Research Article

Parameter Detection of an On-Chip Embedded Debugging System of Wireless Sensor Internet Based on LEACH Algorithm

Ling-Ao Zhou

School of Electronic Engineering, Changzhou College of Information Technology, Changzhou 213164, Jiangsu, China

Correspondence should be addressed to Ling-Ao Zhou; zhoulingao@czcit.edu.cn

Received 26 November 2020; Revised 17 December 2020; Accepted 9 January 2021; Published 25 January 2021

1. Introduction

With the rapid development of digital links, the field of nanocommunications has become a hot spot and focus of current research [1]. The development and integration of unconnected communication technology, effector technology, embedded computing technology, and distributed information processing technology, as well as the rapid advancement of digital processing and computing capabilities, unconnected effector Internet has received more and more attention. It is a new type of self-organizing unconnected multihop Internet. With the development and progress of technology and society, the development of unconnected effector Internet is also advancing by leaps and bounds, and it has a wide range of applications in many fields such as military, civil, environmental, medical, and industrial. At present, the research on unconnected effector Internet mainly focuses on the communication protocol, but there is almost no research on input review of unconnected effector Internet. Due to the limited energy of the effector and the limitation of the transmission signal bandwidth, the use of limited resources for input review research in effector Internet is of great significance to the development of unconnected effector Internet. Therefore, this paper studies the input review of unconnected effector Internet based on the L-A model on the on-chip embedded tune system. Because the classic low-power adaptive cluster layering protocol (LEACH) has the problems of unbalanced energy consumption and short node life cycle, this paper uses the embedded tune technology based on the L-A model and analyzes the remaining energy and location of the unconnected effector Internet node. Parameters are tested and studied. Through the research on the input review of unconnected effector Internet, the simulation results obtained show that the research in this paper is feasible and reasonable.

Since the birth of unconnected effector Internet, people have conducted research on them. In order to reduce the energy consumption of unconnected effector Internet and improve the Internet survival time, Qingxi et al. proposed an unconnected effector Internet cluster routing protocol based on chicken flock optimization algorithm. On the basis of the LEACH protocol, they improved and perfected the selection of cluster points and cluster heads through the chicken group optimization algorithm and updated the positions of the chickens that fell into the local optimum through Levy flight and enhanced the population diversity to ensure the algorithm’s global search capabilities. The new protocol uses the Internet nodes in a balanced way, avoids the crashes of intensively used local nodes, and improves the survival time of unconnected effector Internet [3]. Sedighimanesh et al. pointed out that unconnected effector Internet can be used in the military and medical fields, but for these, the Internet...
uses hundreds of low-power and low-energy effector nodes to perform large-scale tasks, which is a limitation and may lead to inefficiency or cost effectiveness. They believe that it can assist in load balancing between effector nodes, increase scalability, and improve energy consumption [4], thereby extending the life of the Internet, clustering effector nodes, and placing appropriate cluster heads in all clusters. Choosing the correct cluster head can greatly reduce the energy consumption of the Internet and prolong the life of the Internet [5]. In their research, Bhola et al. have shown that the unconnected effector Internet (WSN) often contains a large number of effector nodes, which can collect numbers in different situations. WSN discovery applications are mainly used to collect information from remote locations, such as environmental monitoring, military, and transportation security [6]. In order to use the lifetime of effector nodes to improve energy efficiency, they proposed an energy-saving routing protocol, low-energy adaptive clustering hierarchy (LEACH), and optimization algorithm genetic algorithm (GA) [7]. Due to the diversification of the application environment of unconnected effector Internet and different design requirements and goals of each environment, the routing algorithms used in each Internet are also considered to be changed, and as the application environment changes and improves, routing algorithm also becomes diversified [8, 9]. Based on this, this paper adopts the classic L-A model and adds the remaining energy and position parameters of the nodes to carry out research on the input review of unconnected effector Internet.

The digital transmission of unconnected effector Internet is inseparable from the routing protocol [10]. A good routing protocol will greatly improve the overall performance of the Internet. At present, many international scientific research institutions are also carrying out research on unconnected effector Internet protocols, and some suitable routing protocols are being proposed [8]. Among them, LEACH is a relatively mature clustering routing algorithm. Many clustering routing protocols such as TEEN and PEGASIS have been developed on the basis of it [11, 12], so this article first analyzes and studies the L-A model. Then, the on-chip embedded tune system is introduced and applied the on-chip tune technology of the embedded system to detect the parameters of unconnected effector Internet. Unconnected effector Internet nodes are generally powered by batteries, and the longer the communication distance between nodes, the greater the energy consumption [13]. In view of this, this paper optimizes the distribution of nodes and adopts a strategy that the greater the remaining energy of the node, the greater the probability of being elected as the cluster head. Finally, through MATLAB simulation experiments [14], it is verified that the research in this paper balances the energy consumption of the Internet nodes and prolongs the life cycle of unconnected effector Internet, which is feasible and reasonable.

2. Proposed Method

2.1. LEACH Algorithm. As a basic hierarchical routing algorithm, L-A has limited applicability in different environments [15, 16]. For specific application scenarios, the L-A algorithm can be optimized and improved according to network requirements [17]. The JC-LA routing algorithm can make certain improvements on the basis of the traditional LA protocol according to the characteristics of the home environment and divide it according to the characteristics of different rooms, making it more suitable for the actual application environment. It divides the partitions according to the relationship between the node's communication range and energy consumption balance [18, 19]. The selection of internal cluster heads is restricted to achieve the purpose of reducing power consumption. The establishment of clusters and the first round of cluster head elections are WSN for outdoor environments [20]. The limited area division method cannot meet the actual needs. The network is adjusted according to the load situation and the cluster head level. The area is divided, and the WSN network is now divided into 16 areas. Each area represents a clustered area. The cluster head level is set from far to near according to the location of the base station, and the cluster heads in areas 1 to 4 are regarded as level A, the cluster heads in areas 5 to 8 are regarded as level B, and so on.

2.1.1. Cluster Head Selection. The selection of cluster heads in the L-A model is carried out randomly, and there are two main determinants of cluster heads: quantity rounds that the current algorithm runs and the percentage of quantity cluster head nodes to the total number of nodes [21]. There is no master node in the whole clustering process, and each node is based on the algorithm, independently decides, and joins the corresponding cluster [22]. At the beginning of the cluster establishment, all effector nodes in the Internet will randomly generate a random number with a range of [0, 1], and then, the random number is compared with the threshold T(n); if it is less than the threshold T(n), then the effector node corresponding to the random number will be elected as a cluster head of the round, and then, a broadcast message is sent to inform other effector nodes that if the random number is greater than the threshold T(n) [23, 24], then it will not be elected as the cluster head [25, 26]. If the selected cluster head node has been elected as a cluster head, then the value of T(n) is changed to 0, so as to avoid the same node continuously acting as the cluster head, resulting in excessive energy consumption of the node [27]. The calculation formula of the threshold T(n) is expressed as follows:

\[
T(n) = \begin{cases}
\frac{p}{1 - p \ast (r \mod (1/p))}, & \text{if } n \in G. \\
0, & \text{if } n \notin G.
\end{cases}
\]

Among them, \(p \) is the percentage of cluster heads in all nodes, \(r \) is quantity election rounds, \(r \mod (1/p) \) represents the quantity nodes that have been elected cluster heads in this round, and \(G \) represents the quantity nodes that have not been elected in this round [28]. The set of nodes have been elected cluster heads.
It can be seen from the abovementioned formula that, with the continuous advancement of the algorithm cycle, quantity nodes that have been appointed as cluster heads will continue to increase, that is, the value of \(r \mod \left(\frac{1}{p} \right) \) will continue to increase, so that the value of \(T(n) \) will follow. Then, the probability that a node that has not served as a cluster head will be selected as a cluster head will increase. When there is only one node that has not been selected as a cluster head, \(T(n) = 1 \); in addition, when \(r = 0 \) and when \(r = 1/p \), the value of \(T(n) \) is the same, when \(r = 1 \) and \(r = 1/p+1 \), the result of \(T(n) \) is also the same, and then, when the algorithm is executed for \((1/p) \) cycles, the effector nodes in the Internet will change back to the situation where cluster heads are selected with equal probability, and the cycle is repeated. The L-A model makes all nodes in the Internet have only one chance to be elected as a cluster head within \((1/p) \) cycles, and they will have a chance to be elected as a cluster head again after \((1/p) \) cycles; thus, \(T(n) \) also indicates the average probability of a node that has not served as a cluster head in the \(r \) th round of being elected as a cluster head [29, 30].

It is supposed that there are \(N \) nodes in the effector Internet, and each time you want to select \(k \) cluster heads, \(P = N/k \). The probability of a node becoming a cluster head in the \(r+1 \) cycle is represented by \(T(n) \), and then, the probability of being a cluster head in the \(r+1 \) cycle is

\[
E = \sum_{t=1}^{N} T(t) \ast 1 = k.
\]

After the \(r \)th round, quantity nodes that have not yet become cluster heads in the current \(1/p \) round are \(N - k \ast \left(r \mod \frac{N}{k} \right) \). If the node is not selected as the cluster head after the \(r \) round, then the abovementioned formula can be obtained, and the average probability of the node becoming the cluster head in the \(r+1 \) round is

\[
\frac{p}{\left(1 - p \ast \left(r \mod \frac{1}{p} \right) \right)}
\]

Substituting \(p = N/k \) into the average probability of the abovementioned formula,

\[
\frac{k}{(N - k \ast \left(r \mod \frac{N}{k} \right))}
\]

From the abovementioned derivation, the following formula can be obtained:

\[
E = \sum_{t=1}^{N} T(t) \ast 1 = \left(N - k \ast \left(r \mod \frac{N}{k} \right) \right) \frac{k}{(N - k \ast \left(r \mod \frac{N}{k} \right))} = k.
\]

2.2.1. Topological Structure Control

The research premise of unconnected effector Internet topology control is to control the power supply and select the corresponding backbone Internet node copper cables to meet the the Internet coverage and connection conditions [35]. Time eliminates those unimportant communication paths in the nodes, enabling it to form a structured and efficient digital transmission network topology. Using such an excellent network topology control algorithm, not only can the efficiency of routing protocols and MAC protocols be improved but also digital aggregation and time synchronization can be effectively supported. Node energy is saved to improve the Internet life cycle when positioning targets. It can be seen that topology control technology is very important in low-power unconnected effector Internet [36].

2.2.2. Internet Protocol

The task implementation of the Internet protocol of unconnected effector Internet enables each node to form a multihop digital transmission Internet [37]. Under the premise of efficiently using the Internet energy and improving the Internet life cycle, the purpose is to achieve effective use of the Internet bandwidth and ensure service quality.

2.2.3. Data Fusion

Data aggregation technology is a process of processing more data as a single data more efficiently when users need it. However, because effector nodes are vulnerable to attacks, Internet effectors still need data synthesis technology to comprehensively process large amounts of data to improve the accuracy of information. According to the content of the information, data consolidation can be divided into two categories: reversible consolidation and loss consolidation. Lossless matching means saving all details and eliminating duplicate information. The loss combination saves storage space and energy by skipping some details and reducing data quality. Data synthesis technology can be used in multiple protocol layers that are not connected to the Internet. Traditional data aggregation technology has been widely used in the field of target tracking and automatic identification. Application-oriented data aggregation methods are usually the most effective for designing effects that are not connected to the Internet [22].
2.2.4. *Time Synchronization and Positioning*. Time is a key mechanism of synergy not connected to the Internet producing systems. Since then, however, a reason for the Internet business or to adopt Mac-sensitive time-division multiplexing protocol according to the clocks of the nodes must be synchronized. The writer receives the clock synergy to make light of it to the Internet protocol. There are three basic synergies to the time of the machinations of the author and the finisher. This local node includes its current position and situation of the external targets, the accuracy and efficacy of the positioning of the collected data, the effects of limitations nodes, and the positioning mechanism to satisfy the sap self-order and energy efficiency in Internet nodes. Usually the lymph nodes are divided into a network, according to the work in [38]. A kind of art was placed in its proper place accurate information with the unknown; the ship was able to obtain the node at the sight of a knot to which it is being appointed, in the night, and it adopts algorithms that make use of a triangulation, trilateration, and augue node to determine a maximum price location.

2.3. Embedded Tune Technology. Integration with football is enhanced, with more powerful functions and the growth in demand embedded software development, and tune embedded continuous progress in technology is promoted. During the tune embedded system development, a variety of techniques are used for tune revoked. There are obvious differences between different technologies for tune based on the principles and implementation. Most commonly, having been held chip and tune of life analyses, during SOC popularization of technology, on-chip tune began to embed systems. The technology chip tune embedded control module is involved in the process. When certain conditions are met within a certain process, recipes will be in a specific state. In this state, it is possible to run on the server software tune interface outside through a specific process (the port module has access to various resources, and secured tune memory is written in order). The basic idea is to add an additional processor within a module of Brabant tune hardware and software tune command for resource access and processing operation for the tune module. There are many different implementations of chip tune technology. Currently, on-chip tune technologies are using BDM (background characteristic) and GATJ (Eds Test Action Group). For users, the two technologies to provide tune functions are similar, but there are many other great tune standards and principles of implementation [22]. The following tune standards are described.

After the preliminary debugging, it is necessary to verify the rationality, implementation, and rhythm of the configuration. For robots that may be interfered, it is necessary to confirm whether there is interference between robots through linkage operation, and when the speed is affected, reconfiguration will lead to duplication of work and change of welding process card. In the case of more welding positions, in order to obtain the best welding path, it usually takes more profiling time and verification time. On-site teaching operation is simple and direct, but it is difficult to realize complex motion trajectories using that. The programmer's experience directly affects the programming quality, and the programming efficiency is low. Compared with online programming, offline programming uses simulation software to precomplete the welding path of the robot before the on-site debugging of the production line, while verifying the heat, avoiding the interference area, and obtaining the optimal welding path, which overcomes various shortcomings of online programming. Now, we can easily use roboguide simulation software to program each robot offline and get the offline program. However, there must be some deviation between the position of the field robot and other related equipment and its position in the simulation environment. How to reduce it is the focus of discussion to correct this deviation and ensure the accuracy that meets the requirements after the offline program is imported. From the sources of deviations in the process of selecting reference points and drawing lines on the production line, due to the limitations of the on-site environment, the accuracy of equipment and instruments, and the errors of manual operation, it is inevitable that there are small deviations between the actual environment and the simulation environment. These deviations are mainly reflected in the following aspects: the deviation of the tooling installation of the production line, the level of the robot base is not good, and the parallelism of the robot installation is not good. In the car body production line, the position of the fixture determines the position of the product. We are concerned about the relative deviation between the robot and the fixture, that is, it can be assumed that the position of the fixture is absolutely accurate, and all deviations are considered to be caused by insufficient robot installation accuracy. Online programming is to use the teach pendant to teach the robot welding trajectory on site. The entire robot system includes the robot body, the robot control cabinet, and the welding controller. Before online programming, the communication between the robot and the control cabinet and the controller and the robot must be completed. According to signal transmission, robot welding gun configuration, and then, the welding point distribution on the welding process, teaching the welding trajectory online programming has the following characteristics, for some inconvenient solder joints, such as solder joints on the floor. In the teaching process, the welding torch is easily interferes with the parts or even deforms the parts. Before profiling, sometimes, it is not possible to accurately determine the process welding point.

3. Experiments

3.1. Data Sources. In order to better evaluate whether the performance of research in the field effectors is not appropriate, experiments related to the method of producing the Internet are conducted in this paper. According to experimental data in the trial, as the results are more accurate and objective, this paper sets the size of the area as ten thousand square meters; the model does not pertain to the Internet, and 30 nodes are distributed in this area. The geographic location of the lymph random, undoubtedly, is
randomly generated. Fifty trials are performed here, and the average data for the final result are obtained.

3.2. Experimental Evaluation Standards. Because unconnected effector Internet nodes have the characteristics of limited energy, the length of their life cycle will be directly affected by the energy of the node. When judging that the performance of the research method is higher and more in line with the Internet requirements, there are several hard standards that can be different research methods used for evaluation, mainly including the following:

1. The length of time that the connection point is blocked by the firewall

 The research of this article will judge the remaining time of synaesthesia from three aspects: the connection point type, user, and environment.

2. Utilization of energy

 This article will record the total energy consumption of Internet nodes in real time and determine whether the corresponding research methods are suitable for the Internet.

3. Energy use opportunities

 In load matching based on single-point sampling, only the load data of a single point is compared with historical load data for similarity, so when calculating the Euclidean distance between two points, there is no problem of phase shift of the waveform. After adopting the dynamic load description, the load pattern is represented by multiple forms of sampling points. These continuous sampling points with sequential characteristics can be regarded as the process of load change. Although the collected data are discrete points, these sample point sequences still have some characteristics of the waveform, such as period, peak value, and frequency.

4. Remaining nodes

 In order to describe the load more accurately, this article focuses on the dynamic change characteristics of the load, based on the idea of multiple sampling, collects multiple performance data during the observation period, and uses these continuous performance slices to describe the dynamic change of the load.

5. The amount of information received by the base station

 Obviously, the greater the amount of information received by the base station, the more beneficial the information received by the observer, thereby improving the accuracy of the data.

3.3. Link Data. The iterative data of the response sensing area are shown in Table 1.

Parameter name	Unit	Set parameter value
Junction	\	30
WSN response	m²	100 × 100
Transmission data length	k	4000
Magnetic induction expansion	\((\text{bit} \cdot \text{m}^4)\)	10
Initial energy of the node	J	0.5

4. Results

First, based on the classic L-A model, the magnetic induction of the unconnected effector is simulated, and the data obtained are recorded. Then, based on the L-A model, the remaining power and connection point location parameters are added to optimize the connection point allocation and strategy. The higher the remaining wattage of the connection point, the greater the possibility. The experimental results can be obtained by detecting the parameters of the unconnected effector on the secondary development management of the carrier. The comparison of the quantity of surviving nodes between the unconnected effector Internet using the classic L-A model and the unconnected effector Internet using the research method in this paper is shown in Figure 1, and the comparison of the remaining energy of the nodes is shown in Figure 2.

As shown in Table 2, J-LEACH and the improved algorithm select only one cluster head as the transmission hub of the network structure hierarchy in the divided sixteen-grid area. However, the cluster head data transmission path of the two is different. J-LEACH uses the cluster head and base station to directly transmit. As shown in Table 3, the SR-LEACH algorithm classifies the cluster heads. The data are transmitted from the A-level cluster heads in turn, and finally, the D-level cluster heads forward the final data to the base station.

5. Discussion

The numerical simulation selects a steel box girder to model separately. The model is established based on the ANSYS platform and is simulated by the orthotropic shell element Shell63. The established steel box girder model maintains the characteristics of the actual space box structure: the structure of the top plate, bottom plate, web, cross beam, U-shaped rib, small longitudinal beam, etc. The simulation is not simplified and accurately reflects the actual stiffness and mass distribution. In addition, the boom and support are simulated by the spring unit Combin14, and the stiffness of the spring unit is obtained by converting the design parameters. From the data in Figure 2, it is more reasonable to use the ratio between the current residual energy and the current maximum energy as a parameter in this paper. When the parameter is between 0 and 1, the energy consumption of the Internet node will not follow.

From the node death situation and the remaining energy consumption of the node in the unconnected effector Internet, it is reasonable to improve the location of the synergy
node and find the node with the shortest distance from other nodes. In this case, we use the node as the distribution area. The SINK node is in the middle. Improving node power parameters is the realization of a strategy that makes nodes with higher remaining power more likely to become cluster heads. In this way, the parameter distribution of each election is more balanced, and the parameter is always less than or equal to 1. According to the data in Table 1 and Table 2 mentioned above, the superiority of the method proposed in this paper is well verified. It greatly reduces the mortality of the Internet nodes and prolongs the life of the Internet.

6. Conclusions

In the engineering structure modal test, the sensor configuration is the decisive factor of the modal resolution. Due to the limited number of sensors available in the dynamic test, they must be optimally arranged to make more reasonable use of sensor resources. However, in the practice of modal testing for large civil engineering structures, it is usually printed in a sensor configuration method in which the sensors are uniformly distributed along the main dimension of the structure. This process lacks effective optimization. It is impossible to obtain high-resolution calculations of modal test results. In response to this problem, the genetic algorithm, an optimization algorithm derived from life sciences, was introduced into the optimal configuration of large-scale civil engineering structure modal testing sensors. Through research, it can be known that the best advantage of generalized genetic algorithm in searching is that the results are stable and reliable and the convergence speed is fast. However, taking the largest nondiagonal element of the modal confidence matrix as the objective function, a genetic algorithm with binary structure coding is proposed, and a more satisfactory optimization result is obtained, which proves that the sensor optimization method based on the genetic algorithm is better than the sequence method. A genetic algorithm based on the minimum modal confidence criterion is also used to optimize a wharf structure. On the sensor configuration, the research found that the optimization method adopted is efficient and reliable. Taking a high-rise building as the engineering background, the generalized genetic algorithm is used to optimize the structure. Finally, using the classic rich algorithm proposed in this paper, through simulation experiments, the effectiveness and practicability of this research method are verified. The research results show that using the L-A model, the quantity of the Internet nodes in the unconnected effector Internet is balanced, which greatly reduces the mortality of the Internet nodes and extends the life of the unconnected effector Internet.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares no conflicts of interest.

Acknowledgments

This work was supported by the Jiangsu Province Higher Vocational Education High Level Backbone Major (Computer Application Technology) Project, China (Project No. SJG201717131), “Blue Project” Excellent Teaching Team (Computer Application Technology of CCIT) of Jiangsu Province (Project No. GB20190342), and 2020 Jiangsu
References

[1] Q. Feng, Y. Li, N. Wang et al., "A Biomimetic Nanogenerator of Reactive Nitrogen Species Based on Battlefield Transfer Strategy for Enhanced Immunotherapy," *Small*, vol. 16, no. 25, Article ID e2002138, 2020.

[2] B. Gao, N. Xu, and P. Xing, "Shock wave induced nanocrystallization during the high current pulsed electron beam process and its effect on mechanical properties," *Materials Letters*, vol. 237, no. 15, pp. 180–184, 2019.

[3] Qingxi, Wang, Lihua et al., “Optimization of wireless sensor networks based on chicken swarm optimization algorithm,” *AIP Conference Proceedings*, vol. 1839, no. 1, pp. 1–5, 2017.

[4] S.-B. Tsai, "Using grey models for forecasting China's growth trends in renewable energy consumption," *Clean Technologies and Environmental Policy*, vol. 18, no. 2, pp. 563–571, 2016.

[5] M. Sedighimanesh, H. Z. Hesami, and A. Sedighimanesh, "Routing algorithm based on clustering for increasing the lifetime of sensor networks by using meta-heuristic bee algorithm," *International Journal of Sensors, Wireless Communications and Control*, vol. 10, no. 1, pp. 25–36, 2020.

[6] Z. Lv, S. Zhang, and W. Xiu, "Solving the security problem of intelligent transportation system with deep learning," *IEEE Transactions on Intelligent Transportation Systems*, no. 99, pp. 1–10, 2020.

[7] J. Bhola, S. Soni, and G. K. Cheema, "Genetic algorithm based optimized leach protocol for energy efficient wireless sensor networks," *Journal of Ambient Intelligence and Humanized Computing*, vol. 11, no. 3, pp. 1281–1288, 2020.

[8] D. Jiang, X. Ying, Y. Han, and Z. Lv, "Collaborative multi-hop routing in cognitive wireless networks," *Wireless Personal Communications*, vol. 86, no. 2, pp. 901–923, 2016.

[9] W. Song, H. Chen, Q. Zhang, B. Zhang, H. Wang, and H. Xu, "On-chip embedded debugging system based on leach algorithm parameter on detection of wireless sensor networks," *Mathematical Problems in Engineering*, vol. 2020, Article ID 7249674, 7 pages, 2020.

[10] M. Elhoseny and K. Shankar, "Reliable data transmission model for mobile adhoc network using signcryption technique," *IEEE Transactions on Reliability*, vol. 69, no. 3, pp. 1077–1086. In Press, 2020.

[11] M. Hamilton, "New directions in wireless embedded networked sensing of natural and agricultural ecosystems," *Gerodontology*, vol. 29, no. 1, pp. 48–53, 2004.

[12] D. Jin, Communication Protocols for Wireless Ad-Hoc and Sensor Networks, 2006.

[13] Y. Tang and M. Elhoseny, "Computer network security evaluation simulation model based on neural network," *Journal of Intelligent and Fuzzy Systems*, vol. 37, no. 3, pp. 3197–3204, 2019.

[14] S.-B. Tsai, J. Yu, L. Ma et al., "A study on solving the production process problems of the photovoltaic cell industry," *Renewable and Sustainable Energy Reviews*, vol. 82, pp. 3546–3553, 2018.

[15] Wuhan University of Technology, *Improvement and Simulation of Wireless Sensor Network LEACH Routing Protocol*, Wuhan University of Technology, Wuhan, China, 2010.

[16] M. Hu and Y. X. Wang, "Two-level linear clustering protocol based on wireless sensor networks," *Journal of Electronic Science and Technology*, vol. 14, no. 03, pp. 67–71, 2016.

[17] M. Qiu, W. Gao, M. Chen, J.-W. Niu, and L. Zhang, "Energy efficient security algorithm for power grid wide area monitoring system," *IEEE Transactions on Smart Grid*, vol. 2, no. 4, pp. 715–723, 2011.

[18] S. Zahmati F. Amir et al., "A hybrid spectrum sensing method for cognitive sensor networks," *Wireless Personal Communications*, vol. 74, no. 2, pp. 953–968, 2014.

[19] Nanjing University of Posts and Telecommunications, Research on Routing Protocol of Wireless Sensor Network, Nanjing University of Posts and Telecommunications, Nanjing, China, 2014.

[20] A. I. Douglas and J. K. Peter, "Learning-by-Doing Spillovers in the Semiconductor Industry," *Journal of Political Economy*, vol. 102, no. 6, pp. 1200–1227, 1994.

[21] M. Xie, *Research and Implementation of Network Protocol Stack of Wireless Sensor Network Node Operating System*, Zhejiang University, Hangzhou, China, 2008.

[22] A. K. Dutta, M. Elhoseny, V. Daihaya, and K. Shankar, "An Efficient Hierarchical Clustering Protocol for Multihop Internet of Vehicles Communication," *Transactions on Emerging Telecommunications Technologies*, vol. 35, no. 1, 2019.

[23] F. Li, M. Xiong, L. Wang, H. Peng, J. Hua, and X. Liu, "A novel energy-balanced routing algorithm in energy harvesting sensor networks," *Physical Communication*, vol. 27, no. APR, pp. 181–187, 2018.

[24] Y. Wu, B. Rong, K. Salehian, and G. Gagnon, "Cloud transmission: a new spectrum-reuse friendly digital terrestrial broadcasting transmission system," *IEEE Transactions on Broadcasting*, vol. 58, no. 3, pp. 329–337, 2012.

[25] J. q. Xu, J. L. Wang, h. Zhao et al., "Research and implementation of wireless sensor network node based on MSP430," *Miniature Microcomputer System*, vol. 29, no. 9, pp. 1652–1656, 2008.

[26] PLA information engineering university, *IEEE802.15.4 MAC Protocol Research*, PLA information engineering university, Zhengzhou, China, 2007.

[27] F. Teng and F. Zou, "Application of sensor technology in electromechanical automation control," *Urban Construction Theory Research: Electronic Edition*, no. 17, p. 116, 2015.

[28] K. Shankar and M. Elhoseny, "Trust based cluster head election of secure message transmission in MANET using multi secure protocol with TDES," *Journal of Universal Computer Science*, vol. 25, no. 10, pp. 1221–1239, 2019.

[29] H. Cai, X. Meng, D. Sun et al., "Design of a miniaturized wireless sensor network," *Aerospace Measurement Technology*, vol. 37, no. 3, pp. 60–65, 2017.

[30] M. Saidu, E. N. Onwuka, E. N. Onwuka, M. Okworl, and A. Umar, "An enhanced LEACH routing algorithm for energy conservation in A wireless sensor network," *International Journal of Wireless and Microwave Technologies*, vol. 6, no. 4, pp. 59–71, 2016.

[31] Y. Zhang, "Cluster head spacing adaptive hda-leach algorithm for wireless sensor networks," *Computer Engineering and Application*, vol. 43, no. 30, pp. 124–127, 2007.

[32] Shandong University, *Research on Energy-Saving Routing Protocol for Wireless Sensor Networks*, Shandong University, Jinan, China, 2010.

[33] Beijing Jiaotong University, *Research and Implementation of Clustering Routing Protocol for Wireless Sensor Networks*, Beijing Jiaotong University, Beijing, China, 2012.

[34] *Journal of Northeastern University (Natural Science Edition)*, vol. 31, no. 10, pp. 1385–1388, 2010.
[35] E. Laxmi Lydia, J. Samuel Raj, R. Pandi Selvam, M. Elhoseny, and K. Shankar, “Application of discrete transforms with selective coefficients for blind image watermarking,” Transactions on Emerging Telecommunications Technologies, no. 8, 2019, In press.

[36] Y. Chen, W. Zheng, W. Li, and Y. Huang, “The robustness and sustainability of port logistics systems for emergency supplies from overseas,” Journal of Advanced Transportation, vol. 2020, Article ID 8868533, 10 pages, 2020.

[37] Beijing University of Posts and Telecommunications, Research on Energy Management and Energy Consumption Optimization of Wireless Sensor Networks, Beijing University of Posts and Telecommunications, Beijing, China, 2009.

[38] Y. Z. Wang, Q. G. Chen, L. S. Wei et al., “Improvement of LEACH algorithm for wireless sensor networks,” Journal of Yanshan University, vol. 38, no. 2, pp. 152–155, 2014.