Fitness Profiles in Elite Tactical Units: A Critical Review

Wills, Thomas; Maupin, Daniel; Orr, Rob Marc; Schram, Ben; Robinson, Jeremy; Irving, Shane; Dawes, James

Published: 07/04/2018

Document Version:
Publisher's PDF, also known as Version of record

Licence:
CC BY-ND

Link to publication in Bond University research repository.

Recommended citation (APA):
Wills, T., Maupin, D., Orr, R. M., Schram, B., Robinson, J., Irving, S., & Dawes, J. (2018). Fitness Profiles in Elite Tactical Units: A Critical Review. Poster session presented at 2018 Rocky Mountain American College of Sports Medicine Annual Meeting, Colorado Springs, United States.
Elite tactical units (ETUs) are at the forefront of national security and service. These units require personnel to routinely perform at the highest level; above and beyond the expectations of civilians and regular tactical members [1]. Fitness profiles are a collection of physiological measures employed for task specific abilities that have been demonstrated to predict quality performance in sport.

The physiological measures take into account the physical demands of operational tasks, and have been shown to be useful in the design of programs that address specific weaknesses in the fitness attributes, as related to occupational requirements [2]. Fitness profiles may aid in the ETU selection process. For these reasons, this critical literature review will endeavour to identify, critically appraise, and synthesise key findings from the current body of knowledge around fitness profiles within ETU populations.

Method

A two-tiered approach was employed to identify and include relevant studies to inform this review. Search bias was limited via use of broad search terms to capture all studies, while duplication bias was limited during the first step of screening by removing all duplicates. Two reviewers (DM & TW) independently and separately screened the titles and abstracts to limit selector bias and ensure an objective selection. Lastly, inclusion and exclusion criteria were established prior to screening; except for the inclusion criteria ‘each study must contain qualitative ratings proposed by Kennelly [5].

The Critical Appraisal Scores (CAS) were finalized, by using the qualitative synthesis proposed by Kennelly [5]. A two-tiered approach was employed to identify and include relevant studies to inform this review. Search bias was limited via use of broad search terms to capture all studies, while duplication bias was limited during the first step of screening by removing all duplicates.

Due to the high variance in the outcome scores and measurement data (n=1), the majority of the studies were given lower scores in the area of internal validity. Studies were consistently given lower scores in the area of internal validity. None were randomised-control studies and as such no blinding was implemented. Due to the high variance in the outcome scores and measurement tests, the ability to effectively compare across studies was limited. Future fitness profiles research would benefit from standardized outcome measures as well as agreed standardised measurements.

Discussion, Conclusion & Recommendations

Though fitness is a critical part of research and practice, there is no standardized measure or result for this population. Further research needs to be done in the development of a fitness profile which uses standardized outcome measures and covers the spectrum of the fitness requirements for this population. This is important for the development of selection criteria and return from injury.

Key References

1. Pryor, B. R., Dahlberg, D., Ott, M. T., Heister, D. P., & Suppes, J. (2012). Fitness characteristics of a subsistence special weapons and tactics team. J Strength Cond Res, 26(1), 752-757. doi:10.1519/JSC.0b013e318223f177
2. Aiken, S. A., Selt, K., & Deuser, P. A. (2017). NCDA/AAMS Essentials of Tactical Strength and Conditioning: Human Kinetics, Inc.
3. Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology & Community Health, 52(6), 377-384.
4. Van Dijk, A., & Dore, J. M. (2000). Understanding interobserver agreement: the kappa statistic. Fam Med, 37(5), 385-386.
5. Kennelly J. Methodological approach to assessing the evidence. In: Handler A, Kennelly J, Peacock N (eds). Racial/Ethnic Disparities in Reproductive and Perinatal Outcomes: The Evidence from Population-Based Interventions. New York: Springer; 2011, 7–19.

Table 1. Results of Critical Review

Article Title	SI	AM	STR	PWR	END	FLEX	AC	AGI	SPD	D&B	K
Pryor et al., 2012	✔	✔	✔	✔	✔	✗	✗	✗	✗	54%	Fair
Dhahbi et al., 2015	✔	✔	✔	✔	✔	✗	✗	✗	✗	64%	Good
Kalberg et al., 2015	✔	✔	✔	✔	✔	✗	✗	✗	✗	63%	Good
Meeks et al., 1999	✔	✔	✔	✔	✔	✗	✗	✗	✗	46%	Fair
Sports et al., 2012	✔	✔	✔	✔	✔	✗	✗	✗	✗	68%	Good
Nind et al., 2007	✔	✔	✔	✔	✔	✗	✗	✗	✗	52%	Fair
N. Orr et al., 2015	✔	✔	✔	✔	✔	✗	✗	✗	✗	57%	Fair
Simpson et al., 2017	✔	✔	✔	✔	✔	✗	✗	✗	✗	54%	Fair
Hunt et al., 2015	✔	✔	✔	✔	✔	✗	✗	✗	✗	63%	Good
Downes et al., 2014	✔	✔	✔	✔	✔	✗	✗	✗	✗	57%	Fair
Sparlich et al., 2011	✔	✔	✔	✔	✔	✗	✗	✗	✗	52%	Fair
Dhahbi et al., 2016	✔	✔	✔	✔	✔	✗	✗	✗	✗	59%	Fair
Moe et al., 1987	✔	✔	✔	✔	✔	✗	✗	✗	✗	54%	Fair
Sharp et al., 2008	✔	✔	✔	✔	✔	✗	✗	✗	✗	68%	Good

Figure 1: PRISMA Flow Chart showing the review and screening process of all articles

Conclusion

• A total of 11 studies focused on various military special force units, whilst 3 studies specifically studied Special Weapons and Tactics police.

• Methodological quality was fair quality overall (57.5±6.3%; range 46%–68%). (See Table 1.)

• The most common measures examined were anthropometric and aerobic capacity, in 79% and 71% of studies, respectively.

• The least common measures were agility and speed, recorded in only 14% and 21% of studies, respectively.