DEVELOPMENT OF 12 CHLOROPLAST MICROSATellite MARKERS IN VIGNA UNGUICULATA (FABACEAE) AND AMPLIFICATION IN PHASEOLUS VULGARIS

LEI PAN, YI LI, RUI GUO, HUA WU, ZHIHUI HU, AND CHANYOU CHEN

1School of Life Sciences, Jianghan University, Wuhan 430056, Hubei, People’s Republic of China; 2Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, Hubei, People’s Republic of China; and 3Hubei Province

Key words: chloroplast microsatellite; cross-amplification; Fabaceae; Phaseolus vulgaris; Vigna unguiculata.

Cowpea (Vigna unguiculata (L.) Walp.) (2n = 2x = 22), a legume crop of economic importance, is widely distributed in the arid and semiarid regions of Africa, Asia, Europe, Latin America, and some parts of the United States (Citadin et al., 2011). As a member of the legume family, it belongs to Phaseoleae, the same tribe as common bean (Phaseolus vulgaris L.). Compared to its close relatives and many other crop species, V. unguiculata shows a greater tolerance to drought and has the ability to fix nitrogen in poor soils (Muchero et al., 2009). Its grains are a major source of dietary protein for humans, and cowpea hay is fed to livestock as a nutritious fodder (Badiane et al., 2012). How- ever, even though restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and simple sequence repeat (SSR) molecular makers have been developed for the cowpea nuclear genome, knowledge of variability and evolution in the chloroplast genome of V. unguiculata is limited at the molecular level (Provan et al., 2001; Xu et al., 2010).

Chloroplast microsatellite, or chloroplast simple sequence repeat (cpSSR), markers can be used to detect DNA variability in the chloroplast genome. They have the same characteristics as nuclear microsatellites, including a multiallelic and codominant nature. Moreover, cpSSR markers are found to be poly- morphic and transferable among related species because the flanking regions of cpSSR loci are conserved. Of particular importance, cpSSR markers are maternally inherited in most angiosperms, which allow monitoring of influence on population structure by seed-mediated gene flow and pollen flow (Provan et al., 2001). Therefore, they are useful for analysis of population genetics, genetic diversity, paternity analysis, and germplasm resource identification (Provan et al., 2001). In this study, we developed 12 cpSSR markers for V. unguiculata and evaluated their transferability to a related legume species, P. vulgaris. These results will be helpful for the future exploration and germplasm conservation in both V. unguiculata and P. vulgaris, although chloroplast microsatellite diversity in P. vulgaris has been investigated (Angioi et al., 2009; Desiderio et al., 2013).

METHODS AND RESULTS

The complete chloroplast genome sequence of V. unguiculata was downloaded from GenBank (GenBank accession no. NC_018051). The cpSSR loci distributed throughout the V. unguiculata chloroplast genome were screened using SSRHunter 1.3 software (Li and Wan, 2005). SSRs were selected based on the length of the core repeat motif (≥10 nucleotides), for example, five units of dinucleotide repeat motifs, four units of trinucleotide repeat motifs, or three units of tetranucleotide repeat motifs. Primer pairs were designed based on the flanking regions of each SSR locus using Primer3 (Li and Wan, 2005). The parameters of each primer were set using the following criteria: (1) primer size of 20–24 nucleotides in length; (2) GC content of 40–60%; (3) annealing temperature between 50–60°C; and (4) expected amplicon size of 100–300 bp. In total, 15 cpSSR primer pairs of V. unguiculata were designed and synthesized (Sangon, Shanghai, China). Twelve of them showed polymorphic bands
in V. unguiculata accessions, two were monomorphic, and one primer pair gave no products. The 12 polymorphic markers were used in the following analysis.

A total of 91 samples were used in this study, including 62 V. unguiculata accessions and 29 V. unguiculata accessions (Appendix 1). All the samples were collected from an agricultural field in Anshan (30.46°N, 123.4°E), Caidian District, Wuhan City, and preserved in Hubei Province Engineering Research Center of Legume Plants, Wuhan, China. Tender young leaves of each sample were collected and stored at −80°C until use. Total DNA was extracted from all the samples using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). The yield and purity of the DNA were measured using a spectrophotometer SP-1910UVPC (Shanghai, China) at an A260/A280-nm wavelength.

Twelve polymorphic cpSSR markers were developed in both V. unguiculata and P. vulgaris. The same PCR conditions were applied in the two species. The PCR amplifications were performed in a 20-μL reaction mixture containing 1× Taq buffer, 30 ng of genomic DNA, 1.5 mM MgCl₂, 200 μM dNTPs, 0.5 μM for each primer, and 0.5 U Taq polymerase (MBI Fermentas, Vilnius, Lithuania). The PCR conditions were as follows: an initial denaturation at 94°C for 5 min; followed by 35 cycles of 30 s at 94°C, 30 s at the locus-specific annealing temperature (Table 1), and 40 s at 72°C; and a final extension at 72°C for 5 min. The PCR products were separated using 6% denaturing polyacrylamide gels (Acr:Bis = 19:1) and visualized with silver staining. Due to the nonrecombinant nature of the chloroplast genome, each pair of chloroplast microsatellite primers was considered as a “locus” at a cpSSR site. Length variants of chloroplast microsatellites at each cpSSR site were treated as alleles. Alleles detected from polymorphic primer pairs were used to generate a chloroplast haplotype of each individual; multilocus haplotypes were obtained by combining alleles from all polymorphic loci. Based on the polymorphic cpSSR markers, the fragment size amplified from each locus was scored by referring to a 20-bp DNA ladder (TaKaRa Biotechnology Co., Dalian, China). The number of alleles (A) and unbiased haplotype diversity index (h) per polymorphic locus were calculated using the software GenAIEx version 6.41 (Peakall and Smouse, 2006). To estimate the informativeness of each SSR marker, the polymorphism information content (PIC) was calculated using the formula described by Botstein et al. (1980).

As shown in Table 2, the characteristics of the 12 polymorphic cpSSR loci are tested in 62 V. unguiculata samples. A ranged from two to four in V. unguiculata (average: 2.75), h ranged from 0.123 (VgcpSSR4) to 0.497 (VgcpSSR5) (average: 0.240), and PIC ranged from 0.114 (VgcpSSR4) to 0.369 (VgcpSSR5) (average: 0.211).

The transferability of the 12 V. unguiculata cpSSR markers was assessed in a related species, P. vulgaris; parameters of genetic variation were evaluated in 29 P. vulgaris individuals (the P. vulgaris group) (Table 2). All of the 12 cpSSR markers were successfully amplified in the P. vulgaris group, and nine showed polymorphisms, with the exception of VgcpSSR7, VgcpSSR9, and VgcpSSR13, which were monomorphic markers. Therefore, it indicated that 75% of these markers can amplify polymorphic bands. In P. vulgaris, A ranged from one to two, with an average value of 1.75. For each cpSSR locus, h was between 0.000 (VgcpSSR7, VgcpSSR9, and VgcpSSR13) and 0.529 (VgcpSSR10 and VgcpSSR14) (average: 0.312). The PIC value varied between 0.183 (VgcpSSR3) and 0.374 (VgcpSSR2, VgcpSSR10, and VgcpSSR14) (average: 0.312).

CONCLUSIONS

Twelve polymorphic cpSSR markers were developed in V. unguiculata and showed high transferability in P. vulgaris. Further

Table 1. Characteristics of 12 polymorphic cpSSR markers developed in Vigna unguiculata.

Locus	Repeat motif	Primer sequences (5′-3′)	Tₘ(°C)	Position	Region	GenBank accession no.	Size range in V. unguiculata (bp)	Size range in P. vulgaris (bp)
VgcpSSR1	(TA)₃	F: GGTGGAATTTTACCAACATGC	60	trnK-rbcL IGS	LSC	KF662476	190–220	190–196
VgcpSSR2	(AT)₃	R: TCTTCTCTGATACAAACCAAGA	59	rbcL-atpB IGS	LSC	KF662477	180–190	186–190
VgcpSSR3	(TA)₁₂	F: AAAACACTGTATATATTGAGGA	57	ndh-t-trnF IGS	LSC	KF662478	185–305	265–355
VgcpSSR4	(AT)₃	F: GAAAAAAGAACAACAACTCACA	60	ycf3 exon	LSC	KF662479	180–280	180–280
VgcpSSR5	(TA)₃	F: AGGCCGCTTTTCGATGTTT	58	psbB-rps14 IGS	LSC	KF662480	190–202	190–202
VgcpSSR7	(TA)₆	F: TCAACATTCTTCCAAACACCT	59	psbD-trnT IGS	LSC	KF662481	136–196	196
VgcpSSR9	(TA)₃	F: TGAATAATGGAAAGGCTTTA	57	trnK-trnS IGS	LSC	KF662482	144–156	160
VgcpSSR10	(AT)₃	F: GGGCTACATGTCAGTAGAAA	59	trnR-trnS IGS	LSC	KF662483	150–182	182–186
VgcpSSR11	(AT)₆	F: TGGGAAAGGTCTCAACCTTGCG	59	petL-psbJ IGS	LSC	KF662484	168–186	168–170
VgcpSSR12	(AT)₂	F: GCCATTATCTCCTACATCCCC	56	psbF-psbL-psbF IGS	LSC	KF662485	160–220	170–220
VgcpSSR13	(TA)₃	F: YTATGGTTTGGCACAATCGT	60	rpl20-rps12 IGS	LSC	KF662486	160–210	210
VgcpSSR14	(AT)₃	F: TGGATGATATATCGAGGAT	59	psbA-ndhE IGS	SSC	KF662487	160–210	178–180

Note: IGS = intergenic spacer; LSC = long single-copy region; SSC = short single-copy region; Aₘ = annealing temperature.

Position of each SSR in chloroplast complete genome of Vigna unguiculata (GenBank accession number: NC_018051).

Table 2. Characterization of the 12 cpSSR markers in Vigna unguiculata and their cross-species amplification in P. vulgaris.

Locus	V. unguiculata group	P. vulgaris group			
A	h	PIC			
A	h	PIC			
VgcpSSR1	3	0.210	0.196	0.323	0.262
VgcpSSR2	3.622	0.303	0.516	0.374	
VgcpSSR3	0.153	0.139	0.212	0.183	
VgcpSSR4	0.123	0.114	0.380	0.298	
VgcpSSR5	0.497	0.369	0.467	0.332	
VgcpSSR7	0.125	0.116	0.000	—	
VgcpSSR9	0.151	0.138	0.000	—	
VgcpSSR10	0.256	0.237	0.529	0.374	
VgcpSSR11	0.202	0.185	0.441	0.329	
VgcpSSR12	0.270	0.255	0.349	0.280	
VgcpSSR13	0.154	0.146	0.000	—	
VgcpSSR14	0.383	0.328	0.529	0.374	

Note: A = number of alleles for each locus; h = unbiased haplotype diversity; PIC = polymorphism information content.

http://www.bionose.com/loi/apps
analyses indicated that the cpSSR markers of *V. unguiculata* could reveal a relatively high level of genetic diversity in both *V. unguiculata* and *P. vulgaris* germplasm. These markers can be used to investigate genetic diversity and evolution in *V. unguiculata* and *P. vulgaris*.

LITERATURE CITED

Angior, S. A., D. Rau, M. Rodriguez, G. Logozzo, F. Desiderio, R. Papa, and G. Attene. 2009. Nuclear and chloroplast microsatellite diversity in *Phaseolus vulgaris* L. from Sardinia (Italy). *Molecular Breeding* 23: 413–429.

Badiane, F. A., B. S. Gowda, N. Cissé, D. Douf, O. Sadio, and M. P. Timko. 2012. Genetic relationship of cowpea (*Vigna unguiculata*) varieties from Senegal based on SSR markers. *Genetics and Molecular Research* 11: 292–304.

Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. *American Journal of Human Genetics* 32: 314–331.

Citadin, C. T., A. B. Ibrahim, and F. J. Aragão. 2011. Genetic engineering in cowpea (*Vigna unguiculata*): History, status and prospects. *GM Crops* 2: 144–149.

Desiderio, F., E. Bitocchi, E. Bellucci, D. Rau, M. Rodriguez, G. Attene, R. Papa, and L. Nanni. 2013. Chloroplast microsatellite diversity in *Phaseolus vulgaris*. *Frontiers in Plant Science* 3: 312.

Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

Li, Q., and J. M. Wan. 2005. SSRHunter: Development of a local searching software for SSR sites. *Hereditas* 27: 808–810 (in Chinese).

Muchero, W., J. D. Ehlers, T. J. Close, and P. A. Roberts. 2009. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea (*Vigna unguiculata* (L.) Walp.). *Theoretical and Applied Genetics* 118: 849–863.

Peakall, R., and P. E. Smouse. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Resources* 6: 288–295.

Provan, J., W. Powell, and P. M. Hollingsworth. 2001. Chloroplast microsatellites: New tools for studies in plant ecology and evolution. *Trends in Ecology & Evolution* 16: 142–147.

Rozen, S., and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], *Methods in molecular biology*, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Xu, P., X. Wu, B. Wang, Y. Liu, D. Qin, J. D. Ehlers, T. J. Close, et al. 2010. Development and polymorphism of *Vigna unguiculata* ssp. *unguiculata* microsatellite markers used for phylogenetic analysis in asparagus bean (*Vigna unguiculata* ssp. *sesquipedalis* (L.) Verdc.). *Molecular Breeding* 25: 675–684.
APPENDIX 1. Voucher information for legume species used for the cpSSR polymorphism study. All vouchers are deposited at the Hubei Province Engineering Research Center of Legume Plants, Wuhan, China.

Species	Voucher accession no.	Country of origin/source
Phaseolus vulgaris		
	B48	China
	C-1	China
	C-2	China
	C-3	China
	C-4	China
	C-6	China
	C-7	China
	C-8	China
	C-11	China
	C-12	China
	(13*20)-2	China
	(13*20)-5	China
	(13*20)-10	China
	(13*20)-7	China
	(13*20)-1	China
	(13*20)-9	China
	(13*20)-4	China
	(1*7)-1	China
	(1*7)-2	China
	(1*7)-7	China
	(1*7)-9	China
	(1*7)-10	China
	(1*7)-3	China
	(3*10)-4	China
	(3*10)-5	China
	(3*10)-6	China
	(3*10)-7	China
	(3*10)-8	China
	(3*10)-9	China
	B28	China
	B30	China
	B32	United States
	B34	China
	B35	China
	B36	China
	B37	China
	B39	China
	B42	China
	J2	United States
	J3	United States
	J5	United States
	J7	United States
	J9	Africa
	J11	Mexico
	J13	Germany
	B3	Japan
Vigna unguiculata		
	B28	China
	B30	China
	B32	United States
	B34	China
	B35	China
	B36	China
	B37	China
	B39	China
	B42	China
	J2	United States
	J3	United States
	J5	United States
	J7	United States
	J9	Africa
	J11	Mexico
	J13	Germany
	B3	Japan