The Association of GSTM1 Deletion Polymorphism with Lung Cancer Risk in Chinese Population: Evidence from an Updated Meta-analysis

Haiyan Yang, Siyu Yang, Jing Liu, Fuye Shao, Haiyu Wang & Yadong Wang

1Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China, 2Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China.

Previous studies have reported the association of glutathione S-transferase M1 (GSTM1) deletion polymorphism with genetic susceptibility of lung cancer in Chinese population. However, the results remained controversial. The aim of this study was to clarify the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population. Systematic searches were performed through the search engines of Medline/Pubmed, Web of Science, EMBASE, CNKI and Wanfang Medical Online. The pooled effects were calculated by STATA 10.0 software package and Review Manager 5.0.24. Overall, we observed an association of GSTM1 deletion polymorphism with increased lung cancer risk in Chinese population (odds ratio (OR) = 1.46, 95% confidence interval (95%CI): 1.32–1.66 for null genotype vs. present genotype) based on 53 studies including 7,833 cases and 10,353 controls. We also observed an increased risk of GSTM1 null genotype for lung cancer in stratified analyses by source of control, smoking status and histological type. The findings suggest that GSTM1 deletion polymorphism may contribute to lung cancer risk in Chinese population. Further, well-designed studies with larger sample sizes are required to verify the results.

The global incidence of lung cancer is 1,608,800 per year, with an annual mortality rate of 1,378,400. It was the most commonly diagnosed cancer as well as the leading cause of cancer death in males globally, and among females, it was the fourth most commonly diagnosed cancer and the second leading cause of cancer death. About 85% to 90% of lung cancers are non-small cell lung cancer including squamous cell carcinoma, adenocarcinoma, large cell carcinoma and other subtypes.

Epidemiological data have shown that environmental exposures such as tobacco smoking and asbestos are the main etiological factors in lung carcinogenesis. However, only a small fraction of people, who are exposed to such risk factors, will develop lung cancer. This indicates that an individual's susceptibility might play a certain role in lung carcinogenesis. Recently, increasing evidence has been accumulated to support the hypothesis that common genetic variations of drug-metabolizing enzyme genes may be of importance in determining an individual's sensitivity to develop lung cancer.

Glutathione S-transferases (GSTs) are a group of phase II detoxification enzymes which detoxify a broad range of compounds, including xenobiotics, pesticides, products of oxidative stress, chemotherapeutic drugs and carcinogens such as benzo(a)pyrene and other polycyclic aromatic hydrocarbons. Glutathione S-transferase mu-1 (GSTM1) is a polymorphic member of the mu class gene family of the GSTs. GSTM1 deletion polymorphism has been shown to result in the elimination of the activity of GSTM1 enzymes and modulate lung cancer risk. To date, results from epidemiological studies on the association between GSTM1 deletion polymorphism and lung cancer risk in Chinese population have been mixed. Recently, two meta-analyses have reported the association of GSTM1 deletion polymorphism with increased lung cancer risk in Chinese population. Unfortunately, some overlapping articles were not excluded and several published papers were missing in their papers. In order to obtain a more precise estimation of this relationship, a meta-analysis including a total of 53 studies was conducted, which may provide more comprehensive evidence for the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population.
Methods

Literature and methods. Systematic searches were performed in Medline/Pubmed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure (CNKI) and Wanfang Medical Online, with the following terms utilized: “lung cancer” or “lung tumor” or “lung carcinoma” or “non-small cell lung cancer” or “small cell lung cancer” and “polymorphism” and “GSTM1” and “Chinese” or “China”. All publications were updated to July 15, 2014. Additional relevant references quoted in the searched articles were also selected.

Criteria of literature inclusion were (a) the subjects of literature must be Chinese; (b) the papers should evaluate the association of GSTM1 deletion polymorphism with lung cancer risk; (c) case-control studies or cohort studies; (d) studies should have sufficient data for estimating odds ratio (OR) with 95% confidence intervals (CI). The exclusion criteria were (a) studies without the number of case and control or other essential information and (b) reviews and repeated or overlapping studies. For repeated studies or overlapping studies, the publication with more information was selected when more than one article was identified for the same study population.

In total, ninety eight published articles were identified with the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population. We reviewed all papers according to the criteria listed, above; forty one overlapping studies and four reviews were excluded. At last, fifty three original articles that focused on the association between GSTM1 deletion polymorphism and lung cancer risk in Chinese population were determined to be eligible to enter our study (Fig. 1 Flow diagram).

Data extraction. Data were carefully extracted from all selected articles by two of the authors, independently. The following information was subtracted from selected studies: author’s name, publishing date, area, source of control, number of case and control, and number of null and present genotypes. Data coming from similar stratum were combined to make full use of them if the study provided stratum information. Characteristics of selected studies were summarized in Table 1.

Quantitative data synthesis. The strength of the association between GSTM1 deletion polymorphism and lung cancer risk was measured by OR with 95% CI. The Cochrane Q statistics test was used to assess heterogeneity. The combined OR was estimated using both a fixed-effects model and a random-effects model. The fixed-effects model was used when there was lack of heterogeneity. Otherwise, the random-effects model was used. The potential publication bias was firstly evaluated by visual inspection of the funnel plot. An asymmetric plot indicates that a possible publication bias exists. The funnel plot asymmetry was evaluated by the methods of Egger’s test and Begg’s test.

Statistical analysis was done using Review Manager (Version 5.0.24, the Cochrane Collaboration) and STATA10.0 software package (Stata Corporation, College Station, Texas). All the tests were two-sided, a P value of less than 0.05 for any test or model was considered to be statistically significant.

Results

Meta-analysis databases. A database was built in the light of the extracted information from selected articles. Some essential information was listed in Table 1, which indicated the first author’s name, year of publication, area, source of control, the number of case and control, and stratified factors. There were a total of 53 studies with 7,833 cases and 10,353 controls concerning the GSTM1 deletion polymorphism related to lung cancer risk. The frequency of GSTM1 null genotype was 57.7% and 50.1% in case and control, respectively.

Test of heterogeneity. The heterogeneity of GSTM1 null genotype vs. present genotype was analyzed for 53 selected studies. The results
showed that GSTM1 null genotype vs. present genotype for squamous cell carcinoma, hospitalized patients-based control, smokers and nonsmokers had no heterogeneity with a P value ≥ 0.05. Therefore, a fixed-effects model was used to calculate the summary ORs for them. A random-effects model was used to calculate the summary ORs for the rest.

Quantitative data synthesis. Table 2 listed the summary ORs of GSTM1 deletion polymorphism related to lung cancer risk in Chinese population on the basis of 7,833 cases and 10,353 controls. We observed an association of GSTM1 deletion polymorphism with increased lung cancer risk in the total population (OR = 1.46, 95%CI: 1.32–1.61 for null vs. present) (Fig. 2). In subgroup analysis for

Author	Year	Area	Source of control	Number of case	Number of control	Stratified factors						
Ai C7	2011	Sichuan	Healthy subjects	50	50							
Chan EC8	2005	Taiwan	Healthy subjects	75	162	Smoking						
Chan Y40	2002	Yunnan	Healthy subjects	56	99							
Chan-Yeung M9	2004	Hong Kong	Healthy subjects	229	197	Histological type						
Chen CM12	2012	Zhejiang	Healthy subjects	200	189	Smoking						
Chen H11	2008	Anhui	Healthy subjects	158	454	Smoking						
Chen HC12	2006	Hunan	Healthy subjects	97	197							
Chen U13	2003	Anhui	Healthy subjects	38	99	Smoking						
Chen SQ14	2001	Hubei	Healthy subjects	106	106	Smoking and age						
Cheng YW15	2000	Taiwan	Hospitalized patients	73	33							
Dong CT16	2004	Sichuan	Hospitalized patients	82	91							
Du GB17	2011	Sichuan	Hospitalized patients	125	125	Histological type and smoking						
Fowke JH18	2011	Shanghai	Healthy subjects	208	785							
Gao Y19	1999	Guangdong	Hospitalized patients and healthy subjects	59	132	Histological type and smoking						
Ge H20	1996	Hongkong	Hospitalized patients and healthy subjects	89	53							
Gu Y21	2007	Beijing	Hospitalized patients and healthy subjects	279	684	Histological type and smoking						
Huang XH22	2004	Guangdong	Hospitalized patients and healthy subjects	85	138	Histological type and smoking						
Jiang XY23	2014	Inner Mongolia	Healthy subjects	180	266							
Lan Q24	2004	Yunnan	Healthy subjects	122	122							
Lei FM25	2007	Sichuan	Healthy subjects	42	103	Smoking and drinking						
Li DR26	2005	Sichuan	Hospitalized patients	99	66	Smoking						
Li YY27	2012	Beijing	Healthy subjects	217	200	Smoking						
Li Y28	2006	Henan	Healthy subjects	98	138	Histological type and smoking						
Liang GY29	2004	Jiangsu	Hospitalized patients	152	152	Histological type						
Liang KC30	2012	Guangxi	Healthy subjects	68	70							
Liu DZ31	2012	Heilongjiang	Healthy subjects	360	360	Histological type and smoking						
Liu Q32	2008	Shandong	Healthy subjects	110	125							
London SJ33	2000	Shanghai	Healthy subjects	232	710							
Lu QK34	2013	Guangdong	Healthy subjects	91	138	Histological type and smoking						
Luo CL35	2004	Guangdong	Healthy subjects	63	47							
Lv W36	2002	Beijing	Healthy subjects	314	314	Histological type and smoking						
Pan CG37	2014	Jiangxi	Healthy subjects	523	523	Histological type and smoking						
Persson I38	1999	Beijing	Healthy subjects	75	119	Histological type and smoking						
Qian BY39	2006	Tianjin	Healthy subjects	108	108	Smoking						
Qiao GB41	2005	Guangdong	Hospitalized patients and healthy subjects	213	199	Smoking						
Qu YH42	1998	Shanghai and Heilongjiang	Healthy subjects	182	179							
Shi Y43	2002	Hubei	Healthy subjects	120	120	Smoking, age and sex						
Sun GF44	1997	Liaoning	Healthy subjects	207	364	Smoking						
Wang JW45	2004	Beijing	Healthy subjects	164	181	Smoking						
Wang M46	2009	Inner Mongolia	Healthy subjects	304	316							
Wang N47	2012	Henan	Healthy subjects	209	256							
Wang QM48	2006	Hubei	Healthy subjects	56	42	Smoking						
Xia Y49	2008	Gansu	Hospitalized patients	58	116	Smoking						
Yang XH50	2004	Liaoning	Healthy subjects	186	139							
Yao W51	2006	Henan	Healthy subjects	77	107	Histological type						
Yao Z52	2012	Beijing	Healthy subjects	150	150	Smoking						
Zhang HY53	2014	Yunnan	Healthy subjects	110	100	Histological type and smoking						
Zhang JK54	2002	Guangdong	Healthy subjects	161	165	Smoking						
Zhang JQ55	2011	Yunnan	Healthy subjects	56	50							
Zhang L56	2002	Jiangsu	Healthy subjects	65	60	Histological type and smoking						
Zhao B57	2001	Singapore	Hospitalized patients	233	187							
Zheng DJ58	2010	Tianjin	Healthy subjects	265	307	Histological type						
Zhu XX59	2010	Hunan	Healthy subjects	160	160							
Table 2	Summary odds ratios on the relation of the GSTM1 deletion polymorphism to lung cancer risk in Chinese population											
---	---											
Null vs. Present	Case/Control	Heterogeneity test	Hypothesis test	Begg’s test	Egger’s test							
Q	**P**	Summery OR (95% CI)	**Z**	**P**	**df**	**Z**	**P**	**t**	**P**			
All studies	7833/10353	123.12	<0.00001	1.46 (1.32–1.61)	7.40	<0.00001	52	1.53	0.127	1.79	0.079	
Stratification by source of control	Healthy subjects	6459/8420	108.7	<0.00001	1.48 (1.32–1.66)	6.56	<0.00001	41	1.82	0.069	1.94	0.059
	Hospitalized patients	1735/1933	14.88	0.31	1.40 (1.22–1.60)	4.77	<0.00001	13	0.07	0.945	0.67	0.517
Stratification by smoking status	Yes	2284/2078	22.38	0.44	1.60 (1.41–1.81)	7.48	<0.00001	22	0.05	0.958	0.50	0.620
	No	1468/2260	26.58	0.11	1.79 (1.54–2.08)	7.58	<0.00001	19	1.27	0.205	1.39	0.180
Stratification by histological Type	Squamous cell carcinoma	1218/3375	15.96	0.25	1.50 (1.31–1.72)	5.89	<0.00001	13	0.00	1.000	0.40	0.694
	Adenocarcinoma	1150/3368	28.44	0.008	1.36 (1.08–1.70)	2.66	0.008	13	0.99	0.324	0.79	0.443

Figure 2 | Forest plot of odds ratio for GSTM1 deletion polymorphism associated with lung cancer risk in Chinese population.
source of control, we observed an increased risk of lung cancer with GSTM1 null genotype in healthy subjects-based control (OR = 1.48, 95%CI: 1.32–1.66) and hospitalized patients-based control (OR = 1.40, 95%CI: 1.22–1.60), respectively. We also observed an increased risk of GSTM1 null genotype for lung cancer stratified by smoking status (OR = 1.60, 95%CI: 1.41–1.81 for smokers and OR = 1.79, 95%CI: 1.54–2.08 for nonsmokers, respectively). We observed an association between GSTM1 null genotype and increased lung cancer risk in stratified analysis by histological type (OR = 1.50, 95%CI: 1.31–1.72 for squamous cell carcinoma and OR = 1.36, 95%CI: 1.08–1.70 for adenocarcinoma, respectively) (Table 2).

Bias diagnosis. Funnel plot was used to assess the publication bias, the shape of funnel plot seemed to be approximately symmetrical (Fig. 3). Results from Egger’s test and Begg’s test indicated that no obvious publication bias existed in this meta-analysis (Table 2).

Sensitivity analysis. The sensitivity analysis was performed to determine the influence of the individual dataset on the summary ORs by consecutively excluding individual studies. The overall effects were not changed significantly when the study was homogenous for GSTM1 null genotype vs. present genotype among total population by removing some eligible studies, indicating that our results were statistically robust (Fig. 4).

Discussion

GSTM1 gene is located on the short arm of chromosome 1 (1p13.3)65. It is 5,950 bp long consisting of seven introns and eight exons, which encodes a cytosolic protein of 218 amino acid residues with a molecular weight of 21/25 kDa. GSTM1 gene has a null variant allele, which results in an absence of enzyme activity. Individuals who carry homozygous deletions in this gene are thought to be increased risks for malignancies because of their reduced capacity to detoxify potential carcinogens56,65. In addition, GSTM1 null/present polymorphisms could predict the treatment response of the platinum-based chemotherapy in NSCLC patients, especially in East-Asian patients66. Some meta-analyses explored the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population69–72. In this paper, we performed a systematic literature review to comprehensively evaluate the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population. We also evaluated the possible effect modifications by source of control, smoking status and histological subtype. The frequency of GSTM1 null genotype was 57.7% (range: 34%–76.7%) and 50.1% (range: 14%–66.4%) in case and control, respectively. The highest frequency of GSTM1 null genotype (66.4%) in control was found in Beijing55 and the lowest frequency of GSTM1 null genotype (14%) in control was found in Yunnan55. In summary, we observed an increased lung cancer risk in subjects with GSTM1 null genotype. Two previous meta-analyses have reported the association of GSTM1 deletion polymorphism with increased lung cancer risk in Chinese population60,61. However, there are some key limitations in their studies. For example, three overlapping studies73–75 were not properly excluded from Shi et al’ study and seven papers published before 200613,16,41–43,54,56 were missing. For Liu et al’ paper, eighteen overlapping papers74,76–92 were not properly excluded. Therefore, the findings from these two meta-analyses should be clarified urgently by using the updated data. The present meta-analysis of 53 published studies including 7,833 cases and 10,353 controls might present a precise estimation of the association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population, owing to including the updated data.

Considering that cigarette smoking is an evident risk factor for lung cancer, and that GSTM1 is involved in the metabolism of various carcinogens present in cigarette smoking, a subgroup analysis regarding smoking status was conducted. After being stratified by smoking status, the GSTM1 null genotype was associated with an increased risk of lung cancer in both smokers and nonsmokers.

Lung cancer consists of at least three major histological subtypes: squamous cell carcinoma, adenocarcinoma and small cell carcinoma. It is well-known that the development of squamous cell carcinoma and small cell carcinoma is strongly correlated with cigarette smoking, whereas that of adenocarcinoma is less correlated compared with those two subtypes, which indicates that carcinogenic processes are
different among the different subtypes of lung cancer. Therefore, a stratified analysis was conducted by histological subtype. We observed significant associations of GSTM1 deletion polymorphism with the increased risk of both squamous cell carcinoma and adenocarcinoma. Further stratified analyses were not done in additional histological subtypes, since the sample size for them was relatively small.

This meta-analysis should be interpreted within the context of its potential limitations. First, the combined ORs were based on individual unadjusted estimates, while a more precise analysis depending on adjusted factors should be performed if detailed individual data were available. Secondly, only published papers were enrolled in this study, which may cause publication bias. To address this issue, Egger’s test and Begg’s test were conducted at the same time. Our findings demonstrated that the likelihood of key publication bias might not be present in this meta-analysis. Thirdly, each study had different eligibility criteria for subjects and different source of controls, which should be taken into account while expounding the

Study or Subgroup	Experimental Events	Control Events	Odds Ratio M-H, Fixed, 95% CI
Ai C 2011	36	50	3.02 [1.32, 6.93]
Chan EC 2005	31	75	0.55 [0.32, 0.96]
Chan Y 2002	43	58	1.73 [0.82, 3.65]
Chan-Yeung M 2004	130	223	0.90 [0.61, 1.32]
Chen CM 2012	123	200	1.15 [0.78, 1.72]
Chen H 2008	99	158	1.42 [0.98, 2.08]
Chen HC 2006	60	97	1.97 [1.20, 3.33]
Chen LJ 2003	24	38	1.26 [0.58, 2.73]
Chen SQ 2001	56	106	1.92 [1.11, 3.33]
Cheng YW 2000	34	73	0.82 [0.36, 1.87]
Dong CT 2004	48	82	2.16 [1.17, 3.96]
Du GB 2011	73	125	1.07 [0.65, 1.76]
Fowke JH 2011	110	208	0.81 [0.40, 1.10]
Gao Y 1999	34	59	1.40 [0.75, 2.60]
Ge H 1986	59	89	1.01 [0.48, 2.07]
Gu YF 2007	164	279	1.58 [1.19, 2.09]
Huang XH 2004	53	85	1.47 [0.85, 2.56]
Jiang XY 2014	102	180	1.88 [1.28, 2.76]
Lan Q 2004	82	122	2.12 [1.28, 3.56]
Lei FM 2007	24	42	1.08 [0.52, 2.22]
Li DR 2005	57	99	1.98 [1.04, 3.69]
Li WY 2012	127	217	1.56 [1.05, 2.30]
Li Y 2011	59	98	1.91 [1.13, 3.23]
Liang GY 2004	82	152	1.08 [0.69, 1.70]
Liang KC 2012	47	66	1.78 [0.89, 3.57]
Liu DZ 2012	145	360	1.59 [1.17, 2.17]
Liu Q 2008	66	110	1.79 [1.06, 3.01]
London SJ 2000	122	232	0.74 [0.55, 0.99]
Lu QK 2013	61	91	1.98 [1.14, 3.42]
Luo CL 2004	45	63	2.40 [1.09, 5.28]
Lv WF 2002	158	314	1.04 [0.76, 1.42]
Pan CG 2014	305	523	1.87 [1.48, 2.39]
Persson J 1989	48	75	0.90 [0.48, 1.66]
Qian BY 2003	69	108	1.84 [1.07, 3.16]
Qiao GB 2005	130	213	1.71 [1.16, 2.54]
Qu YH 1998	102	182	1.15 [0.76, 1.74]
Shi Y 2002	74	120	2.03 [1.22, 3.40]
Sun GF 1997	147	207	2.34 [1.63, 3.37]
Wang JW 2003	97	164	1.46 [0.96, 2.24]
Wang MJ 2009	143	304	1.47 [1.07, 2.03]
Wang N 2012	122	209	1.77 [1.23, 2.57]
Wang GM 2006	40	56	3.03 [1.31, 7.01]
Xia Y 2008	34	58	1.28 [0.68, 2.42]
Yang XH 2004	108	188	1.16 [0.78, 1.74]
Yao W 2006	45	77	1.94 [1.07, 3.51]
Yao ZQ 2012	96	150	2.14 [1.35, 3.41]
Zhang HY 2014	66	110	2.07 [1.19, 3.59]
Zhang JK 2002	94	161	1.11 [0.72, 1.73]
Zhang JQ 2011	17	50	3.16 [1.18, 8.52]
Zhang LZ 2002	41	65	2.09 [1.02, 4.27]
Zhao B 2001	146	233	0.98 [0.64, 1.43]
Zheng DJ 2010	150	285	0.98 [0.71, 1.37]
Zhu X 2010	93	160	1.70 [1.08, 2.64]

Total (95% CI) 6532 7711 100.0% 1.55 [1.44, 1.65]
Total events 3803 3700
Heterogeneity: Chi² = 56.63, df = 46 (P = 0.10); I² = 22%
Test for overall effect: Z = 12.50 (P < 0.00001)

Figure 4 | Sensitivity analysis for GSTM1 null genotype vs. present genotype in Chinese population.
combined effects. When subgroup analysis was performed by source of control, we observed an association between GSTM1 deletion polymorphism and increased lung cancer risk in both healthy subjects–based control and hospitalized patients–based control.

In conclusion, this comprehensive review demonstrates that GSTM1 null genotype might be a risk factor for lung cancer in the Chinese population. Large scale studies with the pooling of individual study data should be taken into consideration in the future studies to verify the results from this present meta-analysis.
56. Zhang, L. Z., Wang, S., Hao, X. Z., Shi, Y. X. & Liu, Z. H. Relationship between Susceptibility to Lung Cancer and Genetic Polymorphism in P4501A1, GSTM1. Chin J Clin Oncol 29, 8–12 (2002).
57. Zhao, B. et al. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol Biomarkers Prev 10, 1063–1067 (2001).
58. Zheng, D., Hua, F., Mei, C., Wan, H. & Zhou, Q. Association between GSTM1 genetic polymorphism and lung cancer risk by SYBR green I real-time PCR assay. Chin J of Lung Cancer 13, 506–510 (2010).
59. Zhu, X. X., Hu, C. P. & Gu, Q. H. CYP1A1 polymorphisms, lack of glutathione S-transferase M1 (GSTM1), cooking oil fumes and lung cancer risk in non-smoking women. Chin J Tuberc Respir Dis 33, 817–822 (2011).
60. Liu, K. et al. The Associations between Two Vital GSTs Genetic Polymorphisms and Lung Cancer Risk in the Chinese Population: Evidence from 71 Studies. PLoS One 9, e103272 (2014).
61. Shi, X., Zhou, S., Wang, Z. & Zhou, Z. CYP1A1 and GSTM1 polymorphisms and the treatment response of the platinum-based chemotherapy in non-small cell lung cancer patients: a meta-analysis. Chin J of Lung Cancer 13, 177–188 (1996).
62. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br J 315, 629–634 (1997).
63. Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101 (1994).
64. Pearson, W. R. et al. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet 53, 220–233 (1993).
65. McIlnay, C., Townsend, D. M. & Tew, K. D. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25, 1639–1648 (2006).
66. Hu, Z. H. et al. Genetic polymorphisms of glutathione S-transferase M1 and prostate cancer risk in Asians: a meta-analysis of 18 studies. Asian Pac J Cancer Prev 14, 393–398 (2013).
67. Wang, Y. & Xian, L. The association between the GSTP1 A313G and GSTM1 null polymorphisms and the treatment response of the platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients: a meta-analysis. Tumour Biol 35, 6791–6799 (2014).
68. Yang, Y. & Xian, L. Glutathione S-transferase M1 null genotype meta-analysis on gastric cancer risk. Diagn Pathol 9, 122 (2014).
69. Peng, J., Liu, H. Z. & Zhu, Y. J. Null Glutathione S-transferase T1 and M1 genotypes and oral cancer susceptibility in China and India—a meta-analysis. Asian Pac J Cancer Prev 15, 287–290 (2014).
70. Zeng, Z., Wang, L., Zhang, J., Cai, S. & Liu, Y. Glutathione S-transferase M1 polymorphism and colorectal cancer risk in Chinese population. Tumour Biol 35, 2117–2121 (2014).
71. Gao, J. R., Ren, C. L. & Zhang, Q. CYP2D6 and GSTM1 genetic polymorphism and lung cancer susceptibility. Chin J Oncol 20, 185–186 (1998).
72. Ye, W. Y., Chen, S. D. & Shen, Q. Interaction between serum selenium level and polymorphism of GSTM1 in lung cancer. Acta Nutrimenta Sinica 27, 17–20 (2006).
73. Zeng, M. et al. Case control study on relationship between lung cancer and its susceptibility marker. Chin J Public Health 21, 771–774 (2005).
74. Gao, Y. F. et al. Study on the relationship between the genetic polymorphisms of GSTM1 and GSTT1 genes and lung cancer susceptibility in the population of Hunan province of China. Life Science Research 8, 126–132 (2004).
75. Chen, S. D. et al. A case control study on the impact of CYP2E1 and GST-M1 polymorphisms on the risk of lung cancer. Tumour 24, 99–103 (2004).
76. Li, Y., Chen, J., He, X. & Gao, Y. X. Influence of smoking and the polymorphisms of CYP1A1 and GSTM1 on the susceptibility of lung cancer. Journal of Chinese Practical Diagnosis and Therapy 25, 140–143 (2011).
77. Zhang, J. K., Hu, Y. L., Hu, C. F. & Wang, S. Y. Study on Genetic Polymorphisms or GSTM1 and GSTT1 Related with Inherent Susceptibility to Lung Cancer in Women. China Public Health 18, 273–275 (2002).
78. Chang, F. H., Hu, T. M. & Wang, G. Relationship between CYP1A1 and GSTM1 genetic polymorphisms and lung cancer susceptibility in population of Inner Mongolia. Chin J of Lung Cancer 9, 413–417 (2006).
79. Cheng, Y. W. et al. Gender difference in DNA adduct levels among nonsmoking lung cancer patients. Environ Mol Mutagen 37, 304–310 (2001).
80. Gao, J. R. & Zhang, Q. Study on the relationship between GSTM1 polymorphism and lung cancer susceptibility. Carcinogenesis, Teratogenesis and Mutagenesis 10, 149–151 (1998).
81. Gu, Y. F., Zhang, S. C., Lai, B. T., Wang, H. & Zhan, X. P. Relationship between genetic polymorphism of metabolizing enzymes and lung cancer susceptibility. Chin J of Lung Cancer 7, 112–117 (2004).
82. Han, R. L. et al. GSTM1 gene polymorphism and lung cancer susceptibility in man population. Central South Pharmacy 10, 1–4 (2012).
83. Jin, Y. et al. Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: a hospital-based case-control study in China. BMC Cancer 10, 422 (2010).
84. Lan, Q., He, X., Costa, D. & Tian, W. Glutathione S-transferase GSTM1 and GSTT1 genotypes and susceptibility to lung cancer. Journal of Hygiene Research 28, 9–11 (1999).
85. Qi, X. S. et al. A primary case-control study on the relationship between genetic polymorphisms of GSTT1 and lung cancer susceptibility to the people living in high radon-exposed area. Chin Occup Med 35, 361–363 (2008).
86. Sun, G. F., Pi, J. B., Zheng, Q. M. & Zheng, M. Z. The study of GST μ gene deletion as the hereditary marker for susceptibility to lung cancer. Chin J Tuber Respir Dis 18, 167–169 (1995).
87. Wang, J., Deng, Y., Cheng, J., Ding, J. & Tokudome, S. GST genetic polymorphisms and lung adenocarcinoma susceptibility in a Chinese population. Cancer Lett 201, 185–193 (2003).
88. Wang, Y. S. et al. Study on the methylation of p16 gene and genetic polymorphism of GSTM1 gene related with susceptibility to non-small cell lung cancer. Modern Preventive Medicine 34, 1207–1209 (2007).
89. Ye, W. Y., Chen, Q. & Chen, S. D. Study on relationship between GSTM1 polymorphism, diet factors and lung cancer. Chin J Public Health 20, 1120–1121 (2004).
90. Li, W. Y., Lai, B. T. & Zhan, X. P. Polymorphism of metabolic enzyme genes associated with lung cancer susceptibility. Tuberculosis and Thoracic Tumor 4, 164–168 (2002).
91. Sunaga, N. et al. Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev 11, 730–738 (2002).

Author contributions
Conceived and designed the experiments: W.Y. and Y.H.; Performed the experiments: Y.S., S.F. and W.H.; Analyzed the data: Y.H. and L.J.; Contributed reagents/materials/analysis tools: Y.S., S.F. and W.H.; Wrote the main manuscript text: W.Y. and Y.H.; Reference collection and data management: L.J. and Y.S.; Statistical analyses and paper writing: Y.H. and W.Y.; Study design: W.Y. and Y.H.; Prepared figures 1–4: W.H.; All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Yang, H. et al. The Association of GSTM1 Deletion Polymorphism with Lung Cancer Risk in Chinese Population: Evidence from an Updated Meta-analysis. Sci. Rep. 5, 9392; DOI:10.1038/srep09392 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/