DEVELOPMENT AND METHODOLOGY FOR THE ESTIMATION OF LISINOPRIL AND ATORVASTATIN IN PHARMACEUTICALS

Introduction. The cause of hypertension and coronary heart disease in most cases is hypercholesterolemia. Therefore, for the treatment and prevention of most pharmacotherapy regimens, antiatherosclerotic drugs are used. With a high class of recommendations and level of evidence, high efficiency for primary and secondary prevention of coronary heart disease, statins are widely used in clinical practice.

The aim of the study – to improve more rapid, simple, selective, less expensive methods of thin layer chromatography analysis of simultaneous determination of lisinopril and atorvastatin in pharmaceuticals.

Research Methods. The present study assessed mobile phases of lisinopril and atorvastatin for TLC.

Results and Discussion. Thin layer chromatography can be used to: monitor the progress of a reaction, identify compounds, determine the purity of a substance. Method of simultaneous identification of lisinopril and atorvastatin by TLC was developed. We investigated different mobile phases to optimize the development of analytical methods of lisinopril and atorvastatin by TLC. It was established that the most optimal Rf observed using mobile phase ammonia R (25 %) – propanol R (30:70, v/v). We explored the validation characteristics – specificity and suitability of the chromatographic system that met, the eligibility criteria established by the SPhU.

Conclusions. We developed chromatographic method for simultaneous determination of lisinopril and atorvastatin. Prospects for future research will be aimed at developing analytical methods of analysis.

KEY WORDS: lisinopril and atorvastatin; identification; thin layer chromatography; validation.
tatin add 5.0 ml of methanol R and dilute with methanol R to 10.0 ml, mix and filter.

**Reference solution of lisinopril.** 10.00 mg Pharmacopoeial standard sample of lisinopril dissolved in methanol R and dilute with the same solvent to 10.0 ml.

**Reference solution of atorvastatin.** 10.00 mg Pharmacopoeial standard sample of atorvastatin dissolved in methanol R and dilute with the same solvent to 10.0 ml.

Mobile phase: ammonia (25 %) R–propanol R (30:70, v/v).

Samples that are applied: 5 µl, applied the test solutions and investigation solutions.

Over a path of 10 cm from the starting line.

Detection: The spots are visualized by spraying with Dragendorff reagent.

**RESULTS AND DISCUSSION.** Thin layer chromatography can be used to: Monitor the progress of a reaction, identify compounds present in a given substance, determine the purity of a substance. Separation of compounds is based on the competition of the solute and the mobile phase for binding places on the stationary phase. For instance, if normal phase silica gel is used as the stationary phase it can be considered polar. Given two compounds which differ in polarity, the more polar compound has a stronger interaction with the silica and is therefore more capable to dispel the mobile phase from the binding places. As the mobile phase moves pass the surface of the silica gel it transports the analyte pass the particles of the stationary phase. However, the analyte molecules are only free to move with the solvent if they are not bound to the surface of the silica gel. Thus, the fraction of the time that the analyte is bound to the surface of the silica gel relative to the time it spends in solution determines the retention factor of the analyte. The ability of an analyte to bind to the surface of the silica gel in the presence of a particular solvent or mixture of solvents can be viewed as a the sum of two competitive interactions. First, polar groups in the solvent can compete with the analyte for binding sites on the surface of the silica gel. Therefore, if a highly polar solvent is used, it will interact strongly with the surface of the silica gel and will leave few sites on the stationary phase free to bind with the analyte. The analyte will, therefore, move quickly pass the stationary phase. Similarly, polar groups in the solvent can interact strongly with polar functionality in the analyte and prevent interaction of the analyte with the surface of the silica gel [2].

The present study was assessed the different solvent extracts of lisinopril and atorvastatin for TLC [3–11]. The chromatograms obtained with the test solution were detected at the main spot basic substance in the chromatograms obtained with reference solutions, corresponding in size and color. We investigated different mobile phases to optimize the development of analytical methods of lisinopril and atorvastatin by TLC. The factors of mobility in the studied of simultaneous determination of lisinopril and atorvastatin in mobile phases, are listed in Table.

We established that the most optimal Rf observed using mobile phases for simultaneous determination of lisinopril and atorvastatin: ammonia R (25 %) – propanol R (30:70).

The analysis considered probable, though the test requirements “Check suitability chromatographic system”.

According to the SPhU and Note for guidance on validation of analytical procedures: text and methodology (CPMP/ICH/381/95) to test the Identification must be validated, to determine such characteristics as specificity and suitability of the chromatographic system. The maximum difference of Rf values in the same plate (for two series of plates) must not exceed the value of 0.02. Originally, plates were tested according to the requirements of SPhU on chromatographic resolution. When checking for the stability of the solution at the time we started chromatography of lisinopril and atorvastatin freshly prepared test solution sustained, over time for 30 min. Visual assessment of spots on the size and intensity of staining confirms that they clearly appear as freshly cooked and seasoned in time solutions (for plates of different series). The

| Mobile phase                        | Stationary phase (plate) | Stationary phase (plate) | The limit of detection of lisinopril, micrograms | The limit of detection of atorvastatin, micrograms |
|-------------------------------------|--------------------------|--------------------------|-----------------------------------------------|--------------------------------------------------|
| chloroform R-methanol R-ammonia (25 %) R (4: 4: 2) | Rf on “Sorbfil” (lisinopril) | 0.61 | 0.85 | 0.4 | 0.4 |
| ammonia (25 %) R-propanol R (30: 70) | Rf on “Sorbfil” (atorvastatin) | 0.17 | 0.48 | 0.4 | 0.4 |
| n-butanol R-acetic acid R-water R (40: 10: 20) | Rf | 0.19 | 0.82 | 0.4 | 0.4 |
| acetone R-water R (3: 2) | Rf | 0.75 | 0.1 | 0.4 | 0.4 |
solutions were stable over time and new areas, had been identified.

Thus, we explored the validation characteristics – specificity and suitability of the chromatographic system that met, the eligibility criteria established by the SPhU [12, 13]. Therefore, the present study provided a suitable as well as accurate method for simultaneous determination of lisinopril and atorvastatin, which is of potential practical significance in development of analytical methods.

**CONCLUSION.** We developed TLC method for simultaneous determination of lisinopril and atorvastatin. We found that the most optimal Rf observed using mobile phases for simultaneous determination of lisinopril and atorvastatin: ammonia R (25 %) – propanol R (30:70). The validation study of the characteristics of specificity and suitability of the chromatographic system, confirmed that they meet the eligibility requirements under the SPHU. Prospects for future research will be aimed at developing analytical methods of analysis of lisinopril and atorvastatin.

**LIST OF LITERATURE**

1. Lippi G. Statins popularity: A global picture to statins / G. Lippi, C. Mattiuzzi, G. Cervellin // Br. J. Clin. Pharmacol. – 2019. – **85**. – P. 1614–1615. – Access mode: https://doi.org/10.1111/bcp.13944.
2. Bele A.A. An overview on thin layer chromatography / A. A. Bele, A. Khale // Int. J. Pharm. Sci. Res. – 2011. – **2** (2). – P. 256–267.
3. Singhal S. Pharmaceutical analysis II. Thin layer chromatography / S. Singhal, N. Singhal, S. Agarwal. – Pragati Prakashan. 1st edn. – 2005. – P. 98–111.
4. A textbook of pharmaceutical analysis. Instrumental methods / A.V. Kasture, K. R. Mahadik, S. G. Wadodkar, H. N. More. – Nirali Prakashan. 9th edn. – 2005. – P. 18–30.
5. Quach, H. T. Separation of plant pigments by thin layer chromatography / H. T. Quach, R. L. Steeper, G. W. Griffin // J. Chem. Educ. – 2004. – **81**. – P. 385–387.
6. Skoog D. A. Principles of instrumental analysis / D.A. Skoog, F. J. Holler, T. A. Nieman. – Saunders college publishing. 5th edn. – 2006. – P. 761–766.
7. Chatwal G. R. Instrumental methods of chemical analysis. Himalaya publishing house. 5th edn. – 2008. – P. 599–616.
8. Beckett A. H. Practical pharmaceutical chemistry. Thin layer chromatography / A. H. Beckett, J. B. Stenlake. – CBS publishers. 4th edn. – 2005. – P. 115–128.
9. Ali M. Thin-layer chromatography of aromatic amines / M. Ali, V. Agrawal // Separ. Sci. Technol. – 2002. – **37**. – P. 363–377.
10. Sharma B. K. Instrumental methods of chemical analysis / B. K. Sharma. – Meerut: Goel publishing house. 5th ed. – 2007. – P. 241–264.
11. Logoyda L. Development and methodology for the estimation of bisoprolol in pharmaceuticals / L. Logoyda // Med. Clin. Chem. – 2017. – No. 2. – P. 34–37.
12. ICH Topic. Q2 (R1) Validation of Analytical Procedures: Text and methodology.
13. Sagar V. Instrumental methods of drug analysis / V. Sagar. – Pharma Med. Press. 1st edn. – 2009. – P. 263 p.
РОЗРОБКА І МЕТОДОЛОГІЯ ВИЗНАЧЕННЯ ЛІЗІНОПРИЛУ ТА АТОРВАСТАТИНУ В ЛІКАРСЬКИХ ЗАСОБАХ

Резюме

Вступ. Розвиток артеріальної гіпертензії та ішемічної хвороби серця в більшості випадків спричиняє гіперхолестеринемія. Тому з метою лікування та профілактики в більшості схем фармакотерапії застосовують антиатеросклеротичні лікарські засоби. Статини мають високий клас рекомендацій та рівень доказовості, високу ефективність для перевіреної і аторвастатину ішемічної хвороби серця, тому їх широко використовують у клінічній практиці.

Мета дослідження – вдосконалити більш швидкі, прості, селективні та менш дорогі методи тонкослойної хроматографії для одночасного визначення лізиноприлу та аторвастатину в лікарських засобах.

Методи дослідження. У цьому дослідженні оцінювали рухомі фази з метою одночасного визначення лізиноприлу та аторвастатину для тонкослойної хроматографії.

Результати й обговорення. Тонкослойна хроматографія може бути використана для моніторингу прогресу реакції, ідентифікації лікарських речовин, визначення чистоти речовин. Ми розробили методику одночасної ідентифікації лізиноприлу та аторвастатину за допомогою тонкослойної хроматографії, а також досліджували різні рухомі фази, щоб оптимізувати розробку аналітичної методики лізиноприлу й аторвастатину методом тонкослойної хроматографії. Встановлено, що найбільш оптимальна Rf спостерігалась при використанні розчину аміаку Р (25 %) – пропанолу Р (30:70, v/v). Було виявлено характеристики валідації – специфічність та придатність хроматографічної системи, що відповідала критеріям прийнятності, встановленим ДФУ.

Висновки. Розроблено хроматографічну методику одночасного визначення лізиноприлу та аторвастатину. Майбутні дослідження буде спрямовано на розробку аналітичних методів аналізу.

КЛЮЧОВІ СЛОВА: лізиноприл; аторвастатин; ідентифікація; тонкослойна хроматографія; валідація.

Д. Б. Коваль, Н. С. Шуляк, Л. С. Логойда
ВОЛЫНСКИЙ МЕДИЦИНСКИЙ ИНСТИТУТ, ЛУЦК
ТЕРНОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ И. Я. ГОРБАЧЕВСКОГО
МОЗ УКРАИНИ

РАЗРАБОТКА И МЕТОДОЛОГИЯ ОПРЕДЕЛЕНИЯ ЛИЗИНОПРИЛА И АТОРВАСТАТИНА В ЛЕКАРСТВЕННЫХ СРЕДСТВАХ

Резюме

Вступление. Причиной артериальной гипертензии и ишемической болезни сердца в большинстве случаев является гиперхолестеринемия. Поэтому с целью лечения и профилактики в большинстве схем фармакотерапии применяют антиатеросклеротические лекарственные средства. Статины имеют высокий класс рекомендаций и уровень доказательности, высокую эффективность для первичной и аторвастатина ишемической болезни сердца, поэтому их широко используют в клинической практике.

Цель исследования – усовершенствовать более быстрые, простые, селективные и менее дорогие методы тонкослойной хроматографии для однообразенного определения лизиноприла и аторвастатина в лекарственных средствах.

Методы исследования. В этом исследовании оценивали подвижные фазы с целью однообразенного определения лизиноприла и аторвастатина для тонкослойной хроматографии.

Результаты и обсуждение. Тонкослойная хроматография может быть использована для мониторинга прогресса реакции, идентификации лекарственных веществ, определения чистоты веществ. Мы разработали методику однообразенного идентификации лизиноприла и аторвастатина с помощью тон-
кослойній хроматографії, а також існували різноманітні динамічні фази, щоб оптимізувати розробку аналітичної методики лізиноприла і аторвастатина методом тонкослойної хроматографії. Установлено, що найбільш оптимальна Rf наблюдається при використанні розчину аміаку R (25 %) – пропанола R (30:70, v/v). Було вивчене характеристики валидаций – специфічність і пригоднисть хроматографічної системи, яка відповідала критеріям вибору, установленим ГФУ.

Висновок. Розроблена хроматографічна методика одночасного визначення лізиноприла і аторвастатина. Будучі ісследування будуть направлені на розробку аналітичних методів аналізу.

КЛЮЧЕВІ СЛОВА: лізиноприл; аторвастатин; ідентифікація; тонкослойна хроматографія; валидация.

Address for correspondence: L. S. Logoyda, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine, e-mail: logojda@tdmu.edu.ua.

Received 04.08.20