Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Guillain-Barré syndrome is infrequent among recipients of the BNT162b2 mRNA COVID-19 vaccine

Miguel García-Grimshaw¹, Anaclara Michel-Chávez, Juan Mauricio Vera-Zertuche, Javier Andrés Galnares-Olalde, Laura E. Hernández-Vanegas, Melissa Figueroa-Cucurachi, Orlando Paredes-Ceballos, Gustavo Reyes-Terán, Guillermo Carbayal-Sandoval, Santa Elizabeth Ceballos-Liceaga, Antonio Arauz, Sergio Iván Valdés-Ferrer

ABSTRACT

Vaccines are the most effective strategy to mitigate the global impact of COVID-19. However, vaccine hesitancy is common, particularly among minorities. Guillain-Barré syndrome (GBS) is the most common autoimmune disorder of the peripheral nervous system, resulting in flaccid paralysis and areflexia. GBS may occur spontaneously after bacterial or viral infections, and it has been historically linked to several vaccines, but epidemiological studies have not found a direct association between current vaccines and GBS. Globally, the annual estimated incidence rate of GBS in adults ranges from 0.84–1.91/100,000 persons/year; in a preliminary report, we observed an incidence of 0.18/100,000 administered doses during the prespecified timeframe of 30 days. No cases were reported after second-dose administration. Our data suggest that, among recipients of the BNT162b2 mRNA vaccine, GBS may occur at the expected community-based rate; however, this should be taken with caution as the current incidence of GBS among the unvaccinated population against COVID-19 is still undetermined. We hope that this preliminary data will increase the public perception of safety toward mRNA-based vaccines and reduce vaccine hesitancy.

1. Introduction

Within months after the first case of SARS-CoV-2 infection was detected, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) have demonstrated to reduce COVID-19 incidence and severity effectively. Despite the magnitude of the pandemic or the availability of effective vaccines, hesitancy toward vaccines is not uncommon, particularly, but not exclusively among minorities. Hypothetically, vaccines may lead to the loss of self-tolerance and autoimmunity disease and cause neural tissue damage, although, with current vaccines, the association is neither supported by empirical nor epidemiological data.

Guillain-Barré syndrome (GBS) is the most common autoimmune disorder of the peripheral nervous system, resulting in flaccid paralysis and areflexia. GBS may occur spontaneously after bacterial or viral infections, and it has been historically linked to several vaccines, but epidemiological studies have not found a direct association between current vaccines and GBS. Globally, the annual estimated incidence rate of GBS in adults ranges from 0.84–1.91/100,000 persons/year; in a preliminary report, we observed an incidence of 0.18/100,000 administered doses during the prespecified timeframe of 30 days. No cases were reported after second-dose administration. Our data suggest that, among recipients of the BNT162b2 mRNA vaccine, GBS may occur at the expected community-based rate; however, this should be taken with caution as the current incidence of GBS among the unvaccinated population against COVID-19 is still undetermined. We hope that this preliminary data will increase the public perception of safety toward mRNA-based vaccines and reduce vaccine hesitancy.
mRNA COVID-19 vaccine in Mexico in a larger nationwide cohort of ~3.9 million recipients, including recipients of one or both doses of the vaccine.

2. Material and methods

2.1. Study design

We conducted a nationwide, retrospective, observational cohort study evaluating GBS incidence among recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico. Cases were also classified according to the Brighton Collaboration Diagnostic Criteria for GBS presenting as an AEFI [15].

2.2. Cohort description

The Mexican Ministry of Health (Dirección General de Epidemiología; Secretaría de Salud, Gobierno de México) monitors and collects information on adverse events following immunization (AEFI); this database is updated every 24 h and includes every adverse event reported to the local, state, or federal authorities nationwide. Surveillance is carried out for 30 days after vaccine administration; vaccine-specific, clinical, and epidemiological data are recorded. This passive system relies on reports by the healthcare providers as well as vaccine recipients themselves.

2.3. Study interval

We included all cases of GBS reported to the Mexican Ministry of Health by recipients of the BNT162b2 mRNA COVID-19 vaccine between December 24, 2020, and March 19, 2021.

2.4. Ethics and data management

The study was revised and approved by the Ethics and Research Committees of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (Ref. NER-3667-20-21-1).

3. Results

During the study period, a total of 3,890,250 persons had received at least one dose of the BNT162b2 mRNA COVID-19 vaccine, and 613,780 had received both doses in Mexico [16]; among them, seven cases of GBS following immunization were reported nationwide, all after the first dose of the vaccine, for an observed incidence of 0.18/100,000 administered doses. Demographic information, pre-existing medical conditions, clinical presentation, treatment, and outcome data are summarized in Table 1. In four cases, a gastrointestinal or systemic infection preceded the appearance of neurologic symptoms; in two of those, infections were still present at GBS onset. In three cases, viral
infections were confirmed; one patient (case two) had self-limited diarrhea of infectious characteristics shortly before GBS onset, but an infectious agent could not be identified by stool culture or molecular methods during the in-hospital stay. In two cases (cases five and six), an associated trigger could not be determined, and case number seven had previously received an influenza vaccine 40 days before GBS symptoms onset. As of the day of this report, there has been only one death (case six), which was related to ventilator-associated pneumonia complicated with septic shock, and the remaining six patients had been discharged home.

4. Discussion

In this large (~3.9 million) and diverse cohort reflective of a population-wide immunization program, we observed that the BNT162b2 mRNA COVID-19 vaccine did might increase the risk of GBS when compared to the expected community-based incidence in Mexico [13]; however, this should be taken with caution as the current incidences of GBS among the unvaccinated population against COVID-19 are currently unknown. Also, a reduction of other infections due to public health mitigation strategies may have reduced the observed incidence in the non-immunized population [17].

Interestingly, in most cases, concurrent infectious triggers were detected, suggesting that gastrointestinal infections -and not vaccines- may be responsible for most cases. Among several infections that may people have received both vaccines in short succession without a subacute motor axonal neuropathy (AMAN) form. None of the four cases detected, suggesting that gastrointestinal infections and not vaccines- incidence in the non-immunized population [17].

Public health mitigation strategies may have reduced the observed cases previously received an influenza vaccine 40 days before GBS symptoms onset. As of the day of this report, there has been only one death (case five and six), an infectious agent could not be identified by stool culture or molecular methods during the in-hospital stay. In two cases (cases five and six), an associated trigger could not be determined, and case number seven had previously received an influenza vaccine.

5. Conclusions

Our data show that GBS is infrequent among recipients of the BNT162b2 vaccine. The presence of a concomitant trigger in most of our cases suggests a lack of mechanical connection between mRNA vaccines and GBS. This data from a large and diverse cohort indicates that at least considering GBS, mRNA vaccines are safe. Vaccines are our fastest and safest public health strategy to counter the pandemic. We hope that this data will strengthen the public perception of vaccine safety, helping to reduce vaccine hesitancy.

Acknowledgements

This study was funded by Consejo Nacional de Ciencia y Tecnología, Mexico (COVID-19 Fund; grant 311790), to SIV-F.
[19] S.K. Greene, M.D. Rett, C. Vellozzi, L. Li, M. Kulldorff, S.M. Marcy, M.F. Daley, E.A. Belongia, R. Baxter, B.H. Fireman, M.L. Jackson, S.B. Omer, J.D. Nordin, R. Jin, E.S. Weintraub, V. Vijayadeva, G.M. Lee, Guillain-Barré syndrome, influenza vaccination, and antecedent respiratory and gastrointestinal infections: a case-centered analysis in the vaccine safety datalink, 2009-2011, PLoS One 8 (2013) 2009–2011, https://doi.org/10.1371/journal.pone.0067185.

[20] K. Honda, D.R. Littman, The microbiota in adaptive immune homeostasis and disease, Nature. 535 (2016) 75-84, https://doi.org/10.1038/nature18848.