Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

Rainee N. Simons and Félix A. Miranda
Glenn Research Center, Cleveland, Ohio
NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission. Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 301–621–0134
- Telephone the NASA STI Help Desk at 301–621–0390
- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

Rainee N. Simons and Félix A. Miranda
Glenn Research Center, Cleveland, Ohio

Prepared for the
2006 Joint International Symposium
sponsored by IEEE AP-S, USNC/URSI, and AMEREM
Albuquerque, New Mexico, July 9–14, 2006
This report contains preliminary findings, subject to revision as analysis proceeds.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076–1320

Available electronically at http://gltrs.grc.nasa.gov

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Modeling of the Near Field Coupling Between an External Loop and An Implantable Spiral Chip Antennas in Biosensor Systems

Rainee N. Simons and Félix A. Miranda
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1×1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.

Introduction

In human space exploration programs there are several situations such as extravehicular activity, launch and de-orbit, and exercise in microgravity that require noninvasive monitoring of the physiological parameters (ref. 1). The sensors used in monitoring these parameters have to be small, light weight, wearable and inductively powered. In addition, the data from these sensors have to be wirelessly transmitted and recorded. As an example, the progress to date by our group in the development of an implantable biosensor system for monitoring pressure is presented in (refs. 2 and 3). In this paper, the near field coupling characteristics between the loop antenna in the external hand-held device and the square spiral antenna in the implanted sensor are presented. These characteristics include the quasi-stationary or the near zone magnetic fields of the implanted antenna and the wave impedance as a function of the outward radial distance. In addition, when the loop is placed in close proximity to the spiral, the two antennas are inductively coupled and effectively form a transformer. Therefore a lumped element equivalent circuit model for the transformer is also presented. Several researchers in the past (refs. 4 to 8) have demonstrated inductive powering and data communications in implantable biosensors. Tables I and II summarize the inductor geometries and their coupling characteristics, respectively. However, the unique aspects of our approach are as follows: first, in our scheme the spiral antenna and the pressure sensor are monolithically integrated on opposite sides of a single silicon wafer. Thus the antenna, the sensor, and the control electronics can be mass-produced using commercial CMOS foundry process. Second, the dimensions of our antenna (1x1 mm) are significantly smaller than those in table I which results in a very compact design for the sensor unit.

| TABLE I.—INDUCTORS USED IN HAND-HELD DEVICES AND IMPLANTED SENSORS |
|-----------------|-----------------|-----------------|-----------------|
| External reader (transmitter) | Implant sensor (receiver) | Reference |
| Shape | Diameter (mm) | Self ind., (μH) | Shape | Diameter (mm) | Self ind., (μH) |
| Single turn loop | 50 | 0.15 | Single turn loop | 50 | 0.15 | Huang and Oberle (ref. 4) |
| Circular coil | 90 | 26 | Circular coil | 20 | 25 | Hamici et al. (ref. 5) |
| Circular coil | 10 | 55 | Circular coil | 4.7 | 65 | Akin et al. (ref. 6) |
| Morphognostic coil | 48 | 3.0 | Morphognostic coil | 48 | 3.0 | Donaldson and Perkins (ref. 7) |
| Unknown | Unknown | 14.2 | Printed square spiral | 4.5 | 21.6 | Neagu et al. (ref. 8) |

| TABLE II.—MEASURED COUPLING CHARACTERISTICS OF THE INDUCTORS IN TABLE I |
|-----------------|-----------------|-----------------|-----------------|
| Link dist., (mm) | Coupling coeff. | Mutual ind., (μH) | Received power or induced voltage |
| 90 | Unknown | Unknown | 2 mW | 27 |
| 20 to 40 | 0.014 to 0.027 | Unknown | 80 V | 2 |
| 5 | 0.082 | 4.9 | 20 V peak | 1 |
| 15 to 35 | 0.009 to 0.07 | Unknown | 20 V | 7.8 |
| 1 | 0.036 | 0.6 | 2.2 mW | 3 |
Near Field Characteristics of Implantable Square Spiral Chip Antenna

The inductive powering and telemetry principle in a biosensor system is schematically illustrated in figure 1. For the purpose of analysis, the implantable spiral chip antenna is approximated by a single turn wire loop of radius a, with constant current distribution I0, and circumference less than one-tenth of a wavelength as shown in figure 2. The magnetic and electric field components for a small circular loop in the near field region \((kr << 1)\), where \(r\) is the radial outward distance, are expressed as (ref. 9)

\[
\begin{align*}
H_r &= A\cos \theta, \\
H_\theta &= \frac{A}{2}\sin \theta, \\
H_\phi &= 0, \\
E_\theta &= -j\eta\frac{Akr}{2}\sin \theta, \\
E_\phi &= E_r = 0,
\end{align*}
\]

Where \(A = a^2I_0e^{-jkr}/2r^3\), \(k = 2\pi/\lambda\), \(\lambda\) is the free space wavelength and \(\eta = 120\pi\).

The computed magnitude of \(H_r, H_\theta\) and \(H_{sum} = (H_r + H_\theta)\) as a function of the angle \(\theta\) in the near field region is presented in figure 3. From this figure it is evident that in the near field region, the total magnetic field intensity is fairly uniform in all directions. Furthermore, the computed wave impedance \(Z_w\), is expressed as

\[
Z_w = \frac{(-E_\phi)/H_\theta}{2j\eta kr}
\]

In figure 4 computed \(Z_w\) is presented a function of the normalized radial outward distance \(r\). This figure shows that in the near field region \(Z_w\) linearly increases from a few ohms to few hundred ohms as long as \(kr < 1\). In addition, \(Z_w\) is independent of the loop radius \(a\), and wire radius \(b\). In view of the above, the implanted antenna and the antenna in the hand held device are inductively coupled in the near field region and effectively form a transformer. \(Z_w = 377\ \Omega\) when \(kr = 1\) or \(r/\lambda = 1/2\pi\) and \(Z_w\) remains constant at \(377\ \Omega\) for \(kr > 1\) or in the far field region.

Lumped Element Equivalent Circuit Model for the Transformer

The lumped element equivalent circuit model for the transformer is shown in figure 5. In this figure, the primary and secondary sides of the transformer represent the loop antenna in the hand held device and the miniature spiral implantable antenna, respectively. The circuit elements \(L_p\) and \(L_S\) are the self-inductances and \(R_p\) and \(R_S\) are the loss resistances of the two antennas, respectively. The mutual inductance is denoted as \(M\) and is expressed as

\[
M = k_c\sqrt{L_pL_S},
\]

where \(k_c\) is the coupling coefficient. The capacitance \(C_p\) is part of the input impedance matching circuit. The capacitance \(C_T\) represents the parasitic capacitance of the spiral and the tuning capacitance such as, the capacitance of the pressure sensor. As an example, for the spiral and the loop reported in prior publications by the authors (refs. 2 and 3), the computed circuit element values using expressions in (refs. 9 to 11) are presented in figure 5. The mutual coupling \(M\) is determined as explained in (ref. 10).

Conclusions

The near field coupling between an external hand-held loop antenna and an implantable printed square spiral chip antenna for bio-MEMS sensors applications is analytically investigated. The computed results show that the total magnetic field in the vicinity of the implanted antenna is fairly uniform in all directions and the wave impedance increases linearly with distance. Hence in the near field region, the spiral and the loop are inductively coupled and effectively form a transformer for which a lumped element equivalent circuit model and element values are presented.

References

1. C.W. Mundt, et al., “A Multiparameter Wearable Physiologic Monitoring System for Space and Terrestrial Applications,” IEEE Trans. Info. Technology in Biomedicine, vol. 9, no. 3, pp. 382–391, Sept. 2005.
2. R.N. Simons, D.G. Hall, and F.A. Miranda, “RF Telemetry System for an Implantable Bio-MEMS Sensor,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1433–1436, Fort Worth, TX, June 6–11, 2004.
3. R.N. Simons, D.G. Hall, and F.A. Miranda, “Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems,” Proc. 2004 IEEE Radio and Wireless Conf., pp. 203–206, Atlanta, GA, Sept. 19–22, 2004.
4. Q. Huang and M. Oberle, “A 0.5-mW Passive Telemetry IC for Biomedical Applications,” IEEE Jour. Solid-State Circuits, vol. 33, no. 7, pp. 937–945, July 1998.
5. Z. Hamici, R. Itti, and J. Champier, “A High-Efficiency Power and Data Transmission System for Biomedical Implanted Electronic Devices,” Measurement Science and Technology, vol. 7, no. 2, pp. 192–201, Feb. 1996.
6. T. Akin, et al., “A Wireless Implantable Multichannel Digital Neural Recording System for a Micromachined Sieve Electrode,” IEEE Jour. Solid-State Circuits, vol. 33, no. 1, pp. 109–118, Jan. 1998.
7. N. de N. Donaldson and T.A. Perkins, “Analysis of Resonant Coupled Coils in the Design of Radio Frequency Transcutaneous Links,” Medical and Biological Engineering and Computing, vol. 21, no. 5, pp. 612–627, Sept. 1983.

8. C.R. Neagu, et al., “Characterization of a Planar Microcoil for Implantable Microsystems,” Sensors and Actuators A, vol. A62, no. 1–3, pp. 599–611, July 1997.

9. C.A. Balanis, Antenna Theory Analysis and Design, 2nd ed., New York, NY: John Wiley and Sons, 1997, Sec. 5.2.1 and 5.2.4, Eq. (5-24), Ex. 5.2, and Eq. (5-37a).

10. S. Ramo, J.R. Whinnery and T.V. Duzer, Fields and Waves in Communication Electronics, 3rd ed., New York, NY: John Wiley and Sons, 1994, Sec. 4.7 and Ex. 4.7a.

11. M.D.M. Hershenson, S.S. Mohan, S.P. Boyd, and T.H. Lee, “Optimization of Inductor Circuits via Geometric Programming,” Proc. 36th Design Automation Conf., pp. 994–998, New Orleans, LA, June 21–25, 1999.
Figure 3.—Computed elevation plane amplitude of quasi-stationary (near field) magnetic field components H_r (●●●), H_0 (▲▲▲), and H_{sum} (♦♦♦) = ($H_r + H_0$) as a function of the angle θ for a small loop located in the x-y Plane. $a = 1$ mm, frequency = 403 MHz, $r = 10$ cm, and $I_0 = 1$ mA. The magnitude scale is 0.1/division.

Figure 4.—Computed near field wave impedance of the idealized loop antenna versus normalized outward radial distance at 403 MHz.

Figure 5.—The inductively coupled loop and spiral are modeled as an equivalent transformer circuit, $L_S = 117.6$ nH, $C_S = 100$ fF, $R_S = 56$ Ω, $R_P = 3.45$ Ω, $L_P = 0.43$ μH, $M = 6.5$ nH when the two antennas are 5 cm apart.
Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

Rainee N. Simons and Félix A. Miranda

In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.
