The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy

Lilla Hornyák1†, Nikoletta Dobos2†, Gábor Koncz3, Zsolt Karányi1,4, Dénes Páll4, Zoltán Szabó6, Gábor Halmos2 and Lóránt Székvolgyi1*

1MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; 2Department of Biopharmacy, Faculty of Pharmacology, University of Debrecen, Debrecen, Hungary; 3Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; 4Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; 5Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Tumors are composed of abnormally transformed cell types and tissues that differ from normal tissues in their genetic and epigenetic makeup, metabolism, and immunology. Molecular compounds that modulate the immune response against neoplasms offer promising new strategies to combat cancer. Inhibitors targeting the indoleamine-2,3-dioxygenase 1 enzyme (IDO1) represent one of the most potent therapeutic opportunities to inhibit tumor growth. Herein, we assess the biochemical role of IDO1 in tumor metabolism and immune surveillance, and review current diagnostic and therapeutic approaches that are intended to increase the effectiveness of immunotherapies against highly aggressive and difficult-to-treat IDO-expressing cancers.

Keywords: indoleamine-2,3-dioxygenase, gene expression, metabolism, immunotherapy, immune surveillance, cancer diagnostics, clinical trial

INTRODUCTION

Biochemistry and Regulation of Indoleamine-2,3-Dioxygenase 1 (IDO1) Activity

Indolamine-2,3-dioxygenase 1 is a cytosolic enzyme with a heme (Fe2+) prosthetic group that catalyzes the first and rate-limiting step of tryptophan (Trp) catabolism (Figure 1A). IDO1 converts the essential amino acid Trp to kynurenine (Kyn) by cleaving the 2,3-double bond of the indole ring while a molecular oxygen (O2) merges into the unsealed molecule. The product is N-formylkynurenine that becomes rapidly and spontaneously transformed into Kyn (1). In the next steps, Kyn is further converted to other active metabolites, such as hydroxykynurenine, anthranilic acid, kynurenic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid (Figure 1A). The two end-products of the pathway are NAD+ and ATP that both fuel cellular metabolism (2).

In humans, IDO1 has an evolutionary paralog (indolamine-2,3-dioxygenase 2; IDO2) and a functional ortholog (tryptophan-2,3-dioxygenase; TDO) that catalyze the same biochemical reaction; however, IDO2 and TDO show high tissue specificity and much lower expression level than IDO1 that significantly restrict their activity (2, 4). TDO is transcribed only in the liver1 [protein-level expression is not established (5)] and its major function is to control the free Trp concentration of the blood (4). IDO2 mRNA is expressed at low levels in the placenta and liver (protein expression is not known2), while IDO1 shows a high protein expression in the peripheral lymph organs (lymph nodes, spleen and tonsils3).

1https://www.proteinatlas.org/ENSG00000151790-TDO2/tissue.
2https://www.proteinatlas.org/ENSG00000188676-IDO2/tissue.
3https://www.proteinatlas.org/ENSG00000131203-IDO1/tissue.
Figure 1

Cytosolic and mitochondrial protein synthesis

Tryptophan metabolism (WARS1/WARS2)

L-Tryptophan

IDO1

IDO2

N-formylkynurenine

Formic acid

L-Hydroxykynurenine

Kynurenine

Hydroxylase

Kynurenine

Kynureninase

Non-specific hydrolase

L-Kynurenine

Kynureninase

Anthraniolic acid

3-Hydroxyanthranilic acid

Kynurenine

Aminocarboxymuconic semialdehyde

Quinolinate

NAD+

Non-enzymatic

Decarboxylase

Aminocarboxymuconic semialdehyde

Glutaryl CoA

Picolinic acid

Tricarboxylic Acid Cycle

Terminal Oxidation

CO₂ + ATP

chr8:39771328..39786309 (+ strand); length: 14,982 bp

IDO1

NANOG
PDUGF1
GATA-3
FOX4A1
FOX4A2
NR2F1
HES1
C-MYC
C-FOS
MTF1
IRF1
p53

Cancer immunoediting

1. Elimination Phase
 - Tumor formation
 - Cancer recognition
 - Complete elimination

2. Equilibrium Phase
 - Accumulating mutations
 - Tumor still under control
 - Selection for immune evasion

3. Escape Phase
 - Tumor survival
 - Immunesuppression
 - Immune tolerance

Tumor reactive antibodies

Tumor cell

Healthy cell

NK cell

IDO

Tumor promoting cells

Regulatory T cell

PD-1

Effector T cell

IMMUNOTHERAPY

FIGURE 1 | Continued
are simultaneously produced in large amounts, which
nitrogen monoxide (NO) reacts with the heme cofactor of IDO1
and half-life of the enzyme. For instance, the diffusible messenger
hydrocarbon receptor (AhR) that binds to putative dendritic-
κ human transcription factors (3). The identified gene regulatory
expression between the promoter and distal enhancer regions (9).

Figure 1B). Inflammation and targets the IDO1/SOCS3 complex
cytokine signaling 3 (SOCS3), for instance, binds to IDO1 under
inflammatory conditions and targets the IDO1/SOCS3 complex
polyubiquitination and proteasomal digestion. IDO1 degrada-
cell types (3). Only normal (non-transformed) cell types were considered. (G) The role of IDO1 in cancer immuneediting. In the first phase of immuneediting (“elimination”), sporadically arising
transformed cells are destroyed by the innate and adaptive immune systems. Activated B cells produce tumor reactive antibodies to eradicate most transformed cells. Natural killer (NK) cells and effector T cells release inflammatory cytokines, such as IFN-γ, which activate dendritic cells (DCs) that secrete low levels of IDO1.
IDO1 depletes the essential amino acid Trp from the tumor microenvironment that inhibits tumor growth. In the “equilibrium” phase, surviving tumor cells are still controlled by the immune system; however, they rapidly accumulate mutations. When the immune system can no longer block the abnormal and autonomous growth of “edited” cells, the tumor becomes clinically manifested (“escape”). The escape phase is associated with high IDO1 level that is primarily produced by tumor cells and tolerogenic immune cells [e.g., tolerogenic DCs, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs)]. Trp depletion and Kyn accumulation lead to an immunosuppressive and tolerogenicity by inhibiting effector T cell and NK cell functions and stimulating regulatory T cells. IDO1 also promotes the expansion and activation of MDSCs and induces polarization of macrophages to a tolerogenic phenotype. Increased Kyn levels activate the aryl hydrocarbon receptor (AhR) that switch the activity of DCs from immunogenic to tolerogenic. Elevated CTLA4 expression of regulatory T cells results in further increase of IDO1 secretion by DCs. IDO1-induced expansion and activation of regulatory T cells, tolerogenic DCs, and MDSCs suppress the activity of antitumor effector T cells. Other immunosuppressive agents (e.g., PD-L1/PD-1, CTLA4) also inhibit effector T cell functions. Oncological immunotherapy aims to reverse immunoeediting (backward arrow) by inhibiting and activating local immunosuppressive and tumor eradication mechanisms, respectively.

The activity of IDO1 is mainly regulated at the transcriptional level (Figure 1B). Bona fide transcription factor binding sites have been detected by ChIP-seq for a large catalog of human transcription factors (3). The identified gene regulatory proteins involve (i) NF-κB, which allows IDO1 mRNA expression regulation through the interferon pathway (6), (ii) the aryl hydrocarbon receptor (AhR) that binds to putative dendritic-cell responsive elements and promotes the 1-Kyn-dependent induction of IDO1 (7, 8), and (iii) CTCF that mediates IDO1 expression via long-range chromatin looping interactions between the promoter and distal enhancer regions (9).

Superimposed on the transcriptional control of IDO1, specific posttranslational mechanisms also operate that affect the activity and half-life of the enzyme. For instance, the diffusible messenger nitrogen monoxide (NO) reacts with the heme cofactor of IDO1 generating ferric (Fe⁴⁺) heme and nitrate (NO₃⁻), which leads to the dose-dependent and reversible inhibition of enzymatic activity (10, 11). It has been also shown that endogenous NO production accelerates the proteasomal degradation of IDO1 (12). Other antioxidants like the anti-inflammatory agent pyrrolidone dithiocarbamate (13) restrict the availability of heme and thereby block holoenzyme assembly (14). In inflammatory conditions, NO and superoxide anions (O₂⁻) are simultaneously produced in large amounts, which rapidly generate the highly reactive peroxynitrite anion. Peroxynitrite inhibits IDO1 via the nitration of critical tyrosine residues (Tyr15, Tyr345, and Tyr533), without affecting IDO1 protein level (15, 16).

Hypoxia also leads to reduced IDO1 expression and, therefore, reduced Kyn production (17). Low IDO1 activity during the hypoxic phase promotes the activation of immune cells (18); however, hypoxic conditions also augment the secretion of effector CD4(+) T-cell cytokines, especially IFN-gamma, which in turn upregulates IDO1 mRNA expression (19).

At the protein level, IDO1 is mainly regulated by proteasomal degradation in response to immunogenetic stimuli. Suppressor of cytokine signaling 3 (SOCS3), for instance, binds to IDO1 under inflammatory conditions and targets the IDO1/SOCS3 complex for polyubiquitination and proteasomal digestion. IDO1 degradation converts tolerogenic dendritic cells (DCs) into immunogenic cells and, therefore, a prerequisite for normal dendritic-cell function (20). Activated AhR is another component of the ubiquitin/proteasome system that contributes to the regulatory proteolysis of IDO1 and other proteins (8) that affect IDO1’s half-life.

Indoleamine-2,3-dioxygenase 1 contains two phosphorylatable tyrosine residues (Y115 and Y253) that modulate its enzymatic activity (21). Phosphorylation of any of these residues results in conformational changes in IDO1 and blocks the catalytic activity of IDO1 (22). In addition to the regulation of catalytic activity, these motifs act as docking sites for various molecular partners that either prolong or shorten IDO1’s half-life and maintain its immunoregulatory effects or stimulate inflammatory responses, respectively (8). For example, IL-6 triggers the phosphorylation of the Y253 residue of IDO1 that recruits the ECS (Elongin-Cullin-SOCS) E3 ligase complex, targeting IDO1/SOCS3 for proteasomal degradation (23).

On the contrary, phosphorylation of the Y115 residue allows the binding of SH2 domain tyrosine phosphatases SHP1 and SHP2, while SOCS3 becomes excluded. Hence, the TGF-β/Fyn/SHP axis activates the non-canonical NF-κB pathway that upregulates IDO1 production. Recently, ligand-bound AhR and Arginase 1 have been also shown to promote IDO1 phosphorylation through Src kinases, activating the signaling function of IDO1 that leads to de novo synthesis of the enzyme via TGF-β production (8, 24, 25).

The Physiological and Pathological Function of IDO1

The IDO1 pathway was originally described as an innate immune mechanism that defended the host organism against infections (26). The immunoprotective role of IDO1 was directly
supported by the anti-pathogen effect of Trp metabolites (L-Kyn, L-hydroxykynurenine, 3-hydroxyanthranilic acid, quinolinic acid, picolinic acid) that prevented the proliferation and spread of intracellular pathogens (4, 27). Subsequent studies, however, identified tissue macrophages producing high levels of IDO1 upon IFN-γ stimulation that strongly inhibited the proliferation of effector T cells (28). It was also shown that accumulating Trp metabolites induced the differentiation of regulatory T cells and apoptosis of effector T cells that gave rise to immunosuppression (4, 26). L-Kyn is particularly toxic to lymphocytes (2) and induces the differentiation of regulatory T cells via AhR binding (29). L-hydroxykynurenine aids the suppression of CD4+ T cells and promotes the action of regulatory T cells (30). 3-hydroxyanthranilic acid modulates the immune functions of monocytes and lymphocytes, induces the apoptosis of effector T cells, and promotes the proliferation of regulatory T cells. Quinolinic acid stimulates the cell cycle of cancer cells and contributes to the acquisition of multidrug resistance against chemotherapeutic agents (29). Picolinic acid inhibits effector T cell proliferation (31). Later, it has become clear that the balance between the immunoprotective and immunosuppressive roles of IDO1 and Trp metabolites is tightly controlled by the stoichiometry of available local factors (e.g., IL-6, IL-12, CD40, IFN-γ, CTLA4, Foxo3a, IL-10, and PD-1) (26, 32). The resultant effect of these local activities modulates IDO1 expression and helps maintain global immune homeostasis and peripheral immune tolerance.

There are many pathologic diseases that are associated with increased IDO1 activity, including atherosclerosis, obesity, autoimmunity, major infections (e.g., community-acquired pneumonia, tuberculosis, listeriosis, influenza, HBV, HCV, HIV, sepsis), rejection of organ transplants, and cancer (2, 27). Originally, IDO1 has been considered as an anti-cancer molecule, proposing that increased IDO1 activity of antigen-presenting cells depletes the essential amino acid Trp from tumor cells and inhibits their growth. However, with the discovery of IDO1-mediated immunosuppressive functions, the pro-cancer activity of the enzyme has been recognized (33). IDO1 is overexpressed in more than 50% of tumors (34) that utilize IDO1-associated immunosuppressive mechanisms to promote their spread and survival (35).

In cervical cancer, for instance, IDO1 shows a significantly higher mRNA transcription and protein expression level than in normal cervix, and also in comparison to other cancers (36). The extent of IDO overexpression also depends on the type of tumor and risk factors that reach patients in their life. For instance, oral squamous cell carcinoma (OSCC) was compared in never-smokers and never-drinkers (NSND) with smoker and drinker (SD) patients. In NSND patients suffering from OSCC, expression of IDO1 was significantly higher than in SDs (37).

Indoleamine-2,3-dioxygenase1 production is elevated upon (i) IFN-γ production of effector T cells (2), (ii) inflammatory cytokine production of innate immune cells (6, 38), (iii) IL-10 and IL-27 stimulation (39), (iv) CTLA4 expression on Treg cells causing increased IDO1 secretion by dendritic cells (DCs) (40), and (v) TGF-β, IL-10 and adenosine production of Treg and other immunosuppressive cells (40–42), (vi) cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) stimuli that are mediated through the PKC, PI3K, and MAPK pathways (several types of tumors carry PI3K or MAPK oncogenic mutations leading to constitutive IDO1 expression.) (43).

The mechanism of IDO1-elicited immunosuppression is not fully understood; however, increased IDO1 and Kyn levels are known to inhibit natural killer (NK) cell function (44, 45), prevent the activation of effector T cells, stimulate the activation of Treg cells (35, 46) and the differentiation of tolerogenic DCs (47), and promote the expansion and activation of myeloid-derived suppressor cells (48). Furthermore, Trp depletion inhibits mechanistic target of rapamycin complex 1 that stimulates T cell apoptosis and antigen-presenting cell-mediated inflammation (1, 49).

Paradoxically, the adaptive and innate immune systems that primarily protect against cancer development drive the formation of the highly aggressive and difficult-to-treat IDO1+ tumors. The genetic and biochemical characteristics of the emerging tumor is established by the process of “immunoediting” that prevents and promotes tumor formation at the same time, involving three consecutive stages called “elimination,” “equilibrium,” and “escape” (50) (Figure 1C). In the first phase (“elimination”), most transformed cells are efficiently recognized and destroyed by the action of effector cells as NK and T cells (50). At this stage, IDO1 is produced at low levels within the tumor microenvironment and inhibits tumor proliferation (33). In the “equilibrium” phase, surviving tumor cells become “edited” by the continuous attack of the immune system and accumulate mutations (51). In the “escape” phase, IDO1 is produced in large quantities by tumor cells and tolerogenic immune cells that are recruited to the tumor microenvironment (52, 53). Increased IDO1 activity leads to elevated Kyn production that prevents effector T cell (35, 46) and NK cell functions (44, 45). In parallel, IDO1 induces the activation and expansion of Treg cells (26), DCs (47), and MDCs (48) that further suppress the function of antitumor T cells. These mechanisms collectively establish an immunosuppressive tumor microenvironment that supports tumor growth. IDO1 positivity is strongly associated with multidrug resistance of tumors and inversely correlates with patient survival (54). Therefore, timely diagnosis and therapeutic correction of IDO+ tumors are of crucial importance to prevent clinical manifestation.

IDO1 in Cancer Diagnostics and Therapy

Indoleamine-2,3-dioxygenase 1 overexpression increases the relative concentration of Kyn compared to Trp, hence Kyn/Trp ratio can be used as a prognostic clinico-pathological marker to monitor cancer invasiveness and progression. Accordingly, increased systemic Kyn/Trp ratio and elevated IDO1 activity have been associated with poor prognosis and low survival of patients diagnosed with cervical cancer and glioblastoma multiforme (55, 56). For the sensitive detection of Trp metabolites in IDO1+ tumor tissues, a wealth of Trp-based radiotracers has been developed for positron emission tomography imaging. Radioactive Trp analogs as α-[^11C]methyl-L-tryptophan (AMT) and L- and D-[^18F]fluoroethyl-tryptophan provide useful information about response to immunotherapy, but they are also crucial for the preclinical and clinical validation of novel IDO1 inhibitors (57, 58).

Protein expression of IDO1 was found to be high in a number of tumor samples (36, 56); therefore, IDO1 may be a relevant therapeutic target to abrogate immune suppression (59).
Agent	Tumor type	NCT number	Study phase	Recruitment status	(Estimated) primary completion date
IDO peptide vaccine	• Non-small cell lung cancer (NSCLC)	NCT01219348	Phase 1	Completed	August 2012
		NCT02077114	Phase 1	Completed	September 2014
		NCT01543464	Phase 2	Terminated	September 2016
		NCT03047928	Phase 1	Not yet recruiting	1 April, 2019
	• Metastatic malignant melanoma	NCT01543464	Phase 2	Terminated	September 2016
	• Metastatic breast cancer	NCT00567931	Phase 1	Completed	July 2012
		NCT00739609	Phase 1	Terminated	October 2012
	• Metastatic melanoma	NCT01302821	Phase 2	Terminated	December 2014
		NCT01792050	Phase 1	Active, not recruiting	December 2016
	• Breast cancer	NCT00739609	Phase 2	Recruiting	December 2016
	• Lung cancer	NCT02052648	Phase 1	Recruiting	December 2016
	• Melanoma	NCT02073123	Phase 2	Recruiting	July 2017
	• Pancreatic cancer	NCT02077881	Phase 1	Recruiting	July 2017
	• Solid tumors	NCT02835729	Phase 2	Recruiting	July 2018
Indoximod (1-methyl-o-tryptophan; D-1MT; NSC-721782)	• Unspecified adult solid tumors	NCT00567931	Phase 1	Completed	July 2012
	• Breast cancer	NCT01302821	Phase 2	Terminated	December 2014
	• Lung cancer	NCT00739609	Phase 2	Recruiting	June 2017
	• Melanoma	NCT01792050	Phase 1	Terminated	December 2016
	• Pancreatic cancer	NCT02073123	Phase 2	Recruiting	December 2016
	• Solid tumors	NCT02052648	Phase 1	Recruiting	December 2016
	• Metastatic breast cancer	NCT02073123	Phase 1	Recruiting	December 2016
	• Metastatic melanoma	NCT02073123	Phase 2	Recruiting	July 2017
	• Glioblastoma multiforme	NCT02052648	Phase 1	Recruiting	December 2016
	• Glioma	NCT02052648	Phase 2	Recruiting	December 2016
	• Gliosarcoma	NCT02502708	Phase 1	Recruiting	July 2017
	• Malignant brain tumor	NCT02052648	Phase 2	Recruiting	June 2017
	• Non-small cell lung cancer (NSCLC)	NCT02460367	Phase 1	Recruiting	June 2017
	• Metastatic pancreatic adenocarcinoma	NCT02460367	Phase 2	Recruiting	June 2017
	• Metastatic pancreatic cancer	NCT02835729	Phase 1	Recruiting	June 2017
	• Acute myeloid leukemia	NCT02835729	Phase 2	Recruiting	June 2017
Epacadostat (INCB024360, 4-amino-1,2,5-oxadizaoles-3-carboximidamide)	• Advanced malignancies	NCT01195311	Phase 1	Completed	May 2013
	• Myelodysplastic syndromes (MDS)	NCT01822691	Phase 2	Completed	January 2015
	• Epithelial ovarian cancer	NCT01665255	Phase 2	Terminated	23 October, 2014
	• Fallopian tube cancer	NCT02118285	Phase 1	Completed	12 November, 2015
	• Primary peritoneal cancer	NCT02042430	Phase 2	Active, not recruiting	31 March, 2016
	• Metastatic breast cancer	NCT01982487	Phase 1	Recruiting	December 2016
	• Skin melanoma	NCT02166905	Phase 2	Recruiting	12 February, 2018
	• Uveal melanoma	NCT02278525	Phase 2	Recruiting	May 2018
	• Gastrointestinal stromal tumors	NCT02575807	Phase 1	Recruiting	December 2018
	• Mucoosal melanoma	NCT01961115	Phase 2	Active, not recruiting	31 October, 2017
	• Skin melanoma	NCT01604889	Phase 2	Terminated	27 December, 2016
	• Uveal melanoma	NCT02593151	Phase 2	Terminated	27 December, 2016
	• Gastrointestinal stromal tumors	NCT01961115	Phase 2	Active, not recruiting	31 October, 2017
	• Recurrent/metastatic endometrial carcinoma	NCT02575807	Phase 2	Recruiting	December 2018
	• Squamous cell carcinoma of the head and neck	NCT03025387	Phase 2	Recruiting	December 2018
	• Advanced solid tumors	NCT02559492	Phase 1	Recruiting	December 2018
	• Metastatic pancreatic adenocarcinoma	NCT03085914	Phase 1	Recruiting	December 2018
	• Metastatic non-small cell lung cancer (NSCLC)	NCT02959437	Phase 2	Recruiting	December 2018
	• Renal cell carcinoma	NCT02959437	Phase 2	Recruiting	December 2018
	• Advanced malignancies	NCT01982487	Phase 2	Recruiting	December 2018
	• Myelodysplastic syndromes (MDS)	NCT02166905	Phase 2	Recruiting	December 2018
	• Epithelial ovarian cancer	NCT02575807	Phase 1	Recruiting	December 2018
	• Fallopian tube cancer	NCT01604889	Phase 2	Terminated	27 December, 2016
	• Primary peritoneal cancer	NCT03085914	Phase 1	Recruiting	December 2018
	• Metastatic breast cancer	NCT02166905	Phase 2	Recruiting	December 2018
	• Skin melanoma	NCT03085914	Phase 2	Recruiting	December 2018
	• Uveal melanoma	NCT02959437	Phase 2	Recruiting	December 2018
	• Gastrointestinal stromal tumors	NCT03085914	Phase 2	Recruiting	December 2018
	• Recurrent/metastatic endometrial carcinoma	NCT03085914	Phase 2	Recruiting	December 2018
	• Squamous cell carcinoma of the head and neck	NCT03085914	Phase 2	Recruiting	December 2018
	• Advanced solid tumors	NCT03085914	Phase 2	Recruiting	December 2018
	• Metastatic pancreatic adenocarcinoma	NCT03085914	Phase 2	Recruiting	December 2018
	• Metastatic non-small cell lung cancer (NSCLC)	NCT03085914	Phase 2	Recruiting	December 2018
	• Renal cell carcinoma	NCT03085914	Phase 2	Recruiting	December 2018

(Continued)
Currently, several IDO inhibitors undergo clinical evaluation (60) and many of them are now in Phase II clinical trials (Table 1). Most inhibitors were designed to block the Kyn pathway (e.g., epacadostat, indoximod, GDC-0919, and an IDO1 peptide-based vaccine; Figure 1A) that suspends immunosuppression (1). Some of the tested compounds are used alone, or in combination with immunotherapy (CTLA4, PD-1 blockade), chemotherapy, adoptive transfer, COX-2 inhibitors (e.g., celecoxib), membrane-associated PGE2 synthase inhibitors (e.g., MF63), PGE2 receptor (EP4) competitive antagonists (e.g., GW627368X), and PI3K inhibitors (43, 59). The latter combinative therapies are intended to improve the inhibition of local immunosuppression around tumor tissues and to enhance tumor eradication (61).

Epacadostat (INCB024360) and indoximod (NLG8189 or 1-methyl-D-tryptophan) are the most common IDO inhibitors that are well tolerated and show obvious beneficial effects in cancer therapy; however, both have some major side effects. Epacadostat showed grade 3 and 4 adverse effects in patients with advanced malignancies, most frequently abdominal pain, hypokalemia, fatigue, and some minor effects involving nausea, decreased appetite, vomiting, constipation, diarrhea, dyspnea, back pain, and cough (62). Indoximod treatment also showed some major toxicities in a dose-escalation study, involving grade 1 fatigue and grade 2 hypophysitis (63). In combination with the microtubular poison docetaxel, the most common adverse effects were fatigue, anemia, hyperglycemia, infection, and nausea (62, 63).

Combination of IFN-γ treatment with IDO1 inhibitors is a promising new cancer immunotherapeutic strategy that effectively enhances antitumor immunity and eliminates TRCs (i.e., stem cell-like cancer cells that are self-renewing, highly tumorigenic, and can repopulate tumors). In clinical practice, administration of IFN-γ with IDO1 inhibitors is the only oncolytic therapy that significantly disrupts TRCs. IFN-γ induces the entry of TRCs into dormancy, while IDO1 inhibitor-elicited immunosuppression allows effector T cells and NK cells to attack dormant TRCs (64). Monotherapies with IDO inhibitors or other combinative treatments usually terminate with failure because of immune evasion of TRCs, which leads to metastasis formation, tumor recurrence and multidrug resistance (64).

Mutational load/neoantigen-burden, basal level of tumor infiltrating T cells (TILs), differential expression of immune-checkpoint genes within the tumor tissue are important biomarkers that help predict the tumor’s predisposition toward immune-checkpoint inhibitors (ICIs) targeting IDO1, CTLA4, or PD-1 and increase the clinical success of immunotherapies. Most ICI-responsive cancers (e.g., lung and bladder cancers, melanoma) were associated with intrinsically high TIL numbers and high mutational load/neoantigen-burden, while other cancers (e.g., glioblastoma) were predicted to be ICI-resistant based on their biomarker profiles (37, 65).

Beyond the application of biomarkers and chemical inhibitors, IDO1 can be genetically targeted by genome editing tools that offer new therapeutic opportunities for cancer patients. In animal studies, genetic inhibition of IDO1 expression reactivated the antitumor immune response against IDO+ cancer cells and inhibited tumor growth (63). The shIDO-ST treatment, for instance, is based on a Salmonella typhimurium (ST) vector that codes for a small hairpin RNA targeting IDO1 (shIDO) (66). Intravenously injected shIDO-ST accumulated in the tumor tissues of mice, causing IDO1 silencing and concomitant infiltration and activation of polymorphonuclear neutrophil granulocytes (PMNs). PMNs produced reactive oxygen species that established a highly toxic microenvironment for tumor cell growth (67). A recent genomic sequencing study that combined large-scale tumor exome analysis with MHC I class prediction revealed a strong positive correlation between IDO1 expression, mutational burden, and neoantigen load in cervical cancers (36). The above studies collectively identify IDO1 as an attractive target to increase the effectiveness of cancer immunotherapies.

Conclusion and Outlook

The mechanism of “cancer immunoediting” is the direct consequence of a T cell-dependent immune selection process that drives the formation of IDO1+ tumors. The action of a competent immune system is, therefore, determinative for the acquisition of cancer immunogenicity. Important posttranslational control mechanisms affect the activity and half-life of IDO1 (e.g., NO, hypoxia, proteasomal degradation, phosphorylation) that should be considered in terms of cancer therapy. For instance, IDO1 inhibitors could be administered as co-therapeutic agents in the presence of redox regulators, IFN-γ, or anti-IL-6. Combining IDO1 drugs with the inhibition of specific transcription factors regulating IDO1 activity (e.g., AhR) may also improve the effectiveness and specificity of chemotherapies. Current genome

TABLE 1 | Continued

Agent	Tumor type	NCT number	Study phase	Recruitment status	(Estimated) primary completion date
GDC-0919	Advanced solid tumors	NCT02048709	Phase 1	Completed	February 2016
HTI-1090 (SHR9146)	Advanced solid tumors	NCT03208959	Phase 1	Not yet recruiting	1 April, 2018
PF-06840003	Oligodendroglioma	NCT02764151	Phase 1	Recruiting	30 April, 2018
NLG802	Advanced solid tumors	NCT03164603	Phase 1	Recruiting	May 2018
BMS-986205	Advanced cancer	NCT03335540	Phase 1	Not yet recruiting	14 March, 2021

Clinical trials were identified on the website: [https://clinicaltrials.gov/ct2/results?cond=&term=IDO1&ctry1=&state1=&recrs=& as of 9 November, 2017.](https://clinicaltrials.gov/ct2/results?cond=&term=IDO1&ctry1=&state1=&recrs=)
editing and exome sequencing technologies offer promising new strategies to identify novel tumor-specific mutational antigens and thus expand the repertoire of tumor-specific immunotherapies.

AUTHOR CONTRIBUTIONS

All authors participated in the writing of this manuscript and agreed to be accountable for the content of the work.

REFERENCES

1. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, et al. Molecular pathways: targeting IDO1 and Other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res (2015) 21:5427–33. doi:10.1158/1078-0432.CCR-15-0420

2. Bilir C, Sarisozan C. Indoleamine 2,3-dioxygenase (IDO): only an enzyme or a checkpoint controller? J Oncol Sci (2017) 3:52–6. doi:10.1016/j.jos.2017.04.011

3. Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov FGTRD. A database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res (2017) 45:D61–7. doi:10.1093/nar/gkw951

4. van Baren N, Van den Eynede BJ. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol (2015) 6:34. doi:10.3389/fimmu.2015.00034

5. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. Chromatin architecture reorganization during stem cell differentiation. Immuno Cell Biol (2013) 91:568–75. doi:10.1038/icb.2013.43

6. Pallotta MT, Fallarino F, Patricio E, Matino D, Macchiarulo A, Orabona C. AhR-mediated, non-genomic modulation of IDO1 function. Front Immunol (2014) 5:497. doi:10.3389/fimmu.2014.00497

7. DiNardo JG, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J Immunol (2015) 195:2640–8. doi:10.1165/r美.2015.01.005

8. Bessede A, Gargaro M, Pallotta MT, Matino D, Brunacci C, Biccato S, et al. Arg tryptophan hydrocarbon receptor signaling regulates NF-κB Reβ activation during dengrite cell differentiation. Immunol Cell Biol (2013) 91:568–75. doi:10.1038/icb.2013.43

9. Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, et al. Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions. PLoS One (2013) 8:e63301. doi:10.1371/journal.pone.063301

10. Herbert A, Ng H, Jessup W, Kockx M, Cartland S, Thomas SR, et al. Hypoxia regulates the production and activity of glucose transporter-1 and indoleamine 2,3-dioxygenase in monocoyt DER6-derived endothelial-like cells: possible relevance to infantile haemangioma pathogenesis. Br J Dermatol (2011) 164:308–15. doi:10.1111/j.1365-2133.2010.09886.x

11. Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G, et al. T-cell activation under hypoxic conditions enhances IFN-γ secretion. Am J Respir Cell Mol Biol (2010) 42:123–38. doi:10.1165/rcmb.2008-0390OC

12. Albrini E, Rosini V, Gargaro M, Mondanelli G, Belladonna ML, Pallotta MT, et al. Distinct roles of immunoreceptor tyrosine-based motifs in immunosuppressive indoleamine 2,3-dioxygenase I. J Cell Mol Med (2017) 21:165–76. doi:10.1111/jcm.12954

13. Orabona C, Pallotta M, Grohmann U. Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. Mol Med (2012) 18:834–42. doi:10.2119/molmed.2012.00029

14. Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity (2017) 46:233–44. doi:10.1016/j.immuni.2017.01.005

15. Bessede A, Gargaro M, Pallotta MT, Matino D, Brunacci C, Biccato S, et al. Arg tryptophan hydrocarbon receptor control of a disease tolerance defense pathway. Nature (2015) 511:184–90. doi:10.1038/nature13323.Aryl

16. Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC, et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J Exp Med (2003) 198:153–60. doi:10.1084/jem.20030633

17. Schmidt SV, Schultze JL. New insights into IDO biology in bacterial and viral infections. Front Immunol (2014) 5:384. doi:10.3389/fimmu.2014.00384

18. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science (1998) 281:1191–3. doi:10.1126/science.281.5380.1191

19. Heng B, Lim CK, Lovejoy DB, Bessede A, Gluch L, Guillemin GJ. Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget (2016) 7:6560–20. doi:10.18632/oncotarget.6467

20. Zaffar SS, Germain C, Fu H, Larkin DFP, George AJT. 3-hydroxykynurenine suppresses CD44+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Invest Ophthalmol Vis Sci (2011) 52:2640–8. doi:10.1167/iovs.10-5793

21. Prodinger J, Loacker LJ, Schmidt RLJ, Ratzinger F, Greiner G, Witzeneder N, et al. The tryptophan metabolite pyrrolidine dithiocarbamate suppresses proliferation and metabolic activity of CD4+ T cells and inhibits c-Myc activation. J Leukoc Biol (2016) 99:583–94. doi:10.1189/jlb.A0315-135R

22. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol (2002) 3:1097–101. doi:10.1038/nl846
33. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. *Immunol Rev* (2008) 222:206–21. doi:10.1111/j.1600-065X.2008.00610.x

34. Lob S, Königsrainer A, Zieker D, Brücher BLDM, Ramnussen HG, Opelz G, et al. IDO1 and IDO2 are expressed in human tumors: lovo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. *Cancer Immunol Immunother* (2009) 58:153–7. doi:10.1007/s00262-008-0513-6

35. Godin-Ethier J, Hanafi I-A, Piccirillo CA, Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. *Clin Cancer Res* (2011) 17:6985–91. doi:10.1158/1078-0432.CCR-11-1331

36. Qin Y, Ekmekcioglu S, Forget M-A, Szekvolgyi L, Hwu P, Grimm EA, et al. Qin 2013. *J Immunol* (2016) 181:1114–28. doi:10.4049/jimmunol.1502615

37. Li Q, Harden JL, Anderson CD, Egilmez NK. Tolerogenic phenotype of dendritic cells exposed to IDO1-kynurenineemia. *Cytotherapy* (2016) 18:213–26. doi:10.1016/j.cytog.2016.03.017

38. Rovira Gonzalez YI, Lynch PJ, Thompson EE, Stultz BG, Hursh DA. Rovira Gonzalez 2014. *Ann Acad Med Singapore* (2017) 46:87–94. doi:10.1142/11877

39. Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S, et al. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. *Cancer Immunol Res* (2015) 3:779–88. doi:10.1158/2326-6066.CIR-14-0368

40. Belladonna ML, Orabona C, Grohmann U, Puccetti P. TGF-β and kynurenines as the key to infectious tolerance. *Trends Mol Med* (2009) 15:41–9. doi:10.1016/j.molmed.2008.11.006

41. Yanagawa Y, Iwabuchi K, Onoé K. Co-operative action of interleukin-10 and interferon-γ to regulate dendritic cell functions. *Immunology* (2009) 127:345–53. doi:10.1111/j.1365-2668.2008.02986.x

42. Novitsky SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. *Blood* (2008) 112:1822–31. doi:10.1182/blood-2008-02-136325

43. Hennemart Q, Pilote L, Cane S, Hoffmann D, Stroobant V, De Plaen E, et al. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. *OncoTarget* (2015) 6:43267–80. doi:10.18632/oncotarget.6530

44. Pietra G, Vitale M, Moretta L, Mingari MC. How melanoma cells inactivate T cells by IDO. *Blood* (2015) 126:12961–70. doi:10.1182/blood-2015-04-619694

45. Henrottin J, Lemaire C, Egrise D, Zervosen A, van Den Eynde B, Penevaux A, et al. Analysis of kynurenine/tryptophan ratio and expression of IDO1 and 2 in tumour tissue of cervical cancer patients. *Clin Biochem* (2016) 49:919–24. doi:10.1016/j.clb.2016.04.008

46. Zhai L, Ladomersky E, Lauring KL, Wu M, Genet M, Gritsina G, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. *Clin Cancer Res* (2017) 23:5650–60. doi:10.1158/1078-0432.CCR-17-0120

47. Xin Y, Cai H. Improved radiosynthesis and biological evaluations of L- and D-1-[18F]fluoroethyl-tryptophan for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism. *Mol Imaging Biol* (2017) 19:589–98. doi:10.1007/s11307-016-0242-z

48. Henrotin J, Lemaire C, Egrise D, Zervosen A, van Den Eynde B, Penevaux A, et al. Fully automated radiosynthesis of N1-[18F]fluoroethyl-tryptophan and study of its biological activity as a new potential substrate for indoleamine 2,3-dioxygenase PET imaging. *Nucl Med Biol* (2016) 44:379–89. doi:10.1016/j.nimb.2016.03.001

49. Munn DH, Miller AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. *Trends Immunol* (2016) 37:193–207. doi:10.1016/j.ti.2016.01.002

50. Routy JP, Routy B, Graziani GM, Mehraj V. The kynurenine pathway is a double-edged sword in immune-privileged sites and in cancer: implications for immunotherapy. *Int J Tryptophan Res* (2016) 9:677–87. doi:10.4172/11307-016-1024-x

51. Koziolka A, Mackiewicz J, Mackiewicz A. Therapeutic gene modified cell based cancer vaccines. *Gene* (2013) 525:200–7. doi:10.1016/j.gene.2013.03.056

52. Brochez L, Chevolot I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. *Eur J Cancer* (2017) 76:167–82. doi:10.1016/j.ejca.2017.01.011

53. Zhao Q, Kuang D-M, Wu Y, Xiao X, Li X-F, Li T-J, et al. Activated CD69 and CD102 up-regulation in extracellular breast and targeted immunotherapies. *Oncoimmunology* (2017) 6:1295903. doi:10.1080/2162402X.2017.1295903

54. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JDI, Blazar BR, et al. Systemic delivery of *Salmonella typhimurium* recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. *Oncoimmunology* (2017) 6:e1295903. doi:10.1080/2162402X.2017.1295903

55. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JDI, Blazar BR, et al. Systemic delivery of *Salmonella typhimurium* transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. *Cancer Res* (2012) 72:6447–56. doi:10.1158/0008-5472.CAN-12-1913

56. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JDI, Blazar BR, et al. Systemic delivery of *Salmonella typhimurium* transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. *Cancer Res* (2012) 72:6447–56. doi:10.1158/0008-5472.CAN-12-1913

57. Blache CA, Manuel ER, Diamond DJ. A road less traveled paved by IDO silencing: harnessing the antitumor activity of neutrophils. *Oncoimmunology* (2013) 2:e233322. doi:10.4161/onci.23322

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Hornyák, Dobos, Koncz, Karányi, Páll, Szabó, Halmo and Székely. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.