Successful autologous stem cell collection with filgrastim and plerixafor after long-term lenalidomide therapy for multiple myeloma

Rishi Agarwal,1 Munee H. Abidi2,3
1UT Houston MD Anderson Cancer Center, Houston, TX; 2Karmanos Cancer Institute, Detroit, MI; 3Wayne State University, Detroit, MI, USA

Abstract

Novel agents such as lenalidomide have demonstrated responses similar to high-dose melphalan and autologous stem cell transplant in multiple myeloma. For patients who are started on lenalidomide, it is advisable to collect stem cells early if future transplant is contemplated. We are reporting a patient who underwent successful stem cell mobilization after 68 cycles of lenalidomide. A 60-year old male presented with back pain. He was diagnosed with stage IIIB IgA multiple myeloma. He was enrolled in a clinical trial and was randomized to receive lenalidomide plus dexamethasone. He received a total of 68 cycles of lenalidomide before progressing. He underwent mobilization of stem cells using filgrastim and plerixafor. He underwent successful stem cell transplant. Longer duration of lenalidomide adversely affects stem cell mobilization. To the best of our knowledge, there has been no other case reported in which stem cell mobilization was feasible after such a long duration of uninterrupted lenalidomide therapy.

Case Report

A 60-year old male with a past medical history of hypertension presented with a 2-month history of new onset upper back pain. Initial work up showed quantitative IgA level of 7,850 mg/dL. After a complete work up, he was diagnosed with Durie-Salmon stage IIIB, IgA multiple myeloma and was started on lenalidomide plus dexamethasone as part of a double blind, randomized clinical trial evaluating lenalidomide plus dexamethasone compared to placebo plus dexamethasone for newly diagnosed multiple myeloma. After 3 cycles of dexamethasone (40 mg/day on Days 1-4, 9-12 and 17-20) plus lenalidomide (25 mg/day for 28 days), he was moved onto maintenance therapy with dexamethasone (40 mg/day on Days 1-4 and 15-18) plus lenalidomide (25 mg/day for 21 days).

The patient was compliant with both lenalidomide and dexamethasone. Dexamethasone was later discontinued after 50 months and 24 days of therapy due to mood changes and insomnia. During this entire therapy period, adverse events included grade 1 diarrhea and neuropathy; these were treated symptomatically.

The patient was closely monitored throughout this therapy and his multiple myeloma stayed biochemically stable until he had received a total 68 cycles of lenalidomide (68 months). At 68 months of therapy, he demonstrated signs of progression; quantitative IgA increased to 529 mg/dL, SPEP/immunofixation showed IgA kappa of 0.42 g/dL (Figure 1), kappa to lambda ratio was 3.06, and bone marrow biopsy showed 67.8% plasma cells. Lenalidomide was discontinued and he was evaluated for HDM with ASCT.

He underwent mobilization of stem cells using filgrastim 16 mcg/kg/day for four days and plerixafor 0.24 mcg/kg administered on Day 4 (no peripheral CD34 count checked on Day 4). The peripheral CD 34 cell count was 44.94x10^6/L on Day 5. Total CD 34 cells collected were 6.37 million per kg of actual body weight. The stem cells were collected in one day. The total volume of blood processed was 28,674 milliliters. Subsequently, he underwent stem cell transplant with melphalan 140 mg/m2 because of his low GFR (55 mL/min/1.73 m2). His neutrophils and platelets successfully engrafted post ASCT.

Correspondence: Rishi Agarwal, Investigational Cancer Therapeutics, UT Houston MD Anderson Cancer Center, Houston, Texas, 77030, USA. Tel. +1.713.794.1834 - Fax: +1.713.792.3535. E-mail: ragarwal1@mdanderson.org

Key words: ASCT, lenalidomide, filgrastim, plerixafor.

Contributions: RA carried out the literature search, reviewed the chart and wrote the manuscript; MA is the treating physician and supervised RA through the entire process.

Conflict of interests: MA has received a research grant and has collaborated as part of the Speakers’ Bureau of Millennium Pharmaceuticals. RA has no conflicts of interest to declare.

Received for publication: 19 September 2012. Revision received: 25 October 2012. Accepted for publication: 8 November 2012.

This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0).

©Copyright R. Agarwal and M.H. Abidi, 2012 Licensee PAGEPress, Italy. Hematology Reports 2012; 4:e26 doi:10.4081/hr.2012.e26
Clinical outcomes but it is easier to predict col-
come the myelosuppressive effect of lenalido-
myelosuppressive effect that could adversely
failure of stem cell mobilization has been
studies have shown that lenalidomide has a
myelosuppressive effect of lenalido-
Longer duration of lenalidomide therapy
Due to the lack of evidence from randomized
trial, International Myeloma Working Group
expert consensus recommends early
mobilization in patients treated with
lenalidomide induction therapy when future
ASCT is being contemplated. In patients
who had received less than 4 cycles and are under 65
years of age, G-CSF alone could be used as a
mobilizing agent, while in patients who have
received more than 4 cycles, use of cyclophos-
phamide in combination with G-CSF could be
considered. mSMART guidelines suggest that
impact of lenalidomide on stem cell collec-
tion could be overcome by early collection of
stem cells (after 4 cycles), or by using mobiliz-
ing agents, such as chemotherapy and granulo-
cyte colony stimulating factors or newer agents
like plerixafor which is a reversible antagonist
of the CXCR4 receptor. Use of low dose-
cyclophosphamide (1.5 g/m²) has been more
frequently associated with mobilization failure
and intermediate-dose cyclophosphamide
(3-4 g/m²) has been shown to provide more
robust mobilization compared to low-dose
cyclophosphamide (1.5 g/m²). Plerixafor in
combination with granulocyte colony stimulat-
ing factors has been shown to improve stem cell
yield in patients previously treated with
lenalidomide. Use of plerixafor/G-CSF and
cyclophosphamide/G-CSF has shown similar
clinical outcomes but it is easier to predict col-
collection outcome with plerixafor/G-CSF and
this combination also has the advantage of reducing
the risk of unscheduled hospital admissions.
We decided to use plerixafor/G-CSF for our
patient because of its greater predictability, the
reduced risk of neutropenia, and to avoid the
prolonged use of neutopenic that is usually asso-
ciated with cyclophosphamide.

Discussion and Conclusions

Lenalidomide with dexamethasone has shown promising activity in refractory multiple myeloma as well as in newly diagnosed multiple myeloma. The ease of oral administration and the impressive overall response is leading to widespread use of this combination. Multiple studies have shown that lenalidomide has a myelosuppressive effect that could adversely affect the stem cell mobilization and collection. Failure of stem cell mobilization has been observed with prolonged exposure and when single agent G-CSF is used as the mobilizing agent. On the other hand, use of non-G-CSF mobilization factors has been shown to over-
come the myelosuppressive effect of lenalido-
mide. Longer duration of lenalidomide therapy
has been shown to worsen the adverse effect of
lenalidomide on stem cell mobilization.

Due to the lack of evidence from randomized
trials, International Myeloma Working Group
(IMWG) expert consensus recommends early
stem cell mobilization in patients treated with
lenalidomide induction therapy when future
ASCT is being contemplated. In patients
who had received less than 4 cycles and are under 65
years of age, G-CSF alone could be used as a
mobilizing agent, while in patients who have
received more than 4 cycles, use of cyclophos-
phamide in combination with G-CSF could be
considered. mSMART guidelines suggest that
impact of lenalidomide on stem cell collec-
tion could be overcome by early collection of
stem cells (after 4 cycles), or by using mobiliz-
ing agents, such as chemotherapy and granulo-
cyte colony stimulating factors or newer agents
like plerixafor which is a reversible antagonist
of the CXCR4 receptor. Use of low dose-
cyclophosphamide (1.5 g/m²) has been more
frequently associated with mobilization failure
and intermediate-dose cyclophosphamide
(3-4 g/m²) has been shown to provide more
robust mobilization compared to low-dose
cyclophosphamide (1.5 g/m²). Plerixafor in
combination with granulocyte colony stimulat-
ing factors has been shown to improve stem cell
yield in patients previously treated with
lenalidomide. Use of plerixafor/G-CSF and
cyclophosphamide/G-CSF has shown similar
clinical outcomes but it is easier to predict col-
collection outcome with plerixafor/G-CSF and
this combination also has the advantage of reducing
the risk of unscheduled hospital admissions.
We decided to use plerixafor/G-CSF for our
patient because of its greater predictability, the
reduced risk of neutropenia, and to avoid the
prolonged use of neutopenic that is usually asso-
ciated with cyclophosphamide.

Prolonged use of lenalidomide adversely
affects stem cell collection, but this can be
overcome by using mobilization agents, as
seen with our patient. To the best of our knowl-
edge, our patient had the longest exposure (68
months) to lenalidomide before a successful
stem cell collection on the first attempt using
plerixafor and filgrastim. The role of plerixafor
in the mobilization of stem cells in patients
heavily pre-treated with lenalidomide needs to
be explored in clinical trials.

References

1. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;112:2516-20.
2. Lacy MQ, Gertz MA, Dispenzieri A, et al. Long-term results of response to therapy, time to progression, and survival with lenalidomide plus dexamethasone in newly diagnosed myeloma. Mayo Clin Proc 2007;82:1179-84.
3. Rajkumar SV, Rosinol L, Hussein M, et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol 2008;26:2171-7.
4. Kumar SK, Mikhael JR, Buadi FK, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin Proc 2009;84:1095-110.
5. Attal M, Harousseau JL, Stoppa AM, et al. Improved survival in multiple myeloma as initial therapy for newly diagnosed symptomatic multiple myeloma. Leukemia 2007;21:2035-42.
6. Paripati H, Stewart AK, Cabou S, et al. Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia 2008;22:1282-4.
7. Mazumder A, Kaufman J, Niesvizky R, et al. Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 2008;22:1280-1.
8. Popat U, Saliba R, Thandi R, et al. Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biology of Blood and Marrow Transplantation 2009;15:718-23.
9. Nazha A, Cook R, Vogl DT, et al. Stem cell collection in patients with multiple myelo-
ma: impact of induction therapy and mobi-
lization regimen. Bone Marrow Transpl
2011;46:59-63.
10. Hamadani M, Kochuparambil ST, Osman S, et al. Intermediate-dose versus low-dose
cyclophosphamide and granulocyte colony-stimulating factor for peripheral blood stem cell mobilization in patients with multiple myeloma treated with novel induction therapies. Biology of Blood and Marrow Transplantation 2012;18:1128-35.

16. Malard F, Kroger N, Gabriel IH, et al. Plerixafor for autologous peripheral blood stem cell mobilization in patients previously treated with fludarabine or lenalidomide. Biology of Blood and Marrow Transplantation 2012;18:314-7.

17. Micallef IN, Ho AD, Klein LM, et al. Plerixafor (Mozobil) for stem cell mobilization in patients with multiple myeloma previously treated with lenalidomide. Bone Marrow Transplant 2011;46:350-5.

18. Shaughnessy P, Islas-Ohlmeyer M, Murphy J, et al. Cost and clinical analysis of autologous hematopoietic stem cell mobilization with G-CSF and plerixafor compared to G-CSF and cyclophosphamide. Biology of Blood and Marrow Transplantation 2011;17:729-36.