Biometric observations of upland rice (*Oryza sativa* L.) as influenced by cropping geometry and *In situ* soil moisture conservation practices

Gunturi Alekhyaa and V Jayakrishnakumar

**Abstract**

To study the influence of cropping geometry and *in situ* soil moisture conservation practices on biometric observations of upland rice (*Oryza sativa* L.), an experiment was conducted at college of Agriculture, Vellayani, Thiruvananthapuram, Kerala Agricultural University, Kerala, India. The treatments were laid out in randomized block design. Altered cropping geometries like normal planting (20cm x 10cm) and paired row planting (10cm x 10cm) with 40 cm between paired rows, different *in situ* soil moisture conservation practices such as live mulching of cowpea, hydrogel application and coirpith application were studied and evaluated statistically on growth parameters like plant height (30 DAS, 60 DAS and harvest), number of tillers m$^{-2}$ (60 DAS) leaf area index (60 DAS) and dry matter production (60 DAS, harvest). Results disclosed a significant difference in biometric observations and the treatment T$_s$ (Paired row planting with live mulching of cowpea, hydrogel and coir pith application) showed the highest plant height (109.13 cm), the maximum number of tillers m$^{-2}$ (349.67), leaf area index (4.34) and dry matter production (5546 kg ha$^{-1}$).

**Keywords:** Crop, geometry, live mulching, hydrogel, coirpith compost, upland rice

**Introduction**

Rice is one of the most important staple food and extensively grown crop providing food for majority of the world population. India is first in area under rice cultivation (43 m ha) and second in production (5546 kg ha$^{-1}$) in the world. The availability of water for agricultural sector is 83.3 per cent of the total water used and might shrink to 71.6 per cent by 2025 leading to physical water scarcity of irrigated rice (Yadav et al., 2001) [11]. It is necessary to increase the water productivity of rice by following upland rice cultivation. But the productivity of upland rice is low due to various factors like biotic (weeds) and abiotic (moisture) stresses. The productivity of upland rice can be improved by reducing the abiotic stresses i.e., by following *in situ* moisture conservation practices like hydrogel application, live mulching with cowpea and coirpith compost application etc. However, with the low moisture availability there is an effect of cropping geometry on yield of upland rice.

Cropping geometry is the shape of space available for the plants. In the conventional system of rice, planting is done at a spacing of 20cm x 10cm, where the scope for intercropping is less. As a result, widening of inter row spacing is important for growing intercrops (Saeed et al., 1999) [9]. Live mulch with cowpea is grown as a cover crop along with main crop, which helps in weed suppression, conserves soil moisture and regulates soil temperature (Power and Koerner, 1994) [7]. It protects the soil from erosion and fixes nitrogen in soil by the process of biological nitrogen fixation.

Coirpith compost generated from coir industries can be used effectively as a mulching material in upland rice. It improves the productivity by maintaining the soil fertility, conserving moisture, improving the physical and biological properties of soil (Solaimalai et al., 2001) [9]. Hydrogels are polymers having high capacity to absorb water when water is available and releases absorbed water based on the need of plants over a period of time (Akhter et al., 2004) [1]. The productivity of crops can be enhanced by the application of hydrogel under water stressed environmental conditions along with sustainability. The frequency of irrigation to crops can be reduced by using hydrogel, thereby reducing the time and cost of water application (Das et al., 2017) [2].
Materials and Methods
The experimental study was conducted at College of Agriculture, Vellayani, Kerala Agricultural University, Kerala, India during kharif season of 2019. The soil of the experimental field was red sandy clay loam type with a pH 4.8, organic carbon 0.67 per cent, available nitrogen 190.15 kg ha\(^{-1}\), available P\(_{2}\)O\(_5\) 35.45 kg ha\(^{-1}\) and available K\(_2\)O 248.12 kg ha\(^{-1}\). The experiment was carried out in randomized block design comprising different treatments of planting geometries and in situ soil moisture conservation practices.

The treatments followed were T\(_1\): Normal planting of upland rice (20 cm x 10 cm); T\(_2\): Normal planting with live mulching of cowpea; T\(_3\): Normal planting with live mulching of cowpea and hydrogel application; T\(_4\): Normal planting with live mulching of cowpea, hydrogel and coir pith application; T\(_5\): Paired row planting with live mulching of cowpea and coir pith application; T\(_6\): Paired row planting with live mulching of cowpea, hydrogel and coir pith application; T\(_7\): Paired row planting with live mulching of cowpea and hydrogel application; T\(_8\): Paired row planting with live mulching of cowpea, hydrogel and coir pith application; T\(_9\): Paired row planting with live mulching of cowpea, hydrogel and coir pith application.

Before the start of experiment, farm yard manure having nutrient content of 0.5 per cent N, 0.2 per cent P\(_2\)O\(_5\) and 0.3 per cent K\(_2\)O was applied uniformly to all the plots at the rate of 5 t ha\(^{-1}\) and mixed well with the top soil. The nutrients were applied i.e., 60 kg N in form of urea in three equal split doses (one at basal, second at active tillering stage, finally at panicle initiation stage), 30 kg P\(_2\)O\(_5\) in form of raphos (entire quantity as basal), 30 kg K\(_2\)O in form of muriate of potash ha\(^{-1}\) in two split doses (one as basal and other at panicle initiation stage). The growth attributes like plant height (30 DAS, 60 DAS and harvest), number of tillers m\(^{-2}\) (60 DAS) leaf area index (60 DAS) and dry matter production (60 DAS, harvest) were recorded at the respective growth stages.

Results and Discussion
The data on biometric observations like plant height, number of tillers m\(^{-2}\), leaf area index and dry matter production were prominently influenced by the treatments (Table 1). The treatment T\(_8\) (Paired row planting with live mulching of cowpea, hydrogel and coir pith compost application) recorded the highest plant height (109.13 cm), the maximum number of tillers m\(^{-2}\) (349.67), leaf area index (4.34) and dry matter production (5546 kg ha\(^{-1}\)) and almost all the growth attributes recorded by T\(_8\) are on par with T\(_9\) (Normal planting with live mulching of cowpea, hydrogel and coir pith application).

In paired row cropping geometry, two rows of rice at a spacing of 10 cm x 10 cm were sown as paired rows and the spacing between two such paired rows was 40 cm where three rows of green manure cowpea was grown as intercrop. The reason for longer plants in paired row cropping geometry might be due to the sufficient interspace between paired rows for rooting and extraction of moisture which consecutively helped in better water and nutrient absorption. This was in conformity with the reports of Mahajan and Chauhan (2011) \(^{[6]}\) in upland rice.

The leaf area index and number of tillers m\(^{-2}\), were increased in T\(_9\) due to the improved soil health and higher organic matter content due to insitu green manuring resulting in biological nitrogen fixation. This was in conformity with the findings of Srinivasan (2002) \(^{[10]}\) in upland rice. The improved growth attributes such as plant height, number of functional leaves, leaf area index and number of tillers resulted in higher dry matter production in T\(_9\). The higher water holding capacity of hydrogel and reduced evaporation and soil temperature by mulch increased the plant availability of nutrients leading to increased plant height, number of tillers and dry matter production which was in conformity with the reports of Islam et al. (2011) \(^{[3]}\) in rice and Kumar et al. (2018) \(^{[5]}\) in maize.

Table 1: Effect of cropping geometry and in situ soil moisture conservation practices on plant height at different growth stages, number of tillers m\(^{-2}\), leaf area index and dry matter production

| Treatments | Plant height (cm) | Number of Tillers m\(^{-2}\) (60 DAS) | Leaf Area Index (60 DAS) | Dry matter production |
|------------|------------------|--------------------------------------|-------------------------|----------------------|
|            | 30 DAS | 60 DAS | Harvest |                  |                      |                      |                      |
| T\(_1\)    | 58.81  | 83.81  | 92.61   | 298.33 | 3.93 | 1967 | 4276 |
| T\(_2\)    | 59.69  | 88.81  | 99.81   | 325.00 | 4.19 | 2124 | 4850 |
| T\(_3\)    | 58.53  | 88.79  | 100.60  | 337.00 | 4.13 | 2138 | 4925 |
| T\(_4\)    | 58.70  | 90.78  | 102.16  | 335.00 | 4.18 | 2270 | 4992 |
| T\(_5\)    | 58.56  | 91.78  | 104.00  | 349.33 | 4.22 | 2399 | 5503 |
| T\(_6\)    | 58.88  | 90.65  | 98.91   | 313.00 | 4.25 | 2143 | 4762 |
| T\(_7\)    | 59.46  | 90.54  | 100.73  | 314.33 | 4.15 | 2237 | 5466 |
| T\(_8\)    | 59.13  | 90.70  | 101.09  | 331.00 | 4.22 | 2242 | 5149 |
| T\(_9\)    | 59.41  | 91.32  | 109.13  | 349.67 | 4.34 | 2464 | 5546 |

SEm (±) 0.67 1.04 1.29 6.88 0.07 0.07 60 174
CD (0.05) NS 3.150 3.897 20.804 NS 182.5 525.4
Fig 1: Effect of cropping geometry and in situ soil moisture conservation practices on plant height at different growth stages, cm

Fig 2: Effect of cropping geometry and in situ soil moisture conservation practices on number of tillers m$^{-2}$

Fig 3: Effect of cropping geometry and in situ soil moisture conservation practices on Dry Matter Production (DMP) (60 DAS, Harvest)

Acknowledgement
The authors are thankful to Kerala Agriculture University and Department of Agronomy, Collage of Agriculture, Vellayani for providing facilities for the conduct of PG research of senior author.

References
1. Akhter J, Mahmood K, Malik KA, Mardan A, Ahmad M, Iqbal MM. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ. 2004; 50(10):463-469.
2. Das SB, Mishra D, Zahida R, Afshana BB. Hydrogel: To enhance crop productivity per unit available water under moisture stress Agriculture. Bull. Env. Pharmacol. Life Sci. 2017; 6(10):129-135.
3. Islam MR, Zeng Z, Mao J, Eneji AE, Xue X, Hu Y. Feasibility of summer corn (Zea mays L.) production in
4. Kumar S, Saha B, Saha S, Das A, Poddar P, Prabhakar M. Integrated nutrient management for enhanced yield, nutrients uptake and their use efficiency in rice under intensive rice-wheat cropping system. Int. J Curr. Microbiol. Appl. Sci. 2017; 6(10):1958-1972.

5. Kumar RS, Bridgit TK, Chanchala A. Physical and chemical properties of sandy soil as influenced by the application of hydrogel and mulching in maize (Zea mays L.). Int. J Curr. Microbiol. App. Sci. 2018; 7(07):3612-3618.

6. Mahajan G, Chauhan BS. Effects of planting pattern and cultivar on weed and crop growth in aerobic rice system. Weed Technology. 2011; 25(4):521-525.

7. Power JF, Koerner PT. Cover crop production for several planting and harvest dates in Eastern Nebraska. Agron. J. 1994; 86:1092–1097.

8. Saeed M, Ullah A, Ahmad R, Jabbar A. Bio-economic assessment of direct seeded rice-based intercropping systems under strip plantation. Pak. J Bio. Sci. 1999; 2(3):980-983.

9. Solaimalai A, Ramesh PT, Ravisankar N. Utilization of raw'coir pith in crop production -a review. Agric. Rev. 2001; 22(2):102-108.

10. Srinivasan K. Competitive behaviour of different legumes grown as intercrop with direct seeded upland rice. M.Sc.(Ag). Thesis, Kerala Agricultural University, Thrissur, 2002, 176p.

11. Yadav S, Gill G, Humphreys E, Kukal SS, Walia US. Effect of water management on dry direct seeded rice and puddled transplanted rice Part 2: Water balance and water productivity. Field Crops Res. 2011; 120:123-132.