Herbal Medicines for Acute Kidney Injury: Evidence, Gaps and Frontiers

Valérían Bunea,b, Fan Qua, Pierre Dueza and Qi-he Xu*a

aLaboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
bLaboratory of Pharmacognosy, Bromatology and Human Nutrition, Faculty of Pharmacy, ULB, Brussels, Belgium
Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Department of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
Centre for Integrative Chinese Medicine and Department of Renal Medicine, King’s College London, London, United Kingdom
Correspondence: Dr. Qihe Xu, Department of Renal Medicine, King’s College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, United Kingdom, E-mail: qihe.xu@kcl.ac.uk

ABSTRACT

Acute kidney injury (AKI) is a major health threat worldwide. The literature on herbal intervention in AKI was searched from English and Chinese databases and reports were critically analyzed in terms of preventing AKI, promoting repair and regeneration, enhancing extrarenal clearance of uremic toxins, and preventing progression to chronic kidney disease (CKD). Altogether, 16 herbal formulae and a few extracts derived from individual herbs were reported to prevent or mitigate AKI in animal models induced by renal ischemia/reperfusion, cisplatin, gentamicin, glycerol, adenine, sepsis or physical exhaustion. Four formulae and six individual herbs were reported to accelerate recovery and/or to prevent CKD in established AKI animal models. Intrarectal herbal medicines, with or without simultaneous oral administration, were reported in six clinical trials and in an animal model to increase extrarenal clearance of uremic toxins. Additional 13 clinical trials reported oral or intravenous herbal interventions in AKI of different etiologies. Despite recurring problems, notably poor compliance with good practice guidelines for clinical trials and for authentication, naming and quality control of herbal materials, accumulating experimental data on the preventive effects of herbal medicines in AKI look encouraging and urge for better, definitive trials to guide clinical practice. Herbal enemas promoting extrarenal clearance of uremic toxins seem cost-effective, but better clinical evidence is certainly needed before any affirmative recommendation be made for AKI patients without access to dialysis. New frontiers, however, lie in those herbal remedies that promote repair/regeneration and prevent chronicity after AKI. Recent experimental data suggest that this may be possible.

Key words: Acute renal failure, renoprotective, traditional Chinese medicine, herbal medicinal products, traditional medicine

Abbreviations: AKI: acute kidney injury; AKIIN: Acute Kidney Injury Network; αSMA: α smooth muscle actin; ARF: acute renal failure; ATN: acute tubular necrosis; BUN: blood urea nitrogen; CAT: catalase; CKD: chronic kidney disease; CXCL12: chemokine C-X-C motif ligand 12; CXCR4: chemokine C-X-C motif receptor 4; CLP: cecal ligation and puncture; Cu-Zn-SOD: copper-zinc superoxide dismutase; ECM: extracellular matrix; eGFR: estimated glomerular filtration rate; EMT: epithelial-to-mesenchymal transition; ESWL: extracorporeal shock wave lithotripsy; FSP: fibroblast-specific protein 1; GSH: glutathione; GSH-Px: glutathione peroxidase; HMP: herbal medicinal product; HO-1: heme oxygenase 1; ICAM-1: intercellular adhesion molecule-1; ICU: intensive care unit; IFN-γ: interferon-γ; IL: interleukin; iNOS: inducible nitric oxide synthase; LPS: lipopolysaccharides; MCP-1: monocyte chemotactic protein 1; Mmp9: matrix metalloproteinase 9; Mn-SOD: manganese superoxide dismutase; NF-κB: nuclear factor κB; NGAL: neutrophil gelatinase-associated lipocalin; NO: nitric oxide; PCI: percutaneous coronary intervention; PCNA: proliferating cell nuclear antigen; p.o.: per os (oral administration); PERCLE: modified RIFLE guideline for pediatric use; RCT: randomized controlled clinical trial; ROS/RNS: reactive oxygen/nitrogen species; SD: standard deviation; SE: standard error; TGF-β: transforming growth factor β; TIMP1: tissue inhibitor of metalloproteinase 1; TNF-α: tumor necrosis factor-α; UUO: unilateral ureteral obstruction.

INTRODUCTION

Acute kidney injury (AKI), an abrupt renal damage and sudden decline of kidney functions, notably results in rapid increase in serum creatinine (Scr), blood urea nitrogen (BUN) and dysregulation of extracellular volume and electrolytes in a short term. Although AKI is also known as “kidney attack”, an analogy to heart attack that mainly results from coronary atherosclerotic heart disease[1, 2], the causes of AKI are much more complex, including renal ischemia reperfusion (I/R), nephrotoxicity, infection, glomerular and interstitial nephritides, obstructive nephropathy, to mention a few. AKI may manifest an entire spectrum of severity, ranging from minor changes in urinary enzymes and Scr to severe cases needing dialysis and other renal replacement therapy. The latter severe scenario is also known as acute renal failure (ARF)[3].

On 14th March 2013, the 8th World Kidney Day was celebrated worldwide to alert the public of an increasing prevalence of AKI. Recent hospital studies in the developed world report AKI in 3.2–9.6% of admissions, with overall in-hospital mortality around 20%, and up to 50% in intensive care unit (ICU). ARF requiring dialysis treatment occurs in
5–6% of ICU patients, with an extremely high in-hospital mortality rate of 60%. The take-home message of the World Kidney Day was that AKI is very common, extremely harmful, and largely preventable[4].

In conventional medicine, however, strategies towards AKI are essentially preventive and supportive — avoidance of nephrotoxic agents is advised to patients, preconditioning is considered before exposure to a known AKI inducer, and dialysis is offered if indicated. Little evidence has so far supported any drug that specifically attenuates AKI or expedites recovery. If patients survive their illness and do not present premorbid chronic kidney disease (CKD), they typically recover to dialysis independence. However, evidence suggests that patients who have suffered an AKI are at increased risk of subsequent CKD[5]. Indeed, although AKI and CKD were once believed to be distinct disease entities, they are now increasingly regarded as closely interconnected syndromes, which are risk factors to each other and are both risk factors for cardiovascular disease and all-cause mortality[6].

For renal diseases, traditional medicines may have both contraindications, yielding or reinforcing nephrotoxicity, and indications, addressing medical needs unmet in AKI and CKD prevention and treatment — just like the “double-edged sword” effects of botanicals that we recently highlighted in the more general context of fibrotic diseases[7]. On one hand, some botanicals used in traditional medicine or ethnic cuisine are known to induce or exacerbate AKI, retard AKI recovery and/or promote AKI progression to CKD. These should be administered with caution, if at all, and prohibited in AKI; such nephrotoxic botanicals have raised major clinical concerns and their avoidance or controlled use has already an acknowledged place in worldwide renoprotective strategies[8–16]. On the other hand, some herbal medicines might have therapeutic values for the prevention and treatment of AKI. For example, silymarin is a lipophilic extract of the seeds of Silybum marianum (L.) Gaertn., the whole plant of which is also used in traditional Chinese medicine (TCM) as Shū Féi Jī (Herba Silībi). The herbal extract comprises three isomers of flavonolignans (silybin, silydianin and silychristin) and two flavonoids (taxifolin and quercetin) and its potential renoprotective effects in AKI/CKD were recently reviewed by Dashti-Khavidaki et al[17]. In line with this timely review, the present paper aims to critically examine the experimental and clinical evidence suggesting potential therapeutic values for herbal medicines, especially those used in TCM in the context of AKI.

TCM is a function-oriented, syndrome differentiation-based medical system that emphasizes Yin-Yang balance and interrelation between different organs. The concept of the functional organ shèn largely covers the functions of the kidney in modern medicine and AKI is often diagnosed as xū lāo (vacuity taxation, fatigue), shū zhòng (water swelling, edema), lóng bì (dribbling urinary block, auria), yuè nì (vomiting, nausea), guàn gé (block and repulsion, auria/vomiting), and/or niào dū (uremia)[18]. Thus, herbal remedies aiming at tonifying shèn, protecting the kidney, and dealing with imbalance and functional disorders are prescribed according to TCM theory and/or experiences of TCM practitioners.

In this review, we aim to enlist emerging evidence on efficacy, effectiveness and mechanisms of action of herbal medicines in the prevention and treatment of AKI, by focusing on four potential aspects: (i) preventing or mitigating induction of AKI; (ii) promoting repair or regeneration; (iii) promoting extrarenal clearance of uremic toxins; and (iv) preventing AKI progression to CKD (Fig. 1).

![Figure 1. Four possible therapeutic effects of herbal remedies in prevention and treatment of AKI.](Image)

METHODS

To review the *in vitro*, *in vivo* and clinical renoprotective studies of botanicals possibly relevant to the prevention and treatment of AKI, PubMed and Scopus databases were screened by searching (“Acute Kidney Injury” [Mesh] or Acute-kidney-failure or Acute-renal-failure or Acute-kidney-insufficiency or Acute-renal-insufficiency) AND (“Drugs, Chinese Herbal” [Mesh] OR “Herbal Medicine” [Mesh]). In order to retrieve those randomized clinical studies and experimental studies published in Chinese, especially those on TCM, the China National Knowledge Infrastructure (www.global.cnki.net) and the Wanfang Data (www.wanfangdata.com) were accessed. The strategy used to search Chinese databases was (急性肾功能不全 OR 急性肾衰 or 急性肾功能衰竭 OR 急性肾损伤 OR 急性肾损) AND (中药 OR 中医 OR 中西医 OR 药 OR 方 OR 法 OR 治则 OR 草药 OR 回药 OR 薈药 OR 藏药 OR 滇药) AND (治疗 OR 预防 OR 干预). Three reviewers independently scrutinized the titles and abstracts. Full manuscripts likely relevant to herbal medicines for the prevention and treatment of AKI were obtained and analyzed by at least two reviewers. Final decisions on addition and inclusion were made on examination of the full manuscripts, including brief communications, based on the relevance to the focus of this search. As we cannot exclude the possibility that a paper poorly written may have important contents of value to inspire future quality studies, we have not excluded any paper on the grounds of poor quality; instead, we introduce papers with higher quality with more details, while only briefly mentioning those with poorer quality. Meanwhile, we have pointed out common problems, as well as specific
weaknesses of each paper as far as we can in related texts and tables. Nonetheless, interested readers are invited to read any cited papers themselves to make their own judgements. To facilitate access to Chinese literature not cited by Pubmed, we have included corresponding Wanfang Data web links to these papers in the REFERENCES section.

Throughout this manuscript, scientific names and authority names of medicinal plants will only be shown when authentication of an herb was reported in the original publication[19]. Wherever information on authentication is unavailable, herbs used in TCM are referred to as accented Chinese pinyin names followed by, in brackets, the English pharmaceutical names retrieved from http://dict.paradigm-pubs.com/test31.htm.

BOTANICALS FOR AKI: EXPERIMENTAL STUDIES

1. Preventing and alleviating AKI

1.1 Ischemia/reperfusion (I/R) kidney injury

I/R is one of the most common causes of AKI and herbal entities have been reported effective in preventing I/R-induced AKI in animal models.

In TCM, two or more herbs are often used together as herbal formulae. Those formulae reportedly preventing I/R-induced AKI are shown in Table 1. We summarize reports on the preventive effects of herbal formulae, individual herbs and pure compounds of an herbal origin, as follows.

A preventive effect on I/R-induced AKI in rats has been reported for the formula Dang Gui Bu Xue Tang (DGBXT), comprising huáng qí (Astragali Radix) and da húáng lǐan (Picrorhizae Rhizoma; Glycyrrhiza glabra Linn. var. glandulifera Regel et Herder) and rén shēn (Ginseng Radix; Panax ginseng C.A. Meyer), but not the other two ingredients, which were shown to reduce cellular malondialdehyde (MDA) contents and prevent cell death induced by hypoxia-reoxygenation. Epicatechin 3-O-gallate and licochalcone A, major polyphenols of dà huáng and gān cāo respectively, also showed similar protective effects in this *in vitro* model[22].

In an I/R-induced AKI mouse model, Wen-Pi-Tang administered by gavage for 30 days was also reported to prevent I/R-induced AKI in rats, preventing the rise of Scr and BUN and reducing apoptosis in the kidney[21]. In a renal tubular epithelial cell line, Wen-Pi-Tang, as well as three of its ingredients, dà huáng (Rhei Radix et Rhizoma; Rheum officinale Baillon), gān cāo (Glycyrrhizae Radix; Glycyrrhiza glabra Linn. var. glandulifera Regel et Herder) and rén shēn (Ginseng Radix; Panax ginseng C.A. Meyer), but not the other two ingredients, were shown to reduce cellular malondialdehyde (MDA) contents and prevent cell death induced by hypoxia-reoxygenation. Epicatechin 3-O-gallate and licochalcone A, major polyphenols of dà huáng and gān cāo respectively, also showed similar protective effects in this *in vitro* model[22].

Picroliv, a mixture of iridoid glycosides extracted from Hú huáng lián (Picrorhiza Rhizoma; Picrorhiza kurrooa Royle ex Benth)-unresolved botanical name, consulted on 6th July 2015, www.theplantlist.org), was suggested of beneficial effects in a rat model of I/R-induced AKI. Although renal functional parameters (e.g. Scr and BUN) were not reported, daily oral administration of picroliv for a week improved

Shenhua Tablet (also known as Fufang Shenhua Tablet or Compound Shenhua Tablet), given to rats by gavage 7 days prior to I/R intervention, reduced Scr, serum interleukin-8 (IL-8), serum interferon-γ (IFN-γ) and renal expression of Toll-like receptor (TLR)-2 and -4[24]. The pretreatment reduced Na⁺-K⁺-ATPase relocalization from the apical to the basal membrane of tubular epithelial cells, suggesting that it protected the renal tubules from I/R-induced depolarity[32].

Cordyceps sinensis (Berk.) Sacc. is a fungus that parasites caterpillars and its fruiting body is used in TCM as dōng chóng xiāo cāo (*Cordyceps*) for tonifying shèn, which may be positive for AKI patients (as detailed later in Section 4). Modern research validated a renoprotective activity mediated by enhancement of antioxidative defenses[25]. In an I/R-induced AKI model in rats, Shahed et al. reported that i.p. injection of a *Cordyceps sinensis* extract 1 h before renal I/R procedure significantly repressed Scr rise, suppressed the mRNA expression of monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor α (TNF-α), heme oxygenase 1 (HO-1), inducible nitric oxide synthase (iNOS), Fas and Fas ligand, as well as caspase 3 activity in the I/R kidney, indicating a likely down-regulation of apoptotic and pro-inflammatory signalling[26]. Renoprotective effects of *Cordyceps sinensis* were also reported by Wang et al., who showed that Scr of rats orally receiving a commercialized fermented *Cordyceps sinensis* extract (Corbrin capsule, Bailing jiaonang, Bailing capsule or Bailing granule) for 2 days before I/R recovered faster. The authors attributed this effect to an induction of chemokine C-X-C motif ligand 12/chemokine C-X-C motif receptor 4 (CXCL12/CXCR4) signaling and alleviation of senescence[27].

Dān shèn (Salviae Miltiorrhizae Radix; Salvia miltiorrhiza Bunge (Labiatae)), an herb commonly used in TCM for its acknowledged capacity of promoting blood circulation and removing blood stasis, was also reported to have protective effects in I/R-induced AKI. Rats orally administered an ethanolic extract of the herb for 20 days had blunted rises in Scr, BUN, circulating IL-6, IL-8, TNF-α and renal MDA, and increased renal SOD, catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-Px)[28]. It was proposed that the renoprotective effects of the herb was at least in part attributable to its capacity to repress excessive nitric oxide (NO) production and its subsequent transformation into the pro-oxidant peroxynitrite (ONOO⁻); indeed *S. miltiorrhiza* aqueous extract and isolated compounds (caffeic acid and its oligomers, rosmarinic acid, lithospermic acid B and magnesium lithospermate B) dose-dependently reduced NO production from activated macrophages[29].

World J Tradit Chin Med 2015; 1(3): 47–66

V. Bunel et al.
ATPase from saphorin, and Bax expression, reducing p38 mitogen-activated protein kinase stress and tubular cell apoptosis, while increasing Bcl-2 lipocalin (NGAL) and urinary KIM-1, reduced oxidative BUN, Scr, serum cystatin C, neutrophil gelatinase-associated AKI in rats, astragaloside IV pretreatment for a week reduced expression, while preventing the loss of renal Nā^+̄/K^+̄/Cl^−̄, TLR-2 and TLR-4 and kidney injury molecule 1 (KIM-1) and GSH-Px and SOD, and reduced renal MDA, and intercellular adhesion molecule-1 (ICAM-1) and apoptosis, and reducing renal MDA and ICAM-1.

Oral administration of astragaloside IV, a triterpenoid glycoside isolated from Astragalus membranaceus (Fisch.) Bunge, was also reported to prevent I/R-induced AKI in rats, repressing BUN, Scr, serum IL-8 and IFN-γ, reducing renal TLR-2 and TLR-4 and kidney injury molecule 1 (KIM-1) expression, while preventing the loss of renal Na⁺-K⁺-ATPase[32]. In another independent report of I/R-induced AKI in rats, astragaloside IV pretreatment for a week reduced BUN, Scr, serum cystatin C, neutrophil gelatinase-associated lipocalin (NGAL) and urinary KIM-1, reduced oxidative stress and tubular cell apoptosis, while increasing Bcl-2 expression, reducing p38 mitogen-activated protein kinase phosphorylation, and Bax expression[33].

Notoginsenoside R1 is a triterpenoid saponin extracted from sán qì (Notoginseng Radix; Panax notoginseng (Burkii) F. H. Chen), an herb with a long history of traditional use for the treatment of various cardiovascular diseases in China, Korea, and Japan. The compound has antioxidant, anti-inflammatory, anti-apoptotic and immune-stimulatory properties and was recently reported to accelerate structural and functional recovery of I/R-injured kidneys in rats. I.p. injection of the compound 1 h before I/R procedure did not affect the peak of Scr rise 24h after I/R, but significantly reduced Scr at 72h after I/R. It notably promoted Bcl2 expression, suppressed renal myeloperoxidase, TNF-α, p38 mitogen-activated protein kinase and nuclear factor κ B (NF-κ B), and reduced tubular apoptosis[34].

1.2 AKI induced by nephrotoxins

Nephrotoxins, notably some antibiotics, anti-cancer drugs and contrast agents, are another major causes of AKI. Nine herbal formulae (Table 2), a number of multi-component herbal extracts and pure herbal compounds reportedly prevented and/or mitigated experimental AKI induced by different nephrotoxins.

Table 1. Formulae for preventing I/R-induced AKI.

Formula	Ingredients	References
Dang Gui Bu Xue Tang	2 herbs: huáng qì (Astragali Radix) and dāng guì (Angelicae Sinensis Radix)	[20]
Wen-Pi-Tang	5 authenticated herbs: dā huáng (Rhei Radix et Rhizoma; Rheum officinale Bailand), rēn shēn (Ginseng Radix; Panax ginseng C.A. Meyer), gān cǎo (Glycyrrhiza Radix; Glycyrrhiza glabra Linn. var. glandulifera Regel et Herder), gān jiǎng (Zingiberis Rhizoma; Zingiber officinale Roscoe), and fū zhī (Aconiti Lateralis Praeparata; Aconitum japonicum Thunberg)	[21, 22]
Wen-Pi-Tang-Hab-Wu-Ling-San	14 authenticated herbs: dāng shēn (Codonopsis Radix; Codonopsis pilosula (Fr.) Nannf), dān shēn (Salviae Miltiorrhizae Radix; Salvia miltiorrhiza Bunge), bān xià (Pinelliae Rhizoma; Pinellia ternata (Thunb.) Makino), huáng lián (Coptidis Rhizoma; Coptis chinensis Franch.), yǐn yáng hú (Epidemi Herba; Epimedium koreanum Nakai), dā huáng (Rhei Radix et Rhizoma; Rheum palmatum L.), zhī sū yè (Perillae Foliolum; Perilla frutescens (L.) Britton), gān cǎo (Glycyrrhizae Radix; Glycyrrhiza uralensis Fisch.), yǐn chén hǎo (Artemisiae Capillaris Herba; Artemisiae capillaris Thunb.), zè xié (Alismatis Rhizoma; Alisma plantago-aquatica L.), fù lǐng (Poria; Poria cocos (Schw.) Ryv. & Gibn – the authors used its old Latin name Poria cocos Schw.), bāi zhū (Atractyloidis Macrocephalae Rhizoma; Atractylodes macrocephala Koidz.), zhū lǐng (Polyporus; Polyporus umbellatus (Pers.) Fries), and guì zhū (Cinnamomi Ramulus; Cinnamomum cassia (L.) J.Presi).	[23, 79]
Shenhua Tablet	7 herbs: Huáng qì (Astragali Radix), nū zhèn zhì (Ligustri Lucidi Fructus), sān lǐng (Spargani Rhizoma), bāi zhū (Atractyloidis Macrocephalae Rhizoma), è zhū (Curcumae Rhizoma), jǐn yín huà (Lonicerae Flos), shāo yào (Paoniae Radix).	[24]
Table 2. Formulae for preventing nephrotoxicant-induced AKI.

Formula	Ingredients	Types of AKI (Reference)
Recipe for nourishing kidney and activating blood	12 ingredients: shèng huáng qì (Astragali Radix Cruda), wǔ wèi zǐ (Schisandrae Fructus), dān shén (Salviae Miltiorrhizae Radix), chuān xióng (Chuanxiong Rhizoma), dà huáng (Rhei Radix et Rhizoma), dà huáng tān (Rhei Radix et Rhizoma Charred), bān zhī lián (Scutellariae Barbatae Herba), yín chén hào (Artemisiae Scopariae Herba), qīng hào (Artemisiae Annuae Herba), cǎo jué míng (Cassiae Semen), pú huáng tān (Typhae Pollen Carbonisatum), wǔ líng zhì (Trogopteri Faeces), etc.	Cisplatin-induced AKI [35]
Gujingdan	10 herbs: Huáng qì (Astragali Radix), yì zhì rén (Alpiniae Officinaris Siebold & Zucc.), shù di huáng (Rehmanniadi Radix Praeparata; Rehmannia glutinosa (Gaertn.) DC.), shān yào (Dioscoreae Rhizoma; Dioscorea oppositifolia L.), guān huáng bāi (Phellodendri Cortex & Orientalis; Phellodendron amurense Rupr.), zú mǔ (Anemarrhenae Rhizoma; Anemarrhena asphodeloides Bunge), mǔ dān pi (Moutan Cortex; Paeonia suffruticosae Andrews), zé xiè (Alismatis Rhizoma), and shān yào (Dioscoreae Rhizoma).	Gentamicin-induced AKI [44].
Shensheng fang	8 herbs: Huáng qì (Astragali Radix), dān fú piàn (Aconiti Radix Lateralis Insalsa), yì mǔ cáo (Leonuri Herba), suō yáng (Cynomorii Herba), dān shén (Salviae Miltiorrhizae Radix), fú líng (Poria), vài xè (Alismatis Rhizoma), and shān yào (Dioscoreae Rhizoma).	Gentamicin-induced AKI [44].
Zhibai Dihuang Wan	8 authenticated herbs: shān zhū yú (Corni Fructus; Cornus officinalis Siebold & Zucc.), shù di huáng (Rehmanniadi Radix Praeparata; Rehmannia glutinosa (Gaertn.) DC.), shān yào (Dioscoreae Rhizoma; Dioscorea oppositifolia L.), guān huáng bāi (Phellodendri Cortex & Orientalis; Phellodendron amurense Rupr.), zú mǔ (Anemarrhenae Rhizoma; Anemarrhena asphodeloides Bunge), mǔ dān pi (Moutan Cortex; Paeonia suffruticosae Andrews), zé xiè (Alismatis Rhizoma; Alisma plantago-aquatica L.), and fú líng (Poria; Wolfiporia cocos (Schw.) Ryv. & Gibn – the authors used one of its older Latin names Poria cocos (Schw.) Wolf).	Gentamicin-induced AKI [45].
VI-28	8 herbs: rén shèng (Ginseng Radix), lú róng (Cervi Cornu Pantotrichum), dōng chóng xiào cáo (Cordyceps), dān shén (Salviae Miltiorrhizae Radix), jú cǎi zǐ (Allii Tuberosi Semen), shè chuāng zǐ (Cnidii Fructus), wú zhū yú (Evodiae Fructus), and shān nǎi (Kaempferiae Rhizoma).	Gentamicin-induced AKI [46].
WH30+	7 ingredients: Dà huáng (Rhei Radix et Rhizoma), dān shén (Salviae Miltiorrhizae Radix), dōng chóng xiào cáo (Cordyceps), yì mǔ cáo (Leonuri Herba), yín yáng huò (Epimedii Herba), huáng qì (Astragali Radix), and dān shèng (Codonopsis Radix).	Glycerol-induced AKI [52].
Shenshuai Mixture (aka Shenshuai Compound Medicine)	10 ingredients (only seven disclosed): Shèng di (Rehmanniadi Radix (Exsic cata seu Recens)), dà huáng (Rhei Radix et Rhizoma), chī shāo (Paeoniae Radix Rubra), huáng lián (Coptidis Rhizoma), dān pi (Moutan Cortex), zé xiè (Alismatis Rhizoma), and huá shí (Flos Caryophylli).	Glycerol-induced AKI. [53] [54]
Shenshengfang	4 ingredients: Huáng qì (Astragali Radix), yín yáng huò (Epimedii Herba), shú zhǐ (Hirudo), shān zhū (Crateagi Fructus), etc.	Glycerol-induced AKI [55].
Ermiao San	9 constituents: Cáng zhū (Atractylodis Rhizoma), huáng bāi (Phellodendri Cortex), dà huáng (Rhei Radix et Rhizoma), yǐ mǔ cáo (Leonuri Herba), bás hū shé shé cáo (Oldenlandiae Herba), zhū lǐng (Polyposporus), Huáng qì (Astragali Radix), niú xí (Achyranthis Bidentatae Radix), guāng cì gū (Tulipae Edulis Tuber), etc.	Adenine and ethambutol hydrochloride-induced AKI [56].
Fufang Xi Xian Cao Capsule	8 ingredients: Xí xiān cāo (Siegesbeckiae Herba), jīn qián cāo (Lyssimachiae Herba), qīn jīao (Gentianae Macrophyllae Radix), fāng jī (Stephaniae Tetrandrae Radix), zhū lǐng (Polyposporus), zé xiè (Alismatis Rhizoma), chǐ qián cāo (Plantaginis Herba), niú xí (Achyranthis Bidentatae Radix), etc.	Adenine and oteracil potassium-induced AKI [57].
concentrations of the ginsenosides unique to hóng shēn. They found that a Sun Ginseng extract reduced cisplatin-induced LLC-PK1 cell death more effectively than non-processed ginseng. An activity-guided fractionation and isolation identified ginsenosides Rh4 and Rk3 as the compounds responsible for this cytoprotective activity.[37]

Emodin, a naturally occurring anthraquinone derivative isolated from dà huáng (Rhei Radix et Rhizoma; Rheum officinale Baillon), has been reported to alleviate cisplatin-induced nephrotoxicity in rats. Emodin treatment for 4 days prior to and 5 days after cisplatin administration increased renal GSH content, reduced oxidative stress and mitigated cisplatin-induced tubular necrosis and rises of Scr and BUN.[38]

Líng zhī, the fruiting body of the fungus Ganoderma lucidum (Curtis ex Fr.) P. Karst., has been used traditionally for extending patient’s life span and promoting good health.[39] The major bioactive constituents of Ganoderma are polysaccharides and triterpenes: more than 140 triterpenoids have been reported, of which 50 are unique to G. lucidum.[39] These triterpenoids have demonstrated a beneficial activity towards cisplatin-induced oxidative stress in mice: a triterpene extract (100 mg/kg body weight) prevented the renal failure in preserving antioxidant enzymes (SOD, CAT and GSH-Px) and restoring GSH concentrations.[40]

Gān cáo (Glycyrrhizae Radix; Glycyrrhiza glabra Linn. var. glandulifera Regel et Herder) is well known for its detoxicating effects in TCM and is often used in herbal formulae for the prevention of AKI. In a mouse model of cisplatin-induced AKI, the protective effects of a gān cáo-derived compound, glycyrrhizic acid, and its metabolite 18β-glycyrrhetinic acid, were investigated. Oral administration of either compound six days before and two days after cisplatin treatment significantly reduced cisplatin-induced increases of BUN, Scr, and serum lactate dehydrogenase three days after cisplatin treatment. Renal histopathological studies indicated that either compound delayed the progression of renal injury, including tubular necrosis, hyaline casts, and tubular degeneration in response to cisplatin exposure. The compounds reduced renal MDA, increased renal SOD, CAT, GSH, GSH-Px, and HO-1 levels, and restored redox status and inflammatory responses in cisplatin-treated mice to almost normal levels. These protective effects are associated with upregulation of nuclear factor E2-related protein and downregulation of NF-κB in the kidney. The two compounds also rendered renal tissue resistant to cisplatin-induced cytoplastic translocation of high mobility group box 1.[41]

Dāng guǐ (Angelicae Sinensis Radix; Angelica sinensis (Oliv.) Diels (Apiaceae)) is often used in herbal formulae for AKI. A methanolic extract of the herb was reported to reduce apoptosis, increase survival and enhance proliferation and migration of HK-2 human kidney proximal tubular cells exposed to cisplatin.[42]

Wū wèi zǐ (Schisandraceae Fructus; Schisandra chinensis (Turcz.) Baill.) is also used in some herbal formulae for the prevention of AKI. Schizandrin and schizandrin B, compounds isolated from wū wèi zǐ, have been reported to alleviate apoptosis, reduce collagen accumulation and enhance regeneration capacities in HK-2 human proximal tubular cells exposed to cisplatin.[43]

Gentamicin-induced AKI Gentamicin is a potent antibiotic but its nephrotoxicity remains a major clinical concern. Daily gavage of Gujingdan or Shenkangning, either starting from one week before the first gentamicin injection or after each gentamicin treatment, has been reported to prevent gentamicin-induced AKI in rats. Both herbal remedies reduced Scr, BUN, urinary N-acetyl-beta-D-glucosaminidase (NAG), renal cortical MDA, and increased renal cortical SOD, Na+-K+-ATPase, Ca2+-ATPase and Mg2+-ATPase.[44]

Oral administration of an extract of the classic Shèn-tonic formula Zhibai Dihuang Wan before each gentamicin injection for 10 days was also reported to significantly attenuate gentamicin-induced apoptosis of renal tubular cells and prevented rises of BUN and Scr in mice.[45] This renoprotective effect was supported by in vitro data that the Zhibai Dihuang Wan extract and two constituent herbs of the formula, guān huáng bāi (Phellodendri Cortex & Orientalis; Phellodendron amurense Rupr.) and zhī mǔ (Anemarrhenae Rhizoma; Anemarrhena asphodeloides Bunge), attenuated gentamicin-induced Bcl2 repression, caspase-3 activation and apoptosis in NRK-52E rat kidney epithelial cells.[45]

Pretreatment for two days, followed by 10 days of co-treatment with VI-28 (by gavage), has been reported to prevent gentamicin-induced rises in Scr and BUN, and to enhance the renal mitochondrial antioxidant system in rats, as indicated by dose-dependent increases in the level/activities of reduced GSH, Mn-SOD, Se-GSH-Px, GSH reductase and GSH-S-transferases.[46]

Dōng chōng xiā cáo (Cordyceps; Cordyceps sinensis (Berk.) Sacc.) was reported to ameliorate gentamicin-induced nephrotoxicity in rats, as evident from the less prominent increment of BUN, Scr, sodium excretion, urinary NAG and less severe histopathological changes in the Cordyceps treatment group.[47]

An aqueous extract of hóng shēn (Ginseng Radix Rubra; steamed roots of Panax ginseng C.A. Meyer), was reported to significantly reduce gentamicin-induced rises in Scr, BUN, proteinuria, urinary excretion of 8-hydroxy-2′-deoxyguanosine, renal Bax and cytochrome-c, renal caspase-9 and caspase-3 activation, and renal tubular cell apoptosis, while restoring Bcl-2 expression and increasing GSH in renal cortex in a mouse model of gentamicin-induced AKI; it also prevented gentamicin-induced apoptosis and oxidative stress in NRK-52E rat renal tubular cells.[48]

Ligustrazine, which was reported effective in preventing U/R-induced AKI in mice,[31] was also reported to abrogate gentamicin-induced apoptosis of renal tubular cells in rats.[49] In cultured NRK-52E rat kidney tubular cells, ligustrazine pretreatment protected against gentamicin-induced apoptosis and, dose-dependently, repressed gentamicin-induced generation of reactive oxygen species, reduced caspase-3, caspase-8 and caspase-9 activities, prevented
cytochrome c release, TNF-α excretion and NF-κB activity, increased Bcl-xL expression⁵⁰.

Schizandrin B, a derivative from wǔ wéi zhī discussed previously for its protection of HK-2 human proximal tubular cells exposed to cisplatin, also ameliorated the oxidative stress in renal mitochondria of rats exposed to gentamicin. The protection was attributed to an enhanced antioxidant status (as observed via GSH and α-tocopherol levels and Mn-SOD activity), leading to an improvement in mitochondrial structure and function (highlighted by ATP, MDA levels, Ca²⁺ loading and cytochrome c release). As a result, the kidney structure and function were preserved and normal Scr and BUN levels were restored⁵¹.

Glycerol-induced AKI Pretreatment with WH30+, a 7-herb TCM formula, for 10 days has been reported to attenuate glycerol-induced AKI in rats, preventing rises of Scr and BUN⁵². Treatment with Shenshuai Mixture (“Shenshuai Compound Medicine”), a 10-herb TCM formula (by gavage, twice daily for 5 days), immediately after intramuscular injection of glycerol in rats was also reported to significantly reduce plasma endothelin-1 and serum TNF-α, increase serum NO, enhance PCNA expression in renal tubular cells, and significantly attenuate rises of Scr and BUN⁵³, ⁵⁴. In another report, six days of Shenshengfang pretreatment attenuated a similar AKI model, increasing the urinary output and reducing serum potassium 24 h after glycerol injection, and reducing Scr and BUN at 24 h and 72 h⁵⁵.

Adenine-induced AKI AKI and/or CKD can be induced by adenine due to hyperuricemia, tubular obstruction and tubulo-interstitial nephritis. Ermião San was reported to prevent AKI induced by adenine and ethambutol hydrochloride in rats when administered by daily gavage from day 1 of the nephrotoxic injection. The herbal extract significantly suppressed the rises of BUN and Scr on days 7, 14 and 21, and significantly reduced serum uric acid on days 14 and 21⁵⁶.

When administered daily along with adenine and oteracil potassium in rats, Fufang Xi Xian Cao Capsules were reported to alleviate AKI induced by adenine and oteracil potassium, preventing rises of serum uric acid, BUN and Scr on days 7, 14 and 21⁵⁷.

A decoction of dì yì (Sanguisorbae Radix; Sanguisorba officinalis L.) was reported to alleviate AKI induced by adenine and yeast extract in rats. Administered daily by gavage along with the nephrotoxic treatment for 6 weeks, the decoction dose-dependently increased urinary excretion and reduced serum concentration of uric acid without affecting serum xanthine oxidase activity; the herbal decoction dose-dependently reduced BUN and Scr, reduced tubular dilation, cast formation, ATN, dilation of the Bowman’s capsule and reduced mortality (6.25%, 18.75% in high- and low-dose decoction treatment groups vs 37.50% in non-treated group)⁵⁸.

AKI induced by contrast agents Breviscapine, an extract from dèng zhàn xì xīn (Erigeron Herba; Erigeron breviscapus (Vaniot) Hand.-Mazz.) principally enriched in the glycoflavone scutellarin, was found effective to prevent AKI induced by a single intravenous injection of iopromide (Ultravist 370). Daily peritoneal injections for three days, starting from the day of intravenous injection of the contrast medium, significantly reduced Scr and serum cystatin C, and prevented the reduction of renal Na⁺/K⁺-ATPase activity 3 days after injection of the contrast medium⁵⁹.

Oral administration of astragaloside IV for a week prior to injection of iomiprodil was reported to alleviate the contrast agent-induced AKI and preserved renal function; histological examinations revealed reduced ATN, which was correlated with reductions of BUN, Scr, serum cystatin C and NGAL, as well as urinary KIM-1. In the astragaloside IV treatment group, the renal oxidative stress was reduced, with notably decreased MDA and increased CAT and SOD activities; decreased Bax and increased Bcl2 renal expression, reduced caspase-3 activation and apoptosis were also observed⁶⁰.

AKI induced by chromium, mercury, iron or lead. Chromium intoxication can induce both AKI and CKD. An extract of total tannins, but not anthraquinones, of dà huáng (Rhei Radix et Rhizoma; Rheum officinale Baill.) was reported to prevent chromium-induced AKI in rats⁶¹.

Mercuric chloride causes oxidant AKI that affects mainly proximal tubules. In rats, schizandrin B pretreatment (oral administration for 9 days) ameliorated i.p. mercury-induced tubular and mitochondrial damage, reduced heat shock proteins in the renal cortex, increased cytochrome c oxidase and restored eNOS and nNOS in glomeruli⁶².

I.p. injection of nephrotoxic doses of iron dextran for 2 weeks or lead for 10 days induces AKI in mice. I.p. administration of Danshen injection (an aqueous extract of dān shēn (Salviae Miltiorrhizae Radix), 4 hours before each nephrotoxic injection led to significant improvements of body weight and decreased iron or lead levels in the kidney. In both AKI models, Danshen injection reduced BUN, Scr and renal MDA, and enhanced renal SOD and GSH-Px activities⁶³, ⁶⁴.

AKI/CKD induced by organic xenobiotics A single administration of a nephrotoxic dose of absolute ethanol to fasted mice produces extensive AKI. A ling zhī (Ganoderma; Ganoderma lucidum (Curtis ex Fr.) P. Karst.) aqueous decoction was reported to dose-dependently exert antioxidantive effect on kidney lipid peroxidation and alleviate ethanol-induced nephrotoxicity in a mouse model⁶⁵. Oral pretreatment with ligustrazine, at least in part, prevented ethanol-induced AKI due to its superoxide scavenging effect⁶⁶.

Schizandrin B was reported to ameliorate cyclosporine A-induced AKI in mice, attenuating histopathological changes and alleviating the rises in BUN and Scr. Schizandrin B also decreased renal MDA and increased GSH levels in cyclosporine A-treated mice. Furthermore, in cyclosporine A-treated HK-2 cells, schizandrin B reduced apoptosis, increased intracellular GSH and ATP levels and attenuated the generation of reactive oxygen species⁶⁶.

An aqueous extract of máo shū (Dioscoreae Aalatae Tuber; Dioscorea alata L.) was reported to alleviate AKI induced by...
Aflatoxin B1 is a potent hepatotoxic and hepatocarcinogenic mycotoxin that can also induce AKI. Marked increases in lipid peroxide levels in kidneys and liver and a concomitant decrease in antioxidant enzymes levels (SOD, catalase, GSH transferase, etc) were observed in aflatoxin B1-intoxicated rats, while picroliv and silymarin treatments both reversed the conditions to almost normal level[68].

1.3 AKI induced by sepsis, endotoxin or over-exercise

Sepsis, infection and harsh exercise (such as extreme physical exercise) are also important causes of AKI. Table 3 summarizes the various herbal formulae and remedies reported to prevent AKI induced by these causes.

In rats, an i.p. injection of Xuebijing, a proprietary extract mainly containing five herbs, significantly reduced the rises of Scr, BUN, serum β2-microglobulin and renal IL-6 observed after sepsis induction by cecal ligation and puncture (CLP)[69]. A post-CLP intravenous injection of an extract of huáng qí (Astragali Radix) significantly reduced serum cystatin C and suppressed renal IL-1β and TNF-α expression and decreased renal NFκB activity 8 and 24 hours after CLP[70]. In rats, upon CLP, an i.p. injection of an extract of kù mā cài (Ixeris Denticulatae Herba; Ixeris sonchifolia (Bunge) Hance) significantly prevented rises of Scr and renal MDA and increased renal SOD after 3, 6 and 24 hours[71].

Lipopolysaccharides (LPS) can also induce AKI in mice. 1 h before i.p. injection of LPS, an i.p. injection of ginseng panaxadiol saponins extracted from rén shé (Prunellae Spica), zhì huáng qí (Astragali Radix cum) and decreased renal NFκB and suppressed renal IL-1β[72].

Exhaustingly exercised rats developed AKI within 8 weeks, which is more pronounced under conditions of high temperature, high humidity and bearing weight, etc. Yishen Huanji Decoction treatment prevented rises in Scr, BUN, urinary albumin and NAG excretion, and preserved renal Na⁺-K⁺-ATPase activity in these models[73,74].

2. Promoting repair and regeneration, increasing extrarenal uremic toxin removal and preventing chronic lesions after AKI

Most published experimental investigations focused on prevention and mitigation of AKI through herbal pretreatment or simultaneous use of herbal medicines with inducers of AKI. Nevertheless, some emerging evidence supports a potential for herbal formulae (Table 4), extracts of individual herbs and pure herbal compounds in promoting repair and regeneration, increasing extrarenal uremic toxin removal and preventing chronic lesions in AKI, either by starting treatment in the early stages of AKI or when AKI is already established.

Promoting repair and regeneration after AKI As recently reviewed by Wang et al[75], a possibility exists that herbal medicines exert actions through prohealing progenitor cells. Direct evidence for botanicals having therapeutic effects on AKI through such cells is however scarce. Interestingly, it was recently reported that exposure of human adipose-derived mesenchymal stem cells to astragaloside IV increased stem cell migration to cisplatin-damaged renal tubular epithelial cells, suppressed proinflammatory cytokine and chemokine expression and increased erythropoietin and insulin-like growth factor 1 expression[76]. In addition, in in vitro and in vivo AKI models, herbal remedies have been reported to promote proliferation of tubular epithelial cells[27,37,53,77,78].

Increasing extrarenal removal of uremic toxins after AKI In a rat model with established gentamicin-induced AKI, both a decoction of Huanghui Wendan Receipe, administered by gavage, and the Shenshuakang enema, administered intraretally, significantly reduced Scr and BUN and reduced the histology of tubular injury[18].

Preventing chronic lesions Effects of herbal medicines on long-term outcomes in AKI have been rarely studied. Nonetheless, some emerging evidence suggests that herbal medicines could repress chronic renal lesions in AKI induced by I/R, aristolochic acid-containing herb or cisplatin.

Wen-Pi-Tang-Hab-Wu-Ling-San, when administered to mice for 12 days starting from 2 days after renal I/R, was reported to prevent I/R-induced decrease of renal SOD activities, reduce lipid peroxidation and hydrogen peroxide production, attenuate renal phosphorylation of mitogen-activated protein kinases and activation of NF-κB and, importantly, prevented renal fibrosis[79].

Aristolochic acid-containing herbs are known to induce both AKI and CKD. Rats fed simultaneously with Wen Yang Huo Xue Fang and quán mǔ tōng (Aristolochiae Manshurensis Caulis; Aristolochia manshuriensis Kom.) decoctions for 20

Formula	Ingredients	Type of AKI (Reference)
Xuebijing	5 herbs: Hong hūa (Carthami Flores), chi sháo (Paeoniae Radix Rubra), chuán xióng (Chuanxiong Rhizoma), dàn shēn (Salviae Miltiorrhizae Radix), dāng guì (Angelicae Sinensis Radix).	Sepsis-induced AKI[69]
Yishen Huanji Decoction	10 herbs: dàng shēn (Codonopsis Radix), huáng qí (Astragali Radix cum Liquido Fricta), hóng jīng tiān (Rhodiolae Herba), yǐn yánɡ hǔ (Epimedi Herba), xuān hē cǎo (Agrimoniae Herba), gōng lǎo yě (Mahoniae Foliolum), qián nián jiàn (Homalomenae Rhizoma), wū jū pǐ (Acanthopanacis Cortex), xiǎ kū cǎo (Prunellae Spica), zǐ zhī (Gardeniae Fructus).	Over-exercise induced AKI[73, 74]
weeks presented significantly reduced Scr, BUN and urinary excretion of proteins, β2-microglobulin and NAG as well as improved anemia. Thus, when administered early, this decoction attenuated the long-term chronic damage of the disease model[80].

In HK-2 human kidney proximal tubular cells, a methanolic extract of dang guī (Angelicae Sinensis Radix; Angelica sinensis) did not alleviate oxidative stress but reduced collagen production upon cisplatin exposure. This coincided with reduced activation of the β-catenin pathway, which is involved in epithelial-to-mesenchymal transition (EMT) and fibrosis. Deeper investigation on major bioactive compounds of the herb (ferulic acid, Z-ligustilide and E-ligustilide) identified ferulic acid as the most potent protectant; in a cisplatin-mediated toxicity model using HK-2 cells, it not only reduced apoptosis, but also reduced collagen accumulation and prevented activation of the β-catenin pathway[42,79]. Thus, whether such favorable effects can be translated into in vivo, and whether Angelica sinensis compounds reduce long-term chronic lesions in AKI deserve further studies. Similarly, some herbal medicines, such as dān shēn (Salviae Miltiorrhizae Radix; Salvia miltiorrhiza Bunge), huáng qí (Astragali Radix; Astragalus membranaceus (Fisch.) Bunge), dōng cōng róng (Cistanches Herba), xian lǐng pí (Epimedi Herba) and dān pí (Moutan Cortex), have demonstrated favorable effects in preventing and mitigating AKI, and also have promising anti-fibrotic effects[7, 81, 82]. Thus, it awaits further investigations to find out whether use of these herbs affects long-term outcomes in AKI patients.

Table 4. Formulae for treatment of established AKI.

Formula	Ingredients	Type of AKI (Reference)
Huanghuai Wendan Recipe	10 herbs: Bàn xià (Pinelliae Rhizoma), chén pì (Citri Reticulatae Pericarpium), fú ling (Poria), zhú rú (Bambusae Caulis in Taenia), zhì dà huáng (Rhei Radix et Rhizoma Preparata), shèng huái huā (Sophorae Flos Crudus), báo huài shè shè cāo (Oldenlandia herb), gān cāo (Glycyrrhizae Radix), shèng jiāng (Zingiberis Rhizoma Recens), dà zāo (Zizyphi Fructus)	Gentamicin-induced AKI[118]
Shenshuaikang enema	4 herbs: Tāi zī shèn (Pseudostellariae Radix), dā huáng (Rhei Radix et Rhizoma), hóng huā (Castani Flos), gān cāo (Glycyrrhizae Radix).	Gentamicin-induced AKI[118]
Wen-Pi-Tang-Hab-Wu-Ling-San	14 herbs (Same as Table 1) : dāng shén (Codonopsis Radix; Codonopsis pilosula (Fr.) Nannf), dàn shēn (Salviae Miltiorrhizae Radix; Salvia miltiorrhiza Bunge), bàn xià (Pinelliae Rhizoma; Pinellia ternata (Thunb.) Makino), huáng lián (Coptidis Rhizoma; Coptis chinensis Franch.), yín yáng huó (Epimedi Herba; Epimedium koreanum Nakai), dà huáng (Rhei Radix et Rhizoma; Rheum palmatum L.), zī sū yè (Perillae Folium; Perilla frutescens (L.) Britton), gān cāo (Glycyrrhizae Radix; Glycyrrhiza uralensis Fisch), yīn chén hào (Artemisiae Capillaris Herba; Artemisia capillaris Thunb.), zē xiè (Alyssunt Rhizoma; Alyssum plantago-aquaticum L.), fú líng (Poria; Wolfiporia cocos (Schw.) Ryv. & Gibn – the authors used its old Latin name Poria cocos Schw.), bái zhú (Atractylodes macrocephala Rhiiza; Atractyloides macrocephala Koidz.), zhí huáng (Polyposporus; Polyporus umbellatus (Pers.) Fries), and gui zhī (Cinnamomi Ramulus; Cinnamomum cassia (L.) J.Presl).	I/R-induced AKI[79]
Wen Yang Huo Xue Fang	5 herbs: Táo rén (Persicae Semen), hóng huā (Castani Flos), ròu công róng (Cistanches Herba), xiān lǐng pí (Epimedi Herba) and dān pí (Moutan Cortex).	Aristolochic acid-induced AKI/Ckd[80]

BOTANICALS FOR AKI: CLINICAL STUDIES

Clinical diagnosis of AKI has long been mainly based on acute changes of Scr and urinary volume, but the detailed criteria, dominated by expert opinions, differed internationally. This started to change in the new millennium. Using both evidence and consensus, international collaborations have gained pace in standardizing the clinical definition of the different stages of AKI, leading to publications of the Risk, Injury, Failure, Loss, and End-stage renal disease (RIFLE) guideline, the modified RIFLE guideline for pediatric use (pRIFLE), and the AKI Network (AKIN) guidelines in 2004 and 2007. The RIFLE and AKIN guidelines were then merged in 2012 to form the Kidney Disease Improving Global Outcomes (KDIGO) guideline[63]. It was recommended by a group of experts commissioned by the UK National Institute of Health and Care Excellence that KDIGO and pRIFLE guidelines be used for diagnosing adult and pediatric AKI patients, respectively[83]. In view of the above evolving clinical definition of AKI, it is not surprising that published clinical studies have used a variety of criteria for AKI diagnosis, as summarized in Tables 5 and 6.

There were altogether 19 randomized clinical trials on herbal prevention and treatment of AKI: common weaknesses of these trials included lack of reporting authentication and quality control of the herbal products (a problem shared...
by *in vitro* and *in vivo* studies, as reported in the preceding section), small trial sizes, blank controls, and non-blinded designs. Five randomized controlled trials (two published in English and three in Chinese) were retrieved from the Pubmed database — they were otherwise compliant with the CONSORT guidelines (http://www.consort-statement.org/), except for the aforementioned weaknesses (Table 5). The remaining 14 were not indexed in Pubmed and were retrieved from Chinese databases. They were all published in Chinese (only five have titles and abstracts in English) by authors from hospitals in counties (2/14) or small-to-medium-sized cities (11/14), where medical resources and resources for clinical trial training are generally limited; their quality, as judged by the CONSORT guidelines, is thus unsurprisingly poor (Table 6). These abstracts or brief reports (0.5–2.5 pages) share weaknesses with those cited in the Pubmed database. In addition, these papers hardly report methodology of randomization, ethical approval and consent, and rarely provide details of the baseline comparison between treated and control groups. We describe Pubmed-cited reports and also cover the reports cited only in Chinese database (except one which is too confused for analysis), not as conclusive evidence, but rather as possible sources of experience, knowledge or information, which we hope will promote future high-quality developments.

1. Pubmed-cited reports (Table 5)

Fermented dong chóng xià cǎo (Cordyceps) for prevention of contrast medium-induced AKI

The preventive effects of Corbrin Capsules, a commercially available fermented Cordyceps powder, on contrast medium-induced AKI were studied in patients with stable angina pectoris. 103 inpatients were randomly divided into two groups: blank control treatment (n=51) and Cordyceps treatment (n=52). Corbrin Capsules (3 g, p.o., thrice daily), were given to the Cordyceps group 3 days before angioplasty using low-osmolarity non-ionic contrast media (iopamidol, i.v.) and 3 days after angioplasty. Scr was assessed at the time of hospital admission and 1, 2, and 3 days after angioplasty. Urinary KIM-1, NGAL and IL-18 were examined before angioplasty and 1 day after angioplasty. The prevalence of contrast medium-induced nephropathy was 5.77% in the Cordyceps group and 11.76% in the blank control group (the difference was not statistically significant). The post-procedure mean peak of 11.76% in the blank control group (the difference was not statistically significant). However, the treatment group had significantly lower Scr, serum cystatin C, urinary albumin, and β2-microglobulin were measured before and 24, 48, 72 h after PCI. 5 (12.5%) patients in the control group and 2 (5.0%) in the treatment group had contrast medium-induced nephropathy (the difference was not statistically significant). However, the treatment group had significantly lower Scr, serum cystatin C and urinary β2-microglobulin 24h after PCI, had significantly lower serum cystatin C, urinary β2-microglobulin and albumin 48h after PCI and had significantly lower urinary albumin 72h after PCI[85].

Qi shen huo xue Granule as an auxiliary treatment of AKI in an intensive care unit

The effects of Qi shen Huxue Granule, a commercial product comprising extracts of 6 herbs, on AKI in ICU patients were studied in 52 AKI patients randomly assigned to two groups: a blank control group (n = 27) treated only by hemofiltration therapy and the treatment group (n = 25) treated with Qi shen Huxue Granule (10 g, by gavage, thrice daily) for 2 weeks in addition to hemofiltration therapy. Mechanical ventilation and vasoactive drugs were administered when necessary. It took 8.00 ± 1.02 days for urinary output to recover (>0.5 ml/kg/h) in the treatment group, a significantly shorter time compared to the blank control group (13.00 ± 0.95 days). Supporting accelerated recovery of renal function, serum cystatin C was lower in the treatment group at days 10 and 14. The needs for mechanical ventilation and vasoactive drugs were significantly lower in the treatment group, which tended to have lower 28-day mortality (12% vs 29.6%) and fewer days of ICU stay (19.25 ± 2.15 vs 21.00 ± 2.57), but the differences were not statistically significant[86].

An 11-herb decoction for AKI induced by extracorporeal shock wave lithotripsy (ESWL)

60 patients with renal calculi to be treated by ESWL were randomly assigned to treatment and blank control groups. Post-ESWL plasma NO, endothelin-1 (ET-1), MDA and serum TNF-α significantly increased in the control group, but not in the treatment group. The difference between the groups was statistically significant. 72 h after ESWL, the levels of plasma SOD decreased in the control but not in the treatment group; the plasma NO and urinary β2-microglobulin were significantly lower in the treatment group[87].

Chongcao Shenkang Capsules for preventing and treating AKI due to epidemic hemorrhagic fever

150 AKI patients with epidemic hemorrhagic fever were randomly assigned to the treatment group (n = 76) and the blank control group (n = 74). All patients were given ribavirin and supporting treatment to maintain electrolyte and water homeostasis and the treatment group received Chongcao Shenkang Granule (10 g, by gavage, thrice daily) for 2 weeks in addition to supportive treatment to maintain electrolyte and water homeostasis. All patients were given ribavirin and supporting treatment to maintain electrolyte and water homeostasis. All patients were given ribavirin and supporting treatment to maintain electrolyte and water homeostasis. All patients were given ribavirin and supporting treatment to maintain electrolyte and water homeostasis.

© World Journal of Traditional Chinese Medicine

Herbal medicine for AKI

July 2015 | Vol. 1 | Issue 3

www.wjtcm.org
Authors	Total subject No. (control, treatment)	Randomization methodology	Herbal medicines	Route	Control	Blind design and concealment of allocation	Consent and ethical approval	Baseline comparability	AKI diagnosis criteria
Zhao et al [84]	103 (51, 52)	Random number table	*Corbrin Capsules*, a fermented dōng chóng xià cáo (Cordyceps) power.	p.o.	Blank control	None	Yes	Yes	Contrast medium-induced nephropathy was defined as Scr rise ≥0.5 mg/dl or ≥25% of basal level within 3 days after exposure to contrast medium, excluding other etiology
Wang et al [85]	80 (40, 40)	Random number table	*Danhong Injection*, a commercial product comprising extracts of dān shēn (Salviae Miltiorrhizae Radix) and hóng huā (Carthami Flos).	i.v.	Blank control	None	Not described	Yes	Contrast medium-induced renal impairment was defined as Scr rise >44.2 μM or >25% of basal level within 3 days after exposure to contrast medium, excluding other etiology
Yu et al [86]	52 (27, 25)	Random number table	*Qishen Huoxue Granule*, a commercial product comprising extracts of huáng qí (Astragali Radix), dān shēn (Salviae Miltiorrhizae Radix), chì sháo (Paeoniae Radix Rubra), chuān xióng (Chuanxiong Rhizoma), hóng huā (Carthami Flos), dāng qùi (Angelicae Sinensis Radix).	By gavage	Blank control	None	Not described	Yes	RIFLE criteria
Sheng et al [87]	60 (30, 30)	Not described	**A decoction of 11 herbs**, including shān yào (Dioscoreae Rhizoma), shēng dì (Rehmanniae Radix), shān zhū yú (Corni Fructus), zè xiè (Alismatis Rhizoma), fú líng (Poria), mù dān pí (Moutan Cortex), huáng qí (Astragali Radix), ché qǐán cáo (Plantaginis Herba), bài máo gēn (Imperatae Rhizoma), jǐn qǐán cáo (Lygodiae Sporae), hài jǐn shā (Lygos-Tria Sporae).	p.o.	Blank control	None	Yes	Yes	Rise in urinary NAG, γ-GT and β2-microglobulin
Fu et al [88]	150 (76, 74)	Not described	*Chóngcao Shenkang Capsules*, a commercial product mainly comprising dān shēn (Salviae Miltiorrhizae Radix), huáng qí (Astragali Radix) and dōng chóng xià cáo (Cordyceps).	p.o. or by gavage	Blank control	None	Not described	Yes	1985 national criteria for diagnosing hemorrhagic fever with renal syndrome.
Capsules (2.7 g, p.o. or by gavage, thrice daily) till the end of polyuric phase. Patients in the treatment group had significantly shorter oliguric and polyuric periods than those in the control group. Proteinuria and Scr in the treatment group returned to normal ranges within significantly shorter time than the control group. Furthermore, serum and urinary β2-microglobulin levels of the treatment group were significantly lower than those of the control group on the fifth and tenth days after treatment. The treatment group also had significantly lower incidence of severe complications\cite{88}.

2. Reports indexed in Chinese database (Table 6)

Bailing Capsule for established AKI in ICU patients with acutely exacerbating chronic obstructive pulmonary disease 40 patients treated by routine therapy, including control of infection, non-invasive ventilation, treatment of asthma and improving homeostasis, were compared with 42 patients treated by routine therapy plus oral or gavage administration of Bailing Capsule, a proprietary fermented dōng chóng xià cǎo (Cordyceps). After 12 days, the treatment group presented significantly reduced BUN and Scr, with higher estimated glomerular filtration rate (eGFR) and urinary output\cite{89}.

Jinshuiba Capsule for prevention of AKI in patients with severe brain injury 53 patients treated by routine therapy (preventing brain edema, hemorrhage, spasm of brain blood vessels and protecting gastric mucosa) were compared with 54 treated patients treated by routine therapy plus oral or gavage administration of Jinshuiba Capsule, a proprietary fermented dōng chóng xià cǎo (Cordyceps) powder for 5-10 days. The Jinshuiba Capsule treatment group presented significantly lower Scr and less AKI severity according to the RIFLE criteria\cite{90}.

“Shennong 33”, a five-herb formula, used for the treatment of AKI caused by a variety of etiologies 30 patients treated by routine therapy, including removal of etiology, control of infection, maintaining water and electrolyte homeostasis, supply of nutrients, correction of acidosis, blood transfusion, expectant and supporting treatment (including hemodialysis), were compared with 34 patients treated by routine therapy plus injections of “Shenong 33”. The treatment group needed fewer hemodialysis, had significantly shorter period of anuria and oliguria, and took significantly shorter time for BUN, Scr and urinary protein excretion to recover to normal ranges\cite{91}.

An alkalinized four-herb retention enema (“rectal dialysis”) for pediatric AKI due to acute glomerulonephritis or nephrosis In a study of pediatric AKI (2–12 years old), 16 patients treated by routine therapy, including control of infection, diuretics, antihypertensives, steroid hormones, water, electrolyte and acid-base homeostasis, were compared with 22 patients treated by routine therapy plus rectal treatment with a four-herb aqueous decoction plus 18 ml 5% sodium bicarbonate, up to 8 times per day until renal function recovered. The treatment significantly accelerated decline of BUN, recovery of urinary volume and clinical cure of the primary glomerular diseases\cite{92}.

A three-ingredient retention enema for treatment of AKI complication due to epidemic hemorrhagic fever 30 patients treated by 20% mannitol (125 ml, p.o., twice daily) and metoclopramide, (20 mg, i.m., twice daily) were compared with 30 patients treated by rectal administration of a three-ingredient decoction, twice daily. All patients were offered routine therapy, including water intake restriction, diuretics and expectant treatment. Both treatments were equally effective in terms of declining BUN, recovering urinary volume and urinary protein level and clinical cure of epidemic hemorrhagic fever\cite{93}.

Gavage and retention enema of a five-ingredient decoction for AKI in patients with cerebral hemorrhage 25 patients treated by “Western medicine” routine therapy (including water intake restriction and diuretics) were compared with 25 patients treated by routine therapy plus gavage (50 ml) and rectal administration (100 ml) of a five-ingredient decoction, thrice daily. The gavage and enema treatment significantly reduced Scr and increased urine volume\cite{94}.

Gavage and retention enema of a five-ingredient decoction for AKI in patients after cranial surgery 25 patients treated by routine therapy (including reducing cranial pressure, anti-inflammatory agents, and expectant treatments; use of diuretics not stated) were compared with 25 patients treated by routine therapy plus diuretics and gavage (50 ml) and rectal administration (100 ml) of a five-ingredient decoction, thrice daily. The diuretics, gavage and enema treatment group significantly reduced Scr and increased urine volume\cite{95}.

Retention enema of a seven-ingredient decoction for mannitol-induced AKI in patients with cerebral hemorrhage, infarction or subarachnoid hemorrhage Rectal administration of a seven-ingredient decoction, once daily, was reported to be more effective to recover Scr and BUN in 2–5 days than 20–100 mg/day furosemide i.m. or i.v. or a diuretic mixture (reglin, dopamine & furosemide), i.v., 10 patients/group\cite{96}.

Retention enema of a five-herb decoction for pediatric AKI of unspecified etiology 22 patients treated by routine therapy, including water and sodium intake restriction, low protein diet, treatment of disorders of acid-base and metabolite homeostasis, diuretics, vasodilating agents, antihypertensives and antibiotics were compared with 26 patients treated by routine therapy plus rectal administration of a 5-herb decoction. The enema treatment group was found to present significantly lower BUN and Scr\cite{97}.

Jiushentang, a nine-herb formula, for oliguric AKI of a variety of etiologies, excluding urinary obstruction and pre-renal oliguria: 32 patients treated by routine therapy, including
Table 6. Herbal medicine prevention and treatment of AKI: Analysis of the 14 randomized controlled trials indexed in Chinese databases but not in Pubmed.

Authors	Total subject No. (control, treatment)	Randomization method	Herbal medicines	Route	Control	Blind design & concealment of allocation	Consent and ethical approval	Baseline comparability	AKI diagnosis criteria and other notes
Pan et al.	82 (40, 42)	Not described (ND)	Bailing Granule, mainly comprising fermented đồng chóng xià cáo (Cordyceps).	p.o. or by gavage	Blank control	None	ND	Yes	2006 AKI National Criteria of China, which were based on the AKIN criteria: Scr rise of >26.5 μM or >50% Scr rise from baseline within 48 h, or urinary output <0.5 ml/kg/h for more than 6 h.
Tang et al.	435 in title, 436 in abstract, 36 if adding number for each group	ND	Bailing Granule, mainly comprising fermented đồng chóng xià cáo (Cordyceps).	p.o.	Blank control	None	ND	Yes	***The research and subject number are so confusing that this report has to be excluded from review. RIFLE AKI criteria.
Pan et al.	107 (53, 54)	Tossing coin	Jinshuibao Capsule, mainly comprising fermented đồng chóng xià cáo (Cordyceps).	p.o. or by gavage	Blank control	None	ND	Yes	1992 National AKI criteria, not clearly described.
Sun et al.	64 (30, 34)	ND	“Shennong 33”, comprising Hồng huà (Carthami Flos), chuan xióng (Chuanxiong Rhizoma), chi shào (Paeoniae Radix Rubra), dàn shén (Salviae Miltiorrhizae Radix), dăng gул (Angelicae Sinensis Radix).	i.v.	Blank control	None	ND	ND	
Yan	38 (16, 22)	ND	An alkalinized four-herb retention enema, comprising Dà huáng (Rhei Radix et Rhizoma), huáng qì (Astragali Radix), dàn shén (Salviae Miltiorrhizae Radix), hồng húa (Carthami Flos) plus 18 ml 5% sodium bicarbonate.	Rectal administration	Blank control	None	ND	ND	Not clearly defined.
Qian	60 (30, 30)	ND	A three-ingredient retention enema comprising Dà huáng	Rectal administration	20% mannitol 125 ml, p.o., twice daily;	None	ND	Yes	1986 Nanjing criteria for the prevention and treatment of
Authors	Total subject No. (control, treatment)	Rando- \n\n\nmization method	Herbal medicines	Route	Control	Blind design & Concealment of allocation	Consent and \n\n\neducrhal approval	Baseline comparability	AKI diagnosis criteria and other notes
---	---	---	---	---	---	---	---	---	---
Rando- \n\n\nmization method	**Herbal medicines**	**Route**	**Control**	**Baseline comparability**	**AKI diagnosis criteria and other notes**				
Qian et al. [94]	50 (25, 25)	ND	**A five-ingredient decoction**, comprising Dà huáng (Rhei Radix et Rhizoma), duàn lóng gǔ (Mastodi Ossis Fossilia Calcinita), duàn mǔ lì (Ostreae Concha Calcinita), pǔ gōng yīng (Taraxaci Herba), yǐ mǔ cáo (Leonuri Herba).	Gavage and rectal administration	Blank control	None	ND	Yes	Scr>176 μM, BUN>10.1 mM, lasting 5-6 days.
Ma et al. [95]	50 (25, 25)	ND	**A five-ingredient decoction**, comprising Dà huáng (Rhei Radix et Rhizoma), duàn lóng gǔ (Mastodi Ossis Fossilia Calcinita), duàn mǔ lì (Ostreae Concha Calcinita), pǔ gōng yīng (Taraxaci Herba), yǐ mǔ cáo (Leonuri Herba).	Gavage and rectal administration	Blank control	None	ND	Yes	Anuria or oliguria 2-5 days after cranial operation, Scr >176 μ M.
Meng et al. [96]	20 (10, 10)	ND	**A seven-ingredient decoction**, comprising Dà huáng (Rhei Radix et Rhizoma), dān shèn (Salviae Miltiorrhizae Radix), pǔ gōng yīng (Taraxaci Herba), mǔ lì (Ostreae Concha), zhī fǔ zǐ (Aconiti Radix Lateralis Praeparata), tǔ fǔ líng (Smilacis Glabrae Rhizoma), huái mǐ (Sophorae Flos Immaturus).	Rectal administration	Furosemide i.m. or i.v. or reglin, dopamine & furosemide, i.v.	None	ND	ND	Oliguria, BUN 9.3-22.8 mM, Scr 186-442 μM 3-7 days after mannitol treatment.
	48 (22, 26)	ND		Blank control	None	ND	Yes		
Authors	Total subject No. (control, treatment)	Randomization method	Herbal medicines	Route	Control	Blind design & concealment of allocation	Consent and ethical approval	Baseline comparability	AKI diagnosis criteria and other notes
--------------	--	----------------------	---	-------------	---------	--	-----------------------------	----------------------	--------------------------------------
Deng et al. [97]	67 (32, 35) ND	Rectal administration	A five-ingredient decoction, comprising Dà huáng (Rhei Radix et Rhizoma), huáng bái (Phellodendri Cortex), bài tòu wèng (Pulsatillae Radix), huái huá (Sophorae Flos), xi xīn (Asari Herba)	p.o.	Blank control	None	ND	Yes	National draft diagnosis criteria of pediatric AKI published in 1997.
Huang et al. [98]	67 (32, 35) ND	Jiushentang, a decoction of nine herbs: dà huáng (Rhei Radix et Rhizoma), zhī shì (Aurantii Fructus Immaturus), hòu pò (Magnoliae Officinalis Cortex), qiāng huó (Notopterygii Rhizoma et Radix), huáng qí (Astragali Radix), dāng guì (Angelicae Sinensis Radix), zhǐ fū zǐ (Aconiti Radix Lateralis Praeparata), dàn shèn (Salviae Miltiorrhizae Radix), chuān xiōng (Chuanxiong Rhizoma).	p.o.	Blank control	None	ND	Yes	Urinary output <400 ml/24h; Scr rise >88.4 μM or BUN rise >3.57 mM within 24 h; excluding urinary obstruction and pre-renal oliguria.	
Xia et al. [99]	98 (48, 50) ND	Jiushen decoction, decoctions with a core formula: shèng shí gāo (Gypsum Crudum), zhī mù (Anemarrhenae Rhizoma), xuān shèn (Scrophulariae Radix), shèng dì huáng (Rehmanniae Radix (Exsiccata seu Recens)), jǐn yǐn huá(Lonicerae Flos), lián qiào (Forsythiae Fructus), shèng zhì zǐ (Gardeniae Fructus Crudus), huáng qín (Scutellariae Radix), dān	p.o.	Blank control	None	ND	Yes	Auria for 48-124 hours; therapeutic effects are classified based improved urinary output and decline of BUN and Scr as reported in a textbook (Shaoji Yang. Infectious diseases. Beijing: People’s Health Publishing House. 2005; pp78)	
Authors	Total subject No. (control, treatment)	Randomization method	Herbal medicines	Route	Control	Blind design & concealment of allocation	Consent and ethical approval	Baseline comparability	AKI diagnosis criteria and other notes
------------------	---------------------------------------	----------------------	--	----------------	-----------	--	-----------------------------	---------------------	--------------------------------------
Lin et al. [100]	49 (25, 24)	ND	Sheshangliangxue mixture: bàn biàn lián (Lobeliae Chinensis Herba), bái máo gèn (Imperatae Rhizoma), chí sháo (Paeoniae Radix Rubra), mó hán lián (Ecliptae Herba).	p.o.	Blank control	None	ND	Yes	2006 AKI National Criteria of China, which were consistent with the AKIN criteria.
Li et al. [101]	98 (49, 49)	ND	A fourteen-ingredient decoction, comprising Dà huáng (Rhei Radix et Rhizoma), mà huáng (Ephedrae Herba), guāng mǔ xīāng (Aucklandiae Radix), xìng rén (Armeniaceae Semen), huò xiāng (Agastaches Herba), cāng zhú (Atractylodis Rhizoma), dà fù pí (Arecae Pericarpium), zhí shí (Aurantii Fructus Immaturus), chí sháo (Paeoniae Radix Rubra), táo rén (Persicae Semen), shuǐ zhì (Hirudo), zě xiè (Alismatis Rhizoma; zhū líng (Polyporus), wěi gān suí (Kansui Radix Tostum).	p.o. or by gavage	Blank control	None	ND	Yes	AKI criteria published in a Chinese internal medicine textbook published in 2004.
etiology and inciting factor treatment, hemodialysis, treatment of disorders of acid-base and metabolite homeostasis, nutritional support, control of infections and treatment of complications, were compared with 35 patients treated by routine therapy plus oral administration of Jiushentang. The author stated that Jiushentang was significantly more effective to reduce BUN and Scr and to induce clinical resolution of AKI, but the frequency and duration of hemodialysis were not discussed[98].

Jiushen Decoction, a formula mainly comprising 11 herbs, varied according to TCM diagnosis, for the treatment of anuric AKI in epidemic hemorrhagic fever 48 patients treated by routine therapy, including stabilizing homeostasis, improving microcirculation, improving renal blood flow, diuretics and expectant treatments were compared with 50 patients treated by routine therapy plus Jiushen decoctions, which had a core formula of 11 herbs and was modified according to TCM pattern differentiation by adding or subtracting herbs. The Jiushen Decoction group had significantly improved urinary output and reduced Scr and BUN; hematological parameters and liver function improved more rapidly in the Jiushen Decoction group[99].

Sheshangliangxue Mixture, a four-herb formula, for venomous snake bite-induced AKI 25 patients treated by routine therapy, including wound cleaning, local anesthesia, injection of anti-venom serum, furosemide, glucocorticoid hormones and dialysis (indicated when there was anuria for 24h or oliguria for 48h, Scr ≥ 354 µM or serum potassium > 6.5 mM), were compared with 24 patients treated by routine therapy plus Sheshangliangxue Mixture, 30 ml, p.o., thrice daily. The Sheshangliangxue Mixture group presented significantly shorter oliguric duration, fewer requirements for dialysis treatments and enhanced therapeutic effects[100].

A fourteen-ingredient formula, for AKI induced by a variety of etiology 49 patients treated by routine therapy, including expectant treatment, etiological treatment, hemodialysis, treatment of disorders of acid-base and metabolite homeostasis and nutritional support were compared with 49 patients treated by routine therapy plus oral or gavage administration of a 14-herb decoction. The author stated that the herbal medicine group was significantly more effective to reduce BUN and Scr and to induce clinical resolution of AKI, but the frequency of hemodialysis and the duration of inducing clinical cure of AKI were not shown[101].

CONCLUDING REMARKS AND OUTLOOK

As far as we know, this is the first comprehensive review on the potential therapeutic value of herbal medicines, especially Chinese herbal medicines, in the prevention and treatment of AKI. The hypotheses that herbal medicines could have potentials to (i) prevent or mitigate induction of AKI; (ii) promote repair or regeneration; (iii) promote extrarenal clearance of uremic toxins; and (iv) prevent AKI progression to CKD have each gained certain levels of support from experimental and/or clinical reports.

The potential value for herbal medicines in prevention of AKI has gained the most experimental support and is especially noteworthy, in view that many AKIs such as those induced by I/R, nephrotoxicants, sepsis, endotoxins and contrast agents should be largely preventable. Although most clinical trials reviewed in this study presented low-level evidence, the indicative value of the clinical and experimental reports should not be disregarded; major plants emerging from these studies certainly warrant further investigation. To encourage future research on these herbs for the prevention and treatment of AKI, we have listed in Table 7 the most reported ones, whether as single-herb remedies or as part of multi-herb formulae.

In particular, 30% clinical studies focused on the application of TCM-based enemas for promoting extrarenal clearance of uremic toxins, an approach with good affordability and likely suited for those with poor access to renal replacement therapies. Most of these enemas contained dà huáng (Rhei Radix et Rhizoma; Rheum officinale Baillon; contains anthracenic purgatives), but detailed formulation varied. Thus better-characterized formulations and better clinical trials of such enemas may support TCM use for AKI in developing regions. However, dilemma exists. On one hand, centers with poor access to dialysis facilities and thus most likely benefitting from enema therapies often lack training in randomized controlled clinical trials; on the other hand, centers with established clinical trial expertise most likely have access to dialysis facilities and thus less likely need such enema therapy. Collaborations between different types of centers and provision of rigorous training on good practices in designing and conducting clinical trials seem plausible solutions to yield quality data and to ensure that related ethical issues are not overlooked.

Experimental evidence has emerged to support probable therapeutic value for herbal medicines in promoting repair

Herb	Number of citations in Tables 1-6
Dà huáng (Rhei Radix et Rhizoma)	16
Dân shên (Salviae Miltiorrhizae Radix)	16
Huáng qí (Astragali Radix)	14
Sháo yào or chi sháo (Paeoniae Radix or Paeoniae Radix Rubra)	8
Zè xiè (Alismatis Rhizoma)	8
Dōng chóng xiǎo cáo (Cordyceps)	7
Hóng huā (Carthami Flos)	7
Yín yáng huò (Epimedi Herba)	7
Chúan xióng (Chuanxiong Rhizoma)	6
Dāng guì (Angelicae Sinensis Radix)	6
Fú líng (Poria)	6
Gān cáo (gān cáo (Glycyrrhize Radix)	5
Yì mǔ cáo (Leonuri Herba)	5
Zhú líng (Polyopus)	5
and regeneration through kidney resident and possibly pluripotent cells. This line of research represents a new frontier that deserves further investment.

Another new frontier is to prevent chronic lesions following AKI. Given that some herbal species with anti-fibrotic properties such as Salvia miltiorrhiza, Astragalus membranaceus, Schizandra sinesis, Cordyceps sinensis, and Ganoderma lucidum have shown in vitro, in vivo and/or clinical promises in AKI, research on herbal entities in preventing chronic fibrotic lesions seems rational.

However, the usefulness of herbal medicines ultimately depends on high-level quality control and clinical evidence. We specifically wish to point out two major areas for thorough improvements — quality control of herbal medicines and good practice in clinical trials — both necessary to support scientific integrity and reproducibility. Readers are encouraged to refer to guidelines on reporting herbal medicines (www.gp-tcm.org/links/#good-practice-guidelines) and clinical trials (www.consort-statement.org).

ACKNOWLEDGEMENTS

V.B. is a fellow of the Belgian Fonds de la Recherche Scientifique – FNRS (FRIA grant). The authors thank Kidney Research UK and the European Union for funding to Q.X. and P.D., and thank China Scholarship Council for funding to F.Q.

REFERENCES

1. Kellum J.A., Bellomo R. Ronco C. Kidney attack. JAMA 2012, 307(21): 2265–6.
2. Ronco C., McCullough P.A. Chawla L.S. Kidney attack versus heart attack: evolution of classification and diagnostic criteria. Lancet 2013, 382(9896): 939–40.
3. Mehta R.L., et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007, 11(2): R31.
4. Li P.K., Burdmann E.A. Mehta R.L. Acute kidney injury: global health attack: evolution of classification and diagnostic criteria. Lancet 2013, 382(9896): 939–40.
5. Mehta R.L., et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007, 11(2): R31.
6. Chawla L.S., et al. Acute kidney injury and chronic kidney disease as intercorrelated syndromes. N Engl J Med 2014, 371(1): 58–66.
7. Xu Q., et al. The hunt for anti-fibrotic and pro-fibrotic botanicals. Science 2014, 346(6216 Suppl): S19–S20.
8. van Ypersele de Strihou C. Vanherweghem J.L. The tragic paradigm of Chinese herbs nephropathy. Nephrol Dial Transplant 1995, 10(2): 756–66.
9. van Ypersele de Strihou C. Vanherweghem J.L. The tragic paradigm of Chinese herbs nephropathy. Nephrol Dial Transplant 1995, 10(2): 157–60.
10. Nortier J., Depierreux M. Vanherweghem J.L. The hunt for anti-fibrotic and pro-fibrotic botanicals. Science 2014, 346(6216 Suppl): 519–520.
11. Colson C.R. De Broe M.E. Kidney injury from alternative medicines. J Am Soc Nephrol 2000, 11(1): 55.
12. Seth P., et al. Prevention of renal ischemia-reperfusion-injury induced in rats by picroliv. Biochem Pharmacol 2000, 59(10): 1315–22.
13. Feng L., et al. Effect of ligustrazine on ischemia-reperfusion injury in murine kidney. Transplant Proc 2004, 36(7): 1949–51.
14. Yang Y., et al. Effects of compound Shenhuahua tablet on renal tubular Na+/K+-ATPase activity in rats with acute ischemic reperfusion injury. Chin J Integr Med 2014, 20(3): 200–8.
15. Liu W.J., et al. Nootiginosinose R1 attenuates renal ischemia-reperfusion injury in rats. Shock 2010, 34(3): 314–20.
16. Gao J.Y., Zhang D. Zhang M. Recipe of nourishing kidney and activating blood for treatment of cisplatin induced acute kidney injury in mouse model. Chinese Journal of Integrated Traditional and Western Medicine in Intensive and Critical Care 2014, 21(6): 405–407. http://d.wanfangdata.com.cn/Periodical_zgzyjhzj201406002.aspx.
17. Kim Y.J., et al. Red ginseng ameliorates acute cisplatin-induced nephropathy. Pflug Zentralbl med 2014, 189(8–9): 645–54.
18. Baek S.H., et al. Reduction of cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells. Biol Pharm Bull 2006, 29(10): 2051–5.
19. Ali B.H., et al. Abrogation of cisplatin-induced nephrotoxicity by emodin in rats. Fundam Clin Pharmacol 2013, 27(2): 192–200.
39. Wu G.S., et al. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum - a review. Expert Opin Invest Drugs 2013, 22(8): 981–92.

40. Pillai T.G., John M. Sara Thomas G. Prevention of cisplatin induced nephrotoxicity by terpenes isolated from Ganoderma lucidum occurring in Southern Parts of India. Experimental and Toxicologic Pathology 2008, 31(4): 602–5. http://www.sciencedirect.com/science/article/pii/S094029930002796.

41. Wu C.H., Chen A.Z. Yen C.G. Protective effects of glycyrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. J Agric Food Chem 2015,(Epub ahead of print).

42. Bunel V., et al. Potential nephroprotective effects of the Chinese herb Angelica sinensis against cisplatin tubulotoxicity. Pharm Biol 2015,(Epub).

43. Bunel V., et al. Protective effects of schizandrin and schizandrin B towards cisplatin nephrotoxicity in vitro. J Appl Toxicol 2014, 34(12): 1311–9.

44. Chen X.L., et al. Effect and mechanism of Gujingdan on acute renal injury induced by gentamicin. Chinese Traditional Patent Medicine 2011, 29(6): 801–806. http://d.wanfangdata.com.cn/Periodical_zhongyong200706007.aspx.

45. Hsu Y.H., et al. Protective effects of Zhibai Dihuang Wan on renal mitochondrial antioxidant status, functional and structural integrity, and protects against gentamicin-induced acute kidney injury. Lab Invest 2014, 94(10): 1147–60.

46. Poon M.K., et al. Protective effects of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice. J Biomed Sci 2002, 9(4): 299–302.

47. Liu C.F., et al. Protective effect of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice. J Biomed Sci 2002, 9(4): 299–302.

48. Zhou J., Tu J.W. Shao Z.D. Effect and mechanism of shenshuai compound medicine on acute renal failure rats and secretion cell factors. Zhongguo Zhen Ci Yan Jiu Zhi 2006, 31(5): 425–8.

49. Ngai H.H., Sit W.H. Wan J.M. The nephroprotective effects of the herbal medicine preparation, WH30+, on the chemical-induced acute and chronic renal failure in rats. Am J Chin Med 2005, 33(3): 491–500.

50. Zhou J., Tu J.W. Shao Z.D. Effect and mechanism of shenshuai mixture (SM) in promoting repair of kidney in acute renal failure rats. Zhongguo Zhong Xi Yi Jie He Za Zhi 2006, 26(7): 640–3.

51. He F., et al. Experimental study on acute renal failure prevented and treated with Shensheng prescription. Chinese Journal of Traditional Medical Science and Technology 2009, 16(4): 276–277. http://d.wanfangdata.com.cn/Periodical_zgzykj200904013.aspx.

52. Xu F., et al. Hyperuricemia- alleviating and renoprotective effects of FuFang Xi Xian Cao Capsule. ACTA Chinese Medicine and Pharmacy 2007, 35(2): 18–20. http://d.wanfangdata.com.cn/Periodical_zyyxb200702006.aspx.

53. Wu W.G., et al. Protective effects of Sanguisorbae Radix on hyperuricemic kidney injury in rats. Zhejiang Journal of Traditional Chinese Medicine 2014, 49(5): 323–324. http://d.wanfangdata.com.cn/Periodical_zjzyzz201405007.aspx.

54. Chen Z.J., et al. Effects of breviscapine on the Na/K+-ATPase activity in kidney tissues of rats with contrast-induced acute kidney injury. Guangdong Medical Journal 2014, 35(7): 978–981. http://d.g.wanfangdata.com.cn/Periodical_gdyx201407005.aspx.

55. He F., et al. Experimental study on acute renal failure prevented and treated with Shensheng prescription. Chinese Journal of Traditional Medical Science and Technology 2009, 16(4): 276–277. http://d.wanfangdata.com.cn/Periodical_zgzykj200904013.aspx.

56. Xiong X.M., Tian F.S. Jiang X. Protective effect of Chinese compound (Ermao powders) in experimental hyperuricemia and hyperuricemic renal impairment. Journal of Tianjin Medical University 2007, 13(1): 90–93. http://d.wanfangdata.com.cn/Periodical_tianjykdb20071031.aspx.

57. Yu X.F., et al. Hyperuricemia- alleviating and renoprotective effects of FuFang Xi Xian Cao Capsule. ACTA Chinese Medicine and Pharmacy 2007, 35(2): 18–20. http://d.wanfangdata.com.cn/Periodical_zyyxb200702006.aspx.

58. Wang X.T., et al. Intervention of Wen Yang Hua Xue Fang on kidney damage in rats with chronic aristolochic acid nephropathy. Chinese
81. Xu Q., et al. Knowledge-based discovery of anti-fibrotic and pro-fibrotic activities from Chinese Materia Medica, ed. Kuang. Vol. Recent advances in theories and practice of Chinese Medicine, InTech: 2012;337–352.

82. Yin X.J., et al. Regulative mechanisms of tubular epithelial to mesenchymal transition and interventional effects of Chinese herbal medicine. Zhongguo Zhong Yao Za Zhi 2013, 38(5): 648–52.

83. Thomas M.E., et al. The definition of acute kidney injury and its use in practice. Kidney Int 2014,(Epub ahead of print).

84. Zhao K., Li Y. Zhang H. Role of dongchongxiacao (Cordyceps) in prevention of contrast-induced renal impairment after percutaneous coronary intervention. Zhongguo Zhong Xi Yi Jie He Za Zhi 2011, 31(12): 1611–4.

85. Wang Z.L., Liu M. Zhang Y.Q. The prevention of denhong injection on angiina pectoris. J Tradit Chin Med 2013, 33(3): 283–6.

86. Feng Y.B., Zhuang H.Z. Liu C. Effect of Qishen Huoxue Granule for auxiliary treatment of critical cases of acute kidney injury. Zhongguo Zhong Xi Yi Jie He Za Zhi 2010, 30(8): 819–22.

87. Deng Y. Wei F.N. 26 cases of pediatric acute renal failure treated by retention-enema with Chinese medicine. Traditional Chinese Medicine and Western medicine, Jinshuibao to prevent severe craniocerebral injury patients with Chinese medicine to treat acute renal failure induced by mannitol. Journal of Sichuan Traditional Chinese Medicine 2003, 21(3): 36–37. http://d.wanfangdata.com.cn/Periodical_zgzyjz200410057.aspx.

88. Meng G.Y. Meng J. Clinical observation on the effect of retention-enema with Chinese medicine for AKI. Journal of Clinical and Experimental Medicine 2002, 1(4):115. http://d.wanfangdata.com.cn/Periodical_zxyjhxnxgbzz200402029.aspx.

89. Deng Y. Wei F.N. 26 cases of pediatric acute renal failure treated by rectal dialysis with Chinese medicine. Traditional Chinese Medicine Research 2002, 15(1): 33–34. http://d.wanfangdata.com.cn/Periodical_zgzyjz200410057.aspx.

90. Pan T.F., et al. Clinical observation on the effect of Chinese patent medicine, Jingshuihuo to severe craniocerebral injury patients from the acute kidney injury. Journal of Chinese Physician 2012, 14 (9): 1282–1284. http://d.wanfangdata.com.cn/Periodical_zgysww201209047.aspx.

91. Zhang Y.X., et al. A clinical observation of 34 patients with acute renal failure treated by Chinese herbal medicine. Traditional Chinese Medicine Xinyi 2014, 23(10): 1911. http://d.wanfangdata.com.cn/Periodical_jgsyzxb200202047.aspx.

92. Qian D.W. Traditional Chinese medicine purgative treatment of acute renal failure in 30 patients with epidemic hemorrhagic fever. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine 2003, 13(2): 100. http://d.wanfangdata.com.cn/Periodical_zgyjhszz200302022.aspx.

93. Qian A.M., Yang J.S. Ru Z.X. The analysis of patients with cerebral hemorrhage complicated with acute renal failure treated by TCM, report of 50 cases. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease 2004, 2(2): 114–115. http://d.wanfangdata.com.cn/Periodical_zjxysz200204009.aspx.

94. Sheng B., et al. The protective effects of the traditional Chinese herbs against renal damage induced by extracorporeal shock wave lithotripsy: a clinical study. Urol Res 2011, 39(2): 89–97.

95. Sun Y.Y., et al. A clinical observation of 34 patients with acute renal failure due to hemorrhagic fever with renal syndrome. Zhonghua Shi Yan He Lin Ye Xue Za Zhi 2010, 12(10): 58. http://d.wanfangdata.com.cn/Periodical_zgzxyjhsbzz20020706021.aspx.

96. Pan X.H. Pi Y.B. The effects of a Chinese herbal medicine, Bailing capsule on the acute kidney injury with chronic obstructive pulmonary disease: a RCT. Zhongguo Zhongxiyao Kechi 2012, 19(4): 353.

97. Deng Y. Wei F.N. 26 cases of pediatric acute renal failure treated by retention-enema with Chinese medicine. Traditional Chinese Medicine and Western medicine, Jinshuibao to prevent severe craniocerebral injury patients with Chinese medicine to treat acute renal failure induced by mannitol. Journal of Sichuan Traditional Chinese Medicine 2003, 21(3): 36–37. http://d.wanfangdata.com.cn/Periodical_zgzyjz200410057.aspx.

98. Huang S.R. Clinical observation of Jiushentang treatment of oliguric acute renal failure. Chinese Community Doctors 2011, 13(23): 167. http://d.wanfangdata.com.cn/Periodical_zgsqys-yxzy201123163.aspx.

99. Xia X.S., Zhang X.Z. Xia Y. Jiushen decoction in the treatment of 50 patients with acute renal failure due to hemorrhagic fever with renal syndrome. Chinese Journal of Practical Medicine 2012, 39(3): 56–58. http://d.wanfangdata.com.cn/Periodical_zxyyj201203022.aspx.

100. Lin J. Zeng Z.Y. Clinical observation of Sheshangliangxue mixture on acute kidney injury. Chinese Journal of Snake 2009, 21(3): 191–192. http://d.wanfangdata.com.cn/Periodical_jyxz200903007.aspx.

101. Wang Z., et al. The application of patent medicine and Western medicine in the treatment of acute renal failure of critical cases. Journal of Emergency in Traditional Chinese Medicine 2014, 23(10): 1910–1911. http://d.wanfangdata.com.cn/Periodical_zgysww201410057.aspx.

102. Tang T., Chen D. Peng J. Clinical research on alprostadil combined with Bailing capsule in treating 435 cases of acute kidney injury. World Chinese Medicine 2014, 9(6): 754–758. http://d.wanfangdata.com.cn/Periodical_zgyjhszz20020706021.aspx.