The BCL2 Inhibitor Venetoclax Plus Rituximab Is Active in MYD88 Wild-Type Polyneuropathy With Anti-MAG Antibodies

Chiara Briani, MD,* Andrea Visentin, MD, PhD,* Francesca Castellani, MD, Mario Cacciavillani, MD, PhD, and Livio Trentin, MD

Neurol Neuroimmunol Neuroinflamm 2022;9:e1181. doi:10.1212/NXI.0000000000001181

Abstract

Objectives
Ibrutinib is active in anti–myelin-associated glycoprotein (MAG) polyneuropathy with MYD88L265P mutation; however, its efficacy is likely to be low in MYD88 wild-type patients. Venetoclax, an oral inhibitor of BCL2, in combination with rituximab is highly active in ibrutinib-resistant hematologic malignancies. We report on the first patient with anti-MAG polyneuropathy and MYD88 wild-type who responded to venetoclax-rituximab.

Methods
A 62-year-old woman with chronic lymphocytic leukemia had IgM/K anti-MAG neuropathy. She needed bilateral support to walk outdoors, despite therapy with rituximab/cyclophosphamide. Tremor and symptoms at arms prevented her capability of performing common tasks. Bone marrow genetic showed lack of MYD88 mutation. Venetoclax was given orally starting from 20 mg up to 400 mg for 24 months. Rituximab was administrated IV, after the ramp-up phase, at 375 mg/m² for the second month and then monthly at 500 mg/m² for months 3–7.

Results
After 12 months of venetoclax IgM levels decreased from 1.16 to 0.52 g/L, the paraproteins became undetectable and anti-MAG antibody titer decreased. The patient regained the capability of walking independently. Tremor disappeared, she is back able to write and knitt.

Discussion
The first patient with anti-MAG neuropathy treated with venetoclax-rituximab shows encouraging results.

Classification of Evidence
This study provides Class IV evidence that for a patient with relapsed anti-MAG antibody polyneuropathy, MYD88 wild-type, venetoclax plus rituximab is effective.

*These authors contributed equally to this work.
Introduction

Neuropathy with antibodies to myelin-associated glycoprotein (MAG) is the most common IgM paraproteinemic neuropathy, characterized by sensory ataxic gait and upper limbs tremor, with motor involvement occurring late in the disease course. Although the IgM paraprotein is commonly a monoclonal gammopathy of undetermined significance, the monoclonal IgM may also underscore a lymphoproliferative disorder, most commonly Waldenstrom macroglobulinemia, but also marginal zone lymphoma or chronic lymphocytic leukemia (CLL). No adequate immunotherapy has so far been shown to be effective in anti-MAG antibody neuropathy, although rituximab seems to be active in almost half of the patients.

Recently, the discovery of the mutational profile of the MYD88 and CXCR4 genes has radically changed the diagnosis and prognostic evaluation of IgM monoclonal gammopathies. The genetic landscape of polyclonal neuropathy with anti-MAG antibody reveals the recurrence of MYD88L265P mutation in 60% of patients and the lack of CXCR4S338X in almost all cases opening new therapeutic avenues. Ibrutinib, targeting Bruton tyrosine kinase, a downstream protein of the MYD88 signaling pathway, is active in B-cell–driven diseases including anti-MAG antibody neuropathy. However, response to continuous ibrutinib is likely to be low in MYD88 wild-type patients. B-cell lymphoma 2 (BCL2) is a key antiapoptotic protein overexpressed in B-cell malignancies, including CLL. Venetoclax is an oral inhibitor of BCL2 that in combination with rituximab is highly active in ibrutinib-resistant hematologic malignancies.

We describe a patient with CLL and anti-MAG antibody polyneuropathy treated with venetoclax plus rituximab after poor and not durable response to rituximab and cyclophosphamide.

Table Clinical and Biochemical Data During Treatment

Variable (unit, range)	#1 (IgM/K)
Age (y)	61 62
eGFR (mL/min, 90–120)	98 99
MYD88 L265P	Wild type
CXCR4 S338X	Wild type
WBC (n/L, 4.4–11.0)	4.21 4.28 3.68 3.63 3.74 3.33
Lymph (n/μL, 1.1–4.8)	1.12 1.11 1.06 1.10 1.53 1.04
Hb (g/L, 123–153)	130 128 128 124 134 127
PLT (n/L, 150–450)	227 229 226 217 227 240
Paraprotein (g/L, –)	0.86 0.85 0.41 0 0 0
IgM (g/L, 0.4–2.4)	1.15 1.16 1.06 0.8 0.58 0.52
FLC k (mg/L, 4.5–22.3)	8.8 8.81 7.03 7.11 7.02 7.80
FLC λ (mg/L, 4.8–21.9)	11.6 11.70 9.43 9.86 9.69 9.40
Anti-MAG (BTU/L, –)	16.2 18.5 25.3 19.7 13.1 8.74
B. J. protein (—)	neg neg neg neg neg neg

Abbreviations: anti-MAG = anti-myelin-associated antigen antibody; B. J. protein = Bence Jones protein; CXCR4 = C-X-C chemokine receptor type 4; eGFR = estimated glomerular filtration rate; FLC = free light chain; Hb = hemoglobin; Lymph = lymphocytes; MYD88 = myeloid differentiation primary response 88; neg = negative; PLT = platelets; WBC = white blood cell count. Normal ranges have been reported in brackets.

Results

After 12 months of venetoclax, lymphocyte count remained stable (1,100/μL vs 1,040/μL) and IgM levels and anti-MAG...
antibody titer decreased from 1.16 to 0.52 g/L and 18,500 vs 8,764 BTU/mL, respectively. Remarkably, the 2 IgM/K monoclonal proteins (0.25 and 0.60 g/L before treatment) became undetectable from the sixth month (Table). The gait greatly improved, the patient now walks independently (INCAT lower limbs 1) and uses only unilateral support only to walk for long distances outdoors. Sensation of lower limbs and vibration sense also improved. She regained the capability of writing and knitting, tremor disappeared (INCAT upper limbs 1). Neurophysiology also dramatically improved at upper limbs (left median nerve motor LD 4.8 ms with CV 35 m/s in the tract elbow-wrist; left ulnar nerve motor LD 3.1 ms, CV 38 m/s under-elbow-wrist; and left median nerve sensory CV at the third finger [31 m/s, nv > 48 m/s]).

Discussion

We report the first patient with anti-MAG polynuropathy successfully treated with venetoclax in combination with rituximab, showing encouraging results. Venetoclax acts by binding the antiapoptotic protein BCL2, which is overexpressed in CLL cells, thus leading to their programmed cell death. The decrease of the CLL-associated IgM paraprotein, the IgM levels, and anti-MAG antibody titer is likely related to the decrease of CLL burden.

Although we report benefit in a single case, the developing drugstargeting different IgM mutational profiles will hopefully allow neurologists to borrow hematologic treatments for IgM paraproteinemic neuropathies. Controlled studies are warranted.

Acknowledgment

AV and LT were supported by RCV—Ricerca per Credere nella Vita odv and AIRC—Associazione Italiana per la Ricerca sul Cancro project IG-25024. The authors would like to thank Roberta Bertorelle, Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCSS, Padova, who performed the molecular analysis.

Study Funding

The authors report no targeted funding.

Disclosure

C. Briani is member of the European Reference Network for Neur muscular Diseases. A. Visentin attended scientific boards of Abbvie. F. Castellani reports no disclosures. M. Cacciavillani reports no disclosures. L. Trentin attended scientific boards and received research founding by Abbvie. Go to Neurology.org/NN for full disclosures.

References

1. Latov N, Sherman WH, Nemni R, et al. Plasma-cell dyscrasia and peripheral neuropathy with a monoclonal antibody to peripheral-nerve myelin. N Engl J Med. 1980;303(11):618-621.
2. Briani C, Visentin A, Campagnolo M, et al. Peripheral nervous system involvement in lymphomas. J Peripher Nerv Syst. 2019;24(1):5-18.
3. Lunn MP, Noble-Orazio E. Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies. Cochrane Database Syst Rev. 2016;10:CD002827.
4. Vos JM, Notermans NC, D’Sa S, et al. High prevalence of the MYD88 L265P mutation in IgM anti-MAG paraprotein-associated peripheral neuropathy. J Neurol Neurosurg Psychiatry. 2018;89(9):1007-1009.
5. Castellani F, Visentin A, Campagnolo M, et al. The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy. Neurol Neuroimmunol Neurol. 2020;7(4):e720.
6. Buske C, Tedeschi A, Trotman J, et al. Brutinib plus rituximab versus placebo plus rituximab for waldenstrom’s macroglobulinemia: final analysis from the randomized phase III INNOVATE study. J Clin Oncol. 2022;40(1):52-62.
7. Ma S, Seymour JF, Brander DM, et al. Efficacy of venetoclax plus rituximab for relapsed CLL: 5-year follow-up of a continuous or limited-duration therapy. Blood. 2021;138(10):836-846.
The BCL2 Inhibitor Venetoclax Plus Rituximab Is Active in MYD88 Wild-Type Polyneuropathy With Anti-MAG Antibodies

Chiara Briani, Andrea Visentin, Francesca Castellani, et al.

Neurol Neuroimmunol Neuroinflamm 2022;9;
DOI 10.1212/NXI.0000000000001181

This information is current as of July 7, 2022