Review on Adiponectin: A Benevolent Adipokine

Kinjal P. Patel1*, Dhanya B. Sen1, Ashim Kumar Sen1, Darshan Vaghela1, Ramachandran Balaraman1 and Rajesh A. Maheshwari1

1Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghadia, Vadodara-391760, Gujarat, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Adiponectin is a most abundant secretory protein produced by adipocytes of white adipose tissue. Adiponectin circulates in blood as three different (high-molecular, middle-molecular, and low-molecular weight) isoforms, gives its effects through AdipoR1 and AdipoR2 receptor. Primary data suggesting that adiponectin has insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. High serum level of adiponectin is positively associated with inflammation severity and pathological progression in chronic kidney disease, liver disease and inflammatory bowel disease. It has emerged as a valuable biomarker for insulin sensitivity, cardiovascular risk and inflammation. Adiponectin is gaining attention for its therapeutic role in Alzheimer’s disease. Adiponectin appears to play a crucial role not only in glucose and lipid metabolism but also the development and progression of different cancers. Adiponectin also produced locally in the retinas participate in defense of various eye diseases. This review summarizes the role of adiponectin as benevolent adipokine in different disorders.

Keywords: Adiponectin; type 2 diabetes mellitus; obesity; anti-inflammatory; anti-atherogenic; cancer; neuroprotective; cardioprotective.
ABBREVIATIONS

PPARs: Peroxisome Proliferator-Activated Receptors; fAd: Full-Length Adiponectin; gAd: globular adiponectin; CSF: Cerebrospinal Fluid; WAT: White Adipose Tissue; BAT: Brown Adipose Tissue; IRS: Insulin Receptor Substrate; HMW: High Molecular Weight; LMW: Low Molecular Weight; Ero1-Lα: ER Oxidoreductase 1-Lα, ERP44: Endoplasmic Reticulum resident protein 44; DsbA-L: Disulphide-bond A oxidoreductase-like protein; GPCR: G-Protein Coupled Receptors; VSMCs: Vascular Smooth Muscle cells; KO: Knock-Out; TNF-α: Tumor Necrosis Factor α; ROS: Reactive Oxygen Species; IBD: Inflammatory Bowel Disease; BMAT: Bone Marrow Adipose Tissue; T2D: Type 2 Diabetes; NAFLD: Non Alcoholic Fatty Liver Disease; SCAT: Subcutaneous Adipose Tissue; VAT: Visceral Adipose Tissue; Eos: Eosinophils; IL: Interleukin; IL-1RIa/IL-1 Receptor antagonist; TGFβ: Transforming Growth Factor Beta; IHD: Ischemic Heart Disease; OAC: Oesophageal Adenocarcinoma; MIR: Myocardial Ischemia Reperfusion; iNOS: Inducible Nitric Oxide Synthase; IHF: Ischemic Heart Disease; OAC: Oesophageal Adenocarcinoma; MIR: Myocardial Ischemia Reperfusion; VCAM-1: Vascular Cell Adhesion Molecule 1; ICAM-1: Intracellular Adhesion Molecule 1; LKB1: Liver Kinase B1; CaMKK kinase: Ca \(^{2+}\)/calmodulin-dependent protein kinase; PLC: Phospholipase C; AMPK: Adenosine Monophosphate-Protein Kinase; IP3: Inositol Triphosphate; eNOS: Endothelial NO Synthase; iNOS: Inducible Nitric Oxide Synthase; COX-2: Cyclooxygenase -2; VEGF: Vascular Endothelial Growth Factor; RP: Retinitis Pigmentosa; AMD: Age Related Muscular degeneration; MCI: Mild Cognitive Impairment; AD: Alzheimer’s Disease; GSK3β: Glycogen Synthase Kinase 3β

1. INTRODUCTION

Adiponectin is protein consisting of 244-amino acid which is part of complement 1q family [1]. Adipocytes are the main source of Adiponectin production and its transcription is controlled by peroxisome proliferator-activated receptors (PPARs) [2]. It has N terminal collagenous region and a C terminal globular domain [3]. It circulates in trimmeric, hexameric, and higher order complexes [4]. Adiponectin is classified according to molecular mass, it is classified in to low (trimmer), middle (hexameric), and high complexes [5]. Adiponectin exist mainly either as full length form or smaller globular form in circulation. Full-length adiponectin (fAd) is fragmented by leukocyte esterase in to globular adiponectin (gAd). Both adiponectin (gAd and fAd) regulate distinct signalling pathways within the same tissue. Adiponectin is seen in human cerebral cerebrospinal fluid (CSF), in trimmer form. Its concentrations within the CSF are as approximately 1000 fold less than that in serum [6-8].

2. OVERVIEW OF ADIPOSE TISSUE AND ADIPONECTIN BIOLOGY

White Adipose Tissue (WAT) and Brown Adipose Tissue (BAT) are the main source of adiponectin production which is reflected in the blood in concentration of 5–30µl/ml Adiponectin (also mentioned as Acrp30, GBP-28, apM1, and Adipo Q) may be a protein mainly secreted by WAT adipocytes. Human adiponectin is encoded by the Adipo Q gene [9]. Small concentration of adiponectin is present in human murine osteoblasts, parenchyma cells, liver, myocytes, epithelial cells and placental tissue [10].

Adiponectin enhanced the fatty acid biosynthesis and inhibition of gluconeogenesis in liver [11]. Adiponectin also increases glucose uptake through the signalling pathway in skeletal muscle. Insulin resistance is improved by adiponectin through increased fatty acid oxidation via PPARα activation and increased signalling of IRS (insulin receptor substrate) in skeletal muscle and liver [12,13]. Reports suggest that adiponectin possess anti-diabetic, anti-inflammatory, cardioprotective, anti-atherosclerotic, anti-cancer and neuro-protective effects [14-17].

3. IDENTIFICATION AND MOLECULAR STRUCTURE

Adiponectin exists as three different ways, as trimmer (67 kDa), hexamer (140 kDa), and a multimer (300 kDa) (Fig. 1).

Adiponectin in its monomeric form can’t be detected in native conditions [18]. Oligomeric adiponectin is made up of a low molecular weight Homotrimer. The Hexameric adiponectin form is formed by two trimmers linked through a disulphide bond and this hexameric form is the structural unit for HMW adiponectin form.
Adiponectin exists in trimmer, hexamer, multimer and globular form. Full-length adiponectin is composed of 244 amino acids, including a collagen-like domain at the N terminus and globular domain at the C-terminus [18].

HMW oligomer adiponectin is the chief bioactive isoform having anti-diabetic and cardioprotective effect. Post-translational alterations such as hydroxylation and successive glycosylation of numerous lysine residues are vital for HMW adiponectin formation. Globular adiponectin is also biologically active which is produced from full length protein by the process of proteolysis. Numerous molecular chaperones such as Ero1-La (ER oxidoreductase 1-La), ERp44 (Endoplasmic Reticulum resident protein 44) and DsbA-L (disulphide-bond A oxidoreductase-like protein) in the endoplasmic reticulum are responsible for controlling the production and secretion of adiponectin [19-23].

4. ADIPONECTIN RECEPTOR

AdipoR1 and AdipoR2 are main two receptor through which adiponectin gives its effect. Chemically it has seven trans membrane domain which slightly differ from GPCR (G-protein coupled receptors). More amounts of AdipoR1 and AdipoR2 are present in muscle and liver respectively. Confusion is still alive for T cadherin, it may be a binding protein or a adiponectin receptor. Though its pharmacological activity in cardioprotective, endothelial and Vascular Smooth Muscle cells (VSMCs) proliferation, migration and survival is notified.

Oestrogen and Testosterone have an important role in maintaining plasma levels of adiponectin. So, in female adiponectin levels are slightly higher as compared to male. This co-relation clarify the reason why men have more chances for insulin resistance and atherosclerosis than women [24-31].

5. SIGNALLING PATHWAY

APPL1 (adaptor protein) facilitates adiponectin signalling by interacting with adiponectin receptor to stimulate AMPK muscle cells. AMPK can be activated by adiponectin through the APPL1/LKB1-independent and PLC/Ca++/CaMKK-dependent pathway by secreting calcium from the endoplasmic reticulum via stimulation of IP$_3$ receptor.

APPL2 utilizes two separate mechanisms to down regulate signalling in C2C12 cells which is dependent on AdipoR1 receptor. Firstly, APPL1 and APPL2 compete with each other for binding with AdipoR1 receptor. Secondly APPL2 forms a heterodimer with APPL1 there by anticipates the binding of the latter with AdipoR1 receptor [32-33].
6. THERAPEUTIC ROLE OF ADIPONECTIN

6.1 Type 2 Diabetes Mellitus

Person with lower level of adiponectin is more prone for type 2 diabetes mellitus [34] Insulin resistances, triglycerides, C-reactive protein, tissue plasminogen activator, and alanine aminotransferase are inversely associated with adiponectin levels. High-density lipoprotein, cholesterol and factor VIII are directly associated with adiponectin. Hypoadiponectinemia is commonly linked with insulin resistance suggesting a process during the primary stages of hyperinsulinemia where high insulin levels result in a decrease of adiponectin levels which subsequently lowers the insulin sensitivity. Further this process prompts to have an increased level of circulating insulin for the maintenance of glucose homeostasis [35].

In adiponectin Knock-out (KO) mice it was found that administration of PPAR gamma agonists improved glucose tolerance and increased the sensitivity of insulin [36]. The correlation between HMW adiponectin levels and glucose tolerance is better than the correlation between total circulating levels of adiponectin and glucose tolerance.

It was demonstrated that down regulation of AdipoR1 and AdipoR2 receptors caused decreased insulin sensitivity thereby causing obesity. Different isoform of adiponectin plays separately for glucose tolerance effect. Levels of HMW isoform of adiponectin gives better effect for insulin sensitivity as compared to LMW isoform. In diabetic patient, level of expression of AdipoR1 and AdipoR2 receptors also is decreased along with adiponectin level [37].

6.2 Inflammation

Anti-inflammatory property of adiponectin is mainly due to that improvement of metabolic functions which is reflected by reduced levels of pro-inflammatory indicators like TNF-α and C-reactive protein [38,39]. In vivo and vitro data suggested that adiponectin decreases the pro-inflammatory cytokines, decreased the expression of macrophage attracting adhesion molecule, interference of the inflammatory signalling pathway and finally reducing the mitochondrial ROS (reactive oxygen species) production that would eventually leads to oxidative damage [40-42].

Adiponectin and TNF-α antagonists neutralize rheumatoid arthritis which is due to that inhibitory effect of this adipokine on TNF-α [38,43]. Many of anti-inflammatory drugs seem to produce their effect by increasing the level of adiponectin. This anti-inflammatory mechanism of action is due to inhibition of TNF-α. Crohn’s disease, Systemic lupus erythematos and inflammatory bowel disease (IBD) reported to have higher level of adiponectin. Recent study of adiponectin...
transgenic models indicated the both beneficial and harmful sides of adiponectin in inflammatory bowel disease pathophysiology [44-46].

The adipose tissue from the lean subject and obese subject produce anti-inflammatory cytokines and pro-inflammatory cytokines respectively. Anti-inflammatory cytokines includes adiponectin, IL (Interleukin)-4, IL-10, IL-1 Receptor antagonist (IL-1Ra), IL-13, Transforming Growth Factor Beta (TGFβ) and apelin. While pro-inflammatory cytokines include TNF-α, resistin, leptin, IL-6, visfatin, angiotensin II, and plasminogen activator inhibitor. Pro-inflammatory cytokines like TNF-α, IL-1b, IL-6, iNOS and reactive oxygen species (ROS) are secreted by M1 macrophage which can inhibit adipogenesis in adipocytes and insulin signalling [47-49]. IL-10, IL1 receptor antagonists and arginase-1 like anti-inflammatory cytokines are secreted by macrophage M2 which can help in tissue remodelling and in the protection against obesity induced insulin resistance [50,51].

6.3 Obesity

Scientific data from various studies propose that low adiponectin levels are a major contributing factor for the obesity-linked illness [52-55]. Obese patient has more prone to become diabetic and hypertensive. Obesity is also linked to circulatory system diseases like IHD (ischemic heart disease) and peripheral artery disease [54]. Adipokines modulate inflammatory and metabolic processes, so adipokine play a crucial role in pathophysiology of obesity-linked diseases. Adiponectin plasma levels are inversely related with adult’s body fat percentage. Adiponectin regulate the fatty acid oxidation, glucose and lipid metabolism. Regulatory role of adiponectin in atherogenesis, endothelial function and vascular remodelling is also documented. Adiponectin levels are fundamentally decreased in obese subjects contrasted with non-obese subjects or non-diabetics [52-61].

6.4 Cancer

6.4.1 Oesophageal adenocarcinoma (OAC)

Recently, Obesity is major important health problem in the developed countries. Weight is related with an expanded danger of building up certain disease like oesophageal adenocarcinoma (OAC) [62]. Obesity is an important risk factor for an oesophageal adenocarcinoma [63-65]. As an obese person has more chances of oesophageal cancer by approximately 1.5-fold in both sexes [66].

In studies, we found that leptin increase multification and restrains apoptosis in OAC cells [67]. Adiponectin is managed conversely to leptin and seem to have contraindicated metabolic activities, we have concluded that adiponectin may restrict the development impact in OAC cells. There is some primer information recommending that adiponectin may have anticancer effect.

Adiponectin act as a physiological inhibitor of developing impact of leptin. Adiponectin insufficiency with hyperleptinemia impact may expanded the danger of progression of oesophageal adenocarcinoma and other obesity associated cancers [61-68].

6.4.2 Breast cancer

In postmenopausal woman for the development of breast cancer, obesity is the one of the major risk factor [69-70]. Over abundance of fat tissue (adipose tissue) favours metastasis progression and recurrence of breast cancer, which is associated with higher mortality [71]. Consequently overweight and obese female with breast carcinoma are 2.5 occasion as prone to die off within 5 years of disease diagnose history as compared to non-obese female [72]. Number of factors have been suggested to narrate the clear connection between obesity and breast cancer.

Various investigations have surveyed the movement of adiponectin on cell development and reported the anti-proliferative capability of adiponectin in different breast cancer cell lines, including T47D.21-25, MDA-MB-231 and MCF-7. Recently, demonstrated that the treatment of adiponectin for 24 hours, diminished MCF-7 cell expansion, and this restraint effect was seen up to 96 hour [73].

6.4.3 Prostate cancer

In experimental studies, safe and protective role of adiponectin to prevent progression of prostate cancer is identified. AdipoRs, JNK, NOX, NF-κB, AMPK are key molecule for signalling pathway of its tumorigenesis effect. Drug molecule can be developed based on the beneficial effects induced by adiponectin. Developed molecule should be in a position to increase the level of adiponectin which can take as tumorigenesis on prostate [74].
6.4.4 Colon cancer

Relationship between adiponectin level and risk factor for colon cancer is inverse. Person with lower level of adiponectin has higher (60%) chances of occurrence of colon cancer as compared to person with higher adiponectin levels [75].

6.4.5 Gastric cancer

Person with upper gastric cancer seems to have lower adiponectin level as compared to normal subjects. This narrates the inverse relationship between adiponectin level and occurrence of gastric cancer. Amount of adiponectin gives clear picture about size and spread and stage of tumor in different body parts [76].

6.4.6 Leukaemia

It has been demonstrated that the adiponectin reduces the growth of myelomonocyte cells lines, and also produces cell death of this monocytic progenitor cells (leukemic cells). It has been found clinically that adiponectin inversely related to the development of acute leukemia [77-78].

6.4.7 Myocardial ischemia

In vitro study suggests that adiponectin directly protect cardiomyocytes through inhibition of cell death, which further promote the cell survival. Adiponectin knock-out mice have worse MIR (myocardial ischemia reperfusion) injury such as myocardial cell apoptosis and increase infarct size that causes decreased efficacy of heart as compared to control mice. In compared to knock-out mice heterozygous (Adipoq+/-) mice, shows less circulating adiponectin levels and also severity of MIR injury [79,80]. Activity of enzymes (eNOS and iNOS) is controlled by adiponectin so it regulated the production of NO. Adiponectin differentially regulates NO production by both eNOS and iNOS. Under physiologic conditions, adiponectin stimulates NO production by phosphorylating eNOS and give its vasodilatory, antiinflammatory, vascular-protective actions. While under pathologic conditions when iNOS is induced, adiponectin prevent excess NO generation by inhibiting iNOS expression. NO is not toxic; however, NO reacts with superoxide and resultant product, peroxynitrite, is extremely cytotoxic and causes oxidative as well as nitrative stress and tissue injury. Adiponectin inhibits iNOS expression, NADPH oxidase expression and subsequent superoxide production in ischemic-reperfused cardiomyocytes. Inhibition of the both gp91phox (the cytochrome b-245 heavy chain subunit of NADPH oxidase) expression and superoxide production, found in globular adiponectin treated mice. Due to the double inhibitory effect of adiponectin on excess superoxide and NO production induced by ischemia-reperfusion, peroxynitrite formation is intensified in Adipoq-/- mice after ischemia-reperfusion and is inhibited by exogenous adiponectin. Adiponectin inhibit the synthesis of excess peroxynitrite mainly through metabolic and TNF-suppressing actions which is mediated by AMP kinase and COX-2 enzyme respectively. Anti-ischemic and cardioprotective effects of adiponectin is due to inhibition of nitrative stress and oxidative stress induced by peroxynitrite [81-84].

6.4.8 Atherosclerosis/stroke

Hypertension, Type-II diabetes and a modified lipid profile having a positive co-relation with adiponectin levels. Therefore a link between stroke and adiponectin is expected [85]. There is a possibility of risk of 5 year mortality with lower adiponectin level after first episode of stroke [86]. Few investigations suggests the protective role of adiponectin in stroke and atherosclerosis pathogenesis. The mechanism by which adiponectin gives its effect in pathogenesis of atherosclerosis is depicted in Fig. 3. As per few investigations, adiponectin-facilitated mechanistic effects have shown protection against stroke pathogenesis and atherosclerosis. Circulating adiponectin causes inhibition of monocyte adhesion to endothelial cells and subsequent inhibition of transformation of macrophage to foam cells through reducing binding and uptake of oxidized LDL [87,88]. VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intracellular cell adhesion molecule-1) bind to leucocyte and stimulate the process of atheroma after endothelial cell injury [89,90]. Adiponectin inhibit the effect of VCAM-1 and ICAM-1, this inhibitory effect occur due to activation of AdipoR2. Activated AdipoR2 increases PPAR γ activity [91]. Rosiglitazone , PPAR γ agonists increase the adiponectin levels and decrease the circulating VCAM-1, therefore it is considered to be useful in atherosclerosis treatment [92-94] Higher levels of adiponectin also protect the endothelial cell from vascular injury which is due to hypercholesterolemia and...
suppress the uptake of modified LDL into foam cells. Administration of exogenous adiponectin decrease the infarct size in both adiponectin knockout mice and wild type mice. Protective role of adiponectin is proved due to its anti-atherogenic properties and regulation of vascular remodelling [94-96].

6.4.9 Renal disease

Numerous studies related to renal disorder revealed positive correlation between the systemic adiponectin with renal dysfunction. Transcriptional downregulation of adiponectin mRNA in adipose tissue has been found in subjects with renal disease. Higher adiponectin levels confers a protective response to a heightened cardiovascular risk owing to endothelial damage as a consequence of dyslipidemia in renal dysfunction. In vivo data suggest that patients suffering from renal dysfunction with higher amount of adiponectin are found to be less prone to cardiac events. These findings support the protecting role of adiponectin against the cardiac events [97-100].

6.4.10 Liver disease

Quiescent hepatic stellate cell produce adiponectin, which induces apoptosis in activated cell but not affecting normal hepatic stellate cell apoptosis [101]. The increase in hepatic lipid oxidation by adiponectin might also play a role

Fig. 3. Adiponectin signalling mechanism in atheroma: Adiponectin AdipoR1 activates the phosphorylation of protein kinase B (Akt) and activation of vascular endothelial growth factor (VEGF). Activation of (Akt) through calcium calmodulin kinase kinase (CAMKK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and AMPK contributes to activation of endothelial nitric oxide synthase (eNOS) which leads to No Production. AdipoR2 activated PPARα which reduce vascular cell adhesion molecule 1 (VCAM-1) and intracellular adhesion molecule 1 (ICAM-1). PPARγ increases production of adiponectin [17]
for the beneficial effect of adiponectin on hepatic glucose metabolism. Insulin resistance causes abnormalities on lipid storage and lipolysis in insulin-sensitive tissues, which may induce an increased flux of free fatty acids from adipose tissue to the liver and cause steatosis. Experimental data also suggest the role of adiponectin as an indicator for cholestasis [102]. Insulin sensitivity effect of adiponectin is due to its activation of fatty acid oxidation and decreased gluconeogenesis in liver. Adiponectin is an important treatment target for non-alcoholic fatty liver disease due to its insulin sensitizing and anti-fibrotic action. Clinical data also suggest the beneficial role of adiponectin in other liver diseases also [103].

6.4.11 Eye diseases

Adipose tissue is main source for adiponectin production, but it also produced locally in brain and in some of retinal regions. These tissues also contain adiponectin receptor. Adiponectin plays an important role in neurodegenerative diseases due to its neuroprotective effect. Clinical studies also suggest the beneficial role of adiponectin in some diseases of eye. Adiponectin produces beneficial effects in eye diseases such as Retinopathy Pigmentosa (RP), Glaucoma, Age Related Muscular degeneration (AMD), diabetic retinopathy and light-induced retinal degeneration. Exercise seems to increase the adiponectin production both locally and systemically. Protective role of adiponectin is due to boosting the expression in plasma and also in retinal region [104].

6.4.12 Alzheimer’s disease

Some in vivo studies shown that adiponectin levels in the mouse CSF is 100-fold lower than plasma levels. AdipoR1 and AdipoR2 are also highly expressed in different brain regions, like hypothalamus, cortex, hippocampus, pituitary glands, and area postrema. Adiponectin acts on the hypothalamus and activates AdipoR1-AMPK.
signaling to regulate food intakes and lipid and glucose metabolism during fasting. Adiponectin regulates neurogenesis and proliferation of hippocampal neural stem cells. Deficiency of adiponectin reduces dendritic growth and spine density in the hippocampal dentate gyrus in which the neural progenitor cells proliferation and differentiation is suppressed. Protective role of adiponectin is also reported against ischemic brain injury. Decreased adiponectin level has more prone to alzheimer’s disease in type-II diabetic patient with decreased glucose metabolism, gray matter volume and hippocampal volume. Neuroprotective effect of adiponectin is due to its positive correlation with amyloid and inversely correlated with hippocampal volume with mild cognitive impairment (MCI) in woman [105,106]. Increasing alzheimer’s disease bio-markers such as CSF Aβ-42, CSF p-Tau and the presence of hippocampal atrophy were found with decreased adiponectin levels in CSF [105,107-108]. Old aged people face problem regarding memory and learning impairment because transport of adiponectin to brain decreased with increasing age, while peripheral level of adiponectin has no any effect of age factor [109]. Though, therefore there is a definitive role of adiponectin in memory and learning. Some data revealed that rodents do not develop amyloid pathologies, probably because of the longevity and low aggregating propensity of rodent Aβ.

Neurodegenerative changes such as impairment in memory and learning, anxiety and unusual fear seems present in aged people with specially in chronic adiponectin deficient subjects. Increased microgliosis, astrogliosis with increased cerebral TNFα and IL1β levels that are the common hallmarks of AD. Deregulated cerebral insulin signalling activities and reduced hippocampal insulin sensitivity developed during the aging of APN-KO mice. In adiponectin knock-out aged mice, decreased pGSK3βS9 (GSK3β phosphorylated in S9 residue) and increased pGSK3βY279 (GSK3β phosphorylated in Y279 residue) levels due to activation of enzyme Glycogen synthase kinase (GSK3β). When S9 residue of GSK3β is phosphorylated, it remains inactive in cells. However it becomes active its tyrosine (Y) 279 residue undergoes phosphorylation. These correlation gives explanation for increased bio-markers such as phosphorylated Tau, Aβ42 production and stained Aβ deposition. In aged or type-2 diabetic patient, deregulation of cerebral insulin signalling and pathogenesis Alzheimer’s disease was found with decreased adiponectin levels. The inhibition of GSK3β activity can decrease BACE1 (β-site APP cleaving enzyme 1) expression, which results in reduced Aβ production. Aβ*56 is a specific Aβ oligomer foundin patients with MCI and transgenic AD mice at a young age. Aβ*56 leads to dose-dependent cognitive decline in mice, whereas trimeric Aβ does not. Reduced adiponectin and its signalling activities can be pathogenesis cause of alzheimer’s disease. This is also correlated with deregulated insulin signalling activities and decreased insulin sensitivity in brain [111-114].

7. CONCLUSION

Adiponectin is one of the Benerouvent adipokine which has beneficial therapeutic role in Type -2 Diabetes mellitus, inflammation, different type of cancer, MI and stroke. Decreased levels of adiponectin play important role in development of type 2 diabetes, obesity and cardiovascular disease in humans. Research in persons and rodent models has reliably proven the significant role of adiponectin as an physiological regulator of insulin sensitivity, glucose, and lipid metabolism as well as cardiovascular homeostasis. Recent studies showed in human and animal models for obesity, diabetes, and atherosclerosis have described on the potential role of adiponectin and adiponectin receptors for these metabolic diseases.

8. SUMMARY

Adipocyte is the main source of Adiponectin production. Adiponectin has beneficial therapeutic role in Type -2 Diabetes mellitus, inflammation and different type of cancer such as OAC, gastric cancer, colon cancer breast cancer and leukaemia. Adiponectin has cardioprotective role in MI and stroke. Neuroprotective role of Adiponectin is also proven in Alzheimer’s disease. Adiponectin produces beneficial effects in eye diseases such as RP, Glaucoma and AMD.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocrine Reviews. 2005;26(3):439-51.

2. Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem. J. 2010;425(1):41-52.

3. Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem. 2005;280(18):18341-7.

4. Palanivel R, Fang X, Park M, Eguchi M, Pallan S, De Girolamo, et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovascular Research. 2000;75(1):148-57.

5. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352-63.

6. Kusminski CM, McTernan PG, Schraw T, Kos K, O'hare JP, Ahima R, et al. Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia. 2007;50(3):634-42.

7. Neumeier M, Weigert J, Buettnner R, Wanninger J, Schaffler A, Müller AM, et al. Detection of adiponectin in cerebrospinal fluid in humans. J Am Physiol Endocrinol Metab. 2007;293(4):E965-9.

8. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Paiyani UB, et al. Adiponectin acts in the brain to decrease body weight. Nature Medicine. 2004;10(5):524-9.

9. Obata Y, Yamada Y, Takah Y, Baden MY, Saisho K, Tamba S, et al. Relationship between serum adiponectin levels and age in healthy subjects and patients with type 2 diabetes. Clin. Endocrinol. 2013;79(2):204-10.

10. Guerre-Milio M. Adipose tissue hormones. J Endocrinol. Invest. 2002;25(10):855-61.

11. Cook WS, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK. Less extrahepatic induction of fatty acid β-oxidation enzymes by PPARα. Biochem. Biophys Res Commun. 2000;278(1):250-7.

12. Berendoncks AM, Stensvold D, Garnier A, Fortin D, Sente T, Vrints CJ, et al. Disturbed adiponectin–AMPK system in skeletal muscle of patients with metabolic syndrome. Eur. J Prev Cardiol. 2015;22(2):203-5.

13. Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gürke J, Fischer B, et al. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Human Reproduction. 2017;32(7):1382-92.

14. Thundyill J, Pavlovska D, Sobey CG, Arumugam TV. Adiponectin receptor signalling in the brain. Br J Pharmacol. 2012;165(2):313-27.

15. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94(9):1221-5.

16. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. Cardiometab Syndr J. 2009;4(1):44-9.

17. Bloemer J, Pinky PD, Govindarajulu M, Hong H, Judd R, Amin RH, et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018;2018.

18. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International journal of molecular sciences. 2017;18(6):1321 sensitivity. J. Biol. Chem. 2004;279(13):12152-62.

19. Magkos F, Sidossis LS. Recent advances in the measurement of adiponectin isofrom distribution. Current Opinion in Clinical Nutrition & Metabolic Care. 2007;10(5):571-5.

20. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. PNAS. 2001;98(4):2005-10.

21. Wang ZV, Schraw TD, Kim JY, Khan T, Rajala MW, Follenzi A, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol cell Biol. 2007;27(10):3716-31.

22. Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxireductase Ero1-Lα. Mol cell Biol. 2007;27(13):4698-707.

23. Liu M, Zhou L, Xu A, Lam KS, Wetzel MD, Xiang R, et al Disulfide-bond A
oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. PNAS. 2008;105(47):18302-7.

24. Cheng KK, Lam KS, Wang B, Xu A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract. Res. Clin. Endocrinol. Metab. 2014;28(1):3-13.

25. Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: the missing link between insulin resistance and obesity. Diabetes & Metabolism. 2008;34(1):2-11

26. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. PNAS. 2004;101(28):10308-13..

27. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Nagaretani H, et al. Role of adiponectin in preventing vascular stenosis the missing link of adipo-vascular axis. J Biol Chem. 2002;277(40):37487-91.

28. Combs TP, Berg AH, Rajala MW, Klebanov S, lyengar P, Jimenez-Chillaron JC, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes. 2003;52(2):268-76.

29. Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J. Biol. Chem. 2005 ;280(18):18073-80.

30. Frias JP, Macaraeg GB, Ofrecio J, Joseph GY, Olefsky JM, Kruszynska YT. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes. 2001;50(6):1344-50.

31. Kalin MF, Zumoff B. Sex hormones and coronary disease: A review of the clinical studies. Steroids. 1990;55(8):330-52

32. Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. cell Biol. 2006;8(5):516-23.

33. Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/ Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Bio Chem. 2009; 284(33):22426-35.

34. Wannamethee SG, Lowe GD, Rumley A, Cherry L, Whincup PH, Sattar N. Adipokines and risk of type 2 diabetes in older men. Diabetes Care. 2007; 30(5):1200-5.

35. Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem. 2006;281(5):2654-60.

36. Basu R, Pajvani UB, Rizza RA, Scherer PE. Selective down regulation of the high-molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes. 2007;56(8):2174-7.

37. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem. 2004; 279(13):12152-62.

38. Komai N, Morita Y, Sakuta T, Kuwabara A, Kashihara N. Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod Rheumatol. 2007;17(5):385-90.

39. Matsushita K, Yatsuya H, Tamakoshi K, Wada K, Otsuka R, Zhang H, et al. Inverse association between adiponectin and C-reactive protein in substantially healthy Japanese men. Atherosclerosis. 2006; 188(1):184-9.

40. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296-301.

41. Yamaguchi N, Arugaeta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Letters. 2005;19;579(30):6821-6.

42. Ouedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006;55(6):1840-6.

43. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B. Regulation of adiponectin by adipose
69. Lorincz AM, Sukumar S. Molecular links between obesity and breast cancer. Endocr Relat Cancer. 2006;13(2):279-92.

70. Wolk A, Gridley G, Svensson M, Nyrén O, McLaughlin JK, Fraumeni JF, et al. A prospective study of obesity and cancer risk (Sweden). Cancer Causes & Control. 2001;12(1):13-21.

71. Chlebowski RT, Aiello E, McTiernan A. Weight loss in breast cancer patient management. Clin Oncol. 2002;20(4):1128-43.

72. Daling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL. Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer. 2001;92(4):1723-90.

73. Jardé T, Caldefie-Chézet F, Goncalves-Mendes N, Mishellany F, Buechler C, Pennault-Llorca F, et al. Involvement of adiponectin and leptin in breast cancer: clinical and in vitro studies. Endocr--Relat Cancer. 2009;16(4):1197-210.

74. Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S. Prostate cancer and adiponectin. Urology. 2005;66(6):1168-72.

75. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: A prospective study. J Natl Cancer Inst. 2005;97(22):1688-94.

76. Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hata K, Nagawa H. Plasma adiponectin and gastric cancer. Clin. Cancer Res. 2005;11(2):466-72.

77. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyma A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. Am. J Hematol. 2000;96(5):1723-32.

78. Petridou E, Mantzoros CS, Dessypris N, Dikalioti SK, Trichopoulos D. Adiponectin in relation to childhood myeloblastic leukaemia. Br J Cancer. 2006;94(1):156-60.

79. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nature Medicine. 2005;11(10):1096-103.

80. L'Abbate A, Neglia D, Vecoli C, Novelli M, Ottaviano V, Baldi S, et al. Beneficial effect of heme oxygenase-1 expression on myocardial ischemia-reperfusion involves an increase in adiponectin in mildly diabetic rats. AM J PHYSIOL-HEART C. 2007;293(6):H3532-41.

81. Li R, Wang WQ, Zhang H, Yang X, Fan Q, Christopher TA, et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. AM J Physiol-Endoc M. 2007;293(6):E1703-8.

82. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circulation Research. 2000;87(3):241-7.

83. Shinmura K, Tamaki K, Saito K. Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated Protein. 2008;17(1):112-20.

84. Ikeda Y, Ohashi K, Shibata R, Pimentel DR, Kihara S, Ouchi N, et al. Cyclooxygenase-2 induction by adiponectin is regulated by a sphingosine kinase-1 dependent mechanism in cardiac myocytes. FEBS Letters. 2008;582(7):1147-50.

85. Matsumoto M, Ishikawa S, Kajii E. Association of adiponectin with cerebrovascular disease: a nested case–control study. Stroke. 2008;39(2):323-8.

86. Efstathiou SP, Tsioulos DI, Tsiakou AG, Gratsias YE, Pefanis AV, Mountokalakis TD. Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke. 2005;36(9):1915-9.

87. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473-6.

88. Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB–binding protein and regulates growth factor–induced common postreceptor signal in vascular smooth muscle cell. Circulation. 2002;105(24):2893-8.

89. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine–endothelial
cell interactions. Biochem Biophys Res Commun. 2004;314(2):415-9.

90. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-43.

91. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature medicine. 2007;(3):332-9.

92. Rival Y, Benéteau N, Taillandier T, Pezet M, Dupont-Passelaigue E, Patoiseau JF, et al. PPAR α and PPAR δ activators inhibit cytokine-induced nuclear translocation of NF-κB and expression of VCAM-1 in EAhy926 endothelial cells. Eur J Pharmacol. 2002;435(2-3):143-51.

93. Gautier S, Ouk T, Pétraout M, Pétraout O, Bérézowski V, Bordet R. PPAR-alpha agonist used at the acute phase of experimental ischemic stroke reduces occurrence of thrombolysis-induced hemorrhage in rats. PPAR Research. 2015;2015.

94. Dolezalova R, Haluzik MM, Bosanska L, Lacinova Z, Stulc T, Haluzik M. Effect of PPAR-gamma agonist treatment on markers of endothelial dysfunction in patients with type 2 diabetes mellitus. Physiol Res. 2007;56(6):741.

95. Zhao S, Zhang C, Lin Y, Yang P, Yu Q, Chu Y, et al. The effects of rosiglitazone on aortic atherosclerosis of cholesterol-fed rabbits. Thromb Res. 2008;123(2):281-7.

96. Miao J, Shen LH, Tang YH, Wang YT, Tao MX, Jin KL, et al. Overexpression of adiponectin improves neurobehavioral outcomes after focal cerebral ischemia in aged mice. CNS Neurosci Ther. 2013;19(12):969-77.

97. Guebre-Egziabher F, Bernhard J, Funahashi T, Hadj-Aissa A, Fouque D. Adiponectin in chronic kidney disease is related more to metabolic disturbances than to decline in renal function. Nephrol Dial Transplant.2005;20(1):129-34.

98. Zoccali C, Mallamaci F, Panuccio V, Tripepi G, Cutrupi S, Parlongo S, et al. Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int. 2003;63:S98-102.

99. Marchlewksa A, Stenvinkel P, Lindholm B, Danielsson A, Pecoits-Filho R, Lönqvist F, et al. Reduced gene expression of adiponectin in fat tissue from patients with end-stage renal disease. Kidney Int. 2004;66(1):46-50.

100. Tentolouris N, Doulgerakis D, Moya-Takis I, Kyriaki D, Makrilakis K, Kosmadakis G, et al. Plasma adiponectin concentrations in patients with chronic renal failure: relationship with metabolic risk factors and ischemic heart disease. Horm Metab Res. 2004;36(10):721-7.

101. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol. 2005;166(6):1655-69.

102. Lacke F, Wüstefeld T, Horn R, Luedde T, Rao AS, Manns MP, et al. High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo. J Hepatol. 2005;42(5):666-73.

103. Tietge UJ, Boker KH, Manns MP, Bahr MJ. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. AM J PHYSIOL-ENDOC M. 2004;287(1):E82-9.

104. Li HY, Hong X, Cao QQ, So KF. Adiponectin, exercise and eye diseases. International review of neurobiology Academic Press. 2019:147: 281-29.

105. Waragai M, Adame A, Trinh I, Sekiyama K, Takamatsu Y, Une K, et al. Possible Involvement of Adiponectin, the Anti-Diabetes Molecule, in the Pathogenesis of Alzheimer’s Disease. J. Alzheimer’s Dis. 2016; 52:1453–1459.

106. García-Casareas N, García-Arnés JA, Rioja J, Ariza MJ, Gutiérrez A, Alfaro F, et al. Alzheimer’s like brain changes correlate with low adiponectin plasma levels in type 2 diabetic patients. J Diabetes Complications. 2016;(2):281-6.

107. Wennberg A, Gustafson D, Hagen CE, Roberts RO, Knopman D, Jack Jr C, et al. Serum adiponectin levels, neuroimaging, and cognition in the mayo clinic study of aging J Alzheimers Dis. 2016;53(2):573-81.

108. Waragai M, Adame A, Trinh I, Sekiyama K, Takamatsu Y, Une K, et al. Possible Involvement of Adiponectin, the Anti-Diabetes Molecule, in the Pathogenesis of Alzheimer’s Disease. J. Alzheimer’s Dis. 2016;52:1453–1459.

109. Panici T, Anderson KL, Brewer LD, Kadish I, DeMoll C, Landfield PW, et al.
Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats. Neurobiol. Aging. 2013; 34(8):1977-87.

110. Ng RC, Chan KH. Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci. 2017; 18(3):592.

111. Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW, Cheng KK, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol. Neurodegener. 2016;11(1):1-6.

112. Chan KH, Lam KS, Cheng OY, Kwan JS, Ho PW, Cheng KK, et al. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PloS ONE. 2012;7(12):e52354.

113. Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J. Clin. Investig. 2013;123: 224–35.

114. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res. 2000; 87(3):241-7.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/69062

© 2021 Patel et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.