Determining environmental risk and source of heavy metal(loid)s in the surrounding farmland soil of a zinc smelter in water source area, Northwest China

Sukai Zhuang1,2 · Xinwei Lu1

Abstract
To explore the impact of metal smelting activities on surrounding environment in the water source area of the Mid–route of South–to–North Water Transfer Project of China, soil samples of farmland around a zinc smelter in this area were collected and the pollution, risk, and source of heavy metal(loid)s (As, Cu, Cr, Pb, Mn, Ni, V, and Zn) in soil samples were determined in this study. The heavy metal(loid)s contents were measured by X-ray fluorescence spectrometry and their pollution levels and ecological risks were assessed by geoaccumulation index, Nemerow synthetic pollution index, and potential ecological risk index. The possible sources of the heavy metals(loid)s were identified by multivariate statistical analysis methods. The results show that the mean contents of all analyzed heavy metal(loid)s in the farmland soil were above the local soil background values except Mn; the contents of As, Cu, Pb, Zn, and Ni in the downwind direction soil decreased with the distance increasing between the sampling site and the zinc smelter; the investigated soils were moderately to seriously polluted by heavy metal(loid)s and the heavy metal(loid)s presented moderately ecological risk as a whole; As, Cu, Pb, and Zn mainly originated from zinc–smelting activities; Cr, Mn, and V primarily derived from natural source; Ni mainly came from zinc–smelting activities, partly from natural source. The zinc–smelting activity influenced the heavy metal(loid)s content, particularly Zn and Pb, in the surrounding farmland soil. The local government should strengthen the cooperative monitoring of heavy metal(loid)s in farmland and agricultural products, as well as pollutant emission monitoring and control.

Keywords Heavy metal(loid)s · Soil · Risk assessment · Principal component analysis · Correlation analysis · Zinc smelter

Introduction
Under the context of global climate change, with the development of industry, the acceleration of urbanization, the increase of agricultural chemicals using, and intensification of human activities, the problems of soil deterioration and pollution have become increasingly prominent and attract more and more attention worldwide in recent decades (Zhao et al. 2020; Kumar et al. 2019; Zhang et al. 2019; Akopyan et al. 2018; Yang et al. 2018; Li et al. 2017). Among all kinds of soil pollutants, heavy metal(loid)s cause more attention due to their high toxicity and non–biodegradability (Wu et al. 2020). Heavy metal(loid)s in soil can be absorbed and enriched in plants and transferred to animals and human bodies via food chains (Liu et al. 2017; Zhang et al. 2016). When people eat grains or vegetables polluted by heavy metal(loid)s, their survival and health will be threatened (Baltas et al. 2020; Zhou et al. 2020; Bhatti et al. 2018; Li et al. 2018, 2019). High contents of heavy metal(loid)s in the body can interfere with the physiological process of the body, and injure human organs such as heart, bone, kidney, small intestine, reproductive system and nervous system (Csavina et al. 2012). Hence studying and evaluating the ecological risk of heavy metal(loid)s in farmland are important for understanding soil environmental quality, strengthening comprehensive prevention of soil pollution and safeguarding human health.

The major sources of soil heavy metal(loid)s are natural sources and anthropogenic sources (Jiang and Guo 2019).
Weathering of rocks, volcanic eruptions, splashing waves, vegetation discharge are the main natural sources (Lee et al. 2020), while mining (acid mine drainage, abandoned mine tailing), beneficiation, metal−smelting, electroplating, dyes, textiles, burning of fossil fuels, agricultural pesticides, fertilizers, sludge application and sewage irrigation are the main anthropogenic sources (Wang et al. 2019a, b; Peng et al. 2019; Ettler 2016; Lu et al. 2014a). Among various soil heavy metal(lloid) sources, nonferrous metal smelting is one of the significant sources (Kang et al. 2019; Kříbek et al. 2019; Ghayoraneh and Qishlaqi 2017; Shiel et al. 2010; Wang et al. 2010). In the metal−smelting process, large quantities of heavy metal(lloid) discharge into surrounding soil through sewage irrigation, waste residue infiltration, and atmospheric sedimentation, resulting in heavy metal(lloid) pollution around smelters in China, most of which are concentrated in the eastern and southern areas of the country (e.g. Zhao et al. 2020; Li et al. 2011, 2018), whereas, up to now, few researches on farmland soil pollution around metal smelters have been launched in the water source area of the Mid−route of South−North Water Transfer Project and the environmental impact of metal−smelting activities in the water source area remain unclear.

South−North Water Transfer Project is a national water resource allocation project for solving the water shortage in North China. The Mid−route of South−to−North Water Transfer Project in China is to divert water from Danjiangkou reservoir of Hubei province to North China to solve the problem of water shortage in Hebei, Tianjin, Beijing and other provinces and cities, and to provide water guarantee for industrial and agricultural production and residents’ life in more than a dozen large− and medium−sized cities along the Project. The water security and environmental quality of the water source area are very important for the Water Transfer Project. Therefore, it is extremely necessary to study heavy metal(lloid) pollution in farmland soil around metal smelters and the environmental impact of metal−smelting activities in the water source area.

Shangluo city (33°2'30"−34°24′40" N, 108°34′20"−111°1'25" E) is located in the upstream of Danjiang valley, the water source area of the Mid−route of South−to−North Water Transfer Project of China (Zhuang et al. 2021; Zhuang and Lu 2020). With abundant non−ferrous metal resources, such as zinc, lead, copper, molybdenum and gold, Shangluo is the important mineral resources base in Northwest China. Many metal mining and smelting industries are distributed in Shangluo, which may cause heavy metal(lloid) pollution in agricultural soil and water. Heavy metal(lloid) in agricultural soil would enter into surface water with runoff or soil erosion excepting pollute agricultural products, leading to the deterioration of water quality. Shangluo has abundant rainfall and complex topography and geomorphology, which result in serious soil erosion in that area. To understand the impact of metal−smelting activities to farmland soil in the water source area, the farmland around a zinc-smelting plant with no other large-scale anthropogenic source in its vicinity in Shangluo, Northwest China was investigated in this study. The primary purposes of this study were (1) to determine the contents of heavy metal(lloid) in the farmland soil around the zinc smelter; (2) to evaluate the contamination degrees and ecological risks of the investigated heavy metal(lloid) in the farmland soil; and (3) to identify the sources of heavy metal(lloid) in the farmland soil. The general idea and methods of this study are as follows: first, collect farmland soil samples on base of the field investigation, second determine the content of heavy metal(lloid) in the soil samples by X-ray fluorescence technology, then evaluate the pollution and risk of heavy metal(lloid) in the farmland using different evaluation indexes, and finally identify the sources of the heavy metal(lloid) by multivariate statistical analysis methods. The findings of this study can reveal the environmental impact of metal−smelting activities in the water source area and would provide scientific basis for regulators in environmental protection and management of the water source area.

Materials and methods

Study area

Shangluo is a mountainous valley city with a permanent population of 2.50 million (up the end of 2019) and about 110 km southeast of the provincial capital Xi’an. The climate of Shangluo is semi−humid monsoon mountain climate in warm temperate zone. January is the coldest month with a mean temperature of 7.8 °C while July is the hottest with a mean temperature of 13.9 °C. The annual mean precipitation is 696.8−830.1 mm. Affected by the terrain, the annual wind direction in Danjiang valley is mainly east (E), east−south−east (ESE), and west (W), and the mean wind speed is circa 2.4 m s−1. The main crops in Shangluo are wheat and corn, and the main cash crops are vegetables and walnuts.

The investigated zinc smelter, located at the hillside of the north bank of Danjing valley about 7 km southeast of Shangluo city, was built in 1987 with 50 thousand tons of zinc productivity per year. Meanwhile, precious metals such as silver (Ag) and indium (In) are recovered and produced
in the zinc-smelting process. The main raw ore of the zinc smelter is sphalerite (ZnS), associated galena (PbS) and chalcopyrite (CuFeS2). In addition, it also contains cadmium, indium, silver and other metals.

Considering the influence of topography, wind direction and villages distribution, three plots of farmland (marked A, B and C, respectively) in different directions near the smelter were selected for soil sampling (Fig. 1). Plot A is located on the hillside in the northwest direction of the zinc smelter. There are no villages near this plot and the traffic is inconvenient as only farmland paths lead to there. The altitude of the terraced farmland on the hillside is about 700–720 m and about tens of meters higher than the smelter. Plot B is located in the southwest of the smelter and next to a village. The altitude of plot B is about 647–649 m which is lower than that of the smelter. There are hardened rural cement roads around Plot B. Luxuriant trees and shrubs grow on the hillsides between plot B and the smelter. Plot C is located in a valley to the east of the smelter and a small seasonal stream flows through the valley. The altitude of plot C is about 680–690 m which is slightly lower than that of the smelter. There is barely vegetation between plot C and the smelter. All three plots are wheat and corn rotation, and grains grown on the farmland are consumed by the local residents.

The soil type of the investigated farmland is yellow–brown soil with a pH from 7.2 to 8.3. The mean value of soil organic matter, total nitrogen, total phosphorus, available nitrogen, available phosphorus and available potassium was 20.1 g kg⁻¹, 1.2 g kg⁻¹, 0.6 g kg⁻¹, 108.9 mg kg⁻¹, 17.9 mg kg⁻¹ and 113.7 mg kg⁻¹, respectively. Texture analysis indicates that soil is silty clay loam, composed of sand (26.3%), silt (56.0%), and clay (17.7%). The mean contents of major elements, i.e., Fe₂O₃, CaO, K₂O, MgO, Na₂O, SiO₂, and Al₂O₃ were 6.7%, 0.9%, 1.5%, 1.8%, 2.0%, 33.1%, and 7.8%, respectively.

Sampling and analytical methods

Soil samples were collected in July 2017. A hand-held GPS was used to record the longitude, latitude, altitude and other information of sampling location. A total of 25 topsoil (0–20 cm) samples were taken from plot A (9 samples, numbered A1–A9), plot B (8 samples, numbered B1–B8) and plot C (8 samples, numbered C1–C8) (Fig. 1). At each point, a composite soil sample was fully mixed and retained at 1 kg in accordance with the four-point method in an area of about 2 m × 2 m. All soil samples were kept in polythene bags.

In the laboratory, all soils were air-dried naturally, and then the impurities were removed. Agate mortar and pestle were used to ground the samples to pass through 75 μm nylon mesh. The processed samples were stored in polyethylene plastic bags. Preventing from the cross-contamination between different samples, all processing was performed avoiding touching with metallic object. 4 g of treated soil and about 2 g of boric acid which used as the substrate were pressed by the molding press to form a circular sheet sample to be tested (Chen et al. 2013). The contents of heavy metals were determined by inductively coupled plasma mass spectrometry (ICP-MS).
metal(loid)s (As, Cu, Cr, Pb, Mn, Ni, V, and Zn) in soil were tested using X-ray fluorescence spectrometer (XRF, Pananalytical, PW2403) according to the method in literature (Pan et al. 2017; Lu et al. 2014a, b), with method detection limits (MDL) of 0.5–1.0 mg kg\(^{-1}\) for the selected elements (Pan et al. 2017). The national standard material samples (Chinese standard soil samples GSS6 and GSS8, purchased from the Center of National Standard Reference Material of China) and parallel samples were adopted for quality guarantee and control in the experiment (Zhuang and Lu 2020). Relative error between the detected value and reference value of elements in standard sample is less than 10%, and that of the duplicate sample is less than 5%.

Assessing methods of pollution and ecological risk

The geoaccumulation index (\(I_{\text{geo}}\)) and Nemerow synthetic pollution index (NSPI) were, respectively, used to assess the single pollution level and comprehensive pollution level of heavy metal(loid)s in the farmland soil. The \(I_{\text{geo}}\) is calculated using the following formula (Zhang et al. 2019; Chakraborty et al. 2017; Duodu et al. 2016; Lu et al. 2009):

\[
I_{\text{geo}} = \log_{2} \left(\frac{C_i}{k \times B_i} \right), \tag{1}
\]

where \(C_i\) is the content of heavy metal(loid) \(i\) in the soil (mg kg\(^{-1}\)); Constant \(k\) is the change of reference value possibly caused by diagenesis, which is taken as 1.5 here; \(B_i\) is the reference value of heavy metal(loid) \(i\) in the parent rock, and here is the background value of soil elements in Shaanxi Province (CNEMC 1990). The grades of pollution were distinguished in six levels proposed by Müller (1969) (Table S1 in Supplementary Materials).

The NSPI is calculated by formula (2) (Zhang et al. 2019)

\[
\text{NSPI} = \sqrt{\frac{P_{\text{ave}}^2 + P_{\text{max}}^2}{2}}, \tag{2}
\]

where \(P_{\text{ave}}\) and \(P_{\text{max}}\), respectively, represents the mean and the maximum of single pollution index \(P_i\) of all heavy metal(loid)s in a sample. \(P_i\) is equal to the ratio of the content of heavy metal(loid) \(i\) in the farmland soil and its corresponding background value in Shaanxi soil (CNEMC 1990). The grades of \(P_i\) and NSPI, as well as the corresponding pollution levels are listed in Table S2 and Table S3 (Supplementary Materials).

Potential ecological risk index (PERI), proposed by Hakånson (1980), to evaluate the ecological hazard effect resulted from toxic pollutants in sediments, has been widely applied to assess the environmental risk of heavy metal(loid)s in soil (Zhang et al. 2019; Ke et al. 2017; Suresh et al. 2012). The \(\text{PERI}\) is calculated using the following formula (3) (Zhang et al. 2019):

\[
\text{PERI} = \sum_{i=1}^{n} E_i = \sum_{i=1}^{n} T_i \times C_i = \sum_{i=1}^{n} T_i \times \frac{C_i}{C_b}, \tag{3}
\]

where \(C_i\) represents the determined value of heavy metal(loid) \(i\) in the soil, while \(C_b\) represents the corresponding reference value (CNEMC 1990). \(T_i\) is the toxic response factor of different substance (As, Cu, Cr, Mn, Ni, Pb, V, and Zn are 10, 5, 2, 1, 6, 5, 2, and 1, respectively) (Yuan et al. 2014; Lu et al. 2014b). \(E_i\) is the potential ecological risk index of heavy metal(loid) \(i\), while \(\text{PERI}\) is the comprehensive potential ecological risk index. The evaluation criteria for \(E_i\) and \(\text{PERI}\) are listed in Table S4 (Supplementary Materials) (Yuan et al. 2014; Lu et al. 2014b).

Statistical analysis methods of data

Descriptive statistical analysis, Pearson correlation analysis, cluster analysis (CA) and principal component analysis (PCA) were conducted using the commercial statistics software package SPSS version 21.0 for Windows (IBM Company, Chicago, USA). Descriptive statistics of heavy metal(loid) contents in the farmland soil samples, including minimum (Min), maximum (Max), mean, standard deviation (SD), coefficient of variation (CV), skewness and kurtosis, were applied to analyze the content characteristics of heavy metal(loid)s in the farmland soil. Pearson correlation analysis, CA and PCA, the extensively used multivariate statistical analysis methods in pollution studies (Wang et al. 2019a, b; Zhang et al. 2019; Ke et al. 2017; Pan et al. 2017; Lu et al. 2014a), were adopted to determine the relationships among heavy metal(loid)s and to identify their possible sources combining their content characteristics and pollution levels in the farmland soils around the zinc smelter. The soil element background values of Shaanxi published in 1990 (CNEMC 1990) were used in this study to distinguish the natural source and anthropogenic source of heavy metal(loid)s in the farmland soils around the zinc smelter and to evaluate the pollution and risk of heavy metal(loid)s in the soil. At present, it is difficult or even impossible to find the farmland soil unaffected by human activities.

Results and discussion

Heavy metal(loid) contents

The determination results of the heavy metal(loid) contents from the farmland soil samples together with the background value of Shaanxi soil (CNEMC 1990) are presented in Table 1. The mean contents of As, Cu, Cr, Pb, Mn, Ni,
V, and Zn were 17.3, 39.5, 135.7, 143.3, 571.1, 35.8, 82.4, and 771.9 mg kg\(^{-1}\), respectively. Except for Mn, the mean contents of As, Cu, Cr, Pb, Ni, V, and Zn were above their corresponding background values, which were 1.6, 1.8, 2.2, 6.7, 1.2, 1.2, and 11.1 times the background values, respectively. The coefficient of variation (CV), the ratio of the standard deviation and the mean, is a statistical measure reflecting the variability of the observed value. In general, a CV ≤ 20% indicates low variability, a CV range of 21–50% indicates moderate variability, a CV range of 51–100% shows high variability and a CV > 100% is regarded as very high variability (Pan et al. 2017; Phil–Eze 2010). Table 1 shows that the contents of heavy metal(loid)s determined in the farmland soil around the zinc smelter presented different variance. The contents of Zn, Pb, and Cu presented high variability (51% < CV ≤ 100%), the content of As presented moderate variability, and the other heavy metal(loid)s showed low variability. The large CV values of Zn, Pb, Cu, and As reveal their heterogeneity in the farmland soil around the zinc smelter, demonstrating the impact of anthropogenic sources (Pan et al. 2017, 2020; Karim et al. 2014).

Kurtosis and skewness values indicate whether the concentrations of the studied heavy metal(loid)s follow a normal distribution (Pan et al. 2017; Chen et al. 2013). The kurtosis values of As, Cu, Pb, and Zn are 2.7, 3.7, 1.8, and 2.5, respectively, showing that these four elements deviated from the normal distribution. The absolute kurtosis values of Cr, Mn, Ni, and V are less than 1, indicating that their contents in the soil samples were close to the normal distribution. Skewness values of 9.9, 15.9, 5.1, and 8.8 further indicated that As, Cu, Pb, and Zn were skewed positively towards the higher concentration, while, the skewness values of Cr, Mn, Ni, and V are close to 0, showing that the content distribution of these four elements was relatively uniform.

Table 1 displays a comparison of heavy metal(loid)s content in farmland soil around the zinc smelter of Shangluo, China with some similar studies reported in the literature (Kang et al. 2021; Kříbek et al. 2019; Wang et al. 2012, 2019a, b; Ghayoraneh and Qishilaqi 2017; Li et al. 2015). It can be found that the contents of Cr, Cu, V, Zn and Pb in the farmland soil around the zinc smelter of Shangluo are higher than that around other zinc or lead–zinc smelters, except for Pb in the soil around Kabwe lead–zinc smelter, Zambia. The difference of heavy metal(loid) content in the soil around the smelters may be controlled by a variety of natural and anthropogenic factors, such as soil parent material, soil type, background value of soil elements, terrain, wind direction and speed, precipitation, composition of ore raw materials, smelting process, chimney height, gas and particle emission control technology and efficiency, etc.

Figure 2 shows that the investigated heavy metal(loid)s in the farmland soils of three plots have diverse variation features. The contents of As, Cu, Pb, and Zn in the farmland soils of three plots have remarkable difference, while the
content diversities of Cr, Mn, Ni, and V in the farmland soils of three plots are indistinct. The mean contents of As, Cu, Pb, and Zn in the farmland soils of three plots presented plot A > plot C > plot B. According to Chinese soil environmental quality—Risk control standard for soil contamination of agricultural land (GB 15618–2018) (MEE 2018), the contents of Pb in 67% soil samples of plot A and 50% soil samples of plot C, and the contents of Zn in all soil samples of plot A and plot C are larger than their corresponding risk screening values for soil contamination of agricultural land of China, implying the soil environment and agricultural products may exist pollution risk of Pb and Zn.

Figure 3 shows that the contents of As, Cu, Pb, Zn*, and Ni in the farmland soil samples from plot A present decreasing trend with the increase of the distance between the sampling site and the zinc smelter, while the contents of Cr, Mn, and V in the farmland soil have no distinct trend. The contents of As, Cu, Pb, and Zn decreased by 88%, 76%, 71%, and 83%, respectively, and Ni contents declined by 28% in the farmland soil with the distance of soil sampling site to the zinc smelter increasing from 100 to 300 m (Fig. 3). Plot A is situated in the downwind direction of the zinc smelter and its terrain is higher than the zinc smelter. The special topography hinders the further diffusion of smoke and dust with heavy metal(loid) particles and promote pollutants sinking, which may be the cause of severe soil pollution in plot A. Plot B is not in the dominant wind direction, and there are lush trees and vegetation between plot B and the smelter. Plot C is situated in the east of the smelter (downwind) and its terrain is lower than the smelter. The diffusion of pollutants discharged from the smelter in plot C is easier than in plot A. Figure 4 shows that the NSPI values of heavy metal(loid)s determined in the farmland soils from plot B are in 2–3 presenting moderate pollution, while which of heavy metal(loid)s in the farmland soils from plot A and plot C are larger than 3 indicating serious pollution. The comprehensive pollution degree of heavy metal(loid)s in the farmland soils of three plots decreases in the order of plot A > plot C > plot B.

Pollution and ecological risk of heavy metal(loid)s

The results of P_i and NSPI are shown in Table 2 and Fig. 4. The determined heavy metal(loid)s presented pollution at different extent in three plots, except for As in plot B and Mn in plot C. The mean P_i values of As, Cu, Pb, and Zn in the farmland soil decrease in the order of plot A > plot C > plot B. Especially Pb and Zn, their P_i values are 10.31 and 15.92 in plot A, and 6.80 and 14.64 in plot C, respectively, presenting severe pollution. The pollution diversity of heavy metal(loid)s in three plots may be related with their position and terrain. Plot A is located in downwind of the zinc smelter and its terrain is higher than the zinc smelter. The special topography hinders the further diffusion of smoke and dust with heavy metal(loid) particles and promote pollutants sinking, which may be the cause of severe soil pollution in plot A. Plot B is not in the dominant wind direction, and there are lush trees and vegetation between plot B and the smelter. Plot C is situated in the east of the smelter (downwind) and its terrain is lower than the smelter. The diffusion of pollutants discharged from the smelter in plot C is easier than in plot A. Figure 4 shows that the NSPI values of heavy metal(loid)s determined in the farmland soils from plot B are in 2–3 presenting moderate pollution, while which of heavy metal(loid)s in the farmland soils from plot A and plot C are larger than 3 indicating serious pollution. The comprehensive pollution degree of heavy metal(loid)s in the farmland soils of three plots decreases in the order of plot A > plot C > plot B.
Fig. 3 Relationship between the content of heavy metal(loid)s and the distance from the sampling site to the smelter (Plot A)
The computed results of I_{geo} for elements in the farmland soil around zinc smelter of Shangluo are presented in Table 3 and Table S5 (Supplementary Materials). In plot A, the I_{geo} of Mn and V are all below zero, indicating no pollution of these two metals in samples from plot A. Most of the I_{geo} values of Ni are under zero, which indicated no pollution, except two I_{geo} values 0.03 (A4) and 0.09 (A7) (Table S5 in Supplementary Materials) slightly greater than zero. The I_{geo} values of As range from -0.44 (A3) to 1.66 (A7) which corresponded to level 0 of unpolluted to level 2 of moderately polluted. The mean I_{geo} value of 0.31 indicated As is slightly polluted. As for Cr, the I_{geo} value of which range from 0.30 to 0.68 with the mean value of 0.55, indicated slight Cr pollution in plot A. The mean I_{geo} value of Cu is 0.51, which corresponded to level 1 of slightly polluted. Sample from A7 is an exception, the I_{geo} value of which is 2.03 corresponded to level 3 of moderately severely polluted. Pb and Zn showed more accumulation in plot A as compared to other seven elements. The mean I_{geo} value of Pb is 2.66 which corresponded to level 3 of moderately severely polluted. The max I_{geo} value of 3.95 (A7) corresponded to level 4 of severely polluted. The mean I_{geo} value of Zn is 3.12 which corresponded to level 4 of severely polluted. Sample from A7 was extremely polluted with the I_{geo} value of 5.14.

In plot B, the I_{geo} of As, Mn, Ni, and V are all below zero, which indicated no samples are polluted by these four elements in plot B. The mean I_{geo} value of Cu is -0.11, corresponding to level 0 of unpolluted, but the I_{geo} value 0.10 and 0.05 from B5 and B8 are two exceptions. As for Cr, Pb, and Zn, the I_{geo} of them are all between 0 and 1, which

Table 2: The p_i of heavy metal(loid)s in the soil samples

Element	Plot A	Plot B	Plot C			
	Mean	Range	Mean	Range	Mean	Range
As	2.02	1.10–4.62	0.93	0.87–0.99	1.67	1.14–2.25
Cr	2.21	1.84–2.40	2.29	2.18–2.40	2.01	1.89–2.06
Cu	2.36	1.65–6.11	1.40	1.26–1.60	1.71	0.95–2.86
Mn	1.02	0.75–1.12	1.11	1.09–1.13	0.94	0.89–0.99
Ni	1.39	1.14–1.59	1.20	1.10–1.26	1.13	1.03–1.23
Pb	10.31	6.17–23.15	2.52	2.34–2.86	6.80	3.10–10.91
V	1.24	0.95–1.36	1.35	1.30–1.41	1.11	1.09–1.15
Zn	15.92	7.82–53.01	2.22	1.77–2.68	14.64	5.02–25.16

Table 3: The I_{geo} of heavy metal(loid) in farmland soil around Shangluo zinc smelter

Element	As	Cr	Cu	Mn	Ni	Pb	V	Zn
Plot A								
Max	1.62	0.68	2.03	−0.42	0.09	3.95	−0.14	5.14
Min	−0.44	0.30	0.14	−1.00	−0.39	2.04	−0.66	2.38
Mean	0.31	0.55	0.51	−0.56	−0.12	2.66	−0.28	3.12
Plot B								
Max	−0.60	0.68	0.10	−0.40	−0.25	0.93	−0.09	0.84
Min	−0.78	0.54	−0.25	−0.47	−0.45	0.64	−0.23	0.24
Mean	−0.68	0.61	−0.11	−0.43	−0.32	0.75	−0.16	0.55
Plot C								
Max	0.58	0.46	0.93	−0.60	−0.28	2.86	−0.38	4.07
Min	−0.40	0.33	−0.65	−0.76	−0.54	1.05	−0.46	1.74
Mean	0.13	0.42	0.12	−0.67	−0.42	2.06	−0.43	3.15
showed samples from plot B were slightly polluted by these elements.

In plot C, the I_{geo} values of Mn, Ni, and V are all below zero, which indicated no samples are polluted by these elements in plot C. For As, Cr, and Cu, their mean I_{geo} values are between 0 and 1, indicating that these three elements corresponded to level 1 of slightly polluted. Samples from C2 and C3 were unpolluted with As. The I_{geo} value of Cr has little change, and the maximum and minimum values are 0.46 and 0.33, respectively. As for Cu, the I_{geo} value of samples from C1, C2, C3, and C4 are < 0, corresponding to level 0 of unpolluted. The I_{geo} value of samples from C5, C6, C7, and C8 are between 0 and 1 (Table S5 in Supplementary Materials), corresponding to level 1 of slightly polluted. Similar to plot A, Pb and Zn are also accumulated obviously in plot C. The I_{geo} value of Pb ranged from 1.05 (C3) to 2.68 (C8) which corresponded to level 2 of moderately polluted and level 3 of moderately to severely polluted. The mean I_{geo} value 2.06 of Pb indicated moderately polluted in plot C. The mean I_{geo} value of Zn is 3.15 which corresponded to level 4 of severely polluted. The same as Pb, the minimum I_{geo} value of Zn 1.74 appears at C3 and maximum I_{geo} value 4.07 appears at C8.

The E_r, i values of heavy metal(loid)s in the farmland soils are shown in Fig. 5. It can been found from Fig. 5 that the E_r, i values of Cr, Mn, Ni, and V in soil samples and Cu in most soil samples (except soil sample A7 in plot A) are < 15, indicating low ecological risk level. As and Zn in some soil samples of plot A and plot C have moderate and considerable ecological risk. Pb in the farmland soils from three plots possesses different ecological risk levels, i.e. in plot A presenting considerable to high ecological risk, in plot B presenting low ecological risk, while in plot C presenting moderate to considerable ecological risk. The $PERI$ values of heavy metal(loid)s determined in the farmland soil around the zinc smelter range from 43.46 to 261.49 with a mean of 83.49 (Table S6 in Supplementary Materials), showing the investigated soils have wide ecological risk levels, i.e. low to high ecological risk. The comprehensive ecological risk levels of heavy metal(loid)s in the farmland soils of three plots are low in plot B, moderate in plot C, and considerable in plot A. Pb is the main contributor of the comprehensive ecological risk; then there are As, Cu, and Zn, which, respectively, contribute 37.2%, 19.3%, 11.7%, and 11.3% to $PERI$.

Multivariate statistical results and source identification

Pearson's correlation analysis results

Studying the correlation between elements can predict whether the sources of heavy metal(loid)s are same owing to that different heavy metal(loid)s in soil have different migration and enrichment trends. If there is a correlation between them, the source may be similar; otherwise, the source may be different (Dong et al. 2019). The Pearson correlation analysis results of heavy metal(loid)s in the farmland soil around the zinc smelter are displayed in Table 4. Table 4 displays that there are very significantly positive correlations ($P < 0.01$) among As, Cu, Pb, and Zn, and the correlation between each other is highly correlated.

![Fig. 5](image-url)
Fig. 5 The E_r, i values of heavy metal(loid)s in the farmland soils
Similarly, positive correlations ($P < 0.01$) were found among Cr, Mn, and V. Different from the other seven elements, Ni appeared in moderately positive correlation with As, Cu, and Pb ($P < 0.01$). At the significant level of 0.05, Ni has a positive correlation with Cr, Mn, V, and Zn, but the correlation degree is low.

To some extent, the correlation between heavy metal(loid)s reflects the similarity of pollution degree or the similar sources of heavy metal(loid)s. The correlation coefficient analysis also suggested that As, Pb, Cu, and Zn may have the same source or similar geochemical properties. Pb–Zn minerals are often accompanied by heavy metal(loid) elements such as Cu, As, etc., which are the main characteristic pollutants of nonferrous smelting industry (Félix et al. 2015; Tembo et al. 2006). The correlation coefficient analysis also indicated that Cr, Mn, and V may have the same source. In this study, Pearson correlation analysis among studied heavy metal(loid)s (As, Cr, Cu, Mn, Ni, Pb, V, and Zn) and Al$_2$O$_3$ and Fe$_2$O$_3$, two major and conservative elements in the environment (Pan et al. 2017; Fan et al. 2021), was also conducted and the results (Table 4) further confirm the preceding explanation.

PCA results

Table 5 shows the PCA results of heavy metal(loid)s determined in the farmland soil around the zinc smelter. It can be seen from Table 5, two factors with the eigenvalues > 1 were extracted in PCA, which explains 92.2% of the total variance. The contribution rate of the first factor is 52.9%, and the factor loads of As, Cu, Ni, Pb, and Zn are 0.982, 0.961, 0.679, 0.972, and 0.960, respectively. The second factor explains 39.3% of the total variance and the factor loads of Cr, Mn, V, and Ni are 0.956, 0.950, 0.974, and 0.575, respectively.

CA results

The CA results are shown in Fig. 6. As, Cu, Pb, Zn, and Ni are of the first category, which can be further divided into two sub-clusters, i.e., As–Zn–Pb–Cu and Ni. Cr, V, and Mn are of the second category. The results of cluster analysis are consistent with that of PCA.

Heavy metal(loid) source identification

Eight elements were divided into two groups based on the multivariate statistical analysis results together with their content characteristics in the soil. The first group of elements are As, Cu, Pb, Zn, and Ni. In Pearson’s correlation

Table 4

Pearson’s correlation matrix between heavy metal(loid)s, Al$_2$O$_3$ and Fe$_2$O$_3$ in soil around the smelter

	As	Cr	Cu	Mn	Ni	Pb	V	Zn	Al$_2$O$_3$	Fe$_2$O$_3$
As	1	−0.076	0.924	−0.039	0.606	0.947	−0.166	0.973	0.151	0.084
Cr	0.716	1	0.019	0.860**	0.480*	−0.070	0.930**	−0.230	0.548**	0.909**
Cu	0.000	0.927	1	0.029	0.621**	0.905**	−0.046	0.925**	0.168	0.177
Mn	0.853	0.000	0.891	1	0.476*	−0.125	0.919**	−0.180	0.636**	0.868**
Ni	0.001	0.015	0.001	0.016	1	0.627**	0.438*	0.463*	0.385*	0.436*
Pb	0.000	0.741	0.000	0.552	0.001	1	−0.188	0.930**	0.186	0.105
V	0.428	0.000	0.828	0.000	0.028	0.368	1	−0.312	0.689**	0.921**
Zn	0.000	0.269	0.000	0.389	0.020	0.000	0.130	1	0.019	−0.082
Al$_2$O$_3$	0.295	0.000	0.244	0.000	0.026	0.144	0.000	0.098	1	0.653**
Fe$_2$O$_3$	0.561	0.000	0.220	0.000	0.018	0.467	0.000	0.573	0.000	1

Table 5

Rotated component matrix for data of soil around the zinc smelter

Elements	Component	Communality	
As	0.982	−0.046	0.967
Cr	−0.033	0.956	0.916
Cu	0.961	0.050	0.925
Mn	−0.023	0.950	0.902
Ni	0.679	0.575	0.791
Pb	0.972	−0.071	0.950
V	−0.122	0.974	0.963
Zn	0.960	−0.208	0.965
Eigenvalue	4.232	3.148	52.9% 39.3%
% of total explained variance	52.9%	39.3%	
% of cumulative explained variance	52.9%	92.2%	

Factor loads > 0.5 are shown in bold.

Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in three iterations.
analysis and PCA, these five elements have strong positive correlation and are clustered together in cluster analysis. There was basically no correlation between these five heavy metal(loid)s and Al$_2$O$_3$ and Fe$_2$O$_3$ except Ni, implying anthropogenic sources of these elements. Combining the content characteristics and pollution levels of As, Cu, Pb, Zn, and Ni in the soil, as well as their spatial variation trend in the downwind farmland of the zinc smelter, we think these elements in the farmland soil around the zinc smelter mainly came from the emission of zinc smelter. It should be noted that there is a certain difference between Ni and other four metals. The results of correlation analysis and PCA indicate that Ni in the farmland soil has other source yet.

The second group is composed of Cr, Mn, and V. Compared with the first group of elements, the coefficients of variation of these three metals are comparatively small, indicating that their content variations in the investigated soil samples are minor. Combining the results of multivariate statistical analysis and pollution assessment, as well as the field investigation, we consider that these metals in the farmland soil mainly originated from natural source. Al$_2$O$_3$ and Fe$_2$O$_3$, two main conservative elements in the soil, are the indicators of natural source, i.e. related to the composition of the local soil parent material (Pan et al. 2017). In this study, Cr, Mn, and V are in significant positive correlation with Al$_2$O$_3$ and Fe$_2$O$_3$ (Table 4), which further confirms the natural source of Cr, Mn, and V in the farmland soil. Ni is positively correlated with Cr, Mn, V, Al$_2$O$_3$, and Fe$_2$O$_3$ at the significant level of 0.05 (Table 4) and is moderately correlated with the second factor of PCA (with the factor load of 0.575) (Table 5), showing that Ni in the farmland soil partly originated from natural source.

Conclusions

This study investigated the pollution, risk and source of heavy metal(loid)s in farmland soil around a zinc smelter in Shangluo City, the water source area of the Mid-route of South-to-North Water Transfer Project of China. The main findings are as follows: The farmland soils had elevated heavy metal(loid)s except Mn and the content of Zn and Pb in the downwind soils of the smelter exceeded the risk screening values for soil contamination of agricultural land of China, indicating that zinc-smelting activities have affected the environmental quality of the surrounding soils and there are certain environmental risks for heavy metal(loid)s in the soils, which are mainly caused by the atmospheric deposition of flue gas and particles discharged by the smelter; the investigated farmland was moderately to seriously polluted by Zn, moderately polluted by Pb, slightly polluted by Cr and Cu, and unpolluted by other heavy metal(loid)s; The comprehensive pollution of heavy metal(loid)s in the farmland were extreme as a whole; The comprehensive ecological risk of heavy metal(loid)s in the farmland soils was moderate as a whole, which was mainly contributed by Pb, then As, Cu, and Zn; As, Cu, Pb, and Zn in the soil mainly originated from the emission of the zinc smelter; Cr, Mn, and V primarily came from natural source, while Ni in the farmland soil mainly derived the emission of the zinc smelter and partly came from natural source. According to this research, the local government should pay attention to the elevated As, Cu, Pb, Zn, and Ni content, particularly Zn and Pb, in the farmland soil caused by zinc-smelting activities and strengthen the cooperative monitoring of heavy metal(loid)s in farmland and agricultural products, as well as pollutant emission monitoring and control, especially the control of air pollutant emission from the smelter. In addition to, the environmental impact and risk of other mining and smelting activities in the water source area should be investigated in the future. Of course, the speciation, bioavailability, leaching and precipitation capacity of heavy metal(loid)s in farmland soils should be further studied in the future to accurately evaluate the migration capacity of heavy metal(loid)s in soils and their impact on the quality of agricultural products and water environment.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12665-022-10203-4.

Acknowledgements The study was supported by the National Natural Science Foundation of China (No. 41271510), the Research and Development Key Project of Shaanxi Province (2020SF–433), Shaanxi.
Province Natural Science Foundation Research Project (Youth Talent Project) (2014JM2–4040) and Science and Technology Research Project of Shangluo University (SK2014–01–24).

Author contribution SZ: field sampling, methodology, statistical analysis, writing—original draft. XL: funding acquisition, conceptualization, writing—review and editing.

Declarations

Conflict of interest The authors declare no competing interest with respect to the publication and authorship of this paper.

References

Akopyan K, Petrosyan V, Grigoryan R, Melkomian DM (2018) Assessment of residential soil contamination with arsenic and lead in mining and smelting towns of Northern Armenia. J Geochem Explor 184:97–109

Baltas H, Sirin M, Gökbayrak E, Ozcelik AE (2020) A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 241:125015

Bhatti SS, Kumar V, Sambyal V, Singh J, Nagpal AK (2018) Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: a field experiment. CATENA 60:185–193

Chakraborty S, Man T, Paulette L, Deb S, Li B, Weindorf DC, Frazier M (2017) Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma 306:108–119

Chen X, Lu X, Li LY, Yang G (2013) Spatial distribution and contamination assessment of heavy metals in urban topsoil from inside the Xi’an second ringroad, NW China. Environ Earth Sci 68:1979–1988

CNEMC (China National Environmental Monitoring Centre) (1990) The background values of elements in Chinese soils. Environmental Science Press of China, Beijing (in Chinese)

Csvaina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73

Dong B, Zhang R, Gan Y, Cai L, Freidenreich A, Wang K, Guo T, Wang H (2019) Multiple methods for the identification of heavy metals in cropland soils from a resource–based region. Sci Total Environ 651:3127–3138

Duodu GO, Goometilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091

Ettler V (2016) Soil contamination near non–ferrous metal smelters: a review. Appl Geochem 64:56–74

Fan X, Lu X, Yu B, Zuo L, Fan P, Yang Y, Zhuang S, Liu H, Qin Q (2021) Risk and sources of heavy metals and metalloids in dust from university campuses: a case study of, Xi’an China. Environ Res 202:111703

Félix OI, Csvaina J, Field J, Rine KP, Sáez AE, Betterton EA (2015) Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations. Chemosphere 122:219–226

Ghayoraneh M, Qishlaqi A (2017) Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran. J Geochem Explor 180:1–14

Hakansson L (1980) An ecological risk index for aquatic pollution control—a sedimentological approach. Water Res 14:975–1001

Jiang Y, Guo X (2019) Multivariate and geostatistical analysis of heavy metal pollution from different sources among farmlands in the Poyang Lake region, China. J Soils Sediments 19:2472–2484

Kang M-J, Kwon YK, Yu S, Lee P-K, Park H-S, Song N (2019) Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in South Korea. J Hazard Mater 364:475–487

Kang M-J, Yu S, Jeon SW, Jung MC, Kwon YK, Lee P-K, Chae G (2021) Mobility of metal(loids) in roof dusts and agricultural soils surrounding a Zn smelter: focused on the impacts of smelter–derived fugitive dusts. Sci Total Environ 757:143884

Karim Z, Qureshi BA, Mumtaz M, Qureshi S (2014) Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi: a multivariate spatio–temporal analysis. Ecol Indic 42:20–31

Ke X, Gui S, Huang H, Zhang H, Wang C, Guo W (2017) Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 175:473–481

Kříbek B, Nyambe I, Majer V, Kněs I, Mihaljević M, Ettler V, Vaněk A, Penížek V, Sracek O (2019) Soil contamination near the Kabwe Pb–Zn smelter in Zambia: environmental impacts and remediation measures proposal. J Geochem Explor 197:159–173

Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state–of–the–art. Chemosphere 216:449–462

Lee P-K, Kang M-J, Jeong Y-J, Kwon YK, Yu S (2020) Lead iso- topes combined with geochemical and mineralogical analyses for source identification of arsenic in agricultural soils surrounding a zinc smelter. J Hazard Mater 382:121044

Li Z, Feng X, Li G, Bi X, Sun G, Zhu J, Qin H, Wang J (2011) Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China. Appl Geochem 26:160–166

Li Y, Shen F, Li X, Zhang Z, Wang J (2015) Theoretical research and immobilization practice of heavy metal polluted soil in a closed lead–zinc smelter and surrounding farmland in Tongguan, Shaanxi. J Agro-Environ Sci 34(7):1269–1276 (in Chinese)

Li Y, Wang S, Daniel P, Xu S, Nan Z, Zhang F, Zhang Q (2017) Accumulation and interaction of fluoride and cadmium in the soil–wheat plant system from the wastewater irrigated soil of an oasis region in Northwest China. Sci Total Environ 595:344–351

Li X, Li Z, Lin C, Bi X, Liu L, Feng X, Zhang H, Chen J, Wu T (2018) Health risks of heavy metal exposure through vegetable consumption near a large–scale Pb/Zn smelter in central China. Ecotoxicol Environ Saf 161:99–110

Li Y, Wang S, Nan Z, Zhang F, Sun H, Zhang Q, Huang W, Bao L (2019) Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil–crop systems in Northwest China. Sci Total Environ 663:307–314

Liu B, Ai S, Zhang W, Huang D, Zhang Y (2017) Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil–grain–human systems near a mining and smelting area in NW China. Sci Total Environ 595:822–829

Lu X, Li LY, Wang L, Lei K, Huang J, Zhai Y (2009) Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ 43:2489–2496

Lu X, Zhang X, Li LY, Chen H (2014a) Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res 128:27–34
Lu X, Wu X, Wang Y, Chen H, Gao P, Fu Y (2014b) Risk assessment of toxic metals in street dust from a medium–sized industrial city of China. Ecotoxicol Environ Saf 106:154–163

MEE (Ministry of Ecology and Environment) (2018) Soil environmental quality–Risk control standard for soil contamination of agricultural land (GB 15618–2018). Environmental Science Press of China. Beijing (in Chinese)

Müller G (1969) Index of geo accumulation in sediments of the Rhine River. Geo J 2(3):108–118

Pan H, Lu X, Lei K (2017) A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Sci Total Environ 609:1361–1369

Pan H, Lu X, Lei K (2020) Contamination identification of trace metals in roadway dust of a typical mountains county in the Three Gorges Reservoir Region, China, and its relationships with socio–economic factors. Sustainability 12:5624

Peng H, Chen Y, Weng L, Ma J, Ma Y, Li Y, Islam MS (2019) Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review. Sci Total Environ 660:776–786

Phil-Eze PO (2010) Variability of soil properties related to vegetation cover in a tropical rainforest landscape. J Geogr Reg Plan 3:177–184

Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, Sun X, Awasthi MK, Wang Q, Zhang Z (2017) Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol Environ Saf 139:254–262

Shiel AE, Weis D, Orians KJ (2010) Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Sci Total Environ 408:2357–2368

Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf 84:117–124

Tembo BD, Sichilongo K, Cernak J (2006) Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63:497–501

Wang X, He M, Xie J, Xi J, Lu X (2010) Heavy metal pollution of the world largest antimony mine–affected agricultural soils in Hunan province (China). J Soils Sediments 10:827–837

Wang L, Lu X, Jing Q, Ren C, Chen C, Li X, Luo D (2012) Heavy metals pollution in soil around the lead–zinc smelting plant in Changqing town of Baojing City, China. J Agro-Environ Sci 32(2):325–330 (in Chinese)

Wang J, Su J, Li Z, Liu B, Cheng G, Jiang Y, Li Y, Zhou S, Yuan W (2019a) Source apportionment of heavy metal and their health risks in soil–dustfall–plant system nearby a typical non–ferrous metal mining area of Tongling, Eastern China. Environ Pollut 254:113089

Wang Y-Y, Li F-F, Wang X-Y, Yang Z-H, Han K, Ruan X-L (2019b) Spatial distribution and risk assessment of heavy metal contamination in surface farmland soil around a lead and zinc smelter. Environ Sci 40(1):438–444 (in Chinese)

Wen H, Zhang Y, Cloquet C, Zhu C, Fan H, Luo C (2015) Tracing sources of pollution in soils from the Jinding Pb–Zn mining district in China using cadmium and lead isotopes. Appl Geochem 52:147–154

Wu J, Margenot AJ, Wei X, Fan M, Zhang H, Best JL, Wu P, Chen F, Gao C (2020) Source apportionment of soil heavy metals in fluvial islands, Anhui section of the lower Yangtze River: comparison of APCS–MLR and PMF. J Soils Sediments 20:3380–3393

Yang Y, Chang AC, Wang ME, Chen WP, Peng C (2018) Assessing cadmium exposure risks of vegetables with plant uptake factor and soil property. Environ Pollut 238:263–269

Yuan G-L, Sun T-H, Han P, Li J, Lang X-X (2014) Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: typical urban renewal area in Beijing, China. J Geochem Explor 136:40–47

Zhang J, Wang Y, Liu J, Liu Q, Zhou Q (2016) Multivariate and geo-statistical analysis of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. J Soils Sediments 16:634–644

Zhang Z, Zhang N, Li H, Lu Y, Wang Q, Yang Z (2019) Risk assessment, spatial distribution, and source identification of heavy metal(loid)s in paddy soils along the Zijiang River basin, in Hunan Province, China. J Soils Sediments 19:4042–4051

Zhao X, He B, Wu H, Zheng G, Ma X, Liang J, Li P, Fan Q (2020) A comprehensive investigation of hazardous elements contamination in mining and smelting–impacted soils and sediments. Ecotoxicol Environ Safe 192:110320

Zhou J, Du B, Liu H, Cui H, Zhang W, Fan X, Cui J, Zhou J (2020) The bioavailability and contribution of the newly deposited heavy metals(copper and lead) from atmosphere to rice (Oryza sativa L.). J Hazard Mater 384:121285

Zhuang S, Lu X (2020) Environmental risk evaluation and source identification of heavy metal(loid)s in agricultural soil of Shangdan valley, Northwest China. Sustainability 12:5806

Zhuang S, Lu X, Yu B, Fan X, Yang Y (2021) Ascertaining the pollution, ecological risk and source of metal(loid)s in the upstream sediment of Danjing River, China. Ecol Indic 125:107502

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.