A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270

Maximilian N. Günther1*, Francisco J. Pozuelos2,3, Jason A. Dittmann4, Diana Dragomir1, Stephen R. Kane5, Tansu Daylan1, Adina D. Feinstein6, Chelsea X. Huang1, Timothy D. Morton7, Andrea Bonfanti2, L. G. Bouma8, Jennifer Burt1, Karen A. Collins9, Jack J. Lissauer10, Elisabeth Matthews1, Benjamin T. Montet6, Andrew Vanderburg11, Songhu Wang12, Jennifer G. Winters9, George R. Ricker1, Roland K. Vanderspek1, David W. Latham9, Sara Seager1,4,13, Joshua N. Winn8, Jon M. Jenkins10, James D. Armstrong14, Khalid Barkaoui3,15, Natalie Batalha16, Jacob L. Bean6, Douglas A. Caldwell17, David R. Ciardi17, Kevin I. Collins18, Ian Crossfield1, Michael Fausnaugh1, Gabor Furesz1, Tianjun Gan19, Michaël Gillon3, Natalia Guerrero1, Keith Horne20, Steve B. Howell10, Michael Ireland21, Giovanni Isopi22, Emmanuël Jehin2, John F. Kielkopf17, Sebastien Lepine24, Franco Mallia22, Rachel A. Matson10, Gordon Myers25, Enric Palle26,27, Samuel N. Quinn9, Howard M. Relles1, Bárbara Rojas-Ayala28, Joshua Schlieder29, Ramotholo Sefako30, Avi Shporer1, Juan C. Suárez31,32, Thiam-Guan Tan33, Eric B. Ting10, Joseph D. Twicken34 and Ian A. Waite35

1Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Liège, Belgium. 3Astrobiology Research Unit, Université de Liège, Liège, Belgium. 4Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. 5Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA. 6Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA. 7Department of Astronomy, University of Florida, Gainesville, FL, USA. 8Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA. 9Center for Astrophysics, Harvard and Smithsonian, Cambridge, MA, USA. 10NASA Ames Research Center, Moffett Field, CA, USA. 11Department of Astronomy, University of Texas at Austin, Austin, TX, USA. 12Department of Astronomy, Yale University, New Haven, CT, USA. 13Department of Aeronautical and Astronomical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. 14University of Hawaii Institute for Astronomy, Pukalani, HI, USA. 15Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco. 16Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA. 17NASA Exoplanet Science Institute, Caltech/IPAC-NExScI, Pasadena, CA, USA. 18Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA. 19Physics Department and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing, China. 20SUPA Physics and Astronomy, University of St Andrews, St Andrews, UK. 21Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australian Capital Territory, Australia. 22Campo Catino Astronomical Observatory, Guarcino, Italy. 23Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA. 24Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA. 25American Association of Variable Star Observers (AAVSO), Hillsborough, CA, USA. 26Instituto de Astrofísica de Canarias (IAC), La Laguna, Tenerife, Spain. 27Departamento de Astrofísica, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain. 28Departamento de Ciencias Físicas, Universidad Andrés Bello, Las Condes, Santiago, Chile. 29NASA Goddard Space Flight Center, Greenbelt, MD, USA. 30South African Astronomical Observatory, Cape Town, South Africa. 31Department of Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain. 32Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain. 33Perth Exoplanet Survey Telescope, Perth, Western Australia, Australia. 34SETI Institute/NASA Ames Research Center, Moffett Field, CA, USA. 35Centre for Astrophysics, University of Southern Queensland, Toowoomba, Queensland, Australia.

*e-mail: maxgue@mit.eduA full list of affiliations appears at the end of the paper.
Supplementary Information:
A Super-Earth and two sub-Neptunes transiting the nearby and quiet M-dwarf TOI-270

Maximilian N. Günther1,2, Francisco J. Pozuelos3,4, Jason A. Dittmann5,6, Diana Dragomir1,7, Stephen R. Kane8, Tansu Daylan1,9, Adina D. Feinstein10, Chelsea Huang1,12, Timothy D. Morton11, Andrea Bonfanti2, L. G. Boucha12, Jennifer Burt1,2, Karen A. Collins12, Jack J. Lissauer13, Elisabeth Matthews1, Benjamin T. Montet10,16, Andrew Vanderburg15,16, Songhu Wang17,16, Jennifer G. Winters12, George R. Ricker1, Roland K. Vanderspek1, David W. Latham12, Sara Seager1,5,14, Joshua N. Winn18, Jon M. Jenkins13, James D. Armstrong19, Khalid Barkaoui1,20, Natalie Batalha21, Jacob L. Bean10, Douglas A. Caldwell22, David R. Ciardi23, Kevin I. Collins24, Ian Crossfield1, Michael Fausnaugh1, Gabor Furesz1, Tianjun Gan25, Michael Gillon1, Natalia Guerrero1, Keith Horne26, Steve B. Howell27, Michael Ireland27, Giovanni Isopi28, Emmanuel Jehin3, John F. Kielkopf29, Sebastien Lepine30, Franco Malia32, Rachel A. Matson23, Gordon Myers31, Enric Palle32,33, Samuel N. Quinn12, Howard M. Relles3, Bábara Rojas-Ayala14, Joshua Schlieder35, Ramotholo Sefako36, Avi Shporer1, Juan C. Suárez37,38, Thiam-Guan Tan39, Eric B. Ting13, Joseph D. Twicken22, and Ian A. Waite40

1 Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Juan Carlos Torres Fellow
3 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liége, 19C Allée du 6 Août, 4000 Liége, Belgium
4 Astronomy Research Unit, Université de Liége, 19C Allée du 6 Août, 4000 Liége, Belgium
5 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6 51 Pegasi b Postdoctoral Fellow
7 NASA Hubble Fellow
8 Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
9 Department of Astronomy & Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA
10 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL, 32611, USA
11 Center for Astrophysics — Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138
12 NASA Ames Research Center, Moffett Field, CA, 94035, USA
13 Department of Aeronautical and Astronomical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
14 Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA
15 NASA Sagan Fellow
16 NASA Exoplanet Science Institute, Caltech/IPAC-NExScI, 1200 East California Boulevard, Pasadena, CA 91125, USA
17 Department of Astronomy, Yale University, New Haven, CT 06511, USA
18 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA
19 University of Hawaii Institute for Astronomy, 34 Ohia Ku Street, Pakalana, HI 96753
20 Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco
21 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
22 SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035, USA
23 NASA Exoplanet Science Institute, Caltech/IPAC-NEExScI, 1200 East California Boulevard, Pasadena, CA 91125, USA
24 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
25 Physics Department and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing 100084, China
26 SUPA Physics & Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland, UK
27 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
28 Campo CatinA Astronomical Observatory, Regionale Lazio, Quarrino (FR), 03010 Italy
29 Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, USA
30 Department of Physics and Astronomy, Georgia State University, 25 Park Pl, NE, Atlanta, GA 30340, USA
31 AAVSO, 5 Inverness Way, Hillsborough, CA 94010, USA
32 Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain
33 Departamento de Física, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
34 Departament de Ciències Físiques, Universitat Andrés Bello, Fernández Concha 700, Las Condes, Santiago, Chile
35 NASA Goddard Space Flight Center, Greenbelt, MD, USA
36 South African Astronomical Observatory, PO Box 9, Observatory, 7935, South Africa
37 Dpt. Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
38 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008, Granada, Spain
39 Perth Exoplanet Survey Telescope, Perth, Western Australia
40 Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, 4350, Australia

*corresponding author (maxgue@mit.edu)
On Bayesian statistics, Nested Sampling and Gaussian Processes

Here, we briefly outline the key concepts of Bayesian statistics, Nested Sampling and Gaussian Processes, which we extensively use for all analyses. Following Bayes’ theorem, the ‘posterior’ $P(\theta|M, D)$ is the degree of belief about the model M and its parameters θ, which is updated based on data D. It is given by:

$$P(\theta|M, D) = \frac{P(D|\theta, M)P(\theta|M)}{P(D|M)}.$$ \hspace{1cm} (1)

Therein, the ‘likelihood’ $P(D|\theta, M)$ is the probability of observing the data given the model and parameters. The ‘prior’ $P(\theta|M)$ limits and informs the model parameters. The last term, $P(D|M)$, is the ‘Bayesian evidence’,

$$P(D|M) = \int P(D|\theta, M)P(\theta|M)d\theta.$$ \hspace{1cm} (2)

and quantifies the degree of belief about the model itself given the data (marginalised over all parameters). Comparing different physical models, which is often desired in exoplanet studies, relies on the estimation of the Bayesian evidence, $P(D|M)$.

Nested Sampling \cite{1} is designed to directly compute the Bayesian evidence – making it distinct from Markov Chain Monte Carlo (MCMC) approaches, which bypass this step. For example, this enables the robust comparison of models with different numbers of exoplanets \cite{2}, circular versus eccentric orbits, or TTVs versus no TTVs. With Nested Sampling we draw samples from the prior volume (of the model parameter space) with hard likelihood thresholds. Successively, samples with the smallest likelihood get rejected, until the posterior distribution is found.

For modelling correlated noise in the data, we employ a Gaussian Process (GP) jointly with our transit model fit. A GP uses different kernels and metrics to evaluate the correlation between data points. The squared distance r^2 between data points x_i and x_j is evaluated for any metric M as

$$r^2 = (x_i - x_j)^T M^{-1} (x_i - x_j).$$ \hspace{1cm} (3)

We choose our GP with a series approximation of a ‘Matern 3/2’ kernel $k(r)$ using the \texttt{celerite} implementation \cite{3}:

$$k(r) = \sigma^2 \left[(1 + 1/\epsilon)e^{-(1-\epsilon)\sqrt{r}/\rho} - (1 - 1/\epsilon)e^{-(1+\epsilon)\sqrt{r}/\rho} \right].$$ \hspace{1cm} (4)

This kernel has two hyperparameters that are fitted for: the amplitude σ, and the time scale ρ of the correlations. In this expression used by \texttt{celerite}, ϵ controls the quality of the series approximation and is set to 0.01; in the limit $\epsilon \to 0$ it becomes the Matern-3/2 function. This kernel can describe variations with a smooth, characteristic length scale together with rougher (i.e. more stochastic) features.

Orbital dynamics

To investigate the dynamical stability of the TOI-270 system for a range of planet masses, we utilised the Mercury Integrator Package written by \cite{4}. The 4-body integrations were carried out for a duration of 10^8 simulation years, equivalent to 1.1×10^8 orbits of the inner planet and 3.2×10^7 orbits of the outer planet. To ensure a sufficient time resolution, we adopt the criteria of \cite{5} and choose a time resolution of 0.05 days. Regarding the initial orbital conditions of the planets, we assume zero eccentricity, a periastron argument of $\omega = 90^\circ$, and specify the time of inferior conjunction using the T_0 values for each of the planets shown in Table 1. The planet masses are adopted from the predicted values. We conduct a series of dynamical simulations that vary the mean anomaly (starting locations) for each of the planets. This technique explores the orbital parameter space that determines dynamical stability as a function of various system parameters \cite{6,7}. Assuming initial circular orbits, we find that the system is exceedingly stable with eccentricities remaining below 0.4% (Supplementary Fig. \cite{5}). Gradually raising the assumed masses, we find that the system remains stable up to ten times the original mass estimates. In the range of 10–30 times the original masses, instability in the system becomes inevitable with planets either being ejected from the system or colliding with the host star.

Independently, to explore the system’s stability in the context of non-circular orbits we computed the Mean Exponential Growth factor of Nearby Orbits, $Y(t)$ (MEGNO, \cite{8,9,10}). This chaos index evaluates the stability of the bodies’ trajectories after small perturbations. Each body’s six-dimensional displacement vector, δ_i, (position and velocity) is a dynamical variable from its ‘shadow particle’ (a particle with slightly perturbed initial conditions). We obtained differential equations for each δ_i by applying a variational principle to the trajectories of the original bodies. Next, the MEGNO was computed from the vari-
lations as:

\[Y(t) = \frac{2}{t} \int_0^t \frac{||\delta(s)||}{||\delta(s)||} s ds \]

(5)

along with its time-average mean value

\[\langle Y(t) \rangle = \frac{1}{t} \int_0^t Y(s) ds. \]

(6)

The time-weighting factor amplifies any stochastic behaviour, which allows the detection of hyperbolic regions in the time interval \((0, t)\). \(\langle Y(t) \rangle\) enables to distinguish between chaotic and quasi-periodic trajectories: if \(\langle Y(t) \rangle \rightarrow \infty\) for \(t \rightarrow \infty\) the system is chaotic; while if \(\langle Y(t) \rangle \rightarrow 2\) for \(t \rightarrow \infty\) the motion is quasi-periodic. With this technique we evaluate the upper limits of the eccentricities, and constructed a set of three two-dimensional MEGNO-maps (Supplementary Fig. 3). We use the MEGNO implementation with the N-body integrator REBOUND [11][12]. The integration time is set to \(10^6\) times the orbital period of the outermost planet, TOI-270 d. The time-step was set as \(5\%\) of the period of the innermost planet, TOI-270 b, and the simulation was stopped when \(\langle Y(t) \rangle > 10\). We run three independent simulations to analyse the upper limits of the eccentricities for pairs of planets, while keeping the third planet’s orbit circular in each case. All other planet parameters are fixed to the values in Table 1. The size of each MEGNO-map is \(100 \times 100\) pixels, meaning we explore the eccentricity space for each planet pair up to \(10,000\) times. The results suggest that low eccentricities of 0.05 for all planets are possible. The most restrictive eccentricity is detected for the middle planet TOI-270 c, with an upper-limit of 0.05. Planets b and d could reach eccentricities up to 0.1.

In a closely-packed system like TOI-270, tidal interactions between the star and the planets additionally influence the evolution of the orbits. However, the timescale for each parameter differs; for example, the semi-major axis evolves the slowest, while the obliquity and the planetary rotational period can change fast. We explore the tidal evolution using the ‘constant time-lag model’, where the bodies are a weakly viscous fluid [13]. The mathematical description is given in [14] [15] [16] [17] and summarised by [18], who implemented it first in their code MERCURY-T and later in POSIDONIUS [19]. We use both codes to verify our findings. TOI-270 b likely is Earth-like/rocky, therefore we assume the product of the potential Love number of degree 2 and a time-lag corresponding to Earth’s value of \(k_2,\oplus \Delta \tau_\oplus = 213\) s [20]. TOI-270 c and TOI-270 d likely are rocky/icy planets (taking into account [21] and [22]) with a dissipation higher than Earth’s, thus we assume \(5 \times k_2,\oplus \Delta \tau_\oplus [18][23]\). We also assume that the fluid Love number and the potential Love number of degree 2 are equal. The rotational period of the host body is uncertain: from photometric and spectral observations we expect an old-slow rotator, but it is possible (yet unlikely) that is a young-fast rotator. We hence run our simulations for three different rotational periods: \(P_{*,\text{rot}} = 2,50, 100\) days. First, we explore the evolution of the obliquity and rotational period from different initial conditions: initial planetary rotational periods of 10 h, 100 h and 1,000 h, and an initial obliquity of 15°, 50° and 75°. The rest of the planet parameters are fixed to the values in Table 1, and we assumed eccentricities of 0.05 for all the planets (upper limits from the stability analysis above). The results for different stellar rotation periods are comparable. For the slow rotator as an example, we find that the evolution to pseudo-rotational state occurs over a short time-scale of \(10^4\)–\(10^5\) yr for all planets, with the outer planet being the slowest to reach this state. Since TOI-270 is much older than this time-scale, we conclude that our planets are likely well aligned with the host star. However, other events which are not studied here, such as magnetic breaks or rotational deformation, might alter this state. The resulting rotational periods are \(P_{(b,c,d),\text{rot}} = 76\) h, 133 h, and 281 h, respectively.

Once the planets reach a pseudo-rotational state, tidal heating keeps acting while the orbits are eccentric, and decreases towards zero with circularisation. To explore the circularisation we ran another suite of simulations, performing integrations up to \(10^8\) yr. We find that after this time the eccentricities shrink by 94–98% from their initial values, meaning from 0.05 to < 0.002 for all planets. Since our planetary system is likely much older, this suggests the orbits are in a near-circular configuration. While the orbits are still eccentric, the tidal heating is about 250–350 W m\(^{-2}\) for planet TOI-270 b, 500–600 W m\(^{-2}\) for planet c, and 10 W m\(^{-2}\) for planet d. After \(10^8\) years, the tidal contribution decreased down to \(\sim 1.5\) W m\(^{-2}\), \(\sim 1.0\) W m\(^{-2}\), and \(\sim 0.02\) W m\(^{-2}\) for planets b, c, and d, respectively.

Finally, we investigate if the TOI-270 system remains stable when there is a fourth planet, which is located in the terrestrial-like habitable zone between 0.1–0.28 AU [24][25]. We again simulate this scenario using MEGNO (as described above) for a 5-body system, and a range of orbital distances and masses of the fourth planet (100 values between 0.1–0.3 AU, and 100 values between 1–100 M\(_\oplus\)), while freezing all other parameters. We find that the system is fully stable for the range of masses and semi-major axes in question.
Supplementary Figure 1: Archival images and TESS image for TOI-270 from 1983 to 2018. The red plus shows the current position of TOI-270 in comparison. The regions mark the TESS aperture masks used in Sector 3 (red), 4 (purple) and 5 (blue). At the given spatial resolution, we see no background sources at the target’s current sky location.
Supplementary Figure 2: Follow-up lightcurves for TOI-270 (see also Supplementary Table 1). Red lines show 20 lightcurves generated from randomly drawn posterior samples from the best-fit *allesfitter* model.
Supplementary Figure 3: Sensitivity of VLT/NaCo images to nearby companions, as a function of separation.

Inset: 4” square image, centered on the target. No visual companions appear in this image, or anywhere within the field of view. Note that two point spread function artefacts appear 750 mas north and south of the host. These artefacts originate from the structure of the point spread function due to the target’s brightness, and are not visual companions.
Supplementary Figure 4: Posterior probability distributions for all astrophysical parameters of the `allesfitter` nested sampling fit of TOI-270. The figure also highlights the correlation (or absence thereof) between all parameters. Vertical dashed lines show the median and 68% credible interval.
Supplementary Figure 5: Dynamical analysis based on the Mercury Integrator, showing the planets’ eccentricities over a range of masses (the predicted mass multiplied by a factor). The system is stable with eccentricities remaining below 0.05 for masses up to ten times the predicted mass. For masses 10–30 times higher, the system achieves stability but the interaction between planets begins to drive high eccentricities. At ~30 times the original masses, the system would be chaotic.

Supplementary Figure 6: Dynamical analysis based on MEGNO-maps. The configurations are as follow: Left, free eccentricities e_b and e_c in the range of 0 to 0.3, while $e_d=0$. Middle, free e_b and e_d, while $e_c=0$. Right, free e_c and e_d, while $e_b=0$. All other planetary parameters are fixed. In all cases: $\langle Y(t) \rangle \rightarrow 2$ for quasi-periodic orbits and $\langle Y(t) \rangle \rightarrow 5$ for chaotic systems. This shows that the system is stable for a range of low eccentricities.
Supplementary Figure 7: A recovery test for injected transits of small planets in the terrestrial-like habitable zone of TOI-270 (corresponding to periods of 18–85 days). While larger transiting planets could have been found in the available TESS data, the regime of small exoplanets with period beyond ~30 days remains open for future transit searches.
Supplementary Table 1: Observation Log

Discovery photometry

TOI-270	Date (UTC)	Telescope	Filter	Exposure time (sec)	Nr. of exposures	Duration (min)	Transit coverage	Aperture radius (arcsec)	FWHM (arcsec)
b	2018-09-20	TESS	TESS	120	46874	–	–	30–60"	–
c	2018-12-11	–	–	–	–	–	–	–	–

Follow-up photometry

TOI-270	Date (UTC)	Telescope	Filter	Exposure time (sec)	Nr. of exposures	Duration (min)	Transit coverage	Aperture radius (arcsec)	FWHM (arcsec)	∆ ln Z §
b	2018-12-18	PEST	Rc	120	189	449	Full	7.38	4.10	< 0
	2018-12-25	LCO-CTIO	i'	20	113	113	Ingr.+66%	7.78	4.30	< 0
	2018-12-27	SS0-T17	Clear	60	120	151	Full	6.30	2.10	N/A ‡
	2018-12-28	PEST	V	120	174	404	Full	7.38	4.00	< 0
	2019-01-11	LCO-CTIO	i'	14	221	200	Full	8.94	2.10	< 0
	2019-01-14	LCO-SSO	i'	15	178	161	Full	7.00	1.74	6.8 §
	2019-01-24	LCO-SSO	g'	40	136	184	Full	4.23	2.14	< 0
	2019-01-27	LCO-SAAO	g'	70	119	218	Full	7.78	2.28	< 0
c	2018-12-15	TS	z'	10	698	242	Full	4.48	2.48	11.3 §
	2018-12-16	LCO	i'	90	88	180	Full	5.83	–	19.2 §
	2018-12-27	LCO-SSO	i'	11	207	216	Full	7.78	2.95	19.3 §
	2019-01-13	PEST	V	120	143	335	Egr.+90%	7.38	4.60	1.6
	2019-01-13	MKO	g'	128	82	247	Full	9.20	3.00	5.2 §
	2019-01-13	Myers	B	180	70	300	Full	4.14	4.00	7.1 §
d	2018-12-27	TS	z'	10	848	301	Full	4.48	2.31	4.3 §
	2019-01-19	LCO-SAAO	i'	11	182	156	Ingr.+77%	5.44	1.91	6.3 §
	2019-02-23	LCO-CTIO	g'	70	123	203	Full	5.83	2.76	6.3 §

Reconnaissance spectroscopy

TOI-270	Date (UTC)	Telescope	Resolution	Wavelengths
	2018-12-22	FIRE	6000	8000 – 25000 Å
	2019-01-23	ANU	23000	3900 – 6700 Å

High-resolution imaging

TOI-270	Date (UTC)	Telescope	Filter	Exposure time (sec)	Nr. of exposures	FWHM (mas)
–	2019-01-25	NaCo	Ks	20	9	90

Telescopes:
- LCO-SSO: Las Cumbres Observatory - Siding Spring (1 m) [26]
- LCO-CTIO: Las Cumbres Observatory - Cerro Tololo Interamerican Observatory (1 m) [26]
- LCO-SAAO: Las Cumbres Observatory - South African Astronomical Observatory (1 m) [26]
- TS: TRAPPIST-South (0.6 m) [27]
- SSO-T17: Siding Spring Observatory - T17 (0.4 m)
- PEST: The Perth Exoplanet Survey Telescope (0.3 m)
- Myers: Myers-Siding Spring (0.4 m)
- MKO: Mt. Kent Observatory CDK700 (0.7 m)
- FIRE: Magellan Folded-port InfraRed Echellette (6.5 m) [28]
- ANU: Australia National University Echelle spectrograph (2.3 m); spectrum reduced following [29]
- NaCo: VLT NAOS-CONICA (8.2 m) [30][31]

†Observations not included, as deep exposures were used to study faint neighbouring stars and exclude possible blended eclipsing binaries.

§Only observations with a Bayes factor ∆ ln Z > 3 (strong evidence for a signal) are used for the global analysis.
might arise from systematics related to the satellite orbit (\sim 34 \text{ in TESS Sectors 3–4 short-cadence data}. The search is performed on the Supplementary Table 4: Threshold crossing events with a signal-to-noise ratio SNR \geq \text{parameters}

eccentricity and/or free TTVs. A Bayes factor

Supplementary Table 2: A comparison of various models with different degrees of freedom. The Null Hypothesis, a circular model without TTVs, is compared against more complicated models allowing for free eccentricity and/or free TTVs. A Bayes factor >3 would mean strong Bayesian evidence for a model \[32\]. We thus find no strong Bayesian evidence for eccentricity nor TTVs.

Facility, date	\(q_1 \)	\(q_2 \)	\(u_1 \)	\(u_2 \)	\(\ln \sigma_{\text{white}} \)	GP ln \(\sigma \)	GP ln \(\rho \)
TESS, 2018-12-16	0.29 \pm 0.24	0.45 \pm 0.26	0.48 \pm 0.16	0.05 \pm 0.24	-6.6243 \pm 0.0034	-8.712 \pm 0.087	-1.97 \pm 0.25
LCO, 2018-12-25	0.51 \pm 0.31	0.64 \pm 0.29	0.93 \pm 0.45	-0.01 \pm 0.40	-6.407 \pm 0.069	-10.5 \pm 0.32	0.3 \pm 1.5
LCO CTO, 2019-02-23	0.44 \pm 0.31	0.48 \pm 0.30	0.55 \pm 0.35	0.02 \pm 0.018	-6.245 \pm 0.048	-10.4 \pm 0.32	0.22 \pm 0.038
LCO CTO, 2019-02-27	0.37 \pm 0.34	0.43 \pm 0.30	0.75 \pm 0.35	-0.06 \pm 0.042	-6.472 \pm 0.064	-2.06 \pm 0.054	1.19 \pm 0.051
LCO CTO, 2019-02-28	0.44 \pm 0.31	0.46 \pm 0.32	0.52 \pm 0.51	0.05 \pm 0.077	-6.01 \pm 0.063	-2.19 \pm 0.55	0.67 \pm 0.063
LCO CTO, 2019-02-29	0.45 \pm 0.32	0.40 \pm 0.31	0.49 \pm 0.38	0.11 \pm 0.03	-5.93 \pm 0.074	-11.0 \pm 0.5	0.11 \pm 0.086
LCO CTO, 2019-03-14	0.59 \pm 0.31	0.55 \pm 0.32	0.73 \pm 0.49	-0.07 \pm 0.045	-6.489 \pm 0.056	-11.1 \pm 0.24	0.037 \pm 0.036
MK-OPT, 2019-03-13	0.59 \pm 0.31	0.53 \pm 0.38	0.74 \pm 0.48	-0.04 \pm 0.34	-6.112 \pm 0.084	-0.46 \pm 0.55	1.983 \pm 0.02
Myers, 2019-09-13	0.52 \pm 0.3	0.48 \pm 0.31	0.61 \pm 0.51	0.02 \pm 0.40	-5.303 \pm 0.088	-10.2 \pm 2.7	2.00 \pm 0.10
ASP DSR, 2019-09-13	0.50 \pm 0.3	0.49 \pm 0.3	0.59 \pm 0.3	0.01 \pm 0.07	-5.572 \pm 0.054	-10.7 \pm 2.4	1.11 \pm 0.15
Trappist, 2019-12-15	0.25 \pm 0.3	0.38 \pm 0.24	0.32 \pm 0.2	0.10 \pm 0.02	-5.827 \pm 0.027	-4.04 \pm 0.33	-1.028 \pm 0.035
Trappist, 2019-12-27	0.17 \pm 0.18	0.38 \pm 0.25	0.28 \pm 0.19	0.07 \pm 0.09	-5.604 \pm 0.025	-3.82 \pm 0.06	-1.067 \pm 0.037

Supplementary Table 3: Nuisance parameters of the fit to individual observations, which are later fixed to their median values in the global analysis. These include the limb darkening parameters \(q_1 \) and \(q_2 \) in the parametrization suggested by \[33\] (for comparability also translated into the quadratic limb darkening parameters \(u_1 \) and \(u_2 \)); the natural logarithm of the white noise scaling \(\sigma_{\text{white}} \); and the hyperparameters of the GP Matern-3/2, namely the natural logarithms of the amplitude \(\sigma \) and characteristic time scale \(\rho \).

TLS#	SNR	Depth (mmag)	Period (d)	First epoch (BJD)	Note
1	85.8	3.9	5.65986	2458389.50438	planet c
2	54.1	3.1	11.38025	2458389.67737	planet d
3	21.1	0.9	3.36014	2458387.09273	planet b
4	8.3	0.2	5.53073	2458388.19620	shallow and too wide
5	6.5	0.6	13.90082	2458395.07980	falls in noisy regions†

Supplementary Table 4: Threshold crossing events with a signal-to-noise ratio SNR \geq 5 detected with transit least squares \[34\] in TESS Sectors 3–4 short-cadence data. The search is performed on the PDC-SAP lightcurves, which were additionally detrended using a Gaussian process. † Note that this signal might arise from systematics related to the satellite orbit (\sim 13.7 days).
References

[1] Skilling, J. Nested Sampling. In Fischer, R., Preuss, R. & Toussaint, U. V. (eds.) American Institute of Physics Conference Series, vol. 735, 395–405 (2004).

[2] Hall, R. D., Thompson, S. J., Handley, W. & Queloz, D. On the Feasibility of Intense Radial Velocity Surveys for Earth-Twin Discoveries. Mon. Not. R. Astron. Soc. 479, 2968–2987 (2018).

[3] Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. celerite: Scalable 1D Gaussian Processes in C++, Python, and Julia. Astrophysics Source Code Library (2017).

[4] Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

[5] Duncan, M. J., Levison, H. F. & Lee, M. H. A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters. Astron. J. 116, 2067–2077 (1998).

[6] Kane, S. R. Stability of Earth-mass Planets in the Kepler-68 System. Astrophys. J., Letters 814, L9 (2015).

[7] Kane, S. R. Resolving Close Encounters: Stability in the HD 5319 and HD 7924 Planetary Systems. Astrophys. J. 830, 105 (2016).

[8] Cincotta, P. & Simó, C. Conditional Entropy. Celestial Mechanics and Dynamical Astronomy 73, 195–209 (1999).

[9] Cincotta, P. M. & Simó, C. Simple tools to study global dynamics in non-axisymmetric galactic potentials - I. Astronomy and Astrophysics Supplement Series 147, 205–228 (2000).

[10] Cincotta, P. M., Giordano, C. M. & Simó, C. Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D Nonlinear Phenomena 182, 151–178 (2003).

[11] Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

[12] Rein, H. & Tamayo, D. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).

[13] Alexander, M. E. The Weak Friction Approximation and Tidal Evolution in Close Binary Systems. Astrophysics and Space Science 23, 459–510 (1973).

[14] Mignard, F. The Evolution of the Lunar Orbit Revisited. I. Moon and Planets 20, 301–315 (1979).

[15] Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).

[16] Eggleton, P. P., Kiseleva, L. G. & Hut, P. The Equilibrium Tide Model for Tidal Friction. Astrophys. J. 499, 853–870 (1998).

[17] Leconte, J., Chabrier, G., Baraffe, I. & Levrard, B. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010).

[18] Bolmont, E., Raymond, S. N., Leconte, J., Hersant, F. & Correia, A. C. M. Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62. Astron. Astrophys. 583, A116 (2015).

[19] Blanco-Cuaresma, S. & Bolmont, E. What can the programming language Rust do for astrophysics? In Brescia, M., Djorgovski, S. G., Feigelson, E. D., Longo, G. & Cavuoti, S. (eds.) Astroinformatics, vol. 325 of IAU Symposium, 341–344 (2017).

[20] Neron de Surgy, O. & Laskar, J. On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997).

[21] Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits. Astrophys. J. 659, 1661–1672 (2007).

[22] Chen, J. & Kipping, D. Probabilistic Forecasting of the Masses and Radii of Other Worlds. Astrophys. J. 834, 17 (2017).

[23] McCarthy, C. & Castillo-Rogez, J. Planetary Ices Attenuation Properties, vol. 183 (2013).

[24] Kopparapu, R. K. et al. Habitable Zones around Main-sequence Stars: New Estimates. Astrophys. J. 765, 131 (2013).
[25] Kopparapu, R. K. et al. Habitable Zones around Main-sequence Stars: Dependence on Planetary Mass. Astrophys. J. 787, L29 (2014).

[26] Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pacific 125, 1031 (2013).

[27] Jehin, E. et al. TRAPPIST: TRAnsiting Planets and Planetesimals Small Telescope. The Messenger 145, 2–6 (2011).

[28] Simcoe, R. A. et al. FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes. Publ. Astron. Soc. Pacific 125, 270 (2013).

[29] Zhou, G. et al. The mass-radius relationship for very low mass stars: four new discoveries from the HATSouth Survey. Mon. Not. R. Astron. Soc. 437, 2831–2844 (2014). [1310.7591]

[30] Lenzen, R. et al. NAOS-CONICA first on sky results in a variety of observing modes. In Iye, M. & Moorwood, A. F. M. (eds.) Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, vol. 4841 of Proc. SPIE, 944–952 (2003).

[31] Rousset, G. et al. NAOS, the first AO system of the VLT: on-sky performance. In Wizinowich, P. L. & Bonaccini, D. (eds.) Adaptive Optical System Technologies II, vol. 4839 of Proc. SPIE, 140–149 (2003).

[32] Kass, R. E. & Raftery, A. E. Bayes factors. Journal of the American Statistical Association 90, 773–795 (1995).

[33] Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013). [1308.0009]

[34] Hippke, M. & Heller, R. Optimized transit detection algorithm to search for periodic transits of small planets. Astron. Astrophys. 623, A39 (2019).