Abstract. The Mining Software Repositories (MSR) conference is a reputed, long-running and flagship conference in the area of Software Analytics which has successfully completed more than one decade as of year 2016. We conduct a bibliometric and scientific publication mining based study to study how the conference has evolved over the recent past 13 years (from 2004 to 2007 as a workshop and then from 2008 to 2016 as a conference). Our objective is to perform an examination of the state of MSR so that the MSR community can identify strengths, areas of improvements and future directions for the conference.

Keywords: Bibliometric Analysis, Mining Software Analysis (MSR), Scientific Publication Mining, Software Analytics

1 Introduction

Research Motivation and Aim: The Mining Software Repositories (MSR) conference is an annual conference started as a one-day workshop in the year 2004 (co-located with International Conference on Software Engineering ICSE 2004 at Edinburgh, UK) with the aim of bring software analytics researchers and practitioners from both university and industry around the world to exchange research results and ideas. MSR 2004 (Edinburgh, UK) was the first edition of the event and the annual event completes 13 editions in 2016 (Texas, USA). We believe that a reflection of the 13 years of MSR is important for the MSR community to learn from its history and gain insights for further improving the visibility and quality of the conference. Our research motivation is to investigate answers to questions such as: how the conference has evolved over the past 13 years and what is the current status, what is the quality of the conference based on several key performance indicators, what improvements can be made and to what extent MSR is meeting its desired objectives. Our research aim is to systematically and scientifically explore and examine the state of MSR across various aspects of the conference. To the best of our knowledge, the study presented in this paper is the first in-depth examination of the state of MSR which
we believe is important for the MSR community to understand its development, evolution and identify future directions.

Table 1. Number of Papers Submitted (SUB), Types of Paper accepted (2004-2007)

Year	SUM	Accepted
2004	38	26 (All 4 Page)
2005	38	11 (5 Page Regular), 11 (5 Page Light Talk)
2006	45	16 (7 Page Full), 12 (3 Page Short), 11 (2 Page Challenge Report)
2007	52	16 (8 Page Full), 12 (4 pages Short), 3 (2 Page challenge Report), 3 (Prediction)

Table 2. Number of Full Papers Submitted (SFP), Number of Full Papers Accepted (AFP), Number of Short Papers Submitted (SSH), Number of Short Papers Accepted (ASH), Number of Data Showcase Submitted (SDS), Number of Data Showcase Accepted (ADS), Number of MSR Challenge Papers Submitted (SCH), Number of MSR Challenge Papers Accepted (ACH), and Acceptance Rate (AR)

Year	SFP	AFP	AR	SSH	ASP	AR	SDS	ADS	AR	SCH	ACP	AR
2016	103	36	34.95%	30	6	20.00%	13	7	53.85%	24	10	41.67%
2015	106	32	30.19%	20	10	50.00%	25	16	64.00%	21	14	66.66%
2014	85	29	34.12%	27	10	37.04%	22	15	68.18%	19	9	47.37%
2013	86	29	33.72%	22	5	22.73%	27	15	55.55%	29	12	41.38%
2012	64	18	28.13%	22	12	54.54%	NA	NA	NA	17	6	35.3%
2011	61	20	32.79%	17	6	35.29%	NA	NA	NA	6	5	83.33%
2010	51	15	29.41%	16	5	31.25%	NA	NA	NA	9	6	66.66%
2009	47	12	25.53%	18	10	55.56%	NA	NA	NA	9	5	55.55%
2008	21	8	38.10%	21	14	66.67%	NA	NA	NA	-	5	-

Related Work: Robles et al. review all papers published in the proceedings of MSR from 2004 to 2009. They analyze the papers that contained any experimental analysis of software projects for their potentiality of being replicated [3]. Hemmati et al. review 117 full papers published in the MSR proceedings between 2004 and 2012 [2]. They extract 268 comments from 117 papers, categorize them using a grounded theory methodology and create high-level themes [2]. Tripathi et al. study 5 years of research papers published in MSR series of conferences (2010-2014) and present insights on the number of studies using solely Open Source Software (OSS) data or solely (Closed Source Software) CSS data or both OSS and CSS data [4]. They also count the number of papers published by authors solely from Universities, solely from Industry and from both University and Industry [4].
2 Bibliometric Analysis & Results

Paper Acceptance Rate: We download all the papers published in 13 years of MSR. We also download the message from the General and Program Chairs which are published as part of the conference proceedings. Table 1 and 2 display the number and types of papers submitted across various tracks from the year 2004 to 2016. We extract the information about submitted and accepted papers from the message from the conference chairs and the PDF files of the papers which we were able for download. Table 2 reveals that the number of full or regular papers submitted increased from 21 in 2008 to 103 in 2016. The acceptance rate for full papers varies from a minimum of 25.53% to a maximum of 38.10% during a period of 2008 to 2016. Table 2 shows that MSR invites a variety of submissions in addition to regular papers such as short papers, data showcase and data challenge.

Year	Min.	Max.	Mean	Median	Sum
2004	0	253	47.38	27.5	1232
2005	17	487	69.91	46	1538
2006	1	440	46.15	29	1800
2007	3	242	53.76	39	1774
2008	4	120	37.22	24	1005
2009	0	160	38.85	26	1049
2010	5	197	36.38	25	946
2011	1	111	28.45	27	882
2012	2	93	22.36	18	805
2013	0	109	20.20	14	1232
2014	0	81	12.90	7	813
2015	0	15	2.46	1	177
2016	0	1	0.05	0	3
ALL	0	487	25.39	12	13256

Citation Based Impact: The h5-index for MSR on 16 July 2016 is 34. Google Scholar defines h5-index as "h5-index is the h-index for articles published in the last 5 complete years. It is the largest number h such that h articles published in 2011-2015 have at least h citations each". The h5-median for MSR on 16 July 2016 is 46. Google Scholar defines h5-median as "h5-median for a publication is the median number of citations for the articles that make up its h5-index".

Table 3 shows the descriptive statistics for MSR 2004 to 2016 Google Scholar Citations as on 15 June 2016. Table 3 reveals that in 13 years MSR papers have received a total of 13256 citations. It is interesting to note that even when MSR was a workshop from 2004 to 2007 and small in scale, still the total number of citations of all the published papers are more than 1500 for every year. Table 4
Table 4. Top 10 Most Cited MSR 2004 to 2016 Papers Based on Google Scholar Metrics (Citations Metrics Collected on 15 June 2016)

Rank	Year	Paper Title	First Author	Country	Citations
1	2005	When do changes induce fixes?	Jacek Sliwerski	Germany	487
2	2006	Mining email social networks.	Christian Bird	USA	440
3	2004	Preprocessing CVS Data for Fine-Grained Analysis	Thomas Zimmermann	USA	253
4	2007	How Long Will It Take to Fix This Bug?	Cathrin WeiB	Germany	242
5	2010	An extensive comparison of bug prediction approaches.	Marco D’Ambros	Switzerland	197
6	2004	The Perils and Pitfalls of Mining SourceForge	James Howison	USA	196
7	2006	MAPO: mining API usages from open source repositories.	Tao Xie	USA	173
8	2009	The promises and perils of mining git.	Christian Bird	USA	160
9	2005	Understanding source code evolution using abstract syntax tree matching.	Iulian Neamtiu	USA	155
10	2004	Applying Social Network Analysis to the Information in CVS Repositories	Luis Lopez-Fernandez	Spain	155

Fig. 1. Stacked Bar Chart Indicating the Percentage Distribution of Internal and External Collaboration
shows the top 10 most cited MSR 2004 to 2016 papers Based on Google Scholar Metrics (Citations Metrics Collected on 15 June 2016). The h5-index of the top tier conference in SE (ICSE) is 63. The h5-index of MSR with respect to ICSE and the data in Table 4 and 3 shows that MSR papers have high citation impact. Table 4 shows that the most cited paper in MSR has 487 citations and the Top 10 most cited papers have more than 150 citations.

University-Industry Collaboration: Joint authorship in scientific papers is an evidence of collaboration and interaction between researchers as well as institutions. Our objective is to study university-industry collaboration and knowledge flow between the two types of institutions. Table 5 displays the data on university-industry collaboration. Table 5 reveals that the percentage of joint university-industry papers (research track) varies from a minimum of 0% (in the year 2004) to a maximum of 19.23% (in the year 2004 and 2010). Table 5 reveals that out of the 522 research track papers published in MSR in 13 years, the number and percentage of papers involving a university-industry collaboration is 67 and 12.84 respectively.
Table 5. Number and Percentage of Research Track Papers having All Authors from University (AU), All Authors from Industry (AI) and Authors from both University and Industry (UI)

Year	NUM	AU	AI	UI
2004	26	20 (76.92%)	1 (3.85%)	5 (19.23%)
2005	22	20 (90.91%)	1 (4.55%)	1 (4.55%)
2006	39	32 (82.05%)	2 (5.13%)	5 (12.82%)
2007	33	28 (84.85%)	5 (15.15%)	0 (0%)
2008	27	22 (81.48%)	1 (3.7%)	4 (14.81%)
2009	27	21 (77.78%)	1 (3.7%)	5 (18.52%)
2010	26	21 (80.77%)	0 (0%)	5 (19.23%)
2011	31	26 (83.87%)	2 (6.45%)	3 (9.68%)
2012	36	31 (86.11%)	3 (8.33%)	2 (5.56%)
2013	61	48 (78.69%)	2 (3.28%)	11 (18.03%)
2014	63	51 (80.95%)	2 (3.17%)	10 (15.87%)
2015	72	57 (79.17%)	5 (6.94%)	10 (13.89%)
2016	59	51 (86.44%)	2 (3.30%)	6 (10.17%)
ALL	522	428 (81.99%)	27 (5.17%)	67 (12.84%)

Internal-External Collaboration: We investigate the nature and scale of collaboration in MSR papers from the perspective of internal or external collaboration. Internal collaboration is a form of collaboration in which all the co-authors in a paper (single or multiple-authors) are affiliated to one institution only. External collaboration is defined as a form of collaboration which involves participation of two or more institutions (irrespective of whether the organizations involved are industry or university) in the production of the scientific output and the paper. Figure 1 displays a stacked bar chart indicating the percentage distribution of internal and external collaboration. Figure 1 reveals a good percentage of external collaboration. The percentage of papers having external collaboration varies from a minimum of 6.06% to a maximum of 53.85%.

Gender Imbalance in Authorship: Agarwal et al. conduct an analysis of women in computer science research by analyzing author data from 81 conferences including 11 conferences in software engineering [1]. Their experimental dataset consists of DBLP bibliography entries from the year 2000 to 2015. Their results reveal that 79% of the authors in the bibliography dataset consisting of 11 conferences and 16 years are male whereas 21% authors are women authors [1]. We use the Genderize.io API to determine the gender of all the authors in our dataset. Figure 2 displays a stacked-bar chart showing the percentage of male and female authors every year from 2004 to 2016. Figure 2 reveals a gender imbalance in authorship. The percentage of female authors varies from a minimum of 8.24% in the year 2010 to a maximum of 25.45% in the year 2012. We ob-

3 https://genderize.io/
serve that the percentage of female authors is less than 20% for 9 out of 13 years.

Program Committee Characteristics: The size of the program committee should be according to the number of papers normally received by the conference so that the workload of the program committee members is reasonable or moderate. We extract the size of the program committee (for both the research and industry track) from the MSR conference proceedings. Table 6 shows that the number of program committee members varies from a minimum of 8 in year 2004 (the first edition when MSR was a workshop) to a maximum of 64 in 2016. The number of papers submitted at MSR in the past two years (2015 and 2016) is in the range of 10 to 110 and hence the distribution of workload to the committee members is moderate.

Diversity of institution, technical area of expertise and country is an important selection criteria for selecting program committee member and is an indicator of the quality of a conference. We extract the country of every program committee member and compute the number of different countries. Table 6 shows that MSR program committee is diverse and inclusive in-terms of the number of countries. For example, in the year 2016, there were 64 program committee members from 33 different countries (a diversity score of 51.56%). In year 2015, there were 49 members from 27 countries.

Annual churn and rotation of program committee members is essential for making sure that there is diversity, inclusiveness and cross-section of topic expertise, institution and geographical area. Inviting new program committee members and making space for them by rotating-off program committee members who have served for 2 – 3 years are normal guidelines for conferences. We compute the yearly churn in the program committee for MSR 2004 to MSR 2016. Table 6 shows that in the year 2015 there were a total of 49 program committee members out of which 29 (59.18%) were new and 20 were repeated from the previous years. We observe that the highest churn was in the year 2016 (70.31%) and the lowest was in the year 2008 (34.48%). It is an important guideline for program committee chairs who lead the program committee member selection and invitation process to have a balanced representation from both industry and academia. We extract the affiliation of each program committee member and determine whether the member belongs to an industry or university.

Figure 3 reveals an imbalance between industry and academia and is skewed towards university. The percentage of program committee members from university varies from a minimum of 74.42% to a maximum of 100%. We observe that for 10 out of 13 years, the percentage of program committee members from industry is less than 20%.

3 Conclusion

We conclude that MSR is successfully meeting its desired objective as it is able to attract a good number of papers from different parts of the world both from industry and academia. The acceptance rate demonstrates that MSR is a moder-
Table 6. Program Committee Characteristics

Year	NUM	Country	NEW
2004	8	5 (62.5%)	11 (64.71%)
2005	17	5 (29.41%)	11 (64.71%)
2006	20	8 (40%)	11 (55%)
2007	30	15 (50%)	18 (60%)
2008	29	10 (34.48%)	10 (34.48%)
2009	31	10 (32.26%)	17 (54.84%)
2010	33	11 (33.33%)	16 (48.48%)
2011	38	12 (31.58%)	23 (60.53%)
2012	38	13 (34.21%)	17 (44.74%)
2013	43	15 (34.88%)	17 (39.53%)
2014	45	15 (33.33%)	28 (62.22%)
2015	49	27 (55.1%)	29 (59.18%)
2016	64	33 (51.56%)	45 (70.31%)

ately selective conference. The citation impact of the conference is high indicating that MSR is maintaining its status as a Tier 2 conference. The papers published in MSR demonstrates both university-industry collaboration as well as external collaboration. The program committee of MSR is diverse both from the perspective of representations from industry and academia and from different countries. There is a healthy program committee and author churn which indicates that the conference is broad and open. MSR authorship indicates a gender imbalance and low percentage of women authors.

References

1. Agarwal, S., Mittal, N., Katyal, R., Sureka, A., and Correa, D. Women in computer science research: What is the bibliography data telling us? *SIGCAS Comput. Soc.* 46, 1 (Mar. 2016), 7–19.
2. Hemmati, H., Nadi, S., Baysal, O., Kononenko, O., Wang, W., Holmes, R., and Godfrey, M. W. The msr cookbook: Mining a decade of research. In *Mining Software Repositories (MSR)* (2013), IEEE, pp. 343–352.
3. Rohles, G. Replicating msr: A study of the potential replicability of papers published in the mining software repositories proceedings. In *Mining Software Repositories (MSR)* (2010), pp. 171–180.
4. Tripathi, A., Dabral, S., and Sureka, A. University-industry collaboration and open source software (oss) dataset in mining software repositories (msr) research. In *Software Analytics (SWAN)* (2015), pp. 39–40.