Propiedades psicométricas de la Escala Beneficios/Barreras para el Ejercicio en ancianas mexicanas

María Cristina Enríquez-Reyna1
Rosa María Cruz-Castruita2
Oswaldo Ceballos-Gurrola2
Cirilo Humberto García-Cadena3
Perla Lizeth Hernández-Cortés4
Milton Carlos Guevara-Valtier4

Objetivo: analizar y evaluar las propiedades psicométricas de las subescalas que componen la versión en español de la Escala Beneficios/Barreras para el Ejercicio en población anciana del noreste de México. Método: estudio metodológico. La muestra estuvo constituida por 329 ancianas adscritas a alguna de cinco casas-club públicas del área metropolitana del noreste de México. Las propiedades psicométricas incluyeron la evaluación del coeficiente alfa de Cronbach, el coeficiente Kaiser Meyer Olkin, la correlación inter-ítem, análisis factorial exploratorio y confirmatorio. Resultados: en el análisis de componentes principales se identificaron dos componentes a partir de los 43 ítems de la escala. El coeficiente de correlación ítem-total de la subescala beneficios del ejercicio fue bueno. Sin embargo, el de barreras para el ejercicio mostró inconsistencias. La confiabilidad y validez fueron aceptables. Con el análisis factorial confirmatorio se identificó que la eliminación de ítems mejoraba la calidad de ajuste del modelo basal de la escala sin afectar su validez ni confiabilidad. Conclusión: la Escala Beneficios/Barreras para el Ejercicio presenta parámetros psicométricos satisfactorios para el contexto mexicano. Se presenta una versión corta de 15 ítems con estructura factorial, validez y confiabilidad similares a los de la escala completa.

Descriptores: Psicometría; Ejercicio; Enfermería; Percepción; Estudios de Validación.

1 Estudiante de doctorado, Facultad de Organización Deportiva, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
2 Profesor Asistente, Facultad de Organización Deportiva, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
3 PhD, Profesor Titular, Facultad de Psicología, Universidad Autónoma de Nuevo León, Monterrey, NL, México.
4 PhD, Profesor Titular, Facultad de Enfermería, Universidad Autónoma de Nuevo León, Monterrey, NL, México.
Introducción

La literatura científica describe conductas divergentes al respecto de la realización del ejercicio en población anciana. Pese a que la mayoría identifica sus beneficios, persiste indisposición hacia el ejercicio y poca perseverancia\(^1\)\(^2\). Se han descrito determinantes sociales que influyen la realización efectiva de esta acción promotora de salud\(^3\) pero la comprensión de esta compleja conducta aún es insuficiente. De manera especial en México, es necesario analizar las percepciones que delinean la realización de esta conducta durante el envejecimiento, ya que el ejercicio ayuda a disminuir el riesgo de depresión y deterioro cognitivo, mejora la función cardiorrespiratoria y muscular e incide en la salud ósea y funcional de este creciente grupo poblacional\(^6\).

La prevalencia generalizada de inactividad física ha propiciado la necesidad de conocer los motivos o barreras por los que las personas realizan o no este tipo de conducta. La percepción positiva o negativa que tienen las personas sobre conductas promotoras de salud como el ejercicio suelen inducir a comportamientos determinados que afectan su salud. Al respecto, el Modelo de Promoción de la Salud explora los factores que influyen en el cambio conductual de salud y puede utilizarse para analizar las cogniciones relativas al ejercicio como los beneficios y barreras percibidos\(^9\). El modelo explica las relaciones entre las características y experiencias individuales, las cogniciones y afectos relativos a las conductas de salud y la ejecución de las mismas. Dos cogniciones relativas a las conductas de salud que incluye el modelo son: los beneficios percibidos de la acción y las barreras percibidas para la acción\(^6\).

Los beneficios percibidos de la acción constituyen la percepción anticipada que tienen las personas acerca de los resultados posibles que se producirán como efecto de una conducta de salud. Se basan en las memorias personales obtenidas de la experiencia previa o del aprendizaje vicario a través de observar a otros comprometerse con la acción sanitaria. Los individuos invierten su tiempo y recursos en actividades que tienen una alta probabilidad de incrementar las experiencias de resultados positivos\(^6\).

Al respecto del ejercicio como conducta de salud, los beneficios percibidos han mejorado la observancia de esta conducta como parte del tratamiento de enfermedades crónicas\(^7\)\(^-\)\(^8\) y se han relacionado con un mejoramiento físico-funcional, de la condición neurológica y disminución del dolor en la población anciana\(^9\)\(^-\)\(^11\). También se ha encontrado correlación negativa entre la percepción de beneficios y la realización de ejercicio (\(r^2=0.16, p<.01\)) lo que sugiere que aunque los beneficios percibidos sean evidentes, la conducta se ejecuta poco\(^12\). Pese a que los adultos perciben la importancia del ejercicio considerando sus antecedentes personales, persiste la creencia de que podría ser una pérdida de tiempo en su agenda diaria\(^13\).

Las barreras percibidas para la acción hacen alusión a las apreciaciones mentales negativas o impedimentos individuales –imaginarios o reales– que pueden obstaculizar un compromiso con una conducta de salud. Las barreras representan la percepción de lo que no disponibilidad, inconveniencia, costo, dificultad o tiempo consumido en llevar a cabo la conducta; incitan a evitar la conducta planeada, por tanto, cuando la disposición hacia la acción es baja y las barreras altas, difícilmente se ejecutará la conducta\(^5\). Las principales barreras identificadas para el ejercicio incluyen el mal clima, la falta de disciplina, tiempo, dinero o de compañía para realizar la acción\(^14\). Además, en mujeres adultas de mediana edad se señala que las barreras son los problemas de salud, heridas y molestias relativas a la edad\(^15\).

La Escala Beneficios/Barreras para el Ejercicio [EBBE]\(^16\) fue diseñada en el idioma inglés para la medición de estas cogniciones por la Dra. Nola J. Pender en Estados Unidos de América. Ha sido traducida y validada en población anciana de Corea\(^17\) y Brasil\(^18\) y, en China, se desarrolló y validó una adaptación para aplicarse en pacientes sometidos a diálisis\(^19\). La versión en español fue publicada también por las autoras originales de la EBBE y ha reportado coeficientes de confiabilidad aceptables en Colombia\(^12\) y México\(^13\). Sin embargo, no se encontró la publicación de las propiedades psicométricas de la versión en español. Estas percepciones pudieran diferir en función del colectivo estudiado. Además, las variaciones dentro de un mismo idioma pueden afectar la validez de las escalas adaptadas\(^20\). Por tanto, resulta pertinente analizar el funcionamiento de la escala en población anciana del contexto mexicano.

Se propuso analizar y evaluar las propiedades psicométricas de las subescalas que componen la versión en español de la Escala Beneficios/Barreras para el Ejercicio en población anciana del noreste de México. Asimismo, en un análisis secundario, se evaluará la factibilidad de una versión corta que facilite la estimación de la fuerza de esas percepciones en esta población.

Método

Se trata de un estudio metodológico, realizado en una población de 2701 ancianos de la comunidad, adscritos a cinco casas-club públicas del área metropolitana del noreste de México. Debido a que la cantidad de hombres que confluyen en dichos centros es muy baja, se contempló la participación exclusiva de mujeres en el estudio.
Participants
Se incluyó a mujeres de 60 a 80 años, con integridad cognitiva de acuerdo al Cuestionario de Pfeiffer, con capacidad de leer y escribir, sin contraindicación médica para el ejercicio y que aceptaron participar voluntariamente en el estudio. Se excluyó a quienes mostraron incapacidad de entender instrucciones a pesar del resultado en el Cuestionario de Pfeiffer. La muestra fue calculada con la fórmula para poblaciones finitas y estuvo constituida por 329 participantes. Se utilizó un muestreo estratificado simple a partir del listado de asistentes de cada uno de los estratos (casas club).

Instrumento
La versión en español de la EBBE está publicada junto a la versión en inglés (Figura 1) y fue traducida inicialmente al español por Juarbe T. Consta de una escala cuasi Likert de 43 ítems con 4 opciones de respuesta. Se evalúa con “cuatro” cuando se concuerda completamente con la aseveración, “tres” si sólo está de acuerdo, “dos” si está en desacuerdo y “uno” cuando se está completamente en desacuerdo con la propuesta del ítem. La escala incluye dos subescalas: 29 ítems para la subescala de beneficios percibidos del ejercicio y 14 para la subescala de barreras percibidas para el ejercicio. Los ítems de la subescala barreras para el ejercicio corresponden a los reactivos 4, 6, 9, 12, 14, 16, 19, 21, 24, 28, 33, 37, 40 y 42. Para evaluar las 14 oraciones que representan las barreras, se obtiene un rango de respuesta de 14 a 56; en cambio, para los beneficios, el rango es de 29 a 116. En ambas subescalas, a mayor puntuación, se entiende que es mayor ésa percepción hacia el ejercicio(16).
La escala evalúa por separado las dos percepciones, ya que en el modelo de Pender (2011) constituyen dos constructos independientes que además son opuestos. Sechrist, Walker y Pender (1987) sugieren la posibilidad de evaluar la escala completa: el resultado de la subescala de barreras para el ejercicio se evalúa de forma inversa y se resta al resultado de los beneficios del ejercicio.

Procedimiento

El análisis preliminar incluyó dos pasos: 1) revisión lingüística y cultural por expertos y 2) estudio piloto cualitativo en una pequeña muestra de ancianos con características similares a las de la muestra final. El primer paso fue revisar, a través de tres expertas en el área de la enfermería gerontológica, la adaptación de vocabulario y redacción al español de este contexto mexicano. Se consideraron las directrices de la International Test Commission para la adaptación de los tests: diferencias culturales y de idioma, aspectos técnicos y métodos; e interpretación de resultados. Una vez recabada la información de las expertas se procedió a aplicar la EBBE en un grupo de 30 adultas mayores para evaluar que el instrumento de medida fuera claro y adecuado. Como resultado de estos pasos se decidió modificar la redacción de 12 ítems.

El estudio contó con la aprobación del comité de ética institucional y de las autoridades de las casas club. La recolección de datos fue realizada por profesionales del ejercicio debidamente capacitados; se realizó de forma individual y privada durante la asistencia de las participantes a la casa club. El llenado de la EBBE demoró entre cinco y diez minutos.

Análisis de datos

Se analizó la EBBE completa y luego las subescalas de beneficios y barreras por separado. La consistencia interna se estimó utilizando el software SPSS versión 21.0, mediante el coeficiente alfa de Cronbach. Además, la validez de constructo se construyó con el coeficiente de adecuación muestral de Kaiser Meyer Olkin (KMO) y la correlación inter-ítem de acuerdo con las bases teóricas de la teoría de la medición. La estructura factorial se estimó a través de un análisis factorial exploratorio y confirmatorio con el paquete estadístico AMOS 21.0.

Resultados

Las participantes tuvieron en promedio 69 años de edad (DE=5.44) y 6.5 años (DE=2.92) de escolaridad. Solo el 42% señaló tener pareja.

EBBE completa

La prueba de Bartlett sobre la matriz de correlaciones entre los ítems de la EBBE fue significativa (Bartlett=7168.174, gl=903, p.<.001). El análisis de componentes principales con rotación varimax dió como resultado dos componentes con valor propio mayor que la unidad (Determinante=1.120), con rotación de tres componentes. De acuerdo a la suma de las saturaciones al cuadrado de la rotación, el primer factor obtuvo un valor total de 13.698, lo que representa un 31.86% de la varianza. El segundo factor aportó 3.542, lo que representa un 8.24% de la varianza total. El porcentaje acumulado de los dos factores explicó el 40.09% de la varianza. Utilizando .40 como criterio de saturación interpretable en la rotación ortogonal, se confirma que los ítems que saturan en los componentes corresponden con los planteados por la escala.

Propiedades psicométricas por subescala

En la subescala de beneficios del ejercicio, la medida de adecuación de KMO propició un valor significativo y aceptable (KMO=.959, p.<.001). De acuerdo a la suma de las saturaciones al cuadrado de la extracción, los ítems de esta subescala explicaron el 47.23% de la varianza. En la subescala de barreras para el ejercicio, la medida KMO también resultó aceptable (KMO=.751, p.<.01) con una varianza explicada del 22.97%.

Consistencia interna y análisis de ítems. El coeficiente alfa de la subescala de beneficios del ejercicio fue de .958, lo cual se considera muy bueno. Se observó un amplio rango de correlaciones inter-ítem de .235 hasta .804. El valor de alfa no sugiere que la eliminación de ítems pudiera aumentar la consistencia interna de la subescala (Tabla 1).
### Tabla 1 – Coeficientes de correlación y alfa de Cronbach de la subescala beneficios del ejercicio de la Escala Beneficios/Barreras para el Ejercicio. Monterrey, N. L., México, 2015

| Ítem* | Descripción | Correlación elemento-total corregida | Alfa de Cronbach si se elimina el elemento |
|-------|-------------|-------------------------------------|------------------------------------------|
| 1     | Yo disfruto el hacer ejercicio | .632 | .951 |
| 2     | Hacer ejercicio ayuda a que disminuya mi estrés y tensión | .732 | .951 |
| 3     | Hacer ejercicio ayuda a mejorar mi salud mental | .733 | .951 |
| 5     | Haciendo ejercicio prevengo ataques al corazón | .472 | .953 |
| 8     | Hacer ejercicio me da un sentido de logro personal | .700 | .951 |
| 7     | Hacer ejercicio aumenta la fuerza de mis músculos | .547 | .952 |
| 10    | Hacer ejercicio me hace sentir relajada | .787 | .950 |
| 11    | Hacer ejercicio me permite tener contacto con mis amistades y con personas que me agradan | .576 | .952 |
| 13    | Hacer ejercicio evitará que suba mi presión arterial (hipertensión) | .235 | .957 |
| 15    | Hacer ejercicio mejora mi condición física | .585 | .952 |
| 17    | Mi tono muscular mejora haciendo ejercicio | .668 | .951 |
| 18    | Hacer ejercicio mejora el funcionamiento de mi corazón | .736 | .951 |
| 20    | Cuando hago ejercicio, mi sentido de bienestar mejora | .692 | .951 |
| 22    | Hacer ejercicio aumenta mis energías | .779 | .950 |
| 23    | Hacer ejercicio mejora mi flexibilidad | .804 | .950 |
| 25    | Mi estado de ánimo mejora cuando hago ejercicio | .750 | .951 |
| 26    | Hacer ejercicio me ayuda a dormir mejor por las noches | .623 | .952 |
| 27    | Voy a vivir más tiempo si hago ejercicio | .543 | .952 |
| 29    | Hacer ejercicio me ayuda a disminuir la fatiga | .544 | .952 |
| 30    | Hacer ejercicio es una buena forma para que yo conozca personas nuevas | .690 | .951 |
| 31    | Mi fortaleza física mejora por medio del ejercicio | .727 | .951 |
| 32    | Hacer ejercicio mejora el concepto que tengo de mí misma | .655 | .951 |
| 34    | Hacer ejercicio aumenta mi agilidad mental | .699 | .951 |
| 35    | Hacer ejercicio me permite llevar a cabo actividades normales sin que me canse | .584 | .952 |
| 36    | Hacer ejercicio mejora la calidad de mi trabajo/actividades | .714 | .951 |
| 38    | Hacer ejercicio es buen entretenimiento para mí | .652 | .951 |
| 39    | Hacer ejercicio mejora la imagen general que otros tienen de mí | .627 | .952 |
| 41    | Hacer ejercicio mejora el funcionamiento general de mi cuerpo | .635 | .951 |
| 43    | Hacer ejercicio mejora mi apariencia física | .671 | .951 |

*Los números de los ítems corresponden a los asignados en la escala completa.

El coeficiente alfa de la subescala de barreras para el ejercicio fue aceptable (.715). En contraste, el análisis por ítem señaló valores de correlación bajos en un rango de .002 a .436. En contraste con la subescala de beneficios, se observó que debido a la baja correlación elemento-total corregida (.002), la eliminación del ítem 21 podría incrementar la consistencia interna de la subescala de barreras a .729 (Tabla 2).

### Tabla 2 – Coeficientes de correlación y alfa de Cronbach de la subescala barreras para el ejercicio de la Escala Beneficios/Barreras para el Ejercicio. Monterrey, N. L., México, 2015

| Ítem* | Descripción | Correlación elemento-total corregida | Alfa de Cronbach si se elimina el elemento |
|-------|-------------|-------------------------------------|------------------------------------------|
| 4     | Hacer ejercicio toma mucho de mi tiempo | .348 | .679 |
| 6     | Hacer ejercicio me cansa | .278 | .687 |
| 9     | Los lugares en que yo puedo hacer ejercicio están muy lejos | .393 | .872 |
| 12    | Me da mucha vergüenza hacer ejercicio | .413 | .872 |
| 14    | Hacer ejercicio cuesta mucho dinero | .436 | .870 |
| 16    | Los lugares para hacer ejercicio no tienen horarios convenientes para mí | .418 | .668 |
| 19    | Yo me fatigo cuando hago ejercicio | .311 | .683 |
| 21    | Mi esposo/compañero o ser más querido no me apoya para hacer ejercicio | .002 | .729 |
| 24    | Hacer ejercicio toma mucho tiempo de las relaciones familiares | .375 | .677 |
| 28    | Yo pienso que las personas en ropa deportiva se ven grasísimas | .273 | .687 |
| 33    | Mis familiares y amigos no me animan para que haga ejercicio | .235 | .695 |
| 37    | Hacer ejercicio toma mucho tiempo de mis responsabilidades familiares | .388 | .674 |
| 40    | Hacer ejercicio es un trabajo duro para mí | .297 | .685 |
| 42    | Hay muy pocos lugares para que haga ejercicio | .358 | .676 |

*Los números de los ítems corresponden a los asignados en la escala completa.
Para evaluar la calidad de ajuste del modelo por subescala se utilizaron índices de ajuste absoluto (Chi-cuadrado, chi-cuadrado/gl) e índices de calidad de ajuste (GFI y AGFI), índices de ajuste incremental (índice de ajuste no normativo [NNFI], índice general de ajuste de parsimonia [PGFI]), la raíz promedio del error de aproximación [RMSEA] o la raíz cuadrada promedio residual [RMR] cuando procedía). Se considera que un valor de 5 o menor demuestra buen ajuste para el índice chi\(^2\)/gl\(^2\). Valores de GFI, AGFI y NNFI por encima de .90 indican un buen ajuste\(^{22}\). El índice PGFI toma valores estandarizados entre 0 y 1, pero ninguno de los dos alcanza el valor límite de .90, por lo que los valores más cercanos a .80 son considerados adecuados\(^{23}\). Para el RMSEA, se consideran aceptables valores entre .05 y .10, siendo ideal que resulte igual o inferior a .08; y para el RMR se requieren valores bajos, en quen valores más cercanos al cero indican mejor ajuste\(^{24}\).

**Análisis secundario para facilitar la aplicación en ancianas**

Considerando las dificultades de ajuste de algunos parámetros, se propuso analizar la pertinencia de una solución factorial que fuera satisfactoria tanto para los parámetros estructurales del modelo como para la validez y consistencia interna. En la Tabla 3 se exponen los resultados obtenidos para la subescala beneficios del ejercicio. El modelo de la izquierda corresponde a la estructura completa de la subescala original y el derecho, una propuesta corta con parámetros de calidad de ajuste aceptables. Así, se obtuvo una versión de seis ítems con un rango de las correlaciones inter-ítem de .74 a .82, lo cual pudiera considerarse satisfactorio.

La versión final para la subescala barreras para el ejercicio fue de nueve ítems, con un rango de correlaciones inter-ítem de .34 a .45. El modelo de la izquierda corresponde a la estructura inicial de la subescala, y el derecho es la solución diseñada con menos ítems y parámetros de calidad de ajuste similares (Tabla 4).

### Tabla 3 – Análisis factorial de la subescala beneficios del ejercicio de la Escala Beneficios/Barreras para el Ejercicio con 29 y seis ítems. Monterrey, N. L., México, 2015

| Beneficios del ejercicio | 29 ítems | 6 ítems* | Ajuste |
|--------------------------|----------|----------|--------|
| Validez                  |          |          |        |
| Kaiser Meyer Olkin       | .959     | .885     | >.700  |
| Valor de p               | <.001    | <.001    | <.05   |
| Ajuste absoluto e incremental\(^{1}\) |      |          |        |
| Chi-cuadrado             | 362,574  | 13,859   | <5     |
| Chi-cuadrado/grados de libertad | 6,251   | .990     | <.05   |
| Valor de p               | <.001    | <.001    | <.05   |
| Índice de bondad de ajuste| .989    | .997     | >.90   |
| Índice de bondad realajustado | .987   | .993     | >.90   |
| Índice de ajuste no normativo | .987   | .995     | >.90   |
| Índice geral de parsimonia | .857    | .496     | 0-1    |
| Raíz cuadrada promedio residual | .022    | .011     | .05-10 |
| Confiabilidad            |          |          |        |
| Alfa de Cronbach         | .958     | .919     | >.70   |

*Ítems seleccionados de la subescala beneficios del ejercicio: 2, 3, 15, 22, 23, 25; los números de ítem corresponden a los asignados en la escala completa.

\(^{1}\)Método de estimación: Escala libre de mínimos cuadrados.

### Tabla 4 – Análisis factorial de la subescala barreras para el ejercicio de la Escala Beneficios/Barreras para el Ejercicio 14 y 9 ítems. Monterrey, N. L., México, 2015

| Barreras para el ejercicio | 14 ítems | 9 ítems* | Ajuste |
|---------------------------|----------|----------|--------|
| Validez                   |          |          |        |
| Kaiser Meyer Olkin        | .751     | .768     | >.700  |
| Valor de p                | <.001    | <.001    | <.05   |
| Ajuste absoluto e incremental\(^{1}\) |      |          |        |
| Chi-cuadrado              | 216,808  | 64,898   | <5     |
| Chi-cuadrado/grados de libertad | 2,82   | 2,40     | <.05   |
| Valor de p                | <.001    | <.001    | <.05   |
| Índice de bondad de ajuste| .916    | .960     | >.90   |
| Índice de bondad realajustado | .886   | .933     | >.90   |
| Índice de ajuste no normativo | .667   | .840     | >.90   |
| Índice general de parsimonia | .672    | .576     | 0-1    |
| Raíz promedio del error de aproximación | .074    | .065     | <.07   |
| Confiabilidad             |          |          |        |
| Alfa de Cronbach          | .715     | .722     | >.70   |

*Ítems seleccionados de la subescala barreras percibidas para el ejercicio: 4, 9, 12, 14, 16, 24, 28, 37, 42; los números de ítem corresponden a los asignados en la escala completa.

\(^{1}\)Método de estimación: Máxima verosimilitud,
Discusión

Los resultados obtenidos al estudiar la confiabilidad de la versión mexicana de la EBBE presentan similitudes esenciales con los parámetros publicados de la versión original(16). Los coeficientes alfa de las dos subescalas que componen la EBBE presentaron una consistencia interna adecuada y fueron similares a los obtenidos en las adaptaciones de Corea y Brasil(17-18). Considerando que el punto de referencia para discutir los resultados de la adaptación de una escala a un contexto lingüístico y cultural son los estudios relacionados(20); debido a los niveles de validez y confiabilidad encontrados, se avala el uso de la EBBE en población anciana del noreste de México.

La estructura factorial y la distribución de ítems entre factores de la subescala beneficios del ejercicio concuerdan con las encontradas en la versión original(16). Las correlaciones altas entre ítems apoyan la validez de constructo de esa subescala; los índices de discriminación pueden considerarse adecuados y semejantes a los obtenidos en la versión original.

En contraste, la subescala barreras para el ejercicio mostró valores apenas aceptables de confiabilidad y validez. Este detalle también se observó cuando se utilizó la versión original de la EBBE en población americana adolescente(25) y en las otras adaptaciones publicadas(17-18). El problema es perceptible con el análisis factorial confirmatorio; las correlaciones bajas inter-ítem sugieren la necesidad de revisar el constructo(20). Por ejemplo, el ítem 21 hace referencia a la "falta de apoyo del esposo o compañero para hacer ejercicio", la falta de fuerza explicativa de este ítem en esta muestra puede ser por la baja proporción participantes que señaló tener pareja. Esta explicación también pudiera aplicarse al caso de la población adolescente. Ya que las barreras para el ejercicio pudieran depender de aspectos directamente relacionados con el contexto y la cultura poblacionales, es necesario realizar el análisis del constructo previo a la toma de decisiones a partir de esta subescala.

En síntesis, la EBBE mostró una estructura bifactorial, de acuerdo con los principios teóricos que guiaron su construcción.

Con el análisis de la estructura factorial de las dos subescalas, se observó que, en esta muestra, los índices de ajuste AGFI y NNFI de la subescala barreras para el ejercicio no mostraron propiedades psicométricas adecuadas. Este detalle sugirió la pertinencia de analizar la utilidad de la eliminación de ítems para mejorar los parámetros de bondad de ajuste de dichos modelos. Se presentan los datos como una invitación a la reflexión al respecto de considerar esta alternativa que pudiera incrementar la fluidez de la estimación de estas percepciones en población anciana.

Conclusiones

Debido a los niveles de validez y confiabilidad encontrados en esta muestra de ancianas mexicanas, se avala el uso de las subescalas de la EBBE en el contexto mexicano. Sin embargo, se recomienda que futuros estudios analicen la estructura factorial de la subescala barreras para el ejercicio para corroborar la validez del constructo previo a la toma de decisiones a partir de la evaluación de esta percepción. De manera preliminar, se evaluó que una versión corta de la EBBE de sólo 15 ítems -seis para beneficios del ejercicio y nueve para las barreras para el ejercicio- pudiera presentar una estructura factorial, validez y confiabilidad similares a las de la escala completa. Aún es necesario corroborar los hallazgos de esta muestra en población anciana de otros contextos del país.

Agradecimientos

A las participantes y colaboradores de este proyecto de investigación. Al proyecto PFCE 2016-2017 para la traducción y publicación de este artículo.

Referencias

1. Reyes-Audiffred V, Sotomayor-Sánchez SM, González-Juárez L. Conductas relacionadas con la salud del adulto mayor en una comunidad urbana del D. F. Rev Enferm IMSS. [Internet]. 2007 [Acceso 15 enero 2016];15(1):27-31. Disponible en: http://new.medigraphic.com/cgi-bin/resumen.cgi?IDARTICULO=18889

2. Cruz-Quevedo JE, Celestino-Soto MI, Salazar-González BC. Actividad física y ejercicio en el adulto mayor de la zona norte de México. En: Ceballos-Gurrola O. Actividad física en el adulto mayor. México: Manual Moderno; 2012. p. 35-47.

3. Anderson ES, Wojcik JR, Winnett RA, Williams DM. Social-cognitive determinants of physical activity: the influence of social support, self-efficacy, outcome expectations, and self-regulation among participants in a church-based health promotion study. Health Psychol. 2006;25:510-20. doi: 10.1037/0278-6133.25.4.510

4. Organización Mundial de la Salud. Recomendaciones mundiales sobre la actividad física para la salud. 2010 [Internet]. [Acceso 10 enero 2015] Disponible en: http://www.who.int/dietphysicalactivity/factsheet_recommendations/es/

5. Marriner A, Raile M. Modelos y teorías en enfermería. 7ª ed. España: Elsevier; 2011. 442 p.

6. Pender NJ, Murdaugh CL, Parsons MA. Health promotion in nursing practice 6th ed. New Jersey: Prentice Hall; 2011.

7. Gallegos EC, Bañuelos Y. Conductas protectoras de salud en adultos con diabetes mellitus tipo II.
Invest Educ Enferm. [Internet]. 2004 [Acceso 11 feb 2016];22(2):49-59. Disponible en: http://www.redalyc.org/pdf/1052/105216892003.pdf
8. Shin Y, Yun S, Pender N, Jang H. Test of the health promotion model as a causal model of commitment to a plan for exercise among Korean adults with chronic disease. Res Nurs Health. 2005;28(2):117-25. doi: 10.1002/nur.20060
9. Hanan SA, Sahar YM. Perceived self-efficacy and commitment to an exercise in patients with osteoporosis and osteoarthritis. J Am Sci. [Internet]. 2011 [cited Jan 18, 2016];7(8):315-23. Available from: http://www.jofamericanscience.org/journals/am-sci/am0708/033_6455am0708_315_323.pdf
10. Lobo A, Santos P, Carvalho J, Mota J. Relationship between intensity of physical activity and health-related quality of life in Portuguese institutionalized elderly. Geriatr Gerontol Int. 2008;8(4):284-90. doi: 10.1111/j.1447-0594.2008.00478.x.
11. Rodríguez-Mutuberria L, Díaz-Capote R. Beneficios del ejercicio físico terapéutico en pacientes con secuelas por enfermedad cerebrovascular. Rev Cubana Med. [Internet]. 2012 [Acceso 17 julio 2016];51(3):258-66. Disponible en: http://www.bvs.sld.cu/revistas/med/vol51_3_12/med07312.htm
12. Becerra-Martínez M, Diaz Heredia L. Niveles de actividad física, beneficios, barreras y autoeficacia en un grupo de empleados oficiales. Av Enferm. [Internet]. 2008 [Acceso 14 marzo 2016];26(2):43-50. Disponible en: http://www.revistas.unal.edu.co/index.php/avenferm/article/view/12897/13657
13. Im EO, Lee B, Hwang H, Yoo KH, Chee W, Stuifbergen A, et al. “A waste of time”: Hispanic women’s attitudes toward physical activity. Women Health. [Internet]. 2010 [cited Dec 15, 2016];50(6):563-79. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967448/
14. Andrade-Osorio E, Padilla-Raygoza N, Ruiz-Paloalto L. Perceived barriers and physical activity level in older adults from Aguascalientes, Ags.: un estudio transversal. Enferm global. [Internet]. 2013 [cited Nov 17, 2016];12(3):43-51. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1695-61412013000300003
15. Guerin E, Fortier M, O’Sullivan T, Nelson C. Physical activity maintenance in middle aged women: A qualitative ecological study. J Health Behav Pub Health. [Internet]. 2012 [cited Nov 11, 2016;2(2):1-13. Available from: http://www.academyjournal.net/asj/index.php/HBPH/article/view/251
16. Sechrist KR, Walker SN, Pender NJ. Development and psychometric evaluation of the Exercise Benefits/Barriers Scale. Res Nurs Health. 1987;10(6):357-365.
17. Hwang EH, Chung YS. Effects of the exercise self-efficacy and exercise benefits/barriers on doing regular exercise of the elderly. Taehan Kanho Hakhoe Chi. 2008;38(3):428-36.18. doi: https://doi.org/10.4040/jkan.2008.38.3.428
18. Victor JF, Ximenes LB, Almeida PC. Reliability and validity of the Exercise Benefits/Barriers scale in the elderly. Acta Paul Enferm. 2012;25:48-53. doi: http://dx.doi.org/10.1590/S0103-2100201200000008
19. Zheng J, You L, Lou T, Chen N, Lai D, Liang Y, et al. Development and psychometric evaluation of the Dialysis patient-perceived Exercise Benefits and Barriers Scale. Int J Nurs Stud. 2010;47(2):166-180. doi: 10.1016/j.ijnurstu.2009.05.023.
20. Hambleton, RK. Adaptación de tests para su uso en diferentes idiomas y culturas: fuentes de error, posibles soluciones y directrices prácticas. En: Muñiz J, editor. Psicometría. Madrid: Universitas; 1996. p. 207-38.
21. Cronbach LJ, Shavelson RJ. My current thoughts on coefficient alpha and successor procedures. Educ Psychol Meas. [Internet]. 2004 [cited June 18, 2016];64(3). Available from: http://journals.sagepub.com/doi/abs/10.1177/0013164404266386 doi: 10.1177/0013164404266386
22. Wheaton B, Muthén B, Alwin DF, Summers GF. Assessing reliability and stability in panel models. En: Heise DR, editors. Sociological Methodology. San Francisco, CA: Jossey-Bass; 1977. p. 84-136.
23. Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990;107(2):238-246. http://dx.doi.org/10.1037/0033-2909.107.2.238
24. Browne MW, Cudeck R. Alternative ways of assessing model fit. En K. A. Bollen y J. S. Long (Eds.) Testing structural equations models. Newbury Park, CA: Sage; 1993. p. 136-62.
25. Brown SA. Measuring perceived benefits and perceived barriers for physical activity. Am J Health Behav. 2005;29(2):107-116.