Original Scientific Article

ALLELE AND GENOTYPE FREQUENCIES OF THE KAPPA-CASEIN (CSN3) LOCUS IN MACEDONIAN HOLSTEIN-FRIESIAN CATTLE

Nikola Adamov, Branko Atanasov, Ksenija Ilievska, Martin Nikolovski, Monika Dovenska, Vladimir Petkov, Toni Dovenski

Faculty of Veterinary Medicine - Skopje, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, Republic of North Macedonia

Received 15 October 2019; Received in revised form 13 January 2020; Accepted 26 January 2020

ABSTRACT

The bovine kappa-casein (κ-CN) is a phospho-protein with 169 amino acids encoded by the CSN3 gene. The two most common gene variants in the HF breed are CSN3*A and CSN3*B while CSN3*E has been found with lower frequency. The aim of this study was to optimize a laboratory method for genotyping of these three alleles as well as to determine their genotype and allele frequencies in the HF cattle population in the Republic of North Macedonia. Genomic DNA was extracted from full blood from 250 cows. The target DNA sequence was amplified with newly designed pair of primers and the products were subjected to enzymatic restriction with HindIII and HaeIII endonucleases. Genotype determination was achieved in all animals. The primers successfully amplified a fragment of 458 bp and the digestion of this fragment with both endonucleases enabled differentiation of five different genotypes with the following observed frequencies: AA (0.39), AB (0.29), BB (0.16), AE (0.10), and BE (0.06). The estimated allele frequencies were: CSN3*A (0.584), CSN3*B (0.336) and CSN3*E (0.08). The observed genotype frequencies differed significantly (P<0.01) from those that would be expected under HW equilibrium, while the fixation index (F=0.17) indicated moderate heterozygosity deficiency. Nevertheless, the CSN3*B allele was present with relatively high frequency which should be used to positively select for its carriers, since increasing its frequency could help to improve the rheological properties of the milk intended for cheese production.

Key words: CSN3, genetic polymorphism, Holstein-Friesian cattle, kappa-casein, milk protein

INTRODUCTION

The most important milk proteins are caseins which are produced by the mammary gland secretory cells. They constitute about 80% of the bovine milk proteins (1) and are divided into four main fractions: αs1-CN, β-CN, αs2-CN, and κ-CN.

The kappa-casein (κ-CN) fraction which constitutes around 12% of the total caseins found in the bovine milk (2) is a phospho-protein with 169 amino acid residues (3) located predominantly on casein micelle surface and is specific substrate of the chymosin which hydrolyses its amino acid chain at position Phe105- Met106 and yields insoluble para-κ-CN (amino acid 1-105) and soluble caseino-macropeptide-CMP (amino acid 106-169) (4, 5).

The bovine κ-CN is encoded by the CSN3 gene located on BTA6 (6, 7, 8, 9). This gene is around 13 kb in length and is divided in transcription unit (5 exons and 4 introns) and 5’ and 3’ untranslated regions (10). The fourth exon which is 517 bp long (11) harbors all the 11 non-synonymous single-nucleotide substitutions which code 11 different variants of the mature κ-CN protein identified so far in the Bos genus (3): А, Б, С, Е, F1, F2, G1, G2, H, I and J. In a more recent review on milk protein polymorphism in cattle (12) it has been suggested two more alleles to be included to this list since they are non-synonymous mutations in this exon namely: CSN3*B2 and CSN3*D. In addition, one more synonymous nucleotide substitution has been identified, namely CSN3*A1 of Damiani et al. (13) or CSN3*A1 of Prinzenberg et al. (14) which does not modify the correspondent amino acid.
The two most common protein variants in the HF breed are κ-CN A and κ-CN B (3, 14) while κ-CN E has been found with lower frequency in this breed (12). With the exception of the Jersey breed the variant κ-CN A is the most common among dairy cattle breeds (16, 17, 18). The κ-CN B protein variant differs from κ-CN A at two amino acid positions: Thr136 is substituted with Ile and Asp148 is exchanged with Ala. The κ-CN E variant differs from κ-CN A at amino acid position 155 where Ser is substituted with Gly (12). The CSN3*B allele is used as a genetic marker in dairy cattle breeding programs because the milk with κ-CN B protein variant has been shown to have better rheological properties such as shorter rennet coagulation time and higher yield during cheese production (1, 19, 20) when compared to milk with κ-CN A variant. Bovenhuis et al. (21) suggested that the favourable milk protein genotype κ-CN BB should be included in the criteria for selection of dairy cattle because of economic interest.

The aim of this study was to optimize laboratory method for genotyping of the most common κ-CN variants in the HF cattle population in the Republic of North Macedonia as well as to determine the genotype and allele frequency at this locus. We focused on the CSN3*A, B and E alleles because they have been reported in the literature as the most frequent variants in different dairy cattle populations.

MATERIAL AND METHODS

DNA extraction and quantification

Genomic DNA was extracted from blood obtained by venipuncture of the jugular or the coccygeal vein from 250 cows, selected randomly from five cattle farms in the Republic of North Macedonia. The blood was drawn in vacutainers with anticoagulant (EDTA) and was stored at +4°C until extraction. The DNA was extracted from blood using two different methods: i) Phenol-Clorophorm-Isoamil alcohol followed by ethanol precipitation, and ii) with commercial DNA extraction kit. The amount and the purity of the extracted DNA was determined with spectrophotometer.

PCR amplification of the CSN3 locus

The primers used for amplification (KCN-F: GTCACTCTGGCCAAATTCCTTCAA and KCN-R: AGCCCATTTCCGGCCTCTCTGT) were designed using the Primer Premier software (Premier Biosoft International) based on GenBank sequence X14908.1. The coefficients of hairpin formation, self-dimerization and creation of cross-dimers as well as the primer’s optimal annealing temperature necessary to design the reaction conditions for the thermo-cycling protocol, were determined with the same software. These primers amplified a region of 458 bp of the 4th exon of the bovine CSN3 gene. Part of this nucleotide sequence with the primer annealing positions and the restriction endonucleases cleavage sites are shown in Fig. 1.

Figure 1. Part of the nucleotide sequence GenBank X14908.1 that corresponds to CSN3*A allele. The primer binding sites are denoted with boxes, the restriction sites of the enzymes are marked with arrows and the positions of the two nucleotide substitutes that create additional restriction sites for alleles CSN3*B or CSN3*E are shown with bold underlined letters.
Allele and genotype frequencies of the κappa-casein (CSN3) locus in Macedonian Holstein-Friesian cattle

The amplifications were prepared in total volume of 20 µl containing 1 X PCR buffer, 200 µM dNTP, 2.0 mM MgCl₂, 0.6 U DNA Polymerase, 0.2 µM of each oligonucleotide and 40-50 ng genomic DNA. The following thermal protocol was applied: initial denaturation of 95°C/5 min. then the Taq DNA Polymerase was added followed by 35 cycles of 94°C/45 sec., 56°C/45 sec., 72°C/1 min., and final elongation step of 72°C/5 min. on Biometra TPersonal Thermocycler (Biometra GmbH, Germany). The amplified DNA fragments were checked by staining with ethidium bromide on 1.5 % (w/v) agar-gel followed by visualization on a UV transiluminator (Figure 2). A 100 bp DNA ladder was lined up as molecular size marker.

Genotyping of the amplified products

In order to detect the three alleles and their combinations of genotypes, Restriction Fragment Length Polymorphism (RFLP) analysis was carried out with two different restriction endonucleases. Initially, each PCR product was digested with the HindIII enzyme (Thermo Scientific) which enables distinction of CSN3*A or CSN3*E allele carriers from those that are carriers of the CSN3*B allele. This enzyme did not enable distinction of the CSN3*A from CSN3*E allele since it has the same cleavage site in both alleles and consequently it yields same restriction fragment lengths from both alleles. Consequently, those samples where the variant CSN3*A was detected with this enzyme (genotypes classified as AA and AB), were further digested with the HaeIII enzyme in a separate reaction in order to enable distinction of CSN3*A from CSN3*E allele (since the CSN3*E allele has two cleavage sites for this enzyme and yields three fragments, while the CSN3*A variant has only one cleavage site and yields two fragments) as shown in Fig. 1.

In this study GenBank sequence X14908.1 was used as a reference sequence to design the primers and to predict the restriction patterns. In this sequence the following nucleotide positions were used to differentiate the three CSN3 alleles:

- a) the primers amplified the region between the nucleotide positions 5105 and 5562;
- b) between nucleotides 5221 and 5222 there is a cleavage site for HaeIII (GG/CC) in all three studied CSN3 alleles;
- c) at nucleotide position 5345 the transversion A→C in the CSN3*B allele (Asp148Ala) creates cleavage site for HindIII (A/AGCTT) while the other two alleles remain undigested at this position;
- d) at nucleotide position 5365 the transition A→G in the CSN3*E allele (Ser155Gly) creates additional cleavage site for HaeIII (GG/CC) while the other two alleles remain undigested at this position.

For each genotype, the expected fragment sizes after digestion with both enzymes are shown in Table 1.

Genotype	HindIII	HaeIII
AA	458	341, 117
AB	458, 238, 220	341, 117
BB	238, 220	341, 117
AE	458	341, 196, 145, 117
BE	458, 238, 220	341, 196, 145, 117
EE	458	196, 145, 117

The digestion reactions were prepared in total volume of 20 µl containing 2 µl 10X Buffer, 8 µl PCR product, 1-2 µl restriction enzyme, and 8-9 µl ddH₂O. The incubations were carried out at 37°C for a period of 3 h. Digested products were analysed using electrophoresis on 2.5% agarose gel stained with ethidium bromide. Band patterns were visualized via UV transiluminator photo documentation system (Fig. 3).

Statistical analysis

The observed number of animals for each of the five detected genotypes was calculated by direct counting.

The frequencies of each of the three alleles were estimated by allele counting method (22) by adding twice the number of homozygotes to the number of heterozygotes that possess the allele and divide this sum by twice the number of animals in the sample or:

\[
p = f(A) = \frac{2n_{AA} + n_{AB} + n_{AE}}{2N}
\]

\[
q = f(B) = \frac{2n_{BB} + n_{AB} + n_{BE}}{2N}
\]

\[
r = f(E) = \frac{2n_{EE} + n_{AE} + n_{BE}}{2N}
\]

where:
- \(n\) is the number of animals possessing the genotype, and
- \(N\) is the number of animals in the sample.
These estimated allele frequencies \(p, q, \) and \(r \) were used to calculate the expected number of animals for each genotype as follows:

\[
\begin{align*}
AA &= N \times p^2, \\
AB &= N \times 2pq, \\
BB &= N \times q^2, \\
AE &= N \times 2pr, \\
BE &= N \times 2qr, \\
EE &= N \times r^2.
\end{align*}
\]

The probability of Hardy-Weinberg equilibrium associated with the observed genotype frequencies was calculated by the Chi-squared (\(\chi^2 \)) goodness-of-fit test (23) as follows:

\[
\chi^2 = \sum \frac{(O - E)^2}{E}
\]

where:
- \(\chi^2 \): Chi-squared test statistic
- \(O \): Observed number of genotypes
- \(E \): Expected number of genotypes

The \(\chi^2 \) test statistic had \(k - 1 - m \) degrees of freedom, where \(k \) is the number of genotypes and \(m \) is the number of independent allele frequencies estimated from the data (24).

To determine the level of departure from the HW expectations in the studied population, the average expected heterozygosity \((He) \) or Nei's gene diversity was calculated by adding up the expected frequencies of each possible homozygous genotype and subtracting this sum from one (23) or:

\[
He = 1 - \sum_{i=1}^{k} p_i^2
\]

where:
- \(k \) is the number of alleles at the locus,
- \(p_i^2 \) is the expected genotype frequency of homozygotes based on allele frequencies, and
- \(\sum_{i=1}^{k} \) indicates summation of the frequencies of the \(k \) homozygous genotypes.

The observed heterozygosity \((Ho) \) was calculated by adding the frequencies of the three observed heterozygous genotypes or \(Ho = f(AB) + f(AE) + f(BE) \) (23). From these data the fixation index - \(F \) was calculated as follows:

\[
F = \frac{He - Ho}{He}
\]

where \(He \) is the H-W expected frequency of heterozygotes based on estimated allele frequencies and \(Ho \) is the observed frequency of heterozygotes.

RESULTS

The primers KCN-F and KCN-R that were designed in this study successfully amplified a fragment of 458 bp in length as illustrated in Fig. 2.

Figure 2. Representative agarose gel showing PCR amplification of 458 bp fragment of the bovine CSN3 gene. Lanes 1-4 and 6-8: 458 bp fragment, lane 5: GeneRuler 100 bp DNA ladder (Thermo Scientific).

Figure 3. Digestion patterns of exon 4 of the bovine CSN3 gene. Lanes 1, 4, 5 and 11- genotype AA; lanes 3 and 10 - genotype AB, lane 7 - genotype BB; lanes 2 and 8 - genotype AE; lane 9 - genotype BE; lane 6 - GeneRuler 100 bp DNA ladder (Thermo Scientific). The upper half of the agarose gel represents digestion with HindIII and on the lower half the same samples in the same order are digested with HaeIII.
The PCR products were further digested with HindIII and HaeIII enzymes. Considering the information of both digestions in terms of number and sizes of the obtained fragments (Table 1), it was straightforward to identify 5 different genotypes as shown in Fig. 3. The genotype EE was not detected in the studied population.

Observed genotype counts and frequencies as well as estimated allele frequencies are shown in Table 2.

From the estimated allele frequencies, the number of animals which under HWE would be expected for each genotype was calculated as shown in Table 3.

Since the critical value of $\chi^2_{0.01,3} = 11.345$ it can be concluded that the H-W expected genotype frequencies are not present in the studied population.

The expected (He) and the observed (Ho) heterozygosity were calculated as follows:

$He = 1 - (0.341 + 0.113 + 0.006) = 0.54$, and

$Ho = 0.29 + 0.1 + 0.06 = 0.45$

The fixation index (F) was calculated as:

$F = \frac{0.54 - 0.45}{0.54} = \frac{0.09}{0.54} = 0.17$

This value indicated moderate (17%) heterozygosity deficiency relative to HW expectations.

DISCUSSION

One of the major effects of the milk protein polymorphism on cattle traits with economic interest is their influence on milk renneting capability and yield during cheese production. The κ-CN fraction, located mostly on casein micelle surface is the specific substrate of the chymosin, the hydrolytic enzyme that has the crucial role in initial phase of the cheese production - the rennet formation (25).

It has been reported that milk with CSN3*BB genotype had significantly higher casein content (26) and better milk rennet coagulation properties in terms of shorter rennet clotting time, higher curd firmness and higher cheese yield (20-32). These differences are related to the micelle size and the glycosylation degree of the coded protein (33).

The primers that were designed in this study successfully amplified a fragment of 458 bp from the fourth exon of the bovine CSN3 gene that included
the nucleotide substitutions that differentiate the three investigated alleles. Genotype determination was achieved in all animals of the investigated population. For RFLP genotyping of the six genotypes, it was necessary each PCR product to be digested with the \textit{Hind}III enzyme which enabled distinction of \textit{CSN3*4} and \textit{CSN3*3} alleles, but could not make distinction between alleles \textit{CSN3*3} and \textit{CSN3*E}. For that purpose, it was necessary to further digest those samples carrying the allele \textit{CSN3*3 A} (genotypes AA and AB) with \textit{Hae}III which has one cleavage site for the alleles \textit{CSN3*3 A} and \textit{CSN3*3 B} and two cleavage sites for allele \textit{CSN3*3 E}.

Similar approaches for \textit{CSN3} genotyping have also been used previously with different restriction enzymes (1, 34–43).

In this study, the \textit{CSN3*3} allele was found to be more commonly distributed (0.584) than the \textit{CSN3*2} allele (0.336), while the \textit{CSN3*1} allele was observed with lowest frequency (0.08). These results are in accordance with the previously published studies in which in HF cattle population in different countries the \textit{CSN3*3} allele (genotypes AA and AB) have been more frequently observed than the \textit{CSN3*2} allele (genotype BB) as summarized in Table 4.

With the exception of the Jersey cattle (26, 45, 52) and the Brown Swiss cattle (26) in which the \textit{CSN3*3} allele has been reported to be more common, the \textit{CSN3*4} variant tends to be predominant in most dairy breeds (16–18).

Moreover, some less-common \textit{CSN3} alleles might affect milk rheological properties. For instance, Erhardt et al. (53) reported that in the Pinzgauer breed the \textit{CSN3*3} allele had negative effect on milk coagulation properties. Similarly, Caroli et al. (54) and Jensen et al. (25) detected a negative effect of \textit{CSN3*E} on milk coagulation properties in the Italian and Danish Holstein-Friesian populations, respectively.

It is worth noting that the majority of the previously published studies are concerned about discriminating \textit{CSN3*4} and \textit{CSN3*3} alleles in different cattle populations, while only a few of them deal with detection of other alleles of the \textit{CSN3} locus such as Pacheco Contreras et al. (2), Barroso et al. (55).

The frequency for the \textit{CSN3*E} allele of 0.08 found in this study is identical with the results for this allele reported by Jann et al. (56) and lower than Boetcher et al. (57) who reported a frequency of 0.32. Soria et al. (43), in the Argentinian Holstein population reported a frequency of 50% AA, 40% AB and 10% AE \textit{κ-CN} genotypes.

Table 4. Relative distribution of the \textit{CSN3} alleles and genotypes in different HF populations

Country	Number of animals	Alleles (%)	Genotypes (%)	Reference			
		A	B	AA	AB	BB	
Macedonia	172	72,7	27,3	54,66	36,04	9,3	Tanaskovska et al., 2016
China	203	69	31	55,1	28,6	16,3	Ren et al., 2011
Iran	247	59	41	18	82	-	Doosti et al., 2011
Slovakia	398	86	14	73,7	24,6	1,7	Ju et al., 2011
Canada	2014	-	-	60,09	37,22	2,69	Ng-Kwai-Hang et al., 1991
Croatia	130	76,4	23,6	62,86	27,14	10,00	Ivankovic et al., 2011
Egypt	360	76	24	-	-	-	Galila et al., 2008
Argentina	20	65	35	40	50	10	Bonvillani et al., 2000
Romania	420	51	49	25	52	23	Ilic et al., 2007
Serbia	342	64	36	31	65	4	Anggraeni et al., 2010
Indonesia	72	83	17	68,9	28,2	2,9	Alipanah et al., 2005
Poland	304	83	17	71	23	6	Sitkowska et al., 2009
In our opinion, besides detecting variants \(CSN3^A\) and \(B\), it is important to genotype at least for those alleles of this locus that were reported to have negative effects on some milk properties in different cattle populations \((25,\ 53,\ 54)\). Furthermore, it would also be more informative, whenever possible, to use direct sequencing of the \(CSN3\) gene such as Schlieben et al. \((58)\) or Chen et al. \((59)\) since this method enables discovery of new nucleotide variations while PCR-RFLP analysis is limited only to those that have already been reported.

Although \(\kappa-CN\) is the most important factor in the renneting process, interactions with other milk protein variants have to be considered. For instance, Comin et al. \((60)\) reported that \(CSN3\) and \(CSN2\) are strongly associated with milk coagulation traits and milk and protein yields, respectively, and concluded that for coagulation time and curd firmness, the best composite genotypes were those with at least one \(B\) allele at both loci. In addition, because positive correlations have also been demonstrated between \(\beta-LG\) BB genotype and higher cheese yield and casein number \((\text{reviewed by Buchberger and Dovc};\ 20)\) these authors conclude that \(\kappa-CN\) \(B\) and \(\beta-LG\) B are the most advantageous variants with respect to milk’s cheese making ability, and they propose that due to the tight linkage that exists between the casein loci, a more extensive study of their haplotype effects is needed.

In this study a departure from the HW equilibrium and moderate heterozygosity deficiency was observed for the investigated genotypes of the \(CSN3\) locus. This could be due to genetic drift as a result of finite population size, population subdivision or due to non-random mating or inbreeding.

CONCLUSION

The primers designed in this study successfully amplified a 458 bp fragment of the fourth exon of the bovine \(CSN3\) gene which harbours the nucleotide variations among the three \(CSN3\) alleles \(A\), \(B\), and \(E\). In the studied population five out of six possible genotypes were identified and departure from the HW equilibrium was observed. Also, a moderate heterozygote deficiency was detected. The allele \(CSN3^A\) was the most commonly distributed allele \(CSN3^B\) while the \(CSN3^E\) allele was observed with the lowest frequency. Nevertheless, the \(CSN3^B\) allele was present with relatively high frequency which should be used to positively select for its carrier animals, since increasing its frequency could help to improve the rheological properties of the milk intended for cheese production.

CONFLICT OF INTEREST

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

ACKNOWLEDGEMENTS

The authors would like to acknowledge and express their gratitude to the Faculty of Veterinary Medicine in Skopje for providing the financial grant for this research, as well as the national Holstein-Friesian cattle breeders for their support in collecting the blood samples.

REFERENCES

1. Azevedo, A.L.S., Nascimento, C.S., Steinberg, R.S., Carvalho, M.R.S., Peixoto, M.G.C.D., Teodoro, R.L. et al. (2008). Genetic polymorphism of the kappa-casein gene in Brazilian cattle. Gen. Mol. Res. 7(3): 623-630. https://doi.org/10.4238/vol7-3gmr428 PMid:18752189

2. Pacheco Contreras, V.I., Lourenco Jaramillo, D.L., Parra Bracamonte, G.M., Martínez González, J.C., Sifuentes Rincón, A.M. (2011). Convenient genotyping of nine bovine \(\kappa\)-casein variants. Electron J Biotechnol. 14(4): 12-12. https://doi.org/10.2225/vol14-issue4-fulltext-10

3. Farrell Jr., H.M., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K. et al. (2004). Nomenclature of the proteins of cow’s milk-sixth revision. J Dairy Sci. 87, 1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6

4. Mercier, J.C., Chobert, J.M., Addeo, F. (1976). Comparative study of the amino acid sequences of caseinomacropeptides from seven species. FEBS Letters 72(2): 208-214. https://doi.org/10.1016/0014-5793(76)80972-6

5. Sandra, S., Alexander, M., Dalgleish, D.G. (2007). The rennet coagulation mechanism of skim milk as observed by transmission diffusing wave spectroscopy. J Colloid Interface Sci. 308, 364-373. https://doi.org/10.1016/j.jcis.2007.01.021 PMid:17266978
6. Gallagher, D.S., Schelling, C.P., Groenen, M.M.A., Womack, J.E. (1994). Confirmation that the casein gene cluster resides on cattle chromosome 6. Mammalian Genome 5(8): 524-524. https://doi.org/10.1007/BF00369327 PMid:7949742

7. Threadgill, D.W., Womack, J.E. (1990). Genomic analysis of the major bovine casein genes. Nucleic Acids Res. 18, 6935-6942. https://doi.org/10.1093/nar/18.23.6935 PMid:1979856 PMCid:PMC332753

8. Popescu, C. P., Long, S., Riggs, P., Womack, J., Schmutz, S., Fries, R., Gallagher, D. S. (1996). Standardization of cattle cariotype nomenclature: Report of the committee for the standardization of the cattle cariotype. Cytogetnet Cell Genet. 74, 259-261. https://doi.org/10.1159/000133593 PMid:8404055

9. Hayes, H., Petit, E., Bouniol, C., Popescu, P. (1993). Localization of the α-S2-casein gene (CASAS2) to the homoeologous cattle, sheep, and goat chromosomes 4 by in situ hybridization. Cytogetic and Genome Research 64(3-4): 281-285. https://doi.org/10.1159/000133593 PMid:8404055

10. Alexander, J.L., Stewart, F.A., Mackinlay, G.A., Kapelinskaya, V.T., Tkach, M.T., Gorodetsky, I.S. (1988). Isolation and characterization of the bovine κ-casein gene. Eur J Biochem. 178, 395-401. https://doi.org/10.1111/j.1432-1033.1988.tb14463.x PMid:3208764

11. Martin, P., Szymanowska, M., Zwierzchowski, L., Leroux, C. (2002). The impact of genetic polymorphisms on the protein composition of ruminant milks. Reproduction Nutrition Development 42(5): 433-459. https://doi.org/10.1051/rmd:2002036 PMid:12537255

12. Caroli, A.M., Chessa, S., Erhardt, G.J. (2009). Milk protein polymorphisms in cattle: Effects on animal breeding and human nutrition. J Dairy Sci. 92, 5335-5352. https://doi.org/10.3168/jds.2009-2461 PMid:19841193

13. Damiani, G., Ferretti, L., Rognoni, G., Sgaramella, V. (1990). Restriction fragment length polymorphism analysis of the kappa casein locus in cattle. Anim Genet. 21, 107-114. https://doi.org/10.1111/j.1365-2052.1990.tb03214.x PMid:1974749

14. Prinzenberg, E.M., Krause, I., Erhardt, G. (1999). SSCP analysis at the bovine CSN3 locus discriminates six alleles corresponding to known protein variants (A, B, C, E, F, G) and three new DNA polymorphisms (H, I, A1). Anim Biotechnol. 10(1-2): 49-62. https://doi.org/10.1080/10495399909525921 PMid:10654430

15. Prinzenberg, E.M., Jianlin, H., Erhardt, G., (2008). Genetic variation in the κ-casein gene (CSN3) of Chinese yak (Bos grunniens) and phylogenetic analysis of CSN3 sequences in the genus Bos. J Dairy Sci. 91(3): 1198-1203. https://doi.org/10.3168/jds.2007-0746 PMid:18292276

16. Thompson, M.P., Farrell, Jr. H.M. (1974). Genetic variants of the milk proteins. In B. L. Larson and V. R. Smith (Eds.), Lactation, Vol. III (pp. 109-134). Academic Press, New York, NY. https://doi.org/10.1016/B978-0-12-436703-6.50008-9

17. Bech, A.M., Kristiansen, K.R. (1990). Milk protein polymorphism in Danish dairy cattle and the influence of genetic variants on milk yield. J Dairy Res. 57, 53-62. https://doi.org/10.1017/S0022029900026601 PMid:2312876

18. Ng-Kwai-Hang, K.F., Grosclaude, F. (2003). Genetic polymorphism of milk proteins. In P.F. Fox, P.L.H. McSweeney (Eds.), Advanced Dairy Chemistry - 1 Proteins (pp. 739-816). Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8602-3_22

19. Patel, R.K., Chauhan, J.B., Singh, M.K., Soni, K.J. (2007). Genotype and allele frequencies of κ-casein and β-lactoglobulin in Indian river buffalo bulls (Bubalus bubalis). Buffalo Bulletin 26, 63-66.

20. Buchberger, J., Dovc, P. (2000). Lactoprotein genetic variants in cattle and cheese making ability. Food Technol Biotechnol. 38(2): 91-98.

21. Bovenhuis, H., Van Arendonk, J.A.M., Korver, S. (1992). Associations between milk protein polymorphisms and milk production traits. J Dairy Sci. 75, 2549 - 2559. https://doi.org/10.3168/jds.S0022-0302(92)78017-5

22. Pierce, B.A. (2012). Population Genetics. In: S. Winslow (Ed.), Genetics - a Conceptual Approach (pp. 669-696). W.H. Freeman and Company.

23. Hamilton M.B. (2009). Genotype Frequencies. In: Population Genetics (pp. 9-52). Wiley-Blackwell.

24. Snustad, D.P., Simmons, M.J. (2012). Population Genetics. In: K. Witt and L. Morris (Eds.), Principles of Genetics (pp. 634-655). John Wiley and Sons, Inc.
53. Galila, A.E., Samah, F.D. (2008). A PCR-RFLP assay to detect genetic variants of kappa-casein gene in cattle and buffalo. Arab J Biotech. 11(1): 11-18.

37. Ilie, D., Salajeanu, A., Magdin, A., Stanca, C., Vintila, C., Vintila, I., Gocza, E. (2007). Genetic polymorphism at the k-casein locus in a dairy herd of Romanian spotted and Brown of maramureș breeds. Scientific Papers Animal Science and Biotechnologies 40(1): 101-106.

25. Jensen, H.B., Holland, J.W., Poulsen, N.A., Larsen, L.B. (2012). Milk protein genetic variants and isoforms identified in bovine milk representing extremes in coagulation properties. J Dairy Sci. 95, 2891-2903. https://doi.org/10.3168/jds.2012-5346 PMid:22612926

26. Van Eenennaam, A., Medrano, J.F. (1991). Milk protein polymorphism in California dairy cattle. J Dairy Sci. 74, 1730-1742. https://doi.org/10.3168/jds.S0022-0302(91)78336-7

27. Alipanah, M., Kalashnikova, L.A. (2007). Influence of K-casein genetic variant on cheese making ability. J Anim Vet Adv. 6(7): 855-857.

28. Aleandri, R., Buttazzoni, L.G., Schneider, J.C., Caroli, A., Davoli, R. (1990). The effects of milk protein polymorphisms on milk components and cheese-producing ability. J Dairy Sci. 73, 241-255. https://doi.org/10.3168/jds.S0022-0302(90)78667-5

29. Pagnacco, G., Caroli, A. (1987). Effect of casein and β-lactoglobulin genotypes on renneting properties of milk. J Dairy Res. 54(4): 479-485. https://doi.org/10.1017/S0022029900025681

30. Marziali, A.S., Ng-Kwai-Hang, K.F. (1986). Relationships between milk protein polymorphisms and cheese yielding capacity. J Dairy Sci. 69(5): 1193-1201. https://doi.org/10.3168/jds.S0022-0302(86)80523-9

31. Kubarsepp, I., Henno, M., Viinalass, H., Sabre, D. (2005). Effects of k-casein and β-lactoglobulin genotypes on renneting properties of milk. Agricultural Research 3, 55-64. https://doi.org/10.1080/09064700500453377

32. Ikonen, T., Ahlfors, K., Kempe, R., Ojala, M., Ruottinen, O. (1999). Genetic parameters for the milk coagulation properties and prevalence of noncoagulating milk in Finnish dairy cows. J Dairy Sci. 8, 205-214. https://doi.org/10.3168/jds.S0022-0302(99)75225-2

33. Di Stasio, L., Mariani, P. (2000). The role of protein polymorphism in the genetic improvement of milk production. Zoot Nutr Anim 26, 69-90.

34. Abdel Dayem, A.M.H., Mahmoud, Mh.M. K., Nawito, M.F., Ayoub, M.M., Darwish, F.S. (2009). Genotyping of kappa casein gene in Egyptian buffalo bulls. Livest Sci. 122, 286-289. https://doi.org/10.1016/j.livsci.2008.09.010

35. Medrano, J.F., Aguilar-Cordova, E. (1990). Genotyping of bovine kappa-casein loci following DNA sequence amplification. Biotechnology 8, 144-146. https://doi.org/10.1038/nbt0290-144 PMid:1369440

36. Galila, A.E., Samah, F.D. (2008). A PCR-RFLP assay to detect genetic variants of kappa-casein gene in cattle and buffalo. Arab J Biotech. 11(1): 11-18.

37. Ilie, D., Salajeanu, A., Magdin, A., Stanca, C., Vintila, C., Vintila, I., Gocza, E. (2007). Genetic polymorphism at the k-casein locus in a dairy herd of Romanian spotted and Brown of maramureș breeds. Scientific Papers Animal Science and Biotechnologies 40(1): 101-106.

38. Angrgraeni, A., Sumantri, C., Farajallah, A., Andreas, E. (2010). Kappa-casein genotypic frequencies in Holstein-Friesian dairy cattle in West Java province. Media Peternakan 33(2): 61-67. https://doi.org/10.5398/medpet.2010.33.2.61

39. Alipanah, M., Kalashnikova, L., Rodinov, G. (2005). Kappa-casein genotypic frequencies in Russian breeds Black and Red Pied cattle. Iran. J Biotechnol. 3(3): 191-194.

40. Sitkowska, B., Neja, W., Wisniewska, E. (2009). Relations between kappa-casein polymorphism (CSN3) and milk performance traits in heifer cows. J Cent Eur Agric. 9(4): 641-644.

41. Lukac, D., Vidovic, V., Nemes, Z., Stupar, M., Popovic-Vranjes, A. (2013). Genotypic frequencies of the β-lactoglobulin, κ-casein and transferrin in Serbian Holstein-Friesian dairy cattle. Mljekarstvo 63 (4): 203-210.

42. Ivankovic, A., Ramljak, J., Dokso, A., Kelaiva, N., Konjacic, M., Paprika, S. (2011). Genetic polymorphism of β-lactoglobulin and k-casein of cattle breeds in Croatia. Mljekarstvo 61(4): 301-308. [in Croatian]

43. Soria, L.A., Iglesias, G.M., Huguet, M.J., Mirande, S.L. (2003). A PCR-RFLP test to detect allelic variants of the bovine kappa casein gene. Anim Biotech. 14(1): 1-5. https://doi.org/10.1081/ABIO-120020180 PMid:12887174

44. Tanaskovska, R.B., Srbinovska, S., Andonov, S., Trojacanec, S., Nestoriovski, T., Popovski, T.Z. (2016). Genotyping of k-casein and β-lactoglobulin and k-casein of cattle breeds in Macedonia and its association with some milk properties. Int J Agr Innov Res. 5(2): 266-270.

45. Ren, D.X., Miao, S.Y., Chen, Y.L., Zou, C.X., Liang, X.W., Liu, J.X. (2011). Genotyping of the k-casein and β-lactoglobulin genes in Chinese Holstein, Jersey and water buffalo by PCR-RFLP. J Genet. 90(1): 1-5. https://doi.org/10.1007/s12041-011-0048-z
46. Ju, Z., Huang, J., Li, Q., Wang, H., Zhong, J., Wang, C. (2011). The polymorphisms of κ-casein gene and their associations with milk production traits and expression analysis in Chinese Holstein cattle. Afric Jour Biotech. 10(62): 13368-13375. https://doi.org/10.5897/AJB10.1886

47. Doosti, A., Arshi, A., Vatankhah, M., Amjadi, P. (2011). Kappa-casein gene polymorphism in Holstein and Iranian native cattle by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Afric Jour Biotech. 10(25): 4957-4960.

48. Toorchi, M., Tahvildarzadeh, A., Shoja, J., Alijani, S. (2006). Molecular characterization of CSN3 alleles in Sarabi and Holstein using PCR-RFLP. Biotechnology 5(4): 495-500. https://doi.org/10.3923/biotech.2006.495.500

49. Miluchova, M., Gabor, M., Candrak, J., Trakovicka, A., Candrakova, K. (2018). Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in Holstein cattle. Acta Biochimica Polonica 65(3): 403-407. https://doi.org/10.18388/abp.2017_2313 PMid:30212591

50. Ng-Kwai-Hang, K.F., Zadworny, D., Hayes, J.F., Kuhnlein, U. (1991). Identification of k-casein genotype in Holstein sires: A comparison between analysis of milk samples from daughters and direct analysis of semen samples from sires by polymerase chain reaction. J Dairy Sci. 74, 2410-2415. https://doi.org/10.3168/jds.S0022-0302(91)78415-4

51. Bonvillani, G.A., Di Renzo, A.M., Tiranti, N.I. (2000). Genetic polymorphism of milk protein loci in Argentinian Holstein cattle. Genet Mol Biol. 23 (4): 819-823. https://doi.org/10.5935/S1415-4757200000400019

52. Zepeda-Batista, J.L., Alacron-Zuniga, B., Ruiz-Flores, A., Nunez-Dominguez, R., Ramirez-Valverde, R. (2015). Polymorphism of three milk protein genes in Mexican Jersey cattle. Electron J Biotechn. 18, 1-4. https://doi.org/10.1016/j.ejbt.2014.10.002

53. Erhardt, G., Prinzenberg, E.M., Buchberger, J., Krick-Saleck, H., Krause, I., Miller, M. (1997). Bovine κ-casein G detection, occurrence, molecular genetic characterization, genotyping and coagulation properties. International Dairy Federation special issue 2, 328-329.

54. Caroli, A., Bolla, P., Budelli, E., Barbieri, G., Leone, P. (2000). Effect of κ-casein E allele on clotting aptitude of Italian Friesian milk. Zoot Nutr Anim. 26(3): 127-130.

55. Barroso, A., Dunner, S., Canon, J. (1998). Technical note: Detection of bovine kappa casein variant A, B, C and E by means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). J Anim Sci. 76, 1535-1538. https://doi.org/10.2527/1998.7661535x PMid:9655572

56. Jann, O.C., Ibeagha-Awemu, E.M., Ozbeyaz, C., Zaragoza, P., Williams, J.L., Ajmone-Marsan, P., Lenstra, J.A., Moazami-Goudarzi, K., Erhardt, G. (2004). Geographic distribution of haplotype diversity at the bovine casein locus. Genet Sel Evol. 36, 243-257. https://doi.org/10.1186/1297-9686-36-2-243 PMid:15040901 PMCid:PMC2697188

57. Boettcher, P.J., Caroli, A., Stella, A., Chessa, S., Budelli, E., Canavesi, F., Ghiroldi, S., Pagnacco, G. (2004). Effects of casein haplotypes on production traits in Italian Holstein and Brown Swiss cattle. J Dairy Sci. 87, 4311-4317. https://doi.org/10.3168/jds.S0022-0302(04)73576-6

58. Schlieben, S., Erhardt, G., Senft, B. (1991). Genotyping of bovine κ-casein (κ-CNA, κ-CNB, κ-CNC, κ-CNE) following DNA sequence amplification and direct sequencing of κ-CNE PCR product. Anim Genet. 22, 333-342. https://doi.org/10.1111/j.1365-2052.1991.tb00687.x PMid:1683188

59. Chen, S.Y., Costa, V., Azevedo, M., Baig, M., Malmakov, N., Luikart, G., Erhardt, G., Beja-Pereira, A. (2008). Short communication: New alleles of the bovine κ-casein gene revealed by resequencing and haplotype inference analysis. J Dairy Sci. 91, 3682-3686. https://doi.org/10.3168/jds.S0022-0302(04)73576-6

60. Comin, A., Cassandro, M., Chessa, S., Ojala, M., Dal Zotto, R., De Marchi, M., et al. (2008). Effects of composite β- and κ-casein genotypes on milk coagulation, quality, and yield traits in Italian Holstein cows. J Dairy Sci. 91, 4022-4027. https://doi.org/10.3168/jds.2007-0546 PMid:18832228