Impact of one year of pandemic on Spanish Intensive Care Units

ABSTRACT

Objective. To measure the impact of the pandemic in Spanish ICUs.

Material and methods. On-line survey, conducted in April 2021, among SEMICYUC members. Participants were asked about number of patients admitted, increase in the number of beds and staff, structures created in the hospital and self-assessment of the work performed.

Results. We received 246 answers from 157 hospitals. 67.7% of the ICUs were expanded during the pandemic, overall increase in beds of 58.6%. The ICU medical staff increased by 6.1% and there has been a nursing shortage in 93.7% of units. Patients exceeded 200% the pre-pandemic ICU capacity. In 88% of the hospitals the collaboration of other specialists was necessary. The predominant collaboration model consisted of the intensive care medicine specialist being responsible for triage and coordinating patient management. Despite that 53.2% centres offered training for critical care, a deterioration in the quality of care was perceived. 84.2% hospitals drew up a Contingency Plan and in 77.8% of the hospitals a multidisciplinary committee was set up to agree on decision-making.

Self-evaluation of the work performed was outstanding and 91.9% felt proud of what they had achieved, however, up to 15% considered leaving their job.

Conclusions. The Spanish ICUs assumed an unprecedented increase in the number of patients. They achieved it without hardly increasing their staff and, while intensive care medicine training was carried out for other specialists who collaborated. The degree of job satisfaction was consistent with pre-pandemic levels.

Keywords: COVID-19, SARS-CoV-2, pandemic, ICU, Spain

Impacto de un año de pandemia en las Unidades de Cuidados Intensivos de España

RESUMEN

Objetivo. Medir el impacto de la pandemia COVID-19 en las UCI españolas.

Material y métodos. Cuestionario online, realizado en abril 2021 entre socios de SEMICYUC. Se interrogó acerca del número de pacientes ingresados, incremento en número de camas y personal, estructuras creadas en el hospital y autoevaluación del trabajo realizado.

Resultados. Recibimos 246 respuestas de 157 hospitales. 67.7% de las UCI se expandieron durante la pandemia, con un incremento de camas del 58.6%. El personal médico de las UCI aumentó un 6.1% y hubo escasez de enfermería en 93.7% de las unidades. Los pacientes superaron un 200% la capacidad pre-pandémica de las UCI. En 88% de los hospitales fue necesaria la colaboración de otros especialistas, siendo el modelo predominante aquel en que el especialista en medicina intensiva era responsable del triaje y coordinaba el tratamiento del paciente. A pesar de que en el 53.2% de los centros se ofreció formación en medicina intensiva se detectó un deterioro en la calidad asistencial. El 84.2% de los hospitales elaboraron un plan de contingencia y el 77.8% conformaron un comité multidisciplinar para consensuar decisiones. La evaluación del trabajo fue sobresaliente y el 91.9% se siente orgulloso del resultado, pero hasta el 15% consideró abandonar la especialidad.

Conclusiones. Las UCI españolas asumieron un incremento de pacientes sin precedentes, sin apenas aumento del personal y mientras formaban a otros especialistas que colaboraron. El grado de satisfacción con el trabajo realizado fue similar al pre-pandemia.

Palabras clave: COVID-19, SARS-CoV-2, pandemia, UCI, España
BACKGROUND

Coronavirus disease 2019 (COVID-19) has meant a challenge for global healthcare systems. By 28 October 2021 over 240 million cases and approximately 5 million deaths have been declared [1]. The most severe cases, admitted to Intensive Care Units (ICU), exceeded their capacity all over the world, including Spain [2–7]. A relationship was established between the difficulty in accessing an ICU bed, or ICU admission during periods of overload, and a higher risk of death [8,9].

The pandemic has generated a heavy overload for ICU medical staff, both as individual [10] (professionals suffered from significant work and emotional overload, together with the scientific uncertainty of treating a previously unknown disease), as a group (each unit drew up its own organizational response to maximize available resources), and also in institutional terms: the Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (SEMICYUC) and its working groups drew up various documents [11–20] and organized different training activities for their dissemination.

Our objective is to find out how the Spanish ICUs adapted during the first year of the pandemic and to quantify the acquisition of new equipment and the incorporation of other health professionals; in addition, we try to explore and document the feelings of the ICU medical staff.

METHODS

The SEMICYUC Planning, Organization and Management Working Group and the Infectious Diseases and Sepsis Working Group developed a 113-question questionnaire that includes the following sections: 1: participant data and site baseline general data, 2: material and human resources available before and during the pandemic, 3: transversal structures created in the hospital, 4: organization and care load before and during the pandemic, 5: subjective perception of the impact of the pandemic on the role and visibility of Intensive Care Medicine, 6: impact of the pandemic on non-care activity (education, investigation…) and evaluation of activities and documents. January 2020 and February 2021 were considered as pre-pandemic and post-pandemic references, respectively. The questionnaire used can be consulted [21].

The project was approved by the Managing Board of SEMICYUC and sent to partners by e-mail. The survey period was from 15th to April 20th 2021. Responses were voluntary and anonymous. No personal data was recorded although data on job post and unit were requested. Ethics committee approval was not considered necessary because of the type of study. The survey was voluntary, not remunerated and consent to use the data obtained was deemed implicit for taking part. For the analysis, hospitals were classified as under 200 beds, 200–500 beds and more than 500 beds.

For sections 2, 3 and 4 we analysed one response per hospital. In the event of receiving more than one answer per site, we selected the answer according to a hierarchical order (head of department, clinical chief, specialist, fellow). For the remaining sections, data is shown in aggregate form.

Percentage increases (for beds, closed boxes, negative pressure boxes, staff and guard number) were calculated using the following formula:

\[\text{Percentage increase (increase %)} = \frac{X_{\text{February 2021}} - X_{\text{January 2020}}}{X_{\text{January 2020}}} \times 100 \]

Results are shown as absolute value and percentage, and as median and p25 and p75 for qualitative and quantitative variables, respectively. Answers were analysed according to hospital size. Qualitative and quantitative variables were compared using the statistical Chi² and Kruskall-Wallis tests, respectively. Statistically significant differences were deemed those with \(p<0.05 \).

RESULTS

We received 246 answers from 157 hospitals, representing the 17 autonomous communities in which Spain is administratively distributed (Additional File 1). Of the total SEMICYUC partners who responded, 58 (23.6%) were heads of department, 15 (6.1%) clinical chief, 128 (50.4%) specialists 12 (4.9%) fellows. The median experience in the ICU was 18 (9, 25) years. A total of 108 (68.4%) of the analyzed hospitals offered training in Intensive Care Medicine.

Material and human resources available during the pandemic (Table 1). Capacity was increased in 67.7% of Spanish ICUs with an increase of 9 (4, 18) beds, which represents 58.6% compared to the number of pre-pandemic beds. The number of ICU medical staff increased by 6.1% (there was no increase in small and medium-sized hospitals, however, there was an increase of 10.6% in hospitals with more than 500 beds, \(p=0.014 \)).

In 119 (75.3%) units there was at least one doctor infected with SARS-CoV-2: in 7 (46.1%) ICU from hospitals with <200 beds, 62 (76.5%) from hospitals with 200–500 beds and 50 (80.6%) from hospitals >500 beds (\(p=0.022 \)).

On the date of completing the survey, 229 (93.1%) of respondents had received at least one dose of the vaccine.

Transversal structures created in the hospital (Table 2). Only 15.8% of hospitals did not design a Contingency Plan and 29.1% did not have a de-escalation plan. A COVID committee was created in 77.8% of the hospitals.

Treatment organization and work overload (Table 3). Collaboration with other specialists was necessary in 88% of the hospitals due to the excessive number of patients, that exceeded 200% of ICU pre-pandemic capacity.

The negative impact of the pandemic on the assistance quality, marked on a scale from 0 to 10, was evaluated as 8 (7, 10) but only 19 (12%) units used quality indicators to measure this issue. Using the same scale, concern over higher than usual mortality was graded as 9 (7, 10). Concern over insufficient individual protection equipment (IPE) during the first wave
was graded as 9 (8, 10) and concern for being infected with SARS-CoV-2 was graded as 9 (8, 10). At the time of completing the survey, these concerns were lower: lack of IPE: 3 (2, 6) and infection: 6 (4, 7).

Subjective perception of the role of Intensive Care Medicine during the pandemic (Table 4). 61.8%, 79.3% and 89.4% of the participants have the feeling that the opinion about the ICU has improved for hospital manager, for other clinical teams and for the patients.
er specialists and for the general population (respectively). Self-evaluation of the work performed was outstanding and 91.9% drew pride from their work. However, 16.7% experienced regretted becoming intensivist (especially in hospitals with 200-500 beds) and up to 15% considered leaving their job.

Table 2: Transversal structures created in hospital.

Overall	Hospital size	P			
	<200 beds	200-500 beds	>500 beds		
Number of hospitals	157	15 [9.6]	80 [51.0]	62 [39.5]	0.177
COVID committee; n (%)	123 [77.8]	9 [60.0]	61 [75.3]	53 [85.5]	
Evaluation COVID committee operation (0-10)	7 [6, 8]	8 [5.75, 9.0]	7 [6, 8]	7 [5, 8]	0.161
Evaluation quality of communication with superiors (0-10)	7 [5, 8]	7 [6, 9]	7 [5, 9]	6 [4, 8]	0.005
Psychological support unit; n (%)	84 [53.2]	6 [40.0]	42 [51.9]	36 [58.1]	0.672
Evaluation psychological support unit tool (0-10)	6 [5, 8]	8 [5.75, 9.25]	6 [5, 8]	6 [3, 8]	0.204
Contingency Plan; n (%)	133 [84.2]	13 [86.7]	67 [82.7]	53 [85.5]	0.959
De-escalation Plan; n (%)	112 [70.9]	11 [73.3]	54 [66.7]	47 [75.8]	0.072

Unless expressed otherwise, results are shown as median and IQR.

Table 3: Treatment organization and overload.

Overall	Hospital size	P			
	<200 beds	200-500 beds	>500 beds		
Maximum admitted patients at the same time	34 [21.2, 48]	15 [9, 19]	29 [20, 38]	47.5 [35, 70]	<0.001
Maximum COVID patients admitted at the same time	28 [17.8, 42]	11 [6.8, 14.3]	24 [16, 35]	40 [26, 60.5]	<0.001
Maximum peak patients/beds January 2020	200 [150, 269.8]	166.7 [100, 252.5]	240.8 [173.5, 291.5]	190.5 [137.4, 229.9]	0.007
Maximum peak COVID patients/beds January 2020	175 [116.6, 239.9]	142.1 [85.9, 212.5]	200.0 [150.0, 250.0]	161.4 [100.0, 208.4]	0.035
Treatment in open cohorts; n (%)	86 [54.4]	6 [40.0]	45 [55.6]	35 [56.5]	0.131

Table 3 (continued)

Other specialties; n (%)	139 [88.0]	11 [73.3]	71 [87.7]	57 [81.9]	0.138
Anaesthesiology; n (%)	134 [84.8]	10 [66.7]	68 [85.0]	56 [90.3]	0.005
Cardiology; n (%)	29 [18.4]	0 [0]	12 [14.8]	17 [27.4]	0.025
Paediatrics; n (%)	39 [24.7]	1 [6.7]	14 [17.3]	24 [38.7]	0.006
Emergency Department; n (%)	23 [14.6]	2 [14.6]	12 [14.8]	9 [14.5]	0.924
Pneumology; n (%)	23 [14.6]	1 [6.7]	12 [14.8]	10 [16.1]	0.698

Table 3 (continued)

Coordination (triage and care) by ICU; n (%)	87 [60.0]	9 [75.0]	45 [60.0]	33 [56.9]	0.507
Triage by ICU; n (%)	43 [29.7]	3 [25]	22 [29.3]	18 [31.0]	0.913
Independent management; n (%)	15 [10.3]	0 [0]	8 [10.7]	7 [12.1]	0.454

Table 3 (continued)

Programme based on SPACE-19; n (%)	25 [15.8]	0 [0]	14 [17.3]	11 [17.7]	0.192
Local training programme; n (%)	56 [35.4]	9 [60.0]	25 [30.9]	22 [35.5]	0.192
No training programme; n (%)	74 [46.8]	6 [40.0]	39 [48.1]	29 [46.8]	0.192

Unless expressed otherwise, results are shown as median and IQR.
non-invasive mechanical ventilation and high flow oxygen therapy devices, respectively [22]. The material endowment of the Spanish ICUs was also increased, as recommended [23], but this increase in beds number and material resources is not correlated with increased availability of staff: medical staff on-ly increased by 6.1%, and almost exclusively in hospitals with more than 500 beds. Similarly, the nursing ratio per patient increased only in 30.1% of units. The difficulty in hiring new staff was generalized. The approximation of Wahlster et al. is also more subjective and the lack of ICU medical and nursing staff is reflected in 15% and 32%, of their surveys, respectively [22].

Despite the minimal increase in staff, it was possible to treat 200% more patients over the ICUs baseline capacity (COVID-19 patients alone meant an increase of 175%). It is highly likely that this treatment overload is one of the most important factors that accounts for the high mortality reported in some Spanish series [4,5,24,25], as shown in the study by Bravata et al [8]. In a study conducted among ICU managers in Australia, it was estimated that the maximum possibility of increasing the number of ICU beds and ventilators was 191% and 120% in the country, respectively; and, to assume this expansion, an increase in medical and nursing staff of 245% and 269%, respectively, was considered necessary [26]. As we can observe, the estimated increase in beds is comparable to non-assistance activity and evaluation of activities and documents (Table 5). 64.2%, 85.8% and 76.8% of the participants consider that the pandemic has had a negative effect on fellow training, continuous medical education and on research, respectively.

DISCUSSION

The COVID-19 pandemic put a strain on healthcare systems in general and ICUs in particular, making it necessary to expand the capacity of both hospitals and ICUs. Our main finding is to quantify this expansion in the ICUs of Spain. A total of 67.7% of ICUs were expanded and the number of ICU beds was increased by 58.6% (a median of 9 beds per ICU). However, most beds were set up in open spaces: only hospitals with more than 500 beds increased the number of isolation single beds and virtually no new negative pressure beds were created. Wahlster et al., in their global survey obtained 2700 responses from a total of 77 different countries (86.1% of answers from North America, Europe and Central Asia), measured the overload more subjectively than us and found that 13% of those surveyed perceived ICU beds to be fewer than needed (from 11% of those from North America to 50% of those from East Asia and Sub-Saharan Africa). Additionally, 11%, 21% and 23% reported shortages of mechanical ventilation equipment, respectively [22]. The material endowment of the Spanish ICUs was also increased, as recommended [23], but this increase in beds number and material resources is not correlated with increased availability of staff: medical staff only increased by 6.1%, and almost exclusively in hospitals with more than 500 beds. Similarly, the nursing ratio per patient increased only in 30.1% of units. The difficulty in hiring new staff was generalized. The approximation of Wahlster et al. is also more subjective and the lack of ICU medical and nursing staff is reflected in 15% and 32%, of their surveys, respectively [22].

Table 4

Personal perception of the impact of the ICUs response to the pandemic	Total	Hospital beds	P		
Has the opinion of hospital manager about the ICU improved? n (%)	152 (61.8)	13 (81.3)	72 (56.8)	67 (53.6)	0.040
Has the opinion of other colleagues about the ICU improved? n (%)	195 (79.3)	14 (87.5)	89 (84.8)	92 (73.6)	0.254
Has the opinion of general population about the ICU improved? n (%)	220 (89.4)	16 (100)	90 (85.7)	114 (91.2)	0.255
Evaluate your work during the pandemic (0-10)	8 (8, 9)	9 (8, 10)	8 (8, 9)	8 (8, 9)	0.171
Evaluate your ICU’s work during the pandemic (0-10)	9 (8, 10)	8.5 (8, 9.75)	9 (8, 10)	9 (8, 10)	0.627
Evaluate the role of Intensive Care Medicine during the pandemic (0-10)	9 (9, 10)	10 (15.25, 10)	9 (9, 10)	9 (9, 10)	0.739
Have you regretted being an intensivist? n (%)	41 (16.7)	0 (0)	28 (26.7)	13 (10.4)	0.001
Have you considered leaving the speciality? n (%)	37 (15.0)	0 (0)	23 (21.9)	14 (11.2)	0.073
Have you felt proud to be an intensivist? n (%)	226 (81.9)	16 (100)	94 (89.5)	116 (92.8)	0.311

Relationship between ICU medical staff

	Worse; n (%)	Better; n (%)	Same; n (%)
Has the opinion of hospital manager about the ICU improved?	74 (30.1)	98 (39.8)	74 (30.1)
Has the opinion of other colleagues about the ICU improved?	0 (0)	8 (50)	8 (50)
Has the opinion of general population about the ICU improved?	28 (26.7)	44 (41.9)	33 (31.4)
Evaluate your work during the pandemic (0-10)	46 (36.8)	46 (36.8)	32 (32.4)

Relationship between ICU medical and nursing staff

	Worse; n (%)	Better; n (%)	Same; n (%)
Has the opinion of hospital manager about the ICU improved?	54 (22)	98 (39.8)	94 (38.2)
Has the opinion of other colleagues about the ICU improved?	0 (0)	10 (62.5)	6 (37.5)
Has the opinion of general population about the ICU improved?	24 (22.9)	38 (36.2)	43 (41.0)
Evaluate your work during the pandemic (0-10)	30 (24.0)	50 (40.0)	45 (36.0)

Unless expressed otherwise, results are shown as median and IQR.
Impact of one year of pandemic on Spanish Intensive Care Units

P. Vidal-Cortés, et al.
Rev Esp Quimioter 2022;35(4): 392-400

The increase in patients we experienced in Spain. However, the increase in staff we attained is far from what is deemed necessary to treat such a large number of patients.

Fear for one’s own health and the possibility of infecting one’s family has accompanied ICU staff throughout this pandemic [22,27]. This is justified by the lack of IPE components, a common phenomenon all over the world during the initial waves of the pandemic [22,28]. Our data is along the same lines (in fact, only 25% of ICU did not have any staff infected). However, we also observed a significant decrease in this concern with the passing of time arising from better knowledge of the disease, more availability of supplies and vaccinations.

The combination of work overload, uncertainty over the management of patients and fear has resulted in an emotional...
impact on ICU staff and this phenomenon appears to be general-
ized all over the world. Up to 52% of those surveyed by Wahl-
ster et al. have felt emotional stress or exhaustion [22] and a sur-
vey performed among members of the European So-
ciety of Intensive Care Medicine, reports a prevalence of an-
xiety, depression and severe exhaustion symptoms of 46.5%,
30.2% and 51.0%, respectively [29]. From our survey we can
deduce that the staff from average-sized hospitals were
among those who were most impacted during the pandem-
ic. They experienced the highest increase in beds and patients
without having boosted their medical staff. This led to a 60%
crease in the number of monthly guards per intensivist. It is
precisely in medium-sized hospitals where more participants
are detected who have regretted being intensivists. It is note-
worthy that the percentage of intensivists who have consid-
ered leaving the specialty is lower than that reported in a sur-
vey conducted in Spain before the pandemic; in which 40.7%
mitted having considered it [30].

In light of this situation, it is essential to have a struc-
ture that provides psychological support to ICU professionals
as recommended in different documents [23,29,31]. More than
half the hospitals offered a Psychological Support Unit and
in most, multidisciplinary structures (COVID Committee) have
been organised to take organisational decisions, whose work
has in general been evaluated well.

From the patient management perspective, in 88% of
hospitals the collaboration of specialties such as Anaesthet-
ics, Cardiology, Paediatrics, Emergency Medicine and Pneu-
mology, was necessary. Being aware of differences in training
[32,33], the predominant treatment model (60.0%) was the
one in which the ICU medical staff coordinated triage and
led management of COVID-19 patients. In an attempt to im-
prove treatment quality, training programmes were prepared
for critical patient care in over half the hospitals. Despite the
efforts made, there is a feeling that treatment quality has been
negatively impacted both in Spanish and global ICUs. For ex-
ample, changes occurred in the indication of mechanical ven-
tilation in 16% of units and only 34% of ICUs maintained their
usual policy of cardiopulmonary resuscitation [22].

Regarding non-care activity (research, education…), our
results are contradictory. First, there is the general belief that
the pandemic has made training and research more difficult
(especially in medium-sized and large hospitals). Second, the
switch from in person to online activities has been welcomed;
activities carried out were evaluated positively and deemed
useful as they helped update treatments received by COVID-19
patients. Furthermore, there is a predominantly critical posi-
tion in regard to the “avalanche” of COVID-19 publications.
83.7% believe that material of low scientific and methodo-
logical quality was published; and 77.2% consider that some
publications without the support of scientific evidence complic-
cated the treatment of these patients, as pointed out in some
editorials during the initial phase of the pandemic [34,35] and
confirmed in a survey that highlighted heterogeneity in the
management of these patients [36]. The efforts by SEMICYUC
and its working groups in drawing up documents on manage-
ment of the COVID-19 patient was welcomed.

The most important strength of our survey is the infor-
mation provided about how the response to the pandemic was
organized in Spanish ICUs, the differences between hospitals
of different sizes and the approximate measure of the effort
and extra cost that this entailed for the Intensive Care Units.

Among our work’s limitations we should mention that
taking part was voluntary and that the response percentage
over the total membership was low (approximately 10%). Al-
so, the answers reflect the individual perception of profes-
sionals taking part and may not represent all ICUs. However,
we believe the sample does represent Spain as a whole as it
includes hospitals of all sizes and every administrative region.
In addition, the dynamic situation during the pandemic means
that the situation reflected in the results must be considered
limited to the time of the survey. No objective outcome indi-
cators have been evaluated nor have they been linked to vari-
ables such as care overload or availability of new material; nor
has the impact of the pandemic on the families of critically
ill patients been assessed, what has showed to be extremely
important [37].

In regard to the future, it is time to set out strategies
that enable adapting medical and nursing staff and material
resources to the new situation. The prevailing standards [38]
and the number of places for Intensive Care Medicine fellow
should be reviewed. It would also be convenient to provide
our hospitals with the capacity to increase the staff (mainly
through training programs or stable platforms that allow a
faster incorporation of teaching material) and material re-
sources depending on the needs [31,39].

It is essential and urgent to pay attention to the psycho-
logical condition of ICU workers, primarily, for health reasons,
but also to avoid reducing the number of available staff, and
for this it is necessary to have psychological support units, but
also to improve communication and reduce care overload by
adapting number of working staff to the so-called “new nor-
mality”.

ACKNOWLEDGEMENTS

The authors want to publicly show their gratitude to all
SEMICYUC members who responded to the survey.

FUNDING

None to declare

CONFLICTS OF INTEREST

Authors declare no conflict of interest.

REFERENCES

1. WHO Director-General’s opening remarks at the media briefing on
COVID-19 - 11 March 2020 [Internet]. [cited 2020 Apr 13]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19--11-march-2020

2. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 28;323(16):1574-81. doi: 10.1001/ jama.2020.5394.

3. Xie J, Wu W, Li S, Hu Y, Hu M, Li J, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med. 2020 Oct;46(10):1863-72. doi: 10.1007/s00134-020-06211-2.

4. Barrasa H, Rello J, Tejada S, Martín A, Balziskueta G, Vinuesa C, et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med. 2020;39(5):553–61. doi: 10.1016/j.accpm.2020.04.001.

5. Rodríguez A, Moreno G, Gómez J, Carbonell R, Picó-Plana E, Be-navent Bonfils C, et al. Severe infection due to the SARS-CoV-2 coronavirus: Experience of a tertiary hospital with COVID-19 patients during the 2020 pandemic. Med Intensiva. 2020;44(9):525–33. doi: 10.1016/j.medin.2020.06.018.

6. Vidal-Cortés P, Del Río-Carbajo L, Nieto-Del Olmo J, Prol-Silva E, Tizón-Varela AI, Rodríguez-Vázquez A, et al. COVID-19 and Acute Respiratory Distress Syndrome. Impact of corticosteroid treatment and predictors of poor outcome. Rev Esp Quimioter. 2021 Feb;34(1):33-43. doi: 10.37201/req/091.2020.

7. Estella A, García Garmendia JL, de la Fuente C, Machado Casas JF, Yuste ME, Amaya Villar R, et al. Predictive factors of six-week mortality in critically ill patients with SARS-CoV-2: A multicenter prospective study. Med Intensiva (Engl Ed). 2021 Mar 8; doi: 10.1016/j.medin.2021.02.013.

8. Bravata DM, Perkins AJ, Myers LJ, Arling G, Zhang Y, Zillich AJ, et al. Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic. JAMA Netw Open. 2021 Jan 4;4(1):e2034266. doi: 10.1001/jamanetworkopen.2020.34266.

9. Bauer J, Brüggmann D, Klingelhöfer D, Maier W, Schwettmann L, Weiss DJ, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 28;323(16):1574-81. doi: 10.1001/ jama.2020.5394.

10. Ferrer R. [COVID-19 Pandemic: the greatest challenge in the history of critical care]. Med Intensiva (Engl Ed). 2020 Sep;44(6):323–4. doi: 10.1016/j.medin.2020.04.002.

11. Rascado Sedes P, Ballesteros Sanz MÁ, Bodi Saera MA, Carrasco Rodriguez-Rey LF, Castellanos Ortega A, Catalán González M, et al. [Contingency plan for the intensive care services for the COVID-19 pandemic]. Med Intensiva. 2020 Sep;44(6):383–70. doi: 10.1016/j. medin.2020.03.006.

12. Cinesi Gómez C, Pueñas Rodríguez O, Luñán Torné M, Egea Sán- taolalla C, Masa Jiménez JF, García Fernández J, et al. [Clinical con- sensus recommendations regarding non-invasive respiratory sup- port in the adult patient with acute respiratory failure secondary to SARS-CoV-2 infection]. Med Intensiva. 2020 Oct;44(7):429–38. doi: 10.1016/j.medin.2020.03.005.

13. Ballesteros Sanz MÁ, Hernández-Tejedor A, Estella Á, Jiménez Rivera JI, González de Molina Ortiz FJ, Sandiumenge Camps A, et al. [Recommendations of the Working Groups from the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) for the management of adult critically ill patients in the coronavirus disease (COVID-19)]. Med Intensiva (Engl Ed). 2020 Sep;44(6):371–88. doi: 10.1016/j.medin.2020.04.001.

14. Martín Delgado MC, Avilés-Jurado FX, Álvez Escudero J, Aldecoa Álvarez-Santuyano C, de Haro López C, Díaz de Cerio Cunduela P, et al. [Consensus document of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC), the Spanish Society of Otorhinolaryngology and Head and Neck Surgery (SEORL-CCC) and the Spanish Society of Anesthesiology and Resuscitation (SEDAR) on tracheotomy in patients with COVID-19 infection]. Med Intensiva (Engl Ed). 2020 Nov;44(8):493–9. doi: 10.1016/j.medin.2020.05.002.

15. Rubio O, Estella A, Cabrè L, Saralegui-Reta I, Martín MC, Zapata L, et al. [Ethical recommendations for a difficult decision-making in intensive care units due to the exceptional situation of crisis by the COVID-19 pandemia: A rapid review & consensus of experts]. Med Intensiva. 2020 Oct;44(7):439–45. doi: 10.1016/j.medin.2020.04.006.

16. Fraile Gutiérrez V, Ayuela Azcárate JM, Pérez-Torres D, Zapata L, Rodríguez Yakushev A, Ochagavia A. [Ultrasound in the management of the critically ill patient with SARS-CoV-2 infection [COVID-19]: narrative review]. Med Intensiva. 2020 Dec;44(9):551–65. doi: 10.1016/j.medin.2020.04.016.

17. Rodríguez Yago MA, Alcalde Mayayo I, Gómez López R, Parías Ángel MN, Pérez Miranda A, Canals Aracil M, et al. [Recommendations on cardiopulmonary resuscitation in patients with suspected or confirmed SARS-CoV-2 infection (COVID-19). Executive summary]. Med Intensiva. 2020 Dec;44(9):566–76. doi: 10.1016/j.medin.2020.05.004.

18. Díaz E, Amézaga Menéndez R, Vidal Cortés P, Escapa MG, Suberviola B, Serrano Lázaro A, et al. [Pharmacological treatment of COVID-19: Narrative review of the Working Group in Infectious Diseases and Sepsis (GTEIS) and the Working Groups in Transfusions and Blood Products (GTH)]. Med Intensiva. 2021 Mar;45(2):104–21. doi: 10.1016/j.medin.2020.06.017.

19. Llau JV, Ferrandis R, Sierra P, Hidalgo F, Cassinello C, Gómez-Lugue A, et al. [SEDAR-SEMICYUC consensus on the management of haemostasis disorders in severe COVID-19 patients]. Med Intensiva (Engl Ed). 2020 Sep 6; doi: 10.1016/j.medin.2020.08.007.

20. Vidal-Cortés P, Santos ED, Alonso EA, Menéndez RA, Ballesteros MÁ, Bodi MA, et al. [Recommendations for the management of critically ill patients with COVID-19 in Intensive Care Units]. Med Intensiva (Engl Ed). 2021 Sep 16; doi: 10.1016/j.medin.2021.08.011.

21. Cuestionario para medir el impacto de la pandemia en las UCI. [cited 2022 Feb 1]. Available from: https://forms.office.com/Pages/ResponsePage.aspx?id=X63NxNehdE-L1fEd5wV-
22. Wahlster S, Sharma M, Lewis AK, Patel PV, Hartog CS, Jannotta G, et al. The Coronavirus Disease 2019 Pandemic’s Effect on Critical Care Resources and Health-Care Providers: A Global Survey. Chest. 2021 Feb;159(2):619–33. doi: 10.1016/j.chest.2020.08.070.

23. Aziz S, Arabi YM, Alhazzani W, Evans L, Citerio G, Fischhoff K, et al. Managing ICU surge during the COVID-19 crisis: rapid guidelines. Intensive Care Med. 2020 Jul;46(7):1303–25. doi: 10.1007/s00134-020-06192-5.

24. Ramirez P, Gordón M, Martín-Cerezuela M, Villarreal E, Sancho E, Padrós M, et al. Acute respiratory distress syndrome due to COVID-19. Clinical and prognostic features from a medical Critical Care Unit in Valencia, Spain. Med Intensiva. 2021 Feb;45(1):27–34. doi: 10.1016/j.medin.2020.06.015.

25. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020 Dec;46(12):2200–11. doi: 10.1007/s00134-020-06192-5.

26. Litton E, Bucci T, Chavan S, Ho YY, Holley A, Howard G, et al. Surge capacity of intensive care units in case of acute increase in demand caused by COVID-19 in Australia. Med J Aust. 2020 Jun;212(10):463–7. doi: 10.5869/mja.125596.

27. Fernández-Castillo R-J, González-Caro M-D, Fernández-García E, Porcel-Gámez A-M, Garnacho-Montero J. Intensive Care nurses’ experiences during the COVID-19 pandemic: A qualitative study. Nurs Crit Care. 2021 Sep;26(5):397–406. doi: 10.1111/nicc.12589.

28. Tabab A, Raman M, Laupland KB, Buetti N, Cortegiani A, Mellinghoff J, et al. Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): An international survey. J Crit Care. 2020 Oct;59:70–5. doi: 10.1016/j.jcrc.2020.06.005.

29. Azoulay E, De Waele J, Ferrer R, Staudinger T, Borkowska M, Povoa P, et al. International variation in the management of severe COVID-19 patients. Crit Care. 2020 Aug 5;24(1):486. doi: 10.1186/s13054-020-03194-w.

30. Ministerio de Sanidad y Política Asistencial. Unidad de cuidados intensivos. Estándares y recomendaciones. [Internet]. Available from: https://www.google.com/url?q=https%3A%2F%2Fwww.mscbs.gob.es%2Forganizacion%2Fsns%2FplanCalidadSNS%2Fdocs%2FFUI_CL.pdf&usg=AOvVaw3NtWxmDsPBSVXPVrfPB40B

31. Sasangohar F, Jones SL, Masud FN, Vahidy FS, Kash BA. Provider Burnout and Fatigue During the COVID-19 Pandemic: Lessons Learned From a High-Volume Intensive Care Unit. Anesth Analg. 2020 Jul;131(1):106–11. doi: 10.1213/ANE.0000000000004866.

32. Rascado Sedes, P, Ballesteros Sanz MÁ, Álvarez Lerma F, Bodí Saera, MA, Carrasco Rodrigo-Rey LF, Castellanos Ortega A. Plan de desescalada para los servicios de Medicina Intensiva tras la pandemia producida por la COVID-19 [Internet]. Available from: https://semicyuc.org/wp-content/uploads/2020/07/RESU-MEN-PLAN-DESESCALADA-SEMICYUC-SEEUJC-FEPIMCTI.pdf

33. Kalil AC. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA. 2020 May 19;323(19):1897–8. doi: 10.1001/jama.2020.4742.

34. Estella A, Garnacho-Montero J. From empiricism to scientific evidence in antiviral treatment in severe cases of coronavirus infection in times of epidemic. Med Intensiva. 2020 Nov;44(8):509–12. doi: 10.1016/j.medin.2020.04.009.

35. Azoulay É, Curtis JR, Kentish-Barnes N. Ten reasons for focusing on the care we provide for family members of critically ill patients with COVID-19. Intensive Care Med. 2021 Feb;47(2):230–3. doi: 10.1007/s00134-020-06319-5.

36. Rodríguez-Ruiz E, Campelo-Izquierdo M, Veiras PB, Rodríguez MM, Estany-Gestal A, Hortas AB, et al. Moral distress among healthcare professionals working in intensive care units in Spain. Med Intensiva. 2021 Feb;45(1):27–34. doi: 10.1016/j.medin.2020.06.004.

37. Azoulay É, De Waele J, Ferrer R, Staudinger T, Borkowska M, Povoa P, et al. Symptoms of burnout in intensive care unit specialists facing the COVID-19 outbreak. Ann Intensive Care. 2020 Aug 8;10(1):110. doi: 10.1186/s13613-020-00722-3.

38. Rodriguez-Ruiz E, Campelo-Izquierdo M, Veiras PB, Rodríguez MM, Estany-Gestal A, Hortas AB, et al. Moral distress among healthcare professionals working in intensive care units in Spain. Med Intensiva (Engl Ed). 2021 Aug;44(8):509–12. doi: 10.1016/j.medin.2020.04.009.

39. Roshdy A, Elsayed AS, Saleh AS. Intensivists’ perceptions and attitudes towards infectious diseases management in the ICU: An international survey. Med Intensiva (Engl Ed). 2021 Aug 17;S0210-5691(21)00174-1. doi: 10.1016/j.medin.2021.06.006.

40. Vial-Cortés P, Nuvialis-Casals X, Maseda-Garrido E, Sancho-Chinesta S, Suberviola-Cañas B, Gonzalez-Castro R, et al. Organization of attention to infectious pathology in critical care units in Spain. Med Intensiva (Engl Ed). 2020 Sep 30;S0210-5691(20)30263-1. doi: 10.1016/j.medin.2020.08.002.