Mitoribosomal regulation of OXPHOS biogenesis in plants

Hanna Janska* and Malgorzata Kwasniak

Molecular Biology of the Cell Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland

Edited by:
Philippe Giegé, Centre National de la Recherche Scientifique, France
Reviewed by:
Linda Bonen, University of Ottawa, Canada
Géraldine Bonnard, Centre National de la Recherche Scientifique, France

*Correspondence:
Hanna Janska, Molecular Biology of the Cell Department, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
e-mail: janska@ibmb.uni.wroc.pl

The ribosome filter hypothesis posits that ribosomes are not simple non-selective translation machines but may also function as regulatory elements in protein synthesis. Recent data supporting ribosomal filtering come from plant mitochondria where it has been shown that translation of mitochondrial transcripts encoding components of oxidative phosphorylation complexes (OXPHOS) and of mitoribosomes can be differentially affected by alterations in mitoribosomes. The biogenesis of mitoribosome was perturbed by silencing of a gene encoding a small-subunit protein of the mitoribosome in Arabidopsis thaliana. As a consequence, the mitochondrial OXPHOS and ribosomal transcripts were both upregulated, but only the ribosomal proteins were oversynthesized, while the OXPHOS subunits were actually depleted. This finding implies that the heterogeneity of plant mitoribosomes found in vivo could contribute to the functional selectivity of translation under distinct conditions. Furthermore, global analysis indicates that biogenesis of OXPHOS complexes in plants can be regulated at different levels of mitochondrial and nuclear gene expression, however, the ultimate coordination of genome expression occurs at the complex assembly level.

Keywords: OXPHOS, mitoribosome, mitochondrial translation, ribosome filter hypothesis, ribosome heterogeneity, coordination of gene expression

INTRODUCTION

It is a widely held belief that post-transcriptional control dominates in the regulation of mitochondrial gene expression in plants, but the experimental evidence was until recently limited to events affecting RNA quality and quantity (Binder and Brennicke, 2003). Translational regulation in plant mitochondria was expected but, until now (Kwasniak et al., 2013), only hypothetical. The basic process of translation involves the decoding of the mRNA-encoded information into proteins by ribosomes. Therefore, historically, ribosomes were considered to have a constitutive rather than a regulatory function, and the efficiency of translation was believed to be determined either by features of the mRNA itself or by mRNA-binding factors. However, a number of observations indicated that ribosomes themselves could also differentially affect the translation of particular mRNAs (Mauro and Edelman, 2007). This mini-review summarizes current knowledge on ribosomal regulation of OXPHOS biogenesis.

RIBOSOME HETEROGENEITY AS BASIS FOR RIBOSOME FILTER HYPOTHESIS

All ribosomes consist of the large subunit (LSU) and small subunit (SSU) composed of both proteins and rRNAs. Originally, ribosomes of an organism were viewed as homogeneous entities showing no variation in their rRNA or protein composition despite the observation of a growth rate-dependent ribosome heterogeneity in Escherichia coli made over 40 years ago (Deussner, 1972). The earliest evidence demonstrating heterogeneity of ribosomes in a eukaryotic cell emerged in 1981 during studies on the social amoeba Dictyostelium discoideum (Ramagopal and Ennis, 1981). The ribosomes from the different developmental stages of D. discoideum varied in their composition and covalent modifications (Ramagopal, 1992). Since then ample evidence has accumulated supporting the view that heterogeneous pools of ribosomes exhibiting variations in the RNA and or the protein components are present in bacteria and in eukaryotic cells (Brygazov et al., 2013; Filipovska and Rackham, 2013). Since the focus of this review is the translational regulation in plant mitochondria the heterogeneity of plant mitoribosomes will be presented in more detail.

The plant mitoribosome contains three rRNA molecules encoded in the mitochondrial DNA, 26S and 5S for the LSU, and 18S for the SSU. The rRNAs undergo several important post-transcriptional modifications (pseudouridylation and methyla- tion; Bonen, 2004), and an RNA methyltransferase required for the dimethylation of two conserved adenes in the mitochondrial 18S rRNA of Arabidopsis was characterized (Richter et al., 2010). In contrast to the rRNAs, the mitoribosomal proteins are encoded by both the mitochondrial and nuclear genomes. The sets of proteins encoded by these two genomes vary between plant species (Salinas et al., 2013), and the exact protein composition of plant mitoribosomes has not been fully determined yet. A recent bioinformatics analysis identified 71 genes encoding mitoribosomal proteins in A. thaliana, among them eight in the mitochondrial genome (Sormani et al., 2011). It should be emphasized that these numbers do not represent unique genes, since 16 of mitochondrial ribosomal proteins are encoded by more than one copy of gene. Potato and broad bean proteomics found 68–80 mitoribosomal proteins (Pfinel et al., 1986; Maffey et al., 1997). Thus, compared with the bacterial ribosomes with only 54 proteins (Wittmann, 1982), the plant mitoribosome is apparently more complex. The plant mitochondrial ribosomal proteins are of two evolutionarily distinct types, those with a direct bacterial origin and those
recruited during the evolution (Salinas et al., 2013). Additionally, in Arabidopsis two proteins have been identified to be associated with mitoribosomes, namely PMN1 and PRP336 (Uyttehael et al., 2008; Hammami et al., 2011). They belong to the pentatricopeptide repeat (PPR) protein family that is particularly large in higher plants, but their role in mitochondrial translation is still unknown.

The first indication of a possible heterogeneity of plant mitoribosomes comes from a study on four paralogs of ribosomal protein L12 in potato (Delage et al., 2007). At the RNA level these paralogs are expressed simultaneously and at similar abundance. All four L12 variants were present in the mitochondrial ribosome fraction, but they showed a divergent tendency to dissociate upon treatments that affects ribosomes integrity. The presence of the four paralogs of slightly different proportion suggests either occurrence of heterogeneous L12 composition among each mitoribosome and/or a heterogeneous population of mitochondrial ribosomes in the plant cell.

A heterogeneity of plant mitoribosomes is also implied by several developmental phenotypes of mutants defective in a mitoribosomal protein (Schippers and Mueller-Roeder, 2010). Slightly different phenotypes connected with defects in leaf morphology have been reported for three Arabidopsis mutants. In all three, the leaves are smaller, but an irregular leaf shape is characteristic for the mutant with reduced expression of both MRPS3 and MRPL16 (Sakamoto et al., 1996) as well as the mutant with RNAi-dependent silencing of MRPS10 (Majewski et al., 2009), but not for the mutant with a 90% reduction in MRPL11 transcript (Pesaresi et al., 2006). The alteration in leaf morphology was observed also in maize rps3-rpl16 mutants, which produces severely stunted plants with striaitions on the leaves (Hunt and Newton, 1991). The role of mitoribosomal proteins in other specific developmental processes is underlined by several specific Arabidopsis mutants with defects in genes: MRPL14, which is essential for ovule development (Schneitz et al., 1998; Skinner et al., 2001), MRPL21 and MRPS11 which are required during female gametophyte development (Portereiko et al., 2006), as well as MRPS16 gene, in which transposon-induced knockout causes an embryo-deleterious lethal phenotype (Tsugeki et al., 1996). Thus, specific mitoribosomal proteins appear to influence selectively different phases of the plant development, hinting on the existence of specialized ribosomes with the translational activity critical at specific developmental stages. This view is strengthened by the finding that the expression of individual A. thaliana genes encoding mitochondrial ribosomal proteins is highly variable during leaf development (Schippers and Mueller-Roeder, 2010). A functional heterogeneity of ribosomes could also be generated by interactions with accessory proteins as well as posttranslational modifications of ribosomal proteins, but the significance, if any of these factors for plant mitoribosomes is unknown.

The apparent ribosome heterogeneity formed a basis for the ribosome filter hypothesis in which the ribosome acts like a filter selecting specific mRNAs and consequently modulating translation (Mauro and Edelman, 2007). The different subpopulations of ribosomes would vary in their ability to translate specific subsets of mRNA and thus the ribosomes would selectively control translation and, consequently, gene expression. In accordance with the ribosome filter hypothesis, it has recently been shown that the biogenesis of OXPHOS complexes in A. thaliana mitochondria is subject to translational control by mitoribosomes (Kwaśniak et al., 2013).

MITORIBOSOME STATUS SELECTIVELY AFFECTS EFFICIENCY OF TRANSLATION OF MITOCHONDRIAL mRNAs FOR OXPHOS AND RIBOSOMAL PROTEINS IN Arabidopsis

Mitochondrial translation is indispensable for the biogenesis of the OXPHOS machinery and mitoribosomes simply because several protein subunits of the both types of complexes are synthesized in mitochondria. Splice has been added to that simple story by recent data indicating that plant mitoribosomes do not synthesize proteins encoded in the mitochondrial genome non-selectively but rather execute a transcript-specific translational control (Kwaśniak et al., 2013).

This finding is fully consistent with the ribosome filter theory. RNAi-mediated silencing leads to the generation of unique, heterogeneous population of ribosomes. Ribosomes lacking the S10 protein coexisted with wild-type ones and an excess of free LSU (Figure 1). It should be underlined that the rps10 mutant did not suffer from an insufficiency of wild-type mitoribosomes since the silencing provoked a compensatory response increasing the overall abundance of both small and LSUs. The polymorphic population of mitoribosomes turned out to translate two subsets of mRNAs, those encoding OXPHOS subunits and ribosomal proteins, with altered efficiency compared to the wild-type. The majority of the OXPHOS transcripts were translated less efficiently, whereas most of the mitoribosome protein transcripts were translated with an enhanced efficiency relative to the wild-type. It should be emphasized that in the RPS10-silenced plants the mitochondrial transcripts for both OXPHOS and ribosomal proteins were up-regulated. Thus, the altered translation was not correlated with the transcript level but was due to an altered efficiency of their binding by the mitoribosomes. As a consequence, the rate of synthesis of the OXPHOS proteins was below that observed in wild-type mitochondria despite the over-abundance of their mRNAs. Thus, the diversified mitochondrial translation efficiency modulated profoundly the outcome of the earlier steps of mitochondrial genome expression. The effect of the altered SSU and/or the excess of free LSU on the efficiency of protein synthesis in the rps10 mitochondria was postulated to have resulted from the formation of unique interactions between those subunits and other components of the translation apparatus. It is tempting to speculate that similar translational regulation could occur in wild-type plants, namely under conditions that lead to heterogeneity of mitoribosome population in response to environmental or developmental signals.

According to existing reports plant mitochondrial RNAs have long 5′ untranslated regions (UTR), which could be involved in translational efficiency by interacting with altered SSU and/or the excess of free LSU. However, no obvious motifs have been found within the 5′ UTR sequences suggesting that these parts of mRNAs are involved in gene-specific translation regulation (Kazama et al., 2013), whereas in rps10 rather group-specific translational regulation was observed. Future studies are awaited to understand how
FIGURE 1 | Heterogeneity of mitoribosomes differentially affects the translation of mitochondrial OXPHOS and ribosomal proteins (based on Kwaśniak et al., 2013). In rps10 protein synthesis is carried out by a heterogeneous population of mitoribosomes characterized by an excess of free LSU subunits and a portion of SSUs lacking the S10 protein (black asterisk). Decreased translation of OXPHOS in rps10 results mainly from the reduced number of ribosomes per mRNA, whereas increased translation of mitoribosomal proteins results from enhanced ribosomal loading and also increased ribosomal density. In consequence, OXPHOS proteins are depleted, whereas mitoribosomal proteins over-abundant in rps10 mitochondria compared to wild-type ones. The amount of proteins translated by mitoribosomes is represented by the size of the black bands.

differential translation of OXPHOS and mitoribosomal proteins is achieved in the rps10 mutant.

The importance of mitochondrial translational regulation for OXPHOS complex I biogenesis has recently been suggested basing on analysis of an A. thaliana mutant with a depletion of the mitochondrial matrix iron-sulfur protein required for NADH dehydrogenase (INDH)(Wydro et al., 2013). INDH was shown not to be a complex I-specific translational regulator but rather to have a more general role in mitochondrial translation. Depending on the A. thaliana growth stage and the extent of INDH depletion diverse alterations in the mitochondrial translation rate and/or protein pattern were observed in the indh mutants. A strong depletion of INDH decreased the rate of mitochondrial translation, whereas the steady state levels of almost all mitochondrial transcripts examined were unaltered or increased.

The data indicating a heterogeneity of plant mitoribosomes combined with the finding that translation could be the overriding regulatory stage of mitochondrial gene expression regulation suggest that in plants the status of the mitoribosomal population could be an essential regulator of expression of mitochondrially encoded proteins in response to developmental or environmental signals. The postulated ribosome-mediated selectivity of mitochondrial translation should be reflected by a poor correlation between the steady-state abundance of mitochondrial transcripts and the encoded proteins. However, despite the recent intense studies of the plant mitochondrial transcriptome and proteome no enough quantitative data exist to substantiate such a claim. Relations between the transcript and the protein level are mainly known for the nuclear-encoded mitochondrial proteins (Law et al., 2012; Tan et al., 2012).

EXPRESSION OF NUCLEAR AND MITOCHONDRIAL GENES ENCODING OXPHOS SUBUNITS IS ULTIMATELY COORDINATED AT THE COMPLEX ASSEMBLY STAGE

Biogenesis of OXPHOS complexes requires balanced production of nuclear- and mitochondrially encoded subunits. Some reports indicate that in plants coordination of the expression of OXPHOS genes between the nuclear and mitochondrial genomes may occur at the transcript level (Topping and Leaver, 1990; Smart et al., 1994; Ribichich et al., 2001; Howell et al., 2006), but recent global analyses of expression of the mitochondrial and nuclear genomes in plants underscore the crucial role of the post-transcriptional coordination (Giegé et al., 2005; Leister et al., 2011; Law et al., 2012; Kwaśniak et al., 2013). Furthermore, Giegé et al. (2005) and Kwaśniak et al. (2013) studying biogenesis of OXPHOS complexes under sugar starvation conditions and in the rps10 mutant, respectively, reached the same conclusion that the ultimate coordination of expression of the two genomes occurs at the level of protein complex assembly. The authors of both those papers assumed that an excess of unassembled subunits were degraded by nuclear-encoded ATP-dependent proteases. Apart from this similarity, there were also differences between the two experimental systems, as the RPS10 silencing mainly down-regulated the biosynthesis of the mitochondrially encoded subunits whereas under sugar starvation the biogenesis of OXPHOS complexes was regulated mostly by curbing the expression of the respective nuclear genes. As a
consequence, the nuclear-encoded proteins in rps10 and the mitochon-
drally encoded proteins under sugar starvation had to be
degraded to bring their abundance down to the level of their part-
ners. One is tempted to suggest that depending on the nature or the
duration of the stress the direct response of the two collaborating
genomes is in fact limited to one or the other and the expression of
the second genome is adjusted ultimately at the complex assembly
level.

In line with the above predictions, an up-regulation of mito-
chondrial ATP-dependent proteases was indeed observed in the
rps10 mutant. An induction of nuclear-encoded mitochondrial
proteases and chaperones upon accumulation of unfolded or mis-
folded proteins in the mitochondrial matrix is a hallmark of the
mitochondrial unfolded-protein response (UPRmt) that has been
reported for mammals and \textit{Caenorhabditis elegans} (Haynes and Ron, 2010; Haynes et al., 2013). Conceivably, also in plants UPRmt is
activated by the stoichiometric imbalance between the nDNA-
and mtDNA-encoded OXPHOS proteins caused by the silencing of
\textit{rps10} expression and restores the balance between the two sets
of the subunits by selectively degrading the ones in excess.

\textbf{MITOCHONDRIAL TRANSLATION REGULATION OF OXPHOS
BIGENESIS IN NON-PLANT SYSTEMS}

In contrast to plants, where translational regulation has just
derived as an important step of the biogenesis of OXPHOS
complexes, a diversity of mitochondrial translation control me-
chanisms have been reported in other organisms, particularly
in \textit{Saccharomyces cerevisiae}. One such mechanism is associated
with translational activators which interact with mitochondrial
mRNAs, in most cases at their 5′ with translational activators which interact with mitochondrial
complexes, a diversity of mitochondrial translation control mech-

ism found in yeast, in which generation of assembly competent
products. A negative feedback mechanism for the regulation of mito-
chondrial translation based on an interplay between the translation and m-AAA protease, the key component of the mitochondrial quality control system has also been proposed for yeast (Nolden et al., 2005). The m-AAA protease not only degrades misfolded or
damaged proteins, but also processes the mitoribosomal protein
MRPL32. This maturation seems to be required for mitochondrial
translation since the synthesis of mitochondrially encoded
proteins was substantially impaired in cells lacking the m-AAA
protease. Under certain conditions, misfolded, non-native res-
piratory subunits can compete with MRPL32 for binding to the
m-AAA protease and thereby hamper the MRPL32 processing,
ribosome assembly, and mitochondrial translation. MRPL32 pro-
cessing and mitochondrial translation resume when the level of
the respiratory subunits decreases as a consequence of their m-
AAA-mediated degradation. It is worth mentioning in this context
that plant m-AAA is able to process the yeast ribosomal pro-
tein MRPL32 (Kolodziejczak et al., 2002; Piechota et al., 2010). However, no direct evidence has been provided that plant m-
AAA proteases can process a plant homolog of this mitoribosomal
protein.

Given the mammalian mitochondrial transcripts contain no
or only a short untranslated regulatory 5′ region (Koc and Spremulli, 2003), it seems unlikely that in mammals the syn-
thesis of mitochondrial OXPHOS subunits is subject to CES, as
it is in yeast. Instead, some reports indicate that members of the
PPR protein family function as translational regulators of
OXPHOS biogenesis in mammalian cells. One of them is leucine-
rich PPR containing (LRPPRC) protein reported not only to
coordinate mitochondrial translation but also to stabilize mito-
chondrial mRNAs and promote their polyadenylation (Sasarman et al., 2010). In the absence of LRPPRC the translation pattern
is misregulated, with excessive translation of some transcripts
and no translation of others. Interestingly, the two homologs of
LRPPRC protein in fission yeast, Ppr4, and Ppr5, that also
affection translation, play opposite roles in the expression of the
\textit{cox1} transcript (Kühl et al., 2011). Ppr4 specifically activates the
translation of the \textit{cox1} mRNA, whereas Ppr5 is a general neg-
ative regulator of mitochondrial translation. Furthermore, in
humans another PPR protein – PTCD1 has been proposed to
inhibit mitochondrial translation probably by decreasing the sta-
bility of the mitochondrial leucine tRNAs (Rackham et al., 2009).
Other noteworthy human PPR proteins implicated in transla-
tion include PTCD2 involved in the maturation of cytochrome
b transcripts (Xu et al., 2008) and PTCD3 associated with the
SSU of mitochondrial ribosomes by binding 12S rRNA and
necessary for efficient mitochondrial translation (Davies et al.,
2009).

\textbf{CONCLUDING REMARKS}

In bacteria mRNA abundance is the primary factor controlling the
rate of protein synthesis. Recent studies have shown that in
plant mitochondria the synthesis of OXPHOS subunits is sur-
prisingly insensitive to the accumulation of respective transcripts
(Kwaśniak et al., 2013; Wydro et al., 2013). It seems that, simi-
larly to the chloroplast system (Marin-Navarro et al., 2007), the
expression of mitochondrial genes in plants is mainly regulated
at the level of translation. Compared with transcriptional regulation, translation regulation combined with selective degradation allows the organelles to modulate protein abundance more rapidly.

ACKNOWLEDGMENT
This work was supported by grant N N301 784940 from the Ministry of Science and Higher Education.

REFERENCES
Binder, S., and Brennicke, A. (2003). Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 181–189. doi: 10.1098/rstb.2002.1179

Boen, L. (2004). “Translational machinery in plant organelles,” in Molecular Biology and Biotechnology of Plant Organelles, eds H. Daniell and C. Chase (Netherlands: Springer) 323–345. doi: 10.1007/978-1-4020-3166-3_12

Brygazov, K., Vesper, O., and Moll, I. (2013). Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr. Opin. Microbiol. 16, 135–139. doi: 10.1016/j.mib.2013.01.009

Choquet, Y., and Wollman, F. A. (2002). Transcriptional regulations as specific traits of chloroplast gene expression. FEBS Lett. 529, 39–42. doi: 10.1016/S0014-5793(02)03260-X

Davies, S. M., Rackham, O., Shearwood, A. M., Hamilton, K. L., Narasi, R., Whelan, J., et al. (2009). Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett. 583, 1853–1858. doi: 10.1016/j.febslet.2009.04.048

Delage, L., Giégé, P., Sakamoto, M., and Maréchal-Drouard, L. (2007). Four paralogues of RPL12 are differentially associated to ribosome in plant mitochondria. Biochimie 89, 658–668. doi: 10.1016/j.bioch.2007.02.002

Deusser, E. (1972). Heterogeneity of ribosomal populations in Escherichia coli cells grown in different media. Mol. Gen. Genet. 119, 249–258. doi: 10.1007/BF00338862

Filipowska, A., and Rackham, O. (2013). Specialization from synthesis: how ribosome diversity can customize protein function. FEBS Lett. 587, 1189–1197. doi: 10.1016/j.febslet.2013.02.032

Fontanesi, F., Soto, I. C., Horn, D., and Barrientos, A. (2010). Msf51 and Scs1 facilitate translational regulation of cytochrome c oxidase biogenesis. Mol. Cell. Biol. 30, 245–259. doi: 10.1128/MCB.00983-09

Giégé, P., Sweetlove, L. I., Cognat, V., and Weaver, C. J. (2005). Coordination of transcriptional and post-transcriptional control. Trends Plant Sci. 10, 1045–1052.

Kazama, T., Yagi, Y., Toriyama, K., and Nakamura, T. (2013). Heterogeneity of the 5’-end in plant mRNA may be involved in mitochondrial translation. Front. Plant Sci. 4:157. doi: 10.3389/fpls.2013.00157

Koc, E. C., and Spremulli, L. L. (2003). RNA-binding proteins of mammalian mitochondria. Mitochondrion 2, 277–291. doi: 10.1016/S1567-7249(03)00005-9

Kuleshova, J., et al. (2002). A higher plant mitochondrial homologue of the yeast m-AAA protease. Molecular cloning, localization, and putative function. J. Biol. Chem. 277, 43792–43798. doi: 10.1074/jbc.M208361200

Kühl, I., Duejencourt, L., Gaisne, M., Herbert, C. J., and Bonnefoy, N. (2011). A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression. Nucleic Acids Res. 39, 8029–8041. doi: 10.1093/nar/gkr311

Kwaśniak, M., Majewski, P., Skibior, R., Adamowicz, A., Czarna, M., and Janska, H. (2013). Silencing of nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in Arabidopsis mitochondria. Plant Cell 25, 1855–1867. doi: 10.1105/tpc.113.111294

Law, S. R., Narasi, R., Taylor, N. L., Delannoy, E., Carrier, C., Giraud, E., et al. (2012). Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination. Plant Physiol. 158, 1610–1627. doi: 10.1104/pp.111.192351

Leister, D., Wang, X., Habener, G., Mayer, K. F., and Kleine, T. (2011). Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Plant Physiol. 157, 386–404. doi: 10.1104/pp.111.177691

Maffey, L., Degand, H., and Bourtay, M. (1997). Partial purification of mitochondrial ribosomes from broad bean and identification of proteins encoded by the mitochondrial genome. Mol. Gen. Genet. 254, 365–371. doi: 10.1007/s004380050428

Majewski, P., Woloszyńska, M., and Janska, H. (2009). Developmentally early and late onset of Rps10 silencing in Arabidopsis thaliana: genetic and environmental regulation. J. Exp. Bot. 60, 1163–1178. doi: 10.1093/jxb/ern362

Marin-Navarro, J., Mannell, A. L., Wu, J., and Mayfield, S. (2007). Chloroplast translation regulation. Photosynth. Res. 94, 359–374. doi: 10.1007/s11120-007-9183-z

Mauro, V. P., and Edelman, G. M. (2007). The ribosome filter redux. Cell Cycle 6, 2246–2251. doi: 10.4161/cc.6.18.4739

Nolden, M., Ehres, S., Koppen, M., Bernachia, A., Rugeri, E. L., and Langer, T. (2005). The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123, 277–289. doi: 10.1016/j.cell.2005.08.003

Pesaresi, P., Masiero, S., Eubel, H., Braun, H. P., Bhushan, S., Glaser, E., et al. (2006). Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18, 970–991. doi: 10.1105/tpc.105.039073

Piechota, J., Kolejdziezjak, M., Juszczak, I., Sakamoto, W., and Janska, H. (2010). Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana. J. Biol. Chem. 285, 12512–12521. doi: 10.1074/jbc.M109.063464

Pinel, C., Douce, R., and Mache, R. (1986). A study of mitochondrial ribosomes from the higher plant Solanum tuberosum L. Mol. Biol. Rep. 11, 93–97. doi: 10.1007/BF00364820

Portereiko, M. F., Sandaklie-Nikolova, L., Lloyd, A., Dever, C. A., Otsguda, D., and Drews, G. N. (2006). Nuclear fusion defective 1 encodes the mitochondrial ribosomal protein L25 in maize mitochondrion. Mol. Biol. Rep. 33, 897–905. doi: 10.1007/s11033-006-0734-6

Richter, U., Kühn, K., Okada, S., Brennicke, A., Weihe, A., and Börner, T. (2010). Dual-localized pentatricopeptide repeat protein interacts with m-AAA protease. Molecular cloning, localization, and putative function in Arabidopsis. FEBS Lett. 525, 365–371. doi: 10.1007/s00432-007-1182-5

Richter, U., Kühn, K., Okada, S., Brennicke, A., Weihe, A., and Börner, T. (2010). A higher plant mitochondrial homologue of the yeast m-AAA protease. Molecular cloning, localization, and putative function. J. Biol. Chem. 277, 43792–43798. doi: 10.1074/jbc.M208361200

Ribichich, K. F., Tioni, M. F., Chan, R. L., and Gonzalez, D. H. (2001). Cell-type-specific expression of plant cytochrome c mRNA in developing flowers and roots. Plant Physiol. 125, 1603–1610. doi: 10.1104/pp.125.4.1603

Richter, U., Kühn, K., Okada, S., Brennicke, A., Weihe, A., and Börner, T. (2010). A mitochondrial RNA dimethyladenosine methyltransferase in Arabidopsis. Plant J. 61, 558–569. doi: 10.1111/j.1365-313X.2009.04079.x

www.frontiersin.org

March 2014 | Volume 5 | Article 79 | 5

Janska and Kwasniak

Translational regulation of OXPHOS biogenesis
Sakamoto, W., Kondo, H., Murata, M., and Motoyoshi, F. (1996). Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. *Plant Cell* 8, 1377–1390. doi: 10.1105/tpc.8.8.1377

Salinas, T., Remacle, C., and Maréchal-Drouard, L. (2013). "Mitochondrial translation in green algae and higher plant," in *Translation in Mitochondria and Other Organelles*, ed. A. M. Duchêne (Berlin: Springer Berlin-Heidelberg), 181–205. doi: 10.1007/978-3-642-39426-3_8

Sasarman, F., Brunel-Guitton, C., Antonicka, H., Wai, T., Shoubridge, E. A., and Schneitz, K., Baker, S. C., Gasser, C. S., and Redweik, A. (1998). Pattern formation

Smits, P., Smeitink, J., and van den Heuvel, L. (2010). Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. *J. Biomed. Biotechnol.* 10, 24. doi: 10.1155/2010/737385

Sormani, R., Masclaux-Daubresse, C., Daniele-Vedele, F., and Chardon, F. (2011). Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana. *PLoS ONE* 6:e28070. doi: 10.1371/journal.pone.0028070

Tan, Y. F., Millar, A. H., and Taylor, N. L. (2012). Components of mitochondrial oxidative phosphorylation vary in abundance following exposure to cold and chemical stresses. *J. Proteome Res.* 11, 3860–3879. doi: 10.1021/pr3003535

Topping, J. F., and Leaver, C. J. (1990). Mitochondrial gene expression during wheat leaf development. *Planta* 182, 399–407. doi: 10.1007/BF02411391

Tsugeki, R., Kochieva, E. Z., and Fedoroff, N. V. (1996). A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. *Plant J.* 10, 479–489. doi: 10.1046/j.1365-313X.1996.10030479.x

Uyttebaal, M., Mireau, H., Ruzek, M., Hammanni, K., Arnal, N., Quadrado, M., et al. (2008). PPR336 is associated with polysomes in plant mitochondria. *J. Mol. Biol.* 375, 626–636. doi: 10.1016/j.jmb.2007.11.011

Wittmann, H. G. (1982). Components of bacterial ribosomes. *Annu. Rev. Biochem.* 51, 155–183. doi: 10.1146/annurev.bi.51.070182.001103

Wydro, M. M., Sharma, P., Foster, J. M., Bych, K., Meyer, E. H., and Balk, J. (2013). The evolutionarily conserved iron-sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis. *Plant Cell.* 25, 4014–4027. doi: 10.1105/tpc.113.117283

Xu, F., Ackerley, C., Maj, M. C., Addis, J. B., Levandovskij, V., Lee, J., et al. (2008). Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria. *Biochem. J.* 416, 15–26. doi: 10.1042/Bj20080847

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 November 2013; paper pending published: 13 January 2014; accepted: 19 February 2014; published online: 05 March 2014.

Citation: Janska H and Kwasniak M (2014) Mitoribosomal regulation of OXPHOS biogenesis in plants. *Front. Plant Sci.* 5:79. doi: 10.3389/fpls.2014.00079

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

Copyright © 2014 Janska and Kwasniak. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.