Determination Of Earthquake Intensity Based On PGA (Peak Ground Acceleration) Using Multi-Event Earthquake Data

Teguh Hariyanto¹, Filsa Bioesita¹, Cherie Bhekty Pribadi¹, Chomia Nilam Safitri¹
¹Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

Abstract. Pandeglang Regency is located in the southern coast of Java Island which is adjacent to the megathrust subduction zone. This zone originates from the meeting of the Indo-Australian Plate which is subducted under the Eurasian Plate. So that it can cause frequent earthquakes due to the movement of the plunging plates. Other than that, Pandeglang Regency is also bordered by the Sunda Strait in the western part where the region has Mount Krakatau which has the potential to cause earthquakes due to volcanic eruptions. Therefore, it is necessary to identify the level of earthquake hazard in Pandeglang Regency as a first step in disaster mitigation. Determination of earthquake hazard level in the study area is using the method of scoring the earthquake hazard level parameters based on “Peraturan Menteri Pekerjaan Umum No. 21/PRT/M/2007” and using spatial analysis. These parameters are the physical properties of rocks, slope, seismicity (magnitude, peak ground acceleration, and intensity), and the distance of the region to the fault zone. For the calculation of PGA (Peak Ground Acceleration) using the empirical equation from [10] and calculation of earthquake intensity using the empirical equation from [9]. The level of earthquake hazard is divided into three categories: low hazard level, medium hazard level, and high hazard level. The results of this study indicate that there is no low hazard category in Pandeglang Regency. For the category of medium hazard level has an area of 1719.404 km² (62.959%). And for the high hazard level category has an area of 1011.573 km² (37.041%). In almost all sub-districts there are medium and high hazard categories. Sub-districts that do not have medium level of hazard category are Patia and Sindangresmi Sub-district. And sub-districts that do not have high hazard level category are Cibaliung, Cimanuk, Karangtanjung, Koroncog, Mekarjaya, Menes, dan Pandeglang Sub-districts. The largest area in the medium hazard level category is in Cimanggu Sub-district, 344.394 km². And in the category of high hazard level is also in Cimanggu Sub-district, 396.980 km².

Keywords: Earthquake, Hazard Level, Pandeglang Regency

1. Introduction
The meeting of the Indo-Australian Plate which was subducted under the Eurasian Plate produced a subduction zone along the western part of the island of Sumatra, the southern part of Java, to the southern part of Nusa Tenggara, called the megathrust. As a result, tectonic earthquakes will occur frequently due to the movement of the sloping plates [3]. Through information obtained from geophysical, geodetic and seismic data, subduction zones (subduction / faults / faults) can be referred to as earthquake source zones or algerismic source zones that have the potential to cause earthquakes in the future.
Pandeglang Regency is located in the southern coast of Java Island which is adjacent to the megathrust subduction zone. In addition, earthquakes in the Pandeglang Regency can also occur due to volcanic eruptions in the Sunda Strait, namely Mount Krakatau which have the potential for...
earthquakes and tsunamis [8]. For this reason, research is needed on identifying the intensity of earthquakes in Pandeglang Regency as a first step in disaster mitigation. This process uses multi-event earthquake data in the period 2010 - 2018. The method used is the PGA (Peak Ground Acceleration) calculation using the empirical equation [10] and earthquake intensity using the empirical equation [9]. The determination of the PGA equation is largely derived outside of Indonesia because there is no specific PGA equation in Indonesia yet. Therefore, studies on the level of earthquake risk in an area in Indonesia, many still use equations obtained in other regions outside Indonesia with the assumption that there are similarities in geological and tectonic conditions with regions in Indonesia [6]. In addition, the selection of PGA equations is based on comparison of the results of data processing using existing PGA equations with ground vibration / accelerographic recording data found in Indonesia. These comparisons of 11 PGA equations for the source of subduction earthquakes with accelerographic recorded data from Java and Sumatra [1]. The results show that for the source of subduction earthquakes, the equation of [10], [2], [11] match the accelerographic data in Java and Sumatra.

2. Methods

2.1. Study Area
This study located in Pandeglang Regency, East Java. Based on the coordinates of the boundary line, the position of Banyuwangi Regency lies between 6°21’ – 7°10’ South Latitude and 104°48’ – 106°11’ East Longitude. Administratively, Pandeglang Regency is bordered by Serang Regency in north, Lebak Regency in east, Indian Ocean in south, and Sunda Strait in west.

![Figure 1. Map of The Research Location (Regional Government of Pandeglang District, 2016)](image1.png)

2.2. Data
The data used in this study are Earthquake Data of Pandeglang Regency in years 2010 – 2018, Map of Pandeglang Regency Administration, Geological Map of Pandeglang Regency, Map of Land Types in Pandeglang Regency.

![Figure 2. Earthquake Data of Pandeglang Regency 2010-2018 (Results of Data Processing, 2019)](image2.png)
2.3. Convert all types of magnitude into Moment Magnitude (Mw). The following is the magnitude conversion equation according to Irsyam, et al (2010):

\[
M_w = 0.114 \cdot m_b^2 - 0.556 \cdot m_b + 5.560 \quad (1)
\]

\[
mb = 0.125 \cdot ML^2 - 0.389 \cdot ML - 3.513 \quad (2)
\]

2.4. Determination of the calculation points in the form of a grid measuring 3 ‘x 3’ which covers the whole Pandeglang Regency area.

![Figure 3. Grid Point of Pandeglang Regency (Results of Data Processing, 2019)](image)

2.5. PGA (Peak Ground Acceleration) calculations use the [10] equation with the following form of equation:

a. For rocks:

\[
\ln (y) = 0.2418 + 1.414M + C \cdot \ln (R + 1.7818e0.554M) + 0.00607H + 0.3846ZT \quad (3)
\]

b. For land:

\[
\ln (y) = -0.6687 + 1.438M + C \cdot \ln (R + 1.097e0.617M) + 0.00648H + 0.3643ZT \quad (4)
\]

Information:

y = peak ground acceleration (g) value
C = -2.552 (for rocks) and -2.329 (for land)
R = hypocenter distance (km) M = Moment Magnitude (Mw)
ZT = source type (0 for earthquake interface, 1 for intraslab earthquakes)

The calculation is done at 1024 earthquake events at each calculation point. After that, determine the largest PGA value at each calculation point to be used in the interpolation process and calculation of
earthquake intensity. Because the whole area of Pandeglang Regency has rocks and soil, the results of the PGA calculation use an average PGA of rocks and soil.

2.6 **Interpolation of PGA calculations using GIS data processing software with IDW method to convert point data into polygons so that they can be classified according to PGA value ranges. Results in the form of "PGA Value Map Based on 2010-2018 Earthquake Data in Pandeglang Regency".**

Calculation of Earthquake Intensity using the [9] equation with the following equation: $I = 3.66 \log \text{PGA} - 1.66$ (5)

where I is the earthquake intensity according to the MMI scale.

2.7 **Interpolation of Earthquake Intensity calculations using GIS data processing software with IDW method. The results are in the form of MMI scale I - XII presented in the form of "Intensity Map Based on 2010-2018 Earthquake Data in Pandeglang Regency".**

3. Result and Discussion

3.1. **PGA Calculation Results and Earthquake Intensity**
The following are the results of PGA calculations using the empirical equation [10] and earthquake intensity using the empirical equation [9].

No	Bujur (º)	Lintan (º)	PGA (gal)	I	I (MMI)
1	105,793	-6,811	118,691	5,932	VI
2	105,843	-6,411	154,548	6,352	VI
3	105,343	-6,711	150,611	6,311	VI
4	105,893	-6,211	112,385	5,846	VI
5	106,043	-6,411	85,565	5,412	V
6	105,643	-6,711	130,905	6,088	VI
7	106,193	-6,261	81,740	5,340	V
8	105,593	-6,661	138,025	6,172	VI
9	105,093	-6,611	131,718	6,098	VI
10	105,743	-6,761	140,113	6,196	VI
11	105,843	-6,811	92,991	5,544	V
12	105,693	-6,561	127,103	6,041	VI
13	105,893	-6,411	137,100	6,162	VI
14	105,593	-6,811	147,013	6,273	VI
15	105,693	-6,761	160,879	6,416	VI
16	105,893	-6,461	147,451	6,277	VI
17	105,543	-6,711	108,475	5,789	VI
No	Bujur (°)	Lintan (°)	PGA (gal)	I (MMI)	I (°)
----	------------	------------	-----------	---------	------
18	105,743	-6,611	140,165	6,197	VI
19	105,293	-6,811	153,266	6,339	VI
20	105,993	-6,361	111,448	5,832	VI
21	105,843	-6,461	169,275	6,497	VI
22	105,793	-6,661	125,139	6,016	VI
23	105,943	-6,411	110,896	5,824	VI
24	105,793	-6,711	100,074	5,661	VI
25	105,893	-6,311	103,417	5,713	VI
26	105,243	-6,811	167,477	6,480	VI
27	105,343	-6,761	141,488	6,212	VI
28	105,643	-6,511	127,880	5,851	VI
29	105,843	-6,711	97,899	5,626	VI
30	106,093	-6,261	133,469	6,119	VI
31	105,543	-7,061	167,070	6,476	VI
32	105,743	-6,661	115,962	5,895	VI
33	105,893	-6,261	113,340	5,859	VI
34	105,793	-6,561	179,980	6,594	VII
35	105,593	-6,761	137,998	6,172	VI
36	105,843	-6,611	152,443	6,330	VI
37	105,643	-6,761	159,841	6,405	VI
38	105,493	-6,861	172,698	6,528	VII
39	105,893	-6,611	132,938	6,113	VI
40	106,043	-6,311	138,049	6,173	VI
41	106,093	-6,361	98,330	5,633	VI
42	105,943	-6,461	116,746	5,906	VI
43	105,793	-6,511	177,433	6,571	VII
44	105,743	-6,711	118,691	5,932	VI
45	105,243	-6,561	151,353	6,319	VI
46	106,093	-6,311	118,981	5,936	VI
47	105,693	-6,661	103,621	5,717	VII
48	105,843	-6,261	101,488	5,683	VI
49	105,593	-6,711	117,303	5,914	VI
50	105,493	-6,811	149,695	6,301	VI
51	105,943	-6,511	117,170	5,912	VI
52	105,793	-6,961	100,993	5,676	VI
53	105,643	-6,661	122,649	5,985	VI
54	105,743	-6,561	157,525	6,382	VI
55	105,643	-6,811	173,734	6,538	VII
56	105,793	-6,761	113,371	5,859	VI
57	106,093	-6,411	79,036	5,286	V
58	105,643	-6,611	141,103	6,207	VI
No	Bujur (°)	Lintan (°)	PGA (gal)	I (MMI)	
----	-----------	------------	-----------	---------	
59	105,393	-6.761	141,103	VI	
60	105,843	-6.661	123,251	VI	
61	105,193	-6.561	138,187	VI	
62	105,193	-6.661	135,968	VI	
63	105,693	-6.811	175,055	VII	
64	105,543	-6.761	111,324	VI	
65	105,693	-6.711	131,511	VI	
66	105,943	-6.311	126,010	VI	
67	105,743	-6.811	149,523	VI	
68	105,393	-6.811	168,197	VI	
69	105,993	-6.411	87,282	V	
70	106,143	-6.261	104,591	VI	
71	105,793	-6.611	155,779	VI	
72	105,943	-6.661	95,348	VI	
73	105,543	-6.811	132,248	VI	
74	105,543	-7.011	164,782	VI	
75	105,843	-6.561	174,990	VII	
76	105,193	-6.611	116,126	VI	
77	105,943	-6.261	143,068	VI	
78	105,243	-6.611	131,076	VI	
79	106,143	-6.311	96,327	VI	
80	105,893	-6.561	147,787	VI	
81	105,843	-6.361	124,643	VI	
82	105,943	-6.361	102,652	VI	
83	105,643	-6.561	143,535	VI	
84	105,393	-6.711	156,030	VI	
85	105,893	-6.361	114,218	VI	
86	105,993	-6.461	90,517	VI	
87	105,893	-6.661	111,424	VI	
88	105,693	-6.611	116,764	VI	
89	105,893	-6.511	146,319	VI	
90	105,843	-6.511	172,463	VII	
91	105,843	-6.311	96,918	VI	
92	105,543	-6.861	148,003	VI	
93	105,843	-6.761	89,991	V	
94	105,993	-6.311	141,341	VI	
95	105,893	-6.711	91,200	VI	
96	105,243	-6.761	155,789	VI	
97	105,943	-6.561	117,992	VI	
98	105,293	-6.761	151,563	VI	
99	106,043	-6.361	109,632	VI	
For the value of earthquake intensity rounding is done according to the MMI scale. The results of the above calculation are then interpolated using the IDW (Inverse Distance Weighted) method in order to be a PGA Value Map and Pandeglang Earthquake Intensity Map.

In Table 1 above it can be seen that there is a relationship between the PGA value and earthquake intensity which is directly proportional. The greater the PGA value, the greater the intensity of the earthquake, and vice versa.

3.2. Map of PGA Value

The following are the results of the PGA (Peak Ground Acceleration) Value Map obtained from the interpolation of the points in Table 1 and then cut according to the study area. After that it is classified into 3 ranges of PGA (gal) values.

![Map of PGA Value](image)

Based on the map, it can be seen that the highest range of PGA values (146,332 - 179,969 gal) are found in the Districts of Angsana, Cibitung, Cigeulis, Cimanggu, Pagelaran, Panimbang, Patia, Picung, Sindangresmi, Sobang, Sukaresmi, and Sumur.

In Figure 5 the following is presented the percentage of the wide range of PGA values in Pandeglang Regency. The largest percentage (52.246%) is the PGA range 112,693 - 146,331 gal with a total area of 1436,249 km². While the smallest percentage (20.844%) is the PGA range 79,054 - 112,692 gal with a total area of 572,987 km².
3.3. Map of Earthquake Intensity
The following is the result of the Earthquake Intensity Map obtained from the interpolation of the points in Table 1 and then cut according to the study area. After that it is classified into 3 intensity values (MMI) in Pandeglang Regency, namely V - VII MMI.

Based on the map, it can be seen that the highest intensity values (VII MMI) are found in the Districts of Angsana, Cibitung, Cimanggu, Pagelaran, Panimbang, Patia, Sindangresmi, Sobang, and Sukaresmi. Percentage of area of each intensity value is illustrated through the following diagram.
with the largest percentage (91.463%) is VI MMI with an area of 2513,526 km² and the smallest percentage (0.301%) is V MMI with an area of 8.27 km². Whereas for VII MMI it has a percentage of 8.236% with an area of 226.325 km².

4. Conclusions
Based on the results and analysis of this study, it can be concluded that:
 a. The largest percentage of the area of the PGA range is 52,246% (1436,249 km²) with a PGA range of 112,693 - 146,331 gal. While the smallest percentage is 20,844% (572,987 km²) with a range of PGA 79,054 - 112,692 gal.
 b. The biggest percentage of intensity value is 91,463% (2513,526 km²) with VI MMI intensity. While the smallest percentage is 0.301% (8.27 km²) with V MMI intensity.
 c. There is a proportional relationship between PGA and earthquake intensity. The greater the value of the PGA, the greater the value of earthquake intensity, and vice versa. This is shown in Table 1 which is the result of PGA calculation and earthquake intensity. In addition, the relationship between PGA and earthquake intensity can also be shown as a percentage of area. The largest percentage of the PGA range is in the medium category (112,693 - 146,331 gal), as well as the largest percentage of area intensity value (VI MMI). The smallest area percentage of the PGA range is in the low category (79,054 - 112,692 gal), as well as the smallest percentage of the area of intensity value (V MMI).
 d. Districts in Pandeglang Regency that have the highest intensity of earthquakes are Angsana, Cibitung, Cimanggu, Pagelaran, Panimbang, Patia, Sindangresmi, Sobang, and Sukaresmi Districts.

References
[1] Ahazarda, R. 2013. Development of Strong-motion Database for The Sumatra-Java Region. Canberra: The Australian National University.
[2] Atkinson, G. M dan Boore, D. M. 2003. Empirical Ground-motion Relations for Subduction Zone Earthquakes and Their Application to Cascadia and Other Regions. Bulletin of the Seismological Society of America. 93 (4): 1703-1729.
[3] Hamzah, dkk. 2000. Tsunami Catalog and Zones in Indonesia. Journal of Natural Disaster Science. 22 (1): 25-43.
[4] Irsyam, dkk. 2010. Ringkasan Hasil Studi Tim Revisi Peta Gempa Indonesia 2010 (Edisi 2). Bandung: Kementerian Pekerjaan Umum.
[5] Pemerintah Daerah Kabupaten Pandeglang. 2016. Rencana Pembangunan Jangka Menengah Daerah
(RPJMD) Tahun 2016 – 2021. Tersedia pada http://bappeda.pandeglangkab.go.id/dokumen-perencanaan/. (diakses pada 30 Agustus 2019).

[6] Rini, V. S. 2015. Kajian Awal Persamaan Prediksi Percepatan Tanah di Zona Subduksi Wilayah Bali dan Sekitarnya. Skripsi. Program Sarjana Terapan Geofisika, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Tangerang Selatan.

[7] Tim Pusat Studi Gempa Nasional. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Bandung: Kementerian Pekerjaan Umum dan Perumahan Rakyat.

[8] Wahyudin, Y. 2011. Karakteristik Sumber Daya Pesisir dan Laut Kawasan Teluk Pelabuhan Ratu, Kabupaten Sukabumi, Jawa Barat. Bonorowo Wetlands. 1(1): 19-32.

[9] Wald, dkk. 1999. Relationship Between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra. 15 (3): 557-564.

[10] Youngs, dkk. 1997. Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes. Seismological Research Letters. 68 (1): 58-73.

[11] Zhao, dkk. 2006. An Empirical Site-classification Method for Strong-motion Stations in Japan using H/V Response Spectral Ratio. Bulletin of the Seismological Society of America. 96 (3): 914-925.