In our study we use two approaches, a first one detecting topics across the collection of publications, and a second one that maps document networks into clusters of documents with an identifiable subject of research. In this Supplement we expand on the methodology and include some additional results.

Source data and pre-processing

The dataset includes the reference, abstract, address, and citation data for 478,006 cardiovascular publications from 2004 to 2013. These publications were published across 5537 journals, with 128 core cardiovascular journals representing 36% of all publications included in this dataset. The document set include cardiovascular publications in leading general journals in medical and life sciences (Table S1).

Table 1. Publications from broader biomedical and multi-disciplinary journals (2004-2013).

Journal	Number of publications
JOURNAL OF BIOLOGICAL CHEMISTRY	2055
NEW ENGLAND JOURNAL OF MEDICINE	1869
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION	1641
ARCHIVES OF INTERNAL MEDICINE	1228
LANCET	1069
ANNALS OF INTERNAL MEDICINE	712
JOURNAL OF CLINICAL INVESTIGATION	657
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES	649
BMJ-BRITISH MEDICAL JOURNAL	356
SCIENCE	108
CELL	107
Total	**10451**

As previously described, key cardiovascular terms were searched in the Web of Science to identify the publication dataset. The Web of Science was chosen for several reasons: it has the advantage of a well-curated dataset, with extensive and structured information (addresses of all authors, indexing of included references) that allows the use of citations and cross-references. The main limitations of Web of Science is that it may not include all relevant publications because it does not include all national journals that are not published (or do not include abstracts) in English. If certain countries are focusing on very innovative work and publishing the results in their own national journals then there is indeed a risk that new and emerging research is not identified until it is included in the mainstream English language/high impact journals. This is potentially a limitation for identifying novel research (especially if it goes against current scientific status quo). On the other hand, it is now generally accepted that English has become the main vehicular language for science.

The full description of how the dataset of 478,006 cardiovascular publications was identified was described previously and the flow and processing illustrated in Figure S1, is re-iterated briefly. The approach combined a terms search (terms validated by experts) with cross-referencing, combining a core...
set of journals with journals that were identified as having a major cardiovascular component. The method went through several iterations to ensure a sufficiently wide, yet specific dataset.

Figure S1. Developing an unbiased approach to identify topics in cardiovascular research publication output.

Step 1-4 is the first approach resulting in 175 topics that cover all documents, with documents present in multiple topics. Step 5-6 is the second approach in which documents are uniquely assigned to clusters. Step 7 compares the content from the two approaches. Note the expert input at many stages of the process.
For building clusters, the references were also considered. We obtained the data from Clarivate Analytics Web of Science Core Collection (WoS) through a custom data license held by ECOOM, KU Leuven.

For all titles and abstracts, we extracted the noun phrases (text fragments of various lengths) using the natural language processing framework developed at Stanford. We also removed all copyright notices at the end of any abstract, all expressions containing numbers and all white spaces, and then removed the most commonly used text fragments based on the h-score, i.e. those text fragments with the highest rank based on their number of occurrences in the dataset.

Topic modelling

For this approach, we applied Latent Dirichlet Allocation (LDA) to the text fragments from all publications using MalletR. This approach groups text fragments to identify topics and also allocates documents to topics. The analysis provides us with the probabilities for each text fragment to belong to a topic (beta). High beta values group text fragments that potentially identify a topic. Second, the analysis provides the probabilities for each document to belong to a topic (gamma), across 200 topics. The result is that every text fragment and every publication is linked to every topic, but each text fragment and each document will have a lower or higher probability (ranging from 0 to 1) of being part of any given topic. Therefore, a document can belong to several topics.

Twelve cardiovascular experts reviewed each set of the top 40 text fragments with the highest probability (beta) of representing a topic, using an online questionnaire. The experts validated whether the text fragments identified a cardiovascular topic and were asked to suggest a name for each cardiovascular topic. All cardiovascular topics were included where at least two experts agreed that the text fragments represented a cardiovascular topic. A second round of expert review was undertaken as a discussion between three experts to agree on a suitable name for topics, where the suggested names for the topics differed between experts from the initial online questionnaire. A final review of all topics ensured naming consistency across the topics and allowed for additional expert-based classification as clinical, basic or population research. In addition, we selected a number of specific terms of interest to search for them in the text fragments, in the topics and in the documents.

Of the 200 potential topics detected by the LDA model, the cardiovascular experts agreed that 175 were cardiovascular topics and suggested labels for each of the 175 topics (see full list in Table S1). Excluded topics were related to general study protocol terms, as well as, areas of weakly linked research such as subtopics in gastroenterology or nephrology where a clear cardiovascular term was missing. Of note, general terms or terms that are used frequently across the majority of documents are filtered out as part of the methodology, resulting in groups of highly specific text fragments and, consequently, topics as illustrated here.

Inflammation - mechanisms and mediators

NLP text fragments about experimental models to induce inflammation (LPS) and the study of cytokines.

LPS induc	chemotax protein	bind activ
toll like	monocyt chemotact protein	lps stimul
toll like receptor	alpha interleukin	inflammatori gene
tumour necrosi	inflammatori mediat	tumor necroisi factor alpha interleukin
tumour necrosi factor	cytokin product	endotoxin induc
alpha level	antinflammatori properti	after lps
alpha il	necrosi factor alpha interleukin	dna bind
nf kappab	factor alpha interleukin	anti infl ammatori cytokin
tumour necrosi factor alpha	cytokin level	cytokin express
tnfalpha il	alpha express	induc inflammatori
tnf alpha level	inflammatori properti	alpha product
monocyt chemotact	beta il	nf kb
lipopolysaccharid induc	inflammatori activ	induc il
Inflammation biomarkers

NLP text fragments about CRP, serum levels and identifying subgroups of subjects.

hs crp level	inflammatori biomark	increas serum
signific posit	corrol signific	elev serum
multipl linear	gender match	level did
multipl linear regres	level correl	multivari linear
crp concentr	apparr healthi	agematch healthi
signific negat	match healthi control	higher serum
signific posit corre	signific negat corre	sensi crp
healthi control subject	protein concentr	Independ determin
corre posit	level compar	signific invers
serum crp	ml respect	multipl logist
ml vs	signific relationship	elev crp
group consist	higher plasma	we enrol
agematch control	negat associ	multivari linear regres

Coronary artery disease - CABG, techniques

NLP text fragments about vessels used and surgical methods and evaluation

thorac arteri	myocardi re vascular	left intern thorac
intern thorac	pump ca bg	dure coronari
intern thorac arteri	coroni bypass surgeri	left intern thorac arteri
arteri graft	left intern mammari	coronari bypass graft
intern mammari	pump coronari arteri bypass surgeri	elect coronari arteri
mammari arteri	left intern mammari arteri	patient undergo coronari arteri
pump coronari arteri bypass graft	undergo coronari arteri	thorac arteri graft
intern mammari arteri	off pump cabg	intern thorac arteri graft
offpump coronari arteri bypass graft	offpump coronari arteri bypass surgeri	pump group
left intern	undergo coronari arteri bypass	elect coronari arteri bypass
graft patenc	patenc rate	patient undergo coronari arteri bypass
beat heart	elect coronari	after off
saphen vein graft	coronari surgeri	pump surgeri

Figure S2. Examples of text fragments underlying specific topics.

We counted the number of documents per topic, by identifying all documents that had greater than 10% gamma (probability) of belonging to that topic. These data underlie the graphs in Figures 1-3. We then calculated the co-occurrence of topics in each document, by counting the number of times each pair of topics occurs in the documents. This network data was then imported the VOSviewer software to undertake a network analysis and create a topic map, visualizing these topic inter-relations.

Document clustering

For this approach, the dataset was reduced to two time periods, and we analyzed the cardiovascular publications from 2006-2008 and those from 2011-2013, separately. For each time period, we then calculated the similarities between documents based on the noun phrase text fragments, and based on the references in the documents, using adapted cosine calculations and a hybrid document clustering algorithm, as previously described. We then applied the Louvain community detection algorithm to identify clusters of similar documents. For this method, each document is only located in one cluster. Subsequently, we applied the DrL/OpenOrd algorithm to map and visualise the documents and clusters. We used R in a high-powered cloud-based parallelized computing environment for all operations. We then identified the core documents in each of the clusters. In addition, we described the most common text fragments used in each document cluster, as well as, the most highly cited documents and the most productive authors in each cluster. These four elements were used in an expert review to describe the clusters.
Combining topic modelling and document clustering
As a next step, for each cluster we identified the most highly representative topics from the LDA topic model. To compare the results of the approaches, we limited the topic model dataset to the two time periods 2006-2008 and 2011-2013 and then linked the documents from the topic model results to the documents in the clusters using a unique identifier for each document. We then calculated the average gamma (document-topic probability) for all documents in each cluster. Thereby we identified the most highly represented topics in each of the document clusters in each time period.

Properties of the topic groups
Almost 4 million unique text fragments, from 475,593 document abstracts published from 2004 to 2013, were combined in the LDA topic model to detect 200 potential cardiovascular topics. Experts reviewed and identified 175 of the topics to be true cardiovascular topics. All topics contained at least 1700 documents and the majority contained between 1700 and 15,000 documents. The smallest topic on Lipids - cholesterol metabolism was present in 1791 documents. Seven leading topics were present in 15,000 or more documents, with the largest topic- Evidence-guided treatment being present in 49,031 documents. On average, each document contained three topics, with the majority of documents containing two to five topics.

Properties of document clusters
The hybrid clustering algorithm (based on text and references) brought the publications together into 15 clusters for 2006-2008 and into 18 clusters for 2011-2013. The size of the clusters varied between 59 and 42,000 documents. Then the algorithm was repeated separately for each of the clusters, to identify any subclusters within each cluster. The number of subclusters per cluster varied between 1 and 27, and 15 and 18 clusters per dataset had more than one subcluster. The number of publications per subcluster also varied with one-third of all the subclusters having less than 100 publications, while the largest subclusters had over 5000 publications. The process of labelling the clusters was not automatic and was therefore limited to the ten largest clusters, which included >90% of all documents in each time period and thus adequately representing the data set. Of these 20 clusters, the naming posed difficulties for one clusters, for which the content was unclear and 4 others with uncertainty whether the content was adequately described.

In a later stage clusters were linked to the LDA topics validating the naming and resolving the uncertainties. Only cluster 2 of the period 2006-2008 presents LDA topic labels that do not seem to match with the document cluster name: cell signaling, vascular function – endothelial control and MI in the LDA topics with a document cluster focus on pulmonary hypertension. Therefore, an expert reviewed the document titles of the four largest subclusters. These four subclusters seem to correlate with the LDA topics, with the expert naming the subclusters as ‘pulmonary hypertension’, ‘endothelial function and vascular tone’, ‘cell signaling for growth’, as well as, ‘ischemia and myocardial infarction’.

Country participation in main document clusters

We analyzed the authors’ origin in the documents within the two main clusters of the period 2011-2013. The figure represents the main contributors, covering the majority of documents in the clusters. Although the USA is the major single country, combining EU countries results in a higher fraction still. Of note is the large contribution from the PR China in the cluster ‘Gene and cell therapy and innovation’.

![Population risk factors CVD and gene & cell therapy, iPSC,..](image)

Constraints and limitations of the methodology

For the topic modelling we needed to define the number of topics a priori, requiring qualitative review to assess the validity, overlap and granularity of the topics. A larger number of topics could have potentially identified more specific and smaller topics. Although twenty-five topics were excluded, all publications remained in the analysis. In addition, only a small number of publications (n=6,300) contained small probabilities (<10%) across all 175 topics, meaning that all of the documents were associated to the final validated cardiovascular topics. Taken together, the topics approach was inclusive, though possibly lacking in detail. Expert review and naming of the topics required several steps. Individual experts named the topics in different ways, both in terms of writing style, and in selecting what was considered the main topic content. To check and validate the labels used and to ensure consistency, two additional rounds of expert panels were necessary. Overall, the smaller more focused topics were easier to name through linking the text fragments.

Before the final approach for document clustering was applied, other options were tested on the whole dataset, including clustering the documents based on the LDA topics identified8 and using Locality Sensitive Hashing (LSH)9, but these failed to provide adequate clustering of the large number of documents. Compared to labelling the LDA topics, the expert review of the document cluster characteristics presented a greater challenge to label and interpret the clusters. Each of the automated retrieval methods to obtain the document characteristics revealed different aspects of the clusters and only the combination brought more insight. It was only possible to make links across these data when familiar with the cardiovascular field.

This challenge has been highlighted in the scientometric literature and community with a significant project bringing partners from around the world to tackle the clustering and labelling issue on a single dataset of astronomy research10. Although several methods were presented, it was acknowledged that none were sufficiently robust to not require additional expert input and a call was made to the wider...
community to share relevant solutions. The methods available do already reduce a significant amount of work, considering the large volume of data and documents that can be processed semi-automatically.

Time lag because of the labor-intensive method is a limitation. Abstracts could be considered as a source to identify emerging topics but have several limitations. They are of a different nature than papers and the scope of a congress shapes content of selected abstracts. We complemented the literature analysis with a survey of 3000 abstracts from the 2018 congress of the European Society of Cardiology. The results in Figure S3 illustrate the strong presence of clinical research at this event, within the topics of clusters 1 and 3-7 of Table 2. Two emerging topics that could be discerned were cardio-oncology and digital health, each representing however less than 25 abstracts.

![Data from 2018 ESC congress](image)

Figure S4. Analysis of European Society of Cardiology 2018 abstracts. The right panel present in bar graph format the data of main Figure 4 in the manuscript.
Supplemental data

Investigating the evolution of specific terms
During the analysis, experts identified a number of terms related to recent research interests that were not identifiable in the text fragments reviewed, nor in the document cluster characteristics reviewed, such as microRNA, epigenetics, personalized medicine and Induced pluripotent stem cells (iPSC). Upon querying the text fragment, topics and document databases all terms were identified and their evolution investigated over time.
For all terms, the number of publications within the dataset was small, representing less than 0.5% of all publications (Table S2) but they showed an increase over time and could be related to identified larger topics.

miRNA is the term identified in the highest number of publications and text fragments, as well as, having over 100 publications across the largest number of topics. The number of publications are increasing steadily, with a greater increase of publications in the ‘pulmonary embolism’ and ‘cell signaling and gene transcription’ topics when compared to other topics. Epigenetics and iPSCs had similar numbers of publications identified; however, the topics where they were more highly represented differed. Epigenetics had a greater number of publications in ‘cell signaling and gene transcription’, in ‘mass spectrometry/omics & biomarker studies’ and in ‘low birth weight’ studies; whereas, the principal topic for iPSC publications was in the ‘stem cells / cardiac repair’ topic. Personalized medicine had very few text fragments identified and the 616 publications identified were most prevalent in the ‘Evidence-guided treatment’ and ‘Risk factors - genetics, GWAS studies’ topics.
To note, when searching for publications and topics with specific terms of interest, the interlinked document, text fragment and topics datasets accurately identify relevant publications; in comparison, a search of similar terms in Web of Science would bring up more publications that are irrelevant. Some terms, however, are more challenging to search and required expert input in the selection of text fragments, for example if only ‘iPS’ is searched then many text fragments and publications were identified about antipsychotics or ipsilateral or about embryonic stem cells and so the text fragments needed to be reviewed to ensure relevant results.
Table S2. All topics (ordered alphabetically by their Topic Label).

Topic Label	Focus of research	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	
Acute coronary syndrome, MI - risk scoring, prognosis	clinical	546	696	685	739	929	949	1002	1085	1241	1390	
Acute coronary syndrome, MI, STEMI - PTCI, angioplasty	clinical	451	573	538	541	707	713	819	826	816	872	
Acute coronary syndromes - antiplatelet treatment	clinical	360	539	469	555	761	784	837	810	835	899	
Acute heart failure - ethnic risk	population	378	428	466	446	563	525	601	582	609	719	
Adrenergic signalling, autonomic nervous system	basic	378	412	411	353	389	351	323	334	321	323	
Angiogenesis	basic	873	861	924	938	1028	1012	1079	1022	1051	1053	
Animal experiments – methodology	basic	1020	1113	1122	1023	1090	1103	1112	1211	1190	1293	
Animal studies, pharmacology, hemodynamics, serotonin effect	basic	275	317	259	273	298	281	252	285	309	317	
Anticoagulation, orthopedic surgery – NOAC	clinical	405	472	403	435	490	515	579	623	856	827	
Anticoagulation/thrombosis treatment and complications	clinical	328	373	314	342	433	448	469	486	590	618	
Aortic aneurysm - stents, repair, surgery	clinical	445	560	555	575	712	703	724	747	718	830	
Aortic valve disease - bicuspid valve, aortic disease, Marfan syndrome	clinical	332	399	410	470	504	564	582	649	687	789	
Aortic valve disease - repair, surgery	clinical	437	470	472	452	514	631	753	896	1070	1208	
Apoptosis in the heart	basic	614	651	683	665	717	753	782	848	893	994	
Arrhythmias - Arrhythmogenic RV cardiomyopathy, long QT – genetics	clinical	613	743	713	693	867	932	924	927	1017	1114	
Arrhythmias - conduction disorders, ECG	clinical	585	642	648	642	912	830	806	818	898	954	
Arrhythmias - heart failure and ICD therapy	clinical	686	834	834	851	1118	1082	1051	1158	1097	1220	
Arrhythmias - ICD technology	clinical	289	356	315	359	437	422	429	419	537	581	
Arrhythmias - mechanisms, pharmacological treatments	clinical / basic	349	409	401	385	477	408	418	440	465	482	
Arrhythmias - Torsade-de-pointes, QT prolongation, environmental risk	clinical	439	583	514	546	680	637	629	669	708	782	
Topic	Type	Values										
--	---------------	--										
Arrhythmias - ventricular - genetics, pathophysiology and diagnostics	clinical / basic	143 179 187 175 207 223 221 238 247 219										
Arteritis, rheumatic and autoimmune diseases	clinical	330 426 406 495 531 577 576 636 692 720										
Atherosclerosis - macrophages, lipids	basic	411 450 415 502 473 514 512 536 524 562										
Atherosclerosis - embolism & stroke, treatment and complications	clinical	257 379 307 345 426 388 425 360 389 405										
Atherosclerosis risk scoring - imaging, carotid intima thickness	population	356 447 439 530 621 599 613 613 686 733										
Atherosclerosis, lipids - animal models	basic	512 589 516 618 667 737 665 744 735 801										
Atrial fibrillation - ablation treatment	clinical	748 877 794 841 1078 1071 1083 1080 1183 1337										
Atrial fibrillation - embolic risk assessment	clinical	217 237 240 288 289 304 320 396 469 634										
Atrial fibrillation – mechanisms	basic	251 285 256 270 303 295 308 289 317 341										
Atrial fibrillation - postoperative risk	clinical	199 250 257 282 292 326 321 364 406 485										
Autoimmune disease, autoantibodies	clinical / basic	437 480 408 396 454 417 369 394 415 381										
Autonomic nervous system - Heart rate variability	clinical	612 707 697 698 817 853 777 830 799 953										
Autonomic nervous system - Renal physiology, blood pressure	basic	591 630 547 554 589 620 559 570 596 624										
Endothelial progenitor cells	basic	143 196 199 247 291 305 371 350 351 381										
Biomarkers - von Willebrand disease, ischemia, infarction	clinical	229 300 280 267 343 325 349 396 415 465										
Blood pressure - regulation, autonomic nervous system	clinical	383 424 383 425 416 423 398 398 389 423										
Bone mineralization, calcium metabolism, aortic calcification	clinical / basic	203 266 236 294 389 367 406 427 383 505										
Cancer - coagulation disorders, LV outflow obstruction	clinical	484 556 488 518 599 562 585 548 629 550										
Cardiac arrest - resuscitation, management	clinical	207 297 322 308 443 404 472 519 534 659										
Cardiac electrophysiology - action potential, conduction	basic	532 590 562 577 644 619 584 638 690 643										
Cardiac electrophysiology - ion channels, calcium homeostasis	basic	1071 1109 1021 1099 1138 1081 1108 1058 1046 1109										
Cardiac hypertrophy - animal models	basic	696 767 763 779 892 907 1004 1036 1051 1139										
Topic	Type	374	471	443	472	570	531	464	496	558	517	
--	--------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
Cardiac pacemakers – CRT	clinical											
Cardiac surgery – cardioprotection	clinical											
Cardiomyopathy - Chagas disease	population	151	213	191	210	270	280	268	315	366	413	
Cardiomyopathy - fabry disease	clinical	153	176	178	176	234	223	212	244	256	246	
Cardiopulmonary bypass - blood transfusion	clinical	378	384	399	377	429	456	379	468	477	462	
Cardiovascular development	basic	438	466	471	471	547	506	587	574	619	579	
Catheterisation – complications	clinical	244	268	280	289	363	366	393	421	491	533	
Cell signaling - Nitric oxide synthase, Calcium Calmodulin Kinase	basic	671	716	654	710	738	697	614	685	686	629	
Cell signaling and gene transcription	basic	2449	2685	2375	2549	2827	2715	2749	2692	2868	2810	
Cerebrovascular disease - cognitive dysfunction, risk factors	population	632	716	723	695	760	808	714	683	719	787	
Cerebrovascular disease - familial hypercholesterolemia treatment	clinical / basic	269	339	288	348	368	407	393	403	439	463	
Cerebrovascular disease, stroke – diagnosis	clinical	407	453	457	446	506	503	476	502	525	520	
Cholesterol, PCOS, obesity & risk	population	698	809	842	983	1230	1213	1280	1367	1367	1471	
Clinical guidelines generation	clinical	557	699	725	700	937	944	948	1134	1159	1240	
Clinical trials - CV endpoints	clinical	569	776	729	802	942	1012	1050	1097	1172	1312	
Clinical trials - metanalysis, systematic lit review	clinical	342	438	492	543	687	747	804	961	1155	1414	
Clinical trials - study design and protocols	clinical	750	854	758	884	921	895	892	931	1029	1035	
Coagulation, hemostasis - critical illness, intensive care – measurements	clinical	330	326	388	350	385	408	455	504	539	529	
Congenital heart disease - anomalous pulmonary venous return	clinical	222	263	251	261	289	289	255	255	244	213	
Congenital heart disease - coarctation, catheterization & complications	clinical	380	456	484	433	547	520	592	548	603	552	
Congenital heart disease - diagnosis, surgery, treatment	clinical	739	944	1155	962	1209	1235	1224	1351	1306	1496	
Congenital heart disease - surgical procedures	clinical	1209	1513	1471	1417	1849	1802	1918	1910	2023	2154	
Coronary artery disease – CABG, technique	clinical	650	645	592	525	590	533	529	493	539	506	
Coronary artery disease - CT imaging	clinical	265	392	435	532	579	650	674	610	692	715	
Coronary artery disease - elective PTCl	clinical	127	148	150	195	252	251	299	311	293	343	
Topic	Type	Page Numbers										
--	--------------	--------------										
Coronary artery disease - flow and flow reserve	clinical	471, 478, 468, 468, 489, 427, 415, 449, 452, 460										
Coronary artery disease - revascularization, PTCI	clinical	446, 547, 519, 618, 810, 806, 977, 1051, 986, 1207										
Coronary artery disease – stents DES – complications	clinical	427, 474, 482, 587, 658, 594, 752, 788, 691, 779										
Coronary artery disease - stenting procedures	clinical	464, 538, 494, 489, 668, 630, 704, 756, 762, 875										
Coronary artery disease, atherosclerosis - plaque rupture, PTCI	clinical/bas	416, 430, 480, 485, 608, 581, 609, 752, 788, 691										
Coronary artery disease, calcification - diagnosis, CT angiography	clinical	429, 584, 597, 722, 809, 862, 928, 994, 969, 1122										
Coronary artery disease, cardiac imaging - diagnosis myocardial ischemia	clinical/bas	670, 720, 613, 576, 713, 631, 651, 604, 578, 598										
Coronary artery disease, cardiac surgery – peri-operative care	clinical	761, 900, 966, 939, 1125, 1180, 1310, 1412, 1503										
Deep vein thrombosis - complications and treatment	clinical	278, 346, 328, 306, 406, 366, 406, 378, 382, 394										
Diabetes - vascular complications	clinical	584, 745, 706, 720, 998, 943, 907, 1058, 1077, 1118										
Diabetic cardiomyopathy - mouse models	basic	317, 330, 367, 379, 449, 392, 432, 455, 496, 552										
Eclampsia, peripartum cardiomyopathy, gestational diabetes	clinical	320, 412, 376, 357, 490, 583, 584, 693, 722, 689										
Endoplasmic reticulum stress, pulmonary vein	basic	203, 259, 276, 252, 266, 330, 338, 378, 396, 375										
Endothelial cells – inflammation	basic	635, 690, 643, 651, 698, 660, 703, 691, 749, 726										
Endothelial function, microcirculation - endothelial barrier	basic	329, 337, 354, 345, 388, 371, 400, 342, 381, 386										
Epidemiology of CVD and risk factors	population	1539, 1861, 1889, 2093, 2585, 2604, 2750, 2903, 3134, 3523										
Estrogen, gender - risk factors	population	249, 262, 259, 341, 324, 335, 376, 352, 338, 372										
Evidence-guided treatment	clinical	3442, 4194, 4102, 4117, 5397, 5486, 5276, 5338, 5739, 5940										
Exercise testing - cardiovascular fitness	population	728, 827, 870, 868, 1155, 1172, 1207, 1204, 1295, 1441										
Extracorporeal membrane oxygenation, shock management	clinical	383, 435, 447, 422, 422, 469, 443, 464, 473, 502										
Gene delivery	basic, preclinical	365, 375, 299, 296, 319, 305, 267, 292, 282, 314										
Glucose metabolism - cellular signaling	basic	509, 543, 531, 492, 550, 555, 524, 541, 545, 547										
Topic	Type	286	384	422	391	513	427	499	487	484	591	
--	----------	------	------	------	------	------	------	------	------	------	------	
Health economics, health care policies	population	286	384	422	391	513	427	499	487	484	591	
Healthcare organization, quality of care	clinical	746	892	894	932	1187	1088	1291	1328	1379	1559	
Heart failure - assist devices	clinical	237	269	246	227	284	330	372	434	489	487	
Heart failure – biomarkers	clinical	354	428	450	507	603	568	537	519	508	528	
Heart failure - cancer-related, acute heart failure treatment (IABP)	clinical	306	358	405	513	524	472	533	579	616	671	
Heart failure - clinical classification	clinical	181	225	222	256	454	332	358	376	333	341	
Heart failure - transplantation - complications and therapy	clinical	451	584	538	478	477	529	502	524	492	523	
Heart failure - ventricular function, stem cells	clinical	115	152	148	208	222	200	237	237	238	258	
Heart transplantation – techniques	clinical	203	248	224	267	306	249	288	293	303	306	
Hemodynamic measurements	basic / clinical	562	635	593	586	571	631	527	603	582	642	
Hypertension - animals models	basic	569	650	572	570	620	622	623	630	649	690	
Hypertension - BP measurement, diagnosis	clinical	718	841	814	861	1071	978	958	1025	1137	1256	
Hypertension - population studies, statistics	population	364	510	502	460	659	579	634	651	677	650	
Hypertension - renovascular, treatment (denervation, angioplasty)	clinical / basic	151	204	208	188	268	271	265	273	306	442	
Hypertension - treatment adherence	clinical	420	463	477	501	666	586	588	631	616	655	
Hypertension - antihypertensive therapy	clinical	676	822	763	827	1147	1032	972	960	978	995	
Hypertension, salt metabolism - animal models	basic	646	842	717	752	787	690	687	760	798	748	
Imaging - cardiac echocardiography technique	clinical	489	585	517	602	730	780	733	764	857	896	
Imaging - echocardiography, cardiac hemodynamics	clinical	522	626	678	757	974	947	948	969	1018	1169	
Imaging – MRI	clinical	494	602	590	597	684	749	690	763	758	854	
Imaging - Optical coherence tomography, micro CT	clinical / basic	452	497	506	458	598	631	657	679	783	823	
Imaging - PET, nuclear imaging techniques	clinical	241	313	279	308	433	411	430	473	490	538	
Imaging - SPECT PET in diabetes	clinical	178	214	200	243	249	220	262	255	275	242	
Inflammation	basic / clinical	951	1074	953	1110	1123	1215	1194	1158	1275	1304	
Topic	Type	700	751	709	738	779	778	753	785	838	845	
--	----------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
Inflammation - mechanisms and mediators	basic											
Inflammation biomarkers	clinical	1545	1953	1954	2096	2548	2518	2502	2562	2757	2990	
Kidney, renal function - sodium homeostasis, aldosterone	clinical	528	637	580	574	748	678	713	733	793	831	
Lipids/atherosclerosis - mouse models	basic	161	231	233	270	299	278	261	313	342	334	
Lipids - cholesterol metabolism	basic	125	145	164	174	197	215	187	199	201	184	
Lipids - cholesterol transport and lipoproteins	basic	733	789	735	790	906	875	880	840	921	895	
Lipids - population guidelines	population	271	400	493	664	744	725	696	695	697	761	
Lipids, cholesterol - statin therapy	clinical	763	974	896	947	1091	1052	1008	1004	997	967	
Lipids, PPAR gamma receptors - treatment for hypercholesterolemia	basic / clinical	236	314	276	363	398	308	333	315	330	287	
Longitudinal studies - blood pressure	population	1929	2196	2031	1964	2208	2114	1961	2040	2101	2196	
Low birth weight	population	371	521	465	454	540	598	521	655	690	684	
Mass spectrometry - in omics & biomarker studies	basic	765	722	698	653	838	714	785	757	823	882	
Mental health, CVD impact	population	546	600	656	673	856	892	938	963	1074	1150	
Metabolic syndrome – adiponectin	population	193	295	241	314	348	332	359	350	688	746	
Metabolic syndrome - animal models	basic	378	447	433	532	608	633	627	611	688	746	
Metabolic syndrome - obesity, diabetes	population	802	998	1033	1205	1459	1426	1416	1548	1566	1769	
Mitochondrial function - oxidative stress	basic	339	369	362	411	441	467	462	513	548	629	
Myocardial infarction - animal studies	basic	517	597	634	633	701	662	786	813	769	851	
Myocardial infarction - cardiac rehabilitation	clinical	277	366	337	354	430	463	461	444	462	543	
Myocardial infarction - ischemia/reperfusion injury	basic	905	922	933	898	959	929	809	939	943	1003	
Myocardial infarction outcomes, prognosis	clinical	506	566	569	523	680	659	584	667	667	679	
Myofilaments, excitation-contraction coupling	basic	382	363	408	364	427	357	367	367	358	403	
Obstructive sleep apnea	clinical	214	260	294	370	394	476	413	419	492	599	
Outcomes, prognosis – mortality	clinical	1727	2162	2226	2310	2975	2798	3129	3156	3485	4042	
Oxidative stress – antioxidants	basic	854	993	956	969	1025	1082	1094	1177	1237	1282	
Oxidative stress - reactive oxygen species	basic	442	530	519	587	583	618	648	630	640	654	
Pericardial disease	clinical	249	279	271	252	291	270	317	282	287	358	
Topic	Type	387	526	510	477	688	605	655	652	701	739	
--	-----------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
Peripheral vascular disease - diagnosis, management, surgery	clinical											
Platelet aggregation	basic / clinical	746	809	618	682	760	678	701	719	728	657	
Primary care setting - selfmanagement	clinical	563	731	745	707	1053	1017	1084	1188	1261	1413	
Pulmonary embolism	clinical / basic	207	250	226	266	316	343	428	465	571	631	
Pulmonary hypertension - diagnosis, causes	clinical	490	510	593	634	711	752	818	839	860	987	
Pulmonary hypertension - hypoxia, animal models	basic, preclinical	385	446	430	398	479	478	471	470	531	567	
Red blood cells - aggregation and rheology	basic	212	235	200	190	203	220	225	200	238	240	
Rheumatic heart disease, left ventricular dysfunction assessment	clinical	108	155	167	136	203	204	242	261	217	241	
Risk factors - diabetes & hypertension	population	739	966	1014	1012	1293	1286	1204	1196	1349	1383	
Risk factors - environment, psychosocial stress, depression	population	332	389	317	391	370	400	379	381	396	393	
Risk factors - genetics, GWAS studies	population	522	587	527	662	750	790	872	891	896	906	
Risk factors - population cohort studies	population	513	637	671	755	908	983	1032	1114	1227	1268	
Risk factors - socioeconomic, lifestyle, nutrition & activity factors	population	882	1075	1068	1110	1620	1626	1673	1814	1932	2146	
Risk factors - women, hormone replacement therapy	population	493	550	470	524	563	548	499	557	523	564	
Risk factors, health - nutrition & diet	population	570	713	699	689	844	863	885	945	987	1047	
Secondary hypertension - aldosterone, complications	clinical	180	236	243	245	305	312	285	287	315	314	
Sepsis, endocarditis	clinical	339	395	392	410	512	486	478	475	560	586	
Stem cells / cardiac repair	basic	454	543	584	690	796	769	923	949	1042	1174	
Stroke - incidence, cerebrovascular disease	clinical	368	384	412	425	518	605	478	535	578	615	
Stroke - treatment & outcome	clinical	283	334	302	327	370	423	411	447	546	576	
Syncope - diagnostic testing	clinical	250	306	271	295	307	347	312	345	345	346	
Takotsubo cardiomyopathy	clinical	509	639	607	680	796	815	830	764	729	798	
Thrombolysis, coagulation	basic	770	809	679	754	740	692	658	650	714	622	
Tissue engineering - vascular, biomechanical factors	basic	473	575	562	602	668	691	747	800	812	859	
Condition	Type	Study 1	Study 2	Study 3	Study 4	Study 5	Study 6	Study 7	Study 8	Study 9	Study 10	Study 11
---	---------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
Traumatic cardiac injury	Clinical	183	240	208	204	298	271	291	272	287	250	
Valvular heart disease - mitral valve	Clinical	327	406	390	413	508	548	551	588	583	689	
Valvular heart disease, obesity	Clinical	143	195	217	182	215	286	240	303	272	312	
Vascular disease, arterial stiffness	Clinical	347	476	471	560	651	657	610	662	792	841	
Vascular endothelial function - diagnosis	Clinical / Basic	540	610	670	707	779	702	676	761	734	771	
Vascular function - endothelial control	Basic	1267	1332	1137	1095	1079	959	912	916	860	855	
Vascular function & remodeling - biomechanical factors	Basic	580	628	604	585	738	721	724	790	837	878	
Vascular function testing – endothelial control	Clinical	322	334	290	277	270	251	264	263	257	255	
Vascular smooth muscle cell physiology	Basic	345	375	347	347	408	355	347	377	424	395	
Vascular smooth muscle cells - proliferation, migration	Basic	1182	1236	1110	1178	1182	1140	1128	1115	1116	1050	
Ventricular function assessment	Clinical	824	908	943	1015	1274	1197	1218	1229	1282	1464	
Table S3. Specific terms in documents, text fragments and topics (2004-2013)

A. miRNA	Total Number	Evolution - number of publications per year
Publications with term in title or abstract	1428	
Total number	1099	Number in top 200 text fragments across all topics
Unique text fragments		20
Topics		Evolution - number of publications per year for the main topics
Topics with 100+ publications with gamma >10%		
- Pulmonary embolism		
- Cell signaling and gene transcription		
- Cardiac hypertrophy - animal models		
- Angiogenesis		
- Cardiovascular development		
- Vascular smooth muscle cells - proliferation, migration		
- Arrhythmias - mechanisms, pharmacological treatments		
		0 171 15 2 165 89 148
B. Epigenetics

Total Number	Evolution - number of publications per year
Publications with term in title or abstract	![Graph showing the evolution of publications per year.](image)
652	

Total number	Number in top 200 text fragments across all topics	
Unique text fragments	289	2

Topics

- **Topics with 100+ publications with gamma >10%**
 - Cell signaling and gene transcription
 - Mass spectrometry/ in omics & biomarker studies
 - Low birth weight

Evolution - number of publications per year for the main topics
![Graph showing the evolution of publications per year.](image)
171
C. Induced pluripotent stem cells (iPSC)

Total Number	Evolution - number of publications per year
Publications with text fragments in title or abstract	685
Total number	Number in top 200 text fragments across all topics
Unique text fragments	582
Topics	Evolution - number of publications per year for the main topics
Topics with 100+ publications with gamma >10%	148-Stem cells / cardiac repair

![Graph showing the evolution of number of publications per year for iPSC over years 2004 to 2013.](image)
D. Personalized medicine

Total Number	Evolution - number of publications per year
Publications with term in title or abstract	616

Total number	Number in top 200 text fragments across all topics
Unique text fragments	11
Topics	

Topics with 100+ publications with gamma >10%	Evolution - number of publications per year for the main topics
123-Evidence-guided treatment	
168- Risk factors - genetics, GWAS studies	
References

1. Gal D, Glänzel W, Sipido KR. Mapping cross-border collaboration and communication in cardiovascular research from 1992 to 2012. *Eur Heart J*. 2017;38:1249–1258.

2. Chen D, Manning CD. A Fast and Accurate Dependency Parser using Neural Networks [Internet]. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: The Association for Computational Linguistics; 2014. p. 740–750.Available from: http://emnlp2014.org/papers/emnlp2014-proceedings.pdf

3. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. *J Mach Learn Res*. 2003;3:993–1022.

4. Glänzel W, Thijs B. Using hybrid methods and ‘core documents’ for the representation of clusters and topics: the astronomy dataset. *Scientometrics*. 2017;111:1071–1087.

5. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. *J Stat Mech Theory Exp*. 2008;2008:P10008.

6. Boyack KW, Klavans R. Creation of a highly detailed, dynamic, global model and map of science: Creation of a Highly Detailed, Dynamic, Global Model and Map of Science. *J Assoc Inf Sci Technol*. 2014;65:670–685.

7. RStudio Team. RStudio: Integrated Development Environment for R [Internet]. Boston, MA: RStudio, Inc.; 2015. Available from: http://www.rstudio.com/

8. Gal D, Thijs B, Sipido KR, Glänzel W. Topic modelling based network maps in cardiovascular research. In: Proceedings of the 16th International Society of Scientometrics and Informetrics Conference (ISSI). Wuhan, China: ISSI; 2017. p. 1809–1810.

9. Thijs B, Gal D, Abdulhayoglu M, Glänzel W. Large-scale topic networks: can we improve efficiency and obtain similar results using LSH? [Internet]. In: Global TechMining Conference. Atlanta, USA: 2017. Available from: http://vpinstitute.org/wordpress/global-techmining-conference/global-techmining-conference-2017/

10. Velden T, Boyack KW, Gläser J, Koopman R, Scharnhorst A, Wang S. Comparison of topic extraction approaches and their results. *Scientometrics*. 2017;111:1169–1221.