Fibroblast growth factor-20 increases the yield of midbrain dopaminergic neurons derived from human embryonic stem cells

Ana Sofia Correia*, Sergey V. Anisimov#, Laurent Roybon, Jia-Yi Li and Patrik Brundin

Neuronal Survival Unit, Department of Experimental Medical Science, Lund University, Wallenberg Neuroscience Center, Lund, Sweden

Edited by: Javier DeFelipe, Cajal Institute (CSIC), Spain

Reviewed by: Brigitte Onteniente, Institut National De La Sante et De La Recherche Medicale, France

Published online: 30 Dec. 2007

In the central nervous system, fibroblast growth factor (FGF)-20 has been reported to act preferentially on midbrain dopaminergic neurons. It also promotes the dopaminergic differentiation of stem cells. We have analyzed the effects of FGF-20 on human embryonic stem cells (hESCs) differentiation into dopaminergic neurons. We induced neuronal differentiation of hESCs by co-culturing those with PA6 mouse stromal cells for 3 weeks. When we supplemented the culture medium with FGF-20, the number of tyrosine hydroxylase (TH)-expressing neurons increased fivefold, from 3% to 15% of the hESC-derived cells. The cultured cells also expressed other midbrain dopaminergic markers (PITX3, En1, Mnx1, and Aldehyde dehydrogenase 1 family, member H1), suggesting that some had differentiated into midbrain dopaminergic neurons. We observed no effect of FGF-20 on the size of the soma area or neurite length of the TH-immunopositive neurons. Regardless of whether FGF-20 had been added or not, 17% of the hESC-derived cells expressed the pan-neuronal marker b-III-Tubulin. The proportion of proliferating cells positive for Ki-67 was also not affected by FGF-20 (7% of the hESC-derived cells). By contrast, after 3 weeks in culture FGF-20 significantly reduced the proportion of cells undergoing cell death, as revealed by immunoreactivity for cleaved caspase-8, Bcl-2 associated X protein (BAX) and cleaved caspase-3 (2.5% to 1.2% of cleaved caspase-3-positive cells out of the hESC-derived cells). Taken together, our results indicate that FGF-20 specifically increases the yield of dopaminergic neurons from hESCs grown on PA6 feeder cells and at least part of this effect is due to a reduction in cell death.

Keywords: human embryonic stem cells, fibroblast growth factor-20, dopaminergic neurons, differentiation, Parkinson’s disease, stem cell therapy, apoptosis, caspase-3

INTRODUCTION

Parkinson’s disease is a progressive neurodegenerative disorder, characterized by tremor, muscle rigidity, and bradykinesia, which primarily is due to the degeneration of dopaminergic neurons in the substantia nigra (Braak et al., 2004). Replacement of the lost dopaminergic neurons by transplantation has been tested, with varying degrees of success, as a therapy for Parkinson’s disease (Bjorklund et al., 2003). These trials have used ventral mesencephalic donor tissue obtained from routine abortions. However, the usage of this source of donor tissue is associated with several problems. For example, it is not readily obtainable; its development has not been tested in any medium, provided the original authors and source are credited.
dopaminergic neurons derived from hESCs. We supplemented cultures of hESCs, during differentiation on PA6 stromal feeder cells (Kawasaki et al., 2000), with FGF-20. We report that FGF-20 supports a fivefold increase in the percentage of hESC-derived TH-expressing neurons and reduces cell death during differentiation. Our study provides novel information of importance to cell replacement therapy for Parkinson’s disease based on dopaminergic neurons derived from hESCs.

MATERIALS AND METHODS

SDIA method for in vitro differentiation of hESCs into DA neurons

We maintained undifferentiated hESCs (SA002 cell line, CellArtis, Göteborg, Sweden) on irradiated human foreskin fibroblasts (hFFs, CRL-2429, ATCC, Manassas, VA; feeder cell density 36,000–45,000 cells/cm²) using medium containing serum replacement (VitroHES medium, VitroLife Sweden AB, Sweden), supplemented with 4 ng/ml of basic fibroblast growth factor (human recombinant bFGF, also known as FGF-2, Invitrogen, CA). Every 6–7 days, we cut hESC colonies into small cell clusters, and used glass stem cell knives (SwedMed AB, Sweden) to mechanically separate them from hFFs. We then placed the clusters of hESCs on top of fresh hFFs for expansion, or on top of PA6 mouse bone marrow stromal cell feeders for differentiation. Details regarding the protocol for culturing PA6 cells have been described previously (Kawasaki et al., 2000). For immunocytochemical analysis of differentiated cells, we plated PA6 cells on collagen-coated glass cover slips in 4-well-plates at the density of 20,000–25,000 cells/cm² 2 days prior to co-culturing with hESCs. For RT-PCR analysis, we co-cultured hESCs and PA6 cells on gelatine-coated plastic 35 mm Petri dishes. Before starting the hESC/PA6 co-cultures, we rinsed the PA6 cell three times with phosphate buffered saline (PBS) to remove the traces of serum-containing PA6 culture medium. We maintained the co-cultures in medium composed of Glasgow’s modified Eagle’s medium (G-MEM) supplemented with 8% knockout serum (K-Ser, Biological Industries, Israel), 2 mM L-glutamine, 0.1 mM non-essential amino acids (NEAA), 1 mM pyruvate, 0.1 mM 2-mercaptoethanol (2-ME), and 4 ng/ml bFGF (all from Invitrogen). In hESC differentiation studies, FGF-20 (PeproTech EC, UK) was added in a concentration of 1 ng/ml. Based on the results of pilot experiments in which we tested three concentrations of FGF-20 (100, 200 ng/ml, 5 ng/ml), we chose to treat our cultures with 1 ng/ml FGF-20. For first 10 days of co-culturing, we changed one half of the medium volume every other day, followed by daily changes until a total of 21 days.

Immunocytochemistry

Following 3 weeks of culturing, we fixed the hESC/PA6 co-cultures with 4% paraformaldehyde (PFA) for 30 minutes. We pre-incubated the fixed cells in blocking solution containing PBS, 0.5% Triton X-100, and 10% of normal serum from the same animal species as the secondary antibody. We then incubated cultures with primary antibodies in blocking solution overnight at room temperature. Following three washes with PBS, we incubated cells with donkey anti-mouse IgG conjugated with FITC, Cy2, or Cy3 (1:200, Jackson Immunoresearch Europe Ltd., UK). Subsequently, we washed cells with PBS and incubated them with 1:1000 4,6-diamidino-2-phenylinole (DAPI) in PBS for 10 minutes. Using PVA mounting medium containing anti-fading reagent DABCO we mounted the glass coverslips onto glass slides. The primary antibodies that we used were the following: mouse monoclonal anti-human nuclei (HNuc, 1:200); rabbit polyclonal anti-Th (1:500); rabbit polyclonal anti-vesicular monoamine transporter (VMAT)-2 (1:500, all from Chemicon, CA); mouse monoclonal anti-Nestin (1:50); goat polyclonal anti-PITX3 (1:50, both from Santa Cruz Biotechnology, Inc., CA); rabbit polyclonal anti-b-III-Tubulin (1:500, Nordic BioSite AB, Sweden); rabbit monoclonal anti-cleaved caspase-3 (1:100); rabbit polyclonal cleaved caspase-8 (1:100), rabbit polyclonal Bcl-2 associated X protein (BAX, 1:100, all from Cell Signalling Technology, MA); rabbit polyclonal anti-Ki67 (1:200, Novoceastra Laboratories, UK); mouse monoclonal anti-FGF receptor 1 (FGFR-1, 1:80, Zymed Laboratories Inc., CA).

Cell counting, neurite outgrowth estimation, soma area measurements, and statistical analysis

We quantified the percentages of TH-, b-III-Tubulin-, Ki67-, and cleaved caspase-3-positive cells from four independent experiments. We applied stereological principles to assess cell numbers using the Visiopharm Integrator System version 2.12.1.0 software. After delineating the culture areas covered with HNuc-positive cells, we assessed the numbers of immunopositive cells using a systematic random sampling technique. We analyzed about 1000 cells in each culture. Using the Statview 5.0 software we performed the statistical evaluation by student’s t-test for two unpaired groups. Cell fraction data were presented as means ± SEM. We estimated the neurite length per cell by counting the number of intersections of neuritis and six probe lines equally spaced in the counting frame drawn by the Visiopharm Integrator System program. We analyzed at least 100 neurons per culture of three independent experiments (totaling 300 cells per culture condition) and presented the data as means ± SD. This method is an adaptation of the procedure developed by Ronn et al., (2000). For the estimation of soma area we randomly chose 20 cells per culture of three independent experiments (totaling 80 cells per culture condition) and measured the soma area of each cells again using the Visiopharm Integrator System program. Soma area data were presented as means ± SD.

RNA purification and cDNA synthesis

For RNA purification of undifferentiated hESCs, we mechanically separated the hESCs from hFFs, collected the former in a 500 μl volume of VitroHES media, rinsed in PBS buffer and spun down at 300 rcf for 5 minutes. To harvest hESC-derived cells grown atop PA6 cells (in the presence or absence of FGF-20) we used the papain dissociation kit (Worthington Biochemical Corporation, NJ), rinsed cells in PBS buffer and spun down as described above. We then resuspended the resulting cell pellets in RLT buffer (Qiagen, UK), passed through the shredder column (Qiagen) and stored at –80°C until the RNA sample was purified following the RNeasy Micro Kit (Qiagen) protocol (without carrier RNA); with DNase I (Qiagen) treatment incorporated to the latter. Using a ND-1000 spectrophotometer (NanoDrop, USA) we tested the RNA integrity. Later we synthesized cDNA from 400 ng of total RNA using SuperScript II (Invitrogen), essentially as recommended by the manufacturer, with extended synthesis step (50 minutes).

RT-PCR

We selected the primers for RT-PCR from published works (Hori et al., 2005; Jorgensen et al., 2006; Kukekova et al., 1999; Yu et al., 2006) or designed those using Oligo 4.0 software (Molecular Biology Insight) or Clone Manager Suite 7.1 (Sci Ed Software, NC), as appear at Table 1. We ordered all primers from TAG Copenhagen A/S, Denmark. Using the MiniOpticon system (Bio-Rad, USA) with REDTag Polymerase (Sigma-Aldrich, Germany) we performed the RT-PCR amplifications, essentially as described by the manufacturer. Following initial denaturation for 5 minutes at 95°C, we performed DNA amplifications for 32 (Aldh1a1), 33 (Hprt, Th, Msx1) or 35 (En1) cycles of 1 minutes at 95°C, 1 minutes at 55°C (En1), 58.5°C (Th) or 59°C (Aldh1a1, Hprt, Msx1), and 1 minutes at 72°C. The final extension was 5 minutes at 72°C. We analyzed 20 μl volumes of RT-PCR products by electrophoresis at 1% agarose gels and visualized by Ethidium Bromide staining.

RESULTS

FGF-20 promotes the differentiation of hESCs into midbrain dopaminergic neurons

We maintained the hESC colonies on hFFs (Figure 1A). In order to induce the differentiation of hESCs into dopaminergic neurons, we isolated...
Table 1. List of primers used in this study.

Gene name	Abbreviation	Primers	Orientation	Product size (bp)
Tubulin	Tubb	5’-CTCAAAAGTACGTGCGCTGAG-3’	Sense	593
		5’-GGCAAGCTCTGAAGGTTCGTA-3’	Anti-sense	
Hypoxanthine guanine phosphoribosyltransferase 1	Hprt	5’-TGATTAACGTAGCATCAGGAG-3’	Sense	816
		5’-TGCGGTTATATCCACACTTCG-3’	Anti-sense	
Glyceraldehyde-3-phosphate dehydrogenase	Gapdh	5’-TTAGCCACCCCTTGGCCAGAAG-3’	Sense	452
		5’-CTTACTCCCTTGAGGCCCCATG-3’	Anti-sense	
Octamer-binding transcription factor 3/4	Oct3/4	5’-CTTGCTGCAAGAAGTTGCGGAGA-3’	Sense	360
Homebox transcription factor Nanog	Nanog	5’-TGTTATCCCGAGACGCTC-3’	Sense	538
		5’-CTGTGGCTTCTGCTTTGACT-3’	Anti-sense	
Aldehyde dehydrogenase 1 family, member A1	Aldh1	5’-GGGCAAGCTTCTTTCCTC-3’	Sense	1181
		5’-CTCTTAAAGGGCTCAACAC-3’	Anti-sense	
Homebox transcription factor msx-like 1	Msx1	5’-CGAAGTGAAGGTTGTTT-3’	Sense	332
		5’-TTGGAGCAAGCTGAGATG-3’	Anti-sense	
Tyrosine hydroxylase	Th	5’-CGAGCTGGAAGTTGTTT-3’	Sense	245
		5’-TTGGAGCAAGCTGAGATG-3’	Anti-sense	
Engrailed 1	En1	5’-AACCGAAAGAATGTGGAACCTC-3’	Sense	245
		5’-GACACGAAAGAACACACTCCTCG-3’	Anti-sense	

FGF-20 promotes dopaminergic hESC differentiation

FGF-20 has no effect in the neuronal differentiation of hESCs

The neurotrophic activity of FGF-20 is considered to be specific for TH-expressing neurons in primary cultures of rat mesencephalic neurons (Hmachi et al., 2003). FGF-20 increases the survival of TH-expressing neurons in serum-free medium, but it does not support a general survival-promoting effect on all other neurons (Ohmachi et al., 2003). In our hESC/Pa6 co-cultures, FGF-20 did not increase the fraction of hESC-derived TH-positive neurons expressing the neuronal marker b-III-Tubulin (Figures 3A and 3B). The percentage of the HNuc-positive cells that expressed b-III-Tubulin was 3 ± 1% in the absence of FGF-20 (−FGF-20), while it increased to 15 ± 2% in the presence of FGF-20 (+FGF-20) (Figure 2C). The TH-positive neurons co-expressed the vesicular monoamine transporter (VMAT)-2 (Figures 2D and 2E), which is involved in the vesicular transport of dopamine (Nirenberg et al., 1996). The hESC-derived TH-positive neurons also co-expressed the paired-like homeodomain transcription factor 3 (PITX3, Figures 2F and 2G), required for the development of substantia nigra dopaminergic neurons (Nunes et al., 2003). We detected the homeobox transcription factor engrailed 1 (En1), which is essential for the maintenance of substantia nigra dopaminergic neurons (Alberi et al., 2004), by RT-PCR (Figure 2H). Using RT-PCR, we also detected expression of the homeobox transcription factor msx-like 1 (Msx1) (Andersson et al., 2006) and the enzyme aldehyde dehydrogenase 1 (Aldh1) (Gaiker et al., 2003), which are also involved in the development of midbrain dopaminergic neurons (Figure 2H). Furthermore, we found lower expression levels of two markers of undifferentiated and pluripotent cells, that is, Oct3/4 and Nanog, in differentiated hESC/Pa6 co-cultures supplemented with FGF-20 than in cultures untreated with FGF-20, indicating the effect of this factor in promoting differentiation (Figure 2H).

Other neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), neurotrophins (NTS), and transforming growth factor (TGF)-α are known to increase the neurite length and soma area of mesencephalic neurons in culture (Alexi and Hefti, 1993; Studer et al., 1995; Studer et al., 1996; Widmer et al., 2000). We evaluated the effect of FGF-20 on neurite outgrowth of hESC-derived TH-positive neurons by quantifying the number of intersections between the neurites of each cell with six probe lines, equally spaced and drawn on the counting frame, as described by Ronn et al. (2000). We observed no increase in neurite length in cultures treated with FGF-20 (Figure 2I). Similarly, we observed no effect of FGF-20 treatment in the soma area of hESC-derived TH-positive neurons (Figure 2J). These results suggest that FGF-20 has no significant effect on hESC-derived TH-positive neuron morphology.

FGF-20 significantly reduces cell death through apoptosis but has no effect on cell proliferation

Anti-apoptotic mechanisms have been shown to be activated by FGF-20 on dopaminergic neurons (Murase and McKay, 2008). We examined whether FGF-20 reduced apoptotic cell death in hESC/Pa6 co-cultures. We identified dying cells by the presence of cleaved caspase-8, cleaved caspase-3, and oligomerized BAX (Figures 4A–4F). Activation of caspase-8 into cleaved active fragments is induced by signaling through the FasL/Fas receptor, as part of the intrinsic cell death pathway. It triggers the activation of a cascade of downstream caspases (Riedl and Shi, 2004).
Cleaved caspase-8 also induces the release of cytochrome c from the mitochondria as part of the intrinsic cell death pathway, mediated by proapoptotic proteins such as BAX (Riedl and Shi, 2004). Both the extrinsic and intrinsic pathways result in the activation of caspase-3, which then catalyzes the proteolysis of many proteins leading to the cell death (Riedl and Shi, 2004). In cultures untreated with FGF-20, we saw a significant number of hESC-derived cells positive for cleaved caspase-8 (Figure 4A) and BAX (Figure 4B). In contrast, we identified almost no cells double
positive for HNuc/cleaved caspase-8 (Figure 4D) and HNuc/BAX (Figure 4E) in cultures treated with FGF-20. This indicates that FGF-20 inhibits apoptotic cell death that is mediated both via the intrinsic and the extrinsic pathways. Addition of FGF-20 resulted in reduction in the fraction of cells stained positive for cleaved caspase-3 (1.2/0.5%) compared with cultures not supplemented with FGF-20 (2.5/0.2%, Figures 4C, 4F, and 4I). Previous studies have suggested that dying cells might downregulate the TH expression, limiting the possibility to identify dying TH-positive neurons (Burke, 2004). It might be for this reason that we did not find cells co-expressing TH and cleaved caspase-3 (Figures 4G and 4H). However, we believe that the reduction in cell death results from a higher survival of dopaminergic neurons in the cultures due to the known preferential trophic activity of FGF-20 on these neurons (Murase and McKay, 2006; Ohmachi et al., 2000; Ohmachi et al., 2003).

Furthermore, we evaluated the effect of FGF-20 on cell proliferation. We identified proliferating cells by the expression of Ki67 (Figures 5A and 5B). Cultures untreated with FGF-20 contained 7 ± 2% of Ki67-positive cells, among the HNuc-positive cells (Figure 5C). Similarly, those supplemented with FGF-20, Ki67-positive cells constituted 8 ± 1% of the total number of cells (Figure 5C). These data suggest that FGF-20 has no effect on cell proliferation in this culture paradigm.

DISCUSSION

Midbrain dopaminergic neurons can be generated from hESCs in vitro using several different culture protocols (Ben-Hur et al., 2004; Iacovitti et al., 2007; Park et al., 2004; Perrier et al., 2004; Roy et al., 2006; Schuiz et al., 2004; Yan et al., 2005; Zeng et al., 2004). We show for the first time that FGF-20 can be used to increase fivefold the yield of TH-expressing neurons derived from hESCs (Figures 2A–2C), probably by promoting their differentiation and decreasing apoptotic cell death. Specifically, FGF-20 treatment reduced the fraction of cells that were immunoreactive for activated caspase-3, cleaved caspase-8, and BAX (Figures 4A–4F). The percentage of cleaved caspase-3-positive cells...
Figure 3. Effect of FGF-20 on neuronal differentiation. (A,B) Representative images of b-III-Tubulin- and HNuc-positive cells in 3 weeks differentiated hESCs/PA6 co-cultures – FGF-20 (A) and + FGF-20 (B). (C) Graphic representation of the percentages of b-III-Tubulin-positive cells among HNuc-positive cells in 3 weeks differentiated hESCs/PA6 co-cultures – FGF-20 and + FGF-20. Average ± SEM. (D,E) Co-localization of b-III-Tubulin and TH in 3 weeks differentiated hESCs/PA6 co-cultures – FGF-20 (D) and + FGF-20 (E). Distance bars: A, B, D, E: 100 μm.

Figure 4. Effect FGF-20 on cell death. Representative images of 3 weeks differentiated hESCs/PA6 co-cultures untreated and treated with FGF-20 (– FGF-20 and + FGF-20, respectively) double-stained for (A,D) HNuc and cleaved caspase-8 (B,E), HNuc and BAX (C,F) HNuc and cleaved caspase-3 (arrowheads point on apoptotic cells), and (G,H) TH and cleaved caspase-3. (I) Graphic representation of the percentages of cleaved caspase-3-positive cells among HNuc-positive cells in 3 weeks differentiated hESCs/PA6 co-cultures – FGF-20 and + FGF-20. Average ± SEM. Student’s t-test, p-value: * = 0.05. (G, H) Images showing cells positive for cleaved caspase-3 and TH in 3 weeks differentiated hESCs/PA6 co-cultures + FGF-20. Distance bars: A, B, D, E: 50 μm; C, F: 100 μm; G: 200 μm; H: 10 μm.
dopaminergic neurons were obtained when neuronal stem cells (Grothe et al., 2004; Takagi et al., 2005). Thus, higher yields of differentiation. Derived cells were committed to a midbrain dopaminergic phenotype. The percentage of β-III-Tubulin-positive cells in the HESC-derived cultures was about 17% regardless of whether FGF-20 was present or not (Figure 3), indicating that this growth factor did not increase overall neuronal differentiation.

FGF-20 enhances the dopaminergic differentiation of stem cells in vitro (Grothe et al., 2004; Takagi et al., 2005). Thus, higher yields of dopaminergic neurons were obtained when neuronal stem cells overexpressing Nurr1 (Grothe et al., 2004) or monkey ESCs (Takagi et al., 2005) were differentiated in the presence of FGF-20. In accordance to our results, the latter study showed that a combination of bFGF and FGF-20 supported a fivefold increase, from 5% to 24%, in the percentage of TH-positive neurons (expressed as a proportion of Tuj1-positive cells) compared to the condition when both factors were absent (Takagi et al., 2005). The mechanism by which the combination of bFGF and FGF-20 enhances the yield of stem cell-derived dopaminergic neurons still remains to be investigated (Takagi et al., 2005).

Other signaling molecules, such as sonic hedgehog (SHH), FGF-8 (Park et al., 2005), and GDNF (Buytaert-Hoefen et al., 2004), can also increase the number of TH-positive cells derived from hESCs that are co-cultured with PA6 cells. A combination of SHH and FGF-8 increased the percentage of TH-expressing neurons out of the Tuj1-positive cells from 26% to 41% (Park et al., 2005). GDNF doubled the number of TH-positive cells. The numbers of TH-positive cells per well in this study were about 934 when GDNF was added and 443 when this neurotrophic factor was not added (Buytaert-Hoefen et al., 2004).

Several neurotrophic factors demonstrate a growth-stimulating effect and increase both the cell body size and the length of branching of neurites of mesencephalic dopaminergic neurons. Those include GDNF (Widmer et al., 2000), BDNF, NT-3, NT-4/5, nerve growth factor (NGF) (Studer et al., 1995; Studer et al., 1996), and TGF-alpha (Alexi and Hefti, 1993). Unlike those factors, FGF-20 neither increased the cell body size nor the length of the neurites of the TH-immunoreactive neurons (Figures 2I and 2J). Instead the effect was limited to enhancing the number of TH-positive neurons.

The neurotrophic activity of FGF-20 on rat mesencephalic dopaminergic neurons is probably mediated by FGFR-1c (Ohmachi et al., 2003). This receptor mediates the signaling of several different FGF molecules, such as FGF-1, -2, -3, -4, -5, -6, and -10 (Eswarakumar et al., 2005). This receptor mediates the signaling of several different FGF molecules, such as FGF-1, -2, -3, -4, -5, -6, and -10 (Eswarakumar et al., 2005). Consequently, it is present on many different cell types. We detected FGFR-1 on PA6 cells, undifferentiated hESCs, and hESCs-derived TH-positive neurons (Figures 1G–1O), indicating that the FGF-20 might act on different cell types in our culture paradigm. Thus, FGF-20 could act directly on the pluripotent hESCs, promoting their differentiation into dopaminergic neurons, on the HESC-derived dopaminergic neurons to increase their survival; and/or indirectly, by acting on the PA6 cells and inducing them to produce factors that promote differentiation and survival of dopaminergic neurons. FGF-20 has previously been suggested to have an indirect mode of action on dopaminergic differentiation (Grothe et al., 2004).

FGF-20 has been suggested to activate anti-apoptotic defenses in cultured rat mesencephalic dopaminergic neurons (Murase and McKay, 2006). FGF-20 prevents dopaminergic neurons from dying in cultures lacking serum, or exposed to glutamate- or 6-hydroxydopamine (6-OHDA)-induced excitotoxicity, as well as oxidative stress caused by intracellular dopamine (Murase and McKay, 2008; Ohmachi et al., 2000; Ohmachi et al., 2003). This effect was specific to calbindin-negative cultured dopaminergic neurons, suggesting that it is limited to the A9 substantia nigra dopaminergic neurons and not evident in those derived from the adjacent A10 ventral tegmental area (Murase and McKay, 2006). We observed a significant difference in the number of cells positive for cleaved caspase-3 in FGF-20-supplemented cultures (1.2%), compared to the untreated cultures (2.5%, Figures 4C, 4F, and 4J). Furthermore, we also observed lower numbers of cells positive for the apoptotic markers cleaved caspase-8 and BAX when FGF-20 was added to the cultures (Figures 4A, 4B, 4D, and 4E). Cleaved caspase-8 is involved in initiating the extrinsic pathway, while BAX polymerization mediates mitochondrial cytochrome c release as an early step in the intrinsic pathway (Riedl and Shi, 2004). Therefore, the decreased number of cells positive for cleaved caspase-8 and BAX in FGF-20-supplemented cultures suggests that this growth factor inhibits apoptosis through both extrinsic and intrinsic pathways. Previously, was shown that FGF-20 treatment results in the phosphorylation phosphoinositide-3 kinase (PI3K) (Murase and McKay, 2006). Phosphorylated PI3K then activates the Akt-dependent anti-apoptotic pathway, which involves the inactivation of the proapoptotic protein BAD and consequently the repression of the intrinsic pathway (del Peso et al., 1997). We are not aware of any reported link between the FGF-20 signaling and the caspase-8 activation.

Although the percentage of cells exhibiting cleaved caspase-3 at the time of fixation, 21 days after starting the co-culture, was small, it has to be emphasized that detection of cleaved caspase-3 is limited to a number of hours before a cell eventually lyses and disappears from the culture. These percentages of cleaved caspase-3-positive cells only indicate that at the time point when we studied cell death, the fraction of cells expressing cleaved caspase-3 was 2.5% in control cultures, while in FGF-20 treated cultures only 1.2% of the cells presented cleaved caspase-3. Thus, these percentages do not reflect the cells that had died throughout the full culture experiment, which lasted for 21 days. If the rate of cell death is similar over the full 21-day culture period, the addition of FGF-20 results in a 52% reduction in the cell death (difference between the percentage of cleaved caspase-3 without and with FGF-20 (2.5 – 1.2 = 1.3) divided by the percentage without FGF-20 (1.3/2.5 = 52)). This can amount to a substantial increase in living TH-positive neurons in the FGF-
REFERENCES

Alberi, L., Spada, P., and Simon, H. H. (2004). Engrafted genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131, 3229–3236.

Alexi, T., and Herft, F. (1993). Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture. Neuroscience 55, 903–918.

Andersson, E., Tryggyason, U., Deng, Q., Frilling, S., Alexeenko, Z., Robert, B., Perlmann, T., and Ericson, J. (2006). Identification of intrinsic determinants of midbrain dopaminergic neurons. Cell 124, 323–345.

Biedenbender, A., Dunnert, S. B., Brundin, P., Stoessel, A. J., Freed, C. R., Breese, R. E., Levivier, M., Peschanski, M., Studer, L., and Barker, R. (2003). Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol. 2, 437–445.

Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., and Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 318, 121–134.

Brederlau, A., Correia, A. S., Anisimov, S. V., Elmi, M., Paul, G., Roybon, L., Morizane, A., Benguist, F., Reibe, I., and Nanmukk, U. et al. (2006). Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24, 1433–1440.

Burke, R. E. (2004). Ontogenic cell death in the nigrostriatal system. Cell Tissue Res. 318, 129–135.

Boydaert-Hoefen, K. A., Alvarez, E., and Freed, C. R. (2004). Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 22, 869–874.

Brederlau, A., Gómez-Garcia, M., Page, C., Herrera, R., and Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 867–889.

Eskarawam, V. F., Lax, A., and Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. CytoKinase Growth Factor Rev. 16, 139–149.

Freeman, T. F., and Brundin, P. (2006). Important aspects of surgical methodology for transplantation in Parkinson’s disease. In: Restorative Therapies in Parkinson's Disease, P. Brundin and W. Olanow, eds. (New York, NY, USA, Springer Science + Business Media, LLC). pp. 131–146.

Gallet, D., Bueren, I., Carmin, A., Anvet, M., and Olsson, L. (2003). ALDH1 mRNA presence in human dopamine neurons and decreases in substantia nigra in Parkinson’s disease and in the ventral terminal area in schizophrenia. Neurobiol. Dis. 12, 637–647.

Grothe, C., Timmer, M., Scholz, T., Winkler, C., Nikkoh, G., Claus, P., Itoh, N., and Arenas, E. (2004). Fibroblast growth factor-20 promotes the differentiation of Nurr1-overexpressing neural stem cells into tyrosine hydroxylase-positive neurons. Neurobiol. Dis. 17, 163–170.

Hori, Y., Gu, X., Xie, X., and Kim, S. K. (2005). Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med. 2, e103.

Iacovitti, L., Donaldson, A. E., Marshall, C. E., Suxon, S., and Yang, M. (2007). A protocol for differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Res. 1127, 19–25.

Jorgensen, R. R., Jullusson, B., Henricson, K. F. H., Hansen, C., Knudsen, S., Petersen, T. N., Bloom, N., Seiger, A., and Wahlberg, L. (2006). Identification of novel genes regulated in the developing human ventral mesencephalon. Exp. Neurol. 198, 427–437.

Kawasaki, H., Mizusuki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakashima, S., Nishikawa, S. I., and Sasaki, Y. (2010). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40.

Kukovec, V. G., Laywell, E. D., Sutoy, O., Davies, K., Schefler, B., Thomas, L. B., O’Brien, T. F., Kusakabe, M., and Steindler, D. A. (1999). Multipotent stem/progenitor cells with similar properties arise from two neuronal regions of adult human brain. Exp. Neuro. 158, 333–344.

Morizane, A., Takahashi, J., Takag, Y., Sasaki, Y., and Hashimoto, N. (2002). Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell-derived inducing activity. J. Neurosci. Res. 69, 934–939.

Murase, S., and McKay, R. D. (2006). A specific survival response in dopamine neurons at most risk in Parkinson’s disease. J. Neurosci. 26, 9750–9760.

Nirenberg, M. J., Chan, J., Liu, Y., Edwards, R. H., and Pickel, V. M. (1996). Ultrastructural localization of the vesicular monoamine transporter-1 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J. Neurosci. 16, 4135–4145.

Nunes, I., Tommasian, L. T., Silva, R. M., Burke, R. E., and Goff, S. P. (2003). Ptx3 is required for development of substantia nigra dopaminergic neurons. Proc. Natl. Acad. Sci. U S A 100, 4425–4429.

Ohmachi, S., Watanabe, Y., Mikami, T., Kusum, I., Tbi, A., Akaike, A., and Itoh, N. (2000). FGF-20, a novel neurotrophic factor, preferentially in the substantia nigra pars compacts of rat brain. Biochem. Biophys. Res. Commun. 277, 355–360.

Ohmachi, S., Mikami, T., Konishi, M., Miyake, Y., and Itoh, N. (2003). Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1. J. Neurosci. Res. 72, 436–443.

Park, S., Lee, K. S., Lee, Y., Shin, H. A., Cho, H. Y., Wang, K. C., Kim, Y. S., Lee, H. T., Chung, K. S., Kim, E. Y., and Lim, J. (2004). Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci. Lett. 359, 99–103.

Park, C. H., Milt, Y. K., Lee, J. I., Choi, D. H., Chang, M. Y., Shim, J. W., Ko, J. Y., Koh, H. C., Kang, M. J., and Kang, J. S. et al. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurosci. 92, 1265–1276.

Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., Topf, N., Hansen, L. N., and Studer, L. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. U S A 101, 12543–12548.

Riedl, S. J., and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897–907.

Ronn, C. E., Raits, I., Hartz, P. B., Fein, M., Berezin, A., Berezin, V., Moller, A., and Bock, E. (2000). A simple procedure for quantification of neuron outgrowth based on stereological principles. J. Neurosci. Methods 100, 25–32.

Roy, N. S., Claren, C., Singh, S. K., Yang, L., Beal, M. F., and Goldman, S. A. (2006). Functional engrainment of human embryonic stem cell-derived dopaminergic neurons enriched by coculture with telencephalon-im mobilized midbrain astrocytes. Nat. Med. 12, 1259–1268.
Schulz, T. C., Noggle, S. A., Palmarini, G. M., Weiler, D. A., Lyons, I. G., Pensia, K. A., Meedeniya, A. C., Davidson, B. P., Lambert, N. A., and Condie, B. G. (2004). Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. *Stem Cells* 22, 1218–1238.

Studer, L., Spenger, C., Seiler, R. W., Altar, C. A., Lindsay, R. M., and Hyman, C. (1995). Comparison of the effects of the neurotrophins on the morphological structure of dopaminergic neurons in cultures of rat substantia nigra. *Eur. J. Neurosci.* 7, 223–233.

Studer, L., Spenger, C., Seiler, R. W., Othberg, A., Lindvall, O., and Odin, P. (1996). Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon. *Exp. Brain Res.* 108, 328–336.

Takahashi, J. (2007). Stem cell therapy for Parkinson’s disease. *Expert Rev. Neurother.* 7, 667–675.

Widmer, H. R., Schallier, B., Meyer, M., and Seiler, R. W. (2000). Giall cell line-derived neurotrophic factor stimulates the morphological differentiation of cultured ventral mesencephalic calbindin- and calretinin-expressing neurons. *Exp. Neurol.* 164, 71–81.

Yan, Y., Yang, D., Zarnowska, E. D., Du, Z., Werbel, B., Valliere, C., Pearce, R. A., Thomson, J. A., and Zhang, S. C. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. *Stem Cells* 23, 781–790.

Yu, H., Fang, D., Kumar, S. M., Li, L., Nguyen, T. K., Acs, G., Herlyn, M., and Xu, X. (2006). Isolation of a novel population of multipotent adult stem cells from human hair follicles. *Am. J. Pathol.* 168, 1879–1888.

Zeng, X., Cai, J., Chen, J., Luo, Y., You, Z. B., Fotter, E., Wang, Y., Harvey, B., Miura, T., and Backman, C. et al., (2004). Dopaminergic differentiation of human embryonic stem cells. *Stem Cells* 22, 925–940.