Boosting Sensitivity of Large-scale Online Experimentation via Dropout Buyer Imputation

Sumin Shen∗ Huiying Mao† Zezhong Zhang‡ Zili Chen§ Keyu Nie¶ Xinwei Deng†

Second Version, November 2022

Abstract

In online experimentation, appropriate metrics (e.g., purchase) provide strong evidence to support hypotheses and enhance the decision-making process. However, incomplete metrics are frequently occurred in the online experimentation, making the available data to be much fewer than the planned online experiments (e.g., A/B testing). In this work, we introduce the concept of dropout buyers and categorize users with incomplete metric values into two groups: visitors and dropout buyers. For the analysis of incomplete metrics, we propose a clustering-based imputation method using k-nearest neighbors. Our proposed imputation method considers both the experiment-specific features and users’ activities along their shopping paths, allowing different imputation values for different users. To facilitate efficient imputation of large-scale data sets in online experimentation, the proposed method uses a combination of stratification and clustering. The performance of the proposed method is compared to several conventional methods in both simulation studies and a real online experiment at eBay.

KEY WORDS: Experimentation; Metrics; Imputation; Clustering; A/B testing.

Introduction

Online experimentation has been playing a key role in data-driven decision making in the IT industry including Microsoft (Kohavi et al., 2009, 2014), Google(Tang et al., 2010), Linkedin (Xu et al., 2018), Netflix (Xie and Aurisset, 2016), Uber, eBay (Nie et al., 2020), and many others (Gupta et al., 2019). Generally, online controlled experimentation, also known as A/B testing...
testing, is conducted for a pre-determined amount of time to compare the difference in metrics between the treatment group and the control group where users are randomly assigned to. Prior to experimentation, a set of high-quality metrics are determined to assess the effects of new features in the treatment group. The collected metric results can provide strong evidence to support hypotheses and hence accelerate the decision-making process (Deng and Shi, 2016; Machmouchi and Buscher, 2016; Dmitriev and Wu, 2016). However, incomplete metrics are frequently occurred in the online experimentation, making the available data to be much fewer than the planned A/B testing. In this work, our focus is on the analysis of metrics that have incomplete measurements at the end of data collection in experiments.

According to the positions in the shopping funnel, metrics can be categorized as top, middle, and bottom funnel metrics. For instance, a successful purchase typically requires users to take multiple steps from the top homepage webpage to the bottom purchase webpage in the shopping funnel. In online experimentation, it is common for millions of users to arrive at the top funnel (e.g., homepage webpage), while only a small percentage of users reach the bottom funnel (e.g., purchase webpage). Between the transition from the top funnel to the bottom funnel, users need to navigate through multiple pages where they can exit from the shopping process. There are numerous scenarios in which users can exit the funnel, resulting in incomplete records of their purchases or other metrics. A common occurrence is simply that each experiment has its own experiment duration. Keeping experiments alive for a long period of time is expensive due to the high operational efforts and business opportunity costs. When we close experiments, we stop the track of all users, but some users might yet complete their purchases. This incompleteness in metrics due to the delay in collecting measurements for bottom-funnel metrics in experimentation are inevitable. There is also the possibility that users are lost to follow due to technical issues or user unavailability. For instance, when users switch from the desktop app to the mobile app, they become unavailable. It is essential to fill in the incomplete metrics to improve metric quality, leading to trustworthy results and better decisions.

With incomplete metric measurements, the inference of the difference in metrics between the treatment and the control in experiments is at the risk of being biased and inaccurate (Imbens et al., 2001; Imbens and Pizer, 2000; Goldstein et al., 2007). To analyze experiments with missing metric values, a naive approach is to disregard users with incomplete outcomes. This approach assumes that the missingness is completely at random and that the fully observed users are representative of the entire population. Such an approach will reduce the total number of users in the study, leading to a decrease in the experiment power. The power decrease is substantial especially when the proportion of missingness is high.

Various imputation methods have been developed to address problems with missing data. One widely used method is the single imputation method, which fills in missing values with a single value, such as the mean of observed outcomes, for both the treatment group and the control group. The single imputation method preserves the full sample size, but it raises concerns regarding results with a distorted distribution and underestimated uncertainty (Spineli and Kalyvas, 2020). In addition, the single imputation method disregards information from other observed variables collected along users’ journeys within the funnel. Other imputation methods have been developed for missing at random (MAR) and missing not at random.
(MNAR) scenarios. The MAR assumes that the missing mechanism is only associated with the observed variables (Rubin, 1976; Imai, 2009; Bhaskaran and Smeeth, 2014). Likelihood-based methods, such as generalized linear mixed models, are developed in clinical trials with incomplete outcomes (Molenberghs et al., 2004). The performance of the methods depends on the degree to which the assumptions are held for MAR. For MNAR in which the effect from missing outcomes is non-ignorable, the observed difference would be a biased estimate of the average treatment effect (Molenberghs et al., 2004). Regression-based imputation methods, such as the logistic regression, are employed for modeling the indicator for missingness (Mao et al., 2021). Other prevalent methods, such as matching imputations, identify similar users from a set of variables. In general, these imputation methods require the identification of users with missing outcomes and users with outcomes as zero. In other words, general imputation methods are often not appropriate to handle certain online experimentation scenarios in which users’ missing outcomes represent both missing cases and zero cases.

To address the above challenges, we propose a clustering-based imputation method using k-nearest neighbors (kNN) for the analysis of online controlled experimentation in the presence of incomplete metrics. The key idea of the proposed method is to identify and impute incomplete metrics with users’ neighbors by incorporating the structure information of data from online experimentation. Specifically, the proposed method consists of two steps. The first step is to partition the data set into clusters after the stratification of experiment-specific features, including the treatment assignment and the buyers’ characteristics. In the second step, we perform the kNN-based imputation. Moreover, we divide users with missing outcomes into two categories: visitors and dropout buyers, such that the information of dropout buyers can be better utilized. Note that our framework assumes that the treatment assignment and user covariates are fully observed, whereas only the outcome at the bottom of the funnel has missing values. The proposed method has three key advantages. First, the proposed method uses the informative covariates during users’ journeys in the shopping funnel to impute incomplete metrics. Specifically, our method evaluates the heterogeneous impact from different user segments on missing rates in metrics. Second, the imputed values from our method are intuitive to understand. Lastly, our method employs stratification and clustering to alleviate the computation issues for large-scale data in online experimentation.

Throughout the paper, we consider the metric $Purchase$ as an example of the incomplete metric at the funnel’s bottom for illustration. We also assume that the $Purchase$ is the only metric (i.e., outcome) of interest in the experiment. The rest of the paper is organized as follows. In Sections 2 and 3, we detail the problem formulation, the proposed method, and the estimation procedures. In Section 4, we present simulations. A real case study is conducted in Section 5. We conclude this work with some discussion in Section 6.

Problem Formulation

In the context of online controlled experiments, we can classify users into three types based on their purchase behaviors: visitors, real buyers, and dropout buyers. Visitors participate in experiments but do not make contributions (e.g., purchases). Real buyers not only participate in experiments but also make contributions (e.g., purchases). Dropout buyers could have
made their contributions (e.g., completed their transactions) within the experimentation period but failed due to various reasons. For example, users could drop out of the experiment because of unexpected external payment issues. Another example is that the experiment lost users due to various technical issues.

Suppose there are n users in an experiment, and let $y_i \in \{0, 1\}$ denote whether the i-th user is a buyer or not, and let $z_i \geq 0$ denote the metric value of the i-th user impacted by the experimentation. That is,

$$y_i = \begin{cases}
1, & \text{user } i \text{ is either a real buyer or a dropout buyer}, \\
0, & \text{user } i \text{ is a visitor},
\end{cases}$$

and $y_i = \mathbb{1}(z_i > 0)$, where $\mathbb{1}(\cdot)$ is the indicator function. We know for sure that user i is a real buyer and the corresponding value amount if he/she has completed transaction(s) during the experimentation period. In other cases, it is ambiguous whether he/she is a dropout buyer or merely a visitor. Therefore, we use y_i^{obs} and z_i^{obs} if the i-th user is a real buyer and y_i^{mis} and z_i^{mis} to represent the ambiguous situation (i.e., could be a dropout buyer or a visitor). To clarify,

$$y_i = \begin{cases}
 y_i^{obs} = 1, & \text{user } i \text{ is a real buyer}, \\
y_i^{mis} = 1, & \text{user } i \text{ is a dropout buyer}, \\
0, & \text{user } i \text{ is a visitor}.
\end{cases}$$

However, some practitioners arbitrarily treat all y_i^{mis} and z_i^{mis} as 0 without the diligence to distinguish between dropout buyers and visitors. Here, we denote such an arbitrary but simplified buyer indicator as

$$\tilde{y}_i = \begin{cases}
1, & \text{user } i \text{ is a real buyer}, \\
0, & \text{otherwise}.
\end{cases}$$

Their corresponding vectors are denote as $y = (y_1, \ldots, y_n)$, $z = (z_1, \ldots, z_n)$, $\tilde{y} = (\tilde{y}_1, \ldots, \tilde{y}_n)$. Additionally, let x_i denote the relevant features for user i, $x_i = (x_{i1}, \ldots, x_{ip}) \in \mathbb{R}^p$, $p \geq 1$, and let $X = (x_1, \ldots, x_n)^T$. Without loss of generality, we assume that p features are continuous variables.

Suppose there are m real buyers among the total n users, and without loss of generality, let us assume the first m users are real buyers. Denote n users’ purchase and transactional amount during the experimentation period using vectors

$$y = (y^{obs}, y^{mis}) = (y_1^{obs}, \ldots, y_m^{obs}, y_{m+1}^{mis}, \ldots, y_n^{mis}),$$

$$z = (z^{obs}, z^{mis}) = (z_1^{obs}, \ldots, z_m^{obs}, z_{m+1}^{mis}, \ldots, z_n^{mis}).$$

The problem of interest is to impute missing values y^{mis} and z^{mis} in the context of online experimentation. Among users with missing values, visitors are mixed with dropout buyers. Therefore, our proposed method is to firstly identify the candidates of dropout buyers (i.e., identifying the candidates of 1s in y^{mis}) with the help of a classification model and then impute the y^{mis} and z^{mis} using an efficient cluster-based nearest neighbors-based approach.
The Proposed Method

The objective of the imputation problem is to impute missing values such that they are close to the underlying true data. The missing value imputation problem can be formulated as

$$\min_{\hat{y}^{\text{mis}}} l(\hat{y}^{\text{mis}}, y^{\text{mis}}),$$

where $l(\hat{y}^{\text{mis}}, y^{\text{mis}})$ is a loss function to quantify the difference between the imputed missing values \hat{y}^{mis} and the underlying true values y^{mis}.

Imputing missing values with non-parametric methods such as the nearest neighbors algorithm in large-scale data sets is challenging due to the large computation requirements for distances between pairs of data points. To solve this challenge, we propose to incorporate the data clustering patterns into the imputation. In other words, we partition users into c clusters and then perform imputations within each cluster. Thus, the cluster-based imputation problem is described as

$$\min_{\hat{y}^{\text{mis}}} \sum_{h=1}^{c} \sum_{C(i)=h} l(\hat{y}^{\text{mis}}_i, y^{\text{mis}}_i),$$

s.t. $\sum_{h=1}^{c} \sum_{C(i)=h} \|x_i - \mu_h\|_2^2 \leq g, \ i \in I,$

where x_i denotes the features for user i, and $C(i) = h$ represents the user i with missing value y^{mis}_i belongs to cluster h with the centroid μ_h, the constant g controls the within-cluster distances, and $\|\cdot\|_2$ is the L2-norm. The set of indices I is defined as $I = \{i : y_i \text{ is missing}\}$. After imputing y^{mis}_i, we can estimate the corresponding z^{mis}_i as well.

Note that it is unknown whether a user with an incomplete metric is a visitor or a dropout buyer. The dropout buyers are mixed with visitors because both do not have their purchase information recorded. To address the challenge, in Section 3.1, we apply the logistic regression model to identify a certain portion of visitors and narrow down the candidates of dropout buyers. Section 3.2 will detail the proposed cluster-based imputation. Notice that the data set in online controlled experiments often is very large such that the conventional clustering methods cannot be conducted efficiently. To alleviate the computation issue, Section 3.3 will consider a stratification-based clustering and describe how to choose the number of clusters.

Identifying Dropout Buyer Candidates

The practitioners’ simplified buyer indicator \tilde{y} reveals partial information in the true buyer indicator y. Therefore, a classification model based on (X, \tilde{y}) provides us with the likelihood of purchases. Users with a high likelihood but missing purchase records can serve as the candidates for dropout buyers. Since \tilde{y} is used as a substitution of y, we call \tilde{y} pseudo-response.

Specifically, we propose to apply the logistic regression model for the buyer identification. Denote the conditional probability for user i as $p(x_i) = Pr(\tilde{y}_i = 1|x_i)$, that is,

$$\tilde{y}_i|x_i = \begin{cases} 1, & \text{w.p. } p(x_i), \\ 0, & \text{w.p. } 1 - p(x_i). \end{cases}$$
Table 1: Summary of four categories of results in the logistic regression model.

Pseudo-response (\(\hat{y}\))	Prediction	Description
True Negative (TN)	0	0 Visitors
False Positive (FP)	0	1 Candidates of dropout buyers
False Negative (FN)	1	0 Real buyers
True Positive (TP)	1	1 Real buyers

We model the conditional probability \(p(x_i)\) with the logistic model \(\log\left(\frac{p(x_i)}{1 - p(x_i)}\right) = x_i^T \beta\) with \(\beta = (\beta_1, \ldots, \beta_p)^T\). Note that the features used in the logistic regression model are believed to be closely related to users’ purchase behaviors. A threshold is needed in the logistic model for classification. One widely used threshold value is 0.5. Customers can choose the percentage of TN in the whole samples as the threshold according to their domain knowledge.

Comparing the model prediction and pseudo-response, Table 1 summarizes four types of classification results: false positive (FP), true negative (TN), false negative (FN), and true positive (TP) from the classification model. The FP indicates that the users with pseudo-response as 0 should have purchase information. We use this inconsistency to figure out the candidates of dropout buyers. That is, the FP cases can be either visitors or dropout buyers. The TN suggests the agreement that these users do not have purchases recorded. Thus, we treat all TN cases as visitors. The FN and the TP are users recorded with purchase behaviors, and hence they are real buyers, not dropout buyers or visitors.

Suppose there are \(r\) visitors and \(n - m - r\) dropout buyer candidates that have been identified. Without loss of generality, let us assume the first \(r\) users in the missing set are those visitors. Then we write \(y^{mis}\) as

\[
y^{mis} = (y^{est}, y^*) = (y_{m+1}^{est}, y_{m+r}^{est}, y_{m+r+1}^{*}, \ldots, y_n^{*}),
\]

where \(y_i^{est} = 0, i = m + 1, \ldots, m + r,\) and \(y_i^* \in \{0, 1\}, i = m + r + 1, \ldots, n\) with 0 representing visitors and 1 representing dropout buyers. Similarly, we denote the corresponding continuous response for the purchase amount as

\[
z^{mis} = (z^{est}, z^*) = (z_{m+1}^{est}, z_{m+r}^{est}, z_{m+r+1}^{*}, \ldots, z_n^{*}),
\]

where \(z_i^{est} = 0, i = m + 1, \ldots, m + r,\) represents the purchase amounts from estimated visitors and \(z_i^*\) represents the missing non-negative response from \(n - m - r\) users. In the following imputation methods in Section , we consider \(z^{est}\) to be zeros and our major focus is to impute \(z^*\).

Clustering-based Imputation for Dropout Buyers

To impute the missing purchase value \(z^*\) of the dropout buyers, we adopt the clustering-based method using kNN techniques. It is noted that clustering improves data analysis efficiency by identifying inherent structure patterns and partitioning the large-scale data set
into small subsets. In each strata \(X_t \) (described later in the stratification step), we perform the \(K \)-means clustering method (MacQueen et al., 1967) to form clusters, which is formulated as

\[
\min_{C} \sum_{h=1}^{c} \sum_{C(i)=h} \|x_i - \mu_h\|^2.
\]

On top of clustering, we use the triangle inequality rule (described later) to ensure the consistent identification of nearest neighbors in the \(k \)-nearest neighbors (kNN) approach for imputation. The main idea of the kNN method is that nearby data points are similar to each other. The kNN algorithm is straightforward and does not require parametric model estimation, but it is computationally expensive and becomes slow as the size of the data set increases. However, this computational burden is greatly mitigated by the strategy of clustering. Given the specific cluster \(h \) (i.e., the fixed constraint in (1)), the imputation problem (1) with the kNN method can be written as

\[
y_i^* = \arg\max_L \sum_{x_j \in N_k(x_i)} 1 \{y_j = L\}, \ i \in I, \ C(i) = h, \tag{2}
\]

where \(L \in \{0, 1\} \) is the binary label, \(k \) is a positive integer representing the size of target user’s nearest neighbors \(N_k(x_i) \) and \(j \) is the nearest neighbors’ user index. In this work, we use a fixed value 15 for \(k \). It is not difficult to derive the solution to the objective function, which is written as

\[
\hat{y}_i^* = \begin{cases}
1, & \sum_{j=1}^{k} y_j/k \geq 0.5, \\
0, & \text{otherwise},
\end{cases}
\]

where \(\sum_{j=1}^{k} y_j/k \) is the average of response \(y_j^* \)'s in the nearest neighbors.

With the imputed \(\hat{y}_i^* \), we obtain the corresponding imputed missing value \(\hat{z}_i^* \) from the cost function formulated as

\[
\min_{z_i^*} \sum_{j=1}^{k} ||z_i^* - z_j||^2 + (1 - \hat{y}_i^*) ||z_i^*||^2, \quad z_i^* \geq 0, \ i \in I, \ C(i) = h,
\]

That is, the estimated \(\hat{z}_i^* \) is given by

\[
\hat{z}_i^* = \begin{cases}
\sum_{j=1}^{k} z_j/k, & \sum_{j=1}^{k} y_j/k \geq 0.5, \\
0, & \text{otherwise},
\end{cases}
\]

where \(\sum_{j=1}^{k} z_j/k \) is the average of response \(z_j^* \)'s in the nearest neighbors.

The nearest neighbors are determined based on their distances to the target user, that is, the \(k \) closest neighbors are found by

\[
\min \sum_{j=1}^{k} d(x_i, x_j),
\]

where \(d(x_i, x_j) \) is the distance between the users \(i \) and \(j \).
To further accelerate the computation, we adopt the triangle inequality rule (Wang, 2011), which avoids unnecessary distance calculations. We first obtain the k nearest neighbors within the closest cluster and denote their largest distance as d_{max}. We denote the distance between the target user and any other cluster centroid as d_1, the distance between any user in the same cluster and its cluster centroid as d_2, the distance between the target user and any user as d_3. The idea of the triangle inequality rule is that when $d_{max} \leq |d_1 - d_2|$, then $d_{max} \leq d_3$. As a result, we do not have to explicitly calculate d_3, which greatly speeds up the distance computation and ensures that the identification of nearest neighbors is robust to clustering. In this study, we use the L_2-norm to measure distances.

Efficient Clustering Strategy

Note that the data set in the online controlled experimentation often is very large to cluster in the imputation step. To reduce the computational burden in clustering, we propose the stratification-based clustering approach. The key idea is to firstly stratify the user pool, and then perform clustering within each strata.

In the stratification step, we stratify users into two hierarchical levels: treatment assignment and users’ buying characteristics. The treatment assignment, including the treatment group and the control group, is determined by the experimentation configuration. Generally, in online controlled experiments there are two treatment assignments: control and treatment. However, more than two treatment assignments are possible in cases such as multivariant experiments. User’s buying characteristics, including new buyers, infrequent buyers, frequent buyers, and idle buyers, are categorized based on users’ purchase activities at eBay. There are in total 12 buyer categories. Note that both the experimentation configuration and the users’ buying segments are determined prior to the start of the experimentation. The hierarchical stratification is formulated as

$$X = \bigcup_{t=1}^{T} \bigcup_{u=1}^{U} X_{tu},$$

where X_{tu} is the strata at the t-th treatment level and the u-th users’ buying characteristics in the feature space X, and there are in total T levels treatment assignment and U levels users’ buying characteristics.

The combination of stratification and clustering within each strata greatly improves computation efficiency in the imputation step, where the neighbors of the target user are searched within all clusters.

The number of clusters in each strata from the stratification is obtained by maximizing a simplified version of the Silhouette score, also known as simplified Silhouette. The Silhouette score is an effective measure of clustering goodness (Rousseeuw, 1987), but it requires an intense computation of the distance between each data point and the rest data points. The simplified Silhouette improves the computational efficiency of the Silhouette score by calculating the distances between each data point and centroids of clusters (Hruschka et al., 2004). The simplified Silhouette of data point i, denoted as SS_i, is defined as

$$SS_i = \frac{b_i - a_i}{\max(a_i, b_i)},$$
where a_i is the distance between the data point i and the centroid of the cluster it belongs to, and b_i is the minimum of distances between the data point i and the centroids of other clusters. The final simplified Silhouette is the average of all data points’ simplified Silhouette. Note that the distances of each data point to its cluster centroid have already been calculated and recorded during the modeling process of k-means clustering, which greatly reduces the computational burden of the simplified Silhouette.

A pseudo-code for the proposed method is summarized in Algorithm 1.

Algorithm 1 Pseudo code for the proposed method

1: INPUT: the binary response $y = (y^{obs}, y^{mis})$, the continuous response $z = (z^{obs}, z^{mis})$, the pseudo-response \tilde{y}, and the predictor features X.
2: Perform the logistic regression model on the data set with the pseudo-response \tilde{y} and the predictor features X. Obtain the classification results including false positive (FP) and true negative (TN).
3: **Stratification.** Stratify X based on the treatment assignment and the users’ buying characteristics.
4: for each strata do
5: Use the FP as the test set, and the rest as the training set in the kNN method.
6: for each target user in the test set do
7: **Clustering.** Perform k-means clustering in the strata,
8: Find out the cluster that the target user belongs to,
9: **Imputation.** Within that cluster, find the initial k nearest neighbors and its corresponding maximum distance d_{max}.
10: for each user in other clusters from the farthest to the nearest to the cluster centroid do
11: Obtain the distance between the target user and this cluster centroid d_1, and the distance between this user in this cluster and its cluster centroid d_2,
12: if $d_{max} \leq |d_1 - d_2|$ then
13: Move on to the next cluster.
14: else
15: Update the k nearest neighbors and d_{max}.
16: end if
17: end for
18: if $\sum_{i=1}^{k} y_i/k \geq 0.5$ then
19: Impute $\hat{y}^* = 1$ and $\hat{z}^* = \sum_{i=1}^{k} z_i/k$.
20: else
21: Impute $\hat{y}^* = 0$ and $\hat{z}^* = 0$.
22: end if
23: end for
24: end for
25: OUTPUT: $z = (z^{obs}, z^{mis})$
Simulation

In this section, we conduct the simulation studies to evaluate the performance of the proposed cluster-based KNN imputation method. The complete response has two parts: the non-zero part and the zero part. The non-zero part of response follows a Gaussian distribution
\[z_s = 1.5 + 1.1w + 1.1x_{s1} + 0.2x_{s2} + \epsilon, \quad \epsilon \sim N(0, 0.25) \]
where \(w \) is the binary assignment to the control and the treatment group, and \(x_{s1} \) and \(x_{s2} \) are variables normally distributed \(N(0.1, 1) \) and \(N(0.2, 2.25) \), respectively. The binary indicator of response follows a Bernoulli distribution with the conditional probability \(Pr(y_s = 1|x_{s3}) \) expressed by a logistic regression model
\[\text{logit}(x_{s3}) = -1 + 5.8x_{s3}, \]
where \(x_{s3} \) is a variable with a Gaussian distribution \(N(0.2, 0.04) \). In the simulation, we consider three scenarios for generating missing values in the response for both the control and the treatment group. In scenario 1 (S1), the missing is completely at random. In scenario 2 (S2), the missing probability is described with a logistic regression model depending on an unobserved variable following a Gaussian distribution. In scenario 3 (S3), the missing is dependent on the value of the response. Specifically, the missing response is indicated if its value exceeds a pre-defined threshold within the control and the treatment group. In all three scenarios, we further treat responses with zero as missing to represent real cases where users have incomplete records. The sample size is fixed at 5000.

We compare the proposed method with six benchmark models, including (i) Complete-case analysis (BM1), (ii) Unconditional control-mean imputation (BM2), (iii) Unconditional treatment-mean imputation (BM3), (iv) Unconditional zero imputation (BM4), (v) Best-case analysis (BM5), (vi) Worst-case analysis (BM6).

Complete-case analysis removes cases with missing values and uses only cases with complete outcomes. Specifically, we discard \(z^{mis} \) and the sample size is reduced to \(m \), that is,
\[\text{BM}_1 : \ z = z^{obs}. \]

The complete-case analysis is easy to implement but generates unnecessary waste of information especially when the number of incomplete cases is substantial.

Unconditional control-mean imputation uses the mean in the observed users in the control group to impute missing values while unconditional treatment-mean imputation uses the mean in the observed users in the treatment group for imputation. That is,
\[\text{BM}_2 : \ \hat{z}_i^* = \frac{\sum_{c=1}^{n_c} z_{c}^{obs}}{n_c}, \quad c \in C, \]
\[\text{BM}_3 : \ \hat{z}_i^* = \frac{\sum_{t=1}^{n_t} z_{t}^{obs}}{n_t}, \quad t \in T, \]
where the set of indices \(C \) is defined as \(C = \{ c : z_c \text{ is in the control group.} \} \) and the set of indices \(T \) is defined as \(T = \{ t : z_t \text{ is in the treatment group.} \} \). \(n_c \) and \(n_t \) is the number of sample sizes in the control group and in the treatment group, respectively. Unconditional zero imputation uses zero to impute missing values, that is,
\[\text{BM}_4 : \ \hat{z}_i^* = 0, \quad i = m + r + 1, \ldots, n. \]
These three imputation methods are different types of single value imputation approach, which can keep the full data size. But these imputation methods treat the missing values as fixed, distorting the distribution and ignoring the uncertainty in the missing values.

The best-case analysis imputes missing values in the treatment (control) group with the mean in the users in the treatment (control) group. In contrast to the best-case analysis, the worst-case analysis imputes missing values in the treatment (control) group with the mean in the users in the control (treatment) group. Here, we assume that the testing feature in nature has a positive impact, and thus the mean in the treatment group is expected to be greater than the mean in the control group. The best-case analysis and the worst-case analysis are expressed as

$$BM_5: \hat{z}_t^* = \frac{\sum_{i=1}^{n_t} z_{i}^{obs}}{n_t}, \quad \hat{z}_c^* = \frac{\sum_{i=1}^{n_c} z_{i}^{obs}}{n_c},$$

$$BM_6: \hat{z}_t^* = \frac{\sum_{i=1}^{n_c} z_{i}^{obs}}{n_c}, \quad \hat{z}_c^* = \frac{\sum_{i=1}^{n_t} z_{i}^{obs}}{n_t},$$

where \hat{z}_t^* (\hat{z}_c^*) is the imputed missing value in the treatment (control) group, z_{i}^{obs} (z_{i}^{obs}) is the observed value in the treatment (control) group.

To check the performance of the proposed method, we estimate the mean and variance in the control group, and compute lift in the mean between the treatment group and the control group, coefficient of variation (CV) for the control group, zero rate (ZR) and p-value. The lift in the mean between the treatment group and the control group is described as

$$\text{Lift} = \frac{\mu_t - \mu_c}{\mu_c} \times 100\% = \left(\frac{\sum_{i=1}^{n_t} z_{i}}{n_t} - \frac{\sum_{i=1}^{n_c} z_{i}}{n_c} \right) / \frac{\sum_{i=1}^{n_c} z_{i}}{n_c} \times 100\%,$$

where μ_t and μ_c are the mean in the treatment group and the control group, respectively.

The SE is expressed as

$$\text{SE} = \sqrt{\frac{(n_t - 1)s_t^2 + (n_c - 1)s_c^2}{n_t + n_c - 2} \cdot \left(\frac{1}{n_c} + \frac{1}{n_t} \right)},$$

where s_t and s_c are the standard errors for the treatment group and the control group, respectively.

In online experimentation, the faster we run experiments, the more economic benefits, and less operational costs are achieved. Given constant user traffic, running experiments faster means a smaller number of users required (Wu and Hamada, 2011; Deng et al., 2013). The CV is proportional to the number of users required for achieving a pre-determined statistical power of experiments. The CV is expressed as

$$\text{CV} = \frac{s_c}{\mu_c}.$$

The smaller the CV, the smaller the user size required to detect the difference at the specific statistical power, and thus the higher sensitivity.
The ZR is the ratio of the number of zero’s \(n_{\text{zero}} \) in imputed \(z \) out of total data size \(n \), described as
\[
\text{ZR} = \frac{n_{\text{zero}}}{n}.
\]
The ZR evaluates the proportion of visitors with the outcome as zero after the imputation method.

We compare the performance of the proposed method and benchmark methods in all scenarios in Table 2. In S1 and S2, the proposed cluster-based KNN imputation method has the closest \(\mu_c \), \(\mu_t \) and ZR compared to the method NoMissing. The BM_2 and BM_3 methods have larger \(\mu_c \) and \(\mu_t \) because these methods impute all missing values with nonzero values, which is indicated by their ZR values being 0. The proposed method has a comparable \(s_c \) value to the method NoMissing, while the BM_2, BM_3, BM_4, and BM_5 methods have smaller values. This might be explained that the imputation values in the proposed method are not fixed as in the BM_2, BM_3, BM_4, and BM_5 methods. Though the BM_1 method has a similar \(s_c \) compared to the proposed method, its sample size is smaller due to the removal of samples with missing responses. In S3, the proposed method does not outperform the BM_2 method. This is probably due to the fact that in S3 the missing response values can be partitioned into one particular group. When this entire group is missing, it is difficult for the KNN-based imputation approach to find good neighbors of missing responses. As a result, the estimated \(\mu_c \) and \(\mu_t \) are not close to the truth.

Table 2: Performance comparisons of benchmark methods from 50 simulation replications (mean and standard errors (in parenthesis)). Note that method NoMissing uses the original complete response prior to the missing assignment.

Scenario	Method	Lift (%)	\(\mu_c \)	\(\mu_t \)	\(s_c \)	CV	\(n_c \)	ZR
S1	BM_1	65.6 (4.96)	1.7 (0.05)	2.8 (0.04)	1.2 (0.03)	0.7 (0.03)	953.8 (30.33)	0 (0)
	BM_2	24.9 (2.24)	1.7 (0.05)	2.1 (0.03)	0.8 (0.02)	0.5 (0.02)	2504.1 (28.23)	0 (0)
	BM_3	17.8 (1.14)	2.4 (0.03)	2.8 (0.04)	0.9 (0.02)	0.4 (0.01)	2504.1 (28.23)	0 (0)
	BM_4	65.4 (9.85)	0.6 (0.02)	1.1 (0.04)	1.1 (0.02)	1.8 (0.04)	2504.1 (28.23)	0.6 (0.01)
	BM_5	65.6 (4.96)	1.7 (0.05)	2.8 (0.04)	0.8 (0.02)	0.5 (0.02)	2504.1 (28.23)	0 (0)
	BM_6	-11.1 (0.76)	2.4 (0.03)	2.1 (0.03)	0.9 (0.02)	0.4 (0.01)	2504.1 (28.23)	0 (0)
	Proposed	41.4 (10.19)	1 (0.2)	\textbf{1.5} (0.2)	\textbf{1.2} (0.16)	1.2 (0.09)	2504.1 (28.23)	0.4 (0.01)
	NoMissing	64.8 (7.41)	0.9 (0.03)	1.5 (0.04)	1.2 (0.02)	1.4 (0.03)	2504.1 (28.23)	0.5 (0.01)
S2	BM_1	100.9 (8.84)	\textbf{1.1} (0.05)	2.2 (0.03)	0.9 (0.02)	0.8 (0.05)	958.6 (29.9)	0 (0)
	BM_2	38.4 (4.02)	\textbf{1.1} (0.05)	\textbf{1.5} (0.03)	0.6 (0.02)	0.5 (0.03)	2504.1 (28.23)	0 (0)
	BM_3	23.7 (1.33)	1.8 (0.03)	2.2 (0.03)	0.8 (0.02)	0.4 (0.02)	2504.1 (28.23)	0 (0)
	BM_4	100.1 (15.36)	0.4 (0.02)	0.8 (0.03)	0.8 (0.02)	1.8 (0.06)	2504.1 (28.23)	0.6 (0.01)
	BM_5	100.9 (8.84)	\textbf{1.1} (0.05)	2.2 (0.03)	0.6 (0.02)	0.5 (0.03)	2504.1 (28.23)	0 (0)
	BM_6	-14.7 (0.89)	1.8 (0.03)	\textbf{1.5} (0.03)	0.8 (0.02)	0.4 (0.02)	2504.1 (28.23)	0 (0)
	Proposed	71 (9.51)	0.6 (0.03)	1 (0.03)	0.8 (0.02)	1.3 (0.05)	2504.1 (28.23)	0.5 (0.01)
	NoMissing	64.8 (7.41)	0.9 (0.03)	1.5 (0.04)	1.2 (0.02)	1.4 (0.03)	2504.1 (28.23)	0.5 (0.01)
Case Study: Search Ranking Experiment

To illustrate the proposed method, this section uses a real online experiment whose objective was to improve eBay’s item ranking search results based on one ranking algorithm. The experiment hypothesis is that integrating information about negative buyer experiences into the ranking algorithm will reduce the visibility of items with a high probability of negative buyer experiences in search results, resulting in lower product return rates and increased revenues. This experiment lasts three weeks. A portion of eligible eBay users are selected and randomized into three variants – two treatment groups and one control group. The number of participant users in each variant exceeds 10 million. One of the most important outcomes is related to purchases, denoted here as PR.

The outcome PR is incomplete due to its high missing rate. The PR is recorded when users made purchases during the experiment’s data collection period, but not when either of the following occurred: users did not make purchases, or the platform was unable to record the purchases before the end of the experiment’s data collection period. To impute PR and thus identify visitors and dropout buyers, we use these informative covariates, including the treatment assignment, the number of sessions, the number of sessions with searches, the number of sessions with qualified events highly related to purchases at eBay, and the user’s buying characteristics. The treatment assignment is pre-determined before running the experiment to assign users to the treatment group and the control group. The number of sessions corresponds to the number of sessions users have throughout the experiment. The number of sessions with searches is the number of sessions that contain at least one search activity. The number of sessions with qualified events is the number of sessions that include at least one qualified event activity. The buying characteristics of users are their historical purchasing patterns at eBay. These useful covariates are complete and do not have missing values. We impute the outcome PR using the proposed cluster-based imputation method. In the step of stratification, we divided the large-scale data set into smaller subsets based on two variables: the treatment assignment and user’s buying characteristic. When performing clustering within each strata, we use the number of sessions, the number of sessions with searches, and the number of sessions with qualified events.

In Table 3, we compare the performance between the proposed cluster-based imputation method and benchmark methods. The proposed method has a smaller mean in the control group and ZR than other methods except for the BM4. The proposed imputation method identifies visitors and dropout buyers from missing values. That being said, the proposed cluster-based imputation method imputes zeros for visitors, which is a portion of users with missing outcomes, and positive values for dropout buyers. Compared to the BM4, the proposed imputation method has a smaller size of zero and thus a larger mean in the control group. Compared to other mean-imputation methods that impute all missing values with a single value, the proposed imputation method has more zero’s and a smaller mean in the control group. The proposed method has a larger CV in the control group than all other methods, with the exception of BM4. This is largely attributable to the change in the mean of the control group, as the pooled standard errors for all methods, with the exception of BM4, are quite close. The proposed method has the smallest lift, and all methods have a consistent direction of lift. Based on the p-value and the Type I error as 10%, the proposed method
Table 3: Performance comparisons of benchmark methods in the ranking search experiment. Note that the values of s^2_c, μ_c, CV, and SE are not real and masked with particular linear transformation to meet the disclosure requirement.

Method	s^2_c	μ_c	CV	ZR	Lift (%)	SE	p-value
BM1	107035.21	1235.8	0.265	0.00	-0.37	0.33	0.17
BM2	20003.17	390.5	0.362	0.00	-0.16	0.06	0.28
BM3	20004.96	389.9	0.363	0.00	-0.17	0.06	0.28
BM4	20693.30	213.7	0.673	0.83	-0.29	0.06	0.31
BM5	20003.17	390.5	0.362	0.00	-0.29	0.06	0.05
BM6	20004.96	389.9	0.363	0.00	-0.03	0.06	0.82
Proposed	21661.66	246.3	0.598	0.80	-0.60	0.06	0.02

and BM5 are statistically significant, indicating that there is sufficient evidence to reject the null hypothesis, whereas other methods are not statistically significant. This is expected because it is well known that single imputation methods tend to dilute mean differences, producing results that there is no difference between the control group and the treatment group. The proposed method has a larger variance in the control group and SE than other methods except for the BM1. The BM1 has a reduced sample size, resulting in the largest variance and SE for the control group. Unlike other methods, with the exception of the BM1, the proposed method does not ignore variance among missing values, resulting in a greater variance.

Figure 1 illustrates the increase in the mean of the control group across users’ buying segments for the proposed cluster-based imputation method and the zero-imputation method. Different user segments have different mean values, with the top two being the frequent buyer levels II and III. The proposed imputation method has larger mean values than the zero imputation method in nearly all user segments. The segments the frequent buyer levels II and III have considerably larger mean increases than the idle buyer levels. This suggests that the dropout buyers are more likely to occur in the frequent buyer levels II and III, while in the segments such as idle buyer levels, users with unrecorded outcomes are more likely to be visitors. This is consistent with the findings in Figure 2 regarding the allocation of the zero rate across user segments. Different user segments have varying degrees of zero rate. The zero rates for frequent buyer levels II and III are approximately 45%, whereas the zero rates for idle buyer levels II and III are above 90%. This is reasonable given that frequent buyer levels II and III are more likely to make purchases, resulting in low zero values for outcome PR. The high zero rate corresponds to the low mean value in Figure 1.

Figure 3 shows the distribution of CV across user segments for the proposed imputation method and the zero imputation method. For both methods, the CV values for the frequent buyer levels are less than half of those for the idle buyer levels. However, the CV of the proposed method is consistently lower than that of the zero imputation method across all user segments. The decrease in the CV indicates an improvement in sensitivity for the outcome PR. This improvement in sensitivity is largely attributable to the change in mean values.
Figure 1: Comparison of mu across user segments between the proposed imputation method and the zero imputation method for the treatment group. The tick values in the vertical axis are omitted for the restriction of disclosure.
Figure 2: Comparison of zero rate across user segments between the proposed imputation method and the zero imputation method.

Comparison of zero_rate

User buying segment

New Buyer Level II
Frequent Buyer Level III
Frequent Buyer Level II
Frequent Buyer Level I
Infrequent Buyer Level III
Infrequent Buyer Level II
Infrequent Buyer Level I
Idle Buyer Level II
New Buyer Level III
Idle Buyer Level I
New Buyer Level I
Idle Buyer Level I

Comparison of zero_rate

Zero imputation
Proposed imputation

0.0
0.2
0.4
0.6
0.8
1.0

16
Figure 3: Comparison of CV across user segments between the proposed imputation method and the zero imputation method for the treatment group. The tick values in the vertical axis are omitted for the restriction of disclosure.
Discussion

Metrics provide strong evidence to support hypotheses in online experimentation and hence reduce debates in the decision-making process. This paper introduces the concept of dropout buyers and classifies users with incomplete metric values into two categories: visitors and dropout buyers. For the analysis of incomplete metrics, we propose a cluster-based k-nearest neighbors-based imputation method. The proposed imputation method considers both the experiment-specific features and users’ activities along their shopping paths. The proposed method incorporates uncertainty among missing values in the outcome metrics using the k-nearest neighbors method. To facilitate efficient imputation in large-scale data sets in online experimentation, the proposed method employs a combination of stratification and clustering. The stratification approach divides the entire large-scale data set into small subsets to improve computation efficiency in the clustering step. The clustering approach identifies inherent structure patterns to improve the performance of the k-nearest neighbors method within each cluster.

It is worth to remarking that the kNN method used in this work considered the average of responses in nearest neighbors. The weighted average of nearest neighbors has been proposed to suggest that different data points in the neighbor contribute differently to the decision based on their distances from the target point (Hechenbichler and Schliep, 2004). That is, nearby data points, which are closer to the target in the neighbors, have higher influence on the decision than distant data points. Moreover, one would incorporate the network structure information into the kNN for the networked A/B testing (Zhang and Kang, 2020). Another direction for future research is to study the effects of dynamic numbers of nearest neighbors (Ougiaroglou et al., 2007) in the proposed imputation framework. On the other hand, the proposed imputation method aims to impute missing values for each user with missing outcomes. It would be interesting to categorize users with missing outcomes into various hubs and investigate the imputation strategy for each hub of users altogether.

References

Bhaskaran, K. and L. Smeeth (2014). What is the difference between missing completely at random and missing at random? International journal of epidemiology 43(4), 1336–1339.

Deng, A. and X. Shi (2016). Data-driven metric development for online controlled experiments: Seven lessons learned. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 77–86.

Deng, A., Y. Xu, R. Kohavi, and T. Walker (2013). Improving the sensitivity of online controlled experiments by utilizing pre-experiment data. In Proceedings of the sixth ACM international conference on Web search and data mining, pp. 123–132.

Dmitriev, P. and X. Wu (2016). Measuring metrics. In Proceedings of the 25th ACM international on conference on information and knowledge management, pp. 429–437.

Goldstein, D. G., K. Imai, and A. S. Göritz (2007). The subtle psychology of voter turnout. Technical report, Technical Report.
Gupta, S., R. Kohavi, D. Tang, Y. Xu, R. Andersen, E. Bakshy, N. Cardin, S. Chandran, N. Chen, D. Coey, et al. (2019). Top challenges from the first practical online controlled experiments summit. *ACM SIGKDD Explorations Newsletter 21*(1), 20–35.

Hechenbichler, K. and K. Schliep (2004). Weighted k-nearest-neighbor techniques and ordinal classification.

Hruschka, E. R., L. N. de Castro, and R. J. Campello (2004). Evolutionary algorithms for clustering gene-expression data. In *Fourth IEEE International Conference on Data Mining (ICDM'04)*, pp. 403–406. IEEE.

Imai, K. (2009). Statistical analysis of randomized experiments with non-ignorable missing binary outcomes: an application to a voting experiment. *Journal of the Royal Statistical Society: Series C (Applied Statistics) 58*(1), 83–104.

Imbens, G. W. and W. A. Pizer (2000). The analysis of randomized experiments with missing data. Technical report.

Imbens, G. W., D. B. Rubin, and B. I. Sacerdote (2001). Estimating the effect of unearned income on labor earnings, savings, and consumption: Evidence from a survey of lottery players. *American economic review 91*(4), 778–794.

Kohavi, R., T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres, and T. Melamed (2009). Online experimentation at microsoft. *Data Mining Case Studies 11*(2009), 39.

Kohavi, R., A. Deng, R. Longbotham, and Y. Xu (2014). Seven rules of thumb for website experimenters. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 1857–1866.

Machmouchi, W. and G. Buscher (2016). Principles for the design of online a/b metrics. In *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval*, pp. 589–590.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate observations. In *Proceedings of the fifth Berkeley symposium on mathematical statistics and probability*, Volume 1, pp. 281–297. Oakland, CA, USA.

Mao, H., X. Deng, H. Jiang, L. Shi, H. Li, L. Tuo, D. Shi, and F. Guo (2021). Driving safety assessment for ride-hailing drivers. *Accident Analysis & Prevention 149*, 105574.

Molenberghs, G., H. Thijs, I. Jansen, C. Beunckens, M. G. Kenward, C. Mallinckrodt, and R. J. Carroll (2004). Analyzing incomplete longitudinal clinical trial data. *Biostatistics 5*(3), 445–464.

Nie, K., Y. Kong, T. T. Yuan, and P. B. Burke (2020). Dealing with ratio metrics in a/b testing at the presence of intra-user correlation and segments. In *International Conference on Web Information Systems Engineering*, pp. 563–577. Springer.

Ougiaroglou, S., A. Nanopoulos, A. N. Papadopoulos, Y. Manolopoulos, and T. Welzer-Druzovec (2007). Adaptive k-nearest-neighbor classification using a dynamic number of
nearest neighbors. In *East European Conference on Advances in Databases and Information Systems*, pp. 66–82. Springer.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics* 20, 53–65.

Rubin, D. B. (1976). Inference and missing data. *Biometrika* 63(3), 581–592.

Spineli, L. M. and C. Kalyvas (2020). Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis. *BMC medical research methodology* 20(1), 1–15.

Tang, D., A. Agarwal, D. O’Brien, and M. Meyer (2010). Overlapping experiment infrastructure: More, better, faster experimentation. In *Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 17–26.

Wang, X. (2011). A fast exact k-nearest neighbors algorithm for high dimensional search using k-means clustering and triangle inequality. In *The 2011 international joint conference on neural networks*, pp. 1293–1299. IEEE.

Wu, C. J. and M. S. Hamada (2011). *Experiments: planning, analysis, and optimization*, Volume 552. John Wiley & Sons.

Xie, H. and J. Aurisset (2016). Improving the sensitivity of online controlled experiments: Case studies at netflix. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 645–654.

Xu, Y., W. Duan, and S. Huang (2018). Sqr: balancing speed, quality and risk in online experiments. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 895–904.

Zhang, Q. and L. Kang (2020). Locally optimal design for a/b testing in the presence of covariates and network connection. *arXiv preprint arXiv:2008.06476*.