On the ramification of étale cohomology groups

Isabel Leal*

Abstract

Let K be a complete discrete valuation field whose residue field is perfect and of positive characteristic, let X be a connected, proper scheme over \mathcal{O}_K, and let U be the complement in X of a divisor with simple normal crossings.

Assume that the pair (X,U) is strictly semi-stable over \mathcal{O}_K of relative dimension one and K is of equal characteristic. We prove that, for any smooth ℓ-adic sheaf G on U of rank one, at most tamely ramified on the generic fiber, if the ramification of G is bounded by $t+$ for the logarithmic upper ramification groups of Abbes-Saito at points of codimension one of X, then the ramification of the étale cohomology groups with compact support of G is bounded by $t+$ in the same sense.

0 Introduction

Let K be a complete discrete valuation field with perfect residue field k of characteristic $p > 0$. Let X be a connected, proper scheme over \mathcal{O}_K, D a divisor with simple normal crossings on X, and $U = X - D$. Assume that the pair (X,U) is strictly semi-stable over \mathcal{O}_K of relative dimension d (see Definition 1.2).

Let ℓ be a prime number different from p and \mathcal{G} be a smooth ℓ-adic sheaf on U, by which we mean a smooth \mathbb{Q}_ℓ-sheaf on U. Assume that \mathcal{G} is at most tamely ramified on the generic fiber X_K. Write $D = \bigcup_{i=1}^{n} D_i$, where D_i are the irreducible components of D. Let ξ_i be the generic point of D_i, $\mathcal{O}_{M_i} = \mathcal{O}_{X,\xi_i}$, the henselization of the local ring at ξ_i, M_i its field of fractions, and $\eta_i = \text{Spec} M_i$.

Let G_{M_i} and G_K denote the absolute Galois groups of M_i and K, respectively, and $(G_{M_i,\log}^t)_{t \in \mathbb{Q} \geq 0}$, $(G_{K,\log}^t)_{t \in \mathbb{Q} \geq 0}$ the corresponding Abbes-Saito logarithmic upper ramification filtrations (see [1]). Put, for a real number $s \geq 0$, $G_{M_i,\log}^{s+} = \bigcup_{t \in \mathbb{Q}, t > s} G_{M_i,\log}^t$ and $G_{K,\log}^{s+} = \bigcup_{t \in \mathbb{Q}, t > s} G_{K,\log}^t$. Then we have the following conjecture:

Conjecture 1. Under the assumptions above, if $G_{M_i,\log}^{t+}$ acts trivially on $\mathcal{G}_{\mathcal{M}_i}$ for every i, then $G_{M_i,\log}^{t+}$ acts trivially on $H^j_c(U,\mathcal{G})$ for every j.

*Department of Mathematics, University of Chicago, 5734 S. University Avenue, 60637, Chicago, USA
Email: isabel@math.uchicago.edu
Our main result is Theorem 4.1, in which we prove the conjecture in the special case where \(G \) is of rank 1, \(K \) has characteristic \(p \), and the relative dimension is \(d = 1 \).

The structure of this paper is as follows: in the first section, we shall briefly review some properties of the Abbes-Saito logarithmic upper ramification filtration and some notions on the ramification of characters. In the second section, we give a criterion for \(G_{+K, \log} \) to act trivially on an \(\ell \)-adic sheaf. In the third section, we provide an application of the Kato-Saito conductor formula. In the fourth section, we present and prove the main result.

1 Preliminary notions

1.1 The Abbes-Saito filtration

We shall briefly review some properties of the Abbes-Saito logarithmic upper ramification filtration. For a complete discrete valuation field \(K \), Abbes and Saito constructed a decreasing filtration \((G_{tK, \log})_{t \in \mathbb{Q} > 0} \) of the absolute Galois group \(G_K \), extended by \(G_{0K, \log} = G_K \).

When the residue field of \(K \) is perfect, \((G_{tK, \log})_{t \in \mathbb{Q} > 0} \) coincides with the classical upper ramification filtration. \((G_{tK, \log})_{t \in \mathbb{Q} > 0} \) is stable under tame base change; more precisely, if \(L \) is a finite separable extension of \(K \) of ramification index \(e \) that is tamely ramified, we have \(G_{etL, \log} = G_{tK, \log} \). In general, for a finite separable extension \(L/K \) of ramification index \(e \), not necessarily tamely ramified, we have \(G_{etL, \log} \subset G_{tK, \log} \).

In this paper we shall make use of the following definition:

Definition 1.1. For a real number \(s \geq 0 \), define \(G^{s+}_{K, \log} = \bigcup_{t \in \mathbb{Q}, t > s} G_{tK, \log} \).

We shall need the following property of this filtration:

Lemma 1.1 ([2], Lemma 5.2). Let \(K \) be a complete discrete valuation field with residue field \(k \) of characteristic \(p \). Assume that there is a map of complete discrete valuation fields \(K \to L \) inducing a local homomorphism \(\mathcal{O}_K \to \mathcal{O}_L \), that the ramification index is prime to \(p \), and that the induced extension of residue fields is separable. Then, for \(t \in \mathbb{Q} > 0 \), the map \(G_L \to G_K \) induces a surjection \(G_{etL, \log} \to G_{tK, \log} \).

As a consequence, we also have surjections \(G_{etL, \log}^{s+} \to G_{tK, \log}^{s+} \).

1.2 Ramification of characters

In this subsection, assume that the residue field \(k \) of \(K \) has characteristic \(p > 0 \) and is not necessarily perfect.

We recall the definition of the \(k \)-vector space \(\Omega_k(\log) \). There exists a canonical map \(d \log : K^\times \to \Omega_k \), and \(\Omega_k(\log) \) is the amalgamate sum of the differential module \(\Omega_k \) with \(k \otimes_{\mathbb{Z}} K^\times \) over \(k \otimes_{\mathbb{Z}} \mathcal{O}_K^\times \) with respect to \(d \log : \mathcal{O}_K^\times \to \Omega_k \) and \(\mathcal{O}_K^\times \hookrightarrow K^\times \). There is a residue map \(\text{res} : \Omega_k(\log) \to k \) induced by the valuation map of \(K \) and an exact sequence
In \[5\], Kato constructs an increasing filtration \((F_r H^1(K, \mathbb{Q}/\mathbb{Z}))_{r \in \mathbb{N}}\) and defines, putting \(Gr_r H^1(K, \mathbb{Q}/\mathbb{Z}) = F_r H^1(K, \mathbb{Q}/\mathbb{Z})/F_{r-1} H^1(K, \mathbb{Q}/\mathbb{Z})\) for \(r \geq 1\), an injection

\[
\text{rsw}_{r,K} : Gr_r H^1(K, \mathbb{Q}/\mathbb{Z}) \to \text{Hom}_k(\mathfrak{m}_K^r/\mathfrak{m}_K^{r+1}, \Omega_k(\log)),
\]

where \(\mathfrak{m}_K\) denotes the maximal ideal of \(\mathcal{O}_K\). For \(\chi \in F_r H^1(K, \mathbb{Q}/\mathbb{Z})\setminus F_{r-1} H^1(K, \mathbb{Q}/\mathbb{Z})\), the injection

\[
\text{rsw}_{r,K}(\chi) : \mathfrak{m}_K^r/\mathfrak{m}_K^{r+1} \to \Omega_k(\log)
\]

is denoted by \(\text{rsw}_K(\chi)\) and called the refined Swan conductor of \(\chi\).

In \[3\], Corollary 9.12, Abbes and Saito relate Kato’s construction to the upper ramification groups defined in \[1\]. More specifically, they prove that, when \(K\) is of equal characteristic, \(\chi \in F_r H^1(K, \mathbb{Q}/\mathbb{Z})\) if and only if \(\chi\) kills \(G^{r+}_{r,K, \log}\).

Remark 1. As the referee pointed out, the comparison between Kato’s filtration and the Abbes-Saito logarithmic upper ramification groups remains open in the mixed characteristic case. This is the only reason we assume that \(K\) is of characteristic \(p > 0\) in sections 3 and 5 of this paper. All results of this paper are valid whenever \(K\) is a complete discrete valuation field having the property that, for all \(\chi \in H^1(K, \mathbb{Q}/\mathbb{Z})\) and \(r \in \mathbb{N}\),

\[
\chi \in F_r H^1(K, \mathbb{Q}/\mathbb{Z}) \text{ if and only if } \chi : G_K \to \mathbb{Q}/\mathbb{Z} \text{ kills } G^{r+}_{r,K, \log}.
\]

Consider now the following case. Let \(S = \text{Spec} \mathcal{O}_K\) and \(X\) be a regular flat separated scheme over \(S\). Let \(D = \bigcup_{i=1}^n D_i\) be a divisor with simple normal crossings, where \(D_i\) denotes the irreducible components of \(D\). For each \(i\) let \(\xi_i\) be a generic point for \(D_i\), \(\mathcal{O}_{M_i} = \mathcal{O}_{X,\xi_i}^h\) the henselization of the local ring at \(\xi_i\), \(M_i\) its field of fractions, and \(k_i\) the residue field of \(M_i\). Let \(U = X - D\) and \(\chi \in H^1(U, \mathbb{Q}/\mathbb{Z})\). For each \(i\), denote by \(\chi_i \in H^1(M_i, \mathbb{Q}/\mathbb{Z})\) the restriction of \(\chi\), and by \(r_i\) the Swan conductor \(\text{Sw}_{M_i, \chi_i}\). Define the Swan divisor

\[
D_{\chi} = \sum_i r_i D_i
\]

and let

\[
E = \sum_{r_i > 0} D_i
\]

be the support of \(D_{\chi}\). It’s shown by \[5\], (7.3), that there exists an injection

\[
\text{rsw}_{\chi} : \mathcal{O}_X(-D_{\chi}) \otimes_{\mathcal{O}_X} \mathcal{O}_E \to \Omega^1_{X/S}(\log D) \otimes_{\mathcal{O}_X} \mathcal{O}_E
\]

inducing \(\text{rsw}_{M_i}(\chi_i)\) at \(\xi_i\). We say that \(\chi\) is clean if \(\text{rsw}_{\chi}\) is a locally splitting injection.
1.3 Semi-stable pairs

In this subsection, we let K be a complete discrete valuation field with perfect residue field k of characteristic $p > 0$, X a proper scheme of finite presentation over \mathcal{O}_K, and U an open and dense subscheme of X. We recall the definition of a semi-stable pair (9, Definition 1.6):

Definition 1.2. The pair (X, U) is said to be semi-stable over \mathcal{O}_K of relative dimension d if, étale locally on X, X is étale over $\text{Spec} \, \mathcal{O}_K[T_0, \ldots, T_d]/(T_0 \cdots T_r - \pi)$ and U is the inverse image of $\text{Spec} \, \mathcal{O}_K[T_0, \ldots, T_d, T_0^{-1}, \ldots, T_m^{-1}]/(T_0 \cdots T_r - \pi)$ for some $0 \leq r \leq m \leq d$ and prime π of K.

When (X, X_K) is semi-stable over \mathcal{O}_K, we say that X is semi-stable over \mathcal{O}_K.

If we substitute the condition “étale locally” by “Zariski locally”, the pair (X, U) is then said to be strictly semi-stable.

We shall need the following property of semi-stable pairs, which is a consequence of Theorem 2.9 in 9:

Theorem 1.1. Let (X, U) be a strictly semi-stable pair over \mathcal{O}_K and L be a finite separable extension of K. Then there exists a proper birational morphism $X' \to X_{\mathcal{O}_L}$ inducing an isomorphism $U' \to U_{\mathcal{O}_L}$, where U' is the inverse image of $U_{\mathcal{O}_L}$, and such that (X', U') form a strictly semi-stable pair over \mathcal{O}_L.

2 The action of $G_{K, \text{log}}^{t+}$

In this section, we let K be a complete discrete valuation field of equal characteristic with perfect residue field k of characteristic $p > 0$, ℓ be a prime different than p, and M, N be finite-dimensional representations of G_K over $\overline{\mathbb{Q}}_{\ell}$ which come from finite-dimensional continuous representations of G_K over a finite extension of \mathbb{Q}_ℓ contained in $\overline{\mathbb{Q}}_{\ell}$. We shall provide a criterion for $G_{K, \text{log}}^{t+}$ to act trivially on M.

There is a canonical slope decomposition (see [7], Proposition 1.1, or [4], Lemma 6.4)

$$M = \bigoplus_{r \in \mathbb{Q}_{\geq 0}} M^{(r)}$$

characterized by the following properties: if P is the wild inertia subgroup of G_K, then $M^P = M^{(0)}$. Further, for all $r > 0$,

$$(M^{(r)})^{G_{K, \text{log}}} = 0$$

and

$$(M^{(r)})^{G_{K, \text{log}}^{t+}} = M^{(r)}.$$}

We have $M^{(r)} = 0$ except for finitely many r. The values of r for which $M^{(r)} \neq 0$ are called slopes of M.

Definition 2.1. We say that M is isoclinic if it has only one slope.
The following proposition gives our criterion:

Proposition 2.1. Let t be a nonnegative real number. Assume that, for any totally tamely ramified extension L/K of degree e prime to p, we have the following: if M_L denotes the representation of G_L induced by M, then, for any character $\chi : G_L \to \mathbb{Q}_\ell^\times$ for which $Sw_L(\chi) > et$, we have

$$Sw_L(M_L \otimes \chi) = \text{rk}(M_L)Sw_L(\chi).$$

Then G_K^{t+} acts trivially on M.

The proof will be presented shortly. The general strategy is the following:

- We first show that the behavior of the tensor product of isoclinic M and N is similar to that of the tensor product of characters;
- Next, we use the previous result to understand the slope decomposition of the tensor product $M \otimes \chi$ and prove the proposition.

We start with the lemma:

Lemma 2.1. If M is isoclinic of slope r and N is isoclinic of slope s, where $r > s$, then $M \otimes N$ is isoclinic of slope r.

Proof. We have

$$M_{G_K^{r-}} = 0,$$

$$M_{G_K^{r+}} = M,$$

$$N_{G_K} = 0,$$

and

$$N_{G_K^{s+}} = N.$$

Since $r > s$, $(M \otimes N)_{G_K^{r+}} = M \otimes N$. On the other hand, G_K^r acts trivially on N and $M_{G_K^{r-}} = 0$, so $(M \otimes N)_{G_K^r} = 0$. Hence $M \otimes N$ is isoclinic of slope r. \qed

Proof of Proposition 2.1. We need to show that, if $r > t$, then $M^{(r)} = 0$. Let R be the maximum slope of M. Assume, by contradiction, that $R > t$. Let m, e be positive integers such that:

(i) e is prime to p,

(ii) $\frac{m}{e} < R$,

(iii) $\frac{m}{e}$ is strictly greater than any other slope of M,

(iv) $\frac{m}{e} > t$.

Let L be a totally tamely ramified extension of degree e of K. By [1], Proposition 3.15, $G_{K,\log}^{s} = G_{L,\log}^{s}$ for any $s \in \mathbb{Q}_{\geq 0}$, so the slopes of M_L are of the form er, where r is a slope of M. Take χ with $Sw_L(\chi) = m$. Then, by assumption,

$$Sw_L(M_L \otimes \chi) = \text{rk}(M_L)Sw_L(\chi) = \text{rk}(M_L)m.$$
By Lemma 2.1 for all $r < m$ we have that $M^{(r)}_L \otimes \chi$ is isoclinic of slope m, while $M^{(eR)}_L \otimes \chi$ is isoclinic of slope eR. It follows that

$$Sw_L(M_L \otimes \chi) = \sum_{r \in \mathbb{Q}_{\geq 0}} Sw_L(M^{(r)}_L \otimes \chi) = \sum_{r \in \mathbb{Q}_{\geq 0}, r < m} \text{rk}(M^{(r)}_L)m + \text{rk}(M^{(eR)}_L)eR.$$

Combining the two expressions we get

$$\text{rk}(M^{(eR)}_L)eR = \text{rk}(M^{(eR)}_L)m,$$

which is a contradiction, since, by assumption, $m < eR$ and $M^{(eR)}_L \neq 0$. \hfill \square

3 The Kato-Saito conductor formula

Let K be a complete discrete valuation field with perfect residue field k of characteristic $p > 0$. Let ℓ be a prime number different from p, U be a smooth separated scheme of finite type over K, and \mathcal{F} be a smooth ℓ-adic sheaf of constant rank on U. In [6], Kato and Saito defined the Swan class $Sw_U\mathcal{F}$, a 0-cycle class with coefficients in \mathbb{Q} supported on the special fiber of a compactification of U over \mathcal{O}_K, and proved the conductor formula

$$Sw_KR\Gamma_c(U_{\overline{K}}, \mathcal{F}) = \text{deg} Sw_U\mathcal{F} + \text{rk}(\mathcal{F})Sw_KR\Gamma_c(U_{\overline{K}}, \mathbb{Q}_\ell),$$

where $Sw_KR\Gamma_c(U_{\overline{K}}, \mathcal{F})$ denotes the alternating sum $\sum_j (-1)^j Sw_KH^j_c(U_{\overline{K}}, \mathcal{F})$.

In this section, assume that X is a regular flat separated scheme of finite type over $S = \text{Spec} \mathcal{O}_K$. Let $D \subset X$ be a divisor with simple normal crossings and write $D = \bigcup_{i=1}^n D_i$, where D_i are the irreducible components of D. Put $U = X - D$ and consider a smooth ℓ-adic sheaf \mathcal{F} of rank 1 on U, at most tamely ramified on X_K and with clean ramification with respect to X.

The Swan 0-cycle class $c_\mathcal{F}$ of \mathcal{F} is defined as follows. Let E be the support of the Swan divisor $D_\mathcal{F} = \sum r_i D_i$. Then define $c_\mathcal{F} \in CH_0(E)$ as

$$c_\mathcal{F} = \{c(\Omega^1_{X/S}(\log D) \otimes_{\mathcal{O}_X} \mathcal{O}_E)^* \cap (1 + D_\mathcal{F})^{-1} \cap D_\mathcal{F}\}_{\text{dim } 0}.$$

Under the assumption that $\dim U_K \leq 1$, by Corollary 8.3.8 of [6], the Kato-Saito conductor formula becomes simply

$$Sw_KR\Gamma_c(U_{\overline{K}}, \mathcal{F}) = \text{deg} c_\mathcal{F} + Sw_KR\Gamma_c(U_{\overline{K}}, \mathbb{Q}_\ell).$$

The following proposition is an application of this formula that will be useful in the next section:

Proposition 3.1. Let X, S and $U = X - D$ be as above. Let \mathcal{F}_1 and \mathcal{F}_2 be two smooth ℓ-adic sheaves on U of rank one, \mathcal{F}_2 having clean ramification with respect to X. Write $D_{\mathcal{F}_1} = \sum r_i D_i$ and $D_{\mathcal{F}_2} = \sum s_i D_i$. Assume that $r_i < s_i$ for every i. Then $\mathcal{F}_1 \otimes \mathcal{F}_2$ has clean ramification and

$$c_{\mathcal{F}_1 \otimes \mathcal{F}_2} = c_{\mathcal{F}_2}.$$
Proof. Since \(r_i < s_i \) for every \(i \), we have \(D_{\mathcal{F}_1 \otimes \mathcal{F}_2} = D_{\mathcal{F}_2} \) and the refined Swan conductors of \(\mathcal{F}_1 \otimes \mathcal{F}_2 \) and \(\mathcal{F}_2 \) coincide. Denote by \(E_i \) the support of \(D_{\mathcal{F}_i} \) and by \(E \) be the support of \(D_{\mathcal{F}_1 \otimes \mathcal{F}_2} \). We have \(E = E_2 \), so

\[
c_{\mathcal{F}_1 \otimes \mathcal{F}_2} = \{ c(\Omega^1_{X/S}(\log D) \otimes O_X \otimes E)^* \cap (1 + D_{\mathcal{F}_1 \otimes \mathcal{F}_2})^{-1} \cap D_{\mathcal{F}_1 \otimes \mathcal{F}_2} \}_\dim 0
\]

\[
= c(\Omega^1_{X/S}(\log D) \otimes O_{E_2})^* \cap (1 + D_{\mathcal{F}_2})^{-1} \cap D_{\mathcal{F}_2}
\]

\[= c_{\mathcal{F}_2}. \]

\[\square\]

4 Main results

In this section, we let \(K \) be a complete discrete valuation field with perfect residue field \(k \) of characteristic \(p > 0 \) and of equal characteristic, \(S = \text{Spec} \mathcal{O}_K \), and \(s = \text{Spec} k \). We will denote by \(X \) a proper, connected scheme of finite presentation over \(\mathcal{O}_K \), and \(U \) an open and dense subscheme of \(X \). We assume that \(D = X - U \) is a divisor with simple normal crossings and write \(\bigcup_{i=1}^n D_i \), where \(D_i \) are the irreducible components. We also assume that the pair \((X, U)\) is strictly semi-stable over \(\mathcal{O}_K \) of relative dimension 1, and that \(G \) is a smooth \(\ell \)-adic sheaf on \(U \), where \(\ell \) is a prime number different from \(p \). Further, we assume that \(G \) is of rank 1 and at most tamely ramified on the generic fiber \(X_K \). Denote by \(\xi_i \) the generic point of \(D_i \), \(O_{M_i} = O_{X,\xi_i} \) the henselization of the local ring at \(\xi_i \), \(M_i \) its field of fractions, \(k_i \) the residue field of \(M_i \), and \(\eta_i = \text{Spec} M_i \).

We shall prove the following theorem:

Theorem 4.1. Conjecture 1 is true when \(G \) is of rank 1, the relative dimension is 1, and \(K \) is of equal characteristic.

Remark 2. When the relative dimension is greater than 1, one should still be able to prove Conjecture 1 using the same methods used in this paper, as long as it is true that

\[
\text{Sw}_K R\Gamma_c(U_{\overline{\mathcal{F}}}, \mathcal{F}) = \deg c_{\mathcal{F}} + \text{Sw}_K R\Gamma_c(U_{\overline{\mathcal{F}}}, \mathbb{Q}_\ell)
\]

for smooth \(\ell \)-adic sheaves \(\mathcal{F} \) of rank 1 on \(U \), at most tamely ramified with clean ramification with respect to \(X \).

The proof is divided in two cases. First observe that, since the total constant field of \(X_K \) is a finite unramified extension of \(K \), we may assume that \(K \) is the total constant field of \(X_K \). Then there is an exact sequence of fundamental groups

\[
1 \longrightarrow \pi_1(U_{\overline{\mathcal{F}}}) \longrightarrow \pi_1(U) \longrightarrow G_K \longrightarrow 1.
\]

Let \(M \) be the function field of \(X \) and \(\eta = \text{Spec} M \). We first consider the case in which the action of \(\pi_1(U_{\overline{\mathcal{F}}}) \) is trivial on \(\mathcal{F}_\eta \), and then the case in which it is non-trivial.

To prove the first case, we shall need the following lemma:

Lemma 4.1. In addition to the assumptions of Theorem 4.1, assume that \(\mathcal{F}_\eta \) is the pullback of some \(\ell \)-adic representation \(\mathcal{H} \) of \(G_K \). If \(G_{M_i, \log}^{+} \) acts trivially on \(\mathcal{F}_\eta \), then \(G_{K}^{+} \) acts trivially on \(\mathcal{H} \).
We shall now prove Theorem 4.1 for the case in which we have that Lemma 4.1, the result follows.

By Lemma 2.1, and the fact that $H^i_c(U^\mathcal{R}, \mathcal{G})$ is at most tamely ramified ([8, Corollary 2]), we have that the slope decomposition of $H^i_c(U^\mathcal{R}, \mathcal{G})$ coincides with that of \mathcal{H}, in the following sense:

$$(H^i_c(U^\mathcal{R}, \mathcal{G}))^{(r)} = H^i_c(U^\mathcal{R}, \mathcal{Q}_L) \otimes \mathcal{H}^{(r)}.$$

It follows that $G_{K, \log}^i$ acts trivially on $H^i_c(U^\mathcal{R}, \mathcal{G})$ if and only if it acts trivially on \mathcal{H}. By Lemma 4.1, the result follows.

We shall now prove Theorem 4.1 for the case in which $\pi_1(U^\mathcal{R})$ does not act trivially on \mathcal{G}. The core of strategy is the following: using the Kato-Saito conductor formula and the fact that $H^0(U^\mathcal{R}, \mathcal{G}) = H^0_c(U^\mathcal{R}, \mathcal{G}) = 0$, we show that $H^i_c(U^\mathcal{R}, \mathcal{G})$ satisfies the hypotheses of Proposition 2.1.

Lemma 4.2. Keep the assumptions of Theorem 4.1. Let e be a natural number prime to p and L be a totally tamely ramified extension of K of degree e. If $\chi : G_L \to \overline{\mathbb{Q}}_p^\times$ is a character such that $\text{Sw}_L(\chi) > et$, then

$$\text{Sw}_L(R\Gamma_c(U^\mathcal{R}, \mathcal{G}) \otimes \chi) = \text{rk}(R\Gamma_c(U^\mathcal{R}, \mathcal{G}))\text{Sw}_L(\chi).$$

Proof. First consider the following. By Theorem 4.1, there exists a proper birational morphism $X' \to X_{O_L}$ inducing an isomorphism $U' \to U_{O_L}$, where U' is the inverse image of U_{O_L} and such that (X', U') is strictly semi-stable over O_L.

Let $D' = X' - U'$ and write $D' = \bigcup_{i=1}^{n'} D'_i$, where D'_i are the irreducible components of D'. For each $1 \leq i \leq n'$ let ξ'_i be the generic point of D'_i, $O_{M'_i} = O_{X', \xi'_i}$ the henselization of the local ring at ξ'_i, M'_i its field of fractions, and $\eta'_i = \text{Spec } M'_i$.

There is a composition of blowups of closed points $\tilde{X} \to X$ and a point $\tilde{\xi}_i$ such that $O_{\tilde{X}, \tilde{\xi}_i} = O_{X', \xi'_i} \cap M$. Let \tilde{M}_i be the field of fractions of $O_{\tilde{X}, \tilde{\xi}_i}^h$. Put $\tilde{\eta}_i = \text{Spec } \tilde{M}_i$. Denote by e'_i and \tilde{e}_i the ramification indices of M'_i / \tilde{M}_i and \tilde{M}_i / K, respectively. We have $e = e'_i \tilde{e}_i$.

By [5], Theorem 8.1, and the fact that $G_{M'_i, \log}^i$ acts trivially on $\mathcal{G}_{\tilde{m}}$ for every $1 \leq i \leq n$, we have that $G_{M'_i, \log}^i$ acts trivially on $\mathcal{G}_{\tilde{m}}$ for every $1 \leq i \leq n'$. Further, since we have $G_{\tilde{M}_i, \log}^{e'_i \tilde{e}_i t} \subseteq G_{M'_i, \log}^{e'_i \tilde{e}_i t}$, we get that $G_{\tilde{M}_i, \log}^{e'_i \tilde{e}_i t}$ acts trivially on $\mathcal{G}_{\tilde{m}}$ for all $1 \leq i \leq n'$. Thus it is enough to prove that

$$\text{Sw}_K(R\Gamma_c(U^\mathcal{R}, \mathcal{G}) \otimes \chi) = \text{rk}(R\Gamma_c(U^\mathcal{R}, \mathcal{G}))\text{Sw}_K(\chi)$$

for $\chi : G_K \to \overline{\mathbb{Q}}_p^\times$ such that $\text{Sw}_K(\chi) > t$.

8
Put \(r = \text{Sw}_K(\chi) \) and denote by \(\tilde{\chi} \) the pullback of \(\chi \) to \(U \). \(\tilde{\chi} \) has clean ramification because the following diagram

\[
\begin{array}{ccc}
\mathfrak{m}_K^r / \mathfrak{m}_K^{r+1} & \xrightarrow{\text{rsw}_K} & \Omega_k(\log) \\
\downarrow & & \downarrow \\
\mathfrak{m}_M^r / \mathfrak{m}_M^{r+1} & \xrightarrow{\text{rsw}_M} & \Omega_{k_i}(\log)
\end{array}
\]

is commutative. Indeed, since \(\chi \) is clean and \(\Omega_k(\log) \twoheadrightarrow \Omega_{k_i}(\log) \) is a splitting injection, \(\text{rsw} \tilde{\chi} \) is a locally splitting injection. Further, by Lemma 3.1, \(\text{Sw}_M(\tilde{\chi}) > t \) for every \(i \). From the Kato-Saito conductor formula, Proposition 3.1, and the fact that \((X, U)\) is semi-stable over \(\mathcal{O}_K \), we have that \(\mathcal{G} \otimes \tilde{\chi} \) is clean and \(\text{Sw}_K R\Gamma_c(U_K, \mathcal{G} \otimes \tilde{\chi}) = \text{deg} \ c_{\mathcal{G} \otimes \tilde{\chi}} = \text{deg} \ c_{\tilde{\chi}}. \)

Again by the Kato-Saito conductor formula,

\[
\text{Sw}_K R\Gamma_c(U_K, \tilde{\chi}) = \text{deg} \ c_{\tilde{\chi}}.
\]

Therefore, we have

\[
\text{Sw}_K R\Gamma_c(U_K, \mathcal{G} \otimes \tilde{\chi}) = \text{Sw}_K R\Gamma_c(U_K, \tilde{\chi}) = \text{Sw}_K R\Gamma_c(U_K, \mathcal{G} \otimes \chi).
\]

Since

\[
\text{Sw}_K R\Gamma_c(U_K, \mathcal{G} \otimes \tilde{\chi}) = \text{Sw}_K R\Gamma_c(U_K, \mathcal{G} \otimes \chi)
\]

and

\[
\text{Sw}_K (R\Gamma_c(U_K, \mathcal{G}) \otimes \chi) = \text{rk} (R\Gamma_c(U_K, \mathcal{G})) \text{Sw}_K(\chi) = \text{rk} (R\Gamma_c(U_K, \mathcal{G})) \text{Sw}_K(\chi),
\]

we conclude that

\[
\text{Sw}_K (R\Gamma_c(U_K, \mathcal{G}) \otimes \chi) = \text{rk} (R\Gamma_c(U_K, \mathcal{G})) \text{Sw}_K(\chi).
\]

Lemma 4.3. Let the assumptions be the same as in Lemma 4.2 and assume further that \(\pi_1(U_K) \) does not act trivially on \(\mathcal{G} \). Then

\[
H^j_c(U_K, \mathcal{G}) = 0
\]

for every \(j \neq 1 \).

Proof. By Poincaré duality and the fact that \(X \) is of dimension 2, it’s enough to show that \(H^0(U_T, \mathcal{G}) = 0 \). Since \(\pi_1(U_K) \) does not act trivially on \(\mathcal{G}_h \) and \(\text{rk}(\mathcal{G}) = 1 \), we get that \(H^0(U_T, \mathcal{G}) = \mathcal{G}_h^{\pi_1(U_K)} = 0 \).

Proof of Theorem 4.1. The theorem has already been proved in Proposition 4.1 for \(\mathcal{G} \) such that \(\pi_1(U_K) \) acts trivially on it, so we assume that \(\pi_1(U_K) \) does not act trivially. By Lemma 4.3, it’s enough to prove that \(\mathcal{G}_h^{\pi_1(U_K, \log)} \) acts trivially on \(H^1_c(U_K, \mathcal{G}) \).
From Lemmas 4.2 and 4.3 it follows that

$$\text{Sw}_L(H^1_c(U_{\mathcal{T}}, \mathcal{G}) \otimes \chi) = \text{rk}(H^1_c(U_{\mathcal{T}}, \mathcal{G})) \text{Sw}_L(\chi)$$

for any totally tamely ramified extension L of K of degree e prime to p and arbitrary character $\chi : G_L \to \overline{\mathbb{Q}}_\ell^\times$ satisfying $\text{Sw}_L(\chi) > et$.

From Proposition 2.1, we have that $G_{K, \log}^{t+}$ acts trivially on $H^1_c(U_{\mathcal{K}}, \mathcal{G})$. Hence $G_{K, \log}^{t+}$ acts trivially on $H^j_c(U_{\mathcal{K}}, \mathcal{G})$ for every j.

\[\square \]

Acknowledgement. My sincere gratitude to my advisor, Professor Kazuya Kato, who kindly provided me with his invaluable advice, guidance and feedback throughout the elaboration of this paper.

I would also like to thank the anonymous referee for the important comments and suggestions that helped improve this work.

References

[1] Ahmed Abbes and Takeshi Saito. Ramification of local fields with imperfect residue fields. *American Journal of Mathematics*, 124(5):879–920, 2002.

[2] Ahmed Abbes and Takeshi Saito. Ramification of local fields with imperfect residue fields II. *Documenta Mathematica*, Extra Volume:5–72, 2003.

[3] Ahmed Abbes and Takeshi Saito. Analyse micro-locale ℓ-adique en caractéristique $p > 0$: le cas d’un trait. *Publications of the Research Institute for Mathematical Sciences*, 45(1):25–74, 2009.

[4] Ahmed Abbes and Takeshi Saito. Ramification and cleanliness. *Tohoku Math. J. (2)*, 63(4):775–853, 2011.

[5] Kazuya Kato. Swan conductors for characters of degree one in the imperfect residue field case. *Contemp. Math*, 83:101–131, 1989.

[6] Kazuya Kato and Takeshi Saito. Ramification theory for varieties over a local field. *Publications mathématiques de l’IHÉS*, 117(1):1–178, 2013.

[7] Nicholas M Katz. *Gauss sums, Kloosterman sums, and monodromy groups*. Princeton University Press, 1988.

[8] Takeshi Saito. ϵ-factor of a tamely ramified sheaf on a variety. *Invent. Math.*, 113(1):389–417, 1993.

[9] Takeshi Saito. Log smooth extension of a family of curves and semi-stable reduction. *Journal of Algebraic Geometry*, 13(2):287–321, 2004.