On the cosmic distance duality relation and strong gravitational lens power law density profile

F.S. Lima, R.F.L. Holanda, S.H. Pereira and W.J.C. da Silva

Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal — Rio Grande do Norte, 59072-970, Brazil
 Departamento de Física, Universidade Federal de Campina Grande, 58429-900, Campina Grande — PB, Brazil
 Departamento de Física, Universidade Federal de Sergipe, 49100-000, Aracaju — SE, Brazil
 Departamento de Física, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista (UNESP), 12516-410, Guaratinguetá — SP, Brazil

E-mail: felixsilva775@live.com, Holandarfl@gmail.com, s.pereira@unesp.br, williamjouse@fisica.ufrn.br

Received April 14, 2021
Revised June 15, 2021
Accepted July 19, 2021
Published August 16, 2021

Abstract. Many new strong gravitational lensing (SGL) systems have been discovered in the last two decades with the advent of powerful new space and ground-based telescopes. The effect of the lens mass model (usually the power-law mass model) on cosmological parameters constraints has been performed recently in literature. In this paper, by using SGL systems and Supernovae type Ia observations, we explore if the power-law mass density profile ($\rho \propto r^{-\gamma}$) is consistent with the cosmic distance duality relation (CDDR), $D_L(1 + z)^{-2}/D_A = \eta(z) = 1$, by considering different lens mass intervals. It has been obtained that the verification of the CDDR validity is significantly dependent on lens mass interval considered: the sub-sample with $\sigma_{ap} \geq 300$ km/s (where σ_{ap} is the lens apparent stellar velocity dispersion) is in full agreement with the CDDR validity, the sub-sample with intermediate σ_{ap} values ($200 \leq \sigma_{ap} < 300$) km/s is marginally consistent with $\eta = 1$ and, finally, the sub-sample with low σ_{ap} values ($\sigma_{ap} < 200$ km/s) ruled out the CDDR validity with high statistical confidence. Therefore, if one takes the CDDR as guarantee, our results suggest that using a single density profile is not suitable to describe lens with low σ_{ap} values and it is only an approximate description to lenses with intermediate mass interval.

Keywords: gravitational lensing, supernova type Ia - standard candles

ArXiv ePrint: 2104.06202
1 Introduction

The Etherington reciprocity theorem [1] establishes an important relation between the luminosity distance D_L and angular diameter distance D_A of an object, the so-called cosmic distance duality relation (CDDR). While D_L is a distance measurement associated with the decrease of the brightness of an object, D_A is associated with the measurement of its angular size. With the suppositions that photons follow null geodesics and its number is conserved along cosmic evolution, the CDDR is expressed as

$$\frac{D_L(z)}{D_A(z)(1+z)^2} \equiv \eta(z) = 1,$$

where z is the redshift of the object.

The above relation plays an essential role in observational cosmology and for this reason several recent works propose new methods to test the validity or departures of the CDDR, which could indicate the possibility of systematic errors in observations or even the necessity of new physics [2] if deviations are persistent. Some tests are model dependent [3–9], which put more restrictive limits on possible deviations from (1.1), while several other are model independent [10–42] and use only astrophysical quantities.

The basic approach to test CDDR has been to consider several deformed expressions or parameterizations for $\eta(z)$ in (1.1). Some examples are: (I) $\eta(z) = \eta_0$, (II) $\eta(z) = \eta_0 + \eta_1 z$, (III) $\eta(z) = \eta_0 + \eta_1 z/(1+z)$, (IV) $\eta(z) = \eta_0 + \eta_1 \ln(1+z)$ and (V) $\eta(z) = (1+z)^{\eta_1}$, where η_0 and η_1 are constant to be constrained with different observational data, as angular diameter distance (ADD) of galaxy clusters, galaxy cluster gas mass fraction (GMF), type Ia supernovae (SNe Ia), strong gravitational lensing (SGL), gamma ray bursts (GRB), radio compact sources (RCS), cosmic microwave background (CMB) radiation, baryon acoustic oscillations (BAO), gravitational waves (GW), Hubble parameter (H(z)) data, etc. Deviation from the CDDR are given by $\eta_0 \neq 1$ and $\eta_1 \neq 0$. As a basic result from several works on literature, the CDDR validity has been verified at least within 2σ C.L. for the parameters η_0, η_1.

Taking, for instance, some recent works, Zhou et al. [39] have used parameterization (II) with $\eta_0 = 1$ and found that $\eta_1 = 0.047^{+0.190}_{-0.151}$ at 1σ C.L. by using the latest data set of 1048 SNe Ia and 205 strong gravitational lensing systems. In [40] the parameterizations (II), (III) and (IV) have been tested with BAO and SNeIa and CDDR remains valid at 2σ C.L.. In [41] it is used strong lensed gravitational waves as probes to test CDDR with parameterizations (II) and (III) and they found that the model can be constrained at 1.3% C.L. for (II) and
at 3% C.L. for (III). Zheng et al. [42] have tested the parameterizations (II), (III), (IV) and (V) with multiple measurements of quasars acting as standard probes and found that CDDR is valid at least at 1σ C.L.. Reference [36] presents in Table 1 a comparison for different tests with the parameterizations (II) and (III), involving combinations of ADD, GMF, SNe Ia and H(z) data. Particularly, using SNe Ia plus 61 X-ray measurements from galaxy cluster and Sunyaev-Zel’dovich effect the authors found $\eta_1 = 0.05 \pm 0.07$ for the first parameterization and $\eta_1 = 0.09 \pm 0.16$ for the second, both at 2σ C.L. with $\eta_0 = 1$.

An interesting method to compare the above parameterization functions was presented recently by da Silva et al. [38]. By using Bayesian inference the authors have tried to answer the question of which $\eta(z)$ should be more viable. They use diameter angular distance from galaxy cluster plus SNe Ia and GMF plus SNe Ia data. Tables II and III of [38] show the constraint in the parameters for the parameterizations (I), (II) and (III). The statistical constraints on all the functions implied that the CDDR remains valid at 1σ C.L. in the analyses by using SNe Ia and galaxy cluster GMF and at 2σ C.L. when diameter angular from galaxy clusters and SNe Ia data were considered. The Bayesian inference analysis has shown that the model (III) with $\eta_0 = 1$ was weakly favored in the CDDR test considering the diameter angular from galaxy clusters and SNe Ia data. On the other hand, considering the galaxy cluster GMF and SNe Ia, all three parameterizations had inconclusive or moderate evidence. In both methodologies, model (I) with $\eta_0 = 1$ is in agreement within 2σ C.L..

The data coming from SGL systems have proved to be very useful to perform tests of the CDDR. The main point is that these kind of sources make it possible to test the CDDR at higher redshifts ($z > 2$). SGL is an effect arising from Einstein’s theory of general relativity and actually is an important tool to probe the nature of dark matter in the universe. The Einstein radius, θ_E, is an important quantity that characterises the lens and it is known that it varies with cosmological model through the ratio of the angular diameter distances between observer/source and lens/source. It occurs when the observer (o), the source (s) and the lens (l) are well aligned [43]. Under the simplest assumption of a SIS describing the mass distribution in lenses, the Einstein radius is given by:

$$\theta_E = 4\pi D_{As} \sigma^2_{SIS} / c^2,$$

where c is the speed of light, D_{As} and D_{As} are the angular diameter distances between (l)-(s) and (s)-(o), respectively, and σ_{SIS} is the dispersion velocity due to lens mass distribution.

The θ_E measurements plus SNe Ia data have been used recently to perform constraints on $\eta(z)$ functions from (1.1). In [31] the authors consider the parameterizations (II) and (III) above with $\eta_0 = 1$ and use 95 data points from 118 SGL systems obtained by [44], 580 SNe Ia from Union2.1 [45], the latest results from Planck collaboration [46, 47] and WMAP9 satellite [48] to put limits on η_1. The results are displayed in Table I of [31] and the validity of the CDDR was verified at 2σ C.L. in all cases. In [32] the four parameterizations (II), (III), (IV) and (V) have been analysed with SNe Ia, GRB distance modulus data and two different approaches to describes the mass distribution in SGL, namely a singular isothermal spherical (SIS) model and a more general power-law (PLAW) index model. For the parameterization (II) with $\eta_0 = 1$ the authors found $\eta_1 = 0.15 \pm 0.13$ for the SIS model and $\eta_1 = 0.00 \pm 0.10$ for the PLAW model. For the parameterization (III) with $\eta_0 = 1$ they found $\eta_1 = -0.18^{+0.45}_{-0.65}$ (SIS) and $\eta_1 = -0.36^{+0.37}_{-0.42}$ (PLAW). For the parameterization (IV) with $\eta_0 = 1$ they found $\eta_1 = 0.22^{+0.40}_{-0.32}$ (SIS) and $\eta_1 = -0.10 \pm 0.24$ (PLAW). For the parameterization (V) they found $\eta_1 = 0.27^{+0.24}_{-0.35}$ (SIS) and $\eta_1 = -0.16^{+0.24}_{-0.51}$ (PLAW). All the results are for 2σ C.L. In [33] the
parameterization (II) with $\eta_0 = 1$ was tested, the authors assumed a flat universe and use 60 SGL-SNe Ia pairs and found a large interval allowed for η_1, namely $-0.1 \leq \eta_1 \leq 0.8$ at 2σ C.L.. In another context, the ref. [49] found that the limits on the cosmological parameter Ω_M were quite weak and biased, and also heavily dependent on the lens mass model when treated the slope of the mass density profile as a universal parameter for all lens galaxies.

As one may see, the analysis of the above models involving SGL indicates that the results are strongly dependent on the density profile describing the mass distribution of gravitational lenses system. The possible evolution of mass density power-law index with redshift for SGL systems has been tested in recent works [49–52], and the results suggest the need of treating low, intermediate and high-mass galaxies separately. By taking the Planck best-fitted cosmology, the ref. [50] considered SGL observations and relaxed the assumption that stellar luminosity and total mass distribution follows the same power-law. Their results indicated that a model in which mass traces light is rejected at $> 95\%$ C.L.. The authors also found that the presence of dark matter in the form of a mass component is distributed differently from the light (see also the ref. [53]). It is worth noting that recent cosmological estimates by using SGL systems with $\sigma_{ap} < 210$ km/sec were found to be in disagreement with SNe Ia and CMB estimates (see figures 1, 2, and 3 of ref. [52]).

In this paper, we test the CDDR by using SGL systems and SNe Ia observations and search for some tension between results considering SGL system sub-samples differing each other by their lens mass intervals. For this purpose, we use 3 sub-samples from the original 158 SGL systems compiled in the ref. [44] jointly with SNe Ia observations from Pantheon compilation. The analyses are performed by using 133 SGL systems (those with $z < 2.3$, the higher redshift of SNe Ia). These 133 data points are divided into 3 sub-samples according to the lens stellar apparent velocity dispersion [44]: high mass systems ($\sigma_{ap} \geq 300$ km/s), intermediate mass systems ($200 \leq \sigma_{ap} < 300$ km/s) and low mass systems ($\sigma_{ap} < 200$ km/s). As a basic result, we verify that the CDDR validity depends strongly on the stellar velocity dispersion (or lens mass) interval considered. Particularly, the sub-sample with low σ_{ap} values ($\sigma_{ap} < 200$ km/s) rule out the CDDR validity with high statistical confidence. If the result from this sub-sample is further confirmed by future and better SGL surveys it would bring to light a possible evidence for new Physics. On the other hand, if one takes the CDDR as guarantee, these results suggest that using a single density profile, such as $\rho \propto r^{-\gamma}$, is not suitable to describe lens with low σ_{ap} values and it is only an approximate description to lenses intermediate mass interval. It is worth to comment that the assumption that the stellar luminosity and total mass distributions follow the same power law is still assumed.

This paper is organized as follows: section 2 briefly revises the method. In section 3 we present the samples used in the analysis. In section 4 we show and discuss the main results of the paper. We summarize the results of the work in section 5.

2 Method

We assume a flat universe and the method to test the CDDR validity is based on [33], which does not depend on assumptions concerning the details of cosmological model. We use SGL systems and SNe Ia observations.

From eq. (1.2) we define the observational quantity:

$$D = \frac{D_{A_1}}{D_{A_2}} = \frac{\theta_E c^2}{4\pi\sigma^2_{SIS}}. \quad (2.1)$$
Figure 1. Luminosity distances in lens and source of each SGL system obtained from the Pantheon compilation.

Table 1. η_0 and γ values at 2σ C.L. for each sub-sample.

σ_{ap} [km/s]	$1 + \eta_0 z$	γ
$\sigma_{ap} < 200$	$-0.575^{+0.230}_{-0.210}$	2.029 ± 0.092
$200 \leq \sigma_{ap} < 300$	-0.270 ± 0.220	1.964 ± 0.104
$\sigma_{ap} \geq 300$	0.280 ± 0.510	1.930 ± 0.180

In a flat universe, the comoving distance r_{ls} is given [54] by $r_{ls} = r_s - r_l$, and using $r_s = (1 + z_s)D_{As}$, $r_l = (1 + z_l)D_{Al}$, and $r_{ls} = (1 + z_s)D_{As}$, we find

$$D = 1 - \frac{(1 + z_l)D_{Al}}{(1 + z_s)D_{As}}.$$ \hfill (2.2)

Using (1.1), eq. (2.2) can be written as

$$\frac{(1 + z_s)\eta(z_s)}{(1 + z_l)\eta(z_l)} = (1 - D)\frac{D_{Ls}}{D_{Ll}}.$$ \hfill (2.3)

Thus, with SGL measurements and knowing the luminosity distances to the lens and source of each system, it is possible to test the CDDR by studying the evolution of $\eta(z)$, for which we consider the following particular parameterization:

- $\eta(z) = 1 + \eta_0 z$.

As one may see, if $\eta_0 = 0$ the CDDR validity is obtained.

3 Samples

In this work, we use the following data sets:
Figure 2. Results for η_0 and γ parameters by considering the High mass SGL system sub-sample.

Figure 3. Results for η_0 and γ parameters by considering the Intermediate mass SGL system sub-sample.

- Angular diameter distances: we consider a specific catalog containing 158 confirmed sources of strong gravitational lensing by the ref. [55]. This compilation includes 118 SGL systems identical to the compilation of the ref. [44], which were obtained from
SLOAN Lens ACS, BOSS Emission-line Lens Survey (BELLS), and Strong Legacy Survey SL2S, along with 40 new systems recently discovered by SLACS and pre-selected by ref. [56] (see table I in ref. [55]). For the mass distribution of lensing systems is considered the so-called power-law model. This one assumes a spherically symmetric mass distribution with a more general power-law index \(\gamma \), namely \(\rho \propto r^{-\gamma} \) (several studies have shown that slopes of density profiles of individual galaxies show a non-negligible deviation from the SIS [57–60]). In this approach the Einstein radius is:

\[
\theta_E = \frac{4\pi\sigma^2_{ap} D_{ls}}{c^2 D_s} \left(\frac{\theta_E}{\theta_{ap}} \right)^{2-\gamma} f(\gamma),
\]

(3.1)

where \(\sigma_{ap} \) is the stellar velocity dispersion inside the aperture of size \(\theta_{ap} \) and

\[
f(\gamma) = -\frac{1}{\sqrt{\pi}} \frac{(5-2\gamma)(1-\gamma)}{3-\gamma} \frac{\Gamma(\gamma-1)}{\Gamma(\gamma-3/2)} \times \left[\frac{\Gamma(\gamma/2 - 1/2)}{\Gamma(\gamma/2)} \right]^2.
\]

(3.2)

Thus, we obtain:

\[
D = D_{A_{ls}}/D_{A_s} = \frac{c^2 \theta_E}{4\pi\sigma^2_{ap} \theta_E} \left(\frac{\theta_{ap}}{\theta_E} \right)^{2-\gamma} f^{-1}(\gamma).
\]

(3.3)

For \(\gamma = 2 \) we recover the SIS distribution. The relevant information necessary to obtain \(D \) in (3.1) can be found in table 1 of [44]. We marginalize over the \(\gamma \) parameter by using the flat prior for \(\gamma: 1.15 < \gamma < 3.5. \) The complete data (158 points) is reduced to 133 points whose redshifts are lower than \(z = 2.33 \) and with the quantity \(D \), distance ratio (see next section), compatible with \(D = 1 \) within 1\(\sigma \) C.L. \((D > 1 \) represents a non physical region). The 3 sub-samples consist of: 32, 88 and 13 data points with low, intermediate and high \(\sigma_{ap} \), respectively. Our compilation contains

\[0.8, 0.6, 0.4, 0.2, 0\]
only those systems with early type galaxies acting as lenses, with spectroscopically measured stellar velocity dispersion, estimated Einstein radius, and both the lens and source redshifts.

- **Luminosity distances:** we use a sub-sample of the latest and largest Pantheon SNe Ia sample in order to obtain D_L of the galaxy clusters. The Pantheon SNe Ia compilation consist of 1049 spectroscopically confirmed SNe Ia covering the redshift range $0.01 < z < 2.3$ [61]. The sample of D_L is constructed from the apparent magnitude (m_b) of the Pantheon catalog by considering $M_b = -19.23 \pm 0.04$ (the absolute magnitude) by the relation

$$D_L = 10^{\left(m_b - M_b - 25\right)/5\text{Mpc}}. \quad (3.4)$$

and $\sigma_{D_L}^2 = \left(\frac{\partial D_L}{\partial m_b}\right)^2 \sigma_m^2$. We need luminosity distances to the lens and source of each SGL system. These quantities are obtained as follows: for each one of the 158 SGL systems, we carefully select SNe Ia with redshifts obeying the criteria (I) $|z_l - z_{SNe.Ia}| \leq 0.005$ and (II) $|z_s - z_{SNe.Ia}| \leq 0.005$. Finally, we calculate the following weighted average for the distance luminosity selected in each case

$$\tilde{D}_L = \frac{\sum \left(D_{Li}/\sigma_{DLi}^2\right)}{\sum 1/\sigma_{DLi}^2}, \quad \sigma_{\tilde{D}_L}^2 = \frac{1}{\sum 1/\sigma_{DLi}^2}. \quad (3.5)$$

After all, we end with a sample containing 133 SGL systems and 133 pairs of luminosity distances (see figure 1).

4 Analysis and results

The constraints on the η_0 parameter are derived by evaluating the likelihood distribution function, $L \propto e^{-\chi^2/2}$, with

$$\chi^2 = \sum_{i} \left[\frac{(1+z_s)\eta(z_s) - (1-D_i)\frac{D_{Li}}{D_{Li}}}{\sigma_i^2} \right]^2, \quad (4.1)$$

where σ_i^2 stands for the statistical errors associated to the $D_L(z)$ quantity of the SNe Ia and the gravitational lensing observations and it is obtained by using standard propagation errors techniques on these quantities. For the gravitational lensing error one may show that:

$$\sigma_D = D \sqrt{A(\delta\sigma_{ap})^2 + (1-\gamma)^2(\delta\theta_E)^2}. \quad (4.2)$$

To carry out the statistical analysis, we implement the public package MultiNest [63–65] through the PyMultiNest interface [66].

In the figures 2, 3 and 4 we plot the results from our analyses considering the SGL system sub-samples with high, intermediate and low σ_{ap}, respectively. The γ parameter obtained for each sub-sample is in full agreement each other, being compatible with the SIS model within 1σ c.l.. However, the verification of the CDDR validity is significantly dependent on lens mass interval considered: the sub-sample with high σ_{ap} is in full agreement with the CDDR validity ($\eta_0 = 0$), the sub-sample with intermediate σ_{ap} values is marginally consistent with $\eta_0 = 0$ and, finally, the sub-sample with low σ_{ap} values ruled out the CDDR validity with high statistical confidence. Figure 3 displays this case and, as one may see, the sub-sample
with $\sigma_{ap} < 200$ km/s (32 systems) presents η_0 values more negative than those from the high and intermediate σ_{ap} sub-samples. As commented earlier, recent cosmological estimates by using SGL systems with $\sigma_{ap} < 210$ km/sec also were found to be in disagreement with SNe Ia and CMB estimates (see figures 1, 2, and 3 of ref. [52]). Then, if one considers the CDDR valid as guarantee, a simple power law describing the mass density profile of lens is not realistic for low mass interval and it is only an approximate description to lenses with intermediate mass interval. In table 1, the η_0 and γ values are shown (with 2 σ c.l.).

5 Conclusions

As it largely known, strong gravitational lensing is an important effect arising from Einstein’s theory of general relativity, which has played a very important role for testing cosmological models. However, recent papers have suggested the need of treating low, intermediate and high-mass galaxies separately in cosmological analysis (see for instance the refs. [49, 52] and references therein). In this paper, we take a look closer at this context by testing the cosmic distance duality relation, $D_L(1+z)^{-2}/D_A = \eta(z)$, with sub-samples of SGL systems that differ from each other by their stellar velocity dispersion values (or lens mass intervals). We found that the sub-sample containing SGL systems with $\sigma_{ap} < 200$ km/sec is inconsistent with the validity of the CDDR (see table 1). On the other hand, the sub-sample with high σ_{ap} ($\sigma_{ap} > 300$ km/sec) was found is in full agreement with the CDDR validity ($\eta = 1$) while the sub-sample with intermediate σ_{ap} values is marginally consistent with $\eta = 1$. This independent result, by using the CDDR context, is in full agreement with other recent results [49, 52] that also found some tension between cosmological analyses using SGL systems with $\sigma_{ap} < 200$ km/sec and those from SNe Ia and CMB data. It is remarkable that a local property like mass density profile of SGL systems might be constrained by a global argument provided by the cosmic distance duality relation.

It is worth to comment that as an interesting extension of the present work, one may check the consequences of relaxing the rigid assumption that the stellar luminosity and total mass distributions follow the same power law. Besides, the well-known Mass-sheet degeneracy (see [62] and references therein) in the gravitational lens system and its effect on the results on this paper also could be explored.

Acknowledgments

RFLH is supported by INCT-A and CNPq (No. 478524/2013-7;303734/2014-0). SHP acknowledges financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (No. 303583/2018-5).

References

[1] G.F.R. Ellis, On the definition of distance in general relativity, Phil. Mag. 15 (1933) 761 [Gen. Relativ. Grav. 39 (2006) 1047].

[2] B.A. Bassett and M. Kunz, Cosmic distance-duality as a probe of exotic physics and acceleration, Phys. Rev. D 69 (2004) 101305 [astro-ph/0312443] [esSPIRE].

[3] F. De Bernardis, E. Giusarma and A. Melchiorri, Constraints on dark energy and distance duality from Sunyaev Zel’dovich effect and Chandra X-ray measurements, Int. J. Mod. Phys. D 15 (2006) 759 [gr-qc/0606029] [esSPIRE].
[4] A. Avgoustidis, C. Burrage, J. Redondo, L. Verde and R. Jimenez, Constraints on cosmic opacity and beyond the standard model physics from cosmological distance measurements, JCAP 10 (2010) 024 [arXiv:1004.2053] [inSPIRE].

[5] J.-P. Uzan, N. Aghanim and Y. Mellier, The distance duality relation from X-ray and SZ observations of clusters, Phys. Rev. D 70 (2004) 083533 [astro-ph/0405620] [inSPIRE].

[6] A. Avgoustidis, G. Luzzi, C.J.A.P. Martins and A.M.R.V.L. Monteiro, Constraints on the CMB temperature redshift dependence from SZ and distance measurements, JCAP 02 (2012) 013 [arXiv:1112.1862] [inSPIRE].

[7] S. More, H. Niikura, J. Schneider, F.P. Schuller and M.C. Werner, Modifications to the Etherington distance duality relation and observational limits, arXiv:1612.08784 [inSPIRE].

[8] R.F.L. Holanda, J.A.S. Lima and M.B. Ribeiro, Cosmic distance duality relation and the shape of galaxy clusters, Astron. Astrophys. 528 (2011) L14 [arXiv:1103.5906] [inSPIRE].

[9] F. Piazza and T. Schucker, Minimal cosmography, Gen. Rel. Grav. 48 (2016) 41 [arXiv:1511.02169] [inSPIRE].

[10] R.F.L. Holanda, J.A.S. Lima and M.B. Ribeiro, Testing the distance-duality relation with galaxy clusters and type Ia supernovae, Astrophys. J. Lett. 722 (2010) L233 [arXiv:1005.4458] [inSPIRE].

[11] N. Liang, S. Cao and Z.-H. Zhu, A consistent test of the distance-duality relation with galaxy clusters and type Ia supernovae, Mon. Not. Roy. Astron. Soc. 436 (2013) 1017 [arXiv:1104.2497] [inSPIRE].

[12] R.S. Goncalves, R.F.L. Holanda and J.S. Alcaniz, Testing the cosmic distance duality with X-ray gas mass fraction and supernovae data, Mon. Not. Roy. Astron. Soc. 420 (2012) L43 [arXiv:1109.2790] [inSPIRE].

[13] Z. Li, P. Wu and H.W. Yu, Cosmological-model-independent tests for the distance-duality relation from galaxy clusters and type Ia supernovae, Astrophys. J. Lett. 729 (2011) L14 [arXiv:1101.5258] [inSPIRE].

[14] R.F.L. Holanda, J.A.S. Lima and M.B. Ribeiro, Probing the cosmic distance duality relation with the Sunyaev-Zeldovich effect, X-rays observations and supernovae Ia, Astron. Astrophys. 538 (2012) A131 [arXiv:1104.3753] [inSPIRE].

[15] R.F.L. Holanda, R.S. Gonçalves and J.S. Alcaniz, A test for cosmic distance duality, JCAP 06 (2012) 022 [arXiv:1201.2378] [inSPIRE].

[16] S. Santos-da Costa, V.C. Busti and R.F.L. Holanda, Two new tests to the distance duality relation with galaxy clusters, JCAP 10 (2015) 061 [arXiv:1506.00145] [inSPIRE].

[17] J.A.S. Lima, J.V. Cunha and V.T. Zanchin, Deformed distance duality relations and supernovae dimming, Astrophys. J. Lett. 742 (2011) L26 [arXiv:1110.5065] [inSPIRE].

[18] R.F.L. Holanda, V.C. Busti and J.S. Alcaniz, Probing the cosmic distance duality relation with strong gravitational lensing and supernovae Ia data, JCAP 02 (2016) 054 [arXiv:1512.02486] [inSPIRE].

[19] X.-L. Meng, T.-J. Zhang and H. Zhan, Morphology of galaxy clusters: a cosmological model-independent test of the cosmic distance-duality relation, Astrophys. J. 745 (2012) 98 [arXiv:1104.2833] [inSPIRE].

[20] A. Rana, D. Jain, S. Mahajan and A. Mukherjee, Revisiting the distance duality relation using a non-parametric regression method, JCAP 07 (2016) 026 [arXiv:1511.09223] [inSPIRE].

[21] X. Yang, H.-R. Yu, Z.-S. Zhang and T.-J. Zhang, An improved method to test the distance-duality relation, Astrophys. J. Lett. 777 (2013) L24 [arXiv:1310.0869] [inSPIRE].
[22] K. Liao, Z. Li, S. Cao, M. Biesiada, X. Zheng and Z.-H. Zhu, The distance duality relation from strong gravitational lensing, Astrophys. J. 822 (2016) 74 [arXiv:1511.01318 [nSPIRE].

[23] S. Jhingan, D. Jain and R. Nair, Observational cosmology and the cosmic distance-duality relation, J. Phys. Conf. Ser. 484 (2014) 012035 [arXiv:1403.2070] [nSPIRE].

[24] R.F.L. Holanda, S.H. Pereira and S. Santos da Costa, Searching for deviations from the general relativity theory with gas mass fraction of galaxy clusters and complementary probes, Phys. Rev. D 95 (2017) 084006 [arXiv:1612.09365] [nSPIRE].

[25] R.F.L. Holanda and K.N.N.O. Barros, Searching for cosmological signatures of the Einstein equivalence principle breaking, Phys. Rev. D 94 (2016) 023524 [arXiv:1606.07923] [nSPIRE].

[26] A. Rana, D. Jain, S. Mahajan, A. Mukherjee and R.F.L. Holanda, Probing the cosmic distance duality relation using time delay lenses, JCAP 07 (2017) 010 [arXiv:1705.04549] [nSPIRE].

[27] A. Shafieloo, S. Majumdar, V. Sahni and A.A. Starobinsky, Searching for systematics in SNIa and galaxy cluster data using the cosmic duality relation, JCAP 04 (2013) 042 [arXiv:1212.1277] [nSPIRE].

[28] A. Rana, D. Jain, S. Mahajan and A. Mukherjee, Revisiting the distance duality relation using a non-parametric regression method, JCAP 07 (2016) 026 [arXiv:1511.09223] [nSPIRE].

[29] H.-N. Lin, M.-H. Li and X. Li, New constraints on the distance duality relation from the local data, Mon. Not. Roy. Astron. Soc. 480 (2018) 3117 [arXiv:1808.01784] [nSPIRE].

[30] T. Yang, R.F.L. Holanda and B. Hu, Constraints on the cosmic distance duality relation with simulated data of gravitational waves from the Einstein Telescope, Astropart. Phys. 108 (2019) 57 [arXiv:1710.10929] [nSPIRE].

[31] R.F.L. Holanda, V.C. Busti and J.S. Alcaniz, Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data, JCAP 02 (2016) 054 [arXiv:1512.02486] [nSPIRE].

[32] R.F.L. Holanda, V.C. Busti, F.S. Lima and J.S. Alcaniz, Probing the distance-duality relation with high-z data, JCAP 09 (2017) 039 [arXiv:1611.09426] [nSPIRE].

[33] K. Liao, Z. Li, S. Cao, M. Biesiada, X. Zheng and Z.-H. Zhu, The distance duality relation from strong gravitational lensing, Astrophys. J. 822 (2016) 74 [arXiv:1511.01318] [nSPIRE].

[34] X. Fu, L. Zhou and J. Chen, Testing the cosmic distance-duality relation from future gravitational wave standard sirens, Phys. Rev. D 99 (2019) 083523 [arXiv:1903.09913] [nSPIRE].

[35] C.-Z. Ruan, F. Melia and T.-J. Zhang, Model-independent test of the cosmic distance duality relation, Astrophys. J. 866 (2018) 31 [arXiv:1808.09331] [nSPIRE].

[36] R.F.L. Holanda, L.R. Colaço, S.H. Pereira and R. Silva, Galaxy cluster Sunyaev-Zel’dovich effect scaling-relation and type-IA supernova observations as a test for the cosmic distance duality relation, JCAP 06 (2019) 008 [arXiv:1904.01342] [nSPIRE].

[37] J. Chen, Testing the distance-duality relation with the baryon acoustic oscillations data and type Ia supernovae data, Commun. Theor. Phys. 72 (2020) 045401.

[38] W.J.C. da Silva, R.F.L. Holanda and R. Silva, Bayesian comparison of the cosmic duality scenarios, Phys. Rev. D 102 (2020) 063513 [arXiv:2005.04131] [nSPIRE].

[39] C. Zhou, J. Hu, M. Li, X. Yin and G. Fang, A distance-deviation consistency and model-independent method to test the cosmic distance-duality relation, Astrophys. J. 909 (2021) 118 [arXiv:2011.06881] [nSPIRE].

[40] B. Xu and Q. Huang, New tests of the cosmic distance duality relation with the baryon acoustic oscillation and type-IA supernovae, Eur. Phys. J. Plus 135 (2020) 447 [nSPIRE].
[41] H.-N. Lin, X. Li and L. Tang, *Strongly lensed gravitational waves as probes to test the cosmic distance duality relation*, Chin. Phys. C 45 (2021) 015109 [arXiv:2010.03754] [inSPIRE].

[42] X. Zheng, K. Liao, M. Biesiada, S. Cao, T.-H. Liu and Z.-H. Zhu, *Multiple measurements of quasars acting as standard probes: exploring the cosmic distance duality relation at higher redshift*, Astrophys. J. 892 (2020) 103 [arXiv:2002.09909] [inSPIRE].

[43] P. Schneider, C.S. Kochanek and J. Wambsganss, *Gravitational lensing: strong, weak and micro*, Springer, Berlin, Heidelberg, Germany (2006).

[44] S. Cao, M. Biesiada, R. Gavazzi, A. Piórkowska and Z.-H. Zhu, *Cosmology with strong-lensing systems*, Astrophys. J. 806 (2015) 185 [arXiv:1509.07649] [inSPIRE].

[45] P. Schneider, C.S. Kochanek and J. Wambsganss, *Gravitational lensing: strong, weak and micro*, Springer, Berlin, Heidelberg, Germany (2006).

[46] S. Cao, M. Biesiada, R. Gavazzi, A. Piórkowska and Z.-H. Zhu, *Cosmology with strong-lensing systems*, Astrophys. J. 806 (2015) 185 [arXiv:1509.07649] [inSPIRE].

[47] R.F.L. Holanda, S.H. Pereira and D. Jain, *Constraints on a possible evolution of mass density power-law index in strong gravitational lensing from cosmological data*, Mon. Not. Roy. Astron. Soc. 471 (2017) 3079 [arXiv:1705.06622] [inSPIRE].

[48] M.H. Amante, J. Magaña, V. Motta, M.A. García-Aspeitia and T. Verdugo, *Testing dark energy models with a new sample of strong-lensing systems*, Mon. Not. Roy. Astron. Soc. 498 (2020) 6013 [arXiv:1906.04107] [inSPIRE].

[49] J. Schwab, A.S. Bolton and S.A. Rappaport, *Galaxy-scale strong lensing tests of gravity and geometric cosmology: constraints and systematic limitations*, Astrophys. J. 708 (2010) 750 [arXiv:0907.4992] [inSPIRE].

[50] M. Bartelmann and P. Schneider, *Weak gravitational lensing*, Phys. Rept. 340 (2001) 291 [astro-ph/9912508] [inSPIRE].

[51] K. Leaf and F. Melia, *Model selection with strong-lensing systems*, Mon. Not. Roy. Astron. Soc. 478 (2018) 5104 [arXiv:1805.08640] [inSPIRE].

[52] Y. Cavecchi, A.L. Watts and D.K. Galloway, *On the dependence of the X-ray burst rate on accretion and spin rate*, Astrophys. J. 851 (2017) 1 [arXiv:1711.04389] [inSPIRE].

[53] M.W. Auger et al., *The Sloan lens ACS survey. Stellar, dynamical, and total mass correlations of massive early-type galaxies*, Astrophys. J. 724 (2010) 511 [arXiv:1007.2880] [inSPIRE].
M. Barnabe, O. Czoske, L.V.E. Koopmans, T. Treu and A.S. Bolton, Two-dimensional kinematics of SLACS lenses. III. Mass structure and dynamics of early-type lens galaxies beyond $z \sim 0.1$, Mon. Not. Roy. Astron. Soc. 415 (2011) 2215 [arXiv:1102.2261] [inSPIRE].

A. Sonnenfeld et al., The SL2S galaxy-scale lens sample. IV. The dependence of the total mass density profile of early-type galaxies on redshift, stellar mass, and size, Astrophys. J. 777 (2013) 98 [arXiv:1307.4759] [inSPIRE].

D.M. Scolnic et al., The complete light-curve sample of spectroscopically confirmed SNe Ia from pan-STARRS1 and cosmological constraints from the combined pantheon sample, Astrophys. J. 859 (2018) 101 [arXiv:1710.00845] [inSPIRE].

S. Birrer, A. Amara and A. Refregier, The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231, JCAP 08 (2016) 020 [arXiv:1511.03662] [inSPIRE].

F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [inSPIRE].

J. Buchner et al., X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue, Astron. Astrophys. 564 (2014) A125 [arXiv:1402.0004] [inSPIRE].

F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, Open J. Astrophys. 2 (2019) 10 [arXiv:1306.2144] [inSPIRE].

J. Buchner, PyMultiNest, https://github.com/JohannesBuchner/PyMultiNest, (2011).