Small-x Resummations for the Structure Functions F_{2p}^p, F_{pL}^p and $F_{2\gamma}^\gamma$

J. Blümlein* and A. Vogt†

*DESY–Zeuthen, Platanenallee 6, D–15735 Zeuthen, Germany
† Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D–97074 Würzburg, Germany

Abstract. The numerical effects of the known all-order leading and next-to-leading logarithmic small-x contributions to the anomalous dimensions and coefficient functions of the unpolarized singlet evolution are discussed for the structure functions $F_{2p}^p(x, Q^2)$, $F_{pL}^p(x, Q^2)$, and $F_{2\gamma}^\gamma(x, Q^2)$.

Introduction

The evolution kernels of the deep-inelastic scattering (DIS) structure functions contain large logarithmic contributions for small Bjorken-x. The effect of resumming these terms to all orders in α_s can be consistently studied in a framework based on the renormalization group (RG) equations, which describes the mass factorization. In this framework, the evolution equations of fixed-order perturbative QCD are generalized by including the resummed small-x contributions to the respective anomalous dimensions and Wilson coefficients [1–4] beyond next-to-leading order in α_s (NLO). The numerical impact of these higher-order contributions has been investigated for the non-singlet nucleon structure functions F_{2p}^{p-n} and $F_{3\nu}^{N}$ [5], $g_{1\nu}^{p-n}$ [5,6] and $g_{5}^{\gamma Z}$ [7]; for the polarized singlet quantity g_{1S}^{p} [8], and for the unpolarized singlet structure functions F_{2S} [9–11] and F_{pLS} [10]. F_{2S} and F_{pLS} have been studied using different RG-based approaches as well [12].

In the present note we extend a previous account [7] by considering, besides the resummed next-to-leading logarithmic small-x (NLx) quark terms of ref. [2], also the recently derived NLx contributions $\propto N_f$ to the anomalous

1) Talk presented by J. Blümlein. To appear in: Proceedings of the 5th International Workshop on Deep Inelastic Scattering and QCD (DIS97), Chicago, April 1997

© 1997 American Institute of Physics
dimension γ_{gg} [3] and their impact on F_2^p. Furthermore, we briefly discuss the numerical resummation effects on the evolution of F_L^p and the photon structure function F_2^γ. Details of the calculations may be found in ref. [10].

The NLx Contributions $\propto N_f$ to γ_{gg}

These terms were calculated in ref. [3]. In the $\overline{\text{MS}}$–DIS scheme they read [10]

$$
\gamma_{gg,NL}^q = \gamma_{gg,NL}^{Q_0} + \frac{\beta_0}{4\pi} \alpha_s d \ln R(\alpha_s) + \frac{C_F}{C_A} [1 - R(\alpha_s)] \gamma_{gg,NL}^{Q_0} \\
\equiv \alpha_s \sum_{k=1}^{\infty} \left[\frac{N_f}{6\pi} \left(d_{gg,k}^{q(1)} + \frac{C_F}{C_A} d_{gg,k}^{q(2)} \right) + \frac{\beta_0}{4\pi} \hat{r}_k \right] \left(\frac{\alpha_s}{N - 1} \right)^{k-1},
$$

with $\gamma_{gg,NL}^{Q_0}$ being the N_f contribution in the Q_0 scheme [13]. N denotes the usual Mellin variable, $\overline{\alpha_s} \equiv C_A \alpha_s / \pi$, and $R(\alpha_s)$ is defined in ref. [2]. $\gamma_{gg,NL}^q$ contains terms $\propto C_F/C_A$ in both schemes, whereas the β_0-contribution originates in transformation from the Q_0 scheme to the $\overline{\text{MS}}$–DIS scheme. Numerical values for the coefficients $d_{gg,k}^{q(1,2)}$ and \hat{r}_k are given in Table 1.

k	$d_{gg,k}^{q(1)}$	$d_{gg,k}^{q(2)}$	\hat{r}_k
1	-1.000000000 E+0	0.000000000 E+0	0.000000000 E+0
2	-3.833333333 E+0	0.000000000 E+0	0.000000000 E+0
3	-2.299510376 E+0	0.000000000 E+0	0.000000000 E+0
4	-5.065605818 E+0	3.205485075 E+0	9.61645224 E+0
5	-3.523670351 E+1	8.56870514 E-0	-3.246969702 E+0
6	-3.218245315 E+1	1.83544765 E+1	2.281241061 E+1
7	-1.060268680 E+2	8.63283009 E+1	1.654162989 E+2
8	-4.835159484 E+2	1.92408636 E+2	-2.469139930 E+0
9	-5.806186371 E+2	4.96234497 E+2	7.458249428 E+2
10	-2.176371931 E+3	1.79474281 E+3	2.784859262 E+3
11	-7.553679737 E+3	4.02332019 E+3	1.50501272 E+3
12	-1.158215080 E+4	1.13655938 E+4	1.81320928 E+4
13	-4.328579102 E+4	3.58963882 E+4	4.899274185 E+5
14	-1.269309428 E+5	8.41252988 E+4	6.109247725 E+5
15	-2.392549581 E+5	2.45609713 E+5	3.984470167 E+5
16	-8.49557573 E+5	7.16857201 E+6	9.205515787 E+5
17	-2.262541206 E+6	1.76458723 E+6	1.783326920 E+6
18	-4.974873276 E+6	5.16784417 E+6	8.347774614 E+6
19	-1.648990863 E+7	1.44300988 E+7	1.842662795 E+7
20	-4.222994214 E+7	3.70226358 E+7	4.535538189 E+7

Table 1: Numerical values of the expansion coefficients for $\gamma_{gg,NL}^{DIS}$ in eq. (1).
Less Singular Small-x Contributions to γ

The small-x resummed anomalous dimension matrix $\hat{\gamma}^{\text{res}}$ does not comply with the energy-momentum sum rule for the parton densities. Several prescriptions have been imposed for restoring this sum rule beyond NLO [9–11], e.g.,

\begin{align}
A : \hat{\gamma}^{\text{res}}(n, \alpha_s) & \rightarrow \hat{\gamma}^{\text{res}}(n, \alpha_s) - \hat{\gamma}^{\text{res}}(0, \alpha_s) \\
B : \hat{\gamma}^{\text{res}}(n, \alpha_s) & \rightarrow \hat{\gamma}^{\text{res}}(n, \alpha_s) (1 - n) \\
D : \hat{\gamma}^{\text{res}}(n, \alpha_s) & \rightarrow \hat{\gamma}^{\text{res}}(n, \alpha_s) (1 - 2n + n^3).
\end{align}

The difference between the results obtained with these prescriptions allows for a rough estimate of the possible effect of the presently unknown higher-order terms less singular at small-x ($n \equiv N-1 \rightarrow 0$).

The Resummed Evolution of F_2^{ep} and F_L^{ep}

The numerical effect of the known small-x resummations on the behavior of the proton structure functions F_2 and F_L is illustrated in Fig. 1. For both the NLO and the resummed calculations, the MRS(A') DIS-scheme parton densities have been employed as initial distributions at $Q_0^2 = 4$ GeV2, together with $\Lambda_{\overline{MS}}^{(4)} = 231$ MeV [14]. They behave like $xg, xq \sim x^{-0.17}$ at small x, with the quark part rather directly constrained by present HERA F_2 data.

Figure 1: The resummed small-x evolutions of the proton structure functions F_2 and F_L compared to the NLO results. The dotted curve in the F_2 part represents the contribution of $\gamma_{gg,\text{DIS}}^{\text{res}}$ only. The possible impact of (presently unknown) less singular higher-order terms is indicated, cf. eq. (2) and the discussion in the text.
The resummation effects on $F_2(x, Q^2)$ at small x are displayed in Fig. 1 (a). Note the huge effect arising from the NLx quark anomalous dimensions [2] and its large uncertainty due to unknown less singular terms. The impact of $\gamma_{gq, NL}^\gamma$ [3] is displayed separately. It amounts to less than 3% over the full x-range shown. It will be interesting to see to which extent the forthcoming complete NLx anomalous dimensions [15] will modify these results.

The longitudinal structure function $F_L(x, Q^2)$ is considered in Fig. 1 (b). Obviously substantial contributions can also be expected from subleading small-x terms in the coefficient functions C_L. In fact, these uncertainties are large. Thus both for the small-x resummed contributions to anomalous dimensions and coefficient functions further subleading terms need to be calculated. Further insight into the interplay of leading and less singular terms in N may also be gained from the structure of the fixed-order anomalous dimensions and coefficient functions. Besides the known NLO result, particularly the yet unknown 3-loop anomalous dimensions are of interest here.

The Resummation of the Small-x Contributions to F_2^γ

The evolution of the photon structure functions is, at the lowest order in α_{em} considered here, governed by an inhomogeneous generalization of the hadronic evolution equations. At the present resummation accuracy [1,2] the additional anomalous dimensions $\gamma_{q\gamma}$ and $\gamma_{g\gamma}$ do not receive any non-vanishing higher-order small-x contributions [10]. Hence the resummation effect on the photon-specific inhomogeneous solution originates solely from the resummed homogeneous evolution operator.

![Figure 2: The small-x evolution of the photon structure function F_2^γ in NLO and using the NLx resummed anomalous dimensions.](image)
The resummed evolution of the structure function F_2^γ is compared to the NLO results in Fig. 2. The NLO GRV parametrization has been used for the initial distributions at $Q_0^2 = 4 \text{ GeV}^2$, together with $\Lambda_{\overline{\text{MS}}}^{(4)} = 200 \text{ MeV}$ [16]. The overall small-x behavior, presented in Fig. 2 (a), is rather similar to the hadronic case, due to the dominance of the homogeneous solution. Note, however, the significantly enhanced resummation effect in the inhomogeneous solution separately shown in Fig. 2 (b). This behavior is dominated by the convolution of the resummed hadronic evolution operator with the leading-order photon-quark anomalous dimension, which, unlike the hadronic initial distributions, is large for $x \to 1$.

Acknowledgement: This work was supported in part by the German Federal Ministry for Research and Technology (BMBF) under contract No. 05 7WZ91P (0).

REFERENCES

1. Y. Balitsky and L. Lipatov, *Sov. J. Nucl. Phys.* **28** 822 (1978).
2. S. Catani and F. Hautmann, *Nucl. Phys.* **B427** 475 (1994).
3. G. Camici and M. Ciafaloni, *Phys. Lett.* **B386** 341 (1996); *hep-ph/9701303*.
4. R. Kirschner and L. Lipatov, *Nucl. Phys.* **B213** 122 (1983);
 J. Bartels, B. Ermolaev, and M. Ryskin, *Z. Phys.* **C72** 627 (1997).
5. J. Blümlein and A. Vogt, *Phys. Lett.* **B370** 149 (1996);
 Acta Phys. Polonica **B27** 1309 (1996).
6. J. Kiyo, J. Kodaira, and H. Tochimura, *hep-ph/9701365*.
7. J. Blümlein, S. Riemersma, and A. Vogt, *Nucl. Phys.* **B** (Proc. Suppl.) **51C** 30 (1996).
8. J. Blümlein and A. Vogt, *Phys. Lett.* **B386** 350 (1996).
9. R.K. Ellis, F. Hautmann, and B. Webber, *Phys. Lett.* **B348** 582 (1995);
 R. Ball and S. Forte, *Phys. Lett.* **B351** 313 (1995), **B358** 365 (1995).
10. J. Blümlein and A. Vogt, DESY 96–096.
11. I. Bojak and M. Ernst, *Phys. Lett.* **B397** 296 (1997); *hep-ph/9702282*.
12. J. Forshaw, R. Roberts, and R. Thorne, *Phys. Lett.* **B356** 79 (1995);
 R. Thorne, *Phys. Lett.* **B392** 463 (1997); *hep-ph/9701241*.
13. M. Ciafaloni, *Phys. Lett.* **B356** 74 (1995).
14. A.D. Martin, R.G. Roberts, and W.J. Stirling, *Phys. Lett.* **B354** 155 (1995)
15. M. Ciafaloni et al., in preparation.
16. M. Glück, E. Reya, and A. Vogt, *Phys. Rev.* **D46** 1973 (1992).