SOFTWARE TOOL ARTICLE

Network-based Observability and Controllability Analysis of Dynamical Systems: the NOCAD toolbox [version 1; peer review: awaiting peer review]

Dániel Leitold 1,2, Ágnes Vathy-Fogarassy 1,2, János Abonyi 2

1 Department of Computer Science and Systems Technology, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
2 MTA-PE Lendulet Complex Systems Monitoring Research Group, University of Pannonia, Egyetem u. 10, POB. 158, Veszprém, 8200, Hungary

Abstract
Network science has become increasingly important in life science over the last decade. The proposed Octave and MATLAB-compatible NOCAD toolbox provides a set of methods which enables the structural controllability and observability analysis of dynamical systems. In this paper, the functionality of the toolbox is presented, and the implemented functions demonstrated.

Keywords
Dynamical systems, Complex networks, Controllability and observability analysis, Robustness, MATLAB toolbox

Corresponding author: János Abonyi (abonyij@fmt.uni-pannon.hu)

Author roles: Leitold D: Methodology, Software, Writing – Review & Editing; Vathy-Fogarassy Á: Formal Analysis, Methodology, Writing – Review & Editing; Abonyi J: Conceptualization, Methodology, Software, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This research was supported by the National Research, Development and Innovation Office NKFIH, through the project OTKA-116674 (Process mining and deep learning in the natural sciences and process development) and the EFOP-3.6.1-16-2016-00015 Smart Specialization Strategy (S3) Comprehensive Institutional Development Program. Dániel Leitold was supported by the UNKP-18-3 New National Excellence Program of the Ministry of Human Capacities.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Leitold D et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Leitold D, Vathy-Fogarassy Á and Abonyi J. Network-based Observability and Controllability Analysis of Dynamical Systems: the NOCAD toolbox [version 1; peer review: awaiting peer review] F1000Research 2019, 8:646 (https://doi.org/10.12688/f1000research.19029.1)

First published: 09 May 2019, 8:646 (https://doi.org/10.12688/f1000research.19029.1)
Introduction
In the life sciences, the determination of driver nodes in networks that play a significant role in the emergence or treatment of diseases is an intensively researched field. In large-scale human liver metabolic networks (HLMN), the driver metabolites have essential functions, and the role of transport reactions and extracellular metabolites in terms of controlling HLMN has revealed the importance of the environment of human liver metabolism with regard to the health of the liver.

In terms of controlling the human signalling network, the role of different proteins was also systematically analysed with the toolset of network controllability in 3 to highlight the role of cancer-associated genes. Target control with objective-guided optimisation (TCO) was introduced to control a set of variables (or targets) of interest while the quantity of drivers and constrained nodes were minimised and maximised, respectively. This method is capable of determining the leading phenotype transitions in biological networks that can be identified as drug targets. Using statistical analysis, a subset of critical control nonprotein-coding RNAs (ncRNAs) enriched by human disease can also be determined. In intra-cellular networks, to understand the information flow, a natural control system was utilised and the robustness of such a control was analysed. The importance of determining the proper driver nodes in biological networks, or more generally in any dynamical system, is unequivocal, and the amount of research concerning network science has increased rapidly. A detailed study about the control principles in biological networks has already been published. The network science-based analysis of dynamical systems has spread rapidly as it provides simple and efficient tools to analyse the structural controllability of any linear or linearised system.

Although considerable research has utilised the method, a flexible software tool which may be used to support the research in this field has yet to be designed. Parallel research has resulted in a collection of applications, toolboxes, plug-ins and scripts that analyse and determine several structural properties of genes, protein-protein interaction or even social or urban networks. Most of these applications only analyse the structural properties of static networks and just a handful of them utilise these structural properties to draw conclusions concerning the dynamics of the system investigated. As our toolbox belongs to the second group, in the following section, the available applications and programs of this group are elaborated.

A brief summary of the available tools with expanded functionalities is given in Table 1. Applications or software packages implemented in Python and capable of analysing the controllability and observability of dynamical systems are: graph-control and WDNfinder. The advantage of Python-based development lies in its widespread use and the countless methods and packages implemented in this language, including the tools developed for network analysis. Although in Python the focus is on developing a broad software package for complex system analysis, this has yet to be fulfilled and all of the available solutions have limitations. The graph-control toolbox only analyses the impact of network topology on the number of inputs and implements the fast matching algorithm. Even though WDNFinder only determines the minimum driver node set (MDS) and classifies nodes based on MDS, it is incapable of facilitating extended analysis.

Additionally, the CytoCtrlAnalyser plug-in for Cytoscape has been developed, which was implemented in Java and offers graphical interfaces for users as well. It evaluates control centrality, control capacity and classifies nodes for biomolecular networks. Furthermore, the Ecological Network Analysis with R software package (enaR) provides some dynamical analysis functions and can generate models to analyse ecological networks in the R environment. As can be seen, both software packages deal with special kinds of networks. The netctrl program can determine the driver nodes and switchboard dynamics model for any complex network. CONTEST is a MATLAB toolbox which can analyse the dynamics of complex systems, but these dynamics do not cover the structural controllability and observability properties of the analysed system. Although the presented software packages ensure the design of a controllable and observable system, they do not provide the opportunity to analyse the designed system exhaustively. These functions are helpful in terms of supporting the work of experts, but are insufficient for the sophisticated analysis of systems.

The contribution of this paper is to provide a novel toolbox, NOCAD, for the comprehensive analysis of linear or linearised systems based on their structural analysis.

Table 1. Toolboxes that implement some functions for dynamical analysis of complex systems based on their structural analysis.

Software	Language	Applied on	GUI	Ref.	Last updated
netctrl	C++	General networks	No	16	January 8, 2015
CONTEST	MATLAB	General networks	No	17	February, 2009
CytoCtrlAnalyser	Java	Biomolecular networks	Yes	13	May 25, 2017
graph-control	Python	General networks	No	9	December 16, 2015
WDNfinder	Python	Biological networks	No	10	June 24, 2018
enaR	R	Ecological networks	No	15	May 18, 2018
dynamical systems based on the approach of network science. In the following section, the implemented functions and measurements are presented through examples of their application.

Methods
With the help of the presented Octave- and MATLAB-compatible toolbox, experts can create, analyse and improve any type of dynamical systems. As the structure of the dynamical systems is generally represented by their adjacency matrix and linear dynamical systems can be described by the state-space model that contains the state-transition, input, output and feedthrough matrices, the Octave/MATLAB programming language is a perfect environment to handle these matrices and provide comprehensive functionalities based on them. With the use of NOCAD18, experts and researchers can effectively determine the input and output matrices of state-space models, calculate system-specific qualitative measurements (e.g. diameter, relative degree, control centrality and robustness of the system, etc.) and improve the system to satisfy the relative degree-based requirements. The workflow of the toolbox can be seen in Figure 1.

The functions of the toolbox can be performed step-by-step given its modular structure. Each module has a specific task and one function from each module calls the others. A system can be analysed by calling the main functions from the modules. The advantage of this structure is its modularity as each module can be expanded easily and further modules also implemented in a simple way. A list of their functions and dependencies on each other is presented in the manual.

Implementation
According to the aforementioned approach, the implemented functions of the toolbox were divided into three modules as follows: (1) network mapping module, (2) system characterisation module and (3) improvements and robustness module.

The network mapping module creates a dynamical system from a given network structure, i.e. the necessary matrices of the state-space model are generated for the topology in such a way, that the created system is structurally controllable and structurally observable. The determination of the input and output matrices can be achieved by the path finding and signal sharing methods19, which modify the result of the maximum matching algorithm.

The system characterisation module performs the calculation of 49 numerical measures to qualify the dynamical system based on its structure. The implemented measures, on the one hand, are well-known static measures (e.g. the number of nodes and edges, closeness and betweenness centralities), and, on the other hand, measures that characterise the dynamics of the system (e.g. structural controllability, observability, control centrality and relative degree). This module can also be used for the purpose of simple network analysis.

The improvement and robustness module integrates two main functions. On the one hand, it enables the input and output configurations of the system to be extended in such a way that the relative degree of the modified system does not exceed the initially defined threshold. For this purpose, this module implements five methods, namely the set covering-based grassroots and retrofit methods20, the centrality measures-based method20, the modified Clustering Large Applications based on Simulated Annealing algorithm (mCLASA), and the Geodesic Distance-based Fuzzy c-Medoid Clustering with Simulated Annealing algorithm (GDFCMSA)20,21. On the other hand, this module allows users to examine the robustness of the extended configurations by removing nodes from the network representation and by checking the structural controllability and structural observability of the damaged system.

The implemented methods are introduced in detail in the cited articles and the manual of the NOCAD toolbox.

Figure 1. Workflow of the utilisation of the NOCAD toolbox. The network mapping module provides two methods to create a dynamical system based on the topology of the state variables. The system characterisation module generates more than 49 measures to analysis, classify and characterise the developed system. The improvement and robustness module offers five algorithms to improve the system with additional inputs (observers) as well as outputs (controllers), and can analyse the robustness of the designed system.
Operation
In order to use the NOCAD toolbox\(^8\), installation of Octave or MATLAB is required. Then the directories of the toolbox must be copied into the working directory, or the directories of the toolbox must be added to the paths. The functions were implemented in Octave 5.1.0 and MATLAB R2016a on a Windows 64-bit system. On other operating systems, or with other Octave or MATLAB versions, proper operation is not guaranteed. Our toolbox is independent of other MathWorks toolboxes, it uses only the octave-networks-toolbox\(^22\) and the greedy set covering implementation\(^23\).

Use cases
In this section, the main functionalities of the NOCAD toolbox\(^18\) presented through examples of use cases. Although many biological networks are available from public databases, due to their complex nature, they are unsuitable for such a simple illustration. Therefore, the services of the NOCAD toolbox are presented on simple artificial networks.

The first step in each workflow is to create a state-space model from the adjacency matrix that presents the structural description of the system. This can be achieved by the use of path finding and signal sharing methods implemented in the first module. Both methods are modified versions of the maximum matching algorithm. An example of the application of the path finding method for the creation of a state-space model from the adjacency matrix (A) is shown in Figure 2. In this figure, B denotes the resulting input matrix, C the output matrix, while D stands for representing the direct feedthrough.

As the configuration above is not complex enough to demonstrate the functions of the second module, a more complex configuration of the input and output nodes is used. The sample input and output configurations can be seen in Figure 3, where the input and the output nodes are denoted by blue and red, respectively.

The system presented in Figure 3 consists of 9 state variables and 15 directed connections between them. Quality measures calculated by the System characterisation module of the NOCAD toolbox can be seen in Figure 4, Figure 5, and Figure 6.

In Figure 4, measures qualifying the whole system with one value are presented. The density shows that the number of edges

![Figure 2](image-url-1)

Figure 2. An example network with determined input (blue) and output (red) configurations according to the path finding method. The network represents the A state transition matrix. B denotes the input matrix in which the places of the nonzero elements are determined by the controller node allocation algorithm. Similarly, the C output matrix is defined with the observability analysis of the network of the state variables. The D matrix of the direct feedthrough contains only zeros.

![Figure 3](image-url-2)

Figure 3. The complex configuration of the input and output nodes used for the demonstration of the system characterisation module of the NOCAD toolbox.
Figure 4. The example network with system and node centrality measures.

node ID:	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
In degree:	2	3	1	2	1	2	3	0	1
Out degree:	1	2	1	4	3	2	1	1	0
Degree:	3	5	2	6	4	4	4	1	1
Scott’s centrality:	0.19	0.31	0.13	0.38	0.25	0.25	0.25	0.06	0.06
Closeness:	4.1	5.6	3.90	7.15	5.95	5.75	4.2	2.91	2.5
Betweenness:	1	9	0	9	0	7	4	0	0
PageRank:	25.42	26.46	13.74	6.075	3.78	5.9	7.37	2.49	8.75
Correlation in-out:	1.5	2.67	2	2.5	4	2.5	3	0	1
Correlation out-in:	2	1	2	2.33	2.5	0	2	0	2
Correlation out-out:	3	1.5	2	2.25	2.67	2.5	1	2	0
Control centrality:	0	0	7	0	0	0	7	0	0
Observe centrality:	0	0	0	0	0	0	0	0	6

Figure 5. Measures of node clustering and the representation of the topology of the network.
is almost a fifth of the possible maximum, and the diameter of the system (i.e. the longest shortest path in the network that presents its structure) is 4. The degree variance is 2.67, while the Freeman’s centrality is 0.43. The relative degree of the system is also 4. The Pearson coefficient shows that the in-in and in-out correlations are assortative in nature, while out-out and out-in correlations are likely to be disassortative. The system is controllable and observable. As no loop is present in the network, the percentage of loops relative to edges is 0%. As there are 6 edges that have symmetric edge pairs and the number of connections is 15, the percentage of the symmetric edge pairs relative to the edges is 40%.

Node centrality measures assigned to the state variables of the system are also presented in Figure 4. One of the most important values is the highest degree of the nodes, which belongs to state variable x_4. As Scott’s centrality is a normalised degree, the most important node is once again x_4. The closeness of node x_i is calculated as the ratio of the number of nodes reachable from x_i to the sum of their distances from x_i. The higher value indicates the more central position of the node, and, once again, node x_4 is the most central element. The betweenness centrality shows how many shortest paths intercept the given node. If a node has a high value, then it is a critical node in the structure. The highest value belongs to nodes x_2 and x_4. The PageRank assigns a percentage value for each node, based on their centrality roles if Markov-chains are modelled. The measure referred to as correlation shows the proportion of the number of edges of neighbours’ and the number of neighbours. This information is useful when determining the assortativity of the system. The control centrality and observe centrality measures determine how many state variables can be influenced or observed by the nodes.

In Figure 5, the first vectors (referred to as driver and sensor nodes) show the driver and sensor nodes as logical vectors. The following four vectors classify these nodes as source, external, internal and inaccessible driver and sensor nodes. These types of nodes are introduced in 24 in detail. In the next section of the figure, the controlling and observing matrices are presented. Generally, these matrices are sparse matrices, as only the columns of drivers and sensors contain nonzero values. In Figure 5, we converted them into row vectors for their appropriate visualisation. The values show the number of derivations necessary to influence or observe a state variable in the system. Next, the similarity of the driver and sensor nodes is presented. The similarity of driver nodes x_4 and x_6 is 0.81. In this case, the reason why it is less than 1 is that although they control the same set of nodes, the numbers of derivations that influence them are different. In terms of sensor similarity, sensor nodes x_2 and x_3...
observe the same set of nodes and they do this almost simultaneously, so their similarity is 0.91. \(R_C \) and \(R_O \) are the simple reachability matrices. They show which nodes can be controlled or observed by a given node. In \(R_C \), the \(i \)th column shows which nodes can control node \(i \). From the other viewpoint, elements in row \(i \) highlight those nodes which can be controlled by node \(i \). In this example, node \(x_8 \) can influence every node, but it does not guarantee structural controllability. The \(R_O \) matrix can be interpreted analogously with regard to observability.

Finally, measures of edge centrality are seen in Figure 6. The betweenness has the same meaning as in the case of nodes, that is, it yields the number of shortest paths that intercept the edge. From this perspective, the most critical edge is the edge \(a_{25} \) with a value of 10. The endpoint similarity shows how similar the influenced and observed sets of the state variables with regard to the endpoints of edges are. This metric has a high value if the edge is part of a cycle or creates a bridge in the network.

As no bridges are present in this network, only cycles can be recognised by this measure. The edge similarity shows how similar the roles of edges are, and it allows redundancies, to be located. In the topology presented, nodes \(x_1, x_2 \) and \(x_3 \), or nodes \(x_4, x_5, x_6 \) and \(x_7 \) also create parts of the network that possess redundancy.

For the demonstration of the last module, configurations provided by the first module are used again (Figure 2). Results provided by this module can be seen in Figure 7. In this case, five methods were applied to the system to extend the configuration as follows: the required relative degree was set at 2, while the alpha parameter of the cost function was set at 0.5. Results show that all the methods determine the same set of driver nodes for the system, that is, they are sufficient to influence state variables \(x_4 \) and \(x_8 \). The resultant cost is 1.5556, the relative degree is 2 which satisfies the requirements, and the mean of the relative degrees is 1.1111. In this configuration, six different nodes can be identified which can be damaged separately and the system

![Figure 7. Improvement and robustness analysis of the system.](image-url)
remains controllable. This is expressed by the value of robustness (66.6\%). The most important nodes in terms of controllability are x_2, x_4, and x_6. In the case of observability, methods yield different solutions with the exception of the centrality measures-based and mCLASA algorithms which provide the best configuration in this case. Although the cost as well as the maximum and mean of the relative degree were identical in the case of retrofit set covering-based and GDFCMSA methods as well, the robustness analysis of these configurations exhibits a higher degree of vulnerability.

Conclusions
In this article the Octave- and MATLAB-compatible NOCAD toolbox\(^1\) was proposed to support the network-based controllability and observability analysis of dynamical systems. The toolbox offers two methods to design a structurally controllable and observable system based on the state-transition matrix. The designed system can be analysed by 49 qualitative measures both from structural and dynamical points of view. The toolbox serves five methods to improve the designed system by adding new inputs and outputs to it, thus, its relative degree can be decreased. Then the robustness of the individual designs can also be evaluated. The modular structure of the toolbox supports the facile improvement of the modules by adding new functions and the toolbox can be extended by new modules as well. Even though the modules are built on each other, most of their functions can also be used independently from each other.

Although our goal in this paper is to draw the attention of researchers of life sciences to the services provided by the NOCAD toolbox, it can be utilised in practice in various fields of sciences as well, for example, it enables social networks to be controlled in the economy, transaction networks to be analysed in finance or dynamical systems to be designed in engineering.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
Source code available from: https://github.com/abonyilab/NOCAD.

 Archived source code at time of publication: https://doi.org/10.5281/zenodo.2656674\(^\text{a}\)

License: GNU General Public License v3.0

Author contributions
Dániel Leitold reviewed the literature on network science, developed the algorithms, implemented the Octave and MATLAB functions, designed as well as performed the experiments, and wrote the related sections. Ágnes Vathy-Fogarassy participated in the formalisation of the methodology. János Abonyi developed the algorithms, implemented the Octave and MATLAB functions and proofread the paper.

Grant information
This research was supported by the National Research, Development and Innovation Office NKFIH, through the project OTKA-116674 (Process mining and deep learning in the natural sciences and process development) and the EFOP-3.6.1-16-2016-00015 Smart Specialization Strategy (S3) Comprehensive Institutional Development Program. Dániel Leitold was supported by the ÚNKp-18-3 New National Excellence Program of the Ministry of Human Capacities.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
1. Liu YY, Sitolle JJ, Banabasi AL: Controllability of complex networks. Nature. 2011; 473(7346): 167–73. PubMed Abstract | Publisher Full Text
2. Liu X, Pan L: Detection of driver metabolites in the human liver metabolic network using structural controllability analysis. BMC Syst Biol. 2014; 8(1): 51. PubMed Abstract | Publisher Full Text | Free Full Text
3. Liu X, Pan L: Identifying driver nodes in the human signaling network using structural controllability analysis. IEEE/ACM Trans Comput Biol Bioinform. 2015; 12(2): 467–72. PubMed Abstract | Publisher Full Text
4. Guo WF, Zhang SW, Shi GQ, et al.: A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification. BMC Genomics. 2018; 19(Suppl 1): 924. PubMed Abstract | Publisher Full Text | Free Full Text
5. Nacher JC, Akutsu T: Controllability methods for identifying associations between critical control ncRNAs and human diseases. Methods Mol Biol. In Computational Biology of Non-Coding RNA. 2019; 1912: 289–300. PubMed Abstract | Publisher Full Text
6. Ravindran V, Nacher JC, Akutsu T, et al.: Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems. Sci Rep. 2019; 9(1): 2066. PubMed Abstract | Publisher Full Text | Free Full Text
7. Li M, Gao H, Wang J, et al.: Control principles for complex biological networks. Brief Bioinform. 2018. PubMed Abstract | Publisher Full Text
8. Liu YY, Banabasi AL: Control principles of complex systems. Rev Mod Phys. 2016; 88(3): 035006. Publisher Full Text
9. Chaturvedi V: Controllability of networks. 2015. Reference Source
10. Chu Y, Wang Z, Wang R, et al.: Wdnfinder: A method for minimum driver node set detection and analysis in directed and weighted biological network. J Bioinform Comput Biol. 2017; 15(5): 1750021. PubMed Abstract | Publisher Full Text
11. Zinoviev D: Recognize-Construct-Visualize-Analyze-Interpret. Pragmatic Bookshelf. 2018. Reference Source
12. Faradonbeh MKS, Tewari A, Michailidis G: Optimality of fast-matching algorithms for random networks with applications to structural controllability. IEEE Trans Control Netw Syst. 2017; 4(4): 770–780. Publisher Full Text
13. Wu L, Li M, Wang J, et al.: Cytoctrlanalyser: a cytoscape app for biomolecular network controllability analysis. Bioinformatics. 2018; 34(8): 1428–1430. PubMed Abstract | Publisher Full Text

1. NOCAD (Network Controllability Analysis and Design) is a software tool designed for the analysis and design of complex systems, including biological, social, and other types of networks.
14. Shannon P, Markiel A, Ozier O, et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498–504.
PubMed Abstract | Publisher Full Text | Free Full Text

15. Borrett SR, Lau MK: enaft: an R package for ecosystem network analysis. Methods Ecol Evol. 2014; 5(11): 1206–1213.
Publisher Full Text

16. Nepusz T, Vicsek T: Controlling edge dynamics in complex networks. Nat Phys. 2012; 8(7): 568–573.
Publisher Full Text

17. Taylor A, Higham DJ: Contest: A controllable test matrix toolbox for matlab. ACM Trans Math Softw. 2009; 35(4): 26.
Publisher Full Text

18. Abonyi J: abonyilab/nocad v2.0. 2019.
http://www.doi.org/10.5281/zenodo.2656674

19. Leitold D, Vathy-Fogarassy A, Abonyi J: Controllability and observability in complex networks—the effect of connection types. Sci Rep. 2017; 7(1): 151.
PubMed Abstract | Publisher Full Text | Free Full Text

20. Leitold D, Vathy-Fogarassy Á, Abonyi J: Evaluation of the complexity, controllability and observability of heat exchanger networks based on structural analysis of network representations. Energies. 2019; 12(3): 513.
Publisher Full Text

21. Leitold D, Vathy-Fogarassy A, Abonyi J: Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree. Sensors (Basel). 2018; 18(9): pii: E3096.
PubMed Abstract | Publisher Full Text | Free Full Text

22. Bounova G: Octave networks toolbox. 2015.
Reference Source

23. Gori F, Folino G, Jetten MS, et al.: MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics. 2011; 27(2): 196–203.
PubMed Abstract | Publisher Full Text | Free Full Text

24. Ruths J, Ruths D: Control profiles of complex networks. Science. 2014; 343(6177): 1373–1376.
PubMed Abstract | Publisher Full Text

25. Freeman LC: A set of measures of centrality based on betweenness. Sociometry. 1977; 40(1): 35–41.
Publisher Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com