Polarizability of 2D and 3D conducting objects using method of moments

Morteza Shahpari1 D. V. Thiel2 Andrew Lewis3

(Received 15 November 2012; revised 20 July 2013)

Abstract

Fundamental antenna limits of the gain-bandwidth product are derived from polarizability calculations. This electrostatic technique has significant value in many antenna evaluations. Polarizability is not available in closed form for most antenna shapes and no commercial electromagnetic packages have this facility. Numerical computation of the polarizability for arbitrary conducting bodies was undertaken using an unstructured triangular mesh over the surface of 2D and 3D objects. Numerical results compare favourably with analytical solutions and can be implemented efficiently for large structures of arbitrary shape.

Contents

1 Introduction
2 Formulation
3 Implementation
4 Validation
5 Discussion and conclusion
References

1 Introduction

Polarizability is an important parameter in a variety of physical science disciplines including scattering and, molecular and chemical physics. Recently engineers used this parameter for antenna modelling. Gustafsson et al. [6] demonstrated the relationship between the maximum possible antenna gain-bandwidth product and the polarizability of the antenna obstacle. This is now recognised as a method of calculating a fundamental limit for antennas. The maximum electromagnetic scattering of a plane wave incident on an obstacle (e.g., metamaterial [10, 11], periodic arrays [7]) is related to the static polarizability of the obstacle. Popular commercial packages for antenna modelling, for example, ANSYS HFSS, FEKO, AWR, IE3D, etc do not calculate the polarizability.

In this article we use the method of moments (MOM) to calculate the polarizability of arbitrary geometries. The MOM technique is commonly used in modelling wire structures for both radiation and scattering problems, assuming a thin wire approximation [2, 8]. In the MOM polarizability calculation, three dimensional structures are modelled using triangular mesh elements. The technique was implemented in MATLAB to calculate the polarizability of arbitrary shaped objects with infinite conductivity (i.e. perfect electric conductors, PEC). FEKO, which is an antenna simulation package, was used to create triangular mesh elements for arbitrary objects and the 3D mesh was exported to the MOM routine in MATLAB using the STL format. Triangular mesh elements have the advantage of constructing arbitrary geometries without staircase approximations.

A brief description of the MOM solution is described in Section 2. Section 3 explains the implementation of the algorithm. Section 4 demonstrates the validity of the code by comparing the MOM results with closed form solutions of simple geometric objects.

2 Formulation

In electromagnetics, Laplace’s equation is used to describe the electrostatic potential in a charge free region. Assuming that the antenna has no static charge, then Laplace’s equation in the integral form is [8]

\[x_j + C_j = \int_S \frac{\rho_j(\vec{x})}{4\pi |\vec{x} - \vec{x}'|} dS', \]

1Standard tessellation language STL is the industrial standard for handling triangulated meshes http://wiki.netfabb.com/STL_Files_and_Triangle_Meshes, http://en.wikipedia.org/wiki/STL_%28file_format%29
where \(\rho_j \) and \(x_j \) are the surface charge density and distance from the origin along \(x_j \) axis when the object is located in a static field of the unit amplitude in the \(\hat{x}_j \) direction. This is integrated over the surface of the geometry \(S \). Also, \(\vec{x} \) and \(\vec{x}' \) refer to observation and source points, respectively. If the object is asymmetrical or is offset from the origin, the sum of the total induced charge tends to be nonzero. This is contrary to the charge conservation law. The constant \(C_j \) is added to ensure the total charge on the object is zero:

\[
\int\int_S \rho_j(x) dS = 0. \tag{2}
\]

After finding \(\rho_j \) over \(S \), the polarizability \(\gamma_{ij} \) in the \(\hat{x}_i \) direction due to the applied field in the \(\hat{x}_j \) direction is

\[
\gamma_{ij} = \int\int_S x_i \rho_j(x) dS. \tag{3}
\]

The polarizability \(\gamma_{ij} \) has the units \(m^2 V^{-1} \). However, it is common to use the normalised polarizability \(\gamma_{ij}/a^3 \) which has units \(m^{-1} V^{-1} \) when \(a \) is defined as the radius of the smallest surrounding sphere.

The aim of the MoM method is to convert (1) to the standard matrix form \(L\rho_j = g \) using a discrete mesh and the summation of basis functions.
Because of their simplicity, pulse functions f_n are used for both basis and testing functions:

$$f_n = \begin{cases}
1 & \text{on } \Delta S_n \\
0 & \text{otherwise}
\end{cases} \quad (4)$$

This choice of basis and testing functions yields the following double integral over the mesh elements for the matrix elements L_{mn} [1]

$$L_{mn} = \frac{1}{4\pi} \int_{A_m} dS' \int_{A_n} dS \frac{1}{|\vec{x} - \vec{x}'|}, \quad (5)$$

where A_m and A_n are the areas of the mth and nth triangular mesh (source and observation mesh), respectively. For non-diagonal elements, one can write L_{mn} in the approximate form

$$L_{mn} \approx \frac{1}{4\pi} \frac{A_n A_m}{|\vec{x} - \vec{x}'|}. \quad (6)$$

The matrix L shows singular behaviour on the diagonal elements. This is because the denominator in (5) goes to zero when \vec{x} approaches \vec{x}'. For diagonal elements, an exact solution to the integral in (5) can be obtained from equation (25) in [3]:

$$L_{nn} = \frac{A_n^2}{4\pi} \left\{ \frac{1}{6\sqrt{a}} \log \left[\frac{(a - b + \sqrt{a} \sqrt{a - 2b + c})(b + \sqrt{a} \sqrt{c})}{(-b + \sqrt{a} \sqrt{c})(-a + b + \sqrt{a} \sqrt{a - 2b + c})} \right] + \frac{1}{6\sqrt{c}} \log \left[\frac{(b + \sqrt{c} \sqrt{a - 2b + c})(b - c + \sqrt{c} \sqrt{a - 2b + c})}{(-b + \sqrt{c} \sqrt{a - 2b + c})(b - c + \sqrt{c} \sqrt{a - 2b + c})} \right] + \frac{1}{6\sqrt{a - 2b + c}} \log \left[\frac{(a - b + \sqrt{a} \sqrt{a - 2b + c})(b + c + \sqrt{c} \sqrt{a - 2b + c})}{(-a + b + \sqrt{a} \sqrt{a - 2b + c})(b - c + \sqrt{c} \sqrt{a - 2b + c})} \right] \right\}, \quad (7)$$

where a, b, and c are computed from position vectors of mesh vertices \vec{r}_1, \vec{r}_2, and \vec{r}_3 by

$$a = (\vec{r}_3 - \vec{r}_1) \cdot (\vec{r}_3 - \vec{r}_1), \quad (8)$$
$$b = (\vec{r}_3 - \vec{r}_1) \cdot (\vec{r}_3 - \vec{r}_2), \quad (9)$$
$$c = (\vec{r}_3 - \vec{r}_2) \cdot (\vec{r}_3 - \vec{r}_2). \quad (10)$$
Figure 2: Discretization of the 3D conductor into mesh elements. The calculation of l_{mn} needs \vec{r}_{1n}, \vec{r}_{2n}, and \vec{r}_{3n}, the position of the vertices of nth mesh element, and \vec{r}_{cn} points to the centre of of the mesh.

The mth element g is

$$g_m = (x_{jm} + C_j)A_m,$$

where x_{jm} is the projection of the centre of the mth mesh along x_j axis.

As long as the centre of the geometry is located at the coordinate origin, C_j is zero. Problems arise when object is shifted from the origin and large errors can result, particularly for complicated shapes. As far as authors know, there is no published literature which describes how to calculate C_j in general. To find C_j, we define a complementary parameter $u_m = x_{jm}A_m$ and rewrite g as:

$$g = u + C_jA. \tag{12}$$

The induced charge ρ_j on the object is calculated from $L^{-1}g$, or,

$$\rho_j = L^{-1}u + C_jL^{-1}A. \tag{13}$$

In the (13), ρ_j, u and A are vectors of numbers while L is the MoM matrix. By the charge conservation law, the sum of the induced charge ρ_j has to vanish. Therefore C_j is found as:

$$C_j = -\frac{\sum L^{-1}u}{\sum L^{-1}A}. \tag{14}$$

Finally the polarizability is computed from:

$$\gamma_{ij} = (x_{i1} \ldots x_{im} \ldots x_{in}) \left[L^{-1}g \right]. \tag{15}$$

where x_{in} is the position of the centre of the nth mesh element in the x_i direction ($\vec{r}_{cn} \cdot \hat{e}_i = x_{in}$).
3 Implementation

The complete solution was implemented in MATLAB code by substituting equations (6)-(14) in (15) (see Figure 3). The calculated 3D polarizability is normalised by a^3, where a is the smallest radius of the sphere that encloses the object. The mesh file geometry is imported into the MATLAB program. We used the MoM simulation package [4] to generate the triangular mesh on the 3D objects. Many other commercial and non-commercial packages can also be used for this mesh generation (e.g., AutoCAD and ANSYS).

4 Validation

The code was validated by comparing the computed results with several published closed form values for simple 3D geometric shapes including a sphere, circular disk, and toroidal ring [6]. Results are normalised by a^3 and shown in Table 1.

Figure 4 shows the polarizability of spheroids of semi-axes a_x, a_y, a_z in terms of different aspect ratios. For the oblate and prolate geometries with circular cross sections in xy-plane, the red and blue lines illustrate the analytical behaviour of the tangential and perpendicular polarizabilities,
Table 1: Comparison of the numerical results with \cite{6}

Geometry	Sphere	Disk	Toroid
Analytic Result	12.56	5.27	2.64
Numerical Result	12.59	5.22	2.63

Figure 4: Analytic tangential (red line) and perpendicular (blue line) polarizability of spheroids with different aspect ratios $\xi = a_z/a_x$. Diamonds and circles refer to our numerical results. When $a_x = a_z$ the object is a sphere.

respectively \cite{9}. Numerical results were computed for three different aspect ratios (1, 2 and 4). There is strong agreement with analytical expressions. A sphere ($a_x = a_z$) has the highest polarizability and $\gamma_h = \gamma_v$ at this point. A spheroid with an axial ratio of two has a different shape to a spheroid with an axial ratio of 0.5, and so Figure 4 is not symmetric about the vertical line $a_x = a_z$.

Figure 5 shows the polarizability of several infinitely thin (i.e., 2D), perfectly conducting rectangles with different aspect ratios. These results are compared those of Gustafsson \cite{5}. When the aspect ratio is unity the object is square. The two sets of results show good agreement.

5 Discussion and conclusion

A numerical technique to compute the polarizability of conducting bodies with arbitrary shapes was reported. A desktop computer with Intel®core i5 CPU and 4GB of RAM was used for the numerical calculations. The program
Figure 5: Normalised vertical polarizability of infinitely thin rectangles with different length to width ratios (continuous line). The rectangles indicate the aspect ratio corresponding to the calculated values (red squares). An aspect ratio of unity is square.

is fast (less than a minute) for geometries with less than 3000 mesh elements. However, the calculation time increases with the cube of mesh elements. For example, the computational time is 4 and 14 minutes for geometries with 6000 and 7000 mesh elements, respectively. In addition to the code, a GUI interface is available from the authors.

The utilisation of other basis and test functions (i.e: RWG basis functions) is recommended to improve this technique and obtain more accurate results. This investigation used the library MATLAB functions, but faster and more efficient methods maybe available for the matrix inversion.

Acknowledgements Morteza Shahpari appreciates the Griffith Postgraduate Research Scholarship from Griffith University. This work is partly funded by a grant from Australian Research Council DP130102098.

References

[1] P. Arcioni, M. Bressan, and L. Perregrini. On the evaluation of the double surface integrals arising in the application of the boundary integral method to 3-d problems. 45(3):436–439, 1997.
References

[2] G. J. Burke and A. J. Poggio. *Numerical Electromagnetics Code (NEC)*. : National Technical Information Service (U.S. Department of Commerce), 1981.

[3] T.F. Eibert and V. Hansen. On the calculation of potential integrals for linear source distributions on triangular domains. 43(12):1499–1502, 1995.

[4] EM Software and Systems. *FEKO 6.1.1*, 1998-2011.

[5] M. Gustafsson. Physical bounds on antennas of arbitrary shape. In *Loughborough Antennas and Propagation Conference (LAPC)*, 2011.

[6] M. Gustafsson, C. Sohl, and G. Kristensson. Illustrations of new physical bounds on linearly polarized antennas. *IEEE Trans. Antennas Propag.*, 57(5):1319–1327, 2009.

[7] M. Gustafsson, C. Sohl, C. Larsson, and D. Sjberg. Physical bounds on the all-spectrum transmission through periodic arrays. *EPL (Europhysics Letters)*, 87(3):34002, 2009.

[8] R. F. Harrington. *Field Computation by Moment Methods*. IEEE Press, 1993.

[9] R. E. Kleinman and T. B. A. Senior. Rayleigh scattering. In V. V. Varadan and V. K. Varadan, editors, *Handbook on Acoustic, Electromagnetic and Elastic Wave Scattering*, volume 2, pages 1–70. Elsevier, 1986.

[10] C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband scattering by heterogeneous obstacles. *J. Phys. A-Math. Theor.*, 40(36):11165, 2007.

[11] C. Sohl, C. Larsson, M. Gustafsson, and G. Kristensson. A scattering and absorption identity for metamaterials: Experimental results and comparison with theory. *J. Appl. Phys.*, 103(5):054906, 2008.

Author addresses

1. **Morteza Shahpari**, Centre for Wireless Monitoring and Applications, School of Engineering, Griffith University, Queensland 4111, Australia.
 mailto:m.shahpari@griffith.edu.au
2. **D. V. Thiel**, Centre for Wireless Monitoring and Applications, School of Engineering, Griffith University, Queensland 4111, AUSTRALIA.
 mailto:d.thiel@griffith.edu.au

3. **Andrew Lewis**, Institute for Integrated and Intelligent Systems, Griffith University, Queensland 4111, AUSTRALIA.
 mailto:a.lewis@griffith.edu.au