Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Modeling Novel Anti-Viral Peptides (AVPs) with in-silico Docking Simulations Against Corona Virus

Aditi Sharma, Kumud Pant, Akshara Pande, Somya Sinha, Bhasker Pant

PII: S2214-7853(21)01491-7
DOI: https://doi.org/10.1016/j.matpr.2021.02.377
Reference: MATPR 23323

To appear in: Materials Today: Proceedings

Received Date: 31 December 2020
Revised Date: 9 February 2021
Accepted Date: 11 February 2021

Please cite this article as: A. Sharma, K. Pant, A. Pande, S. Sinha, B. Pant, Modeling Novel Anti-Viral Peptides (AVPs) with in-silico Docking Simulations Against Corona Virus, Materials Today: Proceedings (2021), doi: https://doi.org/10.1016/j.matpr.2021.02.377

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Technological Advancements in Materials Science and Manufacturing.
Abstract

The havoc created by Corona virus has been dealt with using various integrative approaches adopted by laboratories throughout the world. Use of anti-viral peptides (AVPs) although new but has shown tremendous potential against many pathogens. Previously AVPs have been designed against spike protein of corona virus which is the major entry mediating molecule. Using various in-silico strategies, in this research work AVPs have been modeled against lesser studied viral proteins namely ORF7a protein, Envelope protein (E), Nucleoprotein (N), and Non-Structural protein (Nsp1 and Nsp2). The predicted AVPs have been docked against various host as well as viral proteins. The interaction of small AVPs seems capable of interfering with binding between viral protein and its host counterpart. Therefore, these AVPs can act as a deterrent against novel corona virus, which requires further validation through laboratory techniques.

Keywords: Corona virus; Anti-Viral peptides, Modeling, Simulation

1. Introduction

Corona virus (CoVs) has been known to be linked with significant disease outbreak in East Asia and the Middle East since past two decades. The pandemic of severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) has occurred during 2002 and 2012 respectively. Recently, in late 2019, emergence of a novel corona virus namely severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has become a leading cause of corona virus disease 2019 (COVID-19) which has given rise to major health threat and an ongoing pandemic throughout the world [1]. Corona viruses are the member of Coronaviridae family (subfamily Coronavirusae), which causes infection in a wide range of hosts leading to symptoms and diseases like common cold and eventually fatal consequences such as SARS and MERS. Presently COVID-19, SARS-CoV-2 is believed to fall under one of the seven members of the corona virus family infecting humans; although, this novel virus is genetically different. There were only six CoVs until 2020 which were known to infect humans involving human CoV 229E (HCoV-229E), HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-CoV. Out of these,
SARS-CoV and MERS-CoV have led to the major outbreaks with high mortality rates while others have been found to be linked with mild upper-respiratory-tract illness [2, 3]. As the evolution of this novel CoV-2 has caused a high public health threats worldwide, hence there is a great need to control this outbreak by utilizing various novel technologies like use of anti-virals, cell and gene therapies, immunomodulators, neutralizing antibodies and much more [4, 5]. Out of these, many recent evidences have been observed highlighting the functional properties of antiviral proteinaceous compounds as a defensive barrier and it has also been identified that some antimicrobial peptides can show their activity against a wide range of viruses, hence termed as antiviral peptides (AVPs) [6, 7, 8]. These molecules when acquired by using bioinformatics tools are termed as designed or artificial AVPs which can be obtained through bait studies involving testing of an artificial peptide interacting against a specific target like a surface glycoprotein or a vital viral enzyme, it can also be derived using in-silico approach by utilizing specific software that are designed to predict peptides [9, 10, 11]. There are various advantages associated with the utilization of antiviral peptides including inhibition of protein-protein interactions, an alternative against diseases which are difficult to target, availability of advance technologies that will enhance peptide half-life and shorter market time [12]. Along with various advantages, there are certain side effects related with peptide drugs and minute drug tolerance in comparison to chemical drugs. Meanwhile, the peptide based treatment is highly specific, besides this there is a need of special storage circumstances for peptide drugs in order to avoid inactivation of protein functions leading to low oral bioavailability and the tendency of rapid metabolism [13].

Therefore the need for novel therapeutics in the form of AVPs against essential viral proteins, as a boost in the research against the same, cannot be denied. Previously anti-viral peptides have been designed against fusion protein and spike protein of corona virus [14, 15]. Moreover the use of anti-viral peptides against SARS-CoV2, SARS-CoV, MERS-CoV, SARS-related CoVs, and other respiratory viruses has been documented [16].

Realizing the therapeutic potential of these peptides, in this research work the lesser explored proteins of CoV-2 as novel drug targets have been used for designing AVPs. The proteins include ORF7a, Envelope protein (E), Nucleoprotein (N), Nsp1 and Nsp2. The ORF7a protein of Severe acute respiratory syndrome corona virus 2 (2019-nCov) has been found located in the host endoplasmic reticulum membrane, host endoplasmic reticulum-Golgi intermediate compartment membrane and host Golgi apparatus membrane. Its length is 121 with molecular weight 13.744 Da and interacts with the spike glycoprotein, M protein, E protein, ORF3a protein, human SGT, host ITGAL and host BST2. It takes part in biological process like modulating viral host G0/G1 transition checkpoint, suppressing viral host Tetherin activity and suppressing viral host type I interferon-mediated signaling pathway. It functions as an antagonist of host Tetherin (BST2), by binding to BST2 thereby interfering with its glycosylation and in-turn disrupting its antiviral effect along with this, it may also suppress siRNA and may bind to host ITGAL, thereby playing a role in attaching and modulating leukocytes. Envelope protein (E) of SARS-CoV-2 has a major role in viral morphogenesis and assembly but the short length of the protein lessens the probability of finding AVPs [17]. The next protein is Nucleoprotein (N) responsible for packaging the positive strand viral genome RNA into a helical ribonucleocapsid (RNP) and also plays a fundamental role during virion assembly through its interactions with the viral genome and membrane protein M [18]. The other viral protein is replicase polyprotein 1a which is cleaved into 11 chains of host translation inhibitor nsp1, 3C-like proteinase (3CL-PRO; 3CLp) and various non-
structural proteins [19].

In this research paper an attempt has been made to piece-together novel AVPs against the mentioned target viral as well as host proteins using various in-silico resources. The confirmation of anti-viral activity through further laboratory experimentation could be a major boost in fighting against ever invading microorganisms with the proof that ‘solution to the problem lies within the problem itself’.

2. Materials and Methods

ViralZone has been used for retrieving information on corona virus interactome [20]. From the interactome, proteins other than spike have been considered for predicting AVPs. The significant server cum databases for prediction, analysis and storage of AVPs are AVPpred [21], APD3 [22], CAMPR3 [23] and HIPdb [24]. AVPpred is the first database and server developed using peptides with experimentally proven antiviral activity with implementation done using machine learning models, therefore has been chosen for analysis and prediction.

Profile ALigNEment (PRALINE), a flexible multiple sequence alignment tool, is another software to be used in this research work. It has numerous advantages besides having user friendly interface and easily interpretable output [25, 26]. The software has been applied for multiple sequence alignment of target viral protein so as to select most conserved stretch of residues to be tested further as anti-viral peptide.

The predicted anti-viral peptide(s) are docked or checked for the interaction ability with host and viral protein using publicly available servers. For peptide-protein docking or interaction prediction and ab-initio docking algorithm based tool MDockPeP has been used. This server docks all-atom, flexible peptide to receptor and later docked poses are ranked based on statistical potential-based scoring function, ITScorePeP [27, 28].

Another downloadable software iGemDock, a virtual screening tool with facility for post screening analysis, has been used for predicting interaction analysis of viral non-spike proteins with predicted AVPs [29].

LIGPLOT+ downloadable servers have been used for analysis of interacting residues between receptor and ligands [30, 31]. This server allows observation of all kind of bonds as well as interacting residues between modeled peptide and host protein.

The CASTp (Computed Atlas of Surface Topography of proteins) server at http://sts.bioe.uic.edu/castp/ is used for predicting pockets and also cavities on protein on which ligands can bind [32].

The various servers and software as mentioned above have been used for prediction of novel AVPs through analysis performed at various levels against major virulent proteins of Corona virus.

3. Results and Discussion

The strategy of finding anti-viral peptide as a deterrent has been previously explored for spike protein of the virus by Torres Jesús et al. [33]. Therefore, the lesser explored viral proteins have been considered for designing anti-viral peptides and are tabulated in table 1.
Table 1: Viral proteins for AVP designing

Name of the viral interactome protein	Interacting host (human) protein	Uniprot ID of viral protein
ORF7a	Tetherin (BST2), ITGAL, SGTA	P0DTC7
Envelope protein (E)	MPP5	P0DTC4
Nucleoprotein (N)	SMAd3	P0DTC4
Nsp1	40S ribosome	P0DTC1
Nsp2	PHB	P0DTC1
ORF6	KPNA2	P0DTC6

In the preliminary step PODTC7 homologs were aligned through PRALINE on-line server. The homologues with more than 80% similarity were included as a part of analysis. For analysis of peptides with antiviral potential, multiple sequence alignment was performed to find the most conserved residues. These residues were predicted to have very important role on interaction with host protein. The residues were investigated for their anti-viral property using AVPred server accessible at http://crdd.osdd.net/servers/avppred/ [21]. Only one conserved sequence was found to have AVP with good probability (KLFIRQEE). Its various physicochemical properties are shown in figure 1. The amphiphilic character of peptides and overall hydrophobicity is responsible for anti-viral characteristics. As can be seen in figure 1 although the hydrophobicity value of predicted AVP is lesser but other characteristics like surface exposed residues, disorder promotion and flexibility may be good enough for peptide to have anti-viral properties.

![Fig. 1. Physicochemical properties for predicted AVP through AVPPred](image-url)
The presence of conserved amino acids as predicted through PRALINE server for PODTC7 is shown in figure 2 [25, 26]. Majority of the aligned portion is found to have good conservancy score. Therefore to reveal the most suitable amino acid residue fragment the entire sequence was checked for anti-viral properties in sliding window of 1 through AVPred server. The physiochemical properties of the predicted AVP are exhibited in figure 3. In figure 3 the variation in hydrophobicity throughout the peptide is shown in green line along Y axis. The frequency of alpha helix seems to be on an increasing trend which is again a prerequisite for effective anti-viral activity of a peptide. The similar variation in properties for other predicted peptide is indicative of effect of varying amino acid composition on anti-viral property.
Fig. 4. Physiochemical properties of predicted peptide ISSFKWDL.

Fig. 5. P0DTC6 multiple sequence analysis with homologues
Fig. 6. Interaction of predicted 1st AVP with P35232.

Fig. 7. The entire proteins involved in forming ligand binding pocket.

a. O43765, SGTA_HUMAN

b. Q10589, BST2_HUMAN Bone marrow stromal antigen
The next interactome protein chosen for our analysis was P0DTC4 which is an envelope protein of the virus. Since no AVPs were detected through AVPpred server therefore this protein was not considered for further analysis. For P0DTC6 (ORF6) also no AVP was detected. The next in the sequence was P0DTC1 which is an interacting protein of SAR-CoV-2. The analysis through AVPpred server revealed two AVPs in the protein. The sequence of predicted AVP is ISSFKWDL and AEWFLAYI. The physiochemical properties of one of the peptide predicted peptide ISSFKWDL is shown in figure 4. Although the dip in hydrophobicity for E (Glutamic acid) and Y (Tyrosine) is prominent but increase in hydrophobicity is observed at regular intervals for rest of the amino acid residues. The conserved residues for this protein found through multiple sequence alignment of all known Nsp1 have been shown in figure 5. Finally the AVPs predicted are tabulated in table 2.

Table 2: Predicted AVP

AVP sequence
KLFIRQEE from P0DTC7
ISSFKWDL and
AEWFLAYI from
P0DTC1

Table 3: Viral proteins used for interaction analysis with all predicted AVPs

Viral Target Protein (PDB ID)
6W37 ORF7a protein
7JIR (1564-1878) Papain-Like Protease
7K3G envelope small membrane protein
6M3M (41-174) Nuceloprotein
6WZO (247-364) Nuceloprotein
6Y2E (3264-3569) Replicase polyprotein 1a
7CZ4 (1025-1195) Replicase polyprotein 1a
The predicted anti-viral peptides have been tested for binding ability with both host as well as viral proteins. The various viral proteins are mentioned in table 3. The 3D structure of viral proteins has been obtained from Protein Data Bank (PDB) databank. For nucleoprotein two structures with ID 6M3M and 6WZO were considered for analysis since they represent different region of the big nucleoprotein. Similar is the case with replicase polyprotein 1a where two PDB IDs are analyzed for predicting binding interactions. The choice of viral proteins has been expanded so as to uncover the region binding best with the predicted AVPs and with the best resolution.

The interaction or docking of predicted AVPs (from table 2) with host target protein (shown in table 1), has been done with MDockPeP server. The interacting energies are shown in table 4. The energies are result of cumulative effect of weak interactions between peptide and host proteins. Only the top scoring models or the models with best docking score are tabulated. The best interactions are thermodynamically most favored one. The more is the energy dissipated or released stronger or better is the interaction.

The docking between various viral target proteins (mentioned in table 3) with AVP sequences (from table 2) is done through iGemDock software and depicted through LigPLOT, one has been shown in figure 6 [29-31]. The same has been generated for rest of the proteins also. The interacting energies are summarized in table 5. From table 5 it is found that envelope small membrane protein interacts best with predicted anti-viral peptide out of all viral proteins.

In figure 7 the pocket forming residues or active site residues of various host proteins are depicted. The prediction is made through CASTp server which signifies the amino acid residues that are a part of active site (32). For both Q10589, BST2_HUMAN Bone marrow stromal antigen tetherin and O43765, SGTA_HUMAN the entire protein has been found to be involved in forming active site or ligand binding site as shown in figure 7. Similar to figure 6 the interacting residues of modeled peptides with viral proteins are also depicted in figure 8, predicted through iGemDock.

![Table 4: Interaction energy through MDockPeP server for predicted AVP and host target protein](image)

AVP	Target Protein	Docking Score
KLFIRQEE-Q10589	Tetherin (BST2)	-129.0
KLFIRQEE-O43765	SGTA	-132.4
ISSFKWDL-O43765	SGTA	-129.8
AEWFLAYI-O43765	SGTA	-139.5
Table 5: Docking energy through iGemDock stand alone software for predicted AVP and viral target protein

Compound	Docking Energy	Interacting residues
6w37-avp1KLFIRQEE	-93.5	H-S-HIS-4, H-M-lys-17, H-M-PRO-19, H-S-ASP-54
H-S-HIS-58	-8.8639	H-S-Tyr-60, V-S-LYS-17, V-S-PRO-19
V-M-ASP-54	-7.30817	V-S-ASP-54, V-S-HIS-58
V-M-LEU-282	-4.60494	
6y2e-avp1KLFIRQEE	-116.2	H-M-PHE-3, H-S-ARG-4, H-S-TRP-207, V-M-PHE-3
V-M-ARG-4	-14.95356	V-S-LYS-5, V-S-Tyr-126, V-M-GLU-283
V-M-LEU-282	-6.64131	V-M-GLY-283, V-S-LEU-162, V-S-ASP-164
7jir-avp1KLFIRQEE	-89.5	H-S-LYS-157, H-S-GLU-161, H-S-Tyr-268
V-M-LEU-162	-5.45772	V-S-LEU-162, V-S-ASP-164
V-S-Tyr-264	-3.20301	V-S-THR-268, V-S-GLN-269
V-S-THR-9	-5.54411	
7k3g-avp1KLFIRQEE	-134.7	H-S-ASN-15, H-S-ASN-15, H-S-ASN-15
V-M-GLY-48	-12.8433	V-M-THr-11, V-S-THR-11
V-M-ILE-131	-6.55402	V-S-THR-9, V-S-GLU-8
V-S-PRO-136	-5.54411	V-S-ASP-157, V-S-LEU-160
7cz4-avp1KLFIRQEE	-107.1	H-M-GLY-130, V-M-GLY-48, V-M-VAL-49
V-M-ILE-131	-3.5	V-M-IRE-131, V-S-ILE-131
V-S-PRO-136	-11.0526	V-S-ASP-157, V-S-LEU-160
6m3m-avp1KLFIRQEE	-114.5	H-S-ASP-64, H-S-ARG-90, H-S-ASP-104
V-M-ASP-104	-4.10618	V-M-GLY-61, V-S-LYS-62, V-S-ASP-104
V-S-ASP-104	-7.88932	V-S-LEU-105, V-M-LEU-105
H-S (Hydrogen bond side chain), H-M (Hydrogen bond main chain), V-S (Vanderwalls bond side chain), V-M (Vanderwalls bond main chain)		

The AVPs designed through in-silico approach have been found to bind with important residues of protein, mentioned in table 1 and table 3 and also predicted through CASTp shown in table 6. The effect of predicted AVPs in blocking the active site residues has been studied in conjunction with the amino acid residues involved in pocket or cavity prediction for various receptor proteins that are mentioned in table 1 and 3.

The designed AVPs show optimum binding with both host as well as viral proteins. This binding can prevent the viral protein from binding to natural target of host protein. The bound peptide fragments to viral non-spike proteins can block the viral proteins from functioning properly therefore acting as anti-viral agents.
Table 6: Amino acid residues of pocket, predicted through CASTp server

Receptor	Chain	SeqID	AA									
P35232, PHB_HUMAN Prohibitin	A	63	LYS	A	96	PHE	A	169	SER	B	62	GLN
A	64	PRO	A	98	PRO	A	170	LEU	B	63	LYS	
A	65	ILE	A	106	ILE	A	171	THR	B	64	PRO	
A	66	ILE	A	112	GLU	A	172	HIS	B	65	ILE	
A	68	ASP	A	113	ASP	A	173	LEU	B	66	ASP	
A	69	CYS	A	115	ASP	A	175	PHE	B	68	ASP	
A	70	ARG	A	116	GLU	A	176	GLY	B	69	CYS	
A	71	SER	A	143	ARG	A	177	LYS	B	70	ARG	
A	72	ARG	A	144	GLU	A	178	GLU	B	71	SER	
A	73	PRO	A	147	SER	A	180	THR	B	72	ARG	
A	93	ARG	A	167	ASP	A	181	GLU	B	73	PRO	
A	95	LEU	A	168	VAL	B	93	ARG				
B	95	LEU	B	167	ASP	C	64	PRO	C	95	LEU	
B	98	PRO	B	168	VAL	C	64	PRO	C	98	PRO	
B	106	ILE	B	169	SER	C	65	ILE	C	106	ILE	
B	107	PHE	B	170	LEU	C	66	ILE	C	107	PHE	
B	110	ILE	B	171	THR	C	68	ASP	C	110	ILE	
B	111	GLY	B	172	HIS	C	69	CYS	C	113	ASP	
B	113	ASP	B	173	LEU	C	70	ARG	C	114	TYR	
B	114	TYR	B	177	LYS	C	71	SER	C	114	TYR	
B	115	ASP	B	178	GLU	C	72	ARG	C	115	ASP	
B	116	GLU	B	181	GLU	C	73	PRO	C	116	GLU	
B	145	ARG	C	62	GLN	C	74	ARG	C	143	ARG	
B	147	SER	C	63	LYS	C	93	ARG	C	144	GLU	
C	147	SER	C	167	ASP	C	170	LEU	C	173	LEU	
C	148	ARG	C	168	VAL	C	171	THR				
C	151	SER	C	169	SER	C	172	HIS				

4. Conclusion

In this research work anti-viral peptides or AVPs have been designed using computational approach against proteins other than spike of Corona virus. The designed AVPs are tested for their ability to prevent binding of pathogen proteins with host proteins. In principle deterrent proteins can be designed both against host and pathogen. The same principle has been tested here with binding induced between host and viral proteins and predicted AVPs. The AVPs in-fact can block the active sites of host as well as pathogen thereby preventing further activities.

The disruption caused at various levels by the effect of global COVID-19 outbreak has prioritized the immediate and urgent treatment therapies. In this concern, we believe that the production of AVPs could represent the most promising treatment strategy. In our study, the AVPs designed through in-silico approach have been found to bind with important residues of protein mentioned in table 1 and 3. This binding can prevent the viral protein from binding to natural target of host protein, therefore acting as anti-viral agents. AVPs being simple with its primary structure and versatile functional properties may prove to be potential candidate in facing COVID-19 and
several other emerging outbreaks in unpredictable future. We have explored the in-silico facet of AVPs prediction providing basis for its in-vitro analysis. Still there are certain aspects involving their potential utilization in clinical treatment and promising antiviral activity along with studying prophylactic reactions concerned against COVID-19 which are needed to be investigated in near future.

Acknowledgements

The authors are highly thankful to Graphic Era Deemed to be University, Dehradun, Uttarakhand, Department of Biotechnology for providing facility to carry out this work.

References

1. Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah RA, Paniz-Mondolfi A, Pagliano P, Esposito S. History is repeating itself probable zoonotic spillover as the cause of the 2019 novel corona virus epidemic. Infecz Med 2020;28:3–5.
2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. China, Novel Corona virus Investigating and Research Team. A novel corona virus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–733.
3. Wei X, Li X, Cui J. Evolutionary perspectives on novel corona viruses identified in pneumonia cases in China. Natl Sci Rev 2020;7:239–242.
4. Munster VJ, Koopmans M, Van Doremalen N, Van Riel D, de Wit E. A novel corona virus emerging in China—key questions for impact assessment. N Engl J Med 2020;382:692–694.
5. Corona Virus Treatment Acceleration Program (CTAP). FDA, (2020) at https://www.who.int/emergencies/diseases/novel-corona-virus-2019/advice-for-public/myth-busters.
6. Falco A, Mas V, Tafalla C, Perez L, Coll JM, Estepa A. Dual antiviral activity of human alpha- defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV) Inactivation of virus particles and induction of a type I interferon-related response. Antiviral Res 2007;76:543–543.
7. Crack LR, Jones L, Malavige GN, Patel V, Ogg GS. Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 2012;37:534–534.
8. Allmann SE, Brandt CR, Jahrling PB, Blaney JE. Antiviral activity of the EB peptide against zoonotic poxviruses. Virol J 2012;6:6–1.
9. Okazaki K.and Kida H. A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication. J Gen Virol 2004;85:2131–2137.
10. Tiwari V, Liu J, Valyi-Nagy T, Shukla D. Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo. J Biol Chem 2011;286:25406–25415.
11. Mooney C, Haslam NJ, Pollastri G, Shields DC. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One 2012;7:1–12.
12. Kaspar AA and Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today 2013;18(17-18):807–817.
13. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013;4(11):1443–67.
14. Rongsong Ling, Yarong Dai, Boxuan Huang, Wenjie Huang, Jianfeng Yu, Xifeng Lu, Yizhou Jianga. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides 2020;130(170328).
15. Sounik Manna, Trinath Chowdhury, Piyush Baindra, Santi M. Mandal. Fusion Protein Targeted Antiviral Peptides: Fragment-Based Drug Design (FBDD) Guided Rational Design of Dipeptides Against SARS-CoV2. Current Protein & Peptide Science 2020;21(10).
16. Arun Suria Karman Mahendran, Yin Sze Lim, Chee-Mun Fang, Hwei-San Loh, and Cheng Foh Le. The Potential of Antiviral Peptides as COVID-19 Therapeutics. Front Pharmacol. 2020;11(575444).
17. https://covid-19.uniprot.org/uniprotkb/P0DTC7
18. https://covid-19.uniprot.org/uniprotkb/P0DTC9
19. https://covid-19.uniprot.org/uniprotkb/P0DTC1
20. Hulo C, de Castro E, Masson P, Bouguerel L, Bairoch A, Xenarios I, Le Mercier P. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 2011;39:576-582.
21. Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. Nucleic Acids Res 2012;40:W199–W204.
22. Wang G, Li X, Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2015;44:D1087–D1093.
23. Waghu FH, Barai RS, Gurung P, Iliceda-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2015;44:D1094–D1097.
24. Qureshi A, Thakur N, Kumar M. HIPdb: a database of experimentally validated HIV inhibiting peptides. PLoS One 2013;8:e54908.
25. Heringa J. Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Computers & Chemistry 1999;23(3-4):341–3648.
26. Heringa J. Local weighting schemes for protein multiple sequence alignment. Comput Chem 2002;26:459–477.
27. Xu X, Yan C, Zou X. MDockPeP: An ab-initio protein-peptide docking server. J Comput Chem 2018;39:2409-2413.
28. Yan C, Xu X, Zou X. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. Structure 2016;24:1842-1853.
29. Hsu KC, Chen YF, Lin SR et al. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011;12:S33. https://doi.org/10.1186/1471-2105-12-S1-S3
30. Berman HM, Battistuzz T, Bhat TN, Bluhm WF, Bourne PE, Burkhard K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C. The Protein Data Bank Acta Crystallogr D Biol Crystallogr 2002;58(Pt 6 No 1):899–907.
31. Laskowski RA, and Swindella MB. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model 2011;51(10):2778-2786.
32. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018;46(W1):W363-W367.
33. Jesús T, Rogelio L, Abraham C, et al. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses. Bioinformation 2012;8(18):870-874.

Highlights for review

Modeling Novel Anti-Viral Peptides (AVPs) with in-silico Docking Simulations Against Corona Virus MATPR-D-21-00311

- Anti-viral peptides designed in-silico against non-spike proteins of Corona Virus
- Docking simulations against both host and viral proteins
- Good binding efficiency observed in between modeled peptide and viral membrane protein
- Novel deterrent against corona virus.
- Act by binding to the active site or ligand binding site of the target protein thereby preventing further activity and binding of target protein with natural binders.
Table: Physicochemical Properties

Property	Hydrophobic	Hydrophilic
Amino Acid Polarity	3 (37%)	5 (63%)
Amino Acid Charge	2 (25%)	2 (25%)
Neutral Amino Acid	4 (50%)	
Amino Acid Surface exposure	5 (62%)	3 (38%)
Disorder	5 (62%)	3 (37%)
Disorder-order neutral	0 (1%)	
Disorder-promoting		
Order-promoting		
Flexibility	5 (62%)	3 (38%)

Fig. 1. Physicochemical properties for predicted AVP through AVPPred

Fig. 2. Multiple sequence alignment of various ORF7a proteins.
Fig. 3. Various physiological properties predicted through AVPPred server.

Fig. 4. Physicochemical properties of predicted peptide ISSFKWDL.
Fig. 5. P0DTC6 multiple sequence analysis with homologues
ISSFKWDL-P35232

Fig. 6. Interaction of predicted 1° AVP with P35232.

a. Q43765, SOTA_HUMAN
b. Q10589, BST2_HUMAN Bone marrow stromal antigen

Fig. 7. The entire proteins involved in forming ligand binding pocket.
Fig. 5. Interacting residues of predicted AVP with ORF7a protein (6W37), Papain-like Protease (7JIR), and (7K3G) envelop small membrane protein.

Table 1: Viral proteins for AVP designing

Name of the viral interactome protein	Interacting host (human) protein	Uniprot ID of viral protein
ORF7a	Tetherin (BST2), ITGAL, SGTA	P0DTC7
Envelope protein (E)	MPP5	P0DTC4
Nucleoprotein (N)	SMAd3	P0DTC4
Nsp1	40S ribosome	P0DTC1
Nsp2	PHB	P0DTC1
ORF6	KPNA2	P0DTC6

Table 2: Predicted AVP

AVP sequence
KLHRQEE from P0DTC7
ISSFKWDL and AEWFLAYI from P0DTC1

Table 3: Viral proteins used for interaction analysis with all predicted AVPs

Viral Target Protein (PDB ID)
6W37 ORF7a protein
7JIR (1564-1878) Papain-like Protease
7K3G envelop small membrane protein
6M3M (41-174) Nucleoprotein
6WZO (247-364) Nucleoprotein
6Y2E (3264-3569) Replicase polyprotein 1a
7CZ4 (1025-1195) Replicase polyprotein 1a
Table 4: Interaction energy through MDockPeptide server for predicted AVP and host target protein

AVP	Target Protein	Docking Score
KLIQFRRQ-EQ10589	Tetherin (BST2)	-129.0
KLIQFRRQ-EQ043765	SGTA	-132.4
ISSFKWDL-EQ043765	SGTA	-129.8
AEWFLAY1-EQ043765	SGTA	-139.5

Table 8: Docking energy through iCscoreDock stand alone software for predicted AVP and viral target protein

Compound	Docking Energy	Interacting residues
6w37-	53.5	H-S-HIS-4, H-M-LEU-17, H-M-PRO-10, H-S-ASP-54
avylKLIQFRRQ-EQ	-8.8639	H-S-HIS-38, H-S-TAR-50, V-S-LEU-17, V-S-PRO-19
6y26-	86.2	H-M-DHR-3, H-S-ARG-4, H-S-TRP-207, V-S-PHE-3, V-S-GLU-230
avylKLIQFRRQ-EQ	-8.9627	H-S-HIS, H-S-GLY-161, H-S-GLU-167, H-S-TAR-268
7j16-	134.7	H-S-ASN-15, H-S-ASN-15, H-S-ASN-15, H-S-GLU-8, V-S-THR-11
avylKLIQFRRQ-EQ	-6.5402	H-S-ASN-15, H-S-THR-11, V-S-ASN-15, V-S-ASN-15
7kg0-	107.1	H-M-GLY-130, V-M-GLY-48, V-M-VAL-49, V-M-ALA-129
avylKLIQFRRQ-EQ	-11.0526	H-M-GLY-130, V-M-ILE-131, V-M-SER-131, V-M-SER-131
6m3h-	86.2	H-S-ASP-64, H-S-ARG-90, H-S-ASN-15, H-S-GLU-59, V-S-PRO-107

*H-S (Hydrogen bond side chain), H-M (Hydrogen bond main chain), V-S (Van der Waals bond side chain), V-M (Van der Waals bond main chain)
Table 6: Amino acid residues of pocket, predicted through CASP server

Receptor	Chain	SeqID	AA									
P35212, PEB_HUMAN Proteolytic	A	63	LYS	A	06	PHE	A	160	SER	B	63	GLN
	A	64	PRO	A	98	PRO	A	170	LEU	B	63	LYS
	A	65	ILE	A	106	ILE	A	171	THR	B	64	PRO
	A	66	ILE	A	112	GLU	A	172	HIS	B	65	ILE
	A	68	ASP	A	113	ASP	A	173	LEU	B	66	ILE
	A	69	CYS	A	115	ASP	A	175	PHE	B	68	ASP
	A	70	ARG	A	116	GLU	A	176	GLY	B	69	CYS
	A	71	SER	A	143	ARG	A	177	LYS	B	70	ARG
	A	72	ARG	A	144	GLU	A	178	GLU	B	71	SER
	A	73	PRO	A	147	SER	A	180	THR	B	72	ARG
	A	93	ARG	A	167	ASP	A	181	GLU	B	73	PRO
	A	95	LEU	A	168	VAL	B	93	ARG			
	B	95	LEU	B	167	ASP	C	64	PRO	C	95	LEU
	B	98	PRO	B	168	VAL	C	64	PRO	C	98	PRO
	B	106	ILE	B	169	SER	C	65	ILE	C	106	ILE
	B	107	PHE	B	170	LEU	C	66	ILE	C	107	PHE
	B	110	ILE	B	171	THR	C	68	ASP	C	110	ILE
	B	111	GLY	B	172	HIS	C	69	CYS	C	113	ASP
	B	113	ASP	B	173	LEU	C	70	ARG	C	114	THR
	B	114	THR	B	177	LYS	C	71	SER	C	114	THR
	B	115	ASP	B	178	GLU	C	72	ARG	C	115	ASP
	B	116	GLU	B	181	GLU	C	73	PRO	C	116	GLU
	B	143	ARG	C	62	GLN	C	74	ARG	C	143	ARG
	B	147	SER	C	63	LYS	C	93	ARG	C	144	GLU
	C	147	SER	C	167	ASP	C	170	LEU	C	173	LEU
	C	148	ARG	C	168	VAL	C	171	THR			
	C	151	SER	C	169	SER	C	172	HIS			

Credit author statement

Modeling Novel Anti-Viral Peptides (AVPs) with in-silico Docking Simulations Against Corona Virus MATPR-D-21-00311

Conceptualization: Kumud Pant and Aditi Sharma
Methodology: Kumud Pant
Data Curation: SOmya Sinha
Writing- Original Draft Preparation: Akshara Pande and Aditi Sharma
Supervision: Bhasker Pant
Software: Bhasker Pant

Modeling Novel Anti-Viral Peptides (AVPs) with in-silico Docking Simulations Against Corona Virus MATPR-D-21-00311

Author declaration

[Instructions: Please check all applicable boxes and provide additional information as requested.]

1. Conflict of Interest
Potential conflict of interest exists:

We wish to draw the attention of the Editor to the following facts, which may be considered as potential conflicts of interest, and to significant financial contributions to this work:

The nature of potential conflict of interest is described below: None

√ No conflict of interest exists.

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

2. Funding

☐ Funding was received for this work.

All of the sources of funding for the work described in this publication are acknowledged below:

[List funding sources and their role in study design, data analysis, and result interpretation]

√ No funding was received for this work.

3. Intellectual Property

√ We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

4. Research Ethics

NA

5. Authorship

The International Committee of Medical Journal Editors (ICMJE) recommends that authorship be based on the following four criteria:

1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

2. Drafting the work or revising it critically for important intellectual content; AND

3. Final approval of the version to be published; AND

4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
All those designated as authors should meet all four criteria for authorship, and all who meet the four criteria should be identified as authors. For more information on authorship, please see http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two.

√ All listed authors meet the ICMJE criteria. We attest that all authors contributed significantly to the creation of this manuscript, each having fulfilled criteria as established by the ICMJE.

We believe these individuals should be listed as authors because:

[Please elaborate below]

All have contributed significantly in the paper

√ We confirm that the manuscript has been read and approved by all named authors.

√ We confirm that the order of authors listed in the manuscript has been approved by all named authors.

6. Contact with the Editorial Office

The Corresponding Author declared on the title page of the manuscript is:

[Kumud Pant]

√ This author submitted this manuscript using his/her account in EVISE.

√ We understand that this Corresponding Author is the sole contact for the Editorial process (including EVISE and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

√ We confirm that the email address shown below is accessible by the Corresponding Author, is the address to which Corresponding Author’s EVISE account is linked, and has been configured to accept email from the editorial office of American Journal of Ophthalmology Case Reports:

[pant.kumud@gmail.com]

Someone other than the Corresponding Author declared above submitted this manuscript from his/her account in EVISE:
We understand that this author is the sole contact for the Editorial process (including EVISE and direct communications with the office). He/she is responsible for communicating with the other authors, including the Corresponding Author, about progress, submissions of revisions and final approval of proofs.

We the undersigned agree with all of the above.

Author’s name (First, Last)	Signature	Date
1. Aditi Sharma | Aditi Sharma | 08 February, 2021
2. Kumud Pant | Kumud Pant | 08 February, 2021
3. Akshara Pande | Akshara Pande | 08 February, 2021
4. Somya Sinha | Somya Sinha | 08 February, 2021
5. Bhasker Pant | Bhasker Pant | 08 February, 2021