monthly average duration of antibiotic therapy trended downward as the pandemic progressed. The most common empiric antibiotic regimen was ceftriaxone and azithromycin, received by 28% (50%) patients. Only 2% (4%) patients were diagnosed with bacterial pneumonia.

Conclusion. In a sample of 50 COVID patients the overall rate of concomitant bacterial pneumonia was 4%. Given this finding, it is vital to remain judicious with the use of antibiotics and to employ the assistance of antimicrobial stewardship colleagues when managing patients diagnosed with COVID-19.

Disclosures. Claudine El-Beyrouty, PharmD, BCPS, Astellas (Advisor or Review Panel member); Shionogi (Advisor or Review Panel member)

Table 1. Characteristics of study population.

Variable	Global (N=79)	Prophylaxis (N=46)	No prophylaxis (N=33)	P-value
Age, median (IQR)	69 (54-77)	66 (54-77)	65 (55-78)	0.75
Charlson, median (IQR)	0 (0.5)	0.5 (0-1)	1 (0-1)	0.10
SEIMIC Score, median (IQR)	10 (5-15)	10 (5-15)	10 (5-15)	0.53
Isolates, N (bacterial / fungal)	24 (18/6)	10 (3/5)	14 (2/2)	0.51
Patients, N (%)	14 (20%)	10 (22.2%)	4 (19%)	0.16
Superinfections, N (bacterial / fungal)	11 (110)	12 (70)	5 (45)	0.01
Patients, N (%)	10 (13.5%)	7 (11.5%)	3 (12%)	0.41

* Mann-Whitney U test ** Fisher exact test

Table 3. Description of isolates.

Antibiotic	N isolates, N (%)	Patients with superinfections, N (%)	Superinfections, N (bacterial / fungal)	ICUs admittance, patients, N (%)	In-hospital mortality, N (%)
Ceftriaxone	16 (110)	9 (27,8%)	7 (43,8%)	4 (22,2%)	7 (43,8%)
Ceftobiprole	2 (17%)	1 (50%)	1 (50%)	1 (50%)	1 (50%)
Other	1 (5%)	0 (0%)	1 (100%)	1 (100%)	1 (100%)
No prophylaxis	25 (51%)	4 (16%)	5 (20%)	3 (12%)	9 (36%)
GLOBAL	70 (24.1%)	16 (20%)	11 (15%)	10 (14.2%)	26 (28.3%)

Table 2. Outcomes according to antimicrobial prophylaxis prior to Tocilizumab.

Antibiotic	N isolates, N (%)	Patients with superinfections, N (%)	Superinfections, N (bacterial / fungal)	ICUs admittance, patients, N (%)	In-hospital mortality, N (%)
Ceftriaxone	16 (110)	9 (27,8%)	7 (43,8%)	4 (22,2%)	7 (43,8%)
Ceftobiprole	2 (17%)	1 (50%)	1 (50%)	1 (50%)	1 (50%)
Other	1 (5%)	0 (0%)	1 (100%)	1 (100%)	1 (100%)
No prophylaxis	25 (51%)	4 (16%)	5 (20%)	3 (12%)	9 (36%)
GLOBAL	70 (24.1%)	16 (20%)	11 (15%)	10 (14.2%)	26 (28.3%)

Conclusion.** Antibiotic prophylaxis prior to infusion of TCZ in patients with COVID-19 and receiving steroids could determine the profile of bacterial and fungal superinfections.

Disclosures. No reported disclosures

305. Cholecystitis as a Possible Immunologic Consequence of COVID-19; Case Series from a Large Healthcare System

Anna Jacobs, MD1; Christopher Poll, MD2; Mindy Sampson, MD2; Banks Kooken, BS3; Thomas Ludden, PhD2; Catherine Passaretti, MD2; Catherine Passaretti, MD2; Michael Leonard, MD2; Carolinas Medical Center - Atrium Health, Charlotte, North Carolina; Atrium Health, Charlotte, North Carolina; UNC School of Medicine, Chapel Hill, North Carolina

Session: P-14. COVID-19 Complications, Co-infections, and Clinical Outcomes

Background. Gastrointestinal manifestations are commonly seen in COVID-19 disease with up to 50% of patients reporting nausea or diarrhea. Cholecystitis has been described in rare cases related to COVID-19, possibly in consequence of immune activation, but biliary disease from SARS-CoV-2 infection is not well described. We examined a case series of patients with both COVID-19 and cholecystitis at our institution.

Methods. We performed a retrospective chart review of all patients with a diagnosis of cholecystitis within 3 months of SARS-CoV-2 infection; looking at clinical, laboratory, and radiographic characteristics of this population.

Results. 14 individuals were identified with a diagnosis of cholecystitis within 3 months of diagnosis of SARS-CoV-2 infection. Most patients presenting with cholecystitis were female and obese (see Table 1). 14 individuals were diagnosed with SARS-CoV-2 infection during the same presentation as their cholecystitis diagnosis, usually as part of pre-operative screening. Of 16 individuals diagnosed with SARS-CoV-2 prior to their cholecystitis presentation, a mean of 24 and 17 days elapsed between SARS-CoV-2 infection and cholecystitis symptom onset and radiographic diagnosis, respectively (see Figure 1). Most of these patients had mild respiratory disease, with only 9 developing an oxygen requirement, and only 3 requiring mechanical ventilation. While 17 patients were treated surgically for their cholecystitis, this did not appear to impact symptom resolution.

Disclosures. No reported disclosures
Conclusion. Cholecystitis may be an uncommon complication of COVID-19 disease. Cholecystitis may manifest most often 2-4 weeks following SARS-CoV-2 infection and given similarities in timing to we hypothesize that cholecystitis in our patients could be driven by immune activation.

Disclosures. Christopher Polk, MD, Atea (Research Grant or Support); Gilead (Advisor or Review Panel member, Research Grant or Support); Humanigen (Research Grant or Support); Regeneron (Research Grant or Support); Mindy Sampson, MD, Regeneron (Grant/Research Support); Catherine Passaretti, MD, Nothing to disclose.

Methods. This study is a single-center, retrospective cohort study of 18,757 adults hospitalized during the COVID-19 pandemic from March 1, 2020 to March 31, 2021. Patients were stratified as COVID-19 positive, through all hospitalizations subsequent to the date of initial positivity, or COVID-19 negative. Differences in antibiotic practice patterns between the two groups were quantified using days of therapy per 1000 patient days (DOT/1000 PD). The frequency of *C. difficile* infection, MDR-bacteria, and candida infections were assessed among the two groups.

Results. During the 12-month study period, on average, the COVID-19 positive group received 21.81% more antibiotics than COVID-19 negative patients, with up to 56.15% increase seen in the first month of the pandemic (Table 1, Figure 1) The COVID-19 positive group had an increased frequency of Candidemia (0.73% versus 0.18%, *p* < 0.0001) and decreased isolation of ESBL organisms (1.17% versus 1.87%, *p* < 0.01) compared to the COVID-19 negative group. There were no significant differences in frequency of *C. difficile* infection, isolation of other MDR-organisms, or Candida auris between the two groups (Table 2)

Conclusion. Patients with a history of COVID-19 infection received an average of 21.81% more antibiotics, have higher rates of candidemia, but lower rates of ESBL infections than those without a history of COVID-19 infection. The potential increase in antibiotic exposure could account for the increase in candidemia in patients with a history of COVID-19. Future studies include investigating the decrease in ESBL infections seen, perhaps due to receipt of broad antibiotics in COVID-19 patients that target ESBL bacteria.

Disclosures. Shrut K. Gohil, MD, MPH, Medline (Other Financial or Material Support, Co-Investigator in studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products); Skryder (Sage) (Other Financial or Material Support, Co-Investigator in studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products); Molnycke (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products); Stryker (Sage) (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products); Xeitrim (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products).

Table 1. Patient Characteristics

Variable	n (%)
Mean age (range) years	54.2 (21-90)
Sex	Female 26 (53)
	Male 18 (46)
Race/Ethnicity	White 18 (50)
	Black 9 (30)
Hispanic	2 (6)

Table 2. Frequency of secondary infections in COVID-19 positive and COVID-19 negative patients

Month	COVID-19-positive % (DOT/1000 PD)	COVID-19-negative % (DOT/1000 PD)	% difference
March 20	403.85	629.57	202.72
April 20	394.88	417.13	23.25
May 20	394.12	437.09	42.97
June 20	390.48	407.66	17.18
July 20	413.08	466.70	53.62
August 20	395.56	447.58	51.92
September 20	402.18	468.64	66.46
October 20	406.50	489.10	82.60
November 20	404.61	503.96	99.35
December 20	432.70	552.36	119.66
January 21	430.04	518.59	88.55
February 21	434.07	538.79	104.72
March 21	411.13	507.33	96.20

Table 1. Antibiotic days of therapy in COVID-19 positive and COVID-19 negative patients.

Table 2. Frequency of secondary infections in COVID-19 positive and COVID-19 negative patients.