QUANTUM TORSORS AND HOPF-GALOIS OBJECTS

PETER SCHAUENBURG

Abstract. We prove that every faithfully flat Hopf-Galois object is a quantum torsor in the sense of Grunspan.

1. Introduction

The main result of this short note is to complete the comparison between the notion of a quantum torsor recently introduced by Grunspan [3], and the older notion of a Hopf-Galois object.

An H-Galois object for a k-Hopf algebra H is a right H-comodule algebra A whose coinvariant subalgebra is the base ring k and for which the canonical map

$$\beta := \left(A \otimes A \xrightarrow{A \otimes \rho} A \otimes A \otimes H \xrightarrow{\nabla \otimes H} A \otimes H \right)$$

is a bijection (where ∇ is the multiplication map of A, and $\rho: A \to A \otimes H$ is the coaction of H on A). The notion appears in this generality in [4]; we refer to Montgomery’s book [5] for background. If one specializes A and H to be affine commutative algebras, then they correspond to an affine scheme and an affine group scheme, respectively, and the definition recovers the definition of a G-torsor with structure group $G = \text{Spec}(H)$, in other words the affine algebraic version of a principal fiber bundle.

In Grunspan’s definition a quantum torsor is an algebra T equipped with certain structure maps $\mu: T \to T \otimes T^{\text{op}} \otimes T$ and $\theta: T \to T$ which are required to fulfill a set of axioms that we shall recall below. The definition is also inspired by results in classical algebraic geometry, going back to work of Baer [1]; we refer to [3] for more literature. Notably, if we again specify T to be an affine commutative algebra, then the definition (which now does not need the map θ) is known to characterize torsors, without requiring any prior specification of a structure group; in fact two structure groups can be constructed from the torsor rather than having to be given in advance. In addition to being group-free, this characterization has advantages when additional structures, notably Poisson structures, come into play: In the latter situation one cannot expect the canonical map β in the definition of a Hopf-Galois extension to be maps of Poisson algebras, while the structure maps of a torsor are; thus the definition of a Poisson torsor becomes more natural when given in the group-free form.

Generalizing the results on commutative torsors, Grunspan shows that any torsor T in the sense of his definition has the structure of an L-H-bi-Galois extension for two naturally constructed Hopf algebras $L = H_L(T)$ and $H = H_R(T)$. Thus, as in the commutative case, a torsor is a quantum group-free way to define a quantum...
principal homogeneous space (with trivial base), with quantum structure group(s) that can be constructed afterwards.

The following natural question is left open (or rather, asked explicitly) in [3]: Are there Hopf-Galois objects that do not arise from quantum torsors? Or, on the contrary, does every Hopf-Galois object have a quantum torsor structure?

We shall prove the latter (under the mild assumptions that Hopf algebras should have bijective antipodes, and Hopf-Galois objects should be faithfully flat). Thus Grunspan’s quantum torsors are seen to be an equivalent characterization of Hopf-(bi)-Galois objects, without reference to the Hopf algebras involved, parallel to the commutative case. On the other hand, the group Tor(H) of quantum torsors associated to a Hopf algebra H in [3] coincides with the group BiGal(H, H) of H-H-bi-Galois objects introduced in [6].

2. Notations

Throughout the paper, we work over a commutative base ring k.

We denote multiplication in an algebra A by \(\nabla = \nabla_A \), and comultiplication in a coalgebra C by \(\Delta = \Delta_C \); we will write \(\Delta(x) =: \delta(x_1) \otimes \delta(x_2) \). We will write \(\rho: V \rightarrow V \otimes C \) for the structure map of a right C-comodule V, and \(\rho(v) =: v^{(0)} \otimes v^{(1)} \).

Let H be a k-(faithfully) flat k-Hopf algebra, with antipode S. A right H-comodule algebra T is an algebra T which is a right H-comodule whose structure map \(\rho: T \rightarrow T \otimes H \) is an algebra map. We say that T is an H-Galois extension of its coinvariant subalgebra \(T^{\text{co}H} := \{ t \in T | \rho(t) = t \otimes 1 \} \) if the canonical map \(\beta: T \otimes T^{\text{co}H} \rightarrow T \otimes H \) given by \(\beta(x \otimes y) = xy^{(0)} \otimes y^{(1)} \) is a bijection. We will call an H-Galois extension T whose coinvariant subalgebra is the base ring an H-Galois object for short. In most of this paper we will be interested in faithfully flat (i.e. faithfully flat as k-module) H-Galois objects. For an H-Galois object T, we define \(\gamma: H \rightarrow T \otimes T \) by \(\gamma(h) := \beta^{-1}(1 \otimes h) \), and write \(\gamma(h) =: h^{[1]} \otimes h^{[2]} \). The following facts on \(\gamma \) can be found in [8]: For all \(x \in T \), \(g, h \in H \) we have

\[
\begin{align*}
(2.1) & \quad x^{(0)} x^{[1]} \otimes x^{[2]} = 1 \otimes x \\
(2.2) & \quad h^{[1]} h^{[2]} = \varepsilon(h) \cdot 1 \\
(2.3) & \quad h^{[1]} \otimes h^{[2]}_{(0)} \otimes h^{[2]}_{(1)} = h^{(1)} \otimes h^{(1)}_{(2)} \otimes h^{(2)} \\
(2.4) & \quad h^{[1]}_{(0)} \otimes h^{[2]} \otimes h^{[1]}_{(1)} = h^{(2)}_{(1)} \otimes h^{(2)}_{(2)} \otimes \varepsilon(h^{(1)}) \\
(2.5) & \quad (gh)^{[1]} \otimes (gh)^{[2]} = h^{[1]} g^{[1]} \otimes g^{[2]} h^{[2]} \\
(2.6) & \quad 1^{[1]} \otimes 1^{[2]} = 1 \otimes 1
\end{align*}
\]

In particular, the last two equations say that \(\gamma: H \rightarrow T^{\text{op}} \otimes T \) is an algebra map.

We now recall Grunspan’s definition of a quantum torsor [3]: A quantum torsor \((T, \nabla, 1, \mu, \theta) \) consists of a faithfully flat k-algebra \((T, \nabla, 1) \), an algebra map \(\mu: T \rightarrow T \otimes T^{\text{op}} \otimes T \), and an algebra automorphism \(\theta: T \rightarrow T \) satisfying, for all \(x \in T \):

\[
\begin{align*}
(2.7) & \quad (T \otimes \nabla)\mu(x) = x \otimes 1 \\
(2.8) & \quad (\nabla \otimes T)\mu(x) = 1 \otimes x \\
(2.9) & \quad (T \otimes T^{\text{op}} \otimes \mu)\mu = (\mu \otimes T^{\text{op}} \otimes T)\mu \\
(2.10) & \quad (T \otimes T^{\text{op}} \otimes \theta \otimes T^{\text{op}} \otimes T)(\mu \otimes T^{\text{op}} \otimes T)\mu = (T \otimes \mu^{\text{op}} \otimes T)\mu \\
(2.11) & \quad (\theta \otimes \theta \otimes \theta)\mu = \mu \theta,
\end{align*}
\]
Lemma 3.1. Let \(H \) occur in our calculations can be written with the rightmost tensor factors taken to for all \(x \in T \), and
\[
S(x_{(1)})^{[1]} \otimes x_{(0)}S(x_{(1)})^{[2]} \in T \otimes k \subset T \otimes T
\]
for all \(x \in T \), and
\[
h_{(1)}^{[1]} \otimes S(h_{(2)})^{[1]} \otimes h_{(1)}^{[2]}S(h_{(2)})^{[2]} \in T \otimes T \otimes k \subset T \otimes T \otimes T
\]
for all \(h \in H \).

Proof. For \(x \in T \) we have
\[
S(x_{(1)})^{[1]} \otimes \rho(x_{(0)}S(x_{(1)})^{[2]})
= S(x_{(2)})^{[1]} \otimes x_{(0)}S(x_{(2)})^{[2]}(0) \otimes x_{(1)}S(x_{(2)})^{[2]}(1)
\]
\[
= S(x_{(3)})^{[1]} \otimes x_{(0)}S(x_{(3)})^{[2]} \otimes x_{(1)}S(x_{(2)})
= S(x_{(1)})^{[1]} \otimes x_{(0)}S(x_{(1)})^{[2]} \otimes 1
\]
in \(T \otimes T \otimes H \). Since \(T^{\text{co} H} = k \) and \(T \) is flat over \(k \), this proves the first claim. Similarly, for \(h \in H \) we have
\[
h_{(1)}^{[1]} \otimes S(h_{(2)})^{[1]} \otimes \rho(h_{(1)}^{[2]}S(h_{(2)})^{[2]})
\]
\[
= h_{(1)}^{[1]} \otimes S(h_{(3)})^{[1]} \otimes h_{(1)}^{[2]}S(h_{(3)})^{[2]} \otimes h_{(2)}S(h_{(3)})^{[2]} \otimes h_{(2)}S(h_{(3)})^{[1]}
\]
Proving the second claim, again by flatness of \(T \).

Abusing Sweedler notation, the Lemma says that the “elements” \(x_{(0)}S(x_{(1)})^{[2]} \) and \(h_{(1)}^{[2]}S(h_{(2)})^{[2]} \) are scalars. We will use this by moving these elements around freely in any \(k \)-multilinear expression in calculations below, sometimes indicating our plans by putting parentheses around the “scalar” before moving it.

Theorem 3.2. Let \(T \) be a faithfully flat \(H \)-Galois object, where \(H \) is a Hopf algebra with bijective antipode. Then \((T, \mu, \theta) \) is a quantum torsor, with
\[
\mu(x) = (T \otimes \gamma)\rho(x) = x_{(0)} \otimes x_{(1)}^{[1]} \otimes x_{(1)}^{[2]}
\]
\[
\theta(x) = (x_{(0)}S(x_{(1)})^{[2]}S(x_{(1)})^{[1]} = S(x_{(1)})^{[1]}(x_{(0)}S(x_{(1)})^{[2]})
\]
Proof. For all calculations, we let \(x, y \in T \) and \(h \in H \).

Since \(\rho \) and \(\gamma \) are algebra maps, so is \(\mu \). We have

\[
(T \otimes \nabla) \mu(x) = x(0) \otimes \nabla \gamma(x(1)) = x(0) \otimes \varepsilon(x(1))1 = x \otimes 1
\]

by (2.2), and \((\nabla \otimes T) \mu(x) = x(0) x(1)^{[1]} \otimes x(1)^{[2]} = 1 \otimes x\) by (2.1). Next

\[
\begin{align*}
(T \otimes \text{T} \otimes \mu) \mu(x) &= x(0) \otimes x(1)^{[1]} \otimes \mu(x(1)^{[2]}) \\
&= x(0) \otimes x(1)^{[1]} \otimes x(1)^{[2]} \otimes \gamma(x(1)^{[2]}(1)) \\
&\quad \stackrel{(2.3)}{=} x(0) \otimes x(1)^{[1]} \otimes x(1)^{[2]} \otimes \gamma(x(2)) \\
&= \mu(x(0)) \otimes \gamma(x(1)) \\
&= (\mu \otimes \text{T} \otimes T) \mu(x)
\end{align*}
\]

proves (2.9). It is clear that \(\theta(1) = 1 \). For \(x, y \in T \) we have

\[
\begin{align*}
\theta(xy) &= x(0)y(0)S(x(1)y(1))^{[2]}S(x(1)y(1))^{[1]} \\
&= x(0)y(0)(S(y(1))S(x(1)))^{[2]}(S(y(1))S(x(1)))^{[1]} \\
&\quad \stackrel{(2.5)}{=} x(0)(y(0)S(y(1))^ {[2]}S(x(1))^ {[1]}S(y(1))^ {[1]} \\
&\quad \gamma \; x(0)S(x(1))^ {[2]}S(x(1))^ {[1]}(y(0)S(y(1))^ {[2]}S(y(1))^ {[1]} \\
&= \theta(x)\theta(y),
\end{align*}
\]

so \(\theta \) is an algebra map.

For \(h \in H \) we have

\[
(3.3) \quad h^{[1]} \otimes \theta(h^{[2]}) = S(h)^{[2]} \otimes S(h)^{[1]}
\]

by the calculation

\[
\begin{align*}
h^{[1]} \otimes \theta(h^{[2]}) &= h^{[1]} \otimes h^{[2]}(0)S(h^{[2]}(1))^{[2]}S(h^{[2]}(1))^{[1]} \\
&\quad \stackrel{(2.3)}{=} h^{[1]} \otimes (h^{[1]}^{[2]}S(h(2))^{[2]}S(h(2))^{[1]} \\
&\quad \gamma \; h^{[1]} \otimes (h^{[1]}^{[2]}S(h(2))^{[2]} \otimes S(h(2))^{[2]} \\
&\quad \gamma \; (2.2) \; S(h)^{[2]} \otimes S(h)^{[1]}.
\end{align*}
\]

We conclude that

\[
(T \otimes \text{T} \otimes \theta) \mu(x) = x(0) \otimes x(1)^{[1]} \otimes \theta(x(1)^{[2]}) \quad \stackrel{(3.3)}{=} \quad x(0) \otimes S(x(1))^{[2]} \otimes S(x(1))^{[1]},
\]

hence

\[
\begin{align*}
(T \otimes \text{T} \otimes \theta \otimes \text{T} \otimes \text{T}) \mu(x) &= (T \otimes \text{T} \otimes \theta) \mu(x(0)) \otimes \gamma(x(1)) \\
&= x(0) \otimes S(x(1))^{[2]} \otimes S(x(1))^{[1]} \otimes \gamma(x(2)),
\end{align*}
\]

and on the other hand

\[
\begin{align*}
(T \otimes \text{m} \otimes \text{T}) \mu(x) &= x(0) \otimes \text{m}(x(1)^{[1]}) \otimes x(1)^{[2]} \\
&= x(0) \otimes x(1)^{[1]} \otimes x(1)^{[2]} \otimes x(1)^{[4]}(1) \otimes x(1)^{[1]}(0) \otimes x(1)^{[2]} \\
&\quad \stackrel{(2.4)}{=} x(0) \otimes S(x(1))^{[2]} \otimes S(x(1))^{[1]} \otimes x(2)^{[1]} \otimes x(2)^{[2]},
\end{align*}
\]
proving (2.10). To prove (2.11) we first check

\[(3.4) \quad \rho \theta(x) = \theta(x(0)) \otimes S^2(x(1)), \]

by the calculation

\[
\rho \theta(x) \overset{(3.1)}{=} (x(0)S(x(1))^{[2]})\rho(S(x(1))^{[1]}) \\
\overset{(2.4)}{=} x(0)S(x(1))^{[2]}S(x(1))^{[2]} \otimes S(S(x(1))^{[1]}) \\
= x(0)S(x(1))^{[2]}S(x(1))^{[1]} \otimes S^2(x(2)) \\
= \theta(x(0)) \otimes S^2(x(2)).
\]

Using this, we find

\[(\theta \otimes \theta \otimes \theta) \mu(x) = \theta(x(0)) \otimes \theta(x(1)) \otimes \theta(x(1))^{[2]} \]

\[
\overset{(3.3)}{=} \theta(x(0)) \otimes \theta(S(x(1))^{[2]} \otimes S(x(1))^{[1]} \\
\overset{(3.3)}{=} \theta(x(0)) \otimes S^2(x(1))^{[1]} \otimes S^2(x(1))^{[2]} \\
= \theta(x(0)) \otimes \gamma(S^2(x(1))) \\
\overset{(3.4)}{=} \theta(x(0)) \otimes \gamma(\theta(x(1))) = \mu \theta(x).
\]

It remains to check that \(\theta \) is a bijection. Now we have seen that \(\theta \) is an algebra map, and colinear, provided that the codomain copy of \(T \) is endowed with the comodule structure restricted along the Hopf algebra automorphism \(S^2 \) of \(H \). Of course \(T \) with this new comodule algebra structure is also \(H \)-Galois. It is known [7, Rem.3.11.(1)] that every comodule algebra homomorphism between nonzero \(H \)-Galois objects is a bijection. \(\square \)

Remark 3.3. Obviously, if we drop the requirement that \(\theta \) be bijective from the definition of a quantum torsor, we can do without bijectivity of the antipode of \(H \) in the proof. More precisely, the proof shows that \(\theta \) is bijective if and only if \(S \) is.

By the results of Grunspan, any quantum torsor \(T \) has associated to it two Hopf algebras \(H_1(T) \) and \(H_r(T) \), which make it into an \(H_1(T)-H_r(T) \)-bi-Galois object in the sense of [6]. That is, \(T \) is a right \(H_r(T) \)-Galois object in the sense recalled above, and at the same time a left \(H_1(T) \)-Galois object (i.e. the same as a right Galois object, with sides switched in the definition), in such a way that the two comodule structures involved make it into an \(H_1(T)-H_r(T) \)-bicomodule. Together with these constructions, Theorem 3.2 shows that the notions of a quantum torsor and of a Hopf-bi-Galois extension are equivalent, provided that we complete the picture by proving the following:

Proposition 3.4.

1. Let \(T \) be a faithfully flat \(H \)-Galois object, and consider the torsor associated to it as in Theorem 3.2. Then \(H_r(T) \cong H \), and \(H_1(T) \cong L(T,H) \), where the latter is the Hopf algebra making \(T \) an \(L(T,H)-H \)-bi-Galois object, see [6].

2. Let \(T \) be a quantum torsor. Then the quantum torsor associated as in Theorem 3.2 to the \(H_r(T) \)-Galois object \(T \) coincides with \(T \).

Proof. By the results in [6], each of the two one-sided Hopf-Galois structures in an \(L-H \)-bi-Galois object determines the other (along with the other Hopf algebra). Thus to prove (1), it suffices to check that \(L(T,H) \cong H_1(T) \), and the isomorphism
is compatible with the left coactions. Now let $\xi \in T \otimes T^{\text{op}}$. We write formally $\xi = x \otimes y$ even though we do not assume ξ to be a decomposable tensor. According to the definition of $H_\ell(T) \subseteq T \otimes T^{\text{op}}$ in [3], we have

$$\xi \in H_\ell(T) \iff (T \otimes T^{\text{op}} \otimes T \otimes \theta) \mu(x) \otimes y = x \otimes \mu^{\text{op}}(y)$$

$$\iff x(0) \otimes (x(1)[1] \otimes \theta(x(1)[2])) \otimes y = x \otimes \mu^{\text{op}}(y)$$

$$\iff x(0) \otimes \mathcal{S}(x(1))(2) \otimes \mathcal{S}(x(1))(1) \otimes y = x \otimes y(1)[2] \otimes y(1)[1] \otimes y(0)$$

$$\iff x(0) \otimes \mathcal{S}(x(1)) \otimes y = x \otimes y(1) \otimes y(0)$$

$$\iff \xi \in (T \otimes T)^{\text{co}H}$$

where in the last step $T \otimes T$ is endowed with the codiagonal comodule structure, and we have used a version of [7, Lem.3.1]. By the definition of $L(T, H)$ in [6], this shows $L(T, H) = H_\ell(T)$ as algebras. A look at the respective definitions of comultiplication in $L(T, H)$ and $H_\ell(T)$ and of their coactions on T shows that these also agree.

To show (2), we use the following results on $H_r(T)$ from [3]: $H_r(T)$ is some subalgebra of $T^{\text{op}} \otimes T$, the right $H_r(T)$-comodule algebra structure of T maps $x \in T$ to $x(0) \otimes x(1) := \mu(x) \in T \otimes H_r(T) \subseteq T \otimes T^{\text{op}} \otimes T$, and T is in fact $H_r(T)$-Galois, that is, the canonical map $\beta: T \otimes T \to T \otimes H$ is bijective. Now the torsor structure (T, μ', θ') induced on T by its Hopf-Galois structure as in Theorem 3.2 satisfies $\mu'(x) = x(0) \otimes x(1)[1] \otimes x(1)[2]$. To check $\mu = \mu'$, we apply β to the two right tensor factors. Writing $\mu(x) := x(1) \otimes x(2) \otimes x(3)$, we have

$$(T \otimes \beta) \mu(x) = x(1) \otimes \beta(x(2) \otimes x(3))$$

$$= x(1) \otimes x(2) x(3)(0) \otimes x(3)(1)$$

$$= x(1) \otimes x(2) x(3)(1) \otimes x(3)(2) \otimes x(3)(3)$$

$$\stackrel{(2.7)}{=} x(1)(1) \otimes x(1)(2) x(1)(3) \otimes x(2) \otimes x(3)$$

$$\stackrel{(2.9)}{=} x(1) \otimes 1 \otimes x(2) \otimes x(3)$$

$$= x(0) \otimes 1 \otimes x(1)$$

$$= x(0) \otimes \beta(x(1)[1] \otimes x(1)[2])$$

$$= (T \otimes \beta) \mu'(x)$$

Since θ is determined by μ, we are done. \hfill \Box

As a result of the Proposition, the construction $L(T, H)$ for a Hopf-Galois object T coincides with the construction of $H_\ell(T)$ as in [3] for the quantum torsor associated to the Hopf-Galois object T as in Theorem 3.2. Finally

Corollary 3.5. The group Tor(H) of isomorphism classes of quantum torsors T equipped with specified isomorphisms $H \cong H_\ell(T) \cong H_r(T)$ was observed by Grun span to be a subgroup of the group BiGal(H) of H-H-bi-Galois objects defined in [6]. We see that the two groups in fact coincide.

4. **Ribbon transformations and the Miyashita-Ulbrich action**

The proof we gave for Theorem 3.2 is rather direct. One can shorten it slightly, and perhaps provide some partial explanation for the behavior of the θ map by using
the Miyashita-Ulbrich action [10, 2] and the notion of a ribbon transformation of monoidal functors introduced by Sommerhäuser [9]. To discuss this, we assume again that H has bijective antipode.

Recall that a right-right Yetter-Drinfeld module $V \in \mathcal{YD}_H^H$ is a right H-module (with action denoted \leftarrow) and H-comodule such that

$$v(0) \leftarrow h(1) \otimes v(1) h(2) = (v \leftarrow h(2))(0) \otimes h(1)(v \leftarrow h(2))(1),$$

or equivalently $\rho(v \leftarrow h) = v(0) \leftarrow h(2) \otimes S(h(1))v(1)h(2)$ holds for all $v \in V$. The category \mathcal{YD}_H^H is a braided monoidal category. The tensor product of Yetter-Drinfeld modules is their tensor product over k with the (co)diagonal action and coaction, the braiding σ is given by

$$\sigma_{VW} : V \otimes W \ni v \otimes w \mapsto w(0) \otimes v \leftarrow w(1) \in V \otimes W$$

for $V, W \in \mathcal{YD}_H^H$, its inverse by $\sigma_{VW}^{-1}(w \otimes v) = v \leftarrow S^{-1}(w(1)) \otimes w(0)$.

Let T be a faithfully flat H-Galois object. The Miyashita-Ulbrich action of H on T is defined by $x \leftarrow h := h[1]xh[2]$ for $x \in T$ and $h \in H$. It is proved in [10, 2] (without the terminology) that T with its H-comodule structure and the Miyashita-Ulbrich action is a Yetter-Drinfeld module algebra, that is, an algebra in \mathcal{YD}_H^H. This means that it is a module algebra (it is a comodule algebra to begin with), and a Yetter-Drinfeld module. Moreover, T is commutative in the braided monoidal category \mathcal{YD}_H^H, which means that we have $\nabla \sigma_{TT} = \nabla$, that is $xy = y(x \leftarrow y(1))$ for all $x, y \in T$.

An endofunctor F of \mathcal{YD}_H^H is defined by letting $F(V)$ be the k-module V, equipped with the new right coaction $v \mapsto v(0) \otimes S^{-2}(v(1))$ and right action $v \otimes h \mapsto v \leftarrow S^2(h)$. The functor F preserves the tensor product as well as the braiding of \mathcal{YD}_H^H.

According to Sommerhäuser, a ribbon transformation $\theta : Id \to F$ is a natural transformation such that $\theta_V \otimes \theta_W = \theta_{V \otimes W} \sigma_{VW} \sigma_{VW}$ holds for all $V, W \in \mathcal{YD}_H^H$ (moreover, we should have $\theta_k = id_k$). The example of a ribbon transformation we will use is essentially in [9], up to a switch of sides. It generalizes the map θ in the proof of Theorem 3.2, and is defined by $\theta_V(v) = v(0) \leftarrow S(v(1))$ for $V \in \mathcal{YD}_H^H$ and $v \in V$. This is surely natural, and also a morphism in \mathcal{YD}_H^H, that is, H-linear and H-colinear according to the formulas

$$\rho \theta_V(v) = \theta_V(v(0)) \otimes S^2(v(1)) \quad \theta_V(v) \leftarrow h = \theta_V(v \leftarrow S^{-2}(h)),$$

the first of which was used in our proof of Theorem 3.2; we’ll omit the proofs. Since for all $v \in V \in \mathcal{YD}_H^H$ and $w \in W \in \mathcal{YD}_H^H$ we find

$$\theta_{W \otimes V} \sigma(v \otimes w) = \sigma(v \otimes w)(0) \leftarrow S(\sigma(v \otimes w))$$

$$= \sigma((v \otimes w)(0)) \leftarrow S((v \otimes w)(1))$$

$$= (w(0) \otimes v(0) \leftarrow w(1)) \leftarrow S(v(1)w(2))$$

$$= w(0) \leftarrow S(v(2)w(3)) \otimes v(0) \leftarrow w(1)S(v(1)w(2))$$

$$= w(0) \leftarrow S(v(2)w(1)) \otimes v(0) \leftarrow S(v(1))$$

$$= \theta(w) \leftarrow S(v(1)) \otimes \theta(v(0))$$

$$= \theta(w \leftarrow S^{-1}(v(1))) \otimes \theta(v(0))$$

$$= (\theta_W \otimes \theta_V) \sigma^{-1}(v \otimes w),$$

θ is a ribbon transformation.
Given the results on the ribbon transformation \(\theta \) (which we could have taken by side-switching from [9]), it is almost obvious that \(\theta_T \) is an algebra map:

\[
\nabla \theta_T \otimes T = \nabla (\theta_T \otimes \theta_T) = \nabla \sigma^{-2} = \nabla \theta_T \otimes \theta_T = \nabla T
\]

Using naturality of \(\theta \), the ribbon property, naturality of \(\sigma \), and braided commutativity of \(T \).

There is also a formula for the inverse of \(\theta \) in [9], namely \(\theta^{-1}(v) = v(0) \leftarrow S^{-2}(v(1)) \). We compute for completeness:

\[
\theta \theta^{-1}(v) = \theta(v(0) \leftarrow S^{-2}(v(1))) = v(1) = v(0) \leftarrow S(v(1))v(2) = v
\]

and

\[
\theta^{-1} \theta(v) = \theta^{-1}(\theta(v)(0) \otimes S^{-2}(\theta(v)(1))) = v(1) = v(0) \leftarrow S(v(1))v(2)
\]

Our final shortcut is not dependent on any results on ribbon transformations or Miyashita-Ulbrich actions, but rather on bijectivity of the antipode, and its consequence that \(\theta \) is bijective. The morphism \(\mu: T \to T \otimes T^{op} \otimes T \) constructed for Theorem 3.2 depends only on the \(H \)-comodule algebra structure of \(H \), but does not contain \(H \), so that it surely does not change if we replace the \(H \)-comodule structure by the \(H \)-comodule structure induced along \(S^2 \). But since \(\theta: T \to T \) is colinear between these two comodule structures, and an algebra isomorphism, it follows that \(\theta \) also preserves \(\mu \), that is, axiom (2.11) holds.

References

[1] Baer, A. Zur Einführung des Scharbegriffs. J. Reine Angew. Math. 160 (1929), 199–207.
[2] Doi, Y., and Takeuchi, M. Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras. J. Algebra 121 (1989), 488–516.
[3] Grunspan, C. Quantum torsors. preprint (math.QA/0204280).
[4] Kreimer, H. F., and Takeuchi, M. Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 30 (1981), 675–692.
[5] Montgomery, S. Hopf algebras and their actions on rings, vol. 82 of CBMS Regional Conference Series in Mathematics. AMS, Providence, Rhode Island, 1993.
[6] Schauenburg, P. Hopf Bigalois extensions. Comm. in Alg 24 (1996), 3797–3825.
[7] Schneider, H.-J. Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. of Math. 72 (1990), 167–195.
[8] Schneider, H.-J. Representation theory of Hopf-Galois extensions. Israel J. of Math. 72 (1990), 196–231.
[9] Sommerhäuser, Y. Ribbon transformations, integrals, and triangular decompositions. preprint (gk-mp-9707/52).
[10] Ulbrich, K.-H. Galoisverweiterungen von nicht-kommutativen Ringen. Comm. in Alg. 10 (1982), 655–672.

Mathematisches Institut der Universität München, Theresienstr. 39, 80333 München, Germany, email: schauen@mathematik.uni-muenchen.de