Thrombosis and thrombocytopenia after vaccination against
and infection with SARS-CoV-2: a population-based cohort
analysis

Edward Burn1,2*, Xintong Li2*, Antonella Delmestri2, Nathan Jones2, Talita Duarte-Salles1,
Carlen Reyes1, Eugenia Martínez-Hernández3, Edelmira Martí4, Katia MC Verhamme5, Peter
R Rijnbeek5, Victoria Y Strauss2†, Daniel Prieto-Alhambra2,5†

1Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i
Gurina (IDiAPJGol), Barcelona, Spain, 2Centre for Statistics in Medicine (CSM), Nuffield
Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDROMS),
University of Oxford, UK, 3Department of Neurology, Hospital Clinic and University of
Barcelona, Barcelona, Spain, 4Hemostasis and Thrombosis Unit, Hematology Department,
Hospital Clínico Universitario de Valencia, Spain, 5Department of Medical Informatics,
Erasmus University Medical Center, Rotterdam, The Netherlands

*Joint first authors, †Joint senior authors

Corresponding author: Prof Daniel Prieto-Alhambra, Botnar Research Centre, Windmill
Road, OX37LD, Oxford, UK, daniel.prietoalhambra@ndorms.ox.ac.uk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives
To calculate the observed rates of thrombosis and thrombocytopenia following vaccination against SARS-CoV-2, infection with SARS-CoV-2, and to compare them to background (expected) rates in the general population.

Design
Cohort study using routinely collected primary care records.

Setting
Routine practice in the United Kingdom.

Participants
Two mutually exclusive vaccinated cohorts included people vaccinated with either ChAdOx1 or BNT162b2 between 8 December 2020 and 6 March 2021. A third cohort consisted of people newly infected with SARS-CoV-2 identified by a first positive RT-PCR test between 1 September 2020 and 28 February 2021. The fourth general population cohort for background rates included those people with a visit between 1 January 2017 and 31 December 2019. In total, we included 1,868,767 ChAdOx1 and 1,661,139 BNT162b2 vaccinees, 299,311 people infected with SARS-CoV-2, and 2,290,537 people from the general population.

Interventions
First-dose of either ChAdOx1 or BNT162b2

Main outcome measures
Outcomes included venous thrombosis, arterial thrombosis, thrombocytopenia, and thrombosis with thrombocytopenia. Outcome rates were estimated for recipients of the ChAdOx1 or BNT162b2 vaccines, for people infected with SARS-CoV-2, and background rates in the general population. Indirectly standardized incidence ratios (SIR) were estimated.

Results
We included 1,868,767 ChAdOx1 and 1,661,139 BNT162b2 vaccinees, 299,311 people infected with SARS-CoV-2, and 2,290,537 people from the general population for background rates. The SIRs for pulmonary embolism were 1.23 [95% CI, 1.09-1.39] after vaccination with ChAdOx1, 1.21 [1.07-1.36] after vaccination with BNT162b2, and 15.31 [14.08 to 16.65] for infection with SARS-CoV-2. The SIRs for thrombocytopenia after vaccination were 1.25 [1.19 to 1.31] for ChAdOx1 and 0.99 (0.94 to 1.04) for BNT162b2. Rates of deep vein thrombosis and arterial thrombosis were similar among those vaccinated and the general population.

Conclusions
ChAdOx1 and BNT162b2 had broadly similar safety profiles. Thrombosis rates after either vaccine were mostly similar to those of the general population. Rates of pulmonary embolism increased 1.2-fold after either vaccine and 15-fold with SARS-CoV-2 infection. Thrombocytopenia was more common among recipients of ChAdOx1 but not of BNT162b2.
Summary box

What is already known on this topic

- Spontaneous reports of unusual and severe thrombosis with thrombocytopenia syndrome (TTS) raised concerns regarding the safety of adenovirus-based vaccines against SARS-CoV-2
- In a cohort study including over 280,000 people aged 18-65 years vaccinated with ChAdOx1 in Denmark and Norway, Pottegård et al reported increased rates of venous thromboembolic events as well as thrombocytopenia among vaccine recipients.

What this study adds

- In this cohort study, ChAdOx1 and BNT162b2 were seen to have broadly similar safety profiles.
- Rates of thrombosis after either vaccine were generally similar to those of the general population. Rates of pulmonary embolism were though 1.2-fold higher than background rates after either vaccine, which compared to 15-fold higher after SARS-CoV-2 infection.
- Thrombocytopenia was more common among recipients of ChAdOx1 but not of BNT162b2.
Introduction

Vaccines against SARS-CoV-2 have been developed rapidly using a number of platforms. The ChAdOx1 nCoV-19 (Oxford–AstraZeneca; ChAdOx1) and BNT162b2 mRNA (Pfizer–BioNTech; BNT162b2) vaccines received approval for use in the United Kingdom on 8 and 31 December 2020, respectively. Evidence from clinical trials and real-world data has shown these vaccines to be highly effective in preventing symptomatic COVID-19, severe disease, and hospitalization.\(^1\)–\(^7\)

As COVID-19 vaccines have been approved under emergency authorization, they must continue to be monitored to assess their safety. Instances of rare adverse events have been identified alongside the ongoing nationwide immunization programs.\(^8\)–\(^10\) A particular concern has arisen regarding thrombotic events, with concurrent thrombocytopenia reported among individuals vaccinated with adenovirus-based vaccines against SARS-CoV-2. As of 26 May 2021, 348 spontaneous reports of major thromboembolic events with thrombocytopenia had been documented following 24 million first doses and 13 million second doses of the ChAdOx1 vaccine in the UK.\(^11\) Although fewer concerns have been raised about safety signals for BNT162b2, instances of immune thrombocytopenia have also been observed among recipients of this vaccine.\(^12\)

In this study, we estimated the incidence of thrombosis, thrombocytopenia, and thrombosis with thrombocytopenia over the 28 days following a first dose of the ChAdOx1 and BNT162b2 vaccines and compared these rates with historical, pre-pandemic rates in the general population. To provide additional context, we also studied the rates of these events after a positive RT-PCR test for SARS-CoV-2.
Methods

Study design, setting, and data sources

People vaccinated against SARS-CoV-2 and people infected with SARS-CoV-2 were identified from Clinical Practice Research Datalink (CPRD) AURUM. A background cohort was obtained from CPRD GOLD to estimate pre-pandemic background rates. AURUM and GOLD are established primary care databases broadly representative of the UK population, and previous research has demonstrated their validity for vaccine safety surveillance. Both databases were mapped to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) for analysis.

Study participants and follow-up

Four cohorts were studied. Two mutually exclusive vaccinated cohorts included people vaccinated with either ChAdOx1 or BNT162b2 between 8 December 2020 and 6 March 2021. They were followed for up to 28 days from their first vaccination (index date). A third cohort consisted of people newly infected with SARS-CoV-2 identified by a first positive RT-PCR test between 1 September 2020 and 28 February 2021. The test date was used as the index date. They were followed for up to 90 days. The fourth cohort, a general population background cohort, included people who had a primary care visit or contact recorded between 1 January 2017 and 31 December 2019. That first visit or contact was used as the index date and follow-up ran up to 31 December 2019.

All participants were required to be aged 30 years or older and, for the primary analysis, have at least 1 year of prior history available. Participants did not contribute to an analysis if they had the same event recorded in the year before their index date. Time at risk was censored if an individual had the outcome of interest or exited the database before the end of follow-up.

Sensitivity analyses were conducted removing the requirements of a year of prior history and, for the background population, a primary care visit or contact. For the latter, 1 January 2017 was used as the index date.

Study outcomes

We used diagnostic codes to identify five venous thromboembolic events: cerebral venous sinus thrombosis (CVST), deep vein thrombosis (DVT), pulmonary embolism (PE), splanchnic vein thrombosis (SVT), and the composite event venous thromboembolism (VTE), which encompassed DVT and PE. We identified two arterial thromboembolic events (ATE): myocardial infarction and ischemic stroke. We also used an overall stroke definition that included non-specific, hemorrhagic, and ischemic stroke codes.

Thrombocytopenia was identified using diagnostic codes and laboratory data showing platelets count between 10,000 and 150,000 platelets per microliter, based on the Brighton collaboration definition. Immune thrombocytopenia was identified using diagnostic codes.
Thrombosis with thrombocytopenia syndromes (TTS) was identified where thrombocytopenia was observed within 10 days before or after thrombosis. This time window was broadened in a sensitivity analysis.

Results for additional related outcomes (intestinal infarction, platelet disorder, portal vein thrombosis, and thrombocytopenic purpura) are reported in the Appendix.

Statistical methods

For each cohort and outcome of interest, we describe the cohort’s age, sex, comorbidities, and medication use within 6 months before and up to 4 days before the index date. We report the number of events observed and crude incidence rates per 100,000 person-years with 95% confidence intervals (CIs). We used indirect standardization with the background cohort as the standard to estimate the number of events expected for the vaccination and SARS-CoV-2 cohorts if their risk was the same as that of the general population. We estimated standardized incidence ratios (SIRs) and 95% confidence intervals comparing observed and expected rates. We stratified all analyses by 10-year age bands and sex and analyses of those vaccinated by calendar month. We calculated the standardized event difference proportion to provide a measure of absolute risk. To avoid re-identification, we do not report any analysis with under 5 cases.

The study protocol was published in the EU PAS Register (EUPAS40414). The use of CPRD data was approved by the Independent Scientific Advisory Committee (21_000391 and 20_000211). All analytical code is available at: https://github.com/oxford-pharmacoepi/CovidVaccinationSafetyStudy.

Patient and public involvement

No patients or members of the public were directly involved in the study design or its execution.
Results

We included 1,868,767 people vaccinated with ChAdOx1, 1,661,139 people vaccinated with BNT162b2, 299,311 people infected with SARS-CoV-2, and 2,290,537 people from the general population. The two vaccinated populations were similar in terms of age, sex, and clinical characteristics. The vaccinated populations were older, more often female, and had a higher prevalence of all studied comorbidities than the general population. Differences in the prevalence of comorbidities was more pronounced for younger age groups. Those infected with SARS-CoV-2 were younger than the general population. Detailed characteristics for all four cohorts are given in Table 1, and stratified by age in the Appendix.

BNT162b2 vaccination started earlier than ChAdOx1 vaccination. The numbers vaccinated with the two vaccines became similar in late January 2021, and ChAdOx1 vaccines predominated in February and early March (Figure 1).

Rates of VTE were higher in men aged 50-59 vaccinated with BNT162b2 (367.5/100,000 person-years [95%CI 237.8-542.5]) than the age-sex specific background rate (211.9/100,000 person-years [200.2-224.1]) (Figure 2). Rates of VTE were also higher in women aged ≥80 vaccinated with ChAdOx1 (878.1/100,000 person-years [685.8-1107.6]) than the equivalent age-sex background (703.0/100,000 person-years [670.1-737.2]). Standardized SIRs for VTE were 1.07 [0.98-1.18] for ChAdOx1, 1.09 [1.00-1.20] for BNT162b2, and 8.08 [7.48-8.72] for SARS-CoV-2 (Table 2, Figure 3).

Although crude rates of DVT post-vaccination were higher than expected in some strata (Figure 2), standardization attenuated this difference, with SIRs of 0.95 [0.83-1.08] for ChAdOx1 and 1.01 [0.89-1.14] for BNT162b2 (Figure 3). DVT rates after SARS-Cov-2 infection were more than double the expected rates, with a SIR of 2.56 [2.15-3.05].

Post-vaccination rates of PE were higher than expected in some strata, such as women and men aged 50-59, women aged ≥80 vaccinated with ChAdOx1, and men aged 60-69 vaccinated with BNT162b2 (Figure 2). After standardization, excess PE events remained for ChAdOx1 and Bnt162n2, with SIRs of 1.23 [1.09-1.39] and 1.21 [1.07-1.36], respectively. In comparison, SARS-Cov-2 infection had a SIR of 15.31 [14.08-16.65]. Incidence rate ratios by age and sex for PE and the profiles of those with an event are summarized in the Appendix.

Few occurrences of SVT were seen, with a SIR of 1.38 [0.72-2.66] for ChAdOx1 and under 5 cases following BNT162b2 vaccination or SARS-Cov-2 infection. CVST was too rare (n<5) in all three cohorts to conduct the primary analyses (see Figure 3 and below for results from sensitivity analyses).

Observed post-vaccination ATE rates were similar to expected rates (Figure 2). There were fewer ATE than expected for both vaccinated cohorts after standardization (Table 2, Figure 3). Little differences was seen between observed and expected ATE in people infected with SARS-CoV-2 (Figure 3). When analyzed separately, observed rates of myocardial infarction and ischemic stroke were also similar to expected rates following both vaccination and infection with SARS-CoV-2 (Figure 2, Figure 3).
Thrombocytopenia was more common than expected after vaccination with ChAdOx1 (SIR 1.25 [1.19-1.31]), but not after vaccination with BNT162b2 (SIR 0.99 [0.94-1.04]). Immune thrombocytopenia was more common than expected from the background population after vaccination with ChAdOx1 (SIR 2.01 [1.27-3.19]), BNT162b2 (SIR 1.74 [1.05-2.89]), and SARS-CoV-2 infection (SIR 2.83 [1.18-6.80]). Incidence rate ratios by age and sex for thrombocytopenia are summarized in the Appendix, along with the profiles of those affected.

VTE with concurrent thrombocytopenia was very rare and had similar crude rates in the background population (3.5/100,000 person-years [3.1-4.1]), after ChAdOx1 vaccination (5.9 [2.4-12.1]), and after BNT162b2 vaccination (5.1 [1.9-11.0]). There were fewer than 5 cases in the SARS-CoV-2 cohort. Standardization confirmed this finding, with SIRs of 1.09 [0.52-2.29] for ChAdOx1 and 0.86 [0.39-1.92] for BNT162b2.

ATE with thrombocytopenia was also very rare, with a rate after ChAdOx1 vaccination of 4.2/100,000 person-years [1.4-9.8] and an overall crude background rate of 1.7/100,000 person-years [1.4-2.1], equivalent to a SIR of 1.57 [0.65-3.78]. Fewer than 5 cases were identified after BNT162b2 vaccination and SARS-CoV-2 infection.

Overall crude rates of stroke with thrombocytopenia were 1.4/100,000 person-years [1.1-1.8] in the background population and 5.0 [1.8-11.0] after vaccination with ChAdOx1, equivalent to a SIR of 2.21 [0.99 to 4.91]. Again, under 5 cases were seen after BNT162b2 vaccination and SARS-CoV-2 infection, so SIR rates were not estimated. Myocardial infarction with thrombocytopenia was too rare (n<5) in the vaccination and infection cohorts for analysis.

Sensitivity analyses

Results from sensitivity analyses were generally consistent with the results from the primary analyses (see Appendix). One key addition was the analysis of CVST, which was too rare for estimation in the primary analyses but could be analyzed when the requirement of a year of prior history was removed. The observed number of CVST events (n=5) was then higher than expected (2.2) in the ChAdOx1 cohort, resulting in a SIR of 2.32 [0.97-5.58] (Table 2, Figure 3).

All primary and sensitivity analysis results are available in an interactive web application: https://livedataoxford.shinyapps.io/CovidVaccinationSafetyStudy/
Discussion

Summary of results
In a cohort of 3.5 million people vaccinated against SARS-CoV-2, 74 (0.002%) more than expected suffered a VTE in the 28 days following vaccination. This higher rate was driven by more PE events after both ChAdOx1 and BNT162b2 than expected, with a 20% increase in rates of events and 93 (0.003%) excess PEs observed. The rate of PE was much larger in people infected with SARS-CoV-2, with a 15-fold relative increase and 511 (0.17%) excess PE events observed in 300,000 people.

Although observed rates of thrombocytopenia were similar to expected for people vaccinated with BNT162b2, a 25% relative increase in the rate of thrombocytopenia was seen among those vaccinated with ChAdOx1. This increase was most pronounced for younger age groups. No signal was seen for either vaccine for ATE. Finally, 3 (0.0001%) more cases than expected were seen of CVST and 3 (0.0002%) of stroke with thrombocytopenia in 1.8 million people vaccinated with ChAdOx1 in a secondary analysis.

Noticeable differences in comorbidities between the vaccinated and background cohorts suggest the potential for residual confounding, unaccounted for in our analyses.

Findings in context
Concerns over thrombosis – alone and with thrombocytopenia – have been raised from spontaneous reports data since March.9,20 Case series have been published, suggesting a new clinical entity known as vaccine-induced immune thrombosis thrombocytopenia (VITT), presenting as unusual thrombosis with raised antibodies against platelet factor 4. Only a few small studies have been conducted on this topic. A study of 280,000 vaccinees aged between 18 and 65 in Denmark and Norway assessed the 28-day incidence rates of thromboembolic events and coagulation disorders following ChAdOx1.21 Similar to our analyses, Pottegård et al applied a historical comparator design with indirect standardization. They found a 2-fold increased rate of VTE, an 80% increase in rates of PE, and a 20-fold increased rate of CVST. The authors also reported a 3-fold higher-than-expected rate of thrombocytopenia and a potential increase. As in our study, they observed similar rates of arterial events among those vaccinated as would be expected given rates in the general population.

More recently, a nested case-control study from Scotland found no increase in risk of VTE with either vaccine.22 The authors also reported potential increased risks of ATE and hemorrhagic events with ChAdOx1, although these were not confirmed in subsequent self-controlled case series analysis. The authors suggested that residual confounding could explain their findings. Case-control analyses based on routine health data have recently been criticized and shown to induce substantial residual bias,23 which may explain the differences in results from those in our study and that by Pottegård et al.

Study strengths and limitations
Our study has limitations. The time period studied covered the initial phases of vaccination in the UK, when vaccines were prioritized for older, more vulnerable populations and healthcare staff.24 We therefore saw a higher prevalence of conditions such as asthma and diabetes in those vaccinated than in the general population. Although we used indirect
standardization to account for differences in the four cohorts' age distributions, remaining residual confounding could explain some of our findings. Such bias could result in overestimated safety signals due to remaining imbalances in the baseline outcome risk when comparing vaccinated and background populations.

Measurement error is unavoidable in observational studies. However, any errors are likely to have been non-differential across our vaccinated and unvaccinated cohorts and should therefore not have affected our relative rate estimates. As we only used primary care data, we may have underestimated absolute risks due to a lack of hospital linkage. However, previous studies have shown that CPRD captures rare events well, even without linkage to Hospital Episode Statistics.25

Although within-database comparisons are preferred,16 we had to use two slightly different primary care databases. However, one study found that these databases gave similar results.26 We also used the OMOP common data model to maximize the comparability of the two databases irrespective of differences in their coding systems.

Our study also has strengths. This is the largest cohort study on the safety of COVID-19 vaccines to date. The large sample of 3.5 million vaccinees allowed us to assess very rare events that are generally not observed in clinical trials. We used a well-established source of routinely collected health data previously used for vaccine safety studies.27,28 Including cohorts of people infected with SARS-CoV-2 and the general population provided much needed context for interpreting our findings. Our historical comparison method ensured a timely study with high statistical power. Our protocol was pre-specified and agreed in advance with the study funder, the European Medicines Agency. Our analyses were based on data recorded before the detection of thrombosis and thrombocytopenia signals, minimizing surveillance bias.

Conclusions

In a cohort of 3.5 million people vaccinated against SARS-CoV-2, thrombosis, thrombocytopenia, and thrombosis with thrombocytopenia were very rare events. The rates of VTE and ATE were broadly similar after ChAdOx1 and BNT162b2 vaccination, although thrombocytopenia was more common among ChAdOx1 vaccinees, particularly in younger age strata. A potential safety signal for PE for both vaccines was identified. Although the occurrence of PE after vaccination was 1.2-fold above that expected in the general population, its occurrence among those contracting SARS-CoV-2 was more than 15-fold the background (expected) rate. Vaccinated people recorded more comorbidities and medicine use than the background population, suggesting potential for unresolved confounding by indication.
References

1. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med*. 2020;383(27):2603-2615.

2. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *Lancet*. 2021;397(10269):99-111.

3. Hall VJ, Foulkes S, Saei A, et al. Effectiveness of BNT162b2 mRNA Vaccine Against Infection and COVID-19 Vaccine Coverage in Healthcare Workers in England, Multicentre Prospective Cohort Study (the SIREN Study). Published online February 22, 2021. doi:10.2139/ssrn.3790399

4. Vasileiou E, Simpson CR, Robertson C, et al. Effectiveness of First Dose of COVID-19 Vaccines Against Hospital Admissions in Scotland: National Prospective Cohort Study of 5.4 Million People. Published online February 19, 2021. doi:10.2139/ssrn.3789264

5. Pritchard E, Matthews PC, Stoesser N, et al. Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. *Nat Med*. Published online June 9, 2021:1-9.

6. Vasileiou E, Simpson CR, Shi T, et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. *Lancet*. 2021;397(10285):1646-1657.

7. Cabezas C, Coma E, Mora-Fernandez N, et al. Effects of BNT162b2 mRNA vaccination on COVID-19 disease, hospitalisation and mortality in nursing homes and healthcare workers: A prospective cohort study including 28,594 nursing home residents, 26,238 nursing home staff, and 61,951 healthcare workers in Catalonia. *SSRN Electron J*. Published online April 9, 2021. doi:10.2139/ssrn.3815682

8. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. *N Engl J Med*. 2021;(NEJMoa2104882). doi:10.1056/NEJMoa2104882

9. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrié PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. *N Engl J Med*. 2021;(NEJMoa2104840). doi:10.1056/NEJMoa2104840

10. Blauenfeldt RA, Kristensen SR, Ernstsen SL, Kristensen CCH, Simonsen CZ, Hvas A-M. Thrombocytopenia with acute ischemic stroke and bleeding in a patient newly vaccinated with an adenoviral vector-based COVID-19 vaccine. *J Thromb Haemost*. 2021; doi:10.1111/jth.15347.

11. MHRA. Coronavirus vaccine - weekly summary of Yellow Card reporting: Updated 6 May 2021. Published May 6, 2021. Accessed May 7, 2021. https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting

12. Lee E-J, Cines DB, Gernsheimer T, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. *Am J Hematol*. 2021;96(5):534-537.

13. Wolf A, Dedman D, Campbell J, et al. Data resource profile: Clinical Practice Research Datalink (CPRD) Aurum. *Int J Epidemiol*. 2019;48(6):1740-1740g.
14. Herrett E, Gallagher AM, Bhaskaran K, et al. Data resource profile: Clinical practice research datalink (CPRD). *Int J Epidemiol.* 2015;44(3):827-836.

15. Leite A, Thomas SL, Andrews NJ. Implementing near real-time vaccine safety surveillance using the Clinical Practice Research Datalink (CPRD). *Vaccine.* 2017;35(49 Pt B):6885-6892.

16. Li X, Ostropolets A, Makadia R, et al. Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study. *BMJ.* 2021;373:n1435.

17. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for active safety surveillance research. *J Am Med Inform Assoc.* 2012;19(1):54-60.

18. Chen MD MA R. Updated Proposed Brighton Collaboration process for developing a standard case definition for study of new clinical syndrome X, as applied to Thrombosis with Thrombocytopenia Syndrome (TTS). Published May 18, 2021. Accessed June 13, 2021. https://brightoncollaboration.us/wp-content/uploads/2021/05/TTS-Interim-Case-Definition-v10.16.3-May-23-2021.pdf

19. Kirkwood BR, Sterne JAC. *Essential Medical Statistics.* 2nd ed. Wiley-Blackwell; 2010.

20. Scully M, Singh D, Lown R, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. *N Engl J Med.* 2021;384(23):2202-2211.

21. Pottegård A, Lund LC, Karlstad Ø, et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study. *BMJ.* 2021;373:n1114.

22. Simpson CR, Shi T, Vasileiou E, et al. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. *Nat Med.* Published online June 9, 2021:1-8.

23. Schuemie MJ, Ryan PB, Man KKC, Wong ICK, Suchard MA, Hripcsak G. A plea to stop using the case-control design in retrospective database studies. *Stat Med.* 2019;38(22):4199-4208.

24. Joint Committee on Vaccination and Immunisation. Priority groups for coronavirus (COVID-19) vaccination: advice from the JCVI. Published online December 30, 2020. https://www.gov.uk/government/publications/priority-groups-for-coronavirus-covid-19-vaccination-advice-from-the-jcvi-30-december-2020

25. Stowe J, Andrews N, Wise L, Miller E. Investigation of the temporal association of Guillain-Barre syndrome with influenza vaccine and influenzalike illness using the United Kingdom General Practice Research Database. *Am J Epidemiol.* 2009;169(3):382-388.

26. Gulliford MC, Sun X, Anjuman T, Yelland E, Murray-Thomas T. Comparison of antibiotic prescribing records in two UK primary care electronic health record systems: cohort study using CPRD GOLD and CPRD Aurum databases. *BMJ Open.* 2020;10(6):e038767.

27. Bryan P, Seabroke S, Wong J, et al. Safety of multicomponent meningococcal group B vaccine (4CMenB) in routine infant immunisation in the UK: a prospective surveillance study. *Lancet Child Adolesc Health.* 2018;2(6):395-403.
28. Grint DJ, McDonald HI, Walker JL, Amirthalingam G, Andrews N, Thomas S. Safety of inadvertent administration of live zoster vaccine to immunosuppressed individuals in a UK-based observational cohort analysis. *BMJ Open*. 2020;10(1):e034886.
Table 1. Characteristics of study participants

Characteristics of the participants in the four study cohorts used for the primary analyses. Participants were aged 30 years or older and had at least one year of prior history before index date in the database. Those in the general population had a primary care visit or contact between 2017 and 2019. People infected with SARS-CoV-2 had a confirmatory positive RT-PCR test. *Conditions of interest: autoimmune disease, antiphospholipid syndrome, thrombophilia, asthma, atrial fibrillation, malignant neoplastic disease, diabetes mellitus, obesity, or renal impairment. † Medications of interest: non-steroidal anti-inflammatory drugs, Cox2 inhibitors, systemic corticosteroids, hormonal contraceptives, tamoxifen, and sex hormones and modulators of the genital system.

	General population	Vaccinated with ChadOx1	Vaccinated with BNT162b2	Infected with SARS-CoV-2
N	2,290,537	1,868,767	1,661,139	299,311
Age (median [IQR])	54 [43 to 67]	66 [56 to 73]	67 [54 to 78]	48 [39 to 58]
Age: 30 to 39	431,801 (18.9%)	123,991 (6.6%)	135,101 (8.1%)	82,427 (27.5%)
Age: 40 to 49	459,400 (20.1%)	173,453 (9.3%)	178,503 (10.7%)	77,184 (25.8%)
Age: 50 to 59	506,515 (22.1%)	285,938 (15.3%)	279,223 (16.8%)	75,543 (25.2%)
Age: 60 to 69	403,673 (17.6%)	567,041 (30.3%)	322,252 (19.4%)	38,646 (12.9%)
Age: 70 to 79	301,179 (13.1%)	545,251 (29.2%)	372,426 (22.4%)	14,839 (5.0%)
Age: 80 or older	187,969 (8.2%)	173,093 (9.3%)	373,634 (22.5%)	10,672 (3.6%)
Sex: Male	1,094,911 (47.8%)	845,908 (45.3%)	702,863 (42.3%)	136,301 (45.5%)
Years of prior observation time (median [IQR])	13.5 [8.1 to 16.3]	19.0 [7.7 to 31.1]	19.1 [7.8 to 31.2]	12.4 [5.3 to 23.9]

Comorbidities
Condition	2015	2016	2017	2018
Autoimmune disease	57,773 (2.5%)	72,119 (3.9%)	64,311 (3.9%)	7,136 (2.4%)
Antiphospholipid syndrome	1,046 (0.0%)	1,535 (0.1%)	1,349 (0.1%)	215 (0.1%)
Thrombophilia	2,582 (0.1%)	3,628 (0.2%)	3,192 (0.2%)	549 (0.2%)
Asthma	301,669 (13.2%)	284,126 (15.2%)	253,177 (15.2%)	45,470 (15.2%)
Atrial fibrillation	72,643 (3.2%)	100,730 (5.4%)	117,398 (7.1%)	5,993 (2.0%)
Malignant neoplastic disease	187,499 (8.2%)	257,449 (13.8%)	268,655 (16.2%)	15,663 (5.2%)
Diabetes mellitus	197,619 (8.6%)	306,944 (16.4%)	276,194 (16.6%)	28,488 (9.5%)
Obesity	94,054 (4.1%)	120,052 (6.4%)	98,900 (6.0%)	16,791 (5.6%)
Heart disease	251,708 (11.0%)	334,469 (17.9%)	349,669 (21.0%)	24,511 (8.2%)
Hypertensive disorder	533,750 (23.3%)	677,743 (36.3%)	643,345 (38.7%)	53,921 (18.0%)
Renal impairment	161,596 (7.1%)	207,751 (11.1%)	234,386 (14.1%)	14,150 (4.7%)
Chronic Obstructive Pulmonary Disease	77,205 (3.4%)	107,636 (5.8%)	95,654 (5.8%)	5,384 (1.8%)
Dementia	29,376 (1.3%)	38,589 (2.1%)	34,829 (2.1%)	4,886 (1.6%)

Medication use (183 days prior to four days prior)

Medication Type	2015	2016	2017	2018
Non-steroidal anti-inflammatory drugs	618,552 (27.0%)	264,090 (14.1%)	242,309 (14.6%)	33,299 (11.1%)
Cox2 inhibitors	6,115 (0.3%)	1,931 (0.1%)	1,581 (0.1%)	258 (0.1%)
Systemic corticosteroids	263,488 (11.5%)	119,766 (6.4%)	105,977 (6.4%)	14,168 (4.7%)
Category	Count 1	Count 2	Count 3	Count 4
---	----------	----------	----------	----------
Antithrombotic and anticoagulant therapies	102,605 (4.5%)	61,322 (3.3%)	65,237 (3.9%)	3,885 (1.3%)
Lipid modifying agents	130,264 (5.7%)	110,329 (5.9%)	102,835 (6.2%)	8,224 (2.7%)
Antineoplastic and immunomodulating agents	57,403 (2.5%)	20,445 (1.1%)	20,541 (1.2%)	3,822 (1.3%)
Hormonal contraceptives for systemic use	76,796 (3.4%)	18,566 (1.0%)	20,491 (1.2%)	7,205 (2.4%)
Tamoxifen	1,957 (0.1%)	814 (0.0%)	799 (0.0%)	87 (0.0%)
Sex hormones and modulators of the genital system	110,583 (4.8%)	44,612 (2.4%)	44,563 (2.7%)	10,283 (3.4%)

Summary count of conditions and medications of interest

Category	Count 1	Count 2	Count 3	Count 4
One or more condition of interest*	579,628 (25.3%)	778,559 (41.7%)	751,224 (45.2%)	68,879 (23.0%)
One or more medication of interest †	758,348 (33.1%)	345,875 (18.5%)	318,704 (19.2%)	47,239 (15.8%)
One or more condition/medication of interest †	1,058,141 (46.2%)	949,193 (50.8%)	897,757 (54.0%)	99,727 (33.3%)
Table 2. Observed versus expected events among people vaccinated against SARS-CoV-2 or with a positive PCR test for SARS-CoV-2

For each event of interest, the number of people contributing to the analysis from the target population, their person-years contributed, and the number of observed events are given. Expected events are estimated using indirect standardization to the general population. Standardized incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated. Events with fewer than 5 occurrences were omitted for privacy reasons: cerebral venous sinus thrombosis and splanchnic vein thrombosis (BNT162b2 and SARS-CoV-2), venous thromboembolism with thrombocytopenia (SARS-CoV-2), and myocardial infarction or ischemic stroke with thrombocytopenia (BNT162b2 and SARS-CoV-2).

*Cerebral venous sinus thrombosis is reported without the requirement for a year of prior history as fewer than 5 events were seen when this restriction was imposed.

Event	Vaccinated with ChAdOx1	Vaccinated with BNT162b2				
Person-years	N	Person-years	Observed events	Expected events	Standardised event difference proportion %	SIR (95% CI)
Thrombosis						
Cerebral venous sinus thrombosis (CVST)*	1,956.1 36	1,656.8 75	124,569	5	2.2	2.32 (0.97 to 5.58)
Deep vein thrombosis (DVT)	1,863.6 68		118,809	226	237.9	-0.0006% 0.95 (0.83 to 1.08)
			118,344	254	251.3	0.0002% 1.01 (0.89 to 1.14)
Condition	Cases	Controls	No. of Cases	Incidence (%)	Confidence Interval	
---------------------------------	-------	----------	--------------	---------------	---------------------	
SARS-CoV-2 PCR positive test	298,776	40,528	125	48.8	0.0255% (2.56 (2.15 to 3.05))	
Pulmonary embolism (PE)						
Vaccinated with ChAdOx1	1,863,403	118,787	259	210.4	0.0026% (1.23 (1.09 to 1.39))	
Vaccinated with BNT162b2	1,656,755	118,336	261	216.4	0.0027% (1.21 (1.07 to 1.36))	
SARS-CoV-2 PCR positive test	298,786	40,491	547	35.7	0.1711% (15.31 (14.08 to 16.65))	
Splanchnic Vein Thrombosis (SVT)						
Vaccinated with ChAdOx1	1,868,536	119,132	9	6.5	0.0001% (1.38 (0.72 to 2.66))	
Venous thromboembolism (VTE)						
Vaccinated with ChAdOx1	1,858,837	118,483	461	429.2	0.0017% (1.07 (0.98 to 1.18))	
Vaccinated with BNT162b2	1,652,892	118,054	491	448.6	0.0026% (1.09 (1.00 to 1.20))	
SARS-CoV-2 PCR positive test	298,397	40,429	646	80	0.1897% (8.08 (7.48 to 8.72))	
Myocardial infarction						
	Vaccinated with ChAdOx1	Vaccinated with BNT162b2	SARS-CoV-2 PCR positive test	Ischemic stroke	ATE (Myocardial infarction or ischemic stroke)	Stroke
------------------------------------	-------------------------	--------------------------	-----------------------------	-----------------	---	--------
	1,861,3	1,654,0	298,632			
	65	37	40,509			
	118,643	118,145	79			
	347	356	65.7			
	-0.0035%	-0.0047%	0.0045%			
	0.84 (0.76 to 0.94)	0.82 (0.74 to 0.91)	1.20 (0.96 to 1.50)			
	1,867,0	1,659,6	299,100			
	00	35	40,582			
	119,025	118,542	13			
	72	120	12.3			
	-0.0013%	0.0007%	0.0002%			
	0.75 (0.60 to 0.95)	1.11 (0.92 to 1.32)	1.05 (0.61 to 1.81)			
	1,858,9	1,651,9	298,464			
	74	03	40,485			
	118,481	117,990	88			
	406	458	77.6			
	-0.0053%	-0.0049%	0.0035%			
	0.81 (0.73 to 0.89)	0.85 (0.78 to 0.93)	1.13 (0.92 to 1.40)			
Vaccination Group	Cases	Total	Mean Age	Median Age	Rate (%)	CI
-----------------------------------	---------	--------	----------	------------	----------	-------------
Vaccinated with ChAdOx1	1,861,3	118,629	413	405	0.0004%	1.02 (0.93 to 1.12)
Vaccinated with BNT162b2	1,654,5	118,167	457	454	0.0002%	1.01 (0.92 to 1.10)
SARS-CoV-2 PCR positive test	298,709	40,525	65	54.5	0.0035%	1.19 (0.93 to 1.52)

Thrombocytopenia

Immune thrombocytopenia

Vaccination Group	Cases	Total	Mean Age	Median Age	Rate (%)	CI
Vaccinated with ChAdOx1	1,868,3	119,120	18	8.9	0.0005%	2.01 (1.27 to 3.19)
Vaccinated with BNT162b2	1,660,7	118,628	15	8.6	0.0004%	1.74 (1.05 to 2.89)
SARS-CoV-2 PCR positive test	299,175	40,593	5	1.8	0.0011%	2.83 (1.18 to 6.80)

Thrombocytopenia

Vaccination Group	Cases	Total	Mean Age	Median Age	Rate (%)	CI
Vaccinated with ChAdOx1	1,840,4	117,121	1,707	1,368.00	0.0184%	1.25 (1.19 to 1.31)
Vaccinated with BNT162b2	1,632,3	116,491	1,462	1,477.10	-0.0009%	0.99 (0.94 to 1.04)
SARS-CoV-2 PCR positive test	296,999	40,289	254	248.6	0.0018%	1.02 (0.90 to 1.16)
Condition	Vaccinated with ChAdOx1	Vaccinated with BNT162b2				
---------------------------------	-------------------------	--------------------------	---	---	---	---
VTE with thrombocytopenia	1,868,5 47 119,132 7 6.4 0.0000% 1.09 (0.52 to 2.29)	1,660,9 64 118,641 6 6.9 -0.0001% 0.86 (0.39 to 1.92)				
ATE with thrombocytopenia	1,868,5 80 119,135 5 3.2 0.0001% 1.57 (0.65 to 3.78)					
Stroke with thrombocytopenia	1,868,6 05 119,136 6 2.7 0.0002% 2.21 (0.99 to 4.91)					
Figure 1. Distribution of age profiles and date of cohort entry among people vaccinated against SARS-CoV-2
Figure 2. Background and post-vaccine rates of thromboembolic events and thrombocytopenia by age and sex

Events with less than 5 occurrences have been omitted for privacy reasons.
Figure 3. Expected versus observed events among those vaccinated against SARS-CoV-2 and those with a SARS-CoV-2 infection

Expected events for each of the study cohorts based on indirect standardization using rates from the general population between 2017 and 2019 are compared with the number of observed events seen in each cohort on the panels on the left. Corresponding standardized incidence ratios (SIRs) with 95% confidence intervals (95% CI) are shown in in the panels on the right.
Funding

This study was funded by the European Medicines Agency in the form of a competitive tender (Lot ROC No EMA/2017/09/PE). This document expresses the opinion of the authors of the paper, and may not be understood or quoted as being made on behalf of or reflecting the position of the European Medicines Agency or one of its committees or working parties. ER was supported by Instituto de Salud Carlos III (grant number CM20/00174). DPA is funded through a National Institute for Health Research (NIHR) Senior Research Fellowship (Grant number SRF-2018-11-ST2-004).

Ethical approvals

The protocol for this research was approved by the Independent Scientific Advisory Committee (ISAC) for MHRA Database Research (protocol number 20_000211).

Acknowledgements

This study was funded by the European Medicines Agency in the form of a competitive tender (Lot ROC No EMA/2017/09/PE). We acknowledge Prof Johan Van der Lei for the overall management of this research grant.

Declarations of interest

DPA’s research group has received research grants from the European Medicines Agency, from the Innovative Medicines Initiative, from Amgen, Chiesi, and from UCB Biopharma; and consultancy or speaker fees from Astellas, Amgen and UCB Biopharma.
Appendix
Patient characteristics by age group

Characteristics of study participants aged: 30 to 44

The characteristics of the study cohorts used for the primary analyses, all with the requirement to be aged 30 years or older and with a year of prior history observed in the database. Those in the general population had a primary care visit/ contact between 2017 and 2019 while persons infected with SARS-CoV-2 had a confirmatory positive RT-PCR test. *Conditions of interest: autoimmune disease, antiphospholipid syndrome, thrombophilia, asthma, atrial fibrillation, malignant neoplastic disease, diabetes mellitus, obesity, or renal impairment. †Medications of interest included non-steroidal anti-inflammatory drugs, Cox2 inhibitors, systemic corticosteroids, hormonal contraceptives, tamoxifen, and sex hormones and modulators of the genital system

	General population	Vaccinated with ChAdOx1	Vaccinated with BNT162b2	SARS-CoV-2 PCR positive test
N	644,372	202,865	217,319	121,692
Age	37 [33 to 41]	38 [34 to 41]	38 [34 to 41]	37 [33 to 41]
Age: 30 to 39	431,801 (67.0%)	123,991 (61.1%)	135,101 (62.2%)	82,427 (67.7%)
Age: 40 to 49	212,571 (33.0%)	78,874 (38.9%)	82,218 (37.8%)	39,265 (32.3%)
Sex: Male	306,045 (47.5%)	74,116 (36.5%)	70,735 (32.5%)	53,806 (44.2%)
Years of prior observation time	10.4 [4.8 to 14.9]	8.3 [4.1 to 15.9]	7.7 [3.8 to 14.9]	7.9 [3.8 to 15.7]
Comorbidities				
Autoimmune disease	8,875 (1.4%)	5,779 (2.8%)	5,283 (2.4%)	1,847 (1.5%)
Antiphospholipid syndrome	259 (0.0%)	273 (0.1%)	251 (0.1%)	76 (0.1%)
Thrombophilia	851 (0.1%)	660 (0.3%)	654 (0.3%)	227 (0.2%)
Asthma	102,513 (15.9%)	47,467 (23.4%)	46,382 (21.3%)	20,043 (16.5%)
Atrial fibrillation	927 (0.1%)	879 (0.4%)	863 (0.4%)	192 (0.2%)
Malignant neoplastic disease	7,288 (1.1%)	5,844 (2.9%)	5,492 (2.5%)	1,356 (1.1%)
Diabetes mellitus	17,185 (2.7%)	27,531 (13.6%)	19,860 (9.1%)	5,576 (4.6%)
Obesity	18,089 (2.8%)	13,635 (6.7%)	11,684 (5.4%)	4,815 (4.0%)
Heart disease	11,653 (1.8%)	10,509 (5.2%)	9,827 (4.5%)	2,886 (2.4%)
Hypertensive disorder	20,630 (3.2%)	13,490 (6.6%)	12,430 (5.7%)	4,910 (4.0%)
Condition/medication	2018-2019	2019-2020	2020-2021	2021-2022
--	-----------	-----------	-----------	-----------
Renal impairment	4,449 (0.7%)	4,107 (2.0%)	3,695 (1.7%)	1,149 (0.9%)
COPD	929 (0.1%)	911 (0.4%)	613 (0.3%)	96 (0.1%)
Dementia	772 (0.1%)	738 (0.4%)	638 (0.3%)	206 (0.2%)
Medication use (183 days prior to four days prior)				
Non-steroidal anti-inflammatory drugs	107,115 (16.6%)	20,685 (10.2%)	18,571 (8.5%)	9,204 (7.6%)
Cox2 inhibitors	933 (0.1%)	183 (0.1%)	147 (0.1%)	54 (0.0%)
Systemic corticosteroids	44,535 (6.9%)	10,629 (5.2%)	9,351 (4.3%)	4,406 (3.6%)
Antithrombotic and anticoagulant therapies	4,599 (0.7%)	1,031 (0.5%)	789 (0.4%)	269 (0.2%)
Lipid modifying agents	4,098 (0.6%)	1,861 (0.9%)	1,543 (0.7%)	490 (0.4%)
Antineoplastic and immunomodulating agents	29,367 (4.6%)	5,402 (2.7%)	6,002 (2.8%)	2,591 (2.1%)
Hormonal contraceptives for systemic use	50,360 (7.8%)	9,897 (4.9%)	11,305 (5.2%)	5,000 (4.1%)
Tamoxifen	190 (0.0%)	47 (0.0%)	44 (0.0%)	14 (0.0%)
Sex hormones and modulators of the genital system	52,721 (8.2%)	10,572 (5.2%)	11,987 (5.5%)	5,268 (4.3%)
One or more condition of interest*	52,792 (8.2%)	50,913 (25.1%)	41,923 (19.3%)	13,637 (11.2%)
One or more medication of interest†	158,520 (24.6%)	33,547 (16.5%)	32,307 (14.9%)	15,456 (12.7%)
One or more condition/medication of interest*†	191,069 (29.7%)	73,997 (36.5%)	65,853 (30.3%)	26,342 (21.6%)
Characteristics of study participants: aged 45 to 64

The characteristics of the study cohorts used for the primary analyses, all with the requirement to be aged 30 years or older and with a year of prior history observed in the database. Those in the general population had a primary care visit/contact between 2017 and 2019 while persons infected with SARS-CoV-2 had a confirmatory positive RT-PCR test. *Conditions of interest: autoimmune disease, antiphospholipid syndrome, thrombophilia, asthma, atrial fibrillation, malignant neoplastic disease, diabetes mellitus, obesity, or renal impairment. †Medications of interest included non-steroidal anti-inflammatory drugs, Cox2 inhibitors, systemic corticosteroids, hormonal contraceptives, tamoxifen, and sex hormones and modulators of the genital system.

Characteristics	General population	Vaccinated with ChAdOx1	Vaccinated with BNT162b2	SARS-CoV-2 PCR positive test
N	963,696	624,698	534,049	138,195
Age				
Age: 40 to 49	246,829 (25.6%)	94,579 (15.1%)	96,285 (18.0%)	37,919 (27.4%)
Age: 50 to 59	506,515 (52.6%)	285,938 (45.8%)	279,223 (52.3%)	75,543 (54.7%)
Age: 60 to 69	210,352 (21.8%)	244,181 (39.1%)	158,541 (29.7%)	24,733 (17.9%)
Age: 70 to 79	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Age: 80 or older	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Sex: Male	476,832 (49.5%)	287,869 (46.1%)	215,350 (40.3%)	64,807 (46.9%)
Years of prior observation time	13.8 [9.4 to 16.5]	16.9 [7.5 to 27.0]	16.6 [7.6 to 26.4]	16.0 [7.4 to 25.3]
Comorbidities				
Autoimmune disease	22,807 (2.4%)	24,114 (3.9%)	20,452 (3.8%)	3,497 (2.5%)
Antiphospholipid syndrome	553 (0.1%)	785 (0.1%)	670 (0.1%)	125 (0.1%)
Thrombophilia	1,247 (0.1%)	1,721 (0.3%)	1,511 (0.3%)	284 (0.2%)
Asthma	120,450 (12.5%)	107,823 (17.3%)	94,363 (17.7%)	19,830 (14.3%)
Atrial fibrillation	10,190 (1.1%)	12,981 (2.1%)	12,425 (2.3%)	1,594 (1.2%)
Malignant neoplastic disease	49,036 (5.1%)	53,877 (8.6%)	47,018 (8.8%)	6,929 (5.0%)
Diabetes mellitus	70,192 (7.3%)	102,585 (16.4%)	90,441 (16.9%)	14,163 (10.2%)
Obesity	43,294 (4.5%)	48,229 (7.7%)	40,960 (7.7%)	9,226 (6.7%)
Heart disease	60,885 (6.3%)	73,169 (11.7%)	66,530 (12.5%)	9,890 (7.2%)
Hypertensive disorder	173,364 (18.0%)	164,162 (26.3%)	137,388 (25.7%)	28,262 (20.5%)
Condition/Medication	Without	One or more	Two or more	Four or more
--	---------	------------	-------------	--------------
Renal impairment	26,427 (2.7%)	32,833 (5.3%)	28,361 (5.3%)	4,445 (3.2%)
COPD	21,130 (2.2%)	27,484 (4.4%)	20,039 (3.8%)	2,056 (1.5%)
Dementia	1,914 (0.2%)	2,642 (0.4%)	1,983 (0.4%)	370 (0.3%)
Medication use (183 days prior to four days prior)				
Non-steroidal anti-inflammatory drugs	234,513 (24.3%)	79,342 (12.7%)	65,776 (12.3%)	15,556 (11.3%)
Cox2 inhibitors	3,024 (0.3%)	793 (0.1%)	609 (0.1%)	161 (0.1%)
Systemic corticosteroids	97,185 (10.1%)	36,413 (5.8%)	29,039 (5.4%)	6,364 (4.6%)
Antithrombotic and anticoagulant therapies	25,233 (2.6%)	12,124 (1.9%)	10,842 (2.0%)	1,489 (1.1%)
Lipid modifying agents	47,616 (4.9%)	28,586 (4.6%)	24,220 (4.5%)	4,436 (3.2%)
Antineoplastic and immunomodulating agents	14,370 (1.5%)	5,635 (0.9%)	4,958 (0.9%)	874 (0.6%)
Hormonal contraceptives for systemic use	25,338 (2.6%)	7,644 (1.2%)	8,444 (1.6%)	2,172 (1.6%)
Tamoxifen	1,095 (0.1%)	449 (0.1%)	438 (0.1%)	61 (0.0%)
Sex hormones and modulators of the genital system	43,992 (4.6%)	19,408 (3.1%)	20,440 (3.8%)	4,542 (3.3%)
One or more condition of interest*	187,548 (19.5%)	221,112 (35.4%)	195,178 (36.5%)	33,104 (24.0%)
One or more medication of interest†	288,508 (29.9%)	108,882 (17.4%)	93,553 (17.5%)	21,648 (15.7%)
One or more condition/medication of interest*	395,455 (41.0%)	283,344 (45.4%)	248,153 (46.5%)	47,564 (34.4%)
Characteristics of study participants: age 65 or older

The characteristics of the study cohorts used for the primary analyses, all with the requirement to be aged 30 years or older and with a year of prior history observed in the database. Those in the general population had a primary care visit/contact between 2017 and 2019 while persons infected with SARS-CoV-2 had a confirmatory positive RT-PCR test. *Conditions of interest: autoimmune disease, antiphospholipid syndrome, thrombophilia, asthma, atrial fibrillation, malignant neoplastic disease, diabetes mellitus, obesity, or renal impairment. †Medications of interest included non-steroidal anti-inflammatory drugs, Cox2 inhibitors, systemic corticosteroids, hormonal contraceptives, tamoxifen, and sex hormones and modulators of the genital system.

	General population	Vaccinated with ChAdOx1	Vaccinated with BNT162b2	SARS-CoV-2 PCR positive test
N	682,469	1,041,204	909,771	39,424
Age				
Age: 60 to 69	193,321 (28.3%)	322,860 (31.0%)	163,711 (18.0%)	13,913 (35.3%)
Age: 70 to 79	301,179 (44.1%)	545,251 (52.4%)	372,426 (40.9%)	14,839 (37.6%)
Age: 80 or older	187,969 (27.5%)	173,093 (16.6%)	373,634 (41.1%)	10,672 (27.1%)
Sex: Male	312,034 (45.7%)	483,923 (46.5%)	416,778 (45.8%)	17,688 (44.9%)
Years of prior observation time	14.3 [12.2 to 17.3]	23.6 [10.1 to 34.6]	24.9 [11.4 to 35.6]	20.6 [6.8 to 32.8]
Comorbidities				
Autoimmune disease	26,091 (3.8%)	42,226 (4.1%)	38,576 (4.2%)	1,792 (4.5%)
Antiphospholipid syndrome	234 (0.0%)	477 (0.0%)	428 (0.0%)	14 (0.0%)
Thrombophilia	484 (0.1%)	1,247 (0.1%)	1,027 (0.1%)	38 (0.1%)
Asthma	78,706 (11.5%)	128,836 (12.4%)	112,432 (12.4%)	5,597 (14.2%)
Atrial fibrillation	61,526 (9.0%)	86,870 (8.3%)	104,110 (11.4%)	4,207 (10.7%)
Malignant neoplastic disease	131,175 (19.2%)	197,728 (19.0%)	216,145 (23.8%)	7,378 (18.7%)
Diabetes mellitus	110,242 (16.2%)	176,828 (17.0%)	165,893 (18.2%)	8,749 (22.2%)
Obesity	32,671 (4.8%)	58,188 (5.6%)	46,256 (5.1%)	2,750 (7.0%)
Heart disease	179,170 (26.3%)	250,791 (24.1%)	273,312 (30.0%)	11,735 (29.8%)
Hypertensive disorder	339,756 (49.8%)	500,091 (48.0%)	493,527 (54.2%)	20,749 (52.6%)
Renal impairment	130,720 (19.2%)	170,811 (16.4%)	202,330 (22.2%)	8,556 (21.7%)
COPD	55,146 (8.1%)	79,241 (7.6%)	75,002 (8.2%)	3,232 (8.2%)
	Group 1 (N=26,208)	Group 2 (N=32,208)	Group 3 (N=35,209)	Group 4 (N=4,310)
---------------------------	--------------------	--------------------	--------------------	-------------------
Dementia	26,690 (3.9%)	35,209 (3.4%)	32,208 (3.5%)	4,310 (10.9%)
Medication use (183 days prior to four days prior)				
Non-steroidal anti-inflammatory drugs	276,924 (40.6%)	164,063 (15.8%)	157,962 (17.4%)	8,539 (21.7%)
Cox2 inhibitors	2,158 (0.3%)	955 (0.1%)	825 (0.1%)	43 (0.1%)
Systemic corticosteroids	121,768 (17.8%)	72,724 (7.0%)	67,587 (7.4%)	3,398 (8.6%)
Antithrombotic and anticoagulant therapies	72,773 (10.7%)	48,167 (4.6%)	53,606 (5.9%)	2,127 (5.4%)
Lipid modifying agents	78,550 (11.5%)	79,882 (7.7%)	77,072 (8.5%)	3,298 (8.4%)
Antineoplastic and immunomodulating agents	13,666 (2.0%)	9,408 (0.9%)	9,581 (1.1%)	357 (0.9%)
Hormonal contraceptives for systemic use	1,098 (0.2%)	1,025 (0.1%)	742 (0.1%)	33 (0.1%)
Tamoxifen	672 (0.1%)	318 (0.0%)	317 (0.0%)	12 (0.0%)
Sex hormones and modulators of the genital system	13,870 (2.0%)	14,632 (1.4%)	12,136 (1.3%)	473 (1.2%)
One or more condition of interest*	339,288 (49.7%)	506,534 (48.6%)	514,123 (56.5%)	22,138 (56.2%)
One or more medication of interest†	311,320 (45.6%)	203,446 (19.5%)	192,844 (21.2%)	10,135 (25.7%)
One or more condition/ medication of interest**†	471,617 (69.1%)	591,852 (56.8%)	583,751 (64.2%)	25,821 (65.5%)
Results for all study outcomes

For each event of interest the number of persons contributing to the analysis from the target population, their person-years contributed, and the number of events observed for them are given. Their expected events are estimated using indirect standardisation to the general population, with expected events giving the number of events we would have expected to have seen if their outcome experience was the same as that of the general population. Standardised incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated. Events with less than 5 occurrences have been omitted for privacy reasons. *Cerebral venous sinus thrombosis is reported without the requirement for a year of prior history as less than 5 events were seen when this restriction was imposed.

Event	Cohort	N	Person-years	Observed events	Expected events	SIR (95% CI)		
Cerebral venous sinus thrombosis*	Vaccinated with ChAdOx1	1,956,	124,569	5	2.2	2.32 (0.97 to 5.58)		
Deep vein thrombosis - broad	Vaccinated with ChAdOx1	1,862,	118,757	275	255.1	1.08 (0.96 to 1.21)		
Deep vein thrombosis - broad	Vaccinated with BNT162b2	1,656,	118,297	296	268.1	1.10 (0.99 to 1.24)		
Deep vein thrombosis - broad	SARS-CoV-2 PCR positive test	298,70	40,517	143	53.2	2.69 (2.28 to 3.17)		
Deep vein thrombosis - narrow	Vaccinated with ChAdOx1	1,863,	118,809	226	237.9	0.95 (0.83 to 1.08)		
Deep vein thrombosis - narrow	Vaccinated with BNT162b2	1,656,	118,344	254	251.3	1.01 (0.89 to 1.14)		
Deep vein thrombosis - narrow	SARS-CoV-2 PCR positive test	298,77	40,528	125	48.8	2.56 (2.15 to 3.05)		
Deep vein thrombosis broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,868,	119,135	6	4.1	1.45 (0.65 to 3.23)		
Deep vein thrombosis broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868,	119,132	9	7.4	1.22 (0.64 to 2.35)		
Deep vein thrombosis narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868,	119,133	7	7	1.00 (0.48 to 2.11)		
Condition	Vaccine Group	Cases	Controls	Incidence Rate	95% CI			
---------------------------------	-------------------------	---------	-----------	----------------	-----------------			
Hemorrhagic stroke	Vaccinated with ChAdOx1	1,867	119,084	45	43.1 to 46.8			
	Vaccinated with BNT162b2	1,660	118,603	38	0.81 to 1.04			
Hemorrhagic stroke	SARS-CoV-2 PCR positive test	299,12	40,584	11	1.34 to 2.42			
Immune thrombocytopenia	Vaccinated with ChAdOx1	1,868	119,120	18	2.01 to 3.19			
Immune thrombocytopenia	Vaccinated with BNT162b2	1,660	118,628	15	1.74 to 2.89			
Immune thrombocytopenia	SARS-CoV-2 PCR positive test	299,17	40,593	5	2.83 to 6.80			
Intestinal infarction	Vaccinated with ChAdOx1	1,868	119,120	13	0.86 to 1.48			
Intestinal infarction	Vaccinated with BNT162b2	1,660	118,631	17	1.10 to 1.77			
Ischemic stroke	Vaccinated with ChAdOx1	1,867	119,025	72	0.75 to 0.95			
Ischemic stroke	Vaccinated with BNT162b2	1,659	118,542	120	1.11 to 1.32			
Ischemic stroke	SARS-CoV-2 PCR positive test	299,10	40,582	13	1.05 to 1.81			
Myocardial infarction	Vaccinated with ChAdOx1	1,861	118,643	347	0.84 to 0.94			
Myocardial infarction	Vaccinated with BNT162b2	1,654	118,145	356	0.82 to 0.91			
Myocardial infarction	SARS-CoV-2 PCR positive test	298,63	40,509	79	1.20 to 1.50			
Myocardial infarction or ischemic stroke	Vaccinated with ChAdOx1	1,858	118,481	406	0.81 to 0.89			
Myocardial infarction or ischemic stroke	Vaccinated with BNT162b2	1,651	117,990	458	0.85 to 0.93			
Condition	SARS-CoV-2 PCR positive test	Vaccinated with ChAdOx1	Vaccinated with BNT162b2	OR (95% CI)				
---	-------------------------------	--------------------------	--------------------------	-------------				
Myocardial infarction or ischemic stroke		1,868,580	1,660,931	1.13 (0.92 to 1.40)				
Myocardial infarction or ischemic stroke with		1,868,524	1,660,931	1.53 (0.82 to 2.84)				
thrombocytopenia 10 days pre to 10 days post								
Myocardial infarction or ischemic stroke with		1,865,323	1,657,943	3.29 (1.99 to 5.40)				
thrombocytopenia 14 days post								
Platelet disorder		1,865,323	1,657,943	1.98 (1.70 to 2.29)				
Platelet disorder		1,868,539	1,663,403	3.60 (2.77 to 4.66)				
Platelet disorder		1,868,539	1,663,403	1.23 (1.09 to 1.39)				
Platelet disorder	SARS-CoV-2 PCR positive test	298,464	1,861,358	1.02 (0.93 to 1.12)				
Portal vein thrombosis		1,868,539	1,660,999	1.18 (0.56 to 2.48)				
Pulmonary embolism		1,868,576	1,660,999	0.72 (0.32 to 1.61)				
Pulmonary embolism		1,868,576	1,660,999	0.72 (0.32 to 1.61)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	8.25 (3.71 to 18.37)				
14 days post								
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Pulmonary embolism with thrombocytopenia 42 days pre to		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
14 days post		1,868,576	1,660,999	1.38 (0.72 to 2.66)				
Event	Vaccination	Cases	Controls	OR	95% CI			
--	----------------------	---------------------	-----------	--------	--------------			
Stroke	BNT162b2	1,654	118,167	457	454	1.01 (0.92 to 1.10)		
SARS-CoV-2 PCR positive test		298,70	9	40,525	65	1.19 (0.93 to 1.52)		
Stroke with thrombocytopenia 10 days pre to 10 days post	ChAdOx1	1,868	605	119,136	6	2.21 (0.99 to 4.91)		
Stroke with thrombocytopenia 42 days pre to 14 days post	ChAdOx1	1,868	573	119,134	6	1.03 (0.46 to 2.29)		
Stroke with thrombocytopenia 42 days pre to 14 days post	BNT162b2	1,660	982	118,643	8	1.16 (0.58 to 2.32)		
Thrombocytopenia	ChAdOx1	1,840	495	117,121	1,707	1.25 (1.19 to 1.31)		
Thrombocytopenia	BNT162b2	1,632	328	116,491	1,462	0.99 (0.94 to 1.04)		
SARS-CoV-2 PCR positive test		296,99	9	40,289	254	1.02 (0.90 to 1.16)		
Thrombocytopenic purpura	ChAdOx1	1,868	562	119,134	12	1.49 (0.85 to 2.63)		
Thrombocytopenic purpura	BNT162b2	1,660	955	118,641	5	0.64 (0.26 to 1.53)		
Venous thromboembolism - broad	ChAdOx1	1,858	064	118,431	508	1.14 (1.05 to 1.24)		
Venous thromboembolism - broad	BNT162b2	1,652	244	118,007	532	1.15 (1.05 to 1.25)		
SARS-CoV-2 PCR positive test		298,32	9	40,418	664	7.89 (7.31 to 8.31)		
Venous thromboembolism - narrow	ChAdOx1	1,858	837	118,483	461	1.07 (0.98 to 1.18)		
Venous thromboembolism - narrow	BNT162b2	1,652	892	118,054	491	1.09 (1.00 to 1.20)		
SARS-CoV-2 PCR positive test		298,39	7	40,429	646	8.08 (7.48 to 8.72)		
Condition	Vaccination	Count	Control	Days Pre	Days Post	Ratio	CI Low	CI High
---	-------------	-------	---------	----------	-----------	-------	--------	---------
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,868	543	119,132	9	6.7	1.35 (0.70 to 2.60)	
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with BNT162b2	1,660	959	118,641	6	7.1	0.84 (0.38 to 1.87)	
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868	467	119,126	14	12.3	1.13 (0.67 to 1.92)	
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,660	896	118,636	10	13.3	0.75 (0.41 to 1.40)	
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,19	9	40,595	6	1.7	3.56 (1.60 to 7.93)	
Venous thromboembolism narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,868	547	119,132	7	6.4	1.09 (0.52 to 2.29)	
Venous thromboembolism narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with BNT162b2	1,660	964	118,641	6	6.9	0.86 (0.39 to 1.92)	
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868	472	119,127	12	12	1.00 (0.57 to 1.76)	
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,660	903	118,637	10	13	0.77 (0.42 to 1.44)	
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,19	9	40,595	6	1.6	3.72 (1.67 to 8.29)	
Results for vaccinated stratified by calendar month

For each event of interest the number of persons contributing to the analysis from the target population, their person-years contributed, and the number of events observed for them are given. Their expected events are estimated using indirect standardisation to the general population, with expected events giving the number of events we would have expected to have seen if their outcome experience was the same as that of the general population. Standardised incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated. Events with less than 5 occurrences have been omitted for privacy reasons.

Event	Cohort	Month	N Person-years	Observed events	Expected events	SIR (95% CI)			
Deep vein thrombosis - broad	Vaccinated with ChAdOx1	January	500,670	38,273	120	100.4	1.20 (1.00 to 1.43)		
Deep vein thrombosis - broad	Vaccinated with ChAdOx1	February	1,057,526	72,316	144	143	1.01 (0.86 to 1.19)		
Deep vein thrombosis - broad	Vaccinated with BNT162b2	December	184,519	14,132	48	41	1.17 (0.88 to 1.55)		
Deep vein thrombosis - broad	Vaccinated with BNT162b2	January	821,952	62,905	176	155.9	1.13 (0.97 to 1.31)		
Deep vein thrombosis - broad	Vaccinated with BNT162b2	February	634,702	40,831	70	70.4	0.99 (0.79 to 1.26)		
Deep vein thrombosis - narrow	Vaccinated with ChAdOx1	January	500,896	38,291	99	94.6	1.05 (0.86 to 1.27)		
Deep vein thrombosis - narrow	Vaccinated with ChAdOx1	February	1,057,960	72,347	119	132.5	0.90 (0.75 to 1.07)		
Deep vein thrombosis - narrow	Vaccinated with BNT162b2	December	184,577	14,137	38	38.9	0.98 (0.71 to 1.34)		
Deep vein thrombosis - narrow	Vaccinated with BNT162b2	January	822,272	62,930	156	146.8	1.06 (0.91 to 1.24)		
Deep vein thrombosis - narrow	Vaccinated with BNT162b2	February	634,960	40,848	58	64.8	0.90 (0.69 to 1.16)		
Deep vein thrombosis broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	February	1,060,631	72,536	5	3.9	1.27 (0.53 to 3.04)		
Condition	Vaccine	Month	Count	Mean	Count	Mean	Count	Mean	95% CI
---------------------------------------	----------------------	-----------	-------	------	-------	------	-------	------	------------
Hemorrhagic stroke	ChAdOx1	January	502,16	0	38,389	23	17.7	1.30 (0.86 to 1.96)	
Hemorrhagic stroke	ChAdOx1	February	1,060	241	72,509	22	23.5	0.94 (0.62 to 1.42)	
Hemorrhagic stroke	BNT162b2	December	184,97	6	14,169	9	7.7	1.17 (0.61 to 2.25)	
Hemorrhagic stroke	BNT162b2	January	823,97	7	63,066	20	27.6	0.72 (0.47 to 1.12)	
Hemorrhagic stroke	BNT162b2	February	636,38	4	40,939	9	11.4	0.79 (0.41 to 1.52)	
Immune thrombocytopenia	ChAdOx1	January	502,32	6	38,402	9	3.4	2.68 (1.39 to 5.15)	
Immune thrombocytopenia	ChAdOx1	February	1,060	537	72,529	9	5.2	1.73 (0.90 to 3.33)	
Immune thrombocytopenia	BNT162b2	January	824,13	0	63,078	14	5	2.81 (1.67 to 4.75)	
Intestinal infarction	ChAdOx1	January	502,33	7	38,403	9	6.2	1.46 (0.76 to 2.81)	
Intestinal infarction	BNT162b2	January	824,16	1	63,080	12	9.2	1.31 (0.74 to 2.30)	
Ischemic stroke	ChAdOx1	January	501,80	3	38,361	37	43.1	0.86 (0.62 to 1.18)	
Ischemic stroke	ChAdOx1	February	1,059	837	72,479	34	49.6	0.69 (0.49 to 0.96)	
Ischemic stroke	BNT162b2	December	184,82	4	14,157	26	19.9	1.31 (0.89 to 1.92)	
Ischemic stroke	BNT162b2	January	823,54	0	63,031	68	66.4	1.02 (0.81 to 1.30)	
Ischemic stroke	BNT162b2	February	636,18	9	40,926	26	22	1.18 (0.81 to 1.74)	
Myocardial infarction	ChAdOx1	January	500,16	5	38,233	140	164.6	0.85 (0.72 to 1.00)	
Condition	Vaccinated with	Month/Year	Count	Cases	Rate	Incidence			
---	-----------------	------------	-------	-------	------	-----------			
Myocardial infarction	ChAdOx1	February	1,056	198	0.86 (0.75 to 0.99)				
Myocardial infarction	BNT162b2	December	184	49	0.71 (0.53 to 0.94)				
Myocardial infarction	BNT162b2	January	821	196	0.78 (0.67 to 0.89)				
Myocardial infarction	BNT162b2	February	633	229	1.00 (0.83 to 1.20)				
Myocardial infarction or ischemic stroke	ChAdOx1	January	499	170	0.82 (0.71 to 0.96)				
Myocardial infarction or ischemic stroke	ChAdOx1	February	1,055	226	0.82 (0.72 to 0.93)				
Myocardial infarction or ischemic stroke	BNT162b2	January	183	73	0.82 (0.66 to 1.04)				
Myocardial infarction or ischemic stroke	BNT162b2	February	820	256	0.81 (0.71 to 0.91)				
Myocardial infarction or ischemic stroke	BNT162b2	February	632	129	0.98 (0.83 to 1.17)				
Myocardial infarction or ischemic stroke	ChAdOx1	January	502	5	1.51 (0.63 to 3.63)				
Myocardial infarction or ischemic stroke	ChAdOx1	February	1,060	5	1.63 (0.68 to 3.92)				
Myocardial infarction or ischemic stroke	BNT162b2	January	501	80	2.37 (1.91 to 2.96)				
Platelet disorder	ChAdOx1	January	1,058	109	2.22 (1.84 to 2.68)				
Platelet disorder	ChAdOx1	February	1,058	109	2.22 (1.84 to 2.68)				
Platelet disorder	BNT162b2	December	184	20	1.54 (1.00 to 2.39)				
Platelet disorder	BNT162b2	January	822	110	2.15 (1.78 to 2.59)				
Platelet disorder	BNT162b2	February	635	42	1.77 (1.31 to 2.40)				
Event	Vaccination	Month	Month	Count	Count	Rate	95% CI	Rate	95% CI
--	---------------------	------------	-------------	-------	-------	------	----------------	------	----------------
Portal vein thrombosis	Vaccinated with ChAdOx1	Febrary	1,060,619	72,535	5	3.3	1.53 (0.64 to 3.68)		
Pulmonary embolism	Vaccinated with ChAdOx1	January	500,837	38,285	111	83.6	1.33 (1.10 to 1.60)		
Pulmonary embolism	Vaccinated with ChAdOx1	Febrary	1,057,749	72,331	141	118	1.19 (1.01 to 1.41)		
Pulmonary embolism	Vaccinated with BNT162b2	December	184,573	14,137	31	32.9	0.94 (0.66 to 1.34)		
Pulmonary embolism	Vaccinated with BNT162b2	January	822,279	62,931	159	126.8	1.25 (1.07 to 1.46)		
Pulmonary embolism	Vaccinated with BNT162b2	Febrary	634,850	40,840	68	56.1	1.21 (0.96 to 1.54)		
Pulmonary embolism with thrombocytopenia	Vaccinated with BNT162b2	January	824,238	63,086	5	3.6	1.37 (0.57 to 3.30)		
Splanchnic Vein Thrombosis	Vaccinated with ChAdOx1	Febrary	1,060,615	72,535	5	3.9	1.28 (0.53 to 3.07)		
Stroke	Vaccinated with ChAdOx1	January	499,552	38,185	201	179.2	1.12 (0.98 to 1.29)		
Stroke	Vaccinated with ChAdOx1	Febrary	1,056,990	72,274	209	212.1	0.99 (0.86 to 1.13)		
Stroke	Vaccinated with BNT162b2	December	184,089	14,096	89	81.5	1.09 (0.89 to 1.34)		
Stroke	Vaccinated with BNT162b2	January	820,899	62,823	250	276.1	0.91 (0.80 to 1.02)		
Stroke	Vaccinated with BNT162b2	Febrary	634,578	40,821	116	95.1	1.22 (1.02 to 1.46)		
Stroke with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	January	824,238	63,086	7	4.4	1.61 (0.77 to 3.37)		
Thrombocytopenia	Vaccinated with ChAdOx1	January	491,132	37,523	722	564.8	1.28 (1.19 to 1.38)		
Thrombocytopenia	Vaccinated with ChAdOx1	Febrary	1,046,181	71,473	908	746.5	1.22 (1.14 to 1.30)		
Condition	Vaccine	Month	Date	Count	Denominator	Incidence Rate	95% CI		
---------------------------------	-----------------	-----------	------------	-------	-------------	----------------	-------------		
Thrombocytopenia	BNT162b2	December	180,47	5	13,819	70	0.60 to 0.82		
Thrombocytopenia	BNT162b2	January	808,02	9	61,815	2	0.96 to 1.09		
Thrombocytopenia	BNT162b2	February	628,92	8	40,433	1.10	0.99 to 1.21		
Thrombocytopenic purpura	ChAdOx1	January	502,39	2	38,407	2.32	1.11 to 4.87		
Thrombocytopenic purpura	ChAdOx1	February	1,060,648	5	72,537	1.07	0.45 to 2.58		
Thrombocytopenic purpura	BNT162b2	January	824,22	5	63,085	1.10	0.46 to 2.65		
Venous thromboembolism - broad	ChAdOx1	January	499,19	7	38,157	1.22	1.07 to 1.40		
Venous thromboembolism - broad	ChAdOx1	February	1,054,809	7	72,122	1.10	0.98 to 1.24		
Venous thromboembolism - broad	BNT162b2	December	184,05	4	14,096	1.09	0.88 to 1.37		
Venous thromboembolism - broad	BNT162b2	January	820,09	6	62,758	1.18	1.06 to 1.31		
Venous thromboembolism - broad	BNT162b2	February	633,07	4	40,726	1.08	0.91 to 1.28		
Venous thromboembolism - narrow	ChAdOx1	January	499,41	9	38,175	1.14	0.99 to 1.32		
Venous thromboembolism - narrow	ChAdOx1	February	1,055,248	9	72,154	1.05	0.93 to 1.19		
Venous thromboembolism - narrow	BNT162b2	December	184,11	2	14,100	0.98	0.78 to 1.25		
Venous thromboembolism - narrow	BNT162b2	January	820,42	0	62,783	1.14	1.02 to 1.28		
Venous thromboembolism - narrow	BNT162b2	February	633,33	5	40,743	1.03	0.86 to 1.23		
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	Febrary	1,060,628	72,536	5	3.6	1.39 (0.58 to 3.33)		
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	January	502,352	38,404	6	5.4	1.11 (0.50 to 2.47)		
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	February	1,060,591	72,533	8	6.6	1.22 (0.61 to 2.44)		
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	January	824,171	63,081	7	8.1	0.86 (0.41 to 1.81)		
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	January	502,353	38,404	6	5.3	1.14 (0.51 to 2.53)		
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	February	1,060,595	72,533	6	6.3	0.95 (0.43 to 2.11)		
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	January	824,177	63,081	7	7.9	0.88 (0.42 to 1.85)		
Results without requiring year of prior history

For each event of interest the number of persons contributing to the analysis from the target population, their person-years contributed, and the number of events observed for them are given. Their expected events are estimated using indirect standardisation to the general population, with expected events giving the number of events we would have expected to have seen if their outcome experience was the same as that of the general population. Standardised incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated. Events with less than 5 occurrences have been omitted for privacy reasons.

Event	Cohort	N	Person-years	Observed events	Expected events	SIR (95% CI)	
Cerebral venous sinus thrombosis	Vaccinated with ChAdOx1	1,956, 136	124,569	5	2.2	2.32 (0.97 to 5.58)	
Deep vein thrombosis - broad	Vaccinated with ChAdOx1	1,950, 188	124,172	305	275.8	1.11 (0.99 to 1.24)	
Deep vein thrombosis - broad	Vaccinated with BNT162b2	1,726, 968	123,253	312	289.5	1.08 (0.96 to 1.20)	
Deep vein thrombosis - broad	SARS-CoV-2 PCR positive test	298,83, 2	40,538	143	55.1	2.60 (2.20 to 3.06)	
Deep vein thrombosis - narrow	Vaccinated with ChAdOx1	1,950, 982	124,225	253	258	0.98 (0.87 to 1.11)	
Deep vein thrombosis - narrow	Vaccinated with BNT162b2	1,727, 622	123,301	268	272.3	0.98 (0.87 to 1.11)	
Deep vein thrombosis - narrow	SARS-CoV-2 PCR positive test	298,90, 1	40,549	125	50.8	2.46 (2.07 to 2.93)	
Deep vein thrombosis broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,956, 124	124,567	9	4.6	1.96 (1.02 to 3.77)	
Deep vein thrombosis broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,956, 087	124,564	12	8	1.51 (0.86 to 2.65)	
Deep vein thrombosis broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,731, 862	123,610	5	8.4	0.59 (0.25 to 1.42)	
Deep vein thrombosis narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,956, 131	124,568	6	4.3	1.39 (0.62 to 3.09)	
Event Description	Vaccine Type	Vaccine Information	Event Information	Odds Ratio	95% CI		
--	--------------------	---------------------	-------------------	------------	-----------------		
Deep vein thrombosis narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,956, 096	124,565	9	7.6 (0.62 to 2.29)		
Deep vein thrombosis narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,731, 870	123,610	5	8.1 (0.26 to 1.48)		
Hemorrhagic stroke	Vacccinated with ChAdOx1	1,955, 323	124,513	51	47.2 (0.82 to 1.42)		
Hemorrhagic stroke	Vaccinated with BNT162b2	1,731, 304	123,569	38	51.3 (0.54 to 1.02)		
Hemorrhagic stroke	SARS-CoV-2 PCR positive test	299,25, 2	40,605	11	8.5 (0.71 to 2.33)		
Immune thrombocytopenia	Vaccinated with ChAdOx1	1,955, 913	124,552	18	9.9 (1.14 to 2.88)		
Immune thrombocytopenia	Vaccinated with BNT162b2	1,731, 680	123,596	16	9.5 (1.03 to 2.75)		
Immune thrombocytopenia	SARS-CoV-2 PCR positive test	299,30, 0	40,614	5	1.8 (1.13 to 6.52)		
Intestinal infarction	Vaccinated with ChAdOx1	1,955, 897	124,551	16	15.8 (0.62 to 1.66)		
Intestinal infarction	Vaccinated with BNT162b2	1,731, 725	123,600	18	15.8 (0.71 to 1.78)		
Ischemic stroke	Vaccinated with ChAdOx1	1,954, 444	124,451	83	103.1 (0.65 to 1.00)		
Ischemic stroke	Vaccinated with BNT162b2	1,730, 486	123,507	124	115.7 (0.90 to 1.28)		
Ischemic stroke	SARS-CoV-2 PCR positive test	299,22, 5	40,603	13	12.6 (0.60 to 1.77)		
Myocardial infarction	Vaccinated with ChAdOx1	1,948, 615	124,056	368	440.2 (0.75 to 0.93)		
Myocardial infarction	Vaccinated with BNT162b2	1,724, 692	123,097	375	459 (0.74 to 0.90)		
Myocardial infarction	SARS-CoV-2 PCR positive test	298,75, 7	40,530	79	67.2 (0.94 to 1.46)		
Condition (with time frame)	Vaccinated with ChAdOx1	Vaccinated with BNT162b2	Odds Ratio	95% Confidence Interval			
---	--------------------------	--------------------------	------------	-------------------------			
Myocardial infarction or ischemic stroke	1,946,125	1,722,509	0.81	(0.74 to 0.89)			
Myocardial infarction or ischemic stroke	123,887	122,937					
SARS-CoV-2 PCR positive test	438	481					
Myocardial infarction or ischemic stroke	539.6	570.7					
Myocardial infarction or ischemic stroke	0.81 (0.74 to 0.89)						
Myocardial infarction or ischemic stroke	1,956,120	1,731,873	1.39	(0.58 to 3.34)			
Myocardial infarction or ischemic stroke	124,567	123,611	3.6				
Myocardial infarction or ischemic stroke	5	5					
Myocardial infarction or ischemic stroke	1.39 (0.58 to 3.34)						
Myocardial infarction or ischemic stroke	1,956,063	1,731,829	1.39	(0.75 to 2.58)			
Myocardial infarction or ischemic stroke	124,563	123,607	4.5				
Myocardial infarction or ischemic stroke	10	7					
Myocardial infarction or ischemic stroke	1.39 (0.75 to 2.58)						
Myocardial infarction or ischemic stroke	1,952,742	1,728,759	1.93	(1.67 to 2.22)			
Myocardial infarction or ischemic stroke	124,328	123,378	95.6				
Myocardial infarction or ischemic stroke	216	184					
Myocardial infarction or ischemic stroke	94.4	95.6					
Myocardial infarction or ischemic stroke	2.29 (2.00 to 2.62)						
Platelet disorder	1,731,829	1,956,063	1.39	(0.75 to 2.58)			
Platelet disorder	123,607	124,563	4.5				
Platelet disorder	7	10					
Platelet disorder	0.80 (0.38 to 1.67)						
Platelet disorder	1,731,829	1,956,063	1.93	(1.67 to 2.22)			
Platelet disorder	123,607	124,563	95.6				
Platelet disorder	7	10					
Platelet disorder	0.80 (0.38 to 1.67)						
Platelet disorder	1,731,829	1,956,063	1.93	(1.67 to 2.22)			
Platelet disorder	123,607	124,563	95.6				
Platelet disorder	7	10					
Platelet disorder	0.80 (0.38 to 1.67)						
SARS-CoV-2 PCR positive test	298,047	299,047	3.40	(2.62 to 4.41)			
SARS-CoV-2 PCR positive test	40,574	40,574	16.8				
SARS-CoV-2 PCR positive test	57	57					
SARS-CoV-2 PCR positive test	3.40 (2.62 to 4.41)						
Pulmonary embolism	1,956,077	1,956,077	1.41	(0.71 to 2.82)			
Pulmonary embolism	124,569	124,569	5.7				
Pulmonary embolism	8	8					
Pulmonary embolism	1.41 (0.71 to 2.82)						
Pulmonary embolism	1,956,701	1,950,701	1.24	(1.11 to 1.40)			
Pulmonary embolism	124,202	124,202	281				
Pulmonary embolism	225.9	225.9					
Pulmonary embolism	1.24 (1.11 to 1.40)						
Pulmonary embolism	1,727,494	1,727,494	1.22	(1.09 to 1.37)			
Pulmonary embolism	123,293	123,293	282				
Pulmonary embolism	231.3	231.3					
Pulmonary embolism	1.22 (1.09 to 1.37)						
Pulmonary embolism	298,910	298,910	14.77	(13.58 to 16.06)			
Pulmonary embolism	40,513	40,513	547				
Pulmonary embolism	37	37					
Pulmonary embolism	14.77 (13.58 to 16.06)						
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	1,956,118	1,956,118	1.02	(0.46 to 2.26)			
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	124,567	124,567	6				
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	5.9	5.9					
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	1.02 (0.46 to 2.26)						
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	1,731,900	1,731,900	1.15	(0.55 to 2.40)			
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	123,612	123,612	7				
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	6.1	6.1					
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	1.15 (0.55 to 2.40)						
Condition	Vaccine/Other Details	SARS-CoV-2 PCR positive test	3	40,618	6	0.8	7.96 (3.58 to 17.71)
---------------------------------	---	-----------------------------	---	--------	---	-----	----------------------
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,33	3	40,618	6	0.8	7.96 (3.58 to 17.71)
Splanchnic Vein Thrombosis	Vaccinated with ChAdOx1	1,956,072	124,564	9	6.9	1.31 (0.68 to 2.52)	
Stroke	Vaccinated with ChAdOx1	1,948,412	124,026	481	443	1.09 (0.99 to 1.19)	
Stroke	Vaccinated with BNT162b2	1,725,125	123,110	482	495.6	0.97 (0.89 to 1.06)	
Stroke	SARS-CoV-2 PCR positive test	298,83,4	40,547	66	56.9	1.16 (0.91 to 1.48)	
Stroke with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,956,146	124,568	6	3.2	1.88 (0.85 to 4.19)	
Stroke with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,956,114	124,566	7	6.5	1.07 (0.51 to 2.25)	
Stroke with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,731,882	123,611	8	7.7	1.04 (0.52 to 2.09)	
Thrombocytopenia	Vaccinated with ChAdOx1	1,927,116	122,484	1,865	1,517.30	1.23 (1.17 to 1.29)	
Thrombocytopenia	Vaccinated with BNT162b2	1,702,494	121,405	1,548	1,624.40	0.95 (0.91 to 1.00)	
Thrombocytopenia	SARS-CoV-2 PCR positive test	297,12,2	40,310	254	266.7	0.95 (0.84 to 1.08)	
Thrombocytopenic purpura	Vaccinated with ChAdOx1	1,956,098	124,565	12	9.2	1.31 (0.74 to 2.31)	
Thrombocytopenic purpura	Vaccinated with BNT162b2	1,731,847	123,609	6	8.9	0.68 (0.30 to 1.51)	
Venous thromboembolism - broad	Vaccinated with ChAdOx1	1,945,125	123,830	558	479.9	1.16 (1.07 to 1.26)	
Venous thromboembolism - broad	Vaccinated with BNT162b2	1,722,829	122,953	569	499.3	1.14 (1.05 to 1.24)	
Venous thromboembolism - broad	SARS-CoV-2 PCR positive test	298,45,3	40,439	664	87.3	7.61 (7.05 to 8.21)	
Venous thromboembolism - narrow	Vaccinated with ChAdOx1	1,945,919	123,883	508	463.2	1.10 (1.01 to 1.20)	
Venous thromboembolism - narrow	Vaccinated with BNT162b2	1,723,490	123,001	526	482.9	1.09 (1.00 to 1.19)	
Venous thromboembolism - narrow	SARS-CoV-2 PCR positive test	298,521	40,450	646	83.2	7.76 (7.19 to 8.39)	
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,956,082	124,564	12	7.2	1.66 (0.94 to 2.92)	
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with BNT162b2	1,731,858	123,609	7	7.6	0.92 (0.44 to 1.93)	
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,956,004	124,558	17	13.2	1.29 (0.80 to 2.07)	
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,731,794	123,604	11	13.9	0.79 (0.44 to 1.42)	
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,324	40,617	6	1.7	3.46 (1.55 to 7.69)	
Venous thromboembolism narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,956,088	124,564	9	7	1.28 (0.67 to 2.47)	
Venous thromboembolism narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with BNT162b2	1,731,863	123,610	7	7.4	0.94 (0.45 to 1.98)	
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,956,011	124,559	14	12.9	1.09 (0.64 to 1.83)	
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,731,801	123,605	11	13.6	0.81 (0.45 to 1.46)	
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,324	40,617	6	1.7	3.59 (1.61 to 8.00)	
Results with general population identified as of 1st December 2017

For each event of interest the number of persons contributing to the analysis from the target population, their person-years contributed, and the number of events observed for them are given. Their expected events are estimated using indirect standardisation to the general population, with expected events giving the number of events we would have expected to have seen if their outcome experience was the same as that of the general population. Standardised incidence ratios (SIRs) with 95% confidence intervals (CIs) were estimated. Events with less than 5 occurrences have been omitted for privacy reasons. *Cerebral venous sinus thrombosis is reported without the requirement for a year of prior history as less than 5 events were seen when this restriction was imposed.

Event	Cohort	N	Person-years	Observed events	Expected events	SIR (95% CI)	
Cerebral venous sinus thrombosis*	Vaccinated with ChAdOx1	1,956,136	124,569	5	1.8	2.70 (1.13 to 6.49)	
Deep vein thrombosis - broad	Vaccinated with ChAdOx1	1,862,896	118,757	275	239.4	1.15 (1.02 to 1.29)	
Deep vein thrombosis - broad	Vaccinated with BNT162b2	1,656,235	118,297	296	249.7	1.19 (1.06 to 1.33)	
Deep vein thrombosis - broad	SARS-CoV-2 PCR positive test	298,70	7	40,517	143	46.9	3.05 (2.59 to 3.59)
Deep vein thrombosis - narrow	Vaccinated with ChAdOx1	1,863,668	118,809	226	223.2	1.01 (0.89 to 1.15)	
Deep vein thrombosis - narrow	Vaccinated with BNT162b2	1,656,875	118,344	254	234	1.09 (0.96 to 1.23)	
Deep vein thrombosis - narrow	SARS-CoV-2 PCR positive test	298,77	6	40,528	125	43	2.90 (2.44 to 3.46)
Deep vein thrombosis broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,868,584	119,135	6	3.9	1.55 (0.70 to 3.45)	
Deep vein thrombosis broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868,547	119,132	9	6.9	1.30 (0.68 to 2.51)	
Deep vein thrombosis narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868,554	119,133	7	6.5	1.07 (0.51 to 2.25)	
Hemorrhagic stroke	Vaccinated with ChAdOx1	1,867,822	119,084	45	40.9	1.10 (0.82 to 1.47)	
Medical Condition	Vaccine	Incidence	Denominator	Event Rate	Rate Ratio (95% CI)		
---	--------------------------	-----------	-------------	------------	--------------------		
Hemorrhagic stroke	Vaccinated with BNT162b2	1,660,431	118,603	38	44.3 (0.62 to 1.18)		
Hemorrhagic stroke	SARS-CoV-2 PCR positive test	299,127	40,584	11	1.47 (0.82 to 2.66)		
Immune thrombocytopenia	Vaccinated with ChAdOx1	1,868,376	119,120	18	2.15 (1.35 to 3.41)		
Immune thrombocytopenia	Vaccinated with BNT162b2	1,660,786	118,628	15	1.87 (1.13 to 3.11)		
Immune thrombocytopenia	SARS-CoV-2 PCR positive test	299,175	40,593	5	3.23 (1.35 to 7.77)		
Intestinal infarction	Vaccinated with ChAdOx1	1,868,365	119,120	13	0.91 (0.53 to 1.56)		
Intestinal infarction	Vaccinated with BNT162b2	1,660,825	118,631	17	1.16 (0.72 to 1.87)		
Ischemic stroke	Vaccinated with ChAdOx1	1,867,000	119,025	72	0.79 (0.63 to 0.99)		
Ischemic stroke	Vaccinated with BNT162b2	1,659,635	118,542	120	1.17 (0.98 to 1.40)		
Ischemic stroke	SARS-CoV-2 PCR positive test	299,100	40,582	13	1.14 (0.66 to 1.96)		
Myocardial infarction	Vaccinated with ChAdOx1	1,861,365	118,643	347	0.89 (0.80 to 0.98)		
Myocardial infarction	Vaccinated with BNT162b2	1,654,037	118,145	356	0.87 (0.78 to 0.96)		
Myocardial infarction	SARS-CoV-2 PCR positive test	298,632	40,509	79	1.29 (1.04 to 1.61)		
Myocardial infarction or ischemic stroke	Vaccinated with ChAdOx1	1,858,974	118,481	406	0.85 (0.77 to 0.93)		
Myocardial infarction or ischemic stroke	Vaccinated with BNT162b2	1,651,903	117,990	458	0.90 (0.82 to 0.99)		
Myocardial infarction or ischemic stroke	SARS-CoV-2 PCR positive test	298,464	40,485	88	1.22 (0.99 to 1.50)		
Condition	Vaccine	Cases	Controls	Hazard Ratio	95% CI		
---	------------------	---------	----------	--------------	-----------------		
Myocardial infarction or ischemic stroke with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,868	580	119,135	1.66 (0.69 to 3.99)		
Myocardial infarction or ischemic stroke with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868	524	119,131	1.62 (0.87 to 3.02)		
Myocardial infarction or ischemic stroke with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,660	931	118,639	0.77 (0.35 to 1.71)		
Platelet disorder	Vaccinated with ChAdOx1	1,865	323	118,905	2.44 (2.12 to 2.80)		
Platelet disorder	Vaccinated with BNT162b2	1,657	943	118,416	2.12 (1.83 to 2.46)		
Platelet disorder	SARS-CoV-2 PCR positive test	298,92	2	40,552	4.08 (3.14 to 5.28)		
Portal vein thrombosis	Vaccinated with ChAdOx1	1,868	539	119,133	1.55 (0.77 to 3.09)		
Pulmonary embolism	Vaccinated with ChAdOx1	1,863	403	118,787	1.30 (1.15 to 1.47)		
Pulmonary embolism	Vaccinated with BNT162b2	1,656	755	118,336	1.29 (1.14 to 1.45)		
Pulmonary embolism	SARS-CoV-2 PCR positive test	298,78	6	40,491	17.09 (15.72 to 18.58)		
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868	576	119,134	1.16 (0.52 to 2.58)		
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,660	999	118,644	1.27 (0.60 to 2.65)		
Pulmonary embolism with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,20	8	40,596	9.05 (4.07 to 20.14)		
Splanchnic Vein Thrombosis	Vaccinated with ChAdOx1	1,868	536	119,132	1.46 (0.76 to 2.80)		
Stroke	Vaccinated with ChAdOx1	1,861	358	118,629	1.07 (0.97 to 1.18)		
Stroke	Vaccinated with BNT162b2	1,654	569	118,167	1.06 (0.97 to 1.17)		
Condition	Vaccination	SARS-CoV-2 PCR positive test	Cases Pre	Cases Post	Ratio		
-----------	-------------	-------------------------------	-----------	------------	-------		
Stroke	ChAdOx1	1,868,605	1,19,136	6	2.32		
Stroke with thrombocytopenia 10 days pre to 10 days post	ChAdOx1	1,868,573	119,134	6	1.09		
Stroke with thrombocytopenia 42 days pre to 14 days post	ChAdOx1	1,660,982	118,643	8	1.24		
Stroke with thrombocytopenia 42 days pre to 14 days post	BNT162b2	1,840,495	117,121	1,707	1.33		
Thrombocytopenia	ChAdOx1	1,632,328	116,491	1,462	1.07		
Thrombocytopenia	BNT162b2	1,840,495	117,121	1,707	1.10		
Thrombocytopenia	SARS-CoV-2 PCR positive test	296,999	40,289	254	2.6		
Thrombocytopenic purpura	ChAdOx1	1,858,064	118,431	508	1.21		
Thrombocytopenic purpura	BNT162b2	1,858,064	118,431	508	1.21		
Venous thromboembolism - broad	ChAdOx1	1,868,562	119,134	12	1.59		
Venous thromboembolism - broad	BNT162b2	1,660,955	118,641	5	0.68		
Venous thromboembolism - broad	SARS-CoV-2 PCR positive test	298,329	40,418	664	8.88		
Venous thromboembolism - narrow	ChAdOx1	1,858,837	118,483	461	1.14		
Venous thromboembolism - narrow	BNT162b2	1,652,892	118,054	491	1.17		
Venous thromboembolism - narrow	SARS-CoV-2 PCR positive test	298,397	40,429	646	9.09		
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	ChAdOx1	1,868,543	119,132	9	1.44		
Condition	Vaccine	N (cases)	N (controls)	risk ratio 95% CI			
---	------------------	-----------	--------------	---------------------------			
Venous thromboembolism broad with thrombocytopenia 10 days pre to 10 days post	Vaccinated with BNT162b2	1,660,959	118,641	0.90 (0.41 to 2.01)			
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868,467	119,126	1.21 (0.72 to 2.04)			
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,660,896	118,636	0.81 (0.43 to 1.50)			
Venous thromboembolism broad with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,199	40,595	3.93 (1.77 to 8.76)			
Venous thromboembolism narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with ChAdOx1	1,868,547	119,132	1.16 (0.56 to 2.44)			
Venous thromboembolism narrow with thrombocytopenia 10 days pre to 10 days post	Vaccinated with BNT162b2	1,660,964	118,641	0.93 (0.42 to 2.06)			
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with ChAdOx1	1,868,472	119,127	1.07 (0.61 to 1.88)			
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	Vaccinated with BNT162b2	1,660,903	118,637	0.83 (0.44 to 1.54)			
Venous thromboembolism narrow with thrombocytopenia 42 days pre to 14 days post	SARS-CoV-2 PCR positive test	299,199	40,595	4.11 (1.85 to 9.14)			
Incidence rate ratios (IRRs) and 95% confidence intervals for pulmonary embolism stratified by age, sex, and calendar month

Age Group	Male		Female			
	Vaccinated with BNT162b2	Vaccinated with ChAdOx1	All	December	January	February
30-44	![Graph](image1)	![Graph](image2)	![Graph](image3)	![Graph](image4)	![Graph](image5)	![Graph](image6)
45-64	![Graph](image7)	![Graph](image8)	![Graph](image9)	![Graph](image10)	![Graph](image11)	![Graph](image12)
>=65	![Graph](image13)	![Graph](image14)	![Graph](image15)	![Graph](image16)	![Graph](image17)	![Graph](image18)
Patient profiles: pulmonary embolism

The characteristics of persons with pulmonary embolism used for the primary analyses. *Conditions of interest: autoimmune disease, antiphospholipid syndrome, thrombophilia, asthma, atrial fibrillation, malignant neoplastic disease, diabetes mellitus, obesity, or renal impairment. †Medications of interest included non-steroidal anti-inflammatory drugs, Cox2 inhibitors, systemic corticosteroids, hormonal contraceptives, tamoxifen, and sex hormones and modulators of the genital system.

	General population	Vaccinated with ChAdOx1	Vaccinated with BNT162b2
N	7,414	281	282
Age	68 [56 to 77]	74 [67 to 79]	75 [66 to 82]
Age: 30 to 39	474 (6.4%)	<5	6 (2.1%)
Age: 40 to 49	735 (9.9%)	12 (4.3%)	14 (5.0%)
Age: 50 to 59	1,164 (15.7%)	30 (10.7%)	23 (8.2%)
Age: 60 to 69	1,666 (22.5%)	49 (17.4%)	51 (18.1%)
Age: 70 to 79	1,918 (25.9%)	119 (42.3%)	89 (31.6%)
Age: 80 or older	1,457 (19.7%)	69 (24.6%)	99 (35.1%)
Sex: Male	3,543 (47.8%)	138 (49.1%)	135 (47.9%)
Years of prior observation time	14.9 [7.9 to 17.6]	17.8 [6.0 to 32.5]	21.5 [8.7 to 34.9]

Comorbidities

Condition	General population	Vaccinated with ChAdOx1	Vaccinated with BNT162b2			
Autoimmune disease	325 (4.4%)	13 (4.6%)	18 (6.4%)			
Antiphospholipid syndrome	14 (0.2%)	0 (0.0%)	0 (0.0%)			
Thrombophilia	36 (0.5%)	0 (0.0%)	0 (0.0%)			
Asthma	1,137 (15.3%)	43 (15.3%)	39 (13.8%)			
Atrial fibrillation	302 (4.1%)	19 (6.8%)	14 (5.0%)			
Malignant neoplastic disease	1,533 (20.7%)	91 (32.4%)	94 (33.3%)			
Diabetes mellitus	974 (13.1%)	51 (18.1%)	46 (16.3%)			
Obesity	556 (7.5%)	23 (8.2%)	21 (7.4%)			
Heart disease	1,382 (18.6%)	73 (26.0%)	64 (22.7%)			
Hypertensive disorder	2,832 (38.2%)	120 (42.7%)	129 (45.7%)			
Renal impairment	1,131 (15.3%)	63 (22.4%)	71 (25.2%)			
Condition	No.	%	No.	%	No.	%
---	-----	------	-----	------	-----	------
COPD	674	(9.1)	31	(11.0)	33	(11.7)
Dementia	176	(2.4)	23	(8.2)	11	(3.9)
Medication use (183 days prior to four days prior)						
Non-steroidal anti-inflammatory drugs	4,302	(58.0)	87	(31.0)	77	(27.3)
Cox2 inhibitors	42	(0.6)	0	(0.0)	<5	
Systemic corticosteroids	2,001	(27.0)	43	(15.3)	34	(12.1)
Antithrombotic and anticoagulant therapies	1,555	(21.0)	35	(12.5)	32	(11.3)
Lipid modifying agents	890	(12.0)	29	(10.3)	23	(8.2)
Antineoplastic and immunomodulating agents	387	(5.2)	11	(3.9)	12	(4.3)
Hormonal contraceptives for systemic use	158	(2.1)	<5		6	(2.1)
Tamoxifen	39	(0.5)	<5		<5	
Sex hormones and modulators of the genital system	295	(4.0)	9	(3.2)	9	(3.2)
One or more condition of interest*	3,388	(45.7)	165	(58.7)	176	(62.4)
One or more medication of interest†	4,746	(64.0)	108	(38.4)	100	(35.5)
One or more condition/medication of interest*†	5,745	(77.5)	199	(70.8)	207	(73.4)
Incidence rate ratios (IRRs) and 95% confidence intervals for thrombocytopenia stratified by age, sex, and calendar month

Age Group	Male	Female
30-44		
45-64		
>=65		

Legend:
- Vaccinated with BNT162b2
- Vaccinated with ChAdOx1
- All
- December
- January
- February

IRR (95% CI)
Patient profiles: thrombocytopenia

The characteristics of persons with thrombocytopenia used for the primary analyses. *Conditions of interest: autoimmune disease, antiphospholipid syndrome, thrombophilia, asthma, atrial fibrillation, malignant neoplastic disease, diabetes mellitus, obesity, or renal impairment. †Medications of interest included non-steroidal anti-inflammatory drugs, Cox2 inhibitors, systemic corticosteroids, hormonal contraceptives, tamoxifen, and sex hormones and modulators of the genital system.

	General population	Vaccinated with ChAdOx1	Vaccinated with BNT162b2
N	50,690	1,865	1,548
Age	67 [53 to 78]	73 [64 to 79]	78 [68 to 85]
Age: 30 to 39	4,604 (9.1%)	54 (2.9%)	31 (2.0%)
Age: 40 to 49	5,289 (10.4%)	101 (5.4%)	68 (4.4%)
Age: 50 to 59	7,994 (15.8%)	176 (9.4%)	129 (8.3%)
Age: 60 to 69	10,130 (20.0%)	379 (20.3%)	199 (12.9%)
Age: 70 to 79	11,963 (23.6%)	728 (39.0%)	431 (27.8%)
Age: 80 or older	10,710 (21.1%)	427 (22.9%)	690 (44.6%)
Sex: Male	31,064 (61.3%)	1,181 (63.3%)	1,022 (66.0%)
Years of prior observation time	14.4 [5.9 to 17.2]	16.9 [5.5 to 31.3]	22.1 [7.3 to 33.6]
Comorbidities			
Autoimmune disease	2,551 (5.0%)	134 (7.2%)	128 (8.3%)
Antiphospholipid syndrome	40 (0.1%)	5 (0.3%)	<5
Thrombophilia	73 (0.1%)	8 (0.4%)	6 (0.4%)
Asthma	5,755 (11.4%)	223 (12.0%)	170 (11.0%)
Atrial fibrillation	6,002 (11.8%)	341 (18.3%)	408 (26.4%)
Malignant neoplastic disease	8,691 (17.1%)	451 (24.2%)	441 (28.5%)
Diabetes mellitus	9,211 (18.2%)	542 (29.1%)	431 (27.8%)
Obesity	2,819 (5.6%)	169 (9.1%)	90 (5.8%)
Heart disease	14,636 (28.9%)	764 (41.0%)	765 (49.4%)
Hypertensive disorder	20,144 (39.7%)	990 (53.1%)	900 (58.1%)
Renal impairment	8,695 (17.2%)	457 (24.5%)	491 (31.7%)
Condition/Category	Count 3,023	Count 166	Count 139
--	-------------	-----------	-----------
COPD	3,023 (6.0%)	166 (8.9%)	139 (9.0%)
Dementia	1,421 (2.8%)	109 (5.8%)	58 (3.7%)
Medication use (183 days prior to four days prior)			
Non-steroidal anti-inflammatory drugs	27,424 (54.1%)	587 (31.5%)	543 (35.1%)
Cox2 inhibitors	293 (0.6%)	7 (0.4%)	6 (0.4%)
Systemic corticosteroids	13,729 (27.1%)	301 (16.1%)	266 (17.2%)
Antithrombotic and anticoagulant therapies	9,624 (19.0%)	226 (12.1%)	254 (16.4%)
Lipid modifying agents	8,093 (16.0%)	249 (13.4%)	248 (16.0%)
Antineoplastic and immunomodulating agents	2,793 (5.5%)	48 (2.6%)	47 (3.0%)
Hormonal contraceptives for systemic use	976 (1.9%)	12 (0.6%)	12 (0.8%)
Tamoxifen	137 (0.3%)	0 (0.0%)	<5
Sex hormones and modulators of the genital system	1,878 (3.7%)	36 (1.9%)	27 (1.7%)
One or more condition of interest*	25,148 (49.6%)	1,271 (68.2%)	1,160 (74.9%)
One or more medication of interest†	30,447 (60.1%)	670 (35.9%)	625 (40.4%)
One or more condition/ medication of interest*†	38,782 (76.5%)	1,448 (77.6%)	1,298 (83.9%)