Abstract

Typical Tsallis’ statistical mechanics’ quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy $\langle U \rangle$. The poles appear for distinctive values of Tsallis’ characteristic real parameter q, at a numerable set of rational numbers of the q–line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.

KEYWORDS: Tsallis entropy, divergences, dimensional regularization, specific heat.
1 Introduction

Tsallis’ information measure S_T generalizes Shannon’s one and is considered a very important statistical quantifier [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], etc. S_T reads [2]

$$S_T = \frac{1 - \int P_q d\mu}{q - 1} \quad (1.1)$$

The dimensional regularization of S_T was discussed in [14] by investigating the poles that emerge in computing the partition function and the mean energy (\mathcal{Z}, and $< \mathcal{U} >$, respectively), ascertaining the physical significance of these poles for the harmonic oscillator (HO). In this paper we do the same for the classical gravitation potential. To do so we appeal to the dimensional regularization approach of Bollini and Giambiagi [16], [17, 18, 19], generalized as explained in [20]. Dimensional regularization constitutes one of the most important theoretical physics’ advances of the 20-th century’s second half. It is used in several of its disciplines [21]-[74]. In particular, we heavily rely on the article [75], a quite useful prerequisite. More details about this topic are given in Appendix A of this paper.

The statistical mechanics of systems ruled by gravity is connected to aspects of condensed matter physics, fluid mechanics, re-normalization group, etc. It constitutes a challenge with regards to basic foundations. Associated notions may encounter application in variegated areas of astrophysics and cosmology. Among many statistical works of this kind one could recommend, for instance, [76], [77], [78], [79]. Here we address our subject via dimensional regularization.

2 The theory for $q > 1$

Consider the two-body Newton’s gravity and its Tsallis’ statistical mechanics. For the partition function one deals with

$$\mathcal{Z}_\nu = \int_M \left[1 + (1-q)\beta \left(\frac{p^2}{2m} - \frac{GmM}{r} \right) \right]^{\frac{1}{q-1}} d^\nu x d^\nu p \quad (2.1)$$

For effecting the integration process one uses hyper-spherical coordinates and two integrals, each in ν dimensions. Ones is left with just two radial
coordinates (one in $r-$ space and the other in $p-$ space) and $2(\nu-1)$ angles. Since the argument of the brackets must be positive, one has

$$Z_{\nu} = \left[\frac{2\pi^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \right]^2 \left[\beta(q-1) \right]^{\frac{1}{\nu-1}} \int_0^\infty r^{\nu-1} dr \otimes$$

$$\sqrt{2m\left(\frac{1}{\beta(q-1)} + \frac{GmM}{r}\right)}
\int_0 \rho^{\nu-1} \left[\frac{1}{\beta(q-1)} + \frac{GmM}{r} - \frac{p^2}{2m} \right]^{\frac{1}{\nu-1}} dp,$$

(2.2)

where by $[\cdot]_+$ we mean that one considers only that p region where the bracket is positive, which entails that the p integration runs from 0 till $\sqrt{2m\left(\frac{1}{\beta(q-1)} + \frac{GmM}{r}\right)}$. This is called the Tsallis' cut-off. The two integrals above can be evaluated by recourse to Euler’s Beta function $B[15]).$ We give the result of the first one, let us call it I_1.

$$I_1 = \sqrt{2m\left(\frac{1}{\beta(q-1)} + \frac{GmM}{r}\right)}
\int_0 \rho^{\nu-1} \left[\frac{1}{\beta(q-1)} + \frac{GmM}{r} - \frac{p^2}{2m} \right]^{\frac{1}{\nu-1}} dp =$$

$$\left[\frac{1}{\beta(q-1)} + \frac{GmM}{r} \right]^{\frac{\nu}{\nu-1}} B\left(\frac{\nu}{2}, \frac{1}{q-1} + 1 \right).$$

(2.3)

Accordingly,

$$Z_{\nu} = \frac{2\pi^{\nu}(2m)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)}^2 \left[\beta(q-1) \right]^{\frac{\nu}{2}} (GmM)^{\nu} B\left(\frac{\nu}{2}, \frac{1}{q-1} + 1 \right) B\left(\frac{\nu}{2} + \frac{1}{1-q}, -\nu \right)$$

(2.4)

From (2.4) one gathers that poles appear for any dimension $\nu, \nu = 3$ included. Thus, appeal to dimensional regularization (DR) is mandatory. To this effect we will use the DR-generalization given in [20] of Bollini - Giambiagi’s original DR-technique.

To proceed further we face now

$$Z_{\nu} < U >_{\nu} = \int_M \left[1 + (1-q)\beta \left(\frac{p^2}{2m} - \frac{GmM}{r} \right) \right]^{\frac{1}{\nu-1}} \left(\frac{p^2}{2m} - \frac{GmM}{r} \right) d^\nu x d^\nu p,$$

(2.5)
and
\[Z_\nu < U >_\nu = \left[\frac{2\pi^\frac{\nu}{2}}{\Gamma\left(\frac{\nu}{2}\right)} \right]^2 [\beta(q - 1)]^{\frac{1}{\nu - 1}} \left\{ \int_0^\infty r^{\nu - 1} dr \otimes \int_0^{\sqrt{2m\left(\frac{1}{\beta(q - 1)} + \frac{GmM}{r}\right)}} p^{\nu + 1} \left[\frac{1}{2m} \frac{GmM}{r} - \frac{p^2}{2m} \right]^{\frac{1}{\nu - 1}} dp - \right. \\
\left. GmM \int_0^\infty r^{\nu - 2} dr \int_0^\infty p^{\nu - 1} \left[\frac{1}{2m} \frac{GmM}{r} - \frac{p^2}{2m} \right]^{\frac{1}{\nu - 1}} dp \right\}. \] (2.6)

Beta functions were invented by Euler and we not give an explicit form of
them here because they appear in almost all fields of physics. For more
details see the Appendix. Via the Beta function one finds
\[< U >_\nu = \frac{2\pi^\frac{\nu}{2}(2m)^\frac{\nu}{2}}{Z_\nu \Gamma\left(\frac{\nu}{2}\right)} [\beta(q - 1)]^\frac{\nu}{\nu - 1} (GmM)^\nu \left[B\left(\frac{\nu}{2} + 1, \frac{1}{q - 1} + 1\right) \otimes B\left(\frac{\nu}{2} + 1, 1 - \nu\right) - B\left(\frac{\nu}{2}, \frac{1}{q - 1} + 1\right) B\left(\frac{\nu}{2} + 1, 1 - q + 1\right) B\left(\frac{\nu}{2} + 1, 1 - q + 1\right) \right] \] (2.7)

3 The theory for \(q < 1 \)

The treatment becomes more complicated in this instance. From (2.1) we
find
\[Z_\nu = \left[\frac{2\pi^\frac{\nu}{2}}{\Gamma\left(\frac{\nu}{2}\right)} \right]^2 [\beta(1 - q)]^{\frac{1}{\nu - 1}} \left\{ \int_0^\infty r^{\nu - 1} dr \otimes \right. \\
\left. \int_0^\infty p^{\nu - 1} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1 - q)} \right]^{\frac{1}{\nu - 1}} dp + \right. \\
\left. \int_0^\infty r^{\nu - 2} dr \int_0^\infty p^{\nu - 1} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1 - q)} \right]^{\frac{1}{\nu - 1}} dp \right\}. \]
\[
\int_{\frac{1}{G\beta(1-q)}}^{\infty} r^{\nu-1} dr \int_{0}^{\frac{p^{\nu-1}}{2m}} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1-q)} \right]^{\frac{1}{q-1}} dp \right\}.
\]

(3.1)

We deal with four integrals that are evaluated by appeal to Beta functions.

\[
Z_\nu = \frac{2\pi^{\nu}(2m)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)^2} [\beta(q-1)]^{\frac{\nu}{2}} (GmM)^\nu \left[\mathcal{B}\left(\frac{\nu}{2}, \frac{1}{1-q} - \frac{\nu}{2}\right) \right] \otimes \\
\mathcal{B}\left(-\nu', \frac{\nu}{2} - \frac{1}{1-q} + 1\right) + \mathcal{B}\left(\frac{1}{1-q} - \frac{\nu}{2}, \frac{1}{1-q} + 1\right) \otimes \\
\mathcal{B}\left(\frac{\nu}{2} + \frac{1}{q-1} + 1, \frac{\nu}{2} + \frac{1}{1-q}\right).
\]

(3.2)

Looking for the mean energy we deal, from (2.5), with

\[
Z_\nu < U >_\nu = \left[\frac{2\pi^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \right]^2 [\beta(1-q)]^{\frac{1}{q-1}} \left\{ \int_{0}^{\infty} r^{\nu-1} dr \otimes \\
\int_{\frac{1}{G\beta(1-q)}}^{\infty} \frac{p^{\nu+1}}{2m} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1-q)} \right]^{\frac{1}{q-1}} dp + \\
\int_{G\beta(1-q)}^{\infty} r^{\nu-1} dr \int_{0}^{\frac{p^{\nu+1}}{2m}} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1-q)} \right]^{\frac{1}{q-1}} dp - \\
GmM \int_{0}^{\infty} r^{\nu-2} dr \int_{\frac{1}{G\beta(1-q)}}^{\infty} p^{\nu-1} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1-q)} \right]^{\frac{1}{q-1}} dp - \\
GmM \int_{G\beta(1-q)}^{\infty} r^{\nu-1} dr \int_{0}^{\frac{p^{\nu-1}}{2m}} \left[\frac{p^2}{2m} - \frac{GmM}{r} + \frac{1}{\beta(1-q)} \right]^{\frac{1}{q-1}} dp \right\},
\]

(3.3)

involving eight integrals. Beta functions are again needed. We have
\[<\mathcal{U}>_\nu = \frac{2\pi^\nu(2m)_\nu^{\frac{\nu}{2}}}{Z_\nu} [\beta(q-1)]^{\frac{\nu}{2} - 1} (GmM)_\nu \left[\mathcal{B} \left(\frac{1}{1-q} - \frac{\nu}{2} - 1, \frac{1}{q-1} + 1 \right) \right. \]
\[\left. \mathcal{B} \left(\frac{\nu}{2} + 1, 1 - q - \frac{\nu}{2} - 1 \right) \right] \]
\[\left[\mathcal{B} \left(-\nu, \frac{\nu}{2} - \frac{1}{1-q} + 2 \right) - \mathcal{B} \left(\frac{1}{1-q} - \frac{\nu}{2}, \frac{1}{q-1} + 1 \right) \right] \]
\[\left. \mathcal{B} \left(\frac{\nu}{2} + \frac{1}{q-1} + 1, \frac{\nu}{2} + \frac{1}{1-q} - 1 \right) - \mathcal{B} \left(\frac{\nu}{2} + 1, 1 - q - \frac{\nu}{2} - 1 \right) \right] \]
\[\left[\mathcal{B} \left(1 - \nu, \frac{\nu}{2} - \frac{1}{1-q} + 1 \right) \right]. \]

(3.4)

Dimensional regularization is needed.

4 The divergences of the theory

From (3.4) we gather that the mean energy can not be regularized for some \(q \) values, those such that
\[1 + \frac{1}{q-1} = -n \quad \text{for} \quad n = 0, 1, 2, 3, \ldots, \]

(4.1)

DR can be attempted whenever
\[1 + \frac{1}{q-1} \neq -n \quad \text{for} \quad n = 0, 1, 2, 3, \ldots, \]

(4.2)

or, equivalently, for
\[q \neq \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \frac{\nu - 2}{\nu - 1}, \frac{\nu - 1}{\nu}, \frac{\nu}{\nu + 1}, \ldots. \]

(4.3)

We emphasize that here we have \(q < 1 \).
5 The three-dimensional scenario for $q > 1$

Let us deal with the $q = \frac{3}{2}$ instance. We go back to (2.4). The idea it to work out the dimensional regularization task and its corresponding Laurent expansion. We have

$$Z_{\nu} = -\frac{8\pi^2(\beta G^2 m^3 M^2)^{\frac{3}{2}}}{3(\nu - 3)} + \frac{4\pi^2}{3}(\beta G^2 m^3 M^2)^{\frac{3}{2}} \left[\frac{23}{3} - \ln \left(16\pi^2 \beta G^2 m^3 M^2 \right) \right] + \sum_{s=1}^{\infty} a_s (\nu - 3)^s. \quad (5.1)$$

In the present case $\nu - 3$, the independent term in the Z-Laurent expansion yields the physical value of the series. Thus,

$$Z = \frac{4\pi^2}{3}(\beta G^2 m^3 M^2)^{\frac{3}{2}} \left[\frac{23}{3} - \ln \left(16\pi^2 \beta G^2 m^3 M^2 \right) \right]. \quad (5.2)$$

Since Z must be positive, one faces a temperature-lower bound

$$T > \frac{e^{-\frac{23}{3}}}{k_B} 16\pi^2 G^2 m^3 M^2. \quad (5.3)$$

Similarly, from (2.7), we have for $<U>$

$$Z <U>_\nu = \frac{32\pi^2(\beta G^2 m^3 M^2)^{\frac{3}{2}}}{3(\nu - 3)} - \frac{32\pi^2}{3}(\beta G^2 m^3 M^2)^{\frac{3}{2}} \left[3 - \ln \left(\pi^2 \beta G^2 m^3 M^2 \right) \right] + \sum_{s=1}^{\infty} a_s (\nu - 3)^s. \quad (5.4)$$

Accordingly,

$$Z <U> = \frac{32\pi^2}{\beta}(\beta G^2 m^3 M^2)^{\frac{3}{2}} \left[\ln \left(\pi^2 \beta G^2 m^3 M^2 \right) - 3 - 2C \right], \quad (5.5)$$

and

$$<U> = \frac{8[\ln \left(\pi^2 \beta G^2 m^3 M^2 \right) - 3 - 2C]}{\beta} \left[\frac{23}{3} - \ln \left(16\pi^2 \beta G^2 m^3 M^2 \right) \right]. \quad (5.6)$$

where C is the Euler’s constant [85].
6 The three-dimensional scenario for $q < 1$

Consider $q = \frac{1}{3}$. The concomitant Laurent expansion derived from (3.2) is

$$ Z = \frac{4}{9\pi} (4\pi^2 \beta G^2 m^3 M^2)^{\frac{3}{2}} \left[C + 8 \ln 2 + \frac{10}{3} - \ln \left(\frac{4\pi^2 \beta G^2 m^3 M^2}{3} \right) \right]. \quad (6.1) $$

Positivity of Z leads us again to a T-lower bound:

$$ T > e^{-\left(C + 8 \ln 2 + \frac{10}{3} \right)} \frac{3}{4\pi^2 G^2 m^3 M^2}. \quad (6.2) $$

For $< U >$ we deduce, from (3.4),

$$ Z < U > = \frac{1}{2\pi} (4\pi^2 \beta G^2 m^3 M^2)^{\frac{3}{2}} \left[8 + 3 \ln 3 - \ln (\pi^2 \beta G^2 m^3 M^2) - 16 - 5C \right], \quad (6.3) $$

and

$$ < U > = \frac{9}{8\beta} \frac{8 + 3 \ln 3 - \ln (4\pi^2 \beta G^2 m^3 M^2) - 16 - 5C}{C + 8 \ln 2 + \frac{10}{3} + \ln 3 - \ln (4\pi^2 \beta G^2 m^3 M^2)} \quad (6.4) $$

7 Specific Heats

We deal now with a specific heat constructed via $C = \frac{\partial < U >}{\partial T}$. Thus for $q = \frac{3}{2}$ we obtain

$$ C = \frac{8k[\ln(\pi^2 G^2 m^3 M^2) - 4 - \ln(kT) - 2C]}{22 \frac{22}{3} + \ln(kT) - \ln(16\pi^2 G^2 m^3 M^2)} - \frac{8k[3 \ln(\pi^2 G^2 m^3 M^2) - 3 - \ln(kT) - 2C]}{\left[\frac{22}{3} + \ln(kT) - \ln(16\pi^2 G^2 m^3 M^2) \right]^2} \quad (7.1) $$

For $q = \frac{1}{3}$ one has

$$ C = \frac{9k[11 + 3 \ln 3 - \ln 16 + 3 \ln(kT) - 3 \ln(4\pi^2 G^2 m^3 M^2) - 5C]}{8 \left[C + 8 \ln 2 + 3 \ln 3 + \frac{10}{3} + \ln(kT) - \ln(\pi^2 G^2 m^3 M^2) \right]} - \frac{9k[8 + 3 \ln 3 - \ln 16 + 3 \ln(kT) - 3 \ln(4\pi^2 G^2 m^3 M^2) - 5C]}{8 \left[C + 8 \ln 2 + 3 \ln 3 + \frac{10}{3} + \ln(kT) - \ln(\pi^2 G^2 m^3 M^2) \right]^2} \quad (7.2) $$

Figs. 1 - 2 depict specific heats corresponding to Eqs. (7.1) - (7.2). We call $E = G^2 m^3 M^2$ with $m <<< M$. We express quantities in $k_B T / E$-units.
Specific heats are negative, as befits gravitation. Indeed, such an occurrence has been associated to self-gravitational systems [81]. In turn, Verlinde has associated this type of systems to an entropic force [82]. It is natural to conjecture then that such a force may appear at the energy-associated poles. Notice also that temperature ranges are restricted. There is an T–lower bound.
Figure 1: Specific heat versus $k_B T/E$ for $q = 3/2$. It is well known that gravitational effects make specific heats to be negative $[81]$. This is clearly appreciated in this graph and in the following one.
Figure 2: Specific heat versus $k_B T/E$ for $q = 1/3$. It is well known that gravitational effects make specifics heats to be negative \[81\]. This is clearly appreciated here.

8 Discussion

In this work we have appealed to an elementary regularization procedure to study the poles in the partition function and the mean energy that appear, for specific, discrete q-values, in Tsallis’ statistics of Newton’s two-body problem. We studied the thermodynamic behavior at the poles and found interesting peculiarities. The analysis was made in one, two, three, and 3 dimensions. Amongst the pole-traits we emphasize:

- The poles appear, both in the partition function and the mean energy, for $q \neq 1$
- These poles are an artifact of having $q \neq 1$.
- We have proved that there is a lower bound to the temperature at the poles.
- Negative specific heats, characteristic trait of self-gravitating systems, are encountered.
The poles arise only because $q \neq 1$. They are a property of the entropic quantifier, not of the Hamiltonian. Indeed, only for $q \neq 1$ a Gamma function appears in the partition function. It is this Gamma function that displays poles.

Future research should be concerned with cases where it is already known in advance that $q \neq 1$. For these cases, the traits here discovered may acquire some degree of physical "reality".

In this effort we limit ourselves to the two body problem, as the divergences produced by gravitation emerge already at the two-body level. The reader is reminded that N-body gravitation is a frontier research topic of Celestial Mechanics.

The $q = 1$ case cannot be analyzed with the present formulation, that is not valid for it. The $q = 1$ scenario is discussed in the paper "Gravitational partition function for the Boltzmann-Gibbs classical distribution" by D. J. Zamora, M. C. Rocca, A. Plastino and G. L. Ferri. (see the paper in Researchgate)

The importance of the present communication resides in that fact of having disclosed Tsallis’ entropy traits that could not have been suspected before.

Appendix: a simple example of Dimensional Regularization

This Appendix illustrates Dimensional Regularization (DR) with a simple example. The justification of the DR procedure is given in [20], being a generalization of the treatment advanced in [10].

Here we discuss the partition function Z of the 3D Harmonic Oscillator (HO) for $q = \frac{2}{3}$. We first consider Z in ν dimensions

$$Z = \int [1 + (1 - q)\beta(P^2 + Q^2)]^{1/q-1} d^\nu p d^\nu q,$$

(A.1)

where $P^2 = p_1^2 + p_2^2 + \cdots p_\nu^2$ and $Q^2 = q_1^2 + q_2^2 + \cdots q_\nu^2$. For the integral we use hyper-spherical coordinates. One finds

$$Z = \frac{2\pi^{\nu}}{\Gamma(\nu)} \int_0^\infty S^{2\nu - 1}[1 + (1 - q)\beta S^2]^{1/q-1} dS,$$

(A.2)
with \(S^2 = P^2 + Q^2 \). Effecting the change \(S^2 = x \) we obtain

\[
Z = \frac{\pi^{\nu}}{\Gamma(\nu)} \int_0^\infty x^{\nu-1} \left[1 + (1 - q)\beta x \right]^\frac{1}{\nu-1} dx, \tag{A.3}
\]

or

\[
Z = \frac{\pi^{\nu}}{\Gamma(\nu)} \int_0^\infty \frac{x^{\nu-1}}{\left[1 + (1 - q)\beta x \right]^\frac{1}{\nu-1}} dx. \tag{A.4}
\]

To evaluate this integral we look it up in [85] and find

\[
\frac{\pi^{\nu}}{\Gamma(\nu)} \int_0^\infty \frac{x^{\mu-1}}{(1 + \gamma x)^v} dx = \gamma^{-\mu} B(\mu, v - \mu), \tag{A.5}
\]

where \(B(\mu, v - \mu) \) is Euler’s Beta function. Comparing (A.4) with (A.5) one encounters \(\mu = \nu, v = \frac{1}{1 - q}, \gamma = (1 - q)\beta \), and then

\[
Z = \frac{\pi^{\nu}}{\Gamma(\nu)} \left[\beta (1 - q) \right]^{-\nu} B \left(\nu, \frac{1}{1 - q} - \nu \right). \tag{A.6}
\]

We see that for \(q = \frac{2}{3} \) and \(\nu = 3 \) (A.6) diverges since

\[
B \left(\nu, \frac{1}{1 - q} - \nu \right) = \frac{\Gamma(\nu) \Gamma \left(\frac{1}{1 - q} - \nu \right)}{\Gamma \left(\frac{1}{1 - q} \right)}, \tag{A.7}
\]

with \(\Gamma(z) \) being Euler’s Gamma function, that exhibits poles at \(z = 0, -1, -2, -3, \ldots \).

From (A.7) it follows that

\[
Z = \frac{\pi^{\nu}}{\Gamma(\nu)} \left[\beta (1 - q) \right]^{-\nu} \frac{\Gamma(\nu) \Gamma \left(\frac{1}{1 - q} - \nu \right)}{\Gamma \left(\frac{1}{1 - q} \right)}, \tag{A.8}
\]

or

\[
Z = \left[\frac{\pi}{\beta (1 - q)} \right]^{\nu} \frac{\Gamma \left(\frac{1}{1 - q} - \nu \right)}{\Gamma \left(\frac{1}{1 - q} \right)}. \tag{A.9}
\]

Setting \(q = \frac{2}{3} \) in (A.9) one finds
Since $\Gamma(3) = 2$, this leads to

$$Z = \frac{1}{2} \left(\frac{3\pi}{\beta} \right)^{\nu} \Gamma (3 - \nu).$$

Note that for $\nu = 3$, Z indeed diverges. Bollini-Giambiagi’s DR approach consists in performing the Laurent-expansion of Z around $\nu = 3$ and select afterwards, as the physical result for Z, the $\nu - 3$-independent term in the expansion. The justification for such a procedure is clearly explained in [20].

In order to proceed with the Laurent expansion we first define

$$f(\nu) = \left(\frac{3\pi}{\beta} \right)^{\nu},$$

whose Taylor’s expansion is

$$f(\nu) = \left(\frac{3\pi}{\beta} \right) \sum_{n=0}^{\infty} \ln^n \left(\frac{3\pi}{\beta} \right) \frac{(\nu - 3)^n}{n!}.$$

The Gamma function Laurent expansion is

$$\Gamma(3 - \nu) = \frac{1}{3 - \nu} + C + \sum_{m=1}^{\infty} c_m (3 - \nu)^m,$$

where C is Euler’s constant. Multiplying the two series we have

$$f(\nu)\Gamma(3 - \nu) = \left(\frac{3\pi}{\beta} \right)^3 \frac{1}{3 - \nu} + \left(\frac{3\pi}{\beta} \right)^3 C - \left(\frac{3\pi}{\beta} \right)^3 \ln \left(\frac{3\pi}{\beta} \right) + \sum_{m=1}^{\infty} a_m (3 - \nu)^m.$$

Accordingly, Z becomes

$$Z = \frac{1}{2} \left(\frac{3\pi}{\beta} \right)^3 \left[C - \ln \left(\frac{3\pi}{\beta} \right) \right],$$

or

$$Z = \frac{1}{2} (3\pi k_B T)^3 \left[C - \ln (3\pi k_B T) \right].$$
Since one demands \(Z > 0 \), \(T \) obeys

\[
0 < T < \frac{e^C}{3\pi k_B},
\]

(A.18)

entailing an upper bound for \(T \), typical of Tsallis’ formalism (see \[84\]).
References

[1] C. Tsallis, J. of Stat. Phys., 52 (1988) 479.

[2] C. Tsallis, *Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World* (Springer, NY, 2009).

[3] G. Wilk, Z. Wlodarczyk, Physica A 305 (2002) 227.

[4] R. M. Pickup, R. Cywinski, C. Pappas, B. Farago, and P. Fouquet, Phys. Rev. Lett. 102 (2009) 097202.

[5] E. Lutz and F. Renzoni, Nature Physics 9 (2013) 615.

[6] R. G. DeVoe, Phys. Rev. Lett. 102 (2009) 063001.

[7] Z. Huang, G. Su, A. El Kaabouchi, Q. A. Wang, and J. Chen, J. Stat. Mech. L05001 (2010).

[8] J. Prehl, C. Essex, and K. H. Hoffman, Entropy 14 (2012) 701.

[9] B. Liu and J. Goree, Phys. Rev. Lett. 100 (2018) 055003.

[10] O. Afsar and U. Tirnakli, EPL 101 (2013) 20003.

[11] U. Tirnakli, C. Tsallis, and C. Beck, Phys. Rev. E 79 (2009) 056209.

[12] G. Ruiz, T. Bountis, and C. Tsallis, Int. J. Bifurcation Chaos 22 (2012) 1250208.

[13] C. Beck and S. Miah, Phys. Rev. E 87 (2013) 031002.

[14] A. Plastino, M. C. Rocca, G. L. Ferri, EPJ B 89,150 (2016).

[15] I. S. Gradshteyn and I. M. Rizhik, *Table of Integrals Series and Products*. Academic Press, NY (1965).

[16] C. G. Bollini and J. J. Giambiagi, Phys. Lett. B 40, 566 (1972); Il Nuovo Cim. B 12, 20 (1972); W. Bietenholz, L. Prado, Physics Today 67, 38 (2014).

[17] C. G. Bollini and J.J Giambiagi, Phys. Rev. D 53, 5761 (1996).
[18] C. G. Bollini, T. Escobar and M. C. Rocca : Int. J. of Theor. Phys. 38, 2315 (1999).

[19] C. G Bollini and M.C. Rocca : Int. J. of Theor. Phys. 43, 59 (2004); Int. J. of Theor. Phys. 43, 1019 (2004); Int. J. of Theor. Phys. 46, 3030 (2007).

[20] A. Plastino, M. C. Rocca: ”Quantum Field Theory, Feynman and Wheeler Propagators and Dimensional Regularization in Configuration Space”. arXiv:1708.04506.

[21] D. Berenstein and A. Miller: Phys. Rev. D 90, 086011 (2014).

[22] D. Anselmi: Phys. Rev. D 89, 125024 (2014).

[23] P. Jaranowski and G. Schfer: Phys. Rev. D 87, 081503(R) (2013).

[24] T. Inagaki, D. Kimura, H. Kohyama, and A. Kvinikhidze: Phys. Rev. D 86, 116013 (2012).

[25] J. Qiu: Phys. Rev. D 77, 125032 (2008).

[26] L. Blanchet, T. Damour, G. Esposito-Farse, and B. R. Iyer: Phys. Rev. D 71, 124004 (2005).

[27] F. Bastianelli, O. Corradini, and A. Zirott: Phys. Rev. D 67, 104009 (2003).

[28] D. Lehmann and G. Przeau: Phys. Rev. D 65, 016001 (2001).

[29] A. P. Bata Scarpelli, M. Sampaio, and M. C. Nemes: Phys. Rev. D 63, 046004 (2001).

[30] E. Braaten and Yu-Qi Chen: Phys. Rev. D 55, 7152 (1997).

[31] J. Smith and W. L. van Neerven EPJ C 40, 199 (2005).

[32] J. F. Schonfeld EPJ C 76, 710 (2016).

[33] C. Gnendiger et al.: EPJ C 77, 471 (2017).

[34] P. Arnold, Han-Chih Chang and S. Iqbal: JHEP 100 (2016).
[35] I. AravE, Y. Oz and A. Raviv-Moshe: JHEP 88 (2017).

[36] C. Anastasiou, S. Buehler, C. Duhr and F. Herzog: JHEP 62 (2012).

[37] F. Niedermayer and P. Weisz: JHEP 110 (2016).

[38] C. Coriano, L. Delle Rose, E. Mottola and M. Serino: JHEP 147 (2012).

[39] F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia: JHEP 17 (2017).

[40] T. Gehrmann and N. Greiner: JHEP 50 (2010).

[41] T. Lappia and R. Paatelainena: Ann. of Phys. 379, 34 (2017).

[42] S. Groote, J. G. Krner and A. A. Pivovarov: Ann. of Phys. 322, 2374 (2007).

[43] N. C. Tsamis and R. P. Woodard: Ann. of Phys. 321, 875 (2006).

[44] S. Krewaland and K. Nakayama: Ann. of Phys. 216, 210 (1992).

[45] L. Rosen and J. D. Wright Comm. Math. Phys. 134, 433 (1990).

[46] F. David Comm. Math. Phys. 81, 149 (1981).

[47] P. Breitenlohner and D. Maison Comm. Math. Phys. 52, 11 (1977).

[48] S. Teber and A. V. Kotikov: EPL 107, 57001 (2014).

[49] H. Fujisaki: EPL 28, 623 (1994).

[50] M. W. Kalinowski, M. Seweryski and L. Szymanowski: JMP 24, 375 (1983).

[51] R. Contino and A. Gambassi: JMP 44, 570 (2003).

[52] M. Dutsch, K. Fredenhagen, K. J. Keller and K. Rejzner: JMP 55, 122303 (2014).

[53] T. Nguyena: JMP 57, 092301 (2016).

[54] J. Ben Geloun and R. Toriumi: JMP 56, 093503 (2015).
[55] J. Ben Geloun and R. Toriumi: J. Phys. A 45, 374026 (2012).
[56] B. Mutet, P. Grange and E. Werner: J. Phys. A 45, 315401 (2012).
[57] M. C Abbott and P. Sundin: J. Phys. A 45, 025401 (2012).
[58] T Fujihara et al.: J. Phys. A 39, 6371 (2008).
[59] Silke Falk et al.: J. Phys. A 43, 035401 (2010).
[60] Germn Rodrigo et al.: J. Phys. G 25, 1593 (1999).
[61] B. M. Pimentel and J. L. Tomazelli: J. Phys. G 20, 845 (1994).
[62] A. Khare: J. Phys. G 3, 1019 (1977).
[63] J. C. D’Cruz: J. Phys. G 1, 151 (1975).
[64] R. Sepahv and S. Dadfar: Nuc. Phys. A 960, 36 (2017).
[65] J. V. Steele and R. J. Furnstahl: Nuc. Phys. A 630, 46 (1998).
[66] D. R. Phillips, S. R. Beane and T. D. Cohena: Nuc. Phys. A 631, 447 (1998).
[67] A. J. Stoddart and R. D. Viollier: Nuc. Phys. A 532, 657 (1991).
[68] E. Panzer: Nuc. Phys. B 874, 567 (2013).
[69] R. N. Lee, A. V. Smirnov and and V. A. Smirnov: Nuc. Phys. B 856, 95 (2012).
[70] A. P. Isaev: Nuc. Phys. B 662, 461 (2003).
[71] J. M. Campbell, E. W. N. Glover and D. J. Miller: Nuc. Phys. B 498, 397 (1997).
[72] C. J. Yang, M. Grasso, X. Roca-Maza, G. Colo, and K. Moghrabi: Phys. Rev. C 94, 034311 (2016).
[73] K. Moghrabi and M. Grasso: Phys. Rev. C 86, 044319 (2012).
[74] D. R. Phillips, I. R. Afnan, and A. G. Henry-Edwards: Phys. Rev. C 61, 044002 (2000).
[75] A. Plastino and M. C. Rocca Europhysics Letters 104, 60003 (2013).

[76] T. Padmanabhan, Physics Reports 188, 285 (1990); T. Padmanabhan in Dynamics and Thermodynamics of Systems with Long Range Interactions Eds: T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens; Lecture Notes in Physics, Springer (2002) [astro-ph/0206131].

[77] T. Padmanabhan, Theoretical Astrophysics, Vol. I: Astrophysical Processes, (Cambridge University Press, Cambridge, 2000), chapter 10.

[78] J. Binney and S. Tremaine, Galactic Dynamics, (Princeton University Press, New Jersey, 1987).

[79] T. Padmanabhan, Statistical mechanics of gravitating systems: An Overview, arXiv:0812.2610.

[80] These poles emerge because a Gamma function enters the partition function. As an example see: A. Plastino and M. C. Rocca: Physica A, 490, 50 (2018)

[81] D. Lynden-Bell, R. M. Lynden-Bell, Mon. Not. R. Astron. Soc. 181, 405 (1977).

[82] E. Verlinde, arXiv:1001.0785 [hep-th]; JHEP 04, 29 (2011).

[83] J. J. Atick, E. Witten, Nucl. Phys. B. 310, 291 (1988).

[84] A.R. Plastino, A. Plastino, Phys. Lett. A 193, 140 (1994).

[85] I. S. Gradshteyn and I. M. Rizhik, Table of Integrals Series and Products (Academic Press, NY, 1965).