Practical issues concerning tear protein assays in dry eye

Sharon D’Souza¹ and Louis Tong²,³,⁴,⁵*

Abstract

Dry eye is a common clinical condition diagnosed by cumulative evidence of symptoms and signs. Many new treatments in dry eye are either expensive, invasive, have potential for side effects, or are not easily accessible. In severe dry eye, the ideal modality of treatment to begin with is often not clear as specific molecular disturbances are not evident from just examination of clinical manifestations. Assessing the effects of ongoing treatment is not straightforward since there is lack of agreement between clinical signs and symptoms. There is a need to have more objective methods of selecting treatment for dry eye and monitoring the effect of treatment.

Recently, there are many new technologies applied to the discovery of tear biomarkers, for e.g., mass spectrometry based proteomics techniques and multiplex assays such as the bead-based sandwich indirect immunofluorescent assays. Tear proteins assays have even been made available as point-of-care devices. This review focuses on the evidence for the involvements of tear proteins in dry eye, possible changes in tear concentrations with therapy and the strength of evidence regarding dry eye pathology. Much remains to be done in terms of developing office-based assays and ascertaining their reliability, but current evidence suggests that tear proteins have a role in the clinical practice of dry eye.

Keywords: Human, Dry eye, Review, Tear, Proteomics, Biomarker

Introduction

Diagnosis of dry eye

According to the International Dry Eye Workshop, “dry eye is a multifactorial disease of the tear and ocular surface that results in symptoms of discomfort, visual disturbance, and tear instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear and inflammation of the ocular surface” [1]. Simply put, dry eye is a complex multifactorial disorder affected by pathological processes such as lacrimal gland inflammation [2], meibomian gland dysfunction [3], and tear hyperosmolarity [1].

The signs and symptoms of dry eye disease do not always correlate well even though both are important in the diagnosis and management of dry eye. There are a number of tests used in clinical practice for the diagnosis of dry eye including the traditional Schirmer test, tear break up time, rose bengal staining and the more advanced technologies like the tear osmolarity, meibography and tear film interferometry. Unfortunately the available diagnostic tests often do not correlate reliably with severity of the patient’s symptoms [4].

Recently, a panel of tear proteins has been found, which may be specific and sensitive for the detection of dry eye [5]. A similar panel has been advocated for the diagnosis of primary Sjogren syndrome [6]. The importance of this discovery lies in the fact that most of the diagnostic tests need to be used in combination to reliably diagnose dry eye. These tear proteins may thus prove invaluable to the practicing ophthalmologist. Disease specific signatures of tear proteins may demonstrate underlying disease pathways, and about 4-5% of proteins may be deranged in dry eye [7]. Since tear fluid has various components secreted by different glands, the composition of tears reflects the health of different components of the ocular surface [8]. For some time now, the level of secretory IgA in the tears was used as a measure of lacrimal function, and could be used as a marker of ocular surface inflammation. It fluctuates diurnally in normal people,
being studied in dry eye disease in humans and found to be a biomarker if it fulfils the following three criteria in the clinical relevance of the tear proteins in dry eye, therefore, we only show one member of each class or type of protein (except the class called ‘lacrimal proteins’). These interpretations are based on subjective evaluation of the current evidence on the tear protein studies presented in this review, and may need to be revised when new studies are published (Table 1). There is no published review which focused on these 3 criteria for determining the clinical relevance of the tear proteins in dry eye, therefore, we aim to provide a concise guide to enumerate these factors for the common tear proteins.

Review

Tear proteins

Available technologies and use in dry eye

Traditional separation of tear proteins was performed by electrophoresis [77], and identification and quantification by the enzyme linked immunosorbent (ELISA) method [78], but the recent advances in analytical technologies have provided ocular surface scientists with a host of other techniques for examination of tear proteins. The nano-scale sensitivity of some recent technologies enable the detection of proteins in tears from individuals rather than pooled samples [79,80]. Some of the techniques described below can be used for relative or even absolute quantification if standards of known concentration are also available for calibration. One of the techniques of separating proteins rely on high performance liquid chromatography [81], or nano-electrospray liquid chromatography [82], where the size and charge of proteins provide the basis for their separation. The various techniques available are isobaric tagging using relative and absolute quantification (iTRAQ) technology, and the matrix assisted laser desorption ionisation (MALDI) time of flight (TOF) technique with mass spectrometry [83]. A variant of this technique is the surface-enhanced laser desorption/ionization (SELDI) TOF which can also be coupled with mass spectrometry [65].

Two dimensional (2D) separation of tear proteins based on mass/charge followed by dye staining have also been performed for separation and later identification of tear proteins [84]. In diabetic people, tear proteins have been evaluated using the 2D electrophoresis technology [85].
Isoelectric focusing in combination with sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE), an older technology, was able to detect glycation at specific residues of tear proteins such as lactoferrin and immunoglobulins [86].

Protein arrays have been used to detect proteins from tears of Sjogren syndrome patients [87]. This involves the binding of tear proteins to a predetermined set of antibodies arranged in a fixed arrangement in a stationary platform. In some unique scenarios, for example, to compare the types of immunoglobulins in tears, a more traditional assay such as the Western or immunoblot assay can be performed [88]. For office-based diagnosis, tear proteins can be separated in a very short time using a commercially available equipment, the Agilent Bioanalyser 2100, and analysed using the microfluidic based lab-on-chip technology [89]. For the analysis of a dozen or more cytokines and chemokines in a few microliter of tears, it seems the best technology is the multiplex bead-based immunofluorescent sandwich assay, and the sensitivity for detection of some cytokines are in the order of several picogram/milliliter concentrations, surpassing even the minimum detection limits of mass spectrometry based methods [90].

Limitations

There are some pitfalls to tear protein analysis such as: differences in methods of tear collection which can give different results [91]. Tear collection may be done using Schirmer strips, capillary tubes, or even a special minisponge [92]. A key consideration is the comfort and minimal stimulation of the patient during tear collection, avoiding reflex tearing, since reflex tears likely have different tear protein levels from basal tears. Tear concentrations of interleukin (IL)-1 alpha, precursor IL-1 beta, and IL-1 receptor antagonist (RA) may be altered in dry eye in the basal but not the reflex tear [30]. The Schirmer test method has been shown to be reliable for the collection of tears for analysis of multiple cytokines [93], and such evaluation would be necessary as a prerequisite for new methods of tear collection proposed in the future.

The techniques of iTRAQ, MALDI TOF, SELDI TOF and 2D electrophoresis have shown to be useful for evaluation of tear proteins in a research setting but are unlikely to be used in clinics.

In summary, there is no universal methodology for handling or analysing tear proteins that is applicable to all clinics. Clinicians should consider the advantages and pitfalls of various methods should they want to apply these in their practice. Once applied, the same method should be continued for subsequent encounters and other patients.

A ‘traditional’ marker: Lysozyme

This protein, also known as muramidase or N-acetylmuramidase glycanhydrolyase is a glycoside hydrolase, which are enzymes that damage bacterial cell walls by catalyzing the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan. Lysozymes are abundant in a number of secretions, such as tears, saliva, human milk, and mucus [94]. Lysozyme is probably the earliest tear protein studied in conjunction with dry eye, and the level of tear lysozyme was noted to increase with age till 40 and decrease thereafter.

Table 1 Evidence for assessing the suitability of tear proteins for clinical use

Class of tear protein	Potential clinical marker	Human tear levels show consistent dysregulation	Human tear levels linked to clinical signs/symptoms of dry eye	Change with treatment or severity of dry eye?	Biological function in dry eye pathology known?
Lacrimal protein	Lactoferrin	++++ [21-25]	+++ [26,27]	+ [28]	++ [29]
Protease	MMP-9	+++ [30-32]	+++ [11]	+++ [33]	+++ [34-42]
Lacrimal protein	Lysozyme	++ [21,43-45]	+ [43]	0	0
Mucins	MUC5AC	+++ [46,47]	+ [48]	0	++ [49,50]
Lipid binding protein	Lipocalin	++ [45,51]	+ [52]	++ [52]	+ [53-55]
Interleukines	IL-6	+++ [10,31,56,57]	+ [58]	++ [58]	+ [59-61]
Chemokine	IL-8	++ [10,57,62,63]	+ [62]	0	++ [61,64]
Keratinisation-related	S100A8/9	+++ [5,13,14,65]	+++ [5,13]	0	+ [66,67]
Epithelial health	EGF	++ [57,64,68]	+ [69]	0	++ [70]
Neurotrophic health	NGF	+++ [71,72]	++ [71,73,74]	++ [73,74]	++ [73,76]

+++ strong evidence.
+++ good evidence.
++ modest evidence, some uncertainties about implication.
+ some evidence but studies may have conflicting results.
0 no clear evidence.
It was found to be decreased in glaucoma patients with chronic medication induced dry eye [44]. In a large study with 262 patients (78 patients with Sjogren syndrome), the concentrations of the lysozyme and lactoferrin protein in tear samples in Sjogren syndrome were determined [21]. It was found that lysozyme was decreased in idiopathic dry eye and Sjogren syndrome compared to controls [43]. However, a later study showed that lysozyme concentration did not differ between non-Sjogren dry eye, Sjogren syndrome or normal controls [45]. Researchers also found the single protein lysozyme test to be insufficient for the diagnosis of dry eye [95]. Nevertheless, lysozyme levels may be useful in specific contexts, for example, to check for adverse effects of beta-adrenergic receptor blocking drugs such as Practalol, which reduced tear lysozyme levels [96] or to detect dry eye from specific occupational exposures in coal mining [97]. With so many existing and emerging technologies, it may be worthwhile to take a fresh look at the utility of lysozyme.

Lactoferrin revisited

Lactoferrin, also known as lactotransferrin, is a non-haem iron-binding protein of the transferrin family. It is a globular glycoprotein with a molecular mass of about 80 kDa that is widely represented in various secretory fluids, such as milk, saliva, tears and nasal secretions. Lactoferrin is one of the components of the immune system of the body. It has antimicrobial activity, is antiviral, antiparasitic, catalytic, immunomodulatory and anti-inflammatory [98].

It was found to be negatively correlated to Rose Bengal staining, indicating that reduced lactoferrin was a marker of ocular surface damage [26]. However, in evaporative dry eye in the absence of epithelial defects, tear lactoferrin was also found to be reduced [99]. In chronic hepatitis C patients, the cotton thread test of tear secretion was weakly correlated (r = 0.35) to the tear lactoferrin levels [27], indicating that these patients having significantly lower tear lactoferrin levels than control participants. The use of tear lactoferrin has been advocated for the diagnosis of primary Sjogren's syndrome, where the test had a specificity of 95% and a sensitivity of 72% [22]. These values were somewhat superior to using only the Schirmer I test for detection of this disease [22]. Researchers have suggested a cut-off value of 1.1 mg/mL for tear lactoferrin so that the assay has optimal accuracy for the diagnosis of dry eye [23]. Using this threshold, the test was able to detect dry eye with a sensitivity 79.4% and specificity of 78.3% [24]. Using a convenient commercial lactoplate assay, the tear lactoferrin was measured in dry eye patients and was decreased relative to controls [25].

However, it has been found that lactoferrin changes either do not appear early enough for diagnosis of mild to moderate dry eye or that some cases of dry eye did not have the lacrimal dysfunction that this assay tested for [100]. In any case, treatment of dry eye with punctual occlusion was associated with increased tear lactoferrin levels, suggesting that tear levels of this protein may be a measure of tear turnover [28]. Recently a TearScan™ Lactoferrin Diagnostic Test Kit was made available commercially (Advanced Tear Diagnostics, Raleigh, NC). This device provides quantitative point-of-care tear concentration of lactoferrin.

S-100A proteins
The S-100A protein is a family of low molecular weight proteins characterized by two calcium binding sites of the helix-loop-helix conformation and at least 21 different types of S100 proteins are known. It is normally present in cells derived from the neural crest (Schwann cells, melanocytes and glial cells), chondrocytes, adipocytes, myoepithelial cells, macrophages, Langerhans cells, dendritic cells, and keratinocytes. S100 proteins are involved in the regulation of protein phosphorylation, transcription factors, calcium homeostasis, the dynamics of cytoskeleton constituents, enzyme activities, cell growth and differentiation, and the inflammatory response [101].

The S100A8 and A9 proteins have been known to be pro-inflammatory [66]. In a study using the isobaric tagging for relative and absolute quantification (iTRAQ) technology, we found the S100A8 and S100A9 proteins were among a panel of 6 upregulated proteins found in the tear of dry eye patients [5]. The average ratio of S100A8 and S100A9 in dry eye versus control subjects was 1.82 (SD 1.41) and 1.92 (SD 1.48) respectively. In another study using a different SELDI-TOF technique, over-expression of S100A8 has also been reported [65].

Mucin and related molecules
The mucins (MUC) are a family of high molecular weight, hydrophilic, heavily glycosylated proteins, produced by epithelial tissues. The tear film on the ocular surface epithelia is maintained by the mucins on its surface as well as by membrane-associated mucins in the apical surface of the cell. They are secreted by goblet cells or other secretory cells and have a characteristic ability to form gels with the exception of the monomeric MUC7, hence they have various functions from lubrication to cell signalling to form chemical barriers. MUCs 1, 3A, 3B, 4, 12, 13, 15, 16, 17 and 20 are membrane associated and MUCs 2, 5 AC, 5B, 6, 7 and 19 have been classified as secreted mucins [102].

Using Schirmer strip samples, mean MUC5AC content in tears was found to be lower in the dry eye patients than in the age- and gender-matched healthy individuals [46]. The levels of certain mucin molecules were associated with certain ocular surface states. For example, tear MUC5AC was reduced in symptomatic contact lens
wearers, and MUC4 was correlated to the presence of temporal lid parallel conjunctival folds (conjunctivochalasis) and lid wiper epitheliopathy [48]. The levels of mucins are not always depressed in dry eye. Sjogren syndrome patients exhibited increased soluble MUC16 in the tear compared to controls [47]. The membrane-associated MUC16 and the mucin-associated T-antigen carbohydrate were associated with ocular surface epithelial protection [103].

Understanding of tear mucin regulation may produce insight into the mechanism of at least some types of dry eye [49]. Phospholipid transfer protein, a protein that interacts with mucins, may also be relevant to the dry eye mechanism [104], but this has not been studied well enough to be used for clinical purposes. Since the regulation of mucin affects dry eye pathologic mechanisms, it gives greater credibility to the use of mucins as a marker for this disease.

Proteases
Protease refers to a group of enzymes whose catalytic function is to hydrolyse (breakdown) peptide bonds of proteins. They are also called proteolytic enzymes or proteinases. Proteases differ in their ability to hydrolyse various peptide bonds. Matrix metalloproteinases (MMPs) are a class of proteases belonging to the metzincin superfamily characterised by zinc cofactors, and they are the most important proteases found in tears [105,106].

These enzymes degrade extracellular matrix proteins, but can also process certain bioactive molecules. They are also associated with cleavage of cell surface receptors, the release of apoptotic ligands (like the FAS ligand), and chemokine/cytokine inactivation. MMPs also play a major role cell proliferation, migration (adhesion/dispersion), differentiation, apoptosis, and host defense [106]. MMP-9, also known as 92 kDa type IV collagenase or gelatinase B, can be involved in the degradation of collagen IV present in the basement membrane and extracellular matrix.

In rosacea-associated meibomian gland disease or Sjogren's syndrome, the tear activity of MMP9 was raised compared to controls [30]. In another study, pro-MMP-9 levels were found to be significantly elevated in various ocular surface diseases: blepharitis (p = 0.013), allergic eye disease, dry eye and conjunctivochalasis (all p < 0.001) compared to controls [31]. In a study involving 46 patients with newly diagnosed dry eye and 18 control participants, tear MMP-9 activity was assessed with an MMP-9 activity assay in 1 mL of basal tear fluid [32]. The MMP-9 activity in the control group was 8.39 +/- 4.70 ng/mL and progressively higher levels of MMP-9 were found in the dry eye groups with the highest levels corresponding to the most severe dry eyes clinically [32]. Although this is not a longitudinal study, it represents correlation of MMP-9 levels with clinical disease severity and suggests that it can be a clinical marker for monitoring patients.

In a study involving treatment of ocular surface disease, including dry eye, with a therapeutic contact lens, clinical improvement was observed and at the same time, tear MMP-9 was found to decrease by day 7 and further decrease to minimal levels by day 21 [33]. These types of longitudinal results strengthen the validity of using the tear MMP-9 assay as a monitoring tool.

InflammaDry (RPSInc, Sarasota, FL, USA) is a rapid (10 minute) point of care diagnostic test for tear MMP-9, which gives a positive result if tear MMP-9 exceeds 40 ng/mL. This test can be easily administered by a nurse or technician. It has a sensitivity of 87% and specificity of 92% (RPS clinical study: protocol number 09-001, version no 2.4) when compared to a combined diagnostic criteria of dry eye tests (OSDI > 13, Schirmer II < 10 mm, TBUT < 10 sec and staining > =1). This disposable test kit is based on direct sampling of tears from the inferior fornix using microfiltration and capturing of MMP-9 between specific monoclonal and polyclonal antibodies, and does not require specialised equipment. However, in its current form, the InflammaDry does not yield the actual MMP-9 concentration [107].

Experimentally, dry eye models in animals have demonstrated the importance of tear MMPs in the induction of ocular surface damage in dry eyes [34,35] and have linked these to inflammatory signaling [36], thereby strengthening the biological basis for clinical use of MMPs. In experimental dry eye, the raised MMP-9 can also be detected in the cornea and lacrimal tissues, implying that tear concentrations were not raised purely due to evaporation [37]. In primary lacrimal gland cultures, pro-MMPs were secreted into the culture medium, suggesting that the lacrimal gland may be a source of MMPs [38].

Lipocalins
Lipocalins are a group of extracellular low molecular weight proteins [108], which use multiple recognition properties including ligand binding to small hydrophobic molecules, macro-molecular complexes and binding to specific cell surface receptors. Tear lipocalin is a major protein in tears, which binds a variety of lipophilic molecules. It can also bind to macromolecules like lactoferrin and lysozyme and has a variety of functions in tears, including anti-inflammatory activity, binding and release of lipids [53], regulation of tear viscosity, endonuclease inactivation of viral DNA and used as a biomarker for dry eye [109].

In dry eye disease, downregulation of lipophilin-1 and lipocalin-1 have been found [99]. In fact, the tear lipocalin was even lower in Sjogren's syndrome patients compared to non-Sjogren's dry eye patients [45]. In a treatment trial
Involving dry eye volunteers, improvement of clinical signs of dry eye with an increase in the stability of tear film was found in conjunction with an increase in the tear lipocalin levels [52]. One risk factor for dry eye is contact lens wear, and dry eye sufferers also tend to have intolerance to contact lens. Surprisingly, people who are intolerant of contact lens wear demonstrated higher tear lipocalin levels compared to people who tolerated contact lens [110], suggesting that tear lipocalin alone should not be used for the diagnosis of dry eye. To the best of our knowledge, there has been no longitudinal clinical study on levels of lipocalin to-date.

Experimentally, rabbit levels of tear lipocalin were hormone dependent. Ovariectomy in rabbits decreased tear lipocalin and in contrast, administration of estrogen or male androgen dihydrotestosterone (DHT) increased the levels [54]. These studies point out that hormones act upstream of the production of lipocalin. Interestingly, addition of exogenous sex steroids resulted in the binding of these steroids to the tear lipocalin [55]. Since levels of hormones influence the human dry eye, these findings provide some evidence linking lipocalins to the biology of dry eye. Unfortunately, there has been no evidence of tear lipocalin deficiencies in animal models of dry eye so far.

Interleukines

The interleukins (IL), a group of cytokines that were first seen to be expressed by leukocytes, have an important role in the adaptive immune response in that they are required for the propagation of inflammation [111]. Recently, a panel of four key inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) were found to be highly reproducible and reliable when determined in tear samples as little as 4-10 μL. Standard operating instructions for tear collection, shipping, storage and processing were recommended [112].

Interleukin 1

Tear ILs, in particular IL-1β has been shown to increase in aqueous deficiency dry eye [113].

In patients with meibomian gland dysfunction MGD and those with Sjogren’s syndrome, compared with normal participants, the concentrations of tear IL-1α and mature IL-1β were increased, and precursor IL-1β was decreased [30]. Experimentally, the production of IL-1β in tears has been linked to inflammation [39,40,59,60,114,115].

Interleukin 6

Tear IL-6 has been found to be elevated in Sjogren’s and non-Sjogren syndrome dry eye patients [56,57]. In another study, significant elevation of tear IL-6 has also been observed after 2 weeks of soft contact lens wear. Since the tears break up time and expression of MUC5AC was also decreased over this time, the study suggests that increased tear IL-6 may be an indicator of worsening epithelial and mucoid function [58]. Interestingly, one of the polymorphisms in the IL-6 gene was associated with dry eye disease [116]. This not only suggests a genetic predisposition of dry eye for certain populations, but also supports the use of IL-6 as a marker of dry eye in susceptible people.

Interleukin 17

The tear concentrations of IL-17 in patients with filamentary keratitis, graft versus host disease, autoimmune keratitis, Sjogren’s syndrome, dry eyes, MGD and Steven Johnson syndrome were significantly higher than in normal study participants [117]. This relationship of increased tear IL-17 was only observed in patients with systemic autoimmune disease but not in those whose inflammation is restricted to the eye. Interestingly, serum IL-17 levels were correlated to fluorescein staining scores, but this study did not investigate tear IL-17 levels [118].

Tumour necrosis factor-α (TNF-α) and Interferon-γ (IFN-γ)

These are both acute response cytokines that enhance cellular immune responses [119]. Although tear TNF-α levels were higher in dry eye than controls [57], there was no significant correlation between these levels and the dry eye clinical tests [56]. There was also no difference between the tear TNF-α levels between Sjogren’s and non-Sjogren’s dry eye patients [56]. The pro-inflammatory role of tear TNF-α however, has been verified in experimental models [39,59,60,120,121]. The main drawback in the use of tear cytokines as markers is that none of these have been measured longitudinally in clinical studies to-date.

Tear levels of IFN-γ were elevated in Sjogren’s syndrome compared to controls [62]. Similarly, the tear levels of IFN-γ in cystic fibrosis, a systemic disease associated with dry eye, were significantly higher than those in non-cystic fibrosis controls [63,122]. As in the case of TNF-α, the pro-inflammatory role of IFN-γ has been verified in experimental murine dry eye [121,123].

Chemokines and interleukin 8 (CXCL8)

The tear chemokines which have been implicated in dry eye are CX3CL1 [64], CXCL10 [64], CCL4/MIP-1beta [124,125], CCL3/MIP-1alpha [57,125,126], CCL5/RANTES [57], CXCL9, -10, and -11 [127]. The tear levels of CXCL9, -10 and -11 were 1,148 +/- 1,088, 24,338 +/- 8,706, and 853 +/- 334 pg/mL in dry eye, and only 272 +/- 269, 18,149 +/- 5,266, and 486 +/- 175 pg/mL in controls respectively [41]. Hyperosmolarity induced the production of Monocyte chemotactic protein (MCP)-1 in experimental (epithelial cell culture) settings, providing a link between tear chemokines and dry eye pathology [61]. Nevertheless, there is currently no evidence that chemokines are reduced after treatment of dry eye or that
measurement of chemokines is specific and sensitive for the detection of dry eye.

The tear levels of proinflammatory cytokine IL-8 was found to be higher in Sjogren's syndrome compared to controls [62]. The levels were also higher in dry eye with and without MGD compared to normal controls [57]. In experimental dry eye, IL-8 was also found to be upregulated in the lacrimal gland [36,37]. Ocular pain levels were correlated to tear IL-8 [64].

Growth factors and wound healing molecules

A number of growth factors are produced by the lacrimal gland/ocular surface and may provide trophic effects for ocular surface epithelium. Intuitively, the levels of tear growth factors may reflect the extent of trophic support that is vital for epithelial health [128].

Nerve growth factor and related proteins

It is logical to assess proteins related to nerve endings in dry eye, since dry eye may result from an interruption of neural reflex at the afferent nerve endings. The tear nerve growth factor (NGF) levels were higher in dry eye patients compared to age- and gender-matched healthy control participants. In these patients, prednisolone treatment for 28 days resulted in a decrease in tear NGF levels, which occurred together with clinical improvement of dry eyes [73]. In another study, tear levels of NGF were increased in dry eye patients whereas related peptides: Calcitonic Gene Related Peptide (CGRP) and Neuropeptide (NP) Y concentrations were decreased compared to healthy participants. Furthermore, the level of tear NGF was correlated with clinical severity of dry eye while CGRP and NPY levels were inversely correlated to these clinical parameters [71]. Tear NGF/total tear protein ratio was increased in photorefractive keratectomy and laser in situ keratomileusis, and the early post-operative levels were also correlated with tear function 6 months later [74]. NGF was elevated in tears of contact lens wearers with dry eye, and the levels were associated with a decrease in the nerve plexus density in the cornea [72], supporting the theory that dry eye results from a decrease in the afferent part of the lacrimal loop.

The tear concentration of another peptide, substance P, was also associated with dry eye, and was elevated after excimer corneal surgery compared to pre-surgical levels [129].

Is there any evidence of functional mechanisms involving neural peptides? Experimentally, NGF has been shown to induce goblet differentiation and increase in MUC5AC both in human conjunctival epithelial cells exposed to increasing NGF concentrations and confirmed in primary cultures [75]. Dry eye was induced in rats by subcutaneous scopolamine treatment and aqueous tear production, tear clearance, fluorescein corneal staining, and tear break-up time were evaluated. The NGF mimetic was able to induce an improvement of dry eye test parameters and glycoprotein secretion [76]. The use of supplementary NGF for dry eye therapy is however, hard to justify if the tear level of this protein is already higher than normal to start with. Further studies are required to determine why the NGF levels are elevated in dry eye, and perhaps the use of NGF as a biomarker should be delayed until substantial longitudinal studies of NGF levels are available.

Other growth factors

Epidermal growth factor (EGF) is a low molecular weight polypeptide that acts by binding with high affinity to the epidermal growth factor receptor (EGFR) on the cell surface. Stimulation of the intrinsic protein-tyrosine kinase activity of the receptor ultimately leads to DNA synthesis and cellular proliferation, differentiation, and survival [130]. The concentration of tear EGF was significantly decreased in non-Sjogren dry eye, Sjogren syndrome, and Steven Johnson syndrome patients compared with controls [68]. On the other hand, higher levels of tear EGF has been linked to subepithelial fibrosis in dry eye [69]. In animal models, addition of EGF has been linked to longer tear break up times and lower fluorescein staining scores, establishing a functional effect of this growth factor in the ocular surface [70].

Transforming growth factor (TGF) is a peptide known to be involved in inflammatory and fibrotic pathways. TGF-β1 is the prototypic member of the transforming growth factor superfamily and it elicits diverse cellular responses like proliferation, induction and regulation depending on cell type, state of differentiation and culture conditions [131]. In dry eye, tear TGF-β bioactivity, as assessed by a cell based assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in controls (4129.3 +/- 1342.9 pg/mL). The level of TGF-β bioactivity was highest in those with Sjogren syndrome, compared to controls and non-Sjogren dry eye [132]. The biological role of TGF-β has also been investigated in experimental dry eye settings [36,37].

Corneal neovascularisation may be observed in very advanced dry eye and ocular surface failure [133]. Vascular Endothelial Growth Factor (VEGF) is a signal protein that stimulates vasculogenesis and angiogenesis, cell survival, migration and differentiation. When VEGF is overexpressed, it can contribute to neovascularisation [134]. Tear VEGF levels have been found to be raised in dry eye compared to controls in a study comparing evaporative dry eye to normal subjects. Epidermal growth factor (EGF), fractalkine/CX3CL1, IL-1-receptor antagonist (RA), IL-8/CXCL8, interferon inducible protein (IP) 10/ CXCL10 were found elevated along with VEGF in 94%–100% of samples [64]. Despite the promise of using
growth factors as tear biomarkers, there has yet been no longitudinal study that evaluated the tear levels of these proteins.

Miscellaneous tear proteins and future directions

There are some interesting proteins that have not been evaluated as thoroughly as those mentioned above, but future research will show their usefulness or otherwise in clinical scenarios. The phospholipase (PLA2-IIa) concentration was found to be lower in patients with ocular rosacea (31.0±/18.4 μg/ml) and in patients who had dry eye (25.8+/15.1 μg/ml), compared to normal controls [135]. The activity of serum PLA2-IIa was significantly increased in tears from dry eye diseased patients compared to those from normal subjects. In addition, serum PLA2-IIa stimulated the production of prostaglandin E (2) in ocular surface epithelial cell cultures, linking this tear protein to inflammation [135]. We have previously reported the involvement of other proteins (e.g., prolactin-induced protein, enolase and orosomucoid) in dry eye [5]. These have not been as well characterized as the other tear proteins above. Lacritin is a tear protein that is reduced in dry eye. Because it protects against cells from stress, replacement of lacritin has been advocated as a form of treatment in dry eye. Furthermore, an ELISA assay has been developed to quantify lacritin levels [136].

Specific molecules such as B cell activating factor may indicate severity of inflammation in Sjogren syndrome [137]. Similarly, tear aquaporin 5 was increased in the tears of Sjogren syndrome, indicating the level of lacrimal damage [68]. Increased levels of anti-Ro or anti-La may also be detected in tears of Sjogren syndrome [138], although the role of this assay is currently not clear. The tear levels of pro-apoptotic proteins such as sFas have been measured in patients with dry eye associated with cystic fibrosis [139], and it is possible that subject to further studies, this marker may have some clinical application.

In addition, the tear levels of albumin may also serve as a marker of inflammation. In one study the levels of albumin were found to be increased in glaucoma patients with dry eye [44]. Some proteins are poorly understood and there is no clear strategy that can ‘restore’ this to normal. For example, we found the scaffolding protein 14-3-3 to be uniquely upregulated in glaucoma patients with dry eye who used chronic medications but not in other dry eye patients [14]. It may be possible to use such markers to monitor these patients’ progress even if the biological link is unclear, but more research such as longitudinal studies would be required to address this.

A great difficulty in diagnostic science is the wide variation of techniques used in analysis. The differences in techniques can result in the variation of the ‘normal’ range of specific tear proteins [140]. The extent of variation of tear proteins during processes such as fasting should also be further investigated [141]. Particular care should be paid to the conditions during tear collection: close eye tears and open eye tears differ in the fibronec- tin concentrations [23]. It may be necessary for an international panel to set up universal standards for the testing of specific tear proteins, or testing of patients for specific purposes, such as for the selection of treatment modality in dry eye.

Much remains to be done in terms of developing clinic based assays and ascertaining their reliability. Technologies that rapidly produce results and take up minimal amount of space are highly promising, such as the one using a microfluidics chip mentioned above [89].

Although this review focuses on proteins, tear lipids mediators in the tear may also have a major role in inflammation, and are potentially useful biomarkers. For example, the omega-3 fatty acid metabolic pathways produce both pro-inflammatory lipids (leukotrienes) as well as anti-inflammatory lipids (e.g., the 18R-, 17R- and 18S-resolvins). The resolvins (Rv)E1, neuroprotectin D1 and RvD1 dampen a range of immune responses including T cell responses, cytokine production, and endothelial adhesion. In fact, the RvE1 analog Rx-10045 has completed phase II testing for treatment of dry eye (clinicaltrials.gov NCT01675570). Assuming that diagnostic technology of lipid detection overcomes certain practical obstacles, tear lipids may be useful biomarkers for guiding therapies.

Conclusions

We propose that when a patient presents with dry eye symptoms, the history and the clinical examination will alert to any systemic diseases that may be linked to dry eye, for example, rheumatoid arthritis or Sjogren’s syndrome. In recalcitrant cases of dry eye, tear proteins may be useful for selection of treatment or following up the patient for response to treatment. For example, increased tear MMPs may suggest the more prolonged use of MMP inhibitors like the doxycyclines. In conclusion, clinicians are reminded that tear protein science is an evolving area of research and with increasing knowledge on the pathogenesis of specific types of dry eyes, more appropriate biomarkers may replace these mentioned in this article.

Retrieval of articles

The NCBI Pubmed database was searched for the keywords “Tear Proteins” and “Dry eye” in any field. This yielded 471 articles, and these have been manually curated to 131 relevant articles by excluding those that do not support the criteria in Table 1. Seven articles were added to introduce the proteins in each section.
Competing interests
The authors have no proprietary or commercial interests in any concept or product discussed in this article.

Authors’ contributions
SDS: wrote manuscript and reviewed final manuscript, LT: literature search, wrote manuscript and reviewed final manuscript. Both authors read and approved the final manuscript.

Acknowledgements
Grant Support: National Medical Research Council grants, NMRC/CSA/045/2012.

Author details
1Narayana Nethralaya Superspeciality Eye Hospital and Post Graduate Institute, Bangalore, Karnataka, India. 2Singapore Eye Research Institute, 11, Third Hospital Avenue, Singapore 168751, Singapore. 3Singapore National Eye Center, Singapore, Singapore. 4Duke-NUS Graduate Medical School, Singapore, Singapore. 5Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Received: 28 June 2014 Accepted: 9 October 2014
Published online: 13 November 2014

References
1. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye Workshop (2007). Ocul Surf 2007, 5:75–92.
2. Barabino S, Dana MR. Dry eye syndromes. Chem Immunol Allergy 2007, 92(1):176–184.
3. Bron AJ. Eyelid secretions and the prevention and production of disease. J Ocul Pharmacol Ther 2003, 19(5):631–639.
4. Smith J, Nichols KK, Baldwin EK. A proposal of new ocular items in Sjogren’s syndrome classification criteria. Ocul Surf 2010, 8:652–657.
5. Tong L, Zhou L, Beuerman RW, Zhao SZ, Li XR, Yoo M, Xie Y, Macri A, Pflugfelder SC. Detection of tears in dry eye patients. Invest Ophthalmol Vis Sci 2009, 50:3203–3209.
6. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
7. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
8. Baudouin C, Bourcier T, Brignole F, Bertet F, Moldovan M, Goldschmidt M, Goguel A. Correlation between tear IgE levels and HLA-DR expression by conjunctival cells in allergic and nonallergic conjunctivitis. Graefes Arch Clin Exp Ophthalmol 2000, 238:900–904.
9. Tomoaki Y, Hayashi I, Toyoshima T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
10. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
11. Jensen R, Aabakken L, Vigestad T, Venneman T, Skjetne RJ, Storesund A, Stokke TR, Aaseth J. The therapeutic effect of DA-6034 on ocular inflammation via suppression of MMP-9 activity. Ophthalmic Res 2009, 42:647–654.
12. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
13. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
14. Tong L, Zhou L, Beuerman RW, Zhao SZ, Li XR, Yoo M, Xie Y, Macri A, Pflugfelder SC. Detection of tears in dry eye patients. Invest Ophthalmol Vis Sci 2009, 50:3203–3209.
15. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
16. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
17. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
18. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
19. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
20. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
21. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
22. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
23. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
24. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
25. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
26. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
27. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
28. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
29. Berta A, Towk M. Tear glycoprotein determinations in the diagnosis and differential diagnosis of dry eyes. Scand J Rheumatol Suppl 1986, 61:228–233.
30. Moriyama M, Hayashida TN, Toyoshita T, Ohyama Y, Shinozaki S, Tanaka A, Marhara T, Nakamura S. Cytokine/chemokine profiles contribute to understanding the pathogenesis and diagnosis of primary Sjogren’s syndrome. Clin Exp Immunol 2012, 169:17–26.
41. Song XJ, Li DQ, Farley W, Luo LH, Heuckeroth RO, Milbrandt J, Pflugfelder SC: Neutrinoin-deficient mice develop dry eye and keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci 2003, 44:4223–4229.

42. Pflugfelder SC, Farley W, Luo L, Chen LZ, De Paiva CS, Olmos LC, Li DQ, Fini ME: Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am J Pathol 2005, 166:612–620.

43. Boukes RJ, Boonstra A, Breebaart AC, Reits D, Glasius E, Luyendyk L, Kijlstra A: Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc Ophthalmol 1987, 67:105–113.

44. Nielsen NV, Pause JU, Erikson LS: Lysosome, α1-antitrypsin and serum albumin in tear fluid of timolol treated glaucoma patients with and without symptoms of dry eyes. Acta Ophthalmol (Copenhagen) 1981, 59:583–589.

45. Caffrey B, Joyce E, Boone A, Slomovic A, Simpson T, Jones L, Senchyna M: Tear lipocalin and lysozyme in Sjogren and non-Sjogren dry eye. Optom Vis Sci 2008, 85:661–667.

46. Zhao H, Jumbatt JE, Wood TO, Jumbatt MM: Quantification of MUC5AC protein in human tears. Curr Eye Res 2001, 28:73–87.

47. Caffrey B, Joyce E, Heynen ML, Jones L, Ritter R 3rd, Garnache DA, Senchyna M: MUC16 expression in Sjogren’s syndrome, KCS, and control subjects. Mol Vis 2008, 14:2547–2555.

48. Berry M, Pult H, Purslow C, Murphy PJ: Mucins and ocular signs in symptomatic and asymptomatic contact lens wear. Optom Vis Sci 2008, 85:E930–E938.

49. Gipson IK, Spurr-Michaud SJ, Senchyna M, Ritter R 3rd, Schaumberg D: Comparison of mucin levels at the ocular surface of postmenopausal women with and without a history of dry eye. Cornea 2011, 30:1346–1352.

50. Nakamura Y, Yokoi N, Tokushige H, Kinoshita S: Alterations of tear neuromediators in dry eye syndrome. Invest Ophthalmol Vis Sci 2004, 45:779–804.

51. Versura P, Baveloni A, Grillini M, Fresina M, Campos EC, Fernandez J, Garcia-Vazquez C, Hernandez JM, Calonge M: Tear cytokeratin and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis 2010, 16:8682–873.

52. Gruis FH, Podust VN, Bruns K, Lackner K, Fu S, Dalmasso EA, Winthin A, Pfeiffer N: SELLQ-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 2005, 46:863–876.

53. Roth J, Vogl T, Sorg C, Sunderkotter C: Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 2003, 24:155–158.

54. Zywalewska-Gorna N, Mrugacz M, Bakunowicz-Lazarczyk A, Zelazowska B, Wysocka J, Minarowka A, Iqbal I and IFN-gamma in tear fluid of patients with cystic fibrosis. J Interferon Cytokine Res 2008, 30:71–75

55. Enriquez-de-Salamanca A, Castellanos E, Fernandez J, Carreno E, Garcia-Vazquez C, Hernandez JM, Calonge M: Tear cytokeratin and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis 2010, 16:8682–873.

56. Grus FH, Podust VN, Bruns K, Lackner K, Fu S, Dalmasso EA, Winthin A, Pfeiffer N: SELLQ-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 2005, 46:863–876.

57. Roth J, Vogl T, Sorg C, Sunderkotter C: Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 2003, 24:155–158.

58. Qiu X, Gong L, Sun X, Guo J, Chodra AM: Efficacy of acupuncture and identification of tear protein expression changes using iTRAQ quantitative proteomics in rabbits. Curr Eye Res 2011, 36:886–894.

59. Ohashi Y, Ishida R, Kojima T, Goto E, Matsuyama T, Watanabe K, Ishida N, Nakata K, Takeuchi T, Tsutoda T: Abnormal protein profiles in tears with dry eye syndrome. Am J Ophthalmol 2003, 136:291–299.

60. Rao K, Farley WJ, Pflugfelder SC: Association between high tear epidermal growth factor levels and corneal subepithelial fibrosis in dry eye conditions. Invest Ophthalmol Vis Sci 2010, 51:8464–8470.

61. Xue X, He H, Lin Z, Luo P, Zhou T, Zhou Y, Liu Z: Therapeutic effects of epidermal growth factor on benzalkonium chloride-induced dry eye in a mouse model. Invest Ophthalmol Vis Sci 2012, 53:191–197.

62. Lambiase A, Micera A, Sacchetti M, Costes M, Mantelli F, Bonini S: Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol 2011, 129:981–986.

63. Liu Q, McDermott AM, Miller WS: Elevated nerve growth factor in dry eye associated with established contact lens wear. Eye Contact Lens 2009, 35:232–237.

64. Lee HK, Ryu IH, Seo KY, Hong S, Kim HC, Kim EK: Topical 0.1% prednisolone lowers nerve growth factor expression in keratoconjunctivitis sicca patients. Ophthalmology 2006, 113:198–205.

65. Lee HK, Lee KS, Kim HC, Lee SH, Kim EK: Nerve growth factor concentration and implications in photorefractive kerastectomy vs laser in situ keratorefractive laser. Am J Ophthalmol 2005, 139:965–971.

66. Lambiase A, Micera A, Pellegrini G, Merlo D, Rama P, De Luca M, Bonini S: In vitro evidence of nerve growth factor effects on human conjunctival epithelial cell differentiation and mucin gene expression. Invest Ophthalmol Vis Sci 2009, 50:4622–4630.

67. Jain P, Li R, Lanna T, Saragoji HJ, Cumbeidge G, Meerevitch Y: An NGF mimetic, MIM-D3, stimulates conjunctival cell glycoconjugate secretion and demonstrates therapeutic efficacy in a rat model of dry eye. Exp Eye Res 2011, 93:503–512.

68. Batellier L, Rea A, Chaumeil C, Scat Y: Protein evaluation of tears: different biological parameters and their respective value. J Fr Ophtalmol 1996, 19:520–527.

69. Mackie JA, Seal DV: Diagnostic implications of tear protein profiles. Br J Ophthalmol 1984, 68:312–324.

70. Jacob JT, Han B: Compositional profiling and biomarker identification of the tear film. Ocul Surf 2008, 6:175–185.

71. Wollensak G, Mur E, May A, Baier G, Gorttinger W, Stoffler G: Effective methods for the investigation of human tear film proteins and lipids. Graefes Arch Clin Exp Ophthalmol 1990, 228:79–82.

72. Grus FH, Augustin AJ: High performance liquid chromatography analysis of tear protein patterns in diabetic and non-diabetic dry-eye patients. Eur J Ophthalmol 2001, 11:19–24.

73. Nichols JJ, Green-Church KB: Mass spectrometry-based proteomic analyses in contact lens-related dry eye. Curr Eye Res 2009, 28:1109–1117.

74. Cappadona S, Ninni P, Benevento M, Levanier F, Verspura P, Rada A, Cenuti S, Patti R: Improved label-free LC-MS/MS analysis by wavelet-based noise rejection. J Biomed Biotechnol 2010, 2011:31505.

75. Grus FH, Sabuncuo P, Augustin AJ: Analysis of tear protein patterns of dry-eye patients using fluorescent staining dyes and two-dimensional quantification algorithms. Electrophoresis 2001, 22:1845–1850.

76. Herber S, Grus FH, Sabuncuo P, Augustin AJ: Two-dimensional analysis of tear protein patterns of diabetic patients. Electrophoresis 2001, 22:1838–1844.

77. Ritoz C, Breipohl W, Augustin A, Bours J: Analysis of tear proteins by one- and two-dimensional thin-layer isolectric focusing, sodium dodecyl sulfate electrophoresis and lectin blotting. Detection of a new component: cystatin C. Graefes Arch Clin Exp Ophthalmol 1998, 236:894–899.
87. Li S, Sak R, Vrijman T, Sathe S, Beaton A, Quigley D, Gallup M, McNamara NA: Antibody protein array analysis of the tear film cytokines. Optom Vis Sci 2008, 85:653–660.

88. Grus FH, Dick B, Augustin AJ, Pfeiffer N: Analysis of the antibody repertoire in tears of dry-eye patients. Ophthalmologica 2001, 215:493–494.

89. Schmidt O, Hoxworth-Linter, J, Zentker A, Trummer G: The effect of sample treatment on separation profiles of tear fluid proteins: qualitative and semi-quantitative protein determination by an automated analysis system. Graefes Arch Clin Exp Ophthalmol 2002, 240:900–905.

90. Carrero E, Enríquez-de-Salamanca A, Teson M, García-Vazquez C, Stern ME, Whitcup SM, Calonge M: Cytokine and cytokine levels in tears from healthy subjects. Acta Ophthalmol 2010, 88:e250–e258.

91. Salajothy L, Angsayarkarn N, Syama C, Utpal T, Shweta A, Bhaskar S, Geetha IK, Vinay PS, Thennarasu M, Sivakumar RM, Prema P: Two dimensional electrophoretic analysis of human tears: collection method in dry eye syndrome. Electrophoresis 2010, 31:3420–3427.

92. Lopez-Cisternas J, Castillo-Diaz J, Traipe-Castro L, Lopez-Solis RD: Use of polyurethane minipools to collect human tear fluid. Cornea 2006, 25:312–318.

93. VanDenWeid KR, Su SP, Krener KL, Ward KW, Zhang JZ. A method to extract cytokines and matrix metalloproteinases from Schirmer strips and analyze using Luminesx. Mol Vis 2011, 17:1056–1063.

94. Ronen D, Eylan E, Romano A, Stein R, Modan M: A spectrophotometric method for quantitative determination of lysozyme in human tears: description and evaluation of the method and screening of 60 healthy subjects. Invest Ophthalmol Vis Sci 1975, 14:470–484.

95. Mackie IA, Seal DV: Confirmatory tests for the dry eye of Sjogren's syndrome. Scand J Rheumatol Suppl 1986, 61:202–223.

96. Mackie IA, Seal DV, Pesco JD: Beta-adrenergic receptor blocking drugs: tear lysozyme and immunological screening for adverse reaction. Br J Ophthalmol 1979, 63:354–359.

97. Sun Z, Hong J, Liu Z, Jin X, Gu C: Coal dust contiguity-induced changes in the concentration of TNF-alpha and NF-kappa B p65 on the ocular surface. Ocul Immunol Inflamm 2009, 17:276–82.

98. Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q: Lactoferrin: structure, function and applications. Int J Antimicrob Agents 2009, 33(301):e301–e308.

99. Versura P, Nanni P, Pavelloni A, Ballocc WI, Piazzl M, Roda A, Campos EC: Tear proteomics in evaporative dry eye disease. Eye (Lond) 2010, 24:1396–1402.

100. Yolton DP, Mende S, Harper A, Softing A: Analysis of the antibody repertoire in tears of dry-eye patients. Ophthalmologica 2001, 215:493–494.

101. Yoon KC, Park CS, You IC, Choi HJ, Lee KH, Kim MK, Lee JH: Interleukin-17 in various ocular surface inflammatory diseases. J Korean Med Sci 2011, 26:938–944.

102. Mackie IA, Seal DV: Confirmatory tests for the dry eye of Sjogren's syndrome. Scand J Rheumatol Suppl 1986, 61:202–223.

103. Mackie IA, Seal DV, Pesco JD: Beta-adrenergic receptor blocking drugs: tear lysozyme and immunological screening for adverse reaction. Br J Ophthalmol 1979, 63:354–359.

104. Spurr-Michaud S, Argueso P, Gipson IK: Expression of pro-inflammatory mediators on membrane-associated mucus expressed by human ocular surface epithelial cells. Exp Eye Res 2010, 90:444–451.

105. Trousdale MD, Zhu Z, Stevenson D, Schechter JE, Ritter T, Mitchell AK: Expression of TNF inhibitor gene in the lacrimal gland promotes recovery of tear production and tear stability and reduced immunopathology in rabbits with induced autoimmune dacryoadenitis. J Autoimmune Dis 2005, 26.

106. Sieranski KE, Gao J, Calder VL, Hanna R, Calonge M, Pflugfelder SC, Niederkerk JY, Stern ME: In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci 2008, 49:5434–5440.

107. Polanska V, Seny O, Fojtk Z, Hlinomazova Z: The presence of dry eye syndrome and corneal complications in patients with rheumatoid arthritis and its association with –174 gene polymorphism for interleukin 6. Czesk Slov Oftalmol 2008, 65:37–40.

108. Kong MH, Kim MK, Choi HJ, Ko JH, Kang EJ, Lee HJ, Wei WR, Lee JH: Interleukin-17 in various ocular surface inflammatory diseases. J Korean Med Sci 2011, 26:938–944.

109. Yoon KC, Park CS, You IC, Choi HJ, Lee KH, Kim MK, Lee JH: Interleukin-17 in various ocular surface inflammatory diseases. J Korean Med Sci 2011, 26:938–944.

110. Albertsmeier AC, Kakassery V, Spurr-Michaud S, Beens O, Gipson IK: Expression of pro-inflammatory mediators on membrane-associated mucus expressed by human ocular surface epithelial cells. Exp Eye Res 2010, 90:444–451.

111. Trousdale MD, Zhu Z, Stevenson D, Schechter JE, Ritter T, Mitchell AK: Expression of TNF inhibitor gene in the lacrimal gland promotes recovery of tear production and tear stability and reduced immunopathology in rabbits with induced autoimmune dacryoadenitis. J Autoimmune Dis 2005, 26.

112. Sieranski KE, Gao J, Calder VL, Hanna R, Calonge M, Pflugfelder SC, Niederkerk JY, Stern ME: In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci 2008, 49:5434–5440.

113. Polanska V, Seny O, Fojtk Z, Hlinomazova Z: The presence of dry eye syndrome and corneal complications in patients with rheumatoid arthritis and its association with –174 gene polymorphism for interleukin 6. Czesk Slov Oftalmol 2008, 65:37–40.

114. Zoukhri D, Macari E, Kublin CL: The effect of sample contamination on separation profiles of tear fluid proteins: qualitative and semi-quantitative protein determination by an automated analysis system. Graefes Arch Clin Exp Ophthalmol 2002, 240:900–905.

115. Yoon KC, Park CS, You IC, Choi HJ, Lee KH, Kim MK, Lee JH: Interleukin-17 in various ocular surface inflammatory diseases. J Korean Med Sci 2011, 26:938–944.

116. Polanska V, Seny O, Fojtk Z, Hlinomazova Z: The presence of dry eye syndrome and corneal complications in patients with rheumatoid arthritis and its association with –174 gene polymorphism for interleukin 6. Czesk Slov Oftalmol 2008, 65:37–40.

117. Albertsmeier AC, Kakassery V, Spurr-Michaud S, Beens O, Gipson IK: Expression of pro-inflammatory mediators on membrane-associated mucus expressed by human ocular surface epithelial cells. Exp Eye Res 2010, 90:444–451.

118. Polanska V, Seny O, Fojtk Z, Hlinomazova Z: The presence of dry eye syndrome and corneal complications in patients with rheumatoid arthritis and its association with –174 gene polymorphism for interleukin 6. Czesk Slov Oftalmol 2008, 65:37–40.

119. Albertsmeier AC, Kakassery V, Spurr-Michaud S, Beens O, Gipson IK: Expression of pro-inflammatory mediators on membrane-associated mucus expressed by human ocular surface epithelial cells. Exp Eye Res 2010, 90:444–451.

120. Trousdale MD, Zhu Z, Stevenson D, Schechter JE, Ritter T, Mitchell AK: Expression of TNF inhibitor gene in the lacrimal gland promotes recovery of tear production and tear stability and reduced immunopathology in rabbits with induced autoimmune dacryoadenitis. J Autoimmune Dis 2005, 26.

121. Sieranski KE, Gao J, Calder VL, Hanna R, Calonge M, Pflugfelder SC, Niederkerk JY, Stern ME: In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci 2008, 49:5434–5440.

122. Polanska V, Seny O, Fojtk Z, Hlinomazova Z: The presence of dry eye syndrome and corneal complications in patients with rheumatoid arthritis and its association with –174 gene polymorphism for interleukin 6. Czesk Slov Oftalmol 2008, 65:37–40.

123. Albertsmeier AC, Kakassery V, Spurr-Michaud S, Beens O, Gipson IK: Expression of pro-inflammatory mediators on membrane-associated mucus expressed by human ocular surface epithelial cells. Exp Eye Res 2010, 90:444–451.

124. Polanska V, Seny O, Fojtk Z, Hlinomazova Z: The presence of dry eye syndrome and corneal complications in patients with rheumatoid arthritis and its association with –174 gene polymorphism for interleukin 6. Czesk Slov Oftalmol 2008, 65:37–40.

125. Albertsmeier AC, Kakassery V, Spurr-Michaud S, Beens O, Gipson IK: Expression of pro-inflammatory mediators on membrane-associated mucus expressed by human ocular surface epithelial cells. Exp Eye Res 2010, 90:444–451.
132. Zheng X, De Paiva CS, Rao K, Li DQ, Farley WI, Stern M, Pflugfelder SC: Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay. *Cornea* 2010, 29:1048–1054.

133. Petsoglou C, Balaggan KS, Dart JK, Bunce C, Xing W, Ali RR, Tuft SJ: Subconjunctival bevacizumab induces regression of corneal neovascularisation: a pilot randomised placebo-controlled double-masked trial. *Br J Ophthalmol* 2013, 97:28–32.

134. Kut C, Mac Gabhann F, Popel AS: Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. *Br J Cancer* 2007, 97:978–985.

135. Kari O, Aho VV, Peltonen S, Saari JM, Kari M, Maatta M, Collan Y, Saari KM: Group IIA phospholipase A(2) concentration of tears in patients with ocular rosacea. *Acta Ophthalmol Scand* 2005, 83:483–486.

136. Still KM, Soyars CL, Velez F, Bower KS, Sia RK, Ryan DS, Steifert K, Laurie GW, McKown RL: Development of quantitative sandwich ELISAs for lacritin and the lacritin-c splice variant in human tears. *Invest Ophthalmol Vis Sci* 2012, 53(ARVO E-Abstract):4233.

137. Yavuz S, Asfuroglu E, Bicakcigil M, Toker E: Hydroxychloroquine improves dry eye symptoms of patients with primary Sjogren’s syndrome. *Rheumatol Int* 2011, 31:1045–1049.

138. Toker E, Yavuz S, Direskeneli H: Anti-Ro/SSA and anti-La/SSB autoantibodies in the tear fluid of patients with Sjogren’s syndrome. *Br J Ophthalmol* 2004, 88:384–387.

139. Mrugacz M, Zelazowska-Rutkowska B, Bakunowicz-Lazarczyk A, Wysocka J, Kaczmarski M: The role of apoptosis in induction ocular changes in patients with cystic fibrosis. *Klin Oczna* 2007, 109:22–24.

140. Ng V, Cho P, To C: Tear proteins of normal young Hong Kong Chinese. *Graefes Arch Clin Exp Ophthalmol* 2000, 238:738–745.

141. Sariri R, Varasteh A, Sajedi RH: Effect of Ramadan fasting on tear proteins. *Acta Med (Hradec Kralove)* 2010, 53:147–151.

doi:10.1186/s40662-014-0006-y

Cite this article as: D’Souza and Tong: Practical issues concerning tear protein assays in dry eye. *Eye and Vision* 2014 1:6.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit