Orbit- and Atom-Resolved Spin Textures of Intrinsic, Extrinsic and Hybridized Dirac Cone States

Lin Miao †,1, Z. F. Wang †,2 Meng-Yu Yao,1 Fengfeng Zhu,1 J. H. Dil,3,4 C. L. Gao,1 Canhua Liu,1 Feng Liu *,2 Dong Qian *,1 and Jin-Feng Jia *1

1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
3Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
4Physik-Institut, Universität Zürich-Irchel, 8057 Zürich, Switzerland

Combining first-principles calculations and spin- and angle-resolved photoemission spectroscopy measurements, we identify the helical spin textures for three different Dirac cone states in the interfaced systems of a 2D topological insulator (TI) of Bi(111) bilayer and a 3D TI Bi2Se3 or Bi2Te3. The spin texture is found to be the same for the intrinsic Dirac cone of Bi2Se3 or Bi2Te3 surface state, the extrinsic Dirac cone of Bi bilayer state induced by Rashba effect, and the hybridized Dirac cone between the former two states. Further orbit- and atom-resolved analysis shows that s and p_x orbits have a clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of upper (lower) Dirac cone, while p_y orbits have an additional radial spin component. The Dirac cone states may reside on different atomic layers, but have the same spin texture. Our results suggest that the unique spin texture of Dirac cone states is a signature property of spin-orbit coupling, independent of topology.

PACS numbers: 73.20.-r, 73.22.-f, 75.70.Tj

One outstanding property that 3D TIs possess is the helical Dirac cone surface states residing inside a bulk gap, in which electron spin is lock-in with momentum [1, 2]. This spin-momentum locking property makes TIs promising materials for realizing spintronic devices, because the electron backscattering is forbidden for nonmagnetic impurities. Therefore, understanding the spin texture of helical Dirac cone states is of fundamental interest with practical implication.

Experimentally, the helical spin texture of surface Dirac cone state of 3D TIs has been directly detected by spin- and angle-resolved photoemission spectroscopy (SARPES) [3-8]. It can also be manipulated through its interaction with different polarized lights [9, 10]. During structural relaxation, atoms in the lower 4QL substrate is modeled by a slab of 6 quintuple layer (QL) Bi(111) bilayer[16–19] and a 3D TI of Bi2Se3 or Bi2Te3. The spin texture is found to be the same for the intrinsic Dirac cone of Bi(111). These Dirac cone states are all associated with strong SOC. However, different from the intrinsic surface states of TI, which are topologically protected inside a bulk gap, the extrinsic and hybridized states have no topological origin, even though they are formed by interfacing a 2D TI of Bi(111) bilayer[14-19] and a 3D TI of Bi2Se3 or Bi2Te3. It will be interesting to find out what spin texture such nontopological Dirac cone states have, in comparison with the topological surface Dirac states of 3D TIs.

In this Letter, the spin texture of three different Dirac cone states in the system of Bi/Bi2Se3 and Bi/Bi2Te3 are systematically studied. Both first-principles calculations and SARPES measurements show that the total spins form an identical helical spin texture for all three Dirac cones. Furthermore, the orbit-resolved calculations reveal that s and p_x orbits have a clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of upper (lower) Dirac cone, while p_y orbits have a radial spin component, in agreement with recent studies [11, 12]. The atom-resolved calculations reveal that the Dirac cone states may reside on different atomic layers, but their spin texture remains the same.

Our first-principles calculations are carried out in the framework of generalized gradient approximation with Perdew-Burke-Ernzerhof functional using the VASP package [20]. The lattice constants of the substrate are taken from experiments (a=4.138 Å for Bi2Se3 and a=4.386 Å for Bi2Te3), and Bi(111) bilayer is strained to match the substrate lattice parameter. All calculations are performed with a plane-wave cutoff of 400 eV on an 11 × 11 × 1 Monkhorst-pack k-point mesh. The substrate is modeled by a slab of 6 quintuple layer (QL) Bi2Se3 or Bi2Te3, and the vacuum layers are over 20 Å thick to ensure decoupling between neighboring slabs. During structural relaxation, atoms in the lower 4QL

† L.M. and Z.F.W. contributed equally to this work.
Corresponding authors: fliu@eng.utah.edu; dqian@sjtu.edu.cn; jfjia@sjtu.edu.cn.
substrate are fixed in their respective bulk positions, and Bi bilayer and upper 2QL of substrate are allowed to relax until the forces are smaller than 0.01 eV/Å.

First, we take a look at the Bi/Bi$_2$Se$_3$, where both intrinsic and extrinsic Dirac cone states coexist[14]. Figure 1(a) shows the spectral function of Bi/Bi$_2$Se$_3$ projected onto Bi bilayer plus upper 2QL of Bi$_2$Se$_3$. One sees two Dirac cones at the Fermi level. To reveal the origin of these two Dirac cones, we plot their real-space distribution by choosing three data points from upper and lower Dirac cones, as marked by I, II and III in Fig. 1(a). The corresponding momenta are -0.02, -0.02 and -0.01 Å$^{-1}$ for I, II and III states, respectively. The atom-projected state components are shown in Fig. 1(b), with the atomic layer indexes labeled in Fig. 1(c). The Dirac cone states below the Fermi level come almost completely from the substrate with little contribution from Bi bilayer (Fig. 1(b), top panel). This indicates that it is an intrinsic Dirac cone of Bi$_2$Se$_3$. The Dirac cone states near the Fermi level come predominantly from the top Bi bilayer, having little substrate contribution (see Fig. 1(b), two bottom panels). This indicates that it is an extrinsic Dirac cone generated by the Rashba splitting of Bi bilayer bands, as discussed before[14,18]. Additionally, we note that due to interfacial interaction with the Bi bilayer, the intrinsic surface Dirac cone has a wide real-space distribution in the 2nd and 3rd QL (Fig. 1(b), top panel) that peaks at the boundary between the 1st and 2nd, and the 2nd and 3rd QL (i.e., the 7th and 8th, and 12th and 13th atomic layer as seen in Fig. 1(c)). This is different from the surface Dirac cone of bare Bi$_2$Se$_3$ that decays from the 1st and 2nd QL[21]. The Bi bilayer pushes down and broadens the surface states of Bi$_2$Se$_3$. This is consistent with the recent findings by Wu et al. that the vertical location of surface Dirac cone state of a 3D TI can be tuned by depositing a layer of conventional insulator[22].

Although the two Dirac cones in Fig. 1(a) have different physical origins, their spin textures are found to be the same. The total and orbit-resolved spin textures along the iso-energy contour at the energy marked by I, II and III in Fig. 1(a). The total and orbit-resolved spin textures are consistent with the theoretical model prediction by Zhang et al.[11]. We note that although both p_x and p_y orbit spins have radial components, their summation, p_z, orbit spin is helical becoming tangent to iso-energy contour, albeit they are oriented counterclockwise in both upper and lower Dirac cones. The total helical in-plane p orbit spins with the same orientation in the upper and lower Dirac cones have been recently experimen-
Figure 3: (a) Spin-integrated ARPES spectra of Bi/Bi$_2$Se$_3$ and (b) Bi/Bi$_2$Te$_3$. The dashed blue and yellow lines show the position of the intrinsic and extrinsic Dirac cones. Experimentally, the relative intensity of two Dirac cones can be tuned by incident photon energy. (c) and (d) The experimental momentum dependent spin polarization and fitting data of Bi/Bi$_2$Se$_3$ and Bi/Bi$_2$Te$_3$. (e) and (f) Spin textures of intrinsic, extrinsic Dirac cones and hybridized Dirac cone. The images in (f) are the constant energy contours of ARPES intensity.

The only difference between the spin textures of intrinsic and extrinsic Dirac cones is the spin magnitude. For the intrinsic Dirac cone, the amplitude of s, p_x, and p_y orbit spins are negligible, and the magnitude of p_z orbit spin is the largest. While for the extrinsic Dirac cone, the amplitude of s orbit spin is negligible, and the magnitude of three p orbit spins are comparable to each other.

Next, we turn to the Bi/Bi$_2$Te$_3$ where hybridized Dirac cone states arise[14]. Figure 2(a) shows the spectral function of Bi/Bi$_2$Te$_3$ projected onto Bi bilayer plus upper 1QL Bi$_2$Te$_3$. There appears only one Dirac cone at the Fermi level. Similar to the case of Bi/Bi$_2$Se$_3$, three groups of data points are chosen around this Dirac cone, as marked by I, II and III in Fig. 2(a). The corresponding momenta are -0.03, -0.02 and -0.01 Å$^{-1}$ for I, II and III states, respectively. The atom-projected components of these states are shown in Fig. 2(b), and the atomic layer indexes are the same as those shown in Fig. 1(c). One major difference from Bi/Bi$_2$Se$_3$ is that the only one Dirac state in Bi/Bi$_2$Te$_3$ has sizable contributions from both Bi bilayer and Bi$_2$Te$_3$ substrate, as clearly seen from Fig. 2(b). This indicates that it is a hybridized Dirac state between the intrinsic surface Dirac state of Bi$_2$Te$_3$ and the extrinsic Rashba Dirac state of Bi bilayer. A previous study has further shown another interesting point that such hybridization might enhance many-body interaction within the Dirac states[14]. Figure 2(b) also shows that the hybridization in upper Dirac cone is stronger than that in lower Dirac cone. Moving away from the Dirac point (Form III to I), the components of the Bi bilayer (Bi$_2$Te$_3$ substrate) decreases (increases) in upper Dirac cone, but they show little change in lower Dirac cone. The substrate contribution to the Dirac cone is not localized in the 1st QL but between the 1st and 2nd QL (i.e., the 6th to 9th atomic layer as seen in Fig. 1(c)). This is because the surface state is pushed slightly away from the Bi/Bi$_2$Te$_3$ interface compared to the bare Bi$_2$Te$_3$ surface state [8]. After confirming the hybridized nature of the Dirac cone state in Bi/Bi$_2$Te$_3$, its spin textures along the iso-energy contour at the energy marked by label II are shown in Fig. 2(d). The total and orbit-resolved spin textures of hybridized Dirac cone are the same as those in the intrinsic and extrinsic Dirac cones of the Bi/Bi$_2$Se$_3$ system. s and p_z orbits have a helical spin texture, while p_x and p_y orbits have a non-helical radial spin component.

We can conclude from the above calculation results several common features for the three different Dirac cone states. (1) The total spins have a helical spin texture, which is clockwise (counterclockwise) in upper (lower) Dirac cone. (2) s and p_z orbit spins have the same texture as to the total spins. (3) p_x and p_y orbit spins have a radial spin component individually, but their sum becomes helical. (4) The substrate surface state is pushed down away from the 1st QL by the presence of an overlayer of Bi bilayer.

To support our first-principles calculations, we have...
measured the total spin textures of these Dirac cone states in the Bi/Bi$_2$Se$_3$ and Bi/Bi$_2$Te$_3$ systems by SARPES. The method for epitaxially growing high quality Bi/Bi$_2$Te$_3$ and Bi/Bi$_2$Se$_3$ samples are same to our previous works [14, 19]. SARPES measurements were performed at the SIS beam line at the Swiss Light Source using the COPHEE spectrometer with a single 40 kV classical Mott detector. The typical energy and momentum resolution was 50 meV and 3% of the surface Brillouin zone at SIS. All the measurements were carried out at 30K in ultrahigh vacuum with a base pressure better than 1 \times 10$^{-10}$ torr. Proper measurement geometries were used to minimize SARPES matrix elements effects. For Bi/Bi$_2$Se$_3$ system, though there are two Dirac cone states, experimentally we tune the relative spectra intensity by using different photon energies. As shown in Fig. 3(a), the intrinsic Dirac cone from Bi$_2$Se$_3$ was observed clearly with photon energy of 20eV and the extrinsic Dirac cone from Bi bilayer was detected with photon energy of 40eV.

Figure 3(a) shows the spin-integrated ARPES spectra of Bi/Bi$_2$Se$_3$ along K-Γ-K and K-M-K directions, in which one can see both intrinsic and extrinsic Dirac cones. In the SARPES measurements, two spin-resolved momentum distribution curves (MDC) were taken (cut1 and cut2, as shown by the horizontal dashed lines in Fig. 3(a)). Cut1 is at 220 meV below the Fermi level to study the intrinsic Dirac cone, and cut2 is at 180 meV below the Fermi level to study the extrinsic Dirac cone. The spin polarization is extracted by using the two-step fitting routine of SARPES data [3, 23, 24]. The momentum dependent spin polarization and fitting data are shown in Fig. 3(c), from which we extract the spin textures. Figure 3(e) presents the spin textures of intrinsic and extrinsic Dirac cones, which is clockwise in upper intrinsic Dirac cone and counterclockwise in lower extrinsic Dirac cone. For both Dirac cone, spins are nearly in-plane polarized. Figure 3(b) shows the spin-integrated ARPES spectra of Bi/Bi$_2$Te$_3$ along K-Γ-K direction, in which one can see the hybridized Dirac cone. Similar to the SARPES measurement for Bi/Bi$_2$Se$_3$, we also take two MDC cuts (cut3 and cut4), as shown by the dashed lines in Fig. 3(c). Cut3 (cut4) is taken at 150 (350) meV below the Fermi level, slightly above (below) the hybridized Dirac cone. The polarization and fitting data are shown in Fig. 3(d). As shown in Fig. 3(f), the spin texture is clockwise and counterclockwise in upper and lower Dirac cone, respectively. Thus, our SARPES measurements directly identify that all three Dirac cones have the same helical spin textures, independent of topology, consistent with our first-principles calculations.

Lastly, we present additional first-principles calculations to show the orbit- and atom-resolved spin textures of the Dirac cone states. Here, we will focus on the top two Bi atoms. Overall, except the spin magnitude, the atom-resolved spin textures have the same structure compared to the spin textures by adding all atoms together, as shown in Fig. 4. However, from the atom projection, we can obtain some detailed local information of spin texture by considering the spin magnitude difference. Figure 4(a) and (b) are the spin textures of extrinsic Dirac cone projected onto the top two Bi atoms of Bi/Bi$_2$Se$_3$. We can see that the spin magnitude is very different between the two Bi atoms. For the Bi-1 atom, p_x orbit spin has the largest magnitude, while s and p_y orbit spins are negligible. But for the Bi-2 atom, p_x and p_y orbit spins have the largest magnitude, while s and p_z orbit spins are negligible. Figure 4(c) and (d) are the spin textures of hybridized Dirac cone projected onto the top two Bi atoms of Bi/Bi$_2$Te$_3$. The atom-resolved spin textures of hybridized Dirac cone are the same to those in the extrinsic Dirac cone. We have also checked the atom-resolved spin textures for the intrinsic Dirac cone, which are again the same.

In summary, we have identified the helical spin textures for three different Dirac cone states in the interfaced systems of Bi/Bi$_2$Se$_3$ and Bi/Bi$_2$Te$_3$, from first-principles calculations and experiments. We confirm the recent theory [11] and experiment [12] that the spin texture of intrinsic surface Dirac cone states of 3D TIs is coupled with orbit, resulting in an overall spin-orbit texture. Characteristically, s and p_x orbits have the conventional helical spin texture: p_y and p_z orbits show individually radial spin component, while the sum of the two shows a total in-plane helical spins. We further show that the same spin texture is also applicable to the extrinsic Rashba Dirac cone states of Bi(111) bilayer on a substrate as well as to the hybridized Dirac cone states between a TI surface state and a thin-film
Rashba state. Therefore, we suggest that the unique spin-orbit texture of helical Dirac states is pertained to SOC, but not necessarily to TIs.

The experimental work conducted at Shanghai Jiao Tong University is supported by National Basic Research Program of China Grants 2012CB927401, 2011CB921902, and 2011CB922200; National Natural Science Foundation of China Grants 91021002, 10904090, 11174199, 11134008, and 11274228; and Shanghai Committee of Science and Technology, China Grants 10QA1403300, 10JC1407100, 10PJ1405700, 12JC1405300 and 13QH1401500. The theoretical work conducted at University of Utah is supported by the office of Basic Energy Sciences, US Department of Energy Grant DE-FG02-04ER46148. We also thank the CHPC at University of Utah and NERSC for providing the computing resources. D.Q. acknowledges additional support from Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Z.F.W. acknowledges additional support from NSF-MRSEC (Grant No. DMR-1121252) and ARL (Cooperative agreement No. W911NF-12-2-0023).

[1] M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).
[4] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).
[5] P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature 460, 1106 (2009).
[6] Z.-H. Pan, E. Vescovo, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, G. D. Gu, and T. Valla, Phys. Rev. Lett. 107, 257004 (2011).
[7] S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. Lett. 106, 216803 (2011).
[8] S. V. Eremeev, G. Landolt, T. V. Menshchikova, B. Slomski, Y. M. Koroteev, Z. S. Aliev, M. B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A. A. Khatioryrians, J. Hagemeister, O. Pietzsch, J. Wiebe, R. Wiesendanger, P. M. Echenique, S. S. Tsirkin, I. R. Amiralaslanov, J. Hugo Dil, and Evgenii V. Chulkov, Nature Commun. 3, 635 (2012).
[9] C.-H. Park, S. G. Louie, Phys. Rev. Lett. 109, 097601 (2012).
[10] C. Jozwiak, C.-H. Park, K. Gotlieb, C. Hwang, D.-H. Lee, S. G. Louie, J. D. Denlinger, C. R. Rotundu, R. J. Birgeneau, Z. Hussain, and A. Lanzara, Nature Phys. 9, 293 (2013).
[11] H. Zhang, C.-X. Liu, and S.-C. Zhang, Phys. Rev. Lett. 111, 066801 (2013).
[12] Y. Cao, J. A. Waugh, X.-W. Zhang, J.-W. Luo, Q. Wang, T. J. Reber, S. K. Mo, Z. Xu, A. Yang, J. Schneeloch, G. D. Gu, M. Brahlek, N. Bansal, S. Oh, A. Zunger, and D. S. Dessau, Nature Phys. 9, 499 (2013).
[13] Zhoujin Xie et al., [arXiv:1303.0698] (2013).
[14] L. Miao, Z. F. Wang, W. Ming, M.-Y. Yao, M.-X. Wang, F. Yang, Y. R. Song, F. Zhu, A. V. Fedorov, Z. Sun, C. L. Gao, C. Liu, Q.-K. Xue, C.-X. Liu, F. Liu, D. Qian, and J.-F. Jia, Proc. Natl. Acad. Sci. USA 110, 2758 (2013).
[15] Z. F. Wang, M.-Y. Yao, W. Ming, L. Miao, F. Zhu, C. Liu, C. L. Gao, D. Qian, J.-F. Jia, and F. Liu, Nature Commun. 4, 1384 (2013).
[16] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).
[17] Z. Liu, C.-X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Phys. Rev. Lett. 107, 136805 (2010).
[18] L. Chen, Z. F. Wang, and F. Liu, Phys. Rev. B 87, 235420 (2013).
[19] F. Yang, L. Miao, Z. F. Wang, M.-Y. Yao, F. Zhu, Y. R. Song, M.-X. Wang, J.-P. Xu, A. V. Fedorov, Z. Sun, G. B. Zhang, C. Liu, F. Liu, D. Qian, C. L. Gao, and J.-F. Jia, Phys. Rev. Lett. 109, 16801 (2012).
[20] G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993).
[21] W. Zhang, R. Yu, H.-J. Zhang, X. Dai, and Z. Fang, New J. Phys. 12, 065013 (2010).
[22] G. Wu, H. Chen, Y. Sun, X. Li, P. Cui, C. Franchini, J. Wang, X.-Q. Chen, and Z. Zhang, Sci. Rep. 3, 1233 (2013).
[23] F. Meier et al., Phys. Rev. B 77, 165431 (2008).
[24] J. H. Dil, J. Phys.: Condens. Matter 21, 403001 (2009).