How Rich is Platelet Rich Plasma? A Simple Preparation Method of PRP and Its Quality According to Various Classification Systems

Felice FAIZAL1, Balachandra NAMBIAR2, Raja CHATTERJEE1, Praveer RANJAN1

Abstract

Background: platelets are a rich source of various growth factors and hence platelet rich plasma (PRP) is being used therapeutically in the field of dermatology, orthopaedics and dentistry with promising results. However, methods of preparation of PRP vary with many commercial kits also available. Scoring systems like DEPA score, PAW system and sports medicine criteria score help in determining the quality of the final product and guide therapy. Here we test a simple two step method for preparation of PRP and score it according to the abovementioned criteria while comparing it with the commercial kits analysed in literature.

Methods: 10 ml whole blood was collected in 1.5 ml ACD solution from 100 healthy willing participants and analysed for platelet concentration. Sample was then centrifuged at 1600 rpm X 4 minutes in a calibrated laboratory centrifuge and supernatant was collected in a sterile tube using a sterile syringe. The supernatant was further concentrated for platelets by centrifuging at 3600 rpm X 10 minutes to form a platelet pellet at the bottom. All but 1 ml supernatant (Platelet deficient plasma) was discarded and the platelet pellet was suspended again to form platelet rich plasma. Platelet count was estimated in this sample as done with the whole blood sample. The results were compared and analysed using statistical methods to determine the efficacy of concentrating platelets by this method.

Results: The tested method gave a final concentration of more than four times the baseline concentration with approximately 30% efficiency of capture and 80% purity. This was comparable to majority of the commercial systems tested in literature at a fraction of the cost. The scores according to various classification systems were determined and reported. Conclusion: Every platelet rich plasma prepared for therapeutic purposes should be classified according to any of the available scoring systems to determine its suitability for the purpose and to maintain uniformity in the quality of the product. The proposed two step method of preparation yields satisfactory quality of PRP by utilizing services of a basic laboratory at a fraction of the cost of commercial systems thereby enabling smaller medical institutions to utilize PRP therapy.

Keywords: androgenic alopecia, growth factors, platelet rich plasma.

1 Department of Pathology, Army Medical Corps, India
2 Department of Anaesthesiology, Army Medical Corps, India
INTRODUCTION

Platelet rich plasma (PRP) has recently gained a lot of attention due to the fact that platelet granules contain a plethora of growth factors including platelet-derived growth factor, transforming growth factor beta 1, transforming growth factor beta 2, insulin-like growth factor, epidermal growth factor, epithelial cell growth factor (ECGF) etc. The use of growth factors derived from platelets for various therapeutic procedures have been studied and tried with varied results.

Recently, commercially available kits have sprung up which guarantee a higher yield of platelets from a small amount of blood but incur a high cost of production. To circumvent the cost and still reap the probable benefits of this experimental treatment, many practitioners resort to simply centrifuging small amounts of blood without following specific guidelines and use the supernatant so obtained thereby leading to lower yield of platelets, higher amount of dosage in terms of volume, greater degree of pain and ultimately poor patient acceptance and results.

As the use of PRP is growing exponentially because of the publicity and the easy availability, there needs to be a proper guideline for harvesting platelets from a small amount of blood and to classify the end product in a universal score to determine its quality before being used for a variety of therapeutic purposes including stimulating hair growth in cases of androgenic alopecia, hastening bone formation in cases of autologous bone grafting etc.

Studies have proposed different characterisation criteria for PRP like the DEPA classification which takes the following parameters into account: (1) Dose of injected platelets, (2) Efficiency of production, (3) Purity of PRP and (4) Activation process (Table 1). Other classification methods including PAW system of classification (Figure 1) and the sports medicine criteria take in to account (1) WBC concentration, (2) activation and (3) final concentration (Table 2).

THE PARAMETERS OF PRP

The different parameters used in these classification systems need to be understood to correctly choose a platelet rich plasma preparation for each specific intended purpose.

A. Platelet concentration/ Dose of injected platelets: the quantification of platelets in PRP can be done either in terms of times increase of baseline count or as an absolute platelet count per microlitre. The best results have been found with platelet concentrations ranging from 2 times to 6 times the baseline platelet concentration corresponding with absolute values greater than baseline and going up to 1800000/uL. The

![Figure 1. PAW (Platelets, Activation, WBC) SYSTEM OF CLASSIFICATION OF PRP.](image-url)

...
D. Activation of PRP: Various exogenous methods like calcium chloride, thrombin and type 1 collagen can be added to activate platelets in vitro before use. Whether exogenous activation leads to better results or not needs to be investigated further but adverse effects such as lowering of pH of PRP and subsequent increase in pain on addition of calcium chloride need to be considered.

MATERIAL AND METHODS

Time period: July 2019 to Oct 2019
Study setting: Defence services teaching hospital
Sample size: 100

Inclusion criteria:
- a) Samples from consenting healthy individuals who reported for routine medical examination.
- b) Samples which did not show presence of platelet clumps on analysis

Exclusion criteria:
- a) Samples from individuals who have reported to the hospital for some illness.
- b) Samples which showed presence of platelet clumps on analysis during any step.

Procedure
- a) 10 ml blood was collected in 1.5 ml ACD solution in sterile tubes and mixed using inversion technique.
- b) Whole blood sample was analysed for platelet concentration using Beckman Coulter haematology analyser and results noted.
DISCUSSION

The quality of PRP prepared by the abovementioned method was evaluated using the available scoring systems in literature and compared with other studies.

DEPA score: The final DEPA score of our preparation was DCB. Magalon et al did a thorough search of literature and recorded the DEPA scores of PRP obtained from commercial kits and homemade methods used in various studies including their own15.

The dosage of injected platelets was 0.9 billion platelets if 1 ml of PRP was prepared from 10 ml of blood which characterized it as “D” as per Table 1. Out of the eleven methods which were tested by various researchers and which used similar amount of whole blood to harvest platelets, ten had the same score. Nine other

RESULTS

PRP prepared from 100 samples by the proposed two step method was evaluated for quality and the following were observed (Figure 2).

- **Average times increase in platelet concentration:** 4.13 times.
- **Average platelet concentration in the PRP:** 853477 platelets / uL.
- **Average efficiency of capture:** 39.8%.
- **Average purity of PRP:** 80.3%.

![Figure 2. Box and Whisker Plot for Whole Blood and PRP demonstrating the average and the relative increase in platelet concentration in the final product.](image-url)
CONCLUSION

Every PRP should be scored according to any of the criteria which suits the purpose of the institution to determine its quality and suitability for the indication. This study illustrates a simple method to harvest a good quality of PRP using the services of a basic laboratory which can prove to be economical and beneficial in terms of patient outcomes in future clinical studies.

The following must be kept in mind while evaluating the final concentration of the platelets

1. The final concentration depends on the baseline platelet count and hydration status of the individual with a higher baseline count and a well-hydrated donor yielding a higher final concentration.

2. The centrifugal force applied on the sample may vary between different centrifuges depending on the rotor size of the centrifuge. It is imperative to adjust the other two variables i.e. speed and duration of spin to achieve optimal centrifugal force. The centrifugal force in our method for the specific instrument used was 430 g x 4 minutes followed by 2200 g x 10 minutes.

3. Platelet count should not be determined immediately after suspending the platelet pellet as the presence of clumps would give erroneous readings. It is recommended to allow the PRP to be placed on a sample roller for 20 minutes before analysis.

4. The dose of injected platelets may be increased by drawing more blood and following the same procedure to harvest a higher number of platelets.

Compliance with ethics requirements: The authors declare no conflict of interest regarding this article. The authors declare that all the procedures and experiments of this study respect the ethical standards in the Helsinki Declaration of 1975, as revised in 2008(5), as well as the national law. Informed consent was obtained from all the patients included in the study.
References

1. Kiuru J, Viinikka L, Myllyla G, Pesonen K, Perheentupa J. Cytoskeleton-dependent release of human platelet epidermal growth factor. Life Sci 1991;49(26):1997–2003.

2. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85(6):638–646.

3. Anitua E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 1999;14(4):529–535.

4. Lynch SE, Buser D, Hernandez RA, et al. Effects of the platelet-derived growth factor/insulin-like growth factor-I combination on bone regeneration around titanium dental implants. Results of a pilot study in beagle dogs. J Periodontal 1991;62(11):710–716.

5. Becker W, Lynch SE, Lekholm U, et al. A comparison of ePTFE membranes alone or in combination with platelet-derived growth factors and insulin-like growth factor-I or demineralized freeze-dried bone in promoting bone formation around immediate extraction socket implants. J Periodontal 1992;63(11):929–940.

6. Cho MI, Lin WL, Genco RJ. Platelet-derived growth factor-modulated guided tissue regenerative therapy. J Periodontal 1995;66(6):522–530.

7. Lynch SE, de Castilla GR, Williams RC, et al. The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontal 1991;62(7):458–477.

8. Park JB, Matsuura M, Han KY, et al. Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J Periodontal 1995;66(6):462–477.

9. Rutherford RB, Niekrash CE, Kennedy JE, Charette MF. Platelet-derived and insulin-like growth factors stimulate regeneration of periodontal attachment in monkeys. J Periodont Res 1992;27(4 Pt 1):285–290.

10. Rutherford RB, Ryan ME, Kennedy JE, Tucker MM, Charette MF. Platelet-derived growth factor and dexamethasone combined with a collagen matrix induce regeneration of the periodontium in monkeys. J Clin Periodontol 1993;20(7):537–544.

11. Schiavone G, Raskovic D, Greco J, Abeni D. Platelet-rich plasma for androgenetic alopecia: A pilot study. Dermatol Surg 2014;40:1010–9.

12. Betsi EE, Germain E, Kalbermatten DF, Trempl M, Emmenegger V. Platelet-rich plasma injection is effective and safe for the treatment of alopecia. Eur J Plast Surg 2013;36:407–12.

13. Navarro MR, Asín M, Martinez MA, Molina C, Moscoso L, et al. Management of androgenetic alopecia: A comparative clinical study between plasma rich in growth factors and topical minoxidil. Eur J Plast Surg 2016;39:272–7.

14. Correlation of Platelet Concentration in Platelet-rich Plasma to the Extraction Method, Age, Sex, and Platelet Count of the Donor. Gernot Weibrich et al. Int J Oral Maxillofac Implants 2001;16:693–699.

15. Magalon J, Chateau AL, Bertrand B, et al. DEPA classification: a proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc Med 2016;2:e000060. doi:10.1136/bmjsem-2015000060.

16. Mishra A, Harmon K, Woodall J, et al. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol 2012;13:1185–95.

17. Anitua’ E, Sanchez M, Zaldueno MM, et al. Fibroblastic response to platelet-rich plasma. Curr Pharm Biotechnol 2012;13:1185–95.

18. Graziani F, Ivanovski C, Cei S, Ducci F, Tonetti M, Gabriele M. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 2006;17:212–219.

19. Weibrich G, Hansen K, Kleis W, Buch R, Hitzler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone 2004;34:665–671.