Thermal Pyrolysis of Used Lubricant and Cooking Oil Mixtures

Nazarudin1,2,4*, S.P.Amalia2, Afrida3, Ulyarti3,4

1 Chemical Engineering Department, Faculty of Sain and Technology, Universitas Jambi, Jambi, Indonesia.
2 Chemistry Education Department, FKIP, Universitas Jambi, Jambi, Indonesia
3 Department of Agriculture Product Technology, Faculty of Agriculture, University of Jambi, Indonesia
4 Centre of Excellent in Bio-Geo Material, University of Jambi, Indonesia

DOI: 10.29303/jppipa.v7i2.645

Abstract: Pyrolysis is the one solution to recycle hydrocarbon-based waste material such as used lubricant and cooking oil. The aim of this research was to determine the effect of temperature and sample ratio on the liquid yields of a mixture of used lubricant and cooking oil. The semi batch reactor was used with a constant nitrogen flow rate of 5 mL/min. Three different ratios of sample mixture were applied in this experiment: 0.5:1, 1:1, and 1.5:1, and three different temperatures: 400°C, 450°C, and 500°C. The thermal pyrolysis of a mixture of used lubricant and cooking oil was deemed as the most effective pyrolysis to produce liquid fraction was obtained from reaction condition with the sample mixture ratio of 0.5:1 at 500°C. At this reaction condition, the liquid yield was 58.90% which consist of 64.12% were C1-C3 and 29.54% were C5-C15. Liquid fraction is predicted to increase as the temperature increase and the ratio of used lubricant to cooking oil decrease. When the ratio is increased, more gas fraction is produced.

Keywords: Used oils; and plastic waste; thermal pyrolysis

Citation: Nazarudin, N., Amalia, S., Afrida, A., & Ulyarti, U. (2021). Thermal Pyrolysis of Used Lubricant and Cooking Oil Mixtures. Jurnal Penelitian Pendidikan IPA, 7(2), 218-223. doi:https://doi.org/10.29303/jppipa.v7i2.645

Introduction

Pyrolysis is the one solution to recycle waste materials like used cooking and lubricant oil into useful material such as fuel (Alfernando, Sarip, Anggraini, Nazarudin, 2019; Prabasari, Sarip, Rahmayani, Nazarudin, 2019; Fitriyanti, 2020), reduced sulphur content of fuel (Bhaskar, Uddin, Muto, Sakata, Omura, Kimura, Kawakami, 2004), surfactants (Sharma, Toor, Brandão, Pedersen, Rosendahl, 2021), plastisizer (Cai, Yue, Hao, & Ma, 2020), and etc. At this method, waste material is heated at a high temperature and then break into new material. Pyrolysis can be carried out using catalyst (Alfernando et al., 2019; Prabasari et al., 2019; Fitriyanti, 2020) or without catalyst (Ayodeji and Oni, 2018; Alfernando, Nugraha, Prabasari, Haviz, Nazarudin, 2020). Due to a quite expensive catalyst, thermal cracking is more preferred despite its limitation in selectivity (Gaur, Mishra, Chowdhury, Baredar, Verma, 2020).

Santhoshkumar and Ramanathan (2010) reprocess used lubricant oil or waste engine oil (WEO) with pyrolysis method. Pyrolysis was done by heating the used lubricant oil at varilated temperatures above the saturation temperature in the reactor with no oxygen. The result showed that the optimal temperature was at 500°C. The compositions in a liquid product were 62.74% alkanes (paraffins), and the rests were ketones, alcohol, acids and others.

Bio-oil from thermal pyrolysis of used cooking oil have been produced at the laboratory scale. The result showed that the best condition to produce bio-oil (52.34%) was at 550°C (Nazarudin, Prabasari, Ulyarti, Susilawati, Oktadio, 2020). Thermal pyrolysis of polyethylene terephthalate (PET) plastic waste and palm fibre mixtures were carried out at 400°C, 425°C, 450°C in 10, 20, 30 minutes reaction time in which the
highest oil liquid product (17%) was produced at 450°C for 10 minutes reaction (Nazarudin, Jayanti, Alfernando, Prabasari, Ulyarti, Sarpì, 2020).

Method

The study was conducted by thermal pyrolysis in the semi-batch reactor (Figure 1). The samples and the liquid products of pyrolysis were analyzed by gas chromatography-mass spectrometry (GC-MS). There were three different ratios of samples 0.5:1, 1:1, and 1.5:1, and three different temperatures: 400°C, 450°C, and 500°C. The used cooking and lubricant oil were mixed and reacted with ratio and temperature as can be seen in Table 1. The nitrogen was flowed constantly 5 ml/min during 30 minutes reaction. The liquid products were taken every 5 minutes during the reaction.

![Figure 1. Schematic of Semi batch reactor (R-01: batch reactor, T-02: Oil Liquid Product storage tank, IE-01: Ice Trap)](image)

Reaction number	Code	Ratio	Code	Temperature (°C)
1	-1	0.5:1	-1	400
2	-1	0.5:1	1	500
3	1	1.5:1	-1	400
4	1	1.5:1	1	500
5	0	1:1	0	450
6	0	1:1	0	450
7	0	1:1	0	450

Information:

\[X_1 = \text{ratio of used lubricant and cooking oil (0.5:1, 1:1, 1.5:1).}\]
\[0.5 = 5\text{ gram} ; 1 = 10\text{ gram} ; 1.5 = 15\text{ gram}\]
\[X_2 = \text{temperature (°C) (400, 450, 500)}\]

Result and Discussion

Composition of waste material

The composition of waste material were examined using GC-MS and the results are presented in Table 2 and Table 3.

No.	RT	% Area	SI	Comounds	Formula	MW
1	1.98	2.45	97	Carboxylic acid	CH₃NO₂	61
				Nitrous oxide	N₂O	44
				1-Propene, 2-methyl	C₃H₈	56
2	2.05	60.59	96	3,5-Diisopropyl-1,2,4 trithiolane	C₈H₁₆S₃	208
3	23.61	5.72	80	Eicosane	C₂₀H₄₂	282
4	32.57	1.80	95	Heneicosane	C₂₁H₄₄	296
				Tricosane	C₂₃H₄₄	324
5	34.70	2.63	96	Heneicosane	C₂₁H₄₄	296
6	36.73	3.58	97	Eicosane	C₂₀H₄₂	282
				Tricosane	C₂₁H₄₄	324
7	38.67	5.02	97	Tricosane	C₂₀H₄₂	282
				Heptadecane	C₁₇H₃₆	240
8	40.54	5.52	97	Octadecane	C₁₈H₃₈	254
				Eicosane	C₂₀H₄₂	282
				Tricosane	C₂₁H₄₄	324
9	42.32	5.22	97	Tricosane	C₂₀H₄₂	282
				Pentacosane	C₂₅H₅₂	352
Thermal pyrolysis of mixture of used cooking and lubricant oil

There were three types of products produced by thermal pyrolysis of a mixture of used cooking oil and used lubricant oil. The products were liquid, gas, and coke with the liquid was the main product in this reaction.

The liquid yields are the mass ratio of liquid fraction and the total sample mixture (used lubricant and cooking oil). Figure 2 shows that the highest liquid yields for thermal pyrolysis of a mixture of used cooking oil and used lubricant oil was at reaction number 2 (ratio 0.5:1, temperature 500°C). The liquid yield at this condition was 58.9%. The yield for liquid fraction in this experiment is much lower than previously reported (Trabelsi, Zaafouri, Baghdadi, Naoui, Ouerghi, 2018) who reported 80% liquid yields over thermal pyrolysis of used cooking oil. Besides the difference in the feed, the high amount of liquid yields is due to a much higher temperature used in the pyrolysis 800°C (Trabelsi et al., 2018).

The GC-MS analysis shows that the liquid fraction (reaction number 2) of thermal pyrolysis of the mixture consist of 19 components as shown in Table 4. Thermal pyrolysis has cracked the C₁ to C₃₀ components in the used lubricant and cooking oil mixtures to produce C₂ - C₃₀ hydrocarbon compounds in the liquid fraction which is categorized as diesel-like fuel. Among these products in the liquid fraction, 64.12% were C₁-C₅ and 29.54% were C₅-C₁₅. The cumulative of liquid yields for thermal pyrolysis used cooking and lubricant oil mixtures can be seen in Figure 4. This graphs shows the progress of liquid production during pyrolysis and that the liquid production at reaction number 2 is increasing in quite constant rate.

The gas conversion for thermal pyrolysis of used lubricant and cooking oil mixture is shown in Figure 4. This result is higher than thermal pyrolysis of waste lubricant oil at similar temperature reported previously (Fuentes, Font, Gómez-Rico, Martín-Gullón, 2007). Controlling the ratio of used oil may help researcher to obtain what product is more preferred, either liquid or gas. The other study of co-pyrolysis was reported by Phetyim, Pivsa-Art. where used lubricant oil and

Table 3. The composition of used cooking oil as shown by GC-MS

No.	RT	% Area	SI	Compounds	Formula Molecules	Molecular Weight
1.	39.92	20.95	90	13-Oxabicyclo[10.1.0]tridecane	C₁₃H₂₂O	182
				Oleic Acid	C₁₃H₂₄O₂	282
				cis-7-tetradecene-1-ol	C₁₃H₂₂O	212
2.	41.75	37.00	86	1,3-Dipalmitoylglycerol	C₁₃H₂₆O₃	569
				3-[(2-Aminoethoxy)(hydroxy)phosphoryl]oxy]-2-	C₁₃H₂₆NO₃P	691
				(palmitityloxy)propyl palmitate		
				Glyceryl 1,3-diesterate	C₁₃H₂₆O₃	624
				Docosanoic acid	C₂₂H₄₄O₂	340
3.	44.57	7.88	90	(Z,6),(Z,9)-Pentadecadien-1-ol	C₁₅H₃₀O	224
				Cyclooctadecyne	C₁₅H₃₂O	224
				1,6,6,11-Hexadecatriene	C₁₅H₃₂O	224
				1,6,11,13-Octadecatriene	C₁₅H₃₂O	224
4.	44.72	34.17	88	1,3-Didein	C₁₃H₂₆O₂	621
				9-Octadecen-1-ol,(Z)	C₁₃H₂₆O₂	268
				13-octadecen,(Z)	C₁₃H₂₆O₂	266

![Figure 2](image-url)

Figure 2 The liquid yields for thermal pyrolysis of mixture of used lubricant and cooking oil mixture
mixed plastic waste were cracked to produce a diesel-like fuel (Phetyim & Pivsa-Art, 2018).

The coke conversion for thermal pyrolysis of used lubricant and cooking oil mixture for every reaction number is shown in Figure 5. Temperature plays an important role in the completeness of the thermal pyrolysis reaction. The lowest temperatures applied in this experiment produced the highest coke production. The higher the temperature, the lower the Cokes conversion.

Response surface analysis for thermal pyrolysis of used lubricant and cooking oil

The response surface analysis was applied to obtain the optimum reaction condition for thermal pyrolysis of used lubricant and cooking oil. As seen in Figure 5, all graphs in the surface plots are flats without any indication can reach a maximum or minimum peak. This is due to the remote experimental design region. From these graphs, it can be seen that the temperature should be higher than 500°C and the ratio should be lower than 0.5:1 in order to obtain maximum liquid fraction (Figure 6). In other words, if liquid fraction is preferred, used lubricant oil oil should be used far less than used cooking oil. However, more used lubricant oil should be used more if gas fraction is preferred (Figure 6). Since coke is the product that should be minimised, lower ratio is more preferred while no agreement on temperature can be made (Figure 7).

Table 4. The composition of liquid fraction (reaction number 2) from thermal pyrolysis of used lubricant and cooking oil mixture as shown by GC-MS

No.	RT	% Area	SI	Compounds	Formula Molecules	Molecular Weight
1.	1.97	49.65	92	Oxalid acid	C₂H₂O₄	90
				Carbamic acid	CH₂NO₂	61
				1,1-dibromo-2-chloro-2-fluoro	C₂H₂BrClF	250
	2.03	2.17	25	4-phenoxy-trimethylsilyl ester	C₁₃H₂₆O₃Si	252
	2.24	6.51	94	Acetaldehyde	C₃H₄O	74
	3.11	0.94	81	2-Propenoic Acid	C₃H₆O₂	44
4.	2.38	4.10	80	Furan, 2-methyl	C₃H₆O	82
5.	2.53	11.20	96	Acetic Acid	C₃H₄O₂	60
6.	2.68	3.27	95	2-Propylene oxide, 1-hydroxy	C₃H₆O₂	44
7.	3.11	0.94	81	2-Propenoic Acid	C₃H₆O₂	72
8.	4.22	1.46	85	1,2-butanediene, 3-methoxy	C₄H₁₀O	84
9.	6.51	0.25	96	2,5-Hexanedione	C₅H₁₀O₂	114
10.	7.93	0.28	85	2-Pentanone, 3-methyl	C₅H₁₀O	100
11.	36.64	0.39	92	Heneicosane	C₂₁H₄₄	296
				Pentacosane	C₂₁H₴₂	352
				Docosane	C₂₁H₴₆	310
				Tricosane	C₂₁H₴₈	324
				Pentacosane	C₂₁H₴₂	352
12.	38.58	0.45	94	Tetracosane	C₂₂H₵₂	282
				Octadecane, 2-methyl	C₁₈H₳₂	268
				Triacontane	C₂₃H₵₂	422
				Germacrane	C₂₃H₳₂O	210
14.	41.35	0.23	83	Tridecan	C₂₃H₳₂O₂	268
				Cyclopentane -heneicosyl	C₂₅H₴₈	422
	41.65	0.44	84	Docosanoic Acid	C₂₅H₴₸₂	340
15.	42.21	0.33	92	Tricosane	C₂₃H₴₈	324
				Eicosane	C₂₃H₴₂	282
16.	42.84	0.24	80	Octadecane, 1-chloro	C₁₈H₳₇Cl	288
				1-Hexacosanol	C₁₈H₳₆O	382
				Hexadecane, 1-chloro	C₁₈H₳₆Cl	260
17.	44.64	0.36	82	9-octadeceanal	C₁₈H₳₆O	266
18.	45.71	0.25	81	Di-octyl phthalate	C₁₈H₳₆O₄	390
Conclusion

Thermal pyrolysis of a mixture of used lubricant and cooking oil mixture produce diesel like fuel. The most effective pyrolysis of a mixture of used cooking oil: used lubricant oil is in ratio 0.5:1 and temperature 500°C. The surface plots of thermal pyrolysis of used lubricant and cooking oil mixture showed that the optimum condition for liquid and gas yields was beyond the experimental design applied in this experiment.

Acknowledgements

Thanks to DIKTI for funding this research through hibah Penerapan Ipteks 2015 and Energy and Nano
Material Research Centre, University of Jambi for experimental analysis.

References

Alfernando, O., Sarip, R., Anggraini, T., Nazarudin, N. (2019). Catalytic Cracking of Methyl Ester from Used Cooking Oil with Ni-Ion-Exchanged ZSM-5 Catalyst. Makara J. Sci. 23, 169–178. https://doi.org/10.7454/mss.v23i4.11509

Alfernando, O., Nugraha, F. D. A., Prabasari I. G.,3, Haviz, M., Nazarudin (2020), Thermal Cracking of Polyethylene Terephthalate (PET) Plastic Waste J. Phys. Conf. Ser. 1567. https://doi.org/10.1088/1742-6596/1567/2/022023

Ayodeji, S.O., Oni, T.O., (2018). Thermal pyrolysis production of liquid fuel from a mixture of polyethylene terephthalate and polystyrene. Heat Transfer – Asian Res. 2019;1-15. https://doi.org/10.1002/htj.21450

Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., Ouerghi, A. (2018). Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002

Bhaskar, T., Uddin, M.A., Muto, A., Sakata, Y., Omura, Y., Kimura, K., Kawakami, Y. (2004). Recycling of waste lubricant oil into chemical feedstock or fuel oil over supported iron oxide catalysts. Fuel 83, 9–15. https://doi.org/10.1016/S0016-2361(03)00216-3

Cai, Deng-liang, Xu Yue, Bin Hao, and Peng-cheng Ma. (2020). “A Sustainable Poly (Vinyl Chloride) Plasticizer Derived from Waste Cooking Oil.” Journal of Cleaner Production 274:122781. https://doi.org/10.1016/j.jclepro.2020.122781

Fitriyanti, R. (2020). Produksi Bahan Bakar Cair Hasil Pirolisis Minyak Pelumas Bekas Pertambangan Batubara Menggunakan Katalis Zeolite. J. Redoks 5, 1. https://doi.org/10.31851/redoks.v5i1.3958

Fuentes, M.J., Font, R., Gómez-Rico, M.F., Martín-Gullón, I. (2007). Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants. J. Anal. Appl. Pyrolysis 79, 215–226. https://doi.org/10.1016/j.jaap.2006.12.004

Gaur, A., Mishra, S., Chowdhury, S., Baredar, P., Verma, P. (2020). A review on factor affecting biodiesel production from waste cooking oil: An Indian perspective. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.09.432

Pheyim, N., Pivsa-Art, S. (2018) Prototype Co-Pyrolysis of Used Lubricant Oil and Mixed Plastic Waste to Produce a Diesel-Like Fuel. Energies 11, 2973 http://doi:10.3390/en11112973

Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., (2016) Response surface methodology : process and product optimization using designed experiments, 4th Edition, Wiley series in probability and statistics

Nazarudin, Prabasari, I.G., Ulyarti, Susilawati, Oktadio, A. (2020). Catalytic cracking of used cooking oil using Chromium impregnated charcoal (Cr-charcoal) catalyst. J. Phys. Conf. Ser. 1567.

Nazarudin, Jayanti, N., Alfernando, O., Prabasari, I.G., Ulyarti, Sarip, R. (2020) Catalytic cracking of polyethylene terephthalate (PET) plastic waste and palm fibre mixtures using Ni-USY zeolite catalyst J. Phys. Conf. Ser. 1567. https://doi.org/10.1088/1742-6596/1567/2/022034

Prabasari, I.G., Sarip, R., Rahmayanti, S., Nazarudin (2019). Catalytic Cracking of Used Cooking Oil Using Cobalt-impregnated Carbon Catalysts. Makara J. Sci. 23. https://doi.org/10.7454/mss.v23i3.11264

Santhoshkumar, A. and Ramanathan, A. (2020) Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine. Energy 197 (2020) 117240 http://doi.org/10.1016/j.energy.2020.117240

Sharma, K., Toor, S.S., Brandão, J., Pedersen, T.H., Rosendahl, L.A. (2021). Optimized conversion of waste cooking oil into ecofriendly bio-based polymeric surfactant- A solution for enhanced oil recovery and green fuel compatibility. Journal of Cleaner Production, 294. https://doi.org/10.1016/j.jclepro.2021.126214