ON FINITE-DIMENSIONAL MAPS II

H. MURAT TUNCALI AND VESKO VALOV

Abstract. Let \(f : X \to Y \) be a perfect \(n \)-dimensional surjective map of paracompact spaces and \(Y \) a \(C \)-space. We consider the following property of continuous maps \(g : X \to I^k = [0,1]^k \), where \(1 \leq k \leq \omega \): each \(g(f^{-1}(y)), \) \(y \in Y \), is at most \(n \)-dimensional. It is shown that all maps \(g \in C(X, I^{n+1}) \) with the above property form a dense \(G_\delta \)-set in the function space \(C(X, I^{n+1}) \) equipped with the source limitation topology. Moreover, for every \(n+1 \leq m \leq \omega \) the space \(C(X, I^m) \) contains a dense \(G_\delta \)-set of maps having this property.

1. Introduction

This note is inspired by a result of Uspenskij [15, Theorem 1]. Answering a question of R. Pol, Uspenskij proved the following theorem: Let \(f : X \to Y \) be a light map (i.e. every fiber \(f^{-1}(y) \) is 0-dimensional) between compact spaces and \(A \) be the set of all functions \(g : X \to I = [0,1] \) such that \(g(f^{-1}(y)) \) is 0-dimensional for all \(y \in Y \). Then \(A \) is a dense \(G_\delta \)-subset of the function space \(C(X, I) \) provided \(Y \) is a \(C \)-space (the case when \(Y \) is countable-dimensional was established earlier by Torunczyk). We extend this result as follows:

Theorem 1.1. Let \(f : X \to Y \) be a \(\sigma \)-perfect surjection such that \(\dim f \leq n \) and \(Y \) is a paracompact \(C \)-space. Let \(\mathcal{H} = \{ g \in C(X, I^{n+1}) : \dim g(f^{-1}(y)) \leq n \text{ for each } y \in Y \} \). Then \(\mathcal{H} \) is dense and \(G_\delta \) in \(C(X, I^{n+1}) \) with respect to the source limitation topology.

Corollary 1.2. Let \(X, Y \) and \(f \) satisfy the hypotheses of Theorem 1.1 and \(n+1 \leq m \leq \omega \). Then, there exists a dense \(G_\delta \)-subset \(\mathcal{H}_m \) of \(C(X, I^m) \) with respect to the source limitation topology such that \(\dim g(f^{-1}(y)) \leq n \) for every \(g \in \mathcal{H}_m \) and \(y \in Y \).

Here, \(\dim f = \sup\{ \dim f^{-1}(y) : y \in Y \} \) and \(f \) is said to be \(\sigma \)-perfect if there exists a sequence \(\{X_i\} \) of closed subsets of \(X \) such that each restriction map \(f|X_i \) is perfect and the sets \(f(X_i) \) are closed in \(Y \). The \(C \)-space property was

1991 Mathematics Subject Classification. Primary: 54F45; Secondary: 55M10, 54C65.

Key words and phrases. finite-dimensional maps, set-valued maps, selections, \(C \)-space.

The first author was partially supported by NSERC grant.

The second author was partially supported by Nipissing University Research Council Grant.
introduced by Haver [7] for compact metric spaces and then extended by Addis and Gresham [1] for general spaces (see [4] for the definition and some properties of C-spaces). Every countable-dimensional (in, particular, every finite-dimensional) paracompact space has property C, but there exists a compact metric C-space which is not countable-dimensional [13]. For any spaces X and Y by C(X,Y) we denote the set of all continuous maps from X into Y. If (Y,d) is a metric space, then the source limitation topology on C(X,Y) is defined in the following way: a subset U ⊂ C(X,Y) is open in C(X,Y) with respect to the source limitation topology provided for every g ∈ U there exists a continuous function α: X → (0,∞) such that B(g,α) ⊂ U, where B(g,α) denotes the set {h ∈ C(X,Y) : d(g(x),h(x)) ≤ α(1)x for each x ∈ X}. The source limitation topology is also known as the fine topology and C(X,Y) with this topology has Baire property provided (Y,d) is a complete metric space [12]. Moreover, the source limitation topology on C(X,Y) doesn’t depend on the metric of Y when X is paracompact [8].

All single-valued maps under discussion are continuous, and all function spaces, if not explicitly stated otherwise, are equipped with the source limitation topology.

2. Proofs

Let show first that the proof of Theorem 1.1 can be reduced to the case when f is perfect. Indeed, we fix a sequence \{X_i\} of closed subsets of X such that each map f_i = f|X_i: X_i → Y_i = f(X_i) is perfect and Y_i ⊂ Y is closed. Consider the maps \(\pi_i : C(X,\mathbb{I}^{n+1}) \to C(X_i,\mathbb{I}^{n+1})\) defined by \(\pi(g) = g|X_i\) and the sets \(\mathcal{H}_i = \{g \in C(X_i,\mathbb{I}^{n+1}) : \dim g(f_i^{-1}(y)) \leq n \text{ for each } y \in Y_i\}\). If Theorem 1.1 holds for perfect maps, then every \(\mathcal{H}_i\) is dense and \(G_δ\) in \(C(X_i,\mathbb{I}^{n+1})\), so are the sets \(\pi_i^{-1}(\mathcal{H}_i)\) in \(C(X,\mathbb{I}^{n+1})\) because \(\pi_i\) are open and surjective maps. Finally, observe that \(\mathcal{H}\) is the intersection of all \(\mathcal{H}_i\) and since \(C(X,\mathbb{I}^{n+1})\) has Baire property, we are done.

Everywhere in this section X, Y, f and \(\mathcal{H}\) are fixed and satisfy the hypotheses of Theorem 1.1 with f being perfect. Any finite-dimensional cube \(\mathbb{I}^k\) is considered with the Euclidean metric. We say that a set-valued map \(\theta : H \to \mathcal{F}(Z)\), where \(\mathcal{F}(Z)\) denotes the family of all closed subsets of the space Z, is upper semi-continuous (br. u.s.c.) if \(\{y \in H : \theta(y) \subset W\}\) is open in H for every open \(W \subset Z\). In the above notation, \(\theta\) is called lower semi-continuous if \(\{y \in H : \theta(y) \cap W \neq \emptyset\}\) is open in H whenever W is open in Z.

Proof of Theorem 1.1.

For every open set \(V \in \mathbb{I}^{n+1}\) let \(\mathcal{H}_V\) be the set of all \(g \in C(X,\mathbb{I}^{n+1})\) such that \(V\) is not contained in any \(g(f^{-1}(y)), y \in Y\). Following the Uspenskij idea from [15], it suffices to show that each set \(\mathcal{H}_V\) is dense and open in \(C(X,\mathbb{I}^{n+1})\). Indeed, choose a countable base \(\mathcal{B}\) in \(\mathbb{I}^{n+1}\). Since a subset of \(\mathbb{I}^{n+1}\) is at most
n-dimensional if and only if it doesn’t contain any \(V \in \mathcal{B} \), we have that \(\mathcal{H} \) is the intersection of all \(\mathcal{H}_V, V \in \mathcal{B} \). But \(C(X, \mathbb{P}^{n+1}) \) has the Baire property, so \(\mathcal{H} \) is dense and \(G_\delta \) in \(C(X, \mathbb{P}^{n+1}) \) and we are done.

Lemma 2.1. The set \(\mathcal{H}_V \) is open in \(C(X, \mathbb{P}^{n+1}) \) for every open \(V \subset \mathbb{P}^{n+1} \).

Proof. Fix an open set \(V \) in \(\mathbb{P}^{n+1} \) and \(g_0 \in \mathcal{H}_V \). We are going to find a continuous function \(\alpha : X \to (0, \infty) \) such that \(\overline{B}(g_0, \alpha) \subset \mathcal{H}_V \). To this end, let \(p : Z \to Y \) be a perfect surjection with \(\dim Z = 0 \) and define \(\psi : Y \to \mathcal{F}(\mathbb{P}^{n+1}) \) by \(\psi(y) = g_0(f^{-1}(y)), y \in Y \). Since \(f \) is perfect, \(\psi \) is upper semi-continuous and compact-valued. Now, consider the set-valued map \(\psi_1 : Z \to \mathcal{F}(\mathbb{P}^{n+1}), \psi_1 = \psi \circ p \). Obviously, \(g_0 \in \mathcal{H}_V \) implies \(\overline{\psi_1}(z) \neq \emptyset \) for every \(z \in Z \). Moreover, \(\psi_1 \) is also upper semi-continuous, in particular it has a closed graph. Then, by a result of Michael [10, Theorem 5.3], there exists a continuous map \(h : Z \to \mathbb{P}^{n+1} \) such that \(h(z) \in \overline{\psi_1}(z), z \in Z \). Next, consider the u.s.c. compact-valued map \(\theta : Y \to \mathcal{F}(\mathbb{P}^{n+1}), \theta(y) = h(p^{-1}(y)), y \in Y \). We have \(\emptyset \neq \theta(y) \subset \overline{\theta} \) and \(\theta(y) \cap \psi(y) = \emptyset \) for all \(y \in Y \). Hence, the function \(\alpha_1 : Y \to \mathbb{R}, \alpha_1(y) = d(\theta(y), \psi(y)) \), is positive, where \(d \) is the Euclidean metric on \(\mathbb{P}^{n+1} \). Since, both \(\theta \) and \(\psi \) are upper semi-continuous, \(\alpha_1 \) has the following property: \(\alpha_1^{-1}(a, \infty) \) is open in \(Y \) for every \(a \in \mathbb{R} \). Finally, take a continuous function \(\alpha_2 : Y \to (0, \infty) \) with \(\alpha_2(y) < \alpha_1(y) \) for every \(y \in Y \) (see, for example, [3]) and define \(\alpha = \alpha_2 \circ f \). It remains to observe that, if \(g \in \overline{B}(g_0, \alpha) \) and \(y \in Y \), then \(\theta(y) \subset \overline{\psi_1}(g(f^{-1}(y))) \). So, \(g(f^{-1}(y)) \) doesn’t contain \(V \) for all \(y \in Y \), i.e. \(\overline{B}(g_0, \alpha) \subset \mathcal{H}_V \). \(\square \)

Remark. Analyzing the proof of Lemma 2.1, one can see that we proved the following more general statement: Let \(h : \overline{X} \to \overline{Y} \) be a perfect surjection between paracompact spaces and \(K \) a complete metric space. Then, for every open \(V \subset K \) the set of all maps \(g \in C(\overline{X}, K) \) with \(V \not\subset g(h^{-1}(y)) \) for any \(y \in \overline{Y} \) is open in \(C(\overline{X}, K) \).

The remaining part of this section is devoted to the proof that each \(\mathcal{H}_V \) is dense in \(C(X, \mathbb{P}^{n+1}) \), which is finally accomplished by Lemma 2.6.

Lemma 2.2. Let \(Z \) and \(K \) be compact spaces and \(K_0 = \bigcup_{i=1}^{\infty} K_i \) with each \(K_i \) being a closed 0-dimensional subset of \(K \). Then the set \(\mathcal{A} = \{ g \in C(Z \times K, \mathbb{I}) : \text{dim} g(\{z\} \times K_0) = 0 \text{ for every } z \in Z \} \) is dense and \(G_\delta \) in \(C(Z \times K, \mathbb{I}) \).

Proof. Since, for every \(i \), the restriction map \(p_i : C(Z \times K, \mathbb{I}) \to C(Z \times K_i, \mathbb{I}) \) is a continuous open surjection, we can assume that \(K_0 = K \) and \(\text{dim} K = 0 \).

Then \(\mathcal{A} \) is the intersection of the sets \(\mathcal{A}_V, V \in \mathcal{B} \), where \(\mathcal{B} \) is a countable base of \(\mathbb{I} \) and \(\mathcal{A}_V \) consists of all \(g \in C(Z \times K, \mathbb{I}) \) such that \(V \not\subset g(\{z\} \times K) \) for every \(z \in Z \). By the remark after Lemma 1.1, every \(\mathcal{A}_V \subset C(Z \times K, \mathbb{I}) \) is open, so \(\mathcal{A} \) is \(G_\delta \). It remains only to show that \(\mathcal{A} \) is dense in \(C(Z \times K, \mathbb{I}) \). Since \(K \) is 0-dimensional, the set \(C_K = \{ h \in C(K, \mathbb{R}) : h(K) \text{ is finite} \} \) is dense in \(C(K, \mathbb{R}) \). Hence, by the Stone-Weierstrass theorem, all polynomials of elements of the
family $\gamma = \{t \cdot h : t \in C(Z, \mathbb{R}), h \in C_K\}$ form a dense subset \mathcal{P} of $C(Z \times K, \mathbb{R})$. We fix a retraction $r : \mathbb{R} \to I$ and define $u_r : C(Z \times K, \mathbb{R}) \to C(Z \times K, I)$, $u_r(h) = r \circ h$. Then $u_r(\mathcal{P})$ is dense in $C(Z \times K, I)$. It is easily seen that every $g \in u_r(\mathcal{P})$ has the following property: $g(\{z\} \times K)$ is finite for every $z \in Z$. So, $u_r(\mathcal{P}) \subset \mathcal{A}$, i.e. \mathcal{A} is dense in $C(Z \times K, I)$. \hfill \Box

Lemma 2.3. Let M and K be compact spaces with $\dim K \leq n$ and M metrizable. If $V \subset \mathbb{I}^{n+1}$ is open, then the set of all maps $g \in C(M \times K, \mathbb{I}^{n+1})$ such that $V \not\subset g(\{y\} \times K)$ for each $y \in M$ is dense in $C(M \times K, \mathbb{I}^{n+1})$.

Proof. We are going to prove this lemma by induction with respect to the dimension of K. According to Lemma 2.2, it is true if $\dim K = 0$. Suppose the lemma holds for any K with $\dim K \leq m - 1$ for some $m \geq 1$ and let K be a fixed compact space with $\dim K = m$. For $g^0 \in C(M \times K, \mathbb{I}^{m+1})$ and $\epsilon > 0$ we need to find a function $g \in C(M \times K, \mathbb{I}^{m+1})$ which is ϵ-close to g^0 and $V \not\subset g(\{y\} \times K)$ for every $y \in M$. If K is not metrizable, we represent it as the limit space of a σ-complete inverse system $\mathcal{S} = \{K_\lambda, p^{\lambda+1}_\lambda : \lambda \in \Lambda\}$ such that each K_λ is a metrizable compactum with $\dim K_\lambda \leq m$. Then $M \times K$ is the limit of the system $\{M \times K_\lambda, id \times p^{\lambda+1}_\lambda : \lambda \in \Lambda\}$, where id is the identity map on M. Applying standard inverse spectra arguments (see [2]), we can find $\lambda(0) \in \Lambda$ and $g_{\lambda(0)} \in C(M \times K_{\lambda(0)}, \mathbb{I}^{m+1})$ such that $g_{\lambda(0)} \circ (id \times p^{\lambda(0)}_\lambda) = g^0$, where $p^{\lambda(0)}_\lambda : K \to K_{\lambda(0)}$ denotes the $\lambda(0)$-th limit projection of \mathcal{S}. Therefore, the proof is reduced to the case when K is metrizable.

Let K be metrizable and $K = K_1 \cup K_2$ such that K_1 is a 0-dimensional σ-compact subset of K and $\dim K_2 \leq m - 1$ (this is possible because K is metrizable and m-dimensional, see [4]). Let $g_0^0 = g_1^0 \times g_2^0$, where every g_i^0 is a function from K_i into \mathbb{I}, and $g_2^0 : X \to \mathbb{I}^m$. We can assume that $V = V_1 \times V_2$ with both $V_1 \subset \mathbb{I}$ and $V_2 \subset \mathbb{I}^m$ open. According to Lemma 2.2, there exists a function $g_1 : M \times K \to \mathbb{I}$ which is $\frac{\epsilon}{\sqrt{2}}$-close to g_1^0 and such that $\dim g_1(\{y\} \times K_1) = 0$ for every $y \in M$. Hence, V_1 is not contained in any of the sets $g_1(\{y\} \times K_1)$, $y \in M$.

Claim. There exists an open set $A_1 \subset K$ containing K_1 such that $\overline{V_1} \not\subset g_1(\{y\} \times A_1)$ for any $y \in M$.

To prove the claim, we represent K_1 as the union of countably many compact 0-dimensional sets K_{1i} and consider the upper semi-continuous compact-valued maps $\psi_i : M \to \mathcal{F}(\mathbb{I})$ defined by $\psi_i(y) = g_i(\{y\} \times K_{1i})$. As in the proof of Lemma 2.1, we fix a 0-dimensional space Z, a surjective perfect map $p : Z \to M$ and define the set-valued maps $\overline{\psi}_i : Z \to \mathcal{F}(\mathbb{I})$, $\overline{\psi}_i = \psi_i \circ p$. It follows from our construction that each $\overline{\psi}_i(z)$, $z \in Z$, $i \in \mathbb{N}$, is 0-dimensional. By [10, Theorem 5.5] (see also [6, Theorem 1.1]), there is $h \in C(Z, \mathbb{I})$ such that $h(z) \in \overline{V_1} \cup \bigcup_{i=1}^{\infty} \overline{\psi}_i(z)$, $z \in Z$. Then $\theta : M \to \mathcal{F}(\mathbb{I})$, $\theta(y) = h(p^{-1}(y))$, is u.s.c. with
Then the map

\[g \]

gives a proof of the claim. That every

\[\emptyset \neq \theta(y) \subset V_1 \setminus g_1(\{y\} \times K_1) \]

for every \(y \in M \). Since the graph \(G_\theta \) of \(\theta \) is closed in \(M \times I \), the set \(U = \{(y, x) \in M \times K : (y, g_1(y, x)) \notin G_\theta \} \) is open in \(M \times K \) and contains \(M \times K_1 \). So, \(A_1 = \{x \in K : M \times \{x\} \subset U \} \) is open in \(K \) and contains \(K_1 \). Moreover, \(\theta(y) \subset V_1 \setminus g_1(\{y\} \times A_1) \) for every \(y \in M \), which completes the proof of the claim.

Now, let \(A_2 = K \setminus A_1 \). Obviously, \(A_2 \) is a compact subset of \(K_2 \), so \(\dim A_2 \leq m - 1 \). According to the assumption that the lemma is true for any space of dimension \(\leq m - 1 \), there exists a map \(h_2 : M \times A_2 \to \mathbb{I}^m \) which is \(\frac{\epsilon}{\sqrt{2}} \)-close to \(g_2^0(M \times A_2) \) and such that \(\overline{V}_2 \not\subset g_2(\{y\} \times A_2) \) for any \(y \in M \). We finally extend \(h_2 \) to a map \(g_2 : M \times K \) such that \(g_2 \) is \(\frac{\epsilon}{\sqrt{2}} \)-close to \(g_2^0 \). Hence,

\begin{align*}
(1) & \quad K = A_1 \cup A_2 \text{ and } \overline{V}_2 \not\subset g_j(\{y\} \times A_j) \text{ for any } y \in M, j = 1, 2.
\end{align*}

Then the map \(g = g_1 \times g_2 : M \times K \to \mathbb{I}^{m+1} \) is \(\epsilon \)-close to \(g_0 \). It follows from (1) that \(\overline{V} \not\subset g(\{y\} \times K) \) for any \(y \in M \).

For any open \(V \subset \mathbb{I}^{n+1} \) we consider the set-valued map \(\psi_V \) from \(Y \) into \(C(X, \mathbb{I}^{n+1}) \), given by \(\psi_V(y) = \{g \in C(X, \mathbb{I}^{n+1}) : V \subset g(f^{-1}(y))\} \), \(y \in Y \).

Lemma 2.4. If \(V \subset \mathbb{I}^{n+1} \) is open and \(C(X, \mathbb{I}^{n+1}) \) is equipped with the uniform convergence topology, then \(\psi_V \) has a closed graph.

Proof. Let \(G_V \subset Y \times C(X, \mathbb{I}^{n+1}) \) be the graph of \(\psi_V \) and \((y_0, g_0) \notin G_V \). Then \(g_0 \notin \psi_V(y_0) \), so \(g_0(f^{-1}(y_0)) \) doesn’t contain \(V \). Consequently, there exists \(z_0 \in V \setminus g_0(f^{-1}(y_0)) \) and let \(\epsilon = d(z_0, g_0(f^{-1}(y_0))) \). Since \(f \) is a closed map, there exists a neighborhood \(U \) of \(y_0 \) in \(Y \) with \(d(z_0, g_0(f^{-1}(y))) > 2^{-1} \epsilon \) for every \(y \in U \). It is easily seen that \(U \times B_{4^{-1}\epsilon}(g_0) \) is a neighborhood of \((y_0, g_0) \) in \(Y \times C(X, \mathbb{I}^{n+1}) \) which doesn’t meet \(G_V \) (here \(B_{4^{-1}\epsilon}(g_0) \) is the \(4^{-1}\epsilon \)-neighborhood of \(g_0 \) in \(C(X, \mathbb{I}^{n+1}) \) with the uniform metric). Therefore \(G_V \subset Y \times C(X, \mathbb{I}^{n+1}) \) is closed.

Recall that a closed subset \(F \) of the metrizable apace \(M \) is said to be a \(Z \)-set in \(M \) [11], if the set \(C(Q, M \setminus F) \) is dense in \(C(Q, M) \) with respect to the uniform convergence topology, where \(Q \) denotes the Hilbert cube.

Lemma 2.5. Let \(\alpha : X \to (0, \infty) \) be a positive continuous function, \(V \subset \mathbb{I}^{n+1} \) open and \(g_0 \in C(X, \mathbb{I}^{n+1}) \). Then \(\psi_V(y) \cap \overline{B}(g_0, \alpha) \) is a \(Z \)-set in \(\overline{B}(g_0, \alpha) \) for every \(y \in Y \), where \(\overline{B}(g_0, \alpha) \) is considered as a subspace of \(C(X, \mathbb{I}^{n+1}) \) with the uniform convergence topology.

Proof. The proof of this lemma follows very closely the proof of [14, Lemma 2.8]. For sake of completeness we provide a sketch. In this proof all function spaces are equipped with the uniform convergence topology generated by the
Euclidean metric d on \mathbb{I}^{n+1}. Since, by Lemma 2.4, ψ_V has a closed graph, each $\psi_V(y)$ is closed in $\overline{B}(g_0, \alpha)$. We need to show that, for fixed $y \in Y$, $\delta > 0$ and a map $u: Q \to \overline{B}(g_0, \alpha)$ there exists a map $v: Q \to \overline{B}(g_0, \alpha)\setminus \psi_V(y)$ which is δ-close to u. Observe first that u generates $h \in C(Q \times X, \mathbb{I}^{n+1})$, $h(z, x) = u(z)(x)$, such that $d(h(z, x), g_0(x)) \leq \alpha(x)$ for any $(z, x) \in Q \times X$. Since $f^{-1}(y)$ is compact, take $\lambda \in (0, 1)$ such that $\lambda \sup\{\alpha(x) : x \in f^{-1}(y)\} < \frac{\delta}{2}$ and define $h_1 \in C(Q \times f^{-1}(y), \mathbb{I}^{n+1})$ by $h_1(z, x) = (1 - \lambda)h(z, x) + \lambda g_0(x)$. Then, for every $(z, x) \in Q \times f^{-1}(y)$, we have

(2) $d(h_1(z, x), g_0(x)) \leq (1 - \lambda)\alpha(x) < \alpha(x)$

and

(3) $d(h_1(z, x), h(z, x)) \leq \lambda\alpha(x) < \frac{\delta}{2}$.

Let $q < \min\{r, \frac{\delta}{2}\}$, where $r = \inf\{\alpha(x) - d(h_1(z, x), g_0(x)) : (z, x) \in Q \times f^{-1}(y)\}$. Since $\dim f^{-1}(y) \leq n$, by Lemma 2.3 (applied to the product $Q \times f^{-1}(y)$), there is a map $h_2 \in C(Q \times f^{-1}(y), \mathbb{I}^{n+1})$ such that $d(h_2(z, x), h_1(z, x)) < q$ and $h_2(\{z\} \times f^{-1}(y))$ doesn’t contain V for each $(z, x) \in Q \times f^{-1}(y)$. Then, by (2) and (3), for all $(z, x) \in Q \times f^{-1}(y)$ we have

(4) $d(h_2(z, x), h(z, x)) < \delta$ and $d(h_2(z, x), g_0(x)) < \alpha(x)$.

Because both Q and $f^{-1}(y)$ are compact, $u_2(z)(x) = h_2(z, x)$ defines the map $u_2: Q \to C(f^{-1}(y), \mathbb{I}^{n+1})$. Since the map $\pi: \overline{B}(g_0, \alpha) \to C(f^{-1}(y), \mathbb{I}^{n+1})$, $\pi(g) = g|f^{-1}(y)$, is continuous and open (with respect to the uniform convergence topology), we can see that $u_2(z) \in \pi(\overline{B}(g_0, \alpha))$ for every $z \in Q$ and $\theta(z) = \pi^{-1}(u_2(z)) \cap \overline{B}_S(u(z))$ defines a convex-valued map from Q into $\overline{B}(g_0, \alpha)$ which is lower semi-continuous. By the Michael selection theorem [9, Theorem 3.2"], there is a continuous selection $v: Q \to C(X, \mathbb{I}^{n+1})$ for θ. Then v maps Q into $\overline{B}(g_0, \alpha)$ and v is δ-close to u. Moreover, for any $z \in Q$ we have $\pi(v(z)) = u_2(z)$ and $V \not\subset u_2(z)(f^{-1}(y))$. Hence, $v(z) \not\in \psi_V(y)$ for any $z \in Q$, i.e. $v: Q \to \overline{B}(g_0, \alpha)\setminus \psi_V(y)$.

We are now in a position to finish the proof of Theorem 1.1.

Lemma 2.6. The set \mathcal{H}_V is dense in $C(X, \mathbb{I}^{n+1})$ for every open $V \subset \mathbb{I}^{n+1}$.

Proof. We need to show that, for fixed $g_0 \in C(X, \mathbb{I}^{n+1})$ and a continuous function $\alpha: X \to (0, \infty)$, there exists $g \in \overline{B}(g_0, \alpha)\cap \mathcal{H}_V$. The space $C(X, \mathbb{I}^{n+1})$ with the uniform convergence topology is a closed convex subspace of the Banach
space E consisting of all bounded continuous maps from X into \mathbb{R}^{n+1}. We define the set-valued map ϕ from Y into $C(X, \mathbb{R}^{n+1})$, $\phi(y) = \overline{B}(g_0, \alpha)$, $y \in Y$. According to Lemma 2.5, $\overline{B}(g_0, \alpha) \cap \psi_V(y)$ is a Z-set in $\overline{B}(g_0, \alpha)$ for every $y \in Y$. So, we have a lower semi-continuous closed and convex-valued map $\phi: Y \to \mathcal{F}(E)$ and another map $\psi_V: Y \to \mathcal{F}(E)$ with a closed graph (see Lemma 2.4) such that $\phi(y) \cap \psi_V(y)$ is a Z-set in $\phi(y)$ for each $y \in Y$. Moreover, Y is a C-space, so we can apply [5, Theorem 1.1] to obtain a continuous map $h: Y \to C(X, \mathbb{R}^{n+1})$ with $h(y) \in \phi(y) \setminus \psi_V(y)$ for every $y \in Y$. Then $g(x) = h(f(x))(x)$, $x \in X$, defines a map $g \in \overline{B}(g_0, \alpha)$. On the other hand, $h(y) \not\in \psi_V(y)$, $y \in Y$, implies that $g \in \mathcal{H}_V$. \hfill \Box

Proof of Corollary 1.2.

As in the proof of Theorem 1.1, we can suppose that f is perfect. We first consider the case when m is an integer $\geq n+1$. Let exp_{n+1} be the family of all subsets of $A = \{1, 2, \ldots, m\}$ having cardinality $n+1$ and let $\pi_B: \mathbb{I}^m \to \mathbb{I}^B$ denote the corresponding projections, $B \in exp_{n+1}$. It can be shown that $C(X, \mathbb{I}) = C(X, \mathbb{I}^B) \times C(X, \mathbb{I}^{A\setminus B})$, so each projection $p_B: C(X, \mathbb{I}^m) \to C(X, \mathbb{I}^B)$ is open.

Since, by Theorem 1.1, every set $\mathcal{H}_B = \{g \in C(X, \mathbb{I}^B): \dim g(f^{-1}(y)) \leq n \text{ for all } y \in Y\}$ is dense and G_δ in $C(X, \mathbb{I}^B)$, so is the set $p_B^{-1}(\mathcal{H}_B)$ in $C(X, \mathbb{I}^m)$. Consequently, the intersection \mathcal{H}_m of all \mathcal{H}_B, $B \in exp_{n+1}$, is also dense and G_δ in $C(X, \mathbb{I}^m)$. Moreover, if $g \in \mathcal{H}_m$ and $y \in Y$, then $\dim p_B(g(f^{-1}(y))) \leq n$ for any $B \in exp_{n+1}$. The last inequalities, according to a result of Nöbeling [4, Problem 1.8.C], imply $\dim g(f^{-1}(y)) \leq n$.

Now, let $m = \omega$ and $exp_{<\omega}$ denote the family of all finite sets $B \subset \omega$ of cardinality $|B| \geq n+1$. Keeping the above notations, for any $B \in exp_{<\omega}$, $\pi_B: Q = \mathbb{I}^\omega \to \mathbb{I}^B$ and $p_B: C(X, Q) \to C(X, \mathbb{I}^B)$ stand for the corresponding projections. Then the intersection \mathcal{H}_ω of all $p_B^{-1}(\mathcal{H}_B)$ is dense and G_δ in $C(X, Q)$. We need only to check that $\dim g(f^{-1}(y)) \leq n$ for any $g \in \mathcal{H}_\omega$ and $y \in Y$. And this is certainly true, take an increasing sequence $\{B(k)\}$ in $exp_{<\omega}$ which covers ω and consider the inverse sequence $\mathcal{S} = \{\pi_{B(k)}(g(f^{-1}(y)))\}$, where $\pi_{k+1}^{B(k+1)}: \pi_{B(k+1)}(g(f^{-1}(y))) \to \pi_{B(k)}(g(f^{-1}(y)))$ are the natural projections. Obviously, $g(f^{-1}(y))$ is the limit space of \mathcal{S}. Moreover, $g \in \mathcal{H}_\omega$ implies that $\pi_{B(k)} \circ g \in \mathcal{H}_{B(k)}$ for any k, so all $\pi_{B(k)}(g(f^{-1}(y)))$ are at most n-dimensional. Hence, $\dim g(f^{-1}(y)) \leq n$.

References

[1] D. Addis and J. Gresham, A class of infinite-dimensional spaces. Part I: Dimension theory and Alexandroff’s Problem, Fund. Math. 101 (1978), 195–205.
[2] A. Chigogidze, Inverse Spectra, North Holland, Amsterdam, 1996.
[3] J. Dieudonné, Une généralisation des espaces compacts, J. de Math. Pures et Appl. 23 (1944), 65–76.
[4] R. Engelking, *Theory of Dimensions: Finite and Infinite*, Heldermann Verlag, Lemgo, 1995.

[5] V. Gutev and V. Valov, *Continuous selections and C-spaces*, Proc. Amer. Math. Soc., **130**, 1 (2002), 233–242.

[6] ———. *Dense families of selections and finite-dimensional spaces*, Preprint arXiv:math.GN/0111254 v1 (2001).

[7] W. Haver, *A covering property for metric spaces*, in: Lecture Notes in Math. 375, Topology Conference at Virginia Polytechnic Institute and State University, March 22-29, 1973, Ray Dickman, Jr. and Peter Fletcher editors, Springer Verlag, New York 1974.

[8] N. Krikorian, *A note concerning the fine topology on function spaces*, Compos. Math. **21** (1969), 343–348.

[9] E. Michael, *Continuous selections I*, Ann. of Math. **63** (1956), 361–382.

[10] ———. *Continuous selections avoiding a set*, Topology Appl. **28** (1988), 195–213.

[11] J. van Mill, *Infinite-Dimensional Topology. Prerequisites and Introduction*, North-Holland, Amsterdam, 1989.

[12] J. Munkers, *Topology* (Prentice Hall, Englewood Cliffs, NY, 1975).

[13] R. Pol, *A weakly infinite-dimensional compactum which is not countable-dimensional*, Proc. Amer. Math. Soc. **82** (1981), 634–636.

[14] H.M. Tuncali and V. Valov, *On dimensionally restricted maps*, Fund. Math. **175**, 1 (2002), 35–52.

[15] V. V. Uspenskij, *A remark on a question of R. Pol concerning light maps*, Topology and Appl. **103**, 3 (2000), 291–293.

Department of Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

E-mail address: muratt@nipissingu.ca

Department of Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

E-mail address: veskov@nipissingu.ca