In this paper, an open-source simulator named NYUSIM is utilized to find the impact of the Human Blockage loss and Outdoor to Indoor (O2I) loss on the best candidate of 5G mmWave (38 GHz) in the NLOS UMi environment which has been proven the authors in their previous study. For accurate channel modeling, the human blockage and O2I losses play a vital role as in real life situations these losses occur. The previous study includes an ideal condition in which these losses were not considered.

NYUSIM uses a four-state Markov process to determine human blockage and two modes for O2I losses which include “High loss mode” for highly lossy materials like concrete walls and infrared reflecting glasses and “Low loss mode” for low loss materials like standard glasses and woods etc. These works are proof to the statement that there is a significant impact of the human and O2I losses on 5G mmWave bands which includes a smaller number of spatial lobes formed, lesser power is received, the path loss is increased, etc. Therefore, these losses must be considered for modeling the next-generation mobile communication system i.e 5G.

Keywords: 5G, mmWaves, Human Blockage Loss, Outdoor to Indoor Loss, NYUSIM, Mobile Communication

I. Introduction

The race among different tycoons in the field of both academia and industry upon the state-of-the-art mobile communication system is on fire because of the ever-
increasing demand for mobile traffic, low latency requirements, and gigantic amount of connecting devices. CISCO predicts the mobile traffic demand of about 930 exabytes in the year 2022 which shows an increment of 113th fold for the year 2012 [XVII]. Similarly, a minimum latency (up to 1ms) is also the need of the day for mission-critical situations like driverless and auto parking technology in today's cars. The number of connecting devices due to IoT and high mobility requirements due to bullet trains, hyperloop trains, and airplane communications are the factors which are tending us to move from traditional LTE-A mobile communications towards the next generation mobile communications known as 5G.

As discussed earlier the research on 5G is on its peak in both the academia and industry, different researchers around the globe are trying to figure out the properties of mmWaves as they haven’t been used for communications before and they are more susceptible to the environment as compared to the traditional communication signals. A similar study has also been carried out by us on the name of “Analysis of Channel Modelling for 5G mmWave Communication” in which we analyzed different mmWave bands (28, 38, 60, and 73 GHz) in the NLOS scenario for the UMi environment using world-renowned open-source simulator named “NYUSIM”. An analysis based on Angle of Arrival, Angle of Departure, Directional Power Delay Profile, Omni-directional Power Delay Profile, Small-scale Power Delay Profile, and path losses in non-line-of-sight (NLOS) scenario for a T-R separation of 150m 38 GHz band is the best suitable candidate carrier frequency for 5G new radio (NR).

In this study, we’ll incorporate 38 GHz band with a new module of human blockage shadowing loss and outdoor-to-indoor (O2I) penetration loss which was not considered for our previous research [XXVIII]. The current microwave communications (below 6 GHz) paid no attention to such losses because blockage from human shadowing has almost negligible impact on the [V] but the mmWave bands are much more sensitive to these losses as they can’t flick through human or even diffract from such blockages because of their short (few mm) wavelengths. For the maximum accuracy in the link budget analysis, the shadowing caused by the vehicles and humans must be considered [V]. According to the studies of [XXVII], [XXIX], and [IX], O2I affects the mmWave bands significantly because of the concrete walls, wood, and infrared reflecting glasses due to which the signal of mmWave bands may attenuate during transmission. For the deployment of 5G outdoor and indoor communication systems, the accurate prediction of O2I penetration loss is of extreme importance [VIII].

The study aims to find out the effect of O2I penetration and human blockage losses on the 38 GHz band of mmWave in the NLOS UMi environment with a TR separation of 150m. The 38 GHz band is selected from the result of the previous result of our study in which it performed very well as compared to 28 GHz, 60 GHz, and 73 GHz bands. We’ll use the NYUSIM simulator as a tool for our analysis which is free to download and is open-source software.

The rest of the paper will follow a sequence in which Section II will give a brief background to our study followed by Section III which introduces the NYUSIM
channel model while results discussion and simulation environment will be discussed in Section IV. Section V concludes the study.

II. Background

The theory for mobile radio reception was proposed in the late 60’s by Clarke [VII], while Smith [XVIII] used the theory of Clarke to make a computer simulator for indoor and outdoor propagation channels. In [IX] an extended version of the Wireless World Initiative for New Radio (WINNER) named QuaDRiGa channel model has been shown for the 3D antenna patterns and propagation with variable user terminal (UT) speeds. The indoor channel model for M2M communication is shown by Yu [X] while a simulator named SIRCIM [XVIII] was based upon the measurements of WiFi’s initial deployment. In [V] the author, utilized the stochastic geometry to give a framework able to calculate the coverage of mmWave downlink while, in [XII] [VI] the authors compared the path loss models of 3rd Generation Partnership Project (3GPP) and the International Telecommunications Union - Radiocommunications (ITU-R) in which both models lack consistency. This might be due to the strange behavior of mmWaves, as very few researchers have experienced them before.

Similarly, lots of simulators specifically for the mmWave bands are there in the market which includes Riverbed Solutions, MathWorks’s MATLAB 5G Toolbox, Network Simulation 3 (NS-3), Vienna-5G-Simulators, Siradel S-5G Channel, PyLayers, Open Air Interface (OAI), Wireless InSite, REMCOM, OMNET++, and NYUSIM. Among these simulators, some are free, some are even open source while for most of the simulators one must purchase a license which is extremely costly in most cases.

For the sake of our research, we chose NYUSIM for our analysis which is not only free to use but also open source for customization. The real-world scenario measurements as well as the accuracy and ease of use also make the NYUSIM dominant over the paid simulators. Researchers around the globe are using NYUSIM for their studies. In [XV] the author introduced the NYUSIM channel model and simulator to the world. In [VII] Uniform Linear Arrays (ULA) with beamforming and spatial multiplexing for 5G mmWave bands are presented, while the author in [XI] the author proofs that the NYUSIM simulator is more accurate especially when the NLOS environment is selected.

III. System Model

In NYUSIM spatial and temporal Channel Impulse Responses (CIRs) are generated from directional and Omni-directional channel models that are heavily based on 1 TB data obtained real-world measurement campaigns [XVIII], [XXII], and [XXII]. Its CIRs are based on 800 MHz wide bandwidth which has a very precise resolution of 2.5 ns, but it also works fine with narrow bands. Here path loss model, power delay profiles, and received power of the NYUSIM model will be discussed.

Samad Baseer et al
Path Loss Model

The close-in free space reference distance (CI) path loss model with a 1 m anchor point, with an extra attenuation term due to various atmospheric attenuation factors [XVIII], is employed in NYUSIM, which is expressed as [XVIII], [XX], [XIII]

\[
PL_{CI}(f_c, d_{3D})[dB] = FSPL(f_c, 1m) + 10n\log_{10}(d_{3D}) + AT + \chi_{a}^{CI}
\]

where \(f \) denotes the carrier frequency in GHz, \(d_{3D} \) is the 3D T-R separation distance, \(n \) represents the path loss exponent (PLE). AT is the attenuation term induced by the atmosphere, \(\chi_{a}^{CI} \) is a zero-mean Gaussian random variable with a standard deviation \(\sigma \) in dB, and FSPL \((f, 1 \text{ m})\) denotes the free space path loss in dB at a T-R separation distance of 1 m at the carrier frequency \(f \): \n
\[
FSPL(f_c, 1m) = 20\log_{10}\left(\frac{4\pi f \times 10^9}{c}\right) = 32.4[dB] + 20\log_{10} f_c
\]

where \(c \) is the speed of light, and \(f \) is in GHz.

The term AT is characterized by:

\[
AT[dB] = \alpha[dB/m] \times d[m]
\]

where \(\alpha \) is the attenuation factor in dB/m for the frequency range of 1 GHz to 100 GHz, which includes the collective attenuation effects of dry air (including oxygen), water vapor, rain, and haze [XVIX] \(d \) is the 3D T-R separation distance.

Received Signal Power

The received signal power \((P_r[dBm]) \) can be given by:

\[
P_r[dBm] = P_t[dB] + G_t[dB] - PL(d)[dB]
\]

where \(P_t, G_t, G_r \) and \(PL(d)[dB] \) is the transmitted power, transmitter’s gain, receiver’s gain, and average path loss at distance “d” respectively.

Omni-directional Power Delay Profile

The Omni-directional power delay profile is given as [XXIII]:

\[
h_{omni}(t, \Theta, \Phi) = \sum_{n=1}^{N} \sum_{m=1}^{M_n} a_{m,n} e^{j\phi_{m,n}} \times \delta(t - \tau_{m,n}) \times \delta(\Theta - \Theta_{m,n}) \times \delta(\Phi - \Phi_{m,n})
\]

where \(t \) is propagation delay, \(\Theta = (\theta, \phi)_{TX} \) represents a vector of azimuth and elevation angle of departures, \(\Phi = (\theta, \phi)_{RX} \) represents the vector of azimuth and elevation angle of arrivals, \(N \) is the number of TCs, \(M_n \) is the number of sub-paths (SPs), \(a_{m,n} \) is the magnitude of \(m^{th} \) sub-path belonging to \(n^{th} \) time cluster, \(\Theta_{m,n} \) is the azimuth/elevation AODs of each multipath component and \(\Phi_{m,n} \) is the azimuth/elevation AOAs of each multipath component.

Directional Power Delay Profile

Directional power delay profile (DPDP) is given by [XXII]:

\[
Samad Baseer et al
\]
\[h_{dir}(t, \vec{\Theta}_d, \vec{\Phi}_d) = \sum_{m=1}^{N} \sum_{n=1}^{M_n} a_{m,n} e^{i\varphi_{m,n}} \times \delta(t - \tau_{m,n}) \times G_{TX}(\vec{\Theta}_d - \vec{\Theta}_{m,n}) \times G_{RX}(\vec{\Phi}_d - \vec{\Phi}_{m,n}) \] (6)

Where \((\vec{\Theta}_d, \vec{\Phi}_d)\) are desired pointing angles of transmitter and receiver, \(G_{TX}\) is the azimuth and elevation pattern of the transmitter, and \(G_{RX}\) is the complex amplitude of multi-element antenna arrays of the receiver.

O2I Penetration Loss

O2I penetration loss is an option in NYUSIM latest version in which a user can select/deselect it. If a person selects it, then NYUSIM offers two options depending upon the construction of the building [I] [X]. A “high loss” represents loss due to high lossy building material like the concrete walls and infrared reflecting glasses etc and a “low loss” represents the loss due to the low loss building materials like wood and generic glasses etc [IX] [I].

In our case, we use standard glass as our reference to O2I penetration loss. This scenario leads to a parabolic loss model [I] given as:

\[BPL[dB] = 10 \log_{10}(A + B \cdot f_c^2) + N(0, \sigma_p^2) \] (7)

where \(f_c\) is 38 GHz in our scenario, A and B are constants for low loss medium which corresponds to a value of 5 and 0.03 respectively, and the value of \(\sigma_p\) is 4 for our case while, for the high loss their values become 10, 5, and 6 respectively.

Human Blockage

The NYUSIM uses a four-state Markov model for human blockage loss [III]. These four states are named as transition rate from unshadowed state to decay state (default value is 0.20 for HPBW of 10°), the transition rate from decay state to shadowed state (default value is 8.08 for HPBW of 10°), the transition rate from shadowed state to rise state (default value is 7.85 for HPBW of 10°) and the transition rate from rising state to unshadowed state (default value is 6.70 for HPBW of 10°). The figure below shows how unshadowed, decaying, shadowed, and rising states are selected by NYUSIM using the four-state Markov model [XII]:

Samad Baseer et al
This four-state Markov model can be mathematically represented by the matrix given below:

$$A = \begin{bmatrix}
1 - \rho_{\text{decay}} & \rho_{\text{decay}} & 0 & 0 \\
0 & 1 - \rho_{\text{shad}} & \rho_{\text{shad}} & 0 \\
0 & 0 & 1 - \rho_{\text{rise}} & \rho_{\text{rise}} \\
\rho_{\text{unshad}} & 0 & 0 & 1 - \rho_{\text{unshad}}
\end{bmatrix} \quad (8)$$

The transition from one state to another can also be denoted linearly by equations given below:

$$\lambda_{\text{decay}} = 0.2 \quad (9)$$
$$\lambda_{\text{shad}} = 0.065 \times \text{HPBW} (\degree) + 7.425 \quad (10)$$
$$\lambda_{\text{rise}} = 0.05 \times \text{HPBW} (\degree) + 7.35 \quad (11)$$
$$\lambda_{\text{unshad}} = 6.7 \quad (12)$$

IV. Simulation Environment and Result Discussion

Our study mainly focusses on the impact of human shadowing loss and O2I penetration loss on 38 GHz mmWave bands. We considered a 38 GHz carrier frequency in the NLOS UMi environment with an RF bandwidth of 800 MHz. A standard (10-500 m) distance range with the upper bound distance of 150m and a lower bound separation of 150m is selected. The transmitter power is selected is 30 dBm with the transmitter height of 35 meters and the user terminal height of 1.5 meters is selected. The number of receiver location is selected as 1 as we’re using a single receiver. Talking about the environmental condition the barometric pressure of 1013.25 mbar is selected with the humidity of 50% and a temperature of 20 degrees Celsius is selected. Similarly, foliage attenuation of 0.4 TB per meter is selected and O2I penetration loss is selected as yes with the low loss medium. Talking about the antenna properties the

Samad Baseer et al
transmitter and the receiver antenna type are selected is uniform linear array (ULA) type with the number of antenna elements on the transmitter and receiver side it is kept as 4. Both the transmitter and receiver antenna spacing is kept is 0.5 λ while the antenna is azimuth for both the transmitter and receiver is kept is 10 degrees while the elevation is also kept as 10 degrees. Talking about the human block is parameters the attenuation is kept is 14.4 dB while the transition rate from a Shadow to decay is kept is 0.2 per sec, the transition rate from decay to Shadow is kept is 8.08 per second, the 7.85 per second and transition rate from rising to a Shadow is kept as 6.70 per second. These properties are summarized in Table. 1.

Table 1: Characteristic Properties of Channel.

Environment	Carrier Frequency	Scenario	Humidity
UMi	28, 38, 60 and 73 GHz	NLOS	50%
R Location	TR Azimuth Angle	BS height	Rain Rate
1	10°	35m	5 mm/hr
R Elements	TR Elevation Angle	Separation	Polarization
4	10°	150m	Co-Pol
T Elements	TR Array Spacing	Array Type	Foliage loss
4	0.5λ	ULA	0.4dB/m
O2I Loss	Tx power	UT height	RF band width
Yes	30 dBm	1.5m	800 MHz
Loss type	Human blockage	Mean att.	Shadow to decay
Low loss	Yes	14.4 dB	0.2/sec
Shadow to rise	Rise to shadow	Default	Decay to shadow
7.85/sec	6.7/sec	No	8.08/sec

Angle of Departure

AoD illustrates the position of multipath components (MPCs) at which the power of the signal is communicated from Tx. The NYUSIM utilizes time cluster (TC) and spatial lobe (SL) technique to sample the Omni-directional channel impulse response as well as the corresponding 3D power spectra of AoA and AoD. TC is a group of multipath components (either from the same or different angular directions) traveling in a definite interval of time (propagation time window). SL is the main direction of arrival or departure where energy is received or sent in several hundred nanoseconds. The discussion begins with Fig. 2 which shows the 3D representation of 38GHz frequency in the NLOS UMi environment with human blockage loss and O2I penetration loss.

Samad Baseer et al
The 3D graph of Fig. 2 shows that a single SL is formed with 117 multi-path components (MPCs). In our previous study [XII] where we ignored the loss due to human and O2I penetration, there were 3 spatial lobes formed with 33, 27, and 33 multipath components (MPCs) respectively, each MPC comprises 5 different resolvable multipath components named as path delay (ns), path power (mW), the phase difference (rad), AoD (deg) and the zenith of departure (ZoD) in degrees.

Angle of Arrival

The AoA shows the angle of multi-path components at which power arrives at the receiver. Each multipath component in the AoA is composed of 5 resolvable multipath components just like the angle of departure and are named path delay (ns), pathPower (mWatts), pathPhase (rad), AoA (degree), and ZoA (degree). Figure 3 shows AoA of 38 GHz which shows that 4 SL is formed with 40, 23, 31, and 23 MPCs respectively. Comparing it to our previous study [XXVIII] we also obtain 4 SL in the 3D plot of 38 GHz band which comprises 26, 27, 19, and 21 multipath components respectively.
Directional Power Delay Profile

A power delay profile determines the transmission of the received signal at the receiver with fluctuating signal strength as it is transmitted through a multipath channel with larger propagation delays. Figure 4 shows the directional power delay profile. According to the plot the received power is -77.5 dBm, propagation delay is 1.4 ns, the directional path loss is 156.8 dB and the directional path loss exponent is 4.3. The difference from the previous study [XII] is summarized under Table. 2 where the same band has the received power of -47.4 dBm, the propagation delay of 3 ns, the directional path loss is 126.6 dB and the directional path loss exponent is 2.9.

Fig. 3: Angle of Arrival of 38 GHz band.

Fig. 4: Directional PDP.

Samad Baseer et al
Table 2: Directional Power Delay Profile.

| Directional Delay Profile |
|-----------------|-----------------|-----------------|-----------------|
Frequency	P_r (dBm)	σ_r (ns)	PL (dB)
38 GHz with losses	-77.5	1.4	156.8
38 GHz without losses	-47.4	3.0	126.6

Omni-directional Power Delay Profile

The Omni-directional power delay profile is given in Figure 4, according to which the received power is -124.3 dBm, propagation delay is 11.9 ns, Omni-directional path loss is 154.3 dB and the Omni-directional path loss exponent is 4.1. Comparing it to our previous results where the received power is -93.2 dBm, propagation delay is 41.8 ns, Omni-directional path loss is 123.2 dB and the Omni-directional path loss exponent is 2.7. These are summarized in Table 3 in which one can notice a significant difference in the received power, path loss, and path loss exponent.

Fig. 5: Omni-directional PDP.
Table 3: Omni-directional delay profile.

Frequency	P_r (dBm)	σ_T (ns)	PL (dB)	PLE
38 GHz with losses	-124.3	11.9	154.3	4.1
38 GHz without losses	-93.2	41.8	123.2	2.7

Small-Scale Power Delay Profile

Small scale power delay profile is given in Fig. 5. As we consider a 4×4 system having an inter-antenna element spacing of 0.5λ, therefore, a small scale power delay profile shows the small-scale properties (i.e. received signal power and propagation delay) of all antenna elements 38 GHz. The maximum propagation delay for the 38 GHz is 2494.8 ns while the maximum power received is -126.76 dBm. Comparing it to our previous analysis for 38 GHz without a lossy medium, the maximum propagation delay was 2061 ns and the maximum power received power for 38 GHz was -96.634 dBm. These differences due to the inclusion of human blockage loss and outdoor to indoor loss can be summarized under the Table. 4 where one can notice that considering the human blockage loss and outdoor to indoor loss can attenuate the received power.

Fig. 6: Small-scale PDP.
Table 4: Summary of the Small-Scale PDP.

Band	Max Propagation Delay	Max Received Power
38 GHz with losses	645 ns	-102.87 dBm
38 GHz without losses	2061 ns	-96.634 dBm

Pathloss

Pathloss is the measure of power attenuation of signal as it moves from the transmitter to the receiver in the presence of power attenuators like rain, haze, and other things which can cause signal attenuation. Fig. 6 shows the Pathloss of 38 GHz band in the presence of human blockage loss and outdoor to indoor loss. The directional and Omni-directional path loss is shown in the plot generated by NYUSIM for which the transmitter’s half-power beamwidth azimuth and elevation are kept at 10°. Similarly, the receiver’s half-power beamwidth azimuth and elevation are also at 10°, while the antenna gain for both the transmitter and receiver is 24.6 dBi. The plot also shows path loss, path loss exponent and shadow fading standard deviation for directional, Omni-directional, and directional with the strongest power received (denoted by dir-best in the legend of the plot). The difference in the directional and Omni-directional path loss is due to the higher loss in directional antenna as compared to the Omni-directional antenna. The path loss can be summarised in the Table. 5 where one can notice the difference in the received power due to the inclusion of human blockage loss and outdoor to indoor loss.

![Fig. 7: Pathloss.](image)

Samad Baseer et al
Table 5: Summary of the pathloss plots.

38 GHz Band	Directional best PL (dB)	Omnidirectional PL (dB)	PLE Directional best	PLE Omnidirectional
With losses	156.8	154.3	4.3	4.1
Without losses	126.6	123.2	2.9	2.7

V. Conclusion

The deep analysis of different mmWave bands (28, 38, 60, and 73 GHz) has already been done in our previous paper which concludes that the received power is maximized for 38 GHz band. Similarly, a minimum path loss and path loss exponent is observed for the same band using both the directional and Omni-directional antennas. Minimum propagation delay is also observed for 38 GHz thus, making the 38 GHz band as the best candidate frequency among 28, 38, and 60 GHz. But in our previous study, we consider an ideal situation where we didn’t consider the realistic situation where losses due to human and vehicular blockage could occur. So, to execute more realistic simulations, we consider the human blockage and outdoor to indoor losses for simulating the best candidate frequency i.e. 38 GHz.

The purpose was to find the impact of these losses on the previous analysis of the 38 GHz band. The impact of the losses was much more significant than our expectations. These losses not only decrease the number of spatial lobes in Angle of Departure from 3 SL to 1 SL. AoA SL number was the same, the only difference was in the number of MPCs formed. The directional path loss and PLE in directional power delay profile are significantly increased and the received power is decreased due to human blockage loss and O2I penetration loss as shown in Table. 2. The Omni-directional power delay profile also indicates that the received power is decreased and path loss and PLE are increased due to the human blockage loss and O2I penetration loss as shown in Table. 3. Table. 4 shows the small-scale PDP where power received is less than the previous study. Table. 5 summarizes the path losses both the directional and Omni-directional as well as the path loss where maximum power received (dir-best) which also shows the path loss is increased.

Hence, we conclude that the Human Blockage Loss and Outdoor to Indoor (O2I) Penetration loss have a great impact on any mmWave bands as these bands are highly susceptible to the external environment. The impact of the Human Blockage Loss and Outdoor to Indoor (O2I) Penetration loss on 38 GHz is significant. Thus, modeling any 5G models needs to incorporate these losses as well as others. This research will help the 5G network modelers to accurately model the next generation of mobile communication networks.

Samad Baseer et al
Conflict of Interest:

There is no conflict of interest regarding this article.

References

I. Aalto University, AT&T, BUPT, CMCC, Ericsson, Huawei, Intel, KT Corporation, Nokia, NTT DOCOMO, New York University, Qualcomm, Samsung, University of Bristol, and the University of Southern, "White paper on “5G Channel Model for bands up to 100 GHz,”" 21 Oct 2016. [Online]. Available: http://www.5gworkshops.com/5GCM.html. [Accessed 29 8 2020].

II. G. R. MacCartney et al., "Rapid fading due to human blockage in pedestrian crowds at 5G millimeter-wave frequencies," in IEEE Global Communications Conference, 2017.

III. G. R. MacCartney, Jr and T. S. Rappaport, "A flexible millimeter-wave channel sounder with absolute timing," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, p. 1402–1418, Jun 2017.

IV. G. R. MacCartney, Jr and T. S. Rappaport, "Study on 3GPP rural macrocell path loss models for millimeter-wave wireless communications," in IEEE International Conference on Communications (ICC), 2017.

V. G. R. MacCartney and T. S. Rappaport, "Millimeter-wave base station diversity for 5G coordinated multipoint (CoMP) applications," in IEEE Transactions on Wireless Communications, May 2019.

VI. J. I. Smith, "A computer-generated multipath fading simulation for mobile radio," IEEE Transactions on Vehicular Technology, vol. 24, no. 3, p. 39–40, Aug 1975.

VII. J. Lota, S. Sun, T. S. Rappaport and A. Demostheno, "5G ULA With Beamforming and Spatial Multiplexing at 28, 37, 64 and 71 GHz for Outdoor Urban Communication: A Two-Level Approach," IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9972-9985, Nov 2017.

VIII. J. G. Andrews et al., "Modeling and analyzing millimeter wave cellular systems," IEEE Trans. on Comm., vol. 65, no. 1, p. 403–430, Jan 2017.

IX. K. Haneda et al., "5G 3GPP-Like channel models for outdoor urban microcellular and macrocellular environments," in IEEE 83rd Vehicular Technology Conference (VTC Spring), May 2016.

X. K. Haneda et al., "Indoor 5G 3GPP-like channel models for office and shopping mall environments," in IEEE International Conference, May 2016.
XI. K. Zeman, P. Masek, M. Stusek, J. Hosek, and P. Sil, "Accuracy comparison of propagation models for mmWave communication in NS-3," in 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, 2017.

XII. M. S. Jamal and S. Baseer, Analysis of Channel Modelling for 5G mmWave Communication [Unpublished Master's thesis], Peshawar: University of Engineering & Technology, 2020

XIII. M. K. Samimi and T. S. Rappaport, "3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2207-2225, July 2016.

XIV. Malathi N., B. Srinivas, K. Sainath, J. Hemanth Kumar, "SOC IP Interfaces-A Hybrid Approach-Implementation using Open Core Protocol", J. Mech. Cont.& Math. Sci., Vol.-14, No.-4, July-August (2019), pp 481-491

XV. R. H. Clarke, "A statistical theory of mobile-radio reception," The Bell System Technical Journal, vol. 47, no. 6, p. 957–1000, July 1968.

XVI. R. W. Heath and D. J. Love, "Multimode antenna selection for spatial multiplexing systems with linear receivers," IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3042-3056, Aug. 2005.

XVII. S. Jain, "Mobile VNI Forecast 2017-2022: 5G emerges and is here to stay!!," CISCO Inc., 26 2 2019. [Online]. Available: https://blogs.cisco.com/sp/mobile-vni-forecast-2017-2022-5g-emerges. [Accessed 9 9 2019].

XVIII. S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, "QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials," IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, p. 3242–3256, June 2014.

XIX. S. Sun, G. R. MacCartney and T. S. Rappaport, "A novel millimeter-wave channel simulator and applications for 5G wireless communications," in IEEE International Conference on Communications (ICC), Paris, 2017.

XX. S. Sun et al., "Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications," IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843-2860, May 2016.

XXI. Subba Rao D., Dr. N.S. Murti Sarma, “A Secure and Efficient Scheduling Mechanism for Emergency Data Transmission in IOT”, J. Mech. Cont.& Math. Sci., Vol.-14, No.-1, January-February (2019), pp 432-443.

XXII. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, "Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design," IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029-3056, Sept 2015.

Samad Baseer et al
XXIII. T. S. Rappaport, S. Sun and M. Shafi, "Investigation and Comparison of 3GPP and NYUSIM Channel Models for 5G Wireless Communications," in IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, 2017.

XXIV. T. S. Rappaport, Y. Qiao, J. I. Tamir, J. N. Murdock, and E. Ben-Dor, "Cellular broadband millimeter-wave propagation and angle of arrival for adaptive beam steering systems (invited paper)," in IEEE Radio and Wireless Symposium, Santa Clara, CA, 2012.

XXV. T. Bai and R. W. Heath, "Coverage analysis for millimeter wave cellular networks with blockage effects," in IEEE Global Conference on Signal and Information Processing, 2013.

XXVI. T. S. Rappaport, S. Y. Seidel and K. Takamizawa, "Statistical channel impulse response models for factory and open plan building radio communication system design," IEEE Transactions on Communications, vol. 39, no. 5, p. 794–807, May 1991.

XXVII. T. S. Rappaport et al., "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!" IEEE Access, vol. 1, pp. 335-349, 2013.

XXVIII. Y. Xing, O. Kanhere, S. Ju, and T. S. Rappaport, "Indoor wireless channel properties at millimeter-wave and sub-Terahertz frequencies: Reflection, scattering, and path loss," in Proc. 2019 Global Communications Conferences, Dec. 2019.

XXIX. Y. Yu, Y. Liu, W. Lu and H. Zhu, "Propagation model and channel simulator under indoor stair environment for machine-to-machine applications," in Asia-Pacific Microwave Conference (APMC), Nanjing, Dec 2015.