Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review article

Venous thromboembolism in patients with COVID-19 infection: risk factors, prevention, and management

Natasha Ahuja¹, Jasmine Bhindera, Jessica Nguyen¹, Tom Langan Jr¹, Monica O’Brien-Irra, Brittany Montrossa, Sikandar Khan¹, Aditya M Sharmab, Linda M. Harris¹,*

¹Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo General Medical Center/Kaleida Health, 100 High Street, B7, Buffalo, NY, 14203
²University of Virginia School of Medicine, Charlottesville, VA

ARTICLE INFO

Abstract: Venous thromboembolic complications have emerged as serious sequela in COVID-19 infections. This article summarizes the most current information regarding pathophysiology, risk factors and hematologic markers, incidence and timing of events, atypical venous thromboembolic complications, prophylaxis recommendations, and therapeutic recommendations. Data will likely to continue to rapidly evolve as more knowledge is gained regarding venous events in COVID-19 patients.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Primary complications associated with the coronavirus disease 2019 (COVID-19) virus have included pneumonia of atypical severity, respiratory failure, shock, and multi-organ dysfunction. In addition, COVID-19 is also associated with hypercoagulability, predisposing patients to arterial and venous thromboembolism. The true incidence of venous thromboembolic events (VTEs) in patients with COVID-19 remains unknown, with studies showing variable rates of 10% to 70%. However, it is becoming clearer that VTEs in patients with COVID-19 are associated with increased morbidity and mortality [1–3]. Parameters for screening, diagnosis, treatment, and outcomes associated with COVID-19 VTEs have rapidly evolved during the course of the pandemic. This article will provide a comprehensive overview of current data.

We performed a review of the literature using Medline and PubMed. The Medline search was completed using title terms COVID-19 and SARS CoV-2, along with truncated terms Thrombo$, Hypercoa$q$, and Coagulat$. These were combined with subject terms coagulopathy, anticoagulation, thromboembolism, thrombophilia, and blood coagulation disorders. Both general and narrower terms within the blood coagulation disorder were incorporated. These results were combined with risk factors. The PubMed search was completed using the terms COVID-19 coagulopathy, venous thrombotic events: pulmonary embolism, deep vein thrombosis, atypical venous thrombosis, pathophysiology, incidence, risk factors, diagnosis, clinical management, prophylaxis, anticoagulation, and outcomes. The review was completed through January 2021 and limited to humans and English language. This mapping strategies yielded 194 references, of which title and abstract (when available) were ret-

* Corresponding author.
E-mail address: lharris@kaleidahealth.org (L.M. Harris).

https://doi.org/10.1053/j.semvascsurg.2021.06.002
0895-7967/$ – see front matter © 2021 Elsevier Inc. All rights reserved.
194 references
↓
20 guideline/consensus papers
↓
13 meta-analysis
↓
5 prospective randomized trials
↓
62 single center observational studies ↓
14 multi-center/registry observational studies
↓
44 review articles
↓
13 case series
↓
23 letters/editorials/commentaries.

Fig. 1 – Flow chart of references obtained from research strategy for venous thromboembolic events in COVID-19.

viewed to determine relevance. A summary flow chart is presented in Figure 1. A full review was completed in 101 publications included in this review.

We also reported results from our own study, which evaluated the incidence and outcomes of VTEs in 334 hospitalized patients with COVID-19 in the first COVID-19 peak period. This study was conducted at one of our university-affiliated, tertiary care medical centers during the period March 1 through May 31, 2020 and included all hospitalized patients. The study was approved by the University Institutional Review Board, as well as the medical center in which it was conducted. The electronic medical records of all hospitalized patients with COVID-19 (n = 334) were reviewed for demographic characteristics; comorbidities; laboratory results at admission and at time of greatest derangement; diagnostic studies; prophylaxis and anticoagulation; type, initiation, and duration of treatment; need, type, and duration of oxygen supplementation; intensive care unit (ICU) admission and length of stay; need for ventilator support; all complications; VTEs, categorized as arterial thrombosis, stroke, myocardial infarction (MI), deep vein thrombosis (DVT), pulmonary embolism (PE) or combined; time of VTE diagnosis; mortality; and hospital length of stay. The data were analyzed using SPSS software, version 26 (IBM Corp). Univariate analysis was completed using chi-square for categorical variables and independent Student t-test for continuous variables. Logistic regression was performed to identify risk for VTEs and mortality. Variables found to be significant by chi-square or those thought to be clinically applicable were included in the models. Significance was set at P < .05.

2. Pathophysiology and etiology

The pathophysiology underlying the hypercoagulability in COVID-19 is incompletely understood, but emerging evidence suggests that the process is inflammatory-mediated and bidirectional [4]. Severe alveolar inflammation leads to inflammatory thrombosis of the pulmonary vasculature and an overall state of hypercoagulability, which in turn induces further inflammation [5-8]. It is increasingly believed that the initial insult leading to hypercoagulability results from dysregulation of the renin-angiotensin system. Typically, angiotensin II (ANGII) binds to angiotensin type 1 receptor (AT1R) to produce vasoconstriction; angiotensin-converting enzyme 2 (ACE2) counteracts the process by binding with and inactivating ANGII to produce dilatation. ACE2 receptors are abundant in lung, cardiac, renal, and gastrointestinal tissue. The COVID-19 virus has great affinity for ACE2 and attaches to the receptors on the alveolar endothelial membrane via its S spike, triggering an intense proinflammatory response and subsequently a prothrombotic environment [9,10]. Binding of COVID-19 to ACE2 decreases availability of the enzyme and disrupts the cycle by which it degrades ANGII. Effectively, increased levels of ANGII become available to bind with AT1R, which stimulates interleukin-6 (IL-6) release causing inflammation and lung injury [11,12]. Hypercoagulability may ensue because ANGII/AT1R also induces tissue factor and plasminogen activator inhibitor [13,14]. Patients with increased ANGII levels are at higher risk for severe disease; a direct correlation between viral load, lung injury, and ANGII levels has been reported [10]. High levels of other thrombotic and inflammatory markers, such as D-dimer, C-reactive protein (CRP), lactate dehydrogenase, ferritin, and IL-6 have been documented as well [15]. Multiple inflammatory pathways have been implicated in the development of thrombo-inflammation, including cytokines, acute-phase reactants, and inflammatory cell-mediated cellular injury. Elevated levels of IL-6, IL-7, tissue necrosis factor, and chemokines have been reported, which create prothrombotic environments through activation of monocytes, neutrophils, and the endothelium [16,17].

Mononuclear phagocytes have been found to be more prominent in bronchial alveolar fluid of patients with more severe disease and may play a role in the development of thrombotic complications [18]. Activated monocytes stimulate tissue factor expression, which triggers the clotting cascade to
produce thrombin, which subsequently leads to thrombus formation, platelet activation, and further augmentation of inflammatory pathways [12,19].

Elevated levels of neutrophil extracellular traps have been reported with COVID-19, occurring more commonly in hospitalized patients, particularly those requiring mechanical ventilation [20]. It is postulated that abnormal activation of neutrophils and production of NET may contribute to cytokine storm and adverse sequelae of severe disease, such as organ damage, widespread thrombosis, and death [21,22]. Alternatively, Gan et al [23] proposed that ANGIIL rather than cytokine storm may be responsible for the widespread vascular injury that results from endothelial damage, thrombosis, and vasoconstriction. They further suggest that this might better explain the early hypoxia but sustained lung compliance experienced by patients with COVID.

Infection also produces rigorous activation of the complement system, which plays a vital role in severe COVID, potentially as a principle antecedent to cytokine storm [24,25]. The proinflammatory effects of anaphylatoxins can occur within hours of infection [25] and may contribute to thrombotic microangiopathy and organ dysfunction [17,24]. Ramli et al [26] also resounded the critical impact of complement on regulation of overall outcomes from infection and were able to identify genetic variants within complement and coagulation regulators that could serve as potential markers of susceptibility [26].

A number of postmortem COVID-19 studies have reported endothelial dysfunction in multiple vascular beds, including endothelial lining of the lungs, and pervasive thrombosis and microangiopathy [27]. Contributing factors include increased production of pulmonary interstitial cytokines, activation of complement components, and direct infection of the endothelium through ACE2 receptors [28]. Elevated levels of von Willebrand factor and factor VII have also been reported in patients with COVID-19, further substantiating endothelial activation [29,30]. Resulting endotheliitis (inflammation of the endothelium in blood vessels) is a major precursor for thrombosis [21].

Early studies have indicated that a large number of patients with COVID-19 meet International Society of Thrombosis and Hemostasis criteria for disseminated intravascular coagulation [31], but lack the clinically associated profile [32,33]. They suggested that abnormal laboratory findings may reflect a more localized coagulopathy that resulted from extensive alveolar inflammation, but remained limited to the pulmonary vasculature [32,33]. Cicieri et al [34] hypothesized that in subgroups predisposed to severe outcomes, the process then extends systemically to the microvasculature of the brain, kidneys, and other organs, causing hypercoagulability and multisystem failure, which they labeled “microvascular COVID-19 lung vessel obstructive inflammatory syndrome.”

3. Hematologic markers

The hypercoagulable state in COVID-19 has been associated with several hematological markers, including decreasing platelet, increased levels of d-dimer, fibrinogen, factor VIII, and von Willebrand factor, with decreased antithrombin, platelets, and thromboelastography results. Table 1 compiles the levels of markers associated with adverse VTE outcomes in COVID-19 [35-51].

D-dimer has been investigated extensively for its potential utility as a prognostic indicator for VTE in patients with COVID-19. Typically, d-dimer < 0.5 μg/mL is used to rule out VTE. Li et al [40] reported increased risk of VTE (odds ratio [OR] = 14.18) with d-dimer levels > 2.07 μg/mL, and Al-Samkari et al [37] found d-dimer levels between 1.0 and 2.5 μg/mL were associated with increased risk (OR = 3.04), which rose to OR of 6.09 when levels exceeded 2.5 μg/mL. However, Choi et al [35] found that D-dimer levels between 1.0 and 7.5 μg/mL were associated with only a nominal risk of VTE; likelihood ratio (LR) of 1.19, but that the likelihood increased to 4.1 when levels exceeded 7.5 μg/mL. Unfortunately, the clinical functionality of elevated D-dimer levels may be limited. Although a number of studies report high sensitivity among ICU patients; ranging between 85% and 100%, specificity has ranged between 46% and 88.5% [36,39,43]. This is due most likely to the concomitant inflammatory and infectious processes ongoing in patients with COVID-19 causing elevation of levels for most patients.

The association between prothrombin time (PT) and VTE has been less conclusive. Dujardin et al [42] found no significant difference in PT levels between those who did and did not develop VTE, and Al-Samkari et al [37] found a significant difference in peak PT levels between those with and without VTE (16.0 and 14.4, respectively; P < .001). Moreover, Klok et al [48] reported that PT > 3 seconds over the normal upper limit were associated with an increased hazard ratio (HR) of 4.1 for VTE. Similarly, the data for activated partial thromboplastin time has been inconsistent. Fibrinogen is another coagulation parameter that can be useful for monitoring VTE risk. Al-Samkari et al [37] reported an OR of 2.22 for VTE among the critically ill when fibrinogen exceeded 7.0. Ierardi et al [49] reported an increased OR of 1.003 for DVT among floor patients.

Consideration should also be given to CRP levels. A number of studies have reported significantly higher CRP levels in those who developed VTE than those who did not, with OR for developing VTE ranging from 1.03 for elevated CRP on admission [50] or in floor patients [49] to 2.71 for elevated CRP among the critically ill [37]. Dujardin et al [42] found a combination of elevated d-dimer > 15 μg/mL (D-Dimer) with CRP > 280 mg/dl (CRP) had a positive predictive value of 98% for VTE and was the most accurate laboratory marker [42]. The Wuhan model identified decreased fibrinogen, increased d-dimer, and increased increment d-dimer ≥1.5-fold combination as having excellent predictive value as well for symptomatic VTE (area under the curve = 0.865; 95% confidence interval [CI], 0.822–0.907; 95% sensitivity, 71% specificity) [40].

According to current data, it would appear prudent that, at minimum, d-dimer, PT/partial thromboplastin time, fibrinogen, platelet levels, CRP, and VTE risk assessment should be completed on admission. Frequency of repeat testing has not yet been determined. However, because ICU patients are at higher risk for VTE, any patient with COVID-19 should be reassessed on transfer.
Table 1 – Hematologic markers for venous thromboembolic events in COVID-19.

Marker	Normal value	First author	Patient population	Abnormal value/marker	Outcomes
d-dimer	0–500 ng/mL	Choi [35]	123 VTEs, New York, NY; 1,739 COVID patients	1,000–7,500	LR = 1.19
		Cui [36]	ICU COVID VTE	>7,500	LR = 4.1
		Al-Samkari [37]	400; 5 institutions VTE; 6%/10.4% in critically ill	VTE 1,538 (953–3,288)	Sensitivity 85%
				No VTE 891	Specificity 88.5%
				VTE4,001 (2,896–8,821)	P = .0002
				No VTE 1,377	Peak P < .0001
				1,001–2,500	OR = 3.04
				>2,500	OR = 6.79
		Yu [38]	142 COVID	>2,500	DVT OR = 10.9
		Trigonis [39]	Ventilated ICU COVID DVT	>2,000	Sensitivity 95%
		Li [40]	China: 16 centers; 104 VTEs	d-dimer increment >1.5	Specificity 46%
				2,070 (800–6,570)	OR = 14.18
				610 (290–1,460)	OR = 1.33
		Helms [41]	ICU/ARDS like	>5% elevated	
		Dujardin [42]	COVID ICU 127 patients	2,270 (1,160–20,000)	
				VTE 2,310 (820–29,200)	
				No VTE 1,250 (730–3,000)	
				>2,000	
				>3,000	
				>11,000	
				>2,600	
		Léonard-Lorant [43]	ICU COVID PE	900 (510–3,100)	Sensitivity 100%
				3,530 (1,870–11,640)	Specificity 67%
		Ren [44]	ICU COVID	5,310 (1,120–9,780)	
				4,527	
				2,050	
		Santoliquido [45]	COVID floor	11,462 ± 2,528	
				2,743 ± 568	
		Cavagna [46]	109 COVID with CTA for PE	5,448 ± 2,379	
				2,644 ± 7,032	
		Motaganahalli [51]	Single-center	11.3	
			71 patients	11.3	
				11.3	
PT	10–12 s	Dujardin [42]	COVID ICU 127 patients	11.3	
		Panigada [47]	ICU COVID	11.3	
				1.16	
		Al-Samkari [37]	400; 5 institutions VTE; 6%/10.4% in critically ill	13.8	
				VTE 13.9	
				VTE peak 16	
				No VTE peak 14.4	
		Klok [48]	184 ICU COVID	3 s above normal upper limit	HR = 4.1
			68 VTEs		

(continued on next page)
Marker	Normal value	First author	Patient population	Abnormal value/marker	Outcomes
aPTT	30–45 s	Dujardin [42]	COVID ICU 127 patients 400; 5 institutions VTE,6%/10.4% in critically ill	27.7 v 27.4 no VTE VTE 34.2 No VTE 34.3	NS
		Al-Samkari [37]	ICU COVID 184 ICU COVID 68 VTEs	0.98 >5 s above normal upper limit	17% below low NL HR = 4.1
		Panigada [47]	ICU COVID 30–45 [42]		
		Klok [48]	ICU COVID 34.2		
		Cui [36]	ICU COVID 39.9 ± 6.4		Higher risk VTE
		Dujardin [42]	COVID ICU 127 patients 400; 5 institutions	7.5 v 7.7 no VTE	NS
		Panigada [47]	ICU COVID 6.8 (3.34–13.44)		93% above NL
		Helms [41]	ICU; ARDS like 150 patients vs non-COVID ARDS	7.0 v 5.6	Higher in COVID <.001
		Al-Samkari [37]	400; 5 institutions	VTE,6%/10.4% VTE ICU	P = .0045
Fibrinogen	2–4 g/dL	Panigada [47]	ICU COVID 34.2	VTE 6.96	Peak P = .0001
		Cavagna [46]	COVID 109 COVID with CTA for PE	No VTE 5.79	OR = 2.22 VTE
		Al-Samkari [37]	400; 5 institutions	No VTE 6.28	
CRP	0–5 mg/L	Ierardi [49]	Floor COVID 536 (390–691)	>7	
		Panigada [47]	ICU COVID 16.1 (3.9–34.2)		
		Ierardi [49]	Non-ICU COVID 52 (13–115)		
		Al-Samkari [37]	400; 5 institutions	VTE 124.7	
			VTE,6%/10.4% in critically ill	No VTE 63.3	
				VTE 277.7	
				No VTE 130.3	
				>100	
d-dimer + CRP		Dujardin [42]	COVID ICU 127 patients	<1/20	PPV 9%
vWF antigen	103 (40–165)	Panigada [47]	ICU COVID 529 (210–863)	16.7% PE	100% above upper normal
Lupus anticoagulant		Helms [41]	ICU with ARDS like COVID 455 (350–521)		96.6% on CRRT clot circuit
Factor VIII	60%–150%	Helms [41]	ICU with ARDS like COVID 341%		AUC 0.865
Wuhan score		Li [40]	104 DVT + COVID		Sensitivity 93%
					Specificity 71%

Abbreviations: aPTT, activated partial thromboplastin time; ARDS, acute respiratory distress syndrome; AUC, area under the curve; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; CRRT, continuous renal replacement therapy; CTA, computed tomography angiography; DVT, deep vein thrombosis; HR, hazard ratio; ICU, intensive care unit; LR, likelihood ratio; NL, normal limit; NS, not significant; OR, odds ratio; PE, pulmonary embolism; PPV, positive predictive value; PT, prothrombin time; VTE, venous thromboembolic event; vWF, von Willebrand factor.
4. Risk factors

Risks associated with severe COVID disease, development of complications, and increased mortality have been well documented. Zhou et al [52] in a meta-analysis of 34 studies, identified a number of comorbidities, including chronic respiratory disease, hypertension, cardiovascular disease, kidney disease, cerebral vascular disease, malignancy, diabetes, and obesity, which carried increased odds for severe/fatal VTE. Racial disparity in COVID-19 outcomes has also been documented, with African American patients having poorer outcomes than White or Asian patients. The etiology is not entirely clear and multiple factors, such as socioeconomic status, underlying pathophysiology, differences in hemostasis factors, coagulation status, and genetics may be at play [53,54].

Severe COVID is associated with increased risk of VTE, with ORs approximating a 6-fold increase for severe disease as opposed to 3-fold with nonsevere disease [40]. Notably, however, the risk factors for VTE and COVID-19 have indicated that hematologic biomarkers; particularly elevated admission d-dimer, >1.5-fold incremental increase in d-dimer, low admission level fibrinogen, and CRP are more predictive of VTE than comorbid states associated with severe COVID-19 and poorer prognosis [40,42]. A number of studies have reported no significant difference in the incidence of venous thrombosis among patients with cardiovascular disease, kidney disease, cerebral vascular disease, diabetes, or obesity compared with counterparts without disease [38,40,51,55,56]. Interestingly, Xiong et al [53] reported a trend toward lower incidence of VTE among diabetics (OR = 0.73; 95% CI, 0.47–1.35) [55]. These findings are perplexing, given the interconnection between COVID-19 pathophysiology and the underlying pathology of these chronic illnesses. Similarly, racial disparity in the prevalence of COVID-19 has been reported, yet the incidence of VTEs across racial groups is comparable [1,56]. Bilaloglu et al [1], in a study of 3,334 consecutive COVID-19 hospitalizations, reported a significantly higher incidence of VTE among Hispanic patients compared with non-Hispanic White patients when “any type” of thrombosis was considered (HR = 1.19; 95% CI, 1.15–3.18; P = .01). However, significance was lost when evaluation was limited to venous thrombosis (DVT/PE: HR = 2.01; 95% CI, 0.81–5.00; P = .13). Moreover, they found no significant difference in any type VTE or venous thrombosis between African American patients and non-Hispanic White patients (any VTE: HR = 0.93; 95% CI, 0.71–1.23; P = .62 and venous thrombosis: HR = 0.97; 95% CI, 0.60–1.55; P = .89) [1]. Once again, these findings are puzzling because pre-COVID-19 racial disparity in risk of VTE has been documented, with African American race carrying the highest rate, followed by White then Asians/Pacific Islander [53,57].

A compilation of VTE-specific risks is presented in Table 2. Male sex [50,51,55,58] and ICU admission/need for mechanical ventilation [38,42,58–60] have emerged as prominent factors throughout multiple studies. Increased thrombotic events among ICU patients is not surprising because critically ill patients are prone to hypercoagulability because of immobilization, mechanical ventilation, and nutritional insufficiencies, in addition to indwelling venous and arterial catheters [2]. Age has been reported frequently as well, but results have been inconsistent. A number of studies have documented increased incidence among older patients [40,55], but others have found the converse [56,58]. Li et al [40] reported older age was an independent predictor of VTE (OR = 1.04; 95% CI, 1.03–1.07; P = .008), yet Xiong et al [55], in a meta-analysis of 12 studies, indicated trend formation only (mean difference = 1.91; 95% CI, 1.58–5.40). Baseline alterations in the renin-angiotensin system might explain the pathogenesis in male and the elderly patients. Cancer has been identified by Li et al [40] as an independent predictor of VTE, presumably due to a pre-existing hypercoagulability. They also found that increased interval from symptom onset until hospital admission was independently associated as well. Increased incidence of VTE among patients with human immunodeficiency virus [38] has also been reported.

Findings of own our study of 334 consecutive admissions with COVID-19 echoed results reported in the literature. We found that positive d-dimer on admission (LR = 3.21; 95% CI, 1.005–10.23; P = .049) and current smoker (LR = 3.75; 95% CI, 1.005–10.23; P = .018) were independent risks for development of venous and/or arterial thrombosis, and female sex portended lower risk (LR = 0.20; 95% CI, 0.06–0.72; P = .014). Race was not independently associated with development of venous/arterial thrombosis in COVID-19 admissions. Table 2 compiles the known, suspected risk factors for VTE in COVID-19.

5. Incidence and timing of events in COVID-19–associated coagulopathy and VTE

According to Zhang et al [60], in a meta-analysis of 40 studies that included 7,966 patients hospitalized with COVID-19, the pooled VTE prevalence was 13%; 7% in non-ICU patients and 31% in ICU patients. Screening led to a 3-fold increase in VTE detection. Both PE and DVT were found to occur significantly more often among ICU than non-ICU patients (PE: 37% v 10%; P < .0001 and DVT: 40% v 12%; P = .0065) [60].

The temporal relationship between COVID-19 diagnosis, development of associated coagulopathy, and subsequent occurrence of VTE has been explored but not fully elucidated. Li et al [40] reported an independent association between VTE and longer interval from symptom onset to hospital admission. Likewise, a number of studies on hospitalized patients with COVID-19 have reported progressive increases in the cumulative incidence of VTE from days 7 to 21 [36,48,59]. Middeldorp et al [59] noted the incidence of symptomatic VTE was 10% at 7 days, increasing to 21% at 14 days and 25% at 21 days. On further subgroup analysis of ICU patients, they found the 20-day cumulative incidence of VTE was 60%. Collectively, these data suggest that VTEs are less likely to occur as early sequelae of COVID-19, and patients, particularly those with severe disease, can remain at risk for an extended period.

6. COVID-19 severity classification systems

Classification systems have been proposed to stratify severity of COVID-19 disease and risk for adverse sequelae. International Society of Thrombosis and Hemostasis devel-
Table 2 – Risk factors associated with venous thrombotic events.

Factor	First author	Study type	n	Significant finding
Severe COVID	Li [40]	Retrospective multicenter	2,779	VTE
		(n = 16)		Nonsevere: OR = 2.79 (95% CI, 1.43–5.60)
				Severe: OR = 5.94 (95% CI, 3.91–10.09)
Male sex	Thondapu [50]	Retrospective single center	138	Univariate: OR = 2.64 (95% CI, 1.19–5.84); P = .02
	Motaganahalli [51]	Retrospective single center	71	Multivariate: OR = 2.37 (95% CI, 1.01–5.36); P = .048
	Xiong [55]	Meta-analysis: 12 studies	1,083	+DVT: male vs female
	Kirshblum [58]	Retrospective single center	113	68% vs 32%; P = .032
				RR = 1.10 (95% CI, 0.92–1.33) trend
				VTE: male vs female
ICU admission/ventilation b	Yu [38]	Retrospective single center	142	41.7% vs 11.1%; P = .039
				VTE: ICU vs non-ICU
				90% vs 41.3%; P < .000
				VTE: with mechanical ventilation vs no VTE
				100% vs 83.8%; P = .001
				VTE with mechanical ventilation vs no VTE with mechanical ventilation
				60% vs 37.5%; P = .049
				Cumulative VTE at 21 d: ICU vs non-ICU
				59% vs 9.2%; P = .001
				PE/VTE: ICU vs non-ICU vs PE: 37% vs 10%; P < .001
				DVT: 40% vs 12%; P = .007
				Mean difference: VTE: 1.91 y (1.58–5.40 y) older: trend
				VTE v no VTE
				(66 y v 60.5 y); OR = 1.04 (95% CI, 1.03–1.07); P = .008
				Interval days: symptoms → hospital
				VTE v no VTE
				10 d v 5 d; OR = 1.12 (95% CI, 1.05–1.20); P = .001
				BMI: DVT v no DVT
				30.3 v 28.7; P = .07
				VTE: HIV+ v HIV−
				8.7% v 0%; P = .05
Older age	Li [40]	Retrospective multicenter	312	VTE v no VTE
		(n = 16)		(66 y v 60.5 y); OR = 1.04 (95% CI, 1.03–1.07); P = .008
		Meta-analysis: 12 studies	1,083	Mean difference: VTE: 1.91 y (1.58–5.40 y) older: trend
	Xiong [55]			VTE v no VTE
				59.5 y v 67.3 y; OR = 0.64 (95% CI, 1.29–29.2); P = .021
Younger age	Koleilat [56]	Retrospective single center	135	Interval days: symptoms → hospital
	Kirshblum [58]	Retrospective single center	113	VTE v no VTE
Cancer	Li [40]	Retrospective multicenter	312	VTE v no VTE
		(n = 16)		10 d v 5 d; OR = 1.12 (95% CI, 1.05–1.20); P = .001
Interval symptom onset → hospitalization	Li [40]	Retrospective multicenter	312	Interval days: symptoms → hospital
		(n = 16)		VTE v no VTE
				10 d v 5 d; OR = 1.12 (95% CI, 1.05–1.20); P = .001
Obesity	Koleilat [56]	Retrospective single center	135	BMI: DVT v no DVT
				30.3 v 28.7; P = .07
				VTE: HIV+ v HIV−
				8.7% v 0%; P = .05

Abbreviations: BMI, body mass index; CI, confidence interval; DVT, deep vein thrombosis; ICU, intensive care unit; OR, odds ratio; PE, pulmonary embolism; RR, relative risk; VTE, venous thromboembolic event.

a Articles correlating ICU admission.
b Articles correlating need for mechanical ventilation.
First author, date	Location	Study design	COVID-19 prophylaxis	Suspected or proven VTE	Extended therapy
Tang, March 2020 [31]	China	Retrospective review	LMWH (enoxaparin 40–60 mg/d) and UFH (10,000–15,000 U/d) associated with improved survival in patients with sepsis-induced coagulopathy score >4 and d-dimer 6 × normal upper limit	—	—
Thachil, ISTH interim guidelines, March 2020 [61]	International	Consensus-based guidelines	LMWH for all hospitalized patients	—	—
Spyropolus, May 2020 [83]	International	Guideline based on literature review and expert surveys	Hospitalized non-ICU patients: UFH or LMWH (LMWH preferred) ICU patients: prophylactic to intermediate doses of LMWH (eg, enoxaparin, 40–60 mg) Adjust dose according to BMI, VTE risk scores, and/or biomarkers (eg, d-dimer) Consider multimodal (chemical + mechanical) prophylaxis	Therapeutic LMWH or UFH (prefer LMWH) while in-house, can be converted to DOAC on discharge	Extended prophylaxis (2–6 wk) after discharge with LMWH or DOAC in patients with high VTE risk and low bleeding risk For proven VTE, 3 mo anticoagulation
Barnes, May 2020 [77]	United States	Consensus-based guidelines	Standard dose prophylaxis for all hospitalized Increased dose for critically ill patients (enoxaparin 40 mg subcutaneous twice daily or 0.5 mg/kg subcutaneous twice daily; heparin 7,500 U subcutaneous 3 times daily or low-intensity infusion)	Standard therapeutic dose LMWH or UFH (prefer LMWH)	Extended post-hospital prophylaxis if a hospital has ongoing VTE risk factors
Bikdeli, June 2020 [88]	United States	Consensus-based guidelines	All acute hospitalized patients should receive standard prophylaxis unless contraindicated	Standard therapeutic anticoagulation (LWH or UFH), can be converted to DOAC on discharge	Extended prophylaxis up to 45 d after discharge in patients at high risk for VTE (ie, reduced mobility, comorbidities including cancer, d-dimer >2 × upper normal limit)
Klok, July 2020 184 patients [48]	Italy	Retrospective review	Nadroparin 2,850 IU subcutaneous per day to 5,700 IU subcutaneous twice daily	—	—

(continued on next page)
First author, date	Location	Study design	COVID-19 prophylaxis	Suspected or proven VTE	Extended therapy
Moores, CHEST guidelines, September 2020 [81]	US	Guidelines based on systematic review, expert surveys, and consensus	Acutely ill hospitalized patients Standard prophylactic dose LMWH or fondaparinux over UFH and DOAC		
Critically ill hospitalized patients Standard prophylactic dose LMWH or UFH over fondaparinux and DOAC					
Recommend against routine use of mechanical prophylaxis (unless pharmacological prophylaxis is contraindicated)					
Acutely ill hospitalized patients					
Therapeutic weight-based LMWH or UFH; can be converted to DOAC/vitamin K antagonist therapy					
Critically ill hospitalized patients					
Therapeutic weight-based LMWH or fondaparinux over UFH					
Outpatient DOAC or vitamin K antagonist therapy	Acutely ill hospitalized patients				
Therapeutic weight-based LMWH or UFH; can be converted to DOAC/vitamin K antagonist therapy					
Critically ill hospitalized patients					
Therapeutic weight-based LMWH or fondaparinux over UFH					
Outpatient DOAC or vitamin K antagonist therapy	Consider extended prophylaxis in patients at low risk of bleeding				
Anticoagulation for at least 3 mo for proximal DVT/PE					
Waite, November 2020 [76]	United States	Review article	Standard prophylactic dose LMWH or UFH for all critically ill patients		
Consider intermediate dosing in high-risk patients	—	—			
NIH, February 2021 [63]	United States	Expert panel	Standard VTE prophylaxis for hospitalized patients (Specific agent not specified)	Standard VTE treatment (specific agent not specified)	Recommend against extended prophylaxis unless high VTE risk
Zarychanski, March 2021 [89]	International	Multiplatform international randomized clinical trials (REMAP-CAP, ACTIV-4a and ATTACC)	Standard low-dose or enhanced intermediate-dose prophylaxis over therapeutic anticoagulation in ICU COVID-19 patients	—	—

(continued on next page)
First author, date	Location	Study design	COVID-19 prophylaxis	Suspected or proven VTE	Extended therapy
Condliffe, British Thoracic Society, February 2021 [90]	United Kingdom	Guidelines based on systematic review and expert consensus	Standard low-dose prophylaxis in non-ICU and enhanced intermediate dose prophylaxis in ICU patients	—	Consider extended prophylaxis (4 wk) in patients at low risk of bleeding and high VTE risk
Susen, French Society of Thrombosis & Hemostasis, June 2020 [91]	France	Expert panel consensus	BMI < 30: standard prophylactic dose LMWH (eg, enoxaparin 4,000 IU/d) or fondaparinux (2.5 mg/d) BMI < 30: intermediate dose LMWH (eg, enoxaparin 4,000–6,000 IU twice a day) or UFH 200 IU/kg/d Therapeutic dose LMWH or UFH if on ECMO, catheter thrombosis, dialysis filter thrombosis, or marked inflammatory syndrome and/or hypercoagulability (eg, fibrinogen > 8 g/L and/or D-dimers > 3 μg/mL)	—	—
American Society of Hematology Cuker, February 2021 [87]	United States	Guidelines based on systematic review and expert consensus	Standard prophylactic dose over intermediate or therapeutic dose anticoagulation for VTE prevention in COVID-19–related acute or critical illness	—	—
INSPIRATION trial March 2021 [92]	Iran	Randomized clinical trial	Standard prophylactic dose anticoagulation (enoxaparin 40 mg daily) was similar to intermediate-dose (enoxaparin,1 mg/kg daily) in terms of arterial and venous thrombosis, treatment with ECMO, and 30-d mortality	—	—

Abbreviations: BMI, body mass index; COVID-19, coronavirus disease 2019; DOAC, direct oral anticoagulants ECMO, extracorporeal membrane oxygenation; ISTH, International Society of Thrombosis and Hemostasis; LMWH, low-molecular-weight heparin; UFH, unfractionated heparin.
oped the sepsis-induced coagulopathy score to quantify severity of COVID-19 illness [61]. The scoring system evaluates the following criteria: Sequential Organ Failure Assessment, which reflects the physiologic status of multiple organ systems with scores from 1 for normal to 24 for most deranged; platelet count; and PT/international normalized ratio. A sepsis-induced coagulopathy score of 1 is assigned for results that fall within normal range and 2 for deranged values: platelet count <100 × 10^9/L; PT/international normalized ratio <1.4, and Sequential Organ Failure Assessment ≥2. Total sepsis-induced coagulopathy scores ≥4 have been used to define severe COVID-19 [62]. Other designations using alternative criteria to identify severe disease have been established. According to the National Health Commission of China, after confirmation of infection by identifying severe acute respiratory syndrome coronavirus 2 RNA, patients meeting any of the following criteria were diagnosed as having severe COVID-19: respiratory rate >30 breaths/min, arterial oxygen saturation <93% while at rest, or PaO₂/FiO₂ ≤300 mm Hg [43,62]. In the United States, the National Institutes of Health has defined severe COVID-19 as those individuals who have been diagnosed with COVID-19 via virologic testing (nucleic acid amplification or antigen test) and meet any of the following criteria: oxygen saturation <94% on room air at sea level, PaO₂/FiO₂ <300 mm Hg, respiratory rate >30 breaths/min, or lung infiltrates >50% [63].

Most recently, a large National Institutes of Health multiproject, adaptive-design trial that incorporates 3 global studies/networks (REMAP-CAP, ATTACC, and ACTIV-4A), which evaluated the use of anticoagulation for COVID-19, defined severe state patients as those admitted to an ICU and receiving organ support (ie, high-flow nasal oxygen, receiving noninvasive or invasive mechanical ventilation, or requiring vasoressor/inotrope) [64].

7. Atypical venous thrombosis in COVID-19–associated coagulopathy

Multiple studies have documented atypical VTE events with variable presentations. As such, patients presenting with unusual symptoms and found to have thrombosis should be assessed for COVID-19, even in the absence of respiratory symptoms.

Cerebral venous sinus thrombosis has been documented multiple times in patients with COVID-19. Cerebral venous sinus thrombosis is an uncommon etiology of strokes with an increased incidence among women and younger patients (compared to ischemic strokes). Presenting symptoms range from headache to neurological deficits and seizures [65,66]. Patients can also present with intracranial hemorrhage as a result of the sinus thrombosis [67]. Presence of cerebral venous sinus thrombosis does not appear to be related to the severity of the COVID-19 infection, having been described in patients with mild to severe disease. The timeline is also varied, with some patients having cerebral symptoms as their presenting symptoms for COVID-19 and others developing neurologic symptoms up to 2 weeks after onset of other COVID symptoms.

Colicky abdominal pain in patients with COVID-19 may suggest VTE. Splanchnic vein thrombosis has also been described in COVID-19–positive patients [68]. Most patients diagnosed with splanchic vein thrombosis presented with colicky abdominal pain that improved with antiocoagulation, although presentation with gastrointestinal bleeding has also been described [66,69]. Most commonly, the portal vein [70] is involved, but involvement of other splanchic veins have been reported [71,72]. Ovarian and renal vein thromboses have also been described in patients presenting with abdominal pain [55–57,73–75].

8. Prophylaxis, treatment and management, and outcomes of VTE secondary to COVID-19

Heightened clinical awareness of risk for VTE in patients with COVID-19 in conjunction with serial laboratory monitoring of coagulation and inflammatory factors can lead to timely identification. The threshold to obtain definitive diagnostic studies, such as ultrasonography for DVT and computed tomography angiography or ventilation/perfusion scan for PE, should be low. However, routine screening of all patients with the COVID-19 diagnosis has not been recommended [76] because prevalence of asymptomatic DVT in those with COVID-19 is low. Rather, clinical suspicion should guide imaging decisions [77]. Imaging studies might not be feasible in all cases, particularly those with severe COVID disease. Treatment should not be delayed if there is high clinical suspicion, as this can lead to poorer outcomes. Lippi et al suggested a direct association between COVID-19–associated coagulopathy and poor outcomes [78]. Moreover, the association between VTEs and mortality has been well documented [59,79], with rates reaching 39.1% in those patients with any VTE compared with 26% in those without [79]. In our own study, we found that patients with venous and/or arterial thrombotic events were more likely to require ICU admission (91% v 42%; P < .001), require mechanical ventilation (68% v 23%; P < .001), have longer hospital stays (30 v 12 days; P < .001), have higher incidence of sepsis (55% v 34%; P = .048), have more multisystem failure (46% v 15%; P < .001), and have higher mortality (55% v 23%; P = .001).

The optimal VTE prophylaxis and treatment strategy for patients with COVID-19 remain unclear due to lack of high-quality evidence. Issues yet to be addressed include the optimal agent for prophylaxis, level of intensify of prophylactic medication dosing, and time interval for treatment to continue. Aggressive prophylactic and treatment approaches, especially in critically ill patients have been advocated, yet data to support strategies beyond standard VTE management are still under investigation. Current recommendations suggest that chemical prophylaxis is unnecessary for patients with COVID-19 who are not hospitalized [63,77,80,81]. In contrast, all hospitalized patients with COVID-19 should be treated, at minimum, with a prophylactic dose of either low-molecular-weight heparin (LMWH) or unfractionated heparin (UFH) in the absence of any contraindications (eg, bleeding or platelets <25,000/µL) [61,62]. A potential benefit of heparin medications is their anti-inflammatory properties [82]. LMWH has been advocated over UFH because of decreasing patient interaction with medical staff, and therefore decreased risk of exposure.
Prophylaxis recommendations for specific subgroups have also been addressed. LMWH or UFH can be used for pregnant patients with COVID-19 [64,77]. When treating obese patients, dose adjustment based on body mass index will be necessary [63]. Mechanical thromboprophylaxis should be considered if anticoagulation is contraindicated [81,83]. Alternative agents, such as fondaparinux, can be used in patients with history of heparin-induced thrombocytopenia [62,63,84,85].

The role of direct oral anticoagulants (DOACs), such as pixaban, rivaroxaban, edoxaban, and dabigatran, in treatment of VTE in COVID-19 is unclear. Moreover, the potential for significant drug interactions between DOACs and other medications used to treat COVID-19, such as dexamethasone, sarilumab, and tocilizumab, is concerning [64,86]. Moores et al [81] suggested that DOACs can be beneficial in treating outpatient COVID-19 patients who have developed VTE. Use of antiplatelet agents for VTE prevention is also being studied [87].

Determination for standard prophylaxis versus intermediate-level prophylaxis or full therapeutic anticoagulation is unclear. Many strategies have been evaluated. Cuker et al [87] has provided a detailed review of the various agents along with dosing recommendations. Standard prophylactic dosing levels include enoxaparin 30 to 40 mg daily or twice daily, dependent on body mass index and creatinine clearance, or UFH ranges from 5,000 U twice daily/three times daily to 7,500 U twice daily based on body mass index. Intermediate dosing includes enoxaparin 0.5 mg/kg twice daily or 30 to 60 mg twice daily, dependent on creatinine clearance and body mass index or UFH 7,500 U three times daily. Therapeutic dosing includes enoxaparin 1 mg/kg twice daily or 1.5 mg/kg daily, or UFH dosed to a target activated partial thromboplastin time or anti-Xa levels [87]. A summary of prophylaxis recommendations from multiple current studies is provided in Table 3 [31,48,61,63,76,77,81,83,87–92]. Many institutional protocols have incorporated therapeutic-dose anticoagulation with weight-based dosing in critically ill patients, based on an early observational study by Lemos et al [93] showing decreased ventilatory requirement and improved survival compared to prophylactic dose anticoagulation. However, other studies have shown no difference in outcomes [37]. Importantly, there has been recent concern...
about increased mortality with therapeutic anticoagulation [64]. Preliminary data from a multipлатform trial (REMAP-CAP, ATTACC, and ACTIV-4A) suggested that for patients with severe COVID-19 infections (requiring high-flow nasal oxygen, invasive or noninvasive mechanical ventilation, vasopressor therapy, or extracorporeal membrane oxygenation support), empiric therapeutic anticoagulation in the absence of VTE was associated with poorer outcomes, including higher mortality [64]. In contrast, moderately ill patients, that is, those requiring hospitalization but not ICU-level care, were found to have better outcomes with therapeutic compared with prophylactic dose anticoagulation. Final results of these trials are still pending, and the interim data should be interpreted cautiously [64].

Hospitalized patients with COVID-19 remain at increased risk after discharge, especially if nonambulatory, and several studies suggest continued prophylaxis up to 4 weeks for those, with additional risk factors with prophylactic doses of LMWH [64]. Outpatient management of VTE in patients with COVID-19 should include anticoagulation for 3 months, similar to other provoked events [46,85]. Anticoagulants typically include low-molecular-weight heparin or DOAC medications.

Currently, there are more than 100 ongoing clinical studies that assess various VTE issues in COVID-19, including best medications for prophylaxis, dosing levels for prophylaxis, and extended therapy, as well as other issues. A summary of current prospective, randomized studies is provided in Supplementary Table 1. Details can be found at ClinicalTrials.gov. Talasaz et al [94] have provided a thorough review as well.

9. Advanced therapies

Interventions such as venous thrombectomy and thrombolysis for severely symptomatic DVT should be weighed against the risk of bleeding and generally reserved for limb salvage purposes. In the absence of severe limb-threatening VTE, invasive interventions should be avoided during the acute phase of the disease.

There is a paucity of data on the use of advanced therapies, such as systemic thrombolysis, catheter-directed therapies, surgical embolectomy, and extracorporeal membrane oxygenation to treat VTE in these patients. The CHEST guidelines recommend systemic thrombolysis only in patients with massive or high-risk PE, especially if confirmed with imaging for routine VTE in non–COVID-19 patients. Thrombolytic therapy can also be considered in select patients without imaging should they have strong predilection to develop hypotension or cardiorespiratory compromise due to PE, that is, progressive worsening tachycardia, decreased systolic blood pressure, worsening hypoxemia, severe right ventricular dysfunction, or signs of shock [81,85]. The risk of bleeding needs to be strongly weighed when considering thrombolytic therapy in these patients. Bleeding risk can be increased in patients critically ill with COVID-19 due to high incidence of disseminated intravascular coagulation, alveolar damage and hemorrhage, and renal dysfunction [96,97]. Studies have shown variable rates of bleeding ranging from 2.7% to 21%, the majority in the group of patients on anticoagulation [20,88]. A meta-analysis including 48 studies reported a pooled incidence of 7.8% (95% CI, 2.6%–15.3%) for bleeding and 3.9% (95% CI, 1.2%–7.9%) for major bleeding in patients with COVID-19 [99]. Given the complexity of these patients, a multidisciplinary team approach in treating them, particularly when advanced therapies are considered, is ideal. Such teams exist in many institutions as a PE response team. Kwok et al [100] reported their experience with PE response teams in New York hospitals during the first phase of COVID-19 and noted increases in PE and activations of the PE response team (26.8% v 64.4%; P < .001). Management of these patients was similar to the historical control, with the majority treated with anticoagulation alone (89.5% v 86.4%; P = .70). Figure 2 describes an algorithm to diagnose and treat PE in patients with COVID-19 [101].

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplemental material associated with this article can be found, in the online version, at doi:10.1053/j.semvascsur.2021.06.002.

REFERENCES

[1] Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA 2020;324:799–801.
[2] Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis 2020;50:72–81.
[3] Malias MB, Naazie IN, Elayed N, et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EClinicalMedicine 2020;29:100639.
[4] Jackson SP, Darbouset R, Schoenwaelder SM. Thrombin inflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019;133:906–18.
[5] Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20.
[6] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10233):497–506.
[7] Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19-related systemic thrombosis? Circulation 2020;141:1739–41.
[8] Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395(10234):1417–18.
[9] Zores F, Rebeaud ME. COVID and the renin-angiotensin system: are hypertension or its treatments deleterious? Front Cardiovasc Med 2020;7:71.
[10] Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020;63:364–74.
[11] Itoyama S, Keicho N, Quy T, et al. ACE1 polymorphism and progression of SARS. Biochem Biophys Res Commun 2004;323:1124–9.

[12] Huang C, Wang Y, Li P, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet 2020;395(10223):497–506.

[13] Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995;95:995–1001.

[14] Nakamura S, Nakamura I, Ma L, et al. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 2000;58:251–9.

[15] Esmo CT. Inflammation and thrombosis. J Thromb Haemost 2003;1:1343–8.

[16] Merad M, Martin JC. Author correction: pathological inflammation in patients with COVID-19: a key role for monocyes and macrophages. Nat Rev Immunol 2020;20:448.

[17] Aragüaraz GA, Palmeira JF, Aragüaraz ER. Phosphatidylserine inside cells, a possible underlying mechanism in the inflammation and coagulation abnormalities of COVID-19. Cell Commun Signal 2020;18:190.

[18] Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020;26:842–4.

[19] Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circulation Research 2016;118:1392–408.

[20] Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020;5(11).

[21] Abou-Ismail MY, Diamond A, Kapoor S, et al. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res 2020;194:101–15.

[22] Barnes BJ, Adrover JM, Baxter-Stolzfas A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020;217(6):e20200562.

[23] Gan R, Rosoman NF, Henshaw DJE, et al. COVID-19 as a viral functional ACE2 deficiency disorder with ACE2 related multi-organ disease. Med Hypotheses 2020;144:110024.

[24] Zhang X, Kimura Y, Fang C, et al. Regulation of Toll-like receptor-mediated inflammatory response in vivo. Blood 2007;110:228–36.

[25] Chauhan AJ, Wiffen LJ, Brown TP. A response of collateral, coagulation and inflammation pathways. J Thromb Haemost 2020;18:2110–17.

[26] Ramlial V, Thangaraj PM, Meydan C, et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med 2020;26:1609–15.

[27] Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endotheliitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020;383:120–8.

[28] Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020;181:905–13. e907.

[29] Helds J, Taucuard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020;46:1089–98.

[30] Escher R, Breakey N, Lämmlle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020;190:62.

[31] Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:944–7.

[32] Fogarty H, Townsend L, Ni Chealalgh C, et al. COVID19 coagulopathy in Caucasian patients. Br J Haematol 2020;189:1044–9.

[33] Marongiu F, Grandone E, Barcellona D. Pulmonary thrombosis in 2019-nCoV pneumonia? J Thromb Haemost 2020;18:1511–13.

[34] Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020;22(9):207.

[35] Choi JJ, Wehmeyer GT, Li H A, et al. D-dimer cut-off points and risk of venous thromboembolism in adult hospitalized patients with COVID-19. Thromb Res 2020;196:318–21.

[36] Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020;18:1421–4.

[37] Al-Samkari H, Karp Leaf RS, Dziuk WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020;136:489–500.

[38] Yu Y, Tu J, Lei B, et al. Incidence and risk factors of deep vein thrombosis in hospitalized COVID-19 patients. Clin Appl Thromb Hemost 2020;26:1076029620953217.

[39] Trigoni RA, Holt DB, Yuan R, et al. Incidence of venous thromboembolism in critically ill coronavirus disease 2019 patients receiving prophylactic anticoagulation. Crit Care Med 2020;48:e805–8.

[40] Li JY, Wang HF, Yin P, et al. Clinical characteristics and risk factors for symptomatic venous thromboembolism in hospitalized COVID-19 patients: a multicenter retrospective study. J Thromb Haemost 2021;19:1038–48.

[41] Helms J, Taucuard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020;46:1088–98.

[42] Dujardin RWG, Hilderink BN, Haksteen WE, et al. Biomarkers for the prediction of venous thromboembolism in critically ill COVID-19 patients. Thromb Res 2020;196:308–12.

[43] Léonard-Lorant I, Delabranche X, Séverac F, et al. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-dimer levels. Radiology 2020;296:E189–91.

[44] Ren B, Yan F, Deng Z, et al. extremely high incidence of lower extremity deep venous thrombosis in 48 patients with severe COVID-19 in Wuhan. Circulation 2020;142:181–3.

[45] Santoliquido A, Porfida A, Nesci A, et al. Incidence of deep vein thrombosis among non-ICU patients hospitalized for COVID-19 despite pharmacological thromboprophylaxis. J Thromb Haemost 2020;18:2358–63.

[46] Cavagna E, Muratore F, Ferrari F. Pulmonary thromboembolism in COVID-19: venous thromboembolism or arterial thrombosis? Radiol Cardiothorac Imaging 2020;2(4): e200289.

[47] Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboembolastography findings and other parameters of hemostasis. J Thromb Haemost 2020;18:1738–42.

[48] Klokc FA, Kruip M, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res 2020;191:148–50.

[49] Ieraudi AM, Gaiazzzi N, Tuttolomondo D, et al. Deep vein thrombosis in COVID-19 patients in general wards: prevalence and association with clinical and laboratory variables. Radiol Med 2021;126:722–3.

[50] Thondapu V, Montes D, Rosovsky R, et al. Venous thrombosis, thromboembolism, biomarkers of inflammation, and
coagulation in coronavirus disease 2019. J Vasc Surg Venous Lymphat Disord 2020;9:335–44. e4.

[51] Motaganahalli RL, Kapoor R, Timsin LR, et al. Clinical and laboratory characteristics of patients with novel coronavirus disease-2019 infection and deep vein thrombosis. J Vasc Surg Lymphat Disord 2021;9:605–14. e2.

[52] Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: a systematic review and meta-analysis. Int J Infect Dis 2020;99:47–56.

[53] Chaudhary R, Blinden KP, Kreutz RP, et al. Race-related disparities in COVID-19 thrombotic outcomes: Beyond social and economic explanations. Commentary. EClinicalMedicine 2020;29:100647.

[54] Friedman GH, Boyer EW, Nzarain RM, et al. coagulation status and venous thromboembolism risk in African Americans: a potential risk factor in COVID-19. Clin Appl Thromb Hemost 2020;26:107629620943671.

[55] Xiong X, Chi J, Gao Q. Prevalence and risk factors of thrombotic events on patients with COVID-19: a systematic review and meta-analysis. Thromb J 2021;19:32.

[56] Kolelati G, Galeta, Chosinski K, et al. Clinical characteristics of acute lower extremity deep vein thrombosis diagnosed by duplex in patients hospitalized for coronavirus disease 2019. J Vasc Surg Venous Lymphat Disord 2021;9:36–46.

[57] Tran HK, Klatsky AL. Lower risk of venous thromboembolism in multiple Asian ethnic groups. Prev Med Rep 2019;13:268–9.

[58] Kirshblum SC, DeLauter G, Eren F, et al. Screening for deep vein thrombosis in persons with COVID-19 upon admission to an inpatient rehabilitation hospital. Am J Phys Med Rehabil 2021;100:419–23.

[59] Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020;18:1995–2002.

[60] Zhang R, Ni L, Di X, et al. Systematic review and meta-analysis of the prevalence of venous thromboembolic events in novel coronavirus disease-2019 patients. J Vasc Surg Venous Lymphat Disord 2021;5:289–98.e285.

[61] Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020;18:1023–6.

[62] Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094–9.

[63] COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Accessed 5/5/21. Available at https://www.covid19treatmentguidelines.nih.gov/.

[64] ATTAC, ACTIV-4a, & REMAP-CAP Multiform RCT. Results of interim analysis. National Heart, Lung, and Blood Institute. Accessed 5/5/21. Available at https://nhbi-connects.org/documents/mpRCT%20Interim%20Presentation.pdf.

[65] Dakay K, Cooper J, Bloombfeld J, et al. Cerebral venous sinus thrombosis in COVID-19 infection: a case series and review of the literature. J Stroke Cerebrovasc Dis 2021;30:105434.

[66] Tu TM, Goh C, Tan YK, et al. Cerebral venous thrombosis in patients with COVID-19 infection: a case series and systematic review. J Stroke Cerebrovasc Dis 2020;29(12):105379.

[67] Argoró R, Cirelli C, Sgrecca A, et al. Cerebral hemorrhage related to vein thrombosis in Covid-19 patients in different Italian hospitals: viewpoint for clinical and imaging implications. J Neurol Sci 2020;416:117023.

[68] Singh B, Kaur P, Maroules M. Splanchnic vein thrombosis in COVID-19: a review of literature. Dig Liver Dis 2020;52:1407–9.

[69] Alemán W, Cevallos LC. Subacute mesenteric venous thrombosis secondary to COVID-19: a late thrombotic complication in a nonsevere patient. Radiol Case Rep 2021;16:899–902.

[70] Ofosu A, Ramai D, Novikov A, et al. Portal vein thrombosis in a patient with COVID-19. Am J Gastroenterol 2020;115:1545–6.

[71] Goodfellow M, Courtney M, Upadhyay M, et al. Mesenteric venous thrombosis due to coronavirus in a post Roux-en-Y gastric bypass patient: a case report. Obes Surg 2021;31:2308–10.

[72] Carmon Filho A, Cunha BDS. Inferior mesenteric vein thrombosis and COVID-19. Rev Soc Bras Med Trop 2020;53:e20200412.

[73] Mohammadi S, Abozarijou M, Hesam Shariati N, et al. Ovarian vein thrombosis after coronavirus disease (COVID-19) infection in a pregnant woman: case report. J Thromb Thrombolysis 2020;50:604–7.

[74] Veyseh M, Pophali P, Jayarangiah A, et al. Left gonadal vein thrombosis in a patient with COVID-19-associated coagulopathy. BMJ Case Rep 2020;13(9):e236786.

[75] Mui LW, Lau JF, Lee HK. Thromboembolic complications of COVID-19. Emerg Radiol 2021;28:423–9.

[76] Waite Alicia AC. Hypercoagulopathy in severe COVID 19: implications for acute care. Thromb Haemost 2020;120:1654–67.

[77] Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis 2020;50:72–81.

[78] Lippi G. Coronavirus disease 2019-associated coagulopathy. Mayo Clin Proc 2021;96:203–17.

[79] Daugherty MM. COVID-19 associated coagulopathy: thrombosis, hemorrhage and mortality rates with an escalated-dose thromboprophylaxis strategy. Thromb Res 2020;196:483–5.

[80] Hashemi A, Madhavan MV, Bikdeli B. Pharmacotherapy for prevention and management of thrombosis in COVID-19. Semin Thromb Hemost 2020;46:789–95.

[81] Moores LK, Trichtler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST Guideline and Expert Panel Report. Chest 2020;158:1143–63.

[82] Peterucha Tj, Libby P, Goldhaber SZ. More than an anticoagulant: do heparins have direct anti-inflammatory effects? Thromb Haemost 2017;117:437–44.

[83] Syppopoulos AC, Levy JH, Ageno W, et al. Scientific and Standardization Committee communication: clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020;18:1859–65.

[84] Dobesh PP, Trujillo TC. Coagulopathy, venous thromboembolism, and anticoagulation in patients with COVID-19. Pharmacotherapy 2020;40:1130–51.

[85] Kreuziger LB, Agnes YYL, Garcia D, et al. COVID-19 and VTE/anticoagulation: frequently asked questions. American Society of Hematology. Accessed 5/5/21. Available at: https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation.

[86] Testa S, Frandoni P, Paoletti O, et al. Direct oral anticoagulant plasma levels’ striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents: the Cremona experience. J Thromb Haemost 2020;18:1320–3.

[87] Cuker A, Tseng EK, Niewlaat R, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv 2021;5:872–88.

[88] Bikdeli B, Madhavan MV, Jimenez D, et al. Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESMV, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function (2020). COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. JACC State-of-the-Art Review. J Am Coll Cardiol 2020;75:2950–73.
[89] The REMAP-CAP, ACTIV-4a, ATTACC Investigators, Zarychanski R. Therapeutic anticoagulation in critically ill patients with Covid-19—preliminary report. Preprint. Posted online March 12, 2021. MedRxiv 2021.03.10.21252749. doi:10.1101/2021.03.10.21252749

[90] Condliffe R, Bunclark K, Hurdman J. Guidance on venous thromboembolic disease in patients with COVID-19. British Thoracic Society; May 8, 2020. Accessed Available at: https://www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/bts-guidance-on-venous-thromboembolic-disease-in-patients-with-covid-19/.

[91] Susen S, Tacquard CA, Godon A, et al. Prevention of thrombotic risk in hospitalized patients with COVID-19 and hemostasis monitoring. Crit Care 2020;24:364.

[92] Sadeghipour P, Talasaz AH, et al., INSPIRATION Investigators Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the intensive care unit: the INSPIRATION randomized clinical trial. JAMA 2021;325:1620–1630.

[93] Lemos ACB, Alexandre do Espirito Santo D, Cabetti Salvetti M, et al. Therapeutic versus prophylactic anticoagulation for severe COVID-19: a randomized phase II clinical trial (HESACOVID). Thromb Res 2020;196:359–66.

[94] Talasaz AH, Sadeghipour P, Kakavand H, et al. Recent randomized trials of antithrombotic therapy for patients with COVID-19: JACC state-of-the-art review. J Am Coll Cardiol 2021;77:1903–21.

[95] Rivera-Lebron B, McDaniel M, Ahrar K, et al. Diagnosis, treatment and follow up of acute pulmonary embolism: consensus practice from the PERT consortium. Clin Appl Thromb Hemost 2019;25:1076029619853037.

[96] Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol 2020;33:1007–14.

[97] Zhou X, Cheng Z, Luo L, et al. Incidence and impact of disseminated intravascular coagulation in COVID-19 a systematic review and meta-analysis. Thromb Res 2021;201:23–9.

[98] Fraisse M, Logre E, Pajot O, et al. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Crit Care 2020;24:275.

[99] Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Chest 2021;159:1182–96.

[100] Kwok B, Brosnahan SB, Amoroso NE, et al. Pulmonary embolism response team activation during the COVID-19 pandemic in a New York City academic hospital: a retrospective cohort analysis. J Thromb Thrombolysis 2021;51:330–8.

[101] Rosovsky RP, Grodzin C, Channick R, et al. PERT Consortium. Diagnosis and treatment of pulmonary embolism during the coronavirus disease 2019 pandemic: a position paper from the national PERT Consortium. Chest 2020;158:2590–601.