Using Reinforcement Learning to Herd a Robotic Swarm to a Target Distribution

Zahi M. Kakish, Karthik Elamvazhuthi, and Spring Berman

Abstract—In this paper, we present a reinforcement learning approach to designing a control policy for a “leader” agent that herds a swarm of “follower” agents, via repulsive interactions, as quickly as possible to a target probability distribution over a strongly connected graph. The leader control policy is a function of the swarm distribution, which evolves over time according to a mean-field model in the form of an ordinary difference equation. The dependence of the policy on agent populations at each graph vertex, rather than on individual agent activity, simplifies the observations required by the leader and enables the control strategy to scale with the number of agents. Two Temporal-Difference learning algorithms, SARSA and Q-Learning, are used to generate the leader control policy based on the follower agent distribution and the leader’s location on the graph. A simulation environment corresponding to a grid graph with 4 vertices was used to train and validate the control policies for follower agent populations ranging from 10 to 100. Finally, the control policies trained on 100 simulated agents were used to successfully redistribute a physical swarm of 10 small robots to a target distribution among 4 spatial regions.

I. INTRODUCTION

We present two Temporal-Difference learning algorithms [17] for generating a control policy that guides a mobile agent, referred to as a leader, to herd a swarm of autonomous follower agents to a target distribution among a small set of states. This leader-follower control approach can be used to redistribute a swarm of low-cost robots with limited capabilities and information using a single robot with sophisticated sensing, localization, computation, and planning capabilities. Such a control strategy is useful for many applications in swarm robotics, including exploration, environmental monitoring, inspection tasks, disaster response, and targeted drug delivery at the micro-nanoscale.

There has been a considerable amount of work on leader-follower multi-agent control schemes in which the leader has an attractive effect on the followers [8], [12]. Several recent works have presented models for herding robotic swarms using leaders that have a repulsive effect on the swarm [15], [5], [13]. Using such models, analytical controllers for herding a swarm have been constructed for the case when there is a single leader [5], [13] and multiple leaders [15]. The controllers designed in these works are not necessarily optimal for a given performance metric. To design optimal control policies for a herding model, the authors in [6] consider a reinforcement learning (RL) approach. While existing herding models are suitable for the objective of confining a swarm to a small region in space, many applications require a swarm to cover an area according to some target probability density. If the robots do not have spatial localization capabilities, then the controllers developed in [8], [12], [15], [5], [13], [6] cannot be applied for such coverage problems. Moreover, these models are not suitable for herding large swarms using RL-based control approaches, since such approaches would not scale well with the number of robots. This loss of scalability is due to the fact that the models describe individual agents, which may not be necessary since robot identities are not important for many swarm applications.

In this paper, we consider a mean-field or macroscopic model [10]. Previous work have applied mean-field models in designing spatial coverage and task allocation control strategies for robotic swarms [1] [2] [4] [11]. In this work, the mean-field model describes the swarm of follower agents as a probability distribution over a graph, which represents the configuration space of each agent. The individual follower agents switch stochastically out of their current location on the graph whenever the leader is at their location; in this way, the leader has a “repulsive” effect on the followers. The transition rates out of each location are common to all the followers, and are therefore independent of the agents’ identities. Using the mean-field model, herding objectives for the swarm are framed in terms of the distribution of the follower agents over the graph. The objective is to compute leader control policies that are functions of the agent distribution, rather than the individual agents’ states, which makes the control policies scalable with the number of agents.

We apply RL-based approaches to the mean-field model to construct leader control policies that minimize the time required for the swarm of follower agents to converge to a user-defined target distribution. The RL-based control policies are not hindered by curse-of-dimensionality issues that arise in classical optimal control approaches. Additionally, RL-based approaches can more easily accommodate the stochastic nature of the follower agent transitions on the graph. There is prior work on RL-based control approaches for mean-field models of swarms in which each agent can localize itself in space and a state-dependent control policy can be assigned to each agent directly [16], [7], [19]. However, to our knowledge, there is no existing work on RL-based approaches applied to mean-field models for herding a swarm using a leader agent. Our approach provides an RL-
based framework for designing scalable strategies to control swarms of resource-constrained robots using a single leader robot, and it can be extended to other types of swarm control objectives.

II. METHODOLOGY

A. Problem Statement

We first define some notation from graph theory and matrix analysis that we use to formally state our problem. We denote by $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ a directed graph with a set of M vertices, $\mathcal{V} = \{1, ..., M\}$, and a set of N_e edges, $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$, where $e = (i, j) \in \mathcal{E}$ if there is an edge from vertex $i \in \mathcal{V}$ to vertex $j \in \mathcal{V}$. We define a source map $\sigma: \mathcal{E} \to \mathcal{V}$ and a target map $\tau: \mathcal{E} \to \mathcal{V}$ for which $\sigma(e) = i$ and $\tau(e) = j$ whenever $e = (i, j) \in \mathcal{E}$. Given a vector $X \in \mathbb{R}^M$, X_i refers to the ith coordinate value of X. For a matrix $A \in \mathbb{R}^{M \times N}$, A^i_j refers to the element in the ith row and jth column of A.

We consider a finite swarm of N follower agents and a single leader agent. The locations of the leader and followers evolve on a graph, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, ..., M\}$ is a finite set of vertices and $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}\}$ is a set of edges that define the pairs of vertices between which agents can transition. The vertices in \mathcal{V} represent a set of spatial locations obtained by partitioning the agents’ environment. We will assume that the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is strongly connected and that there is a self-edge $(i, i) \in \mathcal{E}$ at every vertex $i \in \mathcal{V}$. We assume that the leader agent can count the number of follower agents at each vertex in the graph. The follower agents at a location v only decide to move to an adjacent location if the leader agent is currently at location v and is in a particular behavioral state. In other words, the presence of the leader repels the followers at the leader’s location. The leader agent does not have a model of the followers agents’ behavior.

The leader agent performs a sequence of transitions from one location (vertex) to another. The leader’s location at time $k \in \mathbb{Z}_+$ is denoted by $\ell_k \in \mathcal{V}$. In addition to the spatial state ℓ_k, the leader has a behavioral state at each time k, defined as $\ell_0(k) \in \{0, 1\}$. The location of each follower agent $i \in \{1, ..., N\}$ is defined by a discrete-time Markov chain (DTMC) $X_i(k)$ that evolves on the state space \mathcal{V} according to the conditional probabilities

$$P(X_i(k+1) = \tau(e) \mid X_i(k) = \sigma(e)) = u_e(k) \quad (1)$$

For each $v \in \mathcal{V}$ and each $e \in \mathcal{E}$ such that $\sigma(e) = v \neq \tau(e)$, $u_e(k)$ is given by

$$u_e(k) = \begin{cases}
\beta_e & \text{if } \ell_1(k) = \sigma(e) \text{ and } \ell_2(k) = 1, \\
0 & \text{if } \ell_1(k) = \sigma(e) \text{ and } \ell_2(k) = 0, \\
0 & \text{if } \ell_1(k) \neq \sigma(e),
\end{cases} \quad (2)$$

where β_e are positive parameters such that $\sum_{e \in \mathcal{E}} \beta_e < 1$. Additionally, for each $v \in \mathcal{V}$, $u_{(v,v)}(k)$ is given by

$$u_{(v,v)}(k) = 1 - \sum_{e \in \mathcal{E} \setminus \{v\}} u_e(k) \quad (3)$$

For each vertex $v \in \mathcal{V}$, we define a set of possible actions A_v taken by the leader when it is located at v:

$$A_v = \bigcup_{e \in \mathcal{E}} \{e\} \times \{0, 1\} \quad (4)$$

The leader transitions between states in $\mathcal{V} \times \{0, 1\}$ according to the conditional probabilities

$$P(\ell_1(k+1) = \tau(e), \ell_2(k+1) = d \mid \ell_1(k) = \sigma(e)) = 1 \quad (5)$$

if $p(k)$, the action taken by the leader at time k when it is at vertex v, is given by $p(k) = (e, d) \in A_v$.

The fraction, or empirical distribution, of follower agents that are at location $v \in \mathcal{V}$ at time k is given by $\frac{N}{N} \sum_{i=1}^N \chi_v(X_i(k))$, where $\chi_v(w) = 1$ if $w = v$ and 0 otherwise. Our goal is to learn a policy that navigates the leader between vertices using the actions $p(k)$ such that the follower agents are redistributed (“herded”) from their initial empirical distribution $\frac{N}{N} \sum_{i=1}^N \chi_v(X_i(0))$ among the vertices to a desired empirical distribution $\frac{N}{N} \sum_{i=1}^N \chi_v(X_i(T))$ at some final time T, where T is as small as possible. Since the identities of the follower agents are not important, we aim to construct a control policy for the leader that is a function of the current empirical distribution $\frac{N}{N} \sum_{i=1}^N \chi_v(X_i(k))$, rather than the individual agent states $X_i(k)$. However, $\frac{N}{N} \sum_{i=1}^N \chi_v(X_i(k))$ is not a state variable of the DTMC. In order to treat the mean-field limit of this quantity as $N \to \infty$. Let $\mathcal{P}(\mathcal{V}) = \{Y \in \mathbb{R}_+^M, \sum_{v=1}^M Y_v = 1\}$ be the simplex of probability densities on \mathcal{V}. When $N \to \infty$, the empirical distribution $\frac{N}{N} \sum_{i=1}^N \chi_v(X_i(k))$ converges to a deterministic quantity $\hat{S}(k) \in \mathcal{P}(\mathcal{V})$, which evolves according to the following mean-field model, a system of difference equations:

$$\hat{S}(k+1) = \sum_{e \in \mathcal{E}} u_e(k) B_e \hat{S}(k), \quad \hat{S}(0) = \hat{S}^0 \in \mathcal{P}(\mathcal{V}), \quad (6)$$

where B_e are matrices whose entries are given by

$$B_{ij}^{ij} = \begin{cases}
1 & \text{if } i = \tau(e), \ j = \sigma(e), \\
0 & \text{otherwise}.
\end{cases}$$

The random variable $X_i(k)$ is related to the solution of the difference equation (6) by the relation $P(X_i(k) = v) = \hat{S}_v(k)$.

We formulate an optimization problem that minimizes the number of time steps k required for the follower agents to converge to \hat{S}_{target}, the target distribution. In this optimization problem, the reward function is defined as

$$R(k) = -1 \cdot E[||\hat{S}(k) - \hat{S}_{\text{target}}||^2]. \quad (7)$$

Problem II.1. Given a target follower agent distribution \hat{S}_{target}, devise a leader control policy $\pi: \mathcal{P}(\mathcal{V}) \times \mathcal{V} \to A$ that drives the follower agent distribution to $\hat{S}(T) = \hat{S}_{\text{target}}$.
by enacting the policy. In the Q-Learning algorithm, an off-follower agents at each location contains a discretized form of the population fraction of action functions. This state will be defined as a vector that \(A = \bigcup_{v \in V} A_v \).

B. Design of Leader Control Policies using Temporal-Difference Methods

Two Temporal-Difference (TD) learning methods [17], SARSAR and Q-Learning, were adapted to generate an optimal leader control policy. These methods’ use of bootstrapping provides the flexibility needed to accommodate the stochastic nature of the follower agents’ transitions between vertices. Additionally, TD methods are model-free approaches, which are suitable for our control objective since the leader does not have a model of the followers’ behavior. We compare the two methods to identify their advantages and disadvantages when applied to our swarm herding problem. Our approach is based on the mean-field model [6] in the sense that the leader learns a control policy using its observations of the population fractions of followers at all vertices in the graph.

Sutton and Barto [17] provide a formulation of the two TD algorithms that we utilize. Let \(S \) denote the state of the environment, defined later in this section; \(A \) denote the action set of the leader, defined as the set \(A_v \) in equation (4); and \(Q(S, A) \) denote the state-action value function. We define \(\alpha \in [0, 1] \) and \(\gamma \in [0, 1] \) as the learning rate and the discount factor, respectively. The policy used by the leader is determined by a state-action pair \((S, A)\). \(R \) denotes the reward for the implemented policy’s transition from the current to the next state-action pair and is defined in Equation (7). In the SARSA algorithm, an on-policy method, the state-action value function is defined as:

\[
Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma Q(S', A') - Q(S, A)] \tag{8}
\]

where the update is dependent on the current state-action pair \((S, A)\) and the next state-action pair \((S', A')\) determined by enacting the policy. In the Q-Learning algorithm, an off-policy method, the state-action value function is defined as:

\[
Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)] \tag{9}
\]

Whereas the SARSA algorithm update (8) requires knowing the next action \(A' \) taken by the policy, the Q-learning update (9) does not require this information.

We now define the state \(S \) that is used in the state-action functions. This state will be defined as a vector that contains a discretized form of the population fraction of follower agents at each location \(v \in V \) and the location \(\ell_1(k) \in V \) of the leader agent. The leader’s spatial state \(\ell_1(k) \) must be taken into account because the leader’s possible actions depend on its current location on the graph. Since the population fractions of follower agents are continuous values, we convert them into discrete integer quantities serving as a discrete function approximation of the continuous fraction populations. Instead of defining \(F_v \) as the integer count of followers at location \(v \), which could be very large, we reduce the dimensionality of the state space by discretizing the follower population fractions into \(D \) intervals and scaling them up to integers between 1 and \(D \):

\[
F_v = \text{round} \left(\frac{D}{N} \sum_{i=1}^{N} x_v(X_i(0)) \right), \quad \text{where} \quad F_v \in [1, \ldots, D], \quad v \in V.
\tag{10}
\]

For example, suppose that \(D = 10 \). Then a follower population fraction of 0.24 at location \(v \) would have a corresponding state value \(S_v = 2 \). Using a larger value of \(D \) provides a finer classification of agent populations, but at the cost of increasing the size of the state \(S \). Given these definitions, the state vector \(S \) is defined as:

\[
S_{env} = [F_1, \ldots, F_M, \ell_1] \tag{11}
\]

The state vector \(S_{env} \) contains many states that are inapplicable to the learning process. For example, the state vector for a \(2 \times 2 \) grid graph with \(D = 10 \) has \(10 \times 10 \times 10 \times 10 \times 4 \) possible variations, but only \(10 \times 10 \times 10 \times 4 \) are applicable since they satisfy the constraint that the follower population fractions at all vertices must sum up to 1 (note that the sum \(\sum_v F_v \) may differ slightly from 1 due to the rounding used in Equation (10)). The new state \(S_{env} \) is used as the state \(S \) in the state-action functions (8) and (9).

The leader’s control policy for both state-action functions is the following \(\epsilon \)-greedy policy, where \(X \) is a uniform random variable between 0 and 1 and \(\epsilon \) is a threshold parameter that determines the degree of state exploration during training:

\[
\pi(S_{env}) = \arg \max_A Q(S_{env}, A) \quad \text{if} \quad X > \epsilon \tag{12}
\]

III. SIMULATION RESULTS

An OpenAI Gym environment [3] was created to simulate and visualize our repulsive herding controller [9]. The open source environment can be easily modified to simulate swarm controllers for different numbers of agents and graph vertices, and the simulated controllers can then be implemented in physical robot experiments. Figure [1] shows the simulated environment for a scenario with 100 follower agents, represented by the blue \(x \) symbols, that are herded by a leader (represented by the red circle) within a \(2 \times 2 \) grid. The OpenAI environment does not store the individual positions of each follower agent within a grid cell; instead, each cell is associated with an agent count. The renderer disperses agents randomly within a cell based on the cell’s current agent count. The agent count for a grid cell is updated whenever an agent enters or leaves the cell, and the environment is re-rendered. Recording the agent counts in each cell rather than their individual positions significantly cuts down on memory allocation and computational time when training the leader control policy on scenarios with large numbers of agents.

The graph \(G \) that models the simulated environment in Figure [1] with each vertex of the graph corresponding to a grid cell, was defined as the \(2 \times 2 \) grid graph in Figure [2]. In the graph, agents transition along edges in either a
The bidirected grid graph G used in our simulated scenario. The red "x" is the leader agent, which is located at vertex 2. The movement options for the leader are Left to vertex 1 or Up to vertex 4. The leader is also able to Stay at vertex 2, where its presence triggers follower agents at the vertex to probabilistically transition to either vertex 1 or vertex 4.

The initial leader location, ℓ_1, was randomized to allow many possible permutations of states S_{env} for training. During training, an episode completes once the distribution of N follower agents reaches a specified terminal state. Instead of defining the terminal state as the exact target distribution \hat{S}_{target}, which becomes more difficult to reach as N increases due to the stochastic nature of the followers’ transitions, we define this state as a distribution that is sufficiently close to \hat{S}_{target}. We use the Mean Squared Error (MSE) to measure the difference between the current follower distribution and \hat{S}_{target}. The terminal state is reached when the MSE decreases below 0.0005.

After training the leader control policies on each follower agent population size N, the policies were tested on scenarios with the same environment and value of N. The policy for each scenario was run 1000 times to evaluate its performance. The policies were compared for terminal states that corresponded to two different MSE thresholds, 0.005 and 0.0005, and were given 10000 iterations to converge within the prescribed MSE threshold of the target distribution \hat{S}_{target} from the following initial distribution:

$$\hat{S}_{initial} = [0.4 \ 0.1 \ 0.1 \ 0.4]^T$$ (15)

Figure 3 and Figure 4 summarize the performance of both control policies for the MSE thresholds of 0.005 and 0.0005, respectively. In the case with an MSE threshold of 0.005, both control policies yield a consistent downward trend in the mean and median number of iterations required to reach convergence as N increases. When the MSE threshold is 0.0005, the mean and median number of iterations required for convergence increase substantially as N increases from 10 to 50, and then drop to much lower values when $N = 100$. These trends with respect to N, which are also evident in the standard deviation plots, are likely due to differences in the magnitude of the smallest possible change in MSE over an iteration k relative to the MSE threshold for different swarm sizes N. For example, the iteration counts for $N = 10$ were the same for both MSE thresholds because the change in the MSE due to a transition of one agent, corresponding to a change in population fraction of $1/N = 1/10$, is much higher than both MSE thresholds (i.e., $(1/10)^2 > 0.005$).
and 0.0005). Compare this to the iteration count for \(N = 50 \), which would have a corresponding change in MSE of \((1/50)^2\); this quantity is much smaller than 0.005 but not much smaller than 0.0005. The iteration counts for \(N = 100 \) are much lower, since \((1/100)^2\) is much smaller than both MSE thresholds.

We also tested the control policies that were trained with \(N = 100 \) follower agents on simulated scenarios with \(N = 10, 20, 30, 40, \) and 50 agents. This was done to evaluate the robustness of the policies trained on \(N = 100 \) agents to reductions in \(N \). As the plots in Figure 5 show, the policies trained on \(N = 100 \) agents required, on average, fewer iterations for convergence than the policies trained on the same value of \(N \) as in the tests, except for the Q-Learning case \(N = 50 \) with an MSE threshold of 0.005. We attribute this result to the mean-field effect: as the number \(N \) of stochastically transitioning agents increases, the agents’ empirical distributions converge to deterministic mean-field limits. The lower amount of uncertainty in the time evolution of large swarms may make it easier for leader policies that are trained on larger values of \(N \) to control the distribution of a given follower agent population than policies that are trained on smaller values of \(N \). We thus hypothesize that training a leader agent with the mean-field model instead of the DTMC model would lead to improved performance in terms of a lower convergence time and lower training time.

IV. EXPERIMENTAL RESULTS

Two of the leader control policies that were generated in the simulated environment were tested on a physical swarm of small robots in the Robotarium [14], a remotely accessible swarm robotics testbed that provides an experimental platform for users to validate swarm algorithms and controllers. Experiments are set up in the Robotarium with MATLAB or Python scripts. The robots move to target locations on the testbed surface using a position controller and avoid collisions with one another through the use of barrier certificates [18], a modification to the robots’ controllers that satisfy particular safety constraints. To implement this collision-avoidance strategy, the robots’ positions and orientations in a global coordinate frame are measured from images taken from multiple VICON motion capture cameras.

The experimental setup for our tests is shown in Figure 6. The environment was represented as a \(2 \times 2 \) grid, as in...
the simulations, and $N = 10$ robots were used as follower agents. The leader agent, shown as the blue circle, and the boundaries of the four grid cells were projected onto the surface of the testbed using an overhead projector. As in the simulations, at each iteration k, the leader moves from one grid cell to another depending on the action prescribed by its control policy. Both the SARSA and Q-Learning leader control policies trained with $N = 100$ follower agents were implemented, since they required fewer iterations to converge to \hat{S}_{target} when tested in simulations with $N = 10$ agents than the policies that were trained with $N = 10$ agents (see Figure 5). A supplementary video is provided that shows the performance of both control policies. In the video, the leader is red if it is executing the Stay action and blue if it is executing any of the other actions in the set A (i.e., a movement action). The current iteration k and leader action are displayed at the top of the video frames, as in Figure 6. Each control policy was able to achieve the exact target distribution (14). The SARSA method took 59 iterations to reach this distribution, while the Q-Learning method took 23 iterations. These iteration counts are the same order of magnitude as the mean iteration counts recorded for the corresponding scenarios in the simulations (see Figure 5).

V. CONCLUSION AND FUTURE WORK

We have presented a Temporal-Difference learning approach to designing a leader-follower control policy for herding a swarm of agents as quickly as possible to a target distribution over a graph. We demonstrated the effectiveness of the leader control policy in simulations and physical robot experiments for a range of swarm sizes N, illustrating the
scalability of the control policy with N, and investigated the effect of N on the convergence time to the target distribution.

One avenue of future work is to train the leader control policies with the mean-field model rather than the DTMC model, as mentioned previously. The leader control policies could also be modified to include state estimation techniques that enable the reduction of the state space dimensionality for the case of large graph sizes. In addition, the control policies could be implemented on a swarm robotic testbed in a decentralized manner, in which each follower robot avoids collisions with other robots based on its local sensor information.

ACKNOWLEDGMENT

Many thanks to Dr. Sean Wilson at the Georgia Institute of Technology for running the robot experiments on the Robotarium.

REFERENCES

[1] Behçet Açıkmeşe and David S Bayard. Markov chain approach to probabilistic guidance for swarms of autonomous agents. *Asian Journal of Control*, 17(4):1105–1124, 2015.

[2] Spring Berman, Ádám Halász, M Ani Hsieh, and Vijay Kumar. Optimized stochastic policies for task allocation in swarms of robots. *IEEE Transactions on Robotics*, 25(4):927–937, 2009.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. *arXiv preprint arXiv:1606.01540*, 2016.

[4] Karthik Elamvazhuthi, Shiba Biswal, and Spring Berman. Mean-field stabilization of robotic swarms to probability distributions with disconnected supports. In *American Control Conference (ACC)*, pages 885–892. IEEE, 2018.

[5] Karthik Elamvazhuthi, Sean Wilson, and Spring Berman. Confinement control of double integrators using partially periodic leader trajectories. In *American Control Conference (ACC)*, pages 5537–5544. IEEE, 2016.

[6] Clark Kendrick Go, Bryan Lao, Junichiro Yoshimoto, and Karushi Ikeda. A reinforcement learning approach to the shepherding task using SARSA. In *2016 International Joint Conference on Neural Networks (IJCNN)*, pages 3833–3836. IEEE, 2016.

[7] Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al. Deep reinforcement learning for swarm systems. *Journal of Machine Learning Research*, 20(54):1–31, 2019.

[8] Meng Ji, Giancarlo Ferrari-Trecate, Magnus Egerstedt, and Annalisa Buffa. Containment control in mobile networks. *IEEE Transactions on Automatic Control*, 53(8):1972–1975, 2008.

[9] Zahi Kakish. Herding OpenAI Gym Environment, 2019.

[10] Kristina Lerman, Alcherio Martinoli, and Aram Galstyan. A review of probabilistic macroscopic models for swarm robotic systems. In *International Workshop on Swarm Robotics*, pages 143–152. Springer, 2004.

[11] Alcherio Martinoli, Kjerstin Easton, and William Agassounon. Modeling swarm robotic systems: A case study in collaborative distributed manipulation. *The International Journal of Robotics Research*, 23(4-5):415–436, 2004.

[12] Mehran Mesbahi and Magnus Egerstedt. *Graph theoretic methods in multiagent networks*, volume 33. Princeton University Press, 2010.

[13] Aditya A Paranjape, Soon-Jo Chung, Kyunam Kim, and David Hyunchul Shim. Robotic herding of a flock of birds using an unmanned aerial vehicle. *IEEE Transactions on Robotics*, (99):1–15, 2018.

[14] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron D. Ames, Eric Feron, and Magnus Egerstedt. The Robotarium: A remotely accessible swarm robotics research testbed. *CoRR*, abs/1609.04730, 2016.

[15] Alyssa Pierson and Mac Schwager. Controlling noncooperative herds with robotic herders. *IEEE Transactions on Robotics*, 34(2):517–525, 2017.

[16] Adrian Šošić, Abdelhak M Zoubir, and Heinz Koeppl. Reinforcement learning in a continuum of agents. *Swarm Intelligence*, 12(1):23–51, 2018.

[17] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT Press, 2018.

[18] L. Wang, A. D. Ames, and M. Egerstedt. Safety barrier certificates for collisions-free multirobot systems. *IEEE Transactions on Robotics*, 33(3):661–674, June 2017.

[19] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-agent reinforcement learning. In *International Conference on Machine Learning*, pages 5567–5576, 2018.