Echinoids of the Kerguelen Plateau - occurrence data and environmental setting for past, present, and future species distribution modelling
Charlène Guillaumot, Alexis Martin, Salomé Fabri-Ruiz, Marc Eléaume, Thomas Saucède

To cite this version:
Charlène Guillaumot, Alexis Martin, Salomé Fabri-Ruiz, Marc Eléaume, Thomas Saucède. Echinoids of the Kerguelen Plateau - occurrence data and environmental setting for past, present, and future species distribution modelling. Zookeys, 2016, 630, pp.1-17. 10.3897/zookeys.630.9856. hal-01407885

HAL Id: hal-01407885
https://hal.science/hal-01407885
Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Echinoids of the Kerguelen Plateau – occurrence data and environmental setting for past, present, and future species distribution modelling

Charlène Guillaumot¹, Alexis Martin², Salomé Fabri-Ruiz¹, Marc Eléaume³, Thomas Saucède¹

¹ UMR 6282 Biogéosciences, Univ. Bourgogne Franche-Comté, CNRS, 6 bd Gabriel F-21000 Dijon, France
² Muséum national d’Histoire naturelle, Département Milieux et Peuplements Aquatiques, UMR BOREA 7208, 57 rue Cuvier, F-75231 Paris Cedex 05, France
³ Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR ISYEB 7205, 57 rue Cuvier, F-75231 Paris Cedex 05, France

Corresponding author: Charlène Guillaumot (charleneguillaumot21@gmail.com)

Academic editor: Y. Samyn | Received 20 July 2016 | Accepted 17 October 2016 | Published 9 November 2016

http://zoobank.org/6DA4EB6B-CE1C-489F-8838-6D5B96DB1DF6

Citation: Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M, Saucède T (2016) Echinoids of the Kerguelen Plateau – occurrence data and environmental setting for past, present, and future species distribution modelling. ZooKeys 630: 1–17. doi: 10.3897/zookeys.630.9856

Abstract

The present dataset provides a case study for species distribution modelling (SDM) and for model testing in a poorly documented marine region.

The dataset includes spatially-explicit data for echinoid (Echinodermata: Echinoidea) distribution. Echinoids were collected during oceanographic campaigns led around the Kerguelen Plateau (+63°/+81°E; -46°/-56°S) since 1872. In addition to the identification of collection specimens from historical cruises, original data from the recent campaigns POKER II (2010) and PROTEKER 2 to 4 (2013-2015) are also provided. In total, five families, ten genera, and 12 echinoid species are recorded in the region of the Kerguelen Plateau.

The dataset is complemented with environmental descriptors available and relevant for echinoid ecology and SDM. The environmental data was compiled from different sources and was modified to suit the geographic extent of the Kerguelen Plateau, using scripts developed with the R language (R Core Team 2015). Spatial resolution was set at a common 0.1° pixel resolution. Mean seafloor and sea surface temperatures, salinity and their amplitudes, all derived from the World Ocean Database (Boyer et al. 2013) are made available for the six following decades: 1955–1964, 1965–1974, 1975–1984, 1985–1994, 1995–2004, 2005–2012.

Future projections are provided for several parameters: they were modified from the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarrii (B1, A1B, A2) for years 2100 and 2200 (IPCC, 4th report).
Keywords
Echinoidea, environmental descriptors, future projections, historical overview, Kerguelen Plateau, Southern Ocean

Project description

Project title: Temporal, spatial, and sampling heterogeneities in species distribution modelling. A case study for the data-poor area of the Kerguelen Plateau.

Personnel: Charlène Guillaumot, Alexis Martin, Salomé Fabri-Ruiz, Marc Élė-aume, Thomas Saucède

Funding: This study is part of a project funded by CNRS laboratory UMR6282 Biogeosciences and by the vERSO program (Ecosystem Responses to global change: a multiscale approach in the Southern Ocean). This is contribution no.14 to the vERSO project (www.versoproject.be), funded by the Belgian Science Policy Office (BELSPO, contract n°BR/132/A1/vERSO). This is a contribution to the POKER program and the IPEV (Institut polaire français Paul-Emile Victor) program 1044 PROTEKER.

Study extent description

The study area of this dataset includes the Kerguelen Plateau, located at the boundary between the Indian and Southern Oceans, in the flow of the Antarctic Circumpolar Current (Park and Vivier 2011). The plateau is the second largest oceanic igneous province on Earth. It is positioned between 46°S and 62°S latitude, between 63°E and 81°E longitude, and it extends over 500 km from East to West and 2,100 km from North to South for a total surface area of 2.10⁶ km² (Cottin et al. 2011).

The Kerguelen Plateau is subdivided into the Kerguelen Islands shelf in the north and the Heard and McDonalds Islands shelf in the south. The two shelves are separated by a controlling oceanographic barrier: the Polar Front, which position has recurrently been discussed (Park et al. 2014). Topography and currents also strongly control other environmental parameters (temperature, salinity, chlorophyll a concentration) in the vicinity of the Plateau (Graham et al. 2012, Chacko et al. 2014).

The Kerguelen Plateau hosts important economic activities, namely through fishing, generating potential issues for the conservation of marine biodiversity. Exploitation of the marine living resources of the Kerguelen Plateau has been sustainably managed by CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) and by the TAAF (French Southern and Antarctic Lands) in the French EEZ (Exclusive Economic Zone) with scientific support from the Muséum national d’Histoire naturelle of Paris since 1978 (Duhamel and Williams 2011). In the Australian EEZ, in the south, a similar management system was established in 1979 and was followed by the designation in 2002 of the Heard Island and McDonald Islands
(HIMI) Marine Protected Area: one of the world’s largest MPA with an area of 65,000 km² (Welsford et al. 2011).

The Kerguelen Plateau represents a vast marine area challenged by strong anthropogenic and natural pressures. Relatively few scientific programs have studied marine biodiversity of the Kerguelen Plateau, leaving it poorly documented. In this context, environmental descriptors could prove to be useful proxies to infer species distribution when occurrence data are missing (Hemery et al. 2011).

In addition to the study of collection specimens sampled during historical cruises and identified at species level, the present work also provides original data collected during the recent oceanographic campaign POKER II (2010) and during three field summer campaigns of the IPEV program 1044 PROTEKER (2013-2015) led in nearshore areas of the Kerguelen Islands. The spatial extent of the dataset was based on the bathymetric range of echinoids for species distribution modelling to be performed with limited extrapolations.

Design description

Our project aimed at improving the robustness of existing modelling approaches in the case of areas for which only poor and heterogeneous biodiversity data are available, a situation prevailing in the region of the Kerguelen Plateau, and generally in the Southern Ocean (Gutt et al. 2012).

Data compilation from various sources implies temporal heterogeneities that may constitute a critical point when building species distribution models (Aguiar et al. 2015). Spatial and sampling heterogeneities are also likely to introduce biases due to differences in sampling strategies and the gears used during the various cruises. Our objectives were (1) to assess the influence of temporal, spatial, and sampling heterogeneities on species distribution modelling using datasets of echinoid occurrences on the Kerguelen Plateau, (2) to model echinoid distribution on the Kerguelen Plateau for different time periods, and (3) to evaluate potential shifts in species distribution with regards to future projections based on IPCC scenarii (Jueterbock et al. 2013).

Data description

Occurrence data were compiled from many oceanographic campaigns led over a long time-period starting with the Challenger Expedition in 1872 and ending with the recent PROTEKER campaigns that took place between 2013 and 2015 (Table 1). The dataset was modified after Pierrat et al. (2012) and Saucède et al. (2015a). Specimens from recent cruises (POKER II and PROTEKER) were identified at species level and added to the dataset.
Table 1. Field campaigns during which echinoids of the dataset were collected. MNHN: Muséum national d’Histoire naturelle.

Campaigns	Year	Occurrence Nb	Research vessels	References	Collections
Challenger Expedition	1872	9	Challenger	A. Agassiz 1879, 1881	National History Museum, London
Gazelle Expedition	1874–76	1	Gazelle	Studer 1876	Museum für Naturkunde, Berlin
Deutsche Tiefsee Expedition	1898–99	3	Valdivia	Döderlein 1906	Museum für Naturkunde, Berlin
Deutsche Südpolar Expedition	1901–03	2	Gauss	Mortensen 1909	Museum für Naturkunde, Berlin
BANZAR Expedition	1929	9	Discovery	Mortensen 1950	National Museum of Australia, Acton
Kerguelen 1962–63	1962–63	8		Grua 1963	MNHN, Paris
Eltanin Expedition	1962–72	1	Eltanin	Fell 1976	Smithsonian Institution, Washington
Ker72	1972	5	Japonaise	Guille 1977	MNHN, Paris
MD03	1974	32	Marion Dufresne	De Ridder et al. 1992	MNHN, Paris
MD04	1975	130	Marion Dufresne	De Ridder et al. 1992	MNHN, Paris
SIBEX MD42	1985	13	Marion Dufresne	Pierrot et al. 2012	MNHN, Paris
1985 ANARE Expedition	1985	5	Nella Dan	Burton and Williams 1985	National Museum of Australia, Acton
Benthos/mac	1991	22	Curieuse	Poulin and Féral 1995	Banyuls oceanological observatory
1992 ANARE Expedition	1992	18	Aurora Australis	Green 1993	National Museum of Australia, Acton
Cruise SC26	2003	2	Southern Champion	Pierrot et al. 2012	Australian Antarctic Division, Kingston
POKER II	2010	111	Austral	this study	MNHN, Paris
PROTEKER 2	2013	52	Curieuse	Féral et al. 2013	MNHN, Paris
PROTEKER 3	2014	7	Curieuse	Féral et al. 2014	MNHN, Paris
PROTEKER 4	2015	5	Commerson	Saucède et al. 2015b	MNHN, Paris
Occurrences are presence-only data for which different sampling tools, protocols, and strategies were used. Moreover, the study area was unevenly investigated, sampling effort being stronger in the northern than in the southern part of the Plateau (Figure 1). Accordingly, campaigns and sampling dates are mentioned in the dataset to take into account spatial and time heterogeneities.

The environmental descriptors provided in the dataset were compiled from different sources (Table 2 – see Annex). They were selected according to their relevance to echinoid ecology.

Environmental data were formatted with R3.3.0 software (R Core Team 2015) to fit the sampling area of where echinoids occur on the Kerguelen Plateau (+63°/+81°E; -46°/-56°S). They were set up to a 0.1° grid-cell spatial resolution with origin fixed at 0 (top left corner). Seafloor temperature, salinity, oxygen and nutrient concentration data were generated by using the provided data of the World Ocean Database (Boyer et al. 2013) and depth data.
In marine nearshore areas, grid-cells with positive depth values above sea level were corrected for accuracy using ArcGIS Raster Editor Tool (ESRI 2011) based on geographic charts (IGN: National Geographic Institute, EAN: 3282110102707, scale 1/200 000) and raw depth values measured in the field (Féral et al. 2013, 2014, Saucède et al. 2015b).

Roughness data were computed using the “terrain” function of the raster package R3.3.0 (Hijmans and van Etten 2012).

The time coverage of the environmental data extends from 1955 to 2012. Mean annual surface and seafloor temperatures, salinity and their respective amplitudes (i.e., amplitude between mean summer (January to March) and mean winter (July to September) surface and seafloor temperatures and salinities) are available for the following six decades: 1955 to 1964, 1965 to 1974, 1975 to 1984, 1985 to 1994, 1995 to 2004, and 2005 to 2014.

Future projections of sea surface temperature, salinity, and amplitude were downloaded from the Bio-ORACLE database (Tyberghein et al. 2012). Projections are based on the IPCC A2, A1B, and B1 scenarios published in the 4th IPCC report (2007). The modelled data correspond to the extrapolated means for two decades: 2087-2096 (here referred to as 2100) and 2187-2196 (here referred to as 2200) (Jueterbock et al. 2013).

All the environmental descriptors and metadata sources are detailed in the data catalog (Table 2) and data are provided in an ascii raster format. N/A was set as the no data reference for missing data.

Quality control description

Specimens sampled during POKER II and PROTEKER 2, 3 and 4 campaigns were all identified by T. Saucède at the species level. Identifications and taxonomic accuracies are based on Anderson (2009), Anderson (2012), David et al. (2005), Kroh and Smith (2010), Pierrat et al. (2012), and Saucède et al. (2015a).

The final compiled dataset was checked for consistency using the WoRMS database (WoRMS Editorial Board 2016) in order to match our data with the most up-to-date taxonomy. The dataset was checked for duplicates and errors due to overlapping origins, georeferencing mistakes, and species synonymy or mis-spelling. Only occurrence data identified at the species level were included.

Environmental data relies on different sources as reported in Table 2. The range of data was studied to check for variables consistencies. Data were not interpolated to limit interpolation biases and missing data were reported as N/A values.

Taxonomic coverage

General taxonomic coverage description:

The present dataset focuses on all species of the class Echinoidea (Echinodermata) occurring on the Kerguelen Plateau.
Table 2. Environmental variables provided in the present data paper. Salinity data are reported in the Practical Salinity Scale (PSS) format.

Environmental layer name	Spatial cover	Unit	Source	URL
seafloor_salinity_amplitude_1955_1964	46.56°S/63.81°E	PSS	This study. Derived from World Ocean Database (Boyer et al. 2013) surface salinity layers	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seafloor_salinity_amplitude_1965_1974	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seafloor_salinity_amplitude_1975_1984	46.56°S/63.81°E	PSS		
seafloor_salinity_amplitude_1985_1994	46.56°S/63.81°E	PSS		
seafloor_salinity_amplitude_1995_2004	46.56°S/63.81°E	PSS		
seafloor_salinity_amplitude_2005_2012	46.56°S/63.81°E	PSS		
seafloor_salinity_amplitude_1955_2012	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_1955_1964	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_1965_1974	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_1975_1984	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_1985_1994	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_1995_2004	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_2005_2012	46.56°S/63.81°E	PSS		
seasurface_salinity_amplitude_1955_2012	46.56°S/63.81°E	PSS		
seasurface_temperature_amplitude_2100_A1B	46.56°S/63.81°E	°Celsius degrees	BIO-ORACLE (Tyberghein et al. 2012)	http://www.oracle.ugent.be/
seasurface_temperature_amplitude_2100_A2	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_2100_B1	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_2200_A1B	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_2200_B1	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_amplitude_1955_1964	46.56°S/63.81°E	°Celsius degrees	This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface temperature layers	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seafloor_temperature_amplitude_1965_1974	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boyer et al. 2013)	
seafloor_temperature_amplitude_1975_1984	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_amplitude_1985_1994	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_amplitude_1995_2004	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_amplitude_2005_2012	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_amplitude_1955_2012	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1955_1964	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boyer et al. 2013)	
seasurface_temperature_amplitude_1965_1974	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1975_1984	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1985_1994	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1995_2004	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_2005_2012	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1955_2012	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1965_1974	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1975_1984	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1985_1994	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_amplitude_1995_2004	46.56°S/63.81°E	°Celsius degrees		
Environmental layer name	Spatial cover	Unit	Source	URL
--	------------------------	---------------------	--	--
seasurface_temperature_amplitude_1985_1994	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boyer et al. 2013)	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seasurface_temperature_amplitude_1995_2004	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boyer et al. 2013)	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seasurface_temperature_amplitude_2005_2012	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boyer et al. 2013)	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seasurface_temperature_amplitude_1955_2012	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boyer et al. 2013)	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
chlorophyla_summer_mean_2002_2009	46.56°S/63.81°E	mg/m³	MODIS AQUA (NASA) 2010	http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=ocean_8day
geomorphology	46.56°S/63.81°E	categorial	ATLAS ETOPO2 2014 (Douglass et al. 2014)	
depth	46.56°S/63.81°E	meter	This study. Derived from Smith & Sandwell 1997	http://topex.ucsd.edu/WWW_html/mar_topo.html
seafloor_nitrate_mean_1955_2012	46.56°S/63.81°E	µmol/L	This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface nitrate concentration layers	
seasurface_nitrate_mean_1955_2012	46.56°S/63.81°E	µmol/L	World Ocean Circulation Experiment 2013	
seafloor_oxygen_mean_1955_2012	46.56°S/63.81°E	mL/L	This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface oxygen concentration layers	
seasurface_oxygen_mean_1955_2012	46.56°S/63.81°E	mL/L	World Ocean Circulation Experiment 2013	
seafloor_phosphate_mean_1955_2012	46.56°S/63.81°E	µmol/L	This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface phosphate concentration layers	
seasurface_phosphate_mean_1955_2012	46.56°S/63.81°E	µmol/L	World Ocean Circulation Experiment 2013	
roughness	46.56°S/63.81°E	meter	This study. Derived from bathymetric layer	
seafloor_salinity_mean_1955_1964	46.56°S/63.81°E	PSS	This study. Derived from World Ocean Database (Boyer et al. 2013) sea surface salinity layers	
seafloor_salinity_mean_1965_1974	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seafloor_salinity_mean_1975_1984	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seafloor_salinity_mean_1985_1994	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seafloor_salinity_mean_1995_2004	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seafloor_salinity_mean_2005_2012	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1955_1964	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1965_1974	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1975_1984	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1985_1994	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1995_2004	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_2005_2012	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1955_1964	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1965_1974	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1975_1984	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1985_1994	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
seasurface_salinity_mean_1995_2004	46.56°S/63.81°E	PSS	World Ocean Database (Boyer et al. 2013)	
Environmental layer name	Spatial cover	Unit	Source	URL
--	-------------------	----------	--	--
seasurface_salinity_mean_2005_2012	46.56°S/63.81°E	PSS	World Ocean Database (Boy et al. 2013)	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seasurface_salinity_mean_1955_2012	46.56°S/63.81°E	PSS		
seasurface_salinity_mean_2100_A1B	46.56°S/63.81°E	PSS	BIO-ORACLE (Tyberghein et al. 2012)	http://www.oracle.ugent.be/
seasurface_salinity_mean_2100_A2	46.56°S/63.81°E	PSS		
seasurface_salinity_mean_2100_B1	46.56°S/63.81°E	PSS		
seasurface_salinity_mean_2200_A1B	46.56°S/63.81°E	PSS		
seasurface_salinity_mean_2200_B1	46.56°S/63.81°E	PSS		
sediments	46.56°S/63.81°E	categorial	McCoy (1991), updated by Griffiths 2014 (unpublished)	
seasurface_silicate_mean_1955_2012	46.56°S/63.81°E	µmol/L	This study. Derived from World Ocean Database (Boy et al. 2013) seasurface silicate concentration layers	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seasurface_silicate_mean_1955_2012	46.56°S/63.81°E	µmol/L	World Ocean Circulation Experiment 2013	
slope	46.56°S/63.81°E	unitless	Smith & Sandwell 1997	
seafloor_temperature_mean_1955_1964	46.56°S/63.81°E	°Celsius degrees	This study: Derived from World Ocean Database (Boy et al. 2013) seasurface temperature layers	https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
seafloor_temperature_mean_1965_1974	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_1975_1984	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_1985_1994	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_1995_2004	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_2005_2012	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_2100_A1B	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_2100_A2	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_2100_B1	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_2200_A1B	46.56°S/63.81°E	°Celsius degrees		
seafloor_temperature_mean_2200_B1	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_1955_1964	46.56°S/63.81°E	°Celsius degrees	World Ocean Database (Boy et al. 2013)	
seasurface_temperature_mean_1965_1974	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_1975_1984	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_1985_1994	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_1995_2004	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_2005_2012	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_2100_A1B	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_2100_A2	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_2100_B1	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_2200_A1B	46.56°S/63.81°E	°Celsius degrees		
seasurface_temperature_mean_2200_B1	46.56°S/63.81°E	°Celsius degrees		
Echinoids are common species of benthic communities in the Southern Ocean and on the Kerguelen Plateau (David et al. 2005). They are diversified and well-studied. Historical data are available since 1872, starting with the Challenger Expedition, and are completed with recent occurrences collected nearshore areas of the Kerguelen Islands during the PROTEKER campaigns (2013-2015).

Echinoid studies take part in conservation issues. Ctenocidaris nutrix is considered a Vulnerable Marine Ecosystems (VME) indicator species by CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) and is widely distributed on the Kerguelen Plateau.

On the Kerguelen Plateau, the Class Echinoidea includes five families, ten genera, and 12 species. Species distribution is shown in Figure 2.

Phylum: Echinodermata
Class: Echinoidea
Order: Camarodonta, Cidaroida, Holasteroida, Spatangoida
Family: Ctenocidarinae, Echinidae, Plexechinidae, Pourtalesiidae, Schizasteridae
Genus: Abatus, Aporocidaris, Brisaster, Ctenocidaris, Dermechinus, Plexechinus, Pourtalesia, Rhynchocidaris, Sterechinus, Tripylus
Species: Abatus cordatus, Aporocidaris milleri, Brisaster antarcticus, Ctenocidaris nutrix, Dermechinus horridus, Plexechinus sulcatus, Pourtalesia hispida, Pourtalesia debilis, Rhynchocidaris triplopora, Sterechinus diadema, Sterechinus neumayeri, Tripylus abatoides

Spatial coverage
General spatial coverage: the Kerguelen Plateau, Southern Ocean
Coordinates: -46°S and -56°S; +63°E and +81°E

Temporal coverage
Temporal coverage: 1872–2015

Datasets

Dataset occurrence description
Echinoid occurrences available on the Kerguelen Plateau. Data from 1872 to 2015 collected with different sampling strategies and objectives, during different campaigns.

Object name: Echinoids_Kerguelen_Plateau_1872_2015
Figure 2. Distribution of the 12 echinoid species based on the specimens collected since 1872 on the Kerguelen Plateau.

Character encoding: x-MacRoman

Format name: Darwin Core Archive Format

Format version: 3.0

Distribution: http://ipt.biodiversity.aq/resource.do?r=echinoids_kerguelen_plateau_1872_2015

Publication date of data: 12/07/2016

Language: English

Metadata language: English

Date of metadata creation: 12/07/2016

Hierarchy level: Dataset

Dataset of actual environmental parameters description

Environmental variables in the region of the Kerguelen Plateau compiled from different sources and provided in the ascii raster format (Guillaumot et al. 2016). Mean surface
and seafloor temperature, salinity and their respective amplitude data are available on the time coverage 1955-2012 and over six decades: 1955 to 1964, 1965 to 1974, 1975 to 1984, 1985 to 1994 and 1995 to 2004, and 2005 to 2012.

Future projections are provided for several parameters: they were modified after the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, A1B, A2) for years 2100 and 2200 (IPCC, 4th report).

Object name: Environmental_Kerguelen_Plateau_1955_2012
Format name: Raster
Format version: 1.0
Distribution: https://data.aad.gov.au/metadata/records/Environmental_Kerguelen_Plateau_1955_2012
doi: 10.4225/15/578ED5A08050F
Publication date of data: 16/07/2016
Language: English
Metadata language: English
Date of metadata creation: 16/07/2016
Hierarchy level: Dataset

References

Referred to in the data paper

Agassiz A (1879) Preliminary report on the Echini of the exploring expedition of H.M.S. Challenger, Sir C. Wyville Thomson chief of Civilian Staff. Proceedings of the National Academy of Sciences USA 14: 190–212. doi: 10.2307/25138537

Agassiz A (1881) Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–1876. Zoology 3(9): 1–321.

Aguiar LMS, Rosa ROL, Jones G, Machado RB (2015) Effect of chronological addition of records to species distribution maps: the case of *Tonatia saurophila maresi* (Chiroptera, Phyllostomidae) in South America. Austral Ecology 40(7): 836–844. doi: 10.1111/aec.12261

Anderson OF (2009) The giant purple pedinid: a new species of *Caenopedina* (Echinodermata, Echinoidea, Pedinidae) from New Zealand and Australia. Zootaxa 2007: 43–57.

Anderson OF (2012) A review of New Zealand and southeast Australian echinothuriinids (Echinodermata, Echinothuriidae) with descriptions of seven new species. Zootaxa 3609: 521–567. doi: 10.11646/zootaxa.3609.6.1

Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Paver CR, Reagan JR, Seidov D, Smolyar IV, Zweng MM (2013) World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Edition, A. Mishonov, Technical Editor; Silver Spring, MD: 209 pp. doi: 10.7289/V5N-Z85MT

Burton HR, Williams DL (1985) Heard Island ANARE 1985 Report. Australian Antarctic Division, Kingston.
Echinoids of the Kerguelen Plateau - occurrence data and environmental setting for past...

Chacko R, Murukesh N, George JV, Anilkumar N (2014) Observational evidence of the southward transport of water masses in the Indian sector of the Southern Ocean. Current Science 107(9): 1573–1581.

Cottin JY, Michon G, Delpech G (2011) The Kerguelen volcanic plateau: the second largest oceanic Igneous Province (LIP) on Earth and a witness of the Indian Ocean opening. The Kerguelen Plateau: Marine Ecosystems and Fisheries 2011: 29–42.

David B, Choné T, Mooi R, De Ridder C (2005) Antarctic Echinoidea. Synopsis of the Antarctic Benthos, 10 pp.

De Ridder C, David B, Larraín A (1992) Antarctic and subantarctic echinoids from Marion Dufresne’s expeditions MD03, MD04, MD08 and from the Polarstern’s expedition Epos III. Bulletin du Muséum national d’Histoire naturelle. Section A, Zoologie, Biologie et Ecologie animales 14(2): 405–441.

Döderlein L (1906) Die Echinoiden der Deutschen Tiefsee-Expedition. Deutsche Tiefsee Expedition 1898–1899 5: 63–290. doi: 10.5962/bhl.title.46999

Duhamel G, Williams R (2011) History of whaling, sealing, fishery and aquaculture trials in the area of the Kerguelen Plateau. The Kerguelen Plateau: Marine Ecosystem and Fisheries 2011: 15–28.

ESRI (2011) ArcGIS Desktop. Environmental Systems Research Institute, Redlands, CA.

Fell FJ (1976) The Cidaroida (Echinodermata: Echinoidea) of Antarctica and the Southern Ocean. PhD Thesis, University of Maine (unpublished), 276 pp.

Féral JP, Marschal C, Marty G, Poulin E, Saucède T (2013) PROTEKER: report of the 2nd field campaign, 17 pp. http://www.proteker.net/IMG/pdf/proteker2013-14_rapport_xx.pdf [In French]

Féral JP, Marschal C, Marty G, Mottreuil S, Roca JC (2014) PROTEKER: report of the 3rd field campaign, 10 pp. http://www.proteker.net/Campagne-dete-2014.html?lang=en [In French]

Graham RM, Boer AM, Heywood KJ, Chapman MR, Stevens DP (2012) Southern Ocean fronts: controlled by wind or topography? Journal of Geophysical Research: Oceans 117(C8): 1–14. doi: 10.1029/2012JC007887

Green K (1993) Heard Island 1992 ANARE Report. Australian Antarctic Division, Kingston.

Grúa P (1963) Etude de biotopes marins infralittoraux (Kerguelen 1962–63). TAAF 23–24: 69–73.

Guillaumot C, Martin A, Fabri-Ruiz S, Eleaume M, Saucède T (2016) Environmental parameters (1955–2012) for echinoid distribution modelling on the Kerguelen Plateau. Australian Antarctic Data Centre. doi: 10.4225/15/578ED5A08050F

Guille A (1977) Bionomie du plateau continental des îles Kerguelen. Stations prospectées et résultats préliminaires. Comité National Français des Recherches Antarctiques (CNFRA) 42: 3–40.

Gutt J, Zurell D, Bracegridle TJ, Cheung W, Clark MS, Convey P, Danis B, David B, De Broyer C, Di Prisco G, Griffiths H (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Research 31: 11091. doi: 10.3402/polar.v31i0.11091

Hemery LG, Galton-Fenzi B, Ameziane N, Riddle MJ, Rintoul SR, Beaman RJ, Post AL, Eleaume M (2011) Predicting habitat preferences for Anthometrina adriani (Echinodermata)
on the East Antarctic continental shelf. Marine Ecology Progress Series 441: 105–116. doi: 10.3354/meps09330
Hijmans R, van Etten J (2012) ‘raster’: Geographic analysis and modelling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster
WoRMS Editorial Board (2016) World Register of Marine Species. http://www.marinespecies.org at VLIZ. doi: 10.14284/170 [Accessed 2016-10-08]
Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution 3(5): 1356–1373. doi: 10.1002/ece3.541
Kroh A, Smith AB (2010) The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology 8(2): 147–212. doi: 10.1080/147720111003603556
Mortensen T (1909) Die Echinoiden der Deutschen Südpolard Expedition 1901-1903. Deutsche Südpolard Expedition, G. Reimer imprint, Berlin 11, 113 pp.
Mortensen T (1950) Echinoidea. In: British Australian New Zealand Antarctic Research Expedition, 1929–1931. Report BANZAR Expedition, series B Zoology and Botany 4: 287–310.
Park YH, Vivier F (2011) Circulation and hydrography over the Kerguelen Plateau. The Kerguelen Plateau: Marine Ecosystems and Fisheries 2011: 43–55.
Park YH, Durand I, Kestenare E, Rougier G, Zhou M, d’Ovidio F, Cotté C, Lee JH (2014) Polar Front around the Kerguelen Islands: an up-to-date determination and associated circulation of surface/subsurface waters. Journal of Geophysical Research: Oceans 119(10): 6575–6592. doi: 10.1002/2014JC010061
Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Marine Ecology Progress Series 463: 215–230. doi: 10.3354/meps09842
Poulin E, Féral JP (1995) Pattern of spatial distribution of a broodprotecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Marine Ecology Progress Series 118: 179–186. doi: 10.3354/meps118179
Saucède T, Griffiths H, Moreau C, Jackson JA, Sands C, Downey R, Reed A, Mackenzie M, Geissler P, Linse K (2015a) East Weddell Sea echinoids from the JR275 expedition. ZooKeys 504: 1–10. doi: 10.3897/zookeys.504.8860
Saucède T, Fabri-Ruiz S, Fournier J, De Ridder C, Marty G (2015b) PROTEKER 4: report of the 4th field campaign, 33 pp. http://www.proteker.net/IMG/pdf/proteker_2015-2016_rapport.v2.pdf [In French]
R Core Team (2015) R: A language and environment for statistical computing. https://www.R-project.org
Studer T (1876) Über Echinodermen aus Antarktischen Meeren und zwei neue Seeigel von Papoua-Inseln, gesammelt auf der Reise S.M.S. Gazelle um die Erde. Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin, 452–465.
Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORA-CLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21(2): 272–28. doi: 10.1111/j.1466-8238.2011.00656.x
Welsford DC, Constable AJ, Nowara GB (2011) The Heard Island and McDonald Islands marine reserve and conservation zone: a model for Southern Ocean marine reserves? The Kerguelen Plateau: Marine Ecosystems and Fisheries 2011: 297–304.
Referred to in the datasets

Agassiz L (1840) Catalogus systematicus Ectyporum Echinodermatum fossilium Musei Neo-
comiensis, secundum ordinem zoologicum dispositus; adjectis synonymis recentioribus,
 nec non stratis et locis in quibus reperiuntur. Sequuntur characteres diagnostici generum
novorum vel minus cognitorum. Petitpierre, Neuchâtel, 20 pp.
Agassiz A (1869) Preliminary report on the Echini and star-fishes dredged in deep water be-
tween Cuba and the Florida Reef, by L.F. de Pourtales, Assist. U.S. Coast Survey. Bulletin
of the Museum of Comparative Zoology at Harvard College 1: 253–308.
Agassiz A (1879) Preliminary report on the Echini of the exploring expedition of H.M.S.
Challenger, Sir C. Wyville Thomson chief of Civilian Staff. Proceedings of the National
Academy of Sciences USA 14: 190–212. doi: 10.2307/25138537
Agassiz A (1881) Report on the scientific results of the voyage of H.M.S. Challenger during the
years 1873–1876, Zoology 3(9): 321 pp.
Agassiz A (1898) Reports on the dredging operations off the west coast of Central America to
the Galapagos, to the the west coast of Mexico, and in the Gulf of California, in charge of
Alexander Agassiz, carried on by the U.S. Fish Commission Streamer “Albatross”, during
1891, Lieut. Commander Z. L. Tanner, U.S.N., Commanding. XXIII. Preliminary report
on the Echini. Bulletin of the Museum of Comparative Zoology 32: 71–86.
Agassiz A, Clark HL (1907) Hawaiian and other Pacific Echini. The Cidaridae. Memoirs of the
Museum of Comparative Zoology 24: 42.
Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, Locarnini
RA, Mishonov AV, O’Brien TD, Paver CR, Reagan JR, Seidov D, Smolyar IV, Zweng MM
et al. (2013) World Ocean Database 2013. NOAA Atlas NESDIS 72, National Oceanographic
Data Center (US), Ocean Climate Laboratory, 209 pp. doi: 10.7289/V5NZ85MT
Burton HR, Williams DL (1985) Heard Island ANARE 1985 Report. Australian Antarctic
Division, Kingston.
Clark HL (1925) A catalogue of the recent sea urchins (Echinoidea) in the British Museum
(Natural History), 250 pp.
Claus C (1880) Grundzüge der Zoologie (4th edn). 1: 821 pp, 2: 522 pp.
David B, Mooi R (2000) A new species of subantarctic Plexechinus and its phylogenetic posi-
tion within the Holasteroida (Echinodermata, Echinoidea). Polar Biology 23(3): 166–172.
doi: 10.1007/s003000050023
De Ridder C, David B, Larrain A (1992) Antarctic and subantarctic echinoids from Marion
Dufresne’s expeditions MD03, MD04, MD08 and from the Polarstern’s expedition Epos
III. Bulletin du Muséum national d’Histoire naturelle. Section A, Zoologie, Biologie et
Ecologie animales 14(2): 405–441.
Döderlein L (1906) Die Echinoiden der Deutschen Tiefsee Expedition. Deutsche Tiefsee Ex-
pedition 1898–1899 5: 63–290. doi: 10.5962/bhl.title.46999
Douglass LL, Turner J, Grantham HS, Kaiser S, Constable A, Nicoll R, Raymond B, Post A,
Brandt A, Beaver D (2014) A hierarchical classification of benthic biodiversity and assess-
ment of protected areas in the Southern Ocean. PLoS ONE 9(7): e100551. doi: 10.1371/
journal.pone.0100551
Durham JW, Melville RV (1957) A classification of echinoids. Journal of Paleontology 31(1):
242–272.
Fell FJ (1976) The Cidaroida (Echinodermata: Echinoidea) of Antarctica and the Southern Ocean. PhD Thesis, University of Maine, 276 pp. [unpublished]

Féral JP, Marschal C, Marty G, Poulin E, Saucède T (2013) PROTEKER: report of the 2nd field campaign, 17 pp. http://www.proteker.net/IMG/pdf/proteker2013-14_rapport_xs.pdf

Féral JP, Marschal C, Marty G, Motreuil S, Roca JC (2014) PROTEKER: report of the 3rd field campaign, 10 pp. http://www.proteker.net/Campagne-dete-2014.html?lang=en [In French]

Gray J (1825) An attempt to divide the Echinida, or sea eggs, into natural families. Annals of Philosophy, new series 10: 423–431.

Gray J (1855) Catalogue of the Recent Echinida, or sea eggs, in the collection of the British Museum. Part 1: Echinida Irregularia. Woodfall and Kinder, London, 69 pp.

Green K (1993) Heard Island 1992 ANARE Report. Australian Antarctic Division, Kingston. Grua P (1963) Etude de biotopes marins infralittoraux (Kerguelen 1962–63). TAAF, 23–24: 69–73.

Guille A (1977) Bionomie du plateau continental des îles Kerguelen. Stations prospectées et résultats préliminaires. Comité National Français des Recherches Antarctiques (CNFRA) 42: 3–40.

Jackson RT (1912) Phylogeny of the Echini with a revision of Palaeozoic species. Memoirs of the Boston Society of Natural History 7: 1–491. doi: 10.5962/bhl.title.4630

Koehler R (1901) Résultats du voyage de S.Y. Belgica en 1897-1898-1899. Zoologie: Echinides et ophiures. J.E. Buschmann imprint, Anvers, 42 pp.

Koehler R (1926) Echinodermata Echinoidea. In: Australasian Antarctic expedition 1911-1914. Scientific Report, Series C, Zoology and Botany 8: 1–134.

Lambert J (1905) Echinides océaniques de l’Aude et de l’Hérault. Annales de l’Université de Lyon 17: 129–164.

Lovén S (1883) On *Pourtalesia* a genus of Echinoidea. Kongliga Svenska Vetenskaps-Akademins Handlingar 19(7): 1–95.

McCoy FW (1991) Southern Ocean sediments: circum-Antarctic to 30°S. Marine Geological and Geophysical Atlas of the circum-Antarctic to 30°S. (edited by D.E. Hayes). Antarctic Research Series.

Meissner M (1900) Echinoideen. In: Ergebnisse der Hamburger Magalhaensischen Sammelreise 1892/93, Band 1: Allgemeines, Chordonier, Echinodermen und Coelenteraten. L. Friederichsen, Hamburg, 3–18.

Mooi R, David B (1996) Phylogenetic analysis of extreme morphologies: deep-sea holasteroid echinoids. Journal of Natural History 30(6): 913–953. doi: 10.1080/00222939600770501

Mortensen T (1909) Die Echiniden der Deutschen Südpolar Expedition 1901–1903. Deutsche Südpolar Expedition, G. Reimer imprint, Berlin 11, 113 pp.

Mortensen T, Kolderup Rosevinge L (1910) Sur quelques plantes parasites dans les échinodermes. Kongelige Danske videnskabernes selskabs forhandlinger 4: 339–354.

Mortensen T (1928) Papers from Dr. Th. Mortensen’s Pacific Expedition 1914–16, xli: New Cidaridae. (Preliminary Notice.). Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kobenhavn 85: 65–74.
Mortensen T (1942) New echinoidea (Camarodonta). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kobenhavn 106: 225–232.
Mortensen T (1950) Echinoidea. In: Brit. Australian New Zealand Antarct. Research Expedition, 1929–1931. Report BANZAR Expedition, series B Zoology and Botany 4: 287–310.
Philippi R (1845) Beschreibung einiger neuer Echinodermen nebst kritischen Bemerckungen über einige weniger bekannte Arten. Archiv für Naturgeschichte 11: 344–359.
Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Marine Ecology Progress Series 463: 215–230. doi: 10.3354/meps09842
Poulin E, Féral JP (1995) Pattern of spatial distribution of a broodprotecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands. Marine Ecology Progress Series 118: 179–186. doi: 10.3354/meps118179
Saucède T, Fabri-Ruiz S, Fournier J, De Ridder C, Marty G (2015) PROTEKER 4: report of the 4th field campaign, 33 pp. http://www.proteker.net/IMG/pdf/proteker_2015-2016_rapport.v2.pdf [In French]
Smith W, Sandwell D (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277(5334): 1957–1962. doi: 10.1126/science.277.5334.1956
Studer T (1876) Über Echinodermen aus Antarkthischen Meere und zwei neue Seeigel von Papoua-Inseln, gesammelt auf der Reise S.M.S. Gazelle um die Erde. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, 452–465.
Thomson CW (1876) Notice of some peculiarities in the mode of propagation of certain echinoderms of the southern seas. Journal of the Linnean Society of London 13: 55–79. doi: 10.1111/j.1096-3642.1876.tb00209.x
Troschel F (1851) Über die Gattung Tripylus. Jahrgang Archiv für Naturgeschichte 17: 67–74.
Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21(2): 272–281. doi: 10.1111/j.1466-8238.2011.00656.x
Verrill A (1876) Contribution to the natural history of Kerguelen Islands. Annelids and Echinoderms. Bulletin US National Museum 3: 64–75.
