Pineda-Villavicencio, G. (2021). A new proof of Balinski's theorem on the connectivity of polytopes. Discrete Mathematics, 344(7), 112408.

Which has been published in final form at:
https://doi.org/10.1016/j.disc.2021.112408
A NEW PROOF OF BALINSKI’S THEOREM ON THE CONNECTIVITY OF POLYTOPES

GUILLERMO PINEDA-VILLAVICENCIO

Centre for Informatics and Applied Optimisation, Federation University, Australia
School of Information Technology, Deakin University, Geelong, Australia

Abstract. Balinski (1961) proved that the graph of a d-dimensional convex polytope is d-connected. We provide a new proof of this result. Our proof provides details on the nature of a separating set with exactly d vertices; some of which appear to be new.

1. Introduction

A (convex) polytope is the convex hull of a finite set X of points in \mathbb{R}^d; the convex hull of X is the smallest convex set containing X. The dimension of a polytope in \mathbb{R}^d is one less than the maximum number of affinely independent points in the polytope; a set of points $\vec{p}_1, \ldots, \vec{p}_k$ in \mathbb{R}^d is affinely independent if the $k-1$ vectors $\vec{p}_1 - \vec{p}_k, \ldots, \vec{p}_{k-1} - \vec{p}_k$ are linearly independent. A polytope of dimension d is referred to as a d-polytope.

A polytope is structured around other polytopes, its faces. A face of a polytope P in \mathbb{R}^d is P itself, or the intersection of P with a hyperplane in \mathbb{R}^d that contains P in one of its closed halfspaces. A face of dimension 0, 1, and $d-1$ in a d-polytope is a vertex, an edge, and a facet, respectively. The set of vertices and edges of a polytope or a graph are denoted by V and E, respectively. The graph $G(P)$ of a polytope P is the abstract graph with vertex set $V(P)$ and edge set $E(P)$.

A graph with at least $d+1$ vertices is d-connected if removing any $d-1$ vertices leaves a connected subgraph. Balinski (1961) showed that the graph of a d-polytope is d-connected. His proof considers a hyperplane in \mathbb{R}^d passing through a set of $d-1$ vertices of a d-polytope, and so do the proofs of Grünbaum (2003, Thm. 11.3.2), Ziegler (1995, Thm. 3.14), and Brøndsted (1983, Thm. 15.6). Such proofs yield a geometric structure of separators in the graph of the polytope (Lemma 7). A set X of vertices in a graph G separates two vertices x, y if every path in G between x and y contains an element of X, and $x, y \notin X$. And X separates G if it separates x, y.
two vertices of G. A separating set of vertices is a separator and a separator of cardinality r is an r-separator.

Lemma 1. Let P be a d-polytope in \mathbb{R}^d and let H be a hyperplane in \mathbb{R}^d. If X is a proper subset of $H \cap V(P)$, then removing X does not disconnect $G(P)$. In particular, a separator of $G(P)$ with exactly d vertices must form an affinely independent set in \mathbb{R}^d.

Other proofs with a geometric flavour were given by Brøndsted & Maxwell (1989) and Barnette (1995). Our proof has a more combinatorial nature, relying on certain polytopal complexes in a polytope. Another combinatorial proof, based on a different idea, can be found in Barnette (1973).

The boundary complex of a polytope P is the set of faces of P other than P itself. And the link of a vertex x in P, denoted $\text{lk}(x)$, is the set of faces of P that do not contain x but lie in a facet of P that contains x (Fig. 1(b)). We require a result from Ziegler (1995).

Proposition 2 (Ziegler 1995, Ex. 8.6). Let P be a d-polytope. Then the link of a vertex in P is combinatorially isomorphic to the boundary complex of a $(d - 1)$-polytope. In particular, for each $d \geq 3$, the graph of the link of a vertex is isomorphic to the graph of a $(d - 1)$-polytope.

We proved Proposition 2 in Bui et al. (2018, Prop. 12) and exemplified it in Fig. 1. In this paper, we prove the following. The part about links appears to be new.

Theorem 3. For $d \geq 1$, the graph of d-polytope P is d-connected. Besides, for each $d \geq 3$, each vertex x in a d-separator X of $G(P)$ lies in the link of every other vertex of X, and the set $X \setminus \{x\}$ is a separator of the link of x.

![Figure 1. The link of a vertex in the four-dimensional cube, the convex hull of the 2^4 vectors $(\pm 1, \pm 1, \pm 1, \pm 1)$ in \mathbb{R}^4. (a) The four-dimensional cube with a vertex x highlighted. (b) The link of the vertex x in the cube. (c) The link of the vertex x as the boundary complex of the rhombic dodecahedron (Proposition 2).](image-url)
As a corollary, we get a known result on d-separators in simplicial d-polytopes (Goodman et al. 2017, p. 509); see Corollary 4. A polytope is simplicial if all its facets are simplices, and a d-simplex is a d-polytope whose $d + 1$ vertices form an affinely independent set in \mathbb{R}^d. An empty $(d - 1)$-simplex in a d-polytope P is a set of d vertices of P that does not form a face of P but every proper subset does. An empty $(d - 1)$-simplex is also called a missing $(d - 1)$-simplex.

Corollary 4. Let P be a simplicial d-polytope with $d \geq 2$. A d-separator of $G(P)$ forms an empty $(d - 1)$-simplex of P.

We remark that the paragraph after Balinski’s theorem in Goodman et al. (2017, p. 509) is meant to concern only simplicial d-polytopes, and not d-polytopes in general. While it is true that a d-separator of the graph of a d-polytope must form an affinely independent set in \mathbb{R}^d, it is not true that it must form an empty simplex. Take, for instance, the neighbours of a vertex in a d-dimensional cube (Fig. 1a).

We follow Diestel (2017) for the graph theoretical terminology that we have not defined.

2. **Proofs of Theorem 3 and Corollary 4**

A path between vertices x and y in a graph is an $x - y$ path, and two $x - y$ paths are independent if they share no inner vertex. For a path $L := x_0 \ldots x_n$ and for $0 \leq i \leq j \leq n$, we write $x_i L x_j$ to denote the subpath $x_i \ldots x_j$. We require a theorem of Whitney (1932) and one of Menger (1927).

Theorem 5 (Whitney 1932). Let G be a graph with at least one pair of nonadjacent vertices. Then there is a minimum separator of G disconnecting two nonadjacent vertices.

Theorem 6 (Menger 1927). Let G be a graph, and let x and y be two nonadjacent vertices. Then the minimum number of vertices separating x from y in G equals the maximum number of independent $x - y$ paths in G.

Proof of Theorem 3. Let P be a d-polytope and let G be its graph. Then G has at least $d + 1$ vertices. If G is a complete graph, there is nothing to prove, and suppose otherwise. In this case, G has at least one pair of nonadjacent vertices. For $d = 2$, G is d-connected. And so induct on d, assuming that $d \geq 3$ and that the theorem is true for $d - 1$. Let X be a separator in G of minimum cardinality, and let y and z be vertices separated by X. Then $y, z \notin X$. According to Whitney’s theorem (Theorem 5), there is a minimum separator of G disconnecting two nonadjacent vertices. Hence we may assume that y and z are nonadjacent, and by Menger’s theorem (Theorem 6), that there are $|X|$ independent $y - z$ paths in G, each containing precisely one vertex from X. Let L be one such $y - z$ path and let x be the vertex in $X \cap V(L)$; say that $L = u_1 \ldots u_m$ such that $y = u_1$, $u_j = x$, and $u_m = z$.

The graph G_x of the link of x in P is isomorphic to the graph of a $(d-1)$-polytope (Proposition 2), and by the induction hypothesis it is $(d-1)$-connected. The neighbours of x are all part of $\text{lk}(x)$, and so $u_{j-1}, u_{j+1} \in G_x$. Again, from Menger’s theorem follows the existence of at least $d-1$ independent $u_{j-1} - u_{j+1}$ paths in G_x. We must have that $X \setminus \{x\}$ separates u_{j-1} from u_{j+1} in G_x, since X separates y from z. Hence $|X\setminus \{x\}| \geq d-1$, which establishes that G is d-connected.

Finally, let $d \geq 3$ and suppose X is a d-separator of G. As stated above, the set $X \setminus \{x\}$, of cardinality $d-1$, separates G_x, implying that $X \setminus \{x\} \subseteq V(G_x)$. The aforementioned path L was arbitrary among the $y-z$ paths separated by X, and each such path contains a unique vertex of X. It follows that every vertex in X is in the link of every other vertex of X, which concludes the proof of the theorem. □

Proof of Corollary. Let P be a simplicial d-polytope and let G be its graph. Suppose that X is a d-separator of G, that x is a vertex of X, and that G_x is the graph of the link of x in P.

A simplicial 2-polytope is a polygon and a 2-separator in it satisfies the corollary. So assume that $d \geq 3$. From Theorem 3, it follows that every vertex in X is in the link of every other vertex of X, and that $X \setminus \{x\}$ is a $(d-1)$-separator of G_x. Consequently, the subgraph $G[X]$ of G induced by X is a complete graph, as the set of neighbours of each vertex in X coincides with the vertex set of the link of the vertex.

If $d = 3$, then, from $G[X]$ being a complete graph, it follows that it is an empty 2-simplex. And so an inductive argument on d can start. Assume that $d \geq 4$. From the definition of a link and Proposition 2 we obtain that $\text{lk}(x)$ is combinatorially isomorphic to the boundary complex of a simplicial $(d-1)$-polytope.

By the induction hypothesis on $\text{lk}(x)$, every proper subset of $X \setminus \{x\}$ forms a face F of $\text{lk}(x)$. And from the definition of $\text{lk}(x)$, that face F lies in a facet of P containing x, a $(d-1)$-simplex containing x. As a consequence, if F is a face of dimension k, then the set $\text{conv}(F \cup \{x\})$ is a face of P of dimension $k+1$. Since the vertex x of X was taken arbitrarily, the corollary ensues. □

References

Balinski, M. L. (1961). On the graph structure of convex polyhedra in n-space. *Pacific J. Math.*, 11, 431–434.

Barnette, D. W. (1973). Graph theorems for manifolds. *Israel J. Math.*, 16, 62–72.

Barnette, D. W. (1995). A short proof of the d-connectedness of d-polytopes. *Discrete Math.*, 137(1-3), 351–352.

Brøndsted, A. (1983). *An introduction to convex polytopes*, volume 90 of Graduate Texts in Mathematics. New York: Springer-Verlag.

Brøndsted, A. & Maxwell, G. (1989). A new proof of the d-connectedness of d-polytopes. *Can. Math. Bull.*, 32(2), 252–254.

Bui, H. T., Pineda-Villavicencio, G., & Ugon, J. (2018). The linkedness of cubical polytopes. [arXiv:1802.09230](http://arxiv.org/abs/1802.09230).
Diestel, R. (2017). *Graph Theory*, volume 173 of *Graduate Texts in Mathematics*. Berlin: Springer-Verlag, 5th edition.

Goodman, J. E., O’Rourke, J., & Tóth, C. D., Eds. (2017). *Handbook of discrete and computational geometry*. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition.

Grünbaum, B. (2003). *Convex polytopes*, volume 221 of *Graduate Texts in Mathematics*. New York: Springer-Verlag, 2nd edition. Prepared and with a preface by V. Kaibel, V. Klee and G. M. Ziegler.

Menger, K. (1927). Zur allgemeinen kurventheorie. *Fundamenta Mathematicae*, 10(1), 96–115.

Whitney, H. (1932). Congruent Graphs and the Connectivity of Graphs. *Amer. J. Math.*, 54(1), 150–168.

Ziegler, G. M. (1995). *Lectures on polytopes*, volume 152 of *Graduate Texts in Mathematics*. New York: Springer-Verlag.