A New Bandwidth Interval Based Forecasting Method for Enrollments Using Fuzzy Time Series

Hemant Kumar Pathak¹, Prachi Singh²

¹S. O. S. in Mathematics, Pandit Ravishankar Shukla University, Raipur, India
²Government VYT Post Graduate Autonomous College, Durg, India
E-mail: hkpathak@sify.com, prachibksingh@gmail.com
Received February 25, 2011; revised March 11, 2011; accepted March 14, 2011

Abstract

In this paper, we introduce the concept of (4/3)σ bandwidth interval based forecasting. The historical enrollments of the university of Alabama are used to illustrate the proposed method. In this paper we use the new simplified technique to find the fuzzy logical relations.

Keywords: Fuzzy Sets, Fuzzy Time Series, Fuzzy Logical Relations

1. Introduction

For planning the future forecasting plays an important role. During last few decades, various approaches have been developed for forecasting data of dynamic and nonlinear in nature. Fuzzy theory [1] has been successfully employed to prediction. Many studies on forecasting using fuzzy logic time series have been discussed such as enrollments, the stock index, temperature and financial forecasting. Some researchers used time invariant model and some used time variant model. The traditional statistical approaches can not predict problems in which the values are in linguistic terms.

After introduction of fuzzy sets by Zadeh [1], Song and Chissom [2] presented the definition of fuzzy time series and outlined its model by means of fuzzy relation equations, and approximate reasoning. They applied the model for forecasting under fuzzy environment in which historical data are of linguistic values. In that article, they showed that a universal forecasting method using fuzzy sets can be derived from the model of his process. After then many researchers ([2-7]) used this data to forecast. Huang [11] extended Chen’s [3] work and used simplified calculations with the addition of heuristic rules to forecast the enrollments. Chen [4] presented a forecasting method based on high-order fuzzy time series for forecasting the enrollments of the University of Alabama. Most of the forecasting methods require fuzzy relation. All such methods have following drawbacks:

1) Framing of fuzzy relation requires a lot of computations.
2) Computation cost is very high.

However, obtaining accurate forecast of student enrollment is not an easy task, as many factors determine the impact of enrollment numbers. So, in the proposed method we introduced the interval based forecasting, which gives most plausible range of enrollments.

2. Basic Concepts of Fuzzy Time Series

Let \(U = \{u_1, u_2, u_3, u_4, \ldots, u_n\} \) be the universe of discourse and let \(A = [f_1(u_1)/u_1] + [f_2(u_2)/u_2] + \ldots + [f_n(u_n)/u_n] \) be the fuzzy set defined on \(U \). Here \(f_i: U \rightarrow [0,1] \) is the membership function of \(A, f_i(u), \forall i \in [1,n] \) indicates the grade of membership of \(u_i \) in the fuzzy set \(A \).

2.1. Fuzzy Time Series

Let \(X(t) \) \((t = 0,1,2, \ldots) \) be the universe of discourse and the fuzzy set defined on \(X(t) \) be \(f(t) \) \((t = 0,1,2, \ldots) \). Then \(F(t) = f(t) \) \(t = 0,1,2, \ldots, i = 1,2, \ldots \) the collection of all fuzzy sets defined on \(X(t) \) is called a fuzzy time series of \(X(t) \) \((t = 0,1,2, \ldots) \).
2.2. Fuzzy Relation

If $F(t)$ is caused by $F(t−1)$, denoted by $F(t) \rightarrow F(t−1)$, then this relationship can be represented by $F(t) = F(t−1) \times R(t, t−1)$, where \times denotes the composition operator and $R(t, t−1)$ is a fuzzy relation between $F(t)$ and $F(t−1)$.

2.3. First Order Model

The model in which the relation $R(t, t−1)$ is a fuzzy relation between $F(t)$ and $F(t−1)$ is called the first order model of $F(t)$.

2.4. Time Invariant Fuzzy Time Series

If in first order model of $F(t)$ relation $R(t, t−1) = R(t−1, t−2)$ for any time t, then $F(t)$ is called time invariant fuzzy time series.

2.5. Time Variant Fuzzy Time Series

If in first order model of $F(t)$ relation $R(t, t−1) \neq R(t−1, t−2)$ for any time t, then $F(t)$ is called time variant fuzzy time series.

3. Proposed Method

We now discuss our proposed method. The historical data and proposed method are shown in Table 1. Repeat Steps 1-3 of the method of Chen and Hsu [7] as follows.

Step 1: Define the universe of discourse $U = [13 000, 20 000]$ and partition it into several even and length intervals $u_1 = [13 000, 14 000]$, $u_2 = [14 000, 15 000]$, $u_3 = [15 000, 16 000]$, $u_4 = [16 000, 17 000]$, $u_5 = [17 000, 18 000]$.

Year	Actual data	Fuzzified input	Fuzzified output	Calculated enrollment	Forecasted interval
1971	13 055	A1			
1972	13 563	A2	A1	13 250	[12 104, 14 396]
1973	13 867	A2	A2	13 750	[12 604, 14 896]
1974	14 696	A3	A2	13 750	[12 604, 14 896]
1975	15 460	A5	A3	14 500	[13 354, 15 646]
1976	15 311	A5	A5	15 375	[14 229, 16 521]
1977	15 603	A6	A5	15 375	[14 229, 16 521]
1978	15 861	A7	A6	15 625	[14 479, 16 771]
1979	16 807	A9	A7	15 875	[14 729, 17 021]
1980	16 919	A9	A9	16 833	[15 687, 17 979]
1981	16 388	A8	A9	16 833	[15 687, 17 979]
1982	15 433	A5	A8	16 500	[15 354, 17 646]
1983	15 497	A5, A6	A5	15 500	[14 354, 16 646]
1984	15 145	A5, A6	A4	15 500	[14 354, 16 646]
1985	15 163	A4	A4	15 125	[13 979, 16 271]
1986	15 984	A7	A4	15 125	[13 979, 16 271]
1987	16 859	A9	A9	16 833	[15 687, 17 979]
1988	18 150	A10	A8, A9	16 667	[15 521, 17 813]
1989	18 970	A11	A10	18 125	[16 979, 19 271]
1990	19 328	A12	A11	18 750	[17 604, 19 896]
1991	19 337	A12	A12	19 500	[18 354, 20 646]
1992	18 876	A11	A12	19 500	[18 354, 20 646]
Step 2: Re-divide the intervals and rename them as follows: \(u_1 = [13 \ 000, 13 \ 500] \), \(u_2 = [13 \ 500, 14 \ 000] \), \(u_3 = [14 \ 000, 15 \ 000] \), \(u_4 = [15 \ 000, 15 \ 250] \), \(u_5 = [15 \ 250, 15 \ 500] \), \(u_6 = [15 \ 500, 15 \ 750] \), \(u_7 = [15 \ 750, 16 \ 000] \), \(u_8 = [16 \ 333, 16 \ 667] \), \(u_9 = [16 \ 667, 17 \ 000] \), \(u_{10} = [18,000, 18 \ 500] \), \(u_{11} = [18,500, 19 \ 000] \), \(u_{12} = [19,000, 20 \ 000] \).

Step 3: Define each fuzzy set based on the re-divided intervals and fuzzify the data shown in Table 1, where fuzzy set \(A_i \) denotes a linguistic value of the data represented by a fuzzy set.

\[
A_1 = \text{very few} = 1/u_1 + 0.5/u_2
\]

\[
A_2 = \text{very few} = 0.5/u_1 + 1/u_2 + 0.5/u_3
\]

\[
A_3 = \text{very few} = 0.5/u_2 + 1/u_3 + 0.5/u_4
\]

\[
A_4 = \text{very few} = 0.5/u_3 + 1/u_4 + 0.5/u_5
\]

\[
A_5 = \text{few} = 0.5/u_4 + 1/u_5 + 0.5/u_6
\]

\[
A_6 = \text{moderate} = 0.5/u_5 + 1/u_6 + 0.5/u_7
\]

\[
A_7 = \text{many} = 0.5/u_6 + 1/u_7 + 0.5/u_8
\]

\[
A_8 = \text{very many} = 0.5/u_7 + 1/u_8 + 0.5/u_9
\]

\[
A_9 = \text{too many} = 0.5/u_8 + 1/u_9 + 0.5/u_{10}
\]

\[
A_{10} = \text{too many} = 0.5/u_9 + 1/u_{10} + 0.5/u_{11}
\]

\[
A_{11} = \text{toomany} = 0.5/u_{10} + 1/u_{11} + 0.5/u_{12}
\]

\[
A_{12} = \text{too many} = 0.5/u_{11} + 1/u_{12}
\]

For simplicity the membership values of fuzzy set \(A_i \) are either 0, 0.5, 1. Notice that we have not displayed the membership value 0.

Now we give the steps of our proposed method.

Step 4: Fuzzify the data on Table 1. The reason for fuzzifying is to translate crisp values fuzzy sets to get a fuzzy time series. Now establish fuzzy logical relationships based on fuzzified data as “\(A_i \rightarrow A_j \)” means if the fuzzified enrollments of year \((n-1) \) is \(A_j \) then the fuzzified enrollments of year \(n \) is \(A_k \).

Step 5: By Table 3 it is clear that the fuzzy logical relationship groups are as follows.

Step 6: The fuzzified output is obtained by fuzzified input of previous years if 1) fuzzified input of \(n \)th year is \(A_i \) then fuzzified output of \((n+1) \)th year is \(A_{ij} \) (as in years 1971,1972, ...). 2) If the fuzzified input of \(n \)th year is \(A_i \) and in previous years we have got more relations as \(A_i \rightarrow A_j, A_i \rightarrow A_k, ... \) then the fuzzified output will be \((A_j, A_k, ...) \) (as in years 1983, 1984, 1988).

Step 6: The fuzzified output is obtained by fuzzified input of previous years if 1) fuzzified input of \(n \)th year is \(A_i \) then fuzzified output of \((n+1) \)th year is also \(A_i \) (as in years 1971,1972, ...). 2) If the fuzzified input of \(n \)th year is \(A_i \) and in previous years we have got more relations as \(A_i \rightarrow A_j, A_i \rightarrow A_k, ... \) then the fuzzified output will be \((A_j, A_k, ...) \) (as in years 1983, 1984, 1988).

Step 7: Output values are the mid-values of the intervals in which the fuzzified output occurs.

Step 8: Next we calculate the mean, standard deviation \(\sigma \) of output and interval by formula \(\text{output} +2/3 \sigma \) output +2/3 \(\sigma \).

Step 9: Now we can plot graphs of intervals lower limit of forecasted interval(UL of fore), upper limit of forecasted interval(UL of fore) and actual data to see that
most of the actual data comes in the range of interval.

4. Conclusions

The development of technology and programming of languages with expert systems has considerably reduced the burden of decision makers. With regard to classical methods, fuzzy set theory give solutions in a quicker easier and most sensitive way.

In this proposed method there is no need of relation-matrix, so it reduces its calculation. It also reduces the next calculation for output by this relation-matrix. The most remarkable thing in this method is that we give the most plausible range of forecasting, which is in the form of interval rather than a single value. It is also remarkable that in normal curve this interval is in the range ±3σ but in our method it is in the range of ±2/3σ.

5. References

[1] L. A. Zadeh, “Fuzzy Sets,” Information Control, Vol. 8, No. 3, 1965, pp. 338-353.

[2] Q. Song and B. S. Chissom, “Forecasting Enrollment with Fuzzy Time Series-Part I,” Fuzzy Sets and Systems, Vol. 54, No. 1, 1993, pp. 1-9. doi:10.1016/0165-0114(93)90355-L

[3] S. M. Chen, “Forecasting Enrollments Based on Fuzzy Time Series,” Fuzzy Sets and Systems, Vol. 81, No. 3, 1996, pp. 311-319. doi:10.1016/0165-0114(95)00220-0

[4] S. M. Chen, “Forecasting Enrollments Based on High Order Fuzzy Time Series,” Cybernetics and Systems: An International Journal, Vol. 133, No. 1, 2002, pp. 1-16.

[5] I. H. Kuo, S. J. Horng, T. W. Kao, C. L. Lee, T. L. Lin and Y. Pan, “An Improved Method for Forecasting Enrollment Based on Fuzzy Time Series and Particle Swarm Optimization,” Expert Systems with Applications, Vol. 36, No. 3, 2009, pp. 311-319.

[6] S. M. Chen and C. C. Hsu, “A New Method to Forecast Enrollment Using Fuzzy Time Series,” International Journal of Applied Science and Engineering, Vol. 3, No. 2, 2004, pp. 234-244.

[7] M. H. Lee, R. Efendi and Z. Ismail, “Modified Weighted for Enrollment Forecasting Based of Fuzzy Time Series,” Matematika, Vol. 25, No. 1, 2009, pp. 67-78.

[8] C. H. Cheng, T. L. Chen and C. H. Chiang, “Trend-Weighted Fuzzy Time Series Model for TAIEX Forecasting,” Proceedings of the 13th International Conference on Neural Information Processing, Part-III, Lecture Notes in Computer Science, Hong Kong, Vol. 4234, 3-6 October 2006, pp. 469-477.

[9] Q. Song and B. S. Chissom, “Fuzzy Time Series and Its Models,” Fuzzy Sets and Systems, Vol. 54, No. 3, 1993, pp. 267-277.doi:10.1016/0165-0114(93)90372-O

[10] S. M. Chen and J. R. Hwang, “Temperature Prediction Using Fuzzy Time Series,” IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, Vol. 30, No. 2, 2000, pp. 263-275.

[11] K. Huarng, “Effective Lengths of Intervals to Improve Forecasting in Fuzzy Time Series,” Fuzzy Sets and Systems, Vol. 123, No. 3, 2001, pp. 387-394. doi:10.1016/S0165-0114(00)00057-9