LINE-OF-SIGHT REDDENING PREDICTIONS: ZERO POINTS, ACCURACIES, THE INTERSTELLAR MEDIUM, AND THE STELLAR POPULATIONS OF ELLIPTICAL GALAXIES

David Burstein

ABSTRACT

Revised $(B-V)_0\cdot$Mg$_2$ data, which are used to test reddening predictions, are presented for 402 elliptical galaxies. These reddening predictions can tell us both what the intrinsic errors are in this relationship among gE galaxy stellar populations as well as details of nearby structure in the interstellar medium (ISM) of our Galaxy, and of the intrinsic errors in reddening predictions. Using least-squares fits, the explicit 1 $\sigma$ errors in reddenings predicted by the Burstein-Heiles (BH) method and the Schlegel and coworkers (IR) method are calculated, as well as the 1 $\sigma$ observational error in the $(B-V)_0\cdot$Mg$_2$ for gE galaxies. It is found that in directions with $E(B-V) < 0.100$ mag (where most of these galaxies lie), 1 $\sigma$ errors in the IR reddening predictions are 0.006–0.009 mag in $E(B-V)$, those for BH reddening predictions are 0.011 mag, and the 1 $\sigma$ agreement between the two reddening predictions is 0.007 mag. The IR predictions have an accuracy of 0.010–0.011 mag in directions with $E(B-V) \geq 0.100$ mag, significantly better than those of the BH predictions (0.024–0.025). Both methods yield good evidence that gas-to-dust variations that vary by a factor of 3, both high and low, exist along many lines of sight in our Galaxy. Both methods also predict many directions with $E(B-V) < 0.015$ mag, despite the difference in zero point that each has assumed. The $\sim 0.02$ higher reddening zero point in $E(B-V)$ previously determined by Schlegel and coworkers is confirmed, primarily at the Galactic poles. Independent evidence of reddening at the north Galactic pole (NGP) is reviewed, with the conclusion that directions still exist at the NGP that have $E(B-V) \leq 0.01$. Two lines of evidence suggest that IR reddenings are overpredicted in directions with high gas-to-dust ratios. As high gas-to-dust directions in the ISM also include the Galactic poles, this overprediction is the likely cause of the $E(B-V) \sim 0.02$ mag larger IR reddening zero point relative to that of BH.

Key words: dust, extinction — galaxies: stellar content

1. INTRODUCTION

Maps of line-of-sight Galactic reddening (Burstein & Heiles 1978b) ushered in a new era in astronomy in which reddenings could be reliably predicted along arbitrary lines of sight. These maps supplanted the cosecant laws previously used to make such predictions (e.g., de Vaucouleurs, de Vaucouleurs, & Corwin 1976). The more recent method for predicting line-of-sight reddening (the IR method; Schlegel, Finkbeiner, & Davis 1998) is also differentially accurate in its predictions, but assumes a zero point $\sim 0.02$ mag higher in $E(B-V)$ than does the Burstein & Heiles (BH) method.

Cursory examination of the reddening predictions listed for the BH method and the IR method on the NASA Extragalactic Database (NED) Web site\(^2\) shows that this difference in zero point produces a large difference in predicted $B$-magnitude extinction ($4.315 \times 0.02 = 0.086$ mag) and belies the actual good differential agreement between the two reddening predictions found in the present paper. Yet it is the 20 year experience of this author that very few astronomers take cognizance of this zero-point issue. Schlegel et al. (1998) further claim that their method is significantly more differentially accurate than the BH method (see the abstract and § 5 of their paper).

Section 2 of the present paper presents the $(B-V)_0\cdot$Mg$_2$ data for gE galaxies used for the reddening calibration tests in both this paper and in Schlegel et al. (1998). These data are a significant advance in calibrating differential reddening predictions over what was available from globular clusters and RR Lyrae stars in Burstein & Heiles (1978b). In § 2, via a set of four coupled least-squares equations, 1 $\sigma$ errors are explicitly derived in a least-squares sense for the BH and IR reddening predictions, as well as for the $(B-V)_0\cdot$Mg$_2$ relation for gE galaxies. Section 3 discusses various related issues, including reddening at the north Galactic pole (NGP), H$\alpha$ gas-to-dust variations in the interstellar medium (ISM), minimum line-of-sight reddenings, the stellar populations of gE galaxies, and systematic issues surrounding reddening predictions. The case is made in § 4 that the zero-point difference between the BH reddening predictions and the IR reddening predictions is due to Schlegel et al. (1998) overpredicting reddenings in directions where gas-to-dust ratios are high. The major findings of this paper are summarized in § 5.

2. ACCURACY OF THE REDDENING PREDICTIONS

2.1. The Reddening Calibration Data: Elliptical Galaxy Stellar Populations

The reddening-prediction method developed by Burstein & Heiles (1978a, 1978b, 1982, 1984) uses the empirical fact that galaxy counts decrease with increasing extinction to monitor the varying H$\alpha$ column density–to-dust ratio that was discovered in Burstein & Heiles (1978b). The availability of maps of infrared emission in the sky in the 1980s and 1990s made it feasible to make new line-of-sight predictions of reddening using observations of emission by dust (Schlegel et al. 1998; the IR method), even if it is still not known what portion of the dust in the ISM produces the reddening that is seen in the optical (cf. Li & Greenberg 1997). One must assume a relation between extinction and

\[^{1}\] Department of Physics and Astronomy, Box 871504, Arizona State University, Tempe, AZ 85287-1504.

\[^{2}\] See http://nedwww.ipac.caltech.edu.
E(B − V) to calculate extinction from these methods (e.g., a value of 4.315 is assumed by Schlegel et al. 1998 to convert E(B − V) to A_V; the BH method uses 4.0 for this conversion for reasons discussed in Burstein & Heiles 1978b).

Neither set of reddening-prediction methods directly measures the dust that is causing the line-of-sight reddening. Rather, each must assume a relationship between the measured quantity and the line-of-sight reddening. Both are therefore “differential” predictions of line-of-sight reddening, which need to be calibrated with external data. Burstein & Heiles (1978b) calibrated their method using globular cluster and RR Lyrae star reddenings. Since that time, the integrated stellar population properties of giant elliptical (gE) galaxies have been found to be so uniform that they can be used for accurate differential reddening measurements (Burstein et al. 1988; Faber et al. 1989).

At their request, this author provided Schlegel and coworkers with a set of Mg2 line strengths and (B−V) colors for gE galaxies taken from the Seven Samurai (Faber et al. 1989) database. The database that this author provided to Schlegel and coworkers differs from that published in Faber et al. (1989) in one important respect: the Mg2–velocity-dispersion (B−V) relationships (Bender, Burstein, & Faber 1993) among gE galaxies were used to put each subset of the Seven Samurai Mg2 data on a consistent system. 3 The corrected Mg2 measures for each data subset are then added back together with the rest of the Seven Samurai Mg2 data, and new average values of Mg2 for affected galaxies are calculated. Since this effectively produces a new set of data, the full set of these Mg2 data are being made available with this paper (cf. Hudson 1999, where a portion of these data were also presented).

Table 1 gives the first 10 lines of the reddening-related data used in this paper for elliptical galaxies; the full list for 402 gE galaxies is available via anonymous ftp.3 Thirteen gE galaxies do not have direct BH or IR reddenings (see the notes to Table 1 for details). A further 11 gE galaxies in the region 230° < l < 310°, −20° < b < 20° were found in Lynden-Bell et al. (1988) and Burstein et al. (1987) to have H—only BH reddening predictions that are a factor of 2 too high. (These galaxies are given in the notes to Table 1 and are noted in the ASCII version of this table by an asterisk in their names.) The reddenings predicted by Burstein et al. (1987) for these 11 galaxies use the (B−V)0–Mg2 relation, so Seven Samurai reddenings cannot be used for these galaxies. Rather, the values of E(B−V) for these 11 galaxies predicted using the BH method have been uniformly halved to go with the higher gas-to-dust ratio found by the Seven Samurai. (The reddenings for these 11 galaxies are discussed separately below.) It may be a bit confusing, but it should be noted that an additional 11 galaxies within a smaller region (see notes to Table 1) did not need to have their reddenings so corrected in the Seven Samurai database. These other 11 galaxies include several that are as reddened as the galaxies that do require gas-to-dust corrections. Evidently, this “southern” region has a mixture of regions of high gas-to-dust ratios and regions of normal gas-to-dust ratios.

### Table 1
The reddening data

| Galaxy (1) | Decl. (2) | l (3) | b (4) | (B−V) (5) | Mg2 (6) | BH (7) | BH+ (8) | IR (9) | IR− (10) | Diff. 1 (11) | Diff. 2 (12) | Average (13) | Average (14) |
|-----------|---------|-----|-----|---------|------|------|-------|------|--------|-----------|----------|-------------|-------------|
| N2012...... | −79.89  | 292.02 | −30.54 | 1.10 | 0.287 | 0.111 | 0.130 | 0.147 | 0.131 | −0.017 | −0.020 | 0.139 | 0.121 |
| N6876...... | −71.02  | 324.13 | −32.60 | 1.03 | 0.304 | 0.040 | 0.059 | 0.045 | 0.029 | 0.014 | 0.011 | 0.052 | 0.035 |
| N2434...... | −69.17  | 281.00 | −21.54 | 1.09 | 0.260 | 0.177 | 0.196 | 0.248 | 0.232 | −0.052 | −0.055 | 0.222 | 0.205 |
| N3136...... | −67.13  | 287.99 | −9.45 | 1.03 | 0.280 | ... | 0.238 | 0.222 | ... | ... | ... | ... | ... |
| N3136B..... | −66.73  | 288.18 | −8.81 | 1.12 | 0.272 | ... | 0.198 | 0.182 | ... | ... | ... | ... | ... |
| N7192...... | −64.56  | 326.52 | −44.54 | 0.95 | 0.270 | −0.003 | 0.016 | 0.034 | 0.018 | −0.018 | −0.018 | 0.025 | 0.009 |
| N2305...... | −64.21  | 274.43 | −24.55 | 1.00 | 0.304 | 0.071 | 0.090 | 0.076 | 0.060 | 0.014 | 0.011 | 0.083 | 0.066 |
| N6483...... | −63.67  | 330.07 | −16.66 | 0.98 | 0.280 | 0.077 | 0.096 | 0.059 | 0.043 | 0.037 | 0.034 | 0.078 | 0.060 |
| N2887...... | −63.60  | 282.27 | −9.64 | 1.12 | 0.260 | ... | 0.225 | 0.209 | ... | ... | ... | ... | ... |
| N6721...... | −57.85  | 338.57 | −23.90 | 1.02 | 0.338 | 0.064 | 0.083 | 0.060 | 0.044 | 0.023 | 0.020 | 0.072 | 0.054 |

Notes.—Col. (1): Galaxy name as given in Faber et al. 1989; col. (2): B1950 declination (needed to separate the BH subsets into north and south subsets), by which this table is ordered; cols. (3) and (4): Galactic longitude and latitude; col. (5): observed (B−V) color, not corrected for reddening; col. (6): revised Mg2–line strength, described above; col. (7): predicted BH reddening (negative values explicitly given); col. (8): predicted BH reddening with 0.019 mag added to bring it into zero-point agreement with the IR method; col. (9): IR–predicted reddening as given by Schlegel et al. 1998; col. (10): IR–predicted reddening with 0.016 mag subtracted, making it consistent in zero point with the BH prediction; cols. (11) and (12): differences in E(B−V), BH + 0.019 mag — IR and BH — IR — 0.016 mag, respectively (see definitions of these terms in the text); col. (13): averages of the BH + 0.019 mag and the IR mag predictions; col. (14): average of BH and IR — 0.016 mag predictions. All predicted negative reddening values, IR or BH, are set to 0.000 for reddening calculations. No values are given in their respective columns when there is either no BH or no IR prediction (these missing values are set to −0.999 in the ASCII version of this table). There are 13 gE galaxies that do not have direct BH or IR reddenings: six gE galaxies have |B| < 10°, where BH predictions do not exist (IC 2311, NGC 2380, NGC 2663, NGC 2887, NGC 3156, and NGC 3160). Six gE galaxies are in various gaps in the BH reddening map where |l| data are absent, hence no direct BH predictions (NGC 641, NGC 822, IC 1459, IC 1625, IC 5328, and ESO 409-G12). NGC 221 (M32) has no direct IR prediction. A further 11 gE galaxies in the region 230° < l < 310°, −20° < b < 20° were found in Lynden-Bell et al. 1988 and Burstein et al. 1987 to have H—only BH reddening predictions that are a factor of 2 too high (NGC 2292, NGC 2293, NGC 2325, NGC 2888, NGC 2904, NGC 3087, NGC 3250, NGC 3557, NGC 4976, ESO 208-G21, and ESO 264-G31). (These galaxies are noted in this table by an asterisk in their names.) Note that an additional 11 galaxies within a smaller region defined by 265° < l < 310°, 17° < b < 19.5° (NGC 3108, NGC 3258, NGC 3257, NGC 3260, ESO 108-G21, and ESO 264-G31). (These galaxies are noted in this table by an asterisk in their names.)
Thus, 24 galaxies are objectively excluded from the least-squares error-determination analysis of this paper. This yields 378 gE galaxies with direct BH and direct IR reddening predictions. To make sure that the reddenings used for the IR method are those in the public domain on the NED Web site, the NED group kindly provided this author with the IR reddenings for the galaxies in this sample.5

2.2. Observational and Intrinsic Accuracies of Reddening Methods

The 378 gE galaxies are divided into three samples: those with reddenings \( E(B-V) < 0.100 \) averaged from both methods (the “low” reddening sample); those with \( E(B-V) > 0.100 \) (the “high” reddening sample), and the full sample taken as a whole. (The rationale for separating galaxies into low- and high-reddening directions is given below). No separation is made at the dividing line for the BH method (decl. = -23°5), south of which the BH predictions change their methodology from use of both galaxy counts and H i column densities to use of only H i column densities. Schlegel et al. (1998) did not find a difference in these two regions, save the \( l = 230°-310° \) region identified above. Note that only H i values are also used at high Galactic latitudes \((b > 65°)\) in the BH method, as galaxy counts become correlated in real space above those latitudes (cf. the discussion in Burstein & Heiles 1978b).

The IR and BH reddening predictions must first be placed on the same zero-point scale. This can be done in two ways, using all 378 galaxies: (1) Zeroing IR predictions to BH predictions yields a median offset of 0.016 mag in \( E(B-V) \), which is then subtracted from the IR predictions. (2) Zeroing BH predictions to IR predictions requires adding a median offset of 0.019 mag in \( E(B-V) \) to the BH predictions. Both zero-point offsets are consistent with the \( E(B-V) = 0.02 \) zero-point difference between IR and BH methods found by Schlegel et al. (1998; estimated only in directions with \( b > | 45° | \), i.e., the Galactic poles).

The slight difference (0.003 mag) in the zero-point difference calculated in these two ways is caused by negative BH reddenings that are routinely given for the BH method, owing to the existence of H i gas with no measured reddening. Burstein & Heiles (1982) acknowledged from the outset that the their zero point could be in error by 0.01 mag in \( E(B-V) \). While negative values of reddening are explicitly calculated in the BH method, these predicted reddenings are set to zero if they are used as reddenings (cf. Burstein & Heiles 1984). Thus, if a different reddening zero point was established, then adjustment of the BH reddening predictions would require only the addition of the new zero point (as used here). In contrast, the IR method defines its zero point as formally 0.000. Hence, adjusting the BH zero point to the IR zero-point results in some negative BH reddenings becoming positive, but adjusting the IR zero point to the BH zero point results in some IR reddenings becoming negative (and they are therefore set to 0.000 for reddening calculations).

There are 351 low- and 27 high-reddening galaxies when the 0.016 mag zero-point difference is subtracted from the IR method, and 344 low- and 34 high-reddening galaxies when the 0.019 mag zero-point difference is added to the BH method. For each zero point used, averages of the two reddening predictions (i.e., BH + IR - 0.016 and IR + BH + 0.019) are also calculated.

The \((B-V)_0\)-Mg\(_2\) relationship for gE galaxies are fitted via two equations: \((B-V)_0 = 1.12 \text{ Mg}_2 + \text{constant} \) and \((B-V)_0 = 0.942 \text{ Mg}_2 + \text{constant} \). The 1.12 slope comes from Bender, Burstein, & Faber (1993), who show that the \((B-V)_0\)-Mg\(_2\) relationship extends over a much wider range of color than is given for just the Seven Samurai galaxies. The 0.942 slope is derived only from the gE data used here. Use of either slope, with the appropriate choice of constant, yields very similar results for the gE data set. Constants for these equations are chosen to yield zero \( \text{median} \) values of residuals for the 378 galaxy sample: for the 1.12 slope, they are 0.600, 0.601, 0.601, 0.618, 0.617, and 0.618, respectively, for the BH + 0.019, IR, BH + IR - 0.016, BH, IR - 0.016, and IR + BH + 0.019 values. Analogously, they are 0.654, 0.654, 0.655, 0.672, 0.669, 0.670, for the 0.942 slope.

It is assumed that all deviations from the \((B-V)_0\)-Mg\(_2\) relation are due to a combination of random observational and cosmic errors for the reddening predictions and in the \((B-V)_0\)-Mg\(_2\) relationship for gE galaxies. Handling the data in the manner described above gives 12 ways of looking at these data: two different zero points, two different slopes of the Mg\(_2\):(B-V)_0 equation, and three subsamples: low, high, and “all.”

For each of these 12 ways, there are four observationally independent \( \sigma \) errors that we can calculate: (1) the error of BH reddening predictions on the \((B-V)_0\)-Mg\(_2\) relationship \( \sigma(BH : BV) \), (2) the error of the IR reddening predictions on the \((B-V)_0\)-Mg\(_2\) relationship \( \sigma(IR : BV) \), (3) the error of the average \((BH + IR)\) reddening prediction on \((B-V)_0\)-Mg\(_2\) relationship \( \sigma(\text{ave} : BV) \), and (4) the 1 \( \sigma \) error for the agreement in reddening predictions of BH to IR \( \sigma(BH : IR) \). (No individual weighting is given each galaxy, as the Seven Samurai cited only average errors for these data.) In turn, each observable error is itself the quadratic sum of the intrinsic errors for each data set: \( \sigma(BH) \), \( \sigma(IR) \), \( \sigma(\text{ave}) \), and \( \sigma(BV + Mg) \). This gives us four equations in four unknowns that relate the observable errors to these intrinsic errors:

\[
\begin{align*}
\sigma(BH : BV)^2 &= \sigma(BH)^2 + \sigma(BV + Mg)^2, \\
\sigma(IR : BV)^2 &= \sigma(IR)^2 + \sigma(BV + Mg)^2, \\
\sigma(\text{ave} : BV)^2 &= \sigma(\text{ave})^2 + \sigma(BV + Mg)^2, \\
\sigma(BH : IR)^2 &= \sigma(BH)^2 + \sigma(IR)^2.
\end{align*}
\]

Intrinsic errors are determined via a least-squares analysis. Table 2 gives the results of this least-squares analysis, two lines for each of the 12 ways of looking at these data (see the table notes for an explanation of Table 2). Figures 1, 2, and 3 show results from using the 1.12 slope for the \((B-V)_0\)-Mg\(_2\) relation, as results from the 0.942 slope are virtually indistinguishable from these data (cf. Table 2). Figures 1a–1f are histograms of residuals from the \((B-V)_0\)-Mg\(_2\) relation for the 378 gE galaxies, divided into low- and high-reddening subsets. Figures 1a–1c are the residuals from the \((B-V)_0\)-Mg\(_2\) relation for gE galaxies using the IR-0.016 values (Fig. 1a), the original BH values (Fig. 1b), and the average of these two reddening predictions (Fig. 1c). Figures 1d–1f are analogous to Figures 1a–1c, but are calculated using the original IR values (Fig. 1d), the

---

5 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
BH + 0.019 values (Fig. 1e), and the average from these values (Fig. 1d).

Figures 2a–2f (parallel to Fig. 1) give the scatter in these reddening predictions versus the average value of reddening for both samples of the data for each kind of zero points for these gE galaxies, now including the 11 high gas-to-dust galaxies in the 230° < l < 310°, −20° < b < 20° region that were not included in the low-reddening analysis. Different symbols are used to denote these 11 galaxies, as well as the eight galaxies in the Perseus Cluster (the most-reddened galaxies in this sample that are all in one direction), since these galaxies are discussed separately below. Figures 3a and 3b show the histograms of the scatter in the BH and IR reddening predictions for these gE galaxies, again with the two subsets of highly reddened samples distinguished; Figure 3a for BH versus IR − 0.016, Figure 3b for BH + 0.019 versus IR.

It is evident on inspection that the distribution of reddening residuals for the low-reddening galaxies (Fig. 1) are reasonably Gaussian, which is consistent with the initial assumption that random errors dominate these data and provides ex post facto justification of the least-squares analysis performed here. It is also evident that the reddening residuals for the high-reddened sample do not define a reasonable Gaussian sample (making their least-squares analysis a bit suspect), suggesting that other issues might be at play when line-of-sight reddening is high.

The 1 σ least-squares error for the relationship of Mg2 on (B−V)$_0$ is 0.027 mag for the low-reddening galaxies (rows 2, 5, 8, and 11 of Table 2), as well as for the whole 378 galaxy sample (rows 1, 4, 7, and 10 of Table 2). Consistency of errors determined for the Mg2-(B−V)$_0$ relation for all low-reddening subsets of these data further justifies the Gaussian assumption for the least-squares fits to these data.

Galaxies with high Galactic reddening are generally situated at low Galactic latitudes and/or in regions with irregular stellar foregrounds. This observer can attest to the difficulties in obtaining reliable (B−V) colors for such galaxies. Hence, a larger scatter in the Mg2-(B−V)$_0$ relation for high-reddening galaxies was expected (and is the reason for dividing the data set into low- and high-reddening areas).

The 1 σ agreement in reddening between the BH and IR methods for 378 gE galaxies is either 0.0144 mag (IR − 0.016 BH) or 0.0158 mag (BH + 0.019 IR), for an average 1 σ scatter between these reddening predictions of 0.0151 mag. The 1 σ errors of reddening predictions in low-reddening directions are 0.006–0.009 mag for the BH method, with BH and IR method predictions agreeing to an accuracy of 0.007 mag in these directions. In the high-reddening areas (but excluding the southern region with high gas-to-dust ratios), errors remain 0.011 mag for the IR method but increase to 0.024–0.025 mag for the BH method.

TABLE 2

| Data Set | N   | BH: BV | IR: BV | Ave: BV | BH: IR | σ(BH) | σ(IR) | σ(Ave) | σ(BV + Mg2) |
|----------|-----|--------|--------|---------|--------|--------|--------|---------|-------------|
| All: 1.12: BH+ | 378 | 306 | 293 | 288 | 158 | 128 | 93 | 79 | 278 |
| Low: 1.12: BH+ | 344 | 295 | 288 | 282 | 144 | 112 | 91 | 71 | 273 |
| High: 1.12: BH+ | 34 | 399 | 340 | 347 | 263 | 237 | 114 | 132 | 321 |
| All: 1.12: IR− | 378 | 309 | 292 | 292 | 144 | 125 | 72 | 72 | 283 |
| Low: 1.12: IR− | 351 | 298 | 286 | 285 | 129 | 110 | 69 | 65 | 277 |
| High: 1.12: IR− | 27 | 427 | 361 | 372 | 266 | 248 | 98 | 133 | 348 |
| All: 0.942: BH+ | 344 | 287 | 272 | 279 | 158 | 130 | 91 | 79 | 267 |
| Low: 0.942: BH+ | 34 | 386 | 325 | 332 | 244 | 237 | 114 | 87 | 72 |
| High: 0.942: BH+ | 10 | 40 | 34 | 40 | 10 | 12 | 16 | 10 | 10 |
| All: 0.942: IR− | 378 | 301 | 281 | 282 | 144 | 127 | 68 | 72 | 273 |
| Low: 0.942: IR− | 35 | 291 | 275 | 276 | 129 | 113 | 63 | 65 | 268 |
| High: 0.942: IR− | 12 | 408 | 345 | 354 | 266 | 244 | 107 | 133 | 327 |

Notes.—Col. (1): Type of sample used defined by the subset of data (all, low, or high), type of sample (BH+ or IR− refer to the addition or subtraction of zero points for that data set), and the slope of the (B−V)$_0$-Mg2 relation used (1.12 or 0.942). Col. (2): The number of galaxies in this sample. Cols. (3)–(6): the 1 σ least-squares errors in (BV), (IR), (ave), and (BV + Mg2) in units of 0.0001 mag. The second row for each entry in col. (1) gives the zero point offsets calculated for each of the least-squares fits under which they are placed.

The 1 σ least-squares error for the relationship of Mg2 on (B−V)$_0$ is 0.027 mag for the low-reddening galaxies (rows 2, 5, 8, and 11 of Table 2), as well as for the whole 378 galaxy sample (rows 1, 4, 7, and 10 of Table 2). Consistency of errors determined for the Mg2-(B−V)$_0$ relation for all low-reddening subsets of these data further justifies the Gaussian assumption for the least-squares fits to these data.

Galaxies with high Galactic reddening are generally situated at low Galactic latitudes and/or in regions with irregular stellar foregrounds. This observer can attest to the difficulties in obtaining reliable (B−V) colors for such galaxies. Hence, a larger scatter in the Mg2-(B−V)$_0$ relation for high-reddening galaxies was expected (and is the reason for dividing the data set into low- and high-reddening areas).

The 1 σ agreement in reddening between the BH and IR methods for 378 gE galaxies is either 0.0144 mag (IR − 0.016 BH) or 0.0158 mag (BH + 0.019 IR), for an average 1 σ scatter between these reddening predictions of 0.0151 mag. The 1 σ errors of reddening predictions in low-reddening directions are 0.006–0.009 mag for the BH method, with BH and IR method predictions agreeing to an accuracy of 0.007 mag in these directions. In the high-reddening areas (but excluding the southern region with high gas-to-dust ratios), errors remain 0.011 mag for the IR method but increase to 0.024–0.025 mag for the BH method.

Taking the 378 galaxy sample as a whole, the IR values yield more accurate reddenings based on these elliptical...
galaxy data than do the BH predictions, 0.007–0.009 mag to 0.013 mag. So, while Schlegel et al. (1998) were correct in stating that the IR method is more accurate than the BH method, in reality it is a difference in reddening predictions over most of the sky that is measured in millimagnitudes (i.e., a difference generally not detected by users of either method).

3. ISM ISSUES AND gE STELLAR POPULATIONS

3.1. Polar Reddening

Burstein & Heiles (1982) give a major review of reddening at the Galactic poles, in which they determined the direction of lowest reddening (found at the NGP) from the average reddening of BAF stars determined by both the $uvby / C_{12}$ method and the average interstellar polarization of those stars. In turn, this direction of lowest reddening (consistent with zero reddening as measured by these indicators) was used to determine the BH zero point. In contrast, Schlegel et al. (1998) determine the average reddening at the NGP by directly measuring infrared emission and assuming a one-to-one relation between IR dust emission (modulated by dust temperature) and reddening. Hence, in both methods, the zero points assumed and the average value of reddening at the Galactic poles are linked.

Since Burstein & Heiles (1982), various authors have tried to show that the reddening at the NGP is more than obtained in that review, Schlegel et al. included. Schlegel et al. (1998) give two arguments in support of their finding of nonzero reddening at the NGP: First, they cite the study of Teerikorpi (1990), which claims that low-reddening at the NGP is an artifact due to stellar samples that select against more reddened stars (a type of selection effect previously pointed out by Burstein & Heiles 1978a in connection with galaxy selection issues; see § 3.6). Second, Schlegel et al. suggest that dust ablation that could occur at the NGP would not eliminate the small grains that dominate the UV and optical extinction.

The Teerikorpi analysis leaves the following issues unresolved:

1. The fact that both BH and IR methods predict some measurable reddening [$E(B-V) \sim 0.01–0.03$ mag] within 15° of the NGP and that this reddening is likely at a distance of 150–250 pc from us (cf. Burstein & Heiles 1978b) are ignored. No check was made to see if the reddening shown in Figure 2 of Teerikorpi (1990) is correlated in position on

![Fig. 1.—The histograms of residuals from the $(B-V)_0-M_{g_2}$ relation for the 378 galaxy sample using the 1.12 slope for this relation. The histograms for the highly reddened galaxies are given in heavier lines: (a) the IR $- 0.016$ predictions, (b) the straight BH predictions, (c) the average of IR $- 0.016$ and BH predictions, (d) the straight IR predictions, (e) the BH $+ 0.019$ predictions, and (f) the average of IR and BH $+ 0.019$ predictions.](image)
the sky or if directions with zero reddening are also correlated on the sky.

2. Teerikorpi (1990) claims that predicted $E(b - y)$ is higher for more luminous, bluer (and more distant) AF stars. However, this effect is seen for all of the distance bins in Figures 4 and 5 of Teerikorpi (1990), including that for the nearest stars (for which no selection bias is claimed in Teerikorpi’s analysis). This suggests more a calibration error in the reddening predictions for the bluest stars in his sample, rather than the kind of reddening-dependent selection effect proposed by Teerikorpi (1990). This calibration error would also explain the higher reddening that Teerikorpi (1990) obtains from the $uvby/\beta$ data than was obtained by Burstein & Heiles (1982).

3. It is stated that there is a general reddening of $E(b - y) = 0.04$ mag over the whole NGP. Yet, the average $E(b - y)$ determined by the IR method is 0.015 mag, averaged over 10° around the NGP (Schlegel et al. 1998), and that of BH is consistent with this picture, but at a bit less reddening.

Berdyugin & Teerikorpi (2002) have also recently published new polarization measurements of stars at the NGP. Their measurements indicate large regions around the NGP where no polarization of starlight is measured, consistent with the directions absent of stellar polarizations found by Appenzeller (1975) and Markannen (1979; the data used by Burstein & Heiles in 1982 to help establish their zero point). The new stellar polarization measures of Berdyugin & Teerikorpi (2002) actually strengthen the result that the NGP contains regions with line-of-sight $E(b - y) \ll 0.01$ mag.

It is relevant here that Burstein & Heiles (1978b, 1982) point out that high gas-to-dust ratios exist preferentially as halos around nearby OB associations at low latitudes. (Those high gas-to-dust ratios cannot be due to either molecular clouds or missing $\text{H}_i$ flux in the $\text{H}_i$ maps used by Burstein & Heiles, a suggestion made by Boulanger et al. 1996, as both effects would lower the gas-to-dust ratio, not raise it.)

Not all the dust that produces emission produces reddening in the UV and optical (cf. Li & Greenberg 1997), a point also made by Schlegel et al. (1998). However, the halos of the OB associations tell us that the outflows from these associations can diminish the reddening from the dust while not diminishing the $\text{H}_i$ gas. It is known that our solar system is passing through an $\text{H}_i$ superbubble of the type originally identified by Heiles (1979; cf. discussion in Strittmatter et al. 1984). Hence, our Sun is now within a region that is analogous to the outflow halos of the OB associations, so by analogy, high gas-to-dust ratios are likely at high Galactic
reddened galaxies are given as a heavy line. /C0
BH + 0.019 IR data, but restricted their analysis to regions with
BH (1996) combined their Leiden/Dwingeloo H i pervasive.
(iii) shows gas-to-dust ratio variations of a factor of 3, both high
and low. This is consistent with what was found by Burstein & Heiles in 1982 still stands, namely,
that the NGP is a region where the gas-to-dust ratio is high.

3.2. Gas-to-Dust Variations
The dust-to-gas map (Fig. 11) in Schlegel et al. (1998) shows gas-to-dust ratio variations of a factor of 3, both high
and low. This is consistent with what was found by Burstein & Heiles (1978b). Schlegel et al. (1998) also find there are
significant gas-to-dust ratio variations in directions where they also find low reddenings (their Table 5). Among nine of
the 18 directions with H i column density, the H i-to-dust emission ratio varies by nearly a factor of 3. Hence, gas-to-dust
variations along lines-of-sight in our Galaxy are real and pervasive.
Partly to study gas-to-dust variations, Boulanger et al. (1996) combined their Leiden/Dwingeloo H i survey with
COBE IR data, but restricted their analysis to regions with
H i column densities of less than $5 \times 10^{20}$ cm$^{-2}$ (224 BH units of H i column density). This limits their investigation
to northern Galactic latitudes greater than 65°. Boulanger et al. (1996) find no variation in gas-to-dust ratio in their
analysis. Yet, it is precisely at high Galactic latitudes that the BH method assumes a constant H i gas-to-dust ratio to
predict accurate reddenings. Hence, there is no disagreement between the Burstein & Heiles conclusions and those of
Boulanger et al. about the relative constancy of gas-to-dust ratios at high northern Galactic latitudes. And, conversely, the Boulanger et al. analysis says nothing about gas-to-dust ratio variations in the Galaxy at lower Galactic latitudes.

It is evident that something has to happen to the dust to lower its reddening characteristics relative to the H i gas
when it is found in regions of outflow around OB associations. Given that the most likely origin of Heiles-type H i superbubbles are interactions with outflow winds of OB stars and supernovae, it is likely that the dust emission seen at high Galactic latitudes has the same reddening-reduced characteristics as that around the OB associations. This would then explain the observations of high gas-to-dust ratios for high-latitude dust.

3.3. Zero Points of the Reddening Predictions versus Minimum Reddening Lines of Sight

The BH method predicts large sections at high Galactic latitudes in which reddening is predicted to be zero. Given
the estimated error in BH zero point (see above), this really means lines of sight where $E(B-V) < 0.01$ mag. There are 18 directions in Table 5 of Schlegel et al. (1998) that yield line-of-sight $E(B-V)$ estimates of 0.003–0.015 mag; most have $E(B-V) \leq 0.01$ mag. Among the 402 gE there are 62 with low IR-predicted $E(B-V)$, including five with $E(B-V) \leq 0.008$ mag.

The fact that the zero point of the IR method is 0.02 mag higher than that of the BH method does not prevent the IR method from predicting reddenings with $E(B-V) \leq 0.015$ mag in many directions on the sky. In other words, the zero point difference between the IR and BH methods is not due to the IR method predicting at least 0.02 mag of $E(B-V)$ reddening all over the sky. Rather, this zero-point difference arises from the different assumptions made by both the BH and IR methods on how their reddening indicators correlate with reddening. The specific issue of the IR zero point is considered in detail below (§ 4). Here we note that many papers have pointed out that if line-of-sight reddening is always nonzero, a wide range of astrophysical issues are affected. Not the least of these are the ages of Galactic globular clusters (VandenBerg, Bolte, & Stetson 1990) since for every 0.01 mag that the $E(B-V)$ values are wrong, age errors of 1–2 Gyr are made.

3.4. Significant Differences and Two Specific Directions

In the difference map of BH and IR reddening predictions (Fig. 12 in Schlegel et al. 1998) are areas, mostly at low
Galactic latitudes, where the two sets of predictions vary significantly. However, it is not sufficient to simply calculate
the differences in reddening predictions for the BH and IR methods, as illustrated by the development of the H i-to-eddening relations in the Burstein & Heiles papers. One needs to have independent reddening estimates to identify
which, if either, method is in error.
Figure 5 plots the difference in BH and IR predictions versus the residuals from the \((B - V)_{0}\text{Mg}2\) relation for the gE galaxies. Lines are drawn at the ±0.0453 mag level (i.e., \(3 \times 0.0151\) mag) to identify those galaxies for which the BH and IR reddening predictions differ significantly. Nine galaxies, mostly in high-reddening directions, have predicted reddenings that differ by more than 0.043 mag (see Table 3). Interestingly, for all but one of these nine galaxies, the IR reddening is significantly higher than the BH reddening. Inspection of Table 3 shows that four galaxies have IR reddenings better than BH predictions, four galaxies have BH predictions better than IR predictions, and for one galaxy both predicted residuals are within 3 \(\sigma\), but of opposite sign.

Two specific regions in the sky were initially singled out for special examination: the Perseus galaxies and the 11 galaxies in the southern region specified above. Figure 4 shows that the predictions of the BH and IR methods differ systematically for the Perseus galaxies (cf. Table 3) which all lie in the same direction of the sky. Examination of BH and IR predictions for the \((B - V)_{0}\text{Mg}2\) relation for these eight galaxies reveals that the IR prediction has smaller errors for six of the eight galaxies. However, for three of the galaxies both IR and BH errors are large. The Perseus galaxies are among

### Table 3

**Galaxies Separately Discussed**

| Galaxy (1) | \(l\) (2) | \(b\) (3) | \(E(B-V)_{\text{BH}}\) (4) | \(E(B-V)_{\text{IR}}\) (5) | \(E(B-V)_{\text{BH}+}\) (6) | \(E(B-V)_{\text{IR}}\) (7) | Diff.BH IR (8) | Diff.BH E (9) | Diff.IR E (10) | Diff gal (11) |
|-----------|----------|-----------|-----------------|-----------------|-----------------|-----------------|---------------|-------------|--------------|--------------|
| NGC 1060  | 148.77   | 24.79     | 0.117           | 0.193           | 0.136           | 0.209           | 0.075         | 0.078       | 0.153        | 0.040        |
| NGC 1293  | 150.94   | 13.16     | 0.208           | 0.151           | 0.227           | 0.167           | 0.059         | 0.115       | 0.057        | 0.087        |
| NGC 1713  | 198.62   | 24.50     | 0.062           | 0.108           | 0.061           | 0.124           | 0.045         | 0.061       | 0.017        | 0.039        |
| NGC 5017  | 310.32   | 45.80     | 0.024           | 0.068           | 0.043           | 0.064           | 0.043         | 0.053       | 0.010        | 0.031        |
| NGC 821   | 151.55   | 47.56     | 0.040           | 0.094           | 0.059           | 0.110           | 0.053         | 0.020       | 0.071        | 0.046        |
| E208*G021 | 262.69   | 14.30     | 0.075           | 0.157           | 0.094           | 0.173           | 0.081         | 0.015       | 0.066        | 0.027        |
| NGC 2343  | 281.00   | 21.54     | 0.177           | 0.232           | 0.196           | 0.248           | 0.054         | 0.001       | 0.053        | 0.027        |
| NGC 4976  | 305.80   | 13.27     | 0.112           | 0.167           | 0.131           | 0.183           | 0.054         | 0.027       | 0.080        | 0.054        |
| NGC*2888  | 257.15   | 16.08     | 0.057           | 0.108           | 0.076           | 0.124           | 0.050         | 0.014       | 0.037        | 0.012        |
| NGC 83    | 113.86   | 39.91     | 0.032           | 0.054           | 0.051           | 0.070           | 0.021         | 0.091       | 0.070        | 0.080        |
| NGC 708   | 136.58   | 25.08     | 0.060           | 0.072           | 0.079           | 0.088           | 0.011         | 0.105       | 0.094        | 0.099        |
| NGC 1549  | 265.41   | 43.80     | 0.000           | 0.000           | 0.000           | 0.013           | 0.007         | 0.069       | 0.076        | 0.073        |
| NGC 3610  | 143.54   | 54.46     | 0.000           | 0.000           | 0.013           | 0.010           | 0.002         | 0.089       | 0.086        | 0.088        |
| NGC 4872  | 37.85    | 88.02     | 0.012           | 0.000           | 0.031           | 0.009           | 0.017         | 0.082       | 0.098        | 0.090        |
| NGC 7617  | 87.64    | 48.35     | 0.040           | 0.069           | 0.059           | 0.085           | 0.028         | 0.141       | 0.114        | 0.128        |

**Four Galaxies for which the BH Reddenings Are More Accurate than the IR Reddenings**

**Six Galaxies for which BH and IR Reddenings Agree, But Galaxy \((B-V)_{0}\text{Mg2}\) Deviates**

**Seven Other Perseus Galaxies (in Addition to NGC 1293)**

**Eight Additional High Gas-to-Dust Galaxies in the 230° > l > 310°, −20° < b < 20° Direction**

Notes.—Col. (1): Galaxy name; col. (2): Galactic longitude; col. (3): Galactic latitude; col. (4): BH reddening; col. (5): IR − 0.016 reddening; col. (6): the BH + 0.019 reddening; (7): the IR reddening; col. (8): the difference, BH − IR, taking the average of the differences BH − IR − 0.016 and BH + 0.019 − IR; IR; cols. (9)–(11): the difference in \((B-V)_{0}\) from the \((B-V)_{0}\text{Mg}2\) relationship using, respectively, the average of the two BH predictions (BH, BH + 0.019); the average of the two IR predictions (IR, IR − 0.016); and the average difference overall by combining all four predictions.
the lowest latitude, most heavily reddened galaxies in the Seven Samurai sample. It is worth emphasizing again the observational difficulties of obtaining accurate $B$ and $V$ magnitudes for galaxies in highly reddened, crowded stellar fields.

The 11 highly reddened galaxies in the region $230^\circ > l > 310^\circ, -20^\circ < b < 20^\circ$ had their BH reddening predictions halved for this paper. In contrast to the “note added in proof” in the Schlegel et al. (1998) paper, the adjusted BH predictions are in generally good agreement with gE galaxy colors (cf. Table 3). It is also noted that only three of these galaxies are in the much smaller region $230^\circ > l > 240^\circ, -15^\circ < b < -10^\circ$ pointed out in the Schlegel et al. (1998) paper as having H I observational problems. The differences in predicted reddenings between BH and IR methods for these 11 gE galaxies will be discussed in detail in § 4.

### 3.5. The Stellar Populations of gE Galaxies

The $(B-V)_{0}\cdot$Mg$_2$ relation errors include three sources: (1) observational errors for $(B-V)$ and Mg$_2$, (2) cosmic scatter among these stellar populations, and (3) cosmic scatter in the gradients of these stellar populations within gE. At minimum, one has to assume an average observational error in Mg$_2$ of 0.01 mag (cf. Davies et al. 1988), and an observational error of 0.02 mag in $(B-V)$ (as the original estimate of 0.03 mag in Burstein et al. 1987 cannot be correct). One is therefore left with a residual cosmic scatter of only 0.011 mag. This small cosmic scatter shows us that the stellar populations of gE, at least as measured through the $(B-V)$ color and the Mg$_2$ index, are remarkably uniform both in overall terms as well as in their internal gradients (see Trager et al. 2000 for reasons why this might be the case). Coupled with this is the strong relation of stellar population with kinematics found in Bender, Burstein, & Faber (1993), and one has some very severe constraints on how the family of elliptical galaxies has to be formed.

Of the 344/351 galaxies in low reddening directions, six galaxies have good agreement in BH and IR reddening predictions, but have $0.07$ mag deviations in their $(B-V)_{0}$ colors, having them both too blue (two galaxies) and too red (four galaxies) for their Mg$_2$ measurements (see Table 3). The two galaxies that are too blue for their Mg$_2$ values have BH and IR reddening predictions that are too small to compensate for the blueness of their $(B-V)_{0}$ colors. Five of these galaxies have close, early-type galaxy companions (cf. Tully 1988; Faber et al. 1989), while the sixth galaxy is in the Coma cluster (for which a close companion is hard to determine). It would be worthwhile to study the stellar populations in these six galaxies in more depth.

### 3.6. Why the IR Method Should Be More Accurate than the BH Method

Burstein & Heiles (1978a) were concerned with the result of Sandage (1973); Sandage (1975), who obtained a
cosecant-law slope that was smaller (0.03 mag) in \( E(B-V) \) than that obtained by others at that time (0.05 mag). What Burstein & Heiles (1978a) found is the gE at low Galactic latitudes used by Sandage to calibrate his cosecant-law (ironically, in the Perseus Cluster) lie preferentially in areas of low reddening compared to other lines of sight in the same region. In choosing galaxies (or stars) for study, one chooses brighter galaxies (stars) that lie preferentially in directions of lower Galactic reddening.

Now couple this selection effect with the fact that the distribution of dust is very patchy on all size scales on which it has been measured (cf. Schlegel et al. 1998), and the levels of patchiness increase and the size scales of the patchiness decrease as reddening increases. As a result, the predictive power of any line-of-sight reddening prediction of finite pixel size will deteriorate in accuracy as the line-of-sight reddening increases and/or with larger pixel size.

On average, galaxies (or stars) chosen on the basis of their brightness will be chosen in regions that have less reddening than the average around them. This effect is minimal for low-reddening directions, where variation in reddening is mostly comparable to or larger than either the BH or the IR pixels, but becomes important for highly reddened regions, in which patchy reddening exists on small angular size scales. Hence, there will be a tendency for both the BH and the IR methods to overestimate the reddenings of highly reddened galaxies (i.e., produce galaxies with colors too blue), with the onset of these systematic effects occurring at lower reddenings for the larger BH-prediction pixel than for the smaller IR pixel. This is likely the primary reason why the IR predictions are more accurate than the BH predictions in highly reddened directions, and slightly more accurate in low-reddening directions.

Inspection of Figure 2 shows that for \( E(B-V) \) (average) above 0.15 mag, there is a tendency for the BH method to, indeed, overpredict the reddenings of the galaxies (makes the galaxies too blue). Inspection of Figure 6 in Schlegel et al. (1998) shows that for reddenings larger than \( E(B-V) = 0.20 \) mag, the IR-predicted values also systematically overestimate the observed reddenings. This is yet another reason for one to be careful if one wishes to extend either of these reddening-prediction methods to high-reddening directions.

Many of the Seven Samurai galaxies with high reddenings are south of \( \delta = -23^\circ.5 \), and have only \( H\alpha \) predictions from the BH method. The fact that there is no zero-point shift, even for the 11 southern gE galaxies whose \( H\alpha \)-predicted BH reddenings have been halved (see § 4), indicates good consistency of \( H\alpha \) measures, north and south.

3.7. Completeness Issues

**BH.** —Areas in the south Galactic polar cap are missing BH predictions, as well as some directions elsewhere in the sky. The region \( 230^\circ > l > 310^\circ \), \(-20^\circ < b < 20^\circ \) needs special attention (see above). The reddening for M31 is that of M32 in the BH method, as the \( H\alpha \) of M31 interferes with the measurement of \( H\alpha \) in our Galaxy.

**IR.** —There might be an overestimate of its zero point and higher scatter in their predictions related to high gas-to-dust ratios (§ 4). No reddening prediction is made for M32, as the contribution of background M31 flux is uncertain (the opposite problem for this pair of galaxies than that faced by the BH method). The 5% of the sky not covered by the IRAS survey will have lower spatial resolution of the COBE/IR prediction than the rest of the sky.

4. THE IR : BH ZERO-POINT DIFFERENCE: A MATTER OF HIGH GAS-TO-DUST RATIOS?

Examination of the Schlegel et al. (1998) paper finds that the dust: \( H\alpha \) emission ratio image (their Fig. 11) looks very similar to the IR : BH difference image (their Fig. 12). Supposing these two images confirms this impression: even very fine structure in the \( H\alpha : \) dust emission map is the same as that in the IR : BH map. However, if we compare Figure 11 of Schlegel et al. (1998) to the relevant figures in Heiles (1976; cf. discussion in Burstein & Heiles 1978b), then a curious difference emerges. The regions of low gas-to-dust ratio in the Heiles maps correspond to regions in which there is active star formation, and the regions of high gas-to-dust ratio surround these regions. As discussed in Burstein & Heiles (1978b), this makes sense if the high gas-to-dust ratio gas is due to the outflows from the star-forming regions. In contrast, in Figure 11 of Schlegel et al. (1998) the opposite occurs, as areas of higher gas-to-dust ratio tend to appear on that map inside regions of lower gas-to-dust ratios. This discrepancy could be solved if Figure 11 of Schlegel et al. (1998) is really a map of gas-to-dust ratios, rather than what they advertise it to be. For now, however, this discrepancy stands.

There are two regions sampled by the gE galaxies where it is known a priori that the \( H\alpha : \) to-dust ratio is high: around the NGP and the 11 southern region galaxies (\( 230^\circ > l > 310^\circ \), \(-20^\circ < b < 20^\circ \)). Borrowing on the correlation seen for Figures 11 and 12 of Schlegel et al. (1998), their Figure 12 shows that this southern region has the signature of patchy, high gas-to-dust ratios. These 11 galaxies are listed in Table 3 (all 11 have an asterisk in their names).

Given that this is the only region in which there are both highly reddened galaxies and high gas-to-dust ratios, it is of interest to calculate the IR and BH reddening-prediction errors separately for these particular 11 galaxies (these were not included in the error determination done previously). The value \( \sigma(\text{IR} : BV) \) is 0.0337 for the IR reddening predictions for these 11 galaxies, significantly higher than 0.0212 found for \( \sigma(\text{BH} : BV) \). While 0.0337 for \( \sigma(\text{IR} : BV) \) is not out of line for IR values for high-reddened galaxies (cf. Table 2), the value of 0.0212 for \( \sigma(\text{BH} : BV) \) is significantly smaller that its values for high-reddened galaxies. Moreover, further inspection of Table 2 shows that the values of \( \sigma(\text{IR} : BV) \) are always smaller than those of \( \sigma(\text{BH} : BV) \). It is in this one region of space, in which we have galaxies with high reddening and high gas-to-dust ratios, that the value of \( \sigma(\text{IR} : BV) \) is much larger than that of \( \sigma(\text{IR} : BV) \).

Equally important, the IR method has a zero-point over-prediction of 0.0165 mag in \( E(B-V) \) for these 11 galaxies, relative to the BH predictions (even after the average zero-point difference between the two methods is eliminated). For these 11 galaxies the average zero-point difference between IR and BH predictions is 0.033 mag in \( E(B-V) \), not 0.016 mag as found for the 378 gE sample (from which these 11 galaxies were excluded).

As reviewed in § 3.1, there is good reason to think that the Galactic poles are dominated by regions of high gas-to-dust ratios, similar to that found around OB associations, as we may be passing through the remnants of an old, Heiles-like superbubble in the ISM. As Schlegel et al. (1998) restricted
their determination of the IR : BH zero-point difference to directions with \( |b| > 45^\circ \), it is precisely around the Galactic poles that their zero-point difference of \( E(B-V) = 0.02 \) mag was calculated. Moreover, half of the 378 gE sample lies above Galactic latitudes of \( 45^\circ \) (which is less than one-half of the sky).

The current evidence indicates that in regions of higher reddening, the IR – BH zero point difference doubles to 0.033 mag. Hence, if the IR method overpredicts \( E(B-V) \) in directions of high gas-to-dust ratios, with the size of the over-prediction increasing as the degree of reddening increases, this would fully explain the zero-point difference seen between the two methods.

Appealing to Table 5 of Schlegel et al. (1998) for further information is of no avail, as the IR- (and BH-) predicted \( E(B-V) \) in the nine directions in that table having \( H \) \( t \) measures are less than 0.015 mag. The mutual agreement between the BH and IR methods, 0.007 mag in regions of low reddening, is comparable to this range of \( E(B-V) \), making it fruitless to try to use these nine directions to see if a relation exists between gas-to-dust ratio and the IR versus BH zero point. One needs more highly reddened, high gas-to-dust directions to make this test. The only such region in the present data set is the southern hemisphere region discussed here.

The principal difference between the BH and IR methods is that the BH method explicitly accounts for dust-to-gas ratio differences at low Galactic latitudes, while the IR method does not. As discussed in the previous section, there is reason to believe that variations in gas-to-dust ratio along different lines of sight in the Galaxy (which the IR method does confirm exist) are due to the modification of the dust grains in outflows from OB stars and supernova (cf. Greenberg & Li 1995).

Thus, there are two lines of evidence that strongly suggest that the IR method overestimates reddenings in directions with high gas-to-dust ratios: First, the IR method has a 0.016 mag in \( E(B-V) \) higher zero point than the BH method as primarily determined in regions of low reddening, with half the sample near the Galactic poles. Second, the IR predictions overestimate reddenings at twice this level relative to those from the BH method for highly reddened galaxies in the one low-latitude, high gas-to-dust region that is sampled by the Seven Samurai data set. A third, related issue is the close correlation of fine-leveled structure in the IR : H \( t \) and IR : BH maps in Schlegel et al. (1998).

It is worth reflecting on the fact that to further test the IR predictions in regions of high gas-to-dust ratio and of moderately high reddenings, one is restricted to directions at relatively low latitudes. Yet, very few galaxy surveys include galaxies at low latitudes in their samples (unless one is probing the zone of avoidance itself). That there are any gE galaxies at low Galactic latitudes in the Seven Samurai sample is an accident of galaxy selection. Rather, most investigations of galaxies avoid highly reddened regions more because they lie in crowded stellar regions than because they lie in highly reddened directions (cf. the relatively high Galactic latitude limits of the Sloan Digital Sky Survey [SDSS]). Also due to the accident of their selection (from the ESO survey plates), most of the highly reddened galaxies in the Seven Samurai survey lie below declination \(-23^\circ.5\), the nominal northern galaxy count survey limit. Unless a concerted effort is made to study gE galaxies at low northern hemisphere latitudes (with their concomitant observational problems) in directions in which there is known high gas-to-dust ratios, further probing of the issue of high gas-to-dust dependency of the IR method (and the associated diminished reddening of dust relative to overall dust emission in those directions) will be difficult.

5. SUMMARY

Both Burstein & Heiles (1978b; the BH method) and Schlegel et al. (1998; the IR method) permit one to independently predict line-of-sight Galactic reddening. Both methods can be differentially calibrated using independent reddening estimates for objects situated beyond the Galactic reddening layer. The currently best data for this exercise are the \( B-V \) \( i \) colors and Mg 2 -line strengths for giant elliptical (gE) galaxies, as it is found empirically (Burstein et al. 1988) that their stellar populations are remarkably uniform for these parameters. This paper presents a revised Seven Samurai database from which reddening predictions can be made more accurately for 402 gE galaxies. Of these 402 gE galaxies, 12 lack direct BH predictions, one lacks a direct IR prediction, and 11 galaxies lie in the southern region \((230^\circ > l > 310^\circ, -20^\circ < b < 20^\circ) \) identified in Burstein et al. (1987) as needing an adjustment to the BH predictions, leaving 378 galaxies for an objective, least-squares analysis.

Both BH and IR methods must assume zero points for their predictions. The BH method uses independent estimates of \( E(B-V) \) at the NGP and takes its zero point from the directions with the least amount of reddening and minimum amount of average stellar polarization \( [E(B-V) \sim 0.00] \). The IR method assumes that there is a one-to-one relationship between dust emission/temperature and reddening. Because the IR method sees dust emission at the poles, the BH and IR methods differ in zero point by \(-0.02 \) mag. The present analysis is consistent with this finding: the IR zero point is higher by 0.016 mag when the BH zero point is applied to the IR data, and it is higher by 0.019 mag when the IR zero point is applied to the BH data.

Two slopes are used for the \((B-V)_{0,\text{Mg}_2}\) relation, owing to differences in how this relation can be defined. The sample is further divided into low- and high-reddening directions, as well as taking the whole data set together [taking the low- and high-reddening cut at \( E(B-V) = 0.100 \)]. For each of these 12 data combinations, a system of four coupled equations in four unknowns are formed that can be solved in a least-squares manner for the intrinsic 1 \( \sigma \) errors for four quantities of interest: BH-predicted reddenings, IR-predicted reddenings, the agreement between the BH and IR reddening predictions, and the \((B-V)_{0,\text{Mg}_2}\) relation itself.

In directions with \( E(B-V) < 0.10 \) mag, IR prediction errors are 0.002 – 0.005 mag in \( E(B-V) \) more accurate than those of the BH method, yielding an average 1 \( \sigma \) prediction accuracy of 0.007 mag. The IR method is more accurate (0.011 mag) than the BH method in most highly reddened directions (0.024 – 0.025 mag). Owing to a selection effect first detailed by Burstein & Heiles (1978a), the higher accuracy of the IR method is likely related to its smaller pixel size on the sky (6'') compared to that of the BH method (18' \( \times \) 36'). Observational errors in the \((B-V)_{0,\text{Mg}_2}\) relation are 0.027 mag in low-reddening directions and higher in high-reddening directions, owing to observational issues in accurately measuring galaxy colors in crowded stellar regions. Only six galaxies, all likely companions of larger galaxies, are found in low-reddening directions for which their \( B-V \) colors are significantly too blue or too red for
their Mg$_2$-line strengths. These galaxies are worth further investigation.

Discussion of the reddening at the NGP is updated from that given in Burstein & Heiles (1978b), but the same conclusion is drawn from newer data as was drawn then: there are directions around the NGP that have $E(B-V) < 0.01$ mag; i.e., essentially not measurable. Furthermore, a plausible case can be made that the solar system is presently moving through an old Heiles-type superbubble (Heiles 1979), in which the dust has been affected by the same mechanism (a whittling down of its ice mantle? cf. Greenberg & Li 1995) that produces high gas-to-dust ratios around OB associations (which are seen in both the BH and IR data sets).

The IR and BH methods both find large variations in the H 1-to-reddening ratio in the interstellar medium in our region of the Galaxy. High ratios of gas-to-dust are found specifically around nearby OB associations and at the Galactic poles. Both methods predict many lines of sight in which $E(B-V) < 0.015$ mag, including five gE for which the IR method predicts $E(B-V) < 0.008$ mag.

There are two lines of evidence that the IR method overpredicts reddenings by $E(B-V) \sim 0.02$ mag in directions in which there are high gas-to-dust ratios: (1) the much larger errors and larger $E(B-V)$ zero point (0.033 mag) of the IR method relative to the BH method for 11 highly-reddened gE galaxies in directions known to have high gas-to-dust ratios and (2) the existence of the $E(B-V) \sim 0.02$ mag zero-point difference determined primarily at high Galactic latitudes, which are also directions of high gas-to-dust ratios. Another set of data that could bear on this issue, that of the IR : H i map published in Schlegel et al. (1998), seems to be at odds with a similar H i : dust map published in Heiles (1976), and used by BH to correct for gas-to-dust ratio differences in their reddening map. While structure in the IR : H i difference map of Schlegel et al. (1998) corresponds well to similar structure in the IR : BH difference map they publish, the issue as to what the IR : H i map means needs to be resolved before this comparison can be used to help understand the zero-point difference between the IR and BH methods.

Given the good differential agreement between the BH and IR predictions for most directions where $E(B-V) < 0.100$ mag, it is wise to compare the reddening estimates one gets from both methods to discover the systematic errors in both methods. In doing so, one can find out further information about what portions of the dust are causing the reddening, as this information is currently unknown. For example, the recent study of Colless et al. (2001) found that taking an average of the two methods yielded a more accurate result than from either method alone.

As long as there was one accurate method for predicting reddening along lines of sight (BH) in the Galaxy, the issue of the assuming the zero point of that method was apparently well hidden from sight. The fact that there are now two accurate methods for predicting line-of-sight reddening in the Galaxy that have assumed different zero points gives us both the chance to learn more about the interstellar medium, but also places the onus of choosing a common zero point on the user of either or both methods. Inspection of the reddenings from the two methods currently listed on the NED Web site brings this issue to the forefront. Having two accurate methods of predicting line-of-sight reddenings in our Galaxy gives one the ability to compare them in all directions that are used. Given that systematic differences do exist in these predictions, it is further recommended that the values of the two predictions be compared for consistency before averaging.

In closing, it is hoped that the SDSS will provide a new treasure trove of E galaxy colors and spectral line strengths that can be used to differentially test the BH and IR reddening predictions in many different directions. Unfortunately, even the SDSS will not probe into highly reddened, high gas-to-dust regions, leaving those kinds of investigation for the future. It is also hoped that Schlegel et al. (1998) will post files on their Web site that tabulate both the gas-to-dust ratios that their method calculates and the IR-to-BH differences with the zero-point difference between these data removed. Such tables would facilitate further studies of the ISM, as well as differences in reddening predictions between the BH and IR methods.

D. B. would like to thank the NED team, specifically Harold Corwin, Marion Schmitz, and Anne Kelly for providing their values for the Schlegel et al. (1998) reddenings. An anonymous referee is thanked for helpful comments. D. B. also thanks his colleagues in the Seven Samurai collaboration for helping to develop one of the most accurate set of data on elliptical galaxies that currently exists.

REFERENCES

Appenzeller, I. 1975, A&A, 38, 313
Bender, R., Burstein, D., & Faber, S. M. 1993, ApJ, 411, 153
Berdugun, A., & Terzicorpi, P. 2002, A&A, 384, 1050
Boulanger, F., Abergel, A., Bernard, J.-P., Burton, W. B., Desert, F.-X., Hartmann, D., Lagache, G., & Puget, J.-L. 1996, A&A, 312, 256
Burstein, D., Davies, R. L., Dressler, A., Faber, S. M., Lynden-Bell, D., Terlevich, R., & Wegner, G. 1988, Towards Understanding Galaxies at High Redshift, ed. R. G. Kron & A. Renzini (Dordrecht: Kluwer), 17
Burstein, D., Davies, R. L., Dressler, A., Faber, S. M., Stone, R. P. S., Lynden-Bell, D., Terlevich, R., & Wegner, G. 1987, ApJS, 64, 601
Burstein, D., & Heiles, C. 1987a, Astrophys. Lett., 19, 69
———. 1997b, ApJ, 225, 40
———. 1998, AJ, 51, 1050
Colless, M., Saglia, R., & Faber, S. M. 2001, MNRAS, 321, 277
Davies, R. L., Burstein, D., Dressler, A., Faber, S. M., Lynden-Bell, D., Terlevich, R., & Wegner, G. 1987, ApJS, 64, 581
de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, H. G. 1976, The 2nd Reference Catalogue of Bright Galaxies (Austin: Univ. Texas Press)
Faber, S. M., Wegner, G., Burstein, D., Davies, R. L., Dressler, A., Lynden-Bell, D., & Terlevich, R. 1989, ApJS, 69, 763
Greenberg, J. M., & Li, A. 1995, in The Opacity of Spiral Disks, ed. J. J. Davies & D. Burstein (Dordrecht: Kluwer), 19
Heiles, C. 1976, ApJ, 204, 379
———. 1979, ApJ, 229, 533
Hudson, M. 1999, PASP, 111, 57
Li, A., & Greenberg, J. M. 1997, A&A, 323, 566
Lynden-Bell, D., Faber, S. M., Burstein, D., Davies, R. L., Dressler, A., Terlevich, R., & Wegner, G. 1988, ApJ, 326, 19
Markkannen, T. 1979, A&A, 74, 201
Sandage, A. 1973, ApJ, 183, 711
———. 1975, ApJ, 202, 563
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Strittmatter, R. E., Balasubrahmanyan, V. K., Protheroe, R. J., & Ormes, J. F. 1985, A&A, 143, 249
Teerikorpi, P. 1990, A&A, 235, 362
Trager, S. C., Faber, S. M., Worthey, G., & Gonzalez, J. J. 2000, AJ, 120, 165
Tully, R. B. 1988, Nearby Galaxies Catalog (Cambridge: Cambridge Univ. Press)
VandenBerg, D. A., Bolte, M., & Stetson, P. B. 1990, AJ, 100, 445