Research Article

MiRNA-186-5p Exerts an Anticancer Role in Breast Cancer by Downregulating CXCL13

Yulong Wang,1,2 Shaojun Hu,3 Hongbin Zhang,1 Chenxin Zhang,1 Qixin Lian,3 Yu Jiao,3 and Yu Zhou1

1Tumor Subject, Jiamusi University School of Clinical Medicine, Jiamusi, China
2Department of Oncological Surgery, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
3Department of Oncological Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi, China

Correspondence should be addressed to Yu Zhou; y78zhou@stu.ahu.edu.cn

Received 20 January 2022; Accepted 10 February 2022; Published 25 February 2022

Academic Editor: Deepak Kumar Jain

Copyright © 2022 Yulong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this study is to illustrate the biofunctions of miRNA-186-5p level in breast cancer (BCa) and to explore the underlying mechanisms. Levels of miRNA-186-5p in BCa tissues and adjacent normal ones were determined. Association of miRNA-186-5p with pathological parameters and prognosis in BCa patients was analyzed. Luciferase assay was conducted for the prediction of the interaction between miRNA-186-5p and CXCL13. Their mutual interaction in influencing the proliferative potential of BCa was finally explored. Results showed that miRNA-186-5p expression was downregulated in BCa cell lines and tissues. MiRNA-186-5p overexpression could attenuate proliferative ability in BCa cells. A direct and negative correlation was identified between miRNA-186-5p and CXCL13. In addition, their mutual interaction was corespnsible for the malignant development of BCa. In BCa patients, miRNA-186-5p level was remarkably associated with tumor size and tumor staging, rather than other pathological parameters. Low level of miRNA-186-5p predicted a poor prognosis in BCa. Downregulated miRNA-186-5p in BCa is linked to tumor size, tumor staging, and prognosis. miRNA-186-5p downregulates CXCL13 by binding CXCL13 3′UTR in BCa cells. Overexpression of CXCL13 can significantly neutralize the inhibitory effects of miRNA-186-5p on BCa proliferation.

1. Introduction

The incidence rate of BCa is relatively high, which ranks first in developed countries. In China, it ranks third among female malignancies [1–3]. Although screening and treatment strategies have been greatly improved, new onset of BCa is growing at a rate of about 2 million each year globally [4]. Surgery is preferred, and it can remarkably enhance the 5-year survival in BCa patients. In particular, the 5-year survival in early stage BCa patients undergoing active treatment can achieve 70–95% [5, 6]. Nevertheless, tumor cell metastasis in advanced stage results in the low survival in BCa patients [7, 8]. Hallmarks of early stage BCa contribute to early diagnosis and treatment in a relatively noninvasive way [9–12].

The newly emerged noncoding RNAs, especially microRNAs (miRNAs), provide a new direction in recognizing molecular events during the development of BCa [13, 14]. From the first discovery of miRNAs in 1993, their biological functions have been gradually revealed. Through targeting mRNA 3′UTR, miRNAs regulate the processes of cell proliferation, differentiation, apoptosis, and other aspects [11, 13, 15, 16]. BCa-associated miRNAs have been identified, which contribute to early diagnosis and comprehensive treatment of BCa [17, 18]. By analyzing the downloaded microarray with BCa profiling, miRNA-186-5p is found to be abnormally expressed in BCa cell lines with a relatively strong proliferative potential [18]. MiRNA-186-5p is differentially expressed in tumor samples [19]. Another previous study showed that miR-186 functions as a tumor suppressor via targeting Twist1 in BCa and might serve as a novel target in BCa diagnosis and therapeutics [20]. The interaction between miRNA-186-5p and CXCL13 is also revealed by online
prediction. This study aims to uncover the involvement of miRNA-186-5p and CXCL13 in regulating the proliferative ability in BCA.

2. Materials and Methods

2.1. BCA Patients and Sample Collection. Tumor tissues and adjacent normal tissues were collected from 48 BCA patients undergoing radical resection. They were newly treated patients and did not have metabolic diseases (e.g., diabetes), cardiovascular diseases, and cerebrovascular diseases. Clinical data and follow-up information were recorded. This study was approved by the Ethics Committee of the First Affiliated Hospital of Jiamusi University and was also conducted after obtaining the informed consent of each subject.

2.2. Detection of Cell Viability, Cell Formation, and Cell Proliferation. Breast cancer cell lines (including MCF-7, MDA-MB-231, BT474, ZR-75-30, and SKBR3) and MCF-10A (a kind of normal mammary epithelial cells) were cultured at the concentration of 2 x 10^5 cells per well. CCK-8 assay (Dojindo, Kumamoto, Japan) was performed daily at different time points. After cell culture for 2 h, the OD value per sample was measured via the microplate reader at 490 nm, and the cell activity curve was plotted. Determination of colony formation was done according to the manufacturers’ instructions of the colony formation assay kit. Cell proliferation was determined by 5-ethyl-2'-deoxyuridine (EdU) assay, following the protocols of the EdU assay kit (Sigma-Aldrich, St. Louis, MO, USA).

2.3. qRT-PCR TRIzol. qRT-PCR TRIzol was used to extract the total RNA. qRT-PCR was performed according to the previously established instructions. β-Actin or U6 served as the internal control. The 2△△Ct method was used for the quantitative analysis. Primer sequences are as follows: miRNA-186-5p: forward: 5′-ACACTCCAGTGGGCAGCAGCACACT-3′, reverse: 5′-CTCAACTGTTGTCGTCGGA-3′; U6: forward: 5′-CGCAAGGATGACACGCAAATTC-3′, reverse: 5′-TATATCCTCTTGCTTCA-3′; CXCL13: forward: 5′-GTCAGAAGTGCTGAGGTTCGTC-3′, reverse: 5′-CCATCCAGCTGGAGGTCACCA-3′; β-actin: forward: 5′-GCTGGACCGACACGACAAATTC-3′, reverse: 5′-GCTGATCCACATCTGCTGGAA-3′.

2.4. Western Blotting. Total protein extracted from the cells was quantified via the bicinchoninic acid method. Protein samples with the adjusted same concentration were separated and then loaded on polyvinylidene fluoride membranes followed by being blocked with defatted milk (5%) for 2 h and subsequently incubated with primary antibodies at 4°C overnight. Thereafter, secondary antibodies were added for further incubation for 2 h followed by bands being exposed via the ECL kit.

2.5. Luciferase Reporting Experiment. MiRNA-186-5p mimics/NC mimics and CXCL13-WT/MMD2-MUT were used to transfect cells in plates (24-well). 48 hours later, cells were lysed for the further measurement of the luciferase activity.

2.6. Statistical Analysis. GraphPad Prism and Statistical Product and Service Solutions 18.0 were employed for data analysis. The chi-square test was employed for the relationship analysis between level of miRNA-186-5p and pathological indexes of BCA patients. Statistical significance was set as P < 0.05.

3. Results

3.1. Downregulated miRNA-186-5p in BCA Tissues. A total of 48 matched BCA tissues and adjacent normal ones were collected. Results showed that miRNA-186-5p was lowly expressed in BCA tissues (Figures 1(a) and 1(b)). Additionally, in vitro abundance of miRNA-186-5p was downregulated in BCA cell lines, especially MCF-7 and SKBR3 cells. Furthermore, Kaplan–Meier curves were depicted based on the collected follow-up data. Lowly expressed miRNA-186-5p indicated a poor prognosis in BCA. The enrolled BCA participants were assigned into 2 different groups after calculating the miRNA-186-5p levels in BCA tissues (Figure 1(c)). The association of miRNA-186-5p level with age, tumor size, tumor staging, lymphatic metastasis, and distant metastasis in them was specifically analyzed. Above findings suggested that the miRNA-186-5p level was related to tumor size and also tumor staging in BCA.

3.2. MiRNA-186-5p Overexpression Attenuated Proliferation of BCA. MiRNA-186-5p overexpression was constructed via miRNA-186-5p mimic in MCF-7 and SKBR3 cells (Figure 2(a)). Proliferative ability in BCA cells influenced by miRNA-186-5p was tested. miRNA-186-5p overexpression resulted in a significant decrease of BCA cell viability from day 1 to 4 (Figure 2(b)). Furthermore, BCA cells with overexpressed miRNA-186-5p showed fewer visible colonies (Figure 2(c)). Besides, EdU-positive rate decreased by transfection of miRNA-186-5p mimic (Figure 2(d)). It is concluded that overexpression of miRNA-186-5p attenuated proliferative ability in BCA.

3.3. CXCL13 Bound to miRNA-186-5p. Through bioinformatics analysis online, three predicted consequential pairings with miRNA-186-5p were found in the 3′ UTR of CXCL13. Luciferase assay confirmed that miRNA-186-5p overexpression could attenuate the activity of the luciferase in WT-CXCL13 vector, rather than the mutant-type one (Figure 3(a)). Therefore, we believed that CXCL13 was the downstream target of miRNA-186-5p. CXCL13 was remarkably downregulated in MCF-7 and SKBR3 cells overexpressing miRNA-186-5p at both mRNA and protein levels (Figures 3(b) and 3(c)). Converse to miRNA-186-5p, CXCL13 was upregulated in BCA tissues (Figures 3(d) and 3(e)).
3.4. MiRNA-186-5p Regulated Proliferative Ability in BCa by Targeting CXCL13. We next investigated the role of CXCL13 in the development of BCa. It is shown that co-overexpression upregulated CXCL13 than those overexpressing miRNA-186-5p (Figures 4(a) and 4(b)). Interestingly, higher viability and colony number were shown in BCa cells with co-overexpressed miRNA-186-5p and CXCL13 (Figures 4(c) and 4(d)). Taken above, CXCL13 overexpression could abolish the inhibitory effects of miRNA-186-5p in BCa cell proliferation.

4. Discussion

In recent years, research studies on the molecular mechanisms of BCa development have made great progress. Nevertheless, surgery and chemotherapy are the conventional therapeutic strategies available for BCa patients [1, 5–7]. Owing to the high metastasis rate in the early phase, it often leads to the fact that BCa patients are already in the advanced stage and lose the surgery opportunity for the first time of diagnosis [6, 7]. Expensive
costs and drug resistance remarkably limit the application of newly developed biological therapy and targeted therapy [7, 8]. Therefore, the in-depth study of the malignant biological behaviors and the establishment of infiltration and metastasis blockage are necessary to reduce the mortality of BCa [9–11]. Genetic changes are
attributed to the malignant phenotypes of BCa, including expression and functional changes of miRNAs [12, 17, 18].

The current study demonstrated that miRNA-186-5p was lowly expressed in BCa tissues than adjacent normal ones. Moreover, its level markedly correlated to the tumor staging and tumor size of BCa. It is suggested that miRNA-186-5p may have an important anticancer role in BCa. Subsequently, to further explore the effect of miRNA-186-5p on the biological functions of BCa, miRNA-186-5p overexpression was established. CCK-8, colony formation, and EdU assay results altogether uncovered that miRNA-186-5p could inhibit the proliferative ability in BCa cells. However, its specific molecular mechanism was still unclear.

Figure 4: MiRNA-186-5p regulated cell proliferation in BCa by targeting CXCL13. MCF-7 and SKBR3 cells were cotransfected with NC mimic + NC, miRNA-186-5p mimic + NC, or miRNA-186-5p mimic + CXCL13. (a) Protein level of CXCL13. (b) The mRNA level of CXCL13. (c) Viability from day 1 to day 4. (d) Relative colony number *(P) < 0.05.
A complicated network involving miRNAs, their targets, and relevant pathways helps us to better clarify the molecular mechanisms of BCa [21, 22]. With the continuous advancement of molecular biology technology, detection of miRNA levels, which is convenient, effective and sensitive, provides a guarantee for early diagnosis of tumors [23, 24]. We verified that CXCL13 was the downstream target binding miRNA-186-5p. CXCL13 was detected to be upregulated in BCa samples and was found to be negatively associated with the miRNA-186-5p level. CXCL13 overexpression abolished the inhibited proliferation in BCa cells overexpressing miRNA-186-5p. To sum up, a negative feedback loop between miRNA-186-5p and CXCL13 exerted an anticancer role in BCa. There are still several limitations in our present study. We only performed the in vitro assays to verify the role of miRNA-186-5p in regulating kinds of BCa phenotypes. Lack of evidence in animal studies made this study deficient. In the future, we plan to complete the validation of the above findings in nude mice, thus to further explore the effects of miRNA-186-5p in tumorgenesis of BCa.

5. Conclusions
MiRNA-186-5p is downregulated in BCa samples. The level of miRNA-186-5p is correlated to tumor size, tumor stage, and the prognosis in BCa patients. In general, miRNA-186-5p alleviates the malignant development of BCa via negatively regulating the CXCL13 level.

Data Availability
The datasets used and analyzed during the current study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
Yulong Wang and Shaojun Hu contributed equally to this work.

References
[1] J. Boyages, "Radiation therapy and early breast cancer: current controversies," Medical Journal of Australia, vol. 207, no. 5, pp. 216–222, 2017.
[2] J. C. Sitt, C. Y. Lui, L. H. Sinn, and J. C. Fong, "Understanding breast cancer screening—past, present, and future," Hong Kong medical journal = Xianggang yi xue zhi, vol. 24, no. 2, pp. 166–174, 2018.
[3] T. Li, C. Mello-Thoms, and P. C. Brennan, “Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence,” Breast Cancer Research and Treatment, vol. 159, no. 3, pp. 395–406, 2016.
[4] H. Ito and K. Matsuo, "Molecular epidemiology, and possible real-world applications in breast cancer," Breast Cancer, vol. 23, no. 1, pp. 33–38, 2016.
[5] C. N. Baxevanis, S. P. Fortis, and S. A. Perez, "The balance between breast cancer and the immune system: challenges for prognosis and clinical benefit from immunotherapies," Seminars in Cancer Biology, vol. 72, pp. 76–89, 2021.
[6] S. O’Grady and M. P. Morgan, "Calcium transport and signalling in breast cancer: functional and prognostic significance," Seminars in Cancer Biology, vol. 72, pp. 19–26, 2021.
[7] J. Kozlowska, A. Kozlowska, and J. Kocki, "Breast cancer metastasis - insight into selected molecular mechanisms of the phenomenon," Postepy Higieny Medycyny Doswiadczalnej, vol. 69, pp. 447–451, 2015.
[8] K. Kast, T. Link, K. Friedrich et al., "Impact of breast cancer subtypes and patterns of metastasis on outcome," Breast Cancer Research and Treatment, vol. 150, no. 3, pp. 621–629, 2015.
[9] D. Miladinova, "Molecular imaging in breast cancer," Nuclear Medicine and Molecular Imaging, vol. 53, no. 5, pp. 313–319, 2019.
[10] M. L. De Angelis, F. Francescangeli, and A. Zeuner, "Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities," Cancers, vol. 11, no. 10, 2019.
[11] M. Abolghasemi, S. S. Tehrani, T. Yousefi et al., "MicroRNAs in breast cancer: roles, functions, and mechanism of actions," Journal of Cellular Physiology, vol. 235, no. 6, pp. 5008–5029, 2020.
[12] T. G. Odle, "Precision medicine in breast cancer," Radiologic Technology, vol. 88, no. 4, pp. 401M–421M, 2017.
[13] A. S. Moghaddam, M. Salimi, N. Ranji, and H. Mozdarani, "Upregulation of miR-21 and miR-106b in plasma and tissues as a possible prognostic marker in aggressive breast cancer," Iranian Red Crescent Medical Journal, vol. 23, no. 10, p. e547, 2021.
[14] E. V. Kalinina, V. I. Ivanova-Radkevich, and N. N. Chernov, "Role of MicroRNAs in the regulation of redox-dependent processes," Biochemistry, vol. 84, no. 11, pp. 1233–1246, 2019.
[15] F. A. Rahmani, N. Ranji, and H. S. Saedi, "Correlation between the expression levels of circulating miR-21 and miR-192 and clinicopathological features in plasma of patients with gastric cancer in Iran," Iranian Red Crescent Medical Journal, vol. 23, no. 6, p. e485, 2021.
[16] T. B. Hemmaty, N. Ranji, and F. Safari, "Evaluation of the expression of circulating miR-16 and miR-26a in the plasma of gastric cancer patients in guilan province, north of Iran," Iranian Red Crescent Medical Journal, vol. 23, no. 3, p. e214, 2021.
[17] A. McGuire, J. A. L. Brown, and M. J. Kerin, "Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring," Cancer and Metastasis Reviews, vol. 34, no. 1, pp. 145–155, 2015.
[18] B. Xiao, W. Zhang, L. Chen et al., "Analysis of the miRNA-mRNA-lncRNA network in human estrogen receptor-positive and estrogen receptor-negative breast cancer based on TCGA data," Gene, vol. 658, pp. 28–35, 2018.
[19] J. Li, L. Xia, Z. Zhou et al., "miR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1," Archives of Biochemistry and Biophysics, vol. 640, pp. 53–60, 2018.
[20] W. j. Sun, Y. n. Zhang, and P. Xue, "miR-186 inhibits proliferation, migration, and epithelial-mesenchymal transition in breast cancer cells by targeting Twist1," Journal of Cellular Biochemistry, vol. 120, no. 6, Article ID 10001, 2019.
[21] F. Afonso-Grunz and S. Müller, “Principles of miRNA-mRNA interactions: beyond sequence complementarity,” *Cellular and Molecular Life Sciences*, vol. 72, no. 16, pp. 3127–3141, 2015.

[22] C. J. Stavast and S. J. Erkeland, “The non-canonical aspects of MicroRNAs: many roads to gene regulation,” *Cells*, vol. 8, no. 11, 2019.

[23] O. A. Sandiford, C. A. Moore, J. Du et al., “Human aging and cancer: role of miRNA in tumor microenvironment,” *Advances in Experimental Medicine & Biology*, vol. 1056, pp. 137–152, 2018.

[24] Y. Tutar, “Editorial (thematic issue: “miRNA and cancer; computational and experimental approaches”),” *Current Pharmaceutical Biotechnology*, vol. 15, no. 5, p. 429, 2014.