Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review

Elisabeth Prause¹*, Martin Rosentritt², Florian Beuer¹, and Jeremias Hey¹

¹Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, University Charité Berlin, Berlin, Germany
²Department of Prosthetic Dentistry, UKR University Hospital Regensburg, Regensburg, Germany

*Corresponding author: Elisabeth Prause, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, University Charité Berlin, Berlin, Germany, Tel: +49 (0) 30 450 662 557; E-mail: elisabeth.prause@charite.de

Received: 21 Jul, 2021 | Accepted: 20 Aug, 2021 | Published: 27 Aug, 2021

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378

Copyright: © 2021 Prause E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: The present review presents the scientific state of the art in the field of cementation of crowns on implants. Because semipermanent cements have been specifically developed for the cementation of crowns on implants, the question arises whether this cement group offers an advantage compared to other available and widely used cements in everyday clinical practice. Various factors play a role in the retention strength of superstructures on implants and should therefore be taken into account in this review.

Materials and methods: A thorough search of the literature, mainly PubMed as well as a manual search, was conducted between 2005 and 2020 to screen relevant articles for data regarding retention forces of different cements used on single crowns and implants by three independent investigators. 37 studies were included in this review because they met the inclusion criteria (prospective and an in vitro study design about implant-supported single crowns; English language; all-ceramic or metal-ceramic superstructures on titanium or zirconia implants) and did not relate to the exclusion criteria (fixed dental prostheses, articles describing other studies; reviews and clinical studies; screw-retained single crowns; neglecting the focus on the retention force after cementation).

Results: In recent years, a high number of various cements for use on implants have been scientifically investigated. A wide range of retention values have been published for each cement type. Furthermore, various influencing factors exist regarding retention of semipermanent cements. Significant correlations have been demonstrated between retention force and cement type, crown pretreatment, taper, abutment surface, internal surface cleaning, cement gap, and the presence of grooves on the abutment (Pearson’s bivariate correlation; P<0.01 and P<0.05). Artificial ageing, such as a chewing simulation, have been neglected so far in the majority of studies. Thermocycling mostly reduced retentive strength.

Conclusion: This review revealed that there are several influencing factors on the retention of crowns which were temporary cemented on implants abutments. It could be shown that there are significant correlations between retentive strength and different parameters. Due to the inconsistent data situation caused by noncomparable study methodologies, the question of the whether semipermanent cements is superior to the conventional definitive or conventional provisional cements available cannot yet be answered.

Keywords: Implantology; Cementation; Semipermanent; Single crowns; Retention

Abbreviations: N: Newton; CAD/CAM: Computer Aided-Design/ Computer Aided-Manufacturing

Background

Implant-supported crowns can be retained by screws or cement. The advantage of screw fixation primarily affects the peri-implant tissue [1]. A further advantage is the option of accessing the screw channel to loosen or reattach the implant-supported restoration easily [2-5].

Technical complications, including loosening or fracture of the abutment screw, occurred significantly more often with screw-retained single crowns than they did with cement-retained single crowns [6]. Although cemented crowns on implants have a lower rate of technical complications compared to screw-retained crowns, they are often only temporarily cemented.

The advantage of cementation is that it is independent of the axial alignment of the implants. Esthetic limitations caused by the visible access are eliminated with cementation [7]. Finally yet importantly, the clinical procedure of cementation is firmly anchored in the everyday practice of dentists. The procedure can be carried out routinely [3,8].

With regard to cementation of the superstructure on implants, a distinction is made between temporary and permanent cements. The bond strength values differ significantly between the bond to
implant abutments and natural teeth. In particular, zinc phosphate, zinc polycarboxylate and glass ionomer cements showed a wide range between retention values [9-12]. Nevertheless, these cements, including self-adhesive resin cements, are used for permanent cementation of single-tooth crowns on implants [13]. They also serve as comparative values in scientific studies regarding retention values [4,10,13,14]. However, provisional cements, such as zinc oxide or eugenol cements, have been recommended for cementation in other studies because of the possibility of retrievability [4,13,15,16] and to avoid non-destructive removal of the crown in case of screw loosening. Different studies have described and recommended this treatment option [17-19]. A disadvantage is that temporary cements have poor physical properties. These include high solubility and low tensile strength [4,13,16].

Previous studies have recommended that definitive cements should be used for the cementation of single-tooth restorations and provisional cements for the cementation of multi-unit restorations [9,20,21], as larger restorations may be more likely to require retrievability. Definitive resin cements are the cement of choice for definitive cementation of single-tooth restorations [9,22,23]. In general, there is a disagreement as to whether temporary or definitive cements should be used for superstructures on implants [17,18,20,24].

Furthermore the industry offers special cements (i.e., semipermanent cements) for the use on implants. They have become popular in recent years because they combine the advantages of reversibility and increased retentive strength [25].

Because implant abutments are not susceptible to caries, it appears that in addition to the classical properties of cements, such as high biocompatibility, low solubility, easy manipulation, and a sufficiently long working time [26,27], the primary focus is on the required retention. It should be high enough to prevent spontaneous loosening of the crown. Furthermore, semipermanent cements should have the property whereby the restoration can be detached from the tooth or abutment without destruction.

Currently, no official classification exists for provisional, semipermanent, and definitive cements regarding retention values.

It is known that there are various factors influencing successful cementation and adequate retention. A cement gap of 20-40 µm is considered ideal [13,28-31]. This should allow the outflow of excess cement and consequently guarantee adequate seating forces of the restoration [13]. Other influencing factors such as the abutment surface size, the taper, the geometry of the abutment or the pretreatment of the internal surface of the crown have already been investigated in previous studies and identified as factors influencing retention [18,32-34].

To test the hypothesis that different factors have an influence on retention of temporary cementation of crowns on implant abutments and semipermanent cements do not have relevant advantages compared to conventional definitive cements and conventional temporary cements, a thorough search of the literature was conducted to summarize the data gained so far about cementation on implants.

Materials and Methods

For this review, a thorough search of the literature was done. The primary database used was PubMed. Additionally, the search was supported by a manual search to check references of relevant studies to find more useful publications. Inclusion, exclusion, and eligibility criteria were calculated to develop a specific search strategy (Tables 1-5). The time range of 2005 to 2020 was chosen for selecting the

Table 1: Inclusion criteria.

Study Design	Prospective; in vitro
Language	English
Prosthetic type	Implant-supported single crowns
Material (superstructure)	All-ceramic, metal-ceramic
Material (implant + abutment)	Titanium, zirconia
Year of publication	2005-2020

Table 2: Eligibility criteria.

Eligibility criteria

Any kind of root-form implant with a single crown as the superstructure cemented with different types of cements (definitive, semipermanent, and temporary) to compare retention values after pull-off tests. There were no restrictions regarding the type of implant.

Table 3: Exclusion criteria.

Exclusion criteria

- Fixed dental prostheses
- Articles describing other studies
- Reviews and clinical studies
- Screw-retained single crowns
- Focus not on retention force after cementation

Table 4: Overview of the average retention forces for different kinds of cementation.

Cementation	Retention (N) (after water storage)	References	Duration
Temporary	7-100	Botega 2004 [35]	Weeks
		Lehmann 1976 [36]	
		Breeding 1992 [17]	
Semipermanent	50-200	Covey 2000 [37]	Medium to long term
		Di Felice 2007 [38]	
		Dudley 2008 [23]	
		Kaar 2006 [39]	
Definitive	Polymeric cements: 307 ± 96	Mehl 2013 [3]	Long term
	Resin-based cements: 480 ± 48		

Table 5: Percentage changes of the decementation load related to abutment height for different cement classes.

Cement	Changes of the decementation load (%)	
	4.0 mm	5.5 mm
Zinc oxide, eugenol-free	-45	-90
Zinc phosphate	-4	+92
Glass ionomer	+23	+33
Resin based, self-adhesive	+35	+16
Methacrylate based	-80%	-68%
studies (Table 1). The following article types were chosen: journal article, case report, classical article, clinical study, and clinical trial protocol. Regarding the search strategy, a combination of medical subject heading terms and free text words was applied. Various keywords were used to find relevant articles appropriate for answering the hypothesis (“dental AND implant AND crown AND cementation AND retention” and other combinations).

The retention forces found in the studies and the factors influencing them were summarized in Table 6. The correlation between relevant factors and the retention force was determined using Pearson’s correlation test (IBM SPSS Statistics for Windows, version 27.0, Armonk, NY, USA, 2020) (Table 7).

Results
Study selection

The results of the literature search were 329 hits for the Medline search for the period between 01/01/2005 and 12/01/2020 (last search date: 12/22/2020). For these initially identified papers, 60 articles were excluded because they did not meet the inclusion criteria (Tables 1,3). Two hundred and sixty-nine were screened regarding the titles and abstracts. A further 212 articles were excluded because of the mentioned inclusion and exclusion criteria (Tables 1,3). From checking references, 2 additional articles were found that met the criteria. As a result, 57 articles were evaluated by full-text analysis. In the end, 37 articles were used as data for the analysis in this review (Figure 1, Table 7).

Comparison of retentive strength for different types of cement

The literature search revealed the following retention values for temporary, semipermanent and definitive cements: For temporary cements, it is important to know the range in which the retention force may be in order to be able to remove the restoration undamaged. At the same time, the retention must be appropriately high to prevent loosening of the crown in everyday use [15,17]. For temporary cementation retention values between 7-100 Newton (N) are considered appropriate (Table 4) [3,35,36]. The minimum value of 7 N results from the retention values for partial dentures that generate sufficient denture retention in the range of 3.5-7 N [35,36]. The maximum value of 100 N is based on investigations by Mehl C, et al., [3]. Therefore, the number of strokes needed to loosen a cemented implant crown from an abutment was measured [3]. A static force of about 21 ± 5.6 N per blow and 10 attempts on average were needed for a dentist to loosen the crown. The upper limit was set to 100 N, which corresponds to approximately 5 blows [3].

For semipermanent cementation, retention values between 50 and 200 N were measured (Table 4) [17,23,37-39]. In this area, sufficient retention of the crown on the abutment should be ensured. Alternatively, damage-free removal of the crown should be possible if required. Therefore, resin cements with low solubility have been developed in recent years. However, only limited data are available regarding retention values of these newly developed resin cements.
created especially for semipermanent cementation of superstructures on implant abutments [13,15,40].

As representatives of the definitive cements, glass ionomer cements, polycarboxylate cements, and resin-based cements were used and tested in most studies [4]. After 3 days of water storage and a pull-off test, the following retention values were obtained for the cements mentioned for a 50 µm cement gap: glass ionomer cements 144 ± 53 N; polycarboxylate cements 307 ± 96 N; and resin-based cements 480 ± 48 N (Table 4) [4].

Parameters influencing retention forces

Cement film thickness: The included studies that examined the cement film thickness showed that for the glass ionomer cement, retention was reduced by 28% between the 0.158** mm thickness and the 0.031** mm thickness significantly [41]. The resin-based cement showed homogeneous values for all 3 cements' gap thicknesses [3].

Furthermore great differences existed between the retentive strength before and after thermocycling for the tested temporary cements [41]. Retention values were significantly lower after thermocycling and it also influenced the cement film thickness significantly [41].

Artificial ageing (thermocycling) showed in the majority of the studies that retention decreased afterwards [9,14,24,40-56]. Studies that carried out measurements before and after thermocycling published reduced retentive strengths of about 68% for noneugenol acrylic/urethane resin-based temporary cement, 88% for zinc oxide noneugenol cement, and 94% to 98% for 3 different dual-polymerizing semipermanent resin cements [43].

Effects of compressive cyclic loading on the retention of implant-supported crowns are only available to a limited extent [40,50,51,53,57,58]. Compressive cyclic loading leads to a reduced retention of the superstructure of about 50% for glass ionomer cement, 53% for compomer cement, and 59% for resin urethane-based cements [58].

Sandblasting

The majority of included studies performed sandblasting as a pretreatment of the internal surface of the crowns. The influence of thermocycling and sandblasting on retention was found to affect both components more or less significantly, depending on the cement type [14]. Zinc oxide cements showed the highest retentive strength. Sandblasting was effective for improving the durability. For the other tested cements, the effect of sandblasting was negligible. The retentive strength of zinc oxide cements decreased significantly after thermocycling, even with sandblasting. Consequently, zinc oxide cements were not recommended for the cementation of single crowns on implants [14].

Different geometry of the abutments

With regard to 2 different abutment heights (4.0 and 5.5 mm), it was shown that a higher abutment exhibited higher retention values for all tested cements except zinc phosphate cement after water storage (Table 5).

Bivariate correlation analysis

Pearson’s correlation results revealed significant correlations between retention force and various parameters (Tables 6,7). The correlations were significant at the level of p<0.01 and p<0.05, 2-sided, respectively.

Discussion

Regarding the hypothesis that different factors have an influence on retention of temporary cementation of crowns on implant abutments, this literature review showed, that significant correlations between some factors could be proven. As a consequence, when interpreting the retention, it is important to note that it depends not only on the cement properties but also on factors such as the abutment geometry (angle, length, taper and height) and the surface size of the abutment [4]. A significant correlation between retention force and the taper could be shown. The usual taper of abutments is 6° [4]. Smaller tapers increase the retention, but make cement flow more difficult and can lead to an increase of the occlusion. Larger concavities lead to increased pull-off forces acting on the cement. Retention is therefore closely related to the preparation and decreases with increasing taper [2].

Furthermore the abutment surface size and the abutment geometry (grooves) showed significant correlations regarding retention force. In general, factors such as the abutment height, the diameter, and the surface area have a positive effect on the retention of crowns on abutments [54,59-64]. Height and surface are closely related [7]. The higher the surface and the height of the abutment are, the higher the retention is [3,18]. The effect might lose importance when adhesive resin-based cements were used [59]. Axial wall modifications also showed positive effects on retention [65]. Other surface configurations did not always show higher retention values [24]. Additional grooves also increased retention [44]. However, Carnaggio TV, et al., [59] used 3 abutments of different surface sizes (42, 60, and 82 mm²). The results were heterogeneous because the height of the different abutments was the same. Only the circumference was increased. Therefore, there is no linear relationship and a corresponding increase in the pull-off forces between the smallest and the largest abutment surface. For the 2 self-adhesive resin cements, retention values increased by 24% and 73% from the 42 to 82 mm² abutment surface. However the resin-modified glass ionomer cement showed the opposite development (-42%). Zinc oxide, noneugenol cements only exhibited increased retention values of about 37% between the smallest and the largest abutment surface sizes. The acrylic-urethane provisional cement showed the highest retentive strength at the middle-abutment surface size.

The cement gap also showed a significant correlation regarding retention. According to Mehlo C, et al., [3], the cement film thickness has an influence on retention of the superstructure even if crowns are designed with the help of Computer aided-design/Computer

Table 6: Significant correlations between retention force and various parameters as well as the P value.

Parameter	Retention in Newton (N)	P value
Cement	-0.205**	0.000
Pretreatment internal crown surface (sandblasting)	0.158**	0.000
Taper	-0.211**	0.000
Cleaning internal crown surface (alcohol)	-0.153**	0.001
Abutment surface size	-0.118	0.034
Cement gap	-0.232	0.031
Grooves on abutment	0.139**	0.002

*P< 0.05, **P< 0.01
aided-manufacturing technology (CAD/CAM) to obtain identical restorations and thus to obtain a homogeneous cement gap [3]. In addition, each specimen, consisting of a crown and abutment, should only be used once to eliminate possible sources of error [59]. Cement residues could damage the abutment surfaces during cleaning. A second cementation would falsify the results [59].

A precise statement with regard to the hypothesis regarding semipermanent cements cannot be made at this time. It can neither be confirmed nor completely rejected. The data situation is heterogeneous. A clear definition of the term semipermanent cementation does not yet exist. Based on this review, a precise definition cannot be established. The biggest problem here is the durability of the crown and various influencing factors. An unambiguous classification into definitive, semipermanent, and temporary cements is hardly possible. In general, retention values of the individual cements differed greatly in various studies. Therefore, some studies published guidelines for clinicians because no cement served for all demands [13,66]. Furthermore, the retention values were very different in the individual material classes and therefore not comparable [13]. In detail, it was found that glass ionomer cements might be suitable for semipermanent cementation [4,41,45,46,60] because retention forces should lie between 50-200 N for semipermanent cementation [17,23,37-39]. Glass ionomer cement develops its full retention over time. In most studies, pull-off tests were immediately performed 24 hours from when the cementation took place. At this time, full retention of the glass ionomer cements had probably not yet been achieved [59]. The use of temporary cements, particularly eugenol-free zinc oxide phosphate cements, led to reduced retention values, especially after thermocycling [43,54,59,67]. Consequently, they are not suitable for semipermanent cementation. If retrievability is required after a short time, they might offer a solution to ease removal of the crown [4,59,68]. Self-adhesive resin cements, zinc oxide cements, and polycarboxylate cements showed mostly higher retentive strengths regardless of the crown material compared to temporary cements [4,24,69,70]. However, retrievability is not possible without destruction of the superstructure [23,71-73].

The correlation analysis showed that certain parameters could have a relevant influence on the retention force of cements. These include cement type, pretreatment and cleaning of the internal crown surface, taper, abutment surface size, cement gap, and grooves on the abutment. However, the interrelationships span the entire spectrum of cementation options (temporary, semipermanent, and definitive).

Retention of cements is mostly measured with the help of pull-off tests that are performed with a universal testing machine. To increase the clinical relevance of in vitro studies, some studies used clinical removal devices for the pull-off tests [4,45]. However, the measured values are not comparable with the pull-off forces required intraorally. The Coronaflex device is a special tool that uses compressed air to trigger an impact pulse. This acts on the cement and destroys its structure. The retentive strength is dissolved. The superstructure can be removed and usually it is possible to reuse it. A smaller amount of space in the patient’s mouth and the fact that Coronaflex is not always straightforward to apply also makes clinical removal of the crowns more difficult, so that more force is required [4]. In vitro, a simplified removal with less force is possible because the device can be freely positioned and rotated. Schierano G, et al., [74] reported that Coronaflex is more repeatable with higher peak amplitudes of forces, which can be considered as positive.

Some studies have performed thermocycling and evaluated the retention forces of the cements tested [9,14,24,40-56]. Thermocycling has been introduced to imitate artificial ageing. Temperature changes as they occur naturally intraorally can be mimicked easily in vitro. The reduction of retention by thermocycling is caused by the regular temperature fluctuations. The thermal stress affects the bonding strength of the cements. Structural changes of the bonds lead to a breakdown of the chemical bond and thus to a failure of the retention between crown and abutment [75]. However, some authors confirmed that thermocycling did not affect retention capacity [53]. Besides, thermocycling is not sufficient for an accurate assessment of the clinical suitability of cements. Long-term mechanical loading (chewing simulation) was only performed to a limited extent [58]. Generally, compressive cyclic loading leads to a reduced retentive strength of cements. Therefore, crowns are easier to remove. Retrieval of the superstructure is achievable, regardless of the cement class [9,54,58,71].

Retentive strength depends on many different factors: the cement type, the cement gap, the cementing technique, the film thickness, the abutment geometry, the surface treatment, and the crown material [3,14,32,42,44,47,49,51,52,55,57,59,61-65,76-91]. In addition, the saliva contamination affects retentive values [48]. Furthermore, many various cements were investigated in different studies with regard to their retention values. Due to noncomparable study protocols and different methodologies, the results cannot reliably be compared.

Conclusion

The present literature review showed that retention of cemented single crowns on implants depends on a lot of different factors. Significant correlations between retentive strength and different parameters (cement type, cleaning and pretreatment of the internal crown surface, taper, abutment surface size, cement gap, grooves on the abutment) could be proven.

Semipermanent cements that have recently appeared on the market have only shown very limited data so far. From today’s point of view, it is not yet possible to say whether they have an advantage compared to conventional definitive or provisional cements. Further studies are required to determine the limitations and possibilities of semipermanent cements.

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material: All data generated can be found online (see Materials and Methods for the search strategy) at PubMed.

Competing interests: Not applicable.

Funding: Not applicable.

Authors’ contributions: Jeremias Hey initiated this review. He supervised the entire preparation of this study, gave groundbreaking ideas and supported the literature research. Martin Rosentritt prepared the statistical analysis concerning the factors influencing the retention force (Table 6) and supported the literature search. Florian Beuer performed the final proofreading of the manuscript and supported the creation of this review with helpful tips regarding structuring and outlining. Elisabeth Prause did the literature research and composed the review.

Acknowledgments: Not applicable.
Table 7: Overview of the included studies with the following information: the cement class used, the material combination between the abutment and the crown, the retention values in Newtons (N), a pretreatment of the crown (alcohol or sandblasting), the particle size of sandblasting in micrometers (µm), a conducted thermocycling or chewing simulation, the taper in degrees (°), the abutment height in millimeters (mm), the size of the abutment surface in (mm²), the size of the cement gap in mm and the geometry of the abutment in terms of grooves.

Author	Cement	Material (abutment/crown)	Retention (N)	Pretreatment crown	Particle size sandblasting (µm)	Thermocycling	Taper (°)	Abutment height (mm)	Chewing simulation	Abutment surface size (mm²)	Cement gap (mm)	Groove (abutment)
Al Hamad KQ, et al., [62]	glass ionomer	titanium-metal alloy	183.13	yes	8	6						
glass ionomer	305.14	yes	50	yes	8	4						
glass ionomer	239.95	yes	8	6								
glass ionomer	523.71	yes	8	6								
zinc phosphate	268.59	yes	8	4								
zinc phosphate	418.69	yes	8	4								
zinc phosphate	647.66	yes	8	6								
zinc phosphate	700.93	yes	8	6								
zinc oxide eugenol	65.53	yes	8	4								
zinc oxide eugenol	139.79	yes	8	4								
zinc oxide eugenol	73.48	yes	8	6								
zinc oxide eugenol	207.09	yes	8	6								
zinc oxide eugenol + petroleum jelly	9.86	yes	8	4								
zinc oxide eugenol + petroleum jelly	42.09	yes	8	4								
zinc oxide eugenol + petroleum jelly	17.36	yes	8	6								
zinc oxide eugenol + petroleum jelly	48.27	yes	8	6								
Abbo B, et al., [63]	resin based	titanium-zirconia	124.89	5.5	33.07							
resin based	198.09	6.5	36.03									
Carnaggio TV, et al. [59]	zinc oxide noneugenol	titanium-zirconia	83	42	100							
zinc oxide noneugenol	82	60	100									
zinc oxide noneugenol	114	82	100									
resin based	92	42	100									
resin based	127	60	100									
resin based	104	82	100									
glass ionomer	96	42	100									
glass ionomer	84	60	100									
Glass Type	Study Reference	Derafshi R, et al., [65]	Gultekin P, et al., [13]	Gumus HO, et al., [41]								
----------------------------------	--------------------	--------------------------	--------------------------	------------------------								
glass ionomer		zinc oxide eugenol	titanium-metal alloy	zinc oxide eugenol								
resin based		46.88	5.5	31.64								
resin based		46.31	5.5	31.64								
resin based		65.3	5.5	31.64								
resin based		62.25	5.5	31.64								
Gumni MB, et al., [24]		zinc oxide eugenol	titanium-metal alloy	zinc oxide eugenol								
resin based		45.1	yes	6								
resin based		90.7	yes	6								
resin based		36.1	yes	6								
resin based		34.4	yes	6								
resin based		82.8	yes	6								
resin based		67.7	yes	6								
resin based		23.3	yes	6								
resin based		6.2	yes	6								
resin based		8.8	yes	6								
resin based		12.7	yes	6								
resin based		32.9	yes	6								
resin based		24.6	yes	6								
resin based		33.7	yes	50								
resin based		262.6	yes	50								

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378
	Retention (%)	Bonding Agent	Cementation Method	Study
Glass ionomer	75.7	yes	50	Yes
Zinc oxide	20.5	yes	50	Yes
Zinc phosphate	258	yes	50	Yes
Glass ionomer	42.1	yes	50	Yes
Jugdev J, et al., [85]				
Zinc oxide eugenol	120	yes	50	
Zinc oxide eugenol	140	yes	50	
Resin based	150	yes	50	
Resin based	300	yes	50	
Resin based	150	yes	50	
Resin based	360	yes	50	
Kilicarslan MA, et al., [83]				
Resin based	455.1	yes	6	5.7
Resin based	565.52	yes	6	5.7
Resin based	534.78	yes	6	5.7
Resin based	678.6	yes	6	5.7
Kim Y, et al., [32]				
Calcium-hydroxide	48			
Calcium-hydroxide	58			
Calcium-hydroxide	52			
Zinc oxide	39			
Zinc oxide	53			
Zinc oxide	40			
Zinc oxide eugenol	11			
Zinc oxide eugenol	20			
Zinc oxide eugenol	23			
Zinc oxide eugenol	10			
Zinc oxide eugenol	12			
Zinc oxide eugenol	14			
Kokubo Y, et al., [14]				
Polycarboxylate	300	yes	8	7.4
Polycarboxylate	120	yes	8	7.4
Polycarboxylate	250	yes	8	7.4
Polycarboxylate	275	yes	8	7.4
Polycarboxylate	60	yes	8	7.4
Polycarboxylate	40	yes	8	7.4
Polycarboxylate	50	yes	8	7.4
Polycarboxylate	20	yes	8	7.4
Zinc oxide eugenol	100	yes	8	7.4
Zinc oxide eugenol	60	yes	8	7.4
Zinc oxide eugenol	70	yes	8	7.4
Zinc oxide eugenol	70	yes	8	7.4
Zinc oxide eugenol	120	yes	8	7.4
Zinc oxide eugenol	10	yes	8	7.4

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378
Zinc oxide	80	yes	50	8	7.4	51.39	
Zinc oxide	5	yes	50	yes	8	7.4	51.39
Zinc oxide eugenol	60	yes	8	7.4	51.39		
Zinc oxide eugenol	10	yes	yes	8	7.4	51.39	
Zinc oxide eugenol	70	yes	50	8	7.4	51.39	
Zinc oxide eugenol	40	yes	50	yes	8	7.4	51.39

Kurt M, et al., [42]

Resin based	Titanium-metal alloy	249.41	yes	4		
Resin based	315.14	yes	4			
Resin based	506.02	yes	50	yes	4	
Resin based	223.26	yes	4			
Resin based	412.91	yes	4			

Lennartz A, et al., [43]

Zinc oxide eugenol	Zirconia-zirconia	234	yes	50	6	6	34.55
Resin based	110	yes	50	6	6	34.55	
Resin based	103	yes	50	6	6	34.55	
Resin based	61	yes	50	6	6	34.55	
Resin based	49	yes	50	6	6	34.55	
Zinc oxide eugenol	20	yes	50	yes	6	6	34.55
Resin based	10	yes	50	yes	6	6	34.55
Resin based	10	yes	50	yes	6	6	34.55
Resin based	25	yes	50	yes	6	6	34.55
Resin based	10	yes	50	yes	6	6	34.55

Lewinstein I, et al., [44]

Zinc oxide eugenol	Titanium-metal alloy	170	yes	110	yes	6	6	34.55
Zinc phosphate	362	yes	110	yes	6	6		
Zinc oxide eugenol	188	yes	110	yes	6	6		
Zinc phosphate	580	yes	110	yes	6	6		
Zinc oxide eugenol	204	yes	110	yes	6	6		
Zinc phosphate	549	yes	110	yes	6	6		
Zinc oxide eugenol	242	yes	110	yes	6	6		
Zinc phosphate	587	yes	110	yes	6	6		

Mehl C, et al., [45]

Glass ionomer	Titanium-metal alloy	292	yes	50	5	6	34.55	yes
Glass ionomer	264	yes	50	yes	5	6	34.55	yes
Polycarboxylate	556	yes	50	5	6	34.55	yes	
Polycarboxylate	471	yes	50	yes	5	6	34.55	yes

Mehl C, et al., [3]

Glass ionomer	Titanium-metal alloy	605	yes	50	6	4	28.78	20
Glass ionomer	144	yes	50	6	4	28.78	50	
Glass ionomer	104	yes	50	6	4	28.78	80	
Glass ionomer	105	yes	50	6	4	28.78	110	
Polycarboxylate	1041	yes	50	6	4	28.78	20	
Polycarboxylate	307	yes	50	6	4	28.78	50	
Polycarboxylate	94	yes	50	6	4	28.78	80	
Material Type	Study Insert	Study Reference	Number	Retention Rate	Melt Temperature	Degree of Dispersion		
------------------------	----------------	-----------------	--------	----------------	------------------	---------------------		
Polycarboxylate	Mehl et al., [46]		105	5	37.2	50		
Resin Based	Nagasawa et al., [67]		49.09	5	33.95	50		
Zinc Oxide Eugenol	Naumova et al., [47]		20.0	5	37.2	50		

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378
Material	Bond Strength	Bond Type	Setting Time	Bonding Time	Bonding Agent			
Glass Ionomer	213.6	Yes	50	6	5.8	33.95		
Glass Ionomer	251.4	Yes	50	6	5.8	33.95		
Zinc Phosphate	258.1	Yes	50	6	5.8	33.95		
Glass Ionomer	242.4	Yes	50	6	5.8	33.95		
Glass Ionomer	249.2	Yes	50	6	5.8	33.95		
Resin Based	205	Yes	50	6	5.8	33.95		
Glass Ionomer	228.1	Yes	50	6	5.8	33.95		
Zinc Oxide Noneugenol	30.98	Yes	50	6	5.8	33.95		
Glass Ionomer	179.3	Yes	50	6	5.8	33.95		
Glass Ionomer	165.3	Yes	50	6	5.8	33.95		
Zinc Phosphate	185.3	Yes	50	6	5.8	33.95		
Glass Ionomer	178.8	Yes	50	6	5.8	33.95		
Glass Ionomer	188.6	Yes	50	6	5.8	33.95		
Resin Based	158.9	Yes	50	6	5.8	33.95		
Glass Ionomer	150.6	Yes	50	6	5.8	33.95		
Nejatidanse, F et al., [49]	Resin Based	Titanium-Zirconia	203.49	Yes	110	Yes	8	5.5
Resin Based	190.61	Yes	110	Yes	8	5.5		
Resin Based	172.16	Yes	110	Yes	8	5.5		
Zinc Phosphate	72.01	Yes	110	Yes	8	5.5		
Polycarboxylate	44.18	Yes	110	Yes	8	5.5		
Glass Ionomer	3.12	Yes	110	Yes	8	5.5		
Zinc Oxide Noneugenol	11.27	Yes	110	Yes	8	5.5		
Zinc Oxide Eugenol	4.52	Yes	110	Yes	8	5.5		
Resin Based	4.03	Yes	110	Yes	8	5.5		
Nejatidanse, F et al., [48]	Resin Based	Titanium-Zirconia	181.9	Yes	Yes	6	5.5	
Resin Based	123.64	Yes	Yes	6	5.5	30		
Resin Based	190.57	Yes	Yes	6	5.5	30		
Resin Based	195.43	Yes	50	Yes	6	5.5	30	
Resin Based	204.79	Yes	Yes	6	5.5	30		
Resin Based	232.65	Yes	Yes	6	5.5	30		
Resin Based	193.11	Yes	Yes	6	5.5	30		
Ongthiemak, et al., [57]	Zinc Oxide Eugenol	Titanium-Gold	39.94	Yes	50	Yes		
Zinc Oxide Eugenol	43.77	Yes	50	Yes				
Zinc Oxide Eugenol	47.47	Yes	50	Yes				
Pan YH, et al., [16]	Resin Based + Petroleum Jelly	Titanium-Metal Alloy	32	Yes	50	Yes	12	Yes
Zinc Oxide Eugenol	36.6	Yes	50	Yes	12	Yes		
Resin Based	39.2	Yes	50	Yes	12	Yes		
Zinc Oxide Noneugenol	40.8	Yes	50	Yes	12	Yes		
Resin Based	45.4	Yes	50	Yes	12	Yes		
Zinc Phosphate + Petroleum Jelly	Yes	12	Yes	147	Yes	50	Yes	
Zinc Phosphate	249.2	Yes	50	Yes	12	Yes		
Study (et al.)	Material Type	Bonding Material	Bonding Surface	Bonding Area	Retention (N)	Bonding Success	Details	
--------------	--------------	-----------------	-----------------	--------------	---------------	----------------	---------	
Pitta J, et al. [52]	Resin	Titanium-PMMA	Yes	Resin	64.1	Yes	Yes	
	Resin	64.9	Yes	Resin	50	Yes		
	Resin	276.7	Yes	Resin	30	Yes		
	Resin	39.1	Yes	Resin	30	Yes		
	Resin	1146.5	Yes	Resin		Yes		
Pitta J, et al. [53]	Resin	Titanium-PMMA	Yes	Resin	206.3	Yes	Yes	
	Resin	346.9	Yes	Resin		Yes		
	Resin	420	Yes	Resin		Yes		
	Resin	376.1	Yes	Resin		Yes		
Reddy SV, et al. [68]	Resin	Titanium-Metal Alloy	Yes	Resin	258.28	Yes	50	
	Resin	260.68	Yes	Resin	50			
	Resin	138.41	Yes	Resin	50			
	Resin	138.28	Yes	Resin	50			
	Resin	184.86	Yes	Resin	50			
	Resin	152.13	Yes	Resin	50			
Rödiger M, et al. [25]	Resin	Titanium-Zirconia	Yes	Resin	101.1	Yes	110	
	Resin	311.7	Yes	Resin	110	Yes	6.79	
	Resin	447.9	Yes	Resin	110	Yes	6.79	
	Resin	478.7	Yes	Resin	110	Yes	6.79	
Rohr N, et al. [72]	Resin	Zirconia-Zirconia	Yes	Resin	196	Yes		
	Resin	43	Yes	Resin				
	Resin	127	Yes	Resin				
	Resin	261	Yes	Resin				
	Resin	253	Yes	Resin				
	Resin	270	Yes	Resin				
	Resin	226	Yes	Resin				
	Resin	222	Yes	Resin				
	Resin	238	Yes	Resin				
	Resin	245	Yes	Resin				
	Resin	318	Yes	Resin				
	Resin	254	Yes	Resin				
	Resin	605	Yes	Resin				
	Resin	470	Yes	Resin				
	Resin	257	Yes	Resin				
	Resin	243	Yes	Resin				
	Resin	269	Yes	Resin				
	Resin	224	Yes	Resin				
	Resin	363	Yes	Resin				
	Resin	288	Yes	Resin				
Rües S, et al. [54]	Resin	Zirconia-Zirconia	Yes	Resin	31	Yes	50	
	Resin	40	Yes	Resin	50		4	
	Resin	436	Yes	Resin	50		4	
	Resin	682	Yes	Resin	50		4	
Material Type	Study	Retention Rate	Bond Strength	Tensile Strength	Hertz	Debond Strength		
-------------------------------	-------------------------------	----------------	---------------	------------------	-------	-----------------		
Glass Ionomer	Safari S, et al., [61]	364.19	yes	yes	3	27.69		
Resin Based	Sadig wM, et al., [89]	380	yes	yes	5.5			
Zinc Phosphate	Ziegler S, et al., [49]	180	yes	yes	5.5			
Resin-Based Titanium-Alloy	Ziegler S, et al., [49]	310	yes	yes	5.5			
Resin-Based titanium-Alloy	Ziegler S, et al., [49]	470	yes	yes	5.5			
Resin-Based titanium-Alloy	Ziegler S, et al., [49]	500	yes	yes	5.5			
Polycarboxylate	Schiessl C, et al., [55]	408.3	yes	yes	8	25		
Polycarboxylate	Sahu N, et al., [82]	405.45	yes	yes	3	31.9		

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378
Material Type	Code	Setting	Viscosity	Shrinkage	Tensile Strength (N)
Polycarboxylate	240	yes	50	6	6
Polycarboxylate	200	yes	50	6	6
Zinc phosphate	200	yes	50	6	6
Zinc phosphate	160	yes	50	6	6
Polycarboxylate	140	yes	50	6	6
Glass ionomer	120	yes	50	6	6
Resin based	230	yes	50	6	6
Zinc oxide noneugenol	320	yes	50	8	6
Polycarboxylate	320	yes	50	8	6
Polycarboxylate	140	yes	50	8	6
Polycarboxylate	140	yes	50	8	6
Zinc phosphate	80	yes	50	8	6
Glass ionomer	100	yes	50	8	6
Resin based	260	yes	50	8	6
Zinc oxide noneugenol	90	yes	50	8	6
Polycarboxylate	660	yes	50	yes	4
Polycarboxylate	380	yes	50	yes	4
Polycarboxylate	400	yes	50	yes	4
Zinc phosphate	370	yes	50	yes	4
Methacrylate-based	5	yes	50	yes	4
Glass ionomer	300	yes	50	yes	4
Resin based	300	yes	50	yes	4
Zinc oxide noneugenol	50	yes	50	yes	4
Polycarboxylate	580	yes	50	yes	6
Polycarboxylate	400	yes	50	yes	6
Polycarboxylate	210	yes	50	yes	6
Zinc phosphate	280	yes	50	yes	6
Methacrylate-based	5	yes	50	yes	6
Glass ionomer	250	yes	50	yes	6
Resin based	240	yes	50	yes	6
Zinc oxide noneugenol	40	yes	50	yes	6
Polycarboxylate	620	yes	50	yes	8
Polycarboxylate	400	yes	50	yes	8
Polycarboxylate	250	yes	50	yes	8
Zinc phosphate	250	yes	50	yes	8
Methacrylate-based	5	yes	50	yes	8
Glass ionomer	200	yes	50	yes	8
Resin based	210	yes	50	yes	8
Zinc oxide noneugenol	50	yes	50	yes	8
Zinc phosphate	300	yes	50	yes	4
Glass ionomer	110	yes	50	yes	4
Zinc oxide noneugenol	100	yes	50	yes	4

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378
resin based	250	yes	50	4	6	33.12	
zinc phosphate	210	yes	50	6	6	33.12	
glass ionomer	100	yes	50	6	6	33.12	
zinc oxide noneugenol	110	yes	50	6	6	33.12	
resin based	270	yes	50	6	6	33.12	
zinc phosphate	180	yes	50	8	6	33.12	
glass ionomer	90	yes	50	8	6	33.12	
zinc oxide noneugenol	80	yes	50	8	6	33.12	
resin based	260	yes	50	8	6	33.12	
zinc phosphate	280	yes	50	yes	4	6	33.12
glass ionomer	300	yes	50	yes	4	6	33.12
zinc oxide noneugenol	70	yes	50	yes	4	6	33.12
resin based	320	yes	50	yes	4	6	33.12
zinc phosphate	230	yes	50	yes	6	6	33.12
glass ionomer	180	yes	50	yes	6	6	33.12
zinc oxide noneugenol	50	yes	50	yes	6	6	33.12
resin based	290	yes	50	yes	6	6	33.12
zinc phosphate	250	yes	50	yes	8	6	33.12
glass ionomer	190	yes	50	yes	8	6	33.12
zinc oxide noneugenol	40	yes	50	yes	8	6	33.12
resin based	280	yes	50	yes	8	6	33.12
zinc phosphate	380	yes	120	4	6	33.12	
glass ionomer	210	yes	120	4	6	33.12	
zinc oxide noneugenol	90	yes	120	4	6	33.12	
resin based	260	yes	120	4	6	33.12	
zinc phosphate	350	yes	120	6	6	33.12	
glass ionomer	190	yes	120	6	6	33.12	
zinc oxide noneugenol	110	yes	120	6	6	33.12	
resin based	210	yes	120	6	6	33.12	
zinc phosphate	340	yes	120	8	6	33.12	
glass ionomer	160	yes	120	8	6	33.12	
zinc oxide noneugenol	100	yes	120	8	6	33.12	
resin based	220	yes	120	8	6	33.12	
zinc phosphate	350	yes	120	4	6	33.12	
glass ionomer	220	yes	120	4	6	33.12	
zinc oxide noneugenol	40	yes	120	4	6	33.12	
resin based	260	yes	120	4	6	33.12	
zinc phosphate	280	yes	120	6	6	33.12	
glass ionomer	220	yes	120	6	6	33.12	
zinc oxide noneugenol	40	yes	120	6	6	33.12	
resin based	210	yes	120	6	6	33.12	
zinc phosphate	280	yes	120	8	6	33.12	
Material	Temperature	Bonding	Setting Time	Retraction (mm)
Glass ionomer	210	yes	120	8
Zinc oxide	20	yes	120	8
Resin based	220	yes	120	8
Polycarboxylate	150	yes	50	4
Polycarboxylate	220	yes	50	4
Polycarboxylate	225	yes	50	4
Polycarboxylate	100	yes	50	6
Polycarboxylate	75	yes	50	6
Polycarboxylate	160	yes	50	6
Polycarboxylate	110	yes	50	8
Polycarboxylate	80	yes	50	8
Polycarboxylate	160	yes	50	8
Polycarboxylate	140	yes	50	4
Polycarboxylate	290	yes	50	4
Polycarboxylate	330	yes	50	4
Polycarboxylate	225	yes	50	6
Polycarboxylate	240	yes	50	6
Polycarboxylate	225	yes	50	6
Polycarboxylate	60	yes	50	8
Polycarboxylate	350	yes	50	8
Polycarboxylate	225	yes	50	8
Polycarboxylate	380	yes	50	4
Polycarboxylate	400	yes	50	4
Polycarboxylate	220	yes	50	4
Polycarboxylate	375	yes	50	6
Polycarboxylate	230	yes	50	6
Polycarboxylate	210	yes	50	6
Polycarboxylate	300	yes	50	8
Polycarboxylate	90	yes	50	8
Polycarboxylate	100	yes	50	8
Polycarboxylate	610	yes	50	4
Polycarboxylate	375	yes	50	4
Polycarboxylate	390	yes	50	4
Polycarboxylate	520	yes	50	6
Polycarboxylate	380	yes	50	6
Polycarboxylate	220	yes	50	6
Polycarboxylate	610	yes	50	8
Polycarboxylate	390	yes	50	8
Polycarboxylate	220	yes	50	8
Polycarboxylate	470	yes	50	4
Polycarboxylate	375	yes	50	4
Polycarboxylate	220	yes	50	4
Polycarboxylate	520	yes	50	6

Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378
polycarboxylate	330	yes	50	6	6	33.12	
polycarboxylate	280	yes	50	6	6	33.12	
polycarboxylate	400	yes	50	8	6	33.12	
polycarboxylate	300	yes	50	8	6	33.12	
polycarboxylate	225	yes	50	8	6	33.12	
polycarboxylate	610	yes	50	4	6	33.12	
polycarboxylate	350	yes	50	4	6	33.12	
polycarboxylate	330	yes	50	4	6	33.12	
polycarboxylate	520	yes	50	6	6	33.12	
polycarboxylate	230	yes	50	6	6	33.12	
polycarboxylate	250	yes	50	6	6	33.12	
polycarboxylate	580	yes	50	8	6	33.12	
polycarboxylate	360	yes	50	8	6	33.12	
polycarboxylate	220	yes	50	8	6	33.12	
Sheets JL, et al., [66]	zinc oxide eugenol	titanium-metal alloy	117.8	yes	50	3	6.38
polycarboxylate	358.6	yes	50	3	6.38		
resin based + petroleum jelly	130.8	yes	50	3	6.38		
resin based	172.4	yes	50	3	6.38		
resin based + KY jelly	31.6	yes	50	3	6.38		
resin based	131.6	yes	50	3	6.38		
resin based	41.2	yes	50	3	6.38		
zinc phosphate	171.8	yes	50	3	6.38		
glass ionomer	167.8	yes	50	3	6.38		
glass ionomer	147.5	yes	50	3	6.38		
polycarboxylate	158.8	yes	50	3	6.38		
Guler U, et al., [9]	zinc oxide eugenol	zirconia	6.52	yes			
zinc phosphate	83.09	yes					
resin based	251.18	yes					
zinc oxide eugenol	17.82	yes					
zinc phosphate	116.41	yes					
resin based	248.72	yes					

References
1. Thoma DS, Wolleb K, Bienz SP, Wiedemeier D, Hämmerle CHF, et al. (2018) Early histological, microbiological, radiological, and clinical response to cemented and screw-retained all-ceramic single crowns. Clin Oral Implants Res 29: 996-1006.
2. Duyck J, Naert I (2002) Influence of prosthesis fit and the effect of a luting system on the prosthetic connection preload: an in vitro study. Int J Prosthodont15: 389-396.
3. Mehl C, Harder S, Steiner M, Vollrath O, Kern M (2013) Influence of cement film thickness on the retention of implant-retained crowns. J Prosthodont 22: 618-625.
4. Mehl C, Harder S, Wolfart M, Kern M, Wolfart S (2008) Retrievalability of implant-retained crowns following cementation. Clin Oral Implants Res 19: 1304-1311.
5. Torrado E, Ercoli C, Al Mardini M, Graser GN, Tallents RH, et al. (2004) A comparison of the porcelain fracture resistance of screw-retained and cement-retained implant-supported metal-ceramic crowns. J Prosthet Dent 91: 532-537.
6. Sailer I, Muhlemann S, Zwahlen M, Hammerle CH, Schneider D (2012) Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res 23: S163-S201.
7. Chee W, Felton DA, Johnson PF, Sullivan DY (1999) Cemented versus screw-retained implant prostheses: which is better? Int J Oral Maxillofac Implants 14: 137-141.

8. Assenza B, Scarano A, Leghissa G, Carusi G, Thams U, et al. (2005) Screw- vs cement-implant-retained restorations: an experimental study in the Beagle. Part 1. Screw and abutment loosening. J Oral Implantol 31: 242-246.

9. Guler U, Budak Y, Queiroz JRC, Ozcan M (2017) Dislodgement Resistance of Zirconia Copings Cemented onto Zirconia and Titanium Abutments. Implant Dent 26: 510-515.

10. Wolfart M, Wolfart S, Kern M (2006) Retention forces and seating discrepancies of implant-retained castings after cementation. Int J Oral Maxillofac Implants 21: 519-525.

11. Montenegro AC, Machado AN, Depes Gouveia CV (2008) Tensile strength of cementing agents on the CeraOne system of dental prosthesis on implants. Implant Dent 17: 451-460.

12. Nejatidanshe F, Savabi O, Ebrahimi M, Savabi G (2012) Retentiveness of implant-supported metal copings using different luting agents. Dent Res J (Isfahan) 9: 13-18.

13. Gultekin P, Gultekin BA, Aydin M, Yalcin S (2013) Cement selection for implant-supported crowns fabricated with different luting space settings. J Prosthodont 22: 112-119.

14. Kokubo Y, Kano T, Tsumita M, Sakurai S, Itayama A, et al. (2010) Retention of zirconia copings on zirconia implant abutments cemented with provisional luting agents. J Oral Rehabil 37: 48-53.

15. Heinemann F, Mundt T, Biffar R (2006) Retrospective evaluation of temporary cemented, tooth and implant supported fixed partial dentures. J Craniomaxillofac Surg 34: 586-590.

16. Pan YH, Ramp LC, Lin CK, Liu PR (2006) Comparison of 7 luting protocols and their effect on the retention and marginal leakage of a cement-retained dental implant restoration. Int J Oral Maxillofac Implants 21: 587-592.

17. Breeding LC, Dixon DL, Bogacki MT, Tietge JD (1992) Use of luting agents with an implant system: Part I. J Prosthodont 1: 158-162.

18. Hebel KS, Gajjar RC (1997) Cement-retained versus screw-retained implant restorations: achieving optimal occlusion and esthetics in implant dentistry. J Prosthodont 77: 28-35.

19. Eklund A, Carlsson GE, Borjesson G (1994) Clinical evaluation of single-tooth restorations supported by osseointegrated implants: a retrospective study. Int J Oral Maxillofac Implants 9: 179-183.

20. Akca K, Iplikcioglu H, Cehreli MC (2002) Comparison of uniaxial resistance forces of crowns used with implant-supported crowns. Int J Oral Maxillofac Implants 17: 536-542.

21. Hill EE (2007) Dental cements for definitive luting: a review and practical clinical considerations. Dent Clin North Am 51: 643-658.

22. Ramp MH, Dixon DL, Ramp LC, Breeding LC, Barber LL (1999) Tensile bond strengths of provisional luting agents used with an implant system. J Prosthodont Dent 81: 510-514.

23. Dudley JE, Richards LC, Abbott JR (2008) Retention of cast crown copings cemented to implant abutments. Aust Dent J 53: 332-339.

24. Guncu MB, Cakan U, Canay S (2011) Comparison of 3 luting agents on retention of implant-supported crowns on 2 different abutments. Implant Dent 20: 349-353.

25. Rodiger M, Rinke S, Ehret-Kleinau F, Pohlmeier F, et al. (2014) Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation. J Adv Prosthodont 6: 233-240.

26. Parisy I, Khazaei Y (2018) Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study. Dent Res J (Isfahan) 15: 201-207.

27. Habib B, von Fraunhofer JA, Driscoll CF (2005) Comparison of two luting agents used for the retention of cast dowel and cores. J Prosthodont 14: 164-169.

28. Passon C, Lambert RH, Lambert RL, Newman S (1992) The effect of multiple layers of die-spacer on crown retention. Oper Dent 17: 42-49.

29. Campbell SD (1990) Comparison of conventional paint-on die spacers and those used with the all-ceramic restorations. J Prostheth Dent 63: 151-155.

30. Emirzı, Goldstein G (1997) Effect of die spacers on pre cementation space of complete coverage restorations. Int J Prostheth Dent 10: 131-135.

31. Webb EL, Murray HV, Holland GA, Taylor DF (1983) Effects of preparation relief and flow channels on seating full coverage castings during cementation. J Prostheth Dent 49: 777-780.

32. Kim Y, Yamashita J, Shotwell JL, Chong KH, Wang HL (2006) The comparison of provisional luting agents and abutment surface roughness on the retention of provisional implant-supported crowns. J Prostheth Dent 95: 450-455.

33. Jorgensen KD (1955) The relationship between retention and convergence angle in cemented veneer crowns. Acta Odontol Scand 13: 35-40.

34. Gilboe DB, Teteruck WR (1974) Fundamentals of extracoronal tooth preparation. Part I. Retention and resistance form. J Prosthodont 32: 651-656.

35. Botega DM, Mesquets MF, Henrique GE, Vaz LG (2004) Retention force and fatigue strength of overdenture attachment systems. J Oral Rehabil 31: 884-889.

36. Lehmann KM, Arnim F (1976) Studies on the retention capability of the film thicknesses of six temporary cements before and after thermal cycling. Niger J Clin Pract 21: 1656-1661.

37. Covey DA, Kent DK, St Germain HA Jr, Koka S (2000) Effects of abutment size and luting cement type on the uniaxial retention force of implant-supported crowns. J Prostheth Dent 83: 344-348.

38. Di Felice R, Rappelli G, Camaioni E, Cattani M, Meyer JM, et al. (2007) Cementable implant crowns composed of cast superstructure frameworks luted to electroformed primary copings: an in vitro retention study. Clin Oral Implants Res 18: 108-113.

39. Kaar D, Oshida Y, Andres CJ, Barco MT, Platt JA (2006) The effect of fatigue damage on the force required to remove a restoration in a cement-retained implant system. J Prosthodont 15: 289-294.

40. Pan YH, Lin CK (2005) The effect of luting agents on the retention of dental implant-supported crowns. Chang Gung Med J 28: 403-410.

41. Gumus HO, Kurtulus IL, Kuru E (2018) Evaluation and comparison of the film thicknesses of six temporary cements before and after thermal cycling. Niger J Clin Pract 21: 1656-1661.

42. Kurt M, Kulunk T, Ural C, Kulunk S, Danisman S, et al. (2013) The effect of different surface treatments on cement-retained implant-supported restorations. J Oral Implantol 39: 44-51.

43. Lennartz A, Dohmen A, Bisht S, Fischer H, Wolfart S (2018) Retrieval ability of implant-supported zirconia restorations cemented on zirconia abutments. J Prostheth Dent 120: 740-746.
44. Lewinstein I, Block L, Lehr Z, Ormianer Z, Matalon S (2011) An in vitro assessment of circumferential grooves on the retention of cement-retained implant-supported crowns. J Prostheth Dent 106: 367-372.

45. Mehl C, Harder S, Schwarz D, Steiner M, Vollrath O, et al. (2012) In vitro influence of ultrasonic stress, removal force preload and thermocycling on the retrievability of implant-retained crowns. Clin Oral Implants Res 23: 930-937.

46. Mehl C, Ali S, El Bahra S, Harder S, Vollrath O, et al. (2016) Is There a Correlation Between Tensile Strength and Retrievability of Cemented Implant-Retained Crowns Using Artificial Aging? Int J Prosthodont 29: 83-90.

47. Naumova EA, Roth F, Geis B, Baulig C, Arnold WH, et al. (2018) Influence of Luting Materials on the Retention of Cemented Implant-Supported Crowns: An In vitro Study. Materials (Basel) 11: 1853.

48. Nejatidanesf F, Savabi O, Savabi G, Razavi M (2018) Effect of cleaning methods on retentive values of saliva-contaminated implant-supported zirconia copings. Clin Oral Implants Res 29: 530-536.

49. Nejatidanesf F, Savabi O, Shahtoosi M (2013) Retention of implant-supported zirconium oxide ceramic restorations using different luting agents. Clin Oral Implants Res 24: 20-24.

50. Pan YH, Ramp LC, Lin CK, Liu PR (2007) Retention and leakage of implant-supported restorations luted with provisional cement: a pilot study. J Oral Rehahl 34: 206-212.

51. Pitta J, Bijelic-Donova J, Burkhardt F, Feherm V, Narhi T, et al. (2020) Temporary Implant-Supported Single Crowns Using Titanium Base Abutments: An In vitro Study on Bonding Stability and Pull-out Forces. Int J Prosthodont 33: 546-552.

52. Pitta J, Burkhardt F, Mekkii M, Feherm V, Mojon P, et al. (2020) Effect of airborne-particle abrasion of a titanium base abutment on the stability of the bonded interface and retention forces of crowns after artificial aging. J Prostheth Dent 126: 214-221.

53. Rohr N, Balmer M, Muller JA, Martin S, Fischer J (2019) Chewing simulation of zirconia implant supported restorations. J Prosthodont Res 63: 361-367.

54. Rues S, Fugina M, Rammelsberg P, Kappel S (2017) Cemented Single Crown Retention on Dental Implants: An In vitro Study. Int J Prosthodont 30: 133-135.

55. Schiessl C, Schaefer L, Winter C, Fuerst J, Rosentritt M, et al. (2013) Factors determining the retentiveness of luting agents used with metal- and ceramic-based implant components. Clin Oral Investig 17: 1179-1190.

56. Sellers K, Powers JM, Kiat-Amnuay S (2017) Retentive strength of implant-supported CAD-CAM lithium disilicate crowns on zirconia custom abutments using 6 different cements. J Prostheth Dent 117: 247-252.

57. Ongthiemssak C, Mekayarajananonth T, Winkler S, Boberick KG (2005) The effect of compressive cyclic loading on retention of a temporary cement used with implants. J Oral Implantol 31: 115-120.

58. Alvarez-Arenal A, Gonzalez-Gonzalez I, Pines-Hueso J, delLlanos-Lanchares H, del Rio Highsmith J (2016) The Effect of Compressive Cyclic Loading on the Retention of Cast Single Crowns Cemented to Implant Abutments. Int J Prosthodont 29: 80-82.

59. Carnaggio TV, Conrad R, Engelmeier RL, Genngross P, Paravina R, et al. (2012) Retention of CAD/CAM all-ceramic crowns on prefabricated implant abutments: an in vitro comparative study of luting agents and abutment surface area. J Prosthodont 21: 523-528.

60. Bresciano M, Schierano G, Manzella C, Screti A, Bignardi C, et al. (2005) Retention of luting agents on implant abutments of different height and taper. Clin Oral Implants Res16: 594-598.

61. Safari S, Hosseini Ghavam F, Amini P, Yaghmaei K (2018) Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. J Adv Prosthodont 10: 1-7.

62. Al Hamad KQ, Al Rashdan BA, Abu-Sitta EH (2011) The effects of height and surface roughness of abutments and the type of cement on bond strength of cement-retained implant restorations. Clin Oral Implants Res 22: 638-644.

63. Abbo B, Razzaq AE, Mivas J, Sierralta M (2008) Resistance to dislodgement of zirconia copings cemented onto titanium abutments of different heights. J Prostheth Dent 99: 25-29.

64. Rodiger M, Kloss J, Gersdorff N, Burgers R, Rinke S (2018) Removal forces of adhesively and self-adhesively luted implant-supported zirconia copings depend on abutment geometry. J Mech Behav Biomed Mater 87: 119-123.

65. Derafshi R, Ahangari AH, Torabi K, Farzin M (2015) Evaluation of the Effect of Axial Wall Modification and Coping Design on the Retention of Cement-retained Implant-supported Crowns. J Dent Res Dent Clin Dent Prospect9: 35-39.

66. Sheets JL, Wilcox C, Wilwerding T (2008) Cement selection for cement-retained crown technique with dental implants. J Prosthodont 17: 92-96.

67. Nagasawa Y, Hibino Y, Nakajima H (2014) Retention of crowns cemented on implant abutments with temporary cements. Dent Mater 33: 835-844.

68. Reddy SV, Reddy MS, Reddy CR, Pithani P, R SK, et al. (2015) The influence of implant abutment surface roughness and the type of cement on retention of implant supported crowns. J Clin Diagn Res 9: ZC05-ZC07.

69. Woelber JP, Ratka-Krueger P, Vach K, Frisch E (2016) Decementation Rates and the Peri-Implant Tissue Status of Implant-Supported Fixed Restorations Retained via Zinc Oxide Cement: A Retrospective 10-23-Year Study. Clin Implant Dent Relat Res 18: 917-925.

70. Sorrentino R, Galasso L, Tete S, De Simone G, Zarone F (2012) Clinical evaluation of 209 all-ceramic single crowns cemented on natural and implant-supported abutments with different luting agents: a 6-year retrospective study. Clin Implant Dent Relat Res 14: 184-197.

71. Lopes ACO, Machado CM, Bonjardim LR, Bergamo ETP, Ramalho IS, et al. (2019) The Effect of CAD/CAM Crown Material and Cement Type on Retention to Implant Abutments. J Prosthodont 28: e552-e556.

72. Rohr N, Brunner S, Martin S, Fischer J (2018) Influence of cement type and ceramic primer on retention of polymer-infiltrated ceramic crowns to a one-piece zirconia implant. J Prostheth Dent 119: 138-145.

73. Mehl C, Harder S, Shahriari A, Steiner M, Kern M (2012) Influence of abutment height and thermocycling on retrievability of cemented implant-supported crowns. Int J Oral Maxillofac Implants 27: 1106-1115.

74. Schierano G, Manzella C, Menicucci G, Parrotta A, Zanetti EM, et al. (2016) In vitro standardization of two different removal devices in cemented implant prosthesis. Clin Oral Implants Res 27: 1026-1030.
Citation: Prause E, Rosentritt M, Beuer F, Hey J (2021) Which Factors have an Impact on the Retention of Cemented Crowns on Implant Abutments? A Literature Review. Int J Dent Oral Health 7(5): dx.doi.org/10.16966/2378-7090.378