Input Power Factor Compensation Strategy for Zero CMV-SVM Method in Matrix Converters

HUU-NHAN NGUYEN, MINH-KHAI NGUYEN, VAN-QUANG-BINH NGO, TAN-TAI TRAN, JOON-HO CHOI, AND YOUNG-CHEOL LIM

ABSTRACT The space vector modulation (SVM) method using only rotating vectors is very effective to suppress the common-mode voltage (CMV) for matrix converters (MCs). However, the effect of the input filter on the input power factor (IPF) has not been fully investigated when using this method. This study investigated the effect of the input filter on the displacement angle and proposes an IPF compensation strategy for the zero CMV-SVM method in MCs. The proposed strategy analyzes the duty cycles of rotating vectors under the IPF-compensation condition. Through this analysis, the proposed strategy adjusts the zero vector by using a set of three counterclockwise-rotating vectors or three clockwise-rotating vectors to make all the duty cycles non-negative, ensuring that the zero CMV-SVM method can be applied to compensate the IPF for the MCs. This study also determines the condition to achieve unity IPF for the main power source and the maximum allowable IPF if the above condition is not met. Finally, experimental results are provided to validate the theoretical study.

INDEX TERMS Matrix converter, space vector modulation, zero common-mode voltage, rotating vector, input power factor.

I. INTRODUCTION

In recent years, matrix converters (MCs) with bidirectional power flow capabilities have received considerable attention. In comparison to traditional back-to-back converters, MCs offer more compact and reliable operation owing to the absence of bulky electrolytic capacitors [1], as shown in Figure 1. Therefore, MCs have garnered significant research interest in industry, particularly the aircraft, electric-vehicle, and wind-generation industries [2]–[4]. However, MCs have not been widely applied in practice owing to several issues affecting input-filter design, bidirectional-switch technology, commutation techniques, and the common-mode voltage (CMV) [5]. Among these problems, the CMV between the motor neutral point and power supply ground is the main source of motor winding failure and bearing damage [6]–[8]. Furthermore, it also causes noise and electromagnetic interference problems, affecting surrounding electronic equipment [9].

Several modulation methods have been presented to effectively reduce the CMV for MCs. Among them, space vector modulation (SVM) is currently the most widely used technique owing to its advantageous features such as harmonic performance, flexibility to optimize the switching pattern, and achieving the highest modulation ratio [5], [10]. Two types of SVM methods are based on replacing the MC zero vectors with active vectors [11] or rotating the vectors [12] to reduce the CMV peak value to 42%. In [13], two lower-input line-to-line voltages are used to synthesize the desired output-voltage vector to mitigate the CMV peak value with a lower total harmonic distortion of the output voltage and a reduction in switching loss. However, the proposed method has the disadvantage of a low voltage-transfer ratio (VTR) of less than 0.5. Guan et al. presented a modulation SVM method to

VOLUME 8, 2020 175805

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
reduce not only the peak value but also the RMS of the CM by using all valid switching states, including rotating-vector states [14]. Nguyen and Lee proposed an effective modulation scheme, including an SVM method using only rotating vectors and a modified four-step commutation technique, to achieve zero CMV for MCs [15]. More recently, Lei et al. suggested a simpler SVM method to accomplish zero CMV by adopting only three clockwise rotating vectors or counter-clockwise rotating vectors [16]. However, the performance of the MC when using this method is reduced significantly because the rotating vectors used are very far from the reference output-voltage vector. Among the aforementioned techniques, the modulation scheme in [15] is the most effective solution for eliminating CMV in MCs, from the perspective of the output voltage quality.

Although zero CMV-SVM methods have been realized, there are still some issues to be resolved. Compensating the input power factor (IPF), affected by the input filter, is one of the most important issues to be handled. In practice, an LC filter is connected at the input of the MC to eliminate high-frequency harmonics of the input current and smooth it to satisfy EMI requirements [17]. However, the input filter produces a displacement angle between the source phase voltage and current [18]. This displacement angle will significantly degrade the IPF of the power source, especially at low VTRs, which may lead to severe power-factor penalties [19]. Therefore, it is important to consider the IPF compensation problem along with CMV reduction.

Fortunately, a previous study [19] briefly presented a method to compensate IPF for MCs in the zero CMV-SVM method. However, it did not fully investigate all the duty-cycle cases. In addition, the method has not been experimentally verified. To address these issues, this article analyzes all duty cycles under IPF compensation. In the case of negative duty cycles, they will be adjusted to be zero duty cycles so that all duty cycles are positive. This article also determines the maximum IPF that the main power source can achieve according to the VTR. Finally, experiments are carried out to validate the proposed strategy.

NOMENCLATURE

- **vs** Three-phase source voltage vector, \([v_{sa} \; v_{sb} \; v_{sc}]^T\)
- **v_{ij}** Instantaneous source phase voltages, \(j \in \{a, b, c\}\)
- **V_s** Source voltage amplitude
- **\(\omega_s\)** Angular frequency of source voltage
- **\(\phi\)** Initial phase angle of source voltage
- **\(\tilde{v}_s\)** Space vector of three-phase source voltage
- **v_K** Instantaneous output phase voltages of MC, \(K \in \{A, B, C\}\)
- **v_i, v_o** Amplitudes of MC input and output voltages
- **\(\alpha_i, \alpha_o\)** Phase angles of MC input and output voltages
- **\(\tilde{v}_i, \tilde{v}_o\)** Space vectors of MC input and output voltages
- **i_j** Instantaneous input line currents of MC, \(j \in \{a, b, c\}\)
- **i_K** Instantaneous output line currents of MC, \(K \in \{A, B, C\}\)
- **\(I_i, I_o\)** Amplitudes of MC input and output currents
- **\(\beta_i, \beta_o\)** Phase angles of MC input and output currents
- **\(\tilde{i}_i, \tilde{i}_o\)** Space vectors of MC input and output currents
- **\(d_o\)** Duty cycles of zero and active vectors, \(n \in \{0, 1, 2, 3, 4\}\)
- **\(q\)** Voltage transfer ratio of MC, \(q = V_o/V_i\)
- **\(\delta_i\)** Compensated angle, \(\delta_i = \angle \tilde{v}_i - \angle \tilde{i}_i\)
- **\(\tilde{a}_o\)** Output voltage phase angle referred to the bisecting line of the corresponding sector
- **\(\tilde{\beta}_i\)** Input current phase angle referred to the bisecting line of the corresponding sector
- **\(d_{m(0)}\)** Duty cycle of rotating vector \(\tilde{r}_m\) as the zero vector, \(m \in \{1, 2, 3, 4, 5, 6\}\)
- **\(d_M\)** Total duty cycle of rotating vector \(\tilde{r}_M, M \in \{I, II, III, IV, V, VI\}\) without compensation
- **\(d'_M\)** Total duty cycle of rotating vector \(\tilde{r}_M, M \in \{I, II, III, IV, V, VI\}\) under compensation case.
- **\(L_f, C_f\)** Inductance and capacitance of input filter
- **\(R_d\)** Damping resistance of input filter
- **\(\delta_f\)** Displacement angle caused by input filter, \(\delta_f = \angle \tilde{I}_i - \angle \tilde{I}_i\)
- **\(\delta_s\)** Displacement angle at main power supply, \(\delta_s = \angle \tilde{V}_s - \angle \tilde{I}_i\)
- **\(\delta_o\)** Load displacement angle at output frequency, \(\delta_o = \angle \tilde{V}_o - \angle \tilde{I}_o\)
- **\(R, L, Z\)** Load resistance, inductance and impedance
- **\(f_o\)** Output frequency
- **\(\alpha_o\)** Output angular frequency

II. CONVENTIONAL ZERO CMV-SVM METHOD

Using the symbols defined in Figure 1, let the three-phase source voltage be

\[
v_s = \begin{bmatrix} v_{sa} \\ v_{sb} \\ v_{sc} \end{bmatrix} = V_s \begin{bmatrix} \cos(\omega_s t + \phi) \\ \cos(\omega_s t + \phi - 2\pi/3) \\ \cos(\omega_s t + \phi + 2\pi/3) \end{bmatrix}.
\]

According to the space vector theory, three instantaneous source voltages can be represented by one vector \(\tilde{v}_s\), defined as follows:

\[
\tilde{v}_s = 2(v_{sa} + v_{sb}e^{j2\pi/3} + v_{sc}e^{j4\pi/3})/3 = V_s e^{j(\alpha_o t + \phi)}
\]

Similarly, space vectors—representing input voltages, output voltages, input currents, and output currents—are respectively defined as follows:

\[
\tilde{v}_i = 2(v_{ia} + v_{ib}e^{j2\pi/3} + v_{ic}e^{j4\pi/3})/3 = V_i e^{j(\alpha_i t)}
\]

\[
\tilde{v}_o = 2(v_A + v_B e^{j2\pi/3} + v_C e^{j4\pi/3})/3 = V_v e^{j\alpha_o t}
\]

\[
\tilde{i}_i = 2(i_{ia} + i_{ib}e^{j2\pi/3} + i_{ic}e^{j4\pi/3})/3 = I_i e^{j\beta_i}
\]

\[
\tilde{i}_o = 2(i_A + i_B e^{j2\pi/3} + i_C e^{j4\pi/3})/3 = I_o e^{j\beta_o}
\]

Because the MC is supplied by a source voltage and the output load is inductive, the input phases should not be
short-circuited, and the output phases should not be open-circuited [10]. To satisfy these two constraints, there are only 27 valid switching states, corresponding to 27 space vectors, which are listed in Table 1. These switching states are classified into three groups, as follows:

- **Group I**
 - Eighteen switching states produce active vectors, with fixed directions and time-varying amplitudes of the output-voltage and input-current vectors.

- **Group II**
 - Three switching states produce zero vectors, including zero output-voltage and input-current vectors.

- **Group III**
 - Six switching states produce rotating vectors, with fixed amplitudes and time-varying directions of the output-voltage and input-current vectors.

Among them, the six rotating vectors in group III produce zero CMV [14]–[16]. However, their angular positions always change along with the input voltage, so using these vectors is not simple. Nguyen and Lee, in [1] and [15], proposed a switching pattern using five rotating vectors within a sampling period to control MCs to have zero CMV. Among these five rotating vectors, four vectors act as active vectors to generate the desired output-voltage and input-current vectors, and one rotating vector acts as a zero vector to complete the sampling period. The four selected rotating vectors, which act as active vectors, and their duty cycles are shown in Table 2 and equations (7)–(10):

\[
d_1 = \frac{q}{\sqrt{3}} \times \frac{\sin(2\pi/3 - \tilde{\alpha}_o + \tilde{\beta}_i)}{\cos \delta_i} \tag{7}
\]

\[
d_2 = \frac{q}{\sqrt{3}} \times \frac{\sin(2\pi/3 - \tilde{\alpha}_o - \tilde{\beta}_i)}{\cos \delta_i} \tag{8}
\]

\[
d_3 = \frac{q}{\sqrt{3}} \times \frac{\sin(\tilde{\alpha}_o - \tilde{\beta}_i)}{\cos \delta_i} \tag{9}
\]

\[
d_4 = \frac{q}{\sqrt{3}} \times \frac{\sin(\tilde{\alpha}_o + \tilde{\beta}_i)}{\cos \delta_i} \tag{10}
\]

where \(\alpha_o\) and \(\beta_i\) are determined from the complex plane, as shown in Figures 2(a) and (b), respectively. The patterns of \(\tilde{\alpha}_o\) and \(\tilde{\beta}_i\) in the conventional zero CMV-SVM method are shown in Figures 3(a) and (b), respectively. From Figure 3, the limit of \(\tilde{\alpha}_o\) and \(\tilde{\beta}_i\) in the conventional zero CMV-SVM method can be obtained as follows:

\[
0 \leq \tilde{\alpha}_o < \pi/3 \tag{11}
\]

\[
0 \leq \tilde{\beta}_i < \pi/3. \tag{12}
\]

The duty cycle of the zero vector can be calculated as follows:

\[
d_o = 1 - (d_1 + d_2 + d_3 + d_4) = 1 - 2q \frac{\cos(\pi/3 - \alpha_o) \cos \beta_i}{\cos \delta_i}. \tag{13}
\]
The zero vector can be executed using a set of three counterclockwise-rotating vectors (i.e., \vec{r}_1, \vec{r}_3, \vec{r}_5) or clockwise-rotating (i.e., \vec{r}_2, \vec{r}_4, \vec{r}_6) vectors with the same duty cycle:

$$\vec{0} = \vec{r}_1 + \vec{r}_3 + \vec{r}_5 = \vec{r}_2 + \vec{r}_4 + \vec{r}_6.$$ \hfill (14)

In the case of no compensation ($\delta_i = 0$), with the limits of $\tilde{\alpha}_o$ and $\tilde{\beta}_i$ in (11) and (12), respectively, only duty cycle d_3 can be negative. To ensure that the duty cycle d_3 of rotating vector \vec{r}_3 is non-negative, the zero vector should be implemented using a set of three counterclockwise-rotating vectors, i.e., $\vec{0} = (\vec{r}_1 + \vec{r}_3 + \vec{r}_5)/3$. This means that, in addition to creating a main active vector as shown in (7)–(10), the rotating vectors \vec{r}_1, \vec{r}_3, and \vec{r}_5 must execute an extra interval to create the zero vector, as follows:

$$d_{1(0)} = \frac{d_0}{3}$$ \hfill (15)

$$d_{3(0)} = \frac{d_0}{3}$$ \hfill (16)

$$d_{5(0)} = \frac{d_0}{3}.$$ \hfill (17)

Therefore, in the conventional method, rotating vectors are finally selected as shown in Table 3, and their duty cycles are determined as follows:

$$d_I = d_1 + d_{1(0)}$$ \hfill (18)

$$d_{II} = d_2$$ \hfill (19)

$$d_{III} = d_3 + d_{3(0)}$$ \hfill (20)

$$d_{IV} = d_4$$ \hfill (21)

$$d_V = d_{5(0)}.$$ \hfill (22)

Substituting (7)–(10), (13), and (15)–(17) into (18)–(22), we obtain (23)–(27):

$$d_I = \frac{1}{3} \left[1 - 2q \cos(2\pi/3 - \tilde{\alpha}_o) \cos(\pi/3 + \tilde{\beta}_i) \right]$$ \hfill (23)

$$d_{II} = \frac{q}{\sqrt{3}} \sin(2\pi/3 - \tilde{\alpha}_o - \tilde{\beta}_i)$$ \hfill (24)

$$d_{III} = \frac{1}{3} \left[1 - 2q \cos \tilde{\alpha}_o \cos(\pi/3 - \tilde{\beta}_i) \right]$$ \hfill (25)

$$d_{IV} = \frac{q}{\sqrt{3}} \sin(\tilde{\alpha}_o + \tilde{\beta}_i)$$ \hfill (26)

$$d_V = \frac{1}{3} \left[1 - 2q \cos(\pi/3 - \tilde{\alpha}_o) \cos \tilde{\beta}_i \right].$$ \hfill (27)
With the limits of $\tilde{\alpha}_o$ and $\tilde{\beta}_i$ in (11) and (12), it is possible to prove that all duty cycles—d_I, d_{II}, d_{III}, d_{IV}, and d_V—in (23)–(27) are non-negative.

All of these duty cycles must be less than 1, so the VTR in the conventional zero CMV-SVM method is limited as follows:

$$q \leq \frac{1}{2}$$ \hspace{1cm} (28)

III. PROPOSED IPF STRATEGY FOR ZERO CMV-SVM METHOD

A. INPUT FILTER ANALYSIS

The input filter is a crucial component in a practical MC system, which is used to smooth the source current. However, it creates a displacement angle between current and voltage, leading to a low IPF. Therefore, it is important to study this displacement angle to improve the IPF. In MC systems, a second-order LC filter with a damping resistor is commonly used, as shown in Figure 4. From Figure 4, in the condition of $R_d \gg \omega_s L_f$, the relationship between $(\tilde{v}_i, \tilde{i}_i)$ and $(\tilde{v}_s, \tilde{i}_s)$ can be written as follows:

$$\tilde{i}_i = \tilde{i}_s - j\omega_s C_f \tilde{v}_s$$ \hspace{1cm} (29)
$$\tilde{v}_i = \tilde{v}_s - j\omega_s L_f \tilde{i}_s.$$ \hspace{1cm} (30)

Because the voltage drop at the input filter is very small in comparison to the source voltage, the input voltage of the MC and the source voltage are considered to be equal [19]:

$$\tilde{v}_i = \tilde{v}_s.$$ \hspace{1cm} (31)

From (29) and (31), we can draw the vector diagram of input voltages and currents at the input filter, as shown in Figure 5. From Figure 5, it is possible to determine the displacement angle caused by the input filter as follows:

$$\sin \delta_f = \frac{\omega_s C_f V_s}{I_s}.$$ \hspace{1cm} (32)

In addition, based on the law of conservation of energy, we have the following:

$$V_s I_s \cos \delta_s = V_o I_o \cos \delta_o$$ \hspace{1cm} (33)

where $V_o = qV_i = qV_s$; $I_o = \frac{V_o}{Z} = \frac{qV_i}{Z}; \cos \delta_o = \frac{R}{Z}$.

Therefore, equation (33) is rewritten as follows:

$$I_s = \frac{q^2 V_s R}{Z^2 \cos \delta_s}$$ \hspace{1cm} (34)

Combining (32) and (34), the displacement angle caused by the input filter can be determined by the MC parameters as follows:

$$\tan \delta_f = \frac{\omega_s C_f Z^2}{q^2 R}.$$ \hspace{1cm} (35)

The following strategy will attempt to compensate the angle δ_f in (35) as much as possible to achieve the maximum IPF of the power source.

B. PROPOSED IPF COMPENSATION STRATEGY

Since the vector \tilde{v}_i is definite ($\tilde{v}_i = \tilde{v}_s$) and uncontrollable, the angle δ_f in (35) can only be compensated by controlling the vector \tilde{i}_i. Based on Figure 5, to compensate the angle δ_f, the vector \tilde{i}_i must be delayed by an angle δ_i in comparison to \tilde{v}_i, as shown in Figure 6. Therefore, the phase angle of the input current vector is determined as $\beta_i = \alpha_i - \delta_i$. The patterns of $\tilde{\beta}_i$ are depicted in Figure 7 using the following limit:

$$-\pi/3 \leq \tilde{\beta}_i < \pi/3$$ \hspace{1cm} (36)
it is possible to obtain the following results:

\[d_3 \text{ is negative when } \bar{\beta}_i > \bar{\alpha}_o \geq 0 \]

\[d_4 \text{ is negative when } \bar{\beta}_i < -\bar{\alpha}_o \leq 0 \]

Therefore, it is clear that \(d_3 \) and \(d_4 \) cannot be negative at the same time. In light of this, the present paper proposes a strategy as follows:

i) When \(d_4 > 0 \), the selected vectors and their duty cycles are the same as those in the conventional case.

ii) When \(d_4 < 0 \), to ensure that the duty cycle \(d_4 \) of the rotating vector \(\bar{r}_4 \) is non-negative, the zero vector should be implemented by a set of three clockwise-rotating vectors, i.e., \(\bar{0} = (\bar{r}_2 + \bar{r}_4 + \bar{r}_6)/3 \). Therefore, in addition to creating the main active vector as shown in (7)–(10), the rotating vectors \(\bar{r}_2, \bar{r}_4, \) and \(\bar{r}_6 \) must execute an extra interval to create the zero vector, as follows:

\[
\begin{align*}
\ d_{2(0)} &= \frac{d_0}{3} \\
\ d_{4(0)} &= \frac{d_0}{3} \\
\ d_{6(0)} &= \frac{d_0}{3}
\end{align*}
\]

The selected rotating vectors are shown in Table 4 and their duty cycles are calculated as follows:

\[
\begin{align*}
\ d'_I &= d_1 \\
\ d''_I &= d_2 + d_{2(0)} \\
\ d'''_I &= d_3 \\
\ d''''_I &= d_4 + d_{4(0)} \\
\ d'_V &= d_6(0).
\end{align*}
\]

Substituting (7)–(10), (13), and (37)–(39) into (40)–(44), it is possible to obtain the following results:

\[
\begin{align*}
\ d'_I &= \frac{q}{\sqrt{3}} \sin(2\pi/3 - \bar{\alpha}_o + \bar{\beta}_i) \\
\ d''_I &= \frac{1}{3} \left[1 - 2q \cos(2\pi/3 - \bar{\alpha}_o) \cos(\pi/3 - \bar{\beta}_i) \right] \\
\ d'''_I &= \frac{q}{\sqrt{3}} \sin(\bar{\alpha}_o - \bar{\beta}_i) \cos \delta_i \\
\ d''''_I &= \frac{1}{3} \left[1 - 2q \cos(\pi/3 - \bar{\alpha}_o) \cos(\beta_i) \right] \\
\ d''''_I &= \frac{1}{3} \left[1 - 2q \cos \delta_i \right]
\end{align*}
\]

In the case of \(d_4 < 0 \), which implies that \(\bar{\beta}_i < 0 \), it is possible to prove that all duty cycles in (45)–(49) are positive, so the zero CM-SVM method can be implemented in this case.

The limit of VTR in the zero CM-SVM method with the compensated angle \(\delta_i \) is:

\[
q \leq \frac{1}{2} \cos \delta_i
\]

C. Maximum Compensable Angle and Maximum IPF

Even though the proposed IPF compensation strategy attempts to compensate the angle \(\delta_i \) in (35) as much as possible to achieve the maximum IPF of the power source, it is not always possible to compensate all values of \(\delta_i \) to achieve unity IPF. This section covers the conditions for the MC to achieve unity IPF, and the maximum allowable IPF value when unity cannot be reached.

1) CONDITION TO ACHIEVE UNITY IPF

According to [20], the relationship between \(\delta_i, \delta_i \), and \(\delta_f \) is:

\[
\tan \delta_i + \tan \delta_i = \tan \delta_f.
\]

To obtain the unity IPF (\(\delta_i = 0 \)), from (35) and (51), the compensated angle \(\delta_i \) must be:

\[
\tan \delta_i = \tan \delta_f = \frac{\omega_2 C F Z^2}{a^2 R}.
\]

Let the quality factor \(Q \) be defined as

\[
Q^2 = \frac{\omega_2 C F Z^2}{R}.
\]

From (50), (52), and (53), the condition for MC to achieve unity IPF using the zero CM-SVM method is:

\[
\left\{ \begin{array}{l}
\tan \delta_i = \frac{Q^2}{a^2} \\
\cos \delta_i \geq 2q
\end{array} \right.
\]

where \(Q^2 = \frac{\omega_2 C F Z^2}{R} \).
TABLE 5. System parameters.

Power supply	Input filter	Output load
$V_s = 100V$	$L_f = 1.4 \text{ mH}$	$R = 10 \Omega$
$f_s = 60 \text{ Hz}$	$C_f = 22 \text{ \mu F}$	$L = 15 \text{ mH}$
	$R_s = 20 \Omega$	$f_o = 50 \text{ Hz}$

Source phase voltage/source line current

FIGURE 8. Source phase voltage/source line current and output line current at $q = 0.4$ in the zero CMV-SVM method without compensation.

Output line current

FIGURE 9. Output line-to-line voltage at $q = 0.4$ in the zero CMV-SVM method without compensation.

CMV waveform and its FFT

FIGURE 10. CMV waveform and its FFT at $q = 0.4$ in the zero CMV-SVM method without compensation.

From (54), it is possible to derive the following condition:

$$\tan^2 \delta_i + 1 = \frac{1}{\cos^2 \delta_i}$$

$$\Rightarrow \left(\frac{Q^2}{q^2} \right)^2 + 1 = \frac{1}{\cos^2 \delta_i} \leq \frac{1}{(2q)^2}$$

$$\Rightarrow q^4 - \frac{1}{4}q^2 + Q^4 \leq 0.$$ \hspace{1cm} (55)

From (55), we can finally determine the condition to achieve unity IPF for MCs as follows:

$$\sqrt{\frac{1}{8} - \left(\frac{1}{8}\right)^2} - Q^4 \leq q \leq \sqrt{\frac{1}{8} + \left(\frac{1}{8}\right)^2} - Q^4$$ \hspace{1cm} (56)

$$Q^2 = \frac{\omega_f C_f Z^2}{R} \leq \frac{1}{8}$$ \hspace{1cm} (56)

2) MAXIMUM ALLOWABLE IPF

When the condition in (56) is not satisfied, the MC cannot achieve unity IPF, and it is necessary to determine the maximum allowable IPF. In this case, from (50) and (51), we have the following relationship:

$$\left\{ \begin{array}{l}
\tan \delta_i + \tan \delta_j = \tan \delta_f = \frac{Q^2}{q^2} \\
\cos \delta_i \geq 2q
\end{array} \right.$$ \hspace{1cm} (57)

FIGURE 11. Source phase voltage/source line current and output line current at $q = 0.4$ in the zero CMV-SVM method with the proposed IPF compensation strategy.

FIGURE 12. Output line-to-line voltage at $q = 0.4$ in the zero CMV-SVM method with the proposed IPF compensation strategy.

FIGURE 13. CMV waveform and its FFT at $q = 0.4$ in the zero CMV-SVM method with the proposed IPF compensation strategy.
H.-N. Nguyen et al.: IPF Compensation Strategy for Zero CMV-SVM Method in MCs

FIGURE 14. Source phase voltage/source line current and output line current at $q = 0.2$ in the zero CMV-SVM method without compensation.

FIGURE 15. Output line-to-line voltage at $q = 0.2$ in the zero CMV-SVM method without compensation.

FIGURE 16. CMV waveform and its FFT at $q = 0.2$ in the zero CMV-SVM method without compensation.

FIGURE 17. Source phase voltage/source line current and output line current at $q = 0.2$ in the zero CMV-SVM method with the proposed IPF compensation strategy.

FIGURE 18. Output line-to-line voltage at $q = 0.2$ in the zero CMV-SVM method with the proposed IPF compensation strategy.

FIGURE 19. CMV waveform and its FFT at $q = 0.2$ in the zero CMV-SVM method with the proposed IPF compensation strategy.

To achieve the maximum allowable IPF, the compensated angle must be maximized, thus: $\cos \delta_i = 2q$. Therefore, it is possible to calculate:

$$\tan \delta_i = \frac{\sqrt{1 - 4q^2}}{2q} = \frac{1}{\sqrt{4q^2 - 1}} \quad (58)$$

From (57) and (58), it is possible to calculate:

$$\tan \delta_s = \frac{Q^2}{q^2} - \frac{1}{\sqrt{4q^2 - 1}} \quad (59)$$

Finally, the maximum allowable IPF can be determined as follows:

$$\text{IPF}^2 = \cos^2 \delta_s = \frac{q^4}{Q^4 - 2Q^2q^2 \sqrt{\frac{1}{4q^2} - 1 + \frac{q^2}{4}}} \quad (60)$$

IV. EXPERIMENTAL RESULTS

To verify the proposed theoretical study, experiments for the proposed IPF strategy are carried out using a three-phase power supply, LC filter, and a three-phase symmetrical passive RL load with the parameters shown in Table 5. The switching frequency is 10 kHz. The MC was built using 18 insulated-gate bipolar transistors (IRG4PF50WD). Main control was implemented using fixed-point digital signal processors (TMS320F2812). A complex programmable logic device (EPM7128SLC84-15) was used for four-step commutation.

With the parameters in Table 5, condition (56) to achieve unity IPF for MCs, in this case, will be:

$$\begin{align*}
0.238 \leq q &\leq 0.445 \\
Q^2 &\leq 0.1 \leq \frac{1}{8} = 0.125 \\
\Rightarrow 0.238 \leq q &\leq 0.445
\end{align*} \quad (61)$$
V. CONCLUSION

This article has presented an IPF compensation strategy for the zero CMV-SVM method. The proposed strategy investigated the displacement angle caused by the input filter and its effect on the value of duty cycles upon compensation. The proposed strategy decides which rotating vectors are synthesized into zero vectors, thereby making all duty cycles non-negative, allowing the zero CMV-SVM method to be applied. This article also specifies when the main power source can achieve unity IPF and the maximum allowable IPF according to the VTR. Experimental results confirmed that the MC’s IPF is in good agreement with the proposed theoretical results.

REFERENCES

[1] H.-N. Nguyen and H.-H. Lee, “An enhanced SVM method to drive matrix converters for zero common-mode voltage,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1788–1792, Apr. 2015.
[2] A. Tsoupos and V. Khadkikar, “A novel SVM technique with enhanced output voltage quality for indirect matrix converters,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 832–841, Feb. 2019.
[3] T. Friedli and J. W. Kolar, “Milestones in matrix converter research,” IEEE J. Ind. Appl., vol. 1, no. 1, pp. 2–14, 2012.
[4] T. F. Podlesak, D. C. Katsis, P. W. Wheeler, J. C. Clare, L. Empringham, and M. Bland, “A 150-kVA vector-controlled matrix converter induction motor drive,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 841–847, May 2005.
[5] H.-N. Nguyen and H.-H. Lee, “A DSVM method for matrix converters to suppress common-mode voltage with reduced switching losses,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4020–4030, Jun. 2016.
[6] V. Padhee, A. K. Sahoo, and N. Mohan, “Modulation techniques for enhanced reduction in common-mode voltage and output voltage distortion in indirect matrix converters,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8655–8670, Nov. 2017.
[7] M. J. Duran, J. A. Riveros, F. Barrero, H. Guzman, and J. Prieto, “Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2059–2067, Nov. 2012.
[8] A. Tsoupos and V. Khadkikar, “A novel SVM technique with enhanced output voltage quality for indirect matrix converters,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 832–842, Feb. 2019.
[9] T. D. Nguyen and H.-H. Lee, “A new SVM method for an indirect matrix converter with common-mode voltage reduction,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 66–72, Feb. 2014.
[10] H.-N. Nguyen and H.-H. Lee, “An effective SVM method for matrix converters with a superior output performance,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 6948–6958, Sep. 2018.
[11] H. M. Nguyen, H.-H. Lee, and T.-W. Chun, “A novel method of common-mode voltage reduction in matrix converters,” Int. J. Electron., vol. 99, no. 1, pp. 1–14, Jan. 2012.
[12] J. Espina, C. Ortega, L. de Lillo, L. Empringham, J. Balcells, and A. Arias, “Reduction of output common-mode voltage using a novel SVM implementation in matrix converters for improved motor lifetime,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5903–5911, Nov. 2014.
[13] H.-H. Lee and H. M. Nguyen, “An effective direct-SVM method for matrix converters operating with low-voltage transfer ratio,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 920–929, Feb. 2013.
[14] Q. Guan, P. W. Wheeler, Q. Guan, and P. Yang, “Common-mode voltage reduction for matrix converters using all valid switch states,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8247–8259, Dec. 2016.
[15] H.-N. Nguyen and H.-H. Lee, “A modulation scheme for matrix converters with perfect zero common-mode voltage,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5411–5422, Aug. 2016.
[16] J. Lei, S. Feng, B. Zhou, H.-N. Nguyen, J. Zhao, and W. Chen, “Simple modulation scheme with zero common-mode voltage and improved efficiency for direct matrix converter fed PMSM drives,” IEEE J. Emerg. Sel. Topics Power Electron., early access, Aug. 12, 2019, doi: 10.1109/JESTPE.2019.2934730.
H.-N. Nguyen et al.: IPF Compensation Strategy for Zero CMV-SVM Method in MCs