Branch & Learn for Recursively and Iteratively Solvable Problems in Predict+Optimize

Xinyi Hu1, Jasper C.H. Lee2, Jimmy H.M. Lee1, Allen Z. Zhong1
1Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
2Department of Computer Sciences & Institute for Foundations of Data Science
University of Wisconsin–Madison, WI, USA
\{xyhu, jlee, zwzhong\}@cse.cuhk.edu.hk, jasper.lee@wisc.edu

Abstract

This paper proposes \textit{Branch & Learn}, a framework for Predict+Optimize to tackle optimization problems containing parameters that are unknown at the time of solving. Given an optimization problem solvable by a recursive algorithm satisfying simple conditions, we generalize previous work substantially by showing how a corresponding learning algorithm can be constructed directly and methodically from the recursive algorithm. Our framework applies also to iterative algorithms by viewing them as a degenerate form of recursion. Extensive experimentation shows better performance for our proposal over classical and state of the art approaches.

1 Introduction

In the intersection of machine learning and constrained optimization, the Predict+Optimize framework tackles optimization problems with parameters that are unknown at solving time. Such uncertainty is common in daily life and industry. For example, retailers need to pick items to restock for maximizing profit, yet consumer demand is a-priori unknown.

The task is to i) predict the unknown parameters, then ii) solve the optimization problem using the predicted parameters, such that the resulting solutions are good even under true parameters. Traditionally, the parameter prediction uses standard machine learning techniques, with error measures independent of the optimization problem. Thus, the predicted parameters may in fact lead to a low-quality solution for the (true) optimization problem despite being “high-quality” for the error metric. The Predict+Optimize framework uses the more effective \textit{regret function} \cite{2, 6, 9} as the error metric, capturing the difference in objective (computed under the true parameters) between the estimated and true optimal solutions. However, the regret function is usually not (sub-)differentiable, and gradient-based methods do not apply.

Prior works have focused on the regime where the optimization problems contain unknown objective and known constraints, and proposed ways to overcome the non-differentiability of the regret. They can be roughly divided into two approaches: \textit{approximation} and \textit{exact}. The former tries to compute the (approximate) gradients of (approximations of) the regret function. Elmachtoub \textit{et al.} \cite{6} propose a differentiable surrogate function for the regret function, while Wilder \textit{et al.} \cite{17} relax the integral objective in constrained optimization and solve a regularized quadratic programming problem. Mandy and Guns \cite{12} focus on mixed integer linear programs and propose an interior point based approach. While novel, approximation approaches are not always reliable. \textit{Exact} approaches exploit the structure of optimization problems to train models without computing gradients. Demirović \textit{et al.} \cite{4} investigate problems with the ranking property and propose a large neighborhood search method to learn a linear prediction function. They \cite{5} further extend the method to enable Predict+Optimize for problems amenable to tabular dynamic programming (DP).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
We propose a novel exact method for problems solvable with a recursive algorithm (under some restrictions), significantly generalizing the work of Demirović et al. [5]. By viewing iteration as a special case of recursion with a single branch, our framework applies also to iterative algorithms. Recall that DP is a special case of recursion, where the recursion structure has overlapping subproblems, enabling the use of memoization to avoid recomputation. In particular, tabular DP is implemented as an iterative algorithm, computing the table row by row. While tabular DP is a widely applicable technique, it is not universal in that many naturally recursively solvable problems are not known to have a DP algorithm. For example, many modern combinatorial search algorithms are still fundamentally based on exhaustive search. Our work thus subsumes the method by Demirović et al. [5] and extends the Predict+Optimize framework to a much wider class of optimization problems. Experiments on 3 benchmarks with artificial and real-life data against 9 other learning approaches confirm the superior solution quality and scalability of our method.

The concurrent work by Guler et al. [9], just accepted to AAAI22, proposes a divide and conquer algorithm, extending the work of Demirović et al. [5] by considering optimization problems whose objective function is a bilinear function in the decision variables and the unknown parameters. While both Branch & Learn and [9] are exact methods for Predict+Optimize, there are problems amenable to Branch & Learn but not [9], and vice versa. The techniques used are also very different between the two works. Section 6 compares the two pieces of work in more detail.

2 Background

Without loss of generality, an optimization problem is to find \(x^* = \arg \min_x \ obj(x) \) s.t. \(C(x) \), where \(x \in \mathbb{R}^d \) is a vector of decision variables, \(obj : \mathbb{R}^d \rightarrow \mathbb{R} \) is a function mapping \(x \) to an objective value to be minimized, and \(C \) is a set of constraints over \(x \). Thus, \(x^* \) is an optimal solution and \(obj(x^*) \) is the optimal value. In this (and prior) work, we focus on cases where only the objective contains uncertainty. A parameterized optimization problem (Para-OP) \(P(\theta) \) thus extends the problem \(P \) as:

\[
x^*(\theta) = \arg \min_x \ obj(x, \theta) \text{ s.t. } C(x)
\]

where \(\theta \in \mathbb{R}^l \) is a vector of parameters. The objective now depends also on \(\theta \). When the parameters are known, a Para-OP is just an optimization problem.

Example 1. Consider a project funding problem to maximize \(\sum_{i=1}^{4} p_i \cdot x_i \) subject to the budget constraint \(2x_1 + 2x_2 + x_3 + x_4 \leq 3 \), where \(p \) is an array representing the profits of projects. The problem is an instance of 0-1 knapsack. However, \(p \) is usually unknown at decision time, with only some features related to it given, such as proposal scores and the reputation of each applicant.

In Predict+Optimize [5], the true parameters \(\theta \in \mathbb{R}^l \) for a Para-OP are unknown at solving time, and estimated parameters \(\hat{\theta} \) are used instead. Suppose each parameter is estimated by \(m \) features. The estimation will rely on a machine learning model trained over \(n \) observations of a training data set \(\{(A^1, \theta^1), \ldots, (A^n, \theta^n)\} \), where \(A^i \in \mathbb{R}^{l \times m} \) is a feature matrix for \(\theta^i \), so as to yield a prediction function \(f : \mathbb{R}^{l \times m} \rightarrow \mathbb{R}^l \) for estimating parameters \(\theta = f(A) \).

The quality of the estimated parameters \(\hat{\theta} \) is measured by the regret function, which is the objective difference between the true optimal solution \(x^*(\theta) \) and the estimated optimal solution \(x^*(\hat{\theta}) \) under the true parameters \(\theta \). Formally, we define the regret function \(Regret(\hat{\theta}, \theta) : \mathbb{R}^l \times \mathbb{R}^l \rightarrow \mathbb{R}_{\geq 0} \) to be:

\[
Regret(\hat{\theta}, \theta) = \ obj(x^*(\hat{\theta}), \theta) - \ obj(x^*(\theta), \theta)
\]

where \(obj(x^*(\hat{\theta}), \theta) \) is the estimated optimal value and \(obj(x^*(\theta), \theta) \) is the true optimal value. Following the empirical risk minimization principle, Elmachtoub et al. [7] choose the prediction function from the set of models \(\mathcal{F} \) to attain the smallest average regret over the training data:

\[
f^* = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} Regret(f(A^i), \theta^i)
\]

(1)

For discrete optimization problems, the regret is not (sub) differentiable. Hence, traditional (sub-)gradient-based training algorithms are not applicable.
Demirović et al. [5] study the class \(\mathcal{F} \) of linear prediction functions and propose to represent the solution structure of a Para-OP using (continuous) piecewise linear functions. A piecewise linear function \(h \) is a real-valued function defined on a finite set of (closed) intervals \(\mathcal{I} \) partitioning \(\mathbb{R} \). Each interval \(I \in \mathcal{I} \) is associated with a linear function \(h[I] \) of the form \(h[I](r) = a_I r + b_I \), and the value of \(h(r) \) for a real number \(r \in \mathbb{R} \) is given by \(h[I](r) \) where \(r \in I \). An algebra can be canonically defined on piecewise linear functions [15]. For piecewise linear functions \(h \) and \(g \), we define pointwise addition as \((h + g)(r) = h(r) + g(r) \) for all \(r \in \mathbb{R} \). Pointwise subtraction, max/min and scalar products are similarly defined. All five operations can be computed efficiently by iterating over intervals of the operands [5].

In the rest of the paper, we assume that the prediction function \(f \) is a linear mapping of the form \(f(A) = A\alpha \) for some \(m \)-dimensional vector of coefficients \(\alpha \in \mathbb{R}^m \).

To (approximately) solve problem (1), Demirović et al. [5] proposes to update the coefficients \(\alpha \) of \(f \) iteratively via coordinate descent (Algorithm 1), in which \(\alpha \) are initialized arbitrarily and updated in a round-robin fashion. Each iteration (lines 3-10) contains three functions. \texttt{Construct} constructs a Para-OP as a function of the free coefficient, fixing the other coefficients in \(\alpha \), with an initial domain \(I_0 \). \texttt{Convert} returns a piecewise linear function of the free coefficient from the Para-OP, and each interval of the function corresponds to an estimated optimal solution. \texttt{Evaluate} takes the returned function and the true parameters as inputs, computes the estimated optimal value, and obtains the regret as a piecewise constant function of the free coefficient.

As Algorithm 1 shows, in each iteration (lines 3-10), an coefficient \(\alpha_k \) is updated. Iterating over index \(k \in \{1, \ldots, m\} \), we replace \(\alpha_k \) in \(\alpha \) with a variable \(\gamma \in \mathbb{R} \) by constructing \(\alpha + (\gamma - \alpha_k) e_k \), where \(e_k \) is a unit vector for coordinate \(k \). In lines 5-10, we wish to update \(\alpha_k \) as:

\[
\alpha_k \leftarrow \arg \min_{\gamma \in \mathbb{R}} \sum_{i=1}^{n} \text{Regret}(A^i e_k \gamma + A^i (\alpha - \alpha_k e_k), \theta^i)
\]

Let us describe lines 6-8 in more detail. For notational convenience, let \(a^i = A^i e_k \in \mathbb{R}^m \) and \(b^i = A^i (\alpha - \alpha_k e_k) \in \mathbb{R}^m \), which are vectors independent of the free variable \(\gamma \). \texttt{Construct} synthesizes the parameterized problem

\[
P^i_{\gamma} \equiv x^*(a^i \gamma + b^i) = \arg \min_{x} \text{\texttt{obj}}(x, a^i \gamma + b^i) \text{ s.t. } C(x)
\]

Sometimes, the parameterized problem can also have an initial domain \(I_0 \neq \mathbb{R} \) for \(\gamma \). For instance, we may restrict the estimated profits to be non-negative in Example 1. \texttt{Convert} takes \(P^i_{\gamma} \) to create a function \(E^i_{\gamma} \) mapping \(\gamma \) to the estimated objective \(E^i_{\gamma}(\gamma) = \text{\texttt{obj}}(x^*(a^i \gamma + b^i), a^i \gamma + b^i) \). Associated with each interval \(I \in \mathcal{I}(E^i_{\gamma}(\gamma)) \), a linear function maps \(\gamma \) to the objective computed with the estimated parameters \(a^i \gamma + b^i \), and the estimated optimal solution \(x^*(a^i \gamma + b^i) \) remains the same in each interval \(I \) [4, 5]. From this, \texttt{Evaluate} computes the regret \(L^i[I] \) for each interval \(I \), i.e.

\[
L^i[I] = \text{Regret}(a^i x^*(I) + b^i, \theta^i) = \text{\texttt{obj}}(x^*(a^i x^*(I) + b^i), \theta^i) - \text{\texttt{obj}}(x^*(\theta^i), \theta^i)
\]
We also restrict attention to algorithms satisfying: i) the only arithmetic operations involving the
While coordinate descent is a standard technique, the key contribution by Demirović
which in particular captures also all DP algorithms without memoization applied. This template uses
\chi
where
\chi
is a function arbitrarily selecting a value from an interval \(I \). The resulting function \(L^i \) is

piecewise constant and represents the regret for different values of the free coefficient. If \(\gamma \notin I_0 \),
the value of \(L^i \) is set to a sufficiently large constant to indicate impracticability of the estimation
\(\theta = a^i \gamma + b^i \). Line 9 sums all \(L^i(\gamma) \) into a piecewise constant total regret \(L(\gamma) \) across all training
examples, and line 10 minimizes \(L(\gamma) \) by simply iterating over each interval of \(L(\gamma) \).

While coordinate descent is a standard technique, the key contribution by Demirović et al. [5] is
to show how to build the \texttt{Convert} function for a tabular DP algorithm, by computing a modified
DP table with essentially the same structure. In this paper, we significantly generalize the method
by constructing \texttt{Convert} for recursive and iterative algorithms, opening the Predict+Optimize
framework to \emph{a much wider class} of problems than just those solvable using DP algorithms. A major
 obstacle to the generalization is that different prediction coefficients \(\gamma \) can lead to wildly different
exections of the recursion, all of which need to be explored in order to optimize for \(\gamma \) minimizing the
empirical regret. At a high level, we overcome this challenge by presenting a standard template for
recursion in Algorithm 2, which we show can be cleanly adapted (\texttt{ReLearn})
to algorithmically enumerate all the possible recursion executions based on the free coefficient \(\gamma \).

3 Recursively Solvable Problems

This section describes the general form (\texttt{ReResolve} in Algorithm 2) of recursive algorithms considered,
which in particular captures all DP algorithms without memoization applied. This template uses
the following two higher-order functions:

\textbf{Definition 1 (Map).} \textit{Suppose \(D, S \) are two sets and \(f : D \to S \) is a function. Map(} \(f, [d_1, \ldots, d_k] \) \textit{returns a list \([f(d_1), \ldots, f(d_k)] \) where \(d_1, \ldots, d_k \in D \) and \(f(d_i) \in S \).}

\textbf{Definition 2 (Reduce).} \textit{Suppose \(S \) is a set and \(\oplus : S \times S \to S \) is a commutative and associative operation. Reduce(} \(\oplus, [s_1, s_2, \ldots, s_k] \) \textit{returns \(s_1 \oplus s_2 \oplus \cdots \oplus s_k \).}

The \texttt{ReResolve} function takes a recursively solvable Para-OP \(P \) and known parameters \(\theta \), and returns
the optimal value and decisions \(C^* \) and \(x^* \) for \(P(\theta) \). It has several key components: i) \texttt{isBaseCase}
checks if \(P(\theta) \) is a base case, and if so, \texttt{BaseCase} returns the result of \(P(\theta) \). ii) \texttt{Extract}, using
the current problem \(P \) and current parameters \(\theta \), computes some information \(T \) which will determine
the list of subproblems. iii) \texttt{Branch}, using only \(T \), creates and returns a list \(PL \) of subproblems,
and computes the corresponding parameters from both \(T \) and the current parameters \(\theta \). iv) Each
subproblem in \(PL \) is solved recursively, via \texttt{Map} mapping \texttt{ReResolve} to \(PL \). After the recursive
calls, the partial results in \(RL \) are aggregated by a binary operation \(\oplus \) via \texttt{Reduce}. As mentioned,
the \texttt{ReResolve} template also captures iterative algorithms as recursion with a single branch.

We also restrict attention to algorithms satisfying: i) the only arithmetic operations involving the
unknown parameters are \(+, -, \max, \min \) and multiplication with known constants, ii) there are no
conditions within \texttt{Branch}, and iii) \texttt{isBaseCase} is independent of the parameters \(\theta \).

\textbf{Example 2.} \texttt{ReResolve}$_{KS}$ \textit{in Algorithm 3} is an instantiation of \texttt{ReResolve} for solving the project
funding (0-1 knapsack) problem in Example 1. \texttt{ReResolve}$_{KS}$ takes input \((p, c, n, W, S) \) where
\(n \) is the number of remaining projects to consider, \(W \) is the available funding, and \(S \) are the
Algorithm 3: Recursive Solving and Recursive Learning for 0-1 Knapsack Problem

Function ReSolve_KS(p, c, n, W, S):
1. if \(n = 0 \) or \(W \leq 0 \) then
2. \[R \leftarrow \{p, c, n, W, S\}; \]
3. \[\text{if } W > 0 \text{ then } \gamma \leftarrow \sum_{i \in S} p_i; \]
4. else
5. \[\{P_1, P_2\} \leftarrow \text{Branch}_{-KS}(p, c, n, W, S); \]
6. \[RL \leftarrow \text{Map}(\text{Resolve}_{-KS}, PL); \]
7. \[R \leftarrow \text{Reduce}(\max, RL); \]
8. return \(R \);

Function ReLearn_KS(p, c, n, W, S, I):
9. if \(n = 0 \) or \(W \leq 0 \) then
10. \[R[I] \leftarrow \sum_{i \in S} p_i; \]
11. else
12. \[\{P_1, P_2\} \leftarrow \text{Branch}_{-KS}(p, c, n, W, S); \]
13. \[RL \leftarrow \text{Map}(\text{ReLearn}_{-KS}, PL); \]
14. \[R[I] \leftarrow \text{Reduce}(\max, RL); \]
15. return \(R[I] \);

selected projects so far. Initially, \(S = \emptyset \). Extract_{-KS} is a no-op. Branch_{-KS} returns \([p, c, n - 1, W, S], (p, c, n - 1, W - c[n], S \cup \{n\})\), the two subproblems for whether the \(n \)-th project is selected or not. isBaseCase checks if the total cost exceeds the budget or if no projects are left to consider.

Limitations of requirements on the recursive algorithm Before Example 2, we specified requirements on recursive algorithms considered in this paper. Even though the framework is general, there are algorithms that the framework excludes. Perhaps the most stringent restrictions are on the arithmetics we allow in ReSolve. Using two examples, we illustrate some limits of our framework.

One simple (but perhaps unnatural) problem that the proposed framework cannot handle directly is the following: given \(n \) items with unknown “rewards” \(r_i \), find the two items with the maximum product of their rewards \(r_i r_j \). Computing the product of rewards involves multiplying (instead of adding) unknown parameters, which our framework cannot handle directly. On the other hand, the problem is equivalent to maximizing the sum of the logarithm of the two rewards. Thus, in this case, a simple reformulation of the problem makes it amenable to Branch & Learn (though whether the learning would work well is a different question, and depends on the data and the parameters).

However, we can make the problem and objective slightly more complicated (and contrived): choose \(3 \) items, and maximize the sum of pairwise products of rewards, i.e.
find items \(i, j, k \) to maximize \(r_i r_j + r_j r_k + r_i r_k \). It is much less obvious how we can find a natural reformulation of the problem that makes it still amenable to Branch & Learn, illustrating some of the limits of the approach.

4 The Branch & Learn Framework

The proposed Branch & Learn (B&L) framework methodically transforms a recursive algorithm (ReSolve in Algorithm 2) as described in the last section into a Predict+Optimize learning algorithm. In particular, we adapt the recursive algorithm into the ReLearn template of Algorithm 2, for use as the Convert function (line 7)—the intellectual core of the approach—in Algorithm 1.

Recall from Section 2 that, in the context of the coordinate descent algorithm (Algorithm 1), Convert (ReLearn here) takes as input i) the problem \(P_0 \)—constructed from \(P \) as well as the current training example \((A, \theta)\)—the problem \(P \) expressed as a function of the free coefficient coordinate \(\gamma \), and ii) the domain \(I_0 \) of \(\gamma \), also constructed from \((A, \theta)\) (for example, to ensure basic properties of parameters such as non-negativity). From these inputs, ReLearn computes a piecewise linear function, mapping intervals (that partition \(I_0 \) overall) to objectives (computed under the estimated parameters) of estimated optimal solutions using \(\gamma \) taking values within that interval. To construct such a ReLearn procedure, we can simply adapt from the corresponding ReSolve algorithm, and we explain each component of ReLearn here.

ReSolve (Algorithm 2) comprises isBaseCase, BaseCaseL, ExtractL, BranchL, Map and Reduce. Since isBaseCase, Map and Reduce do not directly involve any parameters, they are unchanged from ReSolve. As for BaseCaseL, ExtractL and BranchL, they are obtained from ReSolve by replacing all arithmetic operations with their piecewise linear generalizations.

With these component functions, the structure of ReLearn can then be based on that of ReSolve. ReLearn first checks whether the current subproblem is a base case, and if so, returns the corre-
We consider the Predict+Optimize setting where the edge costs are unknown. In the parameterized
We also note that, while it is possible to completely formalize the framework into a syntactic
A concrete example is the Bellman-Ford algorithm [2] for SPP in a weighted directed graph with
will depend highly on the precise programming language used (e.g. issues of side effect), and
This section gives several case studies for our framework. We first demonstrate, using the example of
ReLearn_SPP involving edge costs are replaced by their piecewise linear counterparts (Section 2).

Example 3. The adapted ReLearn_KS in Algorithm 3 solves the parameterized 0-1 knapsack
problem with the inputs of the parameterized problem \(P^*_\gamma = (p_\gamma, c, n, W, S) \) and an initial domain
0. The estimated profits \(p_\gamma \) is an array of linear functions of the free coefficient \(\gamma \), and \(I_0 \) is the
initial domain depending on \(A^1 \) such that \(p_\gamma \geq 0 \) for all \(\gamma \in I_0 \). The components of ReLearn_KS are essentially the same as those of ReSolve_KS (Algorithm 3), except that the addition in line 11 and the max operation in the Reduce function are replaced by their canonical extensions.

We also note that, while it is possible to completely formalize the framework into a syntactic
transformation, the correctness (or the required restrictions on ReSolve) of the formalization will depend highly on the precise programming language used (e.g. issues of side effect), and require significant low-level work on the level of the grammar of the language, detracting from the key intuitions and principles behind our framework. For this reason, we do not embark on such formalization in this paper. Nonetheless, in the next section, we give several case studies to showcase problems that are amenable to our framework and show how to adapt those recursive/iterative algorithms to ReLearn functions, demonstrating the applicability of the proposed framework.

5 Case Studies

This section gives several case studies for our framework. We first demonstrate, using the example of
the shortest path problem (SPP), how our framework can recover the DP based method of Demirović et al. [5]. We then showcase our framework on a more complicated iterative algorithm for solving the capacitated minimum cost flow problem (MCFP). To demonstrate the full recursion generality that our framework can handle, we use it on the tree-search algorithm for the NP-hard problem of minimum cost vertex cover (MCVC). The last example is the multi-stage scheduling (MSS) problem, which can be handled by our framework straightforwardly but not by many other prior Predict+Optimize methods. We describe the problems in the main paper while details are given in Appendix A.

Shortest Path Tabular DP can be viewed as an iterative algorithm, computing the subproblem
table row by row—the Branch operation in ReSolve generates a single subproblem \(P' \), which is independent of the unknown parameters (only the parameters to \(P' \) depend on the unknown parameters). With this perspective, the work of Demirović et al. [5] is a special case of our method.

A concrete example is the Bellman-Ford algorithm [2] for SPP in a weighted directed graph with
potentially negative weights. We instantiate ReSolve for solving SPP to obtain ReSolve_SPP as follows. Suppose \(V \) is the set of vertices of the graph. The inputs of ReSolve_SPP are
\((G^v, D, s, t, N)\), where \(G^v \in \mathbb{R}^{|V| \times |V|} \) is a matrix with entry \((G^v)_{uv}\) equal to the cost along the
directed edge \(uv \), \(N \) is a counter, \(D \) is an array of shortest \(|V| - N - 1\)-hop distances from the
source to each vertex, and \(s \) and \(t \) are the source and terminal. Initially, \(N = |V| - 1 \) and all elements in \(D \) are initialized to a sufficiently large number (signifying infinity), except that \(D[s] \) is set to 0. isBaseCase_SPP tests whether \(N = 0 \), and BaseCase_SPP returns \(D[t] \). Extract_SPP computes an array \(D' \) where each element \(D'[v] \) is computed by iterating over every vertex \(u \neq v \) and computing \(D'[v] = \min(D[v], D[u] + (G^v)_{uv}) \). Branch_SPP returns a single subproblem
\([P']\) where \(P' = (G^v, D', s, t, N - 1) \), on which ReSolve_SPP is called recursively.

We consider the Predict+Optimize setting where the edge costs are unknown. In the parameterized
problem \(P_\gamma \), parameterized by the free coefficient \(\gamma \) in the coordinate descent, the edge costs are non-negative parameters represented by linear functions of \(\gamma \). Correspondingly, all operations in ReLearn_SPP involving edge costs are replaced by their piecewise linear counterparts (Section 2).
ReSolve outputs a piecewise linear function that is the cost of the estimated shortest path under the estimated parameters, which as explained in Section 2 can be used to compute the regret. See Appendix A.1 for the pseudocode of ReSolve_SPP and ReLearn_SPP.

Capacitated Minimum Cost Flow We now apply the B&L framework to another iteratively solvable problem: MCFP in a directed graph, where at most one edge exists between any two vertices. Each graph edge has a non-negative capacity and a non-negative cost per unit of flow. Given input K, we want to find the least cost to route K units of flow from the source s to the terminal t. We consider the parameterized problem where only the edge flow costs are unknown.

We instantiate ReSolve for solving MCFP using the successive shortest path algorithm [16], to obtain ReSolve_MCFP. Suppose the set of vertices is V. The inputs of ReSolve_MCFP are (G^p, G^c, F, s, t). The two matrices $G^p \in \mathbb{R}^{V \times V}$ and $G^c \in \mathbb{R}^{V \times V}$ represent the edge capacity and the edge (unit) flow cost of the graph respectively. For the successive shortest path algorithm, we preprocess the graph by adding, for every edge uv in G, a reverse edge vu with 0 capacity and the negated cost $-(G^c)_{uv}$. The variable $F \in \mathbb{R}_{\geq 0}^{V \times V}$ is a matrix representing the flow sent along each edge so far. isBaseCase_MCFP tests whether there is no longer a path from s to t with non-zero capacity in G^p or whether the sum of all flows sent to t is no less than K, and BaseCase_MCFP adds the costs of all flows in F, i.e. $R = \sum_{(u,v)} F_{uv} \cdot (G^c)_{uv}$. Extract_MCFP computes a path T from s to t with lowest cost (per unit flow) in G^c. Branch_MCFP updates the capacity graph G^p and the flow graph F given a path T. The capacity of each edge in the path T is decreased and the capacities of the reverse edges in G^c are increased by the value of the sending flow. The value of the sending flow is the minimum value between the largest flow value allowed on T and the remaining flow need to be sent to t. The flow is also added to F. ReSolve_MCFP is called recursively on these new G^p and F as well as the original G^c, s and t.

Correspondingly in ReLearn_MCFP, the input is a problem P_γ, parameterized by the free coefficient γ, and all edge costs (the unknown parameters) are expressed as linear functions of γ. The initial domain I_0 for γ is restricted so that the edge cost estimates are non-negative for all $\gamma \in I_0$. Extract_MCFP adapts from the Bellman-Ford ReLearn_SPP in the previous case study, which computes a piecewise data structure T_γ, mapping intervals (for γ) to different shortest paths (in addition to just the path lengths). For each interval I of T_γ, Branch_MCFP constructs a subproblem P_γ by updating G^p using $T_\gamma[I]$. ReLearn_MCFP is recursively called on P_γ, until the base case is reached. See Appendix A.2 for the pseudocode of ReSolve_MCFP and ReLearn_MCFP.

Minimum Cost Vertex Cover Our third example is the MCV problem, where we show how to apply our framework to a (non-degenerate) recursive algorithm (with multiple branches). Given a graph $G = (V, E)$, there is an associated cost $c \in \mathbb{R}^{|V|}$ denoting the cost of picking each vertex. The costs are unknown parameters. The goal is to pick a subset of vertices, minimizing the total cost, subject to the constraint that all edges need to be covered, namely at least one of the two vertices on an edge needs to be picked. This problem is relevant in applications such as building public facilities. Consider, for example, the graph being a road network with edge values being traffic flow, and we wish to build speed cameras at intersections with minimum cost, while covering all the roads.

The recursive algorithm ReSolve_MCV takes input $(G, c, \ell, n, chosen)$, where G, c, ℓ are as before, n is the number of levels of (binary) recursion remaining and $chosen$ is the current list of chosen vertices. isBaseCase_MCV checks if $n = 0$, and BaseCase_MCV returns the total cost of vertices in $chosen$ if all edges in G are covered, and returns infinity otherwise. Extract_MCV replaces all arithmetic and min operations by piecewise linear counterparts. See Appendix A.3 for the pseudocode of ReSolve_MCV and ReLearn_MCV.

Multi-stage Scheduling Our last example is the MSS problem, where a set of items needs to be processed by two machines sequentially. Each machine can process only one item at a time, and each item must be processed first by machine 1 and then machine 2. Furthermore, the items must be processed by both machines in the same order. The goal is to find an ordering for processing items that minimizes the total elapsed time. For this problem, the unknown parameters are the individual item processing times on the machines. We note that a host of prior Predict+Optimize methods
cannot be applied to this problem, including the tabular DP method of Demirović et al. [5], as well as the recent work of Guler et al. [9] and any linear programming based methods which all require a problem formulation with an objective that is bilinear in the unknown parameters and the decision variables (that is, a dot product between these two vectors). Our method on the other hand handles this problem relatively straightforwardly by directly adapting Johnson’s rule. See Appendix A.4 for details of ReSolve_MSS and ReLearn_MSS as well as their pseudocode.

6 Comparing Branch & Learn with Latest Work

Both Branch & Learn and the work of Guler et al. [9] are exact methods for Predict+Optimize, since they both directly optimize the regret, instead of any surrogates. Both also use coordinate-descent as the high-level optimization routine. The main differences lie in the kind of problems that the methods can apply to, as well as the very different techniques used to achieve each coordinate-descent step.

In terms of applicable problems, Branch & Learn applies to all optimization problems solvable by an algorithm fitting the ReSolve template in Section 3. On the other hand, [9] applies to problems with an objective that is bilinear in both the decision variables and the unknown parameters—the objective is the inner product between the two vectors. There are problems amenable to Branch & Learn but not [9], and vice versa. Here we can give some intuition about when each method is applicable.

Suppose we have an optimization problem with a finite feasible solution set. For most practical purposes, such a solution set is enumerable by a recursive algorithm (but not always, since finite sets need not be enumerable for computability reasons). If, additionally, the objective function is bilinear as in the assumption of [9], then Branch & Learn would be able to handle such a problem. In this sense, an optimization problem with a finite solution set that is solvable by [9] would also be solvable by Branch & Learn. The multi-stage scheduling problem with unknown per-item/machine processing times is an example problem with no such bilinear-objective representation (unless we use an exponentially large integer linear program to represent the problem, with exponentially many unknown parameters), yet is easy to fit into our framework.

On the other hand, if the solution space is continuous, Branch & Learn might not be able to handle such an optimization problem. The reason is that Branch & Learn (as it is currently formulated) requires explicitly computing the entire empirical regret function, which is possible only if the regret has a finite representation (say, as a piecewise linear function). When the solution space is continuous, the regret might be a general smooth function even if the objective is bilinear. By contrast, [9] never computes the entire regret function explicitly. Instead, it just computes the regret function at query points, and performs numerical optimization on the function (which is convex when the objective is bilinear). In this sense, [9] is more capable than Branch & Learn in these continuous settings.

In terms of techniques, Branch & Learn automatically generates the “transition points” in the piecewise linear functions by essentially simulating the recursive algorithm. This contrasts the approach of [9], where they leverage the convexity structure in the problem arising from their bilinearity assumption on the objective, and they use a numerical optimization approach (essentially a variant of binary/ternary search) to perform a coordinate-descent step.

7 Experimental Evaluation

In this section, we compare our proposed B&L method with other methods for Predict+Optimize. We include 4 classical regression methods: linear regression (LR), k-nearest neighbors (k-NN), classification and regression tree (CART) and random forest (RF) [8]; 3 approximation methods: smart predict then optimize (SPO) [6], quadratic programming task loss (QPTL) [17], and interior point based approach (IntOpt) [12]; and 2 exact methods: SPO tree and SPO forest [7]. We experiment on three optimization problems: MCFP, MCVC and MSS—problems that the previous DP-based method cannot handle—and use both artificial and real-life data on real-life graphs. For MCFP, we use USANet [11] (24 vertices and 43 edges) and GÉANT [10] (40 vertices and 61 edges). For the NP-hard problem of MCVC, we use two smaller graphs from the Survivable Network Design Library [13]: POLSKA (12 vertices and 18 edges) and PDH (11 vertices and 34 edges). In MCFP, the edge costs are unknown, and the capacities are sampled from \([10, 50]\). The flow value is set to 20, and we select random sources and sinks. In MCVC, the edge costs are unknown. In MSS, the processing times for each item and machine are unknown. We vary the number of jobs from 10 to 40.
We run 30 simulations for each problem configuration. In each simulation, we build datasets consisting of $n \in \{100, 300\}$ pairs (of feature matrix, parameters). In the artificial and real-life datasets, each parameter has 4 and 8 features respectively. Given that we are unable to find datasets specifically for the MCFP, MCVC and MSS problems, we follow the experimental approach of Demirović et al. [3, 4, 5] and use real data from a different problem (the ICON scheduling competition) as numerical values required for our experiment instances. We use a 70%/30% training/testing data split. Details of the data generation method are in Appendix B. We use the scikit-learn library [1] to implement LR, k-NN, CART and RF, and OR-Tools [14] as the problem solver in SPO Tree and SPO Forest. All models are trained with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz processors.

Solution Quality

Table 2, and 3 report the mean regrets and their standard deviations for each method on MCFP, MCVC and MSS respectively. Mean regret ± std is the metric used to demonstrate the performance. At the bottom of the table we also report the average true optimal values (TOV) to compare the relative error on the artificial and real-life datasets.

As shown in Table 1, B&L achieves the best performance in all cases. On the artificial dataset, B&L, LR, k-NN, RF, IntOpt, and SPO Forest achieve similar performance on both of the two graphs, while SPO Tree performs well on USANet but has a poor performance on GÉANT. With the real-life dataset, B&L shows the most significant advantages. Compared with other methods, B&L obtains $20.38\%-58.35\%$ ($n = 100$) and $11.13\%-60.86\%$ ($n = 300$) smaller regret on USANet, and $12.13\%-54.11\%$ ($n = 100$) and $18.70\%-64.83\%$ ($n = 300$) smaller regret on GÉANT. We observe that all methods achieve smaller relative error with real-life data than with artificial data. B&L, for example, achieves $7.46\%-15.68\%$ and $1.12\%-2.07\%$ relative error with artificial and real-life data respectively. This is consistent with how the artificial dataset is purposefully designed to be highly non-linear (see Appendix B), and thus harder to learn. Nevertheless, B&L still achieves the smallest regret.

Table 2 shows the results for MCVC. We can see that B&L has the smallest mean regrets in all cases. On the artificial dataset, all methods achieve similar good performance on POLSKA, while CART and all approximation methods perform poorly on PDH. The performance differences among different methods are larger in the real-life dataset, and the advantages of B&L are more evident. B&L obtains $12.95\%-59.41\%$ ($n = 100$) and $5.22\%-59.53\%$ ($n = 300$) smaller regret in POLSKA, and $9.05\%-55.26\%$ ($n = 100$) and $9.71\%-52.89\%$ ($n = 300$) in PDH. Similar to the results of MCFP, all algorithms achieve better performance in the real-life dataset. B&L achieves $6.16\%-16.86\%$ relative error in the artificial dataset, and $0.68\%-1.51\%$ relative error in the real-life dataset.

1. Our implementation is available at https://github.com/dadahxy/NeurIPS_BranchAndLearn
We show the mean regrets and standard deviations in the MSS experiment in Table 3. Note that linear programming based methods including SPO, QPTL and IntOpt are not applicable to this problem as mentioned in Section 5. Due to the space limitation, we only show the results when the number of jobs is 10 and 40—see Appendix C for more results. B&L has the best performance in all cases with the real-life dataset, achieving 0.44%-0.79% relative error compared to the TOV. Contrasting other methods, B&L obtains 14.58%-69.20% ($n=100$) and 14.47%-67.73% ($n=300$) smaller regret for 10 jobs, and 10.85%-65.85% ($n=100$) and 9.84%-56.10% ($n=300$) for 40 jobs. On the artificial dataset, all algorithms perform essentially the same, achieving 4.69%-9.65% relative error.

Scalability/Runtime

Learning using regression or approximate methods is fast, but these methods sacrifice the accuracy of the learned model, which is the motivation for the line of work on Predict+Optimize. On the other hand, many optimization problems are expensive to solve. Although exact methods achieve lower regret, their runtime scalability can be an issue since their learning process requires solving optimization problems multiple times. For a fair comparison, therefore, we compare B&L only with other exact methods: SPO Tree and SPO Forest. Table 4 shows the average runtime across 30 simulations for different cases. Overall, we observe that B&L scales at least as well as SPO Tree and SPO Forest in most of the cases. Of note is the (MSS, 40 jobs, dataset size 100) setting where B&L runs slower than SPO Tree and Forest, due to the fact that MSS is a permutation-based scheduling problem, where B&L takes significant training time to explore all the possible predictions. Nonetheless, if we consider the ratio of runtimes between dataset sizes 100 and 300, B&L scales significantly better than SPO Tree and Forest with respect to the dataset size.

8 Summary

Given a `ReSolve` function for a recursively or iteratively solvable problem, we propose a systematic approach to synthesize a `ReLearn` function for learning with the regret loss, by replacing operators in `ReSolve` with their piecewise linear counterparts. Our proposal is methodical and straightforward to implement. Furthermore, our framework encompasses a wide class of recursive algorithms (`ReSolve` functions), as demonstrated by our case studies. Most importantly, B&L empirically achieves the lowest regrets against classical machine learning and contemporary Predict+Optimize algorithms with runtime comparable with the latter.

Acknowledgments

We thank the anonymous referees for their constructive comments. In addition, we acknowledge the financial support of a General Research Fund (RGC Ref. No. CUHK 14206321) by the University Grants Committee, Hong Kong. Jasper C.H. Lee was supported in part by the generous funding of a Croucher Fellowship for Postdoctoral Research, NSF award DMS-2023239, NSF Medium Award CCF-2107079 and NSF AIATF Award CCF-2006206.
References

[1] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux. API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[3] E. Demirović, P. J. Stuckey, J. Bailey, J. Chan, C. Leckie, K. Ramamohanarao, and T. Guns. An investigation into prediction + optimisation for the knapsack problem. In International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pages 241–257, 2019.

[4] E. Demirović, P. J. Stuckey, J. Bailey, J. Chan, C. Leckie, K. Ramamohanarao, and T. Guns. Predict+optimise with ranking objectives: Exhaustively learning linear functions. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pages 1078–1085, 2019.

[5] E. Demirović, P. J. Stuckey, T. Guns, J. Bailey, C. Leckie, K. Ramamohanarao, and J. Chan. Dynamic programming for predict+optimise. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 1444–1451, 2020.

[6] A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Management Science, 68(1):9–26, 2022.

[7] A. N. Elmachtoub, J. C. N. Liang, and R. McNellis. Decision trees for decision-making under the predict-then-optimize framework. In Proceedings of the 37th International Conference on Machine Learning, pages 2858–2867, 2020.

[8] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer series in statistics New York, 2001.

[9] A. U. Guler, E. Demirović, J. Chan, J. Bailey, C. Leckie, and P. J. Stuckey. A divide and conquer algorithm for predict+optimize with non-convex problems. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 3749–3757, 2022.

[10] M. LLC. Geant topology map dec2018 copy. https://www.geant.org/Resources/Documents/GEANT_Topology_Map_December_2018.pdf, 2018. Accessed: 2020-09-10.

[11] D. Lucerna, N. Gatti, G. Maier, and A. Pattavina. On the efficiency of a game theoretic approach to sparse regenerator placement in WDM networks. In GLOBECOM 2009-2009 IEEE Global Telecommunications Conference, pages 1–6. IEEE, 2009.

[12] J. Mandi and T. Guns. Interior point solving for LP-based prediction+optimisation. Advances in Neural Information Processing Systems, 33:7272–7282, 2020.

[13] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessály. SNDlib 1.0–Survivable Network Design Library. In Proceedings of the 3rd International Network Optimization Conference, April 2007. http://sndlib.zib.de, extended version accepted in Networks, 2009.

[14] L. Perron and V. Furnon. OR-Tools. https://developers.google.com/optimization/, 2022.

[15] M. Von Mohrenschildt. A normal form for function rings of piecewise functions. Journal of Symbolic Computation, 26(5):607–619, 1998.

[16] G. R. Waissi. Network Flows: Theory, Algorithms, and Applications. JSTOR, 1994.

[17] B. Wilder, B. Dilkina, and M. Tambe. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, pages 1658–1665, 2019.
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to answer these questions. For each question, change the default [TODO] to [Yes], [No], or [N/A]. You are strongly encouraged to include a justification to your answer, either by referencing the appropriate section of your paper or providing a brief inline description. For example:

- Did you include the license to the code and datasets? [Yes]
- Did you include the license to the code and datasets? [No] The code and the data are proprietary.
- Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist section does not count towards the page limit. In your paper, please delete this instructions block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes] See Sections 3 and 4
 (c) Did you discuss any potential negative societal impacts of your work? [N/A]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] See Footnote 1 in the main paper
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Section 7
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] See Section 7
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Section 7

4. If you used existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes] See Section 7
 (b) Did you mention the license of the assets? [N/A]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] See Footnote 1
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]
A Pseudocode for Case Studies

This section gives pseudocode implementations for the recursive and iterative algorithmic case studies in the main paper, which includes i) the Bellman-Ford algorithm for the shortest path problem (Algorithms 4 and 5), ii) the successive shortest path algorithm for the minimum cost flow problem (Algorithm 6 and 7), iii) the branching algorithm for the minimum cost vertex covering problem (Algorithm 8 and 9), and iv) the Johnson’s rule for the multi-stage scheduling problem (Algorithm 10 and 11).

Note that for the Bellman-Ford and successive shortest path algorithms, Branch only generates one subproblem. Thus it is equivalent to invoking the recursive call on the subproblem directly without calling the Map function.

A.1 Pseudocode for the Bellman-Ford Algorithm for Shortest Path

Algorithm 4: Bellman-Ford Algorithm for SPP

1 Function Resolve_SPP(G^c, D, s, t, N):
2 if $N = 0$ then
3 $R \leftarrow D[t]$;
4 else
5 $D' \leftarrow$ Extract_SPP(G^c, D);
6 $[P'] \leftarrow$ Branch_SPP($G^c, D', s, t, N - 1$);
7 $R \leftarrow$ Resolve_SPP(P');
8 return R;
9 Function Extract_SPP(G^c, D):
10 for every vertex $u \neq v$ in V do
11 $D'[v] = \min(D[v], D[u] + (G^c)_{uv})$;
12 return D'

Algorithm 5: Bellman-Ford Algorithm for Para-SPP

1 Function ReLearn_SPP($G^c_\gamma, D_\gamma, s, t, N, I_0$):
2 if $N = 0$ then
3 $R[I_0] \leftarrow D_\gamma[t]$;
4 else
5 $D_\gamma' \leftarrow$ ExtractL_SPP($G^c_\gamma, D_\gamma, I_0$);
6 $[P'] \leftarrow$ BranchL_SPP($G^c_\gamma, D_\gamma', s, t, N - 1$);
7 $R[I_0] \leftarrow$ ReLearn_SPP(P', I_0);
8 return R;
9 Function ExtractL_SPP($G^c_\gamma, D_\gamma, I_0$):
10 for every vertex $u \neq v$ in V do
11 $D_\gamma'[v] = \min(D_\gamma[v], D_\gamma[u] + (G^c_\gamma)_{uv})$;
12 return D_γ'
A.2 Pseudocode for the Successive Shortest Path Algorithm for Capacitated Minimum Cost Flow

Algorithm 6: Successive Shortest Path Algorithm for MCFP

1. **Function** `ReSolve_MCFP(G_{p}, G_{c}, F, s, t);`
2.
3. if no path from s to t in G_{p} or \(\sum_{(u,t)} F_{ut} \geq K \) then
4. \(R \leftarrow \sum_{(u,v)} F_{uv} \cdot (G_{c})_{uv} \);
5. else
6. \(T \leftarrow \text{Extract}_MCFP(G_{p}, G_{c}, s, t); \)
7. \([P'] \leftarrow \text{Branch}_MCFP(G_{p}, G_{c}, F, T); \)
8. \(R \leftarrow \text{ReSolve}_MCFP(P') \);
9. return \(R; \)

10. **Function** `Extract_MCFP(G_{p}, G_{c}, s, t);`
11. for every vertex \(v \) in \(V \) do
12. for every vertex \(u \neq v \) in \(V \) do
13. if \((G_{p})_{uv} > 0 \) then
14. \(D[v] \leftarrow \min(D[v], D[u] + (G_{c})_{uv}); \)
15. if \(D[v] = D[u] + (G_{c})_{uv} \) then
16. \(T[v] \leftarrow u; \)
17. return \(T; \)

18. **Function** `Branch_MCFP(G_{p}, G_{c}, F, T);`
19. \(\text{block}_flow = \infty; \)
20. for every vertex \(v \) on \(T[] \) do
21. \(u \leftarrow T[v]; \)
22. \(\text{block}_flow \leftarrow \min(\text{block}_flow, F_{uv}); \)
23. \(\text{block}_flow \leftarrow \min(\text{block}_flow, K - \sum_{(u,t)} F_{ut}); \)
24. for every vertex \(v \) on \(T[] \) do
25. \(u \leftarrow T[v]; \)
26. \((G'_{p})_{uv} \leftarrow (G_{p})_{uv} - \text{block}_flow; \)
27. \((G'_{c})_{vu} \leftarrow (G_{c})_{vu} + \text{block}_flow; \)
28. \(F'_{uv} \leftarrow F_{uv} + \text{block}_flow; \)
29. return \((G'_{p}, G'_{c}, F', s, t); \)
Algorithm 7: Successive Shortest Path Algorithm for Para-MCFP

Function $\text{ReLearn_MCFP}(G^p, G^c_\gamma, F^\gamma, s, t, I_0)$:
1. if no path from s to t in G^p or $\sum I \sum_{(u,t)}(F^\gamma[I])_{ut} \geq K$ then
2. $R[I_0] \leftarrow \sum I \sum_{(u,t)}(F^\gamma[I])_{uv} \cdot (G^c_\gamma)_{uv}$;
3. else
4. $T_\gamma \leftarrow \text{ExtractL_MCFP}(G^p, G^c_\gamma, s, t, I_0)$;
5. for each interval $I \in I(T_\gamma)$ do
6. $[P'] \leftarrow \text{BranchL_MCFP}(G^p, G^c_\gamma, F^\gamma[I], T_\gamma[I])$;
7. $R[I] \leftarrow \text{ReLearn_MCFP}(P', I)$;
8. return $R[I_0]$;

Function $\text{ExtractL_MCFP}(G^p, G^c_\gamma, s, t, I_0)$:
9. for every vertex v in V do
10. for every vertex $u \neq v$ in V do
11. if $(G^p)_{uv} > 0$ then
12. $D_\gamma[v] \leftarrow \min(D_\gamma[v], D_\gamma[u] + (G^c_\gamma)_{uv})$;
13. for each interval $I \in I(D_\gamma)$ do
14. if $D_\gamma[v] = D_\gamma[u] + (G^c_\gamma)_{uv}$ then
15. $T_\gamma[I][v] \leftarrow u$;
16. return T_γ;

Function $\text{BranchL_MCFP}(G^p, G^c_\gamma, F_\gamma[I], T_\gamma[I])$:
17. block_flow $\leftarrow \infty$;
18. for every vertex v on $T_\gamma[I]$ do
19. $u \leftarrow T_\gamma[I][v]$;
20. block_flow $\leftarrow \min(block_flow, (F_\gamma[I])_{uv})$;
21. block_flow $\leftarrow \min(block_flow, K - \sum I \sum_{(u,t)}(F_\gamma[I])_{ut})$;
22. for every vertex v on $T_\gamma[I]$ do
23. $u \leftarrow T_\gamma[I][v]$;
24. $(G^p')_{uv} \leftarrow (G^p)_{uv} - block_flow$;
25. $(G^p')_{vu} \leftarrow (G^p)_{vu} + block_flow$;
26. $F_\gamma'[I]_{uv} \leftarrow (F_\gamma[I])_{uv} + block_flow$;
27. return $(G^p', G^c_\gamma, F_\gamma'[I], s, t, I)$.

15
A.3 Pseudocode for the standard Branching Algorithm for Minimum Cost Vertex Cover

Algorithm 8: Branching Algorithm for MCVC

Function ReSolve_MCVC(G, c, ℓ, n, chosen):
 if n = 0 then
 if the edges in G are all covered then
 R ← 0;
 for every vertex v in chosen do
 R ← R + c[v];
 return R;
 else
 return ∞;
 else
 [P₁, P₂] ← Branch_MCVC(G, c, ℓ, n, chosen);
 [R₁, R₂] ← Map(ReSolve_MCVC, [P₁, P₂]);
 R ← Reduce(min, [R₁, R₂]);
 return R;

Branch_MCVC(G, c, ℓ, n, chosen):
 P₁ ← (G, c, ℓ, n − 1, chosen);
 P₂ ← (G, c, ℓ, n − 1, chosen ∪ {n});
 return (P₁, P₂);

Algorithm 9: Branching Algorithm for Para-MCVC

Function ReLearn_MCVC(G, c, ℓ, n, chosen, I₀):
 if n = 0 then
 if the edges in G are all covered then
 R[I₀] ← 0;
 for every vertex v in chosen do
 R[I₀] ← R[I₀] + c[v];
 return R[I₀];
 else
 R[I₀] ← ∞;
 return R[I₀];
 else
 [P₁, P₂] ← BranchL_MCVC(G, c, ℓ, n, chosen, I₀);
 [R₁, R₂] ← Map(ReLearn_MCVC, [P₁, P₂]);
 R ← Reduce(min, [R₁, R₂]);
 return R;

BranchL_MCVC(G, c, ℓ, n, chosen, I₀):
 P₁ ← (G, c, ℓ, n − 1, chosen);
 P₂ ← (G, c, ℓ, n − 1, chosen ∪ {n}, I₀);
 return (P₁, P₂);

A.4 Pseudocode for the Johnson’s rule for Multi-stage Scheduling

Suppose schedule is the current array of the scheduled items which is initialized as an array of length equal to the total number of items and all elements equal to -1, remainingItems is the current list of the unscheduled items, and timeReg is the array with two columns, each containing the processing times of each item on a machine. Throughout the execution of the algorithm, the form of schedule always maintains the structure of [a, b, c] where a is a sub-array of non-(−1) entries corresponding to actual items, b is a sub-array of only −1 entries, and c is another sub-array...
of non-\((-1)\) entries corresponding to actual items. The recursive algorithm \texttt{ReSolve_MSS} takes input \((n, schedule, remaining_Items, time_Req)\), where \(n\) is the remaining number of levels of recursion. \texttt{isBaseCase_MSS} checks if \(n = 0\), and \texttt{BaseCase_MSS} returns the total elapsed time for processing all items on both of the two machines. \texttt{Extract_MSS} examines all the entries of \texttt{time_Req} that correspond to items in \texttt{remaining_Items}, and finds the smallest entry. This entry corresponds to an \((item, machine)\) pair, where machine can be either 1 or 2, and this pair is returned by \texttt{Extract_MSS}. Given this as input, \texttt{Branch_MSS} first removes the item from \texttt{remaining_Items}, and needs to now insert this item into \texttt{schedule}. The way it does that is simple: if the entry found by \texttt{Extract_MSS} corresponds to machine 1, it looks for the first \(-1\) entry in \texttt{schedule} from the beginning of the array and replaces it with \texttt{item}. Otherwise, it instead looks from the end of the array backwards for the first \(-1\) entry, and replaces it with \texttt{item}. Given this processing, \texttt{Branch_MSS} returns the single subproblem \((n - 1, schedule, remaining_Items, time_Req)\) and \texttt{ReSolve_MSS} is called recursively.

Correspondingly, the input of \texttt{ReLearn_MSS} is a problem \(P_\gamma\) parameterized by the free coefficient \(\gamma\), and the processing time of all items on two machines (the unknown parameters) are expressed as linear functions of \(\gamma\). \texttt{ExtractL_MSS} replaces all arithmetic and \texttt{min} operations by piecewise linear counterparts, which computes a piecewise data structure \(T_\gamma\) mapping intervals (for \(\gamma\)) to different inserted items that with the shortest processing time in the \texttt{remaining_Items} list and different corresponding machine numbers. For each interval \(I\) of \(T_\gamma\), \texttt{Branch_MSS} constructs a subproblem \(P'_\gamma\) by updating \texttt{schedule} and \texttt{remaining_Items} using \(T_\gamma[I]\). \texttt{ReLearn_MSS} is recursively called on \(P'_\gamma\), until the base case is reached.
Algorithm 10: Johnson’s Rule for MSS

Function ReSolve_MSS(n, schedule, remainingItems, timeReq):

if n = 0 then
 M[1]Time ← 0;
 M[2]Time ← 0;
 for every item i in schedule[] do
 M[1]Time ← M[1]Time + timeReq[i][1];
 if M[1]Time < M[2]Time then
 M[2]Time ← M[1]Time + timeReq[i][2];
 else
 M[2]Time ← M[2]Time + timeReq[i][2];
 R ← M[2]Time;
 else
 T ← Extract_MSS(remainingItems, timeReq);
 [P′] ← Branch_MSS(n, schedule, remainingItems, timeReq, T);
 R ← ReSolve_MSS(P′);
 return R;

Function Extract_MSS(remainingItems, timeReq):

minProTime ← ∞;
item ← −1;
machine ← −1;
for every item i in remainingItems[] do
 minProTime ← min(minProTime, timeReq[i][1], timeReq[i][2]);
 if minProTime = timeReq[i][1] then
 item ← i;
 machine ← 1;
 if minProTime = timeReq[i][2] then
 item ← i;
 machine ← 2;
T ← (item, machine);
return T;

Function Branch_MSS(n, schedule, remainingItems, timeReq, T):

Remove T.item from remainingItems[];
if T.machine = 1 then
 Look from the beginning of schedule[] forward for the first -1 entry, and replace it with T.item;
else
 Look from the end of schedule[] backward for the first -1 entry, and replace it with T.item;
return (n − 1, schedule, remainingItems, timeReq);
Algorithm 11: Johnson’s Rule for Para-MSS

Function ReLearn_MSS(n, schedule, remainingItems, timeReq, I₀):
1. if n = 0 then
2. \(M1\text{Time} \leftarrow 0; \)
3. \(M2\text{Time} \leftarrow 0; \)
4. for every item i in schedule do
5. \(M1\text{Time} \leftarrow M1\text{Time} + \text{timeReq}[i][1]; \)
6. if \(M1\text{Time} < M2\text{Time} \) then
7. \(M2\text{Time} \leftarrow M2\text{Time} + \text{timeReq}[i][2]; \)
8. else
9. \(M2\text{Time} \leftarrow M1\text{Time} + \text{timeReq}[i][2]; \)
10. \(R[I₀] \leftarrow M2\text{Time}; \)
11. \(T_\gamma \leftarrow \text{ExtractL_MSS}(\text{remainingItems}, \text{timeReq}, I₀); \)
12. for each interval \(I \in \mathbb{I}(T_\gamma) \) do
13. \([P'] \leftarrow \text{BranchL_MSS}(n, \text{schedule}[I], \text{remainingItems}[I], \text{timeReq}, T_\gamma[I]); \)
14. \(R[I] \leftarrow \text{ReLearn_MSS}(P', I); \)
15. return \(R[I₀]; \)

Function ExtractL_MSS(remainingItems, timeReq, I₀):
16. \(\text{minProTime}_\gamma \leftarrow \infty; \)
17. \(\text{item} \leftarrow -1; \)
18. \(\text{machine} \leftarrow -1; \)
19. for every item i in remainingItems do
20. \(\text{minProTime}_\gamma \leftarrow \min(\text{minProTime}_\gamma[i][1], \text{timeReq}_\gamma[i][2]); \)
21. for each interval \(I \in \mathbb{I}(\text{minProTime}_\gamma) \) do
22. if \(\text{minProTime}_\gamma[I] = \text{timeReq}_\gamma[I][1] \) then
23. \(T_\gamma[I].\text{item} \leftarrow i; \)
24. \(T_\gamma[I].\text{machine} \leftarrow 1; \)
25. if \(\text{minProTime}_\gamma[I] = \text{timeReq}_\gamma[I][2] \) then
26. \(T_\gamma[I].\text{item} \leftarrow i; \)
27. \(T_\gamma[I].\text{machine} \leftarrow 2; \)
28. return \(T_\gamma; \)

Function BranchL_MSS(n, schedule, remainingItems, timeReq, T_\gamma[I]):
29. \(\text{Remove } T_\gamma[I].\text{item} \text{ from } \text{remainingItems}[I]; \)
30. if \(T_\gamma[I].\text{machine} = 1 \) then
31. Look from the beginning of \(\text{schedule}[I] \) forward for the first -1 entry, and replace it with \(T_\gamma[I].\text{item}; \)
32. else
33. Look from the end of \(\text{schedule}[I] \) backward for the first -1 entry, and replace it with \(T_\gamma[I].\text{item}; \)
34. return \((n - 1, \text{schedule}[I], \text{remainingItems}[I], \text{timeReq}); \)

B Experimental Setting

In this section, we give details about the experimental setting, including the random source and sink selection method used in MCFP, the generation of the artificial dataset for each problem we experiment on, and the parameters tuning.

The Random Source and Sink Selection Method Used in MCFP We design graph-specific distributions for taking a random source and a random sink for the minimum cost flow problem (MCFP), with the goal of making sure that the path between the source and the sink is not too short.
Table 5: Mean regrets and standard deviations for MSS with unknown parameters in artificial dataset.

Size	10 Jobs	20 Jobs	30 Jobs	40 Jobs	50 Jobs
B&L	2.63±1.25	2.41±0.57	1.20±0.25	1.13±0.17	1.10±0.15
LR	121.91±12.12	121.53±6.66	168.03±14.47	171.71±8.09	203.32±21.26
i-NN	122.57±14.31	123.89±6.99	168.52±18.96	170.40±11.08	205.88±22.63
CART	117.79±6.43	126.67±4.11	167.56±22.89	170.08±9.13	207.95±26.40
RF	120.72±12.38	123.90±6.68	172.18±20.69	171.02±11.81	205.62±20.37
SPO Tree	122.16±16.07	123.23±8.71	175.55±19.87	170.29±11.09	208.32±23.14
SPO Forest	125.37±12.52	121.64±6.76	171.11±18.06	171.17±11.91	208.32±23.14
Average	1215.19±25.89	1223.62±16.46	125.37±12.52	121.64±6.76	171.11±18.06

Table 6: Mean regrets and standard deviations for MSS with unknown parameters in real-life dataset.

Size	10 Jobs	20 Jobs	30 Jobs	40 Jobs	50 Jobs
B&L	14.55±3.34	15.24±2.34	3.08±1.37	2.82±0.58	3.38±1.40
LR	120 Jobs	123.90±6.68	172.18±20.69	171.02±11.81	205.62±20.37
i-NN	122.16±16.07	123.23±8.71	175.55±19.87	170.29±11.09	208.32±23.14
CART	117.79±6.43	126.67±4.11	167.56±22.89	170.08±9.13	207.95±26.40
RF	120.72±12.38	123.90±6.68	172.18±20.69	171.02±11.81	205.62±20.37
SPO Tree	122.16±16.07	123.23±8.71	175.55±19.87	170.29±11.09	208.32±23.14
SPO Forest	125.37±12.52	121.64±6.76	171.11±18.06	171.17±11.91	208.32±23.14
Average	1215.19±25.89	1223.62±16.46	125.37±12.52	121.64±6.76	171.11±18.06

(e.g. length 1). In USA-Net, we randomly choose the source from vertices {1, 2, 3, 4, 5} and the sink from vertices {20, 21, 22, 23, 24}. In GÉANT, the source and sink are randomly selected from all the points with zero in-degree and zero out-degree respectively.

The Generation of the Artificial Dataset The artificial datasets for the three problems are generated as follows. Each feature is a 4-tuple \(a_{uv} = (a_{u1}, a_{u2}, a_{u3}, a_{u4}) \), where \(a_{u1} \in \{1, 2, \ldots, 7\} \) represents the day of the week, \(a_{u2} \in \{1, 2, \ldots, 30\} \) represents the day of the month, and \(a_{u3}, a_{u4} \in [0, 360] \) represent the meteorology index and road congestion respectively. The true parameters are generated by \(10 \times \sin(a_{u1}) \times \sin(a_{u2}) + 100 \times \sin(a_{u3}) \times \sin(a_{u4}) + C \), where \(C \) is a large positive constant to ensure the value of each learned parameter is positive. We use such nonlinear mapping to compare the performance of our proposed methods and that of other methods.

Parameters Tuning As for the parameters tuning, we try different settings for k-nearest neighbors (k-NN), Random forest (RF), SPO tree (SPOT), and SPO Forest. In k-NN, we try the regression model with \(k \in \{1, 3, 5\} \). As for RF, we try different numbers of trees in the forest \(n_{estimator} \in \{10, 50, 100\} \). We tune the minimum depths of the tree \(\text{max depth} \in \{1, 3, 10, 100\} \) and the minimum weights per node \(\text{min weights} \in \{5, 20, 30\} \) for SPOT. For SPO Forest, we tune two parameters: the maximum depth of each tree \(\text{max depth} \in \{1, 3, 10, 100\} \) and the number of trees in the forest \(n_{estimator} \in \{10, 50, 100\} \).

We end this appendix section with a remark on our experiments using real-life data. Given that we are unable to find datasets specifically for the MCFP, MCVC and MSS problems, we follow the experimental approach of Demirović et al. [3, 4, 5] and use real data from a different problem (the ICON scheduling competition) as numerical values required for our experiment instances.

C Additional Results: Multi-stage Scheduling

This section shows the experimental results of the job number of 10, 20, 30, and 40 in the MSS experiment with real-life and artificial datasets.

Table 5 reports the mean regrets and their standard deviations for each method on the artificial dataset. Although all algorithms achieve similar performances, B&L performs (slightly) better than all other methods in all cases. The results on the real-life dataset are shown in Table 6. Compared with the artificial dataset, the performance differences among different methods are larger in the real-life dataset, and the advantages of B&L are more evident. Contrasting other methods, B&L obtains 14.58%-69.20% \((n = 100)\) and 14.47%-67.73% \((n = 300)\) smaller regret for 10 jobs, 19.45%-73.41% \((n = 100)\) and 16.09%-69.45% \((n = 300)\) smaller regret for 20 jobs, 18.56%-68.74% \((n = 100)\) and 12.29%-61.74% \((n = 300)\) smaller regret for 30 jobs, and 10.85%-65.85% \((n = 100)\) and 9.84%-56.10% \((n = 300)\) for 40 jobs. Similar to the results of MCFP and MCVC, all algorithms achieve better performance on the real-life dataset. For example, B&L achieves 4.69%-9.65% relative error in the artificial dataset, and 0.44%-0.79% relative error in the real-life dataset.