Organochlorine pesticide exposure and risk of prostate cancer development and progression: a systematic review

[version 1; peer review: awaiting peer review]

Laurent Brureau¹,², Luc Multigner³, Freddie Hamdy²,⁴, Pascal Blanchet¹, Richard Bryant²,⁴

¹CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Ireset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Pointe-à-Pitre, France
²Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
³Univ Rennes, Inserm, EHESP, Ireset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
⁴Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

Abstract

Background: There is an increasing body of evidence linking the exposure of an individual to pesticides such as organochlorine pesticides (OPCs) and an increased risk of developing diseases such as cancer. Exposure to OPCs has been suggested to increase the risk of developing hormone-dependant cancers such as prostate cancer (PCa). However, there is a relative paucity of information about the influence of exposure to these pesticides on the evolution of PCa, including risk of tumour development, progression to metastasis, and disease recurrence following therapy.

Methods: We used several databases such as PubMed MEDLINE Database, Web of Science, and Scopus, in order to conduct a systematic review of the available epidemiological data implicating an association between exposure to OCPs and biochemical recurrence (BCR) of PCa. We searched all peer-reviewed articles published up to July 31st 2020. Pre-defined eligibility criteria for the inclusion of studies were that they be original studies, reviews, previous meta-analyses, or case–control or cohort studies.

Results: Agent Orange is the most widely-studied OCP in the context of any possible causal role in the recurrence of PCa following radical prostatectomy, or in the progression to advanced disease. Only two studies didn't demonstrate a significant association between exposure to OCPs and subsequent BCR following radical prostatectomy. Another study identified a significant association between exposure to Oxychlorodane and PCB44 and progression to advanced PCa.

Conclusion: This review confirmed a relative lack of high-quality evidence regarding this topic. However, the available evidence to date suggests the presence of a potential causal relationship between...
exposure to OPCs and PCa development and progression.

Keywords
Organochlorine pesticides, prostate cancer, biochemical recurrence, advanced disease

Corresponding author: Laurent Brureau (brureau_laurent@yahoo.fr)

Author roles: Brureau L: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Multigner L: Supervision, Writing – Review & Editing; Hamdy F: Supervision; Blanchet P: Supervision, Writing – Review & Editing; Bryant R: Methodology, Validation, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Brureau L et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Brureau L, Multigner L, Hamdy F et al. Organochlorine pesticide exposure and risk of prostate cancer development and progression: a systematic review [version 1; peer review: awaiting peer review] F1000Research 2021, 10:262 https://doi.org/10.12688/f1000research.29990.1

First published: 01 Apr 2021, 10:262 https://doi.org/10.12688/f1000research.29990.1
Abbreviations
AO: Agent Orange; BCR: Biochemical Recurrence; OCs: Organochlorines; OCPs: Organochlorine Pesticides; PCa: Prostate Cancer

Introduction
Prostate cancer (PCa) is the second most common non-cutaneous malignancy diagnosed among men worldwide, and the most common cancer type detected in men in developed countries1. Several risk factors for the development of PCa have been established, including increasing age, positive family history, and accumulated environmental exposure to several hormones23. Some pesticides can influence the hormonal milieu in vivo by functioning to mimic the effect of hormones, regulate enzyme systems involved in hormone metabolism, and affect androgenic stimulation of the prostate gland, potentially leading to increased cellular proliferation and progression to malignancy46. Organochlorines (OCs) comprise a large number of pesticides, and these have been used extensively throughout the world for several decades. Whilst their use has been banned or severely restricted in many countries, they remain in use in many areas of the world, and this has the potential to adversely affect the health of individuals in countries where OCs are still in use. OCs are highly-persistent organic pollutants, with a high serum level being reported in several distinct populations710. The International Agency of Research on Cancer (IARC) has classified many OCPs as being Class 2B agents, implicating them as being possible carcinogens11. Moreover, a large number of OCs have been demonstrated to have the potential to disrupt endocrine function1213, suggesting that exposure to these specific types of pesticides may increase the risk of developing hormone-dependant cancers such as PCa14. Several OCPs including chlordecone, DDE, DDT and Lindane have been implicated as potential independent risk factors for PCa development1518. However, to date there is a relative lack of information about the impact of exposure to OCPs upon the development of aggressive metastatic PCa, or influences on PCa disease-free survival, and potential BCR following radical treatment. The aim of this review article is to provide a contemporary update of the epidemiologic evidence implicating exposure to OCPs upon the recurrence of PCa following radical therapy.

Methods
Design and inclusion criteria
We conducted a systematic review of the available epidemiological data investigating a potential relationship between exposure to OCPs and development of recurrent PCa following radical treatment. We searched all peer-reviewed articles published up to July 312020. Pre-defined eligibility criteria for the inclusion of studies were that they be original studies, reviews, previous meta-analyses, or case–control or cohort studies. Moreover, it was mandatory that they contain information about association measures, including odds ratios (OR), relative risks (RR), and confidence intervals (CI) in order to facilitate an analysis of possible relationships between exposure to specific OCPs and development of recurrent PCa following treatment. Finally, it was necessary for the included studies to provide sufficient data and be written in English, French, or Spanish. Exclusion criteria included in vitro experimental and mechanistic studies, editorials, or letters, and as such these reports were not included in this review.

Search strategy and selection of articles
The initial search strategy included PubMed MEDLINE Database, Web of Science, and Scopus, utilising different “key words” to order identify studies investigating potential associations between exposure to OCPs and development of recurrent PCa following treatment (Figure 1).

MeSH controlled vocabulary was utilised, including combinations of the following key words: “organochlorine pesticides”, “exposure”, “DDT”, “DDE”, “hexachlorocyclobenzene”, “lindane”, “chlordecone”, “kepone”, “chlordan”, “dicofol”, “mirex”, “dieldrin”, “endrine”, “aldrine”, “PCB”, “dioxine”, “endosulfan”, “heptachlor”, “methylchlor”, “toxaphene”, “prostate cancer”, “biochemical recurrence”, “biochemical failure”, “prostatic carcinoma”, “prostatic neoplasm”, “prostatic adenocarcinoma”, “case – control studies” and “cohort studies.”

Extracted domains included study design, demographics, findings

Results
An overview of five available studies investigating a potential relationship between exposure to OCPs and development of recurrent PCa following radical treatment is provided in Table 1. Two studies did not observe any significant relationship between the exposure of American Veterans to Agent Orange (AO) and subsequent BCR following radical prostatectomy1920. Li et al. reported that exposure to AO significantly increased the Dioxin-TEQ level in blood samples (p < 0.001), but high dioxin-TEQ levels were not associated with an increased risk of subsequent BCR (p=0.23). A study by Ovadia et al. found that men exposed to AO did not have an increased risk of BCR following radical prostatectomy in both a univariate analysis (HR 1.03; 95% CI 0.84 – 1.25; p=0.80) and a multivariate analysis (HR 1.21; 95% CI 0.99–1.49; p=0.07). However, a study by Shah et al. reported a significant positive association between exposure to AO and BCR following radical prostatectomy. In this study of 206 men, those with documented exposure to AO had a significantly increased risk of subsequent BCR following radical prostatectomy (RR 1.55; 95% CI 1.15 – 2.09; p=0.004 when adjusted for clinical characteristics, and RR: 1.47; 95% CI 1.08 – 2.00; p=0.02 when adjusted for clinical plus pathological characteristics)31. Another study by Brureau et al. revealed a significant positive association between exposure to Chlordecone and BCR following radical prostatectomy and no associations for DDE or PCB-135. In this study of 326 men, those with documented exposure to Chlordecone had a significantly increased risk of subsequent BCR following radical prostatectomy (adjusted HR = 2.51; 95% CI: 1.39 – 4.56; for the highest versus lowest quartile of exposure; p trend = 0.002). In addition, sensitivity analysis revealed that Chlordecone exposure was still significantly associated with a risk of BCR after excluding patients with positive surgical margins or prostatectomy ISUP Gleason grade 3 or higher, or advanced pathological stage53.

A report by Koutros et al. suggests that other pesticides, such as Oxychlordane and PCB44, may be implicated in modifying the
risk of developing advanced PCa. For example, the development of metastatic PCa was twice as likely among men with a serum concentration of Oxychlordane in the highest quartile when compared against those in the lowest quartile (OR 2.03; 95% CI 1.03 – 4.03; p-trend=0.05). Findings for specific PCB-related chemicals showed a significant inverse association between natural log–transformed lipid-adjusted PCB44 and metastatic PCa (OR 0.74; 95% CI 0.56–0.97; p-trend=0.02)23. All characteristics of OCPs involved in BCR or metastatic PCa are summarised in Table 2.

Discussion

This systematic review confirms that there is a relative lack of high-quality evidence implicating a potential association between exposure to OCPs and BCR of PCa. However, the available evidence suggests that there may be a potential causal relationship between exposure to OCPs and development and progression of this malignancy. Agent Orange is the most widely-studied OCP in the context of any possible causal role in the recurrence of PCa following radical prostatectomy, or in the progression to advanced disease23. However, only two studies demonstrated a significant association between exposure to OCPs and subsequent BCR following radical prostatectomy. Two pesticides were involved: Chlordane and Agent Orange21,22. Another study by Koutros et al. identified a significant association between exposure to Oxychlordane and PCB44 and progression to advanced PCa23. However, each of these studies are limited by their inclusion of a relatively small number of cases. Larger prospective clinical studies would be necessary to confirm these potential associations, however it is recognised that such studies would be very difficult to conduct, and are not presently feasible.

This review highlights the relative lack of evidence on the potential causal role of OCPs in PCa development and progression, despite the observation that a large number of pesticides exist and continue to be in use in many countries worldwide (Table 3). As such, this topic has potential impacts in aspects of global healthcare, and there is widespread public concern
Table 1. Details of available studies investigating potential relationship between exposure to OCPs and progression of PCa.

Author	Study population	Exposure characteristics	Definition of BCR	Association with BCR
Li et al.	Prostate cancer and prostatic diseases (2013)	37 men were exposed to Agent O during the Vietnam War.	Not defined	No significant association
Ovadia et al.	Urologic Oncology: Seminars and Original Investigation (2015)	333 men were exposed to agent O during the Vietnam War.	1 PSA level > 0.2 ng/ml, 2 levels of 0.2 ng/ml or secondary treatment for a detectable PSA after radical prostatectomy	No significant association
Shah et al.	British Journal of Urology International (2009)	206 men were exposed to agent O during the Vietnam War.	Biochemical progression was defined as one PSA level of > 0.2 ng/mL, two of 0.2 ng/mL, or secondary treatment for an elevated PSA level after radical prostatectomy.	Significant association
Brureau et al.	International Journal of Cancer (2020)	326 men were exposed to Chlordecone, PCB 135 and DDE	Biochemical progression was defined as one PSA level of > 0.2 ng/mL, two of 0.2 ng/mL	Significant association for: Chlordecone, No significant association for DDE and PCB 135.

Author	Study population	Exposure characteristics	Advanced disease	Association with metastatic disease
Koutros et al.	Environmental Health Perspectives (2015)	150 men with metastatic prostate cancer from Janus Serum Bank cohort in Norway.	Metastasis and histologic grade were characterized according to the American Cancer Society's. All 184 incident metastatic prostate cancer cases didn't have history of cancer (except non melanoma skin cancer)	Significant association for: Oxychlordane, PCB44 (inverse association)
Table 2. Organochlorine pesticide characteristics involved in BCR and metastatic prostate cancer.

Name	Molecular structure	Comments
Agent Orange contaminated by TCDD (2,3,7,8-tétrachlorodibenzo-para-dioxine)	![Molecular structure](image1)	Lipophilic molecule hence its stability when it's in a living organism. It's resistant to the mechanisms of detoxification and remain stored in the adipose tissue of animals. It's chemically very stable molecule and is therefore bio-accumulated. His half-life is 5–10 years in human body³⁷.
Oxychlordane	![Molecular structure](image2)	Because of their lipophilic properties and their persistence in the environment, chlordane and related compounds bioaccumulate and biomagnify along the food chain²⁶.
PCB44 2,2′,3,5′-Tetrachlorobiphenyl	![Molecular structure](image3)	PCBs appeared to early twentieth century chemists interesting for their dielectric properties. These are ubiquitous and persistent pollutants. Highly fat soluble, they are part of the bioaccumulative contaminants commonly found in fatty tissue in humans. Food is the primary source of PCB exposure. They have endocrine disruptor properties²⁷.
Chlordene	![Molecular structure](image4)	Chlordene interferes with estradiol signaling through binding to the nuclear estrogen receptors α (ERα) and β (ERβ), eliciting agonistic and antagonistic effects, respectively²⁸.

Table 3. Organochlorine pesticides involved in prostate cancer risk.

References	Study design	Pesticides	OR (95% CI)	Intensity of exposure
Alavanja et al. American Journal of Epidemiology (2003)³¹	Cases-Controls 566 cases and 54766 controls	Chlorinated pesticides^a	1.3 (1.0 – 1.6) 1.5 (1.2 – 2.0)	T2 T3L
Mills et al. Journal of occupational and environmental medicine (2003)³¹	Cases-Controls 222 cases and 1110 controls	Lindane	1.9 (1.1 – 3.2) 2.4 (1.2 – 4.6)	Level 3 Level 4
Settimi et al. International journal of cancer (2003)³²	Cases-Controls 124 cases and 659 controls	DDT	2.2 (1.1 – 4.8)	Ever ≤ 15 years
		Dicofol	2.8 (1.5 – 5.0) 2.4 (1.2 – 5.3) 3.0 (1.3 – 7.0)	Ever ≤ 15 years > 15 years
Xu et al. Environmental Health Perspectives (2010)³³	Cases-Controls 65 cases and 1920 controls	beta-Hexachlorocyclohexane	3.4 (1.2 – 2.9)	T3U
Band et al. The Prostate (2011)³⁶	Cases-Controls 1153 cases and 3999 controls	DDT	1.7 (1.0 – 2.7)	High
		Lindane	2.0 (1.2 – 3.6)	High
Cockburn et al. American Journal of Epidemiology (2011)³⁹	Cases-Controls 173 cases and 162 controls	Organochlorine pesticides^b	1.6 (1.0 – 2.6) 2.0 (1.2 – 3.5)	Ever High
Multignier et al. Journal of Clinical Oncology (2011)³⁷	Cases-Controls 623 cases and 671 controls	Chlordene	1.8 (1.2 – 2.6)	Qu4
Emeville et al. Environmental Health Perspectives (2015)³⁸	Cases-Controls 576 cases and 655 controls	DDE	1.5 (1.0 – 2.3)	Qu5

^{T3L = lower tertile 3, T3U = upper tertile 3, Q1, Q2, Q3, Q4 = Quartiles, Qu1, Qu2, Qu3, Qu4, Qu5 = Quintiles}

^{a Included aldrin, chlordane, DDT, dieldrin, heptachlor and toxaphene}

^{b Dicofol, dieldrin, dienochlor, endosulfan, heptachlor, lindane, methoxychlor, and toxaphene}
regarding pesticide exposure and negative impacts on health39. There is a well-documented causative relationship between exposure to pesticides and increased risk of development of many types of malignancy. It is therefore important to understand in greater detail the potential influence of OCP exposure upon aspects of PCa risk, and to identify the molecular pathways and mechanisms implicit in this increased risk (Figure 2).

Some OCPs, such as PCBs and Chlordecone, have functional properties that disrupt various endocrine pathways, including the synthesis, secretion, transport, and binding of hormonal ligands to their cognate receptors, whilst in addition they may result in the elimination of natural human hormones30. Phthalate pesticides are endocrine disruptor molecules with demonstrable estrogenic effects in breast and PCa cells, and these may also be implicit in the etiology of hormone-independent PCa cancer31. Phthalate pesticides are estrogen-like substances, they can positively regulate the proliferation of human hormone dependent PCa cells by acting on the crosstalk between TGF-\beta and oestrogen receptor signaling pathways32. In addition, some studies suggest that estrogen and xenobiotic carcinogens may play an important role in PCa progression via oxidative estrogen metabolism. For example, the CYP1B1 enzyme is involved in the hydroxylation of estrogens, and this reaction is of key relevance to the regulation of estrogen metabolism33. The over-production of estrogen-like E2, or the bioconversion of E2 into genotoxic metabolites such as estradiol-3,4-quinone or 4-hydroxyestradiol by CYP1B1, may lead to the generation of reactive oxygen species which subsequently cause DNA damage and enhance PCa progression34. In support of this hypothesis, Gu et al. observed that men with the CY1B1 rs1056836 CC genotype had an increased risk of PCa recurrence following radical prostatectomy when compared against a combined CG and GG genotype35.

Conclusion

In conclusion, this review highlights the relative lack of studies regarding the potential influence of OCPs on the recurrence and progression of PCa following radical therapy. An increased understanding of the pathways and mechanisms through which pesticides may influence the natural history of PCa progression could influence the clinical management of men with this ubiquitous and common malignancy. It is important that the current relatively small body of evidence demonstrating a negative influence of OCPs on PCa risk should be added to in as timely a Figure 2. Putative molecular effects of organochlorine pesticides.
Data availability

Underlying data

All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines

Figshare: PRISMA checklist for ‘Organochlorine pesticide exposure and risk of prostate cancer development and progression: a systematic review’, https://doi.org/10.6084/m9.figshare.14245694.v1.6.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

1. Center MM, Jemal A, Loriet-Tieulent J, et al.: International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012; 61(8): 1079-92. PubMed Abstract | Publisher Full Text

2. Chen C, Weiss NS, Stanczyk FZ, et al.: Endogenous sex hormones and prostate cancer risk: a case-control study nested within the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev. 2003; 12(12): 1410-1416. PubMed Abstract

3. Hsing AW: Hormones and prostate cancer: what’s next? Epidemiol Rev. 2001; 23(1): 42-58. PubMed Abstract | Publisher Full Text

4. Keller-Byrne JE, Khuder SA, Schaub EA: Organochlorine pesticides and cancer risk: a review of epidemiologic studies. Toxicol Lett. 2009; 187(3): 147-53. PubMed Abstract | Publisher Full Text

5. Parent ME, Siemiatycki J: Occupation and prostate cancer. Epidemiol Rev. 2001; 23(1): 138-143. PubMed Abstract | Publisher Full Text

6. Park MJ, Lee SK, Yang JY, et al.: Distribution of organochlorines and PCB congeners in Korean human tissues. Arch Pharm Res. 2005; 28(7): 825-838. PubMed Abstract | Publisher Full Text

7. Yang L, Li X, Zhang P: Organochlorine pesticides in breast milk and semen samples in China. Int J Environ Health Res. 2013; 23(1): 17-21. PubMed Abstract | Publisher Full Text

8. Jaga K, Dharmani C: Distribution of organochlorine pesticides in breast milk and semen samples in China. Int J Environ Health Res. 2013; 23(1): 17-21. PubMed Abstract | Publisher Full Text

9. Jekabsons JP, Van Hecke E, Geys H: Pesticides and mortality from hormone-dependent cancers. Eur J Cancer Prev. 2001; 10(5): 459-467. PubMed Abstract | Publisher Full Text

10. Parent ME, Siemiatycki J: Prostate cancer. Cancer Causes Control. 2002; 13(9): 917-928. PubMed Abstract | Publisher Full Text

11. IARC, IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, IARC. 2012.

12. De Coster S, Van Larebeke N: Endogenous sex hormones and prostate cancer risk: a review of epidemiologic studies. Toxicol Lett. 2009; 187(3): 147-53. PubMed Abstract | Publisher Full Text

13. Jekabsons JP, Van Hecke E, Geys H: Pesticides and mortality from hormone-dependent cancers. Eur J Cancer Prev. 2001; 10(5): 459-467. PubMed Abstract | Publisher Full Text

14. IARC, IARC monographs on the evaluation of carcinogenic risks to humans. World Health Organization, IARC. 2012.

15. Mills PK, Yang R: Prostate cancer risk in California farm workers. J Occup Environ Med. 2003; 45(3): 249-58. PubMed Abstract | Publisher Full Text

16. Band PR, Abdelo Z, Berti, et al.: Prostate Cancer Risk and Exposure to Pesticides in British Columbia Farmers. Prostate. 2011; 71(2): 168-183. PubMed Abstract | Publisher Full Text

17. Mulgrew L, Ndung R, Giusti A, et al.: Chlordecone Exposure and Risk of Prostate Cancer. J Clin Oncol. 2010; 28(21): 3457-3462. PubMed Abstract | Publisher Full Text

18. Emewui E, Giton F, Giusti A, et al.: Persistent organochlorine pollutants with endocrine activity and blood steroid hormone levels in middle-aged men. PLoS One. 2012; 8(6): e66460. PubMed Abstract | Publisher Full Text | Free Full Text

19. Li Q, Lan L, Klaassen Z, et al.: High level of dioxin-TEQ in tissue is associated with Agent Orange exposure but not with biochemical recurrence after radical prostatectomy. Prostate Cancer Prostatic Dis. 2013; 16(4): 376-81. PubMed Abstract | Publisher Full Text

20. Ovadia AE, Terris MK, Aronson WJ, et al.: Androgen and low-term outcomes after radical prostatectomy. Urol Oncol. 2015; 33(7): 329.e1-6. PubMed Abstract | Publisher Full Text | Free Full Text

21. Shah SR, Freedland SJ, Aronson WJ, et al.: Exposure to Agent Orange is a significant predictor of prostate-specific antigen (PSA)-based recurrence and a rapid PSA doubling time after radical prostatectomy. BJU Int. 2009; 103(9): 1168-1172. PubMed Abstract | Publisher Full Text | Free Full Text

22. Brueuau L, Emewui E, Helissey C, et al.: Endocrine disrupting-chemicals and biochemical recurrence of prostate cancer after prostatectomy: A cohort study in Guadeloupe (French West Indies). Int J Cancer. 2020; 146(6): 657-663. PubMed Abstract | Publisher Full Text

23. Koutsos S, Langseth H, Grimsrud T, et al.: Prediagnostic Serum Organochlorine Concentrations and Metastatic Prostate Cancer: A Nested Case-Control Study in the Norwegian Janus Serum Bank Cohort. Environ Health Perspect. 2015; 123(9): 867-72. PubMed Abstract | Publisher Full Text | Free Full Text

24. Chang ET, Boffetta P, Adami HO, et al.: A critical review of the epidemiology of Agent Orange/TCDD and prostate cancer. Eur J Epidemiol. 2014; 29(10): 667-723. PubMed Abstract | Publisher Full Text | Free Full Text

25. Song O, Zenneopp M, Shmidt P, et al.: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: identification and measurement of TCDD metabolites. Lancet. 2009; 374(9696): 1179-1185. PubMed Abstract | Publisher Full Text

26. Abdallah A, Zaky AH, Cocca A: Levels and profiles of organohalogenated contaminants in human blood from Egypt. Chemosphere. 2017; 186: 266-272. PubMed Abstract | Publisher Full Text

27. Van den Berg M, Birnbaum L, Bosveld AT, et al.: Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environ Health Perspect. 1998; 106(12): 775-782. PubMed Abstract | Publisher Full Text | Free Full Text

28. Eroschenko VP: Estrogenic activity of the insecticide chlordane in the reproductive tract of birds and mammals. Toxicon. 2013; 18(18): 30606-30616. PubMed Abstract | Publisher Full Text | Free Full Text

29. Mostafalou S, Abdollahi M: Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol. 2013; 268(2): 157-77. PubMed Abstract | Publisher Full Text

30. Quagliariello V, Rossetti S, Cavalieric L, et al.: Metabolic syndrome, endocrine disruptors and prostate cancer associations: biochemical and pathophysiologial evidences. Oncotarget. 2017; 8(18): 30606-30616. PubMed Abstract | Publisher Full Text | Free Full Text

31. Harris CA, Henttu P, Parker MG, et al.: The estrogenic activity of phthalate esters in vitro. Environ Health Perspect. 1997; 105(8): 802-11. PubMed Abstract | Publisher Full Text | Free Full Text

32. Lee H, Huang KA, Choi KC: The estrogen receptor signalling pathway activated by phthalates is linked with transforming growth factor-β in the progression of LNCaP prostate cancer models. Int J Oncol. 2014; 45(2): 595-602. PubMed Abstract | Publisher Full Text
33. Gajjar K, Marin-Hirsch PL, Martin FL: *CYP1B1* and hormone-induced cancer. Cancer Lett. 2012; 324(1): 13–30. PubMed Abstract | Publisher Full Text
34. Go RE, Hwang KA, Choi KC: Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015; 147: 24–30. PubMed Abstract | Publisher Full Text
35. Gu CY, Qin XJ, Qu YY, et al.: Genetic variants of the *CYP1B1* gene as predictors of biochemical recurrence after radical prostatectomy in localized prostate cancer patients. Medicine (Baltimore). 2016; 95(27): e4066. PubMed Abstract | Publisher Full Text | Free Full Text
36. Brureau L, Multigner L, Hamdy F, et al.: PRISMA 2009 checklist.doc. figshare. Journal contribution. 2021. http://www.doi.org/10.6084/m9.figshare.14245694.v1
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com