Supporting Information

Double Proton Transfer Across a Table: The Formic Acid Dimer–Fluorobenzene Complex

Weixing Li,* Denis S. Tikhonov, and Melanie Schnell*

anie_202108242_sm_SI.zip
S1 Summary of experimental and theoretical methods

The spectra of the PhF-FAD complexes were measured by using CP-FTMW spectroscopy in the frequency range of 2 – 8 GHz with the COMPACT instrument in Hamburg; the spectrometer design has been described elsewhere in detail.[1] The samples of PhF and FA were placed into two separated reservoirs at room temperature. Neon with a backing pressure of 3 bars was used as a carrier gas. PhF and FA were seeded into the carrier gas, after which the gas mixture was supersonically expanded into the vacuum chamber through a pulsed nozzle. The spectra of 13C singly substituted isotopologues were measured in natural abundance while the deuterated spectra were measured with the isotopically enriched FA. The isotopic purity of commercial DCOOH is 98%. In order to obtain the complexes containing HCOOD species, a rough 1:1 mixture of D$_2$O and HCOOH was placed in the sample reservoir instead of the pure HCOOH. All the chemicals were obtained from Sigma Aldrich and used without further purification. All the rotational transitions were assigned using the AABS package,[2, 3] and the spectroscopic parameters were fitted with Pickett’s SPFIT program,[4] within the I^r -representation of Watson’s S reduction. The tunneling patterns were fitted using a two-state proton transfer-rotation coupled Hamiltonian, including semirigid rotor terms for each torsional state, common centrifugal distortion, the splitting energy difference (ΔE_{01}), and the Coriolis coupling terms F_{bc}, F_{ca} (see Ref. [5] for details). The r_s coordinates were obtained using the KRA package. The AABS, SPFIT, and KRA software can be found at the PROSPE website.[6]

A preliminary conformational search for the PhF-FAD cluster was conducted using the CREST software.[7] Ten low energy structures found were then re-optimized at the PBEh-3c[8] level of theory. Out of these structures only three unique structures were left, which were once again re-optimized at the gCP-B3LYP-D3BJ/def2-TZVP level of theory.[9][11] These structures are given in Table S23.

The PhF-FAD structures were optimized using the B3LYP-D3BJ[10][13] and B2PLYP[15] levels of theory with the def2-TZVP basis set[13] and geometrical counterpoise (gCP) correction[9] to account for basis set superposition error (BSSE). Structures of the monomers PhF and FAD were also optimized at B2PLYP/def2-TZVP approximation, the resulting electron densities were used to generate the CHELPG charges[10] for PhF.

Relaxed PES scans for FAD and PhF-FAD were carried out at PBEh-3c[8] and DFT/def2-TZVP (DFT = B3LYP,[17] B3LYP, mPW1LYP,[18] X3LYP[19]) levels of theory. The calculations for DFT/def2-TZVP levels of theory for PhF-FAD were performed only in the QM/MM approach[20] with PhF represented by a MM force field. PBEh-3c calculations for PhF-FAD were performed by treating PhF both quantum-chemically and via the MM approach.

To obtain a force field for QM/MM calculations, training and test sets for structures of FAD in different stages of proton transfer were randomly displaced with respect to the PhF plane. Then interaction energies were computed at the SAPT2/aug-cc-pVDZ level of theory.[21][23] The Lennard-Jones potential[24] parameters were fitted to reproduce the energy $E_{\text{int}}^{\text{SAPT2}} - E_{\text{PBEh-3c/MM}}^{\text{total}} < 2000$ cm$^{-1}$, where the first term is the total interaction energy from SAPT2/aug-cc-pVDZ calculations, and the second is the electrostatic and induction interaction of FAD with PhF represented as a set of CHELPG atomic charges. The training set consisted of 479 points, while the test set was composed of 215 structures, the resulting RMSD were 133 cm$^{-1}$ and 116 cm$^{-1}$ for training and test sets, respectively.

In addition to that, we have calculated the total interaction energy of the PhF with FAD at the PBEh-3c optimized geometry at SAPT2 level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets (SAPT2/aug-cc-pVDZ///PBEh-3c and SAPT2/aug-cc-pVTZ///PBEh-3c, respectively). The interaction energies in these two cases were found to be 1633 cm$^{-1}$ (20 kJ/mol) and 1867 cm$^{-1}$ (22 kJ/mol), respectively.

The proton transfer dynamics was computed in the framework of an effective one-dimensional Schrödinger equation with the Hamiltonian[25]

$$\hat{H} = -\frac{\hbar^2}{2} \frac{d^2}{d\xi^2} G(\xi) \frac{d}{d\xi} + V(\xi) + \text{ZPVE}(\xi) ,$$

where

$$\xi = (r(O1H1) + r(O4H2) - r(O3H1) - r(O2H2))/\sqrt{8}$$ \hspace{1cm} (1)
is the proton transfer coordinate, G is the inverse effective mass, V is the PES obtained from a relaxed scan, and ZPVE is the zero-point vibrational energy term for other degrees of freedom in the harmonic oscillator approximation (see Refs. [26] and [25] for a detailed description of the procedure). The parameters for the Hamiltonian were extracted from one-dimensional PES scans and the Hessians computed in every point of the scan.

All the quantum-chemical calculations were done with the Orca 4 program package,\cite{27} except for SAPT2 calculations, which were performed using the Psi4 software.\cite{28} The computations were done using the Maxwell cluster operated at Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
S2 Experimental parameters of the PhF-FAD complex

Table S1: Experimental and theoretical rotational parameters of the PhF-FAD complex.

	Experiment[^a]	Theory			
	Parent(0^+)	Parent(0^-)	B3LYP-D3BJ[^b]	B2PLYP[^b]	PBEh-3c
A [MHz]	902.68022(20)	902.67985(22)	903.6	900.1	915.0
B [MHz]	700.65306(20)	700.64869(19)	704.4	655.0	721.9
C [MHz]	539.71027(21)	539.70937(20)	534.0	509.2	553.1
D_J [kHz]	0.3434(14)				
D_JK [kHz]	0.5467(13)				
D_K [kHz]	-0.2474(14)				
d_1 [kHz]	-0.08985(18)				
d_2 [kHz]	0.024958(60)				
ΔE_{01} [MHz]	267.6080(13)				
F_{bc} [MHz]	15.57228(16)				
F_{ca} [MHz]	17.3378(17)				
μ_a/μ_b/μ_c	intra-/intra-/inter[^c]	0.9/1.2/0.2	1.0/1.2/0.1	1.0/1.1/0.1	
σ[^d] [kHz]	5.358				
N[^e]	460				

[^a] Standard deviations within parentheses are expressed in units of the last two digits.
[^b] Calculated using def2-TZVP basis set and geometrical counterpoise (gCP) correction.
[^c] intra- denotes intra-state transition; inter- denotes inter-state transition.
[^d] Root-mean-square deviation of the fit.
[^e] Number of the lines in the fit.
Table S2: Experimental spectroscopic parameters of the symmetric 13C PhF-FAD species with the proton transfer motion (see Fig. S2 for atom numbering). All the other spectroscopic parameters (given in Table S1 but not given here) are fixed to the values of the parent species (see Table S1). Standard deviations within parentheses are expressed in units of the last two digits.

	13C1$_{0+}$	13C1$_{0-}$	13C2$_{0+}$	13C2$_{0-}$
	13C1$_{0+}$	13C1$_{0-}$	13C2$_{0+}$	13C2$_{0-}$
A [MHz]	900.2625(22)	894.3558(30)	699.952(13)	699.734(10)
B [MHz]	695.5769(21)	695.5883(18)	536.2553(11)	536.27529(91)
C [MHz]	535.91732(41)	535.92394(38)	536.2553(11)	536.27529(91)
σ$^{[a]}$ [kHz]	9.816	10.452	26	26
N$^{[b]}$	40	40	40	40

$^{[a]}$ Root-mean-square deviation of the fit.

$^{[b]}$ Number of lines in the fit.

Table S3: Experimental spectroscopic parameters of the asymmetric 13C PhF-FAD species with the quenched proton transfer motion (see Fig. S2 for atom numbering). All the other spectroscopic parameters (given in Table S1 but not given here) are fixed to the values of the parent species (see Table S1). Standard deviations within parentheses are expressed in units of the last two digits.

	13C5	13C6	13C7	13C8
A [MHz]	900.6303(54)	903.9802(59)	900.841(13)	904.1467(95)
B [MHz]	698.9391(16)	700.8726(18)	696.9423(60)	697.7193(22)
C [MHz]	536.29898(61)	535.3830(12)	534.7894(15)	534.1916(15)
D$^{[a]}$ [kHz]	0.2070(51)	0.239(12)	0.1510(85)	0.033(18)
σ$^{[a]}$ [kHz]	4.320	7.577	2.348	11.969
N$^{[b]}$	22	16	18	16

$^{[a]}$ Root-mean-square deviation of the fit.

$^{[b]}$ Number of lines in the fit.
Table S4: Experimental spectroscopic parameters of the symmetric deuterated PhF-FAD species
with the proton transfer motion (see Fig. S2 for atom numbering). Standard deviations within
parentheses are expressed in units of the last two digits.

	D1D2o⁺	D1D2o⁻	D1H2o⁺	D1H2o⁻	H1D2o⁺	H1D2o⁻
A [MHz]	877.68910(94)	877.68868(98)	894.55379(94)	894.5534(10)	885.7724(12)	885.7718(12)
B [MHz]	694.16145(92)	694.16355(92)	694.23633(82)	694.23748(86)	700.4922(10)	700.4929(10)
C [MHz]	526.89542(97)	526.89439(96)	533.00999(96)	533.00859(94)	533.4951(11)	533.4940(11)
D_J [kHz]	0.3582(41)	0.3484(36)	0.301(10)	0.550(19)	0.3355(44)	
D_{JK} [kHz]	0.267(17)	0.301(10)	0.550(19)			
D_K [kHz]	−0.322(23)	−0.322(23)				
d_1 [kHz]	−0.01074(28)	−0.0949(23)	−0.0932(29)			
d_2 [kHz]	0.0306(12)	0.02943(89)	0.0252(11)			
ΔE_{01} [MHz]	275.7992(84)	274.0545(77)	269.2596(74)			
F_{bc} [MHz]	15.55419(64)	15.64630(66)	15.44167(65)			
F_{ca} [MHz]	15.8785(98)	16.1730(98)	17.102(10)			
σ [kHz]	8.391	6.895	7.652			
N [kHz]	8.391	6.895	7.652			

[a] Root-mean-square deviation of the fit.
[b] Number of lines in the fit.
Table S5: Experimental spectroscopic parameters of the deuterated PhF-FAD species with the quenched proton transfer motion (see Fig. S2 for atom numbering). All the other spectroscopic parameters (given in Table S1 but not given here) are fixed to the values of the parent species (see Table S1). Standard deviations within parentheses are expressed in units of the last two digits.

	D3D4	D3H4	H3D4
A [MHz]	896.244(58)	900.1446(18)	899.5134(23)
B [MHz]	694.499(27)	698.0696(15)	698.4309(11)
C [MHz]	533.0517(64)	535.53613(64)	534.85848(83)
D_J [kHz]	0.088(35)	0.342(13)	0.287(13)
D_JK [kHz]	0.666(79)	0.97(10)	
d_L [kHz]		-0.1093(75)	-0.0816(74)
σ[a] [kHz]	6.634	7.248	8.642
N	13	31	33

[a] Root-mean-square deviation of the fit.
[b] Number of the lines in the fit.
S3 Linelists for PhF-FAD and its isotopologues

Table S6: Linelist for PhF-FAD parent species.

J' Ka' Kc' v'	J'' Ka'' Kc'' v''	obs/MHz	obs-cal/MHz			
2 1 2 0	1 0 1 0	2517.3952	0.0005			
2 0 2 0	1 0 1 0	2412.3232	0.0003			
2 1 2 0	1 1 1 0	2351.4586	0.0047			
2 0 2 0	1 1 1 0	2210.3815	-0.0005			
3 0 3 0	2 1 2 0	3396.1894	0.0025			
3 1 3 0	2 1 2 0	3436.2063	0.0000			
3 0 3 0	2 0 2 0	3501.2587	0.0000			
3 1 3 0	2 0 2 0	3541.2797	0.0014			
4 0 4 0	3 1 3 0	4521.0764	0.0019			
4 1 4 0	3 1 3 0	4533.5928	0.0002			
4 0 4 0	3 0 3 0	4561.0976	0.0036			
4 1 4 0	3 0 3 0	4573.6166	0.0045			
5 0 5 0	4 1 4 0	5613.6607	0.0020			
5 1 5 0	4 1 4 0	5617.1678	0.0030			
5 0 5 0	4 0 4 0	5626.1785	0.0017			
5 1 5 0	4 0 4 0	5629.6881	0.0052			
6 0 6 0	5 1 5 0	6693.7986	0.0038			
6 1 6 0	5 1 5 0	6694.7160	0.0035			
6 0 6 0	5 0 5 0	6697.3038	0.0029			
6 1 6 0	5 0 5 0	6698.2213	0.0027			
7 0 7 0	6 1 6 0	7769.9335	0.0008			
7 1 7 0	6 1 6 0	7770.1624	0.0003			
7 0 7 0	6 0 6 0	7770.8530	0.0025			
7 1 7 0	6 0 6 0	7771.0826	0.0026			
4 0 4 1	3 1 3 1	4519.5784	0.0012			
4 1 4 1	3 1 3 1	4531.6649	-0.0150			
4 0 4 1	3 0 3 1	4558.3951	0.0025			
4 1 4 1	3 0 3 1	4570.4993	0.0038			
5 0 5 1	4 1 4 1	5611.5391	0.0004			
5 1 5 1	4 1 4 1	5614.9223	0.0020			
5 0 5 1	4 0 4 1	5623.6423	0.0008			
5 1 5 1	4 0 4 1	5627.0237	0.0006			
6 0 6 1	5 1 5 1	6691.4831	0.0004			
6 1 6 1	5 1 5 1	6692.3686	0.0015			
6 0 6 1	5 0 5 1	6694.8658	0.0016			
6 1 6 1	5 0 5 1	6695.7498	0.0011			
7 0 7 1	6 1 6 1	7767.5729	-0.013			
7 1 7 1	6 1 6 1	7767.7937	-0.0020			
7 0 7 1	6 0 6 1	7768.4579	-0.0008			
7 1 7 1	6 0 6 1	7768.6780	-0.0022			
3 0 3 1	2 1 2 1	3396.9965	-0.0025			
3 1 3 1	2 1 2 1	3435.8122	-0.0023			
3 0 3 1	2 0 2 1	3498.6345	-0.0004			
3 1 3 1	2 0 2 1	3537.4512	0.0007			
2 0 2 1	1 1 1 1	2203.2280	-0.0013			
2 1 2 1	1 1 1 1	2304.8667	0.0014			
2 0 2 1	1 0 1 1	2410.6080	0.0009			
2 1 2 1	1 0 1 1	2512.2471	0.0041			
2 1 1 0	1 1 0 0	2653.3511	-0.0051			
3 1 2 0	2 1 1 0	3910.1750	-0.0030			
4 1 3 0	3 1 2 0	5094.1452	-0.0007			
5 1 4 0	4 1 3 0	6181.9189	0.0052			
6 1 5 0	5 1 4 0	7228.1794	0.0021			
2 1 1 1	1 1 0 1	2640.7167	0.0048			
3 1 2 1	2 1 1 1	3905.8636	-0.0021			
4 1 3 1	3 1 2 1	5087.2215	-0.0009			
5 1 4 1	4 1 3 1	6174.0074	0.0030			
6 1 5 1	5 1 4 1	7220.3592	0.0001			
3 2 2 1	2 2 1 1	3677.7569	-0.0022			
3 2 1 1	2 2 0 1	3931.8125	0.0021			
4 2 3 1	3 2 2 1	4924.1256	-0.0058			
4 2 2 1	3 2 1 1	5291.1644	-0.0030			
5 2 4 1	4 2 3 1	6048.4979	-0.0017			
5 2 3 1	4 2 2 1	6582.4461	-0.0054			
6 2 4 1	5 2 3 1	7773.7501	0.0012			
6 2 5 1	5 2 4 1	7159.7555	0.0029			
3 2 2 0	2 2 1 0	3723.8538	0.0006			
3 2 1 0	2 2 0 0	3979.1090	-0.0078			
4 2 3 0	3 2 2 0	4907.1731	-0.0001			
4 2 2 0	3 2 1 0	5276.3881	0.0012			
5 2 4 0	4 2 3 0	6052.7160	0.0034			
5 2 3 0	4 2 2 0	6590.4475	-0.0041			
6 2 5 0	5 2 4 0	7165.7684	0.0000			
6 2 4 0	5 2 3 0	7785.1263	-0.0011			
4 3 2 0	3 3 1 0	5063.2574	-0.0008			
4 3 1 0	3 3 0 0	5146.2794	0.0060			
5 3 3 0	4 3 2 0	6308.4133	-0.0005			
5 3 2 0	4 3 1 0	6613.6966	-0.0067			
6 3 4 0	5 3 3 0	7513.0557	0.0071			
6 3 3 0	5 3 2 0	7945.0037	0.0057			
4 3 2 1	3 3 1 1	5062.4793	-0.0054			
4 3 1 1	3 3 0 1	5145.6994	-0.0002			
5 3 3 1	4 3 2 1	6245.3064	0.0076			
5 3 2 1	4 3 1 1	6550.2900	0.0178			
6 3 4 1	5 3 3 1	7516.5231	0.0029			
6 3 3 1	5 3 2 1	7946.8272	0.0036			
5 4 2 1	4 4 1 1	6345.4339	-0.0024			
5 4 1 1	4 4 0 1	6369.8989	0.0032			
6 4 3 1	5 4 2 1	7656.5948	0.0028			
6 4 2 1	5 4 1 1	7739.2531	-0.0049			
5 4 2 0	4 4 1 0	6354.4540	-0.0008			
5 4 1 0	4 4 0 0	6378.5626	0.0017			
6 4 3 0	5 4 2 0	7645.5760	0.0019			
6 4 2 0	5 4 1 0	7727.4095	-0.0009			
6 5 2 0	5 5 1 0	7624.0299	0.0008			
6 5 1 0	5 5 0 0	7629.2192	-0.0029			
6 5 2 1	5 5 1 1	7612.7917	0.0032			
6 5 1 1	5 5 0 1	7618.1478	0.0010			
5 1 4 0	5 1 5 0	2099.5091	-0.0057			
6 1 5 0	6 1 6 0	2632.9818	0.0021			
7 1 6 0	7 1 7 0	3143.6082	-0.0047			
8 1 7 0	8 1 8 0	3644.0540	-0.0124			
9 1 8 0	9 1 9 0	4140.5901	0.0123			
6 1 5 1	6 1 6 1	2608.2392	0.0006			
7 1 6 1	7 1 7 1	3113.9304	0.0070			
9 1 8 1	9 1 9 1	4101.8843	0.0082			
7 2 5 1	7 2 6 1	2440.2100	-0.0070			
8 2 6 1	8 2 7 1	3001.2523	0.0113			
9 2 7 1	9 2 8 1	3525.1181	0.0028			
10 2 8 1	10 2 9 1	4030.5702	0.0017			
8 3 5 1	8 3 6 1	2105.2159	-0.0005			
9 3 6 1	9 3 7 1	2768.2856	0.0037			
10 3 7 0	10 3 8 0	3392.4127	-0.0050			
11 3 8 1	11 3 9 1	3916.7331	-0.0001			
6 3 4 1	6 1 5 1	2219.1531	0.0045			
7 3 5 1	7 1 6 1	2614.1259	0.0034			
8 3 6 1	8 1 7 1	3067.5197	-0.0031			
7 2 6 1	7 0 7 1	3124.6309	0.0008			
2 2 0 1	1 0 1 1	3681.3182	0.0023			
3 2 1 1	2 0 2 1	5202.5213	0.0021			
4 2 2 1	3 0 3 1	6995.0403	-0.0113			
6 2 5 1	6 0 6 1	2642.4099	0.0109			
8 2 7 1	8 0 8 1	3612.9005	0.0080			
9 2 8 1	9 0 9 1	4102.7231	-0.0140			
9 3 7 1	9 1 8 1	3547.6520	0.0007			
10 3 8 1	10 1 9 1	4037.6671	-0.0024			
12 3 10 1	12 1 11 1	5023.1904	-0.0077			
10 3 7 1	10 3 8 1	3369.1557	0.0029			
8 3 5 0	8 3 6 0	2116.1008	-0.0011			
9 3 6 0	9 3 7 0	2785.7116	-0.0036			
5 2 4 0	5 0 5 0	2199.8311	-0.0036			
6 2 5 0	6 0 6 0	2668.3067	0.0044			
7 2 6 0	7 0 7 0	3154.6936	-0.0009			
9 2 8 0	9 0 9 0	4141.4647	0.0001			
10 2 9 0	10 0 10 0	4635.7176	-0.0125			
11 2 10 0	11 0 11 0	5129.6979	-0.0025			
13 2 12 0	13 0 13 0	6116.6249	0.0134			
6 3 4 0	6 1 5 0	2243.1773	-0.0005			
7 3 5 0	7 1 6 0	2638.4351	0.0037			
8 3 6 0	8 1 7 0	3094.3566	0.0010			
9 3 7 0	9 1 8 0	3577.8093	-0.0034			
10 3 8 0	10 1 9 0	4071.3720	-0.0094			
6 4 3 0	6 2 4 0	2441.5011	0.0074			
7 4 4 0	7 2 5 0	2477.0069	0.0009			
5 4 2 0	5 2 3 0	2581.0416	-0.0053			
8 4 5 0	8 2 6 0	2700.0081	0.0029			
4 4 1 0	4 2 2 0	2817.0371	-0.0067			
9 4 6 0	9 2 7 0	3062.1486	0.0053			
10 4 7 0	10 2 8 0	3504.4653	0.0019			
7 2 5 0	7 2 6 0	2459.2639	-0.0003			
8 2 6 0	8 2 7 0	3026.0018	-0.0008			
9 2 7 0	9 2 8 0	3554.5840	0.0000			
10 2 8 0	10 2 9 0	4064.0826	-0.0092			
6 4 3 1	6 2 4 1	2493.0590	-0.0111			
5 4 2 1	5 2 3 1	2610.2198	0.0028			
8 4 5 1	8 2 6 1	2674.1388	-0.0027			
2 2 0 0	1 0 1 0	3680.2122	0.0011			
3 2 1 0	2 0 2 0	5247.0045	-0.0004			
4 2 2 0	3 0 3 0	7022.1368	0.0037			
10 1 9 0	10 1 10 0	4635.4963	0.0004			
11 1 10 0	11 1 11 0	5129.6324	-0.0081			
12 1 11 1	12 1 12 1	5572.0029	-0.0072			
12 1 11 1	12 0 12 1	5572.0029	-0.0072			
12 2 11 1	12 1 12 1	5572.0029	-0.0072			
13 1 12 0	13 1 13 0	6116.6199	0.0103			
13 1 12 0	13 0 13 0	6116.6199	0.0103			
13 2 12 0	13 0 13 0	6116.6199	0.0103			
13 2 12 0	13 1 13 0	6116.6199	0.0103			
3 3 0 0	2 1 1 0	5789.1479	-0.0011			
3 3 1 0	2 1 2 0	6273.1145	0.0013			
4 3 1 0	3 1 2 0	7025.2503	0.0058			
4 3 2 0	3 1 3 0	7900.1586	-0.0064			
3 3 0 1	2 1 1 1	5798.6646	0.0015			
4 3 1 1	3 1 2 1	7038.5011	0.0042			
2 2 1 0	1 1 0 0	3252.6629	-0.0057			
3 2 2 0	2 1 1 0	4323.1638	-0.0018			
4 2 3 0	3 1 2 0	5320.1586	-0.0023			
5 2 4 0	4 1 3 0	6278.7303	0.0027			
6 2 5 0	5 1 4 0	7262.5840	0.0019			
2 2 1 1	1 1 0 1	3251.2940	-0.0024			
3 2 2 1	2 1 1 1	4288.3486	0.0048			
4 2 3 1	3 1 2 1	5306.6124	0.0029			
5 2 4 1	4 1 3 1	6267.8873	0.0004			
6	2	5	1	7	253.6421	0.0071
3	1	1	2	0	5108.7894	-0.0029
4	3	2	1	1	6239.4587	-0.0080
5	3	3	1	2	7193.5995	0.0014
3	1	0	2	0	5110.2938	-0.0030
4	3	0	2	1	6194.4423	0.0040
5	3	0	2	2	7226.4642	-0.0009
3	1	2	2	1	3310.8630	-0.0026
4	1	3	2	0	4681.1579	-0.0003
5	1	4	2	0	5955.9002	0.0015
6	1	5	2	4	7131.3659	0.0024
3	1	2	2	1	3295.2775	-0.0035
4	1	3	2	0	4704.7355	-0.0088
5	1	4	2	0	5954.6165	-0.0008
6	1	5	2	4	7126.4753	-0.0013
4	4	1	3	0	6945.0497	-0.0013
4	4	0	3	0	6945.9744	0.0006
4	4	0	3	0	6965.7246	-0.0038
4	2	1	3	1	4114.1864	0.0009
5	2	3	1	4	5634.1502	-0.0020
6	2	4	1	5	7162.5926	-0.0098
4	2	2	3	0	4145.2117	0.0049
5	2	3	0	4	6572.4010	0.0006
6	2	4	0	3	7149.1197	0.0058
2	2	0	3	1	3478.2745	0.0043
3	2	1	3	0	5141.9336	0.0005
4	2	2	3	0	6982.1214	0.0078
2	2	0	3	1	3473.9411	0.0030
3	2	1	1	2	5100.8826	-0.0006
4	2	2	1	3	6956.2369	0.0007
3	3	0	2	2	5189.8363	-0.0003
4	3	1	2	0	6612.2625	0.0056
3	3	0	1	2	5188.0769	-0.0015
4	3	1	1	2	6656.0112	-0.0075
5	3	1	4	0	4343.0571	0.0019
6	3	4	1	4	5489.6791	-0.0006
5	3	3	4	0	4406.1707	-0.0001
7	3	5	0	6	6489.2867	-0.0102
5	3	2	0	4	6481.0070	0.0040
6	3	0	5	4	6404.5520	0.0059
5	3	2	1	4	4750.9210	0.0005
6	3	1	5	4	6352.3103	0.0023
7	3	4	1	6	7959.3248	0.0014
8	3	6	1	7	7036.7050	-0.0016
3	3	0	2	2	6378.1868	0.0017
4	3	0	3	0	7940.1834	-0.0010
3	3	1	2	0	6379.5005	-0.0006
4	3	2	3	0	7943.3476	-0.0033
6	4	3	0	6	2077.5565	-0.0025
7	4	0	7	3	2306.6915	0.0006
8	4	5	0	8	2634.8200	0.0018
9	4	6	0	9	3039.7893	0.0010
10	4	7	0	10	3497.4008	-0.0041
10	4	6	0	10	2459.3475	-0.0059
11	4	8	0	11	3982.8313	-0.0006
12	4	9	0	12	4479.5527	-0.0021
6	4	3	1	6	2139.1430	0.0006
7	4	1	7	3	2277.8987	0.0026
8	4	5	1	8	2610.9447	0.0001
9	4	6	1	9	3015.6882	-0.0015
10	4	6	1	10	2448.2456	0.0057
11	4	8	1	11	3954.2109	0.0016
12	3	5	1	8	2168.4164	0.0029
6 3 4 1 6 2 5 1 2185.8732 0.0006						
7 3 5 1 7 2 6 1 2603.6343 -0.0029						
8 3 6 1 8 2 7 1 3064.4603 -0.0002						
9 3 6 1 9 2 7 1 2789.9743 0.0046						
9 3 7 1 9 2 8 1 3546.8082 0.0052						
10 3 7 1 10 2 8 1 3376.0284 0.0054						
10 3 8 1 10 2 9 1 4037.4369 -0.0017						
11 3 8 1 11 2 9 1 3918.7941 0.0056						
11 3 9 1 11 2 10 1 4530.3057 0.0114						
12 3 9 1 12 2 10 1 4436.0884 0.0036						
8 3 5 0 8 2 6 0 2181.2887 -0.0001						
6 3 4 0 6 2 5 0 2208.7732 0.0001						
7 3 5 0 7 2 6 0 2627.5817 0.0025						
9 3 6 0 9 2 7 0 2808.0660 -0.0042						
8 3 6 0 8 2 7 0 3091.1904 0.0007						
9 3 7 0 9 2 8 0 3576.9362 -0.0027						
10 3 7 0 10 2 8 0 3399.4796 0.0035						
10 3 8 0 10 2 9 0 4071.1669 0.0167						
11 3 8 0 11 2 9 0 3946.5480 0.0000						
12 3 9 0 12 2 10 0 4467.2523 -0.0106						
12 3 10 0 12 2 11 0 5063.8160 0.0000						
6 4 2 0 5 5 1 0 5344.8317 0.0081						
7 4 3 0 6 5 2 0 6994.2467 -0.0008						
7 4 4 0 6 5 1 0 6513.0475 0.0010						
8 4 5 0 7 5 2 0 7680.5983 0.0090						
6 4 3 1 5 5 0 1 5237.7992 -0.0049						
6 4 2 1 5 5 1 1 5348.8046 0.0010						
7 4 3 1 6 5 2 1 6910.0540 -0.0075						
8 4 5 1 7 5 2 1 7602.7471 -0.0137						
11 5 6 0 11 4 7 0 2113.6486 0.0078						
6 5 1 0 6 4 2 0 2284.9392 -0.0022						
5 5 0 0 5 4 1 0 2383.1298 0.0000						
6 5 2 0 6 4 3 0 2388.3993 0.0009						
5 5 1 0 5 4 2 0 2409.9437 0.0003						
7 5 3 0 7 4 4 0 2415.3855 -0.0044						
8 5 4 0 8 4 5 0 2528.1119 -0.0074						
9 5 5 0 9 4 6 0 2737.5526 -0.0031						
10 5 6 0 10 4 7 0 3044.5128 -0.0032						
11 5 7 0 11 4 8 0 3436.7517 0.0006						
12 5 7 0 12 4 8 0 2717.7437 -0.0068						
12 5 8 0 12 4 9 0 3888.8864 0.0104						
7 5 2 1 7 4 3 1 2044.8925 0.0021						
6 5 1 1 6 4 2 1 2269.9050 -0.0016						
6 5 2 1 6 4 3 1 2374.4222 0.0013						
5 5 0 1 5 4 1 1 2391.0174 -0.0005						
5 5 1 1 5 4 2 1 2418.2243 -0.0002						
7 5 3 1 7 4 4 1 2489.8301 0.0011						
9 5 5 1 9 4 6 1 2708.9271 -0.0039						
10 5 6 1 10 4 7 1 3021.3112 -0.0036						
11 5 7 1 11 4 8 1 3413.9985 -0.0020						
12 5 8 1 12 4 9 1 3864.9913 -0.0017						
12 5 7 1 12 4 8 1 2708.5454 0.0082						
5 2 4 0 5 1 5 0 2196.3405 0.0117						
7 2 5 0 7 1 6 0 2470.1157 -0.0006						
6 2 5 0 6 1 6 0 2667.3860 0.0015						
8 2 6 0 8 1 7 0 3029.1638 -0.0047						
7 2 6 0 7 1 7 0 3154.4634 -0.0017						
9 2 7 0 9 1 8 0 3555.4567 -0.0009						
8 2 7 0 8 1 8 0 3647.2288 -0.0036						
10 2 8 0 10 1 9 0 4064.3223 -0.0007						
9 2 8 0 9 1 9 0 4141.4651 0.0136						
11 2 9 0 11 1 10 0 4565.4967 0.0031						
10 2 9 0 10 1 10 0 4635.7177 -0.0093						
11 2 10 0 11 1 11 0 5129.6979 -0.0018						
5 2 4 1 5 1 5 1	2174.1297 0.0007					
7 2 5 1 7 1 6 1	2450.7013 -0.0009					
6 2 5 1 6 1 6 1	2641.5226 0.0080					
8 2 6 1 8 1 7 1	3004.3182 -0.0077					
7 2 6 1 7 1 7 1	3124.4076 -0.0010					
9 2 7 1 9 1 8 1	3525.9646 0.0011					
9 2 8 1 9 1 9 1	4102.7228 -0.0015					
8 2 7 1 8 1 8 1	3612.8341 -0.0046					
10 2 8 1 10 1 9 1	4030.7988 0.0043					
10 2 9 1 10 1 10 1	4592.7287 0.0007					
11 2 9 1 11 1 10 1	4528.3043 0.0068					
12 2 10 1 12 1 11 1	5022.6114 0.0019					
5 1 4 1 5 0 5 1	2083.6289 0.0008					
6 1 5 1 6 0 6 1	2609.1241 0.0010					
7 1 6 1 7 0 7 1	3114.1485 0.0036					
8 1 7 1 8 0 8 1	3609.8280 -0.0021					
9 1 8 1 9 0 9 1	4101.8853 -0.0035					
5 1 4 0 5 0 5 0	2103.0245 0.0035					
6 1 5 0 6 0 6 0	2633.8981 0.0005					
7 1 6 0 7 0 7 0	3143.8427 0.0002					
8 1 7 0 8 0 8 0	3644.1194 -0.0025					
9 1 8 0 9 0 9 0	4140.5909 0.0002					
10 1 9 0 10 0 10 0	4635.4963 -0.0025					
8 6 2 0 8 5 3 0	2768.8790 0.0019					
8 6 3 0 8 5 4 0	2859.3836 -0.0022					
7 6 1 0 7 5 2 0	2869.3096 0.0000					
9 6 4 0 9 5 5 0	2869.6785 -0.0103					
7 6 2 0 7 5 3 0	2899.8645 0.0066					
6 6 0 0 6 5 1 0	2940.6205 -0.0002					
6 6 1 0 6 5 2 0	2946.2818 0.0006					
10 6 5 0 10 5 6 0	2964.6065 -0.0066					
12 6 7 0 12 5 8 0	3441.5458 -0.0042					
10 6 4 1 10 5 5 1	2145.9999 0.0041					
13 6 7 1 13 5 8 1	2344.2865 0.0070					
9 6 3 1 9 5 4 1	2464.3894 0.0080					
8 6 2 1 8 5 3 1	2729.0985 -0.0007					
8 6 3 1 8 5 4 1	2821.4587 -0.0047					
7 6 1 1 7 5 2 1	2877.9041 -0.0010					
7 6 2 1 7 5 3 1	2909.2193 0.0004					
6 6 0 1 6 5 1 1	2950.9138 -0.0027					
6 6 1 1 6 5 2 1	2956.7539 -0.0032					
10 6 5 1 10 5 6 1	3124.9973 0.0066					
11 6 6 1 11 5 7 1	3127.8870 -0.0061					
10 7 3 0 10 6 4 0	3251.4957 0.0070					
10 7 4 0 10 6 5 0	3317.4444 -0.0116					
9 7 2 0 9 6 3 0	3347.7279 0.0056					
9 7 3 0 9 6 4 0	3375.5044 -0.0011					
12 7 6 0 12 6 7 0	3391.4311 -0.0084					
8 7 1 0 8 6 2 0	3433.7199 0.0003					
8 7 2 0 8 6 3 0	3440.0356 0.0085					
7 7 0 0 7 6 1 0	3488.2371 0.0137					
7 7 1 0 7 6 2 0	3489.1663 -0.0102					
14 7 8 0 14 6 9 0	3828.4692 -0.0020					
12 7 5 1 12 6 6 1	2514.7286 0.0113					
10 7 3 1 10 6 4 1	3182.6310 0.0114					
10 7 4 1 10 6 5 1	3250.9841 -0.0083					
9 7 2 1 9 6 3 1	3355.3119 -0.0060					
9 7 3 1 9 6 4 1	3384.1864 -0.0030					
8 7 1 1 8 6 2 1	3446.5997 -0.0019					
8 7 2 1 8 6 3 1	3453.2218 -0.0060					
7 7 0 1 7 6 1 1	3500.0550 0.0017					
7 7 1 1 7 6 2 1	3501.0592 -0.0065					
4 2 3 1 3 3 0 1	3413.8109 -0.0012					
5 2 4 1 4 3 1 1	4316.6125 0.0002					
6	2	5	1	5	3	2	1	4926.0864	-0.0064	
4	2	3	0	3	3	0	0	3441.1900	0.0001	
5	2	4	0	4	3	1	0	4347.6244	-0.0044	
6	2	5	0	5	3	2	0	4899.6921	-0.0017	
9	8	2	0	9	7	3	0	3986.7109	-0.0078	
10	8	2	0	10	7	3	0	3917.2684	0.0001	
11	8	3	0	11	7	4	0	3820.9551	0.0088	
11	8	4	0	11	7	5	0	3840.1560	-0.0161	
9	8	1	1	9	7	2	1	4000.1863	-0.0054	
9	8	2	1	9	7	3	1	4001.2086	-0.0175	
10	8	2	1	10	7	3	1	3932.4379	0.0005	
10	8	3	1	10	7	4	1	3937.8769	-0.0038	
11	8	4	1	11	7	5	1	3846.0779	-0.0091	
5	4	0	1	5	1	4	0	3930.6967	0.0000	
5	4	1	1	5	1	4	1	3949.8301	0.0022	
6	4	2	1	6	1	5	1	4468.7353	0.0084	
11	9	2	0	11	8	3	0	4474.1516	0.0068	
12	9	3	0	12	8	4	0	4393.4816	0.0078	
12	9	4	0	12	8	5	0	4395.2775	0.0071	
11	9	2	1	11	8	3	1	4490.9178	-0.0024	
12	9	3	1	12	8	4	1	4410.3526	-0.0007	
12	9	4	1	12	8	5	1	4412.6376	-0.0095	
9	9	0	1	9	8	1	1	4591.2786	0.0059	
9	9	1	1	9	8	2	1	4591.2786	0.0059	
11	10	1	11	0	11	1	5082.4439	-0.0058		
11	2	10	1	11	1	1	1	5082.5010	-0.0065	
11	10	2	1	11	9	3	1	5096.1755	-0.0040	
10	10	1	10	9	2	0	5119.7507	0.0150		
10	10	0	10	9	1	0	5119.7507	0.0150		
4	4	1	0	3	3	1	1	6697.6696	0.0090	
5	4	1	0	4	3	1	1	7917.4016	-0.0041	
5	4	2	0	4	3	2	1	7989.6371	0.0065	
2	1	1	1	1	0	1	0	3272.7862	-0.0152	
3	1	2	1	2	0	2	0	4766.3498	0.0054	
4	1	3	1	3	0	3	0	6352.3103	0.0022	
5	1	4	1	4	0	4	0	7965.2181	-0.0004	
3	3	0	1	2	2	0	0	5391.2584	0.0048	
4	3	1	1	3	2	1	0	6557.8389	0.0025	
4	3	2	1	3	2	2	0	6776.7781	-0.0033	
4	3	1	0	3	2	1	1	6074.9407	-0.0015	
4	3	2	0	3	2	2	1	6292.6086	-0.0121	
5	3	2	0	4	2	2	1	7397.4747	-0.0034	
2	2	1	0	1	1	1	1	3144.5774	-0.0032	
3	2	1	0	2	1	1	1	4386.5178	-0.0084	
4	2	2	0	3	1	2	1	5757.0510	0.0035	
5	2	3	0	4	1	3	1	7260.2720	-0.0047	
5	2	4	0	4	1	4	1	7555.9584	-0.0014	
2	1	1	0	1	0	1	1	2752.6463	0.0003	
3	1	2	0	2	0	2	1	4252.2143	-0.0025	
5	1	4	0	4	0	4	1	7471.2508	0.0019	
4	4	0	1	3	3	0	0	7213.0447	0.0030	
5	2	3	1	4	3	1	0	5798.6644	-0.0124	
6	2	4	1	5	3	2	0	6958.7220	-0.0003	
7	2	5	1	6	3	3	0	7872.6665	-0.0099	
2	2	0	1	1	1	0	0	3582.0246	-0.0015	
3	2	1	2	1	2	1	0	5043.7541	0.0035	
4	2	3	1	3	1	3	0	6531.6740	-0.0016	
7	5	2	0	7	4	4	1	2281.1113	-0.0040	
8	5	3	0	8	4	5	1	2461.8373	0.0041	
7	5	3	1	7	4	3	0	2180.1442	-0.0036	
6	5	2	1	6	4	2	0	2530.9849	0.0003	
10	6	5	1	10	5	5	0	2192.5746	0.0184	
9	6	4	1	9	5	4	0	2562.1822	-0.0092	
----	----	----	----	----	----	----	----	----	----	----
8	6	3	1	8	5	3	0	2996.6313	0.0121	
6	6	1	1	6	5	1	0	3202.8107	0.0105	
2	1	1	0	1	1	1	1	2545.2724	0.0042	
3	1	2	0	2	1	2	1	4150.5736	-0.0074	
3	2	1	0	2	2	1	1	3775.9354	-0.0062	
4	2	2	0	3	2	2	1	5374.5599	-0.0094	
3	2	2	1	2	2	0	0	3880.9345	0.0002	
4	2	3	1	3	2	1	0	4825.9571	0.0082	
3	1	2	1	2	2	0	0	3498.4505	-0.0057	
4	1	3	1	3	2	1	0	4606.5655	0.0036	
5	1	4	1	4	2	2	0	5504.1782	-0.0012	
3	2	2	1	2	0	2	0	5148.8365	0.0140	
4	3	2	1	3	3	0	0	5310.7865	-0.0115	
5	3	3	1	4	3	1	0	6409.8267	0.0034	
6	3	4	1	5	3	2	0	7312.6402	0.0000	
5	3	2	0	4	3	2	1	6449.1761	-0.0026	
4	3	2	1	3	1	2	0	7189.7676	-0.0014	
6	4	2	0	5	4	2	1	7500.0332	0.0048	
6	4	3	1	5	4	1	0	7883.9733	-0.0007	
Table S7: Linelist for PhF-FAD 13C1 isotopologue.

J' K_a' $K_{c'}$ v'	J'' K_a'' $K_{c''}$ v''	obs/MHz	obs-cal/MHz
6 0 6 1 5 1 5 1	6645.3335	0.0007	
6 1 6 1 5 1 5 1	6646.2775	-0.0124	
6 0 6 1 5 0 5 1	6648.9394	-0.0030	
6 1 6 1 5 0 5 1	6649.8916	-0.0081	
6 0 6 0 5 1 5 0	6647.5640	0.0007	
6 1 6 0 5 1 5 0	6648.5612	0.0031	
6 0 6 0 5 0 5 0	6651.3126	0.0023	
6 1 6 0 5 0 5 0	6652.3177	0.0125	
5 0 5 1 4 1 4 1	5572.7172	0.0120	
5 1 5 1 4 1 4 1	5576.3231	0.0081	
5 0 5 1 4 0 4 1	5585.4479	0.0019	
5 1 5 1 4 0 4 1	5589.0544	-0.0013	
5 0 5 0 4 1 4 0	5574.7504	0.0086	
5 1 5 0 4 1 4 0	5578.4772	-0.0115	
5 0 5 0 4 0 4 0	5591.6824	0.0042	
5 1 5 0 4 0 4 0	5587.9297	-0.0014	
4 1 4 1 3 1 3 1	4500.4630	0.0243	
4 0 4 1 3 0 3 1	4527.9922	0.0090	
4 1 4 1 3 0 3 1	4540.7222	-0.0016	
4 0 4 0 3 1 3 0	4489.0863	-0.0045	
4 1 4 0 3 1 3 0	4502.2842	0.0039	
4 0 4 0 3 0 3 0	4530.6576	0.0045	
3 0 3 0 2 1 2 0	3370.6458	-0.0012	
3 1 3 0 2 1 2 0	3412.2106	0.0013	
3 1 3 0 2 0 2 0	3519.8170	0.0067	
3 0 3 1 2 0 2 1	3475.6485	-0.0029	
3 1 3 1 2 1 2 1	3411.9014	-0.0289	
3 0 3 1 2 1 2 1	3371.6453	0.0002	
2 0 2 0 1 0 1 0	2395.9920	0.0043	
2 1 1 0 1 1 0 0	2634.4951	-0.0023	
4 1 3 0 3 1 2 0	5060.9381	0.0122	
5 1 4 0 4 1 3 0	6143.3004	-0.0159	
6 1 5 1 5 1 4 1	7174.7055	0.0173	
6 1 5 0 5 1 4 0	7182.4895	-0.0208	
7 1 7 1 6 1 6 1	7714.1650	-0.0099	
3 2 1 1 2 2 0 1	3901.7158	-0.0020	
3 2 1 0 2 2 0 0	3950.8177	0.0025	
3 2 2 0 2 1 1 0	4304.4171	0.0051	
4 2 3 1 3 1 2 1	5280.4984	0.0008	
Table S8: Linelist for PhF-FAD 13C2 isotopologue.

J'	K_a'	K_c'	v'	J''	K_a''	K_c''	v''	obs/MHz	obs-cal/MHz
7	0	7	1	6	1	6	1	7719.9492	0.0036
7	1	7	1	6	1	6	1	7720.1119	-0.0073
7	0	7	1	6	0	6	1	7720.6610	-0.0034
6	0	6	1	5	1	5	1	6650.9295	0.0040
6	1	6	1	5	1	5	1	6651.6468	0.0024
6	0	6	1	5	0	5	1	6653.7681	-0.0050
6	1	6	1	5	0	5	1	6654.4860	-0.0060
6	0	6	0	5	1	5	0	6653.1771	0.0077
6	1	6	0	5	0	5	0	6656.8512	0.0194
5	0	5	1	4	1	4	1	5578.4772	-0.0093
5	1	5	1	4	1	4	1	5581.3513	0.0169
5	0	5	1	4	0	4	1	5589.0544	0.0052
5	1	5	1	4	0	4	1	5591.8911	-0.0058
5	0	5	0	4	1	4	0	5580.6369	0.0002
5	1	5	0	4	1	4	0	5583.5426	-0.0191
5	0	5	0	4	0	4	0	5591.4734	-0.0104
5	1	5	0	4	0	4	0	5594.4034	-0.0054
4	1	4	1	3	0	3	1	4540.6800	0.0195
4	1	4	0	3	0	3	0	4543.5491	-0.0078
3	1	3	1	2	1	2	1	3417.2108	-0.0146
3	0	3	0	2	0	2	0	3480.0806	0.0117
3	1	3	1	2	0	2	1	3512.5706	-0.0101
3	2	2	0	2	1	1	0	4288.0896	-0.0031
4	2	3	0	3	1	2	0	5277.1801	0.0029
5	2	4	1	4	1	3	1	6220.6564	-0.0108
6	2	5	1	5	1	4	1	7204.7648	0.0161
Table S9: Linelist for PhF-FAD 13C3 isotopologue.

J' K_a' K_c' v'	J'' K_a'' K_c'' v''	obs/MHz	obs-cal/MHz
7 0 7 1 6 1 6 1	7745.6817 0.0105		
7 1 7 1 6 1 6 1	7745.8788 -0.0055		
7 0 7 1 6 0 6 1	7746.5425 0.0153		
7 1 7 1 6 0 6 1	7746.7367 -0.0035		
7 0 7 0 6 1 6 0	7748.0097 -0.0030		
7 1 7 0 6 1 6 0	7748.2338 0.0012		
7 0 7 0 6 0 6 0	7748.8962 -0.0011		
7 1 7 0 6 0 6 0	7749.1082 -0.0089		
6 0 6 1 5 1 5 1	6672.7473 -0.0001		
6 1 6 1 5 1 5 1	6673.6034 -0.0001		
6 0 6 1 5 0 5 1	6676.0375 -0.0008		
6 1 6 1 5 0 5 1	6676.8924 -0.0018		
6 0 6 0 5 1 5 0	6675.0355 -0.0042		
6 1 6 0 5 1 5 0	6675.9276 0.0032		
6 0 6 0 5 0 5 0	6678.4407 0.0004		
6 1 6 0 5 0 5 0	6679.3228 -0.0020		
5 0 5 1 4 1 4 1	5596.0429 -0.0009		
5 1 5 1 4 1 4 1	5599.3378 0.0031		
5 0 5 1 4 0 4 1	5607.8880 -0.0002		
5 1 5 1 4 0 4 1	5611.1671 -0.0118		
5 0 5 0 4 1 4 0	5598.1595 0.0068		
5 1 5 0 4 1 4 0	5601.5618 0.0086		
5 0 5 0 4 0 4 0	5610.3575 -0.0126		
4 0 4 1 3 1 3 1	4507.4713 -0.0062		
4 1 4 1 3 1 3 1	4519.3226 0.0006		
4 1 4 1 3 0 3 1	4557.5138 -0.0118		
4 0 4 0 3 1 3 0	4509.0061 0.0078		
3 0 3 1 2 0 2 1	3489.0982 -0.0042		
3 1 3 1 2 0 2 1	3527.3283 0.0222		
3 0 3 0 2 1 2 0	3387.7946 -0.0024		
3 1 3 0 2 1 2 0	3427.1112 0.0067		
4 1 4 0 3 1 3 0	4521.2269 0.0111		
3 1 2 1 2 1 1 1	3897.5871 0.0024		
3 1 2 0 2 1 1 0	3901.8451 -0.0113		
4 1 3 1 3 1 2 1	5075.1351 0.0068		
4 1 3 0 3 1 2 0	5081.9084 0.0078		
5 1 4 1 4 1 3 1	6157.8957 -0.0056		
6 1 5 1 5 1 4 1	7200.9563 -0.0070		
Table S10: Linelist for PhF-FAD 13C4 isotopologue.

J'	K_a'	K_c'	v'	J''	K_a''	K_c''	v''	obs/MHz	obs-cal/MHz
6	0	6	1	5	1	5	1	6639.3604	-0.0044
6	1	6	1	5	1	5	1	6640.3673	0.0020
6	0	6	1	5	0	5	1	6643.1152	0.0063
6	1	6	1	5	0	5	1	6644.1100	0.0006
6	0	6	0	5	1	5	0	6641.6238	-0.0016
6	1	6	0	5	1	5	0	6642.6664	-0.0003
6	0	6	0	5	0	5	0	6645.5094	-0.0071
5	0	5	1	4	1	4	1	5567.5432	0.0053
5	1	5	1	4	1	4	1	5571.2777	-0.0041
5	0	5	1	4	0	4	1	5580.6369	-0.0144
5	1	5	1	4	0	4	1	5584.3961	0.0007
5	0	5	0	4	1	4	0	5569.5884	0.0034
5	1	5	0	4	1	4	0	5573.4842	0.0081
5	0	5	0	4	0	4	0	5583.1712	-0.0013
5	1	5	0	4	0	4	0	5587.0610	-0.0026
4	0	4	0	3	1	3	0	4484.4843	-0.0067
4	1	4	0	3	1	3	0	4498.0852	0.0065
4	0	4	0	3	0	3	0	4526.9600	-0.0033
4	1	4	1	3	1	3	1	4496.2397	0.0051
4	0	4	1	3	0	3	1	4524.2695	0.0077
3	0	3	0	2	1	2	0	3366.3098	-0.0047
3	1	3	0	2	1	2	0	3408.7884	0.0014
3	0	3	0	2	0	2	0	3475.4129	0.0018
3	1	3	0	2	0	2	0	3517.8733	-0.0101
3	1	3	1	2	0	2	1	3513.9346	-0.0059
2	0	2	1	1	0	1	1	2391.8581	-0.0060
2	0	2	0	1	0	1	0	2393.5734	0.0025
2	1	2	0	1	0	1	0	2502.6745	0.0071
5	1	4	0	4	1	3	0	6138.6072	0.0020
6	1	5	0	5	1	4	0	7177.1635	-0.0003
3	2	2	0	2	1	1	0	4304.4171	-0.0084
4	2	3	1	3	1	2	1	5279.6151	0.0023
6	2	5	0	5	1	4	0	7215.1412	0.0114
Table S11: Linelist for PhF-FAD 13C5 isotopologue.

J' K_a' K_c'	J'' K_a'' K_c''	obs/MHz	obs-cal/MHz
3 0 3	2 0 2	3491.0809	-0.0063
4 0 4	3 0 3	4548.9283	-0.0071
5 0 5	4 0 4	5611.8325	0.0011
6 0 6	5 0 5	6680.7381	0.0104
7 0 7	6 0 6	7752.0542	0.0008
2 1 2	1 1 1	2307.8341	0.0047
2 1 1	1 1 0	2633.1100	0.0004
3 1 3	2 1 2	3426.1525	0.0049
4 1 4	3 1 3	4521.3067	0.0040
5 1 5	4 1 4	5602.7096	-0.0020
6 1 6	5 1 5	6678.0870	-0.0022
7 1 7	6 1 6	7751.3458	-0.0005
3 0 3	2 1 2	3385.8111	0.0000
4 0 4	3 1 3	4508.5954	-0.0036
5 0 5	4 1 4	5599.1232	-0.0045
6 0 6	5 1 5	6677.1380	-0.0057
7 0 7	6 1 6	7751.1082	0.0003
3 1 3	2 0 2	3531.4227	-0.0009
4 1 4	3 0 3	4561.6465	0.0074
5 1 5	4 0 4	5615.4184	0.0030
6 1 6	5 0 5	6681.6711	-0.0022
7 1 7	6 0 6	7752.2919	0.0000
Table S12: Linelist for PhF-FAD 13C6 isotopologue.

J'	Ka'	Kc'	J''	Ka''	Kc''	obs/MHz	obs-cal/MHz
6	0	6	5	1	5	6669.7197	-0.0075
6	1	6	5	1	5	6670.6510	0.0031
6	0	6	5	0	5	6673.2340	-0.0076
6	1	6	5	0	5	6674.1643	0.0020
7	0	7	6	1	6	7741.8081	-0.0047
7	1	7	6	1	6	7742.0400	-0.0033
7	0	7	6	0	6	7742.7372	0.0036
7	1	7	6	0	6	7742.9743	0.0101
5	0	5	4	0	4	5606.1722	0.0049
2	1	1	2	1	1	2307.0029	-0.0110
2	1	1	1	0		2637.9952	0.0021
3	1	2	2	1	1	3901.3461	0.0053
4	1	3	3	1	2	5079.5263	-0.0094
5	1	5	4	1	4	5597.1423	0.0061
5	1	4	4	1	3	6162.6825	0.0144
6	1	5	5	1	4	7204.7648	-0.0111
Table S13: Linelist for PhF-FAD 13C7 isotopologue.

$J'\ Ka'\ Kc'$	$J''\ Ka''\ Kc''$	obs/MHz	obs-cal/MHz
7 0 7 6 1 6		7730.2324	0.0001
7 1 7 6 1 6		7730.4872	0.0005
7 0 7 6 0 6		7731.2301	-0.0018
7 1 7 6 0 6		7731.4889	0.0024
6 0 6 5 1 5		6659.1841	-0.0023
6 1 6 5 1 5		6660.1885	0.0023
6 0 6 5 0 5		6662.9402	-0.0002
6 1 6 5 0 5		6663.9375	-0.0026
5 0 5 4 1 4		5583.9631	-0.0013
5 0 5 4 0 4		5597.1421	-0.0036
5 1 5 4 0 4		5600.9058	0.0060
4 0 4 3 1 3		4495.9555	-0.0001
4 1 4 3 1 3		4509.1402	0.0032
4 0 4 3 0 3		4537.4070	-0.0026
4 1 4 3 0 3		4550.5916	0.0006
3 0 3 2 1 2		3375.2997	0.0006
3 1 3 2 1 2		3416.7518	-0.0011
5 1 5 4 1 4		5587.7185	0.0000
Table S14: Linelist for PhF-FAD 13C8 isotopologue.

J'	K_a'	K_c'	J''	K_a''	K_c''	obs/MHz	obs-cal/MHz
6	0	6	5	1	5	6654.4050	0.0034
6	1	6	5	1	5	6655.4393	0.0128
6	0	6	5	0	5	6658.2234	-0.0164
6	1	6	5	0	5	6659.2601	-0.0046
5	0	5	4	0	4	5593.6811	0.0191
3	1	3	2	1	2	3415.0236	0.0014
2	1	1	1	1	0	2627.3305	-0.0179
4	1	4	3	1	3	4506.5123	0.0036
5	1	4	4	1	3	6148.8520	0.0099
4	1	4	3	0	3	4548.6523	-0.0171
3	0	3	2	1	2	3372.8604	-0.0009
3	1	3	2	0	2	3523.7428	-0.0120
5	1	5	4	0	4	5597.5191	0.0187
4	0	4	3	1	3	4493.0564	-0.0102
7	0	7	6	0	6	7725.3629	-0.0091
3	2	1	2	2	0	3909.8705	0.0062
J' Ka'	Kc'	v' J'' Ka'' Kc'' v''	obs/MHz	obs-cal/MHz			
---------	-------	----------------------	----------	-------------			
2 1 2 0	1 1 1 0	2270.8976	0.0071				
2 0 2 0	1 0 1 0	2365.3909	−0.0158				
2 1 1 0	1 1 0 0	2620.1624	−0.0231				
3 1 3 0	2 1 2 0	3365.2046	0.0022				
3 0 3 0	2 0 2 0	3423.1664	−0.0155				
3 2 2 0	2 2 1 0	3666.0111	0.0164				
3 1 2 0	2 1 1 0	3852.8353	0.0004				
3 2 1 0	2 2 0 0	3936.2556	0.0000				
4 1 4 0	3 1 3 0	4435.1687	0.0057				
4 0 4 0	3 0 3 0	4457.2536	0.0048				
4 2 3 0	3 2 2 0	4822.7209	−0.0002				
4 3 2 0	3 3 1 0	4996.0076	0.0126				
4 1 3 0	3 1 2 0	4999.7052	0.0077				
4 3 1 0	3 3 0 0	5096.1690	0.0012				
4 2 2 0	3 2 1 0	5221.9305	0.0085				
5 1 5 0	4 1 4 0	5491.9122	0.0036				
5 0 5 0	4 0 4 0	5498.4676	0.0042				
5 2 4 0	4 2 3 0	5938.4185	0.0025				
5 1 4 0	4 1 3 0	6048.8128	−0.0149				
5 3 3 0	4 3 2 0	6216.0861	−0.0047				
5 4 2 0	4 4 1 0	6277.3447	0.0080				
5 4 1 0	4 4 0 0	6310.5413	0.0114				
5 2 3 0	4 2 2 0	6496.9537	0.0000				
6 1 6 0	5 1 5 0	6543.4503	0.0059				
6 0 6 0	5 0 5 0	6545.1637	0.0068				
5 3 2 0	4 3 1 0	6557.5318	0.0014				
6 2 5 0	5 2 4 0	7020.9298	0.0074				
6 1 5 0	5 1 4 0	7068.3612	−0.0104				
6 3 4 0	5 3 3 0	7390.5739	−0.0006				
5 5 2 0	5 5 1 0	7533.8825	−0.0032				
6 5 1 0	5 5 0 0	7542.0081	−0.0026				
6 4 3 0	5 4 2 0	7548.4968	−0.0106				
7 1 7 0	6 1 6 0	7593.3428	−0.0074				
7 0 7 0	6 0 6 0	7593.7630	−0.0024				
6 2 4 0	5 2 3 0	7642.6548	−0.0018				
6 4 2 0	5 4 1 0	7648.6798	−0.0147				
6 3 3 0	5 3 2 0	7866.9636	−0.0094				
7 2 6 0	6 2 5 0	8083.3570	−0.0048				
7 3 5 0	6 3 4 0	8519.7560	−0.0052				
8 2 7 0	7 2 6 0	9136.7046	0.0113				
8 1 7 0	7 1 6 0	9141.4402	−0.0003				
8 3 6 0	7 3 5 0	9610.8497	−0.0015				
2 1 2 1	1 1 1 1	2260.7583	0.0060				
2 0 2 1	1 0 1 1	2364.1266	0.0036				
2 1 1 1	1 1 0 1	2608.4665	0.0087				
3 1 3 1	2 1 2 1	3364.8123	0.0008				
3 0 3 1	2 0 2 1	3420.6514	0.0088				
3 2 2 1	2 2 1 1	3625.7898	0.0191				
3 1 2 1	2 1 1 1	3848.6902	0.0010				
3 2 1 1	2 2 0 1	3894.9733	−0.0045				
4 1 4 1	3 1 3 1	4433.3241	0.0054				
4 0 4 1	3 0 3 1	4454.6739	0.0035				
4 2 3 1	3 2 2 1	4835.2806	−0.0047				
4 1 3 1	3 1 2 1	4993.0096	0.0079				
4 3 2 1	3 3 1 1	4998.3576	0.0058				
4 3 1 1	3 3 0 1	5098.9460	−0.0122				
4 2 2 1	3 2 1 1	5232.5229	−0.0117				
5 1 5 1	4 1 4 1	5489.7491	0.0005				
5 0 5 1	4 0 4 1	5496.0572	0.0037				
5 2 4 1	4 2 3 1	5934.1919	0.0006				
5 1 4 1	4 1 3 1	6041.1068	-0.0133				
5 3 3 1	4 3 2 1	6155.8717	-0.0069				
5 4 2 1	4 4 1 1	6269.0790	0.0040				
5 4 1 1	4 4 0 1	6302.8665	-0.0003				
5 2 3 1	4 2 2 1	6488.9728	0.0024				
5 3 2 1	4 3 1 1	6497.2729	0.0037				
6 1 6 1	5 1 5 1	6541.1951	0.0026				
6 0 6 1	5 0 5 1	6542.8333	0.0008				
6 2 5 1	5 2 4 1	7015.0725	-0.0003				
6 1 5 1	5 1 4 1	7060.9039	0.0106				
6 3 4 1	5 3 3 1	7391.1173	0.0000				
6 5 2 1	5 5 1 1	7522.9268	-0.0105				
6 5 1 1	5 5 0 1	7531.3606	0.0009				
6 4 3 1	5 4 2 1	7575.8583	0.0036				
7 1 7 1	6 1 6 1	7591.0802	0.0001				
7 0 7 1	6 0 6 1	7591.4622	-0.0143				
6 2 4 1	5 2 3 1	7631.3449	0.0049				
6 4 2 1	5 4 1 1	7677.3844	0.0072				
6 3 3 1	5 3 2 1	7866.0067	-0.0051				
7 2 6 1	6 2 5 1	8077.0229	0.0007				
7 1 6 1	6 1 5 1	8092.4675	0.0022				
8 2 7 1	7 2 6 1	9130.2345	0.0019				
7 3 4 1	6 3 3 1	9135.7493	0.0058				
6 4 3 0	6 3 4 0	2003.2203	-0.0048				
5 2 4 0	5 1 5 0	2197.2364	-0.0060				
5 5 0 0	5 4 1 0	2216.8233	0.0128				
5 5 1 0	5 4 2 0	2253.7151	-0.0016				
2 1 2 0	1 0 1 0	2454.2883	0.0110				
6 1 5 0	6 0 6 0	2652.7172	-0.0019				
6 2 5 0	6 1 6 0	2874.7190	-0.0014				
7 1 6 0	7 0 7 0	3158.3951	0.0074				
2 2 1 0	1 1 0 0	3164.4000	-0.0024				
7 2 6 0	7 1 7 0	3164.7344	0.0023				
3 1 2 0	2 2 1 0	3308.6095	-0.0085				
3 0 3 0	2 1 2 0	3334.3007	-0.0106				
3 1 3 0	2 0 2 0	3454.0679	-0.0049				
3 2 2 0	2 1 1 0	4210.1926	-0.0189				
4 0 4 0	3 1 3 0	4426.3623	0.0045				
4 1 4 0	3 0 3 0	4466.0603	0.0063				
4 1 3 0	3 2 2 0	4642.3334	0.0125				
3 3 1 0	2 2 0 0	4971.2633	-0.0121				
3 3 0 0	2 2 1 0	5063.3112	0.0001				
4 2 3 0	3 1 2 0	5180.0957	-0.0021				
5 0 5 0	4 1 4 0	5489.6604	0.0023				
5 1 5 0	4 0 4 0	5500.7185	0.0046				
5 2 3 0	4 3 2 0	5887.8553	-0.0054				
5 1 4 0	4 2 3 0	5868.4202	-0.0072				
4 3 2 0	3 2 1 0	6031.0069	-0.0079				
5 2 4 0	4 1 3 0	6118.7992	-0.0170				
4 3 2 0	3 2 2 1	6138.2899	-0.0101				
4 3 1 0	3 2 2 0	6493.5044	0.0202				
6 0 6 0	5 1 5 0	6542.9147	0.0083				
6 1 6 0	5 0 5 0	6545.7039	0.0089				
4 4 1 0	3 3 0 0	6759.5676	0.0098				
4 4 0 0	3 3 1 0	6784.6185	0.0037				
6 1 5 0	5 2 4 0	6998.3816	-0.0015				
5 3 3 0	4 2 2 0	7025.1894	0.0057				
6 2 5 0	5 1 4 0	7090.9145	0.0036				
6 2 4 0	5 3 3 0	7114.4402	0.0136				
7 0 7 0	6 1 6 0	7593.2178	-0.0095				
7 1 7 0	6 0 6 0	7593.8853	-0.0030				
6 3 4 0 5 2 3 0 7918.8057 0.0011
5 4 2 0 4 3 1 0 7940.7163 -0.0102
7 1 6 0 6 2 5 0 8076.8967 0.0020
5 4 1 0 4 3 2 0 8099.1377 -0.0119
7 2 6 0 6 1 5 0 8105.9095 0.0082
5 5 1 0 4 4 0 0 8526.4862 0.0063
8 1 7 0 7 2 6 0 9134.9755 0.0022
2 0 2 1 1 1 1 1 2175.1017 -0.0090
6 3 4 1 6 2 5 1 2175.9313 0.0066
5 2 4 1 5 1 5 1 2176.0930 -0.0060
5 5 0 1 5 4 1 1 2223.7328 0.0083
5 5 1 1 5 4 2 1 2261.2988 0.0026
2 1 2 1 1 1 0 1 2269.9775 0.0080
6 2 5 1 6 1 6 1 2649.9663 -0.0132
2 2 1 1 1 1 0 1 3163.4820 0.0025
3 1 2 1 2 2 1 1 3293.6609 -0.0065
3 0 3 1 2 1 2 1 3334.9953 -0.0057
3 1 3 1 2 0 2 1 3450.4414 -0.0114
3 2 2 1 2 1 1 1 4180.7881 -0.0042
4 0 4 1 3 1 3 1 4424.8636 0.0036
4 1 4 1 3 0 3 1 4463.1316 0.0025
4 1 3 1 3 2 2 1 4660.8912 -0.0072
3 3 1 1 2 2 0 1 4969.6370 -0.0180
3 3 0 1 2 2 1 1 5061.5566 0.0080
4 2 3 1 3 1 2 1 5167.3843 -0.0041
5 0 5 1 4 1 4 1 5487.6030 0.0083
5 1 5 1 4 0 4 1 5498.2099 0.0026
5 2 3 1 4 3 2 1 5648.4774 0.0013
5 1 4 1 4 2 3 1 5866.7175 -0.0159
4 3 2 1 3 2 1 1 6073.0230 -0.0059
5 2 4 1 4 1 3 1 6108.5578 -0.0201
4 3 1 1 3 2 2 1 6534.7459 0.0096
6 0 6 1 5 1 5 1 6540.6822 0.0035
6 1 6 1 5 0 5 1 6543.3516 0.0053
4 4 1 1 3 3 0 1 6758.5817 0.0103
4 4 0 1 3 3 1 1 6783.9104 0.0103
6 1 5 1 5 2 4 1 6993.4490 0.0136
5 3 3 1 4 2 2 1 6996.3715 -0.0013
6 2 5 1 5 1 4 1 7082.5340 0.0033
6 2 4 1 5 3 3 1 7123.9541 0.0166
7 0 7 1 6 1 6 1 7590.9605 -0.0021
7 1 7 1 6 0 6 1 7591.5752 -0.0186
6 3 4 1 5 2 3 1 7898.5086 -0.0111
5 4 2 1 4 3 1 1 7928.6724 -0.0155
7 1 6 1 6 2 5 1 8070.8347 0.0069
5 4 1 1 4 3 2 1 8088.4165 0.0014
5 5 1 1 4 4 0 1 8525.6996 0.0058
Table S16: Linelist for PhF-FAD D1 isotopologue.

J' Ka' Kc' v'	J'' Ka'' Kc'' v''	obs/MHz	obs-cal/MHz											
2 1 2 0 1 1 1 0	2289.1982	0.0033												
2 0 2 0 1 0 1 0	2385.7180	-0.0072												
2 1 1 0 1 1 0 0	2627.5271	0.0022												
3 1 3 0 2 1 2 0	3396.5683	0.0009												
3 0 3 0 2 0 2 0	3460.9688	-0.0127												
3 2 2 0 2 2 1 0	3684.7500	-0.0114												
3 1 2 0 2 1 1 0	3870.5851	0.0015												
3 2 1 0 2 2 0 0	3943.8787	0.0122												
4 1 4 0 3 1 3 0	4480.5438	0.0026												
4 0 4 0 3 0 3 0	4507.5750	0.0009												
4 2 3 0 3 2 2 0	4854.5750	-0.0029												
4 3 2 0 3 3 1 0	5011.6913	0.0143												
4 1 3 0 3 1 2 0	5040.4758	-0.0092												
4 3 1 0 3 3 0 0	5095.6432	0.0075												
4 2 2 0 3 2 1 0	5222.5209	0.0084												
5 1 5 0 4 1 4 0	5550.7708	0.0037												
5 0 5 0 4 0 4 0	5559.5678	0.0028												
5 2 4 0 4 2 3 0	5986.4285	-0.0031												
5 1 4 0 4 1 3 0	6114.0073	-0.0111												
5 3 3 0 4 3 2 0	6243.4760	-0.0069												
5 4 2 0 4 4 1 0	6290.3202	0.0060												
5 4 1 0 4 4 0 0	6314.8215	0.0069												
5 2 3 0 4 2 2 0	6524.6579	0.0000												
5 3 2 0 4 3 1 0	6552.9060	-0.0002												
6 1 6 0 5 1 5 0	6615.0372	-0.0035												
6 0 6 0 5 0 5 0	6617.5487	-0.0027												
6 2 5 0 5 2 4 0	7085.8133	0.0000												
6 1 5 0 5 1 4 0	7146.9407	-0.0039												
6 3 4 0 5 3 3 0	7434.2932	-0.0023												
6 5 2 0 5 5 1 0	7547.1628	0.0038												
6 5 1 0 5 5 0 0	7552.4666	0.0080												
6 4 3 0 5 4 2 0	7568.5252	-0.0089												
6 4 2 0 5 4 1 0	7651.9909	0.0044												
7 1 7 0 6 1 6 0	7677.2589	0.0010												
7 0 7 0 6 0 6 0	7677.9223	0.0008												
6 2 4 0 5 2 3 0	7704.4590	0.0060												
6 3 3 0 5 3 2 0	7867.1868	-0.0060												
7 2 6 0 6 2 5 0	8163.7616	0.0011												
2 1 2 1 1 1 1 1	2278.5005	0.0008												
2 0 2 1 1 0 1 1	2384.1501	-0.0125												
2 1 1 1 1 1 0 1	2615.1002	0.0071												
3 1 3 1 2 1 2 1	3396.4367	0.0012												
3 0 3 1 2 0 2 1	3458.3291	-0.0133												
3 1 2 1 2 1 1 1	3866.8322	-0.0011												
3 2 1 1 2 2 0 1	3894.2641	-0.0105												
4 1 4 1 3 1 3 1	4478.7277	0.0025												
4 0 4 1 3 0 3 1	4504.8544	0.0005												
4 2 3 1 3 2 2 1	4874.1697	-0.0024												
4 3 2 1 3 3 1 1	5011.3857	0.0060												
4 1 3 1 3 1 2 1	5033.7921	-0.0045												
4 3 1 1 3 3 0 1	5095.8886	-0.0038												
4 2 2 1 3 2 1 1	5240.4034	-0.0071												
5 1 5 1 4 1 4 1	5548.5884	0.0101												
5 0 5 1 4 0 4 1	5557.0399	0.0031												
5 2 4 1 4 2 3 1	5982.6376	-0.0017												
5 1 4 1 4 1 3 1	6106.0715	-0.0112												
5 3 3 1 4 3 2 1	6178.6107	0.0042												
5 4 2 1	4 4 1 1	6282.0687	0.0093											
5 4 1 1	4 4 0 1	6307.1022	0.0104											
5 3 2 1	4 3 1 1	6488.3825	0.0062											
5 2 3 1	4 2 2 1	6517.4813	0.0064											
6 1 6 1	5 1 5 1	6612.7301	-0.0032											
6 0 6 1	5 0 5 1	6615.1325	-0.0027											
6 2 5 1	5 2 4 1	7080.0265	0.0013											
6 1 5 1	5 1 4 1	7139.0669	0.0024											
6 3 4 1	5 3 3 1	7439.3338	-0.0071											
6 5 2 1	5 5 1 1	7536.8818	0.0010											
6 5 1 1	5 5 0 1	7542.4087	-0.0001											
6 4 3 1	5 4 2 1	7580.2036	-0.0045											
6 4 2 1	5 4 1 1	7665.0607	0.0100											
7 1 7 1	6 1 6 1	7674.9206	-0.0010											
7 0 7 1	6 0 6 1	7675.5533	-0.0008											
6 2 4 1	5 2 3 1	7693.3958	0.0040											
6 3 3 1	5 3 2 1	7871.2994	-0.0084											
7 2 6 1	6 2 5 1	8157.3461	-0.0021											
7 1 6 1	6 1 5 1	8179.3374	-0.0038											
8 0 8 1	7 0 7 1	8736.6960	0.0060											
2 0 2 0	1 1 1 0	2185.5500	-0.0058											
5 2 4 0	5 1 5 0	2192.5907	0.0002											
6 5 1 0	6 4 2 0	2266.8192	0.0010											
5 5 1 0	5 4 2 0	2393.5908	-0.0065											
7 5 3 0	7 4 4 0	2400.3885	-0.0062											
7 2 5 0	7 1 6 0	2470.2616	-0.0101											
2 1 2 0	1 0 1 0	2489.3556	-0.0085											
6 1 5 0	6 0 6 0	2630.8923	-0.0006											
7 1 6 0	7 0 7 0	3139.6276	-0.0029											
7 2 6 0	7 1 7 0	3149.8740	0.0082											
2 2 1 0	1 1 0 0	3221.3370	0.0113											
3 1 2 0	2 2 1 0	3276.7829	0.0000											
3 0 3 0	2 1 2 0	3357.3382	-0.0043											
2 2 0 0	1 1 1 0	3447.5129	-0.0011											
3 1 3 0	2 0 2 0	3500.2023	-0.0040											
3 2 2 0	2 1 1 0	4278.5788	0.0166											
4 0 4 0	3 1 3 0	4468.3519	0.0026											
4 1 4 0	3 0 3 0	4519.7669	0.0009											
4 1 3 0	3 2 2 0	4632.4883	-0.0181											
3 3 1 0	2 2 0 0	5062.4770	0.0101											
3 3 0 0	2 2 1 0	5142.5625	0.0065											
4 2 3 0	3 1 2 0	5262.5757	0.0190											
5 0 5 0	4 1 4 0	5547.3821	0.0089											
5 1 5 0	4 0 4 0	5562.9666	-0.0022											
5 2 3 0	4 3 2 0	5616.8848	-0.0081											
5 1 4 0	4 2 3 0	5891.9475	0.0006											
4 3 2 0	3 2 1 0	6130.2588	-0.0186											
5 2 4 0	4 1 3 0	6208.4893	-0.0138											
4 3 1 0	3 2 2 0	6553.4164	-0.0138											
6 0 6 0	5 1 5 0	6614.1522	-0.0053											
6 1 6 0	5 0 5 0	6618.4328	-0.0017											
4 4 1 0	3 3 0 0	6881.8106	0.0098											
4 4 0 0	3 3 1 0	6901.5782	0.0079											
6 1 5 0	5 2 4 0	7052.4583	-0.0016											
6 2 4 0	5 3 3 0	7077.8707	0.0078											
5 3 3 0	4 2 2 0	7151.2543	0.0063											
6 2 5 0	5 1 4 0	7180.2937	-0.0043											
7 0 7 0	6 1 6 0	7677.0383	0.0000											
7 1 7 0	6 0 6 0	7678.1427	0.0017											
6 3 4 0	5 2 3 0	8060.8910	0.0054											
5 4 2 0	4 3 1 0	8076.4658	-0.0133											
7 1 6 0	6 2 5 0	8153.3122	0.0064											
7 2 6 0	6 1 5 0	8197.1148	0.0009											
5 4 1 0	4 3 2 0	8204.7075	-0.0004											
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
5	1	4	1	5	0	5	1	2082.8584	0.0006					
5	2	4	1	5	1	5	1	2170.6326	-0.0108					
2	0	2	1	1	1	1	1	2178.7575	-0.0042					
6	3	4	1	6	2	5	1	2180.8848	0.0035					
7	4	4	1	7	3	5	1	2268.7141	-0.0024					
2	1	2	1	1	0	1	1	2483.8935	-0.0069					
7	3	5	1	7	2	6	1	2599.7794	0.0004					
6	1	5	1	6	0	6	1	2606.7777	-0.0092					
6	2	5	1	6	1	6	1	2637.9364	0.0011					
7	6	2	1	7	5	3	1	2888.0776	-0.0079					
7	1	6	1	7	0	7	1	3110.5757	0.0018					
2	1	1	1	1	0	1	1	3220.0391	0.0032					
3	0	3	1	2	1	2	1	3358.6024	-0.0022					
2	2	0	1	1	1	1	1	3443.5177	-0.0096					
3	1	3	1	2	0	2	1	3496.1651	-0.0082					
3	2	2	1	2	1	1	1	4240.9426	0.0122					
4	0	4	1	3	1	3	1	4467.0264	0.0034					
4	1	4	1	3	0	3	1	4516.5520	-0.0039					
4	1	3	1	3	2	2	1	4659.6989	-0.0006					
3	2	1	1	2	1	2	1	5059.3060	0.0035					
3	3	1	1	2	2	0	1	5060.9238	-0.0098					
3	3	0	1	2	2	1	1	5141.0252	0.0120					
4	2	3	1	3	1	2	1	5248.2839	0.0148					
5	0	5	1	4	1	4	1	5545.3313	-0.0033					
5	1	5	1	4	0	4	1	5560.2850	0.0046					
5	2	3	1	4	3	2	1	5579.8424	-0.0042					
5	1	4	1	4	2	3	1	5891.6097	-0.0005					
4	3	2	1	3	2	1	1	6178.0339	-0.0048					
5	2	4	1	4	1	3	1	6197.1071	-0.0048					
6	3	3	1	5	4	2	1	6292.6110	0.0006					
4	3	1	1	3	2	2	1	6600.9156	-0.0023					
6	0	6	1	5	1	5	1	6611.8880	-0.0037					
6	1	6	1	5	0	5	1	6615.9730	-0.0038					
4	4	1	1	3	3	0	1	6880.9197	0.0129					
4	4	0	1	3	3	1	1	6900.9393	0.0065					
6	1	5	1	5	2	4	1	7048.0380	0.0027					
5	3	3	1	4	2	2	1	7116.2388	0.0040					
6	2	5	1	5	1	4	1	7171.0502	-0.0041					
7	0	7	1	6	1	6	1	7674.7115	-0.0010					
7	1	7	1	6	0	6	1	7675.7611	-0.0021					
5	4	1	1	4	3	2	1	8196.6432	-0.0016					
8	0	8	1	7	1	7	1	8736.5032	-0.0029					
8	1	8	1	7	1	7	1	8736.5032	-0.0029					
Table S17: Linelist for PhF-FAD D2 isotopologue.

J' Ka' Kc' v'	J'' Ka'' Kc'' v''	obs/MHz	obs-cal/MHz
2 1 2 0 1 1 1 0	2296.7598	0.0012	
2 0 2 0 1 0 1 0	2391.6889	-0.0050	
2 1 1 0 1 1 0 0	2645.6868	0.0067	
3 1 3 0 2 1 2 0	3404.2872	0.0006	
3 0 3 0 2 0 2 0	3462.9471	-0.0063	
3 2 2 0 2 2 1 0	3704.5223	0.0085	
3 1 2 0 2 1 1 0	3891.9683	0.0000	
3 2 1 0 2 2 0 0	3971.4350	-0.0008	
4 1 4 0 3 1 3 0	4487.4808	0.0031	
4 0 4 0 3 0 3 0	4510.0131	0.0037	
4 2 3 0 3 2 2 0	4874.6291	-0.0059	
4 3 2 0 3 3 1 0	5046.7558	0.0064	
4 1 3 0 3 1 2 0	5052.9051	-0.0089	
4 3 1 0 3 3 0 0	5145.8258	0.0030	
4 2 2 0 3 2 1 0	5274.6219	0.0014	
5 1 5 0 4 1 4 0	5557.3691	0.0021	
5 0 5 0 4 0 4 0	5564.1058	0.0007	
5 2 4 0 4 2 3 0	6003.8938	0.0008	
5 1 4 0 4 1 3 0	6116.0211	-0.0068	
5 3 3 0 4 3 2 0	6280.1402	-0.0061	
5 4 1 0 4 4 0 0	6373.0490	0.0048	
5 2 3 0 4 2 2 0	6562.1624	-0.0106	
6 0 6 0 5 0 5 0	6623.7474	0.0056	
6 2 5 0 5 2 4 0	7099.9004	-0.0012	
6 1 5 0 5 1 4 0	7148.5293	0.0007	
6 3 4 0 5 3 3 0	7468.4330	0.0084	
6 5 2 0 5 5 1 0	7609.3784	-0.0003	
6 4 3 0 5 4 2 0	7624.3494	-0.0010	
7 1 7 0 6 1 6 0	7684.8971	-0.0038	
7 0 7 0 6 0 6 0	7685.3327	-0.0010	
6 4 2 0 5 4 1 0	7722.4035	0.0004	
6 2 4 0 5 2 3 0	7722.9035	-0.0092	
6 3 3 0 5 3 2 0	7943.6782	-0.0122	
7 2 6 0 6 2 5 0	8175.6580	0.0042	
7 3 5 0 6 3 4 0	8611.5518	-0.0036	
2 1 2 1 1 1 1 1	2286.7197	0.0049	
2 0 2 1 1 0 1 1	2390.2304	-0.0097	
2 1 1 1 1 1 0 1	2633.6777	-0.0013	
3 1 3 1 2 1 2 1	3403.6465	0.0009	
3 0 3 1 2 0 2 1	3460.4313	-0.0122	
3 2 2 1 2 2 1 1	3666.4146	-0.0042	
3 1 2 1 2 1 1 1	3887.2648	0.0012	
3 2 1 1 2 2 0 1	3931.8211	-0.0213	
4 1 4 1 3 1 3 1	4485.5401	0.0030	
4 0 4 1 3 0 3 1	4507.4486	0.0004	
4 2 3 1 3 2 2 1	4885.0776	-0.0002	
4 1 3 1 3 1 2 1	5046.0228	-0.0093	
4 3 2 1 3 3 1 1	5048.6022	0.0061	
4 2 2 1 3 2 1 1	5282.5987	-0.0031	
5 1 5 1 4 1 4 1	5555.1668	0.0166	
5 0 5 1 4 0 4 1	5561.6882	0.0062	
5 2 4 1 4 2 3 1	5999.2711	0.0023	
5 1 4 1 4 1 3 1	6108.3814	-0.0075	
5 3 3 1 4 3 2 1	6221.3719	0.0039	
5 4 2 1 4 4 1 1	6331.2748	0.0154	
5 4 1 1 4 4 0 1	6364.3014	0.0116	
5 2 3 1 4 2 2 1	6553.4164	-0.0013	
5 3 2 1	4 3 1 1	6558.0506	0.0081
6 1 6 1	5 1 5 1	6619.6789	0.0034
6 2 5 1	5 2 4 1	7093.8396	0.0033
6 1 5 1	5 1 4 1	7141.1132	0.0035
6 3 4 1	5 3 3 1	7467.6830	0.0105
6 5 2 1	5 5 1 1	7597.3726	0.0012
6 5 1 1	5 5 0 1	7605.5292	-0.0115
6 4 3 1	5 4 2 1	7651.1254	0.0027
7 1 7 1	6 1 6 1	7682.5913	-0.0040
7 0 7 1	6 0 6 1	7683.0066	-0.0070
6 2 4 1	5 2 3 1	7711.3993	0.0023
6 4 2 1	5 4 1 1	7749.7918	0.0011
6 3 3 1	5 3 2 1	7940.6904	-0.0094
7 2 6 1	6 2 5 1	8169.1985	0.0174
7 3 5 1	6 3 4 1	8603.3538	0.0028
5 2 4 0	5 1 5 0	2201.3290	-0.0108
6 3 4 0	6 2 5 0	2202.3757	0.0033
2 0 2 0	1 1 1 0	2206.4844	-0.0024
7 4 4 0	7 3 5 0	2272.8497	-0.0010
2 1 2 0	1 0 1 0	2481.9610	-0.0047
6 2 5 0	6 1 6 0	2679.2697	-0.0031
7 6 1 0	7 5 2 0	2680.3869	-0.0082
7 2 6 0	7 1 7 0	3170.0277	0.0019
2 2 1 0	1 1 0 0	3195.5261	-0.0026
3 0 3 0	2 1 2 0	3372.6800	-0.0016
2 2 0 0	1 1 1 0	3435.3493	-0.0062
3 1 3 0	2 0 2 0	3494.5479	-0.0105
3 2 2 0	2 1 1 0	4254.3816	0.0191
4 0 4 0	3 1 3 0	4478.4047	0.0003
4 1 4 0	3 0 3 0	4519.0861	0.0035
4 1 3 0	3 2 2 0	4690.5315	0.0115
3 3 1 0	2 2 0 0	5018.8143	-0.0136
3 2 1 0	2 1 2 0	5110.0289	-0.0039
3 3 0 0	2 2 1 0	5110.2824	0.0305
4 2 3 0	3 1 2 0	5237.0352	0.0059
5 0 5 0	4 1 4 0	5555.0492	0.0173
5 1 5 0	4 0 4 0	5566.4351	-0.0050
5 2 3 0	4 3 2 0	5742.6480	-0.0041
5 1 4 0	4 2 3 0	5931.9104	-0.0023
4 3 2 0	3 2 1 0	6094.1356	-0.0057
5 2 4 0	4 1 3 0	6187.9957	-0.0123
4 3 1 0	3 2 2 0	6551.5810	0.0202
6 1 6 0	5 0 5 0	6624.3116	0.0079
4 4 1 0	3 3 0 0	6823.4047	0.0025
4 4 0 0	3 3 1 0	6848.1605	0.0012
6 1 5 0	5 2 4 0	7076.5484	-0.0001
5 3 3 0	4 2 2 0	7099.6632	-0.0040
6 2 5 0	5 1 4 0	7171.8827	0.0009
6 2 4 0	5 3 3 0	7185.4172	-0.0013
7 0 7 0	6 1 6 0	7684.7698	0.0019
7 1 7 0	6 0 6 0	7685.4579	0.0050
5 4 1 0	4 3 2 0	8174.4546	0.0005
7 2 6 0	6 1 5 0	8199.0030	-0.0039
5 5 1 0	4 4 0 0	8606.6218	0.0060
5 2 4 1	5 1 5 1	2179.9264	-0.0043
2 0 2 1	1 1 1 1	2199.2126	-0.0009
6 5 2 1	6 4 3 1	2225.3155	-0.0017
5 5 0 1	5 4 1 1	2242.3517	0.0096
2 1 2 1	1 0 1 1	2477.7362	-0.0034
6 1 5 1	6 0 6 1	2631.9906	-0.0039
7 2 6 1	7 1 7 1	3140.6846	0.0073
2 2 1 1	1 1 0 1	3194.5109	-0.0014
3 1 2 1	2 2 1 1	3326.4071	-0.0231
3 0 3 1	2 1 2 1	3372.9425	-0.0015

S31
x	y	z	a	b	c	d	e	f
2	2	0	1	1	1	1	1	1
3	1	3	1	2	0	2	1	1
3	2	1	0	2	1	1	1	1
4	0	4	1	3	1	3	1	1
4	1	4	1	3	0	3	1	1
4	1	3	1	3	2	2	1	1
3	3	1	1	2	2	0	1	1
3	3	0	1	2	2	1	1	1
4	2	3	1	3	1	2	1	1
5	0	5	1	4	1	4	1	1
5	1	5	1	4	0	4	1	1
5	1	4	1	4	2	3	1	1
4	3	2	1	3	2	1	1	1
5	2	4	1	4	1	3	1	1
4	3	1	1	3	2	2	1	1
5	0	6	1	5	1	5	1	1
4	4	1	1	3	3	0	1	1
4	4	0	1	3	3	1	1	1
6	1	5	1	5	2	4	1	1
6	2	5	1	5	1	4	1	1
6	2	4	1	5	3	3	1	1
7	0	7	1	6	1	6	1	1
7	1	7	1	6	0	6	1	1
6	3	4	1	5	2	3	1	1
5	4	2	1	4	3	1	1	1
7	1	6	1	6	2	5	1	1
5	4	1	1	4	3	2	1	1
7	2	6	1	6	1	5	1	1
5	5	1	1	4	4	0	1	1
5	5	0	1	4	4	1	1	1
6	1	6	0	5	1	5	0	1
6	1	6	1	5	0	5	1	1
6	0	6	0	5	1	5	0	1
6	0	6	1	5	0	5	1	1

S32
J'	K_a'	K_c'	J''	K_a''	K_c''	obs/MHz	obs-cal/MHz
4	1	4	3	1	3	4493.9896	0.0068
4	0	4	3	0	3	4521.8031	-0.0034
5	1	5	4	1	4	5568.9718	-0.0009
5	0	5	4	0	4	5578.1950	-0.0125
6	1	6	5	1	5	6637.9313	0.0002
6	0	6	5	0	5	6640.6217	0.0044
4	0	4	3	1	3	4481.0959	0.0035
5	0	5	4	1	4	5565.3079	-0.0092
5	1	5	4	0	4	5581.8722	0.0090
6	0	6	5	1	5	6636.9581	-0.0035
6	1	6	5	0	5	6641.5945	0.0079
7	0	7	6	1	6	7704.5150	-0.0073
7	1	7	6	0	6	7705.7427	0.0052
Table S19: Linelist for PhF-FAD D3 isotopologue.

J'	K_a'	K_c'	J''	K_a''	K_c''	obs/MHz	obs-cal/MHz
3	0	3	2	0	2	3486.5421	-0.0167
3	1	2	1	1	1	3890.5241	-0.0026
4	1	4	3	1	3	4515.1573	0.0060
4	2	3	2	2	2	4880.7742	0.0005
5	1	5	4	1	4	5595.0730	0.0027
5	0	5	4	0	4	5604.2506	0.0057
5	1	4	4	1	3	6153.1186	-0.0142
5	3	3	4	3	2	6267.7207	0.0085
5	4	1	4	4	0	6343.6289	-0.0045
5	2	3	4	2	2	6555.5656	0.0053
6	1	6	5	1	5	6668.9514	0.0029
6	0	6	5	0	5	6671.6079	0.0004
6	2	5	5	2	4	7132.8943	-0.0064
6	1	5	5	1	4	7196.2078	-0.0102
6	3	4	5	3	3	7470.8073	0.0070
7	1	7	6	1	6	7740.7043	-0.0001
7	0	7	6	0	6	7741.4180	-0.0003
6	2	4	5	2	3	7745.0307	0.0094
3	1	3	2	0	2	3527.0997	0.0056
4	0	4	3	1	3	4502.3685	0.0060
4	1	4	3	0	3	4555.6880	0.0015
3	3	1	2	2	0	5086.8581	-0.0097
5	0	5	4	1	4	5591.4588	0.0028
5	1	5	4	0	4	5607.8568	-0.0022
5	1	4	4	2	3	5924.4274	-0.0026
4	3	2	3	2	1	6200.3208	0.0115
6	0	6	5	1	5	6667.9952	0.0019
6	1	6	5	0	5	6672.5653	0.0025
6	1	5	5	2	4	7097.4631	-0.0173
7	0	7	6	1	6	7740.4625	-0.0007
7	1	7	6	0	6	7741.6636	0.0038
Table S20: Linelist for PhF-FAD D4 isotopologue.

J'	Ka'	Kc'	J''	Ka''	Kc''	obs/MHz	obs-cal/MHz
3	1	2	1	1	1	3890.2622	-0.0057
3	2	1	2	0	3	3916.4480	-0.0003
4	0	4	3	0	3	4538.0770	0.0136
4	2	3	2	2	2	4878.7447	-0.0017
4	1	3	1	2	0	5066.3481	0.0158
3	3	1	2	0	3	5083.0896	-0.0003
4	3	1	3	0	3	5126.9019	0.0196
4	2	2	3	2	1	5269.3586	-0.0129
5	1	5	4	1	4	5589.1823	0.0028
5	0	5	4	0	4	5598.1448	0.0016
5	2	4	4	2	3	6019.6376	-0.0092
5	1	4	4	1	3	6148.4081	-0.0166
5	2	3	2	4	2	6555.6525	-0.0066
6	1	6	5	1	5	6661.6451	0.0027
6	0	6	5	0	5	6664.2200	0.0005
6	2	5	5	2	4	7127.6894	-0.0065
6	1	5	5	1	4	7189.8135	-0.0023
6	3	4	5	3	3	7468.6863	0.0048
7	1	7	6	1	6	7732.0207	0.0016
7	0	7	6	0	6	7732.7071	0.0016
6	2	4	5	2	3	7742.2915	0.0231
6	3	3	5	3	2	7913.2178	-0.0031
3	2	2	2	1	1	4303.0534	0.0065
4	0	4	3	1	3	4498.2693	0.0013
5	0	5	4	1	4	5585.6872	0.0008
5	1	5	4	0	4	5601.6380	0.0018
5	1	4	4	2	3	5923.2177	-0.0139
5	2	4	4	1	3	6244.8318	-0.0081
6	0	6	5	1	5	6660.7253	-0.0011
6	1	6	5	0	5	6665.1379	0.0024
6	2	5	5	1	4	7224.1026	-0.0085
7	0	7	6	1	6	7731.7886	-0.0008
7	1	7	6	0	6	7732.9354	0.0003
S4 Structure of the PhF-FAD complex

S4.1 Experimental \(r_s \) structure

Figure S1: Overlay of experimental \(r_s \) coordinates of the PhF-FAD complex with its theoretical \(r_e \) structure at the B3LYP-D3BJ/def2-TZVP level of theory.

Table S21: Experimental \(r_s \) coordinates of the PhF-FAD complex. Standard errors within parentheses are expressed in units of the last two digits.

	\(a \), Å		\(b \), Å		\(c \), Å
\(0^+ \)	\(0^- \)	\(0^+ \)	\(0^- \)	\(0^+ \)	\(0^- \)
C1	2.27088(72) 2.26766(71)	1.2174(14) 1.2180(13)	0.2677(62) 0.2644(62)		
C2	0.8652(42) 0.9155(33)	2.3017(16) 2.2733(14)	\(i \cdot 0.226(17) \) \([a] \)	\(0.285(11) \)	
C3	1.0757(21) 1.1041(16)	1.2509(18) 1.2289(15)	0.2836(79) 0.051(35)		
C4	2.51262(66) 2.50798(75)	1.0761(16) 1.0847(18)	0.2874(58)	0.2534(75)	
H1	2.54154(62) 2.54107(62)	2.30242(69) 2.30317(69)	\(i \cdot 0.097(16) \) \([a] \)	\(i \cdot 0.114(14) \) \([a] \)	
H2	0.4252(38) 0.4225(38)	3.27405(49) 3.27449(49)	\(i \cdot 0.1720(95) \) \([a] \)	\(i \cdot 0.1801(90) \) \([a] \)	

\([a]\) Imaginary values are fixed to zero when calculating the structural parameters.
Table S22: Experimental (r_s) and theoretical (r_e) interatomic distances in the PhF-FAD complex. Theoretical values correspond to calculations done at the B3LYP-D3BJ/def2-TZVP level of theory. Standard errors within parentheses are expressed in units of the last two digits.

	$r_s(0^+)$, Å	$r_s(0^-)$, Å	r_e, Å
C1...C2	3.7989(26)	3.7440(22)	3.79
C3...C4	2.7349(23)	2.7137(34)	2.75
C1–H1	1.1499(21)	1.1499(20)	1.10
C2–H2	1.0673(28)	1.1517(37)	1.10

S4.2 Theoretical calculations

Table S23: Cartesian coordinates of the equilibrium structures of the three lowest conformers of PhF-FAD complex at the gCP-B3LYP-D3BJ/def2-TZVP level of theory. The second and the third conformers are higher in energy than the first one by 0.5 and 0.6 kcal/mol, respectively.

	Rotational Constants: 903.63841634 704.39512718 533.98023625 MHz		
C	-2.3831434912	-0.3601444070	-1.1016949413
C	-1.7441131530	0.8713196942	-0.1017280853
C	-1.1684984300	1.2313143394	0.1883215000
C	-1.2007288021	0.4134553957	1.3036285279
C	-1.8459220677	-0.8148858547	1.2018215698
C	-2.4366692725	-1.2033491916	0.0039787951
H	-2.8341385368	-0.662187104	-0.0238434527
H	-1.6806238877	1.5415038867	-1.8642067634
H	-0.7223498964	0.7333845094	2.2195430811
H	-1.8769140760	-1.471177650	2.0624930394
H	-2.9361636023	-2.1613174172	-0.068812697
F	-0.5395463505	2.4278258198	0.2784675244
C	0.9278552374	-2.2513489566	-0.2570546107
O	0.9891017672	-1.5433123173	-1.2451058827
O	1.3616308738	-1.9542548025	0.9421466689
H	0.4871196160	-3.2548333595	-0.2938538794
H	1.7193908335	-1.0149638804	0.9685160443
C	2.2910378954	1.2742338735	-0.008581447
C	2.2502134126	0.5542398599	0.9751799179
C	1.2200527285	-1.2234612039	
C	2.647424072	2.3077935970	0.0463769388
C	1.5861558124	0.003072452	-1.2525156851
Rotational Constants: 1040.26429152 531.64886052 496.38944736 MHz			
C	-0.5697225207	-1.1643899281	-0.7417102112
C	-0.6541850128	-1.9343369360	0.6096938876
C	-1.5232536846	-1.2282460851	1.4344934631
C	-2.3085536274	-2.0351675250	0.9158114470
C	-2.2026452291	0.0924612124	-0.4325835451
C	-1.3465055678	-0.5924882555	-1.2768461713
H	-2.1287901053	-0.3191256752	-2.3219581790
F	-2.9597844883	1.0899248820	-0.933395609
H	-2.9943464416	0.3595025249	1.5356138221
H	-1.5877292849	-1.4680162594	2.4879344761
H	-0.0385739129	-2.7244188038	1.0196132503
H	0.1067077472	-2.1595507769	-1.3881634655
C	2.9264510131	-0.6274480383	-0.838117214
O	0.3730320359	0.2854686450	-1.4243784888
O	2.8386049631	-0.9018901968	0.4375445568
H	2.2422371266	-0.2407885784	0.9091053091
H	3.5799327869	-1.3362778477	-1.3633022117
X	Y	Z
C 0.6514296671	1.7287591396	1.0649032530
O 1.2799620266	0.8672237245	1.6532034417
O 0.7131213532	2.0001928101	-0.2140022058
H 1.3372115563	1.3715087337	-0.6843206780
H -0.0516415447	2.3882603095	1.5870184967

Rotational Constants: 1011.89413301 540.8005169 475.45131207 MHz

X	Y	Z
C 2.0643876272	-1.6020569586	-0.3956671059
C 1.1040340396	-1.3828718177	-1.3782933988
C 0.6501253122	-0.0914847267	-1.6259630581
C 1.5017447393	0.9830060548	-0.8978685679
C 2.1062954993	0.7353349560	0.0719398533
C 2.5755878813	-0.5381075479	0.3411572701
H 3.3221229493	-0.6828132776	1.1111462033
F 2.5974746153	1.7735434537	0.7820330580
H 0.8079439466	1.9967224291	-1.0652799226
H -0.1030839336	0.0809082208	-2.3846735782
H 0.7043215784	-2.2165357911	-1.9424840783
H 2.4216310253	-2.6059554850	-0.2001595790
C -2.7810454320	1.2597231247	-0.5891538540
O -2.9177782987	0.0861995805	-0.8861429553
O -2.0380042443	1.7377012828	0.3752451254
H -1.5679744336	0.9969364122	0.8711237656
H -3.2975760920	2.0569988401	-1.138864186
C -0.9473302556	-1.4167573481	1.3675756061
O -0.8338813214	-0.2416991425	1.6639339658
O -1.7203060967	-1.9119882199	0.4326063918
H -2.1902377006	-1.1782759888	-0.0642865495
H -0.3882472178	-2.2001938053	1.8920971141
Table S24: Equilibrium structure of the PhF-FAD complex at gCP-B2PLYP/def2-TZVP level of theory

22

Rotational Constants: 900.10015152 655.01469538 509.22928855 MHz

C -2.370095364 -0.4618957943 -1.1932691838
C -1.7096449031 0.7595164022 -1.1041828470
C -1.2535875489 1.1693453959 0.1366471558
C -1.4234354531 0.4126706406 1.2826312829
C -2.0870190103 -0.8060676058 1.1751904308
C -2.5609892231 -1.2444988537 -0.0579903045
H -2.7325989177 -0.8007380347 -2.1541956773
H -1.5433120064 1.3843132633 -1.9701126700
H -1.0397840052 0.7738701009 2.2261433092
H -2.2294636881 -1.4121825207 -0.1340586227
F -0.6086295199 2.3543223890 0.2317239602
C 1.1897551198 -2.2561389356 -0.1897013655
O 1.2958258889 -1.5786129205 -1.1977937988
O 1.4546911702 -1.8738087402 1.035807313
H 0.8526448921 -3.2958592655 -0.2258582115
H 1.7429271201 -0.9141527207 1.0447910172
C 2.2413076926 1.3869648986 0.0351140059
O 2.1901074921 0.6892916293 1.0346851216
O 2.0023063122 0.9976898829 -1.1936741136
H 2.5070035766 2.4458292146 0.0811360404
H 1.7462149939 0.0301253958 -1.2080545329

S5 Adjusting the molecular mechanics (MM) force field for the QM/MM simulations

In the QM/MM approach, PhF was presented as a rigid molecule with a geometry being fixed at the B2PLYP/def2-TZVP structure. The interaction with the FAD was induction via electrostatic embedding and exchange+dispersion interactions modeled by the Lennard-Jones potential

$$V_{LJ,ij}(r_{ij}) = \varepsilon_{ij} \cdot \left(\left(\frac{r_{\text{min},ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{\text{min},ij}}{r_{ij}} \right)^{6} \right),$$

where \(V_{LJ,ij}\) is the interaction energy between atom numbers \(i\) and \(j\), \(r_{ij}\) is the distance between these atoms, \(\varepsilon_{ij} = \sqrt{\varepsilon_i \cdot \varepsilon_j}\) and \(r_{\text{min},ij} = \frac{1}{2}(r_i + r_j)\) with \(\varepsilon_i\) and \(r_i\) being the interaction energy and radius of the atom number \(i\).

The atomic charges of PhF were frozen at the CHELPG values at the B2PLYP/def2-TZVP level of theory. The only fitted values of the MM potential were the interaction energies and radii of the different atomic types (\(\varepsilon_i\) and \(r_i\)). The latter were parametrized to fit the SAPT2/aug-cc-pVDZ interaction energy of FAD with PhF. For this purpose, we have generated 860 randomly parallel-displaced structures (600 for the training set and 260 for the test set) on the basis of the B2PLYP/def2-TZVP geometries of PhF and FAD at the different stages of the double proton transfer reaction. To compensate for difference in the induction interaction in the electrostatic embedding QM/MM and in the SAPT2 calculations, we have performed the fitting for the corrected SAPT2/aug-cc-pVDZ interaction values:

$$E_{\text{SAPT2}}^{(\text{corr})} = E_{\text{SAPT2}}^{(\text{raw})} - (E_{\text{PBEh-3c/MM}}^{\text{charges}} - E_{\text{PBEh-3c/MM}}^{\text{no charges}}),$$

S39
Table S25: Initial and fitted interaction energies Lennard-Jones potential (Eq. 2) parameters for PhF-FAD dispersion/exchange interaction. The fitting aimed at reproducing the SAPT2/aug-cc-pVDZ interaction energies given by Eq. 3.

Atom type	OPLS-AA		Fit	
	ε, kcal/mol	r, Å	ε, kcal/mol	r, Å
H	-0.03	2.72	-0.01	2.66
H$_{ac}$	0.0	2.72	0.0	2.60
H$_{al}$	-0.02	2.72	-0.03	2.54
C$_F$	-0.07	3.98	-0.05	3.90
C$_H$	-0.07	3.98	-0.09	3.91
C$_{ac}$	-0.105	4.21	-0.03	3.58
F	-0.06	3.20	-0.06	2.93
O	-0.19	3.34	-0.21	3.29

where $E^{(\text{raw})}_{\text{SAPT2}}$ are the PhF-FAD interaction energies as produced by the SAPT2, $E^{\text{PBEh-3c/MM}}_{\text{charges}}$ are the total QM/MM energies of the same structure without any Lennard-Jones interaction. The $E^{\text{PBEh-3c/MM charges}}_{\text{PBEh-3c/MM}}$ values were computed with CHELPG charges on PhF, whilst $E^{\text{no charges}}_{\text{PBEh-3c/MM}}$ were obtained without charges on the PhF (i.e., in the case of non-interacting PhF and FAD). The $(E^{\text{PBEh-3c/MM charges}}_{\text{PBEh-3c/MM}} - E^{\text{no charges}}_{\text{PBEh-3c/MM}})$ correction is thus the induction interaction energy of PhF with FAD at the PBEh-3c/MM level of theory.

In order to remove a strong influence of highly energetic exchange repulsion on small PhF-FAD distances, only structures with energies $E^{(\text{corr})}_{\text{SAPT2}} < 2000$ cm$^{-1}$ were considered in the fitting. That left 479 and 215 structures from the training and test sets, respectively. The starting (ε_i, r_i) parameters were taken from the OPLS-AA [29, 30] force field. The initial root-mean-square deviations (RMSD) for training and test sets with these parameters were 538 and 451 cm$^{-1}$, respectively. After fitting, they have decreased to 133 and 116 cm$^{-1}$, respectively. The fitted Lennard-Jones potential has eight types of atoms considered:

- For PhF:
 - hydrogens (H),
 - fluorine (F),
 - sp^2 hybridized carbons connected to hydrogens (in the C–H fragments, C$_H$),
 - sp^2 hybridized carbon connected to fluorine (in the C–F fragment, C$_F$).
- For FAD:
 - acetic sp^2 hybridized carbon (C$_{ac}$),
 - aliphatic hydrogen (in the C–H fragment, H$_{al}$),
 - acetic hydrogen (in the O–H fragment, H$_{ac}$),
 - oxygens (O).

The initial OPLS-AA and fitted parameters are given in Table S25.
The reaction coordinate for proton transfer was

$$\xi = \frac{r(O1H1) + r(O4H2) - r(O3H1) - r(O2H2)}{\sqrt{8}},$$

(4)

see Fig. S2 for atom numbering.

Figure S2: The configuration of the PhF-FAD cluster with atom numbering and principal axes system.

Figure S3: Potential energy surfaces for the double proton transfer in FAD and PhF-FAD along the reaction coordinate given by Eq. 4 at different levels of theory.
Comparison of FAD and PhF-FAD at the PBEh-3c(/MM) level of theory

![Graphical representation of PES, effective mass, and wavefunction for FAD and PhF-FAD](image)

Figure S4: From top to bottom: theoretical potential energy surfaces (PES) with effective PES (PES+ZPVE), effective masses $\mu = G^{-1}$, and wavefunctions for the $0^+ / 0^-$ states of FAD and PhF-FAD along the reaction coordinate given by Eq. 4. The calculations were done at the PBEh-3c and PBEh-3c/MM levels of theory for FAD and PhF-FAD, respectively.
S7 An illustrative model for the decrease of the tunneling rate in PhF-FAD with respect to FAD

Let us imagine that the PhF-FAD has two coupled motions.

• The double proton transfer parametrized by internal coordinate ξ, and given by Hamiltonian

$$\hat{H}_{pt} = \hat{T}_{pt} + V_{pt}(\xi),$$

where \hat{T}_{pt} and $V_{pt}(\xi)$ are the proton transfer kinetic energy and potential in the free FAD, respectively. The V_{pt} is a standard double well potential (see Fig. S6 with $\xi = 0$ corresponding to the transition state. The two localized energy degenerate vibrational ground states in each well ($|a\rangle$ and $|b\rangle$) form the symmetric ($|+\rangle \approx (|a\rangle + |b\rangle)/\sqrt{2}$) and antisymmetric ($|-\rangle \approx (|a\rangle - |b\rangle)/\sqrt{2}$) eigenstates with energies $\hat{H}_{pt}|\pm\rangle = E^{(0)}_{\pm} |\pm\rangle$ and energy separation (tunneling splitting) of

$$\epsilon = E^{(0)}_{-} - E^{(0)}_{+} > 0.$$

• The second motion is the environment mode of the same symmetry as the reaction coordinate ξ. This environmental mode is coupled to the proton transfer motion. In the case of PhF-FAD, this is an internal counter-rotation of FAD and PhF around the a-axis of the complex. This motion can be treated in a harmonic approximation with the Hamiltonian

$$\hat{H}_{env} = \hbar \omega (\hat{P}^2 + \hat{Q}^2),$$

where \hat{P} and \hat{Q} are the momentum and coordinate operators of this motion, and ω is the angular frequency of this vibration, which is taken to be independent of the ξ (see Fig. S6). The eigenvalues/eigenstates of this Hamiltonian are given as $\hat{H}_{env}|v\rangle = \hbar \omega (v + 1/2)|v\rangle$, where $v = 0, 1, 2, \ldots$ is the vibrational quantum number.

The coupling between proton transfer and the environment mode is introduced as following: the equilibrium value of Q will depend on ξ as $Q_{eq} \approx \alpha \xi$, where α is the coupling coefficient, which can be positive or negative. This will lead to a modified potential energy for the environmental mode:

$$V_{env} \approx \frac{\hbar \omega}{2} (Q - \alpha \xi)^2 = \frac{\hbar \omega}{2} Q^2 - \hbar \omega \alpha \xi Q + \frac{\hbar \omega}{2} (\alpha \xi)^2.$$

We will assume that the perturbation of the pure proton transfer potential $\frac{\hbar \omega}{2} (\alpha \xi)^2$ is too small compared to $V_{pt}(\xi)$, therefore this term can be ignored. This leads to a coupled Hamiltonian of the form:

$$\hat{H} = \hat{H}_{pt} + \hat{H}_{env} + \hat{W},$$

S43
where $\hat{W} = -\hbar \omega \alpha \xi Q$ is the linear coupling of the proton transfer with the environment motion.

We will calculate the new eigenvalues of \hat{H} using second-order perturbation theory, where the eigenvalue E_n for the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{W}$ is given by the formula

$$E_n \approx E_n^{(0)} + \frac{\langle n | \hat{W} | n \rangle}{\varepsilon_n} + \sum_{m \neq n} \frac{|\langle m | \hat{W} | n \rangle|^2}{E_n^{(0)} - E_m^{(0)}}$$

expressed through the unperturbed Hamiltonian eigenvalues/eigenstates ($\hat{H}_0 |n\rangle = E_n^{(0)} |n\rangle$) and the perturbation operator (\hat{W}).

We are interested in the energy difference between the states $|+\rangle = |+\rangle |0\rangle$ and $|--\rangle = |--\rangle |0\rangle$ (i.e., the vibrational ground state of the system split by tunneling). In order to calculate the corrections, we need to know the following types of integrals.

- For the proton transfer, we need to know $\langle \pm | \xi | \pm \rangle$ and $\langle \pm | \xi | \mp \rangle$. ξ is an antisymmetric coordinate, therefore for the symmetrized states $|\pm\rangle$ the first integral is going to be zero ($\langle \pm | \xi | \pm \rangle = 0$). This means that the first-order correction ($E_n^{(1)}$) for this system is zero. The second integral will have a non-zero value $\langle \pm | \xi | \mp \rangle = \xi_0$, where $|\xi_0| = |\langle a | \xi | a \rangle| = |\langle b | \xi | b \rangle|$ is the average position of a localized wavepacket in well a or b.

- For the second motion, we need to know the integrals $\langle 0 | \hat{Q} | v \rangle$, which for the harmonic oscillator are well-known:

$$\langle 0 | \hat{Q} | v \rangle = \begin{cases} 0, & v \neq 1, \\ 1/\sqrt{2}, & v = 1. \end{cases}$$

By applying these formulas to the second-order perturbation of the states, we obtain the new energies of $|\pm0\rangle$ states:

$$E_{+0} = E_{+0}^{(0)} + \frac{\hbar \omega}{2} - \frac{A^2}{\hbar \omega + \epsilon},$$

and

$$E_{-0} = E_{-0}^{(0)} + \frac{\hbar \omega}{2} - \frac{A^2}{\hbar \omega - \epsilon},$$

where

$$A^2 = |\langle \pm0 | \hat{W} | \mp1 \rangle|^2 = \frac{1}{2} (\hbar \omega)^2 (\alpha \xi_0)^2.$$
The final formula can be reinterpreted in terms of the reorganization energy. The potential $FAD(\lambda)$ therefore the new splitting in the presence of the coupled environment will be lower than in the free FAD ($\Delta E < \epsilon$).

The splitting for FAD is much smaller than all the vibrational frequencies of PhF-FAD ($\epsilon \ll \hbar \omega$), therefore the new splitting in the presence of the coupled environment will be lower than in the free FAD ($\Delta E < \epsilon$).

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrational frequencies of PhF-FAD (ϵ) is about 0.1 – 1 % of the bond length (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$

The expression above can be further worked with. In practice, the anharmonic shift of the zero-point vibrationally averaged position for the valence stretching vibrations (ξ_0) from the equilibrium value of the bond length (ξ_e) is about 0.1 – 1 % of the bond length. Therefore we can expect the zero-point vibrationally averaged reorganization energy $\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2$ to be close to its equilibrium analog

$$\lambda_0 = 2\hbar \omega (\alpha \xi_0)^2.$$
Figure S7: The physical meaning of the equilibrium reorganization energy (λ_e).

References

[1] David Schmitz, V. Alvin Shubert, Thomas Betz, and Melanie Schnell. Multi-resonance effects within a single chirp in broadband rotational spectroscopy: The rapid adiabatic passage regime for benzonitrile. *Journal of Molecular Spectroscopy*, 280:77–84, 2012. ISSN 0022-2852. doi: https://doi.org/10.1016/j.jms.2012.08.001. URL https://www.sciencedirect.com/science/article/pii/S0022285212001488. Broadband Rotational Spectroscopy.

[2] Zbigniew Kisiel, Lech Pszczółkowski, Ivan R. Medvedev, Manfred Winnewisser, Frank C. De Lucia, and Eric Herbst. Rotational spectrum of trans–trans diethyl ether in the ground and three excited vibrational states. *Journal of Molecular Spectroscopy*, 233(2):231–243, 2005. ISSN 0022-2852. doi: https://doi.org/10.1016/j.jms.2005.07.006. URL https://www.sciencedirect.com/science/article/pii/S0022285205001554.

[3] Zbigniew Kisiel, Lech Pszczółkowski, Brian J. Drouin, Carolyn S. Brauer, Shanshan Yu, John C. Pearson, Ivan R. Medvedev, Sarah Fortman, and Christopher Neese. Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations. *Journal of Molecular Spectroscopy*, 280:134–144, 2012. ISSN 0022-2852. doi: https://doi.org/10.1016/j.jms.2012.06.013. URL https://www.sciencedirect.com/science/article/pii/S0022285212001038. Broadband Rotational Spectroscopy.

[4] Herbert M. Pickett. The fitting and prediction of vibration-rotation spectra with spin interactions. *Journal of Molecular Spectroscopy*, 148(2):371–377, 1991. ISSN 0022-2852. doi: https://doi.org/10.1016/0022-2852(91)90393-O. URL https://www.sciencedirect.com/science/article/pii/0022285291903930.

[5] Weixing Li, Luca Evangelisti, Qian Gou, Walther Caminati, and Rolf Meyer. The barrier to proton transfer in the dimer of formic acid: A pure rotational study. *Angewandte Chemie International Edition*, 58(3):859–865, 2019. doi: 10.1002/anie.201812754. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201812754.

[6] Programs for ROtational SPEctroscopy, http://www.ifpan.edu.pl/~kisiel/prospe.htm

[7] Philipp Pracht, Fabian Bohle, and Stefan Grimme. Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Phys. Chem. Chem. Phys.*, 22:7169–7192, 2020. doi: 10.1039/C9CP06869D. URL http://dx.doi.org/10.1039/C9CP06869D.
[8] Stefan Grimme, Jan Gerit Brandenburg, Christoph Bannwarth, and Andreas Hansen. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. *The Journal of Chemical Physics*, 143(5):054107, 2015. doi: 10.1063/1.4927476. URL https://doi.org/10.1063/1.4927476.

[9] Holger Kruse and Stefan Grimme. A geometrical correction for the inter- and intra-molecular basis set superposition error in hartree-fock and density functional theory calculations for large systems. *The Journal of Chemical Physics*, 136(15):154101, 2012. doi: 10.1063/1.3700154. URL https://doi.org/10.1063/1.3700154.

[10] Axel D. Becke. Density-functional thermochemistry. iii. the role of exact exchange. *The Journal of Chemical Physics*, 98(7):5648–5652, 1993. doi: 10.1063/1.464913. URL http://link.aip.org/link/?JCP/98/5648/1.

[11] Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the cole-salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B*, 37:785–789, Jan 1988. doi: 10.1103/physrevb.37.785. URL http://link.aps.org/doi/10.1103/PhysRevB.37.785.

[12] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Canadian Journal of Physics*, 58(8):1200–1211, 1980. doi: 10.1139/p80-159.

[13] Stefan Grimme, Stephan Ehrlich, and Lars Goerigk. Effect of the damping function in dispersion corrected density functional theory. *Journal of Computational Chemistry*, 32(7):1456–1465, 2011. doi: 10.1002/jcc.21759. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21759.

[14] Florian Weigend and Reinhart Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.*, 7:3297–3305, 2005. doi: 10.1039/B508541A. URL http://dx.doi.org/10.1039/B508541A.

[15] Stefan Grimme. Semiempirical hybrid density functional with perturbative second-order correlation. *The Journal of Chemical Physics*, 124(3):034108, 2006. doi: 10.1063/1.2148954. URL https://doi.org/10.1063/1.2148954.

[16] Curt M. Breneman and Kenneth B. Wiberg. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. *Journal of Computational Chemistry*, 11(3):361–373, 1990. doi: https://doi.org/10.1002/jcc.540110311. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540110311.

[17] C. Adamo and V. Barone. Toward reliable adiabatic connection models free from adjustable parameters. *Chemical Physics Letters*, 274(1):242–250, 1997. ISSN 0009-2614. doi: https://doi.org/10.1016/S0009-2614(97)00651-9. URL https://www.sciencedirect.com/science/article/pii/S0009261497006519.

[18] Carlo Adamo and Vincenzo Barone. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mpw and mpw1pw models. *The Journal of Chemical Physics*, 108(2):664–675, 1998. doi: 10.1063/1.475428. URL https://doi.org/10.1063/1.475428.

[19] Xin Xu and William A. Goddard. The x3lyp extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. *Proceedings of the National Academy of Sciences*, 101(9):2673–2677, 2004. ISSN 0027-8424. doi: 10.1073/pnas.0308730100. URL https://www.pnas.org/content/101/9/2673.
[20] A. Warshel and M. Levitt. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. *Journal of Molecular Biology*, 103(2):227–249, 1976. ISSN 0022-2836. doi: https://doi.org/10.1016/0022-2836(76)90311-9. URL https://www.sciencedirect.com/science/article/pii/0022283676903119

[21] Bogumil Jezierski, Robert Moszynski, and Krzysztof Szalewicz. Perturbation theory approach to intermolecular potential energy surfaces of van der waals complexes. *Chemical Reviews*, 94(7): 1887–1930, 1994. doi: 10.1021/cr00031a008. URL https://doi.org/10.1021/cr00031a008

[22] Thom H. Dunning. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. *The Journal of Chemical Physics*, 90(2):1007–1023, 1989. doi: 10.1063/1.456153. URL https://doi.org/10.1063/1.456153

[23] Rick A. Kendall, Thom H. Dunning, and Robert J. Harrison. Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions. *The Journal of Chemical Physics*, 96(9):6796–6806, 1992. doi: 10.1063/1.462569. URL https://doi.org/10.1063/1.462569

[24] J. E. Jones and Sydney Chapman. On the determination of molecular fields. i. from the variation of the viscosity of a gas with temperature. *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character*, 106(738):441–462, 1924. doi: 10.1098/rspa.1924.0081. URL https://royalsocietypublishing.org/doi/10.1098/rspa.1924.0081

[25] Rizalina Tama Saragi, Marcos Juanes, Cristóbal Pérez, Pablo Pinacho, Denis S. Tikhonov, Walther Caminati, Melanie Schnell, and Alberto Lesarri. Switching hydrogen bonding to π-stacking: The thiophenol dimer and trimer. *The Journal of Physical Chemistry Letters*, 12(5):1367–1373, 2021. doi: 10.1021/acs.jpclett.0c03797. URL https://doi.org/10.1021/acs.jpclett.0c03797. PMID: 33507084.

[26] Denis Tikhonov. A simplistic computational procedure for the tunneling splittings caused by the proton transfer. *ChemRxiv*, 2021. doi: 10.33774/chemrxiv-2021-v74sm-v3.

[27] Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The orca quantum chemistry program package. *The Journal of Chemical Physics*, 152(22):224108, 2020. doi: 10.1063/5.0004608. URL https://doi.org/10.1063/5.0004608

[28] Robert M. Parrish, Lori A. Burns, Daniel G. A. Smith, Andrew C. Simmonett, A. Eugene DePrince, Edward G. Hohenstein, Uğur Bozkaya, Alexander Yu. Sokolov, Roberto Di Remigio, Ryan M. Richard, Jérôme F. Gonthier, Andrew M. James, Harley R. McAlexander, Ashutosh Kumar, Masaaki Saitow, Xiao Wang, Benjamin P. Pritchard, Prakash Verma, Henry F. Schaefer, Konrad Patkowski, Rollin A. King, Edward F. Valeev, Francesco A. Evangelista, Justin M. Turney, T. Daniel Crawford, and C. David Sherrill. Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. *Journal of Chemical Theory and Computation*, 13(7):3185–3197, 2017. doi: 10.1021/acs.jctc.7b00174. URL https://doi.org/10.1021/acs.jctc.7b00174. PMID: 28489372.

[29] William L. Jorgensen and Julian Tirado-Rives. The opls [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. *Journal of the American Chemical Society*, 110(6):1657–1666, 1988. doi: 10.1021/ja00214a001. URL https://doi.org/10.1021/ja00214a001. PMID: 27557051.

[30] William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. *Journal of the American Chemical Society*, 118(45):11225–11236, 1996. doi: 10.1021/ja9621760. URL https://doi.org/10.1021/ja9621760