Fuzzy inventory models with partial backordering for deteriorating items under stochastic inflationary conditions: Comparative comparison of the modeling methods

Shabnam Fathalizadeh¹, Abolfazl Mirzazadeh¹* and Ali Ghodratnama¹

Abstract: This article presents two deteriorating inventory models with constant demand and deterioration rates to determine optimal ordering policy under inflation and partial backlogging with respect to two modeling methods, the average annual cost method and the discounted cost method. Minimizing the total inventory costs over an infinite time horizon is the objective function of the models. Here, the unit purchasing cost is in the uncertain environment and assumed as a fuzzy number. The fuzzy models are solved by the fuzzy non-linear programming method with a numerical example in the GAMS software. The two mentioned modeling methods have been compared to each other in this study. The obtained results of this comparison will be useful for the inventory managers to make a better decision.

ABOUT THE AUTHORS
Shabnam Fathalizadeh received her BSc degree in IT engineering at one of the non-governmental universities in Tehran, Iran. She continued her education in industrial engineering and received her MSc degree from Kharazmi University in Tehran, Iran. Her interest research areas are production/Inventory control, supply chain, and multi-objective decision making problems in uncertain environment.(Email: Shabnam.fath72@gmail.com).

Abolfazl Mirzazadeh is a Professor of Industrial Engineering at Kharazmi University, Tehran, Iran. His research areas are Uncertain Decision Making, Production/Inventory Control, Supply and Operations Management, and Quality Management Tools. He has more than 80 published papers in high quality journals and more than 55 international conference papers. He is now Editor-in-Chief of IJSOM (www.ijsom.com), and also, Scientific Committee manager of the International Conference.
He earned several awards as the best researcher, best faculty member in the international collaborations and the best lecturer. Also, He is member of several Journal’s Editorial Board, Conferences Scientific Committee, and International Associations such as IFORS. (Email: a.mirzazadeh@khu.ac.ir).

PUBLIC INTEREST STATEMENT
One of the most popular topics in industrial engineering is related to inventory control models. Therefore, these models considerably are studied by many researchers. The average annual cost and the discounted cost methods are two well-known modeling methods of the inventory models. Due to the mentioned modeling methods, two inflationary inventory models with partial backordering for deteriorating products are developed in this article. Determining exact value for some parameters of the inventory problems is impossible Hence, here, unit purchasing cost is considered as a fuzzy number. In order to solve the fuzzy models, the fuzzy non-linear programming method is used. The original goal of the study is comparison the derived inventory models of above two modeling methods. Thus, finally, the fuzzy models of these methods are compared to each other using a sensitivity analysis over all parameters.
A sensitivity analysis of the wide range of the problem parameters of the derived models to illustrate the theoretical results.

Subjects: Operations Research; Production Systems; Supply Chain Management

Keywords: inventory; the average annual cost method; the discounted cost method; partial backordering; fuzzy

1. Introduction
The inflation and time value of money have significant effects on the inventory system costs, especially in developing countries. Thus, these factors must be considered in modeling inventory costs. Buzacott (1975) presented an inflationary economic order quantity (EOQ) model with a constant inflation rate. Bierman and Thomas (1977) studied an inventory model under inflation and discount. Misra (1979) presented a discounted cost model with considering the time value of money and different inflation rates for the inventory costs. Hariga and Ben-Daya (1996) dealt with the inventory replenishment problem with linearly time-varying demand in a fixed planning horizon under inflationary conditions. Dey, Mondal, and Maiti (2008) investigated two-storage inventory problems with finite time horizon under inflation and time value of money where demand rate is dynamic. Sarkar and Moon (2011) proposed an inflationary economic production quantity (EPQ) model with stochastic demand in an imperfect production system. Mousavi, Hajipour, Niaki, and Alikar (2013) developed a mixed binary integer mathematical programming model for a multi-item multi-period inventory control problem with discounts, time value of money, and inflation.

Unlike the above cases, a few researches considered the inflation rate as a random variable. For example, Horowitz (2000) studied an economic order quantity model under stochastic inflationary conditions. Mirazadeh, Ghami, and Esfahani (2011) presented an inventory model with stochastic inflation rate for multiple items with budget constraint.

Some products of the inventory system like fruits, vegetables, meat, perfumes, etc. are gradually deteriorated during their storage period. Therefore, many researchers considerably studied inventory models with perishable items in the recent years. Dave and Patel (1981) discussed a deteriorating inventory model with time-proportional demand where shortages are not allowable. Chung and Tsai (2001) proposed an inventory model for deteriorating items under time value of money. Yang (2004) studied the deteriorating two-warehouse inventory problem with constant demand rate under inflation and shortages. Moon, Giri, and Ko (2005) presented the EOQ models for ameliorating/deteriorating items considering the inflation effect. Tripathy and Mishra (2010) studied the deteriorating inventory model with assumptions of the Weibull distribution for deterioration rate, quadratic demand, and permissible delay in payments. Prasad and Mukherjee (2016) developed a deteriorating inventory model with stock- and time-dependent demand considering a two-parameter Weibull distribution for the deterioration rate. Duan, Cao, and Huo (2018) investigated a joint dynamic pricing and production problem for deteriorating products in a finite time horizon.

In real life, backlogging is not accepted by some customers and so demands are usually lost for certain types of products (e.g. foods, pharmaceutical, and others) during the shortage period. Papachristos and Skouri (2000) considered the deteriorating inventory model with exponential partial backordering where the demand rate is time-varying. Teng and Yang (2004) studied the EOQ models with partial backlogging when demand and purchase cost are fluctuating with time. Chern, Yang, Teng, and Papachristos (2008) discussed deteriorating inventory models with assumptions of time-varying demand, partial backordering, and inflation. Sana (2010) presented an EOQ model with partial backordering for deteriorating items under time-varying deterioration rate and price-dependent demand in an infinite time horizon. Yang (2012) presented a two-warehouse inventory model under partial backlogging and inflation with considering the three-parameter Weibull distribution for deterioration rate.
Mishra, Singh, and Kumar (2013) considered a deteriorating inventory model with partial backlogging where the demand rate is time-dependent and holding cost is assumed to be time-varying. Mousavi, Sadeghi, Niaki, and Tavana (2016) developed a seasonal multi-product multi-period inventory model with partial backordering and all-unit discount. Khalilpourazari, Pasandideh, and Niaki (2016) presented a multi-product EPQ model under partial backordering with fixed and linear costs. San-José, Sicilia, González-De-la-Rosa, and Febles-Acosta (2017) studied an inventory model with partial backlogging under power demand pattern. Chakraborty, Jana, and Roy (2018) studied two-warehouse inventory models with ramp type demand rate, partial backlogging, and three-parameter Weibull distribution for deterioration rate under inflationary conditions. Rastogi and Singh (2018) presented a deteriorating production inventory model with partial backordering under inflation where the demand rate is dependent to selling price and the production rate is a function of occurring demand. Singh, Kumar, and Yadav (2018) investigated a deteriorating two-storage inventory model with time, selling price, and advertisement dependent demand under backlogging.

Moreover, a series of inventory models have been studied in a fuzzy environment. Katagiri and Ishii (2002) investigated a deteriorating inventory model with fuzzy shortage costs. Maity and Maiti (2008) studied a multi-item production inventory system with deteriorating items and dynamic demand under fuzzy inflation and time discounting. Samal and Pratihar (2014) developed an inventory model in a fuzzy environment where holding, ordering, and backorder costs are represented by fuzzy numbers. Pal, Mahapatra, and Samanta (2015) investigated an EPQ model for deteriorating items with ramp type demand rate, inflation, and shortages under fuzziness. Sharmila and Uthayakumar (2015) presented a deteriorating inventory model with power demand pattern under fully backlogged. Here, all related inventory parameters have been considered as fuzzy variables. Kazemi, Olugu, Abdul-Rashid, and Ghazilla (2016) developed a fuzzy EOQ model with backordering by modeling forgetting effect in setting the fuzzy parameters. Mohanty and Tripathy (2017) presented a fuzzy inventory model for deteriorating items with exponentially decreasing demand under partial backlogging. Indrajitsingha, Samanta, and Misra (2018) proposed an EOQ model of deteriorating items with stock-dependent demand in fuzzy environment considering demand and deterioration rates, holding and deterioration costs as triangular fuzzy numbers. Shaikh, Bhunia, Cárdenas-Barrón, Sahoo, and Tiwari (2018) studied a deteriorating inventory model with assumptions of selling price and advertisement dependent demand, back ordering, permissible delay in payments, and fuzziness.

The average annual cost and the discounted cost methods are known as two methods of modeling the inventory system which determines the optimal value of decision variables (time and quantities of order) by minimizing total average annual cost and the present value of total future costs, respectively. Since the obtained optimal values of two mentioned modeling methods may differ to each other, the comparison of these methods is very important. The existing difference between related modeling methods is affected on the final decision of the manager. Based on the results of the comparing process, the decision-maker is able to access the best system analysis. Hadley (1964) and Mirazadeh (2011) compared these methods to each other under various conditions.

This study extends Mirazadeh’s work (2011) to develop two deteriorating inventory models under stochastic inflationary conditions by considering assumptions of internal and external inflation rates, partial backordering, and fuzziness. Therefore, in the present article, two fuzzy inventory models with partial backordering are developed using the average annual cost and the discounted cost methods. Then, in order to determine the best method for system analysis, the models of these modeling methods are compared to each other.
The rest of this study is organized as follows. Section 2 introduces the used assumptions and notations to formulate the models of this paper. In Section 3, the inventory models using the average annual cost and the discounted cost methods are derived. In Section 4, the proposed inventory models in fuzzy environment are surveyed. Then, in Section 5, a numerical example is employed to illustrate the solution procedure of the fuzzy models. In Section 6, by performing a sensitivity analysis on the parameters, two mentioned methods are compared to each other. In Section 7, a conclusion and some proposal cases for future researches are presented.

2. Assumptions and notations
In this section, the required assumptions and notations of the models are presented.

2.1. Assumptions
The inventory models are developed based on the following assumptions:

1. The models are studied in an infinite time horizon.
2. Shortages are allowed and partially backlogged.
3. Due to the internal (company) and external (general economic) inflation rates, the inventory costs are divided into two classes. The inflation rates are assumed as random variables with known distributions.
4. The deterioration, backorder, and demand rates are known and constant.
5. The replenishment is instantaneous and the initial inventory is zero.
6. The interest rate is greater than the internal and external inflation rates.
7. In both models, the unit external purchasing cost is considered as a fuzzy number and the membership function of the unit purchasing cost C is as follows:

$$
\mu(C) = \begin{cases}
1 & \text{for } C \geq C_0 \\
1 - \frac{C - C_0}{P_1} & \text{for } C_0 - P_1 \leq C \leq C_0 \\
0 & \text{for } C \leq C_0 - P_1
\end{cases}
$$

where C_0 and P_1 represent the initial value of the unit purchasing cost and its maximum permissible tolerance, respectively.

2.2. Notations
The used notations of this paper are summarized as follows:

- j: Index of inventory cycles ($j = 1, 2, \ldots, \infty$)
- A: The ordering cost per order ($$/order)
- D: The demand rate per unit per time (units/year)
- r: The interest rate ($$/$/year)
- β: Percentage of backordered demands during shortage period ($0 \leq \beta \leq 1$)
- θ: The constant deterioration rate ($0 \leq \theta \leq 1$)
- i_m: The internal ($m = 1$) and external ($m = 2$) inflation rates
- $f(i_m)$: The probability density function of i_m
The unit internal \((m=1)\) and external \((m=2)\) holding costs at time zero \(($/\text{unit/year})\)

\(C_2m\) The unit internal \((m=1)\) and external \((m=2)\) backorder costs at time zero \(($/\text{unit/year})\)

\(C_2'\) The unit internal \((m=1)\) and external \((m=2)\) lost sale costs at time zero \(($/\text{unit/year})\)

\(C\) The unit external purchase cost \(($/\text{unit})\)

\(\tilde{\mathcal{C}}\) The fuzzy unit external purchase cost \(($/\text{unit})\)

\(T\) The interval of the time between two sequential orders

\(K\) A part of the inventory cycle with positive inventory level \((0 \leq K \leq 1)\)

\(EAC(K,T)\) The total average annual cost

\(EDC(K,T)\) The total discounted cost

The other required notations are defined later.

3. Formulation of the models

According to the assumptions cited above, the inventory system is studied under an infinite time horizon so as this planning horizon divided into equal parts with length \(T\). Each inventory cycle, \(T\), includes two parts, namely, the positive inventory level and shortage level. \((0 \leq K \leq 1)\) is a part of the inventory cycle with positive inventory level. Based on Figure 1, the positive inventory level gradually decreases due to deterioration and demands. The inventory system is faced with

Figure 1. Graphical representation of the inventory system.
shortage at time \((j + K - 1)T\). During shortage period, \([(j + k - 1)T, jT]\), there is no deterioration and shortage level linearly increases with respect to the demand rate. Here, shortages are accumulated until \(jT\) and partially back ordered.

The components of the total inventory cost include ordering, purchasing, holding, and shortage costs that are modeled by the average annual cost and the discounted cost methods. Considering the internal and external inflation rates, these costs are divided into two cost classes, the ordering cost and purchasing cost placed in the internal and external cost classes, respectively. The holding and shortage costs change with respect to both inflation rates and hence these costs are members of both classes.

3.1. The average annual cost model
Referring to Mirzazadeh (2011), the total average annual cost under two internal and external inflation rates is formulated as follows:

- The average annual ordering cost:
 \[
 EACR(K, T) = E[1 + i_1(1 - T)/A]/T = [1 + \mu_1(1 - T)/2]A/T
 \]

- The average annual purchasing cost:
 \[
 EACP(K, T) = C \left[\frac{D(e^{\theta KT} - 1)}{\theta} + DT(1 - K) \right] [1 + \mu_2(1 - T)/2]/T
 \]

- The average annual holding cost:
 \[
 EACH(K, T) = D \left(\frac{\theta KT e^{\theta KT} - e^{\theta KT} + 1}{\theta^2 T} \right) \sum_{m=1}^{2} (C_{2m}[1 + \mu_m(1 - T)/2])
 \]

- The average annual shortage cost:
 Considering assumption of the partial backordering, the shortage cost includes two parts, backorder cost and lost sale cost that are formulated as follows:

 - Backorder cost:
 \[
 BO = \theta \frac{DT(1 - K)^2}{2} \sum_{m=1}^{2} (C_{2m}[1 + \mu_m(1 - T)/2])
 \]

 - Lost sale cost:
 \[
 LS = (1 - \theta) \frac{DT(1 - K)^2}{2} \sum_{m=1}^{2} (C_{2m}[1 + \mu_m(1 - T)/2])
 \]

So,
\[
EACS(K, T) = BO + LS
\]

Hence, the total average annual cost equals to:
\[
EAC(K, T) = EACR + EACP + EACH + EACS
\]

3.2. The discounted cost model
Referring to Mirzazadeh (2011), the present value of the total cost over the infinite planning horizon under two inflation rates is also obtained as follows:

The present value of the total ordering cost:
EDCR(K, T) = E \left[A \sum_{j=0}^{\infty} e^{-j(r-h)T} \right] = A E \left[\frac{1}{1 - e^{-(r-h)T}} \right] \quad (8)

The present value of the total purchasing cost:

EDCP(K, T) = CD \theta \left(e^{\theta KT} - 1 \right) E \left[\frac{1}{1 - e^{-(r-h)T}} \right] + CD(1 - K) \left[E \left[\frac{1}{1 - e^{-(r-h)T}} \right] - 1 \right] \quad (9)

The present value of the total holding cost:

EDCH(K, T) = \sum_{m=1}^{2} C_{2m}D \left[\frac{1 + e^{\theta(r-l_m)KT}(KT(\theta - (r - l_m)) - 1))}{(\theta - (r - l_m))^2(1 - e^{-(r-l_m)T})} \right] \quad (10)

The present value of the total shortage cost:

Similarly, each part of the shortage cost equals to:

Backorder cost:

BO = \sum_{m=1}^{2} C_{2m}D \left[\frac{e^{-(r-l_m)T} + ((1 - k)(r - l_m)T - 1)e^{(r-l_m)KT}}{(r - l_m)^2(1 - e^{-(r-l_m)T})} \right] \quad (11)

Lost sale cost:

LS = \sum_{m=1}^{2} C_{2m}D(1 - \theta)E \left[\frac{e^{-(r-l_m)T} + ((1 - k)(r - l_m)T - 1)e^{(r-l_m)KT}}{(r - l_m)^2(1 - e^{-(r-l_m)T})} \right] \quad (12)

So,

EDCS(K, T) = BO + LS \quad (13)

Hence,

EDC(K, T) = EDCR + EDCP + EDCH + EDCS \quad (14)

4. The fuzzy models and solution procedure

In reality, the inventory costs are consciously fluctuating due to various reasons. Therefore, the parameters of the unit inventory cost are vaguely and related values of these parameters cannot be exactly determined. In this section, the above introduced models are investigated in fuzzy environment by considering the unit purchasing cost C as a fuzzy number \(\tilde{C} \). Hence, the objective functions are rewritten in the average annual cost model and the discounted cost model as follows:

Fuzzy average annual cost model:

\[\text{Min} \ EAC \left(K, T, \tilde{C} \right) = EACR + EACP + EACH + EACS \quad (15) \]

Fuzzy discounted cost model:

\[\text{Min} \ EDC \left(K, T, \tilde{C} \right) = EDCR + EDCP + EDCH + EDCS \quad (16) \]

4.1. Fuzzy non-linear programming problem (FNLP)

A non-linear programming problem with fuzzy objective function and fuzzy co-efficient is formulated as follows:
where $\bar{y} = \bar{C}_T$ is the fuzzy co-efficient vector of g_0. Based on the fuzzy set theory, the fuzzy objective function and co-efficient are defined by their related member functions. Here, μ_0 and μ_y are considered as the non-increasing continuous linear membership functions of fuzzy objective and co-efficient vector \bar{y} of the objective function g_0, respectively. These relationship functions are as follows:

$$
\mu_0(g_0(x)) = \begin{cases}
1 & \text{for } g_0(x) < Z_0 \\
1 - \frac{g_0(x) - Z_0}{P_0} & \text{for } Z_0 \leq g_0(x) \leq Z_0 + P_0 \\
0 & \text{for } g_0(x) > Z_0 + P_0
\end{cases}
$$

$$
\mu_y(u) = \begin{cases}
1 & \text{for } u > C_0 \\
1 - \frac{u - C_0}{P_1} & \text{for } C_0 - P_1 \leq u \leq C_0 \\
0 & \text{for } u < C_0 - P_1
\end{cases}
$$

Using max-min operator, the fuzzy model given by Equation (17) is transformed to the crisp model as follows:

$$
\text{Max } \alpha
$$

s.t.

$$
g_0(x, \mu_y^{-1}(\alpha)) \leq \mu_0^{-1}(\alpha), \ x \geq 0, \alpha \in [0, 1] \tag{18}
$$

where

$$
\mu_y^{-1}(\alpha) = [C_0 - (1 - \alpha)P_1]
$$

$$
\mu_0^{-1}(\alpha) = Z_0 + (1 - \alpha)P_0
$$

For the fuzzy models given by Equations (15) and (16), the membership functions of the fuzzy objective function and unit purchasing cost are defined as follows:

$$
\mu_C(u) = \begin{cases}
1 & \text{for } u > C_0 \\
1 - \frac{u - C_0}{P_1} & \text{for } C_0 - P_1 \leq u \leq C_0 \\
0 & \text{for } u < C_0 - P_1
\end{cases}
$$

$$
\mu_0(\text{EAC}(K, T)) = \begin{cases}
1 & \text{for } \text{EAC}(K, T) < Z_0 \\
1 - \frac{\text{EAC}(K, T) - Z_0}{P_0} & \text{for } Z_0 \leq \text{EAC}(K, T) \leq Z_0 + P_0 \\
0 & \text{for } \text{EAC}(K, T) > Z_0 + P_0
\end{cases}
$$

$$
\mu_0(\text{EDC}(K, T)) = \begin{cases}
1 & \text{for } \text{EDC}(K, T) < Z_0 \\
1 - \frac{\text{EDC}(K, T) - Z_0}{P_0} & \text{for } Z_0 \leq \text{EDC}(K, T) \leq Z_0 + P_0 \\
0 & \text{for } \text{EDC}(K, T) > Z_0 + P_0
\end{cases}
$$

where K and T are positive variables of the problem, C_0, Z_0, and Z_0^d are the initial values of the unit purchasing cost and objectives goal of the average annual cost and the discounted cost models, respectively, and P_1, P_0, and P_0^d are their respective tolerances.

Hence, the fuzzy models given by Equations (15) and (16) with respect to Equation (18) reduce to the following form, respectively:
For the fuzzy average annual cost model:

\[
\text{Max } \alpha \\
\text{s.t.} \\
\text{EAC}(K, T, \alpha) \leq Z_0^\alpha + (1 - \alpha)P_0^\alpha, K, T \geq 0, \alpha \in [0, 1]
\] \hspace{1cm} (19)

where

\[
\text{EAC}(K, T, \alpha) = \left[1 + \mu_1(1 - T)/2 \right] A/T \\
+ \left[C_0 - (1 - \alpha)P_1 \right] \frac{D(e^{K(T - t_1)})}{\theta} + DT(1 - K) \left[1 + \mu_2(1 - T)/2 \right]/T \\
+ D \left(\frac{\theta K T e^{K(T - t_1)} - e^{K(T - t_1)}}{\theta^2 T} \right) \frac{1}{2} \sum_{m=1}^{2} \left[C_{1m}[1 + \mu_m(1 - T)/2] \right] \\
+ \theta \frac{DT(1 - K)^2}{2} \sum_{m=1}^{2} \left[C_{2m}[1 + \mu_m(1 - T)/2] \right] \\
+ (1 - \theta) \frac{DT(1 - K)^2}{2} \sum_{m=1}^{2} \left[C_{2m}[1 + \mu_m(1 - T)/2] \right]
\]

Similarly, in the fuzzy discounted cost model:

\[
\text{Max } \alpha \\
\text{s.t.} \\
\text{EDC}(K, T, \alpha) \leq Z_0^\alpha + (1 - \alpha)P_0^\alpha, K, T \geq 0, \alpha \in [0, 1]
\] \hspace{1cm} (20)

where

\[
\text{EDC}(K, T, \alpha) = A \frac{1}{1 - e^{-(r - i_1)T}} \left[C_0 - (1 - \alpha)P_1 \right] \frac{D(e^{K(T - t_1)})}{\theta} \left[1 - e^{-(r - i_1)T} \right]/(1 - 1/e^{-(r - i_1)T}) \\
+ \left[C_0 - (1 - \alpha)P_1 \right] DT(1 - K) \left[1 - e^{-(r - i_1)T} \right]/(1 - 1/e^{-(r - i_1)T}) \\
+ \sum_{m=1}^{2} \left[C_{1m}D \left[1 + e^{(K - (r - i_m))T} (K \theta - (r - i_m) - 1) \right] \frac{(\theta - (r - i_m)^2)(1 - e^{-(r - i_m)T})}{(r - i_m)^2(1 - e^{-(r - i_m)T})} \right] \\
+ \sum_{m=1}^{2} \left[C_{2m}D \left[e^{-((r - i_m)T + ((K - (r - i_m))T - 1) e^{(r - i_m)K(T - t_1)})/(r - i_m)^2(1 - e^{-(r - i_m)T})} \right] \right] \\
+ \sum_{m=1}^{2} \left[C_{2m}D \left[e^{-((r - i_m)T + ((K - (r - i_m))T - 1) e^{(r - i_m)K(T - t_1)})/(r - i_m)^2(1 - e^{-(r - i_m)T})} \right] \right]
\]

5. Numerical example
In this section, the crisp and fuzzy models of the average annual cost and the discounted cost methods are described by the following numerical example:

Let \(D = 1200 \) units/year, \(A = \$90/\text{order} \), \(C_{11} = \$2/\text{unit/year} \), \(C_{12} = \$4/\text{unit/year} \), \(C_{21} = \$8/\text{unit/year} \), \(C_{22} = \$6/\text{unit/year} \), \(C_{21} = \$10/\text{unit/year} \), \(C_{22} = \$8/\text{unit/year} \), \(C = \$28/\text{unit} \), \(r = 0.25/\text{year} \), \(\beta = 0.7 \), \(\theta = 0.25 \).
Table 1. Optimal solution

Model	Average annual cost method	Discounted cost method				
	K	T	EAC^*	K	T	EDC^*
Crisp model	0.532	0.213	36,834.273	0.392	0.099	847,821.282
Fuzzy model	0.579	0.198	25,337.597	0.458	0.102	579,478.607

Here, the probability density functions of the internal and external inflation rates are considered as the normal distribution with means of $\mu_1 = 0.09$ and $\mu_2 = 0.14$, standard deviations of $\sigma_1 = 0.04$ and $\sigma_2 = 0.06$, respectively.

Also, parameter values of the fuzzy models are equal to $C_0 = \$28/unit$, $P_1 = 18$, $P_0^d = 23003.504$, $P_0^r = 536862.806$, $Z_0^e = 13830.769$, and $Z_0^d = 310958.476$.

Considering these values, the optimal solutions of the crisp and fuzzy models have been shown in Table 1.

6. Comparison of the fuzzy models
In the above presented models, T_o and T_d as the interval of the time between two sequential orders, K_o and K_d, as a part of the inventory cycle with positive inventory level are considered as two decision variables which are obtained by solving the fuzzy average annual cost model and the fuzzy discounted cost model, respectively. EAC and EDC represent the optimal values of the cost functions in the fuzzy average annual cost model and the fuzzy discounted cost model, respectively. With respect to assumption of the fuzzy unit purchasing cost, C_{EAC} and C_{EDC} represent the optimal values of the related fuzzy parameter in the average annual cost and the discounted cost models, respectively. Considering the optimal value of the unit purchasing cost C_{EDC} in the fuzzy discounted model, EDC_0 is computed by replacing T_o and K_o in equation (14). According to Table 2, the comparison between the optimal solutions of the fuzzy models is performed using a sensitivity analysis on the problem parameters. Here, T_o/T_d, K_o/K_d, and EDC_0/EDC_d are considered as criteria of the system analysis.

The related main conclusions are summarized as follows:

1. T_o/T_d has high sensitivity to the changes in C_{11}, C_{12}, C_{21}, D, θ, C_0, μ_1, μ_2, σ_2, r, and P_1. It has moderate sensitivity to A, C_{22}, and Z_0^e, and Z_0^d, and is insensitive to the changes in C_{22} and θ.

2. K_o/K_d has high sensitivity to the parameters C_{12}, C_{22}, D, C_0, μ_1, μ_2, r, P_0^d, and Z_0^d, and Z_0^d, it has moderate sensitivity to C_{11}, C_{12}, C_{21}, θ, σ_1, σ_2, P_1, P_0^r, and Z_0^r, and has slight sensitivity to A.

3. EDC_0/EDC_d increases as the parameters A, C_{11}, C_{12}, C_{22}, C_{22}, μ_2, σ_2, and Z_0^d increase and conversely decreases as the parameters D, C_0, C_{11}, θ, r, μ_1, and σ_1 increase. EDC_0/EDC_d has only a moderate sensitivity to the parameters r, μ_1, and μ_2. Based on the obtained results, these modeling methods do not significantly differ to each other on their inventory costs. In other words, speed of increasing the inventory system’s costs in the average annual cost method in comparison with the discounted cost method is very low and, indeed, amount of imposed cost into the inventory system is approximately same to each other. Hence, the manager can analyze the inventory system using both methods.

In order to the better understanding, graphical representation of the changes in the ratio EDC_0/EDC_d for parameters D, u_1, u_2, and A is shown in Figure 2.
Figure 2. Graphical representation of the changes in the ratio $\frac{\text{EDC}_a}{\text{EDC}_d}$.

(a) D

(b) u_1

(c) u_2

(d) A
Table 2. Numerical comparison

	-0.9	-0.5	-0.2	-0.1	0	0.1	0.2	0.5	0.9
D									
T_a	0.767	0.296	0.225	0.211	0.198	0.188	0.179	0.158	0.139
T_d	0.307	0.141	0.113	0.107	0.102	0.098	0.094	0.086	0.077
T_a/T_d	2.493	2.09929	1.9911	1.9719	1.9411	1.9183	1.9042	1.8372	1.8051
k_a	0.490	0.542	0.566	0.573	0.579	0.584	0.589	0.602	0.616
k_d	0.348	0.409	0.441	0.449	0.458	0.465	0.473	0.491	0.511
k_a/k_d	1.4080	1.3251	1.2834	1.2761	1.2641	1.2559	1.2452	1.2260	1.2054
C_{EAC}	35.092	25.516	21.16	20.026	19.064	18.082	17.236	15.112	12.988
C_{EDC}	34.786	25.408	21.124	20.008	19.008	18.082	17.254	15.166	13.06
EAC_a	47.56915	17.012.905	22.570.575	24.027.886	25.337.597	26.521.032	27.595.594	30.297.899	33.022.714
EDC_a	108.327.268	388.336.98	515.850.20	549.348.92	579.478.60	606.723.38	631.478.76	693.808.98	756.776.37
EDC_a	111.099.884	392.260.36	519.750.35	553.493.84	583.673.13	610.808.99	635.640.43	698.064.75	761.380.21
$EDC_{a/EDC_{d}}$	1.02559	1.01010	1.007560	1.007545	1.007238	1.006733	1.006590	1.006133	1.006083
A									
T_a	0.063	0.140	0.177	0.188	0.198	0.208	0.217	0.243	0.274
T_d	0.032	0.072	0.092	0.097	0.102	0.107	0.112	0.125	0.141
T_a/T_d	1.9687	1.9444	1.9239	1.9381	1.9411	1.9439	1.9375	1.944	1.9432
k_a	0.581	0.579	0.579	0.579	0.579	0.578	0.578	0.578	0.577
k_d	0.458	0.458	0.458	0.458	0.458	0.458	0.458	0.458	0.458
k_a/k_d	1.2685	1.2641	1.2641	1.2641	1.2641	1.2620	1.2620	1.2620	1.2598
C_{EAC}	19.252	19.108	19.036	19.018	19.018	18.982	18.964	18.91	18.856
C_{EDC}	19.162	19.072	19.018	19.018	19.018	18.982	18.982	18.946	18.91
EAC_a	25.015.143	25.199.713	25.287.938	25.313.464	25.337.597	25.360.539	25.382.451	25.443.154	25.515.201
EDC_a	57.455.148	577.367.42	578.717.17	579.108.42	579.478.60	579.830.81	580.167.43	581.101.27	582.212.05
EDC_a	575.864.827	580.378.19	582.239.18	583.264.93	583.673.13	584.048.36	584.906.04	586.264.76	588.075.53
$EDC_{a/EDC_{d}}$	1.002277	1.005214	1.006085	1.007177	1.007238	1.007273	1.008167	1.008885	1.010071

(Continued)
Table 2. (Continued)

	-0.9	-0.5	-0.2	-0.1	0	0.1	0.2	0.5	0.9	
C_{11}	T_a	0.218	0.208	0.202	0.2	0.198	0.197	0.195	0.190	0.185
	T_d	0.104	0.103	0.103	0.103	0.102	0.102	0.102	0.102	0.101
	T_a/T_d	2.096	2.019	1.961	1.941	1.941	1.933	1.917	1.862	1.831
	k_a	0.621	0.601	0.587	0.583	0.579	0.574	0.570	0.557	0.542
	k_d	0.473	0.466	0.461	0.459	0.458	0.456	0.455	0.450	0.444
	k_a/k_d	1.312	1.289	1.273	1.270	1.264	1.258	1.257	1.237	1.207
	C_{EAC}	19.036	19.018	19	19	19	19	19	19	19
	C_{EDC}	19	19	19	19	19	19	19	19	19
	E_{AC}	25,295.001	25,315.191	25,328.973	25,333.338	25,337.597	25,341.753	25,345.812	25,357.438	25,371.779
	E_{DC}	579,379.238	579,424.350	579,457.180	579,467.940	579,478.600	579,489.180	579,499.660	579,503.600	579,570.680
	E_{DC}	584,837.203	584,222.410	583,878.600	583,775.600	583,673.130	583,613.700	583,512.450	583,255.370	583,037.840
	E_{DC}/E_{AC}	1.0094	1.0082	1.0076	1.0074	1.0072	1.0071	1.0069	1.0064	1.0059
C_{12}	T_a	0.252	0.221	0.206	0.202	0.198	0.195	0.192	0.184	0.175
	T_d	0.114	0.108	0.104	0.103	0.102	0.102	0.101	0.099	0.096
	T_a/T_d	2.210	2.046	1.980	1.961	1.941	1.911	1.900	1.858	1.822
	k_a	0.672	0.627	0.597	0.588	0.579	0.570	0.561	0.537	0.508
	k_d	0.566	0.512	0.478	0.468	0.458	0.448	0.439	0.414	0.385
	k_a/k_d	1.187	1.246	1.248	1.256	1.264	1.273	1.277	1.297	1.319
	C_{EAC}	19.072	19.036	19.018	19	19	19	19	19	19
	C_{EDC}	19	19	19	19	19	19	19	19	19
	E_{AC}	25,237.126	25,288.547	25,319.548	25,328.803	25,333.597	25,345.968	25,357.837	25,401.049	25,401.049
	E_{DC}	578,721.958	579,108.760	579,342.780	579,412.490	579,478.600	579,541.400	579,764.100	579,949.910	579,949.910
	E_{DC}	583,526.527	583,811.570	583,519.100	583,609.090	583,673.130	583,770.030	583,845.620	583,521.370	583,734.730
	E_{DC}/E_{AC}	1.0083	1.0081	1.0072	1.0072	1.0072	1.0073	1.0073	1.0065	1.0065

(Continued)
		-0.9	-0.5	-0.2	-0.1	0	0.1	0.2	0.5	0.9
C_{21}	T_a	0.236	0.215	0.204	0.201	0.198	0.196	0.193	0.187	0.181
	T_d	0.109	0.106	0.104	0.103	0.102	0.102	0.101	0.1	0.098
	T_a/T_d	2.165	2.028	1.961	1.954	1.941	1.9215	1.9108	1.87	1.8469
	k_a	0.479	0.529	0.560	0.569	0.579	0.587	0.596	0.619	0.646
	k_d	0.406	0.430	0.447	0.452	0.458	0.463	0.468	0.483	0.501
	k_a/k_d	1.1798	1.2302	1.2527	1.2588	1.2641	1.2678	1.2735	1.2815	1.2894
C_{EAC}	19.054	19.018	19	19	19	19	19	18.982	18.982	18.964
C_{EDC}	19.018	19	19	19	19	19	19	18.982	18.982	18.964
EAC_a	25,263.478	25,301.934	25,324.609	25,331.290	25,337.597	25,343.563	25,349.216	25,364.536	25,381.836	
EDC_a	579,059.469	579,258.47	579,394.00	579,436.84	579,478.60	579,519.32	579,559.04	579,672.54	579,811.95	
EAC_d	583,893.582	583,397.86	583,546.02	583,604.84	583,673.13	583,766.32	583,813.19	583,507.69	583,846.84	
EDC_d	578,328.181	1.007146	1.007166	1.007238	1.007328	1.007340	1.006616	1.006958		
C_{22}	T_a	0.223	0.210	0.203	0.2	0.198	0.196	0.195	0.190	0.184
	T_d	0.122	0.111	0.105	0.104	0.102	0.101	0.1	0.097	0.094
	T_a/T_d	1.8278	1.8918	1.9333	1.9230	1.9411	1.9405	1.95	1.9567	1.9574
	k_a	0.507	0.541	0.564	0.572	0.579	0.585	0.592	0.610	0.632
	k_d	0.323	0.390	0.433	0.445	0.458	0.469	0.481	0.512	0.548
	k_a/k_d	1.5696	1.3871	1.3025	1.2853	1.2641	1.2473	1.2307	1.1914	1.1532
C_{EAC}	19.036	19.018	19	19	19	19	19	18.982	18.982	18.964
C_{EDC}	19.018	19	19	19	19	19	19	18.982	18.982	18.964
EAC_a	25,285.288	25,311.358	25,327.805	25,332.807	25,337.597	25,342.187	25,346.592	25,358.799	25,373.073	
EDC_a	578,328.181	578,928.46	579,278.98	579,381.77	579,478.60	579,570.02	579,656.47	579,889.97	580,152.20	
EAC_d	582,362.854	583,044.23	583,273.64	583,461.59	583,673.13	583,856.40	584,098.20	584,056.69	584,596.57	
EDC_d	578,328.181	1.007109	1.006895	1.007041	1.007238	1.007395	1.007662	1.007185	1.007660	(Continued)
Table 2. (Continued)

C_{2j}	-0.9	-0.5	-0.2	-0.1	0	0.1	0.2	0.5	0.9
T_o	0.214	0.206	0.201	0.2	0.198	0.197	0.196	0.192	0.188
T_d	0.106	0.104	0.103	0.103	0.102	0.102	0.102	0.101	0.1
T_o/T_d	2.0188	1.9807	1.9514	1.9417	1.9411	1.9313	1.9215	1.9009	1.88
k_o	0.531	0.553	0.569	0.574	0.579	0.583	0.588	0.601	0.618
k_d	0.431	0.443	0.452	0.455	0.458	0.461	0.463	0.472	0.482
k_o/k_d	1.2320	1.2483	1.2588	1.2615	1.2641	1.2646	1.2699	1.2733	1.2821
C_{EAC}	19.018	19.018	19	19	19	19	19	19	18.982
C_{EDC}	19	19	19	19	19	19	19	19	18.982
EAC_o	25,303.409	25,319.845	25,330.825	25,334.262	25,337.597	25,340.833	25,343.977	25,352.887	25,363.687
EDC_o	579,266.851	579,364.28	579,433.82	579,456.36	579,478.60	579,500.54	579,522.19	579,585.43	579,666.01
EAC_d	583,391.440	583,489.91	583,597.57	583,663.92	583,723.49	583,787.15	583,886.51	583,538.29	
EDC_d	583,391.440	583,489.91	583,597.57	583,663.92	583,723.49	583,787.15	583,886.51	583,538.29	
EAC_o/EAC_d	1.0071203	1.0071209	1.007185	1.007261	1.007397	1.007420	1.006680		
EDC_o/EDC_d	1.0071203	1.0071209	1.007185	1.007261	1.007397	1.007420	1.006680		

(Continued)
Table 2. (Continued)

θ	T_a	T_d	T_a/T_d	k_a	k_d	k_a/k_d	C_{EAC}	C_{EDC}	EAC_a	EAC_d	EAC_a/EAC_d	C/3_EAC	EAC_a	EAC_d	EAC_a/EAC_d	C/3_EAC	EAC_a	EAC_d	EAC_a/EAC_d	C/3_EAC
0.9	0.279	0.119	2.3445	0.699	0.594	1.1767	19.108	19.036	25,204.847	578,511.629	1.009841	19.108	25,204.847	578,511.629	1.009841	19.108	25,204.847	578,511.629	1.009841	
0.5	0.208	0.105	2.1009	0.601	0.482	1.2468	19.018	19.036	25,315.378	579,314.10	1.007209	19.018	25,315.378	579,314.10	1.007209	19.018	25,315.378	579,314.10	1.007209	
0.2	0.198	0.104	2.9809	0.590	0.470	1.2641	19.018	19.036	25,337.597	579,478.60	1.007252	19.018	25,337.597	579,478.60	1.007252	19.018	25,337.597	579,478.60	1.007252	
0.1	0.194	0.102	1.9519	0.579	0.458	1.2775	19.018	19.036	25,357.267	579,623.97	1.007252	19.018	25,357.267	579,623.97	1.007252	19.018	25,357.267	579,623.97	1.007252	
0.0	0.190	0.101	1.9411	0.557	0.446	1.3004	19.018	19.036	25,382.96	579,813.04	1.007252	19.018	25,382.96	579,813.04	1.007252	19.018	25,382.96	579,813.04	1.007252	
−0.1	0.181	0.098	1.9207	0.528	0.406	1.3279	19.018	19.036	25,411.786	580,022.96	1.007252	19.018	25,411.786	580,022.96	1.007252	19.018	25,411.786	580,022.96	1.007252	
−0.2	0.171	0.095	1.8469	0.494	0.372	1.8	19.018	19.036	25,437.718	581,282.97	1.007252	19.018	25,437.718	581,282.97	1.007252	19.018	25,437.718	581,282.97	1.007252	
−0.5	0.167	0.092	1.771	0.452	0.330	1.306	19.018	19.036	25,478.60	581,544.98	1.007252	19.018	25,478.60	581,544.98	1.007252	19.018	25,478.60	581,544.98	1.007252	
−0.9	0.161	0.087	1.394	0.447	0.300	1.2906	19.018	19.036	25,520.948	25,320.948	1.007252	19.018	25,520.948	25,320.948	1.007252	19.018	25,520.948	25,320.948	1.007252	

(Continued)
Table 2. (Continued)

r	T_a	T_d	$T_{a/d}$	k_a	k_d	k_a/k_d	C_{EAC}	C_{EDC}
0.1	0.196	0.083	2.3614	0.576	0.430	1.3395	19	19
0.2	0.197	0.097	2.0412	0.578	0.439	1.3143	19	19
0.3	0.198	0.098	1.9411	0.579	0.458	1.2759	19	19
0.4	0.199	0.102	1.8773	0.579	0.463	1.2505	19	19
0.5	0.201	0.106	1.8256	0.579	0.469	1.2245	19	19
0.6	0.203	0.109	1.7873	0.579	0.492	1.1888	19	19
0.7	0.208	0.111	1.7414	0.580	0.515	1.1521	19	19
0.8	0.212	0.114	1.6964	0.581	0.531	1.1182	19	19
0.9	0.219	0.116	1.6515	0.582	0.549	1.0855	19	19

Fathalizadeh et al., Cogent Engineering (2019), 6: 1648630
https://doi.org/10.1080/23311916.2019.1648630

Page 17 of 25
μ_2	T_a	T_d	T_a/T_d	k_a	k_d	k_a/k_d	C_{EAC}	C_{EDC}	EAC_{a}	EAC_{d}	EAC_{a}/EAC_{d}	σ_a	T_a	T_d	T_a/T_d	k_a	k_d	k_a/k_d	C_{EAC}	C_{EDC}	EAC_{a}	EAC_{d}	EAC_{a}/EAC_{d}	σ_a		
-0.9	0.158	0.160	0.9875	0.582	0.4	1.455	19.486	30.7	24,719.656	231,302.049	1.002927	1.00198	0.106	1.8679	0.579	1.2478	19	19	1.003141	1.005306	1.004394	1.007238	1.005306	1.01842	1.006578	1.006448
-0.5	0.173	0.143	1.0797	0.580	0.432	1.4043	19.252	27.91	25,001.388	314,788.06	1.003141	1.003141	0.105	1.8857	0.579	1.2559	19	19	1.003141	1.005306	1.004394	1.007238	1.005306	1.01842	1.006578	1.006448
-0.2	0.187	0.123	1.5203	0.579	0.432	1.3402	19.108	23.932	25,205.348	434,154.00	1.005306	1.005306	0.103	1.9223	0.579	1.2614	19	19	1.005306	1.005306	1.005306	1.005306	1.005306	1.01842	1.006578	1.006448
-0.1	0.192	0.114	1.6842	0.579	0.442	1.3099	19.054	23.926	25,337.597	497,642.00	1.007238	1.007238	0.102	1.9411	0.579	1.2664	19	19	1.007238	1.007238	1.007238	1.007238	1.007238	1.01842	1.006578	1.006448
0	0.198	0.102	1.6941	0.579	0.442	1.2641	19.054	23.926	25,337.597	497,642.00	1.007238	1.007238	0.102	1.9411	0.579	1.2664	19	19	1.007238	1.007238	1.007238	1.007238	1.007238	1.01842	1.006578	1.006448
0.1	0.205	0.088	2.3295	0.578	0.442	1.2641	19.054	23.926	25,337.597	497,642.00	1.007238	1.007238	0.102	1.9411	0.579	1.2664	19	19	1.007238	1.007238	1.007238	1.007238	1.007238	1.01842	1.006578	1.006448
0.2	0.212	0.065	3.2615	0.578	0.442	1.2641	19.054	23.926	25,337.597	497,642.00	1.007238	1.007238	0.102	1.9411	0.579	1.2664	19	19	1.007238	1.007238	1.007238	1.007238	1.007238	1.01842	1.006578	1.006448
0.5	0.205	0.088	2.3295	0.578	0.442	1.2641	19.054	23.926	25,337.597	497,642.00	1.007238	1.007238	0.102	1.9411	0.579	1.2664	19	19	1.007238	1.007238	1.007238	1.007238	1.007238	1.01842	1.006578	1.006448
0.9	0.212	0.065	3.2615	0.578	0.442	1.2641	19.054	23.926	25,337.597	497,642.00	1.007238	1.007238	0.102	1.9411	0.579	1.2664	19	19	1.007238	1.007238	1.007238	1.007238	1.007238	1.01842	1.006578	1.006448
σ_2	T_a	T_d	T_a/T_d	k_a	k_d	k_a/k_d	C_{EAC}	C_{EDC}	EAC_a	EAC_d	EAC_a/EAC_d	EDCa	EDCd	EDCa/EDCd	EDCa	EDCd	EDCa/EDCd	EDCa	EDCd	EDCa/EDCd						
------------	-------	-------	---------	------	------	--------	--------	--------	-------	-------	----------	------	------	----------	------	------	----------	------	------	----------						
-0.9	0.198	0.116	1.706	0.579	0.439	1.3189	19.45	22.438	2337.597	476,723.513	1.005567	1.6548	0.659	1.1342	6.4	2025.001	203,476.445	205,333.590	1.009127							
-0.5	0.198	0.111	1.7837	0.579	0.446	1.2982	19.882	21.07	2537.597	517,448.11	1.005907	1.7850	0.621	1.1919	6.4	16,388.752	370,649.82	373,634.42	1.008052							
-0.2	0.198	0.106	1.8679	0.579	0.453	1.2781	19.45	19.882	2537.597	552,942.62	1.006459	1.875	0.595	1.2370	6.4	21,758.806	459,962.10	499,354.90	1.006840							
-0.1	0.198	0.104	1.9038	0.579	0.455	1.2725	19.45	19.882	2537.597	565,896.06	1.007238	1.9411	0.579	1.2641	6.4	23,548.324	579,478.60	541,818.15	1.007616							
0	0.198	0.102	1.9411	0.579	0.458	1.2641	19.45	19.882	2537.597	593,737.20	1.007567	2	0.579	1.2505	6.4	25,337.597	608,723.61	625,571.44	1.007238							
0.1	0.198	0.101	1.9603	0.579	0.461	1.2505	19.45	19.882	2537.597	613,110.65	1.008124	2	0.579	1.2215	6.4	27,126.627	658,653.05	667,458.27	1.007616							
0.2	0.198	0.099	2.1290	0.579	0.463	1.2505	19.45	19.882	2537.597	664,004.19	1.01006	2	0.579	1.1768	6.4	28,915.415	739,703.52	793,706.03	1.007616							
0.5	0.198	0.093	2.3855	0.579	0.474	1.1768	19.45	19.882	2537.597	684,004.19	1.01006	2	0.579	1.1768	6.4	34,280.327	739,703.52	793,706.03	1.007616							
0.9	0.198	0.083	2.3855	0.579	0.474	1.1768	19.45	19.882	2537.597	684,004.19	1.01006	2	0.579	1.1768	6.4	46,012.617	1,062,254.5	1,070,253.5	1.007616							

(Continued)
ρ	T_a	T_d	T_a/T_d	k_a	k_d	k_a/k_d	C_{EAC}	C_{EDC}	EAC_a	EDC_a	EAC_d	EDC_d	EAC_a/EDC_a	EDC_a/EDC_d
0.1	0.210	0.099	2.1212	0.540	0.403	1.3399	26.3638	26.3638	34,746	799,062	804,703	673,653	1007059	1987005
0.2	0.203	0.101	2.0099	0.562	0.434	1.2949	21.997	21.997	29,172	668,967	673,653	613,524	1007005	1987005
0.5	0.2	0.102	1.9607	0.573	0.450	1.2733	19.9936	19.9936	26,616	609,311	613,524	518,058	1006913	1987005
0.9	0.199	0.102	1.9509	0.576	0.454	1.2687	19.4626	19.4626	25,943	593,610	598,058	583,673	1006412	1987005
1	0.198	0.102	1.9411	0.579	0.458	1.2641	18.5752	18.5752	25,337	579,478	583,673	583,673	1006012	1987005
2	0.198	0.103	1.9223	0.581	0.461	1.2603	18.172	18.172	24,789	566,692	570,949	570,949	1005612	1987005
3	0.197	0.103	1.9126	0.583	0.464	1.2564	17.2	17.2	24,291	555,068	558,817	558,817	1005212	1987005
4	0.196	0.104	1.9029	0.589	0.473	1.2452	16.21	16.21	23,036	525,773	529,660	529,660	1004812	1987005
5	0.195	0.104	1.875	0.595	0.481	1.2370	15.16	15.16	21,766	496,141	499,685	499,685	1004412	1987005

(Continued)
Table 2. (Continued)

$P_{r_0}^i$	-0.9	-0.5	-0.2	-0.1	0	0.1	0.2	0.5	0.9
T_a	0.190	0.195	0.197	0.198	0.199	0.199	0.201	0.202	
T_d	0.102	0.102	0.102	0.102	0.102	0.102	0.102	0.102	
T_a/T_d	1.8627	1.9117	1.9313	1.9411	1.9411	1.9509	1.9509	1.9705	1.9803
k_a	0.623	0.596	0.584	0.581	0.579	0.576	0.574	0.569	0.563
k_d	0.458	0.458	0.458	0.458	0.458	0.458	0.458	0.458	0.458
k_a/k_d	1.3602	1.3013	1.2751	1.2685	1.2641	1.2576	1.2532	1.2423	1.2292
C_{sAC}	11.638	15.994	17.992	18.514	19	19.432	19.81	20.8	21.79
C_{sDC}	19	19	19	19	19	19	19	19	19
EAC_i	15.922307	21.501628	24.059012	24.731964	25.337597	25.885526	26.383620	27.638706	28.908023
EDC_i	579.478607	579.47860	579.47860	579.47860	579.47860	579.47860	579.47860	579.47860	579.47860
EAC_d	583.923576	583.75513	583.68786	583.70133	583.67313	583.68790	583.66069	583.70669	583.68631
EDC_d	1.007670	1.007379	1.007263	1.007287	1.007238	1.007216	1.007296	1.007261	
EAC_{sAC}	14.302	16.39	17.956	18.478	19	19.522	20.044	21.61	23.698
EDC_{sAC}	439.528908	501.73538	548.38317	563.93118	579.47860	595.02544	610.57172	657.20730	719.38100
EAC_{sDC}	442.655004	505.32973	552.33577	568.00445	583.67313	599.34181	615.01049	662.01654	724.69126
EAC_{sAC}	1.007112	1.007163	1.007207	1.007222	1.007238	1.007254	1.007269	1.007317	1.007381

(Continued)
	-0.9	-0.5	-0.2	-0.1	0	0.1	0.2	0.5	0.9
P_d									
T_a	0.198	0.198	0.198	0.198	0.198	0.198	0.198	0.198	0.198
T_d	0.108	0.104	0.103	0.103	0.102	0.102	0.102	0.102	0.101
T_a/T_d	1.8333	1.9038	1.9223	1.9223	1.9411	1.9411	1.9411	1.9603	
k_a	0.579	0.579	0.579	0.579	0.579	0.579	0.579	0.579	0.579
k_d	0.524	0.483	0.466	0.462	0.458	0.454	0.451	0.443	0.436
k_a/k_d	1.1049	1.1987	1.2424	1.2532	1.2641	1.2753	1.2838	1.3069	1.3279
C_{EAC}	19	19	19	19	19	19	19	19	19
C_{ECD}	11.638	15.994	17.992	18.532	19	19.432	19.81	20.8	21.79
EAC_g	25,337.597	25,337.597	25,337.597	25,337.597	25,337.597	25,337.597	25,337.597	25,337.597	25,337.597
EDC_g	359,770.301	489,968.20	549,643.43	565,346.42	579,478.60	592,264.39	603,887.39	633,175.30	662,796.43
EDC_a	362,690.699	493,443.14	553,416.37	569,625.35	583,673.13	596,640.32	607,986.60	637,703.07	667,419.53
EDC_a/EDC_g	1.008117	1.007092	1.006864	1.007568	1.007234	1.007388	1.006788	1.007150	1.006975
Here, the inventory formulated models assume $r > i_m$ (for $m = 1, 2$). In Table 2, by performing sensitivity analysis on the parameters, this assumption is violated for the row r and columns -0.9, -0.5, and the row u_2 and columns 0.5, 0.9. In another word, the interest rate is lower than the inflation rates for the parameters r and u_2 in these columns. Hariga and Ben-Daya (1996) proved that ordering is only done once over the time horizon if the inflation rate is greater than the interest rate. β ($0 \leq \beta \leq 1$) is the percentage of backordered demands during shortage period. According to the above explanations, in Table 2, the row r and columns -0.9, -0.5, and the row u_2 and columns 0.5, 0.9 and column 0.9 of the parameter β are not considered in the sensitivity analysis process.

7. Conclusion

Usually, a part of the demands that are faced with shortages lost. Therefore, in this paper, two deteriorating inventory models with partial backordering under stochastic inflationary conditions over an infinite time horizon have been developed with considering two modeling methods: (1) the average annual cost method and (2) the discounted cost method. In practice, due to the effects of the unstable inflation on the inventory costs, it is not possible to determine the exact value for parameters of the unit inventory costs. Hence, in these models, the unit purchasing cost has been considered as a fuzzy number. In order to solve the fuzzy models, the fuzzy non-linear programming method has been used. Then, the solution procedure has been illustrated by a numerical example. Also, the optimal values of the fuzzy models have been compared to each other using sensitivity analysis on all parameters. According to the obtained results, the ratio EDC_{d}/EDC_{r} is only moderately sensitive to the changes in r, μ_1, and μ_2. Thus, the difference between the two derived fuzzy inventory models by these modeling methods is negligible.

As future researches, the comparison of two modeling methods can be extended with respect to the following cases:

(1) Considering the purchases costs under discount,
(2) Develop to the two-warehouse inventory models,
(3) Develop to the multi-item multi-objective inventory models in a fuzzy environment where the other parameters also can be assumed as fuzzy and fuzzy random variables.

Funding
The authors received no direct funding for this research.

Author details
Shabnam Fathalizadeh1
E-mail: shabnam.fath72@gmail.com
Abolfazl Mirzazadeh1
E-mail: a.mirzazadeh@khu.ac.ir
Ali Ghodratnama1
E-mail: aghodratna@gmail.com
1 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

Correction
This article has been republished with minor changes. These changes do not impact the academic content of the article.

Citation information
Cite this article as: Fuzzy inventory models with partial backordering for deteriorating items under stochastic inflationary conditions: Comparative comparison of the modeling methods, Shabnam Fathalizadeh, Abolfazl Mirzazadeh & Ali Ghodratnama, Cogent Engineering (2019), 6: 1648630.

Buzacott, J. A. (1975). Economic order quantities with inflation. Journal of the Operational Research Society, 26(3), 553–558. doi:10.1057/jors.1975.113
Chakraborty, D., Jana, D. K., & Roy, T. K. (2018). Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments. Computers & Industrial Engineering, 123, 157–179. doi:10.1016/j.cie.2018.06.022
Chern, M. S., Yang, H. L., Teng, J. T., & Papachristos, S. (2008). Partial backlogging inventory lot-size models for deteriorating items with fluctuating demand under inflation. European Journal of Operational Research, 191(1), 127–141. doi:10.1016/j.ejor.2007.03.053
Chung, K. J., & Tsai, S. F. (2001). Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value. Computers & Operations Research, 28(9), 915–934. doi:10.1016/S0305-0548(00)00162-2
Dave, U., & Patel, L. K. (1983). T, (s, i) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 33(2), 137–142.
Dey, J. K., Mondal, S. K., & Maiti, M. (2008). Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money. European Journal
Mouni, I., Girf, B. C., & Ko, B. (2005). Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting. European Journal of Operational Research, 162(3), 773–785. doi:10.1016/j.ejor.2003.09.025

Mousavi, S. M., Hajipour, V., Niaki, S. T. A., & Alikar, N. (2013). Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: two calibrated meta-heuristic algorithms. Applied Mathematical Modelling, 37(4), 2241–2256. doi:10.1016/j.apm.2012.05.019

Mousavi, S. M., Sadeghi, J., Niaki, S. T. A., & Tavana, M. (2016). A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGA-II, NRGA, and MOPSO. Applied Soft Computing, 43, 57–72. doi:10.1016/j.asoc.2016.02.014

Pol, S., Mahapatra, G. S., & Samanta, G. P. (2015). A production inventory model for deteriorating item with ramp type demand allowing inflation and shortages under fuzziness. Economic Modelling, 46, 334–345. doi:10.1016/j.econmod.2014.12.031

Popachristos, S., & Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging. Operations Research Letters, 27(4), 175–184. doi:10.1016/S0167-6377(00)00044-4

Prasad, K., & Mukherjee, B. (2016). Optimal inventory model under stock and time dependent demand for time varying deterioration rate with shortages. Annals of Operations Research, 243(1-2), 323–334. doi:10.1007/s10479-014-1759-3

Rastogi, M., & Singh, S. R. (2018). A production inventory model for deteriorating products with selling price dependent consumption rate and shortages under inflationary environment. International Journal of Procurement Management, 11(1), 36–52. doi:10.1504/IJPM.2018.088614

Samal, N. K., & Pratihar, D. K. (2014). Optimization of variable demand fuzzy economic order quantity inventory models without and with backordering. Computers & Industrial Engineering, 78, 146–162. doi:10.1016/j.cie.2014.10.006

Sana, S. S. (2010). Optimal selling price and lot-size with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185–194. doi:10.1016/j.amc.2010.05.040

San-Jose, J. A., Sicilia, J., Gonzalez-De-la-Rosa, M., & Febles-Acosta, J. (2017). Optimal inventory policy under power demand pattern and partial backlogging. Applied Mathematical Modelling, 46, 618–630. doi:10.1016/j.apm.2017.01.082

Sarkar, B., & Moon, I. (2011). An EPQ model with inflation in an imperfect production system. Applied Mathematics and Computation, 217(13), 6159–6167. doi:10.1016/j.amc.2010.12.098

Shaikh, A. A., Bhunia, A. K., Cárdenas-Barrón, L. E., Sahoo, L., & Tiwari, S. (2018). A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with Shortage Follows Inventory (SFI) policy. International Journal of Fuzzy Systems, 20(5), 1606–1623. doi:10.1007/s40815-018-0466-7

Sharmila, D., & Uthayakumar, R. (2015). Inventory model for deteriorating items involving fuzzy with shortages and exponential demand. International Journal of Supply and Operations Management, 2(3), 888–904.
Singh, R., Kumar, A., & Yadav, D. (2018). A two storage inventory model with variable demand and time dependent deterioration rate and with partial backlogging. Malaya Journal of Matematik (MJM), 2018(1), 35–40. doi:10.26637/MJM0S01/07

Teng, J. T., & Yang, H. L. (2004). Deterministic economic order quantity models with partial backlogging when demand and cost are fluctuating with time. Journal of the Operational Research Society, 55(5), 495–503. doi:10.1057/palgrave.jors.2601678

Tripathy, C. K., & Mishra, U. (2010). Ordering policy for Weibull deteriorating items for quadratic demand with permissible delay in payments. Applied Mathematical Science, 4(44), 2181–2191.

Yang, H. L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157(2), 344–356. doi:10.1016/S0377-2217(03)00221-2

Yang, H. L. (2012). Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107–116. doi:10.1016/j.ijpe.2012.03.007