Justification of design-mode parameters of the chopper soaked soybean grain

Vladimir Ju Frolov, Georgy G Klasner and Vladislav F Kremyansky
Kuban State Agrarian University, 13 Kalinina str., Krasnodar, 350044, Russia

E-mail: egor.klasner.91@mail.ru

Abstract: The most efficient way to prepare the leguminous plants’ seeds for the livestock animal food is making of the protein emulsion. There are a lot of ways of obtaining the protein emulsion. However, process operations provide for the use of large-scale, energy-intensive and expensive machines, which often cannot be afforded by the small enterprises producing more than 50% of animal and poultry products today. This way, it is necessary to develop a universal technology of making the protein emulsion applied in small holdings. The research objective is development of a waste-free technology of making the protein emulsion for the animal food, which is implemented by means of one facility. Proceeding from patent search for technologies and designs to make a protein emulsion we offered a waste-free technology, which makes it possible to unite a whole number of technological operations (chopping, extraction, division of suspension into fractions) into one operation through using a new facility, the RF Patent No. 2614777. Theoretical and experimental research of processes of the grain chopping and the soya protein extraction into emulsion was described. The main design and standard parameters of the device developed were substantiated theoretically and experimentally.

1. Introduction
The soya is one of the most nutritious agricultural crops. The protein meal, oilcake, full fat soya flour, soya milk, fodder phosphatides, stock feed, straw, chaff and herbage are used for the animal food. Its seeds contain up to 26% of fat, and about 40% of protein, 34.9% of carbohydrates, and its fodder value is 1.45 fodder units in 1 kg of the grain [6]. In addition, the soya protein is rich in amino acids favoring the protein digestion [12]. When such substances are fed to animals, they significantly increase the rations’ biological value and assure the productivity increase.

Although the soya beans have high nutritive value, they cannot be fed when they are raw because they contain the anti-nutritional biologically active substances, which can give rise to allergic, endocrine and rachitic disorders [11, 18]. Those anti-nutritional substances content can be reduced to safe concentration by means of processing the grain into the high-protein fodders with the thermal treatment.

The most efficient way of using the soya seeds for the livestock animal food is to make the soya milk, which is close to the cow milk in terms of its features [3, 9]. The milk is used to feed calves and piglets [28], which makes it possible to save much unskimmed milk.

The soya milk is also used to feed the milk cattle. In this case high-carbohydrate additives may not be used. The soya milk application makes it possible to increase the milk yields and fat content, especially in early lactation. The fat content increases by 1–2 % [8], the additional production of 1.5-3 liters is stimulated in the first three months of lactation [13]. Treacle is often added to the soya milk to improve the digestion and nutrient availability and, therefore, to make the lactogenesis more intense [1, 10, 23, 34].
There are a lot of ways and facilities making it possible to obtain the soya milk. In this case, the main operations of making the soya milk are as follows: chopping, extraction, division into liquid and solid fractions, thermal treatment, cooling and storage. All of that makes it necessary to acquire the whole complex of large-scale, energy-intensive and expensive machines, which often cannot be afforded by the small enterprises producing more than 50% of animal and poultry products today [12].

Scientific research of the facilities’ operational process to chop different crops, which was performed by A.A. Artyushin, A.R. Aleshkin, R.V. Solntsev, I.Z. Barfakov, V.G. Gopka, B.I. Vagin, G.M. Kukta, L.M. Kytsyn, S.M. Dotsenko, V.Yu. Frolov, A.V. Burmaga and others [1, 2, 21, 29, 30], became determinative when developing and improving the existing machinery. It is noted that there is no universal equipment to prepare for the protein food feeding in medium and small livestock businesses [27].

This way, it is necessary to develop a universal facility, which would be able to combine such technological operations as chopping, protein extraction and division of suspension into fractions.

2. Materials and methods
Analysis of production lines to produce the soya milk showed [7, 11, 18, 33] that the most intense protein yield during extraction takes place during the use of the chopped dry finer soya grain (the 0.35-0.5 mm flour). However, the process energy consumption is quite high. So, it is unacceptable to use the technologies based on chopping of the dry soya grain into the flour in small farms because of high energy consumption and metal consumption of the equipment with rather low consumption of the fodder product. In view of the above, the most rational production line schemes in the farm businesses are the schemes, in which the soaked soya grain is chopped, which makes it possible to lower the power inputs because the latter becomes less firm.

As a result of the exploratory research, we offer a waste-free technology of making the high-quality fodders on the basis of the soya grain, which includes a fundamentally new chopper of the soaked soya grain, which makes it possible to obtain the soya milk and high-protein fodder base – okara as a processing product (figure 1).

Figure 1. Technology of making the soya milk and protein base for concentrated fodders.

Technology of producing the soya protein is as follows [25, 26]. The soya grain is preliminarily soaked for 8 hours, then it is fed simultaneously with water at the ratio of 1:10 to the processing chamber, in which the latter is chopped with simultaneous division into the insoluble soya residue and suspension.

Suspension is accumulated to the inactivator vessel, where it is treated thermally with the steam generator. The inactivated suspension is coagulated with the CaCl₂ solution, it is divided into the whey
and the soya protein.

Apart from that, in prospect it is possible to obtain, according to the technology developed, the soya processing products (the dry soya milk, soya protein, soya curd “tofu”) to use them in the food manufacturing industry and as food additives [19, 20].

The main element of the developed technology is the chopper of the soaked grain (figure 2), whose technical result is the improvement of chopping quality and enhancement of functional capabilities through obtaining the fine milling of the products, reduction of energy consumption of the operating process by means of chopping of the soaked grain.

![Figure 2. General view of the chopper of the soaked soya grain.](image)

The technical novelty of the offered device is confirmed by the RF patents for invention No. 2614777 dated 29.03.2017 “Device for chopping the soaked leguminous plants grain”, No. 2621274 dated 01.06.2017 “Device for obtainment of the protein suspension out of the leguminous plants grain”.

As a result of the analysis of the operating process of similar facilities, the main analytical dependences were obtained [22] on substantiation of the design and standard parameters of the chopper developed.

The chopper’s productivity or throughput capacity can be determined from the formula of B.P. Goryachkin[15] with preliminary determination of quantity of the product, which simultaneously covers the whole surface of the chopping disk (G) and the soaking time (T):

$$Q_{it} = g_0 \frac{\pi R^2 (k^2 - 1)}{k S_r}.$$

(1)

where g_0 – the grain load, kg/m²;
$
u_r$ – velocity of the particle movement along the furrow, m/s;
R – rotating disk radius, m;
k – disk constant, k=R/r;
S_r – length of the arc along which the chopped particle moves, m.

Velocity of rotation of the lower disk ν_r is determined from the formula:

$$\nu_r = \sqrt{r^2 \omega^2 - 2r \left(g + \frac{G}{m} \right) S_r},$$

(2)

where r – distance from the disk center to the grain, m;
ω – rotational velocity of the grain, rad/s;
m – grain mass, kg;
G – force of the upper disk pressure on the grain;
g – acceleration of gravity, m/s².

The expression describing the length of arc S_r is as follows:

$$S_r = \frac{r}{a} \sqrt{1 + a^2} + C_2,$$

(3)

where $a = r/\omega = \text{const}$;
C₂ – arbitrary constant.

The capacity required to chop the soaked soya grain is determined as:

\[N_u = g_0 \frac{\pi R^2 (k^2 - 1)}{k^3 S_g} \]

with account taken of the expression (2 and 3) we obtain:

\[N_u = \beta_0 \frac{\pi R^2 (k^2 - 1)}{k^3} \left(\frac{r^2 \omega^2 - 2f (g + \frac{C}{m}) \frac{r^3}{a^2} / 1 + \alpha^2 + C_2}{k^3 \frac{r^3}{a^2} / 1 + \alpha^2 + C_2} \right) \] (5)

When analyzing the expression (5) one can conclude that the power inputs for the chopping process of the soaked soya grain depend on its design and standard parameters, the determining influence is exerted by the velocity of rotation of disk \(\omega_r \) and time of chopping of the soya grain, which depends on the path length. The analytical dependences, which were obtained as a result of the theoretical research, express the functional connection between the design and standard indexes influencing the grain chopping process. Those dependences make it possible to reveal the qualitative and quantitative sides of influence of the said factors with some prerequisites and assumptions. So, the theoretical conclusions about significance of influence of some factors upon the soya grain chopping process with subsequent extraction of the protein require the experimental verification. In the experiments on researching the soya grain chopping process with subsequent extraction of the protein it is necessary to verify the theoretical prerequisites and to specify the initial data required to select the optimal design and standard parameters of the chopper of the soaked soya grain.

3. Results and discussions

The experimental research was conducted on the Barra soya variety. 6 experimental samples with 10 grains in each sample were selected out of the whole batch of the soya grain. The grain’s average length made up 6 mm. The mass of 10 grains was 1.767, the volume of 10 grains made up 1.4 ml., when the grain’s absolute humidity was 10%. The experiment was carried out with the room temperature (20–22 °C). According to the obtained values the graph of dependence of increase in mass (m), volume (v) and length (L) of the grain on the soaking time was constructed (figure 3) [14, 24].

![Figure 3. Dependence of increase in mass (m), volume (v) and length (L) of grain on soaking time.](image)

Analysis of the graph (figure 3) showed that the optimal time (T) of the soya grain soaking makes up 6–7 hours (the knock point on figure 3). During the 6-hour soaking the grain’s length, mass and volume make up \(L = 13\) mm, \(m = 0.36\) gr., \(V = 0.34 \times 10^{-6}\) m³. Further increase in time of the soya grain soaking is inefficient, since when the grain is soaked for 24 hours, \(m = 0.434\) gr., \(V = 0.38 \times 10^{-6}\) m³, and no change of the geometrical dimensions of soya is changed. When knowing the change of the grain’s mass and volume depending on the soaking time, we can calculate the change of the grain density (figure 4) [5]. As the soaking time increases up to 7 hours, the grain density is lowered and makes up \(\rho = 1.088\) g/ml. It is not reasonable to continue increasing the soaking time, since later on the density reduction becomes
somewhat stable.

Table 1. Change of the grain density resulting from time of keeping it in water.

Index	Time of the soya grain soaking in water T, h	0	1	2	3	4	5	6	7	24
m, gr		0.18	0.28	0.317	0.32	0.34	0.34	0.36	0.37	0.43
V, ml		0.14	0.24	0.26	0.3	0.32	0.34	0.34	0.34	0.38
ρ, Gr/ml		1.26	1.14	1.22	1.07	1.12	1.08	1.06	1.08	1.14

While optimizing the operating process of the chopper of the soaked grain [31,32], the quality of the finished product as well as the technological parameters of the process of obtaining the soya milk and curd were studied. While processing the experiment results the dependences of the suspense water duty with the extracting agent temperature of 55–60°C were constructed (figure 5).

Figure 4. Graph of dependence of density change on the soaking time.

Figure 5. Dependence of protein yield into the G extracting agent on water duty η.

Dependence of the protein yield into the extract is based on physical and chemical properties of solving the high-molecular organic compounds in the offered technology, the extracting agent is potable water.

Analysis of the graph (figure 5) makes it possible to conclude that the extracting agent is actively saturated to the water duty value of 1:10, and when the water duty continuous to increase, the saturation becomes somewhat stable.
The rotation frequency of the moving disk (figure 7) and the clearance between it and the fixed disk (figure 8) influences the protein yield significantly.

![Figure 7](image1) ![Figure 8](image2)

Figure 7. Dependence of the protein yield into the extracting agent G and the energy consumption N on the rotation frequency of the moving disk of the chopper n.

Figure 8. Dependence of the protein yield into the extracting agent G and the energy consumption N on the clearance between the moving and fixed disk h of the chopper.

The analysis of dependence in figure 7 makes it clear that the lower limit of the rotation frequency of the moving disk of the chopper, should be not less than 2.4×10^3 min$^{-1}$. Otherwise, because of low frequency of the disk rotation, the soaked grain is not chopped sufficiently finely, which leads to incomplete protein extraction.

However, as the rotation frequency of the moving disk grows, the power inputs increase too. When the rotation frequency is 2×10^3 min$^{-1}$, the power inputs are 0.016 kW h/kg, and when the rotation frequency is 2.6×10^3 min$^{-1}$ the power inputs are 0.0168 kW h/kg. The foregoing shows that as the rotation frequency of the moving disk grows, the specific power inputs increase but just insignificantly, so $2.5 \times 10^3 - 2.6 \times 10^3$ мин$^{-1}$ should be considered as the rational rotation frequency of the moving disk.

As a result of the experimental research one can see strong influence of the value of the clearance between the moving disk and fixed disk of the chopper upon the protein extraction (figure 8). So, as the clearance increases from 3 to 5 mm, the protein yield is reduced dramatically from 23.3×10^{-3} to 18.2×10^{-3} kg. At the same time, as the clearance grows, the power inputs are reduced.

This is due to decrease in the fineness degree of the soaked grain, which, in its turn, leads to decrease in the power inputs and reduction of the square of contact of the milling particle with the extracting agent. However, with the 3mm clearance the process energy consumption makes up 0.0165 kW h/kg, and with the 5mm clearance – 0.0186 kW h/kg. So, the 3mm clearance should be considered as rational.

![Figure 9](image3)

Figure 9. Influence of the rotation frequency of the moving disk n upon the chopper’s productivity Q — experimental; 2 — theoretical.
4. The main results and conclusions
The performed analysis of the ways, technologies and facilities to make the high-quality fodders with the use of the soya grain, made it possible to conclude that they are inefficient in the small holdings, small farms, since they are metal-intensive and energy-intensive. The analysis also made it possible to reveal a promising area of improving the technologies and the mechanical means of making the high-protein fodders.

There was offered a rational waste-free technology of making the high-quality and high-protein fodders on the basis of the soya grain, which includes a fundamentally new chopper of the soaked grain, whose main elements are as follows: the loading neck, two abrasive disks (one disk is fixed, and the other one is marked with curved furrows), the sieve making it possible to obtain the soya milk and the high-protein base (okara) as a product.

The analytical dependences are obtained to determine the productivity and the capacity, which make it possible to optimize the rotation frequency of the lower disk $2.6 \times 10^3 \text{ min}^{-1}$ and the 3 mm clearance between the moving disk and fixed disk.

The obtained experimental dependences made it possible to select the rational values of the water duty $\eta = 1:10$; the extracting agent temperature $t = 55–60^\circ\text{C}$. With those values, the process energy consumption is $N = 0.0165 \text{ kV-H/kg}$, and the productivity is $Q = 0.24 \text{ kg/s}$.

Application of the fodder soya milk as a protein additive to the fodders for various groups of animals assures [4]:

- full or partial replacement of the unskimmed milk, the skim milk in milking the young cattle and pigs;
- to optimize the time of fattening the animals to the market weight. The neat cattle to 16 months, pigs to 135 - 140 days, poultry to 35 - 38 days;
- to increase the cows’ yield of milk to 2 - 3 liters through addition of 3 – 4 liters of the fodder soya milk to the rations. The cost price of 1 liter of the soya milk, according to the technology offered, is 2.3 rubles, with the average purchase price of the unskimmed milk of 17 rubles, under the circumstances, the profitability makes up 369.6 %.

Acknowledgment
The research was conducted with financial support from Foundation for Assistance to Small Innovative Enterprises (Grant U.M.N.I.K. under the Grant Contract No. 3784 gu1/2014 dated 29.10.2014).

References
[1] Alyoshkin V R 1995 Making the Process and Facilities of Mechanization of the Fodders Chopping More Efficient (Kirov)
[2] Alyoshkin V S et al. 1993 Livestock Production Engineering (Moscow: Kolos)
[3] Akaeva T K 2007 Fundamentals of Chemistry and Technology of Obtainment and Processing of Fats (Ivanovo State University of Chemistry and Technology)
[4] Aret V A et al. 2006 Rheological Fundamentals of Calculation of Equipment of Production of Fat-Containing Food Products (St.Petersburg: St.Petersburg State University Low-Temperature and Food Technologies)
[5] Aret V A et al. 2009 Physical and Mechanical Properties of Raw Materials and Finished Products (SPb.: GIORD)
[6] Bartsheveich N A 2006 Intensification of Oil Extraction by Means of Pressing of Far Eastern Varieties of the Soya Seeds (Vladivostok)
[7] Baikin S V et al. 2007 Technological Equipment to Process the Plant Products (Moscow: KolosS)
[8] Baturin A K 2006 Chemical Composition and Energy Value of the Food Products (SPb.: Profession)
[9] Bazanova N U et al. 1967 Physiology of the Live-Stock Animals (Moscow: Kolos)
[10] Baranov N F 2001 Improvement of Technological Processes and Facilities to make the Fodders
for Agricultural Production on the Basis of the Rotary Choppers (Kirov)

[11] Begeulov M Sh 2006 Fundamentals of the Soya Processing (Moscow: Delipring)

[12] Burobkin I N and Kazarinov B N 2005 Specificity of the Livestock Sector Development at the Present Stage Economy of Agricultural and Processing Enterprises 1 18-20

[13] Vysotski V G 2001 Biomedical Aspects of the Food Use of the Soya Protein Products Collection of the reports of the forum “Food Ingredients” pp 48-9

[14] Valge A M 2002 Processing of Experimental Data and Modeling of Dynamic Systems in Performing the Research on the Agricultural Production Mechanization (SPb)

[15] Goryachkin V P 2001 Making Estimates in Construction (Moscow)

[16] Domoroschenova M L 2001 Modern Technologies of Obtaining the Food Proteins out of the Soybean Oil Meal Food Manufacturing Industry 14 6-10

[17] Dotsenko S M et al. 2002 Problem of Shortage of Protein and The Soya Food Manufacturing Industry 8 38-40

[18] Dotsenko S M et al. 1997 Making the Preparation of Concentrated Fodders for Feeding the Animals more Efficient Collection of scientific papers Technology and Mechanization of Production and Processing of the Agricultural Products, Blagoveschensk pp 22-39

[19] Dotesnko S M et al. 2014 The Use of Soya in Technology of the Protein - Vitamin and Protein - Carbohydrate Products Storage and Processing of the Agricultural Raw Materials 4 45-9

[20] Dotsenko S M et al. 2012 Problems of the Soya Processing for Food Food Manufacturing Industry 7 18-21

[21] Dotsenko S M, Ivanov S A and Filonov R F 2004 Improvement of the Soya Chopping Process Mechanization and Electrification of the Agriculture 5 19-20

[22] Klasner G G et al. 2014 Analytical Aspects of Making the High-Protein Fodders Scientific Journal of Kuban State Agrarian University 99(05) 0991405058

[23] Konakov A P 2001 Equipment for Small Livestock Farms (Moscow: PtofObrIzdat)

[24] Melnikov S V et al. P1980 Planning of the Experiment in the Agricultural Processes Research (Leningrad: Kolos)

[25] Frolov V Yu et al. 1998 A Way of Obtaining the Soya Product Patent (invention) No. 2105494 RU vol 6 (Moscow: Rospatent)

[26] Frolov V Yu 2013 A Way of Obtaining the Milk and Protein Products Patent (invention) No. 2477179 RU (Moscow: Rospatent)

[27] Pilipenko A M and Timapovsky L V 1989 Mechanization of Processing and Making the Fodders in the Small Holdings (Moscow: Rosagropromizdat)

[28] Ryadchikov V G 2008 Amino Acids and Ideal Protein in the Pigs and Birds’ Rations Efficient Livestock Sector 7 48-51

[29] Solntsev R V 2000 Improvement of the Chopping Process and Substantiation of Design and Standard Parameters of the Grain Centrifugal Chopper (Voronezh)

[30] Frolov V Ju, Dotsenko S M and Kataev A S 1996 Substantiation of Design of the Activator’s Operating Device to Make the Soya Milk Collection of scientific papers / Far Eastern State Agricultural University, Blagoveschensk, 1996, p 12

[31] Frolov V Ju et al. 2015 Optimization of Parameters of the Chopper of the Soaked Soya Grain Farm Machinery Operator 3 24-5

[32] Frolov V Ju et al. 2014 Experimental Aspects of Process of Making the High-Quality Fodders on the Basis of the Soya Grain Scientific journal of Kuban State Agrarian University 7(101) 1011407138

[33] Frolov V Ju et al. 2016 The Evaluation of Efficiency of Using Technologies for Preparation and Distribution of Fodder at Small Farms Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1264 – 71

[34] Furtsev S G et al. 1991 Installation to Make the Soya Milk in Farms Paper of Far Eastern Research, Design and Technology Institute of Mechanization and Electrification of Agriculture 36-7