Cryptosporidium animal species in Iran: a systematic review and meta-analysis

Mousa Motavalli Haghi¹, Zohreh Khorshidvand¹, Salman Khazaei², Faezeh Foroughi-Parvar¹, Hossein Sarmadian³, Nastaran Barati⁴, Fariborz Etemadifar¹ and Reza Ghasemikhah⁵*

Abstract

Background: Cryptosporidiosis is an acute and short-term infection which can lead to severe diarrhea (intestinal cryptosporidiosis) associated with a persistent cough in the host with immune system defect. This systematic review and meta-analysis was conducted to estimate the prevalence of animal Cryptosporidium species and the corresponding epidemiological aspects in Iran.

Methods: In this study, all original research articles relating to the animal cryptosporidiosis in Iran were collected from reliable databases using keywords. A meta-analysis was conducted separately for each subgroup, and heterogeneity among the studies was performed using the Q and I² tests. Furthermore, it should be noticed that the significance level in the statistical analysis with the Comprehensive Meta-analysis software was considered to be less than 0.05. Finally, meta-analysis results were shown in forest plot with a 95% CI.

Results: In total, 4795 studies were included in the initial screening. Duplicated or non-original studies and the ones which did not meet our considered criteria were excluded from the list. Out of the 100 articles included in our first list for the meta-analysis, 40, 16, 13, 10, 9, 7, and 5 were done on cattle and calves, birds, dogs, sheep, rodents, camels, and horses, respectively. The prevalence rate of cryptosporidiosis among the birds, horses, rodents, camels, dogs, cattle, and sheep in Iran was estimated to be 7.5%, 19.5%, 20.8%, 8.4%, 4.9%, 14.4%, and 9.1%, respectively.

Conclusion: The different Cryptosporidium species have been found in different regions of Iran. Geographical region, climate, and domestic animals are considered as factors responsible for animal cryptosporidiosis prevalence in the area. Moreover, this parasite is zoonotic which causes disease in animals as well as humans which can result in economic loss.

Keywords: Cryptosporidium, Intestinal parasites, Animal, Systematic review, Iran

Introduction

Intestinal parasites are considered an important public health problem in humans and animals in developing and low-income countries [1–3]. Cryptosporidium is one of the most common intestinal protozoan parasites which is located in the phylum of Apicomplexa and causes cryptosporidiosis [2]. Cryptosporidium is spread easily in the environment due to its simple transmission via contaminated water, air, and dust. Cryptosporidiosis is considered as a major economic problem in many countries including Iran, and there are annually numerous reports of this infection in immunocompromised and young children [2–5]. Different methods have been used to detect the protozoan parasite including the molecular diagnostic method which is considered one of the most useful diagnostic tools.

This method has identified up to 30 species and more than 50 genotypes of Cryptosporidium [6–8]. Different species of Cryptosporidium have been...
reported in various hosts including birds, horses, cattle, sheep, camels, rodents, and dogs. *Cryptosporidium parvum*, *C. hominis*, *C. canis*, *C. felis*, *C. meleagridis*, and *C. muris* were distinguished from gastrointestinal diseases as well as diarrhea in humans [9]. However, the infection typically occurs in a short-term and acute form in immunocompromised and HIV-positive individuals. In these cases, it tends to remain in the lower intestine for up to 6 weeks with severe diarrhea and persistent cough [9]. This protozoan could develop its life cycle in one host without the requirement of other animals as intermediate or reservoir hosts [9, 10]. Despite the many studies which were conducted in Iran on investigating the prevalence of cryptosporidiosis in different animal hosts, these data have not shown the overall prevalence of animals in Iran. Since cryptosporidiosis causes irreversible economic damages to domestic animals, critical screening programs and epidemiological aspects should be considered by authorities. This systematic review and meta-analysis was conducted to estimate the prevalence of animal *Cryptosporidium* species and their epidemiological aspects in Iran.

Materials and methods

Study protocol

The present systematic review focused on the estimates of the prevalence of animal *Cryptosporidium* species according to the PRISMA guidelines for systematic review and meta-analysis [11] (Supplementary 1).

Search strategy

In order to select the suitable articles for this study, all records since 1991 up to February 2018 were investigated using seven international databases in English including PubMed, Web of Science, Scopus, Science Direct, and Google Scholar search engine as well as national databases in Persian including Magiran (http://www.magiran.com/) and Scientific Information Database (SID) (http://www.sid.ir/). Furthermore, references of each article were screened manually, and the authors were contacted for additional references.

The databases screening was performed using the following keywords: prevalence, *Cryptosporidium*, cryptosporidiosis, animal *Cryptosporidium*, *Cryptosporidium* species, *C. parvum*, *C. hominis*, animal, cattle, calf, sheep, goat, camel, horse, rodent, bird, chicken, epidemiology, Iran, serology, PCR, and molecular (Box 1).

Box 1 Search strategy for MEDLINE (Mesh, Medical Subject Headings)
1: Prevalence [Text Word] OR Prevalence [Mesh Term]
2: Epidemiology [Text Word] OR Epidemiology [Mesh Term]
3: Cryptosporidium [Text Word] OR Cryptosporidium [Mesh Terms]
4: Animal [Text Word] OR Animal [Mesh Term]
5: Cattle or Calf or Sheep or Goat or Camel or Horse or Rodent or Bird or Chicken
6: Iran
7: Serology [Text Word] OR Serology [Mesh Term]
8: PCR [Text Word] OR PCR [Mesh Term]
9: Microscopic [Text Word] OR Microscopic [Mesh Term]
10: Meta-analysis [Text Word] OR Meta-analysis [Mesh Terms]
11: 1 AND 2 AND 3 AND 4 AND 5 AND 6 AND 7

Eligibility criteria

All original descriptive studies which investigated the prevalence of *Cryptosporidium* in animals in Iran, both in English and Persian, were included in this study. Duplicates, qualitative studies, review articles, case reports, case series, and studies out of Iran or those performed on humans were excluded. Finally, articles with epidemiological parameters of interest were selected, and a total of 100 collected articles fulfilled the considered criteria.

Quality assessment

The scoring system based on the 8-item modified Newcastle Ottawa Scale (NOS) for non-randomized studies was used for assessing the quality of the studies. In this system, each question has a score between 0 and 1, and the maximum point summation is 9. Studies with point summation 5 or less, 6–7, and 8–9 were considered low, moderate, and high quality, respectively [12].

Screening and data extraction

All records were evaluated based on their title and abstract and according to the inclusion and exclusion criteria by two researchers (MM and NB) independently. The kappa index showed an agreement of 91% between the findings of two researchers. The full-text version of the papers was obtained through library resources and online databases. Finally, the difference between records among the researchers was corrected by re-examining the articles. The agreement was reached by group discussion with a third researcher (SK).

Data extraction was conducted independently by two researchers (MM and NB) and imported to the prepared form. Data including authors, year of study, publication year, kind of animal, geographical area of the
study, number of examined, number of positive, prevalence rate, and type of host were extracted from articles.

Quality assessment studies
The methodological quality of the studies was examined based on the guidelines of the Newcastle and Ottawa Statements [12]. This guideline sets the criteria for selecting people to study, comparing and accepting them, as well as exposure and consequences where a maximum of 9 stars can be allocated to each study. Studies with 7 stars or more are classified as high-quality studies, and studies with 6 stars and less are considered as low-quality studies. Investigating the probability of an error in the results of the studies is performed separately by two researchers. The disagreement between the parties is resolved through negotiations.

Data analysis
The meta-analysis method was adopted to a 95% confidence interval (CI) in order to assess the pooled prevalence of Cryptosporidium infection in animals using the random effect model. Various subgroup analyses were separately conducted based on animal type and the associated species. Finally, meta-analysis results were displayed in forest plot (reported as effect estimates (ES) with a 95% CI). We also performed a sensitivity analysis to verify the stability of the data. In order to assess the sensitivity analysis, the effect estimate was estimated irrespective of one study at a time, and the robustness of the pooled estimate was assessed. Heterogeneity was calculated among the studies by the Q and I^2 tests [6, 8]. Cochran’s Q test (Q statistic, $p < 0.10$) showed statistically significant heterogeneity, and I^2 statistic ($I^2 > 50\%$) indicates a large heterogeneity. Statistical analysis and data analysis were performed using the second version of the Comprehensive Meta-analysis software. The significance level was considered to be less than 0.05.

Results
Description of studies
In total, 4795 studies were collected in the initial screenings from the published articles and their references in
First author	Publication year	Province	Animal	Samples	Positive samples	Prevalence (%)	Species	Laboratory method
----------------------	------------------	----------------	--------	---------	------------------	----------------	Adamsoni, parvum, bovis	Microscopic
Nouri [13]	1991	Lorestan	Sheep	276	37	13.4	Cryptosporidium spp.	Microscopic
Rezaiean [14]	1993	Tehran	Sheep	510	26	5.1	Cryptosporidium spp.	Microscopic
Fasihi Harandi [15]	2006	Kerman	Sheep	434	60	13.8	Cryptosporidium spp.	Microscopic
Vahedi [16]	2008	Mazandaran	Lamb	708	29	4.1	Cryptosporidium spp.	Microscopic
Heidari [17]	2012	Hamadan	Sheep	220	19	8.6	Cryptosporidium spp.	Microscopic
Khezri [18]	2013	Kurdistan	Lamb	850	87	10.2	Cryptosporidium spp.	Microscopic
Gharekhani [19]	2013	Hamedan Esfahan, Yazd Fars, Bushehr Mazandaran	Sheep	1749	198	11.3	Cryptosporidium spp.	Microscopic
Shafigeian [20]	2014	Lorestan	Sheep	345	20	5.8	Cryptosporidium spp.	Microscopic
Sadeghi [21]	2015	Kurdistan	Sheep	180	11	6.1	Cryptosporidium spp.	Microscopic
Dalimi [6]	2017	Tehran	Sheep	1300	22	1.7	C. andersoni, parvum, bovis	Nested-PCR & RFLP
Radfar [22]	2006	Kerman	Calf	291	63	21.6	Cryptosporidium spp.	Microscopic
Maleki [23]	2006	Lorestan	Cattle	400	70	17.5	Cryptosporidium spp.	Microscopic
Parsa [24]	2007	Azerbaijan	Cattle	300	16	5.3	C. andersoni	Microscopic
Azami [25]	2007	Isfahan	Cattle	480	30	6.3	Cryptosporidium spp.	Microscopic
Azizi [26]	2007	Chaharmahal	Calf	400	72	18	Cryptosporidium spp.	Microscopic
Yakhchali [27]	2007	Kurdistan	Cattle	260	103	39.6	Cryptosporidium spp.	Microscopic
Keshavarz [28]	2008	Qazvin	Cattle	272	51	18.8	C. andersoni, parvum, bovis	PCR-RFLP
Mohamadi [29]	2008	Aradab	Calf	107	14	13.1	C. andersoni	Nested PCR & RFLP
		Ardab	Cattle	107	5	4.7	C. parvum	Nested PCR & RFLP
Hassanpour [30]	2008	Azerbaijan	Calf	482	31	6.4	Cryptosporidium spp.	Microscopic
Fotouhi [31]	2008	Kerman	Cattle	412	78	18.9	C. andersoni, parvum	Microscopic
Vahedi [16]	2008	Mazandaran	Calf	713	28	3.9	Cryptosporidium spp.	Microscopic
Shayan [32]	2008	Tehran	Cattle	173	64	37	Cryptosporidium spp.	Microscopic
Davoudi [33]	2009	Azerbaijan	Calf	50	7	14	Cryptosporidium spp.	Microscopic
			Rat	40	80			
Pirestani [34]	2009	Tehran	Calf	573	69	12	Cryptosporidium spp.	Microscopic
Ranjbar [35]	2009	Mazandaran	Calf	150	11	7.3	Cryptosporidium spp.	Microscopic
Fallah [36]	2009	Kurdistan	Calf	412	35	8.5	Cryptosporidium spp.	Microscopic
Baghban [37]	2009	Kohkiliuyeh	Calf	80	37	46.3	Cryptosporidium spp.	Microscopic
Nourmohammadzadeh [38]	2010	Azerbaijan	Calf	500	207	41.4	Cryptosporidium spp.	Microscopic
Safavi Afshari [39]	2010	Khorasan	Calf	112	82	73.2	Cryptosporidium spp.	Microscopic
Ranjbar [40]	2011	Tehran	Calf	200	35	17.5	Cryptosporidium spp.	Microscopic
Changizi [41]	2011	Semnan	Calf	200	21	10.5	C. ranae	Microscopic
Bairami [42]	2011	Tehran	Cattle	100	30	30	Cryptosporidium spp.	PCR
Heidarnegadi [43]	2011	Khuzestan	Cattle	45	29	64.4	Cryptosporidium spp.	Microscopic
Ranjbar [44]	2013	Khorasan	Calf	400	10	5.2	Cryptosporidium spp.	Microscopic
Ghadrdeh [45]	2011	Semnan	Calf	50	8	16	Cryptosporidium spp.	Microscopic
Heidari [46]	2012	Hamadan	Cattle	477	76	15.9	Cryptosporidium spp.	Microscopic
Ranjbar [47]	2012	Khorasan	Calf	170	19	11.2	Cryptosporidium spp.	Microscopic
First author	Publication year	Province	Animal	Samples	Positive samples	Prevalence (%)	Species	Laboratory method
Jafari [48]	2012	Hamedan	Calf	195	25	12.8	Cryptosporidium spp.	Microscopic
Asadpour [49]	2013	Khorasan	Calf	300	45	15	C. parvum	PCR-RFLP
Mirzai [50]	2013	Azerbaijan	Cattle	246	55	22.4	C. andersoni, C. parvum	Microscopic
Dalimi [51]	2013	Tehran	Cattle	940	23	2.4	C. andersoni	Nested PCR
Shafieyan [20]	2014	Lorestan	Cattle	430	39	9.1	Cryptosporidium spp.	Microscopic
Mojarad [52]	2014	Qazvin	Cattle	158	26	16.5	Cryptosporidium spp.	Microscopic
Bahrami [53]	2014	Khuzestan	Calf	90	41	45.6	Cryptosporidium spp.	Microscopic
Mahami okouei [54]	2014	Ilam	Cattle	217	8	3.7	C. parvum	Nested PCR&RFLP
Mirzaghavami [55]	2015	Tehran	Cattle	50	12	24	Cryptosporidium spp.	Microscopic
Saki [1]	2017	Kermanshah	Cattle	240	5	2.1	C. parvum	Nested PCR&RFLP
Mosallanejad [56]	2010	Khuzestan	Dog	93	4	4.3	C. parvum	ELISA
Kake khani [57]	2011	Ilam	Dog	112	8	7.1	Cryptosporidium spp.	Microscopic
Heidari [17]	2012	Hamadan	Dog	210	8	3.8	Cryptosporidium spp.	Microscopic
Badrooj [58]	2012	Shiraz	Dog	29	0	1.7	Cryptosporidium spp.	PCR
Beirovmand [59]	2012	Khorasan	Dog	77	4	5.2	Cryptosporidium spp.	Microscopic
Mirzai [60]	2013	Kerman	Dog	548	11	2	Cryptosporidium spp.	Microscopic
Gharekhani [61]	2014	Hamedan	Dog	210	8	3.8	Cryptosporidium spp.	Microscopic
Arzamani [62]	2016	Khorasan	Dog	32	1	3.1	Cryptosporidium spp.	Microscopic
Tavalla [63]	2017	Khuzestan	Dog	350	43	12.3	Cryptosporidium spp.	PCR
Mohaghegh [64]	2017	Kermanshah	Dog	301	72	23.9	Cryptosporidium spp.	Microscopic
Ranjbar [9]	2018	Isfahan	Dog	140	3	2.1	C. parvum	PCR
Borji [65]	2009	Khorasan	Camel	306	6	2	Cryptosporidium spp.	Microscopic
Behzadi [66]	2009	Isfahan	Camel	103	39	37.9	Cryptosporidium spp.	Microscopic
Nazifi [67]	2009	Hormozgan	Camel	65	11	16.9	Cryptosporidium spp.	Microscopic
Sazmand [68]	2011	Yazd	Camel	300	61	20.3	Cryptosporidium spp.	Microscopic
Yakhchali [69]	2012	Azerbaijan	Camel	170	17	10	Cryptosporidium spp.	Microscopic
Radfar [70]	2012	Kerman	Camel	85	2	2.4	C. parvum	ELISA
Shahraki [71]	2015	Sistan	Camel	184	1	0.5	C. parvum	ELISA
Hamedi [72]	2003	Hormozgan	Rat	63	11	17.5	Cryptosporidium spp.	Microscopic
Shirazi [73]	2009	Azerbaijan	Rat	50	37	74	Cryptosporidium spp.	Microscopic
Davoudi [32]	2010	Azerbaijan	Rat	50	40	80	Cryptosporidium spp.	Microscopic
Bahrami [74]	2012	Tehran	Rat	77	21	27.3	C. parvum	PCR-RFLP
Borji [75]	2013	Khorasan	Hamster	100	44	44	Cryptosporidium spp.	Microscopic
Mirzaghaevami [56]	2015	Tehran	Rat	180	23	12.8	Cryptosporidium spp.	Microscopic
Saki [1]	2016	Khuzestan	Rodent	100	3	3	C. parvum	Nested PCR&RFLP
Valipour [76]	2016	Khuzestan	Rat	42	3	7.1	Cryptosporidium spp.	Microscopic
Moheballi [77]	2017	Azerbaijan	Rodent	204	1	0.5	Cryptosporidium spp.	Microscopic
Banani [78]	2000	Fars	Chicken	1522	125	8.2	C. bailey	ELISA
Mirzai [79]	2008	Kerman	Pigeon	400	10	2.5	Cryptosporidium spp.	Microscopic
Behzadi [67]	2009	Isfahan	Ostrich	75	21	28	Cryptosporidium spp.	Microscopic
Table 1 Baseline characteristics of included studies (Continued)

First author	Publication year	Province	Animal	Samples	Positive samples	Prevalence (%)	Species	Laboratory method
Norolahi Fard	2010	Khorasan	Pigeon	200	5	2.5	Cryptosporidium spp.	Microscopic
Shemshadi	2010	Semnan	Broiler	240	57	23.8	Cryptosporidium spp.	Microscopic
Haghbin	2010	Mazandaran	Broiler	300	39	13	Cryptosporidium spp.	Microscopic
Radfar	2011	Khorasan	Pigeon	102	3	2.9	Cryptosporidium spp.	Microscopic
Heidarnegadi	2011	Khuzestan	Turkey	22	11	50	Cryptosporidium spp.	Microscopic
Heidari	2012	Hamadan	Poultry	200	5	2.5	Cryptosporidium spp.	Microscopic
Hamidinejat	2014	Lorestan	Chicken	1000	7	0.7	C. bailey	PCR-RFLP
Hashemzade	2014	Azerbaijan	Bird	400	36	9	Cryptosporidium spp.	Microscopic
Hashemzade	2014	Azerbaijan	Poultry	400	21	5.3	Cryptosporidium spp.	Microscopic
Mirzaghamvani	2015	Tehran	Pigeon	40	1	2.5	Cryptosporidium spp.	Microscopic
Shemshadi	2016	Rasht	Duck	30	5	16.7	C. bailey	Microscopic
Soltanaiyar	2016	Khuzestan	Turkey	200	4	2	Cryptosporidium spp.	Microscopic
Larki	2017	Khuzestan	Duck	41	11	26.8	Cryptosporidium spp.	Microscopic
Naghibi	2002	Khorasan	Horse	300	80	26.7	Cryptosporidium spp.	Microscopic
Tavassoli	2005	Azerbaijan	Horse	221	35	15.8	Cryptosporidium spp.	Microscopic
Minian	2010	Tehran	Horse	200	50	25	Cryptosporidium spp.	Microscopic
Heidari	2012	Hamedan	Horse	158	20	12.7	Cryptosporidium spp.	Microscopic
Ghadrdran	2012	Khuzestan	Horse	100	18	18	Cryptosporidium spp.	Microscopic

Fig. 2 Forest plot diagram showing the prevalence rate of Cryptosporidium infection in birds of Iran
the screened databases up to February 2018. Specifically, 62, 124, 174, 62, 543, 10, and 3820 studies collected from PubMed, Web of Science, Scopus, Scientific Information Database, Magiran, Science Direct, and Google Scholar, respectively. A total of 1933 duplicated records and 5 studies which were not original articles (i.e., letter, commentary, review) were screened out. Regarding the relevance of the title and abstract to the purpose of the study, 2857 irrelevant studies were excluded. Accordingly, 2757 studies were retrieved for further assessment. Altogether, 100 articles were selected for the meta-analysis study. The display process and literature search results were presented respectively in Fig. 1 and Table 1.

Within these 100 articles, 40, 16, 13, 10, 9, 7, and 5 studies were performed on cattle, birds, dogs, sheep, rodents, camels, and horses, respectively. The most frequent studies were performed on cattle and the least ones on horses. Considering the various projects in searching cryptosporidiosis on cattle in Iran, the distribution of positive cases relating to cattle is presented in Fig. 9. The quality assessment of studies using the guideline of the Newcastle Ottawa Scale showed that 27%, 65%, and 8% of the studies have low, medium, and high quality, respectively.

Table 1

Study name	Event rate	Lower limit	Upper limit	p-Value
Naghibi (2002)	0.267	0.220	0.320	0.000
Tavassoli (2005)	0.158	0.116	0.213	0.000
Mirian (2010)	0.250	0.195	0.315	0.000
Heidari (2012)	0.127	0.083	0.188	0.000
Ghadrdan mashhadi (2012)	0.180	0.116	0.268	0.000

Table 1

Study name	Event rate	Lower limit	Upper limit	p-Value
Hamedi (2003)	0.175	0.089	0.288	0.000
Shirazi (2009)	0.740	0.602	0.843	0.001
Davoudi (2010)	0.800	0.667	0.889	0.000
Bahrani (2012)	0.273	0.185	0.382	0.000
Borji (2013)	0.440	0.346	0.538	0.231
Mirzaghavami (2015)	0.128	0.086	0.185	0.000
Saki (2016)	0.030	0.010	0.089	0.000
Valipour Nourooz (2016)	0.071	0.023	0.199	0.000
Mohebali (2017)	0.005	0.001	0.034	0.000

Fig. 3 Forest plot diagram showing the prevalence rate of Cryptosporidium infection in horses of Iran

Fig. 4 Forest plot diagram showing the prevalence rate of Cryptosporidium infection in rodents of Iran
Main analysis

The prevalence rate of cryptosporidiosis within a 27-year period for birds, horses, rodents, camels, dogs, cattle, and sheep in Iran using the random effect model was estimated to be 7.5% (95%, CI = 4.7%, 11.9%), 19.5% (95%, CI = 14.6%, 25.6%), 20.8% (95%, CI = 9.1–40.7%), 8.4% (95%, CI = 3.8%, 17.8%), 4.9% (95%, CI = 2.6%, 8.8%), 14.4% (95%, CI = 11%, 18.6%), and 9.1% (95%, CI = 8.4%, 9.9%), respectively. The forest plot diagrams of the current study are shown in Figs. 2, 3, 4, 5, 6, 7, and 8.

Fig. 5 Forest plot diagram showing the prevalence rate of Cryptosporidium infection in camels of Iran

Fig. 6 Forest plot diagram showing the prevalence rate of Cryptosporidium infection in dogs of Iran
A wide variation was observed in the prevalence estimations among the various studies. The Q statistic, df, and I^2 were as follows: 26.63, 15, and 43.74% for birds; 15.15, 8, and 47.18% for rodents; 11.15, 6, and 46.17% for camels; 58.85, 43, and 26.93% for cattle; and 16.64, 10, and 39.93% for sheep, respectively. Low heterogeneity was reported in studies which were conducted on horses as well as the ones on dogs. The statistic factors (Q statistic, df, and I^2) were 3.86, 4, 0.00% for horses and 6.07, 12, and 0.00% for dogs.

The prevalence rate of Cryptosporidium infection in cattle is shown in Fig. 9. The most positive cases of cryptosporidiosis were reported in cattle of West Azerbaijan, Tehran, Khuzestan, Chaharmahal and Bakhtiari, Kohgiluyeh and Boyer-Ahmad, and Kerman provinces. Considerable positivity rates of cryptosporidiosis in cattle were identified in Razavi Khorasan, South Khorasan, Semnan, Hamadan, Alborz, and East Azerbaijan provinces. There were no positive reports of cryptosporidiosis in cattle in other provinces.

Discussion
Cryptosporidiosis is one of the most important zoonotic diseases which is reported in humans and animals with a worldwide distribution in more than 106 countries and especially in developing countries [91, 92]. To the best of our knowledge, this is the first systematic review and meta-analyses on the prevalence of animal cryptosporidiosis in Iran.

The present study showed that the average prevalence rate of cryptosporidiosis in birds was 7.5% in Iran. Additionally, the prevalence rate of cryptosporidiosis in
animals in Ahvaz, southwestern of Iran was reported as 50% [86] while it was shown that in Gilan, north of Iran, this rate was 17% [84]. In a study by Jasim and Marhoon, it has shown that in Iraq, which is a neighboring region of Iran, the cryptosporidiosis prevalence rate in wild and domestic birds was 58.1% [93]. Even though this region is near the southwest of Iran, the prevalence was higher than in Iran. Moreover, a prevalence of 49% was shown in Mexico [94], and in Brazil, 76% of birds were infected by Cryptosporidium [95]. Changes in the prevalence seen in various reports indicate that the probability of transmitting the parasite is higher among animals living together on farms and next to each other compared to other studies that have examined individual specimens.

Preventive efforts by Iranian authorities related to awareness of zoonotic diseases, control of stray dogs, and a low population of pet dogs have increased the possibility of transmission of the disease from livestock [96]. On the one hand, the stray dogs are the largest group of dogs in both rural and urban areas in Iran which usually become infected by roaming in human neighborhoods and feeding on contaminated residues. On the other hand, domestic dogs are not restricted to the limited area of houses or farms. Stray dogs are allowed to wander around, so it increases the risk of zoonotic infections in rural habitats. In this study, the overall prevalence of cryptosporidiosis between dogs was found to be 4.9% in Iran. There are various reports of cryptosporidiosis prevalence in the different geographical regions of Iran. Mohaghegh et al. reported a prevalence of 21.7% and 25.4% of cryptosporidiosis respectively in domestic and stray dogs of Kermanshah [61]. Furthermore, the 12.3% prevalence rate of cryptosporidiosis in dogs was observed in Ahvaz [60]. These results are higher than the data which were obtained in other regions of Iran, specifically 5% in Chenaran, northeast of Iran [56]; 7% in Ilam [97]; 2% in Kerman, southeast of Iran [98]; 2.9% in Urmia, northwest of Iran [99]; 2.14% in Isfahan, center of Iran [62]; and 3.8% in Hamadan, west of Iran [17]. The high prevalence of cryptosporidiosis in some areas, for instance, Kermanshah Province, indicated that humans are at serious risk of Cryptosporidium infection. Furthermore, the infection can spread vastly and cause severe problems in the community.

Epidemiological studies on cryptosporidiosis infection indicated that the prevalence of Cryptosporidium species in dogs is very different in various countries changing from 0 to 52.7%. These differences might be attributed to several factors, such as geographical area, sample size, keeping a dog, correlation with other hosts (such as goat, sheep, horse, cattle, and pig), different species of Cryptosporidium, and sampling procedures as well as diagnostic methods [100, 101]. The current results imply that the prevalence rate of cryptosporidiosis in Iran is higher than in countries such as the Czech Republic with 1.4% [102], Thailand with 2.1% [103], Brazil with 2.4% [104], Japan with 3.9% [105], and Spain with 4.1% [106], but lower than in Nigeria with 18.5% [107] and Romania with 52.7% [108].

Rodents could be potential reservoir hosts for zoonotic cryptosporidiosis. During extensive epidemiological studies that have been performed throughout the world, infection in rodents was highly varied from 7.6% in
Maryland [109] to 63% in United Kingdom [110]. Other studies showed different statistic in different countries. Specifically, 8.2% in northern Australia [111], 11/5% in China [112], 24.3% in Italy [113], 25.8% in Philippines [114], and 32.8% in the United States of America [115] were reported. The average prevalence rate of crypto-sporidiosis in rodents in Iran was estimated as 20.8% in this study. Similar studies in different geographical regions of Iran showed diverse range of prevalence. The frequency of rodent’s cryptosporidiosis in Meshgin shahr, Tehran, Shooshtar, and Ahvaz was 0.5% [75], 27.3% [71], 7.1% [74], and 3% [1], respectively. In the parasite investigation of rodents of Mashhad, none resulted to be were contaminated (0%) [72].

The average prevalence of cryptosporidiosis in sheep was found as 9.1%. Prevalence of cryptosporidiosis was reported as 1.69%, 5.8%, 6.1% and 8.6% in Tehran [20], Lorestan [18], Sanandaj [19] and Hamadan [15], respectively. Majewska et al found similar results in the west-central region of Poland (10.1%) [116] but lower rates were detected in Australia (24.5%) [117], and China (4.8%) [118].

The prevalence rate of cryptosporidiosis in cattle was 1.5% in Japan [119], 35.7% in Vietnam [120], 20.6% in

Fig. 9 Incidence of Cryptosporidium infection in the Iranian cattle in different provinces [2]
Turkey [121], 40.6% in Canada [122], and 40.6% in the USA [123].

However, according to this systematic review and meta-analysis, the prevalence of cryptosporidiosis in cattle and calves was 14.4% in Iran, and the prevalence rate in various geographical regions was as follows: 2.1% in Ahvaz [73], 9.07% in Lorestan [18], 16.45% in Qazvin [26], 22.3% in the city of Urmia [48], and 28.3% in the city of Mashhad [47]. Furthermore, our study showed that the prevalence rate of cryptosporidiosis in camels and horses was 8.4% and 19.5%, respectively.

It was suggested in this study that the distribution of Cryptosporidium differs among geographical regions. Therefore, the study location might be one of the most determinant factors in cryptosporidiosis distribution. The highest prevalence rate (50%) of cryptosporidiosis was observed in Khuzestan Province [86]. This high prevalence might be attributed to the high temperature and humidity of the southwestern regions of Iran as well as the people’s lifestyle, who have a high level of seafood consumption compared to other regions. Additionally, the immigration of birds to the south of Khuzestan Province may transmit parasite protozoan infection.

Conclusion

The relatively high prevalence of cryptosporidiosis infection among animals in Iran, mostly among sheep, cattle, and calves, shows the enzootic status of cryptosporidiosis in the investigated areas and may be a threat to the inhabitants. Our data offer important information about the epidemiology of cryptosporidiosis among animals in Iran, which could be useful for managing and controlling programs for the disease. Further investigation and monitoring will be required to expand the surveillance and control policies in order to reduce the prevalence of Cryptosporidiosis among livestock and consequently decrease the economic damages and public health hazards in Iran.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s41182-020-00278-9.

Additional file 1. PRISMA Checklist.

Abbreviations

HIV: Human immunodeficiency viruses; CI: Confidence interval

Acknowledgements

Not applicable.

Authors’ contributions

This study was done by RG, ZK, SK, FFP, HS, NB, FE, and MWH. RG and MWH participated in the design of the study. Data collection was done by RG, FFP, and NB. Interpretation and manuscript preparation were conducted by MWH and RG. HS, RG, and MWH participated in the data editing. SK performed the statistical analysis. FE and ZK performed the coordination and helped with the drafting of the manuscript. The authors read and approved the final version of the manuscript.

Funding

Not funding

Availability of data and materials

Input data for the analyses are available from the corresponding author on request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. 2. Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran. 3. Department of Infectious Disease, School of Medicine, Arak University of Medical Sciences, Arak, Iran. 4. Research and Technology, Hamadan University of Medical Sciences, Hamadan, Iran. 5. Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.

Received: 17 May 2020 Accepted: 29 October 2020

Published online: 05 December 2020

References

1. Saki J, Foroutan-Rad M, Asadpour M. Molecular characterization of cryptosporidium spp. in wild rodents of southwestern Iran using 18S rRNA gene nested-PCR-RFLP and sequencing techniques. J Trop Med. 2016;2016:1–6.
2. Mousavi-Hasanzadeh M, Sarmadian H, Ghasemikhah R, et al. Evaluation of toxoplasma gondii infection in western Iran: seroepidemiology and risk factors analysis. Trop Med Health. 2020;48:35.
3. Ghasemikhah R, Tabatabaieef MA, Sharitazadeh SA, Shahbazi A, Hazratian T. A PCR-based molecular detection of strongylodes stercoralis human stool samples from Tabriz city, Iran. Sci Pharm. 2017;85(2):17.
4. Mor SM, Tzipori S. Cryptosporidiosis in children in sub-Saharan Africa: a lingering challenge. Clin Infect Dis. 2008;47(7):915–21.
5. Tzipori S, Widner G. A hundred-year retrospective on cryptosporidiosis. Trends Parasitol. 2008;24(4):184–9.
6. Dalmi A, Tahvildar F. Molecular study on Cryptosporidium andersoni strains isolated from sheep based on 185 rRNA gene. Infect Epidemiol Microbiol. 2017;3(3):100–3.
7. Miran S, Asadi M, Ferdowsi H, Rezakhani A. A survey on horse cryptosporidial infection in Tehran Province. Arch Razi Inst. 2010;65(1):45–7.
8. Haghi MM, Etemadifar F, Fakhkar M, Teshnizi SH, Soosraei M, Shokri A, et al. Status of babesiosis among domestic herbivores in Iran: a systematic review and meta-analysis. Parasitol Res. 2017;116(4):101–9.
9. Ranjarb R, Mirhendi H, Izadi M, Behrouz B, Mohammadi MR. Molecular identification of cryptosporidium spp. in Iranian dogs using seminested PCR: a first report. Vector Borne Zoonotic Dis. 2018;18(2):96–100.
10. Soosraei M, Haghi MM, Etemadifar F, Fakhkar M, Teshnizi SH, Hezarjaribi HZ, et al. Status of theileriosis among herbivores in Iran: a systematic review and meta-analysis. Vet World. 2018;11(3):332.
11. Moher D, Altman DG, Liberati A, Tetzlaff J. PRISMA statement. Epidemiology. 2011;1(22):128.
12. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. Title of subordinate document. In: The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ontario: Ottawa Hospital Research Institute. 2009. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 15 Jan 2009.
13. Nouri M, Karami M. Asymptomatic cryptosporidiosis in nomadic shepherds and their sheep. J Inf Secur. 1991;23(3):331–3.
14. Rezaeian M, Shahmoradi A, Dalimi A. Cryptosporidium in sheep as a source for human infection. Med J Islam Repub Iran. 1993;6(4):273–4.
15. Fasihi Harandi M, Fetoohi AR. Cryptosporidium infection of sheep and goats in Kerman: epidemiology and risk factor analysis. J VetRes. 2008;63(1):47–51.

16. Vahedi N, Arl A, Saadat M. Primary research on gastro-intestinal cryptosporidium incidence rate in lambs and calves in Amol city. Iran J Vet Res. 2009;9(4):101–3.

17. Heidari H, Gharakhani J. Study of cryptosporidium infection in the livestock (cattle, sheep, dogs, fowls) and humans, in Hamadan city and its suburbs during 2006-2011. Avicenna J Clinical Med. 2012;19(3):67–74.

18. Khezri M, Khezri O. The prevalence of cryptosporidium spp. in lambs and goat kids in Kurdistan, Iran. Vet World. 2013;6(2):974.

19. Gharakhani J, Heidari H, Youssefi M. Prevalence of cryptosporidium infection in sheep in Iran. Turkie Parazitol Des. 2014;38(2):122.

20. Shahfeyan H, Alborzi A, Hamidnejad H, Tabandeh MR, Hajikolaei MR. Prevalence of cryptosporidium spp. infection in ruminants of Lorestan Province, Iran. J Parasit Dis. 2016;40(4):1165–9.

21. Sadeghi Dehkhordi Z, Partoandazan A, Abdolmaleki N. Epidemiology of cryptosporidiosis in sheep of Sanandaj city. Zoonoses Res. 2016;12(1):25–9.

22. Radfar M, Moalai M, Baghbannejad A. Prevalence of cryptosporidium spp. oocysts in dairy calves in Kerman, southeastern Iran. UVR. 2006;7(2):81–4.

23. Maleki S, Nayerzadeh H. A survey on prevalence rate of cryptosporidiosis among diarrheic and healthy cattle and calves in Khoram-Abad, Iran. J Vet Res. 2008;26(6):423–6.

24. Parsa A. Prevalence of Cryptosporidium muris-like (andersoni) infection in cattle and buffalo slaughtered in Tabriz area abattoir. Large Animal Clin Sci Res. 2007;12(4):95–5 J. Vet. Sci.

25. Azimi M. Prevalence of cryptosporidium infection in cattle in Isfahan, Iran. J Eukaryot Microbiol. 2007;54(1):100–2.

26. Azizi Hamidezma PM, Batol D, Hosien R. Prevalence of Cryptosporidium parvum parasites in dairy calves less than one year old. Iran J Vet Med. 2008;3(4):96–8.

27. Yakhchali M, Gholami E. Prevalence of Eimeria and cryptosporidium spp in cattle of Sanandaj city (Kurdistan province), Iran. J Pajouhesh Sazandegi. 2008;9:81–7.

28. Keshavarz A, Haghighi A, Athari A, Kazemi B, Abadi A, Mojarad EN. Prevalence and molecular characterization of bovine cryptosporidium in Qazvin province, Iran. Vet Parasitol. 2009;160(3-4):316–8.

29. Mohammadi Ghalehbin B, Arzanlou M, Fallah E, Kazemi A, Asgharzadeh M. Molecular identification of cryptosporidium sp. in the cattle stool samples in Ardabil city, northwestern Iran. J Anim Vet Adv. 2008;7(3):246–50.

30. Hassanpour A. Prevalence of cryptosporidiosis in calves and humans to be in contact them in Tabriz area in Iran. Int J Infect Dis. 2008;12:e126.

31. Fotouhi Ardakani R, Fasihi Harandi M, Solayman Banai S, Kamyabi H, Roshani K, Eshaghi M, et al. Molecular identification of cryptosporidium sp. using new primers from 18S ribosomal RNA. Iran J Vet Res. 2011;14(3):1.

32. Ahmad P, Bahrami S, Alborzi A, Molayan PH, Purbaram S, Mousavi B. Prevalence of cryptosporidium parvum parasites in dairy calves less than one year old. Iran J Vet Res. 2012;13(2):67–89.

33. Jafari R, Maghsood AH, Fallah M. Prevalence of cryptosporidium infection in sheep in Iran. Turkiye Parazitol Derg. 2014;38(3):172.

34. Jafari MA, Ranbar BS. Study on the infection rate to cryptosporidium in suckling calves of Ghuichan district. Iran J Vet Res. 2013;9(3):62–8.

35. Jafari MA, Ranbar BS. Investigating the possible role of protozoa (cryptosporidium, giardia coccidia) in diarrheal calves of Garmqom. J. First National Congress of Dairy, Dairy and Related Industries; 2012. http://meditech.ir/conference/National Congress.of.dairy.cattle. Accessed 5 Dec 2019.

36. Heydari Heydar GJ. Frequency of cryptosporidium infection in human, animal and poultry in Hamadan and suburbs over the years 2007-2012. J Res Health Sci. 2013;19(3):67–74.

37. Ranbar-Bahador S, Tori S. Infection to cryptosporidium in diarrheal calves: a provincial study in southern Khorasan. J Res Vet Res. 2013;68(1):13–9.

38. Jafari M, Naghshood AH, Fallah M. Prevalence of cryptosporidium infection among livestock and humans in contact with livestock in Hamadan district, Iran. 2012. J Res Health Sci. 2012;2(1):86–9.

39. Asadpour M, Razmi G, Mohammadi G, Naghsh A. Prevalence and molecular identification of cryptosporidium spp. in pre-weaned dairy calves in Mashtaghad area, Khorasan Razavi Province, Iran. Iran J Parasitol. 2013;8(4):601.

40. Mirzai Y, Yakhchali M, Mardani K. Cryptosporidium parvum and Cryptosporidium andersoni infection in naturally infected cattle of Northwest Iran. Vet Res Forum. 2014;15(1):355–60.

41. Dalimi A, Tahvildar F, Kazemi B. Molecular identification of Cryptosporidium andersoni in Shahraie calves. Vet Research Biol. 2015;28(2):24–30.

42. Mojard N, Nejad MR, Keshavarz A, Taghipour N, Lamuki RM, Salehi A, et al. Molecular characterization of bovine cryptosporidium using cryptosporidium oocyst wall protein (COPWP) gene. J Paramed Sci. 2014; 5(3):17–20.

43. Bahrami S, Alborzi R, Molayan PH, Purbaram S, Mousavi B. Prevalence of cryptosporidium spp. infection and its association with diarrhea in buffalo calves in Khuzestan, a southwestern province of Iran. Buffalo Bull. 2014;33(4):393–3.

44. Oskouei MM, Fallah E, Ahmadi M, Safaiyan A, Bakhtiyari S, Nasenfar R, et al. Molecular and parasitological study of cryptosporidium isolates from cattle in Ilam, west of Iran. J Iran Parasitol. 2014;13(3):435.

45. Mirzaghavami M, Sadraei J, Forouzandeh M. Detection of cryptosporidium spp. in free ranging animals of Tehran, Iran. J Parasitol Dis. 2016;40(4):1528–31.

46. Mosallanejad B, Najafabadi M, Jafari M, et al. Antigenic detection of Cryptosporidium parvum in urban and rural dogs in Ahvaz district, southwestern Iran. Iran J Vet Res. 2010;11(3):273–8.

47. Kakekhani S, Bahrami AM, Ahmady Asabchin S, Doosti A. A study on protozoan infections (giardia, Entamoeba, Isospora and cryptosporidium) in stray dogs in Ilam Province. JVC. 2011;5(3):1325–30.

48. Badrooj A, Asgari G, Hatam G. Molecular survey on cryptosporidium in stray dogs and cats in Shiraz city during 2011-2012. 2012. http://elibsums.ac.ir/cgi-bin/koha/opac-main.pl. Accessed 20 Dec 2019.

49. Beirmwand M, Ahklighi L, Massom SHF, Meamar AR, Motelavian A, Oormazdi H, et al. Prevalence of zoonotic intestinal parasites in domestic and stray dogs in a rural area of Iran. Prev Vet Med. 2013;109(1-2):162–7.

50. Mirzaei M, Focardi M. Coproscopy survey of gastrointestinal parasites in owned dogs of Kerman city, Iran. Vet Ital. 2013;49(3):209–13.

51. Ghareikhani J. Study on gastrointestinal zoonotic parasites in pet dogs in Western Iran. Turkie Parazitol Des. 2014;38(3):172.

52. Atharmani K, Roushani S, Momdizadeh-Mojarrad A, Sadeghi S, Rostami M, Raeger S. Identification of zoonotic parasites isolated from stray dogs in Bojnurd County located in north-east of Iran. NBM. 2016;4(4):185–8.

53. Tavalla M, Kord E, Abdizadeh R, Asgarian F. Molecular study of cryptosporidium spp. in dogs from southwest of Iran. Jundishapur J Microbiol. 2017;10(4):e4312.
87. Shemshadi B, Ranjbar-bahadori S, Delfan-abazari M. Prevalence and intensity of Cryptosporidium infection in wild brown rats (Rattus norvegicus) in the UK. Epidemiol Infect. 2005;133(1):207–9.

88. Soltanialvar Masood GZ. Frequency of infection of native turkeys with Cryptosporidium parasites in Dezful city. The first National Conference on common diseases between humans and animals. AHV. 2017;3:1–7.

89. Lahr S, Alborzi A, Chegini R, Amiri A. A preliminary survey on Cryptosporidium infection in humans and pets in Mashhad, Iran. Arch Razi Inst. 2002;54:101–6.

90. Tavasoli M, Sodagar S, Soilan A. A survey on Cryptosporidium infection in horse in Urmia area, northwestern Iran. Iran J Vet Res. 2007;8(1):186–90.

91. Ghadrān A, Hamdaniet H, Alizadehnia P. A survey on frequency of equine Cryptosporidium in Ahvaz Vet Clin Pathol Tabriz. 2013;6(4):1723–9.

92. Jazim G, Marhoon A. Prevalence and molecular analysis of Cryptosporidium spp isolated from wild and domestic birds. Acta Parasitol. 2015;60(5):655–70.

93. Kuhn RC, Rock CM, Oshima KH. Occurrence of Cryptosporidium and Giardia in wild ducks along the Rio Grande river valley in southern New Mexico. Appl Environ Microbiol. 2002;68(1):161–5.

94. Bornfim T, Gomes R, Huber F, Couto M. The importance of poultry in environmental dissemination of Cryptosporidium spp. Open Vet Sci J. 2013; 7(1):12–7.

95. Traub RJ, Robertson ID, Irwin PJ, Mencke N, Thompson RA. Canine gastrointestinal parasitic zoones in India. Trends Parasitol. 2005;21(1):142–8.

96. Bahrami F, Doosti A, Nahavandian H, Noorian A, Ashtchin S. Epidemiological study of gastro-intestinal parasites in stray dogs and cats. Aust J Basic Appl Sci. 2011;5:1944–8.

97. Miresaii M, Fooladi M. Prevalence of intestinal helminthes in owned dogs in Kerman city, Iran. Asian Pac J Trop Med. 2012;5(9):735–7.

98. Tavassoli M, Javadi S, Soltanalinjed F, Rosouli S, Emrinfar N. Gastrointestinal parasites of pet dogs in Urmia city. Vet J Pajouhesh Sanandegi. 2010;84(18–24).

99. Simpson J, Burnie A, Mills R, Scott J, Lindsay D. Prevalence of giardia and Cryptosporidium infection in dogs in Edinburgh. Vet Rec. 1998;132(17):445.

100. Batchelor D, Tzannes S, Graham P, Wastling J, Pinchbeck G, German A. Detection of endoparasites with zoonotic potential in dogs with gastrointestinal disease in the UK. Transbound Emerg Dis. 2008;55(2):99–104.

101. Dubná S, Langrová I, Jankovská I, Vadlejch J, Pekár S, et al. The prevalence of intestinal parasites in dogs from Prague, rural areas, and shelters of the Czech Republic. Vet Parasitol. 2007;145(1–2):120–8.

102. Koopman J, Mori H, Thammamonthijarem N, Prasertbun R, Pintong A-R, Popruk S, et al. Molecular identification of Cryptosporidium spp. in seagulls, pigeons, dogs, and cats in Thailand. Parasite. 2014;21:52.

103. Huber F, Bornfim T, Gomes R. Comparison between natural infection by Cryptosporidium spp. on dogs and cats living in the west side of the municipality of Rio de Janeiro. Vet Parasitol. 2005;130(1):269–72.

104. Yoshuchi R, Matsubayashi M, Kimata I, Furuya M, Tani H, Sasai K. Survey and molecular characterization of Cryptosporidium and Giardia in companion animal dogs, and stray and domestic cats, in Japan. Vet Parasitol. 2001;104(3–4):313–6.

105. Gil H, Cano L, de Lucio A, Bailo B, de Mingo MH, Cardona GA, et al. Detection and molecular diversity of Giardia duodenalis and Cryptosporidium spp. in sheltered dogs and cats in northern Spain. Infect Genet Evol. 2017;50:62–9.

106. Olabari GM, Maikai BV, Otolorin GR. Prevalence and risk factors associated with faecal shedding of Cryptosporidium oocysts in dogs in the Federal Capital Territory, Abuja, Nigeria. Vet Med Int. 2016;2016:1–7.

107. Titilincu A, Mircean V, Acheneltei D, Cozma V. Prevalence of Cryptosporidium spp. in asymptomatic dogs by ELISA and risk factors associated with infection. Lucrari Stilnific. 2010;43(1–2):127–7.

108. Zhou L, Fayer R, Trout JM, Ryan UM, Schaefer FW, Xiao L. Genotypes of Cryptosporidium species infecting fur-bearing mammals differ from those of species infecting humans. Appl Environ Microbiol. 2004;70(12):7574–7.

109. Webster JP, Macdonald DW. Cryptosporidiosis reservoir in wild brown rats (Rattus norvegicus) in the UK. Epidemiol Infect. 1995;115(1):207–9.

110. Paparini A, Jackson B, Ward S, Young S, Ryan UM. Multiple Cryptosporidium genotypes detected in wild black rats (Rattus rattus) from northern Australia. Exp Parasitol. 2012;131(4):404–12.

111. Liu C, Zhang L, Wang R, Jian F, Zhang S, Ning C, et al. Cryptosporidium spp. in wild, laboratory, and pet rodents in China: prevalence and molecular characterization. Appl Environ Microbiol. 2009;75(24):7692–9.

112. Kvč M, Hofmannová L, Bertolino S, Wauters L, Tosi G, Modrý D. Natural infection with two genotypes of Cryptosporidium in red squirrels (Sciurus vulgaris) in Italy. Folia Parasitol. 2008;55(5):295.
114. Ng-Hublin JS, Singleton GR, Ryan U. Molecular characterization of cryptosporidium spp. from wild rats and mice from rural communities in the Philippines. Infect Genet Evol. 2013;16:5–12.

115. Feng Y, Alderisio KA, Yang W, Blasco LA, Kuhne WG, Nadareski CA, et al. Cryptosporidium genotypes in wildlife from a New York watershed. Appl Environ Microbiol. 2007;73(20):6475–83.

116. Majewska AC, Werner A, Sulima P, Luty T. Prevalence of cryptosporidium in sheep and goats bred on five farms in west-central region of Poland. Vet Parasitol. 2008;154(1-2):19–24.

117. Yang R, Jacobson C, Gordon C, Ryan U. Prevalence and molecular characterization of cryptosporidium and giardia species in pre-weaned sheep in Australia. Vet Parasitol. 2009;161(1-2):19–24.

118. Wang Y, Feng Y, Cui B, Jan F, Ning C, Wang R, et al. Cervine genotype is the major cryptosporidium genotype in sheep in China. Parasitol Res. 2010;106(2):341.

119. Koyama Y, Satoh M, Maekawa K, Hikosaka K, Nakai Y. Isolation of Cryptosporidium andersoni Kawatabi type in a slaughterhouse in the northern island of Japan. Vet Parasitol. 2005;130(3-4):323–6.

120. Nguyen ST, Nguyen DT, Le DQ, Le Hua LN, Van Nguyen T, Honma H, et al. Prevalence and first genetic identification of cryptosporidium spp. in cattle in Central Viet Nam. Vet Parasitol. 2007;150(4):357–61.

121. Sevinc F, Irmak K, MSevinc M. The prevalence of Cryptosporidium parvum infection in the diarrhoeic and non-diarrhoeic calves. Rev Med Vet. 2003;154(5):357–62.

122. Trotz-Williams L, Martin D, Gatei W, Cama V, Peregrine A, Martin S, et al. Genotype and subtype analyses of cryptosporidium isolates from dairy calves and humans in Ontario. Parasitol Res. 2006;99(4):346–52.

123. Fayer R, Santin M, Xiao L. Cryptosporidium bovis n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). J Parasitol. 2005;91:624–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.