Analysis of efficacy and safety of vismodegib therapy in patients with advanced basal cell carcinoma – real world multicenter cohort study

M. Słowińska,1,1 M. Dudzisz-Siedż,2,† P. Sobczuk,2,3 I. Łasińska,4,5,† A. Pietruszka,6 B. Cybulska-Stopa,7 A. Kowalczyk,8 T. Świtaj,2 I. Czarnecka,1 H. Kosela-Paterekzy,6 P. Rogala,2 E. Paluchowska,1 K. Składowski,6 J. Mackiewicz,4,8 P. Rutkowski,2 W. Owczarek1

1Department of Dermatology, Military Institute of Medicine, Warsaw, Poland
2Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
3Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
4Department of Medical and Experimental Oncology, Heliodor Święcicki Clinical Hospital, Poznań University of Medical Sciences, Poznań, Poland
5Department of Nursing, Institute of Medical Sciences, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
61st Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
7Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow, Poland
8Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
9Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznań, Poland
*Correspondence: I. Łasińska; E-mail: lasinska.izabela@spsk2.pl

Abstract

Background Basal cell carcinoma (BCC) is the most frequent non-melanoma skin cancer. The basis of treatment is surgical resection. The treatment of locally advanced and metastatic disease is currently based on sonidegb or vismodegib, small molecule inhibitors of the hedgehog signalling pathway.

Objectives The study aimed to retrospectively analyse the efficacy and safety of treatment with vismodegib in 108 patients with locally advanced or metastatic disease treated from August 1st, 2017 to December 31st, 2020. The primary objective was to evaluate the objective response rate (ORR), overall survival (OS) and progression-free survival rates. The secondary aims of the study were the disease control rate, the incidence of adverse events (AEs) and the estimation of the factors that potentially impact the treatment outcome and patient survival.

Methods Patients treated in national drug programme were enrolled into this retrospective cohort study. Evaluation of the treatment efficacy was performed according to CT/MRI scans and by the response evaluation criteria in solid tumours (RECIST) 1.1. The safety evaluation was performed according to the Common Terminology Criteria for Adverse Events v. 5.0 (CTCAE) classification and severity assessment.

Results The median duration of treatment was 14 months (range 1–94 months). The median progression-free survival reached 30.5 months (95% CI; 24.8–36.3), and the progression-free survival rate after 6, 12 and 24 months were 92%, 78% and 61%, respectively. The median overall survival was 41.5 months (95% CI; 31.6–51.3), and the overall survival rate after 1, 2 and 3 years accordingly 86%, 73% and 60%. The univariate and multivariate analysis indicated that the female gender is an independent positive prognostic factor of progression-free survival.

Conclusions The response to treatment is the prognostic factor for response maintenance and better overall survival. The therapy was well tolerated with the safety profile consistent in general with known from previous studies.

Received: 10 August 2021; Accepted: 9 February 2022

Conflicts of Interest

MS received honoraria for lectures from Roche, Novartis, Tekeda, Sanofi, Medac and BMS; , honoraria for participation in advisory meetings from BMS, Novartis and Takeda; and financial support for participation in conferences from Roche,

© 2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Pierre Fabre and BMS; M D-Ś received honoraria for lectures from Pierre Fabre, Merck KGaA, Sanofi Aventis, Novartis and BMS, honoraria for participation in advisory meetings from Merck KGaA and Novartis and financial support for participation in conferences from Novartis; P S received travel grants from MSD, Roche, Novartis and Pierre Fabre and honoraria for lectures from Swiss BioPharma and BMS; I Ł received honoraria for lectures from BMS, MSD, Astellas, Pfizer, Jannsen, Roche, Merck, BMS; and financial support for participation in conferences from BMS, MSD, Roche, Merck; A P declare no conflict of interests; B C – S received honoraria for lectures from BMS, MSD, Novartis, Pierre-Fabre; and financial support for participation in conferences from Pierre-Fabre; A K declare no conflict of interests; T Ś received honoraria for lectures from BMS, Novartis, Roche and research funding from Amgen; I C received honoraria for lectures from Merck, Novartis, BMS, MSD, Pierre Fabre, and financial support for participation in conferences from Roche, Novartis, MSD and BMS; P R received honoraria for lectures and clinical trials from BMS, MSD, Novartis, Pierre Fabre; E P received financial support for participation in conferences from Medac, Axxon, Roche; K S declare no conflict of interests; J M received honoraria for: advisory board from BMS, MSD; lectures – BMS; GSK, Roche, MSD, Novartis, Pierre-Fabre; travel reimbursement: BMS, GSK, Roche, MSD, Novartis, Pierre-Fabre; P R Financial Interests: Blueprint Medicines, Advisory Board, Personal, €5,001 - €10,000, honoraria for lectures; BMS, Advisory Board, Personal, €5,000; Merck, Advisory Board, Personal, €5,000; Merck, Invited Speaker, Personal, €5,000; MSD, Invited Speaker, Personal, €5,001 - €10,000, honoraria for lectures; MSD, Advisory Board, Personal, €5,000; Novartis, Invited Speaker, Personal, €5,001 - €10,000; Pierre Fabre, Invited Speaker, Personal, €5,000, honoraria for lectures, Pierre Fabre, Advisory Board, Personal, €5,000; Sanofi, Advisory Board, Personal, €5,000 Sanofi, Invited Speaker, Personal, €5,000; BMS, Funding, Institutional, Financial interest, research grant for institution; Pfizer, Research Grant, Institutional, Financial interest, research grant for ISS; Non-financial Interests: ASCO, Officer; Polish Society of Surgical Oncology, Member of Board of Directors; W O has worked as a consultant or speaker and participated as principal investigator or subinvestigator in clinical trials sponsored by AbbVie, Alfasigma, Almirall, Bioderma, Egis, Eli Lilly, Galenica, Galderma, Janssen-Cilag, Leo Pharma, Medac GmbH, Novartis, Pfizer, Pierre-Fabre, Roche, Sandoz and Teva Pharmaceuticals.

Funding sources

This research received no external funding.

Introduction

Basal cell carcinoma (BCC) accounts for approximately 80% of all non-melanoma skin cancers and, despite its high incidence, is characterized by low mortality rates. The mainstay of treatment is surgical resection or radiotherapy. Therapy of locally advanced/inoperable and metastatic disease is currently based on treatment with hedgehog (Hh) inhibitors (vismodegib, sonidegib).

The Hh signalling pathway is an important regulator of cell growth and differentiation. It is inactive in most normal adult tissues. The reactivation of the Hh pathway is involved in the pathogenesis of several malignancies, including BCC. The transmembrane receptor patched (PTCH) is a negative regulator of the transmembrane receptor smoothened (SMO). PTCH is the receptor for the Hh ligand and inhibits SMO until the Hh ligand binds, allowing SMO to signal. Vismodegib is a small molecule inhibitor of SMO, a key component of the Hh signalling pathway. Vismodegib was approved in the United States in January 2012 and the European Union in July 2013 for the treatment of locally advanced basal cell carcinoma (laBCC), not eligible for surgery or radiotherapy and metastatic basal cell carcinoma (mBCC).

The efficacy and safety of vismodegib have been shown in phase I and phase II clinical trials and confirmed in clinical practice. In Poland, therapy with vismodegib has been available in the national drug programme since August 1st, 2017, and sonidegib has been approved but is not reimbursed.

This study presents the real-world setting-based data of treatment outcomes and safety in 108 patients treated under the national drug programme in selected centres. The primary objective was to evaluate the objective response rate (ORR), overall survival (OS) and progression-free survival (PFS) rates according to Response Evaluation Criteria In Solid Tumours (RECIST) v 1.1. The secondary aims of the study were the disease control rate, the incidence of adverse events (AEs) and the estimation of the factors that potentially impact the treatment outcome and patient survival. As far as we know, this is one of the largest studies published to date, the results of which have been compared with those of the ERIVANCE and STEVIE studies.
Materials and methods

Data collection
The investigation was designed as the multicentre retrospective cohort study, which enrolled 108 out of 182 patients included in the national drug programme of vismodegib treatment between August 1st, 2017 and December 31st, 2020, with a minimum 6-month follow-up from the beginning of treatment. All patients fulfilled the directions of the national drug programme and uniform eligibility criteria and follow-up. The medical records came from six hospitals, which were leaders in patients recruiting.

Inclusion and exclusion criteria
Patients classified to vismodegib treatment in the national drug programme fulfilled the standard inclusion criteria: had mBCC, defined as histologic confirmation of BCC with presence of distant metastasis (e.g. lung, liver, lymph nodes or bone), confirmed by computerized tomography or magnetic resonance imaging, or had laBCC, defined as histologically confirmed disease that is considered to carcinoma inappropriate for surgery or radiotherapy or has a medical contraindication to surgery and radiotherapy, or BCC that has recurred in the same location after two or more surgical procedures and curative resection is deemed unlikely or anticipated substantial morbidity and/or deformity from surgery. Exclusion criteria were age < 18 years, pregnancy and lactation, ECOG >2, the coexistence of other malignant neoplasms, that is the condition after treatment or under palliative treatment (regardless of the response to treatment), or failure to achieve complete remission after radical treatment; not adequate organ function determined based on laboratory blood tests, hypersensitivity to the active substance or any of the excipients; non-compliance with the recommendations of the pregnancy prevention programme by women of childbearing age and men or the presence of other contraindications to the use of vismodegib contained in the current Summary of Product Characteristics.

Intervention
All patients received vismodegib (Erivedge) 150 mg/day p.o. until disease progression, unacceptable toxicity or treatment discontinuation. The patients were assessed upon the directions of the national drug programme. The visit schedule: first monitoring visit six weeks after the first dose of vismodegib, next visits within no longer than eight weeks intervals. During each visit, photographic documentation with visible scale, laboratory tests, CT/RMI scans (if necessary in the opinion of the leading specialist) and AEs assessments were performed.

Definitions
The treatment efficacy was evaluated by PFS, OS, overall response rate (ORR) and disease control rate (DCR) defined by the RECIST 1.1. The PFS was defined from the first administration of medication (day 1) until disease progression according to RECIST, death from any cause, or last documented/reported visit. OS was defined as the time from the first drug administration to death from any cause or last documented visit. Duration of treatment was calculated as the time from first dose to treatment discontinuation due to any reason. In patients who were alive or continued treatment on December 31, 2020, the data were censored at the date of the latest evaluation visit. ORR was recorded as complete (CR) or partial response (PR). The treatment response of 5 patients who, during the treatment with vismodegib, had additional treatment introduced (radiotherapy, surgical excision, photodynamic therapy) were assessed before this intervention.

The safety evaluation was performed upon the data of reported AEs according to the Common Terminology Criteria for Adverse Events v. 5.0 (CTCAE) classification and severity assessment.

Statistical analysis
Continuous variables were reported as mean and range for normal distributed or with median and interquartile range when distribution was skewed. Discrete variables were summarized as numbers and percentages. Chi-square, Fishers exact test, student’s t-test and Mann–Whitney U test were used for between group comparisons. Median survival times were estimated by the Kaplan–Meier method. Kaplan–Meier estimator with the log-rank test was used for assessing and plotting the differences between survival curves. All factors with $P < 0.1$ in the univariate analysis were included in the multivariate Cox proportional hazard model. With all point estimates, 95% confidence intervals (CI) were reported. No adjustment for multiple testing was performed. The differences were considered statistically significant if the P-value was <0.05. All analyses and figures drawing were performed using IBM SPSS Statistics for Windows version 26 (IBM Corp).

Results

Patients
The study included 108 patients diagnosed with laBCC ($n = 95$, 88%) or mBCC ($n = 13$, 12%) treated with at least 1 dose of vismodegib (ITT population). The median age at the initiation of therapy was 71 years, and a male gender predominance was observed. All patients adjusted to the scheduled plan of visits with the first follow-up visit six weeks after the first dose of vismodegib and the next visits within eight weeks intervals. During each visit, photographic documentation with visible scale, laboratory tests, and AEs assessments were performed. The CT/RMI scans were performed on each visit till the progression or, in case of complete response, repeated with the frequency based on the discretion of the leading specialist. 70.4% of patients prior to vismodegib treatment underwent multiple
surgical excisions. 29.6% of patients received radiotherapy, and 24.1% were treatment naïve. The detailed patient characteristic is presented in Table 1.

Outcomes

All patients have received at least one dose of vismodegib. The median follow-up was 16.9 months (1–85 months), with the median duration of exposure to vismodegib 14 months (1–94 months). At the time of data cut-off, 88.9% of patients were treated with vismodegib for at least 6 months ($n = 96$), 55.6% of pts ($n = 60$) continue treatment. 44.4% of patients discontinued therapy, mostly due to the disease progression (52.1%) or death (25%). The adverse AE were rarely (4.2%) the reason for treatment discontinuation (Table 2). The overall response rate (ORR) was 67.6%. The complete response (CR) achieved 17.6% of patients, 6.5% had progression of disease (PD) as their best response. The disease control rate (DCR) was 93.5% (Table 2).

The disease progression occurred in 40.7% of patients. The median PFS was 30.5 months (95%CI 24.8–36.3) with a 1-year, 2-year and 3-year PFS rates of 78% and 61%, respectively (Fig. 1a). By the time of the database lock, 31 patients (28.7%) died. The median OS was 41.5 months (95%CI 31.6–51.3) with a 1-year, 2-year OS rates of 86%, 73% and 60%, respectively (Fig. 1b).

Prognostic factors

The univariate analysis of factors potentially impacting the PFS has revealed significant ($P < 0.05$) differences depending on the gender and previous use of radiotherapy (Table 3). The multivariate analysis has confirmed that female gender is the only independent positive factor associated with PFS (HR 0.45; 95% CI 0.22–0.91; $P = 0.026$; Fig. 2).

Statistically significant prognostic factors impacting the OS in the univariate analysis were the best response to vismodegib and underlying Gorlin-Goltz syndrome (Table 3). Upon the multivariate analysis, only complete or PR to vismodegib were independent prognostic factors with HR of 0.05 (95%CI 0.01–0.48, $P = 0.009$) for patients with CR and 0.27 (95%CI 0.08–0.74, $P = 0.014$) for PR in reference to patients with PD (Fig. 3, Table 4).

The analysis of the Kaplan–Meier curves for OS, stratified by the best response (Fig. 3), pointed out their early separation between 6 and 12 months. Thus, further explorative analysis was performed of the long-term survivors (defined as patients treated with vismodegib for 12 months or more) and short–term (less than 12 months) treated patients. The long-term treatment group included significantly younger patients (median age 69 vs 76 years, $P = 0.023$), and was characterized by a good survival prognosis (no OS vs 14.57 months; $P < 0.001$, Fig. 4), a higher incidence of CR (27.8% vs 4.3%; $P < 0.001$) and a lower

Table 1 Summary of baseline patient characteristics

Study population – patients with laBCC/mBCC treated with at least 1 dose of vismodegib (ITT)	N(%) n = 108 patients							
Age Median (range) [years]	71 (35–94)							
Gender	Female 43 (39.8)	Male 65 (60.2)						
Stage	Locally advanced BCC 95 (88.0)	Metastatic BCC 13 (12)						
Location of metastases	Lungs 8 (61.5)	Bones 3 (23.1)	Central Nervous system 1 (7.7)	Skin 2 (15.4)	Lymph nodes 2 (15.4)			
Location of primary tumour	Cerebrocranium 49 (45.4)	Face 8 (7.4)	Large lesion affecting cerebrocranium and face 21 (19.4)	Trunk 3 (2.8)	Upper extremities 6 (5.6)	Large lesion affecting more than one region 10 (10.2)	Unknown 1 (0.9)	Multiple (Gorlin – Goltz Syndrome) (included in laBCC) 9 (8.3)
Gorlin – Goltz Syndrome	9 (8.3)							
Previous treatment	Surgery 76 (70.4)	Radiotherapy 32 (29.6)	Chemotherapy 3 (2.8)	None 26 (24.1)				

Table 2 The treatment outcomes of the overall study group

Exposure to vismodegib	Median (range) [month]	N(%) n = 108 patients				
<6 months	14 (1–94)					
≥6 months	12 (11.1)	96 (88.9)				
The best response to treatment according to RECIST v.1.1.	CR 19/ (17.6)	PR 54/ (50.0)	SD 28 (25.9)	PD 7 (6.5)	ORR 73 (67.6)	DCR 101 (93.5)
Status of patients at the moment of database lock	Continue vismodegib treatment 60 (55.6)	Alive – in observation/other treatment 17 (15.7)	Deceased 31 (28.7)			
Reasons for treatment discontinuation	Disease progression 25/48 (52.1)	Adverse events 2/48 (4.2)	Death 12/48 (25.0)	Other 8/48 (16.7)		
CR, complete response; DCR, disease control rate; ORR, overall response rate; PR, partial response; PD, progression of the disease; SD, stable disease.						
The probability of treatment discontinuation for any reason was 34.4% vs 57.4% (P = 0.017; Table 5, Fig. 5).

Safety
83.3% of patients (n = 90) have experienced any adverse event (AE) associated with the vismodegib, while 48.1% had more than 1 AE (n = 52). The most common AE were alopecia observed in 48.1% of patients (n = 52) followed by muscle spasms reported by 38.9% of patients (n = 42), decreased appetite (33.3%, n = 36) and dysgeusia (26.9%, n = 29; Table 6). Most AEs were mild, as only 2.7% appeared of grade 3 or 4 toxicity. The safety profile has been summarized in Table 6. Rarely (4.2%), AE was the reason for treatment discontinuation (Table 2). The retrospective character of this study could have

Table 3 The univariate and multivariate analysis of factors associated with PFS in patients with BCC treated with vismodegib

Factor	Median PFS (95%CI), months	P (log-rank)	HR (95% CI)	P
Gender				
Male	27.8 (11.0-22.7)	0.01	1 (Ref.)	0.026
Female	64 (NR-NR)		0.4 (0.2-0.9)	
Age				
≤72	32.1 (25.9-38.3)	0.268		
>72	27.8 (13.2-42.5)			
Stage				
laBCC	30.5 (23.9-37.2)	0.087		
mBCC	13.0 (6.3-19.7)			
Previous surgery				
No	27.8 (10.3-45.4)	0.828		
Yes	32.1 (27-37.2)			
Previous radiotherapy				
No	32.1 (27.2-37.0)	0.047	1 (Ref.)	0.134
Yes	16.0 (0.8-31.2)		1.6 (0.9-2.9)	
Gorlin-Goltz Syndrome				
No	29.3 (20.5-38.1)	0.145		
Yes	64.0 (NR-NR)			

Bold values indicates statistically significant.
95% confidence interval (95%CI); BCC, basal cell carcinoma; HR, hazard ratio; laBCC – locally advanced BCC; mBCC, metastatic BCC; NR, not reached; P < 0.05 considered statistically significant; PFS, progression-free survival.

Figure 1 The results of the Kaplan–Meier analysis presented by the curves of the PFS (a) and the OS (b) in the ITT patients.

Figure 2 The Kaplan–Meier curve of the PFS stratified by gender.

Figure 3 The Kaplan–Meier curve of the OS stratified by the treatment response assessed according to RECIST 1.1 criteria.
Table 4. The univariate and multivariate analysis of factors associated with OS in patients with BCC treated with vismodegib

Factor	Median OS (95%CI)	P (log-rank)	HR (95% CI)	P
Gender				
Male	40.08 (32.3–47.9)	0.059		
Female	NR (NR–NR)	0.068		
Age				
<72	NR (NR–NR)	0.366		
>72	34.2 (25.6–42.8)	0.864		
Stage				
laBCC	41.5 (NR–NR)	0.085		
mBCC	40.0 (28.3–51.9)			
Previous surgery				
No	NR (NR–NR)	0.040	1	0.976
Yes	41.5 (31.9–51.0)			
Previous radiotherapy				
No	NR (NR–NR)			
Yes	34.2 (26.6–41.9)			
Gorlin-Goltz Syndrome				
No	40.0 (34.9–45.7)	<0.001	1	
Yes	NR (NR–NR)		0 (NR–NR)	
Best response to vismodegib				
PD	8.7 (3.8–13.6)	<0.001	1 (Ref.)	
SD	17.4 (4–42.2)	0.6 (0.2–1.7)	0.321	
PR	40.1 (28.1–52.1)	0.3 (0.1–0.7)	0.014	
CR	NR (NR–NR)	0.05 (0.0–0.5)	0.009	

Bold values indicates statistically significant.
CI, confidence interval; CR, complete response; HR, hazard ratio; laBCC, locally advanced BCC; mBCC, metastatic BCC; NR, not reached; OS, overall survival; P, P-value; PD, progression of disease; PR, partial response; SD, stable disease.

Discussion

In recent years, a meta-analysis, systematic reviews and results of studies based on national registries have been published, summarizing the efficacy and safety of Hh-pathway inhibitors, most of which related to the use of vismodegib in patients with laBCC. 2,4,8,14 Xie et al. performed a meta-analysis of efficacy based on 16 articles and showed that in laBCC, overall response rates (ORRs) were similar for vismodegib and sonidegib (69% vs. 57%, respectively) but not CR rates (31% vs. 3%, respectively). 4 In metastatic disease, the ORR of vismodegib was 2.7-fold higher than the ORR of sonidegib (39% vs. 15% respectively). 4 Publications analysing the effectiveness and safety of vismodegib treatment confirmed the results of the ERIVACE and STEVIE studies, even though they differed in the size of the sample and the duration of the study. 2,4,5,7,10–12

The median duration of treatment in our study was 14 months (1–94 months), which stays in line with treatment duration in the ERIVANCE study, where median time was 12.9 months in mBCC and 12.7 months in laBCC group. 2,4,5,7,10–12 The median PFS reached 30.55 months, compared to 9.3 months in patients with mBCC and 12.9 months in those with laBCC in the ERIVANCE study and 13.1 months for mBCC patients and 23.2 months for laBCC patients in the STEVIE study. 2,4,5,7,10–15 The results of our study and the result of ERIVANCE and STEVIE studies are summarized in Table 7.

Regarding OS, 1- and 2- year rates were 86% and 73%, respectively, which correspond to the data reported in the ERIVANCE trial, where those rates were 78.7% and 62.3% in mBCC or 93.2% and 85.5% in laBCC, respectively (Table 7). 2,4,5,7,10–12

The ORR was used as a primary endpoint in registration trials with vismodegib. In the updated analysis of the ERIVANCE study, ORR based on central review was 47.6% (95% CI: 35.5–60.6) at 21-month follow-up, while the investigator-assessed ORR was 48.5% in the mBCC group (all PR) and 60.3% in the laBCC group. 2,4,5,7,10–11 In the STEVIE trial, response rates based on the investigator’s assessment were 68.5% (95% CI 65.7–71.3) in laBCC patients and 36.9% (95% CI 26.6–48.1) in mBCC patients (Table 7). 2,4,5,7,13–15 In our retrospective analyses, the ORR for the whole population was 67.6%, consistently with
previously published data. Importantly, over 90% of patients experienced disease control. Also, data from real-life analyses, such as RegiSONIC (NCT01604252) registry, reported a similar ORR – 68%.

The open-label, multicentre expanded access study (EAS) in patients with advanced BCC not eligible for radiotherapy or surgery reported slightly lower rates – 46.4% in laBCC and 30.8% in the mBCC cohort.

Herms et al. analysed the baseline factors associated with relapse-free survival (RFS), OS and assessment of treatment modalities after relapse and their efficacy during follow-up of patients with complete remission of laBCC after vismodegib discontinuation. The authors found RFS rate at 36 months was 35.4% (95% CI, 22.5% to 47.9%) for the total population and 40% (95% CI, 25.7% to 53.7%) for patients without Gorlin syndrome. LaBCC to the limbs and trunk was the only variable independently associated with a higher risk of relapse (hazard ratio, 2.77; 95% CI, 1.23 to 6.22; \(P = 0.019\)). Twenty-seven patients (50%) who experienced relapse during follow-up were retreated with vismodegib, with an objective response in 23 (ORR, 85%; CR rate, 37%; PR rate, 48%) and eligibility for surgery in 24 (42%). Our secondary objective has also searched for potential predictive and prognostic factors affecting PFS and OS. Female gender was the only factor positively correlated with longer PFS. As far as we know, this is the first study to report such correlation, thus it requires confirmation in broader analyses. As per available data, gender did not appear to affect the pharmacokinetics of vismodegib, and our finding cannot be attributed to pharmacokinetics.

Regarding OS, patients who achieve CR or PR on vismodegib as the best response have a better prognosis. This observation underlines the important position of vismodegib in the therapeutic landscape for BCC treatment and its positive impact on the duration of life. It is worth mentioning that quality of life data from the STEVIE trial showed that treatment with vismodegib was associated with improvement in the emotional domain in all subgroups at all time points.

Despite the high clinical activity, toxicity is a crucial issue that can lead even to treatment discontinuation. The majority of patients experienced at least one treatment-emergent AE (TEAE), similar to other trials in BCC.

Table 5 Comparison of patients treated with VIS <12 months and ≥12 months

Factor	Patients treated with VIS <12 months	Patients treated with VIS ≥12 months	\(P\)
Age Median (range) [years]	76 (43-94)	69 (35-92)	0.023
Female	14 (29.8)	29 (47.5)	0.063
Male	33 (70.2)	32 (52.5)	
Stage laBCC	40 (85.1)	55 (90.2)	0.423
mBCC	7 (14.9)	6 (9.8)	
Gorlin – Goltz Syndrome	3 (6.4)	6 (9.8)	0.391
Previous treatment			
Surgery	30 (63.8)	46 (75.4)	0.191
Radiotherapy	16 (34.0)	16 (26.2)	0.378
Chemotherapy	1 (2.1)	2 (3.3)	0.598
None	14 (29.8)	12 (19.7)	0.223
The best response to treatment according to RECIST v.1.1.			
CR	2 (4.3)	17 (27.8)	<0.001
PR	22 (46.8)	32 (52.5)	
SD	16 (34.0)	12 (19.7)	
PD	7 (14.9)	0 (0)	
ORR	24 (51.1)	49 (80.3)	
DCR	40 (84.1)	61 (100)	
Treatment discontinuation			
PD	27 (57.4)	21 (34.4)	0.017
AE	16 (59.3)	12 (51.7)	1.0
Death	1 (3.7)	1 (4.8)	
Other	8 (29.6)	6 (28.6)	
Overall survival N = 108			
Median (95%CI)	14.67 (9.59-16.78)	NR (NR-NR)	<0.001
Status of patients at the moment of database lock			
Continue vismodegib	20 (42.6)	40 (65.6)	0.001
Alive – in observation/other treatment	5 (10.6)	12 (19.7)	
Death	22 (46.6)	9 (14.8)	

Bold values indicates statistically significant.

AE, adverse event; CR, complete response; DCR, disease control rate; laBCC, locally advanced BCC; mBCC, metastatic BCC; NR, not reached; ORR, overall response rate; \(P\), \(P\)-value; PD, progression of disease; PFS, progression-free survival; PR, partial response; SD, stable disease; VIS, vismodegib.
general toxicity profile was consistent with those reported in ERIVANCE and STEVIE studies. The safety analysis revealed fewer AEs reported by the patients treated vismodegib in our study (83.3%) in comparison to the results of ERIVANCE (100%) and STEVIE (98%) studies, with less frequent alopecia and muscle spasms and more frequent decreased appetite. Compared to the clinical trials, the frequency and severity of the weight loss, diarrhoea and fatigue, reported by the patients in our study was low. As mentioned before, the retrospective nature of our study could impact on patients’ reporting of AE symptoms (as most were subjective) and under-reporting in the medical records. Lower incidence of some AEs could result from strict patient selection or better side effects management. Notably in our cohort, only two patients discontinued therapy due to AEs. This is a significantly lower number than in the ERIVANCE study, where 21.2% discontinued treatment due to AEs and 26% due to patient decision. None of our patients developed squamous cell cancer during therapy with vismodegib although it is described in the literature.

Our study included nine patients with Gorlin-Goltz syndrome. In our study, three patients were treated for less than 12 months and nine patients for at least 12 months. The median PFS for patients with this syndrome was 64 months, and median OS was not reached. In the ERIVANCE study, the ORR assessed by investigators in patients with GGS with laBCC was 81% (95% CI: 58–95%) and in patients without GGS 50% (95% CI: 34–66%). In the EAS the best ORR was 33% (95% CI: 10–65%) in patients with GGS.

Figure 5 Response in two patients with laBCC after 12 months of therapy with vismodegib.
A significant limitation to vismodegib treatment is the development of resistance by BCC, limiting the duration of response.

Secondary resistance is observed in about 20% of responders. In our study, over half of the patients discontinued vismodegib due to disease progression, partially probably due to secondary resistance. BCC belongs to the neoplasms with the highest mutational burden. This indicates its potential sensitivity to immunotherapy.

The preliminary research results on immunotherapy in patients with BCC, including patients with PD during or after Hh inhibitors, are promising. Cemiplimab, the anti-PD1 antibody, has been assessed in patients with laBCC and mBCC in the phase II study (NCT03132636). The preliminary results from the laBCC cohort (n = 84) showed an ORR of 31% (5 CR and 21 PR). Median DOR, PFS and OS were not reached, while the estimated PFS was 19 months. Based on this data, cemiplimab has been approved by the FDA in February 2021. Also, some activity was shown for pembrolizumab, in a small investigator-initiated study.

The data summarized in this manuscript have some limitations. The main limitations of this study include its retrospective character. Moreover, the study population is to some extent different than in pivotal clinical trials, primarily due to differences in eligibility criteria in clinical trials and drug programmes in Poland. Despite that, this study provides valuable data concerning the clinical management of locally advanced and metastatic BCC and confirmed the safety and efficacy of BCC treatment with vismodegib in a real-world setting.

Table 6: Summary of safety report during vismodegib treatment in this study

Any AE	N (%)
90 (83.3)	
>1 AE/patient	52 (48.1)
Muscle spasms	66 (61.6)
Alopecia	52 (48.1)
Decreased appetite	36 (33.3)
Dysgesia	29 (26.9)
Weight loss	13 (12.0)
Nausea	9 (8.3)
Fatigue	6 (5.6)
Other	11 (10.2)
Diarrhea	3 (2.8)
Myalgia	2 (1.8)
Artralgia	1 (0.9)
Constipation	1 (0.9)
Increased AST/ALT	1 (0.9)
Stroke	1 (0.9)
SAE	5 (5.6)

AE, adverse event; SAE, serious adverse event.

A multicenter study of basal cell carcinoma treatment

| Table 7 | The summary of vismodegib efficacy in BCC based on our study, the ERIVANCE, and the STEVIE studies results

Our study (ITT population); n (%)	ERIVANCE mBCC (long-term analysis); n (%)	ERIVANCE laBCC (long-term analysis); n (%)	STEVIE mBCC; n (%)	STEVIE laBCC; n (%)	
n	108	33	63	84	1077
ORR, n (%)	73 (67.6)	16 (48.5)	38 (60.3)	31 (36.9)	738 (68.5)
CR, n	19	0	20	4	360
PR, n	54	16	18	27	378
SD, n	28	14	15	39	270
PD, n	7	2	6	9	21
PFS, median, months	30.55 months [24.8–36.3]	9.3 [7.4–16.6]	12.9 [10.2–28.0]	13.1 [12.0–17.7]	23.2 [21.4–26.0]
OS, median, [95% CI]	41.5 months [31.6–51.3]	33.4 [18.1–NE]	NE [NE]	NA	NA
1-year survival rate, %	86	78.7	93.2	NA	NA
2-year survival rate, %	73	62.3	85.5	NA	NA

CI, confidence interval; CR, complete response; laBCC, locally advanced basal cell carcinoma; mBCC, metastatic basal cell carcinoma; NA, no data available; NE, not estimable; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression free survival; PR, partial response; SD, stable disease.

Acknowledgements

Each patient, at the beginning of treatment provided routine informed consent for the use of their treatment, photos and data processing (‘The patients in this manuscript have given written informed consent to publication of their case details’). The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board/Ethics Committee of Military Institute of Medicine (#21/WIM/2021). We thank Roche Polska Sp. z o.o, for financial support under the agreement of 27/11/2020.
Data availability statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

References
1. Cameron MC, Lee E, Hibli BP et al. Basal cell carcinoma: Epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol 2019; 80: 303–317.
2. Peris K, Fargnoli MC, Garbe C et al. European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organization for Research and Treatment of Cancer (EORTC). Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplin ary guidelines. Eur J Cancer 2019; 118: 10–34.
3. Kim DP, Kus KJR, Ruiz E. Basal cell carcinoma review. Hematol Oncol Clin North Am 2019; 33: 13–24.
4. Xie P, Lefrançois P. Efficacy, safety, and comparison of sonic hedgehog inhibitors in basal cell carcinomas: A systematic review and meta-analysis. J Am Acad Dermatol 2018; 79: 1089–1100.e17.
5. Migden MR, Chang ALS, Dirix L, Stratigos AJ, Lear JT. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat Rev 2018; 64: 1–10.
6. Cozzani R, Del Aguila R, Carrizo M, Sanchez S, Gonzalez A; ML29740 Investigators. Efficacy and safety profile of vismodegib in a real-world setting cohort of patients with advanced basal cell carcinoma in Argentina. Int J Dermatol 2020; 59: 627–632.
7. Jacobsen AA, Aldahan AS, Hughes OB, Shah VV, Strasswimmer J. Hedgehog pathway inhibitor therapy for locally advanced and metastatic basal cell carcinoma: A systematic review and pooled analysis of interventional studies. JAMA Dermatol 2016; 152: 816–824.
8. Chang AL, Solomon JA, Hainsworth JD et al. Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol 2014; 70: 60–69.
9. Herms F, Lambert J, Grob J et al. Follow-up of patients with complete remission of locally advanced basal cell carcinoma after vismodegib discontinuation: a multicenter French study of 116 patients. J Clin Oncol 2019; 37: 3275–3282.
10. Sekulic A, Migden MR, Oro AE et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012; 366: 2171–2179.
11. Sekulic A, Migden MR, Lewis K et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol 2015; 72: 1021–1026.
12. Sekulic A, Migden MR, Basset-Seguin N et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study. BMC Cancer 2017; 17: 332.
13. Basset-Seguin N, Hauschild A, Grob J et al. Vismodegib in patients with advanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an international, open-label trial. Lancet Oncol 2015; 16: 729–736.
14. Basset-Seguin N, Hauschild A, Kunstfeld R et al. Vismodegib in patients with advanced basal cell carcinoma: Primary analysis of STEVIE, an international, open-label trial. Eur J Cancer 2017; 86: 334–348.
15. Hansson J, Bartley K, Karagiannis T et al. Assessment of quality of life using Skindex-16 in patients with advanced basal cell carcinoma treated with vismodegib in the STEVIE study. Eur J Dermatol 2018; 28: 775–783.
16. Schwartz LH, Litière S, de Vries E et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur J Cancer 2016; 62: 132–137.
17. Appendi x B.8.8. to the vismodegib treatment program for advanced basal cell carcinoma. http://onkologia-online.pl/upload/obwieszczenie/2016.12.28/b/b.88.pdf (last accessed: 31 August 2021).
18. Eastern Cooperative Oncology Group (ECOG). http://www.npcrcc.org/files/news/ECOG_performance_status.pdf (last accessed: 31 August 2021).
19. Erivedge (vismodegib), Summary of product characteristics. Last update 11.2019. https://www.ema.europa.eu/en/documents/product-information/erivedge-eap-product-information_en.pdf (last accessed: 31 August 2021).
20. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0 Published: November 27, 2017 U.S. Department Of Health And Human Services https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf (last accessed: 31 August 2021).
21. Lacouture M, Guillen J, Kudchadkar R et al. The RegiSONIC Disease Registry Study: Treatment of vismodegib-related adverse events (AEs) in patients with locally advanced basal cell carcinoma. EJC 2015; 51(Suppl 3): S5675.
22. Sharma MR, Karrison TG, Kell B et al. Evaluation of food effect on pharmacokinetics of vismodegib in advanced solid tumor patients. Clin Cancer Res 2013; 19: 3059–3067.
23. Mohan SV, Chang J, Li S, Henry AS, Wood DJ, Chang AL. Increased risk of cutaneous squamous cell carcinoma after vismodegib therapy for basal cell carcinoma. JAMA Dermatol 2016; 152: 527–532.
24. Saintes C, Saint-Jean M, Brocard A et al. Development of squamous cell carcinoma into basal cell carcinoma under treatment with Vismodegib. J Eur Acad Dermatol Venereol 2019; 29: 1066–1009.
25. Chang AL, Arron ST, Migden MR et al. Safety and efficacy of vismodegib in patients with basal cell carcinoma nevus syndrome: pooled analysis of two trials. Orphanet J Rare Dis 2016; 11: 120.
26. Chang ALS, Oro AE. Initial assessment of tumor regrowth after vismodegib in advanced Basal cell carcinoma. Arch Dermatol 2012; 148: 1324–1325.
27. Zhao J, Quan H, Xie C, Lou L. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations. Pharma Res per 2014; 2: e00443.
28. Chan TA, Yarchoan M, Jaffee E et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2019; 30: 44–56.
29. Chang ALS, Tran DC, Cannon JG et al. Pembrolizumab for advanced basal cell carcinoma: An investigator-initiated, proof-of-concept study. J Am Acad Dermatol 2019; 80: 564–566.
30. Hall ET, Fernandez-Lopez, Silk AW, Dummer R, Bhattacharya S. Immunologic characteristics of nonmelanoma skin cancers: implications for immunotherapy. Am Soc Clin Oncol Educ Book 2020; 40: 1–10.
31. Stratigos AJ, Sekulic A, Peris K et al. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: an open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol 2021; 22: 848–857.