STUDY PROTOCOL

Update to: Study Pre-protocol for “BronchStart - The Impact of the COVID-19 Pandemic on the Timing, Age and Severity of Respiratory Syncytial Virus (RSV) Emergency Presentations; a Multi-Centre Prospective Observational Cohort Study” [version 3; peer review: 2 approved]

Thomas C. Williams1, Steve Cunningham2,3, Simon B. Drysdale4,5, Helen Groves6, Dalia Iskander7, Xinxue Liu4, Mark D. Lyttle6,8,9, Robin Marlow9,10, Abigail Maxwell-Hodkinson11, Chengetai D. Mpamhanga12, Shaun O’Hagan6, Ian Sinha13,14, Olivia V. Swann12,15, Thomas Waterfield6, Damian Roland16,17, Paediatric Emergency Research in the UK and Ireland (PERUKI)

1Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
2Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
3Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh, UK
4Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
5NIHR Oxford Biomedical Research Centre, Oxford, UK
6Wellcome-Wolfson Institute for Experimental Medicine at Queen’s University Belfast, Belfast, UK
7Department of Anthropology, University College London, London, UK
8Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
9Emergency Department, Bristol Royal Hospital for Children, Bristol, UK
10Bristol Royal Hospital for Children, Bristol, UK
11University of Liverpool Medical School, Liverpool, UK
12Department of Child Life and Health, University of Edinburgh, Edinburgh, UK
13University of Liverpool, Liverpool, UK
14Alder Hey Children’s Hospital, Liverpool, UK
15Department of Paediatric Infectious Diseases and Immunology, Royal Hospital for Children, Glasgow, UK
16Paediatric Emergency Medicine Leicester Academic (PEMLA) Group, Leicester Royal Infirmary, Leicester, UK
17Sapphire Group, Health Sciences, Leicester University, University of Leicester, UK

First published: 19 May 2021, 6:120
https://doi.org/10.12688/wellcomeopenres.16778.1
Second version: 21 Jan 2022, 6:120
https://doi.org/10.12688/wellcomeopenres.16778.2
Latest published: 11 Oct 2024, 6:120
https://doi.org/10.12688/wellcomeopenres.16778.3

Abstract

Background
In 2021 we launched the BronchStart study, which collected information on 17,899 presentations in children with serious respiratory tract infections following the release of lockdown restrictions. Our study informed the Joint Committee on Vaccination and Immunisation’s decision to recommend the introduction maternal respiratory syncytial virus (RSV) vaccination, which was introduced in the United Kingdom in August/September 2024.

Study question

We modified our original protocol to conduct a United Kingdom-wide assessment of maternal vaccination against RSV.

Methods and likely impact

We will conduct a multi-centre study, utilising the PERUKI network used in the original BronchStart study, to assess the effectiveness of maternal vaccination using a test-negative study design. We will gather detailed clinical information on children admitted with bronchiolitis in the post-RSV vaccination era, and understand possible reasons for incomplete vaccine uptake.

Keywords

COVID-19, Respiratory Syncytial Virus, Bronchiolitis, Infants, Children, Palivizumab

Corresponding author: Thomas C. Williams (thomas.christie.williams@ed.ac.uk)

Author roles: Williams TC: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Cunningham S: Conceptualization, Methodology, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing; Drysdale SB: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Groves H: Conceptualization, Methodology; Iskander D: Conceptualization, Methodology; Liu X: Methodology; Lyttle MD: Conceptualization, Methodology, Project Administration, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Marlow R: Methodology, Software, Writing – Review & Editing; Maxwell-Hodkinson A: Conceptualization, Methodology, Writing – Review & Editing; Mpamhanga CD: Conceptualization, Writing – Review & Editing; O’Hagan S: Conceptualization, Methodology, Writing – Review & Editing; Sinha I: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Swann OV: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Waterfield T: Conceptualization, Methodology, Writing – Review & Editing; Roland D: Conceptualization, Methodology, Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust [204802; to TCW].

Copyright: © 2024 Williams TC et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Williams TC, Cunningham S, Drysdale SB et al. Update to: Study Pre-protocol for “BronchStart - The Impact of the COVID-19 Pandemic on the Timing, Age and Severity of Respiratory Syncytial Virus (RSV) Emergency Presentations; a Multi-Centre Prospective Observational Cohort Study” [version 3; peer review: 2 approved] Wellcome Open Research 2024, 6:120 https://doi.org/10.12688/wellcomeopenres.16778.3

First published: 19 May 2021, 6:120 https://doi.org/10.12688/wellcomeopenres.16778.1
Introduction

The BronchStart study\(^1\) was launched in 2021, anticipating an increase in serious respiratory infections in children following the release of lockdown measures implemented to limit the spread of the Covid-19 pandemic. Since then it has documented serious early life respiratory disease in the United Kingdom for the past three years, collecting detailed information bronchiolitis admissions, and feeding into the Joint Committee for Vaccination and Immunisation (JCVI) decision to introduce widespread RSV immunisation to the UK\(^1\). Maternal RSV vaccination has now been recommended across the United Kingdom, and was rolled out from August 12\(^{st}\) 2024 (Scotland\(^2\) and September 1\(^{st}\) 2024 (England, Wales, Northern Ireland). Therefore eligible participants will be infants born after the August 12\(^{st}\) 2024 (Scotland) or September 1st 2024 (England, Wales, Northern Ireland) admitted to a hospital with clinical features of bronchiolitis (cough, tachypnoea or chest recession, and wheeze or crackles on chest auscultation)\(^3\), lower respiratory tract infection (clinical diagnosis) or a first episode of acute viral wheeze.

Exclusion criteria: Children with previous episodes of wheeze responsive to bronchodilator, suggesting an underlying diagnosis of recurrent wheeze of early childhood; this is likely to represent a much smaller patient group than the original BronchStart study.

Data collection

We will collect data at two time points: baseline (date of presentation to a participating hospital) and seven days later. Informed consent will be sought from mothers of eligible infants for permission to conduct a questionnaire, and access their medical records for their immunisation status. Clinicians identifying a case for inclusion will keep a local log of participants that contain patient identifiable characteristics cross referenced to a study number. An email after 7 days to the submitting clinician will prompt data entry at this point.

Data on the vaccine effectiveness sub-study will be entered to a secure online database (REDCap data capture tool)\(^7\)\(^,\)\(^12\) (see below).

Variables to be measured

At baseline, data including patient demographics, presenting characteristics, acuity and results from point of care virology testing will be collected (see Supplementary File 1). An external link will enable clinicians to enter a full postcode derived index of multiple deprivation score for database entry.
At 7 days data will include the infant’s length of stay (if this is longer than 7 days, further reminder emails will be sent on a weekly basis) highest acuity dependency (the ward they were placed on if admitted: Observation Unit, Normal, High Dependency or Intensive Care), whether care the patient was discharged or died and (if obtained) what viruses were identified by PCR (see Supplementary File 1).

RSV status will be identified by nasopharyngeal aspirate/swab (NPA/NPS) tested by either (a) point of care testing (rapid viral testing where available) at baseline presentation to ED, or (b) by laboratory PCR testing, if either is performed as part of standard care.

To understand factors associated with maternal RSV vaccine uptake, we consulted with a medical anthropologist (DI) to design a questionnaire for mothers of infants participating in the study. The final questionnaire included questions that adhered to the principals of the Five 5C’s model of vaccine hesitancy, which posits that psychological antecedents such as confidence, complacency, constraints, calculation, and collective responsibility influence vaccine uptake on an individual level.

Sample size calculation

Two approaches were taken for sample size calculations: one based on the WHO recommendations for the evaluation of Covid-19 vaccine effectiveness, and a second simulating a variety of different vaccine effectiveness and coverage rates in the populations recruited in our previous studies, bootstrapping our proposed analyses methods to determine the confidence intervals we would obtain of the ‘known’ vaccine effectiveness.

Calculations based on WHO recommendations for evaluation of VE. Calculations were based on the precision of the VE estimated by the test-negative design, as recommended by the WHO, and implemented using their VE calculator. The maternal vaccine coverage of Tdap is just under 60% in England and maternal RSV vaccine coverage could be as low as 30% in the first season. Assuming the true VE for RSV-associated bronchiolitis/LRTI hospitalisation among infants from birth through 6 months of age is 70%, the study would need to recruit 145 RSV-associated hospitalisations, with 1:1 matching with test-negative controls to achieve a precision width of 40% (+/-20%) for the VE.

Calculations based on varying assumptions. Using an alternative method (epiR::epi.sscc) it can be seen (Table 1) that the number of cases required is very dependent on these assumptions being correct; the exact number is lower than previously as a precision width for the VE is not specified. As VE or uptake rates decline, the number of cases required rapidly rise.

Sample size feasibility and number of recruitment sites required. Reviewing case recruitment for infants aged 0–6 months for the 2021/2 BronchStart season showed that for the top 5 recruiting centres between 54–111 RSV positive cases, and 40–78 RSV negative cases, were recruited by site over the peak 6 months of the season. For the 2024/5 season, a limited eligible patient population (infants born after August 12th 2024 [Scotland] and September 1st 2024[England/Wales/Northern Ireland]) and a likely reduction in respiratory presentations with the introduction of vaccination means that multiple recruiting centres will be required to meet the proposed sample sizes. Assuming a worst-case scenario of 20% uptake and 60% effectiveness (218 cases, 218 controls, total 436 cases), and that each centre were able to recruit 50 patients (25 cases, 25 controls), we aimed to identify at least 10 recruiting centres (~500 recruits) for this study.

Study registration

The study will be registered on ISCRTN Registry (https://www.iscrtn.com/).

Outcomes

Primary outcome: Estimate vaccine effectiveness (VE) of RSV maternal vaccination during pregnancy against RSV-associated LRTD hospitalization among infants from birth through 6 months of age.

a. Cumulative from birth through 6 months

b. Stratified by from birth to 3 months and from >3 to 6 months

Secondary outcomes

a. Describe level of care among hospitalized cases and controls (observation unit, hospital ward, high-dependency unit, paediatric intensive care unit)

b. Describe respiratory support among hospitalized cases and controls (low-flow oxygen, high-flow oxygen therapy,
continuous positive airway pressure, bilevel positive airway pressure, and invasive mechanical ventilation)

c. Describe treatment modalities and frequencies (antibiotics, intravenous fluid, nasogastric fluid)

d. Evaluate RSV testing rates and modality during the 2024–2025 RSV season in ED and hospital settings across the PERUKI network to inform feasibility of VE assessments against other outcomes in future RSV seasons using test negative designs.

e. Describe predictors of maternal vaccine uptake (including but not limited to prematurity, logistical challenges, maternal choice).

Data analysis and statistical plan
Our primary analysis will be an un-matched conditional logistic regression stratified by site and calendar month of attendance with age, prematurity and sex as co-factors. Stratifying by site and month is important to control for local differences in vaccine uptake. We will also carry out a matched (by site, age and date of attendance) analysis as a secondary analysis, but anticipate that close chronological matching of cases and controls may prove not possible due to the sharp peaks in attendance, due initially RSV cases as the epidemic spikes, then due to non-RSV disease caused by other viruses as RSV recedes. We will look at vaccine effectiveness for all infants and also the subgroup of those whose mother received a vaccine >14 days before birth.

A thematic analysis will be conducted on free text responses collected in the maternal questionnaire. Data will be coded to identify patterns and themes, and a codebook developed comprising codes and sub-codes generated from etic and emic categories, descriptions of each, and examples of representative data.

Ethical issues
The original BronchStart study was a non-consented study which only used routinely collected clinical data on the infant with respiratory disease. However, as for this study we would be accessing maternal, as well as infant, health records, we felt that consultation with a parent and patient group was necessary to understand how to collect this information in a way that was acceptable to parents of children with serious respiratory disease.

Prior to designing the study, we therefore launched a consultation with a patient and public involvement (PPI) group for parents of children affected by viral wheeze. Fourteen parents responded, located in England and Northern Ireland. We asked whether, as a mother, respondents would be happy for researchers to check maternal medical records to verify their vaccination history. None of the respondents stated that they would not be happy for a researcher to access their medical records, we therefore proceeded on the basis of providing appropriate information and eliciting consent for the VE sub-study. The study was submitted for Integrated Research Application System (IRAS) approval with University Hospitals of Leicester NHS Trust as the Study Sponsor, IRAS ID 297802, and received a favourable opinion from the Research Ethics Committee on the 8th August 2024. The consent form for the study is available as Supplementary File 2, and the study information leaflet as Supplementary File 3.

Data input, storage and management
Data will be entered using the validated online data entry software REDCap, (Research Electronic Data Capture tools) following the clinical report forms provided in the appendix (Supplementary Files 1). This software (REDCap) is hosted on the University Hospitals Bristol and Weston NHS Foundation Trust (UHBW) secure server, accessible on the Health and Social Care Network (HSCN) that is managed by NHS Digital. All research data reside within the hosting institution. The study Sponsor Organisation (University Hospitals of Leicester NHS Trust) will be the Data Controller throughout, and University Hospitals Bristol and Weston NHS Foundation Trust will have Joint Controllership for the duration of data entry and cleaning. REDCap uses a granular security model so that users can only review the data they have been explicitly authorised to access. REDCap also provides a comprehensive log/audit feature that records all individual changes with a date/time stamp and a change owner. Data that are captured and stored will only be available via the information technology systems linked to the HSCN which is the current validated system used by NHS Trusts to share and store patient information.

Dissemination
Data will be presented in:
- A real-time study dashboard
- Data submissions to the regulatory authorities, public health agencies and local study teams.
- A study preprint
- A peer reviewed scientific journal
- Engagement with the PPI group involved as part of study design, and the Resvixnet Patient Network, who were involved in the original BronchStart study

Conclusions
Within a rapid timeframe, we anticipated that this study will generate estimates of vaccine effectiveness which will help to inform planning for subsequent RSV seasons. In addition, detailed information will be collected on infant demographics, clinical presentations and outcomes in the post-RSV vaccination era. Additionally, insights into associations with incomplete maternal vaccine administration will facilitate future efforts to boost vaccine uptake.
Data availability

Underlying data

As this is a study protocol no data are yet available. Study data will be stored on a RedCap server hosted by University of West of England, Bristol, United Kingdom (See Data input, storage and management). Anonymised, aggregate data will be shared with interested parties upon reasonable request following approval from the sponsor institution (UHL NHS Trust).

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

1. Williams TC, Lyttle MD, Cunningham S, et al.: Study Pre-protocol for "BronchStart - the impact of the COVID-19 pandemic on the timing, age and severity of Respiratory Syncytial Virus (RSV) emergency presentations; a multi-centre prospective observational cohort study [version 2; peer review: 2 approved]. Wellcome Open Res. 2022; 6: 120. PubMed Abstract | Publisher Full Text | Free Full Text
2. Roland D, Williams T, Lyttle MD, et al.: Features of the transposed seasonality of the 2021 RSV epidemic in the UK and Ireland: analysis of the first 10 000 patients. Arch Dis Child. 2022; 107(11): 1062-1063. PubMed Abstract | Publisher Full Text
3. Williams TC, Marlow R, Hardelid P, et al.: The clinical impact of serious respiratory disease in children under the age of two years during the 2021-2022 bronchiolitis season in England, Scotland and Ireland. J Infect Dis. 2024; 230(1): e111-e120. PubMed Abstract | Publisher Full Text | Free Full Text
4. Joint Committee on Vaccination and Immunisation: Respiratory Syncytial Virus (RSV) immunisation programme for infants and older adults: JCVI full statement, 11 September 2023. GOV.UK, 2023; [cited 2023 Nov 19]. Reference Source
5. RSV vaccination: CMO letter to health boards - gov.scot. 2024; [cited 2024 Aug 27]. Reference Source
6. UKHSA: Introduction of new NHS vaccination programmes against Respiratory Syncytial Virus (RSV). GOV.UK, 2024; [cited 2024 Jul 4]. Reference Source
7. Introduction of RSV vaccination programme 2024 (WHC/2024/032). GOV. WALES, 2024; [cited 2024 Aug 27]. Reference Source
8. New RSV vaccination programme approved. Department of Health, 2024; [cited 2024 Aug 27]. Reference Source
9. Lyttle MD, O’Sullivan R, Hartshorn S, et al.: Pediatric Emergency Research in the UK and Ireland (PERUKI): developing a collaborative for multicentre research. Arch Dis Child. 2014; 99(6): 602-3. PubMed Abstract | Publisher Full Text
10. NICE: Bronchiolitis in children: diagnosis and management. Guidance NICE, [cited 2021 Apr 2]. Reference Source
11. Harris PA, Taylor R, Minor BL, et al.: The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019; 95: 103208. PubMed Abstract | Publisher Full Text | Free Full Text
12. Harris PA, Taylor R, Thielke R, et al.: Research Electronic Data Capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009; 42(2): 377-81. PubMed Abstract | Publisher Full Text | Free Full Text
13. Betsch C, Habersaat KB, Deshevoi S, et al.: Sample study protocol for adapting and translating the 5C scale to assess the psychological antecedents of vaccination. BMJ Open. 2020; 10(3): e034869. PubMed Abstract | Publisher Full Text | Free Full Text
14. Betsch C, Schmid P, Heinemeier D, et al.: Beyond confidence: development of a measure assessing the 5C psychological antecedents of vaccination. Plos One. 2018; 13(12): e0208601. PubMed Abstract | Publisher Full Text | Free Full Text
15. World Health Organization: Evaluation of COVID-19 vaccine effectiveness. 2021; [cited 2024 Jul 25]. Reference Source
16. World Health Organization: WHO COVID-19 vaccine effectiveness measurement tool. 2021.
17. UKHSA: Prenatal pertussis vaccination coverage in England from October to December 2023. GOV.UK, 2024; [cited 2024 Jul 25]. Reference Source
18. Dupont WD: Power calculations for matched case-control studies. Biometrics. 1988; 44(4): 1157-68. PubMed Abstract
With a primary objective to assess the impact of COVID-19 on RSV transmission and disease severity, this surveillance study in the UK is topical and important. The protocol is well designed and the methods are fully described. I have just minor comments.

1. Introduction: Reference(s) for statements on long-term effects RSV is missing. Kindly add.

2. Data analysis: Please confirm if you will use multivariate analysis or if it will be multivariable logistic regression with binary outcomes of hospitalization, level of ventilatory support and PICU admission examined separately. Currently it is not clear.

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Yes

Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: RSV; Infectious disease epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 23 June 2021

https://doi.org/10.21956/wellcomeopenres.18503.r44084

© 2021 Drysdale S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Simon Drysdale

1 St George's University Hospitals NHS Foundation Trust, London, UK
2 St George's, University of London, London, UK
3 St George's University Hospitals NHS Foundation Trust, London, UK
4 St George's, University of London, London, UK
5 St George's University Hospitals NHS Foundation Trust, London, UK
6 St George's, University of London, London, UK

This is a protocol for a timely study in the UK. The study is well planned and pragmatic for busy EDs. I have minor comments only:

- Collection of data on participants’ attendance at childcare / nursery etc would be useful.
- For the 7 day follow up, I assume families are not being contacted again but researchers are just looking at their local hospital record. Will you know if they attend at a different hospital (or GP) in the follow up period? This may need to be noted as a limitation.
- For the stratification of severity did you consider also using a scoring system (e.g. the ReSViNet score - I think you are collecting all the required data anyway?).
- It is unclear to me how “excess morbidity” will be defined / measured.
- On the supp file 2: units for H+ (pH) listed as mmHg, is this correct? (not nmol/L on nM)?

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Yes

Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Not applicable
Competing Interests: I have sat on RSV advisory boards for Merck and have been an investigator on clinical trials of RSV therapeutics for various pharmaceutical companies. I work with various EFPIA partners as part of the RESCEU consortium. I confirm that this potential conflict of interest did not affect my ability to write an objective and unbiased review of the article.

Reviewer Expertise: RSV, respiratory viruses, paediatrics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.