Short title: MYB and HSFB regulation of tension wood formation

Title: Transcriptional Reprogramming of Xylem Cell Wall Biosynthesis in Tension Wood

Author names and affiliations:

Baoguang Liu,1,2 Juan Liu,1 Jing Yu,1 Zhifeng Wang,1 Yi Sun,1 Shuang Li,1 Ying-Chung Jimmy Lin,3 Vincent L. Chiang,1,4* Wei Li,1* Jack P. Wang,1,4*

1 State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

2 Department of Forestry, Beihua University, Jilin 132013, China

3 Department of Life Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan

4 Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695

* senior authors. E-mail: vchiang@ncsu.edu; weili2015@nefu.edu.cn; jpwang@ncsu.edu

Author for correspondence: Jack P. Wang (jpwang@ncsu.edu)

One-sentence summary: PtrHSFB3-1 and PtrMYB092 mediate transcriptional reprogramming of secondary cell wall biosynthesis during tension wood formation by direct and indirect transcription factor–DNA interactions with regulatory specificity.
AUTHOR CONTRIBUTIONS

J.P.W., V.L.C., W.L., and B.L. designed the research. B.L., J.L., J.Y., Z.W., and Y.S. performed the research. B.L., J.P.W., Y.-C.J.L., and V.L.C. analyzed data. B.L., J.P.W., V.L.C., and W.L. wrote the article with input from all co-authors.

ABSTRACT

Tension wood (TW) is a specialized xylem tissue developed under mechanical/tension stress in angiosperm trees. TW development involves transregulation of secondary cell wall genes, which leads to altered wood properties for stress adaptation. We induced TW in the stems of California poplar (Populus trichocarpa, Nisqually-1) and identified two significantly repressed transcription factor (TF) genes: class B3 Heat-Shock Transcription Factor (HSFB3-1) and MYB092. Transcriptomic analysis and chromatin immunoprecipitation (ChIP) was used to identify direct TF–DNA interactions in P. trichocarpa xylem protoplasts overexpressing the TFs. This analysis established a transcriptional regulatory network in which PtrHSFB3-1 and PtrMYB092 directly activate 8 and 11 monolignol genes, respectively. The TF–DNA interactions were verified for their specificity and transactivator roles in 35 independent CRISPR-based biallelic mutants and overexpression transgenic lines of PtrHSFB3-1 and PtrMYB092 in P. trichocarpa. The gene-edited trees (mimicking the repressed PtrHSFB3-1 and PtrMYB092 under tension stress) have stem wood composition resembling that of TW during normal growth and under tension stress (i.e., low lignin and high cellulose), whereas the overexpressors showed an opposite effect (high lignin and low cellulose). Individual overexpression of the TFs impeded lignin reduction under
tension stress and restored high levels of lignin biosynthesis in the TW. This study offers biological insights to further uncover how metabolism, growth, and stress adaptation are coordinately regulated in trees.

Key words: TF-DNA interactions; transcription factor; lignin; cellulose; hemicelluloses; protoplast transfection; ChIP

INTRODUCTION

Wood is the most abundant terrestrial biomass on earth and essential raw material for timber and production of pulp and bio-based chemicals (Sarkanen, 1976). Wood formation in angiosperms occurs by differentiation of vascular cambium into fiber and vessel cells, accompanied by secondary wall thickening and programmed cell death (Esau, 1965). Under gravitational stimulus or mechanical stress induction, for example, by weights, cambium develops into a specialized tissue called tension wood (TW) on the upper side of branches and leaning stems (Côté et al., 1969; Scurfield, 1973). Compared with normal wood, TW has fewer vessel elements, increased cellulose quantity, and reduced lignin content (Timell, 1969; Sarkanen and Ludwig, 1971; Wu et al., 2000; Aoyama et al., 2001; Gerttula et al., 2015). Fiber cells are enriched in TW, and the lumen of these cells contains a gelatinous layer (G-layer) of mostly crystalline cellulose (Côté et al., 1969). These physiological alterations affect the chemical and physical properties of wood and impact lignocellulosic conversion to chemicals and fiber products. TW improves pulp yield and enzymatic saccharification for biofuel production (Timell, 1986; Brereton et al., 2011; Sawada et al., 2018). Harnessing the plasticity of wood, particularly the unique properties of TW,
brings revolutionary potential to advance the strategic improvement of wood for fiber and energy utilization. To implicate TW for lignocellulosic enhancement relies on gaining knowledge of its underlying molecular and genetic regulations.

TW formation involves complex networks of molecular and genetic interactions that transduce perceptions by phytohormone signaling to genetic reprogramming of xylogenesis (Wu et al., 2000; Andersson-Gunneras et al., 2006; Gerttula et al., 2015). Gravitational stimulation or mechanical stress triggers localized changes in auxin concentration associated with cambial differentiation for asymmetric radial growth in TW (Necesany, 1958; Leach and Wareing, 1967; Robnett and Morey, 1973). Immunolocalization of auxin polar transporter (PIN3) in TW of hybrid aspen (P. alba × P. tremula) indicates that endogenous auxin transports toward the cambial zone in TW and away from the cambium (towards the cortex) in the opposite wood (Gerttula et al., 2015). Exogenous application of indole-3-acetic acid (IAA) induced TW formation in stems of hybrid poplar (Yu et al., 2017) and red maple (Acer rubrum) seedlings (Cronshaw and Morey, 1968), and the inhibition of auxin by N-1-naphthylphthalamic acid (NPA) suppressed TW formation (Yu et al., 2017). Gibberellic acid treatments promoted “gravibending” response and TW formation in hybrid aspen (Gerttula et al., 2015) and Prunus spachiana (Nakamura et al., 1994). Despite the importance of phytohormones, inherent challenges in modulating the spatiotemporal distribution of hormones in planta limit genomic and genetic approaches to revealing their molecular regulation in TW (Hellgren et al., 2004; Gerttula et al., 2015). Instead, much effort over the past decade has focused on the identification and characterization of differentially expressed genes (Mutasa-Göttgens et al., 2012; Wang et al., 2014; Chen et al., 2015; Cai et al., 2018; Paux et al., 2005; Zinkgraf et al., 2018) and proteins (Bygdell et al., 2017) during TW formation.
TW formation by artificial stem-bending has been broadly applied to different angiosperm species, encompassing *P. tomentosa* (Wang et al., 2009; Chen et al., 2015), *P. tremula* (Bygdell et al., 2017), *Eucalyptus globulus* (Paux et al., 2005), *Liriodendron tulipifera* (Jin et al., 2011), *P. tremula × tremuloides* (Andersson-Gunneras et al., 2005), *P. alba × tremula* (Gerttula et al., 2015), and *Betula luminifera* (Cai et al., 2018). The induction of TW enabled genome-scale transcriptomic analyses to identify hundreds of differentially expressed genes specific to TW, including enzyme-encoding genes and transcription factors (TF) (Andersson-Gunneras et al., 2006; Wang et al., 2009; Jin et al., 2011; Gerttula et al., 2015; Chen et al., 2015). Typically, TW has reduced expression of genes involved in monolignol biosynthesis, polymerization (peroxidases and laccases), and xylan biosynthesis compared to normal wood and opposite wood (Andersson-Gunneras et al., 2006; Chen et al., 2015). The expression of cellulose synthases and genes involved in uridine diphosphate glucose metabolism is elevated in TW (Paux et al., 2005; Andersson-Gunneras et al., 2006; Bygdell et al., 2017). Fasciclin-like arabinogalactan proteins, which mediate the regulation of cellulose microfibril angle and cell wall components adhesion, also increase in expression in TW (Plomion et al., 2001; Lafarguette et al., 2004; Kaku et al., 2009). These studies revealed the regulatory effects of tension stress on cell-wall component genes, but information on the direct or indirect transregulations that modulate these genetic changes remains lacking.

The transregulation of cell wall component genes in wood formation is mediated by TFs that function cooperatively and combinatorially in a transcriptional regulatory network (TRN) (Lin et al., 2013, 2017; Chen et al., 2019; Yeh et al., 2019). TF expression profiles differ significantly between TW, normal wood, and opposite wood (Chen et al., 2015). Artificial stem bending in *P. tomentosa* revealed 97 differentially expressed TFs specific to TW (Chen et al., 2015). Ethylene
treatment-induced TW in *P. tremula × tremuloides* is associated with the differential expression of 168 TFs, including members in ethylene-induced ethylene response factor (ERF), basic helix-loop-helix (bHLH), v-myb avian myeloblastosis viral oncogene homolog (MYB), perforin domain-containing protein (MAC) WRKYGQK conserved sequence at N-terminal (WRKY), and ETHYLENE INSENSITIVE3-LIKE (EIN3-like) TF families (Vahala et al., 2013; Felten et al., 2018). Time-course analysis of TW formation in *P. alba × P. tremula* revealed clusters of temporally co-expressed TFs and cell wall genes (Zinkgraf, 2018). GA-induced TW formation in *P. alba × P. tremula* is sensitive to the transcript expression of a Class 1 KNOX homeodomain (ARK2) TF (Gerttula et al., 2015). Inference for TF-based reprogramming of cell wall biosynthesis in TW was made using genome-wide co-expression analyses (Ferreira et al., 2016). Six TFs (2 LIMs and 4 MYBs) were found to positively co-express with monolignol genes, and 10 TFs in the VNI, MYB, ASL, and KNAT families co-express with cellulose synthases during TW formation. However, the extent to which these TFs mediate the direct or indirect causal regulation of xylogenetic reprogramming in TW remains to be elucidated.

Relationships between TFs and their target genes are best evaluated by quantitative determination of the regulatory specificity and direct TF-DNA interactions in a hierarchical TRN. We recently established a four-layer TRN associated with wood formation in *P. trichocarpa* that describes how a key TF (PtrSND1-B1; secondary wall-associated NAC-domain protein) transregulates 17 xylem-specific TFs and 27 cell wall component biosynthetic genes (Chen et al., 2019). The TRN for wood formation was made possible due to advances in the development of woody tissue-specific chromatin-immunoprecipitation (ChIP) method and stem xylem protoplast system (Lin et al., 2013, 2014; Li et al., 2014). The wood formation TRN is represented by 57 direct TF-DNA interactions and 9 TF protein complexes, determined by a top-down integrative
approach using TF-epitope ChIP transregulation, yeast two-hybrid (Y2H), and bimolecular fluorescence complementation (BiFC) (Chen et al., 2019).

In this study, we focused on the transcriptional reprogramming of lignin biosynthesis and the effects on wood formation under tension stress. We show that two TFs, *PtrHSFBb3-1* (heat shock transcription factor) and *PtrMYB092* (v-myb avian myeloblastosis viral oncogene homolog), reprogram the wood formation TRN by suppressing monolignol biosynthesis during TW formation. *PtrHSFBb3-1* and *PtrMYB092* were the two most significant TW responsive TFs based on transcriptomic analysis and artificial stem bending in *P. trichocarpa*. We used ChIP coupled with qPCR and full transcriptome RNA-seq to reveal the direct TF-DNA transregulatory effects of *PtrHSFBb3-1* and *PtrMYB092* on monolignol biosynthetic genes and established a TW-specific TRN. This TRN and its transregulatory specificity and effects were then validated by CRISPR-based genome editing and overexpression of *PtrHSFBb3-1* and *PtrMYB092* in *P. trichocarpa*. Artificially induced tension stress was used to further support the TF-functions in TW of transgenics and wildtype. We discovered a TW-specific TRN mediated by *PtrHSFB3-1* and *PtrMYB092* that transactivates the expression of 31 genes involved in the biosynthesis of lignin, cellulose, and hemicelluloses, and that this TW-TRN is independent of the TRN for normal wood formation (Chen et al., 2019).

**RESULTS**

**Tension Stress Alters Cell-Wall Biosynthesis and Transcriptome in Stem Differentiating Xylem of *P. trichocarpa***
We induced the formation of tension wood (TW) in the stem of 6-month-old greenhouse-grown *P. trichocarpa* by bending the stem at a 90-degree angle (Supplemental Figure S1). After bending for 21 days, the stem differentiating xylem (SDX) tissue of the upper bent region, the TW, was analyzed for changes in chemical composition. The TW showed a substantial increase in cellulose (represented by ~31% increase in glucose) and a drastic reduction in lignin content by ~39% compared to normal stem wood (Supplemental Table S1). These alterations in wood properties are characteristic of TW in field-grown trees, suggesting the simple bending treatment is a useful system to generate and study TW formation (Wu et al., 2000; Lu et al., 2005). We then analyzed the transcriptome of *P. trichocarpa* in response to time-course TW formation. A 90-degree bending was made to 6-month-old *P. trichocarpa* plants (Supplemental Figure S1) for 3, 7, 14, and 21 days, and the bent stems were harvested for morphological analysis (Supplemental Figures S2, S3) and RNA collection. G-layer in fiber cells started to emerge after 3-day bending and became more visible after 7 days (Supplemental Figures S2, S3), suggesting the initiation of TW formation at these time points, where a strong transcriptional response to TW formation would be expected. We then used the RNAs from the control and the 3- and 7-day bending experiments for transcriptomic analysis. TW formation for 3 and 7 days induced 391 and 2,470 DEGs (fold change > 2 or < 0.8, FDR < 0.05), respectively, compared to the 0-day (no bending) control (Supplemental Datasets S1, S2).

**Tension-Wood Specific Expression of Genes for Cell-Wall Component Biosynthesis and TF Genes**
To understand how TW formation alters lignin and cellulose biosynthesis, we focused on screening TW formation DEGs for genes involved in lignin and cellulose biosynthesis and TF genes that may transregulate such cell-wall genes for the alteration. We found that the expression of five monolignol biosynthetic pathway genes encoding *PtrPAL1*, *PtrPAL3*, *PtrC4H2*, *Ptr4CL5*, and *PtrHCT1* enzymes were repressed after 3- and 7-day TW formation (Figure 1A). Our previous work demonstrated that downregulating the transcript abundance of these monolignol genes would result in lignin reduction in *P. trichocarpa* (Wang et al., 2018; Wang et al., 2019). Therefore, the repression of these five genes is consistent with the characteristics of low lignin in TW. Of the 5 secondary cell-wall cellulose synthase genes, 3 (*PtrCesA7*, *PtrCesA8* and *PtrCesA18*) were activated after 7-day bending (Figure 1A), consistent with the high cellulose content in TW.

We then identified TF genes from the DEGs that may mediate low lignin and high cellulose formation in TW. We observed 167 putative TF DEGs (fold change > 2 or < 0.8, FDR < 0.05) in 3- and 7-day TW compared to the control (Supplemental Datasets S1, S2). Of these DEGs, 61 were differentially repressed and represent candidate TFs for regulating TW formation, because the repression of these TFs would likely cause the repressed expression of monolignol genes. The repressed TFs may also be direct repressor or indirect activator mediating cellulose biosynthesis. From the 61 repressed TF DEGs, we selected two of the most significantly differentially repressed ones for further study. One is a member of the *P. trichocarpa* Class B3 Heat Shock Transcription Factor (*PtrHSFB3-1*, Potri.006G049200), of which expression was reduced by 3.0-fold (FDR ≤ 0.01) after 3-day bending (T3) and by 2.9-fold (FDR ≤ 0.01) at T7 (Supplemental Datasets S1, S2). The other is *PtrMYB092* (Potri.001G118800, 2.7-fold reduction...
in T3, FDR ≤ 0.01; 3.3-fold reduction in T7, FDR ≤ 0.01) (Supplemental Datasets S1, S2, and Supplemental Figure S4).

PtrHSFB3-1 and PtoMYB092 are preferentially and abundantly expressed in stem xylem relative to other tissues examined, and the abundance is attributed to the expression in both fiber and vessel cells, the two major wood formation cells (Figure 1B) (Shi et al., 2017). PtrHSFB3-1 is one of four heat shock transcription factor (HSF) genes expressed more specifically in SDX of *P. trichocarpa* (Shi et al., 2017). Homologs of PtrHSFB3-1 in other plant species were shown to respond to biotic and abiotic stress (Scharf et al., 2012; Neu et al., 2019), but their involvement in the regulation of xylem development has not been previously reported.

In a previous study, PtoMYB92, a homolog of PtoMYB092 in *P. tomentosa*, was overexpressed in transgenic plants and shown to activate the expression of monolignol biosynthetic genes, PAL4, C4H2, C3H3, 4CL5, HCT1, CCOAOMT1, CCR2, AldOMT2, and CAD1 (Li et al., 2015). It is unknown whether PtoMYB92 can directly activate these genes or not. PtoMYB92 could transactivate three (C3H3, CCOAOMT1, and CCR2) of these nine monolignol genes in Arabidopsis leaves (Li et al., 2015).

**Subcellular Localization Reveals that PtrHSFB3-1 and PtoMYB092 are Nuclear Proteins**

For PtrHSFB3-1 and PtoMYB092 to function as transcription factors associated with TW formation, the TFs need to be expressed in time and place that is consistent with the transregulation of cell wall biosynthetic genes. We have shown that PtrHSFB3-1 and PtoMYB092 gene expressions are temporally (TW-specific, Supplemental Datasets S1, S2) and
spatially (SDX-specific, Figure 1B) consistent with regulation of TW formation. We next determined the subcellular localization of \textit{PtrHSFB3-1} and \textit{PtrMYB092 in vivo}. Transient expression vectors (\textit{pUC19-35S-PtrHSFB3-1-sGFP}, and \textit{pUC19-35S-PtrMYB092-sGFP}) were assembled to express each TF as a protein-GFP fusion. The vectors were individually cotransfected with H2A-mCherry (a nuclear-localization marker) into SDX protoplasts of \textit{P. trichocarpa}. After 7-h incubation, green fluorescence signals of GFP-fused \textit{PtrHSFB3-1} and \textit{PtrMYB092} were observed to co-localize with the red fluorescence signals of H2A-mCherry, indicating nucleus localization of the TFs (Figure 1C. The fluorescence pattern of the GFP only control was uniformly distributed (Figure 1C) in the protoplasts and distinct from the fluorescence pattern of H2A-mCherry. The nucleus localization of \textit{PtrHSFB3-1} and \textit{PtrMYB092} in SDX cells is consistent with their functions as transcription factors in these nuclei. We next determined if these two TFs can transregulate the expression of genes involved in secondary cell wall component biosynthesis for TW formation.

\textit{PtrHSFB3-1} and \textit{PtrMYB092 Transactivate Monolignol Biosynthetic Pathway Genes in Stem Xylem Protoplasts}

To determine if \textit{PtrHSFB3-1} and \textit{PtrMYB092} can transregulate the expression of cell wall component genes, we used a transient overexpression system in SDX protoplasts of \textit{P. trichocarpa} coupled with RT-qPCR (Lin et al., 2013; Lin et al., 2014; Chen et al., 2019; Li et al., 2019). \textit{PtrHSFB3-1} and \textit{PtrMYB092} coding sequences were cloned into \textit{pUC19-35S-RfA-35S-sGFP} to produce transient overexpression vectors (\textit{pUC19-35S-PtrHSFB3-1-35S-sGFP} and \textit{pUC19-35S-PtrMYB092-35S-sGFP}). These overexpression vectors and a control vector that
does not contain a TF (pUC19-35S-sGFP) were individually transfected into SDX protoplasts. We then quantified the levels of *PtrHSFB3-1* and *PtrMYB092* overexpression and, as a preliminary test, the overexpression effects on the transcript abundances of six randomly selected monolignol genes (*PtrCAld5H2, PtrAldOMT2, PtrHCT1, PtrCCoAOMT1, PtrCCoAOMT2, andPtrCCoAOMT3*). *PtrHSFB3-1* and *PtrMYB092* transcripts were overexpressed by 1,503 and 442 folds, respectively, in the transfected SDX protoplasts (Supplemental Figure S5A). *PtrHSFB3-1* overexpression significantly transactivated (fold change > 2; *p* < 0.01) the expression of *PtrCCoAOMT2* (Supplemental Figure S5B). The overexpression of *PtrMYB092* significantly transactivated (fold change > 2; *p* < 0.01) the expression of 4 monolignol genes (*PtrAldOMT2, PtrHCT1, PtrCCoAOMT1, andPtrCCoAOMT2*) (Supplemental Figure S5B). Having shown that *PtrHSFB3-1* and *PtrMYB092* are involved in regulating cell-wall biosynthesis, we next discovered the genome-wide transregulatory functions of *PtrHSFB3-1* and *PtrMYB092* using full transcriptome analysis of *P. trichocarpa* SDX protoplasts overexpressing with these two TFs.

**Genome-Wide Analysis of *PtrHSFB3-1* and *PtrMYB092* Transregulation in Stem Xylem Cells**

*PtrHSFB3-1* (pUC19-35S-*PtrHSFB3-1*-35S-sGFP), *PtrMYB092* (pUC19-35S-*PtrMYB092*-35S-sGFP) and pUC19-35S-sGFP (control) were individually overexpressed in *P. trichocarpa* SDX protoplasts and the transfected protoplasts were sequenced (Supplemental Figure S6) by full transcriptomics to identify DEGs. *PtrHSFB3-1* overexpression significantly altered the transcript abundances of 1,322 genes compared to the control (Supplemental Dataset S3), with 1,072 upregulated and 250 downregulated DEGs (fold change > 2 or < 0.8; FDR < 0.05).
Overexpression of *PtrMYB092* significantly altered the transcript abundances of 1,054 genes (Supplemental Dataset S4), with 985 upregulated and 69 downregulated DEGs (fold change > 2 or < 0.8, FDR < 0.05). The high ratio of up-regulated DEGs to down-regulated DEGs suggests that *PtrHSFB3-1* and *PtrMYB092* are likely to be transcriptional activators, consistent with our preliminary transregulatory assays (Supplemental Figure S5B).

Of the 1,322 DEGs of *PtrHSFB3-1*, 9 are associated with cell wall biosynthesis. These 9 genes are all monolignol biosynthetic genes, and all were activated (Figure 2A, **p < 0.01, genes ID showed in Supplemental Dataset S5). Of the 1,072 DEGs of *PtrMYB092*, 22 are associated with cell-wall biosynthesis, which include 19 monolignol (**p < 0.01, Figure 2B, genes ID in Supplemental Dataset S5), 1 cellulose (*PtrCesA18*, Potri.004G059600, Figure 2B), and 2 hemicelluloses (*PtrCslA2*, Potri.010G234100 and *PtrIRX10-1*, Potri.001G068100, **p < 0.01, Figure 2B) biosynthetic genes. All these 22 genes were activated. GO (gene ontology) analysis (G:profiler, http://biit.cs.ut.ee/gprofiler/) (Reimand et al., 2016) of the remaining DEGs revealed an association with many biological processes related to wood formation. For example, *PtrHSFB3-1* overexpression transactivated genes belonging to the phenylpropanoid biosynthetic process and secondary metabolite biosynthetic process (Supplemental Dataset S6). *PtrMYB092* overexpression transactivated genes belonging to the L-phenylalanine metabolic process and cinnamic acid biosynthetic process (Supplemental Dataset S7). To determine if the transactivation of *PtrHSFB3-1* and *PtrMYB092* on cell wall component genes are based on direct TF-target DNA interactions or indirect regulatory effects, we next performed chromatin immunoprecipitation (ChIP) of the TF-DNA interactions using SDX protoplasts.
PtrHSFB3-1-sGFP and PtrMYB092-sGFP Fusion Proteins Retain Their Native Transregulatory Activities

ChIP is one of the most robust methods to identify individual or genome-wide direct TF-target DNA interactions in vivo (Solomon et al., 1988; Kim and Ren, 2006; Farnham, 2009). We have recently developed a ChIP system specific to the wood-forming tissue of P. trichocarpa and other forest tree species (Lin et al., 2013; Li et al., 2014; Chen et al., 2019; Li et al., 2019) and used it to reveal complex hierarchical transcriptional networks of direct TF-target DNA interactions that regulate secondary cell wall biosynthesis (Lin et al., 2013; Chen et al., 2019). In this system, the TF as a GFP-fusion is transfected into P. trichocarpa SDX protoplasts and overexpressed. Following cross-linking of the TF-GFP to their bound promoter regions, an anti-GFP antibody was used to purify the TF-DNA complexes to identify and quantify (ChIP qPCR or ChIP-seq) the specific TF-enriched promoters of the target genes (Mukhopadhyay et al., 2008; Chen et al., 2019; Li et al., 2019).

To ensure that the fusion of GFP does not interfere with the native transregulatory functions ofPtrHSFB3-1 andPtrMYB092, we assayed the transactivation activity of the TFs with and without GFP fusion. Overexpression vectors for the TF-GFP fusions (pUC19-35S-PtrHSFB3-1-sGFP and pUC19-35S-PtrMYB092-sGFP) and without the GFP fusion (pUC19-35S-PtrMYB092-35S-sGFP and pUC19-35S-PtrHSFB3-1-35S-sGFP) were individually transfected into SDX protoplasts. The levels of transactivation were then measured by RT-qPCR for five monolignol genes (PtrHCT1, PtrAldOMT2, PtrCCoAOMT1, PtrCCoAOMT2 and PtrCCoAOMT3) randomly selected from those being activated byPtrHSFB3-1 andPtrMYB092 (Supplemental Figure S7). An empty vector without TF (pUC19-35S-sGFP) was included as the
control. For both *PtrHSFB3-1* and *PtrMYB092*, the levels of transactivation of target genes were very similar between the TFs with and without GFP fusion (Supplemental Figure S7), suggesting that the TF-GFP fusions retain the TF’s native regulatory functions. Previously, we had also shown that GFP fusion does not affect TF’s native transactivation functions (Chen et al., 2019).

**PtrHSFB3-1 and PtrMYB092 Mediate Direct TF-DNA Transregulation of Cell Wall Component Biosynthetic Genes**

We then used this system to perform ChIP on the TF-GFP-transformed protoplasts using anti-GFP antibodies to identify cell wall component genes directly transregulated by *PtrHSFB3-1* and *PtrMYB092*. Overexpression vectors to express the TFs as C-terminal GFP-fusions (*pUC19*-35S-*PtrHSFB3-1*-sGFP and *pUC19*-35S-*PtrMYB092*-sGFP) (Chen et al., 2019) were constructed and individually transfected into *P. trichocarpa* SDX protoplasts. Following cross-linking and anti-GFP antibody purification, qPCR was performed for four fragments of the ~2,000 bp chromatin DNA fragments (promoter sequences) upstream of the coding region of each tested cell-wall component genes, with qPCR products ranging from 100 to 200 bp. Of the 9 monolignol biosynthetic genes that were activated by *PtrHSFB3-1* (Figure 2A, **p < 0.01), 8 were confirmed by ChIP qPCR to be *PtrHSFB3-1*’s direct targets (Figure 3A, **p <0.01 and Figure 3B). For *PtrMYB092*, 11 of the 22 activated cell-wall component genes were confirmed by ChIP qPCR to be direct targets (Figure 3C, **p < 0.01, and Figure 3B). All these 11 direct targets of *PtrMYB092* are also monolignol genes. Three significantly activated polysaccharide biosynthesis genes (*PtrCesA18*, *PtrIRX10-1*, and *PtrCslA2*, Figure 2B) are indirect targets (Figure 3C). In summary, *PtrHSFB3-1* and *PtrMYB092* directly target a total of 14 unique
monolignol genes, which include five common targets, *PtrPAL4*, *PtrC4H1*, *PtrC3H3*, *PtrCCoAOMT2* and *PtrCCR2* (Figures 3A, C, **p < 0.01, and Figure 3B). The unique and common targets indicate that *PtrHSFB3-1* and *PtrMYB092* have both independent and cooperative regulatory functions in mediating the transcriptional reprogramming for TW formation. We next altered the expression of *PtrHSFB3-1* and *PtrMYB092* in transgenic *P. trichocarpa* to test their regulatory roles in vivo.

**CRISPR-Based Editing of *PtrHSFB3-1* and *PtrMYB092* Reduces Lignin Content, Increases Cellulose Quantity, and Improves Plant Growth in *P. trichocarpa***

Our analysis of TW formation implied that tension stress-induced repression of *PtrHSFB3-1* and *PtrMYB092* (Supplemental Datasets S1, S2) caused reduced lignification and augmented cellulose biosynthesis (Supplemental Table S1). To verify these transregulatory effects, we generated loss-of-function mutants of the two TFs in *P. trichocarpa* using CRISPR-based editing with *Streptococcus pyogenes* Cas9 (Deltcheva et al., 2011; Jiang et al., 2013; Heler et al., 2015). sgRNAs were designed to target SNP-free regions in the exons of *PtrHSFB3-1* and *PtrMYB092* (see Methods; Supplemental Figure S8). The designed sgRNAs were validated for in vitro cleavage of target DNA using recombinant SpCas9-sgRNA ribonucleoprotein (RNP) cleavage assays (Supplemental Figure S9). The RNPs were able to cleave 100% of their target DNA to the correct sized fragments (Supplemental Figure S9), confirming the specificity and functions of the sgRNAs for editing *PtrHSFB3-1* and *PtrMYB092*. The validated sgRNAs were then individually cloned into the *pEgP237-2A-GFP* vector (Osakabe et al., 2016; Ueta et al., 2017) for CRISPR-based editing of the TFs using our improved *P. trichocarpa* transformation protocol (Song et al.,
From the CRISPR-edited transgenic lines, we selected 3 independent biallelic mutants for *PtrHSFB3-1* and 3 for *PtrMYB092*. All 6 biallelic mutant lines induced the complete loss-of-function of the target TFs. The 3 mutant lines consisted of 2 heterozygous (*KO-PtrHSFB3-1-5-1* and *KO-PtrHSFB3-1-1-5-2*) and 1 homozygous (*KO-PtrHSFB3-1-1-5-3*) edits for *PtrHSFB3-1*, and 1 heterozygous (*KO-PtrMYB092-15-2*) and 2 homozygous (*KO-PtrMYB092-15-1* and *KO-PtrMYB092-15-3*) edits for *PtrMYB092* (Supplemental Figure S10).

The transcript abundance of all cell-wall component genes regulated by *PtrHSFB3-1* (8 direct targets and 1 indirect target, Figure 3B) were significantly reduced (*p < 0.01*) in SDX of the mutants compared to wildtype (Figure 4A). Cell wall genes not regulated by *PtrHSFB3-1* (represented by a few monolignol genes and all secondary cell-wall *CesA* genes) did not change in transcript abundance in the *PtrHSFB3-1* mutants (negative controls in Figure 4A). Similarly, for *PtrMYB092* mutant lines, the transcript abundances of all 11 direct targets and 9 of the 11 indirect targets (Figure 3B) were significantly reduced (*p < 0.01*) compared to the wildtype (Figure 4B). The expression of *PtrMYB092*’s remaining 2 indirect target genes (*PtrIRX10-1* and *PtrCesA18*) was not significantly reduced in the *PtrMYB092* mutants (Figure 4B), suggesting the involvement of other unknown regulatory mechanisms. The reduced expression of all direct target genes of *PtrHSFB3-1* and *PtrMYB092* in the mutant lines (Figure 4) is consistent with the protoplast-derived functions (Figure 2) of these TFs as transactivators for cell-wall component biosynthesis.

The edited *P. trichocarpa* showed slightly improved growth compared to wildtype (Figures 5A–D). The improved growth was sustained for the period of the study (Figures 5A–D and Supplemental Figure S11). The morphology, number, size, and wall thickness of the three major
stem xylem cell types (fibers, vessels, and rays) are similar between the edited *P. trichocarpa* lines and the wildtype (Supplemental Figure S12). No G-layer could be detected in the lumen of xylem fiber or vessel cells in these plants (Supplemental Figure S12). However, the edited lines developed altered stem wood properties (Table 1) resembling those in TW (i.e., low lignin and high cellulose; Supplemental Table S2, summarized results). The wood of *PtrHSFB3-1*-edited lines (*KO-PtrHSFB3-1*) have less lignin (17.46 ± 0.52% less) and more cellulose (represented by 11.15 ± 0.13% increases in glucose) compared to wildtype (Supplemental Table S2). The alteration was more pronounced in *PtrMYB092* mutants with 26.91± 0.69% less lignin and 18.54 ± 0.78 % more glucose relative to wildtype (Table 1, Supplemental Table S2). The mutant results provide strong *in vivo* validation of the regulatory roles of these TFs in reprogramming cell-wall component biosynthesis during TW formation.

**Overexpressing *PtrHSFB3-1* and *PtrMYB092* Negatively Affect Growth with Increased Lignin Quantity and Reduced Cellulose Content in Wood of *P. trichocarpa***

We overexpressed *PtrHSFB3-1* and *PtrMYB092* in *P. trichocarpa* (Figure 5) to further validate the regulatory functions of these TFs. *PtrHSFB3-1* and *PtrMYB092* were individually overexpressed under the control of a CaMV 35S promoter, generating 21 and 8 independent transgenic lines, respectively. We then quantified the transcript abundance of the transgene in stem differentiating xylem and selected three independent lines per TF construct (*OE-PtrHSFB3-1*-4, -7, -11, Figure 5E; *OE-PtrMYB092-6*, -7, -9, Figure 5F) with the highest transgene transcript levels. The *PtrHSFB3-1* expression in *OE-PtrHSFB3-1*-4, -7, and -11 was 5.73, 5.5 and 4.3-fold
higher than wildtype, respectively. _OE-PtrMYB092-6, -7, and -9_ had _PtrMYB092_ transcripts 7.06, 5.51, and 4.93 times more abundant, respectively, than in wildtype.

Overexpression of the two TF genes in transgenics showed reduced plant growth (Figures 5E–H), an effect opposite to their loss-of-function mutants (Figures 5A–D). While growth reduction in _OE-PtrHSFB3-1_ transgenics was moderate (Figures 5E, G, H), overexpression of _PtrMYB092_ drastically impaired the growth compared to the wildtype (Figures 5F–H), and particularly to its knockouts (Figures 5B–D). _KO-PtrMYB092_ mutants grew 3 to 4-fold higher and developed ~2 times more internodes than _OE-PtrMYB092_ transgenics (Figures 5B–D, F–H). The results suggest an effective role for _PtrMYB092_ in modulating the growth and development of _P. trichocarpa_. Like in the edited plants, the growth effects were sustained in the overexpressors (Figures 5A–H and Supplemental Figure S11).

Overexpression of _PtrHSFB3-1_ significantly (_p_ < 0.01) transactivated all its direct and indirect cell-wall target genes in SDX of transgenic _OE-PtrHSFB3-1_ lines (Figure 6A). The transcript levels of the 8 cell-wall component genes that are not _PtrHSFB3-1_’s targets (negative controls) were not affected (Figure 6A). Similarly, overexpression of _PtrMYB092_ elevated (_p_ < 0.01) the transcript levels of all 11 direct targets and 9 indirect targets (Figure 3B) in SDX of transgenic _OE-PtrMYB092_ lines, while the expression of negative controls remained unaffected (Figure 6B). The transcript expression of _PtrMYB092_’s other 2 indirect target genes (_PtrIRX10-1_ and _PtrCesA18_) was also not affected in the _OE-PtrMYB092_ lines, as was not in the _PtrMYB092_ mutants (Figure 4B), confirming the likely involvement of other unknown regulatory mechanisms. Therefore, _in planta_ expression (mutation in Figure 4 and activation in Figure 6)
and the protoplast-derived transregulation analyses (Figure 2) consistently demonstrate that these TFs are transactivators for cell-wall component biosynthesis.

The moderately impeded growth in OE-PtrHSFB3-1 transgenics did not cause apparent changes in the number and size of xylem cells but increased the wall thickness (Figures 5I–K). The stunted growth in OE-PtrMYB092 transgenics also developed significantly less wood areas with smaller and thicker-walled xylem cells per unit area than wildtype plants (Figures 5I–J, M–N).

Overexpression of the two TF genes in transgenics showed effects on wood biosynthesis that are also the opposite of their loss-of-function mutants (Figures 5I–Q and Supplemental Figure S12). For example, *PtrHSFB3-1* overexpression (*OE-PtrHSFB3-1* lines) increased stem wood lignin (9.73 ± 0.24% increase, Table 1, Supplemental Table S2) and reduced cellulose (4.29 ± 0.71% reduction in glucose, Table 1). *PtrHSFB3-1* knock-outs (*KO-PtrHSFB3-1* lines) had reduced lignin and augmented cellulose (Table 1, Supplemental Table S2). For *PtrMYB092*, gene overexpression (*OE-PtrMYB092* lines) increased lignin (18.17 ± 0.58% increase, Table 1, Supplemental Table S2), and gene knockout (*KO-PtrMYB092* lines) reduced lignin (Table 1, Supplemental Table S2). Similarly, overexpression of *PtrMYB092* reduced cellulose (7.49± 1.11% reduction in glucose, Table 1, Supplemental Table S2) and knockout of *PtrMYB092* increased cellulose (Table 1, Supplemental Table S2). Alteration of *PtrMYB092* expression had stronger effects on wood component biosynthesis than *PtrHSFB3-1*. Together, the results of strong TW-responsive transrepression and functions (mutation and activation) in transgenics suggest that *PtrHSFB3-1* and *PtrMYB092* are two key TFs in transregulation of cell-wall biosynthesis in tension wood formation of *P. trichocarpa*. 

20
PtrHSFB3-1 and PtrMYB092 Transgenic P. trichocarpa Exhibit Altered Lignin Biosynthesis in Tension Wood Compared to Wildtype

We next validated the transregulatory roles of PtrHSFB3-1 and PtrMYB092 in lignin biosynthesis during TW formation. Tension wood induced by artificial stem bending in OE-PtrHSFB3-1, OE-PtrMYB092, KO-PtrHSFB3-1, KO-PtrMYB092, and wildtype P. trichocarpa were analyzed by wood composition analysis (Table 2 and Supplemental Table S3), lignin autofluorescence imaging (Figure 7), and staining of stem cross-sections (Figure 8) (see Materials and Methods). Lignin exhibits unique autofluorescent properties that can be used to estimate the spatial distribution and content of lignin in xylem tissues based on the relative intensity of the fluorescence (Donaldson, 2013; Decou, 2017; Donaldson, 2013). In wildtype P. trichocarpa, the intensity of lignin autofluorescence in the TW region was significantly reduced compared to the opposite wood (OW) (Figures 7A, D). The reduced autofluorescence in wildtype TW is consistent with the reduced lignin content (Supplemental Table S1) and transcript abundances of monolignol genes in TW (Figure 1A).

OE-PtrHSFB3-1 (Figures 7B, E) and OE-PtrMYB092 (Supplemental Figures S13B, E) showed uniformly distributed and similarly high levels of lignin autofluorescence in the TW and OW. The fluorescence patterns indicate that overexpression of these TFs is sufficient to prevent the repression of lignin biosynthesis during TW formation. In contrast, KO-PtrHSFB3-1 (Figures 7C, F) and KO-PtrMYB092 (Supplemental Figures S13C, F) showed reduced lignin autofluorescence in both TW and OW, confirming that lignin biosynthesis is suppressed in the absence of these TFs. The results also suggest that the transactivation of lignin biosynthesis by PtrHSFB3-1 and PtrMYB092 is not impaired by tension stress induced by artificial stem bending (Figures 8A-C).
The TW of TF-overexpressed transgenics (Figure 7B, Supplemental Figure S13B) exhibited stronger lignin autofluorescence compared to the TW of wildtype and knockout mutants (Figure 7C, Supplemental Figure S13C), consistent with the elevated transcript abundance of monolignol genes targeted by *PtrHSFB3-1* and *PtrMYB092* (Figures 2, 3B, 5). The regulatory roles of the TFs during TW formation were further validated by quantitative determination of TW composition in the transgenics and wildtype *P. trichocarpa* (Table 2, Supplemental Table S3). *OE-PtrMYB092* and *OE-PtrHSFB3-1* exhibited significantly higher TW lignin contents of 20.09±0.17 (g/100g of dry extractive-free wood) and 17.15±0.16, respectively, compared to wildtype (15.15±0.02) (Table 2). The knockout mutants showed very low TW lignin contents of 11.07±0.34 (*KO-PtrMYB092*) and 12.75±0.29 (*PtrHSFB3-1*) (Table 2). Changes in TW composition were also observed for carbohydrate contents. Glucose increased from 59.71±1.09 in wildtype TW to 65.11±0.63 (*KO-PtrHSFB3-1*) and 64.73±0.63 (*KO-PtrMYB092*) in the knockout mutants (Table 2). *OE-PtrHSFB3-1* and *OE-PtrMYB092* showed reduced glucose contents of 57.69±0.74 and 47.21±0.95, respectively. The glucose content changes are consistent with the staining of cellulose-enriched G-layer in the stem cross-sections of transgenics and wildtype (Figure 8). The TW of TF overexpression transgenics (Figures 8B, C) showed reduced G-layer staining compared to wildtype (Figure 8A). In contrast, the TF knockouts (Figures 8D, E) showed similar staining of G-layer. We did not observe a change in the numbers of fiber and vessel cells between the TW of wildtype (Figure 8A) and *OE-PtrHSFB3-1*, *OE-PtrMYB092*, *KO-PtrHSFB3-1*, and *KO-PtrMYB092* (Figures 8B–E, Supplemental Figure S14), confirming that *PtrHSFB3-1* and *PtrMYB092* regulation during TW formation is specific to monolignol biosynthesis. Taken together, reduced transcript expression of *PtrHSFB3-1* and *PtrMYB092* is
necessary to reduce lignin deposition during normal TW formation, and overexpression of
*PtrHSFB3-1* or *PtrMYB092* restored lignin biosynthesis in TW.

**DISCUSSION**

We demonstrated that TW is formed rapidly under mechanical stress in the stem of greenhouse-grown *P. trichocarpa*, as evidenced by the typical low lignin and high cellulose characteristics (Supplemental Table S1). When TW develops and the TW-specific G-layer emerges in xylem cells (Supplemental Figure S3), the expression of 5 of the 22 monolignol genes was repressed, and 3 of the 5 secondary cell-wall CesAs were activated (Figure 1A). We examined genome-wide transcriptomic response and identified from 61 TW-repressed TFs two most significantly differentially repressed TFs (*PtrHSFB3-1* and *PtrMYB092*) as candidate regulators for altered lignin and cellulose biosynthesis. *PtrHSFB3-1* and *PtrMYB092* are more xylem-specific, and both expressed in xylem fiber and vessel cells (wood forming cells) (Figure 1B). We used protoplasts of wood forming cells coupled with RNA-seq and ChIP to discover the regulatory effects of these two TFs on secondary cell-wall genes. *PtrHSFB3-1* and *PtrMYB092* activate the expression of 31 genes involved in the biosynthesis of lignin, cellulose, and hemicelluloses (Figure 2). CRISPR-based knockout of these two TF genes, which mimics the tension stress-induced repression of the two TFs, resulted in significantly reduced expression of 29 of the 31 target genes (Figure 4). The knockouts developed wood with properties similar to TW (low lignin and high cellulose) during normal growth and under tension stress (Tables 1, 2, Supplemental Tables S1-3S). The same 29 genes repressed by knockout were all activated in
transgenics overexpressing the two TFs (Figure 6), where the transgenic wood had high lignin and low cellulose (Supplemental Table S1, Table 2). These in vivo validations suggest that *PtrHSFB3-1* and *PtrMYB092* are two key regulators for TW formation. This regulatory knowledge is necessary for advancing genome editing strategies to breed feedstocks with more advantageous traits for materials and energy production. Desirable feedstock traits, such as low lignin and high glucose, as well as improved growth, can now be generated through CRISPR-based editing of *PtrHSFB3-1* or *PtrMYB092*. These mutants and the overexpressing transgenics generated are unique and valuable varieties for field production to assess their breeding and economic values and to allow understanding of regulations associated with environmental effects on adaptation in species with novel wood and growth traits.

**PtrHSFB3-1 and PtrMYB092 Directly Transregulating Cell-Wall Component Genes for TW Formation**

Plant heat shock transcription factors (HSFs) play important roles in controlling complex signaling and regulatory systems to cope with heat and other environmental stresses (von Koskull-Doring et al., 2007; Hu et al., 2009; Li et al., 2010; Al-Whaibi, 2011; Scharf et al., 2012; Guan et al., 2013). HSFs confer thermotolerance by inducing the expression of heat shock proteins (HSPs) that chaperone cellular proteins, preventing their misassembling under the heat stress (Payen, 1839; Joachim Clos, 1990; Liu et al., 2016). Plant genomes encode multiple HSFs, grouped into three major classes (A, B, and C) based on differences in the protein HR–A/B region (von Koskull-Doring et al., 2007; Scharf et al., 2012; Liu et al., 2018). Functions of many HSFs have been demonstrated in Arabidopsis. Typically, they act as central regulators to early
heat shock responses (Li et al., 2010; Ikeda et al., 2011; Nishizawa-Yokoi et al., 2011) or disease resistance (Kumar et al., 2009; Ikeda et al., 2011).

There are 28 HSFs in *P. trichocarpa* (Hu et al., 2009; Scharf et al., 2012; Liu et al., 2018). Four HSFs, two in class A (*PtrHSFA2-2* and *PtrHSFA3-1*) and two in class B (*PtrHSFB3-1* and *PtrHSFB3-2*), are expressed more specifically in stem differentiating xylem (SDX) (Tunlayananukit, 2014; Shi et al., 2017). While many HSFs are associated with heat stress, we discovered a mechanical or tension stress-responsive HSF, the *PtrHSFB3-1*. Transcriptomic profiles of gravistimulation suggested that *PtrHSFB3-1* may be associated with lignin biosynthesis and wood formation in *P. alba × P. tremula* (Gerttula et al., 2015). In Arabidopsis, *AtHSFB3* (AT2G41690) shares the closest sequence similarity to *PtrHSFB3-1* and shares a 73% amino acid sequence similarity. The function of *AtHSFB3* in Arabidopsis is not clear (Scharf et al., 2012). *PtrHSFB3-1* is a direct transactivator of monolignol biosynthetic pathway genes, revealing 8 TF-DNA interactions for secondary cell-wall biosynthesis that have not previously been reported.

Reported homologs of *PtrMYB092* include *PtoMYB92* in *P. tomentosa* (Li et al., 2015), and *AtMYB42* and *AtMYB85* in Arabidopsis (Zhong et al., 2008). These MYBs are known activators of a few monolignol biosynthetic pathway genes. Co-expression analysis in *P. alba × P. tremula* suggests that *PtrMYB092* may be associated with lignin biosynthesis (Gerttula et al., 2015). We discovered that *PtrMYB092* is a direct transactivator of a specific set of monolignol genes (Figures 3B, C). *PtrMYB092* mediates 11 direct TF-monolignol gene interactions.

*PtrHSFB3-1* and *PtrMYB092* directly transactivate 8 and 11 monolignol pathway genes, respectively, and together they transactivate 14 unique monolignol genes, with five (*PtrPAL4*, **Downloaded from https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiab038/6126395 by guest on 28 February 2021**)
PtrC4H1, PtrC3H3, PtrCCoAOMT2, and PtrCCR2) being redundant targets of the two TFs (Figure 3). There are at least 23 known monolignol pathway genes in *P. trichocarpa* (Shi et al., 2010; Wang et al., 2018). Suppression of TF-monolignol gene transactivations by repressing either *PtrHSFB3-1* or *PtrMYB092* can effectively reduce lignin formation, but not to the extent of lignin reduction in tension stress (Supplemental Table S1). Under tension stress, both *PtrHSFB3-1* and *PtrMYB092* (and other TFs affecting monolignol genes) are repressed (Supplemental Figure S4 and Supplemental Datasets S1, S2), leading to a more extensive lignin reduction in TW than in transgenics where only one of the two TFs is repressed (Table 1).

**PtrHSFB3-1 and PtrMYB092 Reprogram Transregulation of Monolignol Genes for Lignin Biosynthesis in TW That May Be Distinct from Regulation for Normal Wood Formation**

*PtrHSFB3-1* and *PtrMYB092* transregulations are highly specific to monolignol biosynthesis because they only mediate direct TF-DNA regulation of 14 unique monolignol genes based on full-transcriptome analysis coupled with ChIP (Figures 2, 3A, C). In a recent study, we constructed a 4-layer transcriptional regulatory network (TRN) mediated by a key TF, *PtrSND1*-B1, for wood formation (Chen et al., 2019). *PtrSND1*-B1 directs 57 TF-DNA interactions through 17 TFs transregulating 27 cell-wall biosynthesis genes, including 11 monolignol pathway genes. However, bending did not significantly affect the transcript abundance of *PtrSND1*-B1, the master regulator of the 4-layer TRN. The TRN’s 17 TF genes do not include *PtrHSFB3-1* and *PtrMYB092*. These 17 TFs were screened based on a genome-wide approach to be comprehensive for *PtrSND1*-B1 mediated wood formation. Whether any of these 17 TFs are the direct transregulators of *PtrHSFB3-1* or *PtrMYB092* is unknown in *P. trichocarpa* or any
Populus species.

These results suggest that TW formation may be triggered by reprogrammed transregulation of cell-wall genes mediated by a tension-induced network (or TW-TRN), where TFs like PtrHSFB3-1 and PtrMYB092 are involved. The PtrHSFB3-1 and PtrMYB092 containing TW-TRN may also encompass associated TFs that can directly transregulate cellulose and hemicellulose biosynthetic genes more specifically for TW formation. This is because PtrMYB092 can significantly transactivate indirectly a major secondary cell-wall cellulose synthase gene, PtrCesA18, and two hemicellulose synthases, PtrIRX10-1 and PtrCslA2 (Figures 2B, 3C). The indirect transregulation must be mediated by PtrMYB092 through intermediate TFs, which in turn transregulate directly (or indirectly) these polysaccharide biosynthetic genes. The activation of PtrCesA18 and PtrIRX10-1 and PtrCslA2 may be associated more with the secondary cell-wall biosynthesis instead of the G-layer, as suggested by results from bending and transgenic experiments (Supplemental Table S1, Table 1 and below).

**G-Layer Formation May Be Mediated by Transactivation of Cellulose Synthase Genes but Not by PtrHSFB3-1 and PtrMYB092**

An important characteristic of tension wood is a G-layer in the lumen of fiber cells (Supplemental Figures S2, S3) and the G-layer has essentially no lignin (Kaku et al., 2009; Gorshkova et al., 2015). Because knockout of PtrHSFB3-1 and PtrMYB092 mimics TW formation, we examined the stem cross-sections of PtrHSFB3-1 and PtrMYB092 mutant lines but could not detect any G-layer (Supplemental Figures S12A-D). Therefore, PtrHSFB3-1 and PtrMYB092 cannot mediate G-layer biosynthesis. Glucose content was elevated in the TW of
wildtype, KO-PtrHSFB3-1 and KO-PtrMYB092 lines, but reduced in the TW of OE-PtrHSFB3-1 and OE-PtrMYB092 lines (Tables 1, 2; Supplemental Tables S1-S3). The results suggest that cellulose biosynthesis for G-layer formation in TW is not directly mediated by either PtrHSFB3-1 or PtrMYB092. Tension stress represses the expression of PtrHSFB3-1 and PtrMYB092 in secondary cell walls leading to reduced lignin, which may be compensated by high cellulose in these walls as we have previously observed (Hu et al., 1999; Li et al., 2003; Novaes et al., 2010; Lu et al., 2013). Therefore, we suggest that changes in TW’s chemical composition are due to increased cellulose in the affected xylem secondary cell walls and the G-layer in fiber lumen, and to the reduced lignin biosynthesis mediated at least by PtrHSFB3-1 and PtrMYB092 in secondary cell walls.

_PtrHSFB3-1 and PtrMYB092 Are Possible Repressors for Growth and Development in _P. trichocarpa_

In this study, we also discovered roles for PtrHSFB3-1 and PtrMYB092 in regulating plant growth (Figure 5). Plant height and number of stem internodes were adversely affected by the transcript levels of PtrHSFB3-1 and PtrMYB092. The effects were particularly prominent for PtrMYB092 (Figures 6F-H). Because essentially every aspect of plant growth and development is regulated by phytohormones (Vanstraelen and Benková, 2012), such as auxin/indole-3-acetic acid (IAA) or gibberellins (Vargas et al., 2016), such regulations may be affected in transgenics where expression of PtrMYB092 is constitutively perturbed. Perhaps, PtrMYB092 can interact with a receptor protein perceived with phytohormones to interrupt a transduction pathway where a specific amount of the hormone can be released to maintain normal plant growth and
development. High levels of \textit{PtrMYB092} may inhibit the hormone's release, resulting in impeded growth, whereas the absence of \textit{PtrMYB092} may achieve the opposite. The \textit{PtrHSFB3-1} and \textit{PtrMYB092} mutants and overexpressing transgenics produced here are unique systems for understanding the interactions between transcriptional regulatory networks and hormonal pathways/networks that coordinate regulations of metabolisms, growth, and adaptation in plants, particularly in forest tree species.

**MATERIALS AND METHODS**

**Plant Materials:** \textit{P. trichocarpa} (genotype Nisqually-1) plants were grown and propagated in an indoor greenhouse. The temperature was maintained at \(~23\) °C with 16 h light/8 h dark photoperiod (light intensity \(\sim300\) \(\mu\)E m\(^{-2}\) s\(^{-1}\)), and 60–80% humidity, as previously described (Li et al., 2011). Greenhouse plants were watered daily to soil saturation. Clonal plants were propagated by lateral branches (\(\sim15\) cm) rooted in water. The rooted branches were planted in 16-cm diameter pots filled with a soil mixture of peat moss and Metro-Mix 200 (2:1 ratio, respectively). Six-month-old healthy plants were used for RNA extraction and stem differentiating xylem (SDX) protoplast isolation.

**Artificial Stem Bending to Induce Tension Wood Formation:** \textit{P. trichocarpa} trees (6 months old) were used to induce TW formation by mechanical bending of the stem to an angle of 90° (Supplemental Figure S1). Stem differentiating xylem (SDX) tissues were collected 3-days and 7-days after bending (Supplemental Figure S1). SDX was lightly scraped (0.2–0.5 mm in depth) using a razor blade from the upper (TW region) of the bent stems, as well as from corresponding
locations on the controls (non-bent trees). SDX tissues were immediately frozen in liquid nitrogen for transcriptomic analysis.

**Total RNA Extraction:** Total RNA from *P. trichocarpa* was isolated using the Qiagen RNAeasy Mini kit (Invitrogen) for RNA-seq, cDNA cloning, and RT-qPCR. For transcriptomic analysis, the quality of isolated RNA was determined using a Bioanalyzer 2100 (Agilent), and RNA samples with RIN value greater than 9.0 were used for RNA-seq following Lin et al. (2013) for the artificially bent stem samples and non-bent controls (GEO accession number: GSE153793).

**Gene Cloning:** The full-length coding sequences of *PtrHSFB3-1* and *PtrMYB092* were amplified from 20 ng/µL of cDNA reverse transcribed using the SuperScript III kit (Invitrogen) from total RNA of *P. trichocarpa* SDX. Primers for gene cloning are listed in Supplemental Dataset S8. The amplified coding sequences were integrated into the *pENTR/D-TOPO* vector (Invitrogen) and verified by Sanger sequencing.

**Constructs for Transient Overexpression of *PtrHSFB3-1* and *PtrMYB092* in SDX Protoplasts:** The coding sequences of *PtrHSFB3-1* and *PtrMYB092* were cloned from the *pENTR-D-TOPO* vector into *pUC19-35S-RfA-35S-sGFP* (Li et al., 2012) using LR reactions, generating transient overexpression constructs *pUC19-35S-PtrHSFB3-1-35S-sGFP* and *pUC19-35S-PtrMYB092-35S-sGFP*.

**Histochemical and Histomorphological Analyses:** Stem segments (9th internode) from 0-, 3-, 7-, 14- and 21-day stem bending trees and KO-*PtrHSFB3-1*, KO-*PtrMYB092*, OE-*PtrHSFB3-1*, OE-*PtrMYB092* transgenic and wildtype plants of 180 days old were harvested. Paraffin-embedded stem sections were prepared as previously described (Li et al., 2019). Cross-sections (16 µm thick) were stained with safranin O and fast green for microscopy (Leica DM6B)
analysis to characterize the formation of TW by the deposition of G-layers, changes in the intensity of lignin staining, and changes in vessel cell numbers.

Quantitative PCR: Quantitative PCR was carried out using the Mx3000P Real-time PCR system (Agilent). FastStart Universal SYBR Green Master Mix (Roche) was used for the amplification and detection of target genomic DNA (qPCR) or cDNA (RT-qPCR). cDNAs were synthesized by reverse transcription using the SuperScript III Reverse Transcriptase (Invitrogen) following manufacturer’s procedures. Transcript level was normalized to the expression of 18S rRNA (Schmittgen and Livak, 2008). The target DNA enrichment level was normalized to the expression of *PtrACTIN* (Li et al., 2019). Three technical replicates were carried out for each quantitative PCR assay. Primers for gene cloning are listed in Supplemental Dataset S8.

**Constructs for ChIP Assays:** Restriction sites for *BamH* I and *Xho* I were added to the 5’ and 3’ of the coding sequences of *PtrHSFB3-1* and *PtrMYB092*, respectively, using primers listed in Supplemental Dataset S8. The PCR amplified coding sequences were then restriction digested and ligated to generate the transient expression vectors (*pUC19-35S-PtrHSFB3-1-sGFP* and *pUC19-35S-PtrMYB092-sGFP*).

**Subcellular Localization of *PtrHSFB3-1* and *PtrMYB092:*** *pUC19-35S-PtrHSFB3-1-sGFP* and *pUC19-35S-PtrMYB092-sGFP* plasmids were purified using the CsCl density-gradient ultracentrifugation method (Lin et al., 2014), and the concentration was diluted to 2 µg/µL. SDX protoplasts (1×10^6 cells) were isolated, transfected, and cultured as described previously (Lin et al., 2013; Lin et al., 2014), with mannitol concentration in buffers MMG and WI reduced from 0.5 M to 0.25 M. *pUC19-35S-PtrHSFB3-1-sGFP* and *pUC19-35S-PtrMYB092-sGFP* plasmids were individually co-transfected with *pUC19-35S-H2A-cherry* (a nuclear localization marker)
into SDX protoplasts for the subcellular localization of the two TFs. After 7 h incubation, nuclear localization was observed by fluorescence imaging using an LSM 710 fluorescence laser scanning microscope (Zeiss). The excitation and emission wavelengths of GFP were 488 nm and 492-543 nm, respectively, and mCherry was detected using 561 nm (excitation) and 582-662 nm (emission).

**Gene Expression Analysis in SDX Protoplasts:** *pUC19*-35S-*PtrHSFB3-1*-35S-sGFP and *pUC19*-35S-*PtrMYB092-35S*-sGFP plasmids were prepared and individually transfected into SDX protoplasts as described above. After culturing for 12 h, protoplasts (5–8×10⁵ cells) were collected by centrifugation at 600 × g for 5 min at room temperature. Total RNA was isolated from the SDX protoplasts using the RNeasy Mini kit (Invitrogen) as described previously (Chen et al., 2019). RT-qPCR analyses were carried out as described above. Three biological replicates for each transfection were performed. Primers for RT-qPCR are listed in Supplemental Dataset S8.

**Transcriptomic Analysis of TF Overexpression in SDX Protoplasts and Identification of DEGs:** The quality and concentration of total RNA (>1 μg) isolated from SDX protoplasts overexpressing *PtrMYB092*, *PtrHSFB3-1*, and sGFP individually were verified using a 2100 Bioanalyzer (Agilent). Total RNA (1 μg) for each sample was used for library construction using the TruSeq RNA library preparation kit (Illumina). A total of 9 libraries (3 biological replicates) were sequenced using HiSeq 2500/4000 (Illumina). The sequencing of libraries was performed by Beijing Genomics Institute (BGI) (GEO accession number: GSE154167). Sequencing reads were mapped to *P. trichocarpa* genome v3.0 (Phytozome, www.phytozome.com) using Bowtie 2 (version 2.1.0) (Langmead and Salzberg, 2012). Differentially expressed genes (false discovery
rate, FDR < 0.05; fold-change, FC > 2 or < 0.8) induced by the overexpression of *PtrMYB092* and *PtrHSFB3-1* were identified by comparing (Robinson et al., 2010) to SDX protoplasts overexpressing sGFP (control).

**ChIP RT-qPCR:** ChIP analysis using SDX protoplasts was performed according to our previously established procedure (Chen et al., 2019; Yeh et al., 2019). DNA plasmids (~3 mg) of *pUC19-35S-PtrMYB092-GFP*, *pUC19-35S-PtrHSFB3-1-sGFP* and *pUC19-35S-sGFP* (control) constructs were individually transfected into SDX protoplasts (1×10⁷ cells). After incubation for 12 h in the dark at room temperature, the protoplasts were collected in 50-mL tubes by centrifugation at 750 × g for 10 min and re-suspended in 20 mL of WI buffer (0.2 M MES pH 5.7, 0.8 M mannitol, 2 M KCl), then 540 μL of formaldehyde was added, mixed well, and incubated for 10 min for cross-linking at room temperature. The cross-linked protoplasts were washed twice using cold WI buffer and lysed using lysis buffer (50 mM Tris-HCl pH 5.7, 10 mM EDTA, 1% (w/v) SDS, 1 mM PMSF, 1 μg/mL pepstatin A, 1 μg/mL leupeptin) for nucleus purification and chromatin extraction. Chromatin was fragmented using a Bioruptor (Diagenode) for three rounds of five cycles at maximum power. The average size of the DNA-protein fragments was ~0.75 kb. The chromatin fragments were immunoprecipitated using 5 μg of anti-GFP antibody (Abcam, ab290) (Li et al., 2019). DNA from the immunoprecipitants was purified using the MinElute kit (QIAGEN) and analyzed by ChIP qPCR as previously described (Mukhopadhyay et al., 2008; Li et al., 2014). Three biological replicates were carried out for each ChIP qPCR experiment. Primers for ChIP qPCR are shown in Supplemental Dataset S8.

**Generation of Transgenic *P. trichocarpa*:** The coding sequences of *PtrHSFB3-1* and *PtrMYB092* were amplified using primers with *BamH* I and *Sac* I restriction endonuclease cut
sites. The PCR products were restriction digested by BamH I and Sac I and inserted in pBI121 vector digested with BamH I and Sac I. The assembled transformation plasmids were then sequence-verified and transformed into A. tumefaciens strain GV3101 for Agrobacterium-mediated transformation of P. trichocarpa, following our established procedures (Song et al., 2006).

The transcript abundances of PtrHSFB3-1 and PtrMYB092 in SDX of transgenic plants were quantified by RT-qPCR, as described above. The transgenic P. trichocarpa lines with the highest transgene expression levels for PtrHSFB3-1 and PtrMYB092 genes were selected and maintained in a greenhouse for phenotypic analyses.

**CRISPR-Based Editing of PtrHSFB3-1 and PtrMYB092 in Transgenic P. trichocarpa:** We used CRISPR-Cas9 (Ueta et al., 2017) to individually target the loss-of-function editing of PtrHSFB3-1 and PtrMYB092 in transgenic P. trichocarpa. Guide RNAs (sgRNA) targeting the coding sequences of PtrMYB092 and PtrHSFB3-1 were designed using the software CRISPR-P2.0 (http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR). sgRNAs were verified using IGV (http://software.broadinstitute.org/software/igv) to be free of single nucleotide polymorphisms (SNPs) that may interfere with target DNA editing. sgRNA sequences were restriction digested using Bsa I and inserted into the transformation vector pEgP237-2A-GFP digested with Bsa I (Ueta et al., 2017). The assembled transformation plasmids were then transformed into A. tumefaciens strain GV3101 for Agrobacterium-mediated transformation of P. trichocarpa following our established procedures (Song et al., 2006).

CRISPR RNP in vitro cleavage assays were used to verify the specificity of sgRNAs for editing target DNA. Assembly PCR reactions using primers (Supplemental Dataset S8) were used to
produce the double-stranded DNA templates for sgRNAs production. T7 Quick High Yield RNA Synthesis Kit (NEB) was used to carry out the gRNA in vitro transcription. Recombinant SpCas9 protein was prepared following (Liang et al., 2017). In vitro cleavage assays were performed by mixing recombinant SpCas9 with sgRNA and linearized DNA target following established procedures (Liang et al., 2017).

To detect target gene editing in the transgenic P. trichocarpa, primers flanking the sgRNA target sequence were used to carry out PCR amplification of isolated genomic DNA. PCR products (500–700 bp) were inserted into the pMD18-T cloning vector, and 20 positive colonies were sequenced. For each transgene construct, three independent CRISPR transgenic lines were selected to characterize target gene editing and the downstream transcriptional response using RT-qPCR.

**Artificial Stem Bending to Induce Tension Wood Formation in Transgenic and Wildtype P. trichocarpa:** Three-months-old transgenic and wildtype P. trichocarpa were used to induce TW formation by mechanical bending of stem segments (9th internode) to an angle of 90° (Supplemental Figure S1). Stem segments (9th internode) from bent stems of transgenic KO-PtrHSFB3-1, KO-PtrMYB092, OE-PtrHSFB3-1, OE-PtrMYB092, and wildtype controls were harvested for imaging of lignin autofluorescence (14-day bending) and stem cross-sections stained using safranin O and fast green (21-day bending).

**Scanning Electron Microscopy:** The 9th internode stem segments of KO-PtrHSFB3-1, KO-PtrMYB092, OE-PtrHSFB3-1, and OE-PtrMYB092 transgenics and wildtype P. trichocarpa were cut transversely into 0.1 mm segments using a razor blade. The segments coated with gold
powder (60 s at 10 mA) were imaged using a Nanotech JCM-5000 scanning electron microscopy at a high vacuum (15 kV).

**Wood Composition Analysis:** Stem wood from unbent and 21-day-bent transgenic and wildtype trees were collected for wood composition analysis. The stem segments of 10 to 18 internodes were collected for KO-PtrHSFB3, KO-PtrMYB092, and OE-PtrHSFB3-1 plants. Due to the reduced growth of OE-PtrMYB092 plants, stem wood from 10 to 23 internodes was collected. The stem samples were cut into 10 cm segments, and for the bent stem samples, the TW region was carefully excised using a razor blade for wood composition analysis. Treatment for extractive-free wood and quantification of wood lignin and sugar contents were carried out following established procedures (Lu et al., 2013; Wang et al., 2018).

**Lignin Autofluorescence Imaging of Stem Cross-Sections in Bent Stems of OE-PtrHSFB3-1 and OE-PtrMYB092:** Paraffin-embedded stem sections (9th internode) were prepared as previously described (Li et al., 2019). Cross-sections (16 µm thick) were dewaxed with xylene and ethanol for UV microscopy (Leica DM6B) analysis to detect the lignin content change in bending stems. The excitation and emission wavelengths in the detection of lignin autofluorescence were 350 nm and 435-485 nm, respectively. Identical excitation light intensity was used for all samples.

**Accession numbers:**

Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers GSE153793 and GSE154167. Refer to Supplemental Datasets for gene names.
and identifiers mentioned in this paper.

Supplemental Data

Supplemental Figure S1. Artificial stem bending to induce tension wood formation in *Populus trichocarpa*.

Supplemental Figure S2. Stem cross-section of *Populus trichocarpa* tension-wood formation.

Supplemental Figure S3. Time-course stem bending to induce tension-wood formation.

Supplemental Figure S4. The transcript abundance of *PtrHSFB3-1* and *PtrMYB092* in tension wood of *Populus trichocarpa*.

Supplemental Figure S5. RT-qPCR of *Populus trichocarpa* SDX protoplasts overexpressing *PtrHSFB3-1*, *PtrMYB092*, or GFP control.

Supplemental Figure S6. Quality of isolated total RNA from transfected SDX protoplasts of *Populus trichocarpa*.

Supplemental Figure S7. The transcriptional regulation of the GFP-tagged and untagged *PtrHSFB3-1* and *PtrMYB092*.

Supplemental Figure S8. sgRNA target sequence for editing *PtrHSFB3-1* and *PtrMYB092*.

Supplemental Figure S9. Validation of sgRNAs using CRISPR RNP *in vitro* cleavage assays.

Supplemental Figure S10. CRISPR-based editing of *PtrHSFB3-1* and *PtrMYB092* in *Populus trichocarpa*.
Supplemental Figure S11. Plant growth and number of stem internodes in transgenic *Populus trichocarpa*.

Supplemental Figure S12. Cell wall thickness in xylem of transgenic *Populus trichocarpa*.

Supplemental Figure S13. Lignin autofluorescence imaging of *OE-PtrMYB092, KO-PtrMYB092* transgenics and wildtype under tension stress induced by artificial stem bending.

Supplemental Figure S14. Stem cross-section of tension-wood formation in wildtype, transgenic and mutant *Populus trichocarpa*.

Supplemental Table S1. Wood composition of vertical stem (WT) and stem-bending for 21 days (WTB) in wild-type *Populus trichocarpa*.

Supplemental Table S2. Percentage changes in wood composition of transgenics *Populus trichocarpa* relative to wild type.

Supplemental Table S3. Percentage changes in tension wood composition of transgenic *Populus trichocarpa* relative to wild type

Supplemental Dataset S1. Differentially expressed genes (DEGs) in tension wood after 3-day stem bending.

Supplemental Dataset S2. Differentially expressed genes (DEGs) in tension wood after 7-day stem bending.

Supplemental Dataset S3. Differentially expressed genes (DEGs) in protoplasts overexpressing *PtrHSFB3-1*. 
**Supplemental Dataset S4.** Differentially expressed genes (DEGs) in protoplasts overexpressing *PtrMYB092*.

**Supplemental Dataset S5.** Significant gene ontology of differentially expressed genes (DEGs) transregulated by *PtrHSFB3-1*.

**Supplemental Dataset S6.** Significant gene ontology of differentially expressed genes (DEGs) transregulated by *PtrMYB092*.

**Supplemental Dataset S7.** Gene ID of *PtrHSFB3-1*, *PtrMYB092*, and their differentially expressed genes (DEGs) in secondary cell wall biosynthesis.

**Supplemental Dataset S8.** Primer sequences used in this paper.

**ACKNOWLEDGMENTS**

This work was supported by the National Key Research and Development Program of China (2016YFD0600106), the National Natural Science Foundation of China Grant 31430093, 31670674, and the Innovation Project of State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University, grant number A01). We also thank the financial support from the Fundamental Research Funds for the Central Universities of China grant 2572018CL01 and Heilongjiang Touyan Innovation Team Program.
| Genotype         | Wood sugar content (g/100g of dry extractive-free wood) | Wood lignin content (g/100g of dry extractive-free wood) |
|------------------|--------------------------------------------------------|--------------------------------------------------------|
|                  | Glucose       | Xylose       | Galactose   | Arabinose   | Total carbohydrate | Acid insoluble lignin | Acid soluble lignin | Total lignin |
|                  | Values        | Average      | Values      | Average     | Values            | Average              | Values          | Average     | Values    | Average |
| WT1              | 45.75         | 45.72±0.34   | 15.24       | 1.42        | 2.42             | 64.83                | 19.76           | 20.38       | 3.66       | 23.42     |
| WT2              | 46.29         | 15.35       | 1.54±0.06   | 2.30        | 2.17±0.19        | 65.55                | 20.08±0.18      | 3.48        | 23.86      |
| WT3              | 45.12         | 15.41       | 1.60        | 1.80        | 63.93            | 16.7±0.18            | 2.91            | 19.25       |
| KO-PtrHSFB3-1    | 50.94         | 14.59       | 1.34        | 2.58        | 69.45            | 16.39                | 2.86            | 19.25       |
| KO-PtrHSFB3-1-2 | 50.77         | 13.78       | 14.47±0.37**| 2.42        | 68.50            | 16.71                | 2.91            | 19.42**     |
| KO-PtrHSFB3-1-5 | 53.58         | 15.04       | 1.40        | 2.14        | 69.32            | 17.01                | 2.61            | 19.62       |
| KO-PtrMYB092-15 | 54.80         | 14.17       | 1.32        | 3.80        | 72.87            | 14.68                | 2.91            | 17.59       |
| KO-PtrMYB092-2  | 54.21         | 14.47±0.15**| 14.47       | 1.41±0.05** | 3.51             | 73.67                | 17.13           | 17.26±0.16**|
| OE-PtrHSFB3-1-4 | 43.78         | 14.63       | 1.36        | 2.32        | 62.10            | 22.13                | 3.70            | 25.83       |
| OE-PtrHSFB3-1-7 | 44.31         | 14.74       | 14.72±0.05**| 1.54        | 2.21             | 62.79                | 22.88           | 3.13±0.16**  |
| OE-PtrHSFB3-1-10| 43.19         | 14.79       | 1.53        | 1.73        | 61.24            | 22.57                | 3.34            | 25.91       |
| OE-PtrMYB092-6  | 43.30         | 15.37       | 1.29        | 1.64        | 61.60            | 24.22                | 3.46            | 27.68       |
| OE-PtrMYB092-7  | 41.88         | 15.35       | 15.34±0.02**| 1.36        | 1.41             | 60.00                | 24.85           | 3.29        | 28.15     |
| OE-PtrMYB092-9  | 41.70         | 15.29       | 1.29        | 1.66        | 59.95            | 24.63                | 3.28            | 27.91       |

Table 1. Wood composition of transgenic and wildtype *P. trichocarpa*

* *p < 0.05, **p < 0.01 (Student’s t-test). ± Numbers indicate one standard error of three biological replicates*
Table 2. Tension wood composition of stem-bending for 21 days in transgenic and wildtype *P. trichocarpa*

* <p < 0.05, ** p < 0.01 (Student’s t-test). ± Numbers indicate one standard error of three biological replicates. B- indicate stem-bending for 21 days.

| Genotype | Wood sugar content (g/100g of dry extractive-free wood) | Wood lignin content (g/100g of dry extractive-free wood) |
|----------|-----------------------------------------------------------|----------------------------------------------------------|
|          | Glucose | Xylose | Galactose | Arabinose | Total carbohydrate | Acid insoluble lignin | Acid soluble lignin | Total lignin |
|          | Values   | Average |
| B-WT1    | 61.63    | 59.71±1.09 | 13.74    | 14.41±0.38 | 3.61    | 4.13±0.13 | 80.79    | 80.26±32 | 13.19    | 13.12±0.03 | 1.97    | 2.03±0.03 | 15.16    | 15.15±0.02 |
| B-WT2    | 57.85    | 14.07   | 12.62    | 12.78±0.08 | 3.71    | 2.01±0.38 | 79.71    | 80.26±32 | 13.08    | 13.12±0.03 | 2.08    | 2.03±0.03 | 15.17    | 15.15±0.02 |
| B-WT3    | 59.65    | 14.07   | 12.62    | 12.78±0.08 | 3.71    | 2.01±0.38 | 79.71    | 80.26±32 | 13.08    | 13.12±0.03 | 2.08    | 2.03±0.03 | 15.17    | 15.15±0.02 |
| B-KO-PvHSFB1-1-5-1 | 65.51    | 12.80   | 12.62    | 12.78±0.08 | 3.71    | 2.01±0.38 | 79.71    | 80.26±32 | 13.08    | 13.12±0.03 | 2.08    | 2.03±0.03 | 15.17    | 15.15±0.02 |
| B-KO-PvHSFB1-1-5-2 | 66.09    | 65.11±0.63** | 12.62    | 12.78±0.08 | 3.71    | 2.01±0.38 | 79.71    | 80.26±32 | 13.08    | 13.12±0.03 | 2.08    | 2.03±0.03 | 15.17    | 15.15±0.02 |
| B-KO-PvHSFB1-1-5-2 | 62.93    | 12.91   | 13.66±0.71 | 2.71    | 5.43    | 85.23    | 85.96±0.49** | 9.68    | 1.58    | 11.54  |
| B-KO-PvMYB092-15-1 | 64.28    | 13.87   | 13.66±0.71 | 2.71    | 5.43    | 85.23    | 85.96±0.49** | 9.68    | 1.58    | 11.54  |
| B-KO-PvMYB092-15-2 | 66.57    | 64.73±0.63** | 13.66±0.71 | 2.71    | 5.43    | 85.23    | 85.96±0.49** | 9.68    | 1.58    | 11.54  |
| B-KO-PvMYB092-15-2 | 63.35    | 14.91   | 14.91   | 13.66±0.71 | 2.71    | 5.43    | 85.23    | 85.96±0.49** | 9.68    | 1.58    | 11.54  |
| B-OE-PvHSFB3-1-4 | 58.88    | 12.94   | 13.17   | 13.18±0.25 | 1.51    | 0.50    | 75.93    | 75.18±0.40** | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    |
| B-OE-PvHSFB3-1-7 | 56.32    | 57.69±0.74 | 13.68   | 13.18±0.25 | 1.51    | 0.50    | 75.93    | 75.18±0.40** | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    |
| B-OE-PvHSFB3-1-7 | 57.88    | 12.92   | 12.92   | 13.18±0.25 | 1.51    | 0.50    | 75.93    | 75.18±0.40** | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    |
| B-OE-PvMYB092-15-1 | 47.60    | 13.15   | 13.15   | 13.18±0.25 | 1.51    | 0.50    | 75.93    | 75.18±0.40** | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    |
| B-OE-PvMYB092-15-2 | 48.53    | 47.21±0.95** | 11.50    | 12.59±0.54 | 1.22    | 1.38±0.09 | 63.68    | 63.94±0.51** | 17.95    | 18.00±0.13** | 2.10    | 2.09±0.04 | 20.05    | 20.09±0.17** |
| B-OE-PvMYB092-15-2 | 45.49    | 13.12   | 13.12   | 13.18±0.25 | 1.51    | 0.50    | 75.93    | 75.18±0.40** | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    | 14.81    |
FIGURE LEGENDS

Figure 1. *PtrHSFB3-1* and *PtrMYB092* transcript expression profiles, subcellular localizations, and tension-stress responsive expression of cell wall component biosynthetic genes.

(A) Relative transcript abundance of cell wall component biosynthetic genes (x-axis) in response to 3- and 7-day stem bending (T3 and T7, respectively) in SDX of *Populus trichocarpa*. Control represents vertical (no bending) stem. Error bars depict one standard error (SE) of three biological replicates. **p-values < 0.01 (Student’s t-test).** (B) Transcript expression profiles (normalized CPM) of *PtrHSFB3-1* and *PtrMYB092* in five different tissues (xylem, phloem, leaf, shoot, and root) and two xylem cell types (fiber and vessel cells) in *P. trichocarpa*. Error bars represent one standard error (SE) of three biological replicates. (C) Subcellular protein localization of *PtrHSFB3-1* and *PtrMYB092*. C-terminus GFP fusions of *PtrHSFB3-1* and *PtrMYB092* were individually co-transferred with a nuclear marker (H2A-mCherry) into *P. trichocarpa* SDX protoplasts for confocal microscopy. The co-transfer of GFP and H2A-mCherry into SDX protoplasts was included as the control. From left to right panels, GFP signal, mCherry signal, and merged signals of GFP and mCherry.

Figure 2. Changes in transcript expression of cell wall component biosynthetic genes in response to overexpression of *PtrHSFB3-1* and *PtrMYB092* in SDX protoplasts.

Relative transcript abundance of cell wall component biosynthetic genes in *Populus trichocarpa* SDX protoplasts overexpressing *PtrHSFB3-1* (A) and *PtrMYB092* (B), compared with control SDX protoplasts overexpressing GFP. The average expression level of three biological replicates
is presented. Error bars depict one standard error of three biological replicates. **p-values < 0.01, Student’s t-test.

**Figure 3.** PtrHSFB3-1 and PtrMYB092 mediated transcriptional regulatory network for cell wall component biosynthesis.

Chromatin immunoprecipitation (ChIP) reverse transcription quantitative PCR (RT-qPCR) identification of cell wall biosynthetic genes directly targeted by PtrHSFB3-1 (A) and PtrMYB092 (B). PtrHSFB3-1 and PtrMYB092 mediated a tension wood transcriptional regulatory network (TW-TRN) for transregulation of cell-wall component biosynthetic genes in *Populus trichocarpa*. The two TFs and 22 cell wall biosynthetic genes (gene IDs shown in Supplemental Dataset S7) are connected by 19 direct (blue lines) and 12 indirect (gray lines) TF–DNA interactions. PtrHSFB3-1 and PtrMYB092 have five common direct target genes (red rings). Arrows indicate positive regulations (transactivation). (C) The number following each gene name represents the relative location of the promoter regions (Supplemental Dataset S8) with the highest efficiency of ChIP enrichment. Transcription factor (TF)–DNA interaction is considered positive if promoter enrichment > 2-folds. The promoter of *PtrACTIN* was assayed as the control and set to 1. Three independent biological replicates for each ChIP assay were performed, and the average values of the replicates are presented in the bar charts. Error bars represent one the standard error (SE) of three biological replicates. **p-values < 0.01 (Student’s t-test).

**Figure 4.** Loss-of-function genome editing of *PtrHSFB3-1* and *PtrMYB092* in *Populus trichocarpa* on transcript expression of target cell wall component biosynthetic genes.
CRISPR-based editing of (A) *PtrHSFB3-1* (KO-*PtrHSFB3-1*) and (B) *PtrMYB092* (KO-*PtrMYB092*) for loss-of-function in transgenic *Populus trichocarpa* and reverse transcriptase quantitative PCR (RT-qPCR) quantification of their direct and indirect target gene expressions in SDX. Blue bars represent the relative transcript abundances of the target genes in the wild-type *P. trichocarpa*, set to 1. Negative controls denote cell wall component biosynthetic genes not transregulated by *PtrHSFB3-1* (A) or *PtrMYB092* (B). Error bars represent one standard error (SE) of three biological replicates (independent transgenic lines). *p*-values < 0.05 , **p*-values < 0.01 (Student’s t-test).

**Figure 5.** Knockout (KO) and overexpression (OE) of *PtrHSFB3-1* and *PtrMYB092* genes in transgenic *Populus trichocarpa* and the impacts thereof on tree growth, number of stem internodes, and secondary wall thickness in xylem cells.

Relative height (white bars = 10 cm) of 120-day-old greenhouse grown transgenic (A) KO-*PtrHSFB3-1*, (B) KO-*PtrMYB092*, (E) OE- *PtrHSFB3-1*, and (F) OE-*PtrMYB092* compared with wild-type (WT) *Populus trichocarpa*. Line IDs are ordered from left to right as WT1, 2, and 3, (A) KO-*PtrHSFB3-1*-5-1, -2 and -3, (B) KO-*PtrMYB092*-15-1, -2 and -3, (E) OE-*PtrHSFB3-1*-4, -7 and -11, and (F) OE-*PtrMYB092*-6, -7, and -9. Statistical analysis of plant height (C, G) and stem internode numbers (D, H). Error bars represent one standard error (SE) of three biological replicates (independent transgenic lines). **p < 0.01 (Student’s t-test). Stem cross-sections (9th internode) of wild type (I, J), and transgenic OE-*PtrHSFB3-1* (K, L) and OE-*PtrMYB092* (M, N) (black bars = 100 μm). (O–Q) Scanning electron micrographs (SEM) of wild
type (O), OE-PtrHSFB3-1, (P) and OE-PtrMYB092. (Q) stem cross-sections (9th internode) (white bars = 10 μm).

**Figure 6.** Overexpression of *PtrHSFB3-1* and *PtrMYB092* in *Populus trichocarpa* on transcript expression of target cell wall component biosynthetic genes.

Relative transcript abundance of cell wall component biosynthetic genes in SDX of transgenic *Populus trichocarpa* overexpressing (A) *PtrHSFB3-1* (OE-PtrHSFB3-1) and (B) *PtrMYB092* (OE-PtrMYB092) compared with wild type (WT). Negative controls denote cell wall component biosynthetic genes not transregulated by *PtrHSFB3-1* (A) or *PtrMYB092* (B). Error bars represent one standard error (SE) of three biological replicates (independent transgenic lines). *p < 0.05, **p < 0.01 (Student’s t-test).

**Figure 7.** Lignin autofluorescence imaging of OE-PtrHSFB3-1, KO-PtrHSFB3-1, and wild type under tension stress induced by artificial stem bending for 14 days.

Images represent stem cross-sections (9th internode) of wild type (A, D), OE-PtrHSFB3-1 (B, E) and KO-PtrHSFB3-1 (C, F). Red rectangles in A, B, and C correspond to magnified images (D, E, F). Scale bars = 200 μm. TW = tension wood, OW = opposite wood.

**Figure 8.** Stem cross-sections of 3-month-old greenhouse-grown transgenic and wild-type *Populus trichocarpa* under tension stress induced by artificial stem bending for 21 days.

Images represent stem cross-sections (9th internode) of wild type (A), OE-PtrHSFB3-1 (B), OE-PtrMYB092 (C), KO-PtrHSFB3-1 (D) and KO-PtrMYB092 (E). Cross-sections were stained with safranin O and fast green (see Materials and Methods). Red rectangles correspond to magnified
images in Supplemental Figure S14. Scale bars = 200 μm. TW = tension wood, OW = opposite wood.

**CONFLICT OF INTEREST**

None declared.

**Literature Cited**

Al-Whaibi MH (2011) Plant heat-shock proteins: A mini review. J. King Saud Univ. Sci 23: 139-150

Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in *Populus*: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45: 144-165

Aoyama W, Matsumura A, Tsutsumi Y, Nishida T (2001) Lignification and peroxidase in tension wood of *Eucalyptus viminalis* seedlings. J Wood Sci 47: 419-424

Bao H, Li E, Mansfield SD, Cronk QCB, El-Kassaby YA, Douglas CJ (2013) The developing xylem transcriptome and genome-wide analysis of alternative splicing in *Populus trichocarpa* (black cottonwood) populations. BMC Genet 14: 359

Brereton NJB, Pitre FE, Ray MJ, Karp A, Murphy RJ (2011) Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification. Biotechnol Biofuels 4: 13

Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G (2017) Protein expression in tension wood formation monitored at high tissue resolution in *Populus*. J Exp Bot 68: 3405-3417
Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M (2018) RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ 6: e5427

Chen H, Wang JP, Liu H, Li H, Lin YJ, Shi R, Yang C, Gao J, Zhou C, Li Q, Sederoff RR, Li W, Chiang VL (2019) Hierarchical transcription factor and chromatin binding network for wood formation in black cottonwood (Populus trichocarpa). Plant Cell 31: 602-626

Chen J, Chen B, Zhang D (2015) Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genet 16: 164

Côté WA, Day AC, Timell TE (1969) A contribution to the ultrastructure of tension wood fibers. Wood Sci Technol 3: 257-271

Cronshaw J, Morey PRJP (1968) The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65: 379-391

Decou, R., Serk, H., Ménard, D., and Pesquet, E. (2017). Analysis of Lignin Composition and Distribution Using Fluorescence Laser Confocal Microspectroscopy. Methods in molecular biology (Clifton, N.J.) 1544:233-247

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602-607

Donaldson, L. (2013). Softwood and Hardwood Lignin Fluorescence Spectra of Wood Cell Walls in Different Mounting Media. IAWA Journal 34:3-19

Donaldson, L.A., and Radotic, K. (2013). Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of microscopy 251:178-187.

Esau K (1965) Vascular Differentiation in Plants. Holt, Rinehart and Winston, New York, NY, USA

Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605-616

Felten J, Vahala J, Love J, Gorzsas A, Ruggeberg M, Delhomme N, Lesniewska J, Kangasjarvi J, Hvidsten TR, Mellerowicz EJ, Sundberg B (2018) Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytol 218: 999-1014
Ferreira SS, Hotta CT, Poelking VG, Leite DC, Buckeridge MS, Loureiro ME, Barbosa MH, Carneiro MS, Souza GM (2016) Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Mol Biol 91: 15-35

Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A (2015) Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27: 2800-2813

Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, Mellerowicz EJ (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169: 2048-2063

Guan Q, Wen C, Zeng H, Zhu J (2013) A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Mol Plant 6: 386-395

Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519: 199-202

Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135: 212-220

Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176: 583-590

Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees RID C-2450-2009. Nat Biotechnol 17: 808-812

Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157: 1243-1254

Jean H. Gould1 YZ, Veeraragavan Padmanabhan, Maria E. Magallanes-Cedeno and Ronald J. Newton (2002) Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Mol Breeding 10: 131-141

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233-239
Jin H, Do J, Moon D, Noh EW, Kim W, Kwon M (2011) EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. Planta 234: 959-977

Joachim Clos JTW, Peter B. Becker, Susan Wilson,’ Kris Lambert,t and Carl Wu (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell vol 63: 1065-1097

Kaku T, Serada S, Baba Ki, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55: 250-257

Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genom Hum G 7: 81-102

Kumar M, Busch W, Birke H, Kemmerling B, Nurnberger T, Schoffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2: 152-165

Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses M-C, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164: 107-121

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359

Leach RWA, Wareing PF (1967) Distribution of auxin in horizontal woody stems in relation to gravimorphism. Nature 214: 1025-1027

Li C, Wang X, Ran L, Tian Q, Fan D, Luo K (2015) PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa. Plant Cell Physiol 56: 2436-2446

Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100: 4939-4944

Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schoffl F (2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 89: 126-132
Li Q, Lin YC, Sun YH, Song J, Chen H, Zhang XH, Sederoff RR, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci U S A 109: 14699-14704

Li Q, Min D, Wang JP, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang HM, Chiang VL (2011) Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol 31: 226-236

Li S, Lin YJ, Wang P, Zhang B, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X, Wang Z, Dai X, Yu J, Zhou C, Liu B, Wang JP, Chiang VL, Li W (2019) The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell 31: 663-686

Li W, Lin YC, Li Q, Shi R, Lin CY, Chen H, Chuang L, Qu GZ, Sederoff RR, Chiang VL (2014) A robust chromatin immunoprecipitation protocol for studying transcription factor-DNA interactions and histone modifications in wood-forming tissue. Nat Protoc 9: 2180-2193

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of Bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8: 14261

Lin Y-C, Li W, Chen H, Li Q, Sun Y-H, Shi R, Lin C-Y, Wang JP, Chen H-C, Chuang L, Qu G-Z, Sederoff RR, Chiang VL (2014) A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc 9: 2194-2205

Lin YC, Li W, Sun YH, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25: 4324-4341

Lin YJ, Chen H, Li Q, Li W, Wang JP, Shi R, Tunlaya-Anukit S, Shuai P, Wang Z, Ma H, Li H, Sun YH, Sederoff RR, Chiang VL (2017) Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proc Natl Acad Sci U S A 114: E9722-E9729

Liu G, Chai F, Wang Y, Jiang J, Duan W, Wang Y, Wang F, Li S, Wang L (2018) Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Hortic Plant J 4: 133-143

Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J (2016) Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 576: 52-59
Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y-H, Yuan L, Yeh T-F, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci U S A 110: 10848-10853

Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186-2203

Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3: 698-709

Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genet 13: 99

Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurashi S, Hosono M, Ishii Y (1994) The Effects of GA3 on weeping of growing shoots of the Japanese cherry, Prunus spachiana. Plant Cell Physiol 35: 523-527

Necesany V (1958) Beech heartwood - structure, origin and development. Vydavatel'stvo Slovenskej Akademie Vied, Bratislava

Neu E, Domes HS, Menz I, Kaufmann H, Linde M, Debener T (2019) Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation. Plant Mol Biol 99: 299-316

Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamo M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52: 933-945

Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154: 555-561

Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6: 26685
Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, Sivadon P, Grima-Pettenati J (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167: 89-100

Payen A (1839) Recherches sur la matière incrustante des bois. Acad. Sci. Paris Compt. Rend.: 169-170

Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127: 1513-1523

Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J (2016) g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 44: W83-89

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140

Robnett WE, Morey PR (1973) Wood formation in prosopis: effect of 2,4-D, 2,4,5-T, and tiba. Am J Bot 60 (8): 745-754

Sarkanen KV (1976) Renewable resources for the production of fuels and chemicals. Science (New York, N.Y.) 191: 773-776

Sarkanen KV, Ludwig CH (1971) Classification and distribution. In KVaL Sarkanen, C. H., ed, Lignins, occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 43-94

Sawada D, Kalluri UC, O’Neill H, Urban V, Langan P, Davison B, Pingali SV (2018) Tension wood structure and morphology conducive for better enzymatic digestion. Biotechnol Biofuels 11: 44

Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Bba-Gene Regul Mech 1819: 104-119

Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3: 1101-1108

Scurfield G (1973) Reaction wood: Its structure and function. lignification may generate the force active in restoring the trunks of leaning trees to the vertical. Science 179: 647-655

Shi R, Sun Y-H, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51: 144-163
Shi R, Wang JP, Lin Y-C, Li Q, Sun Y-H, Chen H, Sederoff RR, Chiang VL (2017) Tissue and cell-type co-expression networks of transcription factors and wood component genes in *Populus trichocarpa*. Planta **245**: 927-938

Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene. Cell **53**: 937-947

Song J, Lu S, Chen ZZ, Lourenco R, Chiang VL (2006) Genetic transformation of *Populus trichocarpa* genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol **47**: 1582-1589

Timell TE (1969) The chemical composition of tension wood. Svensk Papp Tidn **72**: 173-181

Timell TE (1986) Compression wood in gymnosperms, Vol. 1. Springer Verlag, Berlin

Tunlaya-anukit S (2014) Statistical and gene regulatory network analysis of monolignol biosynthetic genes in *Populus trichocarpa*. 1-222

Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep **7**: 507

Vahala J, Felten J, Love J, Gorzsas A, Gerber L, Lamminmaki A, Kangasjarvi J, Sundberg B (2013) A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytol **200**: 511-522

Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Bi **28**: 463-487

Vargas L, Cesarino I, Vanholme R, Voorend W, de Lyra Soriano Saleme M, Morreel K, Boerjan W (2016) Improving total saccharification yield of *Arabidopsis* plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. Biotechnol Biofuels **9**: 139

von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci **12**: 452-457

Wang C, Zhang N, Gao C, Cui Z, Sun D, Yang C, Wang Y (2014) Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in *Betula platyphylla*. PLoS One **9**: e87566
Wang JP, Matthews ML, Naik PP, Williams CM, Ducoste JJ, Sederoff RR, Chiang VL (2019) Flux modeling for monolignol biosynthesis. Curr Opin Biotech 56: 187-192

Wang JP, Matthews ML, Williams CM, Shi R, Yang C, Tunlaya-Anukit S, Chen H-C, Li Q, Liu J, Lin C-Y, Naik P, Sun Y-H, Loziuk PL, Yeh T-F, Kim H, Gjersing E, Shollenberger T, Shuford CM, Song J, Miller Z, Huang Y-Y, Edmunds CW, Liu B, Sun Y, Lin Y-CJ, Li W, Chen H, Peszlen I, Ducoste JJ, Ralph J, Chang H-M, Muddiman DC, Davis MF, Smith C, Isik F, Sederoff R, Chiang VL (2018) Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun 9: 1579

Wang M, Qi X, Zhao S, Zhang S, Lu MZ (2009) Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC Genet 10: 215

Wu LG, Joshi SP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22: 495-502

Yeh CS, Wang Z, Miao F, Ma H, Kao CT, Hsu TS, Yu JH, Hung ET, Lin CC, Kuan CY, Tsai NC, Zhou C, Qu GZ, Jiang J, Liu G, Wang JP, Li W, Chiang VL, Chang TH, Lin YC (2019) A novel synthetic-genetic-array based yeast one-hybrid system for high discovery rate and short processing time. Genome Res 29: 1343-1351

Yu M, Liu K, Liu S, Chen H, Zhou L, Liu Y (2017) Effect of exogenous IAA on tension wood formation by facilitating polar auxin transport and cellulose biosynthesis in hybrid poplar (Populus deltoides × Populus nigra) wood. Holzforschung 71: 179-188

Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20: 2763-27
Al-Whaibi MH (2011) Plant heat-shock proteins: A mini review. J. King Saud Univ. Sci 23: 139-150
  Google Scholar: Author Only Title Only Author and Title

Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmty Y, Coutinho PM, Nilsson P, Henriassat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45: 144-165
  Google Scholar: Author Only Title Only Author and Title

Aoyama W, Matsumura A, Tsutsuami Y, Nishida T (2001) Lignification and peroxidase in tension wood of Eucalyptus viminalis seedlings. J Wood Sci 47: 419-424
  Google Scholar: Author Only Title Only Author and Title

Bao H, Li E, Mansfield SD, Cronk QCB, El-Kassaby YA, Douglas CJ (2013) The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genet 14: 359
  Google Scholar: Author Only Title Only Author and Title

Brereton NJB, Pitre FE, Ray MJ, Karp A, Murphy RJ (2011) Investigation of tension wood formation and 2,6-dichlorobenzonitrile application in short rotation coppice willow composition and enzymatic saccharification. Biotechnol Biofuels 4: 13
  Google Scholar: Author Only Title Only Author and Title

Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G (2017) Protein expression in tension wood formation monitored at high tissue resolution in Populus. J Exp Bot 68: 3405-3417
  Google Scholar: Author Only Title Only Author and Title

Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M (2018) RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ 6: e5427
  Google Scholar: Author Only Title Only Author and Title

Chen H, Wang JP, Liu H, Li H, Lin YJ, Shi R, Yang C, Gao J, Zhou C, Li Q, Sederoff RR, Li W, Chiang VL (2019) Hierarchical transcription factor and chromatin binding network for wood formation in black cottonwood (Populus trichocarpa). Plant Cell 31: 602-626
  Google Scholar: Author Only Title Only Author and Title

Chen J, Chen B, Zhang D (2015) Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genet 16: 164
  Google Scholar: Author Only Title Only Author and Title

Côté WA, Day AC, Timell TE (1969) A contribution to the ultrastructure of tension wood fibers. Wood Sci Technol 3: 257-271
  Google Scholar: Author Only Title Only Author and Title

Cronshaw J, Morey PRJP (1968) The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65: 379-391
  Google Scholar: Author Only Title Only Author and Title

Decou, R., Serk, H., Ménard, D., and Pesquet, E. (2017). Analysis of Lignin Composition and Distribution Using Fluorescence Laser Confocal Microspectroscopy. Methods in molecular biology (Clifton, N.J.) 1544:233-247
  Google Scholar: Author Only Title Only Author and Title

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602-607
  Google Scholar: Author Only Title Only Author and Title

Donaldson, L. (2013). Softwood and Hardwood Lignin Fluorescence Spectra of Wood Cell Walls in Different Mounting Media. IAWA Journal 34:3-19
  Google Scholar: Author Only Title Only Author and Title

Donaldson, L.A., and Radotic, K. (2013). Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of microscopy 251:178-187.
  Google Scholar: Author Only Title Only Author and Title

Esau K (1965) Vascular Differentiation in Plants. Holt, Rinehart and Winston, New York, NY, USA
  Google Scholar: Author Only Title Only Author and Title

Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605-616
  Google Scholar: Author Only Title Only Author and Title

Felten J, Vahala J, Love J, Gorzsas A, Ruggeberg M, Delhomme N, Lesniewska J, Kangasjarvi J, Hvidsten TR, Mellerowicz EJ, Sundberg B (2016) Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytol 218: 999-1014
  Google Scholar: Author Only Title Only Author and Title

Ferreira SS, Hotta CT, Poelking VG, Leite DC, Buckeridge MS, Loureiro ME, Barbosa MH, Carneiro MS, Souza GM (2016) Co-
expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Mol Biol 91:15-35

Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibataullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A (2015) Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27: 2800-2813

Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P, Mellerowicz EJ (2015) Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169: 2048-2063

Guan Q, Wen C, Zeng H, Zhu J (2013) A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Mol Plant 6: 386-395

Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519: 199-202

Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135: 212-220

Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176: 583-590

Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees RId C-2450-2009. Nat Biotechnol 17: 808-812

Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157: 1243-1254

Jean H. Gould1 YZ, Veeraragavan Padmanabhan, Maria E. Magallanes-Cedeno and Ronald J. Newton (2002) Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Mol Breeding 10: 131–141

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233-239

Jin H, Do J, Moon D, Noh EW, Kim W, Kwon M (2011) EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. Planta 234: 959-977

Joachim Clos JTW, Peter B. Becker, Susan Wilson,’ Kris Lambert,t and Carl Wu (1990) Molecular cloning and expression of a hexamer Drosophila heat shock factor subject to negative regulation. Cell vol 63: 1065-1097

Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55: 250-257

Kim TH, Ren B (2006) Genome-wide analysis of protein-DNA interactions. Annu Rev Genom Hum G 7: 81-102

Kumar M, Busch W, Birke H, Kenmerling B, Nurnberger T, Schoffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pfd1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2: 152-165

Kum ar M, Busch W, Birke H, Kemmerling B, Nurnberger T, Schoffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pfd1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2: 152-165

Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses M-C, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164: 107-121

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359

Leach RWA, Wareing PF (1967) Distribution of auxin in horizontal woody stems in relation to gravimorphism. Nature 214: 1025-1027

Li C, Wang X, Ran L, Tian Q, Fan D, Luo K (2015) PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during
secondary cell wall formation in Populus tomentosa. Plant Cell Physiol 56: 2436-2446

Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100: 4939-4944

Li M, Doll J, Weckermann K, Oeccking C, Berendzen KW, Schoff F (2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 89: 126-132

Li Q, Lin YC, Sun YH, Song J, Chen H, Zhang XH, Sederoff RR, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci U S A 109: 14699-14704

Li Q, Min D, Wang JP, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang HM, Chiang VL (2011) Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol 31: 226-236

Li S, Lin YJ, Wang P, Zhang B, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X, Wang Z, Dai X, Yu J, Zhou C, Liu B, Wang JP, Chiang VL, Li W (2019) The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell 31: 663-686

Li W, Lin YC, Li Q, Shi R, Lin CY, Chen H, Chuang L, Qu GZ, Sederoff RR, Chiang VL (2014) A robust chromatin immunoprecipitation protocol for studying transcription factor-DNA interactions and histone modifications in wood-forming tissue. Nat Protoc 9: 2180-2193

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of Bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8: 14261

Lin Y-C, Li W, Chen H, Li Q, Sun Y-H, Shi R, Lin C-Y, Wang JP, Chen H-C, Chuang L, Qu G-Z, Sederoff RR, Chiang VL (2014) A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc 9: 2194-2205

Lin YC, Li W, Sun YH, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25: 4324-4341

Lin YJ, Chen H, Li Q, Li W, Wang JP, Shi R, Tunlaya-Anukit S, Shuai P, Wang Z, Ma H, Li H, Sun YH, Sederoff RR, Chiang VL (2017) Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proc Natl Acad Sci U S A 114: E9722-E9729

Liu G, Chai F, Wang Y, Jiang J, Duan W, Wang Y, Wang F, Li S, Wang L (2018) Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Hortic Plant J 4: 133-143

Liu ZW, Wu ZJ, Li XH, Huang Y, Li H, Wang YX, Zhuang J (2016) Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress. Gene 576: 52-59

Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y-H, Yuan L, Yeh T-F, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptm-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci U S A 110: 10848-10853

Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186-2203

Mukhopadhyay A, Deplancke B, Walhout AJ, Tissenbaum HA (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3: 698-709

Mutasa-Göttgens ES, Joshi A, Holmes HF, Hedden P, Göttgens B (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genet 13: 99

Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurashi S, Hosono M, Ishii Y (1994) The Effects of GA3 on weeping of growing shoots of the Japanese cherry, Prunus spachiana. Plant Cell Physiol 35: 523-527
retained on a highly transcribed gene. Cell 53: 937-947
Song J, Lu S, Chen ZZ, Lourenco R, Chiang VL (2006) Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol 47: 1582-1589
Timell TE (1969) The chemical composition of tension wood. Svensk Papp Tidn 72: 173-181
Timell TE (1986) Compression wood in gymnosperms, Vol. 1. Springer Verlag, Berlin
Tunlaya-anukit S (2014) Statistical and gene regulatory network analysis of monolignol biosynthetic genes in Populus trichocarpa. New Phytol 200: 511-522
Vahala J, Felten J, Love J, Gorzsas A, Gerber L, Lamminmaki A, Kangasjarvi J, Sundberg B (2013) A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytol 200: 511-522
Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Bi 28: 463-487
Vargas L, Cesario I, Vanholme R, Vooren W, de Lyra Soriano Saleme M, Morrel K, Boerjan W (2016) Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. Biotechnol Biofuels 9: 139
von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12: 452-457
Wang C, Zhang N, Gao C, Cui Z, Sun D, Yang C, Wang Y (2014) Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla. PLoS One 9: e87566
Wang JP, Matthews ML, Williams CM, Ducoste JJ, Sederoff RR, Chiang VL (2019) Flux modeling for monolignol biosynthesis. Curr Opin Biotech 56: 187-192
Wang JP, Matthews ML, Williams CM, Shi R, Yang C, Tunlaya-Anukit S, Chen H-C, Li Q, Liu J, Lin C-Y, Naik P, Sun Y-H, Loziuk PL, Yeh T-F, Kim H, Gjersing E, Shollenberger T, Shuford CM, Song J, Miller Z, Huang Y-Y, Edmunds CW, Liu B, Sun Y, Lin Y-CJ, Li W, Chen H, Peszlen I, Ducoste JJ, Ralph J, Chang H-M, Muddiman DC, Davis MF, Smith C, Isik F, Sederoff R, Chiang VL (2018) Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun 9: 1579
Wang M, Qi X, Zhao S, Zhang S, Lu MZ (2009) Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC Genet 10: 215
Wu LG, Joshi SP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22: 495-502
Yeh CS, Wang Z, Miaoa F, Ma H, Kao CT, Hsu TS, Yu JH, Hung ET, Lin CC, Kuan CY, Tsai NC, Zhou C, Qu GZ, Jiang J, Liu G, Wang JP, Li W, Chiang VL, Chang TH, Lin YC (2019) A novel synthetic-genetic-array based yeast one-hybrid system for high discovery rate and short processing time. Genome Res 29: 1343-1351
Yu M, Liu K, Liu S, Chen H, Zhou L, Liu Y (2017) Effect of exogenous IAA on tension wood formation by facilitating polar auxin transport and cellulose biosynthesis in hybrid poplar (Populus deltoids × Populus nigra) wood. Holzforschung 71: 179-188
Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20: 2763-27