The effect of tumor necrosis on postoperative survival of patients with solitary small hepatocellular carcinoma

CURRENT STATUS: UNDER REVIEW

Yi-hong Ling
Sun Yat-sen University Cancer Center

Jie-wei Chen
Sun Yat-sen University Cancer Center

Shi-hong Wen
First affiliated Hospital of Sun Yat-sen university

Chao-yun Huang
Sun Yat-sen University Cancer Center

Peng Li
Sun Yat-sen University Cancer Center

Liang-he Lu
Sun Yat-sen University Cancer Center

Jie Mei
Sun Yat-sen University Cancer Center

Shao-hua Li
Sun Yat-sen University Cancer Center

Wei Wei
Sun Yat-sen University Cancer Center

Muyan Cai
Sun Yat-sen University Cancer Center

caimy@sysucc.org.cn Corresponding Author

Rong-ping Guo
Sun Yat-sen University Cancer Center
DOI: 10.21203/rs.2.17667/v1

SUBJECT AREAS
Oncology

KEYWORDS
Tumor necrosis, prognosis, small hepatocellular carcinoma
Abstract

Background: Small hepatocellular carcinoma (sHCC) is a special subtype of HCC with the maximum tumor diameter ≤ 3 cm and favorable long-term outcomes. Surgical resection or radiofrequency ablation offer the greatest chance for cure; however, many patients still undergo tumor recurrence after primary treatment. So far, there is no clinical applicable method to assess biological aggressiveness in solitary sHCC.

Methods: In the present study, we retrospectively evaluated tumor necrosis of 335 patients with solitary sHCC treated with hepatectomy between December 1998 and 2010 from Sun Yat-sen University Cancer Center.

Results: In the current study, the presence of tumor necrosis was observed in 157 of 335 (46.9%). Further correlation analysis showed that the presence of tumor necrosis in sHCC was significantly correlated with tumor size and vascular invasion (P = 0.026, 0.003, respectively). The presence of tumor necrosis was associated closely with poorer cancer-specific overall survival (OS) and recurrence-free survival (RFS) as evidenced by univariate (P < 0.001; hazard ratio, 2.821; 95% CI, 1.643-4.842) and multivariate analysis (P = 0.005; hazard ratio, 2.208; 95% CI, 1.272-3.833). More importantly, the combined model by tumor necrosis, vascular invasion and tumor size can significantly stratify the risk for RFS and OS and improve the ability to discriminate sHCC patients’ outcomes (P < 0.0001 for both).

Conclusions: Our findings provide evidence that tumor necrosis has the potential to be a parameter for cancer aggressiveness in solitary sHCC. The combined prognostic model may be a useful tool for identifying solitary sHCC patients with worse outcomes.

Background

As the second leading cause of cancer mortality worldwide, hepatocellular carcinoma (HCC) has a high prevalence in Southeast Asia and Africa, and its incidence has been increasing in Europe and America (1–3). Because of the high prevalence of hepatitis B virus (HBV) infection, HBV-related liver cirrhosis and/or HCC has become a main disease burden in China (4). Currently, surveillance and the advances in imaging techniques have led to the discovery of more small HCCs (sHCC, ≤ 3 cm in
Solitary sHCC is a special type of HCC with excellent long-term outcomes, for which surgical resection offers the optimal curative chance (7, 8). Nevertheless, many patients still suffer from recurrence after primary resection and less is known about the factors correlated with aggressive biological phenotype of sHCC (5–8). It may be ideal to identify patients at high risk of tumor recurrence and/or poorer outcome, and to target close follow-up or postoperative adjuvant therapies in these sub-populations (9, 10). Currently, the known clinicopathological factors for sHCC enable the identification and screening the patients at high risk, however, the reliable factors remain ill-defined (11, 12).

Tumor necrosis is a common pathological feature of solid tumors, which is found to be correlated with chronic ischemic injury due to the rapid growth of tumor (13–15). The extent of tumor necrosis reflects the level of intra-tumor hypoxia. Increased cellular hypoxia is linked to the increased metastatic potential and worse outcome in solid tumors, as well as resistance to radio-chemotherapy (13, 16). To date, the clinical and prognostic implication of tumor necrosis in solitary sHCC remain elusive (17, 18). In the present study, we assessed the prognostic value of tumor necrosis in solitary sHCC following hepatectomy and found that tumor necrosis can be regarded as a parameter for sHCC aggressiveness.

Methods
Case selection
Data were obtained from the 335 cases of the pathologically proven and non-distant-metastasis solitary sHCC between December 1998 and 2009 in Sun Yat-sen University Cancer Center (Guangzhou, China). The patients underwent surgical resection (not ablation or transplantation) as the first therapy course were included in this study. Cases were acquired following the eligibility criteria: (1) solitary sHCC (diameter ≤ 3 cm) only; (2) positive for HBV surface antigen; (3) with primary and curative hepatectomy; (4) absence of metastasis and residual disease; (5) without preoperative adjuvant therapy; having complete follow-up information.

We collected clinicopathologic data including patient age, gender, alfa-fetoprotein (AFP) level, alanine aminotransferase (ALT) level, tumor size, tumor capsule, histological differentiation, liver cirrhosis,
vascular invasion and necrosis. These data are described in Table 1. Tumor differentiation was determined based on the criteria proposed by WHO classification of Tumors of the Digestive System (2010 version). The Institute Research Medical Ethics Committee of Sun Yat-sen University Cancer Center granted approval for this study.

Table 1
Correlation of tumor necrosis with patients’ clinicopathological features in primary small hepatocellular carcinomas

Characteristics	Cases	Necrosis (-)	Necrosis (+)	P value*
Gender				
Male	295	155 (52.5%)	140 (47.5%)	0.555
Female	40	23 (57.5%)	17 (42.5%)	
Age (years)				
≤ 48.0†	166	90 (54.2%)	76 (45.8%)	0.694
> 48.0	169	88 (52.1%)	81 (47.9%)	
AFP (ng/ml)				
≤ 20	139	77 (55.4%)	62 (44.6%)	0.485
> 20	196	101 (51.5%)	95 (48.5%)	
ALT (µ/l)				
≤ 40	192	99 (51.6%)	93 (48.4%)	0.504
> 40	143	79 (55.2%)	64 (44.8%)	
Tumor size (cm)				
≤ 2.5‡	188	110 (58.5%)	78 (41.5%)	0.026
> 2.5	147	68 (46.3%)	79 (53.7%)	
Differentiation				0.675
Well	56	32 (57.1%)	24 (42.9%)	
Moderate	208	111 (53.4%)	97 (46.6%)	
Poor-undifferentiated	71	35 (49.3%)	36 (50.7%)	
Vascular invasion				0.003
Absent	255	147 (57.6%)	108 (42.4%)	
Present	80	31 (38.8%)	49 (61.3%)	
Envelope	214	113 (52.8%)	101 (47.2%)	0.872
Absent	121	65 (53.7%)	56 (46.3%)	
Liver cirrhosis				0.166
Absent	201	113 (56.2%)	88 (43.8%)	
Present	134	65 (48.5%)	69 (51.5%)	

*Chi-square test; †Median age; ‡Median size; AFP indicates alpha-fetoprotein; ALT indicates alanine aminotransferase.

Pathological Evaluation

Patient records and original histopathologic slides were independently reviewed by two experienced pathologists (Y.-H. Ling and M.-Y. Cai) who were blinded to the pathological diagnoses and outcome data. Discrepancies were solved by simultaneous re-examination of the slides by both pathologists with a double-headed microscope. A mean of 4.2 (median 4, range 2–8) paraffin-embedded tissue blocks per tumor were available for evaluation, and all of the 335 patients had at least 3 tissue blocks available.

The presence of necrosis was carefully assessed on hematoxylin and eosin (H&E)-stained slides. Necrosis consisted of homogenous clusters of sheets of dead cells, or coalescing groups of cells
forming a coagulum, containing nuclear and cytoplasmic debris as previously described (19).

Coagulative tumor necrosis was found to be present without regard to the area of tumor involved, and the extent of involvement was not assessed. Vascular invasion in each HCC specimen was identified in several serial cross sections, defined as infiltration of vessel walls or the existence of tumor emboli (20). The criteria include the following: macroscopic and/or microscopic tumor emboli within the large capsular vessels, the central hepatic vein, or the portal vein (21).

Follow-up
After partial hepatectomy, patients were followed up by the Sun Yat-sen University Cancer Center, every 3 months by AFP and ultrasound or computed tomography or magnetic resonance imaging at least every 6 months for more than two years. The last date of follow-up is January 18th, 2014. Patients who had tumor recurrence were treated with re-resection when possible or by transcatheter arterial chemoembolization, percutaneous ethanol injection or radiofrequency ablation. Cancer-specific overall survival (OS) was defined as the number of months from the date of surgery to the date of the last follow-up visit or time of death attributed to sHCC. Recurrence-free survival (RFS) was defined as the number of months from the date of surgery to the first documentation of cancer recurrence.

Statistical analysis
The correlation between necrosis and the clinicopathologic features of the sHCC patients was evaluated by a χ2-test. For univariate analysis, survival curves were obtained with the Kaplan-Meier method, and the differences between groups in survival were tested by the log-rank test. Multivariate survival analyses were performed with the Cox proportional hazard regression model. A difference was considered significant if the P value from a two-tailed test was less than 0.05. Statistical analysis was performed with SPSS statistical software package (SPSS Standard version 13.0; SPSS, Chicago, IL, USA).

Results
Patient characteristics
Our selection criteria identified 335 adult patients with resected solitary sHCC. All the patients were long-term carriers of HBV and treated with curative surgical resection, which was, in some cases,
followed by second-line treatments at the time of recurrence. Demographic and clinical characteristics for the patients are presented in Table 1.

Of the 335 patients, there were 295 (88.1%) males and 40 (11.9%) females, with a median age of 48 years. Among the 335 patients with pre-operation serum AFP level record, 196 (58.5%) patients had serum AFP level > 20 ng/ml. 143 (42.7%) patients had serum ALT level > 40 µ/l. The median size of the tumors was 2.5 cm. A total of 264 (78.8%) patients had well-differentiated or moderate-differentiated tumors. 214 (63.9%) tumors were encapsulated. Vascular invasion was presented in 80 (23.9%) cases. Liver cirrhosis was observed in 134 (40%) cases.

The patterns of tumor necrosis in solitary small hepatocellular carcinoma
Presence of tumor necrosis was observed in 157 of 335 (46.9%) of sHCC (Fig. 1). Further correlation analysis demonstrated that the presence of tumor necrosis was significantly correlated with tumor size and vascular invasion in sHCC (P = 0.026, 0.003, respectively; Table 1).

The relationship between tumor necrosis and patients’ survival: univariate analysis
Assessment of survival of sHCC patients revealed that some clinical pathological parameters indicated a significant impact of prognosis, such as tumor size (P = 0.001) and vascular invasion (P < 0.001, Table 2), which was reported in our previous study (22). The result demonstrated that patients with tumor necrosis displayed a poor overall survival (Table 2; Fig. 2A) and recurrence-free survival (Fig. 2B) than patients without tumor necrosis (P < 0.0001).
Table 2
Univariate and multivariate analyses of tumor necrosis and clinicopathologic variables in patients with primary small hepatocellular carcinoma*

Characteristics	P value	Hazard Ratio (95% CI)
Univariate analysis		
Gender (Male vs. Female)	0.632	0.825 (0.374-1.816)
Age (≤ 48.0† vs. > 48.0)	0.957	1.014 (0.615-1.672)
AFP (≤ 20 ng/ml vs. > 20 ng/ml)	0.432	1.230 (0.734-2.059)
ALT (≤ 40 µ/l vs. > 40 µ/l)	0.253	1.337 (0.812-2.201)
Tumor size (≤ 2.5‡ cm vs. > 2.5 cm)	0.001	2.431 (1.443-4.093)
Differentiation (well-moderate vs. poor-undifferentiated)	0.512	1.215 (0.679-2.175)
Vascular invasion (absent vs. present)	< 0.001	3.033 (1.827-5.035)
Envelope (absent vs. present)	0.758	0.920 (0.544-1.559)
Liver cirrhosis (absent vs. present)	0.102	1.516 (0.921-2.495)
Tumor necrosis (absent vs. present)	< 0.001	2.821 (1.643-4.842)
Multivariate analysis		
Tumor size (≤ 2.5 cm vs. > 2.5 cm)	0.006	2.083 (1.229-3.529)
Vascular invasion (absent vs. present)	< 0.001	2.663 (1.598-4.437)
Tumor necrosis (absent vs. present)	0.005	2.208 (1.272-3.833)

*The analyses were performed with the use of Cox proportional-hazards regression; †Median age; ‡Median size; AFP indicates alpha-fetoprotein; ALT indicates alanine aminotransferase.

Multivariate Cox regression analysis

Since variables examined to have prognostic influence by univariate analysis may covariate, the presence of tumor necrosis as well as other clinicopathologic features (tumor size and vascular invasion) was tested in multivariate analysis (Table 2). The presence of tumor necrosis was associated closely with poorer cancer-specific OS and RFS as evidenced by univariate (P < 0.001; hazard ratio, 2.821; 95% CI, 1.643-4.842) and multivariate analysis (P = 0.005; hazard ratio, 2.208; 95% CI, 1.272-3.833). As reported in our previous study (22), of the other parameters, vascular invasion was evaluated as an independent prognostic factor for patient survival (P < 0.001; hazard ratio, 2.663; 95% CI, 1.598-4.437) and tumor size was evaluated as an independent prognostic factor for patient survival (P = 0.006; hazard ratio, 2.083; 95% CI, 1.229-3.529).

New prognostic model with tumor necrosis, tumor size and vascular invasion in small HCC

According to the results of our univariate and multivariate analyses, we proposed a new clinicopathologic prognostic model with three poor prognostic factors: tumor necrosis, tumor size and vascular invasion. Thus, we designated four subtypes based on the presence of the three factors (including tumor necrosis, tumor size > 2.5 cm and vascular invasion): subtype 1, absence of any risk
factor; subtype 2, absence of any one risk factor; subtype 3, absence of any two factors; subtype 4, presence of four risk factors. The model could significantly stratify risk (low, intermediate and high) for OS (Fig. 4, P < 0.0001) and RFS (Fig. 4, P < 0.0001) in our study based upon a combination of tumor necrosis, tumor size and vascular invasion.

Discussion

Regardless of improvements in surveillance and treatment strategies, the prognosis of HCC remains unsatisfactory. Liver resection is considered the first-line curative treatment option for patients with sHCC. However, recurrence is a common postsurgical event contributing to the poor prognosis of sHCC patients. Traditional pTNM stage and histological grading systems established currently are recognized as the most useful prognostic factors of sHCC. Besides, other features such as tumor size and vascular invasion have been utilized in clinical setting and found to be prognostic assessment of patients with sHCC (23-25).

In the current study, we assessed a retrospective collection of data and determine the prognostic value of tumor necrosis for the survival of patients with sHCC who underwent hepatectomy. Our results demonstrated that the presence of tumor necrosis was frequently observed in sHCC as evaluated on H&E-stained slides. Further correlation analysis revealed that the presence of tumor necrosis in sHCC was significantly associated with vascular invasion. In univariate analysis, tumor necrosis, vascular invasion and tumor size were poor prognostic factors. Furthermore, multivariate analysis evaluated that the presence of tumor necrosis was a prognostic factor independent of certain well-established clinical factors, including tumor size, serum AFP level, vascular invasion and clinical stage.

Tumor necrosis has been shown prognostic impact in lung, breast, thyroid, colorectal, pancreatic, and kidney malignancies, including both renal cell carcinoma and upper urinary tract urothelial carcinoma, but also in mesenchymal tumors, such as malignant mesothelioma, cutaneous Melanoma, gastrointestinal stromal tumors and Ewing sarcoma (13, 14, 16, 26-29). Besides, Soini et al. reported that the survival of patients with HCCs showing a high proliferation and simultaneously a low degree of apoptosis and necrosis was significantly shorter than with other patients (17). Martino et al. found
that in the non-cirrhotic patients with HCC tended to be well to moderately differentiated, may
presented with certain areas of necrosis but did not demonstrate the relative prognosis (18). Thus, to
the best of our knowledge, data regarding the incidence and prognostic impact of necrosis in HCC, are
scarce and limited. This study has characterized, for the first time, tumor necrosis in sHCC and
demonstrates that the presence of tumor necrosis is associated with poor survival, which is consistent
with the results in other solid tumors listed above (13-15, 26-30). This implies a relationship where
increased tumor cell death indicates a more aggressive cancer. Coagulative necrosis is a common
feature of solid tumors. Tumor microvessels are fragile and susceptible to hypoxia, which suggests
that the degree of tumor necrosis reflects the level of intratumoral hypoxia (13, 14). Measured
experimentally with a polarographic needle, intratumoral hypoxia correlates with poor prognosis and
sensitivity to radiotherapy and chemotherapy in solid tumors (13). Tumor necrosis has been reported
as an indicator of a poor prognosis in a number of solid tumors. In breast cancer, tumor necrosis has
been shown to correlate with increased tumor size, high-grade disease, negative estrogen receptor
status, high microvessel density, and infiltrates of macrophages that express vascular endothelial
growth factor (26, 31, 32). These findings suggest that, in rapidly growing tumors, a hypoxic
environment that results in tumor necrosis stimulates angiogenesis due to the release of angiogenic
growth factors from infiltrating macrophages.

HCC is characterized by a tendency for vascular invasion that is believed to be a strong predictor of
outcome following hepatic resection and liver transplantation of HCC in multiple studies (23, 24). In
the previous study, our data showed that vascular invasion had an adverse impact on long-term
survival in patients with sHCC and presence of vascular invasion led to a significant decrease in OS
and RFS at 5 years. The association of tumor necrosis and vascular invasion is consistent with studies
in breast cancer and malignant mesothelioma. It was observed microvessel hot spots were situated
away from areas of tumor necrosis in these two neoplasms (26, 33). It is possible to explain this
apparently paradoxical relationship by rapid tumor growth outstripping the vascular supply, causing
ischemic damage to the microvasculature and thereby increased tumor necrosis. Tumor size is a well-
known risk factor for poor survival following hepatectomy of HCC, We found that tumor size > 2.5 cm
was correlated with a worse OS or RFS even in the patients with tumors ≤ 3 cm in our previous study (22). In breast cancer, tumor necrosis correlated with increasing tumor size (26), while the association between T stage and necrosis remains unclear in other solid tumors. In our present study, the association of tumor necrosis and tumor size is similar to the studies in breast cancer. It was confirmed that increasing mass was associated with hypoxia in the experimental murine allograft model (34).

The reported OS rates for patients with HCC following resection varies, with five-year OS rates ranging from 35–70%. Patients with sHCC are generally thought to have a good outcome and are often considered as a relatively homogeneous group, while tumor recurrence has become the main factors influencing the survival of the patients of sHCC. The pTNM stage and histological grading systems are known as the important established risk factors affecting the prognosis of patients with HCC. However, these two variables, based on specific clinicopathologic features and extent of disease, may have reached their limits for patients with early HCC in providing critical information influencing choice of follow-up strategies and salvage therapy as well as guide future studies. Data from our study revealed that even patients with early HCC could be stratified into subgroups with distinct long-term prognoses. Thus, there is a need for new objective strategies that can effectively distinguish between patients with favorable and unfavorable outcome. Our present study analyzed data on one large population-based cohort of patients with the pathologically proven sHCC. Our data support the concept that tumor necrosis, as detected by H&E staining, can identify sHCC patients with or without aggressive clinical course and/or poor outcome. Thus, evaluation of tumor necrosis may become a factor for predicting prognosis and rendering a more tailored treatment strategy in patients with sHCC. In the current study, we found that the proposed prognostic model with tumor necrosis, tumor size and vascular invasion could reflect the aggressive phenotype of sHCC. Thus, this combined model may be a useful prognostic index for sHCC. There are also strong efforts to integrate biomarkers into established clinicopathologic models to further improve their predictive ability. Generally, our findings support the idea that the pN classification supplemented by tumor necrosis, vascular invasion and tumor size might improve the ability to discriminate sHCC patients’ outcome.
This retrospective study may be considered its major limitation; however, the study was strengthened by the fact that all of the histopathological slides were re-evaluated by two gastrointestinal pathologists. Although, we believe that our results contribute to the literature because it includes only patients with sHCC.

Conclusions
In the present study, we observed that presence of tumor necrosis was a strong and independent predictor of adverse survival, as evidenced by Kaplan-Meier curves and multivariate Cox proportional hazard regression analysis. The proposed new prognostic model (combined tumor size, vascular invasion and tumor necrosis) might improve the ability to discriminate sHCC patients’ outcome. Thus, the examination of tumor necrosis could be used as an additional effective instrument in identifying those sHCC patients at increased risk of tumor progression, which might also help the clinician to choose a suitable therapy for the individual patient, for example, favoring a more aggressive treatment in patients with tumor necrosis.

Abbreviations
sHCC
small Hepatocellular Carcinoma; HBV:Hepatitis B Virus; AFP:Alfa-fetoprotein; ALT:Alanine aminotransferase; OS:Overall survival; RFS:Recurrence-free survival

Declarations
Competing interests:
The authors declare that they have no competing interests.

Funding:
This work was supported by Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2015A030306001) and the Nature Science Foundation of China (No. 81672407 and 81872001). The funding sources had no role in writing, data collection, analysis, or interpretation, or any aspect pertinent to the study.

Authors’ contributions:
Concept: R-PG, M-YC. Study design: M-YC, Y-HL, J-WC, S-HW. Statistical analysis: C-YH, WW. Data analysis and interpretation: PL, L-HL, JM, S-HL. Writing of manuscript: Y-HL, J-WC, S-HW. Review and feedback of manuscript: WW, R-PG, M-YC. All authors read and approved the final manuscript.

Acknowledgements:
Not applicable.

References
1.
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of
Disease Study 2010. The Lancet. 2012;380:2095–128.
2. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340:745–50.
3. Ince N, Wands JR. The increasing incidence of hepatocellular carcinoma. N Engl J Med. 1999;340:798–9.
4. Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL, et al. EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut. 2011;60:967–76.
5. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. The Lancet. 2003;362:1907–17.
6. An F-Q, Matsuda M, Fujii H, Tang R-F, Amemiya H, Dai Y-M, et al. Tumor heterogeneity in small hepatocellular carcinoma: Analysis of tumor cell proliferation, expression and mutation of p53 AND β-catenin. Int J Cancer. 2001;93:468–74.
7. Bruix J, Sherman M. Practice Guidelines Committee AAFtSoLD. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.
8. Yamamoto M, Takasaki K, Otsubo T, Katsuragawa H, Katagiri S, Yoshitoshi K, et al. Favorable surgical outcomes in patients with early hepatocellular carcinoma. Ann Surg. 2004;239:395–9.
9. Villanueva A, Hoshida Y, Toffanin S, Lachenmayer A, Alsinet C, Savic R, et al. New strategies in hepatocellular carcinoma: genomic prognostic markers. Clin Cancer Res. 2010;16:4688–94.
10. Nathan H, Schulick RD, Choti MA, Pawlik TM. Predictors of survival after resection of early hepatocellular carcinoma. Ann Surg. 2009;249:799–805.
11. Ko CJ, Chien SY, Chou CT, Chen LS, Chen ML, Chen YL. Factors affecting prognosis of small hepatocellular carcinoma in Taiwanese patients following hepatic resection. Can J Gastroenterol. 2011;25:485–91.
12. Edmondson HA, Steiner PE. Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies. Cancer. 1954;7:462–503.
13. Swinson DEB, Jones JL, Richardson D, Cox G, Edwards JG, O'Byrne KJ. Tumour necrosis is an independent prognostic marker in non-small cell lung cancer: correlation with biological variables. Lung Cancer. 2002;37:235–40.
14. Langner C, Hutterer G, Chromecki T, Leibl S, Rehak P, Zigeuner R. Tumor necrosis as prognostic indicator in transitional cell carcinoma of the upper urinary tract. J Urol. 2006;176:910–3.
15. Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol. 2004;4:641–8.
16. Richards CH, Mohammed Z, Qayyum T, Horgan PG, McMillan DC. The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Future Oncol. 2011;7:1223–35.
17. Soini Y, Virkajarvi N, Lehto VP, Paakko P. Hepatocellular carcinomas with a high proliferation index and a low degree of apoptosis and necrosis are associated with a shortened survival. Br J Cancer. 1996;73:1025–30.

18. Di Martino M, Saba L, Bosco S, Rossi M, Miles KA, Di Miscio R, et al. Hepatocellular carcinoma (HCC) in non-cirrhotic liver: clinical, radiological and pathological findings. Eur Radiol. 2014;24:1446–54.

19. Sengupta S, Lohse CM, Leibovich BC, Frank I, Thompson RH, Webster WS, et al. Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness. Cancer. 2005;104:511–20.

20. Li H, Zhang Q, Xu L, Chen Y, Wei Y, Zhou G. Factors predictive of prognosis after esophagectomy for squamous cell cancer. J Thorac Cardiovasc Surg. 2009;137:55–9.

21. Mete O, Asa SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol. 2011;24:1545–52.

22. Cai M-Y, Wang F-W, Li C-P, Yan L-X, Chen J-W, Luo R-Z, et al. Prognostic factors affecting postoperative survival of patients with solitary small hepatocellular carcinoma. Chin J Cancer. 2016;35:80.

23. McHugh PP, Gilbert J, Vera S, Koch A, Ranjan D, Gedaly R. Alpha-fetoprotein and tumour size are associated with microvascular invasion in explanted livers of patients undergoing transplantation with hepatocellular carcinoma. Hpb. 2010;12:56–61.

24. Min Du LC, Jing Z. Microvascular invasion (MVI) is a poorer prognostic predictor for small hepatocellular carcinoma. BMC Cancer. 2014;14:38.

25. Shirabe K, Itoh S, Yoshizumi T, Soejima Y, Taketomi A, Aishima S, et al. The predictors of microvascular invasion in candidates for liver transplantation with hepatocellular carcinoma-with special reference to the serum levels of des-gamma-carboxy prothrombin. J Surg Oncol. 2007;95:235–40.

26. Leek RD, Landers RJ, Harris AL, Lewis CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer. 1999;79:991–5.

27. Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N, Shaha A, et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer. 2006;106:1286–95.

28. Greenson JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, et al. Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol. 2009;33:126–33.

29. Lam JS, Shvarts O, Said JW, Pantuck AJ, Seligson DB, Aldridge ME, et al. Clinicopathologic and molecular correlations of necrosis in the primary tumor of patients with renal cell carcinoma. Cancer. 2005;103:2517–25.

30. Llombart-Bosch A, Contesso G, Henry-Amar M, Lacombe MJ, Oberlin O, Dubousset J, et al.
Histopathological predictive factors in Ewing's sarcoma of bone and clinicopathological correlations. A retrospective study of 261 cases. Virchows Arch A Pathol Anat Histopathol. 1986;409:627–40.

31. Lee AH, Happerfield LC, Bobrow LG, Millis RR. Angiogenesis and inflammation in invasive carcinoma of the breast. J Clin Pathol. 1997;50:669–73.

32. Lewis JS, Landers RJ, Underwood JCE, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000;192:150–8.

33. Shindoh J, Andreou A, Aloia TA, Zimmitti G, Lauwers GY, Laurent A, et al. Microvascular invasion does not predict long-term survival in hepatocellular carcinoma up to 2 cm: reappraisal of the staging system for solitary tumors. Ann Surg Oncol. 2013;20:1223–9.

34. De Jaeger K, Merlo FM, Kavanagh MC, Fyles AW, Hedley D, Hill RP. Heterogeneity of tumor oxygenation: relationship to tumor necrosis, tumor size, and metastasis. Int J Radiat Oncol Biol Phys. 1998;42:717–21.

Figures
Figure 1

Histopathological features of tumor necrosis in primary solitary small hepatocellular carcinoma. Tumor necrosis in sHCC consisted of homogenous clusters of sheets of degenerating and dead cells, or coalescing groups of cells forming a coagulum, containing nuclear and cytoplasmic debris, with membrane integrity, intracellular organelle swelling (A-B, hematoxylin and eosin [H&E], original magnification ×4; C-D, H&E, ×20).
Figure 2

Tumor necrosis affecting postoperative survival of patients with small hepatocellular carcinoma (sHCC) (log-rank test). A, Tumor necrosis was associated with a decrease in overall survival (OS) of patients (P < 0.0001). B, Tumor necrosis was associated with a decrease in recurrence-free survival (RFS) of patients (P < 0.0001).
Figure 3

Kaplan-Meier survival curve comparing tumor necrosis affecting postoperative survival of patients with small hepatocellular carcinoma (shCC) stratified according to different tumor size, differentiation, serum AFP level and vascular invasion. A, E: Tumor necrosis was associated with a decrease in overall survival (OS) of patients with tumor size ≤ 2.5 cm, and a decrease in recurrence-free survival (RFS) of patients with tumor size ≤ 2.5 cm as well as > 2.5 cm (P = 0.0200, 0.0020, 0.0240, respectively). B, F: Tumor necrosis was associated
with a decrease in OS and RFS of patients with AFP level ≤ 20 ng/ml and > 20 ng/ml (P = 0.0090, 0.0030, 0.0060, 0.0020, respectively). C, G: Tumor necrosis was associated with a decrease in OS and RFS of patients with different tumor differentiation (P = 0.0210, < 0.0001, = 0.0110, < 0.0001, respectively). D, H: Tumor necrosis was associated with a decrease in OS and RFS of patients with or without vascular invasion (P = 0.0380, 0.0040, 0.0210, 0.0030, respectively).

Figure 4

The proposed prognostic model successfully stratified risk for survival prediction of patients with sHCC (log-rank test). Using this model, these sHCC patients were stratified into four groups: risk 1, n = 89; risk 2, n = 132; risk 3, n = 90; risk 4, n = 24. A, The RFS curves of the three groups were significantly different (P < 0.0001). B, The OS curves of the three groups were significantly different (P < 0.0001).