Traumatic bilateral isolated palsy of Flexor Pollicis Longus: an uncommon case report

Domenico Sergio Poggi a, Massimo Massarella a, Eleonora Piccirilli b,∗

a Villa Stuart Sport Clinic, Rome, Italy
b Policlinico Tor Vergata, Department of Orthopaedics and Traumatology, Rome, Italy

ARTICLE INFO

Article history:
Received 28 December 2020
Received in revised form 5 January 2021
Accepted 9 January 2021
Available online 15 January 2021

Keywords:
Case report
Flexor Pollicis Longus
Forearm
Palsy

ABSTRACT

INTRODUCTION AND IMPORTANCE: Flexor Pollicis Longus (FPL) lies in the volar compartment of the forearm. It arises from the proximal portion of the radius through the volar aspect of the forearm and it ends in a long tendon deep to the transverse carpal ligament at the base of the distal phalanx of the thumb [1]. It provides the flexion at the interphalangeal (IP) joint of the thumb [2]. The innervation of the FPL muscle is provided by a constant and isolated motor branch of the anterior interosseous nerve (AIN), a branch of the median nerve [3]. AIN emerges when the median nerve has passed between the two portions of the pronator teres muscle. Then, it runs in the forearm along the interosseous membrane and lies between FPL and Flexor Digitorum Profundus (FDP), providing proper motor branches for these muscles. This branch of the median nerve is responsible for three of the deep flexors of the forearm (FPL, FDP for the second and third finger and Pronator Quadratus) and also provides a sensory branch for the volar region of the anterior capsule of the wrist joint. The integrity of AIN and its motor branches can be assessed asking the patient to perform a circular OK sign with the thumb and the second finger. In this way, the patient will show the integrity of FPL and FDP [4]. If any disfunction is present, the person will not be able to flex the distal phalanx of the involved fingers (Kiloh-Nevin syndrome [5]).

Several causes of AIN compression can be assessed:

- tendon anomalies, as in the case of the deep head of the pronator teres or the origin of the head for the superficial flexor of the third finger [6];
- the presence of accessory muscles as in the case of the Gantzer muscle [7], an accessory head of the FPL that may originate from either the Flexor Digitorum Superficialis (FDS) muscle, coronoid process of the ulna or medial epicondyle of the humerus;
- vascular problems, such as anomalous radial artery or vascular alterations of the ulnar collaterals’ branches;
- acute direct trauma with consequent neurotmesis.

DISCUSSION: Diagnostic and therapeutic bands release allowed the immediate functional recovery of the nerve function and the consequent restoration of FPL function. The surgical exploration of the suspected injured nerve was the resolutive procedure for diagnosis and treatment of the disease. During the surgical exploration, the cause of FPL palsy was identified and removed with a complete recovery of the neuromuscular unit function.

CONCLUSION: This case is very peculiar because of the clinical presentation with an important bilateral functional limitation of FPL. The release allowed the complete restoration of FPL function. No similar cases were described in literature.

© 2021 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
AIN disfunction causes symptoms of exclusive motor involvement, concerning the FPL muscle and the FPD in its component for the second and third finger; the involvement of the pronator quadrato (PQ) muscle is expected but it remains mostly asymptomatic.

There are no associated sensitive disorders. The patient reports difficulty in performing refined movements where a thumb-index grip is required, such as in the case of writing, using or collecting needles or sheets on the surface of a table. This is due to the reduced strength of the FPL and FPD in its component for the index finger. The syndrome can present various degrees of severity both in relation to the severity and duration of compression, and due to the possible presence of nerve anastomoses between the median and ulnar nerve, Martin-Gruber anastomosis, reported in about 25% of the population.

Solitary paralysis of the FPL is uncommon in clinical practice [8]. Only a few cases are reported in which unilateral FPL palsy occurs for acute lesion involving the branch or branches of the anterior interosseous nerve to the FPL [9], after complex forearm fractures [10] or during surgical procedures at the elbow or at the wrist [11]. We reported the peculiar case of a patient who underwent a bilateral solitary FPL paralysis and who completely recovered after our procedure.

The research work has been reported in line with the SCARE Guidelines 2020 [12] and the patient signed an informed consent for the publication of this case report and accompanying images.

2. Presentation of the case

A 55-years old female patient self-presented to our observation. She was a nurse in good clinical conditions with a right-hand dominance and she reported that she had an accident two years before during her working activities falling down with open palms with abducted and extended thumbs. After the fall, she noticed that she was unable to flex her right and left thumb. After a first clinical examination in another hospital, a diagnosis of tenosynovitis of the thumbs was made. For this reason, six months after the trauma she underwent a first surgical procedure of tenolysis and synovectomy of the thumbs but the function of the fingers did not recover. She did not take any pharmacological therapy. After two years, the clinical presentation was the same (Fig. 1).

In the previous two years, the patient underwent several diagnostic exams. Upper limbs electromyography was negative for the neurotmesis of the median, ulnar and radial nerve. The only finding was a mild delay in electric conduction at the median nerve bilaterally. Ultrasounds and the Magnetic Resonance showed no signs of discontinuity at the FPL on both sides from its origin to the insertion.

We did not recognize any organic injury but the FPL disfunction was clinically evident. We hypothesized a potential motor nerve compression syndrome but we did not know at what level. For this reason, we planned the surgical exploration of the AIN and of the motor branch of FPL on the right side, that was the dominant one.

3. Surgical technique

The patient was operated on by the two senior authors (DSP, MM). She was placed on a supine position, under locoregional anesthesia.

We used a volar approach to the proximal forearm to expose the proximal portion of FPL.

We used the Flexor Carpi Radialis (FCR) as a landmark, below which FPL lies. We isolated FPL and we explored it in order to find its motor branch. Finally, we found an important stenosis of this branch produced by fibrous bands that were compressing the nerve (Fig. 2). This finding confirmed that the anatomopathological cause of the clinical presentation was due to a stage 1–2 of Sunderland [13] neuroapraxia (axonostenosis versus axonocachessia).

Intraoperative electrostimulation allowed us to highlight both the topographical property of the innervation (Fig. 3) and the restoration of the nerve conduction after surgical decompression (Fig. 4).

Ten days postoperatively, the patient showed the restoration of the FPL function. She was able to flex the distal phalanx of the right thumb with no pain or paresthesia (Fig. 5).

At one-month follow-up, there was a complete restoration of the FPL function on the right side comparing to the left one (Fig. 6).

At this time, we decided to perform the same procedure on the left side, finding a similar lesion and a similar intraoperative response to electrostimulation (Figs. 7–9).
Fig. 4. Right forearm. Intraoperative electrostimulation of the motor branches for FPL at the end of surgical decompression. The thumb was flexed because of the restoration of the nerve conduction.

Fig. 7. Connective fibrous band causing neuropraxia of FPL nerve at the left forearm.

Fig. 5. Recovery of the right FPL function ten days after the connective bands release.

Fig. 8. Left forearm. Intraoperative electrostimulation of the motor branches for FPL at the beginning of the procedure. The thumb is extended due to neuroaxpraxia of FPL nerve, as in the right side.

Fig. 6. One-month follow-up: right FPL function after surgical release compared with left FPL.

Fig. 9. Left forearm. Intraoperative electrostimulation of the motor branches for FPL at the end of surgical decompression. The thumb is flexed because of the restoration of the nerve conduction.

Fig. 10. Complete restoration of the mobility of the left and right thumb after FPL motor branches bilateral surgical decompression.
At one-year follow-up, the patient showed a full functional bilateral recovery of FPL function without any neurological and sensitive complications and a high rate of satisfaction (Fig. 10).

4. Discussion

We reported an uncommon case of bilateral isolated palsy of FPL that persisted two years after the trauma. Non similar case reports were reported in literature. This case is unique for bilateralism of the lesion and its post traumatic genesis that leaded to a chronic deficit of FPL. This is very peculiar because of the clinical presentation with an important bilateral functional limitation of FPL. In addition, the diagnosis was not supported by any instrumental investigation before. In fact, the resolution power of Ultrasound and Magnetic Resonance on a small nerve branch is not sufficient to make a diagnosis. In this complex framework, the surgical exploration of the suspected injured nerve was the resolutive procedure for diagnosis and treatment of the disease. During the surgical exploration, the cause of FPL palsy was identified and removed with a complete recovery of the neuromuscular unit function.

We have to consider the importance of intraoperative electrostimulation for our surgical strategy because if it had showed a lack of nerve conduction we should have proceed towards a substitutive tendinous transfer.

5. Conclusion

The interesting aspect of this case relies in the uncommon intraoperative diagnosis of pure apraxia of the motor branch for the FPL with motor palsy that was chronically maintain by connective fibrous bands that originated after the trauma, probably due to a post stretch intramural hematoma. Diagnostic and therapeutic bands release allowed the immediate functional recovery of the nerve function and the consequent restoration of FPL function.

Declaration of Competing Interest

Nothing to declare.

Funding

No funds were received in support of this study.

Ethical approval

Nothing to declare.

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the editor-in-chief of this journal on request.

Authors contribution

Domenico Sergio Poggi – data collection and analysis.
Massimo Massarella – data collection and analysis.
Eleonora Piccirilli – writing the paper.

Registration of research studies

researchregistry6405 available at: https://www.researchregistry.com/browse-the-registry.

Guarantor

Eleonora Piccirilli.

Provenance and peer review

Not commissioned, externally peer-reviewed.

References

[1] Dillion C. Benson, Kathleen H. Miao, Matthew Varacallo, Anatomy, Shoulder and Upper Limb, Hand Flexor Pollicis Longus Muscle, 2020, Last Update: July 31.
[2] F.J. Leversedge, Anatomy and pathomechanics of the thumb, Hand Clin. 24 (August (3)) (2008) 219–229, v.
[3] E.B. Caetano, L.A. Vieira, J.J. Sabongi Neto, M.B.F. Caetano, R.G. Sabongi, Anterior interosseous nerve: anatomical study and clinical implications, Rev. Bras. Ortop. 53 (September–October (5)) (2018) 575–581.
[4] Alex Wertheimer, John Kiel, Anatomy, Shoulder and Upper Limb, Forearm Anterior Interosseous Nerve StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL), 2020, Jan. 2020 Jul 31.5.
[5] L.G. Kiloh, S. Nevin, Isolated neuritis of the anterior interosseous nerve, Br. Med. J. 1 (1952) 850–851.
[6] R.M. Linburg, B.E. Comstock, Anomalous tendon slips from the flexor pollicis longus to the flexor digitorum profundus, J. Hand Surg. 4 (January (1)) (1979) 79–83.
[7] E.B. Caetano, JJ. Sabongi, L.A Vieira, M.F. Caetano, D.V. Moraes, Gantzer muscle. An anatomical study, Acta Ortop. Bras. 23 (March-April (2)) (2015) 72–75.
[8] C. Krag, Isolated paralysis of the flexor pollicis longus muscle. An unusual variation of the anterior interosseous nerve syndrome, Case Rep. Scand. J. Plast. Reconsr. Su 8 (3) (1974) 250–252.
[9] R.R. Conway, R. Thomas, Isolated complete denervation of the flexor pollicis longus, Rev. Arch. Phys. Med. Rehabil. 71 (May (6)) (1990) 406–407.
[10] Nor Hazla Mohamed Hafallah, Abdul Halim Abd Rashid, Jamari Sapuan, Partial anterior interosseous nerve palsy: isolated neuropa of the branch to flexor pollicis longus, Case Rep. Hand Surg. 15 (3) (2010) 221–223.
[11] Juergen H. Dolderer, Eva-Christina Prandtl, Andreas Kehrer, Alfred Beham, Hans-Eberhard Schaller, Christopher Briggs, Jack L. Kelly, Solitary paralysis of the flexor pollicis longus muscle after minimally invasive elbow procedures: anatomical and clinical study of the anterior interosseous nerve, Plast. Reconstr. Surg. 127 (March (3)) (2011) 1229–1236.
[12] R.A. Agha, T. Franchi, C. Sohrabi, G. Mathew, for the SCARE Group, The SCARE 2020 guideline: updating consensus Surgical Case Report (SCARE) guidelines, Int. J. Surg. 84 (2020) 226–230.
[13] S. Sunderland, A classification of peripheral nerve injuries producing loss of function, Brain 74 (December (4)) (1951) 491–516.

Open Access

This article is published Open Access at scienceDirect.com. It is distributed under the IJSCR Supplemental terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.