Abstract. We explain how the distributional index of an operator on a principal G-manifold P that is obtained by lifting a Dirac operator on \(P/G \) can serve as a link between the Duflo isomorphism and Chern-Weil forms.

1. Introduction

The theme of this article arises in the typical context of a closed even-dimensional spin (or spin-c) manifold \(M \). There one naturally has a principal \(G \)-bundle \(P \to M \), where \(G \) is some compact Lie group, and a Dirac operator \(D \) acting on sections of an equivariant vector bundle \(P \times_G E \). By picking a connection on \(P \), one can horizontally lift the Dirac operator on \(M \) to \(\tilde{P} \). The resulting differential operator \(\tilde{D} \), which may operate on \(\mathcal{C}^\infty (P) \otimes E \), is non-elliptic. However, it is transversally elliptic in the sense of Atiyah and Singer [1, Def. 1.3, p. 7], which means in our situation that \(\tilde{D} \) is elliptic in horizontal directions relative to the selected connection on \(P \).

Continuing with the idea of Atiyah and Singer, one has the distributional index \([\tilde{D}] \) of \(\tilde{D} \), which is a formal \(\mathbb{Z} \)-linear combination of characters of \(G \). It is a theorem of Atiyah and Singer that \([\tilde{D}] \) is a genuine distribution on \(G \) [1, Thm. 2.2, p. 10].

More is true in our case. Owing to the free \(G \)-action on \(P \), the distribution \([\tilde{D}] \) is supported at the identity, and it can be identified as an element of the center \(\mathcal{Z}(\mathfrak{g}) \) of the universal enveloping algebra generated by the Lie algebra \(\mathfrak{g} \) of \(G \). Thus \([\tilde{D}] \) is subject to (the inverse of) the Duflo isomorphism

\[
\text{Duf} : \mathcal{S}^G(\mathfrak{g}) \to \mathcal{Z}(\mathfrak{g}).
\]

Here \(\mathcal{S}^G(\mathfrak{g}) \) denotes the \(G \)-invariant subalgebra of the symmetric algebra generated by \(\mathfrak{g} \); it can be identified as the algebra of \(G \)-invariant distributions on \(\mathfrak{g} \) that are supported at the origin. So it makes sense to pair \(\text{Duf}^{-1}[\tilde{D}] \) with a \(G \)-invariant analytic function \(\varphi \) defined on some neighborhood of the origin in \(\mathfrak{g} \). One can now ask whether the following equation holds:

\[
\langle \text{Duf}^{-1}[\tilde{D}], \varphi \rangle = \langle \hat{D} \varphi, \hat{M} \rangle.
\]

Here \(\hat{D} \) is the index class of \(D \); \(\hat{\varphi} \) is the characteristic class on \(M \) obtained from \(\varphi \) by the Chern-Weil homomorphism; and \(\hat{M} \) is the fundamental homology class of \(M \) determined by the spin structure.

Our aim is to show that Equation (1) holds under a reasonable condition on the connection associated with \(\tilde{D} \) and if we restrict the domain of \(\tilde{D} \) to

2010 Mathematics Subject Classification. Primary 19K56; Secondary 58J35, 53C27.

Key words and phrases. transversally elliptic operators, distributional index, Duflo isomorphism, Chern-Weil theory.
the G-invariant subspace $(C^\infty(P) \otimes E)^G$. Denote the restriction of \hat{D} by D_M. Then Equation (1) explicitly shows how the distributional index of D_M serves has a link between the Duflo isomorphism and the Chern-Weil forms.

In a sense this is just another manifestation of the Atiyah-Singer index theorem. Indeed, when φ is the constant polynomial 1, the pairing $\langle \hat{D}, \hat{M} \rangle$ calculates the usual (graded) index of D.

2. Setup

Throughout this article, M denotes a closed oriented Riemannian manifold of dimension n. Let D be a geometric Dirac operator acting on the sections of an equivariant vector bundle

$$P \times_G E \to M,$$

where P is the total space of a principal bundle

$$\kappa: P \to M$$

whose fibers are isomorphic to a compact Lie group G, and E is a finite-dimensional G-vector space over \mathbb{C} associated with a representation

$$\nu: G \to \text{Aut}(E).$$

We denote by

$$\nu_*: g \to \text{End}(E)$$

the Lie algebra representation induced by the differential of ν at the identity.

We assume that E is a graded $\text{Cl}(n)$-module. Regarding the irreducible ones, there is only one (up to isomorphism) if n is odd, and there are two if n is even. If we fix one over the other for the even case, then we may speak of the irreducible graded $\text{Cl}(n)$-module S. Under such circumstances, E is of the form

$$E = S \otimes W,$$ \hspace{1cm} (2)

where $\text{Cl}(n)$ acts canonically on S and trivially on W.

The existence of a Dirac operator on the sections of $P \times_G E$ implies that the vector bundle $P \times_G E$ admits a $\text{Cl}(M)$-module structure. This means that E is a module over the Clifford algebra $\text{Cl}(n)$ generated by the Euclidean space \mathbb{R}^n and that we have a bundle map

$$
\begin{array}{ccc}
\text{Cl}(M) & \longrightarrow & P \times_G \text{End}(E) \\
& & \downarrow \text{c} \\
& & M
\end{array}
$$

such that, when restricted to each fiber, we have an isomorphism of algebras

$$\text{Cl}(T_x M) \cong \text{Cl}(n) \subset \text{End}(E).$$

Let $\Gamma(P \times_G E)$ denote the space of sections of $P \times_G E$. Our assumption that D is a geometric Dirac operator means that there is a Clifford connection ∇ on $\Gamma(P \times_G E)$, relative to which D is locally of the form

$$D = \sum_{i=1}^{n} c(\xi_i) \nabla_{\xi_i}.$$
for any local orthonormal frame \(\{ \xi_i \}_{i=1}^n \) for the tangent bundle \(TM \) of \(M \).

Now let \(\tilde{\nabla} \) be the covariant derivative for the trivial bundle \(P \times E \to P \) that agrees with \(\nabla \) under the usual identification of \(\Gamma(P \times_G E) \) with \(\Gamma(P \times E)_G = (C^\infty(P) \otimes E)_G \). The covariant derivative \(\tilde{\nabla} \) determines a connection \(\theta \) on \(P \), which in turn determines the horizontal subspace at each tangent space of \(P \). We define the lift \(\tilde{D} \) of \(D \) as the differential operator on \(\Gamma(P \times E) = C^\infty(P) \otimes E \) that is locally of the form

\[
\tilde{D} = \sum_{i=1}^n c(\xi_i) \tilde{\nabla}_{\xi_i},
\]

where \(\tilde{\xi}_i \) denotes the horizontal lift of \(\xi_i \).

The connection \(\theta \) induces a \(G \)-invariant metric on \(P \) in the following way: Let \(\langle , \rangle_M \) be the pullback of the metric of \(M \) along the bundle projection \(\kappa \), and let \(\langle , \rangle_g \) be an inner product on \(g \) that is invariant under the adjoint action of \(G \) on \(g \). Then we define the metric \(\langle , \rangle \) on \(P \) by

\[
\langle X, Y \rangle = \langle X, Y \rangle_M + \langle \theta(X), \theta(Y) \rangle_g.
\]

With the metric on \(P \) at hand, we have the Riemannian connection \(\nabla^P \) for \(\mathfrak{X}(P) := \Gamma(TP) \). For each \(X \in \mathfrak{g} \), denote the fundamental vector field it generates on \(P \) by \(\tilde{\xi} \). Let \(\tilde{\xi} \) be a horizontal vector field. The vector field \(\nabla^P \tilde{\xi} \) is again horizontal; denote it \(\tilde{\xi}' \). Let \(\xi := \kappa_\ast \tilde{\xi} \), where \(\kappa_\ast \) is the pushforward induced by \(\kappa \), and denote its value at \(x \in M \) by \(\xi_x \). Define \(\alpha_x(X) \in \text{End}(T_xM) \) by \(2\xi'_x = \alpha_x(X)\xi_x \). This gives a Lie algebra representation

\[
\alpha_x : \mathfrak{g} \to \mathfrak{so}(T_xM).
\]

In terms of \(\alpha_x \), the condition for the covariant derivative \(\tilde{\nabla} \) on \(C^\infty(P) \otimes E \) to be a Clifford connection is that

\[
[\nu_\ast(X), c(\xi)] = c(\alpha_x(X)\xi)
\]

holds for all \(X \in \mathfrak{g} \), \(\xi \in T_xM \), and \(x \in M \). It is appropriate to call this as the Clifford condition for \(\tilde{\nabla} \). If this condition holds, then the family \(\{ \alpha_x \}_{x \in M} \) of Lie algebra representations, together with the bundle map \((3) \), defines collectively a Lie algebra representation

\[
\alpha : \mathfrak{g} \to \mathfrak{so}(n).
\]

This representation is equivalent to a Lie algebra representation

\[
\gamma : \mathfrak{g} \to \mathfrak{spin}(n) \subset \text{Cl}(n),
\]

where the two representations are related by

\[
\alpha(X)(v) = [\gamma(X), v].
\]

Here the bracket on the right-hand side denotes commutation in \(\text{Cl}(n) \).

In terms of the Lie algebra representation \(\gamma \), the Clifford condition \((4) \) can be written as

\[
[\nu_\ast(X), c(\xi)] = [\gamma(X), c(\xi)].
\]

This commutation relation implies that the \(g \)-action on \(E \) respects the factorization \((2) \), so that

\[
\nu_\ast = \gamma \otimes 1 + 1 \otimes \tau
\]
for some Lie algebra representation
\[\tau: g \to \text{End}(W). \]

Remark. The Clifford condition (4) is always satisfied if the Lie algebra representation \(\gamma \) is induced by a Lie group representation \(G \to \text{Spin}(n) \); in that case we have \(TM \cong P \times_G \mathbb{R}^n \), where \(G \) acts on \(\mathbb{R}^n \) through the double covering \(\text{Spin}(n) \to \text{SO}(n) \).

3. **Distributional Index**

The lifted operator \(\tilde{D} \) on \(P \) is by construction a transversally elliptic operator on \(E \)-valued functions on \(P \). Because the connection \(\theta \) is \(G \)-invariant, \(\tilde{D} \) is also \(G \)-invariant, so the kernel of \(\tilde{D} \) is a \(G \)-space. Denote the even and odd parts of the kernel as \(\ker(\tilde{D}^+) \) and \(\ker(\tilde{D}^-) \), respectively. Let \(\hat{G} \) be the unitary dual of \(G \). It is a result of Atiyah and Singer [1, Lem. 2.3, p. 10] that the pairings
\[\langle \ker \tilde{D}^\pm, V \rangle := \dim \text{Hom}_G(\ker \tilde{D}^\pm, V) \]
are finitely valued for all \([V] \in \hat{G} \). So
\[[\ker \tilde{D}^\pm] := \sum_{[V] \in \hat{G}} \langle \ker \tilde{D}^\pm, V \rangle [V] \]
are well-defined elements of the formal representation group
\[\hat{R}(G) := \prod_{[V] \in \hat{G}} \mathbb{Z} \cdot [V]. \]

Moreover, identifying \([V] \) with its character, the formal sums \([\ker \tilde{D}^\pm] \) converge in the distributional sense [1, Thm. 2.2, p. 10]. The **distributional index** of \(\tilde{D} \) is then defined as
\[[\tilde{D}] := [\ker \tilde{D}^+] - [\ker \tilde{D}^-]. \]

Our real interest, however, lies in the “trivial part” of \([\tilde{D}]\), that is, the distributional index \([D_M] \) where \(D_M \) is the restriction of \(\tilde{D} \) onto the \(G \)-invariant subspace \((C^\infty(P) \otimes E)^G\). The reason we write the restricted operator as \(D_M \) is that its operation on the \(G \)-invariants agree with the operation of \(D \) on the sections of \(P \times_G E \).

Note that \(D_M \) on \((C^\infty(P) \otimes E)^G\) is effectively elliptic and Fredholm. Moreover, if we write the (scalar) Laplacian on \(P \) as \(\Delta_P \), then \(D_M^2 + \Delta_P \) is equal to an operator \(F \) of order zero (see [2, Prop. 5.6, p. 172]). So \(L := -\Delta_P + F \) is a generalized Laplacian that agrees with \(D_M^2 \) on \((C^\infty(P) \otimes E)^G\). We shall denote by \(P_t \) the heat kernel associated with \(L \), that is, the integral kernel of the operator \(e^{tL} \).

For \([V] \in \hat{G} \) and \(g \in G \), let \([V]_g \) denote the value of the character of \([V] \) at \(g \). Let
\[[D_M]_g := \sum_{[V] \in \hat{G}} (\langle \ker D_{M^+}, V \rangle - \langle \ker D_{M^-}, V \rangle) [V]_g. \]
Owing to the equivariant McKean-Singer formula (see \cite{2}, Prop. 5.6, p. 173; Prop. 6.3, p. 185),

\[[DM]_g = \text{Str}(ge^{\nu L}) = \int_M \int_G \text{Str}(P_t(x, x \cdot g) \nu(g)^{-1}) \, dg \, dx.\]

Here \text{Str} denotes the super trace for graded operators. Thus, the pairing of \[[DM]\] with a function \(f \in C^\infty(G)\) can be calculated in the following way:

\[
\langle [DM], f \rangle = \int_M \int_G \text{Str}(P_t(x, x \cdot g)f(g) \nu(g)^{-1}) \, dg \, dx. \tag{6}
\]

Equation (6) shows that \([DM]\) indeed has point support at the identity, owing to the finite-propagation property of the heat kernel (see \cite{5}, Prop. 7.24, p. 107).

4. Chern-Weil Forms

We quickly recall the construction of the Chern-Weil homomorphism. As a preliminary remark, suppose we have a formal power series \(\varphi \in \mathbb{R}[[g^*]]\). Let \(\wedge(N)\) be the exterior algebra generated by some finite-dimensional vector space \(N\) over \(\mathbb{R}\), and let \(\wedge^+(N)\) be its subalgebra comprising all elements of even degree. Then the formal power series \(\varphi\) defines a map \(g \otimes \wedge^+(N) \to \wedge^+(N)\) in the following way. Identify \(g\) with \(g \otimes \{1\} \subset g \otimes \wedge^+(N)\). By duality, the evaluation of \(\chi \in g^*\) at an arbitrary element \(\eta = \sum X_j \otimes \eta_j \in g \otimes \wedge^+(N)\) takes the value \(\chi(\eta) = \sum \chi(X_j) \eta_j\). The evaluation map \(\text{ev}_\eta : g^* \to \wedge^+(N), \chi \mapsto \chi(\eta)\), extends uniquely as an algebra homomorphism to \(\text{ev}_\eta : \mathbb{R}[[g^*]] \to \wedge^+(N)\). Then \(\text{ev}_\eta(\varphi) = \varphi(\eta)\) is the evaluation of \(\varphi\) at \(\eta\). Note that \(\text{ev}_\eta\) factors through \(S(g)\). All of this makes sense even if we replace \(N\) with \(N_C := N \otimes \mathbb{C}\).

Now let \(\Omega(P)\) denote as usual the algebra of differential forms on \(P\). The pullback

\[\kappa^* : \Omega(M) \to \Omega(P)\]

induced by the bundle projection is an injective algebra homomorphism; its image is the algebra \(\Omega_{\text{bas}}(P)\) of basic forms on \(P\). So \(\kappa^*\) has a left-inverse (pushforward), which we denote by

\[\kappa_* : \Omega_{\text{bas}}(P) \to \Omega(M).\]

The curvature \(\Theta\) of our connection \(\theta\) is an element of \(g \otimes \Omega_{\text{bas}}^+(P)\), so it makes sense to evaluate a formal power series \(\varphi \in \mathbb{R}[[g^*]]\) at \(\Theta/2\pi i \in g \otimes \Omega_{\text{bas}}^+(P)\). The resultant \(\varphi(\Theta/2\pi i)\) is a basic form on \(P\), so we can apply the pushforward \(\kappa_*\). This process yields an algebra homomorphism, namely,

\[\text{CW} : \mathbb{R}[[g^*]]^g \to \Omega^+(M)_{\mathbb{C}}, \quad \varphi \mapsto \kappa_* \varphi(\Theta/2\pi i).\]

We refer to \(\text{CW}(\varphi)\) as the Chern-Weil form of \(\varphi\). The high point of Chern-Weil theory is that the de Rham cohomology class of the Chern-Weil form \(\text{CW}(\varphi)\) is a characteristic class.

As demonstrated by Berline and Vergne \cite{3}, a similar “construction” occurs in heat kernel calculations. This is because there is a vector space isomorphism

\[\text{spin}(n) \cong \wedge^2(\mathbb{R}^n)\]
by virtue of the Chevalley map

$$\sigma: \text{Cl}(n) \to \wedge(\mathbb{R}^n),$$

which is defined, in terms of the standard orthonormal basis \(\{e_i\}_{i=1}^n\) of \(\mathbb{R}^n\), by the equation

$$\sigma(e_{i_1} \cdots e_{i_k}) = e_{i_1} \wedge \cdots \wedge e_{i_k}$$

for any subset \(\{e_{i_1}, \ldots, e_{i_k}\}\) of the basis. The Chevalley map is a vector space isomorphism, and the image of \(\text{spin}(n)\) is exactly \(\wedge^2(\mathbb{R}^n)\).

The calculation that mimics the construction of the Chern-Weil map is captured in Lemma 4.2 below. But first, we setup some notations.

Definition 4.1. We denote by

$$\lambda: \mathfrak{g} \to \wedge^2(\mathbb{R}^n)$$

the composition of the Lie algebra homomorphism (5) with the Chevalley map. We set

$$\Lambda := \sum_{i=1}^{\dim \mathfrak{g}} X_i \otimes \lambda(X_i) \in \mathfrak{g} \otimes \wedge^+(\mathbb{R}^n),$$

where \(\{X_i\}_{i=1}^{\dim \mathfrak{g}}\) is any orthonormal basis for \(\mathfrak{g}\). (The definition does not depend on the choice of the basis.)

Lemma 4.2. Let \(h_t\) be the Gaussian function on \(\mathfrak{g}\). Let \(\varphi\) be an analytic function defined near the origin of \(\mathfrak{g}\). Let \(\psi\) be a \(G\)-invariant bump function supported within the domain of \(\varphi\). Then the \(\wedge(\mathbb{R}^n)\)-valued function

$$t \mapsto \int_{\mathfrak{g}} h_t(X)\psi(X)\varphi(X)e^{-\lambda(X)} dX$$

has an asymptotic expansion \(\sum_{k=0}^\infty \Psi_k t^k\) for \(t \to 0^+\). (The asymptotic expansion is independent of the choice of \(\psi\).) The \(k\)th coefficient \(\Psi_k\) is contained in \(\bigoplus_{q=0}^k \wedge^{2q}(\mathbb{R}^n)\). If \(k \leq n/2\), then the component of \(\Psi_k\) of degree 2\(k\) (the highest degree part) is equal to that of \(\varphi(\Lambda)\in \wedge^+(\mathbb{R}^n)\).

Remark on the proof. This lemma is similar in form to Lemma 11.3 in Duistermaat [4, p. 137]. The proof given there can be carried over almost verbatim. The only extra thing that needs to be checked is that \(\sum_{i=1}^{\dim \mathfrak{g}} \lambda(X_i)\lambda(X_i) = 0\) when \(\{X_i\}_{i=1}^{\dim \mathfrak{g}}\) is an orthonormal basis for \(\mathfrak{g}\); this can be verified using the Jacobi identity of the Lie bracket. We omit the details. \(\square\)

The element \(\varphi(\Lambda)\) appearing in Lemma 4.2 is a Chern-Weil form in disguise (provided that \(\varphi\) is \(G\)-invariant), as implied by the next lemma. Before stating the lemma, recall that we have a smooth map \(c: \text{Cl}(M) \to \text{Cl}(n)\) that is an algebra isomorphism when restricted to \(\text{Cl}(T_xM) \subset \text{Cl}(M)\) for any \(x \in M\). This yields, via the Chevalley identification, a smooth map

$$\wedge(TM) \to \wedge(\mathbb{R}^n)$$

that is a vector space isomorphism when restricted to \(\wedge(T_xM)\). Though it is an abuse of notation, we shall denote this map also as

$$c: \wedge(TM) \to \wedge(\mathbb{R}^n).$$
One more notation: consider the map $\sharp: \Omega^1(M) \to \mathfrak{X}(M)$ that maps a 1-form to its dual vector field relative to the metric. This induces an algebra isomorphism

$$\sharp: \Omega(M) \to \Lambda \mathfrak{X}(M),$$

which maps differential forms to polyvector fields (so-called the “raising of indices”).

Lemma 4.3. Consider the polyvector field $(\kappa_*\Theta)^\sharp$, namely, the one obtained by taking the pushforward $\kappa_*\Theta$ of the curvature form Θ along the bundle projection and then raising its indices. Denote the value of this polyvector field at an arbitrary point $x \in M$ by $(\kappa_*\Theta)^\sharp_x$. Then $c((\kappa_*\Theta)^\sharp_x) = \Lambda$.

Remark. A straightforward consequence is that, for any $\varphi \in \mathbb{R}[\mathfrak{g}^*]^\theta$ and any $x \in M$, we have

$$A(\varphi) = CW(\varphi)_x,$$

where A is the following composition of algebra homomorphisms:

$$\mathbb{R}[\mathfrak{g}^*]^\theta \to \wedge(\mathbb{R}^n) \to \wedge T_x M \to \wedge T^*_x M,$$

where the first map is the evaluation at $\Lambda/2\pi i$; the second is the inverse of $\wedge(T_x M) \overset{\kappa}{\to} \wedge(\mathbb{R}^n)$; and the last is the lowering of indices.

Proof. For $X \in \mathfrak{g}$, let $\langle X, \Lambda \rangle$ denote the inner product of X with the \mathfrak{g}-factors of Λ, so that $\langle X, \Lambda \rangle = \lambda(X)$. We need to check that this is equal to $c(x, \kappa_*\Theta^\sharp_x)$. Since $\lambda(X) \in \wedge^2(\mathbb{R}^n)$, we may write

$$\lambda(X) = \frac{1}{2} \sum_{i,j=1}^n \langle \alpha(X)e_i, e_j \rangle e_i e_j,$$

where $\{e_i\}_{i=1}^n$ is the standard orthonormal basis for \mathbb{R}^n. Let ξ_i denote the image of e_i under the inverse of $\text{Cl}(T_x M) \overset{\kappa}{\to} \text{Cl}(n)$, and let $\tilde{\xi}_i$ be the horizontal lift of ξ_i at, say, $p \in \kappa^{-1}[x]$. Then

$$c(x, \kappa_*\Theta^\sharp_x) = \frac{1}{2} \sum_{i,j=1}^n \langle X, \Theta_p(\tilde{\xi}_i, \tilde{\xi}_j) \rangle e_i e_j.$$

The curvature form Θ and the Riemannian connection ∇^P for $\mathfrak{X}(P)$ satisfy

$$\langle X, \Theta_p(\tilde{\xi}_i, \tilde{\xi}_j) \rangle = 2\langle \nabla^P_X \tilde{\xi}_i, \tilde{\xi}_j \rangle.$$

The right-hand side is, by definition, $\langle \alpha_x(X)\xi_i, \xi_j \rangle$. This proves that $c(x, \kappa_*\Theta^\sharp_x) = \lambda(X)$ as desired. \qed

5. Proof of the Theorem

Theorem 5.1. Let M be a closed oriented Riemannian manifold of dimension n. Let P be a principal bundle over M whose fibers are isomorphic to a compact Lie group G. Let E be a G-vector space that is also a graded $\text{Cl}(n)$-module. Let D be a geometric Dirac operator on $\Gamma(P \times_G E)$, and let D_M be the restriction of the lift of D onto the domain $(C^\infty(P) \otimes E)^\Gamma$. Suppose the covariant derivative associated with D_M is a Clifford connection. If n is even, then the distributional index $[D_M]$ of D_M satisfies

$$\langle \text{Duf}^{-1}[D_M], \varphi \rangle = \langle \hat{D} \sim \hat{\varphi}, \hat{M} \rangle$$

(8)
for any \(G \)-invariant analytic function \(\varphi \) defined on some neighborhood of the origin in \(\mathfrak{g} \). The pairing is zero if \(n \) is odd.

Proof. We begin by recalling the definition of the Duflo isomorphism in terms of distributions. Let \(\mathcal{E}'(\mathfrak{g})_0^G \) denote the algebra of \(G \)-invariant distributions on \(\mathfrak{g} \) supported at the origin. Likewise, let \(\mathcal{E}'(G)_e^G \) denote the algebra of \(G \)-invariant distributions on \(G \) supported at the identity. Let \(j_\theta \) be the analytic function on \(\mathfrak{g} \) defined by:

\[
j_\theta(X) = \det^{1/2} \left[\frac{\sinh(\text{ad}(X/2))}{\text{ad}(X/2)} \right].
\]

The Duflo isomorphism is then defined as

\[
\text{Duf} = \exp^* \circ j : \mathcal{E}'(\mathfrak{g})_0^G \to \mathcal{E}'(G)_e^G,
\]

where \(\exp^* \) denotes the pushforward induced by the exponential map, and \(j \) denotes the multiplication by \(j_\theta \).

Let \(\exp^*: C^\infty(G) \to C^\infty(\mathfrak{g}) \) be the pullback along the exponential map. Since the exponential map is a local diffeomorphism on some neighborhood \(U \) of the origin in \(\mathfrak{g} \), there is an isomorphism

\[
\log^*: C^\infty(U) \to C^\infty(\exp[U])
\]

to which \(\exp^* \) serves as a left-inverse. This induces, by duality, a linear map

\[
\log^*: \mathcal{E}'(G)_e^G \to \mathcal{E}'(\mathfrak{g})_0^G,
\]

which is inverse to \(\exp^* \). Then we have \(\text{Duf}^{-1} = j^{-1} \circ \log^* \), so

\[
\langle \text{Duf}^{-1}[D_M], \varphi \rangle = \langle [D_M], \log^*(j^{-1}_\theta \psi \varphi) \rangle.
\]

Here we have included a suitable \(G \)-invariant bump function \(\psi \) so that the pullback \(\log^*(j^{-1}_\theta \psi \varphi) \) makes sense. This is fine since \([D_M] \) has point support.

Applying Equation (6), we get:

\[
\langle \text{Duf}^{-1}[D_M], \varphi \rangle = \int_M \int_G \text{Str}(P_t(x, x \cdot g) \log^*(j^{-1}_\theta \varphi \psi)(g) \nu(g)^{-1}) \ dg \ dx.
\]

Because the left-hand side is independent of \(t \), it is sufficient to show that the right-hand side is asymptotically equal to \(\langle \hat{D} \varphi, \hat{M} \rangle \) as \(t \to 0^+ \) when \(n \) is even, and that it is of \(O(t^{-1/2}) \) when \(n \) is odd.

We focus our attention to the integral over \(G \),

\[
I(t) := \int_G \text{Str}(P_t(x, x \cdot g) \log^*(j^{-1}_\theta \varphi \psi)(g) \nu(g)^{-1}) \ dg.
\]

Let

\[
j_M(X) := \det^{1/2} \left[\frac{\sinh(\alpha(X/2))}{\alpha(X/2)} \right].
\]

And let \(\text{vol} \) denote the Riemannian volume form on \(M \) associated with the measure \(dx \) on \(M \). We claim that, if \(n \) is odd, then

\[
I(t) \ \text{vol} = O(t^{1/2})
\]

for \(t \to 0^+ \); if \(n \) is even, then

\[
I(t) \ \text{vol} = \text{CW}(j^{-1}_M e^{-\tau}) \ \text{CW}(\varphi)\text{top} + O(t),
\]
where CW is the Chern-Weil map induced by the connection \(\theta \) on \(P \) (which is determined by the Clifford connection associated with \(D \)), and the decoration \(|^{\text{top}} \) picks out the top degree part of the differential form at hand. Assume for the moment that the claim is true; then, since the de Rham cohomology class of the Chern-Weil form \(\text{CW}(j_M e^{-\tau}) \) is the index class of \(D \), we indeed have Equation (8).

To prove our claim, we change the domain of the integral \(I(t) \) from \(G \) to \(g \) by means of the exponential map. As it is well-known, \(j_g^2(X) \) calculates the Jacobian determinant of the exponential map when the exponential map is diffeomorphic near \(X \). So

\[
I(t) = \int_g \text{Str}(P_t(x, x \cdot \exp(X))j_g(X)\psi(\exp(X))\varphi(X)e^{-\nu_e(X)}) \, dX.
\]

In the limit \(t \to 0^+ \), the function \(t \mapsto P_t(x, x \cdot \exp(X)) \) is of \(O(t^\infty) \) if \(X \) is outside any neighborhood of the identity. Thus, the bump function \(\psi \) may be dropped without affecting the asymptotic behavior. In other words,

\[
I(t) \sim \int_g \text{Str}(P_t(x, x \cdot \exp X)j_g(X)\varphi(X)e^{-\tau(X)}e^{-\gamma(X)}) \, dX
\]
as \(t \to 0^+ \). Note that we have used the relation \(\nu_e = \gamma + \tau \).

The asymptotic expansion of \(P_t \) is well-known. See, for instance, Berline, Getzler, and Vergne [2, Thm. 5.9, p. 176], from which we deduce that

\[
I(t) \sim \frac{1}{(4\pi t)^{n/2}} \sum_{m=0}^{\infty} t^m \text{Str}\left(\int_g h_t(X)\Phi_m(x, X)e^{-\lambda(X)} \, dX \right),
\]

where

\[
\Phi_0(x, X) = j_g(X)j_M^{-1}(X)e^{-\tau(X)}\varphi(X).
\]

The rest of the argument proceeds similarly to that found in Berline and Vergne’s proof [3] of the Atiyah-Singer index theorem (see [2, § 5.4]). In short, by Lemma 4.2 and the representation theory of Clifford algebras, we conclude that

\[
I(t) = O(t^{1/2})
\]

if \(n \) is odd, and

\[
I(t) = \frac{1}{(4\pi t)^{n/2}} \text{Str}\left(\int_g h_t(X)\Phi_0(x, X)e^{-\lambda(X)} \, dX \right) + O(t)
\]

\[
= \frac{1}{(4\pi)^{n/2}} \text{Str}(\Phi_0(x, -\Lambda)) + O(t)
\]

if \(n \) is even. Owing to Equation (7), we have

\[
I(t) \, \text{vol} = \text{CW}(j_M^{-1}e^{-\tau}\varphi)|^{\text{top}} + O(t)
\]

when \(n \) is even. Hence Equation (9) and (10) hold as claimed, and we are done. \(\square \)

Acknowledgements

The author thanks Nigel Higson for suggesting Equation (1) and also for the helpful conversations. This research was partially supported under NSF grant DMS-1101382.
References

[1] M. F. Atiyah, *Elliptic operators and compact groups*, Lecture Notes in Mathematics, Vol. 401, Springer-Verlag, Berlin, 1974. MR0482866 (58 #2910)

[2] N. Berline, E. Getzler, and M. Vergne, *Heat kernels and Dirac operators*, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. MR2273508 (2007m:58033)

[3] N. Berline and M. Vergne, *A computation of the equivariant index of the Dirac operator*, Bull. Soc. Math. France 113 (1985), no. 3, 305–345 (English, with French summary). MR834043 (87f:58146)

[4] J. J. Duistermaat, *The heat kernel Lefschetz fixed point formula for the spin-c Dirac operator*, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011. Reprint of the 1996 edition. MR2809491 (2012b:58032)

[5] J. Roe, *Elliptic operators, topology and asymptotic methods*, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 395, Longman, Harlow, 1998. MR1670907 (99m:58182)

Mathematisches Institut, Busenstraße 3–5, D-37073 Göttingen, Germany
E-mail address: shong@uni-goettingen.de
URL: diracoperat.org