CASE REPORT

Isolated Pancreatic Myeloid Sarcoma Associated with t(8;21)/RUNX1-RUNX1T1 Rearrangement

Kenji Tokunaga¹, Ayako Yamamura¹, Shikiko Ueno¹, Yoshitaka Kikukawa¹, Shunichiro Yamaguchi², Michihiro Hitada², Naofumi Matsuno¹, Tatsuya Kawaguchi¹, Masao Matsuoka¹ and Yutaka Okuno¹

Abstract:
No valid treatment for isolated myeloid sarcoma (IMS) has yet been established, and no thorough genetic examinations have been performed because of its low incidence and unique manner of development. We herein report a 34-year-old man with pancreatic IMS with t(8;21)/RUNX1-RUNX1T1 rearrangement. He was treated with high-dose cytarabine followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT). This is the first report of pancreatic IMS with t(8;21). Positron emission tomography/computed tomography and genetic study are useful for the diagnosis, and allo-HSCT achieved complete remission in this patient.

Key words: isolated myeloid sarcoma, t(8;21), pancreas

(Intern Med Advance Publication) (DOI: 10.2169/internalmedicine.8912-17)

Introduction

Myeloid sarcoma (MS) is a characteristic disease entity in myeloid neoplasms. In most MS cases, leukemic blasts in the peripheral blood and bone marrow (BM) are found at the diagnosis (1). MS is recognized in approximately 5% of acute myeloid leukemia (AML) cases (2). However, AML cells are not detected in the peripheral blood or BM of isolated MS (IMS) cases. Given that IMS is found in 25% of MS cases (1), IMS is assumed to be present in 1% of AML cases.

MS, including IMS, consists of immature myeloid cells and may develop in lesions throughout the body. The skin, lymph node, testis and digestive tract are common sites of MS. IMS, which is not concomitant with leukemic blasts in the peripheral blood or BM, often lacks specific symptoms and is therefore difficult to diagnose properly. In many cases of IMS, it is difficult to access and obtain sufficient specimens for a diagnosis because of the anatomical sites of the tumors. Occasionally, a needle biopsy is clinically useful. However, needle biopsy samples are not adequate for immunohistochemistry and genetic analyses.

The low incidence, varied and non-specific clinical symptoms, difficulty in obtaining diagnostic specimens and variety of histological appearance of IMS make its diagnosis and treatment challenging (2, 3). No valid treatment has been established, and how to treat the disease is a matter of concern in clinical hematology.

Case Report

A 34-year-old man complained of a 3-month history of upper abdominal pain. Abdominal echography and computed tomography (CT) images revealed a tumor in the pancreas. Thereafter, he was referred to our hospital (Kumamoto University Hospital, Kumamoto, Japan). The peripheral blood cell counts were all within normal ranges: white blood cell count 4.4×10⁹/L, hemoglobin 133 g/L and platelets 2.37×10¹¹/L with no evidence of leukemic blasts in the peripheral blood. Serum lactate dehydrogenase and C-reactive protein levels were elevated at 218 U/L (upper limit of normal, 213) and 10.7 mg/L (upper limit of normal, 0.3), respectively, although levels of other serum liver enzymes, amylase and

¹Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Japan and ²Department of Hematology, National Hospital Organization Kumamoto Medical Center, National Hospital Organization Kumamoto University, Japan

Received: January 30, 2017; Accepted: June 14, 2017; Advance Publication by J-STAGE: November 20, 2017

Correspondence to Dr. Kenji Tokunaga, cnrchhoe@kuh.kumamoto-u.ac.jp
creatinine were not markedly increased. Contrast-enhanced CT showed a 10×6-cm ischemic bulky tumor in the pancreas body and tail with a thickened greater omentum (Fig. 1A).

A tumor biopsy was performed with laparoscopy, and a few milliliters of turbid ascites was obtained (Fig. 1B and C). Cytologically, the tumor cells were immature leukemic blast-like cells with blue-gray cytoplasm and an indented nucleus with fine chromatin without adenepithelial connections (Fig. 2, May-Geimsa stain). A histopathological study revealed that the tumor cells were negative for lymphoid and epithelial markers, CD3, CD7, CD20, terminal deoxynucleotidyl transferase (TdT) and cytokeratin AE1/AE3. A flow cytometric analysis and immunohistochemical study revealed that the cells in ascites were positive for myeloid and monocyte antigens, CD4, CD15, CD33, CD34, CD56, CD68/Kp-1 and myeloperoxidase (MPO) (Fig. 2). Therefore, the pancreatic tumor was diagnosed as MS. Positron emission tomography (PET)/CT showed that $^{18}$F-fluorodeoxyglucose (FDG) was taken up only by the pancreatic tumor and thickened greater omentum (maximum standard uptake value [SUVmax]: 8.8). Leukemic blasts were not found in the BM by histological or cytological analyses. The patient was diagnosed with pancreatic IMS with invasion to the greater omemtum and ascites. He was treated with the AML regimen of idarubicin for three days and cytarabine for seven days.

The WT1 mRNA level in the peripheral blood increased to 1,000 copies/μg RNA at the diagnosis. The tumor cells obtained by a biopsy were not enough for a G-banding analysis. To predict the prognosis, fluorescence in situ hybridization (FISH) for RUNX1-RUNX1T1 rearrangement was additionally ordered based on the knowledge that such a rearrangement is sometimes found in MS cases. RUNX1-RUNX1T1 fusion signals were detected in 17.6% of the tumor cells by FISH using the Vysis LSI RUNX1/RUNX1T1 Dual Color Dual Fusion Probes (Abbott Molecular, Des Plaines, IL, USA). In contrast, the fusion signal was not detected in BM cells at the diagnosis. The patient was ultimately diagnosed with pancreatic IMS with pancreatic IMS with t(8;21) (q22;q22)/RUNX1-RUNX1T1 rearrangement. cKIT exon 8 and 17 mutations were not found by sequencing cDNA extracted from the tumor cells. Reverse transcription polymerase chain reaction (RT-PCR) revealed that RUNX1-RUNX1T1 fusion mRNA was detected in the tumor cells and the BM mononuclear cells (Fig. 3). These data suggest the presence of a small number of leukemic cells or non-leukemic cells with the RUNX1-RUNX1T1 fusion gene in the BM.

The idarubicin and cytarabine regimen was followed by three cycles of high-dose cytarabine regimens. The WT1 mRNA level was reduced to 93 copies/μg RNA. In addition, PET/CT revealed no $^{18}$F-FDG-positive lesion in the pancreas, and RT-PCR showed no RUNX1-RUNX1T1-positive cells in the BM. Therefore, we concluded that our patient had achieved complete remission (CR). He was treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT) from an HLA-matched unrelated donor with busulfan and cyclophosphamide as the conditioning regimen using cyclosporine and short-course methotrexate as graft-versus-host disease prophylaxis. He has been in CR for 1.5 years since
Figure 2. Cytology and histology of tumor cells. A biopsy of the pancreatic tumor revealed myeloid sarcoma. May-Giemsa staining revealed that the tumor cells with blue-gray cytoplasm were leukemic blast-like cells. An immunohistochemical analysis showed that the tumor cells were negative for lymphoid and epithelial markers, CD3, CD7, CD20, TdT or cytokeratin AE1/AE3, and positive for myeloid and monocyte antigens, CD33, CD34, CD68/Kp-1 and MPO. HE: Hematoxylin and Eosin staining, MPO: myeloperoxidase, TdT: terminal deoxynucleotidyl transferase. Magnification: all photomicrographs ×400.

Figure 3. A genetic analysis with RT-PCR. RUNX1-RUNXIT1 fusion mRNA was detected by reverse transcription polymerase chain reaction in tumor cells and BM cells at the diagnosis. The Kasumi-1 acute myeloid leukemia cell line was utilized as a positive control representing cells with the RUNX1-RUNXIT1 gene. The K562 and Nalm6 cell lines were negative controls. The fusion mRNA-specific PCR product length was 395 base pairs (pointed by the white arrow). Larger sized bands are non-specific. BM: bone marrow mononuclear cell, K1: Kasumi1, K56: K562, M: marker, N6: Nalm6, T: tumor cell

Discussion

A number of different cytogenetic abnormalities in MS have been reported, but which ones are specific to MS is not known (1, 4). Translocation (8;21) is a common cytogenetic abnormalities. Avni et al. reported that the rate of t(8;21) in MS patients ranged from 3.3% to 43% (5). MS with t(8;21) tends to develop orbitally or peri-orbitally (6). Only 13 cases of pancreatic MS cases, including the present case, have been reported since 1987 (Table) (7-16). Our case is believed to be a rare report of genetically confirmed pancreatic IMS with t(8;21)(q22;q22)/RUNX1-RUNXIT1 rearrangement. A genetic analysis by FISH is useful for the diagnosis of MS.

In our IMS case, only RT-PCR indicated the presence of cells harboring the RUNX1-RUNXIT1 gene in BM, which is similar to a previous report showing RUNX1-RUNXIT1 fusion mRNA in BM in a case of IMS (17). IMS patients subsequently develop AML after an average of 10 months (18, 19). It is possible that there are a small number of leukemic cells in the BM at the diagnosis of IMS, leading to AML. Therefore, IMS should be treated by systemic chemotherapy. There have been no large prospective studies on a suitable therapy for IMS because of its low incidence. The efficacy of cytarabine-based regimens has been reported in small numbers of patients (20-22). In AML with t(8;21),
MS is assumed to be a poor prognostic factor; the median survival time of patients with AML with t(8;21) is 59.5 months, compared to 5.4 months for patients with AML with t(8;21) and MS (23). Among 12 patients with pancreatic MS, CR of 2 years’ duration was achieved in 2 patients treated with chemotherapy combined with surgical resection or HSCT (Cases 2 and 7 in Table). Given the poor prognosis of MS with t(8;21), the previous reports of pancreatic MS, and the existence of disseminative disease, we planned allo-HSCT for our case.

Allo-HSCT in addition to systemic chemotherapy may improve the prognosis of patients with IMS. The retrospective study by Antic et al. revealed that the 5-year overall survival (OS) of 12 IMS patients was 25%, and survival for >50 months was found in 2 of 3 patients treated with HSCT but only 1 of 9 patients without HSCT (24). Chevallier et al. reported that, in 30 patients with IMS who received allo-HSCT, the 5-year OS, leukemia-free survival rate and none-relapse mortality were 33%, 30% and 17%, respectively. In addition, the authors pointed out that having achieved CR at allo-HSCT and lacking a poor prognostic karyotype were indicators of a good prognosis (25). Lazzarotto et al. analyzed the clinical outcome of 48 MS patients, including 9 IMS patients, and similarly reported that allo-HSCT after intensive chemotherapy improved the prognosis (OS probability at 5 years for the whole population and for the 22 MS patients who received allo-HSCT: 33% and 53%, respectively). In addition, having achieved CR at allo-HSCT influenced a better prognosis (26). Allo-HSCT is assumed to improve the prognosis of patients with IMS. Allo-HSCT may be considered the primary treatment option for IMS, although the findings from these retrospective studies may include some selection bias. In addition, the evaluation of the treatment response and cytogenetic information in IMS cases are important.

MS is an extramedullary neoplastic tumor of immature myeloid cells, with various types and numbers of inflammatory cells. There are no known highly sensitive and specific antigens for the diagnosis of MS cells. It is usually difficult to obtain enough specimens for genetic examinations because of the site and size of IMS. However, genetic information is necessary to clarify the origin of IMS and plan treatment. Therefore, we performed a laparoscopic biopsy of the pancreas. Immunophenotyping with a histological analysis, flow cytometry and a genetic analysis of the biopsy samples resulted in a proper diagnosis of IMS.
PET/CT were utilized for the assessment of the treatment response (28, 29). In the present case, screening for MS, finding a biopsy site, and evaluating the treatment response. PET/CT can detect MS more sensitively than standard CT and magnetic resonance imaging (27, 28). MS can not be accurately and definitively diagnosed by imaging studies. There is no sensitive method for assessing deep CR, such as flow cytometry or RT-PCR, in IMS. PET/CT is effective for the evaluation of the residual tumor and treatment response and is useful for following the treatment response (28, 29). In the present case, \(^{18}F\)-FDG PET/CT were utilized for the assessment of the treatment response. The authors state that they have no Conflict of Interest (COI).

### Acknowledgement

KT and YO participated in the study design, molecular analysis, and writing of the manuscript. AV, SU, YK, SY, MH and NM are treating physicians and participated in the discussion of the experimental design. TK and MM contributed to the writing manuscript and discussion of the experimental design. The authors declare no potential conflicts of interest.

### References

1. Pileri SA, Ascani S, Cox MC, et al. Myeloid sarcoma: clinicopathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 21: 340-350, 2007.
2. Byrd JC, Edenfield WJ, Shields DJ, Dawson NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol 13: 1800-1816, 1995.
3. Bakst RL, Tallman MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. Blood 118: 3785-3793, 2011.
4. Alexiev BA, Wang W, Ning Y, et al. Myeloid sarcomas: a histologic, immunohistochemical, and cytogenetic study. Diagnostic pathology 2: 42, 2007.
5. Avni B, Koren-Michowitz M. Myeloid sarcoma: current approach and therapeutic options. Ther Adv Hematol 2: 309-316, 2011.
6. Bonig H, Gobel U, Nurnberger W. Bilateral exophthalms due to retro-orbital chloromas in a boy with t(8;21)-positive acute myeloblastic acute leukemia. Ped Hemat Oncol 19: 597-600, 2002.
7. King DJ, Ewen SW, Sewell HF, Dawson AA. Obstructive jaundice. An unusual presentation of granulocytic sarcoma. Cancer 60: 114-117, 1987.
8. Moreau P, Milpied N, Thomas O, et al. Primary granulocytic sarcoma of the pancreas: efficacy of early treatment with intensive chemotherapy.
chemotherapy. Rev Méd Interne (Abstract in English) 17: 677-679, 1996 (in French).
9. Marcos HB, Semelka RC, Woosley JT. Abdominal granulocytic sarcomas: demonstration by MRI. Magn Reson Imaging 15: 873-876, 1997.
10. Ravandi-Kashani F, Estey E, Cortes J, Medeiros LJ, Giles FJ. Granulocytic sarcoma of the pancreas: a report of two cases and literature review. Clin Lab Haematol 21: 219-224, 1999.
11. Servin-Abad L, Caldera H, Cardenas R, Casillas J. Granulocytic sarcoma of the pancreas. A report of one case and review of the literature. Acta Haematol 110: 188-192, 2003.
12. Breccia M, D’Andrea M, Mengarelli A, Morano G, D’Elia GM, Alimena G. Granulocytic sarcoma of the pancreas successfully treated with intensive chemotherapy and stem cell transplantation. Eur J Haematol 70: 190-192, 2003.
13. Schafer HS, Becker H, Schmitt-Graff A, Lubbert M. Granulocytic sarcoma of Core-binding Factor (CBF) acute myeloid leukemia mimicking pancreatic cancer. Leuk Res 32: 1472-1475, 2008.
14. Neiman RS, Barcos M, Berard C, et al. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer 48: 1426-1437, 1981.
15. Meis JM, Butler JJ, Osborne BM, Manning JT. Granulocytic sarcoma in nonleukemic patients. Cancer 58: 2697-2709, 1986.
16. Mantzarides M, Bonardel G, Fagot T, et al. Granulocytic sarcomas evaluated with F-18-fluorodeoxyglucose PET. Clin Nucl Med 33: 115-117, 2008.

The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).

© The Japanese Society of Internal Medicine

Intern Med Advance Publication