First functional morphology comparison between two Miocene cricetid mandibles

Patricia María CARRO-RODRÍGUEZ1,2,*, Paloma LÓPEZ-GUERRERO1, Jérôme PRIETO3, María Ángeles ÁLVAREZ-SIERRA1,2 & Pablo PELÁEZ-CAMPOMANES4

1 Department of Geodynamics, Stratigraphy and Palaeontology (GEODESPAL), Universidad Complutense de Madrid, Madrid, Spain. patcarro@ucm.es*, palomalopez@geo.ucm.es
2 Sedimentary Geology and Environmental Change, Geosciences Institute (CSIC, UCM), Madrid, Spain. masierra@ucm.es
3 Department of Earth and Environmental Science, Palaeontology & Geobiology, Ludwig-Maximilians-University Munich, Richard-Wagner-Str. 10, 80333 Munich, Germany. j.prieto@web.de
4 Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC. C/ José Gutiérrez Abascal 2, 28006 Madrid. pablopeleaz@mncn.csic.es

*Corresponding author

Carro-Rodríguez, P.M., López-Guerrero, P., Prieto, J., Álvarez-Sierra, M.Á. & Peláez-Campomanes, P. 2020. First functional morphology comparison between two Miocene cricetid mandibles. [Primera comparación de morfología funcional entre dos mandíbulas de cricétidos del Mioceno]. Spanish Journal of Palaeontology, 35 (2), 167-176.

ABSTRACT

Geometric morphometric allows characterizing complex morphologies in order to quantify the geometry of the structure and facilitate comparisons. It allows performing methods analysing differentiation pattern based on variance, such as the Principal Component Analysis (PCA). For that reason, it has been chosen as the method to analyse the mandibles of two extinct species of cricetids rodents: Cricetodon aff. aureus and Megacricetodon minor from the MN6, middle Miocene from Goldberg and Steinberg (Germany). We performed a digitisation of 18 landmarks that includes the most relevant characteristics of these mandibles. We also performed a measure of the mechanical advantage and potential of the mandibles. In that way, we have been able to quantify notorious morphological differences on the angular and condylar processes and the lower masseter.

RESUMEN

La morfometría geométrica permite caracterizar formas completas para cuantificar la geometría de la estructura y facilitar las comparaciones. Permite llevar a cabo metodologías que analizan esos patrones de diferenciación como el Análisis de Componentes Principales (ACP), a través del cual se estudiaba la varianza de una manera simple. Por esta razón ha sido el método elegido para analizar las mandíbulas de dos especies extintas de cricétidos: Cricetodon aff. aureus y Megacricetodon minor de la MN6, Mioceno medio de los yacimientos de Goldberg y Steinberg (Alemania). Hemos llevado a cabo la digitalización de 18 puntos de referencia (landmarks) que resumen las características más relevantes de las mandíbulas. Además hemos realizado la medición de las ventajas y potencias mecánicas de estas. De esta manera, hemos podido cuantificar diferencias morfológicas.
insertion and establish significant differences among the biomechanical behaviour of the mandibles. Later, we can relate the morphological and biomechanical information with speed and force biting.

Keywords: *Cricetodon, Megacricetodon, geometric morphometric, middle Miocene, Germany*

1. INTRODUCTION

Shape and shape changes have been studied to understand the way in which the organisms or their parts vary as a consequence to different biological processes (Richtsmeier et al., 2002; Zelditch et al., 2004). These shape changes could be the result of ontogenetic development, adaptation to environmental factors or evolutionary diversification (Zelditch et al., 2004). In palaeontology, the study of shape is an essential requirement to carry out other analysis. For that reason, in recent years, geometric morphometric has revealed as a great tool to analyse and understand the morphological variation of fossils (Casanovas-Vilar & van Dam, 2013; Siver et al., 2013; Gómez Cano et al., 2017; Tokita et al., 2017; Carro-Rodríguez et al., 2018). Geometric morphometric is a multivariate method to quantify the morphology of an object. It is based on an analysis of selected points (landmarks and semilandmarks) (Rohlf & Marcus, 1993; Zelditch et al., 2004) that correspond to Cartesian coordinates. In geometric morphometric, most analysis measurements imply biological homology and thus considering them as the same point in each specimen in the study (Bookstein, 1996; Hall, 2003; Klingenberg, 2008; Oxnard & O’Higgins, 2009) but not the position, scale and rotation of the object (Kendall, 1977; Balutanás et al., 2003; Zelditch et al., 2004; Toro Ibacache et al., 2010; Klingenberg, 2016).

Mammal mandible is one of the anatomical parts most used in these analyses because of its characteristic modularity, integration and biomechanics (Atchley, 1983, 1993; Andresen et al., 2000; Bastir et al., 2004; Zelditch et al., 2008; Menegaz & Ravosa, 2017). The present morphological analysis has focused on the well-preserved mandibles of two extinct species of cricetids rodents (Rodentia) belonging to the genera: *Cricetodon* Lartet, 1851 and *Megacricetodon* Fahlbusch, 1964. Both are commonly used in biostratigraphic and paleoecological studies in European continental deposits during the middle Miocene (Mein, 1975; Aguilar, 1995; De Bruijn & Ünay, 1996; Daams et al., 1999; Oliver Pérez et al., 2008; Prieto et al., 2010; Van der Meulen et al., 2011, 2012; López-Guerrero et al., 2013, 2014; Van Dam et al., 2014, Prieto & Rummel, 2016).

Studied mandibles were excavated in two close localities: Goldberg and Steinberg (formerly called Spitzberg) in the Nördlinger Ries of Southwest Germany. The Nördlinger Ries is a circular shallow depression formed due to a meteorite impact at ~15 Ma (Heizmann & Fahlbusch, 1983). This crater was like an isolated lake where spring mounds of calcareous tufa rose (Arp, 2006; Göhlich & Ballmann, 2013). On the basis of small mammal remains, the faunas of Goldberg and Steinberg have been dated as upper Aragonian (MN6, middle Miocene) (Heizmann & Fahlbusch, 1983). More precisely, they correlate to a time ranging from ~15 to ~14.2 Ma (Prieto & Rummel, 2016; and reference therein) based on the evolutionary level of *Cricetodon* (Rummel, 2000). The abundant fossil remains of these localities display an exceptional preservation (Rachl, 1983; Ziegler, 1983; Heizmann & Fahlbusch, 1983; Göhlich & Ballmann, 2013), such as cranial structures, which are very uncommon in the fossil record. Heizmann & Fahlbusch (1983) published the faunistic list of Steinberg and pointed out the similarities with the Goldberg fauna. The material studied in this work was assigned to *Cricetodon sansaniensis* and *Megacricetodon schaubi* by Heizmann & Fahlbusch (1983). Later, Rummel (2000) assigned *C. sansaniensis* from Steinberg to *C. aff. aureus* and Freudenthal & Fahlbusch (1969) pointed out that *M. minor* is the senior synonymous of *M. schaubi*. In that way, the nomenclatural state of the art is respectively *C. aff. aureus* and *M. minor*.

Although the best diagnostic characteristics of *Cricetodon* and *Megacricetodon* are based on dental morphological traits, Mein & Freudenthal (1971a, 1971b) pointed out that there are some mandibular features that let establishing differences among these genera. These differences could be the result of generic level variation and/or a response to differential feeding behaviours (Atchley, 1993; Cox et al., 2012; Renaud et al., 2012; Anderson et al., 2014; Kono et al., 2017; Menegaz & Ravosa, 2017). In order to establish the morphologic regions that gather the greatest amount of variation, we performed a geometric morphometric analysis. Then, in order to analyse if there could be a relationship between these differences and dietary preferences, we measured the mechanical advantage of the mandibles through the lengths of four structures involved in biting.
2. MATERIAL AND METHODS

2.1. Samples

To carry out the analysis, 12 mandibles of *Cricetodon* aff. *aureus* and *Megacricetodon minor* (Table 1) were photographed from the Bayerische Staatssammlung für Paläontologie und Geologie (SNSB-BSPG; Munich, Germany). The specimens were photographed using the binocular microscope Leica 50x and its associated software from the same institution and a 12.3 megapixels Nikon D300S camera equipped with a Nikon 105mm f/2.8G IF-ED lens.

Table 1. List of mandibles studied of *Megacricetodon minor* from Goldberg and *Cricetodon* aff. *aureus* from Steinberg.

Species	Catalogue number
Megacricetodon minor	SNSB-BSPG 1966 XXXIV-3493
	SNSB-BSPG 1966 XXXIV-3498
	SNSB-BSPG 1966 XXXIV-3516
	SNSB-BSPG 1966 XXXIV-3528
	SNSB-BSPG 1966 XXXIV-3539
	SNSB-BSPG 1966 XXXIV-3546
	SNSB-BSPG 1966 XXXIV-3555
Cricetodon aff. *aureus*	SNSB-BSPG 1970 XVIII-8060
	SNSB-BSPG 1970 XVIII-8062
	SNSB-BSPG 1970 XVIII-8063
	SNSB-BSPG 1970 XVIII-8067
	SNSB-BSPG 1970 XVIII-8068

2.2. Morphometric and statistical analyses

To characterize the shape of the mandibles, we choose the lateral view and the labial region following Bi *et al.* (2008), Anderson *et al.* (2014), Astúa *et al.* (2015), Fabre *et al.* (2017), and Menegaz & Ravosa (2017). In order to eliminate the asymmetry between right and left mandibles, we rotate the pictures of the left mandibles, as if they were reflected in a mirror, and processed them as right mandibles. We included only the mandibles for which all structures were complete (Fig. 1). Eighteen landmarks (Fig. 2, Table 2) were used to describe the shape of the mandible. Landmarks were digitized using tpsDig2 2.32 (Rohlf, 2010) and a Generalized Procrustes Analysis (GPA) was performed on the landmarks using MorphoJ (Klingenberg, 2011). These Procrustes-transformed landmarks were used to generate a covariance matrix with which we performed a Principal Component Analysis (PCA).

Following Anderson *et al.* (2014) and Fabre *et al.* (2017), we measured the mechanical advantage (MA, efficiency of the mandible to transmit the muscular forces to the bite point) and the mechanical potential (MP, estimation of the biting force). These mechanical advantages and potentials are ratios based on lengths measured in the photographs of the mandibles using the ruler tool of Photoshop (Fig. 2). MA is the ratio between inlever or the distance from the jaw point to the point of muscle attachment and outlever or the distance from the jaw point to the bite point (Fig. 2). We calculated four MA ratios: $MA_{T/In}$ (inlever: temporal; outlever: incisor length), $MA_{Ms/In}$ (inlever: masseter length; outlever: incisor length), $MA_{T/Mo}$ (inlever: temporal length; outlever: molar length) and $MA_{Ms/Mo}$ (inlever: masseter length; outlever: molar length) (see Table 3). It can be observed in Figure 2 that most of the measured lengths have an origin and an end that correspond to a landmark; this fact essays the interpretation between the PCA and the ratios. Only the length for the distance between the condylar process and the lower first molar does not have a correspondence with

Table 2. Landmarks locations in the hemimandible. Lm: landmark. Location of landmarks proposed by Anderson *et al.* (2014) and Fabre *et al.* (2017).

Lm	Location
Lm1	Most antero-ventral point of alveolus of the incisor
Lm2	Most antero-dorsal point of alveolus of the incisor
Lm3	Point at the maximum of curvature of the diastema
Lm4	Anterior point of the alveolar margin of the tooth row
Lm5	Boundary between the second and third lower molars
Lm6	Intersection between the ascending ramus and the
	posterior part of the lower third molar
Lm7	Dorsal-most point of the coronoid process
Lm8	Point at the maximum of concavity between the coronoid and
	the articular processes
Lm9	Antero-dorsal side of the articular condyle
Lm10	Dorsal-most point of the articular condyle
Lm11	Posterior-most point of the articular condyle
Lm12	Ventral-most point of the articular condyle
Lm13	Point at the maximum of concavity between the
	articular and the angular processes
Lm14	Posterior-most point of the angular process
Lm15	Ventral-most point of the angular process
Lm16	Maximum point of concavity in the dorsal mandibular region
Lm17	Ventral-most point of the front lower part of the mandible
Lm18	Point of maximum of curvature of the deep masseteric
	insertion
CARRO-RODRÍGUEZ, LÓPEZ-GUERRERO, PRIETO, ÁLVAREZ-SIERRA & PELÁEZ-CAMPOMANES

Figure 2. Top: digitalized landmarks (see Table 3) of *Cricetodon* aff. *aureus* (SNSB-BSPG 1970 XVIII-8063). Middle: wireframe of this specimen used for visualized geometric variation of the shape. Bottom: lengths and angles measured on digital photographs. Temporal length: from LM11 to LM7; molar length: from LM11 to the tip of hipoconid of the lower first molar; incisor length: from LM11 to LM2; masseter length: from LM11 to LM17.

any landmark. Anderson *et al.* (2014) measured the incisor length from the condylar process to the incisor tip. In our sample, some of the specimens do not present the incisor or this presents alterations in its position. Therefore, we use the anterior point of the alveolus of the incisor as the end of the incisor length. To calculate the MP firstly, we obtained the angle between the molar length and the temporal length (angle A) and between the incisor length and temporal length (angle B). Secondly, we calculated the two force angles (FA) through: radian(90º)-radian(angle A or B). Finally, the $MP_{Mo} = MA_{Mo} \times \cosine(FA-A)$ and $MP_{In} = MA_{In} \times \cosine(FA-B)$ (Fig. 2; Table 3). With these ratios, we performed boxplots in order to visualize the variation of the sample among these species. To confirm if...
there were significant differences between the two species, we performed a non-parametric Mann-Whitney test due to the limited sample size.

Table 3. List of ratios obtained from the linear measurements.

Specimen	Species	MA_T/In	MA_T/Mo	MA_Mt/In	MA_Mt/Mo	MP_T/In	MP_T/Mo
3493	C. aff. aureus	0.229	0.532	0.356	0.827	0.120	0.185
3498	M. minor	0.269	0.536	0.413	0.825	0.121	0.177
3516	M. minor	0.275	0.565	0.415	0.853	0.138	0.188
3528	M. minor	0.293	0.550	0.430	0.806	0.139	0.194
3539	M. minor	0.259	0.549	0.384	0.815	0.172	0.233
3546	M. minor	0.266	0.531	0.390	0.780	0.145	0.206
3555	M. minor	0.251	0.575	0.358	0.822	0.145	0.199
8060	C. aff. aureus	0.158	0.609	0.253	0.973	0.084	0.133
8062	C. aff. aureus	0.237	0.584	0.385	0.949	0.099	0.163
8063	M. minor	0.197	0.617	0.312	0.982	0.101	0.157
8067	M. minor	0.238	0.609	0.385	0.986	0.089	0.144
8068	M. minor	0.205	0.594	0.328	0.951	0.119	0.186

3. RESULTS AND DISCUSSION

We computed a PCA using the landmark dataset and plot the results in a graph (Fig. 3). The PCA resumes the total variance into a few dimensions that allow us to explore the landmark position variation of the sample. The percentage of variance that gathers the first two principal components (PC1 and PC2) is 70.7%. To represent the variation of the landmarks along the axis, we added the wireframes configurations of the extreme configuration (Fig. 3). The PC1 ordered the sample in two different groups characterized by a greater development of the angular process and lower development of the condylar process in Cricetodon aff. aureus and a greater development of the condylar process and more anterior position of the lower masseter in Megacricetodon minor. The PC2 gathers the morphological variation of the coronoid process from forms with lower development on it (negative values) to forms with greater development on this process. The PC1 gathers the interspecific variation of the sample establishing two different groups. The PC2 gathers the intraspecific variation within the two groups. The rest of the variance (29.3%) is mostly distributed among the PC3-PC6, which distributes the sample according to morphological differences without a clear relationship with biomechanical features.

This intraspecific variation could be related to the findings of Anderson et al. (2014), which described that part of the morphological variation is a result of the adaptive plasticity of the populations in response to environmental changes. To explore this morphological variability, we performed the biomechanical ratios by boxplots (Fig. 4). The results show differences between the species for the different ratios. To confirm that there are significant differences between the analysed ratios of the mandibles, we performed a Mann-Whitney analysis. The results indicate that all ratios, but one show significant differences (Fig. 4).

It can be noted on the PCA (Fig. 3) that we have been able to quantify morphological differences among these species. Unlike the descriptions proposed by Mein & Freudenthal (1971a) based on morphological variation of the mandible, the geometric morphometric analysis allows us to establish the amount of variation among the different parts of the mandibles. It is worth noting that the greater morphological variation is related to skull structures that are tightly related to biomechanical features (as angular and coronoid processes and low masseter insertion) (Satoh, 1999; Cox et al., 2012; Anderson et al., 2014; Fabre et al., 2017).

Although diet is traditionally inferred based on molar morphologies (Coillot et al., 2013; Lazzari et al., 2015), there are other proxies that could be used to deduce the diet of these cricetids rodents, such as the mechanical advantage and potential (Anderson et al., 2014; Fabre et al., 2017). Boxplots (Fig. 4) show that Megacricetodon minor presents higher mechanical advantage values in the ratios MA_T/In and MA_T/Mo. These results coincide with those of the PCA in which the PC1 describes the mandibles of M. minor as mandibles with a post-displaced condylar process. Higher values of the length between the condylar and coronoid process result in an increase in the values of MA_T/In and MA_T/Mo. The result of MA_T/Mo must be interpreted...
Cricetodon aff. aureus presents significant higher values in $MA_{Ms/In}$ and $MA_{Ms/Mo}$ related to the greater development of the angular process and its relative position with the condylar process indicative of the biting strength. The values of the mechanical potential are significantly higher in $M. minor$. The results of these ratios can be related with the post-displaced condylar process that triggers an increase in the ratios values. The results of the PC1 combined with the ratios of the mandibles show that C. aff aureus presents a wider angular process and masseteric ridge areas that could be defined as a mandible with a slower closure (lower values of $MA_{T/In}$ and $MA_{T/Mo}$) and stronger biting force (higher values of $MA_{Ms/In}$ and $MA_{Ms/Mo}$) compatible with a harder diet (Fabre et al., 2017). This mandibular morphology is comparable with extant rodent species to which a herbivorous diet is attributed as Hapalomys, Melomys and Sundamys among others (Camacho-Sánchez et al., 2017; Fabre et al., 2017; Gómez Cano et al., 2017). These results coincide with the traditional interpretation of the molar pattern of Cricetodon, described as cricetids with bunolophodont molars and som high-crowned pattern in some of the species (De Bruijn & Ünay, 1996; van Dam & Weltje, 1999; Durgut & Ünay, 2016). This dental pattern and the mandibular morphology could correspond to a more herbivore organism.

As it is evident on the PC2, $M. minor$ presents a greater amount of morphological variability, which could be related to the plasticity as defined in Anderson et al. (2014): “non-heritable morphological variation, enables organisms to modify the shape of their skeletal tissues in response to varying environmental stimuli”. This plasticity could be the origin of the ecological success of this ubiquitous species, which has been recorded in many fossil sites along Europe during lower to upper Miocene (Daams et al., 1999; Oliver & Peláez-Campomanes, 2013).

4. CONCLUSIONS

2D geometric morphometric analysis has revealed as a tool to quantify the mandibular shape of $C. aff. aureus$ and $M. minor$, and has let us to establish morphological differences among these species and determine a morphological pattern for each species. We could determine the regions that gather the greatest amount of variation: condylar and angular processes and lower masseter. These regions are fundamental to explain the biomechanical behaviour of the mandibles. Due to this fact, for the first time, a biomechanical analysis has been performed in fossil cricetids mandibles by the measurements of different ratios based on the length of these key structures. The results showed that Megacricetodon minor and Cricetodon aff. aureus present significant differences in most of the
values of the mechanical advantages and potentials of their mandibles and therefore they should develop different forces and speeds biting. The robust mandibular pattern that defines C. aff. aureus favours slower closure of the mandible but stronger biting forces of the molar region. This, together with its molar pattern could be indicating an herbivore diet. The narrow mandibular pattern that defines M. minor favours faster closure of the mandible and weaker biting forces of the molar region. These characteristics and the bunodont pattern of its molar could be compatible with an omnivore diet with faunivore preferences. These mechanical characteristics could indicate different diets of these species. However, further studies (increasing the sample with extant rodents with a defined diet, adding other related species in other fossil sites) are required in order to establish more concrete results.

ACKNOWLEDGMENT

We are very grateful to Sociedad Española de Paleontología for giving us the possibility to visit the Bayerische Staatssammlung für Paläontologie und Geologie to study the material thanks to the AJISEP grants 2018. Also, we are very grateful to Gertrud Rössner (BSPG) for access to the collections of Goldberg and Steinberg. Furthermore, we greatly appreciate Sergio Vargas (BSPG) for their help during the stay in Munich. We thank the reviewers J. Agustí and O. Maridet for their critical comments and contributions, which greatly improved the manuscript. The labour of the Editor Gonzalo Jiménez Moreno is greatly appreciated. This is a contribution of the Research Group Team 910607 on Evolution of Cenozoic Mammals and Continental Palaeoenvironments of the Complutense University of Madrid. This study was also supported by the Spanish Economy and Competitiveness Ministry research project PGC2018 094955-A-100 and PGC2018-094122-B-100.

REFERENCES

Aguilar, J.-P. 1995. Evolution de la lignée Megacricetodon collongensis-Megacricetodon roussillonensis (Cricetidae, Rodentia, Mammalia) au cours du Miocène inférieur et moyen dans le sud de la France. Palaeovertebrata, 24, 1-45.

Anderson, P.S.L., Renaud, S. & Rayfield, E.J. 2014. Adaptive plasticity in the mouse mandible. BMC Evolutionary Biology, 14, 85; doi: 10.1186/1471-2148-14-85.

Andersen, P.R., Bookstein, F.L., Conradsen, K., Erbsöll, B., Marsh, J. & Kreiborg, S. 2000. Surface-bounded growth modeling applied to human mandibles. IEEE Transactions on Medical Imaging, 19, 1053–1063; doi: 10.1109/42.896780.

Arp, G. 2006. Sediments of the Ries Crater Lake (Miocene, Southern Germany). Schriftenreihe der deutschen Gesellschaft für Geowissenschaften, 45, 213-236; doi: 10.23689/fidgeo-2785.

Astúa, D., Bandeira, I. & Geise, L. 2015. Cranial morphometric analyses of the cryptic rodent species Akodon cursor and Akodon montensis (Rodentia, Sigmodontinae). Oecologia Australis, 19, 143-157; doi: 10.4257/oeco.2015.1901.09.

Atchley, W.R. 1983. Some genetic aspects of morphometric variation. In: Numerical Taxonomy (ed. Felsenstein, J.). NATO ASI Series, Springer, Berlin, Heidelberg. 346-363.

Atchley, W.R. 1993. Genetic and developmental aspects of variability in the mammalian mandible. In: The Skull. Volume I (eds Hanken, J. and Hall, B.K.). The University of Chicago Press, Chicago and London. 207-247.

Atchley, W.R., Plummer, A.A. & Riska, B. 1985. Genetics of mandible form in the mouse. Genetics, 111, 555-577.

Baltanás, A., Brauneis, W., Danielopol, D.L. & Linhart, J. 2003. Morphometric methods for applied ostracology: tools for outline analysis of nonmarine ostracodes. The Paleontological Society Papers, 9, 101-118; doi: 10.1017/S1089332600002175.

Bastir, M., Rosas, A. & Kuroe, K. 2004. Petrological orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. American Journal of Physical Anthropology, 123, 340-350; doi: 10.1002/ajpa.10313.

Bi, S., Meng, J. & Wu, W. 2008. A new species of Megacricetodon (Cricetidae, Rodentia, Mammalia) from the middle Miocene of northern Junggar Basin, China. American Museum Novitates, 1-23; doi: 10.1206/0003-0082(2008)3602[1:ANSOMC]2.0.CO;2.

Bookstein, F.L. 1996. Combining the tools of geometric morphometrics. In: Advances in Morphometrics (eds. Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. & Slice, D.E.). NATO ASI Series, Springer, Boston, MA.131-151.

Camacho-Sanchez, M., Leonard, J.A., Fitriana, Y., Tilak, M.K. & Fabre, P.H. 2017. The generic status of Rattus annandalei (Bonhote, 1903) (Rodentia, Murinae) and its evolutionary implications. Journal of Mammalogy, 98, 1340-1355; doi: 10.1093/jmammal/gyx081.

Carro-Rodriguez, P.M., López-Guerrero, P. & Álvarez-Sierra, M.A. 2018. Fourier analysis applied to human mandibles. Paleontological Society Papers, 1340-1355; doi: 10.1093/jmammal/gyx081.
radiation of the old world rats and mice. *Evolution*, 67, 3323–3338; doi: 10.1111/evo.12172.

Cox, P.G., Rayfield, E.J., Fagan, M.J., Herrel, A., Pataky, T.C. & Jeffery, N. 2012. Functional evolution of the feeding system in rodents. *PLoS One*, 7(4), e36299; doi: 10.1371/journal.pone.0036299.

Daams, R., van der Meulen, A.J., Álvarez-Sierra, M.A., Peláez-Campomanes, P., Calvo, J.P., Alonso Zarza, M.A. & Krijgsman, W. 1999. Stratigraphy and sedimentology of the Aragonian (Early to Middle Miocene) in its type area (North-Central Spain). *Newsletters on Stratigraphy*, 37, 103-139; doi: 10.1127/nos/37/1999/103.

De Bruijn, H. & Ünay, E. 1996. On the evolutionary history of the Cricetodontini from Europe and Asia Minor and its bearing on the reconstruction of migrations and the continental biotope during the Neogene. In: *The Evolution of Western Eurasian Neogene Mammal Faunas* (eds Bernor, R.L. & Fahlbusch, V.). Columbia University Press, New York. 227-234.

Durgut, N.C., & Engin, Ü. 2016. Cricetodontini from the early Miocene of Anatolia. *Bulletin of the Mineral Research and Exploration*, 5, 1-51.

Freudenthal, M. & Fahlbusch, V. 1969. *Die Cricetiden (Mammalia, Rodentia) vom Steinberg (Nördlinger Ries). Eine Übersicht. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie*, 23, 83-93.

Helgen, K.M. 2005. The amphibious murines of New Guinea (Rodentia, Muridae): the generic status of Baiyankamys and description of a new species of *Hydromys*. *Zootaxa*, 913, 1-20; doi: 10.11646/zootaxa.913.1.1.

Kendall, D.G. 1977. The diffusion of shape. *Advances in Applied Probability*, 9, 428-430; doi: 10.2307/1426091.

Klingenberg, C.P. 2008. Morphological integration and developmental modularity. *Annual Review of Ecology, Evolution, and Systematics*, 39, 115-132; doi: 10.1146/annurev.ecolsys.37.091305.110054.

Klingenberg, C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. *Molecular Ecology Resources*, 11, 353-357; doi: 10.1111/j.1755-0998.2010.02924.x.

Klingenberg, C.P. 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. *Development Genes and Evolution*, 226, 113-137; doi: 10.1007/s00427-016-0539-2.

Kono, K., Tanikawa, C., Yanagita, T., Kamioka, H. & Yamashiro, T. 2017. A novel method to detect 3D mandibular changes related to soft-diet feeding. *Frontiers in Physiology*, 8, 567; doi: 10.1007/s00427-016-0539-2.

Lartet, E. 1851. *Notice sur la Colline de Sansan, Suivie d’une Récapitulation des Diverses Espèces d’Animaux Vertébrés Fossiles, Trouvés soit à Sansan, soit dans d’Autres Gisements du Terrain Tertiaire du Miocène dans le Bassin Sous-Pyrénéen*. impr. JA Portes.

Lazzari, V., Guy, F., Salais, P.E., Euriat, A., Charles, C., Viriot, L., Taïforeau, P. & Michaux, J. 2015. Convergent evolution of molar topography in Muroidea (Rodentia, Mammalia): connections between chewing movements and crown morphology. In: *Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development* (eds Cox, P.G. & Hautier, L.). 448-477.

López-Guerrero, P., García-Paredes, I. & Álvarez-Sierra, M.A. 2013. Revision of *Cricetodon soriae* (Rodentia, Mammalia), new data from the middle Aragonian (middle Miocene) of the Calatayud-Daroca Basin (Zaragoza, Spain). *Journal of Vertebrate Paleontology*, 33, 169-184; doi: 10.2307/23361080.

López-Guerrero, P., García-Paredes, I., Álvarez-Sierra, M.A. & Peláez-Campomanes, P. 2014. Cricetodontini from the Calatayud–Daroca Basin (Spain): A taxonomical description and update of their stratigraphical distributions. *Comptes Rendus Palevol*, 13, 647-664; doi: 10.1016/j.crvp.2014.07.002.

Mein, P. 1975: Biozonzation of the Néogène Méditerranéen à partir des Mamifères. *Proceedings of the VIIth Congress. R.C.M.N.S. Bratislava*, 2, 18.

Mein, P. & Freudenthal, M. 1971a. Une nouvelle classification des Cricetidae (Mam. Rod.) du Tertiaire d’Europe. *Scripta Geologica*, 2, 1-37.

Mein, P. & Freudenthal, M. 1971b. *Les Cricetidae (Mammalia, Rodentia) du Néogène moyen de Vieux-Collonges. Part 1. Le genre Cricetodon* Lartet, 1851. *Scripta Geologica*, 5, 1-51.
FIRST FUNCTIONAL MORPHOLOGY COMPARISON BETWEEN TWO MIOCENE CRICETID MANDIBLES...

Menegaz, R.A. & Ravosa, M. J. 2017. Ontogenetic and functional modularity in the rodent mandible. Zoology, 124, 61-72; doi: 10.1016/j.zool.2017.05.009.

Oliver Pérez, A., López Guerrero, P. & Peláez-Campomanes, P. 2008. Primer representante del género Megacricetodon de la Cuenca de Calatayud-Daroca (Zaragoza, España). Palaeontologica Nova, 8, 317-329.

Prieto, J., Böhme, M. & Gross, M. 2010. The cricetid rodents from Gratkorn (Austria, Styria): a benchmark locality for the continental Sarmatian sensu stricto (late Middle Miocene) in the Central Paratethys. Geologica Carpathica, 61, 419-436; doi: 10.2478/v10096-010-0025-0.

Rachl, R. 1983. Die Chiroptera (Mammalia) aus den mittelmiozänen Kalken des Nördlinger Rieses (Süddeutschland). Ph.D. Thesis. Ludwig-Maximilians-Universität München.

Rohlf, F.J. 1990. Geometric morphometrics. Does morphometrics need biology? Biological Theory, 4, 84-97; doi: 10.1162/biot.2009.4.1.84.

Siver, P.A., Wolfe, A.P., Rohlf, F.J., Shin, W. & Jo, B.Y. 2013. Combining geometric morphometrics, molecular phylogeny, and micropaleontology to assess evolutionary patterns in M. allomonas (Synurophyceae: Heterokontophyta). Geobiology, 11, 127-138; doi: 10.1111/gbi.12023.

Tokita, M., Yano, W., James, H.F. & Abzhanov, A. 2017. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin’s finches and Hawaiian honeycreepers. Philosophical Transactions of the Royal Society B, 372, 20150481; doi: 10.1098/rstb.2015.0481.
