POSSIBLE SOLUTION OF THE LONG-STANDING DISCREPANCY IN THE MICROLENSING OPTICAL DEPTH TOWARD THE GALACTIC BULGE BY CORRECTING THE STELLAR NUMBER COUNT

T. Sumi1 and M. T. Penny2,3

1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan; sumi@ess.sci.osaka-u.ac.jp
2 Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA

ABSTRACT

We find that significant incompleteness in stellar number counts results in a significant overestimate of the microlensing optical depth τ and event rate per star per year Γ toward the Galactic bulge from the first two years of the MOA-II survey. We find that the completeness in red clump giant (RCG) counts f_{RC} decreases proportional to the galactic latitude b, as $f_{\text{RC}} = (0.63 \pm 0.11) - (0.052 \pm 0.028) \times b$, ranging between 1 and 0.7 at $b = -6^\circ \sim -1^\circ.5$. The previous measurements using all sources by difference image analysis (DIA) by MACHO and MOA and EROS suffer the same bias. On the other hand, the measurements using an RCG sample by OGLE-II, MACHO, and EROS were free from this bias because they selected only the events associated with the resolved stars. Thus, the incompleteness both in the number of events and stellar number count cancel out. We estimate τ and Γ by correcting this incompleteness. In the central fields with $|l| < 5^\circ$, we find $\Gamma = [18.74 \pm 0.91] \times 10^{-6} \exp[(0.53 \pm 0.05)(3 - |b|)] \text{star}^{-1} \text{yr}^{-1}$ and $\tau_{200} = [1.84 \pm 0.14] \times 10^{-6} \exp[(0.44 \pm 0.07)(3 - |b|)]$ for the 427 events with $t_E < 200$ days using all sources brighter than $I_e < 20$ mag. Our revised all-source τ measurements are about 2σ smaller than the other all-source measurements and are consistent with the RCG measurements within 1σ. We conclude that the long-standing problem on discrepancy between the high τ and Γ measurements within 1σ. A model fit to these measurements predicts $\Gamma = 4.60 \pm 0.25 \times 10^{-5} \text{star}^{-1} \text{yr}^{-1}$ at $|b| \sim -1^\circ.4$ and $-2^\circ.25 < l < 3^\circ.75$ for sources with $I < 20$, where the future space mission, Wide Field Infrared Space Telescope, will observe.

Key words: Galaxy: bulge – gravitational microlensing: micro

1. INTRODUCTION

The gravitational microlensing optical depth and the event rate toward the galactic bulge (GB) are known to be useful observables for the study of the stellar mass function and the structure and kinematics of the Galaxy, as these quantities, in addition to the microlensing timescale distribution are related to the masses and velocities of lens objects (Griest et al. 1991; Paczyński 1991; Novati et al. 2008). Currently, the microlensing survey groups; MOA-II4, OGLE-IV5, Wise6 (Shvartzvald & Maoz 2012), and KMTNet (Kim et al. 2010) are detecting a couple of thousand microlensing events every year toward the GB.

The magnification of a microlensing event is described by the minimum impact parameter (t_0) in units of Einstein radius $R_E(M, D_s, D_l)$, the time of maximum magnification (t_0), the Einstein radius crossing time (or timescale) ($t_E = R_E/v_1$), where v_1 is the transverse velocity of the lens relative to the line of sight, M is the lens mass, and D_s and D_l are the distance to the source and the lens, respectively (Paczyński 1986).

The microlensing optical depth, τ, is the probability that any given source star is magnified by more than 1.34 (corresponding to the source being inside the Einstein ring disk of the lens) at any given time. This is directly related to the mass density of compact objects along the line of sight (Paczyński 1996). Theoretically, it is simpler than the microlensing event rate, because it doesn’t depend on the lens mass and lens-source relative velocity distribution. τ can be determined observationally from the following expression,

$$\tau = \frac{\pi}{2N_e T_0} \sum_i \frac{t_{E,i}}{\epsilon(t_{E,i})},$$

where N_e is the total number of source stars monitored for microlensing, T_0 is the duration of the survey in days, $t_{E,i}$ is the Einstein radius crossing time for the i-th event, and $\epsilon(t_{E,i})$ is the detection efficiency at that timescale. Because long t_E events give a large contribution to τ, we present the observed optical depth with a subscript, which indicates the maximum t_E value allowed by each analysis.

The previous GB microlensing optical depth results have been somewhat controversial (see details in Sumi et al. 2013). The first measurements of the optical depth, $\tau_{100} \sim 3.3 \times 10^{-6}$ by the Optical Gravitational Lensing Experiment (OGLE; Udalski et al. 1994) and $\tau_{50} \sim 3.9^{+1.8}_{-1.2} \times 10^{-6}$ by MACHO (Alcock et al. 1997), were well above the predictions of $\tau \sim 5 \times 10^{-7}$ (Paczyński 1991; Griest et al. 1991) and $\tau \sim 8.5 \times 10^{-7}$ (Kiraga & Paczyński 1994). The later studies based on the Difference Image Analysis (DIA), which is less sensitive to the systematics of blending in crowded fields, also found relatively high values of $\tau_{50} \sim 2.5 \times 10^{-6}$ (at $b \sim -3^\circ.5$) by MACHO (Alcock et al. 2000) and MOA (Sumi et al. 2003).

To explain high optical depths, the presence of a bar oriented along our line of sight to the GB have been suggested.

1 Sagan Fellow.
2 http://www.massey.ac.nz/~iabond/alert2000/alert.html
3 http://www.astrouw.edu.pl/~ogle/ogle4/ews/ews.html
4 http://wise-obs.tau.ac.il/~wingspan/
5 http://www.pojab.net/ogle4/ews/ews.html
6 http://www.pojab.net/ogle4/ews/ews.html
(Paczyński et al. 1994; Zhao et al. 1995; Zhao & Mao 1996; Peale 1998; Gyuk 1999; Han & Gould 2003). However, their predictions ranged over $\tau = 0.8-2.0 \times 10^{-6}$ and had difficulty explaining the observed high optical depths.

Alcock et al. (1997) raised the possibility of a systematic bias in the optical depth measurement due to the degeneracy between t_L and t_n in relatively low signal-to-noise ratio (S/N) events when the source baseline flux is unknown due to blending (see Woźniak & Paczyński 1997; Han 1999; Bond et al. 2001; Gould & An 2002).

Popowski et al. (2001) proposed that optical depth may be estimated without any bias due to blending by using only events with bright source stars, such as red clump giants (RCGs), in which the blending might be negligible, rather than using all sources including the faint sources as in previous studies. Except for one high value measured by Alcock et al. (1997), the other measurements based on events with bright sources resulted in lower optical depths when measured by EROS (Afonso et al. 2003), MACHO (Popowski et al. 2005), and EROS (Hamadache et al. 2006).

However, Popowski et al. (2005) and Hamadache et al. (2006) realized that lensing of a fainter star that is unresolved from the bright star are common. However, they also noted that this would increase the apparent number of bright star events, while it would also make t_L shorter, and these two effects would nearly cancel; thus, it does not cause large bias in the optical depth. Sumi et al. (2006) and Smith et al. (2007) confirmed this cancelation by image-level simulations. They also measured the bulge optical depth from OGLE-II for RCG sources with high S/N light curves, which allowed them to determine the source brightness and exclude events with faint sources. Thus, they do not rely on the lucky cancelation of the biases. Their result was consistent with the MACHO and EROS values. These values are consistent with predictions based on the revised COBE bar model by Han & Gould (1995), which has a mass of $M_{\text{bulge}} = 1.62 \times 10^{10} M_\odot$ and a viewing angle of $\phi \sim 20^\circ$, and the latest COBE elongated bar model by Bissantz & Gerhard (2002) with $\phi \sim 20^\circ$.

Although the optical depth difference between the RCG sources and the all sources by DIA are not very significant due their large errors, the DIA optical depth values are systematically larger than the RCG values. The reason for this is not well understood.

Sumi et al. (2013) made optical depth measurements using samples of 83 RCG events and 474 all-source events with well measured parameters from the DIA analysis of MOA-II data. This is the largest sample ever used for an optical depth measurement. Their optical depth measurement for all sources was in-between those of previous measurements, i.e., lower than all-source samples and higher than RCG samples and concluded that the previous discrepancy between the all-source sample and the RCG sample was just a statistical fluctuation.

Sumi et al. (2013) pointed out a possible problem with using the same luminosity function (LF) in all fields as the one in Baade’s window for estimating the number of sources at a small level. However, they did not consider the completeness of stellar number counts used to normalize that LF. A systematic bias in the number counts of source stars will affect the measured optical depth. We investigate this point in this paper.

The event rate per star per year Γ is also affected by the same bias. This is important for the future space-based microlensing surveys (Bennett & Rhie 2002), like the exoplanet microlensing survey planned for the Wide Field Infrared Space Telescope (WFIRST; Green et al. 2012; Spergel et al. 2015) or Euclid (Penny et al. 2013).

In this paper, we estimate the completeness of the number count of the source stars and revise the measurement of the microlensing event rate and optical depth toward the GB based on the first two years of the MOA-II survey. We present the stellar number count in Section 2 and its completeness in Section 3. We present the revised event rate and optical depth results in Section 4. In Sections 5 and 6, we model the distribution of the optical depth and event rate with galactic coordinates. The discussion and conclusions are given in Section 7.

2. STELLAR NUMBER COUNT

2.1. MOA Stellar Number Count

We use the same data set as Sumi et al. (2013), which used the data taken in the 2006 and 2007 seasons by the MOA-II survey, with the 1.8 m MOA-II telescope located at the Mt. John University Observatory, New Zealand. The telescope is equipped with the mosaic CCD camera, MOA-cam3 (Sako et al. 2008), which has a 2.18 deg2 field of view (FOV) with a pixel scale of 0.58 arcsec/pixel. The median seeing for this data set was $\sim 2.0^\prime$.

The centers of the 22 GB fields of the MOA-II survey are listed in Table 1. The images were taken using the custom MOA-Red wide-band filter, which is equivalent to the sum of the standard Kron/Cousins R and I bands. The average instrumental magnitudes of the MOA reference images were roughly calibrated to the Kron/Cousins I-band using the OGLE-II photometry map of the GB (Udalski et al. 2002) within ~ 0.2 mag. V-band images were taken occasionally in order to make instrumental color–magnitude diagrams (CMD).

The images were reduced with MOA's implementation (Bond et al. 2001) of the difference image analysis (DIA) method (Tomany & Crotts 1996; Alard & Lupton 1998; Alard 2000). In the DIA method, a high-quality, good-seeing reference image is subtracted from each observed image after matching the seeing and photometric scaling. This method provides precise relative photometry in very crowded stellar fields. A stellar catalog was constructed from these reference images by applying DoPHOT (Schechter et al. 1993), the point-spread-function-fitting routine.

Each field is divided into 80 subfields and each subfield is individually calibrated using the RCG feature in each subfield CMD more precisely. About 12% of the area, in which a clear RCG population could not be identified in the CMD, was excluded from the analysis. The number of subfields used in the final analysis is 1536 in total and also given in Table 1 for each field. The coordinates and other properties of the subfields are listed in Table 4.

For the microlensing rate and optical depth estimates, we use two subsamples of events and star counts.

(1) The all-source sample uses stars brighter than $I_s < 20$ mag. This sample contains 474 events. Sumi et al. (2013) did not require that the events be associated with an apparently resolved reference image star, but did require the source magnitude to be determined from the light-curve fit and for it to be brighter than $I_s = 20$ mag. The analysis of these samples is less affected by blending, in the same way as
previous all-source DIA analyses (Alcock et al. 2000; Sumi et al. 2003). However, the analysis requires that the number of sources be counted independently from the event selection.

The GB fields are so crowded that virtually all of the main-sequence stars are not individually resolved. To count the number of stars with $I < 20$, Sumi et al. (2013) first estimated the center of RCG I-band magnitude, I_{BC}, and the number of RCG, N_{RC}, by fitting the magnitude distribution of the reference images in each subfield with Equation (4) of Nataf et al. (2013). RCG stars are abundant and serve as good standard candles (Kiraga et al. 1997; Stanek et al. 2000) that trace out the density structure of the GB, and hence their numbers should be proportional to the number of all sources.

Sumi et al. (2013) then constructed a combined LF by using the star catalogs measured in Baade’s Window using the MOA-II reference image for bright stars, and Hubble Space Telescope (HST) imaging (Holtzman et al. 1998) for faint stars down to $I = 24$ mag. This combined LF is calibrated to the extinction and GB distance, and normalized for each subfield so that its I_{BC} and N_{RC} are the same as the values in each subfield. Then the number of stars N_{i} are counted down to $I = 20$ mag by integrating this scaled–combined LF as shown in Table 1.

The disadvantage of this method is that it assumes that the LF in all fields is the same as that of Baade’s window (Holtzman et al. 1998). The advantage of this method is that it was believed that faint sources can be counted without any problem with blending, because N_{RC} is less affected by blending because RCGs are bright. However, below, we show that N_{RC} does suffer from incompleteness and that this method is not tolerant against this bias for the measurements of τ and Γ because the number of events is not affected by this incompleteness.

(2) The RCG sample selects only events with $I_1 < 17.5$, as measured from the light curve. To estimate the number of sources, stars in the “extended RCG region” are counted in the CMD of the reference images as shown in Figure 1 of Sumi et al. (2013) with $I_1 < 17.5$ mag and the source colors of $(V - I_1) > (V - I_{RC} - 0.3$ mag, where $(V - I_{RC})$ is the $V - I$ color of the RCG centroid. There is no color cut on the event selection, but it is assumed that the blue disk sources in front of the bulge have negligible event rates. This process is similar to the OGLE-II optical depth analysis (Sumi et al. 2006) that makes use of the OGLE-II extinction map (Sumi 2004), which is based on the RCG position in the CMD. This contains not only RCGs but also bulge red giants, which is a similar definition to previous works (Alcock et al. 1997; Popowski et al. 2005; Sumi et al. 2006; Hamadache et al. 2006). This sample contains 83 events.

Contrary to previous RCG analyses (Alcock et al. 1997; Popowski et al. 2005; Sumi et al. 2006; Hamadache et al. 2006), Sumi et al. (2013) did not require the event to be associated with an apparently resolved star. So this method is closer to the all-source sample analysis above than the previous RCG analyses. Thus their MOA-II RCG analysis is less affected by blending, but affected by the same incompleteness bias as the all-source analysis. On the other hand, incompleteness of the source star count did not affect the previous RCG analyses because the incompleteness in event selection and source count cancel each other out (see more details in Section 7).
The OGLE (Udalski 2003) also conducts a microlensing survey toward the GB with the 1.3 m Warsaw telescope at the Las Campanas Observatory in Chile. The median seeing is about 1.3 arcsec. The third phase of OGLE, OGLE-III, carried out survey observations with a 0.36 deg2 FOV mosaic CCD camera. Most observations are taken in the standard Kron-Cousin I band with occasional observations in the Johnson V band.

Nataf et al. (2013) identified RCGs in the CMDs by using OGLE-III photometry maps toward the GB fields (Szymański et al. 2011),7 which cover $-10^\circ < l < 10^\circ$ and $2^\circ < |b| < 7^\circ$. Each of the 2104 OGLE-III subfields (eight detectors over 263 fields) used in the work was split into 1, 2, 3, 6, 8, 10, 15, or 21 rectangles depending on the surface density of stars. The average rectangle size is $6' \times 6'$. In each rectangle, they estimated the center of the RCG I-band magnitude, I_{RC}, and the number of RCG, N_{RC} by fitting the LF with Equation (4) of Nataf et al. (2013).

Thanks to their better seeing and longer exposure than MOA-II, the completeness of the OGLE-III RCG number count is much higher than that of the MOA-II catalog and likely to be almost complete.

3. COMPLETENESS OF THE STELLAR NUMBER COUNT

3.1. Comparison to the OGLE RCG Number Count

We investigate the completeness of the number count of RCGs in the MOA-II GB fields used in Sumi et al. (2013), $N_{\text{RC,MOA}}$, by comparing it to that of OGLE-III (Nataf et al. 2013), $N_{\text{RC,Nataf}}$.

Figure 1 shows a comparison of the number of RCGs per subfield (98 arcmin2) in MOA ($N_{\text{RC,MOA}}$) at $|l| < 5^\circ$ and that in OGLE ($N_{\text{RC,Nataf}}$), which are an average over points within 0$^\circ$085 of the MOA subfield center. One can see that they are consistent at low number density $N_{\text{RC}} < 1000$, but as the stellar density increases, $N_{\text{RC,MOA}}$ becomes systematically lower by up to 30%. This trend is as expected because the completeness depends on the stellar number density, but the magnitude of the difference is significantly larger than anticipated by previous studies, and this could bias the measured τ and Γ.

Figure 2 shows the counts as a function of galactic latitude b. One can see that they are consistent at higher galactic latitude around $b \sim -6$, but $N_{\text{RC,MOA}}$ is systematically fewer than $N_{\text{RC,Nataf}}$ at lower b because the number density is higher near the galactic center. The completeness of RCG counts is expected to depend not only on the number density, but also the RCG magnitude, which depends on the interstellar extinction and the distance to the galactic bar structure. The top panel of Figure 3 shows the ratio, $f_{\text{RC}} = N_{\text{RC,MOA}}/N_{\text{RC,Nataf}}$, i.e., the completeness if we assume that $N_{\text{RC,Nataf}}$ is complete, as a function of the I-band RCG magnitude measured by Nataf et al. (2013), I_{Nataf}, and of $N_{\text{RC,Nataf}}$. One can see that f_{RC} is basically higher for brighter I_{Nataf} and smaller $N_{\text{RC,Nataf}}$ as expected, but the trend is somewhat complicated. The middle and bottom panels of Figure 3 show f_{RC} in $(I, N_{\text{RC,Nataf}})$ and $(b, I_{\text{RC,Nataf}})$ space, respectively. Both $N_{\text{RC,Nataf}}$ and $I_{\text{RC,Nataf}}$ have a clear relation with b, which explains the clear trend of $N_{\text{RC,MOA}}$ with b in Figure 2. In the top and middle panels of Figure 3, one can see that the f_{RC} are systematically higher at smaller $N_{\text{RC,Nataf}}$ at given $I_{\text{RC,Nataf}}$ and b. Some fraction of this trend can be attributed to the bias due to the statistical uncertainty of $N_{\text{RC,Nataf}}$ itself. Because f_{RC} is inversely proportional to $N_{\text{RC,Nataf}}$, f_{RC} correlates with $N_{\text{RC,Nataf}}$.

In order to correct the number counts for incompleteness, we fit for relations between f_{RC} as a function of $N_{\text{RC,Nataf}}$, $I_{\text{RC,Nataf}}$, and b, which are shown in Figure 4, Figure 5 and the top-left panel of Figure 6, respectively. The scatter in these figures, as well as Figure 1, are about 10%. In principle, if both data sets were equally complete, there should be no scatter between the two. The Poisson uncertainty on the number of stars that are missed in the MOA data is expected to be a few percent. The variation of incompleteness in different subfields can generate additional scatter. We also expect that some scatter is caused by the averaging of Nataf et al.’s subfields in order to match a MOA subfield, together with the fact that the sky covered by the averaged Nataf et al. subfields is not exactly the same as the

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{figure1.png}
\caption{Comparison of the number of red clump giants (RCG) per subfield (98 arcmin2) in MOA, $N_{\text{RC,MOA}}$, and that in OGLE, $N_{\text{RC,Nataf}}$, which are an average over points within 0$^\circ$085 of the MOA subfield center.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{figure2.png}
\caption{Number of RCG per subfield (98 arcmin2) in MOA ($N_{\text{RC,MOA}}$, blue open circle) and that in OGLE ($N_{\text{RC,Nataf}}$, red filled circle), which are an average over points within 0$^\circ$085 of the MOA subfield center, as a function of the galactic latitude b.}
\end{figure}
sky covered by the MOA subfield. Here we perform the linear fits with recursive 3σ clipping. In all figures, we can see clear trends. The standard deviations of the residuals for $N_{RC,Nataf}$, $I_{RC,Nataf}$, and b, after (before) 3σ clipping, are 0.10 (0.13), 0.11 (0.14), and 0.10 (0.13), respectively. Thus the relation with $N_{RC,Nataf}$ and b is better than that of $I_{RC,Nataf}$. As the aim of this comparison is to correct the number counts for the completeness, it could bias the result if we use $N_{RC,Nataf}$ itself to correct for it because they have their own uncertainty as mentioned above. Thus we decided to use the relation

$$f_{RC} = \frac{N_{RC,MOA}}{N_{RC,Nataf}} = (0.63 \pm 0.01) - (0.052 \pm 0.003) \times b.$$

(2)

In Figure 6, we also show f_{RC} as a function of b with the galactic longitude of $|l| \leq 2^\circ$, $2^\circ < |l| \leq 5^\circ$, and $|l| > 5^\circ$, respectively. One can see that this relation does not depend on the galactic longitude. So, we apply the relation of Equation (2) to all subfields.

If there is a significant systematic trend in $I_{RC,MOA}$, then it could also cause a bias in the number count of sources for the all-source sample. It is possible that the incompleteness of the RCG mentioned above might bias $I_{RC,MOA}$. We show the differences between $I_{RC,MOA}$ and $I_{RC,Nataf}$ as a function of b in Figure 7. One can see that there is a weak trend, while the amount of the difference due to this slope over the range of $b = -2 \sim -6$ is comparable to the uncertainty in calibration between OGLE and MOA magnitudes, which is about ~ 0.2 mag. This difference may also be due to the difference in the filter of MOA and OGLE but it is not clear at this stage. The systematic trend in I_{RC} would affect estimates of the event detection efficiency in a complicated way in addition to affecting estimates of the number of sources. To see the magnitude of the bias due to systematics in I_{RC}, we calculated the optical depth by correcting the correlation of $I_{RC,MOA} - I_{RC,Nataf} \propto 0.05 \times b$.

We found that the difference from the optical depth results...
without this correction is a few percent or less than 10% at a maximum. Given the concordance of our updated optical depths with other data sets that would not be affected by this bias, we anticipate that the effect of the bias is smaller than our statistical uncertainties.

Because the reason for the trend in I_R^C is not clear and the effect is relatively small compared to the bias due to the incompleteness on the number count, we correct only for the effect of incompleteness on the number count and not for the effect on I_R^C in the following analysis.

3.2. Cause of the Incompleteness

The Nataf et al. (2013) analysis is conservative in order to ensure high completeness. To ensure the completeness in the V band, they only consider fields where $(V - I)_{RC} < 3.30$, which allows a maximum reddening of $E(V - I) = 2.24$ with the intrinsic RCG color of $(V - I)_{RC,0} = 1.06$ (Bensby et al. 2013). The RCGs are more complete in the I band, which are used for the number count, because they are 3.3 mag brighter than in V band at this reddening. The OGLE LF of any field shows that the number counts drop off at $I \sim 20.5$ mag, meaning completeness likely begins to fall at $I \sim 19$ mag or fainter. In contrast, the maximum reddening of $E(V - I) = 2.24$ implies $I_{RC} = 17.1$ based on the RCGs at 8 kpc with the intrinsic I-band magnitude of $M_{I,RC,0} = -0.12$ and the average total-to-selective extinction ratio of $R_I = A_I/E(V - I) = 1.215$ (Nataf et al. 2013). This is substantially brighter than the estimated completeness cutoff.

For the RCG number count, Nataf et al. (2013) used stars with $V - I > (V - I)_{RC} - 0.3$ and $-1.5 < I - I_{RC} < 1.5$.

Figure 6. Number counts of RCG by MOA over that by OGLE, $f_{RC} = N_{RC,MOA}/N_{RC,Nataf}$ for the subfields. The top-left, top-right, bottom-left, and bottom-right panels are for subfields with the galactic longitude of $|l| \leq 5^\circ$, $2^\circ < |l| \leq 2^\circ$, and $|l| > 5^\circ$, respectively. The red lines indicate the best fit using the blue dots, where 3σ outliers (green dots) are recursively rejected. The green lines indicate the best fit for $|l| \leq 5^\circ$ as a comparison. They are all consistent with each other.

Figure 7. Difference between I_{RC} by MOA and that by OGLE, $I_{RC,MOA} - I_{RC,Nataf}$ of subfields with the galactic longitude of $|l| \leq 5^\circ$. The red line indicates the best fit by using the blue dots where 3σ outliers (green dots) are recursively rejected.
They included stars without V-band photometry assuming that they are fainter in V-band, i.e., redder than the limit $(V - I)_{RC} = -0.3$. Thus their number count is not affected by the incompleteness in V-band.

On the other hand, there are some reasons for the incompleteness of RCG number count in MOA-II analysis by Sumi et al. (2013). The major reason is the incompleteness in the V-band catalog used by DoPhOT. The limiting magnitude in I band is $I = 18.3$ mag, which is still deeper than the I-band RCG magnitude of $I_{RC} = 17.1$ with the reddening of $E(V - I) = 2.24$ given above, which is roughly equivalent to or slightly lower than the maximum reddening in MOA-II fields. However, the V-band limiting magnitude is about $V = 20.3$ mag, which is comparable to the V-band RCG magnitude of $V_{RC} = 20.4$ with $E(V - I) = 2.24$, i.e., $A_V = 4.96$ by using $R_I = A_I/E(V - I) = 1.215$ (Nataf et al. 2013).

Sumi et al. (2013) computed the RCG number count using stars selected with a similar color and magnitude limit as OGLE, $I < 17.5$ mag, $V - I \geq (V - I)_{RC} = 0.3$ as shown in their Figure 1. However, stars without V-band photometry were not included. Thus the incompleteness in the V-band catalog affects the number count.

We conclude that the RCG number count in MOA-II was not optimized for this purpose. There are some ways to avoid this problem in future analyses for MOA-II. For example, (1) get deeper V-band images, (2) include all stars without a V-band detection following Nataf et al. (2013), and (3) use the OGLE number count instead.

4. MICROLENSING OPTICAL DEPTH AND EVENT RATE

Here we have re-calculated the microlensing optical depth and event rate by following Sumi et al. (2013), but using the stellar number count corrected for the incompleteness by Equation (2).

The optical depth, τ, can be calculated by using Equation (1). The microlensing event rate per star per year, Γ, can be determined observationally from the following expression,

$$\Gamma = \frac{1}{N_s T_0} \sum_i \frac{1}{\varepsilon (t_{E, i}).} \tag{3}$$

Here we use the detection efficiency determined by Sumi et al. (2011). In our event rate and optical depth analyses for this 2006–2007 data set, $T_0 = 596.0$ days and the corrected number of source stars is $(1) \ N_s = 110.3 \times 10^6$ for the all-source sample and $(2) \ N_s = 8.00 \times 10^5$ for the RCG sample.

Individual optical depth estimates for all sources in each field are listed in Table 1. The upper panel of Figure 8 shows a smoothed map of optical depth of each subfield in Galactic coordinates. The plotted values from all subfields are listed in Table 4 of the online version, with a sample of this table listed in the printed version of this paper. The smoothing is done with a Gaussian function with $\sigma = 0.74$, and cutoff at a distance of 1° from the center of each subfield. The error bars for each subfield are estimated with the bootstrap method of Alcock et al. (1997), using the neighboring subfields with the same weighting as in the calculation of the central values.

We also estimated the average optical depth in all fields combined, and found $\tau_{200} = (1.53_{-0.11}^{+0.12}) \times 10^{-6}$ with 474 events for all-source samples and $\tau_{200} = (1.28_{-0.19}^{+0.27}) \times 10^{-6}$ with 83 events for the RCG sample at $(l, b) = (1^\circ 85, -3^\circ 69)$. These are reductions of 18% and 19%, respectively, or 2.6σ and 1.3σ, respectively. The effective line of sight was computed by weighting the number of subfields used. The errors were estimated using the bootstrap Monte-Carlo method of Alcock et al. (1997).

5. MODELING THE OPTICAL DEPTH RESULTS

The optical depth given by Equation (1) does not follow Poisson statistics because each event is summed with an unequal weight of $t_{E, i}/\varepsilon (t_{E, i})$. Therefore, we binned the optical depth values of the subfields in order to model the optical depth distribution. Figure 9 shows the optical depth, τ_{200}, as a function of b for both the all-source sample and RCG samples for the central region with $l < 5^\circ$, chosen so as to overlap with previous measurements. The subfield results are binned with a bin width of $\Delta b = 0.5$. The binned values for the all-source and RCG samples are given in Tables 2 and 3, respectively.

The optical depth clearly increases with decreasing $|b|$, and a simple exponential fit gives $\tau_{200} = (1.84 \pm 0.14) \times 10^{-6} \exp[(0.44 \pm 0.07)(3 - |b|)]$ for the all-source sample as indicated by the black solid line in Figure 9. This is a significantly lower and shallower slope than the original result of $\tau_{200} = (2.35 \pm 0.18) \times 10^{-6} \exp[(0.51 \pm 0.07)(3 - |b|)]$ estimated by Sumi et al. (2013) before correcting the completeness of the RCG number count. The exponential model still represents the data well.

This result is significantly smaller than the measurements by MOA-I (Sumi et al. 2003) and MACHO (Alcock et al. 2000) with all-source samples. Contrary to the original measurements, it is very consistent with the RCG measurements by MACHO (Popowski et al. 2005), EROS-2 (Hamadache et al. 2006), and OGLE-II (Sumi et al. 2006). The best linear fit to the OGLE-II RCG measurements is indicated by the red dashed line in Figure 9 as a comparison.

The MACHO (Popowski et al. 2005) and EROS (Hamadache et al. 2006) analyses identified microlensing events solely by their proximity to apparent RCG stars identified in the reference images, with no attempt to determine if the source is an RCG star or a blended fainter main-sequence star. These
blending effects will shrink apparent t_E values for all events, while increasing the number of apparent RCG events. Popowski et al. (2005) and Hamadache et al. (2006) make arguments to suggest that these two effects approximately cancel.

The only previous RCG sample that distinguished RCG source events from events with main-sequence sources that happened to be blended with RCG stars was the OGLE-II analysis of Sumi et al. (2006). I.e., they are less affected by blending than the above MACHO and EROS RCG analyses. The one similarity of their RCG analysis with other RCG analyses is that they require events to be associated with resolved stars. Their OGLE-II value is consistent with MACHO and EROS RCG analyses. Thus it is likely that this cancellation of shrinking t_E and increasing the number of events, works to within the accuracy presented in their analyses, as confirmed by the image-level simulation by Smith et al. (2007).

An exponential fit for the optical depth toward RCG sources gives $\tau_{200} = [1.28 \pm 0.21] \times 10^{-6} \exp[(0.40 \pm 0.17) (3 - |b|)]$, which is indicated by the red solid line in Figure 9. This is also significantly lower than the original estimate and previous RCG measurements (Popowski et al. 2005; Hamadache et al. 2006; Sumi et al. 2006) and some older bulge models (Bissantz & Gerhard 2002; Han & Gould 2002; Kerins et al. 2009).

However, in this particular analysis, this τ estimate for the RCG sample is heavily biased by the low detection efficiency for events with $t_E > 100$ days, due to the fact that the analysis was originally designed to focus on short timescale events. Although the events with $t_E < 200$ days are selected, most of the events with $t_E > 100$ days with bright sources could not satisfy the requirement for a long enough constant baseline. This is because the tails of the events are longer than t_E and they are still significantly above the baseline for bright source events. This effect is negligible for the all-source sample. Thus we cannot directly compare this result with other measurements.

6. MODELING THE EVENT RATE

The event rate per square degree per year, Γ_{deg^2}, for source stars above a magnitude threshold of $I_0 < 20$, which are given in Tables 1–4 for completeness, does not change from Sumi et al. (2013) because this quantity is independent of the stellar number count. Thus, we focus on the event rate per star per year, Γ, in the rest of the paper.

We model the event rate, Γ, by using the Poisson statistics fitting method, first introduced by Sumi et al. (2013). This method allows us to fit to the raw, subfield data, even though the average number of events per subfield is <1, thus free from the problem on the binning of the sample and the improper assumption of the Gaussian statistics. The number of expected events in a subfield is given by

$$N_{\text{ev}, \text{exp}}(l, b) = \Gamma_{\text{mod}}(l, b) N_s(l, b) T_0(\varepsilon(l, b)), \quad (4)$$

where N_s is the number of stars in the subfield, and $(\varepsilon(l, b))$ is the detection efficiency averaged over t_E for the subfield at coordinates (l, b). We adopt the average detection efficiency given in Tables 2 and 3 of Sumi et al. (2013), for the all-star and RCG samples, respectively, while N_s needs to be corrected by Equation (2).

The probability of the observed number of events, $N_{\text{ev}}(l, b)$, in the subfield at (l, b) is

$$P[N_{\text{ev}}(l, b)] = \frac{e^{-N_{\text{ev}, \text{exp}}(l, b)} N_{\text{ev}, \text{exp}}(l, b)^{N_{\text{ev}}(l, b)}}{N_{\text{ev}}(l, b)!}, \quad (5)$$

according to Poisson statistics. We can then define the χ^2 by,

$$\chi^2 = -2 \sum_{(l, b)} \ln P[N_{\text{ev}}(l, b)].$$

Thus the event rate, Γ, is the preferred quantity to compare to Galactic models rather than the optical depth. We show the event rate per star per year Γ and the exponential fits for the all-source and RCG samples as a function of the galactic latitude, b, for $|l| < 5^\circ$ in Figure 10 and in Tables 2 and 3, respectively. The event rate has much less scatter than τ_{200} and Γ for both the all-source and RCG samples, and both are well fit by a simple exponential model. Note that these fits are done to the subfield data using the Poisson statistics method, while the plots show binned quantities for display in Figure 10 and in Tables 2 and 3.

The exponential models for the all-source and RCG samples are quite similar, with $\Gamma_{\text{all}} = [18.74 \pm 0.91] \times 10^{-6} \exp[(0.53 \pm 0.05)(3 - |b|)]$ star$^{-1}$yr$^{-1}$ for the all-source sample and $\Gamma_{\text{RC}} = [17.13 \pm 2.03] \times 10^{-6} \exp[(0.58 \pm 0.12)(3 - |b|)]$ star$^{-1}$yr$^{-1}$ for the RCG sample. Again, due to the N_s correction, these have a smaller and shallower slope than the original values in Sumi et al. (2013). The RCG event rate is slightly smaller, but consistent with the all-source event rate. The RCG slope is 0.4σ steeper and the amplitude is 8% or 0.8σ smaller. As noted earlier, this is because Γ is much less sensitive to the bias due to the small number of long t_E events.

Sumi et al. (2013) noted that although there is a possible problem with assuming the LF in all other fields are the same as the HST LF measured in Baade’s window (Holtzman et al. 1998), the uncertainty due to the different LF shape would largely cancel out if the same LF is used in the detection efficiency simulations and the source star counts. The consistency between the all-source and RCG Γ values indicates that the effect due to the variation of the LF shape in each field relative to the HST LF are negligible. However, they were not aware that the effect on the normalization of the LF is more significant than its shape.
We show exponential fits as a function of the galactic latitude b for τ_{200} and Γ for different bins in Galactic longitude, l in Figures 11 and 12, respectively. The black points and curves are for all the events with $-2.25^\circ < l < 3.75^\circ$. In Figure 12, it provides a reasonable fit to all the longitude bins, except the $0.75^\circ < l < 2.25^\circ$ bin, where there is an enhancement to the rate. On the other hand, there is some scatter in τ_{200} between different bins in Figure 11. The τ_{200} bin with $0.75^\circ < l < 2.25^\circ$ at small $|b|$ is smaller than the average, which is different from Γ. This is because average t_p is smaller at these galactic central regions due to the galactic kinematics, as shown in Figure 3 of Sumi et al. (2013).

Figure 8 shows smoothed maps of τ_{200} and Γ in Galactic coordinates. The plotted values from all subfields are listed in Table 4. The smoothing is done with a Gaussian function with $\sigma = 0.4^\circ$, and cutoff at a distance of 1° from the center of each subfield. The error bars for each subfield are estimated using a bootstrap method using the neighboring subfields with the same weighting as in the calculation of the central values. They are similar to the original maps in Figure 3 of Sumi et al. (2013), but decreased by up to $\sim 40\%$ depending on b. The highest optical depth is found at $l \approx 3^\circ$ and this is due to the excess of long timescale events at this longitude, and could be due to the statistical fluctuations enhanced by large weight for long events.

The event rate per star, Γ has a peak at $l \approx 1^\circ$. Because these event rate measurements obey Poisson statistics, the statistical uncertainty in Γ is smaller than the uncertainty in τ_{200}. So, we expect that this $l \approx 1^\circ$ enhancement in the microlensing rate is real and that it is related to the structure and kinematics of the bulge.

As a comparison to Sumi et al. (2013), we have fit Γ with a 16-parameter model in l and b. The 16-parameters consist of a 10-parameter cubic polynomial and the inverse of a 6-parameter quadratic polynomial. That is

$$
\Gamma = a_0 + a_1l + a_2b + a_3l^2 + a_4lb + a_5b^2 + a_6l^3 + a_7l^2b + a_8lb^2 + a_9b^3 + 1/(a_{10} + a_{11}l + a_{12}b + a_{13}l^2 + a_{14}lb + a_{15}b^2).
$$

(6)

The best-fit model is shown in Figure 13 and the model parameters are listed in Table 5. The model has a maximum at $l \approx 1^\circ$ that was also evident in Figure 8.

7. DISCUSSION AND CONCLUSIONS

We examined the completeness of the stellar number count in the measurement of the microlensing optical depth τ and event rate per star per year Γ toward the GB from the first two years of the MOA-II survey (Sumi et al. 2013). We found a significant incompleteness in MOA-II’s RCG counts, which is proportional to the galactic b. The completeness ranges from 1 to 0.7 for $b = -6^\circ \sim -1.5^\circ$. The counts are less complete at lower $|b|$ because of the higher stellar number density and the higher interstellar extinction. This incompleteness caused the overestimates in τ and Γ.

By correcting this incompleteness, we estimated Γ and τ with the all-source sample of 474 events and an RCG sample of 83 events. Note that our RCG optical depth is known to be biased low, due to the low efficiency for long duration bright events. Thus we focus on τ with the all-source sample in the following discussion. Due to this correction of the incompleteness, both τ and Γ decreased at lower $|b|$. This result may have solved the previously noted difference between the optical depths measured with RCG samples (Popowski et al. 2005;
Table 4

Subfield	l (°)	b (°)	N_{\text{sub}}	N_\sigma	N_\nu	\tau (10^{-6})	\Gamma (10^{-6})	\Gamma_{\text{bg}}^2 (\text{deg}^{-2} \text{yr}^{-1})
gb5-1-3	1.1704	-1.3459	58	4796785	55	2.9^{+0.7}_{-0.6}	42.4^{+13.9}_{-10.2}	109.0^{+133.3}_{-26.3}
gb5-1-7	1.3125	-1.2630	51	3917583	46	2.9^{+0.7}_{-0.6}	42.4^{+13.9}_{-10.2}	96.6^{+62.9}_{-24.8}
gb5-2-2	0.7835	-1.3776	59	5177353	59	2.7^{+0.6}_{-0.5}	40.2^{+11.7}_{-9.4}	118.0^{+44.5}_{-26.7}
gb5-2-3	0.8685	-1.5224	69	6310401	67	2.7^{+0.5}_{-0.4}	40.2^{+7.6}_{-5.9}	126.1^{+21.1}_{-24.8}
gb5-2-6	0.9280	-1.2935	54	4439824	49	2.8^{+0.5}_{-0.4}	41.7^{+11.4}_{-8.7}	112.9^{+25.1}_{-22.1}
gb5-2-7	1.0130	-1.4379	63	5557000	63	2.8^{+0.5}_{-0.4}	41.7^{+11.4}_{-8.7}	120.2^{+25.2}_{-23.2}
gb5-3-1	0.3942	-1.4104	53	5008885	53	2.7^{+0.5}_{-0.4}	34.2^{+11.4}_{-8.2}	103.0^{+26.1}_{-28.2}
gb5-3-2	0.4788	-1.5549	67	6338841	63	2.7^{+0.5}_{-0.4}	35.1^{+11.4}_{-8.2}	114.3^{+27.7}_{-28.2}
gb5-3-3	0.5639	-1.6998	78	7640959	74	2.7^{+0.5}_{-0.4}	35.9^{+7.6}_{-5.9}	126.2^{+26.1}_{-24.8}
gb5-3-6	0.6239	-1.4697	65	5938827	65	2.7^{+0.5}_{-0.4}	37.8^{+11.4}_{-8.2}	117.9^{+28.4}_{-28.2}
gb5-3-7	0.7091	-1.6146	76	7142733	75	2.7^{+0.5}_{-0.4}	38.4^{+7.6}_{-5.9}	128.6^{+29.2}_{-28.2}
gb5-4-0	0.0089	-1.4439	48	4203315	37	2.5^{+0.6}_{-0.5}	28.8^{+13.3}_{-11.3}	82.1^{+29.2}_{-21.9}
gb5-4-1	0.0918	-1.5877	59	5398262	52	2.7^{+0.7}_{-0.6}	29.6^{+9.4}_{-7.0}	92.6^{+29.2}_{-21.9}
gb5-4-2	0.1755	-1.7322	73	6845398	65	2.8^{+0.6}_{-0.5}	30.5^{+7.6}_{-6.5}	104.0^{+27.0}_{-22.1}
gb5-4-3	0.2599	-1.8771	81	7762864	70	2.8^{+0.6}_{-0.5}	31.3^{+7.6}_{-6.5}	114.7^{+29.2}_{-24.8}
gb5-4-5	0.2356	-1.5028	56	5313798	53	2.7^{+0.7}_{-0.6}	31.6^{+10.1}_{-8.2}	97.5^{+29.2}_{-21.9}
gb5-4-6	0.3197	-1.6474	70	6687816	67	2.7^{+0.6}_{-0.5}	32.7^{+8.8}_{-6.8}	110.1^{+29.2}_{-22.1}
gb5-4-7	0.4044	-1.7925	81	7829673	76	2.8^{+0.6}_{-0.5}	33.7^{+7.6}_{-6.8}	121.9^{+29.2}_{-24.8}
gb5-5-0	-0.2872	-1.6227	53	4406168	43	2.6^{+0.7}_{-0.6}	29.2^{+12.7}_{-8.9}	81.0^{+35.3}_{-24.8}
gb5-5-1	-0.2055	-1.7661	63	5424411	50	2.8^{+0.7}_{-0.6}	28.7^{+10.1}_{-7.6}	86.8^{+30.6}_{-22.9}
gb5-5-2	-0.1227	-1.9100	76	6720615	57	2.9^{+0.7}_{-0.6}	28.5^{+9.9}_{-6.8}	93.1^{+29.2}_{-22.1}

Note. The averages include all the subfields within 1° of the center of each subfield with a Gaussian weighting function with σ = 0.54. N_{\text{sub}}, N_\sigma, and N_\nu are numbers of subfields, source stars, and microlensing events in this 1° circle, respectively. A complete electronic version of this table is available at http://iral2.ess.sci.osaka-u.ac.jp/~sumi/OPTMOAII_Nataf/Table4.dat.

(This table is available in its entirety in machine-readable form.)

Hamadache et al. 2006; Sumi et al. 2006) and that with faint source samples from DIA (Alcock et al. 2000; Sumi et al. 2003), for which the faint source analyses have shown systematically higher \(\tau \) values.

The original measurement of \(\tau \) with all-source by MOA-II (Sumi et al. 2013) were in-between of the other previous measurements with all-source and RCG sample and consistent within 1 or 2σ level. Thus they concluded that the previously seen difference between the all-source and RCG samples was due to statistical fluctuations.

However, our revised all-source optical depth measurements are consistent with previous measurements for RCG samples and significantly lower than that of the Sumi et al. (2013) all-source sample as shown in Figure 9. We can use the exponential models shown in Figure 9 to interpolate our measurement to the center of previous samples. For the MACHO DIA all-source...
result at $b = -3.28 \degr$ (Alcock et al. 2000), we find $\tau_{7200} = [1.58 \pm 0.13] \times 10^{-6}$ which is 2.1σ smaller than the MACHO result of $\tau_{7400} = 2.43^{+0.39}_{-0.38} \times 10^{-6}$. The MOA-I all-source result (Sumi et al. 2003; center at $b = -3.8 \degr$, is $\tau_{7500} = 2.59^{+0.84}_{-0.64} \times 10^{-6}$. This compares to our interpolated value of $\tau_{7200} = [1.29 \pm 0.11] \times 10^{-6}$, which is 1.7σ smaller. Thus, our revised optical depth measurement is smaller at the $\sim 2 \sigma$ level than both the previous all-source measurements, which suggests that these measurements also suffer the same bias in the stellar number count. Because Alcock et al. (2000) and Sumi et al. (2003) used a similar method as in this work, it is very likely that they have similar bias.

The MACHO Collaboration published several averages of their results (Popowski et al. 2005), but we compare to their “CGR+3°” average of 6 deg2 centered at $b = -2.73 \degr$. MACHO reports $\tau_{7500} = 2.37^{+0.47}_{-0.39} \times 10^{-6}$ for RCG sources at this position. This compares to our interpolated all-source value of $\tau_{7200} = [2.08 \pm 0.17] \times 10^{-6}$, which is just 0.6σ smaller.

The RCG sample of the EROS Collaboration (Hamadache et al. 2006) covers a slightly larger area than the MOA-II analysis. They fit their results to an exponential model that is identical to the one shown in Figure 9, and they find $\tau_{7400} = [1.62 \pm 0.23] \times 10^{-6}\exp[(0.43 \pm 0.16)(3 - |b|)]$. This has a slope that is consistent with our fits, so we compare the results by simply comparing the normalization parameters. Our normalization parameter is $[1.84 \pm 0.14] \times 10^{-6}$, which is 0.8σ larger than the EROS value of $[1.62 \pm 0.23] \times 10^{-6}$. A more fair comparison would be to compare to the the EROS fit to a model fit to all our fields, instead of just those with $|l| < 5^\circ$. This gives $\tau_{7200} = [1.74 \pm 0.13] \times 10^{-6}\exp[(0.45 \pm 0.07)(3 - |b|)]$, which is 0.4σ larger than the EROS value.

The OGLE-II RCG analysis (Sumi et al. 2006) found $\tau_{7400} = 2.55^{+0.57}_{-0.46} \times 10^{-6}$ at $b = -2.75 \degr$ which is consistent with other RCG analyses. This compared to our all-source result, interpolated from the model given in Figure 9, is $\tau_{7200} = [2.06 \pm 0.17] \times 10^{-6}$, which is just 0.9σ smaller.

In summary, we find that our all-source results are about 2σ smaller than the previous all-source measurements, and they are very consistent with the RCG optical depth values from OGLE, MACHO, and EROS within 1σ.

Note that the observed optical depths mentioned above represent the contributions of optical depth from the events within the given timescale range. The upper limit of the t_E in these analyses ranges between 150 and 500 days. However, the longest t_E detected in their sample is mostly less than 200 days and the contributions of τ from the events with $t_E > 150$ days are negligible. Thus the above comparison is valid within their uncertainty.

We compare the optical depth results with values predicted from the models. Han & Gould (2002) model predicts $\tau = [1.63 \pm 0.13] \times 10^{-6}$ at $b = -3.9 \degr$, where our all-source optical depth $\tau_{7500} = [1.24 \pm 0.10] \times 10^{-6}$ is 3.9σ smaller. The values from Wood & Mao (2005) models are $\tau = 2.1 \times 10^{-6}$ at $b = -3 \degr$ and $\tau = 3.0 \times 10^{-6}$ at $b = -2.8 \degr$. Our values $\tau_{7200} = [1.84 \pm 0.15] \times 10^{-6}$ and $\tau_{7200} = [2.87 \pm 0.24] \times 10^{-6}$ are in agreement with them with 1.7σ and 0.5σ, respectively. Evans & Belokurov (2002) present a number of models, and the value of their “Dwek plus spiral structure” model $\tau = 1.5 \times 10^{-6}$ at $b = -3.8 \degr$ agrees with our $\tau_{7200} = [1.29 \pm 0.11] \times 10^{-6}$ which is 1.9σ smaller, while their other models predict much higher optical depths. The models of Bissantz & Gerhard (2002) predict $\tau = 1.1 \times 10^{-6}$ at $b = -3.35 \degr$ for all sources and $\tau = 1.3 \times 10^{-6}$ at $b = -3.78 \degr$ for RCG sources. Our values $\tau_{7200} = [1.58 \pm 0.13] \times 10^{-6}$ and $\tau_{7200} = [1.29 \pm 0.11] \times 10^{-6}$ are 3.7σ and 0.2σ larger, respectively.

Table 5

Param	Value
a_0	76.558396
a_1	0.7258556
a_2	32.598859
a_3	-0.274198
a_4	0.178113
a_5	4.408679
a_6	-0.017363
a_7	-0.104587
a_8	-0.006764
a_9	0.157305
a_{10}	0.651233
a_{11}	-0.717574
a_{12}	0.163776
a_{13}	0.324459
a_{14}	0.005950
a_{15}	0.032564

Note. The model parameters are defined in Equation (6).
al.’s (2009) model predicts \(\tau = 4 \times 10^{-6} \) at \(b = -1.9 \) and \(\tau = 2 \times 10^{-6} \) at \(b = -3.5 \), where our measurements are \(\tau_{200} = [3.00 \pm 0.25] \times 10^{-6} \) and \(\tau_{200} = [1.48 \pm 0.12] \times 10^{-6} \), which are 4.0\(\sigma \) and 4.3\(\sigma \) smaller, respectively.

As discussed above in Section 6 and shown in Figures 8 and 10, \(\Gamma \) can be measured more precisely than \(\tau \). Furthermore, \(\tau \) has an additional systematic uncertainty due to potential very long timescale events, which may contribute significantly to \(\tau \) but not to \(\Gamma \). Figure 10 indicates that the all-source and RCG \(\Gamma \) values differ by less than 9%.

Recently, Awiphan et al. (2016) presented the field-by-field comparison between results by Sumi et al. (2013) and the Besançon population synthesis Galactic model. They found only ~50% of the measured \(\tau \) and event rate per star per year, \(\Gamma \), at low Galactic latitude around the inner bulge (\(|b| < 3^\circ \)) and suggested the discrepancy most likely is associated with known underestimated extinction and star counts in the innermost regions, which supports missing inner stellar population. Here we compared their model and our revised \(\tau \) and \(\Gamma \), in Figures 14 and 15, respectively. Their model is more consistent with our revised \(\tau \) than the original measurements by Sumi et al. (2013), but are still slightly higher. The difference is not very significant due to the large error in our measurement. Our revised \(\Gamma \) are very consistent to their model without any missing inner stellar population.

Sumi et al. (2013) noted a possible problem with assuming that the LF in all fields are the same as the \textit{HST} LF in Baade’s window (Holtzman et al. 1998). However, the consistency between the all-source and RCG \(\Gamma \) values indicates that the effect due to the variation of the LF shape in each field from the \textit{HST} LF are negligible.

However, Sumi et al. (2013) were not aware that the completeness of the number counts of RCGs might be problematic, because they were thought to be bright enough to be complete. In their analyses for both the all-source sample and the RCG sample, the stellar number count is based on the stellar catalog in the reference images reduced by the DoPHOT (Schechter et al. 1993) algorithm, where the combined ground+\textit{HST} LF are normalized by the RCG number counts and the events were selected regardless of whether they are associated with resolved stars. Thus, both samples are biased by the same amount. This incompleteness is mostly because MOA-II data was taken under relatively poor seeing of ~1.8 arcsec even in the reference images. The measurements by MOA-I (Sumi et al. 2003) and MACHO (Alcock et al. 2000) also used a similar method with similar seeing, and are therefore expected to suffer the same problem.

Other measurements using RCG samples by OGLE-II (Sumi et al. 2006), MACHO (Popowski et al. 2005), and EROS (Hamadache et al. 2006) used a different method, which selected only the events at the position of the resolved stars in the reference image by DoPHOT or a similar algorithm. Thus, the incompleteness affects both the number of events and stellar number count, and they cancel each other out.

In conclusion, we believe the long-standing problem of the discrepancy between the high optical depth in the all-source sample by DIA and low optical depth with the RCG sample can be explained by the incompleteness of the stellar number count.

These measurements of \(\Gamma \) and \(\tau \) have the highest spatial resolution so far thanks to our samples being the largest studied so far. Our goal is to measure \(\Gamma \) and \(\tau \) precisely around the GB to constrain the barred GB model. Currently MOA-II and OGLE-IV detect about 700 and 2000 events a year, respectively. In the near future, this analysis will be expanded by thousands of events.

Another goal of this work is to predict the event rate in the inner GB for the future space microlensing survey of the \textit{WFIRST} (Green et al. 2012; Spergel et al. 2015) and Euclid (Penny et al. 2013). The expected microlensing event rate for the \textit{WFIRST} mission is uncertain because the region with the highest event rate at low Galactic latitudes is not well studied due to the high interstellar extinction. This work provides the best estimate of the event rate in the inner GB to date. For 3.2 deg\(^2\) of the MOA-II survey area inside \(|b| \leq 3.7^\circ \) and \(0.0 \leq l \leq 2.0^\circ \), centered at \((l, b) = (0^\circ 97, -2^\circ 26) \), we find \(\Gamma = 3.41^{+0.34}_{-0.30} \times 10^{-3} \text{star}^{-1} \text{yr}^{-1} \) for sources with \(l < 20^\circ \). This is consistent with the rate model used for the report of the \textit{WFIRST} Science Definition Team (SDT; Green et al. 2012; Spergel et al. 2015) evaluated at this position, while the previous value was a factor of 1.3 larger than this. By

![Figure 14.](image1.png)

Figure 14. Optical depth for events with \(t < 200 \) days, \(\tau_{200} \), for the all-source sample as a function of the galactic latitude \(b \) (filled circles with error bars), and the theoretical model from the Besançon model by Awiphan et al. (2016; solid line). It is in better agreement than the original \(\tau \) measurements by Sumi et al. (2013), while they are still slightly higher.

![Figure 15.](image2.png)

Figure 15. Event rate per star per year, \(\Gamma \), for the all-source sample as a function of the galactic latitude \(b \) (filled circles with error bars), and the theoretical model from the Besançon model by Awiphan et al. (2016; solid line). They are consistent.
extrapolating to the lower latitude fields, $|b| \sim -1.4$, where the WFIRST will observe, the model with $-2.25 < l < 3.75$ presented in Figure 12 predicts $\Gamma = 4.60 \pm 0.25 \times 10^{-5}$ star$^{-1}$ yr$^{-1}$ for sources with $l < 20$, which is consistent with the value in the WFIRST SDT report.

In this work, we have attempted to correct for incompleteness by assuming that another data set is complete, when that data set itself has not been corrected for completeness (Nataf et al. 2013). While we expect OGLE number counts to be more complete than MOA’s, it was long assumed that completeness would not be an issue for MOA. This is of course not ideal, but was done so for the sake of expediently correcting a significant systematic error. Instead, in the future, it would be better for all studies that fit models to number counts of bulge RCG stars to first correct for incompleteness using artificial star tests. Without doing so, it is possible that models fit to the magnitude distribution around the red clump might systematically underestimate the number of stars, as well as the location of the clump if the incompleteness varies as a function of magnitude (which it almost certainly does). Failure to do so could impact studies of galactic structure (e.g., Rattenbury et al. 2007; Cao et al. 2013; Wegg & Gerhard 2013), interstellar extinction (Sumi 2004; Nataf et al. 2013; Gonzalez et al. 2011), and, as we have shown here, microlensing event rates and optical depths.

T.S. acknowledges the financial support from the JSPS, JSPS23340044, and JSPS24253004. Work by M.T.P. was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

REFERENCES

Afonso, C., Albert, J. N., Alard, C., et al. 2003, A&A, 404, 145
Alard, C. 2000, A&AS, 144, 363
Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Alcock, C., Allsman, R. A., Alves, D., et al. 1997, ApJ, 486, 697
Alcock, C., Allsman, R. A., Alves, D., et al. 2000, ApJ, 541, 734
Awiphan, S., Kerins, E., & Robin, A. C. 2013, MNRAS, 456, 1666
Bennett, D. P., & Rhee, S. H. 2002, ApJ, 574, 985
Bensby, T., Yec, J. C., Feltzing, S., et al. 2013, A&A, 549, A147
Bissantz, N., & Gerhard, O. 2002, MNRAS, 330, 591
Bond, I. A., Abe, F., Dodd, R. J., et al. 2001, MNRAS, 327, 868
Cao, L., Mao, S., Nataf, D., Rattenbury, N. J., & Gould, A. 2013, MNRAS, 434, 595
Evans, N. W., & Belokurov 2002, ApJ, 567, 119
Gonzalez, O. A., Rejkuba, M., Zoccali, M., Valenti, E., & Minniti, D. 2011, A&A, 534, A3
Gould, A., & An, J. H. 2002, ApJ, 565, 1381
Green, J., Schechter, P., Baltay, C., et al. 2012, arXiv:1208.4012
Griest, K., Alcock, C., Axelrod, S. T., et al. 1991, ApJ, 372, L79
Gyuk, G. 1999, ApJ, 510, 205
Hamadache, C., Le Guillou, L., Tisserand, P., et al. 2006, A&A, 454, 185
Han, C. 1999, MNRAS, 309, 373
Han, C., & Gould, A. 1995, ApJ, 449, 521
Han, C., & Gould, A. 2003, ApJ, 592, 172
Holtzman, J. A., Watson, A. M., Baum, W. A., et al. 1998, AJ, 115, 1946
Kerins, E., Robin, A. C., & Marshal, D. J. 2009, MNRAS, 396, 1202
Kim, S.-L., Park, B.-G., Lee, C.-U., et al. 2010, Proc SPIE, 7733, 7733F
Kiraga, M., & Paczyński, B. 1994, ApJL, 430, L101
Kiraga, M., Paczyński, B., & Stanek, K. Z. 1997, ApJ, 485, 611
Nataf, D. M., Gould, A., Fouqué, P., et al. 2013, ApJ, 769, 88
Novati, S. C., Luca, F. D., Jetzer, P., Mancini, L., & Scarpetta, G. 2008, A&A, 480, 723
Paczynski, B. 1986, ApJ, 304, 1
Paczynski, B. 1991, ApJL, 371, L63
Paczynski, B. 1996, ARA&A, 34, 419
Paczynski, B., Stanek, K. Z., Udalski, A., et al. 1994, ApJL, 435, L113
Peale, S. J. 1998, ApJ, 509, 177
Penny, M. T., Kerins, E., Rattenbury, N. J., et al. 2013, MNRAS, 434, 2
Popowski, P., Alcock, C., Allsman, R. A., et al. 2001, in ASP Conf. Ser. 239, Microlensing 2000: A New Era of Microlensing Astrophysics, ed. J. W. Menzies & P. D. Sackett, (San Francisco, CA: ASP), 244
Popowski, P., Griest, K., Thomas, C. L., et al. 2005, ApJ, 631, 879
Rattenbury, N. J., Mao, S., Sumi, T., & Smith, M. C. 2007, MNRAS, 378, 1064
Sako, T., Sekiguchi, T., Sasaki, M., et al. 2008, Exa, 22, 51
Schechter, L., Mateo, M., & Saha, A. 1993, PASP, 105, 1342S
Shvartzvald, Y., & Maoz, D. 2012, MNRAS, 419, 3631
Smith, M. C., Woźniak, P. R., Mao, S., & Sumi, T. 2007, MNRAS, 380, 805
Spergel, D., Gehrels, C. B., Baltay, C., et al. 2015, arXiv:1503.03757
Stanek, K. Z., Kaluzny, J., Wysocka, A., & Thompson, I. 2000, AcA, 50, 191
Sumi, T. 2004, MNRAS, 349, 193
Sumi, T., Abe, F., Bond, I. A., et al. 2003, ApJ, 591, 204
Sumi, T., Woźniak, P. R., Udalski, A., et al. 2006, ApJ, 636, 240
Sumi, T., Kamiya, K., Bennett, D. P., et al. 2011, Natur, 473, 349
Sumi, T., Bennett, D. P., Bond, I. A., et al. 2013, ApJ, 778, 150
Szymański, M. K., Udalski, A., Soszyński, I., et al. 2011, AcA, 61, 83
Tomany, A. B., & Crotts, A. P. 1996, AJ, 112, 2872
Udalski, A. 2003, AcA, 53, 291
Udalski, A., Szymański, M., Stanek, K. Z., et al. 1994, AcA, 44, 165
Udalski, A., Szymański, M., Kubiak, M., et al. 2002, AcA, 52, 217
Wegg, C., & Gerhard, O. 2013, MNRAS, 435, 1874
Wood, A., & Mao, S. 2005, MNRAS, 362, 945
Woźniak, P. R., & Paczyński, B. 1997, ApJ, 487, 55
Woźniak, P. R., Udalski, A., Szymański, M., et al. 2001, AcA, 51, 175
Zhao, H., & Mao, S. 1996, MNRAS, 283, 1197
Zhao, H., Spergel, D. N., & Rich, R. 1995, ApJL, 440, L13