Potential benefits of nutritional supplementation in diabetic sarcopenia

Heaji Lee¹, Soo Jin Yang² and Yunsook Lim¹

¹Department of Food and Nutrition, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
²Department of Food and Nutrition, Seoul Women's University, Seoul, Korea

Correspondence should be addressed to Y Lim Email ylim@khu.ac.kr

Abstract

Type 2 diabetes mellitus, one of the metabolic diseases, is a major risk factor for impaired muscle function leading to muscle loss, weakness, and frailty. A lot of studies have suggested that the biological mechanisms which contribute to diabetic sarcopenia, including insulin resistance, altered energy metabolism, oxidative stress, and inflammation. Although different nutritional interventions for diabetic sarcopenia have not been clearly defined, there is no doubt that nutrition plays an essential role in the prevention or delay of muscle loss and maintenance of physical function. In this review, we discuss the recent literature on biological pathways for diabetic sarcopenia and potent nutrients used for attenuating diabetic sarcopenia: dietary proteins, omega-3 fatty acids, vitamin D, vitamin E, and other anti-oxidants for future research.

Introduction

Diabetes mellitus (DM) is a chronic hyperglycemic condition which is caused by low production (type 1 diabetes) or inefficient use (type 2 diabetes) of insulin. Especially type 2 diabetes mellitus (T2DM) has been globally prevalent and has become a major health problem, with around 463 million population affected in 2019 and 700 million people in 2045 (Belma et al. 2019). Chronic hyperglycemic condition in DM often triggers various complications such as neuropathy, retinopathy, and nephropathy. Among various complications related to T2DM, sarcopenia has been recently highlighted, accompanied by an increased aged population.

Sarcopenia in DM is associated with altered energy metabolism combined with increased proteolysis and impaired protein synthesis, followed by muscle damage under hyperglycemic conditions (Smith et al. 1989, Lecker et al. 1999). Furthermore, changes in energy metabolism are linked to impaired insulin signaling, increased oxidative stress, and inflammation in diabetic pathology.

Loss of muscle mass and strength can be controlled by various lifestyle factors, mainly exercise training and diet. The role of exercise in sarcopenia has been extensively investigated. Moreover, diverse nutritional approaches to improve muscle function and strength have been conducted in various research (Nikoletopoulou et al. 2013, Zhou et al. 2016). However, research focusing on dietary intervention to ameliorate diabetic sarcopenia has not been extensively reviewed (Velázquez-Alva et al. 2020). Particularly, protein supplementation, including branched-chain amino acids (BCCA), has been frequently used to improve muscle health mostly in athletes or healthy subjects (Campbell & Rains 2015). Anti-inflammatory nutrients such as omega-3 fatty acids, vitamin D, and vitamin E have been used to ameliorate sarcopenia and boost muscle functions in DM (Mostad et al. 2006, Amin et al. 2018, Lee & Lim 2018). In addition, some anti-oxidants, including resveratrol, have shown a beneficial effect on muscle damage in DM (Goh et al. 2014, Wang et al. 2018).
In this review, we include major pathological mechanisms associated with hyperglycemia-induced sarcopenia, such as insulin resistance, altered energy metabolism, oxidative stress, and inflammation in T2DM. Furthermore, we focus on the potential benefits of dietary intervention, including proteins, anti-inflammatory, and/or anti-oxidant food components on pathological mechanisms associated with diabetic sarcopenia.

Key pathogenic mechanisms in diabetic sarcopenia

We demonstrated a graphical summary of the biochemical pathways involved in diabetic sarcopenia that is highlighted in Fig. 1.

Impaired muscle mass and function in DM (morphology)

A major metabolic defect associated with DM is the failure of appropriate glucose utilization in peripheral tissues such as skeletal muscle (Stanford & Goodyear 2014). Hyperglycemia can act as a powerful risk factor for loss of muscle mass and function called sarcopenia (Bassil & Gougeon 2013). In particular, progressive muscle mass loss, accompanied by declined muscle strength and quality, has been suggested as a potential factor for the link between DM and disability (Bassil & Gougeon 2013).

Human skeletal muscle fibers are classified as slow-twitch oxidative (type 1) and fast-twitch (type 2) fibers (Stuart et al. 2013). Slow-twitch fibers are more sensitive to insulin and have greater glucose uptake ability than fast-twitch fibers (Stuart et al. 2013). In diabetic patients, the fraction of slow fibers was lower than that in the healthy control subjects (Gaster et al. 2000). Furthermore, the expression level of glucose transporter 4 (GLUT4), which is higher in slow-twitch fibers, was reduced in T2DM patients (Hilton et al. 2008). The changes in fiber characteristics can reduce glucose utilization in skeletal muscle of T2DM (Stuart et al. 2013).

![Figure 1](https://rem.bioscientifica.com) The plausible mechanisms of potential nutrients in skeletal muscle protein synthesis and degradation. Arrows represent activation and capped lines represent inhibition. Published effects of dietary proteins, omega-3, vitamin D, vitamin E, and other anti-oxidants on signaling pathways associated with diabetic sarcopenia. The binding of insulin to insulin receptor subunit-1 (IRS-1) can activate phosphoinositide 3-kinases (PI3K)/Akt signaling which stimulates mechanistic target of rapamycin (mTOR) pathway. mTOR stimulates protein synthesis by phosphorylation of p70 ribosomal S6 protein kinase (p70S6k). Akt also blocks proteolysis by phosphorylating and inhibiting forkhead transcription factors (FoxOs). The activation of FoxOs and induction of their target atrophic genes activate caspase-dependent proteolysis. S’adenosine monophosphate-activated protein kinase (AMPK) activation following by energy deficit in skeletal muscle inhibits mTOR activation, thereby reducing protein synthesis. In addition, reactive oxygen species (ROS) and inflammatory cytokines can lead to nuclear factor-kappa B (NF-kB)-dependent upregulation of atrophic genes including Atrogin-1 and MuRF1.
Furthermore, overweight and obesity, common characteristics in T2DM, are associated with fat infiltration into the muscle (myosteatosis) (Bianchi & Volpato 2016, Hamrick et al. 2016). Fat infiltration in the skeletal muscle can lead to abnormal muscle fiber organization and thus, affects muscle cells proliferation and differentiation (Hamrick et al. 2016). Recent data suggested that skeletal muscles of T2DM patients exhibited an increase in glycolytic fiber and a decrease in capillary density capacity (Hamrick et al. 2016). The increased production of lipid metabolites in skeletal muscle impairs the capacity for normal protein synthesis in T2DM (Bianchi & Volpato 2016). These morphological changes in muscle fiber are also associated with functional impairments in skeletal muscle, as demonstrated by muscle weakness and motor dysfunction (Punkt et al. 1999, Bianchi & Volpato 2016). Thus, the decrease in insulin sensitivity with lipid infiltration is one pathway which can directly affect skeletal muscle health in T2DM.

As a consequence, changes in muscle architecture and fiber type, with gradual loss of muscle strength, have been hypothesized as the primary biological mechanisms responsible for muscle damage in diabetic patients. The pathogenesis of diabetic sarcopenia is multifactorial and attributes to many of these causal pathways that intersect or overlap in relation to hyperglycemia in T2DM.

Altered muscle energy metabolism in DM

There are malfunctions in glucose influx into the skeletal muscle and its utilization of synthesizing ATP in insulin-resistant and diabetic conditions (Boersma et al. 2018, Chadt & Al-Hasani 2020). Subsequent energy deficit due to impaired glucose uptake probably contributes to the increased apoptosis rate in skeletal muscle (Wang et al. 2006). To compensate the energy deficit in muscle cells, protein degradation in skeletal muscle is stimulated (Park et al. 2009), subsequently accelerating the loss of muscle mass in DM (Park et al. 2009). Despite the increased protein catabolism, amino acids are not effectively utilized for ATP synthesis in DM. In normal conditions, BCCAs are catabolized by two main enzymes: BCAA transaminase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD) (Neinast et al. 2019). However, a diabetic condition often causes BCAA catabolic defects due to limited glucose availability and reduced BCKD activity (Holeček et al. 2018). The diabetes-mediated BCAA catabolic defects aggravate skeletal muscle energy deficit, contributing to muscle loss and dysfunction.

In addition, increased lipid mediates caused by impaired fat utilization in DM lead to activate skeletal muscle proteolysis (Kelley & Simoneau 1994, Pan et al. 1997, Sergi et al. 2019). Reduced β-oxidation triggers diacylglycerol and free fatty acids, which can inhibit insulin receptor subunit-1 (IRS-1) activation in DM (Pan et al. 1997). IRS can activate phosphoinositide 3-kinases (PI3Ks)/Akt signaling, which stimulates myogenesis by mammalian target of rapamycin (mTOR) activation and inhibition of FoxOs activation. Reduced activation of Akt decreases phosphorylation of FoxO, which induces the translocation of target genes and subsequently increases the transcription of muscle RING-finger1 (MuRF1) and atrophy-related ubiquitin ligases Atrogin-1/MAFbx (Meex et al. 2019).

All of the above-mentioned metabolic abnormalities with insulin resistance in skeletal muscle are responsible for the energy deficit related to muscle loss and its dysfunction in DM.

One of the key signaling molecules regulating energy metabolism is S’ adenosine monophosphate-activated protein kinase (AMPK). AMPK, a well-known energy sensor, is activated when ATP is rapidly consumed, generating high amounts of AMP. Phosphorylated AMPK increases sirtuin (SIRT) 1 activity which would result in the deacetylation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) (Cork et al. 2018). PGC1α, as a master regulator of mitochondrial biogenesis, is associated with metabolic regulation such as anti-oxidant defense system and inflammation in skeletal muscle. PGC1α induces glucose uptake in the skeletal muscle by increasing the GLUT 4 translocation (Cork et al. 2018, Kou et al. 2018). In the case of T2DM, the decreased level of PGC1α causes the production of lipid metabolites which can lead to insulin resistance and aberrant energy metabolism (Waldman et al. 2018, Zhou et al. 2019, Lantier et al. 2020, Coppi et al. 2021). Therefore, the regulation of insulin signaling along with AMPK/SIRT1/PGC1α pathway is important for energy homeostasis in various tissues, including skeletal muscle.

Hyperglycemia-induced oxidative stress in skeletal muscle

Hyperglycemia is a major problem in diabetic conditions, working through several mechanisms such as increased production of reactive oxygen species (ROS) and advanced glycation end products (AGEs) (Giacco & Brownlee 2010). AGEs interact with a receptor of AGE (RAGE) present in the cell surface, thus, altering the cell signaling and gene expression. Recent studies showed that an increased level of AGEs in skeletal muscle could cause impaired muscle strength in the elderly (Giacco & Brownlee 2010).
Momma et al. 2011). Furthermore, glucose auto-oxidation and protein glycosylation produce ROS, leading to oxidative stress in various tissues, followed by inflammation in DM (Giacco & Brownlee 2010, Luc et al. 2019). In particular, oxidative stress impairs insulin signaling through IRS serine/threonine phosphorylation and decreases GLUT4 translocation and then disturbs glucose uptake in skeletal muscle (Giacco & Brownlee 2010). Patients with T2DM showed excessive oxidative stress in skeletal muscle (Luc et al. 2019). Individuals with poor glycemic control causing oxidative stress also exhibited decreased muscle strength and mass (Sugimoto et al. 2019).

Furthermore, excessive ROS production is indicated as a major factor in muscle protein hyper-catabolism through the activation of the ubiquitin–proteasome pathway (Korovila et al. 2017). Oxidative stress increases the expression of FoxO3a, which activates ubiquitin–proteasome systems such as atrogin-1/MAFbx and MuRF1 in DM (Korovila et al. 2017).

Another T2DM-related factor in the progression of sarcopenia through oxidative stress is impaired mitochondrial dysfunction (Wiegman et al. 2015). As mentioned before, mitochondrial dysfunction due to the accumulation of oxidative damage may trigger apoptosis-induced muscle dysfunction (Korovila et al. 2017). It also has the capacity to dysregulate satellite cell activity that accompanies muscle damage (Xu et al. 2019). Therefore, oxidative stress interfering with muscle growth and development may cause ubiquitin and apoptosis, resulting in diabetic sarcopenia.

Hyperglycemia-induced inflammation in skeletal muscle

Chronic hyperglycemia in T2DM leads to localized inflammation, which can arise through increased immune cell infiltration in inter-myocellular and adipose tissue (AT) around the muscles (Lontchi-Yimagou et al. 2013, Wu & Ballantyne 2017). In addition, increased immune cells in visceral AT can accelerate the release of free fatty acid and migrate to myocytes, causing myocyte inflammation (Hilton et al. 2008). Increased infiltration of immune cells in skeletal muscle activates pro-inflammatory cytokines, which negatively regulate myocyte metabolic functions (Lontchi-Yimagou et al. 2013, Wu & Ballantyne 2017). Skeletal muscle secretes a variety of cytokines such as interleukin (IL)-6, IL-8, and IL-15 and other molecules such as fibroblast growth factor 21 (FGF21), irisin, myonectin, and myostatin (Bonaldo & Sandri 2013). Differentiated cultured myocytes isolated from subjects with T2DM secreted more cytokines such as tumor necrosis factor-alpha (TNF-α) and chemokines such as monocyte chemoattractant protein 1 (MCP-1) compared to those of lean controls (Pedersen et al. 2003, Abbatecola et al. 2004, Muñoz-Cánoves et al. 2013). In T2DM patients, muscle mass and strength were decreased compared to those in non-diabetic controls, and it was in accordance with the increased levels of plasma pro-inflammatory cytokines, including IL-6 and TNF-α (Tsuchiya et al. 2010, Sugimoto et al. 2019, Xu et al. 2019). These inflammatory mediators impair the insulin signaling pathway by inhibiting tyrosine phosphorylation of IRS with modifications of GLUT4 translocation in myocytes (Abbatecola et al. 2004, Tsuchiya et al. 2010, Muñoz-Cánoves et al. 2013, Sugimoto et al. 2019).

On the other hand, increased circulating pro-inflammatory cytokines directly upregulate several protein hydrolysis pathways, resulting in skeletal muscle degradation (Bonaldo & Sandri 2013, Zhou et al. 2016). Increased IL-6 activates janus kinase/signal transducers and activators of transcription (JAK/STAT) catabolic pathway. TNF-α is also the major factor that induces cellular apoptosis in muscle mainly by activating NF-xB and MyoD to cause muscle loss (Mourkioti & Rosenthal 2008, Zhou et al. 2016). NF-xB leads to activate E3 ubiquitin ligase, lysosomal-proteasome, and apoptosis which promote protein degradation in the skeletal muscle. NF-xB also regulates the expression of various pro-inflammatory mediators, which act as positive feedback to activate NF-xB itself, causing continuous muscle damage (Mourkioti & Rosenthal 2008).

These characteristics can interfere with muscle homeostasis and cell death mechanisms promoting losses in skeletal muscle mass, strength, and function, which are considered as the principal components of sarcopenia.

Potential nutritional intervention for diabetic sarcopenia

Previous research has suggested that nutrition plays a major role in diabetic sarcopenia, and nutritional interventions may prevent or reduce muscle loss and maintain physical function. Different nutritional approaches have been studied, focusing on regulating glucose homeostasis through reduced intakes of energy and saturated fat and increased intake of dietary fiber in DM (Nikoletopoulou et al. 2013, Zhou et al. 2016).

Other major pathogenic mechanisms that can be used for the prevention of diabetic sarcopenia
are hyperglycemia-induced oxidative stress and inflammation. Sarcopenia is a state of increased oxidative stress and inflammation, causing apoptosis and ubiquitin-proteasome pathway in DM. Hence, we have introduced not only protein sources that help in muscle protein synthesis (MPS) but also dietary anti-inflammatory (vitamin D, omega (w)-3 fatty acids) and anti-oxidant compounds (vitamin E, ultra-trace minerals, and natural compounds) as potential nutritional interventions for diabetic sarcopenia, as summarized in Table 1.

Dietary proteins

The beneficial effects of dietary proteins have been investigated, but there is insufficient research focusing on the effects of protein supplementation on diabetic sarcopenia (Campbell & Rains 2015, Velázquez-Alva et al. 2020). As protein stimulates MPS by the availability of BCAAs, it can play a central role in skeletal muscle growth. Recent studies have found that protein supplementation attenuated the decline in muscle mass and insulin resistance that potentially prevented the development of T2DM and sarcopenia (Campbell & Rains 2015, Velázquez-Alva et al. 2020). Especially, amino acids are known to induce mTOR pathway. mTOR is conserved serine/threonine kinase and regulates anabolic and catabolic signaling of skeletal muscle. mTOR pathway is activated by its upstream signaling PI3K (Ferretti et al. 2018) and then leads to an increase in S6K1 which stimulates protein synthesis (Bodine et al. 2001).

Researchers have demonstrated that various sources of dietary protein have different effects on muscle health. In a recent study, nil whey protein supplementation improved repetition maximum, peak oxygen consumption, and vastus lateralis muscle thickness in T2DM patients (Gaffney et al. 2018). Furthermore, it ameliorated glucose disposal rate, fasting blood glucose level, and homeostatic model assessment of insulin resistance (Gaffney et al. 2018).

Some previous studies showed that intake of high-quality amino acids effectively reduced muscle mass loss (Campbell & Rains 2015, Pai et al. 2020, Dollet et al. 2022). Among various amino acids, glutamine, the most abundant free amino acid in the body, is known to stimulate protein synthesis and inhibits protein degradation, thereby protecting muscle function in diabetic rats (Dollet et al. 2022, Lambertucci et al. 2022). A recent study demonstrated that glutamine supplementation attenuated insulin resistance in obesity by reducing inflammatory markers and promoting skeletal muscle insulin sensitivity (Dollet et al. 2022). Glutamine also has regulatory roles in enhancing plasma anti-inflammatory monocyte and regulatory T cells in diabetic mice (Pai et al. 2020).

Another study showed that leucine treatment induced protein synthesis by the activation of mTOR signaling (Velázquez-Alva et al. 2020). L-Leucine enhanced muscle glucose uptake with concomitant suppressed proteolytic, glycogenolytic, and gluconeogenic activities while modulating glucose homeostasis in isolated rat psoas muscle ex vivo (Erukainure et al. 2021). However, leucine treatment did not affect muscle strength and muscle fiber type characteristics in T2DM patients (Leenders et al. 2011).

In summary, supplementation with dietary proteins and amino acids is a promising strategy to increase MPS and attenuates diabetic sarcopenia, although positive evidence was limited. Therefore, further studies are needed to establish the appropriate dosage and timing of supplementation of dietary proteins and amino acids for the management of diabetic sarcopenia.

Omega-3 fatty acids

As an anti-inflammatory agent, omega-3 fatty acids have a beneficial role in skeletal muscle metabolism and function. Omega-3 fatty acids are known to affect muscle health by regulation of the ratio between muscle protein synthesis and breakdown through decreasing inflammation (Huang et al. 2020, Okamura et al. 2020). As natural ligands for PPARγ, omega-3 fatty acids increase the activation of PPARγ, which suppresses NF-κB activation. Omega-3 fatty acids can prevent NF-κB activation and transcription of inflammatory mediators such as COX-2 and TNFα (Vanden Berge et al. 2003, Liu et al. 2013, Calder et al. 2015). This action prevents the expression of muscle-specific E3 ligase, including MuRF1 and MAFbx/Atrogin-1 causing protein degradation in skeletal muscle (Huang et al. 2011, Ikeno et al. 2022).

In particular, eicosapentaenoic acid (EPA) treatment also enhanced mitochondrial fusion and insulin signaling by the inhibition of inflammation in human primary myotubes (Sergi et al. 2021). Treatment with EPA attenuated muscle loss by the suppression of the ubiquitin–proteasome pathway in rodent models following resistance exercise (Whitehouse & Tisdale 2001, Siriguleng et al. 2021). Another in vivo evidence shown in normal mice demonstrated that docosahexaenoic acid (DHA)-enriched diet supplementation increased skeletal muscle glucose uptake and reduced inflammation (Lam et al. 2011).

Another beneficial effect of omega-3 fatty acids on muscle health is associated with the regulation of lipid metabolism. Abnormal energy metabolism in DM leads to
Nutrient	Model	Treatment	Key findings	Study
Protein	Nil whey protein	Adults with T2DM performed high-intensity mixed-mode interval training	↓ Fasting blood glucose and homeostatic model assessment of insulin resistance	Gaffney et al. 2018
		20 g/day for 10 weeks.	↑ Repetition maximum, peak oxygen consumption, and vastus lateralis muscle thickness.	
Leucine	Adults with T2DM	2.5 g/day for 6 months	No changes in lean tissue mass, fat percentage, muscle strength, and muscle fiber type characteristics	Velázquez-Alva et al. 2020
Glutamine	Diabetic mice with limb ischemia	AIN-93 diet in which a part of the casein was replaced with glutamine	↑ Anti-inflammatory monocytes and regulatory T cells in the blood	Pai et al. 2020
			↓ The percentage of M1 macrophages in muscle tissues	
			↓ The muscle M1/M2 ratio	
			↓ Gene expression of IL-6	
			↑ The levels of PPARγ and myogenic differentiation 1 genes	
Glutamine	Diabetic rats	1 g/kg BW for 15 days	↓ Protein synthetic pathway (mTOR/Akt pathway) in skeletal muscle	Dollet et al. 2022
			↓ Protein-degradative signaling pathways (Murf1/Astrogin-1) in Skeletal Muscle	
Omega-3 fatty acids	Fish oil (1.8 g 20:5 omega-3, 3.0 g 22:6 omega-3, and 5.9 g total omega-3 fatty acids)	Adults with T2DM 17.6 mL/day fish oil for 9 weeks	↓ Insulin sensitivity	Mostad et al. 2006
			Alters carbohydrate and fat utilization	
EPA	C2C12 myotubes exposed to palmitate (500 μM)	30 μM	↓ Protein kinase C-6 activation	Whitehouse and Tisdale 2001
			Cellular acylcarnitine profile, insulin-dependent Akt phosphorylation and glucose uptake.	
DHA	In vitro L6 myotubes	0.4 mmol/L	↑ Fat oxidation	Aas et al. 2006
Vitamin D	Vitamin D (1,25(OH)₂D₃)	Adults with T2DM 0.5 μg/kg BW three times weekly for 8 weeks	↑ Insulin sensitivity in skeletal muscles	Amin et al. 2018
			Sustained muscle atrophy and inflammation	
Vitamin D	Obese mice	7 μg/kg, three times/week for 2 months	↑ Muscle insulin signaling	Benetti et al. 2018
			Reverted myosteatosis	
			↓ NF-κB and tumor necrosis factor (TNF-α) activation	
Vitamin D	Obese mice	1 μg/kg/day, every day for 6 weeks	↓ Lipogenic pathway	Li et al. 2021
			↓ RAGE expression in skeletal muscle.	
			Regulated glucose homeostasis	

(Continued)
fat accumulation and produces lipotoxic compounds such as ceramide and palmitate, promoting insulin resistance. Recent in vitro studies reported that EPA and DHA improved fatty acid metabolism and then reduced insulin resistance in human skeletal muscle cells, C2C12, and L6 myotubes, notably via their abilities to increase mitochondrial β-oxidation (Aas et al. 2006, Capel et al. 2015, Katsnelson & Ceddia 2020) and Akt phosphorylation (Kim et al. 2016).

In T2DM patients, fish oil supplementation increased fat oxidation and glucose utilization which can improve insulin sensitivity (Mostad et al. 2006). Taken together, the results suggest that omega-3 fatty acids may have protective effects against inflammation and abnormal lipid metabolism in skeletal muscle.

Although a more detailed mechanism is required to clarify the effects of omega-3 fatty acids on diabetic patients with sarcopenia, omega-3 fatty acids at physiological doses could participate in the regulation of skeletal muscle metabolism by preventing lipotoxicity and inflammation.

Nutrient	Model	Treatment	Key findings	Study
Vitamin E α-Tocopherol	Diabetic rats	400 mg/kg BW for 21 days	↓ H₂O₂ levels and oxidative stress ↑ The ratio of glutathione/oxidized glutathione ↑ Protein synthesis and muscle repair	Servais et al. 2007
TRF	Diabetic mice	100 mg/kg BW or 300 mg/kg for 12 weeks	↑ IRS-1, Akt, and GLUT4 ↑ Mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK ↓ Oxidative stress (4-hydroxynonenal, protein carbonyls, nuclear factor erythroid 2-related factor 2, and heme oxygenase 1) ↓ Inflammation (NFkB, monocyte chemoattractant protein 1, IL-6, and TNF-α) ↓ Apoptosis (Bax, Bcl2, and caspase-3)	Lee and Lim 2018
TRF	Diabetic mice	50 mg/kg BW for 2 weeks	Regulates the expression of PPAR target genes ↑ Whole body glucose utilization and insulin sensitivity	Fang et al. 2010
Others	RSV	Diabetic mice	Identical diet containing 0.04% RSV for 8 weeks	Goh et al. 2014, Wang et al. 2018
RSV	Adults with T2DM	3 g/day for 12 weeks	↑ SIRT1 expression and p-AMPK to AMPK ratio	Wang et al. 2018
Oligonol	Diabetic mice	20 or 200 mg/kg BW for 10 weeks	↓ NF-κB expression ↑ SIRT1 expression ↑ FoxO3a nuclear localization	Bhakta et al. 2017
LFO	KK-Ay mice	0, 1, or 1.5 g/kg BW for 4 weeks	↑ Femoral muscle mass ↓ Expression of MuRF1 and atrogin-1, which ↑ Activation of mTOR and p70 S6K, and phosphorylation of FoxO3a	Yoshioka et al. 2018
Ultra-trace mineral	Vanadium	Diabetic rats	100 mg/kg BW for 60 days	Kurt et al. 2011

Nutrient	Model	Treatment	Key findings	Study
TRF	Diabetic mice	400 mg/kg BW for 21 days	↓ H₂O₂ levels and oxidative stress ↑ The ratio of glutathione/oxidized glutathione ↑ Protein synthesis and muscle repair	Servais et al. 2007
TRF	Diabetic mice	100 mg/kg BW or 300 mg/kg for 12 weeks	↑ IRS-1, Akt, and GLUT4 ↑ Mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK ↓ Oxidative stress (4-hydroxynonenal, protein carbonyls, nuclear factor erythroid 2-related factor 2, and heme oxygenase 1) ↓ Inflammation (NFkB, monocyte chemoattractant protein 1, IL-6, and TNF-α) ↓ Apoptosis (Bax, Bcl2, and caspase-3)	Lee and Lim 2018
TRF	Diabetic mice	50 mg/kg BW for 2 weeks	Regulates the expression of PPAR target genes ↑ Whole body glucose utilization and insulin sensitivity	Fang et al. 2010
Others	RSV	Diabetic mice	Identical diet containing 0.04% RSV for 8 weeks	Goh et al. 2014, Wang et al. 2018
RSV	Adults with T2DM	3 g/day for 12 weeks	↑ SIRT1 expression and p-AMPK to AMPK ratio	Wang et al. 2018
Oligonol	Diabetic mice	20 or 200 mg/kg BW for 10 weeks	↓ NF-κB expression ↑ SIRT1 expression ↑ FoxO3a nuclear localization	Bhakta et al. 2017
LFO	KK-Ay mice	0, 1, or 1.5 g/kg BW for 4 weeks	↑ Femoral muscle mass ↓ Expression of MuRF1 and atrogin-1, which ↑ Activation of mTOR and p70 S6K, and phosphorylation of FoxO3a	Yoshioka et al. 2018
Ultra-trace mineral	Vanadium	Diabetic rats	100 mg/kg BW for 60 days	Kurt et al. 2011
Vitamin D

Recently, the association between vitamin D and skeletal muscle metabolism has been highlighted. Vitamin D may affect the conservation of muscle mass and strength, preventing sarcopenia and frailty (Arik & Ulger 2016).

Administration of vitamin D accelerated the functional restoration of the damaged muscle, improved cell proliferation, and reduced cell death after muscle injury (Stratos et al. 2013). In vitamin D-deficient mice, the levels of atrogin-1 and MuRF-1 in skeletal muscle were increased by two-fold compared to those of the controls (Tamura et al. 2017, Dzik & Kaczor 2019). These data demonstrate that vitamin D insufficiency/deficiency is associated with the development of muscle atrophy, but more clear mechanism is needed to be explained.

Vitamin D also regulates the insulin signaling pathway in skeletal muscle (Benetti et al. 2018). Low vitamin D level has been associated with poor glycemic control and physical function (Mirthosseini et al. 2018, Dang et al. 2019). The patients with T2DM were also associated with low level of 25(OH)D (Mendoza-Garcés et al. 2021, Takahashi et al. 2021). In a recent meta-analysis, vitamin D supplementation significantly decreased fasting plasma glucose and Hba1c levels in prediabetic individuals (Poolsup et al. 2016, Pittas et al. 2019). In T2DM rats, oral administration of vitamin D improved insulin sensitivity in skeletal muscle (Amin et al. 2018, Li et al. 2021). In another study, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis by decreasing the levels of NF-kB and TNF-α (Benetti et al. 2018). However, there are conflicting findings on vitamin D supplementation influencing glucose regulation in DM (Gulseth et al. 2017, Mousa et al. 2017).

On the other hand, vitamin D deficiency in mitochondrial dysfunction can affect the progression of sarcopenia. Mitochondria play a vital role in cellular energy metabolism, but they are also major intracellular sources of ROS (Ott et al. 2007). Ryan et al. demonstrated that 1α,25-dihydroxy vitamin D₃ regulated mitochondrial oxygen consumption and dynamics in muscle cells (Ryan et al. 2016). In a recent study, vitamin D supplementation in deficient rodent models improved mitochondria’s density and function and protein metabolism (Gogulothu et al. 2020). In another study, vitamin D deficiency increased oxidative stress demonstrated by increasing the expression of SOD1 in skeletal muscle mitochondria and led to lipid and protein peroxidation in patients with chronic low back pain (Dzik et al. 2018). Furthermore, vitamin D treatment protected against skeletal muscle oxidative stress by regulation of SOD and catalase in vitamin D deficiency rats (Bhat & Ismail 2015). These results support that vitamin D can attenuate oxidative stress by regulating mitochondrial ROS generation.

Recently published data indicated that the direct effects of circulating levels of vitamin D on skeletal muscle have to be connected with vitamin D receptor (VDR). VDR located in skeletal muscle plays pivotal roles in both glucose and muscle homeostasis linked to muscle health. Mice with myocyte deletion of VDR have sarcopenia and impaired muscle function (Girgis et al. 2019). Vitamin D treatment activated VDR signaling, thereby inhibiting FoxO1 expression in C2C12 muscle cells. In the previous study, the overexpression of VDR results in skeletal muscle hypertrophy by increasing anabolic signaling, ribosomal biogenesis, and protein synthesis (Bass et al. 2020).

Collectively, the beneficial effects of vitamin D on diabetic sarcopenia can be explained by several mechanisms, including improvement of anabolic/catabolic metabolism and amelioration of mitochondrial dysfunction with reduced oxidative stress as well as increased VDR signaling. Although sarcopenia might be attenuated by vitamin D treatment, a better understanding of the mechanisms is required.

Vitamin E

Vitamin E, with its anti-oxidant and anti-inflammatory properties, has known to have an important role for attenuating the progression of metabolic diseases (Momma et al. 2011, Gonzalez-Calvo et al. 2015). In particular, the potential benefits of vitamin E on muscle damage have been demonstrated in a large number of studies.

Alpha (α)-tocopherol, a predominant vitamin E in the human body, is known to improve protein synthesis and muscle repair by downregulation of oxidative stress in diabetic rats (Servais et al. 2007). Tocopherol supplementation reduced glucocorticoid-induced oxidative stress in rat skeletal muscle (Ohutsuka et al. 1998). Furthermore, α-tocopherol reduced muscle proteolysis by increasing the expression of calpains, caspases-3, -9, and -12, E3 ubiquitin ligases (MAFbx and MuRF1) with the regulation of anti-oxidant enzyme activities (SOD, CAT, GPX) in hindlimb unloading-induced muscle atrophy rodent model (Servais et al. 2007).

In addition, a number of biological properties of tocotrienol rich fraction (TRF) have been identified, such as anti-cancer, anti-diabetes, anti-oxidant, immunomodulatory, and cardio-protective properties (Aragno et al. 2004, Fang et al. 2010, Mahalingam et al.
Some studies demonstrated that TRF ameliorated oxidative stress in myoblasts (Vasanthi et al. 2012, Lim et al. 2019). In our previous study, TRF attenuated hyperglycemia-induced skeletal muscle oxidative stress demonstrated by reduced Nrf2 related pathway in diabetic mice (Lee & Lim 2018).

On the other hand, previous research has shown that vitamin E dose not only acts as an anti-oxidant but also acts as an anti-inflammatory nutrient (Huey et al. 2008, Fang et al. 2010, Chung et al. 2018). Vitamin E attenuated lipopolysaccharide-induced skeletal muscle damage by regulation of NFκB related inflammation in mice (Servais et al. 2007). TRF also inhibited inflammation by decreasing 20S proteasome activity in myoblast (Huey et al. 2008). Moreover, our group reported that TRF ameliorated NFκB and its associated Inflammatory mediators in diabetic mice (Lee & Lim 2018), which attenuates the ubiquitin–proteasome system causing protein degradation (Russell et al. 2007, Qureshi et al. 2010). As inflammation can lead to loss of muscle mass and strength, these findings suggest that muscle dysfunction in diabetic patients can be attenuated by vitamin E supplementation through suppression of NF-κB associated inflammation. Vitamin E can also ameliorate insulin resistance causing skeletal muscle damage by regulating oxidative stress and inflammation in DM. In a previous study, gamma (γ)-tocopherols ameliorated oxidative stress-induced insulin resistance in L6 myotubes (Cai et al. 2004). Furthermore, TRF improved glucose homeostasis and insulin signaling by regulation of PPAR-related pathways in the skeletal muscle of diabetic mice (Khor et al. 2017). Our group also reported that TRF normalized the insulin signaling pathway by downregulation of hyperglycemia-induced oxidative stress and inflammation in diabetic skeletal muscle (Lee & Lim 2018).

Furthermore, vitamin E supplementation can protect against mitochondrial dysfunction causing muscle proteolysis. Especially, TRF activates PPAR α, γ, and (delta) δ, which regulate mitochondrial biogenesis and energy metabolism (Singh et al. 2008, Fang et al. 2010). Previous studies have reported the ameliorative effects of vitamin E in mitochondria-mediated cell death via the release of apoptotic proteins, causing muscle wasting (Magalhães et al. 2005, 2007, Dillon et al. 2012).

Taken together, the evidence suggests that vitamin E may prevent or/and attenuate diabetic sarcopenia through amelioration of oxidative stress and inflammation accompanied by improving energy metabolism and insulin signaling pathway in skeletal muscle. However, additional investigations are required to confirm the molecular mechanism of vitamin E in protecting diabetic sarcopenia.

Others

Research continues to investigate various natural compounds and ultra-trace minerals targeting skeletal muscle to ameliorate diabetic complications. Some research in the field of diabetic sarcopenia has focused on reducing oxidative stress by anti-oxidant nutrients. In addition to vitamin E, naturally derived compounds such as polyphenols have been reported for their therapeutic potential to alleviate insulin resistance and reduce the risk of metabolic diseases. Among the prominent natural compounds, resveratrol (RSV) is one of the polyphenolic compounds known for its anti-oxidant and anti-inflammatory properties. RSV has shown preventive and therapeutic effects on metabolic diseases, including DM, obesity, and aging-associated disorders. In previous studies, RSV supplementation attenuated sarcopenia by reducing the ubiquitin–proteasome system and the mitochondrial autophagy in diabetic mice (Goh et al. 2014, Wang et al. 2018). In patients with T2DM, RSV supplementation improved energy expenditure by modulating SIRT1 expression and pAMPK/AMPK ratio in skeletal muscle (Wang et al. 2018). These observational studies suggest that RSV may have an attenuative effect on diabetic sarcopenia.

Furthermore, oligonol, mainly found in lychee fruit, consisted of catechins, procyanidins, and other phenolic compounds and is known to have an anti-oxidant effect. Oligonol treatment has been shown to attenuate ROS-related inflammation and prevent oxidative damage in in vitro model of hyperglycemia (Servais et al. 2007). In the T2DM mice model, oligonol supplementation alleviated muscle loss by suppressing atrogin-1 and MuRF1 as well as NFκB-related inflammation (Bhakta et al. 2017).

In addition to RSV and oligonol, licorice flavonoid oil (LFO) has been used for sarcopenia in diabetic mice (Yoshioka et al. 2018). Licorice, a traditional medicine, contains glabridin, which has anti-oxidant and anti-fatigue properties (Liu et al. 2017). In a recent study, LFO supplementation increased skeletal muscle mass by decreasing the expression of MuRF1 and atrogin-1 in the insulin resistance mice model (Yoshioka et al. 2018).

On the other hand, anti-oxidant effects of other ultra-trace minerals such as vanadium have been investigated. Vanadium and vanadium compounds are known to have a modulatory effect on glucose homeostasis by enhancing glucose transport, as well as IR tyrosine kinase activity (Jiang et al. 2016). In a previous study, vanadium...
administration decreased anti-oxidant enzyme levels, including catalase and SOD, in the skeletal muscle of diabetic mice (Kurt et al. 2011).

Overall, anti-oxidant products provide a promising benefit for inhibiting muscle mass loss since oxidative stress is one of the major risk factors. However, further clinical studies need to be conducted to clarify the beneficial effects of natural anti-oxidant compounds on diabetic sarcopenia.

Conclusions

Recently, numerous epidemiological and clinical research suggested that muscle dysfunction is more common in diabetic patients. Pathological mechanisms such as insulin resistance, abnormal energy metabolism, oxidative stress, and inflammation can all affect various components of muscle dysfunction. Figure 1 illustrates the plausible mechanisms of diabetic sarcopenia and how nutrients mitigate skeletal muscle dysfunction. Evidence suggests that different nutrients treatment can improve and maintain muscle mass and function in diabetic patients. However, more research with extensive investigations is required to establish the effective strategies of nutritional intervention on sarcopenia in DM, which can improve the quality of life of these individuals.

Summary

The prevalence of metabolic and musculoskeletal diseases, which affect individuals to mortality and morbidity, is increasing worldwide. Especially, T2DM characterized by insulin resistance negatively affects muscle health through impairments in protein metabolism, mitochondrial dysfunction, oxidative stress, and inflammation. However, evidence for the effective nutritional intervention for diabetic sarcopenia is lacking. In this review, we demonstrate the impact of various nutrients on attenuating sarcopenia in DM.

Declaration of interest

Yunsook Lim is an Editor of Redox Experimental Medicine. Yunsook Lim was not involved in the review or editorial process for this paper, on which she is listed as an author. The other authors have nothing to disclose.

Funding

This work was supported by a grant (2018R1D1A1B07046778) funded by the Ministry of Education, Science and Technology, Republic of Korea.

Author contribution statement

Y L participated in the conception and design of the work. H L, S J Y, and Y L wrote the manuscript. All authors approved the final manuscript.

References

Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH & Rustan AC 2006 Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells. Journal of Lipid Research 47 366–374. (https://doi.org/10.1194/jlr.M500300-JLR200)

Abbatangelo AM, Ferrucci L, Grella R, Randinelli S, Bonafé M, Barbieri M, Corsi AM, Laurenzi F, Franceschi C & Paolisso G 2004 Diverse effect of inflammatory markers on insulin resistance and insulin-resistance syndrome in the elderly. Journal of the American Geriatrics Society 52 399–404. (https://doi.org/10.1111/j.1532-5415.2004.52112.x)

Amin SN, Hussein UK, Yassa HD, Hassan SS & Rashed LA 2018 Synergistic actions of vitamin D and metformin on skeletal muscles and insulin resistance of type 2 diabetic rats. Journal of Cellular Physiology 233 5768–5779. (https://doi.org/10.1002/jcp.26300)

Aragno M, Mastrocola R, Catalano MG, Brigardanello E, Dannii O & Bocuzzi G 2004 Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 53 1082–1088. (https://doi.org/10.2337/ diabetes.53.4.1082)

Arik G & Ulger Z 2016 Vitamin D in sarcopenia: understanding its role in pathogenesis, prevention and treatment. European Geriatric Medicine 7 207–213. (https://doi.org/10.1007/s12272-015-0970-6)

Bass JJ, Nakhuha A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philip A, Tarum J, Kadi E, Andersen D, et al. 2020 Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Molecular Metabolism 42 101059. (https://doi.org/10.1016/j. molmet.2020.101059)

Belma M, Suvi K, Pousa S & Paraskevi S 2019 IDF Diabetes Atlas, 9th ed., pp. 10–12. International Diabetes Foundation. (https://doi.org/10.1016/j.diabetes.2019.107843)

Bassil MS & Gougeon R 2013 Muscle protein anabolism in type 2 diabetes. Current opinion in clinical nutrition and metabolic care 16 83–88. (https://doi.org/10.1097/MCO.0b013e282b9b8e8e)

Benetti E, Mastrocola R, Chiazza F, Nigro D, D’Antona G, Bordano V, Fantozzi R, Aragno M, Collino M & Minetto MA 2018 Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS ONE 13 e0189707. (https://doi.org/10.1371/journal. pone.0189707)

Bhakta HK, Paadel P, Fujihi H, Sato A, Park CH, Yokozawa T, Jung HA & Choi JS 2017 Oligolipid promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Archives of Pharmacal Research 40 1314–1327. (https://doi.org/10.1007/s12272-017-0970-6)

Bhat M & Ismail A 2015 Vitamin D treatment protects against and reverses oxidative stress induced muscle proteolysis. Journal of Steroid Biochemistry and Molecular Biology 152 171–179. (https://doi. org/10.1016/j.jsbmb.2015.05.012)

Bianchi L & Volpato S 2016 Muscle dysfunction in type 2 diabetes: a major threat to patient’s mobility and independence. Acta Diabetol 53 879–889. (https://doi.org/10.1007/s00592-016-0880-y)

Bodine SC, Stitt TN, Gonzalez M, Kline WO, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, et al. 2001 Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology 3 1014–1019. (https://doi.org/10.1038/ncb1101-1014)

Boersma GJ, Johansson E, Pereira MJ, Heurling K, Skritic S, Lau J, Katsogiannos P, Panagiotou G, Lubberink M, Kullberg J, et al. 2018 Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and may Contribute to the
Development of Type 2 Diabetes: A Combined PET/MR Study. Hormone and metabolic research is Hormon- und Stoffwechselsforschung = Hormones et metabolisme, 50 627–639. (https://doi.org/10.1111/a.2004-43-4739)

Bonaldo P & Sandri M 2013 Cellular and molecular mechanisms of muscle atrophy. Disease Models and Mechanisms 6 25–39. (https://doi.org/10.1242/dmm.001389)

Cai DK, Lee KK, Li M, Tang MK & Chan KM 2004 Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Archives of Biochemistry and Biophysics 425 42–50. (https://doi.org/10.1016/j.abb.2004.02.027)

Calder PC 2015 Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta 1851 469–484. (https://doi.org/10.1016/j.bbabip.2014.08.010)

Campbell AP & Rains TM 2015 Dietary protein is important in the practical management of prediabetes and type 2 diabetes. Nutrition Journal 14 165–1695. (https://doi.org/10.3945/nj.1.194878)

Capel F, Acquaivia C, Pitosi E, Laillet B, Rigaudière JP, Jouve C, Pouyet C, Glauertine C, Comte M, Vasseur S, Saban C et al. 2015 DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation. Journal of Nutritional Biochemistry 26 949–959. (https://doi.org/10.1016/j.jnutbio.2015.04.003)

Chad A & Al-Hasani H 2020 Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch 472 1273–1298 doi:10.1007/s00424-020-02417-x.

Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios Sr, Chyu MC, Yang BS & Shen CL 2018 Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutrition Research 49 23–36. (https://doi.org/10.1016/j.nutres.2017.09.005)

Coppi L, Ligorio S, Mitro N, Caruso D, De Fabiani E & Crestani M 2021 M PGC1α and beyond: disentangling the complex regulation of mitochondrial and cellular metabolism. International Journal of Molecular Sciences 22 6913. (https://doi.org/10.3390/ijms2216913)

Cork GK, Thompson J & Slawson C 2018 Real talk: the inter-play between the mTOR, AMPK, and hexosamine biosynthetic pathways in cell signaling. Frontiers in Endocrinology 9 522. (https://doi.org/10.3389/fendo.2018.00522)

Dang M, Shore-Lorenti C, McMillan LB, Mesinovic J, Hayes A, Ebeling PR & Scott D 2019 Associations of serum 25-hydroxyvitamin D with physical performance and bone health in overweight and obese older adults. International Journal of Environmental Research and Public Health 16 509. (https://doi.org/10.3390/ijerph16050509)

Dillon LM, Rebelo AP & Moraes CT 2016 PGC-1 coactivators in aging skeletal muscle and heart. IUBMB Life 64 231–241. (https://doi.org/10.1007/s12276-016-0608)

Dollet L, Kuefner M, Caria E, Rizo-Roca D, Pendergrast L, Abdelmoez AM, Dillon LM, Rebelo AP & Moraes CT 2012 The role of PGC-1 coactivators in mitochondrial and cellular metabolism. Biochimica et Biophysica Acta 1820 642–50 doi:10.1016/j.bbadis.2012.06.002.

Erukainure OL, Salau VF, Atolani O, Ravichandran R, Banerjee P, Preissner R, Kooohanally NA & Islam MS 2021 L-Leucine stimulation of glucose uptake and utilization involves modulation of glucose – lipid metabolic switch and improved bioenergetic homeostasis in isolated rat poosas muscle ex vivo. Amino Acids 53 1135–1151. (https://doi.org/10.1007/s00726-021-03021-8)

Fang I, Kang Z & Wong C 2010 Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Molecular Nutrition and Food Research 54 345–352. (https://doi.org/10.1002/mnfr.200900119)

Ferretti R, Moura EG, dos Santos VC, Caldeira EJ, Conte M, Matsumura CY, Pertille A & Mosquera M 2018 High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PLoS ONE 13 e0199728. (https://doi.org/10.1371/journal.pone.0199728)

Gaffney KA, Lucero A, Stoner L, Faulkner J, Whitfield KB, Kees J & Bowdles RS 2018 NFL whey protein effect on glycemic control after intense mixed-mode training in type 2 diabetes. Medicine and Science in Sports and Exercise 50 11–17. (https://doi.org/10.1249/MSS.0000000000001404)

Gaster M, Poulsen P, Handberg A, Schroder HD & Beck-Nielsen H 2000 Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. American Journal of Physiology: Endocrinology and Metabolism 278 E910–E916. (https://doi.org/10.1152/ajpendo.2000.278.5.E910)

Giacco F & Brownlee M 2010 Oxidative stress and diabetic complications. Circulation Research 107 1058–1070. (https://doi.org/10.1161/CIRCRESAHA.111.223545)

Giris CM, Cha KM, So B, Tsang M, Chen J, Houweljing PJ, Schindeler A, Stokes R, Swarbrick MM, Evisson EJ et al. 2019 Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. Journal of Cachexia, Sarcopenia and Muscle 10 1228–1240. (https://doi.org/10.1002/jcsm.12460)

Gogolothu R, Nagar D, Gopalakrishnan S, Garlapati VR, Kallamadi PR & Ismail A 2020 Disrupted expression of genes essential for skeletal muscle fibre integrity and energy metabolism in vitamin D deficient rats. Journal of Steroid Biochemistry and Molecular Biology 197 105525. (https://doi.org/10.1016/j.jsbmb.2019.105525)

Goh KP, Lee HY, Lau DP, Supaat W, Chan VY & Koh AF 2014 Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. International Journal of Sport Nutrition and Exercise Metabolism 24 2–13. (https://doi.org/10.1123/ijsnm.2013-0045)

Gonzalez-Calvo L, Joy M, Blanco M, Dervishi E, Molino I, Sarto P, Ripoll G, Serrano M & Calvo JH 2015 Effect of vitamin E supplementation or alfalfa grazing on fatty acid composition and expression of genes related to lipid metabolism in lambs. Journal of Animal Science 93 3044–3054. (https://doi.org/10.2527/jas.2014-8758)

Gulseth HL, Wium C, Angel K, Eriksen EF & Birkeland KL 2017 Effects of vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: a randomized controlled trial. Diabetes Care 40 872–878. (https://doi.org/10.2337/dc16-2302)

Hamrick MW, McGee-Lawrence ME & Frechette DM 2016 Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Frontiers in Endocrinology 7 69. (https://doi.org/10.3389/fendo.2016.00069)

Hilton TN, Tuttle LJ, Bohnett KL, Mueller MJ & Sinacore DR 2008 Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Physical Therapy 88 1336–1344. (https://doi.org/10.2522/ptj.20080079)

Holeček M 2018 Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutrition and Metabolism 15 33. (https://doi.org/10.1186/s12986-018-0271-1)

Huang E, Wei H, Luo H, Jiang S & Peng J 2011 EPA inhibits the inhibitor of a PPAR κ- dependent manner. European Journal of Applied Physiology 110 825–839. (https://doi.org/10.1007/s00421-010-1404-x)

Huang F, Wei H, Luo H, Jiang S & Peng J 2011 EPA inhibits the inhibitor of a PPAR κ- dependent manner. European Journal of Applied Physiology 110 825–839. (https://doi.org/10.1007/s00421-010-1404-x)

Huang YH, Chiu WC, Hsu YP, Lo YI & Wang YH 2020 Effects of omega-3 fatty acids on muscle mass, muscle strength and muscle performance among the elderly: a meta-analysis. Nutrients 12 3739. (https://doi.org/10.3390/nu12123739)
Huey KA, Fiscus G, Richwone AE, Johnson RW & Meador BM 2008 In vivo vitamin E administration attenuates interleukin-6 and interleukin-1beta responses to an acute inflammatory insult in mouse skeletal and cardiac muscle. *Experimental Physiology* 93 1263–1272. (https://doi.org/10.1113/expphysiol.2008.043190)

Ikino Y, Inomata M, Tsukumura Y, Suzuki Y, Takeuchi H, Harada Y, Kon R, Ikarashi N, Chiba Y, Yamada T, et al. 2022 Eicosapentaenoic acid suppresses cisplatin-induced muscle atrophy by attenuating the up-regulated gene expression of ubiquitin. *Journal of Nutritional Biochemistry* 103 108953. (https://doi.org/10.1016/j.jnutbio.2022.108953)

Jiang P, Dong Z, Ma B, Ni Z, Duan H, Li X, Wang B, Ma X, Wei Q, Ji X, et al. 2016 Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. *Applied Biochemistry and Biotechnology* 180 841–851. (https://doi.org/10.1007/s12010-016-2317-1)

Katsnelson G & Ceddia RB 2020 Docosahexaenoic and eicosapentaenoic fatty acids differentially regulate glucose and fatty acid metabolism in L6 rat skeletal muscle cells. *American Journal of Physiology: Cell Physiology* 319 C1200–C1219. (https://doi.org/10.1152/ajpcell.00304.2020)

Kelley DE & Simoneau JA 1994 Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. *Journal of Clinical Investigation* 94 2349–2356. (https://doi.org/10.1172/JCI117600)

Khor SC, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N & Maksop S 2017 Tocotrienol-rich fraction ameliorates antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in human myoblasts. *Oxidative Medicine and Cellular Longevity* 2017 3866305. (https://doi.org/10.1155/2017/3866305)

Kim J, Carlson ME, Kuchel GA, Newman JW & Watkins BA 2016 Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. *International Journal of Obesity* 40 129–137. (https://doi.org/10.1038/ijo.2015.135)

Korovlia I, Hugo M, Castro JP, Weber D, Höhn A, Grune T & Jung T 2017 Protein oxidation, oxidative stress and aging. *Redox Biology* 13 550–567. (https://doi.org/10.1016/j.redox.2017.07.008)

Kou G, Li Z, Wu C, Liu Y, Hu Y, Guo L, Xu X & Zhou Z 2018 Citrus tangeretin improves skeletal muscle mitochondrial biogenesis via activating the AMPK-PGC-1α pathway in vitro and in vivo: a possible mechanism for its beneficial effect on physical performance. *Biometals* 31 1391–1402. (https://doi.org/10.1007/s10585-017-9824-3)

Kurt O, Ozden TY, Ozsoy N, Tunali S, Can A, Akiev N & Yanardag R 2011 Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. *Biometrics* 24 943–949. (https://doi.org/10.1007/s10584-011-9452-3)

Lam YY, Hatzinikolas G, Weir JM, Janovská A, McAinch AJ, Game P, Meikle PJ & Wittert GA 2011 Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids. *Biochimica et Biophysica Acta* 1811 466–475. (https://doi.org/10.1016/j.bbapap.2011.04.011)

Lambertucci AC, Lambertucci BH, Hiraoka SM, Curi R, Morisot AS, Alba-Loureiro TC, Guimarães-Ferreira L, Levada-Pires AC, Vasconcelos DA, Sellitti DF, et al. 2012 Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats. *PLoS ONE* 7 e50390. (https://doi.org/10.1371/journal.pone.0050390)

Lantier L, Williams AS, Williams JM, Guerin A, Brady DP, Goelzer M, Foretz M, Viollet B, Hughey CC & Wasserman DH 2020 Reciprocity between skeletal muscle AMPK deletion and insulin action by attenuating the up-regulated gene expression of ubiquitin. *Journal of Nutritional Biochemistry* 103 108953. (https://doi.org/10.1016/j.jnutbio.2022.108953)

Lee H & Lim Y 2018 Tocotrienol-rich fraction supplementation reduces hyperglycemia-induced skeletal muscle damage through regulation of insulin signaling and oxidative stress in type 2 diabetic mice. *Journal of Nutritional Biochemistry* 57 77–85. (https://doi.org/10.1016/j.jnutbio.2018.03.016)

Leeanders M, Verdijk LB, van der Hoeven L, van Knabbenburg J, Hartogens W, Wodzig WK, Saris WH & van Loon LJ 2011 Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. *Journal of Nutrition* 141 1070–1076. (https://doi.org/10.3945/jn.111.138495)

Li A, Shen P, Liu S, Wang J, Zeng J & Du C 2021 Vitamin D alleviates skeletal muscle loss and insulin resistance by inducing vitamin D receptor expression and regulating the AMPK/SIRT1 signaling pathway in mice. *Food Science and Technology* 42 e47921. (https://doi.org/10.1590/fst47921)

Lim JJ, Wan Zurinah WN, Moully V & Norwahidah AK 2019 Tocotrienol-rich fraction (TRF) treatment promotes proliferation capacity of stress-induced premature senescence myoblasts and modulates the renewal of satellite cells: microarray analysis. *Oxidative Medicine and Cellular Longevity* 2019 914334. (https://doi.org/10.1155/2019/914334)

Liu HQ, Qiu Y, Mu Y, Zhang XJ, Liu L, Hou XH, Zhang L, Xu XN, Ji AI, Cao R, et al. 2013 A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation ofTLR4 in SD rats. *Nutrition Research* 33 849–855. (https://doi.org/10.1016/j.nutres.2013.07.004)

Liu HW, Chen YJ, Chang YC & Chang SJ 2017 Oligonol, a low-molecular weight polyphenol derived from lychee, alleviates muscle mass loss in diabetes by suppressing atrogin-1 and MuRF1. *Nutrients* 9 1040. (https://doi.org/10.3390/nu9091040)

Lontchi-Yimagou E, Sohngwi E, Mathia TE & Kengne AP 2013 Diabetes mellitus and inflammation. *Current Diabetes Reports* 13 435–444. (https://doi.org/10.1007/s11892-013-0375-y)

Luc K, Schramm-Luc A, Guzik TJ & Mikolajczyk TP 2019 Oxidative stress and inflammatory markers in prediabetes and diabetes. *Journal of Physiology and Pharmacology* 70 809–824. (https://doi.org/10.24602/jpp.2019.6.01)

Magalhães J, Ascensão A, Soares JMC, Ferreira R, Neuparth MJ, Marques F & Duarte JA 2005 Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. *Journal of Applied Physiology* 99 1247–1253. (https://doi.org/10.1152/japplphysiol.01324.2004)

Magalhães J, Ferreira R, Neuparth MJ, Oliveira PJ, Marques F & Ascensão A 2007 Vitamin E prevents hypobaric hypoxia-induced mitochondrial dysfunction in skelatal muscle. *Clinical Science* 113 59–66. (https://doi.org/10.1042/CS20070075)

Mahalingam D, Radhakrishnan AK, Amom Z, Ibrahim N & Nesaretnam K 2011 Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers. *European Journal of Clinical Nutrition* 65 63–69. (https://doi.org/10.1038/ejcn.2010.184)

Meek BC, Blaak EE & van Loon LJ 2019 Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obesity Reviews* 20 1205–1217. (https://doi.org/10.1111/obr.12862)

Mendoza-Garcés L, Velázquez-Alva MC, Cabrero-Rosales ME, Arrieta-Cruz I, Gutiérrez-Juárez R & Irigoyen-Camacho ME 2021 Vitamin D deficiency is associated with handgrip strength, nutritional status and T2DM in community-dwelling older Mexican women: a cross-sectional study. *Nutrients* 13 736. (https://doi.org/10.3390/nu13030736)

Milhosseini N, Vatanparast H, Mazidi M & Kimball SM 2018 Vitamin D supplementation, glycemic control, and insulin resistance in prediabetics: a meta-analysis. *Journal of the Endocrine Society* 2 687–709. (https://doi.org/10.1210/jendosde-2017-00472)
Takahashi F, Hashimoto Y, Kaji A, Sakai R, Kawate Y, Okamura T, Kondo Y, Fukuda T, Kitagawa N, Okada H, et al. 2021 Vitamin intake and loss of muscle mass in older people with type 2 diabetes: a prospective study of the KAMOGAWA-DM cohort. *Nutrients* **13** 2335. (https://doi.org/10.3390/nu13072335)

Tamura Y, Fujito H, Kawao N & Kaji H 2017 Vitamin D deficiency aggravates diabetes-induced muscle wasting in female mice. *Diabetology International* **8** 52–58. (https://doi.org/10.1007/s13340-016-0276-7)

Tsuchiya Y, Hatakeyama H, Emoto N, Wagatsuma F, Matsushita S & Kanzaki M 2010 Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes. *Journal of Biological Chemistry* **285** 34371–34381. (https://doi.org/10.1074/jbc.M110.128520)

Vanden Berghe W, Vermeulen L, Derijse P, De Bosscher K, Staels B & Haegeman G 2003 A paradigm for gene regulation: inflammation, NF-kappaB and PPAR. *Advances in Experimental Medicine and Biology* **544** 181–196. (https://doi.org/10.1007/978-1-4419-9072-3_22)

Vasanthi HR, Parameswari RP & Das DK 2012 Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. *Genes and Nutrition* **7** 19–28. (https://doi.org/10.1186/s12263-011-0227-9)

Velázquez-Alva MC, Irigoyen-Camacho ME, Zepeda-Zepeda MA, Lazarevich I, Arrieta-Cruz I & D’Hyver C 2020 Sarcopenia, nutritional status and type 2 diabetes mellitus: a cross-sectional study in a group of Mexican women residing in a nursing home. *Nutrition and Dietetics* **77** 515–522. (https://doi.org/10.1111/nad.12551)

Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Velázquez-Alva MC, Irigoyen-Camacho ME, Zepeda-Zepeda MA, Vasanthi HR, Parameswari RP & Das DK 2012 Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. *Genes and Nutrition* **7** 19–28. (https://doi.org/10.1186/s12263-011-0227-9)

Wang X, Hu Z, Hu J, Du J & Mitch WE 2006 Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. *Endocrinology* **147** 4160–4168. (https://doi.org/10.1210/en.2006-0251)

Wang D, Sun H, Song G, Yang Y, Zou X, Han P & Li S 2018 Resveratrol improves muscle atrophy by modulating mitochondrial quality control in STZ-induced diabetic mice. *Molecular Nutrition and Food Research* **62** e1700941. (https://doi.org/10.1002/mnfr.201700941)

Whitehouse AS & Tisdale MJ 2001 Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. *Biochemical and Biophysical Research Communications* **285** 598–602. (https://doi.org/10.1006/bbrc.2001.5209)

Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, et al. 2015 Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. *Journal of Allergy and Clinical Immunology* **136** 769–780. (https://doi.org/10.1016/j.jaci.2015.01.046)

Wu H & Ballantyne CM 2017 Skeletal muscle inflammation and insulin resistance in obesity. *Journal of Clinical Investigation* **127** 43–54. (https://doi.org/10.1172/JCI88880)

Xu D, Jiang Z, Sun Z, Wang L, Zhao G, Hassan HM, Fan S, Zhou W, Han S, Zhang L, et al. 2019 Mitochondrial dysfunction and inhibition of myoblast differentiation in mice with high-fat-diet-induced pre-diabetes. *Journal of Cellular Physiology* **234** 7510–7523. (https://doi.org/10.1002/jcp.27512)

Yoshioka Y, Yamashita Y, Kishida H, Nakagawa K & Ashida H 2018 Licorice flavonoid oil enhances muscle mass in KK-Ay mice. *Life Sciences* **205** 91–96. (https://doi.org/10.1016/j.lfs.2018.05.024)

Zhou J, Liu B, Liang C, Li Y & Song YH 2016 Cytokine signaling in skeletal muscle wasting. *Trends in Endocrinology and Metabolism* **27** 335–347. (https://doi.org/10.1016/j.tem.2016.03.002)

Zhou J, Poudel A, Chandramani-Shivalingappa P, Xu B, Welchko R & Li L. 2019 Liraglutide induces beige fat development and promotes mitochondrial function in diet induced obesity mice partially through AMPK-SIRT-1-PGC1α cell signaling pathway. *Endocrine* **64** 271–283. (https://doi.org/10.1007/s12020-018-1826-7)

Received 25 April 2022
Accepted 12 May 2022