Actinomyces meyeri pleural infection that was difficult to treat due to delayed culture: A case report and literature review of 28 cases

Masafumi Shimoda *, Yoshiaki Tanaka, Hiroyuki Kokutou, Koji Furuuchi, Takeshi Osawa, Kozo Morimoto, Ryozo Yano, Kozo Yoshimori, Ken Ohta

Respiratory Disease Center, Fukujuji Hospital, Japan Anti-tuberculosis Association, Kiyose City, Tokyo, Japan

ARTICLE INFO

Keywords: Actinomyces meyeri Pleural fluid Penicillin allergy Pleural infection Actinomycosis

ABSTRACT

An eighty-three-year-old man suffered from cough, right chest pain, and progressive dyspnea for sixteen days. He had hypoxemia, high white blood cells and C-reactive protein, and moderate right-sided pleural effusion on radiographic imaging. A pleural fluid examination revealed exudate. He was diagnosed with pleural infection and treated with intravenous ampicillin/sulbactam. On the second day of hospitalization, the treatment was changed to levofloxacin and clindamycin due to drug eruption. He improved gradually and was prescribed only oral levofloxacin on the eighteenth day of hospitalization. However, improvements in inflammation and imaging findings were poor. *Actinomyces meyeri* resistant to fluoroquinolones was cultured from a pleural effusion sample on the twenty-sixth day of hospitalization. The treatment was changed to oral clindamycin, and his medical condition subsequently improved. We reviewed twenty-eight patients with *Actinomyces* pleural infection and thirty-eight patients with other pleural infection phenotypes from our hospital and published case reports. *Actinomyces* pleural infection is a long-term process and results in a large amount of pleural effusion compared to other pleural infection phenotypes. These results might be related to the fact that *Actinomyces* is a slow-growing organism.

1. Introduction

Actinomyces is an anaerobic gram-positive bacterium, commonly associated with cervicofacial, abdominopelvic, and thoracic granulomatous infection [1, 2], which can be chronic, and disseminated cases have been reported [2, 3]. *Actinomyces meyeri* usually involves the lungs and is a rare pathogen of pleural infection, including empyema and parapneumonic effusion. *Actinomyces* pleural infection is treated with long-term antibiotic therapy, such as penicillin, and chest drainage [4–6]. This is a case report of *Actinomyces meyeri* pleural infection that was difficult to treat due to the delayed culture of *A. meyeri* and a penicillin allergy. Furthermore, we reviewed the characteristics of twenty-eight patients with *Actinomyces* pleural infection through comparisons to those of patients with pleural infections due to other pathogens.

2. Case presentation

An 83-year-old man suffered from cough, right chest pain, and progressive dyspnea for sixteen days. The patient had a medical history of chronic obstructive pulmonary disease (COPD) with home oxygen therapy (HOT), chronic renal disorder, diabetes mellitus (DM), and cerebrovascular infarction. He had a smoking history (30 pack-years), alcohol abuse history, and poor dental hygiene.

His vital signs on admission showed afebrile status, tachycardia at 105 beats per minute, and hypoxemia with an oxygen saturation of 88% with a 5 L nonrebreather mask. Physical examination revealed no abnormalities, except for inspiratory coarse crackles in the right lower lung. An arterial blood sample showed a PaCO₂ of 27.4 mmHg and a PaO₂ of 59.3 mmHg with a 5 L nonrebreather mask. Physical examination revealed no abnormalities, except for inspiratory coarse crackles in the right lower lung. An arterial blood sample showed leukocytosis (13980/μL with 90.0% polymorphic neutrophils), increased C-reactive protein (CRP) (28.24 mg/dL),...
renal dysfunction, and hemoglobin A1c at 7.7% (Table 1). A moderate amount of right-sided pleural effusion was present on the radiograph (Fig. 1), and chest computed tomography (CT) showed right loculated pleural effusion and emphysematous changes in both lungs (Fig. 2). A chest drainage tube was inserted, and pleural fluid analysis was performed. The pleural fluid examination revealed a high white blood cell count, at 2794/μL, with 55.0% neutrophils and 43.5% lymphocytes. High protein and lactate dehydrogenase (LDH) in the pleural fluid indicated exudative effusions. Gram staining of pleural fluid was negative.

He was diagnosed with pleural infection and treated empirically with ampicillin/sublactam 3.0 g IV every 8 hours. However, drug eruption appeared two days after starting the antibiotic. He was diagnosed with a penicillin allergy, and the treatment was changed to clindamycin and levofloxacin. He improved gradually, and the pleural fluid was reduced. Therefore, the chest drain tube was removed, clindamycin was stopped, and 250 mg of oral levofloxacin daily was prescribed on the eighteenth day of hospitalization. However, the improvement of empyema stopped (Fig. 3). On the twenty-sixth day of hospitalization, A. meyeri was cultured from pleural effusion fluid on Gifu anaerobic medium semisolid agar; other bacteria were not cultured. He was diagnosed with complex complicated parapneumonic effusion based on Light’s classification [7]. Drug-susceptibility testing revealed that the cultured A. meyeri was resistant to tosufloxacin and sensitive to clindamycin. The treatment was changed to 900 mg of oral clindamycin daily, and his CRP level decreased to within normal limits; a chest radiograph showed complete resolution of the pleural effusion. He had received clindamycin therapy for 3 months, and there has been no evidence of recurrence thus far. We obtained informed consent from the patient’s family for the publication of this report.

3. Discussion

This is a case report of a rare pleural infection caused by A. meyeri in a patient with a penicillin allergy. The treatment was difficult due to the delayed culture of A. meyeri. Actinomyces is a gram-positive anaerobic bacteria [4–6, 8] and a slow-growing organism that can be cultured for up to three weeks [8]. Therefore, patients with Actinomyces pleural infection need to be treated without information regarding the causative pathogen for a long time until Actinomyces is cultured, and they might receive ineffective antibiotics, similar to our case. Previous studies have reported the following other features of Actinomyces infections [1]: there is typically slow progression of disease [2,9]; drug-susceptibility testing can indicate Actinomyces susceptibility to β lactams, clindamycin, and other agents, whereas fluoroquinolones perform poorly [8,10]; and there are risk factors of pulmonary actinomycosis, such as being a middle-aged or elderly male, having a history of alcoholism, having poor dental hygiene, and having structural lung diseases [6,11,12]. Our patient showed similar risk factors. However, Actinomyces pleural infection is rare and does not have specific reported clinical findings [1,4–6,13]. If the characteristics of Actinomyces pleural infection are known, patients might be able to avoid treatment with ineffective antibiotics. Therefore, we reviewed the data of patients with Actinomyces pleural infection and compared the data to those for other pathogens.

We retrospectively collected the data of forty-one patients with pleural infection for whom pathogens were collected from pleural effusion samples at the Respiratory Disease Center of Fukujuji Hospital from January 2012 to December 2018. Actinomyces were cultured in three out of 41 patients (7.3%), and other pathogens, such as the Streptococcus anginosus group (n = 11, 26.8%), Streptococcus pneumoniae (n = 3, 7.3%), Streptococcus mitis (n = 3, 7.3%), Staphylococcus aureus (n = 2, 4.9%), anaerobic bacteria (n = 13, 31.7%), and others (n = 5, 13.2%) were cultured from the rest of the patients. Seven patients (18.4%) presented coinfections. Actinomyces pleural infection was not as rare as 7.3% and was similar to the rate of S. pneumoniae pleural infection. In addition, the data of nineteen adult patients with Actinomyces pleural infection were collected from PubMed and the Japan Medical Abstracts Society, using the keywords “actinomyces empyema”, “actinomyces pleural infection”, and “actinomyces pleuritis” in English and Japanese only [4–6,11–32]. Cases with no Actinomyces identified in the pleural effusion and no English abstracts were excluded. The data of

![Fig. 1. A chest radiograph showing right pleural effusion.](image-url)
those patients and our three patients were combined for analysis, and finally, the characteristics were compared between the twenty-eight patients with Actinomyces pleural infection (the Actinomyces group) and our thirty-eight patients with other-pathogen pleural infection (the other pathogens group) (Table 2). All data were analyzed and processed using EZR, version 1.35. Student’s t tests, Mann–Whitney U tests, and Fisher’s exact tests were used to compare groups. The level of statistical significance was set at $p = 0.05$ (2-tailed).

Among the Actinomyces group, the Actinomyces species were

- Actinomyces meyeri ($n = 10, 35.7\%$)
- Actinomyces israelii ($n = 10, 35.7\%$)
- Actinomyces naeslundii ($n = 2, 7.1\%$)
- Actinomyces odontolites ($n = 1, 3.6\%$)
- Actinomyces spp. ($n = 6, 21.4\%$)

One patient showed both A. meyeri and A. israelii. Eight patients (28.6%) presented coinfections with other anaerobic bacteria. The median age in the Actinomyces group was 57.0 years (interquartile range (IQR): 43.5–68.3 years), which was lower than that in the other pathogens group (median (IQR): 63 years (59.3–73.0), $p = 0.008$). The number of patients with alcohol abuse in the Actinomyces group was higher than that in the other pathogens group.
patients in the other pathogens group might have been infected with symptom onset to hospital visit, were not described in detail. Some effusion is difficult. Some medical data, such as the duration from many of the patients with apex on the midclavicular line on the chest radiograph. The rate of pleural effusion divided by the length from lung base to the top of the species to culture, while all cases of other phenotypes in our study had Actinomyces data were not recorded. There was publication bias because the data of those of pneumonia and lung abscess caused by actinomycetes [8].

Actinomyces would induce weak symptoms in the early stage and gradually induce stronger symptoms with growing organism [8] and that actinomycosis has a slow disease progression [9]. We suspected that Actinomyces would induce weak symptoms in the early stage and gradually induce stronger symptoms with growth. The characteristics in the Actinomyces group were similar to those of pneumonia and lung abscess caused by actinomyces [8].

This investigation had several limitations. This review was conducted retrospectively in a single-center hospital, and some medical data were not recorded. There was publication bias because the data of many of the patients with Actinomyces pleural infection were from published reports. Moreover, the detailed measurement of pleural effusion is difficult. Some medical data, such as the duration from symptom onset to hospital visit, were not described in detail. Some patients in the other pathogens group might have been infected with Actinomyces but were not diagnosed because Actinomyces is a difficult species to culture, while all cases of other phenotypes in our study had negative Actinomyces results on anaerobic culture. The review was approved by the Institutional Review Board of the Fukujuji Hospital.

4. Conclusion

A. meyeri pleural infection in a patient with a penicillin allergy was difficult to treat due to the delayed culture of A. meyeri. Furthermore, we demonstrated that Actinomyces pleural infection is a long-term process, resulting in a large amount of pleural effusion compared to other pleural infection phenotypes. When a patient with a severe pleural infection shows slow progression, Actinomyces infection should be considered.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

None.

References

[1] E. Koronene, W.G. Wade, Actinomyces and related organisms in human infections, Clin. Microbiol. Rev. 28 (2) (2015) 419–442.
[2] S.H. Heo, S.S. Shin, J.W. Kim, H.S. Lim, H.J. Seon, S.I. Jung, Y.Y. Jeong, H.K. Kang, Imaging of actinomycosis in various organs: a comprehensive review, Radiographics 34 (1) (2014) 19–33.
[3] C.M. Markey, L.E. Vetal, Actinomyces meyeri: a rare cause of post-surgical pelvic actinomycosis, Case Rep Obstet Gynecol (2018) 3842048, 2018.
[4] V. Clerigo, L. Fernandes, A. Feliciano, L. Carvalho, A rare case of Actinomyces meyeri empyema: still a challenging entity to manage, Respir Med Case Rep 22 (2017) 203–205.
[5] C. Valtell, E. Pezzetta, G. Niclot-Chatelin, Z. El Lammam, O. Martinet, H.B. Ris, Stage III empyema caused by Actinomyces meyeri: a plea for decortication, J. Thorac. Cardiovasc. Surg. 127 (5) (2004) 1511–1513.
[6] E. Paris, T. Piscopo, K. Cansar, Empyema secondary to actinomyces meyeri treated successfully with ceftriaxone followed by Doxycycline, Case Rep Infect Dis (2016) 9627414, 2016.
[7] R.W. Light, A new classification of parapneumonic effusions and empyema, Chest 108 (2) (1995) 299–301.
[8] V.K. Wong, T.D. Turmezei, V.C. Weston, Actinomycosis, BMJ 343 (2011) d6099.
[9] S.A. Kono, T.D. Nauer, Contemporary empyema necessitatis, Am. J. Med. 120 (4) (2007) 303–305.
[10] A.J. Smith, V. Hall, B. Thakker, C.G. Gemmell, Antimicrobial susceptibility testing of Actinomyces species with 12 antimicrobial agents, J. Antimicrob. Chemother. 56 (2) (2005) 407–409.
[11] H.W. Jung, C.R. Cho, J.Y. Ryoo, H.K. Lee, S.Y. Ha, J.H. Choi, Y.G. Kwak, Actinomyces meyeri empyema: a case report and review of the literature, Case Rep Infect Dis (2015) 291838, 2015.
[12] A. Attaway, T. Flynn, Actinomyces meyeri: from ’lumpy jaw’ to empyema, Infection 41 (5) (2013) 1025–1027.
[13] A. Kleontas, C. Asteriou, A. Efrathathiou, E. Konstantinou, C. Tsapav, N. Barbetakis, Actinomyces israelii: a rare cause of thoracic empyema, Tuberk Toraks 59 (4) (2011) 399–401.

[14] L. Ferreiro, M.L. Perez Del Molino, C. Rabade, L. Valdes, Actinomyces meyeri empyema, Arch. Bronconeumol. 53 (5) (2017) 274–276.

[15] T. Ishiguro, N. Takayanagi, K. Tanaka, K. Yoneda, Y. Sugita, K. Watanabe, [A case of empyema due to Capnocytophaga sp. and Actinomyces israelii], Nihon Kokyuki Gakkai Zashi 47 (10) (2009) 906–911 (Japanese).

[16] Y. Matsuura, S. Ishikawa, Y. Takiguchi, [Two cases of anaerobic empyema including Actinomyces], Nihon Kokyuki Gakkai Zashi 47 (3) (2009) 191–194 (Japanese).

[17] L.N. Hooi, B.S. Na, K.S. Sin, A case of empyema thoracis caused by actinomycosis, Med. J. Malaysia 47 (4) (1992) 311–315.

[18] M.S. Karetzky, J.W. Garvey, Empyema due to Actinomyces naeslundi, Chest 65 (2) (1974) 220–220.

[19] D.R. Mohan, B. Antony, G.M. Shivakumara, Empyema thoracic due to actinomyces odontolyticus, Indian J. Pathol. Microbiol. 52 (1) (2009) 120–121.

[20] C.V. Reyes, K.S. Thompson, J. Jensen, Fine needle aspiration biopsy of mastitis secondary to empyema necessitatis. A report of two cases, Acta Cytol. 43 (5) (1999) 873–876.

[21] J.R. Lentino, J.E. Allen, M. Stachowski, Hematogenous dissemination of thoracic actinomycosis due to Actinomyces meyeri, Pediatr. Infect. Dis. 6 (6) (1987) 698–699.

[22] Y. Bezawa, T. Harada, Y. Akiyama, H. Ogashawara, F. Kishi, [A case of thoracic empyema caused by Actinomyces species nova], Nihon Kokyuki Gakkai Zashi 47 (8) (2009) 727–730 (Japanese).

[23] S.I. Tamaki Sato, Hiroshi Nakano, Kento Sato, Masamichi Sato, Shuichi Abe, Yoko Shibata, Isao Kubota, [A case of pyothorax due to mixed infection including actinomycosis], Jpn. J. Chest Dis. 74 (11) (2015) 1255–1259 (Japanese).

[24] Y. Yamamoto, M. Matsuda, M. Shibata, [A case of pyothorax caused by Actinomyces israelii], Japanese, J. Med. Technol. 49 (8) (2000) 1184–1187 (Japanese).

[25] A. Gupta, R.F. Lofato, Empyema necessitatis due to Actinomyces israelii, Am. J. Respir. Crit. Care Med. 185 (12) (2012) e16.

[26] T. Yamato, M. Otsuka, K. Sekine, Y. Yoshio, H. Morinari, T. Furuie, I. Yoshio, M. Tanaka, T. Fujino, [A case of empyema due to Actinomyces israelii (author’s transl)], Jpn. J. Thorac. Dis. 19 (7) (1981) 496–501 (Japanese).

[27] T.K. Dola, R. Kumar, P. Chakrabarti, A. Das, M. Mahapatra, P. Mishra, R. Saxena, R. Chaudhury, Actinomyces species infection in a patient of T-cell acute lymphoblastic leukemia (ALL) presenting with loculated pleural effusion, Pediatr. Hematol. Oncol. 25 (5) (2008) 477–480.

[28] N. Shinagawa, E. Yamaguchi, T. Takahashi, M. Nishimura, Pulmonary actinomycosis followed by pericarditis and intractable pleuritis, Intern. Med. 41 (4) (2002) 319–322.

[29] M. Nagao, A. Fukuda, T. Matsumura, T. Kimura, H. Seno, Pulmonary actinomycosis mimicking a lung metastasis from esophageal cancer; a case report, BMC Pulm. Med. 18 (1) (2018) 39.

[30] Y. Maki, Y. Fujikura, Y. Tagami, Y. Hamakawa, H. Sasaki, K. Mitawara, N. Hayashi, A. Kawana, Empyema with multiple bronchopleural fistulae improved by bronchial occlusion using an Endobronchial Watanabe spigot with the push and slide method, Intern. Med. 58 (9) (2019) 1315–1319.

[31] T. Sato, S. Inoue, H. Nakano, K. Sato, M. Sato, K. Yamauchi, A. Igarashi, S. Abe, Y. Shibuya, I. Kubota, [A case of pyothorax due to mixed infection including actinomyces], Jpn. J. Chest Dis. 74 (11) (2015) 1255–1259 (Japanese).

[32] C. Nishio, H. Konishi, K. Oh, H. Tomioka, [Thoracic actinomycosis mimicking lung cancer], AJRS 7 (4) (2018) 255–258 (Japanese).