Serum cystatin C levels are negatively correlated with post-stroke cognitive dysfunction

Dao-Xia Guo1,4, Zheng-Bao Zhu1,4, Chong-Kc Zhong1,1, Xiao-Qing Bu1,2, Li-Hua Chen1, Tan Xu1, Li-Bing Guo1, Jin-Tao Zhang4, Dong Li1, Jian-Hui Zhang1, Zhong Ju1, Chuang-Shiuang Chen1, Jing Chen1,2, Yong-Hong Zhang1, Jian He1,4
1 Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu Province, China
2 Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
3 Department of Neurology, Siping Central Hospital, Siping, Jilin Province, China
4 Department of Neurology, the 88th Hospital of People’s Liberation Army, Taian, Shandong Province, China
5 Department of Internal Medicine, Feicheng City People’s Hospital, Feicheng, Shandong Province, China
6 Department of Neurology, Tongliao Municipal Hospital, Inner Mongolia Autonomous Region, China
7 Department of Neurology, Kerqin District First People’s Hospital of Tongliao City, Inner Mongolia Autonomous Region, China
8 Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA

Funding: This study was supported by the National Natural Science Foundation of China, No. 81673263 (to YHZ), Ministry of Science and Technology of China, No. 2016YFC1307300 (to YHZ), and a Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (to YHZ).

Graphical Abstract

Cystatin C might be a protective factor for cognitive dysfunction after ischemic stroke

638 patients were from the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS).
According to Mini-Mental State Examination score, 308 (52.9%) participants had post-stroke cognitive dysfunction at 3 months.
The correlation between serum cystatin C and cognitive dysfunction could be modified by renal function status.
Cystatin C might be a protective factor for post-stroke cognitive dysfunction.
A negative linear dose-response correlation between cystatin C and cognitive dysfunction in stroke patients who have normal renal function.

Abstract

Stroke is the leading cause of death and long-term disability worldwide, and cognitive impairment and dementia are major complications of ischemic stroke. Cystatin C (CysC) has been found to be a neuroprotective factor in animal studies. However, the relationship between CysC levels and cognitive dysfunction in previous studies has revealed different results. This prospective observational study investigated the correlation between serum CysC levels and post-stroke cognitive dysfunction at 3 months. Data from 638 patients were obtained from the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). Cognitive dysfunction was assessed using the Mini-Mental State Examination (MMSE) at 3 months after stroke. According to the MMSE score, 308 patients (52.9%) had post-stroke cognitive dysfunction. After adjusting for potential confounding factors, the odds ratio (95% CI) of post-stroke cognitive dysfunction for the highest quartile of serum CysC levels was 0.54 (0.30–0.98), compared with the lowest quartile. The correlation between serum CysC and cognitive dysfunction was modified by renal function status. We observed a negative linear dose-response correlation between CysC and cognitive dysfunction in patients with normal renal function (P<0.044), but not in those with abnormal renal function. Elevated serum CysC levels were correlated with a low risk of 3-month cognitive dysfunction in patients with acute ischemic stroke, especially in those with normal renal function. The current results suggest that CysC is a protective factor for post-stroke cognitive dysfunction, and could be used to treat post-stroke cognitive dysfunction. The CATIS study was approved by the Institutional Review Boards at Soochow University from China (approval No. 2012-02) on December 30, 2012, and was registered at ClinicalTrials.gov (identifier No. NCT01840072) on April 25, 2013.

Key Words: abnormal renal function; cognitive dysfunction; cystatin C; ischemic stroke; Mini-Mental State Examination; neural regeneration; neuroprotective effect; normal renal function

Chinese Library Classification No. R449; R741; R446
Introduction

Cognitive dysfunction is one of the most common complications of stroke (Tatemichi et al., 1994; Patel et al., 2002; Zhang et al., 2018; He et al., 2019), and can lead to disability, affect the ability to carry out activities of daily life, and impair social functioning (Barker-Collo et al., 2010; Cumming et al., 2013). The development of post-stroke cognitive dysfunction may involve many factors (Guo et al., 2015). Although some factors, including age, brain infarcts, stroke severity, education levels, and medical history, are known risk factors for post-stroke cognitive dysfunction (Desmond et al., 2000; Henon et al., 2001; Vermeer et al., 2003), some unknown potential factors still need to be studied to effectively predict the risk of cognitive dysfunction after stroke.

Cystatin C (CysC) is an inhibitor of cysteine protease, which is produced by almost all human cells and secreted into the blood (Coll et al., 2000; Fliser and Ritz, 2001). Some animal studies have demonstrated that CysC protects against neuronal death (Olsson et al., 2004; Tizon et al., 2010), and exogenous CysC has been found to play a protective role in ischemic brain injury by reducing infarct volume in a mouse focal ischemia/reperfusion injury model (Yang et al., 2015). There have been inconsistent reports about the associations between CysC levels and cognitive dysfunction in the general population (Wada et al., 2010; Slinin et al., 2015; Zhang et al., 2016). Furthermore, the association between serum CysC levels and post-stroke cognitive dysfunction has not been studied. We therefore investigated the association between serum CysC levels and subsequent cognitive dysfunction after stroke onset in a sample of patients from the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS) study.

Subjects and Methods

Study design and patients with ischemic stroke

This prospective observational study was embedded within the CATIS study, a multicenter, single-blind, randomized clinical trial in China (He et al., 2014; Bu et al., 2016). In this pre-planned ancillary study (Bu et al., 2016), 582 participants were included in the current analysis (Figure 1 and Table 1).

The Institutional Review Boards at Soochow University from China (approval No. 2012-02) approved the present study on December 30, 2012, as well as ethical committees of the participating hospitals. Informed consent was obtained from all patients’ legal guardians when the patients were enrolled in the CATIS study. The CATIS trial was registered at ClinicalTrials.gov (identifier No. NCT01840072) on April 25, 2013.

Data acquisition

We acquired the baseline data on demographic characteristics at the time of enrollment, as well as medication history and clinical features (Brott et al., 1989; Pickering et al., 2005). Blood samples were collected, and serum CysC levels were tested by laboratory technicians blinded to the clinical data and outcomes of the study participants. The detection method is listed in Table 2 (Grubb et al., 2010).

Outcome assessment

The primary outcome was cognitive dysfunction (Zhong et al., 2018) at 3 months after stroke onset, which was assessed using the 20-item Mini-Mental State Examination (MMSE) (Folstein et al., 1975), score < 27 (Pendlebury et al., 2010; Webb et al., 2014; Delavar et al., 2017)) by trained neurologists. The MMSE has been translated into Chinese, and this evaluation tool has been validated as a screening tool for cognitive function and dementia in China.

Statistical analysis

The statistical analysis is shown in Table 3.

Results

Baseline characteristics of patients with acute ischemic stroke

We compared the characteristics between patients enrolled and those excluded at baseline (Table 4). The patients included in the present study did not have significantly different characteristics from those excluded at baseline. Among the patients in our study (n = 582, mean age 60.5 ± 10.4 years), the median serum CysC concentration was 0.77 mg/L (interquartile range, 0.65–0.91 mg/L). A total of 112 (19.2%) patients had abnormal renal function. The characteristics based on the serum CysC quartiles at baseline are presented in Table 5.

The association between serum CysC and cognitive dysfunction

The median (interquartile range) MMSE score was 26 (22–29) at the 3-month follow up. According to MMSE categories, 308 (52.9%) participants had cognitive dysfunction. After adjustment for potential confounders in models one, two, and three, the odds ratios of cognitive dysfunction associated with the highest quartile of serum CysC levels were 0.56 (95% confidence interval (CI), 0.32, 0.98; P_trend = 0.044), 0.52 (95% CI, 0.29, 0.93; P_trend = 0.029), and 0.54 (95% CI, 0.29, 0.98; P_trend = 0.029).
Cystatin C (mg/L) levels are negatively correlated with post-stroke cognitive dysfunction. Neural Regen Res 15(5):922-928. doi:10.4103/1673-5374.268928

Guo DX, Zhu ZB, Zhong CK, Bu XQ, Chen LH, Xu T, Gao LB, Zhang JT, Li D, Zhang JH, Ju Z, Chen CS, Chen J, Zhang YH, He J (2020) Serum cystatin C levels are negatively correlated with post-stroke cognitive dysfunction. Neural Regen Res 15(5):922-928. doi:10.4103/1673-5374.268928

Discussion

In this pre-planned ancillary study of the CATIS study, high CysC levels at baseline were independently correlated with a decreased risk of cognitive dysfunction 3 months after acute ischemic stroke. In the secondary analysis, we further found that renal function status modified this association. In addition, there was a negative linear dose-response correlation between CysC and cognitive dysfunction in patients with normal renal function, but not in those with abnormal renal function. These results suggest that serum CysC might be a protective factor for cognitive dysfunction after stroke, and that this protective effect is modified by renal function status.

Table 1 Design, setting, and participants information in CATIS study and the present study

Variables Information	Variables Information
CATIS study	CATIS study
Participants and participaing hospitals	A multicenter, single-blind, blinded end-points randomized clinical trial in 26 hospitals across China (n = 4071)
Brief introduction	In the CATIS study, 4071 patients with an adjudicated diagnosis of ischemic stroke by computed tomography or magnetic resonance imaging of the brain within 48 hours after symptom onset were recruited from August 2009 to May 2013.
Inclusion criteria	1. Age ≥ 22 years
	2. Having ischemic stroke confirmed by computed tomography or magnetic resonance imaging of the brain within 48 h of symptom onset
	3. Having an elevated systolic blood pressure between 140 and 220 mmHg
Exclusion criteria	1. Having a systolic blood pressure ≥ 220 mmHg or diastolic blood pressure ≥ 120 mmHg
	2. Having severe heart failure, acute myocardial infarction, unstable angina, atrial fibrillation, aortic dissection, cerebrovascular stenosis, resistant hypertension, and deep coma
	3. Having been treated with intravenous thrombolytic therapy
Pre-planned ancillary study based on CATIS	CATIS trial participants were systemically selected prior to randomization from seven participating hospitals for cognitive function assessment at their 3-month follow-up visit. Eighty to 100 patients were recruited consecutively from each participating hospitals and the recruitment was completed by November 2012. A total of 660 patients were included in the pre-planned ancillary study.
Patients selection	At the 3-month visit, 15 patients were lost to follow-up and 7 patients were deceased. A total of 638 participants who completed the cognitive function tests at 3 months were included in the present analysis.
Loss to follow-up	A total of 56 participants refused to offer blood samples and some collected samples were hemolyzed in storage or transport, a total of 582 participants were finally included in the present analysis.

CATIS: China Antihypertensive Trial in Acute Ischemic Stroke (He et al., 2014; Bu et al., 2016).
Several studies have reported a correlation between CysC levels and cognitive dysfunction. Guo et al. (2010) found a correlation between CysC and cognitive dysfunction, as well as cerebral small vessel disease, in 604 community-based elderly people in Japan. In Wada et al.’s study, participants with higher CysC levels seemed to have lower MMSE scores, but this finding was not statistically significant. Slinin et al. (2015) reported that CysC levels and cognitive dysfunction presented a U-shaped association in older women after ten years, but this finding was not statistically significant. However, there have been no reports on the correla-

Table 2 Details of data collection and outcome assessment

Variables	Details of method
Baseline data	
Stroke severity	Stroke severity was assessed using the National Institutes of Health Stroke Scale by trained neurologists at baseline
Ischemic stroke subtypes	Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification criterion was used to classify the ischemic stroke subtypes according to the symptoms and imaging data of the patients 1. Large-artery atherosclerosis (Thrombotic) 2. Cardiac embolism (Embolic) 3. Small-vessel occlusion (Lacunar)
Education	Educational attainment was assessed as 0–17 magnitude from the uneducated to higher education.
Blood pressure	Three blood pressure measurements were obtained at baseline while the patient was in the supine position using a standard mercury sphygmomanometer according to European Society of Cardiology guidelines.
Routine laboratory determinations	Routine laboratory determinations (fasting plasma glucose, blood lipids, etc.) were tested for all enrolled patients in each participating hospital at admission
Renal function	Assessment of renal function was based on estimated glomerular filtration rate calculated using the Chronic Kidney Disease Epidemiology Collaboration creatinine equation with adjusted coefficient of 1.1 for the Chinese population. According to the Kidney Disease: Improving Global Outcomes, we defined normal renal function as estimated glomerular filtration rate ≥ 90 mL/min per 1.73 m² and abnormal renal function as estimated glomerular filtration rate < 90 mL/min per 1.73 m².
Cystatin C test	
Blood sample collection	Blood samples were collected after at last 8 h of fasting within 24 h of hospital admission. All serum samples were separated and frozen at −80°C in the Central Laboratory of School of Public Health in Soochow University, China until laboratory testing.
Cystatin C assay kit	Serum Cystatin C levels were determined with a Cystatin C assay kit by latex enhanced immunoturbidimetric method (Sichuan Maker Biotechnology Co., Ltd., China), and the Cystatin C calibrator was the primary reference material ERM-DA471/IFCC for cystatin C assays
Quality control	The range of Cystatin C measurement was from 0.13 to 7.80 mg/L. Intra- and inter-assay coefficients of variation were less than 3.9% and 4.8%, respectively.
Outcome assessment	
Study outcome	The study outcome was cognitive impairment at 3 months after stroke onset assessed by trained neurologists using the Mini-Mental State Examination. The MMSE contains 20 items that test cognitive performance in domains including orientation, registration, attention and calculation, recall, language, and visual construction. MMSE has been translated into Chinese and validated as a screening tool for cognitive impairment and dementia in the Chinese population. In this analysis, a score of < 27 on the Mini-Mental State Examination indicated cognitive impairment

Table 3 Statistical analysis

Variables	Details of statistical analysis
Baseline characteristics	Baseline characteristics were compared between the four groups using the chi-square test, variance or Kruskal-Wallis tests when appropriate.
Logistic regression analysis	Multiple adjusted logistic regression analysis was used to estimate the risk of cognitive impairment by calculating odds ratio (OR) and 95% confidence interval (CI).
Model 1 adjusted for age, sex, baseline National Institutes of Health Stroke Scale scores, education, current smoking, alcohol drinking, systolic blood pressure, estimated glomerular filtration rate, body mass index, time from onset to randomization, ischemic stroke subtype, and family history of stroke.	
Model 2 included the factors in model 1 as well as the use of antihypertensive treatment and hypoglycemic treatment.	
Model 3 included the factors in model 2 as well as medical history of hypertension, medical history of diabetes mellitus, medical history of hyperlipidemia, and medical history of coronary heart disease.	
Potential covariates for cognitive impairment were selected based on prior knowledge.	
Effect modification by renal function	We tested the statistical significance of cystatin C quartiles × renal function status on the cognitive impairment in multivariable logistic model by the likelihood ratio test.
We further evaluated the pattern and magnitude of associations between serum cystatin C and cognitive impairment using a logistic regression model with restricted cubic splines among the patients without or with normal renal function, with four knots (at the 5th, 35th, 65th, and 95th percentiles).	
Statistical software	Statistical analysis was conducted using SAS statistical software (version 9.4, Cary, NC, USA).

All P values were two-tailed, and a significance level of 0.05 was used.
Cystatin C levels are negatively correlated with post-stroke cognitive dysfunction. Neural Regen Res 15(5):922-928. doi:10.4103/1673-5374.268928

Guo DX, Zhu ZB, Zhong CK, Bu XQ, Chen LH, Xu T, Guo LB, Zhang JT, Li D, Zhang JH, Ju Z, Chen CS, Chen J, Zhang YH, He J (2020) Serum cystatin C levels are negatively correlated with post-stroke cognitive dysfunction.

Lower CysC levels can also induce post-stroke cognitive dysfunction, but the correlation between CysC levels and cognitive dysfunction was not statistically significant in patients with abnormal renal function. Our findings do not contradict the detrimental effects of renal dysfunction on cognitive function (Ben Assayag et al., 2017) and may have two important clinical implications. First, CysC level should be measured at hospital admission to predict for post-stroke cognitive dysfunction and adopt corresponding treatments. Second, CysC could be considered as a target drug therapy for post-stroke cognitive dysfunction, especially for those with normal renal function. However, further large-scale prospective cohort studies are warranted to replicate our observations, and intervention trials are needed to validate our hypothesis. Our study also suggests that the range of normal CysC values should be studied in both healthy people and patients with ischemic stroke.

Several potential pathophysiological pathways could explain the mechanisms by which the increased CysC levels were associated with a decreased risk of post-stroke cognitive dysfunction. CysC may be an endogenous neuroprotectant. It may exert its neuroprotective effect by preserving lysosomal integrity, which could induce ischemic tolerance and might be of great value for stroke treatment (Fang et al., 2017).

Our study has several strengths. First, this observational study recruited data from individuals who participated in the CATIS trial, which had precise quality controls in data acquisition and outcome appraisal. Second, the relevant covariates were controlled in the present study, which provides a more valid, appropriate, and rigorous evaluation of the correlation between serum CysC levels and cognitive dysfunction after ischemic stroke. Several limitations of our study need to be considered. First, a selection bias might exist, as the participants were from a random sample of the CATIS trial. However, we found that the patients in our study had similar baseline characteristics to patients of the China National Stroke Registry (Luo et al., 2014).

Continuous variables are expressed as the mean ± standard deviation, or as the median (interquartile range). Categorical variables are expressed as the frequency (percent). Baseline characteristics were compared between the four groups using the chi-square test, variance or Kruskal-Wallis tests, where appropriate.
Table 6 Odds ratios (ORs) and 95% confidence interval (CIs) for the risk of cognitive impairment according to cystatin C quartiles

Cystatin C (mg/L)	Total (n = 582)	< 0.65 (n = 136)	0.65–0.77 (n = 143)	0.77–0.91 (n = 152)	≥ 0.91 (n = 151)	\(P_{\text{trend}} \)
Demographic						
Age (yr)	60.5±10.4	57.4±10.2	59.1±9.7	60.4±10.1	64.9±10.0	
Sex (male)	405 (69.6)	87 (64.0)	105 (73.4)	102 (67.1)	111 (73.5)	
Education	7.7±4.1	8.5±4.1	8.1±3.8	7.0±4.0	7.2±4.2	
Current cigarette smoking	220 (37.8)	55 (40.4)	47 (32.9)	59 (38.8)	59 (39.1)	
Current alcohol drinking	196 (33.7)	54 (39.7)	55 (38.5)	50 (32.9)	37 (24.5)	
Clinical features						
Time from onset to randomization	10.0 (5.0, 24.0)	9.0 (4.5, 24.0)	10.0 (5.0, 22.5)	12.0 (4.0, 24.0)	10.5 (5.8, 24.0)	
Baseline systolic blood pressure (mmHg)	167.3±16.6	165.6±18.4	167.4±16.3	167.1±15.2	168.7±16.5	
Baseline diastolic blood pressure (mmHg)	98.3±10.0	98.6±10.5	99.4±8.8	97.9±10.5	97.3±10.3	
Body-mass index (kg/m²)	24.9±3.1	24.6±2.5	25.1±3.2	25.3±3.4	24.4±3.0	
Baseline National Institute of Health Stroke Scale score	4.0 (2.0, 7.0)	4.0 (2.0, 7.0)	4.0 (3.0, 7.0)	4.0 (2.0, 7.0)	4.0 (3.0, 7.0)	
Estimated glomerular filtration rate (mL/min per 1.73 m²)	105.5 (94.9, 113.6)	112.2 (105.3, 119.9)	108.8 (97.9, 115.7)	103.8 (95.8, 110.5)	94.2 (74.7, 104.8)	
Medical history						
History of hypertension	448 (77.0)	97 (71.3)	111 (77.6)	116 (76.3)	124 (82.1)	
History of hyperlipidemia	42 (7.2)	11 (8.1)	12 (8.4)	9 (5.9)	10 (6.6)	
History of diabetes mellitus	97 (16.7)	29 (21.3)	22 (15.4)	20 (13.2)	26 (17.2)	
History of coronary heart disease	61 (10.5)	17 (12.5)	11 (7.7)	14 (9.2)	19 (12.6)	
History of stroke	96 (16.5)	30 (22.1)	24 (16.8)	24 (15.8)	18 (11.9)	
Ischemic stroke subtype						
Thrombotic	371 (63.8)	91 (66.9)	88 (61.5)	103 (67.8)	89 (58.9)	
Embolic	23 (4.0)	2 (1.5)	4 (2.8)	6 (4.0)	11 (7.3)	
Lacunar	197 (33.9)	45 (33.1)	53 (37.1)	46 (30.3)	53 (35.1)	
Abnormal renal function†	112 (19.2)	6 (4.4)	17 (11.9)	25 (16.5)	64 (42.4)	
Treatment						
Receiving immediate blood pressure reduction	282 (48.5)	68 (50.0)	75 (52.5)	67 (44.1)	72 (47.7)	
Use of hypoglycemic treatment	97 (18.0)	22 (16.7)	25 (18.5)	18 (13.5)	32 (22.9)	

Continuous variables are expressed as mean ± standard deviation, or as median (interquartile range). Categorical variables are expressed as frequency (percent). † Abnormal renal function: estimated glomerular filtration rate < 90 mL/min per 1.73 m² (Levey et al., 2011).

Table 5 Characteristics of participants according to serum Cystatin C

Cystatin C (mg/L)	Total population	MMSE score < 27 \(n \) (%)	eGFR < 90 mL/min per 1.73 m² \(n \) (%)	eGFR ≥ 90 mL/min per 1.73 m² \(n \) (%)
Total population	582	72 (52.9)	8 (47.1)	69 (53.1)
Model 1	1	0.80 (0.48–1.34)	0.13 (0.01–2.31)	0.90 (0.53–1.53)
Model 2	2	0.73 (0.43–1.23)	0.13 (0.01–2.33)	0.82 (0.48–1.43)
Model 3	3	0.73 (0.43–1.23)	0.15 (0.01–2.8)	0.84 (0.48–1.47)

*The total population and subgroup analysis. †MMSE score < 27 indicates cognitive impairment. Model 1: Adjusted for age, sex, baseline National Institute of Health Stroke Scale scores, education, current smoking, alcohol drinking, systolic blood pressure, eGFR, body mass index, time from onset to randomization, ischemic stroke subtype, and family history of stroke; Model 2: adjusted for Model 1 and further adjusted for use of antihypertensive treatment and hypoglycemic treatment; Model 3: adjusted for Model 2 and further adjusted for medical history (hypertension, diabetes mellitus, hyperlipidemia, and coronary heart disease). eGFR: Estimated glomerular filtration rate; MMSE: Mini-Mental State Examination.

values of 0.78 and 0.84, respectively (Cumming et al., 2010). Moreover, cognitive function at baseline was also largely correlated with the National Institutes of Health Stroke Scale score and other characteristics at admission that were adjust-
our findings in patients with ischemic stroke. Elevated serum CysC levels in the acute stage of ischemic stroke were correlated with a decreased risk of 3-month cognitive dysfunction, especially in those with normal renal function. CysC therefore is a protective factor for cognitive dysfunction after ischemic stroke. In addition, CysC levels may have a range of normal values in clinical practice. Further prospective studies are needed in other samples to replicate our findings.

Acknowledgments: We thank the study participants and their clinical staff at all participating hospitals for their support and contribution to this project.

Author contributions: Study conception: YHZ, JH; study design, intellectual content definition: YHZ, JH; DEX, ZRZ, CCKZ, ZQX, XQZ, LHC, TX, LG, JZL, LHZ, JZC, ZCZ, experimental studies implementation: DZX, ZBX, CXQ, LHC, TX; data acquisition: DZX, ZBX, CXQ, LHC, TX, LG, JZL, LHZ, JZC, CSC, JC, YHZ; data analysis and manuscript preparation: DZX, ZRB, statistical analysis: DZX, ZBX, CCKZ, manuscript editing and review, guarantor: DZX, ZRB, YHZ. YHZ had full access to all of the data in the study and take responsibility for the integrity of the data. All authors approved the final version of the manuscript.

Conflicts of interest: None declared.

Financial support: This study was supported by the National Natural Science Foundation of China, No. 81673263 (to YHZ), Ministry of Science and Technology of China, No. 2016YFC1307030 (to YHZ), and a Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (to YHZ). All authors declared that the financial supports did not affect the paper's views and statistical analysis of the objective results of the research data and their reports.

Institutional review board statement: This prospective observational study was approved by the institutional review boards at Soochow University from China (approval No. 2012-02) on December 30, 2012, and was registered at ClinicalTrials.gov (identifier No. NCT01840072) on April 25, 2013.

Informed consent statement: Informed consent has been obtained from the patients' legal guardians when the patients were enrolled in the CATIS study. In CATIS study, the authors certify that they have obtained all appropriate patient consent forms. In the forms, the legal guardians have given their consent for the patients' images and other clinical information to be reported in the journal. The patients' legal guardians understand that the patients' names and other data will not be published and due efforts will be made to conceal their identity.

Reporting statement: This study followed the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) Statement.

Biostatistics: The statistical methods of this study were reviewed by Hong-Yang Zhang.

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement: The data that support the findings of this study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate.

Peer review:Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commer- cial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed with the identical terms.

References

Barker-Collo S, Feigin VL, PARAG V, LAWES CM, Senior H (2010) Auckland Stroke Out- comes Study. Part 2: Cognition and functional outcomes 5 years poststroke. Neurology 75:1608-1616.

Ben Assayag E, Eldor A, Krasney AD, Kluger M, Enkh Tshetser Tris กรอบ, Teva, Tse, Ng, ZHAO X, Cheng M, Liu H, Chen J, Yang ZH, He J (2018) Serum cystatin C levels are negatively correlated with post-stroke cognitive dysfunction. Neural Regen Res 13(5):922-928. doi:10.4103/1673-5374.3274892

Coll A, Eoty A, Alvarez L, Pepe O, Quinto L, Saurina A, Vera M, Perea C, Darnell A (2000) Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 36:29-34.

Cumming TR, Marshall RS, Laurier LJ (2013) Stroke, cognitive function, and rehabilita- tion: still an incomplete picture. Int Stroke J 8:38-45.

Cumming TR, Blomstrand C, Bertrand H, Linden T (2010) The NIH stroke scale can catalyse cognitive function after stroke. Cerebrovasc Dis 30:67-14.

Delavan H, Jonsson AC, Lovestav H, Iwarsson S, Elmståhl S, Norrving B, Lindgren A (2010) Cognitive function in stroke: a population-based study. Stroke 41:2735-2740.

Devarajan P, Moroney JT, Pak MC, Sano M, Mohr JP, Abou-Samra B, Tseng CL, Chan S, Williams JR, Remien RH, Hauser WA, Stern Y (2000) Frequency and clinical determinants of dementia after ischemic stroke. Neurology 54:1124-1131.

Eberle R, Hertzberg V, et al. (1989) Measurements of acute cerebral infarction: a clinical- pathologic study of 244 brain infarcts and the risk of dementia and cognitive decline. Stroke 20:1575-1580.

Elevated serum CysC levels in the acute stage of ischemic stroke were correlated with a decreased risk of 3-month cognitive dysfunction, especially in those with normal renal function. CysC therefore is a protective factor for cognitive dysfunction after ischemic stroke. In addition, CysC levels may have a range of normal values in clinical practice. Further prospective studies are needed in other samples to replicate our findings.