Accuracy Evaluation and Comparison of 14 Diagnostic Markers for Nasopharyngeal Carcinoma: A Meta-Analysis

Yiwei Feng 1,2†, Wei Xia 1,2†, Guangyao He 1, Rongdan Ke 1, Lei Liu 1, Mao Xie 1, Anzhou Tang 1 and Xiang Yi 1,3*

1 Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China, 2 First Clinical Medical College, Guangxi Medical University, Nanning, China, 3 Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China

The aim of the present study was to collect published studies and compare the diagnostic accuracy of different markers for nasopharyngeal carcinoma (NPC). We systematically searched PubMed/MEDLINE, EMBASE, Cochrane Library, CNKI, and Wanfang for relevant studies until April 29, 2020. The revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality of the studies. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) values of the diagnostic markers were combined by a bivariate mixed effect model to compare their diagnostic accuracy. We explored heterogeneity through meta-regression.

In total, 244 records from 101 articles were included, with 49,432 total study subjects (13,109 cases and 36,323 controls). EA-IgG, Zta-IgG, and Epstein–Barr virus (EBV) DNA load in non-invasive nasopharyngeal brushings (EBV-DNA brushings) have both high sensitivity and specificity, EBNA1-IgG and VCA-IgG have only high sensitivity, and EBNA1-IgA, VCA-IgA, Rta-IgG, Zta-IgA, HSP70, and serum sialic acid (SA) have only high specificity. The bivariate mixed effect model of EA-IgA had a significant threshold effect. Meta-regression analysis showed that ethnicity affected EBNA1-IgA, EBNA1-IgG, VCA-IgA, and EBV DNA load in plasma, test methods affected EBNA1-IgG, publication year affected VCA-IgA, and sample size affected Rta-IgG. There was significant publication bias for VCA-IgA and Rta-IgG ($P < 0.05$). EA-IgG, Zta-IgG, and EBV-DNA brushings are good diagnostic markers for NPC. The diagnostic accuracy was influenced by publication year, sample size, test methods, and ethnicity.

Keywords: nasopharyngeal carcinoma, EB virus, diagnostic, screening, meta-analysis

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma originating from the inner layer of the mucous membrane on the superior and lateral of the nasopharynx. Compared with other malignant tumors, the incidence rate of NPC is relatively low, but its global distribution is extremely uneven (1); more than 70% of new cases are concentrated in East and Southeast Asia (2). Because of its small
primary foci, NPC has no typical clinical symptoms in the early stages (stages I and II), and the tumor easily invades adjacent tissues and organs, resulting in complex and diverse clinical symptoms; thus, most patients have already reached advanced stages (stages III and IV) when they are diagnosed (3, 4). Therefore, the screening and early diagnosis of NPC are very important.

Epstein–Barr virus (EBV) is generally considered to be one of the risk factors for NPC (5–7). EBV-related antibodies have received extensive attention as diagnostic markers for NPC, and most of them maintain increased levels for an average of 38 months at the preclinical stage (3, 8, 9), which has high diagnostic predictive value. Moreover, measuring EBV-related antibodies has the characteristics of simple sample acquisition, rapid testing, convenience, and low cost (10, 11); thus, it is widely used in the screening of NPC in endemic areas. With the development of quantitative PCR (qPCR), detecting EBV-DNA load in serum, plasma, blood cells, and nasopharyngeal exfoliated cells has gradually become one of the common diagnostic methods for NPC (12–14). At the same time, some serum tumor markers, such as heat shock protein 70 (HSP70) and sialic acid (SA), play important roles in the development of NPC (15–17). Their content in serum is closely related to the progression of NPC, which makes these markers potential diagnostic markers of NPC, and more researchers have focused on this field.

Many studies have evaluated EBV-related antibodies, EBV-DNA load, and some tumor markers in the clinical diagnosis of NPC patients. However, due to different ethnicities, sample sizes, test methods, and other factors, these studies have obtained different sensitivities and specificities. To systematically evaluate the diagnostic efficacy of these markers and compare them with each other to find markers suitable for large-scale population screening and early clinical diagnosis, we conducted this meta-analysis.

METHODS

Meta-Analysis

We conducted this meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the guidance of the Cochrane Handbook for Systematic Reviews of Interventions.

Search Strategy

We systematically searched PubMed/MEDLINE, EMBASE, Cochrane Library, CNKI, and Wanfang for all relevant studies up to April 29, 2020. The search language was restricted to Chinese and English, and the key words used for the search terms included the following: (“nasopharyngeal carcinoma” OR “Carcinoma, Nasopharyngeal” OR “Carcinomas, Nasopharyngeal”), (“VCA” OR “EBNA” OR “EA” OR “Zta” OR “BZLF1” OR “Rta” OR “BELF1” OR “HSP70” OR “Serum sialic acid” OR “EBV DNA”), and (“blood” OR “serum” OR “plasma” OR “blood cell” OR “leukocyte” OR “lymphocyte” OR “brush” OR “brushings”). In addition, the reference lists of relevant studies were manually searched for potential eligible studies. The search strategy is presented in Supplementary Materials.

Study Selection and Data Extraction

To find suitable diagnostic markers for large-scale population screening and early clinical diagnosis while avoiding bias due to different experimental designs, we used the following inclusion criteria: (1) retrospective studies on the evaluation of diagnostic markers in NPC, (2) NPC was confirmed by pathological examination, (3) the control group should be healthy individuals or non-NPC patients confirmed by pathological examination, (4) the samples were peripheral blood serum, plasma, blood cells, or non-invasive nasopharyngeal brushings, and (5) the articles included sufficient data to construct a 2 × 2 table, including true positive (TP), false positive (FP), false negative (FN), and true negative (TN) counts. The exclusion criteria were as follows: (1) irrelevant topics, (2) letters, comments, editorials, conference abstracts, reviews, guidelines, and case reports, and (3) non-clinical studies, such as animal or cell experiments. Two investigators independently completed the study selection and data extraction. Any disagreements were resolved by a third investigator.

Quality Assessment

Based on the recommendations of the Cochrane Collaboration, we used the revised Quality Assessment for Studies of Diagnostic Accuracy (QUADAS-2) tool to evaluate the quality of each included study. This tool assessed the bias risk and clinical applicability of the studies based on four key areas: “patient selection,” “index test,” “reference standard,” and “flow and timing.” Three investigators independently used the quality assessment tool and flowchart to evaluate the studies, and any differences were resolved by consensus.

Statistical Analysis

We performed statistical analysis and analyzed each NPC diagnostic marker separately and then compared their sensitivity, specificity, and area under the curve (AUC) values. Specifically, first, the Pearson coefficient was used to evaluate the threshold effect, and then a bivariate mixed effect model was used. We calculated the following parameters and their 95% confidence intervals (CIs): sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and AUC values of the summary receiver operating characteristic (SROC) curve. Then, a forest plot of sensitivity and specificity was drawn. We examined the forest plot and combined the Q test and I^2 statistic to check the heterogeneity within studies. $P < 0.05$ and $I^2 > 50\%$ indicated significant heterogeneity. Fagan’s plot was used to test the relationship between the pre-test probability and post-test probability. Sensitivity analysis consisted of the following experiments: a graphical depiction of residual-based goodness-of-fit and a chi-squared probability plot of squared Mahalanobis distances were used for the assessment of the bivariate normality assumption, a spike plot was used to check observations that affect Cook’s distance, and outliers of standardized predicted random effects were checked by scatter plots. Finally, publication bias was checked through Deek’s funnel plot. $P < 0.05$ was considered significant. The statistical analyses were performed using Stata version 16.0 (Stata Corp, College Station, College Station, TX, USA).
Texas, USA) and Review Manager 5.3 (The Nordic Cochrane Center, Copenhagen).

RESULTS

Study Selection and General Characteristics

Figure 1 shows the flow of the study selection and data extraction processes. Based on the search strategy, we obtained 1,369 articles from five online electronic databases. After excluding 906 articles with duplicate data and publications, the titles and abstracts of the remaining 463 articles were checked, and 198 articles unrelated to the subject of the study and 52 review articles were excluded. We downloaded the full text of 213 articles for further review and excluded 24 non-retrospective articles, 27 articles that could not provide enough information to construct a complete 2×2 table, 14 articles that lacked pathological examination, 17 articles that lacked an appropriate control group, and 30 articles that did not meet the requirements of the sample. Finally, 244 records from 101 articles remained for meta-analysis, with a total sample size of 49,432 study subjects (13,109 cases and 36,323 controls). These studies were published from 1994 to 2019.

Quality Assessment

QUADAS-2 was used to evaluate the methodological quality of the included study, and the detailed quality evaluation form is provided in Supplementary Materials. The results showed that the bias risk mainly came from patient selection. Some studies did not explain whether patients were included in a continuous or random way, for which only “unclear” or “high risk” was given. Some studies did not include all cases. Additionally, a small number of studies did not set a threshold for testing in advance. Overall, the quality of the included studies was high.

Pooled Results

Table 1 shows the combined results of the sensitivity, specificity, PLR, NLR, DOR, AUC values, pre-test probability, and post-test probability of each diagnostic marker. Generally, when PLR is >10 and NLR is <0.1, the diagnostic marker can obtain high efficiency, and accordingly, the DOR and post-test probability will increase. It should be noted that in the effect model of EA-IgA, the threshold effect test $P < 0.001$, and the correlation was -0.02 after the SROC curve was fit, and the data points in the figure were checked, showing a significant “shoulder arm” shape (Figure 2A), which suggests that there may be a significant threshold effect between the included studies. When there is a significant threshold effect in the effect model, the combined results between the individual effect quantities become unstable, and more attention should be paid to the SROC curves and AUC values. No significant threshold effect was found in the effect models of the other diagnostic markers. If we define $\geq 85\%$ as a high level and $<75\%$ as a low level, then the combined sensitivity and specificity of EA-IgG, Zta-IgG, and EBV-DNA brushings were at a high level and $<75\%$ as a low level, then the combined sensitivity and specificity of EA-IgG, Zta-IgG, and EBV-DNA brushings were at a high level, EBNA1-IgG and VCA-IgG had only combined sensitivity at a high level, EBNA1-IgA, VCA-IgA, Rta-IgG, Zta-IgA, HSP70, and SA had only combined specificity at a high level, and EBV-DNA peripheral blood cells (PMB) had both combined sensitivity and specificity at a low level. Combined with
other effects, EA-IgG, EA-IgA, and EBV-DNA brushings are good diagnostic markers for NPC. The SROC curves of the diagnostic markers are listed in Figure 2 for reference, and other plots not listed can be found in Supplementary Materials.

Heterogeneity, Sensitivity Analysis, and Publication Bias

Because only the combined specificity in SA and combined sensitivity in EA-IgG and EA-IgA showed low heterogeneity, we explored the potential sources of heterogeneity. When the number of articles included in a meta-analysis is <10, meta-regression analysis is not recommended in the Cochrane Handbook for Systematic Reviews of Interventions. Additionally, EA-IgA had a significant threshold effect, so we only analyzed the sensitivity (Figure 3) and publication bias of EA-IgA, EBV-DNA brushings, EBV-DNA PMB, HSP70, and SA, whereas other diagnostic markers were additionally analyzed by meta-regression analysis. The goodness-of-fit and bivariate normality of the sensitivity analysis show the studies along the reference line, whereas the influence analysis and outlier detection show which studies have a significant impact on the effect model. Only a few studies were beyond the scope of the reference line, and the results after removing these studies one by one did not change significantly. This indicates that the effect model is stable, and few studies affect the pooling results. The meta-regression analysis mainly included the year of publication, sample size, test method, and ethnicity. The results are shown in Table 2. We found that ethnicity (Asian vs. non-Asian) has an effect on EBNA1-IgA, EBNA1-IgG, VCA-IgA, and EBV-DNA plasma, and the test method [ELISA vs. indirect fluorescent antibody (IFA)] affects EBNA1-IgG. Publication year (≥median vs. <median) affects VCA-IgA, whereas sample size (≥median vs. <median) affects Rta-IgG. The asymmetry in Deek's funnel plot showed that there was significant publication bias for VCA-IgA and Rta-IgG (P < 0.05), but no significant publication bias was found in the other effect models.

DISCUSSION

By meta-analysis of published articles, we compared the diagnostic efficacy of 14 diagnostic markers for NPC. VCA-IgG had the highest combined sensitivity, EA-IgG had the

Diagnostic marker	Included studies	Record number	Sensitivity (95% CI)	Specificity (95% CI)	PLR	NLR	DOR (95% CI)	AUC (95% CI)	Pre-test probability (%)	Post-test probability (%)
EA-IgA	(10, 18–43)	29	0.68 (0.61–0.74)	0.97 (0.94–0.98)	20.5 (11.4–36.7)	0.33 (0.27–0.41)	62 (32–121)	0.91 (0.94–0.94)	8	84
EA-IgG	(24, 25, 27–29,	15	0.88 (0.84–0.92)	0.94 (0.91–0.96)	15.4 (10.4–23.0)	0.12 (0.09–0.17)	125 (84–187)	0.86 (0.86–0.91)	3	79
EBN1-IgA	(8, 10, 19, 21,	26	0.84 (0.79–0.88)	0.89 (0.85–0.92)	7.4 (5.7–9.7)	0.18 (0.14–0.24)	41 (29–56)	0.93 (0.90–0.95)	4	65
EBN1-IgG	(10, 24, 31, 49	12	0.90 (0.79–0.96)	0.64 (0.50–0.83)	2.5 (1.4–4.6)	0.15 (0.08–0.28)	17 (8–36)	0.89 (0.86–0.91)	4	39
VCA-IgA	(8, 10, 19–40,	68	0.82 (0.78–0.86)	0.90 (0.87–0.92)	8.2 (6.6–10.3)	0.19 (0.16–0.24)	42 (31–57)	0.93 (0.91–0.95)	5	67
VCA-IgG	(24, 25, 27,	11	0.95 (0.86–0.98)	0.55 (0.20–0.86)	2.1 (0.9–6.0)	0.09 (0.03–0.31)	23 (4–141)	0.93 (0.91–0.95)	2	35
Rta-IgG	(10, 19, 28, 37,	12	0.82 (0.70–0.90)	0.92 (0.86–0.96)	10.6 (5.5–20.8)	0.20 (0.11–0.34)	54 (19–151)	0.94 (0.92–0.96)	5	73
Zta-IgA	(10, 19, 52, 54,	7	0.78 (0.69–0.85)	0.88 (0.81–0.92)	6.3 (4.2–9.4)	0.25 (0.18–0.35)	25 (15–43)	0.90 (0.87–0.92)	6	61
Zta-IgG	(24, 51–56, 58,	13	0.87 (0.77–0.92)	0.92 (0.87–0.95)	11.2 (6.8–18.3)	0.15 (0.08–0.25)	77 (36–162)	0.96 (0.93–0.97)	4	74
EBV-DNA brushings	(59, 78, 96–99)	6	0.85 (0.71–0.93)	0.90 (0.79–0.95)	8.3 (4.0–17.4)	0.16 (0.08–0.34)	51 (18–148)	0.94 (0.92–0.96)	4	68
EBV-DNA plasma	(13, 19, 34, 36,	28	0.76 (0.68–0.83)	0.93 (0.90–0.96)	11.4 (7.4–17.6)	0.26 (0.19–0.38)	45 (23–65)	0.94 (0.91–0.96)	6	76
EBV-DNA PMB	(68, 103, 104, 106, 112)	8	0.63 (0.44–0.78)	0.75 (0.57–0.87)	2.5 (1.3–4.8)	0.49 (0.31–0.80)	5 (2–14)	0.75 (0.70–0.78)	11	39
HSP70	(60, 81, 113)	4	0.42 (0.25–0.61)	0.91 (0.84–0.95)	4.8 (3.0–7.7)	0.64 (0.48–0.84)	8 (4–14)	0.84 (0.81–0.87)	14	55
SA	(18, 67, 72, 114, 115)	5	0.83 (0.66–0.92)	0.93 (0.89–0.95)	11.3 (7.6–16.8)	0.19 (0.09–0.39)	60 (24–148)	0.94 (0.92–0.96)	4	74

PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; AUC, area under the curve.
The effect model of EA-IgG has a significant threshold effect, the combined results between the individual effect quantities become unstable, and more attention should be paid to the SROC curves and AUC values.
The SROC curves of each diagnostic marker for NPC: EA-IgA (A), EA-IgG (B), EBNA1-IgA (C), EBNA1-IgG (D), VCA-IgA (E), VCA-IgG (F), Rta-IgG (G), Zta-IgA (H), Zta-IgG (I), EBV-DNA brushings (J), EBV-DNA plasma (K), EBV-DNA PMB (L), HSP70 (M), SA (N). The curve of EA-IgA (A) showed a significant "shoulder arm" shape, suggesting that there may be a significant threshold effect between the included studies.
highest combined specificity, and Zta-IgG had the highest combined AUC values. In general, the combined sensitivity, specificity, and diagnostic efficacy of EA-IgG, Zta-IgG, and EBV-DNA brushings are at a high level, and their sample acquisition methods are relatively simple. Additionally, the detection process is fast and inexpensive, which has high practical value in large-scale population screening and early clinical diagnosis.

At present, antibodies against EBV mainly include early antigen (EA), nuclear antigen 1 (EBNA1), viral capsid antigen (VCA), Rta protein encoded by the EBV immediate early gene BRLF1, and Zta protein encoded by the BZLF1 gene. When EBV is in incubation period, only EBNA1 can induce a strong antibody response \((50) \). After entering the lysis cycle, Rta and Zta are encoded first, followed by EA. VCA is expressed only at the end of the EBV proliferation cycle \((116) \), and the expression of these proteins will cause a strong antibody response in patients \((10) \). In the preclinical stage, EBV replicates in the body of patients, and antibodies will remain at a high level, making these antibodies potential early diagnostic markers for NPC. Regarding the test method, compared with IFA, ELISA has the advantages of low cost and a standardized operation process \((117, 118) \); moreover, the interpretation of the results is not affected by the subjective judgment of researchers, so it is easier to use in large-scale population screening.

The expression levels of different antibodies can indirectly reflect the replication of EBV, and measuring the EBV-DNA load provides a more intuitive reference. In 1999, Lo et al. \((14) \) first proposed the use of qPCR to diagnose NPC by detecting the EBV-DNA load in plasma, and this method has good performance in disease development monitoring and prognosis prediction \((119–121) \). Subsequently, related research on EBV-DNA load in blood cells and nasopharynx exfoliated cells was carried out successively and performed well. The BamH1-W sequence is a mature and reliable laboratory EBV-DNA detection method recommended by the WHO \((122) \), and most primers are designed based on this sequence. With the commercialization and promotion of standardized test kits, the cost of learning and using this test method has been greatly reduced; thus, this test can be

TABLE 2	Meta-regression analyses of potential sources of heterogeneity.			
Diagnostic marker	Variable	Coefficient	\(P \)-value	\(I^2 \)
EA-IgG	Publication year	3.98	0.14	50
	Sample size	4.27	0.12	53
	Test method	3.22	0.20	38
	Ethnic	0.76	0.68	0
EBNA1-IgA	Publication year	0.12	0.94	0
	Sample size	3.27	0.20	39
	Test method	7.30	0.03*	73
	Ethnic	8.87	0.01*	77
EBNA1-IgG	Publication year	0.55	0.76	0
	Sample size	0.74	0.69	0
	Test method	6.50	0.04*	69
	Ethnic	2.63	0.27	41
VCA-IgA	Publication year	6.37	0.04*	69
	Sample size	2.63	0.27	41
	Test method	3.41	0.18	41
	Ethnic	0.84	0.01*	76
VCA-IgG	Publication year	0.79	0.67	0
	Sample size	0.06	0.97	0
	Test method	0.54	0.76	0
	Ethnic	2.92	0.23	31
Rta-IgG	Publication year	1.44	0.49	0
	Sample size	6.97	0.03*	71
	Ethnic	1.58	0.45	0
Zta-IgG	Publication year	1.89	0.39	0
	Sample size	0.85	0.65	0
	Ethnic	1.84	0.40	0
EBV-DNA plasma	Publication year	5.39	0.07	63
	Sample size	2.41	0.30	17
	Ethnic	6.25	0.04*	68

* \(P < 0.05 \) indicates a significant difference.
extensively applied in large-scale population screening and early clinical diagnosis.

During the occurrence and development of tumors, tumor cells express tumor antigens that are different from normal cells, and the immune system recognizes tumor antigens and produces autoantibodies (123, 124). SA is the acetylation product of neuraminic acid, an important component of cell membrane surface receptors. It has been indicated to be closely related to the occurrence, development, and metastasis of head and neck tumors (18, 125). The mechanism of abnormally increased SA may be that the glycoprotein and glycolipid on the cell membrane fall off and enter the blood circulation when the tumor cell structure is destroyed by immune cells (126). HSP70 is a highly effective inhibitor of apoptosis. Its basic expression level is very low, but it is highly expressed in a variety of tumors, such as NPC, breast cancer, and renal cell carcinoma (127, 128), and is considered an important marker of tumor occurrence and prognosis (129–131). The efficacy of serum tumor markers in the early diagnosis of NPC is attracting researchers’ attention.

In addition, an increasing number of studies have pointed out that microRNAs, lncRNAs, and circRNAs are closely related to the physiological and pathological processes of NPC (132–134). Although these noncoding RNAs do not have the function of translating and coding proteins, they can inhibit the translation or degradation of target mRNAs through complete or incomplete complementary pairing, regulating downstream protein expression or signaling pathways; thus, they participate in the process of cell proliferation and differentiation. The abnormal expression of specific non-coding RNAs plays an important role in the occurrence and development of NPC and may become potential diagnostic markers.

In the screening and early diagnosis of NPC, it is important to reduce the missed diagnosis rate as much as possible and control the misdiagnosis rate within the acceptable range. Some prospective and retrospective studies have indicated that a combination of multiple diagnostic markers can achieve high sensitivity compared with using only a single diagnostic marker (10, 19–21, 44). When the patient obtains a positive result in screening or early diagnosis, further imaging and pathological examination and frequent follow-up visits can accurately determine whether the patient has NPC. Therefore, exploring the best combination of diagnostic markers will be the focus of future NPC screening and early diagnosis research.

There are some limitations in this study. First, the global distribution of NPC is uneven. Most of the articles we included were from Asia; thus, whether our results are applicable in non-NPC endemic areas needs to be further confirmed. Second, most of the case groups in the study included NPC patients in different stages, and the level of diagnostic markers among them may be different. Third, the control group was not entirely composed of healthy people and included some patients with non-NPC head and neck diseases, which may have a certain impact on the actual results. Fourth, other diseases caused by EBV (including infectious mononucleosis, Burkitt’s lymphoma, etc.) may also lead to increased EBV-related antibodies, and the results of EBV-DNA load are FPs. Finally, our results showed heterogeneity. We conducted a meta-regression analysis of the publication year, sample size, test method, and ethnicity, but these items cannot fully explain the source of heterogeneity, and further research is needed.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

YF and WX: conceptualization and validation. YF, WX, and GH: methodology and literature search. YF: software. YF and RK: writing—original draft preparation. LL, MX, and AT: writing—review and editing. XY: supervision. All authors have read and agreed to the published version of the manuscript.

FUNDING

This research was funded by the Natural Science Foundation of China (grant number 81760188).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.01779/full#supplementary-material

REFERENCES

1. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. (2019) 394:64–80. doi: 10.1016/S0140-6736(19)30956-0
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. (2015) 136:E359–86. doi: 10.1002/ijc.29210
3. Cao SM, Liu Z, Jia WH, Huang QH, Liu Q, Guo X, et al. Fluctuations of Epstein-Barr virus serological antibodies and risk for nasopharyngeal carcinoma: a prospective screening study with a 20-year follow-up. PLoS ONE. (2011) 6:e19100. doi: 10.1371/journal.pone.0019100
4. Leong YH, Soon YY, Lee KM, Wong LC, Tham IWK, Ho FCH. Long-term outcomes after reirradiation in nasopharyngeal carcinoma with intensity-modulated radiotherapy: a meta-analysis. Head Neck. (2018) 40:622–31. doi: 10.1002/hed.24993
5. Sarmiento MP, Mejia MB. Preliminary assessment of nasopharyngeal carcinoma incidence in the Philippines: a second look at published data from four centers. Chin J Cancer. (2014) 33:159–64. doi: 10.5732/cjc.013.10010
6. Jia WH, Collins A, Zeng YX, Feng BJ, Yu XJ, Huang LX, et al. Complex segregation analysis of nasopharyngeal carcinoma in guangdong, China: evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China). Eur J Hum Genet. (2005) 13:248–52. doi: 10.1038/sj.ejhg.5201305
Feng et al. Diagnostic Markers of Nasopharyngeal Carcinoma

24. Dardari R, Khyatti M, Benider A, Jouhadi H, Kahlain A, Cochet

19. Chan KH, Gu YL, Ng F, Ng PS, Seto WH, Sham JS, et al.

22. Zou ZM, Cai WM, Cao Y, Liu YY, Xu GZ, Hu YH. EB virus antibody

17. Wongkham S, Bhudhisawasdi V, Chau-in S, Boonla C, Muisuk K, Kongkham

21. Coghill AE, Hsu WL, Pfeiffer RM, Juwana H, Yu KJ, Lou PJ, et

15. Rucksaken R, Pairojkul C, Pinlaor P, Khuntikeo N, Roytrakul

10. Liu Y, Huang Q, Liu W, Liu Q, Jia W, Chang E, et al. Establishment of

9. Chen MR, Liu MY, Hsu SM, Fong CC, Chen CJ, Chen IH, et al. Use

8. Gao R, Wang L, Liu Q, Zhang LF, Ye YF, Xie SH, et al. Evaluation

7. Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ, et al.

3.0.CO;2-N

25. Hsu MM, Hsu WC, Sheen TS, Kao CL. Specific IgA antibodies to recombinant early and nuclear antigens of Epstein-Barr virus in nasopharyngeal carcinoma. Int J Oralopharyngol Allied Sci. (2001) 26:334–8. doi: 10.1046/j.1365-2273.2001.00489.x

26. Feng P, Chan SH, Soo MYR, Liu D, Guan M, Ren EC, et al. Antibody response to Epstein-Barr virus Rta protein in patients with nasopharyngeal carcinoma a new serologic parameter for diagnosis. Cancer. (2001) 92:1872–80. doi: 10.1002/1097-0245(20011001)92:7<1872::AID-CNCR170>3.0.CO;2-N

27. Dardari R, Hinderer W, Lang D, Benider A, El Guerdadi B, Joba I, et al. Antibody responses to recombinant Epstein-Barr virus antigens in nasopharyngeal carcinoma patients: complementary test of ZEBRA protein and early antigens p54 and p138. J Clin Microbiol. (2001) 39:3164–70. doi: 10.1128/JCM.39.9.3164-3170.2001

28. Zhang CQ, Zong YS, Huang BZ, Xu Y, Ye YZ, Feng KT, et al. Enhancing the efficiency of Epstein-Barr viral serologic test in the diagnosis of nasopharyngeal carcinoma. Chinese journal of oncology. (2002) 24:35602.e. doi: 10.3760/j.issn:0253-3766.2002.04.013

29. Wong MM, Lye MS, Cheng HM, Sam CK. Epstein-Barr virus serology in the diagnosis of nasopharyngeal carcinoma. Asian Pacific J Allergy Immunol. (2003) 23:65–7.

30. Tang JW, Rohwader E, Chu JM, Tsang RK, Steinhagen K, Yeung AC, et al. Evaluation of Epstein-Barr virus antigen-based immunosassays for serological diagnosis of nasopharyngeal carcinoma. J Clin Virol. (2007) 40:284–8. doi: 10.1016/j.jcv.2007.09.006

31. Paramita DK, Fachiroh J, Haryana SM, Middeldorp JM. Evaluation of commercial EBV recombinant assay for diagnosis of nasopharyngeal carcinoma. J Clin Virol. (2008) 42:343–52. doi: 10.1016/j.jcv.2008.03.006

32. Gu AD, Mo HY, Xie YB, Peng RJ, Bei JX, Peng J, et al. Evaluation of a multiarray profiling assay and an enzyme-linked immunosorbent assay for serological examination of Epstein-barr virus-specific antibody responses in diagnosis of nasopharyngeal carcinoma. Clin Vaccine Immunol. (2008) 15:1684–8. doi: 10.1128/CVI.01335-08

33. Zhan SR, Zhong JM, Mai ZP, Ye SQ, Zhou L, Zeng Y, et al. Improve onserological diagnosis method of nasopharyngeal carcinoma. Chinese J Exp Clin Virol. (2009) 23:65009. doi: 10.3760/cma.j.issn.1003-9279.2009.01.023

34. Luo YL, Ou GP, Chi PD, Liang YN, Liu YH, Huang MY. Combined determination of Epstein-Barr virus-related antibodies and antigens for diagnosis of nasopharyngeal carcinoma. J Chin Cancer. (2009) 18:96–9. doi: 10.3321/j.issn:1000-467X.2009.01.019

35. Chen Y, Liu GY, Yao K, Xu J, Lu SQ, Cheng R, et al. Quantitative assay of Epstein-Barr virus specific VCA-IgA and EA-IgA antibodies for diagnosing nasopharyngeal carcinoma. Acta Univ Med Nanjing. (2009) 29:638–638. doi: 10.7655/j.issn.1003-4368.2009.08.029

36. Tan YJ, Su XK, Cui JH, Qu WH, Xue XY. Comparison of detection of serum VCA-IgA, EA-IgA and EBV-DNA in nasopharyngeal carcinoma patients. Chongqing Medical. (2010) 39:70310i. doi: 10.3969/j.issn.1671-8348.2010.06.030

37. Cai YL, Zheng YM, Wang W, Wei Y, Sheng XX, Chen JR, et al. Combined detection of Epstein-Barr Virus antigens for serodiagnosis of nasopharyngeal carcinoma. J Pathol (2010) 30:2746–8.

38. Zhou Y, Zhu H. Serum Epstein-Barr virus antibody test for clinical diagnosis of nasopharyngeal carcinoma. J Fourth Mil Med Univ. (2009) 30:1102.

39. Chen H, Luo YL, Zhang L, Tian LZ, Feng ZT, Liu WL. EA-D and p53-IgA as a potential biomarker for nasopharyngeal carcinoma diagnosis. Asian Pacific J Cancer Prev. (2013) 14:7433–8. doi: 10.7314/APJCP.2013.14.12.7433

40. Zhang XL, Zhou JL, Cao YP. The value of detection of three anti-Epstein-Barr viral antibodies for nasopharyngeal carcinoma diagnosis. Chinese J Lab Med. (2015) 38:111–4. doi: 10.4103/0386-6999.147829

41. Akbar A, Fachiroh J, Paramita DK. IgA responses against Epstein-Barr virus early antigen (EBV-EA) peptides as potential candidates of nasopharyngeal carcinoma detection marker. BMC Proceedings. (2016) 10 (1 Suppl. 1). doi: 10.1186/s12919-016-0001-5

42. Zheng XH, Lu LX, Cui C, Chen MY, Li XZ, Jia WH. Epstein-Barr Virus mir-bart1-5p detection via nasopharyngeal brushing is effective
43. Yi XH, Lai JC, Liu JZ, Lin SC, Li C, Chen XQ, et al. The combined interpretation scheme including VCA-IgA, EA-IgA and Rta-IgG in the diagnosis of nasopharyngeal carcinoma. *J Clin Otorhinolaryngol Head Neck Surg.* (2018) 52:1740–74. doi: 10.13201/j.issn.1001-1781.2018.22.014

44. Ai P, Wang T, Zhang H, Wang Y, Song C, Zhang L, et al. Determination of antibodies directed at EBV proteins expressed in both latent and lytic cycles in nasopharyngeal carcinoma. *Oral Oncol.* (2012) 49:326–31. doi: 10.1016/j.oraloncology.2012.10.001

45. Zhang CQ, Xiao XB, Zhang F, Li JL, Huang TB, Zhang M, et al. The significance of EB virus IgG EA antibody in serological diagnosis of nasopharyngeal carcinoma (NPC) serologic diagnosis. *Chinese J. Cancer.* (1998) 44:5–8.

46. Xiao XB, Zhang CQ, Huang TB, Zhang F, Li JL, Feng KT, et al. Application of Epstein–Barr virus early antigen IgG antibody in nasopharyngeal carcinoma screening. *Chinese J Clin Oncol.* (2001) 36:309. doi: 10.3760/j.issn:1673-0860.2001.04.023

47. Huang JY. The significance of EB virus IgG EA antibody in serological diagnosis of nasopharyngeal carcinoma by ELISA. *Chinese Immunol.* (2002) 18:142.

48. Zhang CQ, Zong YS, Shun Y, Zhang Y, Lin SX, Ye YZ, et al. Value of EBNA1-IgG and EBV immunoglobulin A (IgA) antibodies response for zhuang NPC patients of different ages. *Chinese J Cancer Res.* (2009) 81:1412–21. doi: 10.1002/cncr.21532

49. Chen WM, Ji MF, Li XL, Su NH, Yang JL. Analysis of serum levels of antibodies directed at EBV proteins expressed in both latent and lytic cycles in nasopharyngeal carcinoma. *Acta Univ Med Anhui.* (2018) 53:27519. doi: 10.19405/j.issn.1000-1492.2018.02.024

50. Fachiroh J, Paramita DK, Hariyianto B, Harjadi A, Dahila HL, Indrasari SR, et al. Single-assay combination of Epstein–Barr virus (EBV) EBNA1- and viral capsid antigen-p18-derived synthetic peptides for measuring anti-EBV immunoglobulin G (IgG) and IgA antibody levels in sera from nasopharyngeal carcinoma patients: options for field screening. *J Clin Microbiol.* (2006) 44:1459–67. doi: 10.1128/JCM.44.1459-1467.2006

51. Fei XJ, Xu YH, Li T. Application of Epstein–Barr virus antibody detection in diagnosis of nasopharyngeal carcinoma and infectious mononucleosis. *Acta Univ Med Anhui.* (2018) 53:27519. doi: 10.19405/j.issn.1000-1492.2018.02.024

52. Coghill AE, Bu W, Nguyen H, Hsu WL, Yu KJ, Lou PJ, et al. High levels of antibody that neutralize B-cell infection of Epstein–Barr virus and that bind EBV gp350 are associated with a lower risk of nasopharyngeal carcinoma. *Clin Cancer Res.* (2016) 22:3451–7. doi: 10.1158/1078-0432.CCR-15-2299

53. Yu X, Ji ME, Cheng WM, Huang YL, Li FG. Assessment of EBV antibodies and EBV-DNA in the diagnosis and stages of nasopharyngeal carcinoma. *Chinese J Clin Oncol.* (2016) 43:65016n. doi: 10.3969/j.issn.1001-8179.2016.15.393

54. Xin LM, Li YY, Lv R, Huang JS, Zhou JX, Du GY. The correlation between serum homocysteine and EB virus three antibodies in nasopharyngeal carcinoma and the evaluation of its diagnosis performance. *Chinese J Health Lab Technol.* (2016) 26:231–3.

55. Cheng WM, Chen GX, Chen HL, Luo RX, Wu ZB, Lu YS, et al. Assessment of nasopharyngeal carcinoma risk by EB virus antibody profile. *Chinese J Oncol.* (2002) 24:56103.

56. Xiao YK, Zhang J, Lu YR, Lin P. Value of detection of serum Epstein–Barr virus IgA/VA by immunoenzyme technique in the diagnosis of nasopharyngeal carcinoma. *Prec J Cancer.* (1995) 24:371–3.

57. Liu MY, Shih YY, Chou SP, Chen CJ, Sheen TS, Yang CS, et al. Antibody against the Epstein–Barr Virus BHRF1 protein, a homologue of Bcl-2, in patients with nasopharyngeal carcinoma. *J Med Virol.* (1998) 56:179–85. doi: 10.1002/(SICI)1096-9071(199811)56:3<179::AID-JMV1>3.0.CO;2-4.

58. Zou YC, Li GL, Zhang ZS. Discussion on combined detection of serum tumor markers for nasopharyngeal carcinoma. *Chinese J Clin Oncol.* (2001) 28:22501n. doi: 10.3969/j.issn.1001-8179.2001.03.020

59. Mai S, Zong Y, Zhang M, Zhong B, Lin S. Detection of Epstein–Barr virus DNA in plasma: a useful serological indicator for diagnosis of nasopharyngeal carcinoma. *Chinese Med J.* (2002) 115:1895–7. doi: 10.3760/j.issn.1003-9279.2002.12.128

60. Shao JY, Li YH, Gao HY, Wu QL, Cui NJ, Zhang L, et al. Comparison of plasma Epstein–Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. *Cancer.* (2004) 100:1162–70. doi: 10.1002/cnr.20099

61. Leung SF, Tam JS, Chan AT, Zee B, Chan LY, Huang DP, et al. Improved accuracy of detection of nasopharyngeal carcinoma by combined application of circulating Epstein–Barr virus DNA and anti-Epstein–Barr viral capsid antigen IgA antibody. *Clin Chem.* (2004) 50:339–45. doi: 10.1373/clinchem.2003.022426

62. Huang LS, Huang WC, Chen YH. The value of CYFRA21-1, TSGF, EB-VCA-IgA detection in the diagnosis of nasopharyngeal carcinoma. *J Guandong Med Univ.* (2003) 22:23304. doi: 10.3969/j.issn.1003-930X.2002.02.027

63. Jiang LN, Dai LC, He JF, Chen YW, Ma ZH. Significance of detection of serum sialic acid and Epstein–Barr virus VCA-IgA in diagnosis and monitoring radiotherapy effectiveness in nasopharyngeal carcinoma patients. *Chinese J Exp Clin Virolog.* (2006) 20:30–2. doi: 10.3760/j.cma.js.1003-9279.2006.02.010

64. Huang LS, Zhu B, Chen YH, Zhao HL. Significance of combined detection of serum tumor markers in the diagnosis of nasopharyngeal carcinoma. *Lab Med.* (2006) 21:472–4. doi: 10.3969/j.issn.1673-8640.2006.05.011

65. Zhu HQ, Xiong H, Alhossam J, Zhou LQ, Zhang P, Huang HX, et al. Expression of LMP-1 in nasopharyngeal cancer tissue and its relation with peripheral blood EBV-IgA/VCA. *Acta Med Univ Sci Technol Huazhong.* (2008) 37:50980. doi: 10.3870/j.issn.1672-0741.2008.04.025

66. Zeng X, Wang CL. Clinical analysis of serum EBV-VCA-IgA in NPC patients. *China J Modern Med.* (2010) 20:879–81, 85. doi: 10.3971/j.issn.1003-8578.2013.04.014

67. Baizig NM, Morand P, Seigneurin JM, Boussem H, Fourati A, Grilli S, et al. Complementary determination of Epstein-Barr virus DNA load and serum markers for nasopharyngeal carcinoma screening and early detection in individuals at risk in Tunisia. *Eur Arch Otorhinolaryngol.* (2012) 269:1005–11. doi: 10.1007/s00405-011-1717-5

68. Li XH, Meng YL, Zhao JJ, Huang CL, Huang GL, Qi GZ. Epstein–Barr virus antibodies response for zhuang NPC patients of different ages. *Cancer Res Treat Prev.* (2013) 40:37713re.
Feng et al. Diagnostic Markers of Nasopharyngeal Carcinoma

92. Li D, Zeng Y. Detection of IgG/ZEBRA antibodies in sera from patients.

89. Abdulamir AS, Hafidh RR, Abu Bakar F, Abbas K. Novel epstein-barr virus latent membrane protein 2.

87. Gurtsevitch VE, Senyuta NB, Ignatova AV, Lomaya MV, Kondratova VN, et al. Cyclophilin A as a novel noninvasive biomarker for epstein-barr virus latent membrane protein 2.

91. Zheng YM, Cai YL, Cheng JR, Li J, Mo YK, Gao JQ, et al. Significance of EB virus DNA in nasopharyngeal secretions of patients with nasopharyngeal carcinoma. Clin Virol. (2016) 62:553–61. doi: 10.7754/Clin.Lab.2015.150723

62. Wu CY, Qiu MH, Zeng XL, Du MY, Yao M, Chen YX. Epstein-Barr virus immunoglobulin for improved detection of nasopharyngeal carcinoma. Clin Lab. (2016) 62:553–61. doi: 10.7754/Clin.Lab.2015.150723

60. Cao SM, Gao JS, Liu XD, Hong MH, Xiao XR, Chen FJ, et al. Value of fluorescence quantitative PCR in detection of plasma Epstein-Barr virus DNA in the diagnosis of nasopharyngeal carcinoma. Chinese J Cancer. (2002) 21:328–2. doi: 10.3969/j.issn.1001-9448.2002.03.026

58. Zhang Y, Gao HY, Feng HX, Deng L, Huang MY, Hu B, et al. Quantitative analysis of Epstein-Barr virus DNA in plasma and peripheral blood cells in patients with nasopharyngeal carcinoma. Nat Med. (2004) 10:958–62. doi: 10.1038/nm994-10.01.010.0012

56. Yuan H, Yang BB. Quantitative analysis of plasma Epstein-Barr virus DNA in patients with nasopharyngeal carcinoma. J Oncol. (2002) 17:27–9. doi: 10.1007/s10187-002-0101-0

54. Krishnan SM, James S, Katoor J, Balaraman M, Serum EBV DNA as a biomarker in primary nasopharyngeal carcinoma of Indian origin. Japanese J Clin Oncol. (2004) 34:307–11. doi: 10.1111/jcco.12705

52. Shao JY, Zhang Y, Li YH, Gao HY, Feng HX, Wu QL, et al. Distribution of Epstein-Barr viral load in serum of individuals from nasopharyngeal carcinoma high-risk families in Taiwan. Int J Cancer. (2006) 118:780–4. doi: 10.1002/ijc.21396

50. Chen SP, Lin SX, Zhong BL, Liang YJ, Mai SJ, Zong YS. Relationship between detection of EB virus DNA and tumor cell apoptosis in patients with nasopharyngeal carcinoma. Guangdong Med J. (2008) 29:1823–8. doi: 10.3969/j.issn.1005-930X.2008.06.006

48. Chai SJ, Pua KC, Saleh A, Yap YY, Lim PVH, Subramaniam SK, et al. Clinical significance of plasma Epstein-Barr virus DNA loads in a large cohort of Malaysian patients with nasopharyngeal carcinoma. J Clin Virol. (2012) 55:34–9. doi: 10.1016/j.jcv.2012.05.017

46. Yip TIC, Kwok HY, You SY, Kwong DLW, Fong AHW, Cheng WW, et al. A new circulating plasma/serum Epstein-Barr virus (EBV) DNA test by locked nucleic acid (LNA) PCR technique with enhanced sensitivity in diagnosis & monitoring of patients suffering from nasopharyngeal carcinoma (NPC) and other EBV associated malignancies. Cancer Res. (2016) 76 (14 Suppl.). doi: 10.1158/1538-7445.AM2016-3153

44. Wang H, Wei XQ, Yang KY. Role of combining EBNA assay and BamHI-W analysis of Epstein-Barr virus DNA in plasma and peripheral blood cells in patients with nasopharyngeal carcinoma. Jpn J Clin Oncol. (2007) 37:396–401. doi: 10.3969/j.issn.1001-9448.2007.07.039

42. Cao SM, Gao JS, Liu XD, Hong MH, Xiao XR, Chen FJ, et al. The value of comparing EB virus DNA level in plasma, peripheral blood cell and tumor tissue in nasopharyngeal carcinoma. Anticancer Res. (2004) 24:8059–66.

40. Zhang Y, Gao HY, Feng HX, Deng L, Huang MY, Hu B, et al. Quantitative analysis of Epstein-Barr virus DNA in plasma and peripheral blood cells in patients with nasopharyngeal carcinoma. J Natl Cancer Inst. (2004) 86:982–6. doi: 10.1093/jnci/djh055

38. Yang X, Goldstein AM, Chen CJ, Rabkin CS, Chen JY, Cheng YJ, et al. Telomerase assay and nested polymerase chain reaction from nasopharyngeal swabs for early noninvasive detection of nasopharyngeal carcinoma. Otolaryngol Head Neck Surg. (2000) 123:624–9. doi: 10.1067/mhn.2000.109368

36. Stevens SJ, Verkuilen SA, Haririibanto B, Harjadi, Paramita DK, Fachiroh J, et al. Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high epithelial epithelial DNA load in nasopharyngeal carcinoma. Otolaryngol. (2006) 20:153–4. doi: 10.3969/j.issn.1001-7818.2006.04.004

34. Deng YL, Huang XY, Liu Y, Zhang XR, Cui DY. Detection and significance of EB virus DNA in nasopharyngeal secretions of patients with nasopharyngeal carcinoma. Guangdong Med J. (2008) 29:1163–5. doi: 10.3969/j.issn.1001-9448.2008.07.039

32. Shao JY, Zhang Y, Li YH, Gao HY, Feng HX, Wu QL, et al. Comparison of Epstein-Barr virus DNA level in plasma, peripheral blood cell and tumor tissue in nasopharyngeal carcinoma. Anticancer Res. (2004) 24:8059–66.

30. Zhang Y, Gao HY, Feng HX, Deng L, Huang MY, Hu B, et al. Quantitative analysis of Epstein-Barr virus DNA in plasma and peripheral blood cells in patients with nasopharyngeal carcinoma. Natl Med J China. (2004) 84:982–6. doi: 10.3760/j.issn.0376-2941.2004.12.005

28. Yang X, Goldstein AM, Chen CJ, Rabkin CS, Chen JY, Cheng YJ, et al. Distribution of Epstein-Barr viral load in serum of individuals from nasopharyngeal carcinoma high-risk families in Taiwan. Int J Cancer. (2006) 118:780–4. doi: 10.1002/ijc.21396

26. Chen SP, Lin SX, Zhong BL, Liang YJ, Mai SJ, Zong YS. Relationship between detection of EB virus DNA and tumor cell apoptosis in patients with nasopharyngeal carcinoma. Guangdong Med J. (2008) 29:1823–8. doi: 10.3969/j.issn.1005-930X.2008.06.006

24. Chai SJ, Pua KC, Saleh A, Yap YY, Lim PVH, Subramaniam SK, et al. Clinical significance of plasma Epstein-Barr virus DNA loads in a large cohort of Malaysian patients with nasopharyngeal carcinoma. J Clin Virol. (2012) 55:34–9. doi: 10.1016/j.jcv.2012.05.017

22. Yip TIC, Kwok HY, You SY, Kwong DLW, Fong AHW, Cheng WW, et al. A new circulating plasma/serum Epstein-Barr virus (EBV) DNA test by locked nucleic acid (LNA) PCR technique with enhanced sensitivity in diagnosis & monitoring of patients suffering from nasopharyngeal carcinoma (NPC) and other EBV associated malignancies. Cancer Res. (2016) 76 (14 Suppl.). doi: 10.1158/1538-7445.AM2016-3153

20. Wang H, Wei XQ, Yang KY. Role of combining EBNA assay and BamHI-W assay in detection of EBV DNA loads in NPC. J Pract Med. (2017) 33:2918–22. doi: 10.3969/j.issn.1006-5725.2017.17.029

18. Wang H, Deng L, Chen SH, Wang SQ, Cao Y. Real-time quantitative PCR assay of Epstein-Barr virus in whole blood cells of nasopharyngeal carcinoma patients. Acta Biochim Biophys Sinica. (2003) 36:32–6. doi: 10.3321/j.issn:1673-520X.2003.01.006

16. Fang P, Li XH, Sha Q, Zhang KL, Yang KY. using PCR method to study the EB virus DNA in NPC. J Clin Oncotolaryngol. (2004) 18:5989-94. doi: 10.3969/j.issn.1001-7818.2004.10.009

14. Tang XL, Tian SD. Comparison of Epstein-Barr viral load in outward blood lymphocyte and diagnosis and stages of nasopharyngeal carcinoma. China J Modern Med. (2006) 16:3412–4. doi: 10.3969/j.issn.1005-8982.2006.22.015
113. Yi B, Zhou HQ, Yao R, Xiao ZQ. Diagnostic value of 4 kinds of serum autoantibodies in nasopharyngeal carcinoma. *Chinese J Lab Med.* (2010) 33:747–51. doi: 10.3760/cma.j.issn.1009-9158.2010.08.008

114. Zhang HQ, Zhou ZR, Fan L, Jing F, Fei Y, Li XH, et al. Dynamic observation on serum sialic acid in nasopharyngeal carcinoma patients. *Chinese J Otorhinolaryngol Head Neck Surg.* (2005) (06):411-414. Available online at: http://ts.yiigle.com/CN11533020054006/54860.htm

115. Huang JS, Gu XM, Li YY, Du GY. Application of serum homocysteine and sialic acid in the diagnosis of nasopharyngeal carcinoma. *Lab Med.* (2016) 13:3456–57+3460. doi: 10.3969/j.issn.1672-9455.2016.24.008

116. Zhang G, Li Z, Zhou Q. Utility of serum EB Virus zta antibody in the diagnosis of nasopharyngeal carcinoma: evidences from 2,126 cases and 15,644 controls. *Front Oncol.* (2019) 9:1391. doi: 10.3389/fonc.2019.01391

117. Gan YY, Fones-Tan A, Chan SH. Molecular diagnosis of nasopharyngeal carcinoma: a review. *Ann Acad Med.* (1996) 25:71–4.

118. Dardari R, Khayti M, Benider A, Joughaidi H, Kahnai A, Cochet C, et al. Antibodies to the Epstein-Barr virus transactivator protein (ZEBRA) as a valuable biomarker in young patients with nasopharyngeal carcinoma. *Int J Cancer.* (2000) 86:71–5. doi: 10.1002/(SICI)1097-0215(20000401)86:1<71::AID-IJC11>3.0.CO;2-1

119. Vo HJ, Ngi WL, Hu M, Phyo WM, Wang F, Feng KW, et al. Comparison of circulating tumour cells and circulating cell-free Epstein-Barr virus DNA in patients with nasopharyngeal carcinoma undergoing radiotherapy. *Sci Rep.* (2016) 6:13: doi: 10.1038/s41598-016-0006-3

120. Chan KC, Leung SF, Yeung SW, Chan AT, Lo YM. Quantitative analysis of the transrenal excretion of circulating EBV DNA in nasopharyngeal carcinoma patients. *Clin Cancer Res.* (2008) 14:4809–13. doi: 10.1158/1078-0432.CCR-08-1112

121. Lin JC, Wang WY, Chen KY, Wei YH, Liang WM, Jan JS, et al. Quantification of Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. *N Engl J Med.* (2004) 350:2461–70. doi: 10.1056/NEJMoa032260

122. Abeynayake J, Johnson R, Libiran P, Sahoo MK, Cao H, Bowen R, et al. Commutability of the Epstein-Barr virus who international standard with nasopharyngeal carcinoma. *Cancer.* (2007) 121:2615–605. doi: 10.1002/jic.23016

123. Zhou DN, Ye CS, Yang QQ, Deng YF. Integrated analysis of transcriptome profiling predicts potential lncRNA and circRNA targets in human nasopharyngeal carcinoma. *Oncol Lett.* (2020) 19:3123–36. doi: 10.3892/ol.2020.11412

124. Ma DD, Yuan LL, Lin LQ. LncRNA HOTAIR contributes to the tumorigenesis of nasopharyngeal carcinoma via up-regulating FASN. *Eur Rev Med Pharmacol Sci.* (2017) 21:5143–52. doi: 10.26355/eurrev_201711_13831

125. Gong Z, Yang Q, Zeng Z, Zhang W, Li X, Zou X, et al. An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. *Tumour Biol J Int Soc Oncodevelopmental Biol Med.* (2016) 37:3683–95. doi: 10.1007/s40823-015-4156-x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Feng, Xia, He, Ke, Liu, Xie, Tang and Yi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.