were 1 mg/L by BMD and 2 mg/L by the Etest (Table 2). When the geometric mean MIC values were compared, they varied from 0.97 to 1.28 by BMD and 0.88 to 1.23 by the Etest.

The vancomycin MIC values showed fluctuation from year to year. This fluctuation was not statistically significant either by the BMD method (P = 0.225) or the Etest (P = 0.136). Although the vancomycin MIC values fluctuated from year to year, we could not detect vancomycin MIC creep with either method. These differences between the years could be due to the large variability among the number of isolates from each year. Similar to the vancomycin susceptibility trend, the daptomycin MIC values also showed fluctuation over time. This fluctuation was found to be statistically significant (P = 0.005), but no MIC creep was detected between 1999 and 2009.

In conclusion, although MIC fluctuation was found in our institution over time, we did not detect a decrease in vancomycin and daptomycin susceptibility among MRSA blood isolates over an 11 year period, either by BMD or the Etest. It is important to monitor the trend in vancomycin and daptomycin MICs, as changes in vancomycin MICs for S. aureus can occur over time within specific institutions.

Acknowledgements
This study was presented at the 111th General Meeting of the American Society of Microbiology, New Orleans, LA, USA, 2011 (Abstract C100).

We thank Dr Ergun Karaaogaoglu for the statistical analysis.

Funding
The daptomycin Etest was supported by Novartis. This study was carried out as part of our routine work.

Transparency declarations
None to declare.

References
1 Dhand A, Sakoulas G. Reduced vancomycin susceptibility among clinical Staphylococcus aureus isolates (‘the MIC creep’): implications for therapy. F1000 Med Rep 2012; 4: 4.
2 Howden BP, Davies JK, Johnson PD et al. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010; 23: 99–139.
3 Soriana A, Marco F, Martinez JA et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008; 46: 193–200.
4 van Hal SJ, Barbajianakkos T, Jones M et al. Methicillin-resistant Staphylococcus aureus vancomycin susceptibility testing: methodology correlations, temporal trends and clonal patterns. J Antimicrob Chemother 2011; 66: 2284–7.
5 Appleman MD, Citron DM. Efficacy of vancomycin and daptomycin against Staphylococcus aureus isolates collected over 29 years. Diagn Microbiol Infect Dis 2010; 66: 441–4.
6 Sader HS, Becker HK, Moet GJ et al. Antimicrobial activity of daptomycin tested against Staphylococcus aureus with vancomycin MIC of 2 microg/mL isolated in the United States and European hospitals (2006–2008). Diagn Microbiol Infect Dis 2010; 66: 329–31.
7 Sader HS, Jones RN. Antimicrobial susceptibility of Gram-positive bacteria isolated from US medical centers: results of the Daptomycin Surveillance Program (2007–2008). Diagn Microbiol Infect Dis 2009; 65: 158–62.
8 Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically—Eight Edition: Approved Standard M07–A8. CLSI, Wayne, PA, USA, 2009.
9 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth informational Supplement M100-S19. CLSI, Wayne, PA, USA, 2009.
10 Carroll KC, Glanz BD, Borek AP et al. Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterobacteriaceae. J Clin Microbiol 2006; 44: 3506–9.

© The Author 2013. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

A Phase 2 study of the novel fluoroquinolone JNJ-Q2 in community-acquired bacterial pneumonia

Paul S. Covington1*, J. Michael Davenport2, David A. Andraē1, Martin E. Stryjewski2, Lisa L. Turner1, Gail McIntyre1 and June Almenoff1

1Furiex Pharmaceuticals, Inc., Morrisville, NC, USA; 2Department of Medicine and Division of Infectious Diseases, Centro de Educacion Medica e Investigaciones Clinicas ‘Norberto Quirno’ (CEMIC), Buenos Aires, Argentina

*Corresponding author. Furiex Pharmaceuticals, Inc., 3900 Paramount Parkway, Suite 150, Morrisville, NC 27560, USA. Tel: +1-910-558-6834; Fax: +1-910-777-2640; E-mail: paul.covington@furiex.com

Keywords: CABP, respiratory pathogens, Streptococcus pneumoniae

Sir,

JNJ-Q2 is a fifth-generation fluoroquinolone with in vitro coverage of community-acquired bacterial pneumonia (CABP) pathogens,
Identification of respiratory pathogens

Patients with respiratory pathogen at baseline 15 (93.8%) 13 (81.3%)

S. pneumoniae

in at least lobar distribution were required for entry. Positive Gram’s stain and a chest X-ray (CXR) showing infiltrates were required for enrolment (cough, dyspnoea/tachypnoea, chest pain, fever/hypothermia or pulmonary consolidation). Sputum with a positive Gram’s stain. Patients aged 18–85 years with a PORT score of ≥II and at least three CABP signs/symptoms were eligible for enrolment (cough, dyspnoea/tachypnoea, chest pain, fever/hypothermia or pulmonary consolidation). Sputum with a positive Gram’s stain and a chest X-ray (CXR) showing infiltrates in at least lobar distribution were required for entry.

Subjects were stratified by PORT score (II/III versus IV/V) and age (<50 versus ≥50). Sputum was processed locally and sent for PCR detection of S. pneumoniae (PrimerDesign®) to PPD GCL (Highland Heights, KY, USA); pathogens were forwarded to JMI Laboratories (North Liberty, IA, USA) for confirmation of identification and susceptibility testing. Patients were randomized 1:1 to receive JNJ-Q2 (150 mg intravenously twice daily followed by 250 mg orally twice daily) or moxifloxacin (400 mg once daily, both intravenously and orally).

Thirty of 60 centres were US based; 16/60 enrolled at least one patient. Over 12 months, 896 patients were screened and 32 randomized; 12 were from North America and the remaining 20 from Eastern Europe or Latin America. The study was terminated early, secondary to slow enrolment.

Pathogens were identified in 28/32 (87.5%) patients either by routine culture (13/32) or PCR detection of S. pneumoniae (15/32). S. pneumoniae was identified in 27/32 subjects; several subjects with S. pneumoniae also grew another pathogen at baseline. The MICs for S. pneumoniae were ≤0.004–0.015 mg/L for JNJ-Q2 and 0.06–0.25 mg/L for moxifloxacin.

Nine of 16 JNJ-Q2 subjects met criteria for early response at day 4 compared with 7/16 moxifloxacin subjects. The small number of subjects was insufficient to show non-inferiority for clinical test of cure, the historical CABP endpoint, however. The cure rates were comparable and reflected historical rates (see Table 1).

Three subjects in the moxifloxacin group were clinical failures; two did not survive to 30 days and the third required additional antibiotics. Two subjects were clinical failures in the JNJ-Q2 group: one who did not meet the pneumonia criteria was withdrawn, while the other survived after respiratory failure requiring mechanical ventilation. Adverse events were comparable; however, nausea and vomiting were seen in the moxifloxacin group, but not in the JNJ-Q2 group.

The slow enrolment observed in this study was mainly due to prior antibiotic use, requirements in CXR, sputum production, Gram’s stain and emphasis on severe patients. FDA guidance discourages prior antibiotic use in CABP studies, based on heightened regulatory concern about the potential of antibiotic use to confound the validity of non-inferiority trials. Prior antibiotic use excluded the largest number of subjects in our study: 220/864 (25.5%).

In addition, 147/864 patients (17%) could not be enrolled because of the absence of lobar infiltrate on CXR and/or sputum production with a positive Gram’s stain. Historically, CABP studies have not mandated a lobar infiltrate or sputum production. Importantly, up to 40% of patients with CABP cannot produce good quality sputum. New techniques (e.g. nasopharyngeal PCR) need to be evaluated for these patients.

CABP enrolment in US studies is becoming more difficult. The recent ceftaroline programme of CABP did not require sputum production or lobar infiltrate and excluded patients with PORT scores ≥100.
of V. Although it recruited >1200 patients in 24 months at 303 centres, only 2% of their population came from the USA.7

Respiratory pathogen recovery rate was unusually high. Sputum PCR testing remains an experimental tool8 and requires that clinicians distinguish between colonization and infection. In our study, each patient with S. pneumoniae PCR-positive sputum had $>5.3 \times 10^5$ copies per mL, exceeding the rate recommended by Yang et al.9

Compared with historical pathogen identification rates (generally <$50%).4,7 our recovery was encouraging.1 Johansson et al.,10 using multiple recovery techniques, including PCR, yielded recovery rates of only 38% for S. pneumoniae, 48.9% for common CABP pathogens and 62.5% when including atypical organisms and mycobacterial species. In comparison, the Phase 3 CABP ceftaroline studies recovered respiratory pathogens in 26% of their patients.7 We attribute our high rate of bacterial pathogen recovery to the strict criteria for CXR, sputum production and positive Gram’s stain, as well as the PCR techniques.

Our data, limited by small sample size, provide qualitative information that JNJ-Q2 warrants further study. While the combination of standard pneumonic symptoms, labor infiltrates, sputum production with positive Gram’s stain and no prior antibiotics is strongly predictive for respiratory pathogen recovery, it is at the expense of reasonable recruitment timelines.

Acknowledgements

We would like to express our appreciation and thanks to the participating investigators and their staff who contributed patients into the study: Dr L. R. Ahumada, Viña del Mar, Chile; Dr J. Bedolla, Austin, TX, USA; Dr C. Bócskei, Tatabánya, Hungary; Dr A. Bodzenta-Lukoszyk, Białystok, Poland; Dr E. Csoány, Miskolc, Hungary; Dr M. Gutowska-Jablonska, Warszawa, Poland; Dr D. Jastrzębski, Skierniewice, Poland; Dr T. Kachel, Bystra, Poland; Dr M. Khan, St Cloud, FL, USA; Dr F. Koura, Hazard, KY, USA; Dr F. Lellouche, Quebec, Canada; Dr G. J. Moran, Sylmar, CA, USA; Dr W. Piotrowski, Lodz, Poland; Dr W. Reiter, Anaconda, MT, USA; Dr C. Rybacki, Bydgoszcz, Poland; and Dr R. Savard, Quebec, Canada.

We would also like to acknowledge Randi M. Gress for preparation, formatting and organization of this article.

Funding

This work was supported by Furiex Pharmaceuticals, Inc., Morrisville, NC, USA.

Transparency declarations

P. S. C., J. M. D., D. A. A., L. L. T., G. M. and J. A. are employees of Furiex Pharmaceuticals, Inc. and own Furiex Pharmaceuticals, Inc. shares and/or options. P. S. C., G. M. and J. A. are also corporate officers of Furiex. M. E. S. has been a consultant to Furiex Pharmaceuticals, Inc., Theravance, Trius, Cempra, Cerexa, Nabriva, PRA and The Medicines Company.

References

1. FDA. Guidance for Industry: Community-Acquired Bacterial Pneumonia: Developing Drugs for Treatment: March 2009. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM123686.pdf (7 November 2012, date last accessed).
2. Pertel P, Bernardo P, Fogarty C et al. Effects of prior effective therapy on the efficacy of daptomycin and ceftizoxime for the treatment of community-acquired pneumonia. Clin Infect Dis 2008; 46: 1142–51.
3. van der Eerden MM, Vlaspolder F, de Graaff CS et al. Comparison between pathogen directed antibiotic treatment and empirical broad spectrum antibiotic treatment in patients with community acquired pneumonia: a prospective randomized study. Thorax 2005; 60: 672–8.
4. Garcia-Vazquez E, Marcos MA, Mensa J et al. Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch Intern Med 2004; 164: 1807–11.
5. Vernet G, Saha S, Satzke C et al. Laboratory-based diagnosis of pneumococcal pneumonia: state of the art and unmet needs. Clin Microbiol Infect 2011; 17: 1–13.
6. Klugman KP, Madhi SA, Albrich WC. Novel approaches to the identification of Streptococcus pneumoniae as the cause of community-acquired pneumonia. Clin Infect Dis 2008; 47: 202–6.
7. File TM Jr, Low DE, Eckburg PB et al. Integrated analysis of FOCUS 1 and FOCUS 2: randomized, double-blind, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftizoxime in patients with community-acquired pneumonia. Clin Infect Dis 2010; 51: 1395–405.
8. Aetna Inc. Clinical Policy Bulletin: Polymerase Chain Reaction Testing: Selected Indications. http://www.aetna.com/cpb/medical/data/600_699/0650.html (6 December 2012, date last accessed).
9. Yang S, Lin S, Khalil A et al. Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients. J Clin Microbiol 2005; 43: 3221–6.
10. Johansson N, Kalin M, Tiveljung-Lindell A et al. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis 2010; 50: 202–9.