Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research paper

Trypanosoma teixeirae: A new species belonging to the T. cruzi clade causing trypanosomiasis in an Australian little red flying fox (Pteropus scapulatus)

Amanda D. Barbosa¹,²,* , John T. Mackie³, Robyn Stenner⁴, Amber Gillett⁴, Peter Irwin¹, Una Ryan¹

¹ School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, WA 6150, Australia
² CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, 70040-020, Brazil,
³ Vepalabs, 36 Balaclava Street, Woollongabba, Queensland 4102, Australia,
⁴ Australia Zoo Wildlife Hospital, Beerwah, Queensland, 4519, Australia

ARTICLE INFO

Article history:
Received 30 November 2015
Received in revised form 26 April 2016
Accepted 1 May 2016

Keywords:
Trypanosoma teixeirae sp. n
Little red flying fox (Pteropus scapulatus)
Morphology
PCR
18S ribosomal RNA (rRNA)
Glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH)
Phylogeny

ABSTRACT

Little is known about the genetic diversity and pathogenicity of trypanosomes in Australian bats. Recently a novel trypanosome species was identified in an adult female little red flying fox (Pteropus scapulatus) with clinical and pathological evidence of trypanosomiasis. The present study used morphology and molecular methods to demonstrate that this trypanosome is a distinct species and we propose the name Trypanosoma teixeirae sp. n. Morphological comparison showed that its circulating trypomastigotes were significantly different from those of Trypanosoma pteropi and Trypanosoma hippocideri, two species previously described from Australian bats. Genetic information was not available for T. pteropi and T. hippocideri but phylogenetic analyses at the 18S ribosomal RNA (rRNA) and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) loci indicated that T. teixeirae sp. n. was genetically distinct and clustered with other bat-derived trypanosome species within the Trypanosoma cruzi clade.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bats (order Chiroptera) are reservoirs of numerous zoonotic pathogens including rabies, Australian bat lyssavirus, severe acute respiratory syndrome (SARS), Hendra virus, Nipah virus and Ebola virus (Wood et al., 2012). Trypanosomes are blood-borne flagellate protozoan parasites that can infect a wide range of vertebrate hosts including humans. Numerous trypanosome species have been identified in bats in Asia, Africa, South America and Europe (Hoare, 1972; Baker, 1973; Marinkelle, 1976, 1979; Gardner and Molyneux, 1988a,b; Hamanaka and Pinto Ada, 1993; Steindel et al., 1998; Barnabe et al., 2003; Grisard et al., 2003; Lisboa et al., 2008; Cottontail et al., 2009; Maia da Silva et al., 2009; Cavazzana et al., 2010; Garcia et al., 2012; Hamilton et al., 2012; Lima et al., 2012, 2013; Marcili et al., 2013; Silva-Iiturriza et al., 2013; Cottontail et al., 2014; Ramirez et al., 2014).

In Australia, three Trypanosoma spp. have been described in bats to date: Trypanosoma pteropi from the black flying fox (Pteropus gouldii) (Breinl, 1913; Mackerras, 1959), Trypanosoma hippocideri from the dusky horseshoe bat (Hipposideros bicolor albanensis) and Trypanosoma vegrandis, in pteropid bats (Yangochiroptera) and microbats (Yinpterochiroptera) (Austen et al., 2015). None of these have been associated with clinical disease. In addition, Mackie et al. (2015) recently described the first case of trypanosomiasis in a little red flying fox (Pteropus scapulatus—suborder Yinpterochiroptera) from eastern Australia, caused by an apparently novel trypanosome species.

Molecular and phylogenetic studies have suggested that bat trypanosomes are implicated in the evolutionary history of the T. cruzi clade and may potentially be the precursor of trypanosomes from Australian marsupials and several African terrestrial mammals (Hamilton et al., 2012; Lima et al., 2013). There is however very limited knowledge about the genetic diversity of Australian bat trypanosomes, where only 9 of 76 indigenous bat species have been screened for this parasite (Thompson et al., 2014).

In the present study, we describe the morphological and genetic characterisation of the novel trypanosome in the little red flying fox.
Table 1
Genbank accession numbers and sources (where known) of trypanosome isolates included in the phylogenetic analyses.

Trypanosome species	Host origin	Geographic origin	GenBank accession numbers
T. brucei rhodesiense	Human (Homo sapiens)	Europe	AY246138
T. brucei gambiense	Human (Homo sapiens)	Australia	AJ013156
T. evansi	Cavybara (Hydrochoerus)	Brazil	AJ013154
T. congolense	Koala (Phascolarctos cinereus)	Australia	AJ010710
T. rhodesiense	Human (Homo sapiens)	Uganda	AJ010712
T. brucei	Human (Homo sapiens)	Nigeria	AJ013158
T. cruzi	Human (Homo sapiens)	Brazil	AJ013156
T. lewisi	Rat (Rattus rattus)	England	AJ013160
T. vivax	Cattle	Australia	AJ013160
T. brucei	Human (Homo sapiens)	Europe	AY246138
T. brucei	Human (Homo sapiens)	Australia	AJ013156
T. evansi	Cavybara (Hydrochoerus)	Brazil	AJ013154
T. congolense	Koala (Phascolarctos cinereus)	Australia	AJ010710
T. rhodesiense	Human (Homo sapiens)	Uganda	AJ010712
T. brucei	Human (Homo sapiens)	Nigeria	AJ013158
T. cruzi	Human (Homo sapiens)	Brazil	AJ013156
T. lewisi	Rat (Rattus rattus)	England	AJ013160
T. vivax	Cattle	Australia	AJ013160

(Mackie et al., 2015), for which we proposed the name Trypanosoma teixeirae sp. n.

2. Material and methods

2.1. Sample collection

A venous blood sample was collected from the cephalic vein of an adult female little red flying fox that presented to the Australia Zoo Wildlife Hospital (AZWH) in April, 2014. The flying fox had been rescued from the ground at Redcliffe in south-eastern Queensland, Australia and was moribund with anaemia and icterus. Clinical and pathological evidence of disease consistent with trypanosomiasis in this flying fox was described by Mackie et al. (2015).

2.2. Morphological analyses

Thin blood smears were made from a drop of fresh blood and stained with Diff Quick (Siemens, Germany). After air-drying, the slides were then cover-slipped using DePeX mounting medium Gurr (Merck Pty. Limited, Kilsyth, Victoria, Australia). Stained films were systematically examined using a BX50 microscope (Olympus, Japan) with screen views generated by a DP Controller (version 3.2.1.276, Olympus, Japan). Digital light micrograph images of any trypanostagotes observed were taken at ×1000 magnification.

Digital images of the organisms identified in the blood films were used to measure key morphological features such as total length (TL), width (W), posterior to kinetoplast (PK), kinetoplast to nucleus (KN), nucleus to anterior (NA) and free flagellum (FF), according to parameters described by Hoare (1972) and Mackerras (1959). Means and standard errors were calculated. The morphological measurements were taken using the software Image J (Abramoff et al., 2004).

As two trypanosome species have previously been described in Australian bats based on morphological analysis only (Breinl, 1913; Mackerras, 1959), morphometrics of the novel trypanosome was compared statistically with available measurements for T. piropli and T. hippodermis. Mean values for each morphological feature were calculated for T. teixeirae sp. n. whilst median values of reported ranges were used as input data for T. piropli and T. hippocraes, as means were not available in the bibliographical references. Statistical analyses were conducted using the same sample t-test, in the software PAST 1.43 (Hammer et al., 2001).
2.3. DNA extraction

Genomic DNA was extracted from 200 μl of whole blood, using the MasterPure Purification Kit (Epicentre Biotechnologies, USA). A DNA extraction blank (with sterile molecular-grade water instead of blood) was included in the extraction to exclude the contamination of reagents and consumables with DNA.

2.4. 18S rRNA and GAPDH amplification and sequencing

A nested PCR protocol using generic *Trypanosoma* sp. primers SLF, S762R, S823F and S662R (Maslov et al., 1996; Mclnnes et al., 2009) was performed to amplify an approximately 900 bp fragment of the 18S rRNA gene, as previously described by Mclnnes et al. (2009). The DNA sample was also amplified at the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) gene using a heminested PCR protocol (Mclnnes et al., 2009).

PCR products were run on a 2% agarose gel containing SYBR Safe Gel Stain (Invitrogen, USA), and visualized with a dark reader trans-illuminator (Clare Chemical Research, USA). The gel bands were purified using an in-house filter tip method as previously described (Yang et al., 2013). All controls (positive, negative and DNA extraction blank) produced appropriate PCR results.

The purified PCR products were sequenced using the corresponding internal reverse primers diluted at 3.2 picomoles with an ABI PrismTM Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, California, USA) on an Applied Biosystem 3730 DNA Analyzer.

2.5. Phylogenetic analysis

Nucleotide sequences obtained at both 18S rRNA and GAPDH loci were aligned with additional trypanosome sequences retrieved from GenBank (Table 1) by MUSCLE (Edgar, 2004) using the default settings. Ambiguous regions containing gaps or poorly aligned were removed by Gblocks (Castrasana, 2000), available on the Phylogeny.fr platform (Dereeper et al., 2008), using low stringency parameters. The curated alignments were imported into MEGA 6 (Tamura et al., 2013) and the most appropriate nucleotide substitution model was selected using the dedicated function.

The evolutionary histories at both 18S rRNA and GAPDH genes were inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The gamma shape parameter was estimated directly from the data. Reliability for internal branch was assessed using the bootstrapping method (500 bootstrap replicates) and support values (>60%) indicated at the left of each node. The phylogenetic trees were drawn to scale, with branch lengths measured in the number of substitutions per site.

Estimates of genetic divergence between sequences were generated in MEGA 6 based on the Tamura-Nei algorithm, using uniform rates and a partial deletion of 95%.

3. Results

3.1. Microscopy and morphometric analysis of *T. teixeirae* sp. n.

A total of nine organisms morphologically consistent with a trypanosome were detected by light microscopy in blood films from the little red flying fox. The extracellular organisms were slender with tapered ends, with long free flagellums and either an undeveloped or absent undulating membrane. A nearly central nucleus and a terminal small round deeply staining internal structure consistent with a kinetoplast were also observed (Fig. 1a–c). The trypomastigotes varied in length from 20.4 to 30.8 μm (average 25.9 μm) and in width from 1.3 to 2.3 μm (average 1.9 μm) (Table 2).

Among the nine long slender organisms observed, two were not true trypomastigotes as their kinetoplast was located at the very end of the posterior, what made it impossible to calculate the PK distance. In another instance, the trypomastigote’s free flagellum was apparently under a red blood cell, hence any measurements taken of PF or TL would have been inaccurate. We have therefore only measured what was feasible, which explains the divergence in the number of organisms measured for each morphological feature (Table 2).

Three flagellate round forms with a flagellum running round the organism about 90 degrees were also observed (Fig. 1d). Their body shape was consistent with a sphaeromastigote or a round epimastigote if their flagellar position was considered.

Morphometric analysis revealed that although the reported length and width ranges for the *T. teixeirae* sp. n. and *T. pteropi* overlap, the former was significantly longer and thinner than the latter (p < 0.01) (Table 3). There was no significant difference between KN, NA and FF dimensions between *T. teixeirae* sp. n. and *T. pteropi*. In addition, *T. hippodideri* was significantly smaller than *T. teixeirae* sp. n. for TL and FF dimensions (p < 0.01) (Table 3). No significant difference was observed for B, PK and KN between *T. teixeirae* sp. n. and *T. hippodideri*.

3.2. Sequence and phylogenetic analysis

Maximum Likelihood analysis at both the 18S rDNA and GAPDH loci (Figs. 2 and 3, respectively) produced concordant tree topologies and revealed that *T. teixeirae* sp. n. grouped with other trypanosomes belonging to the *T. cruzi* clade, including 7 bat-derived isolates (*T. cruzi* Tcbat, *T. cruzi* marinkellei, *T. ernyai*, *T. dionisi*, *T. rangeli*, *T. vespertilionis* and *T. sp. AJ012418/GQ140365) and three isolates from Australian marsupials (T. sp. H25 from a kangaroo- AJ099168/A620276; T. sp. AB-2003-G8 from a woylie- KC753537/KC812988; and T. sp. AP-2011-64 from a brush-tailed possum – JN315383/A620276). The phylogenetic trees also corroborated the evolutionary relationships among all major trypanosome clades described in previous broader analyses. Nucleotide sequences were obtained at both loci for *T. teixeirae* sp. n. were submitted to GenBank under the following accession numbers: KT907061 and KT907062.

Estimates of evolutionary divergence between nucleotide sequences revealed that *T. teixeirae* sp. n. was genetically distinct but most closely related to *T. minasense* and *T. rangeli* (genetic distances of 1% at the 18S rDNA locus and 14%–15% at the gGAPDH, respectively) (Table 4).

4. Species description

Species Name: *Trypanosoma teixeirae* sp. n. (Fig. 1)

Type host: Little red flying fox (*Pteropus scapulatus*).

Other hosts: Unknown

Type Locality: Redcliffe peninsula, Queensland, Australia.

Prevalence: Unknown

4.1. Morphology

T. teixeirae sp. n. trypomastigotes are on average 25.9 μm long and 1.9 μm wide, exhibiting a slender shape with tapered ends, a nearly central nucleus and a small terminal kinetoplast. Undulating membrane either absent or under-developed.

4.2. Etymology

The species is named *T. teixeirae* sp. n. in honour of Prof. Marta Maria Geraldes Teixeira, from the University of Sao Paulo, who has
greatly contributed to the biology and phylogeny of trypanosome species.
Fig. 2. Phylogenetic relationships of *Trypanosoma teixeirae* sp. n. with other trypanosomes, based on 18S rDNA partial sequences (∼730 bp). Evolutionary relationships were determined by Maximum Likelihood, based on the Tamura-Nei model (Tamura et al., 2013). Bootstrap values (>60%) based on 500 replicates are indicated at the left of each supported node. The scale bar is the proportion of base substitutions per site. Trypanosome species from bats are shown with an asterisk.

Unfortunately no genetic data was available for two of the previously reported bat-derived trypanosomes in Australia (*T. pteropi* and *T. hipposideri*). *Trypanosoma pteropi* was described as having a slender body (total length 18–22 μm; width 2–4 μm), an underdeveloped undulating membrane and a long free flagellum whereas *T. hipposideri* is very small and slender (total length 10.5–13 μm; width 1.5–2 μm), with a delicate short free flagellum at the anterior end (Breinl, 1913; Mackerras, 1959). Statistical analysis however, revealed that *T. teixeirae* sp. n. was significantly larger than both *T. pteropi* and *T. hipposideri*, even though they had several other overlapping morphometric features. However, morphology alone is not a reliable tool to delimit trypanosome species due to the interspecific similarities and intraspecific variability (Dunn et al., 1963; Marinkelle, 1966; Dunn, 1968).

Besides the typical trypomastigotes, two round forms (sphaeromastigotes or round epimastigotes) were also observed. The term ‘sphaeromastigote’ (Brack, 1968) refers to the parasite body shape.
Fig. 3. Phylogenetic relationships of Trypanosoma teixeirae sp. n. with other trypanosomes, based on gGAPDH partial sequences (~775 bp). Evolutionary relationships were determined by Maximum Likelihood, based on the Tamura-Nei model (Tamura et al., 2013). Bootstrap values (>60%) based on 500 replicates are indicated at the left of each supported node. The scale bar is the proportion of base substitutions per site. Trypanosome species from bats are shown with an asterisk.

only and has been applied without reference to the flagellar development. However, as these forms may occur within different stages of the parasite’s development, it is more appropriate to characterise the round organisms observed in the present study as round epimastigotes, considering both their body form and flagellar features (Elliott et al., 1974). This stage normally occurs in the interior of the cell, in vessels or in the insect gut.

Evolutionary reconstructions at both 18S rDNA and gGAPDH loci revealed that T. teixeirae sp. n. was genetically distinct from all known trypanosomes. The use of these two genes is recommended for taxonomic analysis of trypanosomatids and validation of new trypanosome species (Hamilton et al., 2004; Viola et al., 2009; Teixeira et al., 2011; Lima et al., 2012, 2013; Borghesan et al., 2013).

Phylogenetic analyses at both 18S rDNA and gGAPDH loci revealed that T. teixeirae sp. n. clustered within the T. cruzi clade together with all other bat-derived trypanosome species described to date, except T. livingstonei (which was positioned basal to the T. cruzi clade), T. evansi (which belongs to the T. brucei clade) and T. ve grandi s (which forms a separate group associated with other marsupial-derived trypanosomes found in Australia) (Hamilton et al., 2007; Botero et al., 2013; Lima et al., 2013; Austen et al., 2015; Carnes et al., 2015). At the gGAPDH locus, T. teixeirae sp. n. was closest to T. minasense and T. rangel and exhibited 14% and 15% genetic
distance from these two species respectively. T. minasense has been found in neotropical non-human primates from South America (Zuccarelli and Loureno-de-Oliveira, 1998) whilst T. rangeli has been reported in a range of mammalian hosts including Brazilian bats (Maia da Silva et al. 2009). Although T. teixeirae sp. n. exhibited a relatively low (1%) genetic distance from its closest related species at the 18S rRNA locus, a similar pattern was observed when comparing other previously described species among each other. For instance, genetic distances between T. minasense and T. vespertilio were 1% and 12% at the 18S rRNA and gGAPDH loci respectively. Trypanosomes have few morphological features detectable using light microscopy which can adequately delimit species (Gibson, 2009). Previous studies have reported that a genetic distance of 3.75% at the GAPDH gene is sufficient to delimit a new trypanosome species (McInnes et al., 2011). By this criterion, T. teixeirae sp. n. is clearly a separate species.

Bat trypanosomes have been implicated in the evolutionary origin of T. cruzi, the causative agent of Chagas disease, one of the most important public health issues in South America (Hamilton et al., 2012; Bonney, 2014). The ‘bat-seeding’ theory suggests that T. cruzi evolved from within a broad clade of bat-derived species, which have made the switch into terrestrial mammals (Hamilton et al., 2012; Lima et al., 2013). The theory also implies that these arboreal trypanosome species could potentially be evolutionary precursors for the terrestrial trypanosome lineage within Australian mammals (Hamilton et al., 2012; Lima et al., 2013; Thompson et al., 2014). It is therefore possible that T. teixeirae sp. n. could be the precursor of three marsupial-derived trypanosomes belonging to the T. cruzi clade: T. sp. H25 (Averis et al., 2009), T. sp. AP-2011-64 (Paparini et al., 2011) and T. sp. AB-2013-G8 (Botero et al., 2013). As most native bat species remain unsampled (Thompson et al., 2014), future studies are required to provide more evidence to support the ‘bat-seeding’ theory in Australia and elucidate evolutionary relationships between trypanosomes.

Similarly to most bat trypanosomes described worldwide, the prevalence, distribution, vectors, life cycle and zoonotic potential of T. teixeirae sp. n. remain unclear. Therefore, more studies comprising a larger sample size are required to better understand the prevalence and clinical impacts of T. teixeirae sp. n. on bat populations, taking into account ecological and stress factors that could play a role in the expression of clinical disease.

References

Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image processing with image. J. Biophotonics Int. 11, 36–42.

Austen, J.M., O’Dea, M., Jackson, B., Ryan, U., 2015. High prevalence of Trypanosoma vegrantil in bats from Western Australia. Vet. Parasitol. 142, 1443–1452.

Averis, S., Thompson, R.C., Lymberry, A.J., Wayne, A.F., Morris, K.D., Smith, A., 2009. The diversity, distribution and host-parasite associations of trypanosomes in Western Australian wildlife. Parasitology 136, 1269–1279.

Baker, J.R., 1957. First European record of Trypanosoma (Megaltrypanum) sp. of bats. New Nat. Biol. 241, 96.

Barnabe, C., Brisse, S., Tiberayre, M., 2003. Phylogenetic diversity of bat trypanosomes of subgenus Schizotrypanum based on multilocus enzyme electrophoresis, random amplified polymorphic DNA, and cytochrome b molecular sequence analyses. Infect. Genet. Evol. 2, 201–209.

Bonney, K.M., 2014. Chagas disease in the 21st century: a public health success or an emerging threat? Parasite 21, 11.

Borgbom, T.C., Ferreira, R.C., Takata, C.S., Campon, M., Bordé, C.C., Paiva, F., Milder, R.V., Teixeira, M.M., Camargo, E.P., 2013. Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist 164, 129–152.

Bonney, S.J., Thompson, C.K., Peacock, C.S., Clode, P.L., Nicholls, P.K., Wayne, A.F., Lymberry, A.J., Thompson, R.C., 2013. Trypanosomes genetic diversity, polyparasitism and the population decline of the critically endangered Australian marsupial, the brushtailed Bettongia penicillata. Int. J. Parasitol. Parasites Wildl. 2, 77–80.

Brack, C., 1968. Elektronenmikroskopische Untersuchungen zum Lebenszyklus von Trypanosoma cruzi unter besonderer berücksichtigung der entwicklungsformen im übertragert Rhodnius prolixus. Acta Trop. 25.

Breinl, A., 1913. Parasite protozoa encountered in the blood of Australian native animals. Aust. Inst. Trop. Med., 30–38.

Carnes, J., Anupa, A., Balner, O., Jackson, A., Lewis, M., Brown, R., Cestari, L., Desguereides, M., Gendrin, C., Hertz-Fowler, C., Imanura, H., Ivens, A., Koreny, L., Lai, D.H., Macleod, A., McMclrett, S.M., Monnet, S., Moon, W., Myler, P., Phan, I., Ramsamy, G., Sivam, D., Lun, Z.R., Lukes, J., Stuart, K., Schnauser, A., 2015. Genome and phylogenetic analyses of Trypanosoma evansi reveal an extensive diversity of brucei and multiple independent origins for dyskinetoplasty. PLoS Negl. Trop. Dis. 9, e34044.

Castsens, J.A., 2000. Selection of conservative blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 546–552.

Cavazzon, J.R., Jr., Marcill, A., Lin, L., da Silva, F.M., Jungo, A.C., Veludo, H.H., Vici, L.B., Campaner, M., Nunes, V.L., Paiva, F., Coura, J.R., Camargo, E.P., Teixeira, M.M., 2010. Phylogeographic, ecological and biological patterns shown by nuclear (srRNA and gGAPDH) and mitochondrial (Cyt b) genes of the trypanosomes of the subgenus Schizotrypanum parasitic in Brazilian bats. Int. J. Parasitol. 40, 345–355.

Cottonall, V.M., Wellingshausen, N., Kalko, E.K., 2009. Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panama. Parasitology 136, 1133–1145.

Cottonall, V.M., Kalko, E.K., Cottonall, I., Wellingshausen, N., Tschapka, M., Perkins, S.L., Pinto, C.M., 2014. High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS One 9, e108603.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Du Fayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogeny.fr: robust phylogenetic analysis for the nonspecialist. Nucleic Acids Res. 36, W465–W469.

Dunn, F.L., Lambricht, F.L., Duplessis, R., 1963. Trypanosomes of south American monkeys and marsmutes. J. Trop. Med. Hyg. 12, 524–534.

Dunn, F.L., 1968. The T. inf strict smear as an epidemiological tool; with special reference to counting hemlggends. Bull. World Health Organ. 39, 439–449.

Edgar, R.C., 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Bioinformatics 20, 11-12.

Elliott, K., O’Connor, M., Wolstenholme, G.E.W., 1974. Trypanosomiasis and Leishmaniasis (with Special Reference to Chagas’ Disease). John Wiley & Sons, Ltd., Chichester, UK.

Garcia, L., Ortiz, S., Osorio, G., Torrico, M.C., Torrico, F., Solari, A., 2012. Phylogenetic analysis of Bolivian bat trypanosomes of the subgenus Schizotrypanum based on cytochrome B sequence and minicircle analyses. PLoS One 7, e36578.

Gardner, R.A., Molyneux, D.H., 1988a. Schizotrypanum in british bats. Parasitology 96, 433–447, Pt 3.

Gibson, W., 2009. Species-specific probes for the identification of the African tsetse-transmitted trypanosomes. Parasitology 136, 1501–1507.

Grisard, E.C., Sturr, H.R., Campbell, D.A., 2003. A new species of trypanosome Trypanosoma desterrerosis sp. n., isolated from South American bats. Parasitology 127, 265–271.

Hamama, S.J., Pinto Ada, S., 1993. Growth and differentiation on a trypanosome of the subgenus Schizotrypanum from the bat Phyllostomus hastatus. Rev. Bras. Med. Trasp. 26, 225–230.

Hamilton, P.B., Stevens, J.R., Gaunt, M.W., Gildey, J., Gibson, W.C., 2004. Trypanosomes are monophyletic: evidence from genes for glyceroldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int. J. Parasitol. 34, 1393–1404.

Hamilton, P.B., Gibson, W.C., Stevens, J.R., 2007. Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol. Phylogenet. Evol. 44, 15–25.

Hamilton, P.B., Torriera, M.M., Stevens, J.R., 2012. The evolution of Trypanosoma cruzi: the ‘bat seeding’ hypothesis. Trends Parasitol. 28, 136–141.

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.
Hoare, C.A. 1972. The Trypanosomes of Mammals: A Zoological Monograph. Blackwell Scientific Publishing, Oxford, England.

Lima, L., Silva, F.M., Neves, L., Attias, M., Takata, C.S., Campaner, M., de Souza, W., Hamilton, P.B., Teixeira, M.M., 2012. Evolutionary insights from bat trypanosomes: morphological, developmental and phylogenetic evidence of a new species Trypanosoma (Schizotrypanum) emrei sp. nov., in African bats closely related to Trypanosoma (Schizotrypanum) cruzi and allied species. Protist 163, 856–872.

Silva, L., Espinoza-Alvarez, O., Hamilton, P.B., Neves, L., Takata, C.S., Campaner, M., Attias, M., de Souza, W., Camargo, E.P., Teixeira, M.M., 2013. Trypanosoma livingstonei: a new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade. Parasites Vectors 6, 221.

Mackie, J.T., Stenner, R., Gillett, A., Barbosa, A.D., Ryan, U., Irwin, P., 2015. Trypanosomiasis in an Australian little red flying-fox (Pteropus scapulatus). J. Vet. Diagn. Invest. (in press).

Maia da Silva, F., Marcelli, A., Lima, L., Cavazzana Jr., M., Ortiz, P.A., Campaner, M., Takeda, G.F., Paiva, F., Nunes, V.L., Camargo, E.P., Teixeira, M.M., 2009. Trypanosoma rangeli isolates of bats from Central Brazil: genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Trop. 109, 199–207.

Marceli, A., da Costa, A.P., Soares, H.S., Acosta Ida, C., de Lima, J.T., Minervino, A.H., Melo, A.T., Aguiar, D.M., Pacheco, R.C., Gennari, S.M., 2013. Isolation and phylogenetic relationships of bat trypanosomes from different biomes in Mato Grosso, Brazil. J. Vet. Parasitol. 99, 1071–1076.

Marikelle, C.J., 1966. Observations on human, monkey and bat trypanosomes and their vectors in Colombia. Trans. R. Soc. Trop. Med. Hyg. 60, 109–116.

Marikelle, C.J., 1976. The Biology of the Trypanosomes of Bats. Biology of the Kinetoplastida. In: Lumdsen, W.H.R., Evans, D.A. (Eds.). Academic, New York, pp. 175–216.

Marikelle, C.J., 1979. Trypanosoma (Megatrypanum) megaschizotropon sp. n. from the flying fox Pteropus tonganus, Quoy, Gaimard. J. Protozool. 26, 352–353.

Maslov, D.A., Lukes, J., Jirku, M., Simpson, L., 1996. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol. Biochem. Parasitol. 75, 197–205.

McInnes, L.M., Gillett, A., Ryan, U.M., Austen, J., Campbell, R.S., Hanger, J., Reid, S.A., 2009. Trypanosoma irwin n. sp. (Sarcosomiastigophora) from bats from the koala (Phascolarctos cinereus). Parasitology 136, 875–885.

McInnes, L.M., Hanger, J., Simmons, G., Reid, S.A., Ryan, U.M., 2011. Novel trypanosome Trypanosoma gillettii sp. (Euglenozoa: Trypanosomatidae) and the extension of the host range of Trypanosoma copei to include the koala (Phascolarctos cinereus). Parasitology 138, 59–70.

Paparini, A., Irwin, P.J., Warren, K., McNinnes, L.M., de Tores, P., Ryan, U.M., 2011. Identification of novel trypanosome genotypes in native Australian marsupials. Vet. Parasitol. 183, 21–30.

Ramirez, J.D., Tapia-Calle, G., Munoz-Cruz, G., Poveda, C., Rendon, L.M., Hincapie, E., Guhl, F., 2014. Trypanosome species in neotropical bats: biological, evolutionary and epidemiological implications. Infect. Genet. Evol. 22, 250–256.

Silva-Ituriza, A., Nassar, J.M., Garcia-Rawlinns, A.M., Rosales, R., Mijares, A., 2013. Trypanosoma evansi kDNA minicircle found in the Venezuelan nectar-feeding bat Leptonycteris curasoae (cieloophagininae), supports the hypothesis of multiple origins of that parasite in South America. Parasitol. Int. 62, 95–99.

Steindel, M., Grisdard, E.C., de Carvalho Pinto, J.C., Cordeiro, F.D., Ribeiro-Rodrigues, R., Romanha, A.J., 1998. Characterization of trypanosomes from the subgenus Schizotrypanum isolated from bats Eptesicus sp. (Chiroptera: Vespertilionidae), captured in Florianopolis, Santa Catarina State, Brazil. J. Parasitol. 84, 601–607.

Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

Teixeira, M.M.G., Borghesan, T.C., Ferreira, R.C., Santos, M.A., Takata, C.S., Campaner, M., Nunes, V.L., Milder, R.V., de Souza, W., Camargo, E.P., 2011. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of Proteobacterial symbionts. Protist 162, 503–524.

Thompson, C.K., Godfrey, S.S., Thompson, R.C., 2014. Trypanosomes of australian mammals: a review. Int. J. Parasitol. Parasites Wildl. 3, 57–66.

Viola, L.B., Attias, M., Takata, C.S., Campaner, M., De Souza, W., Camargo, E.P., Teixeira, M.M., 2009. Phylogenetic analyses based on small subunit rDNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase genes and ultrastructural characterization of two snake Trypanosomes: Trypanosoma serpenti n. sp. from Pseudoboa nigra and Trypanosoma cascavelli from Crotaus duriusis terrificus. J. Eukaryot. Microbiol. 56, 594–602.

Wood, J.L., Leach, M., Waldman, L., Macgregor, H., Fooks, A.R., Jones, K.E., Restif, O., Dechmann, D., Hayman, D.T., Baker, K.S., Peel, A.J., Karnins, A.O., Fahr, J., Ntiamoa-Baidu, Y., Suu-Ire, R., Breiman, R.F., Epstein, J.H., Field, H.E., Cunningham, A.A., 2012. A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2881–2892.

Yang, R., Murphy, C., Song, Y., Ng-Hublin, J., Estcourt, A., Hijjawi, N., Chalmers, R., Hadfield, S., Bath, A., Gordon, C., Ryan, U., 2013. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Exp. Parasitol. 135, 142–147.

Ziccardi, M., Lourenco-de-Oliveira, R., 1999. Polymorphism in trypanosomastigotes of Trypanosoma (Megatrypanum) minaense in the blood of experimentally infected squirrel monkey and marmosets. Mem. Inst. Oswaldo Cruz 94, 649–653.