Earth's Future

RESEARCH ARTICLE
10.1029/2020EF001665

TROPOMI NO$_2$ in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO$_2$ Concentrations

Daniel L. Goldberg1,2, Susan C. Anenberg1, Gaige Hunter Kerr1, Arash Mohegh1, Zifeng Lu2, and David G. Streets2

1Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA,
2Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA

Abstract Observing the spatial heterogeneities of NO$_2$ air pollution is an important first step in quantifying NO$_2$ emissions and exposures. This study investigates the capabilities of the Tropospheric Monitoring Instrument (TROPOMI) in observing the spatial and temporal patterns of NO$_2$ pollution in the continental United States. The unprecedented sensitivity of the sensor can differentiate the fine-scale spatial heterogeneities in urban areas, such as emissions related to airport/shipping operations and high traffic and, and the relatively small emission sources in rural areas, such as power plants and mining operations. We then examine NO$_2$ columns by day-of-the-week and find that Saturday and Sunday concentrations are 16% and 24% lower respectively, than during weekdays. We also analyze the correlation of daily maximum 2-m temperatures and NO$_2$ column amounts and find that NO$_2$ is larger on the hottest days ($>32^\circ$C) as compared to warm days (26°C–32°C), which is in contrast to a general decrease in NO$_2$ with increasing temperature at moderate temperatures. Finally, we demonstrate that a linear regression fit of 2019 annual TROPOMI NO$_2$ data to annual surface-level concentrations yields relatively strong correlation ($R^2 = 0.66$). These new developments make TROPOMI NO$_2$ satellite data advantageous for policymakers and public health officials, who request information at high spatial resolution and short timescales, in order to assess, devise, and evaluate regulations.

Plain Language Summary Nitrogen oxides are a group of air pollutants released after fossil fuel combustion. A constituent of nitrogen oxides, nitrogen dioxide (NO$_2$), can be observed by satellite instruments due to its chemical properties. In this project, we average together images of NO$_2$ pollution gathered by the Tropospheric Monitoring Instrument satellite instrument over the United States in order to better determine the spatial distribution of NO$_2$ air pollution. We find that this newest satellite instrument can observe air pollution with unprecedented clarity, similar to how HDTV is an advancement over regular TV. For example, we quantify pollution near individual airports, shipping areas, and major interstate; previous satellite instruments were unable to quantify air pollution with this type of precision. We also average the satellite data over different intervals to better determine cycles of air pollution. We find that NO$_2$ air pollution is 16% lower on Saturdays and 24% lower on Sundays. Additionally, we find that NO$_2$ pollution is larger on the hottest summer days as compared to typical summer days. These developments demonstrate how this new satellite instrument can advantageous for policymakers and health officials, who request information at high spatial resolution and short timescales, in order to assess, devise, and evaluate regulations.

1. Introduction

Enhancements of NO$_2$ serve as a stark reminder of our society’s global reliance on fossil-fuel combustion. NO$_2$—which comprises ~70% of NOx (NOx = NO + NO$_2$) in urban airsheds (Valin et al., 2013)—primarily originates as a byproduct of fossil-fuel combustion, although there are some biogenic sources of NO$_2$ such as lightning and microbes in soil (Jacob, 2000). NO$_2$ is a toxic air pollutant, which can cause and exacerbate asthma in vulnerable populations (Achakulwisut et al., 2019; Anenberg et al., 2018) and lead to premature mortality (Burnett et al., 2004). NO$_2$ can also react in the atmosphere to create tropospheric ozone (O$_3$), which is noted for its damaging effects including premature aging of lungs (Broeckaert et al., 1999;
Satellite-based remote sensing instruments can be particularly useful in quantifying the trends of NO$_2$ pollution in high-emission areas (Castellanos & Boersma, 2012; Duncan et al., 2016; Georgoulis et al., 2019; Krotkov, McInden et al., 2016; McInden et al., 2016; Stavroulakis, Müller, Boersma et al., 2008; Van Der A et al., 2008), the seasonal cycles of air pollution (Ialongo, Herman et al., 2016; Shah et al., 2020), and the weekly cycle of NO$_x$ emissions (Beirle, Platt et al., 2003; de Foy, Lu, & Streets, 2016; Ialongo, Herman et al., 2016; Ma et al., 2013; Russell, Valin et al., 2010; Stavroulakis, Müller, Bauwens et al., 2020; Valin et al., 2014). In an additional step, NO$_x$ emissions can be computed by combining the satellite data with meteorological information (Beirle, Borger et al., 2019, Beirle, Boersma et al., 2011; de Foy, Lu, Streets, Lamsal & Duncan, 2015; Goldberg, Lu, Streets et al., 2019; Goldberg, Saide et al., 2019; Lorente, Boersma et al., 2019; Lu et al., 2015; Valin et al., 2013) or by combining the satellite data with chemical transport models (Canty et al., 2015; Cooper, Martin, Padmanabhan, & Henze, 2017; Elissavet Koukouli et al., 2018; Mijling & Van Der A, 2012; Qu et al., 2017; Souri et al., 2016). Due to the consistency and robustness of the remotely sensed NO$_x$ data record, scientists are beginning to infer information from the NO$_x$ data about other trace gases such as CO$_2$ (Goldberg, Lu, Oda et al., 2019; Konovalov et al., 2016; Reuter et al., 2019), CH$_4$ (de Gouw et al., 2020), and CO (Lama et al., 2020), since remotely sensed measurements of those trace gases are generally less reliable. Therefore, remotely sensed NO$_2$ can also be helpful in indirectly estimating greenhouse gas emissions.

TROPOMI's smallest pixel size (3.5×7.2 km2 at nadir, reduced to 3.5×5.6 km2 at nadir on 6 August 2019) and enhanced sensitivity are significant improvements when compared to previous satellite instruments (Veefkind et al., 2012). NO$_2$ is unique due to its relatively short photochemical lifetime which varies from 2 to 5 h during the summer daytime (Beirle, Boersma et al., 2011; de Foy, B., Wilkins, J. L. et al., 2014; Laughner & Cohen, 2019; Valin et al., 2013) to 12–24 h during winter (Shah et al., 2020). As a result, tropospheric NO$_2$ concentrations are strongly correlated with local NO$_x$ emissions, which are often anthropogenic in origin.

Initial NO$_2$ measurements from TROPOMI show the complex spatial heterogeneities of NO$_2$ pollution with more refined resolution than any instrument before it (Griffin et al., 2019; Ialongo, Virta et al., 2020). In particular, the smaller pixel sizes aid researchers in differentiating pollution sources within a single metropolitan area such as isolating signals from airports and individual highways (Judd, Al-Saadi, Janz, et al., 2019). These small-scale pixel sizes also show better agreement with the spatial features suggested by ground-based measurements (Ialongo, Virta et al., 2020; Judd, Al-Saadi, Janz et al., 2019). In particular, modeling studies have shown that matching the city-wide NO$_2$ column to 10% accuracy requires a spatial resolution of at least 4 km (Valin, Russell, Hudman, & Cohen, 2011)—the approximate spatial resolution of TROPOMI. Robust high-spatial resolution estimates are also critical inputs to those trying to quantify the surface-level NO$_2$ exposures (Geddes, Martin et al., 2016; Lamsal et al., 2008; Larkin et al., 2017).
The improved spatial resolution and instrument sensitivity also allow for shorter temporal averaging ranges (days to months) to gain the similar spatial structure it would normally take >1 year to gather (Beirle, Borg-er, et al., 2019; Dix et al., 2020; Goldberg, Lu, Streets, et al., 2019; Lorente, Boersma, et al., 2019). As a result, it is easier to gain insight on the short-term variations of NOx pollution when using TROPOMI, which can be especially helpful for those trying to quantify intra-annual changes in NOx emissions (F. Liu et al., 2020).

In this paper, we exploit TROPOMI's small pixel sizes and enhanced instrument sensitivity to analyze spatial and temporal features of NOx columns in the continental United States on annual, seasonal, weekly, and daily timescales. For example, using only a short temporal range of data, we can now answer such questions as:

- Which location within each U.S. state has the worst NOx air pollution?
- How does the NOx emissions cycle vary by day of the week?
- How does temperature affect column NOx amounts?
- How well can we infer surface-level concentrations from satellite data?

While older sensors (e.g., OMI) provided insight into some of these questions, early sensors lacked the same sensitivity and required longer oversampling times. Therefore, answers illuminated by TROPOMI provide a “clarity” that has not been seen before.

2. Methods

2.1. TROPOMI NOx

TROPOMI was launched by the European Space Agency for the European Union's Copernicus Sentinel 5 Precursor (S5p) satellite mission on 13 October 2017. The satellite follows a sun-synchronous, low-earth (825 km) orbit with an equator overpass time of approximately 13:30 local solar time (Veefkind et al., 2012). TROPOMI measures total column amounts of several trace gases in the Ultraviolet-Visible-Near Infrared-Shortwave Infrared spectral regions (VanGeffen et al., 2019). This instrument is characterized as a passive optical satellite sensor due to its reliance on solar UV-Visible radiation to gather measurements. At nadir, pixel sizes are 3.5 × 7 km² (reduced to 3.5 × 5.6 km² on 6 August 2019) with little variation in pixel sizes across the 2,600 km swath. The instrument observes the swath approximately once every second and orbits the Earth in about 100 min, resulting in daily global coverage.

Using a differential optical absorption spectroscopy technique on the radiance measurements in the 405–465 nm spectral window, the top-of-atmosphere spectral radiances can be converted into slant column amounts of NOx between the sensor and the Earth's surface (van Geffen et al., 2020). In two additional steps, the slant column quantity can be converted into a tropospheric vertical column content. In the first step, the stratospheric portion of the column (the amount above approximately 12 km in altitude) is subtracted using a global model estimate that is refined using data assimilation (Boersma, Eskes, & Brinksma, 2004). In a second step, the slant tropospheric column is converted to a vertical column using a quantity known as the air mass factor (AMF). The AMF is the most uncertain quantity in the retrieval algorithm (Lorente, Folkert Boersma, et al., 2017) and is a function of the surface reflectance, the NOx vertical profile, and scattering in the atmosphere among other factors. Using accurate and high-resolution data (spatially and temporally) as inputs in calculating the AMF can significantly reduce the overall errors of the AMF (S. Choi et al., 2019; Goldberg et al., 2017; Lamsal, 2020; Laughner, Zare, & Cohen, 2016; Laughner, Zhu, & Cohen, 2019; Lin et al., 2015; M. Liu et al., 2019; Russell, Perring, et al., 2011; Zhao et al., 2020) and thus the tropospheric vertical column content.

Operationally, the TM5-MP model (1 × 1° resolution) is used to provide the NOx vertical shape profile, and the climatological Lambertian Equivalent Reflectivity (0.5 × 0.5° resolution) (Kleipool et al., 2008) is used to provide the surface reflectivities. The operational AMF calculation does not explicitly account for aerosol absorption or scattering effects, which are partially accounted for in the effective cloud radiance fraction (Chimot et al., 2016). There is already some evidence that the current TROPOMI operational NOx product may have a low bias of 20%–40% in urban areas; much of this bias may be attributed to the AMF (Judd, Al-Saadi, Szykman, et al. 2020; Verhoelst et al., 2020). While the operational product does have larger
uncertainties in the tropospheric column contents than a product with higher spatial resolution inputs, we limit our analysis to relative trends, which dramatically reduces this uncertainty.

2.2. Re-gridding

For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO$_2$, with native pixels of approximately 3.5×7 km2, to a newly defined 0.01° × 0.01° grid (approximately 1×1 km2) centered over the continental United States (CONUS; corner points: SW: 24.5°N, 124.75°W; NE: 49.5°N, 66.75°W). Before re-gridding, the data are filtered so as to use only the highest quality measurements (quality assurance flag (QA_flag) > 0.75). By restricting to this QA value, we are removing mostly cloudy scenes (cloud radiance fraction > 0.5) and observations over snow-ice. Once the re-gridding has been completed, the data are averaged over varying timeframes as discussed in the results section.

2.3. Other Data sets

Additionally, we use three complementary products in some sections of our analysis. We compare tropospheric vertical column information from TROPOMI to the same quantity from the NASA OMI NO$_2$ version 4 product in a qualitative sense. Only OMI pixels with cloud fractions < 0.3, surface albedo < 0.3, and not affected by the “row anomaly” are included. When filtering TROPOMI data based on temperature, we use the maximum daily hourly 2-m temperature from the ERA5 re-analysis. To downscale the ERA5 re-analysis, which is provided at 0.25° × 0.25°, we spatially interpolate maximum daily hourly 2-m temperature to 0.01° × 0.01° using bilinear interpolation. For that reason, the heat-urban island effect and any microscale meteorology features (e.g., sea breezes) will not be accounted for, but these effects should be minor for our particular analysis, which groups temperatures in ~ 5°C intervals.

3. Results

3.1. TROPOMI NO$_2$ in CONUS

Figure 1 depicts the 2019 CONUS annual average of TROPOMI and OMI tropospheric vertical column NO$_2$ compared to averages over monthly, weekly, and daily timeframes.

This example illustrates how shorter timeframes compare to the annual average in both magnitude and clarity. In the single daily snapshot (20 September 2019), there are wide sections that are missing due to cloud coverage. Missing data in the OMI NO$_2$ snapshot is much more widespread than TROPOMI due to the “row anomaly” which obstructs a portion of OMI’s field of view. In the areas that do have coverage, values can be a factor of five different than the annual average, but the spatial heterogeneities are generally captured. When oversampling over a one-week period (16–22 September 2019), the TROPOMI image quickly starts to resemble the annual average with some differences in magnitude due to meteorological factors, such as temperature (which will be discussed later), but the OMI image is still very noisy. A monthly oversampled image essentially captures the same spatial heterogeneities as the annual average, but with magnitude differences due to meteorology. In most scenarios, a one-month average should be considered the minimum amount of oversampling time needed for TROPOMI to properly capture spatial heterogeneities, while for OMI \sim12 months of data is needed in order to properly capture spatial heterogeneities. It should be noted that September was specifically chosen for this analysis due to its propensity to have both less cloud coverage and snow cover than other months. If oversampling during winter months (i.e., December–March), which tend to have fewer ideal conditions for satellite retrievals of trace gases, oversampling times will need to be longer to achieve similar clarity. In a qualitative sense, OMI yields larger values than TROPOMI in most areas (rural and urban alike). This is consistent with other literature, which shows OMI yielding larger values than TROPOMI (Wang et al., 2020) and a low bias in TROPOMI in U.S. urban areas (Judd, Al-Saadi, Szykman, et al., 2020).

When visually inspecting the CONUS TROPOMI NO$_2$ average during the initial 20 months of the TROPOMI record (1 May 2018–31 Dec 2019) (Figure 2), we now start to see clear spatial heterogeneities across the domain. The largest U.S. cities can be seen, and their magnitudes can be compared to each other (results further discussed later).
Equally important, smaller sources of \(\text{NO}_2 \) pollution can now be observed, and they are not spatially smeared into the background \(\text{NO}_2 \) concentration. For example, when magnifying the western United States (Figure 3), the roadway network and related activity in the Idaho Snake River valley can be clearly observed. Other examples are the copper mining operations in Arizona associated with the Morenci Mine and Bagdad Mine, the coal mining operations in the Powder River Basin and Green River Basin in Wyoming, and to a lesser extent the gold mining operations associated with the Goldstrike, Cortez, and Round Mountain mines in Nevada. In addition, \(\text{NO}_2 \) concentrations are clearly correlated with oil & gas operations in the Permian (Texas) and Bakken (North Dakota) basins (also discussed in Dix et al., 2020) and are > 5 times larger than the \(\text{NO}_2 \) in the rural areas upwind. Individual spikes in \(\text{NO}_2 \) associated with \(\text{NO}_x \) emissions from large power plants (e.g., Navajo, Cholla, Springerville/Coronado (S/C) in Arizona, Craig in Colorado, Colstrip in Montana, N Valmy in Nevada, Four Corners/San Juan (4C/SJ) in New Mexico, Intermountain, Bonanza, Hunter/Huntington (H/H) in Utah, Jim Bridger in Wyoming) can also be observed during this 2018–2019
period even though there have been large reductions (≈85%) in the NO\textsubscript{X} emissions from most of these power plants since the introduction of the federally mandated NO\textsubscript{X} SIP call in 2003.

TROPOMI data are especially powerful in analyzing local variations in NO\textsubscript{2} pollution as compared to predecessor instruments. In Figure 4, we zoom into five different U.S. states, and in Table 1 we provide the largest NO\textsubscript{2} values in each state; note that in Figure 4 we use a colorbar that is not linear in order to better differentiate urban versus rural values.

In Figure 5, we zoom into six different U.S. cities. In each instance, the oversampled TROPOMI NO\textsubscript{2} images exhibit features that match known NO\textsubscript{X} emissions patterns. The larger NO\textsubscript{2} values correlate very well to the interstate network, population density, and industrial activity hubs (such as manufacturing facilities, airports, and shipping ports). For example, in the image of Maryland, the largest value is observed at the Baltimore Harbor, which is a confluence of several major highways, a large shipping port, the city incinerator, and many industrial facilities. Similarly, the largest values in Chicago exist along the I-55 corridor which has a high traffic volume and a high-density of industrial facilities, with secondary maxima at the O’Hare International airport and the U.S. Steel Corp operations in East Chicago, Indiana. In Los Angeles, the spatial pattern matches the basin outline very well, with the largest values between downtown Los Angeles and the Long Beach Shipping Port. In Houston, Texas the largest values are nearest to the petrochemical refining facilities east of town. For all cases, TROPOMI can accurately quantify the relative relationship between the largest sources of NO\textsubscript{X} emissions and NO\textsubscript{2} concentrations.

3.2. Day-of-the-Week Relationships

A common use of oversampled satellite data is in investigating the weekly cycle of NO\textsubscript{X} emissions. In Figure 6, we show the weekly pattern of NO\textsubscript{2} across CONUS for three different days of the week as well as the full weekly cycle in seven U.S. cities; we selected U.S. metropolitan areas that were both large and representative of geographic diversity. In all cities, the NO\textsubscript{2} appears to be approximately equivalent amongst all weekdays with some minor exceptions. NO\textsubscript{2} pollution is 2.5% larger on Tuesday than a typical weekday, while Mondays and Fridays have 1.4% and 1.3% lower NO\textsubscript{2} pollution than a typical weekday. On Saturdays, NO\textsubscript{2} is 16% lower than the weekday averages, and on Sundays 24% lower. Standard errors of the mean for each city are shown in Table S1, and are approximately 10% for any given city, and approximately 4% when all cities are aggregated together. This means that NO\textsubscript{2} changes on weekends—including the differences between Saturdays and Sundays—are statistically significant, but the difference between weekdays are not yet statistically significant. As more TROPOMI NO\textsubscript{2} data are acquired over time, these standard errors of the mean will decrease, and we might be able to deduce statistically significant changes between individual weekdays. The weekend changes calculated here (16% drop on Saturdays, 24% drop on Sundays) are less dramatic than previously reported weekend changes (30%–60% drops) in the 2005–2013 timeframe (de Foy, Lu, & Streets, 2016; Russell, Valin, et al., 2010; Valin et al., 2014). There are two explanations for the flattening of the weekday-weekend cycle: 1.) as overall emissions are decreasing, the NO\textsubscript{2} lifetime in many cities is increasing (Stavrakou, Müller, Bauwens, et al., 2020) and 2.) passenger vehicles, which have a
pronounced weekday-weekend emissions pattern, are continually representing a smaller fraction of NO\textsubscript{X} emissions over time (Dallmann & Harley, 2010; McDonald et al., 2012).

When analyzing the weekday/weekend differences, there should be some consideration for the difference in traffic patterns and general activity between weekends and weekdays. On weekends, traffic counts generally peak in the early afternoon, while on weekdays traffic counts peak in the evening, with a secondary peak in the early morning (de Foy, 2018). Since the satellite observation is acquired in the early afternoon, we suggest that the 24-h averaged NO\textsubscript{X} emissions difference between weekdays and weekends may be even greater than implied by the satellite data. The soon-to-be-launched TEMPO instrument, a geostationary satellite, will hopefully be able to better quantify the morning and evening differences of NO\textsubscript{X} emissions (Chance et al., 2019; Penn & Holloway, 2020; Zoogman et al., 2017).

3.3. Hot Versus Warm Days

In Figure 7, we show the variation in column NO\textsubscript{2} as a function of the daily maximum 2-m temperature. Due to varying climates across the United States, most cities do not have values for all temperature bins. In general, as temperatures increase, NO\textsubscript{2} decreases; this is primarily driven by \(j(\text{NO}_2) \) which increases with stronger sunlight. When temperatures are >32°C, we observe a leveling with increasing temperature. This may be related to increasing anthropogenic NO\textsubscript{X} emissions (Abel et al., 2017; He et al., 2013) at high temperatures despite a shorter NO\textsubscript{2} lifetime. This may also be driven by biogenic or natural causes, such as...
Table 1
Largest NO\textsubscript{2} Column Value in Each U.S. State During the 1 May 2018–31 Dec 2019 Period

U.S. state	Latitude (°N)	Longitude (°E)	NO\textsubscript{2} (molec/cm2)	Detailed location
CA	34.03	−118.18	1.41E+16	E Los Angeles, CA
NY	40.72	−73.97	1.13E+16	East River, Brooklyn, NY
NJ	40.69	−74.14	9.75E+15	Port Newark, NJ
IL	41.82	−87.77	7.31E+15	Cicero, Chicago, IL (near MDW)
WA	47.46	−122.26	6.90E+15	Tukwila, WA (SE Seattle)
IN	41.66	−87.47	6.28E+15	E Chicago, IN (Steel Mill)
UT	40.71	−111.9	6.18E+15	S Salt Lake City, UT
CO	39.76	−105.02	5.98E+15	Highland, Denver, CO
PA	39.95	−75.16	5.95E+15	Downtown Philadelphia, PA
AZ	33.47	−112.15	5.87E+15	Cuatro Palmas, Phoenix, AZ
MI	42.31	−83.11	5.74E+15	Detroit, MI
TX	29.74	−95.14	5.58E+15	Deer Park, Houston, TX
CT	41	−73.67	5.46E+15	Greenwich, CT
NV	36.1	−115.18	4.97E+15	Las Vegas Strip, Las Vegas, NV
MD	39.28	−76.6	4.94E+15	Port of Baltimore, Baltimore, MD
DC	38.89	−77.01	4.65E+15	Capitol Hill, Washington, DC
GA	33.64	−84.42	4.65E+15	Hartsfield Airport, Atlanta, GA
VA	38.88	−77.05	4.59E+15	Pentagon, Arlington, VA
DE	39.8	−75.37	4.34E+15	Claymont, Wilmington, DE
OR	45.52	−122.65	4.25E+15	Buckman, Portland, OR
KY	38.18	−85.73	4.21E+15	Louisville, KY (Airport)
OH	39.12	−84.54	4.20E+15	Cincinnati, OH
MA	42.37	−71.06	4.14E+15	Charlestown, Boston, MA (near BOS)
LA	29.93	−90.14	3.98E+15	Mississippi River, New Orleans, LA
NC	35.24	−80.85	3.76E+15	Catawba, NC (near Marshall Steam PP)
WV	38.94	−82.11	3.68E+15	Lakin, WV (near Gavin PP)
MO	38.68	−90.19	3.67E+15	Mississippi River, St Louis, MO
KS	39.12	−94.6	3.61E+15	Missouri River, Kansas City, KS
TN	36.16	−86.77	3.52E+15	Nashville, TN
FL	25.85	−80.34	3.40E+15	Medley, Miami, FL
WI	42.86	−87.82	3.40E+15	Oak Creek, WI (near Oak Creek PP)
MN	44.97	−93.24	3.28E+15	Mississippi River, Minneapolis, MN
AL	33.52	−86.82	3.21E+15	Fountain Heights, Birmingham, AL
RI	41.8	−71.41	2.88E+15	S Providence, RI
IA	41.25	−95.88	2.79E+15	Council Bluffs, IA
NE	41.25	−95.88	2.79E+15	Missouri River, Omaha, NE
OK	36.16	−96	2.64E+15	Tulsa, OK
WY	43.69	−105.32	2.52E+15	Thunder Basin Coal, WY
SC	32.88	−79.99	2.52E+15	N Charleston, SC
NM	35.11	−106.62	2.51E+15	Albuquerque, NM
AR	35.12	−90.1	2.46E+15	W Memphis, AR
ID	43.58	−116.23	2.30E+15	Boise, ID (Airport)
ND	47.35	−101.81	2.24E+15	Beulah, ND (near Dakota Gasification Co)
the faster dissociation of peroxy-acyl nitrates (PANs) or increased soil NO\textsubscript{X} emissions (Rasool et al., 2019; Romer et al., 2018) at hot temperatures. The latter reasons are likely causing rural areas to observe increases in NO\textsubscript{2} as temperatures warm above 32°C. The temperature-driven stabilization of NO\textsubscript{2} at very high temperatures appears to hold for all cities except Chicago. Standard errors of the mean for each city are shown in Table S2, and are approximately 7% for any given city on warm/hot temperature days (>20°C), and approximately 2%–3% when all cities are aggregated together. This means that the NO\textsubscript{2} decreases with increasing temperature as well as the NO\textsubscript{2} increases on the hottest days are statistically significant in most areas. It should be noted that there are cross-correlations with increased temperature such as a lower solar zenith angle (which affects photolysis rates of chemical species and the satellite viewing geometry), larger biogenic volatile organic compound (BVOC) emissions in forested areas (which affects the NO\textsubscript{2} lifetime), and higher total water columns (which affects wet deposition and introduces an increased spectral interference). Apportionment of the effects of natural versus anthropogenic sources contributing to NO\textsubscript{2} increases in urban areas on the hottest days will be the subject of future research using model simulations.

3.4. Relationship With Surface NO\textsubscript{2} Concentrations

To understand how well TROPOMI NO\textsubscript{2}, without any adjustment, captures surface-level concentrations, we compare the 2019 annual TROPOMI NO\textsubscript{2} average to 24-h annual average EPA AQS monitor data. The surface-level concentrations from the EPA AQS network are known to have a high instrument bias (Dickerson et al., 2019) and thus referred to as NO\textsubscript{2}* hereafter. In Figure 8, we show a scatterplot between 2019 annual averages of oversampled TROPOMI NO\textsubscript{2} and AQS surface-level NO\textsubscript{2}* concentrations. For our analysis, we restrict our fit to monitoring sites that are not “near-road.” The EPA requests certain states to site “near-road” NO\textsubscript{2} monitors, which are requested to be within 20 m of a major highway; we do not expect TROPOMI observations to capture this very fine spatial gradient, and are therefore not considered in our fit. Figure 8 demonstrates that there is a strong correlation ($R^2 = 0.66$) between a linear fit and monitoring sites considered to be “not near-road.” which suggests that many (but not all) of the spatial heterogeneities observed by TROPOMI over long time intervals (e.g., year) are real and not an artifact of the processing algorithms. We are encouraged to see that a simple linear fit is able to capture near-surface NO\textsubscript{2} variability well. In order to better estimate surface-level concentrations, TROPOMI NO\textsubscript{2} data should be merged with a model simulation (Cooper, Martin, McLinden, & Brook, 2020) and/or land-use characteristics (Bechle et al., 2015; Beloconi & Vounatsou, 2020; Di et al., 2019; Larkin et al., 2017).

4. Conclusions

This study investigates the capabilities of the TROPOMI in observing the spatial and temporal patterns of NO\textsubscript{2} pollution in the continental United States (CONUS). Here, we demonstrate that TROPOMI can capture fine-scale spatial heterogeneities in urban areas, such as emissions related to airport/shipping operations and high traffic; this type of spatial precision cannot be matched by predecessor satellite instruments over short timescales (<1 year). We find that Saturday and Sunday concentrations are 16% and 24% lower respectively than during weekdays, with the caveat that diurnal emissions patterns vary among weekdays and weekends. We also analyze the effects of hot temperatures (>32°C) on NO\textsubscript{2} column amounts and find

Table 1	Continued			
U.S. state	Latitude (°N)	Longitude (°E)	NO\textsubscript{2} (molec/cm²)	Detailed location
MT	45.86	−106.57	2.20E+15	Colstrip, MT (near Colstrip PP)
NH	42.94	−70.81	1.93E+15	Hampton, NH
ME	43.66	−70.29	1.90E+15	Portland, ME
MS	32.34	−90.19	1.77E+15	Jackson, MS
SD	43.6	−96.74	1.53E+15	N Sioux Falls, SD
VT	42.91	−73.18	1.49E+15	Wilmington, VT

Note: Ordered by largest to smallest maximum value.
that column NO$_2$ is generally larger on the hottest days as compared to warm days (26°C–32°C). Finally, we compare column NO$_2$ with surface-level NO$_2$ estimates and find relatively good correlation ($R^2 = 0.66$).

For this work, we rely on the operational TROPOMI NO$_2$ algorithm, which underestimates tropospheric vertical column NO$_2$ in urban areas. Previous studies suggest that this underestimate is due to the AMF and ∼5km pixel size which cannot resolve street-level variations in concentrations (Goldberg, Lu, Streets, et al., 2019; Griffin et al., 2019; Judd, Al-Saadi, Szykman, et al., 2020; Judd, Al-Saadi, Janz, et al., 2019; Zhao et al., 2020); investigating the effects of the AMF bias on trends as well as investigating the effects of the pixels sizes will be the subject of future work. Also, there may be a clear-sky bias (Geddes, Murphy, et al., 2012) associated with any satellite retrieval, but the general spatial heterogeneities of NO$_2$ pollution should be similar amongst all types of weather conditions when averaged over long timeframes. Lastly, interpreting results from polar-orbiting satellite instruments, such as TROPOMI, should be made with some caution due to the mid-day only data collection time. Work quantifying this bias has shown

![Image](https://example.com/image.png)

Figure 5. Same data shown in Figure 2, but now zoomed into six different U.S. cities. Color bar has been adjusted to better differentiate spatial heterogeneities on a local scale.
Figure 6. Weekly variations in column NO$_2$. (Top left) TROPOMI NO$_2$ during Mondays. (Bottom left) TROPOMI NO$_2$ during Sundays. (Top right) Weekly variation of TROPOMI NO$_2$ in seven U.S. cities normalized to Mondays; city averages are across a 1° × 1° box centered on the city. (Bottom right) Ratio between Sundays and Mondays.

Figure 7. Temperature variations in column NO$_2$. (Top left) TROPOMI NO$_2$ when maximum daily 2-m temperature is between 26°C–32°C (Warm; 80°F–90°F); only areas where >10 valid pixels are shown. (Bottom left) TROPOMI NO$_2$ when maximum daily 2-m temperature is greater than 32°C (hot; 90°F); only areas where >10 valid pixels are shown. (Top right) Temperature variation of TROPOMI NO$_2$ in seven U.S. cities normalized to 10°C–21°C (50°F–70°F); city averages are across a 1° × 1° box centered on the city. (Bottom right) Ratio between days with daily 2-m temperature >32°C (Hot) and 26°C–32°C (Warm).
Data Availability Statement

TROPOMI NO₂ data can be freely downloaded from the European Space Agency Copernicus Open Access Hub or the NASA EarthData Portal (http://doi.org/10.5270/S5P-s4lf54). ERA5 can be freely downloaded from the Copernicus Climate Change (C3S) climate data store (CDS) (https://cds.climate.copernicus.eu/#/search?text=ERA5&type=dataset).

References

Abel, D. W., Holloway, T., Kladar, R. M., Meler, P., Ahl, D., Harkey, M., & Patz, J. (2017). Response of power plant emissions to ambient temperature in the Eastern United States. Environmental Science and Technology, 51(10), 5838–5846. https://doi.org/10.1021/acs.est.6b06201

Achakulwisut, P., Brauer, M., Hystad, P., & Anenberg, S. C. (2019). Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO₂ pollution: estimates from global datasets. Lancet Planet Health, 3(4), e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4

Anenberg, S. C., Henze, D. K., Tinney, V., Kinney, P. L., Raich, W., Fann, N., et al. (2018). Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits. Environmental Health Perspectives, 126(10), 107064. https://doi.org/10.1289/EHP3766

Bechle, M. J., Millet, D. B., & Marshall, J. D. (2015). National spatiotemporal exposure surface for NO2: Monthly scaling of a satellite-derived land-use regression, 2000-2010. Environmental Science and Technology, 49(20), 12297–12305. https://doi.org/10.1021/acs.est.5b02882

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., & Wagner, T. (2011). Megacity emissions and lifetimes of nitrogen oxides probed from space. Science, 333(6050), 1737–1739. https://doi.org/10.1126/science.1207824

Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., et al. (2019). Pinpointing nitrogen oxide emissions from space. Science Advances, 5(11), eaax9800. https://doi.org/10.1126/sciadv.aax9800

Beirle, S., Platt, U., Weinig, M., & Wagner, T. (2003). Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmospheric Chemistry and Physics, 3(6), 2225–2232. https://doi.org/10.5194/acp-3-2225-2003

Bell, M. L. (2004). Ozone and short-term mortality in 95 US urban communities, 1987-2000. JAMA, 292(19), 2372. https://doi.org/10.1001/jama.292.19.2372

Bell, M. L., Peng, R. D., & Dominici, F. (2006). The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environmental Health Perspectives, 114(4), 532–536. https://doi.org/10.1289/ehp.8816

Belonoci, A., & Younatou, P. (2020). Bayesian geostatistical modelling of high-resolution NO2 exposure in Europe combining data from monitors, satellites and chemical transport models. Environment International, 138, 105578. https://doi.org/10.1016/j.envint.2020.105578

Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 109(D4). https://doi.org/10.1029/2003JD003962

Figure 8. EPA AQS annual surface NO₂ observations for 2019 compared to the collocated oversampled 0.01° × 0.01° TROPOMI value during the same timeframe. R² represents the correlation between TROPOMI and not near-road monitors.

Acknowledgments

This work has been supported by the Department of Energy, Office of Fossil Energy. This work has also been sponsored by a Health and Air Quality (HAQ) grant (award #: 80NSSC17K0280 and 80NSSC19K0193), and two Atmospheric Composition Modeling and Analysis Program grants (award #: 80NSSC19K0946). Our work would also like to acknowledge valuable comments during the manuscript preparation from Joel Dreessen of Maryland Department of the Environment. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (‘Argonne’). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357.

that NO₂ column measurements are lower and incrementally more spatially homogeneous in the afternoon than during the morning (Chong et al., 2018; Fishman et al., 2008; Herman et al., 2019; Knepp et al., 2015; Penn & Holloway, 2020; Tzortziou et al., 2015); it is likely that data from geostationary platforms such as TEMPO (Zoogman et al., 2017), GEMS (W. J. Choi, 2018), and Sentinel 4 (Timmermans et al., 2019), will be able to provide further insight on this time-of-day bias.

Because TROPOMI can observe and measure NO₂ increases attributed to relatively small sources, future work should be able to quantify emissions from small sources (e.g., industrial activities, ship plumes, small wildfires) that had previously gone undetected from predecessor space-based instruments. Furthermore, due to the instrument’s excellent stability, precision, and spatial resolution, it is no longer necessary to average over 6+ months of data to gain a clear depiction of regional NO₂ abundances; instead monthly, weekly or even daily aggregations could suffice for many purposes. The examples presented here demonstrate how TROPOMI NO₂ satellite data can be advantageous for policymakers requesting information at high spatial resolution and short timescales, in order to assess, devise, and evaluate regulations. Future health impact assessment studies can use the high-spatial resolution capabilities of TROPOMI NO₂ to investigate disparities in traffic-related air pollution exposure and associated health effects between neighborhoods and population sub-groups within cities.
Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorentz, A., Beirle, S., et al. (2018). Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project. *Atmospheric Measurement Techniques*, 11(12), 6651–6678. https://doi.org/10.5194/amt-11-6651-2018

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., et al. (1999). SCIAMACHY: Mission objectives and measurement modes. *Journal of the Atmospheric Sciences*, 56(2), 127–150. https://doi.org/10.1175/1520-0469(1999)056<0127:SCIAMACHY>2.0.CO;2

Broecker, F., Arsalane, K., Herrmans, C., Bergamaschi, E., Brustolini, A., Mutti, A., & Bernard, A. (1999). Lung epithelial damage at low concentrations of ambient ozone. *Lancet*, 353(9156), 900–901. https://doi.org/10.1016/S0140-6736(99)08049-1

Burnett, R. T., Steh, D., Brook, J. R., Cakmak, S., Dailes, R., Raizenne, M., et al. (2004). Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. *Archives of Environmental Health*, 59(5), 228–236. https://doi.org/10.1016/S0003-9896(16)30727-5

Burns, D. A., Gay, D. A., & Lehmann, C. M. B. (2016). Acid rain and its environmental effects: Recent scientific advances. *Atmospheric Environment*, 146, 1–4. https://doi.org/10.1016/j.atmosenv.2016.10.019

Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstatter-Weißenmayer, A., Richter, A., et al. (1999). The global ozone monitoring experiment (GOME) Mission concept and first scientific results. *Journal of Atmospheric Sciences*, 56, 151–175. https://doi.org/10.1175/1520-0469(1999)056<0151:GOMEG>2.0.CO;2

Canty, T. P., Hembreck, L., Vinciguerra, T. P., Anderson, D. C., Goldberg, D. L., Carpenter, S. F., et al. (2015). Ozone and NOx satellite retrievals. *Atmospheric Measurement Techniques*, 8(2), 1–7. https://doi.org/10.5194/amt-8-1-2015

Castellanos, P., & Boersma, K. F. (2012). Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession. *Scientific Reports*, 2(1), 1–7. https://doi.org/10.1038/srep00265

Chen, K., Liu, X., Miller, C. C., González Abad, G., Huang, G., Nowlan, C., et al. (2019). TEMPo green paper: Chemistry, physics, and measurement techniques. *Atmospheric Measurement Techniques*, 12(9), 359–382. https://doi.org/10.5194/amt-12-359-2019

Choi, W. J. (2018). Introducing the geostationary environment monitoring spectrometer. *Journal of Applied Remote Sensing*, 12(04), 1. https://doi.org/10.1117/1.JRS.12.044005

Chong, H., Lee, H., Koo, J. H., Kim, J., Jeong, U., Kim, W., et al. (2018). Regional characteristics of NO2 column densities from pandora observations during the MAPS-Seoul campaign. *Aerosol and Air Quality Research*, 18(9), 2207–2219. https://doi.org/10.4209/aair.2017.09.0341

Cohen, A. J., Brauer, M., Burnett, R. T., Anderson, H. R., Frostad, J., Estep, K., et al. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Disease Study 2015. *The Lancet*, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

Cooper, M. J., Martin, R. V., McLinden, C. A., & Brook, J. R. (2020). Inferring ground-level nitrogen dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument. *Environmental Research Letters*, 15, 104013. https://doi.org/10.1088/1748-9326/aba3a5

Cooper, M. J., Martin, R. V., Padmanabhan, A., & Henze, D. K. (2017). Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. *Journal of Geophysical Research*, 122(8), 4718–4734. https://doi.org/10.1002/2016JD025985

de Foy, B. (2018). City-level variations in NOx emissions derived from hourly monitoring data in Chicago. *Atmospheric Environment*, 176, 128–139. https://doi.org/10.1016/j.atmosenv.2017.12.028

de Foy, B., Lu, Z., & Streets, D. G. (2016). Impacts of control strategies, the Great Recession and weekday variations on NO2 columns above North American cities. *Atmospheric Environment*, 138(2), 74–86. https://doi.org/10.1016/j.atmosenv.2016.04.038

de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., & Duncan, B. N. (2015). Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals. *Atmospheric Environment*, 116(2), 1–11. https://doi.org/10.1016/j.atmosenv.2015.05.056

de Foy, B., Wilkins, J. L., Lu, Z., Streets, D. G., & Duncan, B. N. (2014). Model evaluation of methods for estimating surface emissions and chemical lifetimes from satellite data. *Atmospheric Environment*, 98, 66–77. https://doi.org/10.1016/j.atmosenv.2014.08.051

de Gouve, J. A., Veehkind, J. P., Rosenbrand, E., Dix, B., Lin, J. C., Landgraf, J., & Levelt, P. F. (2020). Daily satellite observations of methane from oil and gas production regions in the United States. *Scientific Reports*, 10(1), 1379. https://doi.org/10.1038/s41598-020-57678-4

Dallmann, T. R., & Harley, R. A. (2010). Evaluation of mobile source emission trends in the United States. *Journal of Geophysical Research*, 115(D14), D14035. https://doi.org/10.1029/2009JD013862

Di, Q., Amini, H., Shi, L., Kloor, I., Silvern, R. F., Kelly, F. J., et al. (2019). Assessing NO2 concentration and model uncertainty with high spatiotemporal resolution across the contiguous united states using ensemble model averaging. *Environmental Science & Technology*, 54, 1572–1584. https://doi.org/10.1021/acs.est.8b03358

Dickerson, R. R., Anderson, D. C., & Ren, X. (2019). On the use of data from commercial NOx analyzers for air pollution studies. *Atmospheric Environment*, 214, 116873. https://doi.org/10.1016/j.atmosenv.2019.116873

Dix, B., Bruin, J., Rosenbrand, E., Vlemmix, T., Francouer, C., Gorochow-Negron, A., et al. (2020). Nitrogen oxide emissions from U.S. oil and gas production: Recent trends and source attribution. *Geophysical Research Letters*, 47(1), 2019GL085866. https://doi.org/10.1029/2019GL085866

Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., et al. (2016). A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014). *Journal of Geophysical Research: Atmosphere*, 121(2), 976–996. https://doi.org/10.1002/2015JD024121

Ellissavet Koulouri, M., Theys, N., Ding, J., Zyrichidou, I., Mijling, B., Balis, D., & Johannes Van Der A, R. (2018). Updated SO2 emission estimates over China using OMI/Aura observations. *Atmospheric Measurement Techniques*, 11(3), 1817–1832. https://doi.org/10.5194/amt-11-1817-2018

Fishman, J., Bowman, K. W., Burrows, J. P., Richter, A., Chance, K. V., Edwards, D. P., et al. (2008). Remote sensing of tropospheric pollution from space. *Bulletin of the American Meteorological Society*, 89(6), 805–822. https://doi.org/10.1175/2008BAMS2526.1

Geddes, I. A., Martin, R. V., Boys, B. L., & van Donkelaar, A. (2016). Long-term trends in worldwide NO2 concentrations inferred from satellite observations. *Environmental Health Perspectives*, 124(3), 281–289. https://doi.org/10.1289/ehp.1409567
Geddes, J. A., Murphy, J. G., O’Brien, J. M., & Celarier, E. A. (2012). Biases in long-term NO2 averages inferred from satellite observations due to cloud selection criteria. Remote Sensing of Environment, 124(2), 210–216. https://doi.org/10.1016/j.rse.2012.05.008

Georgoulis, A. K., van der A, R. J., Stammes, P., Boersma, K. F., & Eskes, H. J. (2019). Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmospheric Chemistry and Physics, 19(9), 6269–6294. https://doi.org/10.5194/acp-19-6269-2019

Goldberg, D. L., Lamsal, L. N., Loughner, C. P., Swart, W. H., Lu, Z., & Streets, D. G. (2017). A high-resolution and observationally constrained OMI NO2 satellite retrieval. Atmospheric Chemistry and Physics, 17(18), 11403–11421. https://doi.org/10.5194/acp-17-11403-2017

Goldberg, D. L., Lu, Z., Oda, T., Lamsal, L. N., Liu, F., Griffin, D., et al. (2019). Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities. Science of The Total Environment, 695, 133805. https://doi.org/10.1016/j.scitotenv.2019.133805

Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., et al. (2019). Enhanced capabilities of TROPOMI NO2: Estimating NOx from North American cities and power plants. Environmental Science & Technology, 53, 12594–12601. https://doi.org/10.1021/acs.est.9b04488

Goldberg, D. L., Saide, P. E., Lamsal, L. N., de Foy, B., Lu, Z., Woolf, J.-H., et al. (2019). A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 19(3), 1801–1818. https://doi.org/10.5194/acp-19-1801-2019

Griffin, D., Zhao, X., McLinden, C. A., Boersma, K. F., Bourassa, A., Dammers, E., et al. (2019). High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. Geophysical Research Letters, 46(2), 1049–1060. https://doi.org/10.1029/2018GL081095

He, H., Henembeck, I., Hosley, K. M., Canty, T. P., Salawitch, R. J., & Dickerson, R. R. (2013). High ozone concentrations on hot days: The role of electric power demand and NOx emissions. Geophysical Research Letters, 40(19), 5291–5294. https://doi.org/10.1002/grl.50967

Herman, A., Abuhassan, N., Kim, J., Kim, J., Dubey, M., Raponi, M., & Tzortziou, M. (2019). Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments. Atmospheric Measurement Techniques, 12(10), 5593–5612. https://doi.org/10.5194/amt-12-5593-2019

Heue, K.-P., Richter, A., Bruns, M., Burrows, J. P., Friedelburg, C. V., Platt, U., et al. (2005). Validation of SCIAMACHY tropospheric NO2 columns with AMAXDOAS measurements. Atmospheric Chemistry and Physics, 5, 1039–1051. www.atmos-chem-phys.net/5/1039/2005/acp-5-1039EuropeanGeosciencesUnion

Ialongo, I., Virta, H., Eskes, H., Hovila, J., & Tamminen, J. (2016). Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki. Atmospheric Measurement Techniques, 9(10), 5203–5212. https://doi.org/10.5194/amt-9-5203-2016

Ialongo, I., Virta, H., Eskes, H., Hovila, J., & Dourou, J. (2020). Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmospheric Measurement Techniques, 13(1), 205–218. https://doi.org/10.5194/amt-13-205-2020

Jacob, D. J. (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34(12–14), 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8

Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Szykman, J. J., et al. (2019). Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data. Atmospheric Measurement Techniques, 12, 6091–6111. https://doi.org/10.5194/amt-12-6091-2019

Knepp, T., Pippin, M., Crawford, J., Chen, G., Szykman, J., & Celarier, E. A. (2015). Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions. Journal of Atmospheric Chemistry, 72(3–4), 261–288. https://doi.org/10.1007/s10874-013-9257-6

Kononov, I. B., Berezin, E. V., Ciais, P., Bouret, G., Zhuravlev, R. V., & Janssens-Maenhout, G. (2016). Estimation of fossil-fuel CO2 emissions using satellite measurements of “proxy” species. Atmospheric Chemistry and Physics, 16(21), 13509–13540. https://doi.org/10.5194/acp-16-13509-2016

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., et al. (2016). Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics, 16(7), 4605–4629. https://doi.org/10.5194/acp-16-4605-2016

Lamsal, L. N. (2020). OMI/Aura nitrogen dioxide standard product with improved surface and cloud treatments. Retrieved from https://www.atmos-meas-tech-discuss.net/amt-2020-200/

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., et al. (2008). Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument. Journal of Geophysical Research, 113(16), 1–15. https://doi.org/10.1029/2007JD009235

Laughner, J. L., Zhu, Q., & Cohen, R. C. (2019). Direct observation of changing NOx lifetime in North American cities. Science, 366(6466), 723–727. https://doi.org/10.1126/science.aax6832

Laughner, J. L., Zare, A., & Cohen, R. C. (2016). Effects of daily meteorology on the interpretation of space-based remote sensing of NO2. Atmospheric Chemistry and Physics, 16(23), 15247–15264. https://doi.org/10.5194/acp-16-15247-2016

Laughner, J. L., Zhu, Q., & Cohen, R. C. (2019). Evaluation of version 3.0B of the BEHR OMI NO2 product. Atmospheric Measurement Techniques, 12(1), 129–146. https://doi.org/10.5194/amt-12-129-2019

Levett, P. F., Joiner, J., Tamminen, J., Veekind, I. P., Bhartia, P. K., Zwiers, D. C. S., et al. (2018). The ozone monitoring instrument: Overview of 14 years in space. Atmospheric Chemistry and Physics, 18(8), 5659–5745. https://doi.org/10.5194/acp-18-5699-2018

GOLDBERG ET AL. 14 of 16

Earth’s Future 10.1029/2020EF001665
Valin, L. C., Russell, A. R., & Cohen, R. C. (2013). Variations of OH radical in an urban plume inferred from NO2 column measurements. *Geophysical Research Letters*, 40(9), 1856–1860. https://doi.org/10.1002/grl.50267

Valin, L. C., Russell, A. R., & Cohen, R. C. (2014). Chemical feedback effects on the spatial patterns of the NOx weekend effect: A sensitivity analysis. *Atmospheric Chemistry and Physics*, 14(1), 1–9. https://doi.org/10.5194/acp-14-1-2014

Valin, L. C., Russell, A. R., Hudman, R. C., & Cohen, R. C. (2011). Effects of model resolution on the interpretation of satellite NO2 observations. *Atmospheric Chemistry and Physics*, 11(22), 11647–11655. https://doi.org/10.5194/acp-11-11647-2011

van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., & Veefkind, J. P. (2020). SSP TROPOMI NO slant column retrieval: method, stability, uncertainties and comparisons with OMI. *Atmospheric Measurement Techniques*, 13(3), 1315–1335. https://doi.org/10.5194/amt-13-1315-2020

Vandaele, A. C., Simon, P. C., Carleer, M., Colin, R., Fally, S., et al. (1998). Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 59(3–5), 171–184. https://doi.org/10.1016/S0022-4073(97)00168-4

VanDeza, R. I., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., Van Roozendael, M., De Smedt, I., et al. (2008). Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. *Journal of Geophysical Research Atmospheres*, 113(4), 1–12. https://doi.org/10.1029/2007JD009021

VanGeffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., & Veefkind, J. P. (2019). TROPOMI ATBD of the total and tropospheric NO2 data products. Retrieved from http://www.tropomi.eu/sites/default/files/files/publicSSP-KNMI-L2-0005-RP-ATBD_NO2_data_products-20190206_v140.pdf

Veefkind, J. P., Ahen, I., McMullan, K., Förster, H., de Vries, J., Otter, G., et al. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. *Remote Sensing of Environment*, 120(2012), 70–83. https://doi.org/10.1016/j.rse.2011.09.027

Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H., Eichmann, K.-U., et al. (2020). Ground-based validation of the Copernicus Sentinel-Sp TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks (pp. 1–40). *Atmospheric Measurement Techniques Discussions*. https://doi.org/10.5194/amt-2020-119

Wang, C., Wang, T., Wang, P., & Rakitin, V. (2020). Comparison and validation of TROPOMI and OMI NO2 observations over China. *Atmosphere*, 11(6), 636. https://doi.org/10.3390/atmos11060636

Zhao, X., Griffin, D., Fioletov, V., McLinden, C. A., Cede, A., Tiefengraber, M., et al. (2020). Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the greater Toronto area. *Atmospheric Measurement Techniques*, 13(4), 2131–2159. https://doi.org/10.5194/amt-13-2131-2020

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., et al. (2017). Tropospheric emissions: Monitoring of pollution (TEMPO). *Journal of Quantitative Spectroscopy and Radiative Transfer*, 186(2017), 17–39. https://doi.org/10.1016/j.jqsrt.2016.05.008