Respiratory Disorders among Dust Exposed Workers

Suman Bahadur Singh,1 Swotantra Gautam,1 Narendra Bhatta,1 Gambhir Shrestha,2 Rabin Gautam,3 Sagar Poudel4

1B P Koirala Institute of Health Sciences, Dharan, Nepal, 2Department of Cancer Prevention, Control and Research, B.P. Koirala Memorial Cancer Hospital, Bharatpur, Nepal, 3HERD International, Thapathali, Kathmandu, Nepal, 4All India Institute of Medical Sciences, New-Delhi, India.

ABSTRACT

Introduction: Exposure to dusts and hard physical work is common in developing industrialized countries. Acute and chronic respiratory illnesses are highly been reported from jute and textile industry. This study was undertaken to explore status of respiratory health among the workers of jute and textile industries.

Methods: This descriptive cross-sectional study enrolled 315 workers from each of textile and jute industry of Eastern Nepal. Almost all the workers were selected from the textile industry whereas those from dust prone areas of jute industry. Workers were interviewed using pre-tested questionnaires. Measurement of height, weight and peak expiratory flow rate was done.

Results: Majority were non-smokers in both the industries 230 (73%) in Jute vs. 223 (70.8%) in Textile. Most of the workers had the working experience of less than five years; jute 134 (42.5%) vs. textile 180 (57.1%). Upper respiratory disorder was found in more than 1/5 of workers (68) in jute vs. 1/20 of workers (18) in textile industry. One and two workers suffered from chronic bronchitis in the jute and the textile industry respectively. Chest tightness was reported among 4 (1.3%) in jute vs. 17 (5.4%) in textile workers, cough symptoms among 86 (27.3%) in jute vs. 26 (8.3%) in textile industry. Low practice of personal protective measure was seen in both industries. The mean score of PEFR of workers in jute mill was lower than the workers in textile industry.

Conclusions: Workers with acute respiratory disorders were more in the jute industry while chest tightness was more in the textile industry. Chronic respiratory problems did not appear to be alarming in both the industries. Use of personal protective measures should be promoted among the dust exposed workers.

Keywords: dust exposure; peak expiratory flow rate; respiratory disorder.

INTRODUCTION

Exposure to high levels of dusts among industrial workers is common in developing and newly industrialized countries. Pulmonary response to hazardous airborne particles at workplaces produces airway disorders. Occupational exposures to airborne particulates is estimated to cause 12% of deaths due to chronic obstructive pulmonary disease and occupational health is of major concern in the South-East Asia Region.
Asthma was suspected for individual workers in the jute industry. Informed consent was taken from the authorities of the industries to conduct the study. Consent was included in the study. Unit of the study was an individual worker.

Prior studies have shown that respiratory problems among workers (25.3%) in textile industry is more than among workers (16%) in jute mill.10,11 Sample size was calculated by taking the lower prevalence of respiratory problems among workers in jute mill industry i.e. 16%.10

Sample Size was calculated by using the formula
\[n = Z^2 pq/e^2 \]
where \(P \) is the prevalence of the reference study (\(p = 16 \)), \(q \) is the complement of \(p \), i.e., \(q = 100-p \), \(e \) is allowable error, which is taken to be 20% of \(p \) in this study and \(Z \) is the standard normal variate, which is 1.96 for 95% confidence interval. Hence, it gives us 525 sample size.

Adding 20% for non-responsive participants, the final sample size was 630 participants.

Equal number of participants was enrolled from the jute industry (315) and the textile industry (315). Almost all the workers were selected from the textile industry while the workers from the jute industry were selected from batching, spinning, weaving and drawing, which were supposed to have higher dust exposure. Consent was taken from authorities of the industries to conduct the study. Informed consent was taken from the participants.

Interview technique was applied to collect data by using pretested questionnaires. Measurement of height and weight was done. The weight of the workers was taken in minimum clothing and without shoes. Peak expiratory flow rate (PEFR) was measured by a vitalograph Peak expiratory flow meter. The purpose and technique of the test was explained to the study subjects followed by demonstrating the manoeuvre. The subjects were allowed to make two-practice attempts.12 An acceptable peak expiratory flow value was defined as the one that was produced with the hardest blow, after taking a maximum deep inhalation, as was interpreted on visual appearance. The highest of the three acceptable readings was recorded as the peak expiratory flow of the individual.

The predicted peak values of PEFR was calculated by the models for predicting peak expiratory flow rate (PEFR) which was developed for North Indian healthy population.13 Asthma was suspected for individual who’s PEFR was <80% predicated.14 Other features of asthma were enquired and suggested as per the need. Shortness of breath, wheeze and chest tightness were considered as lower respiratory tract symptoms. Chronic bronchitis was said when sputum production occurring on most (\(\geq 5 \)) days of a week for at least 3 months a year for at least 2 consecutive years. Chronic cough was said when cough without sputum for \(\geq 5 \) days a week for at least 2 consecutive years. Dyspnea was said when having to walks lower than a person of the same age at an ordinary pace on a level ground because of breathlessness. Analysis of data was done using Statistical Package for Social Sciences (SPSS, version 16.0).

RESULTS

A total of 630 participants working in various departments or units of jute and textile industry were enrolled in the study. Higher proportions of workers were males in both the industries, 269 (85.4%) workers in jute industry and 301 (95.6%) workers in textile industry respectively. Majority of the workers were married, 261 (82.9%) workers in jute industry and 243 (77.1%) workers in textile industry. About 53 (16.8%) and 42 (13.3%) workers were illiterate in the jute and textile industry respectively (Table 1).

Characteristics	Jute Industry (\(n = 315 \))	Textile Industry (\(n = 315 \))
Gender		

METHODS

The descriptive cross-sectional study was designed to enroll workers from textile industry and jute industry in Dharan-Biratnagar Industrial Corridor of Nepal from August 2014 to March 2015. Ethical Approval was obtained from Institutional Ethical Review committee of BPKIHS. The subjects who were engaged in the industries and not working as trainees and giving consent were included in the study. Unit of the study was an individual worker.

The subjects followed by demonstrating the manoeuvre. The subjects were allowed to make two-practice attempts. An acceptable peak expiratory flow value was defined as the one that was produced with the hardest blow, after taking a maximum deep inhalation, as was interpreted on visual appearance. The highest of the three acceptable readings was recorded as the peak expiratory flow of the individual.

The predicted peak values of PEFR was calculated by the models for predicting peak expiratory flow rate (PEFR) which was developed for North Indian healthy population. Asthma was suspected for individual who’s PEFR was <80% predicated. Other features of asthma were enquired and suggested as per the need. Shortness of breath, wheeze and chest tightness were considered as lower respiratory tract symptoms. Chronic bronchitis was said when sputum production occurring on most (\(\geq 5 \)) days of a week for at least 3 months a year for at least 2 consecutive years. Chronic cough was said when cough without sputum for \(\geq 5 \) days a week for at least 2 consecutive years. Dyspnea was said when having to walks lower than a person of the same age at an ordinary pace on a level ground because of breathlessness. Analysis of data was done using Statistical Package for Social Sciences (SPSS, version 16.0).

RESULTS

A total of 630 participants working in various departments or units of jute and textile industry were enrolled in the study. Higher proportions of workers were males in both the industries, 269 (85.4%) workers in jute industry and 301 (95.6%) workers in textile industry respectively. Majority of the workers were married, 261 (82.9%) workers in jute industry and 243 (77.1%) workers in textile industry. About 53 (16.8%) and 42 (13.3%) workers were illiterate in the jute and textile industry respectively (Table 1).

Characteristics	Jute Industry (\(n = 315 \))	Textile Industry (\(n = 315 \))
Gender		
Table 2 shows that majority of workers were non-smokers in both the industries [230 (73%) vs. 223 (70.8%)]. Half of the workers in the industries had reported of chewing tobacco [152 (48.3%) vs. 145 (46%)]. Majority of the workers were not using personal protective equipment as mask to protect from dust at their workplaces in both the industries [261 (82.9%) vs. 238 (75.6%)].

Most of the workers had the working experience of less than five years in both the industries [134 (42.5%) vs. 180 (57.1%)]. There was no participant with working experience of more than 15 years in the jute industry where as about 36 (11.4%) workers had working experience of 15 to 20 years and 12 (3.8%) workers had working experience of more than 20 years in the textile industry (Table 3).

Table 4 shows the workers with their peak expiratory flow rate less or more than 80% of their predicted one. The proportion of workers having less than 80% of their predicted peak expiratory flow rate was far less in both the industries. About 26 (8.3%) and 23 (7.3%) workers produced the hardest blow to measure peak expiratory flow rate less than 80% of their predicted one in jute and textile industry respectively.

Table 2. Personal habit of the workers in the jute and textile industry.

Characteristics	Jute Industry (n = 315)	Textile Industry (n = 315)
	n (%)	n (%)
Smoking Status		
Smoker	65 (20.6)	90 (28.6)
Non Smoker	230 (73.0)	223 (70.8)
Ex-smoker	20 (6.3)	2 (0.6)
Tobacco		
Marital status		
Unmarried	41 (13.0)	70 (22.2)
Married	261 (82.9)	243 (77.1)
Divorced/Separated	5 (1.6)	1 (0.3)
Widowed	8 (2.5)	1 (0.3)
Religion		
Hinduism	287 (91.1)	303 (96.2)
Buddhism	4 (1.3)	4 (1.3)
Muslim	10 (3.2)	4 (1.3)
Kirat	14 (4.4)	4 (1.3)
Literacy status		
Illiterate	53 (16.8)	42 (13.3)
Primary	101 (32.1)	70 (22.2)
Lower Secondary	88 (27.9)	67 (21.3)
Secondary	53 (16.8)	80 (25.4)
Higher Secondary and above	20 (6.3)	56 (17.8)
Age category (years)		
Less than 20	20 (6.3)	35 (11.1)
20 to 30	139 (44.1)	107 (34.0)
30 to 40	102 (32.4)	88 (27.9)
40 to 50	48 (15.2)	54 (17.1)
50 to 60	6 (1.9)	26 (8.3)
60 and above	-	5 (1.6)

Table 3. Distribution of workers according to their working experience in the industries.

Working Experience (years)	Jute Industry (n = 315)	Textile Industry (n = 315)
	n (%)	n (%)
Less than 5	134 (42.5)	180 (57.1)
5 to 10	105 (33.3)	53 (16.8)
10 to 15	76 (24.1)	34 (10.8)
More than 20	-	12 (3.8)

Table 4. Categorization of workers with their peak expiratory flow rate (PEFR).

PEFR	Jute Industry (n = 315)	Textile Industry (n = 315)
	n (%)	n (%)
< 80% predicted PEFR	26 (8.3)	23 (7.3)
≥ 80% predicted PEFR	289 (91.7)	292 (92.7)

Distribution of workers according to respiratory
Disorders in the jute and textile industry is shown (Table 5). Cough was reported by more than one-fourth of workers in the jute industry while it was reported by less than one-tenth of workers in the textile industry. Upper respiratory disorder was prevalent among more than one-fifth of workers in the jute industry while it was prevalent around one twentieth of workers in the textile industry.

Respiratory Disorders	Jute Industry (n = 315) n (%)	Textile Industry (n = 315) n (%)
Cough	86 (27.3)	26 (8.3)
Throat Pain	15 (4.8)	-
Upper Respiratory Problem	68 (21.6)	18 (5.7)
Difficulty in Breathing	16 (5.1)	6 (1.9)
Chest tightness	4 (1.3)	17 (5.4)
Chronic Bronchitis	1 (0.3)	2 (0.6)
Cough with sputum	21 (6.7)	5 (1.6)
Asthma	-	1 (0.3)
Tuberculosis	-	1 (0.3)

Difficulty in breathing, representing lower respiratory tract symptoms was prevalent among 16 (5.1%) workers in the jute industry while it was prevalent among 6 (1.9%) workers in the textile industry. As much as 4 (1.3%) and 17 (5.4%) workers in the jute and textile industry reported chest tightness as lower respiratory tract problem respectively. Only one worker was diagnosed as chronic bronchitis in the jute industry. Two workers were diagnosed as chronic bronchitis in the textile industry.

Table 6 shows the difference of means of PEFR of workers with respect to type of industry, gender and use of personal protective equipment. Mean score of PEFR of workers in jute mill was lower than the workers of textile industry. Likewise, means of PEFR of workers was higher among males than females; PPE users than non-users at work place.

Characteristics	Category	Mean PEFR	SD
Height category (cm)	<150	41 381.71	75.990
	150-155	62 427.26	80.697
	155-160	151 481.92	108.577
	160-165	183 508.03	96.837
	165-170	136 518.97	91.839
	≥ 170	57 580.70	124.440
Total	630	494.54	109.002
Weight category (kg)	<45	83 417.83	90.595
	45-55	235 484.17	99.878
	55-65	199 515.18	103.547
	65-75	83 525.06	105.869
	≥75	30 566.67	142.909
Total	630	494.54	109.002
Age category (years)	<20	55 501.82	90.351
	20-30	246 496.26	114.449
	30-40	190 485.05	103.866
	40-50	102 491.37	105.070
	50-60	32 525.31	131.615
	≥60	5 558.00	122.760
Total	630	494.54	109.002

Increase in means of PEFR of workers was seen according to the increase in height, and weight. However, the means of PEFR also increased with age except in category 20-30 years (Table 7).

Table 7. Comparison of PEFR of all the workers by height, weight and age.
REFERENCES

1. Coppée GH. International Cooperation in Occupational Health: The Role of International Organizations. International Journal of Occupational and Environmental Health. 1995;12(2):200-10. [Full Text]

2. Balmes JR, Speizer FE. Harrison’s Principles of Internal Medicine. 19th ed. New York: McGraw Hill Companies; c2005. Chapter 311, Occupational and environmental lung diseases; p. 1522-3. [Full Text]

3. World Health Organization, Department of Health Statistics and Informatics in the Information, Evidence and Research
Cluster. Global health risks, mortality and burden of disease attributable to selected major risks [Internet]. Geneva (Switzerland); 2009. [cited on 2015]. Available from: https://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf. [Full Text]

4. World Health Organization, Regional office for south-east Asia, New Delhi. Regional Strategy on Occupational Health and Safety in SEAR Countries. Geneva (Switzerland); 2005. Report No. SEA-Occ.Health-35. Available from: http://apps.searo.who.int/PDS_DOCS/B0053.pdf. [Full Text]

5. Gangopadhyay PK, Chatterjee MK, Ahmed S, Bhattacharya SK, Mukherjee AK, Majumdar PK. Chronic bronchitis in jute millworkers. Indian J Ind Med. 1995;41(4):155-61. [Full Text]

6. Ahasan MR, Ahmad SA, Khan TP. Occupational exposure and respiratory illness symptoms among textile industry workers in a developing country. Appl Occup Environ Hyg. 2000;15(3):313-20. [Full Text] DOI

7. Chattopadhyay BP, Saiyed HN, Mukherjee AK. Byssinosis among jute mill workers. Ind Health. 2003;41(3):265-72. [PubMed] [Full Text]

8. Chattopadhyay BP, Alams Z, Gangopadhyay PK, Saiyed HN. Effect of jute dust exposure on ventilatory function and the pertinence of cough and smoking to the response. J UOEH. 1995;17(2):91-104. [PubMed]

9. Joshi SK, Shrestha S, Vaidya S. Occupational safety and health studies in Nepal. Int J Occup Saf Heal. 2011;1:19-26. [PubMed] [Full Text]

10. Saoji A, Deoke A, Kulkari M, Naye J. To study the prevalence of chronic respiratory morbidities and related epidemiological factors among spinning mill workers. Global J Health Sci. 2010;2(2):111-16. [Full Text]

11. Singh SB, Bhatta N, Jha N, Pokharel PK. Respiratory morbidities of jute millworkers in Nepal. Health Renaissance. 2012;10(3):181-86. [Full Text]

12. Johns Hopkins Medicine. Health Library: Peak Flow Measurement. Baltimore (USA): Johns Hopkins Medicine [Internet] [cited on 2015]. Available from: https://www.hopkinsmedicine.org/healthlibrary/test_procedures/pulmonary/peak_flow_measurement_92. p07755. [Full Text]

13. Prasad R, Verma SK, Agrawal GG, Mathur N. Prediction model for peak expiratory flow in north Indian population. Indian J Chest Dis Allied Sci. 2006;48:103-6. [Full Text]

14. Kasper D, Fauci A, Hauser S, Longo D, Jameson JL, Loscalzo J. Harrison’s Principles of Internal Medicine. 19th ed. New York: McGraw Hill Companies; 2015. 1675-80 p. [Full Text]

15. Tiwari RR, Pathak MC, Zodpey SP, Barbar VY. Morbidity profile of cotton textile workers. Indian J Community Med. 2001;26(1):26. [Full Text]

16. Park K. Park’s text book of preventive and social medicine. 18th ed. India: M/s Banarsidas Bhanot; 2005. Chapter 15, Occupational health; p. 607-8. [Full Text]

17. Baxter PJ, Aw TC, Cockcroft A, Durrington P, Harrington JM. Hunter’s disease of occupations. 9th ed. Florida: CRC Press; 2010. [Full Text]

18. Wallace RB, Doebbeling BN, Last JM, editors. Maxcy-Rosenau-Last Public Health & Preventive Medicine. 14th ed. Stamford: Appleton & Lange; 1998. [Full Text]

19. Jindal SK, Aggarwal AN, Gupta D. Dust-induced interstitial lung disease in the tropics. Curr Opin Pulm Med. 2001;7(5):272-77. [Full Text]

20. Simpson JC, Niven RM, Pickering CA. Prevalence and predictors of work related respiratory symptoms in workers exposed to organic dusts. Occup Environ Med. 1998;55(10):668-72. [Full Text] DOI