Linear Conjugacy of Chemical Reaction Networks

Matthew Douglas Johnston
University of Waterloo

April 25, 2011
1 Background

- Chemical Reactions
- Mass-Action Kinetics
- Weakly Reversible Networks
1 Background
- Chemical Reactions
- Mass-Action Kinetics
- Weakly Reversible Networks

2 Linearly Conjugacy
- Main Theorem
- Examples
1 Background
- Chemical Reactions
- Mass-Action Kinetics
- Weakly Reversible Networks

2 Linearly Conjugacy
- Main Theorem
- Examples
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

$$2H_2 + O_2 \xrightarrow{k} 2H_2O$$
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \xrightarrow{k} 2\text{H}_2\text{O} \]

Species/Reactants
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \overset{k}{\rightarrow} 2\text{H}_2\text{O} \]

Reactant Complex
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \xrightarrow{k} 2\text{H}_2\text{O} \]

Product Complex
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

$$2H_2 + O_2 \xrightarrow{k} 2H_2O$$

Reaction Constant
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \overset{k}{\rightarrow} 2\text{H}_2\text{O} \]

Chemical kinetics is the study of the *rates/dynamics* resulting from systems of such reactions.
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \xrightarrow{k} 2\text{H}_2\text{O} \]

Chemical kinetics is the study of the *rates/dynamics* resulting from systems of such reactions.

In order to build a model, we assume the mixture is spatially homogeneous, temperature and volume are held constant, and the law of mass action applies.
Consider the general network \mathcal{N} given by

$$C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r.$$
Consider the general network \mathcal{N} given by

$$C_i \xrightarrow{k_i} C_i', \quad i = 1, \ldots, r.$$

Under mass-action kinetics, this network is governed by the system of autonomous, polynomial, ordinary differential equations

$$\dot{x} = \sum_{i=1}^{r} k_i (z_i' - z_i) x^{z_i}$$

(1)

where $x_i, \ i = 1, \ldots, m$, are the reactant concentrations.
Consider the general network \mathcal{N} given by

$$C_i \xrightarrow{k_i} C_i', \quad i = 1, \ldots, r.$$

Under mass-action kinetics, this network is governed by the system of autonomous, polynomial, ordinary differential equations

$$\dot{x} = \sum_{i=1}^{r} k_i (z'_i - z_i) x^{z_i} \quad (1)$$

where x_i, $i = 1, \ldots, m$, are the reactant concentrations.
Consider the general network \mathcal{N} given by

$$C_i \xrightarrow{k_i} C_i', \quad i = 1, \ldots, r.$$

Under mass-action kinetics, this network is governed by the system of autonomous, polynomial, ordinary differential equations

$$\dot{x} = \sum_{i=1}^{r} k_i (z_i' - z_i) x^{z_i}$$

where $x_i, \ i = 1, \ldots, m$, are the reactant concentrations.
Consider the general network \mathcal{N} given by

$$C_i \xrightarrow{k_i} C_i', \quad i = 1, \ldots, r.$$

Under mass-action kinetics, this network is governed by the system of autonomous, polynomial, ordinary differential equations

$$\dot{x} = \sum_{i=1}^{r} k_i(z_i' - z_i)x^{z_i}$$ \hspace{1cm} (1)

where $x_i, \ i = 1, \ldots, m,$ are the reactant concentrations.
Consider the general network \mathcal{N} given by

$$C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r.$$

Under mass-action kinetics, this network is governed by the system of autonomous, polynomial, ordinary differential equations

$$\dot{x} = \sum_{i=1}^{r} k_i(z'_i - z_i)x^{z_i} \quad (1)$$

where $x_i, \ i = 1, \ldots, m$, are the reactant concentrations.
Consider the general network \mathcal{N} given by

$$
C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r.
$$

Under mass-action kinetics, this network is governed by the system of autonomous, polynomial, ordinary differential equations

$$
\dot{x} = \sum_{i=1}^{r} k_i (z'_i - z_i) x^{z_i}
$$

where $x_i, \ i = 1, \ldots, m$, are the reactant concentrations.

Model is applied to systems biology, enzyme kinetics, industrial reactors, neural networks, atmospherics, etc., and is related to predator-prey and epidemic growth models in biology.
The particular class of networks which I have been interested in are *weakly reversible networks*.
The particular class of networks which I have been interested in are **weakly reversible networks**.

A network is weakly reversible if a path from one complex to another in the reaction graph implies a path back.
The particular class of networks which I have been interested in are *weakly reversible networks*.

A network is weakly reversible if a path from one complex to another in the reaction graph implies a path back, e.g.

\[C_1 \xrightarrow{k_1} C_2 \xleftarrow{k_2} C_3 \]
The particular class of networks which I have been interested in are *weakly reversible networks*.

A network is weakly reversible if a path from one complex to another in the reaction graph implies a path back, e.g.

\[
\begin{align*}
C_1 & \xrightarrow{k_1} C_2 \\
& \xleftarrow{k_3} \quad \xleftarrow{k_2} C_3.
\end{align*}
\]
The particular class of networks which I have been interested in are *weakly reversible networks*.

A network is weakly reversible if a path from one complex to another in the reaction graph implies a path back, e.g.

\[
C_1 \xrightarrow{k_1} C_2 \\
\xleftarrow{k_3} \quad \xleftarrow{k_2} C_3.
\]
The particular class of networks which I have been interested in are weakly reversible networks.

A network is weakly reversible if a path from one complex to another in the reaction graph implies a path back, e.g.

\[C_1 \xrightarrow{k_1} C_2 \]
\[k_3 \leftarrow k_2 \]
\[C_3. \]

Under the assumption of mass-action kinetics, strong properties are known about the dynamics of weakly reversible networks.
Mass-action systems are often very difficult to analyze and many types of behaviour are possible (stable, multi-stable, oscillatory, chaotic behaviours, etc.)
Mass-action systems are often very difficult to analyze and many types of behaviour are possible (stable, multi-stable, oscillatory, chaotic behaviours, etc.)

However, many classes of systems with strongly predictable behaviour are known (e.g. weakly reversible systems).
Mass-action systems are often very difficult to analyze and many types of behaviour are possible (stable, multi-stable, oscillatory, chaotic behaviours, etc.)

However, many classes of systems with strongly predictable behaviour are known (e.g. weakly reversible systems).

CHALLENGE: Determine conditions under which a system with unknown dynamics can be related to a system with known behaviour.
1 Background
 ▪ Chemical Reactions
 ▪ Mass-Action Kinetics
 ▪ Weakly Reversible Networks

2 Linearly Conjugacy
 ▪ Main Theorem
 ▪ Examples
In [1], G. Craciun and C. Pantea give necessary and sufficient conditions under which two different reaction networks \(\mathcal{N} \) and \(\mathcal{N}' \) generate the same set of differential equations under the assumption of mass-action kinetics.
In [1], G. Craciun and C. Pantea give necessary and sufficient conditions under which two different reaction networks \mathcal{N} and \mathcal{N}' generate the same set of differential equations under the assumption of mass-action kinetics.

Why do we care?
In [1], G. Craciun and C. Pantea give necessary and sufficient conditions under which two different reaction networks \mathcal{N} and \mathcal{N}' generate the same set of differential equations under the assumption of mass-action kinetics.

Why do we care?

The qualitative dynamics of \mathcal{N}' are transferred to \mathcal{N}, even if the graph structure is wildly different!
In [1], G. Craciun and C. Pantea give necessary and sufficient conditions under which two different reaction networks \mathcal{N} and \mathcal{N}' generate the same set of differential equations under the assumption of mass-action kinetics.

Why do we care?

The qualitative dynamics of \mathcal{N}' are transferred to \mathcal{N}, even if the graph structure is wildly different!

Further work has been done by G. Szederkényi et al. in developing computer algorithms which determine such equivalent networks [2, 3].
We extend this work to networks which do not necessarily generate the same mass-action kinetics.
We extend this work to networks which do not necessarily generate the same mass-action kinetics.

We rely on the well-known theory of conjugacy of dynamical systems.
We extend this work to networks which do not necessarily generate the same mass-action kinetics.

We rely on the well-known theory of conjugacy of dynamical systems.

Let $\Phi(x_0, t)$ denote the flow associated with \mathcal{N} and $\Psi(y_0, t)$ denote the flow associated with \mathcal{N}'.
We extend this work to networks which do not necessarily generate the same mass-action kinetics.

We rely on the well-known theory of conjugacy of dynamical systems.

Let $\Phi(x_0, t)$ denote the flow associated with N and $\Psi(y_0, t)$ denote the flow associated with N'.

We will say N and N' are linearly conjugate if there exists a linear mapping $h : \mathbb{R}^m_{>0} \mapsto \mathbb{R}^m_{>0}$ such that

$$h(\Phi(x_0, t)) = \Psi(h(x_0), t)$$

for all $x_0 \in \mathbb{R}^m_{>0}$.

Let C_{react} denote the set of reactant complexes in either the complex set C or the complex set C'.

Theorem

Suppose that for the rate constants $k_i > 0$, $i = 1, \ldots, r$, there exist constants $b_i > 0$, $i = 1, \ldots, \tilde{r}$, and $c_j > 0$, $j = 1, \ldots, m$, such that, for every $C^0 \in C_{react}$,

\[
\sum_{i=1}^{r} k_i (z_i' - z_i) = T \sum_{i=1}^{\tilde{r}} b_i (\tilde{z}_i' - \tilde{z}_i)
\]

where $T = \text{diag} \{ c_j \}_{j=1}^{m}$. Then N is linearly conjugate to N' with rate constants

\[
\tilde{k}_i = b_i \prod_{j=1}^{m} c_j^{\tilde{z}_{ij}}, \quad i = 1, \ldots, \tilde{r}.
\]
Let C_{react} denote the set of reactant complexes in either the complex set C or the complex set C'.

Theorem

Suppose that for the rate constants $k_i > 0$, $i = 1, \ldots, r$, there exist constants $b_i > 0$, $i = 1, \ldots, \tilde{r}$, and $c_j > 0$, $j = 1, \ldots, m$, such that, for every $C^0 \in C_{\text{react}},$

$$
\sum_{i=1}^{\tilde{r}} k_i (z'_i - z_i) = T \sum_{i=1}^{\tilde{r}} b_i (\tilde{z}'_i - \tilde{z}_i)
$$

where $T = \text{diag}\{c_j\}_{j=1}^m$. Then \mathcal{N} is linearly conjugate to \mathcal{N}' with rate constants

$$
\tilde{k}_i = b_i \prod_{j=1}^m c_j^{\tilde{z}_{ij}}, \quad i = 1, \ldots, \tilde{r}.
$$
Let C_{react} denote the set of reactant complexes in either the complex set C or the complex set C'.

Theorem

*Suppose that for the rate constants $k_i > 0$, $i = 1, \ldots, r$, there exist constants $b_i > 0$, $i = 1, \ldots, \tilde{r}$, and $c_j > 0$, $j = 1, \ldots, m$, such that, for every $C^0 \in C_{\text{react}},$

\[
\sum_{i=1}^{r} k_i (z'_i - z_i) = T \sum_{i=1}^{\tilde{r}} b_i (\tilde{z}'_i - \tilde{z}_i)
\]

where $T = \text{diag}\{c_j\}_{j=1}^m$. Then \mathcal{N} is linearly conjugate to \mathcal{N}' with rate constants

\[
\tilde{k}_i = b_i \prod_{j=1}^{m} c_j^{\tilde{z}_{ij}}, \quad i = 1, \ldots, \tilde{r}.
\]
Let C_{react} denote the set of reactant complexes in either the complex set C or the complex set C'.

Theorem

Suppose that for the rate constants $k_i > 0$, $i = 1, \ldots, r$, there exist constants $b_i > 0$, $i = 1, \ldots, \tilde{r}$, and $c_j > 0$, $j = 1, \ldots, m$, such that, for every $C^0 \in C_{\text{react}},$

$$
\sum_{i=1}^{\tilde{r}} k_i (z'_i - z_i) = \begin{bmatrix} c_j \end{bmatrix} \prod_{j=1}^{m} c_j^{\tilde{z}_{ij}}
$$

where $T = \text{diag}\{c_j\}$. Then \mathcal{N} is linearly conjugate to \mathcal{N}' with rate constants

$$
\tilde{k}_i = b_i \prod_{j=1}^{m} c_j^{\tilde{z}_{ij}}, \quad i = 1, \ldots, \tilde{r}.
$$
Example 1:

Consider the chemical reaction network

\[N : \quad \begin{align*}
A_1 + 2A_2 & \xrightarrow{k_1} A_1 + 3A_2 \\
2A_1 & \xrightarrow{k_4} A_2.
\end{align*} \]
Example 1:

Consider the chemical reaction network

$$\mathcal{N} : \quad A_1 + 2A_2 \xrightarrow{k_1} A_1 + 3A_2 \xrightarrow{k_2} A_1 + A_2 \xrightarrow{k_3} 3A_1 \xrightarrow{k_4} 2A_1.$$

This is linearly conjugate to

$$\mathcal{N}' : \quad A_1 + 2A_2 \xleftrightarrow{\tilde{k}_1} A_1 + 3A_2 \xleftrightarrow{\tilde{k}_2} A_1 + A_2 \xleftrightarrow{\tilde{k}_3} 2A_1.$$

Source complexes are conserved!
Example 1:

Consider the chemical reaction network

\[N : \quad A_1 + 2A_2 \xrightarrow{k_1} A_1 + 3A_2 \xrightarrow{k_2} A_1 + A_2 \xrightarrow{k_3} 3A_1 \]
\[2A_1 \xrightarrow{k_4} A_2. \]

This is linearly conjugate to

\[N' : \quad A_1 + 2A_2 \xleftrightarrow{\tilde{k}_1} A_1 + 3A_2 \]
\[\quad A_1 + A_2 \xleftrightarrow{\tilde{k}_2, \tilde{k}_3} 2A_1. \]

Source complexes are conserved!
Example 1:

Consider the chemical reaction network

\[\mathcal{N} : \quad A_1 + 2A_2 \xrightarrow{k_1} A_1 + 3A_2 \xrightarrow{k_2} A_1 + A_2 \xrightarrow{k_3} 3A_1 \]
\[2A_1 \xrightarrow{k_4} A_2. \]

This is linearly conjugate to

\[\mathcal{N'} : \quad A_1 + 2A_2 \xleftrightarrow{\tilde{k}_1} A_1 + 3A_2 \]
\[A_1 + A_2 \xleftrightarrow{\tilde{k}_2} \quad A_1 + 2A_1. \]

Source complexes are conserved!
Example 1:

Consider the chemical reaction network

\[\mathcal{N} : \quad A_1 + 2A_2 \xrightarrow{k_1} A_1 + 3A_2 \xrightarrow{k_2} A_1 + A_2 \xrightarrow{k_3} 3A_1 \]
\[\quad 2A_1 \xrightarrow{k_4} A_2. \]

This is linearly conjugate to

\[\mathcal{N}' : \quad A_1 + 2A_2 \xleftrightarrow{\tilde{k}_1} A_1 + 3A_2 \]
\[\quad A_1 + A_2 \xleftrightarrow{\tilde{k}_2} 2A_1. \]

Source complexes are conserved!
Example 1:

Consider the chemical reaction network

\[\mathcal{N} : \quad A_1 + 2A_2 \xrightarrow{k_1} A_1 + 3A_2 \xrightarrow{k_2} A_1 + A_2 \xrightarrow{k_3} 3A_1 \]

\[2A_1 \xrightarrow{k_4} A_2. \]

This is linearly conjugate to

\[\mathcal{N}' : \quad A_1 + 2A_2 \xleftrightarrow{\tilde{k}_1} A_1 + 3A_2 \]

\[A_1 + A_2 \xleftrightarrow{\tilde{k}_2} A_1 + A_2 \xleftrightarrow{\tilde{k}_3} 2A_1. \]

Source complexes are conserved!
Example 2:

Consider the chemical reaction network

\[A_1 + 2A_2 \xrightarrow{\epsilon} A_1 \]

\[\mathcal{N} : \quad 2A_1 + A_2 \xrightarrow{1} 3A_2 \]

\[A_1 + 3A_2 \xrightarrow{1} A_1 + A_2 \xrightarrow{1} 3A_1 + A_2 \]

for \(\epsilon > 0 \).
Example 2:

Consider the chemical reaction network

\[\mathcal{A}_1 + 2\mathcal{A}_2 \xrightarrow{\epsilon} \mathcal{A}_1 \]

\[\mathcal{N} : \quad 2\mathcal{A}_1 + \mathcal{A}_2 \xrightarrow{1} 3\mathcal{A}_2 \]

\[\mathcal{A}_1 + 3\mathcal{A}_2 \xrightarrow{1} \mathcal{A}_1 + \mathcal{A}_2 \xrightarrow{1} 3\mathcal{A}_1 + \mathcal{A}_2 \]

for \(\epsilon > 0 \). This is linearly conjugate to

\[\mathcal{N}^\prime : \]

\[\mathcal{A}_1 + 2\mathcal{A}_2 \xrightarrow{\tilde{k}_1} \mathcal{A}_1 + \mathcal{A}_2 \]

\[\mathcal{A}_1 + 3\mathcal{A}_2 \xleftarrow{\tilde{k}_3} 2\mathcal{A}_1 + \mathcal{A}_2 \]

\[\tilde{k}_4 \uparrow \tilde{k}_5 \uparrow \downarrow \tilde{k}_2 \]
Example 2:

Consider the chemical reaction network

\[
N : \begin{align*}
A_1 + 2A_2 & \xrightarrow{\epsilon} A_1 \\
2A_1 + A_2 & \xrightarrow{1} 3A_2 \\
A_1 + 3A_2 & \xrightarrow{1} A_1 + A_2 \xrightarrow{1} 3A_1 + A_2
\end{align*}
\]

for \(\epsilon > 0 \). This is linearly conjugate to

\[
N' : \begin{align*}
A_1 + 2A_2 & \xrightarrow{\tilde{k}_1} A_1 + A_2 \\
2A_1 + A_2 & \xrightarrow{\tilde{k}_4} \xrightarrow{\tilde{k}_5} \xrightarrow{\tilde{k}_2} \\
A_1 + 3A_2 & \xleftarrow{\tilde{k}_3} 2A_1 + A_2
\end{align*}
\]

The third reaction is split into two!
Example 3:

Consider the chemical reaction network

\[A_1 \xrightarrow{k_1} 2A_1 + 2A_2 \xrightarrow{k_2} A_2 \xrightarrow{k_3} A_1 + A_2. \]
Example 3:

Consider the chemical reaction network

\[A_1 \xrightarrow{k_1} 2A_1 + 2A_2 \xrightarrow{k_2} A_2 \xrightarrow{k_3} A_1 + A_2. \]

This is linearly conjugate to

\[A_1 + A_2 \overset{\tilde{k}_3}{\leftrightarrow} A_2 \]

\[N' : \]

\[\tilde{k}_4 \downarrow \tilde{k}_5 \downarrow \uparrow \tilde{k}_2 \]

\[A_1 \xrightarrow{\tilde{k}_1} 2A_1 + 2A_2. \]
Example 3:

Consider the chemical reaction network

\[\mathcal{A}_1 \xrightarrow{k_1} 2\mathcal{A}_1 + 2\mathcal{A}_2 \xrightarrow{k_2} \mathcal{A}_2 \xrightarrow{k_3} \mathcal{A}_1 + \mathcal{A}_2. \]

This is linearly conjugate to

\[\mathcal{N}' : \]

\[\mathcal{A}_1 + \mathcal{A}_2 \xleftrightarrow{\tilde{k}_3} \mathcal{A}_2 \]

\[\tilde{k}_4 \downarrow \hspace{1cm} \tilde{k}_5 \downarrow \hspace{1cm} \uparrow \tilde{k}_2 \]

\[\mathcal{A}_1 \xrightarrow{\tilde{k}_1} 2\mathcal{A}_1 + 2\mathcal{A}_2. \]

Under certain conditions, strictly product complexes can become source complexes!
Outstanding! But what are the next steps?
Outstanding! But what are the next steps?

1. Generally need to find suitable target networks \mathcal{N}' - computer programs are necessary for all but the simplest cases.
Outstanding! But what are the next steps?

1. Generally need to find suitable target networks \mathcal{N}' - computer programs are necessary for all but the simplest cases.

2. What about non-linear transformations?
Outstanding! But what are the next steps?

1. Generally need to find suitable target networks \mathcal{N}' - computer programs are necessary for all but the simplest cases.

2. What about non-linear transformations?

3. What about other (i.e. non-mass-action) dynamics?
Thanks for coming out!
G. Craciun and C. Pantea, *Identifiability of chemical reaction networks*, J. Math. Chem. 44 (2008), no. 1, pp. 244–259.

G. Szederkényi, *Computing sparse and dense realizations of reaction kinetic systems*, J. Math. Chem. 47 (2010), pp. 551–568.

G. Szederkényi and K. M. Hangos, *Finding complex balanced and detailed balanced realizations of chemical reaction networks*. Available on the arXiv at arXiv:1010.4477.