Odd harmonious labeling of $S_n(m,r)$ graph

E A Pramesti and Purwanto

Department of Mathematics, Universitas Negeri Malang,
Jalan Semarang 5, Malang, 65145, Indonesia

E-mail: purwanto.fmipa@um.ac.id, eggy.arie.p@gmail.com

Abstract. A graph labeling is an assignment of integers to vertices or edges of a graph subject to certain conditions. There are various kinds of graph labeling, one of them is an odd harmonious labeling. An odd harmonious labeling ℓ of a graph G on q edges is an injective function ℓ from the set of vertices of G to the set $\{0,1,2,\ldots,2q-1\}$ such that the induced function ℓ^*, where $\ell^*(uv) = \ell(u) + \ell(v)$ for every edge uv of G, is a bijection from the set of edges of G to $\{1,3,5,\ldots,2q-1\}$. A graph is said to be odd harmonious if it admits an odd harmonious labeling. A graph $S_n(m,r)$ is a graph formed from r stars, each of which has $n + 1$ vertices, and every center of the star is joined to one new vertex v_0 by a path of length m. In this paper we show that the graph $S_n(m,r)$, $m \geq 2$, $1 \leq r \leq 3$, is odd harmonious.

1. Introduction

Graph theory is a branch of mathematics that many people work on it. In this paper, we only consider finite and simple graph. We follow that of Diestel [1] for most part of notation and terminology. Here, G denotes a graph, $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. When A is a set, then cardinality of A is denoted by $|A|$. Hence, $|V(G)|$ and $|E(G)|$ are the number of vertices and the number of edges of G, respectively.

One of the topics in graph theory is graph labeling. Graph labeling was first introduced in the mid 1960’s. The definition of graph labeling can be found in Gallian [3]; it is an assignment of integers to the vertices or edges subject to certain conditions. More than 2800 papers on graph labelings have been published [3].

There are many types of graph labelling. In this paper we discuss about odd harmonious labeling. The definition of odd harmonious labeling can be found in [8]. A graph G with $|V(G)| = p$ and $|E(G)| = q$ is said to be odd harmonious if there is an injective function $\ell: V(G) \to \{0,1,2,\ldots,2q-1\}$ such that induce a function $\ell^*: E(G) \to \{1,3,5,\ldots,2q-1\}$, defined by $\ell^*(uv) = \ell(u) + \ell(v)$, is bijective. The function ℓ is called an odd harmonious labelling of G.

Jeyanthi and Philo [4, 5] studied odd harmonious labeling of certain graphs, including subdivided shell graphs. Further, Jeyanthi, et al. [6] studied odd harmonious labeling of super subdivision graphs, and Jeyanti, et al. [7] studied odd harmonious labeling of grid graphs. Liang and Bai [8] have studied some classes of graphs, including path, cycles, complete graphs, complete k-partite graphs, and windmill graphs. Selvaraju, et al. [9] studied odd harmonious labeling of some path related graphs. Vaidya and Shah [10] studied odd harmonious labeling of some graphs including shadow graph and splitting graph. Recently, Febriana and Sugeng [2] studied odd harmonious labeling on squid graph and double squid graph.
Let \(n, m \) and \(r \) be positive integers. A graph \(S_n(m,r) \) is a graph formed from \(r \) stars, each of which has \(n + 1 \) vertices, and every center of the star is joined to one new vertex \(v_0 \) by a path of length \(m \). From the above discussion, we can see that the odd harmonious labeling of \(S_n(m,r) \) has not been studied. In this paper we study the odd harmonious labeling of \(S_n(m,r) \) for the case \(m \geq 2, 1 \leq r \leq 3 \), and show that \(S_n(m,r) \) is odd harmonious. A special case, when \(n = r = 1 \), graph \(S_n(m,r) \) is a path. Liang and Bai [8] say that paths are odd harmonious.

2. Main results
Our result is on odd harmonious labeling of \(S_n(m,r) \), where \(m \geq 2 \) and \(1 \leq r \leq 3 \). We show that the graph \(S_n(m,r) \) is odd harmonious. First, we define a vertex labeling \(f \), a function from \(V(S_n(m,r)) \) to \(\{0,1,2,...,2q-1\} \), where \(q \) is the number of edges. Then, we show that this function is injective. Further, we show the induced function function \(f^*:E(G)\to\{1,3,5,...,2q-1\} \), defined by \(f^*(uv) = f(u) + f(v) \), is bijective. Since \(|E(G)| = q = \{1,3,5,...,2q-1\} \), to show that \(f^* \) is bijective, it is sufficient to show that \(f^* \) is injective. We divide it on three cases, when \(r = 1 \), \(r = 2 \), and \(r = 3 \).

Our first result is for the case \(r = 1 \).

Theorem 1. Let \(m, n \) be positive integer and \(r = 1 \). Graph \(S_n(m,1) \) is odd harmonious.

Proof:
Let graph \(S_n(m,1) \) have vertex set
\[
V(S_n(m,1)) = \{v_i^1|1 \leq i \leq n\} \cup \{v_i^1|1 \leq i \leq m\} \cup \{v_0\}
\]
and edge set
\[
E(S_n(m,1)) = \{v_i^1v_j^1|1 \leq i \leq n\} \cup \{v_i^1v_i^{1+1}|1 \leq i \leq m - 1\} \cup \{v_m^1v_0\}
\]
As in Figure 1.

![Figure 1. S_n(m,1) graph.](image)

We have, the number of vertices is
\[
p = |V(S_n(m,1))| = m + n + 1
\]
and the number of edges is
\[
q = |E(S_n(m,1))| = m + n.
\]
Define \(f \), a vertex labelling, \(f:V(S_n(m,1))\to\{0,1,2,...,2q-1\} \) as follow:
\[
f(v_i^1) = 2(i-1), \quad 1 \leq i \leq n
\]
\[
f(v_i^1) = \begin{cases}
 i, & \text{when } i \text{ is odd, } 1 \leq i \leq m \\
 2(n - 1) + i, & \text{when } i \text{ is even, } 1 \leq i \leq m \\
 m + 2n - 1, & \text{when } m \text{ is odd}
\end{cases}
\]
\[
f(v_0) = \begin{cases}
 m + 1, & \text{when } m \text{ is even}
\end{cases}
\]
We show will that all the values of \(f \) are different. It is easy to see that the odd values of \(f \) are different, \(f(v^1_i) = i \) when \(i \) is odd, and \(1 \leq i \leq m \); and \(f(v_0) = m + 1 \) when \(m \) is even. The even values of \(f \) are \(f(v^1_i) = 2(i - 1) \leq 2n - 2 \) when \(1 \leq i \leq n \); \(f(v^2_i) \), \(2n \leq f(v^2_i) \leq 2n + m - 2 \), when \(1 \leq i \leq m \); and \(f(v_0) = 2n + m - 1 \) when \(m \) is odd. The even values of \(f \) are different; and so the values of \(f \) are all different, \(f \) is injective.

Now we will show that the induced function \(f^* \) where \(f^*(uv) = f(u) + f(v) \) for every edge \(uv \) of \(G \), is a bijection from the set of edges \(E(G) \) to \(\{1, 3, 5, \ldots, 2q - 1\} \). Since \(|E(G)| = q \) and \(\{|1, 3, 5, \ldots, 2q - 1\} = q \), it is sufficient to show that \(f^* \) is injective. By the definition of vertex labeling, the induced labeling of edges is as follows.

\[
\begin{align*}
f^*(v^1_i v^1_j) &= f(v^1_i) + f(v^1_j) = 2i - 1, \quad 1 \leq i \leq n, \\
f^*(v^1_i v^1_{i+1}) &= f(v^1_i) + f(v^1_{i+1}) = 2n + 2i - 1, \quad 1 \leq i \leq m - 1, \\
f^*(v^1_i v_0) &= f(v^1_i) + f(v_0) = 2m + 2n - 1.
\end{align*}
\]

All values of \(f^* (uv) \), \(uv \in E(G) \), are odd. For \(1 \leq i \leq n \), all values of \(f^*(v^1_i v^1_j) \) are different and \(1 \leq f^*(v^1_i v^1_j) \leq 2n - 1 \); for \(1 \leq i \leq m - 1 \), all values of \(f^*(v^1_i v^1_{i+1}) \) are different and \(2n + 1 \leq f^*(v^1_i v^1_{i+1}) \leq 2m + 2n - 3 \); and \(f^*(v^1_i v_0) = 2m + 2n - 1 = 2q - 1 \). All values of \(f^* (uv) \) are odd and different, \(f^* \) is injective. This completes the proof that graph \(S_n(m, 1) \) is odd harmonious.

Our next result is for the case \(r = 2 \).

Theorem 2. Let \(m, n \) be positive integer and \(r = 2 \). Graph \(S_n(m, 2) \) is odd harmonious.

Proof:

Let graph \(S_n(m, 2) \) have vertex set

\[
V(S_n(m, 2)) = \{v^1_i | 1 \leq i \leq n\} \cup \{v^l_i | 1 \leq i \leq m, l = 1, 2\} \cup \{v_0\} \cup \{v^2_m, v^2_i | 1 \leq i \leq n\}
\]

and edge set

\[
E(S_n(m, 2)) = \{v^1_i v^1_j | 1 \leq i \leq n\} \cup \{v^1_i v^1_{i+1} | 1 \leq i \leq m - 1, l = 1, 2\} \cup \{v^2_m v^2_i | 1 \leq i \leq n\}
\]

as in Figure 2.

![Figure 2. S_n(m, 2) graph.](image)

We have, the number of vertices is

\[
p = |V(S_n(m, 2))| = 2m + 2n + 1
\]

and the number of edges is

\[
q = |E(S_n(m, 2))| = 2m + 2n.
\]

Define \(f \), a vertex labelling, \(f : V(S_n(m, 2)) \rightarrow \{0, 1, 2, \ldots, 2q - 1\} \) as follow:
Let graph $G = (V, E)$ be a graph with $V = \{v_0\} \cup \{v_i | 1 \leq i \leq m, 1 \leq j \leq n\}$ and $E = E(G)$. Let $m, n \in \mathbb{Z}^+$ with $m \geq 2, n \geq 2, r \in \mathbb{Z}$.

Theorem 3. Let m, n be positive integer and $m \geq 2, n \geq 2, r = 3$. Graph $S_n(m, 3)$ is odd harmonious.

Proof:
Let graph $S_n(m, 3)$ have a vertex set

$V(S_n(m, 3)) = \{v_{i,j}^1 | 1 \leq i \leq n, j = 1, 3\} \cup \{v_{i,j}^2 | 1 \leq i \leq m, 1 \leq j \leq 3\} \cup \{v_0\} \cup \{v_{m,i}^2 | 1 \leq i \leq n\}$

and edge set

$E(S_n(m, 3)) = \{v_{i,j}^1 v_{i,j+1}^1 | 1 \leq i \leq n, j = 1, 3\} \cup \{v_{i,j}^2 v_{i,j+1}^2 | 1 \leq j \leq 3, 1 \leq i \leq m - 1\} \cup \{v_{0} v_{0}^2 | j = 1, 3\} \cup \{v_{0} v_{i}^1 | 1 \leq i \leq n\}$

as in Figure 3.
We have, the number of vertices is
\[p = |V(S_n(m, 3))| = 3m + 3n + 1 \]
and the number of edges is
\[q = |E(S_n(m, 3))| = 3m + 3n. \]

Define \(f \), a vertex labelling, \(f : V(S_n(m, 2)) \to \{0, 1, 2, \ldots, 2q – 1\} \) as follow:

\[
\begin{align*}
 f(v^1_0) &= 2(m + 1) + i, \quad \text{when } i \text{ is odd, } 1 \leq i \leq m - 1 \\
 f(v^2_0) &= 3m + 2(n + 1), \quad \text{when } i = m \text{ is odd} \\
 f(v^3_0) &= 4m + 4n + 2i - 6, \quad \text{when } i \text{ is odd, } 1 \leq i \leq n, \\
 f(v^1_i, j) &= \begin{cases}
 2m + 4n + 2i - 4, & \text{when } m \text{ is even, } 2 \leq i \leq n \\
 2m + 4i + 2n + 2i - 6, & \text{when } m \text{ is odd, } 1 \leq i \leq n \\
 4m + 4n + 2i - 6, & \text{when } i \text{ is even, } 1 \leq i \leq m, \\
 2m + 4n + i - 2, & \text{when } i \text{ is even, } m \text{ is odd, } 1 \leq i \leq m \\
 2m + 4i + 2, & \text{when } i \text{ is odd, } 1 \leq i \leq m \\
 2m + 4n + i + 1, & \text{when } i \text{ is odd, } 1 \leq i \leq m - 1 \\
 m + 1 + i, & \text{when } i \text{ is even, } 1 \leq i \leq m \\
 m + 2n - 1, & \text{when } m \text{ is odd} \\
 m + i + 1, & \text{when } i \equiv m \pmod{2}, 1 \leq i \leq m - 1 \\
 2(n - 1) + i, & \text{when } i \text{ is even, } 1 \leq i \leq m \\
 i, & \text{when } i \text{ is odd, } 1 \leq i \leq m \\
\end{cases}
\end{align*}
\]

We will show that all the values of \(f \) are different. The odd values of \(f \) are:

\[
\begin{align*}
 f(v^1_0) &= i \leq m, \quad \text{when } i \text{ is odd, } 1 \leq i \leq m; \\
 f(v^2_0) &= m + 1, \quad \text{when } m \text{ is even;} \\
 f(v^3_0), m + 2 \leq f(v^2_i) = m + i + 1 \leq 2m + 1, & \text{when } i \equiv m \pmod{2} \text{ and } 1 \leq i \leq m. \\
 f(v^3_i), 2m + 3 \leq f(v^3_i) = \begin{cases}
 2(m + 1) + i, & \text{when } i \text{ is odd, } 1 \leq i \leq m - 1 \\
 3m + 2(n + 1), & \text{when } i = m \text{ is odd} \\
\end{cases} \\
\end{align*}
\]
We can see that the odd values of \(f \) are different. The even values of \(f \) are:

\[
f(v_i^1) = 2(n - 1) + i \leq m + 2n - 2, \text{ when } i \text{ is even, } 1 \leq i \leq m;
\]

\[
f(v_0^1) = m + 2n - 1, \text{ when } m \text{ is odd};
\]

\[
f(v_i^2), \text{ when } i \equiv m \text{ (mod2) and } 1 \leq i \leq m;
\]

\[
f(v_{m+1}^2). \text{ when } m + 2n \leq f(v_{m+1}^2) = 2(m + n + i - 1) \leq 2m + 4n - 2, \ 1 \leq i \leq n.
\]

We can see, by the definition, all even values of \(f(v_i^1) \) and \(f(v_{m+1}^2) \) are different. When \(m \) is even,

\[
f(v_i^2), \text{ when } i \equiv m \leq 3m + 4n, \text{ when } i \text{ is even, } 1 \leq i \leq m,
\]

\[
f(v_{m+1}^2), \text{ when } m \text{ is even, } i = 1,
\]

\[
f(v_{m+1}^2), \text{ when } m \text{ is odd,}
\]

\[
f(v_i^2), \text{ when } i \equiv m \leq 3m + 4n - 3, \ 1 \leq i \leq m - 1, m \geq 3,
\]

\[
f(v_{m+1}^2), \text{ when } 4m + 4n - 4 \leq f(v_{m+1}^2) = 4m + 4n + 2i - 6 \leq 4m + 6n, \ 1 \leq i \leq n.
\]

Thus we can find that all even values of \(f \) are different. Hence, the values of \(f \) are all different, \(f \) is injective.

It is remain to show that the induced function \(f^* \) where \(f^*(uv) = f(u) + f(v) \) for every \(uv \in E(G) \), is a bijection from \(E(G) \) to \(\{1, 3, 5, \ldots, 2q - 1\} \). Again, since \(|E(G)| = q \) and \(|\{1, 3, 5, \ldots, 2q - 1\}| = q \), it is sufficient to show that \(f^* \) is injective.

Note that \(S_n(m, 3) \) contains \(S_n(m, 2) \), and we label all the vertices of \(S_n(m, 2) \), subgraph of \(S_n(m, 3) \), as when we label them in Theorem 2, and \(S_n(m, 2) \) is odd harmonious. To show that \(S_n(m, 3) \) is odd harmonious, it is sufficient to show that all values of the induced function \(f^*(uv) = f(u) + f(v) \), \(uv \in (E(S_n(m, 3)) - E(S_n(m, 2))) \) are different, odd, and \(4m + 4n + 1 \leq f^*(uv) \leq 6m + 6n - 1 \). By the definition of vertex labeling, the induced labeling of edges is as follows.

\[
\begin{align*}
 f^*(v_m^3v_0) &= f(v_m^3) + f(v_0) = 4m + 4n + 1, \\
 f^*(v_i^3v_{i+1}^3) &= f(v_i^3) + f(v_{i+1}^3) = \begin{cases}
 4m + 4n + 2i + 1, & 1 \leq i \leq m - 2, \\
 6m + 6n - 1, & i = m - 1.
\end{cases}
\end{align*}
\]

The value of \(f^*(v_1^3v_{i+1}^3) \):

\[a. \text{ When } m \text{ is odd,}\]

\[
 f^*(v_1^3v_{i+1}^3) = f(v_1^3) + f(v_{i+1}^3) = \begin{cases}
 4m + 4n + 2i + 1, & 1 \leq i \leq m - 2, \\
 6m + 6n - 1, & i = m - 1.
\end{cases}
\]

\[b. \text{ When } m \text{ is even,}\]

\[
 f^*(v_1^3v_{i+1}^3) = f(v_1^3) + f(v_{i+1}^3) = 4m + 4n + 2i + 3, \ 1 \leq i \leq m - 1.
\]

The value of \(f^*(v_i^3v_{i+1}^3) \):

\[a. \text{ When } m \text{ is odd,}\]

\[
 f^*(v_i^3v_{i+1}^3) = f(v_i^3) + f(v_{i+1}^3) = 6m + 4n + 2i - 3, \ 1 \leq i \leq n.
\]

\[b. \text{ When } m \text{ is even,}\]

\[
 f^*(v_i^3v_{i+1}^3) = f(v_i^3) + f(v_{i+1}^3) = \begin{cases}
 6m + 4n + 2i - 1, & 2 \leq i \leq n.
\end{cases}
\]

All values of \(f^*(uv) \), \(uv \in (E(S_n(m, 3)) - E(S_n(m, 2))) \), are odd, different, and \(4m + 4n + 1 \leq f^*(uv) \leq 6m + 6n - 1 \). This completes the proof that all values of \(f^*(uv) \) are odd and different, \(f^* \) is injective, and hence graph \(S_n(m, 3) \) is odd harmonious. Then, the odd harmonious labeling to graph \(S_n(m, 3) \) for \(n \) positive integers applies to \(m \geq 2 \). It is because when \(m = 1 \) or when graph \(S_n(1, 3) \) there is the same vertex label so that is not an injective function. Therefore, the graph \(S_n(1, 3) \) for \(n \) positive integers cannot be labeled with odd harmonious labeling. So it is proven that odd harmonious labeling to graph \(S_n(m, 3) \) for \(n \) positive integers applies when \(m \geq 2 \). This completes the proof that graph \(S_n(m, 3) \) is odd harmonious when \(m \geq 2 \).
For example, graphs $S_6(7,1)$, $S_7(4,2)$, and $S_6(5,3)$, are shown in Figure 4, Figure 5, and Figure 6, respectively.

Figure 4. Odd harmonious labeling of $S_6(7,1)$ graph.

Figure 5. Odd harmonious labeling to $S_7(4,2)$ graph.
Figure 6. Odd harmonious labeling to $S_6(5,3)$ graph.

3. Conclusion

We have shown that graph $S_n(m,r)$ for $1 \leq r \leq 3$, is harmonious. When $n = r = 1$, $S_n(m,r)$ is a path. So, this result is more general than the result which says that paths are harmonious, that can be found in Liang and Bai [8]. There is still a problem for the general case. For next study, one can prove (or disprove for some cases) that $S_n(m,r)$ is odd harmonious, for $r > 3$.

References

[1] Diestel R 2005 Graph theory electronic edition 2005 Springer-Verlag Heidelberg New York
[2] Febriana F and Sugeng K A 2020 Odd harmonious labeling on squid graph and double squid graph J. Phys.: Conf. Ser. 1538 012015
[3] Gallian J A 2019 A dynamic survey of graph labeling Electron. J. Comb. 1–535
[4] Jeyanthi P and Philo S 2019 Odd harmonious labeling of certain graphs JASC 10 1224–1232
[5] Jeyanthi P and Philo S 2019 Odd harmonious labeling of subdivided shell graphs IJCSE 7 77–80
[6] Jeyanthi P, Philo S and Siddiqui M K 2019 Odd harmonious labeling of super subdivision graph Proyecciones (Antofagasta) 38 1–11
[7] Jeyanthi P, Philo S and Youssef M Z 2019 Odd harmonious labeling of grid graphs Proyecciones (Antofagasta) 38 411–428
[8] Liang Z and Bai Z L 2008 On the odd harmonious graphs with applications JAMC 29 105–116
[9] Selvaraju P, Balaganesan P and Renuka J 2013 Odd harmonious labeling of some path related graphs IJMSEA 7 163–170
[10] Vaidya S K and Shah N H 2012 Odd harmonious labeling of some graphs International J.Math. Combin. 3 105–112