Datasets of the solar quiet (Sq) and solar disturbed (SD) variations of the geomagnetic field from the mid latitudinal Magnetic Observatory of Coimbra (Portugal) obtained by different methods

Anna Morozova a,c,*, Rania Rebbah a, Paulo Ribeiro b

a CITEUC, Department of Physics, University of Coimbra, Coimbra, Portugal
b CITEUC, OGAUC, University of Coimbra, Coimbra, Portugal
c Instituto de Astrofísica e Ciências do Espaço, Department of Physics Coimbra, University of Coimbra, Portugal

The datasets of daily variations is obtained from the geomagnetic field raw observations at the Coimbra Magnetic Observatory (COI, Portugal). The data set was obtained for the 01.01.2007-31.12.2017 time interval and covers almost the entire solar cycle 24.

The raw data were processed using two methods to extract daily variability. The first method uses the so-called “geomagnetically quiet days” to calculate S-type variations as daily means resulting in the data sub-set named “IQD Sq and SD”. The second method uses the principal component analysis (PCA) to extract main variability modes of the original data. The first three modes produced by PCA and explaining up to 98% of the variability of the raw data are in the data sub-set named “PCA modes”. Both methods allow to extract regular geomagnetic field variations related to daily variations (S-type variations) in the ionospheric dynamo region and some magnetospheric currents (e.g., field-aligned currents).

* Corresponding author at: Instituto de Astrofísica e Ciências do Espaço, Department of Physics Coimbra, University of Coimbra, Portugal.

E-mail address: anna.morozova@uc.pt (A. Morozova).

Social media: [Twitter](https://twitter.com) (R. Rebbah)

https://doi.org/10.1016/j.dib.2021.107174
2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
The COI location in middle latitudes near the mean latitude of the ionospheric Sq current vortex’s focus allows studying its seasonal and decadal variability using the S-type regular variations of the geomagnetic field measured near the ground. The S-type variations for the X and Y components of the geomagnetic field obtained at the COI observatory can also be re-scaled and used to analyze geomagnetic field variations obtained at other European geomagnetic observatories at close latitudes. The S-type variations for the Z component of the geomagnetic field obtained at the COI observatory can be compared to similar variations observed at more continental regions to study the so-called “coastal effect” in the geomagnetic field variations.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Geophysics
Specific subject area	Geomagnetic field variations; regular variations of the geomagnetic field; solar quiet variations (Sq)
Type of data	ASCII TAB-delimited data files
How data were acquired	The hourly dataset of the orthogonal components of the geomagnetic field (X, Y and Z) was acquired at the Magnetic Observatory of Coimbra (COI) from 01.01.2007 to 12.31.2017 according to the standard procedures of the International Association of Geomagnetism and Aeronomy (IAGA). The data are in nT. Instruments used for acquiring the raw data: (1) absolute observations of Declination and Inclination made with a DI-flux magnetometer (based on a fluxgate Mag-01H sensor mounted on a steel-free universal theodolite YOM MG2KP, Bartington), and an Overhauser GSM-90F1 scalar magnetometer (GEM systems) for the Total field (F); (2) a triaxial fluxgate variometer FGE (Ver. J, DMI) was used for the continuous recordings of H, D and Z components.
Data format	Processed
Parameters for data collection	Raw data are available from the World Data Center
Description of data collection	The data were produced from the raw observations data using two different approaches: 1. using 5 international quiet days (IQD) provided by the GeoForschungsZentrum (GFZ) Potsdam 2. using the principal component decomposition (PCA)
Data source location	Institution: University of Coimbra, Geophysical and Astronomical Observatory, Coimbra Magnetic Observatory City: Coimbra Country: Portugal Latitude and longitude for collected data: 40° 13’ N, 8° 25.3’ W, 99 m a.s.l. Primary data sources: The raw geomagnetic field data can be downloaded (continued on next page)
Data accessibility

from the World Data Centre for Geomagnetism, Geomagnetism Data Portal (http://www.wdc.bgs.ac.uk/dataportal), station name: “Coimbra”, IAGA code: “CO1”

Repository name: Mendeley Data

Morozova, Anna; Rebbah, Rania; Ribeiro, Paulo (2021), “Datasets of the solar quiet (Sq) and solar disturbed (SD) variations of the geomagnetic field at a midlattitudinal station in Europe obtained by different methods”, Mendeley Data, V1

Data identification number: http://dx.d10.17632/jcmdrm5f5x.1

Direct URL to data: http://dx.d10.17632/jcmdrm5f5x.1

Value of the Data

• Here we provide a secondary data representing regular (daily) variations of the geomagnetic field measured at the ground level for the mid-latitude European region and a station located near the latitude of the focus of the ionospheric Sq current vortex.

• Since these Sq and SD data reflect conditions in the ionosphere and magnetosphere both geomagnetic and ionospheric scientific communities can benefit from these datasets.

• These data can be used to study regular daily variations of the geomagnetic field for the mid-latitude European region, particularly latitudes near the focus of the ionospheric Sq current vortex.

• Since Sq variation is related to the current ionospheric systems, this data set can be used to study the ionospheric Sq current vortex variability.

• These data can be used directly (especially the X and Y components) in studies of the geomagnetic field disturbances at middle latitudes in the European sector: the Sq variation must be removed from the geomagnetic observations data prior to the analysis of any disturbances.

• Due to the proximity of the Coimbra Magnetic Observatory to the ocean coast, a part of these datasets (Z component of the geomagnetic field) can be used to study the coastal effect on the geomagnetic field variations measured at the ground level.

1. Data Description

The dataset consists of two main parts: one of the two subsets is the data on the S-type variations of the geomagnetic field obtained using quiet days (see section “Experimental Design, Materials and Methods/Quiet days Sq and SD” for more details); another subset is the modes of the geomagnetic field variation obtaining with the principal component analysis (see section “Experimental Design, Materials and Methods/Principal component analysis “for more details). These two subsets can be found in the folders “IQD Sq and SD” and “PCA modes”, respectively. Each of these folders contains subfolders “X”, “Y” and “Z” containing the data for the corresponding components of the geomagnetic field. Each of the components’ sub-folders, in turn, contains 12 sub-sub-folders (e.g. “m01 – January”) with data related to each calendar month.

This structure is shown in Fig. 1.

Each of the monthly sub-sub-folders contains the sub-sub-sub-folders “data files” and “plots”. They contain data files (ASCII TAB-delimited “.dat” files) and figures (“.png” files), respectively. The internal structure and the files placed in the “data files” and “plots” folders depend on the subset (either “IQD Sq and SD” or “PCA modes”), as is shown in Fig. 2.

In the case of the “IQD Sq and SD” subset (Fig. 2, top), the “data files” folders have no sub-folders and contain data files named like “COI_*_Sq.SD.S_m###.dat” where “*” is for “X”, “Y” or “Z” and “m###” is for a month (please also see Table 1 for a list of nomination and abbreviations used to name the files). These data files contain Sq, SD and S variations for a certain month (“m###”) and different years (y.20##) or for all years “y.all” (see Fig. 3). S-type variations are in nT and calculated as described in section “Experimental Design, Materials and Methods/Quiet days Sq and SD”.

In the case of the “PCA modes” subset (Fig. 2, bottom), the “data files” folders have no sub-folders and contain data files named like “COI_*_Sq.SD.S_m###.dat” where “*” is for “X”, “Y” or “Z” and “m###” is for a month (please also see Table 1 for a list of nomination and abbreviations used to name the files). These data files contain Sq, SD and S variations for a certain month (“m###”) and different years (y.20##) or for all years “y.all” (see Fig. 3). S-type variations are in nT and calculated as described in section “Experimental Design, Materials and Methods/Quiet days Sq and SD”.

In the case of the “PCA modes” subset (Fig. 2, bottom), the “data files” folders have no sub-folders and contain data files named like “COI_*_Sq.SD.S_m###.dat” where “*” is for “X”, “Y” or “Z” and “m###” is for a month (please also see Table 1 for a list of nomination and abbreviations used to name the files). These data files contain Sq, SD and S variations for a certain month (“m###”) and different years (y.20##) or for all years “y.all” (see Fig. 3). S-type variations are in nT and calculated as described in section “Experimental Design, Materials and Methods/Quiet days Sq and SD”.
Fig. 1. Organization of the data in folders: left – folders structure in the folder “IQD Sq and SD”; right – folders structure in the folder “PCA modes”.

Fig. 2. Examples of the data’s organization in monthly folders: top – sub-folders structure in the folder “IQD Sq and SD\m01 - January”; bottom – sub-folders structure in the folder “PCA modes\m01 - January”.

The “plots” folders contain two sub-folders named “Sq” and “SD” that have figures with corresponding plots of the Sq and SD variations, respectively. The files are designated as “COL_*_S*_m##_year_20##.png” where “*” is for “X”, “Y” or “Z”, “S*” if for a S-type, “m##” is for a particular month and “year_20##” is for a specific year.
Fig. 3. Internal structure of the “COL_~_Sq.SD_S.m##.dat” files.
Table 1
List of nomination and abbreviations used to name the data and figure files.

Nomination/abbreviation	Description
COI	IAGA code of the observatory
X, Y or Z	Component of the geomagnetic field
m01, m02, ..., m12	Data are related to a certain month of a year
y.2007, ..., y.2017	Data are related to a certain year
year_2007, ..., year_2017	Data are related to all 11 years (2007-2017)
y.all	Type of the S variation
Sq, SD or S	Principal component representing certain daily variations of the field
PC1, PC2 or PC3	The amplitude of a corresponding PC for a certain day of a month
EOF1, EOF2 or EOF3	Reconstructed mode
mode 1, mode 2 or mode 3	Variance fraction associated with a certain mode
mode1 or mode2	
VF1, VF2 or VF3	
SCF1, SCF2 or SCF3	

Fig. 4. Examples of the data's organization in monthly data folders: left – sub-folders structure in the folder “PCA modes_X:m01 – January/data files”; right – files in the folder “PCA modes_X:m01 – January/data files/mode 1”.

In the case of the “PCA modes” subset (Fig. 2, bottom) each of the “data files” folders contain three sub-folders “mode 1”, “mode 2” and “mode 3”. Each of the “mode” sub-folders have data files related to a respective PCA mode, see Fig. 4. These files are names as follow: “COI_”_EOF#_m##.dat” (EOF series for individual years) and “COI_”_EOF#_y_all_m##.dat” (EOF1, EOF2 or EOF3 series for all 11 years); “COI_”_PC#_m##.dat” (PC1, PC2 or PC3 series for individual years and for the all 11 years together); “COI_”_mode#_m##.dat” and “COI_”_mode#_m##_y_all.dat” (reconstructed mode 1 or mode 2 for individual years and all 11 years, respectively), “COI_”_VF#_m##.dat” (variance fraction related to this mode for individual years and for the all 11 years together) where “#” is for “X”, “Y” or “Z”, “m##” is for a month, and “VF#” is for a variance fraction for a mode# (please also see Table 1). Please note that reconstructed modes are calculated only for the 1st and 2nd modes. All series are either in nT (EOF), in arbitrary units (PC, mode) or non-dimensional (VF) and calculated as described in the section “Experimental Design, Materials and Methods/Principal component analysis”. The internal structure of the “PC#.dat”, “EOF#.dat”, “mode#.dat” and “VF#.dat” files are shown in Figs. 5, 6, 7 and 8. Also, the “data files” folders contain two files with daily mean values of a selected component for a particular month: “COI_”_meanField_m##.dat” with data for individual years and “COI_”_meanField_m##_y_all.dat” with data for all months. Their internal structure is shown in Fig. 9.

The “plots” folders contain two sub-folders named “mode 1” and “mode 2” that contain figures with corresponding plots of the EOFs (files named as
Fig. 5. The internal structure of the “COI_∗_EOF#_m##.dat” (left) and “COI_∗_EOF#_y_all_m##.dat” (right) files.

Table 2
Correspondence between the integer hour and hour in the time format (UTC).

Integer hour	Hour in UTC	Integer hour	Hour in UTC	Integer hour	Hour in UTC
1	00:30	9	08:30	17	16:30
2	01:30	10	09:30	18	17:30
3	02:30	11	10:30	19	18:30
4	03:30	12	11:30	20	19:30
5	04:30	13	12:30	21	20:30
6	05:30	14	13:30	22	21:30
7	06:30	15	14:30	23	22:30
8	07:30	16	15:30	24	23:30

“COI_2007_2017_∗_LinInterp_m##_4PCA.EOF#.20##.png” for individual years and “COI_2007_2017_∗_LinInterp_m##_4PCAEOF#11years.png” for the all 11 years together) and PCs variations (files named as “COI_2007_2017_∗_LinInterp_m##_4PCA.PC#.20##.png” for individual years and “COI_2007_2017_∗_LinInterp_m##_4PCAPC#11years.png” for the all 11 years together) for corresponding modes, where “∗” is for “X”, “Y” or “Z”, “m##” is for a certain month and “20##” is for a certain year. Also, “plots” folders contain plots showing all VF and the cumulative VF obtained for a specific month and a particular year: “COI_2007_2017_∗_LinInterp_m##_4PCA.SCF#.20##.png” for individual years and “COI_2007_2017_∗_LinInterp_m##_4PCASCF#11years.png” for all 11 years – see Fig. 10.

For all of time series in this dataset, the time variable is either hours (PCs, S-type series, reconstructed modes) or days (EOFs, daily mean Field series). In all data files, the time variables are integer values. Conventionally, the hourly series of the geomagnetic parameters are centred not to the beginning of an hour but to its middle. Therefore, for the time plot of the series with one-hour time resolution, the correspondence between the integer hour and hour in time format (UTC, HH:MM) shown in Table 2 can be used.

2. Experimental Design, Materials and Methods

2.1. Geomagnetic field components and their measurements

Geomagnetic measurements at Coimbra Magnetic Observatory in Portugal (IAGA code COI) started in 1866 [1,2]. In 2006 a new set of the absolute instruments was installed, providing good quality measurements of geomagnetic field components with 1 h cadence [2]. Since there
Fig. 6. Internal structure of the “COI_*_PC*_m##.dat” files.
were no changes in the instruments or station location from 2006 to the present, the dataset obtained during this time interval can be considered homogeneous [2]. The detailed description of the COI instruments and metadata for the geomagnetic field components’ series can be found in [1,2]. The COI 1 h geomagnetic data are regularly submitted to the World Data Centre for Geomagnetism and are available at its Geomagnetism Data Portal [3]. This dataset was used as raw data to obtain datasets for the regular geomagnetic field variations and main modes of the geomagnetic field presented in this paper.

The geomagnetic field vector can be measured using a combination of three magnetic elements or components. These components are the total field (F) measured along the geomagnetic field direction at a particular point, horizontal component (H) measured along the magnetic meridian (positive in the direction of the N magnetic pole), declination (D), which is the angle between the magnetic and geographic meridians (positive eastward of true North), inclination (I) which is the angle between the horizontal plane and the F vector (positive downward), vertical component (Z, positive downward), and the north (X) and east (Y) components positive in the direction of the true (geographic) North and East, respectively.

For the relative instruments (i.e. variographs or variometers), the most widely used combinations are HDZ (cylindrical components) and XYZ (Cartesian). For the absolute, the combinations HDZ, HDI and DIF (spherical) are the most often used. Currently, DIF (absolute) and HDZ (relative) combinations are used at COI [2].

2.2. Methods to obtain regular variations of the geomagnetic field

The daily or S-variations of the geomagnetic field are divided into two main classes: the “daily quiet” variation or Sq and the “daily disturbed” variation or SD (the name comes from the similarity of the form between the typical Dst-type and SD-type variations [4]). The datasets described in this paper present the series of S-type variations, Sq and SD, obtained from the 1 h raw geomagnetic series for the X, Y and Z components of the geomagnetic field measured at COI during 11 years, from January 1, 2007 to December 31, 2017. The data are in nT. The time is in UTC, but the local time LT = GMT = UTC due to the COI location. The COI data have several gaps that were linearly interpolated in case of PCA. The S-type variations were extracted from

Fig. 7. The internal structure of the “COI_mode_m#.dat” (left) and “COI_mode_y_all_m#.dat” (right) files.
the raw data for each of the X, Y and Z components separately using two different approaches described below.

2.3. Quiet days Sq and SD

The standard approach to calculate the Sq and SD variations is to use the so-called “geomagnetically quiet days” to select days of a month with the lowest geomagnetic activity level. In most cases, these “quiet days” are defined using the geomagnetic K-indices [5]. When local (obtained at a certain magnetic observatory) K-indices are used for the classification of a day, the resulting “quiet days” are the “local quiet days”. When the planetary K-index (Kp) is used for the classification, the resulting “quiet days” are the “international quiet days” or IQD. In this work, we used IQDs routinely provided by the GFZ German Research Centre for Geosciences at the Helmholtz Centre in Potsdam, Germany [5].

Using the standard procedure, the Sq variation for a specific month is defined as the mean of daily variations of the month’s five quietest days. In turn, the SD variation is calculated as a difference between the mean daily variations obtained using all days of a month (or S variation)
Fig. 9. Internal structure of the “COL_*_meanField_m##.dat” (left) and “COL_*_meanField_m##_y_all.dat” (right) files.

Fig. 10. Examples of the data’s organization in monthly plots folders: “PCA modes/X/m01 – January/plots”.

and the corresponding Sq. Before the averaging, a baseline was removed from the raw daily series. There are two main ways to define the daily baseline for the geomagnetic field variations: the daily mean level and the night level (since under normal conditions, i.e. with no disturbances, the night is the time period with the lowest influence of the ionospheric currents on the ground measured geomagnetic field values). In this work, we used a baseline defined as a mean calculated for the night hours using the measurements made at 00:30 UTC, 01:30 UTC, 02:03 UTC, 03:30 UTC and 23:30 UTC of each day. Thus, the Sq variation values for the night hours are close to zero, and there are no significant differences between the night values of Sq at the beginning and the end of a day.

Each month was treated separately to take care of the seasonal variability of Sq variation. Thus, for each month of a year, we have one series of Sq and one series of SD variations, each consisting of 24 hourly values, overall $12 \times 11 = 132$ series for the Sq and SD variations, respec-
tively. Also, we calculated the average Sq and SD variations for each month using all years of observation: e.g., using all January months from 2007 to 2017, etc., which additionally gives 12 series for the Sq and SD variations, respectively.

2.4. Principal component analysis

Principal component analysis (PCA) is a method allowing to extract main modes of variability of a series without any a priori assumption about the character of those variations (contrary to the widely used Fourier and wavelet analyses). An input data set is used to construct a covariance matrix and calculate corresponding eigenvalues and eigenvectors. The eigenvectors (empirical orthogonal functions, EOF) are used to calculate the principal components (PC). The combination of a PC and the corresponding EOF is called a “mode”. Variations related to a certain mode can be reconstructed as a multiplication of a 1-column PC vector and a corresponding 1-row EOF vector. The eigenvalues allow estimation of the explained variances of the extracted modes. PCs are orthogonal and conventionally non-dimensional. The full descriptions of the method can be found in (e.g.) [6–8].

Recently, PCA was used to extract modes of the geomagnetic field’s day-to-day variability, which were shown to be related to the S-type variations [9–13]. Here we applied a similar approach to extract modes of the geomagnetic field variations related to the regular variations on the daily time scale.

The PCA input matrices were constructed as follows: 24 rows for 24 hourly values per day and 28 to 31 columns (1 column for a day) depending on a month. All months were treated separately. All February matrices have a size 24 × 28. Individual input matrices (or data sets) were made for each of 12 months and each of 11 years (132 matrices). In addition, 12 matrices were constructed using the data for an individual month but with all years available (matrices with sizes 24 × 308, 24 × 330 or 24 × 341 depending on a month). Using this configuration of the input matrices, the principal components (PCs) correspond to daily variations of a different type that can be matched up with S-type variations calculated using the standard approach. The corresponding EOFs provide the amplitudes of a PC for each of the days. Also, PCA allows estimation of the “significance” of each of the extracted modes using their eigenvalues, a so-called variance fraction (VF) or squared covariance fraction (SCF) when the singular value decomposition method (SVD) is used to perform PCA, as in our cases. VF can be between 0 and 1 and when multiplied by 100% it shows the percent of the total variability of the studied series related to a particular mode.

Only the three first PCs were selected to form the dataset presented in this paper. Overall, the first 3 PCA modes together explain from >60 to 98% of the COI X, Y and Z series variability depending on the month, year and the component. The dataset described in this paper is analyzed in a companion paper [14].

Ethics Statement

Not applicable.

CRediT Author Statement

Anna Morozova: Conceptualization, Formal analysis, Methodology, Supervision, Validation, Software, Investigation, Visualization, Writing – original draft; Rania Rebbah: Software, Investigation, Data processing, Visualization, Writing – review & editing; Paulo Ribeiro: Data curation, Resources, Writing – review & editing.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Acknowledgments

CITEUC is funded by the National Funds through FCT (Foundation for Science and Technology) projects UID/00611/2020. IA is supported by FCT through the research grants UIDB/04434/2020. This study is a contribution to the FCT MAG-GIC project (PTDC/CTA-GEO/31744/2017).

References

[1] A.L. Morozova, P. Ribeiro, M.A. Pais, Correction of artificial jumps in the historical geomagnetic measurements of Coimbra Observatory, Portugal, Ann. Geophys. 32 (2014) 19–40, doi:10.5194/angeo-32-19-2014.
[2] A.L. Morozova, P. Ribeiro, M.A. Pais, Homogenization of the historical series from the Coimbra Magnetic Observatory, Portugal, Earth Syst. Sci. Data 13 (2021) 1–17, doi:10.5194/essd-13-1-2021.
[3] World Data Centre for Geomagnetism, Geomagnetism Data Portal, station name: “Coimbra”, World Data Centre for Geomagnetism, 2021 IAGA code: “COI” http://www.wdc.bgs.ac.uk/dataportal/ (accessed 06 January).
[4] S. Chapman, J. Bartels, Geomagnetism, Oxford University Press, Oxford, 1940.
[5] The Helmholtz Centre PotsdamGFZ German Research Centre for Geosciences, The Helmholtz Centre Potsdam, 2021 https://www.gfz-potsdam.de/en/kp-index/andftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/quietdst/ (accessed 06 January).
[6] H. Bjornsson, S.A. Venegas, A manual for EOF and SVD analyses of climatic data, McGill University, 1997 CCGCR Report 97–1.
[7] A. Hannachi, I.T. Jolliffe, D.B. Stephenson, Empirical orthogonal functions and related techniques in atmospheric science: a review, Int. J. Climatol. 27 (9) (2007) 1119–1152.
[8] J. Shlens, A Tutorial on Principal Component Analysis, Systems Neurobiology Laboratory, University of California at San Diego, 2009 version 3.01, 2009, On-line: http://sml.salk.edu/~shlens/pca.pdf.
[9] G.X. Chen, W.Y. Xu, A.M. Du, Y.Y. Wu, B. Chen, X.C. Liu, Statistical characteristics of the day-to-day variability in the geomagnetic Sq field, J. Geophys. Res. Space Phys. 112 (A6) (2007), doi:10.1029/2006JA012059.
[10] P. De Michelis, R. Tozzi, A. Meloni, On the terms of geomagnetic daily variation in Antarctica, Ann. Geophys. 27 (2009) 2483–2490.
[11] P. De Michelis, R. Tozzi, G. Consolini, Principal components’ features of mid-latitude geomagnetic daily variation, Ann. Geophys. 28 (2010) 2213–2226, doi:10.5194/angeo-28-2213-2010.
[12] W.-Y. Xu, Y. Kamide, Decomposition of daily geomagnetic variations by using method of natural orthogonal component, J. Geophys. Res. 109 (A5218) (2004) 10, doi:10.1029/2003JA010216.
[13] Y. Yamazaki, A. Maute, Sq and EEJ—a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents, Space Sci. Rev. 206 (1-4) (2017) 299–405.
[14] A.L. Morozova, R. Rebbah, Comparison of the solar variations of the geomagnetic field at the Coimbra Magnetic Observatory (COI) obtained by different methods: effect of the solar and geomagnetic activity, Xiv:2104.00391 [physics.geo-ph]. (2021). (Accessed 28 May 2021). 1, 2021.