Quanton fields : evolution and degrees of freedom.

Ayman Kassem (a), (b)
(a) Egyptair, Cairo, Egypt
(b) Contact address: Ayman_kassem@egyptair.com

Abstract
For long time the nature of spacetime had been the subject of debate, here another version will be discussed in the form of space and time fields where a new concept of energy constraining can explain the interactions between those fields.

This model comes in three parts: energy constraining, where the evolution of the quanton fields and their different transitions are discussed, the second part, energy fields, their degrees of freedom and the third part: electromagnetic waves as relativistic quantons and the generic form of Maxwell quations in terms of space and time fields.

This work links many of the physical phenomena back to the quanton based world.

Key words
Energy density expansion, space- and time-varying fields, energy degrees of Freedom, CMB thermodynamic origin.

Introduction
This model deals with an evolutionary process of the quaton fields out of a singularity event.

Given our state of knowledge, it is rather premature to determine whether it was an initial expansion out of a singularity event or it was rather a single quanton in a recursive inflationary – contraction process.

Yet, a process of quanton evolution out of singularity was detailed to allow for a comprehensive review of the behaviour those fields and their interactions.

There are cosmological implications based on this model which were dealt with previously [1],[2]

The concept of quantized spacetime is not new [3][4][5][6], however this work provides a novel aspect in the sense that it employs the concept of energy degrees of freedom as a unification origin of all space and time fields.

Contents
1. Physical basis of this model 2
2. Definition of the model 2
3. Mathematical brief 4
4. Field variation parameters 4
5. Energy constraining 4
6. Energy degrees of freedom 8
7. Superposition principle of quanton fields 10
8. Defining directional component of energy fields 11
9. Dimensional energy symmetry 11
10. Energy density / Degree of freedom relationship 13
11. Energy constraining and the release of thermal energy 14
1. The physical basis of this model
This model is based on the following two concepts

a- The relationship between quanton energy density ϱ_q and its parameters (defined in terms of parameters: k, ω, or r_q (quanton radius)) is an energy degree of freedom relationship.

b- The complex nature of the energy expansion in the form of space-varying and time-varying fields.

As energy expands from a singularity state (energy non-varying in space or time), it creates fields with symmetric nature of variation in space and in time and as a result of this symmetry, the relationship between those space and time-varying fields is governed by energy degrees of Freedom.

2. Definition of the model

2.1 Quantons

1- Quantons are two complex orthogonal fields, each one is composed of space- and time-varying energy fields, as those fields vary at periodic rate, they possess wave like behaviour.

Each quanton is composed of two different type of energy fields (free and constrained) which interact to form a binding relationships.
Quantons vary in their energy content with time as they expand and split, as a result quanton frequencies are statistically distributed versus the energy density, as this statistical distribution ensures equi-partition of energy throughout space. Quanton stability is ensured due to the effect of inter and intra-quanton interactions of energy fields. Though the quantons are stable but due to the imbalance of these interactions the quantons split up, then expand which is at the origin of expanding universe.

2.2. Anti quantons

Anti quanton fields are the anti-symmetric to those of the quanton as the dominant nature of those fields is of constrained type which differs from that of the quanton (free type). Both quantons and anti quantons exist in pairs as they become a quantum entity of the form Q+AQ. Fig. 1 provides a representation of quanton –antiquanton fields.

![Image of quanton–antiquanton fields](image)

Fig. 1 a representation of the quanton–antiquanton (Q+AQ) fields, note here that the radius of the quanton denotes only the decaying manner of the field intensity and does not outline the quanton physical domain.

Fig. 2 provides a summary of various states which quanton goes through.

![Diagram of quanton states](image)

Fig. 2. Summary of the quanton states.

Quanton states
- Interacting
- Expanding
 - Binding
 - Self-interacting repulsive
 - Initially expanding and splitting
 - Expanding and releasing radiative energy
3. Mathematical brief

\[E_{sf} = \frac{dE}{ds} : \text{free space-varying field} \] (1-3)

\[E_{tf} = \frac{dE}{dt} : \text{free time-varying field} \] (2-3)

\[E_{sc} \int E \, ds : \text{space-varying constrained field} \] (3-3)

\[E_{tc} \int E \, dt : \text{time-varying constrained field} \] (4-3)

\[E_s = E_{sf} E_{sc} , \quad E_t = E_{tf} E_{tc} \] (5, 6-3)

Energy fields are vector quantities which have direction as well as magnitude and can be defined as

(for the case of space-varying free field)

\[E_{sf} = K_{sf} D_{sf} \psi_{sf} \] (7-3)

where \(D_{sf} \) : energy field strength (degree of freedom parameter –

in exponential terms of the constant (c) or \(c^{D_{sf}} \)

\(K_{sf} \) : field intensity parameter which is defined in terms of the quanton total energy divided by four
degrees of freedom.

\(\psi_{sf} \) is reserved for variation parameter of space-varying energy field.

The two types of quanton energy fields are the free dominated field \(E_{qf} = E_{sf} E_{tc} \) (8-3)
and the neural in nature \(E_{qc} = E_{sc} E_{tf} \) (9-3)
and can be expressed by the one-dimensional partial differential equation (PDE)

\[(E_{qt})_t = c^2 (E_{qt})_{xx} \quad \text{or} \quad (E_{qc})_t = c^2 (E_{qc})_{xx} \] (10-3)

Energy density \(\rho_q \) represents the product of \(E_{qf} \), \(E_{qc} \) or

\[\rho_q = E_{qf} E_{qc} \] (11-3)

\(E = E_s E_t \) (a singularity – energy not varying in space

or time with no associated fields) which is generated by energy constraining

4. Variation parameters of energy fields

quantum (or anti quanton) energy density defined as the multiplication of field
strengths and intensities of four types of energy fields which takes the form

\[\rho_q = (E_{sf} E_{tc})(E_{sc} E_{tf}) \] (1-4)

Each of those four fields experiences the change of either space or time

defined by the variation parameters follows

\[\psi_{sf} = e^{i \frac{r}{2\sqrt{q}}} \] which defines change of free energy field in space (r:x, y or z) (2-4)

\[\psi_{sc} = e^{-i \frac{r}{2\sqrt{q}}} \] defines change of constrained space-varying energy field (3-4)

\[\psi_{tf} = e^{+i \omega t} \] : that expresses variation of free time-varying energy field (4-4)

\[\psi_{tf} = e^{-i \omega t} \] : parameter of constrained time-varying energy field (5-4)

5. Energy constraining

Energy constraining describes evolution and interactions of energy fields which is summarized as

a-Containment free energy fields \((E_{sf}, E_{tf}) \)

(this will be discussed in the section : Maxwell equations role in the evolution of quantons)

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
b- Appearance of constrained energy fields (E_{sc},E_{tc})

d- Energy fields expansion and their subsequent splitting.

e- Release of radiation energy as a result of the quanton expansion.

As energy expands in space in the form of space and time-varying fields, it's said to have free degrees of freedom, and it must express these degrees of freedom in a symmetric way with respect to all spatial and temporal dimensions.

Energy expands not only by variation in space but by variation in time as well, hence the appearance of energy fields E_{sf},E_{tf} (free energy fields that vary in space and in time), such expansion takes the form:

$$\frac{\partial}{\partial s} \frac{\partial}{\partial t} (E) = \frac{\partial}{\partial s} \frac{\partial}{\partial t} (E_{sc}E_{tc}) = \frac{\partial E}{\partial s} \frac{\partial E}{\partial t} = E_{s}E_{t}$$

(1-5)

Free fields cannot vary in space and time simultaneously as no energy field is in the form $E_{sf}E_{tf}$, but rather $E = E_{sf}(r) E_{tf}(t)$ hence the emergence of two distinct fields not just one and this is because the relationship between the expansion of space-varying and time-varying fields is orthogonal, as the time-varying field (curls) the free space-varying field. (this point will be discussed in the section: Maxwell equations role in the evolution of the quanton).

Appearance of quanton (anti quanton) constrained energy fields is due to the fact that free energy fields (E_{sf}, E_{tf}) seek to form a more stable binding interactions with these newly appeared constrained fields (E_{sc}, E_{tc}) under inflationary conditions rather than the less stable repulsive self-interactions of fields of the same nature [9].

As space-varying field (E_{sf}) expands, it must have a constrained time varying field (E_{tc}) such that $E_{qf} = E_{sf}E_{tc}$, so the field E_{qf} is a predominantly free type due to free space-varying energy field (E_{sf}) having more degrees of freedom (field strength) compared to field (E_{tc}).

Similarly, time-varying energy expands (E_{tf}) by variation in space as well, hence the appearance of space-varying constrained energy field (E_{sc}) such that $E_{qc} = E_{sc}E_{tf}$ which is neutral as both space and time fields having the same field strength.

As energy expands from a singularity state ($E = E_{s}E_{t}$), it possesses four degrees of freedom, and for the quanton (or anti quanton) to exist as an independent energy entity, it must possess all of those four degrees of freedom.

Based on the previous point, energy fields E_{qf} or E_{qc} cannot exist independently in the form $\rho_{q} = E_{sf}E_{tc}$ or of the form $\rho_{aq} = E_{sc}E_{tf}$ alone, now, the emerging fields for the quanton become

$$\rho_{q} = (E_{sf}E_{tc})(E_{sc}E_{qt}) = E_{qf}E_{qc}$$

(2-5)

and for anti quanton

$$\rho_{aq} = \left(\frac{E_{sf}E_{tc}}{c}\right)(cE_{sc}E_{qt}) = \left(\frac{E_{sf}}{c}\right)(cE_{qc})$$

(3-5)

Quanton energy density equation represents two fields: one of them is free dominated field or $E_{qf} = (E_{sf}E_{tc})$, and the other is neutral $E_{qc} = (E_{sc}E_{tf})$

The anti quanton’s energy density equation is the same as the energy density equation of quanton, but degrees of freedom of various fields are mirror symmetric to those of the quanton (this will be discussed later in the sections: quanton and anti quanton evolution and their energy degrees of freedom)
The fields E_{sf}, E_{qc} are orthogonal to each other.

For free energy fields E_{sf}, E_{tf}, differentiation is the mathematical expression of free energy expansion by variation in space or time, while integration is the corresponding mathematical expression of constraining of free fields varying in space or time

a- For free space-varying field, expansion in space
\[
\frac{\partial}{\partial s} (E_{sf}) = \frac{\partial E}{\partial s} = E_{sf} \quad \text{(same type of field.)} \tag{4-5}
\]

b- Constraining of free energy fields takes the form
\[
\int E_{sf} \, ds = \int \left(\frac{\partial E}{\partial s} \right) ds = E_s \tag{5-5}
\]

(free space-varying field becomes a singularity- a non-varying state)

b- For free time-varying field
\[
\frac{\partial}{\partial t} (E_{tf}) = \frac{\partial E}{\partial t} = E_{tf} \quad \text{(same type of field.)} \tag{6-5}
\]

and constraining $\int E_{tf} \, dt = \int \frac{\partial E}{\partial t} \, dt = E_t$ \tag{7-5}

For constrained energy fields E_{sc}, E_{tc}, integration is the mathematical expression of expansion by variation in space or time, and differentiation is the corresponding mathematical expression of energy constraining in space or time.

c- For constrained space-varying field, expansion in space is defined as
\[
\int E_{sc} \, dt = E_{sc} \quad \text{(same type of field.)} \tag{8-5}
\]

c- constraining takes the form
\[
\frac{\partial}{\partial s} (E_{sc}) = \frac{\partial E}{\partial s} \left(\int E_s \, ds \right) = E_s \tag{9-5}
\]

(reduction of constrained space-varying field into a singularity state- non varying in space or time),

d- For time-varying field

expansion in time $\int E_{tc} \, dt = E_{tc}$, and when being constrained
\[
\frac{\partial}{\partial t} (E_{tc}) = \frac{\partial E}{\partial t} \left(\int E_t \, dt \right) = E_t \tag{10-5}
\]

Expansion of energy fields (free-constrained) is more or less a process of differentiating two variables and follows differentiation of two variables rule.
\[
\frac{\partial}{\partial x} \left[f(x)g(x) \right] = \frac{\partial f}{\partial x} g(x) + \frac{\partial g}{\partial x} f(x) \quad \text{ } \tag{12-5}
\]

Results of an energy density expansion process = expansion of the (free-constrained fields) + constraining of (free-constrained fields)

Let's consider the case of expansion of free space-varying field E_{sf}
\[
\frac{\partial}{\partial s} \left(E_{sf} \right) = \frac{\partial E}{\partial s} + \int E_{sf} \, ds = E_{sf} + E_s \tag{13-5}
\]

Similarly for the case of free time-varying field E_{tf}
\[
\frac{\partial}{\partial t} \left(E_{tf} \right) = \frac{\partial E}{\partial t} + \int \left(\frac{\partial E}{\partial t} \right) \, dt = E_{tf} + E_t \tag{14-5}
\]

Expansion of constrained space-varying field E_{sc}
\[
\int E_{sc} \, ds = \int E_{sc} \, ds + \frac{\partial}{\partial s} \left(\int E_s \, ds \right) = E_{sc} + E_s \tag{15-5}
\]

For the case of constrained time-varying field E_{tc}
\[
\int E_{tc} \, dt = \int E_t \, dt + \frac{\partial}{\partial t} \left(\int E_{tc} \, dt \right) = E_{tc} + E_t \tag{16-5}
\]
Now the quanton energy density expansion equation
\[\frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \right) q_q = \frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \left[(\epsilon_s^E \int E \ ds) \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right] \right) = (E_{st} E_{tc})(E_{sc} E_{tf}) + E_s E_t \] \hspace{1cm} (17-5)

Table 1. gives a summary for expansion / constraining and the corresponding mathematical operations

process	Free energy	Constrained energy field
expansion	differentiation	integration
constraining	integration	differentiation

Table 1. mathematical expression of energy expansion /constraining

To summarize the results of expansion process

a-Expansion term: differentiating free energy fields * integration of constrained energy fields.
b-Constraining term: integrating free energy fields * differentiating constrained fields.

While differentiation of two functions involves differentiating only one at a time and maintaining the other as constant, in real world this is not possible since an expanding energy fields must vary either in space or in time.

When dealing with expansion of constrained energy fields integration is the physical equivalent to mathematically maintaining one function as a constant.

Quanton energy density equation \[\rho_q = \left(\frac{\partial E}{\partial s} \frac{\partial E}{\partial t} \right) \left(\int E \ ds \ \int E \ dt \right), \] expresses two physical entities (free energy fields : \(\frac{\partial E}{\partial s} \) and constrained energy fields \(\frac{\partial E}{\partial t} \)) and each of those types of fields behave as single physical entity (i.e single variable) , so the four different energy fields , are in fact representing only two variables instead of four (energy field interactions will be based on this particular point)

The quanton’s four degrees of freedom are the sum of free energy fields’ degrees of freedom plus the constrained energy fields’ degrees of freedom or

\[\text{DoF}_q = \text{DoF}_{sf} + \text{DoF}_{sc} + \text{DoF}_{sf} + \text{DoF}_{tc} = 4 \] \hspace{1cm} (18-5)

It is understood that the space-varying energy fields (free and constrained) have three degrees of freedom or \[\text{DoF}_{sf} + \text{DoF}_{sc} = 3 \] \hspace{1cm} (19-5)

While time-varying energy fields (free and constrained) have one degree of freedom or \[\text{DoF}_{sf} + \text{DoF}_{tc} = \text{one} \] \hspace{1cm} (20-5)

Energy fields \(E_{sf}, E_{tf}, E_{sc}, E_{tc} \) do not have the dimensions of energy , but their product \(\rho_q \) does have the dimensions of energy density which is defined as energy divided by three dimensional volume

\[\rho_q = \frac{\text{energy}}{\text{volume}} = ML^{-1}T^{-2} \] \hspace{1cm} (21-5)

As free energy fields expand, constraining of the expanding fields takes place

\[\frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \right) q_q = \frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \left[\int E \ ds \ \frac{\partial E}{\partial t} \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) \right] \right) = \left(\frac{\partial E}{\partial s} \int E \ dt \right) \left(\int E \ ds \ \frac{\partial E}{\partial t} \right) = (E_{sf} E_{tc})(E_{sc} E_{tf}) + E_s E_t \] \hspace{1cm} (22-5)

= expansion term + constraining term and so on for successive expansion processes.
Expansion of the free energy by variation in space or time which must be accompanied by constraining and expansion of constrained energy fields must also be accompanied by constraining of those fields.

When energy is released from a field constraining process for free or constrained energy field as in (17-5), it is released in the form of singularity state \(E = E_x E_t \) (energy non-varying in space or time) which expands in the form of electromagnetic radiation.

As a result, a cycle of expansion and constraining is not a reversible process due to losses and effect of entropy (irreversible process) (will be further clarified in the section energy constraining and the Release of radiative energy).

Since the quanton is a quantum entity, its total energy content is governed solely by the Planck – Einstein relationship so, quanton energy is determined by its wave parameters (\(k, \omega \) or \(r_q \)), while an energy degree of freedom - which is defined in terms of the constant (\(c \)), is just a mechanism of division of energy between the various space and time-varying fields.

Fields of the following forms do not exist independently

\[
a = \frac{\partial E}{\partial x} - \frac{\partial E}{\partial t} = \int E \, ds - \int E \, dt
\]

(free or constrained energy field cannot expand in space and in time simultaneously without having a complimentary field of an opposite nature)

Though quanton includes both field of both natures (free and constrained), but there is a dominant type of energy field, this is based on which type of field has the majority of Dof's (higher field strength).

For the quanton, the free energy field is the dominant while for anti-quanton, the constrained type of field is the dominant type.

A quanton volume is an equivalent volume since quanton fields are infinite in range and expanding at the rate of (c) and the equivalent volume can be estimated indirectly

\[
E_p = \frac{h}{2\pi} \omega = \int \rho_q \, dV
\]

(22-5)

6. Energy Degrees of freedom

As energy density expands in space or in time, it is said to have an energy degree of freedom where quanton energy density can be defined in terms of the degrees of freedom of its wave parameters (\(\omega, k, \) or \(r_q \))

Qanton energy density (\(\rho_q \)) will be shown to be directly proportional to \(\omega^4, k^4 \text{ or } \frac{1}{r_q^4} \).

While the energy density of the quanton is defined in terms of \(\omega^4, k^4 \text{ or } \frac{1}{r_q^4} \), the energy fields are defined in terms of field strength or in terms of the constant (\(c \)) as follows \(D_{ef} = c^{\text{Dof}_{ef}} \), \(\text{Dof}_{ef} \) : degrees of freedom of free space-varying field.

(transformation from formulation in terms of wave parameters, to degree of Freedom formulation in terms of constant (\(c \))).
For space-varying and time-varying energy fields, where the resultant energy density is in the form
\[\varrho_q = (E_{\text{sf}} E_{\text{tc}})(E_{\text{sc}} E_{\text{sf}}) \] and not in the square root form
\[\varrho_q = \sqrt{E_{\text{sf}}^2 + E_{\text{sc}}^2 + E_{\text{tc}}^2 + E_{\text{tc}}^2} \]

This multiplier form allows the constant \((c)\) to become an energy degree of freedom in an exponential form, where energy is divided up symmetrically, between the space and time-varying fields, hence the uniform and symmetric expansion of energy across all dimensions.

The constant \((c)\) plays a bigger role than being the velocity of light or the velocity of transmission of the fundamental forces, as it plays the role of ratio between space- and time-varying fields, this is based on the relationship between energy field expansion by variation in space and in time, for the wave parameters \(\psi_{\text{tc}}, \psi_{\text{sf}}\) of the fields \(E_{\text{tc}}, E_{\text{sf}}\) where
\[\psi_{\text{tc}} = e^{-i\omega t}, \quad \psi_{\text{sf}} = e^{+jkr} \] (1-6),(2-6)
\[\psi = \psi_{\text{tc}} \psi_{\text{sf}} \] (3-6)
\[\frac{\partial \psi_{\text{tc}}}{\partial t} = -j \omega \psi_{\text{tc}}, \quad \frac{\partial \psi_{\text{sf}}}{\partial x} = jk \psi_{\text{sf}} \] (4-6),(5-6)
\[\frac{\partial (\psi / \partial t)}{\partial (\psi / \partial x)} = \frac{\partial \psi_{\text{sf}}}{\partial t} \psi_{\text{tc}} = -j \omega \psi_{\text{sf}} \psi_{\text{tc}} \] (6-6)
\[\frac{\partial (\psi / \partial x)}{\partial (\psi / \partial t)} = \frac{j \omega \psi_{\text{sf}} \psi_{\text{tc}}}{jk \psi_{\text{sf}} \psi_{\text{tc}}} = \frac{\omega}{k} = c \] (7-6)

Which is the relationship between rate of field variation in space and in time

Recalling the Lagrangian (\(L\)) of an action as
\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = -\frac{\partial L}{\partial q} = 0 \] (9-6)
Given that momentum \(P = \frac{\partial L}{\partial \dot{q}}\) (10-6)
We get \(\frac{\partial p}{\partial t} = \frac{\partial L}{\partial \dot{q}}\) or alternatively \(\frac{\partial L}{\partial \dot{q}} = \frac{\partial x}{\partial t} = c\) (11-6),(12-6)

An energy degree of freedom: the rate of change of the total energy of the system with respect to its momentum.

The same result can be obtained directly from the energy momentum relationship
\[E^2 = P^2c^2 + m_o^2c^4 \] (13-6)
Differentiating both sides
\[2 E \dot{E} = 2P \dot{P} \] (14-6)
\[\frac{dE}{dp} = \left(\frac{P}{E} \right) c, \quad \text{and} \quad \frac{dE}{dp} = c \] (15-6),(16-6)

Where for space fabric case (\(m_o = \text{zero}\)), \(E = P \cdot c\)

which is an alternative definition of the energy degree of freedom.

Both results of (12-6) and (16-6) are the same, given that \(\psi = \psi_{\text{sf}} \psi_{\text{tc}}\)

Using the Schrödinger equation for time and space derivatives
\[-\frac{\partial \psi}{\partial t} = -\frac{jE}{2\pi h} \psi \] (17-6)
\[\nabla \psi = \frac{jP}{2\pi h} \psi \] (18-6)
\[\frac{\partial \psi}{\nabla \psi} = \frac{E}{P} = c \] (19-6)

QUANTON FIELDS: EVOLUTION AND DEGREES OF FREEDOM
Based on the above points, the division of energy density between space and time-varying fields can be done where strength of space and time-varying energy fields (Dof) is expressed in terms of the constant (c) that defines the relationship between their rate of variation.

It is worth noting that energy field degrees of freedom (field strength) is not related to the total energy of the quanton, as it is only a mechanism for the division of the quanton energy density between the various space- and time-varying energy fields, and what differs the total energy content of any quanton from another is only the rate of variation of fields with time and space according to Planck Einstein relationship \(E_p = \frac{h}{2\pi} \omega \) (20-6)

The energy degrees of freedom can be classified as follows:

1-Active (actual degrees of freedom) that belong to the energy fields (field strength).

2- Kinetic degree of freedom which expresses the propagation of energy fields (in the form of electromagnetic waves) in one direction, this kinetic degree of freedom is subtracted from the existing four degrees of energy freedom for space and time-varying fields (discussed in the section: electromagnetic waves as space and time fields), where Dof’s = (2)+1 instead of (3)+(1)

3- Scalarized degrees of freedom: when a degree of freedom of an energy field becomes part of its intensity parameter instead of its strength parameter [9]

7. Superposition principle for energy fields

The linear superposition [7], [8] of energy fields still applies with a resultant Field which equals to the addition of the individual field intensities on condition that

a- Those fields must be of the same type (free or constrained) and

b- Have the same degree of freedom

\[
E_{sf1} + E_{sf2} = (K_{sf1}D_{sf1} + K_{sf2}D_{sf2}) = (K_{sf1} + K_{sf2})D_{sf2} \quad (1-7)
\]

\[
(E_{sf1}E_{tc1}) + (E_{sf2}E_{tc2}) = (K_{sf1}D_{sf1})(K_{tc1}D_{tc1}) + (K_{sf2}D_{sf2})(K_{tc2}D_{tc2}) = (K_{sf1}K_{tc1})(D_{sf1}D_{tc1}) + (K_{sf2}K_{tc2})(D_{sf2}D_{tc2}) = (K_{sf1}K_{tc1} + K_{sf2}K_{tc2})(D_{sf1}D_{tc1}) \quad (2-7)
\]

While for the case of fields of different nature (free / constrained) or fields that do have different energy DoF’s, the superposition is then done by adding their field strength (ie exponential degree of freedom) and multiplying their intensities.

The exponential form of superposition applies, as energy fields are defined in terms of energy degree of freedom (DoF), which is expressed as the exponent of \((e^{Dof})\)

The resulting superposition will not be a linear one instead it is an exponential superposition where

\[
E_{sf1}E_{sc1} = (K_{sf1}D_{sf})(K_{sc1}D_{sc1}) = (K_{sf1}K_{sc1})(D_{sf}D_{sc1}) \quad (3-7)
\]

\[
E_{sf1}E_{tc1} = (K_{sf1}D_{sf})(K_{tc1}D_{tc1}) = (K_{sf1}K_{tc1})(D_{sf}D_{tc1}) \quad (4-7)
\]

And for the quanton as a whole

QUANTON FIELDS: EVOLUTION AND DEGREES OF FREEDOM
\(q_q = (E_{sf}E_{tc})(E_{sc}E_{tf}) = (K_{sf}D_{sf})(K_{tc}D_{tc})(K_{sc}D_{sc})(K_{tf}D_{tf}) \) \((9-7) \)

\(= (K_{sf}K_{tc}K_{sc}K_{tf}) \) \(c^{D_{ofr}+D_{ofc}+D_{ofsc}+D_{oftr}} = (K_{sf}K_{tc}K_{sc}K_{tf}) c^4 \) \((10-7) \)

For energy fields, instead of the addition of the same type of energy, the exponential addition can be between two different types of energy fields (space and time-varying fields) and of two different natures (free / constrained) to give a complex energy field.

The main reason behind this is that free and constrained fields cannot be considered as an independent energy entity individually, since neither of them does possess four degrees of freedom and hence their individual Dof's must be added exponentially to obtain either a complex field equivalent to the total energy density of the quanton if the addition is for all four energy fields.

8. Definition of directional field directional components

For free space / time constrained field

\[E_{sf}E_{tc} = \sqrt{(E_{sf}E_{tc})^2 + (E_{sf}E_{tc})^2 + (E_{sf}E_{tc})^2} \] \((1-8) \)

and space constrained / time free field

\[E_{sc}E_{tf} = \sqrt{(E_{sc}E_{tf})^2 + (E_{sc}E_{tf})^2 + (E_{sc}E_{tf})^2} \] \((2-8) \)

Those are 6 components, 3 are constrained space / time free and 3 are free space / time constrained.

It is worth noting that

1- Spatial and time-varying energy fields cannot exist independently of each other, as discussed previously
2- The quanton fields \(E_{sf}, E_{sc}, E_{tf}, E_{tc} \) neither have the dimensions of energy nor the energy density but their product has the dimension of energy divided by three dimensional volume.

9. Dimensional energy symmetry (DES)

Dimensional energy symmetry is the mechanism which ensures the uniformity and homogeneity of energy under inflationary conditions as it expresses the uniform energy density expansion in 3 dimensional space or the equipartition of energy

Given that \(q_q = (E_{sf}E_{tc})(E_{sc}E_{tf}) \), energy as it expands in along the x- axis, will not only give as the result of the expansion

\[\frac{\partial}{\partial x}(q_q) = (\frac{\partial E_{sf}}{\partial x}) (\int E_{tc} \ dt) (\int E_{sc} \ dx \ \frac{\partial E_{tf}}{\partial x}) + (\int E_{sf} \ dx \ \frac{\partial E_{tc}}{\partial x}) (\frac{\partial E_{sc}}{\partial x} \ \int E_{tf} \ dt) \]

but it will be of the form \(\frac{\partial}{\partial x}(q_q) = \frac{\partial}{\partial x} (E_{sf}E_{tc}E_{sc}E_{tf}) = \)

\[\int \frac{\partial}{\partial x} (E_{sf}) \ \frac{\partial x}{\partial t} (E_{tc}) \ dt [\int (E_{sc}) \ dx \ \frac{\partial x}{\partial t} (E_{tf})] + \]

\[\int \frac{1}{\frac{\partial x}{\partial t}} \frac{\partial y}{\partial x} (E_{sf}) \ \frac{\partial x}{\partial t} (E_{tc}) \ dt [\frac{\partial y}{\partial x} \ \frac{1}{\frac{\partial x}{\partial t}} \int (E_{sc}) \ dy \ \frac{1}{\frac{\partial x}{\partial t}} (E_{tf})] + \]

\[\int \frac{1}{\frac{\partial x}{\partial t}} \frac{\partial z}{\partial x} (E_{sf}) \ \frac{\partial x}{\partial t} (E_{tc}) \ dt [\frac{\partial z}{\partial x} \ \frac{1}{\frac{\partial x}{\partial t}} \int (E_{sc}) \ dz \ \frac{1}{\frac{\partial x}{\partial t}} (E_{tf})] \] \((1-9) \)
Given that \(\frac{\partial x}{\partial t} = \frac{\partial y}{\partial t} = \frac{\partial z}{\partial t} = c \),

\[
\frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} \left(\frac{\partial E_{sf}}{\partial s} \int E_{tc} \, dt \right) \left(\int E_{sc} \, ds \, \frac{\partial E_{sf}}{\partial t} \right) + \left(\int E_{sf} \, ds \, \frac{\partial E_{sc}}{\partial t} \right) \left(\int E_{tc} \, ds \, \frac{\partial E_{sc}}{\partial t} \right) \right) = 0
\]

(2-9)

Note: The chain rule was applied for differentiation and change of variables for the case of integration.

As energy density expands along one axis it must not only expand along other spatial and temporal axes but be constrained along the spatial and temporal axes as well, this leads to the conclusion that events in one direction are immediately reflected in the other spatial and temporal directions.

The uniformity and the homogeneity of space fabric is ensured through the role time plays as the link between all the three space-varying fields and via the constant (c).

To satisfy dimensional energy symmetry for quanton, the degrees of freedom must be symmetric with respect space and time-varying energy fields.

Define the Dof_\(q \), D_\(q \) (in terms of c) where the degree of freedom parameter

\[
\text{Dof}_q = \text{Dof}_{sf} + \text{Dof}_{sf} + \text{Dof}_{sc} + \text{Dof}_{tc} = 4
\]

(3-9)

Energy field strength parameter

\[
D_q = D_{sf}D_{sf}D_{sc}D_{tc} = c^4
\]

(4-9)

\[
D_s = c^3, \quad D_{sf} = c^{\text{Dof}_{sf}}, \quad D_{sc} = c^{\text{Dof}_{sc}} = c^{3-\text{Dof}_{sf}} \quad (5,6,7,8-9)
\]

\[
D_t = c, \quad D_{sf} = c^{\text{Dof}_{sf}}, \quad D_{tc} = c^{\text{Dof}_{tc}} = c^{1-\text{Dof}_{sf}} \quad (9,10,11-9)
\]

In other words, for free and constrained fields the degree of freedom must be expressed in a symmetric way across all spatial and time-varying energy fields.

Fig.3. shows energy density expands uniformly as it’s defined in terms of (c) instead of the quanton wave parameters.

\[
q_q = K_q c^4
\]

\[
q_q = h_q \omega^4
\]

\[\begin{align*}
\text{Dof} & \quad \text{Dof} \\
E_{sf} & \quad S1 \quad S2 \\
E_{sc} & \quad S3 \\
E_{tf} & \\
E_{tc} & \quad T
\end{align*}\]

Fig. 3. role of dimensional energy symmetry in ensuring the uniformity of energy density distribution.
10. Energy density / Degree of freedom relationship

Quanton frequencies have a statistical distribution vs energy density.

This statistical distribution is an open question but here we can provide an initial formulation of such distribution:

\[q_q = C_s \int_0^{\infty} \frac{\hbar \omega^3 d\omega}{c^3 (\omega m - 1)} \]

(1-10)

\(C_s \): statistical constant, \(\omega_m \): mean angular frequency

The analytical value of the statistical constant is unknown for now, however, an alternative method to assess the energy density and to arrive at the density degree of freedom relationship can be made in terms of mean wave parameters.

Recalling first that the quanton fields are infinite in range, and the definition of the variation parameters of \(E_q f \), \(E_q c \) fields which corresponds to an exponentially decaying field away from the quanton, the free and constrained fields can be put as:

\[E_q f (x) = E_q f e^{-\frac{x}{2r_q}} \quad \text{(free dominated field)} \]

(2-10)

\[E_q c (x) = E_q c e^{-\frac{x}{2r_q}} \quad \text{(constrained field)} \]

(3-10)

Quantum energy density is in the form:

\[\varrho_q = (E_q f E_{q c}) (E_{q c} E_{q f}) = E_q f E_q c = q_q e^{-\frac{r^2}{r_q^2}} \]

(4-10)

\(q_q \): represents the average energy density over time.

To assess the entire energy stored in both fields, the quanton total energy would be equal to the volumetric integration:

\[q_q = \frac{\hbar \omega}{2\pi} = \iiint_{-\infty}^{\infty} E_q \ e^{-\frac{x^2+y^2+z^2}{r^2}} \ dx \ dy \ dz = \]

(5-10)

\[= (2)^3 \iiint_{0}^{\infty} E_q \ e^{-\frac{x^2+y^2}{r^2}} \ dx \ dy \ dz \quad \text{(symmetric integration)} \]

(6-10)

\[= 8(r_q)^3 \ q_q \ e^{-\frac{x^2+y^2+z^2}{r^2}} \bigg|_{x,y,z=0} = 8 \ (r_q)^3 \ q_q \]

(7-10)

\[q_q = \frac{\hbar \omega}{16\pi r_q^3} = \frac{\hbar \omega^4}{16 \pi^4 \ r_q^2} \]

(8-10)

Where \(\frac{\hbar}{16\pi^2 c^3} = h_q \) (energy density constant)

(9-10)

The quanton is represented by an equivalent volume = \(8 \ r_q^3 \)

(10-10)

While in terms of the wave parameter (k), or the quanton radius, the quanton energy density takes the form:

\[q_q = \left(\frac{\hbar}{16 \pi^2 c^3} \right) k^4 \ c^4 = \frac{\hbar c}{16 \ r_q^4} \]

(11-10)

This relationship is very important since the term \(\frac{\hbar}{16\pi^2 c^3} = \text{constant} \)

in other words, Quanton field energy density is linearly proportional to the four degrees of freedom as expressed by either \((\omega^4 k^4 \text{ or } \frac{r}{r_q^4}) \)
\[\rho_{q} = h_{q} \omega^{4} = h_{q} k^{4}c^{4} = h_{q} \frac{n^{4}c^{4}}{r_{q}^{4}} \]
\hspace{1cm} (12-10)

The same result can be reached alternatively, when calculating the vacuum energy density \(\rho_{v} \) at any point in space as the summation of individual energy density contributions of \((N_{q}) \) quantons.

\[\rho_{v} = \sum_{i}^{N_{q}} \rho_{qi} \]
\hspace{1cm} (13-10)

To relate the average energy density \(\rho_{q} \) to its maximum value \(\rho_{qo} \) over time, we use the quanton /anti quanton wave model.

\[\rho_{q} = \frac{1}{2} (E_{qt} + cE_{qo}) \]
\hspace{1cm} (14-10)

and since \(E_{qfo} = cE_{qco} \)
\hspace{1cm} (15-10)

\[\rho_{q} = E_{qfo} \cos \left(\frac{\pi r}{2r_{q}} - \omega t \right) E_{qco} \cos \left(\frac{\pi r}{2r_{q}} - \omega t \right) = E_{qo} \cos ^{2} \left[\frac{\pi r}{2r_{q}} - \omega t \right] \]
\hspace{1cm} (16-10)

The average value of a periodic function is defined as

\[\rho_{q} = \frac{1}{T} \int_{0}^{T} \rho_{qo} \, dt \]
\hspace{1cm} (17-10)

\[\rho_{q} = \frac{E_{qo}}{T} \int_{0}^{T} \cos ^{2} \left(\frac{\pi r}{2r_{q}} - \omega t \right) \, dt \]
\hspace{1cm} (18-10)

The value of this integration equals to \(\frac{1}{2} \)

\[\rho_{qo} = 2\rho_{q} = \frac{h \omega^{4}}{8r^{4} c^{4}} \]
\hspace{1cm} (19-10)

11 - Energy Constraining and the Release of Radiative Energy

As the quantons expand, field constraining takes place (transformation into a singularity state – energy non-varying in space or time)

Energy constraining during quanton inflation as follows

a-Expansion of free energy fields \(\frac{\partial E_{sf}}{\partial s} \frac{\partial E_{tf}}{\partial t} \) must be accompanied by constraining of part of the expanding free energy fields in the form \(\int E_{sf} \, ds \int E_{tf} \, dt = (E_{s}E_{t}) \)

b-Expansion of constrained fields \(\int E_{sc} \, ds \int E_{tc} \, dt \) must be accompanied by a constraining of part of the expanding field in the form \(\frac{\partial E_{sc}}{\partial s} \frac{\partial E_{tc}}{\partial t} = E_{s}E_{t} \)

c-In both cases, the result will be the release of energy in a singularity state (non-varying in space or time) of the form \(E = E_{s}E_{t} \) for the free /constrained type of energy field as they expand

\[\frac{\partial}{\partial s} \left[(E_{sf}E_{tc})(E_{sc}E_{tf}) \right] = \left(\frac{\partial E_{sf}}{\partial s} \int E_{tc} \, dt \right) \left(\int E_{sc} \, ds \frac{\partial E_{tf}}{\partial t} \right) \]
\hspace{1cm} (1-11)

Given that \(\frac{\partial E_{sf}}{\partial s} = E_{sf} \), \(\int E_{tc} \, dt = E_{tc} \), \(\int E_{sc} \, ds = E_{sc} \), \(\frac{\partial E_{tf}}{\partial t} = E_{tf} \)
\hspace{1cm} (2,3,4,5-11)

and \(\int E_{sf} \, ds \frac{\partial E_{sc}}{\partial s} \int E_{tc} \, dt = E_{s}E_{t} \)
\hspace{1cm} (6,7-11)

The results of field expansion can be defined as

a- Expansion term:
\[
\left(\frac{\partial E_{\text{st}}}{\partial s} \int E_{tc} \, dt \right) \left(\int E_{sc} \, ds \frac{\partial E_{\text{st}}}{\partial t} \right) = (E_{sf} E_{tc}) (E_{sc} E_{tt})
\]

(8-11)

Corresponds to the expanding space and time-varying fields.

The nature of expanding fields is the same as the original type of fields

(though with lesser energy content)

b- The constraining term: \((\int E_{sf} \, ds \frac{\partial E_{tc}}{\partial t}) \left(\frac{\partial E_{sc}}{\partial s} \int E_{tt} \, dt \right) = E_s \, E_t \)

(9-11)

which represents the release of energy in a singularity state due to the constraining of part of the free and constrained fields.

This non-varying energy expands and it is released from the quanton in the form of radiative energy.

Fig. 4. Shows the expansion of the quanton and the subsequent release of radiative energy.

12. Energy Constraining - A Possible Origin of Cosmic Microwave Background (CMB)

Inflation of the universe (expansion of space fabric) is a free expansion process and is accompanied by the release of thermal energy.

The idea that a free expansion process gives off heat is rather odd, since expansion is closely related to reduction in temperature, in fact any release of thermal energy is more than offset by the effects of inflation, so the net result would be a reduction in temperature (observed as thermal degradation of CMB photons).

This free expansion process of the universe, which according to the second law of thermodynamics, is an irreversible process, this irreversibility is due to losses in the form of space fabric giving off heat during expansion.

The origin of this release of thermal energy: is energy constraining.

Based on the previous results, we can conclude that the CMB origin is due to release of thermal energy during free expansion of the space fabric itself.

The extraordinarily high degree of CMB homogeneity with variation of the order of \(10^{-5}\), reflects the high degree of homogeneity of space fabric itself as it releases radiation during the free expansion process and, in fact energy constraining is behind that release of this radiation energy.
13. Why do quantons split?

The question how the quantons split is discussed in the following section, but why this happens resides in the fact that the quanton energy density is four dimensional, as the quanton expands from an equivalent volume \(V_{q1} \) to \(V_{q2} \), the quanton radius \(r_q \) and its volume \(V_q \) should change in the following manner \(\frac{V_{q2}}{V_{q1}} = \left(\frac{r_{q2}}{r_{q1}} \right)^3 \) which is expected in case of an expansion in three-dimensional energy density.

Quanton energy fields change periodically with time, this variation at the rate of \(\omega \) rad/sec, and vary in space at the rate of \(k = \frac{\pi}{r_q} \), the total energy of the quanton (as a quantum entity) is governed by Planck Einstein relationship (function only in its wave parameters), namely

\[E_p = hf = \frac{hc}{2\pi} = \frac{hc}{2r_q} \]

the relationship between quantons of different energy content can be put as

\[\frac{E_{q2}}{E_{q1}} = \frac{\omega_2}{\omega_1} = \frac{k_2}{k_1} = \frac{\lambda_2}{\lambda_1} = \frac{r_{q1}}{r_{q2}} \]

which means that the quanton radius and the wave length of its characteristic wave behaviour are inversely proportional to its total energy content.

Recalling here the DoF relationship between quanton energy density and its wave parameters, energy density can be assessed as

\[E_p = q_q \ V_q \quad \text{or} \quad q_q = \frac{E_p}{V_q} \]

\[\frac{q_{q2}}{q_{q1}} = \left(\frac{E_{p2}}{E_{p1}} \right) \left(\frac{V_{q1}}{V_{q2}} \right) \]

substituting for \(\frac{E_{p2}}{E_{p1}} = \left(\frac{r_{q1}}{r_{q2}} \right)^3 \) , and \(\frac{V_{q1}}{V_{q2}} = \left(\frac{r_{q1}}{r_{q2}} \right)^3 \)

We get \(\frac{q_{q2}}{q_{q1}} = \left(\frac{r_{q1}}{r_{q2}} \right)^4 \)

Which deviates from what we would expect in a classical volume/density relationship of the form

\[\frac{q_2}{q_1} = \frac{V_2}{V_1} = \left(\frac{r_1}{r_2} \right)^3 \]

This is due to the fact that energy density is inversely proportional to \(r_q^4 \) and not to \(r_q^3 \) and this relationship can be obtained directly from the equation (14-11), namely

\[q_q = \pi^4 h_q \frac{c^4}{r_q^4} \text{ or } q_q = \left(\frac{\text{constant}}{r_q^4} \right) \]

As quantons expand into a three-dimensional space, they have to release energy, in the form of radiation but energy release from such a process would be excessive.

Instead, the quantons, as they expand do split, to allow for subsequent expansion, put this time with minimal release of thermal energy.

14. Mechanism of quanton splitting and expansion.

This model for quanton splitting serves as preliminary and introductory one where the splitting is symmetric, but since the CMB radiation has a statistically distributed frequencies it is inferred that the quanton frequencies are also statistically distributed and the splitting occurs non-symmetrically.

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
There are two mechanisms that can cause the quantons to expand, namely
a-Splitting action of the quantons due dimensional energy asymmetry
b-The sole release of energy from the quantons as for the first mechanism.

14.1. Stage(1-2) expansion under the effect of self interacting repulsive field

The two types of quanton fields (free Dominated E_{qf} and neutral E_{qc}) interact , creating a binding relationship but since the energy Dof’s (i.e field strength) of both types are not the same, the field of the dominant type of energy(E_{qf} for quantons and E_{qc} for anti quantons) self- interact creating a repulsive interaction that causes the quantons to expand, the self-interacting (unbound) field is

\[(E_{sfu} \ E_{ifu}) \text{ for quantons and } (E_{scu} \ E_{tcu}) \text{ for anti quantons} \]

The unbound field is at the origin of the quanton inflationary energy overcomes this binding and causes the quanton to expand.

As the quanton expands its wave parameters (ω, k) are altered , while its energy content remains the same since there’s no energy release from the quantons at this stage, as a result the quanton has either to
a- Release radiative energy to maintain the relationship $E_p = \frac{\hbar \omega}{2\pi}$ or
b- Split thus reducing its overall energy content and allowing further expansion

14.2. Stage (2-3) dimensional energy asymmetry occurs and quanton splits

Since the quanton parameters (ω, k) do not reflect its energy content , \(\frac{E_{p2}}{E_{p1}} \) must be equal to \(\frac{r_{q1}}{r_{q2}} \) \[\frac{\omega_2}{\omega_1} = \frac{k_2}{k_1} \]

while \(E_{p2} \) still equals \(E_{p1} \) , this conflict causes quanton to split as a mechanism to restore the relationship \((r_{q2}) = \left(\frac{r_{q1}}{2} \right) = r_{q1} \), \(E_{p3} = \frac{E_{p2}}{2} = \frac{E_{p1}}{2} \), the splitting corresponds to a quanton radius \(r_{q2} = x \cdot r_{q1}, x = 2 \)

14.3. Stage(3) quanton expands further

Following quanton splitting its total energy becomes \(E_{p3} = \frac{E_{p2}}{2} \), while wave parameters (ω, k) must altered to satisfy the relationship \(\frac{E_{p4}}{E_{p2}} = \frac{\omega_4}{\omega_1} = \frac{k_4}{k_1} = \frac{r_{q4}}{r_{q1}} = \frac{1}{2} \)

As the quantons expand , they release radiative energy in the form of CMB photons, and to arrive at the final stable state.

fig. 5. Provides an illustration of the quanton expansion, splitting cycle, while table 2. provides a summary of those stages and the corresponding quanton parameters

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
Table 2. Summary of the stages of the quanton splitting and expansion $x = 2$

stage	(1)	(1-2)	(3)
Total quanton energy E_p	E_{p1}	E_{p1}	$< \frac{E_{p1}}{2}$
Wave parameter ω	ω_1	$< \omega_1$	$< \frac{\omega_1}{2}$
Quanton energy density ρ_q	ρ_{q1}	$< \rho_{q1}$	$< \frac{\rho_{q1}}{16}$
Quanton radius r_q	r_{q1}	$> r_{q1}$	$> 2 r_{q1}$
Quanton volume V_q	V_{q1}	$> V_{q1}$	$> 8 V_{q1}$
Number of quantons	one	one	two

The second method is the pure release of thermal energy followed up by a subsequent quanton expansion which is such an inefficient mechanism in comparison to the fore described method of quanton splitting and subsequent expansion.

Given the high efficiency of the splitting process as a mechanism to manage the expansion of the quanton through both inflation and multiplication while on the other hand minimizing the thermal energy release, it is clear that quanton splitting and subsequent expansion is the actual mechanism of space fabric expansion.

The release of the radiative energy during the process of expansion of the quanton is not related to the re-establishment of the wave parameter relationship with the quanton energy.

An explanation lies in the fact that all the quanton energy fields are involved in different interactions, mainly binding ones, while energy in a singularity state which expand as radiation is not involved in any of those binding interactions, and already possesses four degrees of freedom, as a result, small part of this energy escapes in the form of radiative energy.
15. Mathematics behind constraining

As the quanton forms, the nature of the energy field changes (from free to constrained), to perform such an operation energy fields must transit through a singularity state (energy that does not vary in space or in time) and as energy field strength is in terms of DoF’s, its operator (integration / differentiation) has to be applied at an exponential level, thus the exponent of field variation parameter which is operated upon.

a–For evolution of constrained space-varying field

\[
\frac{\partial}{\partial s} \left(\frac{\partial \psi}{\partial s} \right) = \frac{\partial}{\partial s} (K_{sf} D_{sf} \psi_{sf}) = K_{sf} D_{sf} \frac{\partial}{\partial s} (\psi_{sf})
\]

\[
= K_{sf} D_{sf} \left[e^{ik_s} \left(e^{i\psi_{sf}(k_s)} \right) \right]
\]

\[
= \left[K_{sf} D_{sf}(e^{ik_s}) \left[K_s D_s e^{(jk)} \right] \right]
\]

\[
= \left(\frac{\partial E}{\partial x} \right) \left(K_s D_s e^{(jk)} \right) = \left(\frac{\partial E}{\partial x} \right) \left(E_s \right)
\]

\[
\int (E_s) \, ds = \left(K_s D_s e^{-(jk)} \right) \, ds
\]

\[
= [K_{te} D_{te} (e^{-\omega t})] = \int E \, ds
\]

b–For the evolution of the constrained time-varying field

\[
\frac{\partial}{\partial t} \left(\frac{\partial \psi}{\partial t} \right) = \frac{\partial}{\partial t} (K_{tf} D_{tf} \psi_{tf}) = K_{tf} D_{tf} \frac{\partial}{\partial t} (\psi_{tf})
\]

\[
= K_{tf} D_{tf} \left[(e^{jut}) \left(e^{i\psi_{tf}(jut)} \right) \right]
\]

\[
= \left[K_{tf} D_{tf}(e^{jut}) \left[K_t D_t \left(e^{(j\omega)} \right) \right] \right]
\]

\[
= (\frac{\partial E}{\partial x}) \left(E_t \right)
\]

\[
\int (E_t) \, dt = [K_t D_t \left(e^{-(j\omega)} \right) \, dt] \]

\[
= \left(K_{tc} D_{tc} (e^{-\omega t}) \right) = \int E \, dt
\]

15.1– Expansion term

As mentioned earlier the expansion of constrained fields is handled by integration process

\[
\frac{\partial}{\partial s} \left(\frac{\partial^2 q_{sf}}{\partial s \partial t} \right) = \frac{\partial}{\partial s} \left(\left(E_{sf}E_{tc} \left(E_{sc} E_{tf} \right) \right) \right)
\]

\[
= [K_{sf} D_{sf} \left(\psi_{sf} \right) K_{tc} D_{tc} \left(\int \psi_{tc} \, dt \right)] \left[\left(K_{sc} D_{sc} \left(\int \psi_{sc} \, dx \right) K_{tf} D_{tf} \frac{\partial}{\partial x} (\psi_{tf}) \right) \right]
\]

\[
= \left[\frac{\partial}{\partial x} \left(K_{sf} D_{sf} \psi_{sf} \right) \left(K_{tc} D_{tc} \psi_{tc} \right) \right] \left[\frac{\partial}{\partial x} \left(K_{sc} D_{sc} \psi_{sc} \right) \left(K_{tf} D_{tf} \psi_{tf} \right) \right]
\]

\[
= [K_{sf} D_{sf} (\psi_{sf}) (K_{tc} D_{tc} (\psi_{tc}))][(K_{sc} D_{sc} (\psi_{sc})) (K_{tf} D_{tf} (\psi_{tf}))]
\]

\[
= \left(E_{sf} E_{tc} \left(E_{sc} E_{tf} \right) \right) = q_{sf}
\]

15.2– Constraining term

\[
\left(\int E_{sf} \, ds \frac{\partial E_{tc}}{\partial t} \right) \left(\frac{\partial E_{sc}}{\partial s} \int E_{tf} \, dt \right)
\]

\[
= \left[\left(K_{sf} D_{sf} \left(e^{ik_s} \right) \left(K_{tc} D_{tc} e^{i\psi_{tc}(k_s)} \right) \right) \right] \left[\left(K_{sc} D_{sc} \left(e^{i\psi_{sc}(k_s)} \right) \left(K_{tf} D_{tf} e^{i\psi_{tf}(k_s)} \right) \right) \right]
\]

\[
= (K_{sf} K_{tc} D_{sf} D_{tc} (k_s) \left(e^{-(j\omega)} \right) (K_{sc} K_{tf} D_{sc} D_{tf} e^{-(j\omega)})
\]

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
To summarize, the exponential differentiation/integration would be applied in either of the following cases
1- Change of the nature of the energy field (free / constrained) or (space-varying to time-varying) and vice versa.
2- Change in the degrees of freedom of any energy field (Dof rearrangement of Dof’s between fields)

16. Wave-like properties of space fabric

Energy which varies in time and varies in space has wave like properties as it changes at periodic rate that equals \(\omega \ \text{rad} \ \text{sec}^{-1} \) (\(\approx 2 \pi f \)) and the space-varying field, where \(r_q = \left(\frac{\pi}{h} \right) \), such that \(\omega r_q = \text{constant} = \pi c \), in fact the quanton (or anti quanton) is represented by two (wave like) equations.

To show how the wave equations would look like for the free and constrained energy fields, first remembering that

\[
\psi_{sf} = e^{j k x}, \quad \psi_{tc} = e^{-j \omega t}, \quad \psi_{sc} = e^{-j k x}, \quad \psi_{tt} = e^{j \omega t}
\]

The free dominated wave parameters: \(\psi_{sf} = (\psi_{sf}\psi_{tc}) \) differentiating both sides w.r.t time

\[
\frac{\partial \psi_{sf}}{\partial t} = \frac{\partial \psi_{tc}}{\partial t} \psi_{tc} = -j \omega \psi_{sf}\psi_{tc} \quad (1-16)
\]

\[
\frac{\partial^2 \psi_{sf}}{\partial t^2} = \frac{\partial^2 \psi_{tc}}{\partial t^2} \psi_{tc} = -\omega^2 \psi_{sf}\psi_{tc} \quad (2-16)
\]

While differentiating w.r.t (x)

\[
\frac{\partial \psi_{sf}}{\partial x} = \frac{\partial \psi_{tc}}{\partial x} \psi_{tc} \quad (3-16)
\]

\[
\frac{\partial^2 \psi_{sf}}{\partial x^2} = \frac{\partial^2 \psi_{tc}}{\partial x^2} \psi_{tc} = -k^2 \psi_{sf}\psi_{tc} \quad (4-16)
\]

For a wave equation \(\frac{\partial^2 \psi_{sf}}{\partial t^2} = c^2 \frac{\partial^2 \psi_{sf}}{\partial x^2} \) to be satisfied

\[
\frac{\partial^2 \psi_{sc}}{\partial x^2} = c^2 \left(\frac{\partial^2 \psi_{sc}}{\partial x^2} \frac{\psi_{tc}}{\psi_{sf}} \right) \quad \text{or} \quad (\ E_{qf} \)_{tt} = c^2 (\ E_{qf} \)_{xx} \quad \text{as before} \quad (5-16)
\]

which is the PDE for the free dominated field, similarly for the neutral field \(E_{qc} \)

\[
\psi_{qc} = (\psi_{sc}\psi_{tt}) \) , differentiating both sides w.r.t time

\[
\frac{\partial \psi_{qc}}{\partial t} = \frac{\partial \psi_{sc}}{\partial t} \psi_{sc} \quad (6-16)
\]

\[
\frac{\partial^2 \psi_{qc}}{\partial t^2} = \frac{\partial^2 \psi_{sc}}{\partial t^2} \psi_{sc} \) , while differentiating w.r.t x

\[
\frac{\partial \psi_{qc}}{\partial x} = \frac{\partial \psi_{sc}}{\partial x} \psi_{tt} \quad (7-16)
\]

\[
\frac{\partial^2 \psi_{qc}}{\partial x^2} = \frac{\partial^2 \psi_{sc}}{\partial x^2} \psi_{tt} \quad (8-16)
\]

For a wave equation \(\frac{\partial^2 \psi_{qc}}{\partial t^2} = c^2 \frac{\partial^2 \psi_{qc}}{\partial x^2} \) to be satisfied

\[
\frac{\partial^2 \psi_{tt}}{\partial t^2} = c^2 \left(\frac{\partial^2 \psi_{qc}}{\partial x^2} \frac{\psi_{tt}}{\psi_{sc}} \right) \) or \((\ E_{qc} \)_{tt} = c^2 (\ E_{qc} \)_{xx} \quad (9-16)
\]

This PDE for the constrained field.
17. Quanton evolution and degrees of freedom

Evolution of the quanton takes place as both free fields (E₁) and (E₂) coexist.

As free energy field expands by variation in space part of this field becomes a constrained space-varying field.

\[a - \frac{\partial}{\partial s} \left(\frac{\partial E}{\partial s} \right) \left[\int \left(\frac{\partial E}{\partial s} \right) \, ds \right] = \left(\frac{\partial E}{\partial s} \right) (E) \]
(1-17)

\[b - \int (E_x) \, ds = \int E \, ds = E_{sc} \]
(2-17)

While as the time-varying field (Etf) expands, a part of it becomes constrained time-varying energy field.

\[c - \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial E}{\partial t} \right) \left(\int \frac{\partial E}{\partial t} \, dt \right) = \frac{\partial E}{\partial t} (E_t) \]
(3-17)

\[b - \int (E_t) \, dt = \int E \, dt = E_{tc} \]
(4-17)

As no field possesses all four Dof’s, none of them can exist independently.

Now quanton energy density equation becomes

\[\rho_q = \left(\int E \, dt \right) \left(\int E \, ds \right)^{\frac{1}{2}} = \rho_{sc} \rho_{qc} \]
(5-17)

Which expresses two apparently separate (but otherwise linked) Fields.

For space constrained energy field (E_sc), its energy Dof equals one third of the corresponding free energy field (E_sf).

For constrained time-varying energy field (E_tc), its energy degree of freedom equals one third of the corresponding free time varying field (E_tf).

The previous discussion can be summarized in the following 4 equations by solving them the quanton Dof’s for the four energy fields can be obtained

\[\text{Dof}_{sc} = 3, \quad \text{Dof}_{tc} = 3 \]
(4-17),(5-17)

\[\text{Dof}_{sc} + \text{Dof}_{tc} = 3, \quad \text{Dof}_{sc} + \text{Dof}_{tc} = 1 \]
(6-17),(7-17)

Which gives the following results

\[\text{Dof}_{sc} = 2.25, \quad \text{Dof}_{tc} = 0.75 \]
(8-17), (9-17)

\[\text{Dof}_{sc} = 0.75, \quad \text{Dof}_{tc} = 0.25 \]
(10-17),(11-17)

For the case of electromagnetic quantons which are released from the constraining process E = E_s E_t, and the expansion of this energy packet in space is different from that of space fabric quantons namely.

\[\rho_q = \frac{\partial}{\partial s} (E_s E_t) = \epsilon \epsilon_0 \left(\frac{E_s E_t}{\sqrt{2 \sigma c}} \right) \left(\frac{E_s E_t}{\sqrt{2 \sigma c}} \right) = \epsilon \epsilon_0 E_B \]
(12-17)

Fig. 6. Shows the evolution of DOF’s of various fields of the quanton as it forms
For the quanton despite having a constrained energy fields, it is dominated by the free energy field of the form \(\frac{\partial E}{\partial s} \) since this energy term represents 3.0 degrees of freedom while the constrained type \(\int E \, ds \int E \, dt \) constitutes 1.0 Dof out of four.

The number of (unbound) degrees of freedom of free energy fields is equivalent to the number of free energy degrees of freedom (space- plus time- varying) minus the energy constrained degrees of freedom (space- and time- varying)

Unbound free field is manifested in the form of quanton inflation

\[
D_{sfu} D_{tfu} \text{ (unbound field strength)} = \frac{(D_{sf} D_{tf})}{(D_{sc} D_{tc})} = \frac{c^{2.25}c^{0.25}}{c^{0.75}c^{0.25}} = c^{2.0}
\]

\[
\text{unbound free Dof} = \sum(\text{free Dof}) - \sum(\text{constrained Dof})
\]

\[
= [(D_{sf}) + (D_{tf})] - [(D_{sc}) + (D_{tc})] = (3.0 - 1.0) = +2.0
\]

18.Variation of quanton energy fields with time

Not only the unbound energy fields \(E_{sfu}, E_{tfu} \) of the quanton (or \(E_{scu}, E_{scu} \) for anti quanton) which change with time as the quanton (or anti quanton) expands, but rather all the other energy fields, and this is so, to ensure the uniformity of energy density.

18.1-Variation of space-varying energy with time
\[\frac{\partial E_{sf}}{\partial t} = \frac{\partial E_{sf}}{\partial x} \left(\frac{1}{\partial t} \right) = c \frac{\partial E_{sf}}{\partial x} \quad (1-18) \]
\[\frac{\partial E_{sf}}{\partial x} = j k E_{sf} \quad (2-18) \]
\[\frac{\partial E_{sf}}{\partial t} = j k E_{sf} \quad (3-18) \]

18.2- time-varying energy field variation

\[\frac{\partial E_{sf}}{\partial t} = j \omega E_{sf} \quad (4-18) \]

18.3-Relative rate of Variation between different energy fields

\[\frac{\partial E_{sf}}{\partial \psi_{sf}} = \frac{\partial E_{sf}}{\partial x} \left(\frac{1}{\partial \psi_{sf}} \right) = (j k E_{sf}) \left(\frac{1}{j \omega E_{sf}} \right) = \frac{E_{sf}}{E_{sf}} = \frac{E_{sf}}{E_{sf}} = \frac{D_{sf}}{D_{sf}} \quad (5-18) \]

the same results can be reached when considering the wave parameters of energy fields

\[\frac{\partial \psi_{sf}}{\partial \psi_{sf}} = \left(\frac{\partial \psi_{sf}}{\partial x} \right) \left(\frac{1}{\partial \psi_{sf}} \right) \quad (6-18) \]

Given that

\[\psi_{sf} = e^{j \omega t} \quad, \quad \frac{\partial \psi_{sf}}{\partial t} = j \omega \psi_{sf} \]
\[\psi_{sf} = e^{j k x} \quad, \quad \frac{\partial \psi_{sf}}{\partial x} = j k \psi_{sf} \]
\[\frac{\partial \psi_{sf}}{\partial \psi_{sf}} = \frac{1}{c \omega} = 1 = \text{constant} \quad (7-18) \]

While from before

\[\frac{\partial E_{sf}}{\partial t} = j \omega E_{sf} \quad, \quad \frac{\partial E_{sf}}{\partial x} = j k E_{sf} \quad (8-18) \]

which means that

1-The rate of variation of energy fields wave parameters with respect to each other is constant (=1)
(same rate of variation for all energy fields)
2-Relative rate of variation in time of all energy fields is equal to the ratio between their degrees of freedom and this is due to the uniformity of their variation parameters.

19. Energy field parameters

As energy density expands by variation in space and time, it has four degrees of freedom, this can be used to define quanton space and time-varying fields

\[\varrho = \frac{h}{16 \pi^4 c^3} k^4 c^4 = \text{constant} \ast \left(\frac{2 \pi}{\lambda} \right)^4 \ast c^4 = \frac{\text{constant}}{4 \text{D volume}} \ast c^4 \quad (1-19) \]

This relationship does not only express a volumetric relationship of energy density as it expands into a 4 D volume, but it expresses an energy density – degree of freedom relationship as it. Instead of formulating the density degree of freedom relationship in terms of the wave parameters (k ,\omega , \frac{1}{r_4}) , from now on the formulation of the energy fields will be in terms of the constant (c)

\[D_q = c^4 = D_{sf} D_{sc} D_{tf} D_{tc} \quad (D_x = \text{field strength parameter of energy fields}) \quad (2-19) \]

Where

\[D_{sf} = c^{D_{sf}} \], \quad D_{sc} = c^{D_{sc}} \quad (3,4-19) \]
\[D_{tf} = c^{D_{tf}} \], \quad D_{tc} = c^{D_{tc}} \quad (5,6-19) \]

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
\[q_q = \frac{h}{16\pi^4 c^4} k^4 c^4 = K_q c^4 \]

(7.8-19)

The quantity \(K_q c^4 = (\frac{h}{16\pi^4 c^3}) k^4 \) can be put as

\[K_q c^4 = h_k k^4 = K_{sf} K_{sc} K_{tf} K_{tc} \]

(9-19)

Where \(K_{sf} = K_q = 4\sqrt{\frac{h}{16\pi^4 c^3}} k \) \((k = \frac{2\pi}{\lambda}) \)

(10-19)

\[K_{sc} = K_q = 4\sqrt{\frac{h}{16\pi^4 c^3}} k \]

(11-19)

It must be noted that while \(\frac{q_{\lambda}}{\omega^4} = \left(\frac{h}{16\pi^4 c^3}\right) = h_q \) = constant

The division of the field intensity parameter does not follow the energy degree of freedom but follows the division of field types (free / constrained and space or time-varying fields) otherwise energy fields \(E_{sf} \), \(E_{tc} \) or \(E_{sc} \), \(E_{tf} \) could exist independently.

One can be drawn to think that the division of \((K_q c^4) \) between various energy fields such that \(K_{sf} = K_q^{D_{sf}} = K_q^{2.25} \), or \(K_{tf} = K_q^{D_{tf}} = K_q^{0.25} \), but since there are no wave parameters in nature of \(k^{2.25} \) or \(\omega^{0.25} \) due to the symmetry of the wave behavior between various fields which is previously defined as \(\frac{\delta \psi_{sf}}{\delta K_{sf}} = \frac{1}{c k} \) \(\) = constant and \(\frac{\delta E_{sf}}{\delta E_{sf}} = \frac{1}{c} \frac{\delta E_{sf}}{\delta k_{sf}} = \frac{E_{sf}}{E_{sf}} = \frac{D_{sf}}{D_{sf}} \)

This leads to the following result : \(K_{sf} = K_{sc} = K_{tf} = K_{tc} = K_q \)

(12-19)

Finally, we can write the energy fields themselves as

\[E_{sf} = E_{sf} K_q D_q^{D_{sf}} \psi_{sf} = 4\sqrt{\frac{h}{16\pi^4 c^3}} k c^{2.25} \psi_{sf} = 4\sqrt{\frac{h}{16\pi^4 c^3}} c^{2.25} \psi_{sf} \]

(13-19)

\[E_{sc} = E_{sc} K_q D_q^{D_{sc}} \psi_{sc} = 4\sqrt{\frac{h}{16\pi^4 c^3}} k c^{0.75} \psi_{sc} = 4\sqrt{\frac{h}{16\pi^4 c^3}} c^{0.75} \psi_{sc} \]

(14-19)

\[E_{tc} = E_{tc} K_q D_q^{D_{tc}} \psi_{tc} = 4\sqrt{\frac{h}{16\pi^4 c^3}} \omega c^{0.25} \psi_{tc} = 4\sqrt{\frac{h}{16\pi^4 c^3}} c^{0.25} \psi_{tc} \]

(15-19)

\[E_{tf} = E_{tf} K_q D_q^{D_{tf}} \psi_{tf} = 4\sqrt{\frac{h}{16\pi^4 c^3}} \omega c^{0.75} \psi_{tf} = 4\sqrt{\frac{h}{16\pi^4 c^3}} c^{0.75} \psi_{tf} \]

(16-19)

\[\frac{E_{sf}}{E_{tc}} = K_q D_q^{D_{sf}} \psi_{sf} = K_q D_q^{D_{sc}} \psi_{sc} = K_q D_q^{D_{tc}} \psi_{tc} = c^{2.0} \frac{\psi_{sf}}{\psi_{tc}} \]

(17-19)

A unified value of \((K_q c^4) \) for all energy fields ensures that the relationship between the different fields depends only on their degrees of freedom and not on the intensity of such fields.

In general a field energy can be seen as the product of two terms:

field energy = field intensity (defined in terms of : \(K_q \)) * field strength (\(D_q \) : defined in terms of energy degrees of freedom)

20. Dimensions of vector energy fields

While being a scalar quantity, energy as it expands in the form of space- and time-varying fields which are vector quantities.

Individual energy content of various fields in the form \(E_p = \int_{V_q} E_{sf} \ dV \) does not exist .
and this is due to the fact that quanton energy fields are inextricably linked to the quanton volume in a
dependence relationship, this does not make it possible to determine the total energy of each
individual field.
The energy fields must be defined in terms of the quanton dimensions, in addition to energy
dimensions and degrees of freedom for each energy field.
The quanton radius \(r_q \) and its equivalent volume \(V_q \) are not constant but rather inversely
proportional to its total energy content.

While \(V_q = f_n(r_q^2) = f_n(\lambda^2) = f_n\left(\frac{1}{\omega^2}\right) \) and \(\varrho_q = E_{sf}E_{sc}E_{tf}E_{tc} = \left(\frac{h}{16\pi^4c^4}\right)\omega^4 = \text{constant} \times \omega^4 \)
hence \(V_q = f_n\left(\frac{\omega}{E_{sf}E_{sc}E_{tf}E_{tc}}\right) \) this means quanton volume is dependent on the product of all four energy
field densities.

Dimensions of individual energy fields are expected to be as follows

\[
\begin{align*}
(E_{sf}) &= \sqrt[4]{\frac{h}{16\pi^4c^4}} k_c^{2.25} \psi_{sf} \\
[E_{sf}] &= M^{0.25} L^{0.5-0.75-1+2.25T-0.25+0.75-2.25} = M^{0.25} L^{1.00T-1.75} \\
[E_{sc}] &= \sqrt[4]{\frac{h}{16\pi^4c^4}} k_c^{0.75} \psi_{sc} = M^{0.25} L^{-0.50T-0.25} \\
[E_{tf}] &= \sqrt[4]{\frac{h}{16\pi^4c^4}} \frac{w}{c} k_c^{0.75} \psi_{tf} = M^{0.25} L^{-0.50T-0.25} \\
[E_{tc}] &= \sqrt[4]{\frac{h}{16\pi^4c^4}} \frac{w}{c} k_c^{0.75} \psi_{tc} = M^{0.25} L^{-1.00T-0.25}
\end{align*}
\]

As it had been mentioned previously, exponential degrees of freedom while in terms of the
constant \(c \), provide a mechanism for the division of energy density between the space and time-
varying energy fields so as to maintain a constant ratio between them, for space-varying fields value
(in magnitude)

\[
E_s = E_{sf}E_{sc} = \left(\frac{h c^{2.25}}{16\pi^4}\right) \left(\frac{h c^{0.75}}{16\pi^4}\right) = \frac{1}{\sqrt{16\pi^4}} k^2
\]

for time-varying energy fields

\[
E_t = E_{tf}E_{tc} = \left(\frac{h c^{0.25}}{16\pi^4}\right) \left(\frac{h c^{0.75}}{16\pi^4}\right) = \frac{1}{\sqrt{16\pi^4}} k^2
\]

The relative ratio between space and time-varying energy fields
\[
\frac{E_{sf}E_{sc}}{E_{tf}E_{tc}} = \text{constant} = c^2
\]

The ratio of the space- and time-varying energy fields does vary as the wave parameters change.

21. Quanton field representation

Free and constrained fields extend beyond the quanton radius, as this radius represents only the
decaying manner of the quanton fields.

Based on the concept of dimensional energy symmetry, the quantons satisfy the equipartition of
energy among spatial axis via their statistical distribution, while in the proper (own) frame of reference
the free dominated field components can be defined as
\(E_{qf} = E_{qf0} e^{i(kr-\omega t)}\) \hspace{1cm} (1-21)
\(E_{qfx}^* = 0\) \hspace{1cm} (2-21)
\(E_{qfy}^* = E_{qf} \sin(\omega t)\) \hspace{1cm} (3-21)
\(E_{qfz}^* = E_{qf} \cos(\omega t)\) \hspace{1cm} (4-21)

And the constrained field components
\(E_{qC} = E_{qCo} e^{-i(kr-\omega t)}\) \hspace{1cm} (5-21)
\(E_{qCx}^* = E_{qC} \cos(\omega t)\) \hspace{1cm} (6-21)
\(E_{qCy}^* = E_{qC} \sin(\omega t)\) \hspace{1cm} (7-21)
\(E_{qCz}^* = 0\) \hspace{1cm} (8-20)

the proper frame of reference \((x^*, y^*, z^*)\) is related to the observer frame of reference \((x, y, z)\) via
3 dimensional transformation matrix \((T)\)
\[
[E_{qf}]_{3x1} = [T]_{3x3} [E_{qf}]_{3x1}
\] \hspace{1cm} (9-21)

Where \([E_{qf}]_{3x1}\), \([E_{qf}^*]_{3x1}\) are columns of the field directional components \(E_{qfx}, E_{qfy}, E_{qfz}, E_{qfx}^*\)
\(E_{qfy}^*, E_{qfz}^*\)
\[
[E_{qC}]_{3x1} = [T]_{3x3} [E_{qC}]_{3x1}
\] \hspace{1cm} (10-21)

Where \([E_{qC}]_{3x1}, [E_{qC}^*]_{3x1}\) are columns of the field directional components \(E_{qCx}, E_{qCy}, E_{qCz}, E_{qCx}^*\)
\(E_{qCy}^*, E_{qCz}^*\)

The matrix \((T)\) which has the angles \(\theta, \phi, \psi\) (Euler’s angles) as its elements
and the resultant fields are \(E_{qfx} = \sum_i^n E_{qfx_i}\) \hspace{1cm} (11-21)
\(E_{qfy} = \sum_i^n E_{qfy_i}\), \(E_{qfz} = \sum_i^n E_{qfx_i}\) \hspace{1cm} (12,13-21)
\(E_{qcx} = \sum_i^n E_{qcx_i}\), \(E_{qcy} = \sum_i^n E_{qcy_i}\), \(E_{qcz} = \sum_i^n E_{qcz_i}\) \hspace{1cm} (14,15,16-21)

\[22. \text{(Q+AQ) pair wave form}\]

This model illustrates that the quanton-anti quanton pair would create a form of quanton waves, later this concept would be used to develop a model for electromagnetic waves in terms of space and time-varying fields.

Quantons and anti quantons exist in pairs in the form \((Q+AQ)\)

This linear superposition form is due to the fact that either quanton or anti quanton is a separate nor independent energy system, as the pair is considered to be a single quantum entity.

To fulfill the wave behaviour (linear supposition of fields), the DoF symmetry condition must be satisfied

a-For the higher degree of freedom field pair (2.5 DoF’s)
\([E_{qf}]_{aq} = (E_{qf})_q \) or \((\text{DoF}_{qf})_{aq} = (\text{DoF}_{qf})_q\) \hspace{1cm} (1-22)

b-for the lower degree of freedom pair (1.5 DoF’s)
\([E_{qf}]_{aq} = (E_{qf})_q \) or \((\text{DoF}_{qf})_{aq} = (\text{DoF}_{qf})_q\) \hspace{1cm} (2-22)

A model for the energy fields given that \(q_q = E_{sf}E_{ic}E_{sc}E_{tt} = E_{qf}E_{qc}\)

and \(q_{aq} = \left(\frac{E_{sf}E_{tc}}{\epsilon}\right)(E_{sc}E_{tt})\) wave form is as follows
higher DoF \(E_{wt} = \frac{1}{2}[(E_{qf})_q + (E_{qf})_{aq}]\) \hspace{1cm} (3-22)
The symmetry between free and constrained fields Dof's does not mean that (Q-AQ) would not expand or there would not be radiative energy release from the pair as the Q/AQ pair expands while the energy density of such a pair

\[\rho_q = \frac{1}{2} [\epsilon_q + (\epsilon_{aq})_q] \times \frac{1}{2} [\epsilon_q + (\epsilon_{aq})_q] \]

(7-22)

and due to the symmetry of interaction where \(\epsilon_{aq} = (\epsilon_q)_q \)

(8-22)

\[\epsilon_q = \frac{11}{4} \frac{E_q^2}{c} + 2 \times \frac{c}{4} E_q E_q + \frac{c}{4} E_q^2 \]

(10-22)

\[= \frac{1}{4} \left(\frac{E_q^2}{c} + 2 E_q E_q + c E_q^2 \right) = E_q E_q \]

(11-22)

23. Anti quanton evolution and its degrees of freedom

The reason behind the evolution of the anti quanton from quanton fields lies in the fact that quanton self-interactions (binding/repulsive) could not generate potential energy (binding or inflationary potential) on its own as those interactions possess only two degrees of freedom while it is required to have four degrees of freedom for an interaction to create a real potential energy [9]

The existence of anti quanton as a stable part of space fabric may seem to be problematic, however other evidence still weighs in its favour, namely

1-Its role in the electromagnetic wave generation and formation of the negatively charged particles (electrons, down quarks).

2-Anti quanton is stable under expansion conditions (no degeneration).

3-The interactions generated by anti quanton energy fields are symmetric to those of the quanton, hence it cannot affect the space fabric homogeneity and integrity.

Fig.7 shows the evolution of anti quanton fields' degrees of freedom.
Fig. 7. Hypothetical tree diagram for the evolution and the degrees of freedom of anti quanton energy fields, and why the independent evolution of the anti quanton seems to be problematic in an inflationary scenario.

From the above degree of freedom evolution diagram, the anti quanton would have evolved from energy fields E_{sc}, E_{tc}, however, such space and time-varying fields could not evolve independently under inflationary conditions, an alternative scenario is proposed, which is the evolution of the anti quanton from the quanton itself.

a- Constraining of the free dominated field

$$\int (E_{qf})_q ds = \int E_{qf} ds = \int E_{sf} ds \frac{\partial E_{tc}}{\partial t} = E_s E_t$$

Then expands as a constrained field

$$\int (E_s) ds \frac{\partial}{\partial t} (E_t) = \int E_s ds \frac{\partial E_{sf}}{\partial t} = (E_{qc})_{aq}$$

(2-23)

b- For the quanton’s constrained field

$$\int (E_{qc})_q ds = \frac{\partial}{\partial s} (E_{sc}) \int (E_{tf}) dt = E_s E_t$$

Then expands as a free dominated field

$$\frac{\partial}{\partial s} (E_s) \int (E_t) dt = \frac{\partial E_{tc}}{\partial t} \int E_t dt = (E_{qf})_{aq}$$

(4-23)

Anti quanton is the mirror image of the quanton’s DoF’s where the dominant field of the anti quanton system is constrained type

$$\text{DoF}_{sc} = 3 \text{ DoF}_{tf}, \quad \text{DoF}_{tc} = 3 \text{ DoF}_{tf}$$

(5-23),(6-23)

$$\text{DoF}_{sf} + \text{DoF}_{sc} = 3, \quad \text{DoF}_{tf} + \text{DoF}_{tc} = 1$$

(7-23),(8-23)

$$\text{DoF}_{sc} = 2.25, \quad \text{DoF}_{sf} = 0.75$$

(9-23),(10-23)

$$\text{DoF}_{tc} = 0.75, \quad \text{DoF}_{tf} = 0.25$$

(11-23),(12-23)

$$D_{net}(\text{unbound}) = \frac{\text{constrained fields DoF}}{\text{free fields DoF}}$$

(13-23)
24. Electromagnetic waves as relativistic quantons

The main difference between quanton – anti quanton pair (Q+AQ) and quantons of electromagnetic waves lie in the fact that electromagnetic waves propagate in linear directions, and consequently one degree of freedom is subtracted from space (free and constrained) fields, as it becomes a kinetic degree of freedom, this relativistic effect is split equally between free and constrained fields (E_qf, E_qc) in other words each of the free and the constrained space fields have one half of Dof’s less than the corresponding quaton fields of space fabric, table.3 provides the main differences between space fabric and electromagnetic quantons, while table .4 provides the degree of freedom of each of the quanton space and time fields.

subject	Space fabric quantons	Electromagnetic quantons
Kinetic degrees of freedom	none	one
Dominant fields Dof’s		
Dof_qc	2.5, 1.5	2, 1
Field energy density	4-Dimensional	3D+relativistic Dof
Viewed as	Static (Q+AQ) pair	Relativistic (Q+AQ) pair

Table. 3 Comparison between space fabric and electromagnetic quantons

E (x)	Dof_s (kinetic)	Dof_t	Total Dof's
	(Dsf)_q = (Dsc)_aq	1.75	2.00
	(Dfc)_q = (Dtf)_aq	0.25	
B (x)	(Dsc)_q = (Dsf)_aq	0.25	1.00
	(Dfc)_q = (Dtf)_aq	0.75	
total	2.00	0.25	1.00

Table. 4 How degrees of freedom of freedom are shared among the different energy fields for the case of electromagnetic waves

25. Representation of EM field as space and time fields

Here, an integrated approach is provided for the treatment of electromagnetic field as as a quantized phenomenon which was attempted previously [10], [11].

The formulation of electromagnetic waves in terms of energy fields depends on the system of units, under the (Esu) system volumetric electromagnetic energy density \(\rho_e = E^2 = c^2 B^2 \) (1-25)
\[E_i(x) = \left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_q, \quad E_c(x) = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \] (2-25),(3-25)

\[B_i(x) = \left(\frac{B_{iT}}{\sqrt{c^2}} \right)_q = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_q, \quad B_t(x) = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \] (4-25),(5-25)

where \(E_i(x) \) is the electric field due to the free dominated field \((E_{iT})_q\) of the quanton while \(E_c(x) \) is the electric field due to the constrained field \((E_{Ec})_{aq}\) of the anti quanton.

\(B_i(x) \) is the magnetic field due to the free dominated field \((E_{iT})_q\) of the anti quanton, \(B_c(x) \) is the magnetic field due to the constrained field \((E_{Ec})_{aq}\) of the quanton.

While propagate along \(x \)- axis given that

\[(\psi_i \psi_{ic})(\psi_{ac} \psi_{ac}) = \frac{1}{2} \left(e^{i(kx - \omega t)} - e^{-i(kx - \omega t)} \right) = \cos(kx - \omega t) \] (6-25)

define the electromagnetic (sinusoidal waves) as \(E(x) \), \(B(x) \)

\[E(x) = \frac{1}{2} \left(E_i(x) + E_c(x) \right) = \frac{1}{2} \left(\left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \right) \] (7-25)

\[B(x) = \frac{1}{2} \left(B_i(x) + B_t(x) \right) = \frac{1}{2} \left(\left(\frac{E_{iT}}{\sqrt{c^2}} \right)_{aq} + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \right) \] (8-25)

For the (si) system of units

\[U = \varepsilon_o E^2 = \frac{1}{\mu_o} B^2 \] (9-25)

\[E_i(x) = \left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_q, \quad E_c(x) = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \] (10-25),(11-25)

\[B_i(x) = \left(\frac{B_{iT}}{\sqrt{c^2}} \right)_q = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_q, \quad B_t(x) = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} = \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \] (12-25),(13-25)

define the electromagnetic (sinusoidal waves) as \(E(x) \), \(B(x) \)

\[E(x) = \frac{1}{2} \left(\frac{1}{\varepsilon_o} \right) \left(\left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \right) \] (13-25)

\[B(x) = \frac{1}{2} \left(\frac{1}{\mu_o} \right) \left[\left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \right] \] (14-25)

\[B(x) = \frac{1}{2} \left(\frac{1}{\mu_o} \right) \left[\left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \right] \] (15-25)

\[B(x) = \frac{1}{2} \left(\frac{1}{\mu_o} \right) \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_q + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \] (16-25)

And in terms of the free and constrained fields \((E_{qf}, E_{qc})\) of the quanton / anti quanton pair

\[E(x) = \frac{1}{2} \left(\frac{1}{\varepsilon_o} \right) \left(\frac{E_{iT}}{\sqrt{c^2}} \right)_q \] (17-25)

\[B(x) = \frac{1}{2} \left(\frac{1}{\mu_o} \right) \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_q + \left(\frac{E_{Ec}}{\sqrt{c^2}} \right)_{aq} \] (18-25)

and as a magnitude of the electric and the magnetic field intensities

\[E_o(x) = \left(\frac{1}{\sqrt{\varepsilon_o}} \right) \left(\frac{h}{16 \pi^4 c^3} \right) \left(k^2 c^2 \right) \text{ (Dof = 2)} \] [10] (19-25)

\[B_o(x) = \left(\frac{1}{\sqrt{\mu_o}} \right) \left(\frac{h}{16 \pi^4 c^3} \right) \left(k^2 c \right) \text{ (Dof = one)} \] [10] (20-25)

To note that electromagnetic space and time-varying energy fields of the relativistic quanton, propagation direction is translated into a kinetic degree of freedom which is subtracted from the free and constrained fields Dof’s, in other words

\[\text{Dof}_{\text{electric field}} + \text{Dof}_{\text{magnetic field}} + \text{Dof}_{\text{kinetic}} = 3 + 1 + 1 = 4 \] (21-25)

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
26-Dimensional analysis

The dimensions of electromagnetic field are determined based on dimensions of free and constrained field:

the electric field \([E] = \left[\frac{E_x E_y}{c^2} \right] = M^{+0.5} L^{-0.5} T^{-1} \) \hspace{1cm} (1-26)

and the magnetic field \([B] = \left[\frac{E_y E_z - E_z E_x}{c^2} \right] = M^{+0.5} L^{+1.5} T^{0.0} \)

\([\epsilon_e]\) = electromagnetic energy density = \([E] = \left[c E^2 \right] = ML^{-1} T^{-2} \)

(\(\epsilon\) : can be chosen according to a system of units to be = 1)

\[\rho_e = (E_t + c E_c)^2 = \left(\frac{E_y E_z}{c^2} + \sqrt{c} E_{yc} E_{ct} \right)^2 \]

\(\rho_q = \left[\frac{1}{4} \times 4 \left(\frac{h}{\sqrt{16 \pi^4 c^3}} \right)^2 (k^2 c^2) \right] = \left[\left(\frac{hc}{16 r_0^4} \right) - \frac{hc}{\lambda^4} \right] \]

\[\rho_q = \left(\frac{E_t}{\lambda} \right)^2 = ML^{-1} T^{-2} \]

this is the generic form of electromagnetic energy density, while in terms of the magnetic field:

\[\left[\frac{E_t}{\lambda} \right] = \left[\frac{B_t}{\mu} \right] = ML^{-1} T^{-2} \]

\(\rho_e = \left(\frac{B_c + \frac{1}{c} B_t}{\sqrt{16 \pi^4 c^3}} \right)^2 (k^2 c) \]

(\(\mu\) : chosen according to a system of units to be = \(\frac{1}{c^2}\))

\[\rho_e = \left(\frac{h}{\sqrt{16 \pi^4 c^3}} \right)^2 \left(k^2 c \right)^2 = \left(\frac{hc}{16 r_0^4} - k^4 \right) = \left[\frac{E_t}{\lambda} \right] = ML^{-1} T^{-2} \]

27. Maxwell equations of energy fields

We can relate the four Maxwell equations for electromagnetism to their original form of space and time energy fields.

We have defined the electromagnetic waves as the relativistic Quanton /anti-quanton pair that is travelling through space at velocity (c) in the form:

\[E = \frac{1}{2} \left(\frac{E_x E_y}{\sqrt{\varepsilon_0 c^2}} \right)_q + \left(\frac{E_y E_z}{\sqrt{\varepsilon_0 c^2}} \right)_{aq} \]

\[B = \frac{1}{2} \left(\frac{E_y E_z}{\sqrt{\varepsilon_0 c^2}} \right)_q + \left(\frac{E_x E_z}{\sqrt{\mu_0 c^2}} \right)_{aq} \]

substituting in the four Maxwell equations with the constituent energy fields corresponding to the electric and magnetic fields.

27.1-Gauss law of electric field

\[\nabla \cdot E = \frac{\rho_e}{\varepsilon_0} \]

\(\rho_e\) : charge density

\[\nabla \cdot E = \nabla \left(\frac{E_x E_y}{\sqrt{\varepsilon_0 c^2}} \right)_q + \left(\frac{E_y E_z}{\sqrt{\varepsilon_0 c^2}} \right)_{aq} = 2 \left(\frac{\rho_e}{\varepsilon_0} \right) \]

QUANTON FIELDS : EVOLUTION AND DEGREES OF FREEDOM
\(\nabla \cdot (E_{sf} E_{tc})_q + \nabla \cdot (E_{sc} E_{tt})_{aq} = 0 \) \hspace{1cm} (5-27)

(for electromagnetic waves and space fabric case \(q_c = 0 \))

\(\nabla \cdot (E_{sf} E_{tc})_q = -\nabla \cdot (E_{sc} E_{tt})_{aq} \) \hspace{1cm} (6-27)

27.2-Guass law of magnetic field

\(\nabla \cdot B = 0 \) \hspace{1cm} (7-27)

\(\frac{1}{\sqrt{\varepsilon_0 c}} \nabla \cdot (E_{sc} E_{tt})_{aq} + \frac{1}{\sqrt{\varepsilon_0 c}} \nabla \cdot (E_{sf} E_{tc})_{aq} = 0 \) \hspace{1cm} (8-27)

Or \(\nabla \cdot (E_{sf} E_{tc})_{aq} = -\nabla \cdot (E_{sc} E_{tt})_{aq} \) \hspace{1cm} (9-27)

\(\nabla \cdot (E_{sc})_{aq} = -\nabla \cdot (E_{tt})_{aq} \) \hspace{1cm} (10-27)

27.3-Faraday’s law of induction

\(\nabla \times E = -\frac{\partial B}{\partial t} \) \hspace{1cm} (11-27)

\(\nabla \times E = \nabla \times (\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 c}})_q + \nabla \times (\frac{E_{sc} E_{tt}}{\sqrt{\varepsilon_0 c}})_{aq} \) \hspace{1cm} (12-27)

\(-\frac{\partial B}{\partial t} = -\frac{\partial}{\partial t} (E_{sc} E_{tt})_{aq} \) \hspace{1cm} (13-27)

By comparing equations 12, 13 We get

\(\nabla \times (E_{sf} E_{tc})_q = -\frac{\partial}{\partial t} (E_{sc} E_{tt})_q \) \hspace{1cm} (14-27)

\(\nabla \times (E_{sf} E_{tc})_q = -\frac{\partial}{\partial t} (E_{sc} E_{tt})_q \) \hspace{1cm} (15-27)

and

\(\nabla \times (E_{tt})_{aq} = -\frac{\partial}{\partial t} (E_{sc} E_{tt})_{aq} \) \hspace{1cm} (16-27)

or

\(\nabla \times (E_{tt})_{aq} = -\frac{\partial}{\partial t} (E_{sc} E_{tt})_{aq} \) \hspace{1cm} (17-27)

Which can be simplified further as

\(\nabla \times (E_{tt})_{aq} = -\frac{\partial}{\partial t} (E_{sc} E_{tt})_{aq} \) \hspace{1cm} (18-27)

27.4-Ampere’s law for magnetic field

\(\nabla \times B = \mu_0 (J + \varepsilon_0 \frac{\partial E}{\partial t}) \) \hspace{1cm} (20-27)

Where \(\mu_0 \varepsilon_0 = \frac{1}{c^2} \)

\(\nabla \times B = \nabla \times (\frac{E_{sc} E_{tt}}{\sqrt{\varepsilon_0 c}})_q + \nabla \times (\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 c}})_{aq} \) \hspace{1cm} (21-27)

\(\frac{1}{c^2} \frac{\partial E}{\partial t} = \frac{1}{c^2} \frac{\partial}{\partial t} \left[\left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 c}} \right)_q + \left(\frac{E_{sc} E_{tt}}{\sqrt{\varepsilon_0 c}} \right)_{aq} \right] \) \hspace{1cm} (22-27)

\(\frac{1}{c^2} \frac{\partial E_{tc}}{\partial t} = \left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 c}} \right)_q + \frac{1}{c^2} \frac{\partial}{\partial t} \left(\frac{E_{sc} E_{tt}}{\sqrt{\varepsilon_0 c}} \right)_{aq} \) \hspace{1cm} (23-27)

By comparing eq 21, 22 we get

\(\nabla \times (E_{sc} E_{tt})_q = \frac{1}{c^2} \frac{\partial}{\partial t} (E_{sf} E_{tc})_q \) \hspace{1cm} (24-27)
\[\nabla x (E_{qc})_q = \frac{1}{c^2} \frac{\partial}{\partial t} (E_{qf})_q \]
and
\[\nabla x (E_{sc} E_{tc})_{aq} = \frac{1}{c^2} \frac{\partial}{\partial t} (E_{sc} E_{qf})_{aq} \]
\[\nabla x (E_{aq})_{aq} = \frac{1}{c^2} \frac{\partial}{\partial t} (E_{qc})_{aq} \]

It is worth noting that Maxwell equations remain invariant under relativistic effects as this effect is split equally between two fields \(E_{qf} \) and \(E_{qc} \)

28. Role of Maxwell equations in the formation of the quanton

28.1 Quanton formation

Based on the previous results of Maxwell’s equations which link the fields of both the quanton and the anti quanton together, the quanton’s own form of Maxwell equations can be deduced.

1- the constrained field \((E_{qc}) \) rate of variation induces a curl in the free dominated field such that
\[\nabla \times E_{qf} = - \frac{\partial E_{qc}}{\partial t} \]

2- the rate of variation of the free dominated field \(E_{qf} \) induces a curl in the constrained space field \(E_{qc} \), such that
\[\nabla \times E_{qc} = \frac{1}{c^2} \frac{\partial E_{qf}}{\partial t} \]

28.2 Anti quanton formation

1- the free dominated field \((E_{qf}) \) rate of variation induces a curl in the Constrained field such that
\[\nabla \times E_{qc} = - \frac{\partial E_{qf}}{\partial t} \]

2- the rate of variation of the constrained field \(E_{qc} \) induces a curl in the free space-varying field \(E_{qf} \), such that
\[\nabla \times E_{qf} = \frac{1}{c^2} \frac{\partial E_{qc}}{\partial t} \]

28.3 Inter quanton relationship

the relationship between the quanton and anti quanton dominant fields is anti-symmetric where

1-the gradient of the free dominated quanton field equals in magnitude with opposite sign the gradient of the constrained field of anti quanton field or
\[\nabla \cdot (E_{qf})_q = - \nabla \cdot (E_{qc})_{aq} \]

2-the gradient of the quanton constrained field equals in magnitude and opposite sign to the gradient of the free dominated field of the anti quanton
\[\nabla \cdot (E_{qc})_q = - \nabla \cdot (E_{qf})_{aq} \]

Fig .8. shows the role of Maxwell equations in the formation of the quanton/anti quanton fields.
29. Lorentz transformation of energy fields

In the previous sections we have discussed the concept of a relativistic quanton and how it is represented electromagnetic waves in the form of space and time-varying fields.

Here, the Lorentz transformation will be discussed, for the electromagnetic waves (this time in terms of the space and time energy fields of the relativistic quanton).

Considering the case when energy fields are seen by an observer traveling at relativistic velocity along x axis.

For the case of a moving frame of reference which is denoted as (′), the Lorentz transformation takes the form

\[\begin{align*}
E_x^' &= E_x, E_y^' = \gamma (E_y + \beta c B_x) \\
E_z^' &= \gamma (E_z + \beta c B_y), B_x^' &= B_x \\
B_y^' &= \gamma (B_y - \frac{v E_x}{c^2}), B_z^' &= \gamma (B_z - \frac{v E_y}{c^2}) \\
\beta &= \frac{v}{c}, \gamma &= \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{1-\beta^2}}
\end{align*} \]

(1-29) (2-29) (3-29) (4-29)

In this case the electric field is represented by the field \(E_y(x) \) and the magnetic field is represented by the field \(B_z(x) \), using the same transformation for the case of free and constrained fields,

\[\begin{align*}
E &= \frac{1}{2} \left(\frac{E_{sf} + E_{tc}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_q + \left(\frac{E_{sc} E_{tr}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_aq \\
B &= \frac{1}{2} \left(\frac{E_{sc} E_{tr}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_q + \left(\frac{E_{sc} E_{tr}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_aq
\end{align*} \]

(5-29) (6-29)

after substitution, we get for \(E \) and \(B \)

\[\begin{align*}
E_y^' &= \frac{1}{2\varepsilon_0} \left(\frac{E_{sf} + E_{tc}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_q + \frac{1}{2\varepsilon_0} \left(\frac{E_{sc} E_{tr}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_q + \frac{1}{2\varepsilon_0} \left(\frac{E_{sc} E_{tr}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_aq + \frac{1}{2\varepsilon_0} \left(\frac{E_{sc} E_{tr}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_aq
\end{align*} \]

(7-29)

Given that \(c \left(\frac{E_{sf} + E_{tc}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_aq = \left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_q = \left(\frac{E_{sf} E_{tc}}{\sqrt{\varepsilon_0 \varepsilon_r}} \right)_E \)

(8-29)
And \[c \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_q = c \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_E \] (9-29)

\[E_\gamma' = \frac{1}{2} \sqrt{\sqrt{v^2}} \left[\left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_E \left(1 + \frac{v}{c} \right) + c \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right) \left(1 + \frac{v}{c} \right) \right] \] (10-29)

\[E_\gamma' = \frac{1}{2} \sqrt{\sqrt{v^2}} \left[\left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_E \left(1 + \frac{v}{c} \right) + \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right) \left(1 + \frac{v}{c} \right) \right] \] (11-29)

Where \[\gamma \left(1 + \frac{v}{c} \right) = \left(\frac{1 + \frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}} \right) \] (12-29)

\[B_\gamma' = \frac{1}{2} \sqrt{\sqrt{v^2}} \left[\left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B \left(1 - \frac{v}{c} \right) + \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B \left(1 - \frac{v}{c} \right) \right] \] (13-29)

Given that \[\left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_q = \frac{1}{c} \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B = \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B \] (14-29)

And \[\left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_q = \frac{1}{c} \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B = \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B \] (15-29)

\[B_\gamma' = \frac{1}{2} \sqrt{\sqrt{v^2}} \left[\left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B \left(1 - \frac{v}{c} \right) + \left(\frac{E_{sc}}{\sqrt{v^2 - c^2}} \right)_B \left(1 - \frac{v}{c} \right) \right] \] (16-29)

Where \[\gamma \left(1 - \frac{v}{c} \right) = \left(\frac{1 - \frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}} \right) \] (17-29)

For a comoving frame of reference at \(v \) where \(\beta = \frac{v}{c} \) and \(\gamma = \frac{1}{\sqrt{1 - \beta^2}} \)

The electromagnetic fields as viewed by moving observer are

\[E' = \frac{1}{\sqrt{v^2}} \left(\frac{E_{sc}}{\sqrt{v^2}} + c \frac{E_{sc}}{\sqrt{v^2}} \right) = \frac{1}{\sqrt{v^2}} \sqrt{1 + \frac{1}{\beta^2}} K q^2 c^2 \cos(k' r' - \omega' t') \] (18-29)

\[B' = \frac{1}{\sqrt{v^2}} \left(\frac{E_{sc}}{\sqrt{v^2}} + c \frac{E_{sc}}{\sqrt{v^2}} \right) = \frac{1}{\sqrt{v^2}} \sqrt{1 + \frac{1}{\beta^2}} K q^2 c \cos(k' r' - \omega' t') \] (19-29)

Where \(k' = \sqrt{1 + \frac{1}{\beta^2}} k \), \(r' = \sqrt{1 + \frac{1}{\beta^2}} r \) (20-29),(21-29)

\(\omega' = \sqrt{1 + \frac{1}{\beta^2}} \omega \), \(t' = \sqrt{1 + \frac{1}{\beta^2}} t \) (22-29),(23-29)

To note that the product \(E_y' B_z' = \sqrt{\sqrt{v^2} \sqrt{\frac{1 + \frac{v}{c}}{1 + \frac{v}{c}}} E_y \sqrt{\frac{1 + \frac{v}{c}}{1 + \frac{v}{c}}} B_z} \) (24-29),(25-29)

\(= E_y B_z = \text{constant}, \text{ irrespective of the frame of reference} \).

30. Ethical statement

The author declares that this work fully complies with the ethical guidelines as had been stated by the journal as stated below in the competed interest disclaimer.
31. Conclusions

The inflation of the universe involves expansion of energy density whose constituent free and constrained fields are inextricably linked, neither free nor constrained fields are capable of expansion individually and precisely this inseparable linkage is at the origin of the constraining term as a by-product of energy density expansion of space fabric. As free and constrained fields expand part of those fields is transformed as non-dimensional energy packet that expands in the form of relativistic quanton or a CMB photon. As a further evidence to support this conclusion we must draw parallels between the uniformity and the homogeneity of CMB radiation and that of space fabric itself as had been proposed by the general principle of cosmology. The inflationary process of the universe, is considered as a free expansion process and the second law of thermodynamics states that there must be losses accompanying this process which brings further confirmation the conclusion that the about the thermodynamic origin CMB radiation as a direct result of the space fabric expansion, this gives a gate way for further understanding of the quanton interactions.

32. Acknowledgements

A preprint of this paper can be found at

https://www.preprints.org/manuscript/202106.0293/v1

33. References

1- Kassem, A. Symmetries in the Universe, a Quanton Origin. IAARJ 2020; 2(3), 52-70. www.journaliaarj.com/index.php/IAARJ/article/view/27
2- Kassem, A. Locally Varying Hubble Parameter in Terms of Reduced Friedmann Equation. International Journal of Astronomy and Astrophysics, 2021; 11(2), 175-189. doi: 10.4236/ijaa.2021.112010.
3 -Sanchez, N.G. New Quantum Structure of Space-Time. Gravit. Cosmol, 2019; 25, 91–102. https://doi.org/10.1134/S0202289319020142
4- Amelino-Camelia,G. Quantum-Spacetime Phenomenology. Living Rev. Relativ., 2013; 16, 5 https://doi.org/10.12942/lrr-2013-5
5- Meis, C . Vector Potential Quantization and the Quantum Vacuum Physics Research International, 2014; Article ID 187432, 5 pages. https://doi.org/10.1155/2014/187432
6- D. Stargen ,D.J. and Kothawala , D. Small scale structure of spacetime: van Vleck determinant and equi-geodesic Surfaces. Phys.Rev. D 2015; 92, 024046 https://link.aps.org/doi/10.1103/PhysRevD.92.024046
7- Dass, N.D.H. The superposition principle of quantum mechanics
https://arxiv.org/abs/1311.4275
8-Dickson, M. Non relativistic quantum mechanics
Handbook of the Philosophy of Science 2007,
https://doi.org/10.1016/B978-044451560-5/50007-5
9- Kassem,A. Quanton based model of field interactions.
http://vixra.org/abs/1912.0314
10-Maybee,B. Hodgson,D. Beige,A. Purd,R.
A physically-motivated quantisation of the electromagnetic field on curved
space times . Entropy 2019, 21(9), 844
https://doi.org/10.3390/e21090844
11- Lewandowski,J. Zonoz,M.N. Parvizi,A. Tavakoli ,Y. and Meis,C.
Quantum theory of electromagnetic fields in a cosmological quantum
Phys. Rev. D . ,2017; 96, 106007
https://link.aps.org/doi/10.1103/PhysRevD.96.106007

COMPETING INTERESTS DISCLAIMER: Author has declared that no competing interests exist. The
products used for this research are commonly and predominantly use products in our area of
research and country. There is absolutely no conflict of interest between the authors and producers of
the products because we do not intend to use these products as an avenue for any litigation but for
the advancement of knowledge. Also, the research was not funded by the producing company rather
it was funded by personal efforts of the authors.