MODELS FOR THE COHOMOLOGY OF CERTAIN POLYHEDRAL PRODUCTS

M. BENDERSKY AND J. GRBIČ

Abstract. For a commutative ring \(\mathbb{k} \) with unit, we describe and study various differential graded \(\mathbb{k} \)-modules and \(\mathbb{k} \)-algebras which are models for the cohomology of polyhedral products \((\mathbb{C}X, X)^K \). Along the way, we prove that the integral cohomology \(H^*(D^1, S^0)^K; \mathbb{Z} \) of the real moment-angle complex is a Tor module, the one that does not come from a geometric setting. We also reveal that the apriori different cup product structures in \(H^*((DX, X)^K; \mathbb{Z}) \) and in \(H^*((D^n, S^{n-1})^K; \mathbb{Z}) \) for \(n \geq 2 \) have the same origin. As an application, this work sets the stage for studying the based loop space of \((\mathbb{C}X, X)^K \) in terms of the bar construction applied to the differential graded \(\mathbb{Z} \)-algebras \(B(C^*(X, K)), K \) quasi-isomorphic to the singular cochain algebra \(C^*((\mathbb{C}X, X)^K; \mathbb{Z}) \).

Contents

1. Introduction 1
2. Additive models 3
 2.1. Real moment-angle complexes 3
 2.2. A generalisation to polyhedral products 8
3. Algebra models 11
References 13

1. Introduction

One of the most studied algebraic invariants of topological spaces is their cohomology ring. With its rich and relatively approachable structure, cohomology is a homotopy theoretical flagship invariant harnessed by a host of mathematical disciplines.

In the realm of toric topology, polyhedral products \((X, A)^K \) are constructed as a functorial interplay between topology and combinatorics in term of topological pairs \((X, A) \) and a simplicial complex \(K \). More precisely, let \(K \) be a simplicial complex on the vertex set \([m] = \{1, \ldots, m\} \) and let \((X, A) = \{ (X_i, A_i) \}_{i=1}^m \) be an \(m \)-tuple of CW-pairs. The polyhedral product is defined by

\[
(X, A)^K = \bigcup_{\sigma \in K} (X, A)^\sigma \subseteq \prod_{i=1}^m X_i
\]

where

\[
(X, A)^\sigma = \prod_{i=1}^m Y_i, \quad Y_i = \begin{cases} X_i & \text{for } i \in \sigma \\ A_i & \text{for } i \notin \sigma. \end{cases}
\]

With \(CX_i \) being the cone on \(X_i \), we restrict our attention to polyhedral products where the topological pairs are \((CX_i, X_i) \) for all \(i \). Of particular importance are \(X_i = S^1 \) for all \(i \) in which case the polyhedral
Buchstaber and Panov [4] showed that there is an algebra isomorphism for the real moment-angle complex, denoted by \mathbb{R}_K.

Before we start with the study of polyhedral products, let us lay down some basic combinatorial notations. For an abstract simplicial complex K on the vertex set $[m]$, let $|K|$ denote its geometric realisation and let K_J be the full subcomplex of K consisting of all simplices of K with vertices in $J \subseteq [m]$.

Moment-angle complexes are known as the bellwethers for the combinatorial coding of topological and geometrical properties. For example, there is a stable decomposition of a real moment-angle complex $\mathbb{R}_K = (D^1, S^0)^K$ in terms of full subcomplexes of the simplicial complex K given by

$$\Sigma(D^1, S^0)^K = \bigvee_{J \subseteq [m]} |\Sigma K_J|.$$

This decomposition was generalised in [1] to a stable decomposition of polyhedral products, which specialises to the following stable decomposition of $(C \Sigma X, X)^K$,

$$\Sigma(C \Sigma X, X)^K \to \bigvee_{J \subseteq [m]} |\Sigma K_J| \wedge Y^J$$

where

$$Y^J = \bigwedge_{i \in J} Y_i$$

if $i \in J$ and $Y_i = S^0$ if $i \notin J$.

Directly from these stable decompositions, we can read off the underlying k-module of the cohomology of the real moment-angle complex, of the complex moment-angle complex and of the polyhedral product $(C \Sigma X, X)^K$, respectively as

$$H^*((D^1, S^0)^K; k) \cong \bigoplus_{J \subseteq [m]} H^{*-1}(|K_J|; k), \quad H^*((D^2, S^1)^K; k) \cong \bigoplus_{J \subseteq [m]} H^{*}-|J|(-1)\left(|K_J|; k\right)$$

and

$$H^*((C \Sigma X, X)^K; k) \cong \bigoplus_{J \subseteq [m]} H^*\left(|\Sigma K_J|; k\right) \otimes H^J$$

where $H^J = \bigotimes_{i \in J} H_i$ with $H_i = \tilde{H}^*(X_i; k)$ if $i \in J$ and $H_i = k$ if $i \notin J$ assuming that $\tilde{H}^*(X_i; k)$ are free k-modules for all i.

Let K be a simplicial complex on the vertex set $[m]$. Denote by $k[v_1, \ldots, v_m]$ the polynomial ring on m variables v_i and for every set $I = \{i_1, \ldots, i_r\} \subseteq [m]$, let $v_I = v_{i_1} \cdots v_{i_r}$. Then the Stanley-Reisner ring is defined by

$$SR[K] = k[v_1, \ldots, v_m]/\mathcal{I}_K$$

where $\mathcal{I}_K = (v_I \mid I \notin K)$ is the ideal generated by those square-free monomials v_I for which I is not a simplex of K. If v_1, \ldots, v_m are all of degree 2, then

$$H^*((\mathbb{C}P^\infty, *)^K; k) \cong SR[K].$$

Using the language of toric varieties Franz [7] and independently using the existence of the homotopy fibration

$$T^m = (S^1, S^1)^K \to (D^2, S^1)^K \to (\mathbb{C}P^\infty, *)^K \to (\mathbb{C}P^\infty, \mathbb{C}P^\infty)^K = BT^m$$

Buchstaber and Panov [4] showed that there is an algebra isomorphism

$$H^*((D^2, S^1)^K; \mathbb{Z}) \cong \text{Tor}_{k[v_1, \ldots, v_m]}(SR[K], \mathbb{Z}).$$
Similarly, Franz [6] showed that there is an additive isomorphism

\[H^*(D^1, S^0)^K \cong \text{Tor}_{\mathbb{Z}_2[t_1, \ldots, t_m]}(SR_{\mathbb{Z}_2}[K], \mathbb{Z}_2) \]

where \(t_i \) are of degree 1 and \(SR_{\mathbb{Z}_2}[K] = \mathbb{Z}_2[t_1, \ldots, t_m]/I_K \) which cannot be extended to a multiplicative isomorphism for the canonical product on the Tor. This additive description of the cohomology of the real moment-angle complex can be related to the homotopy fibration

\[\mathbb{Z}_2^n = (S^0, S^0)^K \longrightarrow (D^1, S^0)^K \longrightarrow (\mathbb{R}P^\infty, *)^K \longrightarrow (\mathbb{R}P^\infty, \mathbb{R}P^\infty)^K = B\mathbb{Z}_2^m. \]

In this paper we extend Franz’s result by showing, as Corollary 2.16, that \(H^*((D^1, S^0)^K; \mathbb{k}) \) is additively isomorphic to a Tor \(\mathbb{k} \)-module. However this Tor \(\mathbb{k} \)-module does not have a geometric origin and the additive isomorphism cannot be extended to a one of algebras.

 Mimicking our approach for the cohomology of the real moment-angle complex, that is, by considering the polynomial ring on suspended cohomological classes of all \(X_i \)’s and introducing a generalised Stanley-Reisner ring \(SR(X, K) \), see Definitions 2.12 and 2.13 we next try to describe \(H^*((CX, X)^K; \mathbb{k}) \) as a Tor module. This approach allows us only to identify \(H^*((CX, X)^K; \mathbb{k}) \) as a summand of such a Tor module, see Proposition 2.10. To possibly get a description of \(H^*((CX, X)^K; \mathbb{k}) \) as a Tor module, in future work we plan to replace the polynomial ring on suspended cohomology classes of all \(X_i \)’s by an algebraic object that behaves as an algebraic “delooping” of \(X_i \)’s.

In Section 3 we give two integral algebraic models \(B(X, K) \) and \(B(C^*(X), K) \) for the cohomology of \((CX, X)^K \), see Propositions 3.2 and 3.4. The results are obtained by combining Franz’s [6] and Cai’s [5] model of the integral cohomology ring of the real moment-angle complex with the result of Bahri, Bendersky, Cohen and Gitler [2] stating that the algebraic structure in \(H^*((CX, X)^K; \mathbb{k}) \) depends only on the cup product structure in \(H^*((D^1, S^0)^K; \mathbb{k}) \) and the cup product structure in \(H^*(X_i; \mathbb{k}) \) for all \(i \). The algebraic model \(B(C^*(X); \mathbb{k}) \) is particularly interesting as it is quasi-isomorphic to the k-cochains on \((CX, X)^K \) and therefore the bar construction can be applied to it to deduce a model over \(\mathbb{k} \) for the based loop space of \((CX, X)^K \) when \(X_i \) have free k-cohomology.

We finish the paper by explaining how seemingly different the cup product structures in \(H^*((D^1, S^0)^K; \mathbb{Z}) \) and in \(H^*((D^n, S^{n-1})^K; \mathbb{Z}) \) for \(n \geq 2 \) have the same origin.

2. Additive models

2.1. Real moment-angle complexes. Let \(\mathbb{k} \) be a commutative ring, which in this paper will be assumed to be either the ring \(\mathbb{Z} \) of integers or a field. Let \(y_1, \ldots, y_m \) be of degree 1. Define the graded algebra \(\mathbb{k}\langle y_1, \ldots, y_m \rangle \) as

\[\mathbb{k}\langle y_1, \ldots, y_m \rangle = T(y_1, \ldots, y_m)/(y_iy_j = y_jy_i) \]

where \(T \) is a free associative algebra. Notice that here we are assuming commutativity not graded commutativity. Considered as a non-graded object \(\mathbb{k}\langle y_1, \ldots, y_m \rangle \) is isomorphic to the polynomial algebra \(\mathbb{k}[y_1, \ldots, y_m] \).

Given a subset \(I = \{i_1, \ldots, i_r\} \subset [m] \), we denote by \(y_I \) the square-free monomial \(y_{i_1} \cdots y_{i_r} \) in \(\mathbb{k}\langle y_1, \ldots, y_m \rangle \).

Define an analogue of the Stanley-Reisner ring to be

\[SR(K) = \mathbb{k}\langle y_1, \ldots, y_m \rangle/I_K \]

where \(I_K = \langle y_I \mid I \notin K \rangle \) is the ideal generated by those monomials \(y_I \) for which \(I \) is not a simplex of \(K \).
For $\omega_1, \ldots, \omega_m$ of degree 0, define the graded algebra L as
\[
L(\omega_1, \ldots, \omega_m) = T(\omega_1, \ldots, \omega_m)/ (\omega_i^2 = 0, \ \omega_i \omega_j = -\omega_j \omega_i).
\]
As in the case of $k(y_1, \ldots, y_m)$, the multiplication is not graded commutative, and considered as a non-graded object $L(\omega_1, \ldots, \omega_m)$ is isomorphic to the exterior algebra $\Lambda(\omega_1, \ldots, \omega_m)$.

Define the bigraded differential algebra (E, d) by
\[
E = T(\omega_1, \ldots, \omega_m, y_1, \ldots, y_m)/ (\omega_i^2 = 0, \ \omega_i y_j = -\omega_j y_i, \ y_i y_j = y_j y_i, \ \omega_i y_j = y_j \omega_i)
\]
such that
\[
\text{bideg } \omega_i = (-1, 1), \quad \text{bideg } y_i = (0, 1),
\]
d$\omega_i = y_i$, \quad dy_i = 0
and requiring the differential d to satisfy the identity
\[
d(a \cdot b) = d(a) \cdot b + (-1)^{\deg_2(a)} a \cdot d(b)
\]
where $\text{bideg}(a) = (\deg_1(a), \deg_2(a))$.

Lemma 2.1. The differential graded algebra (E, d) with the differential given by $d(\omega_i) = y_i$ and $d(y_i) = 0$ is a free $k(y_1, \ldots, y_m)$-resolution of k.

Proof. Consider k with the $k(y_1, \ldots, y_m)$-module structure given by the augmentation map sending each y_i to zero. Rewrite E as
\[
E = L(\omega_1, \ldots, \omega_m) \otimes_k k(y_1, \ldots, y_m)
\]
emphasising that $\omega_i y_j = y_j \omega_i$. Then (E, d) together with the augmentation map $\varepsilon: E \longrightarrow k$ defines a cochain complex of $k(y_1, \ldots, y_m)$-modules
\[
0 \longrightarrow L^m(\omega_1, \ldots, \omega_m) \otimes k(y_1, \ldots, y_m) \xrightarrow{d} \cdots \xrightarrow{d} L^i(\omega_1, \ldots, \omega_m) \otimes k(y_1, \ldots, y_m) \xrightarrow{d} k(y_1, \ldots, y_m) \xrightarrow{\varepsilon} k \longrightarrow 0
\]
where $L^i(\omega_1, \ldots, \omega_m)$ is the submodule of $L(\omega_1, \ldots, \omega_m)$ generated by monomials of length i. We shall show that $\varepsilon: (E, d) \longrightarrow (k, 0)$ is a quasi-isomorphism. There is an obvious inclusion $\eta: k \longrightarrow E$ such that $\varepsilon \eta = \text{id}$. To finish the proof we construct a cochain homotopy between id and $\eta \varepsilon$, that is, a set of k-linear maps $s = \{s^{-i,j}: E^{-i,j} \longrightarrow E^{-i-1,j}\}$ satisfying the identity
\[
ds + sd = \text{id} - \eta \varepsilon.
\]
For $m = 1$, we define the map $s_1: E_1^{0,*} = k(y) \longrightarrow E_1^{-1,*}$ by
\[
s_1(a_0 + a_1 y + \cdots + a_j y^j) = \omega(a_1 + a_2 y + \cdots + a_j y^{j-1})\]
Then for $f = a_0 + a_1 y + \cdots + a_j y^j \in E_1^{0,*}$ we have $ds_1 f = f - a_0 = f - \eta \varepsilon f$ and $s_1 df = 0$. On the other hand, for $\omega f \in E_1^{-1,*}$ we have $s_1 d(\omega f) = \omega f$ and $ds_1 (\omega f) = 0$. In any case s_1 holds. Now we assume by induction that for $m = k - 1$ the required cochain homotopy $s_{k-1}: E_{k-1} \longrightarrow E_{k-1}$ is already constructed. Since $E_k = E_{k-1} \otimes E_1$, $\varepsilon_k = \varepsilon_{k-1} \otimes \varepsilon_1$ and $\eta_k = \eta_{k-1} \otimes \eta_1$, a direct calculation shows that the map
\[
s_k = s_{k-1} \otimes \text{id} + \eta_{k-1} \varepsilon_{k-1} \otimes s_1
\]
is a cochain homotopy between id and $\eta_k \varepsilon_k$.
Since $L^i(\omega_1, \ldots, \omega_m) \otimes k\langle y_1, \ldots, y_m \rangle$ is a free $k\langle y_1, \ldots, y_m \rangle$-module, \([\bullet]\) is a free resolution for the $k\langle y_1, \ldots, y_m \rangle$-module k. This is an analog of the Koszul resolution.

Since $L(\omega_1, \ldots, \omega_m) \otimes k\langle y_1, \ldots, y_m \rangle$ is a resolution of k by free $k\langle y_1, \ldots, y_m \rangle$-modules, it follows that the cohomology of the complex

$$\left(L(\omega_1, \ldots, \omega_m) \otimes_k k\langle y_1, \ldots, y_m \rangle\right) \otimes_{k\langle y_1, \ldots, y_m \rangle} SR(K) = L(\omega_1, \ldots, \omega_m) \otimes_k SR(K)$$

is isomorphic as a k-module to $\text{Tor}_{k\langle y_1, \ldots, y_m \rangle}(SR(K), k)$.

We aim to show that there is an additive isomorphism between the cohomology $H^*((D^0, S^1)^K; k)$ and the k-module $\text{Tor}_{k\langle y_1, \ldots, y_m \rangle}(SR(K), k)$. Following Buchstaber-Panov’s work \([4]\), the idea is to first reduce the differential graded algebra (E, d) to a finite dimensional quotient $\bar{R}(K)$ without changing the cohomology. We then proceed by showing that as a k-module $\bar{R}(K)$ is quasi-isomorphic to the underlying k-module of a certain differential graded algebra $B(K)$ which in turn is quasi-isomorphic to the singular cochains of $(D^1, S^0)^K$.

Definition 2.2. Let K be a simplicial complex on $[m]$. Define the differential graded algebra $(\bar{R}(K), d)$ by

$$\bar{R}(K) = L(\omega_1, \ldots, \omega_m) \otimes SR(K)/(y_i^2 = \omega_i y_i = 0)$$

with differential d induced from (E, d), that is, $d(w_i) = y_i$ and $d(y_i) = 0$.

Proposition 2.3. The quotient map

$$L(\omega_1, \ldots, \omega_m) \otimes SR(K) \longrightarrow \bar{R}(K)$$

is an algebra quasi-isomorphism.

Proof. There is a short exact sequence of differential graded algebras

$$0 \longrightarrow \mathcal{I} \longrightarrow \Lambda(\omega_1, \ldots, \omega_m) \otimes SR(K) \longrightarrow \Lambda(\omega_1, \ldots, \omega_m) \otimes SR(K)/\mathcal{I} \longrightarrow 0$$

where \mathcal{I} is the ideal $(y_i^2 = \omega_i y_i = 0)$. Specifically, \mathcal{I} is generated by monomials which are divisible by y_i^2 or $\omega_i y_i$ for some i.

We show that $H^*\mathcal{I} = 0$. For a monomial $x \in \mathcal{I}$, there is a minimal index $i(x)$ such that either y_i^2 or $\omega_i y_i$ divides x. Define $s: \mathcal{I} \longrightarrow \mathcal{I}$ on generating monomials by

$$s(x) = \omega_i(x)\frac{x}{y_i(x)}.$$

By showing that s is a chain homotopy between the identity and zero, that is, $ds(x) - sd(x) = x$ the proposition statement follows.

Since $x = \frac{y_i(x)}{y_i(x)}y_i(x)$, we have

$$ds(x) - sd(x) = d(\omega_i(x)\frac{x}{y_i(x)}) - s(d(\frac{x}{y_i(x)}))y_i(x) = x + \omega_i(x)d(\frac{x}{y_i(x)}) - s(d(\frac{x}{y_i(x)}))y_i(x).$$

We first observe that $y_i^2(x)$ divides $d(x)/y_i(x)$. To see this, note that either $y_i(x)$ or $\omega_i(x)$ divide $\frac{x}{y_i(x)}$. In either case $y_i(x)$ divides $d(x)/y_i(x)$.

We claim that for $j < i(x)$, neither y_j^2 nor $\omega_j y_j$ divide $d(x)/y_i(x)$.
Assuming the claim for the moment, we first finish the proof. Since \(y_j^2(x) \) divides \(\frac{x}{y_i(x)} y_i(x) \) and for smaller \(j \), both \(y_j^2 \) and \(\omega_j \) do not divide \(\frac{x}{y_i(x)} y_i(x) \), it follows that \(s (\frac{x}{y_i(x)} y_i(x)) = \omega_i(x) d (\frac{x}{y_i(x)}) \).

We next prove the claim. When \(j < i \), for \(y_j^2 \) or \(\omega_j \) to divide \(\frac{x}{y_i(x)} \) either \(y_j \) or \(\omega_j \) divides \(\frac{x}{y_i(x)} \). If \(y_j \) divides \(\frac{x}{y_i(x)} \), then \(y_j^2 \) cannot divide \(x \) because \(j < i \). So if either \(y_j^2 \) or \(\omega_j \) divides \(\frac{x}{y_i(x)} \), we must have \(\omega_j \) divides \(\frac{x}{y_i(x)} \). But then neither \(\omega_j \) nor \(y_j \) can divide \(\frac{x}{y_i(x)} / \omega_j \). Thus

\[
d \left(\frac{x}{y_i(x)} \right) = d \omega_j \left[\left(\frac{x}{y_i(x)} / \omega_j \right) \right] = y_j \left[\left(\frac{x}{y_i(x)} / \omega_j \right) \right] + \omega_j d \left[\left(\frac{x}{y_i(x)} / \omega_j \right) \right].
\]

Neither summand is divisible by \(y_j^2 \) or \(\omega_j y_j \). \(\square \)

Corollary 2.4. As \(k \)-modules,

\[
\text{Tor}_k(y_1, \ldots, y_m)(SR(K), k) \cong H^*(\bar{R}(K)).
\]

Recalling that there is the bigrading of \(\omega_i \) and \(y_i \) given by \(\text{bideg}(\omega_i) = (-1, 1) \) and \(\text{bideg}(y_i) = (0, 1) \), we can consider \(\bar{R}(K) \) as a bigraded differential algebra. Recall that for \(I = (i_1, \ldots, i_p), i_1 < \ldots < i_p, L = (y_{i_1}, \ldots, y_{i_p}), l_1 < \ldots < l_s, \) the monomial \(\omega_{i_1} \cdots \omega_{i_p} y_{i_1} \cdots y_{i_p} \), denoted by \(\omega_I y_L \).

For \(0 \leq p \leq m \), a \(k \)-module basis for \(\bar{R}^{-p, *}(K) \) can be given as

\[
\{ \omega_I y_L | L \in K, |L| = p, I \cap L = \emptyset \}.
\]

To consider \(\bar{R}(K) \) as a differential \(k \)-module, the differential \(d: s^*(\bar{R}(K)) \to \bar{R}^{-*, *}(K) \), induced from its differential algebraic structure, is given as the \(k \)-module generators by

\[
d(\omega_I y_L) = \sum_{k=1}^{p} (-1)^{k+1} \omega_{i_1} \cdots \omega_{i_{k-1}} \omega_{i_k+1} \cdots \omega_{i_p} y_{i_1} \cdots y_{i_k} y_{i_{k+1}} \cdots y_L
\]

where \(l_r < i_k < l_{r+1} \). Notice that the sign is induced by the derivation identity (3) and if the set \(\{ l_1, \ldots, l_r, i_k, l_{r+1}, \ldots, l_s \} \notin K \), then \(\omega_{i_1} \cdots \omega_{i_{k-1}} \hat{\omega}_{i_k} \omega_{i_{k+1}} \cdots \omega_{i_p} y_{i_1} \cdots y_{i_k} y_{i_{k+1}} \cdots y_L = 0 \).

Next we relate the \(k \)-module \(\bar{R}(K) \) to the \(k \)-cohomology module of the real moment-angle complex \((D^1, S^0)^K \) via the differential graded algebra model \(B(K) \) of \(H^*((D^1, S^0)^K; k) \) given by Cai [5] and Franz [3].

The differential graded algebra \(B(K) \) is presented with generators \(s_i \) and \(t_i \) such that \(\deg(s_i) = 0 \) and \(\deg(t_i) = 1 \) and the relations

\[
s_i s_i = s_i, \quad t_i s_i = t_i, \quad s_i t_i = 0, \quad t_i t_i = 0, \quad \prod_{j \in \sigma, \sigma \notin K} t_j = 0
\]

for all \(1 \leq i \leq m \) and all variables with different indices are graded commutative, that is,

\[
s_i s_j = s_j s_i, \quad t_i t_j = -t_j t_i, \quad s_i t_j = t_j s_i \quad \text{for} \ i \neq j.
\]

The differential \(d: B^*(K) \to B^*(K) \) is given by

\[
ds_i = -t_i, \quad dt_i = 0
\]

and extended using the Leibniz rule \(d(a \cdot b) = d(a) \cdot b + (-1)^{\deg(a)} a \cdot d(b) \). Franz [6] proved that \(B(K) \) is quasi-isomorphic to \(C^*((D^1, S^0)^K, k) \), the singular \(k \)-cochains of the real moment-angle complex \((D^1, S^0)^K \).
We treat $B(K)$ as a bigraded differential algebra by setting that $\text{bideg}(s_i) = (-1, 1)$ and $\text{bideg}(t_i) = (0, 1)$ for all $1 \leq i \leq m$. Then the k-module basis for $B^{-p,*}(K), 0 \leq p \leq m$ is similar to the one for $\bar{R}^{-p,*}(K)$ and is given by

$$\{ s_I t_L | L \in K, I \cap L = \emptyset \}$$

where $s_I = s_{i_1} \cdots s_{i_p}$ for $I = (i_1, \ldots, i_p)$ and $t_L = t_{l_1} \cdots t_{l_r}$ for $L = (l_1, \ldots, l_s)$. The k-module differential $d: B^{*,*}(K) \to B^{*,*}(K)$ is given by

$$d(s_I t_L) = \sum_{k=1}^{p} (-1)^{r+1} s_{i_1} \cdots s_{i_{k-1}} s_{i_k+1} \cdots s_{i_p} t_{l_1} \cdots t_{l_r} t_{l_{k+1}} \cdots t_{l_s}$$

where $l_r < i_k < l_{r+1}$. Notice that in $B(K)$ the summand $s_{i_1} \cdots s_{i_{k-1}} s_{i_k+1} \cdots s_{i_p} t_{l_1} \cdots t_{l_r} t_{l_{k+1}} t_{l_{k+1}} \cdots t_{l_s} = 0$ if $(l_1, \ldots, l_r, i_k, l_{r+1}, \ldots, l_s) \notin K$. The graded-commutative Leibniz contributes -1 as $\text{deg}(s_i) = 0$ and $d(s_{i_k}) = -t_{i_k}$. The additional $(-1)^r$ in the differential formula comes about from t_{i_k} passing r many t_j’s.

Definition 2.5. Let an additive isomorphism $f: \bar{R}^{-p,*}(K) \to B^{-p,*}(K)$ be defined by

$$f(\omega_I y_L) = \epsilon(I, L)s_I t_L$$

where $\epsilon(I, L)$ is the sign of the permutation that converts IL, the concatenation of I followed by L, into an increasing sequence.

Proposition 2.6. The k-isomorphism f commutes up to sign with the differentials. Specifically, if $\alpha \in \bar{R}^{-p,*}(K)$ then

$$fd_R(\alpha) = (-1)^p dB f(\alpha).$$

Proof. For $\alpha = \omega_I y_L$,

$$d(\alpha) - \sum (-1)^{k+1} \omega_{i_1} \cdots \omega_{i_{k-1}} \omega_{i_k+1} \cdots \omega_{i_p} y_{l_1} \cdots y_{l_r} y_{l_{k+1}} \cdots y_{l_s}.$$

We compute the sign of the permutation that converts

$$i_1, \ldots, i_{k-1}, i_{k+1}, \ldots, i_p, l_1, \ldots, l_r, i_k, l_{r+1}, \ldots, l_s$$

into an increasing sequence.

To start, note that the sequence of i’s and the sequence of l’s are increasing. Therefore it suffices to permute the l_j’s to the left starting with l_1 followed by increasing l_j’s.

The sign of the permutation that converts (7) into an increasing sequences differs from $\epsilon(I, L)$ in two ways.

First, we move the indices l_1, \ldots, l_r to the left. Note that $l_j < i_k$ for $j \leq r$. These l_j’s are meshed into i_1, \ldots, i_{k-1}. The number of permutations needed to place l_j into its final position differs by -1 from the number needed to order IL because i_k is missing. So moving l_1, \ldots, l_r differs from $\epsilon(I, L)$ by $(-1)^r$.

Second, we have to move i_k. Moving this index contributes $(-1)^{p-k}$.

Thus the sign of the permutation that converts (7) into an increasing sequence differs from $\epsilon(I, L)$ by $(-1)^{r+k+p}$. Therefore the map f multiplies the kth term in $d_R(\alpha)$ by $(-1)^{r+k+p}\epsilon(I, L)$ which is $(-1)^p \epsilon(I, L)$ times the coefficient of the k-th term in dB.

\square
Corollary 2.7. The chain map f induces a \mathbb{k}-module isomorphism
\[
\text{Tor}_{\mathbb{k}}(\pi_1, \ldots, \pi_n)(SR(K), \mathbb{k}) \to H^*(B(K)) \cong H^*((D^1, S^0)^K; \mathbb{k}).
\]
\[
\square
\]

2.2. A generalisation to polyhedral products. In many ways, a combinatorial contribution of the simplicial complex K to homotopy theoretical properties of the real and complex moment-angle complexes is comparable and usually suggests a formulation of those properties for polyhedral products $(CX, X)^K$, see for example [33]. Having that both cohomology \mathbb{k}-modules $H^*((D^2, S^1); \mathbb{k})$ and $H^*((D^1, S^0); \mathbb{k})$ can be expressed in terms of appropriate Tor \mathbb{k}-modules, we generalise the previous discussion to give an additive description of $H^*((CX, X)^K; \mathbb{k})$ as a direct summand of $\text{Tor}_A(M, \mathbb{k})$, where A and M are defined below.

Throughout the remainder of the paper, when the cohomology $H^*((CX, X)^K; \mathbb{k})$ of the polyhedral product $(CX, X)^K$ is considered we assume that $H^*(X_i; \mathbb{k})$ are free \mathbb{k}-modules for all i. If not explicitly stated all cohomology groups of topological spaces are taken with \mathbb{k} coefficients.

Bahri, Bendersky, Cohen and Gitler [1] gave a stable homotopy decomposition of $(CX, X)^K$ by establishing the homotopy equivalence
\[
\Sigma(CX, X)^K \to \Sigma \bigvee_{J \subseteq [m]} |\Sigma K_J| \wedge Y^J
\]
where
\[
Y^J = \bigwedge_{i \in [m]} Y_i \text{ with } Y_i = X_i \text{ if } i \in J \text{ and } Y_i = S^0 \text{ if } i \notin J.
\]
They further showed [2] that the map
\[
H^*((CX, X)^K; \mathbb{k}) \to \bigoplus_{J \subseteq [m]} H^*(|\Sigma K_J|; \mathbb{k}) \otimes H^J
\]
where $H^J = \bigotimes_{i \in [m]} H_i$ with $H_i = \tilde{H}^*(X_i; \mathbb{k})$ if $i \in J$ and $H_i = \mathbb{k}$ if $i \notin J$ is an isomorphism of rings. This specialises to an isomorphism
\[
H^*((D^1, S^0)^K; \mathbb{k}) \cong \bigoplus_{J \subseteq [m]} H^*(|\Sigma K_J|; \mathbb{k}).
\]
It is proven in [2] that the cup product on $H^*((D^1, S^0)^K; \mathbb{k})$ restricts to a pairing
\[
H^*(|\Sigma K_J|; \mathbb{k}) \otimes H^*(|\Sigma K_L|; \mathbb{k}) \to H^*(|\Sigma K_{J \cup L}|; \mathbb{k}).
\]
This in turn induces a product on
\[
\bigoplus_{J \subseteq [m]} H^*(|\Sigma K_J|; \mathbb{k}) \otimes H^J
\]
which is called the $*$-product in [2].

To give a \mathbb{k}-module model for $H^*((CX, X)^K; \mathbb{k})$, we shall only use the underlying additive isomorphism in (9). In Section 2.3 we shall invoke the multiplicative structure.

By Corollaries [2,4] and [2,7] the cohomology \mathbb{k}-module structure of $(D^1, S^0)^K$ is also modeled by the differential graded algebra $R(K)$. We next identify the summands in (10) with sub dga’s of $R(K)$.
Definition 2.8. For an element $\omega_I y_L \in \check{R}(K)$, define its support as

$$\text{supp}(\omega_I y_L) = I \cup L.$$

The differential sub-module of $\check{R}(K)$ generated by monomials with support J is denoted by $\check{R}_J(K)$.

The following lemma is a direct consequence of [6] and [4, Lemma 4.5.1].

Lemma 2.9. There is an algebra isomorphism

$$H^*(\check{R}_J(K); \mathbb{k}) \cong H^*(\Sigma|K_J|); \mathbb{k}).$$

□

Definition 2.10. Let $(C(X, K), d)$ be a differential graded \mathbb{k}-module defined by

$$C(X, K) = \bigoplus_{J \subseteq [m]} \check{R}_J(K) \otimes H^J$$

where $H^J = \bigotimes_{i \in [m]} H_i$ and $H_i = \check{H}^*(X_i; \mathbb{k})$ if $i \in J$ and $H_i = \mathbb{k}$ if $i \notin J$.

The differential $d: C^*(X, K) \to C^*(X, K)$ is given as the tensor product of the differential on $\check{R}_J(K)$, induced from the dga $\check{R}(K)$, and the trivial differential on H^J, induced by the trivial differential on $H^*(X_i)$.

Combining Lemma 2.9 with (9), the following statement holds.

Lemma 2.11. There is a \mathbb{k}-module isomorphism

$$H^*((C(X, X^K); \mathbb{k}) \to H^*(C(X, K)).$$

□

To integrate the topological structure of the polyhedral product $(C X, X^K$ into our cohomology model, we start by generalising the polynomial algebra $\mathbb{k}[y_1, \ldots, y_m]$ to a free commutative algebra on the cohomology of ΣX.

Definition 2.12. For CW-complexes $X_i, 1 \leq i \leq m$, let

$$\mathbb{k}(\bigoplus_{1 \leq i \leq m} H^*(\Sigma X_i)) = T(\bigoplus_{1 \leq i \leq m} H^*(\Sigma X_i))/\langle \alpha \beta = \beta \alpha | \alpha, \beta \in \bigoplus_{1 \leq i \leq m} \check{H}^*(\Sigma X_i) \rangle$$

where $T(M)$ denotes the free associative algebra generated by a free \mathbb{k}-module M.

To algebra (12) we associate a generalised Stanley-Reisner ring.

Definition 2.13. For CW-complexes $X_i, 1 \leq i \leq m$, define the generalised Stanley-Reisner ring $SR(X, K)$ as

$$SR(X, K) = \mathbb{k}(\bigoplus_{1 \leq i \leq m} \check{H}^*(\Sigma X_i))/\mathcal{I}_K$$

where \mathcal{I}_K is the ideal generated by square free monomial

$$\alpha_{i_1} \cdots \alpha_{i_t}, \text{ where } \alpha_{i_j} \in \check{H}^*(X_{i_j}) \text{ and } \{i_1, \cdots, i_t\} \notin K.$$
We prove that $H^*(C(X, K))$ additively splits off $\text{Tor}_{k(\bigoplus \tilde{H}^*(X_i))} (SR(X, K), k)$. To this end we choose an ordered bases B_i for $\tilde{H}^*(X_i)$,

$$B_i = \{b_{i,1}, \ldots, b_{i,k_i}\}$$

which induces an ordering on $\bigoplus \tilde{H}^*(X_i)$ by saying that $b < b'$ if $b \in \tilde{H}^*(X_i), b' \in \tilde{H}^*(X_j)$ and $i < j$.

To make $\bigoplus \tilde{H}^*(X_i)$ into a bigraded object, let $\text{bideg}(b) = (0, |b|)$.

We define $(L(\tilde{H}^*(X)), d)$ and $(E(\tilde{H}^*(X)), d)$, the natural generalisation of (1) and (2), as

$$L(\tilde{H}^*(X)) = L(\bigoplus_i u B_i) = T(\bigoplus_i u B_i)/(ub_i^2 = 0, \quad ub_iub_j = -ub_jub_i)$$

$$E((\tilde{H}^*(X)) = L(\tilde{H}^*(X)) \otimes k(\bigoplus_{1 \leq i \leq m} \tilde{H}^*(X_i))$$

where uB_i is generated by classes ub of bidegree $(-1, |b|)$ corresponding to $b \in B_i$. Define the differential d on $E(\tilde{H}^*(X))$ by $d(u b) = b$, $d(b) = 0$ and by requiring that d satisfies the Leibniz identity $d(a \cdot b) = d(a) \cdot b + (-1)^{\text{deg}_E(a)} a \cdot d(b)$, where $\text{bideg}(a) = (\text{deg}_E(a), \text{deg}_{SR}(a))$.

As in Lemma 2.1, $E(\tilde{H}^*(X))$ is a resolution of k. Consequently the cohomology of the Koszul complex

$$L(\bigoplus_i u B_i) \otimes SR(X, K)$$

is $\text{Tor}_{k(\bigoplus \tilde{H}^*(X_i))} (SR(X, K), k)$.

Definition 2.14. Let K be a simplicial complex on $[m]$ and let $X = \{X_i\}_{i=1}^m$ be CW-complexes. Define the differential graded algebra $(R(X, K), d)$ by

$$R(X, K) = L(\bigoplus_i u B_i) \otimes SR(X, K)/(b_i^2 = (ub_i)b_i = 0)$$

with differential d induced from the differential graded algebra $(E(\tilde{H}^*(X)), d)$.

Following the lines of the proof of Proposition 2.3, we established that the finite differential graded algebra $R(X, K)$ is a model for the Tor k-module $\text{Tor}_{k(\bigoplus \tilde{H}^*(X_i))} (SR(X, K), k)$.

Lemma 2.15. The quotient map

$$L(\bigoplus_i u B_i) \otimes SR(X, K) \rightarrow R(X, K)$$

is an algebra quasi-isomorphism.

To describe an additive basis of $R(X, K)$ we note that $\bigoplus uB_i$ inherits an ordering from the ordering of $\bigoplus B_i$. A basis for $R(X, K)$ is given by

$$(13) \quad \{ub_{i_1,k_1} \cdots ub_{i_s,k_s}b_{i_1,j_1} \cdots b_{i_t,j_t}\}$$

where

(i) if ub is a factor, then b is not a factor;
(ii) $ub_{i_1,k_1} < \cdots < ub_{i_s,k_s}$, $b_{i_1,j_1} < \cdots < b_{i_t,j_t}$;
(iii) $\{l_1, \cdots, l_t\} \in K$.

There is a similar basis for $C(X, K)$,

$$\{ \omega_{i_1} \cdots \omega_{i_s} y_{i_1} \cdots y_{i_t} \otimes \left[s^{-1} b_{i_1, k_1} \cdots s^{-1} b_{i_s, k_s} \right] \otimes \left[s^{-1} b_{i_1, j_1} \cdots s^{-1} b_{i_t, j_t} \right] \}.$$

The difference between the basis [13] and basis [14] is that the integers $\{i_1, \cdots, i_s, l_1, \cdots, l_t\}$ are all distinct in [14].

We now compare the differential graded algebras $R(X, K)$ and $C(X, K)$.

Proposition 2.16. The cohomology $H^*((C^k, X)^K; k)$, seen as a k-module, is a direct summand of the k-module $\mathrm{Tor}^{(\bigoplus \tilde{H}^*(\Sigma X_i))}_{\bigoplus}(SR(X, K), k)$.

Proof. There are maps of differential k-modules:

$$h: C(X, K) \rightarrow R(X, K)$$

and

$$g: R(X, K) \rightarrow C(X, K)$$

given by

$$h(\omega_{i_1} \cdots \omega_{i_s} y_{i_1} \cdots y_{i_t} \otimes \left[s^{-1} b_{i_1, k_1} \cdots s^{-1} b_{i_s, k_s} \right] \otimes \left[s^{-1} b_{i_1, j_1} \cdots s^{-1} b_{i_t, j_t} \right]) = (u b_{i_1, k_1} \cdots u b_{i_s, k_s})(b_{i_1, j_1} \cdots b_{i_t, j_t})$$

and

$$g((u b_{i_1, k_1} \cdots u b_{i_s, k_s})(b_{i_1, j_1} \cdots b_{i_t, j_t})) = \omega_{i_1} \cdots \omega_{i_s} y_{i_1} \cdots y_{i_t} \otimes \left[s^{-1} b_{i_1, k_1} \cdots s^{-1} b_{i_s, k_s} \right] \otimes \left[s^{-1} b_{i_1, j_1} \cdots s^{-1} b_{i_t, j_t} \right].$$

The homomorphisms h and g commute with differentials and $g \circ h = id$. \hfill \square

We note that $H^*((C^k, X)^K; k) \cong \mathrm{Tor}^{(\bigoplus \tilde{H}^*(\Sigma X_i))}_{\bigoplus}(SR(X, K), k)$ if $X_i = S^n$ for each i. For $\tilde{H}^*(X_i)$ with more than one generator, the map g is zero on generators, $(u b_{i_1, k_1} \cdots u b_{i_s, k_s})(b_{i_1, j_1} \cdots b_{i_t, j_t})$ whenever a repetition occurs in the list

$$i_1, \ldots, i_s, l_1, \ldots, l_t$$

obtained by dropping the second subscripts in the bi-indexing.

3. Algebra Models

In this section we coalesce the Bahri-Bendersky-Cohen-Gitler s-product [11] on $H^*((C^k, X)^K)$ with the Cai [5] and Franz [6] differential algebra $B(K)$ to give a natural differential algebra $B(X, K)$ whose cohomology is isomorphic the cohomology of $(C^k, X)^K$.

Definition 3.1. Let K be a simplicial complex on $[m]$ and let $X = \{X_i\}_{i=1}^m$ be CW-complexes. Define a differential bigraded non-commutative algebra $(B(X, K), d)$ as

$$B(X, K) = \bigoplus_{J \subset [m]} B_J(K) \otimes H^J$$

where $B_J(K)$ is a subalgebra of $B(K)$ consisting of elements with support J and $H^J = \bigotimes_{i \in [m]} H_i$ with $H_i = \tilde{H}^*(X_i; k)$ if $i \in J$ and $H_i = k$ if $i \notin J$.

The differential d on $B(X, K)$ is given as the tensor product of the differential on $B_J(K)$, induced from the dga $B(K)$, and the trivial differential on H^J, induced by the trivial differential on $H^*(X_i)$.
We now recognise $B(X, K)$ as a dga model for the cohomology of $(CX, X)^K$.

Proposition 3.2. Let K be a simplicial complex on $[m]$ and let $X = \{X_i\}_{i=1}^m$ be CW-complexes with $H^*(X_i)$ being free k-modules. Then the dga $B(X, K)$ is quasi-isomorphic to $H^*((CX, X)^K; k)$.

Proof. The statement follows as a direct consequence of the Bhari-Bendersky-Cohen-Gitler description of the cup product structure on $H^*((CX, X)^K; k)$ given by the s–product [11] the Künneth theorem and the result of Franz [6] stating that the dga $B(K)$ is quasi-isomorphic to $C^*((D^1, S^0)^K)$.

We next enhance the construction to give a dga which is quasi-isomorphic to $C^*((CX, X)^K, k)$, the singular cochains of $(CX, X)^K$.

Definition 3.3. Let K be a simplicial complex on vertex set $[m]$ and let $X = \{X_i\}_{i=1}^m$ be CW-complexes. Define a differential bigraded non-commutative algebra $(B(C^*(X), K), d)$ as

$$B(C^*(X), K) = \bigoplus_{J \subseteq [m]} B_J(K) \otimes C^J$$

where $B_J(K)$ is a subalgebra of $B(K)$ consisting of elements with support J and $C^J = \bigotimes_{i \in [m]} C_i$ with $C_i = C^*(X_i, k)$ if $i \in J$ and $C_i = k$ if $i \notin J$.

The differential d on $B(C^*(X), K)$ is given as the tensor product of the differential on $B_J(K)$, induced from the dga $B(K)$, and the differential on C^J, induced by the differential on $C^*(X_i, k)$.

Proposition 3.4. Let K be a simplicial complex on $[m]$ and let $X = \{X_i\}_{i=1}^m$ be CW-complexes with $H^*(X_i)$ being free k-modules. Then the dga $C^*((CX, X)^K)$ is quasi-isomorphic to the dga $B(C^*(X), K)$.

Proof. The statement is a straightforward consequence of Proposition 3.2 and the Künneth formula.

The bar construction applied to $B(C^*(X), K)$ gives a model for the loops space of $(CX, X)^K$ when spaces X_i have torsion free k-cohomology. We will return to this point in a future paper.

We finish the paper by comparing the dga $C(X, K)$ with the dga $B(X, K)$. Restricting to the k-module structures, we observe that $B(X, K)$ is a differential bigraded k-module model for $H^*((CX, X)^K; k)$.

By extending the map $f: \bar{H}(K) \to B(K)$ in Definition 2.5, we define an isomorphism of differential k-modules $f_X: C(X, K) \to B(X, K)$ by

$$f_X(\omega_1 y L \otimes h) = \epsilon(I, L)s_I t_L \otimes h$$

where $\epsilon(I, L)$ is the sign of the permutation that converts IL, the concatenation of I followed by L, into an increasing sequence.

Straightforwardly, following the proof of Proposition 2.6, we have the following statement.

Lemma 3.5. The additive isomorphism f_X commutes up to sign with the differentials. Specifically,

$$f_X d_{C(X, K)}(\omega_1 y L \otimes h) = (-1)^{|I|} d_{B(X, K)} f_X(\omega_1 y L \otimes h).$$
There is a natural algebra structure on $C(X, K) = \bigoplus_{J \subset [m]} \bar{R}_J(K) \otimes H^J$ induced by the algebra structures on $\bar{R}(K)$ and $H^*(X_i)$ for all i. Notice that $\bar{R}(K)$ is a commutative algebra while $B(K)$ is not commutative. Therefore, although $B(X, K)$ and $C(X, K)$ are isomorphic as k-modules, the isomorphism cannot be extended to the one of algebras. However, in the case when all X_i's are suspension spaces the algebra structure of $B(X, K)$ reduces to the one of $C(X, K)$.

Proposition 3.6. The algebra structures on $B(X, K)$ and $C(X, K)$ coincide up to sign on the product of classes with disjoint support. In particular, the algebra structures are isomorphic up to sign if X_i is a suspension space for all i.

Proof. It is enough to see that dgas $\bar{R}(K)$ and $B(K)$ differ only on elements with repeated indices. Notice that in Definition 2.2 of $\bar{R}(K)$, we quotient out y_i^2 and $\omega_i y_i$. Therefore elements in which indices are repeated are trivial. On the other hand, the defining relations of $B(K)$ state that the products with repeated indices, such as $s_i s_i = s_i$ and $t_i s_i = t_i$, are not trivial. Moreover, together with $s_i t_i = 0$, these relations imply that $B(K)$ is a non-commutative dga.

If we assume that X_i's are suspension spaces, then since the diagonal map on suspension spaces is null-homotopic, the cup product on H^J is trivial if indices are repeated. This trivialises products with repeated indices in $B(X, K)$ as well despite the product being non-trivial in $B(K)$. \qed

References

[1] A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, *Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces*, PNAS, July, 2009, 106:12241–12244.

[2] A. Bahri, M. Bendersky, F. Cohen and S. Gitler, *Cup products in generalized moment-angle complexes*, Mathematical Proceedings of the Cambridge Philosophical Society, 153, (2012), 457–469.

[3] P. Beben, and J. Grbić, *Configuration spaces and polyhedral products*, Adv. Math. 314 (2017), 378–425.

[4] V. Buchstaber and T. Panov, *Toric Topology*, Math. Surv. and Monogr., 204, Ame. Math. Soc., Providence, R.I., 2015

[5] L. Cai, *On products in real moment-angle manifolds*, J. Math. Soc. Japan 69 (2017), 503-528.

[6] M. Franz, *DGA Models for Moment-Angle Complexes*, to appear.

[7] M. Franz, *On the integral cohomology of smooth toric varieties*, arXiv:math/0308253v1.

[8] J. Grbić, and A. Linton, *Non-trivial higher Massey products in moment-angle complexes*, Adv. Math. 387 (2021), 55p.

Department of Mathematics, Hunter College, CUNY, 695 Park Avenue New York, NY 10065, U.S.A.

Email address: mbenders@hunter.cuny.edu

School of Mathematical Sciences, University of Southampton, SO17 1BJ Southampton, UK

Email address: J.Grbi@Soton.ac.uk