Structure and Magnetization of Strontium Hexaferrite (SrFe$_{12}$O$_{19}$) Films Prepared by Pulsed Laser Deposition

M. Khojaste khoo and P. Kameli *

Department of Physics, Isfahan University of Technology, Isfahan, Iran

M-type strontium hexaferrite (SrM) thin films show excellent magnetic properties and uniaxial magnetic anisotropy. We systematically investigated the magnetism of SrM films prepared by pulsed-laser deposition on different substrates [Al$_2$O$_3$ (1102), SrTiO$_3$ (100), ZnO (0001), and LiNbO$_3$ (0001)] at vacuum (10$^{-4}$ Pa) and a substrate temperature of 800°C. Prepared films were annealed in air at a temperature of 1,000°C for 2 hours. This investigation determined the effect of annealing and different substrates on the morphology, strain, and hysteresis loops of the films. The prepared films were characterized using x-ray diffractometry, Raman spectroscopy, scanning electron microscopy, and superconducting quantum interference device (SQUID) magnetometry. X-ray diffraction analyses confirmed c-oriented growth along the out-of-plane direction in most films. We found that annealing causes enhanced crystallization in films and a significant increase in coercivity. The highest coercivity of ∼11 KOe was measured for the film deposited on the Al$_2$O$_3$ (1102) substrate.

Keywords: hexaferrite, thin film, annealing, coercivity, magnetization

INTRODUCTION

M-type hexagonal ferrites are promising materials for various applications, including microwave devices, magnetic field sensors, and data storage (Díaz-Castañón et al., 2001; Chen and Harris, 2012). They have favorable electrical properties (Tang et al., 2016), high chemical stability, low production cost (Zi et al., 2008), and unique magnetic properties such as high magnetization, high values of coercivity, and strong uniaxial magnetic anisotropy (Harris, 2012; Zhang et al., 2014). In hexaferrite thin films, the easy axis of magnetization is usually along the c-axis, and thin films with c-axis orientation find utility in specialized applications (Zhang et al., 2019). Thin films that can be used for microwave filters (Sun et al., 2016), phase shifters (Wu, 2012), and delay lines must be fabricated with in-plane orientation (IPCA). However, thin films used for circulators and isolators must possess an out-of-plane c-axis (OCA) orientation (Özgür et al., 2009; Meng et al., 2012). Strontium M-type hexagonal ferrite (SrM) belongs to the magnetoplumbite phase of ferrites (Pullar, 2012; Jotania, 2014). Researchers have classified hexagonal ferrites according to the location of their constituent subunit blocks. SrM has a hexagonal structure with a space group of P63/mmc and consists of four blocks (RSR*S*), where S = Fe$_6$O$_2^+$ and R = MFe$_6$O$_{11}^-$ (Kimura, 2012; Chen et al., 2016). The asterisk (*) indicates that the subunit is rotated 180° around the crystallographic c-axis. At absolute zero temperature, the total magnetization of the unit cell is related to the number of Fe$^{3+}$ ions.
Fe$^{3+}$ ions are divided equally between the two blocks. In the R block with a hexagonal structure, five ions are in an octahedral position (three spins up the magnetic moment and two spins down the magnetic moments), and one spin is up the magnetic moment on the bipyramidal site. The S block has a spinel structure with 4 of 6 Fe$^{3+}$ ions in the octahedral position. The octahedral cations have spin-up moments with the two ions in the tetrahedral sites having spin-down moments (Kaur et al., 2006; Chen et al., 2017). There are eight spin-up and four spin-down moments in each unit cell, with the magnetic moment of each Fe$^{3+}$ ion being $5\mu_B$ at absolute zero. Therefore, the magnetism of each unit cell is expected to be $4*5\mu_B = 20\mu_B$ (Figure 1) (Zi et al., 2008; Harris, 2012; Izadkhah et al., 2017).

Nowadays, investigators strive to determine deposition conditions that lead to improved performance. For example, deposition parameters that have been the foci of optimization studies include the choice of substrate (Hylton et al., 1993), substrate temperature (Xu et al., 2013a; Wei et al., 2020), working gas type and pressure (Masoudpanah et al., 2012), postdeposition annealing (Borisov et al., 2013), laser process conditions (Yu et al., 2020), and film thickness (Sun et al., 2016). Several common deposition techniques are available to obtain hexaferrite films of various crystallographic quality, including sol-gel (Masoudpanah and Seyyed Ebrahimi, 2012), molecular beam epitaxy (MBE) (Liu et al., 2010), liquid phase epitaxy (LPE) (Kranov et al., 2006; Wu et al., 2020), screen printing (Chen et al., 2006), radio frequency (RF) magnetron sputtering (Zhang et al., 2010; Wu et al., 2020), direct current (DC) magnetron sputtering (Zhang et al., 2014; Zhang et al., 2019), spin-coating (Meng et al., 2014a; Meng et al., 2014b), and pulsed laser deposition (PLD) (Eason, 2007). The last method has been found to be a more effective technique than other reported methods for the deposition of oxide, nitride, and carbide thin films (Eason, 2007; Wei et al., 2016).

This work systematically investigated the effects of annealing on the structural and magnetic properties of SrM thin films deposited by PLD on various substrates. We discuss our results in terms of the effect of different magnetic anisotropy mechanisms on the structural and magnetic properties of SrM thin films.

EXPERIMENTAL

The films were deposited by PLD onto various single-crystal substrates from a sintered SrFe$_{12}$O$_{19}$ target prepared by the solid-state method. A KrF excimer laser producing monochromatic light at a wavelength of 248 nm at 25 ns pulses was used to produce a laser fluence of about 1.5 J/cm2 at the surface of the ceramic target. A pulse repetition rate of 10 Hz was employed. The base pressure in the PLD chamber was 2 × 10$^{-8}$ Pa, and the substrate temperature was 800°C. After deposition, the films were annealed at 1,000°C in air for 2 hours to further complete the film’s crystallinity.

It is expected that the crystal structure and orientation of the substrate play an important role in determining the texture and properties of the films. Therefore, here we deposited SrM thin films on different substrates: Al$_2$O$_3$ (1010), STO (100), LiNbO$_3$ (0001), and ZnO (0001), which are assigned the following abbreviations in this article: SAIO, SSTO, SLNO, and SZnO, and the films annealed at 1,000°C are designated as AAIO, ASTO, ALNO, and AZnO. The thickness of all films was ∼50 nm. The objective of the study was to determine optimum process parameters that would yield films of the highest crystal quality, magnetization, and magnetic anisotropy. 0°–2θ X-ray diffraction (XRD) was carried out to evaluate thin film crystallinity, orientation, and strain. Moreover, Raman spectroscopy was also employed to investigate the strain in the thin films. The surface morphology of the films was examined using scanning electron microscopy (SEM). Most magnetic measurements were made using a 5 T SQUID magnetometer (MPMS 5 XL, Quantum Design) on films mounted in clear plastic straws with the magnetic field applied parallel or perpendicular to the film plane.

RESULTS AND DISCUSSIONS

Figure 2 shows the XRD patterns of films deposited on different substrates before and after heat treatment. This allows for the evaluation of the impact of the annealing treatment on the structural properties of SrM thin films, which indicates annealing can be used to improve crystallinity that may result in improved superior magnetic properties (Zheng et al., 2016). Also, the effect of different substrates is observed. The X-ray patterns and the known JCPDS card (01-080-1197) were compared, and the presence and identification of all
diffraction peaks confirmed the hexagonal structure (Chen et al., 2010). The X-ray diffraction pattern of the sample SAIO showed two different peaks being indexed to the \((h0l)\) and \((000l)\) planes of SrM, but after annealing AAlO film \(000l\) peaks remained, and this film exhibited good crystallinity and good out-of-plane orientation of the \(c\)-axis. The film deposited on STO (100) indicated both in-plane \((hh2ho)\) and out-of-plane \((000l)\) orientations. The structure of the substrate plays a vital role in the formation of the film and its properties. STO substrate has a cubic structure, so the difference between the film’s structure and the substrate and the mismatch of their lattice parameter increase the strain in the thin film and cause a scattered orientation.

Figure 2B shows the XRD patterns of ASTO. As can be observed, the intensity of \((000l)\) peaks increased, and a new peak, \(00010\), appeared, indicating improvement of out-of-plane orientation after annealing. The XRD pattern of AZnO represents a highly oriented \((000l)\) direction due to the same hexagonal crystal structure of SrM and ZnO.

The XRD patterns of SLNO and ALNO show diffraction peaks that support the existence of out-of-plane crystal texture. Still, in the pattern of the annealed film, the intensity of SrM diffraction features diminish, indicating that most SrM has evaporated during annealing and only a small volume of the ferrite remains on the substrate. We discuss this point in the following sections.

In-plane lattice parameter \(a\) and out-of-plane lattice parameter \(c\) of the SrM film were calculated using the formula:

\[
\frac{1}{d_{hkl}^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}
\]

(1)

where \(d\) is the interplanar distance and \(h, k,\) and \(l\) are Miller indices. The bulk (target) lattice parameters are \(a = 5.914\) and \(c = 23.283\). We calculated the strain ratio for each film. The results are shown in Table 1. The in-plane and out-of-plane lattice parameters of the films on ALO, STO, and LNO substrates are less than the bulk value, indicating compressive strain. On the other hand, the films on the ZNO substrate are under tensile strain (Malek et al., 2015). As can be seen from Table 1, the strain increased after annealing.

In our work, we used Raman spectra to investigate the effect of strain on thin films after annealing (Wang et al., 2004) (Figure 3). In Raman spectroscopy, the incident phonons either gain quanta or lose quanta by interacting with the vibrational modes of the material. If it gains energy, it gets blue-shifted, and if it loses, it is red-shifted. The amount of the shift determines the energy of the phonon in the material. Raman spectroscopy is a powerful tool for ascertaining lattice strain (Lisfi and Williams, 2003). If the material lattice experiences compressive strain, the Raman shift increases; if it is under tensile strain, the Raman shift decreases. These shifts are called blue shift and red shift, respectively. Since the lattice constants of \(\text{SrFe}_{12}\text{O}_{19}\) are larger than the ALO substrate, the strain created in the film should be compressive. The Raman spectra of the thin films (shown in Figure 3A) deposited on \(\text{Al}_2\text{O}_3\) show a substantial peak at 672 cm\(^{-1}\)
TABLE 1 | Lattice parameters and strain ratio of the SrM films grown on different substrates.

Sample	In-plane parameter (a)	Strain ratio (a) %	Out-of-plane parameter (c)	Strain (c) %
SALO	5.890	-0.40	23.081	-0.87
AALO	5.832	-1.39	23.056	-0.96
SITO	5.907	-0.13	23.088	-0.84
ASTO	5.871	-0.74	23.097	-0.80
SLNO	5.837	-1.31	23.053	-0.99
SZN0	5.920	+0.10	23.497	+0.92
AZNO	5.929	+0.25	23.506	+0.98

FIGURE 3 | Raman spectra of SrFe$_{12}$O$_{19}$ thin films before (blue line) and after (red line) annealing on different substrates show (A) Al$_2$O$_3$ (1T02), (B) SrTiO$_3$ (100), (C) LiNbO$_3$ (0001), and (D) ZnO (0001).
(SAIO) related to the A1g mode of SrM cm⁻¹ which shifts to 715 cm⁻¹ after annealing (AAIO), confirming the existence of a pronounced compressive strain (Kreisel et al., 1998; Zhang et al., 2017). Also, a blue shift is observed for films on STO substrates that increases with the annealing of the sample, but the shift is less than that for the film on the Al₂O₃ substrate. It can be observed in

![Figure 4 SEM images of films. (A) Surface of film SAIO, (B) surface of film AAIO, (C) surface of film SITO, (D) surface of film ASTO, (E) surface of film SZNNO, (F) surface of film AZNO, (G) surface of film SLOO, and (H) surface of film ALNO.](image-url)
Figure 3B that the peak (695 cm\(^{-1}\)) associated with the trigonal site of the SrM is relatively sharp, which shows that strontium ferrite films have an improved crystalline structure after annealing. In contrast, the Raman spectra shown in Figure 3C illustrate a red shift because the lattice parameter of ZnO is larger than SrM, and therefore, a tensile strain exists in these films.
which increases with annealing. **Figure 3D** shows that for the films on LNO, the Raman peaks do not change markedly after annealing.

Figure 4 shows SEM micrographs of the surface morphology of as-deposited thin films and the films annealed at 1,000°C. It is known that ferrite microstructure depends on various parameters such as annealing temperature and time, substrate type, and deposition temperature. The SEM images illustrate an increase in the average grain sizes upon annealing. It has been shown by others that strontium ferrite grains often appear acicular-like or platelet-like (Xu et al., 2013b). According to the literature, we can determine the orientation of the c-axis from the shape and alignment of grains in SEM images. Platelet-like grains tend to have an out-of-plane orientation of the c-axis, while acicular-like grains have either an in-plane or a random orientation of the c-axis (Meng et al., 2014b). Therefore, nearly all the samples studied here have an out-of-plane orientation except for two samples SSTO and ASTO, whose grains are distributed randomly without a pronounced crystalline texture. As previously mentioned, among the films deposited on LNO, including those that were annealed, the SrM mostly evaporates, with few large grains visible on the substrate surface.

The magnetic properties of the strontium ferrite thin films were measured by a superconducting quantum interference device (SQUID) magnetometer. Magnetic hysteresis loops were measured with magnetic fields applied along the perpendicular and the in-plane directions to the films at room temperature (**Figure 5H**). The normalized hysteresis curves are shown in **Figure 5**. The magnetic parameters such as saturation magnetization (M_s), remanent magnetization (M_r), and coercivity (H_c) were determined from the M-H loops and are tabulated in **Table 2**. It was found that AAIO, SLNO, SSTO, ASTO, and ZnO illustrate very little coercivity (H_c). After annealing, the magnetic hysteresis loop of the sample AZnO shows little coercivity, and the remanence is nearly zero. The hysteretic magnetization is followed by the opening of the loop at high fields possibly due to the influence of uniaxial anisotropy (Chen et al., 2010). On the other hand, this change in slope signals the switching of a soft magnetic phase that is decoupled from the harder SrM phase.

The SSTO film indicates an in-plane anisotropy (**Figure 5C**), but the anisotropy changes after annealing and ASTO shows an out-of-plane anisotropy (**Figure 5D**). Alternatively, SLNO and AZnO illustrate very little coercivity (H_c). After annealing, the magnetic hysteresis loop of the sample AZnO shows little coercivity, and the remanence is nearly zero. The hysteretic magnetization is followed by the opening of the loop at high fields possibly due to the influence of uniaxial anisotropy (Gao et al., 2009) (**Figure 5E**).

Conclusion

M-type strontium hexaferrite (SrM) thin films prepared by pulsed laser deposition on Al$_2$O$_3$ (102), SrTiO$_3$ (100), ZnO

Table 2 | Magnetic characteristics of the SrM films grown on different substrates in an applied magnetic field, parallel to (in-plane) or perpendicular to (out-of-plane) the c-axis of SrM.

Thin films	In-plane	Out-of-plane						
H_s/O_s	M_s emu/cm3	M_r emu/cm3	M_c/M_s	H_s/O_s	M_s emu/cm3	M_r emu/cm3	M_c/M_s	
SALO	238	227	66	0.29	182	237	13	0.05
AAIO	11,252	146	102	0.70	10,557	141	88	0.62
SSTO	860	218	105	0.48	204	213	6	0.03
ASTO	5,642	250	96	0.38	6,495	238	140	0.59
SLNO	124	18	3	0.17	500	16	2.8	0.175
ZnO	58	152	2	0.01	25	106	8	0.07
AZnO	340	12	0	0	990	3	0.5	0.17
(0001), and LiNbO₃ (0001)) substrates were annealed in air at a temperature of 1,000 °C and characterized by Raman spectroscopy, scanning electron microscopy, and SQUID magnetometry. These investigations indicated that annealing and different substrates have a critical effect on the morphology, strain, and hysteresis loops of the films. X-ray diffraction analyses confirmed the c-axis–oriented growth along the out-of-plane direction. We found that annealing causes enhanced crystallization of films and a significant increase in coercivity. The highest coercivity of ~11 KOe was measured for the film on Al₂O₃ (1T02) substrate.

REFERENCES

Abuzir, A. R., Salman, S. A., and Mazher, J. (2020). Magnetron Sputtered Perpendicular Barium Hexaferrite Thin Films Produced by the Multilayered Method. *J. Supercond. Novel. Magn.* 33 (12), 3819–3825. doi:10.1007/s10948-020-05647-3

Borisov, P., Alarja, J., Yang, T., McMitchell, S. R. C., and Rosseinsky, M. J. (2013). Growth of M-type Hexaferrite Thin Films with Conical Magnetic Structure. *Appl. Phys. Lett.* 102, 032902. doi:10.1063/1.4776223

Chen, Z., and Harris, V. G. (2012). Ferrite Film Growth on Semiconductor Substrates towards Microwave and Millimeter Wave Integrated Circuits. *J. Phys. Appl.* 112 (8), 081101. doi:10.1063/1.4739219

Chen, Y., Geier, A. L., Sakai, T., Yoon, S. D., Vittoria, C., and Harris, V. G. (2006). Microwave and Magnetic Properties of Self-Biased Barium Hexaferrite Screen Printed Thick Films. *J. Appl. Phys.* 99 (8), 08M904-4. doi:10.1063/1.2163288

Chen, Z., Yang, A., Mahalingam, K., Averett, K. L., Gao, J., El-Rahmany, G. J., et al. (2010). Structure, Magnetic, and Microwave Properties of Thick Ba-Hexaferrite Films Epitaxially Grown on GaN/Al₂O₃ Substrates. *Appl. Phys. Lett.* 96 (24), 242502–242504. doi:10.1063/1.3446867

Chen, D.-M., Li, Y.-X., Han, L.-K., and Zhang, H.-W. (2016). Perpendicularly Oriented Ferrite Thin Films with Low Microwave Loss. Prepared by Pulsed Laser Deposition. *Chin. Phys. B.* 25, 068403–068406. doi:10.1088/1674-1056/25/6/068403

Chen, D., Chen, Z., Wang, G., Chen, Y., Li, L., and Yu, Y. (2017). Effect of Al on the Microstructure, Magnetic and Millimeter-Wave Properties of High Oriented Barium Hexaferrite Thin Films. *J. Magnism Mag. Mater.* 444, 7–11. doi:10.1016/j.jmmm.2017.07.090

Díaz-Castañó, S., Leccabue, F., Watts, B. E., Yapp, R., Asenjo, A., and Vázquez, M. (2001). Oriented PbFe₂1Zr1 Thin Films Prepared by Pulsed Laser Deposition on Sapphire Substrate. *Mater. Lett.* 47 (6), 356–361. doi:10.1016/S0167-577X(00)02664-4

Eason, R. (2007). *Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials.* Southampton, United Kingdom: John Wiley & Sons.

Gao, Q., Hong, G., Ni, J., Wang, W., Tang, J., and He, J. (2009). Uniaxial Anisotropy and Novel Magnetic Behaviors of CoFe₂O₄ Nanoparticles Prepared in a Magnetic Field. *J. Appl. Phys.* 105 (7), 07A516. doi:10.1063/1.3072019

Harris, V. G. (2012). Modern Microwave Ferrites. *IEEE Trans. Magn.* 48 (3), 1075–1104. doi:10.1109/TMAG.2011.2180732

Hylton, T. L., Parker, M. A., Coffey, K. R., and Howard, J. K. (1993). Properties of Epitaxial Ba-Hexaferrite Thin Films on A-, R-, and C-plane Oriented Sapphire Substrates. *J. Appl. Phys.* 73, 6257–6259. doi:10.1063/1.3540965

Izadkhah, H., Zare, S., Somu, S., Lombardi, F., and Vittoria, C. (2017). Utilizing Alternate Target Deposition to Increase the Magnetoelectric Effect at Room Temperature in a Single Phase M-type Hexaferrite. *MRS Commun.* 7 (2), 97–101. doi:10.1557/mrc.2017.36

Jotania, R. (2012). Crystal Structure, Magnetic Properties and Advances in Hexaferrites: A Brief Review. *AIP Conf. Proc.* 1621, 596–599. doi:10.1063/1.4898528

Kaur, B., Bhat, M., Lici, F., Kumar, R., Kulkarni, S. D., Joy, P. A., et al. (2006). Modifications in Magnetic Anisotropy of M-type Strontium Hexaferrite

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MK fabricated the samples and carried out the experiment. MK wrote the draft of the manuscript. PK conceived the original idea, supervised the project, and revised the manuscript.
Sun, K., Li, Q., Guo, H., Yang, Y., Yu, Z., Xu, Z., et al. (2016). Magnetic Property
and Stress Study of Barium Hexaferrite Thin Films with Different Structures.
J. Alloys Compd. 663, 645–650. doi:10.1016/j.jallcom.2015.12.193
Tang, R., Zhou, H., Zhao, R., Jian, J., Wang, H., Huang, J., et al. (2016). Dielectric
Relaxation and Polaronic Conduction in Epitaxial BaFe12O19 Hexaferrite Thin Film.
J. Phys. D. Appl. Phys. 49, 115305–115311. doi:10.1088/0022-3727/49/11/115305
Wang, Y. C., Ding, J., Yi, J. B., Liu, B. H., Yu, T., and Shen, Z. X. (2004). High-
Coercivity Co-ferrite Thin Films on (100)-SiO2 Substrate. Appl. Phys. Lett. 84
(14), 2596–2598. Apr. 2004. doi:10.1063/1.1695438
Wei, G., Wei, L., Chen, Y., Yan, S., Mei, L., and Jiao, J. (2016). Self-assembled
Epitaxial BaFe12O19 Nano-Island Film Grown on Al2O3 Substrate by Pulsed
Laser Deposition. Mater. Lett. 181, 212–215. doi:10.1016/j.matlet.2016.06.006
Wei, X., Zheng, H., Chen, W., Wu, Q., Zheng, P., Zheng, L., et al. (2020). Crystal
Structure, Morphology and Magnetic Properties of Hexagonal M-type Barium
Ferrite Film Based on the Substrate Temperature. Chem. Phys. Lett. 752, 137541.
doi:10.1016/j.cplett.2020.137541
Wu, Y., Yang, Q., Zhang, D., Zhang, Y., Rao, Y., Wen, Q., et al. (2020). The
Submicron Garnet Film with Perpendicular Magnetic Anisotropy Prepared by
Liquid Phase Epitaxy Method. J. Magn. Magn. Mater. 506, 166689. doi:10.1016/j.
jmmm.2020.166689
Wu, M. (2012). M-type Barium Hexagonal Ferrite Films. Adv. Magn. Mater.,
33–60. doi:10.1002/admm.201100272
Xu, Z., Lan, Z., Sun, K., Yu, Z., Guo, R., Zhu, G., et al. (2013). Deposition of
Perpendicular C-axis Oriented BaM Thin Films on (001) Al2O3 Substrates by
Introducing an Interfacial BaM Buffer Layer. J. Magn. Magn. Mater. 345, 72–76.
doi:10.1016/j.jmmm.2013.06.018
Xu, Z. Y., Lan, Z. W., Sun, K., Yu, Z., Guo, R. D., Jiang, X. N., et al. (2013).
Properties of Ba-Hexaferrite Thin Films with Different Layer Structures. Amr
774–776, 935–939. doi:10.4028/www.scientific.net/AMR.774-776.935
Yu, C., Sokolov, A. S., Kulik, P., and Harris, V. G. (2020). Stoichiometry, Phase, and
Texture Evolution in PLD-Grown Hexagonal Barium Ferrite Films as a
Function of Laser Process Parameters. J. Alloys Compd. 814, 152301.
doi:10.1016/j.jallcom.2019.152301
Zhang, L., Su, X. D., Chen, Y., Li, Q. F., and Harris, V. G. (2010). Radio-frequency
Magnetron Sputter-Deposited Barium Hexaferrite Films on Pt-Coated Si
Substrates Suitable for Microwave Applications. Scr. Mater. 63 (5), 492–495.
doi:10.1016/j.scriptamat.2010.05.013
Zhang, X., Yue, Z., Meng, S., and Yuan, L. (2014). Magnetic Properties of In-Plane
Oriented Barium Hexaferite Thin Films Prepared by Direct Current Magnetron Sputtering. J. Appl. Phys. 116, 243909–243924. doi:10.1063/1.4905028
Zhang, X., Meng, S., Song, D., Zhang, Y., Yue, Z., and Harris, V. G. (2017).
Epitaxially Grown BaM Hexaferrite Films Having Uniaxial axis in the
Film Plane for Self-Biased Devices. Sci. Rep. 7, 44193. doi:10.1038/srep44193
Zhang, X., Zhang, Y., Cao, S., Yue, Z., and Zhang, J. (2019). BaFe12O19 Films
Prepared on Al2O3 (0 0 0 1) by Direct Current Magnetron Sputtering. Mater. Lett. 248, 24–27. doi:10.1016/j.matlet.2019.03.139
Zheng, H., Han, M., Zheng, L., Deng, J., Zheng, P., Wu, Q., et al. (2016). Magnetic
Properties of Hexagonal Barium Ferrite Films on Pt/MgO(111) Substrates
Annealed at Different Temperatures. J. Magn. Magn. Mater. 413 (111), 25–29.
doi:10.1016/j.jmmm.2016.04.010
Zi, Z. F., Sun, Y. P., Zhu, X. B., Yang, Z. R., Dai, J. M., and Song, W. H. (2008).
Structural and Magnetic Properties of SrFe12O19 Hexaferrite Synthesized by a
Modified Chemical Co-precipitation Method. J. Magn Magn. Mater. 320 (21),
2746–2751. doi:10.1016/j.jmmm.2008.06.009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Khojaste khoo and Kameli. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.