Abstract

We present a detailed study of the representations of the algebra of functions on the quantum group $GL_q(n)$. A q-analogue of the root system is constructed for this algebra which is then used to determine explicit matrix representations of the generators of this algebra. At the end a q-boson realization of the generators of $GL_q(n)$ is given.
1. Introduction

Although a lot of results exist concerning representations of the quantum algebras [1-5], besides some general theorems [6-7], very few explicit representations have been constructed [8-12] for the dual objects, that is, the quantum matrix algebras or more precisely the deformation of the algebra of functions on the group. In a recent letter [13] we outlined the general method for construction of the finite dimensional representations of the quantum matrix group $GL_q(n)$ (more precisely the quantization of the algebra of functions on $GL_q(n)$). It was proved in [13], that finite dimensional irreducible representations of this algebra exist only when q is a root of unity ($q^p = 1$) and the dimensions of these representations can only be one of the following values: \(\frac{n^N}{2^k} \) where \(N = \frac{n(n-1)}{2} \) and \(k \in \{0, 1, 2, \ldots, N\} \). The topology of the space of states was also clarified (see also prop. 8 of the present article). The method developed in [13] was based on the introduction of a certain subalgebra of $GL_q(n)$ denoted by Σ_n for which one could construct finite dimensional representations in a very straightforward way. This subalgebra is in fact nothing but a nice root decomposition of the original algebra. It was then shown that from each irreducible Σ_n module one can construct an irreducible $GL_q(n)$ module. This strategy has already been carried out by the present author for the quantum groups $GL_{q,p}(2)$ [9] and $GL_q(3)$ [10-11]. What has remained to be done however is the explicit construction of the general Σ_n modules in all its details. This is the subject of the present letter.

Two basic steps in this construction are:

i) A further redefinition of the generators of Σ_n such that all the roots decouple into mutually commuting pairs (see eq. (24)).

ii) Introduction of a new identity concerning the quantum determinants (eq. (40)) which paves the way for the determination of the weights of representations.

2. The Root system of $GL_q(n)$

The quantum matrix algebra $GL_q(n)$ [14] is a Hopf algebra generated by unity and the elements t_{ij} of an $n \times n$ matrix T, subject to the relations [15]:

\[
R T_1 T_2 = T_2 T_1 R
\] (1)
where R is the solution of the Yang-Baxter equation corresponding to $SL_q(n)$ [16]:

$$
R = \sum_{i \neq j} e_{ii} \otimes e_{jj} + \sum_i q e_{ii} \otimes e_{ii} + (q - q^{-1}) \sum_{i < j} e_{ji} \otimes e_{ij}
$$

The commutation relations derived from (1) can be neatly expressed in the following way. For any for elements $a, b, c,$ and d in the respective positions specified by rows and columns $(ij), (ik), (lj)$ and (lk), the following relations hold:

$$
\begin{align*}
ab &= qba & cd &= qdc \\
ac &= qca & bd &= qdb \\
bc &= cb & ad - da &= (q - q^{-1})bc
\end{align*}
$$

For any matrix $T \in GL_q(n)$, a quantum determinant $D_q(T)$ is defined with the properties:

$$
[D_q(T), t_{ij}] = 0 \quad \forall t_{ij} \in T \\
\Delta D_q(T) = D_q(T) \otimes D_q(T)
$$

The quantum determinant of T acquires a natural meaning as the q-analogue of the volume form when the quantum group is considered as the automorphism group on the quantum vector space associated to $GL_q(n)$ [17]. It has the following explicit expression:

$$
D_q(T) = \sum_{i=1}^{n} (-q)^{i-1} t_{1i} \Delta_{1i}
$$

where Δ_{1i} is the q-minor corresponding to t_{1i} and is defined by a similar formula.

In eq. 2 $D_q(T)$ has been expanded in terms of the elements in the first row of T. Another useful expansion is in terms of the last column of T:

$$
D_q(T) = \sum_{i=1}^{n} (-q)^{n-i} \Delta_{in} t_{in}
$$

To proceed toward constructing the root system of $GL_q(n)$ let us label the elements of the matrix T as follows:

$$
T =
\begin{pmatrix}
. & .&n

3
Consider the elements H_i, X_i and Y_i together with the q-minors (q-determinants of the submatrices)

\[
H_{ij} = \det_q \begin{pmatrix} \ldots & H_i \\ \ldots & \ldots \\ \ldots & \ldots \\ H_j & \ldots \end{pmatrix}
\]

\[
X_{ij} = \det_q \begin{pmatrix} \ldots & X_i \\ \ldots & \ldots \\ \ldots & \ldots \\ X_j & \ldots \end{pmatrix}
\]

\[
Y_{ij} = \det_q \begin{pmatrix} \ldots & Y_i \\ \ldots & \ldots \\ \ldots & \ldots \\ Y_j & \ldots \end{pmatrix}
\]

For convenience we sometimes denote H_i, X_i and Y_i by H_{ii}, X_{ii} and Y_{ii} respectively.

The subalgebra Σ_n is equal to $\Sigma_0 \oplus \Sigma^+ \oplus \Sigma^-$ where the latter are generated respectively by the elements $H_{ij} i \leq j, X_{ij} i \leq j$ and $Y_{ij} i \leq j$

We call the elements X_i and Y_i simple roots and the elements $X_{ij} \quad i < j$ and $Y_{ij} \quad i < j$ non-simple roots. As will be shown below the generators H_i will play the role of Cartan subalgebra elements and the elements $X_{ij} \quad i \leq j$ (resp.$Y_{ij} \quad i \leq j$) will act as raising and lowering operators. We use the word root in a special sense, by which we mean that from representations of roots, representations of all the other elements of the quantum group can be constructed. For $GL_q(n)$ there are $N = \frac{n(n-1)}{2}$ pair of positive and negative roots.

The reason why constructing Σ_n modules is easy is due to the very crucial fact that almost all the relations between generators of Σ_n are multiplicative or of Heisenberg-Weyl type. By multiplicative relation between two element x and y, we mean a relation of the form $xy = q^{\alpha}yx$, where α is an integer.

Remark: In the rest of this paper a multiplicative relation between x and y is indicated as $xy \approx yx$
The important properties of Σ_n is encoded in the following propositions (see ref. [10] for their proof):

proposition 1: For all $i, j, k,$ and l:

\begin{align*}
[H_{ij}, H_{kl}] &= 0 \quad (4) \\
[X_{ij}, X_{kl}] &= 0 \quad (5) \\
[Y_{ij}, Y_{kl}] &= 0 \quad (6)
\end{align*}

Thus Σ_n^0 and Σ_n^\pm are three commuting subalgebras of $GL_q(n)$. For the relations between the generators of Σ^0 and Σ^\pm we have:

proposition 2

\begin{align*}
H_{i}X_{ij} &= qX_{ij}H_{i} \quad \forall j \geq i \quad (7) \\
H_{j+1}X_{ij} &= qX_{ij}H_{j+1} \quad \forall i \leq j \quad (8) \\
H_{k}X_{ij} &= X_{ij}H_{k} \quad k \neq i, j + 1 \quad (9) \\
H_{ij}X_{kl} &\approx X_{kl}H_{ij} \quad \forall i, j, k, l \quad (10)
\end{align*}

with $(q \rightarrow q^{-1}, X_{ij} \rightarrow Y_{ij})$

Remark: The exact coefficients in relation (10) can easily be determined (see Lemma 10 of ref. [10]). We need in particular the relations:

\begin{align*}
H_{ij}X_{k} &= X_{k}H_{ij} \quad i \leq k \leq j - 1 \quad (11) \\
H_{ij}X_{ij} &= qX_{ij}H_{ij} \quad (12) \\
H_{i+1,j+1}X_{ij} &= qX_{ij}H_{i+1,j+1} \quad (13) \\
[H_{i,j+1}, X_{ij}] &= [H_{i+1,j}, X_{ij}] = 0 \quad (14)
\end{align*}

The relations between elements of Σ^+_n and Σ^-_n.
proposition 3:

\[Y_{kl}X_{ij} \approx X_{ij}Y_{kl} \quad (k, l) \neq (i, j) \] (15)

\[Y_iX_i - X_iY_i = (q - q^{-1})H_iH_{i+1} \] (16)

\[q^{-1}Y_{ij}X_{ij} - qX_{ij}Y_{ij} = (q^{-1} - q)H_{i,j+1}H_{i+1,j} \] (17)

proposition 4. For \(q^p = 1 \) the p-th power of all the elements of \(\Sigma_n \) are central.

Proof: For the multiplicative relations this is obvious. The only non-multiplicative relations are (16) and (17). From (16) we have:

\[H_iH_{i+1}X_i = q^2X_iH_iH_{i+1} \] (18)

using this relation and (16) we find by induction:

\[Y_iX_i^n = X_i^nY_i + (q - q^{-1})\left\{ \frac{q^{2n} - 1}{q^2 - 1} \right\}X_i^{n-1}H_iH_{i+1} \] (19)

which shows that for \(q^p = 1 \)

\[Y_iX_i^p = X_i^pY_i \] (20)

A similar argument shows that \(Y_iX_i^p = X_i^pY_i \)

For the relation (17) we use the fact that \(H_{i,j+1}H_{i+1,j}X_{ij} = X_{ij}H_{i,j+1}H_{i+1,j} \). By induction from (17) we obtain:

\[Y_{ij}X_{ij}^n = q^{2n}X_{ij}^nY_{ij} + (1 - q^{2n})X_{ij}^{n-1}H_{i,j+1}H_{i+1,j} \] (21)

which again shows that:

\[[Y_{ij}, X_{ij}^p] = [Y_{ij}^p, X_{ij}] = 0 \] (22)

Let \(V \) be a \(\Sigma_n \) module. We call this module trivial if, the action of one or more of the elements of \(\Sigma_n \) on it, is identically zero. We are interested in nontrivial \(\Sigma_n \)-modules. (the trivial one’s are representations of reductions of \(\Sigma_n \)).
proposition 5. A Σ_n module V is nontrivial only if all the subspaces

$$K_{ij} \equiv \{|v> \in V| H_{ij}|v> = 0\}$$

are zero dimensional.

Proof: Suppose that for some i and j $\dim K_{ij} \neq 0$. We choose a basis like $\{|e_i>, i = 1, ... N\}$ for K_{ij}. Due to the multiplicative relation of H_{ij} with all the elements of Σ_n it is clear that for any $m \in \Sigma_n$ we have:

$$H_{ij} m |e_k> \approx m H_{ij} |e_k> = 0$$

Therefore $m e_k \in K_{ij}$ which means that the basis vectors e_k transform among themselves under the action of Σ_n. Since V is assumed to be irreducible we have $K_{ij} = V$ and

$$H_{ij} V = H_{ij} K_{ij} = 0$$

which shows that V is a trivial Σ_n module.

proposition 6:
i - Finite dimensional irreducible representations of Σ_n exist only when q is a root of unity.

ii- Any non-trivial Σ_n module V is also an $GL_q(n)$ module and vice versa.

Proof: The proof of this proposition is exactly parallel to the case of $GL_q(2)$ [9] and $GL_q(3)$[10]. One uses the expressions (2)(resp. 3) for the q-determinants Y_{ij}(resp. X_{ij} (starting from $j = i + 1$, continuing to $j = i + 2, i + 3...$) and uses the fact that in the representation of Σ_n, all the elements H_{ij} are invertible diagonal matrices. As an example, in the appendix we carry out this procedure explicitly for the quantum group $GL_q(4)$. Note that invertibility of H_{ij}’s (due to proposition. 5) is crutial here, otherwise one can not define the actions of the remaining elements of T or V.

3. Representations

To develop the full representation theory we rescale the roots as follows:

$$h_{ij} = H_{ij} \quad x_{ij} = \mu_{ij}^{-1} X_{ij} \quad y_{ij} = \mu_{ij}^{-1} Y_{ij}$$

(23)
where $\mu_{ij} = (H_{ij}H_{i+1,j+1})$

As the reader can verify, with this redefinition the root system is completely disentangled into mutually commuting pairs, while all the relations between H_{ij} and X_{ij} (Y_{ij}) remain intact. Instead of (15-17) one will have:

$$[x_{ij}, y_{kl}] = 0 \quad (k, l) \neq (i, j)$$ \hspace{1cm} (24)$$

$$q^{-1}x_{i}y_{i} - qy_{i}x_{i} = q^{-1} - q$$ \hspace{1cm} (25)$$

$$[x_{ij}, y_{ij}] = (q - q^{-1}) \frac{h_{i,j+1}h_{i+1,j}}{h_{ij}h_{i+1,j+1}}$$ \hspace{1cm} (26)$$

From these relations one can also obtain the more general relations:

$$y_{i}x_{i}^{l} = q^{-2l}x_{i}^{l}y_{i} + (1 - q^{-2l})x_{i}^{l-1}$$ \hspace{1cm} (27)$$

$$y_{ij}x_{ij}^{l} = x_{ij}^{l}y_{ij} + q(q^{-2l} - 1)x_{ij}^{l-1} \frac{h_{i,j+1}h_{i+1,j}}{h_{ij}h_{i+1,j+1}}$$ \hspace{1cm} (28)$$

With this redefinition the only structure constants of the algebra are the coefficients between the h_{ij} and x_{ij}. Table 1 shows these structure constants for $GL_{q}(4)$.

Consider a common eigenvector of h_{ij}'s which we denote by $|0\rangle$ with eigenvalues $h_{ij}|0\rangle = \lambda_{ij}|0\rangle$ and construct an $N = \frac{n(n-1)}{2}$ dimensional hypercube of states

$$W = \{ |l\rangle = \prod_{i,j} (x_{ij})^{l_{ij}}|0\rangle \quad 0 \leq l_{ij} \leq p - 1 \}$$ \hspace{1cm} (29)$$

where l is a vector $l = \sum_{i,j} l_{ij}e_{ij}$ in the lattice. From (10) all the states of W are eigenstates of h_{ij}'s.

$$h_{ij}|l\rangle = q^{c_{ij}(l)}\lambda_{ij}|l\rangle$$ \hspace{1cm} (30)$$

The parameters $c_{ij}(l)$ can be easily calculated by using the structure constants.(see the appendix where the case of $GL_{q}(4)$ is considered as an example)
Each positive root generates one direction of this hypercube. Because of (5) we have:

\[x_i | l > = | l + e_i > \] \hspace{1cm} (31)

\[x_{ij} | l > = | l + e_{ij} > \] \hspace{1cm} (32)

Since \(x^p_{ij} \) is central we can set its value on \(W \) equal to a c-number \(\eta_{ij} \). Therefore we have:

\[x_{ij} | (p - 1)e_{ij} > = \eta_{ij} | 0 > \] \hspace{1cm} (33)

The last relation says much more. We need some terminology. Denote by \(F^0_{ij} \) and \(F^1_{ij} \) the two faces which are perpendicular to the vector \(e_{ij} \) respectively passing through the origin and the point \((p - 1)e_{ij} \). Now if \(v \) is any vector in \(F^1_{ij} \) then by eq. (10) we have:

\[x_{ij} | (p - 1)e_{ij} + v > = \eta_{ij} | v > \] \hspace{1cm} (34)

In this way when \(\eta_{ij} \) is nonzero the generator \(x_{ij} \) folds each face \(F^1_{ij} \) onto the face \(F^0_{ij} \). Define the action of \(y_{ij} \) on \(| 0 > \) by:

\[y_{ij} | 0 > = \alpha_{ij} | (p - 1)e_{ij} > \] \hspace{1cm} (35)

By the same reasoning as in the case of \(x_{ij} \) one can show that when \(\alpha_{ij} \) is nonzero the generator \(y_{ij} \) folds the face \(F^0_{ij} \) onto the face \(F^1_{ij} \), i.e: for any vector \(u \) lying in \(F^0_{ij} \)

\[y_{ij} | u > = \alpha_{ij} | (p - 1)e_{ij} + u > \] \hspace{1cm} (36)

We now calculate the action of the negative roots on the other states of \(W \). Thanks to the commutation relations (24) one can calculate the action of any root like \(y_k \) on any state as follows:

\[y_k | l > = y_k(\prod_i x^{l_i})| 0 > = \prod_{i \neq k} x^{l_i} y_k x_k^{l_k} | 0 > \] \hspace{1cm} (37)

For simplicity of notation, in this equation we have represented any positive (resp. negative) root by the symbol \(x_k \) (resp. \(y_k \)) and have not distinguished between simple and nonsimple roots. One then uses eqs. (25-26) to complete the calculation. The result is:

\[y_i | l > = (q^{-2l_i} \alpha_i \eta_i + (1 - q^{-2l_i})) | l - e_i > \] \hspace{1cm} (38)
\[y_{ij} | l > = (\alpha_{ij} \eta_{ij} + q(1 - q^{-2l_{ij}})s_{ij})| l - e_{ij} > \] \hspace{1cm} (39)

where \(s_{ij} = \frac{\lambda_{i,j+1} \lambda_{i+1,j}}{\lambda_{ij} \lambda_{i+1,j+1}} \). This shows that each \(y_{ij} \) acts as a lowering operator in the direction \(e_{ij} \) of the hypercube.

It remains to determine the parameters \(\lambda_{ij} \). Clearly calculation of these parameters by direct expansion of \(h_{ij} \) is cumbersome. Instead we proceed as follows: Denote by \(E_{i,j} \) (resp. \(E_{ij,kl} \)) the q-minors obtained from a quantum matrix \(E \) by deleting the rows \(i \) (resp. \(i \) and \(j \)) and columns \(k \) (resp. \(k \) and \(l \)). Then we conjecture that the following identity is true:

\[E_{jl} E_{ik} - q E_{jk} E_{il} = E_{ij,kl} \text{Det}_q E \] \hspace{1cm} (40)

The classical limit of this identity is well known. In the quantum case it can be checked by direct computation for low dimensional \(GL_q(n) \) matrices. Later on we will give further justification for it using the conjugation properties of \(\Sigma_n \). We now use this relation to determine the parameters \(\lambda_{ij} \). Eq. (40) implies the following relation in \(\Sigma_n \):

\[Y_{ij} X_{ij} = qH_{ij}H_{i+1,j+1} + H_{i,j+1}H_{i+1,j} \] \hspace{1cm} (41)

Further justification is obtained by using the conjugation properties of \(T \) as follows. For \(q \) on the unit circle the elements of \(T \) allow the following conjugation:

\[t_{ij}^\dagger = t_{ij} \] \hspace{1cm} (42)

This results in the following conjugation properties in \(\Sigma_n \):

\[X_{ij}^\dagger = X_{ij} \hspace{1cm} Y_{ij}^\dagger = Y_{ij} \hspace{1cm} H_{ij}^\dagger = H_{ij} \] \hspace{1cm} (43)

One can then conjugate both sides of this equation to obtain:

\[X_{ij} Y_{ij} = q^{-1}H_{ij}H_{i+1,j+1} + H_{i,j+1}H_{i+1,j} \] \hspace{1cm} (44)

Combination of eqs. (41) and (44) then leads to eq. (17) which has already been proved in [10].

In terms of the rescaled generators relation (41) takes the following form:

\[x_i y_i = 1 + q \frac{h_i h_{i+1}}{h_{i+1}} \] \hspace{1cm} (45)
\[x_{ij} y_{ij} = 1 + q \frac{h_{ij+1} h_{i+1,j}}{h_{ij} h_{i+1,j+1}} \] (46)

Now these relations help us to determine the parameters \(\lambda_{ij} \): Acting on the state \(|0> \) by both sides of (45,46) we obtain:

\[\alpha_i \eta_i = 1 + q \frac{\lambda_{i,i+1}}{\lambda_i \lambda_{i+1}} \] (47)

\[\alpha_{ij} \eta_{ij} = 1 + q \frac{\lambda_{i,j+1} \lambda_{i+1,j}}{\lambda_{ij} \lambda_{i+1,j+1}} \] (48)

or

\[\lambda_{i,i+1} = q^{-1} \lambda_i \lambda_{i+1} (\alpha_i \eta_i - 1) \] (49)

\[\lambda_{i,j+1} = q^{-1} \lambda_i \lambda_{i+1,j+1} (\alpha_{ij} \eta_{ij} - 1) \] (50)

Let us call \(\lambda_{ij} \) the weights of the representation and call each \(\lambda_{i,i+k} \) a weight at level \(k \). Eqs. (49-50) express the weights at each level in terms of the weights at the lower level. (see the appendix for the example of \(GL_q(4) \))

4. Types of Representations

We complete our analysis of representation of \(GL_q(n) \) by a discussion on the various types of representations. Each representation is defined by the \(n^2 \) parameters \(\alpha_{ij}, \eta_{ij} \) and \(\lambda_i \). The type of representation depends on the values of the parameters \(\alpha_{ij} \) and \(\eta_{ij} \). More precisely we have:

Proposition 8: The dimensions of the irreducible representations of \(GL_q(n) \) can only be one of the following values: \(\frac{N^N}{2^k} \) where \(N = \frac{n(n-1)}{2} \) and \(k \in \{0, 1, 2, ..., N\} \). For each \(k \) the topology of the space of states is \((S^1)^{(N-k)} \times [0,1]^{(k)} \) (i.e. an \(N \) dimensional torus for \(k = 0 \) and an \(N \) dimensional cube for \(k = N \)).

Proof: Our style of proof is a generalization of the one given in [8] and [10] for the case of \(GL_{q,p}(2) \) and \(GL_q(3) \) respectively.
Let V be an $GL_q(n)$ module with dimension d. Depending on the values of the parameters α_{ij} and η_{ij} three cases can happen:

Case a: $\alpha_{ij} \neq 0 \neq \eta_{ij}$ \forall i, j

In this case d can not be greater than p^N, otherwise the cube W will span an invariant submodule which contradicts the irreducibility of V. The dimension of V can not be less than p^N either since this means that the length of one of the sides of the cube W (say in the i-th direction) must be less than p. Therefore there must exist a positive integer $r < p$ such that $x_{ij}^r |0 >= 0$ which means that $\eta_i |0 >= x_{ij}^{p-r} x_{ij}^r |0 >= 0$ contradicting the original assumption. The topology of the space of states in this case is an N dimensional torus ($S^{1 \times N}$)

Case b: For some $(ij) \alpha_{ij} \neq 0$, but $\eta_{ij} = 0$ or vice versa:

In this case the representation is semicyclic in the ij direction.

Case c: for some $(ij) \alpha_{ij} = \eta_{ij} = 0$:

In this case the representation has a highest and a lowest weight in the ij-th direction.

If $d < P^N$ there must exist an integer like $r < p$ such that $x_{ij}^r |0 >= 0$ and $x_{ij}^l |0 \neq 0$ for $l < r$. Now denote $x_{ij}^r |0 >$ by u_0 and consider the string of states $y_{ij}^r u_0$. This string of states must terminate somewhere. Thats must exists an integer like r' such that $y_{ij}^{r'} u_0 = 0$ and $y_{ij}^{r'-1} u_0 \neq 0$ Therefore

$$0 = x_{ij} y_{ij}^{r'} u_0 = (y_{ij}^{r'} x_{ij} + q(q^{-2r'} - 1) y_{ij}^{r'-1} h_{ij} h_{i+1,j+1} = q(q^{-2r'} - 1) s_{ij} u_0$$

which means that $q^{2r'} = 1$ or $r' = \frac{p}{2}$. r' is in fact the length of the edge of the cube W in the ij-th direction, the other edges being of length p. The dimension of V is in this case $\frac{p^N}{2}$. The topology of the space of states is in this case $[0, 1] \times S^{1 \otimes N-1}$. By repeating this analysis for other pairs of the parameters the assertion is proved.
Q-Boson Realization

One can construct an infinite dimensional representation (q-analogue of Verma Module) by setting all $\alpha_i = 0$ and relaxing all the conditions of periodicity. It is then very easy to determine the q-boson realization of all the generators of Σ_n and hence of $GL_q(n)$.

The q-boson algebra [18-20] B_q is generated by three elements a, a^\dagger, and N satisfying the relations:

\[
\begin{align*}
 aa^\dagger - q^{\pm 1} a^\dagger a &= q^{\mp N} \quad (51) \\
 q^{\pm N} a &= q^{\mp 1} a q^{\pm N} \quad (52)
\end{align*}
\]

A more useful form of the algebra is obtained if one replaces the above equations by the following pair of relations:

\[
\begin{align*}
 aa^\dagger &= \lfloor N + 1 \rfloor \\
 a^\dagger a &= \lfloor N \rfloor
\end{align*}
\]

where the symbol $\lfloor N \rfloor$ as usual stands for $\frac{q^N - q^{-N}}{q - q^{-1}}$ for N being a number or an operator.

On the q-Fock space F_q spanned by the states $|n > \equiv a^{\dagger n}|0 >$ the action of the generators are:

\[
\begin{align*}
 a^\dagger |n > &= |n + 1 > \quad (54) \\
 a |n > &= [n]_q |n - 1 > \quad (55) \\
 N |n > &= n |n > \quad (56)
\end{align*}
\]

Consider N commuting q-bosons (i.e. $a_i, a_i^\dagger, N_i; i = 1...N$) and their representation on the q-Fock space $F^{\otimes N}_q$. Then if Ψ is the natural isomorphism from W to $F^{\otimes N}_q$, satisfying:

\[
\Psi : |l > \rightarrow \prod_{i=1}^{N} a_i^{l_i}|0 >
\]

the induced representation Ψ^* is defined by [13] :

\[
\Psi^*(g) = \Psi \circ g \circ \Psi^{-1} \quad \forall g \in End \ W
\]

We will then have the following n^2 parameter family of q-boson realization of the quantum group $GL_q(n)$.

\[
\begin{align*}
 x_i &= a_i^\dagger \\
 x_{ij} &= a_{ij}^\dagger
\end{align*}
\]
\[y_i = (q - q^{-1})a_i q^{-N_i} \quad \quad y_{ij} = q(q^{-1} - q)s_{ij}a_{ij}q^{-N_{ij}} \quad \quad (60) \]

\[h_i = \lambda_i q^{C_i(N)} \quad \quad h_{ij} = q^{C_{ij(N)}}\lambda_{ij} \quad \quad (61) \]

Acknowledgement: I would like to thank all my colleagues in the physics department of IPM for very valuable discussions. I also express my sincere thanks to A. Morosov for very interesting comments made during his visit to IPM.

Appendix An Example : The Case of \(GL_q(4) \)

The structure constants of \(GL_q(4) \) (see \[13\]) are indicated in table 1. Consequently we obtain the following actions:

\[h_1|l> = q^{l_1 + l_{12} + l_{13}}\lambda_1|l> \]
\[h_2|l> = q^{l_1 + l_{2} + l_{13}}\lambda_2|l> \]
\[h_3|l> = q^{l_2 + l_3 + l_{12}}\lambda_3|l> \]
\[h_4|l> = q^{l_3 + l_{13} + l_{23}}\lambda_4|l> \]
\[h_{12}|l> = q^{l_{12} + l_{23} + l_{13}}\lambda_{12}|l> \]
\[h_{23}|l> = q^{l_{1} + l_3 + l_{12} + l_{23}}\lambda_{23}|l> \]
\[h_{34}|l> = q^{l_2 + l_{12} + l_{23} + l_{13}}\lambda_{34}|l> \]
\[h_{13}|l> = q^{l_3 + l_{23} + l_{13}}\lambda_{13}|l> \]
\[h_{24}|l> = q^{l_1 + l_{12} + l_{23}}\lambda_{24}|l> \]

The weights \(\lambda_{ij} \) are determined from (49-50) to be:

\[\lambda_{12} = q^{-1}\lambda_1\lambda_2(\alpha_1\eta_1 - 1) \]
\[\lambda_{23} = q^{-1}\lambda_2\lambda_3(\alpha_2\eta_2 - 1) \]
\[\lambda_{34} = q^{-1}\lambda_3\lambda_4(\alpha_3\eta_3 - 1) \]
\[
\begin{align*}
\lambda_{13} &= q^{-1} \frac{\lambda_{12} \lambda_{23}(\alpha_{12} \eta_{12} - 1)}{\lambda_2} \\
\lambda_{24} &= q^{-1} \frac{\lambda_{23} \lambda_{34}(\alpha_{23} \eta_{23} - 1)}{\lambda_3} \\
\lambda_{14} &= q^{-1} \frac{\lambda_{13} \lambda_{24}(\alpha_{13} \eta_{13} - 1)}{\lambda_{23}}
\end{align*}
\]

In the following we carry out explicitly the process of reconstruction of \(GL_q(4) \) from \(\Sigma_4 \)

Let us label the elements of \(T \in GL_q(4) \) as follows:

\[
T = \begin{pmatrix}
p & l_1 & Y_1 & H_1 \\
l_2 & Y_2 & H_2 & X_1 \\
Y_3 & H_3 & X_2 & m_1 \\
H_4 & X_3 & m_2 & n
\end{pmatrix}
\]

Here we have:

\[
\begin{align*}
X_{12} &= H_2 m_1 - q X_1 X_2 \\
X_{23} &= H_3 m_2 - q X_2 X_3 \\
Y_{12} &= l_1 H_2 - q Y_1 Y_2 \\
Y_{23} &= l_2 H_3 - q Y_2 Y_3
\end{align*}
\]

From which we obtain:

\[
\begin{align*}
m_1 &= H_2^{-1} (X_{12} + q X_1 X_2) \\
m_2 &= H_3^{-2} (X_{23} + q X_2 X_3) \\
l_1 &= (Y_{12} + q Y_1 Y_2) H_2^{-1} \\
l_2 &= (Y_{23} + q Y_2 Y_3) H_3^{-1}
\end{align*}
\]

We also have:

\[
\begin{align*}
X_{13} &= H_{23} n - q (Y_2 m_2 - q H_2 X_3) m_1 + q^2 X_{23} X_1 \\
Y_{13} &= p H_{23} - q l_1 (l_2 X_2 - q H_2 Y_3) + q^2 Y_1 Y_{23}
\end{align*}
\]

From which we obtain:

\[
n = H_{23}^{-1} \{ X_{13} + q (Y_2 m_2 - q H_2 X_3) m_1 + q^2 X_{23} X_1 \} \]
\[p = \{Y_{13} + ql_1(l_2 X_2 - qH_2 Y_3) + q^2 Y_1 Y_{23}\} H^{-1}_{23} \]

These equations show that once the action of \(\Sigma_4 \) is known on \(V \) the action of \(GL_q(4) \) can be determined uniquely.
References

1. G. Lusztig, Adv. Math. 70, 237 (1988); Contemp. Math. 82, 59 (1989)

2. M. Rosso, Commun. Math. Phys. 117, 581 (1988); 124, 307 (1989)

3. R. P. Roche and D. Arnaudon, Lett. Math. Phys. 17, 295 (1989)

4. C. De Concini and V. G. Kac, Preprint (1990)

5. P. Sun and M. L. Ge, J. Phys. A 24, 3731 (1991)

6. Ya. S. Soibelman, Leningrad Math J. 2, 161-178 (1991)

7. Ya. S. Soibelman and L. Vaksman, Func. Anal. Appl. 22 (3) 170-181 (1988)

8. M. L. Ge, X. F. Liu, and C. P. Sun, J. Math. Phys. 38 (7) 1992

9. V. Karimipour, Q-Boson realization of the Quantum Matrix Algebra $M_q(3)$ J. Phys. A. Math. Gen. L957 - L962 (1993).

10. V. Karimipour, Representations of the Coordinate Ring of $GL_q(3)$ Lett. Math. Phys. (28):207-217 (1993)

11. V. Karimipour, Representations of the Quantum Matrix Algebra $M_{q,p}(2)$ J. Phys. A. Math. Gen., in press

12. J. Floratos, Representations of the Quantum Group $GL_q(2)$ for values of q on the unit circle Phys. Lett. B. 233 (3,4) 1989

13. V. Karimipour, Representations of the Coordinate Ring of $GL_q(n)$ IPM Preprint 93-15, Tehran (1993)

14. See L.A. Takhtajan, in M. L. Ge and B. H. Zhao (eds.) Introduction to Quantum Groups and Integrable Massive Models of Quantum Field Theory, World Scientific, (1991)

15. N. Reshetikhin, L. Takhtajan, and L. Faddeev, Alg. Anal. 1, 1 78 (1989) in Russian

16. M. Jimbo, Lett. Math. Phys. 10, 63 (1985); 11, 247 (1986)
17. Yu. Manin ; Bonn Preprints MPI/91-47, MPI/91-60 (1991)

18. L.C. Biedenharn ; J. Phys. A, Math. Gen. 22 L873 (1989)

19. A. J. Macfarlane ; J. Phys. A, Math. Gen. 22 4551 (1989)

20. C. P. Sun and H. C. Fu ; J. Phys. A, Math. Gen. 22 L983 (1989)
Table 1 - The structure constants of $GL_q(4)$

\[
\begin{pmatrix}
 x_1 & x_2 & x_3 & x_{12} & x_{23} & x_{13} \\
 h_1 & q & 1 & 1 & q & 1 & q \\
 h_2 & q & q & 1 & 1 & q & 1 \\
 h_3 & 1 & q & q & q & 1 & 1 \\
 h_4 & 1 & 1 & q & 1 & q & q \\
 h_{12} & 1 & q & 1 & q & q & q \\
 h_{23} & q & 1 & q & q & q & 1 \\
 h_{34} & 1 & q & 1 & q & q & q \\
 h_{13} & 1 & 1 & q & 1 & q & q \\
 h_{24} & q & 1 & 1 & q & 1 & q
\end{pmatrix}
\]

\(i.e.: \quad h_{12}x_{12} = qx_{12}h_{12}\)