An unbreakable cryptosystem

Arindam Mitra

Anushakti Abasan, Uttar Phalguni-7, 1/AF, Salt Lake,
Kolkata, West Bengal, 700064, India.

Abstract: The remarkably long-standing problem of cryptography is to generate completely secure key. It is widely believed that the task cannot be achieved within classical cryptography. However, there is no proof in support of this belief. We present an incredibly simple classical cryptosystem which can generate completely secure key.

Cryptography is an ancient art [1]. However, in the last century cryptography has emerged as a discipline of science. Now it has been working as a catalyst for the development of other disciplines ranging from number theory to quantum information to quantum computation.

Human being tried to develop unbreakable code from ancient times. In 1926, Vernam presented [2] a cryptosystem, known as one-time-pad system, which was later proved [3] to be a completely secure, that is, unbreakable system. However, one-time-pad system never became popular since key cannot be reused.

It has been pointed out [4-7] that the present computational strength can indirectly provide security in communication. Over the last four decades many computationally secure systems have been discovered [4-7]. Of them, some of the prototypes of DES and RSA [6,7] systems are widely regarded as safe and secure [4,5]. Although computationally secure systems are widely used, but many cryptographers and mathematicians have had some reservations about the very idea of computational security particularly where security is not even mathematically proven.
In 1983, in a seminal paper, Wiesner first pointed out [8] that quantum mechanics can ensure the security of data. Subsequently, Bennett and Brassard discovered [9] a quantum key distribution (QKD) protocol which can generate secure key with the help [10] of classical authentication scheme [11]. Since then many QKD protocols [12-15] have been designed. An alternative QKD system, which can itself generate secure key without any support of classical cryptosystem, has also been developed [16,17]. QKD system has already been implemented over several kilometers [13-15] and it has been proved to be completely secure [18-20] in some particular set-up. For public use, quantum cryptographic network is yet to be set up.

If quantum cryptographic network is set up all over the world and if that network is proved to be completely secure, still it would be advantageous to have a classical system which can generate completely secure key since our communication network is entirely classical. Apart from this advantage, it is always advantageous to have two routes to reach the destination. Next we shall present such classical cryptosystem.

System –I

Step 0#.

a). Two parties, called A and B, secretly share a key K which is a sequence of $2n$ random bits. The positions of 1s and 0s of K are denoted by r and p respectively.

b). They note down the random positions of 1s in the ascending order. It gives a sequence K_0^r of positive integers. They note down the random positions of 0s in the ascending order. It gives another sequence K_0^p of positive integers. This relationship between the sequences may be symbolically described as, $K \rightarrow K^r$ and $K \rightarrow K^p$.
Step 1#

a). A third party, called server, transmits a sequence S_1 of $2n$ random bits to both A and B through any communication channel.

b). A and B apply the pair of position keys K^r and K^p on S_1 and extract a pair of keys k^r_1 and k^p_1. It means bits of k^r and k^p are extracted from some random positions in S_1 determined by K^r and K^p respectively. That is, bits of k^r are extracted from those positions in S_1 which are the positions of 1s in K and bits of k^p are extracted from those bit positions in S_1 which are the positions of 0s in K. The extraction of keys may be symbolically described as $K^r: S_1 :: k^r_1$ and $K^p: S_1 :: k^p_1$.

Step 2#

a). The third party, called server, transmits a sequence S_2 of $2n$ random bits to both A and B through any communication channel.

b). A and B apply the same pair of position keys K^r and K^p on S_2, and extract a pair of keys k^r_2 and k^p_2. It means bits of k^r and k^p are extracted from some random positions in S_2 determined by K^r and K^p respectively. That is, bits of k^r are extracted from those positions in S_2 which are the positions of 1s in K and bits of k^p are extracted from those bit positions in S_2 which are the positions of 0s in K. The extraction of keys may be symbolically described as $K^r: S_2 :: k^r_2$ and $K^p: S_2 :: k^p_2$.

Step i #

a). The third party, called server, transmits a sequence S_i of $2n$ random bits to both A and B through any communication channel.

b). A and B apply the same pair of position keys K^r and K^p on S_i, and extract a pair of keys k^r_i and k^p_i. It means bits of k^r and k^p are extracted from some random positions in S_i determined by K^r and K^p respectively. That is, bits of k^r are extracted from those positions in S_i which are the positions of 1s in K and bits of k^p are extracted from those bit positions in S_i which are the positions of 0s in K. The extraction of keys may be symbolically described as $K^r: S_i :: k^r_i$ and $K^p: S_i :: k^p_i$.
Illustration:

Step 0#

a). Suppose the key K is

$$K = \{0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1\}$$

b). The two positions keys are

$$K^r = \{2, 3, 4, 6, 8, 12, 14\}$$
$$K^p = \{1, 5, 7, 9, 10, 11, 13\}$$

Step 1 to i#

a). Suppose server transmits the following sequences to both A and B (none of the sequences is generated by any random number generator).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
S_1	0	1	0	1	1	1	0	1	0	0	0	1	0	
S_2	1	1	0	0	1	1	1	0	1	0	0	0	1	
S_3	1	0	1	0	0	1	0	1	1	0	1	0		
S_4	1	1	0	0	1	1	0	1	1	0	1	0	0	1
...
S_{i}	0	1	1	1	0	0	1	0	1	0	0	1	1	0

b). A and B extract the same pair of keys k_i^r and k_i^p applying the same pair of position keys K_i^r and K_i^p respectively on the same sequence S_i. A and B extract the following set of keys $R \in (k_1^r, k_2^r, ..., k_i^r)$ by applying the position key K_i^r on the sequences $S_1, S_2, ..., S_i$ respectively.
Similarly, A and B extract the following set of keys $P \in (k_1^p, k_2^p, \ldots, k_i^p)$ by applying the position key K^p on the sequences S_1, S_2, \ldots, S_i respectively.

\[
K^r = \begin{align*}
2 & 3 & 4 & 6 & 8 & 12 & 14 \\
k_1^r & = & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
k_2^r & = & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
k_3^r & = & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
k_4^r & = & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\cdot & = & \cdot \\
\cdot & = & \cdot \\
\cdot & = & \cdot \\
\cdot & = & \cdot \\
k_i^r & = & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{align*}
\]

\[
K^p = \begin{align*}
1 & 5 & 7 & 9 & 10 & 11 & 13 \\
k_1^p & = & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
k_2^p & = & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
k_3^p & = & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
k_4^p & = & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
\cdot & = & \cdot \\
\cdot & = & \cdot \\
\cdot & = & \cdot \\
\cdot & = & \cdot \\
k_i^p & = & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{align*}
\]

The extraction can be described as

\[
K \rightarrow K^r : (S_1, S_2, \ldots, S_i) :: R \in (k_1^r, k_2^r, \ldots, k_i^r) \\
K \rightarrow K^p : (S_1, S_2, \ldots, S_i) :: P \in (k_1^p, k_2^p, \ldots, k_i^p)
\]

Note that bit positions have been repeatedly used, not the bit values. Needless to say, Shannon’s proof [2] does not disallow this indirect reuse of the shared key. Not only a pair/group of parties any number of pair/group of parties can extract their pair of keys from the same sequence, but none of the pair/group will know others’ extracted key.
In cryptosystem, where establishing security against eavesdropping is the objective, key can be used for the following purposes: 1. To encrypt a meaningful message or even a key 2. To authenticate a person. 3. To generate a key. But it is still not known whether the same key can be used for all the three purposes.

We shall first consider that the generated key will be used in message encryption. We shall further assume that each extracted key will be separately used to encrypt each message. Each n-bit message M will be encrypted in n-bit key. The encryptions can be written as

\[
\begin{align*}
C_1^e &= k_1^e + M_1^e \\
C_2^e &= k_2^e + M_2^e \\
& \vdots \\
C_i^e &= k_i^e + M_i^e
\end{align*}
\]

Suppose A is the sender of message. Therefore, A will transmit a set of cipher-texts \(C^e \in (C_1^e, C_2^e, \ldots, C_i^e) \) to B through any communication channel and B will decode the set of messages \(M^e \in (M_1^e, M_2^e, \ldots, M_i^e) \) applying the set of keys \(R \in (k_1^e, k_2^e, \ldots, k_i^e) \) respectively. A can also transmit the set of cipher-texts \(C^p \in (C_1^p, C_2^p, \ldots, C_i^p) \) to B through any communication channel and B has to decode the set of messages \(M^p \in (M_1^p, M_2^p, \ldots, M_i^p) \) by applying the set of keys \(P \in (k_1^p, k_2^p, \ldots, k_i^p) \) respectively. The entire encryption process may be described as

\[
\begin{align*}
K \rightarrow K^e &: (S_1, S_2, \ldots, S_i) :: R \in (k_1^e, k_2^e, \ldots, k_i^e) \implies (M_1^e, M_2^e, \ldots, M_i^e) \\
K \rightarrow K^p &: (S_1, S_2, \ldots, S_i) :: P \in (k_1^p, k_2^p, \ldots, k_i^p) \implies (M_1^p, M_2^p, \ldots, M_i^p)
\end{align*}
\]

In cryptography, a n-bit key/message is said to be completely secure if eavesdropper’s probability of guessing the key is \(p_g = \frac{1}{2^n} \). Let us prove that the system can deliver completely secure message.
Proof:

- We know, \(K \not\rightarrow K^f, K \not\rightarrow K^p \)

The key K is not known to eavesdropper. So, eavesdropper’s probability of guessing \(K^f \) or \(K^p \) is

\[
p_g = \frac{1}{2^n}
\]

- We know, \(K \not\rightarrow K^f: S_i:: k_i^f \) and \(K \not\rightarrow K^p: S_i:: k_i^p \).

Applying \(K^f \) on \(S_i \) the key \(k_i^f \) is extracted and applying \(K^p \) on \(S_i \) the key \(k_i^p \) is extracted. So, eavesdropper’s probability of guessing each extracted key is

\[
p_g = \frac{1}{2^n}
\]

- Note that,

\[
C_i^f = k_i^f + M_i^f
\]

\[
C_i^p = k_i^p + M_i^p
\]

- Eavesdropper gets \(C_i^f \) and \(C_i^p \). As \(k_i^f \) and \(k_i^p \) are used one time so, according to Shannon’s proof [2], eavesdropper’s probability of knowing \(M_i^f \) and \(M_i^p \) will be

\[
p_g = \frac{1}{2^n}
\]

Next we shall see that the system would crash if the two sets of data R and P are used as “password” or “PIN” for the purpose of authentication.

Eavesdropper is allowed to access the two sets of data R and P after their use. But from a single \(k_i^f \) and single \(k_i^p \) eavesdropper’s probability of identifying a position-key is \(\frac{1}{2^n} \). Suppose N keys \(k_1^f, k_2^f, ..., k_N^f \) are used as secure data for authentication. Therefore, after their use all the N keys are supposed to be available to eavesdropper. Eavesdropper gets the corresponding sequences \(S_1, S_2, ..., S_N \)
from the communication channel. Now eavesdropper wants to correlate k'_1, k'_2, \ldots, k'_N with S_1, S_2, \ldots, S_N. This is possible if he can figure out the bit-position in the sequences S_1, S_2, \ldots, S_N from which the j-th bits of k'_1, k'_2, \ldots, k'_N have been extracted. Suppose he observes that j-th bits of the keys k'_1, k'_2, \ldots, k'_N are perfectly identical with i-th bits of the sequences S_1, S_2, \ldots, S_N. But, due to accidental correlation this can happen with probability $\frac{1}{2^N}$. Therefore, the probability of wrongly identifying a bit position is $\frac{1}{2^N}$. So, the probability of correctly identifying a bit position is $p' = 1 - \frac{1}{2^N}$.

From the above analysis it can be concluded that if the same position key is used N times to extract N keys, and if all the N extracted keys become available to eavesdropper after their use, then eavesdropper’s probability of correctly identifying n bit-positions, that is, a position-key, is

$$p = \left(1 - \frac{1}{2^N}\right)^n$$

Therefore, the system-I is unbreakable if extracted key is used in encryption, but it is quickly breakable, if extracted key is used as data for the purpose of authentication. Even unbreakable system will also crash if stealing of messages is allowed. By stealing N messages eavesdropper can decode N message-encrypting keys and then break the system with the same probability p.

The system-I can generate completely secure message. This is the strength of the system. The extracted keys are not independent keys to the eavesdropper. This is the weakness of the system. The above analysis suggests that a key should not be used more that one time, and A and B should use new new independent keys to extract independent keys. Without initially sharing many independent keys it is possible to exchange independent keys through our completely secure channel. That is, weakness of the system-I can be removed by its strength. The modified system is described below.
Step 1#

a). A third party server transmits a sequence S_1 of $2n$ random bits to both A and B through any communication channel.

b). A and B apply K^r and K^p of their shared key K on S_1 to extract a pair of keys k^r_1 and k^p_1 respectively. The extraction can be described as $K \rightarrow K^r : S_1 :: k^r_1$ and $K \rightarrow K^p : S_1 :: k^p_1$.

c). A and B attach k^r_1 and k^p_1. The attached key can be denoted as $k_1 \equiv k^r_1 .. k^p_1$. In the attached key, k^r_1 is placed before k^p_1.

d). A generates a $2n$-bit independent key X_1 by random physical process and encrypts X_1 in k_1 and thereby prepares a cipher-text(key) $c_1 = k_1 + X_1$, which is transmitted to B.

e). B decodes X_1 from c_1 applying k_1.

f). A third party, called server, transmits another sequence S'_1 of $2n$ random bits to both A and B through any communication channel.

g). A and B apply the same pair of position keys X^r_1 and X^p_1 of X_1 on S'_1 to extract a pair of keys X^r_1 and X^p_1. This extraction may be described as $X_1 \rightarrow X^r_1 : S'_1 :: R^F_1 \in (x^r_1) ; X_1 \rightarrow X^p_1 : S'_1 :: P^F_1 \in (x^p_1)$.

Step 2#

a). A third party server transmits a sequence S_2 of $2n$ random bits to both A and B through any communication channel.

b). A and B apply K^r and K^p of their shared key K on S_2 to extract a pair of keys k^r_2 and k^p_2 respectively. The extraction can be described as $K \rightarrow K^r : S_2 :: k^r_2$ and $K \rightarrow K^p : S_2 :: k^p_2$.

c). They attach k^r_2 and k^p_2. The attached key is denoted as $k_2 \equiv k^r_2 .. k^p_2$.

d). A generates a $2n$-bit key X_2 by random physical process and then encrypts X_2 in k_2 and thereby prepares a cipher-text(key) $c_2 = k_2 + X_2$, which is transmitted to B.

e). B decodes X_2 from c_2 applying k_2.

f). A third party, called server, transmits another sequence S'_2 of $2n$ random bits to both A and B through any communication channel.
g). A and B apply the same pair of position keys X_2^r and X_2^p of X_2 on S_2^r to extract a pair of keys x_2^r and x_2^p. This extraction may be described as $X_2 \rightarrow X_2^r : S_2^r :: R_2^F \in (x_2^r)$; $X_2 \rightarrow X_2^p : S_2^p :: P_2^F \in (x_2^p)$.

Step i#.

a). A third party server transmits a sequence S_i of $2n$ random bits to both A and B through any communication channel.

b). A and B apply K^r and K^p of their shared key K on S_i to extract a pair of keys k_i^r and k_i^p respectively. The extraction can be described as $K \rightarrow K^r : S_i :: k_i^r$ and $K \rightarrow K^p : S_i :: k_i^p$.

c). A and B attach k_i^r and k_i^p. The attached key can be denoted as $k_i = k_i^r .. k_i^p$.

d). A generates a $2n$-bit key X_i by random physical process and encrypts X_i in k_i and thereby prepares a cipher-text(key) $c_i = k_i + X_i$, which is transmitted to B.

e). B decodes X_i from c_i applying k_i.

f). A third party, called server, transmits another sequence S_i^r of $2n$ random bits to both A and B through any communication channel.

g). A and B apply the same position keys X_i^r and X_i^p of X_i on S_i^r to extract a pair of keys x_i^r and x_i^p. This extraction may be described as $X_i \rightarrow X_i^r : S_i^r :: R_i^F \in (x_i^r)$; $X_i \rightarrow X_i^p : S_i^p :: P_i^F \in (x_i^p)$.

The following points may be pointed out.

1. The same position keys X_i^r and X_i^p are never reused to extract the final keys x_i^r and x_i^p.

2. Exchanged key X_i can neither be used as secure data nor in message encryption. If X_i is used as secure data, then eavesdropper will know k_i as $c_i = k_i + X_i$. If X_i is used to encrypt a message M_i, then we have two equations $c_i = k_i + X_i$ and $C_i = X_i + M_i$. Here the same key X_i is used two times to encrypt k_i and M_i. So far complete security is concerned Shannon’s proof [2] disallows it.

3. In each step, after the extraction of the pair of final keys x_i^r and x_i^p, there is no need to store X_i and k_i. They can be destroyed.
Let us prove that it is impossible for eavesdropper to figure out K and the pair of extracted sets
\(R \in (k_1^r, k_2^r, k_3^r, ..., k_n^r) \) and \(P \in (k_1^p, k_2^p, k_3^p, ..., k_n^p) \). Only the final sets \(R_1^F \in (x_1^r) \), \(P_1^F \in (x_1^p) \), \(R_2^F \in (x_2^r) \), \(P_2^F \in (x_2^p) \), ..., \(R_i^F \in (x_i^r) \), \(P_i^F \in (x_i^p) \) are supposed to be available to eavesdropper after their use.

Proof:
- We know,
\[K \nrightarrow K' : (S_1, S_2, ..., S_i) :: \] \[R \in (k_1^r, k_2^r, k_3^r, ..., k_i^r) \] ; \[K \nrightarrow K' : (S_1, S_2, ..., S_i) :: \] \[P \in (k_1^p, k_2^p, ..., k_i^p) \]
\[\Rightarrow (k_1^r, k_2^r, k_3^r, ..., k_i^r) \equiv U \in (k_1, k_2, ..., k_i) \]
To extract two sets R and P, the same pair of keys \(K' \) and \(K \) are applied on \(S_1, S_2, ..., S_i \). But the extracted sets R and P are not used as secure data. Therefore, \(U \in (k_1, k_2, ..., k_i) \) will not be available to eavesdropper after their use.

- The set of extracted keys \(U \in (k_1, k_2, ..., k_i) \) are used in encryption.

\[c_1 = k_1 + X_1; \quad c_2 = k_2 + X_2; \quad ..., \quad c_i = k_i + X_i. \]

We have seen that transmitted keys \(X_1, X_2, ..., X_i \) are completely secure.

- Each exchanged key \(X_i \) is used one time to extract a pair of keys.

\[X_1 \nrightarrow X_1^r : S_1^r :: R_1^F \in (x_1^r) \]
\[X_1 \nrightarrow X_1^p : S_1^p :: P_1^F \in (x_1^p) \]
\[X_2 \nrightarrow X_2^r : S_2^r :: R_2^F \in (x_2^r) \]
\[X_2 \nrightarrow X_2^p : S_2^p :: P_2^F \in (x_2^p) \]
\[... \]
\[X_i \nrightarrow X_i^r : S_i^r :: R_i^F \in (x_i^r) \]
\[X_i \nrightarrow X_i^p : S_i^p :: P_i^F \in (x_i^p) \]
We have seen that if the same position key is used N times to extract N keys, and if the extracted keys available to eavesdropper after their use, then eavesdropper’s probability of identifying the position key is

$$p = \left(1 - \frac{1}{2^N} \right)^n$$

In this case, the same position key $X_i^r (X_i^p)$ is used one time to extract one key $x_i^r (x_i^p)$ respectively. So only one key $x_i^r (x_i^p)$ will be available to eavesdropper after its use. Therefore, in this case $N=1$. So eavesdropper’s probability of knowing X_i^r and X_i^p from the extracted key x_i^r and x_i^p is $p = \frac{1}{2^n}$.

Given the final keys it is impossible for eavesdropper to figure out K. To eavesdropper, the final keys are independent keys.

The final sets $R_i^r \in (x_i^r), P_i^r \in (x_i^p), R_2^r \in (x_2^r), P_2^r \in (x_2^p), \ldots \ldots, R_i^r \in (x_i^r), P_i^r \in (x_i^p)$ can also be used for the following purposes. 1. To encrypt a meaningful message. After each step one of the parties can encrypt a n-bit message M_i^r or M_i^p in x_i^r or x_i^p to prepare cipher-text $C_i^r = x_i^r + M_i^r$ or $C_i^p = x_i^p + M_i^p$. 2. To authenticate a channel as secure data. 3. To generate a key.

The system-II can generate independent uncorrelated keys and the probability of breaking the system is $\frac{1}{2^n}$. To break the presented system, eavesdropper has no other option but to steal K. If eavesdropper steals K, he could totally break the system. Suppose eavesdropper fails to steal K. Still he can figure out K with probability less than 1, if he can steal more than one key k_i or X_i before their destruction.

Let us summarize the discussion. The system-I is unbreakable if the generated key is used only for message encryption. Here users need to share a key, but no random number generator is required. The system-II is unbreakable for all the three types of usage of the generated key - message encryption,
authentication and key generation. Users need to share a key, but one of the users should possess a random number generator.

From the security point of view quantum and classical cryptosystem can be comparatively studied. In standard QKD system, two parties need to share a n-bit authentication key, and a random number generator is required to execute it. The probability of breaking completely secure [18-20] standard QKD system is $\frac{1}{2^n}$. To break it, eavesdropper has no other option but to initially steal the n-bit authentication key. We have seen that the same level of security can be achieved by the presented system. Of course both systems can peacefully coexist.

Apart from its use-value both standard and alternative QKD systems have theoretical importance. The strength of quantum cryptography is yet to be fully assessed. Recently, it has been observed [21,22] that quantum cryptography can provide complete security against cheating. Perhaps, herein lies the unparallel strength of quantum cryptography.

For the presented system, users need an open source of random bits and they should initially secretly share some random bits. However, sometimes open source may remain inaccessible and a common user may find it difficult to share random bits. We have found a prototype [23,24] of the presented system where, by secretly sharing some decimal numbers, parties can locally generate common key without using any communication channel.

*Email: mitra1in@yahoo.com

References
1. D. Kahn, The code breakers: the story of secret writing. Scribner (New. York, Macmillan) 1996.
2. G. S. Vernam, Jour. Amer. Inst. Electr. Engrs. 45, 109 (1926).
3. C. E. Shannon, Bell Syst. Technical Jour. 28, 657 (1949).
4. J. Beker, and F. Piper, Cipher systems: the protection of communications (London: Northwood publications).1982.
5. N. Koblitz, A course in number theory and cryptography, (Springer) 1994.
6. W. Diffie and M. Hellmann, IEEE. Trans. Inf. Theory. IT-22,644 (1976).
7. R. Rivest, A. Shamir and M. A. Adelman, *ACM*, 21, 120 (1978).
8. S. Wiesner, *SIGACT News* 15, 77 (1983). The manuscript was written around 1970.
9. C. H. Bennett and G. Brassard, in *Proc. of IEEE Int. Conf. on Computers, System and Signal Processing, Bangalore, India*, 175 (IEEE, New York, 1984).
10. C. H. Bennett, G. Brassard and A Ekert. *Sci. Am*, 267, 26 (1992).
11. M. N. Wegman and J. L. Carter, *Jour. Of. Comp. and Syst. Sci*, 22, 265 (1981).
12. A. Ekert, *Phys. Rev. Lett*, 67, 661, (1991).
13. S.J.D Phoenix and P. D. Townsend, *Contemp. Phys*. 36 (3), 165 (1995).
14. C. H. Bennett and D. Divincenzo, *Nature*, 404, 247 (2000).
15. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, *Rev. Mod. Phys*. 74, 145 (2002).
16. A. Mitra, *Quantum mechanics can alone provide security*, http://xxx.lanl.gov/cs.IT/0501023.
17. A. Mitra, *Quantum communication is possible with pure states*, http://xxx.lanl.gov/cs.IT/0610102.
18. D. Mayers, http://xxx.lanl.gov/quant-ph/9802025.
19. H. –K. Lo and H. F. Chau, *Science*. 283, 2050 (1999).
20. P. W. Shor and J. Preskill, *Phys. Rev. Lett*. 85, 441, (2000).
21. A. Mitra, *Honesty can defeat dishonesty within quantum mechanics*, http://xxx.lanl.gov/cs.CR/0508059.
22. A. Mitra, *Quantum mechanics can prohibit dishonesty*, http://xxx.lanl.gov/cs.CR/0502026.
23. A. Mitra, *Human being is a living random number generator*, http://xxx.lanl.gov/cs.DS/0505009.
24. A. Mitra, *An unbreakable cryptosystem for common people*, http://xxx.lanl.gov/cs.CR/0610152.