ORIGINAL RESEARCH

Cardiology

Incidence, delays, and outcomes of STEMI during COVID-19 outbreak: Analysis from the France PCI registry

Grégoire Rangé MD1 | Radwan Hakim MD1 | Farzin Beygui MD, PhD2 | Denis Angoulvant MD, PhD3 | Pierre Marcollet MD4 | Matthieu Godin MD5 | Ronan Deballon MD6 | Philippe Bonnet MD7 | Olivier Fichaux MD8 | Christophe Barbey MD9 | Louis Viallard MD10 | Pierre Francois Lesault MD11 | Eric Durand MD, PhD12 | Emmanuel Boiffard MD13 | Gerard Dutheil MD14 | Jean-Philippe Collet MD, PhD15 | Hakim Benamer MD16 | Philippe Commeau MD17 | Gilles Montalescot MD, PhD15 | Rene Koning MD5 | Pascal Motreff MD, PhD18

1 Cardiology department, Les hôpitaux de Chartres, Chartres, France
2 Cardiology Department, Centre Hospitalier Universitaire de Caen, Caen, France
3 Cardiology Department, Centre Hospitalier Universitaire de Tours, Tours, France
4 Cardiology Department, Centre Hospitalier Jacques Coeur, Bourges, France
5 Cardiology Department, Clinique Saint-Hilaire, Rouen, France
6 Cardiology Department, Clinique Oréliance, Orléans, France
7 Cardiology Department, Centre Hospitalier Le Havre, Le Havre, France
8 Cardiology Department, Centre Hospitalier Régional d’Orléans, Orléans, France
9 Cardiology Department, Nouvelle Clinique Tourangelle, Saint-Cyr-sur-Loire, France
10 Cardiology Department, Centre Hospitalier Henri Mondor, Aubervilliers, France
11 Cardiology Department, Hôpital privé de l’Estuaire, Le Havre, France
12 Cardiology Department, UNIROUEN, INSERM U1096, Rouen University Hospital, Department of Cardiology, Normandie Univ, FHU REMOD-VHF, Rouen F76000, France
13 Cardiology Department, Centre Hospitalier Départemental Vendée, La Roche-sur-Yon, France
14 Cardiology Department, Clinique Bergouignan, Evreux, France
15 Cardiology Department, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
16 Cardiology Department, Clinique de la Roseraie, Soissons, France
17 Cardiology Department, Polyclinique Les Fleurs, Ollioules, France
18 Cardiology Department, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France

Correspondence
Grégoire Rangé, MD, Department of Cardiology, Les Hôpitaux de Chartres, 4 rue Claude Bernard, Le Coudray, 28630, France.
Email: grange@ch-chartres.fr

Abstract

Objectives: The aim of this study was to assess the impact of the coronavirus disease 2019 (COVID-19) outbreak on incidence, delays, and outcomes of ST-elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PPCI) in France.

Methods: We analyzed all patients undergoing PPCI <24 hours STEMI included in the prospective France PCI registry. The 2 groups were compared on mean monthly
INTRODUCTION

1.1 Background

Acute ST-elevation myocardial infarction (STEMI) is the major cardiac emergency that most hospital cardiologists deal with daily. Rapid reperfusion of the culprit artery by primary percutaneous coronary intervention (PPCI) is recommended for optimal outcomes.\(^1\)\(^2\)

Emergency medical systems (EMS) are organized to minimize the time required to transfer patients to the catheterization laboratory (cath lab).\(^3\)

1.2 Importance

The coronavirus disease 2019 (COVID-19) outbreak has threatened European health care systems, potentially overshadowing other emergencies including STEMI. This has led to a change in the organization of the health care system for the management of patients without COVID-19. All non-emergency interventions have been downgraded and postponed. The Society for Cardiac Angiography and Interventions (SCAI) and the European Association of Percutaneous Cardiovascular Interventions (EAPCI) continue to recommend PPCI as the standard treatment of STEMI patients during the current pandemic.\(^4\)\(^5\) However, there are no data available on the effects of this strategy during a pandemic.

In many countries, a lockdown was imposed by the authorities in order to slow the progression of the virus and avoid hospital crowding. In France, the lockdown was implemented throughout the country. This situation may have discouraged patients from coming to the hospital. An impact on time from onset to first medical contact (FMC) for STEMI patients can be expected, but it may be influenced by opposing factors: overwhelmed EMSs would delay care, for example, but reduced intensity of road traffic would speed up transfer to care centers.

1.3 Goal of this investigation

The aim of this study was to assess the impact of the COVID-19 outbreak on incidence, delays, and outcomes of STEMI in patients undergoing PPCI in France.

METHODS

2.1 Registry design

The prospective multicenter France PCI registry, started on January 1, 2014, collects all patients undergoing coronary angiography or coronary angioplasty at 16 interventional cardiology centers (ICC) participating in 3 different French regions (Centre Val de Loire, Auvergne Rhône Alpes, and Normandie; Figure 1). The basic methodology for the France PCI registry (originally named CRAC) has been previously...
described. Out-of-hospital, clinical, and procedural data are collected prospectively by cardiologists at the time of the patient’s admission to ICC and recorded in electronic reporting software (CardioReport; CVX Medical, Croissy-Beaubourg, France). The data are of high quality, 99.6% of completeness and with 89% of consistency.6 The registry is registered with clinicaltrials.org (NCT02778724).

The study was conducted according to contemporary clinical practice guidelines and French regulations (Advisory Committee on Information Processing in Material Research in the Field of Health no. 13.245). The French Persons Protection Committee (IRB00003888) approved the study protocol (no. 15–231). Data file collection and storage were approved by the French National Commission for Data Protection and Liberties (no. 2014–073). All patients were informed of the aims of the survey. All included patients gave their informed consent to participate before data collection.

2.1.1 | Selection of subjects

The current analysis included all consecutive patients undergoing PCI for STEMI between January 15, 2019 and April 14, 2020. Four ICC centers that started their inclusion after January 15, 2019 and 1 center with incomplete data were excluded from the study. We also excluded fibrinolysis, late presentation STEMI (>24 hours), and patients without PCI. The study population was divided into 2 groups: the prelockdown group (patients included before March 15, 2020, that is, date of national lockdown announcement) and the lockdown group (patients included from March 15 to April 14, 2020).

2.1.2 | Follow-up

Patient follow-up was conducted by local on-site research technicians in the participating centers. Data were anonymized before automatic and daily transfer to the central France PCI database. Regional data monitoring was coordinated by the France PCI clinical research asso-
cariate. External independent quality control (appropriate procedures, completeness, and consistency of data) was made periodically at each site by a multicenter research assistant.

2.1.3 | Exposure

From March 16 to May 10, 2020, the French government ordered a large-scale lockdown to counter the wave of COVID-19 infections in the country. The lockdown halted non-essential economic, educational, and entertainment activities, mandated people to remain at home and venture out only for essential reasons. Food retailers and health care institutions remained operational.

During the COVID-19 outbreak and according to current guidelines, any STEMI patient was considered a carrier of COVID-19. Accordingly, additional measures were introduced for the care of this population, including systematic protection of health care personnel and careful questioning of the patient. In order not to lengthen delays, PPCI was carried out with all the precautions considering the patient as a suspect at COVID-19; testing for the virus and possibly chest computed tomography were performed only after the revascularization procedure. Patients were tested for the virus only if there was a clinical suspicion of COVID-19 infection. This approach was taken by all interventional centers in France.

2.2 | Outcome measures

The following outcomes were analyzed: (1) mean monthly number of patients undergoing PPCI for STEMI; (2) delays in the care pathway: patient delay, defined as the overall time from symptom onset to FMC; system delay, defined as the overall time from FMC to PPCI; and total ischemic time, defined as time from symptom onset to PPCI.

In-hospital outcomes were analyzed on a composite of death, definite stent thrombosis (Academic Research Consortium), myocardial infarction, unplanned coronary revascularization, stroke, and major bleeding (Bleeding Academic Research Consortium ≥3). FMC was defined as the time point for the qualifying electrocardiogram.

2.3 | Statistical analysis

A descriptive method was used for the data analysis. The comparisons between periods for categorical data were performed using chi-square or Fisher’s exact tests. A mixed model with random intercepts corrected for time as a continuous variable was used to estimate the percent change between periods. All tests were 2-sided, with a type I error set at 5%. All analyses were performed using Stata 15 (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC).

3 | RESULTS

From January 15, 2019 to April 14, 2020, 2064 STEMI patients undergoing PPCI were included: 1942 in the prelockdown group and 122 in the lockdown group (Figure 2). There were no significant differences in baseline characteristics between the 2 groups (Table 1). Only 2 patients in the lockdown group had a COVID-19 infection, confirmed by a positive reverse transcription polymerase chain reaction test. Cardiogenic shock was almost twice as common in the lockdown group (2.9% vs 5.7%; \(P = 0.07\)).

There was a significant difference between the mean numbers of STEMI patients undergoing PPCI per month in the prelockdown and
TABLE 1 Characteristics of STEMI patients undergoing PPCI according to lockdown period January 15, 2019 to April 14, 2020

Risk factors	Overall population (N = 2064)	Pre-lockdown group (N = 1942)	Lockdown group (N = 122)	P value			
N	%	N	%	N	%		
Age ≥75 years	489 (23.8)	463 (23.8)	26 (21.3)	0.52			
Age median [SD]	63.56 [54–73]	63.60 [54–73]	62.93 [54–72]	0.59			
Women	501 (24.3)	465 (23.9)	36 (29.5)	0.16			
BMI ≥25 kg/m²	1297 (63.8)	1226 (64.1)	71 (58.2)	0.18			
Diabetes mellitus	308 (15.2)	285 (14.9)	23 (19)	0.23			
Hypercholesterolemia	629 (33.4)	596 (33.8)	33 (28.2)	0.21			
Hypertension	857 (42.4)	802 (42.2)	55 (45.8)	0.43			
Current smoker	780 (38.4)	732 (38.3)	48 (39.7)	0.26			
Medical history							
Family history of CAD	409 (20.8)	387 (20.8)	25 (20.8)	0.98			
Prior myocardial infarction	140 (6.8)	135 (7)	5 (5)	0.22			
Prior PCI	247 (12)	236 (12.1)	11 (9)	0.29			
Prior CABG	35 (1.7)	35 (1.8)	0 (0)	0.13			
History of CADa	271 (13.1)	259 (13.3)	12 (9.8)	0.26			
History of PAD	77 (3.8)	73 (3.8)	4 (3.3)	0.75			
History of stroke	63 (3)	60 (3.1)	3 (2.5)	0.69			
History of CKD	61 (3.3)	55 (3.1)	6 (5.4)	0.20			
Clinical presentation							
COVID-19 status	2 (0.1)	0 (0)	2 (1.6)	/			
Ischemia localization							
Anterior	859 (42.5)	802 (42.7)	57 (46.7)	0.33			
Inferior or lateral	1161 (57.5)	1096 (57.7)	65 (53.3)	0.33			
LVEF < 40%	220 (22)	204 (21.9)	16 (23.9)	0.70			
Cardiogenic shock	63 (3)	56 (2.9)	7 (5.7)	0.07			
Cardiac arrest	65 (3.1)	60 (3.08)	5 (4.1)	/			
Prehospital pathway							
EMS call	1333 (64.6)	1258 (64.8)	75 (61.5)	0.45			
FMC							
EMS	1345 (65.3)	1270 (65.5)	75 (61.5)	0.21			
ED	535 (26)	504 (26)	31 (25.4)				
Others	181 (8.8)	165 (8.5)	16 (13.1)				
Optimal care pathwayb	813 (39.4)	764 (39.3)	49 (40.2)	0.85			
Preprocedure medication							
Antiplatelet therapy							
Aspirin	1985 (96.3)	1868 (96.2)	117 (96.7)	0.79			
P2Y12 inhibitor	1919 (93)	1803 (92.8)	116 (95.1)	0.34			
Heparin	1813 (87.9)	1700 (87.6)	113 (93.4)	0.05			
Procedural characteristics							
Radial access	1913 (92.7)	1803 (92.9)	110 (90.2)	0.26			
Number of diseased vessels				0.84			
0	5 (0.2)	5 (0.3)	0 (0)				
1	861 (41.7)	809 (41.7)	52 (42.6)				

(Continues)
TABLE 1 (Continued)

Overall population (N = 2064)	Pre-lockdown group (N = 1942)	Lockdown group (N = 122)	
N%	N%	N%	
≥2	1198	1128	70
	58	58.1	57.38
Left main	76	69	7
	3.7	3.5	5.7
N PCI site, mean	2064	1942	122
	1.30	1.29	1.37
Drug eluting stent	1817	1704	113
	88	87.7	92.6
N stents per procedure, mean	2064	1942	122
	1.27	1.26	1.37
AGP2b3a	469	444	25
	22.8	22.9	20.7
Thromboaspiration	455	432	23
	22	22.2	18.8
PCI success	2015	1898	117
	98.1	98.2	96

AGP2b3, antiglycoprotein 2b3a; BMI, body mass index; CABG, coronary arterial bypass graft; CAD, coronary artery disease; CKD, chronic kidney disease; COVID-19, coronavirus disease 2019; EMS, emergency medical system; ED, emergency department; FMC, first medical contact; LVEF, left ventricular ejection fraction; m [SD], mean (standard deviation); N, number; PAD, peripheral arterial disease; PCI, percutaneous coronary intervention; PPCI, primary percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction.

a Combination of the 3 previous variables.
b Pathway with only 1 medical practitioner before PCI.

TABLE 2 Incidence and pathway delays of STEMI patients undergoing PPCI according to lockdown period, from January 15, 2019 to April 14, 2020

Overall population (N = 2064)	Prelockdown group (N = 1942)	Lockdown group (N = 122)	
N Median or Mean	N Median or Mean	N Median or Mean	
Number of PPCI/month, mean	2064 138 [131;146]	1942 139	122 122
Patient delay, median			
Symptom onset to FMC (min)			
Overall population	2059 186 [51;100]	1937 181 [51;100]	122 263 [57;121]
According to FMC			
EMS	1343 155 [50;164]	1268 154 [50;164]	75 175 [51–176]
ED	532 251 [77;328]	501 238 [77;305]	31 450 [95;761]
Others	181 226 [15;281]	165 218 [12;280]	16 310 [72;329]
System delay, median			
FMC to PPCI (min)	2061 119 [69;137]	1939 119 [69;136]	122 125 [72;144]
Symptom onset to PPCI (min)	2040 296 [146;340]	1923 294 [145;340]	117 337 [160;360]

EMS, emergency medical system; ED, emergency department; FMC, first medical contact; min, minutes; N, number; PPCI, primary percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction.

the lockdown groups (139 vs 122; P < 0.04) (Table 2). The “symptom onset-FMC” delay in patients who presented directly to the ED was significantly longer in the lockdown group (450 minutes vs 238 minutes; P = 0.04). For the overall population, non-significant increases in symptom onset-to-FMC (181 minutes vs 263 minutes; P = 0.09), FMC-to-PPCI (119 minutes vs 125 minutes; P = 0.14), and symptom onset-to-PPCI delays (294 minutes vs 337 minutes; P = 0.16) were observed in the lockdown group. The median duration of hospitalization was similar in both groups: 5 days (range 3–7) versus 4 days (range 3–6), P = 0.30. Rates of in-hospital composite outcomes were higher in the lockdown group (7.7% vs 12.3% v; P = 0.06) and mortality almost doubled (4.9% vs 8.2%; P = 0.10) (Table 3) but the differences for these comparisons were not statistically significant.

3.1 Limitations

The main limitation of this study is the modest sample size and duration of follow-up in the postlockdown data that reduced the statistical power of the analysis. Several differences did not reach statistical
DISCUSSION

This is to the best of our knowledge the largest multicenter study to date to report data on pathway delays and in-hospital outcomes for STEMI patients during the COVID-19 outbreak. In addition to a significant 12% drop in the number of STEMI patients treated by PPCI in France, the “symptom onset-FMC” delay in patients who presented directly to the ED almost doubled during the COVID-19 period. However, the rate of fibrinolysis in our practice was very low (5.1% before lockdown and 2.4% during lockdown) and not likely to influence the results of the study. There is a possibility for bias if French patients became averse to seeking care prior to lockdown, as news spread about the pandemic. However, we did not find a decline in STEMI in the months prior to lockdown, which indicates that this did not happen. A final limitation is that only STEMI patients undergoing PPCI are included in the France PCI registry. Therefore, conservatively treated patients were not analyzed. However, patients who were suspected or positive for COVID-19 also received unrestricted PPCI.

4 | DISCUSSION

Table 3: In-hospital outcomes of STEMI patients undergoing PPCI according to lockdown period, from January 15, 2019 to April 14, 2020

Outcomes	Overall population (N = 2064)	Prelockdown group (N = 1942)	Lockdown group (N = 122)	P value			
	N	%	N	%	N	%	
Composite outcomes	164	7.9	149	7.7	15	12.3	0.06
Death	105	5.1	95	4.9	10	8.2	0.10
Definite stent thrombosis (ARC)	5	0.2	5	0.3	0	0	0.58
Urgent revascularization	20	1	18	0.9	2	1.8	0.37
Recurrent MI	21	1	20	1	1	0.9	0.88
Stroke	10	0.5	9	0.5	1	0.9	0.56
Severe bleeding ≥BARC 3)	41	2	38	2	3	2.6	0.60

ARC, Academic Research Consortium; BARC, Bleeding Academic Research Consortium; MI, myocardial infarction; PPCI, primary percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction.

The rural location of the centers participating in this study and the drop in STEMI immediately after the imposition of lockdown do not support an effect from air quality improvement. Stress may increase the risk of myocardial infarction but the impact of lockdown on mental or physical stress has been difficult to assess. In a recent French study, the population stress index doubled during the COVID-19 lockdown, which indicates that overall stress cannot explain the reduction in STEMs. Reduced physical activity during lockdown might have contributed to a decrease in the incidence of STEMI, but the size of the reduced incidence and the steep fall in cases very soon after lockdown make such an explanation unlikely.

Another potential explanation for our observations is under-detection of STEMIs in the community during lockdown. Patients may have feared infection at hospitals, postponing STEMI admissions. The trend toward increased symptom onset-FMC time observed in our study supports a change in patient behavior during the lockdown period. A reluctance of patients to present to hospital has been described for other medical emergencies such as stroke or transient ischemic attack. The tendency toward more presentations with greater hemodynamic instability in the lockdown group in our study may indicate that lower-risk or mildly symptomatic patients represent the greatest part of the “missing” STEMIs.

We observed the greatest “symptom onset-FMC” delay in patients presenting directly to emergency departments, which doubled during the lockdown period. A recent Asian small study warned about a significant increase in out-of-hospital and door-to-device delays for acute STEMI patients during the COVID-19 period. EMS are generally well equipped to minimize delays in transferring STEMI patients to the cath lab, but during an epidemic, these systems can be overwhelmed. For STEMI patients this would impose a double penalty: patients react later and the transfer time within the EMS is extended. Bespoke pathways in EDs for patients suspected of infection and for other emergencies may improve workflows during an epidemic.

Delayed reperfusion is a powerful predictor of adverse outcomes in STEMI patients. A recent publication reported mortality rate of...
73% in STEMI patients with COVID-19 in the United States and an Italian survey likewise report significantly higher mortality in patients admitted for myocardial infarction during the COVID-19 outbreak compared with the same period in 2019. In our cohort, the doubling of mortality in the lockdown group was not statistically significant, but this was possibly because of a modest sample size.

In conclusion, these data from the large multicenter France PCI registry show that the COVID-19 outbreak in France was associated with a significant decline in STEMI undergoing PPCI and longer transfer times for patients who presented directly to the ED. Mortality doubled but the difference was not statistically significant. With an ongoing second wave of COVID-19 infections, the reasons for this adverse situation need to be clearer identified in order to target appropriate actions to reduce inefficiencies in care delivery, as well as promote changes in patient awareness and behavior.

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTIONS
GR, PM, RK, and GM obtained research funding. GR, RH, and PM conceived and designed the study. GR, RH, and PM drafted the manuscript and all authors contributed substantially to its revision. All authors were involved in the execution of the study. GR takes responsibility for the paper as a whole.

ORCID
Grégoire Rangé MD https://orcid.org/0000-0001-7073-354X
Radwan Hakim MD https://orcid.org/0000-0002-4179-5554

REFERENCES
1. Cannon CP, Gibson CM, Lambrew CT, et al. Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 2000;283:2941-2947.
2. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomized trials. Lancet 2003;361:13-20.
3. Huber K, Gersh BI, Goldstein P, Granger CB, Armstrong PW. The organization, function, and outcomes of ST-elevation myocardial infarction networks worldwide: current state, unmet needs and future directions. Eur Heart J 2014;35:1526-1532.
4. Szerlip M, Anwaruddin S, Aronow HD, et al. Considerations for cardiac catheterization laboratory procedures during the COVID-19 pandemic. Perspectives from the Society for Cardiovascular Angiography and Interventions Emerging Leader Mentorship (SCAI ELM) Members and Graduates. Catheter Cardiovasc Interv 2020;96(3):586-597.
5. Chieffo A, Stefanini GG, Price S, et al. EAPCI position statement on invasive management of acute coronary syndromes during the COVID-19 pandemic. EuroIntervention 2020;16:233-246.
6. Rangé G, Chassaing S, Marcollet P, et al. The CRAC cohort model: A computerized low cost registry of interventional cardiology with daily update and long-term follow-up. Rev Epidemiol Sante Publique 2018;66:209-216.
7. Andreini D, Arbelo E, Barbato E, et al. ESC guidance for the diagnosis and management of CV disease during the COVID-19 pandemic. Available at https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance. Accessed April 22, 2020.
8. Ibanez B, James S, Agewall S, et al; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39:119-177.
9. Metzler B, Siostrzonek P, Binder RK, Bauer A, Reintaldsj S. Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: the pandemic response causes cardiac collateral damage. Eur Heart J 2020;41(19):1852-1853.
10. De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in patients with COVID-19 in the EU. Eur Heart J 2020;41(22):2083-2088.
11. Rodríguez-Leor O, CID-Álvarez B, Ojeda S, et al. Impact of the COVID-19 pandemic on interventional cardiology activity in Spain. REC Interv Cardiol 2020;2:82-89.
12. Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med 2020;383(7):691-693.
13. Cassin S, Escolano S, Mustafic H, et al. Short-term exposure to environmental parameters and onset of ST-elevation myocardial infarction. The CARDIO-ARIS registry. Int J Cardiol 2015;183:17-23.
14. Mustafic H, Jabre P, Cassin C, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 2012;307:713-721.
15. Gabbay FH, Krantz DS, Kop WJ, et al. Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking. J Am Coll Cardiol 1996;27:585-592.
16. Manoj MT, Joseph KA, Vijayaraghavan G. Association of depression, anxiety, and stress with myocardial infarction: A case-control study. J Clin Prev Cardiol 2018;7:86-92.
17. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 2020;395:912-920.
18. Chan-Chee C, Leon C, Lasbeur L, et al. The mental health of the French facing the COVID-19 crisis: prevalence, evolution and determinants of anxiety disorders during the first two weeks of lockdown (COVIPREV study, 23–25 March and 30 March-1 April, 2020. Bull Epidemiole Hebdom 2020;13:260-269.
19. Kansagara AP, Goyal MS, Hamilton S, Albers GW. Collateral effect of COVID-19 on stroke evaluation in the United States. N Engl J Med 2020;383(4):400-401.
20. Tam CC, Cheung KS, Lam S, et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes 2020;13:e006631.
21. Guercielloff A, Brener SJ, Maehara A, et al. Impact of delay to reperfusion on reperfusion success, infarct size, and clinical outcomes in patients with ST-segment elevation myocardial infarction. The INFUSE-AMI Trial (INFUSE-Anterior Myocardial Infarction). J Am Coll Cardiol Interv 2014;7:733-740.
22. De Luca G, Suryapranata H, Ottervanger JP, Antman EM. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation 2004;109:1223-1225.
23. Bangalore S, Sharma A, Slotwiner A. ST-Segment Elevation in patients with COVID-19 – A case series. N Engl J Med 2020;382(25):2478-2480.
AUTHOR BIOGRAPHY

Grégoire Rangé, MD is a cardiologist at Hôpitaux de Chartres, Chartres, France.

How to cite this article: Rangé G, Hakim R, Beygui F, et al. Incidence, delays and outcomes of STEMI during COVID-19 outbreak: Analysis from the France PCI registry. JACEP Open. 2020;1–9. https://doi.org/10.1002/emp2.12325