Early life Exposure to Triclosan Impacted Thyroid Follicular Structure and Decreased Thyroid Hormone Levels in Zebrafish

CURRENT STATUS: POSTED

Ning Tang
Shanghai Jiao Tong University School of Medicine

Pianpian Fan
Shanghai Jiao Tong University School of Medicine

Xiaogang Yu
Shanghai Jiao Tong University School of Medicine

Xu Wang
Shanghai Jiao Tong University School of Medicine

Weiye Wang
Shanghai Jiao Tong University School of Medicine

Fengxiu Ouyang
MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine

ouyangfengxiu@xinhuamed.com.cn

Corresponding Author
ORCiD: https://orcid.org/0000-0001-9566-8473

DOI:
10.21203/rs.3.rs-17788/v1

SUBJECT AREAS
Small Animal Medicine Endocrinology & Metabolism

KEYWORDS
Triclosan, thyroid hormone, histology, thyroid follicles, zebrafish
Abstract

Background: Triclosan (TCS) is an antimicrobial chemical widely used in personal care products. Most of TCS is discharged into aquatic ecosystem after usage. While TCS has potential thyroid-disrupting effect, it is unknown whether early exposure to TCS affects thyroid grand and thyroid hormone levels. We used zebrafish model to examine this topic.

Methods: The fertilized zebrafish eggs were exposed to TCS. We inspected hatching and mortality of larvae. The total triiodothyronine (TT$_3$), total thyroxine (TT$_4$), free triiodothyronine (FT$_3$), and free thyroxine (FT$_4$) levels were measured at 7, 14 and 120 days post fertilization (dpf). Thyroid histopathological analysis was conducted at 120 dpf of zebrafish.

Results: The hatching rate of embryos decreased from 95.8% in control group to 18.3% in TCS highest exposure in 3 days. In 900 ng/mL TCS exposure all larvae died within one day. With increasing concentration of TCS exposure, TT$_3$ and FT$_3$ level decreased after 14 days. FT$_4$ decreased, and the height and nuclear area of thyroid follicular cell increased with TCS exposure after 120 days.

Conclusions: High TCS exposure decreased the hatching rate of zebrafish embryos, and also decreased thyroid hormone levels owing to structural change of thyroid follicles. Our study raised the concern that TCS exposure in early life may profoundly affect neurodevelopment.

Background

Triclosan (TCS) is an antimicrobial chemical widely used in personal care products including soaps, toothpastes, shampoos, and cosmetics for more than 40 years$^{[1]}$. Most of TCS is discharged into aquatic ecosystem after usage$^{[2]}$. Due to the extensive use of TCS in personal care products, TCS has been detected in more than half of the rivers and lakes$^{[3]}$ and in drinking water$^{[4]}$. TCS concentrations reached up to 86.2 ng/mL in some rivers$^{[3, 5]}$. Furthermore, TCS can be bio-accumulated in fish$^{[6]}$. So far, we and others have detected TCS in urine samples of pregnant women and cord blood of newborns$^{[7, 8]}$. Importantly, these studies in pre-birth cohort have shown that maternal urinary TCS concentration was associated with decreased maternal and neonatal thyroid hormone levels (maternal serum FT4 and cord blood FT3)$^{[9, 10]}$. Besides, a study of adult zebrafish
showed that TCS exposure resulted in hyperplasia of thyroid follicles[11]. There were only two related studies on potential thyroid-disrupting effect of TCS in fish[11, 12], it is unknown whether early life exposure to TCS will affect offspring thyroid gland and thyroid hormone (TH) levels. In this study, we aimed to use zebrafish to examine this topic.

Zebrafish is a proved model to study thyroid gland and hormones because the development of its thyroid system is generally comparable to human[13]. While thyroid hormones are critical for fetal neuro-development, up to our knowledge, no study has examined early exposure to TCS (from fertilized eggs, embryo to adult stage) and zebrafish thyroid hormone levels. In this study, we used zebrafish model to examine the impact of early exposure to TCS at environmentally relevant levels and the TCS levels in human bio-samples on the hatching rate, mortality, and thyroid hormones levels, as well as the histopathology of thyroid follicles.

Materials And Methods

TCS

TCS (Irgasan, 5-chloro-2-(2,4-dichlorophenoxy) phenol, \(\geq 97.0\%\) purity (HPLC)) was purchased from Sigma-Aldrich (United States).

Zebrafish strains and maintenance

In this study, we used the zebrafish strains of AB wild-type line. First, 5-month-old male and female zebrafish were acclimated in tanks containing dechlorinated tap water for 4 weeks and under a photoperiod of 14:10 hour light/dark cycle. The fish were fed with brine shrimp twice per day. The remaining food and feces were removed at thirty minutes after feeding.

Next, zebrafish fertilized eggs were obtained/collected within 30 min after natural mating, rinsed in water, and the unfertilized eggs were discarded. Zebrafish larvae were fed with paramecium twice per day from 5 days post fertilization (dpf) till 14 dpf. After that, brine shrimp was fed from 15 dpf. The pH (maintained at 7.5 ± 0.5), conductivity (maintained at 550 ± 50 \(\mu\)S), temperature (maintained at 28 ± 0.5 °C), and dissolved oxygen of the exposure media were monitored.

TCS exposure

We randomly assigned and exposed fertilized zebrafish eggs (600 eggs per TCS group) to 6 levels TCS
exposures from 0 (Dimethyl Sulphoxide, DMSO as blank control), 3, 30, 100, 300 to 900 ng/mL up to 7 and 14 days, and we put 200 fertilized zebrafish in each culture dish of 100 ml medium. We changed half of the medium each time for twice per day. The fertilized zebrafish eggs were cultured at 28.0±0.5 °C under 14:10 light/dark photoperiod cycle in a climate chamber during the duration of the experiment.

After TCS treatment for 7 and 14 days post fertilization (dpf) respectively, larvae TH levels were measured. Specifically, at 7 dpf, fish larvae were collected and put into three groups for each TCS treatment level as three replicates (50 larvae each replicate) for THs measurement. Then, the larvae left were continuously exposed to TCS/or control until 14 dpf, fish larvae were collected and put into three replicates per each TCS treatment level (100 larvae in each replicate) for THs measures. In addition, we exposed fertilized zebrafish eggs to 6 TCS exposures levels (30 eggs per each exposure level) for 120 days. At 120 dpf, the fish were deceased by immersing in ice-cold water. The heads were used for thyroid histological study and the bodies of fish were collected for thyroid hormone measurement. All fish samples (larvae at 7 and 14 dpf, heads and bodies of fish at 120 dpf) were immediately frozen and stored at −80°C for measurement of thyroid hormones.

These exposure doses of TCS were set based on the exposure levels of human and wildlife [9, 14]. 3-100 ng/mL was close to the levels of urinary TCS concentrations in Chinese pregnant women[9] as well as TCS levels in some rivers/lakes[3]. We used DMSO as a solvent to enhance its solubility because TCS has low water solubility[15], and the concentration of DMSO in both the experimental and control groups was 0.01%. Zebrafish embryos are tolerant to low concentrations (0.01%) of DMSO[16].

Hatching rate

The hatching of fertilized eggs was inspected and recorded twice per day at the first 3 days (i.e. 72 hours). Hatching rate was calculated as the number of larvae hatched during the first 3 days divided by the total number of fertilized eggs in each TCS exposure level. The death of larvae was also inspected and recorded twice per day, and dead larvae were immediately removed from dishes/tanks.
Mortality was calculated as the number of larvae death divided by the total number of hatched larvae.

Thyroid hormone measurements

We measured thyroid hormone levels of zebrafish at 7, 14 and 120 dpf. The samples of larvae at 7 and 14 dpf, and the body (without head, viscera or gut) of fish at 120 dpf stored at −80°C were taken out from freezer and immediately sonicated in 0.01 M PBS (0.01 M) at 1mg/5μL (w/v, w: wet weight of 50 or 100 larvae or every fish body, v: volume of 0.01 M PBS, mg/μL; pH 7.2) and homogenized at 4 °C. Next, to disrupt the structures, we put samples on intermittent sonic oscillation for 5 minutes on ice, and then vortexed vigorously for 10 min. Then, all the samples were centrifuged at 12,000 x g for 5 min at 4 °C. The supernatant was collected for thyroid hormones and total protein concentration measurement. Total protein concentration was measured with the Pierce® BCA Protein Assay Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA) to normalize thyroid hormone concentration. Free triiodothyronine (FT$_3$), free thyroxine (FT$_4$), total triiodothyronine (TT$_3$) and total thyroxine (TT$_4$) levels were measured with ELISA (enzyme-linked immunosorbent assay) (Labor Diagnostika Nord commercial kit, Germany). The limit of detection is 0.1 ng/mL for TT$_3$, 8 nmol/L for TT$_4$, 0.3 pg/mL for FT$_3$ and 1pg/mL for FT$_4$. Values below the limit of detection (LOD) were replaced with values equal to the LOD divided 2.

Hematoxylin and eosin (H&E) staining

The heads of zebrafish at 120 dpf frozen at −80°C were taken out from freezer and fixed in 10% neutral formalin (Zhongshan Beijing Biotechnology Co., Ltd., Beijing, China) at temperature 25°C for at least 12 h, and transferred to 70% ethanol. Each zebrafish head was placed in processing cassettes, dehydrated through a serial alcohol gradient, and embedded in wax blocks. Serial transverse cross-sections were cut using a microtome 5 μm and dewaxed in xylene, rehydrated through decreasing concentrations of ethanol, and washed in PBS. The sections were then stained with hematoxylin for 4-5 min and with eosin for 1-2 min at 25°C (Zhongshan Beijing Biotechnology Co., Ltd.). Stained thyroid follicle sections were observed and photographed under light microscopy (BX53-p; Olympus Corporation, Tokyo, Japan). We located thyroid follicles according to their being
dispersed among the afferent branchial arterioles (such as ventral aorta) in the throat region[18].

The nuclear size and height of follicular cells

Image Pro-Plus 6.0 software (Media Cybernetics, Inc., Rockville, MD, USA) was used to quantitatively analyze. The nuclear size of the thyroid follicular cells was assessed quantitatively by measuring the long and short diameters of the cell nuclei. The size of at least 50 thyroid follicular cell nuclei from each fish at a total magnification of \times1000, at least three different follicles or from three separate areas of the section in cases where follicular structure was unclear or absent. Photograph of each follicle was taken at the largest follicle diameter (determined by observing serial sections) with an Olympus digital camera (BX53-p; Olympus Corporation, Tokyo, Japan). The nuclear size was calculated based on the formula for an ellipse (long diameter \times short diameter \times π/4)[18]. The height of follicular cell was calculated by five measurements along the follicle perimeter at regular intervals, 40-80 follicular cell heights for each fish[19].

Statistical analysis

The ANOVA F-test was used to compare the differences in hormone levels, the height and the nuclear size of the thyroid follicle cells, the chi square test was used to compare the difference in hatching rate and mortality of larvae among TCS exposure groups. The level of significance was two-sided p value $<$ 0.05. All analyses were performed using the SAS 9.3 software (SAS Institute, Inc., Cary, NC, USA).

Results

The effect of TCS exposure on hatching rate

In this study, the hatching rate of zebrafish embryos decreased with increasing TCS exposure at 2 dpf. In control group, hatching rate was 42% in the first 48 hours and 95.8% at 72 hpf, and the larvae presented a well-developed head, body and tail. Following the higher concentrations of TCS exposure, hatching rate decreased especially in the first 48 hours. The lowest was 18.3% in the highest (900 ng/mL) TCS exposure group (p < 0.01) (Table 1) at 72 hpf.

The effect of TCS exposure on mortality of zebrafish larvae

In TCS exposure level of 900 ng/mL, larvae died shortly after its hatching. In larvae exposed to the
highest level (900 ng/mL) of TCS, the mortality reached 100% at 3 dpf. In the other TCS exposure levels, the mortalities were similar at 7 dpf (Table 2).

After 7 days exposure, we randomly collected fish larvae (50 larvae each for triplicate) from each TCS exposure group to measure thyroid hormone levels. We then continued to observe mortality in the remaining larvae during 8 and 14 dpf, and the mortality was similar among TCS exposure levels from 0 to 300 ng/mL ($p=0.16$, Table 2).

The thyroid hormone levels in Zebrafish larvae after 7 days of TCS exposure

The TT₃, TT₄, FT₃ and FT₄ levels did not differ significant among 5 TCS exposure groups from 0 to 300 ng/mL (Figure 1 and Table S1). For the TCS exposure level of 900 ng/mL, since the larvae all died by the day three soon after they were hatched, thyroid hormone levels were not measured in this group.

The thyroid hormone levels in larvae after 14 days of TCS exposure

TT₃ and FT₃ levels in TCS exposure groups were all lower than the control group after 14 days of exposure. Following exposure to TCS from 3 ng/mL to 300 ng/mL for 14 days, TT₃ were on average 0.188 to 0.194 ng/mg lower than that of control group (all $p < 0.01$, Figure 1 and Table S2). Also, FT₃ levels were 9.49 - 10.74 ng/mg lower ($p < 0.01$) in larvae exposed to TCS level at 30, 100, 300 ng/mL than the control group. For FT₄ level, overall it tended to decrease with higher level of TCS exposure (p trend < 0.05, Table S2). Similarly, TT₄ levels were lower in larvae exposed to TCS than that in control group, but the differences were not statistically significant.

The thyroid hormone levels in zebrafish after 120 days of TCS exposure

The effects of TCS exposure for 120 days on thyroid hormone levels are presented in Figure 2 and Table S3. Following exposure to TCS at 30, 100, and 300 ng/mL for 120 days, FT₄ levels were on average 0.06, 0.08, 0.09 pg/mg lower than that of control group (all $p < 0.05$) (Figure 2 and Table S3). The TT₃, TT₄, and FT₃ levels were similar among 5 TCS groups.

Thyroid Histopathology in zebrafish after 120 days of TCS exposure

With the increasing exposure levels to TCS, the thyroid follicular cell of zebrafish at 120 dpf became
hypertrophy (enlarged follicular cell size and nuclear size) and hyperplasia (increased number of follicular cell), and the nuclear area and the epithelial cell height of thyroid follicles was significant increased (Figures 3 and 4, Table S4). The oval thyroid follicles of zebrafish in control group consisted of an outer thyroid epithelial layer which surrounded into an inner lumen; the inner lumen of thyroid follicles was filled with colloid (Figure 4, Panel A). After exposure to TCS for 120 days, colloid in follicle decreased obviously (Panel B, C, D, E and F in Figure 4 and Figure 5), the number of follicular cells increased (C, D, E, and F in Figure 4; B, C, D, E and F in Figure 5), with angiogenesis (B, C, D, E and F in Figure 4; F in Figure 5), focal hyperplasia (C, D, E and F in Figure 4; B, C, D and E in Figure 5), and diffuse hyperplasia (F in Figure 4) in thyroid follicles. Colloid depletion of follicles was observed in all zebrafish exposed to TCS (B, C, D, E and F in Figure 4). In the zebrafish exposed to high TCS levels at 100 ng/mL and 300 ng/mL, the thyroid follicles had obvious morphological alterations, for example, the epithelial cells became edema, thicker and increased significantly, follicular interstitial hyperplasia and inflammatory cells increased (D, E and F in Figure 4).

Discussion
In this study, we examined the effects of early TCS exposure on the thyroid hormone (TH) levels at two growth phases (larvae and adult) and found thyroid morphological change after 120 days of TCS exposure. High TCS exposure decreased the hatching rate of zebrafish embryos. Furthermore, TCS exposure also decreased TT₃, FT₃ and FT₄ levels after 14 days and decreased FT₄ level after 120 days owing to histopathological change of thyroid follicular cell. With increasing concentration of TCS exposure, the height and nuclear size (area) of thyroid follicular cell increased with TCS exposure after 120 days. Considering the importance of thyroid hormone to nervous system development, our study implicates that TCS exposure in early life may profoundly affect neurodevelopment.

Zebrafish is a useful animal model for the study on thyroid hormones and the chemical pollutions in water, and its high (71%) genetic is similar to human[20]. We found that with the increase of TCS exposure concentration zebrafish hatching rate decreased and the mortality rate increased of zebrafish larvae. This result was consistent with previous finding in zebrafish [14], after being exposed
to 500 ng/mL of TCS for 6 days, a significantly delayed hatchability and increased mortality were observed in zebrafish. After larvae stage, zebrafish step into sexual mature phase at 120 dpf\(^{[21]}\). We observed adverse effect of early exposure to TCS (from fertilized eggs, embryo to adult stage) on thyroid hormone levels, and this might be due to the cumulative effect of TCS exposure on the physiological characteristics of the development of zebrafish thyroid glands. The first follicular thyroid of zebrafish larvae emerges at about 55 hpf and weak signals of T\(_4\) can be detected in submandibular about 72 hpf\(^{[22]}\). There are about 6-7 thyroid follicles at 7 dpf\(^{[13]}\). The thyroid hormone level of zebrafish became stable after 7 days\(^{[23]}\). In our experiments, TT\(_4\), FT\(_4\) and FT\(_3\) levels in TCS exposed groups tended to decrease, although not significant, after 7 days of exposure. The thyroid disruption effect of TCS was more obvious after 14 days of exposure. FT\(_4\) level decreased significantly with the increasing TCS exposure concentration both at 14 and 120 dpf. The impact of TCS exposure on thyroid hormone levels (TT\(_3\), FT\(_3\) and FT\(_4\)) in zebrafish larvae at 14 dpf provides causal support to our previous findings in population study\(^{[9]}\). Our previous study observed an inverse association between maternal urinary TCS and cord blood FT\(_3\) level in Chinese newborns \(^{[9]}\).

THs are secreted and released by the thyroid gland. FT\(_3\) is the most active form of TH, and it comes from FT\(_4\) deiodination. FT\(_3\) and FT\(_4\), TT\(_3\) and TT\(_4\) can transform into each other and maintain dynamic balance in blood. Most TT\(_4\) and few TT\(_3\) are synthesized by thyroid follicular epithelial cells directly and then are transported to blood and be function\(^{[24, 25]}\). TT\(_4\) and TT\(_3\) are usually used as an indicator of the reserve capacity of the thyroid gland\(^{[26]}\). Once the thyroid function is disrupted, the FT\(_3\) and FT\(_4\) levels are the first to be affected, lead to TT\(_3\) and TT\(_4\) level and histopathological change of thyroid\(^{[27]}\). In general, T\(_4\) is more sensitive compared with the changes of T\(_3\) \(^{[26, 28, 29]}\), however, in this study, with higher TCS exposure levels, TT\(_3\) and FT\(_3\) concentrations decreased statistically in larvae at 14 dpf. Exposure to 120 dpf, TT\(_4\), FT\(_3\) and FT\(_4\) levels were all lower than that at 14 dpf, and the height and nuclear area of thyroid follicular cell at 120 dpf were obviously increased with the
increasing TCS exposure concentration. The histopathology results are consistent with the changed levels of thyroid hormone in this study. The changes in the epithelial cell height and follicle nuclear size are likely the result of negative feedback of decreased thyroid hormone.

To study the impact of environmental chemicals exposure on health effects, if zebrafish larvae were used as models, generally the whole fish is used as biological samples\cite{12, 30}, and in our study, we measured THs levels in whole body of larvae at 7 and 14 dpf. However, if adult zebrafish were used as models, plasma or body are generally used as biological samples\cite{31}, but we measured TH levels in body (without head, viscera or gut) of adult fish at 120 dpf. In zebrafish, THs both expressed in hepatic and muscle\cite{32}. THs levels in muscle can reflect the growth and development of the body, and in our study, we found that TCS exposure level was related to TH levels in the muscle and therefore presumably affects the body growth of the zebrafish.

TCS was found in wastewater treatment plants worldwide\cite{3}. One study found that TCS has been detected in more than half of the rivers and lakes in Savannah, Georgia, USA, with a median level of 0.14 ng/mL and the maximum level of 2.3 ng/mL\cite{3}. In some stream, the concentration even reached up to 86.2 ng/mL\cite{3}. This study selected the TCS exposure levels of 3, 30, 100, 300 and 900 ng/mL based on our population exposure level, wildlife zebrafish exposure level and the TCS level in environmental data. The lowest concentration (3 ng/mL) was selected based on the median urinary TCS concentration (2.52 ng/mL), and 100 ng/mL was close to the highest urinary TCS concentrations from population of pregnant women in China\cite{9}. In fish, the LC50 for TCS ranges from 180 to 602 μg/L\cite{33-35}. In zebrafish, TCS LC50 values was 420μg/L (95% confidence interval, 400 ng/mL- 470 ng/mL) for embryos in exposure to TCS for 96 hours (starting from fertilized eggs), and 340μg/L for zebrafish adults also with an exposure of 96 hours\cite{14}. TCS exposure level of 100 ng/mL in this study was 25% of the concentration for LC50. We also use relatively higher concentrations of TCS (300 and 900 ng/mL) to study possible toxicity during short-term laboratory exposures. The exposure concentrations 900 ng/mL of TCS was a 10-fold of the highest urinary TCS concentration in our
previous population study in China. While the toxic effects of TCS were well recognized on bacterial resistance, reproductive toxicity and cytotoxicity in aquatic organisms [36-38], the results on thyroid hormone disruption were inconsistent[39, 40]. Previous studies found that exposure of TCS decreased thyroid hormone levels and inhibited metamorphosis [39, 41], or did not change the thyroid hormone level nor alter the metamorphosis in anuran[40]. Most animal studies mainly focused on rodents [42, 43]. In adult rat, TCS treatment reduced the levels of blood TT$_4$ and FT$_4$, while no change was found in the level of blood TSH[44, 45] [46, 47]. Another study in female mice found that exposed to TCS (300 mg/kg/day) during pregnancy decreased approximately 30% of TT$_4$ in dams at the postpartum day 22 [47]. Only two recent studies have examined the influence of TCS exposure on thyroid disruption in fish [11, 12]. One study found that TCS exposure caused hatching delay of 6-13 hours in medaka fish [12]. The other study found that sub-chronic (21 days) exposure to 100 μg/g TCS caused hyperplasia of thyroid follicle in adult zebrafish [11]. A recent study[48] found that offspring of zebrafish that exposed to TCS decreased survival rate and delayed maturation. This can be explained by decreased thyroid hormone resulting from TCS exposure.

We speculate that TCS may inhibit thyroid hormones secretion by acting as a disruptor of the hypothalamic-pituitary-thyroid axis or due to the increased thyroid hormones clearance. Mechanisms have been studied but there is controversial. TCS exposure may promote[11] or inhibit[49] the sodium-iodide symporter (NIS)-mediated iodide uptake in animals. TCS increased TSH gene transcription and decrease thyroid hormones in circulation of zebrafish [11]. In rat, TCS inhibited the activity of thyroid peroxidase (TPO) at concentration of 50 ng/mL to inhibit thyroid hormone synthesis[49]. In addition, evidence suggests that TCS inhibited liver phase I and II enzyme mRNA expression in zebrafish liver cells [50]. TCS may interfere with thyroid function by increasing the hepatic enzymes activity of glucuronyltransferase and pentoxyresorufin-O-deethylase (PROD) in livers [51, 52] or by activating of the nuclear receptor, pregnane X receptor (PXR)[43], as a result, the metabolism of T$_4$ causing
decrease in T4 bioavailability[42]. In 2018, it was also found that TCS caused the hypothyroidism in thyroid cells of rats through p38/TRHr-dependent pathway[37]. Still, the mechanism that TCS inhibit the thyroid hormones need further investigation.

Our study found that zebrafish exposed with TCS for 120 days (from embryo to adult phase) caused thyroid histopathology change and disturbed thyroid hormone levels. We are the first study to explore the thyroid disturbed effect of long-time TCS exposure on zebrafish from fertilized eggs, larvae to adult phases, and to focus on effect of TCS exposure on thyroid hormones of zebrafish from early life. We did not measure TSH level in zebrafish, although TSH receptor is responsible for thyroid gland differentiation in zebrafish[53], Alt et al.[54] reported that in zebrafish the formation, growth and differentiation of thyroid follicles appears to be independent of TSH. The limitation of our study is that we did not measure the concentration of TH levels in hole body of adult zebrafish, the trend of TH levels at 120 dpf were not fully consistent with that at 14 dpf.

\textbf{Conclusions}

In summary, we found that exposure to TCS delayed the hatching of zebrafish embryos and decreased thyroid hormone (FT\textsubscript{3}, FT\textsubscript{4} and TT\textsubscript{3}) levels in zebrafish larvae, also decreased FT\textsubscript{4} level in zebrafish adult. Furthermore, TCS exposure also affect the structure of thyroid follicles by increasing nuclear area and height of zebrafish thyroid follicle cell. Considering that the thyroid hormones are crucial for neurodevelopment in early life, our study raises the concern that early TCS exposure (from conception) may profoundly influence child neurobehavioral development at such highly sensitive window.

\textbf{Declarations}

\textbf{Funding Information}

This study was supported by grants from the National Natural Science Foundation of China [81673178, 81961128023] and Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant [grant number 20152518].

\textbf{Competing financial interests}

The authors declare they have no actual or potential competing financial interests.
Ethics approval and consent to participate

All animal in this study underwent ethics approval by Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine.

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding authors on reasonable request.

Author contributions

Conceptualization, Fengxiu Ouyang; Methodology, Fengxiu Ouyang, Ning Tang, Weiye Wang, Xiaogang Yu and Xu Wang; Formal analysis, Ning Tang and Pianpian Fan; Investigation, Fengxiu Ouyang and Ning Tang; Resources, Fengxiu Ouyang and Weiye Wang; Data curation, Ning Tang and Pianpian Fan; Writing—original draft preparation, Ning Tang and Fengxiu Ouyang; Writing—review and editing, Fengxiu Ouyang, Pianpian Fan, Xiaogang Yu, Xu Wang and Weiye Wang; Supervision, Fengxiu Ouyang; Project administration, Fengxiu Ouyang and Ning Tang; Funding acquisition, Fengxiu Ouyang.

Acknowledgements

Not applicable.

Consent for publication

Not applicable

References

[1] Jones, R.D., Jampani, H.B., Newman, J.L., et al., Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control, 2000. 28(2): 184-196.

[2] Reiss, R., Mackay, N., Habig, C., et al., An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem, 2002. 21(11): 2483-2492.

[3] Kumar, K.S., Priya, S.M., Peck, A.M., et al., Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol, 2010. 58(2): 275-285.
[4] Li, X., Ying, G.G., Su, H.C., et al., Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ Int, 2010. 36(6): 557-562.

[5] Peng, X., Yu, Y., Tang, C., et al., Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ, 2008. 397(1-3): 158-166.

[6] Coogan, M.A., Edziyie, R.E., La Point, T.W., et al., Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere, 2007. 67(10): 1911-1918.

[7] Hovander, L., Malmberg, T., Athanasiadou, M., et al., Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol, 2002. 42(1): 105-117.

[8] Adolfsson-Erici, M., Pettersson, M., Parkkonen, J., et al., Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 2002. 46(9-10): 1485-1489.

[9] Wang, X., Ouyang, F., Feng, L., et al., Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study. Environ Health Perspect, 2017. 125(6): 067017.

[10] Berger, K., Gunier, R.B., Chevrier, J., et al., Associations of maternal exposure to triclosan, parabens, and other phenols with prenatal maternal and neonatal thyroid hormone levels. Environ Res, 2018. 165: 379-386.

[11] Patrícia I. S. Pinto, E.M.G., Deborah M. Power Triclosan interferes with the thyroid axis in the zebrafish (Danio rerio). Toxicology Research, 2013.

[12] Schnitzler, J.G., Frederich, B., Dussenne, M., et al., Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Aquat Toxicol, 2016. 181: 1-10.

[13] Wendl, T., Lun, K., Mione, M., et al., Pax2.1 is required for the development of thyroid follicles in
zebrafish. Development, 2002. 129(15): 3751-3760.

[14] Oliveira, R., Domingues, I., Koppe Grisolia, C., et al., Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res Int, 2009. 16(6): 679-688.

[15] Goldsmith, P., Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol, 2004. 4(5): 504-512.

[16] Lantz-McPeak, S., Guo, X., Cuevas, E., et al., Developmental toxicity assay using high content screening of zebrafish embryos. J Appl Toxicol, 2015. 35(3): 261-272.

[17] Campion, E.M., Loughran, S.T. and Walls, D., Protein Quantitation and Analysis of Purity. Methods Mol Biol, 2017. 1485: 225-255.

[18] Patino, R., Wainscott, M.R., Cruz-Li, E.I., et al., Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish. Environ Toxicol Chem, 2003. 22(5): 1115-1121.

[19] Liu, F.J., Wang, J.S. and Theodorakis, C.W., Thyrotoxicity of sodium arsenate, sodium perchlorate, and their mixture in zebrafish Danio rerio. Environ Sci Technol, 2006. 40(10): 3429-3436.

[20] Howe, K., Clark, M.D., Torroja, C.F., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): 498-503.

[21] Liu, Y., Wang, J., Fang, X., et al., The thyroid-disrupting effects of long-term perfluorononanoate exposure on zebrafish (Danio rerio). Ecotoxicology, 2011. 20(1): 47-55.

[22] Elsalini, O.A., von Gartzen, J., Cramer, M., et al., Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent transcription factors. Dev Biol, 2003. 263(1): 67-80.

[23] Chang, J., Wang, M., Gui, W., et al., Changes in thyroid hormone levels during zebrafish development. Zoolog Sci, 2012. 29(3): 181-184.

[24] Fujita, H., Functional morphology of the thyroid. Int Rev Cytol, 1988. 113: 145-185.

[25] Fujita, H., [On the functional morphology of the thyroid gland]. Kaibogaku Zasshi, 1991. 66(3): 145-170.

[26] Erenberg, A., Phelps, D.L., Lam, R., et al., Total and free thyroid hormone concentrations in the
neonatal period. Pediatrics, 1974. 53(2): 211-216.

[27] Garland, J.T., Endocrine Disorders: A Guide to Diagnosis. Journal of the American Medical Association, 1984. 252(19): 2771-2771.

[28] Crane, H.M., Pickford, D.B., Hutchinson, T.H., et al., Developmental changes of thyroid hormones in the fathead minnow, Pimephales promelas. Gen Comp Endocrinol, 2004. 139(1): 55-60.

[29] Liu, Z., Li, D., Hu, Q., et al., Effects of exposure to microcystin-LR at environmentally relevant concentrations on the metabolism of thyroid hormones in adult zebrafish (Danio rerio). Toxicon, 2016. 124: 15-25.

[30] Tang, T., Yang, Y., Chen, Y., et al., Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF. Int J Environ Res Public Health, 2015. 12(10): 13069-13084.

[31] YAMANO, K., The role of thyroid hormone in fish development with reference to aquaculture. JARQ, 2005. 39(3): 161-168.

[32] Yang, X., Xie, J., Wu, T., et al., Hepatic and muscle expression of thyroid hormone receptors in association with body and muscle growth in large yellow croaker, Pseudosciaena crocea (Richardson). Gen Comp Endocrinol, 2007. 151(2): 163-171.

[33] Dann, A.B. and Hontela, A., Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol, 2011. 31(4): 285-311.

[34] OSHA. A guide to the globally harmonized system of classification and labeling of chemicals (GHS). https://www.osha.gov/dsg/hazcom/ghs.html#3.3, accessed January 31, 2014. . 2014.

[35] Orvos, D.R., Versteeg, D.J., Inauen, J., et al., Aquatic toxicity of triclosan. Environ Toxicol Chem, 2002. 21(7): 1338-1349.

[36] James, M.O., Li, W., Summerlot, D.P., et al., Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ Int, 2010. 36(8): 942-949.

[37] Zhang, P., Yang, M., Zeng, L., et al., P38/TRHr-Dependent Regulation of TPO in Thyroid Cells Contributes to the Hypothyroidism of Triclosan-Treated Rats. Cell Physiol Biochem, 2018. 45(4): 1303-1315.

[38] Hirota, R., Ohya, Y., Yamamoto-Hanada, K., et al., Triclosan-induced Alteration of Gut Microbiome
and Aggravation of Asthmatic Airway Response in Aeroallergen-sensitized mice. Allergy, 2018.

[39] Veldhoen, N., Skirrow, R.C., Osachoff, H., et al., The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol, 2006. 80(3): 217-227.

[40] Fort, D.J., Rogers, R.L., Gorsuch, J.W., et al., Triclosan and anuran metamorphosis: no effect on thyroid-mediated metamorphosis in Xenopus laevis. Toxicol Sci, 2010. 113(2): 392-400.

[41] Hinther, A., Bromba, C.M., Wulff, J.E., et al., Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ Sci Technol, 2011. 45(12): 5395-5402.

[42] Paul, K.B., Hedge, J.M., DeVito, M.J., et al., Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in Young Long-Evans rats. Toxicol Sci, 2010. 113(2): 367-379.

[43] Zorrilla, L.M., Gibson, E.K., Jeffay, S.C., et al., The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol Sci, 2009. 107(1): 56-64.

[44] Crofton, K.M., Paul, K.B., Devito, M.J., et al., Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environ Toxicol Pharmacol, 2007. 24(2): 194-197.

[45] Stoker, T.E., Gibson, E.K. and Zorrilla, L.M., Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol Sci, 2010. 117(1): 45-53.

[46] Paul, K.B., Hedge, J.M., Bansal, R., et al., Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology, 2012. 300(1-2): 31-45.

[47] Paul, K.B., Hedge, J.M., Devito, M.J., et al., Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environ Toxicol Chem, 2010. 29(12): 2840-2844.

[48] Stenzel, A., Wirt, H., Patten, A., et al., Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reprod Toxicol, 2019. 87: 79-86.

[49] Wu, Y., Beland, F.A. and Fang, J.L., Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl
ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol In Vitro, 2016. 32: 310-319.

[50] Zhou, Z., Yang, J. and Chan, K.M., Toxic effects of triclosan on a zebrafish (Danio rerio) liver cell line, ZFL. Aquat Toxicol, 2017. 191: 175-188.

[51] Schuur, A.G., Legger, F.F., van Meeteren, M.E., et al., In vitro inhibition of thyroid hormone sulfation by hydroxylated metabolites of halogenated aromatic hydrocarbons. Chem Res Toxicol, 1998. 11(9): 1075-1081.

[52] Wang, L.Q., Falany, C.N. and James, M.O., Triclosan as a substrate and inhibitor of 3'-phosphoadenosine 5'-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab Dispos, 2004. 32(10): 1162-1169.

[53] Opitz, R., Maquet, E., Zoenen, M., et al., TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol, 2011. 25(9): 1579-1599.

[54] Alt, B., Reibe, S., Feitosa, N.M., et al., Analysis of origin and growth of the thyroid gland in zebrafish. Dev Dyn, 2006. 235(7): 1872-1883.

Tables

Treatment	fertilized eggs	number of larvae hatched	up to 48 hpf	up to 72 hpf
TCS exposure levels (ng/mL)	n	n (%)	n (%)	
0 (control)	600	252 (42.0%)	575 (95.8%)	
3	600	287 (47.8%)	580 (96.7%)	
30	600	207 (34.5%)	563 (93.8%)	
100	600	141 (23.5%)	561 (93.5%)	
300	600	169 (28.2%)	521 (86.8%)	
900	600	26 (4.3%)	110 (18.3%)	

\(p < 0.01^* \)

\(c^2 \) test was used to test the difference; hpf: hours post fertilization

Figures
Table 2. The influence of TCS exposure on the larvae mortality in 14 days post fertilization

TCS exposure levels (ng/mL)	n	n (%)	n
0 (control)	575	36 (6.3%)	389
3	580	41 (7.1%)	389
30	563	50 (8.9%)	363
100	561	72 (12.8%)	339
300	521	45 (8.6%)	326
900	110	110 (100%)	——

p < 0.01*

* c^2 test was used.

number of larvae at the beginning of 8 dpf = total hatched larvae in 72 hpf - number of larvae death up to 7 dpf - 150 larvae at the beginning of 8 dpf (i.e. 50 larvae/measure x 3 measures = 150 larvae for each exposure group).
Thyroid hormone values in zebrafish larva exposed to control and TCS for 7 and 14 days after fertilizing. A-D: TT3, TT4, FT3, FT4 level at 7 dpf; E-H: TT3, TT4, FT3, FT4 level at 14 dpf. At 14 dpf, p trend for TT3 = 0.04, p trend for FT3 = 0.001, p trend for FT4 = 0.04. Thyroid hormones concentrations in larvae were measured in three measures for each exposure group, with each measure homogenized from 50 fish at 7dpf, and 100 fish at 14 dpf. *p < 0.05, ** p <0.01.
Figure 2

Thyroid hormone values in zebrafish exposed to control and TCS for 120 days after fertilizing. Thyroid hormones concentrations in fish at 120 dpf were measured for each exposure group, with each sample homogenized from every single fish at 120 dpf. p trend for FT4 = 0.01. *p < 0.05, ** p <0.01.
Figure 3

Effects of TCS exposure at different concentration on nuclear area (A) and the height (B) of thyroid follicular cells. p trend < 0.0001 both for nuclear size and epithelial cell height of thyroid. **: p < 0.01 in TCS exposure group v.s. control group.
Figure 4

Structure of thyroid follicles with different TCS exposure concentration. (A) Control zebrafish follicle squamous to cuboidal follicular epithelium, with colloid in follicle. (B) Hypertrophy of follicles with little colloid in the lumen and angiogenesis in 3 ng/mL TCS exposure. (C) Hypertrophy of follicles, focal hyperplasia and angiogenesis in 30 ng/mL TCS exposure. (D) Hypertrophy of follicles, edema of epithelial cells, hyperplasia and angiogenesis in 100 ng/mL TCS exposure. (E, F) Hypertrophy of follicles, edema of epithelial cells, diffuse hyperplasia and angiogenesis in 300 ng/mL TCS exposure. (va = ventral aorta; c = colloid; f = thyroid follicle; ag = angiogenesis.)
Figure 5

Representative photomicrographs of single follicle structure and thyroid follicle cells with different TCS exposure concentration. (A) Control zebrafish follicle squamous to cuboidal follicular epithelium. (B) Hypertrophy and mild hyperplasia of follicle cells in 3 ng/mL TCS exposure. (C) Hypertrophy, hyperplasia and edema of follicle cells 30 ng/mL TCS exposure. (D) Focal hyperplasia with increased number of epithelial cells, depletion of the colloid at
the edges in 30 ng/mL TCS exposure. (E) Hypertrophy and hyperplasia of follicles and obviously increased cell height in 100 ng/mL TCS exposure. (F) Severe hypertrophy and edema of thyroid follicular epithelial cells in 300 ng/mL TCS exposure. (fc = thyroid follicular cell; black arrows = hypertrophy; white arrows = hyperplasia)

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
supplemental table.docx