1 Einleitung

„Ich bin der festen Überzeugung, dass mit der rein internen Nutzung von digitalen Zwillingen nicht das volle Potenzial ausgeschöpft wird, sondern, dass das volle Potenzial erst übergreifend ausgeschöpft wird, und ich glaube, dass sich das allgemeine „Mindset“ in diese Richtung entwickelt, weiterhin aber auch noch entwickeln muss.“ (Log1) – Zitat aus der im Rahmen dieser Dissertation durchgeführten Interviewreihe (vgl. Tabelle 1-8)

1.1 Motivation und Problemstellung

Digitale Zwillinge finden derzeit sowohl in der Forschung als auch in der Unternehmenspraxis große Beachtung (Zhao et al., 2019a, S. 1, Kuenzel, Kraus und Straub, 2019, S. 2). Dies spiegelt sich zum einen in der stetig steigenden Anzahl an Publikationen zum Thema digitale Zwillinge wider und zum anderen in den Unternehmen, die den digitalen Zwilling als Teil ihrer zukünftigen Unternehmensstrategie betrachten (Becue et al., 2018, S. 3, Baskaran et al., 2019, S. 987). Der Anstoß für diese Entwicklung liegt vor allem im stetigen Fortschritt im Bereich von Informations- und Kommunikationstechnologien begründet (Uhlemann et al., 2017, S. 115, Um, Weyer und Quint, 2017, S. 15905). Demnach bilden gerade neue Sensortechnologien einen entscheidenden Schlüsselfaktor zur Erzeugung von digitalen Zwillingen (Chhetri et al., 2019, S. 237). Grundsätzlich gibt es in der Literatur verschiedene Definitionen von digitalen Zwillingen, die sich je nach Anwendungsgebiet dieses Konzepts voneinander unterscheiden (Schleich et al., 2017, S. 142, Wagner et al., 2019, S. 89).

Vereinfacht stellt ein digitaler Zwilling eine digitale Repräsentation eines in der Regel physischen Vermögenswerts oder eines Prozesses dar (Tchana, Ducellier und Remy, 2019, S. 546, Botkina et al., 2018, S. 215). Er repräsentiert insbesondere das dynamische Verhalten des jeweiligen physischen Gegenstücks und umfasst die Integration von Daten aus verschiedenen Quellen (Jeon und Suh, 2018, S. 1097, Zhang et al., 2019, S. 119). Diese dynamischen Daten können um historische Daten des jeweiligen Gegenstücks erweitert werden, um eine möglichst ganzheitliche digitale Repräsentation zu erzeugen (Zhang und Ji, 2019, S. 626). Übergeordnetes Ziel von digitalen Zwillingen ist somit die digitale Repräsentation des gesamten Lebenszyklus des jeweiligen Gegenstücks, um so die Entstehung von Informationssilos und Datendoppelungen zu vermeiden (Malakuti et al., 2019, S. 7, Tao et al., 2018, S. 3566). Digitale Zwillinge erlauben somit die strukturierte Abbildung aller relevanten Lebenszyklusdaten und bilden einen vielversprechenden Ansatz, Datenunterbrechungen zwischen einzelnen Lebenszyklusphasen zu vermeiden (Wang und Wang, 2019, S. 3894). Datenunterbrechungen entstehen mit dem Wechsel zwischen den einzelnen Lebenszyklusphasen eines Anlageguts, wodurch Informationssilos entstehen. Ein weiterer Kernaspekt von digitalen Zwillingen ist die Erweiterung aller integrierten Datensätze um Metadaten, die eine vollständige semantische Beschreibung der digitalen Repräsentation erlauben (Rosen et al., 2015, S. 568, Zehnder und Riemer, 2018, S. 4223). Diese Eigenschaft erlaubt eine Kontextualisierung der erfassten Daten und ermöglicht die Verknüpfung zwischen verschiedenen semantischen Standardbeschreibungen sowie Einblicke in die Kommunikationsdetails des physischen Gegenstücks (Um, Weyer und Quint, 2017, S. 15906).
Diese technischen Ausprägungen eines digitalen Zwillings bilden den Ausgangspunkt für eine umfangreiche Aggregation von Daten, die wiederum die Grundlage für detaillierte Analysen bilden (Urbina Coronado et al., 2018, S. 5). Durch die stetige Verbindung zwischen dem physischen Objekt und dem digitalen Zwilling entsteht so die Möglichkeit der kontinuierlichen Zustandsüberwachung (vgl. Khajavi et al. (2019, S. 147413), Karadeniz et al. (2019, S. 1)), der Durchführung von Simulationen (vgl. Bauer, Oliveira Antonie und Kuhn (2019, S. 69), Bilberg und Malik (2019, S. 499)) sowie einer verbesserten Entscheidungsunterstützung auf Grundlage des digitalen Zwillings (vgl. Beregi, Szaller und Kádár (2018, S. 1024), Kunath und Winkler (2018, S. 226)).

Digitale Zwillinge bieten Anwendungsmöglichkeiten in zahlreichen Einsatzgebieten. Insbesondere im Kontext der Fertigung ist der digitale Zwilling von großer Bedeutung und wird daher in der wissenschaftlichen Literatur häufig mit diesem Bereich in Verbindung gebracht (Enders und Hoßbach, 2019, S. 4-5). So bietet der digitale Zwilling in diesem Kontext vielfältige Möglichkeiten, die Effektivität und Produktivität von Produktionssystemen zu steigern und gilt als geeigneter Ansatz zur Realisierung von Smart-Manufacturing-Konzepten (Xu et al., 2019, S. 19990, Zhao et al., 2019b, S. 9461). Des Weiteren bietet die Nutzung von digitalen Zwillingen für Unternehmen die Chance, einen erheblichen Mehrwert aus Daten zu generieren, um so die eigenen Prozesse nachhaltig zu verbessern (Banerjee et al., 2017, S. 425). Dies bezieht sich sowohl auf vertikale als auch auf horizontale Prozessebenen, in denen perspektivisch alle Vermögenswerte miteinander verbunden sein müssen (Posada et al., 2015, S. 5, Weber et al., 2017, S. 173). Insgesamt ist somit der Einsatz von digitalen Zwillingen nicht nur auf die Nutzung von unternehmensinternen Prozessen beschränkt, sondern stellt auch ein geeignetes Instrument für die unternehmensübergreifende Kollaboration dar (Wang und Wang, 2019, S. 3894).

Abbildung 1-1: Aktuelle und zukünftige Nutzung von digitalen Zwillingen (Weber und Grosser, 2019, S. 18-19)

Die unternehmensübergreifende Nutzung von Daten gewinnt im Kontext von digitalen Zwillingen zunehmend an Bedeutung. So sehen die Autoren einer Deteccon-Studie aus dem Jahr 2019 den digitalen Zwilling als einen entscheidenden „Wegbereiter“ für die Etablierung von kollaborativen Netzwerken (Weber und Grosser, 2019, S. 26). Des Weiteren geben innerhalb dieser Studie ca. 77 % der befragten Unternehmen an, den digitalen Zwilling über einen Fünf-Jahres-Horizont vorwiegend unternehmensübergreifend nutzen zu wollen (vgl. Abbildung 1-1). Hemmnisse stellen in diesem Zusammenhang jedoch eine unzureichende Standardisierung und eine fehlende Datensicherheit dar.
sowie eine unzureichende interne und externe IT-Infrastruktur (Weber und Grosser, 2019, S. 22). Diese Aspekte gehen auch mit Erkenntnissen aus der Literatur einher, in denen fehlende Standards in Bezug auf eine unternehmensübergreifende Interoperabilität bemängelt werden (Kunath und Winkler, 2018, S. 230). Dazu kommen ebenfalls fehlende Datensicherheits- und Dateneigentumsaspekte, welche in der Literatur zu digitalen Zwillingen nur selten betrachtet werden (Jones et al., 2020, S. 47, Uhlemann, Lehmann und Steinhilper, 2017, S. 337).

Im Kontext der Plattform Industrie 4.0 ist die unternehmensübergreifende Nutzung von Daten in kollaborativen Netzwerken ein wesentlicher Betrachtungsgegenstand. In diesem Zusammenhang arbeitet die Projektgruppe Collaborative Condition Monitoring der Plattform Industrie 4.0 an der konzeptionellen Ausgestaltung von kollaborativen, datenbasierten Geschäftsmodellen. Ziel dieser Arbeitsgruppe ist die Beantwortung grundlegender Leitfragen, die im Kontext einer kollaborativen Nutzung von Daten von Relevanz sind. Dabei beziehen sich die grundlegenden Leitfragen des Anwendungsfalls auf Aspekte, die vor allem die Motivation und Anreize zur kollaborativen Nutzung von Daten sowie die sichere Nutzung der Daten innerhalb eines kollaborativen Netzwerks fokussieren. Zusätzlich werden bestehende Hemmnisse zur kollaborativen Nutzung von Daten untersucht, die die übergeordnete Motivation zur Bearbeitung des Anwendungsfalls darstellen.

Abbildung 1-2: Vereinfachtes Dreierfraktal eines betrieblichen Ökosystems (Plattform Industrie 4.0, 2020, S. 7)

Der zugrunde liegende Anwendungsfall basiert auf einem Dreierfraktal, bestehend aus einem Komponentenlieferanten, einem Maschinenlieferanten sowie einem Fabrikbetreiber (vgl. Abbildung 1-2). Zwischen diesen Akteuren besteht ein kollaboratives Netzwerk, in dem die Betriebsdaten des Fabrikbetreibers mit dem Maschinen- und Komponentenlieferanten geteilt werden. Übergreifendes Ziel ist dabei die Prognose von Ausfallwahrscheinlichkeiten, welche insgesamt zur Optimierung der Lebensdauer und Zuverlässigkeit der Anlage dient (Plattform Industrie 4.0, 2020, S. 7). Neuartig ist hierbei die Betrachtung einer multilateralen Kollaboration innerhalb des Dreierfraktals (Plattform Industrie 4.0, 2020, S. 5). Der Anwendungsfall des Collaborative Condition Monitorings der Plattform Industrie 4.0 dient im Rahmen dieser Dissertation als fachlicher Anwendungsfall (vgl. Abschnitt 6.1) und erlaubt somit die Berücksichtigung von praxisrelevanten Ansätzen.

Im Kontext von verteilten Systemen gewinnen digitale Zwillinge zunehmend an Bedeutung. Dabei gibt es erhebliche Parallelen zur kollaborativen Nutzung von Daten in sogenannten Datenökosystemen.
Diese sind im Wesentlichen durch verschiedene Netzwerke gekennzeichnet, in denen Akteure miteinander kollaborieren und interagieren, um Daten zu finden, zu konsumieren, zu veröffentlichen oder um Innovationen zu fördern (Oliveira und Lóscio, 2018, S. 4, Azkan et al., 2020a, S. 1). Innerhalb eines Datenökosystems nimmt jeder Akteur eine oder mehrere Rollen wahr, wobei durch die Interaktion der einzelnen Akteure untereinander und den dadurch entstehenden Wettbewerb eine Selbstregulierung des Ökosystems entstehen soll (Oliveira und Lóscio, 2018, S. 4). Um daher die beschriebenen Hemmnisse in Form mangelnder Standards und eines mangelnden Vertrauens in die Infrastruktur zu umgehen, bedarf es einer grundlegenden Dateninfrastruktur, die somit insbesondere den Aspekt der digitalen Souveränität in den Vordergrund stellt (BMWi, 2019, S. 2). Im Rahmen der europäischen Initiative GAIA-X wird die Schaffung einer neutralen Dateninfrastruktur und eines Datenökosystems nach europäischen Werten und Standards angestrebt (BMWi, 2019, S. 3). GAIA-X soll so zukünftig einen souveränen Umgang mit und einen Austausch von Daten in verschiedenen Anwendungsdomen erlauben (Plattform Industrie 4.0, 2020, S. 16). Ein wesentlicher Aspekt solcher Datenökosysteme ist die Nutzung von verteilten und dezentralen Komponenten, was sich ebenfalls in dem Architekturaufbau von GAIA-X widerspiegelt (BMWi, 2020, S. 18). Tabelle 1-1 gibt dabei einen Einblick in die Verwendungszwecke von verteilten Systemen, welche insbesondere den dahinterliegenden Kollaborationsaspekt verdeutlichen.

Tabelle 1-1: Einsatzzwecke von verteilten Systemen nach (Luntovskyy und Gütter, 2020, S. 354)

Einsatzzwecke von verteilten Systemen:
▪ Gemeinsame Nutzung von Daten
▪ Gemeinsame Nutzung von Geräten
▪ Gemeinsame Nutzung von Rechenleistung
▪ Kommunikation der Benutzer eines verteilten Systems

Im Vergleich zu der stetig steigenden Anzahl an Publikationen zu digitalen Zwillingen (vgl. Tao et al. (2019b, S. 2407)) nimmt die Beschreibung einer unternehmensübergreifenden Nutzung von digitalen Zwillingen nur einen geringen Anteil des Forschungsbereiches ein. Tabelle 1-2 gibt dabei einen Überblick über die bisherigen Veröffentlichungen, die konkret eine unternehmensübergreifende Nutzung von digitalen Zwillingen in kollaborativen Netzwerken als Kernaspekt thematisieren.

Ramm et al. (2020) beschreiben die Nutzung des digitalen Zwilling in kollaborativen Netzwerken. Ziel ist dabei, die digitale Repräsentation des gesamten Lebenszyklus einer Maschine mithilfe eines kollaborativen digitalen Zwilling zu ermöglichen. Dieser kollaborative digitale Zwilling erlaubt somit in jeder Lebenszyklusphase die Zusammenarbeit aller an der Wertschöpfung beteiligten Unternehmen. Der digitale Zwilling wird im Rahmen dieser Veröffentlichung als eine „zentrale Plattform zur Kommunikation und Kollaboration“ betrachtet, die „die Interaktion im Wertschöpfungsnetzwerk gezielt unterstützt“ (Ramm et al., 2020, S. 96). Zielgruppe sind in diesem Fall mittelständische Maschinen- und Anlagenbauer, die durch die Nutzung dieser Plattform von einer hohen Prozesssynchronisation profitieren. Insgesamt stellt diese Veröffentlichung die Nutzenpotenziale einer kollaborativen Nutzung von digitalen Zwillingen in den Vordergrund und bietet eine rein deskriptive Beschreibung von kollaborativen digitalen Zwillingen auf einer konzeptionellen Ebene. Weniger betrachtet werden im
Rahmen dieser Veröffentlichung konkrete Hinweise oder Beschreibungen zum Aufbau eines solchen digitalen Zwillingen. Zudem bietet diese Veröffentlichung keine Anweisungen zur Gestaltung von kollaborativen digitalen Zwillingen in Form von präskriptivem Wissen.

Uhlenkamp, Hribernik und Thoben (2020) betrachten ebenfalls die unternehmensübergreifende Nutzung von digitalen Zwillingen. Für Uhlenkamp, Hribernik und Thoben (2020, S. 85) sind unternehmensübergreifende digitale Zwillinge durch eine Form der Kooperation geprägt und „[...] haben Nutzer in mehreren unabhängigen Unternehmen, die über das Produkt in Beziehung zueinander stehen“. Dabei untersuchen die Autoren verschiedene Ebenen der Kooperation, die durch einen digitalen Zwilling ermöglicht werden soll. Kernaspekt dieser Untersuchung ist die Identifizierung von fünf verschiedenen Ausprägungen eines digitalen Zwilling, die sich anhand der jeweiligen Kooperationstiefe voneinander unterscheiden. Diese fünf verschiedenen Ausprägungen setzen sich aus keine Kooperation, minimale Kooperation, eingeschränkte Kooperation, volle Kooperation und vermittelte Kooperation zusammen und sind jeweils mit unterschiedlichen Systemeigenschaften des digitalen Zwilling verbunden. Dabei sind nach den Autoren digitale Zwillinge mit einer hohen Kooperationstiefe durch eine hohe gegenseitige Abhängigkeit der Akteure untereinander gekennzeichnet (Uhlenkamp, Hribernik und Thoben, 2020, S. 85). Insgesamt wird in dieser Veröffentlichung der Fokus auf die jeweiligen Geschäftsmodelle gelegt, die sich aus den verschiedenen Kooperationsstufen eines digitalen Zwilling ergeben. Dies führt schließlich zu der Erkenntnis, dass digitale Zwillinge, insbesondere in Kombination mit Plattformen und Cloud-Konzepten, erst durch den unternehmensübergreifenden Einsatz ihr volles Potenzial erreichen (Uhlenkamp, Hribernik und Thoben, 2020, S. 88). Grundsätzlich bieten Uhlenkamp, Hribernik und Thoben (2020) einen umfangreichen Überblick über die verschiedenen Kooperationsstufen, die ein digitaler Zwilling in einem unternehmensübergreifenden Netzwerk ermöglichen kann. Trotzdem bleibt auch in dieser Veröffentlichung die Beschreibung des technischen Aufbaus solcher digitalen Zwillinge in Form von präskriptivem Wissen aus.

Wang und Wang (2019) beschreiben die Notwendigkeit zum Datenaustausch zwischen den einzelnen Lebenszyklusphasen eines physischen Objekts auf Basis eines digitalen Zwilling. So stellt nach den Autoren jeder Wechsel des Eigentümers einen Datenbruch dar, welcher in letzter Konsequenz zur Bildung von Informationssilos innerhalb der einzelnen Lebenszyklusphasen führt. Auf Basis dieser Problemstellung wird der digitale Zwilling als ein Konzept betrachtet, welches die Entstehung dieser Silos verhindern kann. Nach Wang und Wang (2019, S. 3894) können mithilfe des digitalen Zwilling Daten auch zwischen den Akteuren in den einzelnen Lebenszyklusphasen ausgetauscht werden, sodass diese über einen vollständigen Datensatz des jeweiligen physischen Gegenstückes verfügen. Im Vergleich zu den Veröffentlichungen von Ramm et al. (2020) und Uhlenkamp, Hribernik und Thoben (2020) wird in der von Wang und Wang (2019) eine Form des unternehmensübergreifenden Datenaustauschs thematisiert, die sich aus dem Eigentumsübergang in den einzelnen Lebenszyklusphasen ergibt. Wie schon bei den beiden anderen Veröffentlichungen zuvor bleibt auch hier die konkrete Beschreibung zum Aufbau von unternehmensübergreifend genutzten digitalen Zwillingen aus.

Tabelle 1-2: Veröffentlichungen zur unternehmensübergreifenden Nutzung von digitalen Zwillingen

Autoren	Inhalt	Erkenntnisse
	Erkenntnisse	
	Erkenntnisse	
Insgesamt bilden digitale Zwillinge ein wichtiges Instrument, um Daten über Unternehmensgrenzen hinweg kollaborativ zu nutzen (Tchana, Ducellier und Remy, 2019, S. 546). Trotzdem besteht weiterhin eine erhebliche Forschungslücke zur unternehmensübergreifenden Nutzung dieses Konzepts (Jones et al., 2020, S. 47). So fokussieren die wenigen Veröffentlichungen in diesem Bereich eher konzeptionelle Ideen, ohne konkrete Gestaltungsansätze aufzuziehen. Obwohl auch die in Tabelle 1-2 beschriebenen Publikationen wertvolle Einblicke und erste Ideen für den kollaborativen Einsatz von digitalen Zwillingen bieten, beschreiben diese allenfalls deskriptives Wissen und bieten keine präskriptiven Gestaltungsansätze zur Instanzierung dieses Konzepts. Darüber hinaus fehlen in den meisten Beiträgen Perspektiven und Ansichten aus der Industrie, die eine ganzheitliche Sicht auf dieses Themengebiet ermöglichen.

Dies bildet den Ausgangspunkt im Rahmen dieser Dissertation, Gestaltungsprinzipien für verteilte digitale Zwillinge zu entwickeln. Das Konzept von verteilten digitalen Zwillingen orientiert sich dabei an den in Tabelle 1-1 dargestellten Einsatzzwecken von verteilten Systemen. Demnach müssen verteilte digitale Zwillinge die gemeinsame Nutzung von Daten, Geräten und Rechenleistungen ermöglichen sowie eine Kommunikation der Akteure eines verteilen Systems untereinander. Dies erfordert jedoch die Berücksichtigung besonderer Gestaltungsprinzipien, die es im Rahmen dieser Dissertation zu identifizieren gilt. Die dazu erforderlichen Erkenntnisse werden im Rahmen einer umfangreichen Literaturanalyse, einer Interviewreihe mit Industrieprofessionals und auf Basis einer Instanzierung eines verteilten digitalen Zwilling erhoben. Das genaue Forschungsziel dieser Dissertation wird im nächsten Abschnitt detailliert erläutert.

1.2 Forschungsfragen

Ziel der vorliegenden Dissertation ist die Entwicklung von Gestaltungsprinzipien für verteilte digitale Zwillinge aus einer ingenieurwissenschaftlichen Perspektive. Ausgangspunkt bildet die Durchführung einer umfangreichen Literaturanalyse zu dem Themengebiet des digitalen Zwilling. Ein wesentlicher Aspekt ist dabei die Identifizierung von deskriptiven Merkmalen digitaler Zwillinge, die einen detaillierten Einblick in deren konzeptionellen Aufbau erlauben. Darüber hinaus liegen keine fundierten Kenntnisse über die Gestaltung von digitalen Zwillingen für die Nutzung in verteilten Systemen vor. Die Ableitung von Gestaltungsprinzipien für verteilte digitale Zwillinge umfasst eine umfangreiche Untersuchung der Literatur im Rahmen der Taxonomiegestaltung, eine zusätzliche Anforderungsanalyse aus der Industrie sowie die Betrachtung einer bestehenden Instanzierung eines verteilten digitalen Zwillinges. Tabelle 1-3 gibt einen Überblick über die drei Forschungsfragen dieser Dissertation.
Tabelle 1-3: Forschungsfragen der Dissertation

Forschungsfrage	Beitrag	Kapitel	
I	Was sind die zentralen, kennzeichnenden Merkmale und Eigenschaften von digitalen Zwillingen?	Entwicklung einer Taxonomie zu den grundlegenden Dimensionen und Charakteristika von digitalen Zwillingen	4
II	Wie lauten Gestaltungsprinzipien für verteilte digitale Zwillinge auf Basis von Anforderungen aus der Industrie?	Entwicklung von Gestaltungsprinzipien für verteilte digitale Zwillinge auf Basis von qualitativen Experteninterviews	5
III	Wie lauten Gestaltungsprinzipien für verteilte digitale Zwillinge auf Basis einer instanziierbaren Lösung?	Entwicklung von Gestaltungsprinzipien für verteilte digitale Zwillinge auf Basis einer bestehenden Instanziierung	5

Forschungsfrage I:

Was sind die zentralen, kennzeichnenden Merkmale und Eigenschaften von digitalen Zwillingen?

Die erste Forschungsfrage dieser Dissertation beschäftigt sich mit den grundlegenden Dimensionen und Charakteristika von digitalen Zwillingen. Ausgangspunkt dieser Forschungsfrage bildet der Mangel an deskriptiver Literatur zu digitalen Zwillingen. So werden im Zuge der Beantwortung von Forschungsfrage I verschiedene Veröffentlichungen vorgestellt und untersucht, die einen Überblick über den konzeptionellen Aufbau von digitalen Zwillingen geben. Dies bildet die Grundlage für eine umfangreiche Literaturrecherche nach vom Brocke et al. (2009), welche die Untersuchung von insgesamt 233 Veröffentlichungen zum Thema digitale Zwillinge umfasst. Neben der umfangreichen Literaturre analyse werden zusätzlich qualitative Experteninterviews durchgeführt, die die literaturbasierte Wissensbasis um praxisrelevantes Wissen erweitern. Taxonomien und insbesondere morphologische Taxonomien ermöglichen die Darstellung der grundlegenden Struktur und Anordnung von Objekten, wodurch sie besonders für die Beantwortung von Forschungsfrage I geeignet sind (Ritchey, 2006, S. 793). Das methodische Grundmodell zur Entwicklung der Taxonomie von digitalen Zwillingen bildet das Vorgehen nach Nickerson, Varshney und Muntermann (2013). Die Entwicklung der Taxonomie umfasst insgesamt fünf Iterationen, wobei die ersten drei Iterationen auf Basis der identifizierten Literatur durchgeführt werden und die letzten beiden auf den qualitativen Experteninterviews beruhen. Die finale Taxonomie besteht aus insgesamt zwölf Dimensionen und 27 Charakteristika (vgl. Tabelle 4-7) und bildet die Grundlage für die Strukturierung der Gestaltungsprinzipien innerhalb der Forschungsfragen II und III.

Forschungsfrage II:

Wie lauten Gestaltungsprinzipien für verteilte digitale Zwillinge auf Basis von Anforderungen aus der Industrie?
Forschungsfrage II thematisiert die Entwicklung von Gestaltungsprinzipien für verteilte digitale Zwillinge auf Grundlage von qualitativen Experteninterviews. Die Interviewreihe umfasst die Befragung von insgesamt 18 Industriexperten aus unterschiedlichen Branchen. Dabei werden die ersten 15 Experteninterviews für die Ableitung der Gestaltungsprinzipien genutzt. Die weiteren drei dienen zur Evaluierung der Gestaltungsprinzipien mithilfe der fünf Kriterien zur Wiederverwendbarkeit nach Ivivi, Rotvit Perlt Hansen und Haj-Bolouri (2020, S. 12). Grundlage für die Strukturierung der Gestaltungsprinzipien sind die im Rahmen von **Forschungsfrage I** entwickelten Dimensionen und Charakteristika der Taxonomie von digitalen Zwillingen. Die methodische Grundlage für die Entwicklung der Gestaltungsprinzipien bildet das Vorgehensmodell nach Möller, Guggenberger und Otto (2020b). Dabei wird im Rahmen von **Forschungsfrage II** der unterstützende Ablauf gewählt, der die Entwicklung der Gestaltungsprinzipien auf einer umfangreichen Wissensbasis vorsieht.

Forschungsfrage III:

Wie lauten Gestaltungsprinzipien für verteilte digitale Zwillinge auf Basis einer instanzierbaren Lösung?

Die Beantwortung von **Forschungsfrage III** beinhaltet die Ableitung von Gestaltungsprinzipien auf Basis einer bestehenden Instanzierung eines verteilten digitalen Zwillings. Bei der Instanzierung handelt es sich um eine Verbundkomponente aus einer proprietären IoT-Architektur und einer Industrie-4.0-Verwaltungsschale, die beide in die Struktur der International Data Spaces eingebettet sind. Diese Instanzierung wird im weiteren Verlauf der Dissertation als RIOTANA-Verwaltungsschale bezeichnet, wobei RIOTANA für *Real Time Internet of Things Analytics* steht und die IoT-Architektur beschreibt. Der konzeptionelle Aufbau der RIOTANA-Verwaltungsschale wird dabei in die im Rahmen von **Forschungsfrage I** entwickelte Taxonomie von digitalen Zwillingen eingeordnet. Dies ermöglicht eine strukturierte Ableitung von Gestaltungsprinzipien anhand der Dimensionen und Charakteristika. Methodische Grundlage für die Entwicklung der Gestaltungsprinzipien bildet, wie schon im Rahmen von **Forschungsfrage II**, das Vorgehensmodell nach Möller, Guggenberger und Otto (2020b). Jedoch wird hier der Ablauf zur nachträglichen Ableitung der Gestaltungsprinzipien auf Basis einer Instanzierung genutzt.

1.3 Forschungsmethode

Übergeordnetes Ziel dieser Dissertation ist die Ableitung von Gestaltungsprinzipien auf Basis von zwei verschiedenen Forschungsansätzen. Die dazu gewählte Forschungsmethode muss daher in der Lage sein, die Forschungsansätze sinnvoll zu integrieren und gleichzeitig die Möglichkeit bieten, eine relevante Wissensbasis für die Anwendung von Informationstechnologien in einem organisatorischen Kontext zu liefern (Hevner und March, 2003, S. 111). Daher basiert der methodische Aufbau der vorliegenden Dissertation auf der *Design Science Research Methodology* nach Peffers et al. (2007). Im weiteren Verlauf dieser Dissertation wird dabei das Vorgehen als *DSR-Methode* bezeichnet. Ausgangspunkt für das hier gewählte Vorgehen bildet das Paradigma der Gestaltungswissenschaft nach Hevner et al. (2004, S. 75). Die Fragestellung, wie etwas gestaltet werden muss, beschreibt eine wesentliche Grundlage im Kontext der Gestaltungswissenschaften und gewinnt im Kontext der Wirtschaftsinformatik bei der Erstellung von IT-Artefakten ebenfalls zunehmend an Bedeutung (Hevner et al., 2004, S. 77, Carlsson et al., 2011, S. 2). Grundlegende Artefakte im Rahmen der
Gestaltungswissenschaften bilden Modelle, Methoden, Konstrukte und Instanzierungen (March und Smith, 1995, S. 253).

Abbildung 1-3: DSR-Methode zur Entwicklung von Gestaltungsprinzipien für verteilte digitale Zwillinge nach Peffers et al. (2007)

Im Rahmen der DSR-Methode nach Peffers et al. (2007) werden gängige Abläufe der gestaltungsorientierten Forschung synthetisiert und in insgesamt sechs Schritte aufgeteilt (Rhyn und Blohm, 2017, S. 2660). So besteht die Methode aus den Schritten Motivation, Lösungsansatz, Gestaltung und Entwicklung, Demonstration, Evaluierung und Kommunikation (Peffers et al., 2007, S. 1). Abbildung 1-3 zeigt dabei die Einordnung der im Rahmen dieser Dissertation relevanten Schwerpunkte in die DSR-Methode nach Peffers et al. (2007).

Die grundlegende Motivation zur Erstellung dieser Dissertation bildet der Mangel an präskriptivem Wissen zu verteilten digitalen Zwillingen. Generell ist das Forschungsfeld zur unternehmensübergreifenden Nutzung von digitalen Zwillingen, im Vergleich zur stetig steigenden Zahl an Publikationen zu digitalen Zwillingen, nur unzureichend ausgeprägt. Daraus leitet sich der Lösungsansatz ab, Gestaltungsprinzipien für verteilte digitale Zwillinge zu entwickeln. Gestaltungsprinzipien sind ein geeignetes Mittel zur Formulierung von präskriptivem Gestaltungswissen und bieten darüber hinaus eine ausreichende Abstraktionsmöglichkeit zur Nutzung über verschiedene Anwendungen hinaus (Chandra Kruse, Seidel und Purao, 2016, S. 37, McAdams, 2003, S. 357, Hanseth und Lyytinen, 2004, S. 209). Ausgangspunkt für den Schritt der Gestaltung und Entwicklung ist zunächst die Beschreibung des Konzepts des digitalen Zwillings im Allgemeinen. In diesem Kontext wird eine Taxonomie von digitalen Zwillingen entwickelt, die die grundlegenden Dimensionen und Charakteristika von digitalen Zwillingen beschreibt. Diese bildet den konzeptionellen Ausgangspunkt zur Entwicklung von Gestaltungsprinzipien für verteilte digitale Zwillinge in den beiden Forschungsansätzen I und II. Die Unterteilung der DSR-Schritte Gestaltung und Entwicklung,
Demonstration und Evaluierung in die beiden Forschungsansätze basiert auf dem Vorgehensmodell nach Möller, Guggenberger und Otto (2020b) zur Entwicklung von Gestaltungsprinzipien. Im Rahmen von Forschungsansatz I werden die Gestaltungsprinzipien auf Basis von qualitativen Experteninterviews abgeleitet und anschließend evaluiert. Im Rahmen von Forschungsansatz II werden die Gestaltungsprinzipien auf Basis einer bestehenden Instanzierung nachträglich abgeleitet. Im Zuge der Demonstration und Evaluierung wird erläutert, wie sich die Gestaltungsprinzipien aus den beiden Forschungsansätzen unterscheiden und wie die Instanzierung von den Gestaltungsprinzipien aus Forschungsansatz I profitieren kann. Den letzten Schritt im Rahmen der DSR-Methode nach Peffers et al. (2007) bildet die Kommunikation. Innerhalb dieses Schritts werden die bereits publizierten Ergebnisse beschrieben sowie die im Rahmen dieser Dissertation erarbeiteten Erkenntnisse diskutiert.

1.4 Qualitative Forschung

Grundsätzlich gilt es, im Rahmen dieser Dissertation umfangreiches Expertenwissen zu berücksichtigen, welches zur Erweiterung der Wissensbasis um praxisrelevante Aspekte dient. Dabei bedarf es eines methodischen Vorgehens zur Durchführung und Auswertung der qualitativen Experteninterviews, da diese sowohl für die Entwicklung der Taxonomie in Kapitel 4 als auch für die Entwicklung von Gestaltungsprinzipien innerhalb von Kapitel 5 von Relevanz sind. In Tabelle 1-4 wird dabei die Durchführung der Datenerhebung anhand der Kontrollliste für qualitative Studien nach Pratt (2008, S. 503) beschrieben. Diese Kontrollliste besteht aus vier übergeordneten Fragen, die einen Eindruck vermitteln, welche Elemente im Rahmen einer qualitativen Studie notwendig sind und wie diese adressiert werden.

Tabelle 1-4: Kontrollliste für qualitative Studien nach Pratt (2008, S. 503)

1. Warum sollte untersucht werden?
a. Warum sind hier qualitative Forschungsmethoden geeignet?
Im Gegensatz zu quantitativen Forschungsmethoden geht es im Rahmen dieser Dissertation um die individuelle Befragung von Industriexperten. Das hier gewählte Vorgehen ist qualitativ, da es an wissenschaftlicher Forschung in Bezug auf die Bestimmung von Dimensionen und Charakteristika von digitalen Zwillingen sowie an Gestaltungsprinzipien für verteilte digitale Zwillinge mangelt.
b. Wird eine Theorie erstellt, ausgearbeitet oder überprüft?
Im Rahmen dieser Untersuchung werden sowohl eine Taxonomie als auch Gestaltungsprinzipien entwickelt. Dabei wird die Taxonomie für die grundlegende Beschreibung von digitalen Zwillingen genutzt, wohingegen die Gestaltungsprinzipien für die Instanzierung von verteilten digitalen Zwillingen eingesetzt werden können.

2. Warum sollte in diesem Kontext untersucht werden?
a. Wodurch ist der untersuchte Kontext geprägt?
Der hier untersuchte Forschungskontext ist insbesondere durch den Aspekt einer unternehmensübergreifenden Nutzung von digitalen Zwillingen in verteilten Systemen gekennzeichnet. Der Untersuchungskontext ist daher insgesamt von der Ermittlung von