The Impact of COVID-19 Pandemic on Spine Surgeons Worldwide: A One Year Prospective Comparative Study

Juan N. Barajas, BS\(^1\)\(^2\) , Alexander L. Hornung, BS\(^1\)\(^2\) , Timothy Kuzel, BS\(^1\)\(^2\) , Gary M. Mallow, MD\(^1\)\(^2\) , Grant J. Park, BA\(^1\)\(^2\) , Samuel S. Rudisill, BS\(^1\)\(^2\) , Philip K. Louie, MD\(^3\) , Garrett K. Harada, MD\(^4\) , Michael H. McCarthy, MD, MPH\(^5\) , Niccole Germscheid, MSc\(^6\) , Jason PY. Cheung, MBBS, MD\(^7\) , Marko H. Neva, MD, PhD\(^8\) , Mohammad El-Sharkawi, MD\(^9\) , Marcelo Valacco, MD\(^10\) , Daniel M. Sciubba, MD\(^11\) , Norman B. Chutkan, MD\(^12\) , Howard S. An, MD\(^1\)\(^2\) , and Dino Samartzis, DSc\(^1\)\(^2\)

Abstract

Study Design: Survey

Objective: In March of 2020, an original study by Louie et al investigated the impact of COVID-19 on 902 spine surgeons internationally. Since then, due to varying government responses and public health initiatives to the pandemic, individual countries and regions of the world have been affected differently. Therefore, this follow-up study aimed to assess how the COVID-19 impact on spine surgeons has changed 1 year later.

Methods: A repeat, multi-dimensional, 90-item survey written in English was distributed to spine surgeons worldwide via email to the AO Spine membership who agreed to receive surveys. Questions were categorized into the following domains: demographics, COVID-19 observations, preparedness, personal impact, patient care, and future perceptions.

Results: Basic respondent demographics, such as gender, age, home demographics, medical comorbidities, practice type, and years since training completion, were similar to those of the original 2020 survey. Significant differences between groups included reasons for COVID testing, opinions of media coverage, hospital unemployment, likelihood to be performing elective surgery, percentage of cases cancelled, percentage of personal income, sick leave, personal time allocation, stress coping mechanisms, and the belief that future guidelines were needed (P<.05).

Corresponding Author:
Dino Samartzis, Department of Orthopaedic Surgery, Rush University Medical Center, Orthopaedic Building, 2nd Floor, 1611 W. Harrison Street, Chicago, IL 60612, USA.
Email: Dino_Samartzis@rush.edu
Conclusion: Compared to baseline results collected at the beginning of the COVID-19 pandemic in 2020, significant differences in various domains related to COVID-19 perceptions, hospital preparedness, practice impact, personal impact, and future perceptions have developed. Follow-up assessment of spine surgeons has further indicated that telemedicine and virtual education are mainstays. Such findings may help to inform and manage expectations and responses to any future outbreaks.

Keywords
COVID-19, coronavirus, spine surgeons, global, worldwide, impact

Introduction
In 2020, the COVID-19 virus swept throughout the globe, drastically changing the way of life for billions of people. By March of 2020, almost all countries around the world enacted self-imposed quarantines on their citizens. As of January 2022, there have been over 300 million recorded cases and over 5.4 million reported COVID-19-related deaths worldwide.1 Several systematic reviews have shown negative impacts on the health-related quality of life for those patients that were infected by the virus.2,3

In addition to patients, healthcare workers have been greatly affected by the COVID-19 pandemic. Approximately 3607 healthcare workers in the USA died within the first year of the pandemic.4 In a systematic review examining the psychological and mental impacts of COVID-19, Luo et al5 found anxiety, depression, stress, insomnia, and posttraumatic stress symptoms/disorder to be present in both healthcare workers and the general population. Despite having a better understanding of the global impact of the pandemic, little is known about how individual subspecialties were and continue to be affected.

In March/April of 2020, during the early stages of the COVID-19 pandemic, Louie et al6 distributed the multidimensional AO Spine COVID-19 and Spine Surgeon Global Impact Survey to investigate the impact of COVID-19 on spine surgeons globally. This AO Spine-initiated study consisted of over 900 spine surgeons from 91 different countries and was 1 of the first to report upon the global variations of COVID-19 among healthcare workers, in this case spine surgeons.6-13 This initiative noted that the pandemic significantly impacted the health, personal life, and professional life of spine surgeons worldwide. Since the original survey was distributed, individual countries and regions of the world have been affected differently, and therefore have responded differently throughout the pandemic. However, little is known as to how this pandemic has impacted spine surgeons prospectively. As such, the current study addressed the 1-year follow-up of the Louie et al6 study, assessing the impact of COVID-19 on spine surgeons worldwide and its evolution over time.

Methods

Survey Design and Content
Following institutional review board approval (#21012505), a survey comparable to the original AO Spine COVID-19 and Spine Surgeon Global Impact Survey that was distributed in March/April of 20206 was constructed and redistributed in March/April of 2021. Question selection involved input from a survey panel composed of 5 regional Research Chairs of AO Spine representing seven global regions (i.e., Africa, Asia, Australia, Europe, Middle East, North America, and South America/Latin America). A Delphi-style approach was used to establish consensus after several rounds of review before finalization of the survey. Domains included in the survey consisted of demographics, COVID-19 observations, preparedness, personal impact, patient care, and future perceptions.

Survey Distribution
The 90-item survey, written in English, was distributed via email to the AO Spine membership who agreed to receive surveys (approximately 4700 spine surgeons at time of follow-up survey). The survey was created with SurveyMonkey Inc (San Mateo, CA, USA) and allowed the recipients 12 days to complete (26 March 2021 to 6 April 2021). Respondent participation was voluntary and anonymous.

Statistical Analyses
All statistical analyses were performed with JASP version .15. Percentages and means (± standard deviation) were reported for count data and rank-order questions, respectively. Statistical analyses were performed to assess significant differences in count data using a combination of Fisher’s exact and χ² tests where applicable, depending on sample size. Differences in continuous variables between groups were assessed using analysis of variance (ANOVA). We compared our findings to the results based on the Louie et al6 study. Unlike the original survey, this follow-up did not compare geographic regions
because the sample size on the follow-up survey was smaller. \(P\)-values were 2-tailed, and a \(P < .05\) was considered statistically significant.

Results

Demographics

Similar to the 2020 survey, the majority of the 275 respondents in the 2021 survey were male (89.1%), practicing in academic centers (41.5%), and between the ages of 35 and 44 years (32.7%) (\(P = .208, PP = .314, and PP = .104, respectively\)). Moreover, survey groups did not differ by home demographics (e.g., spouse at home, number of children at home, etc.), medical comorbidities, or years since training completion (Tables 1 and 2). There was no difference in the geographic distribution of the respondents from Africa (2020 = 5.0% vs 2021 = 5.1%), Asia (2020 = 24.2% vs 2021 = 26.9%), Australia (2020 = 9% vs 2021 = 7%), Europe (2020 = 27.5% vs 2021 = 27.3%), and South America/Latin America (2020 = 16.5% vs 2021 = 17.8%) (\(P = .816, P = .265, P = .801, P = .885, P = .495, respectively\)). However, there were statistically more respondents from the Middle East (2020 = 8.7% vs 2021 = 13.1%; \(P = .025\)) and fewer from North America (2020 = 17.3% vs 2021 = 9.1%; \(P < .002\)) in the 2021 follow-up. More respondents reported themselves as orthopedic spine surgeons (2020 = 70.6% vs 2021 = 62.5%; \(P = .011\)) compared to neurosurgery spine surgeons (2020 = 27.3% vs 2021 = 33.8%; \(P < .05\)) in the follow-up. Fewer respondents were fellowship trained (2020 = 71.5% vs 2021 = 65.1%; \(P < .02\)) in the follow-up (Table 2). Notably, there were more respondents in the 2020 cohort compared to the 2021 cohort who reported greater percent of practice devoted to clinical duties (\(P = .038\)); however, there were no differences in other practice strata (i.e., research or teaching; \(P = .760\) and \(P = .220\)) respectively; Table 2).

COVID-19 Perceptions

Compared to 6.7% in the original survey, 71.3% of 2021 respondents had undergone testing for COVID-19, of which 18.0% tested positive (\(P < .001\)). Moreover, 84.4% of participants indicated that they personally knew someone diagnosed with COVID-19 compared to 46.6% in 2020 (\(P < .001\)). Reasons for testing also differed significantly between groups (\(P < .001\)). In the 2020 survey, the most likely reason for getting tested was showing symptoms (49.3%), in contrast to having direct contact with a COVID-19 positive patient in 2021 (24.4%). Likewise, opinions of media coverage also significantly differed in that fewer respondents form the 2021 survey (36.7%) thought that the media was accurately covering the pandemic compared to the 2020 survey (48.5%), \(P = .013\) and more respondents from the 2021 survey (21.8%) thought the media wasn’t providing enough coverage compared to the 2020 survey (16.1%; \(P = .007\)). There was no difference in media source utilized by respondents between cohorts (i.e., international vs national, internet vs television, etc.; \(P > .05\)) except respondents from the 2020 cohort were more likely to use social media (2020 = 9.9% vs 2021 = 4.4%; \(P = .028\)) (Table 3).

Hospital Preparedness

Respondents of the 2021 survey were significantly more likely to have undergone mandatory or self-imposed quarantine compared to the 2020 respondents (2020 = 22.9% vs 2021 = 32.4%; \(P < .001\)). Moreover, the interventions employed by the hospital (e.g., quarantine after travel, cancellation of in-person meetings, etc.) differed significantly between the two cohorts (\(P \leq .049\)). Similarly, respondents from the 2021 survey noted greater hospital unemployment than those in 2020 (2020 = 8.8% vs 2021 = 19.6%; \(P < .001\)); however, furlough rates decreased from 2020 to 2021 (40.5% vs 25.8%; \(P = .01\)). Frequency of updates from the hospital also differed between groups (\(P \leq .031\)). More specifically, in 2020, respondents were receiving updates more frequently from the hospital compared to a year later (Table 4).

Practice Impact

Compared to 2020, respondents of the 2021 survey were significantly more likely to be performing elective surgeries (2020 = 18.5% vs 2021 = 67.6%; \(P < .001\)). Additionally, the percentage of cases cancelled secondary to COVID-19 also decreased from 2020 to 2021 (2020 = 67.1% vs 2021 = 12.0%; \(P < .001\)). Responses regarding impact on resident and fellow training differed significantly between surveys because training residents and fellows returned in 2021 (\(P < .001\)); however, on further analysis, the only significant changes were that respondents were more likely to return to training residents and fellows and that the COVID-19 impact had decreased in 2021 (\(P = .001\) and \(P = .001\), respectively). Interestingly, the likelihood of a surgeon to warn patients if he/she is COVID-19 positive also differed between surveys (\(P \leq .001\)), with a significant decrease in the proportion of respondents who would “absolutely report” (2020 = 74.2% vs 2021 = 53.5%; \(P < .001\)) and an increase in the proportion responding “less likely to report” (2020 = 5.4% vs 2021 = 8.7%; \(P = .013\)). Percentage of personal income as well as hospital income also differed between surveys (\(P < .001\) and \(P < .001\), respectively). In 2021, both personal and hospital income were affected to a lesser extent than in 2020 (Table 5).

Personal Impact and Future Perceptions

Rates of sick leave significantly decreased between 2020 to 2021 (2020 = 50.0% vs 2021 = 13.1%; \(P < .001\)). Regarding personal time allocation (where 1 equaled most time and 8 equaled least time), there were significant changes in time allocated to resting (2020 = 4.3 ± 2.0 vs
future planning (2020=4.6 ± 1.8 vs 2021=5.0 ± 1.8; P = .001), and practice/medical work (2020=4.1 ± 2.5 vs 2021=3.1 ± 2.4; P < .001). Moreover, there were significant differences in reported stress coping mechanisms between surveys (P = .002), specifically in decreased reading (2020=62.2% vs 2021=33.1%; P < .001), television (2020=53.5% vs 2021=30.5%; P < .001) and telecommunication with friends (2020=43.8% vs 2021=22.9%; P < .001; Table 6). With regards to future perceptions, specifically belief that future guidelines were needed, significant differences existed between the 2020 and 2021 cohorts (P < .001). Respondents from the 2021 (64%) survey were less likely to think that future guidelines are needed than those from the 2020 (94.7%) survey. Interestingly, no differences were reported from the perceived impact of COVID-19 between the two time points (P > .05). Interest in online spine education differed between groups (P < .001), with a statistically significant decrease in “very interested in online spine education” (2020=42.5% vs 2021=21.1%; P < .001); however, no significant differences were noted for the answer choices “Interested” and “Not interested” although more respondents from the 2021 follow up reported being “Somewhat Interested” (20.4% vs 17.5%; P=.021) regarding online education (Table 7). Furthermore, there were significant differences in percentage of telecommunication visits between cohorts (P < .001), as the majority of respondents (64.4%) indicated that 25% or less of their visits were via telemedicine in 2021 compared to 50% in 2020 (Table 7).

Discussion

Since the initial AO Spine COVID-19 and Spine Surgeon Global Impact Survey was distributed in 2020, different parts of the world have responded to the pandemic in unique ways. With multiple waves of new COVID-19 variants and recent controversial guidelines released by governing public healthcare bodies (e.g. United States Center for Disease Control, World Heath Organization), it is certain that the COVID-19 pandemic remains a global headline whose end remains uncertain. The goal of this follow-up survey was to elucidate how the reactions and perceptions to this global crisis have evolved, noting distinct changes in various practice and personal domains, presenting a quantifiable 1-year follow-up metric of pandemic impact upon the spine surgeon community.

COVID-19 Survey

The original survey was the first to assess the multidimensional impact of COVID-19 on spine surgeons worldwide. Since then, numerous other groups conducted their own assessment of the impact of the pandemic across other physician populations. Jain et al examined the impact of the COVID-19 lockdown on 611 orthopedic surgeons in India and highlighted the lockdown’s psychological impact. Chan et al surveyed 222 spine surgeons from 19 different Pacific Asian countries concerning the pandemic’s effects on clinical and surgical practice. These surveys, in addition to numerous others published over the past year, provide valuable insight into the knowledge and opinions of surgeons. Nevertheless, the original survey by Louie et al and its current follow-up survey remain the only comprehensive and multidimensional assessments of the impact of COVID-19 on spine surgeons on a global scale.

Resources, Testing, and Vaccinations

At the time of the original survey, the COVID-19 pandemic remained in early stages, and testing and other resources were very scarce. Widespread active COVID-19 viral and antibody testing had not yet been employed, and infections were being inconsistently tracked and counted. Since then, there have been massive global efforts to provide affordable and accessible forms of testing, evidenced by the results of this follow-up survey. Not only did rates of testing amongst surgeons increase, but a much higher percentage of the respondents had tested positive or knew someone who had tested positive by the time of this follow-up survey. Direct contact with a COVID-19 positive patient was the most likely reason for the getting tested in the follow-up survey, further illustrating the personal and professional impact the pandemic has had globally.

The original 2020 survey also preceded the development of COVID-19 vaccines. By 2021, vaccines had become widely available, and the vast majority (95%) of respondents had received at least 1 dose by the time of this follow-up survey. However, vaccination rates and overall perception of vaccine efficacy have varied across the world. Governmental and employer vaccination mandates have generated substantial controversy. Even throughout the pandemic, the perception on proper vaccine protocols has changed. Half of the respondents at the time of survey completion said they were required to be vaccinated against COVID-19, and even more said they would require the members of their team to be vaccinated. As we have learned more about the virus, government and private policies have adjusted accordingly.

Surgeon Well-Being

A goal of the survey was to assess how the surgeons’ health status has evolved throughout the pandemic and what factors play a role. In 2020, most of the world was in lockdown and respondents were quarantining at home, with less than 1% having been hospitalized for COVID-19. By the time of the 2021 survey, over 13.1% had taken sick leave for COVID, 2.5% had been hospitalized for COVID, and .4% had required ICU treatment. The pandemic has had a profound impact not only on the physical health of those that have
become infected with the virus, but also the psychological and social health of everyone else.16,17 Although waves of new variants have come and gone, the heightened sense of anxiety and stress throughout the world has remained. Healthcare professionals, specifically surgeons, have been no exception. A look into the state of mental health of clinicians in China found the prevalence of stress and anxiety disorders were 27\% and 23\%, respectively.18 In a cohort of UK surgeons, over 56\% were classified at high risk of developing psychological comorbidity from the stress and disruption caused by COVID-19, with a greater likelihood of developing burnout in the future.19,20 As the pandemic has continued to evolve, so has the way surgeons have decided to allocate their time. Specifically increasing their time resting

Table 1. Personal Demographics.

	2020 Survey	%	2021 Survey	%	P-value
Age (Years)					
25-34	130	14.5	33	12	.311
35-44	344	38.4	90	32.7	.104
45-54	245	27.4	87	31.6	.149
55-64	150	16.8	51	18.5	.460
65+	26	2.9	11	4.0	.353
Sex					
Female	55	6.2	24	8.7	.127
Male	826	93.8	245	89.1	.208
Home demographics					
Spouse at home	773	86.5	231	84.0	.486
Children at home					
0	250	28.2	77	28.0	.927
1	221	24.9	52	18.9	.054
2	266	30.0	82	29.8	.917
3	109	12.3	39	14.2	.358
4+	41	4.6	19	6.9	.119
Estimated home city population					
<100,000	46	5.2	15	5.5	.816
100,000-500,000	185	20.7	45	16.4	.129
500,000-1,000,000	136	15.2	42	15.3	.937
1,000,000-2,000,000	144	16.1	51	18.5	.314
>2,000,000	382	42.8	117	42.5	.954
Geographic region					
Africa	44	5.0	14	5.1	.886
Asia	213	24.2	74	26.9	.265
Australia	8	0.9	2	0.7	.801
Europe	242	27.5	75	27.3	.885
Middle east	77	8.7	36	13.1	.025
North America	152	17.3	25	9.1	<.002
South America/Latin America	145	16.5	49	17.8	.495
Medical comorbidities					
Obesity	103	11.4	35	12.7	.555
Hypertension	156	17.3	46	16.7	.827
Tobacco use	77	8.5	14	5.1	.061
Diabetes	45	5.0	16	5.8	.587
Respiratory illness	35	3.9	12	4.4	.687
Renal failure	5	0.6	4	1.5	.269
Cancer	4	0.4	2	0.7	.924
Cardiac disease	25	2.8	7	2.5	.992
No comorbidities	570	63.2	186	67.6	.178
Total respondents	902	100	275	100	

Calculation of P-values was performed using chi-square, Fisher’s exact test, and ANOVA. Bolded values indicate statistical significance at $P < .05$.

$\# = \text{number of respondents/votes, } \% = \text{percent, } \pm SD = \text{standard deviation.}$
and planning for the future, and decreasing time on practice and medical work. The global crisis has caused many people to re-evaluate many aspects of life, and spine surgeons are no different. Similar to free time, the stress coping mechanisms of the respondents changed over the year. The most common coping strategies employed here by the respondents in order include spending time with family, exercising, reading, listening to music, and watching TV. Although it has always been important, the impact of the pandemic has really highlighted the importance of finding an appropriate coping strategy for every spine surgeon to help deal with the stresses of everyday life and prevent burnout.

Table 2. Practice Demographics.

2020 Survey	#	%	2021 Survey	#	%	P-Value	
Specialty							
Orthopaedics	637	70.6	Orthopaedics	172	62.5	.011	
Neurosurgery	246	27.3	Neurosurgery	93	33.8	<.05	
Trauma	104	11.5	Trauma	30	10.9	.777	
Pediatric surgery	17	1.9	Pediatric surgery	2	0.7	.289	
Other	35	3.9	Other	4	1.5	.076	
Fellowship trained	Yes	645	71.5	Yes	179	65.1	<.02
No	257	28.5	No	93	33.8	.091	
Years since training completion							
Less than 5 Years	161	25.3	Less than 5 Years	43	15.6	.396	
5 to 10 Years	141	22.2	5 to 10 Years	46	16.7	.664	
10 to 15 Years	104	16.4	10 to 15 Years	31	11.3	.907	
15 to 20 Years	117	18.4	15 to 20 Years	27	9.8	.162	
Over 20 Years	113	17.8	Over 20 Years	38	13.8	.575	
Practice type							
Academic/Private combined	204	22.9	Academic/Private combined	71	25.8	.272	
Academic	405	45.4	Academic	114	41.5	.314	
Private	144	16.1	Private	37	13.5	.312	
Public/Local hospital	139	15.6	Public/Local hospital	49	17.8	.255	
Practice breakdown (%)							
Research							
0-25	731	81.9	0-25	221	80.4	.802	
26-50	129	14.5	26-50	36	13.1	.613	
51-75	21	2.4	51-75	9	3.3	.515	
76-100	12	1.3	76-100	5	1.8	.760	
Clinical							
0-25	22	2.5	0-25	17	6.2	<.003	
26-50	87	9.7	26-50	37	13.5	.072	
51-75	194	21.7	51-75	56	20.4	.685	
76-100	590	66.1	76-100	161	58.5	.038	
Teaching							
0-25	668	74.9	0-25	187	68.0	.05	
26-50	152	17.0	26-50	57	20.7	.141	
51-75	50	5.6	51-75	15	5.5	.925	
76-100	22	2.5	76-100	13	4.7	.220	
Total respondents	902	100	Total respondents	275	100		

Calculation of P-values was performed using chi-square, Fisher’s exact test, and ANOVA. Bolded values indicate statistical significance at P < .05. # = number of respondents/votes, % = percent, ± SD = standard deviation.

Patient Care

Hospitals and healthcare facilities worldwide implemented interventions to protect their employees and prioritize the health of their patients. In the beginning stages of the pandemic when the original survey was distributed, outpatient centers had begun transitioning to a virtual platform and most elective procedures were put on pause. The most frequent intervention was the cancellation of elective surgeries (86%), largely to allocate limited materials, such as hospital beds and medical staff, to provide perioperative care and support for patients.
requiring an emergent operation. In the present follow-up survey, the number of elective surgery cancellations dropped to 61%. Other common hospital interventions included cancellations of hospital meetings (66%) and cancellations of educational/academic activities (62%). Our results also indicated that many individuals felt adequate PPE was provided in their institutions. Less than half of respondents reported adequate PPE in the original survey, which likely indicates a vast improvement in the response to the global health crisis by the medical community. When evaluating the perceptions of effectiveness of responses to the pandemic by hospitals, the respondents in the 2021 survey were more likely to believe that acceptable actions were being taken compared to their 2020 counterparts, suggesting an overall improvement in responses made by the healthcare systems.

Despite many spine procedures being considered non-emergent and thus delayed, numerous patients may experience prolonged pain and debilitations by postponing their treatment. Studies have already reported psychological and economic impacts that result from a decrease in physical function and the inability to work. Further studies will be required to evaluate the full impact of treatment delay caused by the COVID-19 pandemic on overall patient well-being.

Table 3. COVID-19 Perceptions.

	2020 Survey		2021 Survey		P-Value
	#/Mean %		#/Mean %		
COVID-19 diagnosis					
Know someone diagnosed	392 46.6		232 84.4		<.001
Personally diagnosed	9 1.1		46 16.7		<.001
COVID-19 testing					
Know how to get tested	701 82.9		0.0		
Personally tested	57 6.7		196 71.3		<.001
Reason for testing					
Direct with COVID-19 positive patient	49 35.5		67 24.4		<.001
Prophylactic	12 8.7		28 10.2		<.001
Demonstrated symptoms	68 49.3		47 17.1		<.001
Ask to be tested	9 6.5		30 10.9		<.001
Mean worry about COVID-19 (1- Not worried to 5- very worried)	3.7 ±1.2		3.5 ±1.1		
Current stressors					
Personal health	358 42.5		97 35.3		.188
Family health	640 76.0		191 69.5		.6329
Community health	370 43.9		91 33.1		.0183
Hospital capacity	352 41.8		69 25.1		<.001
Timeline to resume clinical practice	378 44.9		104 37.8		.227
Government/Leadership	154 18.3		74 26.9		<.001
Return to non-essential activities	116 13.8		67 24.4		<.001
Economic issues	385 45.7		103 37.5		.123
Other	11 1.3		2 0.7		.494
Media perceptions					
Accurate coverage	407 48.5		101 36.7		.013
Excessive coverage	298 35.5		92 33.5		.897
Not enough coverage	135 16.1		60 21.8		.007
Current media sources					
International News- internet	202 26.0		59 21.5		.896
International News- television	72 9.3		24 8.7		.692
National/Local News- internet	224 28.8		62 22.5		.438
National/Local News- television	177 22.8		56 20.4		.787
Newspaper	28 3.6		12 4.4		.312
Social media	75 9.6		12 4.4		.028
Total respondents	902 100		275 100		

Calculation of P-values was performed using chi-square, Fisher’s exact test, and ANOVA.

Bolded values indicate statistical significance at P < .05.

= number of respondents/votes, % = percent, ± SD = standard deviation.
Table 4. Hospital Preparedness.

2020 Survey	#	%	2021 Survey	#	%	P-value
Quarantined Institution			Quarantine Institution			<.001
Formal guidelines in place	452	60.4	Formal guidelines in place	170	61.8	<.001
Adequate PPE provided	415	49.6	Adequate PPE provided	186	67.6	<.001
N95	451	54.0	N95	0	0.0	
Surgical mask	738	88.4	Surgical mask	0	0.0	
Face shield	415	49.7	Face shield	0	0.0	
Gown	491	58.8	Gown	0	0.0	
Full face respirator	95	11.4	Full face respirator	0	0.0	
Ventilators	343	41.0	Ventilators	0	0.0	
Other	55	6.6	Other	0	0.0	
None	33	4.0	None	0	0.0	
Hospital interventions			Hospital interventions			
Quarantine after international travel	507	60.9	Quarantine after international travel	136	49.5	.05
Limitations on domestic travel	483	58.0	Limitations on domestic travel	106	38.5	<.001
Non-essential employees work from home	558	67.0	Non-essential employees work from home	127	46.2	<.001
Cancellation of all educational/Academic activities	689	82.7	Cancellation of all educational/Academic activities	169	61.5	<.001
Cancellation of hospital meetings	674	80.9	Cancellation of hospital meetings	182	66.2	<.001
Cancellation of elective surgeries	714	85.7	Cancellation of elective surgeries	167	60.7	<.001
None of the above	17	2.0	None of the above	21	7.6	<.001
Medical staff furlough			Medical staff furlough			
Yes	307	40.5	Yes	71	25.8	.011
Potentially	165	21.8	Potentially	49	17.8	.858
No	286	37.8	No	102	37.1	.096
Medical staff unemployment			Medical staff unemployment			
Yes	67	8.8	Yes	54	19.6	<.001
Potentially	108	14.2	Potentially	14	5.1	.002
No	586	77.0	No	154	56.0	.007
Perception of hospital effectiveness			Perception of hospital effectiveness			
Acceptable/Appropriate	477	61.4	Acceptable/Appropriate	141	51.3	.639
Excessive/Unnecessary	17	2.2	Excessive/Unnecessary	6	2.2	.949
Disarray/Disorganized	68	8.8	Disarray/Disorganized	16	5.8	.402
Not enough action	215	27.7	Not enough action	62	22.5	.658
Frequency of updates from hospital			Frequency of updates from hospital			
Multiple times/Day	160	20.7	Multiple times/Day	15	5.5	<.001
Once/Day	366	47.3	Once/Day	63	22.9	<.001
2-3 times/Week	106	13.7	2-3 times/Week	46	16.7	.031
Once/Week	44	5.7	Once/Week	42	15.3	<.001
Less than once/Week	10	1.3	Less than once/Week	21	7.6	<.001
Not at all	142	18.4	Not at all	49	17.8	.413
Government			Government			
Cancel elective surgery	646	77.2	Cancel elective surgery	152	55.3	<.001
Shelter/Self-protection	570	68.1	Shelter/Self-protection	117	42.5	<.001
No gatherings >50 people	365	43.6	No gatherings >50 people	112	40.7	.938
No gatherings >100 people	458	58.3	No gatherings >100 people	139	50.5	.946
No gatherings > household	371	44.3	No gatherings > household	97	35.3	.082
Closure of non-essential business	727	86.9	Closure of non-essential business	186	67.6	<.001
Closure of schools/Universities	795	95.0	Closure of schools/Universities	204	74.2	<.001
Closure of dine-in restaurants	711	85.0	Closure of dine-in restaurants	183	66.5	<.001
Closure of public transportation	239	28.6	Closure of public transportation	52	18.9	.011
Restrict elderly to home	426	50.9	Restrict elderly to home	97	35.3	<.001

(continued)
non-essential activity in April of 2020, some healthcare centers experienced a decrease of more than 80% of in-person visits.26,27 This caused healthcare providers to adjust the way they traditionally delivered services to their patients and implement new strategies to keep up with the evolving landscape. Telemedicine rapidly became a tool that allowed providers to manage patients' healthcare from a distance while maintaining social distance and minimizing spread.28 Although there were geographical differences in the rate of telemedicine adoption and utilization, Riew et al24 reported a significant increase in the use of telemedicine globally by spine surgeons in the early stages of the pandemic. Similar to these findings and the global trend, the spine surgeons in the original Louie et al6 survey experienced a rapid rise in telehealth visits in the initial wave of the COVID-19 pandemic.10 However, in our follow-up survey, spine surgeons reported a significant decrease in the amount of percent of clinical visits they conducted over telecommunication per week. Drastically, in 2020 over 25% of the spine surgeons reported that 76-100% of their clinical visits occurred using telecommunication where as only 2.5% of the respondents from the 2021 follow-up attested to more than 76% of their clinical visits occurred using telecommunication. Despite the drop in total percentage of cases occurring over telehealth, 64% of spine surgeons still reported that 0-25% of their weekly clinical visits occurred over telecommunication in during this period. Our results support those of a Delphi study examining telemedicine utilization in spine surgery by Iyer et al21 that telemedicine was initially introduced out of necessity but because of patient satisfaction and cost savings, it is a mainstay. According to Mann et al29 telehealth has transformed the clinical practices of providers across multiple specialties globally. Patients have become accustomed to sharing biometric data and communicating with their provider over electronic platforms with consistently high patient satisfaction levels.29,30 Initially, hesitant to adopt telehealth because of the challenges of conducting a proper neurological exam without direct surgeon-to-physician contact, spine surgeons are confident in the ability of telemedicine to communicate with patients as concluded by Lovecchio et al22 Based on a global study of

Government, Media, and Future Guidelines

From the onset of the pandemic to now, governments have instituted numerous public health policies to curb the spread of the virus. The most common interventions included closures of schools/universities (81%), closure of non-essential businesses (74%), closure of dine-in restaurants (72%), and the cancellation of elective surgeries (60.3%). Responses from the governments were consistent between surveys. Although the effectiveness of these interventions are still uncertain, overall sentiment on effectiveness of governmental policies may be approximated by using survey responses that probe perceptions on how governments have responded to the pandemic, media portrayal and coverage of the pandemic, and current stressors individuals deal with because of the pandemic. Perceptions of government handling of the pandemic changed drastically over the span of a year between surveys. Nearly 60% of the respondents of the original survey thought the government’s efforts were effective while just 35% shared the same belief a year later in the follow-up. Similarly, there was an increase in the percentage of people that believe that further guidelines are needed, suggesting more than just a year is needed for changes to take effect. It is evident that the outbreak has not only impacted surgeons in their private lives but also professionally, as our results indicate decreases in elective surgeries, clinical time, research productivity, and training experiences overall since the start of the pandemic yet increases in each domain from the 2020 survey to the 2021 follow-up. To continue professional growth and provide quality patient care, continued utilization of technological resources is evident. Most respondents reported interest in online spine education and have already incorporated recommended alternatives for clinical visits, such as telecommunication,12 into their practice. However, proper infrastructure must first be implemented to allow general access to these resources to hospitals and patients.

Telemedicine and Virtual Education

After government/public health agencies urged that all outpatient clinics, hospitals, and ambulatory surgical centers limit
Practice Impact	2020 Survey #	%	2021 Survey #	%	P-value
Still performing elective surgery	149	18.5	186	67.6	<.001
Essential/Emergency spine surgery	700	87.3	0	0.0	<.001
% Cancelled surgical cases/Week					
0-25	69	8.6	106	38.5	<.001
26-50	123	15.3	58	21.1	.003
51-75	72	9.0	35	12.7	.017
76-100	539	67.1	33	12.0	<.001
Impact on clinical time spent			Impact on clinical time spent		
Increased	46	5.7	31	11.3	<.001
Decreased	675	84.0	127	46.2	<.001
Stayed the same	83	10.3	72	26.2	<.001
Perceived impact on resident/Fellow training			Perceived impact on resident/Fellow training		
Not currently training residents/Fellows	268	33.7	54	19.6	<.001
Hurts training experience	450	56.5	143	52.0	.539
Improves training experience	30	3.8	4	1.5	.104
No overall impact	48	6.0	30	10.9	.001
Medical duties outside specialty	183	22.8	72	26.2	.038
Warning patients if the surgeon is COVID-19 positive			Warning patients if the surgeon is COVID-19 positive		
Absolutely	595	74.2	147	53.5	<.001
Likely	106	13.2	35	12.7	.663
Less likely	43	5.4	24	8.7	.013
Not at all	58	7.2	26	9.5	.088
Research activities impacted			Research activities impacted		
No research engagement	206	27.0	47	17.1	.042
Complete stop	122	16.0	27	9.8	.105
Decrease in productivity	247	32.4	82	29.8	.431
No change	108	14.2	38	13.8	.416
Increase in productivity	80	10.5	28	10.2	.509
Surgery impact			Surgery impact		
Advise against	561	70.4	185	67.3	.126
Proceed with standard precautions	138	17.3	43	15.6	.892
Absent during intubation/Extubation	322	40.4	35	12.7	<.001
Additional PPE during surgery	428	43.7	57	20.7	<.001
Income impact			Income impact		
Losing income	308	40.5	77	28.0	.057
No impact, salary	244	32.1	88	32.0	.111
No impact, compensation-based	7	0.9	7	2.5	.017
Planned reduction, salary	138	18.1	35	12.7	.291
Planned reduction, compensation-based	64	8.4	14	5.1	.368
% personal income affected			% Personal Income Affected		
0-25	219	28.9	119	43.3	<.001
26-50	226	29.9	73	26.5	.619
51-75	142	18.8	18	6.5	<.001
76-100	170	22.5	10	3.6	<.001
% hospital income affected			% Hospital income affected		
0-25	169	22.3	98	35.6	<.001
26-50	199	26.3	89	32.4	<.001
51-75	207	27.3	22	8.0	<.001
76-100	182	24.0	11	4.0	<.001
Total respondents	902	100	275	100	

Calculation of P-values was performed using chi-square, Fisher’s exact test, and ANOVA. Bolded values indicate statistical significance at P < .05.

= number of respondents/votes, % = percent, ± SD = standard deviation.
spine surgeons by Riew et al., imaging review, initial visits, and follow-up visits were considered feasible to conduct over telemedicine, and, interestingly, the vast majority of surgeons still preferred at least one in-person pre-operative visit. Although limitations exist, telehealth appears to be part of the management options of the spine specialist because of the way it has transformed how providers can offer care to their patients.

Similar to telemedicine, virtual education has transformed due to the COVID-19 pandemic. A consequence of the social distancing and quarantine mandates imposed by public and private governing bodies, essentially all major spine educational conferences were suspended for most of 2020 and into 2021. Originally reported by Louie et al., spine surgeons’ initial interest in online spine education increased in the early stages of the pandemic. In response to increased demand and decreased supply of spine education, virtual or hybrid spine conferences by various societies as well as webinars were developed. Participants of such initiatives have in large part viewed the content as highly valuable to their practice and would continue participating post COVID-19. In a worldwide study by Swiatek et al. found that dedicating more than 25% of their practice to teaching was a predictor for increased interest in online education among spine surgeons. Because most conferences and lectures have returned to being in-person, our follow-up study found that interest in online spine education decreased in 2021. However, clinicians want to see “virtual” education continue post COVID-19 as virtual options would help offset costs of travel to locations, decrease time away from work, and provide more flexible learning options.

Strengths and Limitations

As with any survey study, this follow-up study is not without limitation. The survey was distributed to the current AO Spine surgeon members’ network and received a 7% response rate, a reduction from 23.7% in the original survey. There were no significant differences in the respondents’ demographics between the two surveys. Due to the anonymous nature of the surveys, it was impossible to know if any of the same respondents from the original Louie et al. survey also responded to this follow-up; however, demographic findings were promising because it allowed us to compare between the two different time points. Selection bias could be a possible limitation and explanation for the

Table 6. Personal Impact.

2020 Survey	#/Mean	%± SD	2021 Survey	#/Mean	%± SD	P-Value
Sick leave for COVID-19	4	50.0	Sick leave for COVID-19	36	13.1	<.001
Hospitalization for COVID-19	1	12.5	Hospitalization for COVID-19	7	2.5	<.001
Intensive care unit (ICU) treatment	1	12.5	Intensive care unit (ICU) treatment	1	0.4	.373
Mean personal allocation of time (1- most time, 8- least time)	2.7 ±2.2	Spending time with family	2.8 ±1.9	.496		
Personal wellness	3.8 ±1.9	Personal wellness	4 ±2.0	.131		
Resting	4.3 ±2.0	Resting	4.7 ±1.8	.003		
Future planning	4.6 ±1.8	Future planning	5 ±1.8	.001		
Hobbies	5.2 ±1.9	Hobbies	5.3 ±1.8	.439		
Academic projects/Research	4.6 ±2.1	Academic projects/Research	4.6 ±2.1	1.00		
Community outreach	6.3 ±2.0	Community outreach	6.3 ±2.2	1.00		
Spine practice/Medical center work	4.1 ±2.5	Spine practice/Medical center work	3.1 ±2.4	<.001		
Current stress coping mechanisms	463	Exercise	144	52.4	.764	
Exercise	330	44.8	Music	86	31.3	.106
Meditation/Mindfulness	118	16.0	Meditation/Mindfulness	29	10.5	.265
Tobacco	29	3.9	Tobacco	14	5.1	.146
Alcohol	89	12.1	Alcohol	34	12.4	.236
Research projects	244	33.2	Research projects	52	18.9	.006
Family	578	78.5	Family	166	60.4	.263
Spiritual/Religious activities	116	15.8	Spiritual/Religious activities	35	12.7	.954
Reading	458	62.2	Reading	91	33.1	<.001
Television	394	53.5	Television	84	30.5	<.001
Telecommunication with friends	322	43.8	Telecommunication with friends	63	22.9	<.001
Total respondents	902	100	Total respondents	275	100	

Calculation of P-values was performed using chi-square, Fisher’s exact test, and ANOVA. Bolded values indicate statistical significance at P < .05.

= number of respondents/votes, % = percent, ± SD = standard deviation.
low response rate. Because of the smaller number of respondents in this follow-up, we did not statistically analyze the geographical differences within this second survey. Ultimately, a possible explanation for the difference in response rate is the fact that when the original survey was distributed, a large majority of the respondents had paused their clinical and surgical responsibilities and were quarantined at home, and therefore more likely to take the time to respond. Another limitation is the size of the survey itself. In the follow-up survey, we included 90 questions, up from 73 in the original, which may contribute to survey fatigue and lead to fewer responders. In the original Louie et al.'s survey there was a completion rate of 24% whereas in this follow up there was a completion rate of approximately 6%. We attribute this disparity to surgeons not being in quarantine and returning to their clinical duties by the time this follow-up survey was distributed, as well as an increased number of AO Spine members by almost 1000 more member for this follow-up. Although the responses in resource allocation has changed, various countries were still experiencing waves of COVID-19 and its variants; hence, the level of restrictions and lockdowns may be variable. In addition, the current study presents a univariate analytical approach to the data analyses; however, future efforts will consist of more multivariate approaches to identify unique determinants to impact outcomes. Despite its limitations, this follow-up survey still provides invaluable information on the changing prospective impact the COVID-19 pandemic has had on spine

Table 7. Future Perceptions.
Belief that future guidelines are needed
Yes
No
Unsure
Most effective method for hospital updates
internet webinar
Email
Text message
Flyers
Automated phone calls
Social media outlets
Perceived impact in 1 Year
No change
Heighted awareness of hygiene
Increase use of PPE
Ask patients to reschedule if sick
Increase non-operative measures prior to surgery
Increase digital options for communication
How likely to attend a conference in 1 year
Likely
Not likely
Unsure
% telecommunication clinical visits/Week
0-25
26-50
51-75
76-100
Interest in online spine education
Very interested
Interested
Somewhat interested
Not interested
Total respondents

Calculation of P-values was performed using chi-square, Fisher’s exact test, and ANOVA. Bolded values indicate statistical significance at P < .05.

= number of respondents/votes, % = percent, ± SD = standard deviation.
surgeons worldwide, providing quantifiable metrics and documented testament of what the community has sustained throughout a public health ordeal.

Conclusion

The original survey by Louie et al6 was the first international study to assess the COVID-19 impact among spine surgeons and in fact among any healthcare professionals worldwide. Since that time, there have been many laws and regulations implemented worldwide as a response to minimize mortality and morbidity from the virus. Our follow-up, prospective survey, the first of its kind, highlights distinct personal and practice-based platforms that spine surgeons have responded to or been impacted upon by the pandemic throughout 1 year. Our study also discusses the evolving impact the pandemic has had on telemedicine and virtual education for spine surgeons, which appears to be a mainstay moving forward. Our study provides documented and evolving metrics that may help mitigate and direct handling or expectations of future pandemics among spine surgeons.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Juan N. Barajas, BS https://orcid.org/0000-0002-2063-724X
Gary M. Mallow, MD https://orcid.org/0000-0002-0204-0300
Philip K. Louie, MD https://orcid.org/0000-0002-4787-1538
Michael H. McCarthy, MD, MPH https://orcid.org/0000-0003-2766-6366
Niccole Germscheid, MSc https://orcid.org/0000-0002-8516-2951
Jason PY. Cheung, MBBS, MD https://orcid.org/0000-0002-7052-0875
Mohammad El-Sharkawi, MD https://orcid.org/0000-0001-6177-7145
Dino Samartzis, DSc https://orcid.org/0000-0002-7473-1311

References

1. World Health Organization. COVID-19 weekly epidemiological update, edition 74. 11 January 2022. 2022.
2. Poudel AN, Zhu S, Cooper N, et al. Impact of Covid-19 on health-related quality of life of patients: A structured review. \textit{PLoS One.} 2021;16:e0259164. doi:10.1371/journal.pone.0259164.
3. Nobari H, Fashi M, Eskandari M, Villafaino S, Murillo-Garcia A, Perez-Gomez J. Effect of COVID-19 on health-related quality of life in adolescents and children: A systematic review. \textit{Int J Environ Res Publ Health.} 2021;18:4563. doi:10.3390/ijerph18094563.
4. Spencer J, Jewett C. Twelve Months of Trauma: More than 3 600 US Health Workers Died in COVID’s First Year. London, UK: The Guardian; 2021.
5. Luo M, Guo L, Yu M, Jiang W, Wang H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public – A systematic review and meta-analysis. \textit{Psychiatr Res.} 2020;291:113190.
6. Louie PK, Harada GK, McCarthy MH, et al. The impact of COVID-19 pandemic on spine surgeons worldwide. \textit{Global Spine J.} 2020;10:534-552. doi:10.1177/2192568220925783.
7. Louie PK, Harada GK, McCarthy MH, Albert TJ, An HS, Samartzis D. The global spine community and COVID-19: Divided or United? \textit{Spine (Phila Pa. 1976).} 2020;45: E754-E757. doi:10.1097/brs.0000000000003560.
8. Angotti M, Mallow GM, Wong A, Haldeman S, An HS, Samartzis D. COVID-19 and its impact on back pain. \textit{Global Spine J.} 2022;12:5-7. doi:10.1177/21925682211044168.
9. Nolte MT, Harada GK, Louie PK, et al. COVID-19: Current and future challenges in spine care and education - a worldwide study. \textit{JOR Spine.} 2020;3: e1122. doi:10.1002/jsp.2112.
10. Swiatek PR, Weiner JA, Johnson DJ, et al. COVID-19 and the rise of virtual medicine in spine surgery: a worldwide study. \textit{Eur Spine J.} 2021;30:2133-2142. doi:10.1007/s00586-020-06714-y.
11. Weiner JA, Swiatek PR, Johnson DJ, et al. Spine surgery and COVID-19: The influence of practice type on preparedness, response, and economic impact. \textit{Global Spine J.} 2020;12: 2192568220949183. doi:10.1177/2192568220949183.
12. Weiner JA, Swiatek PR, Johnson DJ, et al. Learning from the past: did experience with previous epidemics help mitigate the impact of COVID-19 among spine surgeons worldwide? \textit{Eur Spine J.} 2020;29:1789-1805. doi:10.1007/s00586-020-06477-6.
13. Sayari AJ, Harada GK, Louie PK, et al. Personal health of spine surgeons can impact perceptions, decision-making and healthcare delivery during the COVID-19 pandemic - a worldwide study. \textit{Neurospine.} 2020;17:313-330. doi:10.14245/ns.2040336.168.
14. Jain VK, Upadhyayaka GK, Iyengar KP, Patralekh MK, Lal H, Vaishya R Impact of COVID-19 on clinical practices during lockdown: a pan india survey of orthopaedic surgeons. \textit{Malays Orthop J.} 2021;15:55-62. doi:10.5704/moj.2103.009.
15. Chan CYW, Chiu CK, Cheung JPY, Cheung PWH, Gani SMA, Kwan MK. The Impact of COVID-19 pandemic on Spine Surgeons: An Asia Pacific Spine Society (APSS) Survey. \textit{Spine (Phila Pa. 1976).} 2020;45:1285-1292. doi:10.1097/brs.0000000000003622.
16. Cascella M, Rajnik M, Cuomo A, et al. \textit{StatPearls. Treasure Island (FL).} Tampa, FL: StatPearls Publishing; 2020.
17. Ornell F, Schuch JB, Sordi AO, Kessler FHP. “Pandemic fear” and COVID-19: Mental health burden and strategies. \textit{Brazilian Journal of Psychiatry.} 2020;42:232-235.
18. Huang JZ, Han M, Luo T, et al. Mental health survey of 230 medical staff in a tertiary infectious disease hospital for COVID-19. Zhonghua lao dong wei sheng zhi ye bing za zhi= Zhonghua laodong weisheng zhiyebing zazhi= Chinese journal of industrial hygiene and occupational diseases. 2020;38:E001-E001.

19. Vijendren A, Yung M, Shiralkar U. Are ENT surgeons in the UK at risk of stress, psychological morbidities and burnout? A national questionnaire survey. The Surgeon. 2018;16:12-19.

20. Dewey C, Hingle S, Goelz E, et al. Supporting Clinicians during the COVID-19 Pandemic. American College of Physicians; 2020:752-753.

21. Iyer S, Bovonratwet P, Samartzis D, et al. Appropriate telemedicine utilization in spine surgery: Results from a delphi study. SpinePhila Pa; 1976:2022;47(8):583-590. doi:10.1097/brs.0000000000004339.

22. Lovecchio F, Riew GJ, Samartzis D, et al. Provider confidence in the telemedicine spine evaluation: Results from a global study. Eur Spine J. 2021;30:2109-2123. doi:10.1007/s00586-020-06653-8.

23. Riew GJ, Lovecchio F, Samartzis D, et al. Spine surgeon perceptions of the challenges and benefits of telemedicine: an international study. Eur Spine J. 2021;30:2124-2132. doi:10.1007/s00586-020-0707-x.

24. Riew GJ, Lovecchio F, Samartzis D, et al. Telemedicine in spine surgery: Global perspectives and practices. Global Spine J. 2021;21925682211022311. doi:10.1177/21925682211022311.

25. Shafi K, Lovecchio F, Riew GJ, et al. Telemedicine in research and training: Spine surgeon perspectives and practices worldwide. Eur Spine J. 2021;30:2143-2149. doi:10.1007/s00586-020-0716-w.

26. Activities C. Initiatives Supporting the COVID-19 Response and the President's Plan for Opening America up Again. Atlanta: Centers for Disease Control and Prevention; 2020.

27. Mann DM, Chen J, Chunara R, Testa PA, Nov O. COVID-19 transforms health care through telemedicine: Evidence from the field. J Am Med Inf Assoc. 2020;27:1132-1135.

28. Cervino G, Fiorillo L, Surae G, et al. SARS-CoV-2 persistence: Data summary up to Q2 2020. Data. 2020;5:81.

29. Mann DM, Chen J, Chunara R, Testa PA, Nov O. COVID-19 transforms health care through telemedicine: Evidence from the field. J Am Med Inf Assoc. 2020;27:1132-1135. doi:10.1093/jamia/ocaa072.

30. Satin AM, Shenoy K, Sheha ED, et al. Spine patient satisfaction with telemedicine during the COVID-19 pandemic: A cross-sectional study. Global Spine J. 2020;12:2192568220965521-2192568220965819.

31. Rasouli JJ, Shin JH, Than KD, Gibbs WN, Baum GR, Baaj AA. Virtual spine: A novel, international teleconferencing program developed to increase the accessibility of spine education during the COVID-19 pandemic. World Neurosurg. 2020;140:e367-e372. doi:10.1016/j.wneu.2020.05.191.