX* 2020, 7, 100777. [CrossRef] [PubMed]

49. Georgakopoulou-Vogiatzi, C. *Outdoor Ornamental Plants*; Garthaganis: Thessaloniki, Greece, 2009; ISBN 9789606859007. (In Greek)

50. Nikitidis, N. Greek Flora: *Helichrysum Orientale*. Available online: https://www.greekflora.gr/el/flowers/3669/Helichrysum-orientale (accessed on 9 July 2022).

51. RHS *Borago Officinalis*—*Borage*. Available online: https://www.rhs.org.uk/plants/57301/i-borago-officinalis-i/details (accessed on 9 July 2022).

52. Pistelli, L.; Fiumi, C.; Morelli, I.; Giachi, I. Flavonoids from Calicotome Villosa. *Fitoterapia* 2003, 74, 417–419. [CrossRef]

53. Barhouchi, B.; Aouadi, S.; Abdi, A. Preparations Based on Minerals Extracts of Calicotome Villosa Roots and Bovine Butyrate Matter: Evaluation in Vitro of Their Antibacterial and Antifungal Activities. *J. Mycol. Med.* 2018, 28, 473–481. [CrossRef]

54. Yiotis, C.; Manetas, Y.; Psaras, G.K. Leaf and Green Stem Anatomy of the Drought Deciduous Mediterranean Shrub Calicotome Villosa (Poiret) Link. (Leguminosae). *Flora: Morphol. Distrib. Funct. Ecol. Plants* 2006, 201, 102–107. [CrossRef]

55. Tlili, N.; El Falleh, W.; Saadaoui, E.; Khaldi, A.; Triki, S.; Nasri, N. The Caper (*Capparis L.*): Ethnopharmacology, Phytochemical and Pharmacological Properties. *Fitoterapia* 2011, 82, 93–101. [CrossRef]

56. Allaith, A.A.A. Assessment of the Antioxidant Properties of the Caper Fruit (*Capparis Spinosa L.*) from Bahrain. *J. Assoc. Arab. Univ. Basic Appl. Sci.* 2016, 19, 1–7. [CrossRef]

57. Cavallaro, V.; Barbera, A.C.; Maucieri, C.; Gimma, G.; Scalisì, C.; Patanè, C. Evaluation of Variability to Drought and Saline Stress through the Germination of Different Ecotypes of Carob (*Ceratonia Siliqua L.*) Using a Hydrotetime Model. *Ecol. Eng.* 2016, 95, 557–566. [CrossRef]

58. Zouari, N.; El Mtili, N. Effects of Ectomycorrhizal Fungal Inoculation on Growth and Rooting of Carob Tree (*Ceratonia Siliqua L.*). *South Afr. J. Bot.* 2020, 135, 181–187. [CrossRef]

59. Gubbuk, H.; Gunes, E.; Ayala-Silva, T.; Ercisli, S. Rapid Vegetative Propagation Method for Carob. *Not. Bot. Horti. Agrobot. Cluj Napoca* 2011, 39, 251–254. [CrossRef]

60. RHS *Ceratonia Siliqua*—*carob*. Available online: https://www.rhs.org.uk/plants/3403/i-ceratonia-siliqua-i/details (accessed on 9 July 2022).

61. Zahreddine, H.G.; Struve, D.K.; Talhouk, S.N. Growth and Nutrient Partitioning of Containerized *Ceratonia Siliqua L.* under Two Fertilizer Regimes. *Sci. Hortic.* 2007, 112, 80–88. [CrossRef]

62. Feghhi, J.; Teimouri, S.; Makhdoum, M.F.; Erfanifard, Y.; Abbaszadeh Tehrani, N. The Assessment of Degradation to Sustainability in an Urban Forest Ecosystem by GIS. *Urban Urban Green* 2014, 14, 211–222. [CrossRef]

63. Petropoulos, S.A.; Fernandes, Â.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I.C. Nutritional Profile and Chemical Composition of Cichorium Spinosum Ecotypes. *LWT Food Sci. Technol.* 2014, 57, 251–254. [CrossRef]

64. Klados, E.; Tzortzakis, N. Effects of Substrate and Salinity in Hydroponically Grown Cichorium Spinumus. *J. Soil Sci. Plant Nutr.* 2014, 14, 211–222. [CrossRef]

65. Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and Antioxidant Responses of the Perennial Halophyte *Crithmum Maritimum* to Salinity. *J. Clin. Epidemiol.* 2009, 62, e1–e34. [CrossRef] [PubMed]

66. Meot-Duros, L.; Magné, C. Antioxidant Activity and Phenol Content of *Cichorium Intybus L.* Leaves. *Plant Physiol. Biochem.* 2009, 47, 37–41. [CrossRef]

67. Patlis, G. *Agricultural Plant Guide*; Stamoulis: Athens, Greece, 2003; ISBN 9789603514350. (In Greek)

68. Strid, A. *Atlas of the Aegean Flora. Part 1: Text & Plates*; Cambridge University Press: Cambridge, UK, 2016; Volume 33. ISBN 978-392-180-0980.

69. RHS *Daucus Carota*—wild Carrot/RHS Gardening. Available online: https://www.rhs.org.uk/plants/24469/i-daucus-carota-i/details (accessed on 9 July 2022).

70. Nikitidis, N. Greek Flora: *Helichrysum Orientale*. Available online: https://www.greekflora.gr/el/flowers/3669/Helichrysum-orientale (accessed on 9 July 2022).

71. RHS *Hypericum Perforatum*—Perforate St John’s Wort/RHS Gardening. Available online: https://www.rhs.org.uk/plants/9021/i-hypericum-perforatum-i/details (accessed on 9 July 2022).

72. ISC Invasive Species Compendium: *Hypericum Perforatum* (St John’s Wort). Available online: https://www.cabi.org/isc/datasheet/28268 (accessed on 9 July 2022).

73. Massei, G.; Watkins, R.; Hartley, S.E. Sex-Related Growth and Secondary Compounds in Juniperus Oxycedrus Macarocarpa. *Acta Oecologica* 2006, 29, 135–140. [CrossRef]

74. Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. *Leaf Morphology for the Main European Woody Species*. *Data Brief* 2017, 12, 662–666. [CrossRef]
75. El-Bakatoushi, R. Identification and Characterization of Up-Regulated Genes in the Halophyte Limoniastrum Monopetalum (L.) Boiss Grown under Crude Oil Pollution. *J. Genet. Eng. Biotechnol.* 2011, 9, 137–148. [CrossRef]

76. Acta Plantarum Galleria Della Flora—Limoniastrum Monopetalum. Available online: https://www.actaplantarum.org/galleria_flora/galleria1.php?id=6001 (accessed on 9 July 2022).

77. ISC Invasive Species Compendium: Lupinus Angustifolius (Narrow-Leaf Lupin). Available online: https://www.cabi.org/isc/datasheet/31706 (accessed on 9 July 2022).

78. Doussi, M.A.; Thanos, C.A. Ecophysiology of Seed Germination in Mediterranean Geophytes. 1. *Muscari* Spp. *Seed Sci. Res.* 2002, 12, 193–201. [CrossRef]

79. Bonasia, A.; Conversa, G.; Lazzizera, C.; la Rotonda, P.; Elia, A. Weed Control in Lampascione—*Muscari Comosum* (L.) Mill. *Crop Prot.* 2012, 36, 65–72. [CrossRef]

80. Welch, W.C. Table of Landscape Plants Suitable for the Gulf Coast. Available online: https://aggie-horticulture.tamu.edu/southerngarden/landtable.html (accessed on 9 July 2022).

81. Kantartzhs, N. Floriculture—Evergreen Ornamental Shrubs for Architecture and Landscape Architecture; IDIOTIKI: Thessaloniki, Greece, 1994; ISBN 9789607177056. (In Greek)

82. Fielding, J.; Turland, N. *Flowers of Crete; Royal Botanic Gardens, Kew; London, UK, 2005; ISBN 9781842460795.*

83. Kofinas, G. Greekflora: Phagnalon Rupestre Subsp. Graecum. Available online: https://www.greekflora.gr/el/flowers/3312/Phagnalon-rupestre-subsp-graecum (accessed on 1 October 2022).

84. RHS Phillyrea Latifolia i Green Olive/RHS Gardening. Available online: https://www.rhs.org.uk/plants/12668/i-phillyrea-latifolia-i/details (accessed on 9 July 2022).

85. Flexas, J.; Gulis, J.; Jonasson, S.; Medrano, H.; Mus, M. Seasonal Patterns and Control of Gas Exchange in Local Populations of the Mediterranean Evergreen Shrub *Pistacia Lenticus* L. *Acta Oecologica* 2001, 22, 33–43. [CrossRef]

86. Tsalikidis, G. *Agricultural Plants for Greek Gardens; Paratiritis: Thessaloniki, Greece, 1994; ISBN 9789602607381.* (In Greek)

87. Moussi, K.; Nayak, B.; Perkins, L.B.; Dahmoune, F.; Madani, K.; Chibane, M. HPLC-DAD Profile of Phenolic Compounds and Antioxidant Activity of Leaves Extract of *Rhamnus Alaterrus* L. *Ind. Crops Prod.* 2015, 74, 858–866. [CrossRef]

88. Martinez, A.L.; Gonzalez-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J.; Navarrete, A. Antinociceptive Effect and GC/MS Analysis of *Rosmarinus Officinalis* L. Essential Oil from Its Aerial Parts. *Planta Med.* 2009, 75, 508–511. [CrossRef] [PubMed]

89. PFAF Satureja Thymbra Thyme-Leaved Savory PFAF Plant Database. Available online: https://pfaf.org/User/Plant.aspx?LatinName=Satureja+thymbra (accessed on 9 July 2022).

90. Cerchiara, T.; Chidichimo, G.; Ragusa, M.I.; Belsito, E.L.; Liguori, A.; Arioli, A. Characterization and Utilization of Spanish Broom (*Spartium Junceum*) L. Essential Oil from Its Aerial Parts. *Planta Med.* 2009, 78(3), 264–272. [CrossRef] [PubMed]

91. Darras, A.I.; Kargakou, V. Postharvest Physiology and Handling of Cut Spartium Junceum Inflorescences. *Appl. Soil Ecol.* 2008, 38, 21–28. [CrossRef]

92. RHS Royal Horticultural Society Gardening. Available online: https://www.rhs.org.uk/ (accessed on 9 July 2022).

93. Martínez-Castell, S.; Molina, A.; Cuervo, M.; Pizarro, C.; Benitez, J.; Mota, A. Seasonal Patterns and Control of Gas Exchange in Local Populations of the Mediterranean Evergreen Shrub *Pistacia Lenticus* L. *Acta Oecologica* 2001, 22, 33–43. [CrossRef]

94. Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. *J. Intern. Med.* 2021, 290, 549–566. [CrossRef]

95. Kazemi, F.; Abolhassani, L.; Rahmati, E.A.; Sayyad-Amin, P. Strategic Planning for Cultivation of Fruit Trees and Shrubs in Urban Landscapes Using the SWOT Method: A Case Study for the City of Mashhad, Iran. *Land Use Policy* 2018, 70, 124–137. [CrossRef]

96. Kazemi, F.; Abolhassani, L.; Rahmati, E.A.; Sayyad-Amin, P. Strategic Planning for Cultivation of Fruit Trees and Shrubs in Urban Landscapes Using the SWOT Method: A Case Study for the City of Mashhad, Iran. *Land Use Policy* 2018, 70, 124–137. [CrossRef]

97. Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How Healthy Is Urban Horticulture in High Traffic Areas? Trace Metal Concentrations in Vegetable Crops from Plantings within Inner City Neighbourhoods in Berlin, Germany. *Environ. Pollut.* 2012, 165, 124–132. [CrossRef] [PubMed]

98. Warraich, U.-E.; Hussain, F.; Kayani, H.U.R. Aging—Oxidative Stress, Antioxidants and Computational Modeling. *Heliyon* 2020, 6, e04107. [CrossRef] [PubMed]

99. Papouliaus, T. *The Wild Edible Grasses of the Mountain and the Plain; Psihilas: Athens, Greece, 1999; ISBN 9789607920447.* (In Greek)

100. Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the Antioxidant Composition of Strawberry Tree (*Arbutus Unedo*) Fruits. *J. Food Compos. Anal.* 2008, 21, 273–281. [CrossRef]

101. El Haouari, M.; Layer, J.; Mekhfi, H.; Rosado, J.A.; Salido, G.M. Antiaggregant Effects of *Arbutus Unedo* Extracts in Human Platelets. *J. Ethnopharmacol.* 2007, 113, 325–331. [CrossRef] [PubMed]

102. Coldréa, I.; Gomes, F.; Mira, H.; Botelho, G. Distillates Composition Obtained of Fermented *Arbutus Unedo* L. Fruits from Different Seedlings and Clonal Plants. *Agron. Sci.* 2019, 64, 21–28. [CrossRef]

103. Aleksic, V.; Knezevic, P. Antimicrobial and Antioxidative Activity of Extracts and Essential Oils of *Myrtus Communis* L. *Microbiol. Res.* 2014, 169, 240–254. [CrossRef] [PubMed]

104. Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the Chemical Profile and Antioxidant Behavior of *Rosmarinus Officinalis* L. and Salvia Fruticosa Miller Grown in Greece. *J. Agric. Food Chem.* 2008, 56, 7254–7264. [CrossRef]
133. Maxia, A.; Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical Characterization and Biological Activity of Essential Oils from *Daucus Carota* L. Subsp. Carota Growing Wild on the Mediterranean Coast and on the Atlantic Coast. *Fitoterapia* 2009, 80, 57–61. [CrossRef]

134. Verma, R.S.; Padalia, R.C.; Chauhan, A. Chemical Composition Variability of Essential Oil during Ontogenesis of *Daucus Carota* L. Subsp. Sativus (Hoffm.) Arcang. *Ind. Crops Prod.* 2014, 52, 809–814. [CrossRef]

135. Rather, M.A.; Dar, B.A.; Sofi, S.N.; Bhat, B.A.; Qurishi, M.A. *Foeniculum Vulgare*: A Comprehensive Review of Its Traditional Use, Phytochemistry, Pharmacology, and Safety. *Arab. J. Chem.* 2016, 9, S1574–S1583. [CrossRef]

136. Karaman, I.; Şahin, F.; Güllüce, M.; Oğuztçü, H.; Şengül, M.; Adigüzel, A. Antimicrobial Activity of Aqueous and Methanol Extracts of *Juniperus Oxycedrus* L. *J. Ethnopharmacol.* 2003, 85, 231–235. [CrossRef]

137. Fernández, N.J.; Damiani, N.; Podaza, E.A.; Martucci, J.F.; Fasce, D.; Quiroz, F.; Meretta, P.E.; Quintana, S.; Eguaras, M.J.; Gende, L.B. *Laurus Nobilis* L. Extracts against Paenibacillus Larvae: Antimicrobial Activity, Antioxidant Capacity, Hygienic Behavior and Colony Strength. *Saudi J. Biol. Sci.* 2019, 26, 906–912. [CrossRef] [PubMed]

138. Chahal, K.K.; Singh, D.K.; Panchhibaity, A.; Singh, N.; Kaur, M.; Bhardwaj, U.; Singla, N.; Kaur, A. A Review on Chemistry and Biological Activities of *Laurus Nobilis* L. Essential Oil. *J. Pharmacogn. Phytochem.* 2017, 6, 1153–1161.

139. Carrasco, A.; Ortiz-Ruíz, V.; Martínez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula Stoechas Essential Oil from Spain: Aromatic Profile Determined by Gas Chromatography-Mass Spectrometry, Antioxidant and Lipoxygenase Inhibitory Bioactivities. *Ind. Crops Prod.* 2015, 73, 16–27. [CrossRef]

140. Trabelsi, N.; Megdiche, W.; Ksouri, R.; Falleh, H.; Smaoui, A.; Abdelly, C. Solvent Effects on Phenolic Contents and Biological Activities of the Halophyte *Limoniastrum Monopetalum* Leaves. *LWT Food Sci. Technol.* 2010, 43, 632–639. [CrossRef]

141. Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaba, M.; Smaoui, A.; Abdelly, C. Influence of Biological, Environmental and Technical Factors on Phenolic Content and Antioxidant Activities of Tunisian Halophytes. *Comptes Rendus. Biol.* 2008, 331, 865–873. [CrossRef]

142. Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetti, F.; Custódio, L. Natural Products from Extreme Marine Environments: Searching for Potential Industrial Uses within Extremophile Plants. *Ind. Crops Prod.* 2016, 94, 299–307. [CrossRef]

143. Chapleau, N.; De Lamballerie-Anton, M. Improvement of Emulsifying Properties of Lupin Proteins by High Pressure Induced Aggregation. *Food Hydrocoll.* 2003, 17, 273–280. [CrossRef]

144. Sujać, A.; Kotlarz, A.; Strobel, W. Compositional and Nutritional Evaluation of Several Lupin Seeds. *Food Chem.* 2006, 98, 711–719. [CrossRef]

145. Khan, M.K.; Karnpanit, W.; Nasar-Abbas, S.M.; Huma, Z.E.; Jayasena, V. Phytochemical Composition and Bioactivities of Lupin: A Review. *Int. J. Food Sci. Technol.* 2015, 50, 2004–2012. [CrossRef]

146. Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. *Crit. Rev. Food Sci. Nutr.* 2016, 56, 835–857. [CrossRef] [PubMed]

147. Dastmalchi, K.; Damien Dorman, H.J.; Oinonen, P.P.; Darvis, Y.; Laakso, I.; Hiltunen, R. Chemical Composition and in vitro Antioxidative Activity of a Lemon Balm (*Melissa Officinalis* L.) Extract. *LWT Food Sci. Technol.* 2008, 41, 391–400. [CrossRef]

148. PFAF Muskari Comosum Tassel Hyacinth, Tassel Grape Hyacinth PFAF Plant Database. Available online: https://pfaf.org/user/Plant.aspx?LatinName=muscari+comosum (accessed on 9 July 2022).

149. Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Desi, M.A. Chemical Composition and Antioxidant Activities of *Myrtus Communis* L. Berries Extracts. *Food Chem.* 2010, 123, 1242–1251. [CrossRef]

150. Wannes, W.A.; Marzouk, B. Characterization of Myrtle Seed (*Myrtus Communis* Var. Baetica) as a Source of Lipids, Phenolics, and Antioxidant Activities. *J. Food Drug Anal.* 2016, 24, 316–323. [CrossRef]

151. Chinou, I.; Liolios, C.; Moreau, D.; Roussakis, C. Cytotoxic Activity of *Origaniunc Dictamnus*. *Fitoterapia* 2007, 78, 342–344. [CrossRef]

152. Kouri, G.; Tsimogiannis, D.; Bardouki, H.; Oorepopoulou, V. Extraction and Analysis of Antioxidant Components from *Origaniunc Dictamnus*. *Innov. Food Sci. Technol.* 2007, 8, 155–162. [CrossRef]

153. Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal Incorporation of Carvacrol and Thymol Isolated from the Essential Oil of *Origaniunc Dictamnus* L. and in Vitro Antimicrobial Activity. *Food Chem.* 2009, 112, 77–83. [CrossRef]

154. Alarcón, R.; Pardo-De-Santayana, M.; Priestley, C.; Morales, R.; Heinrich, M. Medicinal and Local Food Plants in the South of Spain: Chemical Composition, Antioxidants, and Biological Activities of the Halophyte *Juniperus Oxycedrus* L. *Int. J. Food Sci. Technol.* 2013, 52, 906–912. [PubMed] [CrossRef]

155. Bostancıoğlu, R.B.; Kürkçüoğlu, M.; Başer, K.H.C.; Koparal, A.T. Assessment of Anti-Angiogenic and Anti-Tumoral Potentials of *Origaniunc Oinites* L. Essential Oil. *Food Chem.* 2012, 50, 2002–2008. [CrossRef] [PubMed]

156. Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Antibacterial Activity of Essential Oils from Plants of the Genus *Origaniunc*. *Food Control* 2013, 34, 539–546. [CrossRef]

157. Loewe-Muñoz, V.; Balzarini, M.; Álvarez-Contreras, A.; Delard-Rodriguez, C.; Navarro-Cerrillo, R.M. Fruit Productivity of Stone Pine (*Pinus Pinea* L.) along a Climatic Gradient in Chile. *Agric. For. Meteorol.* 2016, 223, 203–216. [CrossRef]

158. Charaf, M.; Yousfi, M.; Saidi, M.; Stocker, P. Determination of the Fatty Acid Composition of Acorn (*Quercus*), Pistacia Lentiscus Seeds Growing in Algeria. *J. Am. Oil Chem. Soc.* 2008, 85, 921–924. [CrossRef]
184. Damjanović, B.; Lepojević, Ž.; Živković, V.; Tolić, A. Extraction of Fennel (Foeniculum Vulgare Mill.) Seeds with Supercritical CO2. Comparison with Hydrodistillation. Food Chem. 2005, 92, 143–149. [CrossRef]
185. PFAF Helichrysum stoechas—(L.)Moench. PFAF Plant Database. Available online: https://pfaf.org/user/Plant.aspx?LatinName=Helichrysum+stoechas (accessed on 9 July 2022).
186. Marques, A.; Teixeira, B.; Nunes, M.L. Bay Laurel (Laurus Nobilis) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 239–246. ISBN 9780124166448.
187. Pageon, H.; Azouaoui, A.; Zucchi, H.; Ricois, S.; Tran, C.; Asselineau, D. Potentially Beneficial Effects of Rhamnose on Skin Ageing: An in Vitro and in Vivo Study. Int. J. Cosmet. Sci. 2019, 41, 213–220. [CrossRef]
188. Michaelakis, A.; Theotokatos, S.A.; Koliopoulos, G.; Chorianopoulos, N.G. Essential Oils of Satureja Species: Insecticidal Effect on Culex Pipiens Larvae (Diptera: Culicidae). Molecules 2007, 12, 2567–2578. [CrossRef] [PubMed]
189. Öztürk, M. Anticholinesterase and Antioxidant Activities of Savoury (Satureja Thymbra L.) with Identified Major Terpenes of the Essential Oil. Food Chem. 2012, 134, 48–54. [CrossRef] [PubMed]
190. Ding, N.; Zhong, Y.; Li, J.; Xiao, Q. Study on Selection of Native Greening Plants Based on Eye-Tracking Technology. Sci. Rep. 2022, 12, 1–18. [CrossRef] [PubMed]
191. Toscano, S.; Ferrante, A.; Romano, D. Response of Mediterranean Ornamental Plants to Drought Stress. Horticulturae 2019, 5, 6. [CrossRef]
192. Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [CrossRef]
193. Bombi, P. Potential Conflict Extent between Two Invasive Alien Pests, Rhynchophorus Ferrugineus and Paysandisia Archon, and the Native Populations of the Mediterranean Fan Palm. J. Nat. Conserv. 2020, 58, 125927. [CrossRef]
194. Celesti-Grapow, L.; Bassi, L.; Brundu, G.; Camarda, I.; Carli, E.; D’Auria, G.; Del Guacchio, E.; Domina, G.; Ferretti, G.; Foggi, B.; et al. Plant Invasions on Small Mediterranean Islands: An Overview. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1119–1133. [CrossRef]
195. D’Agata, C.D.C.; Skoula, M.; Brundu, G. A Preliminary Inventory of the Alien Flora of Crete (Greece). Bocconea 2009, 23, 301–315.
196. Kanatas, P.; Kanatas, P. Potential Role of Eucalyptus Spp. and Acacia Spp. Allelochemicals in Weed Management. Chil. J. Agric. Res. 2020, 80, 452–458. [CrossRef]
197. Gómez-Aparicio, L.; Canham, C.D. Neighbourhood Analyses of the Allelopathic Effects of the Invasive Tree Ailanthus Altissima in Temperate Forests. J. Ecol. 2008, 96, 447–458. [CrossRef]
198. Korakaki, E.; Legakis, A.; Katsanevakis, S.; Koulelis, P.P.; Soulioti, N.; Petrakis, P.V. Invasive Alien Species of Greece. Invasive Alien Species 2021, 124–189. [CrossRef]
199. Mathieu, R.; Freeman, C.; Aryal, J. Mapping Private Gardens in Urban Areas Using Object-Oriented Techniques and Very High-Resolution Satellite Imagery. Landsc. Urban Plan. 2007, 81, 179–192. [CrossRef]
200. Guillen-Cruz, G.; Rodriguez-Sánchez, A.L.; Fernández-Luqueño, F.; Flores-Rentería, D. Influence of Vegetation Type on the Ecosystem Services Provided by Urban Green Areas in an Arid Zone of Northern Mexico. Urban Urban Green 2021, 62, 127135. [CrossRef]
201. Helfand, G.E.; Sik Park, J.; Nassauer, J.I.; Kosek, S. The Economics of Native Plants in Residential Landscape Designs. Landsc. Urban Plan. 2006, 78, 229–240. [CrossRef] [PubMed]
202. Schmidt, K.; Walz, A.; Martin-López, B.; Sachse, R. Testing Socio-Cultural Valuation Methods of Ecosystem Services to Explain Land Use Preferences. Ecosyst. Serv. 2017, 26, 270–288. [CrossRef] [PubMed]
203. Mexia, T.; Vieira, J.; Principe, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; Correia, O.; Branquinho, C.; et al. Ecosystem Services: Urban Parks under a Magnifying Glass. Environ. Res. 2018, 160, 469–478. [CrossRef] [PubMed]
204. Lovell, R.; Wheeler, B.W.; Higgins, S.L.; Irvine, K.N.; Depledge, M.H. A Systematic Review of the Health and Well-Being Benefits of Biodiverse Environments. J. Toxicol. Environ. Health Part B 2014, 17, 1–20. [CrossRef]
205. Raymond, C.M.; Frantzescaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [CrossRef]