Control of *C. elegans* hermaphrodite gonad size and shape by *vab-3/Pax6*-mediated regulation of integrin receptors

Christopher M. Meighan and Jean E. Schwarzbauer

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA

Integrin receptors for extracellular matrix are critical for cell motility, but the signals that determine when to stop are not known. Analysis of distal tip cell (DTC) migration during gonadogenesis in *Caenorhabditis elegans* has revealed the importance of transcription factor *vab-3/Pax6* in regulating the α integrin genes, *ina-1* and *pat-2*. Utilizing *vab-3* mutants, we show that the down-regulation of *ina-1* is necessary for DTC migration cessation and the up-regulation of *pat-2* is required for directionality. These results demonstrate concomitant, but distinct roles in migration for each integrin. Notably, transcriptional control of migration termination provides a new mechanism for regulation of morphogenesis and organ size.

Received January 24, 2007; revised version accepted May 21, 2007.

Integrins are heterodimeric transmembrane receptors consisting of α and β subunits that link the extracellular matrix (ECM) to the actin cytoskeleton via a wide array of intracellular proteins (Hynes 2002). Through these interactions, integrins regulate cell migration, division, differentiation, and adhesion. Coordinated regulation of integrin adhesive strength over space and time determines the speed and directionality of cell migration in vitro (Palecek et al. 1997; Ridley et al. 2003), and abnormal cell migration has been linked to certain developmental defects caused by loss of integrins in vivo (Bouvard et al. 2001). However, detailed in vivo analyses of integrins in migration are complicated by embryonic lethality of integrin-null mutants and by pleiotropic, redundant, or overlapping functions among the 18 α and eight β chains in mammals. Some of the experimental constraints inherent in studies on mice can be bypassed by using the nematode *Caenorhabditis elegans*, which has two conserved integrin receptors composed of an *ina-1/α* or *pat-2/α* subunit associated with the *pat-3/β* integrin subunit (Cox et al. 2004).

Post-embryonic gonadogenesis in *C. elegans* provides an excellent model of cell migration during development. The shape of the hermaphrodite gonad is dictated by migration of two leader cells called the distal tip cells (DTCs) [Hubbard and Greenstein 2000]. The DTCs begin to migrate away from the gonad primordium on the ventral ECM of the nematode in larval stage L2 (Fig. 1A). During the third larval stage, they turn and migrate to the dorsal side, followed by a second turn and migration toward the mid-body of the nematode throughout the L4 stage. Migration ends on the dorsal surface approximately opposite the vulva, resulting in two U-shaped gonad arms coincident with the onset of adulthood [Fig. 1A,B]. Executing the DTC migratory program requires the coordinated action of matrix metalloproteases, the netrin signaling system, plus integrins and other signaling molecules that regulate the cytoskeleton [Hubbard and Greenstein 2000; Cram et al. 2006]. Molecular regulation of gonad size and the signals that stop DTC migration are not known.

The integrin heterodimer composed of *INA-1/α* and *PAT-3/β* is expressed by the DTC throughout migration (Gettner et al. 1995; Baum and Garriga 1997). A weak nonlethal allele of *ina-1* causes dorsal migration defects [Baum and Garriga 1997]. Similar gonad defects were observed with DTC-specific expression of a dominant-negative *pat-3* transgene, with a *PAT-3* cytoplasmic tail mutant, or by *pat-3* RNA interference (RNAi) [Lee et al. 2001, 2005]. Contrary to *ina-1*, expression of α integrin *pat-2* has not been reported in DTCs [http://www.wormbase.org]. Lethality of *pat-2* mutant alleles due to paralysis and arrest at the twofold stage of embryogenesis occurs prior to gonad morphogenesis [Williams and Waterston 1994].

To further define integrin function during organogenesis and the specific roles of *ina-1* and *pat-3* during DTC migration, we executed a mutagenesis screen directed toward an *ina-1* phenotype. We identified a new allele of *vab-3*, a gene encoding the ortholog of the transcription factor Pax6. Here we show that the expression of both α integrins is differentially controlled by *vab-3/Pax6*. Surprisingly, α integrin *pat-2* expression is turned on in DTCs during migration and its activity is crucial for dorsal pathfinding. α integrin *ina-1*, on the other hand, is down-regulated by a *vab-3*-dependent mechanism, and this effect is necessary for cessation of migration. These results define the functions and regulation of both integrin heterodimers during DTC migration and establish a new morphogenetic mechanism for controlling organ size and shape.

Results and Discussion

To identify new genes involved in integrin function during DTC migration, nematodes were mutagenized with EMS, then screened for a notched-head phenotype. This defect is observed in certain *ina-1* alleles and other mutants that affect cell migration [Baum and Garriga 1997]. One mutant, *niv105*, showed significantly aberrant DTC migration with a highly penetrant migration defect (99.5%, *n* = 400) visible as coiled-up gonad arms [Fig. 1C,D]. Ventral migration and DTC turning followed the normal path at the normal rate, but migration was perturbed as it continued throughout the reproductive life span of the nematode. This is in stark contrast to wild-type DTCs, which stop migrating prior to reproduction [Fig. 1B].
Mapping experiments localized mw105 to a defined region on the X chromosome. RNAi phenotypes for predicted genes in that region were compared with the mw105 phenotype. Of the 64 RNAi constructs tested, only the clone corresponding to \textit{vab-3} yielded a similar DTC migration phenotype. Microinjection of the cosmid F14F3, which contains \textit{vab-3} (Chisholm and Horvitz 1995), rescued the mw105 gonad defect, confirming the link between \textit{mw105} and \textit{vab-3}. The \textit{vab-3} gene (variable abnormal morphology) encodes a transcription factor homologous to mammalian Pax6 and is defined by the presence of DNA-binding paired and homeodomains (Cinar and Chisholm 2004). DNA sequence analysis revealed a G-to-A transition at the end of exon 2 at base pair 3613, constituting a novel allele that we named \textit{vab-3(mw105)}. This missense mutation (G52E) is in a region of the paired domain that makes direct contact with DNA in the crystal structure of Pax6 (Xu et al. 1999). The alteration could abolish interactions with DNA or it could impair, but not completely eliminate VAB-3 binding to target promoters. DTC migration defects have been previously linked to \textit{vab-3} mutations; however, the mechanism by which \textit{vab-3} causes these defects is unknown (Nishiwaki 1999; Cinar and Chisholm 2004). Phenotypes of \textit{vab-3} alleles generally differ based on the location and type of mutation. Non-sense mutations, such as \textit{vab-3(e648)} with a W101Opal mutation, have frequent notched heads, variably defective DTC migration, and lethality due to larval arrest (Cinar and Chisholm 2004). We find DTC migration defects ranging from a single improper turn to perpetual migration in 65% (\(n = 113\)) of \textit{vab-3(e648)} hermaphrodites. In contrast, \textit{vab-3(e1796)} with two missense mutations in the homeodomain (I229T, L232H) gives nematodes with normal heads and no lethality (Cinar and Chisholm 2004), but with the perpetual DTC migration defect (100%, \(n = 54\)). Our mutation \textit{vab-3(mw105)} occurs in the paired domain, yet generates a similar highly penetrant perpetual DTC migration defect to that seen in homeodomain mutant \textit{vab-3(e1796)}.

In mammals, Pax6 has been linked to transcriptional regulation of genes encoding several adhesion molecules including NCAM, L1CAM, and integrin α5 (Duncan et al. 2000; Simpson and Price 2002). \textit{C. elegans} α integrin \textit{pat-2} is somewhat more homologous to mammalian α5 than to other vertebrate α subunits (Cox et al. 2004). Since \textit{pat-2} expression in DTCs has not been reported, we examined DTCs in three independent transgenic lines generated with a transcriptional fusion containing 6 kb of \textit{pat-2} upstream sequence linked to GFP. In each line, the \textit{pat-2p::GFP} nematodes had high levels of GFP expression in body-wall muscle cells and vulval tissue (see Fig. 2C), in concordance with the expression pattern previously reported [http://www.wormbase.org]. No GFP was detected in the DTCs migrating on the ventral ECM during L2 (Fig. 2A–C). In contrast to our expectations, however, GFP was visible in DTCs during L3, when the DTC migrates from the ventral to dorsal surface [Fig. 2D–F], and was maintained in the DTC throughout adulthood [Fig. 2G]. Similar DTC expression of GFP was observed in two other independently derived 6-kb \textit{pat-2} promoter fusion lines as well as with shorter promoter fusions of 3, 2, and 0.5 kb of \textit{pat-2} upstream sequence (see below). The \textit{pat-2p::GFP} strain used in subsequent experiments refers to JE2121 containing 6 kb of upstream sequence. To verify that this pattern is an accurate representation of PAT-2 expression, a translational fusion line with GFP inserted near the end of the cytoplasmic tail was examined. The \textit{PAT-2::GFP} expression pattern was the same as the transcriptional fusions, including the up-regulation of expression in the DTC during L3 (data not shown).

Figure 1. Aberrant DTC migration in \textit{vab-3} mutants. (A) DTCs (blue crescents) originate on the ventral surface of the nematode body (dashed line) on the distal edges of the gonad primordium in L1. In L2, they migrate away from the center along the ventral surface, then turn to the dorsal side during L3. A second turn redirects migration along the dorsal surface toward the center of the nematode during L4. Migration then terminates dorsal to the vulva, producing the adult gonad. The developmental stage is indicated at right of each diagram. DIC image of adult wild-type N2 gonad arm (B), adult \textit{vab-3(mw105)} gonad arm with multiple dorsal turns (C), and \textit{vab-3(mw105)} gonad arm with multiple turns and ventralized DTC migration (D). Dorsal is up, ventral is down. Dashed line traces the gonad arm with arrow at DTC. Bars, 25 μm.
Temporal analysis of vab-3p::GFP hermaphrodites showed that GFP expression was turned on in the DTCs during ventral migration, indicating that VAB-3 is present prior to expression of pat-2 [http://www.wormbase.org]. To evaluate vab-3 activity on pat-2 expression, vab-3(e1796) and vab-3(mw105) were crossed individually into pat-2p::GFP. GFP up-regulation was compromised on both mutant backgrounds, showing 53% (n = 111) GFP-negative DTCs in vab-3(e1796); pat-2p::GFP and 45% (n = 53) with vab-3(mw105); pat-2p::GFP [Fig. 2H,I]. RNAi knockdown of vab-3 on pat-2p::GFP nematodes prevented GFP up-regulation in 70% (n = 56) of DTCs. In each case, the remaining DTCs displayed wild-type pat-2p::GFP expression. The impact of these alleles on pat-2 expression may be incomplete, so a stronger reduction of vab-3 function was generated by vab-3 RNAi on vab-3(e1796); pat-2p::GFP nematodes. This combination prevented up-regulation of GFP in 90% (n = 48) of DTCs [Supplementary Table 1]. Therefore, not only is pat-2 expressed by DTCs, but this expression is dependent on vab-3.

Dozier et al. (2001) identified a specific sequence upstream of ceh-32 that interacts with VAB-3. A similar sequence is present 420 base pairs (bp) upstream of pat-2 [Supplementary Fig. 1]. We tested the requirement for this sequence by constructing transgenic lines containing wild-type or mutated promoter sequences fused to GFP. The 420 bp of upstream sequence were sufficient to promote DTC expression of GFP (77%, n = 60). In contrast, alteration of 5 bases in the promoter–GFP construct showed significantly reduced GFP expression (18%, n = 56) [Supplementary Fig. 1; Supplementary Table 1]. A 381-bp promoter–GFP construct that eliminated this site did not up-regulate GFP (5%, n = 44). These results strongly suggest that this putative VAB-3-binding site is critical for GFP expression driven by the pat-2 promoter, and may be indicative of direct vab-3 regulation of pat-2.

Alleles of pat-2 are lethal prior to gonad formation and RNAi against pat-2 on wild-type N2 nematodes produced many Pat embryos. Some nematodes that were less severely affected by RNAi survived until adulthood with variable defects, including abnormal body size and shape and uncoordinated movement. Those pat-2 RNAi nematodes with normal body size, shape, and movement were evaluated for DTC migration defects. Fifty-three percent had aberrant DTC turns (Fig. 3B), 26% showed ventralized DTC migration (Fig. 3C), and 21% had over-extended the DTCs past the vulva (n = 113). DTC defects were not seen with RNAi against pat-6, indicating that the pat-2 RNAi effect was dependent on pat-2 knockdown and not on defects in muscle function. Path-finding defects occurred after entering the L3 stage, and thus after pat-2 expression had been up-regulated. These defects establish a role for pat-2 in determining DTC directionality during dorsal migration and show that loss of pat-2 expression impacts gonad shape. However, they do not completely reproduce the perpetual migration phenotype seen in vab-3 mutants.

The expression pattern of α integrin ina-1 is distinct from pat-2. In wild-type N2 nematodes, ina-1 is expressed in migrating neurons, the pharynx, and the DTCs, but not in body-wall muscles [Baum and Garriga 1997]. INA-1::GFP was present in the DTCs at the L2 stage prior to migration and maintained throughout L4
In wild-type N2 adults, INA-1::GFP was down-regulated with the cessation of migration (2% GFP-positive, $n = 49$) [Fig. 4B,D]. In contrast to the normal down-regulation, INA-1::GFP expression in $vab-3(eve105)$ and $vab-3(e1796)$ hermaphrodites was maintained beyond the egg-laying stage (100%, $n = 63$ and 97%, $n = 38$, respectively) [Fig. 4C,E]. Direct comparison of INA-1::GFP fluorescence in dissected gonads from age-matched hermaphrodites showed significantly higher expression in both $vab-3$ mutants as well as with RNAi against $vab-3$ than in the wild-type DTC [Fig. 4D,E; Supplementary Table 2]. Thus, in a $vab-3$ mutant with perpetually migrating DTCs, $ina-1$ expression is also maintained perpetually, showing a strong correlation between $ina-1$ expression and DTC migration.

$VAB-3$ is a transcriptional regulator and therefore could control INA-1::GFP expression either through effects on its transcription or by regulating another gene that inactivates the integrin protein. Transgenic nematodes were generated with a transcriptional fusion of the $ina-1$ promoter with GFP. In these animals, the GFP expression pattern was identical to the INA-1::GFP translational fusion. Expression originated in DTCs prior to migration and was maintained into adulthood. Upon completion of migration, the pattern of GFP in the DTC was reduced to small faint punctate signals [Supplementary Fig. 2]. In 100% ($n = 93$) of $ina-1p$::GFP nematodes, knock-down of $vab-3$ by RNAi resulted in GFP maintenance as DTC migration continued throughout egg-laying. Clearly, $vab-3$ disruption abolishes $ina-1$ down-regulation at the level of transcription, allowing continuous expression accompanied by perpetual DTC migration. A transcriptional regulator acting to promote the transcription of some genes [$pat-2$] and prohibit the expression of others [$ina-1$] in the same cell could itself be regulated by gene-specific cofactors, of which Pax6 is known to have many [Simpson and Price 2002]. It is also possible that downstream targets of $vab-3$ act as transcriptional repressors that then regulate $ina-1$.

If perpetual DTC migration is dependent on continued $ina-1$ gene expression, then reduction of INA-1 should rescue the migration defect. Post-embryonic RNAi against $ina-1$ was carried out on N2 and $vab-3(e1796)$ mutants. Notably, in 66% ($n = 118$) of $ina-1$ RNAI-treated $vab-3(e1796)$ hermaphrodites, DTCs stopped migrating on the dorsal side with no extra turns. Reduction of $ina-1$ in N2 nematodes also caused DTC migration to stop (64%, $n = 80$) [Fig. 4F,G]. Therefore, $ina-1$ is necessary for DTC migration and extended INA-1 activity is required for the perpetual DTC migration and aberrant gonad size observed in $vab-3$ mutants. Not only is $ina-1$ expression important for cell motility, but it also contributes significantly to the regulatory program that controls cessation of migration.

The Rac GTPases $CED-10$ and $MIG-2$ have been shown to act downstream from $INA-1$ during migration of commissural neurons in C. elegans [Poinat et al. 2002]. We found that these GTPases are also required for the $ina-1$-dependent defects in $vab-3$ mutants. RNAi against $ced-10$ or $mig-2$ individually did not reduce the extent of DTC migration in $vab-3(e1796)$ (0%, $n = 74$ and 0%, $n = 68$, respectively). Knockdown of both GTPases together, however, caused DTC migration to stop (86%, $n = 42$) [Fig. 4H]. This high percentage of rescue indicates that these GTPases are necessary for perpetual DTC migration, along with the upstream $INA-1$ receptor, in the $vab-3$ mutants. $Rac-2$, on the other hand, is unlikely to be involved, since $rac-2$ RNAi alone or in combination with knockdown of either $ced-10$ or $mig-2$ did not rescue [Supplementary Table 3]. Thus, our results identify down-regulation of $ina-1$ expression as a critical stop signal for controlling DTC migration and gonadogenesis.

The unique, highly penetrant perpetual migration phenotype we have discussed shows that specific stop signs are needed to regulate DTCs at the end of migration. The essential stop signal shown by our results is $vab-3$-dependent down-regulation of $INA-1/{\alpha}$ integrin expression [Fig. 5]. Interestingly, $pat-2/{\alpha}$ integrin also plays a role in DTC migration, since blockade of its up-regulation midway through gonadogenesis caused pathfinding defects on the dorsal surface. The distinct functional roles for $INA-1$ in forward movement and PAT-2 in directionality correspond with the opposite effects of $vab-3$ on expression of these integrins. Control of gonadogenesis by $vab-3$ and integrin expression provides a way to govern cell migration without changing the ECM environment or modulating presentation of chemotactants. Simultaneous expression of two integrins could affect migration through differential receptor engagement by their respective ECM ligands, although specific ECM-binding partners have not been determined. Even in the absence of ligands for both integrins, DTC functions could be modulated by receptor cross-talk. For example, transdominant inhibition, in which engagement of one integrin blocks the activity of a second integrin, could result

Figure 4. $ina-1$ expression is necessary for normal and perpetual DTC migration. Images of strain NG2517, an $INA-1$::GFP translational fusion, show diminishing GFP fluorescence between L4 (A) and adult DTCs (B). (C) INA-1::GFP is maintained throughout egg-laying in the adult $vab-3$ mutants. (D,E) Gonads were dissected from age-matched NG2517 wild-type or $vab-3$ mutants expressing INA-1::GFP. Fluorescence images were captured at identical settings. Arrows point to DTCs (A–E), and arrowheads point to vulva (A,B). RNAi against $ina-1$ on N2 (F) or $vab-3(e1796)$ (G) nematodes stops DTC migration. Simultaneous RNAi against $ced-10$ and $mig-2$ (H) on a $vab-3$ mutant prevents perpetual migration. Dashed lines trace gonad arms, and arrowheads mark the DTCs. Bars: all panels except D,E, 25 µm; D,E, 12.5 µm.
from up-regulation of PAT-2 reducing INA-1 activity by preferential binding of shared cytosolic factors such as talin [Calderwood et al. 2004]. Further definition of the specific activities of each integrin in the context of the other will provide insights into the control of cell–ECM interactions in this and other developmental processes that rely on multiple integrins.

Materials and methods

Strains and genetics

Nematodes were maintained according to standard protocols [Brenner 1974]. N2 was used as wild type. Mutant strains used were CB3304 pat-6[3(e1796)] and JE3500 vab-3[mw105]). Both strains have very low-penetrate notched-head defects; these defects are more obvious under stress, such as starvation or temperature. Due to poor male generation and male mating problems of pat-6, pat-6 was not used. pat-3 then up-regulates pat-2 during DTC turning. PAT-2 directs dorsal pathfinding and remains on through adulthood. In adults, pat-3 down-regulates ina-1, ending migration.

pat-2 minimal promoter determination

Transcriptional fusions of pat-2 upstream sequences to GFP were constructed as described for strain JE1211. Primers F544A1 and F544RB amplified 6 kb of pat-2 upstream sequence. GFP was amplified from plasmid pPD95.77 using primers 9577C1F and 9577D1R. These products were used as templates for fusion PCR [Hobert 2002]. In individual PCR reactions, forward primers pat2p3kbF, pat2p2kbF, pat2p1kbF, pat2p420F, pat2p420mutF, and pat2p381F with reverse primer 9577D2IR were used to create GFP fusions with the promoter lengths 3093 bp, 2063 bp, 1005 bp, 420 bp, 420 bp, and 381 bp, and named 3kb, 2kb, 1kb, 420bp, 420bp-mut, and 381bp, respectively. Each was individually injected into nematodes; 420bp, 420bpmut, and 381bp had neuronal and vulval GFP expression showing that the promoters were still functional and that the loss of GFP expression in the DTCs of 420mut and 380bp nematodes was due to sequence alterations.

RNAi

Nematodes were exposed to double-stranded RNA (dsRNA) by feeding as described [Kamath et al. 2003]. Nematodes were added to plates as eggs, then evaluated for DTC migration as adults to avoid stronger defects that prevented gonad evaluation. The mig-2 RNAi feeding construct contained mig-2 cDNA from +224 to +475. This region was amplified by primers mig2F and mig2R, then ligated into pPD129.36 at restriction sites NheI and HindIII. Ced-10 RNAi utilized the entire ced-10 cDNA in feeding vector pPD129.36, a gift from Michael Hurwitz. rac-2 RNAi utilized the entire rac-2 cDNA in feeding vector pPD129.36, a gift from Ganguly Hurwitz, and the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources, for strains provided.

Microscopy and dissections

Fluorescent and DIC images were generated utilizing a Nikon Eclipse TE2000U microscope equipped for epifluorescence with a Cooke SensiCam High-Performance camera and IP laboratory software (Scanalytics). Nematodes were mounted for viewing as previously described (Cram et al. 2003). To visualize tissues underlying the muscles, gonads were dissected for imaging GFP in DTCs. Dissections were performed in PBS supplemented with 0.2 mM Levamisole. A 26 G needle was used to decapitate the nematodes, followed by evaluation of extruded gonad.

Acknowledgments

We thank Andy Fire and Roger Tsien for providing plasmids, Maria Martynovsky for the mig-2 RNAi construct, and Gian Garriga, Michael Hurwitz, and the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources, for strains provided.

References

Ahringer, J., ed. 2006. Reverse genetics (April 6, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.47.1, http://www.wormbook.org.
Baum, P.D. and Garriga, G. 1997. Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19: 51–62.
Bouvard, D., Brakus, C., Cautronson, E., Aszodi, A., Bengtson, T., Berna, A., and Fassler, R. 2001. Functional consequences of integrin gene mutations in mice. Circ. Res. 89: 211–223.
Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
Calderwood, D.A., Tai, V., Di Paolo, G., De Camilli, P., and Ginsberg, M.H. 2004. Competition for talin results in trans-dominant inhibition of integrin activation. J. Biol. Chem. 279: 28889–28895.
Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. 99: 7877–7882.
Chisholm, A.D. and Horvitz, H.R. 1995. Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377: 52–55.
Cinar, H.N. and Chisholm, A.D. 2004. Genetic analysis of the Caenorhabditis elegans pax-6 locus: Roles of paired domain-containing and nonpaired domain-containing isoforms. Genetics 168: 1307–1322.

Cox, E.A., Tuskey, C., and Hardin, J. 2004. Cell adhesion receptors in C. elegans. J. Cell Sci. 117: 1867–1870.

Cram, E.J., Clark, S.G., and Schwab, J.E. 2003. Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans. J. Cell Sci. 116: 3871–3878.

Cram, E.J., Shang, H., and Schwab, J.E. 2006. A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J. Cell Sci. 119: 4811–4818.

Dozier, C., Kagoshima, H., Niklaus, G., Cassata, G., and Burglin, T.R. 2001. The Caenorhabditis elegans Six/sine oculis class homeobox gene ceh-32 is required for head morphogenesis. Dev. Biol. 236: 289–303.

Duncan, M.K., Kozmik, Z., Cvekl, K., Pattigorský, J., and Cvekl, A. 2000. Overexpression of PAX6(5a) in lens fiber cells results in cataact and upregulation of [α5β1] integrin expression. J. Cell Sci. 113: 3173–3185.

Gettner, S.N., Kenyon, C., and Reichardt, L.F. 1995. Characterization of β pat-3 heterodimers, a family of essential integrin receptors in C. elegans. J. Cell Biol. 129: 1127–1141.

Hobert, O. 2002. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32: 728–730.

Hodgkin, J. 1999. Conventional genetics. In C. elegans: A practical approach. [ed. I.A. Hope], pp. 245–270. Oxford University Press, New York.

Hubbard, E.J. and Greenstein, D. 2000. The Caenorhabditis elegans gonad: A test tube for cell and developmental biology. Dev. Dyn. 218: 2–22.

Hynes, R.O. 2002. Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673–687.

Xu, H.E., Rould, M.A., Xu, W., Epstein, J.A., Maas, R.L., and Pabo, C.O. 1999. Crystal structure of the human Pax6 paired domain–DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes & Dev. 13: 1263–1275.

1620 GENES & DEVELOPMENT