Kinetic simulation of steady states of ion temperature gradient driven
turbulence with weak collisionality

T.-H. Watanabe and H. Sugama
National Institute for Fusion Science/The Graduate University for Advanced Studies,
Toki, Gifu 509-5292, Japan

(Received 9 October 2003; accepted 20 January 2004; published online 31 March 2004)

Statistically steady states of the ion temperature gradient driven turbulence with weak collisionality, where the collision frequency is much lower than characteristic ones of the turbulence, are investigated by means of a Eulerian kinetic simulation with high resolution. In the saturated state of the entropy variable, the ion heat transport balances with the collisional dissipation that is indispensable to realizing a steady-turbulence state of perturbed distribution function δf. The kinetic simulation definitely confirms the conventional hypothesis that, in a low-collisionality limit, the low-order velocity-space moments of δf as well as the ion heat transport flux agree with those in the quasisteady state of the collisionless turbulence with the constant entropy production. A spectral analysis of δf in the velocity-space clarifies the transfer and dissipation processes of the entropy variable associated with fluctuations, where the phase mixing, the $E \times B$ nonlinearity, and the finite collisionality are taken into account. A power-law scaling predicted by the theoretical analysis is also verified by the simulations in a subrange of the power spectrum which is free from the entropy production and the collisional dissipation. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1669393]

I. INTRODUCTION

Turbulent transport in high-temperature plasmas has long been a key issue in the magnetic confinement fusion research, since it is considered as a main cause of the anomalous transport of particles and energy. Understanding the microscopic turbulence is important as the first step to prediction and control of the anomalous transport. Extensive simulation studies on drift wave turbulence, such as the ion temperature gradient (ITG) mode, have revealed several important aspects of the turbulent transport in magnetically confined plasmas, for example, the transport suppression by the self-generated zonal flow. Nevertheless, saturation mechanism of the collisionless turbulence has been an open question. Since the collisionless gyrokinetic equation has time-reversal symmetry, one needs to consider a coarse-grained form of the one-body velocity distribution function f with small-scale fluctuations in order to define an irreversible transport process in collisionless turbulence.

It has been pointed out that, when a steady transport flux is observed in the collisionless turbulence, a quasisteady state should be realized, where high-order velocity-space moments of the perturbed distribution function δf continue to grow but the low-order ones are constant in average. Here, $\delta f = f - F_M$ is deviation from the equilibrium given by the Maxwellian velocity distribution F_M. Existence of the quasisteady state in the collisionless ITG turbulence has been confirmed by means of a Eulerian (so-called Vlasov) numerical simulation of the gyrokinetic equation. The phase mixing generates fine-scale fluctuations of δf, and leads to continuous growth of the high-order moments, as well as an entropy variable associated with fluctuations (that is defined by a square integral of δf^2) of which the growth rate balances with the transport flux multiplied by a normalized ion temperature gradient (see Sec. III A for more detail).

If the collisionless assumption has a practical meaning for considering the steady anomalous transport in an actual plasma with weak but finite collisionality, the quasisteady state should be an idealization of a real statistically steady state in a weak-collisionality limit. Namely, for sufficiently low collision frequencies, statistical behaviors of the low-order moments such as the transport flux should agree with those in the collisionless turbulence. Our concern here is, thus, to find the collisionality dependence of the kinetic ITG turbulent transport, and to examine the above conjecture on the relation between the steady and quasisteady states. Introduction of the finite collisionality allows the system to approach the real steady state. Even if the collision frequency is much lower than characteristic ones of the ITG modes, it definitely affects evolution of the system through dissipation of the fine-scale fluctuations of δf in the velocity space.

In simulations of the ITG turbulence shown below, we employ a two-dimensional slab model without complication of interaction between the zonal flow and the turbulence, as has been done in our previous work. The Eulerian kinetic simulation with the simplified model setting enables us not only to investigate fundamental processes in plasma turbulence, such as the $E \times B$ advection, the phase mixing, and the collisional dissipation, but also to give a useful reference for construction of kinetic–fluid closure models. This is because collisionless fluid simulations of the steady turbulence transport are based on the conjecture on existence of the quasisteady state of turbulence. A detailed comparison between the collisionless kinetic and fluid simulations of the slab ITG turbulence has recently been carried out, where the
transport coefficient given by the fluid simulation with the non-dissipative closure model is in good agreement with the kinetic results.

In the latter part of this paper, a velocity-space power spectrum of δf represented by a quadratic form of the Hermite-polynomial expansion coefficients is investigated in analogy with the passive scalar convection in the homogeneous isotropic turbulence of a neutral fluid.10 The spectral analysis elucidates the entropy transfer process from macro-to microscales in the phase space through the phase mixing and the $E \times B$ nonlinearity. The entropy variable is damped by collisions in a microvelocity scale. Similarly to the viscous-convective subrange in a power spectrum of the passive scalar, we identify a subrange in the power spectrum of viscous-convective subrange in a power spectrum of the parallel nonlinear term and by assuming

$$[1 - \Gamma_0(k^2)] \phi_k = e^{-k^2/2} \int \mathcal{F}(v_i) dv_i - \bar{n}_{r,k},$$

where the electric potential ϕ_k is related to Ψ_k by $\Psi_k = e^{-k^2/2} \phi_k$, with $k^2 = k_x^2 + k_y^2 + k_z^2$. The background electron temperature $T_e = T_i$ and the adiabatic electron response are also assumed, such that $\bar{n}_{r,k} = \phi_k$ for $k_z \neq 0$. Here, for comparison between the collisionless and weakly collisional turbulence, we consider a limiting case with no zonal flow component of $f_{r,k} = 0$ by fixing $\bar{f}_{r,k} = 0 = \phi_k = 0$, as has been done in our previous simulation7 with the aim of simulating a large transport level observed in a toroidal geometry. In the slab configuration, otherwise, the turbulence is too severely suppressed by the zonal flow to cause a mean transport.7 The assumption of no zonal flow also enables us to examine a finite-collisionality effect on turbulence without complication of the collisional damping of the zonal flow and its interplay with turbulence.11 In addition, we neglect $k_z = 0$ modes of $f_{r,k}$ and ϕ_k, since they are included in the background part with constant density and temperature gradients in the x direction.12

Equations (1) and (2) are normalized as follows: $x = x'/\rho_i$, $y = y'/\rho_i$, $v = v'/v_{ni}$, $t = t'/v_{ni}/L_n$, $f_{r,k} = f_{r,k} L_n v_{ni} / \rho_i n_i$, and $\phi = e \phi' / \rho_i$, where v_{ni}, ρ_i ($= \rho_i / \Omega_i$), Ω_i, n_i, e, and T_i are the ion thermal velocity, the ion thermal gyroradius, the ion cyclotron frequency, the background plasma density, the elementary charge, and the background ion temperature ($T_i = m_i v_{ni}^2 / 2$; m_i means the ion mass), respectively. Prime means a dimensional quantity. Θ is defined as $\Theta = L_n / \rho_i$. η_i and $\Gamma_0(k^2)$ are given by $\eta_i = L_n / L_T$ and $\Gamma_0(k^2) = \exp(-k^2 I_0(k^2))$, respectively. $I_0(z)$ is the zeroth modified Bessel function of z.

The parallel advection term on the left-hand side of Eq. (1) contributes to generation of fine-scale fluctuations of $\bar{f}_{r,k}$ in the velocity space, that is, the phase mixing. The instability drive is contained in the first term on the right-hand side of Eq. (1). The second term on the right-hand side denotes the ion–ion collision term for which we employ the Lenard–Bernstein model collision operator

$$\tilde{C}_i(\mathcal{F}) = \nu \partial_{v_i}[\mathcal{F} \mathcal{F}(v_i)],$$

with the collision frequency ν normalized by v_{ni} / L_n. The collision operator in Eq. (3) makes \mathcal{F} approach F_M preserving the mass. Although the momentum and the energy are not conserved, it doesn’t cause a significant influence on the results in the present study.

Velocity-space derivatives in the collision term are calculated in the velocity wave number space l into which $\mathcal{F}(v_i)$ is Fourier transformed from the v_i space discretized by a uniform grid in a range of $-v_{max} \leq v_i \leq v_{max}$ with $v_{max} = 10 v_{ni}$. Then, they are transformed back to the v_i space. $\bar{f}_{r,k}$ is fixed to zero at $v_i = \pm v_{max}$, since the fluctuation amplitude in the velocity–space boundary is negligibly small. For the collisionless case, we set $v_{max} = 5 v_{ni}$. We have employed sufficient resolution in the velocity space in accordance with the magnitude of ν, finer grid spacing for v_i is
necessary for a smaller value of ν. Numerical time integration is carried out by the fourth-order Runge–Kutta–Gill method, with careful convergence checks to the time step Δt so as to keep enough accuracy, while a nondissipative time-integration scheme is employed for the collisionless simulation.14,15 The minimum and maximum values of the wave number are set to $k_{\text{min}}=0.1$ and $k_{\text{max}}=3.2$, respectively, for both of the k_x- and k_y-directions with the $3/2$ rule for dealing with the spectral method. Results of a convergence check to k_{max} are given in Sec. III C.

III. SIMULATION RESULTS

A. Steady state of weakly collisional turbulence

In the system described above, we note a balance equation of the entropy variable defined by a functional, $\delta S = \sum_k \int d\nu |\tilde{F}_k|^2/2 F_M$, which is derived from Eq. (1) by multiplying \tilde{F}_k^* / F_M (where the asterisk denotes complex conjugate) and taking the velocity-space integral and summation over k. Here, Q_i, W, and D are defined as the perpendicular ion heat flux $Q_i = \sum_k \int d\nu (-i_k, e^{k_x k_y} \phi_k) \tilde{F}_k / 2$, the potential energy $W = \sum_k \left(|T_e / T_i| + 1 - \Gamma_0 \right) |\phi_k|^2 / 2$, and the collisional dissipation $D = \sum_k \int d\nu [\tilde{f}_k^* C_i(\tilde{f}_k)] / F_M = -\nu \sum_k \int d\nu |\tilde{\eta}_c \tilde{F}_k + \nu \tilde{f}_k^2 / F_M |$, respectively. It is also remarked that δS is rewritten as $\delta S = S_m - S_M$ within the second order for $d\nu = f - F_M$, where $S_m = -\int d\nu F_M \ln F_M$ and $S_M = -\left(\int d\nu f \ln f \right)$ represent macroscopic and microscopic entropy per unit volume, respectively. (\cdots) means ensemble average. Here, δS corresponds to the opposite sign of the excess entropy defined by Glansdorff and Prigogine.16

In the collisionless system with $\nu = 0$, as we have shown in Ref. 7 for the no zonal flow case, the quasisteady state characterized by monotonical increase of δS is realized in turbulence while keeping W and Q_i constant in average, that is

$$\overline{d(\delta S)/dt} \approx \eta \overline{\dot{Q}_i},$$

where $\overline{\cdots}$ indicates time averaging on a certain period longer than a characteristic time of the turbulence. On the other hand, even if ν is much smaller than inverse of the characteristic time of instabilities, introduction of the collision term may lead to statistically steady turbulence, where not only low-order moments but also the distribution function itself are statistically steady. Therefore, in the case with finite collisionality, it is expected that $\overline{d(\delta S)/dt} \approx 0$ and

$$\overline{\eta \dot{Q}_i} = -\overline{\dot{D}} > 0.$$

In order to examine effects of the finite collisionality, we have performed several simulations for different ν's. Throughout the simulation runs shown below, we set $\eta_i = 10$ and $\Theta = 2.5$. For these parameters, in the collisionless case, the angular frequency ω_i and the linear growth rate ω_1 of the most unstable mode with $k_x = 0.1$ and $k_y = 0.3$ are $\omega_i = -0.957$ and $\omega_1 = 7.73 \times 10^{-2}$, respectively, of which changes due to finite values of ν are negligible in the present parameter range. δS given by the weakly collisional simulation of the ITG turbulence for $\nu = 1.25 \times 10^{-4}$ is plotted as a function of time in Fig. 1, where the collisionless simulation result is also shown as a reference. Time evolutions of δS for different values of ν (which is changed from $(1/512) \times 10^{-3}$ to 8×10^{-3}) are similar to that for $\nu = 1.25 \times 10^{-4}$ in Fig. 1. In the quasisteady state of the collisionless turbulence, one finds the monotonical increase of δS, while the potential energy W and the heat flux Q_i are saturated.7 In the finite collisionality case, however, the growth of δS ceases in the turbulence as well as W and Q_i. It means that not only the low-order but also the high-order moments of δf are statistically steady in the weakly collisional case, since δS is also represented by the sum of squares of the velocity space moments, $\delta S = \sum_n \delta S_n$ [see Eq. (8) for definition of δS_n].6 Time histories of each term in Eq. (4), $d(\delta S)/dt$, dW/dt, $\eta \dot{Q}_i$, and D for $\nu = 1.25 \times 10^{-4}$, are plotted in Fig. 2, where data are running averaged for a time period of $\tau = 50$. One can see that the collisional dissipation D balances with the mean transport, that is, $\eta \dot{Q}_i \approx -\overline{\dot{D}}$.

![Image](image_url)

FIG. 1. Time evolution of δS for collisionless ($\nu = 0$) and weakly collisional ($\nu = 1.25 \times 10^{-4}$) cases.

FIG. 2. Time history of each term in Eq. (4), $d(\delta S)/dt$, dW/dt, $\eta \dot{Q}_i$, and D for $\nu = 1.25 \times 10^{-4}$, where data are running averaged for a time period of $\tau = 50$.

Integrals of the collisional dissipation D, the mean transport of energy, and entropy production $\eta \dot{Q}_i$ are plotted as a function of time in Fig. 3, where data are running averaged for a time period of $\tau = 50$. One can see that $\int_0^\tau D dt = \int_0^\tau \eta \dot{Q}_i dt = \int_0^\tau \delta S dt$.
while \(\overline{d(\delta S)/dt} \approx \overline{dW/dt} = 0 \). This also means that the weakly collisional turbulence is in the real statistically steady state. The high accuracy in calculation of the entropy balance is achieved by the sufficient velocity-space resolution of the Eulerian kinetic simulation.

B. Collision frequency dependence of transport

Collision frequency dependence of the ion heat transport coefficient, \(\chi_i = Q_i / \eta_i \), is summarized in Fig. 3, where the time average is taken from \(t = 1000 \) to 3000. According to the value of \(\nu \), the time step \(\Delta t \) is changed from 1/80 to 1/320 so that the numerical error in Eq. (4) should be much smaller than \(\eta_i \delta Q_i \) and \(\delta D \). The error bars are estimated from the standard deviation of running-averaged \(\chi_i \), for a time period \(\tau = 10 \). In a range of \(1.25 \times 10^{-4} < \nu < 8 \times 10^{-3} \), \(\chi_i \) has a logarithmic dependence on \(\nu \). The \(\nu \) dependence of \(\chi_i \) becomes quite weak for lower collision frequencies (\(\nu \approx 1.25 \times 10^{-4} \)), where \(\chi_i \) approaches a level of the collisionless one shown by a horizontal dashed line in Fig. 3, that is, \(\chi_i \approx 0.36 \rho_i v_L / L_n \). From the results shown in Figs. 1–3, it is summarized that, if \(\nu \) is small enough, then the collision term does not influence the low-order moments of \(\delta f \) as well as the transport coefficient \(\chi_i \), while it is indispensable to realizing the statistically steady turbulence through damping of the high-order ones generated by the phase mixing. These facts agree with a concept that the quasisteady state is regarded as an idealization of the real steady state in the weak-collisionality limit.6

C. Convergence check to mode truncation

We have also carried out simulation runs with different values of the maximum wave number \(k_{\text{max}} \) in mode truncation such as \(k_{\text{max}} = 1.6, 3.2, 4.8, 6.4, \) and 12.8, for \(\nu = 1.25 \times 10^{-4} \). The results are summarized in Fig. 4 in terms of the ion heat transport coefficient \(\chi_i \). The numerical simulation is carried out up to \(t = 3000 \), and the time-averaging period is the same as those in Fig. 3. However, the simulation with \(k_{\text{max}} = 12.8 \) could only be run up to \(t = 1200 \), because it requires a large amount of computational cost. The time averaging is, thus, taken from \(t = 1000 \) to 1200, although it does not affect the results. One can see good convergence of \(\chi_i \) for \(k_{\text{max}} \geq 3.2 \), while \(\chi_i \) for \(k_{\text{max}} = 1.6 \) is about 30% larger than the others. One of the reasons is that, in the case of \(k_{\text{max}} = 1.6 \), the potential amplitude at \(k = k_{\text{max}} \) is not sufficiently damped by the finite Larmor radius (FLR) effect that is represented as \(\exp(-k^2/2) \) in the definitions of \(\phi_k \) and \(\Psi_k \). Convergence of the simulation results to \(k_{\text{max}} \) is also discussed in the next section.

IV. SPECTRAL ANALYSIS OF THE DISTRIBUTION FUNCTION IN THE VELOCITY SPACE

A. Theoretical framework

The parallel advection term in Eq. (1) generates fine-scale fluctuations of the perturbed distribution function \(\delta f \) in the velocity space (phase mixing). The small-scale components of \(\delta f \) are effectively damped by the collision term with the second derivative in \(v_i \). Here, we investigate a power spectrum of the velocity distribution function \(\delta f \). For the spectral analysis of \(\delta f \), it is meaningful to pay attention to the transfer of the entropy variable \(\delta S \) from macro to micro velocity scales. Using the basic equations, Eqs. (1) and (2), we obtain

\[
\frac{d}{dt} \delta S_n = J_{n-1} - J_{n+1} + \delta S_{2} \eta Q_i - 2 \nu n \delta S_n, \tag{7}
\]

where

\[
\delta S_n = \sum_k \delta S_{k,n} = \sum_k \frac{1}{2} n! |\hat{f}_{k,n}|^2, \tag{8}
\]

\[
J_{n-1} = \sum_k \Theta k \eta n! \text{Im}(\hat{f}_{k,n-1} \hat{f}_{k,n}^*), \tag{9}
\]

\[
J_{n+1} = \sum_k \Theta k (n+1)! \text{Im}(\hat{f}_{k,n} \hat{f}_{k,n+1}^*), \tag{10}
\]
and $\delta_{n,m} = 1(n = m), 0(n \neq m)$. Here, $\hat{f}_{k,n}$ ($n = 0, 1, 2, \ldots$) are defined as coefficients in the Hermite-polynomial expansion of \hat{f}_k

$$\hat{f}_k(v_i) = \sum_{n = 0}^{\infty} \hat{f}_{k,n} H_n(v_i) F_M(v_i).$$

(11)

In the steady state, the left-hand side of Eq. (7) vanishes. We see that $\bar{J}_{n \rightarrow 1/2}$ ($J_{n + 1/2}$) represents the entropy transfer from the $(n - 1)$th (nth) to the nth [(n + 1)th] Hermite-polynomial portion. The third and fourth terms on the right-hand side of Eq. (7) represent the entropy production due to the downward turbulent heat flux in the temperature gradient and the collisional dissipation, respectively. It is important to note that, in the range $n \geq 3$, the entropy production rigorously disappears, which is the reason why the Hermite-polynomial expansion is employed here. A clear cutoff of the entropy production like this never occurs if we use the Fourier expansion in terms of $\exp(\imath l v_i)$ ($-\infty < l < \infty$) as basis functions.

Note that

$$H_n(x) e^{-x^2/2} = \int_{-\infty}^{\infty} dl \, e^{\imath l x} e^{-l^2/2} l^n,$$

(12)

where the function $e^{-l^2/2} l^n$ of l has the maximum absolute value at $l = \pm \sqrt{n}$ and is expanded around it as

$$e^{-l^2/2} l^n \approx e^{-n^2 l^2/2} [1 - (l - \sqrt{n})^2].$$

(13)

Thus, the main contribution to the nth component of the Hermite expansion is from the Fourier components with $|l/\sqrt{n} + 1| < 1/\sqrt{n}$, so that we may use the relation $n = l^2$ for $n \gg 1$. The inverse of Eq. (12) is given by

$$e^{\imath l x} = e^{-l^2/2} \sum_{n = 0}^{\infty} H_n(x) [l^n/\sqrt{n}].$$

(14)

The phase mixing process described in Eq. (1) causes the factor $\exp[\imath l v_i]$ in the distribution function, where $l(t)$ satisfies $dl(t)/dt = -\Theta k_y$. Then, the sign of $l(t)$ is opposite to that of k_y for large t so that we write $l(t) = -(k_y/|k_y|)\sqrt{n(t)}$ with the order $n(t)$ of the Hermite-polynomial expansion as a function of t.

For $n \geq 3$ in the steady state, we find from Eq. (7) that

$$-2 \nu n \delta S_n = J_{n + 1/2} - J_{n - 1/2} = \frac{dJ_n}{dn},$$

(15)

where n is treated like a continuous variable and the finite difference is approximated by the derivative. The ratio of J_n to δS_n is written as

$$\frac{J_n}{\delta S_n} = \frac{(n + 1/2)! \sum_k \Theta k_y \, \text{Im}(\hat{f}_{k,n - 1/2} \hat{f}_{k,n + 1/2})}{\frac{1}{2} n! \sum_k |\hat{f}_{k,n}|^2}$$

$$= 2 \Theta \sqrt{n} \frac{\sum_k |k_y|^2 |\hat{f}_{k,n}|^2}{\sum_k |\hat{f}_{k,n}|^2}$$

$$= 2 \Theta \sqrt{n} \frac{\sum_k |k_y|^2}{\sum_k |\hat{f}_{k,n}|^2},$$

(16)

where $(n + 1)/n! = \Gamma(n + 3/2)/\Gamma(n + 1) = \sqrt{n}$ for large n and the averaging operator $(\cdot)_{n} = (\sum_k |\hat{f}_{k,n}|^2 \cdot) / (\sum_k |\hat{f}_{k,n}|^2)$ are used. In Eq. (16), we put $\hat{f}_{k,n - 1/2} \hat{f}_{k,n + 1/2} = i(k_y/|k_y|) |\hat{f}_{k,n}|^2$ by assuming the n dependence of the phase of $\hat{f}_{k,n}$ to be described mainly by Eq. (14) with $l = -(k_y/|k_y|)\sqrt{n}$.

Now, let us examine the role of the $\mathbf{E} \times \mathbf{B}$ convection term. In analogy with the study by Batchelor on the spectrum of the passive scalar for wavelengths smaller than the Kolmogorov scale in the large Prandtl number case, we postulate that, for large n, $\hat{f}_{k,n}$ varies so rapidly that $\mathbf{E} \times \mathbf{B}$ flow acting on $\hat{f}_{k,n}$ is regarded as a steady one which is statistically independent of $\hat{f}_{k,n}$. Then, the strain of the steady flow is considered to cause the exponential growth of the wave number of the convected variable. Thus, writing $k_y(t) \approx e^\gamma t$ and using $\sqrt{n} = -(k_y/|k_y|)l = \Theta \int dt |k_y|$, we have $\Theta |k_y| \approx \gamma \sqrt{n}$, which is substituted into Eq. (16) to yield

$$J_n/\delta S_n = 2 \gamma n.$$

(17)

Substituting Eq. (17) into (15) and integrating it with respect to n, we obtain

$$\delta S_n = \frac{\sigma}{2\gamma n} \exp \left(- \frac{\nu n}{\gamma} \right),$$

(18)

where σ coincides with the entropy production rate as shown by the constraint derived from Eq. (7)

$$\sigma = 2 \nu \int_0^n n \, dS_n \, dn = 2 \nu \sum_n n \, \delta S_n = \eta_{ij} Q_j.$$

(19)

Thus, in the range where neither entropy production nor collisional dissipation occurs ($1 < n < \gamma/\nu$), we expect the power law of $\delta S_n \propto 1/n$ with $J_n = \sigma = \text{const}$ which is analogous to the passive scalar spectrum and its power transfer in the viscous-convective subrange.

In the above analytical treatment, $\langle |k_y| \rangle_n \approx \sqrt{n}$ increases infinitely with n. However, in the numerical simulation performed in the present study, there exists the upper limit of $|k|$. Even if the potential amplitude is sufficiently damped at the maximum wave number in the simulation, still $\hat{f}_{k,n}$ for large $|k|$ and large n is continuously produced by the combination of the $\mathbf{E} \times \mathbf{B}$ convection and the phase mixing process. Therefore, saturation of $\langle |k_y| \rangle_n$ with increasing n is anticipated due to the upper limit of $|k|$. In this case, taking $\Theta \langle |k_y| \rangle_n = \gamma_M$ as independent of n, we obtain from Eqs. (15) and (16)

$$J_n/\delta S_n = 2 \gamma_M \sqrt{n},$$

(20)
\(\delta S_n \) exponentially decays in the dissipation range, where the collision term is dominant, of which a typical value of \(n \) is scaled as \(n a^2 \nu^{-2/3} \) in consistent with Eq. (21). Thus, \(k_{max} \) affects the spectra for high \(n \)'s.

Profiles of \(\delta S_n \) obtained by simulations depend on \(\nu \) as well as \(k_{max} \) and seem to be described by a mixture of Eqs. (18) and (21). Certainly, for sufficiently small \(\nu \left(\leq 1.25 \times 10^{-4} \right) \), we have confirmed \(0.5 < \alpha < 1. \) If the collisional dissipation on the left-hand side of Eq. (15) is neglected, one finds that \(J_{n-1/2} \approx \text{const.} \) In correspondence, for \(\nu \leq 1.25 \times 10^{-4}, \) there exists a flat profile of \(J_{n-1/2} \) where neither the entropy production nor the collisional dissipation is seen. For larger \(\nu, \) the subrange with constant \(J_{n-1/2} \) ends at relatively small \(n, \) which means that the entropy production region on the low-\(n \) side and the dissipation range are not separated well. Thus, lower-order moments and transport are influenced by \(\nu. \) Therefore, it results in the spectrum of \(\delta S_n \) with \(\alpha > 1 \) for the relatively large values of \(\nu \left(\nu \geq 1.25 \times 10^{-4} \right). \) It is also noteworthy that the logarithmic dependence of \(\gamma, \) on \(\nu \) is observed in Fig. 4 for the same parameter range of \(\nu \) as that discussed here.

The entropy variable \(\delta S_{k,n} \) before taking summation over \(k \) in Eq. (7) is transferred in the \((k,n) \) space by the phase mixing as well as the \(\mathbf{E} \times \mathbf{B} \) advection. The latter effect can be found in profiles of \(\delta S_{k,x,n} = \Sigma_k \delta S_{k,n}, \) of which cross-sectional plots are shown in Fig. 7 for the case with \(\nu = 1.25 \times 10^{-4} \) and \(k_{max} = 12.8. \) A steeply peaked profile of \(\delta S_{k,x,n} \) at around \(k_y = 0 \) in \(n < 100 \) (as shown by the upper three lines in Fig. 7) disappears with increasing \(n. \) This is caused by the growth of \(\langle |k_x| \rangle_n \) due to the strain of the \(\mathbf{E} \times \mathbf{B} \) flow. Then, the whole profile gradually broadens, until the saturation of \(\langle |k_x| \rangle_n \) occurs due to the finite \(k_{max}. \)

The growth and saturation of the spectrum-averaged wave number \(\langle |k_x| \rangle_n \) defined in Eq. (16) is more clearly recognized in Fig. 8. For \(k_{max} = 12.8, \) \(\langle |k_x| \rangle_n \) grows nearly in proportion to \(\sqrt{n} \) from \(n = 3 \) to \(\sim 100, \) which agrees with the estimate of \(\Theta |k_x| \gamma \sqrt{n} \) used for derivation of Eq. (17). As \(n \) increases, then, the growth of the wave number slows down due to the upper limit \(k_{max}. \) A similar evolution of \(\langle |k_x| \rangle_n \) is also found for smaller \(k_{max}, \) although the slow-
One can see that the simulation result is nearly proportional to the macro velocity scale but in a small down of the wave number growth is observed at lower \(n \). Even if \(k_{\text{max}} \) is small, thus, the values of \(\delta S_n \) at \(n = 1, 2, \) and 3 are unchanged, except for the case of \(k_{\text{max}} = 1.6 \), where \(\langle |k| \rangle_n \) increases slower than \(\sqrt{n} \). The above result is consistent with the convergence check of the transport coefficient \(\chi_i \) to \(k_{\text{max}} \) given in Sec. III C. Therefore, we can conclude that the obtained \(\chi_i \) as well as the entropy transfer process on the macro velocity scale but in a small \(|k| \) region is insensitive to the maximum wave number of \(k_{\text{max}} \approx 3.2 \).

It is meaningful to estimate \(\gamma \) and \(\gamma_M \) from the simulation result. Let us suppose \(\langle |k| \rangle_n \sim 0.2 \sqrt{n} \) according to Fig. 8, and substitute it into \(\Theta \langle |k| \rangle_n = \gamma \sqrt{n} \). Thus, we find \(\gamma \approx 0.5 \) for \(\Theta = 2.5 \). In the dissipation range of \(n \approx 10^3 \), however, \(\langle |k| \rangle_n \sim 6 \) for \(k_{\text{max}} = 12.8 \) as shown in Fig. 8, and thus, \(\gamma_M = \Theta \langle |k| \rangle_n \sim 15 \). The spectrum \(\delta S_n \) obtained by the simulation with \(k_{\text{max}} = 12.8 \) is then compared with those given by the theoretical analysis with \(\sigma = 36 \) in Fig. 9, where the solid, dashed, and dotted lines indicate the simulation result, Eq. (18) with \(\gamma = 0.5 \), and Eq. (21) with \(\gamma_M = 15 \), respectively. One can see that the simulation result is nearly proportional to that of Eq. (18) in a range of \(3 \leq n \leq 10^3 \). In this range \(n \approx 10^3 \), the constant factor \(\sigma/2\gamma \) in Eq. (18) gives smaller values of \(\delta S_n \) than that obtained by the simulation. The reason for this is understood as follows. We should recall that the constant factor is derived from the constraint \(2 \nu f_n \delta S_n d\nu = \sigma \), where \(\sigma \) is evaluated from the simulation result. Then, in the range \(n \approx 10^3 \), the spectrum \(\delta S_n \) in Eq. (18) needs to be smaller than that in the simulation in order to satisfy the constraint because, for \(n \approx 10^3 \), the latter spectrum is smaller than the former due to the effect of finite \(k_{\text{max}} \). However, in the dissipation range of \(n \approx 10^3 \), the spectrum found in the simulation is well fitted by Eq. (21). The above results show that the transfer process of the entropy variable observed by the Eulerian kinetic simulations of the slab ITG turbulence can be well described by combining the analytical expressions in Eqs. (18) and (21) in Sec. IV A. It is expected that, if we can employ a sufficiently high value of \(k_{\text{max}} \), the simulation will reproduce the spectrum \(\delta S_n \) in Eq. (18) for the whole range \(n \geq 3 \).

V. CONCLUDING REMARKS

We have carried out Eulerian kinetic simulations of the slab ITG turbulence with weak collisionality, where we have employed the gyrokinetic equation (integrated for \(\nu_L \)) with the Lenard–Bernstein model collision operator and the quasineutrality condition. Introduction of finite collisionality enables us to find the real statistically steady state of turbulence, where not only the turbulence energy and the transport flux but also the entropy variable \(\delta S = \int \delta f^2/2F_M d\nu \) are constant in average. Then, the ion heat transport flux \(Q_i \) multiplied by \(\eta_i \) is balanced with the collisional dissipation. It is in contrast to the quasisteady state of the collisionless turbulence, where \(\delta (\delta S)/d\nu \) balances with \(\eta_i Q_i \), but with constant energy.\(^7\) A parameter survey for the collision frequency \(\nu \) shows the logarithmic dependence of \(\chi_i \) on relatively large values of \(\nu \). For sufficiently low collision frequency, however, the transport coefficient \(\chi_i \) approaches a value in the collisionless case, which means that the low-order velocity-space moments of the distribution function in the quasisteady state of the collisionless turbulence agree with those in the real steady state of weakly collisional one. It is also confirmed that \(\chi_i \) has a good convergence to the maximum wave number \(k_{\text{max}} \approx 3.2 \) employed in the simulations.

We have also done the spectral analysis of the distribution function in the velocity space by means of the Hermite-polynomial expansion with the Maxwellian weight function. The entropy variable \(\delta S_n \) defined by a power spectrum of the distribution function has almost the same values at \(n = 1, 2, \) and 3 even for different values of \(\nu \), where \(n \) denotes the order of the Hermite-polynomial expansion. This is consistent with the \(\nu \) dependence of \(\chi_i \) for the low-collisionality case described above as well as the conjecture by Krommes and Hu such as “flux determines dissipation.”\(^4\) The entropy variable produced on the low-\(n \) side is transferred in the \((k, n)\) space by the phase mixing and the \(\mathbf{E} \times \mathbf{B} \) nonlinearity. Then, it is dissipated by the collision term on a high-\(n \) side. Our theoretical analysis of the spectrum describes well how \(\delta S_n \) \((n \geq 3) \) depends on \(n, \nu \), and \(k_{\text{max}} \). In analogy with the passive scalar convection for wavelength smaller than the

\(\chi_i \)

\(\Theta \)

\(\gamma \)

\(\gamma_M \)

\(\Theta \langle |k| \rangle_n = \gamma \sqrt{n} \)

\(k_{\text{max}} = 12.8 \)

\(\langle |k| \rangle_n \sim 0.2 \sqrt{n} \)

\(\langle |k| \rangle_n \sim 6 \)

\(\gamma_M = \Theta \langle |k| \rangle_n \sim 15 \)

\(\delta S_n \)
Kolmogorov scale in the large Prandtl number case, the scaling law, $\delta S_n \approx 1/n$, is found in the subrange of the n space where neither entropy production nor collisional dissipation occurs.

The two-dimensional slab ITG turbulence is considered in the present study, while the entropy balance equation similar to Eq. (4) can also be derived from the toroidal gyrokinetic equation. The relationship between the steady and quasisteady states shown in Sec. III is expected to be valid in the toroidal configuration as well, although further investigations are required. In the toroidal gyrokinetic case, the phase-mixing process becomes more complicated because the toroidal magnetic drift should be taken into account. Extension of the present study to the toroidal configuration is currently in progress and will be reported elsewhere.

ACKNOWLEDGMENTS

Part of this work was completed when one of the authors (T.-H.W.) was an exchange scientist at the Institute for Fusion Studies, the University of Texas at Austin, under the Joint Institute for Fusion Theory, U.S.–Japan Fusion Cooperation Program. This work is partially supported by grants-in-aid of Ministry of Education, Culture, Sports, Science and Technology (No. 12680497 and 14780387).

1. W. Horton, Rev. Mod. Phys. 71, 735 (1999).
2. A. M. Dimits, G. Bateman, M. A. Beer et al., Phys. Plasmas 7, 969 (2000).
3. P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).
4. J. A. Krommes and G. Hu, Phys. Plasmas 1, 3211 (1994).
5. H. Sugama, M. Okamoto, W. Horton, and M. Wakatani, Phys. Plasmas 3, 2379 (1996).
6. H. Sugama, T.-H. Watanabe, and W. Horton, Phys. Plasmas 8, 2617 (2001).
7. H. Sugama and W. Horton, Phys. Plasmas 5, 2560 (1998).
8. G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).
9. W. W. Lee, J. Comput. Phys. 72, 243 (1987).
10. Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and P. H. Diamond, Phys. Rev. Lett. 83, 3645 (1999).
11. T.-H. Watanabe, H. Sugama, and T. Sato, Phys. Plasmas 7, 984 (2000).
12. H. Sugama and W. Horton, Phys. Plasmas 5, 2560 (1998).