Proof of the umbral moonshine conjecture

John F. R. Duncan¹, Michael J. Griffin² and Ken Ono¹*

¹Correspondence:
ono@mathcs.emory.edu
¹Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
Full list of author information is available at the end of the article

Abstract

The Umbral Moonshine Conjectures assert that there are infinite-dimensional graded modules, for prescribed finite groups, whose McKay–Thompson series are certain distinguished mock modular forms. Gannon has proved this for the special case involving the largest sporadic simple Mathieu group. Here, we establish the existence of the umbral moonshine modules in the remaining 22 cases.

Mathematics Subject Classification: 11F22, 11F37

1 Introduction and statement of results

Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster, \(M\), the largest sporadic simple group. This theory was inspired by the famous observations of McKay and Thompson in the late 1970s [18, 51] that

\[
196884 = 1 + 196883,
\]
\[
21493760 = 1 + 196883 + 21296876.
\]

The left-hand sides here are familiar as coefficients of Klein’s modular function (note \(q := e^{2\pi i \tau}\)),

\[
J(\tau) = \sum_{n=-1}^{\infty} c(n) q^n := j(\tau) = 744 = q^{-1} + 196884q + 21493760q^2 + \cdots.
\]

The sums on the right-hand sides involve the first three numbers arising as dimensions of irreducible representations of \(M\),

\[
1, 196883, 21296876, 842609326, \ldots, 258823477531055064045234375.
\]

Thompson conjectured that there is a graded infinite-dimensional \(M\)-module

\[
V^\natural = \bigoplus_{n=-1}^{\infty} V^\natural_n,
\]

satisfying \(\dim(V^\natural_n) = c(n)\). For \(g \in M\), he also suggested [50] to consider the graded-trace functions

\[
T_g(\tau) := \sum_{n=-1}^{\infty} \text{tr}(g | V^\natural_n)|q^n,
\]

now known as the McKay–Thompson series, that arise from the conjectured \(M\)-module \(V^\natural\). Using the character table for \(M\), it was observed [18, 50] that the first few coefficients...
of each $T_g(\tau)$ coincide with those of a generator for the function field of a discrete group $\Gamma_g < \text{SL}_2(\mathbb{R})$, leading Conway and Norton [18] to their famous **Monstrous Moonshine Conjecture**: This is the claim that for each $g \in M$ there is a specific genus zero group Γ_g such that $T_g(\tau)$ is the unique normalized hauptmodul for Γ_g, i.e., the unique Γ_g-invariant holomorphic function on \mathbb{H} which satisfies $T_g(\tau) = q^{-1} + O(q)$ as $\Im(\tau) \to \infty$ and remains bounded near cusps not equivalent to the infinite one.

In a series of ground-breaking works, Borcherds introduced vertex algebras [2], generalized Kac–Moody Lie algebras [3,4], and used these notions to prove [5] the Monstrous Moonshine Conjecture of Conway and Norton. He confirmed the conjecture for the module V^\natural constructed by Frenkel, Lepowsky and Meurman [30–32] in the early 1980s. These results provide much more than the predictions of monstrous moonshine. The M-module V^\natural is a vertex operator algebra, one whose automorphism group is precisely M. The construction of Frenkel, Lepowsky and Meurman can be regarded as one of the first examples of an orbifold conformal field theory (Cf. [23]). Here, the orbifold in question is the quotient $(\mathbb{R}^{24}/\Lambda_{24}) / (\mathbb{Z}/2\mathbb{Z})$, of the 24-dimensional torus $\Lambda_{24} \otimes \mathbb{Z} \setminus \mathbb{R} / \Lambda_{24} \simeq \mathbb{R}^{24} / \Lambda_{24}$ by the Kummer involution $x \mapsto -x$, where Λ_{24} denotes the Leech lattice.

We refer to [24,32,35,36] for more on monstrous moonshine.

In 2010, Eguchi, Ooguri and Tachikawa reignited moonshine with their observation [28] that dimensions of some representations of M_{24}, the largest sporadic simple Mathieu group (cf., e.g. [20,21]), are multiplicities of superconformal algebra characters in the K3 elliptic genus. This observation suggested a manifestation of moonshine for M_{24}: Namely, there should be an infinite-dimensional graded M_{24}-module whose McKay–Thompson series are holomorphic parts of harmonic Maass forms, the so-called mock modular forms (see [45,54,55] for introductory accounts of the theory of mock modular forms).

Following the work of Cheng [10], Eguchi and Hikami [27], and Gaberdiel, Hohenegger, and Volpato [33,34], Gannon established the existence of this infinite-dimensional graded M_{24}-module in [37].

It is natural to seek a general mathematical and physical setting for these results. Here we consider the mathematical setting, which develops from the close relationship between the monster group M and the Leech lattice Λ_{24}. Recall (cf., e.g. [20]) that the Leech lattice is even, unimodular and positive-definite of rank 24. It turns out that M_{24} is closely related to another such lattice. Such observations led Cheng, Duncan and Harvey to further instances of moonshine within the setting of even unimodular positive-definite lattices of rank 24. In this way, they arrived at the **Umbral Moonshine Conjectures** (cf. Sect. 5 of [15], Sect. 6 of [16], and Sect. 2 of [17]), predicting the existence of 22 further, graded infinite-dimensional modules, relating certain finite groups to distinguished mock modular forms.

To explain this prediction in more detail, we recall Niemeier’s result [43] that there are 24 (up to isomorphism) even unimodular positive-definite lattices of rank 24. The Leech lattice is the unique one with no root vectors (i.e. lattice vectors with norm-square 2), while the other 23 have root systems with full rank, 24. These Niemeier root systems are unions of simple simply-laced root systems with the same Coxeter numbers, and are given explicitly as
IX cases are a D-type component, then

$$\{A_2^{12}, A_2^{14}, A_2^6, A_2^4, A_2^2, A_2, A_1^{12}, A_1^6, A_1^4, A_1^2, A_1, A_0^{12}, A_0^6, A_0^4, A_0^2, A_0, A_1^{6}, A_1^4, A_1^2, A_1, A_0^{6}, A_0^4, A_0^2, A_0, A_1^{4}, A_1^2, A_1, A_0^{4}, A_0^2, A_0, A_1^{2}, A_1, A_0^2, A_0, A_1, A_0, \}$$

(1.1)

in terms of the standard ADE notation (cf., e.g. [20] or [39] for more on root systems).

For each Niemeier root system X, let N_X denote the corresponding unimodular lattice, let W^X denote the (normal) subgroup of $\text{Aut}(N^X)$ generated by reflections in roots, and define the umbral group of X by setting

$$G^X := \text{Aut}(N^X)/W^X.$$

(See Sect. A.1 for explicit descriptions of the groups G^X.)

Let m^X denote the Coxeter number of any simple component of X. An association of distinguished $2m^X$-vector-valued mock modular forms $H^X_g(\tau) = (H^X_{g,r}(\tau))$ to elements $g \in G^X$ is described and analyzed in [15–17].

For $X = A_1^{24}$ we have $G^X \simeq M_{24}$ and $m^X = 2$, and the functions $H^X_g(\tau)$ are precisely the mock modular forms assigned to elements $g \in M_{24}$ in the works [10, 27, 33, 34] mentioned above. Generalizing the M_{24} moonshine initiated by Eguchi, Ooguri and Tachikawa, we have the following conjecture of Cheng, Duncan and Harvey (cf. Sect. 2 of [17] or Sect. 9.3 of [24]).

Conjecture (Umbral Moonshine Modules) Let X be a Niemeier root system X and set $m := m^X$. There is a naturally defined bi-graded infinite-dimensional G^X-module

$$\mathcal{K}^X = \bigoplus_{r \in I^X} \bigoplus_{D \in \mathbb{Z}_2, D \leq 0, D = r^2 \pmod{4m}} \mathcal{K}^X_{r,D/4m},$$

(1.3)

such that the vector-valued mock modular form $H^X_g = (H^X_{g,r})$ is a McKay–Thompson series for \mathcal{K}^X related\footnote{In the statement of Conjecture 6.1 of [16], the function H^X_g in (1.4) is replaced with $3H^X_g$ in the case that $X = A_2^4$. This is now known to be an error, arising from a misspecification of some of the functions H^X_g for $X = A_2^4$. Our treatment of the case $X = A_2^4$ in this work reflects the corrected specification of the corresponding H^X_g which is described and discussed in detail in [17].} to the graded trace of g on \mathcal{K}^X by

$$H^X_g(\tau) = -2q^{-1/4m}\delta_{r,1} + \sum_{D \in \mathbb{Z}_2, D \leq 0, D = r^2 \pmod{4m}} \text{tr}(g|\mathcal{K}^X_{r,D/4m})q^{-D/4m}$$

(1.4)

for $r \in I^X$.

In (1.3) and (1.4), the set $I^X \subseteq \mathbb{Z}/2m\mathbb{Z}$ is defined in the following way. If X has an A-type component then $I^X := \{1, 2, 3, \ldots, m - 1\}$. If X has no A-type component but does have a D-type component, then $m = 2 \pmod{4}$ and $I^X := \{1, 3, 5, \ldots, m/2\}$. The remaining cases are $X = E_8^3$ and $X = E_8^3$. In the former of these, $I^X := \{1, 4, 5\}$, and in the latter case $I^X := \{1, 7\}$.

Remark The functions $H^X_g(\tau)$ are defined explicitly in Sect. B.3. An alternative description in terms of Rademacher sums is given in Sect. B.4.

Here, we prove the following theorem.
Theorem 1.1 The umbral moonshine modules exist.

Two remarks

1. Theorem 1.1 for $X = A_1^{24}$ is the main result of Gannon’s work [37].
2. The vector-valued mock modular forms $H^X = (H^X_{g,r})$ have “minimal” principal parts. This minimalis analogous to the fact that the original McKay–Thompson series $T_g(\tau)$ for the Monster are hauptmoduln, and plays an important role in our proof.

Example Many of Ramanujan’s mock theta functions [46] are components of the vector-valued umbral McKay–Thompson series H^X_g. For example, consider the root system $X = A_1^{12}$, whose umbral group is a double cover $2M_{12}$ of the sporadic simple Mathieu group M_{12}. In terms of Ramanujan’s third-order mock theta functions

$$f(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1 + q^2)^2(1 + q^4)^2 \cdots (1 + q^{n^2})^2},$$
$$\phi(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1 + q^2)^4(1 + q^4)^4 \cdots (1 + q^{2n})^4},$$
$$\chi(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1 - q + q^2)(1 - q^2 + q^4) \cdots (1 - q^n + q^{2n})},$$
$$\omega(q) = \sum_{n=0}^{\infty} \frac{q^{2n(n+1)}}{(1 - q^2)(1 - q^4)^2 \cdots (1 - q^{2n+1})^2},$$
$$\rho(q) = \sum_{n=0}^{\infty} \frac{q^{2n(n+1)}}{(1 + q + q^2)(1 + q^3 + q^6) \cdots (1 + q^{2n+1} + q^{4n+2})},$$

we have that

$$H^X_{2B_1}(\tau) = H^X_{2C_1}(\tau) = H^X_{4C_1}(\tau) = -2q^{-\frac{1}{2}} \cdot f(q^2),$$
$$H^X_{6C_1}(\tau) = H^X_{6D_1}(\tau) = -2q^{-\frac{1}{2}} \cdot \phi(-q^2),$$
$$H^X_{8C_1}(\tau) = H^X_{8D_1}(\tau) = -2q^{-\frac{1}{2}} \cdot \chi(-q^2),$$
$$H^X_{2R_2}(\tau) = H^X_{2C_2}(\tau) = -4q^{\frac{3}{2}} \cdot \omega(-q),$$
$$H^X_{6C_2}(\tau) = H^X_{6D_2}(\tau) = 2q^{\frac{3}{2}} \cdot \rho(-q).$$

See Sect. 5.4 of [16] for more coincidences between umbral McKay–Thompson series and mock theta functions identified by Ramanujan almost a 100 years ago.

Our proof of Theorem 1.1 involves the explicit determination of each G^X-module \hat{K}^X by computing the multiplicity of each irreducible component for each homogeneous subspace. It guarantees the existence and uniqueness of a \hat{K}^X which is compatible with the representation theory of G^X and the Fourier expansions of the vector-valued mock modular forms $H^X_g(\tau) = (H^X_{g,r}(\tau))$.

At first glance our methods do not appear to shed light on any deeper algebraic properties of the \hat{K}^X, such as might correspond to the vertex operator algebra structure on V^\natural, or the monster Lie algebra introduced by Borcherds in [5]. However, we do determine, and utilize, specific recursion relations for the coefficients of the umbral McKay–Thompson
series which are analogous to the replicability properties of monstrous moonshine formulated by Conway and Norton in Sect. 8 of [18] (cf. also [1]). More specifically, we use recent work [40] of Imamoğlu, Raum and Richter, as generalized [42] by Mertens, to obtain such recursions. These results are based on the process of holomorphic projection.

Theorem 1.2 For each \(g \in G_X \) and \(0 < r < m \), the mock modular form \(H^X_{g,r}(\tau) \) is replicable in the mock modular sense.

A key step in Borcherds’ proof [5] of the monstrous moonshine conjecture is the reformulation of replicability in Lie theoretic terms. We may speculate that the mock modular replicability utilized in this work will ultimately admit an analogous algebraic interpretation. Such a result remains an important goal for future work.

In the statement of Theorem 1.2, replicable means that there are explicit recursion relations for the coefficients of the vector-valued mock modular form in question. For example, we recall the recurrence formula for Ramanujan’s third-order mock theta function \(f(q) = \sum_{n=0}^{\infty} c_f(n)q^n \) that was obtained recently by Imamoğlu, Raum and Richter [40]. If \(n \in \mathbb{Q} \), then let

\[
\sigma_1(n) := \begin{cases}
\sum_{d|n} d & \text{if } n \in \mathbb{Z}, \\
0 & \text{otherwise},
\end{cases}
\]

\[
\text{sgn}^+(n) := \begin{cases}
\text{sgn}(n) & \text{if } n \neq 0, \\
1 & \text{if } n = 0,
\end{cases}
\]

and then define

\[
d(N, \tilde{N}, t, \tilde{t}) := \text{sgn}^+(N) \cdot \text{sgn}^+(\tilde{N}) \cdot (|N + t| - |\tilde{N} + \tilde{t}|).
\]

Then for positive integers \(n \), we have that

\[
\sum_{m \in \mathbb{Z}} \left(\frac{m + \frac{1}{6}}{3m^2 + 3m + 2m} \right) c_f \left(n - \frac{3}{2}m^2 - \frac{1}{2}m \right)
= \frac{4}{3} \sigma(n) \cdot \frac{16}{3} \left(\frac{n}{2} \right) - 2 \sum_{a,b \in \mathbb{Z}} d \left(N, \tilde{N}, \frac{1}{6}, \frac{1}{6} \right),
\]

where \(N := \frac{1}{6}(-3a + b - 1) \) and \(\tilde{N} := \frac{1}{6}(3a + b - 1) \), and the sum is over integers \(a, b \) for which \(N, \tilde{N} \in \mathbb{Z} \). This is easily seen to be a recurrence relation for the coefficients \(c_f(n) \).

The replicability formulas for all of the \(H^X_{g,r}(\tau) \) are similar (although some of these relations are slightly more complicated and involve the coefficients of weight 2 cusp forms).

It is important to emphasize that despite the progress which is represented by our main results, Theorems 1.1 and 1.2, the following important question remains open in general.

Question Is there a “natural” construction of \(\tilde{K}^X \)? Is \(\tilde{K}^X \) equipped with a deeper algebraic structure as in the case of the monster module \(V^\natural \) of Frenkel, Lepowsky and Meurman?

We remark that this question has been answered positively, recently, in one special case: A vertex operator algebra structure underlying the umbral moonshine module \(\tilde{K}^X \) for \(X = E_8^3 \) has been described explicitly in [25]. See also [14, 26], where the problem of
constructing algebraic structures that illuminate the umbral moonshine observations is addressed from a different point of view.

The proof of Theorem 1.1 is not difficult. It is essentially a collection of tedious calculations. We use the theory of mock modular forms and the character table for each G^X (cf. Sect. A.2) to solve for the multiplicities of the irreducible G^X-module constituents of each homogeneous subspace in the alleged G^X-module \hat{K}^X. To prove Theorem 1.1 it suffices to prove that these multiplicities are non-negative integers. To prove Theorem 1.2 we apply recent work [42] of Mertens on the holomorphic projection of weight $\frac{1}{2}$ mock modular forms, which generalizes earlier work [40] of Imamoğlu, Raum and Richter.

In Sect. 2 we recall the facts about mock modular forms that we require, and we prove Theorem 1.2. We prove Theorem 1.1 in Sect. 3. The appendices furnish all the data that our method requires. In particular, the umbral groups G^X are described in detail in Sect. A, and explicit definitions for the mock modular forms $H^X_g(\tau)$ are given in Sect. B.

2 Harmonic Maass forms and Mock modular forms

Here, we recall some very basic facts about harmonic Maass forms as developed by Bruinier and Funke [9] (see also [45]).

We begin by briefly recalling the definition of a harmonic Maass form of weight $k \in \frac{1}{2}\mathbb{Z}$ and multiplier ν (a generalization of the notion of a Nebentypus). If $\tau = x + iy$ with x and y real, we define the weight k hyperbolic Laplacian by

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + \frac{i}{y} \frac{\partial}{\partial y} \right). \quad (2.1)$$

Suppose Γ is a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$ and $k \in \frac{1}{2}\mathbb{Z}$. Then, a function $F(\tau)$ which is real-analytic on the upper half of the complex plane is a harmonic Maass form of weight k on Γ with multiplier ν if:

(a) The function $F(\tau)$ satisfies the weight k modular transformation,

$$F(\tau)|_{k\,\gamma} = \nu(\gamma)F(\tau)$$

for every matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, where $F(\tau)|_{k\,\gamma} := F(\gamma \tau)(ct + d)^{-k}$, and if $k \in \mathbb{Z} + \frac{1}{2}$, the square root is taken to be the principal branch.

(b) We have that $\Delta_k F(\tau) = 0$,

(c) There is a polynomial $P_F(q^{-1})$ and a constant $c > 0$ such that $F(\tau) - P_F(e^{-2\pi i \tau}) = O(e^{-cy})$ as $\tau \to i\infty$. Analogous conditions are required at each cusp of Γ.

We denote the \mathbb{C}-vector space of harmonic Maass forms of a given weight k, group Γ and multiplier ν by $H_k(\Gamma, \nu)$. If no multiplier is specified, we will take

$$\nu_0(\gamma) := \left(\frac{c}{d} \sqrt{\frac{-1}{d}} \right)^{-2k},$$

where $\left(\frac{c}{d} \right)$ is the Kronecker symbol.
2.1 Main properties

The Fourier expansion of a harmonic Maass form F (see Proposition 3.2 of [9]) splits into two components. As before, we let $q := e^{2\pi i \tau}$.

Lemma 2.1 If $F(\tau)$ is a harmonic Maass form of weight $2 - k$ for Γ where $\frac{3}{2} \leq k \in \frac{1}{2} \mathbb{Z}$, then

$$F(\tau) = F^+(\tau) + F^-(\tau),$$

where F^+ is the holomorphic part of F, given by

$$F^+(\tau) = \sum_{n \gg -\infty} c^+_F(n)q^n$$

where the sum admits only finitely many non-zero terms with $n < 0$, and F^- is the nonholomorphic part, given by

$$F^-(\tau) = \sum_{n < 0} c^-_F(n)\Gamma(k - 1, 4\pi y|n|)q^n.$$

Here, $\Gamma(s, z)$ is the upper incomplete gamma function.

The holomorphic part of a harmonic Maass form is called a mock modular form. We denote the space of harmonic Maass forms of weight $2 - k$ for Γ and multiplier ν by $H_k(\Gamma, \nu)$. Similarly, we denote the corresponding subspace of holomorphic modular forms by $M_k(\Gamma, \nu)$, and the space of cusp forms by $S_k(\Gamma, \nu)$. The differential operator $\xi_w := 2iyw \frac{\partial}{\partial \tau}$ (see [9]) defines a surjective map

$$\xi_{2-k}: H_{2-k}(\Gamma, \nu) \rightarrow S_k(\Gamma, \nu)$$
on the space of weight k cusp forms for the same group but conjugate multiplier. The shadow of a Maass form $f(\tau) \in H_{2-k}(\Gamma, \nu)$ is the cusp form $g(\tau) \in S_k(\Gamma, \nu)$ (defined, for now, only up to scale) such that $\xi_{2-k}f(\tau) = g(\tau)$, where $\| \cdot \|$ denotes the usual Petersson norm.

2.2 Holomorphic projection of weight $\frac{1}{2}$ mock modular forms

As noted above, the modular transformations of a weight $\frac{1}{2}$ harmonic Maass form may be simplified by multiplying by its shadow to obtain a weight 2 nonholomorphic modular form. One can use the theory of holomorphic projections to obtain explicit identities relating these nonholomorphic modular forms to classical quasimodular forms. In this way, we may essentially reduce many questions about the coefficients of weight $\frac{1}{2}$ mock modular forms to questions about weight 2 holomorphic modular forms. The following theorem is a special case of a more general theorem due to Mertens (cf. Theorem 6.3 of [42]). See also [40].

Theorem 2.1 (Mertens) Suppose $g(\tau)$ and $h(\tau)$ are both theta functions of weight $\frac{1}{2}$ contained in $S_{\frac{1}{2}}(\Gamma, \nu_g)$ and $S_{\frac{1}{2}}(\Gamma, \nu_h)$, respectively, with Fourier expansions

$$g(\tau) := \sum_{i=1}^{s} \sum_{n \in \mathbb{Z}} n\chi_i(n)q^{n^2},$$

$$h(\tau) := \sum_{j=1}^{r} \sum_{n \in \mathbb{Z}} n\psi_j(n)q^{n^2},$$
where each \(\chi_i \) and \(\psi_i \) is a Dirichlet character. Moreover, suppose \(h(\tau) \) is the shadow of a weight \(\frac{1}{2} \) harmonic Maass form \(f(\tau) \in H_\frac{1}{2}(\Gamma, \nu_\tau) \). Define the function

\[
D^f(\tau) := 2 \sum_{r=1}^\infty \sum_{\chi_i, \psi_i} \sum_{m, n \in \mathbb{Z}^+} \chi_i(m)\psi_i(n)(m - n)q^r.
\]

If \(f(\tau)g(\tau) \) has no singularity at any cusp, then \(f^+(\tau)g(\tau) \) and \(D^f(\tau) \) are a weight 2 quasimodular form. In other words, it lies in the space \(\mathbb{C}E_2(\tau) \oplus M_2(\Gamma, \psi_2^\tau) \), where \(E_2(\tau) \) is the quasimodular Eisenstein series \(E_2(\tau) := 1 - 24 \sum_{n \geq 1} \frac{m^2}{1 - n^2}. \)

Two Remarks.

1. These identities give recurrence relations for the weight \(\frac{1}{2} \) mock modular form \(f^+ \) in terms of the weight 2 quasimodular form which equals \(f^+(\tau)g(\tau) + D^f(\tau) \). The example after Theorem 1.2 for Ramanujan’s third-order mock theta function \(f \) is an explicit example of such a relation.
2. Theorem 2.1 extends to vector-valued forms in a natural way.

Proof of Theorem 1.2 Fix a Niemeier lattice and its root system \(X \), and let \(M = m^X \) denote its Coxeter number. Each \(H^X_{g,r}(\tau) \) is the holomorphic part of a weight \(\frac{1}{2} \) harmonic Maass form \(\hat{H}_{g,r}(\tau) \). To simplify the exposition in the following section, we will emphasize the case that the root system \(X \) is of pure A-type. If the root system \(X \) is of pure A-type, the shadow function \(S^X_{g,r}(\tau) \) is given by \(\hat{X}^X_{g,r}S^X_{M,r}(\tau) \) (see Sect. B.2), where

\[
S^X_{M,r}(\tau) = \sum_{n \equiv r (\text{mod } 2M)} n q^{2n},
\]

and \(\hat{X}^X_{g,r} = X^X_{g,r} \) or \(\hat{X}^X_{g,r} \) depending on the parity of \(r \) is the twisted Euler character given in the appropriate table in Sect. A.3, a character of \(G^X \). (If \(X \) is not of pure A-type, then the shadow function \(S^X_{g,r}(\tau) \) is a linear combination of similar functions as described in Sect. B.2).

Given \(X \) and \(g \), the symbol \(n_g \mid h_g \) given in the corresponding table in Sect. A.3 defines the modularity for the vector-valued function \((\hat{H}^X_{g,r}(\tau)) \). In particular, if the shadow \((S^X_{g,r}(\tau)) \) is nonzero, and for \(\gamma \in \Gamma_0(n_g) \) we have that

\[
(S^X_{g,r}(\tau))_{1/2} = \sigma_{g,\gamma}(S^X_{g,r}(\tau)),
\]

then

\[
(\hat{H}^X_{g,r}(\tau))_{1/2} = \overline{\sigma_{g,\gamma}(\hat{H}^X_{g,r}(\tau))}.
\]

Here, for \(\gamma \in \Gamma_0(n_g) \), we have \(\sigma_{g,\gamma} = \nu_{\gamma}(\gamma)\sigma_{g,\gamma} \) where \(\nu_{\gamma}(\gamma) \) is a multiplier which is trivial on \(\Gamma_0(n_g) \). This identity holds even in the case that the shadow \(S^X_{g,r} \) vanishes.

The vector-valued function \((H^X_{g,r}(\tau)) \) has poles only at the infinite cusp of \(\Gamma_0(n_g) \), and only at the component \(H^X_{g,r}(\tau) \) where \(r = 1 \) if \(X \) has pure A-type, or at components where \(r^2 \equiv 1 (\text{mod } 2M) \). These poles may only have order \(\frac{1}{2M} \). This implies that the function \((\hat{H}^X_{g,r}(\tau)S^X_{g,r}(\tau)) \) has no pole at any cusp and is therefore a candidate for an application of Theorem 2.1.

The modular transformation of \(S^X_{M,r}(\tau) \) implies that

\[
(\sigma_{e,S})^2 = (\sigma_{e,T})^{4M} = 1
\]
where \(S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \) and \(I \) is the identity matrix. Therefore, \(S^X_{M,r}(\tau) \), viewed as a scalar-valued modular function, is modular on \(\Gamma(4M) \), and so \(\hat{H}^X_{g,r}(\tau)S^X_{g,r}(\tau) \) is a weight 2 nonholomorphic scalar-valued modular form for the group \(\Gamma(4M) \cap \Gamma_0(n_g) \) with trivial multiplier.

Applying Theorem 2.1, we obtain a function \(F^X_{g,r}(\tau) \)—call it the holomorphic projection of \(\hat{H}^X_{g,r}(\tau)S^X_{g,r}(\tau) \)—which is a weight 2 quasimodular form on \(\Gamma(4M) \cap \Gamma_0(n_g) \). In the case that \(S^X_{g,r}(\tau) \) is zero, we substitute \(S^X_{g,r}(\tau) \) in its place to obtain a function \(F^X_{g,r}(\tau) = \hat{H}^X_{g,r}(\tau)S^X_{g,r}(\tau) \), which is a weight 2 holomorphic scalar-valued modular form for the group \(\Gamma(4M) \cap \Gamma_0(n_g) \) with multiplier \(v_g \) (alternatively, modular for the group \(\Gamma(4M) \cap \Gamma_0(n_g h_g) \) with trivial multiplier).

The function \(F^X_{g,r}(\tau) \) may be determined explicitly as the sum of Eisenstein series and cusp forms on \(\Gamma(4M) \cap \Gamma_0(n_g) \) using the standard arguments from the theory of holomorphic modular forms (i.e. the “first few” coefficients determine such a form). Therefore, we have the identity

\[
F^X_{g,r}(\tau) = H^X_{g,r}(\tau) \cdot S^X_{g,r}(\tau) + D^X_{g,r}(\tau),
\]

(2.2)

where the function \(D^X_{g,r}(\tau) \) is the correction term arising in Theorem 2.1. If \(X \) has pure \(\Lambda \)-type, then

\[
D^X_{g,r}(\tau) = (\hat{X}^X_{g,r})^2 \sum_{N=1}^\infty \sum_{m,n \in \mathbb{Z}_+} \phi_r(m)\phi_r(n)(m-n)q^{\frac{N}{4M}},
\]

(2.3)

where

\[
\phi_r(\ell) = \begin{cases}
\pm 1 & \text{if } \ell \equiv \pm r \pmod{2M} \\
0 & \text{otherwise.}
\end{cases}
\]

Suppose \(H^X_{g,r}(\tau) = \sum_{n=0}^\infty A^X_{g,r}(n)q^n \), where \(0 < D < 4M \) and \(D \equiv r^2 \pmod{4M} \), and \(F^X_{g,r}(\tau) = \sum_{N=0}^\infty B^X_{g,r}(n)q^n \). Then by Theorem 2.1, we find that

\[
B^X_{g,r}(N) = \hat{X}^X_{g,r} \sum_{m \equiv r \pmod{2M}} m \cdot A^X_{g,r} \left(N + \frac{D - m^2}{4M} \right) + \hat{X}^X_{g,r} \sum_{m,n \in \mathbb{Z}_+} \phi_r(m)\phi_r(n)N.
\]

(2.4)

The function \(F^X_{g,r}(\tau) \) may be found in the following manner. Using the explicit prescriptions for \(H^X_{g,r}(\tau) \) given in Sect. B.3 and (2.2) above, we may calculate the first several coefficients of each component. The Eisenstein component is determined by the constant terms at cusps. Since \(D^X_{g,r}(\tau) \) (and the corresponding correction terms at other cusps) has no constant term, these are the same as the constant terms of \(\hat{H}^X_{g,r}(\tau)S^X_{g,r}(\tau) \), which are determined by the poles of \(\hat{H}^X_{g,r}(\tau) \). Call this Eisenstein component \(E^X_{g,r}(\tau) \). The cuspidal component can be found by matching the initial coefficients of \(F^X_{g,r}(\tau) - E^X_{g,r}(\tau) \).
Once the coefficients $B_{g,r}^X(n)$ are known, Eq. (2.4) provides a recursion relation which may be used to calculate the coefficients of $H_{g,r}^X(\tau)$. If the shadows $S_{g,r}^X(\tau)$ are zero, then we may apply a similar procedure to determine $\hat{f}_{g,r}^X(\tau)$. For example, suppose $\hat{f}_{g,r}^X(\tau) = \sum_{n=0}^{\infty} \tilde{B}_{g,r}^X(n)q^n$, and X has pure A-type. Then, we find that the coefficients $\tilde{B}_{g,r}^X(N)$ satisfy

$$\tilde{B}_{g,r}^X(N) = \hat{f}_{g,r}^X \sum_{m \equiv r \mod 2M} m \cdot A_{g,r}^X \left(N + \frac{D - m^2}{4M} \right).$$

(2.5)

Proceeding in this way we obtain the claimed results.

\[\Box\]

3 Proof of Theorem 1.1

Here, we prove Theorem 1.1. The idea is as follows. For each Niemeier root system X, we begin with the vector-valued mock modular forms $(H_{g}^X(\tau))$ for $g \in G^X$. We use their q-expansions to solve for the q-series whose coefficients are the alleged multiplicities of their reducible components of the alleged infinite-dimensional G^X-module

$$\hat{K}^X = \bigoplus_{r \mod 2m} \bigoplus_{D \in \mathbb{Z}, D \leq 0, D \equiv r^2 \mod 4m} \hat{K}_{r,n}^X.$$

These q-series turn out to be mock modular forms. The proof requires that we establish that these mock modular forms have non-negative integer coefficients.

Proof of Theorem 1.1 As in the previous section, we fix a root system X and set $M := m^X$, and emphasize the case when X is of pure A-type.

The umbral moonshine conjecture asserts that

$$H_{g,r}^X(\tau) = \sum_{n=0}^{\infty} \sum_{\chi} m_{\chi,r}^X(n)\chi(g)q^{n - r^2/4m}$$

(3.1)

where the second sum is over the irreducible characters of G^X. Here, we have rewritten the traces of the graded components $\hat{K}_{r,n}^X$ in (1.4) in terms of the values of the irreducible characters of G^X, where the $m_{\chi,r}^X(n)$ are the corresponding multiplicities. Naturally, if such a \hat{K}^X exists, these multiplicities must be non-negative integers for $n > 0$. Similarly, if the mock modular forms $H_{g,r}^X(\tau)$ can be expressed as in (3.1) with $m_{\chi,r}^X(n)$ non-negative integers, then we may construct the umbral moonshine module \hat{K}^X explicitly with $\hat{K}_{r,n}^X$ defined as the direct sum of irreducible components with the given multiplicities $m_{\chi,r}^X(n)$.

Let

$$H_{\chi,r}^X(\tau) := \frac{1}{|G^X|} \sum_{g} \chi(g)H_{g,r}^X(\tau).$$

(3.2)

It turns out that the coefficients of $H_{\chi,r}^X(\tau)$ are precisely the multiplicities $m_{\chi,r}^X(n)$ required so that (3.1) holds: if

$$H_{\chi,r}^X(\tau) = \sum_{n=0}^{\infty} m_{\chi,r}^X(n)q^{n - r^2/4m},$$

(3.3)
then
\[H_{g,r}^X(\tau) = \sum_{n=0}^{\infty} \sum_{\chi} n_{g,r}^X(n) \chi(g) q^n \frac{\tau^2}{\text{lcm}}. \]

Thus, the umbral moonshine conjecture is true if and only if the Fourier coefficients of
\[H_{g,r}^X(\tau) \] are non-negative integers.

To see this fact, we recall the orthogonality of characters. For irreducible characters \(\chi_i \) and \(\chi_j \),
\[\frac{1}{|G|^X} \sum_{g \in G^X} \chi_i(g) \chi_j(g) = \begin{cases} 1 & \text{if } \chi_i = \chi_j, \\ 0 & \text{otherwise.} \end{cases} \] (3.4)

We also have the relation for \(g \) and \(h \in G^X \),
\[\sum_{\chi} \chi_i(g) \chi_i(h) = \begin{cases} |C_{G^X}(g)| & \text{if } g \text{ and } h \text{ are conjugate,} \\ 0 & \text{otherwise.} \end{cases} \] (3.5)

Here, \(|C_{G^X}(g)| \) is the order of the centralizer of \(g \) in \(G^X \). Since the order of the centralizer times the order of the conjugacy class of an element is the order of the group, (3.2) and (3.5) together imply the relation
\[H_{g,r}^X(\tau) = \sum_{\chi} \chi(g) H_{g,r}^X(\tau), \]
which in turn implies (3.3).

We have reduced the theorem to proving that the coefficients of certain weight \(\frac{1}{2} \) mock modular forms are all non-negative integers. For holomorphic modular forms, we may answer questions of this type by making use of Sturm’s theorem [49] (see also Theorem 2.58 of [44]). This theorem provides a bound \(B \) associated to a space of modular forms such that if the first \(B \) coefficients of a modular form \(f(\tau) \) are integral, then all of the coefficients of \(f(\tau) \) are integral. This bound reduces many questions about the Fourier coefficients of modular forms to finite calculations.

Sturm’s theorem relies on the finite dimensionality of certain spaces of modular forms, and so it cannot be applied directly to spaces of mock modular forms. However, by making use of holomorphic projection we can adapt Sturm’s theorem to this setting.

Let \(H_{g,r}^X(\tau) \) be defined as above. Recall that the transformation matrix for the vector-valued function \(H_{g,r}^X(\tau) \) is \(\sigma_{g,r}^X \), the conjugate of the transformation matrix for \((S_{g,r}^X(\tau)) \) when \(\gamma \in \Gamma_0(\text{lcm}(n_g h_g)) \), and \(\sigma_{g,r}^X \) is the identity for \(\gamma \in \Gamma(4M) \). Therefore, if
\[N^X_X := \text{lcm}(n_g h_g \mid g \in G, \chi(g) \neq 0), \]
then the scalar-valued functions \(H_{g,r}^X(\tau) \) are modular on \(\Gamma(4M) \cap \Gamma_0(N^X_X) \).

Let
\[A_{g,r}(\tau) := H_{g,r}^X(\tau) S_{g,r}^X(\tau), \]
and \(\tilde{A}_{g,r}(\tau) \) be the holomorphic projection of \(A_{g,r}(\tau) \). Suppose that \(H_{g,r}^X(\tau) \) has integral coefficients up to some bound \(B \). Formulas for the shadow functions (cf. Sect. B.2) show that the leading coefficient of \(S_{g,r}^X(\tau) \) is 1 and has integral coefficients. This implies that the function
also has integral coefficients up to the bound B. The shadow of $H^X_{\rho,\tau}(\tau)$ is given by

$$S^X_{\rho,\tau}(\tau) := \frac{1}{|G^X|} \sum_{g} \chi(g) S^X_{\rho,g}(\tau).$$

If X is pure A-type, then $S^X_{\rho,\tau}(\tau) = \chi^X_{\rho} S_{M,\tau}(\tau) = (\chi'(g) + \chi''(g)) S_{M,\tau}(\tau)$ for some irreducible characters χ' and χ'', according to “Twisted Euler characters” and “Shadows”. Therefore,

$$S^X_{\rho,\tau}(\tau) = \begin{cases} S_{M,\tau}(\tau) & \text{if } \chi = \chi' \text{ or } \chi'', \\ 0 & \text{otherwise.} \end{cases}$$

When X is not of pure A-type the shadow is some sum of such functions, but in every case has integer coefficients, and so, applying Theorem 2.1 to $A_{\rho,\tau}(\tau)$, we find that $\tilde{A}_{\rho,\tau}(\tau)$ also has integer coefficients up to the bound B. In particular, since $\tilde{A}_{\rho,\tau}(\tau)$ is modular on $\Gamma(4M) \cap \Gamma_0(N^X_g)$, then if B is at least the Sturm bound for this group we have that every coefficient of $\tilde{A}_{\rho,\tau}(\tau)$ is integral. Since the leading coefficient of $S^X_{\rho,\tau}(\tau)$ is 1, we may reverse this argument and we have that every coefficient of $H^X_{\rho,\tau}(\tau)$. Therefore, in order to check that $H^X_{\rho,\tau}(\tau)$ has only integer coefficients, it suffices to check up to the Sturm bound for $\Gamma(4M) \cap \Gamma_0(N^X_g)$. These calculations were carried out using the SAGE mathematical software [47].

The calculations and argument given above show that the multiplicities $m^X_{\rho,\tau}(n)$ are all integers. To complete the proof, it suffices to check that they are also non-negative. The proof of this claim follows easily by modifying step-by-step the argument in Gannon’s proof of non-negativity in the M_{24} case [37] (i.e. $X = A^2_{24}$). Here, we describe how this is done.

Expressions for the alleged McKay--Thompson series $H^X_{\rho,\tau}(\tau)$ in terms of Rademacher sums and unary theta functions are given in Sect. B.4. Exact formulas are known for all the coefficients of Rademacher sums because they are defined by averaging the special function $r_{1/2}(y, \tau)$ [see (B.114)] over cosets of a specific modular group modulo Γ_∞, the subgroup of translations. Therefore, Rademacher sums are standard Maass--Poincaré series, and as a result we have formulas for each of their coefficients as convergent infinite sums of Kloosterman-type sums weighted by values of the $I_{1/2}$ modified Bessel function. (For example, see [8] or [53] for the general theory, and [12] for the specific case that $X = A^2_{24}$.)

More importantly, this means also that the generating function for the multiplicities $m^X_{\rho,\tau}(n)$ is a weight $\frac{1}{2}$ harmonic Maass form, which in turn means that exact formulas (modulo the unary theta functions) are also available in similar terms. For positive integers n, this then means that (cf. Theorem 1.1 of [8])

$$m^X_{\rho,\tau}(n) = \sum_{\rho} \sum_{m \not= 0} a^X_{\rho}(m) \frac{1}{n^2} \sum_{c=1}^\infty K^X_{\rho}(m,n,c) \frac{4\pi \sqrt{|nm|}}{c^2},$$

(3.6)

where the sums are over the cusps ρ of the group $\Gamma_0(N^X_g)$, and finitely many explicit negative rational numbers m. The constants $a^X_{\rho}(m)$ are essentially the coefficients which describe the generating function in terms of Maass--Poincaré series. Here, I is a suitable normalization and change of variable for the standard $I_{1/2}$ modified Bessel function.

The Kloosterman--type sums $K^X_{\rho}(m,n,c)$ are well known to be related to Salié-type sums (for example see Proposition 5 of [41]). These Salié-type sums are of the form
$S^X_{\rho}(m, n, c) = \sum_{x (\text{mod} c)} x^2 \equiv -D_{(m, n)} (\text{mod} c), \epsilon_{\rho}^X(m, n) \cdot e \left(\frac{\beta^X x}{c} \right)$,

where $\epsilon_{\rho}^X(m, n)$ is a root of unity, $-D_{(m, n)}$ is a discriminant of a positive definite binary quadratic form, and β^X is a nonzero positive rational number.

These Salié sums may then be estimated using the equidistribution of CM points with discriminant $-D_{(m, n)}$. This process was first introduced by Hooley [38] and was first applied to the coefficients of weight $\frac{1}{2}$ mock modular forms by Bringmann and Ono [7]. Gannon explains how to make effective the estimates for sums of this shape in Sect. 4 of [37], thereby reducing the proof of the M_{24} case of umbral moonshine to a finite calculation. In particular, in equations (4.6–4.10) of [37], Gannon shows how to bound coefficients of the form (3.6) in terms of the Selberg–Kloosterman zeta function, which is bounded in turn in his proof of Theorem 3 of [37]. We follow Gannon’s proof mutatis mutandis. We find for most root systems that the coefficients of each multiplicity generating function are positive beyond the 390th coefficient. In the worst case, for the root system $X = E_3$, we find that the coefficients are positive beyond the 1780th coefficient. Moreover, the coefficients exhibit subexponential growth. A finite computer calculation in sage has verified the non-negativity of the finitely many remaining coefficients. ⊓⊔

Remark It turns out that the estimates required for proving nonnegativity are the worst for the $X = E_3$ case which required 1780 coefficients.

Author details
1 Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA; 2 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA.

Acknowledgements
The authors thank the NSF for its support. The first author also thanks the Simons Foundation (#316779), and the third author thanks the A. G. Candler Fund. The authors thank Miranda Cheng, Jeff Harvey, Michael Somos and the anonymous referee for helpful comments and corrections.

Appendix A: The umbral groups

In this section, we present the facts about the umbral groups that we have used in establishing the main results of this paper. We recall (from [16]) their construction in terms of Niemeier root systems in Sect. A.1, and reproduce their character tables (appearing also in [16]) in Sect. A.2. Note that we use the abbreviations $a_n := \sqrt{-n}$ and $b_n := (-1 + \sqrt{-n})/2$ in the tables of Sect. A.2.

The root system description of the umbral groups (cf. Sect. A.1) gives rise to certain characters called *twisted Euler characters* which we recall (from [16]) in Sect. A.3. The data appearing in Sect. A.3 plays an important role in Sect. B.2, where we use it to describe the shadows S^X_g of the umbral McKay–Thompson series H^X_g explicitly.

A.1 Construction

As mentioned in Sect. 1, there are exactly 24 self-dual even positive-definite lattices of rank 24 up to isomorphism, according to the classification of Niemeier [43] (cf. also [19,52]). Such a lattice L is determined up to isomorphism by its *root system* $L_2 := \{\alpha \in L \mid \langle \alpha, \alpha \rangle = 2\}$. The unique example without roots is the Leech lattice. We refer to the remaining 23
as the Niemeier lattices, and call a root system X a Niemeier root system if it occurs as the root system of a Niemeier lattice.

The simple components of Niemeier root systems are root systems of ADE type, and it turns out that the simple components of a Niemeier root system X all have the same Coxeter number. Define m^X to be the Coxeter number of any simple component of X, and call this the Coxeter number of X.

For X, a Niemeier root system write N^X for the corresponding Niemeier lattice. The umbral group attached to X is defined by setting

$$G^X := \text{Aut}(N^X)/W^X$$

where W^X is the normal subgroup of $\text{Aut}(N^X)$ generated by reflections in root vectors.

Observe that G^X acts as permutations on the simple components of X. In general this action is not faithful, so define \tilde{G}^X to be the quotient of G^X by its kernel. It turns out that the level of the mock modular form H^X_g attached to $g \in G^X$ is given by the order, denoted n_g, of the image of g in \tilde{G}^X. (Cf. Sect. A.3 for the values n_g.)

The Niemeier root systems and their corresponding umbral groups are described in Table 1. The root systems are given in terms of their simple components of ADE type. Here $D_{10} \oplus E_7$, for example, means the direct sum of one copy of the D_{10} root system and two copies of the E_7 root system. The symbol ℓ is called the lambency of X, and the Coxeter number m^X appears as the first summand of ℓ.

In the descriptions of the umbral groups G^X, and their permutation group quotients \tilde{G}^X, we write M_{24} and M_{12} for the sporadic simple groups of Mathieu which act quintuply transitively on 24 and 12 points, respectively. (Cf., e.g. [21].) We write $\text{GL}_n(q)$ for the general linear group of a vector space of dimension n over a field with q elements, and $\text{SL}_n(q)$ is the subgroup of linear transformations with determinant 1, &c. The symbols $\text{AGL}_3(2)$ denote the affine general linear group, obtained by adjoining translations to $\text{GL}_3(2)$. We write Dih_n for the dihedral group of order $2n$, and Sym_n denotes the symmetric group on n symbols. We use n as a shorthand for a cyclic group of order n.

We also use the notational convention of writing $A.B$ to denote the middle term in a short exact sequence $1 \rightarrow A \rightarrow A.B \rightarrow B \rightarrow 1$. This introduces some ambiguity which is nonetheless easily navigated in practice. For example, $2.M_{12}$ is the unique (up to isomorphism) double cover of M_{12} which is not $2 \times M_{12}$. The group $\text{AGL}_3(2)$ naturally embeds in $\text{GL}_4(2)$, which in turn admits a unique (up to isomorphism) double cover $2.\text{GL}_4(2)$ which is not a direct product. The group we denote $2.\text{AGL}_3(2)$ is the preimage of $\text{AGL}_3(2) < \text{GL}_4(2)$ in $2.\text{GL}_4(2)$ under the natural projection.

A.2 Character tables
See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35.

A.3 Twisted Euler characters
In this section we reproduce certain characters—the twisted Euler characters—which are attached to each group G^X, via its action on the root system X. (Their construction is described in detail in Sect. 2.4 of [16].)
Table 1 The umbral groups

X	A_{1}^{24}	A_{1}^{12}	A_{1}^{6}	A_{1}^{3}	A_{1}^{1}	A_{1}^{1}	
ℓ	2	3	4	5	6	7	8
G_X	M_{24}	$2.M_{12}$	$2.AGL_3(2)$	$GL_2(5)/2$	$GL_2(3)$	$SL_2(3)$	Dih_4
\tilde{G}_X	M_{24}	M_{12}	$AGL_3(2)$	$PGL_2(5)$	$PGL_2(3)$	$PSL_2(3)$	2^6
X	A_{1}^{8}	A_{1}^{6}	A_{1}^{3}	A_{1}^{2}	A_{1}^{1}	A_{1}^{1}	A_{1}^{1}
ℓ	9	10	12	13	16	18	25
G_X	Dih_4	4	2	4	2	2	2
\tilde{G}_X	Sym₃	2	1	2	1	1	1
X	D_{6}	D_{6}	D_{6}	$D_{15}E_6$	D_{12}	D_{16}	D_{24}
ℓ	6+3	10+5	14+7	18+9	22+11	30+15	46+23
G_X	3Sym₃	Sym₄	Sym₃	2	2	1	1
\tilde{G}_X	Sym₆	Sym₆	Sym₃	2	2	1	1
X	E_{6}						
ℓ	12+4	30+6,10,15					
G_X	GL₂(3)	Sym₃					
\tilde{G}_X	PGL₂(3)	Sym₃					

To interpret the tables, write X_A for the (possibly empty) union of type A components of X, and interpret X_D and X_E similarly, so that if $m = m^X$ then $X = A_{d-1}^d$ for some d, and $X = X_A \cup X_D \cup X_E$, for example. Then $g \mapsto \tilde{\chi}_g^{X_A}$ denotes the character of the permutation representation attached to the action of \tilde{G}_X on the simple components of X_A. The characters $g \mapsto \tilde{\chi}_g^{X_D}$ and $g \mapsto \tilde{\chi}_g^{X_E}$ are defined similarly. The characters $\chi_g^{X_A}$, $\chi_g^{X_D}$, $\chi_g^{X_E}$ and $\bar{\chi}_g^{X_D}$ incorporate outer automorphisms of simple root systems induced by the action G_X on X. We refer to Sect. 2.4 of [16] for full details of the construction. For the purposes of this work, it suffices to have the explicit descriptions in the tables in this section. The twisted Euler characters presented here will be used to specify the umbral shadow functions in Sect. B.2.

The twisted Euler character tables also attach integers n_g and h_g to each $g \in G_X$. By definition, n_g is the order of the image of $g \in G_X$ in \tilde{G}_X (cf. Sect. A.1). The integer h_g may be defined by setting $h_g := N_g / n_g$ where N_g is the product of the shortest and longest cycle lengths appearing in the cycle shape attached to g by the action of G_X on a (suitable) set of simple roots for X.

Appendix B: The umbral McKay–Thompson series

In this section, we describe the umbral McKay–Thompson series in complete detail. In particular, we present explicit formulas for all the McKay–Thompson series attached to elements of the umbral groups by umbral moonshine in “Explicit prescriptions” section. Most of these expressions appeared first in [15, 16], but some appear for the first time in this work.

To facilitate explicit formulations, we recall certain standard functions in Sect. B.1. We then, using the twisted Euler characters of Sect. A.3, explicitly describe the shadow functions of umbral moonshine in Sect. B.2. The umbral McKay–Thompson series defined in Sect. B.3 may also be described in terms of Rademacher sums, according to the results of [17]. We present this description in Sect. B.4.
g	χ^g
e	1 1
a	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Table 2 Character table of $G^x \cong M_{24}$, $X = A_{24}^2$
g_1	g_2	g_3	g_4	g_5
A_2	A_2	A_2	A_2	A_2

Table 3 Character table of $G^k \cong 2M_{12}$, $X = A_2^{12}$

g	F_5	A	A	B	C	D
X_1	1	1	1	1	1	1
X_2	11	11	11	11	11	11
X_3	16	16	16	16	16	16
X_4	45	45	45	45	45	45
X_5	54	54	54	54	54	54
X_6	66	66	66	66	66	66
X_7	99	99	99	99	99	99
X_8	120	120	120	120	120	120
X_9	144	144	144	144	144	144
X_{10}	176	176	176	176	176	176
X_{11}	16	16	16	16	16	16
X_{12}	10	10	10	10	10	10
X_{13}	8	8	8	8	8	8
X_{14}	4	4	4	4	4	4
X_{15}	0	0	0	0	0	0
X_{16}	0	0	0	0	0	0
X_{17}	2	2	2	2	2	2
X_{18}	0	0	0	0	0	0
X_{19}	0	0	0	0	0	0
X_{20}	0	0	0	0	0	0
X_{21}	0	0	0	0	0	0
X_{22}	0	0	0	0	0	0
X_{23}	0	0	0	0	0	0
X_{24}	0	0	0	0	0	0
X_{25}	0	0	0	0	0	0
X_{26}	0	0	0	0	0	0
Table 4 Character table of $G^X \cong 2.AGL_3(2), X = A_3^8$

| $[g]$ | FS | 1A | 2A | 2B | 4A | 4B | 2C | 3A | 6A | 6B | 6C | 8A | 4C | 7A | 14A | 7B | 14B |
|-------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $[g^2]$ | 1A | 1A | 1A | 2A | 2B | 1A | 3A | 3A | 3A | 3A | 4A | 4A | 2C | 7A | 7A | 7B | 7B |
| $[g^3]$ | 1A | 2A | 2B | 4A | 4B | 2C | 1A | 2A | 2B | 28 | 8A | 4C | 7B | 14B | 7A | 14A |
| $[g^4]$ | 1A | 2A | 2B | 4A | 4B | 2C | 3A | 6A | 6B | 6C | 8A | 4C | 1A | 2A | 1A | 2A |

\[
\begin{align*}
\chi_1 &+ 1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 &1 \\
\chi_2 &\circ &3 &3 &3 &-1 &-1 &-1 &0 &0 &0 &0 &1 &1 &b_7 &b_7 &b_7 &b_7 \\
\chi_3 &\circ &3 &3 &3 &-1 &-1 &-1 &0 &0 &0 &0 &1 &1 &b_7 &b_7 &b_7 &b_7 \\
\chi_4 &+ &6 &6 &6 &2 &2 &2 &0 &0 &0 &0 &0 &0 &-1 &-1 &-1 &-1 \\
\chi_5 &+ &7 &7 &7 &-1 &-1 &-1 &1 &1 &1 &1 &-1 &-1 &0 &0 &0 &0 \\
\chi_6 &+ &8 &8 &8 &0 &0 &0 &-1 &-1 &-1 &-1 &0 &0 &1 &1 &1 &1 \\
\chi_7 &+ &7 &7 &-1 &-1 &-1 &1 &1 &-1 &-1 &1 &-1 &0 &0 &0 &0 \\
\chi_8 &+ &7 &7 &-1 &-1 &-1 &3 &1 &1 &-1 &-1 &1 &0 &0 &0 &0 \\
\chi_9 &+ &14 &14 &-2 &-2 &-2 &2 &-1 &-1 &1 &1 &0 &0 &0 &0 &0 &0 \\
\chi_{10} &+ &21 &21 &-3 &-3 &-3 &1 &1 &-3 &0 &0 &0 &-1 &1 &0 &0 &0 &0 \\
\chi_{11} &+ &21 &21 &-3 &-3 &-3 &1 &1 &0 &0 &0 &1 &-1 &0 &0 &0 &0 \\
\chi_{12} &+ &8 &-8 &0 &0 &0 &0 &2 &-2 &0 &0 &0 &1 &-1 &1 &-1 &-1 \\
\chi_{13} &\circ &8 &-8 &0 &0 &0 &-1 &1 &a_3 &\overline{a_3} &0 &0 &1 &-1 &-1 &-1 &-1 \\
\chi_{14} &\circ &8 &-8 &0 &0 &0 &0 &-1 &1 &a_3 &\overline{a_3} &0 &0 &1 &-1 &-1 &-1 \\
\chi_{15} &\circ &24 &-24 &0 &0 &0 &0 &0 &0 &0 &0 &0 &b_7 &-b_7 &b_7 &-b_7 &-b_7 \\
\chi_{16} &\circ &24 &-24 &0 &0 &0 &0 &0 &0 &0 &0 &0 &b_7 &-b_7 &b_7 &-b_7 &-b_7
\end{align*}
\]
Table 5 Character table of $G^x \cong \text{GL}_2(5)/2, X = A_4^6$

$[g]$	FS	1A	2A	2B	2C	3A	6A	5A	10A	4A	4B	4C	4D	12A	12B
$[g^5]$	1A	1A	1A	1A	3A	3A	5A	5A	2A	2A	2C	2C	6A	6A	
$[g^2]$	1A	2A	2B	2C	1A	2A	5A	10A	4B	4A	4D	4C	4B	4A	
$[g]$	1A	2A	2B	2C	3A	6A	1A	2A	6A	1A	2A	6A	1A	2A	

χ_1	+	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
χ_2	+	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
χ_3	+	4	4	0	0	1	1	1	1	1	1	2	2	0	0	1
χ_4	+	4	4	0	0	1	1	1	1	1	1	2	2	0	0	1
χ_5	+	5	5	1	1	1	1	1	1	1	1	1	1	1	1	
χ_6	+	5	5	1	1	1	1	1	1	1	1	1	1	1	1	
χ_7	+	6	6	0	0	1	1	0	0	0	0	0	0	0	0	
χ_8	o	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
χ_9	o	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
χ_{10}	o	4	4	0	0	1	1	1	1	1	1	1	1	1	1	
χ_{11}	o	4	4	0	0	1	1	1	1	1	1	1	1	1	1	
χ_{12}	o	5	5	1	1	1	1	1	1	1	1	1	1	1	1	
χ_{13}	o	5	5	1	1	1	1	1	1	1	1	1	1	1	1	
χ_{14}	+	6	6	0	0	1	1	1	1	1	1	1	1	1	1	
Here, the term meromorphic refers to the presence of simple poles in the functions χ. These are meromorphic Jacobiforms of weight one, with indexes 1 and 2, respectively.

Throughout this section we assume $q := e^{2\pi i \tau}$, and $u := e^{2\pi i z}$, where $\tau, z \in \mathbb{C}$ with $\text{Im} \, \tau > 0$. The Dedekind eta function is $\eta(\tau) := q^{1/24} \prod_{n>0}(1 - q^n)$, where. Write $\Lambda_M(\tau)$ for the function

$$\Lambda_M(\tau) := Mq \frac{d}{dq} \left(\log \frac{\eta(M\tau)}{\eta(\tau)} \right) = \frac{M(M-1)}{24} + M \sum_{k>0} \sum_{d|k} d \left(q^k - Mq^{Mk} \right),$$

which is a modular form of weight two for $\Gamma_0(N)$ if $M|N$.

Define the Jacobi theta function $\theta_1(\tau, z)$ by setting

$$\theta_1(\tau, z) := i q^{1/8} u^{-1/2} \sum_{n \in \mathbb{Z}} (-1)^n u^n q^{n(\tau-1)/2}. \quad (B.1)$$

According to the Jacobi triple product identity we have

$$\theta_1(\tau, z) = -i q^{1/8} u^{1/2} \prod_{n>0} (1 - u^{-1} q^{n-1})(1 - uq^n)(1 - q^n). \quad (B.2)$$

The other Jacobi theta functions are

$$\theta_2(\tau, z) := q^{1/8} u^{1/2} \prod_{n>0} (1 + u^{-1} q^{n-1})(1 + uq^n)(1 - q^n),$$

$$\theta_3(\tau, z) := \prod_{n>0} (1 + u^{-1} q^{n-1/2})(1 + uq^{n-1/2})(1 - q^n),$$

$$\theta_4(\tau, z) := \prod_{n>0} (1 - u^{-1} q^{n-1/2})(1 - uq^{n-1/2})(1 - q^n). \quad (B.3)$$

Define $\Psi_{1,1}$ and $\Psi_{1,-1/2}$ by setting

$$\Psi_{1,1}(\tau, z) := -i \frac{\theta_1(\tau, 2z) \eta(\tau)^3}{\theta_1(\tau, z)^2},$$

$$\Psi_{1,-1/2}(\tau, z) := -i \frac{\eta(\tau)^3}{\theta_1(\tau, z)}. \quad (B.4)$$

These are meromorphic Jacobi forms of weight one, with indexes 1 and $-1/2$, respectively. Here, the term meromorphic refers to the presence of simple poles in the functions $z \mapsto \Psi_{1,r}(\tau, z)$, for fixed $r \in \mathbb{H}$, at lattice points $z \in \mathbb{Z}\tau + \mathbb{Z}$ (Cf. Sect. 8 of [22]).

From Sect. 5 of [29] we recall the index m theta functions, for $m \in \mathbb{Z}$, defined by setting

$$\theta_{m,r}(\tau, z) := \sum_{k \in \mathbb{Z}} u^{2mk+r} q^{(2mk+r)^2/km}, \quad (B.5)$$
g^1	g^2	g^3	g^4	g^5	g^6	g^7	g^8	g^9	g^{10}	g^{11}	g^{12}	g^{13}	g^{14}	g^{15}	g^{16}
+1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
+1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
+1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5
+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5
+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5	+5
+16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
+9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
+10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
+6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12	+12
+18	+18	+18	+18	+18	+18	+18	+18	+18	+18	+18	+18	+18	+18	+18	+18
+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30

Table 7 Character table of $G^x \simeq 3.\text{Sym}_6$, $X = D_4^6$
Table 8 Character table of $G^X \simeq \text{SL}_2(3), X = A_6^6$

g	FS	1A	2A	4A	3A	6A	3B	6B
g^1	1A	1A	2A	2B	3A	3A	3B	
g^2	1A	2A	4A	1A	2A	1A	2A	

χ_1 + 1 1 1 1 1 1 1 1
χ_2 o 1 1 1 b_3 b_7 b_9 b_3
χ_3 o 1 1 1 b_7 b_3 b_3 b_9
χ_4 + 3 3 0 0 0 0 0
χ_5 o 2 2 0 0 0 0 0

Table 9 Character table of $G^X \simeq \text{Dih}_4, X = A_2^7$ D_2^5

g	FS	1A	2A	2B	2C	4A
g^1	1A	1A	1A	1A	1A	2A
g^2	1A	1A	2A	2B	2C	2C

χ_1 + 1 1 1 1 1 1 1 1
χ_2 + 1 1 1 1 1 1 1 1
χ_3 + 1 1 1 1 1 1 1 1
χ_4 + 2 2 0 0 0 0 0 0

Table 10 Character table of $G^X \simeq \text{Dih}_6, X = A_8^3$

g	FS	1A	2A	2B	2C	3A	6A
g^1	1A	1A	2A	2B	2C	1A	2A
g^2	1A	1A	2A	2B	2C	1A	2A

χ_1 + 1 1 1 1 1 1 1 1
χ_2 + 1 1 1 1 1 1 1 1
χ_3 + 1 1 1 1 1 1 1 1
χ_4 + 1 1 1 1 1 1 1 1
χ_5 + 2 2 0 0 0 0 0 0

Table 11 Character table of $G^X \simeq 4, for X \in \{A_2^2D_6, A_4^3\}$

g	FS	1A	2A	4A	4B
g^1	1A	1A	2A	2A	2A
g^2	1A	1A	2A	2A	2A

χ_1 + 1 1 1 1 1
χ_2 + 1 1 1 1 1
χ_3 o 1 1 1 1
χ_4 o 1 1 1 1

Table 12 Character table of $G^X \simeq \text{PGL}_2(3) \simeq \text{Sym}_4, X = D_6^4$

g	FS	1A	2A	3A	2B	4A
g^1	1A	1A	2A	1A	2A	2A
g^2	1A	2A	1A	2A	2A	4A

χ_1 + 1 1 1 1 1 1
χ_2 + 1 1 1 1 1 1
χ_3 + 2 2 1 1 0 0
χ_4 + 3 3 0 0 1 1
χ_5 + 3 3 0 0 1 1
where \(r \in \mathbb{Z} \). Evidently, \(\theta_{m,r} \) only depends on \(r \mod 2m \). We set
\[
S_{m,r}(\tau) := \frac{1}{2\pi i} \partial_{z} \theta_{m,r}(\tau, z)|_{z=0},
\]
so that
\[
S_{m,r}(\tau) = \sum_{k \in \mathbb{Z}} (2mk + r)q^{(2mk+r)^2/4m}. \tag{B.6}
\]

For a \(m \), a positive integer define
\[
\mu_{m,0}(\tau, z) = \sum_{k \in \mathbb{Z}} \mu^{2km} q^{mk^2} \frac{uq^k + 1}{uq^k - 1} = \frac{u + 1}{u - 1} + O(q), \tag{B.7}
\]
and observe that we recover \(\Psi_{1,1} \) upon specializing (B.7) to \(m = 1 \). Observe also that
\[
\mu_{m,0}(\tau, z + 1/2) = \sum_{k \in \mathbb{Z}} \mu^{2km} q^{mk^2} \frac{uq^k - 1}{uq^k + 1} = \frac{u - 1}{u + 1} + O(q). \tag{B.8}
\]

Define the even and odd parts of \(\mu_{m,0} \) by setting
\[
\mu_{m,0}^k(\tau, z) := \frac{1}{2} (\mu_{m,0}(\tau, z) + (-1)^k \mu_{m,0}(\tau, z + 1/2)) \tag{B.9}
\]
for \(k \mod 2 = 0 \).

For \(m, r \in \mathbb{Z} + \frac{1}{2} \) with \(m > 0 \) define half-integral index theta functions
\[
\theta_{m,r}(\tau, z) := \sum_{k \in \mathbb{Z}} e(mk + r/2) u^{2mk+r} q^{(2mk+r)^2/4m}, \tag{B.10}
\]
and define also \(S_{m,r}(\tau) := \frac{1}{2\pi i} \partial_{z} \theta_{m,r}(\tau, z)|_{z=0}, \) so that
\[
S_{m,r}(\tau) = \sum_{k \in \mathbb{Z}} e(mk + r/2)(2mk + r)q^{(2mk+r)^2/4m}. \tag{B.11}
\]

As in the integral index case, \(\theta_{m,r} \) depends only on \(r \mod 2m \). We recover \(-\theta_1 \) upon specializing \(\theta_{m,r} \) to \(m = r = 1/2 \).
Table 16 Twisted Euler characters at \(\ell = 3, X = A_2^{12} \)

\((g) \)	1A	2A	4A	2B	2C	3A	6A	3B	6B	4B	4C	5A	10A	12A	6C	6D	8AB	8CD	20AB	11AB	22AB																				
\(\eta_2	\eta_2 \)	1	1	1	4	2	8	2	1	2	2	3	1	3	4	3	12	4	2	4	1	5	1	5	4	6	24	6	1	6	2	8	4	8	1	10	8	11	1	11	4
\(\chi^{g1}_{A} \)	12	12	0	4	-4	3	-3	0	0	0	4	2	2	0	1	1	0	2	0	1	1																				
\(\chi^{g2}_{A} \)	12	-12	0	4	-4	3	-3	0	0	0	4	2	2	0	1	1	0	2	0	1	-1																				
Table 17 Twisted Euler characters at $\ell = 4$, $X = A_8^4$

g	1A	2A	2B	4A	4B	2C	3A	6A	6B	8A	4C	7AB	14AB									
$r_0 h_q$	1	1	2	2	4	4	2	4	1	3	3	2	6	2	4	8	4	1	7	1	7	2
$\bar{\chi}_g^{A_8^4}$	8	8	0	0	0	4	2	0	0	0	0	0	0	0	1	1	0	0	0	1	1	
$\chi_g^{A_8^4}$	8	-8	0	0	0	0	-2	0	0	0	0	0	0	1	-1							

Table 18 Twisted Euler characters at $\ell = 5$, $X = A_8^6$

g	1A	2A	2B	2C	3A	6A	5A	10A	4AB	4CD	12AB									
$r_0 h_q$	1	1	4	2	2	4	3	3	3	12	5	1	5	4	2	8	4	1	6	24
$\bar{\chi}_g^{A_8^6}$	6	6	2	2	0	0	1	1	0	2	0	0								
$\chi_g^{A_8^6}$	6	-6	-2	2	0	0	1	-1	0	0	0									

Table 19 Twisted Euler characters at $\ell = 6$, $X = A_8^6 D_4$

g	1A	3A	2A	2B	4A	3A	6A	8A																
$r_0 h_q$	1	1	1	3	2	4	2	2	3	3	3	3	4	2	4	6	5	1	5	3	3	2	6	6
$\bar{\chi}_g^{A_8^6 D_4}$	4	4	2	0	0	0	1	1	0															
$\chi_g^{A_8^6 D_4}$	4	-4	0	0	0	0	1	-1	0															

Table 20 Twisted Euler characters at $\ell = 6 + 3$, $X = D_4^6$

g	1A	3A	2A	6A	3B	6C	4A	12A	5A	15AB	2B	2C	4B	6B	6C											
$r_0 h_q$	1	1	1	3	2	1	2	1	2	2	3	1	3	2	6	2	4	4	5	1	5	1	6	1	6	6
$\bar{\chi}_g^{D_4^6}$	6	6	2	2	3	0	0	1	1	0	2	0														
$\chi_g^{D_4^6}$	6	6	2	2	3	0	0	1	1	0	2	-1														
$\bar{\chi}_g^{D_4^6}$	12	-6	4	-2	0	0	0	2	-1	0	0	0														

Table 21 Twisted Euler characters at $\ell = 7$, $X = A_8^4$

g	1A	2A	4A	3AB	6AB					
$r_0 h_q$	1	1	4	2	2	8	3	1	3	4
$\bar{\chi}_g^{A_8^4}$	4	4	0	0	0	1	1			
$\chi_g^{A_8^4}$	4	-4	0	0	0	0	1			

Table 22 Twisted Euler characters at $\ell = 8$, $X = A_8^6 D_2^3$

g	1A	2A	2B	2C	4A							
$r_0 h_q$	1	1	1	2	2	1	2	1	2	1	2	4
$\bar{\chi}_g^{A_8^6 D_2^3}$	2	2	0	0	0							
$\chi_g^{A_8^6 D_2^3}$	2	-2	0	0	0							
$\bar{\chi}_g^{A_8^6 D_2^3}$	2	2	2	0	0							
$\chi_g^{A_8^6 D_2^3}$	2	-2	0	0	0							

Table 23 Twisted Euler characters at $\ell = 9$, $X = A_8^3$

g	1A	2A	2B	2C	3A	6A						
$r_0 h_q$	1	1	1	4	2	1	2	2	3	3	3	12
$\bar{\chi}_g^{A_8^3}$	3	3	1	0	0	0						
$\chi_g^{A_8^3}$	3	-3	1	0	0	0						
Table 24 Twisted Euler characters at $\ell = 10, X = A_2^9D_6$

g	$1A$	$2A$	$4A\bar{B}$	
n_0h_0	1	1	2	2
$\bar{\chi}_{g}$	2	2	0	
χ_{g^2}	2	-2	0	
χ_{g^3}	1	1	1	
χ_{g^6}	1	1	-1	

Table 25 Twisted Euler characters at $\ell = 10 + 5, X = D_6^4$

g	$1A$	$2A$	$3A$	$2B$	$4A\bar{B}$		
n_0h_0	1	2	3	1	2	4	4
$\bar{\chi}_{g}$	4	0	1	2	0		
χ_{g^2}	4	-4	0	1	-2	0	

Table 26 Twisted Euler characters at $\ell = 12, X = A_{11}D_7E_6$

g	$1A$	$2A$	$2B$	$4A\bar{B}$			
n_0h_0	1	2	2	3	2	4	8
$\bar{\chi}_{g}$	4	4	2	0	1	1	0
χ_{g^2}	4	-4	0	0	1	-1	0

Table 27 Twisted Euler characters at $\ell = 12 + 4, X = E_6^4$

g	$1A$	$2A$	$2B$	$4A\bar{B}$				
n_0h_0	1	2	2	3	3	2	4	8
$\bar{\chi}_{g}$	2	2	0	0				
χ_{g^2}	2	-2	0					

Table 28 Twisted Euler characters at $\ell = 13, X = A_{12}^2$

g	$1A$	$2A$	$4A\bar{B}$	
n_0h_0	1	4	2	8
$\bar{\chi}_{g}$	2	2	0	
χ_{g^2}	2	-2	0	

Table 29 Twisted Euler characters at $\ell = 14 + 7, X = D_6^3$

g	$1A$	$2A$	$3A$	
n_0h_0	1	2	3	3
$\bar{\chi}_{g}$	3	1	0	
χ_{g^2}	3	1	0	

Table 30 Twisted Euler characters at $\ell = 16, X = A_{15}D_9$

g	$1A$	$2A$	$4A\bar{B}$	
n_0h_0	1	2	1	2
$\bar{\chi}_{g}$	1	1	1	
χ_{g^2}	1	1	-1	
χ_{g^3}	1	1	1	
χ_{g^6}	1	1	-1	
Table 31 Twisted Euler characters at $\ell = 18, X = A_{17}E_7$

ℓ	$1A$	$2A$				
$\lambda	n_0	$	1	1	1	2
$\lambda	\chi_1^X$	1	1			
$\lambda	\chi_2^X$	1	-1			
$\lambda	\chi_3^X$	1	1			

Table 32 Twisted Euler characters at $\ell = 18 + 9, X = D_{19}E_7$

ℓ	$1A$	$2A$				
$\lambda	n_0	$	1	1	2	2
$\lambda	\chi_1^X$	2	0			
$\lambda	\chi_2^X$	2	0			

Table 33 Twisted Euler characters at $\ell = 22 + 11, X = D_{12}^2$

ℓ	$1A$	$2A$				
$\lambda	n_0	$	1	1	2	4
$\lambda	\chi_1^X$	1	1			
$\lambda	\chi_2^X$	1	-1			

Table 34 Twisted Euler characters at $\ell = 25, X = A_{25}$

ℓ	$1A$	$2A$				
$\lambda	n_0	$	1	1	3	4
$\lambda	\chi_1^X$	3	1			

Table 35 Twisted Euler characters at $\ell = 30 + 6, 10, 15, X = E_6^3$

ℓ	$1A$	$2A$				
$\lambda	n_0	$	1	1	3	3
$\lambda	\chi_1^X$	3	1			

For $m \in \mathbb{Z} + 1/2, m > 0$, define

$$\mu_{m,0}(r,z) := i \sum_{k \in \mathbb{Z}} (-1)^k u^{2mk+1/2} q^{mk^2+k/2} \frac{1}{1 - u q^k} = \frac{-iu^{1/2}}{y - 1} + O(q). \quad (B.12)$$

Given $\alpha \in \mathbb{Q}$ write $[\alpha]$ for the operator on q-series (in rational, possibility negative powers of q) that eliminates exponents not contained in $\mathbb{Z} + \alpha$, so that if $f = \sum_{\beta \in \mathbb{Q}} c(\beta)q^\beta$ then

$$[\alpha]f := \sum_{n \in \mathbb{Z}} c(n + \alpha)q^{n+\alpha} \quad (B.13)$$
B.2 Shadows

Let \(X \) be a Niemeier root system and \(m = m^X \) be the Coxeter number of \(X \). For \(g \in G^X \), we define the associated shadow function \(S^X_g = (S^X_{g,r}) \) by setting
\[
S^X_g := S^X_{g,1} + S^X_{g,2} + S^X_{g,3}
\]
(B.14)

where the \(S^X_{g,r} \), \&c., are defined in the following way, in terms of the twisted Euler characters \(\chi^X_{g,r} \), \&c. given in Sect. A.3, and the unary theta series \(S_{m,r} \) (cf. (B.6)).

Note that if \(m = m^X \) then \(S^X_{g,r} = S^X_{g,r+2m} = -S^X_{g,-r} \) for all \(g \in G^X \), so we need specify the \(S^X_{g,r} \), \&c., only for \(0 < r < m \).

If \(X_A = \emptyset \) then \(S^X_{g,r} := 0 \). Otherwise, we define \(S^X_{g,r} \) for \(0 < r < m \) by setting
\[
S^X_{g,r} := \begin{cases}
\chi^X_{g,r} S_{m,r} & \text{if } r = 0 \mod 2, \\
\chi^X_{g,r} S_{m,r} & \text{if } r = 1 \mod 2.
\end{cases}
\]
(B.15)

If \(X_D = \emptyset \) then \(S^X_{g,r} := 0 \). If \(X_D \neq \emptyset \) then \(m \) is even and \(m \geq 6 \). If \(m = 6 \) then set
\[
S^X_{g,r} := \begin{cases}
0 & \text{if } r = 0 \mod 2, \\
\chi^X_{g,r} S_{m,r} + \chi^X_{g,r} S_{6,6-r} & \text{if } r = 1, 5 \mod 6, \\
\chi^X_{g,r} S_{6,r} & \text{if } r = 3 \mod 6.
\end{cases}
\]
(B.16)

If \(m > 6 \) and \(m = 2 \mod 4 \) then set
\[
S^X_{g,r} := \begin{cases}
0 & \text{if } r = 0 \mod 2, \\
\chi^X_{g,r} S_{m,r} + \chi^X_{g,r} S_{m,m-r} & \text{if } r = 1 \mod 2.
\end{cases}
\]
(B.17)

If \(m > 6 \) and \(m = 0 \mod 4 \) then set
\[
S^X_{g,r} := \begin{cases}
\chi^X_{g,r} S_{m,m-r} & \text{if } r = 0 \mod 2, \\
\chi^X_{g,r} S_{m,r} & \text{if } r = 1 \mod 2.
\end{cases}
\]
(B.18)

If \(X_E = \emptyset \) then \(S^X_{g,r} := 0 \). Otherwise, \(m \) is 12 or 18 or 30. In case \(m = 12 \) define \(S^X_{g,r} \) for \(0 < r < 12 \) by setting
\[
S^X_{g,r} := \begin{cases}
\chi^X_{g,r} (S_{12,1} + S_{12,7}) & \text{if } r \in \{1, 7\}, \\
\chi^X_{g,r} (S_{12,5} + S_{12,11}) & \text{if } r \in \{5, 11\}, \\
\chi^X_{g,r} (S_{12,4} + S_{12,8}) & \text{if } r \in \{4, 8\}, \\
0 & \text{else.}
\end{cases}
\]
(B.19)

In case \(m = 18 \) define \(S^X_{g,r} \) for \(0 < r < 18 \) by setting
\[
S^X_{g,r} := \begin{cases}
\chi^X_{g,r} (S_{18,1} + S_{18,18-r}) & \text{if } r \in \{1, 5, 7, 11, 13, 17\}, \\
\chi^X_{g,r} S_{18,9} & \text{if } r \in \{3, 15\}, \\
\chi^X_{g,r} (S_{18,3} + S_{18,9} + S_{18,15}) & \text{if } r = 9, \\
0 & \text{else.}
\end{cases}
\]
(B.20)

In case \(m = 30 \) define \(S^X_{g,r} \) for \(0 < r < 30 \) by setting
\[
S^X_{g,r} := \begin{cases}
\chi^X_{g,r} (S_{30,1} + S_{30,11} + S_{30,19} + S_{30,29}) & \text{if } r \in \{1, 11, 19, 29\}, \\
\chi^X_{g,r} (S_{30,7} + S_{30,13} + S_{30,17} + S_{30,23}) & \text{if } r \in \{7, 13, 17, 23\}, \\
0 & \text{else.}
\end{cases}
\]
(B.21)
B.3 Explicit prescriptions

Here, we give explicit expressions for all the umbral McKay–Thompson series \(H_g^X \). Most of these appeared first in [15,16]. The expressions in Sects. B.3.3, B.3.4, B.3.7 and B.3.14 are taken from [26]. The expressions in Sects. B.3.11, B.3.15, B.3.19 and B.3.23 are taken from [14]. The expressions for \(H_g^{X+3} \) in Sect. B.3.6, and the expressions for \(H_{44,4}^{(12+4)} \) and \(H_{64,6}^{(12+4)} \) in Sect. B.3.13, appears here for the first time.

The labels for conjugacy classes in \(G^X \) are as in Sect. A.2.

B.3.1 \(t = 2, X = A_2^{24} \)

We have \(G^{(2)} = G^X \simeq M_{24} \) and \(m^X = 2 \). So for \(g \in M_{24} \), the associated umbral McKay–Thompson series \(H_g^{(2)} = (H_g^{(2)}) \) is a 4-vector-valued function, with components indexed by \(r \in \mathbb{Z}/4\mathbb{Z} \), satisfying \(H_{g,r}^{(2)} = -H_{g,-r}^{(2)} \), and in particular, \(H_g^{(2)} = 0 \) for \(r = 0 \) \(\mod 2 \). So it suffices to specify the \(H_g^{(2)} \) explicitly.

Define \(H_g^{(2)} = (H_g^{(2)}) \) for \(g = e \) by requiring that

\[
-2\Psi_{1,1}(r,z)\psi_1^{(2)}(r,z) = -24\mu_{2,0}(r,z) + \sum_{r \mod 4} H_{g,r}^{(2)}(\tau)\theta_{2,r}(r,z), \tag{B.22}
\]

where

\[
\psi_1^{(2)}(r,z) := 4 \left(\frac{\theta_1(r,z)^2}{\theta_1(r,0)^2} + \frac{\theta_3(r,z)^2}{\theta_3(r,0)^2} + \frac{\theta_4(r,z)^2}{\theta_4(r,0)^2} \right). \tag{B.23}
\]

More generally, for \(g \in G^{(2)} \) define

\[
H_{g,1}^{(2)}(\tau) := \frac{\tilde{\chi}_{24}^{(2)}(r)}{24} - F_{g,1}^{(2)}(\tau) \frac{1}{S_{2,1}(\tau)}, \tag{B.24}
\]

where \(\tilde{\chi}_{24}^{(2)} \) and \(F_{24}^{(2)} \) are as specified in Table 36. Note that \(\tilde{\chi}_{24}^{(2)} = \tilde{\chi}_{24}^{X^4} \), the latter appearing in Table 15. Also, \(S_{2,1}(\tau) = \eta(\tau)^3 \).

The functions \(f_{23,a} \) and \(f_{23,b} \) in Table 36 are cusp forms of weight two for \(\Gamma_0(23) \), defined by

\[
f_{23,a}(\tau) := \frac{\eta(\tau)^3\eta(23\tau)^3}{\eta(2\tau)\eta(46\tau)} + 3\eta(\tau)^2\eta(23\tau)^2 + 4\eta(\tau)(2\tau)^2\eta(23\tau)\eta(46\tau) + 4\eta(\tau)^2(2\tau)^2\eta(46\tau)^2, \tag{B.25}
\]

\[
f_{23,b}(\tau) := \eta(\tau)^3\eta(23\tau)^2.
\]

Note that the definition of \(F_{24}^{(2)} \) appearing here for \(g \in 23A\cup 23B \) corrects errors in [11, 12].

B.3.2 \(t = 3, X = A_2^{12} \)

We have \(G^{(3)} = G^X \simeq 2.M_{12} \) and \(m^X = 3 \). So for \(g \in 2.M_{12} \), the associated umbral McKay–Thompson series \(H_g^{(3)} = (H_g^{(3)}) \) is a 6-vector-valued function, with components indexed by \(r \in \mathbb{Z}/6\mathbb{Z} \), satisfying \(H_{g,r}^{(3)} = -H_{g,-r}^{(3)} \), and in particular, \(H_g^{(3)} = 0 \) for \(r = 0 \) \(\mod 3 \). So it suffices to specify the \(H_g^{(3)} \) and \(H_{g,1}^{(3)} \) explicitly.

Define \(H_g^{(3)} = (H_g^{(3)}) \) for \(g = e \) by requiring that

\[
-2\Psi_{1,1}(r,z)\psi_1^{(3)}(r,z) = -12\mu_{3,0}(r,z) + \sum_{r \mod 6} H_{g,r}^{(3)}(\tau)\theta_{3,r}(r,z), \tag{B.26}
\]
Table 36 Character values and weight two forms for \(\ell = 2, X = A_1^{24} \)

\([g] \)	\(\chi_g^{(2)} \)	\(F_g^{(2)}(\tau) \)
1A	24	0
2A	8	\(16\Lambda_2(\tau) \)
2B	0	\(2\eta(\tau)^3\eta(2\tau)^{-4} \)
3A	6	\(6\Lambda_3(\tau) \)
3B	0	\(2\eta(\tau)^6\eta(3\tau)^{-2} \)
4A	0	\(2\eta(2\tau)^9\eta(4\tau)^{-4} \)
4B	4	\(4(-\Lambda_2(\tau) + \Lambda_4(\tau)) \)
4C	0	\(2\eta(\tau)^2\eta(2\tau)^2\eta(4\tau)^{-2} \)
5A	4	\(2\Lambda_5(\tau) \)
6A	2	\(2(-\Lambda_2(\tau) - \Lambda_3(\tau) + \Lambda_6(\tau)) \)
6B	0	\(2\eta(\tau)^6\eta(3\tau)^{2}\eta(6\tau)^{-2} \)
7A8	3	\(\Lambda_3(\tau) \)
8A	2	\(-\Lambda_4(\tau) + \Lambda_8(\tau) \)
10A	0	\(2\eta(\tau)^3\eta(2\tau)\eta(5\tau)^{-3} \)
11A	2	\(2(\Lambda_{11}(\tau) - 11\eta(\tau)^3\eta(11\tau)^{-1}) \)
12A	0	\(2\eta(\tau)^3\eta(4\tau)^{2}\eta(6\tau)^{3}\eta(2\tau)^{-1}\eta(3\tau)^{-1}\eta(12\tau)^{-2} \)
12B	0	\(2\eta(\tau)^9\eta(4\tau)^3\eta(6\tau)^{-3}\eta(2\tau)^{-1}\eta(12\tau)^{-1} \)
14AB	1	\((-\Lambda_2(\tau) - \Lambda_4(\tau) + 14\eta(\tau)\eta(2\tau)\eta(7\tau)^{-1}\eta(14\tau)^{-1}/3 \)
15AB	1	\((-\Lambda_3(\tau) - \Lambda_5(\tau) + 15\eta(\tau)\eta(3\tau)\eta(5\tau)^{-1}\eta(15\tau)^{-1}/4 \)
21AB	0	\((7\eta(\tau)^3\eta(7\tau)^{3}\eta(3\tau)^{-1}\eta(21\tau)^{-1} - \eta(\tau)^{9}\eta(3\tau)^{-1})/3 \)
23AB	1	\((\Lambda_{23}(\tau) - 23\eta(3\tau)(-69\eta(2\tau))/11 \)

where

\[
\varphi_1^{(3)}(\tau, z) := 2 \left(\frac{\theta_3(\tau, z)^2 \theta_4(\tau, z)^2}{\theta_3(\tau, 0)^2 \theta_4(\tau, 0)^2} + \frac{\theta_4(\tau, z)^2 \theta_2(\tau, z)^2}{\theta_2(\tau, 0)^2 \theta_3(\tau, 0)^2} \right). \tag{B.27}
\]

More generally, for \(g \in G^{(3)} \) define

\[
H_{g1}^{(3)}(\tau) := \frac{\chi_g^{(3)}}{12} H_{e1}^{(3)}(\tau) + \frac{1}{2} \left(F_g^{(3)} + F_g^{(3)} \right), \tag{B.28}
\]

\[
H_{g2}^{(3)}(\tau) := \frac{\chi_g^{(3)}}{12} H_{e1}^{(3)}(\tau) + \frac{1}{2} \left(F_g^{(3)} - F_g^{(3)} \right) \frac{1}{\tilde{S}_{3,2}(\tau)}. \tag{B.29}
\]

where \(\chi_g^{(3)} \) and \(F_g^{(3)} \) are as specified in Table 37, and \(z \) is the non-trivial central element of \(G^{(3)} \). The action of \(g \mapsto zg \) on conjugacy classes can be read off Table 37, for the horizontal lines indicate the sets \([g] \cup [gz]\).

Note the eta product identities, \(S_{3,1}(\tau) = \eta(2\tau)^5/\eta(4\tau)^2 \), and \(S_{3,2}(\tau) = \eta(\tau)^2\eta(4\tau)^2/\eta(2\tau) \). Note also that \(\tilde{X}^{(3)} = \tilde{X}_A^{(3)} \) and \(\tilde{X}^{(3)} = \tilde{X}_A^{(3)} \), the latter appearing in Table 16.

The function \(f_{44} \) is the unique new cusp form of weight 2 for \(\Gamma_0(44) \), normalized so that \(f_{44}(\tau) = q + O(q^3) \) as \(\Im(\tau) \to \infty \). The coefficients \(c_g(d) \) and \(c'_{g}(d) \) for \(g \in 10A \cup 22A \cup 22B \) are given by

\[
c_{10A}(2) = -5, \quad c_{10A}(4) = -\frac{5}{3}, \quad c_{10A}(5) = -\frac{2}{3}, \quad c_{10A}(10) = 1, \quad c_{10A}(20) = -\frac{1}{3}, \tag{B.30}
\]

\[
c_{22AB}(2) = -\frac{11}{5}, \quad c_{22AB}(4) = \frac{11}{5}, \quad c_{22AB}(11) = -\frac{2}{15}, \quad c_{22AB}(22) = \frac{1}{5}, \quad c_{22AB}(44) = -\frac{1}{15}, \tag{B.31}
\]

\[
c_{22AB}(1) = 1, \quad c'_{22AB}(2) = 4, \quad c'_{22AB}(4) = 8. \tag{B.32}
\]
where χ_{ℓ} and $\bar{\chi}_{\ell}$ (cf. Table 17), and the $\psi_{g}^{(4)}$ are meromorphic Jacobi forms of weight 1 and index 4 given explicitly in Table 38.
\[\psi_{6BC}^{(4)} := (\theta_1(t, z + \frac{1}{3}) \theta_1(t, z + \frac{1}{3}) - \theta_1(t, z - \frac{1}{3}) \theta_1(t, z - \frac{1}{3})) \times \frac{-i}{\theta_1(3\tau, 6z)} \frac{\eta(3\tau)}{\eta(3\tau)}\]
\[\psi_{7AB}^{(4)} := \left(\prod_{j=1}^{3} \theta_1(t, 2z + \frac{1}{2}) \theta_1(t, z - \frac{1}{2}) + \prod_{j=1}^{3} \theta_1(t, 2z - \frac{1}{2}) \theta_1(t, z + \frac{1}{2}) \right) \times \frac{-i}{\theta_2(3\tau, 7z)} \frac{\eta(7\tau)}{\eta(7\tau)}\]
\[\psi_{14AB}^{(4)} := \left(\prod_{j=1}^{3} \theta_1(t, 2z + \frac{1}{2}) \theta_1(t, z - \frac{1}{2}) + \prod_{j=1}^{3} \theta_1(t, 2z - \frac{1}{2}) \theta_1(t, z + \frac{1}{2}) \right) \times \frac{i}{\theta_2(7\tau, 7z)} \frac{\eta(7\tau)}{\eta(7\tau)}\] (B.34)

For use later on, note that \(\psi_{1A}^{(4)} = -2\psi_{1A}^{(4)}\), where
\[\psi_{1A}^{(4)}(t, z) := \frac{\theta_1(t, 2z)}{\theta_1(t, z)^2}.\] (B.35)

B.3.4 \(r = 5, X = \mathbb{A}_4^2\)

We have \(m^X = 5\), so the umbral McKay–Thompson series \(H_g^{(5)} = (H_g^{(5)})^{(5)}\) associated to \(g \in G^{(5)}\) is a 10-vector-valued function, with components indexed by \(r \in \mathbb{Z}/10\mathbb{Z}\).

Define \(H_g^{(5)} = (H_g^{(5)})^{(5)}\) for \(g \in G^{(5)}\) \(g \notin 5A \cup 104A\), by requiring that
\[\psi_g^{(5)}(t, z) = -\chi_g^{(5)} \frac{\mu_{4,0}^{(5)}(t, z)}{\mu_{4,0}^{(5)}(t, z)} + \sum_{r \mod 10} H_g^{(5)}(t) \theta_0^{(5)}(t, z),\] (B.36)

where \(\chi_g^{(5)} := \chi_g^{(5)}\) and \(\bar{\chi}_g^{(5)} := \bar{\chi}_g^{(5)}\) (cf. Table 18), and the \(\psi_g^{(5)}\) are meromorphic Jacobi forms of weight 1 and index 5 given explicitly in Table 39.

\[
\begin{align*}
\psi_{4AB}^{(5)}(t, z) &:= -i \theta_2(t, 2z) \frac{\theta_1(t, z + \frac{1}{4}) \theta_1(t, 3z + \frac{1}{4}) - \theta_1(t, z - \frac{1}{4}) \theta_1(t, 3z - \frac{1}{4})}{\theta_2(2t, 2z)} \frac{\eta(2t)^2}{\eta(t)} \\
\psi_{4CD}^{(5)}(t, z) &:= -i \theta_2(t, 2z) \frac{\theta_1(t, z + \frac{1}{4}) \theta_1(t, 3z - \frac{1}{4}) + \theta_1(t, z - \frac{1}{4}) \theta_1(t, 3z + \frac{1}{4})}{\theta_2(2t, 2z)} \frac{\eta(2t)^2}{\eta(t)} \\
\psi_{12AB}^{(5)}(t, z) &:= i \frac{\theta_1(t, 2z)}{\theta_2(6t, 6z)} \left(\theta_1(t, z + \frac{1}{12}) \theta_1(t, z + \frac{1}{4}) \theta_1(t, z + \frac{7}{12}) \theta_1(t, 3z - \frac{1}{4}) \right. \\
&\left. - \theta_1(t, z - \frac{1}{12}) \theta_1(t, z - \frac{1}{4}) \theta_1(t, z - \frac{7}{12}) \theta_1(t, 3z + \frac{1}{4}) \right) \frac{\eta(6t)}{\eta(t)^3}.\] (B.37)

\(g\)	\(\chi^{(5)}_g\)	\(\bar{\chi}^{(5)}_g\)	\(\psi^{(5)}_g(t, z)\)
1A	6	6	\(2i \theta(t, 2z) \theta_1(t, 3z) \theta(t, z)^{-1} \eta(t)^3\)
2A	-6	6	\(-2i \theta(t, 2z) \theta_1(t, 3z) \theta(t, z)^{-3} \eta(t)^3\)
2B	-2	2	\(-2i \theta(t, 2z) \theta_1(t, z)^{-1} \theta_1(t, z)^{-2} \eta(t)^3\)
2C	2	2	\(2i \theta(t, 2z) \theta_1(t, 3z) \theta(t, z)^{-3} \eta(t)^3\)
3A	0	0	\(-2i \theta(t, 2z) \theta_1(t, 3z) \theta(t, 3z)^{-3} \eta(t)^3\)
6A	0	0	\(-2i \theta(t, 2z) \theta_1(t, 3z) \theta(t, 3z)^{-3} \eta(t)^3\)
4AB	0	0	cf. (B.37)
4CD	0	2	cf. (B.37)
12AB	0	0	cf. (B.37)
For \(g \in 5A \) use the formulas of Sect. B.3.20 to define
\[
H_{5A,r}^{(5)}(\tau) := H_{1A,r}^{(25)}(\tau/5) - H_{1A,10-r}^{(25)}(\tau/5) + H_{1A,10+r}^{(25)}(\tau/5) - H_{1A,20-r}^{(25)}(\tau/5) + H_{1A,20+r}^{(25)}(\tau/5).
\]
(B.38)

For \(g \in 10A \) set \(H_{10A,r}^{(5)}(\tau) := -(-1)^r H_{3A,r}^{(5)}(\tau) \).

For use later on we note that \(\psi_{1A}^{(5)} = -2\psi_{1,1,\psi_1}^{(5)} \), where
\[
\psi_1^{(5)}(\tau, z) := \frac{\theta_1(\tau, 3z)}{\theta_1(\tau, z)}.
\]
(B.39)

B.3.5 \(t = 6, X = A_6^4D_4 \)

We have \(m^X = 6 \), so the umbral McKay–Thompson series \(H_g^{(6)} = (H_{g,r}) \) associated to \(g \in G^{(6)} \) is a 12-vector-valued function with components indexed by \(r \in \mathbb{Z}/12\mathbb{Z} \). We have \(H_{g,r}^{(6)} = -H_{g,-r}^{(6)} \), so it suffices to specify the \(H_{g,1}^{(6)} \) for \(r \in \{1, 2, 3, 4, 5\} \).

To define \(H_{g,1}^{(6)} = (H_{g,1}^{(6)}) \) for \(g = e \), first define \(h(\tau) = (h_r(\tau)) \) by requiring that
\[
-2\Psi_{1,1}(\tau, z)\phi_1^{(6)}(\tau, z) = -24\mu_{6,0}(\tau, z) + \sum_{r \mod 12} h_r(\tau)\theta_{6,r}(\tau, z),
\]
(B.40)

where
\[
\phi_1^{(6)}(\tau, z) := \psi_1^{(2)}(\tau, z)\phi_1^{(5)}(\tau, z) - \psi_1^{(3)}(\tau, z)\psi_1^{(4)}(\tau, z).
\]
(B.41)

[Cf. (B.23), (B.27), (B.35), (B.39).] Now define the \(H_{1A,r}^{(6)} \) by setting
\[
H_{1A,1}^{(6)}(\tau) := \frac{1}{24}(5h_1(\tau) + h_5(\tau)),
\]
\[
H_{1A,2}^{(6)}(\tau) := \frac{1}{6}h_2(\tau),
\]
\[
H_{1A,3}^{(6)}(\tau) := \frac{1}{4}h_3(\tau),
\]
\[
H_{1A,4}^{(6)}(\tau) := \frac{1}{6}h_4(\tau),
\]
\[
H_{1A,5}^{(6)}(\tau) := \frac{1}{24}(h_1(\tau) + 5h_5(\tau)).
\]
(B.42)

Define \(H_{2A,r}^{(6)} \) by requiring
\[
H_{2A,r}^{(6)}(\tau) := -(-1)^r H_{1A,r}^{(6)}(\tau).
\]
(B.43)

For the remaining \(g \), recall (B.13). The \(H_{g,r}^{(6)} \) for \(g \notin 1A \cup 2A \) are defined as follows for \(r = 2 \) and \(r = 4 \), noting that \(H_{g,4}^{(3)} = H_{g,-2}^{(3)} = -H_{g,2}^{(3)} \).

\[
H_{2B,r}^{(6)}(\tau) := \left[-\frac{r^2}{24}\right] H_{1C,r}^{(4)}(\tau/2)
\]
\[
H_{4A,r}^{(6)}(\tau) := \left[-\frac{r^2}{24}\right] H_{1B,r}^{(4)}(\tau/2)
\]
\[
H_{3A,r}^{(6)}(\tau) := \left[-\frac{r^2}{24}\right] H_{6C,r}^{(3)}(\tau/2)
\]
\[
H_{6A,r}^{(6)}(\tau) := \left[-\frac{r^2}{24}\right] H_{6D,r}^{(3)}(\tau/2)
\]
\[
H_{8A,r}^{(6)}(\tau) := \left[-\frac{r^2}{24}\right] H_{8C,r}^{(3)}(\tau/2)
\]
(B.44)
For the $H_{g,3}^{(6)}$ we define

\[
H_{2B,3}^{(6)}(r), H_{4A,3}^{(6)}(r) := - \left[- \frac{9}{25} \right] H_{6A,1}^{(2)}(r/3),
\]

\[
H_{3A,3}^{(6)}(r), H_{6A,3}^{(6)}(r) := 0,
\]

\[
H_{8A,3}^{(6)}(r) := - \left[- \frac{9}{25} \right] H_{12A,1}^{(2)}(r/3).
\]

(B.45)

Noting that $H_{g,5}^{(2)} = H_{g,1}^{(2)}$ and $H_{g,5}^{(3)} = -H_{g,1}^{(3)}$, the $H_{g,1}^{(6)}$ and $H_{g,5}^{(6)}$ are defined for $o(g) \neq 0$ mod 3 by setting

\[
H_{2B}^{(6)}(r) := \left[- \frac{1}{25} \right] \left\{ H_{6A,1}^{(2)}(r/3) + H_{4C,1}^{(3)}(r/2) \right\},
\]

\[
H_{4A}^{(6)}(r) := \left[- \frac{1}{25} \right] \left\{ H_{6A,1}^{(2)}(r/3) + H_{4B,1}^{(3)}(r/2) \right\},
\]

\[
H_{8AB}^{(6)}(r) := \left[- \frac{1}{25} \right] \left\{ H_{12A,1}^{(2)}(r/3) + H_{8CD,1}^{(3)}(r/2) \right\}.
\]

(B.46)

It remains to specify the $H_{g,r}^{(6)}$ when $g \in 3A \cup 6A$ and r is 1 or 5. These cases are determined using the formulas of Sect. B.3.17 to set

\[
H_{3A,1}^{(6)}(r), H_{6A,1}^{(6)}(r) := H_{1A,1}^{(18)}(3r) - H_{1A,1}^{(18)}(3r) + H_{1A,1}^{(18)}(3r),
\]

\[
H_{3A,5}^{(6)}(r), H_{6A,5}^{(6)}(r) := H_{1A,5}^{(18)}(3r) - H_{1A,7}^{(18)}(3r) + H_{1A,17}^{(18)}(3r).
\]

(B.47)

B.3.6 $\ell = 6 + 3, X = D_4^+$

We have $m^X = 6$, so the umbral McKay–Thompson series $H_g^{(6+3)} = (H_g^{6+3})$ associated to $g \in G^{(6+3)}$ is a 12-vector-valued function with components indexed by $r \in \mathbb{Z}/12\mathbb{Z}$. In addition to the identity $H_{g,r}^{(6+3)} = -H_{g,-r}^{(6+3)}$, we have $H_{g,r}^{(6+3)} = 0$ for $r \equiv 0 \mod 2$. Thus, it suffices to specify the $H_{g,r}^{(6+3)}$ for $r \in \{1, 3, 5\}$.

Recall (B.13). For $r = 1$, define

\[
H_{1A,1}^{(6+3)}(r), H_{3A,1}^{(6+3)}(r) := H_{1A,1}^{(6)}(r) + H_{1A,5}^{(6)}(r),
\]

\[
H_{2A,1}^{(6+3)}(r), H_{6A,1}^{(6+3)}(r) := H_{2B,1}^{(6)}(r) + H_{2B,5}^{(6)}(r),
\]

\[
H_{3B,1}^{(6+3)}(r) := H_{3A,1}^{(6)}(r) + H_{3A,5}^{(6)}(r),
\]

\[
H_{4C,1}^{(6+3)}(r) := -2 \frac{\eta(r)^3}{\eta(3r)},
\]

\[
H_{4A,1}^{(6+3)}(r), H_{12A,1}^{(6+3)}(r) := H_{4B,1}^{(6+3)}(r) + H_{4AB,1}^{(6+3)}(r),
\]

\[
H_{5A,1}^{(6+3)}(r), H_{15A,1}^{(6+3)}(r) := \left[- \frac{1}{25} \right] H_{15AB,1}^{(2)}(r/3),
\]

\[
H_{2C,1}^{(6+3)}(r) := H_{4A,1}^{(6)}(r) - H_{4A,5}^{(6)}(r),
\]

\[
H_{4B,1}^{(6+3)}(r) := H_{4B,1}^{(6)}(r) - H_{4AB,5}^{(6)}(r),
\]

\[
H_{6B,1}^{(6+3)}(r) := H_{6A,1}^{(6)}(r) - H_{6B,5}^{(6)}(r),
\]

\[
H_{6C,1}^{(6+3)}(r) := -2 \frac{\eta(2r) \eta(3r)}{\eta(6r)}.
\]

(B.48)

Then, define $H_{2B,1}^{(6+3)}$ by setting

\[
H_{2B,1}^{(6+3)}(r) := 2 H_{4B,1}^{(6+3)}(r) + 2 \frac{\eta(r)^3}{\eta(2r)^2}.
\]

(B.49)
For \(r = 3 \) set

\[
\begin{align*}
H_{1A,3}^{(6+3)}(\tau) & := 2H_{1A,3}^{(6)}(\tau), \\
H_{1A,3}^{(6+3)}(\tau) & := -H_{1A,3}^{(6)}(\tau), \\
H_{2A,3}^{(6+3)}(\tau) & := 2H_{2B3}^{(6)}(\tau), \\
H_{2A,3}^{(6+3)}(\tau) & := -H_{2B3}^{(6)}(\tau), \\
H_{4A,3}^{(6+3)}(\tau) & := 2H_{8AB3}^{(6)}(\tau), \\
H_{6A,3}^{(6+3)}(\tau) & := -H_{6AB3}^{(6)}(\tau), \\
H_{12A,3}^{(6+3)}(\tau) & := -H_{15AB3}^{(6)}(\tau), \\
H_{5A,3}^{(6+3)}(\tau) & := -2[-\frac{9}{2}]H_{15AB1}^{(2)}(\tau), \\
H_{15A,3}^{(6+3)}(\tau) & := [-\frac{9}{2}]H_{15AB1}^{(2)}(\tau),
\end{align*}
\]

(B.50)

and

\[
H_{3B3}^{(6+3)}(\tau), H_{3C3}^{(6+3)}(\tau), H_{2B3}^{(6+3)}(\tau), H_{2C3}^{(6+3)}(\tau), H_{4B3}^{(6+3)}(\tau), H_{6B3}^{(6+3)}(\tau), H_{6C3}^{(6+3)}(\tau) := 0.
\]

(B.51)

For \(r = 5 \) define \(H_{g,r}^{(6+3)}(\tau) := H_{g,r}^{(6+3)}(\tau) \) for \([g] \in \{1A, 3A, 2A, 6A, 3B, 3C, 4A, 12A, 5A, 15AB\} \), and set \(H_{g,r}^{(6+3)}(\tau) := -H_{g,r}^{(6+3)}(\tau) \) for the remaining cases, \([g] \in \{2B, 2C, 4B, 6B, 6C\} \).

B.3.7 \(t = 7, X = A_6^4 \)

We have \(m^X = 7 \), so the umbral McKay–Thompson series \(H_g^{(7)} = (H_{g,r}^{(7)}) \) associated to \(g \in G^{(7)} = G^X \cong SL_2(3) \) is a 14-vector-valued function, with components indexed by \(r \in \mathbb{Z}/14\mathbb{Z} \).

Define \(H_{g,0}^{(7)} = (H_{g,0}^{(7)}(\tau,r)) \) for \(g \in G^{(7)} \) by requiring that

\[
\psi_{g}^{(7)}(\tau,z) = -\chi_{g}^{(7)} \mu_{g,0}^{(7)}(\tau) + \sum_{r \mod 14} H_{g,0}^{(7)}(\tau)\theta_{r,r}(\tau,z),
\]

(B.52)

where \(\chi_{g}^{(7)} := \chi_{g}^{X4} \) and \(\bar{\chi}_{g}^{(7)} := \bar{\chi}_{g}^{X4} \) (cf. Table 21), and the \(\psi_{g}^{(7)} \) are meromorphic Jacobi forms of weight 1 and index 7 given explicitly in Table 40.

\[
\begin{align*}
\psi_{3A}^{(7)}(\tau,z) & := -i\theta_1(\tau,4z+\frac{1}{3})\theta_1(\tau,z-\frac{1}{2}) + \theta_1(\tau,4z-\frac{1}{3})\theta_1(\tau,z+\frac{1}{3}) \eta(3\tau) \\
\psi_{6A}^{(7)}(\tau,z) & := -i\theta_1(\tau,4z+\frac{1}{3})\theta_1(\tau,z-\frac{1}{6}) + \theta_1(\tau,4z-\frac{1}{3})\theta_1(\tau,z+\frac{1}{6}) \eta(3\tau)
\end{align*}
\]

(B.53)

For use later on we note that

\[
\varphi_{1}^{(7)}(\tau,z) := \frac{\psi_{1A}^{(7)}(\tau,z)}{\theta_{1}(\tau,2z)}.
\]

(B.54)

Table 40 Character values and meromorphic Jacobi forms for \(\ell = 7, X = A_6^4 \)

\([g] \)	\(\chi_{g}^{(7)} \)	\(\bar{\chi}_{g}^{(7)} \)	\(\psi_{g}^{(7)}(\tau,z) \)
1A	4	4	\(2\theta_{1}(\tau,4z)\theta_{1}(\tau,z)^{-1}\eta(3\tau) \)
2A	-4	4	\(-2\theta_{1}(\tau,4z)\theta_{1}(\tau,z)^{-1}\eta(3\tau) \)
4A	0	0	\(-2\theta_{1}(\tau,4z)\theta_{1}(2\tau,2z)^{-1}\eta(2\tau)\eta(\tau) \)
3A	1	1	\text{cf. (B.53)}
6A	-1	1	\text{cf. (B.53)}
B.3.8 \(t = 8, X = A_8^2 D_2^2 \)

We have \(m^X = 8 \), so the umbral McKay-Thompson series \(H_{g,r}^{(8)} = (H_{g,r}) \) associated to \(g \in G^{(8)} \) is a 16-vector-valued function with components indexed by \(r \in \mathbb{Z}/16\mathbb{Z} \). We have \(H_{g,r}^{(8)} = -H_{g,r}^{(8)-} \), so it suffices to specify the \(H_{g,r}^{(8)} \) for \(r \in \{1, 2, 3, 4, 5, 6, 7\} \).

To define \(H_{g,r}^{(8)} = (H_{g,r}^{(8)}) \) for \(g = e \), first define \(h(\tau) = (h_r(\tau)) \) by requiring that

\[
-2\Psi_{1,1}(\tau, z) \left(\varphi_1^{(8)}(\tau, z) + \frac{1}{2} \varphi_2^{(8)}(\tau, z) \right) = -24\mu_{8,0}(\tau, z) + \sum_{r \mod 16} h_r(\tau) \theta_{8,r}(\tau, z),
\]

(B.55)

where

\[
\varphi_1^{(8)}(\tau, z) := \varphi_1^{(3)}(\tau, z) \varphi_1^{(6)}(\tau, z) - 5\varphi_1^{(4)}(\tau, z) \varphi_1^{(5)}(\tau, z),
\]

\[
\varphi_2^{(8)}(\tau, z) := \varphi_1^{(4)}(\tau, z) \varphi_1^{(5)}(\tau, z) - \varphi_1^{(8)}(\tau, z).
\]

(Cf. (B.27), (B.35), (B.39), (B.41).) Now define the \(H_{1,A,r}^{(8)} \) by setting

\[
H_{1,A,r}^{(8)}(\tau) := \frac{1}{6} h_r(\tau),
\]

(B.57)

for \(r \in \{1, 3, 4, 5, 7\} \), and

\[
H_{1,A,2}^{(8)}(\tau), H_{1,A,6}^{(8)}(\tau) := \frac{1}{12} (h_2(\tau) + h_6(\tau)).
\]

(B.58)

Define \(H_{2,A,r}^{(8)} \) for \(1 \leq r \leq 7 \) by requiring

\[
H_{2,A,r}^{(8)}(\tau) := (-1)^r H_{1,A,r}^{(8)}(\tau).
\]

(B.59)

For the remaining \(g \), recall (B.13). The \(H_{g,r}^{(8)} \) for \(g \in 2B \cup 2C \cup 4A \) are defined as follows for \(r \in \{1, 3, 5, 7\} \), noting that \(H_{g,7}^{(4)} = H_{g,-1}^{(4)} = -H_{g,1}^{(4)} \), &c.

\[
H_{2B,1}^{(8)}(\tau) := [-\frac{r^2}{32}] H_{4,1}^{(4)}(\tau/2)
\]

\[
H_{4A,r}^{(8)}(\tau) := [-\frac{r^2}{32}] H_{4b,r}^{(4)}(\tau/2).
\]

(B.60)

The \(H_{2B,1}^{(8)} \) and \(H_{4A,r}^{(8)} \) vanish for \(r = 0 \mod 2 \).

B.3.9 \(t = 9, X = A_8^3 \)

We have \(m^X = 9 \), so for \(g \in G^{(9)} \) the associated umbral McKay-Thompson series \(H_{g,r}^{(9)} = (H_{g,r}^{(9)}) \) is a 18-vector-valued function, with components indexed by \(r \in \mathbb{Z}/18\mathbb{Z} \), satisfying \(H_{g,r}^{(9)} = -H_{g,r}^{(9)-} \), and in particular, \(H_{g,0}^{(9)} = 0 \) for \(r = 0 \mod 9 \). So it suffices to specify the \(H_{g,r}^{(9)} \) for \(r \in \{1, 2, 3, 4, 5, 6, 7, 8\} \).

Define \(H_{g,r}^{(9)} = (H_{g,r}^{(9)}) \) for \(g = e \) by requiring that

\[
-\Psi_{1,1}(\tau, z) \varphi_1^{(9)}(\tau, z) = -3\mu_{9,0}(\tau, z) + \sum_{r \mod 18} H_{g,r}^{(9)}(\tau) \theta_{9,r}(\tau, z),
\]

(B.61)
where
\[\psi_1^{(9)}(\tau, z) := \psi_1^{(3)}(\tau, z)\psi_1^{(7)}(\tau, z) - \psi_1^{(5)}(\tau, z)^2. \]
(B.62)

[Cf. (B.27), (B.39), (B.54)].

Recall (B.13). The \(H_{28r}^{(9)} \) are defined for \(r \in \{1, 2, 4, 5, 7, 8 \} \) by setting
\[H_{28r}^{(9)}(\tau) := [-\frac{r^2}{36}]H_{6cr}^{(3)}(\tau/3), \]
(B.63)
where we note that \(H_{64}^{(3)} = H_{6}^{(3)} = -H_{g2}^{(3)}, \) &c. We determine \(H_{28r}^{(9)} \) using “\(\ell = 18, X = A_{17}E_7 \)” to set
\[H_{28r}^{(9)}(\tau) := H_{1A_r}^{(18)}(2\tau) - H_{1A_{18-r}}^{(18)}(2\tau) \]
(B.64)
for \(r \in \{3, 6\} \).

The \(H_{34r}^{(9)} \) are defined by the explicit formulas
\[H_{34r}^{(9)}(\tau) := [-\frac{r}{36}]f_1^{(9)}(\tau/3), \]
\[H_{34r}^{(9)}(\tau) := [-\frac{r}{36}]f_2^{(9)}(\tau/3), \]
\[H_{34r}^{(9)}(\tau) := 0, \]
\[H_{34r}^{(9)}(\tau) := -\theta_{33}(\tau, 0), \]
\[H_{34r}^{(9)}(\tau) := -\frac{161}{36}r^{(9)}(\tau/3), \]
\[H_{34r}^{(9)}(\tau) := -\frac{25}{36}r^{(9)}(\tau/3), \]
\[H_{34r}^{(9)}(\tau) := \theta_{33}(\tau, 0), \]
\[H_{34r}^{(9)}(\tau) := -\frac{13}{36}r^{(9)}(\tau/3), \]
\[H_{34r}^{(9)}(\tau) := -\frac{28}{36}r^{(9)}(\tau/3), \]
where
\[f_1^{(9)}(\tau) := -2\frac{\eta(\tau)\eta(12\tau)\eta(18\tau)}{\eta(6\tau)\eta(9\tau)\eta(36\tau)}, \]
(B.65)
\[f_2^{(9)}(\tau) := \frac{\eta(2\tau)^6\eta(12\tau)\eta(18\tau)^2}{\eta(\tau)^4\eta(4\tau)\eta(6\tau)\eta(9\tau)\eta(36\tau)} - \frac{\eta(\tau)\eta(2\tau)\eta(3\tau)^2}{\eta(4\tau)^2\eta(9\tau)}. \]

Finally, the \(H_{4r}^{(9)} \) are determined for \(g \in 2A \cup 2C \cup 6A \) by setting
\[H_{2Ar}^{(9)}(\tau) := (-1)^{r+1}H_{1Ar}^{(9)}(\tau), \]
\[H_{2Cr}^{(9)}(\tau) := (-1)^{r+1}H_{2Br}^{(9)}(\tau), \]
\[H_{6Ar}^{(9)}(\tau) := (-1)^{r+1}H_{3Ar}^{(9)}(\tau), \]
(B.67)

B.3.10 \(\ell = 10, X = A_2^9D_6 \)

We have \(m^X = 10 \), so the umbral McKay–Thompson series \(H_g^{(10)} = (H_{g2}^{(10)}) \) associated to \(g \in G^{(10)} \) is a 20-vector-valued function with components indexed by \(r \in \mathbb{Z}/20\mathbb{Z} \). We have \(H_g^{(10)} = -H_{g2}^{(10)} \), so it suffices to specify the \(H_{g2}^{(10)} \) for \(1 \leq r \leq 9 \).

To define \(H_{g2}^{(10)} = (H_{g2}^{(10)}) \) for \(g = e \), first define \(h(\tau) = (h_r(\tau)) \) by requiring that
\[-6\Psi_{11}(\tau, z)\psi_1^{(10)}(\tau, z) = -24\mu_{10,0}(\tau, z) + \sum_{r \mod 20} h_r(\tau)\theta_{10,r}(\tau, z), \]
(B.68)
where
\[\psi_1^{(10)}(\tau, z) := 5\psi_1^{(4)}(\tau, z)\psi_1^{(6)}(\tau, z) - \psi_1^{(5)}(\tau, z)^2. \]
(B.69)
[Cf. (B.35), (B.39), (B.41), (B.54).] Now define the $H_{14A,r}^{(10)}$ for r odd by setting

$$H_{14A,1}^{(10)}(\tau) := \frac{1}{24} \left(3h_1(\tau) + h_9(\tau) \right),$$

$$H_{14A,2}^{(10)}(\tau) := \frac{1}{24} \left(3h_3(\tau) + h_7(\tau) \right),$$

$$H_{14A,3}^{(10)}(\tau) := \frac{1}{6} h_5(\tau),$$

$$H_{14A,4}^{(10)}(\tau) := \frac{1}{24} \left(h_3(\tau) + 3h_7(\tau) \right).$$

(B.70)

For $r = 0 \mod 2$ set

$$H_{14A,1}^{(10)}(\tau) := \frac{1}{12} h_5(\tau),$$

(B.71)

and define $H_{14A,r}^{(10)}$ for $1 \leq r \leq 9$ by requiring

$$H_{14A,r}^{(10)}(\tau) := (-1)^r H_{14A,1}^{(10)}(\tau).$$

(B.72)

It remains to specify $H_{14A}^{(10)}$ for $g \in 4A \cup 4B$. For $r = 0 \mod 2$ set

$$H_{4A,0}^{(10)}(\tau) := 0.$$

(B.73)

For r odd, recall (B.13), and define

$$H_{4A,1}^{(10)}(\tau) := \left[-\frac{r^2}{40} \right] \frac{1}{2} \left(H_{10A,r}^{(2)}(\tau / 5) + H_{4CD,r}^{(5)}(\tau / 2) \right).$$

(B.74)

B.3.11 $\ell = 10 + 5, X = D_6^4$

We have $m^X = 10$, so the umbral McKay–Thompson series $H_g^{(10+5)} = (H_{g,r}^{(10+5)})$ associated to $g \in G^{(10+5)}$ is a 20-vector-valued function with components indexed by $r \in \mathbb{Z} / 20\mathbb{Z}$.

We have $H_{g,r}^{(10+5)} = 0$ for $r = 0 \mod 2$, so it suffices to specify the $H_{g,r}^{(10+5)}$ for r odd. Observing that $H_{g,r}^{(10+5)} = -H_{g,-r}^{(10+5)}$ we may determine $H_g^{(10+5)}$ by requiring that

$$\psi_g^{(5/2)}(\tau, z) = -2X_g^{(5/2)} i\mu_{5/2,0}(\tau, z) + \sum_{s \in \mathbb{Z} / 1 + 1/2 \mod 5} \sum_{\tau \mod 5} e(-r/2) H_{g,2r}^{(10+5)}(\tau) \theta_{5/2,r}(\tau, z),$$

(B.75)

where $X_g^{(5/2)} := \tilde{X}_g^{(5/2)}$ as in Table 25, and the $\psi_g^{(5/2)}$ are the meromorphic Jacobi forms of weight 1 and index 5/2 defined as follows (Table 41).

B.3.12 $\ell = 12, X = A_1 D_7 E_6$

We have $m^X = 12$, so the umbral McKay–Thompson series $H_g^{(12)} = (H_{g,r}^{(12)})$ associated to $g \in G^{(12)} \simeq \mathbb{Z} / 2\mathbb{Z}$ is a 24-vector-valued function with components indexed by $r \in \mathbb{Z} / 24\mathbb{Z}$.

We have $H_{g,r}^{(12)} = -H_{g,-r}^{(12)}$, so it suffices to specify the $H_{g,r}^{(12)}$ for $1 \leq r \leq 11$.

Table 41 Character values and meromorphic jacobi forms for $\ell = 10 + 5, X = D_6^4$

$[g]$	$\tilde{X}_g^{(5/2)}$	$\psi_g^{(5/2)}(\tau, z)$
1A	1	$2\theta(\tau,2\tau)^3 \theta(\tau, z)^{-1} \eta(\tau)^3$
2A	0	$-2\theta(\tau,2\tau)^3 \theta(\tau, z)^{-1} \eta(\tau)^3$
3A	1	$2\theta(\tau,2\tau)^3 \theta(\tau, z)^{-1} \eta(\tau)^3$
2B	2	$2\theta(\tau,2\tau)^3 \theta(\tau, z)^{-1} \eta(\tau)^3$
4A	0	$-2\theta(\tau,2\tau)^3 \theta(\tau, z)^{-1} \eta(\tau)^3$
To define $H_{12}^{(12)} = (H_{1r}^{(12)})$, first define $h(\tau) = (h_r(\tau))$ by requiring that

$$-2\Psi_{1,1}(r, z) \left(\psi_1^{(12)}(r, z) + \psi_2^{(12)}(r, z) \right) = -24\mu_{12,0}(r, z) + \sum_{r \mod 24} h_r(\tau) \theta_{12,r}(r, z),$$

(B.76)

where

$$\psi_1^{(12)}(r, z) := 3\psi_1^{(3)}(r, z) \psi_1^{(10)}(r, z) - 8\psi_1^{(4)}(r, z) \psi_1^{(9)}(r, z) + \psi_1^{(5)}(r, z) \psi_1^{(8)}(r, z),$$

(B.77)

and

$$\psi_2^{(12)}(r, z) := 4\psi_1^{(4)}(r, z) \psi_1^{(9)}(r, z) - \psi_1^{(5)}(r, z) \psi_1^{(8)}(r, z) - \psi_1^{(12)}(r, z).$$

[Cf. (B.27), (B.35), (B.39), (B.54), (B.56), (B.62), (B.69).] Now define the $H_{1A,r}^{(12)}$ for $r \neq 0 \mod 3$ by setting

$$H_{1A,1}^{(12)}(r) := \frac{1}{24} (3h_1(\tau) + h_7(\tau)),
H_{1A,2}^{(12)}(r), H_{1A,10}^{(12)}(r) := \frac{1}{24} (h_2(\tau) + h_{10}(\tau)),
H_{1A,4}^{(12)}(r), H_{1A,8}^{(12)}(r) := \frac{1}{12} (h_4(\tau) + h_8(\tau)),
H_{1A,5}^{(12)}(r) := \frac{1}{24} (3h_5(\tau) + h_{11}(\tau)),
H_{1A,7}^{(12)}(r) := \frac{1}{24} (h_1(\tau) + 3h_7(\tau)),
H_{1A,11}^{(12)}(r) := \frac{1}{24} (h_5(\tau) + 3h_{11}(\tau)).$$

(B.78)

For $r = 0 \mod 3$ set

$$H_{1A,r}^{(12)}(\tau) := \frac{1}{12} h_r(\tau),$$

(B.79)

and define $H_{2A,r}^{(12)}$ by requiring

$$H_{2A,r}^{(12)}(\tau) := (-1)^r H_{1A,r}^{(12)}(\tau).$$

(B.80)

B.3.13 $l = 12 + 4, X = E_6^4$

We have $m^X = 12$, so the umbral McKay–Thompson series $H_{g}^{(12+4)} = (H_{gr}^{(12+4)})$ associated to $g \in G^{(12+4)}$ is a 24-vector-valued function with components indexed by $r \in \mathbb{Z}/24\mathbb{Z}$.

In addition to the identity $H_{g}^{(12+4)} = -H_{g-r}^{(12+4)}$, we have $H_{g}^{(12+4)} = 0$ for $r \in \{2, 3, 6, 9, 10\}$, $H_{g}^{(12+4)} = H_{g}^{(12)}$, and $H_{g}^{(12+4)} = H_{g}^{(12)}$. Thus, it suffices to specify the $H_{g}^{(12)}, H_{g}^{(12+4)}$, and $H_{g}^{(12+4)}$.

Recall (B.13). Also, set $S_1^E(\tau) := S_{1,2,3}(\tau) + S_{1,2,7}(\tau)$, and $S_2^E(\tau) := S_{1,2,5}(\tau) + S_{1,2,11}(\tau)$.

For $r = 1$ define

$$H_{1A,1}^{(12+4)}(\tau) := H_{1A,1}^{(12)}(\tau) + H_{1A,7}^{(12)}(\tau),$$

$$H_{2A,1}^{(12+4)}(\tau) := [-\frac{1}{24}] \left(H_{8A,1}^{(12)}(\tau/2) - H_{8A,5}^{(12)}(\tau/2) \right),$$

$$H_{1A,1}^{(12+4)}(\tau) := \frac{1}{S_1^E(\tau)^2 - S_5^E(\tau)^2} \left(-2\frac{\eta(2\tau)^8}{\eta(\tau)^4} S_1^E(\tau) + 8\frac{\eta(\tau)^4 (4\tau)^4}{\eta(2\tau)^4} S_5^E(\tau) \right),$$

(B.81)

$$H_{1A,4}^{(12+4)}(\tau) := [-\frac{1}{24}] \left(H_{8A,1}^{(12+4)}(\tau/2) - H_{8A,5}^{(12+4)}(\tau/2) \right),$$

$$H_{8A,1}^{(12+4)}(\tau) := \frac{1}{S_1^E(\tau)^2 - S_5^E(\tau)^2} \left(-2F_{8A,1}^{(12+4)}(\tau) S_1^E(\tau) + 12F_{8A,5}^{(12+4)}(\tau/2) S_5^E(\tau) \right).$$
In the expression for \(g \in 8AB \), we write \(F_{8AB,1}^{(12+4)} \) for the unique modular form of weight 2 for \(\Gamma_0(32) \) such that
\[
F_{8AB,1}^{(12+4)}(\tau) = 1 + 12q + 4q^2 - 24q^5 - 16q^6 - 8q^8 + O(q^9),
\]
and write \(F_{8AB,5}^{(12+4)} \) for the unique modular form of weight 2 for \(\Gamma_0(64) \) such that
\[
F_{8AB,5}^{(12+4)}(\tau) = 3q + 4q^3 + 6q^5 - 8q^7 - 9q^9 + 12q^{11} - 18q^{13} - 24q^{15} + O(q^{17}).
\]

For \(r = 4 \) define
\[
H_{1A,4}^{(12+4)}(\tau) := H_{1A,4}^{(12)}(\tau) + H_{1A,8}^{(12)}(\tau),
\]
\[
H_{3A,4}^{(12+4)}(\tau) := H_{3A,4}^{(6)}(\tau/2) + H_{3A,4}^{(6)}(\tau/2),
\]
and set \(H_{g,4}^{(12+4)}(\tau) := 0 \) for \(g \in 2B \cup 4A \cup 8AB \).

For \(r = 5 \) define
\[
H_{1A,5}^{(12+4)}(\tau) := H_{1A,5}^{(12)}(\tau) + H_{1A,11}^{(12)}(\tau),
\]
\[
H_{2B,5}^{(12+4)}(\tau) := \left[-\frac{25}{24} \right] \left(H_{8AB,5}^{(6)}(\tau/2) - H_{8AB,1}^{(6)}(\tau/2) \right),
\]
\[
H_{4A,5}^{(12+4)}(\tau) := \frac{1}{S_5^2(\tau)^2 - S_5^2(\tau/2)^2} \left(\frac{2}{\eta(2\tau)^8} S_5^2(\tau) \eta(\tau)^4 - \frac{8}{\eta(2\tau)^4} S_5^2(\tau) \right),
\]
\[
H_{3A,5}^{(12+4)}(\tau) := \left[-\frac{25}{24} \right] \left(H_{8AB,5}^{(6)}(\tau/2) - H_{8AB,1}^{(6)}(\tau/2) \right),
\]
\[
H_{8AB,5}^{(12+4)}(\tau) := \frac{1}{S_5^2(\tau)^2 - S_5^2(\tau/2)^2} \left(2F_{8AB,1}^{(12+4)}(\tau) S_5^2(\tau) - 12F_{8AB,4}^{(12+4)}(\tau/2) S_5^2(\tau) \right).
\]

Finally, define \(H_{g,r}^{(12+4)} \) for \(g \in 2A \cup 6A \) by setting
\[
H_{2A,r}^{(12+4)}(\tau) := -(-1)^r H_{1A,r}^{(12+4)}(\tau),
\]
\[
H_{6A,r}^{(12+4)}(\tau) := -(-1)^r H_{3A,r}^{(12+4)}(\tau).
\]

B.3.14 \(\ell = 13, X = A_1^{12} \)

We have \(m^X = 13 \), so the umbral McKay–Thompson series \(H_g^{(13)} = (H_{g,r}^{(13)}) \) associated to \(g \in G^{(13)} = G^X \cong \mathbb{Z}/4\mathbb{Z} \) is a 26-vector-valued function, with components indexed by \(r \in \mathbb{Z}/26\mathbb{Z} \) (Table 39).

Define \(H_g^{(13)} = (H_{g,r}^{(13)}) \) for \(g \in G^{(13)} \) by requiring that
\[
\psi_g^{(13)}(\tau, z) = -\tilde{\chi}_g^{(13)} \mu_{13,0}(\tau, z) - \tilde{\chi}_g^{(13)} \mu_{13,0}(\tau, z) + \sum_{r \equiv 26} H_{g,r}^{(13)}(\tau) \phi_{13, r}(\tau, z),
\]
where \(\phi_{13}^{(13)} := \chi^{X_4}_g \) and \(\tilde{\chi}_g^{(13)} := \tilde{\chi}^{X_4}_g \) (cf. Table 28), and the \(\psi_g^{(13)} \) are meromorphic Jacobi forms of weight 1 and index 13 given explicitly in Table 42.

For use later we note that \(\psi_{1A}^{(13)} = -2\psi_{1,1}^{(13)} \), where
\[
\psi_{1A}^{(13)}(\tau, z) := \frac{\theta_1(\tau, z) \theta_1(\tau, 6z)}{\theta_1(\tau, 2z) \theta_1(\tau, 3z)},
\]
and
\[
\psi_{1,1}^{(13)}(\tau, z) := \frac{\theta_1(\tau, z) \theta_1(\tau, 6z)}{\theta_1(\tau, 2z) \theta_1(\tau, 3z)}.
\]
Table 42 Character values and meromorphic Jacobi forms for $\ell = 13, X = A_1^{12}$

ℓ	$X^{(1)}$	$X^{(13)}$	$\psi^{(1)}_{(1)}(r, z)$
1A	2	2	$2\vartheta_1(t, 6z\vartheta_1(t, z)^{-1}\eta(t)^2)$
2A	-2	2	$-2\vartheta_1(t, 6z\vartheta_1(t, z)^{-1}\eta(t)^3)$
4A	0	0	cf. (B.88)

B.3.15 $\ell = 14 + 7, X = D_8^3$

We have $m^X = 14$, so the umbral McKay–Thompson series $H_{g,r}^{(14+7)} = (H_{g,r}^{(14+7)})$ associated to $g \in G^{(14+7)}$ is a 82-vector-valued function with components indexed by $r \in \mathbb{Z}/28\mathbb{Z}$.

We have $H_{g,r}^{(14+7)} = 0$ for $r = 0 \mod 2$, so it suffices to specify the $H_{g,r}^{(14+7)}$ for r odd.

Observing that ψ is a permutation representation on 3 points. The $\psi_g^{(7/2)}$ are the meromorphic Jacobi forms of weight 1 and index 7/2 defined in Table 43.

B.3.16 $\ell = 16, X = A_{15}D_9$

We have $m^X = 16$, so the umbral McKay–Thompson series $H_{g,r}^{(16)} = (H_{g,r}^{(16)})$ associated to $g \in G^{(16)} \simeq \mathbb{Z}/32\mathbb{Z}$ is a 32-vector-valued function with components indexed by $r \in \mathbb{Z}/32\mathbb{Z}$.

We have $H_{g,r}^{(16)} = -H_{g,-r}^{(16)}$ so it suffices to specify the $H_{g,r}^{(16)}$ for $1 \leq r \leq 15$.

To define $H_{g,r}^{(16)} = (H_{g,r}^{(16)})$ for $g = e$, first define $h(t) = (h_r(t))$ by requiring that

$$-6 \varphi_{1,1}(t, z) \psi_1^{(16)}(t, z) + \frac{1}{2} \psi_2^{(16)}(t, z)$$

$$= -24 \mu_{16,0}(t, z) + \sum_{r \mod 32} h_r(t) \theta_{16,r}(t, z),$$

where

$$\varphi_1^{(16)}(t, z) := 8 \varphi_1^{(4)}(t, z) \varphi_1^{(13)}(t, z) - \varphi_1^{(5)}(t, z) \varphi_1^{(12)}(t, z) + \varphi_1^{(7)}(t, z) \varphi_1^{(10)}(t, z),$$

$$\varphi_2^{(16)}(t, z) := 12 \varphi_1^{(4)}(t, z) \varphi_1^{(13)}(t, z) - \varphi_1^{(5)}(t, z) \varphi_1^{(12)}(t, z) - 3 \varphi_1^{(16)}(t, z).$$

[Cf. (B.35), (B.39), (B.54), (B.69), (B.77), (B.89).] Now define $H_{14,1}^{(16)}$ by setting

$$H_{14,1}^{(16)}(t) := \frac{1}{12} h_r(t)$$

for r odd. For r even, $2 \leq r \leq 14$, use

$$H_{14,1}^{(16)}(t) := \frac{1}{24} (h_r(t) + h_{16-r}(t)).$$

Table 43 Character values and meromorphic Jacobi forms for $\ell = 14 + 7, X = D_8^3$

ℓ	$X^{(7/2)}$	$\psi^{(1)}_{(7/2)}(r, z)$
1A	3	$2\vartheta_1(t, 3z\vartheta_1(t, z)^{-1}\eta(t)^2)$
2A	1	$2\vartheta_2(t, 3z\vartheta_1(t, z)^{-1}\vartheta_2(t, z)^{-1}\eta(t)^2)$
3A	0	$-2\vartheta_1(t, z)\vartheta_1(t, 3z)\vartheta_1(3z)\vartheta_1(3z)^{-1}\eta(3z)$
Define $H^{(16)}_{2A,e}$ by requiring
\begin{equation}
H^{(16)}_{2A,e}(\tau) := -(-1)^{e} H^{(16)}_{1A,e}(\tau).
\end{equation}

\textbf{B.3.17 $\ell = 18$, $X = A_{17}E_{7}$}

We have $m^{X} = 18$, so the umbral McKay–Thompson series $H^{(18)}_{g}$ is $(H^{(18)}_{g})$ associated to $g \in G^{(18)} \simeq \mathbb{Z}/2\mathbb{Z}$ is a 36-vector-valued function with components indexed by $r \in \mathbb{Z}/36\mathbb{Z}$.

We have $H^{(18)}_{2r} = -H^{(18)}_{2r}$, so it suffices to specify the $H^{(18)}_{2r}$ for $1 \leq r \leq 17$.

To define $H^{(18)}_{g}$ for $g = e$, first define $h(r) := (h_{r}(r))$ by requiring that
\begin{equation}
-24\Phi_{1,1}(r,z)\phi^{(18)}(r,z) = -24\mu_{18,0}(r,z) + \sum_{r \mod 36} h_{r}(r)\theta_{18,r}(r,z),
\end{equation}

where
\begin{equation}
\phi^{(18)} := \frac{1}{12} \left(\psi^{(18)}_{1} + \frac{1}{3} \psi^{(18)}_{3} + \frac{1}{4} \eta \left(\psi^{(12)}_{1} + 2\psi^{(12)}_{2} + \frac{1}{3} \psi^{(12)}_{3} \right) \right).
\end{equation}

For the definition of $\phi^{(18)}$ we require
\begin{align*}
\psi^{(9)}_{2}(r,z) & := \psi^{(4)}_{1}(r,z)\psi^{(6)}_{1}(r,z) - 4\psi^{(5)}_{1}(r,z)^{2} - 4\psi^{(9)}_{1}(r,z), \\
\psi^{(11)}_{1}(r,z) & := 3\psi^{(5)}_{1}(r,z)\psi^{(7)}_{1}(r,z) + 2\psi^{(3)}_{1}(r,z)\psi^{(9)}_{1}(r,z) - \psi^{(4)}_{1}(r,z)\psi^{(8)}_{1}(r,z), \\
\psi^{(12)}_{3}(r,z) & := \psi^{(4)}_{1}(r,z)\psi^{(9)}_{1}(r,z), \\
\psi^{(14)}_{1}(r,z) & := 3\psi^{(5)}_{1}(r,z)\psi^{(10)}_{1}(r,z) + \psi^{(3)}_{1}(r,z)\psi^{(12)}_{1}(r,z) - 4\psi^{(4)}_{1}(r,z)\psi^{(11)}_{1}(r,z), \\
\psi^{(15)}_{1}(r,z) & := \psi^{(5)}_{1}(r,z)\psi^{(11)}_{1}(r,z) + 6\psi^{(3)}_{1}(r,z)\psi^{(13)}_{1}(r,z) - \psi^{(4)}_{1}(r,z)\psi^{(12)}_{1}(r,z), \\
\psi^{(15)}_{2}(r,z) & := \psi^{(4)}_{1}(r,z)\psi^{(12)}_{1}(r,z) - 2\psi^{(5)}_{1}(r,z)\psi^{(11)}_{1}(r,z) - 2\psi^{(15)}_{1}(r,z), \\
\psi^{(18)}_{1}(r,z) & := \psi^{(5)}_{1}(r,z)\psi^{(14)}_{1}(r,z) + 3\psi^{(3)}_{1}(r,z)\psi^{(16)}_{1}(r,z) - 4\psi^{(4)}_{1}(r,z)\psi^{(15)}_{1}(r,z), \\
\psi^{(18)}_{3}(r,z) & := \psi^{(4)}_{1}(r,z)\psi^{(15)}_{1}(r,z),
\end{align*}

in addition to the other $\psi^{(m)}_{k}$ that have appeared already. Now define the $H^{(18)}_{1A,e}$ by setting
\begin{equation}
H^{(18)}_{1A,e}(\tau) := \frac{1}{24} h_{r}(\tau)
\end{equation}

for r even. For r odd, use
\begin{align*}
H^{(18)}_{1A,1}(\tau) & := \frac{1}{24} (2h_{1}(\tau) + h_{17}(\tau)), \\
H^{(18)}_{1A,3}(\tau) & := \frac{1}{24} (h_{3}(\tau) + h_{9}(\tau)), \\
H^{(18)}_{1A,5}(\tau) & := \frac{1}{24} (2h_{5}(\tau) + h_{13}(\tau)), \\
H^{(18)}_{1A,7}(\tau) & := \frac{1}{24} (2h_{7}(\tau) + h_{11}(\tau)), \\
H^{(18)}_{1A,9}(\tau) & := \frac{1}{24} (h_{3}(\tau) + 2h_{3}(\tau) + h_{13}(\tau)), \\
H^{(18)}_{1A,11}(\tau) & := \frac{1}{24} (h_{7}(\tau) + 2h_{11}(\tau)), \\
H^{(18)}_{1A,13}(\tau) & := \frac{1}{24} (h_{5}(\tau) + 2h_{13}(\tau)), \\
H^{(18)}_{1A,15}(\tau) & := \frac{1}{24} (h_{15}(\tau) + h_{9}(\tau)), \\
H^{(18)}_{1A,17}(\tau) & := \frac{1}{24} (h_{1}(\tau) + 2h_{17}(\tau)).
\end{align*}
Define $H_{2A_4}^{(18)}$ in the usual way for root systems with a type A component, by requiring

$$H_{2A_4}^{(18)}(\tau) := -(1)^\ell H_{1A_4}^{(18)}(\tau). \quad (B.101)$$

B.3.18 $\ell = 18 + 9, X = D_{10}E_7^2$

We have $m^X = 18$, so the umbral McKay–Thompson series $H_g^{(18+9)} = (H_{g,r}^{(18+9)})$ associated to $g \in G^{(18+9)} \simeq \mathbb{Z}/2\mathbb{Z}$ is a 36-vector-valued function with components indexed by $r \in \mathbb{Z}/36\mathbb{Z}$. We have $H_{g,r}^{(18+9)} = -H_{g,18-r}^{(18+9)} = H_{g,18-r}^{(18+9)}$ for $1 \leq r \leq 17$, and $H_{g,r}^{(18+9)} = 0$ for $r = 0 \mod 2$, so it suffices to specify the $H_{g,r}^{(18+9)}$ for $r \in \{1, 3, 5, 7, 9\}$.

Define

$$H_{1A_4,r}^{(18+9)}(\tau) := H_{1A_4}^{(18+9)}(\tau) + H_{1A_4,18-r}^{(18+9)}(\tau),$$

$$H_{2A_4,r}^{(18+9)}(\tau) := H_{1A_4}^{(18+9)}(\tau) - H_{1A_4,18-r}^{(18+9)}(\tau), \quad (B.102)$$

for $r \in \{1, 3, 5, 7, 9\}$.

B.3.19 $\ell = 22 + 11, X = D_{12}$

We have $m^X = 22$, so the umbral McKay–Thompson series $H_g^{(22+11)} = (H_{g,r}^{(22+11)})$ associated to $g \in G^{(22+11)} \simeq \mathbb{Z}/2\mathbb{Z}$ is a 44-vector-valued function with components indexed by $r \in \mathbb{Z}/44\mathbb{Z}$. We have $H_{g,r}^{(22+11)} = -H_{g,22-r}^{(22+11)}$ and $H_{g,r}^{(22+11)} = 0$ for $r = 0 \mod 2$, so it suffices to specify the $H_{g,r}^{(22+11)}$ for r odd. Observing that $H_{g,r}^{(22+11)} = -H_{g,r}^{(22+11)}$ we may determine $H_{g,r}^{(22+11)}$ by requiring that

$$\psi^{(1/2)}_g(\tau, z) = -2\, \xi^{(1/2)}_g \mu_{11/2}(\tau, z) + \sum_{r \in \mathbb{Z}+1/2 \atop r \mod 11} e(-r/2)H_{g,2r}^{(22+11)}(\tau)\theta_{11/2,r}(\tau, z), \quad (B.103)$$

where $\xi^{(1/2)}_g := 2, \xi^{(1/2)}_{2A} := 0$, and the $\psi^{(1/2)}_g$ are the meromorphic Jacobi forms of weight 1 and index $11/2$ defined as follows.

$$\psi^{(1/2)}_{1A}(\tau, z) := 2i \frac{\theta_1(\tau, 4z)}{\theta_1(\tau, z) \theta_1(\tau, 2z)} \eta(\tau)^3$$

$$\psi^{(1/2)}_{2A}(\tau, z) := -2i \frac{\theta_1(\tau, 4z)}{\theta_2(\tau, z) \theta_2(\tau, 2z)} \eta(\tau)^3 \quad (B.104)$$

B.3.20 $\ell = 25, X = A_{24}$

We have $m^X = 25$, so for $g \in G^{(25)} \simeq \mathbb{Z}/2\mathbb{Z}$, the associated umbral McKay–Thompson series $H_g^{(25)} = (H_{g,r}^{(25)})$ is a 50-vector-valued function, with components indexed by $r \in \mathbb{Z}/50\mathbb{Z}$, satisfying $H_{g,r}^{(25)} = -H_{g,25-r}^{(25)}$, and in particular, $H_{g,r}^{(25)} = 0$ for $r = 0 \mod 25$. So it suffices to specify the $H_{g,r}^{(25)}$ for $1 \leq r \leq 24$.

Define $H_{g}^{(25)} = (H_{g,r}^{(25)})$ for $g = e$ by requiring that

$$-\Psi_{1,1}(\tau, z)\varphi_1^{(25)}(\tau, z) = -\mu_{25,0}(\tau, z) + \sum_{r \mod 25} H_{e,r}^{(25)}(\tau)\theta_{25,r}(\tau, z), \quad (B.105)$$

where

$$\varphi_1^{(25)}(\tau, z) := \frac{1}{2}\varphi_1^{(5)}(\tau, z)\varphi_1^{(21)}(\tau, z) - \varphi_1^{(7)}(\tau, z)\varphi_1^{(19)}(\tau, z) + \frac{1}{2}\varphi_1^{(13)}(\tau, z)^2. \quad (B.106)$$
For the definition of $\phi_1^{(25)}$ we require
\[
\begin{align*}
\phi_1^{(17)}(r, z) &= 4\phi_1^{(5)}(r, z)\phi_1^{(13)}(r, z) - \phi_1^{(9)}(r, z)^2, \\
\phi_1^{(19)}(r, z) &= \phi_1^{(4)}(r, z)\phi_1^{(16)}(r, z) + 2\phi_1^{(7)}(r, z)\phi_1^{(13)}(r, z) - \phi_1^{(5)}(r, z)\phi_1^{(15)}(r, z), \\
\phi_1^{(21)}(r, z) &= \phi_1^{(5)}(r, z)\phi_1^{(17)}(r, z) - 2\phi_1^{(9)}(r, z)\phi_1^{(13)}(r, z),
\end{align*}
\]

in addition to the other $\phi_1^{(m)}$ that have appeared already. Define $H_1^{(25)}$ in the usual way for root systems with a type A component, by requiring
\[
H_1^{(18)}(r) := -(−1)^r H_1^{(18)}(r).
\]

B.3.21 $\ell = 30 + 15, X = D_{16}E_8$

We have $m_X = 30$, so the umbral McKay–Thompson series $H_{g}^{(30+15)} = H_{g,r}^{(30+15)}$ associated to $g \in G^{(30+15)} = \{e\}$ is a 60-vector-valued function with components indexed by $r \in \mathbb{Z}/60\mathbb{Z}$. We have $H_{e,r}^{(30+15)} = -H_{e,-r}^{(30+15)}$, $H_{e,r}^{(30+15)} = H_{e,30-r}^{(30+15)}$ for $1 \leq r \leq 29$, and $H_{e,r}^{(30+15)} = 0$ for $r = 0 \mod 2$, so it suffices to specify the $H_{e,r}^{(30+15)}$ for $r \in \{1, 3, 5, 7, 9, 11, 13, 15\}$.

Define
\[
\begin{align*}
H_{1A,1}^{(30+15)}(r) &:= \frac{1}{2} \left(H_{1A,1}^{(30+6,10,15)} + \left[-\frac{1}{120} \right] H_{3A,1}^{(10+5)}(r/3) \right), \\
H_{1A,3}^{(30+15)}(r) &:= \left[-\frac{9}{120} \right] H_{3A,3}^{(10+5)}(r/3), \\
H_{1A,5}^{(30+15)}(r) &:= \left[-\frac{5}{120} \right] H_{3A,5}^{(10+5)}(r/3), \\
H_{1A,7}^{(30+15)}(r) &:= \frac{1}{2} \left(H_{1A,7}^{(30+6,10,15)} + \left[-\frac{49}{120} \right] H_{3A,3}^{(10+5)}(r/3) \right), \\
H_{1A,11}^{(30+15)}(r) &:= \frac{1}{2} \left(H_{1A,11}^{(30+6,10,15)} - \left[-\frac{1}{120} \right] H_{3A,1}^{(10+5)}(r/3) \right), \\
H_{1A,13}^{(30+15)}(r) &:= \frac{1}{2} \left(H_{1A,13}^{(30+6,10,15)} - \left[-\frac{49}{120} \right] H_{3A,3}^{(10+5)}(r/3) \right), \\
H_{1A,15}^{(30+15)}(r) &:= -\left[-\frac{105}{120} \right] H_{3A,5}^{(10+5)}(r/3).
\end{align*}
\]

B.3.22 $\ell = 30 + 6, 10, 15, X = E_8^3$

We have $m_X = 30$, and $G^{(30+6,10,15)} = G^X \simeq S_3$. The umbral McKay–Thompson series $H_{g}^{(30+6,10,15)}$ is a 60-vector-valued function with components indexed by $r \in \mathbb{Z}/60\mathbb{Z}$. We have

\[
H_{g,r}^{(30+6,10,15)}(r) := \begin{cases}
\pm H_{g,1}^{(30+6,10,15)} & \text{if } r = \pm 1, \pm 11, \pm 19, \pm 29 \mod 60, \\
\pm H_{g,7}^{(30+6,10,15)} & \text{if } r = \pm 7, \pm 13, \pm 17, \pm 27 \mod 60, \\
0 & \text{else},
\end{cases}
\]

so it suffices to specify the $H_{g,r}^{(30+6,10,15)}$ for $r = 1$ and $r = 7$. These functions may be defined as follows.

\[
\begin{align*}
H_{1A,1}^{(30+6,10,15)} &:= -\frac{1}{\eta(\tau)}\left(\sum_{k,l,m \geq 0} \sum_{k,l,m \geq 0} (-1)^{k+l+m} \eta^{2k+2l+2m} / (2 + 2\ell^2 + 4\ell) / (2 + 3/40) \\
H_{2A,1}^{(30+6,10,15)} &:= -\frac{1}{\eta(2\tau)}\left(\sum_{k,l,m \geq 0} \sum_{k,l,m \geq 0} (-1)^{k+l+m} \eta^{2k+2m} / (2 + 2\ell^2 + 4\ell) / (2 + 3/40)
\end{align*}
\]
\(\sum_{k \in \mathbb{Z}} (-1)^k q^{15k^2/2 + 3k/2 + 3/40} \)

\((B.111) \)

\[H_{347}^{(30+6,10,15)} = -2 \frac{\eta(\tau)}{\eta(3\tau)} \sum_{k \in \mathbb{Z}} (-1)^k q^{15k^2/2 + 3k/2 + 3/40} \]

\(\psi_{17}^{(46+23)} \) is a 92-vector-valued function with components indexed by \(r \in \mathbb{Z}/92\mathbb{Z} \). We have \(H_{e_{r}}^{(46+23)} = H_{e_{r}}^{(46+23)} \) for \(r \equiv 0 \mod 2 \), so it suffices to specify the \(H_{e_{r}}^{(46+23)} \) for odd. Observing that \(H_{e_{r}}^{(46+23)} = -H_{e_{r}}^{(46+23)} \) we may determine \(H_{e_{r}}^{(46+23)} \) by requiring that

\[\psi_{e}^{(23/2)}(\tau, z) = -2i \mu_{23/2,0}(\tau, z) + \sum_{r \in \mathbb{Z} + 1/2 \mod 23} e(-r/2) H_{e_{r}}^{(46+23)}(\tau) \theta_{23/2,0}(\tau, z), \]

where \(\psi_{e}^{(23/2)} \) is the meromorphic Jacobi forms of weight 1 and index 23/2 defined by setting

\[\psi_{e}^{(23/2)}(\tau, z) := 2i \frac{\theta_{1}(\tau, 6z)}{\theta_{1}(\tau, 2z) \theta_{1}(\tau, 3z)} \eta(\tau)^3. \]

\(B.3.23 \) \(\ell = 46 + 23, X = D_{24} \)

We have \(m^{X} = 22 \), and \(G^{(46+23)} = \{ e \} \). The umbral McKay–Thompson series \(H_{e_{r}}^{(46+23)} = (H_{e_{r}}^{(46+23)}) \) is a 92-vector-valued function with components indexed by \(r \in \mathbb{Z}/92\mathbb{Z} \). We have \(H_{e_{r}}^{(46+23)} = H_{e_{r}}^{(46+23)} \) for \(r \equiv 0 \mod 2 \), so it suffices to specify the \(H_{e_{r}}^{(46+23)} \) for odd. Observing that \(H_{e_{r}}^{(46+23)} = -H_{e_{r}}^{(46+23)} \) we may determine \(H_{e_{r}}^{(46+23)} \) by requiring that

\[\psi_{e}^{(23/2)}(\tau, z) = -2i \mu_{23/2,0}(\tau, z) + \sum_{r \in \mathbb{Z} + 1/2 \mod 23} e(-r/2) H_{e_{r}}^{(46+23)}(\tau) \theta_{23/2,0}(\tau, z), \]

where \(\psi_{e}^{(23/2)} \) is the meromorphic Jacobi forms of weight 1 and index 23/2 defined by setting

\[\psi_{e}^{(23/2)}(\tau, z) := 2i \frac{\theta_{1}(\tau, 6z)}{\theta_{1}(\tau, 2z) \theta_{1}(\tau, 3z)} \eta(\tau)^3. \]

\(B.4 \) Rademacher sums

Let \(\Gamma_{\infty} \) denote the subgroup of upper-triangular matrices in \(\text{SL}_2(\mathbb{Z}) \). Given \(\alpha \in \mathbb{R} \) and \(\gamma \in \text{SL}_2(\mathbb{Z}) \), define \(r_{1/2}^{[\alpha]}(\gamma, \tau) := 1 \) if \(\gamma \in \Gamma_{\infty} \). Otherwise, set

\[r_{1/2}^{[\alpha]}(\gamma, \tau) := e(-\alpha(\gamma \tau - \gamma \infty)) \sum_{k \geq 0} \frac{(2\pi i \alpha(\gamma \tau - \gamma \infty))^{n+1/2}}{\Gamma(n + 3/2)}, \]

where \(e(x) := e^{2\pi ix} \). Let \(n \) be a positive integer, and suppose that \(\nu \) is a multiplier system for vector-valued modular forms of weight 1/2 on \(\Gamma = \Gamma_{0}(n) \). Assume that \(\nu = \nu_{ij} \) satisfies \(\nu_{11}(T) = e^{2\pi i/m} \), for some basis \(\{ e_{1} \} \), for some positive integer \(m \), where \(T = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right) \). To these data, attach the Rademacher sum

\[R_{\Gamma, \nu}(c) := \lim_{K \to \infty} \sum_{\gamma \in \Gamma_{\infty}} \nu(\gamma) e\left(-\frac{\gamma T}{4m} \right) > e_{1} j(\gamma, \tau)^{1/2} r_{1/2}^{[-1/4m]}(\gamma, \tau), \]

where \(\Gamma_{KK'2} := \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma \mid 0 \leq c < K, |d| < K^{2} \right\} \), and \(j(\gamma, \tau) := (c \tau + d)^{-1} \) for \(\gamma := \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \). If the expression (B.115) converges then it defines a mock modular form of weight 1/2 for \(\Gamma \) whose shadow is given by an explicitly identifiable Poincaré series. We refer to [13] for a review of this, and to [53] for a more general and detailed discussion.

Convergence of (B.115) can be shown by rewriting the Fourier expansion as in [53, Theorem2] in terms of a sum of Kloosterman sums weighted by Bessel functions. This expression converges at \(w = 1/2 \) by the analysis discussed at the end of Sect. 3, following the method of Hookey as adapted by Gannon. That analysis requires not only establishing that the expressions converge, but also explicitly bounding the rates of convergence.
For the special case that $X = A^3_8$ we require 8-vector-valued functions $\tilde{t}^{(9)}_g = \tilde{t}^{(9)}_{g,r}$ for $g \in G^X$ with order 3 or 6. For such g, define $\tilde{t}^{(9)}_{g,r}$, for $0 < r < 9$, by setting

$$
\begin{aligned}
\tilde{t}^{(9)}_{3g,r}(\tau) &:= \begin{cases}
0, & \text{if } r \neq 0 \mod 3, \\
-\theta_{33}(\tau, 0), & \text{if } r = 3, \\
\theta_{30}(\tau, 0), & \text{if } r = 6,
\end{cases} \\
\tilde{t}^{(9)}_{6g,r}(\tau) &:= \begin{cases}
0, & \text{if } r \neq 0 \mod 3, \\
-\theta_{33}(\tau, 0), & \text{if } r = 3, \\
-\theta_{30}(\tau, 0), & \text{if } r = 6,
\end{cases}
\end{aligned}
$$

(B.116)

in the case that g has order 3, and

$$
\begin{aligned}
\tilde{t}^{(9)}_{6g,r}(\tau) &:= \begin{cases}
0, & \text{if } r \neq 0 \mod 3, \\
-\theta_{33}(\tau, 0), & \text{if } r = 3, \\
-\theta_{30}(\tau, 0), & \text{if } r = 6,
\end{cases}
\end{aligned}
$$

(B.117)

when $o(g) = 6$. Here, $\theta_{m,r}(\tau, z)$ is as defined in (B.5).

The following result is proved in [17], using an analysis of representations of the meta-plectic double cover of $\text{SL}_2(\mathbb{Z})$.

Theorem B.1 [17] Let X be a Niemeier root system and let $g \in G^X$. Assume that the Rademacher sum $R_X^X g o \tau \rho_z$ converges. If $X \neq A^3_8$, or if $X = A^3_8$ and $g \in G^X$ does not satisfy $o(g) = 0 \mod 3$, then we have

$$
\hat{H}^X_\rho_\tau = -2R_X^X g o \tau \rho_z l^X_g.
$$

(B.118)

If $X = A^3_8$ and $g \in G^X$ satisfies $o(g) = 0 \mod 3$ then

$$
\hat{H}^X_\rho_\tau = -2R_X^X g o \tau \rho_z l^X_g(\tau) + \tilde{t}^{(9)}(\tau).
$$

(B.119)

The $X = A^{24}_1$ case of Theorem B.1 was proven first in [12], via different methods.

References

1. Alexander, D., Cummins, C., McKay, J., Simons, C.: Completely replicable functions, Groups, combinatorics and geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, pp. 87–98 (1992)
2. Borcherds, R.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83(10), 3068–3071 (1986)
3. Borcherds, R.: Generalized Kac-Moody algebras. J. Algebra 115(2), 501–512 (1988)
4. Borcherds, R.: Central extensions of generalized Kac-Moody algebras. J. Algebra 140(2), 330–335 (1991)
5. Borcherds, R.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405–444 (1992)
6. Borcherds, R.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)
7. Bringmann, K., Ono, K.: The $f(q)$ mock theta function conjecture and partition ranks. Invent. Math. 165(2), 243–266 (2006)
8. Bringmann, K., Ono, K.: Coefficients of harmonic maass forms, Partitions, q-Series, and Modular Forms. In: Alladi, K., Garvan, F., (eds.) Developments in Mathematics, vol. 23, Springer New York, pp. 23–38 (2012)
9. Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125(1), 45–90 (2004)
10. Cheng, M.C.: K3 surfaces, $N = 4$ dyons and the Mathieu group M_{24}. Commun. Number Theory Phys. 4(4), 623–657 (2010)
11. Cheng, M., Duncan, J.: The largest Mathieu group and (mock) automorphic forms, String-Math 2011. In: Proceedings of Symposium in Pure Mathematics of American Mathematical Society, Providence, RI, pp. 53–82 (2012)
12. Cheng, M., Duncan, J.: On Rademacher Sums, the Largest Mathieu Group, and the Holographic Modularity of Moonshine. Commun. Number Theory Phys. 6(3) (2011)
13. Cheng, M., Duncan J.: Rademacher Sums and Rademacher Series, Conformal Field Theory, Automorphic Forms and Related Topics, Contributions in Mathematical and Computational Sciences, pp. 143–182 (2014)
14. Cheng, M., Duncan, J.: Meromorphic Jacobi Forms of Half-Integral Index and Umbral Moonshine Modules, in preparation
15. Cheng, M.C.N., Duncan, J.F.R., Harvey J.A.: Umbral Moonshine, Commun. Number Theory Phys. 8 (2) (2014)
16. Cheng, M.C.N., Duncan, J.F.R., Harvey J.A.: Umbral Moonshine and the Niemeier Lattices. Res Math Sci 1(3) (2014)
17. Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. London Math. Soc. **11**(3), 308–339 (1979)
18. Conway, J.H., Sloane, N.J.A.: On the enumeration of lattices of determinant one. J. Number Theory **15**(1), 83–94 (1982)
19. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. In: Bannai, E., Borcherds, R.E., Leech, J., Norton, S.P., Odlyzko, A.M., Parker, R.A., Queen, L., Venkov, B.B. (eds.) MR third ed., Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 290, Springer-Verlag, New York (1999)
20. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With comput. assist. In: Thackray, J.G. (ed.) Clarendon Press, Oxford (1985)
21. Dabholkar, A., Murthy, S., Zagier, D.: Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074
22. Dixon, L., Ginzburg, P., Harvey, J.: Beauty and the beast: superconformal symmetry in a Monster module. Comm. Math. Phys. **119**(3), 221–241 (1998)
23. Duncan, J., Griffin, M., Ono, K.: Moonshine. Res. Math. Sci. **2**(11) (2015)
24. Duncan, J., Harvey, J.: The Umbral Moonshine Module for the Unique Unimodular Niemeier Root System, arXiv:1412.8191
25. Duncan, J., O’Desky, A.: Super Vertex Algebras, Meromorphic Jacobi Forms, and Umbral Moonshine (in preparation)
26. Eguchi, T., Hikami, K.: Note on twisted elliptic genus of K3 surface. Phys. Lett. B **694**, 446–455 (2011)
27. Eichler, M., Zagier, D.: The theory of Jacobi forms. Birkhäuser, (1985)
28. Eichler, M., Zagier, D.: The theory of Jacobi forms. Birkhäuser, (1985)
29. Frenkel, I., Lepowsky, J., Meurman, A.: A natural representation of the Fischer-Griess Monster with the modular function J as character. Proc. Nat. Acad. Sci. USA **81**, 10 (1984). (Phys. Sci. 3256–3260)
30. Frenkel, I., Lepowsky, J., Meurman, A.: A moonshine module for the Monster, Vertex operators in mathematics and physics (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 3, Springer, New York, pp. 231–273 (1985)
31. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press Inc., Boston (1988)
32. Gaberdiel, M., Hohenegger, S., Volpato, R.: Mathieu Moonshine in the elliptic genus of K3. JHEP **2010**, 062 (1010)
33. Gaberdiel, M., Hohenegger, S., Volpato, R.: Mathieu twining characters for K3. JHEP **1009**, 19–58 (2010)
34. Gannon, T.: Monstrous moonshine: the first twenty-five years. Bull. Lond. Math. Soc. **38**(1), 1–33 (2006)
35. Gannon, T.: Moonshine beyond the Monster. Cambridge Monographs on Mathematical Physics. The bridge connecting algebra, modular forms and physics, Cambridge University Press, Cambridge (2006)
36. Gannon, T.: Much ado about Mathieu, arXiv:1211.5531
37. Gannon, T.: Monstrous moonshine: the first twenty-five years. Bull. Lond. Math. Soc. **38**(1), 1–33 (2006)
38. Humphreys, J.: Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol 9, Springer-Verlag, New York (1972)
39. Imamoğlu, Ö., Raum, M., Richer, O.: Holomorphic projections and Ramanujan’s mock theta functions. Proc. Natl. Acad. Sci. USA **111**, 3961–3967 (2014)
40. Kohnen, W.: Fourier coefficients of half-integral weight. Math. Ann. **271**, 237–268 (1985)
41. Mertens M.: Eichler-Selberg type identities for mixed mock modular forms. arXiv:1404.5491
42. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, Int. Press, Somerville, pp. 347–454 (2009)
43. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, Int. Press, Somerville, pp. 347–454 (2009)
44. Ono, K.: Some numerology between the Fischer-Griess Monster and the elliptic modular function. Bull. Lond. Math. Soc. **11**(3), 347–352 (1979)
45. Ramanujan, S.: The lost notebook and other unpublished papers, Springer-Verlag, New York (2008)
46. Zagier, D., Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), Astérisque (2009), no. 326, Exp. No. 986, vii–viii, 143–164 (2010), Séminaire Bourbaki. Vol. 2007/2008
47. Zagier, D.: Mock Theta Functions, Ph.D. thesis, Utrecht University, 2002. arXiv:0807.4834