ON HECKE EIGENVALUES OF CUSP FORMS IN ALMOST ALL SHORT INTERVALS

JISEONG KIM

Abstract. Let ψ be a function such that $\psi(x) \to \infty$ as $x \to \infty$. Let $\lambda_f(n)$ be the n-th Hecke eigenvalue of a fixed holomorphic cusp form f for $SL(2, \mathbb{Z})$. We show that for any real valued function $h(x)$ such that $(\log X)^{2-2\alpha} \ll h(X) = o(X)$,

$$\sum_{x+h(X)}^{x+h(X)} |\lambda_f(n)| \ll h(X)\psi(X)(\log X)^{\alpha-1}$$

for all but $O_f(X\psi(X)^{-2})$ many integers $x \in [X, 2X - h(X)]$, in which α is the average value of $|\lambda_f(p)|$ over primes. We generalize this for $|\lambda_f(n)|^{2k}$ for $k \in \mathbb{Z}^+$.

1. Introduction

Let $f(z)$ be a holomorphic Hecke cusp form of even integral weight k for the full modular group $SL(2, \mathbb{Z})$. Let $e(z) = e^{2\pi iz}$. It is well known that $f(z)$ has a Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} c_n n^{k-1/2} e(nz)$$

for some real numbers c_n. For each $n \in \mathbb{N}$,

$$T_n f(z) := \frac{1}{n} \sum_{ad=n} a^k \sum_{0 \leq b < d} f\left(\frac{az+b}{d}\right) = \lambda_f(n) f(z),$$

in which T_n is the n-th Hecke operator, $\lambda_f(n)$ is the n-th Hecke eigenvalue. The Hecke eigenvalues $\{\lambda_f(n)\}_{n \in \mathbb{N}}$ satisfy the following properties.

$$c_1 \lambda_f(n) = c_n,$$

$$\lambda_f(m)\lambda_f(n) = \sum_{d|\langle n,m \rangle} \lambda_f\left(\frac{nm}{d^2}\right),$$

$$|\lambda_f(n)| \leq d(n),$$

in which $d(n) := \sum_{m|n} 1$ (the inequality (4) is called the Deligne bound). For details, see Chapter 14, [2].
We say that α is the average value of $|\lambda_f(p)|$ when
\begin{equation}
\sum_{p<x} \frac{|\lambda_f(p)|}{p} = \sum_{p<x} \frac{\alpha}{p} + O_f(1)
\end{equation}
for big enough X. Sato-Tate conjecture implies that $\alpha = \frac{8}{15} (= 0.848826...).$ In [1] P. D. T. A Elliott, C. J. Moreno and F. Shahidi proved that $\alpha \leq \frac{17}{18}$ without assuming Sato-Tate conjecture.

When $h = X^\delta$ for some $\delta \in (0, 1]$, by Shiu’s theorem (see Lemma 2.2),
\begin{equation}
\sum_{n=X}^{X+h} |\lambda_f(n)| \ll f \delta h \prod_{p=1}^{X} \left(1 + \frac{\alpha - 1}{p}\right) \ll h (\log X)^{\alpha - 1}
\end{equation}
for big enough X, but when $h(X) = o_\delta(X^\delta)$ for any $\delta > 0$, we can not use Shiu’s theorem because the interval is too short. In Section 2, we prove some lemmas by using some arguments of the papers [4], [5] to overcome this obstacle.

Although the results in this paper are stated for holomorphic cusp forms, the same arguments in this paper apply equally well to Maass cusp forms on $SL(2, \mathbb{Z})$, if we assume (1.4) (The Ramanujan-Petersson conjecture).

We give some notations that will be used throughout in this paper. We use φ to denote the Euler totient function. We use ψ to denote a function from \mathbb{R} to \mathbb{R} such that $\psi(x) \to \infty$ as $x \to \infty$. For any two functions $k(x)$ and $l(x)$, we use $k(x) \ll l(x)$ (and $k(x) = O(l(x))$) to denote that there exists a constant C such that $|k(x)| \leq C l(x)$ for all x. We use $k(x) = o(l(x))$ to denote $\frac{k(x)}{l(x)} \to 0$ as $x \to \infty$ and $n \sim x$ to denote $n \in [X, 2X]$. Summing over the index p denotes summing over primes. For the convenience, we denote $h := h(X)$.

1.1. Main results.

Theorem 1.1. Let $X > 0$ be big enough, let q be a natural number smaller than X. Let h be a real valued function such that $\varphi(q)(\log X)^{2 - 2\alpha} \ll h = o(X)$. Then there exists a Dirichlet character χ modulo q such that
\begin{equation}
\sum_{n=X}^{X+h} |\lambda_f(n)| \ll f \psi(X) \varphi(q)^{-0.5} (\log X)^{\alpha - 1}
\end{equation}
for all but $O_f(X \psi(X)^{-2})$ many integers $x \in [X, 2X - h]$.

When $q = 1$, χ in Theorem 1.1 should be the trivial character. Therefore, we obtain the following corollary.

Corollary 1.2. Let $X > 0$ be big enough. Let h be a real valued function such that $(\log X)^{2 - 2\alpha} \ll h = o(X)$. Then
\begin{equation}
\sum_{n=X}^{X+h} |\lambda_f(n)| \ll f \psi(X)(\log X)^{\alpha - 1}
\end{equation}
for all but at most $O_f(X \psi(X)^{-2})$ integers $x \in [X, 2X - h]$.
It is well known that for big enough X,

\[
\sum_{n=1}^{X} |\lambda_f(n)|^2 = c_1 X + O_f(X^{\frac{4}{5}}),
\]

(1.8)

\[
\sum_{n=1}^{X} |\lambda_f(n)|^4 = c_2 X \log X + c_3 X + O_f(X^{\frac{7}{8} + \epsilon})
\]

for some c_1, c_2, c_3 (see [3]). In our method, the upper bound of the short sum (1.7) and the sizes of h in Corollary 1.2 are only depend on the long sums (1.8), first equation) and the average of $|\lambda_f(p)|$ over primes (for the detail, see (2.8)). Therefore, we generalize Corollary 1.2 to arbitrary 2^k power of $|\lambda_f(n)|$ for $k \in \mathbb{Z}^+$.

Theorem 1.3. Let $X > 0$ be big enough. Let k be a fixed non-negative integer. Assume that there exist positive constants β and γ such that both inequalities

\[
\sum_{n=X}^{2X} |\lambda_f(n)|^{2k+1} \ll_f X(\log X)^{\beta},
\]

(1.9)

\[
\sum_{p=1}^{X} \frac{|\lambda_f(p)|^{2k}}{p} - \sum_{p=1}^{X} \frac{\gamma}{p} = O_f(1)
\]

(1.10)

hold. Then for any real valued function h such that $(\log X)^{\beta - 2\gamma + 2} \ll_f h = o(X)$,

\[
\sum_{n=x}^{x+h} |\lambda_f(n)|^{2k} \ll_f h(\log X)^{\gamma-1}\psi(X)
\]

for all but $O_f(X\psi(X)^{-2})$ many integers $x \in [X, 2X - h]$.

In Lemma 2.5, we prove that the average of $\lambda_f(p)^2$ over primes is 1. Therefore, the upper bound of $\sum_{n=X}^{2X} |\lambda_f(n)|^2$ from Shiu’s theorem is also $O(X)$. From the above facts, we obtain the following corollary.

Corollary 1.4. Let $X > 0$ be big enough. Let h be a real valued function such that $\log X \ll_f h = o(X)$. Then

\[
\sum_{n=x}^{x+h} |\lambda_f(n)|^2 \ll_f h\psi(X)
\]

(1.11)

for all but $O_f(X\psi(X)^{-2})$ many integers $x \in [X, 2X - h]$.

Remark 1.5. We apply Shiu’s theorem to get some trivial bounds. Let

\[
R_1(x) := \sum_{n=x}^{x+h} |\lambda_f(n)|\chi(n),
\]

\[
K_1(X) := \{x \in [X, 2X - h] : h\psi(X)\varphi(q)^{-0.5}(\log X)^{\alpha-1} \ll R_1(x)\}.
\]
Then
\[|K_1(X)| h \psi(X) \varphi(q)^{-0.5} (\log X)^{\alpha - 1} \leq \sum_{X \leq x \leq 2X} |R_1(x)| \]

\[\leq \sum_{X \leq x \leq 2X} |R_1(x)| \]

\[\leq \sum_{X \leq x \leq 2X} \sum_{n=x}^{x+h} |\lambda_f(n)| \]

\[\ll f h X (\log X)^{\alpha - 1}. \]

(1.12)

Therefore, \(X(\psi(X) \varphi(q)^{-0.5})^{-1} \) is a trivial bound for \(|K_1(X)| \). Thus the upper bound of \(|K_1(X)| \) from Corollary 1.2 saves \(\psi(X) \varphi(q)^{0.5} \) from the trivial one.

Let
\[
R_2(x) := \sum_{n=x, (n,q)=1}^{x+h} |\lambda_f(n)|^2,
\]

\[
K_2(X) := \{ x \in [X, 2X - h] : h \psi(X) \ll R_2(x) \}.
\]

Then
\[|K_2(X)| h \psi(X) \leq \sum_{X \leq x \leq 2X, h \psi(X) \ll R_2(x)} |R_2(x)| \]

\[\leq \sum_{X \leq x \leq 2X} |R_2(x)| \]

\[\leq \sum_{X \leq x \leq 2X} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 \]

\[\ll_f h X \]

(1.13)

Therefore, \(X(\psi(X))^{-1} \) is a trivial bound for \(|K_2(X)| \). Thus the upper bound of \(|K_2(X)| \) from Corollary 1.4 saves \(\psi(X) \) from the trivial one.

2. Lemmas

The following lemma shows that one can get some information about the average of \(|\lambda_f(n)| \chi(n) \) in almost all short intervals from the upper bounds of the second moment of the Dirichlet polynomial
\[
F(s) := \sum_{n \sim X} \frac{|\lambda_f(n)| \chi(n)}{n^s}.
\]

Lemma 2.1. Let \(X > 0 \) be big enough, let \(q \) be a natural number smaller than \(X \), and let \(h = o(X) \). Then
By the mean value theorem, the right hand side of (2.2) is bounded by
\[
\ll \int_0^{Xh^{-1}} \left| \sum_{n \sim X} \frac{|\lambda_f(n)| \chi(n)}{n^{1+it}} \right|^2 dt + \max_{T>Xh^{-1}} \frac{Xh^{-1}}{T} \int_T^{2T} \left| \sum_{n \sim X} \frac{|\lambda_f(n)| \chi(n)}{n^{1+it}} \right|^2 dt.
\]

Proof. The proof of this basically follows from [4, Lemma 14]. Since we choose the Dirichlet polynomial \(F(s) \) instead of \(\sum_{n=1}^\infty \frac{|\lambda_f(n)| \chi(n)}{n^{it}} \), there is no issue on absolute convergence of \(F(s) \). By Perron’s formula,
\[
\sum_{x \leq n \leq x+h} \frac{|\lambda_f(n)| \chi(n)}{n} = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} F(s) \frac{(x+h)^s - x^s}{s} ds.
\]
Let
\[
V = \frac{1}{h^2X} \int_X^{2X} \left| \int_1^{1+i\infty} F(s) \frac{(x+h)^s - x^s}{s} ds \right|^2 dx.
\]
Since
\[
\frac{(x+h)^s - x^s}{s} = \frac{1}{2h} \left[\int_h^{2h} \frac{(x+w)^s - x^s}{s} dw - \int_h^{3h} \frac{(x+w)^s - (x+h)^s}{s} dw \right],
\]
\[
V \ll Xh^{-4} \int_X^{2X} \left| \int_0^{2h} \int_1^{1+i\infty} F(s) x^s \frac{(1+w)^s - 1}{s} ds dw \right|^2 dx
\]
\[
+ Xh^{-4} \int_X^{2X} \left| \int_0^{2h} \int_1^{1+i\infty} F(s)(x+h)^s \frac{(1+w)^s - 1}{s} ds dw \right|^2 dx.
\]
By the mean value theorem, the right hand side of (2.2) is bounded by
\[
\ll \frac{1}{h^2X} \int_X^{2X} \left| \int_1^{1+i\infty} F(s) x^s \frac{(1+u)^s - 1}{s} ds \right|^2 dx
\]
\[
+ \frac{1}{h^2X} \int_{X+h}^{2X+2h} \left| \int_1^{1+i\infty} F(s)x^s \frac{(1+u)^s - 1}{s} ds \right|^2 dx
\]
for some \(u \ll \frac{1}{X} \). Let \(V_1 \) be the first summand, \(V_2 \) be the second summand of (2.3). Let \(g_1 \) be a smooth function supported on \([\frac{X}{2}, 4X] \), \(g_1(x) = 1 \) for \(x \in [X, 2X] \), and \(g'_1(x) \ll \frac{1}{X} \). Let \(s_1 = 1 + it_1, s_2 = 1 + it_2 \). Then
\[
V_1 \ll \frac{1}{h^2X} \int g_1(x) \left| \int_1^{1+i\infty} F(s) x^s \frac{(1+u)^s - 1}{s} ds \right|^2 dx
\]
\[
\ll \frac{1}{h^2X} \int_1^{1+i\infty} \left| F(s_1)F(s_2) \min\left\{ \frac{h}{X}, \frac{1}{|t_1|} \right\} \min\left\{ \frac{h}{X}, \frac{1}{|t_2|} \right\} \right| \left| \int g_1(x)x^{s_1+s_2} dx \right| ds_1ds_2.
\]
Since

\[
\int g_1(x)x^{s_1+s_2}dx \ll \frac{1}{X} \int_\frac{-X}{2}^{4X} \left| \frac{x^{s_1+s_2+1}}{s_1+s_2+1} \right| dx,
\]

\[
V_1 \ll \frac{1}{h^2X} \int_1^{1+i\infty} \int_1^{1+i\infty} |F(s_1)F(s_2)\min\{\frac{h}{X}, \frac{1}{|t_1|}\} \min\{\frac{h}{X}, \frac{1}{|t_2|}\} \sqrt{1+\frac{X^3}{|t_1-t_2|^2+1}}|ds_1ds_2|
\ll \frac{X^2}{h^2} \int_1^{1+i\infty} \int_1^{1+i\infty} |F(s_1)|^2 \min\{(\frac{h}{X})^2, |t_1|^{-2}\} + |F(s_2)|^2 \min\{(\frac{h}{X})^2, |t_2|^{-2}\}|ds_1ds_2|
\ll \int_1^{1+i\frac{X}{h}} |F(s)|^2 |ds| + \frac{X^2}{h^2} \int_1^{1+i\frac{X}{h}} \frac{|F(s)|^2}{|t|^2} |ds|.
\]

Since \(|t|^{-2} \ll \int_{it}^{2it} |T|^{-3}dT\),

\[
V_1 \ll \int_1^{1+i\frac{X}{h}} |F(s)|^2 |ds| + \frac{X^2}{h^2} \int_\frac{-X}{2}^{X} \frac{1}{T^3} \int_1^{1+2iT} |F(s)|^2 |ds|dT|\]
\ll \int_1^{1+i\frac{X}{h}} |F(s)|^2 |ds| + \frac{X^2}{h^2} \frac{1}{X} \max_{T>\frac{X}{h}} \int_1^{1+2iT} |F(s)|^2 |ds|
\ll \int_0^{Xh^{-1}} \left| \sum_{n=X}^{2X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt + \max_{T>\frac{Xh^{-1}}{T}} Xh^{-1} \int_T^{2T} \left| \sum_{n=X}^{2X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt.
\]

Let \(g_2\) be a smooth function supported on \([\frac{X+h}{2}, 4X+4h]\), \(g_2(x) = 1\) for \(x \in [X+h, 2X+2h]\), and \(g_2'(x) \ll \frac{1}{X}\). By the similar arguments of the bounding \(V_1\) (replacing \(g_1\) with \(g_2\)),

\[
V_2 \ll \int_0^{Xh^{-1}} \left| \sum_{n=X}^{2X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt + \max_{T>\frac{Xh^{-1}}{T}} Xh^{-1} \int_T^{2T} \left| \sum_{n=X}^{2X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt.
\]

In the proof of Lemma 2.3, we bound some type of the integral

\[
(2.4) \quad \int_{-T}^{T} |F(1+it)|^2 dt
\]

by some terms in which are related to the average of \(|\lambda_f(n)|^2\) over \([X, 2X]\) and the average of the shifted sums \(\sum_{X \leq m \leq 2X} |\lambda_f(m)\lambda_f(m+hq)|\) over \(h \in [1, \frac{T}{Xq}]\). The following lemma allows us to compute them.

Lemma 2.2. (Shiu’s theorem \[5\] Lemma 2.3)
Let $0 < \delta \leq 1$. Let $1 \leq q \leq X^\delta$, $1 \leq H$. Let $r(n)$ be a non-negative multiplicative function such that $r(n) \ll d(n)^k$ for some $k \in \mathbb{N}$. For $2 \leq X^\delta \leq Y$,

\begin{equation}
\sum_{n=X}^{X+Y} r(n) \ll \delta \ Y \prod_{p<X} \left(1 + \frac{r(p) - 1}{p}\right),
\end{equation}

\begin{equation}
\sum_{\lvert h \rvert \leq H} \sum_{\frac{X}{\tau} \leq n \leq X + Y} r(n) r(n + hq) \ll \delta \ Y \prod_{\substack{p \leq X, \ p \nmid q}} \left(1 + \frac{r(p) - 1}{p}\right)^2 \prod_{\substack{p | q}} \left(1 - \frac{1}{p}\right).
\end{equation}

Proof. See [5, Lemma 2.3].

Let

\begin{equation}
A(s) := \sum_{n \sim X} a_n n^{-s}
\end{equation}

for some $\{a_n\} \in \mathbb{C}$. The standard method for bounding the second moment of $A(s)$ is the mean value theorem

\[
\int_{-T}^T |A(it)|^2 \, dt = O((T + X) \sum_{n \sim X} |a_n|^2)
\]

(see [2, Theorem 9.2]). By factoring $A(s)$ to reduce the size of the length of the Dirichlet polynomials, one can obtain some nontrivial bounds of the second moment of $A(s)$ from the above mean value theorem (see Section 5, [4]. In [4], K. Matomäki, M. Radziwiłł applied the Ramare identity, an analogue of the Buchstab identity). But in our case, we are unable to reduce the size of X. Therefore, we apply the following lemma.

Lemma 2.3. Let $X > 0$ be big enough, let q be a natural number smaller than X. Then

\begin{equation}
\sum_{\chi \pmod{q}} \int_{-T}^T \left| \sum_{n \sim X} \frac{\lambda_f(n) \chi(n)}{n^{1+it}} \right|^2 \, dt \ll_f \frac{T \varphi(q)}{X^2} \sum_{n \sim X} |\lambda_f(n)|^2 + (\log X)^{2\alpha-2}.
\end{equation}

Proof. The proof of this basically follows from [5, Lemma 5.2]. Let

\[
I := \sum_{\chi \pmod{q}} \int_{-T}^T \left| \sum_{n \sim X} \frac{\lambda_f(n) \chi(n)}{n^{1+it}} \right|^2 \, dt.
\]

Let ϕ be a non-negative smooth function such that $\phi \geq 1$ for $|x| \leq 1$, $\hat{\phi}(x) = 0$ for $1 < |x|$, in which

\[
\hat{\phi}(x) := \int_{-\infty}^\infty \phi(t) e(-xt) \, dt.
\]

Then

\[
I \leq \sum_{\chi \pmod{q}} \int_{-\infty}^\infty \left| \sum_{n \sim X} \frac{\lambda_f(n) \chi(n)}{n^{1+it}} \right|^2 \phi\left(\frac{t}{T}\right) \, dt
\]

\[
= \sum_{\chi \pmod{q}} \sum_{m,n \sim X} \frac{|\lambda_f(m)\lambda_f(n)|}{(mn)} \chi(m) \chi(n) T \hat{\phi}(T \log \frac{m}{n})
\]
For each fixed n, the range of m is decided by the compact support of $\hat{\phi} (m = n + h, |h| \leq \frac{2X}{T})$, and by averaging over characters $\chi \pmod{q}$,

$$I \ll \varphi(q) \frac{T}{X^2} \sum_{n \sim X \atop (n,q)=1} \lambda_f(n) + \varphi(q) \frac{T}{X^2} \sum_{0 < |h| < \frac{2X}{Tq}} \sum_{n \sim X \atop (n,q)=1} |\lambda_f(n)\lambda_f(n + h)|.$$

By Lemma 2.2, (2.6),

$$\sum_{0 < |h| < \frac{2X}{Tq}} \sum_{n \sim X \atop (n,q)=1} |\lambda_f(n)\lambda_f(n + h)| \ll_f 2X \prod_{p \leq X \atop p \nmid q} (1 + \frac{|\lambda_f(p)| - 1}{p})^2 \prod_{p \mid q} (1 - \frac{1}{p}).$$

By (1.4), $||\lambda_f(p)| - 1| \leq 1$ for all prime p. By Taylor expansion and (1.5),

$$\log \left(\prod_{p \leq X} \left(1 + \frac{|\lambda_f(p)| - 1}{p}\right) \right) = \sum_{p \leq X} \log \left(1 + \frac{|\lambda_f(p)| - 1}{p}\right) = \sum_{p \leq X} \frac{|\lambda_f(p)| - 1}{p} + O(1) = \sum_{p \leq X} \frac{\alpha - 1}{p} + O_f(1).$$

By (1.4),

$$\log \left(\frac{\varphi(q) \prod_{p \mid q} (1 + \frac{|\lambda_f(p)| - 1}{p})^2 (1 - \frac{1}{p})}{\varphi(q) \prod_{p \mid q} (1 + \frac{|\lambda_f(p)| - 1}{p})^2 (1 - \frac{1}{p})} \right) = \sum_{p \mid q} \frac{-2|\lambda_f(p)|}{p} + O(1) \ll 1.$$

Therefore, the 2nd term of the right-hand side of (2.8) is bounded by

$$(\log X)^{2\alpha - 2}.$$

Notice that the absolute constant of the inequality (2.8) does not depend on q, but in (2.9), one can produce a saving factor from $\sum_{p \mid q} \frac{-2|\lambda_f(p)|}{p}$ for some q. This saving factor can be crucial when we treat $|\lambda_f(n)|^{2k}$ for some big k. Let $k \in \mathbb{N}$, $|\lambda_f(2)| = 2$, $q = 2$. Then

$$\log \left(\frac{\varphi(q) \prod_{p \mid q} (1 + \frac{|\lambda_f(p)|^{2k} - 1}{p})^2 (1 - \frac{1}{p})}{\varphi(q) \prod_{p \mid q} (1 + \frac{|\lambda_f(p)|^{2k} - 1}{p})^2 (1 - \frac{1}{p})} \right) = \log \left(1 - \frac{1}{2}\right)^2 \left(1 + \frac{2^{2k} - 1}{2}\right)^{-2} = -2 \log(2^{2k} + 1).$$
Therefore, the last term of (2.10) is heavily depend on \(k \). So we only generalize Lemma 2.3 for \(q = 1 \).

Lemma 2.4. Let \(X > 0 \) be big enough. Let \(k \) be a fixed non-negative integer. Assume that there exist positive constants \(\beta \) and \(\gamma \) such that both inequalities

\[
\sum_{n = X}^{2X} |\lambda_f(n)|^{2k+1} \ll_f X (\log X)^\beta,
\]

\[
\sum_{p = 1}^{X} \frac{|\lambda_f(p)|^{2k}}{p} - \sum_{p = 1}^{X} \frac{\gamma}{p} = O_f(1)
\]

hold. Then

\[
\int_{-T}^{T} \left| \sum_{n \sim X} \frac{|\lambda_f(n)|^{2k}}{n^{1+it}} \right|^2 dt \ll_f \frac{T}{X} (\log X)^\beta + (\log X)^{2\gamma - 2}.
\]

Proof. Let

\[
I_k := \int_{-T}^{T} \left| \sum_{n \sim X} \frac{|\lambda_f(n)|^{2k}}{n^{1+it}} \right|^2 dt.
\]

By the similar argument for \(I \) in Lemma 2.3 \((q = 1)\),

\[
I_k \ll \frac{T}{X^2} \sum_{n \sim X} |\lambda_f(n)|^{2k+1} + \frac{T}{X^2} \sum_{0 < |h| < \frac{2X}{T}} \sum_{n \sim X} |\lambda_f(n)|^{2k} |\lambda_f(n + h)|^{2k}.
\]

By (2.11),

\[
\frac{T}{X^2} \sum_{n \sim X} |\lambda_f(n)|^{2k+1} \ll_f \frac{T}{X} (\log X)^\beta.
\]

By Lemma 2.2 (2.6),

\[
\sum_{0 < |h| < \frac{2X}{T}} \sum_{n \sim X} |\lambda_f(n)|^{2k} |\lambda_f(n + h)|^{2k} \ll \frac{2X}{T} X \prod_{p \leq X} \left(1 + \frac{|\lambda_f(p)|^{2k} - 1}{p} \right)^2
\]

\[
\ll \frac{T}{X} (\log X)^{2\gamma - 2}.
\]

Therefore,

\[
I_k \ll_f \frac{T}{X} (\log X)^\beta + (\log X)^{2\gamma - 2}.
\]

\(\square \)

The following lemma shows that the average of \(\lambda_f(p)^2 \) over primes is 1.
Lemma 2.5. Let $X > 0$ be big enough. Then

$$
\sum_{p < X} \frac{\lambda_f(p)^2}{p} = \sum_{p < X} \frac{1}{p} + O_f(1)
$$

Proof. Let

$$
L(g, s) := \sum_{n = 1}^{\infty} \lambda_f(n)n^{-s}.
$$

Let Λ be the von Mangoldt function. $L(g \otimes \overline{g}, s)$ has a zero free region by [2, Theorem 5.44]. By [2, Theorem 5.13],

$$
\sum_{p \leq x} \lambda_f(p)^2 \Lambda(p) = x + O(x(\log x)e^{-C\log \frac{1}{2} x})
$$

for some absolute constant $C > 0$ depending only on g. Partial summation over p gives

$$
\sum_{1 < p \leq x} \frac{\lambda_f(p)^2}{p} = \int_2^x \frac{1}{t \log t} d\left(\sum_{p \leq t} \lambda_f(p)^2 \Lambda(p)\right) + O_f(1) = \log \log x + O_f(1) = \sum_{p \leq x} \frac{1}{p} + O_f(1).
$$

□

3. Propositions

In this section, we prove Proposition 3.1, Proposition 3.2. We need Proposition 3.1, Proposition 3.2 for Theorem 1.1, Theorem 1.3 respectively.

Proposition 3.1. Let $X > 0$ be big enough, let q be a natural number smaller than X. Then there exists a Dirichlet character χ modulo q such that when $\varphi(q)(\log X)^{2-2\alpha} \ll_f h = o(X)$,

$$
\frac{1}{X} \int_X^{2X} |\frac{1}{h} \sum_{n = x}^{x+h} |\lambda_f(n)|\chi(n)|^2 dx \ll_f \varphi(q)^{-1}(\log X)^{2\alpha-2}.
$$

Proof. Dropping all but one term, there exists a character χ modulo q such that for all $T > 0$,

$$
\int_{-T}^{T} \left| \sum_{n \sim X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt \leq \frac{1}{\varphi(q)} \sum_{\chi(\text{mod } q)} \int_{-T}^{T} \left| \sum_{n \sim X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt.
$$

By Lemma 2.3, (2.8),

$$
\frac{1}{\varphi(q)} \sum_{\chi(\text{mod } q)} \int_{0}^{Xh^{-1}} \left| \sum_{n \sim X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} \right|^2 dt \ll_f \frac{1}{Xh} \sum_{n \sim X} |\lambda_f(n)|^2 + \varphi(q)^{-1}(\log X)^{2\alpha-2}
$$

$$
\ll \frac{1}{h} + \varphi(q)^{-1}(\log X)^{2\alpha-2} \ll \varphi(q)^{-1}(\log X)^{2\alpha-2}.
$$
By the similar argument of (3.2),

\[
\frac{1}{\varphi(q)} \sum_{\chi \pmod{q}} \max_{T > Xh^{-1}} \frac{Xh^{-1}}{T} \int_{T}^{2T} | \sum_{n \sim X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} |^2 dt \\
\ll_f \max_{T > Xh^{-1}} Xh^{-1}T^{-1} \left(\frac{T}{X} + \varphi(q)^{-1}(\log X)^{2\alpha-2} \right) \\
\ll \frac{1}{h} + \varphi(q)^{-1}(\log X)^{2\alpha-2} \\
\ll \varphi(q)^{-1}(\log X)^{2\alpha-2}.
\]

By Lemma 2.1,

\[
\frac{1}{X} \int_{X}^{2X} \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 dx \\
\ll \int_{0}^{Xh^{-1}} | \sum_{n \sim X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} |^2 dt \\
+ \max_{T > Xh^{-1}} Xh^{-1} \frac{1}{T} \int_{T}^{2T} | \sum_{n \sim X} \frac{\lambda_f(n)\chi(n)}{n^{1+it}} |^2 dt.
\]

Therefore,

\[
\frac{1}{X} \int_{X}^{2X} \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 dx \\
\ll_f \varphi(q)^{-1}(\log X)^{2\alpha-2}.
\]

By the similar arguments of the proof of Proposition 3.1, we generalize Proposition 3.1 to arbitrary \(2^k\) power of \(|\lambda_f(n)|\).

Proposition 3.2. Let \(X > 0\) be big enough. Let \(k\) be a fixed non-negative integer. Assume that there exist positive constants \(\beta\) and \(\gamma\) such that both inequalities

\[
(3.4) \sum_{n=X}^{2X} |\lambda_f(n)|^{2^{k+1}} \ll_f X(\log X)^{\beta},
\]

\[
(3.5) \sum_{p=1}^{X} \frac{|\lambda_f(p)|^{2^k}}{p} - \sum_{p=1}^{X} \frac{\gamma}{p} = O_f(1)
\]

hold. Then for any real valued function \(h\) such that \((\log X)^{\beta-2\gamma+2} \ll_f h = o(X),

\[
(3.6) \frac{1}{X} \int_{X}^{2X} \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^{2^k} dx \ll_f (\log X)^{2\gamma-2}.
\]
Proof. By the similar argument of the proof of Lemma 2.1 (one just need to replace $|\lambda_f(n)|^{2k}$, $q = 1$),

\begin{equation}
\frac{1}{X} \int_X^{2X} \left| \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 \right|^2 \, dx \ll \int_0^{Xh^{-1}} |\sum_{n \sim X} \frac{|\lambda_f(n)|^{2k}}{n^{1+it}}|^2 \, dt + \max_{T > Xh^{-1}} \frac{Xh^{-1}}{T} \int_T^{2T} |\sum_{n \sim X} \frac{|\lambda_f(n)|^{2k}}{n^{1+it}}|^2 \, dt.
\end{equation}

By Lemma 2.4,

\begin{equation}
\int_0^{Xh^{-1}} |\sum_{n \sim X} \frac{|\lambda_f(n)|^{2k}}{n^{1+it}}|^2 \, dt \ll h^{-1}(\log X)^\beta + (\log X)^{2\gamma - 2},
\end{equation}

\begin{equation}
\max_{T > Xh^{-1}} \frac{Xh^{-1}}{T} \int_T^{2T} |\sum_{n \sim X} \frac{|\lambda_f(n)|^{2k}}{n^{1+it}}|^2 \, dt \ll \max_{T > Xh^{-1}} \frac{Xh^{-1}T^{-1}}{T} (\frac{T}{X}(\log X)^\beta + (\log X)^{2\gamma - 2}) \ll h^{-1}(\log X)^\beta + (\log X)^{2\gamma - 2}.
\end{equation}

Since $h^{-1} \ll f(\log X)^{-\beta + 2\gamma - 2}$, (3.8),(3.9) are bounded by

\begin{equation}
(\log X)^{2\gamma - 2}.
\end{equation}

\[\Box\]

4. Proof of Theorem 1.1, Theorem 1.3, Corollary 1.4

4.1. Proof of Theorem 1.1. By Proposition 3.1, there exists a \(\chi \) modulo \(q \) such that

\[\int_X^{2X} \left| \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|\chi(n)|^2 \right|^2 \, dx \ll f \varphi(q)^{-1}(\log X)^{2\alpha - 2}. \]

Let \(B(X) = \psi(X)^2 \varphi(q)^{-1}(\log X)^{2\alpha - 2} \). By the Chebyshev inequality,

\[\left| \{ x \in [X, 2X - h] : \left| \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|\chi(n)| \right| \gg f B(X)^{\frac{1}{2}} \} \right| \ll f B(X)^{-1} \int_X^{2X} \left| \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 \right|^2 \, dx \]

\[= O_f(X\psi(X)^{-2}). \]
4.2. **Proof of Theorem 1.3, Corollary 1.4.** By Proposition 3.2,

\[
\frac{1}{X} \int_X^{2X} \left(\frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^{2k} \right)^2 dx \ll_f (\log X)^{2\gamma - 2}.
\]

Let

\[B_k(X) = \psi(X)^2 (\log X)^{2\gamma - 2}. \]

By the Chebyshev inequality,

\[
\left| \left\{ x \in [X, 2X - h] : \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^{2k} \gg_f B_k(X)^{1/2} \right\} \right| \ll_f B_k(X)^{-1} \int_X^{2X} \left(\frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^{2k} \right)^2 dx
\]

\[
= O_f(X^{\psi(X)^{-2}}).
\]

When \(k = 1 \), by (1.8), \(\beta = 1 \). And by Lemma 2.5, \(\gamma = 1 \). Therefore,

\[
\left| \left\{ x \in [X, 2X - h] : \frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 \gg_f \psi(X) \right\} \right| \ll_f (\psi(X))^{-2} \int_X^{2X} \left(\frac{1}{h} \sum_{n=x}^{x+h} |\lambda_f(n)|^2 \right)^2 dx
\]

\[
= O_f(X^{\psi(X)^{-2}}).
\]

5. **Acknowledgements**

The author would like to thank his advisor Xiaoqing Li, for helpful advice. The author also thanks the referee for careful reading and pointing out many mistakes.

References

[1] P. D. T. A. Elliott, C. J. Moreno, and F. Shahidi. On the absolute value of Ramanujan’s \(\tau \)-function. *Math. Ann.*, 266(4):507–511, 1984.

[2] Henryk Iwaniec and Emmanuel Kowalski. *Analytic number theory*, volume 53 of *American Mathematical Society Colloquium Publications*. American Mathematical Society, Providence, RI, 2004.

[3] Guangshi Lü. Average behavior of Fourier coefficients of cusp forms. *Proc. Amer. Math. Soc.*, 137(6):1961–1969, 2009.

[4] Kaisa Matomäki and Maksym Radziwiłł. Multiplicative functions in short intervals. *Ann. of Math. (2)*, 183(3):1015–1056, 2016.

[5] Kaisa Matomäki, Maksym Radziwiłł, and Terence Tao. Correlations of the von Mangoldt and higher divisor functions II: divisor correlations in short ranges. *Math. Ann.*, 374(1-2):793–840, 2019.

Email address: Jiseongk@buffalo.edu

University at Buffalo, Department of Mathematics 244 Mathematics Building Buffalo, NY 14260-2900