Subtraction of soft matrices

S Abdurrahman¹, Thresye¹, R R Lula¹, R A Rachman¹ and Y Evina¹
¹Departemen of Mathematics, Universitas Lambung Mangkurat, Banjarbaru 70714, Indonesia
²Email: saman@ulm.ac.id

Abstract. In this paper, we introduce subtraction operation notation on the soft matrix of size $m \times n$ with its entry on the set $\{0, 1\}$. In addition, we studied the characteristics of subtraction operations over intersection and union operations on soft matrices. The result shows the distributive law of subtraction operations over intersection and union operations on the soft matrix. Finally, we discuss the characteristics of De Morgan's law analogous to set theory.

1. Introduction
The development of research in mathematics over time is increasingly varied, ranging from continuing previous research or correcting previous research to becoming a better study. Similarly, the theory of soft sets popularized by Molodtsov [1] is follow-up research and, at the same time, corrects the idea of fuzzy sets introduced by Zadeh [2]. In contrast, Zadeh's theory of fuzzy sets popularized is a correction of the idea of sets invented by Georg Cantor [3]. The soft set theory is a frame of the fuzzy set theory, which deals with uncertainty parametrically. The soft set theory is a collection of intuitively parameterized sets because the set limits depend on parameters. Formally, the group is a couple (Δ, \mathcal{N}) such that Δ is a mapping of parameters \mathcal{N} to the muster of all subsets of the universe \mathcal{U}.

Sourced from the definition of the soft set (Δ, \mathcal{N}) of the \mathcal{U} universe, many researchers apply it to other fields, between [4–9]. One of the products of the soft set studied by [10,11,20–23,12–19] is a soft matrix of size $m \times n$ with entries in the form of elements at $\{0, 1\}$. This paper aims to introduce the notation of the subtraction operation of the soft matrices. Furthermore, we will study the characteristics of intersection and union operations of subtraction operations, the distributive law of subtraction operations over intersection and union operations, as well as De Morgan's law of subtraction operations that are similar to set theory.

2. Method
We keep in mind some of the foundation definitions, and results wore in the sequel in this segment. For details, we refer to [1,10,24–27].

We’ll give some notation: \mathcal{U} states the set of universes, $P(\mathcal{U})$ says the set of all subsets of \mathcal{U}, and \mathcal{N} and \mathcal{J} are sets of parameters where $\mathcal{N} \subseteq \mathcal{J}$.

Definition 2.1. A couple (Δ, \mathcal{N}) is termed the soft set of \mathcal{U} if Δ is the function from \mathcal{N} to a collection of all subsets from \mathcal{U}, i.e.

$$\Delta : \mathcal{N} \to P(\mathcal{U})$$ (1)
In this case, it is termed the estimate of the function of the set \((\Delta, N)\). For each \(\eta \in N\), the set \(\Delta(\eta)\) is termed \(\eta\)-approximation of elements from the set \((\Delta, N)\) relating to the \(\eta \in N\) parameter. In addition, we can write the set \((\Delta, N)\) of \(H\) as:

\[
(\Delta, N) = \{ (x, \Delta(x)) | x \in N, \Delta(x) \in P(H) \}.
\]

Definition 2.2. Let \((\Delta, N)\) be a soft set of \(H\).

i). A subset of \(H \times N\) can be defined by

\[
\kappa = \{ (x, \eta) | \eta \in N, x \in \Delta(\eta) \}.
\]

The set \(\kappa\) is termed the relationship form \((\Delta, N)\).

ii). The characteristic function \(\kappa\) is expressed by:

\[
\chi_c : H \times N \to [0,1], \quad (x, \eta) \in \kappa \implies 1, \quad (x, \eta) \notin \kappa \implies 0.
\]

iii). If \(H = \{u_1, \ldots, u_m\}, \ N = \{\eta_1, \ldots, \eta_n\}\) then \(\kappa\) can be given in the following table

\kappa	\eta_1	\eta_2	\ldots	\eta_n
\(u_1\)	\(\chi_c(u_1, \eta_1)\)	\(\chi_c(u_1, \eta_2)\)	\ldots	\(\chi_c(u_1, \eta_n)\)
\(u_2\)	\(\chi_c(u_2, \eta_1)\)	\(\chi_c(u_2, \eta_2)\)	\ldots	\(\chi_c(u_2, \eta_n)\)
\ldots	\ldots	\ldots	\ldots	\ldots
\(u_m\)	\(\chi_c(u_m, \eta_1)\)	\(\chi_c(u_m, \eta_2)\)	\ldots	\(\chi_c(u_m, \eta_n)\)

iv). If \(\rho_j = \chi_c(u_1, \eta_j)\), then a matrix is defined

\[
\begin{pmatrix}
\rho_{11} & \ldots & \rho_{1n} \\
\vdots & \ddots & \vdots \\
\rho_{m1} & \ldots & \rho_{mn}
\end{pmatrix}
\]

Matrix \([\rho_j]\) is termed the soft matrix of size \(m \times n\) of \((\Delta, N)\) over \(H\). We will symbolize the set of all \(m \times n\) soft matrices of \(H\) as \(S_{m,n}^{H}\).

In the following, we will present the types of soft matrices based on the entries of the soft matrix constituents.

Definition 2.3. Suppose that \([\rho_j] \in S_{m,n}^{H}\). Then \([\rho_j]\) is termed

(i). A zero soft matrix, denoted by \([0]\) if and only if \(\rho_{ij} = 0\) for any \(i\) and \(j\).

(ii). universal soft matrix, represented by \([1]\), i.e., \(\rho_{ij} = 1\) for any \(i\) and \(j\).

Definition 2.4. Let’s say \([\rho_j]\) and \([c_j]\) are \(m \times n\) size soft matrices.

(i). The union of \([\rho_j]\) and \([c_j]\), denoted \([\rho_j] \cup [c_j]\), is defined by \([\rho_j] \cup [c_j] := [\rho_j \lor c_j]\) for any \(i\) and \(j\).

(ii). The intersection of \([\rho_j]\) and \([c_j]\), denoted \([\rho_j] \cap [c_j]\), is defined by \([\rho_j] \cap [c_j] := [\rho_j \land c_j]\) for any \(i\) and \(j\).

(iii). The complement \([\rho_j]\), denoted \([\overline{\rho_j}]\), is defined by \([\overline{\rho_j}] := [1 - \rho_j]\) for any \(i\) and \(j\).

(iv). The subtraction of \([\rho_j]\) and \([c_j]\), denoted \([\rho_j] - [c_j]\), defined by \([\rho_j] - [c_j] := [\rho_j \land (1 - c_j)]\) for any \(i\) and \(j\).
3. Result and Analysis

Theorem 3.1 Let $[\rho_{ij}] \in S^m_{m \times n}$. Then

i). $[\rho_{ij}] - [\rho_{ij}] = [0]$,

ii). $[\rho_{ij}] - [0] = [\rho_{ij}]$,

iii). $[0] - [\rho_{ij}] = [0]$.

In global, the subtraction of soft matrices does not apply the commutative law.

Theorem 3.2 Let $[\rho_{ij}], [\delta_{ij}] \in S^m_{m \times n}$. Then $[\rho_{ij}] - [\delta_{ij}] = [\delta_{ij}] - [\rho_{ij}]$.

Proof.

Let $[\rho_{ij}], [\delta_{ij}] \in S^m_{m \times n}$. Then for any i and j,

$$[\rho_{ij}] - [\delta_{ij}] = [\rho_{ij} \land (1 - \delta_{ij})]$$

$$= [(1 - \delta_{ij}) \land \rho_{ij}]$$

$$= [(1 - \delta_{ij}) \land (1 - (1 - \rho_{ij}))]$$

$$= [\delta_{ij}] - [\rho_{ij}].$$

In the following theorem, the subtraction condition for a disjoint soft matrix is analogous to set theory.

Theorem 3.3 Let $[\rho_{ij}], [\delta_{ij}] \in S^m_{m \times n}$. If $[\rho_{ij}] \cap [\delta_{ij}] = [0]$ then $[\rho_{ij}] - [\delta_{ij}] = [\rho_{ij}]$.

Proof.

Since $[\rho_{ij}] \cap [\delta_{ij}] = [0]$ and $\rho_{ij}, \delta_{ij} \in \{0,1\}$ for any i and j, we get $[\delta_{ij}] = [\overline{\rho_{ij}}]$. Therefore,

$$[\rho_{ij}] - [\delta_{ij}] = [\rho_{ij}] - [\overline{\rho_{ij}}] = [\rho_{ij} \land (1 - (1 - \rho_{ij}))] = [\rho_{ij}].$$

From Theorem 3.3, the following theorem conditions are obtained.

Theorem 3.4 Let $[\rho_{ij}], [c_{ij}], [\delta_{ij}] \in S^m_{m \times n}$. If $[c_{ij}] \cap [\delta_{ij}] = [0]$ and $[c_{ij}] \cup [\delta_{ij}] = [\rho_{ij}]$ then $[\rho_{ij}] - [\delta_{ij}] = [c_{ij}]$.

Proof.

Since $[c_{ij}] \cap [\delta_{ij}] = [0]$, $[c_{ij}] \cup [\delta_{ij}] = [\rho_{ij}]$, and by Theorem 3.3. We have

$$[\rho_{ij}] - [\delta_{ij}] = [\rho_{ij} \land (1 - \delta_{ij})]$$

$$= [(c_{ij} \lor \delta_{ij}) \land (1 - \delta_{ij})]$$

$$= [(c_{ij} \land (1 - \delta_{ij})) \lor (\delta_{ij} \land (1 - \delta_{ij}))]$$

$$= [c_{ij} \land (1 - \delta_{ij})]$$

$$= [c_{ij}].$$
Shifting the () sign on an operation determines the associative law of the procedure. This condition, analogous to the following theorem.

Theorem 3.5 Let \([\rho_y], [\delta_y] \in S^\mu_{\text{mon}} \). Then

i. \([\rho_y] \cap ([\delta_y] - [\rho_y]) = [0] \).

ii. \(([\rho_y] \cap [\delta_y]) - [\rho_y] = [0] \).

Proof.

i. \([\rho_y] \cap ([\delta_y] - [\rho_y]) = [\rho_y \cap (\delta_y \cap (1 - \rho_y))] \\
= ([\rho_y \cap (1 - \rho_y)] \cap \delta_y) \\
= [0] \).

ii. \(([\rho_y] \cap [\delta_y]) - [\rho_y] = (\delta_y \cap (\rho_y \cap (1 - \rho_y))) \\
= [0] \).

The condition of Theorem 3.5, we have \([\rho_y] \cap ([\delta_y] - [\rho_y]) = ([\rho_y] \cap [\delta_y]) - [\rho_y] \). Furthermore, we will investigate for any \([\rho_y], [\omega_y], [\delta_y] \in S^\mu_{\text{mon}} \).

Theorem 3.6 Let \([\rho_y], [\omega_y], [\delta_y] \in S^\mu_{\text{mon}} \). Then \([\rho_y] \cap ([\omega_y] - [\delta_y]) = ([\rho_y] \cap [\omega_y]) - [\delta_y] \).

Proof.

\([\rho_y] \cap ([\omega_y] - [\delta_y]) = [\rho_y \cap (\omega_y \cap (1 - \delta_y))] \\
= ([\rho_y \cap \omega_y] \cap (1 - \delta_y)) \\
= ([\rho_y] \cap [\omega_y]) - [\delta_y] \).

Based on the conditions in Theorem 3.1(iii), Theorem 3.5(i), and Theorem 3.6, we present the following theorem.

Theorem 3.7 Let \([\rho_y], [\delta_y] \in S^\mu_{\text{mon}} \). Then \(([\rho_y] - [\delta_y]) \cap ([\delta_y] - [\rho_y]) = [0] \).

Proof.

By Theorem 3.6, Theorem 3.5(i), and Theorem 3.1(iii), we have

\(([\rho_y] - [\delta_y]) \cap ([\delta_y] - [\rho_y]) = ([\rho_y] - [\delta_y]) \cap ([\delta_y] - [\rho_y]) \\
= ([\delta_y] \cap ([\rho_y] - [\delta_y]) - [\rho_y] \\
= [0] - [\rho_y] \\
= [0] \).

Consequences of Theorem 3.7, we get the following theorem.

Theorem 3.8 Suppose \([\rho_y], [\delta_y] \in S^\mu_{\text{mon}} \). Then \(([\rho_y] - [\delta_y]) \cap ([\delta_y] - [\rho_y]) = [0] \).

Proof.

From the results of the analysis on the proof of Theorem 3.7, we have

\(([\rho_y] - [\delta_y]) \cap ([\delta_y] - [\rho_y]) = ([\rho_y] - [\delta_y]) \cap ([\delta_y] - [\rho_y]) = [0] \cap [\rho_y] = [0] \).

In the following, we present the distributive law that applies to intersections against subtractions.

Theorem 3.9 Let \([\rho_y], [\omega_y], [\delta_y] \in S^\mu_{\text{mon}} \). Then \([\rho_y] \cap ([\omega_y] - [\delta_y]) = ([\rho_y] \cap [\omega_y]) - ([\rho_y] \cap [\delta_y]) \).
Proof.
\[
\left[\rho_y \right] \cap \left[\left[c_y \right] - \left[\delta_y \right] \right] = \left[\rho_y \wedge \left(c_y \wedge (1 - \delta_y) \right) \right]
\]
\[
= \left[\left(\rho_y \wedge (1 - \delta_y) \right) \wedge c_y \right]
\]
\[
= \left[\left(\left(\rho_y \wedge (1 - \rho_y) \right) \vee \left(\rho_y \wedge (1 - \delta_y) \right) \right) \wedge c_y \right]
\]
\[
= \left[\left(\rho_y \wedge (1 - \rho_y) \right) \vee \left(\rho_y \wedge (1 - \delta_y) \right) \right] \wedge c_y
\]
\[
= \left[\left(\rho_y \wedge c_y \right) \wedge (1 - \rho_y) \right] \wedge c_y
\]
\[
= \left(\left[\rho_y \right] \cap [c_y] \right) - \left(\left[\rho_y \right] \cap [\delta_y] \right).
\]
In Theorem 3.9, distributive law applies to intersections against subtractions. However, it does not apply to such unions that \(\left[\rho_y \right] \cup \left(\left[c_y \right] - \left[\delta_y \right] \right) \neq \left(\left[\rho_y \right] \cup [c_y] \right) - \left(\left[\rho_y \right] \cup [\delta_y] \right) \).

As an illustration of this condition, we choose
\[
\left[\rho_y \right] = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \left[c_y \right] = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}, \quad \left[\delta_y \right] = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in S_{104}^M
\]
such that
\[
\left[\rho_y \right] \cup \left(\left[c_y \right] - \left[\delta_y \right] \right) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}
\]
and
\[
\left(\left[\rho_y \right] \cup [c_y] \right) - \left(\left[\rho_y \right] \cup [\delta_y] \right) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.
\]

Consequences of Theorem 3.6 and 3.9, we get the following theorem.

Theorem 3.10 Let \(\left[\rho_y \right] \cdot \left[c_y \right] \cdot \left[\delta_y \right] \in S_{104}^M \). Then \(\left(\left[\rho_y \right] \cap [c_y] \right) - \left(\left[\rho_y \right] \cup [c_y] \right) = \left(\left[\rho_y \right] \cap [c_y] \right) - \left(\left[\rho_y \right] \cup [\delta_y] \right) \).

Proof. This is clear with Theorem 3.6 and 3.9. ■

In the following, we present the distributive law that applies to subtractions against intersections and unions.

Theorem 3.11 Let \(\left[\rho_y \right] \cdot \left[c_y \right] \cdot \left[\delta_y \right] \in S_{104}^M \). Then
\[
\left(\left[\rho_y \right] \cap [c_y] \right) - \left(\left[\rho_y \right] \cap [\delta_y] \right) = \left(\left[\rho_y \right] \cap [c_y] \right) - \left(\left[\rho_y \right] \cap [\delta_y] \right)
\]
and
\[
\left(\left[\rho_y \right] \cup [c_y] \right) - \left(\left[\rho_y \right] \cup [\delta_y] \right) = \left(\left[\rho_y \right] \cup [c_y] \right) - \left(\left[\rho_y \right] \cup [\delta_y] \right)
\]

Proof.
\[
\left(\left[\rho_y \right] \cap [c_y] \right) - \left[\delta_y \right] = \left[\left(\rho_y \wedge c_y \right) \wedge (1 - \delta_y) \right]
\]
\[
= \left[\left(\rho_y \wedge (1 - \delta_y) \right) \wedge (c_y \wedge (1 - \delta_y)) \right]
\]
\[
= \left[\left(\rho_y \wedge (1 - \delta_y) \right) \wedge (c_y \wedge (1 - \delta_y)) \right], \text{ and}
\]
\[
\left(\left[\rho_y \right] \cup [c_y] \right) - \left[\delta_y \right] = \left[\left(\rho_y \vee c_y \wedge (1 - \delta_y) \right]
\]
\[
= \left[\left(\rho_y \wedge (1 - \delta_y) \right) \wedge (c_y \wedge (1 - \delta_y)) \right]
\]
\[
= \left(\left[\rho_y \right] \cup [\delta_y] \right) - \left(\left[\rho_y \right] \cup [\delta_y] \right).
\]
■
With \land, \lor and \neg corresponding \cap, \cup, and \neg respectively, we have De Morgan’s laws for complements.

Theorem 3.12. (De Morgan’s Laws) Let $[\rho_y]$, $[c_y]$, and $[\delta_y]$ are the $m \times n$ size soft matrices. Then the following statement is true:

(i). $[\rho_y] - ([c_y] \land [\delta_y]) = ([\rho_y] - [c_y]) \lor ([\rho_y] - [\delta_y])$.

(ii). $[\rho_y] - ([c_y] \lor [\delta_y]) = ([\rho_y] - [c_y]) \land ([\rho_y] - [\delta_y])$.

Proof.

(i). $[\rho_y] - ([c_y] \land [\delta_y]) = [\rho_y \land (1 \land (c_y \land \delta_y))]$

$= [\rho_y \land ((1 - c_y) \lor (1 - \delta_y))]$

$= [(\rho_y \land (1 - c_y)) \lor (\rho_y \land (1 - \delta_y))]$

$= ([\rho_y] - [c_y]) \lor ([\rho_y] - [\delta_y])$.

(ii). $[\rho_y] - ([c_y] \lor [\delta_y]) = [\rho_y \land (1 \lor (c_y \lor \delta_y))]$

$= [\rho_y \land ((1 - c_y) \lor (1 - \delta_y))]$

$= [(\rho_y \land (1 - c_y)) \lor (\rho_y \land (1 - \delta_y))]$

$= ([\rho_y] - [c_y]) \land ([\rho_y] - [\delta_y])$. ■

Consequences of Theorem 3.12, we get the following theorem.

Theorem 3.13. Let $[\rho_y]$, $[\delta_y] \in S_{m,n}$. Then $[\rho_y] - ([c_y] \land [\delta_y]) = [\rho_y] - [\delta_y]$.

Proof.

Clear by Theorem 3.12(i). ■

4. **Conclusion**

From the results, the subtraction operation on the soft matrix of size $m \times n$ meets distributive law and De Morgan's law.

Acknowledgment

The authors thank anonymous referees for their critical comments in improving this paper. This work is supported by the Universitas Lambung Mangkurat (No. SP DIPA – 023.17.2.6777518/2021).

References

[1] Molodtsov D 1999 Soft set theory first results *J. Comput. Math. with Appl.* 37 19–31

[2] Zadeh L A 1965 Fuzzy Sets *Inf. Control* 8 338–53

[3] Michael L O 2016 Set theory *A First Course in Mathematical Logic and Set Theory* (Hoboken, New Jersey: Jhon Wiley & Sons, Inc) pp 117–61

[4] Çelik Y and Yamak S 2013 Fuzzy soft set theory applied to medical diagnosis using fuzzy arithmetic operations *J. Inequalities Appl.* 2013 82

[5] Rehman N, Ali A and Park C 2019 Note on fuzzy soft sets and fuzzy soft lattices *Rev. la Real Acad. Ciencias Exactas, Físicas y Nat. Ser. A. Matemáticas* 113 41–8
[6] Fatimah F, Rosadi D, Hakim R B F and R. Alcantud J C 2019 Probabilistic soft sets and dual probabilistic soft sets in decision-making Neural Comput. Appl. 31 397–407
[7] Wang C and Qu A 2015 The applications of vague soft sets and generalized vague soft sets Acta Math. Appl. Sin. English Ser. 31 977–90
[8] Ma Z, Yang W and Hu B-Q 2010 Soft set theory based on its extension Fuzzy Inf. Eng. 2 423–32
[9] Zhu K and Zhan J 2016 Fuzzy parameterized fuzzy soft sets and decision making Int. J. Mach. Learn. Cybern. 7 1207–12
[10] Çağman N and Enginoğlu S 2010 Soft matrix theory and its decision making Comput. Math. with Appl. 59 3308–14
[11] Usha S 2018 Fuzzy Soft Matrices Applied In Yoga On Hemorrhoid 7 32–6
[12] Neog T J and Sut D K 2012 On Fuzzy Soft Matrix Theory Int. J. Math. Arch. 3 491
[13] Mondal S and Pal M 2011 Soft matrices African J. Math. Comput. Sci. Res. 7 379–88
[14] Inthumathi V, Chitra V and Jayasree S 2017 Fuzzy soft min-max decision making and its applications Current Scenario in Pure and Applied Mathematics vol 9, ed P Nath (Coimbatore, Tamil Nadu, India: RGN Publications) pp 827–34
[15] rajan R N and murugan K B 2014 Decision Making Approach for Solving Fuzzy Soft Matrix Int. J. Math. Trends Technol. 10 99–104
[16] Article R, Arockiaraj J J and Madhanraj S 2016 Fuzzy Soft Matrix Theory and its Multi Criteria Decision Making on Radio Frequency Int. J. Math. its Appl. 4 137–43
[17] Yang Y and Ji C 2011 Fuzzy soft matrices and their applications Artificial Intelligence and Computational Intelligence ed H Deng, D Miao, J Lei and F L Wang (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 618–27
[18] Enginoğlu S and Arslan B 2020 Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices and their application in decision-making Comput. Appl. Math. 39 324
[19] Guleria A and Bajaj R K 2019 On Pythagorean fuzzy soft matrices, operations and their applications in decision making and medical diagnosis Soft Comput. 23 7889–900
[20] Himwich E, Narayanan S A, Pate M, Paul N and Strominger A 2020 The soft S-matrix in gravity J. High Energy Phys. 2020 129
[21] Khan M, Anis S, Song S Z and Jun Y B 2020 Complex fuzzy soft matrices with applications Hacettepe J. Math. Stat. 49 676–83
[22] Rao T S, Kumar B S, Nageswara Rao T and Rao S H 2020 Use of G- soft matrix in solving decision making problems J. Crit. Rev. 7 294–7
[23] Neog T J and Dutta B K 2020 A note on fuzzy soft matrices J. Math. Comput. Sci. 10 157–70
[24] John S J 2021 Soft sets Studies in Fuzziness and Soft Computing vol 400 pp 3–17
[25] John S J 2021 Applications and Future Directions of Research Soft Sets: Theory and Applications (Cham: Springer International Publishing) pp 195–237
[26] John S J 2021 Soft Sets BT - Soft Sets: Theory and Applications ed S J John (Cham: Springer International Publishing) pp 3–36
[27] Basu T, Mahapatra N and Mondal S 2012 Different Types of Matrices in Fuzzy Soft Set Theory and Their Application in Decision Making Problems IRACST–Engineering Sci. ... 2 389–98