Crosstalk of carcinoembryonic antigen and transforming growth factor-β via their receptors: comparing human and canine cancer

Erika Jensen-Jarolim1 · Judit Fazekas1 · Josef Singer1 · Gerlinde Hofstetter1 · Kumiko Oida2 · Hiroshi Matsuda2 · Akane Tanaka2

Received: 12 December 2014 / Accepted: 19 March 2015 / Published online: 2 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract There is accumulating evidence that the transforming growth factor beta (TGF-β) and nuclear factor kappa-B (NFκB) pathways are tightly connected and play a key role in malignant transformation in cancer. Immune infiltration by regulatory T- and B-lymphocytes (Tregs, Bregs) has recently gained increased attention for being an important source of TGF-β. There is a plethora of studies examining the pro-tumorigenic functions of carcinoembryonic antigen (CEA), but its receptor CEAR is far less studied. So far, there is a single connecting report that TGF-β also may signal through CEAR. The crosstalk between cancer tissues is further complicated by the expression of CEAR and TGF-β receptors in stromal cells, and implications of TGF-β in epithelial–mesenchymal transition. Furthermore, tumor-infiltrating Tregs and Bregs may directly instruct cancer cells by secreting TGF-β binding to their CEAR. Therefore, both TGF-β and CEA may act synergistically in breast cancer and cause disease progression, and NFκB could be a common crossing point between their signaling. CEAR, TGF-β1–3, TGF-β-R types I–III and NFκB class I and II molecules have an outstanding human–canine sequence identity, and only a canine CEA homolog has not yet been identified. For these reasons, the dog may be a valid translational model patient for investigating the crosstalk of the interconnected CEA and TGF-β networks.

Keywords Carcinoembryonic antigen (CEA) · CEA-receptor (CEAR) · Transforming growth factor beta (TGF-β) · Cancer immunology · Regulatory · Nuclear factor kappa-B (NFκB)

Abbreviations

AAV Adeno-associated virus
Akt Protein kinase B
Breg Regulatory B-lymphocyte
CEA Carcinoembryonic antigen (CEACAM5)
CEACAM Carcinoembryonic antigen-related cell adhesion molecule
CEAR Carcinoembryonic antigen receptor
CEARL Carcinoembryonic antigen receptor, long isoform
CEARS Carcinoembryonic antigen receptor, short isoform
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor (ErbB1)
EMT Epithelial-to-mesenchymal transition
FGF Fibroblast growth factor
HER-2 Human epidermal growth factor receptor 2 (ErbB2)
HGF Hepatocyte growth factor
hnRNP M4 Heterogeneous nuclear ribonucleoprotein M4 (CEAR)
IGFs Insulin-like growth factors
IKK Inhibitor of nuclear factor kappa-B kinase
IKKb Inhibitor of nuclear factor kappa-B kinase subunit beta
IkB Inhibitor of kappa-B
IκBα Inhibitor of kappa-B subunit alpha
MDCK Madin–Darby canine kidney cell line
MEK Mitogen-activated protein kinase kinase
NFkB Nuclear factor kappa-B
PDGF Platelet-derived growth factor
RelA v-Rel avian reticuloendotheliosis viral oncogene homolog A
SMAD SMA and MAD homolog
TAB1 TAK1-binding protein 1
TAK1 Transforming growth factor-activated kinase-1
TGF-β Transforming growth factor beta
TGF-β-R Transforming growth factor beta receptor
Treg Regulatory T-lymphocyte

Introduction

The strategy of comparative oncology is to find homologous molecules, homologous signaling cascades and homologous immune mechanisms to cure cancer in both humans and pets according to the “One Health” principle [1]. Similar to humans, dogs spontaneously develop malignancies with comparable incidence and prevalence and hence represent a natural model for human cancer. For instance, a Swedish study on 80,000 insured female dogs reported that, dependent on higher age and breed, up to 13 % of female dogs had at least one mammary tumor, with an overall-case fatality of 6 % [2]. In humans, females in more highly developed areas have a cumulative risk of 7.1 % of developing mammary cancer by the age of 75, with a mortality rate of 1.7 % [3]. Mammary carcinoma, among others, is thus a burden in both human and veterinary medicines.

The rationale for favouring this tumor entity for comparative studies derives from the fact that it is wise to have access to primary lesions for monitoring tumor progression by caliper measurements. This facilitates the clinical investigations and also takes into consideration that only few centers have access to imaging facilities. Often more than one mamilla are affected in canine cancer patients and may be compared side by side.

It can further be expected that results from comparative oncology studies, investigating naturally occurring cancers due to distinct risk factors in distinct breeds, have a higher translational potential than studies with genetically highly homologous mouse strains [4]. For example, the epidermal growth factor receptor (EGFR) family members EGFR (ErbB1) and human epidermal growth factor receptor 2 (HER-2 (ErbB2)) are molecules of outstanding homology between humans and dogs, and targeting of these molecules results in the same effects on signaling and cancer biology in both species [5, 6].

A more intricate situation was observed for the carcinoembryonic antigen [CEA, also termed carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5)], which represents a classical soluble as well as membrane-expressed tumor marker in human clinical oncology. Serum levels of soluble human CEA correlate with disease progression [7], and its assessment is recommended in monitoring the treatment course of colorectal cancer in combination with other prognostic markers [8, 9]. However, CEA molecules are structurally and evolutionarily diverse between humans and canines [10, 11]. A direct CEA homolog in dogs has not yet been defined and represents “a missing link” (Table 1). In contrast, overexpression of CEA in humans has been known for over 20 years to play an important role in metastasis and cell motility [12] by acting as a ligand for E- and L-selectins.

Table 1 Interspecies amino acid sequence comparisons

Molecule	Human	Canine	Sequence identity (%)	Sequence similarity (%)
CEAR	HNRPM_HUMAN	XP_005633012.1	99.3	99.5
CEA (CEACAM5)	CEAM5_HUMAN	n.d. [20]	-	-
TGF-β-RI	TGFR1_HUMAN	F1PS63_CANFA	91.8	92.2
TGF-β-RII	TGFR2_HUMAN	F1PNA9_CANFA	87.4	90.3
TGF-β-RIII	TGFR3_HUMAN	F1PGB0_CANFA	88.6	93.0
TGF-β1	TGFB1_HUMAN	TGFB1-CANFA	94.1	96.7
TGF-β2	TGFB2_HUMAN	F1PKH0_CANFA	99.5	99.8
TGF-β3	TGFB3_HUMAN	F1PR85_CANFA	88.4	89.5
NFXB1	NFXB1_HUMAN	NFXB1_CANFA	91.0	94.2
NFXB2	NFXB2_HUMAN	E2RLL2_CANFA	92.3	94.9
RelA	TF65_HUMAN	F1PCU1_CANFA	91.2	93.5

Sequences were from UniProt (http://www.uniprot.org/uniprot/) and from the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/protein). Sequences were aligned using a Needleman–Wunsch algorithm (http://www.ebi.ac.uk/Tools/psa/) with a BLOSUM 62 matrix; gap penalty and end penalty were defined as 10.0 and 0.5, respectively.

© Springer
CEAR binds TGF-β, a cytokine involved in tolerance induction toward malignant tissue

The scientific history of the carcinoembryonic antigen receptor (CEAR) is much more recent. Interestingly, CEAR showed an outstanding sequence identity of 99% between the human and canine species [20] (Table 1). The great CEA-receptor homology of humans and dogs on the one hand and the lack of a precise canine CEA equivalent on the other hand are discrepancies and indicate that there could be an alternative ligand. The CEAR was originally described in Kupffer cells and identified as the heterogeneous nuclear ribonucleoprotein M4 (hnRNP M4) [21]. Regarding oncology, it was later also found on colon cancer cells [22]. Moreover, its expression was subsequently also detected in mice in the entire gastrointestinal tract including liver and pancreas [23]. CEAR expression has been connected to inflammation in the liver [24]. CECAM1, CEACAM5 and CEACAM6 may be released from epithelial tumors in microvesicles, whereas tumor endothelia only contain CEACAM1 which has a receptor function for other CEACAMs, influences T cell behavior [17] and regulates the tumor matrix and microvascularization [18]. Hence, CEA may affect the tumor and its stroma at the same time [19].

TGF-β sources and its function in the tumor

Three high-affinity membrane-bound receptors for TGF-β are known so far: type I, type II and type III. The classical TGF-β signaling, however, occurs via the heterotetrameric complex of 2 TGF-β-receptor (TGF-β-R) type I and 2 TGF-β-receptor type II transmembrane receptors with serine/threonine kinase activity [27–29]. In the tumor microenvironment, TGF-β is most typically derived from human and canine Foxp3+ regulatory T cells (Tregs). It is well known that Tregs can thereby critically dampen antitumor immunity and tolerize cytotoxic T cells [30–34]. More recently, intratumoral regulatory B cells (Bregs) have gained attention in human oncology [35, 36]. According to Olkhanud et al. [37], tumor-evoked Bregs should phenotypically resemble activated mature B2 cells (CD19+CD25hiCD69hi). Lindner et al. [36] reported that intratumoral Bregs also express granzyme-B (stimulated by IL-21 from Tregs) and a signature of CD19+CD38+CD1d+IgM+CD147+, as well as including IL-10, CD25 and indoleamine-2,3-dioxygenase. This population seems interesting as a source of TGF-β and for their capacity to suppress intratumoral CD8+ and CD4+ effector T cells. Bregs can even convert naïve CD4+CD25− T cells to Foxp3+ Tregs [37]. TGF-β, however, may also be derived from tumor stroma cells [19, 38], where it shapes the microenvironment by interacting with growth factors (epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF) [39]), cytokines or...
into Rag− mice only in the presence of TGF-β-positive tumors [47]. Thus, the intratumoral milieu amplifies the cellular sources for even more immunosuppressive cytokines. It has been recently shown that elevated levels of TGF-β and IL-6 in the tumor microenvironment support Th17 cells and that the resulting inflammation was supporting the clinical development and progression of gastric cancer [48]. Although Li et al. have shown that CEA binds to TGF-β-R [26], it has not yet been investigated whether the reverse is true, and TGF-β (besides acting via its own TGF-β-R) may crosstalk via CEAR, thereby imitating the tumor-progressive properties of CEA. CEA modulates effector-target interaction by binding to lymphocytes [49]. Only CEACAM1 expression was previously described in T cells [50], whereas the expression of CEACAM5 on T cells was excluded. Regarding this, we are not aware of investigations on the expression of CEAR on T- or B-lymphocytes.

TGF-β signaling

In contrast to CEAR, the cellular signaling function of which has to the best of our knowledge not yet been reported, the signaling cascade for the TGF-β-R is well known. The nuclear factor kappa-B (NFκB) is a key master regulator in growth and survival [51, 52]. In normal cells, TGF-β leads to growth inhibition; in short: TGF-β binds to TGF-β-RII, activating TGF-β-RI and then phosphorylating the SMA and MAD homologs SMAD2 and SMAD3, which associate with SMAD4 and together translocate to the nucleus for transcription of genes. All of this is inhibited by SMAD7 [53]. Interestingly, the TGF-β-R-initiated SMAD pathway was shown to target CEACAM5 (and CEACAM6) genes leading to CEA secretion as a mechanism for proliferation in gastric cancer cells [54]. It will be interesting in the future to investigate whether a synergistic crosstalk between the CEA and TGF-β signaling cascades in cancer cells exists.

In human head and neck squamous cell carcinoma cell lines, Freudlsperger et al. [53] could further demonstrate that TGF-β signaling resulted in a sequential phosphorylation of the transforming growth factor-activated kinase-1 (TAK1), inhibitor of nuclear factor kappa-B kinase (IKK), inhibitor of kappa-B subunit alpha (IκBα) and the v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA); however, the crosstalk to CEA was not addressed in this study. Nor did this study address the consecutive activation of TAK1/mitogen-activated protein kinase kinase (MEK)/protein kinase B (AKT)/NFκB and SMAD pathways upon TGF-β stimulation as Gingery et al. [55] did in osteoclasts.

In human cancers, mutations in the TGF-β pathways (e.g., TGF-β-RII or SMAD4) are frequently observed [56]. A recent study has indicated that, although most tested colorectal cancer cells displayed an inactivated TGF-β signaling pathway, they actively secreted TGF-β on stromal cells and were thus driving metastasis [57]. In other cancer cell types, TGF-β signaling is intact, but aberrant NFκB activation and NFκB/RelA stimulate proliferation. In this respect, it should be emphasized that NFκB is constitutively activated in a number of hematologic and solid tumors and is one of the major transcription factors associated with cancer progression, inhibition of apoptosis, limitless replicative potential, tissue invasion and metastasis [58].

The TGF-β-R and NFκB pathways are connected via the TAK-1, which (independently, but parallel to SMAD activation) by phosphorylating IKK can directly stimulate the nuclear factor-κB (NFκB) pathway [55]. It is tempting to speculate that CEA may induce similar signals by interacting with TGF-β-R [26]. TAK1 was expressed in head and neck cancers, where nuclear activation of RelA of the NFκB family also took place. TGF-β-induced sequential phosphorylation of several targets including TAK1, IKK, IκBα and RelA; additionally, TAK1 again enhanced TGF-β-induced NFκB activation [53]. In human neutrophils, a constitutive association of TAK1 and inhibitor of kappa-B (IkBα) was recently reported, indicating a close association of these pathways in inflammatory cells [59]. Neil et al. could show that the TAK1-binding protein 1 (TAB 1) forms complexes with IkB kinase b (IKKb) resulting in stimulation of the TAK1:IKKb:RelA pathway. The authors concluded that this
axis, including the NFκB elements, is pivotal in the oncogenic transformation of breast cancer [60]. The fact that NFκB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells may additionally complicate the situation [61].

Conclusion

Generally, the dog represents an optimal model organism to study cancer biology in a comparative setting, as many genes represent a great degree of homology to their human counterparts [62]. Even with respect to noncoding RNAs, the significance of similarities between human and dog has recently been acknowledged [63]. Furthermore, the intriguing amino acid homogeneity among human and canine CEA and TGF-β isoforms, NFκB and RelA are given in Table 1, indicating again an advantage of the dog patient in comparative oncology.

We propose that understanding of the crosstalk between CEA and TGF-β signaling toward NFκB as a key cancer regulator, as well as understanding of the Treg and Breg action in tumor tissue, should be extended, possibly with prognostic value. The dog may be a relevant translational model to study these interactions, in line with the comparative oncologic value. The dog may be a relevant translational model to study these interactions, in line with the comparative oncologic value. The dog may be a relevant translational model to study these interactions, in line with the comparative oncologic value. The dog may be a relevant translational model to study these interactions, in line with the comparative oncologic value.

Acknowledgments The authors were supported by Project P23398-B11 of the Austrian Science Fund (FWF), Judit Fazekas by the Cell Communication in Health and Disease (CCHD) PhD Program W1205-B09 of the Austrian Science Fund (FWF). We would like to thank Mrs. Amelia Wein for proofreading the manuscript.

Conflict of interest The authors declare that they have no conflict of interest pertaining to the contents of this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. (The American Veterinary Medical Association) One health initiative task force. One health: a new professional imperative. https://www.avma.org/KB/Resources/Reports/Documents/one-health_final.pdf. Accessed Sept 27 2013
2. Eggervall A, Bonnett BN, Oghen P, Olson P, Hedhammar A, von Euler H (2005) Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Prev Vet Med 69:109–127. doi:10.1016/j. prevetmed.2005.01.014
3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107
4. Richter SH, Garper JP, Auer C, Kunert J, Wurbel H (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168. doi:10.1038/nmeth0310-167
5. Singer J, Weichselbaum M, Stockner T et al (2012) Comparative oncology: ErbB-1 and ErbB-2 homologues in canine tumors are susceptible to cetuximab and trastuzumab targeting. Mol Immunol 50:200–209. doi:10.1016/j.molimm.2012.01.002
6. Singer J, Fazekas J, Wang W et al (2014) Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients. Mol Cancer Ther 13:1777–1790. doi:10.1158/1535-7163.MCT-13-0288
7. Iwanicki-Canion I, Di Fiore F, Roque I et al (2008) Usefulness of the serum carcinoembryonic antigen kinetic for chemotherapy monitoring in patients with unresectable metastasis of colorectal cancer. J Clin Oncol 26:3681–3686. doi:10.1200/jco.2007.15.0904
8. Bast RC, Ravdin P, Hayes DF et al (2001) 2000 Update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American society of clinical oncology®. J Clin Oncol 19:1865–1878
9. Ogoshi K, Miyaji M, Nakamura K, Kondoh Y, Makuxhi H, Tajima T (1998) Immunotherapy and combined assay of serum levels of carcinoembryonic antigen and acute-phase reactants. Cancer Immunol Immunother : CII 46:14–20
10. Zehbauser R, Kammerer R, Eisenried A, McLellan A, Moore T, Zimmermann W (2005) Identification of a novel group of evolutionary conserved members within the rapidly diverging murine Cea family. Genomics 86:566–580. doi:10.1016/j.ygeno.2005.07.008
11. Kammerer R, Popp T, Hartle S, Singer BB, Zimmermann W (2007) Species-specific evolution of immune receptor tyrosine based activation motif-containing CEACAM1-related immune receptors in the dog. BMC Evol Biol 7:196. doi:10.1186/1471-2148-7-196
12. Hostetter RB, Augustus LB, Mankarious R, Chi K, Fan D, Toth C, Thomas P, Jessup JM (1990) Carcinoembryonic antigen as a selective enhancer of colorectal cancer metastasis. J Natl Cancer Inst 82:380–385. doi:10.1093/jnci/82.5.380
13. Thomas SN, Zhu F, Schnaar RL, Alves CS, Kontopoulous K (2008) Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow. J Biol Chem 283:15647–15655. doi:10.1074/jbc.M800543200
14. Bajenova O, Chaika N, Tolkunova E, Davydov-Sinitsyn A, Gapon S, Thomas P, O’Brien S (2014) Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes. Exp Cell Res 324:115–123. doi:10.1016/j.yexcr.2014.04.007
15. Triozzi PL, Aldrich W, Ponnazhanag H (2011) Inhibition and promotion of tumor growth with adeno-associated virus carcinoembryonic antigen vaccine and Toll-like receptor agonists. Cancer Gene Ther 18:850–858. doi:10.1038/cgt.2011.54
16. Witzens-Harig M, Hose D, Junger S et al (2013) Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood 121:4493–4503. doi:10.1182/blood-2012-05-429415
17. Muturi HT, Dressen JD, Nilewski E, Jastrow H, Giebel B, Ergun S, Singer BB (2013) Tumor and endothelial cell-derived microvesicles carry distinct CEACAMS and influence T-cell behavior. PLoS One 8:e74654. doi:10.1371/journal.pone.0074654
18. Muller MM, Singer BB, Kliae E, Obrink B, Lucka L (2005) Transmembrane CEACAM1 affects integrin-dependent signaling and regulates extracellular matrix protein-specific morphology and migration of endothelial cells. Blood 105:3925–3934. doi:10.1182/blood-2004-09-3618
19. Vannucci L (2014) Stroma as an active player in the development of the tumor microenvironment. Cancer Microenviron. doi:10.1007/s12307-014-0150-x

20. Weichselbaum M, Willmann M, Reifinger M et al (2011) Phylogenetic discourse of human and canine carcinoembryonic antigen (CEA, CEACAM) families, but striking identity of the CEA receptors will impact comparative oncology studies. PLoS Curr 3:RRN1223. doi:10.1371/currents.RRN1223

21. Bajenova OV, Zimmer R, Stolper E, Salisbury-Roswell J, Nanchao A, Thomas P (2001) Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells. J Biol Chem 276:31067–31073. doi:10.1074/jbc.M104093200

22. Lagutina L, Bajenova O, Bowden E, Sayyah J, Thomas P, Juhl H (2005) Surface expression and CEA binding of hRNPM M4 protein in HT29 colon cancer cells. Anticancer Res 25:23–31

23. Zhao HM, Zhang S, Gao F (2010) Expression of carcinoembryonic antigen receptor in digestive organs. Zhonghua Wei Chang Wai Ke Za Zhi 13:608–611

24. Thomas P, Forse RA, Bajenova O (2011) Carcinoembryonic antigen (CEA) and its receptor hRNPM M are mediators of metastasis and the inflammatory response in the liver. Clin Exp Metastasis 28:923–932. doi:10.1007/s10585-011-9419-3

25. Palermo NY, Thomas P, Murphy RF, Lovas S (2012) Hexapeptide fragment of carcinoembryonic antigen which acts as an agonist of heterogeneous ribonucleoprotein M. J Pept Sci 18:252–260. doi:10.1002/psc.2393

26. Li Y, Cao H, Xiao Z, Pakala SB, Sirigiri DN, Li W, Kumar R, Mishra J (2010) Carcinoembryonic antigen interacts with TGF-β[beta] receptor and inhibits TGF-β[beta] signaling in colorectal cancers. Cancer Res 70:8159–8168. doi:10.1158/0008-5472.CAN-10-1073

27. Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP (2002) Crystal structure of the human TbetaR2 ectodomain–TGF-β3[beta]3 complex. Nat Struct Biol 9:203–208. doi:10.1038/msb766

28. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho A, Thomas P, Forse RA, Bajenova O (2011) Carcinoembryonic antigen (CEA, CEACAM) families, but striking identity of the CEA receptors will impact comparative oncology studies. PLoS Curr 3:RRN1223. doi:10.1371/currents.RRN1223

29. Huang T, David L, Mendoza V et al (2011) TGF-β signalling is mediated by two autonomously functioning TβRII: TβRII pairs. EMBO J 30:1263–1276. doi:10.1038/emboj.2011.54

30. Adeegbe DO, Nishikawa H (2014) Regulatory T cell subsets in human cancer. Front Immunol 4:190. doi:10.3389/fimmu.2013.00190

31. Carvalho MI, Pires I, Prada J, Queiroga FL (2014) A role for TGF-beta induced epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-beta. Int J Cancer 134:2583–2594. doi:10.1002/ijc.28598

32. O'Neill K, Guth A, Biller B, Elmslie R, Dow S (2009) Changes in regulatory T cells in dogs with cancer and associations with tumor type. J Vet Intern Med 23:875–881. doi:10.1111/j.1939-1676.2009.0333.x

33. Pinheiro D, Chang YM, Bryant H et al (2014) Dissecting the regulatory microenvironment of a large animal model of non-Hodgkin lymphoma: evidence of a negative prognostic impact of FOXP3 + T cells in canine B cell lymphoma. PLoS One 9:e105027. doi:10.1371/journal.pone.0105027

34. Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother: CII 63:67–72. doi:10.1007/s00262-013-1490-y

35. Biragyn A, Lee-Chang C, Bodogai M (2014) Generation and identification of tumor-evoked regulatory B cells. Methods Mol Biol 1190:271–289. doi:10.1007/978-1-4939-1161-5_19

36. Lindner S, Dahlke K, Sontheimer K et al (2013) Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res 73:2468–2479. doi:10.1158/0008-5472.CAN-12-3450

37. Olkhanad PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, Malchinkhuu E, Wersto RP, Biragyn A (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res 71:3505–3515. doi:10.1158/0008-5472.CAN-10-4316

38. Mele V, Muraro MG, Calabrese D et al (2014) Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-beta. Int J Cancer 134:2583–2594. doi:10.1002/ijc.28598

39. Lee C, Jia Z, Rahmatpanah F, Zhang Q, Zi X, McClelland M, Mercola D (2014) Role of the adjacent stroma cells in prostate cancer development and progression: synergy between TGF-beta and IGF signaling. Biomed Res Int 2014:502093. doi:10.1155/2014/502093

40. Zhang J, Wang Y, Li D, Jing S (2014) Notch and TGF-beta/Smad3 pathways are involved in the interaction between cancer cells and cancer-associated fibroblasts in papillary thyroid carcinoma. Tumour Biol 35:379–385. doi:10.1007/s13277-013-1053-z

41. Gupta DK, Singh N, Sahu DK (2014) TGF-beta mediated cross-talk between malignant hepatocyte and tumor microenvironment in hepatocellular carcinoma. Cancer Growth Metastasis 7:1–8. doi:10.4137/CGM.S14205

42. Cui S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA (2010) Metformin against TGF-beta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle 9:4461–4468

43. Dunning NL, Laversin SA, Miles AK, Rees RC (2011) Immunotherapy of prostate cancer: should we be targeting stem cells and EMT? Cancer Immunol Immunother: CI60:1181–1193. doi:10.1007/s00262-011-1065-8

44. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751. doi:10.1038/onc.2010.215

45. Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-beta upregulates mir-181a expression to promote breast cancer metastasis. J Clin Investig 123:150–163. doi:10.1172/JCI64946

46. Kim JH, Hur JH, Lee SM, Im KS, Kim NH, Sur JH (2012) Correlation of Foxp3 positive regulatory T cells with prognostic factors in canine mammary carcinomas. Vet J 193:222–227. doi:10.1016/j.tvjl.2011.10.022

47. Moo-Young TA, Larson JW, Belt BA, Tan MC, Hawkins WG, Eberlein TJ, Goedegebuure PS, Linehan DC (2009) Tumor-derived TGF-beta mediates conversion of CD4 + Foxp3 + regulatory T cells in a murine model of pancreas cancer. J Immunother 32:12–21. doi:10.1097/CJI.0b013e31819913c

48. Li Q, Li Q, Chen J et al (2013) Prevalence of Th17 and Treg cells in gastric cancer patients and its correlation with clinical parameters. Oncol Rep 30(3):1215–1222. doi:10.3892/or.2013.2570

49. Kammerer R, von Kleist S (1996) The carcinoembryonic antigen (CEA) modulates effector-target cell interaction by binding to activated lymphocytes. Int J Cancer 68:457–463. doi:10.1002/ (SICI)1097-0215(19961115)68:4<457:AID-IJC10>3.0.CO;2-2

50. Chen L, Chen Z, Baker K et al (2012) The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction. Immunity 37:930–946. doi:10.1016/j.immuni.2012.07.016

51. Oechringhaus A, Hayden MS, Ghosh S (2011) Crosstalk in the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ 18:4401870
53. Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X, Chen Z, Van Waes C (2013) TGF-beta and NF-kappaB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene 32:1549–1559. doi:10.1038/onc.2012.171

54. Han SU, Kwak TH, Her KH et al (2008) CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-beta signaling. Oncogene 27:675–683. doi:10.1038/sj.onc.1210686

55. Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ (2008) TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res 314:2725–2738. doi:10.1016/j.yexcr.2008.06.006

56. Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23:2078–2093. doi:10.1200/JCO.2005.02.047

57. Calon A, Espinet E, Palomo-Ponce S et al (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584. doi:10.1016/j.ccr.2012.08.013

58. Naugler WE, Karin M (2008) NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26. doi:10.1016/j.gde.2008.01.020

59. Ear T, Fortin CF, Simard FA, McDonald PP (2010) Constitutive association of TGF-beta-activated kinase 1 with the IkappaB kinase complex in the nucleus and cytoplasm of human neutrophils and its impact on downstream processes. J Immunol 184:3897–3906. doi:10.4049/jimmunol.0902958

60. Neil JR, Schiemann WP (2008) Altered TAB 1: IkappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res 68:1462–1470. doi:10.1158/0008-5472.CAN-07-3094

61. Oida K, Matsuda A, Jung K et al (2014) Nuclear factor-kB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells. Sci Rep 4:4057. doi:10.1038/srep04057

62. Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. doi:10.1038/nature04338

63. Wagner S, Willenbrock S, Nolte I, Murua Escobar H (2013) Comparison of non-coding RNAs in human and canine cancer. Front Genet 4:46. doi:10.3389/fgene.2013.00046

64. Riccardo F, Aurisicchio L, Impellizzeri JA, Cavallo F (2015) The importance of comparative oncology in translational medicine. Cancer Immunol Immunother: CII 64:137–148. doi:10.1007/s00262-014-1645-5