Demystifying the bias from selective inference: A revisit to Dawid’s treatment selection problem

Jiannan Lu * and Alex Deng
Analysis and Experimentation, Microsoft Corporation

Abstract

We extend the heuristic discussion in Senn (2008) on the bias from selective inference for the treatment selection problem (Dawid 1994), by deriving the closed-form expression for the selection bias. We illustrate the advantages of our theoretical results through numerical and simulated examples.

Keywords: Bayesian inference; posterior mean; selection paradox; multivariate truncated normal.

1. INTRODUCTION

Selective inference gained popularity in recent years (e.g., Lockhart et al. 2014; G’Sell et al. 2016; Reid and Tibshirani 2016). To quote Dawid (1994), “… a great deal of statistical practice involves, explicitly or implicitly, a two stage analysis of the data. At the first stage, the data are used to identify a particular parameter on which attention is to focus; the second stage then attempts to make inferences about the selected parameter.” Consequently, the results (e.g., point estimates, p-values) produced by selective inference are generally “cherry-picked” (Taylor and Tibshirani 2015), and therefore it is of great importance for practitioners to conduct “exact post-selection inference” (e.g., Tibshirani et al. 2014; Lee et al. 2015).

To demonstrate the importance of “exact post-selection inference,” in this paper we focus on the “bias” of the posterior mean associated with the most extreme observation (formally defined later,

*Address for correspondence: Jiannan Lu, Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052, USA. Email: jiannl@microsoft.com
and henceforth referred to as “selection bias”) in the treatment selection problem (Dawid 1994), which is not only fundamental in theory, but also of great practical importance in, e.g., agricultural studies, clinical trials, and large-scale online experiments (Kohavi et al. 2013). In an illuminating paper, Senn (2008) provided a heuristic explanation that the existence of selection bias depended on the prior distribution, and upheld Dawid’s claim that the fact that selection bias did not exist in some standard cases was a consequence of using certain conjugate prior. In this paper, we relax the modeling assumptions in Senn (2008) and derive the closed-form expression for the selection bias. Consequently, our work can serve as a complement of the heuristic explanation provided by Senn (2008), and is useful from both theoretical and practical perspectives.

The paper proceeds as follows. Section 2 reviews the treatment selection problem, defines the selection bias, and describes the Bayesian inference framework which the remaining parts of the paper are based on. Section 3 derives the closed-form expression for the selection bias. Section 4 highlights numerical and simulated examples that illustrates the advantages of our theoretical results. Section 5 concludes and discusses future directions.

2. BAYESIAN INFERENCE FOR TREATMENT SELECTION PROBLEM

2.1. Treatment Selection Problem and Selection Bias

Consider an experiment with \(p \geq 2 \) treatment arms. For \(i = 1, \ldots, p \), let \(\mu_i \) denote the mean yield of the \(i \)th treatment arm. After running the experiment, we observe the sample mean yield of the \(i \)th treatment arm, denoted as \(X_i \). Let

\[
i^* = \arg \max_{1 \leq i \leq p} X_i
\]

denote the index of the largest observation. The focus of selective inference is on \(\mu_{i^*} \), which relies on \(X_1, \ldots, X_p \). We let \(\text{E}(\mu_{i^*} \mid X_{i^*}) \) be the posterior mean of \(\mu_{i^*} \) as if it were selected before the experiment, and

\[
\text{E}(\mu_{i^*} \mid X_{i^*}, X_{i^*} = \max_i X_i)
\]
be the “exact post-selection” posterior mean of μ_{i^*}, which takes the selection into account. Following Senn (2008), we define the selection bias as

$$\Delta = E(\mu_{i^*} \mid X_{i^*}) - E(\mu_{i^*} \mid X_{i^*}, \max_i X_i).$$ \hspace{1cm} (1)$$

Having defined the selection bias, we briefly discuss the “selection paradox” in Dawid (1994), i.e., “since Bayesian posterior distributions are already fully conditioned on the data, the posterior distribution of any quantity is the same, whether it was chosen in advance or selected in the light of the data.” In other words, if we define the selection bias as

$$\tilde{\Delta} = E(\mu_{i^*} \mid X_1, \ldots, X_p) - E(\mu_{i^*} \mid X_1, \ldots, X_p, \max_i X_i),$$

then indeed $\tilde{\Delta} = 0$.

2.2. The Normal-Normal Model

Let $\mu = (\mu_1, \ldots, \mu_p)'$ and $X = (X_1, \ldots, X_p)'$. Following Dawid (1994), we treat them as random vectors. We generalize Senn (2008) and assume that

$$\mu \sim N(0, \Sigma_0), \quad X \mid \mu \sim N(\mu, \Sigma),$$ \hspace{1cm} (2)$$

where

$$\Sigma_0 = \gamma^2 I_p + (1 - \gamma^2)1_p 1_p', \quad \Sigma = \sigma^2 \{\eta^2 I_p + (1 - \eta^2)1_p 1_p'\}, \quad 0 \leq \gamma, \eta \leq 1.$$ \hspace{1cm} (3)$$

To interpret (3) we let $X_i = \mu_i + \epsilon_i$, where μ_i is generated by

$$\phi \sim N\left(0, 1 - \gamma^2\right), \quad \mu_i \mid \phi \sim N\left(\phi, \gamma^2\right),$$

and ϵ_i is generated by

$$\xi \sim N\{0, (1 - \eta^2)\sigma^2\}, \quad \epsilon_i \mid \xi \sim N(\xi, \eta^2 \sigma^2).$$

Note that $\eta = 1$ in Senn (2008), and we relax this assumption by allowing correlated errors.
2.3. Posterior Mean

To derive the posterior mean of \(\mu_p \) given \(X_1, \ldots, X_p \), we rely on the following classic result.

Lemma 1 (Normal Shrinkage). Let

\[
\mu \sim N(\mu_0, \nu^2), \quad Z_i \mid \mu \sim \text{iid} N(\mu, \tau^2) \quad (i = 1, \ldots, n).
\]

Then the posterior mean of \(\mu \) is

\[
E(\mu \mid Z_1, \ldots, Z_n) = \frac{\tau^2 \mu_0 + \nu^2 \sum_{i=1}^n Z_i}{\tau^2 + n\nu^2},
\]

Proposition 1. The posterior mean of \(\mu_p \) given \(X_p \) is

\[
E(\mu_p \mid X_p) = \frac{1}{1 + \sigma^2 X_p}.
\] \hfill (4)

Furthermore, let

\[
a = \gamma^2 + \sigma^2 \eta^2, \quad b = 1 - \gamma^2 + \sigma^2 (1 - \eta^2)
\]

and

\[
r_1, \ldots, r_{p-1} = \frac{\sigma^2 (\eta^2 - \gamma^2)}{a(a + pb)}, \quad r_p = \frac{a + (p - 1)b\gamma^2}{a(a + pb)}.
\]

The posterior mean of \(\mu_p \) given \(X_1, \ldots, X_p \) is

\[
E(\mu_p \mid X_1, \ldots, X_p) = \sum_{i=1}^p r_i X_i.
\] \hfill (5)

Proof of Proposition To prove the first half, notice that

\[
\mu_p \sim N(0, 1), \quad X_p \mid \mu_p \sim N(\mu_p, \sigma^2),
\]

and apply Lemma

To prove the second half, note that \(\mu_i = \phi + \mu_i' \), where

\[
\phi \sim N(0, 1 - \gamma^2), \quad \mu_i' \sim \text{iid} N(0, \gamma^2);
\]
and \(\epsilon_i = \xi + \epsilon'_i \), where
\[
\xi \sim N\{0, (1 - \eta^2)\sigma^2\}, \quad \epsilon'_i \sim N(0, \eta^2\sigma^2).
\]

Consequently we have
\[
\phi + \xi \sim N(0, b), \quad X_i \mid \phi + \xi \sim N(\phi + \xi, a),
\]

On the one hand, by Lemma 1
\[
E(\phi + \xi \mid X_1, \ldots, X_p) = \frac{b}{a + pb} \sum_{i=1}^{p} X_i,
\]
and
\[
E(\phi \mid \phi + \xi, X_1, \ldots, X_p) = \frac{1 - \gamma^2}{b} E(\phi + \xi \mid X_1, \ldots, X_p).
\]

Consequently,
\[
E(\phi \mid X_1, \ldots, X_p) = E\{E(\phi \mid \phi + \xi, X_1, \ldots, X_p) \mid X_1, \ldots, X_p\}
\]
\[
= \frac{1 - \gamma^2}{b} E(\phi + \xi \mid X_1, \ldots, X_p)
\]
\[
= \frac{1 - \gamma^2}{a + pb} \sum_{i=1}^{p} X_i. \quad (6)
\]

On the other hand, similarly we have
\[
E(\mu'_p \mid X_1, \ldots, X_p) = \frac{\gamma^2}{a} E(\mu'_i + \epsilon'_i \mid X_1, \ldots, X_p)
\]
\[
= \frac{\gamma^2}{a} \left\{ X_p - \frac{b}{a + pb} \sum_{i=1}^{p} X_i \right\}. \quad (7)
\]

Combine (6) and (7), we complete the proof.

It is worth noting that when \(\gamma = \eta \), (5) reduces to (4).
3. CLOSED-FORM EXPRESSION FOR THE SELECTION BIAS

To simplify future notations, we assume that X_p is the largest observation, i.e., $X_p = \max_{1 \leq i \leq p} X_i$. Consequently, the selection bias defined in (1) becomes

$$\Delta = E(\mu_p \mid X_p) - E(\mu_p \mid X_p, X_p = \max X_i).$$

(8)

To derive its closed-form expression, we rely on the following lemmas.

Lemma 2. Let $X_{-p} = (X_1, \ldots, X_{p-1})'$, and its distribution conditioning on X_p is

$$N \left(\frac{b}{a + b} 1_{p-1} X_p, a I_{p-1} + \frac{ab}{a + b} 1_{p-1} 1'_{p-1} \right).$$

(9)

Proof of Lemma 2. By (2) we have $X \sim N(0, \Psi)$, where

$$\Psi = (\psi_{jk})_{1 \leq j,k \leq p} = a I_p + b 1_p 1'\text{.}$$

Furthermore, let

$$\Psi_{11} = (\psi_{jk})_{1 \leq j,k \leq p-1} = a I_{p-1} + b 1_{p-1} 1'_{p-1}, \quad \Psi_{22} = (\psi_{pp}) = a + b, \quad \Psi_{12} = (\psi_{1p}, \ldots, \psi_{p-1,p})' = b 1_{p-1}, \quad \Psi_{21} = (\psi_{p1}, \ldots, \psi_{p,p-1}) = b 1'_{p-1}.$$

Simple probability argument suggests that

$$X_{-p} \mid X_p \sim N \left(\Psi_{12} \Psi_{22} X_p, \Psi_{11} - \Psi_{12} \Psi_{22}^{-1} \Psi_{21} \right),$$

where

$$\Psi_{12} \Psi_{22}^{-1} X_p = \frac{b}{a + b} 1_{p-1} X_p.$$
and

\[\Psi_{11} - \Psi_{12} \Psi_{22}^{-1} \Psi_{21} = a I_{p-1} + b 1_{p-1} 1_{p-1}' \frac{b^2}{a + b} 1_{p-1} 1_{p-1}' \]

\[= a I_{p-1} + \frac{ab}{a + b} 1_{p-1} 1_{p-1}' \]

The proof is complete. \[\square\]

To state the next lemma, we introduce some notations. First, for \(\theta = (\theta_1, \ldots, \theta_n)' \) and positive semi-definite matrix \(\Omega = (\omega_{jk})_{1 \leq j, k \leq n} \), let

\[Y = (Y_1, \ldots, Y_n)' \sim N(\theta, \Omega). \]

Second, let \(V_i = Y_i - \theta_i \) for \(i = 1, \ldots, n \). Consequently,

\[V = (V_1, \ldots, V_n)' \sim N(0, \Omega), \]

whose probability density function is

\[f(v) = \frac{1}{(2\pi)^{n/2} |\Omega|^{1/2}} e^{-\frac{1}{2} v' \Omega^{-1} v}, \quad v = (v_1, \ldots, v_n)'. \]

Third, for constants \(b_1, \ldots, b_n \), we let

\[\alpha = \Pr(V_1 \leq b_1 - \theta_1, \ldots, V_n \leq b_n - \theta_n) = \int_{v_1 \leq b_1 - \theta_1, \ldots, v_n \leq b_n - \theta_n} f(v) dv, \]

and \(W = (W_1, \ldots, W_n)' \) be the truncation version of \(V \) from above at \((b_1 - \theta_1, \ldots, b_n - \theta_n)' \). Consequently, its probability density function is

\[g(w) = \frac{1}{\alpha (2\pi)^{n/2} |\Omega|^{1/2}} e^{-\frac{1}{2} w' \Omega^{-1} w} \cdot 1_{\{ w_1 \leq b_1 - \theta_1, \ldots, w_n \leq b_n - \theta_n \}}, \quad w = (w_1, \ldots, w_n)' . \]
For all \(k = 1, \ldots, n \), let the \(k \)th marginal density function of \(W \) be

\[
g_k(w) = \int_{-\infty}^{b_1-\theta_1} \cdots \int_{-\infty}^{b_{k-1}-\theta_{k-1}} \int_{-\infty}^{b_{k+1}-\theta_{k+1}} \cdots \int_{-\infty}^{b_n-\theta_n} g(w_1, \ldots, w_{k-1}, w, w_{k+1}, \ldots, w_n) \prod_{l \neq k} dw_l.
\]

(10)

For efficient analytical and numerical evaluations of (10), see Cartinhour (1990) and Wilhelm and Manjunath (2010), respectively.

Lemma 3. For all \(i = 1, \ldots, n \),

\[
E(Y_i \mid Y_1 \leq b_1, \ldots, Y_n \leq b_n) = \theta_i - \sum_{k=1}^{n} \omega_{ki} g_k(b_k - \theta_k).
\]

Proof of Lemma 3. The proof follows Manjunath and Wilhelm (2012). First,

\[
E(Y_i \mid Y_1 \leq b_1, \ldots, Y_n \leq b_n) = \theta_i + E(V_i \mid V_1 \leq b_1 - \theta_1, \ldots, V_n \leq b_n - \theta_n)
\]

(11)

Next, the moment generating function of \(W \) at \(t = (t_1, \ldots, t_n)' \) is

\[
m(t) = \int e^{t'w} g(w) dw
\]

\[
= \frac{1}{\alpha(2\pi)^{n/2} |\Omega|^{1/2}} \int_{w_1 \leq b_1 - \theta_1, \ldots, w_n \leq b_n - \theta_n} e^{-\frac{1}{2}(w'\Omega^{-1}w - 2t'w)} dw
\]

\[
= \frac{e^{\frac{1}{2}t'\Omega t}}{\alpha(2\pi)^{n/2} |\Omega|^{1/2}} \int_{w_1 \leq b_1 - \theta_1, \ldots, w_n \leq b_n - \theta_n} e^{-\frac{1}{2}(w - \Omega t)'\Omega^{-1}(w - \Omega t)} dw
\]

On the one hand, by definition

\[
E(W_i) = \frac{\partial m(t)}{\partial t_i} \bigg|_{t=0}
\]

\[
= m_1(0) \frac{\partial m_2(t)}{\partial t_i} \bigg|_{t=0} + m_2(0) \frac{\partial m_1(t)}{\partial t_i} \bigg|_{t=0}
\]

\[
= \frac{\partial m_2(t)}{\partial t_i} \bigg|_{t=0}.
\]

(12)
On the other hand, let
\[b_i^* = b_i - \theta_i - \sum_{k=1}^{n} \omega_{ik} t_k, \quad i = 1, \ldots, n, \]
and we can rewrite \(m_2(t) \) as
\[m_2(t) = \int_{-\infty}^{b_1^*} \cdots \int_{-\infty}^{b_n^*} g(w) dw_1 \cdots dw_n. \]

Therefore, by chain rule and Leibniz integral rule
\[
\frac{\partial m_2(t)}{\partial t_i} = \sum_{k=1}^{n} \frac{\partial b_k^*}{\partial t_i} \frac{\partial m_2(t)}{\partial b_k^*}
= -\sum_{k=1}^{n} \omega_{ki} \int_{-\infty}^{b_k^*} \cdots \int_{-\infty}^{b_{k-1}^*} \int_{-\infty}^{b_{k+1}^*} \cdots \int_{-\infty}^{b_n^*} g(w_1, \ldots, w_{k-1}, b_k^*, w_{k+1}, \ldots, w_n) \prod_{l \neq k} dw_l,
\]
and consequently
\[
\frac{\partial m_2(t)}{\partial t_i} \bigg|_{t=0} = -\sum_{k=1}^{n} \omega_{ki} g_k(b_k - \theta_k). \tag{13}
\]

Combine (11), (12) and (13), the proof is complete.

Proposition 2. For \(i = 1, \ldots, p-1 \), let \(h_i \) denote the \(i \)th marginal probability density function of the random vector defined by (9) truncated from above at \(1_p - X_p \). Then the closed-form expression for (8) is
\[
\Delta = \frac{\sigma^2(\eta^2 - \gamma^2)}{1 + \sigma^2} \sum_{i=1}^{p-1} h_i \left(\frac{\gamma^2 + \sigma^2 \eta^2}{1 + \sigma^2} - X_p \right). \tag{14}
\]

Proof of Proposition 2. Apply Lemma 2 and 3 to (9),
\[
E(X_i \mid X_p, X_p = \max X_i) = \frac{a}{a + b} X_p - \left\{ \frac{ab}{a + b} \sum_{j=1}^{p-1} h_j \left(\frac{a}{a + b} X_p \right) + ah_i \left(\frac{a}{a + b} X_p \right) \right\}.
\]
Consequently, by (5) we have

\[
E(\mu_p \mid X_p, X_p = \max X_i) = r_p X_p + \sum_{i=1}^{p-1} r_i E(X_i \mid X_p, X_p = \max X_i)
\]

\[
= \left(r_p + \frac{a}{a+b} \sum_{i=1}^{p-1} r_i \right) X_p - \sum_{i=1}^{p-1} r_i \delta_i
\]

\[
= \frac{X_p}{a+b} \left\{ \frac{(p-1)ab}{a+b} + a \right\} \sum_{i=1}^{p-1} r_i h_i \left(\frac{a}{a+b} X_p \right)
\]

\[
= E(\mu_p \mid X_p) - \frac{\sigma^2 (\eta^2 - \gamma^2)}{1 + \sigma^2} \sum_{i=1}^{p-1} h_i \left(\frac{\gamma^2 + \sigma^2 \eta^2}{1 + \sigma^2} X_p \right).
\]

The proof is complete. \(\square\)

Proposition 2 confirms the existence of the selection bias in general. Furthermore, it provides the following interesting insights:

1. For fixed \(\sigma, p\) and \(X_p\), the sign of the selection bias is the same as the sign of \(\eta^2 - \gamma^2\), i.e., depending on the correlation structures in \([3]\), neglecting the fact that \(X_p = \max_{1 \leq i \leq p} X_i\) can either over-estimate or under-estimate \(\mu_i^*\). In particular, the selection bias is zero when \(\gamma = \eta\). This is a generalization of the first main result in Senn (2008), which assumes that \(\gamma = \eta = 1\);

2. For fixed \(\gamma, \eta, p\) and \(X_p\), the selection bias goes to zero as \(\sigma\) goes to zero. This is intuitive because \(X_p\) approaches \(\mu_p\) as \(\sigma\) goes to zero, and therefore the fact that \(X_p = \max_{1 \leq i \leq p} X_i\) becomes irrelevant;

3. For fixed \(\sigma, \gamma, \eta\) and \(p\), the selection bias disappears for sufficiently large \(X_p\). This is because when \(X_p\) goes to infinity,

\[
h_i \left(\frac{\sigma^2 + \gamma^2 \eta^2}{1 + \sigma^2} X_p \right) \to 0, \quad i = 1, \ldots, p - 1.
\]

This result is in connection with Dawid (1973).
4. NUMERICAL AND SIMULATED EXAMPLES

4.1. Numerical Examples

Having derived the closed-form expression for the selection bias, we provide some numerical examples for illustration. Let $\sigma = 1$, $p \in \{3, 5, 10\}$ and $X_p \in \{0, 1, \ldots, 6\}$. For fixed p and X_p, we consider two cases. In Case 1, we follow Senn (2008) and let $\gamma^2 = 0.5$ and $\eta = 1$. In Case 2, we let $\gamma = 1$ and $\eta^2 = 0.5$. For both cases we calculate the selection bias by (14). Results are in Figure 1, which align with the insights discussed in the previous section. Furthermore, it appears that the magnitude of the selection bias increases as p increases.

![Case 1 and Case 2 graphs](image)

Figure 1: Numerical Examples of Selection Bias.

4.2. Simulated Examples

The results in (14) enable us to calculate the “exact post-selection” posterior mean

$$\lambda_{i*} = E(\mu_{i*} \mid X_{i*}, X_\text{max} = \max X_i).$$

(15)

For illustration, we revisit the simulated example in Senn (2008), where $p = 10$, $\sigma = 2$, $\gamma^2 = 0.5$ and $\eta = 1$. Figure 2 contains 5000 pairs of (μ_{i*}, X_{i*}) obtained by repeated sampling, the corresponding
linear regression line that Senn (2008) used to approximate (15), and the curve that stands for the closed-form expression for (15).

The results in Figure 2 suggest that the regression approximation is relatively accurate for non-extreme values of \(X_i^* \) but not for extreme ones. Therefore our analytical solution has an advantage over the regression approximation in Senn (2008). For further illustration we examine two concrete examples. First, let

\[
x_i^* = 3.25, \quad \Pr(X_i^* > x_i^*) = 0.486.
\]

Therefore 3.25 is a “common” value of \(X_i^* \). In this case the exact value of (15) is \(\lambda_i^* = 0.400 \) and the regression approximation is \(\hat{\lambda}_i^* = 0.368 \). Consequently, although the “absolute discrepancy” \(|\hat{\lambda}_i^* - \lambda_i^*| = 0.032 \) seems small, the “relative discrepancy”

\[
\frac{|\hat{\lambda}_i^* - \lambda_i^*|}{|\lambda_i^*|} = 8.1\%
\]

is moderately large. Second, let

\[
x_i^* = 1.5, \quad \Pr(X_i^* \leq x_i^*) = 0.102.
\]

Therefore 1.5 is a relatively “uncommon” (but not extreme) value of \(X_i^* \). In this case the absolute and relative discrepancies are respectively 0.062 and 24.7\%, both moderately large.

5. CONCLUDING REMARKS

For the treatment selection problem, quantifying the selection bias is important from both theoretical and practical perspectives. In this paper, we extend the heuristic discussion in Senn (2008) and derive the closed-form expression for the selection bias. We illustrate the advantages of our results by numerical and simulated examples.

There are multiple possible future directions based on our current work. First, we can reconcile our Bayesian analysis with Frequentist methods. Second, it is possible to extend our results to more general model specifications by using the Tweedie’s formula (Robbins 1956; Efron 2011). Third, we need to explore “exact post-selection inference” in multiple hypothesis testing.
Figure 2: “Exact Post-Selection” Posterior Mean: Regression Approximation (Red Solid Line) and Closed-Form Expression (Blue Dotted Line).

ACKNOWLEDGEMENTS

The authors thank the Co-Editor-in-Chief and a reviewer for their thoughtful comments that substantially improved the presentation of the paper.

REFERENCES

Cartinhour, J. (1990). One-dimensional marginal density functions of a truncated multivariate normal density function. Communication in Statistics – Theory and Methods, 17(1):197–203.

Dawid, A. P. (1973). Posterior expectations for large observations. Biometrika, 60(3):664–667.

Dawid, A. P. (1994). Selection paradoxes of Bayesian inference. Multivariate Analysis and Its Applications, Lecture Notes – Monograph Series, 24:211–220.

Efron, B. (2011). Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106(496):1602–1614.

G’Sell, M. G., Wager, S., Chouldechova, A., and Tibshirani, R. (2016). Sequential selection pro-
cedures and false discovery rate control. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 78(2):423–444.

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., and Pohlmann, N. (2013). Online controlled experiments at large scale. In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1168–1176.

Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. (2015). Exact post-selection inference, with applications to the Lasso. *Annals of Statistics*, in press.

Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014). A significance test for the Lasso. *Annals of Statistics*, 42(2):413–468.

Manjunath, B. G. and Wilhelm, S. (2012). Moments calculation for the doubly truncated multivariate normal density. *arXiv:1206.5387*.

Reid, S. and Tibshirani, R. (2016). Sparse regression and marginal testing using cluster prototypes. *Biostatistics*, 17(2):364–376.

Robbins, H. (1956). An empirical bayes approach to statistics. In *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability*, volume I, pages 157–163. University of California Press, Berkeley and Los Angeles.

Senn, S. (2008). A note concerning a selection “paradox” of Dawid’s. *The American Statistician*, 62(3):206–210.

Taylor, J. and Tibshirani, R. (2015). Statistical learning and selective inference. *Proceedings of the National Academy of Sciences*, 112(25):7629–7634.

Tibshirani, R. J., Taylor, J., Lockhart, R., and Tibshirani, R. (2014). Exact post-selection inference for sequential regression procedures. *Journal of the American Statistical Association*, in press.

Wilhelm, S. and Manjunath, B. G. (2010). tmvtnorm: A package for the truncated multivariate normal distribution. *The R Journal*, 2(1):25–29.