1 Introduction

We propose a method for explaining classes in text classification tasks using deep learning models and feature attribution techniques, such as the Integrated Gradients (IG) method introduced by Sundararajan et al. (2017). We focus specifically on IG as it provides a general framework for estimating feature importance in deep neural networks and has been shown to provide reliable saliency maps in text classification tasks among others (Bastings and Filippova, 2020; Kokhlikyan et al., 2020).

Recently, explaining the predictions of deep neural networks has attracted a considerable amount of research interest in fields such as NLP and computer vision. Given the importance of this endeavour, several different techniques have been suggested in order to interpret model predictions (see Montavon et al., 2018, for recent discussion). Nevertheless, these tend to focus on explaining individual predictions rather than how models perceive whole classes. To the best of our knowledge, we present the first method for aggregating explanations of individual examples in text classification to general descriptions of the classes. The method consists of three steps: 1) repeated model training and application of IG on random train/test splits, 2) aggregation of word scores of individual examples and extraction of keywords, and 3) filtering to remove spurious keywords.

We test this method by training Transformer-based text classifiers on a large Web register identification corpus and show that it is able to provide descriptive keywords for the classes. The class descriptions provide both linguistic insight and a means for analyzing and debugging neural classification models in text classification.

2 Data and classifier

In our experiments, we focus on text classification using the Corpus of Online Registers of English (CORE) (Egbert et al., 2015), a large-scale collection of Web texts annotated for their register (genre) (Biber, 1988). The CORE registers are coded using a two-level taxonomy. In this study, we focus on the upper level which consists of eight register classes: Narrative (NA), Opinion (OP), How-to (HI), Interactive discussion (ID), Informational description (IN), Lyrical (LY), Spoken (SP) and Informational persuasion (IP). The dataset features the full range of registers found on the unrestricted open Web and consists of nearly 50,000 texts. In our experiments, we combine the train and development sets, totaling 38,760 documents.

Web registers have been frequently studied in recent research both in linguistics and NLP (Titak and Robertson, 2013; Dayter and Messerli, 2021; Madjarov et al., 2019; Biber and Egbert, 2019). The range of linguistic variation has, however, caused challenges for both fields, and, in particular, Web register identification studies have lacked robustness (Sharoff et al., 2010; Petrenz and Webber, 2011). The method we propose in this study can benefit both fields as it provides insight about classification models and the corpora they are trained on, including potential biases.

As a classifier, we use the XLM-R deep language model (Conneau et al., 2020) because of its strong ability to model multiple languages, both in monolingual and cross-lingual settings. We use the base size, since it uses less resources and its predictive performance on the CORE corpus is competitive with XLM-R large (Repo et al., 2021). The task is modeled as a multilabel classification task.

3 Method

The descriptions of classes are extracted through the following steps:

Step 1: Train and explain. We combine the training and development sets of the corpus and randomly split them into a new training and validation set according to a set ratio r, using stratification to
keep class distributions stable (cf. Laippala et al., 2021). The pre-trained language model is loaded and the decision layer (a sequence regression head) is randomly initialized. Both are fine-tuned on the new training set. Text examples in the validation set are classified and the IG method is applied in order to obtain attribution scores for the network inputs, i.e., each dimension of each input token embedding, w.r.t. each predicted class c. The embedding dimensions are summed up per token to provide a token-level score and all tokens in a document d are normalized by the L₂ norm. This provides a word attribution score \(\tilde{s}_{w,d,c} \) directly if the word \(w \) consists of a single token, otherwise it is calculated as the maximum of all sub-word token scores.

Step 2: Aggregate attributions. We calculate the average attribution scores \(\bar{s}_{w,c} \) for each \((w, c)\), as a means for ranking of keywords per class. In order to reduce noise, we only select the \(n \) top-scoring words per document \(d \), and we only consider true positive predictions. We note that the method could alternatively be used for error analysis by targeting false predictions.

Step 3: Select stable keywords. The above process is repeated \(N \) times, each time randomly shuffling and splitting the data according to Step 1, in order to quantify the stability of the keywords. The keyword candidates ranked by \(\bar{s}_{w,c} \) are filtered based on selection frequency: a word is considered stable if the ratio by which it is selected (in Step 2) across the experiments is larger than a threshold value \(t \). We also ignore words that occur in \(k \) documents or less in the corpus.

The selection frequency filtering allows us to remove keywords that are unstable across runs, likely reflecting spurious features, for instance, resulting from an unrepresentative split of the data or stochastic factors in the training of the classifier itself. McCoy et al. (2020) show in repeated experiments on a text inference task with random initialization of the decision layer and randomized order of training examples that, while consistent test set performance was achieved, the degree of generalization as measured on a related task varied significantly. Similarly, we test the persistence and presumed generalizability of the estimated keywords by considering the randomness both in training and in data selection.

In our experiments, we have used the parameters \(r = 0.67, n = 20, N = 100, t = 0.6 \) and \(k = 5 \).

4 Results

The classifiers trained in our 100 experiments achieved a mean micro average F1-score of 65.10% (SD = 6.72%) and mean class-wise F1-scores in the range 26.45%–82.92% for the eight main register classes (see Table 1 in Appendix). The Spoken (SP) class stands out as a particularly difficult case where performance was particularly unstable (SD = 27.09%), partly due to its small size.

Our method was able to produce descriptive keywords that clearly reflect our understanding of all the main classes (see Table 2 in Appendix) except for the Spoken class, where no keyword surpassed the selection frequency threshold. The keywords reflect both topical and functional features typical of the registers. For instance, the highest scoring words for Interactive discussion (ID) were question, faq, forum, answer. Similarly, we observe other register-specific linguistic characteristics, such as words associated with research papers in Informational description (IN) and with news in Narrative (NA). The keywords also share many similarities with keywords produced with other methods applied in previous studies (e.g., Biber and Egbert, 2019; Laippala et al., 2021).

Furthermore, the estimated keywords display a strong discriminative power as indicated by their uniqueness in the respective register classes. On average, 82 (SD = 4.6) of the top 100 keywords for a given register were not shared with the other registers demonstrating that the method was able to identify register-specific keywords. Moreover, the selection frequency of the keywords across the 100 rounds demonstrated their stability – they are consistently identified, often in over 90% of the repetitions.

5 Conclusion

We have proposed a method for describing classes in a text classification task based on IG attributions on predictions and shown that it produces stable and interpretable results for Web register classification with XLM-R. We see the method as generally applicable and useful for studying text classes also beyond registers. In the future, we seek to extend the method and its evaluation, and apply the approach to other languages and cross-lingual settings. In particular, the comparison of monolingual and zero-shot models will be informative of both the linguistic characteristics of registers and what models such as XLM-R learn to recognize.
References

Jasmijn Bastings and Katja Filippova. 2020. The elephant in the interpretability room: Why use attention as explanation when we have saliency methods? In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 149–155.

Douglas Biber. 1988. Variation across speech and writing. Cambridge University Press, Cambridge.

Douglas Biber and Jesse Egbert. 2019. Register Variation Online. Cambridge University Press, Cambridge.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

Daria Dayter and Thomas Messerli. 2021. Persuasive language and features of formality on the rchangemyview subreddit. Internet Pragmatics.

Jesse Egbert, Douglas Biber, and Mark Davies. 2015. Developing a bottom-up, user-based method of web register classification. Journal of the Association for Information Science and Technology, 66:1817–1831.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. 2020. Captum: A unified and generic model interpretability library for pytorch. arXiv preprint arXiv:2009.07896.

Veronika Laippala, Jesse Egbert, Douglas Biber, and Aki-Juhani Kyröläinen. 2021. Exploring the role of lexis and grammar for the stable identification of register in an unrestricted corpus of web documents. Language Resources and Evaluation.

Gjorgji Madjarov, Vedrana Vidulin, Ivica Dimitrovski, and Dragi Kocev. 2019. Web genre classification with methods for structured output prediction. Information Sciences, 503:551 – 573.

Philipp Petrenz and Bonnie Webber. 2011. Stable classification of text genres. Computational Linguistics, 37(2):385–393.

Liina Repo, Valteri Skantsi, Samuel Rönqvist, Saara Hellström, Miika Oinonen, Anna Salmela, Douglas Biber, Jesse Egbert, Sampo Pyysalo, and Veronika Laippala. 2021. Beyond the English web: Zero-shot cross-lingual and lightweight monolingual classification of registers. In Proceedings of the EACL 2021 Student Research Workshop.

Serge Sharoff, Zhili Wu, and Katja Markert. 2010. The web library of babel: evaluating genre collections. In Proceedings of LREC.

Mukund Sundararajan, Ankur Taly, and Qi Qi Yan. 2017. Axiomatic attribution for deep networks. In International Conference on Machine Learning, pages 3319–3328. PMLR.

Ashley Titak and Audrey Robertson. 2013. Dimensions of web registers: An exploratory multidimensional comparison. Corpora, 8:239–271.

Appendix

Class	F1 (M)	SD	Sup. (M)
Lyrical (LY)	0.8292	0.0866	172
Narrative (NA)	0.7870	0.0795	5775
Inter. discussion (ID)	0.7623	0.0787	876
Inform. description (IN)	0.6336	0.0662	3399
How-to (HI)	0.5515	0.0719	521
Opinion (OP)	0.5379	0.0839	2854
Inform. persuasion (IP)	0.4094	0.0573	531
Spoken (SP)	0.2645	0.2709	206
Micro AVG	0.6510	0.0672	–

Table 1: Predictive performance of models (N=100).
Table 2: Top-15 extracted keywords for each register class ranked by mean aggregated attribution score (Score). The lists are filtered by threshold on selection frequency (SF).

How-to (HI)	Inter. Discussion (ID)	Inform. Description (IN)	Inform. Persuasion (IP)	Lyrical (LY)	Narrative (NA)	Opinion (OP)								
Word	**Score**	**SF(%)**	**Word**	**Score**	**SF(%)**	**Word**	**Score**	**SF(%)**	**Word**	**Score**	**SF(%)**	**Word**	**Score**	**SF(%)**
how	0.4820	100	question	0.5874	100	abstract	0.6054	100						
recipe	0.3439	100	faq	0.5818	99	geoscience	0.4558	97						
recipes	0.3356	100	forum	0.4855	100	faqs	0.4051	100						
tips	0.3224	100	answer	0.4799	100	faq	0.3929	96						
scenario	0.3184	67	answers	0.4636	100	analysing	0.3679	77						
tricks	0.2883	71	answered	0.4524	100	storyline	0.3662	99						
tutorial	0.2485	100	forums	0.4232	100	downloads	0.3628	98						
taking	0.2458	70	replies	0.4028	99	abstracts	0.3594	98						
flavor	0.2427	78	thread	0.3975	100	hal	0.3495	69						
ingredients	0.2355	100	re	0.3833	100	aspect	0.3388	99						
ways	0.2337	98	discuss	0.3363	100	wikis	0.3289	70						
dry	0.2307	83	threads	0.3155	100	economical	0.3162	90						
associated	0.2299	77	hello	0.3102	98	demographics	0.3118	100						
to	0.2276	100	quote	0.3067	100	introduction	0.2931	100						
picking	0.2254	86	imo	0.2988	99	moscow	0.2897	65						
description	0.4922	100	lyrics	0.3772	100	newswire	0.5669	100						
pdf	0.4031	73	music	0.2891	93	reddit	0.4565	100						
publishers	0.3934	67	poem	0.2511	94	afp	0.4212	100						
isbn	0.3821	98	comment	0.2148	70	ufc	0.3976	100						
discounts	0.3644	76	chords	0.1893	82	bundesliga	0.3803	100						
rates	0.3065	82	hate	0.1795	75	flickr	0.3736	100						
deal	0.2953	74	guitar	0.1794	81	kardashians	0.3720	76						
book	0.2805	100	truth	0.1710	98	researchers	0.3618	100						
relax	0.2635	74	finally	0.1640	90	1867	0.3614	92						
editions	0.2555	75	thanks	0.1622	79	nba	0.3587	100						
luxury	0.2512	93	chorus	0.1597	66	lollies	0.3519	66						
rental	0.2472	97	happiness	0.1570	83	blogosphere	0.3511	100						
shop	0.2464	99	stood	0.1554	89	gmt	0.3389	100						
stylish	0.2418	87	album	0.1551	63	gutted	0.3378	96						
prices	0.2358	83	gotta	0.1494	98	playoffs	0.3328	100						
psalms	0.7098	94	weblog	0.5511	91	review	0.5355	100						
review	0.5355	100	psalm	0.4798	100	forbes	0.4506	76						
forbes	0.4506	76	horrors	0.3883	82	blog	0.3705	100						
blog	0.3705	100	blogged	0.3625	85	disclaimer	0.3597	85						
disclaimer	0.3597	85	categories	0.3568	72	evaluating	0.3560	62						
evaluating	0.3560	62	poll	0.3517	83	monday	0.3446	100						
monday	0.3446	100	tips	0.3437	100	jeremiah	0.3418	96						