LIMITS ON THE H I CONTENT OF THE DWARF GALAXY HYDRA II
(Research Note)

Andrew Janzen¹, Eve M. Klopf², Felix J. Lockman³, Rodolfo Montez Jr⁴, Kurt Pfar³, Nau Raj Pohreh⁵, Robert J. Selina⁶, A. Tog³, Mehrnoosh Zomderis⁷

¹ California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
² Oregon Institute of Technology, 3201 Campus Drive, Klamath Falls, OR 97601, USA
³ National Radio Astronomy Observatory, Green Bank, WV 24494, USA
e-mail: jlockman@nrao.edu
⁴ Physics and Astronomy Department, Vanderbilt University, PMB 401807, 2401 Vanderbilt Place, Nashville, TN 37240, USA
⁵ Associated Universities Inc., Av. Nueva Costanera 4091, Suite 502, Vitacura Santiago, Chile
⁶ Department of Physics, Florida International University, Miami, FL 33199, USA
⁷ National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801, USA
⁸ Department of Physics and Astronomy, The University of Toledo, 2825 West Bancroft Street, Toledo, OH 43606, USA
⁹ Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

Received September 11, 2015; accepted

ABSTRACT
Sensitive 21cm HI observations have been made with the Green Bank Telescope toward the newly-discovered Local Group dwarf galaxy Hydra II, which may lie within the leading arm of the Magellanic Stream. No neutral hydrogen was detected. Our 5σ limit of \(M_{\text{HI}} \leq 210 \, M_\odot \) for a 15 km s\(^{-1}\) linewidth gives a gas to luminosity ratio \(M_{\text{HI}}/L_v \leq 2.6 \times 10^{-5} \, M_\odot L_\odot^{-1} \). The limits on HI mass and \(M_{\text{HI}}/L_v \) are typical of dwarf galaxies found within a few hundred kpc of the Milky Way. Whatever the origin of Hydra II, its neutral gas properties are not unusual.

Key words. Galaxy: halo / Galaxies: Dwarf / Galaxies: individual objects: Hydra II / Galaxies: Local Group

1. Introduction
Hydra II is a dwarf galaxy in the Local Group, newly-discovered during the Survey of the Magellanic Stellar History (SMASH) using the Dark Energy Survey Camera DECam (Nidever & Smash Team 2015; Martin et al. 2015). It lies at a distance of 134 kpc from the Sun with \(V_{\text{hel}} = 303 \, \text{km s}^{-1} \), and has physical properties, such as a half light radius of 66 pc, a high dynamical mass-to-luminosity ratio, and a metalliclicity \((\langle Fe/H \rangle) = -2.02 \pm 0.08 \), indicating that it is a dwarf galaxy and not a cluster in the Milky Way’s halo (Martin et al. 2015, Kirby et al. 2015). It is located in the same region of the sky as the leading arm of the Magellanic Stream and has a similar velocity (Nidever et al. 2008, 2010). The distance to the leading arm is not known and estimates range from 21 kpc to > 100 kpc (McClure-Griffiths et al. 2008, Besla et al. 2012, Martin et al. 2015). If Hydra II originated in the Magellanic Clouds it may have a considerably different history and properties than other Milky Way dwarfs (Martin et al. 2015). For this reason, we made very sensitive observations of the 21cm HI emission in Hydra II using the Green Bank Telescope, which has been used to produce some of the most strict limits on the HI content of other Local Group dwarf galaxies (Spekkens et al. 2014).

2. Observations and analysis
Measurements of 21cm emission from Hydra II were made with the 100-meter diameter Robert C. Byrd Green Bank Telescope (GBT) of the National Radio Astronomy Observatory on 2015, July 7–8 and July 17, centered at the position \(J2000 = 12^h21^m42.1^s -31^\circ59'07'' \) given by Martin et al. (2015). The GBT 1.4 GHz receiver had a total system temperature toward Hydra II of about 21 K. The GBT VEGAS spectrometer was used to measure spectra with both in-band frequency switching for 23 minutes and position-switching to a reference location displaced \(\pm 5^\circ30' \) in right ascension from the source for 110 minutes. The 9.1 FWHM beam of the GBT at 21 cm completely encompasses Hydra II, which is estimated to have an angular size of about 1.7 on the sky (Kirby et al. 2015).

The 21cm spectra covered \(\pm 2000 \, \text{km s}^{-1} \) centered on zero velocity in the local standard of rest (LSR). In the position-switched observations, emission at Milky Way velocities between -70 and +180 km s\(^{-1}\) is partially cancelled, but as the stars in Hydra II have a mean \(V_{\text{LSR}} \approx +301 \, \text{km s}^{-1} \), this does not affect our results. The data were reduced using the standard GBTIDL routines and calibrated correcting for atmospheric attenuation to produce \(T_v^* \) as a function of \(V_{\text{LSR}} \). Frequency-switched data were calibrated and corrected for stray radiation using the method described in Boothroyd et al. (2011). The final spectra, smoothed to a velocity resolution of 0.30 km s\(^{-1}\) from the intrinsic resolution of 0.15 km s\(^{-1}\), are shown in Figure 1. We combine the noise limits from position- and frequency-switched spectra for a
The grey and black are the frequency- and position-switching and 110 minutes for position switching. The combined rms noise is 9.1 mK in an 0.30 km s$^{-1}$ channel. The dip in the position-switched spectrum near 150 km s$^{-1}$ results from partial cancellation of Milky Way emission.

The H I mass–luminosity limit (using L_V from Martin et al. (2015)) of $M_{HI}/L_V \leq 2.6 \times 10^{-2} M_\odot$ L$_V^{-1}$ is also similar to that found for dwarfs near the Milky Way, as shown in Figure 4. Dwarf galaxies at larger distances from the Milky Way typically have $M_{HI}/L_V \approx 1$ (McConnachie 2012).

The lack of detectable H I in nearby dwarf galaxies is usually ascribed to tidal or ram pressure stripping in the Milky Way’s hot halo (Blitz & Robishaw 2000; Mayer et al. 2004; Grecevich & Putman 2009; Gatto et al. 2013). Presumably, similar processes have removed the gas from Hydra II. In this regard, Hydra II’s location near the leading arm of the Magellanic Stream has apparently not affected its neutral Hydrogen properties as compared with other dwarfs at similar distances.

3. Discussion

We do not detect any H I directly toward Hydra II, nor is there any evidence of significant H I nearby that galaxy, in position or velocity. Our 5σ limit $M_{HI} \leq 210 M_\odot$ shown in Figure 3 is consistent with values derived for other Local Group dwarf galaxies that lie within the ≈ 300 kpc virial radius of the Milky Way (Blitz & Robishaw 2000; Grecevich & Putman 2009; Spekkens et al. 2014; Westmeier et al. 2015). Likewise, the derived H I mass–luminosity limit (using L_V from Martin et al. (2015)) of $M_{HI}/L_V \leq 2.6 \times 10^{-2} M_\odot$ L$_V^{-1}$ is also similar to that found for dwarfs near the Milky Way, as shown in Figure 4. Dwarf galaxies at larger distances from the Milky Way typically have $M_{HI}/L_V \approx 1$ (McConnachie 2012).

The 5σ H I mass limits of local dwarf galaxies from Spekkens et al. (2014) (S14) are shown in open symbols as a function of heliocentric distance, with the Hydra II measurement as the filled symbol. The limit on M_{HI} of Hydra II is consistent with that of other dwarfs near the Milky Way.
Fig. 4. 5σ H I mass to L_V ratios of local dwarf galaxies from Spekkens et al. (2014) (S14) are shown as a function of heliocentric distance with open symbols, and the Hydra II measurement as a filled symbol using L_V from Martin et al. (2015). The limit for Hydra II is consistent with that of other dwarfs near the Milky Way.

References

Besla, G., Kallivayalil, N., Hernquist, L., et al. 2012, MNRAS, 421, 2109
Blitz, L. & Robishaw, T. 2000, ApJ, 541, 675
Boothroyd, A. I., Blagrave, K., Lockman, F. J., et al. 2011, A&A, 536, A81
Gatto, A., Fraternali, F., Read, J. I., et al. 2013, MNRAS, 433, 2749
Greve, J. & Putman, M. E. 2009, ApJ, 696, 385
Kalberla, P. M. W., McClure-Griffiths, N. M., Pitsano, D. J., et al. 2010, A&A, 521, A17
Kirby, E. N., Simon, J. D., & Cohen, J. G. 2015, ApJ, 810, 56
Martin, N. F., Nidever, D. L., Besla, G., et al. 2015, ApJ, 804, L5
Mayer, L., Mastropietro, C., Wadsley, J., Stadel, J., & Moore, B. 2006, MNRAS, 369, 1021
McClure-Griffiths, N. M., Pitsano, D. J., Calabretta, M. R., et al. 2009, ApJS, 181, 398
McClure-Griffiths, N. M., Staveley-Smith, L., Lockman, F. J., et al. 2008, ApJ, 673, L143
McConnachie, A. W. 2012, AJ, 144, 4
Nidever, D. & Smash Team. 2015, in Astronomical Society of the Pacific Conference Series, Vol. 491, Astronomical Society of the Pacific Conference Series, ed. S. Points & A. Kunder, 325
Nidever, D. L., Majewski, S. R., & Burton, W. B. 2008, ApJ, 679, 432
Nidever, D. L., Majewski, S. R., Butler Burton, W., & Nigra, L. 2010, ApJ, 723, 1618
Roberts, M. S. 1975, Radio Observations of Neutral Hydrogen in Galaxies, ed. A. Sandage, M. Sandage, & J. Kristian (the University of Chicago Press), 309
Spekkens, K., Urbancic, N., Mason, B. S., Willman, B., & Aguirre, J. E. 2014, ApJ, 795, L5
Westmeier, T., Staveley-Smith, L., Calabretta, M., et al. 2015, MNRAS, 453, 338

List of Objects

Hydra II