The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

Article in Scientific Reports - December 2016
DOI: 10.1038/srep38543

CITATIONS
15

READS
506

7 authors, including:

Robert J. Usselman
Florida Institute of Technology
30 PUBLICATIONS 250 CITATIONS
SEE PROFILE

Cristina Chavarriaga
Florida Institute of Technology
3 PUBLICATIONS 19 CITATIONS
SEE PROFILE

Pablo R Castello
Universidad de Belgrano
35 PUBLICATIONS 1,993 CITATIONS
SEE PROFILE

Maria Procopio
Johns Hopkins University
11 PUBLICATIONS 29 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project
Multiple method/multiscale studies on Light Harvesting systems View project

Project
Optimal Control View project
The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics

Robert J. Usselman1, Cristina Chavarriaga2, Pablo R. Castello3, Maria Procopio4, Thorsten Ritz4, Edward A. Dratz1, David J. Singel1 & Carlos F. Martino2

Quantum biology is the study of quantum effects on biochemical mechanisms and biological function. We show that the biological production of reactive oxygen species (ROS) in live cells can be influenced by coherent electron spin dynamics, providing a new example of quantum biology in cellular regulation. ROS partitioning appears to be mediated during the activation of molecular oxygen (O2) by reduced flavoenzymes, forming spin-correlated radical pairs (RPs). We find that oscillating magnetic fields at Zeeman resonance alter relative yields of cellular superoxide (O2•−) and hydrogen peroxide (H2O2) ROS products, indicating coherent singlet-triplet mixing at the point of ROS formation. Furthermore, the orientation-dependence of magnetic stimulation, which leads to specific changes in ROS levels, increases either mitochondrial respiration and glycolysis rates. Our results reveal quantum effects in live cell cultures that bridge atomic and cellular levels by connecting ROS partitioning to cellular bioenergetics.

Quantum biology may be thought of as the signatures of molecular-level quantum phenomena observed in biological systems at functional, cellular, or organism levels1–2. For example, quantum effects in biological systems have been implicated in mechanisms for avian navigation3–7, olfactory sensing8,9, and photosynthesis10–12. Here, we present results that reveal a novel domain of quantum biology: the control of the biological production of reactive oxygen species (ROS) via coherent spin dynamics in a radical pair (RP) reaction. Our work builds on studies of complexes between reduced flavoenzymes and molecular oxygen13,14, within the context of quantum biology15 and the radical pair mechanism (RPM)16,17.

The RPM offers an attractive foundation to explain how quantum effects can influence biochemical ROS production. At the heart of the RPM lies a coherent singlet-triplet interconversion (Fig. 1), driven by the dynamical mixing of the spin eigenstates of coupled free-radicals. The RP spin dynamics are governed by internal magnetic interactions, usually electron-nuclear hyperfine interactions (HFIs) and applied magnetic fields. External static and oscillating magnetic fields can alter RP spin dynamics by Zeeman and HFI resonance effects, and thereby change the relative yields of reaction products that derive, alternatively, from singlet and triplet RP states18,19. The product yields will depend on the strength of the static field and on the frequency, amplitude, and orientation (relative to the static field) of the applied oscillating magnetic field17. These experimental parameters can be adjusted to alter the relative ROS product yields in vitro. In this work, we demonstrate magnetic field-induced changes in ROS levels that leave a metabolic signature at the cellular level. We report the effects of the orientation of oscillating fields on the ROS reaction yields in cell cultures and the impact of the resulting variations in the ROS products on the regulation of cellular bioenergetics.

We assume that magnetically sensitive ROS formation occurs at flavoenzyme centers (Fig. 1), initialized by an electron transfer that activates molecular oxygen (O2) in reduced flavoenzymes20. A triplet-born, spin-correlated RP is created between flavin semiquinone (FADH+) and superoxide (O2•−)12,22. The FADH+:O2•− intermediate is a branch point for ROS products, where subsequent spin-selective reactions have two competing pathways. Either O2•− is released from the triplet RP state and escapes into the medium, or a hydroperoxy-flavin transient...
is formed from the singlet RP state. A subsequent second electron transfer releases hydrogen peroxide (H₂O₂). Besides kinetic requirements, the coherent evolution between the singlet and triplet states of FADH•:O₂•− RP determines the amount of the products for the two reaction channels. We hypothesize that RP spin dynamics can be altered by external static and oscillating magnetic fields, which change singlet-triplet intersystem crossing (ISC) rates, and thus affect the outcome of cellular ROS product ratios.

To test the RPM hypothesis for ROS-related quantum biology, we developed low-frequency, low-field instrumentation for product-yield detected magnetic resonance (PYDMR). In the present PYDMR study, primary human umbilical vein endothelial cells (HUVECs) were exposed to either 50 μT static magnetic fields (SMF) in control samples, or to 50 μT SMFs combined with 1.4 MHz, 20 μTrms RF magnetic fields at Zeeman resonance in experimental samples. The RF orientation was applied in parallel or perpendicular angles with respect to the SMF. Intracellular O₂•− and extracellular H₂O₂ were measured by selective assays in HUVEC cultures. Figure 2 exhibits the changes observed in the ROS product distributions measured for parallel and perpendicular RF orientations. In the perpendicular orientation, we measured a 36% ± 4 reduction of O₂•− (p < 0.002) and a 21% ± 5 reduction of H₂O₂ (p < 0.02). For the parallel orientation, we measured a 10% ± 2 (p < 0.002) reduction of O₂•− and an 8% ± 8 increase of H₂O₂ (p < 0.02). Changes in ROS products in cell cultures between SMF ± RF are indicative of a resonance effect on singlet-triplet intersystem crossing (or quantum coherences) at the point of ROS formation.

Singlet-triplet product yields were modeled by numerical simulations of a triplet-born one-proton radical-pair reaction with static and RF magnetic fields at Zeeman resonance. The numerical results predict an orientation-dependent increase in singlet product yield (H₂O₂) and decrease in triplet product yield (O₂•−) when the resonant RF field is added to the static field. These simulations are in agreement with perpendicular experimental results and are consistent with our previous cellular results with hyperfine resonance effects. The theoretical model of a one-proton RP does not account for changes in ROS yields (O₂•− and H₂O₂) in the parallel orientation, which suggests either limitations of the simplified model in the complex cellular environment or anisotropic hyperfine resonances near the Zeeman resonance.

To understand the potential effects of ROS signaling on cellular bioenergetics, we measured the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) with a Seahorse XF Analyzer. Figure 4 illustrates experiments in HUVECs that show RF orientation dependence of OCR and ECAR bioenergetic measurements, which appear to result from changes in ROS partitioning. Zeeman resonance at perpendicular excitation did not affect OCR levels (Fig. 4A) but increased ECAR by...
Zeeman resonance at parallel excitation had an opposite effect, where OCR increased by 54% ± 4 (Fig. 4B) while ECAR remained unchanged (Fig. 4D). Altered OCR and ECAR values indicate phenotypic changes in HUVECs bioenergetic pathways, demonstrating spin biochemistry intervention of ROS signaling by RF magnetic fields at Zeeman resonance.

The orientation effects that lead to specific ROS product distributions are in agreement with the simple RPM model for the perpendicular orientation, which predicts an increase in singlet yields with a concomitant decrease in triplet yields, Fig. 3. The overall reduction in measured ROS products at perpendicular excitation suggests a possible ROS signaling link to increased glycolytic activity. The decrease in steady-state ROS levels with enhanced glycolytic activity might be due to scavenging of ROS by pyruvate. The differential effect on ROS product yields at parallel excitation indicate a signaling channel of increased mitochondrial respiration. Our experiments did not explore the downstream targets of the ROS signaling pathways that lead to regulation of glycolysis and respiration. We suggest that ROS signaling channels are likely to involve the activation of bioenergetic regulation proteins, eliciting a type of hormesis response or a Warburg effect.

Magnetic stimulation of ROS partitioning in live cells reveals hallmarks of quantum coherence, manifested by changes in cellular ROS product distributions. Changes in ROS product partitioning, in turn, altered cellular bioenergetics by increasing either mitochondrial respiration or glycolysis. ROS formation is inextricably linked to bioenergetics by normal cellular metabolism, connecting persistent quantum effects in ROS oxidative signaling to cellular bioenergetics. Because of the importance of ROS in human health and disease, this research is likely to have significance for several areas in bio-medical research. Our results provide fundamental insights into the role of the RPM in ROS redox biology and cellular bioenergetics, revealing a new example of quantum biology.

Figure 2. ROS product distributions illustrating the RF magnetic field orientation dependence at Zeeman resonance (1.4 MHz and 50 μT magnetic field). The data is presented as a product yield ratio percentage with ± RF in the static field. RF magnetic fields in perpendicular orientation decreased both O$_2$•$^-$ and H$_2$O$_2$ levels by 36% ± 4% (p < 0.002) and 21% ± 5% (p < 0.02), respectively, relative to controls. In parallel orientation, H$_2$O$_2$ levels increased by 8% ± 8% (p < 0.02), whereas O$_2$•$^-$ decreased by 10% ± 2% (p < 0.002), relative to controls. The amount of ROS produced were normalized to protein concentrations and represent the average of 3 independent experiments.

Figure 3. Numerical simulations of the effects of RF magnetic fields at Zeeman resonance on triplet (ΦT_T, O$_2$•$^-$) and singlet (ΦS_T, H$_2$O$_2$) yields of a triplet-born radical-pair reaction. The RP model shown here is for a one-proton radical-pair with one isotropic hyperfine coupling of 500 μT and a RP lifetime of 10 μs. The static magnetic field was set to $B_0 = 50$ μT and the RF magnetic field amplitude set to $B_{RF} = 20$ μT (RMS), with a Zeeman resonance frequency of 1.4 MHz. RS (RT) is the relative change of triplet (singlet) yields produced by the RF, relative to the levels in the static field.
Methods

Cell Culture. Human umbilical vein endothelial cells (HUVECs) (passage 2–4) were cultured in endothelial growth medium (Promocell GmbH, Heidelberg, Germany) supplemented with 2% fetal calf serum (FCS), 0.004 ml/ml endothelial cell growth supplement/heparin, 0.1 ng/ml epidermal growth factor (EGF), 1 ng/ml basic fibroblast growth factor, and 1 mg/ml hydrocortisone at 37 °C with 5% CO2. The cells were cultured in a 75-cm² flask to expand cell number. After reaching confluence, the cells were seeded in (a) 6-well culture plates at a density of 3.5×10^3 cells/cm² for ROS experiments; (b) and in mini plates at 3,500 cells per well for Seahorse XFp Analyzer (Agilent Technologies, Santa Clara, CA).

ROS Measurements. Cellular H$_2$O$_2$ production was measured with the horseradish peroxidase-linked Amplex Ultra Red (HRP-AUR) fluorometric assay (Invitrogen). After cells were seeded, they were exposed to SMF ± RF magnetic fields for the duration of the experiment, by use of the PYDMR apparatus we previously described. At day 3, medium was aspirated and cells were washed with Hank’s Buffer (HB) with 100 μM diethylenetriaminepentaacetic acid (DTPA) and incubated for 1 h with HB containing 10 μM AUR and 0.2 units/ml HRP. Resorufin fluorescence was collected on a Gemini fluorescence microplate reader (Molecular Devices, Sunnyvale, CA).

To measure intracellular production of O$_2^•^−$. HUVECs were incubated for 30 min at 37 °C in HB containing 50 μM dihydroethidium (DHE) at day 3. Cells were washed twice in HB with 100 μM DTPA and harvested in 300 μL of methanol. The samples were spun down for 15 min at 12,000 rpm at 4 °C, the supernatant was collected and dried for 5–6 hrs at 37 °C and stored at –20 °C for 7–10 days before high-performance liquid chromatography (HPLC) analysis. An Agilent 1100 series HPLC with a G1321A fluorescence detector was used for DHE product.

Figure 4. Bioenergetic profiles of HUVECs cultures monitored with a Seahorse XF Analyzer, comparing static alone (■) and static + RF (♦) magnetic fields. Oligomycin was added at 21 min to inhibit ATP synthesis, the proton ionophore FCCP was added at 41 min to assess the maximum possible oxygen consumption, and antimycin A was added at 61 min to inhibit electron flow through complex III. The static magnetic field was 50 μT and the RF was 1.4 MHz at Zeeman resonance. The RF was oriented perpendicular (A and C) or parallel (B and D) to the static field. Perpendicular RF excitation did not affect the oxygen consumption rate (OCR) (Panel A), whereas extracellular acidification rate (ECAR) was increased by 100 ± 13 (p < 0.001, Panel C). Parallel RF excitation lead to increased OCR by 54 ± 4 (p < 0.001, Panel B), while ECAR remained unchanged (Panel D). These are results of 3 independent representative experiments and data were normalized to total cellular protein.
separation. Analogues were separated using a C18 reverse-phase column (Nucleosil 250 to 4.5 mm) as previously described. The total fluorescence intensity of the 2-hydroxyethylidium peak were averaged for all wells and then averaged for three separate experiments.

Protein content, HPLC analysis, and resorufin fluorescence were measured at the same termination points. H$_2$O$_2$ and O$_2$** measurements were normalized to total protein concentration (BCA, Pierce). H$_2$O$_2$ calibration curves with HRP-AUR under the same RF magnetic field strengths showed no differences compared to SMF controls, demonstrating that RF fields do not interact with the H$_2$O$_2$ detection assay.

Cellular Bioenergetics. An XFp Analyzer from Seahorse Bioscience was used for the bioenergetic measurements. HUVECs were seeded at 4,000 cells per well in XFp miniplates and exposed to RF magnetic fields for 2 days. The MitoStress Test Assay was performed as described previously. The XFp Analyzer measured mitochondrial respiration and glycolysis in vitro and in the same samples. Mitochondrial respiration was determined by the oxygen consumption rate (OCR) in cell culture. Glycolysis was assessed by the extracellular acidification rate (ECAR). To estimate the proportion of the OCR coupled to ATP synthesis, oligomycin (1 μM) was injected at 21 minutes into all samples to inhibit the ATP synthase. Typically, the OCR rate decreases in response to oligomycin by the extent to which the cells are using mitochondria to generate ATP. The remaining OCR can be ascribed to both proton leak across the mitochondrial membrane and oxygen consumption by processes other than reduction at cytochrome c oxidase. To determine the maximal OCR that the cells can sustain, the proton ionophore (uncoupler) FCCP (1 μM) was injected at 41 minutes. Lastly, antimycin A (10 μM) is injected at 61 minutes to inhibit electron flux through Complex III, which suppresses OCR dramatically. What remains is the OCR that is attributable to O$_2$ consumption due to the formation of mitochondrial ROS and non-mitochondrial sources.

References

1. Ball, P. Physics of life: The dawn of quantum biology. Nature 454, 272–274, doi: 10.1038/474272a (2011).
2. Lambert, N. et al. Quantum Biology. Nature Physics 9, 10–18 (2013).
3. Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–393, doi: 10.1038/nature06834 (2008).
4. Ritz, T., Thalau, P., Bilschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180, doi: 10.1038/nature02534 (2004).
5. Turin, L. A spectroscopic mechanism for primary olfactory reception. Chem Senses 21, 773–791, doi: 10.1093/chemse/21.6.773 (1996).
6. Turin, L., Skoulakis, E. M. C. & Horsfield, A. P. Electron spin changes during general anesthesia in Drosophila. Phil Trans R Soc Lond B Biol Sci 364, 1135–1142, doi: 10.1098/rstb.2008.0163 (2009).
7. Ritz, T., Thalau, P., Bilschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180, doi: 10.1038/nature02534 (2004).
8. Turin, L. A spectroscopic mechanism for primary olfactory reception. Chem Senses 21, 773–791, doi: 10.1093/chemse/21.6.773 (1996).
9. Turin, L., Skoulakis, E. M. C. & Horsfield, A. P. Electron spin changes during general anesthesia in Drosophila. Phil Trans R Soc Lond B Biol Sci 364, 1135–1142, doi: 10.1098/rstb.2008.0163 (2009).
10. Englert, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786, doi: 10.1038/nature05678 (2007).
11. Lee, H., Cheng, Y. C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465, doi: 10.1126/science.1142188 (2007).
12. Marais, A., Sinayskyi, I., Petruccione, F. & van Grondelle, R. A quantum protective mechanism in photosynthesis. Science 316, 1462–1465, doi: 10.1126/science.1142188 (2007).
13. Bruice, T. C. Oxygen-Flavin Chemistry. Israel J. of Chemistry 24, 54–61, doi: 10.1002/ijch.198400008 (1984).
14. Massey, V. Activation of Molecular-Oxygen by Flavins and Flavoproteins. J Biol Chem 269, 22359–22462 (1994).
15. Mohseni, M. O. Y., Engel, G. S. & Plenio, M. B. Quantum Effects in Biology. (Cambridge University Press, 2014).
16. Grissom, C. B. Magnetic-Field Effects in Biology - a Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination. Chemical Reviews 95, 3–24 (2005).
17. Steiner, U. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews (1989).
18. Epple, M. & Schulten, K. Quantum Mechanics in Photosynthesis. Chem Phys 182, 1–18, doi: 10.1016/0301-0104(93)00442-X (1994).
19. Schulten, K., Staerk, H., Weller, A., Werner, H. J. & Nickel, B. Magnetic-Field Dependence of Geminate Recombination of Radical Ion-Pairs in Polar-Solvents. J Phys Chem New 101, 371–390 (1976).
20. Inlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews. Microbiology 11, 443–454, doi: 10.1038/nmicrobiology3032 (2013).
21. Uselman, R., Hill, I., Singel, D. & Martin, C. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields PLoS ONE 9, e93065, doi: 10.1371/journal.pone.0093065 (2014).
22. Hogen, H. J., Efmova, O., Wagner-Rundell, N., Timmel, C. R. & Hore, P. J. Possible involvement of superoxide and dioxygen with the magnetic compass model of avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem Phys Lett 480, 119–122, doi: 10.1016/j.cplett.2009.08.051 (2009).
23. Timmel, C. R., Till, U., Brocklehurst, B., McLauchlan, K. A. & Hore, P. J. Effects of weak magnetic fields on free radical recombination reactions. Mol Phys 95, 71–89, doi: 10.1080/00268979809483134 (1998).
24. Dranka, B. P. et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free radical biology & medicine 51, 1621–1635, doi: 10.1016/j.freeradbiomed.2011.08.005 (2011).
25. Dranka, B. P., Hill, B. G. & Darley-Usmar, V. M. Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free radical biology & medicine 48, 905–914, doi: 10.1016/j.freeradbiomed.2010.01.015 (2010).
26. Liemburg-Apers, D. C., Willems, P. H. G. M., Koopman, W. J. H. & Grefte, S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 89, 1209–1226, doi: 10.1007/s00204-015-1226-0 (2015).
27. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033, doi: 10.1126/science.1160890 (2009).
28. Brand, K. & Hermesse, U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. The FASEB Journal 11, 388–395 (1997).
29. Mailloux, R. J. & Harper, M. E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radical Bio Med 51, 1106–1115, doi: 10.1016/j.freeradbiomed.2011.06.022 (2011).
30. Willems, P. H. G. M., Rossignol, R., Dieteren, C. E. J., Murphy, M. P. & Koopman, W. J. H. Redox Homeostasis and Mitochondrial Dynamics. *Cell Metab* **22**, 207–218, doi: 10.1016/j.cmet.2015.06.006 (2015).

31. Ji, L. L., Kang, C. & Zhang, Y. Exercise-induced hormesis and skeletal muscle health. *Free Radic Biol Med*, doi: 10.1016/j.freeradbiomed.2016.02.025 (2016).

32. Brigger, K., Schiavone, S., Miller, F. J. & Krause, K. H. Reactive oxygen species: from health to disease. *Swiss Med Wkly* **142**, doi: 10.4414/smw.2012.13659 (2012).

33. Fink, R. *et al.* Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay. *Am J Physiol Cell Physiol* **287**, C895–902, doi: 10.1152/ajpcell.00028.2004 (2004).

34. Gerencser, A. A. *et al.* Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion. *Analytical Chemistry* **81**, 6868–6878, doi: 10.1021/ac900881z (2009).

35. Wu, M. *et al.* Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. *Am J Physiol-Cell Ph* **292**, C125–C136, doi: 10.1152/ajpcell.00247.2006 (2007).

Acknowledgements

This work was supported by American Heart Association Grant #15SDG25710461 (R.J.U.), and PIP 706 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (P.R.C).

Author Contributions

R.J.U., P.R.C. and C.F.M. designed the experiments, C.C, R.J.U. and C.F.M performed the experiments, M.P., performed the spin dynamics simulations, M.P., T.R. and D.J.S contributed to theoretical aspects of the RPM, P.R.C. and E.A.D. contributed to bioenergetics. R.J.U. wrote the initial paper draft and all authors contributed to manuscript revisions.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Usselman, R. J. *et al.* The Quantum Biology of Reactive Oxygen Species Partitioning Impacts Cellular Bioenergetics. *Sci. Rep.* **6**, 38543; doi: 10.1038/srep38543 (2016).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016