Distributed Cooperative Decision Making in Multi-agent Multi-armed Bandits

Peter Landgrena, Vaibhav Srivastavab, Naomi Ehrich Leonardb

aDepartment of Mechanical & Aerospace Engineering, Princeton University, New Jersey, USA, \{landgren, naomi\}@princeton.edu
bDepartment of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA, vaibhav@egr.msu.edu

Abstract

We study a distributed decision-making problem in which multiple agents face the same multi-armed bandit (MAB), and each agent makes sequential choices among arms to maximize its own individual reward. The agents cooperate by sharing their estimates over a fixed communication graph. We consider an unconstrained reward model in which two or more agents can choose the same arm and collect independent rewards. And we consider a constrained reward model in which agents that choose the same arm at the same time receive no reward. We design a dynamic, consensus-based, distributed estimation algorithm for cooperative estimation of mean rewards at each arm. We leverage the estimates from this algorithm to develop two distributed algorithms: coop-UCB2 and coop-UCB2-selective-learning, for the unconstrained and constrained reward models, respectively. We show that both algorithms achieve group performance close to the performance of a centralized fusion center. Further, we investigate the influence of the communication graph structure on performance. We propose a novel graph explore-exploit index that predicts the relative performance of groups in terms of the communication graph, and we propose a novel nodal explore-exploit centrality index that predicts the relative performance of agents in terms of the agent locations in the communication graph.

Keywords: multi-armed bandits, multi-agent systems, distributed decision making, explore-exploit dilemma

1. Introduction

Many engineered and natural systems are faced with the challenge of decision making under uncertainty, in which an agent must make decisions among alternatives while still learning about those options. Decision making under uncertainty inherently features the explore-exploit tradeoff, where one must decide between selecting options with a high expected payoff (exploitation) and selecting options with less well-known but potentially better payoff (exploration). Often systems feature multiple networked decision makers, where performance of the system may require cooperative decision making, in which disparate and distributed elements of a group act collaboratively.

The explore-exploit tradeoff can be formally investigated within the context of the multi-armed bandit (MAB) problem. In a stochastic MAB problem, an agent is presented with a set of arms (options), and each arm is represented by a stochastic reward with a mean that is unknown to the agent. An agent’s goal is to select arms sequentially in order to maximize its own cumulative expected reward over time. Good performance in the MAB problem requires an agent to balance learning the mean reward of each arm (exploration) with choosing the arm with the highest estimated mean (exploitation).

The explore-exploit tradeoff has been widely investigated using the MAB problem across a variety of scientific fields and has found diverse application in control and robotics \cite{1, 2}, ecology \cite{3, 4}, and communications \cite{5}. The MAB problem, and particularly the classical single-agent variant, has been studied extensively (see \cite{6} for a survey). In \cite{7}, Lai and Robbins established a limit on the expected performance of any optimal policy in a frequentist setting by proving a lower bound on the number of times an agent selects a sub-optimal arm.

To date most research on the MAB problem has focused on single-agent policies, but the rising importance of networked systems and large-scale information networks have motivated the investigation of the MAB problem with multiple agents. In this paper, we study two variants of the multi-agent MAB problem, in which each agent makes choices to maximize its own individual reward but cooperates by communicating its estimates across a network. The first variant assumes an unconstrained reward model, in which agents are not penalized if they choose the same arm at the same time. The second variant assumes a constrained reward, in which agents that choose the same arm at the same time receive a reduced reward.

When a centralized fusion center that has access to all the information available to every agent decides which arms will be sampled by the agents, the agents are inherently coordinated and no two agents ever sample the same arm at the same time. In this setting, the above two variants become almost the same. Anantharam et al. \cite{8} extended the classical single-agent MAB problem to the setting of such a fusion center and derived a fundamental lower bound on the performance of the fusion center. In this paper, we design distributed algorithms that yield group performance close to that of a centralized fusion center. Kolla et al. \cite{9} and Landgren et al. \cite{10} studied the multi-
agent MAB problem under the unconstrained reward model. In their setup, each agent can share its actions and the associated rewards at each time with its neighbors in the communication graph. In this setting, group performance improves when each agent acts individually. However, group performance might not be close to the performance of a centralized fusion center, especially for large sparse networks. Madhushani and Leonard [11,12] have extended this setting to examine dynamic interactions among agents governed by a heterogeneous stochastic process and to design strategies that minimize sampling regret as well as communication costs.

Several researchers [5,13,14,15,16] have studied the distributed multi-agent MAB problem under the constrained reward model. In these works, agents seek to converge on the set of best arms, but they do not explicitly communicate with one another. In [14,15], agents are ranked and they target the best arm associated with their rank. Anandkumar et al. [5] also studied distributed policies for agents to learn their ranks while solving the multi-agent MAB problem. Bistritz and Leshem [17] studied the distributed multi-agent MAB problem under no communication among agents. Assuming no a priori ranking of agents, they developed a game-of-thrones algorithm, inspired by [18], to enable coordination among agents.

Shahrampour et al. [19] studied a variant of the multi-agent MAB problem in which the reward associated with each arm may be different for every agent. The best arm is defined as the arm with the maximum average mean reward over all agents. Unlike in other multi-agent MAB setups, in which each agent makes a decision at each time, they consider a single group decision obtained using a majority rule on individual decisions.

In early versions [20,21] of the present work, we studied distributed cooperative decision making in the multi-agent MAB problem with the unconstrained reward model. In comparison, this paper considers a broader class of reward distributions and studies both the unconstrained and constrained reward models. We present new detailed proofs that improve on the preliminary versions. We also present a much broader exploration of the influence of communication graph structure on individual and group decision-making performance.

Martinez-Rubio et al. [22] extended our preliminary versions [20,21] in the context of the unconstrained reward model. Their work is complementary to the approach discussed here. A key difference between their algorithm and the algorithm discussed in this paper, is that our algorithm requires only the knowledge of total number of players to tune the decision-making heuristic, while their algorithm requires the knowledge of the spectral gap of the communication graph. They do not investigate the influence of the network graph on performance.

In this paper, we study distributed cooperative decision making in the multi-agent MAB problem under both unconstrained and constrained reward models. We use a set of running consensus algorithms for cooperative estimation of the mean reward at each arm over an undirected graph and develop algorithms for individual decision making based on these estimates for both reward models. We also derive measures of graph structure that are predictive of individual as well as group performance. The major contributions of the paper are as follows.

First, we employ and rigorously analyze running consensus algorithms for distributed cooperative estimation of mean reward at each arm, and we derive bounds on key quantities.

Second, we propose and thoroughly analyze the coop-UCB2 algorithm for the multi-agent MAB problem under the unconstrained reward model and sub-Gaussian reward distributions.

Third, we propose and thoroughly analyze the coop-UCB2-selective-learning algorithm for the multi-agent MAB problem under the constrained reward model and sub-Gaussian reward distributions.

Fourth, we utilize the derived bounds on the decision-making performance of the group to introduce a novel graph explore-exploit index that predicts the ordering of graphs in terms of group explore-exploit performance and a novel nodal explore-exploit centrality index as a function of an agent’s location in a graph that predicts the ordering of agents in terms of individual explore-exploit performance. We illustrate the effectiveness of these indices with simulations.

The remainder of the paper is organized as follows. In Section 2 we describe the multi-agent MAB problem studied in this paper and introduce some background material. In Section 3 we present and analyze the cooperative estimation algorithm. We propose and analyze the coop-UCB2 algorithm in Section 4 and the coop-UCB2-selective-learning algorithm in Section 5. We illustrate our analytic results with numerical examples in Section 6. We conclude in Section 7.

2. Problem Description

We consider a distributed multi-agent MAB problem in which M agents make sequential choices among the same set of N arms with the goal of maximizing their individual reward. The M agents cooperate by sharing their estimates over a bi-directional communication network. The network is modeled by an undirected graph G in which each node represents a decision-making agent and edges represent the communication links between them [23]. Let $A \in \mathbb{R}^{M \times M}$ be the adjacency matrix associated with G and $L \in \mathbb{R}^{M \times M}$ the corresponding Laplacian matrix. We assume that the graph G is connected, i.e., there exists a path between every pair of nodes.

Let the reward associated with arm $i \in \{1, \ldots, N\}$ be a stationary random variable with an unknown mean m_i. Using its local information, each agent $k \in \{1, \ldots, M\}$ selects arm $\hat{i}(t)$ at time $t \in \{1, \ldots, T\}$, where $T \in \mathbb{N}$ is the time horizon.

We study two reward models that determine how the reward associated with arm $\hat{i}(t)$ is received by agent k. In the unconstrained reward model, agent k receives a reward equal to the realized value of the reward at arm $\hat{i}(t)$, irrespective of the choices of the other agents. In the constrained reward model, agent k receives a reward equal to the realized value of the reward at arm $\hat{i}(t)$, only if it is the only agent to select arm $\hat{i}(t)$ at time t; otherwise it receives no reward.

The objective of the distributed cooperative multi-agent MAB problem is to maximize the expected cumulative group reward. This objective is equivalent to minimizing the expected cumulative group regret defined by the difference be-
between the best possible expected cumulative group reward and the achieved expected cumulative group reward.

Let \(\{b_i\}_{i=1}^{N} \) be the permuted sequence of arms such that \(m_{b_1} > m_{b_2} > \cdots > m_{b_N} \). Under the unconstrained reward model, the expected cumulative group regret is defined by

\[
R_{\text{unc}}^T = MTm_{b_1} - \sum_{k=1}^{T} \sum_{i=1}^{M} m_{b_i}^{T}(i) = \sum_{i=1}^{N} \sum_{k=1}^{M} \Delta_i \mathbb{E}[n_i^T(T)],
\]

where \(n_i^T(T) \) is the total number of times arm \(i \) is selected by agent \(k \) until time \(T \) and \(\Delta_i = m_{b_1} - m_i \). In the following, we use \(b^1 \) and \(i^* \) interchangeably to denote the arm with the highest mean reward. Under the unconstrained reward model, the regret at time \(t \) is minimized if every agent chooses arm \(i^* \).

Similarly, under the constrained reward model and assuming \(M \leq N \), the expected cumulative group regret is defined by

\[
R_{\text{con}}^T = T \sum_{k=1}^{M} m_{b_k} - \sum_{k=1}^{T} \sum_{i=1}^{M} m_{b_i}^{T}(i) = \sum_{i=1}^{M} \sum_{k=1}^{M} \Delta_i \mathbb{E}[n_i^T(T)],
\]

where \(\mathbb{E}[n_i^T(T)] \) is the achieved expected cumulative group reward.

Note that the expected regret under the constrained reward model is higher if multiple agents select the same arm. Thus, the above lower bound holds even if agents themselves make arm selections instead of being assigned an arm by the fusion center. The situation in which multiple agents select the same arm is referred to as a collision.

Our objective in this paper is to design a distributed cooperative algorithm estimating mean reward at each arm and a decision-making algorithm for each agent that yields expected cumulative group regret close to that of a centralized fusion center. We consider rewards drawn from a sub-Gaussian distribution.

Definition 1 (Sub-Gaussian random variable \([24] \)). A real-valued random variable \(X \), with \(\mathbb{E}[X] = m \in \mathbb{R} \), is sub-Gaussian if

\[
\phi_X(\beta) \leq \sigma_X^2 \beta^2 / 2,
\]

where \(\sigma_X \in \mathbb{R}_{>0}, \beta \in \mathbb{R} \), and \(\phi_X : \mathbb{R} \to \mathbb{R} \) is the cumulant generating function of \(X \) defined by

\[
\phi_X(\beta) = \ln (\mathbb{E}[\exp(\beta X)]).
\]

Sub-Gaussian distributions include Bernoulli, uniform, and Gaussian distributions, and distributions with bounded support.

3. Cooperative Estimation of Mean Rewards

In this section we study cooperative estimation of mean rewards at each arm. We propose two running (dynamic) consensus algorithms \([25, 26]\) for each arm and analyze performance.

3.1. Cooperative Estimation Algorithm

For distributed cooperative estimation of the mean reward at each arm \(i \), we propose two running consensus algorithms: (i) for estimation of total reward provided at arm \(i \), and (ii) for estimation of the total number of times arm \(i \) has been sampled.

Let \(\hat{s}_i(t) \) be agent \(k \)'s estimate of the total reward provided at arm \(i \) until time \(t \) per unit agent. Let \(\hat{n}_i(t) \) be agent \(k \)'s estimate of the total number of times arm \(i \) has been selected until time \(t \) per unit agent. Recall that \(\hat{r}_i(t) \) is the arm sampled by agent \(k \) at time \(t \) and let \(\xi_i(t) = 1(\hat{r}_i(t) = i) \). \(1(\cdot) \) is the indicator function, here equal to 1 if \(\hat{r}_i(t) = i \) and 0 otherwise. For all \(i \) and \(k \), we define \(r_i^k(t) \) as the realized reward at arm \(i \) for agent \(k \) at time \(t \), which is a random variable sampled from a sub-Gaussian distribution. The corresponding reward received by agent \(k \) at time \(t \) is \(r_i^k(t) = r_i^k(t) \cdot 1(\hat{r}_i(t) = i) \).

The estimates \(\hat{s}_i(t) \) and \(\hat{n}_i(t) \) are updated using running consensus as follows

\[
\hat{n}_i(t) = P(\hat{n}_i(t-1) + \xi_i(t)),
\]

and

\[
\hat{s}_i(t) = P(\hat{s}_i(t-1) + r_i(t)),
\]

where \(\hat{n}_i(t), \hat{s}_i(t), \xi_i(t), \) and \(r_i(t) \) are vectors of \(\hat{n}_i^k(t), \hat{s}_i^k(t), \xi_i^k(t), \) and \(r_i^k(t) \cdot 1(\hat{r}_i(t) = i), k \in \{1, \ldots, M\} \), respectively; \(P \) is a row stochastic matrix given by

\[
P = I_M - \frac{k}{d_{\max}} L.
\]
\(I_M \) is the identity matrix of order \(M, \kappa \in (0,1] \) is a step size parameter \((6)\), \(d_{\text{max}} = \max(\text{deg}(i) \mid i \in \{1, \ldots, M\}) \), and \(\text{deg}(i) \) is the degree of node \(i \). In the following, we assume without loss of generality, that the eigenvalues of \(P \) are ordered such that \(\lambda_1 > \lambda_2 \geq \ldots \geq \lambda_M > -1 \).

In the running consensus updates (7) and (8), each agent collects information \(\hat{\xi}_i^t(t) \) and \(\hat{r}_i^t(t) \) at time \(t \), adds it to its current opinion, and then averages its updated opinion with the updated opinion of its neighbors.

Using \(\hat{\xi}_i^t(t) \) and \(\hat{r}_i^t(t) \), agent \(k \) can calculate \(\hat{\mu}_i^t(t) \), the estimated empirical mean of arm \(i \) at time \(t \) defined by

\[
\hat{\mu}_i^t(t) = \frac{\hat{\xi}_i^t(t)}{\hat{r}_i^t(t)}
\]

(10)

3.2. Analysis of the Cooperative Estimation Algorithm

We now analyze the performance of the estimation algorithm defined by (7), (8) and (10). Let \(n_{\text{cent}}^i(t) = \frac{1}{M} \sum_{r=1}^{t} 1_{[r \in \text{set selected per unit agent until time } t]} \) be the total number of times arm \(i \) has been selected per unit agent until time \(t \), and let \(s_{\text{cent}}^i(t) = \frac{1}{M} \sum_{r=1}^{t} \hat{\xi}_i^r(t) \hat{r}_i^r(t) \) be the total reward provided at arm \(i \) per unit agent until time \(t \). Also, let \(u_i \) be the eigenvector corresponding to \(\lambda_i \), \(u_i^t \) the \(t \)-th entry of \(u_i \). We define the graph exploit-expect index \(\epsilon_n \) as

\[
\epsilon_n = \sqrt{M} \sum_{p=2}^{M} \frac{|\lambda_p|}{1 - |\lambda_p|}.
\]

(11)

Note that \(\lambda_1 = 1 \) and \(u_1 = 1_M / \sqrt{M} \). We let

\[
y_{\text{sum}}^{p,j} = \sum_{d=1}^{M} u_p^d u_j^d 1 \left(u_p^d u_j^d \geq 0 \right)
\]

and

\[
y_{\text{sum}}^{\text{max}}^{p,j} = \sum_{d=1}^{M} u_p^d u_j^d 1 \left(u_p^d u_j^d \leq 0 \right),
\]

and

\[
a_{p,j}(k) = \begin{cases}
y_{\text{sum}}^{\text{max}}^{p,j} & \text{if } \lambda_p \lambda_j \geq 0 \text{ and } u_p^k u_j^k \geq 0, \\
y_{\text{sum}}^{\text{sum}}^{p,j} & \text{if } \lambda_p \lambda_j \geq 0 \text{ and } u_p^k u_j^k \leq 0, \\
y_{\text{sum}}^{\text{max}}^{p,j} & \text{if } \lambda_p \lambda_j < 0,
\end{cases}
\]

(12)

where \(y_{\text{max}}^{p,j} = \max \{ y_{\text{sum}}^{p,j}, y_{\text{sum}}^{\text{max}}^{p,j} \} \). We define the nodal exploit-expect centrality index \(\epsilon_k^p \) for node \(k \) as

\[
\epsilon_k^p = M \sum_{p=1}^{M} \sum_{j=1}^{M} \frac{|\lambda_p|}{1 - |\lambda_p|} a_{p,j}(k).
\]

(13)

We note that both \(\epsilon_n \) and \(\epsilon_k^p \) depend only on the topology of the communication graph. Yet, they predict distributed cooperative estimation performance, as we show next, and exploit-exploit performance, as we show in subsequent sections.

Proposition 1 (Performance of cooperative estimation). For the distributed estimation algorithm defined in (7), (8) and (10), and a doubly stochastic matrix \(P \) defined in (9), the following statements hold:

(i). the estimate \(\hat{\xi}_i^t(t) \) satisfies

\[
n_{\text{cent}}^i(t) - \epsilon_n \leq \hat{\xi}_i^t(t) \leq n_{\text{cent}}^i(t) + \epsilon_n;
\]

(ii). the following inequality holds for the estimate \(\hat{\xi}_i^t(t) \) and the sequence \(\{\xi_i^r(\tau)\}_{r=1}^{t} \):

\[
\sum_{r=1}^{t} \left(\sum_{j=1}^{M} \lambda_j^{r-1} u_p^j u_p^r \right)^2 \left(\xi_i^r(\tau) \right)^2 \leq \frac{\hat{\xi}_i^t(t) + \epsilon_k^p}{M}.
\]

Proof. We begin with statement (i). From (7) it follows that

\[
\hat{\xi}_i(t) = P^t \hat{\xi}_i(0) + \sum_{r=1}^{t} P^{t-r} x_i^r(\tau) = \sum_{r=0}^{t} \left[\frac{1}{M} 1_M u_i^r \xi_i^r(\tau) + \sum_{p=2}^{M} \lambda_p^{r-1} u_p u_p^r \xi_i^r(\tau) \right].
\]

(14)

To get (i), we bound the \(k \)-th entry of the second term of (14):

\[
\sum_{r=1}^{t} \sum_{p=2}^{M} \lambda_p^{r-1} \left(u_p u_p^r \xi_i^r(\tau) \right) \leq \sum_{r=1}^{t} \sum_{p=2}^{M} \lambda_p^{r-1} ||u_p||_2^2 ||\xi_i^r(\tau)||_2 \leq \sqrt{M} \sum_{r=1}^{t} \sum_{p=2}^{M} \lambda_p^{r-1} \leq \epsilon_n.
\]

To prove statement (ii), let \(y_{\text{sum}}^{\text{max}}^{p,j} = \sum_{k=1}^{M} u_p^k u_j^k \) and then

\[
\sum_{r=1}^{t} \left(\sum_{j=1}^{M} \lambda_j^{r-1} u_p^j u_p^r \right)^2 \left(\xi_i^r(\tau) \right)^2 = \sum_{r=1}^{t} \sum_{p=1}^{M} (\lambda_p A_w)^{r-1} u_p u_p^r \sum_{j=1}^{M} u_p^j u_j^r \xi_i^r(\tau) \\
= \sum_{r=1}^{t} \sum_{p=1}^{M} (\lambda_p A_w)^{r-1} u_p u_p^r \sum_{j=1}^{M} u_p^j u_j^r \xi_i^r(\tau) \\
+ \frac{1}{M} \sum_{r=1}^{t} \sum_{p=1}^{M} \sum_{j=1}^{M} (\lambda_p A_w)^{r-1} u_p^j u_j^r \xi_i^r(\tau) \\
= \sum_{r=1}^{t} \sum_{p=1}^{M} \sum_{j=1}^{M} (\lambda_p A_w)^{r-1} u_p^j u_j^r \xi_i^r(\tau) + \frac{1}{M} \hat{\xi}_i^t(t),
\]

(15)

We now analyze the first term of (15):

\[
\sum_{r=1}^{t} \sum_{p=1}^{M} \sum_{j=1}^{M} (\lambda_p A_w)^{r-1} u_p^j u_j^r \xi_i^r(\tau) \\
\leq \sum_{r=1}^{t} \sum_{p=1}^{M} \sum_{j=1}^{M} (\lambda_p A_w)^{r-1} ||u_p^j u_j^r \xi_i^r(\tau)||_2 \\
\leq \sum_{r=1}^{t} \sum_{p=1}^{M} \lambda_p ||u_p \xi_i^r(\tau)||_2 \\
\leq \sum_{p=1}^{M} \sum_{w=1}^{M} \lambda_p \xi_i^r(\tau) + \frac{1}{M} \hat{\xi}_i^t(t),
\]

(16)
We now derive concentration bounds for the estimated mean computed with the cooperative estimation algorithm. Standard concentration inequalities, such as the Chernoff-Hoeffding inequality, rely on the sample size being independent of the realized values of samples. In the context of MABs, the arm selected at time \(t \) depends on the rewards accrued at previous times. This makes the number of times an arm is sampled and the total reward accrued at that arm dependent random variables. For the case of a single player, the specific kind of dependence between these random variables that occurs in MAB problems is leveraged to derive a concentration inequality in [27]. In the following, we extend this concentration inequality to the distributed estimation algorithm studied here.

For \(i \in \{1, \ldots, N\} \) and \(k \in \{1, \ldots, M\} \), \(r_i^k(t) \) is a sequence of i.i.d. sub-Gaussian rewards with mean \(m_i \in \mathbb{R} \). Let \(\mathcal{F}_t \) be the filtration defined by the sigma-algebra of all the measurements until time \(t \). Let \(\{\xi^i_j(t)\}_{i \in \mathbb{N}} \) be a sequence of Bernoulli variables such that \(\xi^i_j(t) \) is deterministically known given \(\mathcal{F}_{t-1} \), i.e., \(\xi^i_j(t) \) is pre-visible with respect to \(\mathcal{F}_{t-1} \). Let \(\phi(\beta) = \ln \left(\mathbb{E} \left[\exp(\beta \xi^i_j(t)) \right] \right) \) denote the cumulant generating function of \(r_i^k(t) \).

Theorem 1 (Concentration bounds for the mean estimator).

For the estimates \(\hat{s}_i^k(t) \) and \(\hat{K}_i(t) \) obtained using (7) and (8) given rewards drawn from a sub-Gaussian distribution as defined in Definition 7, the following concentration inequality holds:

\[
\mathbb{P} \left(\frac{\hat{s}_i^k(t) - m_i \hat{K}_i(t)}{\left(\frac{1}{M} \sum_{i \in \mathcal{I}} \xi_i^j(t) \right)^{1/2}} \geq \delta \right) \leq \frac{\ln(1+\eta)}{\ln(1+\eta)} \exp \left(-\frac{\delta^2}{2\sigma^2} G(\eta) \right),
\]

where \(\delta > 0 \), \(\eta \in (0, 4) \), \(G(\eta) = (1 - \frac{\eta^2}{\pi^2}) \), and \(\epsilon_0 \) and \(\epsilon_k \) are defined in (11) and (13), respectively.

Proof. We begin by noting that \(\hat{s}_i^k(t) \) can be decomposed as

\[
\hat{s}_i^k(t) = \sum_{t=1}^{M} \sum_{p=1}^{M} A_{i,p}^{-1} \sum_{j=1}^{M} u^i_{j,p} r_i^j(t) \xi_i^j(t). \tag{18}
\]

Let \(\hat{s}_{i,p}^{2p}(t) = \sum_{t=1}^{M} \sum_{p=1}^{M} A_{i,p}^{-1} \sum_{j=1}^{M} u^i_{j,p} r_i^j(t) \xi_i^j(t) \). Then,

\[
\sum_{p=1}^{M} \hat{s}^{2p}_{i,p}(t) = \sum_{p=1}^{M} \sum_{j=1}^{M} A_{i,p} u^i_{j,p} r_i^j(t) \xi_i^j(t) + \sum_{p=1}^{M} A_{i,p} \hat{s}_{i,p}^{2p}(t - 1). \tag{19}
\]

It follows from (18) and (19) that for any \(\Theta > 0 \)

\[
\mathbb{E} \left[\exp(\Theta \hat{s}_i^k(t) | \mathcal{F}_{t-1}) \right] = \mathbb{E} \left[\exp(\Theta \sum_{p=1}^{M} \hat{s}_{i,p}^{2p}(t) | \mathcal{F}_{t-1}) \right].
\]

\[
= \mathbb{E} \left[\exp(\Theta \sum_{p=1}^{M} \sum_{j=1}^{M} A_{i,p} u^i_{j,p} r_i^j(t) \xi_i^j(t) | \mathcal{F}_{t-1}) \right] \left(K_{(t-1)} \right)^{1/2}
\]

\[
= \prod_{j=1}^{M} \mathbb{E} \left[\exp(\Theta \sum_{p=1}^{M} A_{i,p} u^i_{j,p} r_i^j(t) \xi_i^j(t) | \mathcal{F}_{t-1}) \right] \left(K_{(t-1)} \right)^{1/2}
\]

\[
= \exp \left(\sum_{j=1}^{M} \phi(\Theta) \sum_{p=1}^{M} A_{i,p} u^i_{j,p} r_i^j(t) \xi_i^j(t) \right) \left(K_{(t-1)} \right)^{1/2},
\]

where

\[
K_{(t-1)} = \exp(\Theta \sum_{p=1}^{M} A_{i,p} \hat{s}_{i,p}^{2p}(t - 1)).
\]

and the second-to-last equality follows using the fact that, conditioned on \(\mathcal{F}_{t-1} \), \(\xi^j_i(t) \) is a deterministic variable and \(r_i^j(t) \) are i.i.d. for each \(j \in \{1, \ldots, M\} \). The last equality follows since \(\xi^j_i(t) \) is binary and the two expressions are the same for \(\hat{s}_i^k(t) \in [0, 1] \). Therefore, it follows that

\[
\mathbb{E} \left[\exp(\Theta \sum_{i=1}^{M} s_i^k(t) - \sum_{i=1}^{M} \phi(\Theta) \sum_{p=1}^{M} \sum_{j=1}^{M} A_{i,j} u^i_{j,p} r_i^j(t) \xi_i^j(t)) | \mathcal{F}_{t-1}) \right] = 1.
\]

Using the above argument recursively with \(\hat{s}_i^k(0) = 0 \), we obtain

\[
\mathbb{E} \left[\exp(\Theta \hat{s}_i^k(t) - \sum_{i=1}^{M} \sum_{p=1}^{M} \sum_{j=1}^{M} A_{i,j} u^i_{j,p} r_i^j(t) \xi_i^j(t)) \right] = 1.
\]

For sub-Gaussian random variables \(\phi(\beta) \leq \beta m_i + \frac{1}{2} \sigma^2 \beta^2 \), thus

\[
1 = \mathbb{E} \left[\exp(\Theta \hat{s}_i^k(t) - \sum_{i=1}^{M} \sum_{p=1}^{M} \sum_{j=1}^{M} A_{i,j} u^i_{j,p} r_i^j(t) \xi_i^j(t)) \right] \geq \mathbb{E} \left[\exp(\Theta \hat{s}_i^k(t) - \frac{1}{2} \sigma^2 \Theta^2 \left(\hat{K}_i(t) + \epsilon_i^2 \right)) \right].
\]

where the last inequality follows from the second statement of Proposition 7. Now using the Markov inequality, we obtain

\[
e^{-\alpha} \geq \mathbb{P} \left(\Theta \hat{s}_i^k(t) - \frac{1}{2} \sigma^2 \Theta^2 \left(\hat{K}_i(t) + \epsilon_i^2 \right) \geq e^\alpha \right)
\]

\[
= \mathbb{P} \left(\frac{\hat{s}_i^k(t) - m_i \hat{K}_i(t)}{\left(\frac{1}{M} \sum_{i \in \mathcal{I}} \xi_i^j(t) \right)^{1/2}} \geq \frac{e^\alpha}{\Theta} \left(\hat{K}_i(t) + \epsilon_i^2 \right)^{1/2} \right) \geq \frac{\alpha}{\Theta} \left(\frac{1}{M} \left(\hat{K}_i(t) + \epsilon_i^2 \right)^{1/2} \right)^{1/2}
\]

\[
+ \frac{\sigma^2 \Theta}{2} \left(\frac{1}{M} \left(\hat{K}_i(t) + \epsilon_i^2 \right)^{1/2} \right)^{1/2}. \tag{21}
\]
The right side of (21) contains a random variable $\hat{\eta}^i(t)$ that is dependent on the random variable on the left side. Therefore, we use union bounds on $\hat{\eta}^i(t)$ to obtain the desired concentration inequality. To do so, consider an exponentially increasing sequence of time indices $\{(1+\eta)^{h^{-1}} \mid h \in [1, \ldots, D]\}$, where $D = \left\lceil \frac{\ln(\delta^2 \gamma)}{\ln(1+\eta)} \right\rceil$ and $\eta > 0$. For every $h \in [1, \ldots, D]$, define

$$\Theta_{h} = \frac{1}{\sigma^2_{\eta}} \sqrt{\frac{2aM}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}}}.$$

(22)

Thus, if $(1+\eta)^{h^{-1}} \leq \hat{\eta}^i(t) \leq (1+\eta)^{h}$, then

$$\frac{a}{\Theta_{h}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{M} \right)^{\frac{1}{2}} + \frac{\sigma^2_{\eta} \Theta_{h}}{2} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}$$

$$\leq \frac{a}{\Theta_{h}} \sqrt{\frac{\left(1+\eta^{h^{-1}} + \epsilon^{2}_{\eta}\right)^{\frac{1}{2}}}{(1+\eta^{-1})}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}$$

$$\leq \frac{a}{\Theta_{h}} \sqrt{\frac{\left(1+\eta^{h^{-1}} + \epsilon^{2}_{\eta}\right)^{\frac{1}{2}}}{(1+\eta^{-1})}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}$$

$$\leq \frac{a}{\Theta_{h}} \sqrt{\frac{\left(1+\eta^{h^{-1}} + \epsilon^{2}_{\eta}\right)^{\frac{1}{2}}}{(1+\eta^{-1})}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}},$$

(23)

where the second-to-last inequality follows from the fact that for $a, b > 0$, the function $x \mapsto \sqrt{\frac{ax^2 + bx}{a+2x}}$ with domain $\mathbb{R}_{\geq 0}$ is monotonically non-increasing, and the last inequality follows from the fact that for $\eta > 0$, the function $x \mapsto \sqrt{\frac{1+\eta x^{-1}}{1+\eta^{2}x^{-1}}}$ with domain $[(1+\eta)^{h^{-1}}, (1+\eta)^{h}]$ achieves its maximum at either of the boundaries. Applying union bounds on D possible values of h and using (23) for $(1+\eta)^{h^{-1}} \leq \hat{\eta}^i(t) \leq (1+\eta)^{h}$, from (21) we get

$$\mathbb{P} \left(\frac{\hat{s}_{i}^{k}(t) - m_{i}^{k}(t)}{\sqrt{\frac{4}{\Theta_{h}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}}^{2}} > \sigma_{\eta} \sqrt{\frac{a}{2} ((1+\eta)^{1} + (1+\eta)^{-1})} \right)$$

$$\leq \sum_{h=1}^{D} \mathbb{P} \left(\frac{\hat{s}_{i}^{k}(t) - m_{i}^{k}(t)}{\sqrt{\frac{4}{\Theta_{h}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}}^{2}} > a \Theta_{h} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}} \right)$$

$$+ \sigma_{\eta}^{2} \Theta_{h} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}$$

$$\leq \sum_{h=1}^{D} \mathbb{P} \left(\frac{\hat{s}_{i}^{k}(t) - m_{i}^{k}(t)}{\sqrt{\frac{4}{\Theta_{h}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}}^{2}} > a \Theta_{h} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}} \right)$$

$$\leq \sum_{h=1}^{D} \mathbb{P} \left(\frac{\hat{s}_{i}^{k}(t) - m_{i}^{k}(t)}{\sqrt{\frac{4}{\Theta_{h}} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}}}^{2}} > a \Theta_{h} \left(\frac{\hat{\eta}^i(t) + \epsilon^{2}_{\eta}}{(1+\eta)^{h^{-1}} + \epsilon^{2}_{\eta}} \right)^{\frac{1}{2}} \right)$$

$$& (1+\eta)^{h^{-1}} \leq \hat{\eta}^i(t) + \epsilon^{2}_{\eta} < (1+\eta)^{h} \right) \leq \delta \quad \text{for sub-Gaussian rewards. Here, } f(t) \text{ is an increasing sublogarithmic function of } t, \gamma > 1, \eta \in (0, 4), \text{ and } G(\eta) = 1 - \eta^2 / 16.$$

Then, at each time t, each agent k updates its cooperative estimate of the mean reward at each arm using the distributed cooperative estimation algorithm described in [8, 10]. Note that the heuristic Q_k^t requires agent k to know the total number of agents M but nothing about the graph structure.

Theorem 2 (Upper Bound on Suboptimal Selections for coop-UCB2 Algorithm). For the coop-UCB2 algorithm and the
distributed cooperative multi-agent MAB problem under the unconstrained reward model with sub-Gaussian rewards, the number of times a suboptimal arm \(i \) is selected by all agents until time \(T \) satisfies

\[
\sum_{k=1}^{M} \mathbb{E}[n_k^i(T)] \leq \frac{4\gamma \ln T}{\Delta_i^2 MG(\eta)} \left(1 + \sqrt{\frac{\Delta_i^2 MG(\eta)}{2\gamma \sigma_i^2} \ln T} \right) + L,
\]

where

\[L(\epsilon_1, \ldots, \epsilon_M) = \sum_{k=1}^{M} \left(T^k - 1 \right) + M(1 + \epsilon_\eta) + 1 + \frac{2M}{\ln(1 + \eta)} \left(\frac{1}{(\gamma - 1)^2} + \frac{\gamma \ln(1 + \epsilon_\eta)(1 + \eta)}{\gamma - 1} + 1 \right),\]

is a constant independent of \(T \) and \(t_k^i = f^{-1}(\epsilon_k^i) \).

Proof. We proceed similarly to [28]. The number of selections of a suboptimal arm \(i \) by all agents until time \(T \)

\[
\sum_{k=1}^{M} n_k^i(T) \leq \sum_{k=1}^{M} (t_k^i - 1) + \sum_{k=1}^{M} \sum_{t=t_k^i}^{T} \mathbb{1}(Q_k^i(t - 1) \geq Q_k^i(t - 1))
\]

\[
\leq A + \sum_{k=1}^{M} (t_k^i - 1) + \sum_{k=1}^{M} \sum_{t=t_k^i}^{T} \mathbb{1}(Q_k^i(t - 1) \geq Q_k^i(t - 1), MN_{k_{\text{opt}}} \geq A),
\]

where \(A > 0 \) is a constant that will be chosen later.

At a given time \(t + 1 \) an individual agent \(k \) will choose a suboptimal arm only if \(Q_k^i(t) \geq Q_k^i(t - 1) \). For this condition to be true at least one of the following three conditions must hold:

\[
\hat{\mu}_i(t) \leq m_i - C_i^j(t), \quad \hat{\mu}_i(t) \geq m_i + C_i^j(t), \quad m_i < m_i + 2C_i^j(t).
\]

We now bound the probability that (27) holds using Theorem 1

\[
\mathbb{P}(27) \quad |t| \geq t_k^0
\]

\[
= \mathbb{P} \left(\frac{\Delta_i^2 - m_i \hat{\mu}_i^k}{\sqrt{\frac{\Delta_i^2}{2\gamma} (\hat{\mu}_i^k + f(i))}} \geq \sigma_{\eta} \sqrt{\frac{2\gamma \ln(t)}{G(\eta)}} \right) \geq t_k^i
\]

\[
\leq \mathbb{P} \left(\frac{\Delta_i^2 - m_i \hat{\mu}_i^k}{\sqrt{\frac{\Delta_i^2}{2\gamma} (\hat{\mu}_i^k + e_\eta)}} \geq \sigma_{\eta} \sqrt{\frac{2\gamma \ln(t)}{G(\eta)}} \right) \geq t_k^i
\]

\[
\leq \left(\frac{\ln(t)}{\ln(1 + \eta)} + \frac{\ln(1 + \epsilon_\eta)}{\ln(1 + \eta)} + 1 \right) \frac{1}{\rho}. \]

It also follows analogously that

\[
\mathbb{P}(28) \quad |t| \geq t_k^0 \leq \left(\frac{\ln(t)}{\ln(1 + \eta)} + \frac{\ln(1 + \epsilon_\eta)}{\ln(1 + \eta)} + 1 \right) \frac{1}{\rho}. \]

We now examine the event (29).

\[
m_i < m_i + 2C_i^j(t)
\]

\[
\implies \hat{\mu}_i^k(t)^2 \frac{\Delta_i^2 MG(\eta)}{8\sigma_i^2} - \gamma \hat{\mu}_i^k(t) \ln(t) - \gamma f(i) \ln(t) < 0. \quad (30)
\]

The quadratic equation (30) can be solved to find its roots, and if \(\hat{\mu}_i(t) \) is greater than the larger root the inequality will never hold. Solving the quadratic equation (30), we obtain that event (29) does not hold if

\[
\hat{\mu}_i(t) \geq \frac{4\gamma \sigma_i^2 \ln(t)}{\Delta_i^2 MG(\eta)} + \frac{4\gamma \sigma_i^2 \ln(t)}{\Delta_i^2 MG(\eta)} + \frac{28\gamma \sigma_i^2 f(i) \ln(t)}{\Delta_i^2 MG(\eta)}
\]

\[
= \frac{4\sigma_i^2 e^{-\gamma} \ln(t)}{\Delta_i^2 MG(\eta)} \left(1 + 1 + \frac{\Delta_i^2 MG(\eta)}{2\gamma \sigma_i^2} \ln(t) \right).
\]

Now, we set \(A = \left[M \epsilon_\eta + \frac{4\gamma \sigma_i^2 \ln(t)}{\Delta_i^2 MG(\eta)} \right], \) which follows from the monotonicity of \(f(t) \) and \(\ln(t) \) and statement (i) of Proposition 1 that event (29) does not hold if \(M \epsilon_\eta(t) > A \). Therefore, from (26) we see that

\[
\sum_{k=1}^{M} \mathbb{E}[n_k^i(T)] \leq \max(M, A) + \sum_{k=1}^{M} (t_k^i - 1)
\]

\[
+ \frac{2}{\ln(1 + \eta)} \sum_{k=1}^{M} \sum_{t=t_k^i}^{T} \left(\frac{\ln(t)}{t^\gamma} + \frac{\ln((1 + \epsilon_\eta)(1 + \eta))}{t^\gamma} \right)
\]

\[
\leq \max(M, A) + \sum_{k=1}^{M} (t_k^i - 1)
\]

\[
+ \frac{2M}{\ln(1 + \eta)} \sum_{k=1}^{M} \sum_{t=t_k^i}^{T} \left(\frac{\ln(t)}{t^\gamma} + \frac{\ln((1 + \epsilon_\eta)(1 + \eta))}{t^\gamma} \right)
\]

\[
\leq \max(M, A) + \sum_{k=1}^{M} (t_k^i - 1) + \frac{2M}{\ln(1 + \eta)} \left(\frac{1}{(\gamma - 1)^2} \right)
\]

\[
+ \frac{\gamma \ln(1 + \epsilon_\eta)(1 + \eta))}{\gamma - 1} + 1 \right) \frac{1}{\rho'}.
\]

The maximum between \(M \) and \(A \) is chosen in the first line above to account for the \(M \) selections of the \(i \)-th arm during the initialization phase. This completes the proof.

Corollary 1 (Regret of the coop-UCB2 Algorithm). For the coop-UCB2 algorithm and the distributed cooperative multi-agent MAB problem under the unconstrained reward model with sub-Gaussian rewards, the expected cumulative group regret until time \(T \) satisfies

\[
R_{\text{UCB2}}(T) \leq \sum_{i=1}^{N} \frac{4\gamma \ln(T)}{\Delta_i^2 MG(\eta)} \left(1 + \frac{\Delta_i^2 MG(\eta)}{2\gamma \sigma_i^2} \ln(T) \right) + \sum_{i=1}^{N} \mathbb{E}[n_i^i(T)].
\]

Proof. The corollary follows by substituting the upper bound on \(\sum_{i=1}^{M} \mathbb{E}[n_i^i(T)] \) into the expression (1) for the expected cumulative group regret. □
Remark 1 (Asymptotic Regret for coop-UCB2). In the limit \(t \to +\infty, \frac{f(t)}{mn(t)} \to 0^{+}, \eta \to 0, \) and

\[
\sum_{k=1}^{M} \mathbb{E}[n_k^i(T)] \leq \left(\frac{8\pi^2y}{\Delta^2} + o(1) \right) \ln T.
\]

We thus recover the upper bound on regret for a centralized fusion center as given in (23) within a constant factor. \(\square \)

Remark 2 (Predicting Relative Performance from Network Graph Topology). Theorem 2 and Corollary 1 provide bounds on the performance of the group as a function of the graph structure, as measured by the group explore-exploit index \(\epsilon_m \) and nodal explore-exploit centrality indices \(\epsilon^k \). While the logarithmic term in the upper bound on group performance is independent of individual agent performance, the sublogarithmic term \(L \) given in (25), depends on \(\epsilon_m \) and \(\epsilon^k \). Our theory predicts that the performance of a group is better for a network with smaller \(\epsilon_m \), since a smaller \(\epsilon_m \) implies a smaller upper bound on expected cumulative group regret. Likewise, our theory predicts that the performance of individual agent \(j \) is better than the performance of individual agent \(l \) if \(\epsilon^j < \epsilon^l \), since a smaller \(\epsilon^j \) implies a smaller contribution from agent \(k \) to the upper bound on expected cumulative group regret. These predictions rely on the bounds being sufficiently tight; we illustrate the usefulness of the predictions with simulations in Section 5. \(\square \)

5. Cooperative Decision Making Under Constrained Reward Model

In this section we extend our analyses in Section 4 to the case of the constrained reward model. In this setting the optimal solution in terms of group regret is for the \(M \) agents to each sample a different arm from among the \(M \)-best arms at every time \(t \). Recall that \(O^c \) is the set of \(k \)-best arms. Let \(\Delta_{\min} = \min |m_i - m_j| \mid i, j \in \{1, \ldots, N\}, i \neq j \). In the following, we assume that each agent \(k \) has a preassigned unique rank \(\omega^k \in \{1, \ldots, M\} \) and will attempt to sample the arm with the \(\omega^k \)-th best reward. Without loss of generality, we assume that \(\omega^k = k \). We define agent \(k' \) as the index of the agent attempting to sample arm \(i \in O^c_M \). We let \(k' = 0 \) if \(i \notin O^c_M \). Therefore, the expected cumulative regret of agent \(k \) at time \(T \) is

\[
R^k(T) = \sum_{t=1}^{T} m_{y^k} - \mathbb{E} \left[\sum_{i=1}^{N} r^k_i(t) 1[i(t) = i] 1[t(t)] \right],
\]

(31)

where \(1[t] = 1 \) if agent \(k \) is the only agent to sample arm \(i \) at time \(t \), and 0 otherwise.

In the following, we assume that while agents do not receive any reward if they sample the same arm, they still have access to the value of the reward they did not receive and they can use it in updating their estimates of the mean rewards.

Some authors \([15, 10] \) have considered the case where agents that sample the same arm at the same time receive a split reward. The algorithm presented here is still appropriate for that scenario, and the regret as defined above will upper bound the regret in the case of split rewards.

5.1. The coop-UCB2-selective-learning Algorithm

In this section, we present the coop-UCB2-selective-learning algorithm in which agent \(k \) selectively targets the \(k \)-th best arm. The coop-UCB2-selective-learning algorithm for sub-Gaussian rewards is initialized by each agent sampling each arm once in a round-robin fashion with agent \(k \) beginning the sampling with the \(k \)-th arm. At each time \(t \), each agent \(k \) updates its cooperative-estimation of the mean reward at each arm using the distributed cooperative-estimation algorithm described in (8)-(10).

Subsequently, at time \(t \), each agent \(k \) estimates \(Q^k \), by constructing the set \(O_k(t) \) containing \(k \) arms associated with the indices of the \(k \) highest values in the set \(\{Q^k_i(t-1) = \hat{\mu}^k_i(t-1) + C^k_i(t-1) \mid i \in \{1, \ldots, N\} \} \), where

\[
C^k_i(t-1) = \sigma^k \sqrt{\frac{2\gamma}{G(\eta)}}, \quad \hat{\mu}^k_i(t-1) + f(t-1) + \ln(t-1) \cdot \frac{1}{M\hat{\mu}^k_i(t-1)} \cdot \hat{\mu}^k_i(t-1),
\]

(32)

\(f(t) \) is an increasing sublogarithmic function of \(t, \gamma > 1, \eta \in (0,4), \) and \(G(\eta) = 1 - \eta^2/16 \).

Each agent \(k \) then selects the arm associated with the minimum value in the set \(\{Q^k_i(t-1) = \hat{\mu}^k_i(t-1) + C^k_i(t-1) \mid i \in O_k(t) \} \).

Our algorithm generalizes the selective-learning algorithm for multi-agent MABs with no communication among agents proposed in [15] to the case of communicating agents.

5.2. Analysis of the coop-UCB2-selective-learning Algorithm

We first bound the number of times an arm \(i \) is incorrectly selected. We call the selection of arm \(i \in O^c_M \) incorrect if it is selected by an agent \(k \neq k' \). Any selection of arm \(i \notin O^c_M \) is incorrect. Let \(\bar{n}_i^k(T) \) be the number of incorrect selections of arm \(i \) until time \(T \).

Theorem 3 (Upper Bound on Incorrect Selections for coop-UCB2-selective-learning Algorithm). For the coop-UCB2-selective-learning algorithm and the distributed cooperative-multi-agent MAB problem under the constrained reward model with sub-Gaussian rewards, the number of times an arm \(i \) is incorrectly selected by all agent until time \(T \) satisfies

\[
\sum_{k=1}^{M} \mathbb{E} \left[\bar{n}_i^k(T) \right] \leq \frac{4\pi^2y}{\Delta^2} G(\eta) \left(1 + \frac{1}{\Delta^2_{\min} MG(\eta)} \cdot \frac{f(T)}{2\pi^2y} \cdot \ln(T + L) \right)
\]

where

\[
L(\epsilon_0, \epsilon^1, \ldots, \epsilon^M) = \sum_{k=1}^{M} (t^k - 1) + M(1 + \epsilon_0) + 1
\]

\[
+ \frac{2M(N+1)}{\ln(1+\eta)} \left(\frac{1}{(\gamma-1)^2} + \frac{\gamma \ln(1+\epsilon_0(1+\eta))}{\gamma-1} + 1 \right)
\]

(33)

is a constant independent of \(T \) and \(t^k = f^{-1}(\epsilon^k) \).
Proof. We begin by noting that

\[
\sum_{k \in k^i} n_i^k(T) = \sum_{k \in k^i} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i \right\} \\
= \sum_{k \in k^i} \left(\sum_{t=1}^T \left(1 \left\{ \hat{\delta}(t) = i, m_i < m_{i'} \right\} + 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'} \right\} \right) \right) \\
\leq A + \sum_{k=1}^M (t_k^i - 1) \\
+ \sum_{k \in k^i} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i, m_i < m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A \right\}
\]

where \(A \) is a constant that will be chosen later. In the case where \(m_i < m_{i'} \), agent \(k \) picking arm \(i \) implies that there exists an arm \(j \in Q_i^k \) such that \(j \notin O_i(t) \). Therefore, the following holds:

\[
\sum_{k \in k^i} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i, m_i < m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A \right\}
\]

\[
\leq \sum_{k \in k^i} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i, \sum_{t=1}^T \left(1 \left\{ \hat{\delta}(t) = i, m_i < m_{i'} \right\} + 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'} \right\} \right) \right\}, \text{(34)}
\]

As in Theorem 2 \(Q_i^k(t - 1) \geq Q_i^k(t - 1) \) implies that at least one of the following three conditions must hold for any \(j \in O_i^k \):

\[
\Delta_{i'(t)} \leq \Delta_{i'(t)} - C_i(t) \leq \Delta_i(t) \leq \Delta_i(t) - C_i(t) \leq m_i - m_{i'} + 2C_i(t), \text{(35)}
\]

\[
\Delta_{i'(t)} \leq m_i - m_{i'} + 2C_i(t), \text{(36)}
\]

\[
m_i < m_{i'} + 2C_i(t). \text{(37)}
\]

The first two equations are bounded using Theorem 1 as in Theorem 2. The third equation is equivalent to

\[
2C_i(t) > \Delta_{i(t)} > \Delta_{\min}
\]

which, as in the proof of Theorem 2 does not hold if

\[
n_i^k(t) > \frac{4\sigma^2_{\gamma} \gamma}{\Delta_{\min}^2 G(\eta)} \left(1 + \sqrt{1 + \frac{\Delta_{\min}^2 \Delta_{\min} G(\eta) f(T)}{2\sigma^2_{\gamma}}} \ln T \right) \ln T.
\]

Therefore, for

\[
A = \left[M_{\min} + \frac{4\sigma^2_{\gamma} \gamma}{\Delta_{\min}^2 G(\eta)} \left(1 + \sqrt{1 + \frac{\Delta_{\min}^2 \Delta_{\min} G(\eta) f(T)}{2\sigma^2_{\gamma}}} \ln T \right) \ln T \right],
\]

(37) does not hold. This results in

\[
\sum_{k \in k^i} \sum_{j \in O_i^k} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A \right\}
\]

\[
\leq \sum_{k \in k^i} \sum_{j \in O_i^k} \sum_{t=1}^T \frac{2}{\ln(1 + \eta)} \left(\frac{1}{(\gamma - 1)^2} + \frac{\gamma \ln(1 + e_{\eta})(1 + \eta)}{\gamma - 1} \right)
\]

\[
\leq \frac{M(M + 1)}{\ln(1 + \eta)} \left(\frac{1}{(\gamma - 1)^2} + \frac{\gamma \ln(1 + e_{\eta})(1 + \eta)}{\gamma - 1} \right) + 1, \text{(38)}
\]

We now examine the second part of (34) when \(m_i \geq m_{i'} \) and split the conditional as

\[
1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A \right\}
\]

\[
= 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A, O_i(t) = O_i^k \right\}
\]

\[
+ 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A, O_i(t) \neq O_i^k \right\}
\]

\[
\leq 1 \left\{ m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A, W_i(t - 1) \leq W_i(t - 1) \right\}
\]

\[
+ 1 \left\{ m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A, W_i(t - 1) \leq W_i(t - 1) \right\} \text{(39)}
\]

for any arm \(h \notin O_i^k \). The two indicator functions in (39) can be combined as follows

\[
1 \left\{ m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A, W_i(t - 1) \leq W_i(t - 1) \right\}
\]

\[
\text{for any } j \notin O_i^k \setminus \{b\}. \text{ This results in}
\]

\[
\sum_{k \in k^i} \sum_{j \in O_i^k \setminus \{b\}} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A \right\}
\]

\[
\leq \sum_{k \in k^i} \sum_{j \notin O_i^k \setminus \{b\}} \sum_{t=1}^T 1 \left\{ m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A, \right\}
\]

\[
W_i(t - 1) \leq W_i(t - 1). \text{(40)}
\]

For \(W_i(t) \leq W_i(t) \) to be true, at least one of the following must hold:

\[
\hat{\mu}_i(t) \leq m_i - C_i(t) \leq \Delta_{i'(t)} \leq \Delta_{i(t)} - C_i(t) \leq m_i - m_{i'} + 2C_i(t), \text{(41)}
\]

\[
\hat{\mu}_i(t) \geq m_i + C_i(t) \geq \Delta_i(t) - C_i(t) \leq m_i - m_{i'} + 2C_i(t), \text{(42)}
\]

\[
m_i < m_{i'} + 2C_i(t). \text{(43)}
\]

(41) and (42) can be bounded using Theorem 1. As before, (43) never holds due to our choice of \(A \). Similarly to (38) this gives

\[
\sum_{k \in k^i} \sum_{j \in O_i^k} \sum_{t=1}^T 1 \left\{ \hat{\delta}(t) = i, m_i \geq m_{i'}, M_{n_i}^{\text{cent}}(t) \geq A \right\}
\]

\[
\leq \sum_{k \in k^i} \sum_{j \notin O_i^k \setminus \{b\}} \sum_{t=1}^T 2 \left(\frac{1}{\ln(1 + \eta)} \left(\frac{1}{(\gamma - 1)^2} + \frac{\gamma \ln(1 + e_{\eta})(1 + \eta)}{\gamma - 1} + 1 \right) \right)
\]

\[
\leq 2N(M + 1) \left(\frac{1}{(\gamma - 1)^2} + \frac{\gamma \ln(1 + e_{\eta})(1 + \eta)}{\gamma - 1} + 1 \right). \text{(44)}
\]

Using (34), (38), and (44) and accounting for the selections of arm \(i \) during the initialization as in the proof of Theorem 2 we obtain the bound in the theorem statement. \(\square \)
Corollary 2 (Regret of the coop-UCB2-selective-learning Algorithm). For the coop-UCB2-selective-learning algorithm and the distributed cooperative multi-agent MAB problem under the constrained reward model with sub-Gaussian rewards, the expected cumulative regret of the group satisfies

\[R^\text{con}(T) \leq \sum_{k=1}^{M} R_k(T) \leq m_r N B + \sum_{k=1}^{M} m_B B \]

where

\[B = \frac{4\sigma^2_T}{\Delta_{\min}^2 \mathcal{G}(\eta)} \left(1 + \sqrt{1 + \frac{\Delta_{\min}^2 \mathcal{G}(\eta) f(T)}{2\sigma^2_T} \ln T} \right) \ln T + L. \]

Proof. As in [15], agent \(k \) incurs regret either by selecting an arm \(i \neq b^k \) or when another agent \(j \neq k \) selects arm \(b^j \). Therefore,

\[
\sum_{k=1}^{M} R_k(T) \leq \sum_{k=1}^{M} \left[\sum_{i \neq b^k} \mathbb{E} \left[\tilde{R}_i^k(T) \right] m_B + \sum_{k=1}^{M} \sum_{j \neq k} \mathbb{E} \left[\tilde{R}_{ij}^k(T) \right] m_B \right]
\]

\[
\leq m_r \sum_{i=1}^{N} \left[\sum_{k=1}^{M} \mathbb{E} \left[\tilde{R}_i^k(T) \right] \right] + \sum_{k=1}^{M} \sum_{j \neq k} \mathbb{E} \left[\tilde{R}_{ij}^k(T) \right] m_B
\]

\[
\leq m_r N B + \sum_{k=1}^{M} m_B B,
\]

completing the proof.

Remark 3 (Concise Upper Bound on Regret). The upper bound on expected cumulative group regret in Theorem 2 can be expressed more concisely, at the expense of some tightness, as

\[
\sum_{k=1}^{M} R_k(T) \leq m_r B(M + N).
\]

Note that in the limit \(\eta \to 0^+ \) and \(\gamma \to 1^+ \), this is a factor of \(4M \) tighter than the bounds in [15], demonstrating the benefits of communication between agents.

Remark 4 (Predicting Relative Performance from Network Graph Topology for Constrained Reward Model). Theorems 3 and Corollary 2 predict the performance of the group as a function of the graph structure for the constrained reward model just as described for the unconstrained reward model in Remark 2, since \(L \) given in (33) has the same form as \(L \) given in (25).

6. Numerical Illustrations

In this section, we illustrate our theoretical analyses from the previous sections with numerical examples. We first provide examples in which the ordering of the performance of nodes obtained through numerical simulations is as predicted by the ordering of the nodal explore-exploit centrality indices, as discussed in Remarks 2 and 4. That is, a smaller \(\epsilon^k \) predicts better performance for agent \(k \). We then provide examples in which the ordering over networks of the performance of a group of agents is as predicted by the ordering over networks of the graph explore-exploit index, as discussed in Remarks 2 and 4. That is, a smaller \(\epsilon^g \) predicts better performance for the group with the corresponding network graph.

Unless otherwise noted in the simulations we consider a 10-arm bandit problem with mean rewards drawn from a normal random distribution for each Monte-Carlo run with mean 0 and standard deviation 10. The sampling standard deviation is \(\sigma_e = 30 \) and the results displayed are the average of 10^6 Monte-Carlo runs. These parameters were selected to give illustrative results within the displayed time horizon, but the relevant conclusions hold across a wide range of parameter values. In the simulations \(f(t) = \sqrt{\ln t} \), and consensus matrix \(P \) is as in (2) with \(\kappa = \frac{\Delta_{\max}}{\Delta_{\min}} - 1 \).

6.1. Validation of Relative Performance of Agents as Predicted by Nodal Explore-Exploit Centrality Index \(\epsilon^k \)

Example 1. Figure 1 demonstrates the ordering of performance among agents using coop-UCB2 with the underlying graph structure in Table 1. The values of \(\epsilon^k \) for each node are also shown in Table 1. As predicted by Theorem 2 (Remark 2), agent 1 should have the lowest regret, agents 2 and 3 should have equal and intermediate regret, and agent 4 should have the highest regret as this is their ordering with respect to \(\epsilon^k \). These predictions are validated in our simulations shown in Figure 1.

Example 2. Figure 2 demonstrates the ordering of performance among agents using coop-UCB2 with the underlying graph structure in Table 2. Rewards are drawn from a normal distribution with mean 0 and standard deviation 5. The values of \(\epsilon^g \) for each node are also given in Table 2, along with the values of degree and information centrality for each node [29].
For this example, degree centrality does not distinguish agent 5 from agents 3 and 4, whereas ϵ_k (and information centrality) does. Further, according to information centrality, which is larger the more central the node, node 5 is less information central than nodes 3 and 4. In contrast, according to ϵ_k, which is smaller the more central the node, node 5 is more explore-exploit central than nodes 3 and 4.

As in the prior example, the simulation results of Figure 2 validate the prediction of Theorem 2 (Remark 2) that the ordering of agents by performance, as measured by expected cumulative regret, is the same as the ordering of agents by nodal explore-exploit centrality index ϵ_k, with smaller ϵ_k corresponding to lower regret. In contrast, for this example, the ordering of agents by degree or information centrality do not predict the ordering of agents by performance.

We note that we have found some parameter regimes, specifically for rewards that are far apart in mean value, where information centrality does give the correct ordering of performance, rather than ϵ_k. It is possible that this is due to sensitivity of performance to the Δ_i. However, we have observed that ϵ_k is broadly predictive of performance for a variety of regimes and network graphs, as further demonstrated in Example 3.

Example 3. We now explore the effect of ϵ_k on the performance of an agent in an Erdős-Rényi (ER) random graph. ER graphs are a widely used class of random graphs where any two agents are connected with a given probability ρ [31]. Consider a set of 10 agents communicating according to an ER graph and using the coop-UCB2 algorithm. We consider 100 connected ER graphs, and for each ER graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo simulations with $\rho = \ln(10)/10$. In Figure 3 we show the the expected cumulative regret at time $t = 500$ of each agent as a function of normalized ϵ_k. The plot shows that performance is directly related to ϵ_k, with performance increasing as ϵ_k decreases.

6.2. Validation of Relative Performance of Networks as Predicted by Graph Explore-Exploit Index ϵ_n

For this example, degree centrality does not distinguish agent 5 from agents 3 and 4, whereas ϵ_k (and information centrality) does. Further, according to information centrality, which is larger the more central the node, node 5 is less information central than nodes 3 and 4. In contrast, according to ϵ_k, which is smaller the more central the node, node 5 is more explore-exploit central than nodes 3 and 4.

As in the prior example, the simulation results of Figure 2 validate the prediction of Theorem 2 (Remark 2) that the ordering of agents by performance, as measured by expected cumulative regret, is the same as the ordering of agents by nodal explore-exploit centrality index ϵ_k, with smaller ϵ_k corresponding to lower regret. In contrast, for this example, the ordering of agents by degree or information centrality do not predict the ordering of agents by performance.

We note that we have found some parameter regimes, specifically for rewards that are far apart in mean value, where information centrality does give the correct ordering of performance, rather than ϵ_k. It is possible that this is due to sensitivity of performance to the Δ_i. However, we have observed that ϵ_k is broadly predictive of performance for a variety of regimes and network graphs, as further demonstrated in Example 3.

Example 3. We now explore the effect of ϵ_k on the performance of an agent in an Erdős-Rényi (ER) random graph. ER graphs are a widely used class of random graphs where any two agents are connected with a given probability ρ [31]. Consider a set of 10 agents communicating according to an ER graph and using the coop-UCB2 algorithm. We consider 100 connected ER graphs, and for each ER graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo simulations with $\rho = \ln(10)/10$. In Figure 3 we show the the expected cumulative regret at time $t = 500$ of each agent as a function of normalized ϵ_k. The plot shows that performance is directly related to ϵ_k, with performance increasing as ϵ_k decreases.

6.2. Validation of Relative Performance of Networks as Predicted by Graph Explore-Exploit Index ϵ_n

For this example, degree centrality does not distinguish agent 5 from agents 3 and 4, whereas ϵ_k (and information centrality) does. Further, according to information centrality, which is larger the more central the node, node 5 is less information central than nodes 3 and 4. In contrast, according to ϵ_k, which is smaller the more central the node, node 5 is more explore-exploit central than nodes 3 and 4.

As in the prior example, the simulation results of Figure 2 validate the prediction of Theorem 2 (Remark 2) that the ordering of agents by performance, as measured by expected cumulative regret, is the same as the ordering of agents by nodal explore-exploit centrality index ϵ_k, with smaller ϵ_k corresponding to lower regret. In contrast, for this example, the ordering of agents by degree or information centrality do not predict the ordering of agents by performance.

We note that we have found some parameter regimes, specifically for rewards that are far apart in mean value, where information centrality does give the correct ordering of performance, rather than ϵ_k. It is possible that this is due to sensitivity of performance to the Δ_i. However, we have observed that ϵ_k is broadly predictive of performance for a variety of regimes and network graphs, as further demonstrated in Example 3.

Example 3. We now explore the effect of ϵ_k on the performance of an agent in an Erdős-Rényi (ER) random graph. ER graphs are a widely used class of random graphs where any two agents are connected with a given probability ρ [31]. Consider a set of 10 agents communicating according to an ER graph and using the coop-UCB2 algorithm. We consider 100 connected ER graphs, and for each ER graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo simulations with $\rho = \ln(10)/10$. In Figure 3 we show the the expected cumulative regret at time $t = 500$ of each agent as a function of normalized ϵ_k. The plot shows that performance is directly related to ϵ_k, with performance increasing as ϵ_k decreases.

6.2. Validation of Relative Performance of Networks as Predicted by Graph Explore-Exploit Index ϵ_n

For this example, degree centrality does not distinguish agent 5 from agents 3 and 4, whereas ϵ_k (and information centrality) does. Further, according to information centrality, which is larger the more central the node, node 5 is less information central than nodes 3 and 4. In contrast, according to ϵ_k, which is smaller the more central the node, node 5 is more explore-exploit central than nodes 3 and 4.

As in the prior example, the simulation results of Figure 2 validate the prediction of Theorem 2 (Remark 2) that the ordering of agents by performance, as measured by expected cumulative regret, is the same as the ordering of agents by nodal explore-exploit centrality index ϵ_k, with smaller ϵ_k corresponding to lower regret. In contrast, for this example, the ordering of agents by degree or information centrality do not predict the ordering of agents by performance.

We note that we have found some parameter regimes, specifically for rewards that are far apart in mean value, where information centrality does give the correct ordering of performance, rather than ϵ_k. It is possible that this is due to sensitivity of performance to the Δ_i. However, we have observed that ϵ_k is broadly predictive of performance for a variety of regimes and network graphs, as further demonstrated in Example 3.

Example 3. We now explore the effect of ϵ_k on the performance of an agent in an Erdős-Rényi (ER) random graph. ER graphs are a widely used class of random graphs where any two agents are connected with a given probability ρ [31]. Consider a set of 10 agents communicating according to an ER graph and using the coop-UCB2 algorithm. We consider 100 connected ER graphs, and for each ER graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo simulations with $\rho = \ln(10)/10$. In Figure 3 we show the the expected cumulative regret at time $t = 500$ of each agent as a function of normalized ϵ_k. The plot shows that performance is directly related to ϵ_k, with performance increasing as ϵ_k decreases.

6.2. Validation of Relative Performance of Networks as Predicted by Graph Explore-Exploit Index ϵ_n

For this example, degree centrality does not distinguish agent 5 from agents 3 and 4, whereas ϵ_k (and information centrality) does. Further, according to information centrality, which is larger the more central the node, node 5 is less information central than nodes 3 and 4. In contrast, according to ϵ_k, which is smaller the more central the node, node 5 is more explore-exploit central than nodes 3 and 4.

As in the prior example, the simulation results of Figure 2 validate the prediction of Theorem 2 (Remark 2) that the ordering of agents by performance, as measured by expected cumulative regret, is the same as the ordering of agents by nodal explore-exploit centrality index ϵ_k, with smaller ϵ_k corresponding to lower regret. In contrast, for this example, the ordering of agents by degree or information centrality do not predict the ordering of agents by performance.

We note that we have found some parameter regimes, specifically for rewards that are far apart in mean value, where information centrality does give the correct ordering of performance, rather than ϵ_k. It is possible that this is due to sensitivity of performance to the Δ_i. However, we have observed that ϵ_k is broadly predictive of performance for a variety of regimes and network graphs, as further demonstrated in Example 3.

Example 3. We now explore the effect of ϵ_k on the performance of an agent in an Erdős-Rényi (ER) random graph. ER graphs are a widely used class of random graphs where any two agents are connected with a given probability ρ [31]. Consider a set of 10 agents communicating according to an ER graph and using the coop-UCB2 algorithm. We consider 100 connected ER graphs, and for each ER graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo simulations with $\rho = \ln(10)/10$. In Figure 3 we show the the expected cumulative regret at time $t = 500$ of each agent as a function of normalized ϵ_k. The plot shows that performance is directly related to ϵ_k, with performance increasing as ϵ_k decreases.

Example 3. We now explore the effect of ϵ_k on the performance of an agent in an Erdős-Rényi (ER) random graph. ER graphs are a widely used class of random graphs where any two agents are connected with a given probability ρ [31]. Consider a set of 10 agents communicating according to an ER graph and using the coop-UCB2 algorithm. We consider 100 connected ER graphs, and for each ER graph we compute the expected cumulative regret of agents using 1000 Monte-Carlo simulations with $\rho = \ln(10)/10$. In Figure 3 we show the the expected cumulative regret at time $t = 500$ of each agent as a function of normalized ϵ_k. The plot shows that performance is directly related to ϵ_k, with performance increasing as ϵ_k decreases.
the best agent in the all-to-all graph despite the star graph’s poor group performance. This indicates that the four peripheral agents are doing most of the exploration. The stark difference in the propensity to explore between the central and peripheral agents in the star graph demonstrates that regret accumulation for different agents could be controlled by design of the communication graph structure.

From the bounds on regret, we defined a novel graph explore-exploit index and nodal explore-exploit centrality index, which depend only on the network graph topology. The group index predicts the ordering by performance of network graphs and the nodal index predicts the ordering by performance of the nodes.

Future research directions include rigorously exploring other communications schemes, which may offer better performance or be better suited to modeling classes of networked systems. The tradeoff between communication frequency and performance (12) as well as the presence of noisy communications (32) will be important considerations.

7. Final Remarks

We have used a distributed multi-agent MAB problem to explore cooperative decision making under uncertainty for networks of agents. Each agent makes choices among arms to maximize its own individual reward but cooperates with others in the group by communicating its estimates across the network. We considered both an unconstrained reward model, in which agents are not penalized if they choose the same arm at the same time, and a constrained reward model, in which agents are not penalized if they choose the same arm at the same time receive no reward.

We designed an algorithm for distributed cooperative estimation of mean reward at each arm. Building on this, we designed the coop-UCB2 and coop-UCB2-selective-learning algorithms for the unconstrained and constrained reward models, respectively. These are distributed algorithms that enable agents to leverage the information shared by neighbors in their decision making, without requiring that agents to know the network graph structure. We proved bounds on performance, showing logarithmic expected cumulative group regret, close to that of a centralized fusion center, for both reward models.

References

[1] V. Srivastava, P. Reverdy, and N. E. Leonard, “Surveillance in an abruptly changing world via multiarmed bandits,” in IEEE Conference on Decision and Control, (Los Angeles, CA), pp. 692–697, Dec. 2014.
[2] M. Y. Cheung, J. Leighton, and F. S. Hover, “Autonomous mobile acoustic relay positioning as a multi-armed bandit with switching costs,” in IEEE/RSI International Conference on Intelligent Robots and Systems, (Tokyo, Japan), pp. 3368–3373, November 2013.
[3] J. R. Krebs, A. Kacelnik, and P. Taylor, “Test of optimal sampling by foraging great tits,” Nature, vol. 275, no. 5675, pp. 27–31, 1978.
[4] V. Srivastava, P. Reverdy, and N. E. Leonard, “On optimal foraging and multi-armed bandits,” in Allerton Conference on Communication, Control, and Computing, (Monticello, IL, USA), pp. 494–499, Oct. 2013.
[5] A. Anandkumar, N. Michael, A. K. Tang, and A. Swami, “Distributed algorithms for learning and cognitive medium access with logarithmic regret,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 4, pp. 731–745, 2011.
[6] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and nonstochastic multi-armed bandit problems,” Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.
[7] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–42, 1985.
[8] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation rules,” IEEE Transactions on Automatic Control, vol. 32, pp. 968–976, Nov 1987.
[9] R. K. Kolla, K. Jagnanathan, and A. Gopalan, “Stochastic bandits on a social network: Collaborative learning with local information sharing,” CoRR, vol. abs/1602.08886, 2016.
[10] P. Landgren, V. Srivastava, and N. E. Leonard, “Social imitation in cooperative multiarmed bandits: Partition-based algorithms with strictly local information,” in IEEE Conf. on Decision and Control, (Miami Beach, FL), pp. 5239–5244, Dec. 2018.
[11] U. Madhushani and N. E. Leonard, “Heterogeneous stochastic interactions for multiple agents in a multi-armed bandit problem,” in Proceedings of the European Control Conference (ECC), 2019.
[12] U. Madhushani and N. E. Leonard, “A dynamic observation strategy for multi-agent multi-armed bandit problem,” in Proceedings of the European Control Conference (ECC), 2020.
[13] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with multiple players,” IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5667–5681, 2010.
[14] D. Kalathil, N. Niyato, and R. Jain, “Decentralized learning for multi-player multiarmed bandits,” IEEE Transactions on Information Theory, vol. 60, no. 4, pp. 2331–2345, 2014.
[15] Y. Gai and B. Krishnamachari, “Distributed stochastic online learning policies for opportunistic spectrum access,” IEEE Transactions on Signal Processing, vol. 62, no. 23, pp. 6184–6193, 2014.
[16] L. Wei and V. Srivastava, “On distributed multi-player multiarmed bandit problems in abruptly changing environment,” in 2018 IEEE Conference on Decision and Control (CDC), pp. 5783–5788, IEEE, 2018.
[17] I. Bistritz and A. Leshem, “Distributed multi-player bandits-a game of thrones approach,” in *Advances in Neural Information Processing Systems*, pp. 7222–7232, 2018.

[18] J. R. Marden, H. P. Young, and L. Y. Pao, “Achieving pareto optimality through distributed learning,” *SIAM Journal on Control and Optimization*, vol. 52, no. 5, pp. 2753–2770, 2014.

[19] S. Shahrampour, A. Raklin, and A. Jadbabaie, “Multi-armed bandits in multi-agent networks,” *2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2017.

[20] P. Landgren, V. Srivastava, and N. E. Leonard, “On distributed cooperative decision-making in multiarmed bandits,” in *European Control Conference*, (Aalborg, Denmark), pp. 243 – 248, June 2016. Correction in [arXiv:1512.06888v3 [cs.SY]].

[21] P. Landgren, V. Srivastava, and N. E. Leonard, “Distributed cooperative decision-making in multiarmed bandits: Frequentist and bayesian algorithms,” in *IEEE Conf. on Decision and Control*, (Las Vegas, NV), pp. 167 – 172, Dec. 2016. Correction in [arXiv:1606.00911v3 [cs.SY]].

[22] D. Martín-Rubio, V. Kanade, and P. Rebeschini, “Decentralized cooperative stochastic bandits,” in *Advances in Neural Information Processing Systems*, pp. 4531–4542, 2019.

[23] F. Bullo, J. Cortés, and S. Martínez, *Distributed Control of Robotic Networks*. Princeton University Press, 2009.

[24] B. Stephane, L. Gabor, and P. Massart, *Concentration inequalities a nonasymptotic theory of independence*. Oxford University Press, 2016.

[25] P. Braca, S. Marano, and V. Matta, “Enforcing consensus while monitoring the environment in wireless sensor networks,” *IEEE Transactions on Signal Processing*, vol. 56, no. 7, pp. 3375–3380, 2008.

[26] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” *IEEE Transactions on Automatic Control*, vol. 49, no. 9, pp. 1520–1533, 2004.

[27] A. Garivier and E. Moulines, “On upper-confidence bound policies for non-stationary bandit problems,” *arXiv preprint arXiv:0805.3415*, 2008.

[28] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” *Machine Learning*, vol. 47, no. 2, pp. 235–256, 2002.

[29] I. Poulakakis, G. F. Young, L. Scardovi, and N. E. Leonard, “Information centrality and ordering of nodes for accuracy in noisy decision-making networks,” *IEEE Transactions on Automatic Control*, vol. 61, no. 4, pp. 1040–1045, 2015.

[30] K. Stephenson and M. Zelen, “Rethinking centrality: Methods and examples,” *Social Networks*, vol. 11, no. 1, pp. 1–37, 1989.

[31] B. Bollobás, *Random Graphs*. Springer, 1998.

[32] A. Savas, V. Srivastava, and N. E. Leonard, “On distributed linear filtering with noisy communication,” in *Proceedings of the American Control Conference (ACC)*, pp. 2699–2704, 2017.