Comparative Analysis of Short-Course Vs Long Course Antibiotic Therapy among Patients with Complicated Intra-Abdominal Infections

Amir Iqbal Memon a#, Samina Naz bt, Aisha Masroor Bhatti b‡, Mashali Siddiqui cv, Riaz Ahmed Memon bΩ and Mansoor Ali dβ

a Department of Surgery (Unit II), Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan.
b Department of Surgery, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan.
c Bahria Town International Hospital, Karachi, Pakistan.
d Department of Plastic Surgery, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i4B35398

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/81343

ABSTRACT

Background: Complicated intra-abdominal infections have become a major health challenge that merits safe and efficacious therapy. Antibiotic therapy is the treatment of choice, however the duration of antibiotic use is debatable.

Objective: To compare the safety and efficacy of the short course and long course antibiotic therapy towards the treatment and the progressive outcome of patients presented with complicated intra-abdominal infections.

Methodology: This comparative study was carried out on 94 subjects (chosen via non-probability,
consecutive sampling), who presented with complicated intra-abdominal infections, had signs and symptoms of infection along with ultrasound abdomen examination consistent with infective foci and routine blood test showing raised total leukocyte count, at the Department of Surgery - Liaquat University Hospital, Hyderabad. Subjects were divided into two groups (47 in each) through a random assignments. Group-A was kept on a short course (5-7-days) while Group-B was kept on a long course (7-10 days) antibiotic therapy. Data were documented using a structured questionnaire, including inquiries related to sociodemographic details, disease specifics, and observed for the outcome variables (mainly postoperative early resolution of infection and long hospital stay).

Results: In Group A, resolution of infection was achieved in 59.57%, 29.79% and 10.64% patients on day 5, 6 and 7, respectively. In Group B, resolution of infection was only reported as 42.55%, 36.17% and 21.28% on day 5, 6 and 7, respectively. The median duration of taking antibiotic was almost half in short course group than the long. Surgical site infections were commonly observed in Group B patients. There was no mortality observed in both groups. There is no significance difference observed in primary outcome of clinical cure among the groups.

Conclusion: It can be concluded that the short course antibiotic therapy has good efficacy to treat CIAI when the primary foci of infection are surgically extracted with adequate source control.

Keywords: Complicated intra-abdominal infections; short course antibiotic therapy; long course antibiotic therapy.

1. INTRODUCTION

Complicated intra-abdominal infections (CIAI) are a mutual problem faced by surgeons worldwide. Nowadays CIAI is widely considered a common disease in clinical practice and leads to poor outcomes due to chances of secondary bacteremia with an incidence of 11-15% and increased mortality of about 10.5% [1,2]. CIAI are intra-abdominal infections that have extended beyond the organ of origin causing either an abscess formation or peritonitis [2].

The cause of CIAI is thought to be either pre-existing organ failure of the patient or infection by the surgeon or working team during surgery and incomplete source control that extends the infection beyond the specific organ to the peritoneal cavity [3]. Multiple organisms are the cause of CIAI as Enterobacteriaceae, in combination with anaerobes, are found in community-acquired CIAI (CA-CIAI), Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus spp, and Candida spp are found in healthcare-acquired CIAI (HA-CIAI) [4]. Hence CIAI has become a health challenge, though the management includes resuscitating the patient, controlling the source of infection as early as possible, and starting antimicrobial therapy accordingly [3,5]. There is still a long debate on the duration of antibiotic prescription.

Surgical Infection Society (SIS) and the Infectious Diseases Society of America (IDSA) recommended the short course of 4 to 7 days but the discontinuation should be decided depending on a thorough understanding of controlling infectious source and patient’s status individually [6-8]. Long time exposure to antibiotics harms patients’ health, make them susceptible to Clostridiodes difficile infection and drug resistance [9,10] There is no benefit observed in the long duration of antibiotic administration as it will also cause treatment failure and also increase the chance of antibiotic resistance [11-13]. As long-duration antibiotic administration was conventionally about 7-14 days [13, 14]. There must be a checkpoint for identifying the host response towards the specific antibiotic therapy with the capability of cessation of the antibiotic treatment after achieving the required response [15].

Multiple international studies are in favor of short-course antibiotic therapy for 5 days along with the source control would benefit the patient with the similar efficacy as compared to the long course therapy [16]. Treatment failure occurred less frequently with a short duration (four-day) of therapy. Resolution was found to be occurring two days sooner after source control in patients receiving the shorter courses of antimicrobial therapy [12]. However, data in critically ill patients with complicated intra-abdominal infections are limited in our population.

1.1 Objective

To compare the efficacy of short-course antibiotic therapy versus long-course antibiotic therapy
among patients with complicated intra-abdominal infections in terms of early resolution of infection and the long hospital stay.

2. METHODOLOGY

This prospective comparative study was carried out from May 2019 to October 2021 involving a sample of 94 patients of age 20-60 years, chosen via non-probability, consecutive sampling, presented at the Dept. of Surgery at Liaquat University Hospital, Hyderabad, with complicated intra-abdominal infections defined as the infection extending beyond the hollow organ of origin into the peritoneal space and led to peritonitis with the presentation of fever (temp>38C), leukocytosis (TLC>11,000), disturbed gastrointestinal function and abscess formation on ultrasound. The study was approved by the ethical review committee and informed consent was taken from each patient prior to enrollment in the study. Patients with age more than 60 years and who were having uncontrolled diabetes were not taken into the study. Moreover patients who are using corticosteroids were excluded from the study. Patients were divided into two groups (47 in each) through a lottery method. In Group-A short-course antibiotic therapy (5-7 days) and in Group-B long course (7-10 days) antibiotic therapy was given. Later on, the outcome variables like the resolution of infection and long hospital stay (>7 days), up to one month, of post-administration of antibiotic therapy were observed. Patients were discharged when the resolution of infection occurred both clinically (afebrile) for 24 hours with the return of gastrointestinal functions, on the ultrasound, no thick fluid was observed and called for subsequent follow-ups weekly for one month. All the maneuvers (history taking, physical examination, sampling and data collection) were done by the principal researcher while the data were collected on a pre-designed proforma. The data was analyzed using SPSS version 22.0 Chi-square test was applied to find the associations between categorical variables and a p-value less than 0.05 was considered significant.

3. RESULTS

In Group A, resolution of infection was achieved in 59.57%, 29.79% and 10.64% patients on day 5, 6 and 7, respectively. In Group B resolution of infection was only reported as 42.55%, 36.17% and 21.28% on day 5, 6 and 7, respectively. The trend is graphically represented.

Table 1. Sample description

Variable	Group A	Group B	
Gender	Male	31	28
	Female	16	19
Mean Age (Years)	35 (± 3.7)	33 (± 2.3)	
Median Duration of Use (Days)	06	08	

![Resolution Time Graph](attachment://Fig. 1. Resolution time)
The median duration of taking antibiotic was almost half in short course group than the long. Surgical site infection were commonly observed in Group B patients. There was no mortality observed in both groups. There is no significance difference observed in primary outcome of clinical cure among the groups.

4. DISCUSSION

Traditionally, physicians have administered antimicrobial therapy in patients who have intra-abdominal infections until clinical and laboratory evidence suggests that the infection has resolved. They reasoned that ongoing sepsis was indicative of ongoing replication of pathogens. More recent experimental data, however, suggest that a prolonged Systemic inflammatory response syndrome (SIRS) may be more a reflection of host immune activity than an indication of the presence of viable microorganisms [16]. As such, efforts have begun to shorten the duration of antimicrobial therapy in the presence of traditional markers of sepsis. These efforts have already been successful in other severe infections such as ventilator-associated pneumonia [17].

Currently, the average duration of antibiotic therapy for intraabdominal infection is 10 to 14 days [18, 19]. The results of smaller studies on the effect of an abbreviated course of antimicrobial therapy have been published. A study reported on an uncontrolled study in which 23 consecutive patients with diffuse peritonitis were assigned to receive 3 to 5 days of antibiotics [20]. Infections developed in 22% of these patients; these rates were similar to those seen in a historical cohort.

A study randomly assigned 90 patients with mild-to-moderate intraabdominal infection to either 3 days or 5 or more days of ertapenem therapy, found no between-group difference in infectious outcomes [21]. Those findings, however, are not generalizable to the majority of patients with intraabdominal infection, since half the patients had appendiceal disease and the overall rate of infectious complications was less than 10%. As compared with these studies, the STOP-IT trial had several advantages, including a larger sample size, randomized design, and enrollment of patients with a broader range of severity of illness.

The rate of infectious complications was low in both groups of our study and none was severe. Given the large difference in the number of days of treatment in the two study groups, neither shortening nor lengthening the duration of antimicrobial therapy appears likely to affect infectious outcomes. Truly clinically significant improvement in the management of this disease, therefore, probably awaits more effective technical or immune response–modifying interventions.

5. CONCLUSION

It can be concluded that the short course antibiotic therapy has good efficacy to treat CIAI when the primary foci of infection are surgically extracted with adequate source control.

CONSENT AND ETHICAL APPROVAL

As per international standard or university standard guideline participant consent and ethical approval has been collected and preserved by the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Alqarni A, Kantor E, Grall N, Tanaka S, Zappella N, Godement M, et al. Clinical characteristics and prognosis of bacteremia during postoperative intra-abdominal infections. Critical Care. 2018; 22(1):1-10.
2. Ahmed S, Wilcox MH, Kirby A. Measuring outcomes in complicated intra-abdominal infections. Current opinion in gastroenterology. 2020;36(1):1-4.
3. Bassetti M, Eckmann C, Giacobbe DR, Sartelli M, Montravers P. Post-operative abdominal infections: epidemiology, operational definitions, and outcomes. Intensive care medicine. 2020;46(2):163-72.
4. Leone S, Damiani G, Pezone I, Kelly ME, Cascella M, Alfieri A, et al. New antimicrobial options for the management of complicated intra-abdominal infections. European Journal of Clinical Microbiology & Infectious Diseases. 2019;38(5):819-27.
5. De Pascale G, Carelli S, Vallecoccia MS, Cutuli SL, Taccheri T, Montini L, et al. Risk factors for mortality and cost implications of complicated intra-abdominal infections in critically ill patients. Journal of critical care. 2019;50:169-76.
6. Kim Ik, Lee JG. Antibiotic duration can be shortened in postoperative intra-abdominal infection. Journal of thoracic disease. 2018;10(Suppl 26):S3182.

7. Phlamon M, Petite S, Cole K, editors. Comparison of Short-Course vs. Prolonged-Course Antimicrobial Therapy in the Management of Intra-Abdominal Infections. Open Forum Infectious Diseases. Oxford University Press; 2018.

8. Montravers P, Tubach F, Lescot T, Veber B, Esposito-Farèse M, Seguin P, et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomized clinical trial. Intensive Care Medicine. 2018;44(3):300-10.

9. DeCesare L, Xu TQ, Saclarides C, Coughlin JM, Chivukula SV, Woodfin A, et al. Trends in Antibiotic Duration for Complicated Intra-Abdominal Infections: Adaptation to Current Guidelines. SAGE Publications Sage CA: Los Angeles, CA; 2021.

10. Grant J, Saux NL, Stewardship A, Microbiology RCoTaCM, Canada ID. Duration of antibiotic therapy for common infections. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada. 2021;6(3):181-97.

11. Hassinger TE, Guidry CA, Rotstein OD, Duane TM, Evans HL, Cook CH, et al. Longer-duration antimicrobial therapy does not prevent treatment failure in high-risk patients with complicated intra-abdominal infections. Surgical infections. 2017;18(6):659-63.

12. Smith SE, Rumbaugh KA, May AK. Evaluation of a short course of antimicrobial therapy for complicated intra-abdominal infections in critically ill surgical patients. Surgical infections. 2017;18(6):742-50.

13. Takesue Y, Uchino M, Ikeuchi H, Ueda T, Nakajima K. Is fixed short-course antimicrobial therapy justified for patients who are critically ill with intra-abdominal infections? Journal of the anus, rectum, and colon. 2019;3(2):53-9.

14. Bhalodi AA, van Engelen TS, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. Journal of Antimicrobial Chemotherapy. 2019;74 (Supplement_1):i6-i15.

15. Garduno A, Martín-Loeches I. Efficacy and appropriateness of novel antibiotics in response to antimicrobial-resistant Gram-negative bacteria in patients with sepsis in the ICU. Expert Review of Anti-infective Therapy. (just-accepted); 2021.

16. Sursal T, Stearns-Kurosawa DJ, Itaga-ki K, et al. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock. 2013;39:55-62.

17. Turnbull IR, Javadi P, Buchman TG, Hotchkiss RS, Carl IE, Coopersmith CM. Antibiotics improve survival in sepsis independent of injury severity but do not change mortality in mice with markedly elevated interleukin 6 levels. Shock. 2004;21:121-5.

18. Guirao X, Sánchez García M, Bassetti M, et al. Safety and tolerability of tigecycline for the treatment of complicated skin and soft-tissue and intra-abdominal infections: a randomized controlled trial comparing tigecycline to tobramycin. J Antimicrob Chemother. 2018;73(10):3167-75.

19. Samuelsson A, Isaksson B, Chabok A, et al. Changes in the aerobic faecal flora of patients treated with antibiotics for acute intra-abdominal infection. Scand J Infect Dis. 2012;44:820-7.

20. Schein M, Assalia A, Bachus H. Minimal antibiotic therapy after emergency abdominal surgery: a prospective study. Br J Surg. 1994;81:989-91.

21. Basoli A, Chirletti P, Cirino E, et al. A prospective, double-blind, multicenter, randomized trial comparing ertapenem 3 vs >or=5 days in community-acquired intraabdominal infection. J Gastrointest Surg. 2008;12:592-600.

© 2022 Memon et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/81343