Effects of litter mixing on litter decomposition and soil properties along simulated invasion gradients of non-native trees

Pilar Castro-Díez · Álvaro Alonso · Alberto Romero-Blanco

Received: 14 February 2019 / Accepted: 4 June 2019 / Published online: 21 June 2019
© Springer Nature Switzerland AG 2019

Abstract
Aims Plant invasions generally lead to mixtures between native and non-native litter. We assess the interactions between leaf litters from two invasive non-native trees (Robinia pseudoacacia or Ailanthus altissima) and the native Populus alba on litter decomposition, nutrient release and soil properties along two gradients of invasion.

Methods Microcosms with field-collected soil covered by varying proportions of native and non-native litter simulated the two invasion gradients. We assessed the proportion of remaining litter mass and nutrient mass (N, P, C), and soil C, N-NO₃⁻, total N, and pH, five times throughout a period of 11 months. Observed values were compared to the expected values on the assumption of no interactions.

Results Litter mass and C mass decayed slower in Robinia and faster in Ailanthus than in Populus. The three species immobilized N and P. Soil properties did not differ across pure litters. Both litter mixture gradients showed additive or antagonistic interactions on litter decomposition, whereas N and P mass were equal or higher than expected. The proportion of non-native litter in the mixture had non-linear effects on most variables, suggesting that the impact of these non-native trees on litter decay levels off or even declines as they become more abundant.

Conclusion The impacts of Ailanthus and Robinia litter on soil processes should not be derived from single species experiments, both due to non-additive effects and to non-linear responses to litter abundance.

Keywords Invasive trees · Litter decomposition · Litter properties · Non-additive effects · Per-capita impact · Soil properties

Introduction
Litter decomposition is a key process for nutrient cycling in forest ecosystems, and thus for primary production (Berg and McClaugherty 2014; Hickman et al. 2013; Vogt 1991). The litter decomposition process is controlled by climatic and edaphic factors, by the nature of the soil community, and by the quality of the litter (Aerts 1997; Berg and McClaugherty 2014; Gallardo and Merino 1993; Jo et al. 2016). Thus, invasion of ecosystems by non-native plants with litter properties different from those prevailing in the native community may alter the nutrient cycle and soil properties (Castro-Díez et al. 2014a; Ehrenfeld and Scott 2001; Incerti et al. 2018; Kourtev et al. 2002). Impacts may be dramatic when the invaders represent novel functional key traits and/or when they are...
very abundant (Chapin et al. 1996; D’Antonio and Corbin 2003; Vitousek and Walker 1989).

One of the most widely described impacts of invasive plants is that of the litter on soil properties and processes (Castro-Díez et al. 2014a; Ehrenfeld and Scott 2001; Hulme et al. 2013; Liao et al. 2008; Pyšek et al. 2012). Overall, invasive plants tend to be more productive than natives (Pyšek and Richardson 2007; van Kleunen et al. 2010) and to produce litters with properties associated to a fast decomposition (e.g. high nutrient content, high specific leaf area (SLA), low lignin and phenolic content) (Castro-Díez et al. 2014a; Ehrenfeld 2003; Pyšek et al. 2012). However, exceptions to this trend can be often found (Godoy et al. 2010; Marchante et al. 2019; McArthur et al. 1994; Nilsson et al. 1999), and recent studies suggest that this general trend may be the result of a biased selection of the non-native species with the largest impacts on ecosystem processes (Icerti et al. 2018; Jo et al. 2016).

The pattern of non-native tree invasion over space and time generally leads to litter mixtures between native and non-native species (Chen et al. 2013; Gartner and Cardon 2004; Hickman et al. 2013). Yet, most studies aiming to assess the impact of this litter on soil processes rely on comparisons between situations with pure native litter and pure non-native litter (Castro-Díez et al. 2009; Godoy et al. 2010; Icerti et al. 2018). Thus, these studies implicitly assume that native and non-native litters do not interact which each other, so that the dynamics of the litter mixtures might be derived from the dynamics of isolated litters knowing their proportions in the mixture. This situation is referred to as “additive effects” between litters, i.e. the whole is the sum of the components. Yet, the growing number of studies addressing the dynamics of litter mixtures highlights that non-additive effects are more frequent than additive effects and that positive effects or synergies (i.e. faster decomposition –or lower litter mass remaining– than predicted from component species decaying alone) are more frequent than negative or antagonistic effects (Gartner and Cardon 2004; Hattenschwiler et al. 2005; Lecerf et al. 2011). Mechanisms behind interactions between litters in mixtures include the transfer of nutrients or other compounds across litters, increased habitat complexity in litter mixtures, enhancing consumer diversity (Chen et al. 2013; Gartner and Cardon 2004; Lecerf et al. 2011; Zhang et al. 2014), or feedbacks between edaphic organisms and the environment (Elgersma and Ehrenfeld 2011).

Another widespread assumption is that invaders impacts are proportional to the invaders density, i.e. that the per-capita impact is constant (Parker et al. 1999). Yet, the few studies that specifically address the impact-density relation showed a variety of responses, including threshold effects (i.e. no impact below certain threshold density) (Elgersma and Ehrenfeld 2011; Maron and Marler 2008; Thiele et al. 2010). Given that most studies supporting impact assessment are focused on high-density invasions (Elgersma and Ehrenfeld 2011; Strayer et al. 2006; Yokomizo et al. 2009), the assumption of per-capita constant impact, if false, may involve high management costs (Yokomizo et al. 2009).

In spite of recent advances and reviews, the dynamics of litter mixtures have revealed to be complex and difficult to predict. For instance, non-additive effects of litter mixtures have been suggested to be greater when component litters differ greatly in functional traits (Wardle et al. 1997), but empirical evidences provide mixed support to this hypothesis (Chen et al. 2013; Hooren et al. 2003; Lecerf et al. 2011; Quested et al. 2002). Length of the decay period may also affect the sign of the interactions (Chen et al. 2013; Gartner and Cardon 2004; Lecerf et al. 2011). Finally, the proportion of different litters in the mixture may also interfere with the strength of the interactive effect (Gartner and Cardon 2004; Scowcroft 1997; Zhang et al. 2014). In this line, similar proportions of litters with different traits in mixtures have been suggested to promote non-additive effects on litter decomposition (Chen et al. 2013). However, few studies evaluate the effects of mixtures with different proportions of litters (Gartner and Cardon 2004, but see Elgersma and Ehrenfeld 2011; Scowcroft 1997). Thus, there is an urgent need to fill these gaps with empirical knowledge to prevent managers to adopt scarcely tested assumptions (as the constant per-capita impact) that may lead to implementing ineffective management actions (Søfaer et al. 2018; Yokomizo et al. 2009).

In Europe, including Spain, riparian forests, along with coastal ecosystems, are the most invaded natural terrestrial habitats (Chytrý et al. 2008; Vilà et al. 2001). Riparian forests are particularly prone to invasion because they match many of the conditions hypothesized to increase invasion success (Castro-Díez and Alonso 2017; Catford et al. 2011; Catford et al. 2009; Hood and Naiman 2000; Tabacchi et al. 2018).
In this study, we address the question of how the non-native litter of *A. altissima* and *R. pseudoacacia* alter nutrient cycling and soil properties. Previous field and lab experiments suggest that *A. altissima* litter decomposes faster than that of coexisting natives, while *R. pseudoacacia* litter does the opposite (Castro-Díez et al. 2009; Medina-Villar et al. 2015a). Under field conditions, *A. altissima* was found to decrease soil total N and *R. pseudoacacia* to increase soil mineral N (ammonium and nitrate) as compared to non-invaded forests (Medina-Villar et al. 2016). By contrast, a microcosm experiment revealed no difference in the effects of native and non-native litter on several soil properties (Castro-Díez et al. 2012). However, to our knowledge there is no information on how the litter of these two species interferes with the decomposition of native litter, or on the relationship between the abundance and the impact of the invaders.

Specifically, we address the following questions. 1) How do litter decomposition dynamics differ between the two invasive trees and a coexisting native tree? 2) Are there non-additive positive or negative effects of the non-native litter on litter decomposition and soil properties? 3) How do these effects vary through incubation time? 4) How do these effects vary along a simulated gradient of invasion (increasing proportion of non-native litter)?

Materials and methods

Study species

Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is native to South East Asia, while *Robinia pseudoacacia* L. (Fabaceae), is native to the Appalachian Mountains in Eastern North America. Both are fast-growing deciduous trees with compound leaves. They were introduced as ornamental plants in Europe, in the 18th and the 17th century, respectively (Sanz Elorza et al. 2004). Now they are considered as global invaders, being among the 100 worst invasive species in Europe (Basnou 2009; Basnou and Vilà 2009). In Spain these species are widespread in floodplains, borders of crops and roads, and (sub)urban areas (Sanz Elorza et al. 2004). Their fast growth, high seed production and profuse resprout ability, along with the N-fixing capacity of *R. pseudoacacia*, and the efficient dispersal of *A. altissima* seeds by wind and water, have been listed among the causes explaining their invasive success (Cabra-Rivas and Castro-Diez 2016; Cierjacks et al. 2013; Kowarik and Saumel 2007). The native tree *Populus alba* L. (Salicaceae) has been selected as control species due to its high dominance in the riparian forest of middle-low altitudes and basic soils of inner Spain (Lara et al. 1996). It is a deciduous, simple leaves tree, which produces large amounts of tiny, wind-dispersed seeds (Prada and Arizpe 2008). For simplicity, we name the species by the genus name from now on.

Leaf litter sampling

The leaf litter sampling was performed in the riparian forest of the mid-low Henares River (or its subsidies) along a stretch of 15 km, between the municipalities of Cabanillas del Campo (40°38′04″N, 3°14′06″W) and Los Santos de la Humosa (40°30′58″N, 3°17′06″W), both in Guadalajara province (central Spain). In this stretch, four locations were selected (Cabanillas del Campo, Alovera, Chiloeches and Los Santos de la Humosa) and litter from each species was collected in one (*Populus*), two (*Ailanthus*) or the four locations (*Robinia*). The altitude ranges from 590 to 660 m.a.s.l. The climate is Mediterranean continental, with cold winters and arid summers. The mean annual temperature is 13.5 °C and the mean annual precipitation is 358 mm (weather station of Alcalá de Henares-El Encín, 600 m.a.s.l., period 1970–2009). Soils are Calcic.
Soil moisture calibration

Prior to the beginning of the experiment we conducted a soil moisture – soil weight calibration in order to monitor soil moisture during the experiment. Six previously weighed 500 cm3 (12 × 9 × 5 cm) polypropylene containers with five drainage holes in the bottom were filled with 250 g of air-dried experimental soil. Containers were then kept in larger aluminum trays with 3 cm of water for several days until soils were fully saturated. Then containers were left to freely drain until they stopped dripping from the bottom. At that point, containers were weighed, left to air dry in the lab, and re-weighed one to four times per day, until the soil started to show cracks and to lose its structure. Finally, containers were oven-dried at 60 °C for ≥72 h and weighed. Soil moisture was calculated for every weighing time as the proportion of soil water (full container weight minus empty container weight minus dry soil weight) with respect to the water content at soil field capacity (Castro-Díez et al. 2012). The relation between container weight and soil moisture was used to calculate the amount of water required to keep experimental containers at 70–90% of soil field capacity during the experiment.

Experiment setup

The experiment was set up on 28th January 2016. We constructed microcosms by filling 162 polypropylene containers like those used for soil moisture calibration with 250 g of air-dried homogenized soil (ca. 3 cm of soil depth). The soil of each container was directly covered with ca. 3.5 g of previously-weighed air-dried leaf litter (i.e. we did not use litter bags to maximize the contact between leaf litter and soil), corresponding to one of the following treatments: 100% Populus, 100% Ailanthus, 100% Robinia, 75:25 Ailanthus:Populus, 50:50 Ailanthus:Populus, 25:75 Ailanthus: Populus, 75:25 Robinia:Populus, 50:50 Robinia: Populus, and 25:75 Robinia: Populus. In this way, we simulated two invasion gradients of the riparian native forest (dominated by Populus) by each invasive tree. The quantity of leaf litter used was equivalent to 324 g m$^{-2}$, which falls within the range of annual leaf litter production reported in the literature for these species: 305 g m$^{-2}$ for Ailanthus (González-Muñoz et al. 2013), 310 g m$^{-2}$ for Robinia (Tateno et al. 2007) and 412 g m$^{-2}$ for Populus (Medina-Villar et al. 2015b).

Eighteen containers (replicates) per treatment were prepared. Groups of four or six replicates were randomly placed in each of four drainage aluminum trays with ca. 2 cm of water in the bottom, to allow hydration of the containers’ soil. The leaf litter was sprayed from above with deionized water. When both soil and leaf litter were hydrated, the trays with the containers were introduced in two thermostatic chambers (AQUA LYTIC ®) at constant temperature of 20 °C and in dark. Every week a subsample of 20 containers was weighed to assess soil moisture. The amount of deionized water required for attaining field capacity was added to the drainage tray.
and the leaf litter was sprayed also with deionized water. To avoid heterogeneity of conditions, trays were randomly rotated within and across chambers weekly. The average soil moisture during the experimental period was $81.12\% \pm 1.58$ SE of soil field capacity.

After 62, 111, 161, 253 and 323 days of incubation we collected three randomly-selected containers per treatment (one per drainage tray), with the exception of the last date, when six containers were collected. This decision was made at the expense of a sixth collection to compensate for the increased variance of remaining litter mass detected in the later collections. In each container, we gently separated leaf litter from the soil, kept the litter in paper bags and dried it in the oven ($60 \, {^\circ}C \geq 48$ h). Once dried, the sample was extended on a paper to additionally remove soil particles attached to the litter with a gentle brush before weighing the litter to obtain the proportion of litter mass remaining (LMR). Soils were also kept in paper bags, oven-dried ($60 \, {^\circ}C \geq 72$ h) and kept in the freezer at $-20 \, ^{\circ}C$ until analysis (Sun et al. 2015). By drying soil samples at a moderate temperature, we minimized the drying period, and then the chances of losing labile organic carbon (Sparling et al. 1985).

Chemical analysis

Leaf litter From the initial pool of leaf litter we selected 20 g (air-dried weight) per species, keeping the rachis:lamina ratio of full leaves of *Ailanthus* and *Robinia*. From each of the remaining collections, we kept the full amount of remaining litter. Each sample was ground in a Culatti mill to 1 mm-particle size. From the initial pool of leaf litter we collected four pseudo-replicates of 3.5 g for lignin analysis in Ainqrot S.A. laboratory (Madrid, Spain), following the method of UNE-EN ISO 13906:2009. N, P and C concentrations of every litter sample were determined with an Automated Wet Chemistry Analyzer (Skalar San++, Breda, The Netherlands). Soils were also kept in paper bags, oven-dried ($60 \, {^\circ}C \geq 72$ h) and kept in the freezer at $-20 \, ^{\circ}C$ until analysis (Sun et al. 2015). By drying soil samples at a moderate temperature, we minimized the drying period, and then the chances of losing labile organic carbon (Sparling et al. 1985).

Soils Soil pH, total N, total C, and N-N0$_3^-$ (which represented 93.4% of the total inorganic N of this soil (Castro-Díez et al. 2012)) were measured at the beginning (day = 0, 5 pseudo-replicates), at the middle (day = 161, 3 replicates), and at the end of the incubation (day = 323, 6 replicates). Soils were defrosted at ambient temperature, homogenized and ground in a Culatti mill to a 2 mm soil particle. For soil pH assessment, 10 mL of deionized water were added to 5 g of each soil sample, shaken and measured with a pH-meter (Allen et al. 1986). For total N and C, ca. 40 g per sample were digested with H$_2$SO$_4$ and Cu – KSO$_4$, and analyzed as before, with an Automated Wet Chemistry Analyzer (Skalar San++, Breda, The Netherlands). Soil N-N0$_3^-$ was extracted by adding 100 mL of KCl 2 M to 10 g of soil and shaking the mixture for 1 h. After 30 min, 20 mL of clear supernatant were kept in vials and frozen at $-20 \, ^{\circ}C$ before analysis at Nutrilab with an Automated Wet Chemistry Analyzer (Skalar San++, Breda, The Netherlands).

Statistical analyses

Comparison of litter and soil properties across pure-litter treatments

Initial chemical properties (N, P, C, lignin, C:N and lignin:N), the fraction of initial litter and nutrient (N, P and C) mass that remained in the final collection, and soil properties in the final collection, were compared across the three pure-litter treatments using one-way ANOVA or Kruskall-Wallis when homoscedasticity was not met.

Fitting litter mass loss models

To fit the variation of LMR to time we used two models for each litter treatment: 1) the simple exponential model, which assumes that the substrate is completely decomposed at a constant decomposition rate (k).

\[
LMR = e^{-kt},
\]

LMR being the proportion of litter mass remaining, k the decomposition rate and t the time in years (Berg and McClaugherty 2014). Although this is the most widely used model for litter decomposition dynamics, it has been often found to poorly fit observations for late phases of litter decomposition (Berg and McClaugherty 2014). Thus, we fit: 2) the asymptotic model, which assumes that the decomposition proceeds progressively more slowly until approaching to zero, and that a fraction of the litter mass is not decomposed (Berg and McClaugherty 2014).

\[
LMR = m + (1-m)e^{-k't/m},
\]

m being the fraction of litter mass not decomposed at the end of the period (i.e. the model asymptote), k' the
initial decomposition rate, and the rest of parameters being the same as before. The best model was considered the one with the lower residual standard error. Model fit was performed with the nls() function of the ‘stats’ package in R.

Expected values of litter mixtures

For each litter mixture and collection day, we calculated the expected litter or nutrient (N, P and C) mass remaining from the values obtained in the pure litter treatments as:

\[
MR_t^e(\text{mixture}) = xMR_t^e(sp_1) + yMR_t^e(sp_2),
\]

\[(3) \]

\(MR_t^e\) being the expected mass remaining of the litter mixture at time \(t\), \(MR_t^o\) the observed mass remaining of the species making up the mixture (\(sp_1\) and \(sp_2\)) incubated in isolation, and \(x\) and \(y\) the proportions of \(sp_1\) and \(sp_2\) in the mixture.

Comparison of observed and expected values

We compared the observed and the expected values of litter (LMR) and nutrient (N, P, C) mass remaining (NMR, PMR and CMR) for every litter mixture treatment and collection date, by subtracting the latter from the former (observed - expected), and assessed whether the value differs from zero using a Student’s one-sample t-test.

Effect of incubation time

A two-way ANOVA was applied to assess the effect of incubation time, mixture treatment and their interaction on the deviation of observed from expected values. To increase the statistical power, values of the collections taken at days 62 and 111 (representing the initial phase) were pooled and compared with collections from days 253 and 323 (representing the final phase).

Variation of the effects of non-native litter with its abundance

For all response variables that differ across pure litter treatments in the last collection, we fit the response variable versus the proportion of non-native litter in the mixture using a linear and a quadratic model. These two models were selected to represent different responses after a visual inspection of the data. For each model, we assessed the residual deviance and the Akaike information criterion (AIC). The quadratic model was considered to improve the linear model if its AIC was at least two units lower than that of the linear model (Burnham and Anderson 2002).

Results

Comparison of pure-litter treatments

All litter chemical properties, except for carbon content, differed across species at the beginning of the experiment. The two non-natives, *Ailanthus* and *Robinia*, showed higher N content, lower C:N and lignin:N than the native *Populus*. The P content was the highest in *Ailanthus*, while lignin was the highest in *Robinia*, followed by *Populus* and by *Ailanthus* (Table 1).

The decomposition rate obtained with the simple exponential model (\(k\)) was the highest for *Ailanthus*, followed by *Populus* and the lowest in *Robinia*

Table 1	Initial chemical properties (mean ± SE) of the three studied species: *Ailanthus altissima*, *Robinia pseudoacacia* and *Populus alba*. The last columns indicate the ANOVA results comparing species				
Litter N (mg/g)	8.79 ± 0.77b	9.25 ± 1.04b	4.66 ± 0.49a	10.08	0.005
Litter P (mg/g)	0.97 ± 0.10b	0.38 ± 0.06a	0.40 ± 0.05a	22.61	<0.001
Litter C (%)	29.15 ± 0.72a	27.61 ± 0.55a	28.25 ± 0.44a	1.77	0.223
Litter C:N	33.17 ± 2.81a	29.84 ± 4.26a	60.67 ± 5.79b	116.93	<0.001
Lignin (%)	6.90 ± 0.26a	11.03 ± 0.16b	8.78 ± 0.12b	116.93	<0.001
Lignin:N	8.11 ± 0.98a	12.45 ± 1.61b	19.56 ± 2.26b	11.63	0.003

Different letters across columns indicate significant differences (\(P < 0.05\))
Contrastingly, the asymptotic model revealed that the initial decomposition rate \((k') \) followed the opposite rank (\(Populus > Robinia > Ailanthus \), Table 2, Online Resource Fig. S1). However, in contrast to Ailanthus, the decomposition rate of Populus and Robinia litter slowed down quickly, leading to a residue \((m) \) of nearly two thirds of the initial mass (Table 2, Online Resource Fig. S1). According to their lower residual standard error, the asymptotic model gave a better fit of litter decay dynamics for all the treatments (Table 2).

Nutrient dynamics during the decomposition of the litter differed across the three species. In the first collection, the fraction of initial N remaining in the litter \((NMR) \) increased above one in the three species, indicating microbial N immobilization. This increase was particularly steep in Populus, where the N litter content almost tripled. During the following collections, NMR declined in Ailanthus, and remained similar in Robinia and Populus (Online Resource Fig. S2), leading to a final net N content change of +155% in Populus, +54% in Robinia and −25% in Ailanthus (Table 3). The P content of the litter \((PMR) \) also increased in the first harvest in the three species, again with a steeper increase in Populus. Later on, P slightly decreased in Ailanthus, kept on increasing in Robinia and remained similar in Populus (Online Resource Fig. S3), leading to a final net P content change of −4% in Ailanthus, +150% in Robinia and +187% in Populus (Table 3). Finally, the C content of the litter, after an initial slight increase, tended to decline through the remaining collections, leading to a net C loss in the three species, which was the highest in Ailanthus (60%), followed by Populus (31%) and by Robinia (17%) (Online Resource Fig. S4, Table 3).

Soil chemical properties and their dynamics were very similar across treatments (Online Resource Fig. S5-S8). Soil N and soil N-NO\(_3^-\) were similar at the beginning and at day 161, but in the last collection (day =323) total N slightly increased, while N-NO\(_3^-\) slightly decreased (Online Resource Fig. S5-S6). Soil C and soil pH showed little variation through the study period (Online Resource Fig. S7-S8). In the last collection, the ANOVA comparing soil properties across pure litter treatments, revealed no significant difference for any of the soil properties (Table 3).

Table 2 Summary of the models applied to fit the litter mass remaining to time (years). For the simple exponential model we show the decomposition rate \((k) \) ± standard error \((SE) \). For the asymptotic model we show the initial decomposition rate \((k') \) and the proportion of the initial mass that is not decomposed \((m) \). For both models the residual standard error \((SE) \) and degrees of freedom \((df) \) are shown.

Treatment*	Simple exponential model	Asymptotic model					
	\(k \) ± SE	Residual SE	\(df \)	\(k' \) ± SE	\(m \) ± SE	Residual SE	\(df \)
Ailanthus	1.38 ± 0.11	0.11	35	1.14 ± 0.44	0.34 ± 0.05	0.09	34
Robinia	0.40 ± 0.02	0.05	34	2.49 ± 0.48	0.73 ± 0.02	0.03	33
Populus	0.55 ± 0.05	0.08	34	4.01 ± 1.10	0.68 ± 0.02	0.05	33
A25P75	0.66 ± 0.05	0.09	35	3.73 ± 0.85	0.63 ± 0.02	0.05	34
A50P50	0.81 ± 0.06	0.08	35	1.11 ± 0.51	0.47 ± 0.07	0.08	34
A75P25	0.96 ± 0.06	0.07	35	1.66 ± 0.35	0.47 ± 0.03	0.05	34
R25P75	0.49 ± 0.04	0.07	34	5.16 ± 1.1	0.72 ± 0.01	0.03	33
R50P50	0.33 ± 0.03	0.06	35	2.62 ± 1.04	0.77 ± 0.03	0.05	34
R75P25	0.35 ± 0.03	0.07	35	4.64 ± 1.38	0.78 ± 0.01	0.04	34

*Treatments: pure litter of Ailanthus, Robinia and Populus; mixtures between Ailanthus (A) or Robinia (R) litter and Populus litter (P) at 25:75, 50:50 and 75:25%
(except for PMR in the last collection of the 50:50 Robinia:Populus treatment), indicating additive or synergistic non-additive effects. More synergies were observed in Ailanthus mixture treatments – particularly in 25:75 and 50:50 mixtures (Fig. 1) – than in Robinia treatments (Fig. 2). Deviations from expected values were greater for PMR than for NMR, indicating stronger interactions among litters for P decay (Figs. 1 and 2).

Do interactions vary through time?

The two-way ANOVA assessing the effects of collection date (day 62 + 111 versus day 253 + 323), mixture treatment and their interaction on the deviation from expected values, revealed a significant effect of collection date only for PMR in the Ailanthus mixtures and for LMR and CMR in the Robinia mixtures. In the former, all deviations were negative, but larger in the early than in the later phase (Fig. 1, Table 4). In the latter, the deviations from expected tended to turn from negative or near zero in the early phase to positive values in the later phase (Fig. 2, Table 4). The interaction between collection date and treatment was significant for Ailanthus CMR, where the deviation from expected was greater in the early phase for mixtures with low or medium proportion of Ailanthus, but the reverse occurred for the 75:25 Ailanthus:Populus treatment. In the case of Robinia, the interaction was significant for NMR, where the deviation from expected decreased from the early to the late phase in the 25:75 and the 75:25 Robinia:Populus treatments, while the reverse occurred in the 50:50 treatment.

Impact versus abundance of the non-native litter

In the Ailanthus mixtures, the two-way ANOVA showed that deviations from expected varied across treatments for NMR and PMR. In both cases, deviations were greater in the mixture where Ailanthus was at 25% (Table 4, Fig. 1). In the Robinia mixtures, treatment significantly affected the deviations from expected for LMR and PMR. In these cases, deviations were greater in the 50:50 mixtures (Table 4, Fig. 2).

In the Ailanthus gradient, the proportion of litter and nutrient mass remaining at the end of the experiment declined at increasing proportion of Ailanthus in the mixtures. In the case of LMR and CMR, this decrease was linear to the proportion of Ailanthus litter in the mixture (the AIC of the linear model was lower than that of the quadratic model). In the case of NMR and PMR, the quadratic model was the best (AIC at least two units lower than that of the linear model), showing a steeper decrease up to 50% Ailanthus litter proportion in the mixture, but a less steep response at higher proportions (Fig. 3).

Table 3

| Proportion of litter mass (LMR), N (NMR), P (PMR) and C (CMR) remaining in the litter, and soil properties (total carbon (C), total nitrogen (N), nitrate (N-NO$_3^-$) and pH) in the last collection (day = 323) |
Ailanthus	Robinia	Populus	ANOVA F	ANOVA P	
LMR	0.42 ± 0.05a	0.75 ± 0.01b	0.66 ± 0.02b	27.34	<0.001
NMR	0.75 ± 0.10a	1.54 ± 0.06b	2.55 ± 0.19c	53.19	<0.001
PMR	0.96 ± 0.23a	2.50 ± 0.20b	2.87 ± 0.13b	26.01	<0.001
CMR	0.40 ± 0.05a	0.83 ± 0.03c	0.69 ± 0.02b	35.09	<0.001
Soil C (%)	3.23 ± 0.11a	3.07 ± 0.06a	3.06 ± 0.15a	0.74	0.49
Soil N (mg/g)	2.83 ± 0.11a	2.72 ± 0.08a	2.88 ± 0.10a	0.77	0.48
Soil N-NO$_3^-$ (μg/g)	1.12 ± 0.10a	0.78 ± 0.18a	2.03 ± 0.58a	3.62	0.16
Soil pH	7.88 ± 0.02a	7.81 ± 0.03a	0.79 ± 0.05a	1.67	0.22

Values are means ± SE. The last two columns indicate the ANOVA results comparing species, except for N-NO$_3^-$, where the test was a Kruskall-Wallis. Different letters across columns indicate significant differences (P < 0.05)

Fig. 1 Deviations of litter properties from the values expected under the assumption of additive effects between Ailanthus and Populus litters in the mixtures. Litter properties were proportions of: initial litter mass remaining (LMR), initial N mass remaining (NMR), initial P mass remaining (PMR) and initial carbon mass remaining in the litter (CMR). Deviations are expressed in percentage. The zero line (where observed an expected values are equal) is represented by a dashed line. Values above zero suggest antagonistic effects, while values below zero suggest synergistic effects. Asterisks indicate significant differences from zero (one-sample t-test, P < 0.05)
In the Robinia gradient, LMR and CMR in the last collection increased with the proportion of Robinia litter in the mixtures, while NMR and PMR decreased (Fig. 3). In this case, only NMR showed a response linear to the proportion of Robinia litter. For the remaining variables, the quadratic model showed the best adjustment (AIC at least two units lower than the linear model), with the largest impact (i.e. the largest deviation from the value at 100% native litter) between 50 and 75% of Robinia litter in the mixture, and a lower impact with pure Robinia litter (Fig. 3).

Discussion

Our experiment revealed that the pattern of litter decay varied across species and litter mixture treatments. However, we found little effect of litter types on soil properties at the end of the incubation period. The lack of edaphic macroinvertebrates in our soil sample probably delayed the incorporation of litter-derived material into the soil (Berg and McClaugherty 2014; Hattenschwiler et al. 2005). Also, the presence of high soil organic matter content, derived in this case from native litter, may buffer the effects of the new litter on soil properties in the short term. This result is in line with other studies reporting larger impacts of non-native plants on certain ecosystem processes or community structure than on soil properties (Berendse et al. 1989; Castro-Díez et al. 2009; Castro-Díez et al. 2016; Mack et al. 2001). Thus, the time needed to translate altered litter properties into the soil may be much longer than the time needed for the expression of other impacts (Berendse et al. 1989; Castro-Díez et al. 2009; Marchante et al. 2008; Muñoz Vallés et al. 2011).

How do litter decomposition dynamics differ across the three species?

We found different dynamics of litter and nutrient decay across the three tree species coexisting in riparian forests of central Spain: the native tree Populus alba and the two non-native invaders Ailanthus altissima and Robinia pseudoacacia. The initial litter properties of the invaders (higher N and lower C:N and lignin:N than the native) suggest a faster litter decay, according to previous studies on the litter properties controlling decomposition rates (Aerts 1997; Berg and McClaugherty 2014; Gallardo and Merino 1993). However, this prediction only holds and their interaction for each of the two sets of litter mixtures (Ailanthus + Populus on the left, and Robinia + Populus on the right)

Table 4 Percentage of deviation of observed - expected values of litter (LMR), N (NMR), P (PMR) and C (CMR) mass remaining in each treatment (T) and collection date (CD) (mean ± SE). The 2-way ANOVA columns indicate the significance of the two factors

Harvest	25A-75P	50A-50P	75A-25P	2-way ANOVA	25R-75P	50R-50P	75R-25P	2-way ANOVA
LMR(o-e) Day 62 + 111	-1.4 ± 3.3	10.3 ± 0.7	2.4 ± 2.2	T: ns	-2.4 ± 1.7	5.6 ± 2.5	-0.5 ± 2.5	T: *
Day 253 + 323	3.2 ± 1.8	2.8 ± 3.6	5.0 ± 2.9	CD: ns	2.2 ± 1.3	6.4 ± 2.5	6.2 ± 1.6	CD: *
NMR(o-e) Day 62 + 111	-61 ± 9.6	-31.0 ± 5.9	-8.9 ± 9.1	T: ***	-26.9 ± 3.5	6.5 ± 8.6	-21.6 ± 3.3	T: ns
Day 253 + 323	-50.2 ± 7.3	-38.8 ± 4.8	-6.8 ± 8.3	CD: ns	-12.3 ± 9.2	-15.9 ± 6.6	2.1 ± 6.2	CD: ns
PMR(o-e) Day 62 + 111	-104.4 ± 11.3	-79.7 ± 9.7	-43.2 ± 10.8	T: **	-24.9 ± 12.8	42.1 ± 24.5	-15.2 ± 8.3	T: ***
Day 253 + 323	-60.4 ± 11.3	-49.4 ± 15.0	-20.7 ± 9.9	CD: **	2.8 ± 17.6	53.2 ± 13.7	14.3 ± 9.2	CD: ns
CMR(o-e) Day 62 + 111	4.3 ± 4.2	18.0 ± 1.9	0.4 ± 2.8	T: ns	-0.2 ± 3.8	8.3 ± 4.3	-4.6 ± 5.2	T: ns
Day 253 + 323	0.6 ± 1.7	3.0 ± 4.0	9.6 ± 4.4	CD: *	3.0 ± 2.1	7.5 ± 3.2	9.7 ± 1.7	CD: ns

Treatments: mixtures between Ailanthus (A) or Robinia (R) litter and Populus litter (P) at 25:75, 50:50 and 75:25%. Significance of 2-way ANOVA: ns – P > 0.05; * – 0.05 ≥ P > 0.01; ** – 0.01 ≥ P > 0.001; *** – P ≤ 0.001
for Ailanthus, which showed the smallest values of litter and nutrient mass remaining at the end of the experiment. By contrast, Robinia showed litter and nutrient decay patterns similar to those of Populus, in spite of its higher initial N content. Previous studies suggested that high initial N content in the litter may accelerate decomposition in the early phase, but retards it in the later phase (Berg 2000; Berg and Ekbom 1991). This happens because low-molecular N reacts with the increasing fraction of lignin remains, turning them recalcitrant (Berg and Ekbohm 1991). This happens because low-molecular N reacts with the increasing fraction of lignin remains, turning them recalcitrant (Berg 2000; Gallardo and Merino 1993; Hattenschwiler and Vitousek 2000). This effect should be stronger in Robinia because of the higher lignin content of the former. In fact, other studies that found a relatively low decomposition rate of Robinia litter, attributed it to its high lignin content or lignin:nutrient ratio (Castro-Díez et al. 2009; Medina-Villar et al. 2015a). Our results are in line with recent studies suggesting that invasive species do not necessarily speed up nutrient cycles, as suggested by former reviews (Castro-Díez et al. 2014a; Ehrenfeld 2003; Pyšek et al. 2012), and this general trend may be the result of a publication bias towards the invasive species with the largest impacts (Incerti et al. 2018; Jo et al. 2016).

Are there interactions between non-native and native litter on the decomposition process?

We found different types of effects among the mixed litters across treatments, incubation times, and response variables. Specifically, the sign of the non-additive effects was different depending on the component of the litter considered: LMR and CMR tended to be equal or higher than expected (i.e. additive or antagonistic effects), while the NMR and PMR tended to be equal or lower than expected (i.e. additive or synergistic effects). Most studies assessing changes in N and C dynamics caused by mixing different litters also report that the responses of both components were not correlated (Hattenschwiler et al. 2005; McTiernan et al. 1997; Quested et al. 2002). In our study, this apparent discrepancy can be explained by the fact that changes in NMR and PMR are due to N and P microbial immobilization, rather than to N and P decay. During the early fast decomposition period (up to day 62), N and P increased in the three litters, but more steeply in the species with faster initial decomposition (i.e. Populus, followed by Robinia, and Ailanthus). This increase suggests that litter mixtures are colonized by the fast-growth opportunistic microorganisms, which retain all N and P from the litter in their biomass, and take up additional N from the surroundings (Berg and McClaugherty 2014; Gallardo and Merino 1992). After 62 days of incubation, N and P leveled off, or even decreased, coinciding with a deceleration of the decomposition rate (Online Resource Fig. S1, S2). Thus, lower NMR and PMR than expected in the mixtures would indicate antagonistic effects on microbial growth, rather than synergistic effects on N and P decay.

Previous reviews found that antagonistic interactions in litter mixtures were less frequent than synergistic interactions (Gartner and Cardon 2004; Lecerf et al. 2011). In our study, the antagonistic effects may be attributed to the relatively high lignin content of the litter of Robinia and Populus, as compared to Ailanthus or other coexisting riparian trees (Alonso et al. 2010; Castro-Díez et al. 2009; Medina-Villar et al. 2015a). As explained above, lignin forms complexes with proteins that are resistant to most decomposing organisms (Berg and McClaugherty 2014; Gallardo and Merino 1993; Hattenschwiler and Vitousek 2000). Thus, the transfer of lignin from Populus to Ailanthus or the accumulation of lignin from Robinia and Populus as decomposition proceeds may explain the antagonistic effects detected in some mixtures. The number and strength of the antagonistic effects were higher in Ailanthus mixtures, in line with previous suggestions of stronger non-additive effects among the species differing more in their litter properties (i.e. Ailanthus and Populus) (Quested et al. 2002; Wardle et al. 1997, but see Hoorens et al. 2003).

Do interactions between litters vary throughout incubation time?

Previous studies detected changes in the sign of the interaction among litters throughout the process of litter decomposition and nutrient release (Chen et al. 2013; Gartner and Cardon 2004; McTiernan et al. 1997; Wardle et al. 1997). Litter decomposition has been often
suggested to follow two phases (Berg and McClaugherty 2014; Gallardo and Merino 1993). The initial fast-decomposition phase occurs when most soluble and/or labile components are quickly leached or released from the litter, and it is probably driven by early-successional fast-growing bacteria (Berg and McClaugherty 2014; Elgersma and Ehrenfeld 2011). In the later phase, recalcitrant compounds, such as lignin, become dominant, explaining the slowing down of the decomposition (Berg and McClaugherty 2014; Gallardo and Merino 1993). The shift in the ratio of labile versus recalcitrant components in the decomposing substrata is probably accompanied by a shift in the community of decomposers (Berg and McClaugherty 2014; Elgersma and Ehrenfeld 2011; Gallardo and Merino 1993; Lecerf et al. 2011), which may explain changes in the strength or sign of the interactions through time.

In our study, interactive effects between Robinia and Populus on LMR turned from mostly additive in the early phase (days 62 + 111) to antagonistic – i.e. larger LMR than expected – in the later phase (days 253 + 323). In this case, the shift may be attributed to an extraordinary accumulation of lignin from the two litters through time, as both possessed high initial lignin content. By contrast, the interactive effects between Ailanthus and Populus litter on PMR (less P immobilization than expected) were stronger in the early than in the later phase. In this case, the growth of early-successional microbes that colonizes Ailanthus litter (responsible for P immobilization) may be halted by the formation of recalcitrant bonds between the lignin from the lignin-rich litter of Populus and the proteins from the N-rich litter of Ailanthus (Berg and McClaugherty 2014; Gallardo and Merino 1993; Hattenschwiler and Vitousek 2000). Thus, shifts in the sign of interactions through time seem to be frequent, the direction of the shift depending on the released component and on the initial composition of the litters in the mixture. These complex interactions make it difficult to derive general conclusions by joining results from experiments performed with different litters and with different time schedules, as highlighted before (Hattenschwiler et al. 2005).

Are the impacts linear to the abundance of the non-native litter?

Most studies assessing the effects of plant invasions compare heavily invaded or monocultures with uninvaded situations (Strayer et al. 2006; Yokomizo et al. 2009). Although this is useful for identifying potential impacts, it does not inform on the impacts of invasions at intermediate abundances. This lack of information often leads researchers or managers to assume a linear relation between the impact and the abundance of the invader (Parker et al. 1999). However, we found in this study that the linear relation was the least frequent, only standing in three out of the eight case studies (two invaders x four response variables). For the remaining cases, the impact (assessed as deviation from the non-invaded situation) increased faster from zero to low or mid abundance, and slower –even leveling off or decreasing– from mid to high abundance. These nonlinear responses may be attributed to the fact that the strength of the interactions across litters depended upon the proportion of the invader in the mixtures, being the highest when the invader was 25% (Ailanthus impact on NMR and PMR) or 50% (Robinia impact on LMR, PMR and CMR). This finding has important implications for the management of these invasive trees in riparian forests of central Spain, and suggests that the most effective reduction of their impacts on litter decomposition would occur at low (Ailanthus) or medium (Robinia) abundances. By contrast, at high abundance, the benefit of a small reduction of the invasive tree cover will be proportionally smaller (but more costly). Indeed, as previously reported, knowing the shape of the impact-abundance curve is crucial for defining an optimal strategy for the management of invasive plants (Sofaer et al. 2018; Yokomizo et al. 2009).

Limitations of the study and future perspectives

Using microcosm experiments, we have demonstrated that mixing the litter from native and invasive species of central Spain riparian forests may have additive or antagonistic effects on litter decomposition. We have also shown that in most cases the invader’s litter impacts are not linear to abundance. Our approach has the advantage of allowing a tight control over environmental conditions, and the use of a standard soil allowed us addressing the potential effect of different litters on soil properties. However, the extent to which these results can be extrapolated to the field remains to be further explored, due to several limitation of our approach. First, our microcosms lack macroinvertebrates. These organisms play a major role on the litter decomposition, fragmenting the litter and digesting the raw organic matter, facilitating further processing by smaller
invertebrates and bacteria (Berg and McClaugherty 2014; Hattenschwiler et al. 2005). The structure and function of the macroinvertebrate community may be altered by the non-native litter (Gutiérrez-López et al. 2014; Medina-Villar et al. 2015a), which in turn may alter the effects that the non-native litter have on the decomposition processes (Hattenschwiler and Gasser 2005). Moreover, some studies revealed that the sign of interactions among litter species may shift depending on the presence or absence of certain macroinvertebrates (Hattenschwiler and Gasser 2005; Hattenschwiler et al. 2005). Second, although here we did not find differential effects of the litter mixtures on soil properties, differences may probably arise in the long term, and such difference might interfere with the litter decomposition process. Third, although our experiment covered an incubation period longer than most decomposition studies, the final proportion of litter mass remaining was still quite high (42–75%), so we cannot provide information about litter interactions in later phases of decomposition. Fourth, we have only observed above-ground effects of the non-native leaf litter, but several studies suggest that the belowground plant inputs (root litter and exudates) have stronger effects on soil processes than above-ground plant inputs (Brant et al. 2006; Keith et al. 2009; Pollierer et al. 2007). Besides, other components of the litter, differing from leaves in physical-chemical properties (inflorescences, fruits, or bark) may represent important inputs of organic matter to the soil in certain periods of the year (Castro-Díez et al. 2014b; Medina-Villar et al. 2015b). Finally, microclimatic conditions in the field vary throughout the seasons, and these variations may interfere with the interactions of the litter mixtures (Aerts 1997; Berg and McClaugherty 2014; Gallardo and Merino 1993). Thus, future research should include macroinvertebrates and other litter components in microcosms and/or combine microcosms with field experiments.

Conclusions

Ailanthus altissima can accelerate the litter decomposition in forests dominated by Populus alba due to the production of high-N, low-lignin, fast-decomposing litter. However, the antagonistic effects observed in some litter mixtures might buffer this acceleration. By contrast, Robinia pseudoacacia would delay litter decomposition in Populus forests, probably due to the high lignin content of its litter. In this case, the delay may be even exacerbated by the antagonistic effects on decomposition observed in litter mixtures, mainly when both litters have similar proportions in the mixture. Effects of non-native litters on soil properties were negligible in the time-scale of this experiment (ca. 1 year). The final effects of the non-native litters on different variables characterizing the decomposition process were non-linear in most cases, with greater changes when the abundance increased from zero to 25 or 50% of the mixture. Impacts leveled off or even decreased at greater abundances. This suggests that control efforts to minimize impacts on litter decay should focus on the earlier or mid stages of the invasions, where the reduction of the non-native tree abundance would have greater benefits. Future studies should include macroinvertebrates in microcosms designs and/or should combine microcosms with field experiments.

Acknowledgements This work was supported by the IMPLANTIN (CGL2015-65346-R) and EXARBIN (RTI2018-093504-B-I00) projects of the Ministerio de Ciencia, Innovación y Universidades of Spain, and the REMEDINAL TE-CM S2018/EMT-4338 network (Comunidad de Madrid). We acknowledge José Sanchez for his work in the laboratory and Professor Antonio Gallardo for reviewing the first draft of the manuscript.

References

Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. https://doi.org/10.2307/3546886
Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology, 2nd edn. Blackwell Sci. Pub, Oxford, pp 285–344
Alonso A, González-Muñoz N, Castro-Díez P (2010) Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecol Res 25:647–653. https://doi.org/10.1007/s11284-010-0698-y
Basnou C (2009) Robinia pseudoacacia L., black locust (Fabaceae, Magnoliphyta). In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Springer Publishers, p 357
Basnou C, Vilà M (2009) Ailanthus altissima (mill.) Swingle, tree of heaven (Simabouraceae, Magnoliphyta). In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Springer Publishers, p 342
Berendse F, Bobbink R, Rouwenhorst G (1989) A comparative study on nutrient cycling in wet heathland ecosystems: II. Litter decomposition and nutrient mineralization. Oecologia 78:338–348. https://doi.org/10.1007/BF00379107
Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22. https://doi.org/10.1016/s0378-1127(99)00294-7
Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types - long-term decomposition in a Scots pine forest. 7. Can J Bot 69:1449–1456. https://doi.org/10.1139/b91-187

Berg B, McClaugherty C (2014) Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-38821-7

Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148: 650–659. https://doi.org/10.1007/s00442-006-0402-7

Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York

Cabrera-Rivas I, Castro-Díez P (2016) Comparing the sexual reproductive success of two exotic trees invading Spanish riparian forests vs. a native reference. PLoS One 11:e0160831. https://doi.org/10.1371/journal.pone.0160831

Castro-Díez P, Alonso A (2017) Effects of non-native riparian plants in riparian and fluvial ecosystems: a review for the Iberian Peninsula. Limnetica 36:525–541. https://doi.org/10.23818/limm.36.19

Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biol Invasions 11:1973–1986. https://doi.org/10.1007/s10530-008-9374-3

Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A (2012) Effects of exotic and native tree litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191. https://doi.org/10.1007/s11104-011-0893-9

Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A (2014a) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol Lett 17:1–12. https://doi.org/10.1111/ele.12197

Castro-Díez P, Valle G, González-Muñoz N, Alonso A (2014b) Can the life-history strategy explain the success of the exotic trees *Ailanthus altissima* and *Robinia pseudoacacia* in Iberian floodplain forests? PLoS One 9:e100254. https://doi.org/10.1371/journal.pone.0100254

Castro-Díez P, Pauchard A, Travestet A, Vilà M (2016) Linking the impacts of plant invasion on community functional structure and ecosystem properties. J Veg Sci 27:1233–1242. https://doi.org/10.1111/jvs.12429

Catford JA, Janssøn R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

Catford JA, Downes BJ, Gippel CJ, Veski PA (2011) Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J Appl Ecol 48:432–442. https://doi.org/10.1111/j.1365-2664.2010.01945.x

Chapin FS, Reynolds H, D’Antonio CM, Eckhart V (1996) The functional role of species in terrestrial ecosystems. In: Walker B, Steffen W (eds) Global change in terrestrial ecosystems. In: Walker B, Steffen W (eds) Global change in terrestrial ecosystems. In: Walker B, Steffen W (eds) Global change in terrestrial ecosystems. Princeton University Press, Princeton (NJ), pp 363–384

Chen B-M, Peng S-L, Dai P (2009) Effects of exotic invasive trees on nitrogen cycling: Using models to explore the link between invasion and development of species effects. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in Ecosystem Science. Princeton University Press, Princeton (NJ), pp 363–384

Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nitrogen cycling processes. Ecosystems 6:503–523. https://doi.org/10.1007/s10021-002-0151-3

Ehrenfeld JG, Scott N (2001) Invasive species and the soil: effects on ecosystems and ecosystem processes. Ecol Appl 11:1259–1260. https://doi.org/10.1890/1051-0761(2001)011[1259:ISSTOS]2.0.CO;2

Elgersma KJ, Ehrenfeld JG (2011) Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function. Biol Invasions 13:757–768. https://doi.org/10.1007/s10530-010-9866-9

FAO/IAASA/ISRIC/ISSCAS/JRC (2012) Harmonized world soil database (version 1.2). FAO and IASA, Rome, Italy. Luxenhausen, Austria

Gallardo A, Merino J (1992) Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15:213–228

Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain: influence of substrate quality. Ecology 74:152–161

Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. https://doi.org/10.1111/j.0030-1299.2004.12738.x

Godoy O, Castro-Díez P, Van Logtestijn RS, Cornelissen JH, Valladares F (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790. https://doi.org/10.1007/s00442-009-1512-9

Gonzalez-Muñoz N, Castro-Díez P, Parker IM (2013) Differences in nitrogen use between native and exotic tree species: predicting impacts on invaded ecosystems. Plant Soil 363:319–329. https://doi.org/10.1007/s11104-012-1329-x

Gutiérrez-López M, Ranera E, Novo M, Fernández R, Trigo D (2014) Does the invasion of the exotic tree *Ailanthus altissima* affect the soil arthropod community? The case of a riparian forest of the Henares River (Madrid). Eur J Soil Biol 62:39–48. https://doi.org/10.1016/j.ejsoil.2014.02.010

Hattenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. PNAS 102:1519–1524. https://doi.org/10.1073/pnas.040977102

Hattenschwiler S, Vitousek PM (2000) The role of phyllophenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. https://doi.org/10.1016/S0169-5347(00)01861-9

Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition intertropical ecosystems. Amu Rev Ecol 36:191–218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932

Hickman JE, Ashton IW, Howe KM, Lerdau MT (2013) The native-invasive balance: implications for nutrient cycling in
Incerti G, Carteni F, Cesarano G, Sarker TC, Abd El-Gawad AM, Hulme PE, Pyke P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538. https://doi.org/10.2307/3545614

Medina-Villar S, Alonso A, de Aldana BRV, Perez-Corona E, Castro-Díez P (2015a) Decomposition and biological colonization of native and exotic leaf litter in a Central Spain stream. Limnetica 34:293–309

Medina-Villar S, Castro-Díez P, Alonso A, Cabrera-Rivas I, Parker IM, Pérez-Corona E (2015b) Do the invasive trees, *Ailanthus altissima* and *Robinia pseudoacacia*, alter litterfall dynamics and soil properties of riparian ecosystems in central Spain? Plant Soil 396:311–324. https://doi.org/10.1007/s11104-015-2592-4

Medina-Villar S, Rodríguez-Echeverría S, Lorenzo P, Alonso A, Pérez-Corona E, Castro-Díez P (2016) Impacts of the alien trees *Ailanthus altissima* (mill.) Swingle and *Robinia pseudoacacia* L. on soil nutrients and microbial communities. Soil Biol Biochem 96:65–73. https://doi.org/10.1016/j.soilbio.2016.01.015

Muñoz Vallés S, B. Gallego Fernández J, DellaFiore C, Cambroţă J (2011) Effects on soil, microclimate and vegetation of the native-invasive *Retama monosperma* (L.) in coastal dunes. Plant Ecol 212:169–179. doi:https://doi.org/10.1007/s11258-010-9812-z

Nilsson MC, Wardle DA, Dahlberg A (1999) Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86:16–26. https://doi.org/10.2307/3071850

Kowarik I, Saumel I (2007) Biological flora of Central Europe: *Ailanthus altissima* (mill.) Swingle. Perspect Plant Ecol 8:207–237. https://doi.org/10.1016/j.ppees.2007.03.002

Lara F, Garillete R, Ramírez P (1996) Estudio de los ríos carpenatos de la cuenca del Jarama. Centro de Estudios y Experimentación de Obras Públicas. Ministerio de Fomento, Madrid

Leicer A, Marie G, Kominoski JS, LeRoy CJ, Bernadet C, Swan CM (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169. https://doi.org/10.1890/10-0315.1

Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu WX, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x

Mack MC, D’Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of 4 C grasses in Hawaii. Ecol Appl 11:1323–1335. https://doi.org/10.2307/3060923

Marchante E, Kjoller A, Struwe S, Freitas H (2008) Short- and long-term impacts of *Acacia longifolia* invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl Soil Ecol 40:210–217

Marchante E, Marchante I, Freitas H, Kjoller A, Struwe S (2019) Decomposition of an N-fixing invasive plant compared with a native species: consequences for ecosystem. Appl Soil Ecol 138:19–31. https://doi.org/10.1016/j.apsoil.2019.02.016

Maron JL, Marler M (2008) Effects of native species diversity and resource additions on invader impact. Am Nat 172:S18–S33. https://doi.org/10.1086/588303

McArthur JV, Aho JM, Rader RB, Mills GL (1994) Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J Am Benthol Soc 13:57–67. https://doi.org/10.2307/1467265

McTiernan KB, Ineson P, Coward PA (2011) Resource additions on invader impact. Am Nat 178:S33–S44. https://doi.org/10.1086/658830

Medina-Villar S, Alonso A, de Aldana BRV, Pérez-Corona E, Castro-Díez P (2015a) Decomposition and biological colonization of native and exotic leaf litter in a Central Spain stream. Limnetica 34:293–309

Medina-Villar S, Castro-Díez P, Alonso A, Cabrera-Rivas I, Parker IM, Pérez-Corona E (2015b) Do the invasive trees, *Ailanthus altissima* and *Robinia pseudoacacia*, alter litterfall dynamics and soil properties of riparian ecosystems in central Spain? Plant Soil 396:311–324. https://doi.org/10.1007/s11104-015-2592-4

Medina-Villar S, Rodríguez-Echeverría S, Lorenzo P, Alonso A, Pérez-Corona E, Castro-Díez P (2016) Impacts of the alien trees *Ailanthus altissima* (mill.) Swingle and *Robinia pseudoacacia* L. on soil nutrients and microbial communities. Soil Biol Biochem 96:65–73. https://doi.org/10.1016/j.soilbio.2016.01.015

Muñoz Vallés S, B. Gallego Fernández J, DellaFiore C, Cambroţă J (2011) Effects on soil, microclimate and vegetation of the native-invasive *Retama monosperma* (L.) in coastal dunes. Plant Ecol 212:169–179. doi:https://doi.org/10.1007/s11258-010-9812-z

Nilsson MC, Wardle DA, Dahlberg A (1999) Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86:16–26. https://doi.org/10.2307/3545656

Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Mylo PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

Pollier MM, Langel R, Korner C, Marauñ M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. https://doi.org/10.1111/j.1461-0248.2007.01064.x

Prada MA, Arizpe D (eds) (2008) Riparian tree and shrub propagation handbook. An aid to riverine restoration in the Mediterranean region. Generalitat Valenciana, Valencia

Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological Invasions. Ecological Studies, vol 193. Springer-Verlag, Berlin Heidelberg, pp 97–125

Pyšek P, Jarosiš V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x

Quested JM, Press MC, Callaghan TV, Cornelissen HC (2002) *Bartsia alpina* has the
potential to accelerate decomposition in sub-arctic communities. Oecologia 130:88–95. https://doi.org/10.1007/s004420100780

Sanz Elorza M, Dana Sánchez ED, Sobrino Vesperinas E (2004) Atlas de las plantas alóctonas invasoras en España. Dirección General para la Biodiversidad. Ministerio de Medio Ambiente, Madrid

Scowcroft PG (1997) Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest. J Trop Ecol 13:407–426. https://doi.org/10.1017/S0266467400010592

Sofaer HR, Jarnevich CS, Pearse IS (2018) The relationship between invader abundance and impact. Ecosphere 9:13. https://doi.org/10.1002/ecs2.2415

Sparling G, Whale K, Ramsay A (1985) Quantifying the contribution from the soil microbial biomass to the extractable P levels of fresh and air-dried soils. Aust J Soil Res 23:613–621

Strayer DL, Evins VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. https://doi.org/10.1016/j.tree.2006.07.007

Sun S-Q, Cai H-Y, Chang SX, Bhatti JS (2015) Sample storage-induced changes in the quantity and quality of soil labile organic carbon. Sci Rep 5:17496–17496. https://doi.org/10.1038/srep17496

Tabacchi E, Planty-Tabacchi AM, Roques L, Nadal E (2005) Seed inputs in riparian zones: implications for plant invasion. River Res Appl 21:299–313

Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue ZD, Wang SQ, Hou QC (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the loess plateau, China. For Ecol Manag 241:84–90. https://doi.org/10.1016/j.foreco.2006.12.026

Thiele J, Kollmann J, Markussen B, Otte A (2010) Impact assessment revisited: improving the theoretical basis for management of invasive alien species. Biol Invasions 12:2025–2035. https://doi.org/10.1007/s10530-009-9605-2

Tickner DP, Angold PG, Garnell AM, Mountford JO (2001) Riparian plant invasions: hydrogeomorphological control and ecological impacts. Prog Phys Geogr 25:22–52. https://doi.org/10.1177/030913330102500102

Vilà M, Garcia-Berthou E, Sol D, Pino J (2001) Survey of the naturalized plants and vertebrates in peninsular Spain. Ecologia Mediterranea 27:55–67. https://doi.org/10.2307/1942601

Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nutrient fixation, ecosystem effects. Ecol Monogr 59:247–265

Vogt K (1991) Carbon budgets of temperate forest ecosystems. Tree Physiol 9:69–86. https://doi.org/10.1017/S0266467400010592

Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258. https://doi.org/10.2307/3546010

Yokomizo H, Possingham HP, Thomas MB, Buckley YM (2009) Managing the impact of invasive species: the value of knowing the density-impact curve. Ecol Appl 19:376–386. https://doi.org/10.1890/08-0442.1

Zhang L, Zhang YJ, Zou JW, Siemann E (2014) Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect. Sci Rep 4(8). https://doi.org/10.1038/srep05488

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.