ON THE DEGREE OF THE p-TORSION FIELD OF ELLIPTIC CURVES
OVER \mathbb{Q}_ℓ FOR $\ell \neq p$

NUNO FREITAS AND ALAIN KRAUS

Abstract. Let ℓ and $p \geq 3$ be distinct prime numbers. Let E/\mathbb{Q}_ℓ be an elliptic curve with p-torsion module E_p. Let $\mathbb{Q}_\ell(E_p)$ be the p-torsion field of E. We provide a complete description of the degree of the extension $\mathbb{Q}_\ell(E_p)/\mathbb{Q}_\ell$. As a consequence, we obtain a recipe to determine the discriminant ideal of the extension $\mathbb{Q}_\ell(E_p)/\mathbb{Q}_\ell$ in terms of standard information on E.

1. Introduction

Let ℓ and $p \geq 3$ be distinct prime numbers. Fix $\overline{\mathbb{Q}}_\ell$ an algebraic closure of \mathbb{Q}_ℓ. Let E/\mathbb{Q}_ℓ be an elliptic curve with p-torsion module E_p. Let $\mathbb{Q}_\ell(E_p) \subset \overline{\mathbb{Q}}_\ell$ be the p-torsion field of E. The aim of this paper is to determine the degree d of the extension $\mathbb{Q}_\ell(E_p)/\mathbb{Q}_\ell$.

Write π for an uniformizer in $\mathbb{Q}_\ell(E_p)$ and e for its ramification degree. The different ideal of $\mathbb{Q}_\ell(E_p)$ is (π), where the integer D is fully determined in [1]. The discriminant ideal D of the extension $\mathbb{Q}_\ell(E_p)/\mathbb{Q}_\ell$ is generated by $\ell^{dD/e}$. The value of e is given in [9] in terms of the standard invariants of a minimal Weierstrass model of E. Therefore, as a consequence of our results, we obtain a complete procedure to determine D in terms of ℓ, p and invariants attached to E.

Part I. Statement of the results

Let ℓ and $p \geq 3$ be distinct prime numbers. Let v be the valuation in \mathbb{Q}_ℓ such that $v(\ell) = 1$. Let E/\mathbb{Q}_ℓ be an elliptic curve and write c_4, c_6 and Δ for the standard invariants of a minimal Weierstrass model of E/\mathbb{Q}_ℓ. Write $j = \frac{c_4}{c_6}$ for the modular invariant of E.

Write E_p for the p-torsion module of E. Let $\mathbb{Q}_\ell(E_p) \subset \overline{\mathbb{Q}}_\ell$ be the p-torsion field of E and denote by d its degree

$$d = [\mathbb{Q}_\ell(E_p) : \mathbb{Q}_\ell].$$

Write $\mathbb{Q}_\ell^{\text{unr}}$ for the maximal unramified extension of \mathbb{Q}_ℓ contained in $\overline{\mathbb{Q}}_\ell$.

Let r be the order of ℓ modulo p and δ be the order of $-\ell$ modulo p.

Date: April 23, 2018.

2010 Mathematics Subject Classification. Primary 11G05.

Key words and phrases. Elliptic curves, p-torsion points, local fields.

The first-named author is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 747808 and the grant Proyecto RSME-FBBVA 2015 José Luis Rubio de Francia.
We will now state our results according to the type of reduction of E and the prime ℓ.

2. **The case of good reduction**

Let M/\mathbb{Q}_ℓ be a finite totally ramified extension and E/M be an elliptic curve with good reduction. In this section we will write d to denote $$d = [M(E_p) : M].$$

The residue field of M is \mathbb{F}_ℓ. Let $\tilde{E}/\mathbb{F}_\ell$ be the elliptic curve obtained from E/M by reduction of a minimal model. Write $|\tilde{E}(\mathbb{F}_\ell)|$ for the order of its group of \mathbb{F}_ℓ-rational points. Let $$a_E = \ell + 1 - |\tilde{E}(\mathbb{F}_\ell)| \quad \text{and} \quad \Delta_E = a_E^2 - 4\ell.$$ Note that the Weil bound implies $\Delta_E < 0$.

In the case of E/M having good ordinary reduction i.e. $a_E \equiv 0 \pmod{\ell}$, the endomorphism ring of \tilde{E} is isomorphic to an order of the imaginary quadratic field $\mathbb{Q}\left(\sqrt{\Delta_E}\right)$. The Frobenius endomorphism $\pi_{\tilde{E}}$ of \tilde{E}, generates a subring $\mathbb{Z}[\pi_{\tilde{E}}]$ of finite index of $\text{End}(\tilde{E})$. In this case, we define

$$b_E = \left[\text{End}(\tilde{E}) : \mathbb{Z}[\pi_{\tilde{E}}]\right].$$

The ratio $\frac{\Delta_E}{b_E}$ is the discriminant of $\text{End}(\tilde{E})$. The determination of b_E has been implemented on Magma [11] by Centeleghe (cf. [2] and [3]). A method to obtain b_E is also presented in [4].

Let α and β be the roots in \mathbb{F}_{p^2} of the polynomial in $\mathbb{F}_p[X]$ given by $$X^2 - a_E X + \ell \quad \pmod{p}.$$

Theorem 1. Let n be the least common multiple of the orders of α and β in $\mathbb{F}_{p^2}^\times$.

1) If $\Delta_E \not\equiv 0 \pmod{p}$, then $d = n$.

2) Suppose $\Delta_E \equiv 0 \pmod{p}$. Then E/M has good ordinary reduction. We have $$d = \begin{cases} n & \text{if} \; b_E \equiv 0 \pmod{p}, \\ np & \text{otherwise}. \end{cases}$$

Corollary 1. Suppose $a_E = 0$. Then $d = 2\delta$.

3. **The case of multiplicative reduction**

Let E/\mathbb{Q}_ℓ be an elliptic curve with multiplicative reduction. In this case, we have $v(c_6) = 0$ and the Legendre symbol $\left(\frac{c_6}{\ell}\right) = \pm 1$. Let $$\tilde{j} = \frac{j}{L(2)}. $$

Theorem 2. We are in one of the following cases.

1) Suppose $\ell \geq 3$ and $\left(\frac{c_6}{\ell}\right) = 1$, or $\ell = 2$ and $c_6 \equiv 7 \pmod{8}$.

1.1) If $\ell \not\equiv 1 \pmod{p}$, then
\[d = \begin{cases} r & \text{if } v(j) \equiv 0 \pmod{p}, \\ pr & \text{otherwise}. \end{cases} \]

1.2) If $\ell \equiv 1 \pmod{p}$, then
\[d = \begin{cases} 1 & \text{if } v(j) \equiv 0 \pmod{p} \text{ and } \frac{-\ell+1}{j^r} \equiv 1 \pmod{\ell}, \\ p & \text{otherwise}. \end{cases} \]

2) Suppose $\ell \geq 3$ and $\left(\frac{-c_6}{\ell}\right) = -1$, or $\ell = 2$ and $c_6 \not\equiv 7 \pmod{8}$.

2.1) If r is even, then
\[d = \begin{cases} r & \text{if } v(j) \equiv 0 \pmod{p}, \\ pr & \text{otherwise}. \end{cases} \]

2.2) Suppose r odd.

2.2.1) If $\ell \not\equiv 1 \pmod{p}$, then
\[d = \begin{cases} 2r & \text{if } v(j) \equiv 0 \pmod{p}, \\ 2pr & \text{otherwise}. \end{cases} \]

2.2.2) If $\ell \equiv 1 \pmod{p}$, then
\[d = \begin{cases} 2 & \text{if } v(j) \equiv 0 \pmod{p} \text{ and } \frac{-\ell+1}{j^r} \equiv 1 \pmod{\ell}, \\ 2p & \text{otherwise}. \end{cases} \]

4. The case of additive potentially multiplicative reduction

Let us assume that E/\mathbb{Q}_ℓ has additive potentially multiplicative reduction.

Theorem 3. We are in one of the following cases.

1) If $\ell \not\equiv 1 \pmod{p}$, then
\[d = \begin{cases} 2r & \text{if } v(j) \equiv 0 \pmod{p}, \\ 2pr & \text{otherwise}. \end{cases} \]

2) If $\ell \equiv 1 \pmod{p}$, then
\[d = \begin{cases} 2 & \text{if } v(j) \equiv 0 \pmod{p} \text{ and } \frac{-\ell+1}{j^r} \equiv 1 \pmod{\ell}, \\ 2p & \text{otherwise}. \end{cases} \]
Let \(\ell \geq 5 \) and \(E/\mathbb{Q}_\ell \) be an elliptic curve with additive potentially good reduction. In this case, the triples \((v(c_4), v(c_6), v(\Delta))\) are given according to the following table.

\(v(\Delta)\)	2	3	4	6	8	9	10
\(v(c_4)\)	≥1	1	≥2	2	≥3	3	≥4
\(v(c_6)\)	1	≥2	2	≥3	3	4	≥5

Let \(e = e(E) \) be the semistability defect of \(E \), i.e. the degree of the minimal extension of \(\mathbb{Q}_\ell^{ur} \) over which \(E \) acquires good reduction.

From [9, Proposition 1] we know that

\[
(5.1) \quad e = \text{denominator of} \ \frac{v(\Delta)}{12}
\]

and, in particular, we have \(e \in \{2, 3, 4, 6\} \). The equation

\[
(5.2) \quad y^2 = x^3 - \frac{c_4}{48}x - \frac{c_6}{864},
\]

is a minimal model of \(E/\mathbb{Q}_\ell \).

5.1. Case \(e = 2 \). Suppose \(E \) satisfies \(e = 2 \). Let \(E'/\mathbb{Q}_\ell \) be the quadratic twist of \(E \) by \(\sqrt{\ell} \).

Lemma 1. The elliptic curve \(E'/\mathbb{Q}_\ell \) has good reduction.

Let \(\tilde{E}'/\mathbb{F}_\ell \) be the elliptic curve obtained by reduction of a minimal model for \(E' \). Write

\[
(5.3) \quad a_{E'} = \ell + 1 - |\tilde{E}'(\mathbb{F}_\ell)| \quad \text{and} \quad \Delta_{E'} = a_{E'}^2 - 4\ell.
\]

Let \(\alpha \) and \(\beta \) be the roots in \(\mathbb{F}_p^* \) of the polynomial in \(\mathbb{F}_p[X] \)

\[
X^2 - a_{E'}X + \ell \pmod{p}.
\]

Let \(n \) be the least common multiple of the orders of \(\alpha \) and \(\beta \) in \(\mathbb{F}_p^* \).

In case \(E'/\mathbb{Q}_\ell \) has good ordinary reduction, \(\pi_{E'} \) being the Frobenius endomorphism of \(\tilde{E}'/\mathbb{F}_\ell \), we will note

\[
b_{E'} = \left[\text{End}(\tilde{E}') : \mathbb{Z}[\pi_{E'}] \right]
\]

the index of \(\mathbb{Z}[\pi_{E'}] \) in \(\text{End}(\tilde{E}') \).

Theorem 4. Let \(E/\mathbb{Q}_\ell \) satisfy \(e(E) = 2 \) and let \(E' \) be as above.

1) Suppose \(\Delta_{E'} \not\equiv 0 \pmod{p} \). We have

\[
d = \begin{cases}
n & \text{if } n \text{ is even} \\
\frac{n}{2} & \text{otherwise}
\end{cases} \quad \text{and} \quad \alpha^2 = \beta^2 = -1,
\]

2) Suppose \(\Delta_{E'} \equiv 0 \pmod{p} \). Then \(E'/\mathbb{Q}_\ell \) has good ordinary reduction.
2.1) If \(n \) is even and \(\alpha_n = -1 \), then
\[
d = \begin{cases}
 n & \text{if } b_{E'} \equiv 0 \pmod{p}, \\
 np & \text{otherwise}.
\end{cases}
\]

2.2) If \(n \) is odd or \(\alpha_n \neq -1 \), then
\[
d = \begin{cases}
 2n & \text{if } b_{E'} \equiv 0 \pmod{p}, \\
 2np & \text{otherwise}.
\end{cases}
\]

5.2. Case \(e \in \{3, 4, 6\} \). Suppose \(E/\mathbb{Q}_\ell \) satisfies \(e \in \{3, 4, 6\} \). We define
\[
u = \ell^{\frac{e-2}{2}} \quad \text{and} \quad M = \mathbb{Q}_\ell(u).
\]

Let \(E'/M \) be the elliptic curve of equation
\[
Y^2 = X^3 - \frac{c_4}{48u^4}X - \frac{c_6}{864u^6}.
\]

Lemma 2. The elliptic curves \(E \) and \(E' \) are isomorphic over \(M \). Moreover, \(E'/M \) has good reduction.

The extension \(M/\mathbb{Q}_\ell \) is totally ramified of degree \(e \). Let \(\tilde{E}'/\mathbb{F}_\ell \) be the elliptic curve obtained from \(E' \) by reduction and denote
\[
a_{E'} = \ell + 1 - |\tilde{E}'(\mathbb{F}_\ell)| \quad \text{and} \quad \Delta_{E'} = a_{E'}^2 - 4\ell.
\]

Let \(\alpha \) and \(\beta \) be the roots in \(\mathbb{F}_{p^2}^* \) of the polynomial in \(\mathbb{F}_p[X] \) given by
\[
X^2 - a_{E'}X + \ell \pmod{p}.
\]

Let \(n \) be the least common multiple of the orders of \(\alpha \) and \(\beta \) in \(\mathbb{F}_{p^2}^* \).

When \(p \) does not divide \(e \), we denote by \(\zeta_e \) a primitive \(e \)-th root of unity in \(\mathbb{F}_{p^2}^* \). Note that when \(p \mid e \) we have \(p = 3 \) and \(e \in \{3, 6\} \).

Theorem 5. Suppose that \(e(E) = 3 \) and \(\ell \equiv 1 \pmod{3} \).

1) Assume also \(p \neq 3 \).

1.1) If \(\Delta_{E'} \equiv 0 \pmod{p} \), then
\[
d = \begin{cases}
 n & \text{if } n \equiv 0 \pmod{3} \quad \text{and} \quad \{\alpha_n^{\frac{2}{3}}, \beta_n^{\frac{2}{3}}\} = \{\zeta_3, \zeta_3^{-1}\}, \\
 3n & \text{otherwise}.
\end{cases}
\]

1.2) If \(\Delta_{E'} \equiv 0 \pmod{p} \), then \(d = 3n \).

2) If \(p = 3 \), then \(d = 3n \).

Theorem 6. Suppose that \(e(E) = 4 \) and \(\ell \equiv 1 \pmod{4} \).

1) If \(\Delta_{E'} \equiv 0 \pmod{p} \), then
\[
d = \begin{cases}
 n & \text{if } n \equiv 0 \pmod{4} \quad \text{and} \quad \{\alpha_n^{\frac{2}{4}}, \beta_n^{\frac{2}{4}}\} = \{\zeta_4, \zeta_4^{-1}\}, \\
 4n & \text{if } n \text{ is odd} \quad \text{or} \quad \{\alpha_n^{\frac{2}{4}}, \beta_n^{\frac{2}{4}}\} \neq \{-1\}, \\
 2n & \text{otherwise}.
\end{cases}
\]
2) If \(\Delta_{E'} \equiv 0 \pmod{p} \), then
\[
d = \begin{cases}
2n & \text{if } n \text{ is even and } \alpha^2 = -1, \\
4n & \text{otherwise.}
\end{cases}
\]

Theorem 7. Suppose that \(e(E) = 6 \) and \(\ell \equiv 1 \pmod{3} \).

1) Assume also \(p \neq 3 \).

1.1) Suppose \(\Delta_{E'} \not\equiv 0 \pmod{p} \).

1.1.1) If \(n \equiv 0 \pmod{6} \) and \(\{\alpha^6, \beta^6\} = \{\zeta_6, \zeta_6^{-1}\} \), then \(d = n \).

1.1.2) Suppose \(n \not\equiv 0 \pmod{6} \) or \(\{\alpha^6, \beta^6\} \neq \{\zeta_6, \zeta_6^{-1}\} \). Then,
\[
d = \begin{cases}
2n & \text{if } n \equiv 0 \pmod{3} \text{ and } \{\alpha^6, \beta^6\} = \{\zeta_6^2, \zeta_6^{-2}\}, \\
3n & \text{if } n \text{ is even and } \alpha^6 = \beta^6 = -1, \\
6n & \text{otherwise.}
\end{cases}
\]

1.2) If \(\Delta_{E'} \equiv 0 \pmod{p} \), then
\[
d = \begin{cases}
3n & \text{if } n \text{ is even and } \alpha^6 = -1, \\
6n & \text{otherwise.}
\end{cases}
\]

2) If \(p = 3 \), then \(d = 6 \).

Theorem 8. Suppose that \(e = e(E) \in \{3, 4, 6\} \) and \(\ell \equiv -1 \pmod{e} \).

1) If \(e = 3 \), then \(d = 6\delta \).

2) If \(e \in \{4, 6\} \), then
\[
d = \begin{cases}
er & \text{if } r \text{ is even,} \\
2er & \text{if } r \text{ is odd.}
\end{cases}
\]

6. The case of additive potentially good reduction with \(\ell = 3 \)

Let \(E/\mathbb{Q}_3 \) be an elliptic curve with additive potentially good reduction. We can find in [9] the value of \(e \) in terms of the triple \((v(c_4), v(c_6), v(\Delta)) \). In particular, we have \(e \in \{2, 3, 4, 6, 12\} \).

When \(e = 2 \), we see from [9, p. 355, Cor.] that
\[
(v(c_4), v(c_6), v(\Delta)) \in \{(2, 3, 6), (3, 6, 6)\}.
\]

In this case, a minimal equation of \(E/\mathbb{Q}_3 \) is
\[
y^2 = x^3 - \frac{c_4}{48}x - \frac{c_6}{864}
\]
and we let \(E'/\mathbb{Q}_3 \) be the elliptic curve obtained as the quadratic twist of \(E \) by \(\sqrt{3} \).

Lemma 3. The elliptic curve \(E'/\mathbb{Q}_3 \) has good reduction.
Let \(\tilde{E}'/\mathbb{F}_3 \) be the elliptic curve obtained from \(E'/\mathbb{Q}_3 \) by reduction and define
\[
a_{E'} = 4 - |\tilde{E}'(\mathbb{F}_3)| \quad \text{and} \quad \Delta_{E'} = a_{E'}^2 - 12.
\]
Let \(\alpha \) and \(\beta \) be the roots in \(\mathbb{F}_{p^2} \) of the polynomial in \(\mathbb{F}_p[X] \) given by
\[
X^2 - a_{E'}X + 3 \pmod{p}.
\]
Let \(n \) be the least common multiple of their orders in \(\mathbb{F}_{p^2}^* \).

Theorem 9. Let \(E/\mathbb{Q}_3 \) satisfy \(e(E) = 2 \) and let \(E' \) be as above.

1) Suppose \(\Delta_{E'} \not\equiv 0 \pmod{p} \). We have
\[
d = \begin{cases} n & \text{if } n \text{ is even} \quad \text{and} \quad \alpha^2 \beta^2 = -1, \\ 2n & \text{otherwise}. \end{cases}
\]

2) Suppose \(\Delta_{E'} \equiv 0 \pmod{p} \). Then \(p = 11 \) and \(d = 110 \).

Theorem 10. Suppose that \(e(E) \in \{3, 4, 6, 12\} \).

1) If \(e = 3 \), then \(d = 6\delta \).

2) If \(e \in \{4, 6, 12\} \), then
\[
d = \begin{cases} er & \text{if } r \text{ is even}, \\ 2er & \text{if } r \text{ is odd}. \end{cases}
\]

7. The case of additive potentially good reduction with \(\ell = 2 \)

Let \(E/\mathbb{Q}_2 \) be an elliptic curve with additive potentially good reduction. We can find in [9] the value of \(e \) in terms of the triple \((v(c_4), v(c_6), v(\Delta)) \). In particular, \(e \in \{2, 3, 4, 6, 8, 24\} \).

When \(e = 2 \), we write \(t = (v(c_4), v(c_6), v(\Delta)) \), and [9, p. 357, Cor.] gives that
\[
t \in \{(\geq 6, 6, 6), (4, 6, 12), (\geq 8, 9, 12), (6, 9, 18)\}.
\]

The equation
\[
y^2 = x^3 - \frac{c_4}{48}x - \frac{c_6}{864}
\]
is a minimal model of \(E/\mathbb{Q}_2 \). Define the quantity
\[
c'_6 = \frac{c_6}{2^w(c_6)}.
\]

Lemma 4. Suppose that \(E \) satisfies \(e = 2 \) and let \(u \in \{-2, -1, 2\} \) be defined as follows:
\[
u = \begin{cases} 2 & \text{if } t = (\geq 6, 6, 6) \quad \text{and} \quad c'_6 \equiv 1 \pmod{4}, \\ -2 & \text{if } t = (\geq 6, 6, 6) \quad \text{and} \quad c'_6 \equiv -1 \pmod{4}, \\ -1 & \text{if } t = (4, 6, 12) \quad \text{or} \quad t = (\geq 8, 9, 12), \\ 2 & \text{if } t = (6, 9, 18) \quad \text{and} \quad c'_6 \equiv -1 \pmod{4}, \\ -2 & \text{if } t = (6, 9, 18) \quad \text{and} \quad c'_6 \equiv 1 \pmod{4}. \end{cases}
\]

Then, the quadratic twist of \(E/\mathbb{Q}_2 \) by \(\sqrt{u} \) has good reduction.
Under the conditions of Lemma 4, we let E'/\mathbb{Q}_2 be the quadratic twist of E/\mathbb{Q}_2 by \sqrt{u} and \tilde{E}'/\mathbb{F}_2 the elliptic curve obtained from E' by reduction. Define also

$$a_{E'} = 3 - \left| \tilde{E}'(\mathbb{F}_2) \right| \quad \text{and} \quad \Delta_{E'} = a_{E'}^2 - 8.$$

Let α and β be the roots in $\mathbb{F}_{p^2}^*$ of the polynomial in $\mathbb{F}_p[X]$ given by

$$X^2 - a_{E'}X + 2 \pmod{p}.$$

Let n be the least common multiple of their orders in $\mathbb{F}_{p^2}^*$.

Theorem 11. Let E/\mathbb{Q}_2 satisfy $e(E) = 2$ and let E' be as above.

1) Suppose $\Delta_{E'} \equiv 0 \pmod{p}$. We have,

$$d = \begin{cases}
2n & \text{if } n \text{ is even} \quad \text{and} \quad \alpha^{\frac{n}{2}} = \beta^{\frac{n}{2}} = -1, \\
2n & \text{otherwise.}
\end{cases}$$

2) Suppose $\Delta_{E'} \equiv 0 \pmod{p}$. Then $p = 7$ and $d = 42$.

Theorem 12. Suppose that E/\mathbb{Q}_2 satisfies $e(E) \in \{3, 4, 6, 8, 24\}$.

1) If $e = 3$, then $d = 6\delta$.

2) If $e \in \{4, 6, 8, 24\}$, then

$$d = \begin{cases}
er \cdot r & \text{if } r \text{ is even,} \\
2er & \text{if } r \text{ is odd.}
\end{cases}$$

8. Application of the Results

Before proceeding to the proofs of the results, let us give some examples of their application.

Consider the elliptic curve over \mathbb{Q} with Cremona label 25920ba1 given by the minimal model

$$E : y^2 = x^3 - 432x - 864$$

whose conductor is $N_E = 2^6 \cdot 3^4 \cdot 5$ and standard invariants are

$$c_4(E) = 2^8 \cdot 3^4, \quad c_6(E) = 2^{10} \cdot 3^6, \quad \Delta = 2^{14} \cdot 3^{10} \cdot 5.$$

We will determine the degree d_ℓ of $\mathbb{Q}_\ell(E_p)/\mathbb{Q}_\ell$ for $\ell \in \{2, 3, 5, 7\}$ and $p \in \{3, 5, 7, 11\}$ with $\ell \neq p$. Recall that ℓ is the order of ℓ modulo p.

1) Let $\ell = 2$; from [9, p. 357, Cor.] we see that $e = 24$. From Theorem 12 we now conclude that

$$d_3 = 48, \quad d_5 = 96, \quad d_7 = 144, \quad d_{11} = 240,$$

since for $p = 3, 5, 7, 11$ we have $r = 2, 4, 3, 10$, respectively.

2) Let $\ell = 3$; from [9, p. 355, Cor.] we see that $e = 6$. From Theorem 10 we now conclude that

$$d_5 = 24, \quad d_7 = 36, \quad d_{11} = 110,$$

since for $p = 5, 7, 11$ we have $r = 4, 6, 5$, respectively.
3) Let $\ell = 5$; the curve E has multiplicative reduction at 5 and the symbol $(-c_6/5) = 1$. Moreover, for $p = 3, 7, 11$, we have that $5 \not\equiv 1 \pmod{p}$, so by part 1.1) of Theorem 2 we conclude that
\[d_3 = 6, \quad d_7 = 42, \quad d_{11} = 55, \]
since $r = 2, 6, 5$, respectively and $v_5(j) = 2 \not\equiv 0 \pmod{p}$ for all p.

4) Let $\ell = 7$; the curve E has good reduction at 7 so we will apply Theorem 1. We have
\[a_E = -2, \quad \Delta_E = -24. \]
For $p = 3$ we have $\Delta_E \equiv 0 \pmod{p}$ and $b_E = 1 \not\equiv 0 \pmod{3}$. Moreover,
\[x^2 - a_E x + 7 \equiv (x + 1)^2 \pmod{3}, \]
so $n = 2$ and $d_3 = 6$ by Theorem 1 part 2). For $p = 5$, we have
\[x^2 - a_E x + 7 \equiv (x + 3)(x + 4) \pmod{5}, \]
so $d_5 = n = 4$ by Theorem 1 part 1). For $p = 11$, we have
\[x^2 - a_E x + 7 \equiv (x + 8)(x + 4) \pmod{11}, \]
so $d_{11} = n = 10$ by Theorem 1 part 1).

8.1. **Computing the discriminant of $\mathbb{Q}_\ell(E_p)$**. To finish we will determine the discriminant ideal of $K = \mathbb{Q}_\ell(E_p)$ for $(\ell, p) = (2, 3)$ and $(\ell, p) = (3, 5)$ where E is the elliptic curve in the previous examples. Write π for an uniformizer in K. The discriminant ideal \mathcal{D} of K / \mathbb{Q}_ℓ is generated by $\ell^{d_{\mathcal{D}/\mathbb{Q}}}$, where $(\pi)^p$ is the different ideal of K.

1) Let $(\ell, p) = (2, 3)$. We have $e = 24$ and $d_3 = 48$ from the previous section. The valuations of $\nu_2(c_4)$ and $\nu_2(\Delta)$ together with [1, Théorème 4] tell us that $D = 50$, hence $\mathcal{D} = (2)^{100}$.

2) Let $(\ell, p) = (3, 5)$. In this case, we have $e = 6$ and $d_5 = 24$ and [1, Théorème 3] tell us that $D = 9$, hence $\mathcal{D} = (3)^{36}$.

Part II. Proof of the statements

9. **Proof of Theorem 1 and Corollary 1**

Let E/M be as in the statement of Theorem 1 and recall that $d = [M(E_p) : M]$.

Lemma 5. Suppose p divides Δ_E. Then E/M has good ordinary reduction.

Proof. We have to prove that $a_E \not\equiv 0 \pmod{\ell}$.

Recall that $\Delta_E = a_E^2 - 4\ell$. Since $\ell \neq p$ and $p \geq 3$, we have $a_E \neq 0$.

The Weil bound implies $|a_E| \leq 2\sqrt{\ell}$. So, for $\ell \geq 5$, it is clear that $\ell \nmid a_E$.

Suppose $\ell = 2$ or $\ell = 3$ and that E/M has good supersingular reduction. In case $\ell = 2$, one has $a_E = \pm 2$ so $\Delta_E = -4$, which is not divisible by p. If $\ell = 3$, one has $a_E = \pm 3$ so $\Delta_E = -3$, which leads again to a contradiction, hence the assertion. \qed
Let \tilde{E}_p be the group of p-torsion points of the reduced elliptic curve $\tilde{E}/\mathbb{F}_\ell$. From the work of Serre-Tate [15, Lemma 2], we have

\[(9.1)\quad d = [\mathbb{F}_\ell(\tilde{E}_p) : \mathbb{F}_\ell].\]

Let us note

$$\rho_{\tilde{E},p} : \text{Gal}(\mathbb{F}_\ell(\tilde{E}_p)/\mathbb{F}_\ell) \to \text{GL}_2(\mathbb{F}_p)$$

the representation giving the action of the Galois group $\text{Gal}(\mathbb{F}_\ell(\tilde{E}_p)/\mathbb{F}_\ell)$ on \tilde{E}_p via a choice of a basis. Let σ_ℓ be the Frobenius element of $\text{Gal}(\mathbb{F}_\ell(\tilde{E}_p)/\mathbb{F}_\ell)$. The order of

$$\rho_{\tilde{E},p}(\sigma_\ell) \in \text{GL}_2(\mathbb{F}_p)$$

is equal to d. Let $f_E \in \mathbb{F}_p[X]$ be its characteristic polynomial, which is given by

$$f_E = X^2 - a_E X + \ell \pmod{p}.$$

1) Suppose $\Delta_E \not\equiv 0 \pmod{p}$.

If Δ_E is a square in \mathbb{F}_p^*, the roots α, β of f_E belong to \mathbb{F}_p^* and are distinct. So up to conjugation, one has

$$\rho_{\tilde{E},p}(\sigma_\ell) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix},$$

which implies $d = n$ as stated.

If Δ_E is not a square in \mathbb{F}_p^*, then the roots of f_E are α and α^p and belong to \mathbb{F}_p^2. So there exists a matrix $U \in \text{GL}_2(\mathbb{F}_p^2)$ such that

$$\rho_{\tilde{E},p}(\sigma_\ell) = U \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^p \end{pmatrix} U^{-1},$$

which leads again $d = n$.

2) Suppose $\Delta_E \equiv 0 \pmod{p}$. We have $f_E = (X - \alpha)^2$ so, up to conjugation, we obtain

$$\rho_{\tilde{E},p}(\sigma_\ell) = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \quad \text{or} \quad \rho_{\tilde{E},p}(\sigma_\ell) = \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}.$$
10. Proof of Theorem 2 and Theorem 3

Suppose that E has multiplicative reduction or additive potentially multiplicative reduction; in particular, one has $v(j) < 0$. Let us denote

$$L = \mathbb{Q}_\ell \left(\sqrt{-c_6} \right).$$

The elliptic curve E/\mathbb{Q}_ℓ is isomorphic over L to the Tate curve \mathbb{G}_m/q^Z, with $q \in \mathbb{Z}_\ell$ the element defined by the equality ([14, p. 443] and [1, Lemme 1])

$$j = \frac{1}{q} + 744 + 196884q + \ldots. \quad (10.1)$$

Let $\varepsilon : \text{Gal} \left(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell \right) \to \{ \pm 1 \}$ be the character associated to the extension L/\mathbb{Q}_ℓ. Note that ε can be of order 1. The curves E/\mathbb{Q}_ℓ and \mathbb{G}_m/q^Z are related by the quadratic twist by ε.

Let $\chi_p : \text{Gal} \left(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell \right) \to \mathbb{F}_p^\ast$ be the mod p cyclotomic character. The representation giving the action of $\text{Gal} \left(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell \right)$ on E_p is of the shape

$$\varepsilon \otimes \chi_p \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right). \quad (10.2)$$

Lemma 6. The element q is a p-th power in \mathbb{Q}_ℓ if and only if such is the case for j. In particular, one has $\mathbb{Q}_\ell \left(\mu_p, q^{\frac{j}{p}} \right) = \mathbb{Q}_\ell \left(\mu_p, j^{\frac{j}{p}} \right)$.

Proof. From the equality (10.1), one has

$$j = \frac{u}{q} \quad \text{with} \quad u = 1 + 744q + 196884q^2 + \ldots.$$

Since $v(q) > 0$, we have $u \equiv 1 \pmod{\ell}$. The primes ℓ and p being distinct, by Hensel’s Lemma we conclude that u is a p-th power in \mathbb{Q}_ℓ and the result follows. \qed

Lemma 7. We have

$$\mathbb{Q}_\ell(E_p) = \mathbb{Q}_\ell \left(\sqrt{-c_6}, \mu_p, j^{\frac{j}{p}} \right).$$

Proof. The $\text{Gal} \left(\overline{\mathbb{Q}}_\ell/L \right)$-modules E_p and $\left(\mu_p, q^{\frac{j}{p}} \right) q^Z/q^Z$ are isomorphic. So one has

$$L(E_p) = L \left(\mu_p, q^{\frac{j}{p}} \right).$$

The inequalities

$$[L(E_p) : \mathbb{Q}_\ell(E_p)] \leq 2 \quad \text{and} \quad p \geq 3,$$

imply that q is a p-th power in $\mathbb{Q}_\ell(E_p)$. Moreover, from (10.2) it follows that for all element $\sigma \in \text{Gal} \left(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell \right)$ fixing $\mathbb{Q}_\ell(E_p)$, one has $\varepsilon(\sigma) = 1$, so $\sqrt{-c_6}$ belongs to $\mathbb{Q}_\ell(E_p)$. We obtain

$$L(E_p) = \mathbb{Q}_\ell \left(\sqrt{-c_6}, \mu_p, q^{\frac{j}{p}} \right) \subseteq \mathbb{Q}_\ell(E_p) \subseteq L(E_p),$$

which leads to $\mathbb{Q}_\ell(E_p) = \mathbb{Q}_\ell \left(\sqrt{-c_6}, \mu_p, q^{\frac{j}{p}} \right)$. The result now follows from Lemma 6. \qed

Lemma 8. Let a be an element of \mathbb{Q}_ℓ^\ast.

1) If \(\ell \not\equiv 1 \pmod{p} \), then
\[
a \in \mathbb{Q}_\ell^p \iff v(a) \equiv 0 \pmod{p}.
\]

2) If \(\ell \equiv 1 \pmod{p} \), then
\[
a \in \mathbb{Q}_\ell^p \iff v(a) \equiv 0 \pmod{p} \quad \text{and} \quad \left(\frac{a}{\ell^{v(a)}} \right)^{\frac{\ell-1}{p}} \equiv 1 \pmod{\ell}.
\]

Proof. Let \(\mu_{\ell-1} \) be the group of \((\ell - 1)\)-th roots of unity and \(U^1 \) be the group of units of \(\mathbb{Z}_\ell \) which are congruent to 1 modulo \(\ell \). One has \(\mathbb{Q}_\ell^* = \mu_{\ell-1} \times U^1 \times \mathbb{Z}_\ell^2 \). Since \(p \neq \ell \), it follows from Hensel’s lemma that each unit in \(U^1 \) is a \(p \)-th power in \(\mathbb{Q}_\ell^* \).

In case \(\ell \not\equiv 1 \pmod{p} \), the map \(x \mapsto x^p \) is an automorphism of \(\mu_{\ell-1} \), hence the first assertion.

Suppose \(\ell \equiv 1 \pmod{p} \). There exists \(\zeta \in \mu_{\ell-1} \) such that \(a^{\frac{\ell-1}{p}} \equiv \zeta \pmod{\ell} \). Moreover, \(\zeta \) belongs to \(\mathbb{Q}_\ell^p \) if and only if \(\zeta^{\frac{\ell-1}{p}} = 1 \). This implies the result. \(\square \)

Let us recall the essential fact that
\[
r = [\mathbb{Q}_\ell(\mu_p) : \mathbb{Q}_\ell].
\]

We can now complete the proofs of Theorems 2 and 3.

10.1. Proof of Theorem 2. 1) Suppose \(\ell \geq 3 \) and \(\left(\frac{-c_6}{\ell} \right) = 1 \), or \(\ell = 2 \) and \(c_6 \equiv 7 \pmod{8} \).

From these assumptions, \(-c_6\) is a square in \(\mathbb{Q}_\ell \). So we have from Lemma 7 that
\[
\mathbb{Q}_\ell(E_p) = \mathbb{Q}_\ell \left(\mu_p, \sqrt{\frac{\mathbb{Q}_\ell}{\ell}} \right).
\]

If \(j \) is a \(p \)-th power in \(\mathbb{Q}_\ell \), it follows that \(d = r \), otherwise one has \(d = pr \). Moreover, if \(\ell \equiv 1 \pmod{p} \), one has \(r = 1 \). The assertions 1.1) and 1.2) of Theorem 2 are then a consequence of Lemma 8.

2) Suppose \(\ell \geq 3 \) and \(\left(\frac{-c_6}{\ell} \right) = -1 \), or \(\ell = 2 \) and \(c_6 \not\equiv 7 \pmod{8} \).

Suppose \(r \) is even. The elliptic curve \(E/\mathbb{Q}_\ell \) having multiplicative reduction, the extension \(L/\mathbb{Q}_\ell \) is unramified. Consequently, \(\sqrt{-c_6} \) belongs to \(\mathbb{Q}_\ell(\mu_p) \), so the equality (10.3) is again satisfied and the assertion 2.1) follows by Lemma 8. Suppose \(r \) is odd. Since \(-c_6\) is not a square in \(\mathbb{Q}_\ell \), it follows that \(-c_6\) is not a square in \(\mathbb{Q}_\ell(\mu_p) \). Now assertion 2.2) follows from Lemmas 7 and 8. This completes the proof of Theorem 2.

10.2. Proof of Theorem 3. Since \(E/\mathbb{Q}_\ell \) has additive reduction, the extension \(L/\mathbb{Q}_\ell \) is ramified. Therefore, if \(j \) is a \(p \)-th power in \(\mathbb{Q}_\ell \) one has \(d = 2r \), otherwise \(d = 2pr \). Lemma 8 now implies Theorem 3.
11. Proof of Lemmas 1, 2, 3, 4

11.1. **Proof of Lemma 1.** We have $\ell \geq 5$ and $e = 2$, so $v(\Delta) = 6$. The change of variables

$$
\begin{align*}
 x &= \ell X \\
 y &= \ell \sqrt{\ell} Y,
\end{align*}
$$

is an isomorphism from E/\mathbb{Q}_ℓ to its quadratic twist by $\sqrt{\ell}$, which is given by the equation

$$
Y^2 = X^3 - \frac{c_4}{48\ell^2} X - \frac{c_6}{864\ell^3}.
$$

It is an integral model whose discriminant is a unit of \mathbb{Z}_ℓ, hence the lemma.

11.2. **Proof of Lemma 2.** Recall that

$$
u = \ell^{\frac{v(\Delta)}{12}} \quad \text{and} \quad M = \mathbb{Q}_\ell(u).
$$

The change of variables

$$
(11.1) \quad \begin{cases}
 x = u^2 X \\
 y = u^3 Y,
\end{cases}
$$

is an isomorphism between the elliptic E/\mathbb{Q}_ℓ given by the equation (5.2) and the elliptic curve E'/M given by the equation (5.5). The equation (5.5) is integral and the valuation of its discriminant is

$$
v(\Delta) - 12v(u) = 0,
$$

which proves the lemma.

11.3. **Proof of Lemma 3.** The change of variables

$$
\begin{align*}
 X &= 3x \\
 Y &= 3\sqrt{3} y,
\end{align*}
$$

realizes an isomorphism between the elliptic curve E/\mathbb{Q}_3 given by the equation (6.1) and its twist by $\sqrt{3}$ (denoted E'/\mathbb{Q}_3) of equation

$$
(W') : Y^2 = X^3 - \frac{3c_4}{16} X - \frac{c_6}{32}.
$$

Let $c_4(W')$, $c_6(W')$ and $\Delta(W')$ be the standard invariants associated to the model (W'). From the standard invariants for E/\mathbb{Q}_3 we conclude

$$
(v(c_4(W')), v(c_6(W')), v(\Delta(W'))) \in \{(4, 6, 12), (5, \geq 9, 12)\}.
$$

Moreover, the model (W') is not minimal by [12, p. 126, Table II]; thus, E'/\mathbb{Q}_3 has good reduction over \mathbb{Q}_3, hence the lemma.
11.4. **Proof of Lemma 4.** We adopt here the notations used in [12].

1) Suppose $t = (6, 6, 6)$ and $c_6 \equiv 1 \pmod{4}$.

An integral model of E'/\mathbb{Q}_2, the quadratic twist of E/\mathbb{Q}_2 by $\sqrt{3}$, is

$$(W') : Y^2 = X^3 - \frac{c_4}{12}X - \frac{c_6}{108}.$$

It satisfies

$$(v(c_4(W')), v(c_6(W')), v(\Delta(W'))) = (8, 9, 12).$$

We shall prove that (W') is not minimal, which implies that E'/\mathbb{Q}_2 has good reduction. For this, we use the Table IV and Proposition 6 of [12]. We have

$$b_8(W') = -a_4(W')^2,$$

hence the congruence

$$b_8(W') \equiv 0 \pmod{2^8}.$$

So we can choose $r = 0$ in Proposition 6 of *loc. cit.* Moreover, one has

$$b_6(W') = 4a_6(W') = -\frac{c_6}{27}.$$

Since $c_6 \equiv 1 \pmod{4}$, one has $-\frac{c_6}{27} \equiv 1 \pmod{4}$. The equality $v(c_6) = 6$ then implies

$$b_6(W') \equiv 2^6 \pmod{2^8},$$

and we obtain our assertion with $x = 8$.

2) Suppose $t = (6, 6, 6)$ and $c_6 \equiv -1 \pmod{4}$.

We proceed as above. An equation of E'/\mathbb{Q}_2, the quadratic twist of E/\mathbb{Q}_2 by $\sqrt{-2}$, is

$$(W') : Y^2 = X^3 - \frac{c_4}{12}X + \frac{c_6}{108}.$$

One has again $b_6(W') \equiv 2^6 \pmod{2^8}$, hence the result.

For the next two cases below, we will denote by b_2, b_4, b_6 and b_8 the standard invariants associated to the equation (7.2) of E/\mathbb{Q}_2.

3) Suppose $t = (4, 6, 12)$.

An equation of E'/\mathbb{Q}_2, the quadratic twist of E/\mathbb{Q}_2 by $\sqrt{-1}$, is

$$(W') : Y^2 = X^3 - \frac{c_4}{48}X + \frac{c_6}{864}.$$

We will use Table IV and Proposition 4 of [12] to prove that (W') is not minimal, establishing that E'/\mathbb{Q}_2 has good reduction.

From the assumption made on t, the elliptic curve E/\mathbb{Q}_2 corresponds to the case 7 of Tate. One has $b_2 = 0$, $v(b_4) = 1$, $v(b_6) = 3$ and $v(b_8) = 0$. So there exists $r \in \mathbb{Z}_2$, with $v(r) = 0$, such that (conditions (a) and (b) of Proposition 4)

$$b_8 + 3rb_6 + 3r^2b_4 + 3r^4 \equiv 0 \pmod{32} \text{ and } r \equiv 1 \pmod{4}.$$

Furthermore,

$$b_2(W') = 0, \ b_4(W') = b_4, \ b_6(W') = -b_6, \ b_8(W') = b_8.$$
We conclude that the integer \(-r\) satisfies the condition (a) of the same Proposition 4 for the equation \((W')\). One has \(-3r \equiv 1 \pmod{4}\), so condition (b) of this proposition with \(s = 1\) implies the assertion.

4) Suppose \(t = (8, 9, 12)\).

Again an equation of \(E'/\mathbb{Q}_2\) is

\[
(W') : Y^2 = X^3 - \frac{c_4}{48}X + \frac{c_6}{864},
\]

We use Proposition 6 of [12]. The elliptic curve \(E/\mathbb{Q}_2\) corresponds to the case 10 of Tate. One has \(b_8 \equiv 0 \pmod{2^8}\), so \(r = 0\) satisfies the required condition of this proposition for the equation \((7.2)\). Since equation \((7.2)\) is minimal, we deduce (by [12, Prop 6]) that \(b_6\) is not a square modulo \(2^8\), so we have

\[
b_6 = -\frac{c_6}{216} = -\frac{2^6c_6'}{27} \equiv 2^6c_6' \equiv -2^6 \pmod{2^8},
\]

where the last congruence follows due to \(c_6' \equiv -1 \pmod{4}\). From the equality \(b_6(W') = -b_6\) it follows that \(b_6(W')\) is a square modulo \(2^8\), hence the \((W')\) is not minimal, as desired.

5) Suppose \(t = (6, 9, 18)\).

Let \(\varepsilon = \pm 1\), so that \(c_6' \equiv \varepsilon \pmod{4}\). An integral equation of the quadratic twist of \(E/\mathbb{Q}_2\) by \(\sqrt{-2\varepsilon}\), is

\[
(W') : Y^2 = X^3 - \frac{c_4}{2^6 \cdot 3}X + \varepsilon \frac{c_6}{2^8 \cdot 27}.
\]

It satisfies

\[
(v(c_4(W'))), v(c_6(W'))), v(\Delta(W')))) = (4, 6, 12).
\]

We will apply Proposition 4 of [12]. From the assumption on \(t\), we have \(c_4^3 \equiv c_6^2 \pmod{32}\), which implies

\[
c_4' \equiv 1, 9, 17, 25 \pmod{32}.
\]

Moreover, one has \(\varepsilon c_6' \equiv 1 \pmod{4}\), so from the condition (a) for \((W')\), there exists \(r \in \mathbb{Z}_2\) such that

\[
-c_4'^2 + 8r - 18c_4' r^2 + 27r^4 \equiv 0 \pmod{32}.
\]

For all the values of \(c_4'\) modulo 32, we then verify that this congruence is satisfied with \(r = -1\). The condition (b) then implies that \((W')\) is not minimal, so \(E'/\mathbb{Q}_2\) has good reduction, hence the lemma.

12. Proof of Theorems 4, 9, 11

Let \(\ell \geq 2\) and \(E/\mathbb{Q}_\ell\) satisfy \(e(E) = 2\). Let \(u \in \{\pm 1, -1\}\) be as defined in Lemma 4 and denote

\[
w = \begin{cases}
\ell & \text{if } \ell \geq 3, \\
u & \text{if } \ell = 2.
\end{cases}
\]

From lemmas 1–4, the quadratic twist \(E'/\mathbb{Q}_\ell\) of \(E/\mathbb{Q}_\ell\) by \(\sqrt{w}\) has good reduction. Let \(\varepsilon : \text{Gal}(\mathbb{Q}_\ell(\sqrt{w})/\mathbb{Q}_\ell) \to \{\pm 1\}\) be the character associated to \(\mathbb{Q}_\ell(\sqrt{w})/\mathbb{Q}_\ell\). In suitable basis of \(E_p\) and \(E'_p\), the representations

\[
\rho_{E',p} : \text{Gal}(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell) \to \text{GL}_2(\mathbb{F}_p) \quad \text{and} \quad \rho_{E,p} : \text{Gal}(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell) \to \text{GL}_2(\mathbb{F}_p),
\]
giving the action of $\text{Gal}(\overline{Q}_\ell/Q_\ell)$ on E'_p and E_p satisfy the equality
\[
(12.1) \quad \rho_{E,p} = \varepsilon \cdot \rho_{E',p}.
\]

Let H_0 be the image of $\rho_{E',p}$. From the criterion of Néron-Ogg-Shafarevitch, since $\ell \neq p$ and E'/Q_ℓ has good reduction, the extension $Q_\ell(E'_p)/Q_\ell$ is unramified (see [14, p. 201, Thm 7.1]). So H_0 is cyclic. Let $\sigma_\ell \in \text{Gal}(\overline{Q}_\ell/Q_\ell)$ be a lift of the Frobenius element of the Galois group $\text{Gal}(Q_\ell(E'_p)/Q_\ell)$. Then H_0 is generated by $h_0 = \rho_{E',p}(\sigma_\ell)$.

Lemma 9. Let H be the subgroup of $\text{GL}_2(F_p)$ generated by -1 and h_0. Then, H is the image of $\rho_{E,p}$. In particular, one has
\[
d = \begin{cases} |H_0| & \text{if } -1 \in H_0, \\ 2|H_0| & \text{otherwise}. \end{cases}
\]

Proof. The equality (12.1) implies that the image of $\rho_{E,p}$ is contained in H.

Conversely, by assumption the inertia subgroup of $\text{Gal}(Q_\ell(E_p)/Q_\ell)$ has order 2. Noting $\tau \in \text{Gal}(\overline{Q}_\ell/Q_\ell)$ a lift of its generator, $\rho_{E,p}(\tau)$ belongs to $\text{SL}_2(F_p)$, so one has
\[
(12.2) \quad \rho_{E,p}(\tau) = -1.
\]

Moreover, the extension $Q_\ell(\sqrt{w})/Q_\ell$ being ramified, it is not contained in $Q_\ell(E'_p)$. So the restriction map induces an isomorphism between
\[
\text{Gal}(Q_\ell(\sqrt{w})(E_p)/Q_\ell(\sqrt{w})) \quad \text{and} \quad \text{Gal}(Q_\ell(E'_p)/Q_\ell).
\]

We deduce there exists $\sigma \in \text{Gal}(\overline{Q}_\ell/Q_\ell)$ such that $\sigma(\sqrt{w}) = \sqrt{w}$ and the restriction of σ and σ_ℓ to $Q_\ell(E'_p)$ are equal. From (12.1), we obtain $\rho_{E,p}(\sigma) = h_0$ which shows that H is contained in the image of $\rho_{E,p}$, hence the lemma. \[\]

Recall that the characteristic polynomial in $F_p[X]$ of h_0 is
\[
f_{E'} = X^2 - a_{E'} X + \ell \pmod{p}.
\]

12.1. Proof of the assertion 1 in theorems 4, 9, 11. We assume $\Delta_{E'} \not\equiv 0 \pmod{p}$. Up to conjugation by a matrix in $\text{GL}_2(F_p)$, we have
\[
h_0 = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix},
\]
so $|H_0| = n$. Recall that $d = [Q_\ell(E_p) : Q_\ell]$. It follows from Lemma 9 that
\[
d = \begin{cases} n & \text{if } -1 \in H_0, \\ 2n & \text{otherwise}. \end{cases}
\]

We will prove that -1 belongs to H_0 if and only if n is even and $\alpha^{\frac{p-1}{2}} = \beta^{\frac{p-1}{2}} = -1$. This will establish the assertion 1 of the theorems.
Suppose -1 belongs to H_0. Then there exists $k \in \{1, \ldots, n\}$, such that
\[(12.3) \quad \begin{pmatrix} \alpha^k & 0 \\ 0 & \beta^k \end{pmatrix} = -1.\]
One has $\alpha^{2k} = \beta^{2k} = 1$, so n divides $2k$. Since $k \leq n$, one has $2k = n$ or $k = n$. Since $\alpha^n = \beta^n = 1$ and $p \neq 2$, we have $k \neq n$, so n is even and we obtain $\alpha^{\frac{n}{2}} = \beta^{\frac{n}{2}} = -1$. Conversely, if n even and $\alpha^{\frac{n}{2}} = \beta^{\frac{n}{2}} = -1$, we have $-1 = h_0^{\frac{n}{2}} \in H_0$, as desired.

12.2. **Proof of the assertion 2 in theorems 4, 9, 11.** We assume $\Delta_{E'} \equiv 0 \pmod{p}$. The elliptic curve E'/\mathbb{Q}_ℓ has good ordinary reduction by Lemma 5. Moreover, the polynomial $f_{E'}$ has a single root
\[\alpha = \frac{a_{E'}}{2} \pmod{p}.\]
From [2, Theorem 2] there exists a suitable basis of E'_p in which
\[h_0 = \begin{pmatrix} \alpha & 0 \\ b_{E'} & \alpha \end{pmatrix}.\]
We conclude that
\[|H_0| = \begin{cases} n & \text{if } b_{E'} \equiv 0 \pmod{p}, \\ np & \text{otherwise}. \end{cases}\]
For all integers $k \geq 1$, one has
\[h_0^k = \begin{pmatrix} \alpha^k & 0 \\ kb_{E'}\alpha^{k-1} & \alpha^k \end{pmatrix}.\]

Lemma 10. One has $-1 \in H_0$ if and only if n is even and $\alpha^{\frac{n}{2}} = -1$.

Proof. Suppose $-1 \in H_0$ i.e. there exists an integer k such that $-1 = h_0^k$. Then
\[\alpha^k = -1 \quad \text{and} \quad kb_{E'}\alpha^{k-1} = 0.\]
Since $p \neq 2$, n being the order of α in \mathbb{F}_p^*, by considering the value of k modulo p, we have inequalities
\[1 \leq k \leq n \leq p - 1.\]
Moreover, $\alpha^{2k} = 1$, so n divides $2k$. Then $2k = n$ or $2k = 2n$, which leads to $n = 2k$, hence the implication.

Conversely, suppose n even and $\alpha^{\frac{n}{2}} = -1$. One has $\alpha^{\frac{2n}{2}} = -1$, which implies $h_0^{\frac{2n}{2}} = -1 \in H_0$ and proves the lemma.

The assertions 2.1) and 2.2) of Theorem 4 are now a direct consequence of lemmas 9 and 10.

Suppose $\ell = 2$. Since E'/\mathbb{Q}_2 has good ordinary reduction, we have $a_{E'} = \pm 1$, so $\Delta_{E'} = -7$ and we obtain $p = 7$. Moreover, $b_{E'}^2$ divides $\Delta_{E'}$, so $b_{E'} = 1$. If $a_{E'} = 1$ one has $n = 3$ and if $a_{E'} = -1$ one has $n = 6$. In both cases, lemmas 9 and 10 imply $d = 42$ as stated.

Suppose $\ell = 3$. One has $a_{E'} \in \{-1, \pm 2\}$, so $\Delta_{E'} \in \{-11, -8\}$. Since p divides $\Delta_{E'}$, this implies $a_{E'} = \pm 1$ and $\Delta_{E'} = -11$. In particular, $p = 11$. One has again $b_{E'} = 1$. Furthermore, if $a_{E'} = 1$ one has $n = 10$ and if $a_{E'} = -1$ one has $n = 5$. This leads to $d = 110$ (by lemmas 9 and 10).
This completes the proofs of theorems 4, 9, 11.

13. Notation for the proof of theorems 5, 6, 7, 8

We have \(\ell \geq 5 \) and the elliptic curve \(E/\mathbb{Q}_\ell \) has additive potentially good reduction, with a semistability defect \(e \in \{3, 4, 6\} \). Let \(M \) and the elliptic curve \(E'/M \) be defined as in (5.4) and (5.5). We will write

\[
K = \mathbb{Q}_\ell(E_p), \quad G = \text{Gal}(K/\mathbb{Q}_\ell), \quad G' = \text{Gal}(M(E'_p)/M) \quad \text{and} \quad d_0 = [M(E'_p) : M].
\]

The elliptic curve \(E'/M \) has good reduction (Lemma 2), so the extension \(M(E'_p)/M \) is unramified and cyclic. Since \(M/\mathbb{Q}_\ell \) is totally ramified, the value of \(d_0 \) can be determined from Theorem 1.

Let \(\text{Frob}_M \in G' \) be the Frobenius element of \(G' \). Recall that \(\text{Frob}_M \) is a generator of \(G' \). We have \(M(E'_p) = MK \) and the extension \(K/\mathbb{Q}_\ell \) is Galois, so the Galois groups \(\text{Gal}(K/M \cap K) \) and \(G' \) are isomorphic via the restriction morphism. Let \(\text{Frob}_K \in G \) be the restriction of \(\text{Frob}_M \) to \(K \). It is a generator of \(\text{Gal}(K/M \cap K) \). In particular, \(\text{Frob}_K \) and \(\text{Frob}_M \) have the same order.

Recall that the inertia subgroup of \(G \) is cyclic of order \(e \). We let \(\tau \) be one of its generators.

Let \(\mathcal{B} \) be a basis of \(E_p \). Let \(\mathcal{B}' \) be the basis of \(E'_p \) which is the image of \(\mathcal{B} \) by the isomorphism from \(E_p \) to \(E'_p \) given by the change of variables (11.1). Denote by

\[
\rho_{E,p} : G \to \text{GL}_2(\mathbb{F}_p) \quad \text{and} \quad \rho_{E',p} : G' \to \text{GL}_2(\mathbb{F}_p)
\]

the faithful representations giving the actions of \(G \) and \(G' \) on \(E_p \) and \(E'_p \) in the basis \(\mathcal{B} \) and \(\mathcal{B}' \), respectively. We have

\[
(13.1) \quad \rho_{E,p}(\text{Frob}_K) = \rho_{E',p}(\text{Frob}_M).
\]

Since the determinant of \(\rho_{E,p} \) is the mod \(p \) cyclotomic character, we also have

\[
(13.2) \quad \rho_{E,p}(\tau) \in \text{SL}_2(\mathbb{F}_p).
\]

Finally, let also

\[
\sigma_{E,p} : G \to \text{PGL}_2(\overline{\mathbb{F}}_p) \quad \text{and} \quad \sigma_{E',p} : G' \to \text{PGL}_2(\overline{\mathbb{F}}_p)
\]

be the associated projective representations extended to \(\overline{\mathbb{F}}_p \).

We write \(F \) for the fixed field by the kernel of \(\sigma_{E,p} \).

14. Proof of Theorem 5 and assertion 1 of Theorem 8

In this case, we have \(e = [M : \mathbb{Q}_\ell] = 3 \), so either \(M \subset K \) or \(M \cap K = \mathbb{Q}_\ell \).

Lemma 11. The degree \(d = [K : \mathbb{Q}_\ell] \) satisfies

\[
d = \begin{cases}
3d_0 & \text{if } M \subset K, \\
d_0 & \text{otherwise.}
\end{cases}
\]
Proof. Suppose M is contained in K. Since E and E' are isomorphic over M (Lemma 2), we have $K = M(E'_p)$. Therefore, $d_0 = [K : M]$ and
\[d = [K : M][M : \mathbb{Q}_\ell] = 3d_0. \]
In case M is not contained in K, the Galois groups G and G' are isomorphic, so $d = d_0$, hence the lemma. \(\square\)

14.1. Assertion 1) of Theorem 8. The field M is contained in K ([8, Lemma 5]), so $d = 3d_0$ by Lemma 11. From the assumption $\ell \equiv 2 \pmod{3}$ and [10, Lemme 1] it follows that E'/M has good supersingular reduction. Since $\ell \geq 5$ we must have $a_{E'} = 0$. Now by Corollary 1 we obtain $d_0 = 2\delta$ and assertion 1 of Theorem 8 follows.

14.2. Assertion 1) of Theorem 5. Assume $p \neq 3$.

Since 3 divides $\ell - 1$, the group G is abelian by [8, Corollary 3]. So there exists $U \in \text{GL}_2(\mathbb{F}_p^2)$ and $a \in \mathbb{F}_p^*$ such that
\[(14.1) \quad U_{\rho_{E,p}}(\text{Frob}_K)U^{-1} = \begin{pmatrix} \alpha & a \\ 0 & \beta \end{pmatrix} \quad \text{and} \quad U_{\rho_{E,p}}(\tau)U^{-1} = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^2 \end{pmatrix}. \]

Lemma 12. We have $a = 0$. In particular, $d_0 = n$.

Proof. Using the fact that Frob$_K$ and τ commute, we obtain the equality $a(1 - \zeta) = 0$, so $a = 0$. We deduce that Frob$_K$ has order n. Moreover, Frob$_K$ and Frob$_M$ have the same order and the latter has order d_0. \(\square\)

Lemma 13. We have that $M \not\subset K$ if and only if
\[(14.2) \quad n \equiv 0 \pmod{3} \quad \text{and} \quad \{\alpha^\frac{n}{3}, \beta^\frac{n}{3}\} = \{\zeta, \zeta^2\}. \]
If this condition is satisfied then $d = n$, otherwise $d = 3n$.

Proof. Suppose that M is not contained in K. Then G and G' are isomorphic, so G is cyclic generated by Frob$_K$. Consequently, there exist $k \in \{1, \cdots, n\}$ such that
\[\alpha^k = \zeta \quad \text{and} \quad \beta^k = \zeta^2. \]
We have $k \neq n$ and $\alpha^{3k} = \beta^{3k} = 1$, so n divides $3k$. Since $3k \leq 3n$, this implies $3k \in \{n, 2n\}$, so 3 divides n and $k = \frac{n}{3}$ or $k = \frac{2n}{3}$. If $\alpha^\frac{n}{3} = \zeta$, then $\alpha^\frac{2n}{3} = \alpha^\frac{n}{3} = \zeta^2$ and similarly $\beta^\frac{n}{3} = \zeta$, hence the condition (14.2).

Conversely, suppose $M \subset K$. We shall prove that, for all $k \geq 1$, we have
\[(14.3) \quad \{\alpha^k, \beta^k\} \neq \{\zeta, \zeta^2\}. \]
This implies (14.2) is not satisfied, completing the proof of the first statement.

From our assumption, one has $K = M(E'_p)$ and Frob$_K$ is a generator of Gal(K/M). The fixed field by τ is an unramified extension of \mathbb{Q}_ℓ. In particular, τ does not fix M. We deduce that for all $k \geq 1$, one has Frob$_K^k \neq \tau$, which implies (14.3).

The last statement now follows from lemmas 11 and 12. \(\square\)

Lemma 14. Suppose that $p \mid \Delta_{E'}$. Then $M \subset K$ and $d = 3n$.

Proof. From our assumption, one has \(\alpha = \beta \). Suppose that \(M \) is not contained in \(K \). Then \(\text{Frob}_K \) is a generator of \(G \). The eigenvalues of \(\rho_{E,p}(\tau) \) are distinct, so the condition (14.1) leads to a contradiction. The result follows from lemmas 11 and 12.

This completes the proof of the first assertion of Theorem 5.

14.3. Assertion 2) of Theorem 5. Suppose \(p = 3 \).

There exist \(U \in \text{GL}_2(\mathbb{F}_9) \) and \(a \in \mathbb{F}_9 \) such that \(U\rho_{E,p}(\text{Frob}_K)U^{-1} = \begin{pmatrix} \alpha & a \\ 0 & \beta \end{pmatrix} \). Moreover, the image of \(\rho_{E,3} \) being a subgroup of \(\text{GL}_2(\mathbb{F}_3) \), one has \(d \not\equiv 0 \pmod{9} \).

Suppose \(M \) is not contained in \(K \). The group \(G \) and \(G' \) are isomorphic, so \(G \) is generated by \(\text{Frob}_K \). Since 3 divides \(d \) (because \(e = 3 \)), the order of \(a \in \mathbb{F}_9 \) is equal to 3, so \(d = 3n \).

Suppose \(M \) is contained in \(K \). Then one has \(d = 3[K : M] \). One deduces that 3 does not divide \([K : M] \). The group \(\text{Gal}(K/M) \) being generated by \(\text{Frob}_K \), this implies \(a = 0 \), so \([K : M] = n \) and \(d = 3n \) as stated.

This completes the proof of Theorem 5.

15. Proof of Theorem 6

In this case, we have \(e = [M : \mathbb{Q}_\ell] = 4 \). Recall that \(\zeta_4 \) is a primitive 4th root of unity.

The extension \(M/\mathbb{Q}_\ell \) is cyclic, so \(M \cap K = \mathbb{Q}_\ell, \mathbb{Q}_\ell(\sqrt{\ell}) \) or \(M \).

Lemma 15. The degree \(d = [K : \mathbb{Q}_\ell] \) satisfies

\[
\begin{align*}
\text{d} & = \begin{cases}
4d_0 & \text{if } M \not\subseteq K, \\
2d_0 & \text{if } M \cap K = \mathbb{Q}_\ell(\sqrt{\ell}), \\
d_0 & \text{if } M \cap K = \mathbb{Q}_\ell.
\end{cases}
\end{align*}
\]

Proof. The Galois groups \(G' \) and \(\text{Gal}(K/M \cap K) \) are isomorphic and \(|G'| = d_0 \), hence the result.

Since 4 divides \(\ell - 1 \), the Galois group \(G \) is abelian by [8, Cor. 3]. So there exist \(U \in \text{GL}_2(\mathbb{F}_{p^2}) \) and \(a \in \mathbb{F}_{p^2} \) such that

\[
U \rho_{E,p}(\text{Frob}_K)U^{-1} = \begin{pmatrix} \alpha & a \\ 0 & \beta \end{pmatrix} \quad \text{and} \quad U \rho_{E,p}(\tau)U^{-1} = \begin{pmatrix} \zeta_4 & 0 \\ 0 & \zeta_4^{-1} \end{pmatrix}.
\]

Lemma 16. We have \(a = 0 \). In particular, \(d_0 = n \).

Proof. Using the fact that \(\text{Frob}_K \) and \(\tau \) commute, we obtain the equality \(a(\zeta_4 - \zeta_4^{-1}) = 0 \), so \(a = 0 \). Moreover, the orders of \(\text{Frob}_K \) and \(\text{Frob}_M \) are equal, so \(d_0 \) is the order of \(\text{Frob}_K \), hence the assertion.

Lemma 17. We have \(M \cap K = \mathbb{Q}_\ell \) if and only if

\[
\begin{align*}
n & \equiv 0 \pmod{4} \quad \text{and} \quad \{\alpha^2, \beta^2\} = \{\zeta_4, \zeta_4^{-1}\}.
\end{align*}
\]

If this condition is fulfilled, then \(d = n \).
Proof. Suppose \(M \cap K = \mathbb{Q}_\ell \). Then, \(G \) are \(G' \) isomorphic and \(\text{Frob}_K \) generates \(G \). From (15.1) and Lemma 16, we deduce that there exists \(k \in \{1, \cdots, n\} \) such that
\[
\{\alpha^k, \beta^k\} = \{\zeta_4, \zeta_4^{-1}\}.
\]
One has \(\alpha^{4k} = \beta^{4k} = 1 \), so \(n \) divides \(4k \). One has \(k \neq n \). Moreover, if \(4k = 2n \), then \(k = \frac{n}{2} \) so \(\alpha^n = \beta^n = -1 \) which is not. As in the proof of Lemma 13, we conclude \(n = 4k \) or \(3n = 4k \), which implies (15.2).

Conversely, suppose the condition (15.2) is satisfied. We deduce that \(\tau \) belongs to the subgroup of \(G \) generated by \(\text{Frob}_K \). Furthermore, the fixed field by \(\tau \) is an unramified extension of \(\mathbb{Q}_\ell \). In particular, the extension \(M \cap K/\mathbb{Q}_\ell \) must be unramified, hence \(M \cap K = \mathbb{Q}_\ell \).

Now lemmas 15 and 16 imply \(d = n \), as desired. \(\square \)

Lemma 18. The field \(M \) is contained in \(K \) if and only if
\[
n \equiv 1 \pmod{2} \quad \text{or} \quad \{\alpha^{\frac{n}{2}}, \beta^{\frac{n}{2}}\} \neq \{-1\}.
\]
If this condition is fulfilled, then \(d = 4n \).

Proof. The order of \(\tau^2 \) is equal to 2. From (13.2), one has
\[
\rho_{E,p}(\tau^2) = -1.
\]
Suppose \(M \) is contained in \(K \). Then, \(\tau^2 \) does not fix \(M \), because the extension \(K/M \) is unramified. Since \(\text{Gal}(K/M) \) is generated by \(\text{Frob}_K \), for all \(k \in \{1, \cdots, n\} \), one has \(\text{Frob}_K^k \neq -1 \). The condition (15.1) then implies (15.3).

Conversely, suppose that the condition (15.3) is satisfied. From Lemma 17, we conclude that \(\mathbb{Q}_\ell(\sqrt{7}) \) is contained in \(K \). So \(\tau^2 \) belongs to \(\text{Gal}(K/\mathbb{Q}_\ell(\sqrt{7})) \). Suppose \(M \cap K = \mathbb{Q}_\ell(\sqrt{7}) \). Then the Galois groups \(\text{Gal}(K/\mathbb{Q}_\ell(\sqrt{7})) \) and \(G' \) are isomorphic. Consequently, \(\text{Gal}(K/\mathbb{Q}_\ell(\sqrt{7})) \) is generated by \(\text{Frob}_K \) and there exists \(k \in \{1, \cdots, n\} \) such that \(\text{Frob}_K^k = \tau^2 \). This means that \(\alpha^k = \beta^k = -1 \), which implies \(n \) even and \(\alpha^{\frac{n}{2}} = \beta^{\frac{n}{2}} = -1 \). This leads to a contradiction, hence \(M \) is contained in \(K \).

If (15.3) is satisfied, we then obtain \(d = 4n \) from lemmas 15 and 16. \(\square \)

Lemma 19. We have \(M \cap K = \mathbb{Q}_\ell(\sqrt{7}) \) if and only if the conditions (15.2) and (15.3) are not satisfied. In such case, we have \(d = 2n \).

Proof. It follows directly from the previous lemmas. \(\square \)

This completes the proof of part 1) of Theorem 6.

Lemma 20. Suppose \(p \nmid \Delta_{E'} \). Then \(\mathbb{Q}_\ell(\sqrt{7}) \) is contained in \(K \). Moreover, we have \(d = 2n \) if and only if the condition (15.3) is not fulfilled; otherwise, \(d = 4n \).

Proof. Under this assumption, one has \(\alpha = \beta \). Suppose \(\mathbb{Q}_\ell(\sqrt{7}) \) is not contained in \(K \). Then \(G' \) and \(\text{Gal}(K/\mathbb{Q}_\ell) \) are isomorphic, so \(\tau \) is a power of \(\text{Frob}_K \). The condition (15.1) implies a contradiction because the eigenvalues of \(\rho_{E,p}(\tau) \) are distinct.

Consequently, \(d = 4n \) or \(d = 2n \) by Lemma 15. The result now follows from lemmas 18, 19. \(\square \)

Finally, part 2) of Theorem 6 follows from Lemma 20.
In this case, we have \(e = [M : \mathbb{Q}_\ell] = 6 \). Recall that \(\zeta_6 \) is a primitive 6-th root of unity. The extension \(M/\mathbb{Q}_\ell \) is cyclic, so \(M \cap K = \mathbb{Q}_\ell, \mathbb{Q}_\ell(\sqrt{7}), \mathbb{Q}_\ell(\sqrt{17}) \) or \(M \).

Recall that \(d_0 = [M(E'_p) : M] \).

Lemma 21. The degree \(d = [K : \mathbb{Q}_\ell] \) satisfies
\[
d = \begin{cases}
6d_0 & \text{if } M \subseteq K, \\
3d_0 & \text{if } M \cap K = \mathbb{Q}_\ell(\sqrt{7}), \\
2d_0 & \text{if } M \cap K = \mathbb{Q}_\ell(\sqrt{17}), \\
d_0 & \text{if } M \cap K = \mathbb{Q}_\ell.
\end{cases}
\]

Proof. The Galois groups \(G \) and \(\text{Gal}(K/M \cap K) \) are isomorphic, hence the result. \(\square \)

16.1. Proof of part 1)

Assume \(p \neq 3 \).

After taking the quadratic twist of \(E/\mathbb{Q}_\ell \) by \(\sqrt{7} \), the semistability defect is of order 3. Moreover, taking quadratic twist does not change the fact that the image of \(\rho_{E,p} \) is abelian or not. So, as in the case \(e = 3 \), we conclude that \(G \) is abelian (by \([8, \text{Cor. 3}]\)). Consequently, there exist \(U \in \text{GL}_2(\mathbb{F}_p^2) \) and \(a \in \mathbb{F}_p^2 \) such that
\[
U \rho_{E,p}(\text{Frob}_K)U^{-1} = \begin{pmatrix} \alpha & a \\ 0 & \beta \end{pmatrix} \quad \text{and} \quad U \rho_{E,p}(\tau)U^{-1} = \begin{pmatrix} \zeta_6 & 0 \\ 0 & \zeta_6^{-1} \end{pmatrix}.
\]

Lemma 22. We have \(a = 0 \). In particular, \(d_0 = n \).

Proof. This follows as Lemma 12. \(\square \)

Lemma 23. We have \(M \cap K = \mathbb{Q}_\ell \) if and only if
\[
n \equiv 0 \pmod{6} \quad \text{and} \quad \{\alpha^\frac{n}{6}, \beta^\frac{n}{6}\} = \{\zeta_6, \zeta_6^{-1}\}.
\]

If this condition is fulfilled, then \(d = n \).

Proof. Suppose \(M \cap K = \mathbb{Q}_\ell \). Then, \(G \) are \(G' \) isomorphic and \(\text{Frob}_K \) generates \(G \). From (16.1) and Lemma 23 there exists \(k \in \{1, \ldots, n\} \) such that \(\{\alpha^k, \beta^k\} = \{\zeta_6, \zeta_6^{-1}\} \). We have \(\alpha^{6k} = \beta^{6k} = 1 \), so \(n \) divides \(6k \). As in the proof of Lemma 17, we conclude that (16.2) holds.

Conversely, if (16.2) is satisfied, \(\tau \) belongs to the subgroup of \(G \) generated by \(\text{Frob}_K \). The fixed field by \(\tau \) being an unramified extension of \(\mathbb{Q}_\ell \), this implies \(M \cap K = \mathbb{Q}_\ell \).

Finally, when (16.2) is satisfied, we then obtain \(d = n \) from lemmas 21 and 22. \(\square \)

Lemma 24. We have \(M \cap K = \mathbb{Q}_\ell(\sqrt{7}) \) if and only if the two following conditions are satisfied:

1) \(n \not\equiv 0 \pmod{6} \) or \(\{\alpha^\frac{n}{6}, \beta^\frac{n}{6}\} \neq \{\zeta_6, \zeta_6^{-1}\} \).

2) \(n \equiv 0 \pmod{3} \) and \(\{\alpha^\frac{n}{6}, \beta^\frac{n}{6}\} = \{\zeta_6^2, \zeta_6^{-2}\} \).

Moreover, if these conditions are fulfilled, then \(d = 2n \).
Proof. Suppose \(M \cap K = \mathbb{Q}_\ell(\sqrt[3]{d}) \). From lemma 24 the first condition is satisfied. The order of \(\tau^2 \) is equal to 3, hence \(\tau^2 \) belongs to \(\text{Gal}(K/\mathbb{Q}_\ell(\sqrt[3]{d})) \), which is isomorphic to \(G' \). So there exists \(k \in \{1, \ldots, n\} \) such that \(\tau^2 = \text{Frob}_K^k \) and (16.1) leads to \(\{\alpha^k, \beta^k\} = \{\zeta_6^2, \zeta_6^{-2}\} \). One has \(\alpha^{3k} = \beta^{3k} = 1 \), so \(n \) divides \(3k \), and since \(n \neq k \), this implies the second condition.

Conversely, suppose that the two conditions of the statement are satisfied. Then \(M \cap \mathbb{Q}_\ell \neq \mathbb{Q}_\ell \). By condition 1 and Lemma 24. The second condition implies that \(\tau^2 \) belongs to the subgroup \(\text{Gal}(K/M \cap K) \) of \(G \) generated by \(\text{Frob}_K \). In particular, the ramification index of the extension \(K/M \cap K \) is at least 3, hence \(M \cap K = \mathbb{Q}_\ell(\sqrt[3]{d}) \).

The last statement follows from lemmas 22 and 23. \(\square \)

Lemma 25. We have \(M \cap K = \mathbb{Q}_\ell(\sqrt[3]{d}) \) if and only if the following conditions are satisfied:

1) \(n \not\equiv 0 \pmod{6} \) or \(\{\alpha^\frac{n}{6}, \beta^\frac{n}{6}\} \neq \{\zeta_6, \zeta_6^{-1}\} \).

2) \(n \equiv 0 \pmod{2} \) and \(\alpha^\frac{n}{2} = \beta^\frac{n}{2} = -1 \).

Moreover, if these conditions are fulfilled, then \(d = 3n \).

Proof. Suppose \(M \cap K = \mathbb{Q}_\ell(\sqrt[3]{d}) \). The first condition is satisfied (lemma 24). The order of \(\tau^3 \) is equal to 2, so \(\tau^3 \) belongs to \(\text{Gal}(K/\mathbb{Q}_\ell(\sqrt[3]{d})) \), which is isomorphic to \(G' \). So there exists \(k \in \{1, \ldots, n\} \) such that \(\tau^3 = \text{Frob}_K^k \) and (16.1) leads to \(\{\alpha^k, \beta^k\} = \{\zeta_6^2, \zeta_6^{-3}\} \). One has \(\alpha^{2k} = \beta^{2k} = 1 \) hence the second condition.

Conversely, one has \(M \cap \mathbb{Q}_\ell \neq \mathbb{Q}_\ell \) (condition 1 and lemma 24). Moreover, 3 does not divide \(n \). Otherwise, from the second condition, it follows that the first one is not satisfied. We deduce that \(M \cap \mathbb{Q}_\ell \neq \mathbb{Q}_\ell(\sqrt[3]{d}) \) (lemma 25). Moreover, the second condition implies that \(\tau^3 \) belongs to the \(\text{Gal}(K/M \cap K) \). So the ramification index of the extension \(K/M \cap K \) is at least 2, hence \(M \cap K = \mathbb{Q}_\ell(\sqrt[3]{d}) \) and the lemma.

The last statement follows from lemmas 22 and 23. \(\square \)

The assertion 1.1) of Theorem 7 is now a consequence of the previous lemmas.

Lemma 26. Suppose that \(p \mid \Delta_{E^p} \). Then \(\mathbb{Q}_\ell(\sqrt[3]{d}) \) is contained in \(K \). One has \(d = 3n \) if and only if the two conditions of Lemma 25 are satisfied; otherwise, \(d = 6n \).

Proof. Note that \(p \mid \Delta_{E^p} \) implies \(\alpha = \beta \). Suppose \(\mathbb{Q}_\ell(\sqrt[3]{d}) \) is not contained in \(K \). Then \(G' \) is either isomorphic to \(\text{Gal}(K/\mathbb{Q}_\ell) \) or \(\text{Gal}(K/\mathbb{Q}_\ell(\sqrt[3]{d})) \). So \(\tau \) or \(\tau^2 \) is a power of \(\text{Frob}_K \). The condition (16.1) implies a contradiction because the eigenvalues of \(\rho_{E,p}(\tau) \) and \(\rho_{E,p}(\tau^2) \) are distinct.

Consequently, one has \(d = 3n \) or \(d = 6n \) by lemma 21; Lemma 25 now completes the proof. \(\square \)

We can now conclude part 1.2) as follows. Since \(M \cap \mathbb{Q}_\ell \neq \mathbb{Q}_\ell \) (Lemma 26), it follows from Lemma 24 that condition 1 of Lemma 25 is satisfied. So if \(n \) is even and \(\alpha^\frac{n}{2} = -1 \), then \(d = 3n \) (Lemma 26 since \(\alpha = \beta \)). Otherwise, \(d = 6n \) (by Lemma 26), as desired.
16.2. **Assertion 2.** The group G is abelian ([8, Cor. 3]). Let Φ be the inertia subgroup of G. Up to conjugation, there exists only one cyclic subgroup of order 6 in $GL_2(\mathbb{F}_3)$. So we can suppose that $\rho_{E,p}(\Phi)$ is generated by the matrix $\begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$. We deduce that the normalizer of $\rho_{E,p}(\Phi)$ is the standard Borel subgroup B of $GL_2(\mathbb{F}_3)$. Since Φ is a normal subgroup of G, this implies that $\rho_{E,p}(G)$ is contained in B. The group B is non-abelian of order 12. Since 6 divides $|\rho_{E,p}(G)|$, one deduces that $|\rho_{E,p}(G)| = 6$, hence $d = 6$.

17. **Proof of assertion 2 of Theorem 8**

Recall that one has $e \in \{4, 6\}$. Since $\ell \equiv -1 \pmod{e}$, the group G is not abelian ([8, Cor. 3]). Let Φ be the inertia subgroup of G.

17.1. **Case** $(p, e) = (3, 6)$. As in section 16.2, we can suppose that $\rho_{E,p}(G)$ is contained in the standard Borel subgroup B of $GL_2(\mathbb{F}_3)$, which is of order 12. Since G is not abelian and Φ is cyclic of order 6, this implies $\rho_{E,p}(G) = B$, hence $d = 12$. Moreover, one has $\ell \equiv 2 \pmod{3}$, so $r = 2$ and we obtain $d = er$, as desired.

17.2. **Case** $p \geq 5$ or $(p, e) = (3, 4)$. We will use for our proof the results established in [5] and [6] and we will adopt the notations and terminology used in these papers.

The group of the e-th roots of unity is not contained in \mathbb{Q}_ℓ. Since $p \geq 5$ or $(p, e) = (3, 4)$, we deduce from [6, Proposition 0.3], that the representation $\sigma_{E,p} : G \to PGL_2(\overline{\mathbb{F}}_p)$ is of type \mathbf{V}. Denote by Φ the inertia subgroup of G. Recall that F is the field fixed by the kernel of $\sigma_{E,p}$ and write $H = \text{Gal}(K/F)$ and $d' = [K : F]$.

Recall also that $r = [\mathbb{Q}_\ell(\mu_p) : \mathbb{Q}_\ell]$.

For all $\sigma \in H$, $\rho_{E,p}(\sigma)$ is a scalar matrix in $GL_2(\overline{\mathbb{F}}_p)$. So there exists a character $\varphi : H \to \overline{\mathbb{F}}_p^*$ such that

$$\rho_{E,p}|_H \simeq \begin{pmatrix} \varphi & 0 \\ 0 & \varphi \end{pmatrix}.$$

The order of φ is d'. Moreover, $\chi_p|_H : H \to \text{Aut}(\mu_p)$ being the cyclotomic character giving the action of H on μ_p, one has

$$\varphi^2 = \chi_p|_H.$$

We then deduce the equality

$$d' = \frac{\gcd(d', 2)}{[\overline{\mathbb{F}}(\mu_p) : F]}.$$

Moreover, since Φ is cyclic of order e, one has

$$|\sigma_{E,p}(\Phi)| = e.$$

Furthermore, the assumption $\ell \equiv -1 \pmod{e}$ implies that $\mathbb{Q}_\ell(\zeta_e)$ is the quadratic unramified extension of \mathbb{Q}_ℓ.

Lemma 27. We have $F = \mathbb{Q}_\ell(\zeta_e, \ell^\times)$. In particular, $d = ed'$.
Proof. The Galois group $\text{Gal}(F/\mathbb{Q}_\ell)$ is isomorphic to the dihedral group of order e (see condition 3 in [5, Proposition 2.3] and (17.2)). The group Φ fixes an unramified extension of \mathbb{Q}_ℓ. From (17.2) it follows the extension F/\mathbb{Q}_ℓ is not totally ramified, hence the result in case $e = 4$. If $e = 6$, since $\ell \equiv 2 \pmod{3}$, then [13, Theorem 7.2] implies the result. □

1) Suppose r even. Then ζ_e belongs to $\mathbb{Q}_\ell(\mu_p)$. Lemma 27 implies $F \cap \mathbb{Q}_\ell(\mu_p) = \mathbb{Q}_\ell(\zeta_e)$. So the Galois groups $\text{Gal}(F(\mu_p)/F)$ and $\text{Gal}(\mathbb{Q}_\ell(\mu_p)/\mathbb{Q}_\ell(\zeta_e))$ are isomorphic, and we obtain

$$[F(\mu_p) : F] = \frac{r}{2}.$$

The ramification index of K/F is equal to $\frac{e}{2}$, so 2 divides d'. From (17.1) we then deduce $d' = r$, which leads to $d = er$ by Lemma 27, as desired.

2) Suppose r odd. Then ζ_e does not belong to $\mathbb{Q}_\ell(\mu_p)$. This implies $F \cap \mathbb{Q}_\ell(\mu_p) = \mathbb{Q}_\ell$, so $[F(\mu_p) : F] = r$, i.e. the order of $\chi_p|_H$ is r. We deduce that $\varphi^{2r} = 1$, so d' divides $2r$. Since $F(\mu_p)$ is contained in K, r divides d'. So we have $d' = r$ or $d' = 2r$. One has $d' \neq r$, otherwise $K = F(\mu_p)$ and this contradicts the fact that the ramification index of K/\mathbb{Q}_ℓ is e and the one of $F(\mu_p)/\mathbb{Q}_\ell$ is $\frac{e}{2}$. So $d' = 2r$ and we obtain $d = 2er$, hence the result.

This completes the proof of Theorem 8.

18. **Proof of Theorem 10**

Let E/\mathbb{Q}_3 be an elliptic curve with additive potentially good reduction with $e \neq 2$.

Let $\rho_{E,p} : \text{Gal}(\overline{\mathbb{Q}}_3/\mathbb{Q}_3) \rightarrow \text{GL}_2(\mathbb{F}_p)$ be the representation arising on the p-torsion points of E.

Write $K = \mathbb{Q}_3(E_p)$ for the field fixed by the kernel of $\rho_{E,p}$ whose degree is $d = [K : \mathbb{Q}_3]$.

Let the projective representation obtained from $\rho_{E,p} \otimes \overline{\mathbb{F}}_p$ be denoted by

$$\sigma_{E,p} : \text{Gal}(\overline{\mathbb{Q}}_3/\mathbb{Q}_3) \rightarrow \text{PGL}_2(\overline{\mathbb{F}}_p)$$

and write F for the field fixed by its kernel.

A minimal equation of E/\mathbb{Q}_3 is (see [9, p. 355])

$$(18.1) \quad y^2 = x^3 - \frac{c_4}{48}x - \frac{c_6}{864}.$$

Let $\Delta^{\frac{1}{4}}$ be a 4th root of Δ in $\overline{\mathbb{Q}}_3$ and E_2 be the group of 2-torsion points of $E(\overline{\mathbb{Q}}_3)$. From the corollary in [9, p. 362], the smallest extension of $\mathbb{Q}_3^{\text{unr}}$ over which $E/\mathbb{Q}_3^{\text{unr}}$ acquires good reduction is

$$(18.2) \quad L = \mathbb{Q}_3^{\text{unr}}(E_2, \Delta^{\frac{1}{4}}).$$

In particular, we have

$$(18.3) \quad [L : \mathbb{Q}_3^{\text{unr}}] = e.$$

We will divide the proof according to the value of $e \in \{3, 4, 6, 12\}$.

18.1. Case $e = 3$. We have (cf. loc.cit., cor. p. 355)

\[
(v(c_4), v(c_6), v(\Delta)) \in \{(2, 3, 4), (5, 8, 12)\}.
\]

Let x_0 be the x-coordinate of a point of E_2 in the model (18.1). Let us denote

\[M = \mathbb{Q}_3(x_0). \]

Lemma 28. The extension M/\mathbb{Q}_3 is totally ramified of degree 3 and E/M has good supersingular reduction.

Proof. Since 4 divides $v(\Delta)$, Δ is a 4th power in \mathbb{Q}_3^{unr}. So from (18.2) one has $L = \mathbb{Q}_3^{unr}(E_2)$ and E/L acquires good reduction. Since we have $e = 3$, we deduce from (18.3) the equality $[\mathbb{Q}_3^{unr}(E_2) : \mathbb{Q}_3^{unr}] = 3$. This implies $\mathbb{Q}_3^{unr}(E_2) = \mathbb{Q}_3^{unr}(x_0)$. So the extension M/\mathbb{Q}_3 is totally ramified of degree 3 and E/M has good reduction. One has $2v(c_6) \neq v(\Delta)$, so E/M has good supersingular reduction by [10, p. 21, Lemme 7].

Let E'/M be an elliptic curve with good reduction isomorphic over M to E/M and \tilde{E}'/\mathbb{F}_3 be the elliptic curve obtained from E'/M by reduction. Let also

\[a_{E'} = 4 - |\tilde{E}'(\mathbb{F}_3)|. \]

Lemma 29. We have $a_{E'} = 0$.

Proof. The elliptic curve E'/M has a rational point of order 2 rational over M (Lemma 28). It follows \tilde{E}'/\mathbb{F}_3 has also a rational point of order 2 rational over \mathbb{F}_3. Since E'/M has good supersingular reduction, up to an \mathbb{F}_3-isomorphism, an equation of \tilde{E}'/\mathbb{F}_3 is $Y^2 = X^3 - X$ or $Y^2 = X^3 + X$, which implies the result.

1) Suppose that the extension K/\mathbb{Q}_3 is non-abelian. The Galois group Gal($M(E_p)/M$) being cyclic, implies that M is contained in K. So $M(E'_p) = K$. From Corollary 1 and Lemma 29, one has $[K : M] = 2\delta$, so $d = 6\delta$ as stated.

2) Let us assume that extension K/\mathbb{Q}_3 is abelian. One has $p \neq 3$. Let $\zeta \in \mathbb{F}_9$ be a primitive cubic root of unity and $\alpha \in \mathbb{F}_9$ such that $\alpha^2 = -3$. Let n the least common multiple of the orders of α and $-\alpha$ in \mathbb{F}_9.

Lemma 30. We have $d = 3n$.

Proof. The same arguments of Lemma 13 allow to conclude that M is not contained in K if and only if one has

(18.4) \[n \equiv 0 \pmod{3} \quad \text{and} \quad \{\alpha^{2\zeta}, (-\alpha)^{2\zeta}\} = \{\zeta, \zeta^2\}. \]

Moreover, if this condition is fulfilled one has $d = n$, otherwise $d = 3n$. If 3 divides n, one has $(-\alpha)^{2\zeta} = \pm \alpha^{2\zeta}$, but $\zeta \neq \zeta^2$. So the condition (18.4) is not satisfied, hence the lemma.

Lemma 31. We have $n = 2\delta$.

Proof. Let s be the order of α. We have $s = \delta \gcd(2, s)$. If $s = 2\delta$, we have $n = s$ and the assertion. If $s = \delta$, then s must be odd, so the order of $-\alpha$ is $2s$, hence $n = 2\delta$.

Lemmas 30 and 31 imply the first part of the theorem in case K/\mathbb{Q}_3 is abelian, which completes the proof of Theorem 10 for $e = 3$. 26
18.2. Case $e = 4$. The same proof as in section 17.2 for $e = 4$ gives the result.

18.3. Case $e = 6$. We have ([9, p. 355, Cor])
\[(v(c_4), v(c_6), v(\Delta)) \in \{(3, 5, 6), (4, 6, 10)\}.
\]

Lemma 32. The group $\text{Gal}(K/\mathbb{Q}_3)$ is abelian if and only if one has $\frac{\Delta}{3v(\Delta)} \equiv 1 \pmod{3}$.

Proof. Let E'/\mathbb{Q}_3 be the quadratic twist of E/\mathbb{Q}_3 by $\sqrt{3}$. The elliptic curve E'/\mathbb{Q}_3 has additive potentially good reduction with a semi-stability defect of order 3 (cf. loc.cit.). Moreover, the extension $\mathbb{Q}_3(E'_p)/\mathbb{Q}_3$ is abelian if and only if such is the case of K/\mathbb{Q}_3. The result now follows from [8, Proposition 5].

18.4. Case $e = 6$ with K/\mathbb{Q}_3 is abelian. Let x_0 be the x-coordinate of a point of E_2 in the model (18.1). Let us denote
\[(18.5) \quad M = \mathbb{Q}_3\left(x_0, \sqrt{3}\right).
\]

Lemma 33. Suppose $\text{Gal}(K/\mathbb{Q}_3)$ abelian. Then the extension M/\mathbb{Q}_3 is totally ramified of degree 6 and E/M has good supersingular reduction.

Proof. Since 2 divides $v(\Delta)$, we deduce from Lemma 32 that Δ is a square in \mathbb{Q}_3. Moreover, $\frac{\Delta}{3v(\Delta)}$ is a 4-th power in \mathbb{Q}_3, so one has $L = \mathbb{Q}_{3}^{\text{unr}}(E_2, \sqrt{3})$ (equality (18.2)). Furthermore, Δ being a square in \mathbb{Q}_3, and 3 dividing $[\mathbb{Q}_{3}^{\text{unr}}(E_2) : \mathbb{Q}_3^{\text{unr}}]$, one has $\mathbb{Q}_{3}^{\text{unr}}(E_2) = \mathbb{Q}_{3}^{\text{unr}}(x_0)$. In particular, $L = \mathbb{Q}_{3}^{\text{unr}}(x_0, \sqrt{3})$. Since $[L : \mathbb{Q}_{3}^{\text{unr}}] = 6$ (equality (18.3)), we deduce that M/\mathbb{Q}_3 is totally ramified of degree 6 and E/M has good reduction. The fact that $2v(c_6) \neq v(\Delta)$ implies that the reduction is supersingular [10, p. 21, lemme 7].

Let E'/M be an elliptic curve with good reduction isomorphic over M to E/M and \tilde{E}'/\mathbb{F}_3 be the elliptic curve obtained from E'/M by reduction. Let $a_{E'} = 4 - |\tilde{E}'(\mathbb{F}_3)|$. Using Lemma 33, the same proof as the one establishing Lemma 29 leads to the equality $a_{E'} = 0$. Let $\alpha \in \mathbb{F}_9$ such that $\alpha^2 = -3$ and n be the least common multiple of the orders of α and $-\alpha$ in \mathbb{F}_9. Let ζ be a primitive 6-th root of unity in \mathbb{F}_9. Using exactly the same arguments, lemmas 22-25 are also valid with $\ell = 3$ and the field M defined by (18.5). Since one has $\zeta \neq \pm \zeta^{-1}$ and $\zeta^2 \neq \pm \zeta^{-2}$, we get
\[d = \begin{cases} 3n & \text{if } n \equiv 0 \pmod{2} \text{ and } \alpha^{\frac{n}{2}} = (-\alpha)^{\frac{n}{2}} = -1, \\ 6n & \text{otherwise.} \end{cases}\]

Lemma 34. We have
\[d = \begin{cases} 6\delta & \text{if } \delta \equiv 0 \pmod{2}, \\ 12\delta & \text{if } \delta \equiv 1 \pmod{2}. \end{cases}\]

Proof. As in the proof of Lemma 31, we have $n = 2\delta$.

Suppose δ even. Let $\delta = 2\delta'$. One has $(-\alpha)^{\frac{\delta'}{2}} = \alpha^{\frac{\delta'}{2}} = \alpha^{2\delta'} = (-3)^{\delta'} = -1$, hence $d = 3n = 6\delta$. If δ is odd, one has $(-\alpha)^{\frac{\delta'}{2}} \neq \alpha^{\frac{\delta'}{2}}$, so $d = 6n = 12\delta$, hence the result.

To end this section, let us give the link between δ and r for any prime number ℓ. We will use this lemma several times.
Lemma 35. We have
\[
\delta = \begin{cases}
 r & \text{if } r, \delta \text{ are both even}, \\
 \frac{r}{2} & \text{if } r \text{ is even and } \delta \text{ is odd}, \\
 2r & \text{if } r \text{ is odd}.
\end{cases}
\]

Proof. If \(r \) is odd, the equality \(-\ell = (-1)\ell \) implies \(\delta = 2r \). If both \(\delta \) and \(r \) are even, one has \(\ell^r = (-\ell)^r = 1 \) and \(\ell^\delta = (-\ell)^\delta = 1 \) so that \(\delta \mid r \) and \(r \mid \delta \), thus \(r = \delta \). Suppose \(r \) even and \(\delta \) odd. One has \((-\ell)^\delta = (-1)^\delta \ell^\delta = 1 \), so \(\ell^{2\delta} = 1 \), and \(r \) divides \(2\delta \). Moreover, \(\ell^r = (-\ell)^r = 1 \), so \(\delta \) divides \(r \). We obtain \(r = \delta \) or \(r = 2\delta \). This leads to \(r = 2\delta \) because \(r \) and \(\delta \) have not the same parity, hence the result. \(\square \)

Lemmas 34 and 35 now imply Theorem 10 for \(e = 6 \) and \(K \) abelian.

18.5. Case \(e = 6 \) with \(K/Q_3 \) is non-abelian. We have \(j - 1728 = \frac{a^3}{c} \). In particular, \(v(j - 1728) \) is even. From our assumption and Lemma 32, this implies that \(j - 1728 \) is not a square in \(Q_3 \). We conclude the representation \(\sigma_{E,p} : G \to \text{PGL}_2(F_p) \) is of type \(V \) (by [6, Cor. 0.5]). Since \(\Phi \) is cyclic of order 6, one has \(|\sigma_{E,p}(\Phi)| = 3 \), so the extension \(F/Q_3 \) is dihedral of degree 6 ([5], prop. 2.3). This extension is not totally ramified, so the unramified quadratic extension \(\Omega_3(\sqrt{2}) \) of \(Q_3 \) is contained in the field \(F \) fixed by the kernel of \(\sigma_{E,p} \).

The end of the proof is now the same as the one used in section 17.2. Let \(d' = [K : F] \). One has \(d = 6d' \). In case \(r \) is even, \(\sqrt{2} \) belongs to \(Q_3(\mu_p) \), so \([F(\mu_p) : F] = \frac{r}{2} \). The ramification index of \(K/F \) is equal to 2, consequently 2 divides \(d' \). The equality (17.1) then leads to \(d' = r \), and \(d = 6r \) as stated. If \(r \) odd, then \(\sqrt{2} \) does not belong to \(Q_3(\mu_p) \). This implies \(F \cap Q_3(\mu_p) = Q_3 \) and \([F(\mu_p) : F] = r \). We then conclude that \(d' = 2r \) and \(d = 12r \), hence the result.

18.6. Case \(e = 12 \). Recall that \(K = Q_3(E_p) \). Let
\[
M = Q_3\left(E_2, \Delta^{\frac{1}{2}}\right).
\]
Recall that we have \(Q_3(E_2) = Q_3\left(\sqrt{\Delta}, x_0\right) \) with \(x_0 \) being a root of the 2-division polynomial of \(E/Q_3 \). In particular, \([M : Q_3] \leq 12 \).

Lemma 36. The extension \(M/Q_3 \) is totally ramified of degree 12 and \(E/M \) has good supersingular reduction.

Proof. We have \([L : Q_3^{\text{num}}] = 12 \) (equality (18.3)), so \(M/Q_3 \) is totally ramified of degree 12 and \(E/M \) has good reduction. We have \(2v(c_0) = 2v(\Delta) \) (see [9, cor. p. 355]) so the reduction is supersingular (see [10, p. 21, lemme 7]). \(\square \)

Lemma 37. We have \([K \cap M : Q_3] \in \{6, 12\} \).

Proof. Let \(E'/M \) be an elliptic curve with good reduction isomorphic over \(M \) to \(E/M \) and \(E'/\mathbb{F}_3 \) be the curve obtained from \(E'/M \) by reduction. Let \(a_{E'} = 4 - |E'(\mathbb{F}_3)| \). The points of order 2 of \(E'/M \) are rational over \(M \), so 4 divides \(a_{E'} \), and the Weil bound implies \(a_{E'} = 0 \). From Corollary 1, we conclude
\[
[M(E_p) : M] = 2\delta.
\]
From Lemma 35 we have \(\delta \in \{ \frac{r}{2}, r, 2r \} \), so
\[
d = [K \cap M : \mathbb{Q}_3]u \quad \text{with} \quad u \in \{ r, 2r, 4r \}.
\]
Moreover, \(12r \) divides \(d \), hence \([K \cap M : \mathbb{Q}_3] \neq 1, 2, 4 \).

Suppose \([K \cap M : \mathbb{Q}_3] = 3 \). Then \(K \cap M \) is contained in \(\mathbb{Q}_3(E_2) \), otherwise \(M/K \cap M \) would be an extension of degree divisible by 3, hence 9 would divide \([M : \mathbb{Q}_3] \), a contradiction. Since \(K/\mathbb{Q}_3 \) is Galois, this implies that \(K \cap M = \mathbb{Q}_3(E_2) \) which leads to a contradiction, hence the lemma.

The representation \(\sigma_{E,p} : G \to \text{PGL}_2(\overline{\mathbb{F}}_p) \) is of type \(\text{H} \) by [6, Prop. 0.4]. From [5, Proposition 2.4], we see that \(\sigma_{E,p}(\Phi) \) is dihedral of order 6. Furthermore, \(F \) being the fixed field by the kernel of \(\sigma_{E,p} \), implies \([F : \mathbb{Q}_3] = 6 \) or \([F : \mathbb{Q}_3] = 12 \) (loc. cit.).

Let \(d' = [K : F] \). We have \(d \in \{ 6d', 12d' \} \) and, furthermore, (17.1) is still true.

Lemma 38. If \([F : \mathbb{Q}_3] = 6 \), then \(d = 12r \).

Proof. Since \(|\sigma_{E,p}(\Phi)| = 6 \), our assumption implies that the extension \(F/\mathbb{Q}_3 \) is totally ramified. We have \(e = 12 \), so 2 divides \(d' \) and (17.1) leads to \(d' = 2r \), hence the lemma.

Lemma 39. If \(r \) is even, then \(d = 12r \).

Proof. From Lemma 38 we can suppose \([F : \mathbb{Q}_3] = 12 \). Since \(r \) is even, the quadratic unramified extension of \(\mathbb{Q}_3 \) is contained in \(\mathbb{Q}_3(\mu_p) \). It is also contained in \(F \) because the ramification index of \(F/\mathbb{Q}_3 \) is 6. So we have \([F \cap \mathbb{Q}_3(\mu_p) : \mathbb{Q}_3] = 2 \), hence \([F(\mu_p) : F] = 2 \).

Using (17.1), the ramification index of \(K/F \) being equal to 2, we conclude \(d' = r \), so \(d = 12r \), as desired.

Lemma 40. Suppose \(r \) is odd. We have \([K \cap M : \mathbb{Q}_3] = 6 \) and \(d = 24r \).

Proof. Suppose \([K \cap M : \mathbb{Q}_3] = 12 \). Then \(M \subseteq K \), so \(d = 12(2\delta) = 24\delta \) by Corollary 1. Since \(r \) is odd, one has \(\delta = 2r \) (Lemma 35), so \(d = 48r \). Moreover, from Lemma 38, we deduce that \([F : \mathbb{Q}_3] = 12 \) and (17.1) implies \(d' \leq 2r \), so \(d \leq 24r \), hence a contradiction. We so obtain \([K \cap M : \mathbb{Q}_3] = 6 \) (Lemma 37) and we deduce that \(d = 6(2\delta) = 6(4r) = 24r \) as stated.

This concludes the proof of Theorem 10.

19. **Proof of Theorem 12.**

Let \(E/\mathbb{Q}_2 \) be an elliptic curve with additive potentially good reduction with \(e \neq 2 \).

Let \(\rho_{E,p} : \text{Gal}(\overline{\mathbb{Q}_2}/\mathbb{Q}_2) \to \text{GL}_2(\overline{\mathbb{F}}_p) \) be the representation arising on the \(p \)-torsion points of \(E \).

Write \(K = \mathbb{Q}_2(E_p) \) for the field fixed by the kernel of \(\rho_{E,p} \) whose degree is \(d = [K : \mathbb{Q}_2] \).

Let the projective representation obtained from \(\rho_{E,p} \otimes \overline{\mathbb{F}}_p \) be denoted by
\[
\sigma_{E,p} : \text{Gal}(\overline{\mathbb{Q}_2}/\mathbb{Q}_2) \to \text{PGL}_2(\overline{\mathbb{F}}_p)
\]
and write \(F \) for the field fixed by its kernel.

We will write \(\Phi \) for both the inertia subgroups of \(\text{Gal}(\overline{\mathbb{Q}_2}/\mathbb{Q}_2) \) and \(G = \text{Gal}(K/\mathbb{Q}_2) \).
19.1. Case $e = 3$. Suppose that E / \mathbb{Q}_2 satisfies $e = 3$. Let $\pi \in \overline{\mathbb{Q}}_2$ be a cubic root of 2. Write $M = \mathbb{Q}_2(\pi)$. The extension M / \mathbb{Q}_2 is totally ramified of degree 3.

Lemma 41. The elliptic curve E / \mathbb{Q}_2 acquires good supersingular reduction over M.

Proof. The field $\mathbb{Q}_2^{unr}(\pi)$ is the unique extension of degree 3 of \mathbb{Q}_2^{unr}. Since $e = 3$, the elliptic curve E / M has good reduction. Since $v(j) > 0$ (see [9]), so the j invariant modulo 2 is 0, which is supersingular in characteristic 2. \[\square \]

We have $\ell = 2 \equiv -1 \pmod{e}$. It follows from [8, Corollary 3 and Lemma 5] that K / \mathbb{Q}_2 in non-abelian and M is contained in K. We conclude that

\begin{equation}
(19.1) \quad d = 3[M(E_\pi) : M].
\end{equation}

Let E'/M be an elliptic curve with good reduction isomorphic over M to E/M. Since E'/M has supersingular reduction, its trace of Frobenius satisfies $a_{E'} \in \{-2, 0, 2\}$.

Lemma 42. We have $a_{E'} = 0$.

Proof. The residue field of M is \mathbb{F}_2, so $a_{E'} = 3 - |\tilde{E}'(\mathbb{F}_2)|$, where \tilde{E}' is the reduction of E'. We will show E/M has a rational 3-torsion point over M. Together with the Weil bound, this gives the desired result. Let $\chi_3 : \Gal(\overline{\mathbb{Q}}_2 / \mathbb{Q}_2) \to \mathbb{F}_3^*$ be the mod 3 cyclotomic character. From [8, Proposition 8], the representation $\rho_{E,3}$ is of one of the following types

\[\begin{pmatrix} 1 & * \\ 0 & \chi_3 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \chi_3 & * \\ 0 & 1 \end{pmatrix}, \]

in particular its image is of order 6. So the restriction of ρ_3 to $\Gal(\overline{\mathbb{Q}}_2 / M)$ is of the shape

\[\begin{pmatrix} 1 & 0 \\ 0 & \chi_3 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} \chi_3 & 0 \\ 0 & 1 \end{pmatrix}, \]

hence the result. \[\square \]

From Lemma 41 and Corollary 1 we conclude $[M(E_\pi) : M] = 2\delta$. Now equation (19.1) gives $d = 6\delta$, as desired.

19.2. Case $e = 4$. Suppose that E / \mathbb{Q}_2 satisfies $e = 4$. We consider the 3-torsion field $M = \mathbb{Q}_2(E_3)$.

Lemma 43. We have $[M : \mathbb{Q}_2] = 8$ and E / M has good supersingular reduction.

Proof. It follows from $e = 4$ and Table 1 and Proposition 4 of [7] that $[M : \mathbb{Q}_2] = 8$. Since $v(j) > 0$ (see [9]), so the j invariant modulo 2 is 0, which is supersingular in characteristic 2. \[\square \]

Let E'/M be an elliptic curve of good reduction isomorphic over M to E/M. The residue field of M is \mathbb{F}_4 and $\tilde{E}' / \mathbb{F}_4$ has full 3-torsion over \mathbb{F}_4. It follows from $a_{E'} = 5 - |\tilde{E}'(\mathbb{F}_4)|$ and the Weil bound that $|\tilde{E}'(\mathbb{F}_4)| = 9$ and $a_{E'} = -4$. Moreover, $\Delta_{E'} = a_{E'}^2 - 4 \cdot 2^2 = 0$ so (by [2,
Theorem 2]) the Frobenius element Frob_M of the extension $M(E_p)/M$ is representable by
the matrix $\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$. It is the homothety of ratio -2. Consequently, one has

\begin{equation}
[M(E_p) : M] = \delta.
\end{equation}

Lemma 44. We have $K \cap M \neq \mathbb{Q}_2$.

Proof. Suppose $K \cap M = \mathbb{Q}_2$. Then the Galois groups of K/\mathbb{Q}_2 and $M(E_p)/M$ are isomorphic.
Let σ be a generator of the inertia subgroup of $\text{Gal}(K/\mathbb{Q}_2)$. The element $\rho_{E,p}(\sigma)$ belongs to
$\text{SL}_2(\mathbb{F}_p)$ and is of order 4. Consequently, there exists $U \in \text{GL}_2(\mathbb{F}_p)$ such that

$$U \rho_{E,p}(\sigma) U^{-1} = \begin{pmatrix} \zeta_4 & 0 \\ 0 & -\zeta_4 \end{pmatrix}.$$

The restriction of the Frobenius $\text{Frob}_M \in \text{Gal}(M(E_p)/M)$ to K is the homothety of ratio -2
and it is a generator of $\text{Gal}(K/\mathbb{Q}_2)$. So there exists $k = 1, \ldots, \delta$ such that

$$\begin{pmatrix} \zeta_4 & 0 \\ 0 & -\zeta_4 \end{pmatrix} = \begin{pmatrix} (-2)^k & 0 \\ 0 & (-2)^k \end{pmatrix},$$

which leads to a contradiction, hence the result. \qed

Lemma 45. Suppose K/\mathbb{Q}_2 is abelian. Then $\text{Gal}(M/\mathbb{Q}_2)$ is cyclic of order 8.

Proof. From [8, Proposition 6] it follows that M/\mathbb{Q}_2 is abelian and [7, Table 1] gives the conclusion, since M/\mathbb{Q}_3 is of degree 8. \qed

Lemma 46. We have $\mu_3 \subseteq K$.

Proof. From Lemma 44 we know $[K \cap M : \mathbb{Q}_2] \geq 2$.

1) Suppose K/\mathbb{Q}_2 is abelian. Then Lemma 45 implies that $K \cap M/\mathbb{Q}_2$ contains the quadratic
unramified extension (the ramification degree of M is $e = 4$), as desired.

2) Suppose K/\mathbb{Q}_2 is non-abelian. Because Φ is cyclic of order 4, the representation $\rho_{E,p}$ is
of type V (by [5, Proposition 2.3]). Since $|\sigma_{E,p}(\Phi)| = 2$, we conclude from condition 3 of [5,
Proposition 2.3] that the image of $\sigma_{E,p}$ is dihedral of order 4. We have $F \subseteq K$ and F/\mathbb{Q}_2 is
not totally ramified. Thus $\mu_3 \subseteq F \subseteq K$. \qed

Lemma 47. The field $\mathbb{Q}_2(\mu_3)$ is strictly contained in $K \cap M$. In particular,

\begin{equation}
[K \cap M : \mathbb{Q}_2] \in \{4, 8\}.
\end{equation}

Proof. Since $\mu_3 \subseteq M$ by Lemma 46 we have $\mu_3 \subseteq K \cap M$. Suppose $K \cap M = \mathbb{Q}_2(\mu_3)$. Then
μ_3 is fixed by the generator σ of the inertia subgroup of $\text{Gal}(K/\mathbb{Q}_2)$. Up to conjugation, we
have $\rho_{E,p}(\sigma) = \begin{pmatrix} \zeta_4 & 0 \\ 0 & -\zeta_4 \end{pmatrix}$. The Galois groups $K/\mathbb{Q}_2(\mu_3)$ and $M(E_p)/M$ are isomorphic, so
there exist (as in Lemma 44) an integer $k = 1, \ldots, \delta$ such that

$$\begin{pmatrix} \zeta_4 & 0 \\ 0 & -\zeta_4 \end{pmatrix} = \begin{pmatrix} (-2)^k & 0 \\ 0 & (-2)^k \end{pmatrix},$$

which gives a contradiction. Now Lemma 43 implies (19.3). \qed
Lemma 48. There exists \(k = 1, \ldots, \delta \) such that
\[
\begin{pmatrix}
(-2)^k & 0 \\
0 & (-2)^k
\end{pmatrix} = -1
\]
if and only if \(\delta \) is even.

Proof. If \(\delta \) is even, one has \((-2)^\delta = -1\). Conversely, suppose there exists \(k = 1, \ldots, \delta \) such that \((-2)^k = -1\). One has \((-2)^{2k} = 1\), so \(\delta \) divides \(2k \). If \(\delta \) is odd, then \(\delta \) divides \(k \), so \(k = \delta \) which is false, so \(\delta \) is even, hence the lemma.

\(\square \)

Lemma 49. We have the following equivalence
\[
M \subseteq K \iff \delta \equiv 1 \pmod{2}.
\]

Proof. Let \(\tau \) be the element of order 2 of the inertia subgroup of \(\text{Gal}(K/\mathbb{Q}_2) \). Its image \(\rho_{E,p}(\tau) \) is in \(\text{SL}_2(\mathbb{F}_p) \) and is of order 2, so
\[
\rho_{E,p}(\tau) = -1.
\]
Suppose \(M \not\subseteq K \). Then, Lemma 47 implies both \([K \cap M : Q_2] = 4\) and the ramification index of the extension \(K \cap M / Q_2 \) is equal to 2. We conclude that \(\tau \in \text{Gal}(K/K \cap M) \). Since the Frobenius \(\text{Frob}_M \in \text{Gal}(M(E_p)/M) \) restricts to a generator of \(\text{Gal}(K/K \cap M) \), there exists \(k = 1, \ldots, \delta \), such that \((-2)^k = -1\). Thus \(\delta \) is even by Lemma 48.

Conversely, suppose \(M \subseteq K \); then \(K/M \) is unramified. In particular, \(\tau \) does not belong to \(\text{Gal}(K/M) \), which is generated by \(\text{Frob}_M \) (because \(M(E_p) = K \)). From (19.5), it follows there does not exist \(k = 1, \ldots, \delta \) such that \((-2)^k = -1\); thus \(\delta \) is odd by Lemma 48.

\(\square \)

Corollary 2. The degree \(d = [K : \mathbb{Q}_2] \) satisfies
\[
d = \begin{cases}
4\delta & \text{if } \delta \text{ is even}, \\
8\delta & \text{if } \delta \text{ is odd}.
\end{cases}
\]

Proof. If \(\delta \) is even, \(M \) is not contained in \(K \) (Lemma 49) so \([K \cap M : \mathbb{Q}_2] = 4\) (Lemma 47). The equality (19.2) then implies \(d = 4\delta \).

If \(\delta \) is odd, \(M \) is contained in \(K \), so \(d = 8\delta \), as desired.

\(\square \)

Corollary 2 and Lemma 35 complete the proof of Theorem 12 for \(e = 4 \).

19.3. Case \(e = 6 \). Suppose that \(E/\mathbb{Q}_2 \) satisfies \(e = 6 \). After a suitable quadratic twist we have \(e = 3 \) and since \(\ell = 2 \equiv -1 \pmod{3} \) we conclude that \(K \) is non-abelian ([8, Corollary 3]). A similar argument to the case \(e = 6 \) in the proof of Theorem 8 part 2) gives the result.
19.4. **Case** \(e = 8 \). Suppose that \(E/Q_2 \) satisfies \(e = 8 \). We consider the fields

\[
M = Q_2(E_3), \quad K = Q_2(E_p), \quad L = K \cap M
\]

which are three Galois extensions of \(Q_\ell \).

Since \(e = 8 \), it is well known that \(\Phi \subset \text{Gal}(K/Q_2) \) is isomorphic to quaternion group.

Lemma 50. The image \(\sigma_{E,p}(\Phi) \) is non-cyclic of order 4 and the Galois group \(\text{Gal}(F/Q_2) \) is dihedral of order dividing 8.

Proof. Since \(\Phi \) is isomorphic to quaternion group, its center \(C \) is of order 2 and \(\Phi/C \) is isomorphic to the Klein group of order 4. The result now follows from condition 3 of [5, Proposition 2.4]. \(\square \)

Lemma 51. The degree \(d = [K : Q_2] \) satisfies \(d \in \{8r, 16r\} \).

Proof. We have \(r = [Q_2(\mu_p) : Q_2] \) and the unramified extension \(Q_2(\mu_p)/Q_2 \) is contained in \(K \); moreover, the inertia subgroup \(\Phi \subset \text{Gal}(K/Q_2) \) is of order 8. Then \(8r \mid d \).

Write \(H = \text{Gal}(K/F) \). There exists a character \(\varphi : H \to \mathbb{F}_p^* \) such that

\[
\rho_{E,p}|_H = \begin{pmatrix} \varphi & 0 \\ 0 & \varphi \end{pmatrix} \quad \text{and} \quad \varphi^2 = \chi_p|_H.
\]

The order of \(\varphi \) is \(d' = [K : F] \) and the order of \(\chi_p|_H \) is \(\frac{d'}{\gcd(d', 2)} \) and it divides \(r \). Hence \(d' \leq 2r \) and from Lemma 50, we have \([F : Q_2] \leq 8 \). Thus \(d \leq 16r \) and the lemma follows. \(\square \)

Lemma 52. The Galois group \(\text{Gal}(M/Q_2) \) is semidihedral of order 16.

Proof. This follows from Table 1 in [7]. \(\square \)

Lemma 53. We have \([L : Q_2] \in \{4, 8, 16\} \).

Proof. The same argument leading to equality (19.2) shows that here we also have

\[
[M(E_p) : M] = \delta.
\]

Thus \(d = \delta[L : Q_2] \). From Lemma 35 we conclude that \([L : Q_2] = 4, 8, 16 \) or 32. Note the last case is impossible due to Lemma 52, completing the proof. \(\square \)

Let us denote by \(SD_{16} \) the semidihedral group of order 16.

Corollary 3. We have \(\mu_3 \subseteq K \).

Proof. This is clear if \([L : Q_2] = 16 \) i.e. \(L = M \) (because \(\mu_3 \subseteq M \)).

Suppose \([L : Q_2] = 8 \). The only normal subgroup of \(SD_{16} \) of order 2 is its center and its quotient is dihedral. Thus \(L/Q_2 \) is a dihedral extension of order 8. Consequently, \(L/Q_2 \) is not totally ramified, because \(\Phi \) is the quaternion group, hence \(Q_2(\mu_3) \subset L \).

Suppose \([L : Q_2] = 4 \). We will again show that \(L/Q_2 \) is not totally ramified, which gives the result. The Galois group \(\text{Gal}(M/L) \) is a normal subgroup of order 4 of \(\text{Gal}(M/Q_2) \). There is only one normal subgroup of order 4 of \(SD_{16} \), and it is cyclic (its derived subgroup). Moreover, \(SD_{16} \) has exactly three cyclic subgroups of order 4 and one subgroup isomorphic
to H_8. The group H_8 has also exactly three cyclic subgroups of order 4. We deduce that the cyclic subgroups of order 4 of $\text{Gal}(M/Q_2)$ are contained in its inertia subgroup. This implies that L/Q_2 is not totally ramified, hence the result.

We can now complete the proof of Theorem 12 in the case $e = 8$.

1) Suppose r odd. Then $\mu_3 \notin Q_2(\mu_p)$. Since $Q_2(\mu_3) \subseteq K$ by Corollary 3, we deduce that the degree of the maximal unramified subfield of K is at least $2r$. This implies $d \geq 16r$, so $d = 16r$ by Lemma 51.

2) Suppose r even. Then $\mu_3 \in Q_2(\mu_p)$. From Lemma 50 we have that F/Q_2 is dihedral with ramification index 4 and of degree $[F : Q_2] = 8$ or $[F : Q_2] = 4$. Write $d' = [K : F]$.

Suppose $[F : Q_2] = 8$. We have $Q_2(\mu_p) \cap F = Q_2(\mu_3)$. The Galois groups $\text{Gal}(F(\mu_p)/F)$ and $\text{Gal}(Q_2(\mu_p)/Q_2(\mu_p) \cap F)$ being isomorphic, we deduce that

$$[F(\mu_p) : F] = \frac{r}{2}.$$

Using the notations in the proof of Lemma 51, we have that the order of $\chi_p|_H$ is $\frac{r}{2}$, which leads to the equality

$$\frac{d'}{\gcd(d', 2)} = \frac{r}{2}.$$

Since the ramification index of K/F is 2, we have $2 \mid d'$. Thus $d' = r$ and $d = 8r$.

Suppose $[F : Q_2] = 4$. We have

$$\frac{d'}{\gcd(d', 2)} = [F(\mu_p) : F] \leq r.$$

So $d' \leq 2r$, which implies $d \leq 8r$. Then $d = 8r$ by Lemma 51, as desired.

19.5. **Case** $e = 24$. Suppose that E/Q_2 satisfies $e = 24$. We consider the fields

$$M = Q_2(E_3), \quad K = Q_2(E_p), \quad L = K \cap M$$

which are three Galois extensions of Q_2. Since $e = 24$, it is well known that $\Phi \in \text{Gal}(K/Q_2)$ is isomorphic to $\text{SL}_2(\mathbb{F}_3)$ and $\text{Gal}(M/Q_2) \simeq \text{GL}_2(\mathbb{F}_3)$.

Lemma 54. The image $\sigma_{E,p}(\Phi)$ is of order 12 isomorphic to A_4. Moreover, the Galois group $\text{Gal}(F/Q_2)$ is isomorphic to A_4 or S_4.

Proof. The only scalar matrices in $\text{SL}_2(\mathbb{F}_p)$ are ± 1, therefore $\sigma_{E,p}(\Phi) \simeq \text{SL}_2(\mathbb{F}_3)/\{\pm 1\} \simeq A_4$, proving the first statement. Now, the condition 3 of [5, Proposition 2.4] implies the second statement.

Lemma 55. The degree $d = [K : Q_2]$ satisfies $d \in \{24r, 48r\}$.

Proof. We have $[F : Q_2] = 12$ or 24 by Lemma 54. Since $Q_2(\mu_p) \subseteq K$ we have $24r \mid d$. Now, a similar argument to Lemma 51 shows that $[K : F] \leq 2r$. Then $d \leq 48r$ and the result follows.

Lemma 56. We have $[L : Q_2] \in \{24, 48\}$.

34
we conclude $[L : Q_2] \geq 12$. We have $[L : Q_2] \neq 16$, otherwise d would be $8r$, $16r$ or $32r$ by Lemma 35, which is false by Lemma 52. Finally, $[L : Q_2] \neq 12$, because $\text{GL}_2(F_3)$ has not normal subgroups of order 4. The result follows.

\begin{proof}
The result is clear when $[L : Q_2] = 48$ i.e. if $L = M$.

Suppose $[L : Q_2] = 24$. The only normal subgroup of order 2 of $\text{GL}_2(F_3)$ is its center C. It is contained in $\text{SL}_2(F_3)$ and $\text{GL}_2(F_3)$ contains a unique subgroup isomorphic to $\text{SL}_2(F_3)$. We deduce that C is contained in the inertia subgroup of $\text{Gal}(M/Q_2)$, so the extension M/L is ramified. Therefore, L/Q_2 is not totally ramified, which implies $\mu_3 \subseteq L \subseteq K$.

We can now complete the proof in the case $e = 24$.

1) Suppose r odd. Then $\mu_3 \nsubseteq Q_2(\mu_p)$. Since $Q_2(\mu_3) \subseteq K$ by Corollary 4, we deduce that the degree of the maximal unramified subfield of K is at least $2r$. This implies $d \geq 48r$, so $d = 48r$ by Lemma 55.

2) Suppose r even. Then $\mu_3 \subseteq Q_2(\mu_p)$. From Lemma 54 we have that F/Q_2 has ramification index 12 and degree $[F : Q_2] = 12$ or $[F : Q_2] = 24$. Write $d' = [K : F]$.

Suppose $[F : Q_2] = 24$. Let us show that $d' = r$. The Galois group of F/Q_2 is isomorphic to S_4 by Lemma 54. This extension is not totally ramified, thus $Q_2(\mu_p) \cap F = Q_2(\mu_3)$. The Galois groups $\text{Gal}(F(\mu_p)/F)$ and $\text{Gal}(Q_2(\mu_p)/Q_2(\mu_p) \cap F)$ being isomorphic, we conclude that

$$[F(\mu_p) : F] = \frac{r}{2}.$$

This leads to the equality

$$\frac{d'}{\gcd(d', 2)} = \frac{r}{2}.$$

The ramification index of K/F is equal to 2, so 2 divides d'. We obtain $d' = r$, thus $d = 24d' = 24r$.

Suppose $[F : Q_2] = 12$. We have

$$\frac{d'}{\gcd(d', 2)} = [F(\mu_p) : F] \leq r.$$

So $d' \leq 2r$, which implies $d \leq 24r$. Then, by Lemma 55, $d = 24r$, completing the proof.

\section*{References}

[1] É. Cali and A. Kraus, \textit{Sur la p-différente du corps des points de ℓ-torsion des courbes elliptiques, ℓ ≠ p}, Acta Arithm. \textbf{104} (2002) 1–21.

[2] T. Centeleghe, \textit{Integral Tate modules and splitting of primes in torsion fields of elliptic curves}, Int. J. Number Theory \textbf{12} (2016), no. 1, 237–248.

[3] T. Centeleghe and P. Tsaknias, \textit{Integral Frobenius}, Magma package available at \url{http://math.uni.lu/~tsaknias/swfware.html}

[4] W. Duke and Á. Tóth, \textit{The splitting of primes in division fields of elliptic curves} Experimental Math. \textbf{11} (2002) 555–665.
[5] F. Diamond, *An extension of Wiles’ results*, Modular forms and Fermat’s Last theorem (Boston, MA, 1995), 475–489, Springer, New York, 1997. 17.2, 17.2, 18.5, 18.6, 19.2, 19.4, 19.5

[6] F. Diamond and K. Kramer, *Appendix: Classification of $\bar{\rho}_{E,\ell}$ by the j-invariant of E*, Modular forms and Fermat’s Last theorem (Boston, MA, 1995), 491–498, Springer, New York, 1997. 17.2, 18.5, 18.6

[7] T. Dokchitser and V. Dokchitser, *Root numbers of elliptic curves in residue characteristic 2*, Bull. London Math. Soc. 40 (2008), 516–524. 19.2, 19.2, 19.4

[8] N. Freitas and A. Kraus, *On the symplectic type of isomorphisms of the p-torsion of elliptic curves*, arXiv:1607.01218v3 (2017). 9, 14.1, 14.2, 15, 16.1, 16.2, 17, 18.3, 19.1, 19.1, 19.2, 19.3

[9] A. Kraus, *Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive*, Manuscripta. Math., 69 (1990), 353–385. 1, 5, 6, 7, 8, 18, 18, 18.3, 18.6, 19.1, 19.2

[10] A. Kraus, *Détermination du poids et du conducteur associés aux représentations des points de p-torsion des courbes elliptiques*, Dissertationes Math. (1997). 14.1, 18.1, 18.4, 18.6

[11] W. Bosma, J. Cannon and C. Playoust: *The Magma Algebra System I: The User Language*, J. Symb. Comp. 24 (1997), 235–265. (See also http://magma.maths.usyd.edu.au/magma/) 2

[12] I. Papadopoulos, *Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle 2 et 3*, J. Number Theory, 44 (1993), 119–152. 11.3, 11.4

[13] S. Pauli and X-F Roblot, *On the computation of all extensions of a p-adic field of a given degree* Math. Comp., 70 number 236, (2001), 1641–1659. 17.2

[14] J. H. Silverman, *The Arithmetic of Elliptic Curves*, Second Edition, Graduate Texts in Mathematics 106, Springer, 2009. 10, 12

[15] J.-P. Serre and J. Tate, *Good reduction of abelian varieties*, Annals of Math. 88 (1968), no. 2, 492–517. 9

Mathematics Institute, University of Warwick, CV4 7AL, United Kingdom

E-mail address: nunobfreitas@gmail.com

Université Pierre et Marie Curie - Paris 6, Institut de Mathématiques de Jussieu, 4 Place Jussieu, 75005 Paris, France

E-mail address: alain.kraus@imj-prg.fr