Energy-momentum tensor of bouncing gravitons

Mikhail Z. Iofa

Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
E-mail: iofa@theory.sinp.msu.ru

Received April 9, 2015
Accepted June 10, 2015
Published July 14, 2015

Abstract. In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions for contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature $T_R \sim 10^6$ GeV we estimate the scale of extra dimension μ to be of order 10^{-9} GeV ($\mu^{-1} \sim 10^{-5}$ cm).

Keywords: cosmological applications of theories with extra dimensions, cosmology with extra dimensions

ArXiv ePrint: 1502.01855
Contents

1 Introduction 1
2 3-brane in 5D bulk 2
3 Geodesic equations in the picture with static metric 4
4 Bounce of massless particles in the period of early cosmology 5
 4.1 Conditions of the fall of graviton on the brane 6
 4.2 Relation between emission and detection times 8
5 Multiple bounces 8
 5.1 First fall of gravitons to the brane 11
 5.2 Next falls of gravitons to the brane 12
6 Numerical estimates and discussion 13
7 Conclusion 18

1 Introduction

Brane-world scenarios with the observable Universe located on a 3-brane embedded in a higher-dimensional space-time have attracted considerable interest recently. Such models with matter on the brane can reproduce the main cosmological data [1–4].

A general property of extra-dimensional models is that although ordinary matter is supposed to be confined to a brane, gravity propagates in the whole space-time. This entails the effect that gravitons produced in reactions of particles on the brane can escape to the bulk. Graviton production is strong in the early hot Universe, and can alter the time evolution of matter on the brane and, in particular, the primordial nucleosynthesis.

In this paper we calculate graviton production in a model of five-dimensional Universe with one large extra dimension. Matter is supposed to be confined to the 3D brane. Time evolution of matter in this model is described by the generalized Friedmann equation $H^2 = \rho^2 + 2\mu\rho + \cdots$ [5–7]. We consider the period of early cosmology, in which the term quadratic in energy density is dominant, $\mu/\rho \ll 1$ (ρ is the normalized energy density on the brane defined in (2.4), $\mu = (-\Lambda/6)^{1/2}$, and Λ is 5D cosmological constant).

Because the space-time is curved, a part of gravitons emitted in the bulk can return back to the brane [8, 10, 11] and bounce again to the bulk. In paper [12] an analytical method to show that a bounce is possible was developed. In the present paper we investigate further conditions of a bounce. Solving the combined system of equations of trajectories of the brane and of emitted graviton, we find conditions at which graviton can fall back to the brane. We derive an equation for the interval of time between graviton emission and its return to the brane and develop a scheme to calculate times of returns of graviton to the brane for multiple bounces. We show that in the period of early cosmology the ratio of times t_0/t_1 of graviton emission t_0 and its return to the brane t_1 to a good approximation can be expressed as a function of $x = m(t_1)/E(t_1)$, where $(E(t_1), m(t_1), p)$ are the components of graviton 5-momentum at the time t_1 when graviton returns to the brane.
As an application of the above results, using the distribution function of emitted gravitons of paper [11], we calculate the components of the energy-momentum tensor of bouncing gravitons $T_{nn}^{\text{in}}(k)$ (n^A is transverse to the brane, k is a number of a bounce). For the first three bounces we obtain explicit expressions for $T_{nn}^{\text{in}}(k)$ and estimate their numerical magnitudes. The expressions for the energy-momentum tensor of bouncing gravitons are used to solve the evolution equation of dark radiation [11, 13]. Solving this equation, we find a relation connecting the reheating temperature of the Universe T_R and the scale of the extra dimension μ. Qualitative constraints on T_R and μ are discussed.

In section 2 we review two approaches to the 5D model.

In section 3 we solve geodesic equations for gravitons propagating in the bulk.

In section 4 we solve the combined system of equations for graviton and brane trajectories and find conditions for return of graviton to the brane. We calculate the interval of times between graviton emission and detection as a function of graviton momentum at the time of detection.

In section 5 consider multiple graviton bounces. We calculate the (nn) components of the energy-momentum tensor of gravitons falling to the brane.

In section 6 we present qualitative numerical analysis of the energy-momentum tensor and discuss solution of evolution equation for dark radiation.

2 3-brane in 5D bulk

We consider the 5D model with one 3D brane embedded in the bulk. Matter is confined to the brane, gravity extends to the bulk. In the leading approximation we neglect graviton emission from the brane to the bulk. The action is taken in the form

$$S_5 = \frac{1}{2\kappa^2} \left[\int_{\Sigma} d^5x \sqrt{-g(5)} (R^{(5)} - 2\Lambda) + 2 \int \frac{K}{\sqrt{\partial \Sigma}} - \int d^4x \sqrt{-g(4)} \hat{\sigma} - \int d^4x \sqrt{-g(4)} L_m, \right]$$

(2.1)

where $x_4 \equiv y$ is coordinate of the infinite extra dimension, $\kappa^2 = 8\pi/M^3$.

The 5D model can be treated in two alternative approaches. In the first approach metric is non-static, and the brane is located at a fixed position in the extra dimension [5, 6]. We consider the class of metrics of the form

$$ds^2_5 = g_5^{AB} dx^A dx^B = -n^2(y, t) dt^2 + a^2(y, t) \eta_{ab} dx^a dx^b + dy^2.$$ \hfill (2.2)

The brane is spatially flat and located at $y = 0$. The freedom of parametrization of t, allows to set $n(0, t) = 1$. The energy-momentum tensor of matter on the brane is taken in the form

$$T^\nu_\mu = \text{diag} \delta \{ -\hat{\rho}, \hat{\rho}, \hat{\rho}, \hat{\rho}, \hat{\rho} \}. $$

(2.3)

For the following it is convenient to introduce the normalized expressions for energy density, pressure and cosmological constant on the brane which all have the same dimensionality [GeV]

$$\mu = \sqrt{-\frac{\Lambda}{6}}, \quad \sigma = \frac{\kappa^2 \hat{\sigma}}{6}, \quad \rho = \frac{\kappa^2 \hat{\rho}}{6}, \quad p = \frac{\kappa^2 \hat{p}}{6}. \quad \text{(2.4)}$$

Reduction of the metric (2.2) to the brane is

$$ds^2 = dt^2 + a^2(y, t) \eta_{ab} dx^a dx^b.$$ \hfill (2.5)
The function $a(t) = a(0, t)$ satisfies the generalized Friedmann equation [6]

$$H^2(t) = -\mu^2 + (\rho + \sigma)^2 + \mu \rho_w(t), \quad (2.6)$$

where $H(t) = \dot{a}(t)/a(t)$ and $\rho_w(t)$ is the Weyl radiation term [1], which below is set to zero.

In the second approach the brane separates two static 5D AdS spaces attached to both sides of the brane. The metrics of the AdS spaces are solutions of the Einstein equations of the form

$$ds^2 = -f_i(R)d\tilde{T}^2 + \frac{dR^2}{f_i(R)} + \mu_i^2 R^2 dx^a dx_a, \quad (2.7)$$

where

$$f_i(R) = \mu_i^2 R^2 - \frac{P_i}{R^2}. \quad (2.8)$$

Below we consider the case $\mu_1 = \mu_2$ and $P_i = 0$. Trajectory of the moving brane in the R, T plane is given by parametric equations $R = r_b(t), T = \tau_b(t)$, where t is the proper time on the brane

$$-f(r_b)\dot{r}_b^2 + f^{-1}(r_b)\dot{r}_b^2 = -1, \quad (2.9)$$

dot is derivative over t. Reduction of the 5D metric to the brane is

$$ds^2 = -dt^2 + r_b^2(t) dx^a dx_a. \quad (2.10)$$

The function $r_b(t)$ satisfies the generalized Friedmann equation [14–16]

$$\left(\frac{\dot{r}_b}{r_b}\right)^2 = -\mu^2 + (\rho + \sigma)^2. \quad (2.11)$$

Equations (2.10) and (2.6) with $\rho_w(t) = 0$ are of the same form, and $a^2(0, t)$ can be identified with $r_b^2(t)$. Below we consider the case $\sigma = \mu$ [4], so that (2.10) takes a form

$$\left(\frac{\dot{r}_b}{r_b}\right)^2 = \rho^2 + 2\mu \rho. \quad (2.12)$$

The normalized velocity vector of the brane and the normal vector to the brane are

$$v^A = (v^T, v^R) = (\hat{\tau}_b, \hat{r}_b), \quad n^A = (n^T, n^R) = \pm \left(\frac{\dot{r}_b}{f(r_b)}, f(r_b)\hat{\tau}_b\right). \quad (2.13)$$

Here

$$\hat{r}_b = \epsilon \sqrt{\frac{f + \ddot{r}_b^2}{f(r_b)}}, \quad (2.14)$$

where $\epsilon = \pm$.

In the following we choose n^A with the sign (-)

$$n^A = \left(-\frac{\dot{r}_b}{f(a)}, f(a)\hat{\tau}_b\right).$$
3 Geodesic equations in the picture with static metric

Let \(\lambda \) be parameter along a geodesic. Geodesic equations in the metric (2.7) are

\[
\begin{align*}
\frac{d^2 \tilde{T}}{d\lambda^2} + 2\Gamma_{\tilde{T}R} \frac{d\tilde{T}}{d\lambda} \frac{dR}{d\lambda} &= 0 \\
\frac{d^2 x^a}{d\lambda^2} + 2\Gamma_{ab} \frac{dx^b}{d\lambda} \frac{dR}{d\lambda} &= 0
\end{align*}
\]

(3.1)

\[
\frac{d^2 R}{d\lambda^2} + \Gamma_{RR} \left(\frac{dR}{d\lambda} \right)^2 + \Gamma_{\tilde{T}T} \left(\frac{d\tilde{T}}{d\lambda} \right)^2 + \Gamma_{ab} \frac{dx^a}{d\lambda} \frac{dx^b}{d\lambda} = 0.
\]

(3.2)

(3.3)

We consider solutions of the geodesic equations even in \(\lambda \). Integrating the geodesic equations, one obtains

\[
\begin{align*}
\frac{d\tilde{T}}{d\lambda} &= C_T \mu^2 R^2 \\
x^a &= C_a \mu^2 R^2, \\
\left(\frac{dR}{d\lambda} \right)^2 &= \mu^2 R^2 (C_R)^2 + C^T - C^a^2,
\end{align*}
\]

(3.4)

where \((C_T, C_a, C_R)\) are integration parameters.

Tangent vectors to a null geodesic satisfy the relation

\[
g_{AB} \frac{dx^A}{d\lambda} \frac{dx^B}{d\lambda} = 0,
\]

(3.5)

from which it follows that \(C^R = 0\). Eqs. (3.1)–(3.4) were solved with the initial condition that \(\tilde{T}(0)\) and \(R(0)\) are located on the brane world sheet: \(\tilde{T}(0) = \tau_b(t_0), R(0) = r_b(t_0)\). Here \(t_0\) is the proper time of the point on the brane world sheet \(\tau_b(t_0), r_b(t_0)\) at which the geodesic begins, i.e. the time of the graviton emission.

The components of momentum of a graviton propagating along a null geodesic are proportional to the tangent vector to a null geodesic

\[
(p^T, p^R, p^a) \sim \left(\frac{C^T}{\mu^2 R^2}, \epsilon_R \left(C^T - C^a^2 \right)^{1/2}, \frac{C^a}{\mu^2 R^2} \right),
\]

(3.6)

where \(\epsilon_R = \pm\). Also we define \(\epsilon_T = C^T |C^T|\). Expanding the graviton momentum \(p^A\) in the basis \((v^A(t), n^A(t), e^A_\bar{a}(t))\), where \(e^A_\bar{a} = \delta^A_{\bar{a}}/\mu a\), we have

\[
p^A = Ev^A + mn^A + p^\bar{a} e^A_\bar{a},
\]

(3.7)

where

\[
p^A p_A = -E^2 + m^2 + p^\bar{a} p^A = 0.
\]

(3.8)

The components of \(p^A\) in the two bases are connected as

\[
\begin{align*}
p^T &= E \epsilon \sqrt{\mu^2 + H^2} - m H \\
p^R &= r_b \left(EH - m \epsilon \sqrt{\mu^2 + H^2} \right), \\
p^\bar{a} &= \frac{p^\bar{a}}{\mu r_b}
\end{align*}
\]

(3.9)

\[
E = p^T \epsilon \sqrt{\mu^2 + H^2 r_b} - \frac{p^R H}{\mu^2 r_b}, \\
m = p^T H r_b - p^R \epsilon \sqrt{\mu^2 + H^2 r_b}.
\]

(3.10)

The components \(E\) and \(m\) depend on \(t\) through \(r_b(t)\).
Introducing
\[\gamma = C_n^2 = 1 - C_T^2, \]
and expressing \(\gamma \) through \(E \) and \(m \), we have
\[\gamma = 1 - \frac{1}{(\mu^2 R^2)^2} \frac{p^R^2}{p^T^2} = 1 - \left(\frac{EH - m\epsilon\sqrt{\mu^2 + H^2}}{E\epsilon\mu^2 + H^2 - mH} \right)^2 \frac{r_b^4(t)}{R^4}. \]
(3.12)

If at a time \(t \) graviton is on the brane world sheet \(R = r_b(t) \) (\(t \) is a time of emission, \(t_0 \), or a time of return of the graviton to the brane, \(t_1 \)), we take the basis \((v^A, n^A, e^A) \) at the time \(t \) and obtain \(\gamma \) in a form
\[\gamma = \frac{\mu^2(E^2 - m^2)}{(E\epsilon\mu^2 + H^2 - mH)^2}. \]
(3.13)

4 Bounce of massless particles in the period of early cosmology

We consider the radiation-dominated period of the early cosmology, when \(\rho/\mu \gg 1 \) or, equivalently, \(\mu t \ll 1 \). Supposing that the energy loss from the brane to the bulk is sufficiently small to comply with the observational data, we neglect in the conservation equation for the energy-momentum tensor the energy flow in the bulk. In the period of early cosmology, in the model with extra dimension, from the expression for energy density of relativistic degrees of freedom
\[\rho(T) = \frac{\kappa^2 \pi^2 g_*(T) T^4}{180}, \]
(4.1)
\((g_*(T) \) is a total number of relativistic degrees of freedom \([18, 19] \) it follows that
\[\frac{\rho(t)}{\rho(t_1)} = \frac{g_*(T) T^4}{g_*(T_1) T_1^4} \simeq \frac{T^4}{T_1^4}. \]
(4.2)

For times \(t_1 \) and \(t \) in the region of early cosmology, from the Friedman equation one obtains
\[\frac{\rho(t)}{\rho(t_1)} \right)^4 \simeq \frac{t_1}{t}. \]
(4.3)

Following [11], with the use of (2.8), the equation for the brane trajectory can be written as
\[\frac{dr_b}{d\tau_b} = -\epsilon \frac{\mu^2 r_b^2 \dot{r}_b}{\sqrt{\mu^2 r_b^2 + \dot{r}_b^2}} = \epsilon \mu^2 r_b^2 \frac{H}{\sqrt{\mu^2 + H^2}}. \]
(4.4)

Integrating eq. (4.4) with the boundary conditions \(r_b = r_b(t_0), \tau_b = \tau_b(t_0) \), we obtain the equation for trajectory of the brane
\[\mu^2 (\tau_b(t) - \tau_b(t_0)) = \epsilon \int_{r_b(t_0)}^{r_b(t)} \frac{dr}{r^2} \frac{\sqrt{\mu^2 + H^2}}{H} = \epsilon \left(\frac{1}{r_b(t_0)} - \frac{1}{r_b(t)} \right) + \epsilon \int_{r_b(t_0)}^{r_b(t)} \frac{dr}{r^2} \left[\frac{\sqrt{\mu^2 + H^2}}{H} - 1 \right]. \]
(4.5)

From the first integrals of the null geodesic equations (3.4) we obtain
\[\frac{dR}{dT} = c_T \epsilon R (1 - \gamma)^{1/2} \mu^2 R^2. \]
(4.6)
Integrating eq. (4.6) with the initial conditions $R = r_b(t_0)$, $\dot{T} = \tau_b(t_0)$, we obtain the equation for a null geodesic (graviton trajectory)

$$\frac{1}{r_b(t_0)} - \frac{1}{R} = \epsilon_T \epsilon_R (1 - \gamma)^{1/2} \mu^2 \left(\dot{T} - \tau_b(t_0) \right).$$ \hspace{1cm} (4.7)

If graviton returns to the brane at time t_1, we have $R = r_b(t_1)$. Combining eqs. (4.5) and (4.7) and using Friedmann equation, $H^2 = \rho^2 + 2 \mu \rho$, we obtain an equation for $r_b(t_1)$

$$\left[\epsilon_T \epsilon_R (1 - \gamma)^{-1/2} - 1 \right] \left(\frac{1}{r_b(t_0)} - \frac{1}{r_b(t_1)} \right) = \int_{r_b(t_0)}^{r_b(t_1)} \frac{dr}{r^2} \left[\frac{\rho + \mu}{\sqrt{\rho^2 + 2 \mu \rho}} - 1 \right].$$ \hspace{1cm} (4.8)

Eq. (4.8) can be interpreted as an equation which determines the time of return of graviton to the brane t_1 for a given time of emission t_0. It is seen that eq. (4.8) admits solution only if

$$\epsilon_T \epsilon_R = (+).$$ \hspace{1cm} (4.9)

Expanding the integrand of (4.8) in powers of μ/ρ, we have

$$\frac{\rho + \mu}{\sqrt{\rho^2 + 2 \mu \rho}} = \left(1 + \frac{1}{2} \left(\frac{\mu}{\rho} \right)^2 - \left(\frac{\mu}{\rho} \right)^3 + \frac{15}{8} \left(\frac{\mu}{\rho} \right)^4 + \ldots \right),$$

where $\rho(t) = \rho(t_0)(r_b(t_0)/r_b(t))^4$. Integrating eq. (4.8), we obtain

$$\left(1 - \gamma \right)^{-1/2} - 1 \left(\frac{1}{r_b(t_0)} - \frac{1}{r_b(t_1)} \right) = \frac{1}{r_b(t_0)} \left[\frac{1}{14} \left(\frac{\mu}{\rho_0} \right)^2 \left(\frac{r_b(t_1)}{r_b(t_0)} \right)^7 - 1 \right] - \frac{11}{11} \left(\frac{\mu}{\rho_0} \right)^3 \left(\frac{r_b(t_1)}{r_b(t_0)} \right)^{11} - 1 \ldots \right].$$ \hspace{1cm} (4.10)

The series in (4.10) is convergent. Introducing

$$z = \frac{r_b(t_0)}{r_b(t_1)} \sim \left(\frac{t_0}{t_1} \right)^{1/4}$$ \hspace{1cm} (4.11)

and substituting $\rho_0 = \rho_1 z^{-4}$, where $\rho_0 = \rho(t_0)$ and $\rho_1 = \rho(t_1)$, we transform (4.10) to a form

$$\left[(1 - \gamma)^{-1/2} - 1 \right] = \frac{1}{2} \left(\frac{\mu}{\rho_1} \right)^2 \frac{z(1 - z^7)}{7(1 - z)} - \left(\frac{\mu}{\rho_1} \right)^3 \frac{z(1 - z^{11})}{11(1 - z)} + \ldots \right.$$ \hspace{1cm} (4.12)

The function

$$f_k(z) = \frac{z(1 - z^k)}{k(1 - z)}$$ \hspace{1cm} (4.13)

is monotone increasing with the maximum at the point $z = 1$ equal to 1.

4.1 Conditions of the fall of graviton on the brane

The sign of the graviton momentum component $m(t)$ at the time t_1 at which graviton returns to the brane is opposite to that at the time of emission t_0. From (3.10) we have

$$E \sim \epsilon_T \sqrt{H^2 + \mu^2} - \epsilon_R H (1 - \gamma)^{1/2}$$ \hspace{1cm} (4.14)

$$m \sim \epsilon_T H - \epsilon_R \sqrt{H^2 + \mu^2} (1 - \gamma)^{1/2}. $$
Condition (4.9) is satisfied in the following cases:

\begin{align*}
\text{(i)} & \quad \epsilon_T = +, \epsilon_R = +; \epsilon = +; \\
\text{(ii)} & \quad \epsilon_T = -, \epsilon_R = -; \epsilon = +; \\
\text{(iii)} & \quad \epsilon_T = -, \epsilon_R = +; \epsilon = -; \\
\text{(iv)} & \quad \epsilon_T = +, \epsilon_R = -; \epsilon = -.
\end{align*}

Let us find in which case is realized one of the possibilities: either (a) $m_0 = m(t_0) > 0$, $m_1 = m(t_1) < 0$, or (b) $m_0 < 0$, $m_1 > 0$.

- The case (i)(a). $\epsilon_T = \epsilon_R = \epsilon = +$.

 E and m are
 \[E(t) \sim \sqrt{H^2 + \mu^2} - H(1 - \gamma)^{1/2} > 0, \quad m(t) \sim H - \sqrt{H^2 + \mu^2}(1 - \gamma)^{1/2}. \]

 Conditions
 \[m(\tau_0) \sim H_0 - \sqrt{H_0^2 + \mu^2}(1 - \gamma)^{1/2} > 0, \quad m(t_1) \sim H_1 - \sqrt{H_1^2 + \mu^2}(1 - \gamma)^{1/2} < 0. \]
 are satisfied, if
 \[\frac{H_0}{\sqrt{\mu^2 + H_0^2}} > (1 - \gamma)^{1/2} > \frac{H_1}{\sqrt{\mu^2 + H_1^2}}, \quad (4.15) \]
 Here $H_0 = H(t_0)$, $H_1 = H(t_1)$.

- The case (i)(b). $\epsilon_T = \epsilon_R = \epsilon = +$.

 E and m are
 \[E(t) \sim \sqrt{H^2 + \mu^2} - H(1 - \gamma)^{1/2} > 0 \quad m(t) \sim H - \sqrt{H^2 + \mu^2}(1 - \gamma)^{1/2}. \]

 From conditions $m_0 < 0$, $m_1 > 0$ it follows that
 \[\frac{H_0}{\sqrt{\mu^2 + H_0^2}} < (1 - \gamma)^{1/2} < \frac{H_1}{\sqrt{\mu^2 + H_1^2}} \]
 or $H_0 < H_1$, which is impossible, because $t_0 < t_1$.

- The case (ii)(a). $\epsilon_T = \epsilon_R = -$, $\epsilon = +$.
 Analogously to the case (i)(b) in the case (ii)(a) there are no solutions.

- The case (ii)(b). $\epsilon_T = \epsilon_R = -$, $\epsilon = +$.

 E and m are
 \[E(t) \sim -\sqrt{H^2 + \mu^2} + H(1 - \gamma)^{1/2} < 0 \quad m(t) \sim -H + \sqrt{H^2 + \mu^2}(1 - \gamma)^{1/2}. \]

 Solution $m_0 < 0$, $m_1 > 0$ exists, provided (4.15) is valid.

- The case (iii)(a). $\epsilon_T = -$, $\epsilon_R = +$.

 E and m are
 \[E(t) \sim -\sqrt{H^2 + \mu^2} - H(1 - \gamma)^{1/2} \quad m(t) \sim -H - \sqrt{H^2 + \mu^2}(1 - \gamma)^{1/2} < 0. \]

 Because m is negative and does not change its sign, there are no solutions. Analogously in the case (iv) m is always positive, and no solution exists.

To conclude, we are left with the solutions of the types (i)(a) and (ii)(b), which are physically equivalent, because eq. (3.4) with $\epsilon_T = \epsilon_R = +$ transform to equations with $\epsilon_T = \epsilon_R = -$ under the change $\lambda \to -\lambda$. In the following we consider the case (i)(a).
4.2 Relation between emission and detection times

To solve eq. (4.12) we need to transform the expression \((1 - \gamma)^{-1/2} - 1\) to a convenient form. Introducing \(x = E/m\) and using Friedman equation, \(H^2 = \rho^2 + 2\mu \rho\), and (3.13), we have

\[
(1 - \gamma)^{-1/2} - 1 = \frac{\sqrt{H^2 + \mu^2} - xH}{H - x\sqrt{H^2 + \mu^2}} - 1 = \frac{1 + \mu/\rho - x\sqrt{1 + 2\mu/\rho}}{\sqrt{1 + 2\mu/\rho} - x(1 + \mu/\rho)} - 1. \tag{4.16}
\]

Relation (4.16) is valid at the endpoints of graviton trajectory, at emission point and at points where graviton hits the brane.

Because, as discussed in preceding subsection, \(x_1 < 0\), the relation (4.16) written at time \(t_1\) takes the form

\[
(1 - \gamma)^{-1/2} - 1 = (1 - |x_1|) \frac{1 + \mu/\rho_1 - \sqrt{1 + 2\mu/\rho_1}}{|x_1|(1 + \mu/\rho_1) + \sqrt{1 + 2\mu/\rho_1}}. \tag{4.17}
\]

In the period of early cosmology expression (4.17) approximately is

\[
(1 - \gamma)^{-1/2} - 1 \approx (1 - |x_1|) \frac{\mu^2/2\rho_1^2}{\sqrt{1 + 2\mu/\rho_1} + |x_1|(1 + \mu/\rho_1)}. \tag{4.18}
\]

The advantage of this form of \(\gamma\) is that we have extracted the factor \((\mu/\rho_1)^2\). Now the eq. (4.12) can be written as

\[
\left(\frac{\mu}{\rho_1}\right)^2 \frac{1 - |x_1|}{(1 + |x_1|)(1 + \mu/\rho_1)} = \left(\frac{\mu}{\rho_1}\right)^2 \left[f_7(z_{01}) - \left(\frac{\mu}{\rho_1}\right) 2f_{11}(z_{01}) + \ldots\right], \tag{4.19}
\]

or

\[
\frac{1 - |x_1|}{(1 + |x_1|)} = \left[f_7(z_{01}) - \left(\frac{\mu}{\rho_1}\right) 2f_{11}(z_{01}) + \ldots\right] (1 + \mu/\rho_1), \tag{4.20}
\]

Eq. (4.12) define \(z_{01} \approx (t_0/t_1)^{1/4}\) through the ratio \(x_1 = m_1/E_1\) and \(\rho_1 = \rho(t_1)\), or, equivalently, the emission time \(t_0\) through the “mass” and “energy” of the graviton at the time of return of the graviton to the brane \(t_1\). In the following, for practical calculations, in the region \(\mu/\rho_1 < 1\) we use a simplified equation

\[
\frac{1 - |x_1|}{1 + |x_1|} \simeq f_7(z_{01}). \tag{4.21}
\]

Domain of applicability and corrections to this equation are discussed in section 6.

5 Multiple bounces

To consider multiple reflections from the brane of bouncing gravitons we use matrix notations. Introducing

\[
K = K^{-1} = \begin{pmatrix} \frac{\sqrt{H^2/\mu^2 + 1} - H/\mu}{H/\mu} & -H/\mu \\ H/\mu & -\sqrt{H^2/\mu^2 + 1} \end{pmatrix}, \tag{5.1}
\]

and

\[
\tilde{p}^T = p^T \mu R, \quad \tilde{p}^R = \frac{p^R}{\mu R}, \quad \tilde{p} = \mu R a, \tag{5.2}
\]
we have
\[
\begin{pmatrix}
\tilde{p}^T_m \\
\tilde{p}^R_m
\end{pmatrix} = K \begin{pmatrix} E \\ m \end{pmatrix}, \quad \begin{pmatrix} E \\ m \end{pmatrix} = K \begin{pmatrix} \tilde{p}^T_m \\ \tilde{p}^R_m \end{pmatrix}. \tag{5.3}
\]

The case with multiple bouncings is illustrated by the scheme
\[
\begin{pmatrix} p_0 \\ E_0 \\ m_0 \end{pmatrix}^{\text{out}}_{(t_0)} \xrightarrow{\sim} \begin{pmatrix} p_1^{\text{in}} \\ E_1^{\text{in}} \\ m_1^{\text{in}} \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} p_1^{\text{out}} \\ E_1^{\text{out}} \\ m_1^{\text{out}} \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} p_2^{\text{in}} \\ E_2^{\text{in}} \\ m_2^{\text{in}} \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} p_2^{\text{out}} \\ E_2^{\text{out}} \\ m_2^{\text{out}} \end{pmatrix} \xrightarrow{\sim} \cdots. \tag{5.4}
\]
The left column corresponds to the emission time \(t_0\). In the next brackets, in the left columns are momenta of ingoing particle, in the right ones are the outgoing. Under reflection from the brane momentum \(p^a\) parallel to the brane and energy \(E\) are conserved, transverse momentum to the brane \(m\) changes its sign:
\[
E \to E, \quad p^a \to p^a, \quad m \to -m.
\]
Momenta \(\tilde{p}^{T,R} \sim \tilde{C}^{T,R}/r_b(t)\) are are rescaled when moving from one bracket to the next
\[
\frac{\tilde{p}^{T,R}_{n+1}}{\tilde{p}^{T,R}_n} = \frac{r_b(t_{n+1})}{r_b(t_n)} \approx \left(\frac{t_{n+1}}{t_n}\right)^{1/4} = z_{n+1,n}.
\]
Transformation from “in” to “out” components within a bracket is given by
\[
M^{\text{out}}_{\text{m}} = \begin{pmatrix} E^{\text{out}}_m \\ m^{\text{out}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} E^{\text{in}}_m \\ m^{\text{in}} \end{pmatrix} \equiv LM^{\text{in}}. \tag{5.6}
\]
Let us consider the first two brackets in (5.4). Using (5.3) we express \(E_0\) and \(m_0\) through \(E_1\) and \(m_1\) and obtain
\[
\begin{pmatrix} E_0 \\ m_0 \end{pmatrix}^{\text{out}}_{(t_0)} = z_{01}^{-1} K_0 K_1 \begin{pmatrix} E_1 \\ m_1 \end{pmatrix}^{\text{in}} \tag{5.7}
\]
\[
= z_{01}^{-1} \left(\sqrt{\frac{H_0}{\mu^2} + 1} \sqrt{\frac{H_1}{\mu^2} + 1 - \frac{H_0 H_1}{\mu^2}} - \frac{H_0}{\mu} \sqrt{\frac{H_0}{\mu^2} + 1 - \frac{H_1}{\mu}} \sqrt{\frac{H_0}{\mu^2} + 1 + \frac{H_0 H_1}{\mu^2}} \right) \begin{pmatrix} E_1 \\ m_1 \end{pmatrix}.
\]
In the period of early cosmology, from the Friedman equation it follows that \(H/\mu \simeq 1/(4\mu t)\).
For small \(\mu t\) we can simplify the expressions in (5.7) as
\[
\sqrt{\frac{H_0^2}{\mu^2} + 1} \sqrt{\frac{H_1^2}{\mu^2} + 1 - \frac{H_0 H_1}{\mu^2}} \simeq \frac{1}{2} \left(\frac{H_0}{H_1} + \frac{H_1}{H_0} \right) \simeq \frac{1}{2} \left(\frac{t_1}{t_0} + \frac{t_0}{t_1} \right) = \frac{z_{01}^4 + z_{01}^4}{2}, \tag{5.8}
\]
\[
\frac{H_0}{\mu} \sqrt{\frac{H_0^2}{\mu^2} + 1 - \frac{H_1}{\mu}} \sqrt{\frac{H_0^2}{\mu^2} + 1 + \frac{H_0 H_1}{\mu^2}} \simeq \frac{1}{2} \left(\frac{H_0}{H_1} - \frac{1}{H_0} \right) \simeq \frac{1}{2} \left(\frac{t_1}{t_0} - \frac{t_0}{t_1} \right) = \frac{z_{01}^4 - z_{01}^4}{2}.
\]
Introducing
\[
\psi^\pm(z) = \frac{z^{-4} \pm z^4}{2},
\]
we obtain
\[
\begin{pmatrix} E_0 \\ m_0 \end{pmatrix}^{\text{out}} = z_{01}^{-1} \begin{pmatrix} \psi_{01}^+ & \psi_{01}^- \end{pmatrix} \begin{pmatrix} E_1 \\ m_1 \end{pmatrix}^{\text{in}},
\]
(5.9)
where
\[
\psi_{01}^+ = \psi^+(z_{01}).
\]
For multiple bouncings we have
\[
\begin{align*}
M_0^{\text{out}} &= z_{01}^{-1} K_0 K_1 M_1^{\text{in}}, \\
M_0^{\text{out}} &= z_{02}^{-1} K_0 K_1 K_2 M_2^{\text{in}}, \\
&\quad \vdots \\
M_0^{\text{out}} &= z_{0,n}^{-1} K_0 K_1 \ldots K_{n-1} K_n M_n^{\text{in}},
\end{align*}
\]
where
\[
z_{0n} = z_{01} z_{12} z_{23} \ldots z_{n-1,n},
\]
(5.11)
\[
K_0 K_1 \ldots K_{n-1} K_n = \begin{pmatrix} \psi_{0n}^+ & \psi_{0n}^- \end{pmatrix} \begin{pmatrix} (-)^{n+1} \psi_{0n}^- \end{pmatrix} \begin{pmatrix} (-)^{n+1} \psi_{0n}^+ \end{pmatrix}.
\]
(5.12)
Here
\[
\begin{align*}
\psi_{0n}^\pm &= \psi^\pm(u_{0n}), \\
u_{0n} &= u_{0,n-1} z_{n-1,n},
\end{align*}
\]
(5.13) (5.14)
or explicitly
\[
\begin{align*}
u_{02} &= z_{01}^{-1} z_{12}, \\
\nu_{03} &= z_{01}^{-1} z_{12} z_{23}, \\
\nu_{04} &= z_{01}^{-1} z_{12} z_{23} z_{34}, \\
&\quad \vdots
\end{align*}
\]
From (5.13) and (5.14) it follows that \(u_{0,2k+1} < 1 \) and \(u_{0,2k} > 1 \). In the latter case
\[
\psi_{0,2k}^-(u_{0,2k}) = -|\psi_{0,2k}^-(u_{0,2k})| = -\psi_{0,2k}^-(u_{0,2k}),
\]
(5.15)
and
\[
\begin{align*}
E_0 &= \nu_{0,2k} \left(\psi_{0,2k}^+ E_{2k} - |\psi_{0,2k}^-| M_{2k} \right) \\
m_0 &= \nu_{0,2k} \left(\psi_{0,2k}^- E_{2k} - \psi_{0,2k}^+ M_{2k} \right).
\end{align*}
\]
It should be noted that the functions \(z_{n-1,n} \) in processes with different number of bounces are different. If \(z_{n-1,n}^{(k)} \) refers to the process with \(k-1 \) bounces, different \(z_{n-1,n}^{(k)} \) are connected by the following relations
\[
\begin{align*}
z_{k-1,k}^{(k)} &= z_{k-2,k-1}^{(k-1)} = z_{k-3,k-2}^{(k-2)} = \ldots = z_{01}^{(1)}, \\
z_{k-2,k-1}^{(k)} &= z_{k-3,k-2}^{(k-1)} = z_{k-4,k-3}^{(k-2)} = \ldots = z_{01}^{(2)}, \\
&\quad \vdots \\
z_{12}^{(k)} &= z_{01}^{(k-1)}.
\end{align*}
\]
(5.16)
The distribution function of non-interacting gravitons in the bulk satisfies the Liouville equation without the collision term. If coordinates and momenta gravitons along a geodesic are parametrized by parameter λ, i.e. $f(x^{A}(\lambda), p^{A}(\lambda))$, we have

$$f \left(R(\lambda_0), p^{A}(\lambda_0) \right) = f \left(R(\lambda_1), p^{A}(\lambda_1) \right).$$ \hspace{1cm} (5.17)

In the case of the metric (2.7) relation (5.17) can be written as [11]

$$f \left(\tilde{T}_0, R_0, \tilde{p}^{A} \right) = f \left(\tilde{T}, R_1, \tilde{p}^{A}R_1/R_0 \right),$$

where $\tilde{p}^{A} = (\tilde{p}^T, \tilde{p}^R, \tilde{p})$. If the points (\tilde{T}_0, R_0) and (\tilde{T}_1, R_1) are on the brane world sheet, they are functions of the proper time on the brane. Temperature of the Universe, $T(t)$, is defined through the proper time t via (4.2)–(4.3).

5.1 First fall of gravitons to the brane

We suppose that the distribution function of emitted gravitons f^{out} depends on $E_0 = \sqrt{m_0^2 + \vec{p}^2}$, m_0 and temperature T_0, i.e. $f^{\text{out}} = f^{\text{out}}(E_0, m_0, T(t_0))$. The distribution function of gravitons emitted at time t_0 and falling back for the first time on the brane at time t_1 is

$$f^{\text{in},(1)}(E_1, m_1, T) = f^{\text{out}}(E_0(E_1, m_1, z_{01}), m_0(E_1, m_1, z_{01}), T_0(T, z_{01})), \hspace{1cm} (5.18)$$

where

$$E_0 = z_{01}^{-1}(\psi_0^+ E_1 + \psi_0^- m_1) \hspace{1cm} (5.19)$$

$$m_0 = z_{01}^{-1}(\psi_0^+ E_1 + \psi_0^- m_1). \hspace{1cm} (5.20)$$

In the period of early cosmology from (4.2) and (4.3) it follows that $T_1/T_0 \simeq \rho_0(t_0)/\rho_0(t_1) = z_{01}$. We obtain the distribution function at time t_1 as

$$f^{\text{in},(1)}(E_1, m_1, T) = f^{\text{out}}(z_{01}^{-1}(E_1\psi^+(z_{01}) + m_1\psi^-(z_{01})), z_{01}^{-1}(E_1\psi^-(z_{01}) + m_1\psi^+(z_{01})), z_{01}^{-1}T).$$ \hspace{1cm} (5.21)

where z_{01} is determined as a function of $x_1 = m_1/E_1$ by eq. (4.19). For $\mu/\rho_1 \ll 1$ the terms $O(\mu/\rho_1)$ could be neglected and z_{01} is defined via (4.21).

Condition that $x_0 = m_0/E_0 > 0$ takes the form

$$x_0 = \frac{\psi^-(z_{01}) - |x_1|\psi^+(z_{01})}{\psi^+(z_{01}) - |x_1|\psi^-(z_{01})} > 0.$$ \hspace{1cm} (5.22)

Because the nominator of this ratio is positive, this condition is equivalent to $\psi^-(z_{01}) - |x_1|\psi^+(z_{01}) > 0$, or

$$1 + \frac{|x_1|}{1 - |x_1|} z_{01}^8 < 1.$$ \hspace{1cm} (5.23)

To show that this inequality is satisfied, we wright

$$1 = \frac{1 + |x_1|}{1 - |x_1|} f_{\beta}(z_{01}) = \frac{1 + |x_1|}{1 - |x_1|} \frac{1}{z_{01}} \frac{1 + \ldots + z_{01}^6}{7} \frac{1}{1 - |x_1|} z_{01}^8.$$ \hspace{1cm} (5.22)
5.2 Next falls of gravitons to the brane

The distribution function of gravitons emitted at time t_0, which bounced off the brane at time t_1 and fall on the brane the second time at time t_2 is

$$f^{\text{in} ,(2)}(E_2,m_2,t_2) = f^{\text{out} ,(1)}(E_1(E_2,m_2),-m_1(E_2,m_2),t_1) = f^{\text{in} ,(1)}(E_1(E_2,m_2),m_1(E_2,m_2),t_1)$$

$$= f^{\text{out}}(E_0(E_1,E_2,m_2),m_1(E_2,m_2),m_0(E_1,E_2,m_2),m_1(E_2,m_2),t_0). \ (5.23)$$

Tracing the propagation of graviton, we obtain

$$\begin{pmatrix} E_0 \\ m_0 \end{pmatrix}^{\text{out}} = z_0^{-1} \begin{pmatrix} \psi_0^+ \\ \psi_0^- \end{pmatrix} \begin{pmatrix} E_1 \\ m_1 \end{pmatrix}^{\text{in}}$$

$$= z_0^{-1} \begin{pmatrix} \psi_0^+ \\ \psi_0^- \end{pmatrix} z_1^{-1} \begin{pmatrix} \psi_2^+ \\ -\psi_2^- \end{pmatrix} \begin{pmatrix} E_2 \\ m_2 \end{pmatrix}^{\text{in}} = (z_0 z_1)^{-1} \begin{pmatrix} \psi_0^+ \\ \psi_0^- \end{pmatrix} \begin{pmatrix} E_2 \\ m_2 \end{pmatrix}^{\text{in}}, \ (5.24)$$

where $u_{02} = z_0 z_1^{-1}$ and

$$\psi_{02}^\pm = \frac{1}{2} \left[\psi^+(z_0) \psi^\pm(z_12) - \psi^-(z_0) \psi^\mp(z_12) \right] = \frac{1}{2} \left[u_{02}^{-1} \pm u_{02}^{\dagger} \right].$$

The time t_1 of the bounce is determined from eq. (4.21) with $z = z_{12} \simeq (t_1/t_2)^{1/4}$,

$$\frac{1 - |x_2|}{1 + |x_2|} = f_7(z_{12}), \ (5.25)$$

where $x_2 = (m_2/E_2)^{\text{in}}$. The time t_0 is determined from the equation (4.21) with $z = z_{01} \simeq (t_0/t_1)^{1/4}$

$$\frac{1 - |x_1|}{1 + |x_1|} = f_7(z_{01}), \ (5.26)$$

where $x_1 = (m_1/E_1)^{\text{in}}$. Expressing x_1 through x_2, we have

$$x_1 = x_1^{\text{in}} = -\frac{\psi^-(z_{12}) + x_2 \psi^+(z_{12})}{\psi^+(z_{12}) + x_2 \psi^-(z_{12})} = -\frac{\psi^-(z_{12}) - |x_2| \psi^+(z_{12})}{\psi^+(z_{12}) - |x_2| \psi^-(z_{12})} = -\frac{\psi^-(z_{12}) + x_2 \psi^+(z_{12})}{\psi^+(z_{12}) + x_2 \psi^-(z_{12})}.$$

Substituting (5.27) in (5.26), we obtain

$$f_7(z_{01}) = \frac{1 - |x_1|}{1 + |x_1|} = \frac{\psi^+(z_{12}) - |x_2| \psi^+(z_{12}) - \psi^-(z_{12}) + |x_2| \psi^+(z_{12})}{\psi^+(z_{12}) - |x_2| \psi^-(z_{12}) + \psi^-(z_{12}) - |x_2| \psi^+(z_{12})} = 1 - |x_2|^{-8} z_{12}^{8} \ (5.28)$$

$$f_7(z_{01}) = \frac{1 - |x_2|}{1 + |x_2|} = \frac{z_{01} - |x_2|}{z_{01} + |x_2|} = f_7(z_{01}).$$

Condition $m_0^{\text{out}} > 0$ yields the constraint $\psi^-(z_{12}) - |x_2| \psi^+(z_{12}) > 0$. This condition can be rewritten as $(1 - z_{12}^8)/(1 + z_{12}^8) > |x_2|$, or equivalently, as

$$z_{12}^8 \frac{(1 + |x_2|)}{(1 - |x_2|)} < 1,$$

which is valid, because of (5.28).

Condition $m_0 > 0$ is $-(\psi_{02} \psi_{02}^+) > 0$, or $z_{01}^8 (1 - |x_2|) < z_{01}^8 (1 + |x_2|)$, which is satisfied, because

$$1 < \frac{1 + |x_2|}{1 - |x_2|} \frac{z_{01}^8}{z_{01}^8} = \frac{f_7(z_{01})}{z_{01}^8}. \ (5.28)$$

Using relations (5.25) and (5.28) we can show that $z_{12} > z_{01}$.
The distribution function of gravitons \((5.23)\) can be expressed as

\[
f^{(2)}(E_2, m_2, T) = f^{\text{out}, (0)}(z_{02}^{-1}(-E_2 \psi_{02}^- - m_2 \psi_{02}^+), z_{02}^{-1}(E_2 \psi_{02}^+ + m_2 \psi_{02}^-), z_{02}^{-1}T). \tag{5.29}
\]

In the case that gravitons have made two bounces, using \((5.10)\) and \((5.11)\), we have

\[
\left(\frac{E_0}{m_0} \right)^{\text{out}}_{\text{in}} = z_{03}^{-1} K_0 K_1 L K_2 L K_3 \left(\frac{E_3}{m_3} \right) = z_{03}^{-1} \left(\frac{\psi_{03}^- \psi_{03}^+}{\psi_{03}^\prime \psi_{03}^\prime} \right) \left(\frac{E_3}{m_3} \right). \tag{5.30}
\]

Here \(z_{03} = z_{01} z_{12} z_{23}, \psi_{03}^\pm = \psi^\pm(u_{03})\) and \(u_{03} = z_{01} z_{12}^{-1} z_{23}^{-1} - 1\). The functions \(z_{k-1,k}\) are determined from the equations

\[
f_7(z_{23}) = 1 - \frac{|x_3|}{1 + |x_3|}, \tag{5.31}
\]

\[
f_7(z_{12}) = \frac{1 + |x_3|}{1 - |x_3|} z_{23}^{-8}, \tag{5.32}
\]

\[
f_7(z_{01}) = 1 - \frac{|x_3|}{1 + |x_3|} z_{23}^{-8}. \tag{5.33}
\]

Using the above relations, we can show that \(z_{23} > z_{12} > z_{01}\).

The distribution function \(f^{(3)}(m_3, E_3, T)\) is

\[
f^{(3)}(m_3, E_3, T) = f^{\text{out}, (0)}(z_{03}^{-1}(E_3 \psi_{03}^- + m_3 \psi_{03}^+), z_{03}^{-1}(E_3 \psi_{03}^+ + m_3 \psi_{03}^-), z_{03}^{-1}T). \tag{5.34}
\]

6 Numerical estimates and discussion

We perform numerical estimates of the \((nn)\) component of the energy-momentum tensor of incoming gravitons using the distribution function of paper \([11]\). Qualitatively, the energy-momentum tensor of incoming gravitons at the registration time \(t_1\) is formed by summing contributions from gravitons emitted at times \(t_0\) preceding the registration time \(t_1\).

The distribution function of emitted gravitons is

\[
f^{(0)}(m, p, t_0) = B m^3 e^{-E/T_0}, \quad B = \frac{A \kappa^2}{2 \pi \pi^5}, \tag{6.1}
\]

where \(E = \sqrt{m^2 + p^2}, A\) is the weighted sum of relativistic degrees of freedom which contribute to the annihilation amplitude to gravitons \([8]\). The \((nn)\) component of the energy-momentum tensor of emitted gravitons, \(T_{nn}^{\text{em}}(t_0)\), is

\[
T_{nn}^{\text{em}}(t_0) = \int \! dm dp \frac{m^2}{2E} f^{(0)}(m, p, t_0). \tag{6.2}
\]

The \((nn)\) component of the energy-momentum tensor of gravitons falling back to the brane is

\[
T_{nn}^{\text{in}, (1)}(t_1) = \int \! dm_1 dp_1 \frac{m_1^2}{2E_1} f^{(1)}(m_1, p_1, t_1), \tag{6.3}
\]

where the distribution function of infalling gravitons is

\[
f^{\text{in}, (1)}(m_1, p_1, t_1, T) = B m_0^3(m_1, E_1, z_{01}) \exp \left\{ - \frac{E_0(m_1, E_1, z_{01})}{T_0(T, z_{01})} \right\}. \tag{6.4}
\]
For the energy-momentum tensor of gravitons which have made one bounce we obtain

\[
T_{nn}^{(1)}(T) = 2\pi B \int_{E_1}^0 \int_0^1 dx x^2 \sqrt{1-x^2} \psi_0 \psi_1 \frac{(\psi_0 - x \psi_1)^3}{(\psi_0 - x \psi_1)^2} \exp \left\{ - \frac{E_1 \psi_1^+ + m_1 \psi_0^-}{T} - \frac{E_1 \psi_1^- - m_1 \psi_0^+}{T} \right\}.
\]

(6.5)

Introducing \(x = m_1/E_1\), we express \(T_{nn}^{(1)}\) as

\[
T_{nn}^{(1)} = 2\pi B \int dx x^2 \sqrt{1-x^2} \int dE_1 E_1 \psi_0 (\psi_0^- - x \psi_1^+)^3 \exp \left\{ - \frac{E_1 (\psi_1^+ - x \psi_1^-)}{T} \right\}.
\]

(6.6)

First, we integrate over \(E_1\) in the limits \((0, \infty)\), and below we consider integration taking into account lower and upper bounds. For \(T_{nn}^{(1)}\) we have

\[
T_{nn}^{(1)}(T) = 2\pi B T^8 \Gamma(8) \int_0^1 dx x^2 \sqrt{1-x^2} \frac{(\psi_0 - x \psi_1)^3}{(\psi_0 - x \psi_1)^2} \exp \left\{ - \frac{E_2 \psi_0^+ + m_2 \psi_0^-}{T} \right\},
\]

(6.7)

For the energy-momentum tensor of gravitons which have made one bounce we obtain

\[
T_{nn}^{(2)} = 2\pi B \int_0^\infty dE_2 \int_0^1 dm_2 m_2^2 \sqrt{E_2^2 - m_2^2} \frac{z_{02}^3}{(z_{02}^2 - m_2^2)} \exp \left\{ - \frac{E_2 \psi_0^+ + m_2 \psi_0^-}{T} \right\}.
\]

(6.8)

where \(z_{02} = z_{12}^2 / z_{01}^2\). From the inequality \(z_{12} > z_{01}\) it follows that \(\psi_0(z_{12} / z_{01}) < 0\). Instead, we use \(|\psi_0| = \psi_0(z_{01} / z_{12})\). \(T_{nn}^{(2)}\) is expressed as

\[
T_{nn}^{(2)} = 2\pi B T^8 \Gamma(8) \int_0^1 dx x^2 \sqrt{1-x^2} \frac{z_{02}^3}{(z_{02}^2 + x \psi_0^+)^2} \exp \left\{ - \frac{E_3 \psi_0^+ + m_3 \psi_0^-}{T} \right\}.
\]

(6.9)

For the energy-momentum tensor of gravitons which have made two bounces we have

\[
T_{nn}^{(3)} = 2\pi B \int_0^\infty dE_3 \int_0^1 dm_3 m_3^2 \sqrt{E_3^2 - m_3^2} \frac{z_{03}^3}{(z_{03}^2 - m_3^2)} \exp \left\{ - \frac{E_3 \psi_0^+ + m_3 \psi_0^-}{T} \right\}.
\]

(6.10)

where \(z_{03} = z_{23}^2 \frac{z_{12}^2}{z_{01}^2}\).

Integration over \(E\) in the integrals \(T_{nn}^{(k)}\) is performed for \(E > T_{min}\).

Assuming that \(T_{min}\) in the region of early cosmology, i.e. \(10 \lesssim \rho(T_{min})/\mu\), taking \(g_s \sim 200,^1\) and using (4.1), we find that

\[
T_{min}^4 \sim \frac{\mu}{\kappa^2}.
\]

(6.11)

^1The ambiguity in \(g_s\) and in \(A\) in (6.1) is due to incomplete knowledge of the contribution of dark matter. We assume that the mass of particles which form dark matter is in the interval (20-100) GeV. In the period of early cosmology these particles are relativistic. Phenomenologically the acceptable number of dark matter particles with the mass in the above interval is \(g_s \sim 100\) [19]. With the number of particle species in the non-supersymmetric Standard model \(g_s \sim 100\), the total number is \(\sim 200\). Because of the high power of \(T\) estimates weakly depend on variations of this number.
Using the relation $M^3 \simeq \mu M^2_{\text{pl}}$ which follows from the fit of cosmological data [4], we have $T_{\text{min}}^4 \sim (\mu M_{\text{pl}})^2/8\pi$. For $\mu = 10^{-13} \div 10^{-9}$ GeV condition (6.11) yields $T_{\text{min}} \sim 10^3 \div 10^5$ GeV.

Because of the high power of E in the integrals for $T^{(k,\text{in})}$, the main contribution to the integrals is produced from the region near the upper limit of integration T_{max}. Provided $T_{\text{min}} \ll T_{\text{max}}$, we set $T_{\text{min}} = 0$. The functions $z_{k-1,k}(x)$ and the integrands $I^{(k)}$ for characteristic values of x are given in table 1 and figure 1. For the following it is convenient to introduce the notations

$$T_{\text{in},(k)}^{(\text{in})} = 2\pi BT^8\Gamma(8) \int dx I^{(k)}(x). \quad (6.12)$$

The integrals $T_{\text{in},(k)}^{(\text{in})}$ were calculated numerically by substituting the values for $z_{ij}(x)$. For the integrals $\int dx I^{(k)}$ we obtain

$$\int_0^1 dx I^{(1)} = 0.0415, \quad \int_0^1 dx I^{(2)} = 0.0295, \quad \int_0^1 dx I^{(3)} = 0.0023. \quad (6.13)$$

To study dependence of $z(x)$ on μ/ρ_1, we calculate $z(x)$ making use of (4.19) and taking into account the next order in μ/ρ_1. In figure 2 the results for $I^{(1)}(x)$ are compared for two values of $\mu/\rho_1 = 0.1$ and 0.01. Although the values of $z(x)$ for $\mu/\rho_1 = 0.1$ and $\mu/\rho_1 = 0.01$ considerably differ, the values of integrals $\int dx I^{(1)}(\mu/\rho_1 = 0.1) = 0.0460$ and $\int dx I^{(1)}(\mu/\rho_1 = 0.01) = 0.0415$ are close.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
$x_3 \equiv x$ & .2 & .3 & .4 & .5 & .6 & .7 & .8 \\
\hline
$z_{01}^{(3)}(x)$ & .870 & .775 & .633 & .399 & .112 & .0034 & $< 10^{-4}$ \\
$z_{12}^{(3)}(x)$ & .887 & .816 & .729 & .617 & .468 & .267 & .079 \\
$z_{23}^{(3)}(x)$ & .899 & .845 & .787 & .722 & .648 & .557 & .438 \\
\hline
\end{tabular}
\caption{The functions $z_{k-1,k}^{(3)}$ for different values of x.}
\end{table}
Figure 2. Dependence of $I^{(1)}(x)$ on μ/ρ_1, $\rho_1 = \rho(t_1)$, where t_1 is the time of the first return of graviton to the brane calculated using (4.20). The function $I^{(1)}(x)$ calculated for $\mu/\rho_1 = 0.01$ (curve (1)) and $\mu/\rho_1 = 0.1$ (curve (2)). For $\mu/\rho_1 < 0.01$ the values of $I^{(1)}(x)$ are very close to the case with $\mu/\rho_1 = 0$.

The limiting temperature at which the emission begins is the reheating temperature T_R. The emission energy E_0 is bounded by

$$E_0 = z_0^{-1}E(\psi^-_0 - x\psi^-_0),$$

where $\psi_0^\pm = \psi^\pm(u_0n)$ are defined in (5.11) and (5.14) correspondingly. For T/T_R, we obtain

$$T_{nn}^{in(n)} = 2\pi BT_8^8 \int_0^1 dx \sqrt{1 - x^2} z_0^{-3}(x) \frac{(\psi^-_0(z_0n) - x\psi^+_0(z_0n))^3}{(\psi^+_0(z_0n) - x\psi^-_0(z_0n))^3} \gamma(8, z_0n(x)T_R/T),$$

(6.14)

where γ is incomplete gamma-function.

If $T/T_R \ll 1$, the region producing the main contribution to the integral is $1 > z_0n > T/T_R$. The corresponding region of x is $0 < x < O(1 - T/T_R)$, where $1 - T/T_R \ll 1$. At small x the integrand decreases as a power of x, and contribution from this region is strongly suppressed.

If $T/T_R \ll 1$, the region producing the main contribution to the integral is $1 > z_0n > 1 - T/T_R$, where $1 - T/T_R \ll 1$.

The energy density of dark radiation satisfies the evolution equation [9, 11, 13]

$$\frac{d\rho_D}{dt} + 4H\rho_D \simeq -\frac{2\rho}{\mu}(T_{vn}^{em} + T_{nn}^{em} - T_{nn}^{in}),$$

(6.15)

where $T^{in} = \sum T^{in(k)}$ and

$$T_{vn}^{em}(T) = -2\pi B T_8^8 \gamma(8) \cdot \frac{\pi}{32} \frac{\gamma(8, T_R/T)}{\Gamma(8)},$$

(6.16)

$$T_{nn}^{em}(T) = 2\pi B T_8^8 \gamma(8) \cdot \frac{8}{105} \frac{\gamma(8, T_R/T)}{\Gamma(8)}.$$

(6.17)
Here we substituted $M^3_6 \simeq \mu M^2_{pl}$ [4]. Eq. (6.15) is transformed as
\[
\frac{d\rho_D(T)}{dT} - \frac{4}{T}\rho_D(T) = \frac{2}{\mu T} (T_{vm}^e + T_{mn}^e - T_{nn}^e).
\] (6.18)

Explicitly we have
\[
\frac{d\rho_D}{dT} - 4\pi T^7 \Gamma(8)B \left[\left(-\frac{\pi}{32} + \frac{8}{105} \right) \frac{\gamma(8,T_R/T)}{\Gamma(8)} - \sum \int dx I^{(k)}(x) \frac{\gamma(8,Z_0 k T_R/T)}{\Gamma(8)} \right].
\] (6.19)

Integrating (6.19) with the boundary condition $\rho_D(T_R) = 0$, we obtain
\[
\rho_D = -T^4 \int_T^{T_R} dT' T'^3 \frac{\Gamma(8) A \kappa^2}{\mu^2 \pi^4} \left[\left(-\frac{\pi}{32} + \frac{8}{105} \right) \frac{\gamma(8,T_{pl}/T')}{\Gamma(8)} - \sum \int dx I^{(k)}(x) \frac{\gamma(8,Z_0 k T_{pl}/T')}{\Gamma(8)} \right].
\] (6.20)

The integrands $I^{(k)}(x) \gamma(8,Z_0 k T_R)$ in the second term in (6.19) and (6.20) as the functions of x are presented in figure 3 for $T_R/T = 20, 15, 10, 5$. For the ratio $\rho_D/\dot{\rho}$ we have
\[
\rho_D(T) \dot{\rho}(T) = \frac{4725 A T_R^4}{2^5 \pi^4 g_*(T) (\mu M_{pl})^2} \int_T^{T_R} \left[\frac{0.224 \gamma(8,T_R/T')}{\Gamma(8)} + \frac{32}{\pi} \sum \int dx I^{(k)}(x) \frac{\gamma(8,Z_0 k T_R/T')}{\Gamma(8)} \right] T'^3 dT'
\] (6.21)

Here we substituted $M^3_6 \simeq \mu M^2_{pl}$ [4].
For $T_R/T > 20$ the integral is practically constant and independent of T. The main contribution to the integral is produced by integration over the region of y near the lower limit. Taking $T_R/T = 20$ and performing integration over y, we obtain

$$0.224 \int_1^{T_R/T} \frac{dy}{y^5} \frac{\gamma(8, y)}{\Gamma(8)} \simeq 6.56 \cdot 10^{-5}$$

(6.22)

$$\frac{32}{\pi} \int_1^{T_R/T} \frac{dy}{y^5} \sum_1^3 \int dx I^{(k)}(x) \frac{\gamma(8, z_0ky)}{\Gamma(8)} \simeq 3.8 \cdot 10^{-5}.$$

(6.23)

For the ratio of energy density of dark radiation to energy density of matter we have

$$\left| \frac{\rho_D}{\hat{\rho}} \right| \simeq 3.5 \cdot 10^{-5} \frac{T_R^4}{(\mu M_{pl})^2}. \quad (6.24)$$

A typical order of constraint on magnitude of the ratio $\rho_D/\hat{\rho}$ in the period of early cosmology, which follows from primordial nucleosynthesis, is $|\rho_D/\hat{\rho}| \lesssim 0.07$ [20].

From the gravity experiments it follows that characteristic scale of extra dimension $r_{\text{extr}} \sim \mu^{-1}$ is less than 10^{-2} cm, or $\mu > 2 \cdot 10^{-12}$ GeV [1]. For $\mu \sim 10^{-12}$ GeV the estimate (6.24) gives $T_R \sim 2.3 \cdot 10^3$ GeV. This value of T_R is significantly lower than usually accepted $T_R \sim 10^5 \div 10^7$ GeV, indicating that large extra dimensions can appear with low reheating temperature. The estimate can be improved, if there is more complete cancellation between two terms in (6.21), or for larger values of μ. Because of strong dependence of $\rho_D/\hat{\rho}$ on μ, the possibility of larger μ seems more plausible. For the reheating temperature $T_R \sim 10^6$ GeV the scale of extra dimension obtained from (6.24) is $\mu \sim 2 \cdot 10^{-9}$ GeV ($\mu^{-1} \sim 10^{-5}$ cm). For higher reheating temperatures the value of μ rapidly increases: $\mu \sim T_R^2$.

For larger μ, in the integrals for T_{mn}, the lower bound of integration E_{min} increases (see (6.11)) resulting in smaller magnitudes of the integrals $T_{mn}^{(k)}$. For $T_R > 10^6$ GeV this does not change the above results significantly, but for smaller T_R the effect of the lower bound of integration must be taken into account.

The result of our calculations showing that account of gravity radiation leads to high mass scale of extra dimension can be attributed either to an insufficient accuracy of calculations (although our tests indicate stability of the result), or indicate that “too large” extra dimensions are incompatible with this class of models.

7 Conclusion

In this paper in a model with extra dimension we have calculated graviton emission to the extra dimension. Graviton emission is significant at the high-temperature period of the evolution of the Universe. The key point of the present paper is solution of the system of equations for the brane trajectory and for geodesic equation for graviton trajectory. For a given value of graviton 5-momentum at the time of graviton detection, we calculated the time of graviton emission. We obtained the recursion relations enabling, in principle, calculate the energy-momentum tensor of gravitons falling back to the brane which have made an arbitrary number of bounces. For the first three returns of graviton to the brane we obtained the explicit expressions for the energy-momentum tensor of the gravitons falling back to the brane and made their numerical estimates. Solving the evolution equation for the energy density of the dark radiation, we obtained a relation connecting the reheating temperature and the scale of extra dimension and estimated the scale of the extra dimension.
Acknowledgments

I thank S. Bunichev and M. Smolyakov for assistance.

This research was supported by Skobeltsyn Institute of Nuclear Physics, Moscow State University.

References

[1] R. Maartens, Brane world gravity, Living Rev. Rel. 7 (2004) 7 [gr-qc/0312059] [inSPIRE].

[2] M.P. Dabrowski, W. Godlowski and M. Szydłowski, Astronomical tests for brane universes and the dark energy on the brane, Int. J. Mod. Phys. D 13 (2004) 1669 [astro-ph/0212100] [inSPIRE].

[3] G.M. Szabo, L.A. Gergely and Z. Keresztes, The luminosity-redshift relation in brane-worlds. 2. Confrontation with experimental data, PMC Phys. A 1 (2007) 8 [astro-ph/0702610] [inSPIRE].

[4] M.Z. Iofa, Cosmological constraints on parameters of one-brane models with extra dimension, JCAP 11 (2009) 023 [arXiv:0907.4039] [inSPIRE].

[5] P. Binetruy, C. Deffayet and D. Langlois, Nonconventional cosmology from a brane universe, Nucl. Phys. B 565 (2000) 269 [hep-th/9905012] [inSPIRE].

[6] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Brane cosmological evolution in a bulk with cosmological constant, Phys. Lett. B 477 (2000) 285 [hep-th/9910219] [inSPIRE].

[7] T. Shiromizu, K.-i. Maeda and M. Sasaki, The Einstein equation on the 3-brane world, Phys. Rev. D 62 (2000) 024012 [gr-qc/9910076] [inSPIRE].

[8] A. Hebecker and J. March-Russell, Randall-Sundrum II cosmology, AdS/CFT and the bulk black hole, Nucl. Phys. B 608 (2001) 375 [hep-ph/0103214] [inSPIRE].

[9] T. Tanaka and Y. Himemoto, Generation of dark radiation in bulk inflaton model, Phys. Rev. D 67 (2003) 104007 [gr-qc/0301010] [inSPIRE].

[10] D. Langlois, L. Sorbo and M. Rodriguez-Martinez, Cosmology of a brane radiating gravitons into the extra dimension, Phys. Rev. Lett. 89 (2002) 171301 [hep-th/0206146] [inSPIRE].

[11] D. Langlois and L. Sorbo, Bulk gravitons from a cosmological brane, Phys. Rev. D 68 (2003) 084006 [hep-th/0306281] [inSPIRE].

[12] M.Z. Iofa, Bounce of gravitons emitted from the brane to the bulk back to the brane, Int. J. Mod. Phys. A28 (2013) 1350126 [arXiv:1209.0934].

[13] M.Z. Iofa, Graviton emission from the brane in the bulk in extra dimension, JCAP 06 (2011) 025 [arXiv:1012.2445] [inSPIRE].

[14] P. Kraus, Dynamics of anti-de Sitter domain walls, JHEP 12 (1999) 011 [hep-th/9910149] [inSPIRE].

[15] H. Collins and B. Holdom, Brane cosmologies without orbifolds, Phys. Rev. D 62 (2000) 105009 [hep-ph/0003173] [inSPIRE].

[16] H.A. Chamblin and H.S. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B 562 (1999) 133 [hep-th/9903225] [inSPIRE].

[17] M.Z. Iofa, Connection between two forms of extra-dimensional metrics revisited, Mod. Phys. Lett. A 27 (2012) 1250121 [arXiv:1204.2351] [inSPIRE].
[18] E. Kolb and M. Turner, *The Early Universe*, Frontiers in Physics, Addison-Wesley, Redwood City (1990).

[19] D.S. Gorbunov and V.A. Rubakov, *Introduction to Theory of the Early Universe*, World Scientific, Moscow, Russia, (2008).

[20] V. Barger, J.P. Kneller, H.-S. Lee, D. Marfatia and G. Steigman, *Effective number of neutrinos and baryon asymmetry from BBN and WMAP*, *Phys. Lett. B* 566 (2003) 8 [hep-ph/0305075] [insPIRE].