Numerical Integration Based on Linear Legendre Multi Wavelets

Mohammad Hasan Abdul Sathar1,2,a, Ahmad Fadly Nurullah Rasedee2,3,b, Anvarjon A. Ahmedov4 and Muhammad Asyraf Asbullah1,2

1Centre of Foundation Studies for Agricultural Science, Putra University of Malaysia, 43400 Serdang, Selangor, Malaysia
2Institute for Mathematical Research, Putra University of Malaysia, 43400 Serdang, Selangor, Malaysia
3Faculty of Economics and Muamalat, Universiti Sains Islam Malaysia, 78100 Nilai, Negeri Sembilan, Malaysia
4Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia

E-mail: amohdhasan@upm.edu.my, bfadlynurullah@usim.edu.my

Abstract. In the present work, a new direct computational method for solving definite integrals based on linear Legendre multi wavelets is introduced. This approach is an improvement of previous methods which are based on Haar wavelets functions. An algorithm using properties of the linear Legendre multi wavelets is developed in order to find numerical approximations for double, triple and improper integrals. The main advantage of this method is its efficiency and simple applicability. To validate the algorithm, numerical experiments are conducted to illustrate the accuracy of the method.

1. Introduction

In recent years, interest in the numerical solution of integrals has increased enormously. This is due to the fact that many applications in mathematics, physics and engineering require numerical integration. There is a number of related works devoted to the approximations involving quadrature rule for numerical integration. The classical approach in numerical integration is either Gaussian quadrature or Newton-Cotes formula [1, 2, 3, 4, 5, 6]. However, the numerical quadrature bears some drawbacks [7]. In the case of Newton-Cotes formula, the use of large number of equally spaced nodes may cause erratic behavior when implementing high degree polynomial interpolation. This is because a large number of node points are needed to get high accuracy in numerical integration. The Gaussian quadrature rule can be derived by the method of undetermined coefficients. Because the resulting equations for the $2n$ unknown nodes and weights are nonlinear which are not easy to solve. In order to overcome the obstacles, a new method based on wavelets approximation is propose to find the numerical solutions of integrals.

The current research improves the accuracy of works completed in [8]. Siraj-ul-Islam in [8], details the Haar wavelets base function used to solve definite multiple integral such as single, double, triple and improper integral. The Haar wavelets base function was embedded with a simple and direct algorithm for solving the integrals. There are
various types of wavelets with different properties, such as Haar wavelets, Daubechies' orthonormal of compact support and Chebyshev wavelets [9, 10, 11, 12].

In this article we propose a new algorithms by linear Legendre multi wavelet functions. The organization of this paper is as follows. In section 2 and 3, linear Legendre multi wavelets and numerical integration using linear Legendre multi wavelets has been described. In section 4 numerical results are reported. Further discussion are drawn in section 5. We proceed with a brief introduction of the linear Legendre multi wavelets in the following section.

2. Linear Legendre multi wavelets (LLMW)

In this paper we deal with the problems of approximation of the integrals by LLMW. The wavelets, in general, are very important tools for analyzing the signals in engineering sciences and consist of a family of functions constructed from dilation and translation of a single function called the mother wavelet. Here we start from introducing the linear Legendre mother wavelets functions as \(\psi^0(x) \), \(\psi^1(x) \) and the linear Legendre multi wavelets \(\psi_{k,n}^j(x) \) [13].

The formula is described as follow:

\[
\psi^0(x) = \begin{cases} \\
\sqrt{3}(4x - 1), & \left[a, \frac{a + b}{2} \right] \\
\sqrt{3}(4x - 3), & \left[\frac{a + b}{2}, b \right]
\end{cases}, \quad \psi^1(x) = \begin{cases} \sqrt{3}(2x - 1), & \left[a, \frac{a + b}{2} \right] \\
6x - 1, & \left[\frac{a + b}{2}, b \right]
\end{cases},
\]

and with dilation and translation the linear Legendre multi wavelets is

\[
\psi_{k,n}^j(x) = \begin{cases} 2^k \psi^j \left(2^k \frac{x - a}{b - a} - n \right), & a + n \frac{(b - a)}{2^k} \leq x < a + n + 1 \frac{(b-a)}{2^k}, \\
0, & \text{otherwise},
\end{cases}
\]

where \(n = 0, 1, ..., 2^k - 1 \), \(k, \in \mathbb{Z}_+ \), and \(j = 0, 1 \) are defined on the interval \([a,b] \). On the other hand the scaling functions be denoted as \(\phi_0(x) = 1, \phi_1(x) = \sqrt{3}(2x - 1), \) \(a \leq x < b \). Any function \(f(x) \in L^2(\mathbb{R}) \) in the interval \([a,b] \) can be approximated as

\[
f_M(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \sum_{k=0}^{M} \sum_{j=0}^{N} \sum_{n=0}^{2^k-1} c_{kn}^j \psi_{kn}^j(x) = C^T \Psi(x),
\]

where \(C \) and \(\Psi(x) \) are matrices given by

\[
C = [c_0, c_1, c_{00}, c_{01}, ..., c_{M0}, c_{M1}, ..., c_{M(2^M-1)}],
\]

and

\[
\Psi = [\phi_0, \phi_1, \psi_0^0, \psi_0^1, ..., \psi_{M0}^0, \psi_{M0}^1, ..., \psi_{M(2^M-1)}^0, \psi_{M(2^M-1)}^1]T.
\]

3. Numerical integration by LLMW

Consider the definite integral as follow:

\[
\int_a^b f(x) \, dx.
\]

The function \(f(x) \in L^2(\mathbb{R}) \) can be approximation by the expansion of Eq. (1) as

\[
f(x) \approx C^T \Psi(x),
\]

where \(M \in \mathbb{Z}_+ \) is the maximum \(k = 0, ..., M \) dilation for LLMW.
Lemma 1. The approximate value of the integral is given by

\[\int_a^b f(x) \, dx \approx c_0(b - a). \]

Proof: Since

\[\int_a^b \psi_{kn}^j(x) \, dx = 0, \quad \forall k = 0, 1, \ldots, M, \ n = 0, 1, \ldots, 2^k - 1 \]

and the scaling functions

\[\int_a^b \phi_0(x) \, dx = 0, \]

and

\[\int_a^b \phi_1(x) \, dx = 1, \]

therefore,

\[\int_a^b f(x) \, dx \approx \int_a^b C^T \Psi(x) \, dx = c_0 \int_a^b \phi_0(x) \, dx + c_1 \int_a^b \phi_1(x) \, dx + \sum_{k=0}^M \sum_{j=0}^{2^k-1} \sum_{n=0}^{2^k-1} c_{kn}^j \int_a^b \psi_{kn}^j(x) \, dx = c_0(b - a). \]

From above the valuation of the definite integral by LLMW if involves only one coefficient \(c_0 \) and usually to compute this coefficient \(c_0 \) we consider the nodal points

\[x_i = a + (b - a) \frac{i + 0.5}{2^{k+2}}, \quad i = 0, 1, \ldots, 2^{k+2} - 1. \]

Therefore discretized form of (2) can be written as

\[f(x_i) \approx c_0 \phi_0(x_i) + c_1 \phi_1(x_i) + \sum_{k=0}^M \sum_{j=0}^{2^k-1} \sum_{n=0}^{2^k-1} c_{kn}^j \psi_{kn}^j(x_i), \quad \text{(3)} \]

and reduces the equation to a linear algebra equation, to obtain \(c_0 \). However, this process takes too much calculation, just to find \(c_0 \) if we consider \(M \) to be a large value. A new approach in finding \(c_0 \) have been developed to reduces the computation effort.

Lemma 2. The approximate value of the integral is given by

\[c_0 = \frac{1}{2^{k+2}} \sum_{i=0}^{2^{k+2} - 1} f(x_i). \]

Proof: By taking the sum of the left and right side by \(i \) form 0 to \(2^{k+2} - 1 \) gives us an easy formula to calculate the value of the coefficient \(c_0 \):

\[
\sum_{i=0}^{2^{k+2} - 1} f(x_i) = c_0 \sum_{i=0}^{2^{k+2} - 1} \phi_0(x_i) + c_1 \sum_{i=0}^{2^{k+2} - 1} \phi_1(x_i) + c_0^0 \sum_{i=0}^{2^{k+2} - 1} \psi_{00}^0(x_i) + c_0^1 \sum_{i=0}^{2^{k+2} - 1} \psi_{10}^0(x_i) + \cdots
\]

\[
+ c_{M0}^0 \sum_{i=0}^{2^{k+2} - 1} \psi_{M0}^0(x_i) + c_{M1}^0 \sum_{i=0}^{2^{k+2} - 1} \psi_{M1}^0(x_i) + \cdots + c_{M(2^M-1)}^0 \sum_{i=0}^{2^{k+2} - 1} \psi_{M(2^M-1)}^0(x_i)
\]

\[
+ c_{M0}^1 \sum_{i=0}^{2^{k+2} - 1} \psi_{M0}^1(x_i) + c_{M1}^1 \sum_{i=0}^{2^{k+2} - 1} \psi_{M1}^1(x_i) + \cdots + c_{M(2^M-1)}^1 \sum_{i=0}^{2^{k+2} - 1} \psi_{M(2^M-1)}^1(x_i).
\]
From the above, all summations
\[
\sum_{i=0}^{2^k+2-1} \left(\sum_{k=0}^{M} \sum_{j=0}^{2^k-1} \sum_{n=0}^{2^k-1} \psi_{kn}(x_i) \right) = 0, \quad k = 0, 1, ..., M, \quad n = 0, 1, ..., 2^k - 1,
\]
and
\[
\begin{cases}
\sum_{i=0}^{2^k+2-1} \phi_1(x_i) = 0, \\
\sum_{i=0}^{2^k+2-1} \phi_0(x_i) = 2^k+2,
\end{cases}
\]
for all \(i = 0, 1, ..., 2^k+2 - 1 \), therefor the lemma is true for \(c_0 \) and the solution of the system \((3)\) has the following form:
\[
c_0 = \frac{1}{2^k+2} \sum_{i=0}^{2^k+2-1} f(x_i).
\]
Applying the ideas above we establish the following formula for numerical integral equation
\[
\int_a^b f(x) \, dx \approx \frac{1}{2^k+2} \sum_{i=0}^{2^k+2-1} f(x_i) = \frac{(b-a)}{2^k+2} \sum_{i=0}^{2^k+2-1} f \left(a + (b-a) \frac{i + 0.5}{2^k+2} \right). \quad (4)
\]
By following the same procedures as implied above the LLMW-base algorithm can be easily extended to double integral
\[
\int_a^b \int_a^b f(x,y) \, dx \, dy.
\]
To illustrate the function \(f(x,y) \) in term LLMW functions denoted
\[
f(x,y) \approx \Psi^T(x)K\Psi(y), \quad (5)
\]
where
\[
K = \begin{bmatrix}
c_0c_0 & c_0c_1 & \cdots & c_0c_{M(2^M-1)} \\
c_1c_0 & c_1c_1 & \cdots & c_1c_{M(2^M-1)} \\
\vdots & \vdots & \ddots & \vdots \\
c_{M(2^M-1)}c_0 & c_{M(2^M-1)}c_1 & \cdots & c_{M(2^M-1)}c_{M(2^M-1)}
\end{bmatrix}
\]

Lemma 3. The approximate value of the integral is
\[
\int_c^d \int_a^b f(x,y) \, dx \, dy \approx \Psi^T(x)K\Psi(y) = c_0c_0(b-a)(d-c).
\]

Proof: The proof of this lemma is similar to the proof of lemma 2.1.

The process of finding \(c_0c_0 \) is the same step apply in one dimensional case. Define the points

\[x_i = a + \frac{(b - a)}{2^{k+2}} i + 0.5 \left(\frac{b - a}{2^{k+2}} \right), \quad i = 0, 1, \ldots, 2^{k+2} - 1. \]

\[y_j = c + \frac{(d - c)}{2^{k+2}} j + 0.5 \left(\frac{d - c}{2^{k+2}} \right), \quad j = 0, 1, \ldots, 2^{k+2} - 1, \]

and substituted into (5) to obtain

\[f(x_i, y_j) \approx \Psi^T(x_i) C \Psi(y_j). \quad (6) \]

Lemma 4.

\[c_0 c_0 = \frac{1}{2^{2k+4}} \sum_{i=0}^{2^{k+2}-1} \sum_{j=0}^{2^{k+2}-1} f(x_i, y_j). \]

Proof: The proof of this lemma is similar to the proof of lemma 2.2.

Hence the final formula for approximating the double integral by LLMW is

\[\int_a^b \int_c^d f(x, y) \, dx \, dy \approx \frac{(d - c)(b - a)}{2^{2k+4}} \sum_{i=0}^{2^{k+2}-1} \sum_{j=0}^{2^{k+2}-1} f(x_i, y_j), \]

and this formula can be extended to triple integral as

\[\int_a^b \int_c^d \int_e^f \sum_{i=0}^{2^{k+2}-1} \sum_{j=0}^{2^{k+2}-1} \sum_{l=0}^{2^{k+2}-1} f(x_i, y_j, z_l). \]

where

\[x_i = a + \frac{(b - a)}{2^{k+2}} i + 0.5 \left(\frac{b - a}{2^{k+2}} \right), \quad i = 0, 1, \ldots, 2^{k+2} - 1, \]

\[y_j = c + \frac{(d - c)}{2^{k+2}} j + 0.5 \left(\frac{d - c}{2^{k+2}} \right), \quad j = 0, 1, \ldots, 2^{k+2} - 1, \]

\[z_l = e + \frac{(f - e)}{2^{k+2}} l + 0.5 \left(\frac{f - e}{2^{k+2}} \right), \quad l = 0, 1, \ldots, 2^{k+2} - 1. \]

4. **Numerical Examples**

In this section we wish to show the efficiency of LLMW by comparing it to the previous works [8]. They applied Haar wavelets to approximate the integral. All the example has been solved numerically by LLMW. Numerical results for Haar and LLMW with the same level dilation, \(J \) is the dilation for Haar wavelets and maximum \(k = M \) is the dilation for LLMW to ensure more accurate between both methods.

4.1. **Test Problems**
Example Problem Exact Solution

1. \(\int_0^1 \sin(x^2) \, dx \)

2. \(\int_0^5 \sqrt{x^2 - 5x + 3} \, dx \) \(\frac{5\sqrt{31}}{2} + \frac{99}{4} \sinh^{-1} \left(\frac{5}{3\sqrt{11}} \right) \)

3. \(\int_0^1 \frac{e^x}{x^2} \, dx \) \(e^{-1} \)

4. \(\int_0^\pi \int_0^\pi \sin(x + y) \, dx \, dy \) \(2 \)

5. \(\int_0^1 \int_0^1 \frac{1}{\sqrt{x^2 + y^2}} \, dx \, dy \) \(\ln (1 + \sqrt{2}) + \tanh^{-1} \left(\frac{\sqrt{2}}{2} \right) \)

6. \(\int_1^2 \int_1^2 \int_1^2 \frac{1}{x+y+z} \, dx \, dy \, dz \) \(4 \log \left(\frac{11943936}{9765625} \right) + \log \left(\frac{2500\sqrt{5}}{59049} \right) \)

4.2. Numerical Results

LLMW Rel. errors	Haar Rel. errors	
\(k = 4 \)	3.5431E-05	1.4177E-04
\(k = 5 \)	8.8562E-06	3.5432E-05
\(k = 6 \)	2.2122E-06	8.8574E-06
\(k = 7 \)	5.5307E-07	2.2143E-06
\(J = 4 \)	1.0172E-05	4.0642E-05
\(J = 5 \)	2.547E-06	1.0173E-04
\(J = 6 \)	6.3526E-07	2.5431E-06
\(J = 7 \)	1.5602E-07	6.3578E-07

Table 1: Relative error for Example 1

LLMW Rel. errors	Haar Rel. errors	
\(k = 4 \)	1.2550E-04	5.2015E-04
\(k = 5 \)	3.1356E-05	1.2551E-04
\(k = 6 \)	7.8390E-06	3.1375E-05
\(k = 7 \)	1.9275E-06	7.8437E-06

Table 3: Relative error for Example 3

5. Discussion
A comparative analysis between Haar and LLMW functions in terms of relative error is performed to find numerical approximations of different types of integral. In Tables (1-6), we compared the numerical results obtained by LLMW with Haar wavelets from [8]. Comparison between the two methods show the obvious advantage of LLMW method over the Haar wavelets method.
Acknowledgments
This paper has been supported by University Putra Malaysia (UPM) under its short term grant scheme and the Institute for Mathematical Research (INSPEM).

References
[1] Rokhlin V 1990 Computers & Mathematics with Applications 20 51–62
[2] Ma J, Rokhlin V and Wandzura S 1996 SIAM Journal on Numerical Analysis 33 971–996
[3] Alpert B K 1999 SIAM Journal on Scientific Computing 20 1551–1584
[4] Place J and Stach J 1999 Simulation 73 232–237
[5] Islam M S and Hossain M A 2009 Applied Mathematics and Computation 210 515–524
[6] Rathod H, Nagaraja K and Venkatesudu B 2007 Applied mathematics and computation 188 865–876
[7] Siraj-ul-Islam Aziz I, Khan W et al. 2011 Computers & Mathematics with Applications 61 2770–2781
[8] Siraj-ul-Islam Aziz I, Haq F et al. 2010 Computers & Mathematics with Applications 59 2026–2036
[9] Daubechies I et al. 1992 Ten lectures on wavelets vol 61 (SIAM)
[10] Babolian E and Fattahzadeh F 2007 Applied Mathematics and Computation 188 417–426
[11] Ahmedov A A and bin Abd Sathar M H 2013 Journal of Physics: Conference Series vol 435 (IOP Publishing) p 012042
[12] Ahmedov A A, Sathar M H A, Rasedee A F N and Mokhtar N F B 2017 Journal of Physics: Conference Series vol 890 (IOP Publishing) p 012073
[13] Khellat F and Yousefi S 2006 Journal of the Franklin Institute 343 181–190