CONSTRAINTS ON THE VERY HIGH ENERGY GAMMA-RAY EMISSION WITH HAWC

Y. Pérez Araujo, M. M. González and N. Fraija on behalf of the HAWC Collaboration
(a complete list of authors can be found at the end of the proceedings)

Universidad Nacional Autónoma de México,
Street number 3000, México, México
E-mail: yfperez@astro.unam.mx, magda@astro.unam.mx, nifraija@astro.unam.mx

Gamma-ray bursts (GRBs) are among the most luminous sources in the universe. The nature of their emission at TeV energies is one of the most relevant open issues related to these events. The temporal and spectral features inferred from the early and late emissions usually known as prompt and afterglow, respectively, can be interpreted within the context of the fireball model. The synchrotron self-Compton process is expected during the afterglow phase. We explain how the theoretical SSC light curves can be compared with hypothetical upper limit located at $z = 0.3$. We show the allowed parameter space of the microphysical parameters and density of the circumburst medium. The most restrictive results are obtained when the SSC process lies in the fast cooling regime.
1. Introduction

Gamma-ray bursts (GRBs) are the most luminous gamma-ray transient events in the Universe [1]. GRBs are mainly associated with the core collapse of massive stars or the merger of compact object binaries when the duration of their main emission is longer or less than few seconds, respectively [2–5]. The temporal and spectral features inferred from the early and late emissions usually known as prompt and afterglow, respectively, can be interpreted within the context of the fireball model [6]. Within this framework model, the prompt emission is described by internal shocks [7, 8] and magnetic reconnections [9], which convert a significant fraction of the kinetic and magnetic energy into radiation, and the afterglow is generated by the deceleration of the outflow in the circumburst medium [10].

The Large Area Telescope (LAT) instrument on board the Fermi satellite (Fermi-LAT; [11]) has detected high-energy emissions, from hundreds of MeV to a few GeV. These emissions are not consistent with an extrapolation of the prompt emission at keV-MeV energies and come late and has different temporal evolution (eg. [12, 13]). Also, 100-400 GeV photons were associated with the afterglow emission observations of the GRB180720B reported by H.E.S.S [14]. Lastly, very-high energy (VHE) photons with energies above 300 GeV were detected from the long GRB 190114C [15] by the MAGIC telescopes for more than 1000 s [15].

VHE emission is expected from the nearest and luminous bursts [16, 17], mainly because of its attenuation with the Extragalactic Background Light. During the afterglow phase, relativistic electrons are accelerated in forward shocks and cooled down by synchrotron and synchrotron-self Compton (SSC) processes [18].

Within the synchrotron forward shock model, photons from radio wavelengths to gamma-rays are expected, the SSC model provides photons up to the GeV - TeV energy range [19]. In this work, we focus on short GRBs which are closer than long GRBs to the average redshift of 0.48 and, are likely surrounded by a homogeneous interstellar medium [20]. We obtain expressions for VHE light curves of the afterglow emission in the SSC model assuming a homogeneous medium. We explain how these light curves can be compared with observed upper limits to restrict the microphysical parameters as in the different cooling phases. We show results for a hypothetical burst with X-ray fluence of 5×10^{-7} erg cm$^{-2}$ and an upper limit for the VHE fluence in the energy range of hundreds of GeV of 1×10^{-6} erg cm$^{-2}$. These values were chosen since they are typical for bursts observed by Fermi-GBM and the HAWC observatory, two monitor instruments.

2. SSC Model

We have extended the model presented by [21] where the spectrum and light curves for the synchrotron radiation are developed in detailed. The SSC is developed by [22] and extended for the slow cooling regime by [23]. For the SSC scenario, in [24] we present the computation of the spectral breaks, the maximum flux and the light curves for non-relativistic fast and slow cooling regimes. These calculations assume a photon spectrum described by three power-laws defined by the characteristic (E_m) and cooling (E_c) synchrotron energy breaks and an electron spectral index of $p = 2.4$. An expression for the energy break (E_{KN}) in the Klein-Nishina (KN) regime is also given. The required information to obtain the theoretical light curves is the apparent isotropic
kinetic energy of the blast wave (E_{iso}), the density of surrounding medium (n), the redshift (z), the luminosity distance (D_L) from the burst to the Earth, the fraction of energy given to the magnetic field (ϵ_B) and electrons (ϵ_e). Figure 1 shows examples of theoretical SSC light curves. As observed, some light curves appear sharp while others are wider in time. The start time is a parameter chosen between 1 and 20 seconds, and together with the density of the surrounding medium and the kinetic energy, define the bulk Lorentz factor. We assume an efficiency of 20% between the kinetic and radiated energy.

Figure 1: For illustrative purposes the flux as a function of time predicted by the SSC model as described in red, blue and green lines show the theoretical light curves in the fast cooling regime assuming different combination of microphysical parameters ($[\epsilon_B=1.4 \times 10^{-2}, \epsilon_e=2.6 \times 10^{-2}], [\epsilon_B=6.5 \times 10^{-3}, \epsilon_e=1.3 \times 10^{-2}]$ and $[\epsilon_B=5.7 \times 10^{-3}, \epsilon_e=7.1 \times 10^{-3}]$, respectively) and different start times ($t_{\text{start}} = 0$ sec, $t_{\text{start}} = 3$ seconds and $t_{\text{start}} = 11$ sec, respectively). Slow cooling regime light curves are plotted in orange and black are derived assuming $[\epsilon_B=1.9 \times 10^{-4}, \epsilon_e=8.0 \times 10^{-3}]$ and $[\epsilon_B=7.8 \times 10^{-6}, \epsilon_e=4.5 \times 10^{-2}]$, respectively. For all the cases we assume a redshift of $z = 0.3$, $n = 1$ cm$^{-3}$ and the isotropic energy of $E_{\text{iso}} = 3.6 \times 10^{51}$ erg.

For the analysis presented here, we have defined three cases: purely fast cooling, purely fast cooling and the transition regimes. The pure fast cooling regime is defined when $E_m > E_c$ from 0 to 20 seconds. The purely slow cooling regime is defined when $E_c < E_m$ from 1 to 20 seconds since the VHE emission from afterglow always gets born as fast cooling regime. Finally, the transition regime is defined when the transition from the fast to the slow cooling regime occurs at times later than 1 second and before 20 seconds. Figure 2 shows a histogram of E_m, E_c and E_{KN}. We would like to compare these light curves with observations of VHE instruments then, we require $E_{\text{KN}} > 1$ TeV and the observation energy equals to 500 GeV. This restriction excludes a quarter of the fast cooling cases, almost none of the slow cooling cases, and half of the transition cases. By comparing the number of cases with $E_m > 1$ TeV for fast cooling we can conclude that most of the cases will be in the energy range of $E_c < E < E_m$. Furthermore, in the slow cooling regime, for most of the cases, the observation energy is below E_c thus, a small number of cases will be in the high-energy power law ($E_c < E$). The transition cases show similar distributions for E_m and E_c that crosses at the observation energy.
3. Analysis and Results

We calculate the theoretical light curves varying the parameters ϵ_B, ϵ_e and n within the ranges of $[10^{-6}, 10^{-1}]$, $[10^{-2}, 10^{-1}]$ and $[10^{-6}, 10^3]$ cm$^{-3}$, respectively [25]. To show the potential of the analysis, we have assumed a hypothetical GRB that could be observed by Fermi-GBM and followed up by the HAWC observatory. A typical Fermi-GBM burst in the field of view of HAWC would have an X-ray fluence of 5×10^{-7} erg cm$^{-2}$ and a HAWC upper limit for the fluence in the energy range of 80-800 GeV of 1×10^{-6} erg cm$^{-2}$ for a short burst as GRB 170206A in a time window of 2 seconds [26]. Then, we have assumed an equal upper limit for ten consecutive time windows from 0 to 20 seconds and compare them to the theoretical light curves at the observation energy of 500 GeV. It is important to mention that in a real case, the observational flux upper limit should be calculated for the corresponding spectral index depending of the cooling regime and its respective power law. We assume $z = 0.3$, similar to the average value expected for short GRBs [20].

4. Conclusions

We have presented the theoretical SSC light curves when the relativistic outflow decelerates in homogeneous circumstellar medium. We have shown the expected light curves when the SSC process lies in the fast, slow and the transition from fast to slow cooling regime. We have considered...
a hypothetical GRB located at $z = 0.3$ which could have been detected by Fermi-GBM and followed by the HAWC observatory. We have considered an hypothetical flux upper limit to constrain the microphysical parameters and the circumburst density through a SSC forward shock model. The flux upper limit was calculated for the corresponding spectral index of each power law and cooling regime. We found that the parameter space is mostly constrained for the middle- and high-energy power law of the fast cooling regime, either in the purely (fast or slow) regime or the transition regime.

Acknowledgments

We acknowledge the support from: the US National Science Foundation (NSF); the US Department of Energy Office of High-Energy Physics; the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnología (CONACyT), México, grants 271051, 232656, 260378, 179588, 254964, 258865, 243290, 132197, A1-S-46288, A1-S-22784, cátedras 873, 1563, 341, 323, Red HAWC, México; DGAPA-UNAM grants IG101320, IN111716-3, IN111419, IA102019, IN110621, IN110521; VIEP-BUAP; PIFI 2012, 2013, PROFOCIE 2014, 2015; the University of Wisconsin Alumni Research Foundation; the Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory; Polish Science Centre grant, DEC-2017/27/B/ST9/02272; Coordinación de la Investigación Científica
de la Universidad Michoacana; Royal Society - Newton Advanced Fellowship 180385; Generalitat Valenciana, grant CIDEGENT/2018/034; Chulalongkorn University’s CUniverse (CUAASC) grant; Coordinación General Académica e Innovación (CGAI-UdeG), PRODEP-SEP UDG-CA-499; Institute of Cosmic Ray Research (ICRR), University of Tokyo. H.F. acknowledges support by NASA under award number 80GSFC21M0002. We also acknowledge the significant contributions over many years of Stefan Westerhoff, Gaurang Yodh and Arnulfo Zepeda Domínguez, all deceased members of the HAWC collaboration. Thanks to Scott Delay, Luciano Díaz and Eduardo Murrieta for technical support.

References

[1] P. Kumar and B. Zhang, The physics of gamma-ray bursts & relativistic jets, *PhysRep* 561 (2015) 1 [1410.0679].

[2] T.J. Galama, P.M. Vreeswijk, J. van Paradijs, Kouveliotou and et al., An unusual supernova in the error box of the γ-ray burst of 25 April 1998, *Nat* 395 (1998) 670 [astro-ph/9806175].

[3] V.V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts, *Nat* 357 (1992) 472.

[4] J.S. Bloom, S.R. Kulkarni, S.G. Djorgovski, A.C. Eichelberger, P. Côté and et al., The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection, *Nat* 401 (1999) 453 [astro-ph/9905301].

[5] R.C. Duncan and C. Thompson, Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts, *ApJL* 392 (1992) L9.

[6] G. Cavallo and M.J. Rees, A qualitative study of cosmic fireballs and gamma -ray bursts., *MNRAS* 183 (1978) 359.

[7] M.J. Rees and P. Meszaros, Unsteady outflow models for cosmological gamma-ray bursts, *ApJL* 430 (1994) L93 [astro-ph/9404038].

[8] S. Kobayashi, T. Piran and R. Sari, Can Internal Shocks Produce the Variability in Gamma-Ray Bursts?, *ApJ* 490 (1997) 92 [astro-ph/9705013].

[9] J.C. Wheeler, I. Yi, P. Höflich and L. Wang, Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts, *ApJ* 537 (2000) 810 [astro-ph/9909293].

[10] R.L. Becerra, A.M. Watson, W.H. Lee and et al, Photometric Observations of Supernova 2013cq Associated with GRB 130427A, *ApJ* 837 (2017) 116 [1702.04762].

[11] W. Atwood, A. Abdo, M. Ackermann, W. Althouse, B. Anderson and et al., The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission, *ApJ* 697 (2009) 1071 [0902.1089].

[12] M. Ackermann, M. Ajello, W. Atwood, L. Baldini and a.e. Ballet, Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, *PRD* 82 (2010) 092004 [1008.3999].
[13] M. Ackermann, M. Ajello, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini et al., *Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A*, *Science* **343** (2014) 42 [1311.5623].

[14] H. Abdalla, R. Adam, F. Aharonian, F. Ait Benkhali, E.O. Angün and et al., *A very-high-energy component deep in the γ-ray burst afterglow*, *Nat* **575** (2019) 464 [1911.08961].

[15] R. Mirzoyan, *First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C*, *The Astronomer’s Telegram* **12390** (2019) 1.

[16] N. Fraija, P. Veres, P. Beniamini and et al., *On the origin of the multi-GeV photons from the closest burst with intermediate luminosity: GRB 190829A*, arXiv e-prints (2020) arXiv:2003.11252 [2003.11252].

[17] N. Fraija, A.C.C.d.E.S. Pedreira and et al., *Modeling the Observations of GRB 180720B: from Radio to Sub-TeV Gamma-Rays*, *ApJ* **885** (2019) 29 [1905.13572].

[18] N. Fraija, R. Barniol Duran and P. Beniamini, *Synchrotron Self-Compton as a Likely Mechanism of Photons beyond the Synchrotron Limit in GRB 190114C*, *ApJ* **883** (2019) 162 [1907.06675].

[19] B. Zhang and P. Mészáros, *High-Energy Spectral Components in Gamma-Ray Burst Afterglows*, *ApJ* **559** (2001) 110 [astro-ph/0103229].

[20] E. Berger, *Short-Duration Gamma-Ray Bursts*, *ARA&A* **52** (2014) 43 [1311.2603].

[21] R. Sari, T. Piran and R. Narayan, *Spectra and Light Curves of Gamma-Ray Burst Afterglows*, *ApJL* **497** (1998) L17 [astro-ph/9712005].

[22] A. Panaitescu and P. Mészáros, *Gamma-Ray Bursts from Upscattered Self-absorbed Synchrotron Emission*, *ApJL* **544** (2000) L17 [astro-ph/0009309].

[23] P. Kumar and T. Piran, *Some Observational Consequences of Gamma-Ray Burst Shock Models*, *ApJ* **532** (2000) 286 [astro-ph/9906002].

[24] S. Dichiara, M. Magdalena González, N. Fraija, I. Torres, Delia Becerril and et al., *Search of extended or delayed TeV emission from GRBs with HAWC*, in *35th International Cosmic Ray Conference (ICRC 2017)*, vol. 301 of *International Cosmic Ray Conference*, p. 620, Jan., 2017 [1709.06488].

[25] R. Santana, R. Barniol Duran and P. Kumar, *Magnetic Fields in Relativistic Collisionless Shocks*, *ApJ* **785** (2014) 29 [1309.3277].

[26] R. Alfaro, C. Alvarez, J.D. Álvarez, R. Arceo, J.C. Arteaga-Velázquez, D. Avila Rojas et al., *Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory*, *ApJ* **843** (2017) 88 [1705.01551].
Full Authors List: HAWC Collaboration

A.U. Abysekara18, A. Albert11, R. Alfaro1, C. Alvarez12, J.D. Álvarez25, J.R. Angeles Camacho14, J.C. Arteaga-Velázquez10, K. P. Arunbabu17, D. Avila Rojas14, H.A. Ayala Solares28, R. Babu25, V. Baghmayan15, A.S. Barber18, J. Becerra Gonzalez11, E. Belmonte-Moreno14, S.Y. BenZvi29, D. Berley38, C. Brisbois39, K.S. Caballero-Mora42, T. Capistrán12, A. Carramiñana18, S. Casanova15, O. Changarro-Amaro3, U. Cotti40, J. Cotzomil8, S. Coutinho de León18, E. De la Fuente46, C. de León26, L. Diaz-Cruz2, R. Diaz Hernandez18, J.C. Díaz-Vélez46, B.L. Dingus21, M. Durocher21, M.A. DuVernois45, R.W. Ellsworth36, K. Engel39, C. Espinosa14, K.L. Fan39, K. Fang48, M. Fernández Alonso29, B. Fick28, H. Fleischhack31,11,52, J.L. Flores46, N.I. Fraija12, D. García14, J.A. García-González20, J.L. García-Luna46, G. García-Torales46, F. Garfias12, G. Giacinti12, H. Gökşu23, M.M. González12, J.A. Goodman39, J.P. Harding34, S. Hernandez14, I. Herzog25, J. Hintz23, B. Hona48, D. Huang25, F. Hueyotl-Zahuantitla41, C.M. Hui23, B. Humensky39, P. Hüntenemeyer25, A. Iriarte12, A. Jardim-Biclu22,49,50, H. Jhee43, V. Joshi7, D. Kieda46, G. J. Kunde23, S. Kurwan22, A. Lara21, J. Lee43, W.H. Lee22, D. Lennarz9, H. León Vargas14, J. Lennemann17, R.S. Longinotti12, R. López-Coto34, G. Luis-Raygadas, J. Lundeet24, K. Malone21, V. Marandon22, O. Martinez8, I. Martinez-Castellanos89, H. Martínez-Huerta38, J. Martínez-Castro12, J.A.I. Matthews42, J. MeiNer11, P. Miranda-Romagnoli34, J.A. Morales-Soto40, E. Moreno9, M. Mostafá25, A. Nayerhodar15, L. Nellen13, M. Newbold48, M.U. Nisa24, R. Noriega-Papaqui34, L. Olivera-Nieto22, N. Omodei12, A. Peisker24, Y. Pérez Araújo12, E.G. Pérez-Pérez44, C.D. Rho43, C. Riéville39, D. Rosa-González26, E. Ruiz-Velasco12, J. Ryan18, H. Salazar9, F. Salesa Greus15,53, A. Sandolli14, M. Schneider99, H. Schoo Lemmer22, J. Serna-Franco14, G. Sinnis21, A.J. Smith39, R.W. Springer48, P. Surajbali22, I. Taboada3, M. Tanner28, K. Tollefsen13, L. Torres18, R. Torres-Escobedo30, R. Turner25, F. Ureña-Mena18, L. Villaseñor6, X. Wang25, I.J. Watson43, T. Weisgarber23, F. Werner22, E. Willocx39, J. Wood23, G.B. Yodh15, A. Zepeda4, H. Zhou10

1-Barnard College, New York, NY, USA, 2-Department of Chemistry and Physics, California University of Pennsylvania, California, USA, 3-PA, USA, 4-Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México, 4-Physics Department, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México, 5-Colorado State University, Physics Dept., Fort Collins, CO, USA, 6-DCI-UDG, Leon, Gto, México, 7-Erlangen Center for Astroparticle Physics, Friedrich Alexander Universität, Erlangen, By, Germany, 8-Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, México, 9-School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA, USA, 10-School of Physics and Astronomy and Computational Sciences, George Mason University, Fairfax, VA, USA, 11- NASA Goddard Space Flight Center, Greenbelt, MD, USA, 12-Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, México, 13-Instituto de Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad de México, México, 14-Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, México, 15-Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland, 16-Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, 17-Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de México, México, 18-Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla, México, 19-INFN Padova, Padova, Italy, 20-Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, México, 21-Physics Division, Los Alamos National Laboratory, Los Alamos, NM, USA, 22-Max-Planck Institute for Nuclear Physics, Heidelberg, Germany, 23-NASA Marshall Space Flight Center, Astrophysics Office, Huntsville, AL, USA, 24-Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA, 25-Department of Physics, Michigan Technological University, Houghton, MI, USA, 26-Space Science Center, University of New Hampshire, Durham, NH, USA, 27-The Ohio State University at Lima, Lima, OH, USA, 28-Department of Physics, Pennsylvania State University, University Park, PA, USA, 29-Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA, 30-Tsing-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China, 31-Sangkyyunkwan University, Gyeonggi, Rep. of Korea, 32-Stanford University, Stanford, CA, USA, 33-Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA, 34-Universidad Autónoma del Estado de Hidalgo, Pachuca, Hgo, México, 35-Department of Physics and Astronomy, University of California, Irvine, CA, USA, 36-Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA, 37-Universidad de Costa Rica, San José, Costa Rica, 38-Department of Physics and Mathematics, Universidad de Monterrey, San Pedro Garza García, N.L., México, 39-Department of Physics, University of Maryland, College Park, MD, USA, 40-Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México, 41-UCF-MCTP, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México, 42-Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA, 43-University of Seoul, Seoul, Rep. of Korea, 44-Universidad Politécnica de Pachuca, Pachuca, Hgo, México, 45-Department of Physics, University of Wisconsin-Madison, Madison, WI, USA, 46-CUCEI, CUCEA, Universidad de Guadalajara, Guadalajara, Jalisco, México, 47-Universität Würzburg, Institute for Theoretical Physics and Astrophysics, Würzburg, Germany, 48-Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA, 49-Department of Physics, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand, 50-National Astronomical Research Institute of Thailand (Public Organization), Don Kao, MaeRim, Chiang Mai 50180, Thailand, 51-Department of Physics, Catholic University of America, Washington, DC, USA, 52-Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, MD, USA, 53-Instituto de Física Corpuscular, CSIC, Universitat de València, Paterna, Valencia, Spain