Complete Genome Sequences of Five *Burkholderia* Strains with Biocontrol Activity against Various Lettuce Pathogens

Adrien Biessy, Marie Ciotola, Mélanie Cadieux, Daphné Albert, Martin Filion

ABSTRACT Numerous bacterial strains from the *Burkholderia cepacia* complex display biocontrol activity. Here, we report the complete genome sequences of five *Burkholderia* strains isolated from soil. Biosynthetic gene clusters responsible for the production of antimicrobial compounds were found in the genome of these strains, which display biocontrol activity against various lettuce pathogens.

The *Burkholderia cepacia* complex is a diverse group of microorganisms (1) that includes several strains with biocontrol activity against various plant pathogens (2, 3). This group also encompasses clinical isolates capable of causing life-threatening lung infection in patients with cystic fibrosis (4). Unfortunately, these two categories of isolates are not clearly separated, and several species include both clinical and environmental isolates (5–7).

Here, five strains from the *Burkholderia cepacia* complex were isolated in 2019 from agricultural soils located in the Montérégie region (Quebec, Canada). Briefly, soil samples were collected as close as possible from the root system of various vegetable crop species. Samples were stored at 4°C. One gram of soil was mixed with 100 mL of a saline solution (0.9% NaCl), and the suspension was agitated for 10 min at 250 rpm. The suspension was serially diluted and plated on King’s B agar (8) supplemented with cycloheximide (100 µg mL⁻¹), ampicillin (40 µg mL⁻¹), and chloramphenicol (13 µg mL⁻¹). The plates were incubated at 25°C for 48 h. Isolated colonies were subsequently purified on King’s B agar (25°C for 48 h). All bacterial strains were conserved at −80°C in tryptic soy broth (BD Biosciences, Franklin Lakes, NJ) supplemented with 10% glycerol (vol/vol).

For the genomic DNA (gDNA) extraction, cells were harvested from King’s B agar plate incubated at 25°C for 48 h, and gDNA was extracted with the DNeasy UltraClean microbial kit (Qiagen, Toronto, Ontario, Canada) according to the manufacturer’s instructions. Genomic DNA libraries were prepared using the PacBio SMRTbell Express template prep kit (Pacific Biosciences, Menlo Park, CA), and the genomes were sequenced on a PacBio Sequel sequencer (v3 chemistry) at the Integrated Microbiome Resource (Halifax, Nova Scotia, Canada), generating an average of 261,864 reads with an average length of 4,101 bp. The quality of the raw reads was checked with FastQC v0.11.9 (9). Genome assembly was performed using the long-read assembler Flye v2.8.1 (10), generating three circular replicons for each strain, as well as a 216-kb plasmid for strain B21-006.

Multilocus sequence analysis with seven housekeeping genes (*atpD, gltB, gyrB, lepA, phaC, recA*, and *trpB*) was performed to understand the phylogenetic relationships between the five sequenced strains and the type strains of the twenty species constituting the *B. cepacia* complex (Fig. 1A). The five strains clustered...
FIG 1 Phylogeny of the *Burkholderia cepacia* complex and distribution of biocontrol-related traits in the five sequenced strains. (A) Neighbor-joining phylogeny of the *Burkholderia cepacia* complex based on the concatenated (Continued on next page)
with *Burkholderia ambifaria* AMMD7. Species-level identification of the five strains was performed using digital DNA-DNA hybridization values provided by the Type (Strain) Genome Server (12). Three strains (B21-004, B21-008, and B21-006) were shown to belong to the species *B. ambifaria*, whereas the two other strains (B21-005 and B21-007) were found to be just outside the species boundary of *B. ambifaria*.

The five *Burkholderia* strains were shown to display biocontrol activity against various lettuce pathogens under in vitro conditions, including *Pseudomonas cichorii*, *Xanthomonas campestris*, *Pectobacterium carotovorum*, and *Sclerotinia sclerotiorum*. Thus, we searched for biosynthetic gene clusters (BCGs) responsible for the production of antimicrobial compounds in the five genomes. Each strain harbors the BCG responsible for the biosynthesis of pyrrolnitrin, a secondary metabolite with antimicrobial activity (13). In addition, several strains harbor the BCG responsible for the production of burkholdins, cepacin, AFC-BC11, hydroquinolines, and bactobolins (Fig. 1B). These BCGs were recently found to be present in various *B. ambifaria* strains with biocontrol activity (2). The BCGs responsible for the production of phenazine and enacyloxin are not present in any of the five strains, despite them being present in numerous strains from the *B. cepacia* complex (2, 14, 15).

Data availability. The complete genomes of the five *Burkholderia* strains have been deposited at DDBJ/ENA/GenBank. The raw sequencing data have been deposited into the Sequence Read Archive (BioProject accession number PRJNA775892). The accession numbers are provided in Table 1. The versions described in this paper are the first versions.

ACKNOWLEDGMENT

We are grateful to Joël Lafond-Lapalme for his help regarding bioinformatic analyses.

FIG 1 Legend (Continued)

alignment of seven housekeeping genes (atpD, gltB, gyrB, lepA, phaC, recA, and trpB). The complete sequences of these seven genes were concatenated and aligned using MUSCLE (16), and the phylogenetic tree was generated using the Geneious tree builder (Biomatters, Auckland, New Zealand) with the Jukes-Cantor method. Strains whose genomes are reported in this study are highlighted in bold. Only bootstrap values above 50 (from 1,000 replicates) are shown. *Cupriavidus metallidurans* CH3H4 was used as an outgroup. (B) Distribution of various biocontrol-related biosynthetic gene clusters in the genomes of the five *Burkholderia* strains.
REFERENCES

1. Mahenthiralingam E, Urban TA, Goldberg JB. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. https://doi.org/10.1038/nrmicro1085.

2. Mullins AJ, Murray JAH, Bull MJ, Jenner M, Jones C, Webster G, Green AE, Neill DR, Connor TR, Parkhill J, Chalilis GL, Mahenthiralingam E. 2019. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nat Microbiol 4:996–1005. https://doi.org/10.1038/s41564-019-0072-8.

3. Parke J, Gurian-Sherman D. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258. https://doi.org/10.1146/annurev.phyto.39.1.225.

4. Mahenthiralingam E, Baldwin A, Dowson C. 2008. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551. https://doi.org/10.1111/j.1365-2672.2007.03706.x.

5. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P. 2001. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490. https://doi.org/10.1099/00207713-51-4-1481.

6. Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma JJ, Speert DP, Vandamme P. 2002. Burkholderia anthina sp. nov. and Burkholderia pyrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33:143–149. https://doi.org/10.1016/S0928-8977(02)00659-1.

7. Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ, Vandamme P. 2013. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36:483–489. https://doi.org/10.1016/j.syapm.2013.06.003.

8. King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307.

9. Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data. 2010, v0.11.9. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

10. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37:540–546. https://doi.org/10.1038/s41587-019-0072-8.

11. Tatusova T, DiCuccio M, Badetdin A, Chetverin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.

12. Meier-Kolthoff JP, Göker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3.

13. Hammer PE, Hill DS, Lam ST, Van Peé KH, Ligon JM. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrroli- trin. Appl Environ Microbiol 63:2147–2154. https://doi.org/10.1128/aem.63.6.2147-2154.1997.

14. Hendry S, Steinke S, Wittstein K, Stadler M, Harmroths K, Adewunmi Y, Sahukhal G, Elasri M, Thomashow L, Weller D, Mavrodi O, Blankenfeldt W, Mavrodi D. 2021. Functional analysis of phenazine biosynthesis genes in Burkholderia spp. Appl Environ Microbiol 87:e02348-20. https://doi.org/10.1128/AEM.02348-20.

15. Mahenthiralingam E, Song L, Sass A, White J, Wilmot C, Marchbank A, Boaisha O, Paine J, Knight D, Chalilis GL. 2011. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria genomic island. Chem Biol 18:665–677. https://doi.org/10.1016/j.chembiol.2011.01.020.

16. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340.