The Epidemiology of Moebius Syndrome in Italy

arturo carta (arturo.carta@unipr.it)
Universita degli Studi di Parma, Dpt. of medicine and surgery

Stefania Favilla
independent researcher

Giacomo Calzetti
Universita degli Studi di Parma

Maria Cristina Casalini
independent researcher

Pier Francesco Ferrari
Universita degli Studi di Parma, Neuroscience Unitica e Sperimentale

Bernardo Bianchi
Azienda Ospedaliero-Universitaria di Parma

Maria Beatrice Simonelli
Universita degli Studi di Parma

Roberta Farci
Universita degli Studi Di Cagliari

Stefano gandolfi
Universita degli Studi di Parma

Paolo Mora
Universita degli Studi di Parma

Research

Keywords: Moebius syndrome; Epidemiology; Congenital Cranial Dysinnervation Disorders; Strabismus; Congenital Facial Palsy.

Posted Date: December 16th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-15457/v4

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Orphanet Journal of Rare Diseases on April 7th, 2021. See the published version at https://doi.org/10.1186/s13023-021-01808-2.
Abstract

Background: The epidemiology of Moebius Syndrome (MBS) is actually difficult to assess. In the present study we investigated the epidemiology of MBS in a well-defined population over a precise geographical area.

Materials and Methods: Our University Hospital is the only national referral Centre for the diagnosis and treatment of MBS. Participants to this cross-sectional study are patients affected by MBS who have been periodically followed by our medical staff since 1998. Most of the patients were referred to our hospital by the Italian Association of Moebius Syndrome (AISMO). Demographic data necessary for our purposes were made available by AISMO database updated to April 2018. Subjects were assigned to the geographical macro-areas which are the ones conventionally used for surveys and epidemiological investigations by the Italian National Institute of Statistics. Rates and prevalence of the MBS cases were calculated referring to the last survey of the Italian population available. Every study parameter was then calculated by reference to the whole country and to macro-area partition. Gender rate and the corresponding prevalence were calculated with respect to the weighted whole population and to the respective gender population. Chi-square analysis was adopted to investigate possible differences among geographical regions and/or gender. A p value <0.05 was considered statistically significant.

Results: One-hundred and sixty-four out of 212 MBS patients fulfilled our inclusion criteria. All cases were Caucasian and sporadic. The median age at diagnosis was 3.6 years, ranging from 0-55; this range was significantly reduced to 0-5 years (median age at diagnosis: 2.2 years) for patients included after 2007. The birth prevalence calculated was 0.06 cases per 10000 live births with an overall prevalence of 0.27/100000 without any gender or geographical predisposition.

Conclusions: The rate of MBS prevalence herein observed, rounded for possible underestimation, is 0.3/100000 people without any regional difference in the distribution of the cases. Our data confirm on a national basis the rarity of the disease.

Introduction

Moebius syndrome (MBS) is grouped among the congenital cranial dysinnervation disorder (CCDD).⁴ Its clinical features are impaired ocular motility, lagophthalmos, and lack of facial expression; these features are related to congenital non-progressive 6th and 7th nerve palsies that typically affect newborns bilaterally. MBS is diagnosed according to the "Bethesda Diagnostic Criteria", which have been recently updated with genetic testing aimed to ascertain diagnosis.²⁻⁴ The minimum clinical diagnostic criteria for MBS are as follows: “A congenital, uni- or bilateral, nonprogressive facial weakness with limited abduction of the eye(s) and full vertical motility”.²⁻⁴ Patients who do not meet these criteria must be labelled as “Moebius-like” and considered as affected by a separate congenital disorder. This is of particular importance since MBS overlap many clinical features of other CCDDs with a well described genetical basis, such as congenital fibrosis of the extraocular muscles (CFEOM), Duane's syndrome, and
horizontal gaze palsy with progressive scoliosis (HGPPS). The differential diagnosis of MBS in the early perinatal period may be complex and it should concern different neurological disorders producing an MBS-like phenotype with myopathic facies, abnormalities of the palate and feeding difficulties. To this end, cerebral MRI is a tool to be considered.

More than a century after the first description of the disease, the etiology of MBS is still unclear; recent studies have postulated a multifactorial pathogenesis in which a fetal toxic exposure acts on a genetic predisposition responsible for vascular terminal instability and focal microcirculatory failure at the level of the lower brainstem. However, it is not clear what causes these changes and why they specifically disrupt development of the 6th and 7th cranial nerve nuclei; even less is known about the causes of the extra-ophthalmological signs and symptoms associated with MBS (e.g., lingual and palate dysfunction, hypoplasia of the hand, clubfoot, and thoracic abnormalities). The exact incidence and prevalence of MBS are not clear; the syndrome is considered a "rare disease" affecting a very small number of people. Clinicians and researchers estimate that this condition affects 1 in 50,000 to 1 in 500,000 newborns, but this estimate is based only on their personal experience with MBS patients, with no epidemiological basis. In a Dutch series, the estimated prevalence of MBS was 0.002% of births (4 per 189,000 newborns); this evidence was obtained in the 1996, namely without the present diagnostic criteria for MBS. The Orphanet Report Series, Rare Disease Collection 2019 reports the estimated prevalence/incidence per 100,000 as "unknown" with only 300 cases described in the literature. Other epidemiological estimates of series reported worldwide are anecdotal, with no statistical basis. It is difficult to plan an epidemiological study of MBS for many reasons: 1) despite the new diagnostic criteria, the disease is often over- and misdiagnosed in newborns; 2) like many other rare diseases, MBS does not have a regional register from which to derive data for epidemiological purposes; 3) there are no referral centres that provide multidisciplinary care with consequent dispersion of cases; 4) few physicians have expertise in MBS and they may be difficult to reach; and 5) MBS, like other genetic disorders may carry social stigma leading affected individuals to self-marginalize. This study reports the epidemiology of MBS in a well-defined population over a very long period; furthermore, we investigated whether there are geographical differences in MBS incidence/prevalence to identify factors that may cause or contribute to its appearance.

**Methods**

Since 1998, the University Hospital of Parma has been identified by the Italian Association of Moebius Syndrome (AISMO, www.moebius-italia.it) and by the Regional Health Department as the only national referral centre for the diagnosis and treatment of patients with MBS (e.g., a multidisciplinary approach treating conditions ranging from strabismus correction to smile surgery). This allowed us to contact and follow virtually all of the MBS patients living in Italy. Even MBS patients who currently received medical care elsewhere were evaluated in our hospital at least once in the diagnostic confirmatory phase. All medical data are regularly updated and preserved in the AISMO database, which acts as electronic medical record of these patients, basing on a specific agreement between our University Hospital and the
Association operating since 1999. Any additional information regarding pregnancy with possible assumption of drugs, type of delivery, details regarding the medical history of MBS relatives, are also recorded in the AISMO register. The database is available only for allowed researchers and it is accessible for medical or scientific purposes on MBS only.

As previously reported, MBS cases included in our analysis must satisfy the updated “Bethesda Diagnostic Criteria”. The finding of a genetic profile associated with MBS-like myopathic facies (in particular alterations of the TUBB3, HOXA1, HOXB1, ROBO3 genes) was a criterion of exclusion from the study cohort. The same goes for the possible finding of karyotype macro-anomalies producing myopathic facies (e.g. a trisomy of the chromosome 18 or 3). Data on genetic testing or Moebius-like symptoms in relatives and parental consanguinity were obtained from the AISMO database, which works as our multi-disciplinary medical chart and regularly updated with key information.

One case of the present analysis (patient #11) had already been included in a prior series as a carrier for the mutation of the gene REV3L.

Every MBS case was periodically evaluated by our multidisciplinary team of physicians, which includes an ophthalmologist (A.C.), a neonatologist or paediatrician, a speech therapist, an orthodontist, an orthopaedist (for children with clubfoot or finger anomalies), and a maxillofacial surgeon with expertise in smile surgery; the frequency of visits depended on the severity of the disease, usually ranging from 6 to 24 months. Each visit includes a comprehensive ophthalmological evaluation of extraocular motility and refraction under cycloplegia in paediatric cases. A detailed history was obtained at the first visit from relatives of each patient and updated at every visit. All patients (or relatives if minors) have previously given the AISMO consent to use their demographic data for research purposes and statistical analysis. The present series takes into account also patients who had been encompassed in previous research papers. The study adhered to the tenets of the Declaration of Helsinki and was approved by the local ethics committee (No. 93/2019/OSS*/UNIPR/June 14, 2019).

Statistical analysis

The authors used data made available by AISMO to obtain the following information for each registered member: date of birth, date and age of diagnosis, gender, and place of provenance/residence. The subjects were assigned to the five geographical regions (i.e., Northeast, Northwest, Central, South, and Islands) conventionally used for surveys and epidemiological investigations in Italy. Every study parameter was then calculated by reference to the entire country and each region. The rates and prevalence (number of cases per 100000 people) of MBS were calculated referring to the 2018 Italian census performed by the National Institute of Statistics. The rate and corresponding prevalence were calculated for the entire population and each gender (i.e., affected males/Italian males; affected females/Italian females). Concerning the birth prevalence, it was calculated by referring to the year of birth of each patient. Chi-square (c2) analysis was used to investigate possible differences among geographic regions and gender. For gender tests, unweighted (i.e., each rate was weighted equally across
regions, independently of the actual gender population in the corresponding region) and weighted (i.e., each rate was scaled to the corresponding gender weight, according to the population density in each region) data were analyzed. A p-value <0.05 was considered statistically significant.

Data Availability Statement: data used for the study can be checked at the following links: www.moebius-italia.it and www.istat.it.

Results

Descriptive statistics

The AISMO register contained 231 subjects. Of these, 59 subjects did not fully satisfy the “Bethesda Criteria or they had genetic profile not compatible with MBS; 4 subjects were not Italian citizens (4 subjects) and 4 subjects had incomplete data. In total 67 subjects (29%) were excluded from our cohort. The remaining 164 MBS patients (73 men, 44.5%) were considered for the study and analyzed for epidemiological purposes (Table 1).

Table 1. Relative rate (%) of MBS in the five Italian regions.

| Region   | No. of cases (N) | Age range at diagnosis (years) | No. of males (M) | % Males | No. of females (F) | % Females |
|----------|------------------|--------------------------------|------------------|---------|-------------------|----------|
| Northeast| 35               | 0*-38                          | 16               | 45.7    | 19                | 54.3     |
| Northwest| 51               | 0*-55                          | 19               | 37.3    | 32                | 62.7     |
| Central  | 34               | 0*-49                          | 16               | 47.1    | 18                | 52.9     |
| South    | 29               | 0*-34                          | 15               | 51.7    | 14                | 48.3     |
| Islands  | 15               | 0*-18                          | 7                | 46.7    | 8                 | 53.3     |
| Total    | 164              | 0*-55                          | 73               | 44.5    | 91                | 55.5     |

0* means that diagnosis was achieved before the first year of life of the newborn.

All patients were Caucasian and all cases were sporadic. The median age at diagnosis was 3.6 years, ranging from 0-55 (a value of 0 means that the diagnosis was achieved within the first 12 months of life); this range was significantly reduced to 0-5 years (median age at diagnosis: 2.2 years) for patients included after 2007.

The Figure 1 shows the newly recorded cases in the AISMO register based on the year of birth; a progressive increase in recorded cases is evident from 1998, when the AISMO register was established, with the new diagnoses peaking (16 cases) in 2005–2006 (coincidentally after the Consensus Conference on Moebius Syndrome, which produced the “Bethesda Criteria”). The birth prevalence
calculated referring to the most recent available national data was 0.06 cases per 10000 live births (in 2016 three newborns diagnosed with MBS out of 473438 live births in Italy, according to the database of the Istituto Nazionale di Statistica: https://www.istat.it). The mortality rate in our cohort is 0 (zero) as there was no case of known death. In our series we recorded a family with two monozygotic twins both affected but with different clinical expression of the disease; we have no case of affected siblings and almost all cases were bilateral (8 cases were bilateral but asymmetric and 4 were monolateral). Extra-ocular associated features of our cases are summarized in Table 2.

Table 2. Percentage (%) of extra-ocular anomalies in our MBS patients (possible more than one in a single patient).

| EXTRA-OCULAR anomalies                              | %  |
|----------------------------------------------------|----|
| Club foot                                          | 32%|
| Tongue dysfunctions including suction defects and dysphagia | 24%|
| Speech problems                                    | 22%|
| Hypoplastic hand                                   | 20%|
| Dental anomalies                                   | 18%|
| Palate malformations                               | 7% |
| Hearing deficiency                                 | 7% |
| Scoliosis                                          | 5% |
| Developmental, cognitive, or behavioral            | 4% |
| Poland's syndrome                                  | 2% |

Statistical analysis

The relative rate of MBS in the Italian population was calculated for males and females in terms of the total number of patients diagnosed and separately for each region (Table 1). The rates were evenly distributed across the different regions, with the exception of the Northwest, where more cases were located (Figure 2). Moreover, in this region, the gender rate differed since there were 1.5-times more females than males (62.7% vs. 37.3%). The difference in the rate in the Northwest was confirmed with reference to both the total population (P-MT: 0.12 vs. P-FT: 0.20) and the gender-based subdivisions (P-MM: 0.24 vs. P-FF: 0.39), see Table 3.

Table 3. Prevalence (including gender-specific) of MBS in each region.
| Region    | P-TT Tot cases/Popa (per 100000) | P-MT M cases/Popa (per 100000) | P-FT F cases/Popa (per 100000) | P-MM M cases/M-Popb (per 100000) | P-FF F cases/F-Popc (per 100000) |
|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Northeast | 0.30                            | 0.14                            | 0.16                            | 0.28                            | 0.32                            |
| Northwest | 0.32                            | 0.12                            | 0.20                            | 0.24                            | 0.39                            |
| Central   | 0.28                            | 0.13                            | 0.15                            | 0.27                            | 0.29                            |
| South     | 0.21                            | 0.11                            | 0.10                            | 0.22                            | 0.19                            |
| Islands   | 0.22                            | 0.10                            | 0.12                            | 0.22                            | 0.23                            |
| Total     | 0.27                            | 0.12                            | 0.15                            | 0.25                            | 0.29                            |

^a Pop: overall Italian Population size;  ^b M-Pop: Italian Male population size;  ^c F-Pop: Italian Female population size.

The MBS rate of the total population (i.e., both males and females) subdivided into the five regions differed significantly (p < 0.001; χ²-test). To verify whether this result was due to the larger population in the Northwest, the data were weighted to account for the different populations in the five regions. This analysis involved weighted rate data (i.e., data rescaled to the actual population in each region). After this adjustment, no statistical significance was observed. Finally, χ²-test for the separate sex rates was performed. The analysis of males confirmed that the distribution across different regions was similar (no statistical differences for both "unweighted" and "weighted" data over the male population in the different regions). The analysis of females showed a significant (p < 0.001) difference for "unweighted" data. However, this difference lost significance when "weighted" data over the female population in different regions were considered. An analysis of the total weighted population dataset showed no significant differences comparing the five regions.

**Discussion**

This study examined the epidemiology of Moebius syndrome in a well-defined population over a precise geographical area, using definite diagnostic criteria for MBS. We found that the overall prevalence of MBS was 0.27/100000 newborns. This value can be reasonably rounded to 0.3/100000 (0.0003%) because few cases of MBS may have missed the appointment with our medical staff and/or not having been enrolled in the AISMO register. This may occur when dealing with people/families affected by congenital genetic disorders, which may carry social stigma leading to self-marginalization. Regardless, the prevalence observed in our study is different from data reported in different parts of the world. For example, in a Dutch series, Verzijl et al. in 1996 estimated a prevalence of 0.002% (i.e. about ten times
higher than our results) for MBS, but with poor details on their sources and with different diagnostic
criteria with respect to those presently adopted. Similar higher prevalence was reported by physicians
with expertise on MBS in the United States, Sweden, and Brazil, but without any population-based
analysis. Based on our data, we can confirm that MBS is an extremely rare disease. Furthermore, our
data may be considered if a dedicated national healthcare program is planned or re-organized. Another
important consideration is that we found a uniform distribution of MBS cases in the five areas
considered. These five regions were conceived by ISTAT, as people living in them have different social,
economic, and working lifestyles, with different climates characterizing each region. As we did not
identify a region with a higher prevalence of MBS cases, we can exclude environmental factors such as
pollution, weather conditions such as intense cold or heat, and prolonged sun exposure during pregnancy
as causative for MBS. It appears that the environment had little or no influence on the disease
pathogenesis in our population. The only reported agent that significantly increased the risk of newborns
being affected by MBS (by a factor of 30) is the use of misoprostol during the first trimester of
pregnancy. Misoprostol (a synthetic prostaglandin E analogue) is an illegal abortifacient widely used in
Brazil and other countries in South and Central America.

As misoprostol is not in use in Italy, our epidemiological data on MBS lack any pharmacological bias, at
least as far as misoprostol is concerned. Beyond misoprostol, in the electronic medical chart of each
patient, made available by the AISMO register, we could also exclude the assumption of vasoconstrictor
agents, cocaine, abdominal trauma during pregnancy of all the considered patients. In our series, the
disease affected males and females equally, thus supporting the evidence that MBS is not an inherited X-
or Y-related disease. Moreover, all included cases were “sporadic” (i.e. no affected siblings and no cases
in the family tree). This evidence is in line with the recent hypothesis that MBS has a multifactorial basis
with genetic mechanisms having a predisposing role. However, we strongly support the genetic
counseling of every family with an affected member. This to investigate the possible transmission of
unaware Moebius-like traits. In these families the risk of recurrence in the offspring has been calculated
up to 50%. Furthermore, genetic testing may be important for a deeper understanding of the
pathogenesis of those forms presenting with extra-ocular associated anomalies.

Another interesting point is that patients who were evaluated by our staff after 2007 had an earlier
diagnosis than those born before 2007 (2.2 vs. 3.4 years, respectively), with a significant reduction in the
range, which was lowered to between 0 and 5 years of age. This finding likely resulted from the efforts
made during the last two decades by international associations to increase knowledge of this disease;
another explanation may be that our specialised medical staff can be contacted easily by relatives of
affected newborns, thereby allowing an earlier diagnosis. An early diagnosis of MBS means that we can
provide care for affected individuals at a young age. This can have extremely positive effects on the
patients’ quality of life by significantly reducing the behavioral and psychological problems related to
MBS. For example, with an early diagnosis we can plan smile surgery at a preschool age or we can
perform early strabismus surgery when needed, thereby improving visual performance and reducing the
risk of amblyopia other than developing the ability to smile.
Conclusion

Our data add elements to the knowledge of MBS providing its exact epidemiology in a highly populated European Country, which may be particularly useful when devising medical policies regarding this rare disease. Most rare diseases are considered "orphans" with no effective treatment; people affected are more vulnerable psychologically, socially, economically, and culturally, as they usually have no response for their medical condition. These difficulties can be overcome and the efforts made by the scientific community can increase our knowledge and give new hope for future treatments of this disorder.

List Of Abbreviations

MBS= Moebius Syndrome, AISMO= Italian Association of Moebius Syndrome AISMO.

Declarations

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/946XBZ

Ethics approval: As stated in the method section, “This study adhered to the tenets of the Declaration of Helsinki and was approved by the local ethics committee (No. 93/2019/OSS*/UNIPR/June 14, 2019).”

Consent for publication: This study does not contain any individual personal data in any form. Specific consent not required.

Availability of data and Materials: As reported at the end of the Method Section “Data used for the study can be checked at the following links: www.moebius-italia.it and www.istat.it.”

Competing interest: None of the authors has competing interests or conflicting relationship as reported in the Title Page.

Funding: None, as reported in the Title page.

Authors contribution: All the listed authors gave a significant contribution in preparing, analyzing and discussing the data reported in the present work and, according to the EMWA guidelines for scientific writers, each of them can be included as an "Author”.

Acknowledgments: None.

References

1. Gutowski NJ, Chilton LK. The congenital cranial dysinnervation disorders. Arch Dis Child 2015, 100: 678-681.
2. Miller G. The mystery of the missing smile. Science 2007, 316: 826-827.
3. Carta A, Mora P, Neri A, Favilla S, Sadun AA Ophthalmologic and systemic features in Möbius syndrome: an Italian case. *Ophthalmology* 2011, 118: 1518-23.

4. MacKinnon S, Oystreck DT, Andrews C, et al. Diagnostic distinctions and genetic analysis of patients diagnosed with Moebius syndrome. *Ophthalmology* 2014, 121: 1461-1468.

5. Bell C, Nevitt S, McKay VH, Fattah AY. Will the real Moebius syndrome please stand up? A systematic review of the literature and statistical cluster analysis of clinical features. *Am J Med Genet* 2019, 179: 257-265.

6. Möbius Ueber angeborene doppelseitige Abducens-Facialis-Lähmung. *Münchener medizinische Wochenschrift* 1888; 35: 91-4.

7. Bavinck JN, Weaver Subclavian artery supply disruption sequence: hypothesis of a vascular aetiology for Poland, Klippel-Feil and Möbius anomalies. *Am J Med Genet* 1986, 23:903–18.

8. Charles S, Di Mario FJ Jr, Grunnet ML. Möbius sequence: further in vivo support for the subclavian artery supply disruption sequence. *Am J Med Genet* 1993, 47:289–93.

9. Strömland K, Sjögren L, Miller M, et al. Möbius sequence—a Swedish multidiscipline study. *Eur J Paediatr Neurol* 2002, 6:35–45.

10. Miller MT, Stömland The Möbius sequence: a relook. *J AAPOS* 1999, 3:199–208.

11. Ventura LO, da Cruz CB, de Almeida HC, et al. Möbius sequence: long-term strabismus surgical outcome. *Arq Bras Oftalmol* 2007, 70(2):195-9.

12. Verzijl HT, van der Zwaag B, Cruysberg JR, Padberg Möbius syndrome redefined: a syndrome of rhombencephalic maldevelopment. *Neurology* 2003, 61:327-333.

13. Orphanet Report Series Prevalence of rare diseases: [http://www.orpha.net/porphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_pdf; 2019, Accessed January 2020.](http://www.orpha.net/porphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_pdf)

14. Webb BD, Manoli I, Jabs EW. STAC3 Disorder. In: Adam MP, Ardinger HH, Pagon RA et al., editors. *Genereviews*, University of Washington, Seattle, 1993-2020 (http://www.genereviews.org/)

15. Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, et al. De novo mutations in PLXND1 and REV3L cause Möbius syndrome. *Nat Commun* 2015, 12;6:7199.

16. Picciolini O, Porro M, Cattaneo E, et al. Moebius syndrome: clinical features, diagnosis, management and early intervention. *Ital J Pediatr* 2016, 42(1):56.

17. Istituto Nazionale di Statistica: [https://www.istat.it; 2019, Accessed January 2020.](https://www.istat.it)

18. Ventura BV, Miller MT, Danda D, et al. Profile of ocular and systemic characteristics in Möbius sequence patients from Brazil and Italy. *Arq Bras Oftalmol* 2012, 75(3):202-6.

19. Pastuszak AP, Schuller L, Speck-Martins CF, et al. Use of Misoprostol during pregnancy and Moebius syndrome in infants. *N Engl J Med* 1998, 338;1881-5.

20. McKusik VA, Kniffin CL. Moebius Syndrome. *OMIM®* Updated on 12/28/2016. Copyright® Johns Hopkins University. 1966-2020 (www.omim.org)
21. McKay VH, Touil LL, Jenkins D, Fattah AY. Managing the child with a diagnosis of Moebius syndrome: more than meets the eye. *Arch Dis Child* 2016, 101: 843-846.

**Figures**

**Figure 1**

Number of newly recorded MBS cases in each biennium from 1964 to 2018. Cases registered in odd years were assigned to the next even year.

| Geographical macro-area | N. of cases |
|-------------------------|-------------|
| Northeast               | 35          |
| Northwest               | 51          |
| Central                 | 34          |
| South                   | 29          |
| Islands                 | 15          |
| TOTAL                   | 164         |
The prevalence of MBS (no. of cases/100,000 people) was determined for each geographic area (Table 2), with an overall prevalence of 0.27/100,000.