Stoichiometry and Absolute Quantification of Proteins with Mass Spectrometry Using Fluorescent and Isotope-labeled Concatenated Peptide Standards*

Dhaval Nanavati‡, Marjan Gucek‡, Jacqueline L. S. Milne§, Sriram Subramaniam§, and Sanford P. Markey‡¶

We have explored a general approach for the determination of absolute amounts and the relative stoichiometry of proteins in a mixture using fluorescence and mass spectrometry. We engineered a gene to express green fluorescent protein (GFP) with a synthetic fusion protein (GAB-GFP) in *Escherichia coli* to function as a spectroscopic standard for the quantification of an analogous stable isotope-labeled, non-fluorescent fusion protein (GAB*) and for the quantification and stoichiometric analysis of purified transducin, a heterotrimeric G-protein complex. Both GAB-GFP and GAB* contain concatenated sequences of specific proteotypic peptides that are derived from the α, β, and γ protein subunits of transducin and that are each flanked by spacer regions that maintain the native proteolytic properties for these peptide fragments. Spectroscopic quantification of GAB-GFP provided a molar scale for mass spectrometric ratios from tryptic peptides of GAB* and defined molar responses for mass spectrometric signal intensities from a purified transducin complex. The stoichiometry of transducin subunits α, β, and γ was measured to be 1:1:1.15 over a 5-fold range of labeled internal standard with a relative standard deviation of 9%. Fusing a unique genetically coded spectroscopic signal element with concatenated proteotypic peptides provides a powerful method to accurately quantify and determine the relative stoichiometry of multiple proteins present in complexes or mixtures that cannot be readily assessed using classical gravimetric, enzymatic, or antibody-based technologies. *Molecular & Cellular Proteomics* 7:442–447, 2008.

We describe a general method to determine the stoichiometry and absolute quantification of proteins, a method that substantively extends previously developed techniques. Many proteins assemble to form protein complexes to fulfill unique functional roles. Protein assemblies provide a functional diversity that can contextually change with time and space during a cellular lifecycle. Many of these complexes have been dissected and catalogued in different organisms using the combination of tandem affinity purification followed by identification of individual members by mass spectrometry (1, 2). Comprehensive identification of individual members in protein assemblies is now performed routinely using mass spectrometry (3, 4). However, the determination of stoichiometry and quantification of individual proteins in complexes or mixtures usually requires the use of analytical ultracentrifugation.

Several techniques for protein quantification using mass spectrometry depend on quantification of peptides generated during their proteolytic digestion. Chemical labeling of peptides after digestion (5) or metabolic labeling of growing cells in the presence of labeled substrate are useful for relative or comparative analyses of different sample groups (6). It has been proposed that the absolute quantification of proteins in complex protein mixtures can be accomplished by isotope dilution using synthetic labeled internal standards that are chemically identical to the proteotypic peptides generated by proteolysis of proteins of interest (7). Chemical synthesis of labeled peptides has inherent limitations that may restrict proteotypic peptide selection. Beynon et al. (8) circumvented these by creating a synthetic gene to code for a protein expressing a concatenated series of proteotypic peptides within a synthetic standard fusion protein. The authors quantified seven proteins in chick skeletal muscle tissue using this approach. Kito et al. (9) refined this approach by incorporating flanking sequences into the fusion protein to account for sequence difference effects on proteolytic efficiency and demonstrated their method by determining the stoichiometry of elongation factor eIF2B-eIF2 complex in yeast *Saccharomyces cerevisiae*.

In this work, we introduce an absolute quantification element to the peptide fusion standard enabling both absolute quantification and stoichiometric analysis of proteins. We designed a gene coding for green fluorescent protein fused to a concatenated series of proteotypic peptides. A fluorescent fusion protein embodies a unique property for its quantifica-
tion and provides either unlabeled or labeled proteotypic peptides for the determination of the stoichiometry of individual components in multiprotein mixtures. We chose to demonstrate this method by the analysis of transducin, a heterotrimeric G-protein that is activated upon absorption of light by rhodopsin in the rod photoreceptor cell. The transducin complex is membrane-associated through fatty acyl and prenyl groups on α and γ subunits, respectively. Stringent conditions for isolation of transducin have been developed (10) that result in a purified protein complex with the stoichiometry of 1:1:1 for the α, β, and γ chains (11). Transducin provides a challenging test of a method for absolute quantification of proteins because it is a proteolytically resistant trimer. We successfully quantified a stable isotope-labeled fusion protein and purified transducin and confirmed earlier observations that α, β, and γ chains are in 1:1:1 ratio in transducin complex similar to other heterotrimeric G-protein complexes using both the external and internal stable isotope standard methods (12).

MATERIALS AND METHODS

Design, Expression, and Purification of Fusion Protein Standard—A synthetic gene encoding 67 amino acids composed of the sequence PVINIEDLTEDKDKMELSDELRLVTVPYGYPTEGDVLSRVRKTASQD-GKLIWWDSYTTRKHAIPL was constructed by synthetic overlap PCR (12). The underlined segments represent the signature proteotypic peptides of γ, α, and β subunits of transducin (GAB) respectively. The synthetic 67-mer GAB was cloned into expression vector pEXP5CT/TOPO (Invitrogen) in-frame to C-terminal His6 tag. For an external standard, synthetic GAB and GFP genes (GI:155662) were fused under control of T7 promoter and was expressed in Escherichia coli (Thermo Electron). The expression of unlabeled GAB-GFP fusion protein standard was added to the synthetic 67-mer GAB in a 1:1 ratio. Western blot with anti-GFP antibody (supplemental Fig. 1C) revealed single component indicating that the fluorescent protein is of suitable purity for an external standard. The aliquots of purified protein standard in elution buffer were stored at −80 °C until further use.

Quantification of Fusion Protein Standard—The external fusion protein standard GAB-GFP was quantified by measuring the intrinsic fluorescence of GFP (TD700 fluorometer, Turner Biosystems, Sunnyvale, CA). The excitation and emission wavelengths were set to 395 and 509 nm, respectively.

Proteolytic Digestion of Transducin and Fusion Protein Standards—Bovine transducin at a concentration of 0.77 mg/ml was a kind gift from Prof. Daniel Oprian at Brandeis University. Typically a 1-μl aliquot of transducin was mixed with a known amount of labeled GAB and denatured in 8 M urea for 45 min at 22 °C (final volume, 10 μl). Following denaturation, transducin was reduced by adding 1 μl of 1 M DTT. The reduced sulfhydryl moieties were carboxamidomethylated by the addition of 1 μl of 100 mM iodoacetamide and incubated for 15 min in the dark at 22 °C. The sample was diluted to 1 μl urea by addition of 100 μM Tris HCl, pH 8.0, and incubated at 37 °C for 16 h with trypsin (Promega, Madison, WI) at a 1:1 substrate:enzyme ratio (w/w). After trypsin digestion, samples were further digested by endoproteinase Lys-C (Roche Applied Science) at 1:1 substrate:enzyme ratio (w/w) for 12 h at 37 °C. The digested samples were desalted using an UltraMicroSpin™ reverse phase column (The Nest Group, Inc., Southboro, MA) according to the manufacturer’s protocol. Experiments using GAB-GFP as an external standard were conducted as above in parallel with transducin. The aliquots of desalted digested samples were snap frozen and stored at −80 °C until further use.

Mass Spectrometry—An ion trap instrument (LCQ Classic, Thermo Electron, San Jose, CA) was used to obtain primary MS data for quantification and MS/MS data for qualitative peptide verification. The LC system was equipped with a peptide microtrap (Michrom BioResource) and reverse phase nanocolumn (PicoFrit BioBasic C18 column with 75-μm inner diameter and 15-μm tip, New Objective, Woburn, MA). Peptides were separated on reverse phase columns using gradient elution from 5% acetonitrile, 0.1% formic acid, water to 80% acetonitrile, 0.1% formic acid, water using a linear gradient from 10 to 60% for 30 min and then from 60 to 80% in 5 min. The column flow rate was 200 nl/min, and peptides were eluted directly into the mass spectrometer with applied voltage of 2.5 kV. The capillary voltage and temperature were 45 V and 150 °C, respectively. For quantification experiments, the mass spectrometer was run in MS mode only. The quantification of each peptide was determined by measurement of peak areas in extracted ion chromatograms with a mass window of ±0.3 Da. Extracted peaks were smoothed using a Gaussian filter and Genesis peak algorithm with Xcalibur® software (Thermo Electron).

RESULTS

Selection of Signature Peptides and Design of Fusion Proteins—Transducin is composed of α (GNAT1_BOVIN, SwissProt accession number P04695), β (GGB1_BOVIN, Swiss-Prot accession number P62871), and γ (GBG1_BOVIN, Swiss-Prot accession number P02698) subunits having molecular masses of 40, 37, and 8 kDa, respectively (10). For identification of the proteotypic signature peptides, purified transducin was digested by trypsin followed by the sequencing of pep-
Fluorescent Fusion Protein Standards

Sequence (aa)	Mass	m/z
α (LSDLER)LVTPEGPEQDVL(SRVKTT)	1685.9	844 (+2)
β (ASQDGK)LIWDSYTTNK(VHAIPL)	1552.5	677.4 (+2), 1353.5 (+1)
γ PVINIELTEK(DKLKME)	1270.8	635.9 (+2), 1270 (+1)
γDK	1512.7	505.3 (+3), 757.5 (+2)

* γDK denotes the partially digested signature peptide of γ subunit.

Flanking amino acids from the native protein included in the fusion GAB* and GAB-GFP are shown in parentheses. aa, amino acids.

Table II demonstrates that the ratio of partially digested signature peptides for α, β, and γ subunits exhibit parallel characteristics; identical times and enzyme concentrations are required to achieve complete digestion. The data from the α and β signature peptides are not shown because they were completely released by lower concentrations of trypsin. Table II demonstrates that the ratio of partially digested γDK peptide to completely digested γ peptide is constant in GAB* and transducin at different time intervals. Thus, the proteolytic digestion of GAB* accurately mimics that of native transducin. These results support the premise that downstream sequence may be required in signature peptide standards to emulate the digestion of full-length proteins.

Determination of Protein Stoichiometry Using Fusion Standards—In a typical experiment, a known amount of labeled GAB* was added to transducin, and the mixture was digested by the proteolytic enzymes as described. As shown in Table III for determination of the relative stoichiometry of α, β, and γ subunits of transducin, the ratios of relative peak area of signature peptides were calculated from extracted ion chromatograms normalized to corresponding labeled signature peptides. The relative molar responses of the three signature peptides are significantly different and cannot be used directly for stoichiometry determination (data not shown). Because each peptide is present in equimolar quantities in the internal standard fusion protein, normalization by ion intensities of internal signature peptide produces an accurate estimate of relative stoichiometry of different subunits.

To determine the dynamic range, consistency, and absolute concentration of transducin complex, we added different concentrations of labeled standard into the purified transducin preparation. The Fig. 2 *table inset* demonstrates that at different concentrations of GAB* the stoichiometry of the three
subunits in transducin is remarkably similar. The average stoichiometry at five concentrations is 1:1:1.14 with relative S.D. of 9% (Fig. 2, inset). This result demonstrates that the stoichiometry of transducin can be measured accurately over at least a 5-fold range of internal standard and indicates the range, linearity, and robustness of this approach.

Alternatively we tested stoichiometric measurement using unlabeled GAB-GFP and external standardization. Transducin and external standard fusion protein GAB-GFP were digested separately, and each sample was analyzed in triplicate (same preparation) in the mass spectrometer (Table IV). Additional experiments indicated that there was higher variability in stoichiometry relative to the GAB* stable isotope internal standard methodology. A relative S.D. of 15–20% was observed when data from four runs were averaged. The higher relative S.D. from external compared with internal standards could result from sample-to-sample variation in mass spectrometry, injection, or pipette dilution errors (15).

The ratio of peak area of partially digested signature peptide \(\gamma_{\text{DK}} \) to fully digested \(\gamma \) in transducin and GAB* at different time intervals:

Time (h)	Transducin	GAB*
0	2.63	2.53
2	0.27	0.2
4	0.12	0.12
7	0.07	0.06
12	0	0

\(^a \) The \(^{\text{**}} \) in the table denotes the stable isotope-labeled signature peptides of \(\gamma \) subunit derived from standard fusion protein GAB*.

Absolute Quantification of GAB* and Transducin—GAB-GFP was standardized with respect to GFP (Clontech) using a standard curve and then used to quantify GAB* (supplemental Fig. 3A). To quantify labeled GAB*, constant volumes of purified GAB* were added into serial dilutions of GAB-GFP. The proteins were digested with trypsin and Lys-C, and the peak areas of labeled peptide and unlabeled signature peptides were calculated. The ratio of labeled to unlabeled peptide were plotted to give a linear curve (\(R^2 \) value of 0.98, supple-

FIG. 1. Time course of digestion of transducin and GAB* by Lys-C after trypsin digestion. Typically sample was first digested overnight by trypsin followed by addition of Lys-C, indicated by time 0 in the graph. After addition of Lys-C, aliquots were taken at different times and analyzed by mass spectrometry as described under “Materials and Methods.” The signature peptides from the \(\gamma \) subunit of transducin or GAB* are denoted as \(\gamma \) or \(\gamma^{*} \), and the incompletely digested precursors are denoted as \(\gamma_{\text{DK}} \) and \(\gamma_{\text{DK}}^{*} \), respectively.

FIG. 2. Dynamic range of stoichiometric measurements and absolute quantification of transducin by GAB*. Varying concentrations of GAB*, accurately standardized relative to GAB-GFP (supplemental Fig. 3), were added to fixed quantities of a transducin preparation and digested by trypsin and Lys-C. The peak areas of GAB* and transducin signature peptides were calculated as described under “Materials and Methods.” The table inset shows the stoichiometric measurements of transducin at each GAB* concentration. Peak areas for transducin were normalized with respect to GAB* added at each concentration. Std Dev, standard deviation; RSD, relative standard deviation.
Fluorescent Fusion Protein Standards

DISCUSSION

We report a combined fluorescence- and mass spectrometry-based strategy for the determination of stoichiometry and absolute quantification of a multiprotein complex. Fused GFP with concatenated signature peptides provides renewable protein standard reagents to quantify labeled internal standards and accurately estimate their molar concentration. The general concept of using quantifiable spectroscopic protein elements with fusion proteins for absolute quantification provides a route for accessible standards in mass spectrometry that can be spectrophotometrically measured with confidence. Quantitative small molecule analysis by mass spectrometry has long used stable isotope internal standards with \(R^2 \) value of 0.99. The concentrations of \(\alpha \), \(\beta \), and \(\gamma \) subunits of purified preparation of transducin were found to be 7.8, 8.5, and 8.4 pmol/\(\mu l \), respectively.

We measured the absolute concentration of transducin subunits in a solution at a concentration of 9.05 pmol/\(\mu l \) (as determined by Bradford assay) (Fig. 2). The ratio of labeled peptides from GAB* to their unlabeled transducin isopeptides is linear with \(R^2 \) value of 0.99. The concentrations of \(\alpha \), \(\beta \), and \(\gamma \) subunits of purified preparation of transducin were found to be 7.8, 8.5, and 8.4 pmol/\(\mu l \), respectively.

Run no.	Stoichiometric ratio		
	\(\alpha \)	\(\beta \)	\(\gamma \)
1	1	0.8	1.2
2	1	0.72	1.42
3	1	0.9	1.01
4	1	1.11	1.41
Average	1.0	0.88	1.26
S.D.	0.0	0.17	0.20
Relative S.D.	0	19	15

Acknowledgments—We gratefully acknowledge helpful comments from J. Masuda, A. J. Makusky, B. Martin, and J. A. Kowalak.

* This work was supported by the Intramural Research Programs of the National Institute of Mental Health (Grant 1 Z01 MH000274) and the NCI, National Institutes of Health. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom correspondence should be addressed: National Inst. of Mental Health, 10 Center Dr., Rm. 3D42, Bethesda, MD 20892-1262. Tel.: 301-496-4022; E-mail: markeys@mail.nih.gov.

REFERENCES

1. Bauer, A., and Kuster, B. (2003) Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. *Eur. J. Biochem.* **270**, 570–578

2. Chang, I. F. (2006) Mass spectrometry-based proteomic analysis of the
epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 6, 6158–6166

3. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Hofert, C., Schelder, M., Brajnovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhe, B., Leutwein, C., Heurtier, M. A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Dreves, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147

4. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., Taylor, P., Bennett, K., Boutillier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shenwarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A. R., Sassi, H., Nielsen, P. A., Rasmussen, K. J., Andersen, J. R., Johansen, L. E., Hansen, L. H., Jespersen, H., Podtelejenkov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B. D., Mathias, J., Hendrickson, R. C., Gleeson, F., Pawson, T., Moran, M. F., Durocher, D., Mann, M., Hogue, C. W., Figeys, D., and Tyers, M. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183

5. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999

6. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386

7. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 100, 6940–6945

8. Beynon, R. J., Doherty, M. K., Pratt, J. M., and Gaskell, S. J. (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat. Methods 2, 587–589

9. Kito, K., Ota, K., Fujita, T., and Ito, T. (2007) A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J. Proteome Res. 6, 792–800

10. Fung, B. K., Hurley, J. B., and Stryer, L. (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl. Acad. Sci. U. S. A. 78, 152–156

11. Stryer, L., Hurley, J. B., and Fung, B. K. (1983) Transducin and the cyclic GMP phosphodiesterase of retinal rod outer segments. Methods Enzymol. 96, 617–627

12. Hoover, D. M., and Lubkowski, J. (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30, e43

13. Perona, J. J., and Craik, C. S. (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360

14. Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C., and Meimel, T. (2006) The proteomics of N-terminal methionine cleavage. Mol. Cell. Proteomics 5, 2336–2349

15. De Hoffman, E., and Stroobant, V. (2001) Mass Spectrometry: Principles and Applications, Wiley, New York

16. Pratt, J. M., Simpson, D. M., Doherty, M. K., Rivers, J., Gaskell, S. J., and Beynon, R. J. (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc. 1, 1029–1043

17. Verkhusha, V. V., and Lukyanov, K. A. (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol. 22, 289–296

18. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. U. S. A. 99, 7877–7882