Mutations in the Arabidopsis homoserine kinase gene DMR1 confer enhanced resistance to Fusarium culmorum and F. graminearum

Helen C Brewer, Nathaniel D Hawkins and Kim E Hammond-Kosack

Background: Mutation of Arabidopsis DMR1, encoding homoserine kinase, leads to elevation in homoserine and foliar resistance to the biotrophic pathogens Hyaloperonospora arabidopsidis and Oidium neolycopersici through activation of an unidentified defence mechanism. This study investigates the effect of mutation of dmr1 on resistance to the ascomycete pathogens Fusarium graminearum and F. culmorum, which cause Fusarium Ear Blight (FEB) disease on small grain cereals.

Results: We initially found that the dmr1-2 mutant allele confers increased resistance to F. culmorum and F. graminearum silique infection, and decreased colonisation of rosette leaves. Meanwhile the dmr1-1 allele supports less rosette leaf colonisation but has wild type silique resistance. Three additional dmr1 alleles were subsequently examined for altered F. culmorum susceptibility and all showed increased silique resistance, while leaf colonisation was reduced in two (dmr1-3 and dmr1-4). Amino acid analysis of dmr1 siliques revealed homoserine accumulation, which is undetectable in wild type plants. Exogenous application of L-homoserine reduced bud infection in both dmr1 and wild type plants, whilst D-homoserine application did not. Delayed leaf senescence was also observed in dmr1 plants compared to wild type and correlated with reduced Fusarium leaf colonisation.

Conclusions: These findings suggest that common Arabidopsis DMR1 mediated susceptibility mechanisms occur during infection by both obligate biotrophic oomycete and hemi-biotrophic fungal pathogens, not only in vegetative but also in reproductive plant tissues. This has the potential to aid the development of cereal crops with enhanced resistance to FEB.

Keywords: Arabidopsis, Fusarium culmorum, Fusarium graminearum, Homoserine kinase, Disease resistance, Gain of function, Fusarium head scab

Background

Fusarium Ear Blight (FEB) disease, also known as Fusarium head scab disease, is a globally significant threat to the floral tissues of small grain cereal crops such as wheat, barley and maize, caused by several species of ascomycete fungi of the genus Fusarium. The main causal agents of FEB in the UK are Fusarium graminearum and F. culmorum (Dean et al. [1], Goswami and Kistler [2], Parry et al. [3]). The disease can cause huge crop losses in epidemic years due to reduction in grain yield or grain quality and via the contamination of the grain with mycotoxins such as deoxynivalenol (DON) which make grain unsafe for human and animal consumption (Rocha et al. [4]). No commercially available wheat cultivars are fully resistant to FEB and the basis of resistance is complex and major quantitative trait loci (QTL) based (Bai and Shaner [5], Buerstmayr et al. [6], Jayatilake et al. [7], Zhou et al. [8]).

Both F. graminearum and F. culmorum infect the floral and silique tissue of Arabidopsis thaliana under experimental conditions, thereby providing a tractable model for the study of host pathogen interactions during FEB disease (Urban et al. [9]). A role for a number of Arabidopsis genes in resistance/susceptibility to Fusarium has been identified using this pathosystem (Cuzick et al. [10], Cuzick et al. [11], Makandar et al. [12], Makandar et al. [13]).
confers resistance to function of the Arabidopsis homoserine kinase DMR1 study. Here we present the novel finding that reduced products of homoserine kinase activity. We also find that as threonine and methionine which are downstream products of homoserine but are not depleted in amino acids such to FEB causing Fusarium species (Asano et al. [16], Ferrari et al. [17], Kaur et al. [18], Koch et al. [19], Schreiber et al. [20]). These findings have the potential to improve defence against FEB in cereal crops using conventional and transgenic approaches, and also enhance our understanding of defence responses in plant reproductive tissues.

The Arabidopsis downy mildew resistant (dmr) mutants were isolated from a gain of function screen for resistance to the oomycete pathogen Hyaloperonospora arabidopsidis, following ethyl methanesulfonate (EMS) mutagenesis of plants of the susceptible genotype Ler-0 harbouring the enhanced disease susceptibility mutation (Van Damme et al. [21]). The eds1-2 mutation in Ler-0 has previously been shown not to alter the interaction outcome between F. culmorum and Arabidopsis flower or silique tissue (Cuzick et al. [11]). Of the five dmr mutant alleles identified, three (dmr3, dmr4, dmr5) showed constitutive expression of the salicylic acid mediated defence related gene PR-1. The remaining mutants, dmr1 and dmr6, were mapped and identified as encoding mutations in the Arabidopsis homoserine kinase, and a putative 2-oxoglutarate oxygenase, respectively (van Damme et al. [22], van Damme et al. [23]). DMR6 is associated with salicylic acid mediated defence signalling but is required for H. arabidopsidis susceptibility. Mutation of dmr1 results in accumulation of homoserine in non-inoculated plants, and exogenous application of L-homoserine co-incident with H. arabidopsidis inoculation confers resistance in wild type plants. However, the precise role of L-homoserine in resistance is not known.

We used the Fusarium – Arabidopsis floral pathosystem (Urban et al. [9]) to assess the effects of the dmr mutations on Fusarium susceptibility in Arabidopsis floral, silique and rosette leaf tissue. Mutants dmr1-1, dmr1-2, dmr5 and dmr6 (all of which also carry the eds1-2 mutation) were initially investigated; dmr3 and dmr4 have pleiotropic dwarf phenotypes which affect floral morphology and were therefore unsuitable for inclusion in this study. Here we present the novel finding that reduced function of the Arabidopsis homoserine kinase DMR1 confers resistance to F. graminearum and F. culmorum in siliques and/or reduces colonisation of rosette leaf tissues, with varying levels of resistance conferred by different dmr1 mutant alleles. The siliques of dmr1 plants accumulate homoserine but are not depleted in amino acids such as threonine and methionine which are downstream products of homoserine kinase activity. We also find that mutation of DMR1 results in delayed leaf senescence which may relate to the observed reduced leaf colonisation phenotype. Exogenous application of L-homoserine reduces floral and silique disease severity in both eds1-2 and dmr1 plants, but does not inhibit in vitro Fusarium growth.

Results

A selection of the Arabidopsis downy mildew resistant mutants have altered susceptibility to Fusarium culmorum silique infection and rosette leaf colonisation

The Arabidopsis mutants dmr1-1, dmr1-2, dmr5 and dmr6, which were generated in the Ler-0 eds1-2 background, were screened for altered susceptibility to F. culmorum infection compared to eds1-2. Wild type Ler-0 was also included in the assay. Following spray inoculation with F. culmorum spores, the plants were scored for floral and silique disease levels, along with rosette leaf infection and number of uninfected green siliques, after 7, 11 and 14 days (Figures 1 and 2). There was no statistically significant difference in floral FAD (Fusarium-Arabidopsis Disease) score (Urban et al. [9]) between the genotypes tested (F4, 93 = 0.7, p = 0.591) at any of the time points assessed, with disease progressing at an equivalent rate in all genotypes (Figure 1a). At the time of inoculation, this tissue had been unopened green buds.

By contrast, there was a significant effect of genotype on silique FAD score (F4, 91 = 16.23, p = <0.01). The siliques assessed had been open flowers at the time of inoculation. The disease progression in the Lr-0 and Ler-0 eds1-2 plants was identical (Figure 1b). The mutant allele dmr1-2 had significantly reduced silique disease levels at all time points compared to eds1-2 (Figure 1b, Figure 2a). This finding was confirmed in multiple independent experiments. Genotypes dmr5 and dmr6 had reduced silique disease symptoms at 7 and 11 days post inoculation (dpi) in the displayed experiment but these findings were not consistent across experiments. The dmr1-2 plants had significantly higher numbers of uninfected green siliques than eds1-2 at all time points, whilst for dmr6 significantly more green siliques were observed at 7 and 11 dpi but not at 14 dpi (Figure 1c).

While healthy rosette leaf tissue is not susceptible to Fusarium infection under our experimental conditions, colonisation by the fungus occurs during leaf senescence. Colonisation of rosette leaves was formally assessed following the observation that dmr1 leaves support less fungal growth. The number of colonised rosette leaves following the initial spray inoculation was found to be significantly affected by genotype (F4, 93 = 66.06, p = <.001). Both dmr1 alleles had significantly fewer colonised rosette leaves than eds1-2 at all time points (Figure 1d, Figure 2b). Interestingly, Ler-0 had significantly more colonised rosette leaves per plant than eds1-2, indicating that the eds1 mutation may have an effect on F. culmorum leaf susceptibility that was not identified in the previous study which focused on floral infection (Cuzick et al. [11]).
Mutation of DMR1 reduces susceptibility to *F. graminearum* infection

FEB disease is caused by several cereal infecting Fusaria species. Therefore, the susceptibility to *F. graminearum* infection was compared between the *dmr1* mutant alleles *dmr1*-1 and *dmr1*-2, and the parental genotype *eds1*-2 at 7, 11 and 14 dpi (Figure 3). Results were similar to those obtained for *F. culmorum*: No difference was observed in floral susceptibility (F2, 62 = 2.25, p = 0.114). Rosette leaf colonisation was affected by genotype (F2, 62 = 37.10, p < .001) with both *dmr1* alleles having fewer diseased rosette leaves than *eds1*-2 (Figure 3b and f). Silique FAD scores and uninfected silique numbers also differed between genotypes (F2, 62 = 48.63 and 55.31 respectively, p = <.001). Silique FAD scores were lower in *dmr1*-2 than *eds1*-2 at all time points, with uninfected green siliques higher in *dmr1*-2 at 7 and 11 dpi (Figure 3a, d and e). In these *F. graminearum* inoculated experiments, full infected and very necrotic siliques were visible in the *eds1*-2 plants from 7 dpi onwards, whereas this extreme silique phenotype was rarely observed from 11 dpi onwards for either the *dmr1*-1 or the *dmr1*-2 plants. Overall these results indicate that both leaf and silique resistance conferred by mutation of DMR1 is conserved across at least two cereal infecting *Fusarium* species.

Multiple *dmr1* alleles have increased resistance to *F. culmorum*

In order to verify that the silique resistance phenotype observed in *dmr1*-2 is a result of mutation of DMR1 and not caused by a second EMS induced mutation, three
additional alleles of dmrl (dmrl-3, dmrl-4 and dmrl-6) were tested for altered resistance to F. culmorum (Figure 4). The dmrl-2, dmrl-3, dmrl-4 and dmrl-5 mutants all had lower silique disease levels than eds1-2 (Figure 4a, c) (F5, 49 = 2.31, p = 0.005), whilst no differences in floral susceptibility were observed between the various dmrl genotypes and eds1-2. This again indicates that the open flowers and very immature siliques at the time of inoculation of the dmrl mutant plants were more resistant to F. culmorum infection than the green unopened buds. Fungal growth on rosette leaves was also different between genotypes (F5, 49 = 15.04, p = <0.001) with fewer rosette leaves per plant infected in genotypes dmrl-1, dmrl-2, dmrl-3 and dmrl-4 compared to eds1-2 (Figure 4b, d). Collectively, these results confirm that increased siliques and leaf resistance occurs in multiple dmrl alleles and is therefore likely a result of disruption of DMRL function.

Plants harbouring the mutant alleles dmrl-1 and dmrl-2 were also assessed for altered susceptibility to F. culmorum using a second inoculation method, namely the spore droplet, single siliques point inoculation assay. This assay involves initially removing 1 mm of tissue from the tip of each immature siliques and then placing the 1μl spore droplet onto the cut surface. No clear differences were seen in the distance of visible disease progression through the siliques and pedicel between genotypes (Additional file 1: Figure S1).

Homoserine accumulates in the siliques of dmrl mutant plants

Resistance of dmrl leaves to H. arabidopsidis infection was previously linked to elevated homoserine levels in 10 day old seedlings (van Damme et al. [23]). We analysed the amino acid composition of the siliques of three dmrl mutant alleles compared to eds1-2 in order to identify whether homoserine also accumulates in dmrl siliques (Figure 5). Homoserine was not detectable in eds1-2 siliques, but was abundant in dmrl siliques (Figure 5a). Homoserine levels were comparable between all three mutant alleles, but were higher on average in dmrl-2 and dmrl-3 siliques, which are resistant to F. culmorum, compared to dmrl-1 siliques, which have wild type resistance levels. As previously observed in seedling tissue by van Damme and colleagues, mutation of homoserine kinase does not reduce levels of downstream amino acids (Figure 5b-e). Threonine levels were elevated in dmrl-2 siliques, while methionine was more abundant in dmrl-1 siliques. Interestingly, these changed levels observed in siliques correlate well with the levels of these amino acids in young seedlings. Glycine (which can be synthesized from threonine) was more abundant in all dmrl siliques than in eds1-2. An unidentified amino acid that is not a homoserine conjugate was also detected in dmrl samples but absent from eds1-2.

Exogenous homoserine application reduces F. culmorum infection in Arabidopsis buds and siliques

Exogenous application of L-homoserine, but not D-homoserine, was previously shown to increase resistance in Arabidopsis and tomato to the obligate biotrophs Hya-

—

van Damme and colleagues, mutation of homoserine kinase does not reduce levels of downstream amino acids (Figure 5b-e). Threonine levels were elevated in dmrl-2 siliques, while methionine was more abundant in dmrl-1 siliques. Interestingly, these changed levels observed in siliques correlate well with the levels of these amino acids in young seedlings. Glycine (which can be synthesized from threonine) was more abundant in all dmrl siliques than in eds1-2. An unidentified amino acid that is not a homoserine conjugate was also detected in dmrl samples but absent from eds1-2.

Exogenous homoserine application reduces F. culmorum infection in Arabidopsis buds and siliques

Exogenous application of L-homoserine, but not D-homoserine, was previously shown to increase resistance in Arabidopsis and tomato to the obligate biotrophs Hya-

—

van Damme and colleagues, mutation of homoserine kinase does not reduce levels of downstream amino acids (Figure 5b-e). Threonine levels were elevated in dmrl-2 siliques, while methionine was more abundant in dmrl-1 siliques. Interestingly, these changed levels observed in siliques correlate well with the levels of these amino acids in young seedlings. Glycine (which can be synthesized from threonine) was more abundant in all dmrl siliques than in eds1-2. An unidentified amino acid that is not a homoserine conjugate was also detected in dmrl samples but absent from eds1-2.

Exogenous homoserine application reduces F. culmorum infection in Arabidopsis buds and siliques

Exogenous application of L-homoserine, but not D-homoserine, was previously shown to increase resistance in Arabidopsis and tomato to the obligate biotrophs Hya-

—

van Damme and colleagues, mutation of homoserine kinase does not reduce levels of downstream amino acids (Figure 5b-e). Threonine levels were elevated in dmrl-2 siliques, while methionine was more abundant in dmrl-1 siliques. Interestingly, these changed levels observed in siliques correlate well with the levels of these amino acids in young seedlings. Glycine (which can be synthesized from threonine) was more abundant in all dmrl siliques than in eds1-2. An unidentified amino acid that is not a homoserine conjugate was also detected in dmrl samples but absent from eds1-2.

Exogenous homoserine application reduces F. culmorum infection in Arabidopsis buds and siliques

Exogenous application of L-homoserine, but not D-homoserine, was previously shown to increase resistance in Arabidopsis and tomato to the obligate biotrophs Hya-

—

van Damme and colleagues, mutation of homoserine kinase does not reduce levels of downstream amino acids (Figure 5b-e). Threonine levels were elevated in dmrl-2 siliques, while methionine was more abundant in dmrl-1 siliques. Interestingly, these changed levels observed in siliques correlate well with the levels of these amino acids in young seedlings. Glycine (which can be synthesized from threonine) was more abundant in all dmrl siliques than in eds1-2. An unidentified amino acid that is not a homoserine conjugate was also detected in dmrl samples but absent from eds1-2.

Exogenous homoserine application reduces F. culmorum infection in Arabidopsis buds and siliques

Exogenous application of L-homoserine, but not D-homoserine, was previously shown to increase resistance in Arabidopsis and tomato to the obligate biotrophs Hya-

—

van Damme and colleagues, mutation of homoserine kinase does not reduce levels of downstream amino acids (Figure 5b-e). Threonine levels were elevated in dmrl-2 siliques, while methionine was more abundant in dmrl-1 siliques. Interestingly, these changed levels observed in siliques correlate well with the levels of these amino acids in young seedlings. Glycine (which can be synthesized from threonine) was more abundant in all dmrl siliques than in eds1-2. An unidentified amino acid that is not a homoserine conjugate was also detected in dmrl samples but absent from eds1-2.
10 mM L- or D- homoserine (LHS, DHS), L-threonine (THR) or water, concurrent with spray inoculation with F. culmorum at early flowering. Amino acid/water treatments were repeated daily for 5 dpi. Significant differences in F. culmorum infection between treatments were found for unopened buds (F3, 31 = 41.38, p = <0.001), open flowers (F3, 31 = 7.31, p = <0.001), siliques (F3, 31 = 1.68, p = <0.001) and rosette leaves (F3, 31 = 7.71, p = <0.001). At 7 dpi, LHS treated buds showed little or no infection, and infection of opened flowers was also reduced, compared to DHS and water treated control plants (Figure 6a, b, c). Silique infection levels were slightly elevated in all amino acid treated plants compared to water controls in these experiments (Figure 6d). Threonine treatment increased F. culmorum colonisation in both open flowers and rosette leaves (Figure 6a and e).

Plants treated with threonine also exhibited leaf chlorosis and lesion formation in the absence of F. culmorum infection, indicating that threonine spray treatment at and above 10 mM may induce a cell death response. This result was consistent in both eds1-2 and wild type Ler-0 plants (Additional file 3: Figure S3).

We also analysed the effect of D- and L-homoserine on F. culmorum infection of eds1-2 siliques following single silique wound point inoculations (Figure 7). Siliques were droplet inoculated with water, DHS or LHS for 5 days following F. culmorum inoculation. There was a significant difference in F. culmorum infection development between treatments (ANOVA, p = <0.001). DHS treatment resulted in a modest reduction in F. culmorum growth along inoculated siliques compared to water treatment, while LHS treatment resulted in significantly less Fusarium growth than either water or DHS treatment, with most plants showing no externally visible infection. However, F. culmorum hyphae were present on and between seeds within some LHS treated siliques with externally uninfected pericarps (Additional file 4: Figure S4).

We also analysed the effect of LHS treatment on dmr1 mutants using the spray treatment method (Figure 8).
We found that exogenous LHS application, compared to DHS application, conferred *F. culmorum* resistance in *dmr1*-2 buds (which are not resistant) equivalent to that seen in LHS treated *eds1*-2 buds (Figure 6b). Furthermore, LHS treatment afforded a further increase in silique resistance in *dmr1*-2 siliques, despite a high level of resistance already being conferred by the mutation.

Mutation of DMR1 affects plant growth and senescence

During the growth of the experimental plants, *dmr1*-2 plants appeared to be slightly smaller in size than *eds1*-2 plants. Therefore, the rosette diameter and leaf number were measured and compared between 5-week old plants of genotypes *dmr1*-1, *dmr1*-2 and *eds1*-2. The quantification of growth confirmed that the *dmr1*-2 plants have approximately ~25% smaller rosettes on average than *eds1*-2 (Additional file 5: Figure S5a & b), but that leaf number is similar between genotypes (Additional file 5: Figure S5c). This supports the recent findings by Huibers et al. [24] that some Arabidopsis *dmr1* mutants have reduced fresh weight compared to *eds1*-2. Leaf senescence between genotypes was also assessed by counting the number of visibly senescent leaves per plant at 7, 11, and 14 days after flowering (corresponding to assessment of infected plants at 7, 11 and 14 dpi), and found to be delayed in both *dmr1*-1 and *dmr1*-2 compared to *eds1*-2 (Additional file 5: Figure S5d & e).

Silique number were compared between genotypes at 7, 11 and 14 days post flowering (corresponding to assessment of infected plants at 7, 11 and 14 dpi) to ensure that the increased number of uninfected siliques observed in *dmr1*-2 was not due to more siliques being produced in this genotype. No difference was found between genotypes at any of the time points assessed (Additional file 5: Figure S5f). There was no evidence of increased silique number in the other *dmr1* alleles investigated in this study, although this was not formally assessed.
Exogenous application of L-homoserine only partially and inconsistently affected Fusarium colonisation of wheat ears

The effect of exogenous homoserine application on Fusarium infection in wheat spikes was assessed by treating F. graminearum infected wheat spikelets with L-homoserine, D-homoserine or sterile water daily for 7 dpi. Fewer mean bleached spikelets and bent awns and higher grain number and weight were observed in L-homoserine treated plants compared to the other treatments in both experimental replicas. However, only the reduced number of bleached spikelets was statistically significant, and only in the first experimental replicate (Additional file 6: Figure S6) (p = 0.03).

Discussion

In order to identify additional host genes controlling the outcome of the Fusarium–Arabidopsis interaction, as well as highlight components of defence signalling which are conserved in response to different pathogen types, we screened a number of downy mildew resistant mutants for altered susceptibility to the fungal pathogens F. culmorum and F. graminearum, which infect floral tissue in cereals and Arabidopsis. We identified that multiple loss of function mutant alleles of the Arabidopsis HOMO- SERINE KINASE gene DMRI have increased resistance to Fusarium culmorum. Siliques of dmri-1-2, dmri-1-3, dmri-1-4 and dmri-1-6 were found to be more resistant to infection and leaves of dmri-1-1, dmri-1-2, dmri-1-3 and dmri-1-4, supported reduced leaf colonisation. These phenotypes were also observed following F. graminearum infection of dmri-1-1 and dmri-1-2.

These results indicate that there is potentially a common mechanism of susceptibility occurring in response to infection by both the downy mildew oomycete pathogen...
H. arabidopsidis, which is a leaf adapted obligate biotroph, and fungal hemi-biotrophic *Fusarium* species which are floral adapted. Mutation of AtDMR1 and its tomato ortholog SlDMR1 has also recently been shown to increase resistance to the obligate biotrophic fungal mildew *Oidium neolycopersici* in an allele dependent manner, but has not been found to alter resistance to any other pathogens assessed, including the facultative biotrophic bacterium *Pseudomonas syringae* (van Damme et al. [23], Huibers et al. [24]). As with susceptibility to *Oidium neolycopersici* (Huibers et al. [24]), resistance to *Fusarium* in *dmr1* is allele dependent; while the *dmr1-1* allele supports less rosette leaf colonisation and has delayed senescence it does not confer resistance in siliques, despite homoserine accumulating within this tissue. One hypothesis is that homoserine accumulation caused by the *dmr1* mutation is not responsible for increased *Fusarium* silique resistance, and that DMR1 has an additional function contributing to silique susceptibility which is not abolished in the *dmr1-1* allele. Meanwhile the delayed leaf senescence and associated reduction in fungal colonisation in this and the other alleles is due to reduced homoserine kinase function, and

Figure 6 The effect of exogenous amino acid treatments on *Fusarium* susceptibility in Arabidopsis floral, silique and rosette leaf tissue. Arabidopsis plants of genotype eds1-2 were sprayed at early flowering with either 10 mM D-homoserine (DHS), L-homoserine (LHS), threonine (THR) or sterile water, co-incident with *F. culmorum*. Amino acid/water treatments were then repeated daily for 6 dpi. Disease was assessed at 7 dpi. a) Images show infected apical inflorescences (upper panel) and rosette leaves (lower panel) – stem and floral tissue have been removed from rosettes. White arrow – green and opening buds present in LHS treated plants. Plants were scored for (b) bud disease, (c) open flower disease, (d) silique disease and (e) infected rosette leaf number. Asterisks indicate statistically significant differences from H2O treated plants (regression analysis followed by prediction of LSDs, p = <0.05, n = 8). Results are representative of two independent experiments.
is therefore conserved between alleles. However, this does not account for the reduction in disease afforded by exogenous application of homoserine. An alternative hypothesis is that the dmrl-1 mutant harbours a second mutation as a result of the original EMS mutagenesis which mitigates the silique resistance phenotype, either by blocking the activity of the elevated homoserine or independently elevating silique susceptibility via another pathway. The latter would potentially be less likely to affect saprophytic colonisation of senesced leaf tissue. Further investigation is required to test these hypotheses.

Mutation of DMR1 was not found to alter susceptibility to infection of unopened buds and young flowers, despite affecting both leaf and silique infection. Analysis of Arabidopsis DMR1 expression using Genevestigator (Hruz et al. [26]) shows that DMR1 is expressed at lower levels in some floral tissues than it is in vegetative tissue, namely in the stamens, anthers, stigma and sepals (Additional file 7: Figure S7a). Since homoserine kinase activity has been shown to be driven by homoserine accumulation (Lee et al. [27]), it may be that these tissues do not produce high levels of homoserine and are therefore unaffected by decreased DMR1 activity. Susceptibility of sepal and male reproductive tissue during early floral development pre-fertilisation may result in loss of the flower, whereas infection of these tissues post-pollination would have little effect on the siliques of resistant dmrl plants, as this tissue is shed during silique development.

Since dmrl induced resistance to H. arabidopsidis is proposed to be mediated by homoserine accumulation and can be mimicked by exogenous L-homoserine application.

Figure 7 Homoserine treatment reduces F. culmorum growth in point inoculated eds1-2 siliques. Tip-wounded eds1-2 siliques were treated with 10 mM L-homoserine (LHS), D-homoserine (DHS) or sterile water coincident with F. culmorum inoculation. Amino acid/water treatment was repeated for 5 dpi. Images show infected siliques 8 dpi under bright field (BF) and UV light with a violet filter. Red fluorescence indicates healthy tissue, green fluorescence indicates infected tissue. The length of infection (mm) along three siliques per plant was assessed at 8 dpi. Different letters indicate statistically significant differences between treatments (analysis of variance followed by prediction of LSDs, p = <0.01, n = 12). Data were pooled from three independent experiments.
in wild type plants, we investigated the effects of homoserine application on Fusarium growth \textit{in vitro} and \textit{in planta}. Treatment of \textit{eds1-2} plants with L-homoserine (LHS) following spray inoculation with \textit{F. culmorum} resulted in significantly decreased bud and flower colonisation by the fungus. This contrasts with the phenotype of \textit{dmr1} mutants, which have increased silique and leaf, but not floral, resistance. As previously discussed, the Genevestigator analysis suggested that some floral organs may have lower HSK expression than other plant tissues (Additional file 7: Figure S7). This may result in longer persistence of the applied homoserine in buds than in siliques and other tissues, resulting in reduced fungal growth compared to other tissues. This was corroborated by the finding that exogenous L-homoserine application onto resistant \textit{dmr1-2} siliques, which accumulate homoserine, further enhanced resistance to \textit{F. culmorum} (Figure 8). We did find that more direct application of both the fungus and the LHS onto the tips of wounded siliques resulted in decreased fungal growth along the silique compared to water and DHS treated controls, indicating that homoserine treatment enhances resistance in wild type siliques under these infection conditions. However, in these experiments we also observed less \textit{F. culmorum} infection following treatment with D-homoserine than with water, suggesting that the D-enantiomer of homoserine can also reduce Fusarium growth in certain situations. This finding contrasts with the results obtained following spray inoculation, where both amino acid forms increase silique disease. The biological reason for this is unclear. Formally, it is possible that daily application of distilled water to the silique tip might enhance the growth of Fusarium, which requires high humidity for infection, whereas the various osmotic properties of the amino acid solutions do not. Alternatively the D-homoserine may be eliciting a response from the wounded silique tip which then affects fungal growth. This demonstrates the importance of using the biologically inactive enantiomer as a control.

Exogenous application of homoserine onto the spikelets of \textit{F. graminearum} infected wheat cultivar Apogee did not
consistently reduce infection. The number of bleached spikelets was significantly lower in LHS treated plants (p = 0.03) at 10 days post inoculation in one experimental replica, but there was no significant difference in the degree of awn bending, grain number or grain weight. Therefore the effect of L-homoserine on Fusarium infection and disease development was less pronounced on wheat floral tissue compared to Arabidopsis. This interspecies difference is likely due to the rapid metabolism of the applied homoserine by the functional wheat homoserine kinase(s), preventing homoserine accumulation and activity. Future research should therefore focus on disruption of wheat homoserine kinase function.

This study also presents the novel finding that exogenous application of threonine induces host cell death in Arabidopsis leaves and increases *F. culmorum* colonisation. This raises further questions about the effects of amino acid metabolism on plant defence against different pathogen species and lifestyles. van Damme and colleagues did not find an effect of exogenous threonine application on *H. arabidopsidis* susceptibility when amino acids were applied by vacuum infiltration. However, Stuttmann *et al.* [25] found that spray application of 1-5 mM threonine resulted in decreased *H. arabidopsidis* sporulation in Ler-0 eds1-2 plants. These contrasting outcomes are interesting. *H. arabidopsidis* is a classic obligate biotroph and would therefore be sensitive to any host induced cell death which would limit this pathogen’s access to living tissue. By contrast *Fusarium* has been shown to have a switching *in planta* lifestyle with host cell death an integral feature of the later disease formation process (Brown *et al.* [28], Desmond *et al.* [29], Thaler *et al.* [30]). Cereal infecting Fusaria are also able to colonise saprophytically dead plant tissue. Threonine mediated chlorosis may therefore facilitate *Fusarium* colonisation while preventing growth of obligate biotrophic pathogens.

Related to this is the finding that mutation of *DMR1* results in delayed senescence. Analysis of *DMR1* expression during plant development using GENEVESTIGATOR (Hruz *et al.* [26]) shows that expression is fairly static throughout plant development but increases during senescence (Additional file 7: Figure S7b). This suggests that *DMR1* function could have a role in programmed cell death and senescence. The delayed *DMR1* dependent cell death in the *dmr1* mutants may restrict Fusarium disease progression and prevent its successful exploitation of host cell death (Thaler *et al.* [30]). For pathogens such as *Fusarium* with a combined hemi-biotrophic and saprophytic life style strategy, delayed cell death could prevent full tissue exploitation and the gaining of additional nutrition from the cellular debris. This is supported by the finding that *dmr1* leaves display delayed senescence accompanied by a decrease in *Fusarium* colonisation. However, the delayed cell death may not be the underlying cause of the enhanced resistance. For example, the manner in which delayed cell death might help protect plants against obligate biotrophic pathogens such as *H. arabidopsidis* is not clear. It is formally possible that the normal amino acid ratios found in healthy Arabidopsis tissue are modified in the *dmlr1* mutants and this alters the efficiency of nutrient acquisition via the haustoria interfaces in obligate biotrophic interactions as well as altering the switching lifestyle of hemibiotrophic pathogens. In this regard, the identification of the novel accumulating amino acid in the three *dmr1* mutants, but not *eds1-2* (Figure 5) remains a priority.

Huibers *et al.* [24] found a correlation between reduced Arabidopsis plant fresh weight in different *dmr1* mutant alleles and the level of resistance conferred to *O. neolycopersici*. The authors concluded that it might be difficult to obtain *dmr1* alleles in crop species which conferred enhanced resistance to this pathogen in the absence of a fitness cost. While the *dmr1*-3 mutant allele did not confer a significant growth penalty, likewise it did not confer resistance to *O. neolycopersici*. However, in the current study, *dmr1*-3 conferred resistance to *F. culmorum* in both the leaf and silique tissue of Arabidopsis, although the leaf phenotype was not as strong as in other alleles. Investigation into the effects of homoserine kinase disruption in FEB-susceptible cereal crops is therefore warranted. This may be achieved both through stable transgenesis and the use of an inducible promoter to drive an RNAi construct. Alternatively, the use of transient Virus Induced Gene Silencing (Lee *et al.* [31], Lee *et al.* [32]) of cereal homoserine kinases could be deployed.

In this study and that of van Damme *et al.* [21] it was found that *dmr1* plants have wild type or elevated levels of the amino acids methionine, threonine and isoleucine, in both foliar and silique tissue (Figure 5). These amino acids are understood to be synthesised directly via the activity of homoserine kinase. The abundance of these three amino acids in plants with severely reduced homoserine kinase function therefore challenges the current understanding of amino acid biosynthetic pathways. It may be the case that these amino acids are being synthesised via alternative, currently unidentified pathway(s) in the *dmr1* mutants, which are independent of homoserine kinase. Alternatively, mutated homoserine kinase may retain some residual function: Homoserine is synthesised via the activity of homoserine kinase. The abundance of these three amino acids in plants with severely reduced homoserine kinase function therefore challenges the current understanding of amino acid biosynthetic pathways. It may be the case that these amino acids are being synthesised via alternative, currently unidentified pathway(s) in the *dmr1* mutants, which are independent of homoserine kinase. Reduced methionine biosynthesis may therefore result in increased aspartate kinase activity, shunting more homoserine into the pathway. Some of the accumulating homoserine might then be phosphorylated by the mutated homoserine kinase, restoring equilibrium in the pathway. However, no changes were observed in
aspartate levels between wild type and dmri mutant plants. Experiments to compare aspartate kinase expression and activity between genotypes would be informative.

Conclusions
This study has identified that a series of mutations in the Arabidopsis homoserine kinase gene DMRI confers resistance in siliques to the primary causal agents of cereal FEB disease, a source of crop yield losses and grain contamination. Siliques of the dmri mutants accumulate homoserine, and exogenous application of L-homoserine confers resistance to the floral and silique tissues of both mutant dmri and wild type DMRI plants. These finding offer the possibility of developing a novel source of resistance to an economically important floral crop disease for which few other resistance mechanisms exist. Further work will use virus induced gene silencing of the wheat DMRI ortholog to explore the potential of homoserine in Fusarium resistance in wheat. However, the mechanism by which homoserine accumulation in plant tissue mediates resistance is still not fully understood, and may be key to fully exploiting dmri based resistance which has the potential for use in multiple crop species.

Methods
Plant growth
The Arabidopsis downy mildew resistant mutant collection and parent genotype eds1-2 were a gift from Guido van den Ackerveken, Utrecht University, The Netherlands. Ecotype Ler-0 (NASC stock NW20) was a gift from Graham McGrann, John Innes Centre, UK. Plants were grown in Levingtons F2+S compost in a Fitotron® ‘walk in’ plant growth chamber (www.fitotron.co.uk), with a 16 h light/8 h dark cycle at temperatures of 20°C (light) and 17°C (dark), with 150 μmol m⁻² s⁻¹ fluorescent illumination, at 70% humidity.

Fusarium growth and storage
F. culmorum strain 98/11 (NRRL 54112) and F. graminearum strain PH-1 (NRRL 31084) were propagated as previously described (Urban et al. [9]; Cuzick et al. [10]); Conidia were transferred from frozen stocks stored at -80°C onto synthetic nutrient poor agar plates (SNA 0.1% KH₂PO₄, 0.1% KNO₃, 0.1% MgSO₄x7 H₂O, 0.05% KCl, 0.02% glucose, 0.02% saccharose, 2% agar) for 8-11 days, and then transferred onto potato dextrose agar (PDA) plates for 48 h to encourage high levels of conidial production. Conidia were then suspended in sterile distilled water and filtered through sterile Miracloth (Calbiochem®), and stored at -80°C prior to plant inoculations. Studies using F. graminearum strain PH-1 were conducted under PHSI license 101948/198285/2.

Arabidopsis-Fusarium infection assays
For spray inoculation assays, plants were selected at early flowering (2-4 open flowers per plant) and the whole plant spray inoculated with F. culmorum or F. graminearum conidia suspended in sterile water at a concentration of 10⁶ conidia/ml. Control plants were spray inoculated with sterile water.

For amino acid treatment studies, inoculated plants were sprayed daily with a solution of 10 mM L-homoserine, D-homoserine or L-threonine, or sterile water as a control. This was repeated daily for 5 days post inoculation.

For single silique wound point inoculations, plants with six young siliques were selected for inoculation. The top 1 mm of each silique was removed using sterile scissors and the tip inoculated with a 1 μl droplet containing approx. 10⁵ Fusarium conidia suspended in sterile H₂O. Sterile H₂O alone was used as a control. For amino acid treatments, conidial suspensions were supplemented at the time of inoculation with 20 mM L-homoserine or D-homoserine, or sterile water as a control. Amino acid suspensions were then re-applied for 6 days post inoculation.

Plants were transferred to inoculation boxes at 100% relative humidity for the duration of the experiment and kept in darkness for 20 h following inoculation.

Scoring of Fusarium disease symptoms
Plants were scored for floral and silique disease symptoms using the Fusarium-Arabidopsis disease (FAD) scoring system devised by Urban et al. [9]. Disease scores per plant were assigned from 0 (no disease symptoms) to 7 (severe disease symptoms with constriction of the main stem) for apical flowers and siliques (Additional file 8: Table S1). The silique score applies to the most diseased silique on each plant, only increasing if all siliques display equivalent disease, and does not therefore take account of the number of siliques escaping disease. For this reason, uninfected green siliques per plant were also counted. The number of diseased rosette leaves per plant was also counted. At least five plants per treatment or genotype were used in each experiment, and each experiment was done at least twice.

In vitro Fusarium growth tests
F. culmorum and F. graminearum conidia at a concentration of 2x10⁵ conidia ml⁻¹ were cultured for two days in 96 well flat bottomed culture plates in 200 μl synthetic nutrient poor liquid media supplemented with either L- or D-homoserine at a concentration range from 0 to 80 mM. Absorbance as a surrogate for fungal growth was measured for each homoserine concentration as previously described (Fan et al. [35]). Three biological replicates were included per fungal isolate/amino acid treatment, and the experiment repeated.
Wheat infection and amino acid treatment
The dwarf wheat cultivar Apogee (Bugbee, Koerner et al. [36]) was used for wheat infection assays. The 8th and 9th spikelets of ears at anthesis were point inoculated with 5 μl of F. graminearum conidial suspension at 10^6 ml^-1. In addition, the 6th-11th spikelets were treated with 5 μl of either 10 mM L-homoserine or D-homoserine, or sterile water. The three different treatments were then repeated daily for 7 days. The number of bleached spikelets and bent awns (preceding bleaching in infected spikelets) was assessed, and grain weight and number recorded at 10 dpi following dissection of the rachis, as per Baldwin et al. [37].

Analysis of silique amino acids
The amino acid content of 15 mg freeze dried and ground siliques from dmr1 mutant and eds1-2 plants was analysed using the EZFaast GC-MS physiological amino acid analysis kit, according to the manufacturers’ instructions. The protocol was amended such that the addition of the internal standard supplied with the kit was omitted and the final solvent evaporation step with reconstitution in organic solvent was replaced with a 1:10 dilution with the organic solvent (reagent 6). Samples were analysed on an Agilent 5975 Inert MSD coupled to a 7890A Gas Chromatograph fitted with a Zebron Amino acid ZB-AAA column (10 m × 0.25 mm i.d. Phenomenex, Cheshire, UK), Gestel MPS2 autosampler and split/splitless injector (fitted with quartz wool packed SGE FocusLiner). For each genotype three biological replicates were analysed, each consisting of siliques from ~8 pooled 6-week old plants. The internal standard, amino acid standard solutions and glutamine standard were obtained from Sigma (Dorset, UK). Homoserine standard was obtained from Koch-Light Laboratories, Colnworth, Bucks, UK.

Microscopy
Fusarium infected Arabidopsis siliques were imaged using a Leica M205 FA stereomicroscope and accompanying LAS-AF6000 software, using white light or UV light with a Violet filter (Excitation: 425/40 nm, Emission: 475 nm).

Statistical analysis
The Arabidopsis – Fusarium disease susceptibility data were subjected to regression analysis fitted to a general linear model with assumed Poisson distribution. For mutant experiments with multiple time points, the effects of genotype and time, and the interactions between genotype and time, were examined. Where a significant effect of genotype or treatment was found (p < 0.05), genotype/treatment means and least significant differences (LSDs) between genotypes or treatments were calculated at a 5% confidence level and means for all genotypes compared to genotype eds1-2, and all amino acid treatments compared to water treatment, to identify significant differences. In the absence of an interaction between genotype and time, one mean per genotype was predicted by amalgamating data from all time points, with corresponding LSDs. Where a significant interaction between genotype and time was observed, means and LSDs to eds1-2 were calculated for each genotype at each time point assessed. For analysis of the effect of LHS on dmr1-2 compared to eds1-2 LSDs between each genotype/treatment combination were used to identify statistically significant differences between treatments. For single siliques point wound inoculations, analysis of variance (ANOVA) was used to compare fungal growth (in mm) along the siliques. LSDs (p = 0.01) were calculated between treatments. All statistical analysis was done using Genstat v16 (Payne et al. [38]).

Supporting data
All relevant supporting data can be found within the supplementary files accompanying to this article.

Arabidopsis mutant loci
The following Arabidopsis loci are associated with this study: dmr1; AT2G17265, dmr6; AT5G24530, eds1-2; AT3G48090. Further information can be obtained from www.arabidopsis.org.

Additional files
Additional file 1: Figure S1. Images of individual silique s point inoculated at the cut tip. (a-c) Water inoculated controls show comparable development and seed set between eds1-2 and dmr1-1 and dmr1-2 genotypes. (d-i) Comparable levels of Fusarium culmorum infection of dmr1 mutant and eds1-2 siliques 7 days post inoculation. In panels d through f, whole infected split (left) and intact (right) siliques are shown. In panels g through i are close-up images of infected seeds. Shown are representative images present in multiple biological replicates.

Additional file 2: Figure S2. Homoserine does not inhibit Fusarium hyphal growth in vitro. Spores of either F. culmorum or F. graminearum were cultured for 2 days in synthetic nutrient poor media supplemented with (a, b) D-homoserine and (c, d) L-homoserine at concentrations ranging from 0 to 80 mM. Graphs show the optical density at 600 nm of fungal colonies after 2 days growth. The experiment was repeated with similar findings.

Additional file 3: Figure S3. Threonine (THR) mediated chlorosis in rosette leaves of Arabidopsis genotypes ler-0 and eds1-2. Plants were sprayed with 10 mM thereonine or water daily for 5 days, first treatment coincident with F. culmorum or mock (water) spray inoculations. The effect of threonine was most pronounced in Fusarium inoculated leaves. Threonine from two different commercial suppliers was tested with identical outcomes.

Additional file 4: Figure S4. Homoserine treatment reduces F. culmorum growth in point inoculated eds1-2 siliques. Tip-wounded eds1-2 siliques were treated with 10 mM L-homoserine (LHS), D-homoserine (DHS) or sterile water coincident with F. culmorum inoculation. Amino acid/water treatment was repeated for 5 dpi. Images show opened siliques sections at 8 dpi. Tissue necrosis and fungal growth is evident in the pericarp (P) and seed (S) of water and D-homoserine (DHS) treated silies. L-homoserine (LHS) treated silies have predominantly uninfected pericarps, but some externally uninfected LHS treated silies.
revealed, when opened, the presence of fungal colonisation within the silique (far right).

Additional file 5: Figure S55. Differences in developmental morphology and senescence between the dmr1-1 and dmr1-2 mutant alleles and ed1-2. (a, b) Rosette diameter is reduced in 5-week old plants of genotype dmr1-2 compared to ed1-2. (c) Leaf number is comparable between genotypes. (d, e) Leaf senescence is delayed in both dmr1-1 and dmr1-2. Panel d shows the appearance of the rosettes of flowering plants at 14 days post flowering. (f) Silique equivalent was evaluated between all genotypes throughout seed set. These phenotypes were observed across multiple experimental replicates. Asterisks indicate significant difference from ed1-2: *p < 0.05, **p < 0.01 (b – ANOVA, e – Regression analysis).

Additional file 6: Figure S56. Effect of L-homoserine application on Fusarium infection of wheat. Spikes of wheat cultivar Apogee were point inoculated with F. graminearum and then treated with either L-homoserine (LHS) D-homoserine (DHS) or water for 7 days. The number of bent awns (a) and bleached spikelets (b) along with grain weight (c) and number (d) per plant were assessed at 10 dpi. (*) The number of bleached spikelets was significantly lower in LHS treated plants (p = 0.03). No statistically significant difference between treatments was found for other parameters (ANOVA, p = >0.05). Bar = standard error.

Additional file 7: Figure S57. GENEVESTIGATOR analysis of the expression profile of Arabidopsis DMT1. A) Tissue specific expression levels across different floral tissues. B) Development stage specific expression levels.

Additional file 8: Table S1. Scoring of Fusarium disease in Arabidopsis floral and silique tissue, adapted from Urban et al. (9). Plants were given separate scores for floral and silique infection from 0 (no disease) to 7 (constriction of the main stem). The intermediate scores of 2 and 4 (F), and 2, 4 and 6 (S) were reserved for when all the tissue on a single plant exhibited the disease phenotype described for the preceding score.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
H8 designed and carried out all experiments and data analysis, with the exception of GC-MS. NH carried out GC-MS and subsequent data analysis. KKH participated in experimental design, manuscript drafting and editing and supervision of the research project. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank Julian Franklin and colleagues for maintenance of controlled environment facilities, Stephen Powers for assistance with statistical analysis and Guido van den Ackerveken for providing Arabidopsis seeds. Microscopy was done in the Bioimaging facility at Rothamsted Research. We are grateful to Drs Jason Rudd and Martin Urban for their comments on the manuscript and to Professor Peter Hedden for discussion on this research. This work was done as part of a PhD Quota studentship (S2055) funded by the BBSRC (Biotechnology and Biological Sciences Research Council, UK). Rothamsted Research receives grant-aided support from the BBSRC. KHK receives additional support from within the BBSRC Institute Strategy Grant 201020 wheat (BB/L/004260/1).

Received: 24 July 2014 Accepted: 6 November 2014

Published online: 29 November 2014

References
1. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahlmann R, Ellis J, Foster GD. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 2012, 13:414–430.
2. Goswami RS, Kisler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 2004, 5:515–525.
3. Parry DW, Jenkins P, McLeod L. Fusarium ear blight (Scab) in small-grain cereals - a review. Plant Pathol 1995, 44:207–238.
4. Rocha Q, Anami K, Doohan FM. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 2005, 22:669–738.
5. Bai GH, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 2004, 42:135–161.
6. Buenrostro-H, Ban J, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 2009, 128:1–26.
7. Jayatilake DV, Bai GH, Dong YH. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet 2011, 122:1189–1198.
8. Zhou MP, Hayden MI, Zhang ZY, Lu WZ, MA XK. Saturation and mapping of a major Fusarium head blight resistance QTL on chromosome 3BS of Sumai 3 wheat. J Appl Genet 2010, 51:19–25.
9. Urban M, Daniels S, Mott E, Hammond-Kosack K. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J 2002, 32:961–973.
10. Cuzick A, Lee S, Gezan S, Hammond-Kosack KE. NPR1 and EDS1 contribute to host resistance against Fusarium culmorum in Arabidopsis buds and flowers. Mol Plant Pathol 2008, 8:697–704.
11. Cuzick A, Maquere K, Hammond-Kosack KE. Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers. New Phytol 2009, 181:901–912.
12. Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Mol Plant Microbe Interact 2010, 23:861–870.
13. Savitch L, Subramaniam R, Allard G, Singh J. The GLK1 ‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. Biochem Biophys Res Commun 2007, 359:234–238.
14. Van Hannelrijk W, Wouters PFW, Brouwer M, Windelinx A, Goderis UWM, De Bolle MFC, Thomma BPHJ, Cammue BPA, Delaure Sl. The Arabidopsis defense response mutant efs1 as a model to discover novel resistance traits against Fusarium diseases. Plant Science 2006, 171:585–595.
15. Asano T, Miwa A, Maeda K, Kimura M, Nishizuki T. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog 2013, 9:6.
16. Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D’Ovidio R. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 2012, 14(1):31–38.
17. Kaur J, Thokala M, Robert-Selansanz A, Zhao P, Peyret H, Berg H, Pandey S, Jones J, Shah D. Subcellular targeting of an evolutionarily conserved plant defense MiDef4.2 determines the outcome of plant–pathogen interaction in transgenic Arabidopsis. Mol Plant Microbe Interact 2012, 15:1032–1046.
18. Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH. Host-induced gene silencing of cytochrome P450 lanosterol C14-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Nat Acad Sci USA 2013, 110(48):19324–19329.
19. Schreiber KJ, Nasmith CG, Allard G, Singh J, Subramaniam R, Desveaux D. Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Mol Plant Microbe Interact 2011, 24:640–648.
20. Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ, Van den Ackerveken G. Identification of Arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. Mol Plant Microbe Interact 2005, 18:583–592.
21. Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J 2008, 54:785–793.
22. Van Damme M, Zeilmaker T, Elberse J, Andel A, De Sain-Van Der Velden M, Van den Ackerveken G. Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell 2009, 21:2719–2189.
23. Huibers RP, Loonen AE, Gao D, Van den Ackerveken G, Visser RG, Bai Y. Powdery mildew resistance in tomato by impairment of SPMR4 and SIDMR1. PLoS One 2013, 8:e67467.
25. Stuttmann J, Hubberten HM, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE: Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. *Plant Cell* 2011, 23:2788–2803.

26. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P: Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. *Adv Bioinformatics* 2008, 2008: Article ID 420747.

27. Lee M, Martin MN, Hudson AO, Lee J, Muhitch MJ, Leustek T: Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in *Arabidopsis thaliana*. *Plant J* 2005, 41:685–696.

28. Brown NA, Urban M, van de Meene AM, Hammond-Kosack KE: The infection biology of *Fusarium graminearum*: defining the pathways of spikelet to spikelet colonisation in wheat ears. *Fungal Biol* 2010, 114:555–571.

29. Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PA, Gardiner DM, Munin AL, Kazan K: The *Fusarium* mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. *Mol Plant Pathol* 2008, 9:435–445.

30. Thaler JS, Owen B, Higgins VJ: The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. *Plant Physiol* 2004, 135:530–538.

31. Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K: *Mycosphaerella graminicola* LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBBiP homologues in wheat. *Mol Plant Microbe Interact* 2013, 27(3):296–343.

32. Lee WS, Hammond-Kosack KE, Kanyuka K: Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. *Plant Physiol* 2012, 160:582–590.

33. Curien G, Laurencin M, Robert-Genthon M, Dumas R: Allosteric monofunctional aspartate kinases from *Arabidopsis*. *FEBS J* 2007, 274(1):164–176.

34. Curien G, Ravanel S, Robert M, Dumas R: Identification of six novel allosteric effectors of *Arabidopsis thaliana* aspartate kinase-homoserine dehydrogenase isoforms: physiological context sets the specificity. *J Biol Chem* 2005, 280(50):41178–41183.

35. Fan J, Urban M, Parker JE, Brewer HC, Kelly SL, Hammond-Kosack KE, Fraaije BA, Liu X, Cock HJ: Characterization of the sterol 14α-demethylases of *Fusarium graminearum* identifies a novel genus-specific CYP51 function. *New Phytol* 2013, 198:821–835.

36. Bugbee B, Koerner G, Albrechtsen R, Dewey W, Clawson S: Registration of cultivars: registration of 'USU-Apogee' wheat. *Crop Sci* 1997, 37(2):626.

37. Baldwin TK, Galfoor I, Antoniw J, Andries C, Guernther J, Urban M, Hallen-Adams HE, Pitkin J, Hammond-Kosack KE, Traill F: A partial chromosomal deletion caused by random plasmid integration resulted in a reduced virulence phenotype in *Fusarium graminearum*. *Mol Plant Microbe Interact* 2010, 23(8):1083–1096.

38. Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM: An Introduction to GenStat for Windows. 14th edition. Hemel Hempstead, UK: VSN International; 2011.

doi:10.1186/s12870-014-0317-0

Cite this article as: Brewer et al.: Mutations in the Arabidopsis homoserine kinase gene DMR1 confer enhanced resistance to *Fusarium culmorum* and *F. graminearum*. *BMC Plant Biology* 2014 14:317.