Number of lines in hypergraphs

Pierre Aboulker (Concordia University, Montreal) 1
Adrian Bondy (Université Paris 6) 2
Xiaomin Chen (Shanghai Jianshi LTD) 3
Ehsan Chiniforooshan (Google, Waterloo) 4
Vašek Chvátal (Concordia University, Montreal) 5
Peihan Miao (Shanghai Jiao Tong University) 6

Abstract

Chen and Chvátal introduced the notion of lines in hypergraphs; they proved that every 3-uniform hypergraph with \(n \) vertices either has a line that consists of all \(n \) vertices or else has at least \(\log_2 n \) distinct lines. We improve this lower bound by a factor of \(2 - o(1) \).

A classic theorem in plane geometry asserts that every noncollinear set of \(n \) points in the plane determines at least \(n \) distinct lines. As noted by Erdős [8] in 1943, this is a corollary of the Sylvester-Gallai theorem (which asserts that for every noncollinear set \(V \) of finitely many points in the plane, some line goes through precisely two points of \(V \)); it is also a special case of a combinatorial theorem proved by De Bruijn and Erdős [7] in 1948. In 2006, Chen and Chvátal [4] suggested that this theorem might generalize to all metric spaces. More precisely, line \(\overline{uv} \) in a Euclidean space can be characterized as

\[
\overline{uv} = \{ p : \text{dist}(p, u) + \text{dist}(u, v) = \text{dist}(p, v) \} \quad \text{or} \quad \text{dist}(u, p) + \text{dist}(p, v) = \text{dist}(u, v) \quad \text{or} \quad \text{dist}(u, v) + \text{dist}(v, p) = \text{dist}(u, p) \},
\]

where dist is the Euclidean metric; in an arbitrary metric space \((V, \text{dist})\), the same relation may be taken for the definition of line \(\overline{uv} \). With this definition of lines in metric spaces, Chen and Chvátal asked:

1pierreaboulker@gmail.com
2adrian.bondy@sfr.fr
3gougle@gmail.com
4chiniforooshan@alumni.uwaterloo.ca
5chvatal@cse.concordia.ca
6sandy656692@gmail.com
(⋆) True or false? Every metric space on n points, where $n \geq 2$, either has at least n distinct lines or else has a line that is universal in the sense of consisting of all n points.

There is some evidence that the answer to (⋆) may be ‘true’. For instance, Kantor and Patkós [10] proved that

- if no two of n points ($n \geq 2$) in the plane share their x- or y-coordinate, then these n points with the L_1 metric either induce at least n distinct lines or else they induce a universal line.

(For sets of n points in the plane that are allowed to share their coordinates, [10] provides a weaker conclusion: these n points with the L_1 metric either induce at least $n/37$ distinct lines or else they induce a universal line.)

Chvátal [6] proved that

- every metric space on n points where $n \geq 2$ and each nonzero distance equals 1 or 2 either has at least n distinct lines or else has a universal line.

Every connected undirected graph induces a metric space on its vertex set, where $\text{dist}(u,v)$ is the familiar graph-theoretic distance between vertices u and v (defined as the smallest number of edges in a path from u to v). It is easy to see that

- every metric space induced by a connected bipartite graph on n vertices, where $n \geq 2$, has a universal line.

A chordal graph is a graph that contains no induced cycle of length four or more. Beaudou, Bondy, Chen, Chiniforooshan, Chudnovsky, Chvátal, Fraiman, and Zwols [2] proved that

- every metric space induced by a connected chordal graph on n vertices, where $n \geq 2$, either has at least n distinct lines or else has a universal line.

Chiniforooshan and Chvátal [5] proved that
• every metric space induced by a connected graph on \(n \) vertices either has \(\Omega(n^{2/7}) \) distinct lines or else has a universal line.

A hypergraph is an ordered pair \((V,H)\) such that \(V \) is a set and \(H \) is a family of subsets of \(V \); elements of \(V \) are the vertices of the hypergraph and members of \(H \) are its hyperedges; a hypergraph is called \(k \)-uniform if each of its hyperedges consists of \(k \) vertices. The definition of lines in a metric space \((V,\text{dist})\) that was our starting point depends only on the 3-uniform hypergraph \((V,H)\) where \(H = \{\{a,b,c\} : \text{dist}(a,b) + \text{dist}(b,c) = \text{dist}(a,c)\} \):

\[
\overline{uv} = \{u,v\} \cup \{p : \{u,v,p\} \in H\}.
\]

Chen and Chvátal \[4\] proposed to take this relation for the definition of line \(\overline{uv} \) in an arbitrary 3-uniform hypergraph \((V,H)\). With this definition, the combinatorial theorem of De Bruijn and Erdös \[7\] can be stated as follows:

• if no four vertices in a 3-uniform hypergraph carry two or three hyperedges, then, except when one of the lines in this hypergraph is universal, the number of lines is at least the number of vertices and the two numbers are equal if and only if the hypergraph belongs to one of two simply described families.

Beaudou, Bondy, Chen, Chiniforooshan, Chudnovsky, Chvátal, Fraiman, and Zwols \[1\] generalized this statement by allowing any four vertices to carry three hyperedges:

• if no four vertices in a 3-uniform hypergraph carry two hyperedges, then, except when one of the lines in this hypergraph is universal, the number of lines is at least the number of vertices and the two numbers are equal if and only if the hypergraph belongs to one of three simply described families.

In particular, if the ‘metric space’ in \((\ast)\) is replaced by ‘3-uniform hypergraph where no four vertices carry two hyperedges’, then the answer is ‘true’. Without the assumption that no four vertices carry two hyperedges, the answer is ‘false’ \[1\] Theorem 3]: there are arbitrarily large 3-uniform hypergraphs where no line is universal and yet the number of lines is only \(\exp(O(\sqrt{\ln n})) \).

Nevertheless, even this variation on \((\ast)\) can be answered ‘true’ if the desired lower bound on the number lines is weakened enough \[1\] Theorem 4]:

3
Every 3-uniform hypergraph with \(n \) vertices either has at least
\[\lg n + \frac{1}{2} \lg \lg n + \frac{1}{2} \lg \frac{n}{2} - o(1) \]
distinct lines or else has a universal line.

(We follow the convention of letting \(\lg \) stand for the logarithm to base 2.)

The purpose of our note is to improve this lower bound by a factor of \(2 - o(1) \).

All our hypergraphs are 3-uniform. We let \(V \) denote the vertex set, we let \(L \) denote the line set, and we write \(n = |V|, m = |L| \). The number of hyperedges, which we call \(\text{hedges} \), is irrelevant to us. We assume throughout that no line is universal.

Let us define mappings \(\alpha, \beta : V \to 2^L \) by

\[
\alpha(x) = \{ L \in L : x \in L \} \quad \text{and} \quad \beta(x) = \{ xw : w \neq x \}.
\]

Note that \(\beta(x) \subseteq \alpha(x) \) for all \(x \). The proof of the lower bound

\[m \geq \lg n \quad (1) \]

in [4, Theorem 4] relies on the observation that \(\alpha \) is one-to-one. This observation generalizes as follows:

Lemma 1. If \(f : V \to 2^L \) is a mapping such that \(\beta(x) \subseteq f(x) \subseteq \alpha(x) \) for all \(x \), then \(f \) is one-to-one and \(\{ f(x) : x \in V \} \) is an antichain.

Proof. We only need prove that \(\beta(x) - \alpha(y) \neq \emptyset \) whenever \(x \neq y \). To do this, we use the assumption that \(xw \) is not universal: there is a point \(z \) such that \(z \not\in xy \). This means that \(\{ x, y, z \} \) is not a hedge, and so \(xz \in \beta(x) - \alpha(y) \).

Lemma 2. If \(x, y, z \) are vertices such that \(xy = xz \), then \(\alpha(y) \cap \beta(x) = \alpha(z) \cap \beta(y) \).

Proof. If \(y \in xy \), then \(\{ x, w, y \} \) is a hedge, and so \(w \in xy = xz \), and so \(\{ x, z, w \} \) is a hedge, and so \(z \in xw \).

We define the \(\text{span} \) of a subset \(S \) of \(V \) to be \(\bigcup_{x \in S} \beta(x) \).

Lemma 3. If \(n \geq 2 \) and a nonempty set of \(s \) vertices has a span of \(t \) lines, then

\[
m - t \geq \lg(n - s) - s \lg t.
\]

4
Proof. Given a nonempty set of \(s \) vertices and its span \(T \) of \(t \) lines, enumerate the vertices in \(S \) as \(x_1, x_2, \ldots, x_s \). Note that \(t > 0 \) (since \(n \geq 2 \) and \(s > 0 \)) and define a mapping \(\psi : (V - S) \rightarrow T^s \) by

\[
\psi(v) = (x_1v, x_2v, \ldots, x_sv).
\]

If \(y, z \) are vertices in \(V - S \) such that \(\psi(y) = \psi(z) \), then Lemma 2 guarantees that \(\alpha(y) \cap \beta(x_i) = \alpha(z) \cap \beta(x_i) \) for every \(x_i \) in \(S \) and so (since \(T = \cup_{i=1}^s \beta(x_i) \)) \(\alpha(y) \cap T = \alpha(z) \cap T \). This and Lemma 1 (with \(f = \alpha \)) together imply that \(|C| \leq 2^{m-t} \) for every subset \(C \) of \(V - S \) on which \(\psi \) is constant. Since at least one of these sets \(C \) has at least \((n - s)/t^s \) points, we conclude that \((n - s)/t^s \leq 2^{m-t} \).

\[\square \]

Lemma 4. For every positive \(\varepsilon \), there is a positive \(\delta \) such that

\[
\sum_{i<\delta N} \binom{N}{i} \leq 2^{\varepsilon N} \quad \text{for all positive integers } N.
\]

Proof. A special case of an inequality proved first by Bernstein \[3,9\] asserts that

\[
\sum_{i=0}^{k} \binom{N}{i} \leq \left(\frac{N}{k} \right)^k \left(\frac{N}{N-k} \right)^{N-k}
\]

for all \(k = 0, 1, \ldots, \lfloor N/2 \rfloor \); we have

\[
\left(\frac{N}{k} \right)^k \left(\frac{N}{N-k} \right)^{N-k} \leq \left(\frac{eN}{k} \right)^k \quad \text{and } \lim_{\delta \to 0^+} \left(\frac{e}{\delta} \right)^{\delta} = 1.
\]

\[\square \]

Theorem 1. \(m \geq (2 - o(1)) \lg n \).

Proof. Given any positive \(\varepsilon \), we will prove that \(m \geq (2 - 4\varepsilon) \lg n \) for all sufficiently large \(n \). To do this, let \(\delta \) be as in Lemma 4 and consider a largest set \(S \) of vertices whose span \(T \) has at least \((0.5\delta \lg n) \cdot |S| \) lines (this \(S \) may be empty). Writing \(s = |S| \) and \(t = |T| \), we may assume that

\[
t < 2 \lg n
\]
(else we are done since \(m \geq t\)), and so \(s < 4/\delta\). Now
\[
m - t \geq (1 - o(1)) \lg n
\]
this follows from Lemma \[3\] when \(t > 0\) and from \[1\] when \(t = 0\). In turn, we may assume that
\[
t \leq 0.5m
\]
(else \(0.5m > m - t \geq (1 - o(1)) \lg n\) and we are done). Finally, consider a largest set \(R\) of vertices such that \(\beta(y) \cap T = \beta(z) \cap T\) whenever \(y, z \in R\) and note for future reference that \(|R| \geq n/2^t\). Since \(\beta\) is one-to-one (Lemma \[1\]), all the sets \(\beta(y) - T\) with \(y \in R\) are distinct; by maximality of \(S\), each of them includes less than \(0.5\delta \lg n\) lines (else \(y\) could be added to \(S\)); it follows that (when \(n\) is large enough to make \(0.5 \lg n\) less than \(m - t\))
\[
|R| \leq \sum_{i < 0.5\delta \lg n} \binom{m-t}{i} \leq \sum_{i < \delta (m-t)} \binom{m-t}{i} \leq 2^{\varepsilon (m-t)} \leq 2^{\varepsilon m},
\]
and so
\[
n \leq 2^t |R| \leq 2^{t+\varepsilon m} \leq 2^{(0.5+\varepsilon)m} \leq 2^{m/(2-4\varepsilon)}.
\]

Acknowledgment

The work whose results are reported here began at a workshop held at Concordia University in April 2013. We are grateful to the Canada Research Chairs program for its generous support of this workshop. We also thank Laurent Beaudou, Nicolas Fraiman, and Cathryn Supko for their stimulating conversations during the workshop.

References

[1] L. Beaudou, A. Bondy, X. Chen, E. Chiniforooshan, M. Chudnovsky, V. Chvátal, N. Fraiman, and Y. Zwols, Lines in hypergraphs, \texttt{arXiv:1112.0376v1 [math.CO]} To appear in Combinatorica.

[2] L. Beaudou, A. Bondy, X. Chen, E. Chiniforooshan, M. Chudnovsky, V. Chvátal, N. Fraiman, and Y. Zwols, A De Bruijn-Erdős theorem for chordal graphs, \texttt{arXiv:1201.6376v1 [math.CO]}.
[3] S. Bernstein, On a modification of Chebyshev’s inequality and of the error formula of Laplace, *Section Mathématique des Annales Scientifiques des Institutions Savantes de l’Ukraine*, 1 (1924), 38 – 49. (Russian)

[4] X. Chen and V. Chvátal, Problems related to a de Bruijn - Erdős theorem, *Discrete Applied Mathematics* 156 (2008), 2101 – 2108.

[5] E. Chiniforooshan and V. Chvátal, A de Bruijn–Erdős theorem and metric spaces, *Discrete Mathematics & Theoretical Computer Science* 13 (2011), 67–74.

[6] V. Chvátal, A de Bruijn–Erdős theorem for 1-2 metric spaces, [arXiv:1205.1170](http://arxiv.org/abs/1205.1170) [math.CO], to appear in *Czechoslovak Mathematical Journal*.

[7] N.G. De Bruijn and P. Erdős, On a combinatorial problem, *Indagationes Mathematicae* 10 (1948), 421–423.

[8] P. Erdős, Three point collinearity, *American Mathematical Monthly* 50 (1943), Problem 4065, p. 65. Solutions in Vol. 51 (1944), 169–171.

[9] W. Hoeffding, Probability inequalities for sums of bounded random variables, *Journal of the American Statistical Association* 58 (1963), 13 – 30.

[10] I. Kantor and B. Patkós, Towards a de Bruijn-Erdős theorem in the L_1-metric, [arXiv:1207.3688](http://arxiv.org/abs/1207.3688) [math.CO].