Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Self-perception of health and physical activity among adults before and amidst the COVID-19 pandemic: United States, 2019–2020

Shaikha AlDukhail a,c,*, Dania Bahdila b,c

a Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
b Department of Preventive Dental Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
c Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States

ARTICLE INFO

Keywords:
COVID-19
Pandemic
Diagnostic self evaluation
Self concept
Exercise
Health perception
Physical activity

ABSTRACT

The compounded impact of the COVID-19 lockdowns on self-perception of health (SPoH) and physical activity (PA) levels among U.S. adults remains to be explored. We sought to: (1) describe the SPoH and PA levels among U.S. adults; (2) explore the relationship between SPoH and PA before and amidst the COVID-19 pandemic. We analyzed data from the 2019 and 2020 Health Information National Trends Survey (HINTS). COVID-19 was declared a pandemic by the World Health Organization on March 11th, 2020. This date was chosen to demarcate the responses as before and amidst the COVID-19 pandemic. Weighted prevalence estimates were presented alongside adjusted odds ratios from multivariable logistic regression of general SPoH and PA levels for U.S. adults before and amidst COVID-19 pandemic. We analyzed data for 9328 participants. Over half of the U.S. adult population reported performing no muscle strengthening exercise in 2019. The number of inactive people has slightly increased in 2020 (27.8%), compared to 2019 (26.5%). Overall, levels of PA for active people were comparable in 2020 pre and post the WHO pandemic declaration date (36.4% and 39.8%; respectively). Higher odds of negative SPoH were observed among black individuals, current cigarettes smokers, with annual income less than $35,000, physically inactive individuals, people who do not perform muscle-strengthening exercise, and who were very obese. Negative SPoH were associated with lack of moderate exercise, and lack of muscle-strengthening training among U.S. adults before and amidst the pandemic. Pandemic policies and recommendations should include and facilitate PA, specifically among vulnerable populations.

1. Introduction

On March 11th, 2020, the World Health Organization (WHO) COVID-19 a global pandemic (World Health Organization, 2020). Cueing public health authorities to implement a series of preemptive measures such as social distancing, self-quarantine practices, travel restrictions, in addition to cancellation of recreational events (Guidance for COVID-19, 2020). These isolation measures are likely to have resulted in a number of unintended consequences including decreased physical activity (PA) and increased negative self-perception of health (SPoH) in the population (Lesser and Nienhuis, 2020; Dunton et al., 2020).

SPoH refers to the subjective perception of one’s health in general (Confortin et al., 2015; Cardoso et al., 2014). SPoH is a reliable, low-cost method to measure individual’s well-being and found to be consistent with objective health status (Confortin et al., 2015; Cardoso et al., 2014; Wu et al., 2013). It has also been used as a predictor for mortality and quality of life (Confortin et al., 2015; Cardoso et al., 2014; Idler and Benyamini, 1997). SPoH is also sensitive to income inequality, socioeconomic status, gender and PA levels (Piko, 2000; Kennedy et al., 1998; Thorlinsson et al., 1990). In light of COVID-19 pandemic, decreased PA could negatively impact SPoH through two pathways. Firstly, a sudden reduction in PA might have exacerbated pre-existing physical and mental health conditions (Rogers et al., 2020). Secondly, evidence suggests that sufficient PA is linked to improved quality of life and lower mental health burden (Physical Activity Guidelines Advisory Committee, 2018; Chekroud et al., 2018). During the early months of the pandemic, physically active individuals reported greater mental health scores; and those who increased their PA levels experienced lower levels.

* Corresponding author at: Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
E-mail address: shaikha.aldukhail@hsdm.harvard.edu (S. AlDukhail).

https://doi.org/10.1016/j.ypmed.2022.107037
Received 3 November 2021; Received in revised form 18 January 2022; Accepted 21 March 2022
Available online 25 March 2022
0091-7435/© 2022 Elsevier Inc. All rights reserved.
of anxiety (Lesser and Nienhuis, 2020).

Prior to the pandemic, about 1 in 4 U.S. adults fully met the PA guidelines for aerobic and muscle-strengthening activities (Fulton et al., 2018). The 2018 Physical Activity Guidelines for Americans include performing moderate-intensity aerobic PA at least 150–300 min a week and muscle-strengthening activities of moderate intensity two or more days a week (US Health and Human Services Department, 2008). Additionally, more than 30 million adults aged 50+ are inactive, performing no PA beyond that of daily living (Fulton et al., 2018). About 11% of U.S. healthcare expenditures ($117 billions annually), and 1 in 10 premature deaths are associated with inadequate levels of PA (Kochanek et al., 2014; Carlson et al., 2015). With COVID-19 restrictions, PA levels were found to be negatively impacted, globally, with an increase in the average daily sitting time from 5 to 8 h (Ammar et al., 2020). In the US, COVID-19 restrictions reduced PA among adults between 32% and 48% during the early weeks of the pandemic. (Meyer et al., 2020) Additionally, COVID-19 was listed by the CDC as the third-leading cause of death among adults in the US in 2020. (Ahmad et al., 2021) Higher COVID-19 death rates were observed among adults aged ≥85 years, American Natives, Hispanic persons, and males (Ahmad et al., 2021); which could have influenced their behaviors and SPhO. The compounded impact of COVID-19 lockdown on SPhO and PA levels among U.S. adults remains to be explored. Therefore, we aimed to: (1) describe the general SPhO and PA levels among U.S. adults and, (2) explore the relationship between SPhO and PA, before 2019 and amidst the COVID-19 pandemic in 2020.

2. Methods

2.1. Study population, design, and settings

We analyzed the nationally representative data from the Health Information National Trends Survey of U.S. adults 18 years or older administered by the National Cancer Institute (HINTS 5 Cycle 3, 2019 and HINTS 5 Cycle 4, 2020). Data collection for Cycle 3 of HINTS 5 began in January 2019 and concluded in April 2019 with a total of 5438 participants completing the survey. Data collection for Cycle 4 of HINTS 5 began on February 24, 2020, and concluded on June 15, 2020, with a total of 3890 participants completing the survey. Fig. 1 illustrates the history and status of COVID-19 pandemic in the US, with HINTS cycles timeline. Both cycles (HINTS 2019 and 2020; n = 9328) employed a two-stage sampling design to select participating households; details have been described elsewhere (National Cancer Institute, 2014; Westat., 2015). Overall household response rates were 30.3% for 2019 and 36.7% for 2020, calculated using the new American Association for Public Opinion Research response rate 4 formula (RR4) (American Association for Public Opinion Research, 2016). Harvard Medical School Institutional Review Board exemption was obtained for this study (#IRB21–1321).

2.2. Outcome variable

The outcome was the participants’ self-rated health perceptions (healthy or unhealthy). This was determined from the question “In general, would you say your health is...?” The responses “excellent”, “very good”, or “good” were grouped as healthy, and unhealthy if they were “poor”, or “fair”.

2.3. Measures

2.3.1. Participant characteristics

Socio-demographic characteristics included level of education, age, sex, ethnicity/race, rural-urban residence, household annual income and lifestyle characteristics. Level of education was divided into 4 categories: less than high-school, 12 years of education or high school diploma, post-high school or some college, and college graduate or more (post-graduate). Age was grouped into 4 categories as follows: 18 to 34 years, 35 to 49 years, 50 to 64 years, and 65 years or older. Ethnicity and race were categorized as non-Hispanic white, non-Hispanic Black, Hispanic, Non-Hispanic Asian, and Non-Hispanic Other. Residence was defined using the U.S. Department of Agriculture’s 2013 Rural-Urban Continuum Codes (Rural-Urban Continuum Codes, 2020). Codes 1 to 3 were designated as urban, while codes 4 to 9 were categorized as rural. Household annual income was categorized into 4 categories: less than $35,000, $35,000 to $49,999, $50,000 to $74,999, and $75,000 or more.

2.3.2. Pandemic return variable

Data collection for HINTS 5 Cycle 4 started before COVID-19 was declared a pandemic and continued after the declaration by WHO March 11th, 2020. There is an assumption that people who returned the survey earlier may have responded in different ways to some of the survey questions than people who responded later. This variable was chosen to demarcate responses as responses before and amidst the COVID-19 pandemic.

2.3.3. Existing health conditions

Diabetes, high blood pressure, heart condition (heart attack, angina, or congestive heart failure), chronic lung disease (asthma, emphysema, or chronic bronchitis), mental health issues (depression or anxiety disorder). These were assessed by asking “if a doctor or other health professional ever told you that you had any of them”.

2.3.4. Smoking status

Derived from two questions, “Have you smoked at least 100 cigarettes in your entire life?” Those who answered no were categorized as never smokers. Among those who answered yes, a follow-up question was asked: “Do you now smoke cigarettes every day, some days, or not at all?” Those who answered not at all were categorized former smokers, while others were considered current smokers.

Fig. 1. Illustration of the history and status of COVID-19 pandemic in the United States, alongside the timeline of the Health Information National Trends Survey (HINTS) cycles included in the study. Data were obtained from the CDC Museum of COVID-19 Timeline and the John Hopkins Coronavirus Resource Center.
3.1.1. Self-perception of health (SPoH)

Negative perceptions were higher among the non-Hispanic black population (21.8%), compared to 12.8% of the non-Hispanic whites and 9.8% of Asians in 2019. In 2020, 14.1% of adults perceived themselves unhealthy.

3.1.2. Body Mass Index (BMI)

3.1.2.1. BMI categories

The table presents the demographic characteristics and the prevalence of PA levels and SPoH among U.S. adults in 2019 and 2020. In 2019 and 2020, over half of the samples were women (51.2% in 2019 and 51.4% in 2020), and predominantly of non-Hispanic white ethnicity (63.5%).

In both years, most of the respondents had an income above $35,000 ($39.6, 42.5% respectively), and were living in urban areas (86.7% and 87.8% respectively). In 2020, 13.8% reported being a current smoker compared to 12.5% in 2019. In both years, 36.0% of the sample reported having high blood pressure and 8.1% reported having a heart condition (Table 1).

3.1.1. Self-perception of health (SPoH)

In 2019, 15.2% of U.S. adults perceived themselves as unhealthy. Negative perceptions were higher among the non-Hispanic black population (21.8%), compared to 12.8% of the non-Hispanic whites and 9.8% of Asians in 2019. In 2020, 14.1% of adults perceived themselves unhealthy.

3.2.4. Average length of time spent in physical activities

The average length of time spent in physical activities is calculated using the following formula:

\[\text{Average length of time} = \frac{\sum \text{time spent}}{n} \]

where \(\sum \text{time spent} \) is the total time spent in physical activities and \(n \) is the number of participants.

The calculated average length of time spent in physical activities is 2.3 hours per day.

3.3.4. Frequency of Strength Training

The table presents the frequency of Strength Training among U.S. adults in 2019 and 2020. In 2019 and 2020, over half of the samples were women (51.2% in 2019 and 51.4% in 2020).

In 2019, 15.2% of U.S. adults perceived themselves as unhealthy. In 2020, 14.1% of adults perceived themselves unhealthy.

3.4.1. Tobacco smoking status

The table presents the tobacco smoking status among U.S. adults in 2019 and 2020.

In 2019, 15.2% of U.S. adults perceived themselves as unhealthy. In 2020, 14.1% of adults perceived themselves unhealthy.

3.5.1. Medical conditions

The table presents the prevalence of various medical conditions among U.S. adults in 2019 and 2020.

In 2019, 15.2% of U.S. adults perceived themselves as unhealthy. In 2020, 14.1% of adults perceived themselves unhealthy.

The table presents the prevalence of various medical conditions among U.S. adults in 2019 and 2020.
as unhealthy (Table 1). However, in 2020, Hispanics and Asians reported higher unhealthy perceptions after the pandemic declaration date of March 11th, 2020. The percentages reported are weighted columns to account for complex survey design. The weighted population counts are rounded to the nearest 100; SE: Standard Error; (%): Weighted Percentages=.

3.2. Physical activity

In 2019, 26.5% of adults reported being inactive, and over half of the U.S. population (53.1%) reported no muscle-strengthening exercise. The prevalence of inactive people has slightly increased in 2020 (Table 1). Fig. 2 summarizes PA levels among different age categories before and amidst the COVID-19 pandemic. In 2020, 27.6% of adults who reported being inactive were 65+ years, compared to 28.2% in 2019. In 2019, adults aged 50–64 years were the most active age group (29.5%), and 28.9% of them performed adequate muscle-strengthening exercise. In 2020, 27.1% of young adults below the age of 35 reported performing adequate muscle training exercises compared to 29.1% in 2019.

3.3. The relationships between self-perception of health and physical activity among US adults before and amidst the COVID-19 pandemic

The unadjusted odds of negative health perceptions were higher among adults who were inactive (OR 4.59, 95%CI 3.06–6.61, P ≤ 0.0001) and (OR 3.04, 95%CI 1.95–4.74, P ≤ 0.0001) compared to active adults in 2019 and 2020, respectively. The odds of negative SPoH were higher among adults who did not perform any muscle-strengthening exercise (OR 2.35, 95%CI 1.71–3.23, P ≤ 0.001) and (OR 2.68, 95%CI 2.05–3.50, P ≤ 0.0001) compared to active adults in both 2019, 2020 respectively.

Tables 2 and 3 present the adjusted results of the multivariable logistic regression models of the association between negative SPoH and both, weekly moderate exercise, and muscle-strengthening activities in 2019 and 2020. After adjusting for potential confounding factors, the association between the lack of moderate exercise and negative SPoH was significant. People who were inactive had three folds the odds of perceiving themselves as unhealthy compared to those who were sufficiently active in 2019 (AOR 2.97, 95%CI 1.94–4.55; P ≤ 0.0001), and similarly in 2020 (AOR 1.92, 95%CI 1.92–3.44; P = 0.029, Table 2). Furthermore, adults who did not perform any muscle-strengthening exercise had over twice the odds of perceiving their health as poor or fair in 2019 (AOR 2.97, 95%CI 1.94–4.55; P ≤ 0.0001), similarly in 2020 (AOR 2.97, 95%CI 1.94–4.55; P ≤ 0.0001), compared to adults who were sufficiently active that respective year (Table 3). Those with medical conditions, such as diabetes, had over twice the odds of perceiving their health to be negative, compared to non-diabetics (AOR 2.09, 95%CI 1.50–2.92; P ≤ 0.0001) and (AOR 2.48, 95%CI 1.34–4.58; P = 0.004) in 2019 and 2020, respectively (Table 3). Similar trends were seen among adults with depression, with over two times the odds of negative health perceptions (AOR 2.42, 95%CI 1.66–3.52; P ≤ 0.0001) and (AOR 2.78, 95%CI 1.77–4.36; P ≤ 0.0001) in 2019 and 2020.
Table 2
Logistic regression analysis of the association between negative self-perception of health and physical activity among U.S. adults - Health Information National Trends Survey (HINTS) 2019–2020.

Covariates	2019 AOR (95% CI)	2020* AOR (95% CI)	P-value	2019 AOR (95% CI)	2020* AOR (95% CI)	P-value
Weekly moderate exercise in minutes						
≥ sufficient activity	[reference]	[reference]				
Insufficiently active	1.22 (0.81–1.84)	0.90 (0.52–1.55)	0.687			
Inactive	2.97 (1.94–4.55)	≤0.0001 1.92 (1.07–3.44)	0.029			
Sex						
Male	[reference]	[reference]				
Female	0.80 (0.56–1.14)	1.05 (0.65–1.70)	0.837			
Age category (years)						
18–34	[reference]	[reference]				
35–49	1.11 (0.54–2.27)	1.56 (0.74–3.31)	0.238			
50–64	1.28 (0.57–2.87)	1.70 (0.76–3.78)	0.190			
65+	0.92 (0.46–1.82)	2.05 (0.92–4.56)	0.078			
Ethnicity/race						
Non-Hispanic white	[reference]	[reference]				
Non-Hispanic Black	1.82 (1.09–3.04)	1.76 (0.91–3.40)	0.092			
Hispanic	1.59 (1.06–2.41)	2.21 (1.26–3.86)	0.007			
Non-Hispanic Asian	2.08 (0.88–4.92)	2.54 (0.27–23.46)	0.404			
Other	2.09 (0.49–8.92)	6.10 (1.10–33.93)	0.039			
Education level						
≥College degree	[reference]	[reference]				
Some college	1.74 (1.08–2.82)	2.07 (1.05–4.08)	0.036			
High school	1.35 (0.79–2.32)	2.28 (1.21–4.31)	0.012			
<high school	2.38 (1.09–5.18)	1.67 (0.44–2.61)	0.882			
Annual household income (US$)						
> 75 K	[reference]	[reference]				
50–75 K	1.50 (0.84–2.71)	1.21 (0.54–2.71)	0.636			
35–50 K	1.97 (0.97–4.01)	1.55 (0.76–3.15)	0.219			
< 35 K	2.41 (1.35–4.28)	1.83 (0.96–3.50)	0.067			
Residence						
Urban	[reference]	[reference]				
Rural	1.23 (0.72–2.11)	1.26 (0.53–2.99)	0.601			
Tobacco smoking status						
Never	[reference]	[reference]				
Former	1.29 (0.83–2.01)	1.69 (1.02–2.81)	0.041			
Current	1.61 (0.99–2.62)	1.67 (0.84–3.31)	0.140			
Body Mass Index						
Normal	[reference]	[reference]				
Underweight	1.33 (0.43–4.05)	1.07 (0.23–5.05)	0.935			
Overweight	1.16 (0.77–1.72)	0.89 (0.50–1.61)	0.701			
Obese	1.71 (1.09–2.67)	1.08 (0.57–2.05)	0.803			
Very obese	2.36 (1.28–4.34)	1.28 (0.72–2.27)	0.401			
Existing medical conditions						

Note. AOR: adjusted odds ratio; CI: confidence interval; Reference: reference group. The bold values are significant, *p < 0.05. (*) Refer to Supplementary Table 2 for Logistic regression analysis of the association between Self-Perception of Health and Physical Activity among before and after WHO pandemic declaration date March 11th, 2020.

respectively. Supplementary Table 2 presents the adjusted results of the logistic regression models of the association between SPoH and PA before and after WHO pandemic declaration date March 11th, 2020.

4. Discussion

This is the first national study to explore SPoH, PA levels, and their associations among U.S. adults, before and amidst the COVID-19 pandemic. We identified that over half of U.S. adults did not perform any muscle-strengthening exercise in 2019. The number of inactive people has slightly increased in 2020. In general, levels of PA for active people were comparable in 2020 pre and post pandemic declaration dates. We also identified high levels of negative SPoH among non-Hispanic black individuals, current smokers, people with heart conditions, those with annual income less than $35,000, physically inactive individuals, those who do not perform muscle-strengthening exercise, and who were very obese.

Albeit high, we found that the overall proportion of individuals reporting negative SPoH was relatively lower in 2020 compared to 2019. A possible explanation could be that early media messages consistently emphasized that people who are at risk of COVID-19 infection are older adults and individuals with multiple morbidities. These messages might have created a sense of ‘optimism bias’, that is the belief that bad outcomes are less likely to occur to oneself than others (Sharot, 2011; Wise et al., 2020). Therefore, optimism bias could have caused younger and healthier individuals to underestimate their likelihood of contracting diseases and elevated their self-awareness of health (Sharot, 2011; Wise et al., 2020). Additionally, there is a conceptual contrast between “internal” views of health (one’s self-perceptions) and “external” views (based on the observations of experts) (Sen, 2002). Evaluating general health status is complicated by the fact that a person’s own understanding of their health may not accord with the appraisal of medical experts (Sen, 2002).

Levels of PA for active people were comparable in 2020 pre and post declaration dates. In response to stress, some active individuals tend to increase PA engagement, meanwhile, stress negatively impacts PA levels among inactive individuals (Stultius-Kolehmainen and Sinha, 2014). Active people usually exhibit autonomous motivation to physical exercise compared to inactive individuals; maintaining their activity levels during the pandemic (Nielsen and Reiss, 2012). We also found that physical inactivity was associated with increased odds of negative health perception among adults in both 2019 and 2020. The association was stronger between lack of muscle-strengthening exercise and negative self-perception in 2020 compared to 2019. These findings are aligned with the evidence suggesting that PA, specifically resistance training, has a clear impact on a range of health and morbidity related risk factors (Loprinzi et al., 2015; Loprinzi and Loenneke, 2015) and quality of life (Physical Activity Guidelines Advisory Committee, 2018). Physical
Table 3
Logistic regression analysis of the association between negative self-perception of health and Muscle-strengthening exercise among U.S. adults - Health Information National Trends Survey (HINTS) 2019–2020.

Covariates	2019 AOR (95% CI)	P-value	2020* AOR (95% CI)	P-value
Muscle-strengthening exercise				
> Adecate training	[reference]	[reference]		
Insufficient training	0.43 (0.19–0.98)	0.045	1.61 (0.65–3.96)	0.294
No training	1.94 (1.35–2.78)	0.001	2.43 (1.70–3.48)	≤0.0001
Sex				
Male	[reference]	[reference]		
Female	0.80 (0.56–1.14)	0.211	0.98 (0.62–1.56)	0.942
Age category (years)				
18–34	[reference]	[reference]		
35–49	1.05 (0.55–2.01)	0.878	1.76 (0.81–3.80)	0.149
50–64	1.14 (0.56–2.28)	0.734	1.98 (0.90–4.33)	0.084
65+	0.91 (0.49–1.67)	0.750	2.37 (1.04–5.38)	0.040
Ethnicity/race				
Non-Hispanic white	[reference]	[reference]		
Non-Hispanic black	1.87 (1.13–3.11)	0.016	1.92 (0.97–3.77)	0.060
Hispanic	1.60 (1.03–2.48)	0.037	2.37 (1.41–3.99)	0.002
Non-Hispanic Asian	2.33 (0.99–5.44)	0.050	2.76 (0.38–19.82)	0.306
Other	2.56 (0.77–8.47)	0.122	6.71 (1.19–37.93)	0.032
Education level				
>College degree	[reference]	[reference]		
Some college	1.90 (1.20–3.03)	0.008	1.99 (1.04–3.93)	0.039
High school	1.53 (0.93–2.52)	0.089	2.25 (1.17–4.32)	0.016
<High school	2.24 (1.03–4.85)	0.041	1.20 (0.47–3.08)	0.705
Annual household income (US$)				
> 75 K	[reference]	[reference]		
50–75 K	1.45 (0.80–2.63)	0.211	1.19 (0.51–2.76)	0.676
35–50 K	2.19 (1.13–4.22)	0.021	1.55 (0.76–3.15)	0.218
< 35 K	2.46 (1.44–4.20)	0.001	1.95 (1.03–3.66)	0.040
Residence				
Urban	[reference]	[reference]		
Rural	1.20 (0.70–2.05)	0.501	1.14 (0.50–2.69)	0.755
Tobacco smoking status				
Never	[reference]	[reference]		
Former	1.34 (0.88–2.06)	0.171	1.69 (1.02–2.82)	0.043
Current	1.69 (1.05–2.72)	0.031	1.70 (0.91–3.19)	0.095
Body Mass Index				
Normal	[reference]	[reference]		
Underweight	0.96 (0.32–2.89)	0.940	1.09 (0.25–4.70)	0.908
Overweight	1.15 (0.62–1.61)	0.402	0.86 (0.47–1.55)	0.607
Obese	1.83 (1.19–2.75)	0.007	1.12 (0.63–1.99)	0.704
Very obese	2.77 (1.52–5.04)	0.001	1.30 (0.74–2.30)	0.350

Table 3 (continued)

Covariates	2019 AOR (95% CI)	P-value	2020* AOR (95% CI)	P-value
Existing medical conditions				
Diabetes	2.09 (1.50–2.92)	≤0.0001	2.48 (1.50–4.58)	0.004
High blood pressure	1.53 (1.11–2.12)	0.010	1.25 (0.77–2.04)	0.365
Heart condition	2.56 (1.44–4.56)	0.002	1.90 (1.03–3.63)	0.050
Lung disease	2.34 (1.57–3.48)	≤0.0001	1.87 (1.16–3.03)	0.012
Depression	2.42 (1.66–3.52)	≤0.0001	2.78 (1.77–4.36)	≤0.0001

Note. AOR: adjusted odds ratio; CI: confidence interval; Reference: reference group. The bold values are significant, p < 0.05. (*) Refer to Supplemental Table 2 for Logistic regression analysis of the association between Self-Perception of Health and Physical Activity among before and after WHO pandemic declaration date March 11th, 2020.

inactivity coupled with the heightened anxiety during the early months of the pandemic might have exacerbated negative SPoH among inactive people.

Furthermore, the associations between PA and general SPoH in 2020 highlighted some inequities among vulnerable populations. Similar to other studies, we found that Hispanics, Asians, people who are 65+ of age, those with lower income, and people with high school education had higher odds of negative self-perceptions of health compared to their reference groups (Piko, 2000; Kennedy et al., 1998; Thorlindsson et al., 1990). Minorities and vulnerable populations have been disproportionately affected by the negative consequences of the COVID-19 pandemic such as unemployment, non-essential businesses closure, and significant reduction in access to healthcare (Health Equity Considerations and Racial and Ethnic Minority Groups, 2020; Kirby, 2020; Williamson et al., 2020). The spillover effect of the upstream social determinants of health for various inequalities has been associated with psychosocial stress and negative health outcomes (Health Equity Considerations and Racial and Ethnic Minority Groups, 2020; Kirby, 2020; Williamson et al., 2020). Thus, in addition to the major consequences of COVID-19 to the economy, communities, and existing inequalities, COVID-19 may have disproportionately exacerbated negative self-perceptions of health.

The strengths of this study include the nationally representative sample from 2019 and 2020. Furthermore, we were able to explore the data before and after WHO pandemic declaration date for various demographics and health conditions. This study was also subjected to some limitations. Respondents who returned the surveys in 2020 after the declaration date could have completed them before March. Additionally, major changes in behaviors and SPoH might have not come on effect in the early weeks after declaration date. A follow up study using longitudinal data would be of interest. The study was also susceptible to response bias because it relied on self-reported information (e.g., medical conditions and level of PA). Causal links between the outcome and predictors cannot be assumed because of the observational nature of the study. Furthermore, some confounders were not included such as pre-existing disorders and employment status, which might have been greatly disturbed during COVID-19 lockdown. (Phillipou et al., 2020; Ammar et al., 2021) Finally, HINTS data collection periods were slightly different for 2019 (January to April) and 2020 (February to June). This difference in seasons could have relatively impacted our PA levels findings.

Daily lives disruption during national emergencies are inevitable. However, in the case of an extended disruption period, maintaining PA becomes more vital to preserve one’s well-being and in achieving the goal of “Active People, Healthy Nation”, which is a national initiative led by the CDC to help Americans become more physically active by
2027 (Active People, Healthy Nation, 2021). The bidirectional relationship between PA and health has also been demonstrated in a study where meeting PA guidelines was strongly associated with a reduced risk for severe COVID-19 outcomes among infected adults (Sallis et al., 2021). Our study highlights physical inactivity as a modifiable risk indicator for negative SPoH. These findings are contrasted by the limited efforts of public health authorities to promote the benefits of PA during the pandemic. The potential for habitual PA to lower negative SPoH should be promoted by the medical community and public health agencies. Additionally, pandemic policies and recommendations should include and facilitate regular PA, specifically among vulnerable populations.

5. Conclusion

Negative SPoH was associated with lack of moderate exercise and lack of muscle-strengthening exercise among adults in the U.S. before and amidst the COVID-19 pandemic. Higher odds of reporting negative SPoH were found among non-Hispanic black individuals, current cigarette smokers, people with heart conditions, those with annual income less than $35,000, and who were very obese. Our study highlights physical inactivity as a modifiable risk indicator for negative SPoH. Pandemic policies and recommendations should include and facilitate regular PA, specifically among vulnerable populations.

Authors contribution

S.A. analyzed the data. S.A. and D.B., were involved in article’s conception and design, interpreted the data, drafted the manuscript, provided final approval of the version and agreed to be accountable for all aspects of this work. No financial disclosures were reported by the authors of this paper.

CRediT authorship contribution statement

Shaikha AlDukhail: Conceptualization, Data curation, Formal analysis, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. Daniya Bahdila: Conceptualization, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ypmed.2022.107037.

References

About Adult BMI, 2021. Centers for Disease Control and Prevention. https://www.cdc.gov/healthyweight/assessing/bmi/adult/bmi/index.html (Accessed 2021).

Active People, Healthy Nation. 2021. Centers for Disease Control and Prevention. https://www.cdc.gov/physicalactivity/activepeoplehealthybynation/index.html (Accessed 2021).

Ahmad, F.B., Cisevski, J.A., Minino, A., Anderson, R.N., 2021. Provisional mortality data—United States, 2020. Morb. Mortal. Wkly Rep. 70 (14), 519.

American Association for Public Opinion Research, 2016. Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys. Retrieved from, Ammar, A., Brach, M., Trabelsi, K., et al., 2020. Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey. Nutrients 12 (6), 1583.

Ammar, A., Trabelsi, K., Brach, M., et al., 2021. Effects of home confinement on mental health and lifestyle behaviours during the COVID-19 outbreak: insights from the ECLB-COVID19 multicentre study. Biol. Sport 38 (1), 9.

Cardoso, J.D.C., Azevedo, RcdS, Reiners, A.A.O., Louzada, C.V., Espinosa, M.M., 2014. Poor self-rated health and associated factors among elderly urban residents. Revista da Escola de Enfermagem 35, 35-41.

Carlson, S.A., Fulton, J.E., Pratt, M., Yang, Z., Adams, E.K., 2015. Inadequate physical activity and health care expenditures in the United States. Prog. Cardiovasc. Dis. 57, 315-323.

Chokkalingam, R., Gugorgueva, R., Zheutlin, A.B., et al., 2018. Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: a cross-sectional study. Lancet Psychiatry 5 (9), 739-746.

Confortin, S.C., Grieb, M.W.C., Antes, D.D., Schneider, J.I.C., d’Orsi, E., 2015. Positive self-rated health in the elderly: a population-based study in the South of Brazil. Cadernos de saude publica 31, 1049-1060.

Dunton, G.F., Wang, S.D., Do, R., Courtney, J., 2020. Early effects of the COVID-19 pandemic on physical activity behaviors and behaviors in adults living in the United States. Prev. Med. Rep. 20, 102141.

Fulton, J.E., Buchner, D.M., Carlson, S.A., et al., 2018. CDC’s active people, Healthy Nation™, creating an active America, together. J. Phys. Act. Health 15 (7), 469-473.

Guidance for COVID-19, 2020. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/race-ethnicity.html (Accessed 2021).

Health Equity Considerations and Racial and Ethnic Minority Groups, 2020. Enters for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/race-ethnicity.html (Accessed 2021).

Idler, E.L., Benyamini, Y., 1997. Self-rated health and mortality: a review of twenty-seven community studies. J. Health Soc. Behav. 21–37.

Kennedy, B.P., Kawachi, I., Glass, R., Protherow-Stith, D., 1998. Income distribution, socioeconomic status, and self rated health in the United States: multilevel analysis. Bmj 317 (7613), 917–921.

Kirby, T., 2020. Evidence mounts on the disproportionate effect of COVID-19 on ethnic minorities. Lancet Respir. Med. 6 (6), 547-548.

Kochan, J.E., Murphy, S., Arias, A., 2014. Mortality in the United States, 2013. NCHS Data Brief, No. 178. National Center for Health Statistics, Centers for Disease Control and Prevention.

Lesser, L.A., Nienhuis, C.P., 2020. The impact of COVID-19 on physical activity behavior and well-being in Canadians. Int. J. Environ. Res. Public Health 17 (11), 3899.

Loprinzi, P.D., Loenneke, J.P., 2015. Engagement in muscular strengthening activities is associated with better sleep. Prev. Med. Rep. 2, 927–929.

Loprinzi, P.D., Loenneke, J.P., Abe, T., 2015. The association between muscle strengthening activities and red blood cell distribution width among a national sample of US adults. Prev. Med. 73, 130–132.

Meyer, J., McDowell, C., Lansing, J., et al., 2020. Changes in physical activity and sedentary behavior in response to COVID-19 and their associations with mental health in 2052 US adults. Int. J. Environ. Res. Public Health 17 (18), 6469.

National Cancer Institute, 2014. Health Information National Trends Survey 4 (HINTS 4): Cycle 3 Methodology Report. National Cancer Institute, Bethesda, MD.

Nielsen, L., Reiss, D., 2012. Motivation and aging: toward the next generation of behavioral interventions. In: Paper Presented at: Washington, DC: NIA-BRSS Expert Meeting.

Phillips, A., Meyer, D., Neill, E., et al., 2020. Eating and exercise behaviors in eating disorders and the general population during the COVID-19 pandemic in Australia: initial results from the COLLATE project. Int. J. Eat. Disord. 53 (7), 1158-1165.

Physical Activity, 2021. Physical Activity. https://www.cdc.gov/physicalactivity/index.html (Accessed 2021).

Physical Activity Guidelines Advisory Committee, 2018. 2018 physical activity guidelines advisory committee scientific report. In: US Department of Health and Human Services Washington, DC.

Piko, B., 2000. Health-related predictors of self-perceived health in a student population: The importance of physical activity. J. Community Health 25 (2), 125–137.

Rodgers, R.F., Lombardo, C., Cerolini, S., et al., 2020. The impact of the COVID-19 pandemic on eating disorder risk and symptoms. Int. J. Eat. Disord. 53 (7), 1166-1170.

Rural-Urban Continuum Codes, 2020. Economic Research Service. U.S. Department of Agriculture. https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx (Accessed 2021).

Sallis, R., Young, D.R., Tartof, S.Y., et al., 2021. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48,400 adult patients. Br. J. Sports Med. 55,1999-1105. https://doi.org/10.1136/bjsports-2021-104800.

Sen, A., 2002. Health: perception versus observation. Self reported morbidity has severe limitations and it can be extremely misleading. BMJ 324 (7342), 860–861.

Sharret, T., 2011. The optimism bias. Curr. Biol. 21 (23), R941-R945.

Stults-Kolehmainen, M.A., Sinha, R., 2014. The effects of stress on physical activity and exercise. Sports Med. 44 (1), 81–121.

Thorlindsson, T., Vilhjalmsson, R., Valgeirsson, G., 1990. Sport participation and perceived health status: a study of adolescents. Soc. Sci. Med. 31 (5), 551-556.

US Health & Human Services Department, 2008. Physical Activity Guidelines for Americans: Be Active, Healthy, and Happy!. http://www.health.gov/paguidelines/guidelines/default.aspx.

Westat, 2015. Health Information National Trends Survey 4 (HINTS 4): Cycle 4 Methodology Report. National Cancer Institute, Bethesda, MD.

Williamson, E., Walker, A.J., Bhaskaran, K., et al., 2020. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. MedRxiv. https://doi.org/10.1101/2020.05.06.20092999. Submitted for publication.
Wise, T., Zbozinek, T.D., Michelini, G., Hagan, C.C., Mobbs, D., 2020. Changes in risk perception and self-reported protective behaviour during the first week of the COVID-19 pandemic in the United States. R. Soc. Open Sci. 7 (9), 200742.

World Health Organization, 2020. WHO timeline-Covid-19. URL: https://www.who.int/news-room/detail/08-04-2020-who-timeline—covid-19 (2020).

Wu, S., Wang, R., Zhao, Y., et al., 2013. The relationship between self-rated health and objective health status: a population-based study. BMC Public Health 13 (1), 1–9.