Average estimate for additive energy in prime field.

Glibichuk Alexey*

Abstract
Assume that $A \subseteq \mathbb{F}_p$, $B \subseteq \mathbb{F}_p^*$, $\frac{1}{4} \leq \frac{|B|}{|A|}$, $|A| = p^\alpha$, $|B| = p^\beta$. We will prove that for $p \geq p_0(\beta)$ one has

$$\sum_{b \in B} E_+(A, bA) \leq 15p^{-\min(\beta, 1-\alpha)}|A|^3|B|.$$

Here $E_+(A, bA)$ is an additive energy between subset A and its multiplicative shift bA. This improves previously known estimates of this type.

1 Introduction.

Let X be a non-empty set endowed with a binary operation $*: X \times X \to X$. Then one can define the operation $*$ on pairs of subsets $A, B \subseteq X$ by the formula $A*B = \{a*b : a \in A, b \in B\}$. In particular, if A and B are subsets of a ring, we have two such operations: addition $A+B := \{a+b : a \in A, b \in B\}$ and multiplication $AB = A \times B := \{ab : a \in A, b \in B\}$. For given element b we define operation $b*A = b \times A$. The sign $*$ may be omitted when there is no danger of confusion. We write $|A|$ for the cardinality of A. We take the ring to be the field \mathbb{F}_p of p elements, where p is an arbitrary prime. All sets are assumed to be subsets of \mathbb{F}_p. Given any set $Y \subset \mathbb{F}_p$, we write $Y^* := Y \setminus \{0\}$ for the set of invertible elements of Y. We shall always assume that p is a prime. Given any real number y, we write $[y]$ for its integer part (the largest

*Technion, Israel Institute of Technology, Haifa, Israel.
E-mail:glibichu@tx.technion.ac.il.
integer not exceeding y), and denote the fractional part of y by $\{y\}$. We also define the operation $h + A = \{h\} + A$ which adds an arbitrary element $h \in \mathbb{F}_p$ to the set A.

Definition 1. For subsets $A, B \subset \mathbb{F}_p$ we denote

$$E_+(A, B) = |\{(a_1, a_2, b_1, b_2) \in A \times A \times B \times B : a_1 - a_2 = b_1 - b_2\}|,$$

$$E_\times(A, B) = |\{(a_1, a_2, b_1, b_2) \in A \times A \times B \times B : a_1a_2 = b_1b_2\}|.$$

Numbers $E_+(A, B)$ and $E_\times(A, B)$ are said to be an additive energy and a multiplicative energy of sets A and B respectively.

In the paper [1] J. Bourgain proved the following result.

Theorem 1. Assume $A \subset \mathbb{F}_p$, $B \subset \mathbb{F}_p$ and $|A| = p^\alpha$, $|B| = p^\beta$ with $\alpha \geq \beta$. Then

$$\sum_{b \in B} E_+(A, bA) < C_1 p^{c_2 \gamma} |A|^3 |B|$$

where $\gamma = \min(\beta, 1 - \alpha)$ and C_1, c_2 are absolute constants (independent on α, β).

In the same paper J. Bourgain deduces from Theorem 1 sum-product estimate for two different subsets. Further, J. Bourgain and author [2] of this paper extended Theorem 1 to the case of an arbitrary finite field. More precisely, we proved the following result.

Theorem 2. Take arbitrary subsets A, B of a finite field \mathbb{F}_q with $q = p^r$ elements, such that $|A| = q^\alpha$, $|B| = q^\beta$, $\alpha \geq \beta$ and an arbitrary $0 < \eta \leq 1$. Suppose further that for every nontrivial subfield $S \subset \mathbb{F}_q$ and every element $d \in F_q$ the set B satisfies the restriction

$$|B \cap dS| \leq 4|B|^{1-\eta}.$$

Then

$$\sum_{b \in B} E_+(A, bA) \leq 13q^{-\frac{\gamma}{10430}} |A|^3 |B|$$

where $\gamma = \min \left(\beta, \frac{5215}{4} \beta \eta, 1 - \alpha\right)$.

2
In this paper we also deduced from the Theorem 2 a new character sum estimate over a small multiplicative subgroup. J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin and D. Kutzarova [3] applied Theorem 2 to one of the problems of sparse signal recovery and several others branches of coding theory. Also, M. Rudnev and H. Helfgott [4] used method, proposed in the proof of the Theorem 1 to obtain an new explicit point-line incidence result in \mathbb{F}_p. These examples demonstrate that estimates like Theorems 1 and 2 have wide range of applications.

In the current paper a slightly modified version of the method from paper [4] will be used to obtain an improvement of the Theorem 2 in the case of prime field \mathbb{F}_p. We will establish the following theorem.

Theorem 3. Assume that $A \subseteq \mathbb{F}_p, B \subseteq \mathbb{F}_p^*, \frac{1}{4} \leq \frac{|B|}{|A|}, |A| = p^\alpha, |B| = p^\beta$. Then for $p \geq p_0(\beta)$

$$\sum_{b \in B} E_+(A, bA) \leq 15p^{-\frac{\min(\beta, 1-\alpha)}{308}} |A|^{3}|B|.$$

Ideas of M. Rudnev and H. Helfgott in context of this problem working only when $|B| \geq K|A|$ for some absolute constant K. Case when $|A|$ is small comparatively to $|B|$ was analyzed by another method. This method is elementary in some extent and gives the following estimate.

Theorem 4. Assume that $A \subseteq \mathbb{F}_p, B \subseteq \mathbb{F}_p^*, |A| = p^\alpha, |B| = p^\beta$. Then for $p \geq p_0(\alpha, \beta)$ we have

$$\sum_{b \in B} E_+(A, bA) \leq Cp^{-\frac{\min(\beta, 1-\alpha)}{2240}} |A|^{3}|B|,$$

where $C > 0$ is an absolute constant.

As we see, Theorem 4 gives worse estimate than Theorem 3 but it still better than one delivered by the Theorem 2.

In section 2 we stating preliminary results which will be used in proofs of Theorems 3 and 4. Theorem 3 is proved in the Section 3. Theorem 4 is proved in the Section 4.

Acknowledgements. The author thank professor S. Konyagin and M. Rudnev for useful discussions helped me to improve the final result.
2 Preliminary results.

All the subsets in the Lemmas below are assumed to be non-empty. The first two lemmas is due to Ruzsa \([5, 6]\). It holds for subsets of any abelian group, but here we state them only for the subsets of \(\mathbb{F}_p\).

Lemma 1. For any subsets \(X, Y, Z\) of \(\mathbb{F}_p\) we have
\[
|X - Z| \leq \frac{|X - Y||Y - Z|}{|Y|}.
\]

Lemma 2. Let \(Y, X_1, X_2, \ldots, X_k\) be sets of \(\mathbb{F}_p\). Then
\[
|X_1 + X_2 + \ldots + X_k| \leq \frac{\prod_{i=1}^k |Y + X_i|}{|Y|^{k-1}}.
\]

Definition 2. For any nonempty subsets \(A \subset \mathbb{F}_p, B \subset \mathbb{F}_p, G \subset A \times B\), we define their partial sum
\[
|A_G^+ B| = \{a + b : (a, b) \in G\}.
\]

Let us recall the modification of Balog-Szemer edi-Gowers result (see the paper of J. Bourgain and M. Garaev \([7]\), Lemma 2.3).

Proposition 1. Let \(A\) and \(B\) be subsets of \(\mathbb{F}_p\) and \(G \subset A \times B\) be such that \(|G| \geq \frac{|A||B|}{K}\) for some \(K > 0\). Then there exist subsets \(A' \subset A, B' \subset B\) and a number \(Q\), with
\[
|A'| \geq \frac{|A|}{4\sqrt{2}K}, \quad \frac{|A|}{8\sqrt{2}K^2 \ln(e|A|)} \leq Q \leq 2|A'|, \quad |B'| \geq \frac{|A||B|}{8\sqrt{2}K^2 \ln(e|A|)}
\]
such that
\[
|A_G^+ B|^3 \geq |A'| + B'| \frac{Q|B|}{256K^3 \ln(e|A|)}.
\]

We shall use the following result from the book of T. Tao and V. Vu \([8]\) (Lemma 2.30, p. 80).

Lemma 3. If \(E_+(A, B) > \frac{1}{K}|A|^{\frac{3}{2}}|B|^{\frac{3}{2}}, K \geq 1\), then there is \(G \subset A \times B\) satisfying
\[
|G| > \frac{1}{2K}|A||B| \quad \text{and} \quad |A_G^+ B| < 2K|A|^{\frac{1}{2}}|B|^{\frac{1}{2}}.
\]
This lemma represents a known technical approach for estimating sum-product sets, see, for example [9, 10].

Lemma 4. For any given subsets $X, Y \subseteq \mathbb{F}_p, G \subset \mathbb{F}_p^*$ there is an element $\xi \in G$ with

$$|X + \xi Y| \geq \frac{|X||Y||G|}{|X||Y| + |G|}.$$

Moreover, the following inequality holds

$$|X + \xi Y| > \frac{|X|^2|Y|^2}{E_+(X, \xi Y)}.$$

Proof. Let us take an arbitrary element $\xi \in G$ and $s \in \mathbb{F}_p$ and denote

$$f_\xi^+(s) := |\{(x, y) \in X \times Y : x + y\xi = s\}|.$$

It is obvious that

$$\sum_{s \in \mathbb{F}_p} (f_\xi^+(s))^2 = |\{(x_1, y_1, x_2, y_2) \in X \times X \times Y \times Y : x_1 + y_1\xi = x_2 + y_2\xi\}|$$

$$= |X||Y| + |\{(x_1, y_1, x_2, y_2) \in X \times X \times Y \times Y : x_1 \neq x_2, x_1 + y_1\xi = x_2 + y_2\xi\}|$$

and

$$\sum_{s \in \mathbb{F}_p} f_\xi^+(s) = |X||Y|. \quad (1)$$

Let us observe that for every $x_1, x_2 \in X, y_1, y_2 \in Y$ such that $x_1 \neq x_2$, there is at most one $\eta \in G$ satisfying the equality $x_1 + y_1\eta = x_2 + y_2\eta$. Therefore,

$$\sum_{\xi \in G} \sum_{s \in \mathbb{F}_p} (f_\xi^+(s))^2 \leq |X||Y||G| + |X|^2|Y|^2.$$

From the last inequality it directly follows that there is an element $\xi \in G$ such that

$$\sum_{s \in \mathbb{F}_p} (f_\xi^+(s))^2 \leq |X||Y| + \frac{|X|^2|Y|^2}{|G|}. \quad (2)$$

According to Cauchy-Schwartz,

$$\left(\sum_{s \in \mathbb{F}_p} f_\xi^+(s)\right)^2 \leq |X + \xi Y| \sum_{s \in \mathbb{F}_p} (f_\xi^+(s))^2. \quad (3)$$
Observing that
\[
\sum_{s \in \mathbb{F}_p} (f_\xi^+(s))^2 = E_+(X, \xi Y)
\]
one can yield the second assertion of Lemma 4.

Combining inequalities (1), (2) and (3) we see that
\[
|X + \xi Y| \geq \frac{|X|^2|Y|^2}{|X||Y| + \frac{|X|^2|Y|^2}{|G|}} = \frac{|X||Y||G|}{|X||Y| + |G|}.
\]

Lemma 4 now follows. ■

Definition 3. For any given subsets \(X, Y \subset \mathbb{F}_p\), \(|Y| > 1\) we denote
\[
Q[X, Y] = \left\{ \frac{x_1 - x_2}{y_1 - y_2} : x_1, x_2 \in X, y_1, y_2 \in Y, y_1 \neq y_2 \right\}.
\]

If \(X = Y\) then \(Q[X, X] = Q[X]\).

Lemma 4 is a simple extension of Lemma 2.50 from the book by T. Tao and V. Vu. [8]

Lemma 5. Consider two arbitrary subsets \(X, Y \subset \mathbb{F}_p, |Y| > 1\). The given element \(\xi \in \mathbb{F}_p\) is contained in \(Q[X, Y]\) if and only if \(|X + \xi \ast Y| < |X||Y|\).

Proof. Let us consider a mapping \(F : X \times Y \to X + \xi \ast Y\) defined by the identity \(F(x, y) = x + \xi y\). \(F\) can be non-injective only when \(|X + \xi \ast Y| < |X||Y|\). On the other side, the non-injectivity of \(F\) means that there are elements \(x_1, x_2 \in X, y_1, y_2 \in Y\) such that \((x_1, y_1) \neq (x_2, y_2)\) and \(F(x_1, y_1) = F(x_2, y_2)\). It is obvious that \(y_1 \neq y_2\) since otherwise \(x_1 = x_2\) and we have achieved a contradiction with condition \((x_1, y_1) \neq (x_2, y_2)\). Hence, \(\xi = (x_1 - x_2)/(y_2 - y_1) \in Q[X, Y]\). Lemma 4 now follows. ■

We need the following Lemma due to C.-Y. Shen. [11]

Lemma 6. Let \(X_1\) and \(X_2\) be two sets. Then for any \(\varepsilon \in (0, 1)\) there exist at most \(\frac{\ln \frac{1}{\varepsilon}}{|X_2|} \min \{|X_1 + X_2|, |X_1 - X_2|\}\) additive translates of \(X_2\) whose union contains not less than \((1 - \varepsilon)|X_1|\) elements of \(X_1\).
Proof. For simplicity, we assume that \(|X_1 + X_2| \leq |X_1 - X_2|\). The case when \(|X_1 + X_2| > |X_1 - X_2|\) can be considered similarly. Using Lemma 4 we deduce

\[|\{(x, y, x_1, y_1) \in X_1 \times X_2 \times X_1 \times X_2 : x + y = x_1 + y_1\}| \geq \frac{|X_1|^2 |X_2|^2}{|X_1 + X_2|}. \]

Now we can fix two elements \(x^1_* \in X_1, y^1_* \in X_2\) for which the equation \(x^1_* + y = x + y^1_*\), \(x \in X_1, y \in X_2\) has at least \(\frac{|X_1||X_2|}{|X_1 + X_2|}\) solutions and, therefore, \(|(x^1_* + X_2) \cap (y^1_* + X_1)| \geq \frac{|X_1||X_2|}{|X_1 + X_2|}\). Denoting \(K = \frac{|X_1 + X_2|}{|X_2|}\) we can observe that

\[|X_1 \cap (x^1_* - y^1_* + X_2)| \geq \frac{|X_1|}{K}. \tag{4} \]

Obviously, from \(\tag{4}\) it is follows that

\[|X^1_1| := |X_1 \setminus (x^1_* - y^1_* + X_2)| \leq \left(1 - \frac{1}{K}\right) |X_1|. \]

We can repeat previous arguments for sets \(X^1_1\) and \(X_2\) and find elements \(x^2_* \in X^1_1\) and \(y^2_* \in X_2\) such that

\[|X^1_1 \cap (x^2_* - y^2_* + X_2)| \geq \frac{|X^1_1|}{K} \]

\[|X^1_2| := |X^1_1 \setminus (x^2_* - y^2_* + X_2)| \leq \left(1 - \frac{1}{K}\right) |X^1_1| \leq \left(1 - \frac{1}{K}\right)^2 |X_1|. \]

On \(i\)-th iteration we finding elements \(x^i_* \in X^{i-1}_1\) and \(y^i_* \in X_2\) with

\[|X^{i-1}_1 \cap (x^i_* - y^i_* + X_2)| \geq \frac{|X^{i-1}_1|}{K} \]

\[|X^i_1| := |X^{i-1}_1 \setminus (x^i_* - y^i_* + X_2)| \leq \left(1 - \frac{1}{K}\right) |X^{i-1}_1| \leq \left(1 - \frac{1}{K}\right)^i |X_1|. \]

We stop when \(|X^i_1| < \varepsilon |X_1|\) for some \(n\). It is easy to see that we will make not more than \(\ln \left(\frac{1}{\varepsilon}\right) K\) steps. The last observation finishes the proof of the Lemma 6. \(\square\)

We also need the following sum-product estimate of M. Z. Garaev \cite{12, Theorem 3.1}.

7
Theorem 5. Let $A, B \subset \mathbb{F}_p$ be an arbitrary subsets. Then
\[
|A - A|^2 \cdot \frac{|A|^2 |B|^2}{E_x(A, B)} \geq C |A|^3 L^{\frac{1}{2}} (\log_2 L)^{-1},
\]
where $L = \min \left\{ |B|, \frac{p}{|A|} \right\}$ and $C > 0$ is an absolute constant.

3 Proof of the Theorem 3.

Let $A, B \subseteq \mathbb{F}_p$ be as in Theorem 3 and $\delta > 0$, $C > 1$ (to be specified). Assume
\[
\sum_{b \in B} E_+(A, bA) > C |B|^{1-\delta} |A|^3.
\]
Hence there is a subset $B_1 \subseteq B$ such that
\[
|B_1| > \frac{C}{2} |B|^{1-\delta}
\]
and
\[
E_+(A, bA) > \frac{C}{2} |B|^{-\delta} |A|^3 \text{ for } b \in B_1. \quad (5)
\]

Fix $b \in B_1$. By the application of Lemma 3 to (5), one can deduce that there is $G^{(b)} \subseteq A \times bA, |G^{(b)}| > \frac{C}{4} |B|^{-\delta} |A|^2$ such that
\[
|A_{G^{(b)}bA}| < \frac{4}{C} |B|^{\delta} |A|.
\]

Now, by Proposition 1 there are $Q^{(b)}, A_1^{(b)}, A_2^{(b)} \subset A$ such that
\[
|A_1^{(b)}| > \frac{C}{2^{4\sqrt{2}}} |B|^{-\delta} |A|, \quad (6)
\]
\[
\frac{C^2}{2^{7\sqrt{2}} \ln(e |A|)} |A||B|^{-2\delta} \leq Q^{(b)} \leq 2 |A_1^{(b)}|, \quad (7)
\]
\[
|A_2^{(b)}| > \frac{C^2}{2^{7\sqrt{2} Q^{(b)} \ln(e |A|)}} |B|^{-2\delta} |A|^2, \quad (8)
\]
\[
|A_1^{(b)} + bA_2^{(b)}| < \frac{2^{20}}{C^6 Q^{(b)} \ln(e |A|)} |B|^{6\delta} |A|^2. \quad (9)
\]
Write

\[
\frac{C^3}{2^{12}\ln(e|A|)}|B_1||B|^{-3\delta}|A|^2 < \sum_{b \in B_1} |A_1^{(b)} \times A_2^{(b)}| \\
\leq |A| \left[\sum_{b,b' \in B_1} \left| \left(A_1^{(b)} \cap A_1^{(b')} \right) \times \left(A_2^{(b)} \cap A_2^{(b')} \right) \right| \right]^{\frac{1}{2}}
\]

by Cauchy-Schwartz. Hence

\[
\frac{C^6}{2^{24}\ln^2(e|A|)}|B|^2|B|^{-6\delta}|A|^2 < \sum_{b,b' \in B_1} \left| \left(A_1^{(b)} \cap A_1^{(b')} \right) \times \left(A_2^{(b)} \cap A_2^{(b')} \right) \right| \\
\]

and there is some \(b_0 \in B_1, B_2 \subset B_1 \) such that

\[
|B_2| > \frac{C^7}{2^{26}\ln^2(e|A|)}|B|^{1-7\delta} \quad (10)
\]

\[
|A_1^{(b)} \cap A_1^{(b_0)}|, |A_2^{(b)} \cap A_2^{(b_0)}| > \frac{C^6}{2^{25}\ln^2(e|A|)}|B|^{-6\delta}|A| \quad \text{for } b \in B_2. \quad (11)
\]

Let us estimate from (6), (8), (9), (11) and Lemma II

\[
|b_0A_1^{(b_0)} + bA_1^{(b)}| \leq \frac{|A_1^{(b_0)} + bA_2^{(b_0)}||A_1^{(b_0)} + b_0A_2^{(b_0)}|}{|A_2^{(b_0)}|} \leq \frac{2^{27}\sqrt{2}\ln^2(e|A|)}{C^8}|B|^{8\delta}|A_1^{(b_0)} + bA_2^{(b_0)}| \quad (12)
\]

\[
|A_1^{(b_0)} + bA_2^{(b_0)}| \leq \frac{|A_1^{(b_0)} + bA_2^{(b_0)}||A_2^{(b_0)} + A_2^{(b_0)}|}{|A_2^{(b_0)}|} \leq \frac{2^{69}\sqrt{2}\ln^4(e|A|)}{C^{19}Q^{(b_0)}}|A_1^{(b_0)} + bA_2^{(b_0)}| \quad (13)
\]
\[|A_1^{(b_0)} + bA_2^{(b)}| \leq \frac{|A_1^{(b)} + bA_2^{(b)}||A_1^{(b_0)} + A_1^{(b)}|}{|A_1^{(b_0)} \cap A_1^{(b)}|} \leq \frac{|A_1^{(b)} + bA_2^{(b)}||A_1^{(b_0)} + b_0A_2^{(b_0)}|}{|A_1^{(b_0)} \cap A_1^{(b)}||A_2^{(b_0)}|} \leq \frac{2^{92\sqrt{2}\ln^6(e|A|)}}{C^{26}Q_Q^{(b)}Q^{(b_0)}}|B|^{26\delta}|A|^3. \]

Hence, by (12), (13) and (14)

\[|b_0A_1^{(b_0)} + bA_1^{(b_0)}| \leq \frac{2^{189\sqrt{2}\ln^{12}(e|A|)}}{C^{53}Q_Q^{(b_0)}Q^{(b)}}|B|^{53\delta}|A|^5. \]

Using (7) finally we obtain

\[|b_0A_1^{(b_0)} + bA_1^{(b_0)}| \leq \frac{2^{219\sqrt{2}\ln^{16}(e|A|)}}{C^{61}}|B|^{61\delta}|A|. \]

Now we redefine \(A_1^{(b_0)} \) by \(A' \) and \(\frac{B_0}{b_0} \) by \(B' \) one can deduce the following properties (for \(\delta < \frac{1}{440} \)):

\[|A' + bA'| < \frac{2^{219\sqrt{2}\ln^{16}(e|A|)}}{C^{61}}|B|^{61\delta}|A| \text{ for all } b \in B' \]

(15)

\[|B'| > \frac{C^7}{2^{26\ln^2(e|A|)}}|B|^{1-7\delta} \]

(16)

\[|A'| > \frac{C}{2^{4\sqrt{2}}}|B|^{-\delta}|A|. \]

(17)

Our aim is to get contradiction from (15), (16) and (17).

Let us use the symbol

\[K = \max_{b \in B'} |A' + bA'| \quad \text{so} \quad K < \frac{2^{219\sqrt{2}\ln^{16}(e|A|)}}{C^{61}}|B|^{61\delta}|A|. \]

(18)

Now we use Lemma 4 to establish that

\[E_+ (A', bA') = |\{(a_1, a_2, a_3, a_4) \in A' \times A' \times A' \times A' : a_1 + a_2b = a_3 + a_4b\}| \geq \frac{|A'|^4}{|A' + bA'|} \geq \frac{|A'|^4}{K}. \]

10
Summing over all $b \in B'$ we obviously obtain
\[|\{(a_1, a_2, a_3, a_4, b) \in A' \times A' \times A' \times B' : a_1 + a_2 b = a_3 + a_4 b\}| \geq \frac{|A'||B'|}{K}.\]

There are some elements $\widetilde{a}_2, \widetilde{a}_3 \in A'$ such that
\[|\{(a_1, a_4, b) \in A' \times A' \times B' : a_1 - \widetilde{a}_3 = (a_4 - \widetilde{a}_2)b\}| \geq \frac{|A'|^2|B'|}{K}.\]

Let $A'_1 = A' - \widetilde{a}_3, A'_2 = A' - \widetilde{a}_2$ be translates of A' by \widetilde{a}_3 and \widetilde{a}_2 respectively. Then
\[|\{(a_1, a_2, b) \in A'_1 \times A'_2 \times B' : a_1 = a_2 b\}| \geq \frac{|A'|^2|B'|}{K}.\]

There is some $a_* \in A'_2$ such that
\[|\{(a_1, b) \in A'_1 \times B' : a_1 = a_* b\}| \geq \frac{|A'||B'|}{K}.\]

Thus, we have a subset $B'_1 \subset (A'_1 \cap a_* B')$ of cardinality
\[|B'_1| \geq \frac{|A'||B'|}{K}.\]

In original notations B'_1 lies in the intersection of $\frac{a}{b_0} B_2$ and some translate of $A_1^{(b_0)}$; besides by the bounds (16), (17) and (18)
\[|B'_1| > \frac{C^{69}}{2^{250} \ln^{18} (e|A|)} |B|^{1-698}. \tag{19}\]

We consider three cases.

1) Case 1. Suppose that $Q[B'_1] \neq \mathbb{F}_p$. It is clear that $1 + Q[B'_1] \neq Q[B'_1]$ since otherwise $Q[B'_1] = \mathbb{F}_p$. The latter mean that there are elements $a, b, c, d \in B'$ with $1 + \frac{a - b}{c - d} \notin Q[B'_1]$. Now we recall that B'_1 is a subset of $\frac{a}{b_0} B_2$ so we can regard a, b, c, d as elements of B_2. Observe, that for an arbitrary subset $B'' \subset B'_1$, $|B''| \geq 0.98 |B'_1|$ we have $1 + \frac{a - b}{c - d} \notin Q[B''_1]$ since $Q[B''_1] \subset Q[B'_1]$. Therefore, by Lemma 3 for these elements $a, b, c, d \in B_2$ we have
\[(0.98)^2 |B'_1|^2 \leq |B''_1|^2 = |B''_1 + \left(B''_1 + \frac{a - b}{c - d} B''_1 \right) | \leq |B''_1 + B''_1 + \frac{a - b}{c - d} B''_1 |. \tag{20}\]
We now use Lemma 6. Let us first show that for any $b_1 \in B_2$ we can cover 99% of the elements of the set $b_1B'_1$ (a subset of the translation of $b_1A_1^{(b_0)}$) or $-b_1B'_1$ by at most $\frac{2^{109}\ln(100)\ln^8(e|A|)}{C_{28}}|B|^{28\delta}$ additive translates of the set $b_0A_1^{(b_0)}$. Indeed $b_0A_1^{(b_1)} \cap A_1^{(b_0)}$ is a subset of $b_0A_1^{(b_0)}$, and by Lemma 9 and Lemma 11 we can cover 99% of the elements of either $b_1B'_1$ or $-b_1B'_1$ by at most

$$\frac{\ln(100)}{|b_0A_1^{(b_1)} \cap A_1^{(b_0)}|} \min \left\{ |b_0A_1^{(b_1)} \cap A_1^{(b_0)} + b_1B'_1|, |b_0A_1^{(b_1)} \cap A_1^{(b_0)} - b_1B'_1| \right\} \leq$$

$$\leq \frac{\ln(100)}{|A_1^{(b_0)} \cap A_1^{(b_0)}|} \min \left\{ |b_0A_1^{(b_1)} \cap A_1^{(b_0)} + b_1B'_1|, |b_0A_1^{(b_1)} \cap A_1^{(b_0)} - b_1A_1^{(b_0)}| \right\} \leq$$

$$\leq \frac{\ln(100)A_1^{(b_1)} \cap A_1^{(b_0)} + b_1A_2^{(b_0)} \cap A_2^{(b_0)}|A_1^{(b_0)} + b_0A_2^{(b_0)} \cap A_2^{(b_0)}|}{|A_1^{(b_0)} \cap A_1^{(b_0)}||b_0A_2^{(b_1)} \cap A_2^{(b_0)}|} \leq$$

$$\leq \frac{\ln(100)|A_1^{(b_0)} + b_1A_2^{(b_0)}||A_1^{(b_0)} + b_0A_2^{(b_0)}|}{|A_1^{(b_0)} \cap A_1^{(b_0)}||A_2^{(b_0)} \cap A_2^{(b_0)}|} \leq \frac{2^{105}\ln(100)\ln^8(e|A|)}{C_{28}}|B|^{28\delta}$$

additive translates of $b_0A_1^{(b_1)} \cap A_1^{(b_0)}$ and whence of $b_0A_1^{(b_0)}$. In the last estimate we have used (7), (9) and (11).

This altogether enables us to choose B''_1 as a subset containing at least 98% of the elements from B'_1 such that $(a-b)B''_1$ gets covered by at most $\frac{2^{210}\ln^2(100)\ln^{16}(e|A|)}{C_{28}}|B|^{56\delta}$ translates of $b_0A_1^{(b_0)} + b_0A_1^{(b_0)}$. Similarly, we can find a subset $\tilde{A}_1^{(b_0)}$ containing at least 98% of the elements of $A_1^{(b_0)}$ such that $(c-d)\tilde{A}_1^{(b_0)}$ gets covered by at most $\frac{2^{210}\ln^2(100)\ln^{16}(e|A|)}{C_{28}}|B|^{56\delta}$ translates of $b_0A_1^{(b_0)} + b_0A_1^{(b_0)}$. Now we apply Lemma 2 to (20) as follows

$$|B''_1 + B'' + \frac{a-b}{c-d}B'_1| \leq \frac{|\tilde{A}_1^{(b_0)} + B'' + B'_1||\tilde{A}_1^{(b_0)} + \frac{a-b}{c-d}B'_1|}{|\tilde{A}_1^{(b_0)}|} \leq$$

$$\leq \frac{2^{4}\sqrt{2}|B|B}{C|A|} |A_1^{(b_0)} + A_1^{(b_0)} + A_1^{(b_0)}| |\tilde{A}_1^{(b_0)} + \frac{a-b}{c-d}B'_1| \leq$$

$$\leq \frac{2^{87}\ln^3(e|A|)}{C_{25}}|B|^{25\delta} |\tilde{A}_1^{(b_0)} + \frac{a-b}{c-d}B'_1| \leq$$

$$\leq \frac{2^{120}\ln^4(100)\ln^{32}(e|A|)}{C_{112}} |B|^{112\delta} |A_1^{(b_0)} + A_1^{(b_0)} + A_1^{(b_0)}| \leq$$
Now we define C at most one for an arbitrary ξ which is false when $\delta > p$ because $\|\tau\|_{\infty}$ arbitrary subset $\|\tau\|_{\infty}$. Comparing to (19) and using the condition $|B| \geq \frac{1}{4}$, for large p we deduce

$$\frac{(0.98)^2 C^{138}}{2^{500} \ln^{30} |e| A|] |B|^{2-138\delta} < \frac{2^{613} \ln^4(100) \ln^4(e|A|)}{C^{169}} |B|^{169\delta} |A| \Leftrightarrow$$

$$\Leftrightarrow \frac{|B|^{2-307\delta}}{|A| \ln^{82} |e| A|] } < \frac{2^{1113} \ln^4(100)}{(0.98)^2 C^{307}} \Rightarrow |B|^{1-308\delta} < \frac{2^{1115} \ln^4(100)}{(0.98)^2 C^{307}}.$$ \hspace{1cm} (22)

Now we define $C = \frac{2^{1115} \ln^4(100)}{(0.98)^2 C^{307}}$ and from (22) deduce the inequality

$$|B| < |B|^{308\delta}$$

which is false when $\delta \leq \frac{1}{308}$. This finishes proof of the Theorem 3 in case 1.

2) Case 2. Suppose that $|B_1| > \sqrt{p}$. It is clear that $Q[B_1] = \mathbb{F}_p$ since for an arbitrary $\xi \in \mathbb{F}_p$ the equality $|B_1 + \xi B_1| = |B_1|^2$ is impossible (simply because $|B_1|^2 > p$). Let us take arbitrary elements $\xi \in \mathbb{F}_p^\ast$, $s \in \mathbb{F}_p$, an arbitrary subset $|B_1''| \geq 0.96|B_1|$ and denote

$$f_\xi(s) := |\{(b_1, b_2) \in B_1' \times B_1' : b_1 + \xi b_2 = s\}|$$

$$f_\xi'(s) := |\{(b_1, b_2) \in B_1'' \times B_1' : b_1 + \xi b_2 = s\}|$$

It is obvious that

$$\sum_{s \in \mathbb{F}_p} (f_\xi(s))^2 = |\{(b_1, b_2, b_3, b_4) \in B_1' \times B_1' \times B_1' \times B_1' : b_1 + \xi b_2 = b_3 + \xi b_4\}|$$

$$= |B_1'|^2 + |\{(b_1, b_2, b_3, b_4) \in B_1' \times B_1' \times B_1' \times B_1' : b_1 \neq b_3, b_1 + \xi b_2 = b_3 + \xi b_4\}|$$

and

$$\sum_{s \in \mathbb{F}_p} f_\xi(s) = |B_1'|^2$$

$$\sum_{s \in \mathbb{F}_p} f_\xi'(s) = |B_1''|^2.$$ \hspace{1cm}

Let us observe that for every $b_1, b_2, b_3, b_4 \in B_1'$ such that $b_1 \neq b_3$, there is at most one $\eta \in \mathbb{F}_p^\ast$ satisfying the equality $b_1 + \eta b_2 = b_3 + \eta b_4$. Therefore,

$$\sum_{\xi \in \mathbb{F}_p^\ast} \sum_{s \in \mathbb{F}_p} (f_\xi(s))^2 \leq |B_1'|^2 (p - 1) + |B_1'|^4.$$
From the last inequality it directly follows that there is an element \(\xi \in \mathbb{F}_p^* \) such that
\[
\sum_{s \in \mathbb{F}_p} (f'_{\xi}(s))^2 \leq \sum_{s \in \mathbb{F}_p} (f_{\xi}(s))^2 \leq |B'_1|^2 + \frac{|B'_1|^4}{p-1}.
\]

Note that this \(\xi \) is independent on \(B''_1 \). According to Cauchy-Schwartz,
\[
\left(\sum_{s \in \mathbb{F}_p} f'_{\xi}(s) \right)^2 \leq |B'_1| \sum_{s \in \mathbb{F}_p} (f_{\xi}(s))^2.
\]

Now we see that
\[
|B''_1 + \xi B'_1| \leq \frac{|B''_1|^4(p-1)}{|B'_1|^2(p-1) + |B'_1|^4} \geq \frac{(0.96)^4|B'_1|^4(p-1)}{|B'_1|^2(p-1) + |B'_1|^4} \geq \frac{(0.96)^4p-1}{2}.
\]

(23)

Reminding that \(Q[B'_1] = \mathbb{F}_p \), we can find elements \(a, b, c, d \in B'_1 \), such that \(\xi = \frac{a-b}{c-d} \) (again, we can regard them as elements of \(B_2 \)). Using similar covering arguments as in proof of the case 1 we can deduce that we can choose \(B''_1 \) as a subset containing at least 96% of the elements from \(B'_1 \) such that \((a-b)B''_1 + (c-d)B'_1 \) gets covered by at most \(\frac{2^{420} \ln^4(100) \ln^{32}(c|A|)}{C^{112}} |B|^{112\delta} \) translates of \(b_0 A_1^{(b_0)} + b_0 A_1^{(b_0)} + b_0 A_1^{(b_0)} + b_0 A_1^{(b_0)} \). Now we see that
\[
\left| B''_1 + \frac{a-b}{c-d} B'_1 \right| \leq \frac{2^{420} \ln^4(100) \ln^{32}(c|A|)}{C^{112}} |B|^{112\delta} |A_1^{(b_0)} + A_1^{(b_0)} + A_1^{(b_0)} + A_1^{(b_0)}| \leq \frac{2^{530} \ln^4(100) \ln^{40}(c|A|)}{C^{144}} |B|^{144\delta} |A|.
\]

Again, comparing to (23) and using the condition \(\frac{|B|}{|A|} \geq \frac{1}{4} \), we deduce
\[
(0.96)^4 \frac{p-1}{2} < \frac{2^{530} \ln^4(100) \ln^{40}(c|A|)}{C^{144}} |B|^{144\delta} |A| \Rightarrow
\]
\[
\Rightarrow \frac{p}{4} < \frac{2^{530} \ln^4(100)}{C^{144}(0.96)^4} p^{145\delta+\alpha}.
\]

(24)

Now we define \(C = \frac{2^{652} \ln^4(100)}{(0.96)^4} \) and from (24) deduce the inequality
\[
p < p^{145\delta+\alpha}
\]
which is false when $\delta \leq \frac{1 - \alpha}{145}$. This concludes proof of the Theorem in case 2.

3) Case 3. Suppose that $Q[B'_1] = F_p$ and $|B'_1| \leq \sqrt{p}$. Repeating arguments from the proof of case 2 for an arbitrary subset $B''_1 \subset B'_1$, we find elements $a, b, c, d \in B_2$ independent on the subset B''_1 with

$$|B''_1 + \frac{a - b}{c - d}B'_1| \geq (0.96)^4 \frac{|B'_1|^2}{2}.$$

Using similar covering arguments as in proof of the case 1 we can deduce that we can choose B''_1 such that $(a - b)B''_1 + (c - d)B'_1$ gets covered by at most $\frac{2^{420} \ln^4(100) \ln^{32}(e|A|)}{C^{112}} |B|^{112\delta}$ translates of $b_0A_1^{(b_0)} + b_0A_1^{(b_0)} + b_0A_1^{(b_0)} + b_0A_1^{(b_0)}$. Now we see that

$$|B''_1 + \frac{a - b}{c - d}B'_1| \leq \frac{2^{420} \ln^4(100) \ln^{32}(e|A|)}{C^{112}} |B|^{112\delta} |A_1^{(b_0)} + A_1^{(b_0)} + A_1^{(b_0)} + A_1^{(b_0)}| \leq$$

$$\leq \frac{2^{530} \ln^4(100) \ln^{40}(e|A|)}{C^{144}} |B|^{144\delta} |A|.$$

Comparing to (19) and using the condition $\frac{|B'_1|}{|A|} \geq \frac{1}{4}$, we deduce

$$\frac{(0.96)^4 C^{138}}{2^{500} \ln^{38}(e|A|)} |B|^{2 - 138\delta} < \frac{2^{530} \ln^4(100) \ln^{40}(e|A|)}{C^{144}} |B|^{144\delta} |A| \iff$$

$$\iff |B|^{2 - 282\delta} \frac{|B|}{|A| \ln^{46}(e|A|)} < \frac{2^{1030} \ln^4(100)}{(0.96)^4 C^{282}} \Rightarrow |B|^{1 - 283\delta} < \frac{2^{1032} \ln^4(100)}{(0.96)^4 C^{282}}. \quad (25)$$

Now we define $C = \frac{2^{530} \ln^4(100)}{(0.96)^4 C^{282}}$ and from (25) deduce the inequality

$$|B| < |B|^{283\delta}$$

which is false when $\delta \leq \frac{1}{283}$. Note that in all the cases the meaning assigned for the constant C is strictly less than 15. The Theorem is proved.
4 Proof of the Theorem 4

As in the proof of the Proposition 3 we assume contrary, i.e.
\[\sum_{b \in B} E_+(A, bA) > C |B|^{1-\delta} |A|^3 \]
for some \(C > 0, \delta > 0 \). Following arguments in the beginning of the proof of the Proposition 3, we finding \(A' \subset A \) and \(B' \subset \mathbb{F}_p^*, 1 \in B' \) (which is in fact a subset of a multiplicative shift of \(B \)) such that
\[|A' + bA'| < \frac{2^{219} \sqrt{2} \ln^{16} (e|A|)}{C^{61}} |B|^{61\delta} |A| = K \text{ for all } b \in B' \]
(26)
\[|B'| > \frac{C^7}{2^{26} \ln^2 (e|A|)} |B|^{1-7\delta} \]
(27)
\[|A'| > \frac{C}{2^4 \sqrt{2}} |B|^{-\delta} |A|. \]
(28)

Using Lemma 4 we obtain
\[|\{(a_1, a_2, a_3, a_4) \in A' \times A' \times A' : a_1 + ba_2 = a_3 + ba_4\}| > \frac{|A'|^4}{K} \text{ for all } b \in B'. \]

Summing up by all \(b \in B' \) one gets
\[|\{(a_1, a_2, a_3, a_4, b) \in A' \times A' \times A' \times B' : a_1 + ba_2 = a_3 + ba_4\}| > \frac{|A'|^4 |B'|}{K} \text{ for all } b \in B'. \]

Now we can fix elements \(a_3^0, a_2^0 \in A' \) such that
\[|\{(a_1, a_4, b) \in A' \times A' \times B' : a_1 - a_3^0 = b(a_4 - a_2^0)\}| > \frac{|A'|^2 |B'|}{K}. \]
(29)

We denote
\[f(s) = |\{(a, b) \in A' \times B' : b(a - a_2^0) = s\}|, \]
\[g(s) = \begin{cases} 1, & \text{if } s \in A' - a_3^0; \\ 0, & \text{otherwise}. \end{cases} \]
16
Clearly,

\[|\{(a_1, a_4, b) \in A' \times A' \times B' : a_1 - a_0 = b(a_4 - a_2)\}| = \sum_{s \in \mathbb{F}_p} f(s)g(s), \quad (30) \]

\[\sum_{s \in \mathbb{F}_p} f^2(s) = E_x(A' - a_0^2, B'). \quad (31) \]

Now, by Cauchy-Schwartz,

\[\left(\sum_{s \in \mathbb{F}_p} f(s)g(s) \right)^2 \leq \sum_{s \in \mathbb{F}_p} f^2(s) \sum_{s \in \mathbb{F}_p} g^2(s) \]

and, by (30) and (31), one can deduce

\[E_x(A' - a_0^2, B') > \frac{|A'|^3|B'|}{K^2}. \]

Consider two cases.

Case 1. Assume that \(|A'||B'| \leq p\). Applying Theorem 5 one obtains

\[\frac{K^4}{|A'|} > |A' - A|^2 \cdot \frac{|A'|^2|B'|^2}{E_x(A' - a_0^2, B')} \geq C_1 \frac{|A'|^3|B'|^{\frac{1}{8}}}{\log_2(|B'|)}. \]

Using (26), (27) and (28) we deduce

\[\frac{C_1 C_{244}^{\frac{1}{8}} |B|^{\frac{3}{8}}}{2^{\frac{185}{8}} \ln \frac{4}{8} (e|A|) \log_2(|B|)} \leq \frac{2^{878} \ln 64 (e|A|) |B|^{2444} |A|^4}{C_{244}^{\frac{1}{8}}} \Rightarrow |B|^{\frac{1}{8}} < \frac{2^{\frac{8099}{8}} \ln \frac{528}{8} (e|A|) \log_2(|B|)}{C_1 C_{244}^{\frac{1}{8}}} |B|^{\frac{2239}{8}}. \quad (32) \]

Defining \(C = \frac{2^{\frac{8099}{8}}}{C_1 C_{244}^{\frac{1}{8}}} \), we observe that for sufficiently large \(p \) from (32) follows the inequality

\[|B|^{\frac{1}{8}} < |B|^{\frac{2240}{8}} \]

which gives a contradiction when \(\delta = \frac{1}{2240} \). This completes proof of the Theorem 3 in this case.
Case 2. Assume that $|A'||B'| > p$. Again, applying Theorem 5 we obtain

$$\frac{K^4}{|A'|} > |A' - A|^2 \cdot \frac{|A'|^2|B'|^2}{E_x(A' - a_0^p, B')} \geq C_1 \frac{|A'|^2 \frac{26}{9} p^{\frac{5}{9}}}{\log_2 p}.$$

Using (26) and (28) we deduce

$$\frac{C_1 C_{\frac{26}{9}} |A| \frac{26}{9} p^{\frac{5}{9}}}{2^{\frac{25}{7}} |B| \frac{25}{9} \log_2 p} < \frac{2^{878} \ln 64 (|A|)}{C_{2^{44}} |B|^{2^{444}} |A|^{4}} \Rightarrow$$

$$\Rightarrow \frac{2^{1911.9} \ln 64 (|A|) \log_2 p}{C_{2^{444}}} |A|^{\frac{1}{9}} |B|^{\frac{2232}{9} \delta} > p^{\frac{5}{9}}. \quad (33)$$

Defining $C = 2^{1911.9}$, we observe that for sufficiently large p from (33) follows the inequality

$$p^{\frac{5}{9}} < |B|^{\frac{2232}{9} \delta} |A|^{\frac{1}{9}},$$

which gives a contradiction when $\delta = \frac{1-\alpha}{2232}$. Theorem 5 is proved.

References

[1] J. Bourgain, Multilinear exponential sums in prime fields under optimal entropy condition on the sources, Geometric and Functional Analysis, vol. 18, N 5, 2009, pp. 1477 – 1502.

[2] J. Bourgain, A. Glibichuk, Exponential sum estimate over subgroup in an arbitrary finite field, accepted for publication in Journal de Analyse Mathématiques.

[3] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, D. Kutzarova, Explicit constructions of RIP matrices, Proc. 43rd ACM Symposium of the Theory of Computing (STOC), pp. 637—644 (2011).

[4] H. Helfgott, M. Rudnev, An explicit incidence theorem in \mathbb{F}_p, preprint, arXiv:1001.1980v2.

[5] I. Z. Ruzsa, An application of graph theory to additive number theory, Scientia, Ser. A, 3 (1989), 97 – 109.
[6] I. Z. Ruzsa, *Sums of finite sets*, Number theory (New York, 1991 – 1995), 281 – 293, Springer, New York, 1996.

[7] J. Bourgain and M. Z. Garaev, *On a variant of sum-product estimates and explicit exponential sums bounds in prime fields*, Mathematical proceedings of the Cambridge Philosophical Society, vol. 146 (2009), part 1, pp. 1 – 21.

[8] T. Tao and V. Vu, *Additive combinatorics*, Cambridge University Press, Cambridge, 2006.

[9] J. Bourgain, N. Katz, T. Tao, *A sum-product estimate in finite fields and their applications*, Geom and Funct. Anal., 14 (2004), 27–57.

[10] J. Bourgain, S. Konyagin, *Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order*, C.R. Acad. Sci. Paris, Ser. I, 337 (2003), 75–80.

[11] Chun-Yen Shen, *Quantitative sum product estimates on different sets*, Electron. J. Combin., 15 (2008), no. 1.

[12] M. Z. Garaev, *Sums and products of sets and estimates of rational trigonometric sums in fields of prime order*, Russian Mathematical Surveys, 2010, vol. 65, no. 4, pp. 599–658