Supporting Information for
Air-stable Aryl Derivatives of the Pentafluoroorthotellurate

Daniel Wegener, Kurt F. Hoffmann, Alberto Pérez-Bitrián, Ilayda Bayindir, Amiera N. Hadi, Anja Wiesner and Sebastian Riedel

Table of contents

1. Experimental section S2
2. NMR spectra S8
3. IR spectra S15
4. Crystal data S17
5. Attempted hydrolysis of trans-(C₆F₅)₂TeF₄ (5) S22
6. Quantum-chemical calculations S23
7. References S31
1 Experimental section

General procedures and materials

Unless otherwise mentioned, all experiments were performed under exclusion of moisture and oxygen using standard Schlenk techniques. Solids were handled in a MBRAUN UNIlab plus glovebox under an argon atmosphere (O₂ < 0.5 ppm, H₂O < 0.5 ppm). All experiments involving anhydrous HF (aHF) were performed in self-built PFA (perfluoroalkoxy alkanes) tubes connected to stainless steel metal valves and with a stainless steel vacuum line. Solvents were dried using a MBraun SPS-800 solvent system (CH₂Cl₂, MeCN, n-pentane), or with CaH₂ (o-DFB, Et₂O, CD₃CN, CD₂Cl₂) before use and stored over 3 or 4 Å molecular sieves. PhTeF₅ and Te(C₆F₅)₂ were prepared according to literature procedures.¹² All other reagents were purchased from standard commercial suppliers and used as received. NMR spectra were recorded on a JEOL 400 MHz ECS or JEOL 400 MHz ECZ spectrometer. All reported chemical shifts (δ in ppm) are referenced to the Ξ values given in IUPAC recommendations of 2008 using the ²H signal of the deuterated solvent as internal reference.³ Multiplicity is indicated as follows: s = singlet, t = triplet, quint = quintet, dd = doublet of doublets, dt = doublet of triplets, dquint = doublet of quintets, tquint = triplet of quintets, m = multiplet. IR spectra were measured at room temperature on a Bruker ALPHA FTIR spectrometer with a diamond ATR inside a glovebox under an argon atmosphere, or on a Nicoleti S50 Advance FTIR by Thermo Fisher Scientific equipped with an ATR unit, with a Ge on KBr beam splitter and a DLaTGS-KBr detector for MIR and a solid-substrate beam splitter with a DLaTGS-PE detector for FIR. The ESI-TOF-Mass spectrometry measurements were performed on an Agilent 6210 ESI-TOF, Agilent Technologies, Santa Clara, CA, USA. Solvent flow rate was adjusted to 4 µL/min, spray voltage set to 4 kV. Drying gas flow rate was set to 15 psi (1 bar). Elemental analyses (CHNS) were carried out using a VARIO EL elemental analyzer. Crystal data were collected with MoKα radiation on a Bruker D8 Venture diffractometer with a CMOS area detector. Single crystals were picked −40 °C under nitrogen atmosphere and mounted on a 0.15 mm Mitegen micromount using perfluoroether oil. The structures were solved with the ShelXT⁴ structure solution program using intrinsic phasing and refined with the ShelXL⁵ refinement package using least squares minimizations by using OLEX2.⁶ For visualization the program Diamond V4.6.4 was used.⁷ CCDC 2184677, 2184678, 2184711, 2184734 and 2184735 contain the supplementary crystallographic data for this paper. These data are provided free of
charge by The Cambridge Crystallographic Data Centre. Crystal data and other details of the structure analyses are summarized in Tables S1–S5. Suitable crystals for X-ray diffraction studies were obtained as indicated in the corresponding experimental entry (*vide infra*).

Synthesis of cis-PhTeF₄OH (1)

PhTeF₅ (3.70 g, 12.3 mmol) was dissolved in a MeCN/H₂O mixture (9:1 V/V, 150 mL) and stirred at room temperature for 20 min. CH₂Cl₂ (5 mL) and H₂O (10 mL) were added to the obtained solution and the resulting phases were separated. The aqueous phase was extracted with CH₂Cl₂ (3×10 mL). The combined organic phases were dried with MgSO₄, filtered, and the solvent was removed under reduced pressure. A yellow oil was obtained and characterized as compound 1 (3.65 g, 12.3 mmol, 99% yield). Single crystals of 1 suitable for X-ray diffraction were obtained by cooling a saturated solution of 1 in n-pentane to −40 °C.

¹H NMR (400 MHz, CD₂Cl₂, 23 °C): δ = 7.93–7.90 (m, 2H, ²J(¹H,¹H) = 7.7 Hz, o-H), 7.76–7.71 (m, 1H, ³J(¹H,¹H) = 7.6 Hz, p-H), 7.71–7.66 (m, 2H, ³J(¹H,¹H) = 7.6 Hz, m-H), 5.56 (br s, OH) ppm.

¹⁹F NMR (377 MHz, CD₂Cl₂, 23 °C): δ = −25.8 (dt, ¹F, ²J(¹⁹F,¹⁹F) = 148; 134 Hz, ¹J(¹²⁵Te,¹⁹F) = 2860 Hz), −47.0 (m, 1F, ²J(¹⁹F,¹⁹F) = 134; 109 Hz, ¹J(¹²⁵Te,¹⁹F) = 3374 Hz), −50.5 (m, 2F, ²J(¹⁹F,¹⁹F) = 134; 109 Hz, ¹J(¹²⁵Te,¹⁹F) = 3353 Hz) ppm.

IR (ATR, 25 °C, Figure S14): ̇v = 3502 (m, O−H), 3067 (w, C−H), 1480 (m, Ph-ring), 1448 (m, Ph-ring), 997 (m), 928 (m), 734 (m), 673 (s, O−Te−F), 630 (s, Te−F), 454 (s) cm⁻¹.

Synthesis of cis-PhTeF₄OSiMe₃ (2)

cis-PhTeF₄OH (1.40 g, 4.70 mmol) was placed in a Schlenk flask and cooled to −196°C. Me₃SiCl (1.02 g, 9.40 mmol) was condensed onto it and the reaction mixture was heated at 60 °C for 5 h. After removal of the volatiles under reduced pressure, a yellow oil was obtained and characterized as 2 (1.59 g, 4.30 mmol, 91% yield).
\(^1\text{H NMR} \) (400 MHz, CD\(_2\text{Cl}_2 \), 23 °C): \(\delta = 7.91–7.87 \) (m, 2H, \(^3J(1\text{H},1\text{H}) = 7.7 \) Hz, \(o\text{-H} \)), 7.75–7.70 (m, 1H, \(^3J(1\text{H},1\text{H}) = 7.3 \) Hz, \(p\text{-H} \)), 7.69–7.62 (m, 2H, \(^3J(1\text{H},1\text{H}) = 7.9 \) Hz, \(m\text{-H} \)), 0.3 (s, 9H, CH\(_3 \)) ppm.

\(^{19}\text{F NMR} \) (377 MHz, CD\(_2\text{Cl}_2 \), 23 °C): \(\delta = -23.2 \) (dt, 1F, \(^2J(19\text{F},19\text{F}) = 154; 134 \) Hz, \(^1J(125\text{Te},19\text{F}) = 2465 \) Hz), \(-46.1 \) (m, 1F, \(^2J(19\text{F},19\text{F}) = 154; 110 \) Hz, \(^1J(125\text{Te},19\text{F}) = 2473 \) Hz), \(-48.0 \) (m, 2F, \(^2J(19\text{F},19\text{F}) = 110; 134 \) Hz, \(^1J(125\text{Te},19\text{F}) = 3306 \) Hz) ppm.

\(^{29}\text{Si}{^1}\text{H} \) \(\text{NMR} \) (80 MHz, CD\(_2\text{Cl}_2 \), 23 °C): \(\delta = -28.9 \) (s) ppm.

Synthesis of Ag[\textit{cis}-PhTeF\(_4\)O] (3)

The equimolar amount of AgF (0.41 g, 3.24 mmol) was added to a solution of \textit{cis}-PhTeF\(_4\)OSiMe\(_3\) (1.20 g, 3.24 mmol) in CH\(_2\text{Cl}_2 \) (10 mL). The reaction mixture was stirred in the dark at room temperature overnight. After removal of the volatiles under reduced pressure a colourless solid was obtained, which was identified as compound 3 (1.05 g, 2.60 mmol, 80% yield).

\(^1\text{H NMR} \) (400 MHz, CD\(_3\text{CN} \), 23 °C): \(\delta = 8.07–7.81 \) (m, 2H, \(o\text{-H} \)), 7.60–7.47 (m, 3H, \(p\text{-H} \), \(m\text{-H} \)) ppm.

\(^{19}\text{F NMR} \) (377 MHz, CD\(_3\text{CN} \), 23 °C): \(\delta = -23.3 \) (dt, 1F, \(^2J(19\text{F},19\text{F}) = 148; 123 \) Hz, \(^1J(125\text{Te},19\text{F}) = 3193 \) Hz), \(-28.3 \) (m, 1F, \(^2J(19\text{F},19\text{F}) = 123; 146 \) Hz, \(^1J(125\text{Te},19\text{F}) = 2712 \) Hz), \(-43.5 \) (t, 2F, \(^2J(19\text{F},19\text{F}) = 123 \) Hz, \(^1J(125\text{Te},19\text{F}) = 2920 \) Hz) ppm.

\(\text{IR} \) (ATR, 25 °C): \(\tilde{\nu} = 3069 \) (w, C–H), 1476 (m, Ph-ring), 1446 (m, Ph-ring), 993 (m), 921 (m), 746 (m), 677 (s, O–Te–F), 634 (s, Te–F), 458 (s) cm\(^{-1}\).

Synthesis of [PPh\(_4\)][\textit{cis}-PhTeF\(_4\)O] (4)

The equimolar amount of [PPh\(_4\)]Cl (0.14 g, 0.37 mmol) was added to a suspension of Ag[\textit{cis}-PhTeF\(_4\)O] (0.15 g, 0.37 mmol) in CH\(_2\text{Cl}_2 \) (10 mL). The reaction mixture was stirred for 15 min. After filtering the solution to separate the insoluble AgCl, the solvent was removed under reduced pressure to afford a colourless solid, which was identified as compound 4 (0.22 g, 0.35 mmol, 93%). Single crystals of 4 suitable for X-ray diffraction were obtained by slow diffusion of a layer of \(n\)-pentane (2 mL) into a solution of 4 (10 mg) in CH\(_2\text{Cl}_2 \) (3 mL) at –40 °C.
1H NMR (400 MHz, CD₂Cl₂, 23 °C): δ = 7.99–7.94 (m, 2H, o-H), 7.94–7.87 (m, 4H, p-H [PPh₄⁺]), 7.78–7.71 (m, 8H m-H [PPh₄⁺]), 7.65–7.58 (m, 8H, o-H [PPh₄⁺]), 7.46–7.40 (m, 3H, p-H, m-H) ppm.

19F NMR (377 MHz, CD₂Cl₂, 23 °C): δ = –22.3 (dt, 1F, ²J(¹⁹F,¹⁹F) = 120; 139 Hz), –27.9 (m, 1F, ²J(¹⁹F,¹⁹F) = 120 Hz), –42.2 (m, 2F, ²J(¹⁹F,¹⁹F) = 114 Hz) ppm.

31P{¹H} NMR (104 MHz, CD₂Cl₂, 23 °C): δ = 23.3 (s) ppm.

125Te NMR (126 MHz, CD₂Cl₂, 22 °C): δ = 737 (m) ppm.

IR (ATR, 25 °C): ν = 3055 (w, C−H), 1482 (w, Ph-ring), 1437 (m, Ph-ring), 1107 (s), 996 (m), 826 (m), 751 (m), 721(s), 689 (s, O−Te−F), 588 (s, Te−F), 577 (s, Te−F), 523 (s), 467 (s) cm⁻¹.

Synthesis of trans-(C₆F₅)₂TeF₄ (5)

(C₆F₅)₂Te (1.66 g, 3.60 mmol), trichloroisocyanuric acid (5.00 g, 21.5 mmol) and potassium fluoride (5.00 g, 86.1 mmol) were suspended in MeCN (60 mL) in a Schlenk flask. After addition of trifluoroacetic acid (28 μL, 0.36 mmol), the reaction mixture was stirred overnight at room temperature. The colourless suspension was filtered and the solid residue washed with MeCN (2×50 mL). The solvent of the filtrate was evaporated to dryness. Extraction of the obtained pale yellow solid with n-hexane (3×50 mL) and subsequent removal of the solvent under reduced pressure rendered a colourless solid, which was identified as 5 (1.64 g, 3.05 mmol, 85% yield). Single crystals of 5 suitable for X-ray diffraction were obtained by cooling a saturated solution of 5 in n-hexane to –40 °C.

13C{¹⁹F} NMR (100 MHz, CD₃CN, 22 °C): δ = 146.5 (s, o-C), 145.9 (s, p-C), 138.7 (s, m-C), 117.3 (s, ipso-C) ppm.

19F NMR (377 MHz, CD₃CN, 22 °C): δ = –21.4 (quint, 4F, ⁴J(¹⁹F,¹⁹F) = 19 Hz, ¹J(¹²⁵Te,¹⁹F) = 3104 Hz, Te−F), –130.2 (m, 4F, ³J(¹⁹Fo,¹⁹Fm) = 20 Hz, ³J(¹²⁵Te,¹⁹Fo) = 88 Hz, o-F), –143.8 (m, 2F, ⁴J(¹⁹Fo,¹⁹Fp) = 8.3 Hz, p-F), –158.8 (m, 4F, ³J(¹⁹Fp,¹⁹Fm) = 19 Hz, m-F) ppm.

125Te NMR (126 MHz, CD₃CN, 22 °C): δ = 770 (m, ¹J(¹²⁵Te,¹⁹F) = 3090 Hz, ³J(¹²⁵Te,¹⁹Fo) = 80 Hz, ⁴J(¹²⁵Te,¹⁹Fm) = 47 Hz, ⁵J(¹²⁵Te,¹⁹Fp) = 10 Hz) ppm.
IR (ATR, 25°C): $\bar{\nu} = 1739$ (w), 1639 (m, C–C), 1495 (s, C$_6$F$_5$-ring), 1292 (m), 1091 (s, C–F), 983 (s, C–F), 812 (m, C$_6$F$_5$-ring), 722 (w), 651 (s, Te–F), 493 (w) cm$^{-1}$.

MS (ESI+): m/z: 540.7 [(C$_6$F$_5$)$_2$TeF$_4$]$^+$.

Elemental analysis calcd. (%) for C$_{12}$F$_{14}$Te: C 26.8; found: C 26.8.

Synthesis of K[trans-(C$_6$F$_5$)$_2$TeF$_3$O] (6)

trans-(C$_6$F$_5$)$_2$TeF$_4$ (0.50 g, 0.93 mmol) was dissolved in a MeCN/H$_2$O mixture (9:1 V/V, 50 mL) containing potassium fluoride (0.28 g, 4.82 mmol). After stirring overnight at 50 °C, the reaction mixture was dried with MgSO$_4$, filtered, and the solvent was evaporated under reduced pressure. The resulting residue was washed with CH$_2$Cl$_2$ (20 mL) and the solvent removed under reduced pressure, rendering a colourless solid, which was identified as compound 6 (0.50 g, 0.87 mmol, 94% yield). Single crystals of 6 suitable for X-ray diffraction were obtained by slow gas diffusion of Et$_2$O (4 mL) into a solution of 6 (10 mg) in MeCN (3 mL) at −40 °C.

13C{19F} NMR (100 MHz, CD$_3$CN, 22 °C): $\delta = 142.3$ (s, o-C), 139.2 (s, p-C), 134.0 (s, m-C), 113.6 (s, ipso-C) ppm.

19F NMR (377 MHz, MeCN, ext. acetone-d$_6$, 22 °C): $\delta = 32.3$ (tquint, 1F, $^4J(^{19}$F,19F$_o$) = 20 Hz, $^2J(^{19}$F,19F) = 104 Hz, $^1J(^{125}$Te,19F) = 2412 Hz), -18.8 (dquint, 2F, $^4J(^{19}$F,19F$_o$) = 18 Hz, $^1J(^{125}$Te,19F) = 2471 Hz), -129.9 (m, 4F, $^3J(^{19}$F$_o$,19F$_m$) = 20 Hz, o-F), -152.1 (m, 2F, $^4J(^{19}$F$_o$,19F$_p$) = 5 Hz, p-F), -161.7 (m, 4F, $^3J(^{19}$F$_p$,19F$_m$) = 19 Hz, m-F) ppm.

125Te NMR (126 MHz, CD$_3$CN, 22 °C): $\delta = 726$ (m, $^1J(^{125}$Te,19F) = 2512 Hz) ppm.

IR (ATR, 25°C): $\bar{\nu} = 1725$ (w), 1637 (m, C–C), 1483 (s, C$_6$F$_5$-ring), 1285 (m), 1090 (s, C–F), 977 (s, C–F), 828 (m, C$_6$F$_5$-ring), 721 (w), 620 (m, O–Te–F), 596 (s, Te–F) cm$^{-1}$.

MS (ESI−): m/z: 536.9 [(C$_6$F$_5$)$_2$TeF$_3$O]$^-$.

Elemental analysis calcd. (%) for C$_{12}$F$_{13}$KOTe: C 25.1; found: C 25.4.
Synthesis of trans-(C₆F₅)₂TeF₃OH (7)

K[(C₆F₅)₂TeF₃O] (150 mg, 0.26 mmol) was placed in a PFA tube equipped with a stir bar and connected to a stainless steel valve. After cooling to −196°C, aHF (1 mL) was condensed into the tube and the resulting suspension was stirred for 15 min at room temperature. All volatiles were evaporated through soda lime scrubbers to remove the unreacted aHF and the obtained residue was extracted with CH₂Cl₂ (10 mL). Removal of the solvent under reduced pressure afforded a colourless solid, which was identified as 7 (107 mg, 0.20 mmol, 77% yield).

¹H NMR (400 MHz, CD₂Cl₂, 22 °C): δ = 5.76 (br s, OH) ppm.

¹³C{(¹⁹F)} NMR (100 MHz, CD₂Cl₂, 22 °C): δ = 146.9 (s, o-C), 140.0 (s, p-C), 138.6 (s, m-C), 120.3 (s, ipso-C) ppm.

¹⁹F NMR (377 MHz, CD₂Cl₂, 22 °C): δ = 2.1 (t quint, 1F, 4J(¹⁹F,¹⁹F₂) = 20 Hz, 2J(¹⁹F,¹⁹F) = 54 Hz, ¹J(¹²⁵Te,¹⁹F) = 3013 Hz), −26.1 (d quint, 2F, 4J(¹⁹F,¹⁹F₂) = 19 Hz, ¹J(¹²⁵Te,¹⁹F) = 2817 Hz), −129.0 (m, 4F, 3J(¹⁹F₂,¹⁹F₃) = 20 Hz, o-F), −144.1 (m, 2F, 4J(¹⁹F₂,¹⁹F₃) = 7 Hz, p-F), −158.0 (m, 4F, 3J(¹⁹F₃,¹⁹F₄) = 19 Hz, m-F) ppm.

¹²⁵Te NMR (126 MHz, CD₂Cl₂, 22 °C): δ = 756 (dtm, ¹J(¹²⁵Te,¹⁹F) = 3030 Hz, ¹J(¹²⁵Te,¹⁹F) = 2838 Hz) ppm.

IR (ATR, 25°C, Figure S15): ν = 3493 (w, O–H), 1639 (m), 1518 (s), 1485 (s, C₆F₅-Ring), 1397 (m), 1093 (s, C–F), 976 (s, C–F), 810 (m, C₆F₅-Ring), 723 (w), 685 (m), 649 (s, Te–F), 624 (m, O–Te–F), 550 (s, Te–F) cm⁻¹.

MS (ESI−): m/z: 1070.7 [(C₆F₅)₂TeF₃O₂H]−, 536.9 [(C₆F₅)₂TeF₃O]−.

Elemental analysis calcd. (%) for C₁₂F₁₃HTe: C 26.3 H 0.37; found: C 26.5 H 0.47.
2 NMR Spectra

cis-PhTeF$_4$OH (1)

Figure S1. 1H NMR spectrum (400 MHz, CD$_2$Cl$_2$, 23 °C) of cis-PhTeF$_4$OH (1).

Figure S2. 19F NMR spectrum (377 MHz, CD$_2$Cl$_2$, 23 °C) of cis-PhTeF$_4$OH (1).
cis-PhTeF$_4$OSiMe$_3$ (2)

Figure S3. 1H NMR spectrum (400 MHz, CD$_2$Cl$_2$, 23 °C) of cis-PhTeF$_4$OSiMe$_3$ (2).

Figure S4. 19F NMR spectrum (377 MHz, CD$_2$Cl$_2$, 23 °C) of cis-PhTeF$_4$OSiMe$_3$ (2).

The marked signal (*) denotes an unidentified species.
Ag[\textit{cis}-\text{PhTeF}_4\text{O}] (3)

Figure S5. 1H NMR spectrum (400 MHz, CD$_3$CN, 23 °C) of Ag[\textit{cis}-\text{PhTeF}_4\text{O}] (3).

Figure S6. 19F NMR spectrum (377 MHz, CD$_3$CN, 23 °C) of Ag[\textit{cis}-\text{PhTeF}_4\text{O}] (3)

The marked signal (*) denotes an unidentified species.
Figure S7. 19F NMR spectrum (377 MHz, CD$_3$CN, 23 °C) of Ag[cis-PhTeF$_4$O] (3) after addition of 0.1 mL of pyridine.
Figure S8. 1H NMR spectrum (400 MHz, CD$_2$Cl$_2$, 23 °C) of [PPh$_4$][cis-PhTeF$_4$O] (4).

Figure S9. 19F NMR spectrum (377 MHz, CD$_2$Cl$_2$, 23 °C) of [PPh$_4$][cis-PhTeF$_4$O] (4).

The marked signal (*) denotes an unidentified species.
trans-(C₆F₅)₂TeF₄ (5)

Figure S10. 19F NMR spectrum (377 MHz, CD₃CN, 22 °C) of trans-(C₆F₅)₂TeF₄ (5).

K[trans-(C₆F₅)₂TeF₃O] (6)

Figure S11. 19F NMR spectrum (377 MHz, MeCN, ext. acetone-d₆, 22 °C) of K[trans-(C₆F₅)₂TeF₃O] (6).
trans-(C₆F₅)₂TeF₃OH (7)

Figure S12. ¹H NMR spectrum (400 MHz, CD₂Cl₂, 22 °C) of trans-(C₆F₅)₂TeF₃OH (7).

Figure S13. ¹⁹F NMR spectrum (377 MHz, CD₂Cl₂, 23 °C) of trans-(C₆F₅)₂TeF₃OH (7).
3 IR Spectra

cis-PhTeF$_4$OH (1)

Figure S14. IR spectrum of compound cis-PhTeF$_4$OH (1). The characteristic stretching O–H vibration can be observed at 3502 cm$^{-1}$.
trans-(C₆F₅)₂TeF₃OH (7)

Figure S15. IR spectrum of compound *trans-(C₆F₅)₂TeF₃OH* (7). The characteristic stretching O–H vibration can be observed at 3493 cm⁻¹.
4 Crystal Data

Summary of crystal data and structure refinement

Table S1. Crystal data and structure refinement for compound 1.

Empirical formula	C₆H₆F₄OTe
Formula weight	297.71
Temperature/K	102.0
Crystal system	orthorhombic
Space group	Pbca
a/pm	858.05(4)
b/pm	1757.59(8)
c/pm	2160.97(9)
α/°	90
β/°	90
γ/°	90
Volume/Å³	3259.0(3)
Z	16
ρ calc g/cm³	2.427
μ/mm⁻¹	3.668
F(000)	2208.0
Crystal size/mm³	0.332 × 0.279 × 0.054
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	3.77 to 56.624
Index ranges	−11 ≤ h ≤ 11, −23 ≤ k ≤ 23, −28 ≤ l ≤ 26
Reflections collected	58950
Independent reflections	4052 [R int = 0.0584, Rsigma = 0.0214]
Data/restraints/parameters	4052/0/225
Goodness-of-fit on F²	1.131
Final R indexes [I≥2σ(I)]	R₁ = 0.0228, wR₂ = 0.0427
Final R indexes [all data]	R₁ = 0.0313, wR₂ = 0.0454
Largest diff. peak/hole / e Å⁻³	0.54/–0.73
CCDC number	2184677
Table S2. Crystal data and structure refinement for compound 4.

Property	Value
Empirical formula	C$_{30}$H$_{25}$F$_4$OPTe
Formula weight	636.07
Temperature/K	299.0
Crystal system	monoclinic
Space group	P2$_1$/c
a/pm	1120.55(3)
b/pm	1493.02(4)
c/pm	1550.64(5)
α/°	90
β/°	105.2430(10)
γ/°	90
Volume/Å3	2502.96(13)
Z	4
ρ_{calc}/g/cm3	1.688
μ/mm$^{-1}$	1.306
F(000)	1264.0
Crystal size/mm3	0.262 × 0.089 × 0.081
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	3.854 to 56.582
Index ranges	−14 ≤ h ≤ 14, −19 ≤ k ≤ 19, −20 ≤ l ≤ 20
Reflectedions collected	48355
Independent reflections	6204 [$R_{\text{int}} = 0.0374$, $R_{\text{sigma}} = 0.0201$]
Data/restraints/parameters	6204/0/334
Goodness-of-fit on F^2	1.068
Final R indexes [$I>2\sigma (I)$]	$R_1 = 0.0282$, $wR_2 = 0.0691$
Final R indexes [all data]	$R_1 = 0.0320$, $wR_2 = 0.0715$
Largest diff. peak/hole / e Å$^{-3}$	2.98/−1.22
CCDC number	2184735
Table S3. Crystal data and structure refinement for compound 5.

Property	Value
Empirical formula	C_{12}F_{14}Te
Formula weight	537.72
Temperature/K	100.0
Crystal system	orthorhombic
Space group	Pbca
\(a/\text{pm}\)	1133.75(12)
\(b/\text{pm}\)	889.38(9)
\(c/\text{pm}\)	1374.71(13)
\(\alpha^{\circ}\)	90
\(\beta^{\circ}\)	90
\(\gamma^{\circ}\)	90
Volume/\AA^3	1386.2(2)
\(Z\)	4
\(\rho_{\text{calc}}\) g/cm\(^3\)	2.577
\(\mu\) mm\(^{-1}\)	2.314
\(F(000)\)	1000.0
Crystal size/mm\(^3\)	0.4 \times 0.25 \times 0.2
Radiation	MoK\(\alpha\) (\lambda = 0.71073)
2\(\Theta\) range for data collection/\(^{\circ}\)	6.932 to 52.784
Index ranges	\(-14 \leq h \leq 14, -11 \leq k \leq 11, -17 \leq l \leq 17\)
Reflections collected	65822
Independent reflections	1403 [\(R_{\text{int}} = 0.0266, R_{\text{sigma}} = 0.0063\)]
Data/restraints/parameters	1403/0/124
Goodness-of-fit on \(F^2\)	1.129
Final R indexes [\(I > 2\sigma (I)\)]	\(R_1 = 0.0138, wR_2 = 0.0337\)
Final R indexes [all data]	\(R_1 = 0.0141, wR_2 = 0.0339\)
Largest diff. peak/hole / e \AA\(^{-3}\)	0.35/−0.44
CCDC number	2184678
Table S4. Crystal data and structure refinement for compound 6.

Property	Value
Empirical formula	C_{14}H_{3}F_{13}KNOTe
Formula weight	614.87
Temperature/K	100.00
Crystal system	monoclinic
Space group	P2_1/c
a/pm	1070.27(5)
b/pm	757.55(3)
c/pm	2181.42(9)
α/°	90
β/°	96.479(2)
γ/°	90
Volume/A³	1757.36(13)
Z	4
ρ_{calc} g/cm³	2.324
μ/mm⁻¹	2.070
F(000)	1160.0
Crystal size/mm³	0.32 × 0.21 × 0.088
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.054 to 55.03
Index ranges	−13 ≤ h ≤ 13, −9 ≤ k ≤ 8, −28 ≤ l ≤ 28
Reflections collected	38987
Independent reflections	4006 [R_{int} = 0.0218, R_{sigma} = 0.0114]
Data/restraints/parameters	4006/0/281
Goodness-of-fit on F²	1.111
Final R indexes [I≥2σ(I)]	R₁ = 0.0143, wR₂ = 0.0381
Final R indexes [all data]	R₁ = 0.0149, wR₂ = 0.0384
Largest diff. peak/hole / e Å⁻³	0.37/−0.34
CCDC number	2184734
Table S5. Crystal data and structure refinement for trans-(C₆F₅)₂TeF₂(OH)₂.

Property	Value
Empirical formula	C₁₄₄F₁₂₁₂H₆₈O₂₈Te
Formula weight	580.197
Temperature/K	100.0
Crystal system	monoclinic
Space group	C2/c
a/pm (pm)	1848.85(8)
b/pm (pm)	875.91(4)
c/pm (pm)	1180.83(5)
α/°	90
β/°	108.111(2)
γ/°	90
Volume/Å³	1817.53(14)
Z	4
ρ_{calc} g/cm³	2.120
μ/mm⁻¹	1.794
F(000)	1102.0
Crystal size/mm³	0.353 × 0.155 × 0.123
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.64 to 52.8
Index ranges	−23 ≤ h ≤ 23, −10 ≤ k ≤ 10, −14 ≤ l ≤ 14
Reflections collected	44869
Independent reflections	1864 [R_{int} = 0.0224, R_{sigma} = 0.0072]
Data/restraints/parameters	1864/74/206
Goodness-of-fit on F²	1.076
Final R indexes [I>=2σ (I)]	R₁ = 0.0212, wR₂ = 0.0564
Final R indexes [all data]	R₁ = 0.0235, wR₂ = 0.0590
Largest diff. peak/hole / e Å⁻³	1.45/−0.36
CCDC number	2184711
5 Attempted hydrolysis of trans-\((C_6F_5)_2\)TeF_4 (5)

trans-\((C_6F_5)_2\)TeF_4 (20 mg, 38 μmol) was dissolved in a MeCN/H_2O mixture (9:1 V/V, 1 mL) and heated to 50 °C for 4 h. The reaction mixture was extracted with CH_2Cl_2 (3×3 mL). The combined organic phases were dried with MgSO_4, filtered, and the solvent was removed under reduced pressure. A colorless solid was obtained (15 mg) and identified as a mixture containing the two isomers of the doubly hydrolysed \((C_6F_5)_2\)TeF_2(OH)_2.

Single crystals of trans-\((C_6F_5)_2\)TeF_2(OH)_2 suitable for X-ray diffraction were obtained by cooling a saturated solution of the obtained colorless solid in n-hexane to –40 °C.

![Figure S16. Molecular structure of trans-\((C_6F_5)_2\)TeF_2(OH)_2 in the solid state. Displacement ellipsoids set at 50% probability. The summary of crystal data and structure refinement appears in Table S5. Selected bond lengths [pm] and angles [°]: Te1–F1 188.9(1), Te1–C1 213.6(2), Te1–O1 188.2(1) C1–Te1–F1 90.3(1), C1–Te1–O1 87.7(1), O1–Te1–F1 88.9(1).](image)
6 Quantum-chemical calculations

The *Turbomole* program\(^8\) was used to perform calculations at the unrestricted Kohn-Sham DFT level, using the BP86 or B3LYP hybrid functional\(^9–11\) (with RI\(^12\)) in conjunction with basis sets def-SV(P) and def2-TZVP.\(^13\) Minima on potential energy surfaces were characterized by normal mode analysis. Thermochemical data is provided without counterpoise correction but including zero-point energy correction as obtained from harmonic vibrational frequencies.

HOTeF\(_5\)

	x	y	z
Te	0.2953171	0.0226963	0.0078748
F	1.9703345	0.8189488	0.4825549
F	0.3451752	-0.8770939	1.7073183
F	0.3861272	1.0176189	-1.6350632
F	-0.6529239	1.4927568	0.8318399
F	1.1940194	-1.4492153	-0.8172217
O	-1.4158598	-0.8048073	-0.4790520
H	-2.1221896	-0.2209043	-0.0982509

OTeF\(_4\)

	x	y	z
Te	-0.0000001	0.0000000	0.1000779
O	-0.0000000	-0.0000000	1.8666536
F	0.0000001	1.8472003	-0.2168869
F	1.5364612	-0.0000001	-0.9414088
F	-1.5364613	-0.0000001	-0.9414088
F	0.0000001	-1.8472002	-0.2168870

[OTeF\(_5\)]\(^{-}\)

	x	y	z
Te	0.9271398	0.8883497	0.0765649
F	2.7723733	1.3221413	0.5973691
F	0.2840314	1.9220507	1.6199915
F	1.6007790	0.3413339	-1.6875904
F	-0.8897078	0.9312488	-0.6729044
F	1.0142408	2.6674532	-0.7381025
O	0.8351235	-0.7692177	0.8380018

cis-PhTeF\(_4\)OH

	x	y	z
H	0.0137213	0.0073054	5.2511248
C	0.0066153	-0.0004679	4.1488999
C	-0.0875007	-1.2217592	3.4597493
H	-0.1541377	-2.1716571	4.0150486
C	-0.0980964	-1.2480584	2.0531005
$PhTeF_3O$

Element	X	Y	Z
Te	0.0684967	0.0453848	0.0404214
O	0.2776837	-0.4795917	1.7185058
F	-0.1888877	1.9096218	0.4226957
F	1.6008649	0.6539744	-0.8513037
F	0.5234902	-1.6327157	-0.7748683
H	-2.2058569	2.0932838	-0.5260080
C	-2.4800444	1.2412491	-1.1265867
C	-1.6809034	0.1031210	-1.1677641
C	-2.0008056	-1.0149536	-1.9312519
H	-1.3618654	-1.8829085	-1.9429059
C	-3.1676549	-0.9773167	-2.6868325
H	-3.4333477	-1.8343260	-3.2906921
C	-3.9830884	0.1488240	-2.6666750
H	-4.8887318	0.1674266	-3.2582122
C	-3.6417261	1.2512083	-1.8908956
H	-4.2763632	2.1268281	-1.8753968

$[cis-PhTeF_4O]^-$

Element	X	Y	Z
H	-0.0234326	0.0146026	5.2699821
C	-0.0149662	0.0050532	4.1659296
C	-1.2261545	0.0290909	3.4507311
H	-2.1879651	0.0591986	3.9928114
C	-1.2201179	0.0156547	2.0437424
H	-2.1553696	0.0315346	1.4628272
C	0.0063023	-0.0198513	1.3604520
Te	0.0312076	-0.1155880	-0.8129734
C	1.2223155	-0.0407173	2.0630460
H	2.1691495	-0.0551316	1.5007453
C	1.2071502	-0.0300577	3.4700599
H	2.1607932	-0.0458198	4.0268962
F	-1.9545471	-0.2801281	-0.8242103
	X	Y	Z
----	-----------	-----------	-----------
F	1.9089498	0.5483623	-0.7926689
O	0.4190083	-1.8939012	-1.0523451
F	-0.3984003	1.8224719	-0.6615490
F	-0.0516196	0.3455321	-2.7240226
cis-(C₆F₅)TeF₄OH			
F	1.0281216	-0.5098479	2.8112070
C	0.6443471	-0.2423377	1.5671793
C	-0.6941162	0.1048324	1.3080631
F	-1.5709966	0.1680806	2.3088082
C	-1.1000957	0.3883880	-0.0091531
F	-2.3688209	0.7223855	-0.2175658
C	-0.1680157	0.3132058	-1.0620187
Te	-0.7742838	0.7658376	-3.0525336
C	1.1735688	-0.0243760	-0.7989105
F	2.0830955	-0.9054744	-1.7649834
C	1.5791255	-0.3978755	0.5179009
F	2.8446712	-0.6380915	0.7740853
F	-2.4479472	-0.1880806	-2.8560726
F	0.7780478	1.8885963	-3.3452873
O	0.1300819	-0.8391028	-3.7492743
F	-1.7103786	2.3585389	-2.4969837
F	-1.3052136	1.1684719	-4.8678006
H	-0.0108811	-0.8621457	-4.7288205
(C₆F₅)TeF₃O			
Te	0.1087013	0.1328311	0.0561079
O	0.2951841	0.5789647	1.7555227
F	0.4561714	1.8393879	-0.7145981
F	1.6230893	-0.4023405	-0.8919095
F	-0.1765586	-1.7324870	0.2984254
F	-2.5077973	1.8761380	0.1706639
C	-2.6478930	1.0246878	-0.8421508
C	-1.6427193	0.1126005	-1.1338025
C	-1.7968826	-0.7786754	-2.1877901
F	-0.8359916	-1.6378408	-2.5044620
C	-2.9597395	-0.7616915	-2.9461467
F	-3.1125506	-1.6025858	-3.9625679
C	-3.9656139	0.1498693	-2.6431014
F	-5.0757187	0.1654753	-3.3646400
C	-3.8153665	1.0466700	-1.5905968
F	-4.7850545	1.9081065	-1.3067241
[cis-(C₆F₅)TeF₄O]⁻			
F	0.9826335	-0.5549216	2.7898731
C	0.6265765	-0.2643614	1.5266570
trans-Ph2TeF3OH

H -0.1980228 -1.6960223 2.2910730
C -0.3576609 -1.3326030 1.2625369
C -1.4072312 -1.8576052 0.4890809
H -2.0722297 -2.6320221 0.9059486
C -1.6538978 -1.3992950 -0.8233433
H -2.4451195 -1.7934132 -1.4391748
C -0.7620938 -0.4152462 -1.3262628
Te -1.0714717 0.2981648 -3.3371443
C 0.2935173 0.1279758 -0.5811740
H 0.9483951 0.8997249 -1.0118844
C 0.4879049 -0.3442448 0.7298770
H 1.3102016 0.0705451 -1.3361892
F -2.7578101 -0.7176764 -3.4467686
F 0.7049764 1.2016688 -3.3019410
O -0.1317067 -1.2917750 -4.1571045
H -0.8197568 -0.5838659 -6.3102287
H -1.3367054 0.4171818 -8.5687485
C 1.2439536 0.4283714 -6.3993524
C -1.5361463 0.9973311 7.6525925
C -1.5129591 1.1870585 -5.2520778
C -2.0787633 2.2912074 -7.7355403
C -2.0577002 2.4774385 -5.3014922
C -2.3369603 3.0270385 -6.5660628
H -2.2598575 3.0344756 -4.3758787
H -2.7639976 4.0415645 -6.6301302
H -2.3045508 2.7299773 -8.7214457
H 0.8236759 -1.0394351 -4.1532048
F -1.9201363 1.8824203 -2.4877041
trans-Ph₂TeF₃O⁻

Element	X	Y	Z
H	-0.1908441	-1.7505251	2.3144119
C	-0.3471780	-1.3695022	1.2896247
C	-1.5128482	-0.6455536	0.9775329
H	-2.2716093	-0.4584242	1.7583491
C	-1.7195789	-0.1566719	-0.3261311
H	-2.6193269	0.4120585	-0.6023370
C	-0.7474722	-0.4011239	-1.3083573
Te	-0.9245744	0.2938420	-3.3675907
C	0.4203893	-1.1212857	-1.0122143
H	1.1487592	-1.2807833	-1.8269185
C	0.6180770	-1.604786	0.2938420
H	1.5342953	-2.1743246	0.5354693
F	-0.02462875	2.0900322	-2.7829981
O	0.6883602	-0.4019832	-3.9614717
H	0.3030379	0.4236868	-6.1292179
H	-0.2278749	1.3807055	-8.4379335
C	-0.6239752	0.9886561	-6.3321261
C	-0.9307981	1.5222855	-7.5975945
C	-1.5244059	1.1737414	-5.2712770
C	-2.1285032	2.2341028	-7.7931376
C	-2.7230426	1.8813697	-5.4505375
C	-3.0210072	2.4120675	-6.7198116
H	-3.3995061	2.0023472	-4.5920168
H	-3.9617773	2.9709274	-6.8716600
H	-2.3682595	2.6526145	-8.7867248
F	-2.7089669	1.0615350	-2.7128472

trans-(C₆F₅)₂TeF₃OH

Element	X	Y	Z
F	-0.0243692	-1.5290082	2.6153443
C	-0.2567036	-1.1789793	1.3528232
C	-1.5183614	-0.6797837	0.9842850
F	-2.4798936	-0.5626441	1.9000436
C	-1.7639272	-0.3102270	-0.3518795
F	-2.9747288	0.1440763	-0.6587986
C	-0.7432306	-0.4227411	-1.3128386
Te	-1.0643620	0.2380090	-3.3361547
C	0.5102906	-0.9346158	-0.9386190
F	1.5035754	-1.0766896	-1.8253309
C	0.7631637	-1.3076693	0.3929167
F	1.9574075	-1.7833025	0.7483676
F	-2.7401565	-0.7460498	-3.3877310
F	0.6659532	1.1644689	-3.2939299
O	-0.1905186	-1.3480231	-4.1557745
F	-1.8884883	1.8262734	-2.5461675
F 0.7005130 0.7131961 -6.0397504
F 0.1670182 1.9759738 -8.3709402
C -0.5201848 1.2221580 -6.2225006
C -0.7838655 1.8724266 -7.4413169
C -1.5182639 1.1284015 -5.2371933
C -2.0599050 2.4131994 -7.6796500
C -2.7954155 1.6637170 -5.4836123
C -3.0666014 2.3110754 -6.7035017
F -3.7757257 1.5862628 -4.5889119
F -4.2748541 2.8245365 -6.9359877
F -2.3129542 3.0263239 -8.8332692
H 0.7846882 -1.1952048 -4.1097621

$(\text{C}_6\text{F}_5)_2\text{TeF}_2\text{O}$

Te -0.3520469 -0.8508231 0.5400608
O -1.5277570 -1.696391 1.5758974
F -0.4445896 0.8818566 1.3867592
F 0.0754668 -2.3451259 -0.6051789
F -3.0153747 0.6857090 -0.2446308
C -2.1965786 0.7404557 -1.2901435
C -0.9405490 0.1500870 -1.2366928
C -0.1078646 0.2178416 -2.3453516
F 1.1148391 0.6857090 -0.2446308
C -0.5213590 0.8637611 -3.5011876
F 0.2821177 0.9381874 -4.5583077
C -1.7836041 1.4446258 -3.5462218
F -2.1849276 2.0615147 -4.6488999
C -2.6256749 1.3850780 -2.4422219
F -3.8324295 1.9393977 -2.4969406
F 1.5284230 -2.9547707 1.9903551
C 2.2738018 -1.9011580 1.6731006
C 1.7158353 -0.8112339 1.0171345
C 3.6169992 -1.9031148 2.0234971
C 2.5170330 0.2782133 0.7028767
F 4.1476855 -2.9414528 2.6612970
F 2.0213494 1.3256233 0.0451553
C 4.4078957 -0.8053177 1.7061430
C 3.8618327 0.2877262 1.0430553
F 5.6921385 -0.8009871 2.0350182
F 4.6304678 1.3274202 0.7318388

$[\text{trans-}(\text{C}_6\text{F}_5)_2\text{TeF}_3\text{O}]^-$

F -0.0127632 -1.3820880 2.7046025
C -0.2426473 -1.1058151 1.407451
C -1.5072802 -0.6563567 1.0001437
F -2.4825847 -0.5030966 1.9147149
C -1.7418594 -0.3641691 -0.3579989
F -2.9698608 0.0523247 -0.6740640
C -0.7275171 -0.5181967 -1.3151556
Te -1.0113558 -0.0233209 -3.4475590
C 0.5276986 -0.9774138 -0.8897941
F 1.5404162 -1.1499920 -1.7444431
C 0.7801600 -1.2721563 0.4637728
F 0.6052760 -0.7533774 -3.3749256
F 0.6052760 -0.7533774 -3.3749256
F 0.6052760 -0.7533774 -3.3749256
F 0.6052760 -0.7533774 -3.3749256
O -0.2354599 -1.5058467 -4.2019802
F -1.8617248 1.5922146 -2.6364264
F 0.6887201 0.6930537 -6.1542884
F 0.1583530 2.0690427 -8.4182694
C -0.5321442 1.2201490 -6.2876953
C -0.7916478 1.9299922 -7.4758957
C -1.5107545 1.0782498 -5.2931950
C -2.0560307 2.5047684 -7.6762427
C -2.7687483 1.6611165 -5.5080050
C -3.0483748 2.3683810 -6.6936439
F -3.7616225 1.5718923 -4.6203868
F -4.2586097 2.9219919 -6.8931106
F -2.3174007 3.1822569 -8.8070436

MesSiF

Si -0.0430541 0.0000935 -0.0022416
C -0.0396398 -1.6781919 -0.7318168
C -0.0379295 1.4709838 -1.0909968
C -0.0530159 0.2074585 1.8159551
H 0.8456071 -1.7981384 -1.3664674
H -0.9040342 -1.7913157 -1.3954153
H -0.054228 -2.4690992 0.0161714
H -0.0180927 1.2184628 -2.1497985
H 0.8254775 -2.1017039 -0.852471
H -0.9240382 2.0811934 -0.8825614
H 0.8170949 -0.3009386 2.2470126
H -0.9327501 0.2928952 2.2359021
H -0.0508851 1.2508097 2.1268189

[Me3Si]⁺

Si 2.1627348 1.5902503 -0.000005
F 3.7834859 1.5901311 -0.0000253
C 1.6118297 0.8009966 -1.6014181
C 1.6118028 3.3716991 0.1171485
C 1.6117956 0.5981561 -1.8427109
H 1.9804593 1.3594345 -2.4640235
H	0.5218225	0.7683298	-1.6675619
H	1.9806113	-0.223221	-1.6840603
H	1.980439	3.9553023	-0.7286194
H	1.980509	3.8395207	1.0320262
H	0.5218018	3.4453311	0.1220027
H	1.9805096	-0.4280842	1.432049
H	0.5217891	0.5571943	1.5455958
H	1.9804996	1.0388194	2.4125588
7 References

1. T. M. Klapötke, B. Krumm, P. Mayer, K. Polborn and O. P. Ruscitti, Inorg. Chem., 2001, 40, 5169.
2. D. Bornemann, C. R. Pitts, C. J. Ziegler, E. Pietrasik, N. Trapp, S. Kueng, N. Santschi and A. Togni, Angew. Chem. Int. Ed., 2019, 58, 12604.
3. R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman and K. W. Zilm, Pure Appl. Chem., 2008, 80, 59.
4. G. M. Sheldrick, Acta Cryst. A, 2015, 71, 9.
5. G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3.
6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
7. K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, 2014.
8. TURBOMOLE GmbH, TURBOMOLE V7.3. a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2018.
9. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
10. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
11. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200.
12. M. Sierka, A. Hogekamp and R. Ahlrichs, J. Chem. Phys., 2003, 118, 9136.
13. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.