Characterization of *Haemaphysalis flava* (Acari: Ixodidae) from Qingling Subspecies of Giant Panda (*Ailuropoda melanoleuca qinlingensis*) in Qinling Mountains (Central China) by Morphology and Molecular Markers

Wen-yu Cheng*, Guang-hui Zhao*, Yan-qing Jia, Qing-qing Bian, Shuai-zhi Du, Yan-qing Fang, Mao-zhen Qi, San-ke Yu*

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China

Abstract

Tick is one of important ectoparasites capable of causing direct damage to their hosts and also acts as vectors of relevant infectious agents. In the present study, the taxa of 10 ticks, collected from Qinling giant pandas (*Ailuropoda melanoleuca qinlingensis*) in Qinling Mountains of China in April 2010, were determined using morphology and molecular markers (nucleotide ITS2 rDNA and mitochondrial 16S). Phylogenetic relationships showed that all the *Haemaphysalis* collected from *A. m. qinlingensis* and *H. flava* were the lowest in ITS2 rDNA and mitochondrial 16S, with sequence differences of 2.06%–2.40% and 1.30%–4.70%, respectively. These ticks are similar to *Haemaphysalis flava*. Compared with other *Haemaphysalis* species, genetic variations between *Haemaphysalis* collected from *A. m. qinlingensis* and *H. flava* were further confirmed that the *Haemaphysalis* sp. is *H. flava*. This is the first report of ticks in giant panda by combining with morphology and molecular markers. This study also provided evidence that combining morphology and molecular tools provide a valuable and efficient tool for tick identification.

Introduction

The giant panda (*Ailuropoda melanoleuca*) is one of the most endangered and rarest animals in the world [1,2]. It was considered as Category I in the List of Key Protected Wildlife, an appendix within the Law of the People’s Republic of China on the Protection of Wildlife in 1989, and was also listed by the IUCN Species Survival Commission (SSC) as “Rare” in 1986 and 1988 and “Endangered” in 1990, 1994, and 1996 [3,4]. The total population of giant pandas has been estimated to approximately 1600 reported in Qinling, Minshan, Qionglai, Daxiangling, Xiaoxiangling and Liangshan Mountains in China (Figure 1) [5,6]. Since 1957, many conservation projects have been carried out, but the species is still facing the crisis of extinction because of habitat loss, poor reproduction and low rates of infectious disease resistance [4,7,8]. Among them, parasitic infection is the most endangered factor for giant pandas in China [9], e.g. ascariasis, some trematodiasis, diseases and infestations by ectoparasites [10].

Tick (Ixodida), one of common ectoparasites in animals, is an obligatory blood-feeding parasite capable of infesting all terrestrial vertebrates and birds, and is also globally important as vector of many microorganisms [11]. They are important for human and animal health, and can also cause high economic losses [12]. As a kind of widespread ectoparasites, the hard tick was firstly reported in giant pandas by Wu et al. in 1984 [13], latterly detailed morphological characters described and identified as *Haemaphysalis warburtoni*. These ticks could attach to the skin of giant pandas, and cause dermatitis, and, in highly infested animals weight loss, anemia and even death [10]. Ticks also can cause secondary skin bacterial infections [10]. According to a pathological examination, nearly 100 ticks have been collected in giant pandas sheltered in Pingwu Nature Reserve of Sichuan province the tick fauna consists of 5 species belonging to 2 genera, namely *Ixodes* and *Haemaphysalis* [14]. Subsequently, Qiu et al. [15] collected 1135 hard ticks from 11 wild giant pandas belonging to 12 species and 3 genera, namely, *Ixodes* (3 species), *Haemaphysalis* (8 species) and *Dermacentor* (1 species). Ticks belonging to genera *Ixodes* (3 species) and *Haemaphysalis* (8 species) were also found in dead giant pandas in Wen county of Gansu province [16]. In 1990, three hard tick species, namely *I. ovatus*, *H. aponommoides* and *H. flava* were also isolated from rescued giant pandas in Sichuan province [17]. Nowadays, more than 12 tick species have been identified as infesting giant panda based on morphological features [18].
Although morphological approach for tick identification is economic and convenient, it is expert-needing, inaccurate for close-related species, and also difficult for tick species infesting wild animals [19]. Molecular approach, mainly based on mitochondrial (mt) and ribosomal DNA (rDNA) fragments, has provided complementary tool for accurate identification and characterization of pathogens [20–24]. The internal transcribed spacer (ITS) rDNA, one highly tandem repeat region in genome, has been identified as one of the most effective marker for phylogenetics, diagnostics and DNA barcoding [25]. The ITS2 rDNA has been applied for studying molecular evolution of ixodidae and identifying tick species with length polymorphisms [26–29]. The ITS2 rDNA also has been successfully used to differentiate morphologically similar tick species of *Rhipicephalus sanguineus* group, *Ixodes* spp. and *Amblyomma* spp. [30–32]. Due to higher mutation rate, maternal inheritance and haploid nature, the mtDNA has been identified as a species-level marker for phylogenetic and taxonomic studies of organisms [33–35]. Four mtDNA fragments, namely 12S, 16S, cytochrome c oxidase subunit 1 (*cox1*) and NADH dehydrogenase subunit 5 (*nad5*), could be used to infer phylogenetic studies of ticks [36–40]. The mt 16S, 12S and *cox1* were also acted as good molecular targets to identify new species of argasid ticks and *Ixodes* spp. [22,41]. However, previous study showed that the ITS rDNA is useful to approach taxonomic and phylogenetic questions in arthropods, and the mt 16S is more suitable for solving taxonomic and phylogenetic problems between closely-related species [42]. Using ITS2 rDNA and mt 16S sequences, the phylogenetic relationships of *Amblyomma* species were effectively re-constructed [43], and four Euro-Asian hard tick species (*I. ricinus*, *I. persulcatus*, *I. hexagonus*, and *D. reticulatus*) were identified and differentiated [44].

The objective of this study was to identify ticks collected from giant pandas (*A. m. qinlingensis*) in Qinling Mountains in Shaanxi province of China, using morphological and molecular approaches. Based on ITS2 rDNA and mt 16S sequences, the phylogenetic relationships of these ticks were also re-constructed.

Materials and Methods

Ethics Statement

The performance of this study was strictly according to the recommendations of the Guide for the Care and Use of Laboratory Animals of the Ministry of Health, China, and our protocol was reviewed and approved by the Research Ethics Committee of Northwest A&F University. All tick samples were collected from *A. m. qinlingensis* after the permission of the Shaanxi Rare Wildlife Rescue Breeding Research Center, with no specific permits being required by the authority for the tick collection.

Tick Collection

In April 2010, a total of 30 adult hard ticks were collected from four *A. m. qinlingensis* (2 males and 2 females, 8–12 years old) using forceps without damaging their mouthparts. These giant pandas were rescued from Qinling Mountains in Shaanxi province of China (Figure 1). Collected specimens were conserved in 70% ethanol and taken to the laboratory for further examination.

Morphological Identification

Ticks were identified based on existing keys and descriptions [45]. Briefly, measurements for adults (males and females) were made using a stereomicroscope and provided in millimeters. Two specimens of each sex were put on glass slides and examined by light microscopy (OLYMPUS-CH20 BIM, 40×) for morphological and morphometry.

Molecular Identification

Considering similar morphological features of these ticks, 10 adult ticks (3 females and 7 males) were selected for molecular analysis (Table 1). The genomic DNA was individually extracted from ticks using spin column purification (TIANamp Genomic DNA Purification System, TIANGEN, China) according to the manufacturer’s recommendations. Molecular characterizations of ticks were performed by sequences of ITS2 rDNA and mt 16S.
PCR amplification of the ITS2 rDNA was conducted according to Chitimia et al. (2009) by using primers TITS2F1 (5'–CGAGCTTGGTTGAAATTGC-3') and TITS2R1 (5'–TCCAATACCAAGATTTCG-3') [46]. The oligonucleotide primer set of mt 16S, namely 16Su (5'–GTAGGATTCTAAAAGTTGA-3') and 16Sd (5'–CAATGAAATTTGAATTGTCGTAGT-3'), were designed based on available mt 16S sequences of *Haemaphysalis* spp. in GenBank™. Polymerase chain reactions were performed in 25 μl reaction system containing 1×Taq MasterMix (CWBio, China), 0.4 mM of each primer with 2 μl of gDNA in a thermocycler (Eppendorf) under the following conditions: denaturation at 95°C for 5 min, followed by 40 cycles of 94°C for 45 s, 55°C for 1 min, 72°C for 90 s, and a final extension at 72°C for 5 min. Samples without gDNA and host DNA (*A. m. qinlingensis*) as negative controls were also included in each amplification. Each amplicon (5 μl) was examined by agarose gel (1%) electrophoresis to validate amplification efficiency. Positive amplicons were sent to Sangon Company (Shanghai, China) for sequencing.

Sequences of ITS2 rDNA and mt 16S were separately aligned using the computer program Clustal X 1.83 [47]. Pairwise comparisons were made of the level of sequence differences (D) among the isolates within and among *Haemaphysalis* species using the formula $D = 1 - (M/L)$, where M is the number of alignment positions at which the two sequences have a base in common, and L is the total number of alignment positions over which the two sequences are compared [48,49].

To infer the taxonomic position of these ticks infesting *A. m. qinlingensis*, phylogenetic relationships of ticks in the present study and *Haemaphysalis* species with available sequences in GenBank™ were re-constructed, using *D. andersoni* (GenBank™ accession numbers S83084 for ITS2 rDNA and EU711328 for mt 16S) as the outgroup (Table 1). All the ambiguously aligned regions were excluded using Gblocks online server (http://molevol.cmima.csic.es/castresana/Gblocks_server.html). The remaining sequences were aligned and used to re-construct the genetic trees using maximum parsimony (MP) method carried out by PAUP 4.0 Beta 10 program [50], in which the bootstrap values were calculated from 1000 bootstrap replicates. Phylograms were drawn using the Tree View program version 1.65 [51].

Results and Discussion

Morphological Characterization of Ticks in *A. m. qinlingensis*

Morphological approach is a traditional and authoritative tool to classify taxa of ticks. In last decades, twelve tick species, including three *Ixodes* spp., one *Dermacentor* sp. and eight *Haemaphysalis* spp., were reported in giant pandas [16–18]. In the present study, one *Haemaphysalis* species collected from *A. m. qinlingensis* in Qinling Mountains was characterized. Morphological
characterization showed similar features with that of *H. flava* Neumann, 1897 [52]. However, limitations of this study were the small number of ticks samples and lack of descriptions of other development stages except adults. The barriers were low number of *A. m. qinlingensis* due to the endanger fact of giant panda [53,54], and three host ticks of all *Haemaphysalis* spp., for which immature development stages were difficult to obtain [55].

Molecular Characterization of Ticks in A. m. qinlingensis

In some contexts, tick morphological identification is difficult, mainly for immature stages, and ticks collected from wild animals...
were not identified using molecular evidence. In order to accurately infer the taxonomic position of
Haemaphysalis species from *A. m. qinlingensis*, a total of 20 DNA sequences from ten individuals were obtained, including ten ITS2 rDNA sequences and ten mt 16S sequences. After ambiguous bases at both ends discarded, the remaining sequences of ITS2 rDNA and mt 16S were 1164 bp and 367 bp, respectively. The ITS2 rDNA region was high in guanine cytosine (G+C) content with an average of 62.91% (ranged between 62.46% and 62.89%). The sequence variations among ten samples in ITS2 rDNA were 0–0.52%. Pairwise comparison in ITS2 rDNA between ticks from *A. m. qinlingensis* and species in genus *Haemaphysalis* showed that the genetic variations were the lowest between ticks from *A. m. qinlingensis* and *H. flava* (JF758641), with sequence differences of 2.06%–2.40%.

For mt 16S, high nucleotide contents of A+T (77.19%–77.98%) were found for ticks from *A. m. qinlingensis*. The intra-species genetic variations in mt 16S for these ticks were 0–4.09%. Pairwise comparison in mt 16S between ticks from *A. m. qinlingensis* and species in genus *Haemaphysalis* also showed low genetic variations between ticks from *A. m. qinlingensis* and *H. flava* (NC_005292), with sequence variations of 1.30%–4.70%.

In order to determine the taxonomic status of ticks from *A. m. qinlingensis*, the genetic trees were re-constructed using MP method based on the sequences of ITS2 and mt 16S, respectively. The topological structures of two MP trees were similar. All *Haemaphysalis* species were clustered in two large clades (Figure 2). All ticks from *A. m. qinlingensis* were grouped together sistered to *H. flava* with high bootstrap values (>50%) in ITS2 rDNA tree. Of the mt 16S tree, two samples (HMS1 and HMS4) were located in sister clade of *H. flava* with high bootstrap values (62%), while other tick samples from *A. m. qinlingensis* formed a single clade sistered to clade of *H. flava* and the two samples. These molecular data further confirmed ticks from *A. m. qinlingensis* would be *H. flava*.

The mt 16S and nucleotide ITS2 rDNA have been identified as effective markers for genetic characterization of ticks at interspecies and intra-species levels [22,26,46]. However, both of two fragments have some drawbacks in studying population genetics.

References

1. O’Brien SJ, Pan W, Lu Z (1994) Pandas, people and policy. Nature 369: 179–180.
2. Peng JJ, Jiang ZG, Hu JC (2001) Status and conservation of giant panda in China: a review. Folia Zoologica 50: 81–88.
3. Species Survival Commission, IUCN (2008) *Ailuropoda melanoleuca*. The World Conservation Union, Gland. Available at http://www.redlist.org/search/details.php?species=712 [accessed in 2013].
4. Zhang JS, Dasaak P, Huang HL, Yang GY, Külpatrick AM, et al. (2000) Parasite threat to panda conservation. Ecological Health 5: 6–9.
5. Zhang ZH, Wei FW (2006) Giant panda *ex-vivo* conservation theory and practice. Beijing: Science Press (In Chinese).
6. Wang T, He G, Yang G, Fei Y, Zhang Z, et al. (2008) Cloning, expression and purification of the efficacy of a recombinant *Bacillus thuringiensis* Be-Ag1 antigen in mice. Vaccine 26: 6919–6924.
7. Zeng CJ, Pan HJ, Gong SB, Yu JQ, Wan QH, et al. (2007) Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region. BMC Genomics 8: 315.
8. Zhang W, Vie S, Yue B, Zhou J, An R, et al. (2012) Determination of *Bacillus thuringiensis* schneideri infection in wild giant pandas by an accurate and sensitive PCR/CE-SSCP method. PLoS ONE 7: e19959.
9. He G, Chen S, Wang T, Yan Y, Zhang Z, et al. (2012) Sequence analysis of the Be-Ag1 gene of *Bacillus thuringiensis* schneideri from the giant panda and an evaluation of the efficacy of a recombinant *Bacillus thuringiensis* Be-Ag1 antigen in mice. DNA Cell Biol 31: 1174–1191.
10. Zhang H, Wang XH, Fan WQ, Yuan M (2010) Review of parasitosis of giant panda. Gannu Anim Vet Sci 21: 42–43 (In Chinese).
11. de la Fuente J, Estrada-Peña A, Venza JM, Tocan KM, Semenise DE (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13: 6938–6946.
12. Oliver JH (1989) Biology and systematics of ticks (Acarina: Ixodida). Annu Rev Ecol Syst 20: 397–450.
13. Wu J, Hu HG (1985) Giant panda: new host of *Haemaphysalis varibartii*. Chin J Vet Med 8: 10 (In Chinese).
14. Chen KL, Shi QX (1992) *Haemaphysalis aromonemus* and *Haemaphysalis longicornis* from giant panda. Shanghai J Anim Hosp Vet Med 1: 8 (In Chinese).
15. Qin MH, Zhu CJ (1987) Parasites in giant panda and their prevention and treatment. Proceedings of giant panda disease treatment conference. Beijing: China Forestry Press 1–9 (p) (In Chinese).
16. Ma GY (1967) Collection of acarid and ticks in giant panda in Wen county, Gansu province. Sichuan J Zool 6: 34 (In Chinese).
17. Lai GL, Yang ML, Wang Q (1990) Ecotoparasis of giant panda. Sichuan J Zool 9: 7 (In Chinese).
18. Yang GY (1998) Progress on parasite and parasitosis of giant panda. Chin J Vet Sci 18: 206–208 (In Chinese).
19. Qin XC, Tian JH, Wang JB, Lu X, Sun QZ, et al. (2011) Identification of *Haemaphysalis longicornis* and *Rhipicephalus microplus*. Chin J Epidemiol 32: 608–612 (In Chinese).
20. Padgett KA, Nedler SA, Munson L, Sacks B, Boyce WM (2003) Systematics of *Mesococidae* (Cestoda: Mesococidae): evaluation of molecular and morphological variation among isolates. J Parasitol 91: 1435–1443.
21. Wickstrom LM, Haukisalmi V, Varis S, Hanula J, Heuttenen H (2005) Molecular phylogeny and systematics of anoplocephalid cestodes in rodents and lagomorphs. System Parasitol 62: 85–99.
22. de Rojas M, Ubeda JM, Guillén C, Mora MD, Ariza C, et al. (2007) Utility of ITS1-5.8S-ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the *Hymenolepis concinna* species complex (Acanthocephala: Diphyllobothriidae). Parasitol Res 100: 1041–1046.
23. Zhao GH, Li J, Mo XH, Li XY, Lin RQ, et al. (2012) The second transcribed spacer rDNA sequence: an effective genetic marker for inter-species phylogeographic analysis of trematodes in the order Strigeata. Parasitol Res 111: 1467–1472.
24. Wang CR, Gao JF, Zhu XQ, Zhao Q (2012) Characterization of Bunostomum trigonoecephalum and Bunostomum fildibatum from sheep and cattle by internal transcribed spacers of nuclear ribosomal DNA. Res Vet Sci 92: 99–102.

25. Song J, Shi L, Li D, Sun Y, Niu Y, et al. (2012) Extensive pyrosequencing reveals frequent intra-specific variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS ONE 7: e41971.

26. McLain DK, Wesson DM, Collins FH, Oliver JH Jr (1995) Evolution of the rDNA spacer, ITS 2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae). J Med Entomol 32: 405–409.

27. Crampton A, McKay I, Barker SC (1996) Phylogeny of ticks (Ixodida) inferred from nuclear ribosomal DNA. Int J Parasitol 26: 511–517.

28. Murrell A, Campbell NJ, Barker SC (2001) Recurrent gains and losses of large (84–109 bp) repeats in the rDNA internal transcribed spacer 2 (ITS2) of rhipicephaline ticks. Insect Mol Biol 10: 507–516.

29. Hlínka O, Murrell A, Barker SC (2002) Evolution of the secondary structure of the rRNA internal transcribed spacer 2 (ITS2) in hard ticks (Ixodidae, Arthropoda). Heredity 88: 275–279.

30. Wesson DM, McLain DK, Collins FH, Piesman J, Collins FH (1993) Evolution of the rDNA spacer and ITS 2 in the superfamily Ixodidea (Acari: Ixodidae). Exp Appl Acarol 58: 51–68.

31. Norris DE, Klompen JS, Keirans JE, Black WC 4th (1996) Population genetics of hard and soft ticks (Acari: Ixodidae) based on mitochondrial 16S rDNA sequence variation in Ixodes pacificus (Acari: Ixodidae). Heredity 75: 303–319.

32. Chao LL, Wu WJ, Shih CM (2011) Species identification of ticks (Acari: Ixodidae) based on internal transcribed spacer 2 (ITS2) sequences of rDNA. J Med Entomol 48: 575–579.

33. Norris DE, Klompen JS, Keirans JE, Black WC 4th, Piesman J (1994) Phylogeny of hard- and soft-tick taxa (Acari: Ixodidae). Heredity 83: 378–386.

34. Kain DE, Sperling FA, Daly HV, Lane RS (1999) Mitochondrial DNA sequence characterization of bisexual and parthenogenetic Amblyomma (Acari: Ixodidae) inferred from second internal transcribed spacer sequences of rDNA. J Med Entomol 36: 222–228.

35. Murrell A, Campbell NJ, Barker SC (2001) A total-evidence phylogeny of ticks (Acari: Ixodidae) inferred from second internal transcribed spacer sequences of rDNA. J Med Entomol 38: 511–517.

36. Black WC 4th, Alekseevskaya A, Moore DA, Wesson DM (2012) Characterization of Ticks from Giant Panda. Protein Cell 3: 602–608.

37. Beati L, Keirans JE (2001) Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. J Parasitol 87: 32–48.

38. Chitimi M, Liu HQ, Cosoroaba I, Wu XY, Song HQ, et al. (2009) Characterization of ticks from southwestern Romania by sequences of mitochondrial cox 1 and nad 5 genes. Exp Appl Acarol 52: 305–311.

39. Chen Z, Yang X, Bu F, Yang X, Liu J (2012) Morphological, biological and molecular characteristics of bisexual and parthenogenetic Haemaphysalis longicornis (Acari: Ixodidae). Vet Parasitol 189: 344–352.

40. Levin ML, Studer E, Killmaster L, Zemtsova G, Muncuoglu KY (2012) Crossbreeding between different geographical populations of the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). Exp Appl Acarol 58: 41–60.

41. Apanaskevich DA, Horak IG, Mattei CA, Mattei S (2011) A new species of Ixodes (Acari: Ixodidae) from South African mammals. J Parasitol 97: 389–398.

42. Dantas-Torres F, Venzal JM, Bernardi LF, Ferreira RL, Ouedrio VC, et al. (2012) Description of a new species of bat-associated argasid tick (Acari: Argasidae) from Brazil. J Parasitol 98: 36–45.

43. Burger TD, Sheshukova O, Beati L, Miller H, Barker SC (2012) Phylogenetic analysis of ticks (Acari: Ixodidae) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Mol Phylogenetics Evol 64: 45–53.

44. Rumer L, Sheshukova O, Danet H, Donoso Mantke O, Niedrig M (2011) Differentiation of medically important Euro-Asian tick species Ixodes ricinus, Ixodes persulcatus, Ixodes hexagonus, and Dermacentor reticulatus by polymerase chain reaction. Vector Borne Zoonotic Dis 11: 899–905.

45. Deng GF (1978) Economic insect fauna of China. Volume 15. Beijing Science Press 1978: 1–174 p (In Chinese).

46. Chitimia L, Liu HQ, Cosoroaba I, Beala P, Song HQ, et al. (2009) Molecular characterization of hard ticks from Romania by sequences of the internal transcribed spacers of ribosomal DNA. Parasitol Res 105: 1479–1482.

47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.

48. Chilton NB, Gasser RB, Beveridge I (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypoderma macozi complex (Nematoda: Strongylidae). Int J Parasitol 25: 647–651.

49. Zhao GH, Mo XH, Li J, Wu YB, et al. (2009) Genetic variability among Schistosoma japonico isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 162: 67–74.

50. Swoford DL (2002) PAUP*: Phylogenetic analysis using parsimony and other methods. Sinauer Associates, Sunderland, MA.

51. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.

52. Lee WK, Lim JW, Lee SY, Lee IY (1997) Redescription of Haemaphysalis flava and Ixodes tanuki collected from a raccoon dog in Korea. Korean J Parasitol 35: 1–8 (In Korean).

53. Lee E, Hu Y, Zhu L, Brodier WW Zhao X, et al. (2012) Black and white and read all over: the past, present and future of giant panda genetics. Mol Ecol 21: 5660–5674.

54. Huo T, Zhang Y, Lin J (2012) Functional annotation from the genome sequence of the giant panda. Protein Cell 3: 602–608.

55. Yang GY, Zhang ZH (2013) Parasitic diseases of wildlife. Beijing Science Press. 41 p (In Chinese).

56. Zhu HQ, D'Amelio S, Gasser RB, Yang TB, Paggi L, et al. (2007) Practical PCR tools for the delineation of Contracaecum rudolphi A and Contracaecum rudolphi B (Ascaridoidea: Anisakidae) using genetic markers in nuclear ribosomal DNA. Mol Cell Probes 21: 97–102.

57. Mangold AJ, Bargues MD, Mas-Coixa S (1998) Mitochondrial 12S and 16S rRNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastrati (Acari: Ixodidae). Parasitol Res 84: 478–484.

58. Tian Z, Liu G, Xie J, Yin H, Luo J, et al. (2011) Discrimination between Haemaphysalis longicornis and H.dequeauxii based on the partial 16S rDNA and the second internal transcribed spacer (ITS2). Exp Appl Acarol 54: 163–172.