Synthesis and properties of 2-(4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid and its salts

A. S. Hotsulia*, S. O. Fedotov

Zaporizhzhia State Medical University, Ukraine

Analysis of the literature over the past decade has shown that the chemistry of 1,2,4-triazole and 1,3,4-thiadiazole attracts considerable interest from scientists around the world because of the many valuable properties of compounds of this class. Bibliosemantic analysis shows that the nuclei of 1,2,4-triazole and 1,3,4-thiadiazole are fragments of a number of known drugs and biologically active compounds. That is why the synthesis and study of physical-chemical, biological properties of salts and acids containing these heterocyclic fragments are quite relevant both from a theoretical and practical point of view.

The aim of the work was to targeted synthesis of 2-((4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid and its salts, as well as the establishment of physical-chemical properties of the synthesized compounds. Estimation of the biological potential of the obtained compounds by molecular modeling method.

Materials and methods. 4-Phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol, which was synthesized by the classical method described in earlier works, was used as a key intermediate. The reaction of the corresponding thiol with sodium monochloroacetate in aqueous medium and subsequent acidification with ethanoic acid gave the target acid.

Inorganic salts of 2-((4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid was synthesized by the reaction of the acid with sodium hydroxide, potassium hydroxide, magnesium oxide, calcium carbonate or zinc sulfate in an aqueous medium. For analysis, the salts obtained were purified by crystallization from methanol. Organic salts of 2-((4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid was obtained by the interaction of the corresponding acid with organic bases (ammonia, diethylamine, diethylmonoethanolamine, morpholine, piperidine) in propan-2-ol followed by evaporation of the solvent. For analysis, the synthesized substances were purified by crystallization from a mixture of water – propan-2-ol (1:1).

Results. During the work, the method of obtaining 2-((4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acids was optimized. The role of the reaction medium at this stage was played by water. The conditions of the synthesis of organic and inorganic salts of the specified acid, their structure, and physical-chemical properties were established. The biological potential was preliminarily assessed with molecular docking.

Conclusions. As a result of synthetic studies, 11 new, previously undescribed compounds were obtained. The structure, composition and individuality of the synthesized substances was confirmed by a set of the latest physical-chemical methods of analysis.

Key words: thia diazole, 1,2,4-triazole, physical-chemical properties, molecular docking.

Current issues in pharmacy and medicine: science and practice 2020; 13 (3), 330–336

Синтез і властивості 2-((4-феніл-5-(((5-феніламіно-1,3,4-тіадіазол-2-іл)тіо)метил)-1,2,4-тіазол-3-іл)тіо)етанової кислоти та її солей

А. С. Гоцуля, С. О. Федотов

Аналіз фахової літератури за останнє десятиліття показав, що хімія 1,2,4-тіазолу та 1,3,4-тіадіазолу привертає увагу науковців світу через безліч цінних властивостей сполук цього класу. Бібліосемантичний аналіз свідчить, що ядра 1,2,4-тіазолу та 1,3,4-тіадіазолу є фрагментами низки видомих лікарських препаратів і біологічно активних сполук. Саме тому синтез і дослідження фізико-хімічних, біологічних властивостей сполей і кислот, що містять названі тетроциклічні фрагменти, є дозволені актуальними і з теоретичного, і практичного погляду.
An analysis of the literature sources over the last decade has shown that the chemistry of 1,2,4-triazole and 1,3,4-thiadiazole attracts significant interest from scientists around the world because of the many valuable properties of compounds of this class [1,2].

Bibliosemantic analysis shows that the nucleci of 1,2,4-triazole and 1,3,4-thiadiazole are fragments of a number of known drugs and biologically active compounds [3,4]. That is why the synthesis and study of physical-chemical, biological properties of salts and acids containing these heterocyclic fragments are relevant both from a theoretical and practical point of view [5,6].
Aim

The aim of this study is the directed synthesis of 2-(4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid and its salts, as well as the establishment of physical-chemical properties of the synthesized compounds. Estimation of biological potential of the obtained compounds by molecular modeling method.

Materials and methods

4-Phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol, which was synthesized by the classical method described in earlier works, was used as a key intermediate [7]. The reaction of the corresponding thiole with sodium monochloroacetate in aqueous medium and subsequent acidification with ethanoic acid gave the target acid. Inorganic salts of 2-(4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid was synthesized by the interaction of this acid with sodium hydroxide, potassium hydroxide, magnesium oxide, calcium carbonate or zinc sulfate in an aqueous medium. For analysis, the salts obtained were purified by crystallization from methanol. Organic salts of 2-(4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid is obtained by reacting the corresponding acid with organic bases (ammonia, diethylamine, diethyl monoethanolamine, morpholine, piperidine) in propan-2-ol followed by evaporation of the solvent. For analysis, the synthesized substances were purified by crystallization from a mixture of water – propan-2-ol (1 : 1).

The study of physical-chemical properties of the obtained compounds was carried out by methods listed in the State Pharmacopoeia of Ukraine. Melting points were determined by the open capillary method on an OptiMelt MPA 100 with a platinum RTD sensor. The elemental analysis was performed by the “Elementar vario EL cube” analyzer (Elementar Analysensysteme, Germany). IR spectra (4000–400 cm⁻¹) were taken off the module ALPHA-T of Bruker ALPHA FT-IR spectrometer (Bruker optics, Germany). ¹H NMR spectra (400 MHz) were recorded at “Varian-MR 400” spectrometer with SiMe₄ as internal standard in DMSO-d₆ solution. Chromatography-mass spectral studies were conducted on the instrument “Agilent 1260 Infinity HPLC” equipped with a mass spectrometer “Agilent 6120” (method of ionization – electrospray (ESI)).

2-(4-Phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid (2) (Fig. 1).

It was heated 0.005 mol of 4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid was synthesized by the reaction of this acid with sodium hydroxide, potassium hydroxide, magnesium oxide, calcium carbonate or zinc sulfate in a round bottomed flask. The reaction mixture was boiled for 1 hour and cooled up to room temperature. The solution was neutralized with acetic acid. The obtained compound was filtered off, washed with H₂O and recrystallized from propan-1-ol. Yield—79 %. M. p.: 104–106 ºС.

2-(4-Phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid with organic bases. A mixture of 0.01 mol of the starting carboxylic acid, 15–20 ml of water and 0.012 mol of the corresponding organic base (diethylamine, diethyl monoethanolamine, morpholine, piperidine) was heated for 1 hour in a water bath, filtered, the solvent was evaporated to a total volume. The residue was added to acetone or propan-1-ol. The precipitated white crystalline substances were recrystallized from ethanol. The product was soluble in water, sparingly soluble in organic solvents.

Sodium, potassium salts of 2-(4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-thiol)ethanoic acid (Fig. 2). A mixture of 0.01 mol of the starting carboxylic acid and 0.01 mol of sodium or potassium hydroxide in 30 ml of water was heated in a water bath for 10–15 minutes, filtered and evaporated to its...
original volume and precipitated by the addition of acetone. It was obtained white crystalline substances, sparingly soluble in organic solvents. The compound was recrystallized from ethanol for analysis.

Magnesium, calcium and zinc salts of 2-((4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)acetic acid (Fig. 2). A mixture of 0.02 mol of the starting carboxylic acid, 25 ml of water and 0.01 mol of magnesium oxide or calcium carbonate or zinc sulphate, respectively, was heated to dissolve the precipitate, filtered and the filtrate was evaporated. The compounds were recrystallized from water. The resulting product was a white solid, sparingly soluble in water, sparingly soluble in organic solvents.

Ammonium 2-((4-phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)acetate. A solution of 0.01 mol of the original carboxylic acid in 30 ml of 25 % ammonia solution was evaporated. The product was recrystallized from 1,4-dioxane : water (3:1). The target compound was a white solid, slightly soluble in water, sparingly soluble in ethanol.

Results
The structure and individuality of the synthesized compounds were confirmed by a package of modern physical-chemical methods of analysis.

For example, in the IR spectra of all synthesized compounds there were absorption bands –C=N groups at 1607–1582 cm\(^{-1}\), C–S groups – at 702–685 cm\(^{-1}\), as well as symmetric and asymmetric absorption bands characteristic of carboxylic acid salts containing COO groups in the range of 1371–1342 cm\(^{-1}\) and 1597–1525 cm\(^{-1}\), respectively. The IR spectra of salts also were contained absorption bands at 1508–1473 cm\(^{-1}\), which indicates the presence of aromatic substituent’s in their structure. For salts of organic bases there are wide absorption bands of primary and secondary amines in the range 3053–2907 cm\(^{-1}\) or 2712–2258 cm\(^{-1}\) and deformation oscillations in the range 1610–1563 cm\(^{-1}\).

The IR spectrum of the ammonium salt were contained the absorption band of the valence vibrations of the ammonium group at 3435 cm\(^{-1}\).

\(^1\)H NMR spectra of salts were confirmed by signals of the corresponding protonated amines. For example, in the spectrum of the diethylammonium salt, multiplets were observed in the intervals 3.12–3.01 and 1.40–1.33 ppm, respectively. In the spectrum of the diethylmonoethanolammonium salt there were two triplets at 4.03 ppm and 3.46 ppm, a singlet at 7.08 ppm, and an OH group signal in the form of a triplet at 4.16 ppm. The spectrum of the morpholine salt had a characteristic set of signals of the protonated cation of morpholine in the form of two multiplets at 3.96–3.83, 3.38–3.30 ppm and a singlet at 7.11 ppm. The piperidinium salt was characterized by proton signals of organic bases in the form of multiplets 3.15–3.11 ppm, 1.93–1.76 ppm, 1.55–1.42 ppm and 1.50 ppm and singlet 7.04 ppm.

2-((4-Phenyl-5-(((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid. White crystalline substance in 77 % yield; m. p.: 204–206 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 10.51 (s, 1H, NH), 7.64–7.50 (m, 4H, NH-C-H, H-3,5, C-H, H-2,6), 7.46 (d, 2H, NH-C-H, H-2,6), 7.37–7.26 (m, 3H, C, H, H-3,5), NH-C-H, H-4), 7.00...
As a result of the molecular docking for the synthesized salts of 2-(4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)acetate, a promising level of anti-inflammatory effect was established. It should be noted that the conversion of the starting acid into a salt as a result of interaction with organic or inorganic bases leads to an increase in the likelihood of anti-inflammatory activity.
Table 1. Energy values of the intermolecular interactions of the studied compounds with COX-1 (4Z0L)

N	E_{min} kJ × mol$^{-1}$	N	E_{min} kJ × mol$^{-1}$	N	E_{min} kJ × mol$^{-1}$
2	-33.47	2	-29.29	2.8	-32.66
2.1	-37.66	2.5	-25.10	2.9	-35.17
2.2	-25.1	2.6	-29.29	2.10	-33.91
2.3	-37.66	2.7	-29.29	Diclofenac	-35.17

E_{min}: the minimum energy of complex formation, kJ × mol$^{-1}$.

Table 2. Energy values of the intermolecular interactions of the studied compounds with lanosterol-14α-demethylase (3LD6)

N	E_{min} kJ × mol$^{-1}$	N	E_{min} kJ × mol$^{-1}$	N	E_{min} kJ × mol$^{-1}$
2	-41.03	2	-36.84	2.8	-40.61
2.1	-47.31	2.5	-39.77	2.9	-43.12
2.2	-45.22	2.6	-43.96	2.10	-43.96
2.3	-41.87	2.7	-37.68	Ketoconazole	-42.29

E_{min}: the minimum energy of complex formation, kJ × mol$^{-1}$.

Regarding the results of the study of the affinity of the synthesized compounds to the active site of lanosterol-14α-demethylase, it should be noted that there is an increase in the energy of interaction with the enzyme as a result of the transition from acid to its salts.

Analysis of the results showed that the most promising compound for more in-depth study is sodium 2-[(4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl]thio)acetate. This compound demonstrated the value of the energy of intermolecular interaction with the target enzymes, which to some extent exceeds the values for the reference compounds.

Conclusions

1. It was synthesized a number of salts of 2-((4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid.

2. The optimal conditions for the synthesis of the target reaction products were established.

3. The structure and individuality were confirmed by means of spectral and chromatographic methods of the analysis.

4. The results of the molecular docking revealed promising compounds in a number of derivatives of 2-((4-phenyl-5-((5-phenylamino-1,3,4-thiadiazole-2-yl)thio)methyl)-1,2,4-triazole-3-yl)thio)ethanoic acid for more in-depth study.

Funding

The research is carried out within the RDW of Zaporizhzhia State Medical University “Synthesis, physical-chemical and biological properties of 3,4-disubstituted 3(5)-thio-1,2,4-triazole with antioxidant, antihypoxic, antimicrobial, cardio and hepatoprotective action” (state registration number 0118U007143).

Information about authors:

Hotsoilia A. S., PhD, Associate Professor of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Ukraine. ORCID ID: 0000-0001-9696-221X

Fedotov S. O., Senior Laboratory Assistant of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Ukraine. ORCID ID: 0000-0002-0421-5303

References

[1] Hotsoilia, A. S., & Fedotov, S. O. (2019). Synthesis and properties of some S-derivatives of 4-phenyl-5-(5-phenylamino-1,3,4-thiadiazole-2-thio)ethyl)-1,2,4-triazole-3-thione. Current issues in pharmacy and medicine: science and practice, 12(3), 245-249. https://doi.org/10.14739/2409-2932.2019.3.184170

[2] Hotsoilia, A. S., & Fedotov, S. O. (2020). Synthesis and properties of 5-((5-amino-1,3,4-thiadiazole-2-thio)ethyl)-4-phenyl-1,2,4-triazole-3-thione and its some S-derivatives. Current issues in pharmacy and medicine: science and practice, 13(2), 182-186. https://doi.org/10.14739/2409-2932.2020.2.207082

[3] Xie, W., Zhang, J., Ma, X., Yang, W., Zhou, Y., Tang, X., Zou, Y., Li, H., He, J., Xie, S., Zhao, Y., & Liu, F. (2015). Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors. Chemical Biology and Drug Design, 85(6), 1087-1092. https://doi.org/10.1111/cbdd.12577

[4] Hotsoilia, A. S. (2017). Synthesis, structure and properties of N-R-amides and hydrazides of 2-(aryl-5-(theophylline-7'-y-1,2,4-triazole-3-yl)thio)ethanoic acid. Current issues in pharmacy and medicine: science and practice, 10(3), 254-258. https://doi.org/10.14739/2409-2932.2017.3.112748
[5] Gotsulya, A. S. (2016). Synthesis and investigation of the physical-chemical properties of 2-(5-((theophylline-7’-yl)methyl)-4-methyl-4H-1,2,4-triazole-3-ythio)acetic acid salts. *Current issues in pharmacy and medicine: science and practice*, (3), 4-7. https://doi.org/10.14739/2409-2932.2016.3.77832

[6] Sardov, N. B., Kadamov, I. M., Georgiyants, V. A., & Taran, A. V. (2014). Planning, Synthesis, and Pharmacological Activity of Alkyl Derivatives of 3-Mercapto-4-Phenyl-5-Arylaminomethyl-1,2,4-Triazole-(4H). *Pharmaceutical Chemistry Journal*, 47(11), 581-585. https://doi.org/10.1007/s11094-014-1011-0

[7] Singh, R., Kashaw, S., Mishra, V., Mishra, M., Rajoriya, V., & Kashaw, V. (2018). Design and synthesis of new bioactive 1,2,4-triazoles, potential antitubercular and antimicrobial agents. *Indian journal of pharmaceutical sciences*, 80(1), 36-45. https://doi.org/10.4172/pharmaceutical-sciences.1000328

[8] Zhang, J., Wang, X., Yang, J., Guo, L., Wang, X., Song, B., Dong, W., & Wang, W. (2020). Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. *European journal of medicinal chemistry*, 186, 111897. https://doi.org/10.1016/j.ejmech.2019.111897

[9] Madhu Sekhar, M., Nagarjuna, U., Padmavathi, V., Padmaja, A., Reddy, N. V., & Vijaya, T. (2018). Synthesis and antimicrobial activity of pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. *European journal of medicinal chemistry*, 145, 1-10. https://doi.org/10.1016/j.ejmech.2017.12.067

[10] Keserü, G. M., & Makara, G. M. (2009). The influence of lead discovery strategies on the properties of drug candidates. *Nature reviews. Drug discovery*, 8(3), 203-212. https://doi.org/10.1038/nrd2796

[11] Landry, Y., & Gies, J. P. (2008). Drugs and their molecular targets: an updated overview. *Fundamental & Clinical Pharmacology*, 22(1), 1-18. https://doi.org/10.1111/j.1472-8206.2007.00548.x

[12] Biovia. (2019). *Discovery Studio Visualizer, v 19.1.0.18287* [Software]. http://www.3dsbiovia.com/

[13] Sharma, V., Bhatia, P., Alam, O., Javed Naim, M., Nawaz, F., Ahmad Sheikh, A., & Jha, M. (2019). Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008-2019). *Bioorganic chemistry*, 89, 103007. https://doi.org/10.1016/j.bioorg.2019.103007

[14] Jacob, P. J., Manju, S. L., Ethiraj, K. R., & Elias, G. (2018). Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. *European Journal of Pharmaceutical Sciences*, 121, 356-381. https://doi.org/10.1016/j.eips.2018.06.003