Wikipedia network analysis of cancer interactions and world influence

Guillaume Rollin¹, José Lages¹, Dima L. Shepelyansky²

¹ Institut UTINAM, CNRS, UMR 6213, OSU THETA, Université de Bourgogne Franche-Comté, Besançon, France
² Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France

guillaume.rollin@utinam.cnrs.fr
jose.lages@utinam.cnrs.fr
dima@irsamc.ups-tlse.fr

Abstract

We apply the Google matrix algorithms for analysis of interactions and influence of 37 cancer types, 203 cancer drugs and 195 world countries using the network of 5 416 537 English Wikipedia articles with all their directed hyperlinks. The PageRank algorithm provides a ranking of cancers which has 60% and 70% overlaps with the top 10 deadliest cancers extracted from World Health Organization GLOBOCAN 2018 and Global Burden of Diseases Study 2017, respectively. The recently developed reduced Google matrix algorithm gives networks of interactions between cancers, drugs and countries taking into account all direct and indirect links between these selected 435 entities. These reduced networks allow to obtain sensitivity of countries to specific cancers and drugs. The strongest links between cancers and drugs are in good agreement with the approved medical prescriptions of specific drugs to specific cancers. We argue that this analysis of knowledge accumulated in Wikipedia provides useful complementary global information about interdependencies between cancers, drugs and world countries.

Introduction

“Nearly every family in the world is touched by cancer, which is now responsible for almost one in six deaths globally” [1]. The number of new cancer cases in the world is steadily growing reaching 18.1 million projected for 2018 [2] with predicted new cases of 29.4 million for 2035 [3]. The detailed statistical analysis of new cases and mortality projected for 2018 is reported in [4]. Such statistical analysis is of primary importance for estimating the influence of cancer diseases on the world population. However, it requires significant efforts of research groups and medical teams all over the world such as consortia involved in the Global Burden of Diseases Study (GBD) [5] and the WHO GLOBOCAN reports [2].

Here we propose to probe the network of Wikipedia articles in order to infer specific interactions between cancer types and to measure world influence of cancers. Wikipedia can be seen as a global database of accumulated human knowledge with an immense variety of topics. Moreover the way Wikipedia articles are citing each other encodes scientific, social, historical, and many other aspects. In principle one should be able to extract from Wikipedia direct or indirect relations between cancers, drug cancers and
countries. We focus our study on cancer which is one of the major cause of human mortality and which consequently have important social and political impacts all around the world. We aim to measure these impacts through the prism of Wikipedia.

Thus we develop a complementary approach to the existing statistical approaches [2, 4, 5], the Wikipedia network analysis based on the Google matrix and PageRank algorithm invented by Brin and Page in 1998 for World Wide Web search engine information retrieval [6, 7]. Applications of this approach to various directed networks are described at [8]. Here we use the network of English Wikipedia articles collected in May 2017 with \(N = 5,416,537 \) articles and connected by \(N_l = 122,232,032 \) directed links, i.e. quotations from one article to another.

At present Wikipedia represents a public, open, collectively created encyclopaedia with a huge amount of information exceeding those of Encyclopedia Britannica [9] in volume and accuracy of articles devoted to scientific topics [10]. As an example, articles on biomolecules are actively maintained by Wikipedians [11, 12]. The academic analysis of information collected in Wikipedia is growing, getting more tools and applications as reviewed in [13, 14]. The scientific analysis shows that the quality of Wikipedia articles is growing [15].

A new element of our analysis is the reduced Google matrix (REGOMAX) method developed recently [16, 17]. This method selects a modest size subset of \(N_r \) nodes of interest from a huge global directed network with \(N \gg N_r \) nodes and generates the reduced Google matrix \(G_R \) taking into account all direct pathways and indirect pathways (i.e. those going through the global network) between the \(N_r \) nodes. This approach conserves the PageRank probabilities of nodes from the global Google matrix \(G \) (up to a normalization factor). This method uses the ideas coming from the scattering theory of complex nuclei, mesoscopic physics and quantum chaos.

The efficiency of this approach has been tested with Wikipedia networks of politicians [17], painters [18], world universities [19], with biological networks from SIGNOR data base [20], with world trade networks [21, 22], and with financial networks [23]. The method is general as it can be applied to any subset of nodes embedded in a huge directed network. The main outcome is a synthetic effective view of the subnetwork encoded by weighted links in the corresponding reduced Google matrix. The strength of the specific application of REGOMAX method to Wikipedia networks is the encyclopedic nature of Wikipedia. Myriads of subjects are treated in Wikipedia which allow through the network of articles to connect, at least indirectly, many very different topics such as, e.g., for the present study, countries and cancer types. Moreover in the framework of the REGOMAX method every articles in Wikipedia, even articles having apparently nothing to do with the subjects of interest possibly contribute to the effective link obtained between two chosen nodes (i.e., articles). Although the quality of Wikipedia articles is constantly growing [10–12, 15], the information extraction may be sensitive to noise coming from inadequate or not so relevant links introduced in certain Wikipedia articles. These noisy links, which depends on when the Wikipedia network has been extracted, usually are cleaned out by the Wikipedians collaborative effort. The lifetime before removal of these noisy links depend also on the subject. As there is no simple way to quantify this source of noise (the degree of relevance of a link between two articles), we assume that in average it causes no harm to the present study. The results are presented in the devoted section keeping in mind this limitation.

In this work the reduced network is composed of \(N_{cr} = 37 \) types of cancers listed at Wikipedia [24] and \(N_d = 203 \) drugs for cancer extracted from data base [25]. All these \(N_{cr} + N_d = 240 \) items had an active Wikipedia article in May 2017. All these cancers and drugs are listed in alphabetic order in Tabs. 1 and 2. In addition we add to the selected set of articles \(N_{cn} = 195 \) world countries that allows us to analyze the global influence of cancer types (the ranking and REGOMAX analysis of countries are...
Table 1. List of articles devoted to cancer types in May 2017 English Wikipedia. This list of $N_{cr} = 37$ cancers taken from [24] is ordered by alphabetical order.

Cancer type	Cancer type
1 Adrenal tumor	21 Mesothelioma
2 Anal cancer	22 Multiple myeloma
3 Appendix cancer	23 Neuroendocrine tumor
4 Bladder cancer	24 Non-Hodgkin lymphoma
5 Bone tumor	25 Oral cancer
6 Brain tumor	26 Ovarian cancer
7 Breast cancer	27 Pancreatic cancer
8 Cervical cancer	28 Prostate cancer
9 Cholangiocarcinoma	29 Skin cancer
10 Colorectal cancer	30 Soft-tissue sarcoma
11 Esophageal cancer	31 Spinal tumor
12 Gallbladder cancer	32 Stomach cancer
13 Gestational trophoblastic disease	33 Testicular cancer
14 Head and neck cancer	34 Thyroid cancer
15 Hodgkin’s lymphoma	35 Uterine cancer
16 Kidney cancer	36 Vaginal cancer
17 Leukemia	37 Vulvar cancer
18 Liver cancer	
19 Lung cancer	
20 Melanoma	

reported in [26, 27]). The PageRank list of the 195 selected countries is available at [28]. Thus in total the reduced Google matrix selected number of nodes is $N_r = N_{cr} + N_d + N_{cn} = 435$. The inclusion of these three groups (cancer types, cancer drugs, and countries) in the reduced set of N_r articles allows to investigate the interactions and influence of nodes inside group and between groups.

The paper is composed as follows: the section “Description of data sets and methods” will present the May 2017 English Wikipedia network, introduce the Google matrix, the PageRank and CheiRank algorithms, and explain the construction of reduced Google matrices. In this section the node influence is defined through the PageRank ranking and the PageRank sensitivity. In the section “Results” we present the influence of cancer devoted pages in Wikipedia and extract a cancer ranking which is compared to cancer rankings extracted from GBD study [5] and GLOBOCAN [2] databases. We also use the reduced Google matrix to construct a reduced network of cancers and we determine the interaction of cancers with countries and cancer drugs. We corroborate the results obtained from the network structure of Wikipedia articles with various disease burden and/or epidemiological studies. To our knowledge, it is the first time that such correspondence is established. Finally we compare cancer prescriptions obtained from May 2017 English Wikipedia network analysis with approved medications reported in National Cancer Institute [25] and DrugBank [29]. The last section presents the conclusion of this research.

Description of data sets and methods

Network of English Wikipedia articles of 2017

We analyze the English language edition of Wikipedia collected in May 2017 (ENWIKI2017) [30] containing $N = 5,416,537$ articles (nodes) connected by
Table 2. List of articles devoted to cancer drugs in May 2017 English Wikipedia. This list of $N_d = 203$ cancer drugs taken from [25] is ordered by alphabetical order.

Cancer drug	Cancer drug	Cancer drug	Cancer drug
1 Abemaciclib	52 Dactinomycin	103 Ixazomib	154 Prednisone
2 Abiraterone acetate	53 Daratumumab	104 Lanreotide	155 Procarbazine
3 Acalabrutinib	54 Dasatinib	105 Lapatinib	156 Propranolol
4 Afatinib	55 Daunorubicin	106 Lenalidomide	157 Protein-bound paclitaxel
5 Aflibercept	56 Decitabine	107 Lenvatinib	158 Radium-223
6 Alectinib	57 Defibrotide	108 Letrozole	159 Raloxifene
7 Alemtuzumab	58 Degarelix	109 Leuprolin	160 Ramucirumab
8 Amifostine	59 Denileukin dfititox	110 Lomustine	161 Rasburicase
9 Aminolevulinic acid	60 Denosumab	111 Megestrol acetate	162 Regorafenib
10 Anastrozole	61 Dexamethasone	112 Melphalan	163 Ribociclib
11 Apalutamide	62 Dextraoxane	113 Mercaptopurine	164 Rituximab
12 Aprepitant	63 Dinutuximab	114 Mesna	165 Rolapitant
13 Arsenic trioxide	64 Docetaxel	115 Methotrexate	166 Romidepsin
14 Asparaginase	65 Doxorubicin	116 Methylnaltrexone	167 Romiprostim
15 Atezolizumab	66 Durvalumab	117 Midostaurin	168 Rucaparib
16 Avelumab	67 Elotuzumab	118 Mitomycin C	169 Ruxolitinib
17 Axicabtagene ciloleucl	68 Eln trovabpag	119 Mitoxantrone	170 Siltuximab
18 Axitinib	69 Enzalutamidem	120 Necitumumab	171 Sipuleucel-T
19 Azacitidine	70 Epirubicin	121 Nelarabine	172 Sonidegib
20 Belinostat	71 Eribulin	122 Neratinib	173 Sorafenib
21 Bendamustine	72 Erlotinib	123 Netupitant/palonoisetron	174 Sunitinib
22 Bevacizumab	73 Etoposide	124 Nilotinib	175 Talc
23 Bexarotene	74 Everolimus	125 Nilutamide	176 Talimogene laherparepvec
24 Bicalutamide	75 Exemestane	126 Niraparib	177 Tamoxifen
25 Bleomycin	76 Filgrastim	127 Nivolumab	178 Thalidomide
26 Blinatumomab	77 Fludarabine	128 Obinutuzumab	179 Temsirolimus
27 Bortezomib	78 Fluorouracil	129 Ofatumumab	180 Thalidomide
28 Bosutinib	79 Flutamide	130 Olaparib	181 ThioTEPA
29 Brentuximab vedotin	80 Folinic acid	131 Olaratumab	182 Tioguaine
30 Brigatinib	81 Fulvestrant	132 Omacetaxine mepesuccinate	183 Tipiracil
31 Busulfan	82 Gefitinib	133 Ondasetron	184 Tisagenleceluc
32 Cabazitaxel	83 Gemicabine	134 Osimertinib	185 Tocilizumab
33 Cabozantinib	84 Gemtuzumab ozogamicin	135 Oxaliplatin	186 Topotecan
34 Capcitabine	85 Glucarpidase	136 Paclitaxel	187 Toremifene
35 Carboplatin	86 Goserelin	137 Palbociclib	188 Trabectedin
36 Carfilzomib	87 HPV vaccines	138 Palifermin	189 Trametinib
37 Carmustine	88 Hyaluronidase	139 Palonosetron	190 Trastuzumab
38 Ceritinib	89 Hydroxycarbamid	140 Pamidronic acid	191 Trastuzumab entansine
39 Cetuximab	90 Ibrutinomab tiuxetan	141 Panitumumab	192 Trifluridine
40 Chlorambucil	91 Ibrutinib	142 Panobinostat	193 Uridine triacetate
41 Chloromethine	92 Idrarubicin	143 Pazopanib	194 Valrucin
42 Cisplatin	93 Idealisib	144 Pegaspargase	195 Vandetanib
43 Cladribine	94 Ifosamide	145 Pegfilgrastim	196 Venmarufeni
44 Clofarabine	95 Imatinib	146 Peginterferon	197 Venoclax
45 Cobimetinib	96 Imiquimod	147 Pembrolizumab	198 Vinblastine
46 Cetuximab	97 Inotuzumab ozogamicin	148 Pemetrexed	199 Vincristine
47 Crizotinib	98 Interferon alfa-2b	149 Pertuzumab	200 Vinorelbine
48 Cyclophosphamide	99 Interleukin 2	150 Plerixafor	201 Vinsodegib
49 Cytarabine	100 Ipliminumab	151 Pomalidiomide	202 Vorinostat
50 Dabrafenib	101 Irinotecan	152 Ponatinib	203 Zoledronic acid
51 Dacarbazine	102 Isabepilone	153 Pralatrexate	204 Zolendronic acid
Fig 1. Subnetworks of cancers and cancer drugs in May 2017 English Wikipedia. Bottom right inset: subnetwork of $N_r = 240$ articles comprising $N_{cr} = 37$ articles devoted to cancers (green nodes) and $N_d = 203$ articles devoted to cancer drugs (golden nodes). Main figure: subnetwork of top 20 cancers and top 20 cancer drugs extracted from the ranking of 2017 English Wikipedia using PageRank algorithm (see Tab. 3). The bulk of the other Wikipedia articles is not shown. Arrows symbolize hyperlinks between cancer and cancer drug articles in the global Wikipedia.

$N_l = 122,232,932$ directed hyperlinks between articles (without self-citations). From this data set we extract the $N_{cr} = 37$ types of cancers listed at [24]. From [25] we also collect names of drugs related to cancer diseases obtaining the list of $N_d = 203$ drugs present at Wikipedia. The lists of 37 cancer types and 203 drugs are given in Tabs. 1 and 2. This reduced set of $N_r = 240$ nodes is illustrated in the inset of Fig. 1. For global influence investigations, it is complemented by $N_{cn} = 195$ world countries listed in [28]. Thus in total we have the reduced network of $N_r = N_{cr} + N_d + N_{cn} = 435 \ll N$ nodes embedded in the global network with more than 5 millions nodes. All data sets are available at [28].

Google matrix construction rules

The construction rules of Google matrix G are described in detail in [6–8]. Thus the Google matrix G is built from the adjacency matrix A_{ij} with elements 1 if article (node) j points to article (node) i and zero otherwise. The Google matrix elements have the standard form $G_{ij} = \alpha S_{ij} + (1 - \alpha)/N$ [6–8], where S is the matrix of Markov transitions with elements $S_{ij} = A_{ij}/k_{out}(j)$. Here $k_{out}(j) = \sum_{i=1}^{N} A_{ij} \neq 0$ is the
The details of REGOMAX method are described in [16,17,20]. It captures in the
out-degree of node j (number of outgoing links) and $S_{ij} = 1/N$ if j has no outgoing
links (dangling node). The parameter $0 < \alpha < 1$ is the damping factor. For a random
surfer, jumping from one node to another, it gives the probability $(1 - \alpha)$ to jump to
any node. Below we use the standard value $\alpha = 0.85$ [7] noting that for the range
$0.5 \leq \alpha \leq 0.95$ the results are not sensitive to α [7,8].

The right PageRank eigenvector of G is the solution of the equation $GP = \lambda P$ with
the unit eigenvalue $\lambda = 1$. The PageRank components $P(j)$ give positive probabilities to
find a random surfer on a node j after an infinite journey ($\sum_j P(j) = 1$). The numerical
computation of $P(j)$ is done efficiently with the PageRank algorithm described in [6,7].

The node influence is measured from the PageRank algorithm. We sort network
nodes by decreasing PageRank probabilities. We assign $K = 1$ index to the node with
maximal probability, i.e., the most central node according to PageRank algorithm,
$K = 2$ index to the node with the second biggest probability, . . . A recursive definition of
the PageRank algorithm can be given: a node is all the more influential as it is
pointed by influential nodes.

It is also useful to consider the network with inverted direction of links. After links
inversion $A^\ast_{ij} = A_{ji}$, the Google matrix G^\ast is constructed within the same procedure
with $G^\ast P^\ast = P^\ast$. The matrix G^\ast has its own PageRank vector P^\ast called CheiRank [31]
(see also [8,32]). Its probability values can be again ordered in a decreasing order with
CheiRank index K^\ast with highest $P^\ast(j)$ at $K^\ast = 1$ and smallest at $K^\ast = N$. The
CheiRank algorithm measures the node diffusivity. A recursive definition of the
CheiRank algorithm can also be given: a node is all the more diffusive as it is pointed
by diffusive nodes.

On average, the high values of $P(j)$ ($P^\ast(j)$) correspond to nodes j with many
ingoing (outgoing) links [8].

The PageRank order list of 37 cancers and 203 drugs is given in Table 3. In the
global ENWIKI2017 network, countries are located on top PageRank positions (1. USA,
4. France, 5. Germany) so that cancers and drugs are located well below them since the
first cancer type, i.e. Lung cancer, appears at 3 478th position, and the first cancer
drug, i.e. Talc, appears at 22 177th position (see Fig. 2). As expected cancer types have
a more central position than cancer drugs. The network of 40 nodes and their direct
links is shown in Fig. 1 for the top 20 PageRank nodes of cancers and drugs (ordered
separately for cancers and drugs). We see that already only for 40 nodes the network
structure is rather complex. Here and below the networks are drawn with
Cytoscape [33].

Reduced Google matrix algorithm

The details of REGOMAX method are described in [16,17,20]. It captures in the
reduced Google matrix of size $N_r \times N_r$ the full contribution of direct and indirect
pathways existing in the full Google matrix between N_r nodes of interest. The reduced
Google matrix G_R is such as $G_R P_r = P_r$ where P_r is its associated PageRank
probability vector. The PageRank probabilities $P_r(j)$ of the selected N_r nodes are the
same as for the global network with N nodes, up to a constant multiplicative factor
taking into account that the sum of PageRank probabilities over N_r nodes is unity. The
computation of G_R provides a decomposition into matrices that clearly distinguish
direct from indirect interactions: $G_R = G_{rr} + G_{pr} + G_{qr}$ [17]. Here G_{rr} is the $N_r \times N_r$
submatrix of the $N \times N$ global Google matrix G encoding the direct links between the
selected N_r nodes. The G_{pr} matrix is rather close to the matrix in which each column is
given by the PageRank vector P_r, ensuring that PageRank probabilities of G_R are the
same as for G (up to a constant multiplier). Thus G_{pr} does not provide much more
information about direct and indirect links between selected nodes than the usual
Google matrix analysis described in the previous section. The component playing an
Table 3. Ranking of articles devoted to cancer types and to cancer drugs in May 2017 English Wikipedia using PageRank algorithm. Cancer types are highlighted in boldface.

K_r	K_c	K_d	Cancer/drug												
1	1	49	Lung	2	2	72	Trastuzumab	3	3	33	Bevacizumab	4	4	38	Eribulin
4	4	56	Breast	7	6	65	Mitoxantrone	9	9	44	Cisplatin	12	12	103	Gemcitabine
3	3	51	Leukemia	5	5	86	Docetaxel	6	6	55	Gelofusin	8	8	165	Osimertinib
4	4	52	Prostate	5	5	89	Paclitaxel	7	7	25	Enzalutamide	9	9	19	Loxapine
6	6	53	colorectal	6	6	27	Docetaxel	9	9	29	Paclitaxel	10	10	38	Fulvestrant
8	8	56	Melanoma	9	9	26	Docetaxel	10	10	55	Gelofusin	12	12	103	Gemcitabine
9	9	57	Stomach	6	6	60	Paclitaxel	10	10	58	Gelofusin	12	12	103	Gemcitabine
10	10	58	Ovarian	11	11	59	Paclitaxel	11	11	60	Gelofusin	12	12	103	Gemcitabine
11	11	59	Cervical	12	12	61	Gelofusin	12	12	62	Gelofusin	12	12	103	Gemcitabine
13	13	61	Skin	14	14	62	Gelofusin	12	12	63	Gelofusin	12	12	103	Gemcitabine
14	14	62	Talc	15	15	63	Methotrexate	12	12	64	Gelofusin	12	12	103	Gemcitabine
16	16	64	M. myeloma	16	16	65	Methotrexate	12	12	66	Gelofusin	12	12	103	Gemcitabine
17	17	65	Esophageal	17	17	66	Methotrexate	12	12	67	Gelofusin	12	12	103	Gemcitabine
18	18	66	Liver	18	18	67	Methotrexate	12	12	68	Gelofusin	12	12	103	Gemcitabine
19	19	67	Bladder	19	19	68	Methotrexate	12	12	69	Gelofusin	12	12	103	Gemcitabine
20	20	68	Testicular	20	20	69	Methotrexate	12	12	70	Gelofusin	12	12	103	Gemcitabine
21	21	69	Head & Neck	21	21	71	Methotrexate	12	12	72	Gelofusin	12	12	103	Gemcitabine
22	22	71	Thyroid	22	22	72	Methotrexate	12	12	73	Gelofusin	12	12	103	Gemcitabine
23	23	72	Bone	23	23	73	Methotrexate	12	12	74	Gelofusin	12	12	103	Gemcitabine
24	24	73	Kidney	24	24	74	Methotrexate	12	12	75	Gelofusin	12	12	103	Gemcitabine
25	25	74	mesothelioma	25	25	75	Methotrexate	12	12	76	Gelofusin	12	12	103	Gemcitabine
26	26	75	Oral	26	26	76	Methotrexate	12	12	77	Gelofusin	12	12	103	Gemcitabine
27	27	76	Orthopedics	27	27	77	Methotrexate	12	12	78	Gelofusin	12	12	103	Gemcitabine
28	28	77	Ovary	28	28	78	Methotrexate	12	12	79	Gelofusin	12	12	103	Gemcitabine
29	29	78	Osteosarcoma	29	29	79	Methotrexate	12	12	80	Gelofusin	12	12	103	Gemcitabine
30	30	79	Osteosarcoma	30	30	80	Methotrexate	12	12	81	Gelofusin	12	12	103	Gemcitabine

Notes: here words “cancer”, “tumor”, “lymphoma”, “sarcoma” have been removed from cancer type denominations; *Cyclophosphamide; **Cholangiocarcinoma; *Neuroendocrine tumors; *Hydroxycarbamide; *Gestational trophoblastic disease; /Chlorambucil; *Methylaltrexone.

interesting role is \(G_{cr} \), which takes into account all indirect links between selected nodes appearing due to multiple paths via the global network of \(N \) nodes (see [16, 17]). The matrix \(G_{cr} = G_{rd} + G_{qmd} \) has diagonal \(G_{rd} \) and non-diagonal \(G_{qmd} \) parts. Thus \(G_{qmd} \) describes indirect interactions between nodes. The explicit formulas as well as the mathematical and numerical computation methods of all three components of \(G_{R} \) are given in [16, 17, 20].

With the reduced Google matrix \(G_{R} \) and its components we can analyze the PageRank sensitivity in respect to specific links between \(N_{r} \) nodes. To measure the

June 15, 2019 7/26
sensitivity of a country cn to a cancer cr we change the matrix element $(G_R)_{cn,cr}$ by a factor $(1 + \delta)$ with $\delta \ll 1$ and renormalize to unity the sum of the column elements associated with cancer cr, and we compute the logarithmic derivative of PageRank probability $P(cn)$ associated to country cn: $D(cr \rightarrow cn, cn) = d\ln P(cn)/d\delta$ (diagonal sensitivity). It is also possible to consider the nondiagonal (or indirect) sensitivity $D(cr \rightarrow cn, cn') = d\ln P(cn')/d\delta$ when the variation is done for the link from cr to cn and the derivative of PageRank probability is computed for another country cn'. Also instead of the link $cr \rightarrow cn$ we can consider the link from a cancer cr to a drug d computing then the nondiagonal sensitivity of country cn'. The PageRank sensitivity approach, already used in [26, 27], allows to measure the sensitivity of a node influence with respect to the change of a link intensity. Pragmatically it measures the increase or decrease of influence of a node A caused by an increase of the intensity of the link from a node B to a node C.

Results

Cancer distribution on PageRank-CheiRank plane

The PageRank order of 37 cancers and 203 cancer drugs is given in Tab. 3. In the top 3 positions we find Lung, Breast, Leukemia cancers. Lung and Breast cancers have indeed the two highest incidences [2] and Leukemia is the most frequent type of cancer in children and young adults [34]. In general in the PageRank order of 240 cancers and drugs, cancers occupy predominantly the top positions. The first three drugs are Talc, Methotrexate, Thalidomide, taking positions 14, 20, 22. The top position of Talc among cancer drugs may be explained by its industrial use and also by both potential carcinogenic and anticancer effects [35]. Methotrexate can be used in the most frequent types of cancer but also in autoimmune diseases and for medical abortions [36]. The third position of Thalidomide among cancer drugs may be explained by its high potential for the treatment of cancers but also for its well-known teratogenic effect; this teratogenic effect may by itself contribute to its prominence in Wikipedia. It is also used for treatment of other diseases than cancers (tuberculosis, graft-versus-host disease,...) [37]. The list of these 240 articles in CheiRank order is also given in [28].

The distribution of selected articles on the global PageRank-CheiRank plane of the whole Wikipedia network with $N = 5416537$ nodes are shown in Fig. 2. The top PageRank positions are taking by the world countries as discussed in [8, 26] marked by gray open circles. Then there is a group of cancers (above $K \sim 3 \times 10^5$ and $K^* \sim 10^5$), marked by green points, followed by drugs (mostly above $K \sim 10^4$ and $K^* \sim 10^5$), marked by gold points. There is a certain overlap between cancers and drugs on this plane but in global there is a clear separation between these two groups. As a comparison we also mark the positions of 230 infectious diseases by open blue circles. These 230 articles are studied in [27] in the frame of Wikipedia network analysis. The global PageRank list of 230 infectious diseases and 37 cancers is given in [28]. In this list Lung cancer is located at the 7th position. From Fig. 2 we observe these two types of diseases occupy somewhat the same (K, K^*) region (mostly above $K^* \sim 10^5$ and above $K \sim 3 \times 10^5$) suggesting that cancer types and infectious diseases have globally the same influence in May 2017 English Wikipedia with the exception of the first six infectious diseases, Tuberculosis ($K = 639$), HIV/AIDS ($K = 810$), Malaria ($K = 1116$), Pneumonia ($K = 1531$), Smallpox ($K = 1532$), Cholera ($K = 2300$) which are causing or have caused pandemics or notable epidemics. The first three cancer types, i.e. Lung cancer, Breast cancer, and Leukemia, appear at positions $K = 3478$, 3788, and 3871 just before Influenza at $K = 4191$.

The 240 cancer types and drugs placed on the plane of local PageRank indices
Fig 2. Density of May 2017 English Wikipedia articles in the CheiRank $K^* –$ PageRank K plane. Data are averaged over a 100 × 100 grid spanning the $(\log_{10} K, \log_{10} K^*) \in [0, \log_{10} N] \times [0, \log_{10} N]$ domain. Density of articles ranges from very low density (purple tiles) to very high density (bright yellow tiles). The absence of article is represented by black tiles. The superimposed green (gold) circles give the positions of May 2017 English Wikipedia articles devoted to cancers (cancer drugs) listed in Tab. 1 (Tab. 2). For comparison, the gray (blue) open circles give the positions of pages devoted to sovereign countries (infectious diseases) in May 2017 English Wikipedia.

We retrieve the fact that cancer types occupy the top positions in K_r and in K^*_r. Indeed the first 14 most influent articles of this subset ($K \leq 14$), which appear to be devoted to cancer types, are also the most communicative with the exception of articles devoted to drugs Paclitaxel ($K_r = 24, K^*_r = 6$) and Bicalutamide ($K_r = 109, K^*_r = 2$).

Paclitaxel [38] is a chemotherapy medication used to treat a wide range of cancer types e.g. Ovarian cancer, Breast cancer, Lung cancer, Pancreatic cancer, etc. Moreover Paclitaxel article cites Ovarian cancer article ($K_r = 10, K^*_r = 1$) which is a very communicative article since the Ovarian cancer article CheiRank index, $K^* = 29317$, is about one order magnitude lower than the CheiRank indexes, $K^* \gg 10^5$, of the other 239 considered articles (see Fig. 2). The wide applications of Paclitaxel and the citation of Ovarian cancer article explain the very good ranking of this cancer drug in the CheiRank scale. On the other hand, the $K^*_r = 2$ rank of the Bicalutamide article (see Fig. 3), devoted to an antiandrogen medication mainly used to treat Prostate cancer, is due to a very long article with a high density of intra-wiki citations [39]. Like the Paclitaxel article, the Bicalutamide article cites also the Ovarian cancer since this medication has already been tried for this cancer type [39].

The three most influent cancer drugs in ENWIKI2017 are Talc, $K_r = 14$, which is used to prevent blood effusions, e.g., in Lung cancer or Ovarian cancer [35], Methotrexate, $K_r = 20$, which is a chemotheray agent used for the treatment Breast cancer, Leukemia, Lung cancer, Lymphoma, etc [36], and Thalidomide, $K_r = 22$, which is a drug modulating the immune system used, e.g., for Multiple myeloma treatment [37]. Although Talc is widely used in chemical, pharmaceutical and food
Fig 3. Distribution of the May 2017 English Wikipedia articles devoted to cancers and drug cancers in the local CheiRank K_r^* – PageRank K_r plane. The $N_{cr} = 37$ ($N_d = 203$) articles devoted to cancers (drug cancers) are represented by green (gold) plain circles.

Comparison of Wikipedia network analysis with GBD study 2017 and GLOBOCAN 2018 for cancer significance

We perform the comparison of cancer significance given by the GBD study 2017 [5], the GLOBOCAN 2018 [2], and the Wikipedia network analysis. We extract the rankings of cancer types by the number of deaths in 2017 estimated by the 2017 GBD study [40] (see Tab. 4) and by the number of disability-adjusted life years (DALYs) estimated by the 2017 GBD study [41] (see Tab. 4). Also, we extract the rankings of cancer types by the number of deaths and by the number of new cases in 2018 estimated by the GLOBOCAN 2018 [4] (see Tab. 5). In Fig. 4, we show the overlap of these 4 rankings with the extracted ranking of cancer types obtained from the ENWIKI2017 PageRanking (see bold items in Tab. 3). We observe that the ranking obtained from the Wikipedia network analysis provides a reliable cancer types ranking since its top 10 (top 20) shares about 70% (80%) similarity with GBD study data and GLOBOCAN data. The Wikipedia top 5 reaches even 80% similarity with top 5 cancer types extracted from the estimated number of new cases in 2018.

Reduced Google matrix of cancers and drugs

Let us consider now the subset of $N_r = 40$ nodes composed of the first 20 cancers and the first 20 cancer drugs of the ENWIKI2017 PageRanking (Tab. 3). For this sub-network of interest illustrated in Fig. 1, we perform the calculation of the reduced
Table 4. List of cancer types ordered by the estimated number of deaths during the year 2017 (left table) and by the estimated disability-adjusted life years (DALYs) for 2017 (right table). Data extracted from GBD Study [40,41].

Rank	Cancer	Deaths in 2017 ($\times 10^3$)	DALYs in 2017 ($\times 10^3$)
1	Lung cancer	1883.1	40900
2	Colorectal cancer	896.0	20800
3	Stomach cancer	865.0	19100
4	Liver cancer	819.4	19000
5	Breast cancer	611.6	17700
6	Pancreatic cancer	441.1	12000
7	Esophageal cancer	436.0	10600
8	Prostate cancer	415.9	9780
9	Head and neck cancer	380.6	9080
10	Leukemia	347.6	8740
11	Cervical cancer	259.7	8060
12	Non-Hodgkin lymphoma	248.6	7060
13	Brain tumor	247.1	7020
14	Bladder cancer	196.5	4670
15	Ovarian cancer	176.0	3600
16	Gallbladder cancer	174.0	3480
17	Kidney cancer	138.5	3280
18	Skin cancer	126.8	2980
19	Multiple myeloma	107.1	2330
20	Uterine cancer	85.2	2140
21	Thyroid cancer	41.2	1380
22	Hodgkin’s lymphoma	32.6	1130
23	Mesothelioma	29.9	671
24	Testicular cancer	7.7	375

Table 5. List of cancer types ordered by the estimated number of deaths during the year 2018 (left table) and by the estimated number of new cases in 2018 (right table). Data extracted from GLOBOCAN 2018 [4].

Rank	Cancer	Deaths in 2018 ($\times 10^3$)	New cases in 2018 ($\times 10^3$)
1	Lung cancer	1761.0	2093.9
2	Colorectal cancer	861.7	2088.8
3	Stomach cancer	782.7	1801.0
4	Liver cancer	781.6	1276.1
5	Breast cancer	626.7	1042.1
6	Esophageal cancer	508.6	1033.7
7	Head and neck cancer	453.3	887.7
8	Pancreatic cancer	432.2	841.1
9	Prostate cancer	359.0	572.0
10	Cervical cancer	311.4	569.8
11	Leukemia	309.9	567.2
12	Non-Hodgkin lymphoma	248.7	549.4
13	Brain tumor	241.0	509.6
14	Bladder cancer	199.9	458.9
15	Ovarian cancer	184.8	437.0
16	Kidney cancer	175.1	403.3
17	Gallbladder cancer	165.1	382.1
18	Multiple myeloma	106.1	296.9
19	Uterine cancer	89.9	295.4
20	Skin cancer	65.2	287.7
21	Melanoma	60.7	219.4
22	Thyroid cancer	41.1	160.0
23	Hodgkin lymphoma	26.2	80.0
24	Mesothelioma	25.6	71.1

Google matrix G_R and its components G_{rr}, G_{pr} and, G_{qr}. From Fig. 5, as expected, we observe that the G_R matrix (top left panel) is dominated by the G_{pr} component (bottom left panel) since $W_{pr} = 0.872W_R$. The G_{pr} component is of minor interest as it...
Fig 4. Comparison between cancer rankings extracted from May 2017 English Wikipedia PageRank, from the global burden of disease (GBD) study 2017 data, and from GLOBOCAN 2018 data. The overlap $\eta(j)$ gives the number of cancer types in common in the top j of the ranking of cancers obtained from the May 2017 English Wikipedia PageRank (see bold terms in Tab. 3) and in the top j of the ranking of cancers by estimated number of worldwide deaths from GBD 2017 data [40] (black line, see Tab. 4), by estimation of disability-adjusted life years from GBD 2017 data [41] (black dashed line, Tab. 4), by estimated number of worldwide deaths from GLOBOCAN 2018 data [4] (red line, Tab. 5), and by estimated number of new cases from GLOBOCAN 2018 data [4] (red dashed line, Tab. 5). Only the black plain line is visible, where black plain line, red plain line and black dashed line overlap, e.g., from $j = 1$ to $j = 5$. Expresses again the relative PageRanking between the $N_r = 40$ cancers and drugs already obtained and discussed in previous sections. The G_{rr} (top right panel) gives the direct links between the considered cancers and drugs. Indeed, the G_{rr} matrix is similar to the adjacency matrix A since there is a one-to-one correspondence between non zero entries of G_{rr} and of A (for G_{rr} by non zero entry we mean an entry greater than $(1 - \alpha)/N \simeq 2.8 \times 10^{-8}$). Fig. 1 illustrates the subnetwork of the direct links between the top 20 cancer types and the top 20 cancer drugs encoded in G_{rr} and A. Once the obvious G_{pr} component and the direct links G_{rr} component removed from the reduced Google matrix G_R, the remaining part G_{qr} gives the hidden links between the set of N_r nodes of interest. In Fig. 5 we represent G_{qrd} (bottom right panel), the non diagonal part of G_{qr}. We can consider that a link with a non zero entry in G_{qrd} and a zero entry in G_{rr} (consequently also in A) is a hidden link. Below we use the non obvious components of $G_{rr} + G_{qrd}$ to draw the structure of reduced network.

Reduced network of cancers

We construct the reduced Google matrix associated to the set of $N_r = N_{cr} + N_{cn} = 232$ Wikipedia articles constituted of $N_{cr} = 37$ articles devoted to cancer types and of $N_{cn} = 195$ articles devoted to countries. We consider the top 5 cancer types appearing in the ranking of May 2017 English Wikipedia using the PageRank algorithm which, according to Tab. 3, are 1 Lung cancer, 2 Breast cancer, 3 Leukemia, 4 Prostate cancer,
Fig 5. Reduced Google matrix G_R associated to the intertwined subnetworks of top 20 cancer articles and of top 20 drug articles. The reduced Google matrix G_R (top left) and its 3 components G_{rr} (top right), G_{pr} (bottom left), and G_{qrand} (bottom right) are shown. The weights of the components are $W_R = 1$, $W_{pr} = 0.872$, $W_{rr} = 0.086$, and $W_{qr} = 0.042$ ($W_{qrand} = 0.038$). For each component, thin green and gold lines delimit cancers and drugs sectors, i.e. upper left sub-matrix characterizes from cancers to cancers interactions, lower right sub-matrix from drugs to drugs interactions, upper right sub-matrix from drugs to cancers interactions, and lower left sub-matrix from cancers to drugs interactions. On the G_{qrand} component (bottom right) superimposed crosses indicate links already present in the adjacency matrix (otherwise stated links corresponding to non zero entries in G_{rr}, see top right).
5 Colorectal cancer. Let us ordinate cancer types by their relative ranking in Tab. 3, cancer type \(cr_j \) is consequently the \(i \)th most influent cancer type in May 2017 English Wikipedia. Using the reduced Google matrix, the component \((G_{rr} + G_{qrnd})_{cr_i, cr_j} \), where \(i, j \in \{1, \ldots, N_{cr}\} \), gives the non obvious strength of the link pointing from the \(j \)th to the \(i \)th most influent cancer types. From each one the top 5 cancer types, \(\{cr_j\}_{j \in \{1, \ldots, 5\}} \), we select the two cancer types \(cr_{i1} \) and \(cr_{i2} \), with \(i_1, i_2 \in \{1, \ldots, j - 1, j + 1, \ldots, N_{cr}\} \), to which cancer type \(cr_j \) is preferentially linked ("friends"), i.e. those giving the two strongest \((G_{rr} + G_{qrnd})_{cr_i, cr_j} \) components. Around the main circle in Fig. 6 (top panel) we first place the top 5 most influent cancer types in May 2017 English Wikipedia. Then we connect each one of these cancer types to their two above defined cancer type friends. If these cancer types are not yet present in the network we add them in the vicinity of the cancer type pointing them. For each newly added cancer type we reiterate the same process until no new cancer type is added to the reduced network. The construction process of the reduced network of cancer ends at the 3rd iteration (see Fig. 6, top panel) exhibiting only 10 of the \(N_{cr} = 37 \) cancer types , which in addition of the top 5 cancer types, are 8 Melanoma, 9 Stomach cancer, 12 Hodgkin lymphoma, 17 Liver cancer and 18 Non-Hodgkin lymphoma. Among these 10 cancer types, 7 are among the top 10 deadliest in 2017 according to GBD study (see Tab. 4). In the reduced network of cancers showed in Fig. 6 (top panel) we observe that the most influent cancer, i.e., Lung cancer is pointed from all the other cancer types with the exception of Hodgkin and Non-Hodgkin lymphomas. Also, Fig. 6 (top panel) exhibits clearly a cluster of cancers (Colorectal, Stomach, and Liver cancers) affecting the digestive system, a cluster of cancers (Hodgkin and Non-Hodgkin lymphomas, and Leukemia) affecting blood, a loop interaction between Prostate and Breast cancers which are both linked to steroid hormone pathways and may be both treated with hormone therapy [42,43], loop interactions between Lung and Breast cancers and between Lung cancer and Melanoma affecting mainly the thoracic region.

It is worth to note that although Leukemia article in May 2017 English Wikipedia does not cite any of the other articles devoted to cancer types (as an illustration the first half of the Leukemia column in \(G_{rr} \) is filled with zero entries, see Fig. 5 top right panel), we are able to infer hidden links (in red in Fig. 6, top panel) from Leukemia to other cancers, here Lung cancer and Non-Hodgkin lymphoma.

In the reduced network of cancer, Fig. 6 (top panel), we connect to each cancer types the two preferentially linked countries, i.e., for each cancer type \(cr \), the two countries \(cn_{i1} \) and \(cn_{i2} \) giving the two highest value \((G_{rr} + G_{qrnd})_{cr, cn} \). We observe that cancers affecting digestive system point preferentially to Asian countries with the exception of Great Britain and Chile (Liver cancer points to Thailand and Saudi Arabia, Stomach cancer to Mongolia and Chile, Colorectal cancer to Philippines and Great Britain). This results are correlated to the fact that high mortality rates for Liver cancer are found in Asia (with the highest death rates for Eastern Asia [44]), and for Stomach cancer in Eastern Asia and South America [45,46]. In the other hand Colorectal cancer epidemiology clearly states [47] that the highest incidence rates are found for Western countries such as Great Britain. The appearance of Philippines pointed by Colorectal cancer is an artifact due to the mention in the corresponding 2017 Wikipedia article of Corazon Aquino, former president of the Philippines who was diagnosed with this cancer type. Blood cancer types points preferentially to African countries with the exception of Cambodia pointed by Hodgkin lymphoma. At first sight this results can appear surprising since these blood cancers are found worldwide with incidence rates highest for Western countries and lowest for African countries [48]. In fact there is a Non-Hodgkin lymphoma, the Burkitt’s lymphoma [49], which mainly affects children in malaria endemic region, i.e., Equatorial and Sub-Equatorial Africa and Eastern Asia. Countries pointed by blood cancer types, i.e., Liberia, Zambia,
Fig 6. Reduced network of cancers. We consider the reduced Google matrix associated to the \(N_{cr} = 37 \) cancers and (top panel) the \(N_{cn} = 195 \) countries, (bottom panel) the \(N_{d} = 203 \) cancer drugs. We consider the top 5 cancers from the ranking of May 2017 English Wikipedia using the PageRank algorithm: 1. Lung cancer, 2. Breast cancer, 3. Leukemia, 4. Prostate cancer, 5. Colorectal cancer (see Tab. 3). These 5 cancers are symbolized by plain green nodes distributed around the central gray circle. We determine the two cancers to which each of these 5 cancers are preferentially linked according to \((G_{rr} + G_{qrn})\). If not among the top 5 cancers, a newly determined cancer is placed on a gray circle centered on the cancer from which it is linked. Then for each one of the newly added cancers we determine the two best cancers to which they are each linked, and so on. This process is stopped once no new cancers can be added, i.e. at the 3rd iteration (top panel) and 4th iteration (bottom panel). Also, at each iteration the two countries (drugs) to which each cancer are preferentially linked are placed on the gray circle centered on the cancer; see top panel (bottom panel). No new links are determined from the newly added countries or drugs. On top panel, countries are represented by ring shaped nodes (red for American countries, yellow for African countries, cyan for Asian countries, blue for European countries, and orange for Oceanian countries). On bottom panel, drugs are represented by plain gold nodes. The arrows represent the directed links between cancers and from cancers to countries or drugs (1st iteration: plain line; 2nd iteration: dashed line; 3rd iteration: dotted line for top panel and dashed-dotted line for bottom panel; 4th iteration: dotted line for bottom panel). Black arrows correspond to links existing in the adjacency matrix, i.e., direct links, and red arrows are purely hidden links absent from the adjacency matrix but present in the \(G_{qr} \) component of the reduced Google matrix \(G_{R} \). These networks have been drawn with Cytoscape [33].
Cameroon, Gabon and Cambodia, belong to these regions. Let us note that these cancers and countries are connected through hidden links. Melanoma points to Australia, which is, with New Zealand [50], the country having the highest rate of Melanoma, and points to Peru, where nine 2400 years old mummies have been found with apparent signs of Melanoma [50]. Prostate cancer points preferentially to Japan, due to its exceptional low incidence on Japanese population in Japan and abroad [51,52], to Nigeria, since it is believe that black population is particularly at risk [53]. Lung cancer points to Germany, where in 1929 it was shown for the first time a correlation between smoking and Lung cancer [54,55], and to Bhutan which adopted a complete smoking ban since 2005 [54]. Hidden link from Breast cancer to Republic of San Marino should be related to the fact that inhabitants of San Marino commemorate Saint Agatha, patroness of the Republic and of breast cancer patients [56]. Hidden link from Breast cancer to Cambodia is more difficult to interpret.

Let us now consider the reduced Google matrix associated to $N_r = N_{cr} + N_d = 240$ May 2017 English Wikipedia articles devoted to $N_{cr} = 37$ cancer types and to $N_d = 203$ cancer drugs. As above the reduced network of cancer can be constructed (Fig. 6, bottom panel). The construction process ends at the 4th iteration. The main structure of reduced network of cancers is the same as the previous with some exceptions. Pancreatic cancer is added to the digestive system cancers cluster and via hidden links, Melanoma points now to Skin cancer which points to Breast cancer. Consequently we observe a new cluster of thoracic region cancers comprising Skin, Breast, Lung cancers and Melanoma. Let us connect to each cancer types the two preferentially linked cancer drugs, i.e., for each cancer type cr, the two cancer drugs d_1 and d_2 giving the two highest value $(G_{rr} + G_{qmd})_{d,cr}$. Using DrugBank database [29], we easily check that indeed each drug is currently used to treat the cancer type to which it is connected. Also, closely connected cancer types share the same medication, e.g., Skin cancer and Melanoma are treated by Vemurafenib and Dabrafenib which are enzyme inhibitor of BRAF gene [57], Leukemia and Non-Hodgkin lymphoma are treated by the antibody Rituximab targeting B-lymphocyte antigen CD20 [58]. On the other hand non connected cancer types can in some cases share the same medication, the monoclonal antibody Trastuzumab typically used for Breast cancer is now also considered as a drug for Stomach cancer since these two cancer types overexpress the HER2 gene [59]. Let us note that hidden links connecting Non-Hodgkin lymphoma to Cyclophosphamide and Rituximab capture also a current medication reported in DrugBank database [29].

The reduced network of cancers shown in Fig. 6 depict in a relevant manner interactions between cancers, cancer-country and cancer-drug interactions through Wikipedia.

World countries sensitivity to cancers

We consider the reduced Google matrix associated to the set of $N_r = N_{cr} + N_{cn} = 232$ Wikipedia articles constituted of $N_{cr} = 37$ articles devoted to cancer types and of $N_{cn} = 195$ articles devoted to countries. We compute the PageRank sensitivity $D(cr \to cn, cn)$, i.e., the infinitesimal rate of variation of PageRank probability $P(cn)$ when the directed link $cr \to cn$, $(G_R)_{cn,cr}$, is increased by an amount $\delta(G_R)_{cn,cr}$, where δ is an infinitesimal.

Fig. 7 shows the world distribution of PageRank sensitivity $D(cr \to cn, cn)$ to Lung cancer. The most sensitive countries are, as discussed in the previous section, Bhutan and Germany mainly because these countries are directly cited in Wikipedia’s Lung cancer article. Besides articles devoted to these two countries the others are not directly linked from the Lung cancer article and the results obtained in Fig. 7 (top panel) is consistent with GLOBOCAN 2018 data [4]: apart Micronesia/Ponnesia, the most affected countries, in term of incidence rates, are Eastern Europe, Eastern Asia,
Fig 7. Sensitivity of countries to Lung cancer. A country cn is colored according to its diagonal PageRank sensitivity $D(cr \rightarrow cn, cn)$ to Lung cancer. Color categories are obtained using the Jenks natural breaks classification method [60].

Fig 8. Sensitivity of countries to cancer \rightarrow drug link variation. A country cn is colored according to its nondiagonal PageRank sensitivity $D(cr \rightarrow d, cn)$ to $cr \rightarrow d$ link variation. Variation of Lung cancer \rightarrow Bevacizumab link is considered. Color categories are obtained using the Jenks natural breaks classification method [60].
Western Europe, and Southern Europe for males, and Northern America, Northern Europe, Western Europe, and Australia/New Zealand for females. The less affected are African countries for both sexes. Let us note that although incidence rates are very high for males in Micronesia/Polynesia according to [4], this fact is not captured by Wikipedia since Nauru, Kiribati, Tuvalu, Marshall Islands are the less PageRank sensitive countries. This is certainly due to the fact that articles devoted to these sovereign states are among the worst ranked articles devoted to countries in the May 2017 English Wikipedia ranking using PageRank algorithm. Their respective ranks are Nauru $K = 7085$, Kiribati $K = 7659$, Tuvalu $K = 6201$, Marshall Islands $K = 4549$ to compare e.g. with USA $K = 1$, France $K = 4$, Germany $K = 5$, etc (see PageRank indices of countries in [28]).

As complementary information, sensitivities of countries to Breast cancer and to Leukemia are given in [28].

In order to investigate cancer – drug interactions it is also possible to represent sensitivity of countries to the variation of links from a cancer to a drug. As an illustration, Fig. 8 shows countries PageRank sensitivities to variation of Lung cancer \rightarrow Bevacizumab link. We see that in this case the sensitivity of countries is significantly reduced comparing to the direct sensitivity influence of lung cancer on world countries shown in Fig. 7. Since the influence of this link variation is indirect for countries it is rather difficult to recover due to what indirect links the influence for specific countries is bigger or smaller. Among the most affected European countries we find Lichtenstein, Great Britain, Iceland, Portugal and Croatia while Germany and the Czech Republic are mostly unaffected. Another example of sensitivity of countries to cancer-drug link variation is given in [28].

Fig 9. Sensitivity of cancers to drugs. The PageRank sensitivity $D(cr \rightarrow d, cr)$ of cancers to cancer drugs is represented. Here we consider the first 37 cancers (cr) listed in Tab. 3 and the first 37 drugs (d) listed in Table 2 (Talc has been removed as its article is too general).
Fig 10. Sensitivity of drugs to cancers. The PageRank sensitivity $D(d \rightarrow cr, d)$ of cancer drugs to cancers is represented. Here we consider the first 37 cancers (cr) listed in Tab. 3 and the first 37 drugs (d) listed in Table 2 (*Talc* has been removed as its article is too general).

Interactions between cancers and drugs

Let us investigate interactions between cancers and drugs considering the subnetwork of $N_{cr} = 37$ cancers (see Tab. 1) and of the first 37 cancer drugs appearing in the PageRank ordered list Tab. 3. We do not consider *Talc* here since it is widely used in not only pharmaceutical industries.

We consider the sensitivity of cancer to drugs via the computation of $D (cr \rightarrow d, cr)$ presented in Fig. 9. Although the PageRank sensitivity is computed using the logarithmic derivative of the PageRank, globally the most sensitive cancers are the ones with the highest PageRank probability, i.e., the ones with lowest PageRank indices K (see Fig. 2 and Tab. 3): *Lung cancer* is mostly sensitive to *Irinotecan, Etoposide, Carboplatin, Breast cancer to Raloxifene, Trastuzumab, Docetaxel, Leukemia to Mercaptopurine, Imatinib, Rituximab*, etc. Following the National Cancer Institute [25] and/or DrugBank [29] databases, these associations cancer – drug are indeed approved.

Fig. 10 shows the complementary view of the sensitivity of drugs to cancers obtained from the computation of $D (d \rightarrow cr, d)$. Here the most sensitive drugs are *Dactinomycin to Gestational trophoblastic disease, HPV vaccines to Vulvar and Vaginal cancers, Fluorouracil to Anal cancer, Doxorubicin to Soft-tissue cancers*, etc. Again the National Cancer Institute [25] and DrugBank [29] databases report these possible drug – cancer associations.

Let us consider directly the reduced Google matrix associated to the top 20 cancer types and top 20 cancer drugs according to May 2017 English Wikipedia PageRank list (Tab. 3). This reduced Google matrix G_R and its G_{rr}, G_{pr} and G_{qrnd} components are shown in Fig. 5.

For each cancer cr of the 20 most influential cancer types in May 2017 English
Table 6. Drug prescription by Wikipedia for the top 20 most influential cancer types and comparison with prescriptions by National Cancer Institute and DrugBank. For each of the top 20 cancer types ranked in May 2017 English Wikipedia using PageRank algorithm (see Tab. 3), we give the three strongest cancer → drug links, i.e., for a given cancer type cr we select the three cancer drugs d with the highest values \((G_{rr} + G_{qr})_{d,cr}\). Drug in red indicates a pure hidden cancer → drug link, i.e., the cancer type article in Wikipedia does not refer directly to the drug. For each cancer → drug link, the drug is followed by a ✓ mark if it is indeed prescribed for the cancer type according to National Cancer Institute [25] and/or DrugBank [29]; by a ▲ mark if the drug appears only as a subject of passed, ongoing or planned clinical trials reported for the cancer type in DrugBank; and by a × mark otherwise.

Cancer	1st drug	2nd drug	3rd drug
Lung cancer	Erlotinib	✓ Crizotinib	✓ Cisplatin
Breast cancer	Tamoxifen	✓ Trastuzumab	✓ Methotrexate
Leukemia	Imatinib	✓ Rituximab	✓ Methotrexate
Prostate cancer	Enzalutamide	✓ Cyclophosphamide	▲ Prednisone
Colorectal cancer	Fluorouracil	✓ Irinotecan	✓ Bevacizumab
Brain tumor	Temozolomide	✓ Dexamethasone	▲ Aminolevulinic acid
Pancreatic cancer	Fluorouracil	✓ Gemcitabine	✓ Protein-bound paclitaxel
Melanoma	Vemurafenib	✓ Dabrafenib	✓ Trametinib
Stomach cancer	Trastuzumab	✓ Doxorubicin	✓ Cisplatin
Ovarian cancer	Cisplatin	✓ Tamoxifen	▲ Bevacizumab
Cervical cancer	HPV vaccines	✓ Cisplatin	✓ Topotecan
Hodgkin’s lymphoma	Prednisone	✓ Cyclophosphamide	✓ Vincristine
Skin cancer	Vemurafenib	✓ Dabrafenib	✓ Fluorouracil
Multiple myeloma	Dexamethasone	▲ Elotuzumab	✓ Bortezomib
Esophageal cancer	Cisplatin	✓ Carboplatin	✓ Fluorouracil
Liver cancer	Doxorubicin	▲ Cisplatin	▲ Sorafenib
Non-Hodgkin’s lymphoma	Cyclophosphamide	✓ Rituximab	✓ Prednisone
Bladder cancer	Doxorubicin	✓ Cisplatin	✓ Methotrexate
Head and neck cancer	Cetuximab	✓ Paclitaxel	✓ Cisplatin
Testicular cancer	Etoposide	✓ Cisplatin	✓ Bleomycin

Notes: a Dexamethasone may be used to decrease swelling around the tumor [61].

Wikipedia let us determine the three most connected drugs d, i.e., the three drugs with the highest value of \((G_{rr} + G_{qr})_{d,cr}\). In Tab. 6 we show the May 2017 English Wikipedia prescription for each of the top 20 cancer types. Most of the prescribed drugs are approved drugs for the considered cancer types according to National Cancer Institute [25] and DrugBank [29]. Some of the Wikipedia proposed drugs are in fact subject of passed, ongoing or planned clinical trials. Only Dexamethasone is in fact not specific to Brain tumor since it is a corticosteroid used to treat inflammation in many medical conditions. We observe that hidden links gives also accurate medication, see drugs associated to Non-Hodgkin lymphoma and Bladder cancer in Tab. 6.

Conversely for each cancer drug d of the 20 most influent cancer drugs in 2007 English Wikipedia we determine the three most connected cancer types cr, i.e., the three cancer types with the highest value of \((G_{rr} + G_{qr})_{cr,d}\). In Tab. 7 we show for which cancers a drug is prescribed according to May 2017 English Wikipedia. Again the results are globally in accordance with National Cancer Institute [25] and DrugBank [29] databases. We note that hidden links here correspond mainly to clinical trials, e.g., Imatinib is an approved drug for treatment of certain forms of Leukemia, but experiments were or will be done for Breast cancer and Prostate cancer.

It would be interesting to thoroughly study the most connected drugs and cancer types from the hidden contributions only, i.e., from \((G_{qr})_{cr,d}\) or \((G_{qr})_{d,cr}\) matrix elements only, in order to test the possible predictive power of the reduced Google matrix.
Table 7. According to Wikipedia for which cancer type is prescribed the top 20 most influential cancer drugs and comparison with prescriptions by National Cancer Institute and DrugBank. For each of the top 20 cancer drugs ranked in May 2017 English Wikipedia using PageRank algorithm (see Tab. 3), we give the three strongest drug → cancer links, i.e., for a given drug d we select the three cancer types $c_{r,d}$ with the highest values $(G_{rr} + G_{qr})_{cr,d}$. Cancer type in red indicates a pure hidden drug → cancer link, i.e., the drug article in Wikipedia does not refer directly to the cancer type. For each drug → cancer link, the cancer type is followed by a ✔ mark if the drug is indeed prescribed for the cancer type according to National Cancer Institute [25] and/or DrugBank [29]; by a ▲ mark if the drug appears only as a subject of passed, ongoing or planned clinical trials reported for the cancer type in DrugBank; and by a ✗ mark otherwise.

Drug	1st cancer type	2nd cancer type	3rd cancer type
Talc	Ovarian cancer	✗ Lung cancer	✔ Breast cancer
Methotrexate	Leukemia	✔ Breast cancer	✔ Lung cancer
Thalidomide	Multiple myeloma	✔ Breast cancer	▲ Prostate cancer
Paclitaxel	Breast cancer	✔ Lung cancer	✔ Ovarian cancer
Prednisone	Multiple myeloma	▲ Non-Hodgkin lymphoma	✔ Hodgkin’s lymphoma
Cisplatin	Lung cancer	✔ Testicular cancer	✔ Breast cancer
Dexamethasone	Multiple myeloma	▲ Brain tumor	✗ Leukemia
Doxorubicin	Leukemia	✔ Hodgkin’s lymphoma	✔ Breast cancer
Propranolol	Ovarian cancer	▲ Brain tumor	✗ Colorectal cancer
Interleukin 2	Melanoma	✔ Leukemia	✔ Hodgkin’s lymphoma
Cyclophosphamide	Leukemia	✔ Multiple myeloma	✔ Breast cancer
Fluorouracil	Colorectal cancer	✔ Breast cancer	✔ Stomach cancer
Tamoxifen	Breast cancer	✔ Uterine cancer	▲ Prostate cancer
Vincristine	Leukemia	✔ Hodgkin’s lymphoma	✔ Lung cancer
Rituximab	Leukemia	✔ Non-Hodgkin lymphoma	✔ Multiple myeloma
Bevacizumab	Breast cancer	✔ Colorectal cancer	✔ Lung cancer
HPV vaccines	Cervical cancer	✔ Breast cancer	✗ Colorectal cancer
Imatinib	Leukemia	✔ Breast cancer	▲ Prostate cancer
Arsenic trioxide	Leukemia	✔ Brain tumor	▲ Breast cancer
Dactinomycin	GTDb	✔ Testicular cancer	✔ Ovarian cancer

Notes: a Dexamethasone may be used to decrease swelling around the tumor [61]. b Gestational trophoblastic disease.

Conclusion

Using PageRank and CheiRank algorithms, we investigate global influences of 37 cancer types and 203 cancer drugs through the prism of Human knowledge encoded in the English edition of Wikipedia considered as a complex network. From the ranking of Wikipedia articles using PageRank algorithm we extract the ranking of the most influent cancers according to Wikipedia. This ranking is in good agreement with rankings, by either mortality rates or yearly new cases, extracted from WHO GLOBOCAN 2018 [2] and Global Burden of Diseases study 2017 [5] databases.

The recently developed algorithm of the reduced Google matrix allows to construct a reduced network of cancers taking into account all the information aggregated in Wikipedia. This network exhibits direct and hidden links between the most influent cancers which form clusters of similar or related cancer types. The reduced Google matrix gives also countries or cancer drugs which are preferentially linked to the most influent cancers. Inferred relations between cancer types and countries obtained from Wikipedia network analysis are in accordance with global epidemiology literature. The PageRank sensitivity of countries to cancer types gives also a complementary tool.
corroborating epidemiological analysis. As far as we know, it is the first study highlighting correspondence between Wikipedia network analysis and disease burden or epidemiological studies. Inferred interactions between cancers and cancer drugs allows to determine drug prescriptions by Wikipedia for a specific cancer. These Wikipedia prescriptions appear to be compatible with approved medications reported in National Cancer Institute [25] and DrugBank [29] databases.

The reduced Google matrix algorithm allows to determine a clear and compact description of global influences and interactions of cancer types and cancer drugs integrating well documented medical aspects but also historical, and societal aspects, all encoded in the huge amount of knowledge aggregated in Wikipedia since 2001.

Authors contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Acknowledgments

We thank Jean-Paul Feugeas and Tatiana Serebriyskaya for useful remarks and discussions. This work was supported by the French “Investissements d’Avenir” program, project ISITE-BFC (contract ANR-15-IDEX-0003), by the Bourgogne Franche-Comté Region 2017-2020 APEX project (conventions 2017Y-06426, 2017Y-06413, 2017Y-07534; see http://perso.utinam.cnrs.fr/~lages/apex/ and in part by the Programme Investissements d’Avenir ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT (project THETRACOM).

References

1. World Health Organization. World Cancer Day 2018; 2018. Available from: https://www.who.int/cancer/world-cancer-day/2018/en/.
2. Union for International Cancer Control. New Global Cancer Data: GLOBOCAN 2018; 2018. Available from: https://www.uicc.org/new-global-cancer-data-globocan-2018.
3. P G Altbach LER L Reisberg. IARC Biennial Report 2016-2017. International Agency for Research on Cancer; 2017. Available from: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Biennial-Reports/IARC-Biennial-Report-2016-2017.
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394–424. doi:10.3322/caac.21492.
5. GBD. Global Burden of Disease; 2010. The Lancet. Available from: https://www.thelancet.com/gbd.
6. Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems. 1998;30(1):107 – 117. doi:https://doi.org/10.1016/S0169-7552(98)00110-X.
7. Langville AN, Meyer CD. Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press; 2012.

8. Ermann L, Frahm KM, Shepelyansky DL. Google matrix analysis of directed networks. Rev Mod Phys. 2015;87:1261–1310. doi:10.1103/RevModPhys.87.1261.

9. Encyclopaedia Britannica; 2018. Available from: http://www.britannica.com.

10. Giles J. Internet encyclopaedias go head to head. Nature. 2005;438:900–901. doi:10.1038/438900a.

11. Butler D. Publish in Wikipedia or perish. Nature. 2008;doi:10.1038/news.2008.1312.

12. Callaway E. No rest for the bio-wikis. Nature. 2010;468(7322):359–360. doi:10.1038/468359a.

13. Reagle Jr JM. Good Faith Collaboration: The Culture of Wikipedia (History and Foundations of Information Science). The MIT Press; 2012.

14. Nielsen FÅ. Wikipedia Research and Tools: Review and Comments. SSRN Electronic Journal. 2012;doi:10.2139/ssrn.2129874.

15. Lewoniewski W, Wecel K, Abramowicz W. Relative Quality and Popularity Evaluation of Multilingual Wikipedia Articles. Informatics. 2017;4(4):43. doi:10.3390/informatics4040043.

16. Frahm KM, Shepelyansky DL. Reduced Google matrix. arXiv. 2016;arXiv:1602.02394.

17. Frahm KM, Jaffrèes-Runser K, Shepelyansky DL. Wikipedia mining of hidden links between political leaders. The European Physical Journal B. 2016;89(12):269. doi:10.1140/epjb/e2016-70526-3.

18. Zant SE, Jaffrèes-Runser K, Frahm KM, Shepelyansky DL. Interactions and Influence of World Painters From the Reduced Google Matrix of Wikipedia Networks. IEEE Access. 2018;6:47735–47750. doi:10.1109/ACCESS.2018.2867327.

19. Coquidé C, Lages J, Shepelyansky DL. World influence and interactions of universities from Wikipedia networks. The European Physical Journal B. 2019;92(1):3. doi:10.1140/epjb/e2018-90532-7.

20. Lages J, Shepelyansky DL, Zinovyev A. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks. PLOS ONE. 2018;13(1):1–28. doi:10.1371/journal.pone.0190812.

21. Coquidé C, Ermann L, Lages J, Shepelyansky DL. Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data. arXiv e-prints. 2019; p. arXiv:1903.01820.

22. Coquidé C, Lages J, Shepelyansky DL. Interdependence of sectors of economic activities for world countries from the reduced Google matrix analysis of WTO data. arXiv e-prints. 2019; p. arXiv:1905.06489.

23. Coquidé C, Lages J, Shepelyansky DL. Contagion in Bitcoin networks. arXiv e-prints. 2019; p. arXiv:1906.01293.

24. Cancer Treatment Centers of America. Types of Cancer; 2018. Available from: https://www.cancercenter.com/cancer/.
25. National Cancer Institute. List of Cancer Drugs; 2018. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/.

26. El Zant S, Jaffrês-Runser K, Shepelyansky DL. Capturing the influence of geopolitical ties from Wikipedia with reduced Google matrix. PLOS ONE. 2018;13(8):1–31. doi:10.1371/journal.pone.0201397.

27. Rollin G, Lages J, Shepelyansky DL. World Influence of Infectious Diseases From Wikipedia Network Analysis. IEEE Access. 2019;7:26073–26087. doi:10.1109/ACCESS.2019.2899339.

28. Rollin G, Lages J, Shepelyansky D. Wiki4Cancers: Wikipedia network of cancers; 2018. Available from: http://perso.utinam.cnrs.fr/~lages/datasets/Wiki4Cancers/.

29. DrugBank. DrugBank database; 2018. Available from: https://www.drugbank.ca.

30. Frahm KM, Shepelyansky DL. Wikipedia networks of 24 editions of 2017; 2017. Available from: http://www.quantware.ups-tlse.fr/QWLIB/24wiki2017.

31. Chepelianskii AD. Towards physical laws for software architecture. arXiv. 2010;arXiv:1003.5455.

32. Zhirov AO, Zhirov OV, Shepelyansky DL. Two-dimensional ranking of Wikipedia articles. The European Physical Journal B. 2010;77(4):523–531. doi:10.1140/epjb/e2010-10500-7.

33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research. 2003;13(11):2498–2504. doi:10.1101/gr.1239303.

34. Kaatsch P. Epidemiology of childhood cancer. Cancer Treatment Reviews. 2010;36(4):277–285. doi:10.1016/j.ctrv.2010.02.003.

35. Wikipedia. Talc; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Talc.

36. Wikipedia. Methotrexate; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Methotrexate.

37. Wikipedia. Thalidomide; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Thalidomide.

38. Wikipedia. Paclitaxel; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Paclitaxel.

39. Wikipedia. Bicalutamide; 2018. Wikipedia. Available from: https://en.wikipedia.org/wiki/Bicalutamide.

40. Global Burden of Disease Study. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1736 – 1788.
41. Global Burden of Disease Study. Global, regional, and national
disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy
life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic
analysis for the Global Burden of Disease Study 2017. The Lancet.
2018;392(10159):1736 – 1788.

42. Wikipedia. Breast cancer; 2018. Wikipedia. Available from:
https://en.wikipedia.org/wiki/Breast_cancer.

43. Wikipedia. Prostate cancer; 2018. Wikipedia. Available from:
https://en.wikipedia.org/wiki/Prostate_cancer.

44. Wong MCS, Jiang JY, Goggins WB, Liang M, Fang Y, Fung FDH, et al.
International incidence and mortality trends of liver cancer: a global profile.
Scientific Reports. 2017;7:45846.

45. Brenner H, Rothenbacher D, Arndt V. In: Verma M, editor. Epidemiology of
Stomach Cancer. Totowa, NJ: Humana Press; 2009. p. 467–477. Available from:
https://doi.org/10.1007/978-1-60327-492-0_23.

46. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric
Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention.
Cancer Epidemiology and Prevention Biomarkers. 2014;23(5):700–713.
doi:10.1158/1055-9965.EPI-13-1057.

47. Haggar FA, Boushey RP. Colorectal Cancer Epidemiology: Incidence, Mortality,
Survival, and Risk Factors. Clinics in Colon and Rectal Surgery.
2009;22(04):191–197. doi:10.1055/s-0029-1242458.

48. Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F.
Epidemiological patterns of leukaemia in 184 countries: a population-based study.
The Lancet Haematology. 2018;5(1):e14–e24. doi:10.1016/S2352-3026(17)30232-6.

49. Wikipedia. Burkitt’s lymphoma; 2018. Wikipedia. Available from:
https://en.wikipedia.org/wiki/Burkitt’s_lymphoma.

50. Wikipedia. Melanoma; 2018. Wikipedia. Available from:
https://en.wikipedia.org/wiki/Melanoma.

51. Kimura T. East meets West: ethnic differences in prostate cancer epidemiology
between East Asians and Caucasians. Chin J Cancer. 2012;31(9):421–429.
doi:10.5732/cjc.011.10324.

52. Wakai K. Descriptive epidemiology of prostate cancer in Japan and Western
countries. Nippon Rinsho. 2005;63(2):207–212.

53. Badmus TA, Adesunkanni ARK, Yusuf BM, Oseni GO, Eziyi AK, Bakare TIB,
et al. Burden of Prostate Cancer in Southwestern Nigeria. Urology.
2010;76(2):412 – 416. doi:https://doi.org/10.1016/j.urology.2010.03.020.

54. Wikipedia. Lung cancer; 2018. Wikipedia. Available from:
https://en.wikipedia.org/wiki/Lung_cancer.

55. Witschi H. A Short History of Lung Cancer. Toxicological Sciences.
2001;64(1):4–6. doi:10.1093/toxsci/64.1.4.

56. Wikipedia. San Marino; 2018. Wikipedia. Available from:
https://en.wikipedia.org/wiki/San_Marino.
57. Wikipedia. BRAF; 2018. Wikipedia. Available from:
 https://en.wikipedia.org/wiki/BRAF_(gene).

58. Wikipedia. Rituximab; 2018. Wikipedia. Available from:
 https://en.wikipedia.org/wiki/Rituximab.

59. Gunturu KS, Woo Y, Beaubier N, Remotti HE, Saif MW. Gastric cancer and
 trastuzumab: first biologic therapy in gastric cancer. Therapeutic Advances in
 Medical Oncology. 2013;5(2):143–151. doi:10.1177/1758834012469429.

60. Wikipedia. Jenks natural breaks optimization; 2018. Wikipedia. Available from:
 https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization.

61. Wikipedia. Brain Tumor; 2018. Wikipedia. Available from:
 https://en.wikipedia.org/wiki/Brain_tumor.