Determination of some biological characteristics of Prussian carp (Carassius gibelio): the example of Bafra Balık lakes (Türkiye)

Biro Baki, Dilara Kaya Öztürk and Gülşen Uzun Gören

DOI: https://doi.org/10.22271/fish.2022.v10.i1a.2638

Abstract
The aim of this study was to identify some biological properties (sex distribution, length frequency distribution, weight frequency distribution, length-weight relationship and condition factor) of Prussian carp (Carassius gibelio), an invasive species in Bafra Fish Lakes (Samsun, Turkey). The study was carried out in Bafra Balık Lakes (Samsun) between January and December 2019. Fish sampling was done monthly and using trammel net. A total of 630 individuals (477 females, 153 males) were examined in the study and the female: male ratio was 1:0.32. The lengths and weights of the fish were measured between 8.6-28.0cm and 10.2-366.53g, respectively. Length-weight relationship for female, male and all sampled Prussian carp was calculated as \(W=0.0146L^{3.0423} \) (\(R^2=0.98 \text{ n}=477 \)), \(W=0.016L^{3.0135} \) (\(R^2=0.97 \text{ n}=153 \)) and \(W=0.0145L^{3.0347} \) (\(R^2=0.96 \text{ n}=630 \)), respectively. The condition factor (CF) of female individuals (1.67±0.01) was higher than the male individuals (1.60±0.01) and the average CF value of all individuals was determined as 1.65±0.01.

Keywords: Carassius gibelio, Prussian carp, length-weight relationship, condition factor

Introduction
Carassius is a genus that includes species very similar to the scaly carp (C. carpio) in terms of morphological appearance. There are three species of this genus in European waters: C. auratus (Linnaeus, 1758), C. carassius (Linnaeus, 1758), C. gibelio (Bloch, 1782) \(^{[1]}\). Of these, C. carassius naturally spreads in inland waters of Europe (including Turkey) \(^{[2, 3]}\). Natural occurrences of C. gibelio was documented throughout Northern Europe \(^{[4]}\). In a study conducted, they stated that the natural distribution area of this species covers a wide area as far as Russia, Europe, Korea and North-East China and Japanese islands \(^{[5]}\).

It was reported that C. gibelio was transported to different environments and spread rapidly over large areas in streams, lakes and ponds from Europe to Asia \(^{[6]}\). Due to this feature, it has started to attract attention in many countries and monitoring studies have intensified in recent years \(^{[7, 8, 9, 10, 11, 12, 13, 14]}\). C. gibelio was reported as invasive in Turkish inland waters \(^{[15]}\) and it stated that the population of this species is increasing rapidly \(^{[16]}\). It is estimated that this species has spread to inland waters during fish stockpiling studies or especially through transboundary streams and C. gibelio was first encountered in Galca Lake in 1986 in the Thrace region of Turkey, located on the European continent waters \(^{[15]}\). Many studies have been conducted on C. gibelio in our country, and these studies have focused on the determination of population density, growth, reproduction, nutrition, meat yield and biochemical composition \(^{[15, 17, 18, 19, 20, 21]}\). In addition to these studies, the aim of this study was to identify some biological properties (sex distribution, length frequency distribution, weight frequency distribution, length-weight relationship and condition factor) of Prussian carp (C. gibelio), an invasive species in Bafra Fish Lakes (Samsun, Turkey).

Materials and Methods
The study was carried out in Bafra Balık Lakes (Samsun) between January and December 2019 (Figure 1). Bafra Balık Lakes is located in the east of Bafra district of Samsun province in the Central Black Sea Region. These lakes consist of six large lagoon lakes, whose surface areas differ from each other and are interconnected during rainy periods, located 20 km away from the district center.
Fish sampling was done monthly and using trammel net. Fish samples were transported to the laboratory of the Faculty of Fisheries and Aquaculture, in Sinop and were made biometric measurements. In the study, the total length of the fish was determined with a 1mm precision ruler and their weights were determined with a 0.1g precision digital balance. For sex determination of the samples, their internal organs were removed and their gonads were separated and examined.

The following formulas were used to calculate the length-weight relationship and the condition factor (CF):

\[W = aL^b \]
\[CF = \frac{W}{L^b} \times 100 \]

where \(W \) = fish weight (g), \(a \) and \(b \) = relationship constants and \(L \) = fish length (cm).

The results are given as mean± standard error. Statistical analysis was performed using the IBM SPSS 21 statistical package program. The differences between values were tested with one-way analysis of variance (ANOVA). The significance value was taken \(p<0.05 \).

This study was conducted in compliance with the rules for animal experiments for scientific purposes and permission was given by the Sinop University Animal Experiments Local Ethics Committee with the permission No. 2019/07 on 13.05.2019.

Results

The length of the female \(C. gibelio \) ranged between 8.6-28.0 cm and individuals with a maximum of 15 cm (13.2%) were encountered (Figure 4-a). In male \(C. gibelio \)’s, it was determined that 17 cm (17.7%) individuals were more and the length range of these individuals ranged between 8.9-24.5 cm (Figure4-b).

Total weight frequency distribution of \(C. gibelio \) in the study is given in Figure 5. It was determined that the weights of the \(C. gibelio \) obtained varied between 10.2 and 366.53g.
When the total weight frequency distribution of *C. gibelio* was evaluated, it was determined that the weight of the individuals was concentrated between 45 and 80 g (28.9%), and individuals weighing more than 220 g (1.8%) were less. Weight frequency distributions of female and male individuals show different intensities (Figure 6).

The weight distribution of female *C. gibelio* ranged from 10.2 to 366.53 g and the weights were concentrated between 10-80 g (28.3%). It was determined that the weights of male *C. gibelio* varied between 10.77-213.99 g and the weights were the highest between 45-80 g (31.4%) and 80-115 g (31.4%). The length-weight relationship graphs of female, male and total *C. gibelio’s* are given in Figure 7.
Fig 7: Length-weight relationship of female (a), male (b) and all C. gibelio (c)

Length-weight relationship for female, male and all sampled C. gibelio’s was calculated as \(W=0.0146L^{3.0423} \) (\(R^2=0.98 \) \(n=477 \)), \(W=0.016L^{3.0135} \) (\(R^2=0.97 \) \(n=153 \)) and \(W=0.0145L^{3.0347} \) (\(R^2=0.96 \) \(n=630 \)), respectively. The b value in the length-weight relationship is statistically different for female, male and all individuals (\(p<0.05 \)). Condition factor (CF) of female, male and all C. gibelio are shown in Table 1. The condition factor (CF) of all individuals ranged between 1.02 and 2.29, with an average of 1.65±0.01.

Table 1. Condition factor (CF) of female, male and all C. Gibelio

	N	Mean	SE	Min-Max	p
Female ♀	477	1.67	0.01	1.68-2.29	<0.05
Male ♂	153	1.60	0.01	1.02-2.04	
All C. gibelio	630	1.65	0.01	1.02-2.29	

When the CF of the sexes was evaluated, the CF of female C. gibelio was greater than that of male C. gibelio. The statistical difference between the CF values of the sexes was significant (\(p<0.05 \)).

Discussion and Conclusion
In this study, it was aimed to determine some biological characteristics of C. gibelio such as female: male ratio, length and weight distribution, length-weight relationship and condition factor, which has been reported in Bafra Balık Lakes (Samsun, Turkey) [24]. The female: male ratio, length-weight values and length-weight relationships determined in different studies with C. gibelio are summarized in Tables 2, 3 and 4, respectively.

Table 2: Studies on the female: male ratio of C. Gibelio

Studing area	N (♀ / ♂)	ratio (♀ / ♂)	Reference
Marmara Lake	142/300	1:2.11	[29]
Eğirdir Lake	329/287	1:1.15	[30]
Zegrzynski Reservoir, Vistula River (Poland)	-	1:0.21	[31]
Eğirdir Lake	112/230	1:2.05	[19]
Inland Waters of Estonia	-	1:0.67-0.85	[13]
Omerli Dam Lake	241/17	1:0.07	[32]
Iznik Lake	210/134	1:0.64	[12]
Lake Pamvotis, Kalamas R., the Ionian Sea basin (Greece)	-	1:0.03	[14]
Bafra Dam Lake	168/5	1:0.03	[33]
Although the length-gibelio in the literature given in Table 3 was similar, and it was determined that the weight distribution of C. gibelio in the present study are similar to the literature. It is stated that female C. gibelio are more dominant in the populations of this species in the contrary, there are studies in the literature in which the male population of C. gibelio is higher. On the contrary, there are studies in the literature in which the male population of C. gibelio is higher.

Table 3: Studies conducted with the length-weight values of C. Gibelio

Study area	N	L	W	Reference
Eğirdir Lake	616	9.0-33.08(ÇB)	42.0-857.5	[34]
Eğirdir Lake	342	12.8-27.3(TB)	40.12-564.19	[19]
Ömerli Dam Lake	258	12.5-35.7(TB)	40.5-860.6	[32]
İznil Lake	344	5.2-32.0(TB)	3.3-565.6	[32]
Bafralik Lake	173	16.9-30.0(ÇB)	125.0-730.0	[33]
Bayersh Lake	482	9.2-26.7(TB)	14.2-492.5	[34]
Eğirdir Lake	1717	7.5-33.3(TB)	8-1073	[35]
Buldan Dam Lake	2325	9.7-25.5(ÇB)	23.6-269.10	[17]
Uluabat Lake	572	8.1-27.3(SB)	14-111	[42]
Aksu River Estuary	128	10.3-30.5(TB)	25-607	[43]
İkizetepeler Dam Lake	480	23.0-34.3(TB)	150.88-622.02	[44]
Gelingülü Dam	344	5.6-27.0(ÇB)	3.8-597	[45]
Ladik Lake	155	13.4-26.5(ÇB)	58-550	[46]
Seyitler Dam Lake	149	14.8-32.5(ÇB)	43.1-807.30	[47]
Seyhan Dam Lake	160	11.1-29.5(TB)	40.10-412.9	[27]
Seyhan Dam Lake	317	10.7-31.0(TB)	26-450	[48]
İznil Lake	3114	7.8-32.2(ÇB)	5-829	[30]
Bayersh Lake	1868	8.5-28.4(TB)	14-408	[51]
Seyhan Dam Lake	530	14.5-32.7(TB)	52-607.46	[54]
Lake Marmara	1058	10.0-27.5(TB)	17.1-378.4	[52]
Lake Marmara	56	7.59-22.85(TB)	6.36-216.6	[53]
Ulugol Plateau Pond	24	6.9-22.5(TB)	3.6-159.8	[53]
Bafra Balık Lake	630	8.6-28.0(TB)	10.2-366.53	Present study

In the study, the minimum and maximum total height values were determined as 8.6 and 28.0cm. The height values found in the present study are similar to the literature (Table 3). In the current study, the weights were between 10.2-366.53 g, and it was determined that the weight distribution of C. gibelio in the literature given in Table 3 was similar. Although the length-weight distribution of the Carassius gibelio in the current study is within the limits given in the literature given in Table 3, the differences arising from the study with natural fish are striking. It is thought that the number of samples used in the studies, the environmental parameters of the lakes from which the samples were taken, and the feeding conditions of the fish affected these differences.
When the length-weight relationship parameters were examined in the study, a, b and r² values were determined as 0.0145, 3.035 and 0.985, respectively. When Table 4 is evaluated, it has been determined that the a value in the current study is similar to the a values of C. gibelio found in Marmara, İznil, Beyşehir, Seyhan Dam, Eğirdir and Ömerli Dam Lake [30, 32, 34, 46, 50, 51, 54]. On the contrary, the a value in different studies conducted in the same lakes was higher than the current study [19, 27, 29, 33, 42, 44, 45, 47, 48, 57, 58]. The b value calculated in this study higher than the b value of C. gibelio studied in Danube River, Bafra Dam, İkizce tepeler Dam, Gelingüllü Dam, Seyhan Dam, Büyük Menderes basin, Beyşehir and Marmara Lake [52, 51, 58, 48, 27, 47, 44, 45, 57, 33]. The length-weight relationship parameters can be affected by factors such as sampling period, nutritional status, height-weight distribution, reproductive period, age, and gonad maturity. It is thought that the differences between the current study and the literature are due to these reasons.

The condition factor (CF) of all individuals (male+female) ranged between 1.02 and 2.29, with an average of 1.65±0.01 (Table 1). As can be seen in Table 4, the condition factor (CF) values of C. gibelio are quite variable in studies. It is thought that the differences between the CF determined in the current study and the CF determined in the other studies with C. gibelio are caused by the season in which the fish were sampled, the environmental conditions, the age, the breeding period, and the gonad development related to it.

Due to the high ecological tolerance and hybridization characteristics of the C. gibelio species, it has negative effects on the natural populations of other fish in the water resources they are included in, and even causes the extinction of the species [13, 59]. Therefore, taking necessary precautions against invasive species in all water resources is very important for sustainable biodiversity. Whatever the reason, determining the biological characteristics of populations of this invasive species, which is dominant in all water resources, is necessary for sustainable biodiversity.

This study includes some biological parameters of C. gibelio in Bafra Balık Lakes (Samsun, Turkey). It is thought that the results obtained will be a source for different studies to be carried out especially on C. gibelio in the future.

Acknowledgements

This work was supported by Sinop University Scientific Research Coordination Unit. Project Number: SUF-1901-18-45, 2018.

References

1. Frose R, Pauly D. Fishbase (world wide electronic publication), retrieved from http://www.fishbase.org. version 2007;(08/2007).
2. Geldiay R, Balık S. Turkey Freshwater Fish, Ege University Faculty of Fisheries Publications, No: 46, E.U. Press, Bornova, Izmir, 532s. (in Turkish). 1999.
3. Szczepkowski JA, Carassius Jarocki. 1822, in: The Freshwater Fishes of Europea, Vol.5/III, Cyprinidae 2 (PartIII Carassius to Cyprinus) and Gasterosteidae (Eds: P. M. Banarecru and H.J. Paepe), Aula-Verlag GmbH Wiebelshaus, 2001:1-78.
4. Kottelat M, Freyhof J. Handbook of European freshwater fishes. Luxembourg: Publications Office of the European Union Publications Office of the European Union 2007;646 s. Doi:10.2779/85903.
5. Zou Z, Cui Y, Gui J, Yang Y. Growth and feed utilization in two strains of gibel carp, Carassius auratus gibelio: paternal effects in a gynogenetic fish, Journal of Applied

Tablo 4: Studies on the length-weight relationship parameters of C. gibelio

Çalışma Alanı	N	a	b	r²	CF	References
Marmara Lake	142/300	0.054	2.80			[55]
Eğirdir Lake	616	0.0165	3.152	0.999	2.50	[50]
Eğirdir Lake	112/230	0.021	3.060		2.52	[49]
Ömerli Dam Lake	258	0.0128	3.088	0.987	-	[52]
İznil Lake	344	0.0088	3.230	0.992	-	[52]
Lake Pamvotis,	-	0.004-0.220	2.33-3.38	0.72-0.99	-	[44]
Bafra Dam Lake	173	0.0265	2.978	0.970	2.49	[33]
Eğirdir Lake	283	0.0151	3.177	0.98	2.53	[50]
Beyşehir Lake	482	0.0139	3.186	0.941	2.21	[34]
Eğirdir Lake	1717	0.016	3.128		-	[35]
Buldan Dam Lake	2325	0.0310	2.870	0.985	1.96	[37]
Uluabat Lake	572	0.026-0.068	2.754-3.068	3.67	3.56	[42]
Danube River	314	0.0298	2.866	0.903	-	[57]
Aksu River Estuary	128	0.0138	3.114	0.976	1.96	[43]
İkizce tepeler Dam	480	0.0617	2.597	0.930	1.49	[44]
Gelingüllü Dam	344	0.19	2.80		-	[45]
Ladik Lake	150	0.017	3.149		-	[46]
Seyitler Dam Lake	149	0.027	2.938		-	[47]
Seyhan Dam Lake	160	0.0519	2.651	0.933	1.81	[38]
Seyhan Dam Lake	317	0.0673	2.257	0.927	-	[48]
Büyük Menderes basin	172	0.036	2.880	0.99	2.0-2.9	[58]
İznil Lake	3114	0.0158	3.125	0.993	2.35	[50]
Beyşehir Lake	1868	0.0175	2.959	0.925	1.5-1.7	[51]
Seyhan Dam Lake	530	0.017	3.010	0.939	-	[54]
Lake Marmara	1058	0.016	2.965	0.986	1.5-2.0	[52]
Bafral Balık Lake	630	0.0145	3.035	0.985	1.65	Present Study

- 69 -
6. Hong YJ, Yu ZJ, Zhou L, Gui JF. A popolation of red-transporter, triploid Carassius auratus, Journal of Fish Biology. 2005;67:1139-1143.

7. Wheeler A. Status of Carassius carassius (L.), in the UK, Fisheries Management and Ecology. 2000;7:315-322.

8. Gabrielyan BK. An Annotated Checklist of Freshwater Fishes of Armenia, The ICLARM Quarterly. 2001;24:23-29.

9. Bogutskaya NG, Naseka AM. An overview of nonindigenous fishes in inland waters of Russia, Proc. Zool. Inst. Russ. Acad. Sci. 2002;296:21-30.

10. Halacka K, Lusková V, Lusk S. Carassius "gibelio" in fish communities of the Czech Republic, Ecohydrology & Hydrobiology. 2003;3(1):133-138.

11. Paschos I, Nathanaïlides C, Tsoumani M, Perdikaris C, Gouva E, Leonards I. Intra and inter-specific mating options for gynogenetic reproduction of Carassius gibelio (Bloch, 1783) in Lake Pamvotis (NW Greece), Belgium Journal of Zoology. 2004;134:55-60.

12. Povž M, Sumer S. A brief review of non-native freshwater fishes in Slovenia, Journal of Applied Ichthyology. 2005;21:316-318.

13. Vetemaa M, Eschbaum R, Albert A, Saat T. Distribution, sex ratio and growth of Carassius gibelio (Bloch) in coastal and inland waters of Estonia (northeastern Baltic Sea). Journal of Applied Ichthyology. 2005;21:287-291. https://Doi.org/10.1111/j.1439-0426.2005.00680.x.

14. Tsoumani M, Liasko R, Moutsaki P, Kagalou I, Leonards I. Length-weight relationship of an invasive cyprinid fish (Carassius gibelio) from 12 Greek lakes in relation to their states. Journal of Applied Ichthyology 2006;22:281-284. https://Doi.org/10.1111/j.1439-0426.2006.00768.x.

15. Özlüç M, Meriş N, Freyhof J. The Distribution of Carassius gibelio (Bloch, 1782) (Teleotei: Cyprinidae) in Thrace (Turkey), Zoology in the Middle East. 2004;31(1):63-66p.

16. İnnal D, Erk'akan F. Effects of exotic and translocated fish species in the inland waters of Turkey, Reviews in Fish Biology and Fisheries. 2006;16(1):39-50.

17. Kalous L, Memiş D, Bohlen J. Finding of triploid Carassius gibelio (Blok, 1780) (Cypriniformes, Cyprinidae) in Turkey, Cybium. 2004;28(1):77-79.

18. Aлагаş Š, Ergüden D, Göksu MZL. Fish Species Detected for the First Time in Seyhan Dam Lake (Adana), I. Balıklancırmıa ve Rezervuar Yönetimi Sempozyumu, 07-09 Şubat, Antalya (in Turkish). 2006.

19. İzci L. Some population parameters of Carassius auratus (L., 1758) in Lake Eğirdir. Turkish Journal of Veterinary and Animal Sciences. 2004;28(1):23-27.

20. Bostancı D, Iskender R, Helli R, Polat N. First Invasive Fish Species Identified in Curi River (Ordu): Carassius gibelio, Turkey Invasive Freshwater Species Workshop: National Action Plan, İstanbul (in Turkish). 2013.

21. Zengin M, Akpinar İÖ, Dağtekín M, Gümüş A, Kılıç ÇÇ. Fishing Population Relations of the Silvery Pond (Carassius gibelio, Bloch, 1782) that settled in the Çıldır Lake Ecosystem and Created a Dynamic Stock, Turkey Invasive Freshwater Species Workshop: National Action Plan, İstanbul (in Turkish). 2013.

22. Bagenal TB, Tesch FW. Age and Growth. In: Methods for Assessment of Fish Production in Fresh Waters (Bagenal, T. B., Ed.), Blackwell Science Publication, Oxford, UK. 1978, 101-136.

23. Ricker WE. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada. 1975;191:1-382.

24. Uğurlu S. Detection of Freshwater Fish Fauna in Samsun Province. Ondokuz Mayıs University, PhD Thesis, 398 s, Samsun (in Turkish). 2006.

25. Aydn N, Gaygusuz Ö, Tarkan AS, Top N, Emirgölü Ö, Gürsoy Gaygusuz Ç. Invasion of freshwater bodies in the Marmara region (northwestern Turkey) by nonnative gibel carp, Carassius gibelio (Bloch, 1782), Turk J. Zool. 2011;35(6):829-836.

26. Lusk S, Lusková V, Halacka K. Prussian carp-25 years since it's natural introduction. Sborník referátů ze 3. české ichtyologické konference. Vodňany, VURH JU. 1998;1998:135-140.

27. Ergüden SA. Determination of Condition Factor and Length Weight Relationship of the Prucian Carp, Carassius gibelio (Bloch, 1782) Inhabiting Seyhan Dam Lake, International Journal of Scientific and Technological Research. 2015;1(1):157-166.

28. Przybyl A, Przybylski M, Spōź A, Juchno D, Szabelska A, Kowalewska K. et al., Sex, size and ploidy ratios of Carassius gibelio from Poland. Aquatic Invasions. 2020;15(2):335-354. https://Doi.org/10.3939/ai.2020.15.2.08.

29. Balık S, Ustaöğlu MR, Sarı HM. Investigation of biogeographical characteristics of Carassius carassius L., 1758 population in Marmara Lake (Salihli). Su Ürünleri Sempozyumu; İzmir, Türkiye. 1991.

30. Balık S, Özkök R, Çubuk H, Uysal R. Investigation of some biological characteristics of the silver crucian carp, Carassius gibelio (Bloch, 1782) population in Lake Eğirdir, Turkish Journal of Zoology. 2004;28:19-28.

31. Boroň A. Karyotypes of diploid and triploid silver crucian carp Carassius auratus gibelio (Bloch, 1783). Cytobios. 1994;80:117-124.

32. Tarkan AS, Gaygusuz Ö, Gürsoy Ç, Acipmar H, Bilge G. A New Predator Species Carassius gibelio (Bloch, 1782) in Marmara Region: Successful or Not, 1. Ulusal Balıklancırmıa ve Rezervuar Yönetimi Sempozyumu, Bildiriler, Kitabı 195-203, Antalya (in Turkish). 2006.

33. Bostancı D, Polat N, Kandemir Ş, Yılmaz Ş. Determination of Condition Factor and Length-Weight Relationship of the Crucian Carp, Carassius gibelio (BLOCH 1782) Inhabiting Bafra Fish Lake. SDÜ fen Edebiyyat Fakültesi Fen Dergisi. 2007;2(2):117-125.

34. Çınar Ş, Çubuk H, Özkök R, Tümgekel C, Çetinkaya S, Erol KG. et al., Growth features of silver crucian carp, (Carassius gibelio) Bloch, 1782 population in Lake Bıyıklı, Turkish Journal of Aquatic Life. 2007;5(8):401-409.

35. Özkök R, Çubuk H, Tümgekel C, Uysal R, Çınar Ş, Küçükkaara R. et al., Growth characteristics of the silvery crucian pond fish (Carassius gibelio Bloch, 1782) population in Lake Eğirdir, Türk Sucul Yaşam Dergisi 3 5, 313-321 (in Turkish). 2007.

36. Papousek I, Vetešník K, Halacka K, Lusková V, Humpl M, Mendel J. Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dýje River floodplain (Czech Republic). Journal of Fish Biology 2008;72:1230–1235. https://Doi.org/10.1111/j.1095-8649.2007.01783.x.
37. Sarı HS, Balık S, Ustaoğlu R, İlhan A. Population Structure, Growth and Mortality of Carassius gibelio (Bloch, 1782) in Buldan Dam Lake, Turkish Journal of Fisheries and Aquatic Sciences. 2008;8:25-29.

38. Şaşı H. The Length and Weight Relations of Some Reproduction Characteristics of Prussian carp, Carassius gibelio (Bloch, 1782) in the South Aegean Region (İzmir-Turkey), Turkish Journal of Fisheries and Aquatic Sciences. 2008;8:87-92.

39. Liasko R, Liousia V, Vrazil E, Papiggioti O, Chortatou R, Abatzopoulos TJ, et al., Biological traits of rare males in the population of Carassius gibelio (Actinoptyeri: Cyprinidae) from Lake Pamvotis (north-west Greece). Journal of Fish Biology. 2010;77:570-584.

40. Lusková V, Lusk S, Halačka K, Vetešník L. Carassius auratus gibelio-the most successful invasive fish in waters of the Czech Republic. Russian Journal of Biological Invasions. 2010;1:176-180. https://doi.org/10.1134/S2075111710030069.

41. Eminişli Ö, Bayramoğlu G, Öztürk D, Yavlıc ÖK, Determination of the gynogenetic reproduction character of Carassius gibelio in Ulubat Lake. Asian J Anim Vet Adv. 2011;6(6):1-6. Doi:10.3923/ajava.648.653.

42. Eminişli Ö, Tarkan AS, Top N, Baş Kurt S, Sülün Ş. Growth and life history traits of a highly exploited population of non-native gibel carp, Carassius gibelio from a Large Eutrophic Lake (Lake Ulubat, NW Turkey): is reproduction the key factor for establishment success?, Turkish Journal of Fisheries and Aquatic Sciences. 2012;12:925-936. Doi:10.4194/1303-2712-v12_4_20. 2012.

43. İnnal D. Age and growth properties of Carassius gibelio (Cyprinidae) living in Aksu River Estuary (Antalya-Turkey), Review of Hydrobiology, 2012;5(2):97-109.

44. Güngör HS. Investigation of Biological Characteristics of the Silvery Pond Carassius gibelio (Bloch, 1782) Population Living in İkizcetepeler Dam Lake, Balikesir University, Master Thesis, in Turkey. 2012.

45. Kirankaya Ş, Ekmençli FG. Life history traits of the invasive population of Prussian Carp, Carassius gibelio (Actinoptyeri: Cypriniformes: Cyprinidae) from Gelingüllü reservoir, Yozgat Turkey, Acta Ichthyologica et Piscatoria. 2013;43:31-40. Doi:http://dx.Doi.org/10.3750/AIP2013.43.1.05.

46. Yazıcıoğlu O, Yılmaz S, Yazıcı R, Polat N. Condition factor, length-weight and length-length relationships of the crucian pond fish, Carassius gibelio (Bloch, 1782), living in Lake Ladik (Samsun-Turkey). Karadeniz Fen Bil Derg. 3(9):72-80 (in Turkish). 2013.

47. Bulut S, Mert R, Algan B, Özbek M, Ünlü B, Konuk M. Several growth characteristics an invasive Cyprinid fish (Carassius gibelio Bloch, 1782), Notulae Scientia Biologicae. 2013;5(2):133 138.

48. Ergüden SA. Age and Growth Properties of Prussian Carp, Carassius gibelio (Bloch, 1782) Living in the Middle Basin of Seyhan River in Adana, Turkey, Pakistan J. Zool. 2015;47(5):1365-1371.

49. Şımková A, Hyršl P, Halačka K, Vetešník L. Physiological and condition-related traits in the gynogenetic-sexual Carassius auratus complex: different investments promoting the coexistence of two reproductive forms? BMC Evolutionary Biology. 2015;15:154. https://doi.org/10.1186/s12862-015-0438-6.