Rubidium-82 is the Best Flow Tracer for High-volume Sites

Ran Klein, PhD1, 2) and Robert A. deKemp, PhD3, 4)

Received: July 10, 2019/Revised manuscript received: July 27, 2019/Accepted: July 30, 2019
© The Japanese Society of Nuclear Cardiology 2019

Abstract
Rubidium-82 is the most well-established cardiac PET flow tracer with over 6 decades of literature. Due to its robust supply, short physical half-life, ease of use, low radiation dose and favorable kinetics it can deliver comprehensive clinical information with minimal risk and maximum convenience to patients and clinical staff. Optimized 82Rb protocols can deliver high quality myocardial perfusion imaging, functional cardiac images and absolute myocardial blood flow and flow reserve from a single session 30 minutes clinical protocol—benefiting patient convenience and clinical throughput. In a high volume setting the cost of 82Rb PET can be dramatically lower than that of alternative PET flow tracers. These factors compound toward 82Rb as the best PET flow tracer for high-throughput clinics.

Keywords: Cardiac flow, Myocardial blood flow, Perfusion, Positron emission tomography, Rubidium-82 chloride
Ann Nucl Cardiol 2019; 5 (1): 53–62

Of the PET perfusion tracers currently available to clinicians, without a doubt Rubidium-82-chloride (82Rb) is the most commonly used, especially in the United States and Canada. The popularity of 82Rb is partly historical, as it has been recognized as a biological analog to potassium since 1953, and that its uptake is proportional to myocardial blood flow (MBF) was demonstrated as early as 1959. 82Rb is the product of strontium-82 (82Sr) decay and 82Sr/82Rb generators have been commercially available under the brand name CardioGen-82® (Bracco Imaging, Milano, Italy) since 1989 when USFDA approval was first granted. In 2016 Jubilant-DraxImage (Kirkland, Quebec, Canada) launched an alternative product under the name Ruby-Fill® which similarly comprises of a 82Sr/82Rb generator that is used with a specialized infusion system. At least one of these 82Rb products is approved for clinical use in most developed countries including USA, Canada, EU, Japan, India, UAE, South Africa, Luxemburg, Switzerland.

Because of 82Rb’s long history and widespread adoption, a robust body of literature has been produced concerning its characterization and clinical application. 82Rb flow has been validated in large animals with surgically induced infarcts (1–3) and it has been demonstrated to have prognostic and diagnostic utility in numerous clinical trials both without and with the incremental value of quantitative myocardial blood flow (MBF) (4). MBF has been compared with invasive fractional flow reserve measurements demonstrating partially complimentary information from the two exams (5), which supports the use of 82Rb as a gate keeper to the cath-lab or operating room in patients suspected of coronary artery disease (CAD) (6).

While other PET flow tracers with attractive properties have been developed, the use of 82Rb has continued to grow year-after-year for few fundamental reasons. Many of the attributes of 82Rb are derived from its short radioactive half-life of 76 seconds, its convenient generator-based productions, the robust and scalable 82Sr supply chain, and the favorable kinetics of Rb as a cardiac perfusion agent (high uptake and long retention).

The goal of this article is to elaborate on the advantages of

1) Division of Nuclear Medicine, Department of Medicine, University of Ottawa, Ottawa, Canada
2) Department of Nuclear Medicine, The Ottawa Hospital, Ottawa, Canada
3) Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada
4) National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, Canada
Rubidium-82 Best Flow Tracer

Table 1 Advantages of 82Rb as a flow tracer

Category	Advantages
Low dose	- Lowest radiation dosimetry of all flow tracers
	- Exceedingly low occupational exposure to technologist staff due to fully automated injection
Robust supply	- Multi-national generator manufacturers
	- No expensive on-site cyclotron required
Patient convenience	- Short, single session imaging protocol (>30 min for perfusion images, LVEF reserve, MBF reserve, Calcium, LV size)
Cost effective	- Short, single session imaging protocol
	- Most cost-effective for high throughput cardiac PET labs due to fixed generator costs
Well studied	- First cardiac PET tracer approved by FDA
	- First PET tracer approved for reimbursement in the US
	- Approved in the most countries world-wide
	- Highest number of clinical sites (>200 world-wide)
	- Only tracer with studies of clinical value of LVEF reserve
	- Largest studies of MPI prognostic value
High quality uptake images	- High retention fraction which produces clinically interpretable MPI and LVEF.
	- Detection of peak-stress (ischemic) wall motion abnormalities, as opposed to post-stress (stunned) defects.
	- Short half-life does not require rest-stress delay or subtraction of rest-residual activity (18F- or 11C-based tracers).
	- Extraction and retention fraction are higher than SPECT tracers, with retention most similar to ammonia at rest and stress.
	- No lateral wall variant which reduces specificity for LCX disease (18N-ammonia)
	- No labelled metabolites in the blood which complicate tracer kinetics (18N-ammonia)
	- No lung uptake in congestive heart failure or smokers which makes PET-CTAC difficult (18N-ammonia)
	- No liver uptake which can interfere with RCA (18N-ammonia)
Incremental clinical value	- Highly reproducible MBF and MFR quantification
	- Highest number of approved software programs (7 to-date)
	- Multi-Software reproducibility is well established with consistent extraction curves
	- Largest number of studies of MBF prognosis
	- MBF validation studies in animals and humans
	- Validation studies linked to FFR
	- Only tracer with validated and reproducible measurements of same-day and separate-day test-retest repeatability (10% and 20% COV) which are equivalent or superior to 18O-water
	- Highest number of papers using coronary flow capacity to aid clinical interpretation and to guide revascularization decisions
	- Does not require super-fast bolus injection for accurate measurement of stress flows (18O-water)
	- Ultra-simplified 2-frame acquisition can be used on 2D scanners.

82Rb over alternative PET flow tracers. Key advantages are summarized in Table 1 and expanded upon in the text. To remain objective, limitations of 82Rb are addressed along with possible solutions. The reader is expected to develop an understanding 82Rb as an almost ideal tracer for routine myocardial perfusion imaging and myocardial blood flow quantification in clinics with large referral base.

Stable 82Sr supply

82Sr activity can be manufactured on demand by several technologies using particle accelerators as opposed to expensive and scarce nuclear reactors. Consequently, 82Sr activity has historically been robust and can be relatively easily scaled up to meet growing market demands. 82Sr has a sufficiently long physical half-life ($t_{1/2} = 25$ days) to enable shipping to remote destinations and affords tolerance to production and shipping delays of even several days. 82Sr/82Rb generator production currently exists in the US and Canada and as demand continues to grow it is reasonable to expect industry to gradually increase the number of production facilities feeding the supply chain to both meet market demands and further enhance redundancy.

A generator reaches the end of its useful life when the amount of 82Rb activity it can deliver falls below that required to achieve diagnostic image quality. Available 82Rb activity follows the exponential decay of 82Sr activity and therefore based on initial generator activity and clinically desired activity levels replacement can be forecast and scheduled well in advance. The old generator is replaced with a new one much like a printer ink cartridge, which can be performed by a trained nuclear medicine technologist without the need for radiochemistry staff. The typical life span of a generator ranges from 4 to 8 weeks depending on clinical needs and vendor specifications. Since many practices use patient weight-based dosing for PET imaging, one may extend the life of the generator by scheduling smaller patients to coincide.
with the end of life of a generator and larger patients to the following week, when a new generator is installed.

The generator column contains a Ph-buffered tin-oxide resin matrix that, binds Sr ions but does not bind Rb. When the column is flushed with 0.9% NaCl saline the 82Rb activity is washed off the column in the form of 82Rb-chloride and Sr activity remains bound to the column (7). Because 82Rb has a much shorter radio-active half-life than its parent, 82Sr, the activity in the generator reaches secular equilibrium within several minutes as described by the Bateman equations (Red curve in Figure 1) (8). Within only 6 minutes of removing all the 82Rb activity in the generator, roughly 96% of peak 82Rb activity is replenished in the generator, and ~99% is replenished within 8 minutes. At this point the generator may be eluted again, enabling a clinic to perform a patient study every few minutes.

Activity administration must be performed using a direct infusion from the generator to the patient by intravenous (IV) injection, as the 82Rb is too short-lived to asssay a patient dose manually. Delivery is typically performed using an automated, dedicated elution system that monitors the activity eluted the generator in real-time and stops the elution when a target activity has been reached. Modern systems add advanced functions such as a saline push at the end of the elution to deliver all the activity to the patient and reduce outside scatter, finely controlled activity delivery profiles, record keeping and robust quality control (9).

Low radiation dose

Table 2 compares dose per unit of activity for the most common PET flow tracers along with typical administered activity and resulting effective dose associated with a combined rest-stress exam. As can be seen, the radiation dose to patients is exceptionally low with 82Rb, mostly due to the extremely short radio-active half-life. Furthermore, because rest and stress imaging can be performed in a single imaging session, a single, low-dose CT can be used for attenuation correction of both images, further reducing radiation dose compared to longer lived tracers requiring separate imaging sessions and two CTs. A complete 82Rb PET rest-stress scan can be achieved with effective dose <2 mSv including a low-dose CTAC (~0.25 mSv) (10, 11).

Likewise, radiation exposure to medical staff (technologists and nurses) is also low due to the short half- life of 82Rb activity and automated activity delivery by the infuser which enables the technologist to exit the imaging room during activity administration (9).

The largest risk with 82Rb is inadvertent administration of 82Sr activity to the patient via premature strontium break-through from the column or mistaken use of a solution other than 0.9% NaCl saline which could decondition the column. To mitigate this risk, modern elution systems automatically enforce a stringent quality assurance protocol that includes testing of the generator eluate each day before enabling its clinical use (9). Daily quality control can be performed by a trained nuclear medicine technologist with the infuser provider quality assurance oversight to mitigate user errors.

Short imaging times

Roughly 2 minutes after 82Rb administration, much of the activity distributes into the heart where it is retained and by 8 minutes (>6 half-lives) almost all the activity has decayed. Hence image acquisition begins immediately following Rb administration and lasts less than 8 minutes. Figure 1 illustrates a typical image acquisition protocol using 82Rb PET starting with a scout scan for patient positioning, CT for attenuation correction (CTAC), 82Rb administration and rest image acquisition, pharmacologic stress and a second 82Rb administration and a stress image acquisition. By the time that pharmacologic stress is achieved, and stress imaging can begin, no residual rest activity remains (blue curve in Figure 1) and hence the two scans can be performed in a single session without removing the patient from the scanner bed and without cross-talk interference between the rest and stress scans (such as with 18F, 11C and 13N based tracers). Consequently, a single CTAC can be used for both rest and stress scans—reducing radiation dose, increasing clinical throughput and improving patient convenience.

The entire rest-stress imaging protocol can be completed within 30 minutes with able-bodied patients and in less than 45 minutes even in patient with severe mobility constraints. These short imaging times are better tolerated by many patient populations including those with arthritis, congestive pulmonary diseases (e.g. sleep apnea) and obesity. Furthermore, short imaging times help reduce image artifact associated with patient motion.

The protocol depicted in Figure 1 images the patient at peak-stress wall motion abnormalities associated with ischemia, compared to post-stress imaging studies that visualize...
myocardial stunning, which is less sensitive to early disease (15). While exercise stress (treadmill or bicycle) have been demonstrated to be feasible with \(^{82}\)Rb (16), these are difficult to perform and not recommended for patients that struggle to move briskly in a safe manner. Exercise stress may also cause excessive respiratory and body motion that could adversely impact image quality.

Using list-mode PET acquisitions starting immediately with tracer administration various image sets can be reconstructed for comprehensive clinical interpretation, including static, respiratory-gated and cardiac-gated uptake phase images (each at rest and stress states). The same acquisitions can also be used to generate dynamic image sequences of the tracer distribution process which can subsequently be processed to measure myocardial blood flow in absolute units of mL/min/g.

Myocardial perfusion imaging and cardiac function

PET offers accurate attenuation correction, higher count statistics and better spatial resolution than SPECT. Thus, in comparison to SPECT, \(^{82}\)Rb MPI is interpreted with greater overall confidence, very few tests are equivocal (17), and diagnostic accuracy is higher (18). Rb extraction by the myocardium is higher than all currently available SPECT tracers (4) and once it is taken up by the myocardium it is retained longer. Rb uptake images possess high myocardium to background contrast without the need for complex image analysis—a significant limitation of \(^{15}\)O-water, which is not retained in the myocardium and requires complicated processing of dynamic image sequences to generate uptake images. Despite \(^{82}\)Rb first-pass extraction being lower than that of other PET flow tracers, it is retained in the myocardium (independently of ischemic state) longer than \(^{15}\)N-ammonia or \(^{18}\)F-water, resulting in a net uptake on the same order of that of \(^{15}\)N-ammonia and producing similar quality myocardium to background contrast (4).

Compared to most neighboring structures including the blood, lungs, liver and spleen, myocardial activity is high and rarely suffers from neighboring interference from other organs (17). With \(^{15}\)N-ammonia, for example high liver uptake is common and frequently interferes with interpretation of the inferior wall region, high lung uptake can also be present in congestive heart failure, chronic pulmonary disease or smokers (19). Nevertheless, \(^{82}\)Rb stomach uptake has been documented and can interfere with interpretation of the inferior wall in a small subset of patients (17). A study by Orton et al. (20) demonstrated stomach spill-in interference in 18% and 8% of rest and stress scans respectively. Stomach interference, however, can be reduced by instructing the patient to consume 1–2 cups of water prior to imaging, which may reposition or distend the stomach wall (21). If stomach uptake is noticed on rest imaging, the protocol maybe interrupted and resumed later after the patient has eaten and/or drank. With newer, higher resolution PET, optimal patient management and expert image interpretation stomach uptake rarely results a non-diagnostic test.

Static uptake and cardiac gated images can be readily reconstructed from the list-mode data, enabling contemporary myocardial perfusion image (MPI) interpretation using the data after ~2 min post-administration. By this time high myocardium to blood contrast can be observed due to rapid clearance of Rb from the blood plasma, low binding to red blood cells and lack of Rb labelled metabolites [contrary to \(^{13}\)N-ammonia (12, 22)]. Furthermore, there is no potential for cross-talk interference between rest and stress images due to the rapid decay between scans (>8 half-lives) (contrary to \(^{15}\)N- and \(^{18}\)F-based tracers).

Another key advantage of \(^{82}\)Rb is the very uniform normal uptake distribution with only minor and characteristic infero-apical reduction due to partial-volume effect at the LV apex. In contrast, \(^{15}\)N-ammonia has variable lateral wall uptake.

Table 2 Properties of common PET blood flow tracers (12)

Tracer	Physical half-life (min)	Mean position range (mm)	Production Method	Injected activity* (MBq)	Effective Dose Constant (mSv/GBq)	Rest+Stress Effective Dose (mSv)	Comments
\(^{82}\)Rb-chloride	1.27	2.60	Generator (82Sr) eluate	1000	0.8 (10)	1.6	Reasonable uptake-to-flow relation Requires direct injection system Suitable for rapid serial imaging
\(^{15}\)N-ammonia	10.0	0.57	Cyclotron purified	500	2.7 (13)	2.7	Excellent uptake-to-flow relation Lateral wall defect normal variant Variable liver and lung uptake
\(^{18}\)O-water	2.05	1.02	Cyclotron purified	1110	0.9 (13)	2.0	Requires direct injection system Ideal washout-to-flow relationship MPI not possible
\(^{18}\)F-Flurpiridaz	109.8	0.23	Cyclotron synthesized	140 rest 320 stress 19 (14)	8.7	Excellent uptake-to-flow relation Currently in Phase-3 trials	

Legend: *=Approximate with 3D PET
patterns which can reduce specificity to detect disease associated with the left circumflex coronary artery (22, 23).

Cardiac-gating enables visualization cardiac wall motion and quantitative analysis of LV ejection fraction (LVEF), which improves specificity of MPI (4, 24). Further incremental value of LVEF reserve (stress-rest LVEF) is added specificity through for assessment of vasodilation response (>5% change) (25) and exclusion of 3-vessel CAD (26).

Dorbala et al. demonstrated that LVEF reserve from 82Rb PET has incremental value to prognosticate adverse events in the largest study of its type to date (1432 patients) (27). Imaging guidelines already recognize the comprehensive information available from the uptake phase images of 82Rb PET including perfusion distribution patterns at rest and stress, LV function (including LV ejection fraction and wall motion) and LV size (4, 24). With improvements in PET imaging technology, there is a growing interest in expanding indications to right ventricle function (28). Furthermore, the low-dose CT for attenuation correction (CTAC) can provide sufficient information for accurate calcium scoring (29). By expanding image acquisition to include dynamic imaging, quantitative measurements of blood flow are also possible with no additional imaging time, radiation exposure or costs (30).

Quantification of myocardial blood flow with dynamic PET

With dynamic imaging, the introduction of 82Rb activity to the venous blood stream and subsequent distribution to perfused tissues can be achieved including extraction of 82Rb from blood to the myocardium. This extraction process can be modeled using a simple and robust 1-tissue-compartment kinetic model (30, 31). The rate of tissue uptake (K_u) must be corrected for flow dependent extraction fraction to derive measurements of myocardial blood flow (MBF) (32). The 82Rb uptake rate (MBF × extraction) is shown as a function of MBF in Figure 2, as measured in 3 separate human validation studies using 2D and 3D PET imaging with 13N-ammonia and 15O-water as the gold-standards (32-34).

Measurement of MBF and MFR requires the use of dedicated image analysis software of which multiple software solutions have been developed (41) and validated to reproduce the same MBF values (42-44). Because these software are highly automated and the myocardium can be clearly delineated on 82Rb uptake images they are nearly operator independent (45). The ratio between stress and rest MBF values is termed the myocardial flow reserve (MFR). A large body of literature exists on the topics of 82Rb PET MBF and MFR as incremental prognostic (35-37) and diagnostic (38-40) value over relative perfusion imaging alone (4). An example Rubidium scan is shown in Figure 3 demonstrating the high quality of relative perfusion images, and the incremental value of flow quantification this patient with multi-vessel disease.

Rigorous studies of short-term reproducibility of 82Rb MBF have been performed to determine optimal tracer administration protocol (46), dynamic image time frame sampling (47), image reconstruction (48), kinetic model (49) and extraction correction (both in 2D and 3D PET) (50, 51). Consequently the accuracy and precision of 82Rb are well documented to be at the cutting edge of PET flow tracers (52), two fold better than those of SPECT (53, 54) and on par with those from 15O-water (55). Short-term and multi-day reproducibly have corresponding coefficient of variations (COV) of ~10% and 20% respectively (46, 48, 56).

Reproducible 82Rb infusion profiles have been demonstrated to produce more reproducible and precise absolute MBF measurements (46), but these infusion do not necessarily need...
to have a fast bolus shape as with 15O-water PET. In fact, a small canine study demonstrated that MBF values were reproducible with 82Rb infusions ranging from 15 to 240 seconds in length (30). Longer infusions resulted in lower camera peak count-rates, fewer dead-time losses, higher uptake phase counts, less image noise and more regionally-uniform uptake values. Slow infusions may therefore enable routine MBF quantification on older PET systems with limited count rate capabilities (57). Because the kinetic properties of 82Rb are so simple and robust even an ultra-simplified, 2 phase imaging protocol comprised of an integral blood activity phase and uptake phase has been shown to produce reasonably accurate blood flow measurements on 2D PET systems (58), so long as the infusion profile is reproducible (46).

Automated infusion system

The fast decay of 82Rb necessitates infusion of 82Rb activity...
from the generator directly to the patient via an intravenous (IV) line. Modern 82Rb infusion systems precisely control the activity delivered to the patient including total activity (e.g. weight based), time duration and bolus shape (59).

The infuser is positioned near the PET/CT system and negates the need for clinical staff to manually draw doses in a hot-lab and transport them to the imaging suite. This improvement decreases physical strain on technologists, reduces the chance for workplace accidents and can increase clinical throughput. Automated infusion systems are also able to perform real-time quality control and to document the actual activity delivered to the patient.

Decreasing cost with clinical volumes

A fundamental difference of 82Rb flow imaging compared to other tracers is that the tracer cost is fixed and independent of patient volumes. Thus, the larger the clinical volume, the lower the per-patient cost becomes as is demonstrated in Figure 4. In a high throughput clinical setting the 82Rb tracer cost can compete with those of SPECT and easily beat out other PET tracers. Based on an assumed generator supply contract of $400,000 per year, for a site imaging 2000 patients/year (~8 patients/day in 4 hours/day), total tracer costs (rest and stress) are less than $200 per patient. A cardiac dedicated site performing 16 patients in an 8-hour workday can reduce its tracer costs to $100 per patient. Under current reimbursement rates, 82Rb PET can be economically favorable in high volume clinics.

82Rb PET MPI has already been demonstrated to reduce downstream healthcare costs compared to SPECT by more appropriately filtering patients that may benefit from coronary arteriography or coronary artery bypass grafting (6). Although it has not yet been definitively demonstrated, one can reasonably assume that the comprehensive clinical information from rest-stress 82Rb PET with MBF quantification further reduces adverse events due to appropriate treatment guidance (60–62), further improving the return on investment for 82Rb.

Limitations of 82Rb

82Rb does have several disadvantages that are worth noting. Firstly, the positron range of 82Rb is significantly larger than that of 13N and 18F (see Table 2), which could limit image spatial resolution as clinical PET scanner technology improves to achieve <3 mm intrinsic spatial resolution. However, more significantly, because of the rapid 82Rb decay, late uptake images are relatively count-poor so more smoothing is required to compensate for image noise which is the main factor driving image resolution. More sensitive PET systems, with longer axial bore size may help in this respect.

Because 82Rb decays several half-lives over the course of a single acquisition, the PET scanner must operate over several count-rate orders of magnitude. On low count-rate capable PET scanners 82Rb administration must be optimized to achieve accurate dynamic imaging and high-count uptake images within a single acquisition. Consultation with an expert imaging physicist is recommended to achieve optimal performance (57).

While the low extraction of Rb is often quoted as a limitation, sufficient clinical data exists to support the claims of 82Rb as high-quality alternative for MPI and MBF for robust and comprehensive clinical decision making.

Conclusion

Rubidium-82 is an easy to use, low-dose tracer that provides comprehensive clinical information. Combined with the advantages of PET over SPECT imaging, and only minor drawbacks in comparison to alternative flow tracers 82Rb PET imaging is ideal for high throughput clinical application.

Acknowledgments

None.

Sources of Funding

None.

Conflicts of interests

Ran Klein and Robert deKemp are consultants with Jubilant DRAXimage and have received grant funding from industry partnership programs including GE Healthcare, Jubilant DRAXimage, Shelley Medical Solutions and Hermes Medical Solutions. They receive revenues from rubidium generator technology licensed to Jubilant DRAXimage and revenue shares from the sale of FlowQuant®.
References

1. Lautamäki R, George RT, Kitagawa K, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009; 36: 576–86.

2. Lekx KS, deKemp RA, Beanlands RS, et al. Quantification of regional myocardial blood flow in a canine model of stunned and infarcted myocardium: comparison of rubidium-82 positron emission tomography with microspheres. Nucl Med Commun 2010; 31: 67–74.

3. Lekx KS, deKemp RA, Beanlands RS, et al. 3D versus 2D dynamic 82Rb myocardial blood flow imaging in a canine model of stunned and infarcted myocardium. Nucl Med Commun 2010; 31: 75–81.

4. Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Cardiol 2018; 25: 269–97.

5. Johnson NP, Kirkcidee RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging 2012; 5: 193–202.

6. Merhige ME, Breen WJ, Shelton V, et al. Impact of myocardial perfusion imaging with PET and 82Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med 2007; 48: 1069–76.

7. Alvarez-Diez TM, deKemp R, Beanlands R, et al. Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl Radiat Isot 1999; 50: 1015–23.

8. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th edition, Elsevier/Saunders, 2012.

9. Klein R, Adler A, Beanlands RS, et al. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007; 52: 659–73.

10. Hunter CR, Hill J, Ziadi MC, et al. Biodistribution and radiation dosimetry of 82Rb at rest and during peak pharmacological stress in patients referred for myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2015; 42: 1032–42.

11. Senthambizhchelvan S, Bravo PE, Lodge MA, et al. Radiation dosimetry of 82Rb in humans under pharmacologic stress. J Nucl Med 2011; 52: 485–91.

12. deKemp RA, Renaud JM, Klein R, et al. Radionuclide tracers for myocardial perfusion imaging and blood flow quantification. Cardiol Clin 2016; 34: 37–46.

13. Nuclear Medicine Radiation Dose Tool - SNMMI. Available at: http://www.snmmi.org/clinicalpractice/dosetool.aspx?itemnumber=1. (Accessed: 8th July 2019)

14. Maddahi J, Czernin J, Lazewatsky J, et al. Phase I, first-in-human study of BMS747158, a novel 11C-labeled tracer for myocardial perfusion PET: dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 2011; 52: 1490–8.

15. Peteiro J, Bouzas-Mosquera A, Broullón FJ, et al. Prognostic value of peak and post-exercise treadmill exercise echocardiography in patients with known or suspected coronary artery disease. Eur Heart J 2010; 31: 187–95.

16. Chow BJ, Ananthasubramaniam K, dekemp RA, et al. Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography. J Am Coll Cardiol 2005; 45: 1227–34.

17. Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Te-99m sestamibi SPECT. J Nucl Cardiol 2006; 13: 24–33.

18. Me Ardle BA, Dowsley TF, deKemp RA, et al. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? J Am Coll Cardiol 2012; 60: 1828–37.

19. Nakazato R, Berman DS, Alexanderson E, et al. Myocardial perfusion imaging with PET. Imaging Med 2013; 5: 35–46.

20. Orton EJ, Al Harbi I, Klein R, et al. Detection and severity classification of myocardial perfusion artifacts in 82Rb PET myocardial perfusion imaging. Med Phys 2014; 41: 102501.

21. Thompson RC. The problem of radiotracer abdominal activity in myocardial perfusion imaging studies J Nucl Cardiol 2008; 15: 159–61.

22. Renaud JM, DaSilva JN, Beanlands RS, et al. Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J Nucl Cardiol 2013; 20: 578–91.

23. Klingensmith WC 3rd, Noonan C, Goldberg JH, et al. Decreased perfusion in the lateral wall of the left ventricle in PET/CT studies with 13N-ammonia: evaluation in healthy adults. J Nucl Med Technol 2009; 37: 215–9.

24. Henzlova MJ, Cerqueira MD, Hansen CL, et al. ASNC imaging guidelines for nuclear cardiology procedures: Stress protocols and tracers. J Nucl Med 2009; 16: 331–43.

25. Brown TL, Merrill J, Volokh L, et al. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated 82rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2008; 35: 336–42.

26. Dorbala S, Vangala D, Sampson U, et al. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardial at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 2007; 48: 349–58.

27. Dorbala S, Hachamovitch R, Curilloza Z, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging using clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009; 2: 846–54.

28. Takobana S. Quantification of right ventricular function in...
pulmonary hypertension using cardiac PET images. Library and Archives Canada=Bibliothèque et Archives Canada, 2012.

29. Kaster TS, Dwivedi G, Susser L, et al. Single low-dose CT scan optimized for stress-rest PET attenuation correction and quantification of coronary artery calcium. J Nucl Cardiol 2015; 22: 419–28.

30. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol 2010; 17: 555–70.

31. Klein R. Initial steps to tracer kinetic modeling and MBF quantification. Ann Nucl Cardiol 2018; 4: 68–73.

32. Lortie M, Beanlands RS, Yoshinaga K, et al. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007; 34: 1765–74.

33. Prior JO, Allenbach G, Velenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012; 39: 1037–47.

34. Germino M, Ropchan Jim, Mulnix Tim, et al. Quantification of myocardial blood flow with 82Rb: validation with 15O-water using time-of-flight and point-spread-function modeling. EJNMMI Res 2016; 6: 68.

35. Ziadi MC, Beanlands RS. The clinical utility of assessing myocardial blood flow using positron emission tomography. J Nucl Cardiol 2010; 17: 571–81.

36. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011; 124: 2215–24.

37. Fukushima K, Javadi MS, Higuchi T, et al. Prediction of short-term cardiovascular events using quantification of global myocardial blood flow in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med 2011; 52: 726–32.

38. Ziadi MC, deKemp RA, Williams K, et al. Does quantification of myocardial blood flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012; 19: 670–80.

39. Anagnostopoulos C, Almonacid A, El Fakhri G, et al. Quantitative relationship between coronary vasodilator reserve and hyperemic myocardial blood flow measurements with 82Rb PET: A technical perspective. J Nucl Cardiol 2015; 22: 935–51.

40. Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014; 55: 1685–91.

41. Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: the RUBY-10 study. JACC Cardiovascular Imaging 2014; 7: 1119–27.

42. deKemp RA, De Clerck J, Klein R, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013; 54: 571–7.

43. Tahari AK, Lee A, Rajaram M, et al. Absolute myocardial flow quantification with 82Rb PET/CT: comparison of different software packages and methods. Eur J Nucl Med Mol Imaging 2014; 41: 126–35.

44. Dunet V, Klein R, Allenbach G, et al. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs. J Nucl Cardiol 2016; 23: 499–510.

45. Klein R, Renaud JM, Ziadi MC, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 2010; 17: 600–16.

46. Klein R, Ocneanu A, Renaud JM, et al. Consistent tracer administration profile improves test-retest repeatability of myocardial blood flow quantification with 82Rb dynamic PET imaging. J Nucl Cardiol 2018; 25: 929–41.

47. Lee BC, Moody JB, Weinberg RL, et al. Optimization of temporal sampling for 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2017; 24: 1517–29.

48. Efseaff M, Klein R, Ziadi MC, et al. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012; 19: 997–1006.

49. Ocneanu AF, deKemp RA, Renaud JM, et al. Optimally repeatable kinetic model variant for myocardial blood flow measurements with 82Rb PET. Comput Math Methods Med 2017; 2017: 6810626.

50. Moody JB, Murthy VL, Lee BC, et al. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imaging 2015; 34: 2343–53.

51. deKemp RA, Klein R, Beanlands RS. 82Rb PET imaging of myocardial blood flow—have we achieved the 4 “R”s to support routine use? EJNMMI Res 2016; 6: 69.

52. Moody JB, Lee BC, Corbett JR, et al. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J Nucl Cardiol 2015; 22: 935–51.

53. Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014; 55: 1685–91.

54. Ben-Haim S, Murthy VL, Breault C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med 2013; 54: 873–9.

55. Manabe O, Yoshinaga K, Katoch C, et al. Repeatability of rest and hyperemic myocardial blood flow measurements with 82Rb dynamic PET. J Nucl Med 2008; 50: 68–71.

56. Kitkungvan D, Johnson NP, Roby AE, et al. Routine clinical quantitative stress myocardial perfusion for managing coronary artery disease: clinical relevance of test-retest variability. JACC Cardiovascular Imaging 2017; 10: 565–77.

57. Renaud J, Yip K, Turcotte E, et al. Performance standardization of dynamic range for accurate quantification of myocardial blood flow using 3D PET-CT. J Nucl Med 2013; 54 suppl 2: 485.

58. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996; 37: 1701–12.

59. Klein R. Precise 82Rb infusion system for cardiac perfusion measurement using 3D positron emission tomography. University of Ottawa, 2005.

60. Hachamovitch R, Rozanski A, Shaw LJ, et al. Impact of ischaemia and scar on the therapeutic benefit derived from
myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 2011; 32: 1012-24.

61. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 2015; 131: 19-27.

62. Gould KL, Johnson NP, Kaul S, et al. Patient selection for elective revascularization to reduce myocardial infarction and mortality: new lessons from randomized trials, coronary physiology, and statistics. Circ Cardiovasc Imaging 2015; 8: e003099.