Introduction

Air harbours enormous number of pathogens such as viruses, bacteria, fungi etc. Many of these pathogens can cause acute infections that are effectively cleared by the host immune system whereas some are able to establish persistent infection. The innate immune system constitutes the first line of host defence against these pathogens, where pulmonary surfactant proteins are considered to play important role in innate immunity in airways.

Pulmonary surfactant is a complex mixture of lipids (90%) and proteins (10%) that forms a thin film at the air-water interface of the alveoli reducing the surface tension at the alveolar interface, thus preventing alveolar collapse (Kishore et al. 2005). Of four surfactant proteins (SPs) (SP-A, SP-B, SP-C and SP-D), SP-A and SP-D belong to the collectin (collagen-containing C-type lectin) family. SP-A and SP-D can bind and agglutinate a wide range of microbial pathogens, and modulate host defence strategies for effective clearance of pathogens and regulating inflammatory processes of the lung.

SP-A and SP-D are hydrophilic proteins characterized by four domains consisting of: (1) N-terminal, cysteine-rich non-collagenous domain, which cross links monomeric subunits and helps in disulphide bond dependent oligomerization; (2) triple-helical Collagenous domain, which is involved in multimerising subunits, activation of immune system, binding site for the putative collectin receptors, Calreticulin/CD91; (3) trimerizing α-helical coiled-coil neck region, which is the...
nucleation point for refolding and (4) C-terminal C-type lectin domain or carbohydrate recognition domain (CRD), which binds to a range of carbohydrate, phospholipids and other self and nonself ligands. Each monomeric subunit can further assemble to yield multimers up to dodecamers in the case of SP-D. SP-A has a tulip-like appearance while SP-D can be visualised as its minimal cruciform structure under the electron microscopy (Fig. 1) (Crouch 1998; Nayak et al. 2012).

This chapter provides an overview of the various ligands on the pathogens that are recognised by SP-A and SP-D, and the effector mechanisms that are triggered by such recognition processes, which is aimed at clearing or restraining the invading pathogens at the mucosal surfaces at pulmonary as well as extrapulmonary sites.

Fig. 1 SP-A and SP-D structure: The primary structure consists of four region N-terminal cysteine-rich region, long collagenous region, α-helical coiled neck region, and C-terminal carbohydrate recognition domain (CRD). This primary structure forms a trimer which can acquire bouquet-like structure assembled from six trimers in the case of SP-A. In case of SP-D, four trimeric units oligomerise to form cruciform dodecamer and also higher-order multimeric structures (fuzzy ball)
Protective Effects of SP-A and SP-D Against Viral Pathogens

Innate immune recognition of viruses is crucial for limiting several viral infections and its related pathogenesis. SP-A and SP-D act as soluble pattern recognition receptors (PRRs) in recognizing viral surface molecules and activating immune cells to facilitate the clearance of viral pathogens (Fig. 2).

Influenza A Virus

Influenza A virus (IAV) is associated with acute respiratory illness and represents an ongoing threat to human and animal health leading to substantial morbidity and mortality. Various Influenza pandemics were caused by H1NI (Spanish Flu) in 1981,

Fig. 2 SP-A and SP-D engage with range of pathogens, including (a) Viruses (Influenza A virus, Human Immunodeficiency virus-1, Herpes Simplex Virus, Respiratory syncytial virus, Human papilloma virus, SARS coronavirus, Rotavirus, Ebola) are shown here (b) Fungi viz. Aspergillus, Candida, Histoplasma, Cryptococcus and Coccidioides (d) Bacteria viz., Streptococcus E. Coli, Mycobacteria, Pseudomonas, K. Pneumonia, Staphylococcus, and (e) Parasites viz. P carinii and N. brasiliensis. Here octademamer of SP-A molecule and fuzzy ball multimeric SP-D molecule has been shown (c)
H2N2 (Asian Flu) in 1957, H3N2 (Hong Kong Flu) in 1986, and A(H1N1)pdm09 (Swine Flu) in 2009. (Taubenberger and Morens 2009; Tripathi et al. 2015; Hsieh et al. 2018a, b). The worst pandemic recorded was in 1918 killing up to 50 million people worldwide (Johnson and Mueller 2002), approximately 675,000 deaths in the US alone (Taubenberger and Morens 2006).

Most IAV subtypes possess two membrane-bound surface glycoproteins expressing N-linked oligosaccharides, Hemagglutinin (HA) and the neuraminidase (NA). HA attaches the virus to the cell with attaching terminal sialic acid residues on glycoproteins or glycolipids to initiate the infectious cycle, whereas NA cleaves terminal sialic acids to release virions (Kosik and Yewdell 2019). There are 16 HA and 9 NA in different subtypes of IAV circulating in humans and animals. When a subtype with a new HA or NA variant appears in the human population by genetic reassortment, it usually causes a pandemic because there is no pre-existing immunity against the new virus. HA and NA can contain mixture of branched structures terminating in the sugar mannose, complex branched structures terminating in galactose and/or N-acetyl-galactosamine (GalNAc) or even hybrid-type oligosaccharides (Basak et al. 1981; Ward and Dopheide 1981). Oligosaccharides attached to the globular head of the glycoprotein display considerable variations in number as well as location. These viruses have undergone antigenic drift possibly through addition of glycans to the HA (Sun et al. 2011; Abe et al. 2004). The numbers of N-linked glycosylation sites on the head of HA increases after their emergence in the human population in case of pandemic and seasonal H1N1 and H3N2 episodes (Tate et al. 2014).

Innate immunity plays an important role in mounting initial response against IAV infection. N-linked glycans present on the surface of IAV, are detected by soluble humoral factors of the innate immune system mounting anti-IAV activities against virions and virus-infected cells (Tate et al. 2014). SP-A and SP-D contribute to initial protection against IAV; SP-D seems to be the most potent due to its specific mode of binding to viral carbohydrates (Hartshorn et al. 1994). SP-A inhibits IAV by binding to HA in a calcium-dependent manner through its sialyted carbohydrates present in the lectin domain, and thus, is classified as γ-inhibitor (Benne et al. 1995; Hartshorn et al. 1997a, b). However, SP-D-mediated inhibition is via binding to high-mannose oligosaccharides on HA and is calcium-dependent, thus it is recognised as β-type inhibitor of IAV (Hartshorn et al. 1993a, b; White et al. 2004). SP-A exhibits greater hemagglutination activity against IAV subtypes with reduced number of glycosylation on HA molecule (Hartshorn et al. 1997a, b). Glycosylation of HA at N165 (glycosylation position at 165 amino acid residue) was found to be important for the neutralization of IAV by SP-D (Reading et al. 1997).

SP-A and SP-D show effectiveness in dealing with infectivity in a cooperative manner; SP-A, which is largely surfactant-associated (lipid associated) acts primarily at the surfactant interface, while SP-D, being largely a soluble (pulmonary secrections) molecule shows its potency in the fluid phase of airways (Hartshorn et al. 1994). The Ca²⁺-dependent binding of SP-A to IAV strain A/X31 takes place through NA (Malhotra et al. 1994). Additionally, SP-A acts as an opsonin for the phagocytosis of IAV by alveolar macrophages. This opsonisation capability of SP-A was
due to its sialic acid residues, thus helping in the removal of virus (Benne et al. 1997). SP-D does not seem to act as an opsonin for the phagocytosis of IAV (Benne et al. 1997) but strongly neutralises and aggregates viral particles by binding to high mannose oligosaccharide residues near the sialic acid binding sites of HA, thus, inhibiting the attachment of IAV to host cells. These inhibitory effects are mediated by the calcium-dependent carbohydrate-binding property of SP-D on viral HA and NA (White et al. 2004). SP-D also has the ability to bind high mannose type II glycans on some IAVs (Qi et al. 2011).

Aggregation of IAV by surfactant proteins is an important neutralization mechanism that prevents viral particles from infecting target host cells, in addition to enhancing virion phagocytosis by macrophages to clear IAV more efficiently. The extended cruciform structure of SP-D helps in bridging interactions with multiple viral particles, leading to the formation of large viral aggregates (Brown-Augsburger et al. 1996). Aggregation of viral particles by SP-D possibly reduces the count of infectious viral particle and subsequently enhances clearance by mucociliary and phagocytic mechanisms. This viral aggregation by SP-D enhanced neutrophil binding of IAV and associated respiratory burst response against them (Hartshorn et al. 1994) (Fig. 3).

IAV infection can induce impaired responsiveness leading to dysfunction in respiratory burst, degranulation and intracellular bacterial killing by phagocytic cells, thereby increasing host’s susceptibility to bacterial superinfections which is

Fig. 3 Biological activities of SP-A and SP-D: Alveolar type-II cells in lungs secrete SP-A and SP-D which can bind, agglutinate and neutralize wide range of microbial pathogens including viruses, bacteria, fungus and parasites. SP-A (bouquet-like structure) and SP-D (cruciform structure) are capable of modulating host defence strategies for effective clearance of pathogens by cytokine production and ROS generation by effector cells such as macrophages (Mφs), dendritic cells (DC), neutrophils, natural killer cells (NK) and lymphocytes. Both SP-A and SP-D are capable of enhancing opsonization, phagocytosis and eventually intracellular killing by innate immune cells such as alveolar macrophages (Mφs) and dendritic cells (DC). This helps in clearing or restraining the invading pathogens at the mucosal surfaces at pulmonary as well as extrapulmonary sites.
an important cause of morbidity and mortality during IAV epidemics (Kilbourne 1987). Hartshorn et al. have reported the protective effect of SP-D against bacterial superinfection in vivo, which was possibly due to opsonisation of the virus with SP-D (Hartshorn et al. 1994). SP-D strongly increased neutrophil respiratory burst response towards IAV in vitro, thus, demonstrating a proinflammatory response (White et al. 2005). In an experiment involving pre-incubation of neutrophils with SP-D, the H$_2$O$_2$ response to IAV was found to be reduced, whereas by preincubating IAV with dodecameric SP-D, H$_2$O$_2$ response to the virus increased quite strongly. This suggests that during preincubation with SP-D, possibly the inhibitory receptors of neutrophils were occupied by SP-D and thus, prevented the virus to bind with neutrophils. Thus, depending on whether SP-D is first incubated with IAV or neutrophils, SP-D can either increase or reduce respiratory burst responses of neutrophils upon exposure to IAV. Similarly, preincubation of IAV with SP-A increased neutrophil uptake of IAV and stimulated H$_2$O$_2$ generation. However, SP-A and SP-D together caused a reduction in H$_2$O$_2$ responses compared with SP-D alone (White et al. 2005). Human neutrophil peptides (HNPs) were subsequently found to bind SP-D and modify its interactions with IAV. Though HNPs were found not to inhibit HA activity of IAV but strongly interfered with neutralizing activity of SP-D by directly binding to its CRD. This binding of SP-D to HNP was not affected by the degree of multimerization of SP-D and was not calcium dependent (Hartshorn et al. 2006).

SP-D binding to pandemic IAV subtype (pH1N1) can modulate its replication in the lower respiratory tract (Hawgood et al. 2004). This was assessed by comparing chimeric IAV with HA segment of 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) or 2009 (H1N1) with seasonal IAVs. HA of pandemic viruses showed lower binding for SP-D, whereas HA of seasonal influenza strain exhibited strong in vitro binding to SP-D with little lung pathology in the infected mice (Qi et al. 2011). The pandemic strains derived from zoonotic sources have fewer N-linked glycosylation sites (Bush et al. 1999; Hensley et al. 2009; Kash et al. 2006), which probably explains less SP-D binding, and hence, significant pathology in the lower respiratory tract. H1 and H3 subtypes that causes seasonal epidemics express more glycans on the head of their HA, bind SP-D efficiently, causing effective viral inhibition. The level of CCL2 and CSF3 chemokine expression were found to be lower with high SP-D binding activity thus exhibiting little lung pathology in infected mice (Qi et al. 2011; Hsieh et al. 2018a, b).

Human H1-containing IAV has two or more glycosylation sites, suggesting that the host specificity of IAV may also depend on the characteristics of HA glycosylation (Inkster et al. 1993). In a experiment where susceptibility of different H1N1 viruses (including strains of A(H1N1) pdm) were assessed towards the anti-viral activities of human SP-D, it was found that seasonal H1N1 viruses demonstrated variations in their sensitivity towards SP-D as the number and location of N-glycosylation sites on HA varied, whereas most A(H1N1) pdm viruses carried a single N-glycosylation site (Asn104) on the head of HA and found resistant to the antiviral activities of SP-D (Job et al. 2010). Thus, γ-inhibitors like SP-A may respond better in combating against strains that are resistant to SP-D (Stevens et al. 2018).
Glycosylation on the HA appears to increase over time in strains that establish themselves in the human population (White et al. 2004). Interestingly, a recent study has shown that the anti-viral activity of isolated lectin domains of SP-D can markedly increase for seasonal strains of IAV by modifying specific residues around the saccharide binding pocket. The combined change of D325A (aspartic acid 325) along with R343V (arginine 343) in the neck and CRD regions of human SP-D showed neutralizing activity similar to full length SP-D dodecamers for seasonal IAV (Hartshorn et al. 2010; Crouch et al. 2011). At the same time, mutated versions of SP-D (D325A + R343V mutant neck and CRD; in the mutant neck and CRD region the penultimate mannose in the chain binds in the lectin site) showed enhanced binding to the reduced number of mannosylated glycans present on the HA of these strains, and thus, were able to inhibit pandemic IAV (Hsieh et al. 2018a, b). Pigs are considered to be important intermediates in the emergence of new IAV strains due to reassortment of viral genes derived from human, avian, or porcine influenza viruses. Hemagglutination inhibition activity by Porcine SP-D was found to be related to the terminal sialic acids (SAs) present on the N-linked oligosaccharide in the CRD region. The SA-mediated interaction of SP-D can be observed only in pigs as they have unique glycosylation profile of SP-D compared to ducks and swine viruses where there are no conserved glycosylation sites at the tip of their HA (Van Eijk et al. 2003). The carbohydrates of porcine SP-D is uniquely sialated with α (2,6)-linked SA, in contrast to SP-A, which contains both α (2,3)- and α (2,6)-linked SAs on its N-linked carbohydrate as confirmed through lectin staining and by cleavage with linkage-specific sialidases (Van Eijk et al. 2004). Thus, an N-linked CRD glycosylation provides interactions with the SA-binding site of IAV and an enhanced interaction with IAV glycans were favoured by tripeptide loop (presence of a unique tripeptide extension of the long loop in the CRD of SP-D, referred to as “326 GSS”) at the lectin-binding site. N-glycosylated neck-CRD fragment of porcine SP-D (RpNCRD) unlike the human analogue RhNCRD, demonstrated potent neutralizing activity against pandemic A/Aichi/68 (H3N2) (Van Eijk et al. 2018).

In 1957 pandemic, a novel H2N2 subtype was formed when H2 virus re-assorted with the circulating H1N1. Thus, considering the fact that a low pathogenicity avian influenza virus (LPAIV) subtype can re-assort leading to emergence of new pandemic, activities of two recombinant human SP-D forms against LPAIV strains (H2N1, H5N1, H6N1, H11N9) were assessed. It was found that these avian IAV strains, containing H2, H5, H6 and H11 were not susceptible to lung SP-D activity due to presence of predominantly complex glycans at the key glycosylation sites (Parsons et al. 2020).

A recombinant form of human SP-D (rfhSP-D), containing homotrimeric neck and CRD regions was used to test if rfhSP-D interfered with the ability of pH1N1 and H3N2 IAV subtypes to infection lung epithelial cell line (A549). rfhSP-D could inhibit IAV entry, down-regulate viral replication (M1) and associated pro-inflammatory response. mRNA levels of TNF-α, IFN-α, IFN-β and IL-6 were downregulated during the initial stage of IAV infection with rfhSP-D (Al-Ahdal et al. 2018). However, in similar assays, a recombinant fragment of human SP-A Biological Activities of SP-A and SP-D Against Extracellular and Intracellular Pathogens
composed of trimeric neck and CRD (rfhSP-A) enhanced the infection, as evident from enhanced viral replication (higher expression of M1 genes) as well as increased expression of TNF-α, IL-12, IL-6 and IFN-α (Al-Qahtani et al. 2019). Interestingly full length native SP-A was able to downregulate the expression of M1 genes, suggesting that a complete SP-A molecule is required for protection against IAV (Al-Qahtani et al. 2019). These two studies highlighted that SP-A and SP-D are quite distinct in their ability to negate IAV infection. SP-A seems to require its intact structure including collagen region as opposed to SP-D where rfhSP-D was found to be a self-sufficient entity in dealing with IAV infection.

Human Immunodeficiency Virus-1 (HIV-1)

HIV-1, which is responsible for acquired immunodeficiency syndrome (AIDS), remains a leading cause of global morbidity. SP-A and SP-D can be found at various mucosal locations such as lungs, oral cavities, gastro-intestinal tract, genitourinary tract as we all as in ovar, vagina and cervix etc. (Tino and Wright 1996; Madsen et al. 2000; Leth-Larsen et al. 2004; Nayak et al. 2012; Madhukaran et al. 2016); all are also important sites for HIV-1 transmission. Thus, the role of SP-A and SP-D in HIV-1 pathogenesis and transmission has been examined.

The glycosylated HIV-1 envelope protein, gp120, plays an important role in pathogenesis of AIDS. SP-D binds gp120 in a calcium-dependent manner; native dodecameric SP-D binds HIV-1 gp120 more strongly than native trimeric SP-D (Meschi et al. 2005a, b). SP-D possibly binds to the centre of the oligomerized gp120 molecule via glycans located in the V3 loop (Madsen et al. 2013). SP-D can agglutinate both gp120 and intact inactivated HIV Bal particles in the presence of calcium (Madsen et al. 2013). SP-A also binds with HIV-1 gp120 via high mannose oligosaccharides efficiently neutralize both R5 and X4 strains of HIV (Gaiha et al. 2008). Both SP-A and SP-D could inhibit infection of CD4+ T cells by two different strains of HIV-1, BaL and IIIB (Gaiha et al. 2008; Madsen et al. 2013). SP-D enhanced binding to HIV-1 to immature monocyte-derived dendritic cells as well as transfer from DCs to T cells *in vitro* (Madsen et al. 2013).

Bronchoalveolar lavage of HIV-1-infected individuals showed increase level of SP-A, which was found to enhance the attachment of *Mtb* to alveolar macrophages. This possibly explains the increased risk of tuberculosis during HIV-1 infection (Downing et al. 1995). The ability of native human SP-D and rfhSP-D to bind gp120 was assessed in addition to viral inhibition in three different targets, Jurkat T cells, U937 monocytic cells and PBMCs. Both native SP-D and rfhSP-D inhibited HIV-1 entry efficiently and blocked CD4 and gp120 interaction. rfhSP-D also significantly suppressed HIV-1 induced cytokine storm and phosphorylation of kinases p38, AKT and Erk1/2 in HIV-1 induced immune activation *in vitro* suggesting the potential use of rfhSP-D for immunotherapy against viral infection (Pandit et al. 2014). Mucosal biocompatibility of rfhSP-D has been assessed *ex vivo* where it showed inhibition in HIV-1 transfer across the vaginal tissues and downregulation of NF-κB.
and mTOR transcripts while the expression of tight junctions and cytoskeleton genes were upheld (Pandit et al. 2019).

A direct protein-protein interaction between rhSP-D and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) through their C-type lectin domains has been observed (Dodagatta-Marri et al. 2017). SP-D and DC-SIGN showed competitive binding behaviour towards immobilized HIV-1 gp120, possibly suggesting SP-D and gp120 may occupy same sites on DC-SIGN as revealed through in silico analysis. rhSP-D also inhibited cis-transfer of DC-SIGN-bound HIV-1 to T cells in culture.

Herpes Simplex Viruses (HSV)

Herpes viruses are large family of DNA viruses, which are known to cause lytic infection in permissive cells. HSV have co-evolved with human for million years; these viruses can establish a latent infection and persist in humans for the lifetime. Pathogenic effects occur when the host acquires genetic defects in the immune responses or if the viral load becomes too high (Kurt-Jones et al. 2017). Herpes simplex virus type 1 (HSV-1) is a typical human-restricted pathogen with higher frequencies in developing countries (Su et al. 2016) and is responsible for causing a lifelong latent infection in neurons; it can get reactivated causing lytic infection mostly in epithelial or mucosal cells (Nicoll et al. 2012; Roizman and Whitley 2013). Herpesvirus, compared to other enveloped viruses, needs the combined effort of multiple glycoproteins and multiple host receptors to infect, depending on the cell type (Watson et al. 2019). SP-A binds HSV-1 infected Hep-2 cells which can be inhibited by heparin, but not by mannose polysaccharide. Heparin could also dissociate cell bound SP-A, suggesting the role of polyanionic oligosaccharide in SP-A-HSV-1 interaction (van Iwaarden et al. 1992). SP-A has been shown to act as an opsonin in the phagocytosis of HSV-1 by alveolar macrophages, suggesting its important anti-viral properties (van Iwaarden et al. 1990).

Respiratory Syncytial Virus (RSV)

Respiratory syncytial virus (RSV) is a major respiratory pathogen in infants and young children. RSV causes an upper respiratory tract infection that may progress to acute bronchiolitis or interstitial pneumonia (LeVine et al. 1999a, b). Almost every child suffers from a mild upper respiratory tract infection by RSV but morbidity and mortality are related to lower respiratory tract involvement only (Griese 2002). Heavily glycosylated G-protein present in the RSV envelope aids in attachment with the host cells. This G protein contains several sites for N-linked glycosylation and almost 30% of its amino acids are serine and threonine residues (Griese 2002).
The potential role of SP-A in RSV infection has been examined via SP-A-deficient (SP-A−/−) mice. SP-A−/− mice had increased numbers of RSV plaque-forming units in their lungs than in SP-A+/+ wild type mice. Infiltration of neutrophils and proinflammatory cytokines such as -TNF-α and IL-6 were also enhanced in lungs of SP-A−/− than in SP-A+/+ mice after RSV administration. Thus, SP-A played important role in pulmonary clearance of RSV in vivo which was associated with an enhanced respiratory burst by the alveolar macrophage (LeVine et al. 1999a, b). Daily levels of surfactant proteins in bronchoalveolar lavage (BAL) fluid from ventilated infants with RSV infection and in a ventilated surgical patients (control) were investigated; concentrations of SP-A and SP-D per ml of BAL fluid were found to be significantly reduced in children with RSV infection, suggesting that the reduction of surfactant proteins may contribute to the respiratory failure in RSV patients (Kerr and Patron 1999).

G protein from RSV (human, A2 strain) interacts with both native and rhSP-D via the CRD region of SP-D. rhSP-D was able to inhibit viral replication in the lungs (Hickling et al. 1999). The binding of SP-A to RSV G-protein was found to be inhibitable by both EDTA and mannan, suggesting the involvement of carbohydrate moiety of the G-protein interacting through the carbohydrate recognition domain of the SP-A (Hickling et al. 2001).

Human Papillomavirus (HPV)

HPV is the most common viral infection of the reproductive tract. Most HPV infections get cleared by cell-mediated immunity within a year, but sometimes, it can result in persistent infection with an increased probability of progression into invasive cancers (Stanley 2010). In an attempt to assess the impact of SP-A during the early events of sexual HPV transmission, a study was conducted in wildtype C57BL/6 mice. SP-A-mediated opsonization of HPV16-PsVs (pseudovirions) and significantly increased HPV16-PsVs uptake by eosinophils, neutrophils, monocytes, and macrophages in the female reproductive tract (Ujma et al. 2019).

SARS Coronavirus (SARS CoV)

Severe acute respiratory syndrome (SARS) outbreak in 2003 attributed to pulmonary infection with a novel coronavirus (SARS-CoV) infecting more than 8000 individuals and caused approximately 10% mortality (LeDuc and Barry 2004). SARS-CoV infects human hosts through the respiratory system and it interplays with the host innate immune system in the lung alveoli. The spike protein (S-protein) that interacts with the host and shows high degree of glycosylation was found to interact with SP-D (Leth-Larsen et al. 2007). The effect of S-protein binding to macrophages and DCs was also investigated. Plasma SP-D levels were significantly
elevated in SARS-type pneumonia (Wu et al. 2009). SP-A and SP-D were found to bind with HCoV-229E (a common non-SARS human CoV) and pre-treatment of HCoV-229E with SP-A or SP-D inhibited viral infection of 16HBE, bronchial epithelial cells. SP-D showed better effectiveness in inhibiting infection of 16HBE cells whereas SP-A was found more effective at inhibiting infection of alveolar macrophages (Funk et al. 2012).

Other Viruses

Vaccinia virus that is principally transmitted between humans by aerosol droplets, interacts with SP-D directly through A27 viral protein which lacked glycosylation. When challenged with the virus, SP-D−/− mice incurred greater mortality compared to SP-D+/+ wild type mice, suggesting SP-D participating in host defense (Perino et al. 2013).

Ebola virus binds human as well as porcine SP-D through its glycoprotein. This interaction enhanced pseudoviral infection in pulmonary cells (A549) suggesting the possible role of SP-D in enhancing viral spread (Favier et al. 2018). In case of pulmonary infection mediated by adenovirus, SP-A showed enhancement in viral clearance inhibiting lung inflammation (Harrod et al. 1999).

Rotaviruses are non-enveloped viruses having a glycoprotein VP7 which forms the smooth surface of the virion from where VP4, an outer capsid protein, protrudes as spikes. Bovine SP-D was able to bind with VP7 glycoprotein of rotavirus strain NCDV and displayed neutralizing activity that was dependent upon glycosylation of VP7 (Reading et al. 1997).

Bacterial Pathogens

Despite the fast-acting intracellular signalling mechanisms induced by PRRs, microbial pathogens have evolved countermeasures to thwart innate immunity in order to survive and proliferate in the host. It is now clear that evolution has selected a conserved set of anti-microbial peptides as well as Pattern Recognition Receptors (PRRs) that initiate signals as a first line of defence against invading pathogens. If a bacterial pathogen is able to successfully evade destruction by anti-microbial peptides, most host organisms have evolved a second line of defence centred on microbial recognition of PAMPs by PRRs and the subsequent production of cell-intrinsic immune mechanisms and/or recruitment of immune cells. In response to these challenges, many bacterial pathogens have modified the molecular structure of their PAMPs, thereby avoiding immune detection through stealth and evasion. For example, lipopolysaccharide (LPS) is a ubiquitous component of Gram-negative bacteria cell wall, and is composed of diverse O-antigen side chains that are anchored to the outer leaflet of the bacterial envelope by Lipid A. Importantly, Lipid A is directly
recognized by the mammalian TLR4-MD2-CD14 PRR complex to activate innate immune signalling pathways.

Gram Positive Bacteria

There are several Gram-positive bacteria which can cause respiratory distress in adults leading to pulmonary inflammation, like *Staphylococcus aureus* and *Streptococcus pneumonia* (Ewig and Torres 1999; Goel et al. 1999). Pneumococci are one of the leading causes of septicemia, meningitis, and lower respiratory tract infections in humans, where *S. pneumoniae* produces two hemolysins contributing to the pathogenicity (Navarre and Schneewind 1999). Group A streptococci are responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis, whereas Group B streptococci can cause neonatal sepsis and meningitis in developed countries (Navarre and Schneewind 1999).

The cell wall of Gram-positive bacteria is composed of a peptidoglycan (PepG) macromolecule that is attached with several other accessory molecules such as teichoic acids, teichuronic acids, polyphosphates, or carbohydrates. About 40% weight of the bacterial cell wall comprises of multiple layers of cross-linked PepG (Shockman and Barrett 1983). PepG and lipoteichoic acid (LTA) are capable of inducing inflammatory response and can also initiate septic shock (De Kimpe et al. 1995). SP-A was found to bind with a wide range of Gram-positive bacteria such as *Staphylococcus aureus* (van Iwaarden et al. 1990; Kuan et al. 1992a, b; Greertsma et al. 1994; McNeely and Coonrod 1994a, b; Manz-Keinke et al. 1992), Group A *Streptococcus* (Ohmer-Schröck et al. 1995), Group B *Streptococcus* (LeVine et al. 1997, 1999a, b), *Streptococcus pneumonia* (Kuronuma et al. 2004; Sano et al. 2007) mostly either with the PepG or with LTA via CDRs and also enhanced uptake by phagocytosis. SP-D could bind with *Bacillus subtilis*, *Staphylococcus aureus*, Group B *Streptococcus* and *Streptococcus pneumonia* (van de Wetering et al. 2001; Hartshorn et al. 1998; Shepherd 2002; Jounblat et al. 2004). Hartshorn et al. (1998) have shown that SP-A and SP-D both were able to increase calcium-dependent uptake of *Streptococcus pneumoniae*, and *Staphylococcus aureus* by neutrophils. The aggregation capability was influenced by the degree of multimerization of SP-D (Hartshorn et al. 1998). The N-terminal and/or collagen domains of SP-D contribute to the enhanced bacterial binding and aggregating activities since multimeric structure was found to be important for SP-D efficacy (Hartshorn et al. 2002). rfhSP-D (consisting of the head and neck regions of the native molecule) could bind with several strains of *Streptococcus pneumoniae* where the strength of binding varied between different capsular serotypes, but was not able to enhance killing of pneumococci by human neutrophils (Jounblat et al. 2004).

SP-A gene-deficient (SP-A^{−/−}) mice showed increased susceptibility to airway challenge of group B streptococci, *Pseudomonas aeruginosa*, and *Staphylococcus aureus* (LeVine et al. 1997, 1998, 1999a, b). Although SP-A binds to both *Staphylococcus aureus* and enhances its phagocytosis by monocytes, it fails to
stimulate intracellular killing and production of reactive oxygen intermediates (Greertsma et al. 1994). SP-A can also enhance scavenger receptor A (SR-A)-mediated uptake of *Streptococcus pneumoniae* (Kuronuma et al. 2004). It can also bind di-saturated phosphatidylglycerol of *Mycoplasma pneumoniae* and inhibit its bacterial growth in vitro (Piboonpocanun et al. 2005).

Gram-Negative Bacteria

Gram-negative bacteria contain lipopolysaccharide (LPS), a cell wall-resident PAMPs, which allows PRR-containing phagocytes to recognize bacterial invasion and mount innate immune responses. LPS consists of a hydrophobic membrane anchor portion (lipid A) of relatively conserved core oligosaccharide coupled to a distal polysaccharide (O-antigen) that extends from the bacterial surface (Raetz and Whitfield 2002). O-specific chain consists of up to 50 repeating oligosaccharide units of 2–8 monosaccharide components which differs between strains. *Haemophilus influenzae*, for example, contains O-antigen structures that closely resemble human glycosphingolipids due to the presence of N-acetylenuraminic acid or L-fucose (Moran et al. 1996). Lipid A portion is responsible for the immunostimulatory activity of LPS (Matsuura 2013).

SP-A and SP-D bind LPS of Gram-negative bacteria and enhance their phagocytosis by alveolar macrophages (Pikaar et al. 1995). Lipid A moiety of smooth strains of Gram-negative bacteria contains O-antigen whereas the rough strains lack the O-antigen (Van Iwaarden et al. 1994). Binding of SP-A to LPS of *E. coli* appears dependent on Ca²⁺ but it is not affected by mannan and heparin, or by deglycosylation of the SP-A. SP-A associates via the lipid A moiety of rough LPS, but not with smooth LPS (Van Iwaarden et al. 1994). Lectin blot analysis demonstrated specific binding of SP-D to LPS from several strains of enteric Gram-negative bacteria including *E. coli*. SP-D can agglutinate *E. coli* in a calcium- and carbohydrate-dependent manner (Kuan et al. 1992a, b).

Klebsiella pneumoniae is an anaerobic, Gram-negative bacterium indigenous to the oral cavity and intestinal tract; however, it often causes severe respiratory and urinary tract infections. *K. pneumoniae* strains of the K2 capsular serotype are usually highly virulent in mice; the capsule is recognized by mannose receptor (MR) present on macrophages (Kabha et al. 1995). SP-A acts as an opsonin and enhances phagocytosis of K21a (low virulent, capsule containing Man α1 Man sequences) serotypes of *K. pneumoniae* by alveolar macrophages via MR (but not of K2) (Kabha et al. 1997).

The binding of native human SP-D purified from lung lavage as well as a recombinant fragment of human SP-D (rhhSP-D) composed of trimeric neck and CRD regions, to bind LPS from various Gram-negative bacteria (*E. coli, K. pneumoniae* and *Ps. aeruginosa*) has been examined by Kishore et al. (1996a, b). rhSP-D was able to bind to the LPS similar to native SP-D (Kishore et al. 1996a, b). SP-A is also able to aggregate *Hemophilus influenza* type A and induce phagocytosis by
macrophages (McNeely and Coonrod 1994a, b). SP-A brings about NO-mediated killing of *M. pulmonis* by alveolar macrophage (Hickman-Davis et al. 1998). In addition, SP-A deficiency modifies surfactant aggregate content and lowers the inhibition resistance of LA surfactant *in vitro* compared with experiments involving congenic normal mice (uninfected B6 SP-A^{−/−} versus B6 mice) (Hickman-Davis et al. 2007). Bacteriostatic effect of SP-A on *Mycoplasma pneumoniae* was found to be mediated by binding to its surface disaturated phosphatidylglycerols (Ledford et al. 2009).

Mycobacteria

Mycobacteria range from environmental, non-pathogenic species, to opportunistic pathogens that can infect immuno-compromised hosts (Saelens et al. 2019). Mycobacterium genus includes strict pathogens, potential or opportunistic pathogens, and non-pathogenic, saprophytic species. These are the causative organisms for most important diseases including tuberculosis (TB), leprosy, Buruli ulcer, and pulmonary non-tuberculous mycobacterial (NTM) disease (Forbes et al. 2018).

Mycobacterium tuberculosis

Tuberculosis caused by *Mycobacterium tuberculosis* (*Mtb*) is an ancient disease which co-evolved compatibly with humans. TB has now emerged as a major global health concern affecting almost one third of global population (Ferluga et al. 2020). Alveolar macrophages are the initial sites of infection with *Mtb* and innate immune arm in the lungs plays an important role in controlling the inhaled pathogen. SP-A enhances phagocytosis of the virulent *Mtb* Erdman strain by alveolar macrophages (Gaynor et al. 1995). SP-A shows high affinity binding to attenuated *Mtb* strain (H37Ra) with a K_d value of 1.9×10^{-9} M in a calcium dependent manner and also enhances adherence of bacilli to mouse alveolar macrophages (Pasula et al. 1997). Deglycosylated SP-A exhibits minimal binding to *Mtb* (Pasula et al. 1997) and does not enhance the adherence of *Mtb* to monocytes (Gaynor et al. 1995), indicating the importance of sugar moieties during the interaction. In spite of SP-A being helpful in aggregation and phagocytosis of *Mtb*, SP-A appears to suppress reactive nitrogen intermediate production, a likely mechanism through which *Mtb* possibly counter-acts the cytotoxic response of alveolar macrophages (Pasula et al. 1999). Sidobre et al. (2000) have identified mycobacterial lipoglycans as putative ligands for human SP-A, which requires both the terminal mannose residues and the aglycone moiety for optimal binding. In addition, lipomannan and mannosylated lipoarabinomannan (ManLAM) are also SP-A ligands (Sidobre et al. 2002). Cell surface molecule, Apa (alanine- proline-rich antigenic) glycoprotein, was found to be another potential adhesion molecule on *Mtb* that can interact with human SP-A (Ragas et al. 2006).
SP-D has also been shown to bind and agglutinate virulent \textit{Mtb} Erdman strain and reduce uptake of bacilli by human macrophages (Ferguson et al. 1999; Ferguson and Schlesinger 2000). This binding of SP-D to \textit{Mtb} is calcium- and sugar-dependent. SP-D shows minimal binding to the avirulent \textit{M. smegmatis}. Lipoarabinomannan (LAM) is a major surface lipoglycan of \textit{Mtb} (Schlesinger et al. 1994) and the binding of SP-D to Erdman lipoarabinomannan seems to be mediated by the terminal mannosyl oligosaccharides (Ferguson et al. 1999).

The collagen region of SP-D seems to be required for enhanced binding to \textit{Mtb} and is essential for agglutination (Ferguson et al. 2002). Dodecameric SP-D, but not rfhSP-D, causes agglutination of \textit{Mtb}, confirming that the multivalent nature of SP-D is essential for agglutination. SP-D binds and masks the terminal mannose caps of Man LAM of \textit{Mtb}. It is also capable of limiting the intracellular growth of bacilli inside the macrophages by enhancing phagosome-lysosome fusion (Ferguson et al. 2006).

During inhalation, respiratory pathogens are exposed to shear forces as they travel to the terminal airways. Interaction of SP-A and SP-D with virulent (H37Rv) and attenuated (H37Ra) \textit{Mtb} strains has thus been investigated under shear conditions to mimic the dynamic lung microenvironment (Hall-Stoodley et al. 2006). SP-A binds both strains well nearly 4–5 times better under shear conditions, compared to static conditions and BSA control (Hall-Stoodley et al. 2006). Covalently surface-immobilised SP-D binds virulent \textit{Mtb} and \textit{Mtb} ManLAM-coated beads feebly and agglutinates bacilli poorly, compared to when \textit{Mtb} is pre-incubated with soluble SP-D, which causes efficient bacterial agglutination, highlighting the importance of SP-D conformation in its biological functioning (Hall-Stoodley et al. 2006). In a study to examine the effect of SP-A on MR expression on human monocyte-derived macrophages, SP-A was found to specifically regulate surface expression of functional MR, without altering complement receptor (CR) expression. Monocyte-derived macrophages cultured on an SP-A substrate demonstrated enhanced pinocytosis of mannose BSA and phagocytosis of \textit{Mtb} lipoarabinomannan-coated microspheres (Beharka et al. 2002). Antibodies against the SP-A-binding neck domain (\(\alpha\)-SP-R210n) also inhibited \textit{Mtb} induced proliferation of lymphocytes and secretion of IFN-\(\gamma\) and TNF-\(\alpha\) is possibly through enhanced production of IL-10 and TGF-\(\beta\)1 (Samten et al. 2008).

\textit{Mycobacterium avium}

Nontuberculous mycobacteria (NTM) such as \textit{Mycobacterium avium} are slowly growing pathogens in natural and artificial environments. NTM may result in colonization, infection, and causing diseases that can be detected in the respiratory and gastrointestinal tracts or on the skin of healthy individuals (Griffith et al. 2007; Brown-Elliott et al. 2012; Forbes et al. 2018). \textit{M. avium} complex (MAC) includes two species, \textit{M. avium} and \textit{M. intracellularare}. Pulmonary infection caused by the MAC can occur in immunocompetent hosts; disseminated infections usually occur in people living with HIV-1. The most common presentations of MAC lung...
Infections in immunocompetent hosts are TB-like apical fibrocavitary disease or interstitial nodular infiltrates and bronchiectasis (Griffith et al. 2007; Brown-Elliott et al. 2012). SP-A and SP-D bind *M. avium* in a calcium-dependent and independent manner, respectively (Kudo et al. 2004). The mutated form of SP-A (E195Q, R197D) show decreased binding to *M. avium* but can still stimulate phagocytosis similar to wild-type SP-A. SP-A and SP-D could enhance MR-mediated phagocytosis of *M. avium* by macrophages (Kudo et al. 2004). SP-D can agglutinate *M. avium*, involving CRD region (Ariki et al. 2011). The binding of SP-A strongly inhibits the growth of *M. avium* in culture. SP-D binds *M. Avium* surface in clusters whereas SP-A almost covers the entire bacterial surface as observed under scanning electron microscopy (Ariki et al. 2011). SP-A suppresses NO production by *M. avium*-stimulated alveolar macrophages through inhibition of TNF-α production (Hussain et al. 2003).

Mycobacterium bovis BCG

The live, attenuated BCG strain of *M. bovis* is used for TB vaccination. The effects of functional (in exon, non-synonymous) polymorphisms of SP-D on the interaction between SP-D and *M. bovis* BCG have been investigated by Hsieh et al. (Hsieh et al. 2018a, b). It appears that residue 11 Met (92T) is likely to cause susceptibility to TB as in comparison to SP-D 92C (amino acid residue 16, Threonine). SP-D 92T (amino acid residue 16, Methionine) which exhibits reduction in binding to *M. bovis* BCG, inhibiting phagocytosis and aggregation, and inhibition of intracellular growth (Hsieh et al. 2018a, b). SP-A enhances BCG-induced inducible NO synthase protein level, and subsequent production of TNF-α and NO in rat macrophages (Weikert et al. 2000).

Fungi

Fungal pathogens can cause life-threatening infections in immunocompetent as well as immunocompromised individuals. *Aspergillus fumigatus* and *Candida albicans* yeasts can cause opportunistic infections during immune suppression, as observed in patients receiving treatment against AIDS (Kauffman and Carver 1990). Furthermore, fungal infections are often persistent and not easy to treat as it is difficult to target them without affecting host cells.
Aspergillus fumigatus

Aspergillus fumigatus is a ubiquitous airborne fungus, which is responsible for allergic bronchopulmonary aspergillosis (in immunocompetent individuals), invasive pulmonary aspergillosis (affecting highly immunocompromised subjects) and a range of sub-acute and chronic forms of pulmonary aspergillosis (Madan and Kishore 2020).

Madan et al. have conducted *in vitro* and *in vivo* experiments to establish the protective role of SP-A and SP-D against allergic and invasive aspergillosis (Madan et al. 1997a, b). SP-A and SP-D bound and agglutinated *A. fumigatus* conidia and enhanced its uptake and killing by alveolar macrophages and neutrophils (Madan et al. 1997a). In another study where culture filtrate allergens and various purified glycosylated and non-glycosylated allergens of *A. fumigatus* were assessed, both SP-A and SP-D could bind to allergens and purified glycosylated allergens in a carbohydrate-specific and calcium-dependent manner but were unable to bind with the deglycosylated allergens (Madan et al. 1997b), suggesting that the binding was mediated through their CRD region with the carbohydrate residues on the allergen. Both the surfactants were also able to inhibit *A. fumigatus* allergen-induced histamine that was released from the basophils of allergic patients (Madan et al. 2001). Rat BAL fluid containing SP-D has been shown to inhibit binding of conidia to the extracellular matrix proteins and A549 lung epithelial cells (Yang et al. 2000). Reduction in the conidia binding was observed with pre-treatment of epithelial cells and extracellular matrix proteins with SP-D (Ordonez et al. 2019).

SP-D shows reduced binding to *kre6* yeast mutant (cell wall comprising about 50% less β(1→6)-glucan than the wild type) compared to the wild type, confirming that β(1→6)-glucan is a fungal ligand for SP-D (Allen et al. 2001). SP-D has been found to bind with *A. fumigatus* dormant conidial surface melanin pigment and galactomannan (GM) as well as galactosaminogalactan (GAG), two cell-wall polysaccharides. SP-D showed calcium-dependent binding with GM and GAG recognised by its CRD region, whereas SP-D binding was calcium-independent for melanin requiring collagen region (Wong et al. 2018). Human monocyte-derived macrophages (MDMs) show efficient phagocytosis towards SP-D-opsonised conidia and could subsequently induce the production of pro-inflammatory cytokines. MDMs cultured with SP-D-opsonized conidia produced significantly higher TNF-α, IL-6 and IL-8 than the control groups, unstimulated MDMs and when co-cultured with un-opsonized conidia (Wong et al. 2018).

Murine models of ABPA, when intranasally treated with SP-A and SP-D, demonstrated reduction in *A. fumigatus*-specific IgE and IgG levels, peripheral and pulmonary eosinophilia, and Th2 cytokine response (Madan et al. 2001). However, SP-D (and rfhSP-D) was considerably more effective in ameliorating the allergic features compared to SP-A. SP-D−/− gene deficient mice exhibited intrinsic hyper eosinophilia and showed several-fold increase in the levels of IL-13 and IL-5 and reduction in the IFN-γ to IL-4 ratio following *A. fumigatus* allergen challenge. Intranasal administration of SP-D or rfhSP-D downregulated pulmonary
eosinophilia and specific IgG and IgE antibodies in ABPA murine models (Madan et al. 2005a). Reduction in the bronchial hyper-responsiveness, bronchial eosinophilia and in Th-2 cytokines due to exogenous SP-D treatment were found possibly due to reduction in eotaxin level in the lungs (Erpenbeck et al. 2006).

In a murine model of invasive pulmonary aspergillosis, treatment with SP-D or rfhSP-D reduced the mortality by about 85% compared to untreated groups (Madan et al. 2010), concomitant with higher production of TNF-α, IFN-γ and MIP-1α (Singh et al. 2009). SP-Δ−/− mice challenged intranasally with wildtype conidia or melanin ghosts (hollow melanin spheres) displayed reduction in pro-inflammatory cytokines in the lung compared with wildtype mice. SP-D was found to bind with melanin present on the dormant A. fumigatus conidial surface, facilitating conidial phagocytosis and also inhibiting ROS quenching capacity of melanin (Wong et al. 2018).

Candida albicans

Candida albicans is a commensal opportunistic fungus present on the skin and in mucosal tissues that causes candidiasis during immunosuppressive conditions. SP-D was found to bind to *C. albicans* yeast which was inhibited in the presence of EDTA and mannan (Ordonez et al. 2019). Incubation of *C. albicans* with SP-D results in the inhibition of hyphal outgrowth as well as phagocytosis by alveolar macrophages (van Rozendaal et al. 2000). *C. albicans* infection of a human airway epithelial cell line, Calu3, increased synthesis of IL-8 and IL-6 significantly and infection decreased by neutrophils in the presence of SP-D; SP-D had no significant effect on the *C. albicans*-induced oxidative burst (Ordonez et al. 2019).

Histoplasma capsulatum

Histoplasma capsulatum is a dimorphic fungal pathogen; its inhalation results in a flu-like illness in most cases. However, but some instances, it can cause more serious pneumonitis or a chronic cavitary pulmonary infection (Deepe 1999). SP-A and SP-D treatment results in increased yeast permeability, and enhanced entry into pulmonary macrophages. However, SP-A and SP-D do not seem to inhibit the growth of macrophage-internalized *H. capsulatum* (McCormack et al. 2003).
Cryptococcus neoformans

Cryptococcus neoformans is a soil-dwelling organism that obtains its nutrition from digesting material in the environment and secretes a range of enzymes to degrade host molecules (Almeida et al. 2015). This fungal pathogen primarily affects immunocompromised individuals through inhalation of spores and may spread to the central nervous system causing life-threatening meningitis and is relatively common in AIDS patients.

SP-A and SP-D bind acapsular *C. neoformans* in a calcium-dependent manner (Schelenz et al. 1995). SP-D binds quite efficiently the acapsular form (but not the capsular form) and aggregates them. Assembly of glucuronoxylomannan (GXM) in the capsule probably lowers the affinity for SP-D in the capsular form preventing aggregation (van de Wetering et al. 2004). The binding ligand for SP-D are GXM and mannoprotein 1 (MP1) components of the cryptococcal capsular components (van de Wetering et al. 2004).

Interestingly, SP-D seems to facilitate infection of pathogenic fungus *C. neoformans in vitro and in vivo* (Geunes-Boyer et al. 2009a, b, c, 2012). SP-D bind and protects *C. neoformans* cells from macrophage induced H2O2-induced oxidative stress (Geunes-Boyer et al. 2012). *C. neoformans* infection appears to be facilitated by the presence of endogenous SP-D in wild-type mice influencing fungal burden in the lungs and faster dissemination to the CNS than in SP-D−/− mice (Geunes-Boyer et al. 2009a, b, c). SP-D−/− mice seem resistant to fungal infection; however, exogenous SP-D treatment renders mice susceptible (Geunes-Boyer et al. 2012). SP-D increases susceptibility to *C. neoformans* infection by augmenting *C. neoformans*-driven pulmonary IL-5 and eosinophil infiltration in lungs (Geunes-Boyer et al. 2012).

In an experiment where SP-A and SP-D double knock-out mice, humanized SP-D transgenic (hTG SP-D), and wild-type (WT) mice were treated with or without p38 inhibitor prior to intratracheal injection with *C. neoformans*, p38 MAPK phosphorylation level was found significantly higher in double knock-out mice than in the WT mice. This level came to normal following phosphorylated p38 (p-p38) inhibitor treatment in the double knock-out mice. Transgenic SP-D expression in the hTG SP-D mice also showed decrease in p38 level and showed enhanced in vivo phagocytic activity of *C. neoformans*. Thus, lack of SP-A and SP-D seems to influence higher phosphorylated p38 leading to enhanced phagocytic activity of the alveolar macrophages (Abdel-Razek et al. 2016).

Other Fungi

Coccidioides posadasii is a highly virulent soil fungus that causes coccidioidomycosis (Valley fever) in many arid regions of the Americas (Kollath et al. 2019). Both SP-A and SP-D bind to Coccidioidal antigens but no significant changes were
observed in the amounts of SP-A and SP-D in BALF after 5 days of intranasal challenge with *C. posadasii* (Awasthi et al. 2004).

S. cerevisiae, an ubiquitous ascomycetous yeast, is a common colonizer of mucusal surfaces and part of the normal flora of the gastrointestinal tract, the respiratory tract, and the vagina (Salonen et al. 2000). Fungemia the most important clinical syndrome caused by *S. cerevisiae* and has also been described in immunosuppressed patients. It can also cause pneumonia, empyema, liver abscess peritonitis, vaginitis, esophagitis, urinary tract infection, cellulitis etc. (Munoz et al. 2005). SP-D was found to bind and aggregate *S. cerevisiae*, which was further being inhibited by EDTA (Allen et al. 2001).

Parasite

Pneumocystis carinii

Pneumocystis carinii, an extracellular protozoan capable of causing diffused pneumonia in immunocompromised hosts, is a major infection in patients with AIDS. The infection presents as non-productive cough, shortness of breath, fever and bilateral interstitial infiltrates. Pneumocystosis-related surfactant changes have been reported in both humans and corticosteroid-treated experimental models (Aliouat et al. 1998; Prevost et al. 1997). SP-A was found to bind *P. carinii*; its level markedly increased in the infected pneumonia patients with AIDS in lower respiratory tracts (Phelps and Rose 1991; Zimmerman et al. 1992).

O’Riordan et al. reported SP-D as a major component of the alveolar exudates that typify *P. carinji* pneumonia and is capable of binding to the surface of *P. Carinji* organisms through saccharide-mediated interactions with gpA present on the surface of the organism (O’Riordan et al. 1995). With increasing concentrations of calcium SP-D binding to gpA was enhanced, whereas manganese and magnesium cations had negligible effect. SP-D exhibited maximum binding at pH 7.4, whereas inhibited significantly at pH 4. SP-D interactions with *P. Carinii* gpA was found to be facilitated by dodecameric and higher order forms of SP-D (Vuk-Pavlovic et al. 2001).

P. carinii pneumonia was also found to be associated with raised levels of alveolar SP-D where synthesis and secretion of SP-D increased with acute injury and epithelial activation (Atochina et al. 2003). The transgenic mouse model with over-expression of SP-D (SP-D OE) was used to understand the role of SP-D in the pathogenesis, where the transgenic mice showed about 30–50 fold greater SP-D level than the wild-type. The SP-D OE animals showed significant higher levels of TNF-α and macrophage inflammatory protein-2 in BLF throughout the period of infection. And as both the SP-D OE and WT were deficient of CD4 lymphocytes, the study suggests that SP-D possibly facilitates the development of *Pneumocystis* infection in an immunosuppressed mouse model (Vuk-Pavlovic et al. 2006).
Nippostrongylus brasiliensis

Nippostrongylus brasiliensis is a natural parasite of rat, closely related to human hookworm and is primarily used as an important model for studying host’s parasite immune response. Thawer et al showed that with *N. brasiliensis* infection, SP-D concentrations increased in the lung. rfhSP-D could bind to L4 parasites to enhance their killing by alveolar macrophages. *N. Brasiliensis* infection of SP-D−/− mice resulted in profound impairment of host innate immunity and ability to resolve infection (Thawer et al. 2016). With prior treatment of rfhSP-D, the number of IL-13 producing type 2 innate lymphoid cells (ILC2) was enhanced and increased production of the type 2 cytokines IL-4 and IL-13 (Thawer et al. 2016).

Perspectives

It is clear that SP-A and SP-D have important roles to play in recognising a wide range of pathogens and clearing them via various mechanisms detailed in this chapter. A number of target ligands are already known; few other are yet to be discovered. The two surfactant proteins also modulate adaptive immune response, thus acting as a pro-active link between innate and adaptive immunity. There are several receptor candidates for collagen regions; however, in most cases, it is the CRD region that binds to the pathogen surface. The knock-out mice have given sufficient information about the pathogen susceptibility. However, the SP-D−/− mice yields lung phenotypes that are already leaky, dysregulated and inflammatory. This can cause a significant bias in the pathogen challenge model. A number of gene polymorphisms and alteration in the SP-A and SP-D protein levels have been noted in a range of pathological conditions; however, they are yet to become a clinically robust biomarker. The properties of rfhSP-D remain intriguing and elusive since presence of collagen region, and oligomeric state of SP-D, has been reported to be paramount in its efficiency. However, the recombinant fragment composed of neck and CRD region of human SP-D seems to have potent therapeutic effects in vitro, in vivo and ex vivo.

As it is evident from the literature review, studies about the effects of SP-A and SP-D on various pathogens are limited in some cases. Thus, there is a greater need to have a concerted effort in pursuing studies with emerging pathogens. A number of parasitic diseases need to be looked at in terms of the roles these two mucosal proteins can play outside lungs.
Abdel-Razek O, Liu X, Javidiparsijani S, Wang G. Role of surfactant protein D on in vivo alveolar macrophage phagocytosis of Cryptococcus neoformans by the regulation of p38 MAPK pathway activation. Pulm Crit Care Med. 2016;1(3):79–83. https://doi.org/10.15761/PCCM.1000117.

Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza a/h3n2 virus hemagglutinin. J Virol. 2004;78:9605–11.

Al-Ahdal MN, Murugaiah V, Varghese PM, et al. Entry inhibition and modulation of pro-inflammatory immune response against influenza A virus by a recombinant truncated surfactant protein D. Front Immunol. 2018;9:1586. https://doi.org/10.3389/fimmu.2018.01586.

Al-Qahtani AA et al. Full-length human surfactant protein A inhibits influenza A virus infection of A549 lung epithelial cells: A recombinant form containing neck and lectin domains promotes infectivity. Immunobiol. 2019;224(3):408-418

Aliouat EM, Escamilla R, Cariven C, Vieu C, Mullet C, Dei-Cas E, et al. Surfactant changes during experimental pneumocystosis are related to Pneumocystis development. Eur Respir J. 1998;11:542–7.

Allen MJ, Voelker DR, Mason RJ. Interactions of surfactant proteins A and D with Saccharomyces cerevisiae and Aspergillus fumigatus. Infect Immun. 2001;69(4):2037–44. https://doi.org/10.1128/iai.69.4.2037-2044.2001.

Almeida F, Wolf JM, Casadevall A. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot Cell. 2015;14:1173–85. https://doi.org/10.1128/EC.00103-15.

Ariki S, Kojima T, Gasa S, Saito A, Nishitani C, Takahashi M, et al. Pulmonary collectins play distinct roles in host defense against mycobacterium avium. J Immunol. 2011;187(5):2586–94.

Atochina EN, Beers MF, Tomer Y, Scanlon ST, Russo SJ, Panettieri RA Jr, et al. Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization. Respir Res. 2003;4:15. https://doi.org/10.1186/1465-9921-4-15.

Awasthi S, Magee DM, Coalson JJ. Coccidioides Posadasii infection alters the expression of pulmonary surfactant proteins (SP)-A and SP-D. Respir Res. 2004;5:28. https://doi.org/10.1186/1465-9921-5-28.

Basak S, Pritchard DG, Bhown AS, Companys RW. Glycosylation sites of influenza viral glycoproteins: characterization of tryptic glycopeptides from the a/ussr(h1n1) hemagglutinin glycoprotein. J Virol. 1981;37:549–58.

Beharka AA, Gaynor CD, Kang BK, Voelker DR, McCormack FX, Schlesinger LS. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol. 2002;169:3565–73.

Benne CA, Kraaijeveld CA, van Strijp JAG, Brouwer E, Harmsen M, Verhoef J, van Golde LMG, van Iwaarden JF. Interactions of surfactant protein A with influenza A viruses: binding and neutralization. J Infect Dis. 1995;171:335–41.

Benne CA, Benaissa-Trouw B, Van Strijp JAG, Kraaijeveld CA, Van Iwaarden JFF. Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages. Eur J Immunol. 1997;27(4):886–90. https://doi.org/10.1002/eji.1830270413.

Brown-Augsburger P, Hartshorn K, Chang D, Rust K, Fliszar C, Welgus HG, Crouch EC. Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D. Expression of a trimeric protein with altered anti-viral properties. J Biol Chem. 1996;271(23):13724–30.

Brown-Elliott BA, Nash KA, Wallace RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25:545–82.

Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM. Predicting the evolution of human influenza A. Science. 1999;286(5446):1921–5.
Biological Activities of SP-A and SP-D Against Extracellular and Intracellular Pathogens

Crouch EC. Collectins and pulmonary host defense. Am J Respir Cell Mol Biol. 1998;19:177–201.
Crouch E, Nikolaids N, McCormack FX, McDonald B, Allen K, Rynkiewicz MJ, et al. Mutagenesis of surfactant protein D informed by evolution and X-ray crystallography enhances defenses against influenza A virus in vivo. J Biol Chem. 2011;286:40681–92. https://doi.org/10.1074/jbc.M111.300673.

De Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci U S A. 1995;92:10359–63.

Deepe GSJ. In: Mandell G, Bennett J, Dolin R, editors. Principles and practices in infectious diseases. 5th ed. Philadelphia: Churchill Livingston; 1999. p. 2718–34.

Dodagatta-Marr E et al. Protein-Protein Interaction between Surfactant Protein D and DC-SIGN via C-Type Lectin Domain Can Suppress HIV-1 Transfer. Frontiers in immunology. 2017; 8: 834. https://doi.org/10.3389/fimmu.2017.00834.

Downing JF, Pasula R, Wright JR, Twigg III HC, Martin WJ. Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci. 1995; 92 (11): 4848-4852

Erpenbeck VJ, Ziegert M, Cavalet-Blanco D, Martin C, Baelder R, Glab T, et al. Surfactant protein D inhibits early airway response in Aspergillus Fumigatus sensitized mice. Clin Exp Allergy. 2006;36:930–40. https://doi.org/10.1111/j.1365-2222.2006.02524.x.

Ewig S, Torres A. Severe community-acquired pneumonia. Clin Chest Med. 1999;20:575–87.
Favier AL, Reynard O, Gout E, Van Eijk M, Haagsman HP, Crouch E, Volchkov V, Peyrefitte C, Thielens NM. Involvement of surfactant protein D in ebola virus infection enhancement via glycoprotein interaction. Viruses. 2018;11:15. https://doi.org/10.3390/v11010015.

Ferguson JS, Schlesinger LS. Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuberc Lung Dis. 2000;80:173–84.
Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via a carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol. 1999;163:312–21.
Ferguson JS, Voelker DR, Ufnar JA, Dawson AJ, Schlesinger LS. Surfactant protein D inhibits human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J Immunol. 2002;168(3):1309–1314
Ferguson JS, Martin JL, Azad AK, McCarthy TR, Kang PB, Voelker DR, Crouch EC, Schlesinger LS. Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages. Infect Immun. 2006;74(12):7005–9.
Ferluga J, Yasmin H, Al-Ahdal MN, Bhakta S, Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology. 2020 May;225(3):151951. https://doi.org/10.1016/j.imbio.2020.151951.

Forbes BA, Hall GS, Miller MB, Novak SM, Rowlinson M-C, Salting M, Somoskővi A, Warshaw DM, Wilson ML. Practice guidelines for clinical microbiology laboratories: mycobacteria. Clin Microbiol Rev. 2018;31:e00038–17. https://doi.org/10.1128/CMR.00038-17.

Funk CJ, Wang J, Ito Y, Travanty EA, et al. Infection of human alveolar macrophages by human coronavirus strain 229E. J Gen Virol. 2012;93(Pt 3):494–503.

Gaiha GD, Dong T, Palaniyar N, Mitchell DA, Reid KMB, Clark HW. Surfactant protein A binds to HIV and inhibits direct infection of CD4+ cells, but enhances dendritic cell-mediated viral transfer. J Immunol. 2008;181(1):601–9. https://doi.org/10.4049/jimmunol.181.1.601.

Gaynor CD, McCormack FX, Voelker DR, McGowan SE, Schlesinger LS. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol. 1995;155:5343–51.

Geunes-Boyer S, Heitman J, Wright JR, Steinbach WJ. Surfactant protein D binding to aspergillus fumigatus hyphae is calcineurin-sensitive. Med Mycol. 2010;48:580–8. https://doi.org/10.3109/13693780903401682.
Geunes-Boyer S, Beers MF, Perfect JR, Heitman J, Wright JR. Surfactant protein D facilitates Cryptococcus neoformans infection. Infect Immun. 2012;80:2444–53. https://doi.org/10.1128/IAI.05613-11.

Geunes-Boyer S, et al. Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun. 2009a;77:2783–94.

Geunes-Boyer S, Oliver TN, Janbon G, Lodge JK, Heitman J, Perfect JR, Wright JR. Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun. 2009b;77:2783–94. https://doi.org/10.1128/IAI.00088-09.

Geunes-Boyer S, Oliver TN, Janbon G, Lodge JK, Heitman J, Perfect JR, et al. Surfactant protein D increases phagocytosis of hypocapsular cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun. 2009c;77:2783–94. https://doi.org/10.1128/IAI.00088-09.

Goel A, Bamford L, Hanslo D, Hussey G. Primary staphylococcal pneumonia in young children: a review of 100 cases. J Trop Pediatr. 1999;45:233–6.

Greertsma MF, Nibbering PH, Haagsman HP, Daha MR, van Furth R. Binding of surfactant protein A to C1q receptors mediates phagocytosis of Staphylococcus aureus by monocytes. Am J Phys. 1994;267:L578–84.

Griese M. Respiratory syncytial virus and pulmonary surfactant. Viral Immunol. 2002;15(2):357–63.

Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C. Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.

Hall-Stoodley L, Watts G, Crowther JE, Balagopal A, Torrelles JB, et al. Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions. Infect Immun. 2006;74:3587–96.

Harrod KS, Trapnell BC, Otake K, Korfhagen TR, Whitsett JA. SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am J Phys. 1999;277:L580–8.

Hartshorn KL, Sastry K, Brown D, White MR, Okarma TB, Lee Y, Tauber AI. Conglutinin acts as an opsonin for influenza A viruses. J Immunol. 1993a;151:1–9.

Hartshorn KL, Sastry K, White MR, Anders EM, Super M, Ezekowitz RA, Tauber AI. Human mannose-binding protein functions as an opsonin for influenza A viruses. J Clin Invest. 1993b;91:1414–20.

Hartshorn KL, Crouch EC, White MR, Eggleton P, Tauber AI, Chang D, et al. Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J Clin Invest. 1994;94:311–9. https://doi.org/10.1172/JCI117323.

Hartshorn K, White M, Shepherd V, Reid K, Jensenius J, Crouch E. Mechanisms of anti-influenza activity of pulmonary surfactant proteins A and D: comparison with serum collectins. Am J Phys Lung Cell Mol Phys. 1997a;273:L1156–66.

Hartshorn KL, White MR, Shepherd V, Reid K, Jensenius JC, Crouch EC. Mechanisms of anti-influenza activity of surfactant proteins A and D: comparison with serum collectins. Am J Physiol-Lung Cell Molecul Physiol. 1997b;273(6):L1156–66. https://doi.org/10.1152/ajplung.1997.273.6.1156.

Hartshorn KL, Crouch E, White MR, Colamussi ML, Kakkanatt A, Tauber BAI, Shepherd V, Sastry K. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Phys. 1998;274:L958–69.

Hartshorn KL, White MR, Crouch EC. Contributions of the N- and C-terminal domains of surfactant protein D to the binding, aggregation, and phagocytic uptake of bacteria. Infect Immun. 2002;70:6129–39.

Hartshorn KL, White MR, Tecle T, Holmskov U, Crouch EC. Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J Immunol. 2006;176:6962–72.
Biological Activities of SP-A and SP-D Against Extracellular and Intracellular Pathogens

Hartshorn KL, White MR, Tecle T, Sorensen GL, Holmskov U, Crouch EC. Viral aggregating and opsonizing activity in collectin trimers. Am J Phys Lung Cell Mol Phys. 2010;298:L79–88. https://doi.org/10.1152/ajplung.00223.2009.

Hawgood S, Brown C, Edmondson J, Stumbaugh A, et al. Pulmonary collectins modulate strain-specific influenza A virus infection and host responses. J Virol. 2004;78(16):8565–72.

Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, Viswanathan K, Raman R, Sasisekharan R, Bennink JR, Yewdell JW. Hemaggulutinin receptor binding avidity drives influenza A virus antigenic drift. Science. 2009;326(5953):734–6.

Hickling TP, Bright H, Wing K, Gower M, Martin SL, Sim RB, Malhortra R. A recombinant trimeric surfactant protein D carbohydrate recognition domain inhibits respiratory syncytial virus infection in vitro and in vivo. Eur J Immunol. 1999;29:3478–84.

Hickling TP, Malhortra R, Bright H, McDowell W, Blair ED, Sim RS. Lung surfactant protein A provides a route of entry for respiratory syncytial virus into host cells. Viral Immunol. 2001;13:125–35.

Hickman-Davis JM, Lindsey JR, Zhu S, Malalon S. Surfactant protein A mediates mycoplasmcidal activity of alveolar macrophages. Am J Phys. 1998;274(2):L270–7.

Hickman-Davis JM, Wang Z, Fierro-Perez GA, Chess PR, Page GP, Matalon S, Notter RH. Surfactant dysfunction in SP-A−/− and iNOS−/− mice with mycoplasma infection. Am J Respir Cell Mol Biol. 2007;36(1):103–13.

Hsieh I-N, De Luna X, White MR, Hartshorn KL. The role and molecular mechanism of action of surfactant protein d in innate host defense against influenza A virus. Front Immunol. 2018a;9:1368. https://doi.org/10.3389/fimmu.2018.01368.

Hsieh M-H, Ou C-Y, Hsieh W-Y, Kao H-F, Lee S-W, Wang J-Y, Wu LSH. Functional analysis of genetic variations in surfactant protein D in mycobacterial infection and their association with tuberculosis. Front Immunol. 2018b;9:1543. https://doi.org/10.3389/fimmu.2018.01543.

Hussain S, Wright J, Martin W II. Surfactant protein A decreases nitric oxide production by macrophages in a tumor necrosis factor-α—dependent mechanism. Am J Respir Cell Mol Biol. 2003;28:520–7.

Inkster MD, Hinshaw VS, Schulze IT. The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. J Virol. 1993;67:7436–43.

Job ER et al. Pandemic H1N1 Influenza A Viruses Are Resistant to the Antiviral Activities of Innate Immune Proteins of the Collectin and Pentraxin Superfamilies. J Immunol. 2010; 185 (7):4284-4291

Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med. 2002;76(1):105–15.

Joublat R, Kadioglu A, Ianneli P, Pozzi G, Eggleton P, Andrew PW. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect Immun. 2004;72:709–16.

Kabha K, Nissimov L, Athamna A, Keisari Y, et al. Relationships among capsular structure, phagocytosis, and mouse virulence in klebsiella pneumoniae. Infect Immun. 1995;63(3):847–52.

Kabha K, Schmegner J, Keisari Y, et al. SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Phys. 1997;272:L344–52.

Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, Basler CF, Palese P, Taubenberger JK, Garcia-Sastre A, Swayne DE, Katze MG. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature. 2006;443(7111):578–81.

Kauffman CA, Carver PL. Antifungal agents in the 1990s. Drugs. 1997; 53:539–549

Kilbourne ED. Influenza. New York: Plenum Publishing Corp; 1987.

Kishore U, Wang JY, Hoppe HJ, Reid KBM. The α-helical neck region of human lung surfactant protein D is essential for the binding of the carbohydrate recognition domains to lipopolysaccharides and phospholipids. Biochem J. 1996a;318:505–11.
Kishore U, Wang JY, Hoppe HJ, Reid KB. The alpha-helical neck region of human lung surfactant protein D is essential for the binding of the carbohydrate recognition domains to lipopolysaccharides and phospholipids. Biochem J. 1996b;318:505–10.

Kishore U et al. Surfactant Proteins SP-A and SP-D in human health and disease. Arch Immunol Ther Exp (Warsz) 2005; 53(5):399-417

Kollath DR, Miller KJ, Barker BM. The mysterious desert dwellers: Coccidioides immittis and Coccidioides posadasii, causative fungal agents of coccidioidomycosis. Virulence. 2019;10:222–33. https://doi.org/10.1080/21505594.2019.1589363.

Kosik I, Yewdell JW. Influenza hemagglutinin and neuraminidase: Yin–Yang proteins coevolving to thwart immunity. Viruses. 2019;11(4):346. https://doi.org/10.3390/v11040346.

Kuan SF, et al. Interactions of surfactant protein D with bacterial lipopolysaccharides. Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage. J Clin Invest. 1992a;90(1):97–106. https://doi.org/10.1172/JCI115861.

Kuan S, Rust K, Crouch E. Interactions of surfactant protein D with bacterial lipopolysaccharides. Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage. J Clin Invest. 1992b;90:97–106.

Kudo K, Sano H, Takahashi H, Kuronuma K, et al. Pulmonary collectins enhance phagocytosis of mycobacterium avium through increased activity of mannose receptor. J Immunol. 2004;172(12):7592–602.

Kuronuma K, Sano H, Kato K, Kudo K, Hyakushima N, Yokota S. Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem. 2004;279:21421–30.

Kurt-Jones EA, Orzalli MH, Knipe DM. Innate immune mechanisms and herpes simplex virus infection and disease. Adv Anat Embryol Cell Biol. 2017;223:49–75.

Ledford JG, Goto H, Potts EN, Degan S, et al. SP-A preserves airway homeostasis during mycoplasma pneumoniae infection in mice. J Immunol. 2009;182(12):7818–27.

LeDuc JW, Barry MA. SARS, the first pandemic of the 21st century. Emerg Infect Dis. 2004;10(11):e26. https://doi.org/10.3201/eid1011.040797_02.

Leth-Larsen R, Floridon C, Nielsen O, Holmskov U. Surfactant protein D in the female genital tract. Mol Hum Reprod. 2004;10:149–54. https://doi.org/10.1093/molehr/gah022.

Leth-Larsen R, Zhong F, Chow VTK, Holmskov U, Lu J. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages. Immunobiology. 2007;212(3):201–11.

LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA, Korfhagen TR. Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol. 1997;158:4336–40.

LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen TR. Surfactant protein A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 1998;19:700–8.

LeVine AM, Kurak KE, Wright JR, Watford WT, Bruno MD, Ross GF, Whitsett JA, Korfhagen TR. Surfactant protein A-deficient mice are susceptible to group B streptococcus enhancing phagocytosis and clearance from lungs of surfactant protein A-deficient mice. Am J Respir Cell Mol Biol. 1999a;20:279–86.

LeVine AM, Gwozdz J, Stark J, Bruno M, Whitsett JA, Korfhagen T. Surfactant protein A enhances respiratory syncytial virus clearance in vivo. J Clin Invest. 1999b;103:1015–21.

Madan T, Kishore U. Surfactant protein D recognizes multiple fungal ligands: a key step to initiate and intensify the anti-fungal host defense. Front Cell Infect Microbiol. 2020;10:229. https://doi.org/10.3389/fcimb.2020.00229.

Madan T, Eggleton, Kishore U, Strong P, Aggrawal SS, Sarma PU, et al. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect Immun. 1997a;65:3171–9. https://doi.org/10.1128/IAI.65.8.3171-3179.1997.
Madan T, Kishore U, Shah A, Eggleton P, Strong P, Wang JY, et al. Lung surfactant proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus Fumigatus and block allergen-induced histamine release from human basophils. Clin Exp Immunol. 1997b;110:241–9. https://doi.org/10.1111/j.1365-2249.1997.tb08323.x.

Madan T, Kishore U, Singh M, Strong P, Clark H, Hussain EM, et al. Surfactant proteins A and D protect mice against pulmonary hypersensitivity induced by Aspergillus Fumigatus antigens and allergens. J Clin Invest. 2001;107:467–75. https://doi.org/10.1172/JCI10124.

Madan T, Kaur S, Saxena S, Singh M, Kishore U, Thiel S, et al. Role of collectins in innate immunity against aspergillosis. Med Mycol. 2005a;43(Suppl. 1):S155–63. https://doi.org/10.1080/13693780500088408.

Madan T, Reid KB, Clark H, Singh M, Nayak A, Sarma PU, et al. Susceptibility of mice genetically deficient in SP-A or SPD gene to invasive pulmonary aspergillosis. Mol Immunol. 2010;47:1923–30. https://doi.org/10.1016/j.molimm.2010.02.027.

Madhukaran SP, Alhamlan FS, Kale K, Vatish M, Madan T, Kishore U. Role of collectin and complement protein C1q in pregnancy and parturition. Immunobiology. 2016;221:1273–88. https://doi.org/10.1016/j.imbio.2016.06.002.

Madsen J, Kliem A, Tornoe I, Skjolt K, Koch C, Holmskov U. Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol. 2000;164:5866–70.

Madsen J, Gaiha GD, Palaniyar N, Dong T, Mitchell DA, Clark HW. Surfactant protein D modulates HIV infection of both T-cells and dendritic cells. PLoS One. 2013;8(3):e59047. https://doi.org/10.1371/journal.pone.0059047.

Malhotra R, Haurum JS, Thiel S, Sim RB. Binding of human collectins (SP-A and MBP) to influenza virus. Biochem J. 1994;304(Pt 2):455–61.

Manz-Keinke H, Plattner H, Schlepper-Schäfer J. Lung surfactant protein A(SP-A) enhances serum-independent phagocytosis of bacteriabagalveolar macrophages. Eur J Cell Biol. 1992;57:95–100.

Matsuura M. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Front Immunol. 2013;4:109. https://doi.org/10.3389/fimmu.2013.00109.

McCormack FX, Gibbons R, Ward SR, Kuzmenko A, Wu H, Deepe GS Jr. Macrophage-independent fungicidal action of the pulmonary collectins. J Biol Chem. 2003;278:36250–6. https://doi.org/10.1074/jbc.M303086200.

McNeely TB, Coonrod JD. Aggregation and opsonization of type A but not type B Hemophilus influenzae by surfactant protein A. Am J Respir Cell Mol Biol. 1994a;11:114–22.

McNeely T, Coonrod J. Aggregation and opsonisation of type A but not type B Haemophilus influenzae by surfactant protein A. Am J Respir Cell Mol Biol. 1994b;11:114–22.

Meschi J, Crouch EC, Skolnik P, Yahya K, et al. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication. J Gen Virol. 2005a;86:3097–107.

Meschi J, Crouch EC, Skolnik P, Yahya K, Holmskov U, Leth-Larsen R, Tornoe I, Teclle T, White MR, Hartshorn KL. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication. J Gen Virol. 2005b;86:3097–107.

Moran AP, Prendergast MM, Appelmelk BJ. Molecule mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol. 1996;16:105–15.

Munoz P, Bouza E, Cuenca-Estrella M, Eiros JM, Perez MJ, et al. Saccharomyces cerevisiae Fungemia: an emerging infectious disease. Clin Infect Dis. 2005;40(11):1625–34.

Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63(1):174–229.

Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U. An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front Immunol. 2012;3:131. https://doi.org/10.3389/fimmu.2012.00131.

Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 2012;36:684–705.
O’Riordan DM, Standing JE, Kwon KY, Chang D, Crouch EC, Limper AH. Surfactant protein D interacts with Pneumocystis carinii and mediates organism adherence to macrophages. J Clin Invest. 1995;95:2699–710.

Ohmer-Schröck D, Schlatterer C, Plattner H, Schlepper-Schäfer J. Lung surfactant protein A (SP-A) activates a phosphoinositide/calciuntion signalling pathway in alveolar macrophages. J Cell Sci. 1995;108:3695–702.

Ordonez SR, van Eijk M, Escobar Salazar N, de Cock H, Veldhuizen EJA, Haagsman HP. Antifungal activities of surfactant protein D in an environment closely mimicking the lung lining. Mol Immunol. 2019;105:260–9. https://doi.org/10.1016/j.molimm.2018.12.003.

Parsons LM, An Y, Qi L, White MR, van der Woude R, Hartshorn KL, Taubenberger JK, de Vries RP, Cipollo JF. Influenza virus hemagglutinins H2, H5, H6, and H11 are not targets of pulmonary surfactant protein D: N-glycan subtypes in host-pathogen interactions. J Virol. 2020;94:e01951–19. https://doi.org/10.1128/JVI.01951-19.

Pandit H, Gopal S, Sonawani A, Yadav AK, Qaseem AS, Warke H, et al. Surfactant Protein D Inhibits HIV-1 Infection of Target Cells via Interference with gp120-CD4 Interaction and Modulates Pro-Inflammatory Cytokine Production. PLoS ONE. 2014; 9(7): e102395. https://doi.org/10.1371/journal.pone.0102395.

Perino J, Thielen NM, Crouch E, Spehner D, Crane JM, Favier AL. Protective effect of surfactant protein D in pulmonary vaccinia virus infection: implication of A27 viral protein. Viruses. 2013;5:928–53.

Piboonpocanun S, Mitsuzawa H, Martin W, Murphy R, Harbeck R, Voelker D. Surfactant protein A binds Mycoplasma pneumoniae with high affinity and attenuates its growth by recognition of disaturated phosphatidylglycerol. J Biol Chem. 2005;280:9–17.

Puga AR, Pasqualetti E, Puzo G, Rivière M. The mycobacterium tuberculosis cell-surface glycoprotein Apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J Biol Chem. 2006;282(8):5133–42. https://doi.org/10.1074/jbc.m610183200.

Roizman B, Whitley RJ. An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol. 2013;67:355–74.

Saelens JW, Viswanathan G, Tobin DM. Mycobacterial evolution intersects with host tolerance. Front Immunol. 2019;10:528. https://doi.org/10.3389/fimmu.2019.00528.
Salonen JH, Richardson MD, Gallacher K, et al. Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant *Saccharomyces cerevisiae*. J Hosp Infect. 2000;45:293–301.

Samten B, Townsend JC, Sever CZ, Pasquinelli V, Barnes PF, et al. An antibody against the surfactant protein A (SP-A)-binding domain of the SP-A receptor inhibits T cell-mediated immune responses to *Mycobacterium tuberculosis*. J leukobiol. 2008;84:115–23.

Sano H, Kurokuma K, Kudo K, Mit-suzawa H, Sato M, Murakami S, Kuroki Y. Regulation of inflammation and bacterial clearance by lung collectins. Resp可以ology. 2007;11:54–60.

Schellenz S, Malhotra R, Sim RB, Holmskov U, Bancroft GJ. Binding of host collectins to the pathogenic yeast *Cryptococcus Neoformans*: human surfactant protein D acts as an agglutinin for acapsular yeast cells. Infect Immun. 1995;63:3360–6. https://doi.org/10.1128/IAI.63.9.3360-3366.1995.

Schlesinger LS, Hull SR, Kaufman TM. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of *Mycobacterium tuberculosis* to human macrophages. J Immunol. 1994;152:4070–9.

Shockman GD, Barrett JF. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu Rev Microbiol. 1983;37:501–27.

Sidobre S, Nigou J, Puzo G, Riviere M. Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria: critical role of the lipids for lectin–carbohydrate recognition. J Biol Chem. 2000;275:2415–22.

Sidobre S, Puzo G, Riviere M. Lipid-restricted recognition of mycobacterial lipoglycans by human pulmonary surfactant protein A: a surface-plasmon-resonance study. Biochem J. 2002;365(1):89–97.

Singh M, Madan T, Waters P, Sonar S, Singh SK, Kamran MF, et al. Therapeutic effects of recombinant forms of full-length and truncated human surfactant protein D in a murine model of invasive pulmonary aspergillosis. Mol Immunol. 2009;46:2363–9. https://doi.org/10.1016/j.molimm.2009.03.019.

Stanley M. Hpv—Immune response to infection and vaccination. Infect Agents Cancer. 2010;5:19.

Stevens J, Corper A, Basler C, Taubenberger J, Palese P, Wilson I. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science. 2004;303:1866–70.

Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV-1, an update. Virol J. 2013;10:38. https://doi.org/10.1186/1743-422X-10-38.

Sun S, Wang Q, Zhao F, Chen W, Li Z. Glycosylation site alteration in the evolution of influenza a (h1n1) viruses. PLoS One. 2011;6:e22844.

Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses. 2014;6(3):1294–316.

Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.

Taubenberger JK, Morens DM. Pandemic influenza—including a risk assessment of H5N1. Rev Sci Tech. 2009;28(1):187–202.

Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, et al. Surfactant protein-D is essential for immunity to helmint infection. PLoS Pathog. 2016;12(2):e1005461. https://doi.org/10.1371/journal.ppat.1005461.

Tino MJ, Wright JR. Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Phys. 1996;270:L677–85.

Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immunity. 2015;21(1):73–98.

Ujma S, Carse S, Chetty A, et al. Surfactant protein A impairs genital HPV16 pseudovirus infection by innate immune cell activation in a murine model. Pathogens (Basel, Switzerland). 2019;8:4. https://doi.org/10.3390/pathogens8040288.
van de Wetering JK, van Eijk M, et al. Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of gram-positive bacteria. J Infect Dis. 2001;184:1143–51.

van de Wetering JK, Coenjaerts FE, Vaandrager AB, van Golde LM, Batenburg JJ. Aggregation of cryptococcus neoformans by surfactant protein D is inhibited by its capsular component glucuronoxylomannan. Infect Immun. 2004;72:145–53. https://doi.org/10.1128/IAI.72.1.145-153.2004.

Van Eijk M, White M, Crouch E, Batenburg J, Vaandrager A, van Golde L, Haagsman H, Hartshorn K. Porcine pulmonary collectins show distinct interactions with influenza A viruses: role of the N-linked oligosaccharides in the carbohydrate recognition domain. J Immunol. 2003;171:1431–40.

Van Eijk M, White M, Batenburg J, Vaandrager A, van Golde L, Haagsman H, Hartshorn K. Interactions of influenza A virus with sialic acids present on porcine surfactant protein D. Am J Respir Cell Mol Biol. 2004;30:871–9.

Van Eijk M, Rynkiewicz MJ, Khatri K, Leymarie N, Zaia J, et al. Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus. J Biol Chem. 2018;293(27):10646–62.

van Iwaarden F, Welmers B, Verhoef J, Haagsman HP, van Golde LM. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol. 1990;2(1):91–8.

van Iwaarden JF, van Strijps JAG, Visser H, et al. Binding of surfactant protein A (SP-A) to herpes simplex virus type 1-infected cells is mediated by the carbohydrate moiety of SP-A. J Biol Chem. 1992;267(35):25039–43.

Van Iwaarden JF et al. Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochem J. 1994 Oct 15;303 (Pt 2) (Pt 2):407–411. https://doi.org/10.1042/bj3030407.

van Rozendaal BA, van Spriel AB, van De Winkel JG, Haagsman HP. Role of pulmonary surfactant protein D in innate defense against Candida Albicans. J Infect Dis. 2000;182:917–22. https://doi.org/10.1086/315799.

Vuk-Pavlovic Z, Standing JE, Crouch EC, Limper AH. Carbohydrate recognition domain of surfactant protein D mediates interactions with Pneumocystis carinii glycoprotein A. Am J Respir Cell Mol Biol. 2001;24:475–84. https://doi.org/10.1165/ajrcmb.24.4.3504.

Vuk Pavlovic Z, Mo EK, Icenhour CR, Standing JE, Fisher JH, Limper AH. Surfactant protein D enhances pneumocytosis infection in immune suppressed mice. Am J Phys Lung Cell Mol Phys. 2006; 290:L442–9. https://doi.org/10.1152/ajplung.00112.2005.

Ward CW, Dopheide TA. Amino acid sequence and oligosaccharide distribution of the haemagglutinin from an early hongkong influenza virus variant a/aichi/2/68 (x-31). Biochem J. 1981;193:953–62.

Watson A, Phipps MJS, Clark HW, et al. Surfactant proteins A and D: trimerized innate immunity proteins with an affinity for viral fusion proteins. J Innate Immun. 2019;11:13–28.

Weikert LF, Lopez JP, Abdolrasulnia R, Chronoes ZC, Shepherd VL. Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway. Am J Phys Lung Cell Mol Phys. 2000;279(2):L216–23.

White MR, Crouch E, van Eijk M, et al. Cooperative anti-influenza activities of respiratory innate immune proteins and neuraminidase inhibitor. Am J Phys Lung Cell Mol Phys. 2004;288:L831–40.

White MR, Crouch E, Vesona J, Tacken PJ, Batenburg JJ, Leth-Larsen R, et al. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus. Am J Phys Lung Cell Mol Phys. 2005;289(4):L606–16.

Wong SSW, Rani M, Dodagatta-Marri E, Ibrahim-Granet O, Kishore U, Bayry J, et al. Fungal melanin stimulates surfactant protein D mediated opsonization of and host immune response to Aspergillus Fumigatus spores. J Biol Chem. 2018;293:4901–12. https://doi.org/10.1074/jbc.M117.815852.
Wu YP, Liu ZH, Wei R, Pan SD, et al. Elevated plasma surfactant protein D (SP-D) levels and a direct correlation with anti-severe acute respiratory syndrome coronavirus-specific IgG antibody in SARS patients. Scand J Immunol. 2009;69(6):508–15. https://doi.org/10.1111/j.1365-3083.2009.02245.x.

Yang Z, Jaeckisch SM, Mitchell CG. Enhanced binding of Aspergillus Fumigatus spores to A549 epithelial cells and extracellular matrix proteins by a component from the spore surface and inhibition by rat lung lavage fluid. Thorax. 2000;55:579–84. https://doi.org/10.1136/thorax.55.7.579.

Zimmerman PE, Voelker DR, McCormack FX, Paulsrud JR, Martin WJ II. 120-kD surface glycoprotein of pneumocystis carinii is a ligand for surfactant protein A. J Clin Invest. 1992;89:143–9.