A Study on Understanding Pedestrian Flow Using Intermittent Recording Images (PIRI)

Hideaki Takayanagi*, 1, Shogo Yamada 2 and Hiroko Shibahara 2

1 Associate Professor, Department of Environmental Science, The University of Shiga Prefecture, Japan
2 Graduate Student, Department of Environmental Science, The University of Shiga Prefecture, Japan

Abstract

Pedestrian flow information has been used as the basic data for urban facility planning and architecture. Pedestrian information surveys require significant time and money. Therefore, this study assesses pedestrian flow using intermittent recording images (defined as "PIRIs" in this paper). A PIRI makes it possible to visualize the state of pedestrian flow and is developed as follows:

1) Pictures of pedestrian flow are taken from a stable viewpoint.
2) These continuous pictures are imported into an analyzing platform (some type of a PC).
3) The offset of these images caused by camera movement is adjusted to the correct position. This process can be executed automatically.

In this study, the optimal shutter interval was defined as $t = 1 \text{s}$, and the number of images processed is defined as $T_{\text{max}} = 20 \text{[frame]}$. Using these parameters, PIRI can be applied with "time-space interfering model".

Keywords: pedestrian flow; visualization; fixed-point observation; image recognition; pedestrian

1. Introduction

1.1 Background

It is becoming more important to assess pedestrian flow today. This pedestrian flow information has been used as the basic data for congestion and comfortable space planning for urban facilities and architecture. User questionnaire surveys and origin-destination surveys are generally used to collect pedestrian flow information. However, these surveys are extremely time and money consuming. For this reason, an assessment of pedestrian flow using laser sensors and video cameras was performed; this required special equipment and significant analysis time.

1.2 Purpose of this Study

This study assesses pedestrian flow using intermittent recording images (defined as "PIRIs" in this paper). A PIRI is one image synthesized by several pictures taken continuously. A PIRI makes it possible to visualize pedestrian flow, for twenty seconds, in one image (Fig.1.). A characteristic of PIRI is that it creates data quickly; therefore, it can be used to analyze the state of pedestrian flow in real time.

2. Research Brief

2.1 Steps for Creating a PIRI

The steps to create a PIRI are as follows:

1) Pictures of pedestrian flow are intermittently taken from a stable viewpoint. These continuous pictures are the basis of data analysis. The optimal shutter interval (Δt) and the number of images (T_{max}) used in this study are described in Chapter 3.

2) These continuous pictures are imported into an analyzing platform (some type of a PC) and synthesized. This process can be executed automatically.

3) Images that have visualized pedestrian trajectories are obtained as the PIRI (Table 1.).

*Contact Author: Hideaki Takayanagi, Associate Professor, Department of Environmental Science, The University of Shiga Prefecture, Rm. 206, Bldg. B2, 2500, Hassaka-cho, Hikone, Shiga, 522-8533 Japan
Tel: +81-749-28-8284 Fax: +81-749-28-8341
E-mail: hide@ses.usp.ac.jp

(Received October 7, 2014; accepted June 25, 2015)
2.2 Synthesis Method of PIRI

Pedestrian flow that is difficult to view using an image or movie has been visualized by the process of synthesis as follows:

1) The offset of images caused by camera movement was adjusted to the correct position (Table 1., steps 2 and 3).
2) A method to visualize pedestrian trajectories using RGB values in an analyzing platform was developed (Table 1., step 4).

3. Discussion of the Process to Visualize Pedestrian Trajectories and Characterize PIRI

3.1 Optimal Shutter Interval to Take Continuous Pictures

To define the optimal shutter interval, Δt in this study, four PIRIs were taken at a plaza near a bus stop in front of JR Kyoto Station.

Images of pedestrian flow were taken using a handheld camera located on the deck of the station's second floor (Fig.4.).

The PIRI shown in Fig.2. was set to Δt = 1 s • Tmax = 20 [frame] and that shown in Fig.3.-i was set to Δt = 0.5 s • Tmax = 20 [frame]. The PIRI shown in Fig.3.-i displays pedestrian trajectories clearly. However, as the trajectory intervals of PIRI shown in Fig.3.-i are narrow when compared with those shown in Fig.2., it is difficult to discriminate each trajectory in the crossing space.

The PIRI shown in Fig.3.-ii was set to Δt = 1.5 s • Tmax = 20 [frame] and that shown in Fig.3.-iii was set to Δt = 1.5 s • Tmax = 10 [frame]. When the trajectory intervals were wide, both PIRIs showed that assessing the state of the flow was difficult. As a result of this study, the optimal shutter interval was defined as t = 1 s, and the number of images processed was defined as Tmax = 20 [frame] (Fig.2.).

3.2 Comparing the States of Pedestrian Flow on the PIRI

A PIRI makes it possible to visualize pedestrian flow for twenty seconds in one image. A PIRI has two advantages:

1) Assessing the route of a pedestrian, and
2) Assessing the velocity change of a pedestrian.

To confirm these characteristics, the states of pedestrian flow were compared using three PIRIs (Fig.2. and Fig.5.).

The black frame in Fig.2. shows that people have lined up to get on a bus. And this line has caused congestion. In the PIRI, this congestion is visualized by the wide and narrow intervals of pedestrian trajectories.

As the line shown in Fig.5.-1 is longer than that shown in Fig.2., pedestrians have avoided the line. In the PIRIs, this state is visualized by the shape of the pedestrian trajectories.

Fig.5.-1 shows that as the line to get on a bus disappeared, there was no congestion in the white frame. At this time, pedestrians were crossing the plaza freely.

Table 1. Creating Flow of PIRI

Step	The Contents of Step	Process to Project Movement Locus	Make the Position Change and Distortion Correction Coordinates of the Common Elements that you determine to overlap.
1	Take Pictures of the Crowd Flow Intermittently	1) Determining the Common Elements	Output PIRI ⋅ JPEG Format ⋅ PNG Format ⋅ BMP Format
2	Process to Project Movement Locus	2) Positioning of Coordinates	
3	Process to Project Movement Locus	3) Arithmetic Processing of the PIRI	
4	Process to Project Movement Locus	4) Output of PIRI	
5	Process to Project Movement Locus	5) Automatic Import the Camera and Plan of Survey Space	

Fig.2. PIRI Δt = 1 [sec] • t max = 20 [frame]

Fig.3. Difference of PIRI for Change of Δt • t max

Fig.4. Field of View of the Camera and Plan of Survey Space
4. Verifying the Characteristics of the PIRI

4.1 Creating the Time-Space Interfering Area Model

Characteristics of the PIRI were verified using the time-space interfering area model described in the research of Sano.

The time series pedestrian territory model and the time series interfering area model were created based on the pedestrian flows observed in Section 1 of Chapter 3 as follows:

1) Coordinates of the images were transformed to orthogonal coordinates.
2) Pedestrian trajectory data was created to plot the coordinates of the pedestrians in each frame.
3) The radius of the pedestrian territory was defined as 0.455 m based on a previous research.
4) By entering the pedestrian trajectory data into a 3D {x, y, t} platform, the time series pedestrian territory was created.
5) By identifying crossing objects for each of the time series pedestrian territories, the time series interfering area was created (Table 2., Page 5).

4.2 Verifying Characteristics of the PIRI with the Time-Space Interfering Area Model

To verify the characteristics of the PIRI, the shape of the time series interfering area model was classified as shown in Table 4. described in the research of the authors. Pedestrians were classified into three categories: A (moving from the north to the east), B (moving from the east to the north), and C (waiting for the bus) (Table 2., Section 2). The time series interfering area exists near pedestrian category C; patterns of these shapes were primarily congestion type or waiting type (Table 3.). This shows that congestions were caused in category C. The time series interfering area model shows that congestion type and waiting type were caused in a position of high pedestrian density as shown by PIRI (Table 3.). Therefore, PIRI makes it possible to visually assess the states of congestion.

Table 2. Creating Flow of the Time Series Interfering Area Model

Section	Position of Coordinates	Time Series Pedestrian Territory	Time Series Interfering Area Model
Section 1			
Section 2			
Section 3			
Section 4			

Fig. 5. PIRI Different Time Zone of Shooting

am 11:00 Locus Projection View (Reference Fig.2.)

1. am 11:15 PIRI

2. am 16:00 PIRI

am 11:15 Locus Projection View

am 16:00 Locus Projection View
5. Conclusion

In this study, pedestrian flows were assessed using intermittent recording images. PIRI shows a pedestrian trajectory on an image and makes it possible to visually assess the states of flow. PIRI allows quick data analysis; therefore, it is able to analyze the state of pedestrian flow in real time. This characteristic makes risk management, marketing management, and the use of simple data for creating more thorough data possible. However, there is a problem with the PIRI method. Because pedestrian trajectories in different time series overlap with each other in one image, showing the position of the crossing and the direction of pedestrian movement using a PIRI is difficult. Therefore, verifying the original images is necessary. The optimal shutter interval and the number of images should be defined for each research event because a PIRI is influenced by the weather and the angle of the photograph. Therefore, an experience to create a PIRI in various locations is required.

Table 3. Analysis of PIRI with the Time Series Interfering Area Model

Interference Load between Crowd	A-C, B-C	Between Crowd A-B	Among All Crowd
Time Series Interfering Area			

Table 4. Classification of Interference Load by Cross Pattern

Avoiding Pattern of Pedestrian	The Time Series Interfering Area Model
Passing Each Other Type	This is a most popular passing avoiding pattern of half-length A and B. Avoidance duration is relatively short. Disturbance of the walking locus of both a and b in these are smooth.
Wait Type	This is the avoiding pattern that one reduces the walking speed to wait for the passage of other when an interference. This is most reasonable avoidance but walking speed other a and b is disturbed.
Congestion Type	This is the avoiding pattern that both of them reduce the walking speed by factors such as congestion around a. It is an movement of pedestrian A = [x, y]. The authors define this multi-stage cylinder as the time series pedestrian territory model.
High Pedestrian Density	This is a most popular passing avoiding pattern with pedestrian territory model.

Notes

1. The space-time interfering area diagram model is a transaction time series model describing the interference load of each pedestrian of mutual multi-directional flow crowd in time series. This allows us to grasp the variation characteristics of walking load in time series and understand the congestion change of evaluation object space in time series.
2. The authors draw the walking area Qt {Qt0, Qt1, Qt2…} in time t {t0, t1, t2…} on the Plane “t” in 3-dimensional space {x, y, t} with “time axis = t” and "movement plane of pedestrian A = [x, y]". The authors define this multi-stage cylinder as the time series pedestrian territory model.
3. The authors define a solid form by the interference part of the time series pedestrian territory of the pedestrian as A, B.

References

1) Abiko, S. Muramoto, S. et al. (2011) Measurement of human flow information using range image sensor: journal of Japan Society for Fuzzy Theory and Intelligent Informatics, 23(4), pp.513-527.
2) Katabira, K. Suzuki, T. et al. (2007) Tracking pedestrians and visualization of the crowds-flow using multiple single-row laser range scanners: The Special Interest Group Technical Reports of IPSJ, (31), pp.229-236.
3) Kitai, K. (1997) Automatic tracking system of pedestrians using image-processing method: Journal of Architecture and Planning Institute of Japan, No. 493, pp.195-200.
4) Kitai, K. Uchida, K. et al. (2001) Automatic tracking method of crossing pedestrians on street: Journal of Technology and Design Institute of Japan, (14), pp.359-364.
5) Sano, T. Watanabe, K. (1996) The visualization of pedestrian flow with space-time diagram model: Journal of Architecture and Planning Institute of Japan, No. 479, pp.125-130.
6) Sano, T. Watanabe, K. et al. (2002) The evaluation of congestion in pedestrian space with space-time diagram model: Journal of Architecture and Planning Institute of Japan, No. 555, pp.191-197.
7) Takeuchi, M. Kobayashi, K. et al. (2004) A basic examination for real-time estimating of dynamic crowd density: Forum on Information Technology, 3(3), pp.199-200.
8) Takayanagi, H. Watanabe, H. et al. (2001) A study on the pedestrian occupied territory in the crossing flow: The analysis with pedestrian territory model: Journal of Architecture and Planning Institute of Japan, No. 549, pp.185-191.
9) Takeuchi, K. (1996) Evaluation of crowd characteristics by image processing: Journal of Architecture and Planning Institute of Japan, No. 486, pp.109-116.
10) Terada, K. (2002) Counting the people under congestion using hough transform: The journal of the Institute of Image Electronics Engineers of Japan, 31(1), pp.78-86.