ABSTRACT: Introduction: Intensive care unit (ICU) patients often develop weakness. Rehabilitation is initiated early to prevent physical deterioration, but knowledge of optimal training schedules is lacking. A reliable method to assess muscle activity during exercise is needed. In this study we explored the feasibility of electrical activity measurement by surface electromyography (sEMG) during bed cycling in ICU patients. Methods: sEMG was performed in 9 ICU patients and 6 healthy controls. A standardized 1-minute incremental resistance bedside cycle ergometer protocol was used. Results: The median cycle time was 5.3 minutes in patients and 12.0 minutes in controls. The maximum sEMG increased in both groups; the minimal sEMG activity remained the same in patients, whereas an increase in the control group was found. Discussion: sEMG is feasible and can detect muscle activity during bed cycling in ICU patients. It may be a useful monitoring tool. Repeated measurements could provide information on the effects of training.

Muscle Nerve 58:688–693, 2018

In critically ill patients who are admitted to the intensive care unit (ICU), muscle weakness often develops, which is referred to as ICU-acquired weakness (ICU-AW). Limiting bed rest and inactivity in early rehabilitation has a positive effect on muscle strength, walking ability, and functional outcome. However, the optimal frequency, intensity, and type of exercise for ICU patients is unknown.

To achieve training effects on muscle strength and cardiorespiratory fitness, the training load should be sufficient, but not excessive, for the cardiac, respiratory, and musculoskeletal systems. Monitoring of these systems during exercise is required to investigate and document the training intensity. Therefore, a tool to assess muscle activity during exercise would be helpful to identify the optimal level of exercise intensity for an individual. Such information would allow the development of a personalized training schedule. Surface electromyography (sEMG) monitoring of muscle activity has been described in healthy volunteers to assess muscle activity and fatigue during exercise. sEMG detects the electrical activity of the motor units that are involved in muscle contractions and can be considered a surrogate measure of the effort of the muscles. sEMG has been used for diaphragm monitoring in (mechanically ventilated) pre-term infants, but monitoring of leg muscles during bed cycling in patients in the ICU is new and could provide useful information.

The aim of this pilot study was to determine whether sEMG is a feasible method for muscle monitoring during bed cycling in ICU patients.

METHODS

Between January 2015 and March 2016, we conducted a prospective pilot study in the ICU of the Academic Medical Center, Amsterdam, The Netherlands, a 34-bed, mixed medical-surgical ICU and medium care unit. The study was approved by the medical ethics review committee (NL50006.018.14), and informed consent from each study subject was obtained.

Adult ICU patients mechanically ventilated for > 48 hours who could cycle were eligible for the study. To enable active bed cycling, a muscle strength score ≥ 3 on the Medical Research Council (MRC) scale for the legs (hip flexion, knee extension, and dorsal flexion of the feet) was required. Exclusion criteria were contraindications to perform physical exercise according to the safety criteria of the Evidence Statement for Physiotherapy in the ICU, a score of < 3 (as measured using the Short 5-item Questionnaire [5SQ]) for inability to follow instructions, and insufficient knowledge of Dutch. The control group consisted of healthy subjects.

Measurements. The patients and controls were tested once. They were placed in the semi-recumbent position in bed with both legs placed in a motorized cycling exercise device (MOTOmed letto2; RECK-Technik, Betzenweiler, Germany). The cycling protocol started with 1 minute of passive, unloaded cycling at 20 revolutions per minute (RPM). Next, active cycling started, in which the resistance was gradually increased according to the fixed levels of resistance (steps) of the bed cycle. The capacity of the bed cycle consisted of
age, in years: 70 (53–60)

Gender, women: 3

ICU stay to inclusion, in days: 45 (14–59)

Patients with mechanical ventilation during measurement (n): 4

Mechanical ventilation, in days: 18 (6–40)

APACHE II score: 17.5 (14–21)

MRC sum score: 42 (37–43)

DEMMI: 24 (18–32)

IQR, interquartile range; ICU, intensive care unit; APACHE, Acute Physiology and Chronic Health Evaluation score; MRC, Medical Research Council scale; DEMMI, De Morton Mobility Index.

*Data presented as median (interquartile range), unless noted otherwise.
Surface Electromyography. At the start of cycling, during the passive period, sEMG activity was able to be recorded. Evaluation of sEMG during active cycling showed an increase in ΔsEMG in the ICU and control groups. This reflected primarily an increase in sEMG\textsubscript{max}. The trough values (sEMG\textsubscript{min}) showed no change in the patient group but an increase in the control group (Fig. 1).

The overall difference between the peaks (sEMG\textsubscript{max}) of the ICU and control groups was not significant (0.27 μV [95% confidence interval –4.41 to 4.96]; \(P = 0.9 \)). For trough (sEMG\textsubscript{min}), a statistically significant difference of 1.8 μV (95% confidence interval 0.05 to 3.53) was found (\(P = 0.047 \)).

DISCUSSION

In this pilot study we have shown that muscle activity from the rectus femoris can be monitored during bed cycling by sEMG in ICU patients. With increasing resistance, a clear increase in muscle activity was observed. These findings indicate that sEMG is feasible and may be useful to monitor muscle activity in ICU patients during exercise. In addition, during passive cycling, limited muscle activity was detected.

Recording of sEMG for the assessment of muscle activity during cycling in healthy persons has already been described.6–9 In these populations, the method was found to be a useful tool to investigate muscle fatigue. sEMG during cycling was also used in patients with chronic back pain or cerebral palsy to detect muscle activation and fatigue.25,26 Because all these studies were performed on normal training bikes instead of cycles used at the bedside, we decided to explore our method in healthy subjects to compare and validate our method of cycling in the ICU.

The methods used to analyze the results of sEMG recordings during cycling differ substantially in the literature.6,7 Martin-Valdez et al. and Macdonald et al. used the median frequency (MDF), muscle fiber conduction velocity (MFCV), and amplitude (RMS) to investigate muscle fatigue.6,7 Both studies recommended the use of RMS amplitude as the most suitable and sensitive variable to observe muscle activity during incremental exercise and fatigue.6,7 In our pilot study, we evaluated the amplitude (in the RMS signal) found in 10 subsequent rotations directly after each increase in resistance. This straightforward method was also used to assess diaphragm weakness at our hospital.11

We also found sEMG activity in both groups during the passive period of cycling. This indicates that motor units were already activated in this phase. These results seem to support the observations by Kayambu et al. of the benefits of passive cycling in ICU populations. In those studies, they found that passive cycling reduced muscle wasting and prevented muscle atrophy, improved muscle strength and physical function, and reduced length of hospital stay in medical and surgical ICU populations.2,27–29

In most ICU patients, termination of bed cycling was caused by patients reporting muscle fatigue in the legs. None of the controls stopped for this reason. We also evaluated general exertion using the Borg RPE scale immediately after the exercise.16,17,30 Both ICU patients and controls reported a Borg RPE score of 13 defined as “somewhat hard,” indicating that there was no difference in perceived exertion.16,17

Limitations

Our study has some limitations that need to be acknowledged. Due to the strict inclusion criteria we used, our study population was small and training was done at a rather late phase of the ICU admission. Another limitation of our study was the software of the bedside cycle ergometer used. The increased power during the test could not be set on a fixed wattage per minute. The software selected its own increase in resistance based on the RPM and }

Table 2. Results of bed cycling.

ICU patients (n = 9)	Healthy persons (n = 6)	
Duration of the test (min:s)	5:3 (4:6–8:2)	12:0 (12:0–12:0)
Maximal workload (W)	3 (2.5–5)	34.5 (32.5–54.5)
RPM	33.5 (26–38.3)	60 (53.3–73.8)
Maximum steps	4 (4–5)	20 (20–20)
Borg score	13 (12–15)	13 (9–13)
Reason to stop (n)		
Muscle fatigue	7	
Dyspnea	1	
Other	1	
	6 (end of program)	

ICU, intensive care unit; RPM, revolutions per minute.

*Data presented as median (interquartile range), unless noted otherwise.
steps algorithm of the bed cycle. Nevertheless, the bed cycle was preferred because it has been recommended and widely used in ICU patients for practical and safety reasons. The program of the bed cycle provided detailed data of the wattage and number of RPMs after completion of the exercise. By following a strict protocol, we could increase the steps in a similar manner.

In conclusion, our pilot study has shown that sEMG is feasible and may be a useful monitoring tool to detect muscle activity during bed cycling in ICU patients. This investigation is a first step toward
bedside monitoring of muscle exercise and fatigue in ICU patients during bed cycling. With multiple measurements in single patients over a longer period of time, more knowledge can be achieved on fatigue and training effects. Ideally, in such future projects, sEMG monitoring should be combined with oxygen uptake and heart rate measurements during incremental bed cycle exercises. Such studies could help to determine the optimal dose and timing of exercise for individual patients.

The authors thank J.M. Binnekade, E. Witteveen, J. Jurgens, G.J. Glas, and A.S. van Bergen for their assistance.

REFERENCES

1. Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011;364:1295–1304.

2. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009;37:2499–2505.

3. Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL. The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med 2017;43:171–183.

4. Sommers J, Engelbert RH, Detting-Innenfeldt D, Gosselink R, Spronk PE, Nollet F, et al. Physiotherapy in the intensive care unit: an evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin Rehabil 2015;29:1051–1063.

5. American College of Sports Medicine. Resource manual for guidelines for exercise testing and prescription, 7th ed. Baltimore: Lippincott Williams & Wilkins; 2012.

6. Macdonald JH, Farina D, Marcera SM. Response of electromyographic variables during incremental and fatiguing cycling. Med Sci Sports Exerc 2008;40:335–344.

7. Martínez-Valdés E, Guzmán-Venegas RA, Silvestre RA, Macdonald JH, Falla D, Arandela OF, et al. Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling. Scand J Med Sci Sports 2016;26:1273–1282.

8. Camata TV, Altimari LR, Bortolotti H, Dantas JL, Fontes EB, Smirnau BP, et al. Electromyographic activity and rate of muscle fatigue of the quadriceps femoris during cycling exercise in the severe domain. J Strength Cond Res 2011;25:2557–2565.

9. Coelho AC, Cannon DT, Gao R, Porszasz J, Casaburi R, Knorr MM, et al. Instantaneous quantification of skeletal muscle activation. #power production, and fatigue during cycle ergometry. J Appl Physiol 2015;118:646–654.

10. Huten GJ, van Eschern LA, Latijn P, Thansrin C, van Aalderen WM, Frey U. Respiratory muscle activity related to flow and lung volume in preterm infants compared with term infants. Pediatr Res 2010;68:339–343.

11. Kraaijenga JV, de Waal CG, Huten GJ, de Jongh FH, van Kaam AH. Diaphragmatic activity during weaning from respiratory support in preterm infants. Arch Dis Childhood Fetal Neonatal Ed 2017;102:F307–F311.

12. De Jongh B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, et al. Parexis acquired in the intensive care unit: a prospective multicenter study. JAMA 2002;288:2859–2867.

13. Gosselink R. Physiotherapy in the intensive care unit. Netherlands J Crit Care 2011;66–73.

14. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine. Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med 2008;34:1188–1199.

15. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 2013;128:873–954.

16. Balady GJ, Arena R, Siesjö K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 2010;122:191–225.

17. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982;14:377–381.

18. Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci 2002;20:873–899.

19. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818–829.

20. de Morton NA, Davidson M, Keating JL. The de Morton Mobility Index (DEMMI): an essential health index for an ageing world. Health Qual Life Outcomes 2008;6:65.

21. Sommers J, Verdeveld T, Lindeboom R, Nollet F, Engelbert RH, van der Schaaf M. Morton Mobility Index is feasible, reliable, and valid in patients with critical illness. Phys Ther 2016;96:1658–1666.

22. Herrmans G, van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care 2015;19:274.
23. Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham DM, de Jonghe B, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med 2009;37(suppl):S299–308.

24. Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robberechts G, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit. Muscle Nerve 2012;45:18–25.

25. Mohseni Bandpei MA, Rahmani N, Majdoleslam B, Abdollahi I, Ali SS, Ahmad A. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review. J Manipulative Physiol Ther 2014;37:510–521.

26. Alves-Pinto A, Blumenstein T, Turova V, Lampe R. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer. Neuropsychiatr Dis Treat 2016;12:1445–1456.

27. Griffiths RD, Palmer TE, Helliwell T, MacLennan P, MacMillan RR. Effect of passive stretching on the wasting of muscle in the critically ill. Nutrition 1995;11:428–432.

28. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 2015;41:865–874.

29. Winkelman C, Johnson KD, Hejal R, Gordon NH, Rowbottom J, Daly J, et al. Examining the positive effects of exercise in intubated adults in ICU: a prospective repeated measures clinical study. Intensive Crit Care Nurs 2012;28:307–318.

30. Dawes HN, Barker KL, Cockburn J, Roach N, Scott O, Wade D. Borg’s Rating of Perceived Exertion scales: do the verbal anchors mean the same for different clinical groups? Arch Phys Med Rehabil 2005;86:912–916.