Application of built-in adjuvants for epitope-based vaccines

Yao Lei, Furong Zhao, Junjun Shao, Yangfan Li, Shifang Li, Huiyun Chang

1 State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
2 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China

Corresponding Authors: Huiyun Chang, Yongguang Zhang
Email address: changhuiyun@caas.cn, zhangyongguang@caas.cn

Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: 1) pattern recognition receptor (PRR) ligands (i.e., toll-like receptors [TLRs]); 2) virus-like particle (VLP) carrier platforms; 3) bacterial toxin proteins; and 4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles [SAPNs], lipid core peptides [LCPs], and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Application of built-in adjuvants for epitope-based vaccines

Yao Lei1,2, Furong Zhao1,2, Junjun Shao1,2, Yangfan Li1,2, Shifang Li1,2, Huiyun Chang1,2*, Yongguang Zhang1,2*

1. State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.

*Corresponding authors.

Address: Stake Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China

E-mail addresses: changhuiyun@caas.cn; zhangyongguang@caas.cn
ABSTRACT

Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: 1) pattern recognition receptor (PRR) ligands (i.e., toll-like receptors [TLRs]); 2) virus-like particle (VLP) carrier platforms; 3) bacterial toxin proteins; and 4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles [SAPNs], lipid core peptides [LCPs], and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
INTRODUCTION

Vaccination is a major preventive measure designed to establish specific immune defenses (i.e., antibody or cellular immunity) to protect individuals from infectious diseases. In 1796, the British rural doctor, Edward Jenner, conducted a scientific study on the prevention of smallpox in humans and demonstrated that vaccination with vaccinia virus could prevent smallpox, from which the terms vaccinology and immunology originated (Negahdaripour et al., 2017b). Traditional vaccines typically include inactivated or attenuated vaccines derived by reducing the virulence of the pathogen by physical or chemical methods (Skwarczynski & Toth, 2011a; Karch & Burkhard, 2016). Due to the continuous progress of science and technology (i.e., immunology and molecular biology), subunit vaccines based on short, specific pathogen fragments have undergone increased development to compensate for the shortcomings of traditional vaccines, including low biosafety (reversion to virulence), inefficient cultivation of pathogens, and the occurrence of allergies and autoimmunity (Skwarczynski & Toth, 2014). Moreover, epitope-based vaccines play an important role in current vaccine research and exhibit several advantages over conventional vaccines, including high specificity, good safety, ease of production and storage, and stability. As a result of these advantages, epitope-based vaccines have become an area of growing interest in the field of vaccine research (Skwarczynski & Toth, 2014; Hajighahramani et al., 2017; Nezafat et al., 2017; Nezafat et al., 2016).

Since antigenic peptides are easily degraded by proteases in the body, it is difficult for the
receptors expressed on the immune cells to identify antigen epitopes, and they do not generate a strong immune response to pathogens. An epitope-based vaccine with a reasonable design is composed of epitope peptide/s, a delivery system, and an adjuvant (Rueckert & Guzman, 2012).

For multi-epitope vaccines, since the traditional carriers and adjuvants are associated with poor efficacy, vaccine designs with built-in adjuvants have been proposed. Therefore, a built-in adjuvant exhibiting both the functions of a transmission system and a traditional adjuvant, is constructed within the vaccine to improve the immunogenicity of epitope peptides by stimulating the innate immune response required for an adaptive immune response. To achieve this goal, the epitopes are regularly fused with adjuvant proteins (e.g., toll-like receptor [TLR] ligands and proteins that can spontaneously assemble into virus-like particles [VLPs]) or displayed on the surface of some particular biomaterials (e.g., liposomes, gold nanoparticles, and poly(lactic-co-glycolic acid) [PLGA]) and the immunogenicity of the epitopes are significantly increased by this immune complex (Chen et al., 2017; Rueda et al., 2017; Kitaoka et al., 2017; Karuturi et al., 2017).

This review primarily introduces the methods for applying built-in adjuvants in the design of epitope-based vaccines, including a few new delivery systems (e.g., dendrimers, self-assembled peptide nanoparticles [SAPNs], and hyperbranched polyglycerol [hbPG]) (Busseron et al., 2013; Glaffig et al., 2015; Indelicato et al., 2017).

SURVEY METHODOLOGY

In this paper, we reviewed articles related to the built-in adjuvants of epitope-based vaccines. All references in this review paper were retrieved using search engines, such as PubMed, Google Scholar. Keywords, including epitope vaccine, built-in adjuvants, biological carriers, and
nanoparticles were used to search for relevant references.

MAJOR IMMUNOLOGICAL CONCEPTS OF EPITOPE-BASED SUBUNIT VACCINES

Epitope-based subunit vaccines are typically composed of multiple epitopes derived from one or more pathogenic microorganisms (Azmi et al., 2014; Nezafat et al., 2017). These epitopes are generally composed of B cell epitopes, cytotoxic T cell (CTL) epitopes, and helper T cell (Th) epitopes. B cells identify thymus-dependent antigen (TD-Ag) through B-cell receptors (BCRs) expressed on their surface. The activation of B cells and the transfer of signals following activation requires two signals: 1) the BCR-specific receptor directly identifies B cell epitopes of the pathogen; and 2) the interaction between multiple co-stimulators on the surface of Th cells and B cells. In addition, activated B cells expressing a variety of cytokine receptors can proliferate in response to cytokines secreted by activated Th cells. The interaction between the specific T cell receptor (TCR) and the antigen peptide-major histocompatibility complex (pMHC) is known as antigen recognition, which is the first signal required for T cell activation. The interaction between many of the co-stimulatory molecules expressed on the surface of T cells and antigen presentation cells (APCs) (e.g., dendritic cells [DCs]) facilitates the complete activation of T cells. Activated Th1 cells secrete a variety of cytokines (e.g., IL-2, TNF-β, and IFN-γ) some of which (e.g., IL-2) induce non-professional or professional APCs to express co-stimulatory molecules that provide the second signal for the activation of CTLs (Moyle & Toth, 2013; Skwarczynski & Toth, 2014). These cytokines can also promote the activation and proliferation of Th1, Th2, CTL, and natural killer (NK) cells, and expand the cellular immune response. Th2 cells further promote the
proliferation and differentiation of B cells and assist the humoral immune response by producing
cytokines (e.g., IL-4, IL-5, IL-10, and IL-13) and establishing CD40-CD40L connections with B
cells (Fig. 1). However, the individual specific epitopes of pathogenic microorganisms are often
unable to induce adequate CTL and antibody responses due to a lack of appropriately activated Th
cells and pathogen-derived molecules. Therefore, when designing epitope-based vaccines,
researchers typically concatenate antigen-specific B cell or CTL epitopes with Th-cell epitopes
with appropriate flexible linkers (e.g., GPGPG and EAAK) (Wang et al., 2018; Wang et al., 2011;
Nezafat et al., 2015).

Innate immune cells (e.g., monocyte-macrophages and DCs) recognize different pathogens
through pattern recognition receptors (PRRs). Their antigen-presenting and cytokine regulation
effects initiate adaptive immune responses, influence the intensity and type of an adaptive immune
response, and participate in the generation of immunological memory. In the design of epitope-
based vaccines, researchers generally regard the application of built-in adjuvants as an important
platform used to provide suitable Th-cell epitopes for specific pathogens or pathogen related
molecular patterns (PAMPs) to activate the innate immune response. Thus, some molecular
adjuvants or carriers with no infectious and toxic components can be used as built-in adjuvants to
facilitate the presentation of pathogen epitopes to the immune system (Moyle & Toth, 2013;
Foged, 2011; Shirbaghaee & Bolhassani, 2016).

TOLL-LIKE RECEPTOR (TLR) AGONISTS AS BUILT-IN ADJUVANTS
The development of immunotherapeutic vaccines based on T cell immune responses is essential
for the prevention and control of cancer and viral diseases. To achieve this goal, researchers must
identify a built-in adjuvant that can stimulate strong Th1 immune responses (Felzmann et al., 2002). One of the strategies for designing epitope-based vaccines is to use TLR ligands as adjuvants that can polarize CD4+ Th cells and induce CTL responses (van der Burg et al., 2006).

TLRs are a type of PRR that can both induce an innate immune response and activate the adaptive immune system following PAMP activation (Allison et al., 2011). To date, researchers have discovered 10 TLRs, termed TLR1 – TLR10 (Table 1). TLR ligands are expressed by different microorganisms; for example, bacteria harbor a variety of TLR ligands, including TLR2 (macrophage-activating lipoprotein 2 [MALP2]); TLR4 (e.g., LPS, HSP, and HBHA), TLR5 (e.g., flagellin), and TLR9 (CpG DNA) ligands (Zhu et al., 2010). The role of TLR10 is to inhibit rather than activate the immune system, and its ligands are poorly understood (Jiang et al., 2016). The extracellular portion of the TLR is activated after binding to an appropriate ligand, and the conformational changes cause convergence of downstream molecules, which triggers associated signaling pathways and induces the up-regulation and activation of cytokines, chemokines, and other costimulatory factors (Dowling & DELLACASAGRANDE, 2016) (Fig. 2). Thus, TLR ligands are promising candidates for the development of novel built-in vaccine adjuvants, which can enhance the immunogenicity of epitope-based vaccines. According to the different biological characteristics of various TLRs, appropriate PAMPs are often selected as the molecular binding proteins of epitope peptides to be used as immune adjuvants (Basto & Leitao, 2014). In this review, several TLR ligands that are often used as built-in adjuvants for epitope vaccines are introduced.

Lipopeptides

As a lipopeptide derived from mycoplasma and a potential agonist of TLR2/6 heterodimers in DCs
(Takeda et al., 2018), macrophage-activating lipopeptide-2 (MALP-2) is the most widely studied TLR2 adjuvant and has attracted great interest as a novel and efficient built-in adjuvant for vaccines against infectious diseases (McDonald et al., 2014; Muhlradt et al., 1997). MALP-2 has been used in phase I and II trials involving pancreatic cancer patients (Schmidt et al., 2007). McDonald et al. constructed a variety of self-adjuvating MUC1-MALP-2 conjugate vaccine candidates and demonstrated that the vaccine candidates could induce a high level of humoral immunity without the participation of an external adjuvant and Th epitopes in animal models (McDonald et al., 2014). Fibroblast stimulating lipopeptide-1 (FSL-1; Pam2CGDKHPKSF) and synthetic lipopeptide, Pam2CSK4, derived from the LP44 lipoprotein of *Mycoplasma salivarium* can activate macrophages as a TLR2/TLR6 ligand (Kurkjian et al., 2017; Liu et al., 2016). Liu et al. used FSL-1 as a built-in adjuvant and synthesized a new type of self-adjuvating (glyco) lipopeptide cancer vaccine (Liu et al., 2016). Recently, the TLR2/6 ligand, Pam2CSK4, was used as a Th2 polarizing adjuvant in the study of *Leishmania* major and *Brugia malayi* murine vaccines (Halliday et al., 2016). In addition, Pam2CSK4 is also used as an adjuvant for major outer membrane protein (MOMP) antigen of *Chlamydia trachomatis* to stimulate a robust immune response and induce effective protection against *Chlamydia muridarum* (Cheng et al., 2014). The Braun *Escherichia coli* lipoprotein is a prototype composed of the three acylated lipoproteins from the outer membrane of Gram-negative bacteria, and some of its synthetic lipopeptides act as TLR2 stimulators (e.g., Pam3CSK4) (Basto & Leitao, 2014; Arai et al., 2018). Cai et al. designed and synthesized an HIV-1 glycopeptide immunogen containing a V3 glycan-dependent neutralizing epitope, a universal T helper epitope (P30), and a lipopeptide (Pam3CSK4). After administering
the glycopeptide immunogen to rabbits without any additional adjuvants, a glycan-dependent antibody can be produced in a short period of time, and the induced serum antibodies can recognize a wide-range of HIV-1 gp120s across different clades (Cai et al., 2017). Pam2Cys and Pam3Cys are also molecular adjuvants used in vaccines (Zaman & Toth, 2013; McDonald et al., 2015; Nalla et al., 2015) (Table 2; Fig.3). Synthetic lipopeptides and their analogues play an important role in the study of built-in adjuvants for epitope-based vaccines. However, compared with mature protein carriers for conjugated vaccines, TLR ligands (e.g., lipopeptides and monophosphoryl lipidA (MPLA) derivatives) are still in their early stages as potential vaccine carriers (Li & Guo, 2018). However, since their interaction with TLRs has been thoroughly studied and understood, the prospective development of epitope-based vaccines using TLR ligands as built-in adjuvants is foreseeable. At present, one of the major challenges is obtaining a sufficient number of vaccines for clinical research since the structure of these lipopeptides, as well as their synthesis and binding to target antigens is highly complex. Semi-total and aminoalkyl glucosaminide 4-phosphates (AGPs) synthesis are important methods that can be used to solve this problem (Li & Guo, 2018; Persing et al., 2002). AGPs have a less-complex structure that allows for synthesis to be easier, more efficient, and elicit immunostimulatory activity in preclinical studies. For example, a Hepatitis B vaccine based on AGP has been approved for use in Argentina (Dupont et al., 2006).

A second challenge is how to make full use of all aspects of the multicomponent vaccine structure through reasonable considerations in vaccine design, which can be optimized through structure-activity relationship (SAR) analysis and molecular modeling (Jin et al., 2007).

Heat shock proteins (HSPs)
Heat shock proteins (HSPs) are a type of cellular companion protein produced by biological cells that are stimulated by environmental stressors and can be divided into several families, each of which is composed of different members (Juwono & Martinus, 2016; Craig, 2018; Pearl et al., 2008; Tang et al., 2005; Bolhassani & Rafati, 2008) (Table 3). HSPs can be internalized by APCs through receptor-mediated endocytosis and can also promote the activity of some cytokines, chemokines, and co-stimulatory molecules through the NF-κB signaling pathway, since HSPs are the molecular chaperones of the antigen epitopes in the APC-MHC I delivery pathway (Robert, 2003; Zachova et al., 2016). HSPs affect the immune system in different ways because they can act as carriers of antigens, molecular chaperones, and ligands for related receptors (e.g., TLR4) (Moyle, 2017). Among the HSPs, HSP60 obtained from Gram-negative bacteria has the ability to stimulate cells of both the innate and acquired immune system, functions as a linker between immune cells, and coordinates immunological activities. Therefore, HSP60 appears to be a promising potential component of subunit vaccines designed to provide protection from infections with Gram-negative bacteria (Bajzert et al., 2018). In addition, some researchers have confirmed murine HSP110 (mHSP110) to be a biological adjuvant that significantly enhances the immune response of C57BL/6 mice to the E7\textsubscript{49-57} or E7\textsubscript{11-20} epitopes of h-2d restricted human papillomavirus (HPV) (Ding et al., 2013). In addition, the Gp96-peptide complex is considered to be a highly effective stimulator of MHC I-mediated antigen presentation; this strategy makes full use of the built-in adjuvant function and antigen transfer ability of Gp96 to induce cytotoxic immunity against widespread viral or tumor antigens (Strbo et al., 2013).

Mycobacterial HSP70 (mHSP70) is widely used as an intramolecular adjuvant for epitope-
based vaccines, and the carboxyl terminal polypeptide binding area (HSP70 aa 359 – 610) of mHSP70 has a stimulating epitope that can combine with the CD40 receptor to stimulate the production of Th1-polarizing cytokines (e.g., IL-12, TNF-α, and NO) to induce DC maturation (Wang et al., 2002; Suzue et al., 1997; Suzue & Young, 1996). Compared with the T cell epitopes of other proteins, the HSP70 T cell epitope can be efficiently processed by APCs, so that the polypeptide binding region of HSP70 has higher affinity with MHC molecules (Basu et al., 2001; Castellino et al., 2000). The single HSP70, which does not fuse with other exogenous epitopes, only induces a very weak cellular and humoral immune response. Some studies have shown that removing the amino end of HSP70 (ATPase domain) and retaining only its carboxyl end (polypeptide binding region) as an antigen can produce a large amount of IL-12, TNF-α, NO, and chemokines (Fu et al., 2013). In contrast, neither the ATPase domain nor native HSP70 can induce such a powerful immune response (Cheng et al., 2014; Li et al., 2006; Ge et al., 2006). For example, the fusion of the hantavirus (HTNV) glycoprotein (GP) and nucleocapsid protein (NP) with the carboxyl end of HSP70 can induce a more specific immune response (Cheng et al., 2014). The major antigenic segment of the Japanese encephalitis virus E protein can fuse with the amino terminus of the peptide binding domain of HSP70, which can induce a more effective immune response than the major antigenic segment of the E protein alone (Ge et al., 2006). HSP70s and HSP90s have been also found to act as carriers of tumor-derived peptides, adjuvants for antigen presentation, and can target the innate immune system by inducing anti-tumor immune responses (Shevtsov & Multhoff, 2016).

Heparin-binding hemagglutinin (HBHA)
With regards to *Mycobacterium (M.) tuberculosis* antigens, several *Mycobacterium* lipid and glycolipid antigens (e.g., mycolic acid, lipoarabinomannan, glucose monomycolate [GMM]) can be recognized by specific T cells by the CD1 antigen-presentation pathway in humans, suggesting the possible application of *M. tuberculosis* lipid molecules in subunit vaccine preparation (Moody et al., 2000). Dascher et al. developed a vaccine which included lipids from *M. tuberculosis* that were incorporated into liposomes with an adjuvant; the studies using a guinea pig aerosol tuberculosis challenge model demonstrated that lipid antigens play an important role in the immune response to tuberculosis infection, potentially through the production of CD1-restricted T cells (Dascher et al., 2003). In addition, the *M. tuberculosis* 6-kilodalton early secreted antigenic target protein (ESAT-6) is considered to be an important mediator in mycobacterial virulence, has strong antigenicity, and can induce a protective Th1 immune response against *M. tuberculosis* (Pandey et al., 2018). Khader et al. vaccinated mice with an ESAT-6 peptide (amino acids 1 – 20 of ESAT-6) in an adjuvant composed of monophosphoryl lipid A (MPL), trehalose dicorynomycolate (TDM), and dimethyl dioctadecylammonium bromide (DDA). The vaccination was found to induce antigen-specific T cells that produced IFN-γ, T cells that persisted in the central lymphoid organs, and antigen-specific IL-17-producing T cells that persisted in the lung (Khader et al., 2007). Recently, heparin-binding hemagglutinin (HBHA), a component of *Mycobacterium (M.) tuberculosis*, has been closely investigated for its strong immune potential, which can stimulate the migration of DCs and promote the expression of a variety of surface molecules (e.g., CD40, CD80, and CD86), MHC I and MHC II molecules, as well as inflammatory cytokines (e.g., IL-6, IL-12, IL-1β, and TNF-α) in a TLR4-dependent manner (Jung et al., 2011;
Eraghi et al., 2017). For example, HBHA can induce immunological protection against *M. tuberculosis* by stimulating the production of IFN-γ, IL-2, and IL-17-coexpressing CD4+ T cells (Fukui et al., 2015). As an effective immune adjuvant, HBHA can induce a strong Th1 cell immune response and plays an important role in the research of multi-epitope vaccines for immunotherapy (i.e., tumor vaccines). It has also been reported that the amino acid sequence of the epitope for the MAP1611 immunization region of the *Mycobacterium avium* subsp., paratuberculosis (MAP), is connected to the conservative amino acid sequence of HBHA. In addition, this recombinant subunit vaccine exhibited good immunogenicity and was identified to have a no allergenicity as predicted by employing a hybrid approach using the AlgPred program. (Rana et al., 2014; Rana & Akhter, 2016). Some researchers have designed a multi-epitope vaccine that includes CTL epitopes of Wilms tumor-1 (WT-1) and HPV E7 antigens, helper T lymphocyte (HTL) epitopes of the tetanus toxin fragment C (TTFrC) and HLA PADRE, and HBHA as the intramolecular adjuvant of epitope-based vaccines and is connected with appropriate linkers to enhance the effect of this recombinant multiple-epitope vaccine against cancer (Nezafat et al., 2014; Nezafat et al., 2015). As a built-in adjuvant with a powerful immune enhancement effect, HBHA is rarely used in epitope vaccine research and is worthy of further study in the development of antiviral and cancer epitope-based vaccines.

Bacterial flagellin

Flagellins are TLR5 and NOD receptor ligands that can activate both innate and acquired immune cells (Huleatt et al., 2008; Wang et al., 2014; Hajam et al., 2017). Both the N- and C- terminals of flagellin are composed of conservative alpha helices that function as TLR5 recognition sites, and
the portion between the N- and C-terminals comprises a highly variable flagellin antigen region (Murthy et al., 2004). It has been found that deletion of part of the highly variable region of flagellin disables the ability of the host to produce antibodies against bacterial flagellum but does not affect its adjuvant activity (Deng et al., 2017). Therefore, researchers typically replace this region with exogenous antigen epitopes (e.g., the HPV prophylactic peptide vaccine) (Nempont et al., 2008; Negahdaripour et al., 2017a). For example, replacing the FliC variable region with the M2e protein of influenza A does not obstruct TLR signaling pathways (Smith et al., 2003; Deng et al., 2017). A truncated flagellin (tFL) with deletion of the hypervariable regions was used as a carrier by chemical conjugation with a malaria antigen M.RCAg-1 (M312), and compared with the physical mixture of M312 and tFL, the conjugates M312-PEG-tFL elicited higher M312-specific antibody titers (Guo et al., 2018). In addition, two HPV epitopes and some universal Th epitopes have been linked to the different flagellin positions via different linkers, and the optimal construction of a multiepitope vaccine was screened using protein structure analysis, modeling, optimization, and an evaluation of immunogenicity (Negahdaripour et al., 2017c). In addition, four copies of the ectodomain of matrix protein 2 (f4M2e) of the influenza A virus, H1, HA2 domain (fHApr8), or H3 HA2 domain (fHAaichi) were used to replace the high immunogenicity region of flagellin, and the fusion proteins were crosslinked with propionate (DTSSP) to form protein nanoparticles, thereby retaining the agonist activity of FliC to TLR5, and ability to assist the epitope protein in stimulating the immune response against influenza A virus (Deng et al., 2017). The combination of flagellin with multiple copies of HPV L2 neutralization epitopes have demonstrated a strong broad spectrum anti-HPV effect without the participation of other adjuvants,
thus demonstrating a significant advantage of this strategy in enhancing the cross-protection of the HPV vaccine (Kalnin et al., 2014; Gambhira et al., 2007; Kalnin et al., 2017). In addition, Ajamian et al. found that inserting the HIV gp41_{607–683} (MPER) into a flagellin-based scaffold could significantly enhance the immunogenicity of gp41_{607–683} in a TLR5-dependent manner and induce strong humoral responses specific to MPER in a mouse model (Ajamian et al., 2018). Various flagellin antigen fusion proteins have been studied in human clinical trials. Furthermore, flagellin is also commonly used as an antigen skeleton of self-assembled peptides nanoparticle (SAPN)-based vaccines (El et al., 2017), for which the associated content is described below.

Outer membrane vesicles (OMVs)

Outer membrane vesicles (OMVs) are naturally secreted on the surface of most gram-negative bacteria, and the vesicle membrane typically consists of lipopolysaccharide (LPS), glycerophospholipids, and outer membrane proteins (OMPs) (Tan et al., 2018). Due to their intact outer membrane and periplasmic contents, OMVs possess good intrinsic stimulation ability and strong immunoreactivity, which can induce strong humoral and cellular immune responses. In addition to research focused on the possibility of using OMVs as candidate antigens for vaccine development, there is growing interest in the application of OMVs as a self-adjuvant for immunostimulatory molecules. This function is mediated by the interaction between the OMV-associated PAMPs and the TLRs expressed on the surface of APCs, thus enhancing the immune response to exogenous antigens (Gnopo et al., 2017). OMVs can also even be used as a mucosal transporter to transport antigens to the mucosal barriers (Jang et al., 2004). In addition, designed glycoengineered OMVs (geOMVs), which can display the O-antigen and surface glycans from...
different bacteria could be used as bacterial vaccine platforms to prevent bacterial infections (Valguarnera & Feldman, 2017). In addition, plasmids can be transported into OMVs to further modify the intracavity content, including LPS functionality and attenuate toxicity (Tan et al., 2018). Hekmat et al. developed a novel HCV therapeutic vaccine candidate, rC/N-NMB OMVs, formulated as a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV as a bipartite antigen accompanied by Neisseria meningitidis serogroup B OMVs (NMB OMVs), has the ability to induce Th1, Th2, and Th17 immune responses. Compared with MF59 and Freund adjuvant, NMB OMVs can significantly increase the level of Th1 immune responses (Hekmat et al., 2018). Liu et al. have demonstrated OMVs from flagellin-deficient S.Typhimurium can serve as an adjuvant when combined with OMPs from different Salmonella serotypes, and enhances the cross-protection capacity of this combined vaccine (Liu et al., 2018). Additionally, novel vaccine adjuvant OMVs have been reported, which can serve as delivery carriers to improve vaccine safety and protective efficacy. ClyA is a 34 kDa pore-forming toxin enriched on OMVs, for which exogenous antigens are fused at the C terminus of ClyA to produce ClyA-antigen fusion proteins on OMVs (Kim et al., 2008). Chen et al. demonstrated that rOMVs carrying ClyA-GFP fusion proteins could induce a high level of anti-GFP IgG titers in mice, which was similar to that of GFP adjuvanted with alum (Chen et al., 2010). Rappazzo et al. immunized mice with ClyA-M2e4xHet OMVs displaying an influenza-derived antigen, M2e4xHet, which was associated with 100% survival following subsequent influenza challenge (Rappazzo et al., 2016). In addition to ClyA, other prospective proteins also have the potential to display an antigen of interest, such as the hemoglobin protease (Hbp) autotransporter platform (Daleke-Schermerhorn...
et al., 2014). Jong et al. introduced a mutation to preserve the integrity of Hbp to avoid cleavage following translocation to the outer membrane (Jong et al., 2014). Kuipers et al. demonstrated that rOMVs displaying the pneumococcal antigens, pneumococcal surface protein A (PspA) and pneumolysin (Ply), by the Hbp system could prevent pneumococcal colonization (Kuipers et al., 2015). Although some obstacles to the development of OMV adjuvants remain (e.g., large number of clinical and preclinical assessments, and limited knowledge of the OMV manufacturing process), we believe that the use of OMVs as an epitope-based vaccine delivery system would also be of great value in controlling all types of pathogen infections due to their comprehensive immune potency, higher safety, and substantial mucosal delivery efficacy (Tan et al., 2018).

In addition, generalized modules for membrane antigens (GMMA) as an outer membrane vesicle technology are outer membrane particles consisting of outer membrane lipids, OMPs, and soluble periplasmic components (Gerke et al., 2015). GMMA are derived from gram-negative bacteria (i.e., Salmonella and Shigella) which are genetically modified (deletion of the tolR gene) to enhance the associated advantages of being cost-effective with high-production yields. Further gene deletions (i.e., the late acyltransferases genes HtrB175 and MsbB) resulted in GMMA with penta-acylated LPS with no possibility of infection (Rossi et al., 2014). Due to the self-adjuvanting properties of GMMA that deliver innate immune signaling through PAMPs (i.e., TLR ligands), many studies have shown that GMMA vaccines can simultaneously deliver surface polysaccharides and OMPs to the immune system and display greater immunogenicity compared to glycoconjugate vaccines (Micoli et al., 2018; MacLennan et al., 2014). Moreover, it has been demonstrated that the GMMA technique can be used as a carrier to display the salmonella
lipopolysaccharide O-antigen to the immune system. It is envisaged that GMMA could also be considered as a built-in adjuvant platform for epitope-based vaccines against pathogens other than gram-negative bacteria. More importantly, clinical trials (currently under way with *Shigella sonnei* GMMA vaccines) are required to further assess the safety and tolerance of this vaccine platform in humans.

Salmonella porin

Salmonella Typhi expresses a variety of porins. While the major S. Typhi OmpC and OmpF porins can be expressed constitutively, the expression of other porins (e.g., OmpS1 and OmpS2) is relatively low in vitro and during potential infection (Perez-Toledo et al., 2017). Both the major and minor S. Typhi porins can effectively activate the innate immune system through the TLR2 and TLR4 signaling pathways, resulting in the increased expression of costimulatory molecules and cytokines in DCs and B cells (Moreno-Eutimio et al., 2013; Cervantes-Barragan et al., 2009).

Due to such immune-activating properties, some of these porins have been used as potential vaccine adjuvants. Pérez-Toledo et al. have shown that the S. Typhi porins, OmpC and OmpF, are multipurpose vaccine adjuvants, which can be used to polarize the T cell response towards a Th1/Th17 profile and enhance the antibody response generated towards T-dependent and T-independent antigens with poor immunogenicity (Perez-Toledo et al., 2017). In addition, Leclerc et al. used malva mosaic virus (MaMV) nanoparticles as a vaccine platform to improve the stability of the M2e peptide of influenza A in conjunction with OmpC purified from Salmonella typhi as an adjuvant; their data demonstrate that OmpC increased the immune response to the M2e peptide and provided protection against a heterosubtypic influenza strain in a mouse model (Leclerc et al.,...
Moreover, Moreno-Eutimio et al. investigated the immunogenic and protective capacities of the OmpS1 and OmpS2 porins and determined that these porins can be potent inducers of the innate immune response, exhibiting adjuvant properties that can promote increased antibody titers and long-term antibody responses when co-immunized with antigens (Moreno-Eutimio et al., 2013).

β-defensin

β-defensins are antimicrobial peptides involved in the innate immune response of the host and are responsible for stimulating innate and adaptive immune responses by recruiting naïve T cells and immature DCs through interactions with corresponding immune receptors (e.g., CCR6 or TLRs) (Narula et al., 2018). Kim et al. have concluded that human β-defensin (HBD) 2 can induce the primary antiviral innate immune response and may also mediate the induction of antigen-specific immune response against a conjugated antigen (Kim et al., 2018). Using immunoinformatic methods, a multi-epitope vaccine for dengue was developed that included Tc and Th cell epitopes with β-defensin included as a molecular adjuvant at the N-terminal of the construct (Ali et al., 2017). Similarly, researchers developed an anti-chikungunya multi-epitope vaccine that included B cell and T cell-binding epitopes and IFN-γ inducing epitopes with β-defensin added as a built-in adjuvant (Narula et al., 2018).

VIRUS-LIKE PARTICLES (VLPs) AS BUILT-IN ADJUVANT PLATFORMS

Hepatitis B virus core antigen (HBcAg)

HBcAg can act both as a Th cell-dependent or Th cell-independent antigen (Roose et al., 2013),
and the Th-priming effects of HBcAg can easily transfer the adaptive response to the inserted related epitopes (Milich et al., 1987). In addition, the nanoscale structure of HBcAg can be more effectively identified and processed by APCs (Lee et al., 2009; Ong et al., 2017). Therefore, HBcAg has been used as a vaccine carrier for several exogenous pathogens (e.g., hepatitis B, C, and E virus, influenza virus, foot-and-mouth disease virus, Human enterovirus 71, coxsackievirus A16, and Chlamydia trachomatis), and the immunogenicity of recombinant HBc-based virus like particle (VLP) vaccines against pathogens has also been verified in animal models (Dai et al., 2016; Su et al., 2013; Zheng et al., 2016; Chu et al., 2016; Zhu et al., 2016; Wu et al., 2017; Jiang et al., 2017). VLPs are the self-assembled structural proteins of most viruses and can stimulate the immune response in the absence of an adjuvant by exposing pathogen epitopes and simulating the structure of natural viruses (Plummer & Manchester, 2011; Yang et al., 2016). In addition, VLPs can stimulate an innate immune response by activating PRRs (e.g., TLRs) (Shirbaghaee & Bolhassani, 2016). In addition, the autoantigen molecules displayed by HBcAg VLPs can escape immune tolerance and produce specific auto-antibodies (Long et al., 2014). Due to these advantages, the HBc is often used as a powerful carrier protein and built-in adjuvant to display exogenous epitopes (Chen et al., 2017; Jiang et al., 2017; Roose et al., 2013; Liang et al., 2018).

In general, researchers will insert pathogen epitopes into the HBcAg major immunogenic region (MIR; HBcAg aa 78 – 82 in the spike tip of HBV), which does not affect the self-assembly of the fusion protein into VLP nanoparticles, to generate immune activation; therefore, antigen epitopes will be presented on the surface of the particles (Wang et al., 2017; Chen et al., 2017) (Fig. 4A).

As the main insertion site of exogenous epitopes, MIR can significantly enhance the
immunogenicity of such epitopes (Dai et al., 2016; Reynolds et al., 2015). Recently, Wu et al. developed a novel vaccine against chickenpox and hand-foot-mouth disease (HFMD) by constructing three VLPs with HBcAg used as a carrier protein, and epitopes derived from varicella-zoster virus (VZV)-gE, EV71 (enterovirus71)-VP1, and EV71-VP2 were displayed by HBcAg. This study also fully demonstrated the significant potential of HBcAg as a carrier protein for epitope vaccines used in multivalent epitope vaccine research (Wu et al., 2017). The tandem core (TC) contains two HBcAg molecules that are connected by the appropriate linker and has two independent MIRs which can individually accommodate multiple exogenous antigens (Fig. 4B). This VLP platform is associated with beneficial prospects for the development of multivalent vaccines (Roose et al., 2013). Alejandro et al. inserted the four conserved antigenic regions of the matrix protein 2 ectodomain and hemagglutinin stalk of an existing influenza A virus (IAV) into the MIR region of TC, thereby constructing a VLP vaccine called Tandiflu1, which can induce the production of cross-protective antibodies (Ramirez et al., 2018).

Hepatitis B virus surface antigen (HBsAg)

The tertiary structure of HBsAg can form a highly conserved hydrophilic loop. Additionally, it has been reported that the existing immunity to HBsAg does not impede the immune response to foreign epitopes carried by HBsAg particles, which is often used as a carrier to insert exogenous antigens into the external hydrophilic loop or the end of the HBsAg N- or C-terminal (Bellier & Klatzmann, 2013). Czarnota et al. inserted a highly conserved epitope (amino acid residues 412 – 425) of the hepatitis C virus (HCV) E2 glycoprotein into the hydrophobic loop of HBsAg, and the chimeric protein was then expressed in an unconventional *Leishmania tarentolae* expression
system and independently assembled into VLPs, which demonstrated high immunogenicity and induced cross-reactive antibodies against HCV (Czarnota et al., 2016). Wei et al. also used HBsAg to display neutralizing HCV epitopes to obtain chimeric HCV-HBV VLPs as a novel strategy for developing a bivalent prophylactic HCV-HBV epitope vaccine (Wei et al., 2018). The envelope protein domain III (EDIII) of dengue viruses (DENV) contains good serotype-specificity and cross-reactive epitopes. Ramasamy et al. fused the EDIII of all four DENV serotypes with four copies of HBsAg and expressed the construct in the *P. pastoris* GS115 strain to obtain a tetravalent VLP vaccine termed DSV4, which has a high immunogenicity and produces effective and persistent neutralizing antibodies against all four DENV serotypes in mice (Ramasamy et al., 2018).

Phage-based VLPs

The over-expression of the single-chain dimer coat proteins of MS2 and PP7 RNA phages in bacteria can spontaneously assemble into recombinant MS2 or PP7 VLPs containing 90 dimer copies and 90 exogenous epitopes. In addition, for the Qβ bacteriophage, 180 copies of single-chain dimer capsid proteins can spontaneously assemble into a VLP; thus, at least 180 exogenous epitopes can be displayed on the surface of a Qβ VLP (Basu et al., 2018). Recent reports have shown that the Qβ bacteriophage contains TLR ligands that can enhance Qβ-VLP-induced T cell-independent and -dependent Ab reactions, including a germinal center (GC) reaction via of TLR/MyD88 signaling in B cells (Tian et al., 2018). This VLP platform which contains no viral genome can be used in the future as a carrier system for the administration of safe vaccines against many pathogens (Pumpens et al., 2016). Basu et al. described potential B cell epitopes located on
the envelope proteins of Zika virus on the surface of a highly immunogenic bacteriophage VLP platform (MS2, PP7, and Qβ), and evaluated the immunogenicity of these VLPs in mice (Basu et al., 2018) Zhai et al. also displayed consensus peptides from HPV L2 and tandem HPV31/16L2 peptides on the surface of bacteriophage MS2 VLPs. These MS2-L2 VLPs can induce high antibody titers in mice and are cost-effective vaccine candidates against HPV; however, HPV vaccines with greater cross-protection should be further evaluated to prevent more types of HPV (Zhai et al., 2017). Recently, Qβ VLPs have been applied as carriers for the development of carbohydrate-based anticancer vaccines (Sungsuwan et al., 2017). Additionally, researchers have developed a size-exclusion chromatography-based purification method for an VLP-based influenza A vaccine derived from the MS2 phage that displays an epitope from the extracellular domain of the influenza A virus matrix 2 protein. Moreover, the purification procedure provides an improved strategy for the future large-scale production of VLP-based epitope vaccines (Lagoutte et al., 2016).

Tobacco Mosaic Virus (TMV)

Tobacco mosaic virus (TMV) is a widely studied and identified filamentous plant virus. TMV particles are hollow with tubular rods (300 nm length × 18 nm diameter) consisting of about 2130 coat protein (CP) subunits encase a single-stranded, plus-sense RNA genome (Culver, 2002). As an antigen carrier, TMV has two important functions: 1) due to the architecture and size of TMV, TMV carrying antigen epitopes is robustly and readily taken up by dendritic cells, leading to the activation of key surface markers (Smith et al., 2007); and 2) TMV also provides adjuvant effects, due to either repetitive antigen displayed on the surfaces of TMV or the presence of non-functional...
viral RNA that is important for inducing cellular-mediated immunity (Banik et al., 2015).

Kemnade et al. demonstrated that TMV is capable of boosting TMV-induced antigen-specific T cell responses, but does not induce neutralizing self-immunity (Kemnade et al., 2014). In addition, since TMV is not a human pathogen, it is intrinsically secure (Liu et al., 2013). These findings further confirm that TMV has great potential as an epitope-based vaccine vector. McCormick et al. fused well-characterized T cell epitopes that provide protection against tumor challenge in mice into a TMV coat protein and demonstrated that C57BL/6 mice inoculated with TMV displayed significantly improved protection against tumor challenge in both the EG.7-Ova and B16 melanoma models (McCormick et al., 2006). Moreover, Zhao et al. reported that when efficient copper (I)-catalyzed azide–alkyne cycloaddition reaction (CuAAC) was performed for the conjugation of the small molecule estriol (E3) onto TMV capsid, TMV can induce a strong and long-term antibody response (Zhao et al., 2015). Furthermore, Banik et al. developed a multivalent subunit vaccine against tularemia using a TMV-based delivery platform and demonstrated TMV can serve as a suitable built-in adjuvant for multiple protective antigens of *F. tularensis*, as well as induce cell-mediated immune responses and long-lasting humoral immunity against tularemia (Banik et al., 2015).

Papaya mosaic virus (PapMV)

As a member of the potexvirus family, papaya mosaic virus (PapMV) displays a flexible rod-like structure composed of 1,400 subunits of the viral coat protein (CP) assembled around a positive-strand RNA (Lacasse et al., 2008). Since PapMV-based VLPs comprised of PapMV CPs assembled around an ssRNA can efficiently trigger an innate immune response, they can be used
as a vaccine adjuvant platform. Following phagocytosis, PapMV-based VLPs can reach the endosome of immune cells and release ssRNA, which engages and activates TLR7 (Therien et al., 2017). The direct fusion of antigenic peptides to the open reading frame (ORF) of the PapMV CP can lead to the formation of chimeric VLPs that can trigger a humoral or CTL response against the fused antigen (Bolduc et al., 2018). Additionally, Carignan et al. have shown that the fusion of a short M2e (sM2e) epitope (nine amino acids) to the N-terminus of the PapMV CP allows for the assembly of highly immunogenic VLPs. This group further demonstrated that an intramuscular injection of PapMV-sM2e VLPs is sufficient to induce a powerful anti-M2e humoral response that protects mice against subsequent challenge with influenza A (Carignan et al., 2015). Similarly, Bolduc et al. have developed a PapMV-based VLP vaccine candidate capable of inducing robust and broad protection against two different influenza A strains (H1N1 and H3N2) (Bolduc et al., 2018). Lacasse et al. have shown that PapMV VLPs carrying the H-2b-restricted dominant p33 CTL epitope from the lymphocytic choriomeningitis virus (LCMV) can induce DC maturation and cross-presentation of the p33 CTL epitope, which triggers a protective antiviral T cell response (Lacasse et al., 2008). Furthermore, Thérien et al. engineered a PapMV-based VLP platform with a SrtA receptor motif and allowed SrtA to attach to the long peptides of the VLPs. This approach was found to be more versatile than the fusion of only small peptides to the ORF of the PapMV CP. Therefore, PapMV nanoparticles with SrtA-conjugated peptide antigens may represent a promising tool in vaccine design against various diseases (Therien et al., 2017).

KEYHOLE LIMPET HEMOCYANIN (KLH) AND BOVINE SERUM ALBUMIN (BSA)

Keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) are easily identified by the
immune system as non-self components, which is useful for enhancing the immunogenicity of small antigens or a low antigen dose. KLH and BSA are easily processed APCs and can recruit Th cells to assist in antigen uptake (Mora et al., 2017). These characteristics of KLH and BSA have promoted their frequent use as epitope carrier proteins. For example, researchers have developed the novel epitope peptide vaccine, Aβ3-10-KLH, by coupling the B cell epitope, Aβ3-10, from amyloid-β peptide (Aβ) with KLH, for the potential treatment and prevention of Alzheimer's disease (AD) (Ding et al., 2017; Ding et al., 2016). In another study, an anti-PCSK9 (proprotein convertase subtilisin/kexin type 9) peptide vaccine using KLH as the carrier protein was shown to produce long-lasting anti-PCSK9 antibodies and is considered to be the primary vaccine for the treatment of dyslipidemia in the future (Kawakami et al., 2018). In addition, a short peptide (UPK3A 65-84) from Uroplakin 3A (UPK3A) covalently coupled with KLH and CpG as adjuvant was found to be an immunotherapeutic vaccine for bladder cancer (Izgi et al., 2015). In addition, BSA is often used as a carrier protein for small antigens in glycoconjugate vaccines (Prasanphanich et al., 2015). For example, Cai et al. combined a synthesized MUC1 glycopeptide with BSA or three different T-helper cell epitopes of TTtox and demonstrated a beneficial effect (Cai et al., 2013). Furthermore, the immune complex formed by coupling the synthetic trisaccharide Galα(1,3)Galβ(1,4)GlcNAcα of Trypanosoma cruzi with BSA as a carrier protein was reported to be a vaccine candidate for Chagas disease (ChD) (Schocker et al., 2016).

BACTERIAL TOXIN PROTEINS

Heat-labile toxins (HLT) and cholera toxin (CT)

Heat-labile toxins (HLTs) are produced by some enterotoxigenic *Escherichia coli* strains and can
be fused with other antigenic proteins to function as an adjuvant (Da et al., 2011; Luiz et al., 2015; Hu et al., 2014) (Table 4). HLTs and cholera toxins (CTs) are highly homologous, consisting of five subunit-Bs and one subunit-A, and are members of the bacterial protein toxin AB5 family. Subunit-A is a toxic subunit, noncovalently bound to the B pentamer and has ADP ribosyltransferase activity, whereas subunit-B is a nontoxic receptor-binding subunit (Lencer et al., 1999). Generally, non-toxic HLTs (e.g., subunit-B and mutant forms of HLT) also act as immune adjuvants to activate DCs, B cells, and T cells, regulate epitope specificity, and improve the immune response (Batista et al., 2014; Rodrigues et al., 2011). The fusion of the HLT B subunit (HLTB) with the linear B cell epitope of the outer membrane protein (OmpC) of *Aeromonas hydrophila* can stimulate the production of neutralizing antibodies against this linear epitope and generate a Th2 type mixed auxiliary T cell immune response (Sharma et al., 2017). The two epitopes of the Zairian Ebola virus GP1 protein, which can be recognized by neutralizing antibodies, were coupled with HLTB protein to form recombinant antigen HLTB-EBOV expressed in plant tissues, and immunizing mice with the recombinant antigen presented by the plant induced a higher level of IgA and IgG responses (Rios-Huerta et al., 2017). The CT subunit-B (CTB) can be used as a powerful adjuvant to generate mucosal immunity due to its strong affinity to the GM1 ganglioside receptor which is primarily located on mucosal epithelial cells (i.e., M cells) (Pinkhasov et al., 2010). The multivalent epitope-based vaccine against *H. pylori*, CWAE, and an anti-atherosclerosis multi-epitope vaccine have been developed using CTB as intramolecular adjuvant (Tourani et al., 2017; Guo et al., 2017).

Diphtheria toxin (DTT)
The carrier protein cross-reacting material 197 (CRM197) is an inactivated and non-toxic form of diphtheria toxin (DTT) created using an enzymatic reaction, and has been successfully applied in many vaccines against infectious diseases because it can effectively combine and present peptides (Caro-Aguilar et al., 2013) (Table 4). Moreover, CRM can rapidly activate CD4+ T cells by generating a multitude of Th1 and Th2 cytokines, thereby promoting the proliferation of B cells and regulating the level of antibody production (Kamboj et al., 2001). Several short B cell epitopes (P4, P6, and P7) on the Her-2/neu protein were combined with the polyepitope peptide, P467, using CRM197 as a carrier protein to conjugate with this complex epitope, demonstrated a strong anti-tumor response (Tobias et al., 2017). The function of DTT is to assist the enzyme active region (C-domain) in passing through the endocytosis membrane, and there are no associated risks when the transmembrane domain of DTT is used as the protein carrier for exogenous antigen (Ladokhin, 2013; Malito et al., 2012). Xu et al. developed a VEGF (vascular endothelial growth factor)-based antigen DTT-VEGF consisting of the receptor-binding domain of VEGF and DTT stimulated neutralizing antibody response and induced type 1 immune response as well as anti-tumor CTLs in mice, and their data demonstrated that DTT is an effective antigen carrier to break immune self-tolerance and DTT-VEGF has potential to be used a promising cancer vaccine (Xu et al., 2017).

In addition, DTT contains four Th cell epitopes (aa 69 – 88, 119 – 138, 129 – 148, and 149 – 168) and the 89 – 96 amino acid residues form a turn-helix-turn structure that is completely exposed to the surface, which may be a potential site for the insertion of exogenous epitopes (Diethelm-Okita et al., 2000). For individuals who have been previously vaccinated with the DTT vaccine, the Th cell epitopes based on the DTT vaccine will induce a rapid CD4+ memory T cell response (Fraser et al., 2013).
et al., 2014). For example, a TNF-α epitope has been coupled to the insertion site of DTT to develop an anti-TNF-α vaccine, DTNF, demonstrating the potential advantage of a DTT-based epitope vaccine against autoimmune diseases (Zhang et al., 2016).

Tetanus toxoid (TT)

Since tetanus toxoid (TT) is a carrier protein possessing multiple CD4+ Th cell epitopes and is associated memory Th subsets, it can be recognized by APCs and presented to CD4+ Th cells (Table 4). As mentioned previously, these Th cells can provide the second signal required for B cell activation (van der Heiden et al., 2017; Da et al., 2017). Recently, it has been reported that a new type of anti-gastrin vaccine using TT as a carrier protein for multiple complex antigens can significantly enhance the immunogenicity of the vaccine (He et al., 2018). Jarząb et al. used tetanus toxoid (TT) as the carrier protein for the several synthetic linear or cyclic OmpC epitope peptides and demonstrated that cyclic peptide conjugated to TT as a potential candidate against shigellosis (Jarzab et al., 2018). Helper epitopes selected from TT fragment C (TTFrC) are typically associated with the target epitope to stimulate a CD4+ T cell response (e.g., anti-brucellosis and anti-atherosclerosis multi-epitope vaccines) (Saadi et al., 2017; Tourani et al., 2017). TT is also commonly used as a carrier protein for glycoconjugate vaccines (Broker, 2016). For example, the Vi polysaccharide of typhoid has been combined with TT via chemical bonding to compare the immunogenicity with that of DT and CRM197 as a carrier protein (Arcuri et al., 2017).

Anthrax toxin

The lethal toxin produced by *Bacillus anthracis* (*B. anthracis*) is a bipartite toxin consisting of protective antigen (PA) as the cell binding moiety and lethal factor (LF) as the effector component.
PA has the inherent ability to transport the enzymatically active LF across the host cell membrane into the cytoplasm, leading to the death of the host cell (Liu et al., 2017). PA binds to receptors on host cells, and the resulting PA heptopolymer can bind to three LF molecules. Subsequently, the entire toxin complex is endocytosed by cells. PA undergoes conformational changes due to endocytosis-associated acidification, resulting in transmembrane pores which can facilitate the translocation of LF molecules from the endosome into the cytosol (Shaw & Starnbach, 2008; Arora et al., 2017). The N-terminal (the first 255 amino acids) of LF (PA binding region) termed LFn, retains PA-binding and translocation capabilities but has no toxic activity. LFn has been used to transfer foreign proteins and peptides into the cytoplasm, where they are processed through the MHC class I antigen presentation pathway, and subsequently induce CTL responses. However, it has been reported that LFn (as a fusion protein) cannot transfer all proteins into the cytoplasm (Wesche et al., 1998). Shaw et al. fused two epitopes (one CD4+ T-cell epitope and one restricted epitope by MHC-I) from chicken ovalbumin (Ova) to LFn and demonstrated that this recombinant protein induced both Ova-specific CD4+ T cell and Ova-specific CD8+ T cell responses in mice (Shaw & Starnbach, 2008). Additionally, Chandra et al. demonstrated that the anthrax toxin system can be used as an ESAT-6 delivery carrier of to induce CTL response against tuberculosis by the ability of LFn to deliver genetically fused ESAT-6 into the cytosol (Chandra et al., 2006).

OTHER POTENTIAL CO-DELIVERY SYSTEMS OF EPITOPE-BASED VACCINES

Multiple antigenic peptide (MAP)

Although the synthesis of long linear peptides with one or more epitopes can promote their
presentation on MHC I and II molecules and enhance their immunogenicity, these vaccines continue to fail to demonstrate adequate efficacy or improve the overall survival rate (Simanovich et al., 2017). To solve this problem, epitopes can be displayed on a multiple antigenic peptide (MAP) system which contains a core matrix of lysine residues that form a scaffold (Tam, 1988). Currently, the most common strategy is to couple a number of epitope peptides to the dendritic polylysine-scaffold using standard solid phase chemistry (Moyle et al., 2006; Horvath et al., 2004) (Fig. 5A). It has been reported that the MAP-based vaccine, (B4T[thi]), which is composed of four copies of B cell epitopes (amino acid [aa] residues 136 – 154 of the FMDV VP1 protein) which are linked to a T cell epitope (aa residues 21 – 35 of the FMDV non-structural protein 3A) via thioether bonds can significantly induce an immune response against FMDV (Cubillos et al., 2012). Moreover, Wen et al. designed a novel tetra-branched MAP vaccine, M2e-MAP, which combines four copies of M2e with a foreign Th epitope to provide cross-protection against influenza viruses and may serve as a promising platform for influenza vaccine development (Wen et al., 2016). The immunogenicity of both adjuvanted and non-adjuvanted MAP vaccines composed of three conserved HCV envelope peptides (E1 peptide [aa 315 – 323] and E2 peptide [aa 412 – 419 and aa 516 – 531]) were studied. The results showed that the three HCV envelope MAP peptides exhibit strong immunogenicity and produce higher levels of neutralizing antibodies (Abdelhafez et al., 2017). Tumor vaccines based on MAP may also be an effective way to treat and prevent certain types of cancer (Simanovich et al., 2017).

Self-assembled peptide nanoparticles (SAPNs)

In the field of epitope vaccine research, natural self-assembled particles that are often used by
researchers are proteins derived from viruses (HBsAg or HBcAg [mentioned above] and tobacco mosaic virus [TMV] capsid proteins) (Lopez-Sagaseta et al., 2016). With the development of advanced molecular machinery and the construction of sophisticated instruments and materials at an atomic level, a wide-range of materials are being used in SAPN systems (Yang et al., 2012). The SAPN complex is primarily dependent on the selection of suitable building blocks. In the SAPN β-sheets, both polar and hydrophobic amino acids are arranged in an alternating pattern, and self-assembly can occur spontaneously under suitable conditions (Mandal et al., 2014) (Fig. 6). Indelicato et al. designed a mathematical procedure for the structural classification of a specific class of SAPNs, which provides a toolkit for a systematic exploitation of SAPNs and predicting the density of epitopes on the SAPN surface (Indelicato et al., 2017). In addition, epitopes can be integrated on the surface of peptide nanoparticles by synthesizing in the SAPN system (Friedrich et al., 2016). In addition, monomeric peptides containing self-assembled regions and epitopes can be produced by high throughput expression in vitro (El et al., 2014). Recent studies have shown that the SAPN malaria vaccine, FMP014, based on flagellin can be produced by replacing the D0 and D1 regions of bacterial flagellin with repeated sequences of several antigenic epitope regions (e.g., αTSR and circumsporozoite protein [PfCSP] of Plasmodium falciparum) (Seth et al., 2017).

In addition, a vaccine was reported to be constructed by combining two conserved influenza virus antigens, M2e and Helix C, with SAPNs as the carrier and flagellin as the self-assembled adjuvant, and the experimental results from animal models show that the SAPN vaccine demonstrates substantial potential for the prevention and control of influenza viruses (Karch et al., 2017). A novel peptide-based SAPN HPV16 vaccine may also be a promising method of improving the
efficacy of cervical cancer vaccines and can be used as a useful reference for the study of virus-related diseases and specific tumor immunotherapy (Tang et al., 2012).

Lipid core peptide (LCP)

As a form of vaccine delivery, the lipid core peptide (LCP) system allows for lipid amino acids in water with a poly-lysine core to combine with exogenous epitopes to form nanoparticles displaying a polydispersity (PDI) of 0.3 to 0.5 (Skwarczynski & Toth, 2011b). It appears that the key to self-assembly into small nanoparticles is to ensure there is a proper balance between the composition of hydrophilic and hydrophobic components (Schulze et al., 2017). In the process of vaccine development, antigen epitopes are surrounded by phospholipid bimolecular layers, thus avoiding the degradation of antigenic peptides by enzymes (Azmi et al., 2014) (Fig. 5B). Using the LCP vector system, the B cell epitope, J14, on the M protein of *Streptococcus pyogenes* and the epitope peptides of the SfbI protein can be coupled (Zaman et al., 2012; Zaman et al., 2011; Moyle et al., 2014). One study demonstrated that an LCP system using BPPCysMPEG as a mucosal adjuvant was more effective at presenting synthetic epitope peptides (Schulze et al., 2017; Olive et al., 2007). Noushin et al. combined the antigen site of pre-fusion respiratory syncytial virus (RSV) F glycoprotein (Ø and II [B cell epitopes]) with PADRE (T helper cell epitope) using the LCP delivery system and found that the LCP constructs could induce a high level of RSV-specific antibodies (Jaberolansar et al., 2017). In addition, Nirmal et al. coated the GAS lipopeptide-based vaccine candidate (LCP-1) on the surface of poly lactide-co-glycolide acid (PLGA) to form nanoparticles that induced a high antibody response, suggesting that the PLGA-based LCP delivery system may be a promising method in vaccine research (Marasini et al., 2016). Due to
several advantageous properties, lipid-based antigen complexes can effectively stimulate both humoral and cellular immune responses. Therefore, lipid-based delivery systems represent potential efficient vaccine adjuvants (Kabiri et al., 2018). For example, several liposome vaccines are currently being investigated in clinical studies (Table 5).

Polymeric and inorganic nanoparticles

Some polymers exhibit good stability and biocompatibility, and can encapsulate and carry antigens to target cells (Negahdaripour et al., 2017), such as poly lactide-co-glycolide acid (PLGA), thermo-responsive synthetic polymers (TRP), and N-(2-hydroxypropyl) methacrylamide (HPMA) (Li et al., 2017). Thus, these polymers are often used as organic biological carriers to present multiple epitopes to the immune system (Tam, 1988). Multi-alkyne-functionalized hyperbranched polyglycerol (hbPG) is a globular polymer with multiple branches that displays good biocompatibility and is not immunogenic; its multi-functional dendrimer-like structure provides sufficient space to present multivalent antigens (Glaffig et al., 2014). Based on these characteristics, B cell epitopes of the tumor-associated antigen, MUC1, glycopeptide, and the T cell epitopes of the tetanus toxin, P2, can be coupled in series to each branch of the hbPG; moreover, these nanoscale branched spheres can express the glycopeptide on its surface, resulting in enhanced exposure of the antigens to the immune system (Glaffig et al., 2014; Glaffig et al., 2015). Currently, various vaccines based on polymer nanoparticles are being tested in preclinical and clinical trials, including those for tuberculosis, cancer, and HIV (Table 5).

Nanoparticles (NPs) based on the conjugation of peptide epitopes and polymers display highly promising self-adjuvant properties; however, their lack of biodegradability may lead to serious
deficiencies (Skwarczynski et al., 2010). Chitosan is a non-toxic, muco-adhesive, and biodegradable natural polymer that can be recognized by a variety of receptors (e.g., mannose receptors, TLR2, C-type lectin receptor, Dectin-1, and leukotriene B4 receptors) on the surface of APCs (Li et al., 2013). Chitosan NPs are typically prepared by interacting with anionic crosslinkers, antigens or polymers; anionic tripoly-phosphate (TPP) was typically used as a crosslinking agent in previous studies (Prego et al., 2010). However, Nevagi et al. developed a novel chitosan NPs-based vaccine delivery system produced by the conjugation of a short anionic polymer (PGA) to a peptide antigen possessing a conserved B cell epitope derived from group A streptococcus (GAS) and a universal Th epitope to form NPs with trimethyl chitosan (TMC) via ionic interactions. The GAS peptide antigen-based chitosan NPs were formulated without the use of a crosslinking agent and evaluated in mice upon intranasal administration; such studies have determined that NPs can induce specific mucosal and systemic opsonic antibodies (Nevagi et al., 2018).

Some inorganic materials (e.g., gold, aluminum hydroxide, and carbon nanotubes) also have excellent biological properties (e.g., good biocompatibility, as well as ease of modification and processing). Among these, gold nanoparticles have attracted increased attention as antigen carriers in vaccine research (Negahdaripour et al., 2017) (Fig. 7). Compared with other inorganic nanoparticles, gold nanoparticles have been widely investigated in clinical studies for epitope-based vaccine delivery (e.g., influenza, HIV, and Malaria) (Table 5). For example, the Cap protein of porcine ring type 2 is used to directly react with AuNPs via a unique cysteine sulfhydryl group to form Cap-AuNPs, which expose neutralized epitopes to the outer surface of gold nanoparticles,
and mice immunized with Cap-AuNP showed that Cap-AuNP could efficiently activate T lymphocytes and balance the immune response of Th1 and Th2 cells (Ding et al., 2017). Recently, researchers have developed a variety of gold nano-vaccines against influenza viruses that are associated with favorable application prospects (Tao et al., 2017; Wang et al., 2017). Wang et al. coupled recombinant trimetric influenza A/Aichi/2/68 (H3N2) HA onto the surface of AuNPs and used flagellin as a built-in adjuvant to develop a FliC-coupled AuNP-HA nano-vaccine (Wang et al., 2018). These studies indicate that there is promising future for polymeric and inorganic nanoparticles in vaccine development.

CONCLUSIONS

With the expansion of knowledge in the fields of immunology and pathogenic biology, a new era of vaccine science has been established. Such advances have provided a basis for the development of various epitope-based vaccines that have been extensively studied due to their unique advantages, particularly the ability to overcome the safety problems associated with traditional vaccines. To overcome the obstacles associated with epitope-based vaccines (e.g., enzymatic degradation), facilitate recognition by the target cells of the immune system more efficiently, as well as maintain and enhance the efficiency and immunoreactivity of the constructed vaccines, the development of novel built-in adjuvants is a key step in the design of epitope-based vaccines. It is essential to optimize the subunit vaccine antigen design and understand the trends in adjuvant applications, including target antigen processing and its in vivo presentation. To efficiently separate the constructed multi-epitope domains, flexible linkers are often used (e.g., GPGPG and EAAK). The lack of suitable linkers in epitope-based vaccines may lead to the production of novel
structural regions which may interfere with the immunogenicity of exogenous epitopes. In this review, we briefly introduced several commonly used built-in adjuvants (e.g., TLR ligands, VLPs, and several bacterial toxin proteins) with different features and several new potential co-delivery systems for epitope-based antigens. These systems are capable of forming nanoparticles, have no immunogenicity or toxicity, and can display antigen epitopes on the surface of the particles, including MAP, SAPNs, LCP, and polymeric or inorganic nanomaterials. Additionally, carrier proteins with epitopes can serve as chaperones and stimulate the production of immune-related factors, possess CTL and Th-cell epitopes required to generate a humoral and cellular immune response, or spontaneously assemble into VLPs. The majority of built-in adjuvants (e.g., HSP70, flagellin, and Chitosan) mentioned in this review are already in clinical trials (Table 5). The carbohydrate-based conjugate vaccines were prepared using tetanus toxoid (TT), diphtheria toxoid (DT), meningococcus B outer membrane protein complex (OMPC), and other proteins (e.g., keyhole limpet hemocyanin [KLH]) used as the carrier molecules (Pichichero, 2013). Additionally, these protein carriers have achieved great success. For example, a range of glycoconjugate vaccines against infectious diseases (e.g., *H. influenzae* type B, *Neisseria meningitidis* and *pneumonia*) have been licensed for clinical use (Astronomo & Burton, 2010). There are some approved VLP-based vaccines currently on the market, including recombinant HBV, hepatitis E virus (HEV), and human papilloma virus (HPV) vaccines. Several VLP vaccines for different diseases are also being tested in clinical trials (Negahdaripour et al., 2017). However, the clinical development of HBc-based VLPs for prophylactic vaccines is likely to experience little growth in the next few years. This is because for HBV-infected patients, the use of HBV particles...
as an immunogen may lead to poor responses. Thus, it is particularly important to develop alternative VLPs, such as hepadnaviral or plant virus-derived VLPs (e.g., TMV-based VLPs), some of which could be tested in future clinical trials (Roose et al., 2013). Although some adjuvants are currently used in vaccines licensed for human use, they are usually used as mixtures with antigens. In comparison, antigen-adjuvant fusion can significantly improve immunogenicity and display greater potential to induce an antigen-specific immune response. Based on clinical studies of conjugate vaccines, it is difficult to conclude which built-in adjuvant has a greater influence on vaccine immunogenicity. This is because, in addition to adjuvants and selected epitopes, there are other parameters that affect the immunogenicity of epitope vaccines, including conjugation chemistry, the presence of a spacer, and degree of conjugation. The development of future multivalent epitope-based vaccines is primarily dependent on future advances in research involving built-in adjuvants, which have the characteristics of being easily obtained, good biological safety, and a high efficiency for displaying epitopes. In the future, we hope to see the marketing approval of several multiepitope-adjuvant fusion vaccines, as well as increased interest in the field of built-in adjuvants.

REFERENCES:

Abdelhafez, T.H., Bader, E.D.N., Tabll, A.A., Mashaly, M.M., Dawood, R.M., Yassin, N.A., and El-Awady, M.K. 2017. Mice Antibody Response to Conserved Nonadjuvanted Multiple Antigenic Peptides Derived from E1/E2 Regions of Hepatitis C Virus. VIRAL IMMUNOLOGY 30:359-365. 10.1089/vim.2016.0123

Ajamian, L., Melnychuk, L., Jean-Pierre, P., and Zaharatos, G.J. 2018. DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity. Viruses 10. 10.3390/v10030100

Ali, M., Pandey, R.K., Khatoon, N., Narula, A., Mishra, A., and Prajapati, V.K. 2017. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep 7:9232. 10.1038/s41598-017-09199-w
Allison, J.P., Benoist, C., and Chervonsky, A.V. 2011. Nobels: Toll pioneers deserve recognition. *NATURE* 479:178.

Arai, Y., Inuki, S., and Fujimoto, Y. 2018. Site-specific effect of polar functional group-modification in lipids of TLR2 ligands for modulating the ligand immunostimulatory activity. *BIOORGANIC & MEDICINAL CHEMISTRY LETTERS*. 10.1016/j.bmcl.2018.03.042

Arcuri, M., Di Benedetto, R., Cunningham, A.F., Saul, A., MacLennan, C.A., and Micoli, F. 2017. The influence of conjugation variables on the design and immunogenicity of a glycoconjugate vaccine against Salmonella Typhi. *PLoS One* 12:e189100. 10.1371/journal.pone.0189100

Arora, G., Misra, R., and Sajid, A. 2017. Model Systems for Pulmonary Infectious Diseases: Paradigms of Anthrax and Tuberculosis. *CURRENT TOPICS IN MEDICINAL CHEMISTRY* 17:2077-2099.

Astronomo, R.D., and Burton, D.R. 2010. Carbohydrate vaccines: developing sweet solutions to sticky situations? *NATURE REVIEWS DRUG DISCOVERY* 9:308-324. 10.1038/nrd3012

Azmi, F., Ahmad, F.A., Skwarczynski, M., and Toth, I. 2014. Recent progress in adjuvant discovery for peptide-based subunit vaccines. *Hum Vaccin Immunother* 10:778-796.

Bajzert, J., Gorczykowski, M., Galli, J., and Stefaniak, T. 2018. The evaluation of immunogenic impact of selected bacterial, recombinant Hsp60 antigens in DBA/2J mice. *Microb Pathog* 115:100-111. 10.1016/j.micpath.2017.12.001

Banik, S., Mansour, A.A., Suresh, R.V., Wykoff-Clary, S., Malik, M., McCormick, A.A., and Bakshi, C.S. 2015. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System. *PLoS One* 10:e130858. 10.1371/journal.pone.0130858

Basto, A.P., and Leitao, A. 2014. Targeting TLR2 for vaccine development. *Journal of Immunology Research* 2014:619410. 10.1155/2014/619410

Basu, R., Binder, R.J., Ramalingam, T., and Srivastava, P.K. 2001. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. *IMMUNITY* 14:303-313.

Batista, M.T., Souza, R.D., Ferreira, E.L., Robinette, R., Crowley, P.J., Rodrigues, J.F., Brady, L.J., Ferreira, L.C., and Ferreira, R.C. 2014. Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein. *INFECTION AND IMMUNITY* 82:4978-4988. 10.1128/IAI.02074-14

Bellier, B., and Klatzmann, D. 2013. Virus-like particle-based vaccines against hepatitis C virus infection. *Expert Review of Vaccines* 12:143-154. 10.1586/erv.13.10

Bolduc, M., Baz, M., Laliberte-Gagne, M.E., Carignan, D., Garneau, C., Russel, A., Boivin, G., Savard, P., and Leclerc, D. 2018. The quest for a nanoparticle-based vaccine inducing broad protection to influenza viruses. *Nanomedicine* 14:2563-2574. 10.1016/j.nano.2018.08.010

Bolhassani, A., and Rafati, S. 2008. Heat-shock proteins as powerful weapons in vaccine development. *Expert Review of Vaccines* 7:1185-1199. 10.1586/14760584.7.8.1185

Broker, M. 2016. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates. *Hum Vaccin Immunother* 12:664-667. 10.1080/21645515.2015.1086048
Busseron, E., Ruff, Y., Moulin, E., and Giuseppone, N. 2013. Supramolecular self-assemblies as functional nanomaterials. *Nanoscale* 5:7098-7140. 10.1039/c3nr02176a

Cai, H., Chen, M.S., Sun, Z.Y., Zhao, Y.F., Kunz, H., and Li, Y.M. 2013. Self-adjuvanting synthetic antitumor vaccines from MUC1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid. *Angew Chem Int Ed Engl* 52:6106-6110. 10.1002/anie.201300390

Cai, H., Orwenyo, J., Giddens, J.P., Yang, Q., Zhang, R., LaBranche, C.C., Montefiori, D.C., and Wang, L.X. 2017. Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses. *Cell Chemical Biology* 24:1513-1522. 10.1016/j.chembiol.2017.09.005

Carignan, D., Therien, A., Rioux, G., Paquet, G., Gagne, M.L., Bolduc, M., Savard, P., and Leclerc, D. 2015. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. *VACCINE* 33:7245-7253. 10.1016/j.vaccine.2015.10.123

Cervantes-Barragan, L., Gil-Cruz, C., Pastelin-Palacios, R., Lang, K.S., Isibasi, A., Ludewig, B., and Lopez-Macias, C. 2009. TLR2 and TLR4 signaling shapes specific antibody responses to Salmonella typhi antigens. *European Journal of Immunology* 39:126-135. 10.1002/eji.200838185

Chandra, S., Kaur, M., Midha, S., Bhatnagar, R., and Banerjee-Bhatnagar, N. 2006. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response. *Biochem Biophys Res Commun* 351:702-707. 10.1016/j.bbrc.2006.10.099

Chen, Q., Li, W., Wang, P., Shao, H., Ding, Y., Wang, W., Cen, D., Cai, Y., Xue, X., Zhang, L., and Zhu, G. 2017. Induction of Humoral and Cellular Immune Responses in Mice by Multiepitope Vaccines Composing of Both T and B Lymphocyte Epitopes of MAGE-A3 which are Recombined into HBcAg. *Protein Pept Lett* 24:947-954. 10.2174/0929866524666170621094921

Cheng, C., Pal, S., Tifrea, D., Jia, Z., and de la Maza, L.M. 2014. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. *Microbes and Infection* 16:244-252. 10.1016/j.micinf.2013.11.009

Cheng, L., Yu, L., Wu, X., Li, K., Wang, F., Zhang, L., Ye, W., Li, P., Zhang, F., and Xu, Z. 2014. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector. *PLoS One* 9:e88183. 10.1371/journal.pone.0088183

Chu, X., Li, Y., Long, Q., Xia, Y., Yao, Y., Sun, W., Huang, W., Yang, X., Liu, C., and Ma, Y. 2016. Chimeric HBcAg virus-like particles presenting a HPV 16 E7 epitope significantly suppressed tumor progression through
preventive or therapeutic immunization in a TC-1-grafted mouse model. *Int J Nanomedicine* 11:2417-2429.

Craig, E.A. 2018. Hsp70 at the membrane: driving protein translocation. *BMC Biology* 16:11. 10.1186/s12915-017-0474-3

Cubillos, C., de la Torre, B.G., Barcena, J., Andreu, D., Sobrino, F., and Blanco, E. 2012. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. *Virology Journal* 9:66. 10.1186/1743-422X-9-66

Culver, J.N. 2002. Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. *Annual Review of Phytopathology* 40:287-308. 10.1146/annurev.phyto.40.120301.102400

Craig, E.A. 2018. Hsp70 at the membrane: driving protein translocation. *BMC Biology* 16:11. 10.1186/s12915-017-0474-3

Cubillos, C., de la Torre, B.G., Barcena, J., Andreu, D., Sobrino, F., and Blanco, E. 2012. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. *Virology Journal* 9:66. 10.1186/1743-422X-9-66

Culver, J.N. 2002. Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. *Annual Review of Phytopathology* 40:287-308. 10.1146/annurev.phyto.40.120301.102400

Czarnota, A., Tyborowska, J., Peszynska-Sularz, G., Gromadzka, B., Bienkowska-Szewczyk, K., and Grzyb, K. 2016. Immunogenicity of Leishmania-derived hepatitis B small surface antigen particles exposing highly conserved E2 epitope of hepatitis C virus. *Microbial Cell Factories* 15:62. 10.1186/s12934-016-0460-4

Da, H.V., Conceicao, F.R., Dellagostin, O.A., and Doolan, D.L. 2011. Non-toxic derivatives of LT as potent adjuvants. *Vaccine* 29:1538-1544. 10.1016/j.vaccine.2010.11.091

Da, S.A.R., Paul, S., Sidney, J., Weiskopf, D., Dan, J.M., Phillips, E., Mallal, S., Crotty, S., Sette, A., and Lindestam, A.C. 2017. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. *PLoS One* 12:e169086. 10.1371/journal.pone.0169086

Dai, S.A.R., Paul, S., Sidney, J., Weiskopf, D., Dan, J.M., Phillips, E., Mallal, S., Crotty, S., Sette, A., and Lindestam, A.C. 2017. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. *PLoS One* 12:e169086. 10.1371/journal.pone.0169086

Dai, S., Zhuo, M., Song, L., Chen, X., Yu, Y., Zang, G., and Tang, Z. 2016. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice. *Immunobiology* 221:813-821. 10.1016/j.imbio.2016.01.015

Daleke-Schermerhorn, M.H., Felix, T., Soprova, Z., Ten, H.C., Vikstrom, D., Majlessi, L., Beskers, J., Follmann, F., de Punder, K., van der Wel, N.N., Baumgarten, T., Pham, T.V., Piersma, S.R., Jimenez, C.R., van Ulsen, P., de Gier, J.W., Leclerc, C., Jong, W.S., and Luirink, J. 2014. Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. *Appl Environ Microbiol* 80:5854-5865. 10.1128/AEM.01941-14

Dascher, C.C., Hiromatsu, K., Xiong, X., Morehouse, C., Watts, G., Liu, G., McMurray, D.N., LeClair, K.P., Porcelli, S.A., and Brenner, M.B. 2003. Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. *International Immunology* 15:915-925

Deng, L., Kim, J.R., Chang, T.Z., Zhang, H., Mohan, T., Champion, J.A., and Wang, B. 2017. Protein nanoparticle vaccine based on flagellin carrier fused to influenza conserved epitopes confers full protection against influenza A virus challenge. *Virology* 509:82-89. 10.1016/j.virol.2017.06.001

Dietl, S., and Conti-Fine, B.M. 2000. Universal epitopes for human CD4+ cells on tetanus and diphtheria toxins. *Journal of Infectious Diseases* 181:1001-1009. 10.1086/315324

Ding, L., Meng, Y., Zhang, H.Y., Yin, W.C., Yan, Y., and Cao, Y.P. 2016. Active immunization with the peptide epitope vaccine Abeta3-10-KLH induces a Th2-polarized anti-Abeta antibody response and decreases amyloid plaques in APP/PS1 transgenic mice. *Neuroscience Letters* 634:1-6. 10.1016/j.neulet.2016.09.050

Ding, L., Meng, Y., Zhang, H.Y., Yin, W.C., Yan, Y., and Cao, Y.P. 2017. Prophylactic active immunization with a novel epitope vaccine improves cognitive ability by decreasing amyloid plaques and neuroinflammation in APP/PS1 transgenic mice. *Neuroscience Research* 119:7-14. 10.1016/j.neures.2017.01.003

Ding, P., Zhang, T., Li, Y., Teng, M., Sun, Y., Liu, X., Chai, S., Zhou, E., Jin, Q., and Zhang, G. 2017. Nanoparticle orientationally displayed antigen epitopes improve neutralizing antibody level in a model of porcine circovirus type 2. *Int J Nanomedicine* 12:5239-5254. 10.2147/IJN.S140789
Ding, Z., Ou, R., Ni, B., Tang, J., and Xu, Y. 2013. Cytolytic activity of the human papillomavirus type 16 E711-20 epitope-specific cytotoxic T lymphocyte is enhanced by heat shock protein 110 in HLA-A*0201 transgenic mice. Clinical and Vaccine Immunology 20:1027-1033. 10.1128/CVI.00721-12

Dowling, J.K., and Dellacasagrande, J. 2016. Toll-Like Receptors: Ligands, Cell-Based Models, and Readouts for Receptor Action. Methods Mol Biol 1390:3-27. 10.1007/978-1-4939-3335-8_1

Dupont, J., Altelas, J., Lepetic, A., Lombardo, M., Vazquez, V., Salgueira, C., Seigelchifer, M., Arndtz, N., Antunez, E., von Eschen, K., and Janowicz, Z. 2006. A controlled clinical trial comparing the safety and immunogenicity of a new adjuvanted hepatitis B vaccine with a standard hepatitis B vaccine. VACCINE 24:7167-7174. 10.1016/j.vaccine.2006.06.053

El, B.K., Zhou, Y., Dasgupta, D., Cobb, D., Dubey, J.P., Burkhard, P., Lanar, D.E., and McLeod, R. 2014. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. VACCINE 32:3243-3248. 10.1016/j.vaccine.2014.03.092

El, B.K., Zhou, Y., Paulillo, S.M., Raman, S.K., Karch, C.P., Roberts, C.W., Lanar, D.E., Reed, S., Fox, C., Carter, D., Alexander, J., Sette, A., Sidney, J., Lorenzi, H., Begeman, I.J., Burkhard, P., and McLeod, R. 2017. Protein nanovaccine confers robust immunity against Toxoplasma. NPJ Vaccines 2:24. 10.1038/s41541-017-0024-6

Eraghi, V., Derakhshandeh, A., Hosseini, A., and Motamedi-Boroojeni, A. 2017. In silico design and expression of a novel fusion protein of HBHA and high antigenic region of FAP-P of Mycobacterium avium subsp. paratuberculosis in Pichia pastoris. Mol Biol Res Commun 6:161-168. 10.22099/mbrc.2017.26522.1286

Felzmann, T., Gadner, H., and Holter, W. 2002. Dendritic cells as adjuvants in antitumor immune therapy. Onkologie 25:456-464. 10.1159/000067441

Foged, C. 2011. Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Ther Deliv 2:1057-1077.

Fraser, C.C., Altreuter, D.H., Ilyinskii, P., Pittet, L., LaMothe, R.A., Keegan, M., Johnston, L., and Kishimoto, T.K. 2014. Generation of a universal CD4 memory T cell recall peptide effective in humans, mice and non-human primates. VACCINE 32:2896-2903. 10.1016/j.vaccine.2014.02.024

Friedrich, B.M., Beasley, D., and Rudra, J.S. 2016. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus. VACCINE 34:5479-5482. 10.1016/j.vaccine.2016.09.044

Fu, F., Tian, H., Li, X., Lang, Y., Tong, G., Liu, S., Li, H., Wang, W., Li, X., and Chen, X. 2013. C-terminal heat shock protein 70 of Mycobacterium tuberculosis as a molecular adjuvant for DNA vaccination with the porcine circovirus type 2 ORF2 (capsid) gene in mice. VETERINARY JOURNAL 195:244-247. 10.1016/j.tvjl.2012.06.005

Fukui, M., Shinjo, K., Umemura, M., Shigeno, S., Harakuni, T., Arakawa, T., and Matsuzaki, G. 2015. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen. MICROBIOLOGY AND IMMUNOLOGY 59:735-743. 10.1111/1348-0421.12340

Gambhiria, R., Karanam, B., Jagu, S., Roberts, J.N., Buck, C.B., Bossis, I., Alphs, H., Culp, T., Christensen, N.D., and Roden, R.B. 2007. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. JOURNAL OF VIROLOGY 81:13927-13931. 10.1128/JVI.00936-07

Ge, F., Qiu, Y., Gao, X., Yang, Y., and Chen, P. 2006. Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70. VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY 113:288-296. 10.1016/j.vetimm.2006.05.012
Gerke, C., Colucci, A.M., Giannelli, C., Sanzone, S., Vitali, C.G., Sollai, L., Rossi, O., Martin, L.B., Auerbach, J., Di Cioccio, V., and Saul, A. 2015. Production of a Shigella sonnei Vaccine Based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB. *PLoS One* 10:e134478. 10.1371/journal.pone.0134478

Glaffig, M., Palitzsch, B., Hartmann, S., Schüll, C., Nuhn, L., Gerlitzki, B., Schmitt, E., Frey, H., and Kunz, H. 2014. A Fully Synthetic Glycopeptide Antitumor Vaccine Based on Multiple Antigen Presentation on a Hyperbranched Polymer. *Chemistry - A European Journal* 20:4232-4236. 10.1002/chem.201400256

Glaffig, M., Palitzsch, B., Stergiou, N., Schull, C., Strassburger, D., Schmitt, E., Frey, H., and Kunz, H. 2015. Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers. *ORGANIC & BIOMOLECULAR CHEMISTRY* 13:10150-10154. 10.1039/c5ob01255d

Gnopo, Y., Watkins, H.C., Stevenson, T.C., DeLisa, M.P., and Putnam, D. 2017. Designer outer membrane vesicles as immunomodulatory systems - Reprogramming bacteria for vaccine delivery. *Adv Drug Deliv Rev* 114:132-142. 10.1016/j.addr.2017.05.003

Guo, F., Liu, Y., Zhang, C., Wang, Q., Wang, L., Gao, Y., Bi, J., Wang, H., and Su, Z. 2018. Prompt and Robust Humoral Immunity Elicited by a Conjugated Chimeric Malaria Antigen with a Truncated Flagellin. *Bioconjug Chem* 29:761-770. 10.1021/acs.bioconjchem.7b00320

Guo, L., Yang, H., Tang, F., Yin, R., Liu, H., Gong, X., Wei, J., Zhang, Y., Xu, G., and Liu, K. 2017. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils. *Front Cell Infect Microbiol* 7:349. 10.3389/fcimb.2017.00349

Hajam, I.A., Dar, P.A., Shahnawaz, I., Jaume, J.C., and Lee, J.H. 2017. Bacterial flagellin-a potent immunomodulatory agent. *EXPERIMENTAL AND MOLECULAR MEDICINE* 49:e373. 10.1038/emm.2017.172

Hajighahramani, N., Nezafat, N., Esliami, M., Negahdaripour, M., Rahmatabadi, S.S., and Ghasemi, Y. 2017. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. *INFECTION GENETICS AND EVOLUTION* 48:83-94. 10.1016/j.meegid.2016.12.010

Halliday, A., Turner, J.D., Guimaraes, A., Bates, P.A., and Taylor, M.J. 2016. The TLR2/6 ligand PAM2CSK4 is a Th2 polarizing adjuvant in Leishmania major and Brugia malayi murine vaccine models. *Parasit Vectors* 9:96. 10.1186/s13071-016-1381-0

He, Q., Gao, H., Gao, M., Qi, S., Yang, K., Zhang, Y., and Wang, J. 2018. Immunogenicity and safety of a novel tetanus toxoid-conjugated anti-gastrin vaccine in BALB/c mice. *Vaccine*. 10.1016/j.vaccine.2017.12.054

Hekmat, S., Sadat, S.M., Aslani, M.M., Mahdavi, M., Bolhassani, A., Asgar, H.F., Ghabari, S., Aghasadeghi, M.R., and Siadat, S.D. 2018. Truncated Core/NS3 Fusion Protein of HCV Adjuvanted with Outer Membrane Vesicles of Neisseria Meningitidis Serogroup B: Potent Inducer of the Murine Immune System. *Iran Biomed J* 999

Horvath, A., Olive, C., Karpati, L., Sun, H.K., Good, M., and Toth, I. 2004. Toward the development of a synthetic group a streptococcal vaccine of high purity and broad protective coverage. *JOURNAL OF MEDICINAL CHEMISTRY* 47:4100-4104. 10.1021/jm040041w

Hu, J.C., Mathias-Santos, C., Greene, C.J., King-Lyons, N.D., Rodrigues, J.F., Hajishengallis, G., Ferreira, L.C., and Connell, T.D. 2014. Intradermal administration of the Type II heat-labile enterotoxins LT-IIb and LT-IIc of enterotoxigenic Escherichia coli enhances humoral and CD8+ T cell immunity to a co-administered antigen. *PLoS One* 9:e113978. 10.1371/journal.pone.0113978

Huleatt, J.W., Nakaar, V., Desai, P., Huang, Y., Hewitt, D., Jacobs, A., Tang, J., McDonald, W., Song, L., Evans, R.K., Umlauf, S., Tussey, L., and Powell, T.J. 2008. Potent immunogenicity and efficacy of a universal influenza
vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin.

VACCINE 26:201-214. 10.1016/j.vaccine.2007.10.062

Indelicato, G., Burkhard, P., and Twarock, R. 2017. Classification of self-assembling protein nanoparticle architectures for applications in vaccine design. *R Soc Open Sci* 4:161092. 10.1098/rsos.161092

Izgi, K., Iskender, B., Sakalar, C., Arslanhan, A., Saraymen, B., and Canatan, H. 2015. Evaluation of two different adjuvants with immunogenic uroplakin 3A-derived peptide for their ability to evoke an immune response in mice. *EUROPEAN CYTOKINE NETWORK* 26:46-56. 10.1684/ecn.2015.0365

Jaberolansar, N., Chappell, K.J., Watterson, D., Bermingham, I.M., Toth, I., Young, P.R., and Skwarczynski, M. 2017. Induction of high titred, non-neutralising antibodies by self-adjuvanting peptide epitopes derived from the respiratory syncytial virus fusion protein. *Sci Rep* 7:11130. 10.1038/s41598-017-10415-w

Jang, M.H., Kweon, M.N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P.D., Hiroi, T., Tamagawa, H., Iijima, H., Kunisawa, J., Yuki, Y., and Kiyono, H. 2004. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. *Proc Natl Acad Sci U S A* 101:6110-6115. 10.1073/pnas.0400969101

Jarzab, A., Witkowska, D., Ziomek, E., Setner, B., Czajkowska, A., Dorot, M., Szewczuk, Z., and Gamian, A. 2018. Cyclic OmpC peptidic epitope conjugated to tetanus toxoid as a potential vaccine candidate against shigellosis. *VACCINE* 36:4641-4649. 10.1016/j.vaccine.2018.06.037

Jiang, P., Cai, Y., Chen, J., Ye, X., Mao, S., Zhu, S., Xue, X., Chen, S., and Zhang, L. 2017. Evaluation of tandem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. *VACCINE* 35:3096-3103. 10.1016/j.vaccine.2017.04.031

Jiang, S., Li, X., Hess, N.J., Guan, Y., and Tapping, R.I. 2016. TLR10 Is a Negative Regulator of Both MyD88-Dependent and -Independent TLR Signaling. *JOURNAL OF IMMUNOLOGY* 196:3834-3841. 10.4049/jimmunol.1502599

Jin, M.S., Kim, S.E., Heo, J.Y., Lee, M.E., Kim, H.M., Paik, S.G., Lee, H., and Lee, J.O. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. *CELL* 130:1071-1082. 10.1016/j.cell.2007.09.008

Jong, W.S., Daleke-Schermerhorn, M.H., Vikstrom, D., Ten, H.C., de Punder, K., van der Wel, N.N., van de Sandt, C.E., Rimmelzwaan, G.F., Follmann, F., Agger, E.M., Andersen, P., de Gier, J.W., and Luirink, J. 2014. An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. *Microbial Cell Factories* 13:162. 10.1186/s12934-014-0162-8

Jung, I.D., Jeong, S.K., Lee, C.M., Noh, K.T., Heo, D.R., Shin, Y.K., Yun, C.H., Koh, W.J., Akira, S., Whang, J., Kim, H.J., Park, W.S., Shin, S.J., and Park, Y.M. 2011. Enhanced efficacy of therapeutic cancer vaccines produced by co-treatment with Mycobacterium tuberculosis heparin-binding hemagglutinin, a novel TLR4 agonist. *CANCER RESEARCH* 71:2858-2870. 10.1158/0008-5472.CAN-10-3487

Juwono, J., and Martinus, R.D. 2016. Does Hsp60 Provide a Link between Mitochondrial Stress and Inflammation in Diabetes Mellitus? *Journal of Diabetes Research* 2016:8017571. 10.1155/2016/8017571

Kabiri, M., Sankian, M., Hosseinpour, M., and Tafaghodi, M. 2018. The novel immunogenic chimeric peptide vaccine to elicit potent cellular and mucosal immune responses against HTLV-1. *Int J Pharm* 549:404-414. 10.1016/j.ijpharm.2018.07.069

Kalnin, K., Chivukula, S., Tibbitts, T., Yan, Y., Stegalkina, S., Shen, L., Cieszynski, J., Costa, V., Sabharwal, R., Anderson, S.F., Christensen, N., Jagu, S., Roden, R.B.S., and Kleanthous, H. 2017. Incorporation of RG1 epitope
concatemers into a self-adjuvanting Flagellin-L2 vaccine broaden durable protection against cutaneous challenge with diverse human papillomavirus genotypes. VACCINE 35:4942-4951. 10.1016/j.vaccine.2017.07.086

Kalnin, K., Tibbitts, T., Yan, Y., Stegalkina, S., Shen, L., Costa, V., Sabharwal, R., Anderson, S.F., Day, P.M., Christensen, N., Schiller, J.T., Jagu, S., Roden, R.B., Almond, J., and Kleanthous, H. 2014. Low doses of flagellin-L2 multimer vaccines protect against challenge with diverse papillomavirus genotypes. VACCINE 32:3540-3547. 10.1016/j.vaccine.2014.04.032

Kalboj, K.K., King, C.L., Greenspan, N.S., Kirchner, H.L., and Schreiber, J.R. 2001. Immunization with Haemophilus influenzae type b-CRM(197) conjugate vaccine elicits a mixed Th1 and Th2 CD(4+) T cell cytokine response that correlates with the isotype of antipolysaccharide antibody. JOURNAL OF INFECTIOUS DISEASES 184:931-935. 10.1086/323342

Karch, C.P., Li, J., Kulongara, C., Paulillo, S.M., Raman, S.K., Emadi, S., Tan, A., Helal, Z.H., Fan, Q., Khan, M.I., and Burkhard, P. 2017. Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge. Nanomedicine 13:241-251. 10.1016/j.nano.2016.08.030

Karch, C.P., and Burkhard, P. 2016. Vaccine technologies: From whole organisms to rationally designed protein assemblies. BIOCHEMICAL PHARMACOLOGY 120:1-14. 10.1016/j.bcp.2016.05.001

Karuturi, B., Tallapaka, S.B., Yeapuri, P., Curran, S.M., Sanderson, S.D., and Vetro, J.A. 2017. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8(+) T Cells in a Diameter-Dependent Manner. Mol Pharm 14:1469-1481. 10.1021/acs.molpharmaceut.6b01088

Kawakami, R., Nozato, Y., Nakagami, H., Ikeda, Y., Shimamura, M., Yoshida, S., Sun, J., Kawano, T., Takami, Y., Noma, T., Rakugi, H., Minamino, T., and Morishita, R. 2018. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/kexin type 9 (PCSK9) epitope in mice. PLoS One 13:e191895. 10.1371/journal.pone.0191895

Kemnade, J.O., Seethammagari, M., Collinson-Pautz, M., Kaur, H., Spencer, D.M., and McCormick, A.A. 2014. Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo. VACCINE 32:4228-4233. 10.1016/j.vaccine.2014.04.051

Khader, S.A., Bell, G.K., Pearl, J.E., Fountain, J.J., Rangel-Moreno, J., Cilley, G.E., Shen, F., Eaton, S.M., Gaffen, S.L., Swain, S.L., Locksley, R.M., Haynes, L., Randall, T.D., and Cooper, A.M. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. NATURE IMMUNOLOGY 8:369-377. 10.1038/ni1449

Kim, J., Yang, Y.L., Jang, S.H., and Jang, Y.S. 2018. Human beta-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virology Journal 15:124. 10.1186/s12985-018-1035-2

Kim, J.Y., Doody, A.M., Chen, D.J., Cremona, G.H., Shuler, M.L., Putnam, D., and DeLisa, M.P. 2008. Engineered bacterial outer membrane vesicles with enhanced functionality. JOURNAL OF MOLECULAR BIOLOGY 380:51-66. 10.1016/j.jmb.2008.03.076

Kitaoka, M., Naritomi, A., Kawabe, Y., Kamehira, M., Kamiya, N., and Goto, M. 2017. Transcutaneous pollinosis immunotherapy using a solid-in-oil nanodispersion system carrying T cell epitope peptide and R848. Bioeng Transl Med 2:102-108. 10.1002/btm2.10048

Kuipers, K., Daleke-Schermerhorn, M.H., Jong, W.S., Ten, H.C., van Opzeeland, F., Simonetti, E., Luirink, J., and de Jonge, M.I. 2015. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the
surface offers protection against colonization. *Vaccine* 33:2022-2029. 10.1016/j.vaccine.2015.03.010

Kurkjian, C.J., Guo, H., Montgomery, N.D., Cheng, N., Yuan, H., Merrill, J.R., Sempowski, G.D., Brickey, W.J., and Ting, J.P. 2017. The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. *Sci Rep* 7:17355. 10.1038/s41598-017-17729-9

Lacasse, P., Denis, J., Lapointe, R., Leclerc, D., and Lamarre, A. 2008. Novel plant virus-based vaccine induces protective cytotoxic T-lymphocyte-mediated antiviral immunity through dendritic cell maturation. *Journal of Virology* 82:785-794. 10.1128/JVI.01811-07

Ladokhin, A.S. 2013. pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. *Toxins (Basel)* 5:1362-1380. 10.3390/toxins5081362

Lagoutte, P., Mignon, C., Donnat, S., Stadthagen, G., Mast, J., Sodoyer, R., Lugari, A., and Werle, B. 2016. Scalable chromatography-based purification of virus-like particle carrier for epitope based influenza A vaccine produced in Escherichia coli. *Journal of Virological Methods* 232:8-11. 10.1016/j.jviromet.2016.02.011

Lee, B.O., Tucker, A., Frelin, L., Sallberg, M., Jones, J., Peters, C., Hughes, J., Whitacre, D., Darsow, B., Peterson, D.L., and Milich, D.R. 2009. Interaction of the hepatitis B core antigen and the innate immune system. *Journal of Immunology* 182:6670-6681. 10.4049/jimmunol.0803683

Li, L., Zhou, M., and Huang, Y. 2017. Synergistic enhancement of anticancer therapeutic efficacy of HPMA copolymer doxorubicin conjugates via combination of ligand modification and stimuli-response strategies. *Int J Pharm* 536:450-458. 10.1016/j.ijpharm.2017.12.018

Li, X., Min, M., Du N, Gu, Y., Hode, T., Naylor, M., Chen, D., Nordquist, R.E., and Chen, W.R. 2013. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. *Clinical and Developmental Immunology* 2013:387023. 10.1155/2013/387023

Li, X., Yang, X., Li, L., Liu, H., and Liu, J. 2006. A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. *Vaccine* 24:3321-3331. 10.1016/j.vaccine.2006.01.012

Liang, P., Yi, Y., Su, Q.D., Qiu, F., Fan, X.T., Lu, X.X., and Bi, S.L. 2018. Efficient Humoral and Cellular Immune Responses Induced by a Chimeric Virus-like Particle Displaying the Epitope of EV71 without Adjuvant. *Biomedical and Environmental Sciences* 31:343-350. 10.3967/bes2018.045

Liu, Q., Tan, K., Yuan, J., Song, K., Li, R., Huang, X., and Liu, Q. 2018. Flagellin-deficient outer membrane vesicles as adjuvant induce cross-protection of Salmonella Typhimurium outer membrane proteins against infection by heterologous Salmonella serotypes. *International Journal of Medical Microbiology* 308:796-802. 10.1016/j.ijmm.2018.06.001

Liu, R., Vaishnav, R.A., Roberts, A.M., and Friedland, R.P. 2013. Humans have antibodies against a plant virus: evidence from tobacco mosaic virus. *PLoS One* 8:e66021. 10.1371/journal.pone.0060621

Liu, S., Ma, Q., Fattah, R., Bugge, T.H., and LePpl, S.H. 2017. Anti-tumor activity of anthrax toxin variants that form a functional translocation pore by intermolecular complementation. *Oncotarget* 8:65123-65131. 10.18632/oncotarget.17729
Liu, Y., Zhang, W., He, Q., Yu, F., Song, T., Liu, T., Zhang, Z., Zhou, J., Wang, P.G., and Zhao, W. 2016. Fully synthetic self-adjuvanting MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential cancer vaccines. *Chem Commun (Camb)* 52:10886-10889. 10.1039/c6cc04623a

Long, Q., Huang, W., Yao, Y., Yang, X., Sun, W., Jin, X., Li, Y., Chu, X., Liu, C., Peng, Z., and Ma, Y. 2014. Virus-like particles presenting interleukin-33 molecules: immunization characteristics and potentials of blocking IL-33/ST2 pathway in allergic airway inflammation. *Hum Vaccin Immunother* 10:2303-2311. 10.4161/hv.29425

Lopez-Sagaseta, J., Malito, E., Rappuoli, R., and Bottomley, M.J. 2016. Self-assembling protein nanoparticles in the design of vaccines. *Comput Struct Biotechnol J* 14:58-68. 10.1016/j.csbj.2015.11.001

MacLennan, C.A., Martin, L.B., and Micoli, F. 2014. Vaccines against invasive Salmonella disease: current status and future directions. *Hum Vaccin Immunother* 10:1478-1493. 10.4161/hv.29054

Malito, E., Bursulaya, B., Chen, C., Lo, S.P., Picchianti, M., Balducci, E., Biancucci, M., Brock, A., Berti, F., Bottomley, M.J., Nissum, M., Costantino, P., Rappuoli, R., and Spraggon, G. 2012. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. *Proc Natl Acad Sci U S A* 109:5229-5234. 10.1073/pnas.1201964109

Mandal, D., Nasrolahi, S.A., and Parang, K. 2014. Self-assembly of peptides to nanostructures. *Organic & Biomolecular Chemistry* 12:3544-3561. 10.1039/c4ob00447g

Marasini, N., Khalil, Z.G., Giddam, A.K., Ghaflar, K.A., Hussein, W.M., Capon, R.J., Batzloff, M.R., Good, M.F., Skwarczynski, M., and Toth, I. 2016. Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. *Int J Pharm* 513:410-420. 10.1016/j.ijpharm.2016.09.057

McCormick, A.A., Corbo, T.A., Wykoff-Clary, S., Nguyen, L.V., Smith, M.L., Palmer, K.E., and Pogue, G.P. 2006. TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. *Vaccine* 24:6414-6423. 10.1016/j.vaccine.2006.06.003

McDonald, D.M., Byrne, S.N., and Payne, R.J. 2015. Synthetic self-adjuvanting glycopeptide cancer vaccines. *Frontiers in Chemistry* 3:60. 10.3389/fchem.2015.00060

McDonald, D.M., Wilkinson, B.L., Corcilius, L., Thaysen-Andersen, M., Byrne, S.N., and Payne, R.J. 2014. Synthesis and immunological evaluation of self-adjuvanting MUC1-macrophage activating lipopeptide 2 conjugate vaccine candidates. *Chem Commun (Camb)* 50:10273-10276. 10.1039/c4cc03510k

Micoli, F., Rondini, S., Alfini, R., Lanzilao, L., Necchi, F., Negrea, A., Rossi, O., Brandt, C., Clare, S., Mastroeni, P., Rappuoli, R., Saul, A., and MacLennan, C.A. 2018. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. *Proc Natl Acad Sci U S A* 115:10428-10433. 10.1073/pnas.1807655115

Milich, D.R., McLachlan, A., Thornton, G.B., and Hughes, J.L. 1987. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. *Nature* 329:547-549. 10.1038/329547a0

Moody, D.B., Ulrichs, T., Muhlecker, W., Young, D.C., Gurche, S.S., Grant, E., Rosat, J.P., Brenner, M.B., Costello, C.E., Besra, G.S., and Porcelli, S.A. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. *Nature* 404:884-888. 10.1038/35009119

Mora, D., Salmon, M.D., Myrick, C.A., Rhyian, J.C., Miller, L.A., Saetre, E.M., and Eckery, D.C. 2017. Evaluation of antibody response to an adjuvanted hapten-protein vaccine as a potential inhibitor of sexual maturation for farmed Atlantic salmon. *Fish Shellfish Immunol* 71:255-263. 10.1016/j.fsi.2017.08.038
Moreno-Eutimio, M.A., Tenorio-Calvo, A., Pastelin-Palacios, R., Perez-Shibayama, C., Gil-Cruz, C., Lopez-Santiago, R., Baeza, I., Fernandez-Mora, M., Bonifaz, L., Isibasi, A., Calva, E., and Lopez-Macias, C. 2013. Salmonella Typhi OmpS1 and OmpS2 porins are potent protective immunogens with adjuvant properties. *IMMUNOLOGY* 139:459-471. 10.1111/imm.12093

Moyle, P.M. 2017. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. *BIOTECHNOLOGY ADVANCES* 35:375-389. 10.1016/j.biotechadv.2017.03.005

Moyle, P.M., Dai, W., Zhang, Y., Batzloff, M.R., Good, M.F., and Toth, I. 2014. Site-specific incorporation of three toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group a streptococcal vaccines. *Bioconjug Chem* 25:965-978. 10.1021/bc500108b

Moyle, P.M., Olive, C., Ho, M.F., Good, M.F., and Toth, I. 2006. Synthesis of a highly pure lipid core peptide based self-adjuvanting triepitopic group A streptococcal vaccine, and subsequent immunological evaluation. *JOURNAL OF MEDICINAL CHEMISTRY* 49:6364-6370. 10.1021/jm060475m

Moyle, P.M., and Toth, I. 2013. Modern subunit vaccines: development, components, and research opportunities. *ChemMedChem* 8:360-376. 10.1002/cmdc.201200487

Muhlradt, P.F., Kiess, M., Meyer, H., Sussmuth, R., and Jung, G. 1997. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. *JOURNAL OF EXPERIMENTAL MEDICINE* 185:1951-1958.

Murthy, K.G., Deb, A., Goonesekera, S., Szabo, C., and Salzman, A.L. 2004. Identification of conserved domains in Salmonella muenchen flagellin that are essential for its ability to activate TLR5 and to induce an inflammatory response in vitro. *JOURNAL OF BIOLOGICAL CHEMISTRY* 279:5667-5675. 10.1074/jbc.M307759200

Nallam, N., Pallavi, P., Reddy, B.S., Miryala, S., Naveen, K.V., Mahboob, M., and Halmuthur, M.S. 2015. Design, synthesis and immunological evaluation of 1,2,3-triazole-tethered carbohydrate-Pam3Cys conjugates as TLR2 agonists. *Bioorg Med Chem* 23:5846-5855. 10.1016/j.bmc.2015.06.070

Negahdaripour, M., Eslami, M., Nezafat, N., Hajighahramani, N., Ghoshoon, M.B., Shoolian, M., Dehshahri, A., Erfani, N., Morowvat, M.H., and Ghasemi, Y. 2017a. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. *INFECTION GENETICS AND EVOLUTION* 61:4-15. 10.1016/j.meegid.2018.03.007

Negahdaripour, M., Eslami, M., Nezafat, N., Hajighahramani, N., Ghoshoon, M.B., Shoolian, M., Dehshahri, A., Erfani, N., Morowvat, M.H., and Ghasemi, Y. 2017b. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. *BIOTECHNOLOGY ADVANCES* 35:575-596. 10.1016/j.biotechadv.2017.05.002

Negahdaripour, M., Nezafat, N., Eslami, M., Ghoshoon, M.B., Shoolian, E., Najafipour, S., Morowvat, M.H., Dehshahri, A., Erfani, N., and Ghasemi, Y. 2017c. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. *INFECTION GENETICS AND EVOLUTION* 58:96-109. 10.1016/j.meegid.2017.12.008

Nemport, C., Cayet, D., Rambo, M., Bompard, C., Villeret, V., and Sirard, J.C. 2008. Deletion of flagellin's hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. *JOURNAL OF IMMUNOLOGY* 181:2036-2043.

Nevgi, R.J., Khalil, Z.G., Hussein, W.M., Powell, J., Batzloff, M.R., Capon, R.J., Good, M.F., Skwarczynski, M., and Toth, I. 2018. Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune
responses against group A streptococcus. *Acta Biomaterialia*. 10.1016/j.actbio.2018.09.037

Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M.R., and Ghasemi, Y. 2017. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. *Molecular BioSystems* 13:699-713. 10.1039/c6mb00772d

Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M.J., and Omidinia, E. 2014. A novel multi-epitope peptide vaccine against cancer: an in silico approach. *JOURNAL OF THEORETICAL BIOLOGY* 349:121-134. 10.1016/j.jtbi.2014.01.018

Nezafat, N., Karimi, Z., Eslami, M., Mohkam, M., Zandian, S., and Ghasemi, Y. 2016. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. *COMPUTATIONAL BIOLOGY AND CHEMISTRY* 62:82-95. 10.1016/j.compbiolchem.2016.04.006

Nezafat, N., Sadraeian, M., Rahbar, M.R., Khoshnoud, M.J., Mohkam, M., Gholami, A., Banihashemi, M., and Ghasemi, Y. 2015. Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. *BIOLOGICALS* 43:11-17. 10.1016/j.biologicals.2014.11.001

Olive, C., Schulze, K., Sun, H.K., Ebensen, T., Horvath, A., Toth, I., and Guzman, C.A. 2007. Enhanced protection against Streptococcus pyogenes infection by intranasal vaccination with a dual antigen component M protein/SfbI lipid core peptide vaccine formulation. *VACCINE* 25:1789-1797. 10.1016/j.vaccine.2006.11.031

Ong, H.K., Tan, W.S., and Ho, K.L. 2017. Virus like particles as a platform for cancer vaccine development. *PeerJ* 5:e4053. 10.7717/peerj.4053

Pandey, H., Fatma, F., Yabaji, S.M., Kumari, M., Tripathi, S., Srivastava, K., Tripathi, D.K., Kant, S., Srivastava, K.K., and Arora, A. 2018. Biophysical and immunological characterization of the ESX-4 system ESAT-6 family proteins Rv3444c and Rv3445c from Mycobacterium tuberculosis H37Rv. *Tuberculosis (Edinb)* 109:85-96. 10.1016/j.tube.2018.02.002

Pearl, L.H., Prodromou, C., and Workman, P. 2008. The Hsp90 molecular chaperone: an open and shut case for treatment. *BIOCHEMICAL JOURNAL* 410:439-453. 10.1042/BJ20071640

Persing, D.H., Coler, R.N., Lacy, M.J., Johnson, D.A., Baldridge, J.R., Hershberg, R.M., and Reed, S.G. 2002. Taking toll: lipid A mimetics as adjuvants and immunomodulators. *TRENDS IN MICROBIOLOGY* 10:S32-S37.

Pichichero, M.E. 2013. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. *Hum Vaccin Immunother* 9:2505-2523. 10.4161/hv.26109

Pinkhasov, J., Alvarez, M.L., Pathangey, L.B., Tinder, T.L., Mason, H.S., Walmsley, A.M., Gendler, S.J., and Mukherjee, P. 2010. Analysis of a cholera toxin B subunit (CTB) and human mucin 1 (MUC1) conjugate protein in a MUC1-tolerant mouse model. *Cancer Immunol Immunother* 59:1801-1811. 10.1007/s00262-010-0906-1

Plummer, E.M., and Manchester, M. 2011. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. *Wiley Interdiscip Rev Nanomed Nanobiotechnol* 3:174-196. 10.1002/wnan.119

Prasanphanich, N.S., Song, X., Heimburg-Molinaro, J., Luyai, A.E., Lasanajak, Y., Cutler, C.E., Smith, D.F., and Cummings, R.D. 2015. Intact reducing glycan promotes the specific immune response to lacto-N-neotetraose-BSA neoglycoconjugates. *Bioconjug Chem* 26:559-571. 10.1021/acs.bioconjchem.5b00036

Prego, C., Paolicelli, P., Diaz, B., Vicente, S., Sanchez, A., Gonzalez-Fernandez, A., and Alonso, M.J. 2010. Chitosan-
based nanoparticles for improving immunization against hepatitis B infection. VACCINE 28:2607-2614. 10.1016/j.vaccine.2010.01.011

Pumpens, P., Renhofa, R., Dishlers, A., Kozlovsk, T., Ose, V., Pushko, P., Tars, K., Grens, E., and Bachmann, M.F. 2016. The True Story and Advantages of RNA Phage Capsids as Nanotools. INTERVIROLOGY 59:74-110. 10.1159/000449503

Ramasamy, V., Arora, U., Shukla, R., Poddar, A., Shanmugam, R.K., White, L.J., Mattocks, M.M., Raut, R., Perween, A., Tyagi, P., de Silva, A.M., Bhaumik, S.K., Kaja, M.K., Villinger, F., Ahmed, R., Johnston, R.E., Swaminathan, S., and Khanna, N. 2018. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl Trop Dis 12:e6191. 10.1371/journal.pntd.0006191

Ramirez, A., Morris, S., Maucourant, S., D’Ascanio, I., Crescente, V., Lu, I.N., Farinelle, S., Muller, C.P., Whelan, M., and Rosenberg, W. 2018. A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles. VACCINE 36:873-880. 10.1016/j.vaccine.2017.12.053

Rana, A., Rub, A., and Akhter, Y. 2016. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach. Molecular BioSystems 26:2329-2337. 10.1039/c4mb00234b

Rana, A., and Akhter, Y. 2016. A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach. IMMUNO BIOLOGY 221:544-557. 10.1016/j.imbio.2015.12.004

Rappazzo, C.G., Watkins, H.C., Guarino, C.M., Chau, A., Lopez, J.L., DeLisa, M.P., Leifer, C.A., Whittaker, G.R., and Putnam, D. 2016. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. VACCINE 34:1252-1258. 10.1016/j.vaccine.2016.01.028

Reynolds, T.D., Buonocore, L., Rose, N.F., Rose, J.K., and Robek, M.D. 2015. Virus-Like Vesicle-Based Therapeutic Vaccine Vectors for Chronic Hepatitis B Virus Infection. JOURNAL OF VIROLOGY 89:10407-10415. 10.1128/JVI.01184-15

Rios-Huerta, R., Monreal-Escalante, E., Govea-Alonso, D.O., Angulo, C., and Rosales-Mendoza, S. 2017. Expression of an immunogenic LTB-based chimeric protein targeting Zaire ebolavirus epitopes from GP1 in plant cells. PLANT CELL REPORTS 36:355-365. 10.1007/s00299-016-2088-6

Robert, J. 2003. Evolution of heat shock protein and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 27:449-464.

Rodrigues, J.F., Mathias-Santos, C., Sbrogio-Almeida, M.E., Amorim, J.H., Cabrera-Crespo, J., Balan, A., and Ferreira, L.C. 2011. Functional diversity of heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli: differential enzymatic and immunological activities of LT1 (hLT) AND LT4 (pLT). JOURNAL OF BIOLOGICAL CHEMISTRY 286:5222-5233. 10.1074/jbc.M110.173682

Roope, K., De Baets, S., Schepens, B., and Saelens, X. 2013. Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Review of Vaccines 12:183-198. 10.1586/erv.12.150

Rossi, O., Pesce, I., Giannelli, C., Aprea, S., Caboni, M., Citiulo, F., Valentini, S., Ferlenghi, I., MacLennan, C.A., D’Oro, U., Saul, A., and Gerke, C. 2014. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants. JOURNAL OF BIOLOGICAL CHEMISTRY 289:24922-24935. 10.1074/jbc.M114.566570

Rueckert, C., and Guzman, C.A. 2012. Vaccines: from empirical development to rational design. PLoS Pathogens
Rueda, F., Eich, C., Cordobilla, B., Domingo, P., Acosta, G., Albericio, F., Cruz, L.J., and Domingo, J.C. 2017. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines. *IMMUNOBIOLOGY* 222:989-997. 10.1016/j.imbio.2017.06.002

Saadi, M., Karkhah, A., and Nouri, H.R. 2017. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. *INFECTION GENETICS AND EVOLUTION* 51:227-234. 10.1016/j.meegid.2017.04.009

Schmidt, J., Welsch, T., Jager, D., Muhlradt, P.F., Buchler, M.W., and Marten, A. 2007. Intratumoural injection of the toll-like receptor-2/6 agonist 'macrophage-activating lipopeptide-2' in patients with pancreatic carcinoma: a phase I/II trial. *Br J Cancer* 97:598-604. 10.1038/sj.bjc.6603903

Schocker, N.S., Portillo, S., Brito, C.R., Marques, A.F., Almeida, I.C., and Michael, K. 2016. Synthesis of Galalpha(1,3)Galbeta(1,4)GlcNAcalpha-, Galbeta(1,4)GlcNAcalpha- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. *GLYCOBIOLOGY* 26:39-50. 10.1093/glycob/cwv081

Skwarczynski, M., and Toth, I. 2011a. Peptide-based subunit nanovaccines. *Current Drug Delivery* 8:282-289.

Skwarczynski, M., and Toth, I. 2011b. Lipid-core-peptide system for self-adjuvanting synthetic vaccine delivery. *Methods Mol Biol* 751:297-308. 10.1007/978-1-61779-151-2_18

Skwarczynski, M., and Toth, I. 2014. Recent advances in peptide-based subunit nanovaccines. *Nanomedicine (Lond)* 9:2657-2669. 10.2217/nmm.14.187
Smith, K.D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M.A., Barrett, S.L., Cookson, B.T., and Aderem, A. 2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. *Nature Immunology* 4:1247-1253. 10.1038/ni1011

Smith, M.L., Corbo, T., Bernales, J., Lindbo, J.A., Pogue, G.P., Palmer, K.E., and McCormick, A.A. 2007. Assembly of trans-encapsidated recombinant viral vectors engineered from Tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. *Virology* 358:321-333. 10.1016/j.virol.2006.08.040

Strbo, N., Garcia-Soto, A., Schreiber, T.H., and Podack, E.R. 2013. Secreted heat shock protein gp96-Ig: next-generation vaccines for cancer and infectious diseases. *Immunologic Research* 57:311-325. 10.1007/s12026-013-8468-x

Su, Q., Yi, Y., Guo, M., Qiu, F., Jia, Z., Lu, X., Meng, Q., and Bi, S. 2013. Construction and immunological evaluation of truncated hepatitis B core particles carrying HBsAg amino acids 119-152 in the major immunodominant region (MIR). *Biochem Biophys Res Commun* 439:84-89. 10.1016/j.bbrc.2013.08.024

Sungsuwan, S., Wu, X., and Huang, X. 2017. Evaluation of Virus-Like Particle-Based Tumor-Associated Carbohydrate Immunogens in a Mouse Tumor Model. *Methods Enzymol* 597:359-376. 10.1016/bs.mie.2017.06.030

Suzue, K., Zhou, X., Eisen, H.N., and Young, R.A. 1996. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. *Journal of Immunology* 156:873-879.

Takeda, Y., Azuma, M., Funami, K., Shime, H., Matsumoto, M., and Seya, T. 2018. Type I Interferon-Independent Dendritic Cell Priming and Antitumor T Cell Activation Induced by a Mycoplasma fermentans Lipopeptide. *Frontiers in Immunology* 9:496. 10.3389/fimmu.2018.00496

Tam, J.P. 1988. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. *Proc Natl Acad Sci U S A* 85:5409-5413.

Tan, K., Li, R., Huang, X., and Liu, Q. 2018. Outer Membrane Vesicles: Current Status and Future Direction of These Novel Vaccine Adjuvants. *Frontiers in Microbiology* 9:783. 10.3389/fmicb.2018.00783

Tang, D., Khaleque, M.A., Jones, E.L., Theriault, J.R., Li, C., Wong, W.H., Stevenson, M.A., and Calderwood, S.K. 2005. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. *Cell Stress Chaperones* 10:46-58.

Tang, J., Yin, R., Tian, Y., Huang, Z., Shi, J., Fu, X., Wang, L., Wu, Y., Hao, F., and Ni, B. 2012. A novel self-assembled nanoparticle vaccine with HIV-1 Tat(4)(9)(-)(5)(7)/HPV16 E7(4)(9)(-)(5)(7) fusion peptide and GM-CSF DNA elicits potent and prolonged CD8(+) T cell-dependent anti-tumor immunity in mice. *Vaccine* 30:1071-1082. 10.1016/j.vaccine.2011.12.029

Tao, W., Hurst, B.L., Shakya, A.K., Uddin, M.J., Ingrole, R.S., Hernandez-Sanabria, M., Arya, R.P., Bimler, L., Paust, S., Tarbet, E.B., and Gill, H.S. 2017. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. *Antiviral Res* 141:62-72. 10.1016/j.antiviral.2017.01.021

Therien, A., Bedard, M., Carignan, D., Rioux, G., Gauthier-Landry, L., Laliberte-Gagne, M.E., Bolduc, M., Savard, P., and Leclerc, D. 2017. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. *J Nanobiotechnology* 15:54. 10.1186/s12951-017-0289-y

Tian, M., Hua, Z., Hong, S., Zhang, Z., Liu, C., Lin, L., Chen, J., Zhang, W., Zhou, X., Zhang, F., DeFranco, A.L., and Hou, B. 2018. B Cell-Intrinsic MyD88 Signaling Promotes Initial Cell Proliferation and Differentiation To Enhance the Germinal Center Response to a Virus-like Particle. *Journal of Immunology* 200:937-948.
Tobias, J., Jasinska, J., Baier, K., Kundi, M., Ede, N., Zieielinski, C., and Wiedermann, U. 2017. Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide. *BMC Cancer* 17. 10.1186/s12885-017-3098-7

Tourani, M., Karkhah, A., and Najafi, A. 2017. Development of an epitope-based vaccine inhibiting immune cells rolling and migration against atherosclerosis using in silico approaches. *Computational Biology and Chemistry* 70:156-163. 10.1016/j.compbiolchem.2017.08.016

Valguarnera, E., and Feldman, M.F. 2017. Glycoengineered Outer Membrane Vesicles as a Platform for Vaccine Development. *Methods Enzymol* 597:285-310. 10.1016/bs.mie.2017.06.032

van der Burg, S.H., Bijker, M.S., Welters, M.J., Offringa, R., and Melief, C.J. 2006. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. *Adv. Drug Deliv. Rev.* 58:916-930. 10.1016/j.addr.2005.11.003

van der Heiden, M., Duizendstra, A., Berbers, G., Boots, A., and Buisman, A.M. 2017. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults. *Vaccine* 35:5581-5588. 10.1016/j.vaccine.2017.08.056

Wang, B.Z., Gill, H.S., He, C., Ou, C., Wang, L., Wang, Y.C., Feng, H., Zhang, H., Prausnitz, M.R., and Compans, R.W. 2014. Microneedle delivery of an M2e-TLR5 ligand fusion protein to skin confers broadly cross-protective influenza immunity. *Journal of Controlled Release* 178:1-7. 10.1016/j.jconrel.2014.01.002

Wang, C., Zhu, W., Luo, Y., and Wang, B.Z. 2018. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. *Nanomedicine*. 10.1016/j.nano.2018.03.007

Wang, C., Zhu, W., and Wang, B.Z. 2017. Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. *Int J Nanomedicine* 12:4747-4762. 10.2147/IJN.S137222

Wang, H., Su, X., Zhang, P., Liang, J., Wei, H., Wan, M., Wu, X., Yu, Y., and Wang, L. 2011. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. 10.1016/j.vaccine.2010.12.124

Wang, W., Feng, F., Lv, J., Xie, Z., Chen, J., Zhang, L., and Li, W. 2017. Major Immunodominant Region of Hepatitis B Virus Core Antigen as a Delivery Vector to Improve the Immunogenicity of the Fusion Antigen ROP2-SAG1 Multiepitope from Toxoplasma gondii in Mice. *Viral Immunology* 30:508-515. 10.1089/vim.2016.0135

Wang, Y., Alahdal, M., Ye, J., Jin, J., Liu, X., Chen, H., Jin, L., and Cao, R. 2018. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M2-GnRH3-hinge-MVIP vaccine. *Genes and Immunity*. 10.1038/s41435-017-0005-9

Wang, Y., Kelly, C.G., Singh, M., McGowan, E.G., Carrara, A.S., Bergmeier, L.A., and Lehner, T. 2002. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. *Journal of Immunology* 169:2422-2429.

Wei, S., Lei, Y., Yang, J., Wang, X., Shu, F., Wei, X., Lin, F., Li, B., Cui, Y., Zhang, H., and Wei, S. 2018. Neutralization effects of antibody elicited by chimeric HBV S antigen viral-like particles presenting HCV neutralization epitopes. *Vaccine* 36:2273-2281. 10.1016/j.vaccine.2018.03.036

Wen, F., Ma, J.H., Yu, H., Yang, F.R., Huang, M., Zhou, Y.J., Li, Z.J., Wang, X.H., Li, G.X., Jiang, Y.F., Tong, W., and Tong, G.Z. 2016. A novel M2e-multiple antigenic peptide providing heterologous protection in mice. *Journal of Veterinary Science* 17:71-78. 10.4142/jvs.2016.17.1.71
The basic process of immune response in vivo.

The antigen is ingested and processed by immature antigen-presenting cells (e.g., DCs), APCs becomes mature under the action of immune-stimulating molecules. Mature APCs can express antigen information on its surface in the form of antigen peptide-MHC molecular complex and present it to T cells. After recognizing this complex, T cells are activated, proliferated, and differentiated into different subtypes of effector T cells (CD4+ and CD8+) to participate in the regulation of antigen-specific humoral and cellular immune responses.
Figure 2

The signaling pathways of TLRs.

The extracellular parts of TLRs are activated after binding with ligands, and the conformation changes lead to convergence of downstream molecules, which triggers the signaling pathway and induced the up-regulation and activation of cytokines, chemokines and other co-stimulatory factors. With the exception of TLR3, all TLRs initiate MyD88 through the expressed MyD88 or simultaneous bridging MAL, and then activate the NF-kB and MAPK through tandem reactions, which induces the production of pro-inflammatory cytokines such as IL-1, IL-6, TNF-α, etc. The overexpression of both TRIF and TRAM or TRIF alone initiated the TRIF dependent pathway, the TRIF dependent pathway activates IFN regulatory factors and mediates the production of type I IFNs. In addition, the activation of TLR4 is related to both pathways.
Figure 3

The chemical structures of different TLR2-targeting Pam lipopeptides.

(A) Pam2Cys and Pam3Cys lipopeptides. (B) MALP2 and FSL-1 lipopeptides. (C) Pam2CSK4 and Pam3CSK4 lipopeptides.

Pam2Cys: R=H
Pam3Cys: R=CH₃(CH₂)₁₄CO

MALP2: R=GNNDENISNFKEK
FSL-1: R=GDPKHPKSF

Pam2CSK4: R=H
Pam3CSK4: R=CH₃(CH₂)₁₄CO
Figure 4

Recombinant HBc-based VLPs or HBs-based VLPs.

(A): 1) The HBc proteins naturally form the dimers, the building blocks that forms the VLPs. It takes about 60 such dimers (i.e., 120 copies of HBc) to form a HBc-based VLP. The results showed that there were about 40 amino acid residues inserted into the N-terminal of HBc. In the MIR region of HBc, 50 or 100 amino acid residues can be inserted, and as many as 100 or more residues at the C-terminal do not interfere with the formation of particles. 2) Hepatitis B surface antigen (HBsAg) can also self-assemble into highly organized viroid particles with a diameter of 22 nm. These HBs-derived VLPs contain about 100 HBsAg molecules and provide a unique opportunity to display multiple exogenous epitopes. (B): Hepatitis B virus tandem core platform. The two replicas of HBc protein are linked together by covalent bonds through flexible amino acid sequences so that the fused dimers can be folded correctly and assembled into HBc particles. In the assembled HBc particles, the four helix bundles formed at each dimer interface appear on the surface as prominent "spikes". The tip of the spike is the preferred site for inserting foreign sequences for bivalent vaccine.
Figure 5

The schematic diagram of MAP system and LCP nanoparticles.

(A) MAP epitope vaccine based on lysine scaffold. (B) The LCP nanoparticles.
Figure 6

Self-assembled peptides nanoparticles (SAPNs).

Systematic self-assembling peptides (β-sheet nanofiber vaccine) with antigen epitopes.
Figure 7

The inorganic nanoparticles.

The formation of gold nanoparticles carrying antigen epitopes.
Table 1 (on next page)

Different subtypes of TLRs and their identified PAMPs.

The biological activities of TLRs agonists that can activate the immune system.
TLRs	PAMPs	Biological activity	References
TLR2/TLR6	The lipoproteins of bacteria or mycoplasma.	Activate intracellular signal NF-KB, induce adhesion molecules and inflammatory cytokines.	(Zhu et al., 2010; Basto & Leitao, 2014; Kaisho & Akira, 2002)
TLR2/TLR1	Lipopeptide (MALP-2), Peptidoglycan (PGN)	Induce the expression of adhesion molecules and inflammatory cytokines	(Reed et al., 2016; Kaisho & Akira, 2002)
TLR4	Lipopolysaccharides (LPS), Heat shock protein (HSP), β-defensin, Heparin-binding hemagglutinin (HBHA)	The potent proinflammatory activity by inducing NF-KB activation, and expression of IL-8 and inducible NO synthase in intestinal epithelial cells	(Kaisho & Akira, 2002; Moyle, 2017)
TLR5	Gram-negative bacteria flagellin	Induce IL-12 production and DC maturation and elevate CD40 expression on APCs.	(Kaisho & Akira, 2002; Cheng et al., 2018)
TLR7/TLR8	Double-stranded RNA (ds RNA), Poly(I:C)	Induce the expression of adhesion molecules and inflammatory cytokines	(Vasilakos & Tomai, 2013)
TLR9	CpG DNA, Hemozoin, Herpes simplex virus DNA	Production of Th1 cytokines and promotion of cytotoxic activity of NK cells.	(Zhu et al., 2010; Kaisho & Akira, 2002)
Table 2 (on next page)

Various lipopeptides that can be used as build-in adjuvants.

The biological activities or structures of various lipopeptides and their natural analogues.
Name	Natural analogues.	Biological activity or structure.	References
MALP2	the M161Ag lipoprotein of Mycoplasma fermentans	The agonistic ligand of the TLR2/6 heterodimer Induces production of inflammatory cytokines from macrophages, monocytes and DCs. MALP2s, a short form of MALP2, lacks the last eight amino acids of the full length MALP2 (Pam2-CGNNDENISFKEK). As an adjuvant capable of inducing DC maturation, MALP2s can be used in antitumor immunotherapy	(Takeda et al., 2018; McDonald et al., 2014)
FSL-1	the LP44 lipoprotein from Mycoplasma salivarium	FSL-1 (Pam2CGDPKHPKSF) contains the structure of diacylglycerol similar to Pam2CSK4, which play a key role in immune cell maturation and Th2 immunization and induces the expression of inflammatory cytokines, such as monocyte chemotactic protein (MCP)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α by monocytes/macrophages.	(Liu et al., 2016; Kurkjian et al., 2017)
Pam3CSK4	The Braun lipoprotein in Escherichia coli	Pam3CSK4 is the first mimicking lipopeptide that contains three highly lipophilic tails and six amino acids and can activates the TLR2/1 signaling pathway.	(Basto & Leitao, 2014; Arai et al., 2018)
Pam2CSK4	The LP44 lipoprotein from Mycoplasma salivarium	The palmityl tail on the N-terminal of cysteine of Pam3CSK4 has been shown to be an dispensable part of TLR2 activation. Removing this lipophilic tail forms a highly effective Pam2CSK4.	(Halliday et al., 2016; Arai et al., 2018)
Pam3Cys	The Braun lipoprotein in Escherichia coli	Modulation of APC Migration and Antigen Internalization. More efficient than CpG and resiquimod (TLR9 and TLR7/8 ligands) The enantiopure Pam3Cys derivatives that contained R-configured glycerol can induce cytokines and antibody production in mice when administered with antigens. The antigen-specific CTL cells induced by S-epimers were significantly higher in mice. Vaccines containing Pam3Cys	(Zaman & Toth, 2013; McDonald et al., 2015)
can reduce the burden of breast tumors in mice and induce the production of CTLs.

| Pam2Cys | Cytoplasmic membrane of Mycoplasma fermentans | Compared with Pam3Cys, Pam2Cys have higher solubility characteristics and is a more potential stimulus factor for splenocytes and macrophages. The activity of the natural R isomer of Pam2Cys is 100 times that of S isomer. Dependent on the palm acylated cysteine lipid head group activates downstream signals and activate TLR2 on DC’s and trigger maturation of DCs (Zaman & Toth, 2013; Nalla et al., 2015) |
Table 3 (on next page)

Several major types of heat shock proteins.

The intracellular localizations and biological functions of several major types of heat shock proteins.
HSP family/members	Intracellular localization	Biological function	References
HSP60/HSP58, HSP60, HSP65	Mitochondrion, cytoplasm	It plays a role in the folding of proteins in the mitochondrial matrix. Hsp60 can affect T cell response in two ways: as a ligand of toll-like receptor 2 signalling and as an antigen.	(Juwono & Martinus, 2016; Bajzert et al., 2018)
HSP70/HSP68, HSP70, HSP72, HSP73	Cytoplasm or nucleus, Mitochondrion, Endoplasmic reticulum	It plays a role in different cell processes, from protein folding to protein complex decomposition and cell membrane protein transfer. Almost every protein that is not folded into its original state has multiple accessible Hsp70 binding sites. It most commonly used as an adjuvant and protective antigen	(Craig, 2018; Cheng et al., 2014)
HSP90/HSP83, HSP84, HSP87, HSP90, Gp96	Cytoplasm or nucleus, Endoplasmic reticulum, Golgiosome	HSP90 regulates the stability of client proteins, activates intracellular division of labor, participates in the regulation of multiple signaling pathways and cell cycle processes, and plays an important role in carcinogenic signal transduction, anti-apoptosis, metastasis, stress injury, autoimmune and other diseases treatment. HSP90 can promote the correct assembly, folding, or restoring the normal conformation of the damaged protein, prevent the wrong folding and aggregation of the protein and also promote the processing of MHC I antigen through the generation and assembly of the antigen determinant cluster of 26s protease complex.	(Pearl et al., 2008; Strbo et al., 2013)
HSP110	Cytoplasm or nucleus	HSP110 has a strong molecular chaperone function and can present antigen peptides to APCs to activate specific antitumor cellular immunity. Moreover, HSP110 can also up-regulate the expression of MHC-II, CD40 and costimulatory molecules of APC, thus enhancing the antigen-presenting ability of APC.	(Tang et al., 2005; Ding et al., 2013)
Small HSPs/HSP22, HSP23, HSP26, HSP27, HSP28, αβ-crystallin	Cytoplasm or nucleus, Mitochondrion	Stable cytoskeleton, Heme catabolism or antioxygenic property, Actin dynamics	(Bolhassani & Rafati, 2008)
Table 4 (on next page)

Summary of several bacterial toxin build-in adjuvants listed in this paper.

The advantages and characteristics and some application examples of several bacterial toxin build-in adjuvants.
Objective	Advantages and Characteristics	Application Example	References
Heat labile toxins (HLT)	(1) B subunit of LT or the mutant form of LT can activate the dendritic cells and B and T lymphocytes.	(1) Fused the Heat-labile LT B with the linear B cell epitope of Aeromonas hydrophila outer membrane protein (OmpC) or two epitopes of Zairian Ebola virus GP1 protein.	Rodrigues et al., 2011; Sharma et al., 2017; Rios-Huerta et al., 2017
Cholera toxin (CT)	(1) CTB’s strong affinity to GM1 ganglioside receptor. (2) Reduce the minimum concentration of antigens required for activation of immune cells.	(1) A multivalent epitope-based vaccine CWAE against h. pylori and anti-atherosclerosis multi-epitope vaccine. (2) CTB-Human Mucin 1 (MUC1) vaccine.	Guo et al., 2017; Tourani et al., 2017
Diphtheria toxin (DT)	(1) CRM197 is a mutant of DT, which can effectively combine and present peptides and rapidly activate CD4 T cells by multiplicity of Th1 and Th2 cytokines. (2) The DTT is no safety hazard and contains four Th cell epitopes. (3) DTT can form a turn-helix-turn structure completely exposed to the surface, which may be a potential site for insertion of exogenous epitopes.	(1) Several short B cell epitopes on the Her-2/neu protein were coupled with CRM197. (2) The epitope of TNF-α is coupled to the insertion site of DTT, developed an anti-TNF-α vaccine DTNF.	Tobias et al., 2017; Zhang et al., 2016; Zhang et al., 2016
Tetanus toxoid (TT)	(1) TT has multiple CD4+ Th cell epitopes and associated memory Th subsets. (2) Helper epitopes selected from Tetanus toxin fragment C (TTFrC).	(1) A new type of anti-gastrin vaccine. (2) As the carrier protein of glycoconjugate vaccine. (3) The anti-brucellosis multi-epitope vaccine and anti-atherosclerosis multi-epitope vaccine.	Saadi et al., 2017; Broker, 2016; Arcuri et al., 2017
Anthrax toxin	(1) The N-terminal (the first 255 amino acids) of lethal factor (LF) of anthrax toxin termed LF n, retains protective antigen (PA)-binding and translocation capabilities but has no toxic activity. (2) LF n has been used to transfer foreign proteins and peptides into the cytoplasm.	(1) A chicken ovalbumin (Ova) recombinant protein (LF n-Ova). (2) LF n as the delivery carrier of ESAT-6 antigen.	Wesche et al., 1998; Shaw & Starnbach, 2008; Chandra et al., 2006
Table 5 (on next page)

Different investigational built-in adjuvants for epitope-based vaccines.

The clinical phases of various built-in adjuvants and their applications in the treatment of different diseases.
Build-in adjuvant	Disease	Clinical phase	References
Gp96	Late stage melanoma	Pilot	(Shevtsov & Multhoff, 2016)
	Metastatic colon carcinoma	Phase I	(Mazzaferro et al., 2003)
	Gastric carcinoma	Phase I	(Shevtsov & Multhoff, 2016)
	Pancreatic carcinoma	Phase I	(Maki et al., 2007)
	Hodgkin lymphoma	Phase I	(Shevtsov & Multhoff, 2016)
	Glioblastoma	Phase I–II	(Bloch & Parsa, 2014)
HSP70	Malignant melanoma	Phase I	(Shevtsov & Multhoff, 2016)
	Chronic lymphatic leukemia	Phase I	(Shevtsov & Multhoff, 2016)
	Advanced solid tumors	Pilot	(Guzhova et al., 2013)
	Glioblastoma	Phase I	(Guzhova et al., 2013)
	HIV	Phase I	(SenGupta et al., 2004)
Bacterial flagellin	bacterial diarrhea and	Phase I	(Moyle, 2017)
	Guillain-Barré syndrome		
	Influenza A virus	Phase I/II	(Taylor et al., 2011; Taylor et al., 2012)
	Dengue viruses/ Zika virus	Preclinical	(Liu et al., 2015)
	Respiratory syncytial virus	Preclinical	(Liu et al., 2015)
MALP-2	Pancreatic cancer	Phase I/II	(Schmidt et al., 2007)
HBcAg	P. falciparum	Phase I	(Roose et al., 2013)
	Influenza A virus	Phase I	(Roose et al., 2013)
	Hepatitis B virus	Licensed	(Effio & Hubbuch, 2015)
Qβ VLP	Melanoma	Phase I & II, Ia	(Goldinger et al., 2012)
	Persistent allergic asthma	Phase II	(Beeh et al., 2013)
	Hypertension	Phase I	(Ambuhl et al., 2007)
	Nicotine dependence	Phase I	(Cornuz et al., 2008)
	Alzheimer's disease	Phase I/ Ia	(Winblad et al., 2012)
SAPNs	Hepatitis B	Phase III	(Shirbaghaee & Bolhassani, 2016a)
	Cervix cancer	Phase III	(Shirbaghaee & Bolhassani, 2016a)
	Parvovirus porcine infection	Phase I/II	(Kushnir et al., 2012)
	Influenza A	Phase I/II	(Kushnir et al., 2012)
	Malaria	Phase III	(Kushnir et al., 2012)
	Alzheimer's disease	Phase II	(Lopez-Sagaseta et al., 2016)
	Malignant melanoma	Phase II	(Lopez-Sagaseta et al., 2016)
Material	Disease	Stage	Reference
-------------------	----------------------------------	-----------	-------------------------
Liposome	Influenza	Phase II	(Tandrup et al., 2016)
	Streptococcus mutans	Phase I	(Tandrup et al., 2016)
	Neisseria meningitides	Phase I	(Tandrup et al., 2016)
	HIV	Phase I	(Tandrup et al., 2016)
	Mycobacterium tuberculosis	Phase I	(Tandrup et al., 2016)
PLGA	Hepatitis B	Clinical trial	(Yang et al., 2016)
	HIV	Phase I	(Bolhassani et al., 2014)
	Solid tumors	Preclinical	(Bolhassani et al., 2014)
	Cervix cancer	Phase II/III	(Bolhassani et al., 2014)
	Hepatitis C	Preclinical	(Bolhassani et al., 2014)
Chitosan	RSV	Preclinical	(Bolhassani et al., 2014)
	Tuberculosis	Preclinical	(Bolhassani et al., 2014)
	Allergy	Preclinical	(Bolhassani et al., 2014)
Gold nanoparticle	Influenza	Clinical trial	(Vartak & Sucheck, 2016; Zhao et al., 2014)
	HIV	Clinical trial	(Vartak & Sucheck, 2016; Zhao et al., 2014)
	RSV	Clinical trial	(Vartak & Sucheck, 2016; Zhao et al., 2014)
	Foot-and-mouth disease	Clinical trial	(Vartak & Sucheck, 2016; Zhao et al., 2014)
	Malaria	Clinical trial	(Vartak & Sucheck, 2016; Zhao et al., 2014)