Estimation of errors of quadrature formula for singular integrals of Cauchy type with special forms

Israilov Maruf Israilovich

Institute of Mathematics, Academy of Science of Uzbekistan.

Translator: Associate Prof. Dr. Zainidin K. Eshkuvatov, "Department of Mathematics, Faculty of Science, Universiti Putra Malaysia".

Key words: singular integral, quadrature formula, approximation, linear spline.

2000 Mathematics Subject Classification: 65D32, 30C30, 65R20

Abstract

In this work, we consider the singular integrals of Cauchy type of the forms

\[J(f, x) = \frac{\sqrt{1-x^2}}{\pi} \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^2(t-x)}} \, dt, \quad -1 < x < 1. \]

and

\[\Phi(f, z) = -\frac{\sqrt{z^2-1}}{\pi} \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^2(t-z)}} \, dt, \quad z \notin [-1, 1]. \]

which are understood as Cauchy principal value integrals. Quadrature formulas (QFs) for singular integrals (SIs) (1) and (2) are of the forms

\[J(f, x) = \sum_{k=0}^{N} A_k(x) f(t_k) + R_N(f, x), \quad -1 < x < 1. \]

and

\[\Phi(f, z) = \sum_{k=0}^{N} B_k(z) f(t_k) + R_N^*(f, z), \quad z \notin [-1, 1]. \]

where \(z \) is complex variable with \(|Re(z)| > 1 \). With the help of linear spline interpolation, we have proved the rate of convergence of the errors of QFs (3) and (4) for different classes (i.e. \(H^\alpha([-1, 1], K), C^{m, \alpha}[-1, 1], W^r[-1, 1] \)) of density function \(f(t) \). It is shown that approximation by spline possesses more advantages than other kinds of approximation: it requires the minimum smoothness of density function \(f(x) \) to get good order of decreasing errors.

1 Introduction

The importance of singular integrals (SIs) of the form (1) and (2) and their numerical solution are given in many researchers work ([1]-[3]) and literatures cited therein. Many of them are based on the approximation of density function \(f(t) \) with Chebyshev polynomials.

Note that in (2), the function \(\sqrt{z^2-1} \) is understood as a single-valued branch in the plane of complex variable with cut along the interval \([-1,1]\) such that \(\sqrt{z^2-1} = z + O(z^{-1}) \)

1This paper is dedicated to the memory of Professor Israilov M.I. (1934-2010). It was published in collection of papers entitled "Differential Equations and Inverse Problems, Press FAN, Tashkent, 1986, pp. 236-258 (in Russian)
for the large $z > 0$. In the future, under $W = \arcsinz$ only a branch of the function for which $|\Re(W)| < \frac{\pi}{2}$ will be understood.

In this paper, we construct efficient quadrature formulas (QFs) for SIs (1) and (2) using linear spline interpolation. Obtained QFs provide uniform convergence for any singular point $x \in (-1, 1)$ and any $z \not\in [-1, 1]$.

2 Construction of the quadrature formula

In order to write the exact form of coefficients of the quadrature formula (3) and (4), we introduce the following notations

$$G_k(x) = \frac{|t_k \sqrt{1 - x^2} - x \sqrt{1 - t_k^2}|}{\sqrt{1 - x^2 + \sqrt{1 - t_k^2}}},$$

$$g_k = \frac{1}{\pi h_k}(\arcsin t_{k+1} - \arcsin t_k),$$

$$F_k(z) = \frac{1}{\pi h_k} \left(\frac{zt_{k+1} - 1}{z - t_{k+1}} - \arcsin \frac{zt_k - 1}{z - t_k} \right).$$

If $x \neq t_k$, then the coefficients of QFs (3) are computed by the formulas

$$A_0(x) = \frac{t_1 - x}{\pi h_0} \ln G_1(x) - \sqrt{1 - x^2}g_0,$$

$$A_k(x) = \frac{t_{k+1} - x}{\pi h_k} \ln G_{k+1}(x) + \frac{x - t_{k-1}}{\pi h_{k-1}} \ln \frac{G_k(x)}{G_{k-1}(x)}$$

$$- \sqrt{1 - x^2} (g_k - g_{k-1}), \quad k = 1, ..., N - 1,$$

$$A_N(x) = \frac{t_N - x}{\pi h_{N-1}} \ln G_{N-1}(x) + \sqrt{1 - x^2}g_{N-1}.$$ \hfill (5)

As $G_k(\pm 1) = 1$ for all k, then $A_k(\pm 1) = 0$ for $k = 0, ..., N$. These correspond with the fact in [6] that $J(f, x)|_{x = \pm 1} = 0$ is independent from the value of $f(\pm 1)$.

If x coincides with the nodes t_k, $(k = 1, ..., N - 1)$, then the coefficients $A_j(t_k), j \neq k - 1, k, k + 1$ are computed by (5). If k in (5) is replaced by $k - 1$ and $k + 1$ and $x = t_k$ is put, then coefficients $A_{k-1}(t_k)$ and $A_{k+1}(t_k)$ are again computed respectively by (5) and for $A_k(t_k)$ we have

$$A_k(t_k) = \frac{1}{\pi} \ln \frac{G_{k+1}(t_k)}{G_{k-1}(t_k)} - \sqrt{1 - t_k^2} (g_k - g_{k-1}), \quad k = 1, ..., N - 1.$$ \hfill (6)
coefficients of the QFs (4) have the form
\[B_0(z) = (z - t_1)F_0(z) + \sqrt{z^2 - 1}g_0, \]
\[B_k(z) = (z - t_{k+1})F_k(z) - (z - t_{k-1})F_{k-1}(z) + \sqrt{z^2 - 1}(g_k - g_{k-1}), \quad k = 1, \ldots, N - 1 \]
\[B_N(z) = (t_{N-1} - z)F_{N-1}(z) - \sqrt{z^2 - 1}g_{N-1}. \] (7)

Let us derive coefficients of QFs which are given by (5) and (7). As we know the linear spline \(S_N(t) \) interpolating the given function \(f \) on the grid \(\Delta : -1 = t_0 < t_1 < \ldots < t_{N-1} < t_N = 1 \) for \(t \in [t_j, t_{j+1}] \) has the form
\[S_N(t) = \frac{1}{h_k}[(t_{k+1} - t)f(t_k) + (t - t_k)f(t_{k+1})] \] (8)

Replacing \(f(t) \) in (1) with \(S_N(t) \) we have
\[J(S_N, x) = \frac{\sqrt{1 - x^2}}{\pi} \sum_{k=0}^{N-1} \frac{1}{h_k} \int_{t_k}^{t_{k+1}} \frac{(t_{k+1} - t)f(t_k) + (t - t_k)f(t_{k+1})}{\sqrt{1 - t^2(t - x)}} dt. \]
\[= \frac{\sqrt{1 - x^2}}{\pi} \left[\frac{1}{h_0} \int_{-1}^{t_1} \frac{(t_1 - t)dt}{\sqrt{1 - t^2(t - x)}} f(t_0) + \frac{1}{h_{N-1}} \int_{t_{N-1}}^{1} \frac{(t - t_{N-1})dt}{\sqrt{1 - t^2(t - x)}} f(t_N) \right. \]
\[+ \sum_{k=1}^{N-2} \frac{1}{h_k} \left(\int_{t_k}^{t_{k+1}} \frac{(t - t_k)dt}{\sqrt{1 - t^2(t - x)}} + \int_{t_{k+1}}^{t_{k+2}} \frac{(t_{k+2} - t)dt}{\sqrt{1 - t^2(t - x)}} \right) \left(f(t_{k+1}) \right). \] (9)

Introducing notations
\[J(k, x) = \int_{t_k}^{t_{k+1}} \frac{dt}{\sqrt{1 - t^2(t - x)}}, \quad J_1(k, x) = \int_{t_k}^{t_{k+1}} \frac{tdt}{\sqrt{1 - t^2(t - x)}}, \]
and using easy checking formulas
\[\int \frac{xdt}{\sqrt{1 - t^2(\sqrt{1 - x^2} + \sqrt{1 - t^2})}} = ln \frac{1 + \sqrt{1 - x^2}\sqrt{1 - t^2} + xt}{\sqrt{1 - x^2} + \sqrt{1 - t^2}} + C, \]
\[\int \frac{tdt}{\sqrt{1 - t^2(\sqrt{1 - x^2} + \sqrt{1 - t^2})}} = -ln(\sqrt{1 - x^2} + \sqrt{1 - t^2}) + C, \]
obviously we have

\[J(k, x) = \frac{1}{1 - x^2} \ln \left| \frac{(t - x)(1 + \sqrt{1 - x^2} \sqrt{1 - t^2} + xt)}{(\sqrt{1 - x^2} + \sqrt{1 - t^2})^2} \right|_{t=t_k}^{t=t_{k+1}}, \]

writing

\[(t - x)(1 + \sqrt{1 - x^2} \sqrt{1 - t^2} + xt) = (\sqrt{1 - x^2} + \sqrt{1 - t^2})(t\sqrt{1 - x^2} - x\sqrt{1 - t^2}), \]

we obtain

\[J(k, x) = \frac{1}{1 - x^2} \ln \left| \frac{t\sqrt{1 - x^2} - x\sqrt{1 - t^2}}{(\sqrt{1 - x^2} + \sqrt{1 - t^2})^2} \right|_{t=t_k}^{t=t_{k+1}} = \frac{1}{1 - x^2} \ln \frac{G_{k+1}}{G_k(x)}. \tag{10} \]

Next, having the following relation

\[J_1(k, x) = xJ(k, x) + \pi h_k g_k. \tag{11} \]

Eq. (9) can be rewritten as

\[J(S_N, x) = \frac{\sqrt{1 - x^2}}{\pi} \left\{ \frac{1}{h_0} \left[t_1 J(0, x) - J_1(0, x) \right] f(-1) + \frac{1}{h_{N-1}} \left[J_1(N - 1, x) - t_{k-1} J_1(N - 1, x) \right] f(1) + \sum_{k=1}^{N-1} \left[\frac{1}{h_k} \left(t_{k+1} J(k, x) - J_1(k - 1, x) \right) + \frac{1}{h_{k-1}} \left(J_1(k - 1, x) - t_{k-1} J(k - 1, x) \right) \right] f(t_k) \right\} \tag{12} \]

Substituting (10) and (11) into (12) and simplifying the expressions, we arrive at (5) for finding the coefficients \(A_k(x) \) of the QFs (3). Furthermore, we can derive the Eq. (6) from (12) and (10)-(11) as follows

\[A_k(t_k) = \frac{\sqrt{1 - x^2}}{\pi} \left\{ \frac{1}{h_k} \left(t_{k+1} J(k, t_{k+1}) - J_1(k, t_k) \right) + \frac{1}{h_{k-1}} \left(J_1(k - 1, t_k) - t_{k-1} J(k - 1, t_k) \right) \right\} = \frac{\sqrt{1 - x^2}}{\pi} \left[J(k, t_k) - J(k - 1, t_k) - \pi (g_k - g_{k-1}) \right] = \frac{1}{\pi} \ln \frac{G_{k+1}(t_k)}{G_{k-1}(t_k)} - \sqrt{1 - t_k^2} (g_k - g_{k-1}), \ k = 1, ..., N - 1. \tag{13} \]
In order to derive the coefficients B_k of the QFs (4) we use the combination of the integrals

$$J^*(k, z) = \int_{t_k}^{t_{k+1}} \frac{dt}{\sqrt{1 - t^2}(t - z)}, \quad J_1^*(k, z) = \int_{t_k}^{t_{k+1}} \frac{t \, dt}{\sqrt{1 - t^2}(t - z)}. \quad (14)$$

First $J^*(k, z)$ is computed at $z = x$, where x is any number such that $|x| > 1$. Then continuing analytical function $J^*(k, x)$ along the intervals $(-\infty, -1), (1, \infty)$ on the plane of complex variable z with cut along the interval $[-1, 1]$, we obtain

$$J^*(k, z) = \frac{1}{\sqrt{z^2 - 1}} \arcsin \frac{zt - 1}{z - t} \bigg|_{t=t_{k+1}}^{t=t_k} = \frac{\pi h_k}{\sqrt{z^2 - 1}} F_k(z). \quad (15)$$

For J_1^*

$$J_1^*(k, z) = z J^*(k, z) + g_k \pi h_k. \quad (16)$$

Replacing x into z in (12) and using (14)-(16), we obtain the coefficients B_k of the QFs (4).

3 Estimation of errors

Let us introduce the following classes of functions:

1. $H^\alpha([-1, 1], K)$ is a class function satisfying Holder condition on the interval with the index α and constant K.
2. $C_m^\alpha[-1, 1] = \left\{ f(t) : f^{(m)} \in H^\alpha([-1, 1], K_m) \right\}$
3. $CC_{\triangle}^\alpha[-1, 1] = \left\{ f(t) : f(t) \in C[-1, 1] \text{ and } f(t) \in C^\alpha[t_k, t_{k+1}] \right\}$.
4. $W^r[-1, 1] = \left\{ f(t) : f^{(r-1)}(t) \text{ is absolutely continuous and } ess \sup_{|t| \leq 1} |f^{(r)}| = M_r \right\}.$
5. $CW_{\triangle}^2[-1, 1] = \left\{ f(t) : f(t) \in C[-1, 1] \text{ and } f(t) \in W^r[t_k, t_{k+1}] \right\}$.

Everywhere we use the notation $\|f\|_C = \|f(t)\|_{C[-1, 1]}$ as a norm of the function. Note that $M_r = \|f^{(r)}\|_C$ for any $f(t) \in C^r[-1, 1]$.

Now we prove the following theorems with respect to QFs (3) and (4).

Theorem 1 Let $f(t)$ be a function belonging to one of the classes of functions $W^1[-1, 1], CC^1_\triangle$ or $CW^2_\triangle[-1, 1]$. Then for the errors of QFs (3) the estimations

$$\|R_N(f, x)\|_C \leq L \frac{L \ln N}{N^\beta},$$

are true for all $x \in (-1, 1)$, where L and β are given in the Table 1.
Table 1: For QFs (3)

Classes of functions	β	L
$W^1[-1,1]$	1	$\frac{4\gamma M_1}{\pi} \left(1 + \frac{\pi \sqrt{2}}{2\gamma \ln N}\right)$
$CC_{\Delta}^{1,\alpha}[-1,1]$	$1 + \alpha$	$\frac{2\gamma^{1+\alpha} K_1}{\pi} \left(1 + \frac{\pi \sqrt{2}}{2\gamma \ln N}\right)$
$CW^2_{\Delta}[-1,1]$	2	$\frac{\gamma^2 M_2}{\pi} \left(1 + \frac{\pi \sqrt{2}}{\gamma \ln N}\right)$

Remark 1: In the case of uniform grids, $\gamma = 2$.

Theorem 2 Let $f(t)$ satisfy the conditions of Theorem 1. Then the errors of QFs (4) are

$$\max_z |R^*_N(f,z)| \leq L \frac{L\ln N}{N^\beta}, \quad L^* = \sqrt{L^2 + \left(\frac{L_1^*}{\ln N}\right)^2}$$

where L, L_1 and β are given in the Table 2.

Next theorem is again related to QFs (3) but in different classes of functions:

Theorem 3 Let $f(t)$ be a function belonging to one of the classes of functions

$$H^\alpha([-1,1], K), \ W^1[-1,1], \ CC_{\Delta}^{1,\alpha} \ or \ CW^2_{\Delta}[-1,1].$$

Then the error terms of QFs (3) satisfy the following estimations

$$||R_N(f,x)||_C \leq L_2 \frac{\ln N}{N^\beta},$$

for all $x \in (-1,1)$, where L_2 and β are given in the Table 3.

Remark 2: Note that the main terms of L_2 in the Theorem 3 for the last three classes of functions is twice less than the main terms of L in the Theorem 1.
In estimation of the error of QFs (3) we use the idea of [4] (see also [3]) and the following Lemmas.

Lemma 1 Let $S_N(t)$ be linear spline (8) interpolating $f(t)$ on the grid Δ, and let $t \in [t_k, t_{k+1}]$. Then for the estimate of error $r_N(f, t) = S_N(t) - f(t)$, we obtain

$$||r_N(f, t)||_C = r_N^*(h_k),$$

where $r_N^*(h_k)$ is defined by the Table (4)

Classes of functions	L_2
$H^\alpha([-1, 1], K)$	α
\frac{2^{2-\alpha} \gamma^\alpha K}{\pi} \left(1 + \left(2 + \frac{1}{\alpha}\right) \frac{2^{2-2\alpha}}{\gamma^\alpha \ln N}\right)\]	
$W^1[-1, 1]$	1
\frac{2\gamma M_1}{\pi} \left(1 + \frac{12\pi}{\gamma \ln N}\right)\]	
$CC^1,\alpha[-1, 1]$	$1 + \alpha$
\frac{\gamma^{1+\alpha} K_1}{\pi} \left(1 + \frac{12\pi}{\gamma \ln N}\right)\]	
$CW^2_\Delta[-1, 1]$	2
\frac{\gamma^2 M_2}{2\pi} \left(1 + \frac{\pi \sqrt{24\pi}}{\gamma \ln N}\right)\]

Lemma 1 is proved as Theorem 2.1 which is shown in [4].

Lemma 2 Let $S_N(t)$ be linear spline defined by (8). Then

$$r_N(f, t) \in H^1([-1, 1], \tilde{K}),$$

where \tilde{K} is given in Table (5).

Classes of functions	L_2
$H^\alpha([-1, 1], K)$	$\frac{1}{2\alpha} K h_k^\alpha$
$W^1[-1, 1]$	$\frac{1}{2} h_k$
$CC^1,\alpha[-1, 1]$	$\frac{1}{4} K_1 h_k^{1+\alpha}$
$CW^2_\Delta[-1, 1]$	$\frac{1}{8} h_k^2$
Table 5: Error of the linear spline (8)

Classes of functions	K
$W^1[-1,1]$	$2M_1$
$CC^1_{\alpha}[-1,1]$	$K_1 h_k^\alpha$
$CW^2_{\alpha}[-1,1]$	$M_2 h_k$

Proof of the Lemma 2. Consider three cases:

(a) $t, t' \in [t_k, t_{k+1}]$,
(b) $|t - t'| \geq h_k$
(c) $\tau \in [t_{k-1}, t_k]$, $t' \in [t_k, t_{k+1}]$, $|t - t'| \leq h_k$

I. Let $f(t) \in W^1[-1,1]$. Then in the case (a), using representation (8) we have

$$|r_N(f; t) - r_N(f; t')| = \frac{1}{h_k} \left| (t - t')[f(t_{k+1}) - f(t_k)] - h_k[f(t) - f(t')] \right|$$

$$= \frac{1}{h_k} \left| (t - t') \int_{t_k}^{t_{k+1}} f'(s) ds - h_k \int_{t'}^{t} f'(s) ds \right| \leq 2M_1 |t - t'|.$$

In the case (b), in accordance with Lemma 1, we get

$$|r_N(f; t) - r_N(f; t')| \leq |r_N(f; t)| + |r_N(f; t')| \leq h_k M_1 \leq M_1 |t - t'|.$$

Using the case (a), in the case (c) we obtain

$$|r_N(f; t) - r_N(f; t')| \leq |r_N(f; t) - r_N(f; t_k)| + |r_N(f; t_k) - r_N(f; t')|$$

$$\leq 2M_1 |t_k - t| + 2M_1 |t - t'| = 2M_1 |t - t'|.$$

II. Now let $f(t) \in CC^1_{\alpha}[-1,1]$. In the case (a)

$$|r_N(f; t) - r_N(f; t')| \leq \frac{1}{h_k} \left| (t - t')[f(t_{k+1}) - f(t_k)] - h_k[f(t) - f(t')] \right|$$

$$= \frac{1}{h_k} \left| (t - t')(t_{k+1} - t_k)f'(\theta_1) - h_k(t - t')f'(\theta_2) \right|$$

$$= \left| (t - t') \right| \left| f'(\theta_1) - f'(\theta_2) \right| \leq K_1 |t - t'| |\theta_1 - \theta_2|^\alpha$$

$$\leq K_1 h_k^\alpha |t - t'|.$$

In the case (b), due to Lemma 1, we have

$$|r_N(f; t) - r_N(f; t')| \leq K_1 h_k^\alpha |t - t'|.$$
It is obvious in the case (c) that
\[|r_N(f; t) - r_N(f; t')| \leq K_1 h_k |t - t'|. \]

III. Let \(f(t) \in CW_2^\Delta [-1, 1] \). In case (a), we have
\[|r_N(f; t) - r_N(f; t')| = |t - t'| |f'(\theta_1) - f(\theta_2)| \]
\[= |t - t'| \left| \int_{\theta_1}^{\theta_2} f''(s) ds \right| \leq M_2 h_k |t - t'|. \]

The cases (b) and (c) are proved in a similar way as the case (a). So that the proof of the Lemma 2 follows from the above obtained errors.

Now it is easy to prove the following lemma.

Lemma 3 Let \(S_N(t) \) be linear spline defined by (8) and \(f(t) \in H^\alpha([-1, 1], K) \). Then
\[r_N(f; t) \in H^\alpha([-1, 1], 2^{2-\alpha} K). \]

Prove of the Theorem 1. Since
\[\int_{-1}^{1} \frac{dt}{\sqrt{1 - x^2(t - x)}} = 0, \]
the reminder term of QFs (3) can be represented as
\[R_N(f, x) = \frac{\sqrt{1 - x^2}}{\pi} \int_{-1}^{1} \frac{r_N(f, t) - r_N(f, x)}{\sqrt{1 - x^2(t - x)}} dt. \quad (17) \]

For definiteness, let us prove the Theorem 1 in case \(0 \leq x \leq 1 \) (the case \(-1 \leq x \leq 0 \) is considered analogically). Fixing the number \(0 < \delta_N < \frac{1}{2} \) and dividing the integral in (17) into three parts to yield
\[R_N(f, x) = \frac{\sqrt{1 - x^2}}{\pi} \left(\int_{-1}^{x-\delta_N} + \int_{x+\delta_N}^{x+\delta_N} + \int_{x+\delta_N}^{1} \right) \frac{r_N(f, t) - r_N(f, x)}{\sqrt{1 - x^2(t - x)}} dt \]
\[= \frac{\sqrt{1 - x^2}}{\pi} \left(J_1 + J_2 + J_3 \right). \quad (18) \]
First assume that \(\delta_N < 1 - x \). Then due to (10), for \(J_1 \) we have

\[
|J_1| = 2||r_N(f, x)||_C \left| \int_{x - \delta_N}^{x} \frac{dt}{\sqrt{1 - x^2(t - x)}} \right|
\]

\[
= \frac{2}{\sqrt{1 - x^2}} ||r_N(f, x)||_C \ln \left| \frac{t\sqrt{1 - x^2} - x\sqrt{1 - t^2}}{\sqrt{1 - x^2} + \sqrt{1 - t^2}} \right|_{t = x - \delta_N}.
\]

It is not hard to show that

\[
\varphi_1(x, \delta_N) = \frac{t\sqrt{1 - x^2} - x\sqrt{1 - t^2}}{\sqrt{1 - x^2} + \sqrt{1 - t^2}} \bigg|_{t = x - \delta_N}
\]

\[
= x + \frac{1}{\delta_N} \left(1 - x^2 - \sqrt{1 - x^2} \sqrt{1 - (x - \delta_N)^2} \right).
\]

This is a function of \(x \) which strictly decreases on \([0, \frac{\delta_N}{2}]\) and strictly increases on \([\frac{\delta_N}{2}, 1]\), and

\[
\varphi_1(0, \delta_N) = \frac{\delta_N}{1 + \sqrt{1 - \delta_N^2}}, \quad \varphi_1(\delta_N/2, \delta_N) = \frac{\delta_N}{2}, \quad \varphi_1(1, \delta_N) = 1.
\]

Hence,

\[
|J_1| \leq \frac{2}{\sqrt{1 - x^2}} ||r_N(f, x)||_C \ln \frac{2}{\delta_N}.
\] \(\text{(19)} \)

For \(J_2 \), we use Lemma 2

\[
|J_2| \leq \tilde{K} \int_{x - \delta_N}^{x + \delta_N} \frac{dt}{\sqrt{1 - t^2}} = \tilde{K} [\arcsin(x + \delta_N) - \arcsin(x - \delta_N)].
\]

Let

\[
\varphi_2(x, \delta_N) = \arcsin(x + \delta_N) - \arcsin(x - \delta_N).
\]

Since \(0 \leq x \leq 1 - \delta_N \) and by assumption \(\delta_N \leq 1 - x \), derivative of \(\varphi_2(x, \delta_N) \) is positive and

\[
\varphi_2(x, \delta_N) \leq \varphi_2(1 - \delta_N, \delta_N) = \arcsin 2\sqrt{\delta_N(1 - \delta_N)}.
\]

From this and the known inequality \(\arcsin \alpha \leq \frac{\pi}{2} \alpha, (0 \leq \alpha \leq \frac{\pi}{2}) \) it follows that

\[
\varphi_2(x, \delta_N) \leq \pi \sqrt{\delta_N}.
\]

Hence

\[
|J_2| \leq \tilde{K} \pi \sqrt{\delta_N}.
\] \(\text{(20)} \)
For J_3, we have

$$|J_3| = 2||r_N(f, x)||_C \left| \int_{x+\delta_N}^1 \frac{dt}{\sqrt{1-x^2}(t-x)} \right|$$

$$= \frac{2}{\sqrt{1-x^2}}||r_N(f, x)||_C \left| -\ln \frac{t\sqrt{1-x^2} - x\sqrt{1-t^2}}{\sqrt{1-x^2} + \sqrt{1-t^2}} \right|_{t=x+\delta_N}.$$

We may show that the function

$$\varphi_3(x, \delta_N) = \frac{t\sqrt{1-x^2} - x\sqrt{1-t^2}}{\sqrt{1-x^2} + \sqrt{1-t^2}} \bigg|_{t=x+\delta_N} = -\varphi_1(x, -\delta_N),$$

strictly increases on $[0, 1-\delta_N]$ and strictly decreases from $\frac{\delta_N}{1+\sqrt{1-\delta_N}}$ to 1. So that

$$|J_3| \leq \frac{2}{\sqrt{1-x^2}}||r_N(f, x)||_C \ln \frac{2}{\delta_N}. \quad (21)$$

It follows from the errors of (19)–(21) and (24) that

$$||R_N(f, x)||_C \leq \frac{4}{\pi}||r_N(f, x)||_C \ln \frac{2}{\delta_N} + \tilde{K} \sqrt{\delta_N}. \quad (22)$$

Now consider the case $\delta_N > 1-x$. Write

$$R_N(f, x) = \frac{\sqrt{1-x^2}}{\pi} \left(\int_{x-\delta_N}^{x+\delta_N} + \int_{-1}^{x-\delta_N} \right) \frac{r_N(f, t) - r_N(f, x)}{\sqrt{1-x^2}(t-x)} dt$$

$$= \frac{\sqrt{1-x^2}}{\pi} (J_1^* + J_2^*) \quad (23)$$

Integral J_1^* is estimated as J_1. Due to Lemma 2

$$|J_2^*| \leq \tilde{K} \int_{x-\delta_N}^{1} \frac{dt}{\sqrt{1-t^2}} = \tilde{K} \arcsin \sqrt{1-(x-\delta_N)^2}.$$

Since $0 < x \leq 1$, $\delta_N > 1-x$ and due to the inequality

$$1 - (x-\delta_N)^2 = (1-x+\delta_N)(1+x-\delta_N) < 4\delta_N.$$

we obtain

$$|J_2^*| \leq \tilde{K} \arcsin 2\sqrt{\delta_N} \leq \tilde{K} \pi \sqrt{\delta_N}.$$

Substituting the errors of J_1^* and J_2^* into (23), we arrive at estimation (22).

In order to determine the errors of estimation for every classes of functions in Theorem 1, we use the results of Lemma 1 and 2 and set $\delta_N = \frac{2}{N^2}$. Viz:
I. Let \(f(t) \in W^1[-1, 1] \). Then
\[
||R_N(f, x)||_C \leq \frac{2}{\pi} M_1 h \ln \frac{2}{\delta_N} + 2M_1 \sqrt{\delta_N} \\
= \frac{4M_1 \gamma}{\pi} \left(1 + \frac{\pi \sqrt{2}}{2\gamma \ln N} \right) \ln N.
\]

II. If \(f(t) \in CC^{1, \alpha} \triangle [-1, 1] \), then
\[
||R_N(f, x)||_C \leq \frac{K_1}{\pi} h^{1+\alpha} \ln \frac{2}{\delta_N} + 2K_1 h^\alpha \sqrt{\delta_N} \\
= \frac{2K_1 \gamma^{1+\alpha}}{\pi} \left(1 + \frac{\pi \sqrt{2}}{2\gamma \ln N} \right) \ln N \frac{1}{N^{1+\alpha}}.
\]

III. If \(f(t) \in CW^2 \triangle [-1, 1] \), then
\[
||R_N(f, x)||_C \leq \frac{M_2 \gamma^2}{2\pi N^2} \ln \frac{2}{\delta_N} + \frac{2M_2 \gamma}{N} \sqrt{\delta_N} \\
= \frac{M_2 \gamma^2}{\pi} \left(1 + \frac{\pi \sqrt{2}}{\gamma \ln N} \right) \ln N \frac{1}{N^2}.
\]

Theorem 1 is proved.

Proof of the Theorem 2 is carried out by the famous scheme of the formula Sokhotskii-Plemenger (see [5]), principle maximum module for analytical function and results of Theorem 1 and Lemma 1.

Proof of the Theorem 3. Let the remainder term of QFs (3) be divided into three parts
\[
R_N(f, x) = \frac{\sqrt{1-x^2}}{\pi} \left(\int_{-1}^{x-\delta_N} + \int_{x+\delta_N}^{x} + \int_{x}^{1} \right) \frac{r_N(f, t) - r_N(f, x)}{\sqrt{1-x^2}(t-x)} dt \\
= \frac{\sqrt{1-x^2}}{\pi} \left(\tilde{J}_1 + \tilde{J}_2 + \tilde{J}_3 \right). \tag{24}
\]

In the proof of Theorem 1, we have already seen that the case \(\delta_N < 1-x \), is adequate for the estimations of \(\tilde{J}_1 \) and \(\tilde{J}_3 \) i.e.
\[
|\tilde{J}_1| + |\tilde{J}_3| \leq \frac{4}{\pi} \sqrt{1-x^2} ||r_N(f, x)||_C \ln \frac{2}{\delta_N}. \tag{25}
\]

For the estimation of \(\tilde{J}_2 \), we consider the function
\[
T(x, \varepsilon, \sigma) = \sqrt{1-x^2} \int_{x-\varepsilon}^{x+\varepsilon} \frac{|t-x|^\alpha-1}{\sqrt{1-t^2}} dt, \tag{26}
\]
where \(0 < \sigma \leq 1\), \(1 - x \geq \varepsilon\), \(0 < \varepsilon < \frac{1}{2}\).

It is obvious that

\[
T(x, \varepsilon, \sigma) \leq 2\varepsilon^\sigma \int_0^1 \frac{\sqrt{1-x^2y^{\sigma-1}}}{\sqrt{1-(x+\varepsilon y)^2}} dy
\]

\[
= 2\varepsilon^\sigma \left[\int_0^{1/2} \frac{\sqrt{1-x^2y^{\sigma-1}}}{\sqrt{1-(x+\varepsilon y)^2}} dy + \int_{1/2}^1 \frac{\sqrt{1-x^2y^{\sigma-1}}}{\sqrt{1-(x+\varepsilon y)^2}} dy \right]
\]

\[
= 2\varepsilon^\sigma [T_1(x, \varepsilon, \sigma) + T_2(x, \varepsilon, \sigma)].
\] (27)

Let \(k_0 = [1/\varepsilon]\), since \(1 - x \geq \varepsilon\), then for some \(k, 1 \leq k \leq k_0\) the inequality

\[k\varepsilon \leq 1 - x < (k + 1)\varepsilon,
\]

takes place. From this and \(0 < y \leq \frac{1}{2}\) it follows that

\[
\frac{1 - x^2}{1 - (x + \varepsilon y)^2} = \frac{(1-x)(1+x)}{(1-x-\varepsilon y)(1+x+\varepsilon y)} \leq \frac{1-x}{1-x-\varepsilon/2} \leq \frac{k+1}{k-1/2} \leq 4,
\]

for all \(k \geq 1\). Hence

\[
T_1(x, \varepsilon, \sigma) = 2 \int_0^{1/2} y^{\sigma-1} dy = \frac{2^{1-\sigma}}{\sigma}.
\] (28)

Furthermore

\[
T_2(x, \varepsilon, \sigma) = \frac{1}{2^{\sigma-1}} \int_{1/2}^1 \frac{\sqrt{1-x^2}}{\sqrt{1-(x+\varepsilon y)}} dy.
\]

Let \(\varepsilon \leq 1 - x < 2\varepsilon\). Then

\[
\frac{1 - x^2}{1 - (x + \varepsilon y)^2} \leq \frac{1-x}{1-x-\varepsilon/2} \leq \frac{2}{1-y},
\]

and therefore

\[
T_2(x, \varepsilon, \sigma) = 2^{1-\sigma} \sqrt{2} \int_{1/2}^1 (1-y)^{1/2} dy = 2^{2-\sigma}.
\] (29)

If for some \(k \leq 2\) the inequality

\[k\varepsilon \leq 1 - x \leq (k + 1)\varepsilon
\]
takes place, then
\[
\frac{1 - x^2}{1 - (x + \varepsilon y)^2} \leq \frac{1 - x}{1 - x - \varepsilon y} \leq \frac{k + 1}{k - 1} \leq 3,
\]
therefore
\[
T_2(x, \varepsilon, \sigma) \leq 2^{1-\sigma} \sqrt{3} \cdot \frac{1}{2} < 2^{2-\sigma}.
\]
(30)

From (27)-(30) it follows that
\[T(x, \varepsilon, \sigma) \leq 2^{1-\sigma} \left(2 + \frac{1}{\sigma} \right) \varepsilon^\sigma. \]
(31)

Now for \(\tilde{J}_2 \) we have
\[
\tilde{J}_2 \leq \frac{K}{\pi} \sqrt{1 - x^2} \int_{x-\delta_N}^{x+\delta_N} \frac{|t - x|^{\sigma-1}}{\sqrt{1 - t^2}} = \frac{K}{\pi} T(x, \varepsilon, \sigma),
\]
(32)

where \(\sigma = \alpha \) for the class \(H^\alpha([-1, 1], K) \) and \(\sigma = 1 \) for rest classes of functions. Assuming \(\sigma = \frac{2}{N} \) and from the Lemmas 2, 3 and inequalities (25) and (31)-(32) we get the assertion of the Theorem 3.

References

[1] S. Belotserkovskii, I. Lifanov (1985) Numerical methods in singular integral equations. Moscow: Nauka, 254 p. (in Russian).

[2] Gabdulkhaev B.G. Finite-dimentional approximation of singular integrals and direct methods for special integrals and integra-differential equations. Mathematical analysis. Resume science and technology. VINITI AN SSSR, V.18, pp. 251-307.

[3] Gabdulkhaev B.G. Optimal approximation for the solution of linear problems. Kazan: Kazan University press, 1980. 231 p.

[4] Makavoz Yu. I., Sheshko M.A. On a error of estimation of quadrature formulas for singular integrals. Isv. AN SSSR. Ser. Phiz-Math. Nauk. 1977. V.6, pp. 36-41.

[5] Muskhelishvili N.I. (1953) Singular Integral equations. Gostekhizda (1946). M: Fizmatgiz, 1962. 512p.

[6] Pikhtiev G.H. Accurate methods for evaluation of Cauchy type singular integrals. Novosibirsk: Science, 1980.

[7] U.S.Zavyalov, B.I.Kvasov, B.I.Miroshnichenko. Methods of spline functions, Nauka,Moskov,1980