The R_∞ property for pure Artin braid groups

KAREL DEKIMPE
KU Leuven Campus Kulak Kortrijk,
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
e-mail: karel.dekimpe@kuleuven.be

DACIBERG LIMA GONÇALVES
Departamento de Matemática - IME-USP,
Rua do Matão 1010 CEP: 05508-090 - São Paulo - SP - Brazil.
e-mail: dlgoncal@ime.usp.br

OSCAR OCAMPO
Universidade Federal da Bahia,
Departamento de Matemática - IME,
Av. Adhemar de Barros S/N CEP: 40170-110 - Salvador - BA - Brazil.
e-mail: oscaro@ufba.br

16th June 2020

Abstract

In this paper we prove that all pure Artin braid groups P_n (n ≥ 3) have the R_∞ property. In order to obtain this result, we analyse the naturally induced morphism Aut(P_n) → Aut((Γ_2(P_n)/Γ_3(P_n))) which turns out to factor through a representation ρ: S_{n+1} → Aut((Γ_2(P_n)/Γ_3(P_n))). We can then use representation theory of the symmetric groups to show that any automorphism α of P_n acts on the free abelian group Γ_2(P_n)/Γ_3(P_n) via a matrix with an eigenvalue equal to 1. This allows us to conclude that the Reidemeister number R(α) of α is ∞.

1 Introduction

Consider a group G and an endomorphism α of G. We say that two elements x and y of G are twisted conjugate (via α) if and only if there exists a z ∈ G such that x = zyα(z)^{-1}. It is easy to see that the relation of being twisted conjugate is an equivalence relation.

2010 Mathematics Subject Classification. Primary: 20E36; Secondary: 20F36, 20E45, 20C30.

Key Words and Phrases. Braid group, Pure braid group, R∞ property, Nilpotent groups, Representation theory
relation and the number of equivalence classes (also referred to as Reidemeister classes) is called the Reidemeister number $R(\alpha)$ of α. This Reidemeister number is either a positive integer or ∞.

Reidemeister numbers find their origins in algebraic topology and to be more precise in Nielsen–Reidemeister fixed point theory. Here one is interested in the number of fixed point classes of a selfmap f of a space X. This number is called the Reidemeister number $R(f)$ of the map f, and one can show that $R(f) = R(f_*)$, where $f_* : \pi_1(X) \to \pi_1(X)$ is the induced endomorphism on the fundamental group $\pi_1(X)$ of X.

There is currently a growing interest in the study of groups G that have the R_∞ property, these are groups for which $R(\alpha) = \infty$ for any automorphism $\alpha \in \text{Aut}(G)$. The study of groups with that property was initiated by Fel’shtyn and Hill [FH].

Since the beginning of this century many authors have been studying this property and for several families of groups it is known whether or not they have the R_∞ property. To list some examples of groups with the R_∞ property, we mention the non-elementary Gromov hyperbolic groups [F, LL], most of the Baumslag–Solitar groups [FG1] and groups quasi–isometric to Baumslag–Solitar groups [TW], generalized Baumslag–Solitar groups [L], many linear groups [FN, NAS], several families of lamplighter groups [GW, TRO], . . .

In [FG2] it was shown that the Artin braid groups B_n also have property R_∞. The goal of this paper is to show that the same holds for the pure braid groups P_n. The technique that we will use is to look at a suitable quotient of P_n. Indeed, if α is an automorphism of a group G and N is a normal subgroup of N with $\alpha(N) = N$ (e.g. when N is a characteristic subgroup of G) then α induces an automorphism $\bar{\alpha}$ of G/N. It is easy to see that $R(\alpha) > R(\bar{\alpha})$, so if $R(\bar{\alpha}) = \infty$, then also $R(\alpha) = \infty$. In fact, for $n \geq 5$ we will show that for any automorphism α of P_n, the induced automorphism on $P_n/\Gamma_3(P_n)$ has an infinite Reidemeister number. Here $\Gamma_i(P_n)$ stands for the i-th term of the lower central series (see the following section for the exact definition of the terms of the lower central series). To be more precise, we will show that the induced automorphism on the subquotient $\Gamma_2(P_n)/\Gamma_3(P_n)$ has infinite Reidemeister number, and this will also allow us to conclude that $R(\alpha) = \infty$.

In the next section we start by recalling some basic facts about Artin braid groups and we describe in detail the induced automorphisms on $\Gamma_2(P_n)/\Gamma_3(P_n)$ coming from automorphisms of P_n. It turns out that these form a finite group of automorphisms which is isomorphic to S_{n+1}, the symmetric group on $n + 1$ letters. In the last section, we then exploit this fact, using results from representation theory of S_n, to prove the R_∞ property for P_n (with $n \geq 5$). The cases P_3 and P_4 are treated separately.

Acknowledgments

The first author was supported by long term structural funding – Methusalem grant of the Flemish Government. The second author was partially supported by the Projeto Temático-FAPESP Topologia Algébrica, Geométrica e Diferencial 2016/24707-4 (Brazil). The third author was partially supported by Capes/Programa Capes-PrInt/ Processo número 88881.309857/2018-01.
2 Pure braid groups and their automorphisms

Let us start by very briefly recalling some facts about Artin braid groups (see [Han] for more details). It is well known that the Artin braid group B_n can be generated by the so-called elementary braids $\sigma_1, \ldots, \sigma_{n-1}$ that are subject to the following relations:

$$\begin{align*}
\sigma_i \sigma_j &= \sigma_j \sigma_i \text{ for all } 1 \leq i < j \leq n - 1 \text{ such that } |i - j| \geq 2 \\
\sigma_i \sigma_{i+1} \sigma_{i+1} &= \sigma_i \text{ for all } 1 \leq i \leq n - 2.
\end{align*}$$

(1)

The homomorphism $\sigma: B_n \rightarrow S_n$ mapping σ_i to the transposition $(i, i+1)$ is surjective and the kernel of σ is the pure Artin braid group P_n on n strings. So there is a short exact sequence:

$$1 \rightarrow P_n \rightarrow B_n \xrightarrow{\sigma} S_n \rightarrow 1.$$

(2)

There is a set of generators $\{A_{i,j}\}_{1 \leq i < j \leq n}$ of P_n, where:

$$A_{i,j} = \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}.$$

(3)

For notational reasons it will be handy to set $A_{j,i} = A_{i,j}$ for $1 \leq i < j \leq n$.

Now, let G be any group. For $g, h \in G$ we define the commutator of g and h as $[g, h] = ghg^{-1}h^{-1}$ and if H, K are subgroups of G then $[H, K] = \{[h, k] \mid h \in H, k \in K\}$. The terms of the lower central series $\{\Gamma_i(G)\}_{i \in \mathbb{N}}$ of G are defined iteratively by letting $\Gamma_1(G) = G$ and $\Gamma_{i+1}(G) = [G, \Gamma_i(G)]$ for all $i \in \mathbb{N}$. The groups $\Gamma_i(G)$ are characteristic subgroups of G.

It is known that the consecutive quotients $\Gamma_i(P_n)/\Gamma_{i+1}(P_n)$ are free Abelian groups of finite rank for all i (see e.g. [FR]). In particular $P_n/\Gamma_2(P_n)$ is isomorphic to $\mathbb{Z}^{n(n-1)/2}$, and a basis of $P_n/\Gamma_2(P_n)$ is given by the images of the generators $\{A_{i,j}\}_{1 \leq i < j \leq n}$ in the quotient $P_n/\Gamma_2(P_n)$.

To prove the R_∞ property for the groups P_n we have to study the automorphisms of P_n. We follow the description of $\text{Aut}(P_n)$ that can be found in a paper by Bardakov, Neshchadim and Singh [BNS]. Throughout the rest of this section we assume that $n \geq 4$.

It is known that the center $Z(P_n)$ of P_n is an infinite cyclic subgroup of P_n and that $P_n \cong Z(P_n) \times \overline{P}_n$, where $\overline{P}_n = P_n/Z(P_n)$. The center $Z(P_n)$ is generated by the full twist braid $A_{1,2}A_{1,3}A_{2,3} \cdots A_{1,n}A_{2,n} \cdots A_{n-1,n}$ and is denoted by z_n in [BNS]. Since $Z(P_n)$ is characteristic in P_n, there is a homomorphism $\varphi: \text{Aut}(P_n) \rightarrow \text{Aut}(\overline{P}_n)$ and a whole series of homomorphisms $\varphi_i: \text{Aut}(P_n) \rightarrow \text{Aut}\left(\frac{\overline{P}_n}{\Gamma_{i+1}(\overline{P}_n)}\right)$ for all $i \geq 1$.

Remark 1. Note that if $\alpha \in \text{Aut}(P_n)$ and $R(\varphi_i(\alpha)) = \infty$ or $R(\varphi_i(\alpha)) = \infty$ for some i, then $R(\alpha) = \infty$. Indeed, if $R(\varphi_i(\alpha)) = \infty$ then also for the induced automorphism $\tilde{\alpha} \in \text{Aut}\left(\frac{\overline{P}_n}{\Gamma_{i+1}(\overline{P}_n)}\right) = \text{Aut}\left(\frac{P_n}{\Gamma_{i+1}(P_n)}\right)$ it holds that $R(\tilde{\alpha}) = \infty$ ([DG, Lemma 2.2]) and hence $R(\alpha) = \infty$.

We will use this technique for $i = 2$ to prove the R_∞ property for P_n, for $n \geq 4$.

An automorphism $\alpha \in \text{Aut}(P_n)$ is called central if α induces the identity on \overline{P}_n (so if $\varphi(\alpha) = 1$). The subgroup of $\text{Aut}(P_n)$ of all central automorphisms is denoted by
It is known that \(\text{Aut}_c(P_n) \cong \text{Aut}_c(P_n) \times \text{Aut}((P_n) \) and so for our purposes, it suffices to understand \(\varphi(\text{Aut}(P_n)) = \varphi(\text{Aut}((P_n))\).

In [BNS, page 6] an explicit list of automorphisms \(\omega_1, \omega_2, \ldots, \omega_n \) and \(\varepsilon \) of \(\text{Aut}(P_n) \) is given and it is shown that the \(\varphi(\omega_i) (i = 1, \ldots, n) \) together with \(\varphi(\varepsilon) \) are generators of \(\text{Aut}((P_n) \). Let \(\bar{\omega}_i = \varphi_1(\omega_i) \) and \(\bar{\varepsilon} = \varphi_1(\varepsilon) \). So \(\bar{\omega}_i, \bar{\varepsilon} \) are the induced morphisms on \(\Gamma_1((P_n) \) \)

First of all note that \(\bar{\varepsilon}(\bar{A}_{ij}) = -\bar{A}_{ij} \) for \(1 \leq i < j \leq n \), where we use \(\bar{A}_{ij} \) to denote the images of the \(A_{ij} \) under the natural projection of \(P_n \) to \(\Gamma_1((P_n) \) \). This follows easily from the formula of \(\varepsilon \) on page 6 of [BNS].

In [BNS, Equation (2.1)] we find the relations (without bars)

\[
\begin{align*}
\bar{\omega}_i \bar{\omega}_j &= \bar{\omega}_j \bar{\omega}_i \text{ for } i - j > 1 \\
\bar{\omega}_i \bar{\omega}_{i+1} \bar{\omega}_i &= \bar{\omega}_{i+1} \bar{\omega}_i \bar{\omega}_{i+1} \\
\bar{\omega}_1 \cdots \bar{\omega}_{n-1} \bar{\omega}_n \bar{\omega}_{n-1} \cdots \bar{\omega}_1 &= 1 \\
(\bar{\omega}_1 \bar{\omega}_2 \cdots \bar{\omega}_n)^{n+1} &= 1 \\
(\bar{\varepsilon} \bar{\omega}_i)^2 &= 1 \text{ and } \varepsilon^2 = 1.
\end{align*}
\]

Of course, since \(\bar{\varepsilon} \) is equal to minus the identity on \(\Gamma_1((P_n) \) we also have that \(\bar{\varepsilon} \bar{\omega}_i = \bar{\omega}_i \bar{\varepsilon} \).

It then follows easily that we have the relations

\[
\begin{align*}
\bar{\omega}_i \bar{\omega}_j &= \bar{\omega}_j \bar{\omega}_i \text{ for } i - j > 1 \\
\bar{\omega}_i \bar{\omega}_{i+1} \bar{\omega}_i &= \bar{\omega}_{i+1} \bar{\omega}_i \bar{\omega}_{i+1} \\
\bar{\omega}_i^2 &= 1 \\
\bar{\varepsilon} \bar{\omega}_i &= \bar{\omega}_i \bar{\varepsilon} = 1 \\
\varepsilon^2 &= 1.
\end{align*}
\]

and hence

\[
\varphi_1(\text{Aut}(P_n)) = \langle \bar{\omega}_1, \bar{\omega}_2, \ldots, \bar{\omega}_n, \bar{\varepsilon} \rangle \cong S_{n+1} \times \mathbb{Z}_2
\]

where \(S_{n+1} = \langle \bar{\omega}_1, \bar{\omega}_2, \ldots, \bar{\omega}_n \rangle \) and \(\mathbb{Z}_2 = \langle \bar{\varepsilon} \rangle \).

At this point we want to remark that there are indeed no extra relations because otherwise \(\langle \bar{\omega}_1, \bar{\omega}_2, \ldots, \bar{\omega}_n, \bar{\varepsilon} \rangle \) would be a quotient of \(S_{n+1} \times \mathbb{Z}_2 \), which could only be \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) or \(\mathbb{Z}_2 \) (since \(n + 1 \geq 5 \)) and using the explicit formula for the \(\bar{\omega}_i \) that we will give in a moment, it is easy to see that this is not the case. Indeed, let \(k \in \{1, 2, \ldots, n-1\} \) and let \(\tau_k = (k, k + 1) \in S_n \) be a transposition, then the formulas on page 6 of [BNS] imply that

\[
\bar{\omega}_k(\bar{A}_{ij}) = \bar{A}_{\tau_k(i), \tau_k(j)} \text{ for } 1 \leq k < n. \quad (4)
\]

The description of \(\bar{\omega}_n \) is a little bit more complicated, but actually we will not need it in this paper.

By induction on \(i \), it is easy to see that \(\text{Ker}(\varphi_i) \subseteq \text{Ker}(\varphi_i) \) for all \(i = 2, 3, \ldots \) (in fact the induced automorphism \(\varphi_i(\alpha) \) is completely determined by \(\varphi_1(\alpha) \) as we will see explicitly for \(i = 2 \)) and so it follows that for all \(\varphi_i : \text{Aut}(P_n) \rightarrow \text{Aut}(\Gamma_i/(P_n)) \) it holds that \(\text{Im}(\varphi_i) \) is a finite group.
Now let us describe φ_2 in more detail. The group $\Gamma_2(P_n) / \Gamma_3(P_n) = \Gamma_2(\overline{P}_n) / \Gamma_3(\overline{P}_n)$ is free abelian of rank $\binom{n}{3}$ and in [GGO, Page 170] it was proven that the set

$$B = \{ \alpha_{i,j,k} \mid 1 \leq i < j < k \leq n \},$$

(5)

where $\alpha_{i,j,k}$ is the natural projection of $[A_{i,j}, A_{j,k}]$ into $\frac{\Gamma_2(\overline{P}_n)}{\Gamma_3(\overline{P}_n)}$ is a basis of the free abelian group $\frac{\Gamma_2(\overline{P}_n)}{\Gamma_3(\overline{P}_n)} = \frac{\Gamma_2(P_n)}{\Gamma_3(P_n)}$. Moreover, also the following relations hold for all $1 \leq i < j < k \leq n$:

$$[A_{i,k}, A_{j,k}] = \alpha_{i,j,k}^{-1}, [A_{i,j}, A_{i,k}] = \alpha_{i,j,k}^{-1}, \text{ and } [A_{j,k}, A_{i,j}] = \alpha_{i,j,k}^{-1},$$

(6)

where we now use a bar to indicated the natural projection of an element to $\frac{\Gamma_2(\overline{P}_n)}{\Gamma_3(\overline{P}_n)}$.

Lemma 2. For $k = 1, 2, \ldots, n - 1$ we let τ_k denote the transposition $(k, k + 1) \in S_n$. We then have for all $1 \leq r < s < t \leq n$:

(a) $\varphi_2(\varepsilon)(\alpha_{r,s,t}) = \alpha_{r,s,t}$

(b) $\varphi_2(\omega_k)(\alpha_{r,s,t}) = \begin{cases}
\alpha_{r_k(r), r_k(s), r_k(t)} & \text{if } \tau_k(r) < \tau_k(s) < \tau_k(t) \\
\alpha_{r_k(r), r_k(s), r_k(t)}^{-1} & \text{if } \tau_k(s) < \tau_k(r) < \tau_k(t) \\
\alpha_{r_k(r), r_k(s), r_k(t)}^{-1} & \text{if } \tau_k(t) < \tau_k(s) < \tau_k(r)
\end{cases}$

Proof. Recall that $\varepsilon(A_{i,j}) = A_{i,j}^{-1}$ for some $\gamma_{i,j} \in Z(P_n) \cdot \Gamma_2(P_n)$. Hence

$$\varphi_2(\varepsilon)(\alpha_{r,s,t}) = [\varepsilon(A_{r,s}), \varepsilon(A_{s,t})] = [A_{r,s}^{-1}, A_{s,t}^{-1}, \gamma_{r,s}, \gamma_{s,t}] = [A_{r,s}^{-1}, A_{s,t}^{-1}] = [A_{r,s}, A_{s,t}],$$

showing that $\varphi_2(\varepsilon)$ is the identity map.

From (4) we get that $\omega_k(A_{i,j}) = A_{r_k(i), r_k(j)}\delta_{i,j}$ for some $\delta_{i,j} \in Z(P_n) \cdot \Gamma_2(P_n)$ and so

$$\varphi_2(\omega_k)(\alpha_{r,s,t}) = [\omega_k(A_{r,s}), \omega_k(A_{s,t})] = [A_{r_k(r), r_k(s), r_k(t)}, A_{r_k(r), r_k(s), r_k(t)}].$$

The lemma now follows using the relations (6).

Note that since ε induces the identity map on $\frac{\Gamma_2(P_n)}{\Gamma_3(P_n)}$, it follows that $\text{Im } \varphi_2(\varepsilon) \cong S_{n+1}$. Under this isomorphism, the elements $\varphi_2(\omega_k)$ ($1 \leq k \leq n$) correspond with the transpositions $\tau_k = (k, k + 1)$. Generalizing the lemma above, we are able to give a very good description of how the subgroup $\langle \varphi_2(\omega_1), \varphi_2(\omega_2), \ldots, \varphi_2(\omega_{n-1}) \rangle \cong S_n$ of $\text{Im } \varphi_2(\varepsilon)$ acts on $\frac{\Gamma_2(P_n)}{\Gamma_3(P_n)}$.

Proposition 3. Let $n \geq 4$. Consider an automorphism $\alpha \in \text{Aut } (P_n)$ for which $\varphi_2(\alpha) \in \langle \varphi_2(\omega_1), \varphi_2(\omega_2), \ldots, \varphi_2(\omega_{n-1}) \rangle \cong S_n$. Let $\pi \in S_n$ be the permutation corresponding to $\varphi_2(\alpha)$. Then

$$\varphi_2(\alpha)(\alpha_{r,s,t}) = \begin{cases}
\alpha_{\pi(r), \pi(s), \pi(t)} & \text{if } \pi(r) < \pi(s) < \pi(t) \\
\alpha_{\pi(s), \pi(t), \pi(r)}^{-1} & \text{if } \pi(s) < \pi(r) < \pi(t) \\
\alpha_{\pi(t), \pi(r), \pi(s)}^{-1} & \text{if } \pi(t) < \pi(r) < \pi(s) \\
\alpha_{\pi(r), \pi(t), \pi(s)}^{-1} & \text{if } \pi(r) < \pi(t) < \pi(s) \\
\alpha_{\pi(s), \pi(r), \pi(t)}^{-1} & \text{if } \pi(s) < \pi(r) < \pi(t) \\
\alpha_{\pi(t), \pi(s), \pi(r)}^{-1} & \text{if } \pi(t) < \pi(s) < \pi(r) \\
\alpha_{\pi(r), \pi(s), \pi(t)} & \text{if } \pi(r) < \pi(s) < \pi(t)
\end{cases}.$$

(7)
Proof. In Lemma 2 we already proved this result in case α is equal to one of the generators ω_k (and where the corresponding permutation is the transposition τ_k). We can use the same technique now to prove the general proposition. We can assume that $\alpha \in \langle \omega_1, \omega_2, \ldots, \omega_{n-1} \rangle$ and by applying (4) inductively we find that $\alpha(A_{ij}) = A_{\pi(i), \pi(j)}\gamma_{ij}$ for some $\gamma_{ij} \in Z(P_n) \cdot \Gamma_2(P_n)$. Just as in the proof of Lemma 2 we then find that

$$q_2(\alpha)(\alpha_{r,s,t}) = [A_{\pi(r), \pi(s), \pi(t)}].$$

The result now follows by considering the six possibilities to order the three numbers \{\pi(r), \pi(s), \pi(t)\} and by using the relations (6).

\[\square\]

3 The pure Artin braid group has the R_∞ property

In this section, we will prove the main result of our paper, i.e. any pure braid group P_n with $n \geq 3$ has the R_∞ property.

3.1 Low dimensional cases

We have that $P_3 = F_2 \oplus \mathbb{Z}$, where F_2 is the free group on two generators and $\mathbb{Z} = Z(P_3)$. Hence $P_3 = F_2$ has the R_∞ property, from which it follows that P_3 has the R_∞ property.

Lema 4. Let $\alpha \in \text{Aut}(\mathbb{Z}^k)$, where $k \geq 1$. If 1 or -1 is an eigenvalue of α, then $R(\alpha) \geq 2$.

Proof. It is well known that $R(\alpha) = +\infty$ if 1 is an eigenvalue of α, so in this case certainly $R(\alpha) \geq 2$. So, from now onwards we assume that 1 is not an eigenvalue of α. In this case $R(\alpha) = |\det(I_k - A)|$ with I_k the $k \times k$-identity matrix and A is the matrix representing $\alpha \in \text{Aut}(\mathbb{Z}^k) \cong GL_k(\mathbb{Z})$ with respect to a chosen free generating set e_1, e_2, \ldots, e_k of \mathbb{Z}^k.

Let -1 be an eigenvalue of α and take $V = \{z \in \mathbb{Z}^k \mid \alpha(z) = -z\} \neq \{0\}$. Then $\pi_k = \mathbb{Z} \cap \mathbb{Z}^k$ is torsion free. Indeed assume that z is a torsion element in $\frac{\mathbb{Z}}{V}$, where \mathbb{Z} denotes the natural projection of an element $z \in \mathbb{Z}^k$ in $\frac{\mathbb{Z}}{V}$. Then there exists $k > 0$ such that $kz = 0$, or such that $kz \in V$. But this means that $\alpha(kz) = -kz$ and hence $k\alpha(z) = -kz$ which implies that $\alpha(z) = -z$ or $z \in V$ and so $\mathbb{Z} = 0$. Hence $V \cong \mathbb{Z}^\ell$, with $\ell > 0$, and $\pi_k \cong \mathbb{Z}^m$ for $0 \leq m < k$.

It follows that we can choose a free generating set $e_1, e_2, \ldots, e_\ell, e_{\ell+1}, \ldots, e_k$ of \mathbb{Z}^k such that $V = \langle e_1, e_2, \ldots, e_\ell \rangle$. With respect to this generating set, α has a matrix representation

$$A = \begin{pmatrix} -I_\ell & * \\ 0 & A' \end{pmatrix}$$

with I_ℓ the $\ell \times \ell$-identity matrix and A' a $(k - \ell) \times (k - \ell)$ integral matrix. Then

$$R(\alpha) = |\det(I_k - A)|$$
$$= |\det(2I_\ell)| \cdot |\det(I_k - A')|$$
$$= 2^\ell \cdot |\det(I_k - A')|.$$
Since 1 is not an eigenvalue of A (and so also not of A'), $0 < |\det(I_k - A')| \in \mathbb{Z}$, therefore $R(\alpha) \geq 2^\ell$, with $\ell > 0$.

The following proposition seems to be well known to the experts. However, since we were unable to find a reference for this result, we present a proof here.

Proposition 5. Let N be a finitely generated nilpotent group and α an endomorphism of N. Suppose that

$$1 = N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{i-1} \subseteq N_i \subseteq \cdots \subseteq N_c = N$$

is a central series with $\alpha(N_i) \subseteq N_i$ and N_i/N_{i-1} torsion free for all $i = 1, 2, \ldots, c$. Let $\alpha_i: N_i/N_{i-1} \longrightarrow N_i/N_{i-1}$ denote the induced endomorphism. Then

$$R(\alpha) = \prod_{i=1}^c R(\alpha_i).$$

Proof. If $c = 1$, there is nothing to show. So suppose $c > 1$ and let $\bar{\alpha}: N/N_1 \longrightarrow N/N_1$ denote the induced endomorphism. By induction, it suffices to show that $R(\alpha) = R(\alpha_1)R(\bar{\alpha})$. If $R(\bar{\alpha}) = \infty$ then also $R(\alpha) = \infty$ and there is nothing to show. So suppose that $R(\bar{\alpha}) < \infty$.

Now, choose $y_j \in N$, with $j \in I$, such that their naturals projections \bar{y}_j are representatives for the different Reidemeister classes of $\bar{\alpha}$ (so I is a finite set). Choose also representatives x_i ($i \in I$) in N_1 for the different Reidemeister classes of α_1. We claim that the elements x_iy_j ($i \in I, j \in J$) uniquely represent all the Reidemeister classes of α.

First we show that any element $g \in N$ is Reidemeister equivalent to one of the x_iy_j. Certainly, there is a $j \in J$ such that \bar{g} is equivalent to \bar{y}_j. This implies that there is an $h \in N$ and an $x \in N_1$ such that $g = xhy_j\alpha(h)^{-1}$. As $x \in N_1$, there is a $z \in N_1 \subseteq Z(N)$ and an $i \in I$ with $x = zx_i\alpha(z)^{-1}$. As x_i, z and $\alpha(z) \in Z(N)$, we get that $g = zhx_iy_j\alpha(zh)^{-1}$, showing that g is equivalent to x_iy_j.

Now assume that $x_{i_1}y_{j_1}$ and $x_{i_2}y_{j_2}$ are equivalent. By looking at the projection to N/N_1, it follows that $j_1 = j_2 = j$, so we are in the situation that $x_{i_1}y_j$ is equivalent to $x_{i_2}y_j$ and we need to show that $i_1 = i_2$. So there must exist a $g \in N$ with $x_{i_1}y_j = gx_{i_2}y_j\alpha(g)^{-1}$.

If $g \in N_1$, then also $\alpha(g) \in N_1$ and this equation reduces to $x_{i_1} = gx_{i_2}\alpha(g)^{-1}$, from which it follows that $i_1 = i_2$. So assume that $g \not\in N_1$ and let $k > 1$ be the smallest integer such that $g \in N_k$. From $x_{i_1}y_j = gx_{i_2}y_j\alpha(g)^{-1}$ we get, using the fact that $x_{i_1}, x_{i_2} \in Z(N)$ that:

$$x_{i_1}^{-1}x_{i_2}^{-1} = y_j^{-1}g y_j\alpha(g)^{-1}$$

or

$$x_{i_1}^{-1}N_{k-1} = y_j^{-1}g y_j^{-1}g\alpha_k(g)^{-1}N_{k-1}$$

and

$$1N_{k-1} = g\alpha_k(g)^{-1}N_{k-1}$$

where we used that $y_j^{-1}gy_j^{-1} = [y_j, g^{-1}] \in N_{k-1}$ since we are working with a central series. Hence gN_{k-1} is a fixed point of α_k. However, by [DG, Lemma 2.2], the fact that $R(\bar{\alpha}) < \infty$ implies that α_k does not have 1 as an eigenvalue (recall that α_k is an
endomorphism of a free abelian group N_k/N_{k-1} of finite rank, say r, and so we can view α_k as an $r \times r$ integral matrix). This implies that $\text{Fix}(\alpha_k) = 1$. Hence $gN_{k-1} = 1N_{k-1}$, which implies that $g \in N_{k-1}$, which is a contradiction. \hfill \Box

Theorem 6. P_4 has the R_∞ property.

Proof. Since $P_4'' = [P_4, P_4], [P_4, P_4] = P_4''$ is characteristic in P_4, it is enough to show that for every $\alpha \in \text{Aut}(P_4)$ the induced action of α on the group $G = P_4''/P_4'$ has infinite Reidemeister number. By [CS, Theorem 1.1] we know that the groups $\Gamma_k(G)/\Gamma_{k+1}(G)$ are free abelian for all $k \geq 1$ and that $\Gamma_k(G)/\Gamma_{k+1}(G) \cong \mathbb{Z}^{5(k-1)}$ for all $k \geq 3$. Now let $\alpha \in \text{Aut}(P_4)$ be an automorphism then α induces a series of automorphisms $\alpha_k \in \text{Aut}(\Gamma_k(G)/\Gamma_{k+1}(G))$ and $\overline{\alpha}_k \in \text{Aut}(G/\Gamma_{c+1}(G))$. Since the factors $\Gamma_k(G)/\Gamma_{c+1}(G)$ are torsion-free, it follows from the proposition above that $R(\overline{\alpha}_k) = \prod_{k=1}^r R(\alpha_k)$.

For even $k \geq 3$ we have that $\text{rank}(\Gamma_k(G)/\Gamma_{k+1}(G))$ is odd, because it is equal to $5(k-1)$. Moreover, α_k is of finite order since we already know that the induced maps $\varphi_k: \text{Aut}(P_n) \rightarrow \text{Aut}(\Gamma_k(P_n)/\Gamma_{k+1}(P_n))$ have finite image. Hence α_k has a real eigenvalue, which must be 1 or -1. For any c we have $R(\alpha) \geq R(\overline{\alpha}_c)$. Applying Lemma 4 we obtain a second inequality

$$R(\overline{\alpha}_{2\ell}) \geq R(\alpha_4)R(\alpha_6) \cdots R(\alpha_{2\ell}) \geq 2^{\ell-1}$$

and so we must have that $R(\alpha) \geq 2^{\ell-1}$ for all ℓ. Hence $R(\alpha) = \infty$. \hfill \Box

3.2 General cases

To prove that the groups P_n with $n \geq 5$ have the R_{∞} property we will show that for any automorphism $\alpha \in \text{Aut}(P_n)$ the induced automorphism $\varphi_2(\alpha) \in \text{Aut}(\Gamma_2(P_n)/\Gamma_3(P_n))$ has eigenvalue 1 and so $R(\varphi_2(\alpha)) = \infty$, from which it follows (see Remark 1) that $R(\alpha) = \infty$.

Recall from Section 2 that φ_2 factors through $\text{Im}(\varphi_1)/\langle \overline{e} \rangle$ and so there exists a representation

$$\rho: \frac{\text{Im}(\varphi_1)}{\langle \overline{e} \rangle} \cong S_{n+1} \rightarrow \text{Aut}\left(\frac{\Gamma_2(P_n)}{\Gamma_3(P_n)}\right)$$

such that $\varphi_2 = \rho \circ p$, where p is the composition:

$$\text{Aut}(P_n) \xrightarrow{\varphi_1} \text{Im}(\varphi_1) = \langle \overline{w}_1, \ldots, \overline{w}_n, \overline{e} \rangle \xrightarrow{\text{Im}(\varphi_1)/\langle \overline{e} \rangle} \text{Im}(\varphi_1)/\langle \overline{e} \rangle = \langle \overline{w}_1, \ldots, \overline{w}_n \rangle \cong S_{n+1}.$$

We can assume that under the isomorphism $\frac{\text{Im}(\varphi_1)/\langle \overline{e} \rangle}{\langle \overline{\tau} \rangle} \cong S_{n+1}$, the element $\overline{\tau}_i$ corresponds to the transposition $(i, i+1)$.

We know that $\frac{\Gamma_2(P_n)}{\Gamma_3(P_n)} \cong \mathbb{Z}^{\binom{n}{3}}$, so we can view ρ as a complex representation $\rho: S_{n+1} \rightarrow \text{GL}(\mathbb{C})$. As a first step, we will explicitly determine this representation.

For this, we recall some background on the representation theory of symmetric groups. The irreducible representations of S_n are indexed by partitions of n [JK], where
a partition λ of n is a sequence $(\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ of positive integers, with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

Associated with a partition λ as above is its Young diagram, which is formally defined as the set

$$Y(\lambda) = \left\{(i,j) \in \mathbb{Z}^2 \mid 1 \leq i \leq \ell, 1 \leq j \leq \lambda_i\right\}$$

and which we can visualise as a set of cells in the plane as follows:

\[
\begin{array}{cccccccc}
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}
\]

\begin{itemize}
\item λ_1 cells
\item λ_2 cells
\item \cdots
\item λ_ℓ cells
\end{itemize}

In the above picture, the element $(i, j) \in Y(\lambda)$ corresponds to the cell in the i-th row and the j-column, as an explicit example, the Young diagram of the partition $\lambda = (5, 2, 2, 1)$ of 10 is given by

\[
\begin{array}{cccccccc}
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}
\]

There are two irreducible 1-dimensional representation of S_n for every n. The first one is the trivial representation and the second one is the sign representation $\text{sign} : S_n \rightarrow \{1, -1\}$, mapping even permutations to 1 and odd permutations to -1. For any representation $\psi : S_n \rightarrow \text{GL}(m, \mathbb{C})$, we get a new one of the same dimension $\text{sign} \cdot \psi : S_n \rightarrow \text{GL}(m, \mathbb{C})$, with $(\text{sign} \cdot \psi)(\mu) = \text{sign}(\mu) \cdot \psi(\mu)$. The following is a trivial, but useful remark as we will see in a moment:

Remark 7. If χ_ψ and $\chi_{\text{sign} \cdot \psi}$ denote the characters related to a representation ψ of S_n, then for any even permutation μ we have $\chi_\psi(\mu) = \chi_{\text{sign} \cdot \psi}(\mu)$.

Theorem 8. Let $n \geq 6$. The representation $\rho : S_n \rightarrow \text{GL}(\binom{n-1}{3}, \mathbb{C})$ which is determined by $\varphi_2 : \text{Aut}(P_{n-1}) \rightarrow \text{Aut}\left(\frac{\Gamma_2(P_{n-1})}{\Gamma_3(P_{n-1})}\right)$ as in (8) is irreducible and the associated Young diagram has shape $(n-3, 1, 1, 1)$.

Proof. We will divide the proof in two cases, namely the case for larger values of n and the case for smaller values.

We will first consider the situation in which $n \geq 13$ and at the end of the proof we explain how to deal with the remaining n via an easy case by case study, given some more details for $n = 8$.

In [R, Result 3], for $n \geq 15$ a list of the first 7 minimal dimensions of irreducible representations of S_n are given and are numbered as $(A), (B), \ldots, (F)$ and (G). In this proof, we will only need the first 6 minimal dimensions and by checking explicitly the character tables of S_{13} and S_{14} (e.g. using GAP [GAP]) one can see that also in these two cases the first six minimal dimensions are given by formulas (A) to (F). Of course, the first dimension (A) is just 1 and one can see that the last dimension (F) is $\binom{n-1}{3}$,
the dimension of the representation ρ. Each of these dimensions correspond to two representations say ψ and $\text{sign} \cdot \psi$.

Let ψ_A denote the trivial representation of S_n and χ_A the trivial character. In [GG, Table 5.1] we find the characters of one of the representations for each of the dimensions (B) to (F) (and (G), which we don’t need). Let us denote by ψ_B, \ldots, ψ_F these representations and let us denote by $\chi_B, \chi_C, \ldots, \chi_F$ the corresponding characters. We will use $\chi_A', \chi_B', \ldots, \chi_F'$ to denote the characters of the representations $\text{sign} \cdot \psi_A, \text{sign} \cdot \psi_B, \ldots, \text{sign} \cdot \psi_F$.

Let $\mu \in S_n$. Then we can decompose μ into a disjoint cycle decomposition. We let a_1 denote the number of 1-cycles in this decomposition (or fixed points of μ), a_2 the number of 2-cycles in this decomposition and a_3 the number of 3-cycles. In the table below, we summarise the information that we will use from [GG, Table 5.1]. (Note that (A) is not present in [GG, Table 5.1] and (F) corresponds to the last line of the table and not to the second last line as one might expect).

Representation	Associated λ	character evaluated in μ
ψ_A	(n)	1
ψ_B	$(n-1,1)$	a_1-1
ψ_C	$(n-2,2)$	$\frac{1}{2}(2a_2 + a_1(a_1-3))$
ψ_D	$(n-2,1,1)$	$\frac{1}{2}(-2a_2 + a_1^2-3a_1+2)$
ψ_E	$(n-3,3)$	$\frac{1}{6}(6a_3 + 6a_2(a_1-1) + a_1(a_1-1)(a_1-5))$
ψ_F	$(n-3,1,1,1)$	$a_3 - a_2(a_1-1) + \left(\frac{a_1-1}{3}\right)$

Table 1: Low dimensional representations of S_n

We will prove that $\chi_\rho = \chi_F$ and so ρ is irreducible. Suppose on the contrary that ρ is reducible, then it must hold that

$$
\chi_\rho = a_1 \chi_A + a_1' \chi_A' + b_1 \chi_B + b_1' \chi_B' + c \chi_C + c' \chi_C' + d \chi_D + d' \chi_D' + e \chi_E + e' \chi_E',
$$

for some non negative integers a, a', b, \ldots, e'. Let $x_a = a + a', x_b = b + b', \ldots, x_e = e + e'$, then by Remark 7 it holds that for any even permutation μ we have

$$
\chi_\rho(\mu) = x_a \chi_A(\mu) + x_b \chi_B(\mu) + x_c \chi_C(\mu) + x_d \chi_D(\mu) + x_e \chi_E(\mu).
$$

We will show that this is not possible by evaluating the above expression for some specific even permutations μ. The formulas below are applications of Proposition 3.

- Consider the element $\mu = \omega_1 \omega_2$, in this case $\mu = (123)$ and

$$
\rho(\mu)(a_{r,s,t}) = \begin{cases}
a_{1,2,3} & \text{if } r = 1, s = 2 \text{ and } t = 3 \\
a_{1,2,t}^{-1} & \text{if } r = 1, s = 3 \text{ and } t \geq 4 \\
a_{1,3,t}^{-1} & \text{if } r = 2, s = 3 \text{ and } t \geq 4 \\
a_{\mu(r),\mu(s),\mu(t)} & \text{otherwise.}
\end{cases}
$$

(9)

So, we have $\binom{n-4}{3} + 1$ fixed elements.
• Consider the element \(\mu = \overline{\omega}_1 \overline{\omega}_2 \overline{\omega}_4 \overline{\omega}_5 \), in this case \(\mu = (123)(456) \) and

\[
\rho(\mu)(\alpha_{r,s,t}) = \begin{cases}
\alpha_{1,2,3} & \text{if } r = 1, s = 2 \text{ and } t = 3 \\
\alpha_{4,5,6} & \text{if } r = 4, s = 5 \text{ and } t = 6 \\
\alpha^{-1}_{1,2,\mu(t)} & \text{if } r = 1, s = 3 \text{ and } t \geq 4 \\
\alpha^{-1}_{1,3,\mu(t)} & \text{if } r = 2, s = 3 \text{ and } t \geq 4 \\
\alpha^{-1}_{\mu(r),4,5} & \text{if } r \leq 3, s = 4 \text{ and } t = 6 \\
\alpha^{-1}_{\mu(r),4,6} & \text{if } r \leq 3, s = 5 \text{ and } t = 6 \\
\alpha^{-1}_{4,5,t} & \text{if } r = 4, s = 6 \text{ and } t \geq 7 \\
\alpha^{-1}_{4,6,t} & \text{if } r = 5, s = 6 \text{ and } t \geq 7 \\
\alpha_{\mu(r),\mu(s),\mu(t)} & \text{otherwise.}
\end{cases}
\] (10)

So, we have \(\binom{n-7}{3} + 2 \) fixed elements.

• Consider the element \(\mu = \overline{\omega}_1 \overline{\omega}_2 \overline{\omega}_4 \overline{\omega}_5 \overline{\omega}_7 \overline{\omega}_8 \), in this case \(\mu = (123)(456)(789) \) and

\[
\rho(\mu)(\alpha_{r,s,t}) = \begin{cases}
\alpha_{1,2,3} & \text{if } r = 1, s = 2 \text{ and } t = 3 \\
\alpha_{4,5,6} & \text{if } r = 4, s = 5 \text{ and } t = 6 \\
\alpha_{7,8,9} & \text{if } r = 7, s = 8 \text{ and } t = 9 \\
\alpha^{-1}_{r,r+1,\mu(t)} & \text{if } r = 1,4,7, s = r + 2 \text{ and } t \geq r + 3 \\
\alpha^{-1}_{r-1,r+1,\mu(t)} & \text{if } r = 2,5,8, s = r + 1 \text{ and } t \geq r + 3 \\
\alpha^{-1}_{\mu(r),s,s+1} & \text{if } s = 4,7, t = s + 2 \text{ and } r < s \\
\alpha^{-1}_{\mu(r),s-1,s+1} & \text{if } s = 5,8, t = s + 1 \text{ and } r < s - 1 \\
\alpha_{\mu(r),\mu(s),\mu(t)} & \text{otherwise.}
\end{cases}
\] (11)

So, we have \(\binom{n-10}{3} + 3 \) fixed elements.

• Consider the element \(\mu = \overline{\omega}_1 \overline{\omega}_3 \), in this case \(\mu = (12)(34) \) and

\[
\rho(\mu)(\alpha_{r,s,t}) = \begin{cases}
\alpha^{-1}_{1,2,\mu(t)} & \text{if } r = 1, s = 2 \text{ and } t \geq 3 \\
\alpha^{-1}_{2,3,4} & \text{if } r = 1, s = 3 \text{ and } t = 4 \\
\alpha^{-1}_{1,3,4} & \text{if } r = 2, s = 3 \text{ and } t = 4 \\
\alpha^{-1}_{3,4,t} & \text{if } r = 3, s = 4 \text{ and } t \geq 5 \\
\alpha_{\mu(r),\mu(s),\mu(t)} & \text{otherwise.}
\end{cases}
\] (12)

So, we have \(\binom{n-5}{3} \) fixed elements and \(2(n-5) \) twisted elements (elements mapped to their inverse).

Hence, we conclude that the character \(\chi_\rho \) in these specific elements is given by:

• \(\chi_\rho(\text{Id}) = \binom{n-1}{3} \) (the dimension of the representation).

• \(\chi_\rho(\overline{\omega}_1 \overline{\omega}_2) = \binom{n-4}{3} + 1. \)
\(\chi_\rho(\overline{w}_1 \overline{w}_2 \overline{w}_4 \overline{w}_5) = \binom{n-7}{3} + 2. \)

\(\chi_\rho(\overline{w}_1 \overline{w}_2 \overline{w}_4 \overline{w}_5 \overline{w}_7 \overline{w}_8) = \binom{n-10}{3} + 3. \)

\(\chi_\rho(\overline{w}_1 \overline{w}_3) = \binom{n-5}{3} - 2(n-5). \)

Now, using the information of Table 1 we obtain the following five equations:

(a) \(Id \). In this case we have \(a_1 = n, a_2 = a_3 = 0. \)

\[
\chi_\rho(Id) = x_a + x_b \cdot (n-1) + x_c \cdot \frac{n(n-3)}{2} + x_d \cdot \frac{n^2-3n+2}{2} + x_e \cdot \frac{n(n-1)(n-5)}{6}
\]

(b) \(\mu_1 = \overline{w}_1 \overline{w}_2 \). In this case we have \(a_1 = n-3, a_2 = 0, a_3 = 1. \)

\[
\chi_\rho(\mu_1) = x_a + x_b \cdot (n-4) + x_c \cdot \frac{(n-3)(n-6)}{2} + x_d \cdot \frac{(n-3)^2-3(n-3)+2}{2}
\]
\[
+ x_e \cdot \frac{(n-3)(n-4)(n-8)+6}{6}
\]

(c) \(\mu_2 = \overline{w}_1 \overline{w}_2 \overline{w}_4 \overline{w}_5 \). In this case we have \(a_1 = n-6, a_2 = 0, a_3 = 2. \)

\[
\chi_\rho(\mu_2) = x_a + x_b \cdot (n-10) + x_c \cdot \frac{(n-9)(n-12)}{2} + x_d \cdot \frac{(n-9)^2-3(n-9)+2}{2}
\]
\[
+ x_e \cdot \frac{(n-9)(n-10)(n-14)+18}{6}
\]

(d) \(\mu_3 = \overline{w}_1 \overline{w}_2 \overline{w}_4 \overline{w}_5 \overline{w}_7 \overline{w}_8 \). In this case we have \(a_1 = n-9, a_2 = 0, a_3 = 3. \)

\[
\chi_\rho(\mu_3) = x_a + x_b \cdot (n-10) + x_c \cdot \frac{(n-9)(n-12)}{2} + x_d \cdot \frac{(n-9)^2-3(n-9)+2}{2}
\]
\[
+ x_e \cdot \frac{(n-9)(n-10)(n-14)+18}{6}
\]

(e) \(\mu_4 = \overline{w}_1 \overline{w}_3 \). In this case we have \(a_1 = n-4, a_2 = 2, a_3 = 0. \)

\[
\chi_\rho(\mu_4) = x_a + x_b \cdot (n-5) + x_c \cdot \frac{(n-4)(n-7)+4}{2} + x_d \cdot \frac{(n-4)^2-3(n-4)+2}{2}
\]
\[
+ x_e \cdot \frac{(n-4)(n-5)(n-9)+12(n-5)}{6}
\]

Solving this system of equations we find that the unique solution is \(x_a = 5-n, x_b = 1, x_c = 5-n, x_d = n-5 \) and \(x_e = 1. \) Since we are considering \(n \geq 13 \) we get that \(x_a = 5-n < 0 \) which is a contradiction. So, \(\rho \) is either (equivalent to) the representation \(\psi_F \) or the representation \(\psi_{F'} = \text{sign} \cdot \psi_F. \) Now we use the element \(\mu = \overline{w}_1 \) in order to be able to decide which of the two options is the correct one. Considering the action of \(\mu = \overline{w}_1 = (12) \) as given by Lemma 2, we obtain

\[
\chi_\rho(\overline{w}_1) = \binom{n-3}{3} - (n-3). \quad (13)
\]

Notice that \(\chi_\rho(\overline{w}_1) = \chi_{F'}(12) \) if and only if \(\binom{n-3}{3} - (n-3) = (n-3) - \binom{n-3}{3} \) if and only if \(n = 2, 3, 7. \) Since we are considering the case \(n \geq 13 \) we conclude that \(\rho \) is equivalent to \(\psi_F. \) So the Young diagram related to \(\rho \) is \((n-3, 1, 1, 1): \)

```
    
   
```

12
We still have to deal with the cases $n = 6, 7, \ldots, 12$. We can follow the same idea as in the general case, but now using the explicit character table of S_n, in each case instead of the information of Table 1. These character tables can e.g. be found using GAP ([GAP]).

We still need to show that ρ is the representation ψ_F. So, as in the general case, we first check that ρ cannot be written as a sum of lower dimensional representations, so that χ_{ρ} cannot be written as a sum of characters of lower degree. In order to achieve this, we assume that χ_{ρ} can be written as a combination (with non negative integer coefficients) of characters of lower degree and by evaluating the expression on some well chosen even permutations we look for a contradiction.

For example, when $n = 8$ and we consider the permutation $\mu = \omega_1\omega_3$ we find the equation

$$\chi_{\rho}(\mu) = -5 = 1x_1 + 3x_2 + 4x_3 + 4x_4 + 2x_5 + 1x_6.$$

which clearly does not have any solution in nonnegative integers x_1, x_2, \ldots, x_6, showing that ρ cannot be decomposed into representations of lower degree.

For all the other cases (with $6 \leq n \leq 12$) we also very quickly obtain the same result (sometimes using another permutation, e.g. $\omega_1\omega_2\omega_4\omega_5$).

Now, let us consider the case $n = 8$ again. We already know that ρ is either equivalent to the representation ψ_F or to the representation $\psi_{F'} = \text{sign} \cdot \psi_F$. Now, $\chi_{\rho}(\omega_1) = 5$ (see formula (13)), $\chi_F(\omega_1) = 5$ and $\chi_{F'}(\omega_1) = -5$, allowing us to conclude that ρ is equivalent to ψ_F.

The same argument works in all other cases (where for $n = 7$ it holds that ψ_F is equivalent to $\psi_{F'}$ and so this last step does not have to be done).

Now we recall a combinatorial procedure due to Stembridge ([S]) allowing us to compute the eigenvalues appearing in the irreducible representations of the symmetric group.

Let $\psi: G \longrightarrow \text{GL}(k, \mathbb{C})$ be a representation of a finite group and let $g \in G$ be an element of order m. Then the eigenvalues of $\psi(g)$ are m-th roots of unity, and so are of the form $\omega^{e_1}, \omega^{e_2}, \ldots, \omega^{e_k}$, with $\omega = e^{2\pi i / m}$ a primitive m-th root of unity. Stembridge refers to the intergers $e_j \pmod{m}$ as the cyclic exponents of g with respect to the representation ψ. Using these cyclic exponents we form a generation function in the variable q:

$$P_{\psi,g}(q) = q^{e_1} + q^{e_2} + \cdots + q^{e_k}$$

which is well defined mod $1 - q^m$.

In order to describe this generation function in full detail for representations of the symmetric group we need the notion of a standard tableau of shape $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$, where λ is a partition of n as before. Informally, a standard tableau of shape λ is a distribution of the integers $1, 2, \ldots, n$ over the cells of the Young diagram $Y(\lambda)$ in such a way that the numbers increase both in rows and in columns. Formally, a standard tableau of shape λ is a one-to-one map $T: Y(\lambda) \longrightarrow \{1, 2, \ldots, n\}$ with

(a) $T(i, j) < T(i, j + 1)$ for all $1 \leq i \leq \ell$ and $1 \leq j < \lambda_i$ (increasing rows)
(b) $T(i, j) < T(i + 1, j)$ for all $1 \leq i < \lambda_\ell$ and $1 \leq j \leq \lambda_{i+1}$ (increasing columns)
As an example, the following picture shows a standard tableau of size $\lambda = (5, 2, 2, 1)$:

```
  1  2  5  9  10
  3  6
  4  8
  7
```

The set of all standard tableaux of shape λ is denoted by F^λ. Let $T \in F^\lambda$. If the number $k + 1 (1 \leq k < n)$ appears in a row strictly below k in T, then k is called a descent of T, and $D(T)$ denotes the set of all descents in T. So, for the example above, we have that $D(T) = \{2, 3, 5, 6\}$.

Let $\mu = (\mu_1, \mu_2, \ldots, \mu_r)$ be a partition of n, and let $m = \text{lcm}(\mu_1, \mu_2, \ldots, \mu_r)$ (the least common multiple of the numbers in the partition). Then m is the order of any permutation in S_n of cycle–type μ. We define an n–tuple $b_\mu = (b_\mu(1), \ldots, b_\mu(n))$ of positive integers as follows

$$b_\mu = \left(\begin{array}{cccc}
\frac{m}{\mu_1}, & \frac{2m}{\mu_1}, & \ldots, & \frac{\mu_1m}{\mu_1} = m,
\frac{m}{\mu_2}, & \frac{2m}{\mu_2}, & \ldots, & \frac{\mu_2m}{\mu_2} = m,
\frac{m}{\mu_r}, & \frac{2m}{\mu_r}, & \ldots, & \frac{\mu_r m}{\mu_r} = m
\end{array}\right).$$

For example, when $\mu = (4, 3, 2, 1)$, then $m = 12$ and $b_\mu = (3, 6, 9, 12, 4, 8, 12, 6, 12, 12)$.

Now consider two partitions λ and μ of n. For any standard tableau $T \in F^\lambda$, we define the μ-index of T as

$$\text{ind}_\mu(T) = \sum_{k \in D(T)} b_\mu(k) \pmod{m}. $$

So for the example of the standard tableau T above with $\lambda = (5, 2, 2, 1)$ and for $\mu = (4, 3, 2, 1)$ we have that

$$\text{ind}_\mu(T) = b_\mu(2) + b_\mu(3) + b_\mu(5) + b_\mu(6) \pmod{12} = 6 + 9 + 4 + 8 \pmod{12} = 3.$$

Now, we have all the necessary background to provide a good description of the generating function $P_{\psi, g}(q)$ in case ψ is an irreducible representation of S_n. Since such a ψ is determined by the associated partition λ and the eigenvalues of $\psi(g)$ (and so also the generating function) only depend on the cycle–type μ of g, we will write $P_{\lambda, \mu}(q)$ to denote the cyclic exponent generating function corresponding to any permutation w of S_n of cycle–type μ for the irreducible representation of S_n corresponding to λ. This generating function (mod $1 - q^m$) is completely determined by the following result.

Theorem 9 ([S, Theorem 3.3]). We have

$$P_{\lambda, \mu}(q) = \sum_{T \in F^\lambda} q^{\text{ind}_\mu(T)} \pmod{1 - q^m};$$

i.e., the cyclic exponents of w with respect to λ are the μ-indices of the standard tableaux of shape λ.

14
Theorem 9 will be useful to prove that for the representation \(\varphi_2 : \text{Aut}(P_n) \rightarrow \text{Aut}(\Gamma_2(P_{n-1})) \), the automorphism \(\varphi_2(\alpha) \) has 1 as an eigenvalue for all \(\alpha \in \text{Aut}(P_n) \).

Remark 10. Consider \(\lambda = (n-3, 1, 1, 1) \) and so the corresponding Young diagram \(Y(\lambda) \) is:

\[
\begin{array}{ccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & & & &
\end{array}
\]

For every \(i, j, k \) with \(1 \leq i < j < k < n \) there exists a standard tableau \(T \in \mathcal{F}^\lambda \) with \(D(T) = \{i, j, k\} \) and all \(D(T) \) are of this form. Indeed, take \(T \) the unique standard tableau given by

\[
\begin{array}{cccccccc}
1 & * & * & * & \cdots & * \\
i+1 & & & & & & & \\
j+1 & & & & & & & \\
k+1 & & & & & & &
\end{array}
\]

Theorem 11. Let \(n \geq 6 \) and let \(\varphi_2 : \text{Aut}(P_{n-1}) \rightarrow \text{Aut}(\Gamma_2(P_{n-1})) \) be the induced morphism. For any \(\alpha \in \text{Aut}(P_{n-1}) \), we have that \(\varphi_2(\alpha) \) has 1 as an eigenvalue.

Proof. Recall that \(\varphi_2 \) factors through the representation \(\rho : S_n \rightarrow \text{GL}(\mathcal{S}_{n-1}, \mathbb{C}) \). We proved in Theorem 8 that \(\rho \) is equivalent to the irreducible representation of \(S_n \) determined by the partition \(\lambda = (n-3, 1, 1, 1) \). So in order to prove the theorem, it suffices to prove that \(\rho(\sigma) \) has eigenvalue 1 for all \(\sigma \in S_n \).

We shall consider four cases depending on the cycle–type \(\mu \) of \(\sigma \). Recall that the cycle–type \(\mu \) of \(\sigma \) is a partition of \(n \) of the form \(\mu = (\mu_1, \mu_2, \ldots, \mu_r) \) where \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_r \geq 1 \). Let \(m = \text{lcm}(\mu_1, \mu_2, \ldots, \mu_r) \).

First we shall consider the case \(\mu = (\mu_1, \mu_2, \ldots, \mu_r) \) such that \(n > \mu_1 \geq 3 \). Hence

\[
b_{\mu} = \left(\frac{m}{\mu_1}, \frac{2m}{\mu_1}, \ldots, \frac{(\mu_1 - 1)m}{\mu_1}, m, \cdots \right).
\]

Consider the standard tableau

\[
\begin{array}{cccccccc}
1 & 3 & 4 & \cdots & \mu_1 - 1 & \mu_1 + 2 & \cdots \\
2 & & & & & & & \\
\mu_1 & & & & & & & \\
\mu_1 + 1 & & & & & & &
\end{array}
\]

So, \(D(T) = \{1, \mu_1 - 1, \mu_1\} \). Hence the \(\mu \)-index in this case is

\[
\text{ind}_\mu(T) = b_{\mu}(1) + b_{\mu}(\mu_1 - 1) + b_{\mu}(\mu_1) = \frac{m}{\mu_1} + \frac{(\mu_1 - 1)m}{\mu_1} + \frac{\mu_1 m}{\mu_1} = 2m \equiv 0 \pmod{m}.
\]
It follows from Theorem 9 that in this case \(\rho(\sigma) \) has 1 as an eigenvalue.

Let \(\mu = (n) \), so \(\sigma \) is the full cycle. Then \(m = n, \mu_1 = n \) and \(b_\mu = (1,2,3,\ldots,n) \). Consider the standard tableau

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 5 & 6 & \cdots & n-2 \\
4 \\
n-1 \\
n
\end{array}
\]

So, \(D(T) = \{3, n-2, n-1\} \). Hence the \(\mu \)-index in this case is

\[
\text{ind}_\mu(T) = b_\mu(3) + b_\mu(n-2) + b_\mu(n-1) = 3 + (n-2) + (n-1) = 2\mu_1 = 2n = 2m \equiv 0 \pmod m.
\]

Theorem 9 implies that also in this case \(\rho(\sigma) \) has 1 as an eigenvalue.

Now we shall consider the case \(\mu = (2,1,\ldots,1) \), the case in which we have exactly one transposition. So, \(m = 2 \) and \(b_\mu = (1,2,2,2,\ldots,2) \). Consider the standard tableau

\[
\begin{array}{ccccccc}
1 & 2 & 6 & 7 & \cdots & n-1 & n \\
3 \\
4 \\
5
\end{array}
\]

So, \(D(T) = \{2,3,4\} \). Hence the \(\mu \)-index in this case is

\[
\text{ind}_\mu(T) = b_\mu(2) + b_\mu(3) + b_\mu(4) = 2 + 2 + 2 = 6 \equiv 0 \pmod m.
\]

Again, Theorem 9 allows us to conclude that also in this case \(\rho(\sigma) \) has 1 as an eigenvalue.

Finally we shall consider the case \(\mu = (2,2,\cdots,2,1,\ldots,1) \), the case in which we have \(\ell \geq 2 \) transpositions. Hence \(m = 2 \) and \(b_\mu = (1,2,1,2,\ldots,1,2,2,\ldots,2) \) where the numbers 1,2 are repeated \(\ell \) times. Consider the standard tableau

\[
\begin{array}{ccccccc}
1 & 5 & 6 & 7 & \cdots & n-1 & n \\
2 \\
3 \\
4
\end{array}
\]
So, \(D(T) = \{1, 2, 3\} \). Hence the \(\mu \)-index in this case is

\[
\text{ind}_\mu(T) = b_\mu(1) + b_\mu(2) + b_\mu(3) \\
= 1 + 2 + 1 = 4 \\
\equiv 0 \pmod{m}.
\]

Again, by Theorem 9 we know that \(\rho(\sigma) \) has 1 as an eigenvalue.

Hence, given \(n \geq 6 \), for every element \(\alpha \in \text{Aut} \left(P_{n-1} \right) \) it holds that \(\varphi_2(\alpha) \) has 1 as an eigenvalue.

Theorem 12. Let \(n \geq 3 \). The Artin pure braid group \(P_n \) has the \(R_\infty \) property.

Proof. The cases \(n = 3 \) and \(n = 4 \) were already proven before, so let \(n \geq 5 \).

Let \(\alpha \in \text{Aut} \left(P_n \right) \). By the previous theorem we now that \(\varphi_2(\alpha) \) acts on the free abelian group \(\frac{\Gamma_2(P_n)}{\Gamma_3(P_n)} \) as a matrix with eigenvalue 1. This means that \(R(\varphi_2(\alpha)) = \infty \), which implies that \(R(\alpha) = \infty \) (Remark 1). Since this holds for any automorphism of \(P_n \), we have shown that \(P_n \) has the \(R_\infty \) property.

References

[BNS] V. G. Bardakov, M. V. Neshchadim and M. Singh, Automorphisms of pure braid Groups, *Monatsh. Math.* 187 (2018), no. 1, 1–19.

[CS] D. C. Cohen and A. I. Suciu, The Chen groups of the pure braid group, The Cech centennial (Boston, MA, 1993), Amer. Math. Soc., Providence, RI, *Contemp. Math.* 181 (1995), 45–64.

[DG] K. Dekimpe and D. L. Gonçalves, The \(R_\infty \) property for free groups, free nilpotent groups and free solvable groups, *Bull. Lond. Math. Soc.* 46 (2014), no. 4, 737–746.

[F] A. Fel’shtyn, The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite, *J. Math. Sci.* 119 (2004), no. 1, 117–123.

[FG1] A. Fel’shtyn and D. L. Gonçalves, The Reidemeister number of any automorphism of a Baumslag–Solitar group is infinite, *Geometry and Dynamics of Groups and Spaces*. Prog Math 265, 286–306 (2008) Birkhäuser.

[FG2] A. Fel’shtyn and D. L. Gonçalves, Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups, *Geom. Dedicata* 146 (2010), 211–223.

[FH] A. Fel’shtyn and R. Hill, The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion, *K-Theory* 8 (1994), no. 4, 367–393.

[FN] A. Fel’shtyn and T. Nasybullov, The \(R_\infty \) and \(S_\infty \) properties for linear algebraic groups, *J. Group Theory* 19 (2016), no. 5, 901–921.

[FR] M. Falk and R. Randell, Pure braid groups and products of free groups, *Contemp. Math.* 78 (1988), 217–228.
[GAP] The GAP Group, *GAP – Groups, Algorithms, and Programming*, Version 4.10.2; 2019, https://www.gap-system.org.

[GG] A. M. Garsia and A. Goupil, Character polynomials, their q-analogs and the Kronecker product, *Electron. J. Combin.* 16 (2009), no. 2, Special volume in honor of Anders Bjorner, Research Paper 19, 40.

[GGO] D. L. Gonçalves, J. Guaschi and O. Ocampo, Almost-crystallographic groups as quotients of Artin braid groups, *J. Algebra* 524 (2019), 160–186.

[GW] D. Gonçalves and P. Wong, Twisted conjugacy classes in wreath products, *Internat. J. Algebra Comput.* 16 (2006), no. 5, 875–886.

[Han] V. L. Hansen, *Braids and Coverings: selected topics*, London Math. Soc. Student Text 18, Cambridge University Press, 1989.

[JK] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16, Addison-Wesley Publishing Co., Reading, Mass., 1981.

[LL] G. Levitt and M. Lustig, Most automorphisms of a hyperbolic group have very simple dynamics, *Ann. Sci. École Norm. Sup. (4)* 33 (2000), no. 4, 507–517.

[L] G. Levitt and M. Lustig, On the automorphism group of generalized Baumslag-Solitar groups. *Geom. Topol.* 11 (2007), 473–515.

[NAS] T. Nasybullov, Twisted conjugacy classes in unitriangular groups, *J. Group Theory* 22 (2019), no. 2, 253–266.

[R] R. Rasala. On the minimal degrees of characters of S_n, *J. Algebra* 45 (1977), 132–181.

[S] J. R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, *Pacific J. Math.* 140 (2) (1989) 353–396.

[TW] J. Taback and P. Wong, Twisted conjugacy and quasi-isometry invariance for generalized solvable Baumslag-Solitar groups, *J. Lond. Math. Soc. (2)* 75 (2007), no. 3, 705–717

[TRO] E. Troitsky, Reidemeister classes in lamplighter-type groups, *Comm. Algebra* 47 (2019), no. 4, 1731–1741.