Interval edge-colorings of $K_{1,m,n}$

A. Grzesika, H. Khachatrianb

aTheoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. St. Lojasiewicza 6, 30-348 Kraków, Poland

bDepartment of Informatics and Applied Mathematics, Yerevan State University, Yerevan, 0025, Armenia

Abstract

An edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. In this note we prove that $K_{1,m,n}$ is interval colorable if and only if $\gcd(m+1,n+1) = 1$, where $\gcd(m+1,n+1)$ is the greatest common divisor of $m+1$ and $n+1$. It settles in the affirmative a conjecture of Petrosyan.

1. Introduction

All graphs in this paper are finite, undirected and have no loops or multiple edges. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. The degree of a vertex $v \in V(G)$ is denoted by $d(v)$, the maximum degree of G by $\Delta(G)$ and the edge-chromatic number of G by $\chi'(G)$. The terms, notations and concepts that we do not define can be found in [16].

A proper edge-coloring of graph G is a coloring of the edges of G such that no two adjacent edges receive the same color. If α is a proper coloring of G and $v \in V(G)$, then $S(v,\alpha)$ (spectrum of a vertex v) denotes the set of colors of edges incident to v. A proper edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used, and for any vertex v of G, the set $S(v,\alpha)$ is an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The set of all interval colorable graphs is denoted by \mathfrak{N}. For a graph $G \in \mathfrak{N}$, the least and the greatest values of t for which G has an interval t-coloring are denoted by $w(G)$ and $W(G)$, respectively.

The concept of interval edge-coloring was introduced by Asratian and Kamalian [3]. In [3, 4], they proved that if G is interval colorable, then $\chi'(G) = \Delta(G)$. Moreover, they also showed that if G is a triangle-free graph and $G \in \mathfrak{N}$, then $W(G) \leq |V(G)| - 1$. In [8], Kamalian investigated interval edge-colorings of complete bipartite graphs and trees. Later, Kamalian [9] showed that if G is a connected graph and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 3$. This upper bound was improved by Giaro, Kubale and Malafiejski in [7], where they proved that if G ($|V(G)| \geq 3$) is a connected graph and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 4$. Recently, Kamalian and Petrosyan [10] showed that if G is a connected r-regular graph ($|V(G)| \geq 2r + 2$) and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 5$. Interval edge-colorings of planar graphs were considered by Axenovich in [5], where she proved that if G is a connected planar graph and $G \in \mathfrak{N}$, then $W(G) \leq \frac{11}{6}|V(G)|$. In [13], Petrosyan investigated interval colorings of complete graphs and n-dimensional cubes. In particular, he proved that if
n \leq t \leq \frac{n(n+1)}{2} \), then the \(n \)-dimensional cube \(Q_n \) has an interval \(t \)-coloring. Recently, Petrosyan, the second author and Tananyan [14] showed that the \(n \)-dimensional cube \(Q_n \) has an interval \(t \)-coloring if and only if \(n \leq t \leq \frac{n(n+1)}{2} \). In [15], Sevast’janov proved that it is an \(\text{NP} \)-complete problem to decide whether a bipartite graph has an interval coloring or not.

Interval edge-colorings of some special cases of complete multipartite graphs were first considered by Kamalian in [8], where he proved the following

Theorem 1. For any \(m, n \in \mathbb{N} \), \(K_{m,n} \in \mathcal{R} \) and

(i) \(w(K_{m,n}) = m + n - \gcd(m, n) \)

(ii) \(W(K_{m,n}) = m + n - 1 \)

(iii) if \(w(K_{m,n}) \leq t \leq W(K_{m,n}) \), then \(K_{m,n} \) has an interval \(t \)-coloring.

Also, he showed that complete graphs are interval colorable if and only if the number of vertices is even. Moreover, for any \(n \in \mathbb{N} \), \(w(K_{2n}) = 2n - 1 \). For a lower bound on \(W(K_{2n}) \), Kamalian obtained the following result:

Theorem 2. For any \(n \in \mathbb{N} \), \(W(K_{2n}) \geq 2n - 1 + \lfloor \log_2 (2n - 1) \rfloor \).

Later, Petrosyan [13] improved this lower bound for \(W(K_{2n}) \):

Theorem 3. If \(n = p2^q \), where \(p \) is odd and \(q \) is nonnegative, then

\[
W(K_{2n}) \geq 4n - 2 - p - q.
\]

In the same paper he also conjectured that this lower bound is the exact value of \(W(K_{2n}) \). He verified this conjecture for \(n \leq 4 \), but the conjecture was disproved by the second author in [11].

Another special case of complete multipartite graphs was considered by Feng and Huang in [6], where they proved the following

Theorem 4. For any \(n \in \mathbb{N} \), \(K_{1,1,n} \in \mathcal{R} \) if and only if \(n \) is even.

Recently, Petrosyan investigated interval edge-colorings of complete multipartite graphs. In particular, he proved [12] the following result:

Theorem 5. If \(K_{n,...,n} \) is a complete balanced \(k \)-partite graph, then \(K_{n,...,n} \in \mathcal{R} \) if and only if \(nk \) is even. Moreover, if \(nk \) is even, then \(w(K_{n,...,n}) = n(k - 1) \) and \(W(K_{n,...,n}) \geq \left(\frac{3}{2}k - 1 \right) n - 1 \).

In ”Cycles and Colorings 2012” workshop Petrosyan presented several conjectures on interval edge-colorings of complete multipartite graphs. In particular, he posed the following

Conjecture 1. For any \(m, n \in \mathbb{N} \), \(K_{1,m,n} \in \mathcal{R} \) if and only if \(\gcd(m + 1, n + 1) = 1 \).

In this note we prove this conjecture, which also generalizes Theorem 4.
2. Main result

We denote the bipartition of $K_{m,n}$ by (U,V), where $U = \{u_0, u_1, \ldots, u_{m-1}\}$ and $V = \{v_0, v_1, \ldots, v_{n-1}\}$. The interval edge-coloring $\alpha_{m,n}$ of $K_{m,n}$ with maximum number of colors is given the following way:

$$\alpha_{m,n}(u_iv_j) = i + j + 1, \text{ where } 0 \leq i \leq m - 1, \ 0 \leq j \leq n - 1.$$

$K_{1,m,n}$ is a complete tripartite graph that can be viewed as a $K_{m,n}$ plus one additional vertex connected to all other vertices. In this paper we prove that if $m + 1$ and $n + 1$ are coprime, then it is possible to extend the $\alpha_{m,n}$ coloring of $K_{m,n}$ to an interval edge-coloring of $K_{1,m,n}$. Then we prove that if $\gcd(m+1, n+1) > 1$, then $K_{1,m,n}$ is not interval colorable.

Spectrums of the vertices for $\alpha_{m,n}$ coloring are the following:

$$S(u_i, \alpha_{m,n}) = \{i + 1, \ldots, i + n\}, \ 0 \leq i \leq m - 1$$

$$S(v_j, \alpha_{m,n}) = \{j + 1, \ldots, j + m\}, \ 0 \leq j \leq n - 1$$

We construct $K_{1,m,n}$ by adding a new vertex w to $K_{m,n}$ and joining it with all the remaining vertices.

$$V(K_{1,m,n}) = V(K_{m,n}) \cup \{w\}$$

$$E(K_{1,m,n}) = E(K_{m,n}) \cup \{u_iw | 0 \leq i \leq m - 1\} \cup \{v_jw | 0 \leq j \leq n - 1\}$$

Theorem 6. If $\gcd(m+1, n+1) = 1$, then $K_{1,m,n}$ has an interval $(m+n)$-coloring.

Proof. We color the edges u_iv_j of $K_{1,m,n}$ the same way as in $\alpha_{m,n}$. In order to prove the theorem it is sufficient to show that it is possible to color the remaining edges in a way that the following conditions are met:

(1) spectrums of vertices u_i and v_j remain intervals of integers
We construct an auxillary bipartite graph H which has a bipartition (B, C) where B corresponds to the edges u_iw and v_jw, and C corresponds to the colors that will be used to color those edges.

$$B = \{ u'_i \mid 0 \leq i \leq m - 1 \} \cup \{ v'_j \mid 0 \leq i \leq n - 1 \}$$

where u'_i and v'_j correspond, respectively, to u_iw and v_jw in $E(K_{1,m,n})$.

$$C = \{ c_k \mid 1 \leq k \leq m + n \}$$

where c_k corresponds to the color k. We will join the vertices $b \in B$ and $c_k \in C$ if and only if we allow the edge corresponding to b to receive the color k. Note that $|B| = |C| = m + n$.

![Auxiliary Graph H](image)

$S(u_0, \alpha_{m,n}) = \{1, \ldots, n\}$, so in order to satisfy the condition (1) the edge u_0w can only receive the color $n + 1$ (we don’t want to allow color 0). Similarly, v_0w can only be colored by $m + 1$. For u_iw $(1 \leq i \leq m - 1)$ we have two options: either i or $i + n + 1$. For v_jw $(1 \leq j \leq n - 1)$ we allow colors j and $j + m + 1$. Therefore,

$$E(H) = \{ u'_i c_i \mid 1 \leq i \leq m - 1 \} \cup \{ u'_i c_{i+n+1} \mid 0 \leq i \leq m - 1 \} \cup \{ v'_j c_j \mid 1 \leq j \leq n - 1 \} \cup \{ v'_j c_{j+m+1} \mid 0 \leq j \leq n - 1 \}$$

Suppose M is a matching in H. For each $bc_k \in M$ we color the edge of $K_{1,m,n}$ corresponding to vertex b by color k. If M is a perfect matching all remaining edges of G will be colored and all the colors will be used. So, the spectrum of vertex w will be $\{1, \ldots, m + n\}$ and the condition (2) will be satisfied. Condition (1) will be satisfied because of the construction of H.

So, to complete the proof we show that H has a perfect matching.

Without loss of generality we can assume that $m < n$. $m = n$ case is excluded because gcd$(n + 1, n + 1) \neq 1$. From the construction of graph H it follows, that all vertices have a degree 2, except for four vertices, which have degree 1, namely u'_0, v'_0, c_m and c_n. Therefore, H consists of several even cycles (as it is bipartite) and 2 simple paths. H will have a perfect matching if both paths have odd length. Therefore, u'_0 and v'_0 must belong do distinct paths.
Suppose, to the contrary, that \(u'_0 \) and \(v'_0 \) belong to the same path \(P \). We introduce a coordinate system and embed the graph \(H \) the following way: coordinates for vertices \(u'_i, v'_i \) and \(c_i \) are \((i, 1), (i, -1)\) and \((i, 0)\) respectively (Figure 2). We split the edges of \(P \) into two groups. First group contains edges of type \(u'_i c_{i+n+1} \) and \(v'_i c_i \) and second group contains the remaining edges. Note that each edge of the path \(P \) has only neighbors from the other group. If we begin to traverse the path \(P \) starting at the vertex \(u'_0 \) we go down only along non-vertical edges and go up only along vertical edges. Suppose we moved along the edges of type \(u'_i c_{i+n+1} \) \(a \) times, each time increasing the abscissa by \(n + 1 \), and moved along the edges of type \(c_{j+m+1} v'_j \) \(b \) times, each time decreasing the abscissa by \(m + 1 \). Moving along the vertical edges does not change the abscissa. The last vertex of the path is \(v'_0 \) which has an abscissa of 0, therefore we obtain the following equation:

\[
a(n+1) - b(m+1) = 0
\]

Note that \(a \leq m \) and \(b \leq n \). Moreover, \(\gcd(m + 1, n + 1) = 1 \), so we have \(a = b = 0 \). The path \(P \) has no edges, which is a contradiction.

Theorem 7. If \(\gcd(m + 1, n + 1) > 1 \) then \(K_{1,m,n} \) is not interval colorable.

Proof. Suppose, to the contrary, that \(\gcd(m + 1, n + 1) = d > 1 \) and \(\beta \) is an interval-edge coloring of \(K_{1,m,n} \). We call an edge \(e \in E(K_{1,m,n}) \) a ”\(d \)-edge” if \(\beta(e) = dx \) for some \(x \in \mathbb{Z} \). We denote by \(D(v) \) the number of \(d \)-edges incident to the vertex \(v \in V(K_{1,m,n}) \).

Without loss of generality we assume that \(S(w, \beta) = \{1, \ldots, m + n\} \) (otherwise we will shift the colors of all edges by the same amount in a way that the spectrum of vertex \(w \) starts with color 1). Therefore, \(D(w) = \left\lfloor \frac{m + n}{d} \right\rfloor = \frac{m + n + 2}{d} - 1 \)

\(|S(u_i, \beta)| = n + 1 \) for all \(0 \leq i \leq m - 1 \), and \(|S(v_j, \beta)| = m + 1 \) for all \(0 \leq j \leq n - 1 \). Therefore,

\[
D(u_i) = \frac{n + 1}{d}, \quad 0 \leq i \leq m - 1
\]

\[
D(v_j) = \frac{m + 1}{d}, \quad 0 \leq j \leq n - 1
\]

The sum of \(D(v) \) over all vertices \(v \in V(K_{1,m,n}) \) must give twice the number of \(d \)-edges in the graph.

\[
D = \sum_{v \in V(K_{1,m,n})} D(v) = \frac{m + n + 2}{d} - 1 + m \frac{n + 1}{d} + n \frac{m + 1}{d} = \frac{2(m + 1)(n + 1)}{d} - 1
\]

This is a contradiction, because \(D \) is an odd number.

3. Future work

There are two natural “next steps” after finding the condition for colorability of \(K_{1,m,n} \). First one is to find the exact number of colors needed to color \(K_{1,m,n} \) and the second is to generalize the statement to colorability of \(K_{k,m,n} \) for \(k > 1 \). Past work on those problems led us to the following conjectures.

Conjecture 2. Graph \(K_{1,m,n} \) has an interval \(t \)-coloring if and only if \(t = m + n \) and \(\gcd(m + 1, n + 1) = 1 \).

Conjecture 3. Graph \(K_{k,m,n} \), where \(k \leq m \leq n \) and \(n > k + m \) is interval colorable if and only if graph \(K_{k,m,n-k-m} \) is interval colorable.

5
Conjecture 4. Graph $K_{k,m,n}$, where $k \leq m \leq n$ and $n \leq k + m$ is interval colorable if and only if the sum $k + m + n$ is even.

It can be seen that the last two conjectures generalize the proved statement for colorability of $K_{1,m,n}$.

References

[1] A.S. Asratian, C.J. Casselgren, J. Vandenbussche, D.B. West, Proper path-factors and interval edge-coloring of (3,4)-biregular bigraphs, J. Graph Theory 61 (2009), 88–97.

[2] A.S. Asratian, T.M.J. Denley, R. Haggkvist, Bipartite graphs and their applications, Cambridge Tracts in Mathematics, 131, Cambridge University Press, 1998.

[3] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987), 25–34 (in Russian).

[4] A.S. Asratian, R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory Ser. B 62 (1994) 34–43.

[5] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002), 77–94.

[6] Y. Feng, Q. Huang, Consecutive edge-coloring of the generalized θ-graph, Discrete Appl. Math. 155 (2007), 2321–2327.

[7] K. Giaro, M. Kubale, M. Malafiejski, Consecutive colorings of the edges of general graphs, Discrete Math. 236 (2001), 131–143.

[8] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, preprint, Comp. Cen. of Acad. Sci. of Armenian SSR, Erevan, 1989 (in Russian).

[9] R.R. Kamalian, Interval edge colorings of graphs, Doctoral Thesis, Novosibirsk, 1990.

[10] R.R. Kamalian, P.A. Petrosyan, A note on interval edge-colorings of graphs, Mathematical problems of computer science 36 (2012), 13–16.

[11] H. Khachatrian, Investigation on interval edge-colorings of Cartesian products of graphs, Yerevan State University, BS thesis, 2012.

[12] P.A. Petrosyan, Interval colorings of complete balanced multipartite graphs, [arXiv:1211.5311] (2012).

[13] P.A. Petrosyan, Interval edge-colorings of complete graphs and n-dimensional cubes, Discrete Math. 310 (2010), 1580–1587.

[14] P.A. Petrosyan, H.H. Khachatrian, H.G. Tananyan, Interval edge-colorings of Cartesian products of graphs I, Discuss. Math. Graph Theory 33 (2013), 613–632.

[15] S.V. Sevast’janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50 (1990), 61-72 (in Russian).

[16] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996.