Composite low-water demand cements – one of the most promising and available technologies in terms of “Ecology” national project

S V Makarenko¹, B M Lozovskij¹, O V Khohryakov², V G Khozin² and D I Baishov³

¹Ir kutsk National Research Technical University, 83 Lermontov str., Irkutsk, 664074, Russia
²Kazan State University of Architecture and Engineering, Department of technology of construction materials, units and constructions, 1 Zelenaya str., Kazan 420043, Russia
³Ølen Betong, Avtomobilistov, site №6, Kola city, 183052 p.b. 3350, Russia

E-mail: makarenko_83_07@mail.ru

Abstract. In current article results of research of composite low-water demand cement (LWDC) based on Angarsk plant’s cement CEMII/A-F 32,5R, dump ash from TPP-10, marble powder from Sludjanskoi quarry and micro silica from LLC “Bratsk ferritic alloys plant” (Irkutsk region) are performed. Goal of the study is development of efficient ecology-friendly technology for high-quality cements with raw materials local to Irkutsk region. As a result of the study, technological, physical and mechanical properties of cement paste in fresh and hardened state were determined. Standard consistency W/B of LWDC-based cement pastes’ could be changed in range between 19 and 26%, and compressive strength of hardened cement paste can be varied from 22 to 60 MP. 2-stage 3-factor regressive analysis for compressive strength values of hardened cement paste at age 3,7,28 and after thermal curing was done, regression equations were obtained.

1 Introduction
In Russian Federation ecology problem is escalated in status of national project, which main goal is efficient by-products and wastes usage. It will be realized in terms of 11 federal projects, e.g.”Implementation the best available technology”, which is agreed with Irkutsk region aims of realization of strategy of construction materials industry’ development strategy, initiated by government of the region. As foundation of this strategy, development of construction materials based on by-products and local raw materials was chosen.

It is absolutely obvious that industry of construction materials could have one of the biggest capacity of large by-products and wastes range, e.g. fly ashes of thermal power plant (TPP). Basing on this fact, industry of construction materials could be considered as implementation of this project in near future.

In European countries raw material mining, goods production, its consumption and waste generation are considered as chain link [1-5]. It is believed that such an approach will allow to preserve environment from deterioration. Due to this principle laws, which drive construction materials’ producers to implement wide usage of by-products and wastes, especially in technology of mineral binders and ceramics, are adopted.
Technology of LWDC has quite good capacity of large-tonnage production wastes utilization [6-8]. This technology is safe for the environment, has lesser energy consumption and easier to implement in comparison with OPC production one. Using an LWDC technology makes it possible to decrease significantly CO$_2$ emission (up to 3-4 times), and utilize up to 70% of wastes such as fly ash per 1 ton of binder, also it could be built in “classic” technology of OPC without colossal investments and readjustments. LWDC technology could be rightfully assigned as one of the best available technologies for mineral binders’ production.

2. Materials and methods
In current work evaluation of composite LWDC was made with usage of three types of mineral fillers. First one is a dump ash obtained from TPP-10 (total amount of ash dumps of TPP of JSC “Irkutskenergo” is about 80 million ton and annual increase is about 1.7 million ton). According to data obtained by x-ray spectral analysis, this ash includes silica (20%), mullite (13%), albite (4%), aluminosilicate mineral (about 1%) and the rest is aluminosilicate glass phase.

Table 1. Properties of dump ash from TPP-10

Property	True density (g/cm3)	Bulk density (g/cm3)	Voids content (%)	Specific surface area (cm2/g)	pH of 10%-water solution
Value	2.03	0.76	64%	1334	9.6

Second type of filler – marble from Sludjanskoy quarry (Irkutsk region), evaluated source is about 120 million ton.

Third type – micro silica MK-85 from LLC “Bratsk ferritic alloys plant”, produced according to TU-5743-048-02495332-96.

As a clinker containing part of LWDC, CEMII/A-F 32,5 R SC “Angarsk cement and mining plant”.

Table 2. Properties of cement

Property	Standard consistency W/B (%)	Setting time (min)	Activity at 28-day age (MPa)	
Value	2.03	75	180	35

Choice of current binder was made due to its low consumption in Irkutsk region in order of search of possibility of its modification and properties’ enhancement.

Choice of superplasticizer was made from most popular types of such ones in current region:
1. Polyplast Ligno – admixture based on modified lignosulfonates.
2. Polyplast SP-1 (naphthalene formaldehyde).
3. Polyplast PK (PCE).

Table 3. Properties of superplasticizers by comparison of standard consistency W/B and price values

Type of admixture	Dosage (%)	Standard consistency W/B (%)	Price incl. VAT (RUR/kg)	Remarks
Polyplast Ligno	1	25,5	56	Significant retardation at 1-day age
Polyplast SP-1	1	24,5	80	---
Polyplast PK	1	21,5	360	---

Basing on obtained values of standard consistency W/B and prices, it was decided to make an evaluation of composite LWDC with SP-1 admixture. Apparently, low water-reducing effect of Polyplast PK was obtained due to addition of lignosulfonate agent as intensifier of grinding, which has ceased PCE-based admixture’s efficiency.

Since the fillers used differ in hardness, the LWDC was obtained in a sequentially separate manner using a vibration-rod mill. This method consisted of preliminary joint grinding of cement, ash and superplasticizer and their subsequent grinding with marble with the addition of micro silica.
For a comprehensive assessment of the effect of fillers on the properties of composite LWDC and a reduction in the amount of experimental work, method of mathematical planning were used. It was a 2-level 3-factor experiment (2^3). Factors and range of variation are given in table 4, the planning matrix is tab. 5. In this case, the specific surface area of the LWDC ranged between 7000 and 7500 cm2/g, depending on the content of silica fume in accordance with the conditions of regression analysis. The output parameter of the experiment is the compressive strength of hardened cement paste at the age of 3, 7 and 28 days of normal hardening and after thermal curing under standard isothermal conditions at a temperature of 80 °C (method GOST 310.4).

Table 4. Factors and range of variation

Factors	Level of factor	Range of variation
X_1 (cement content in LWDC)	-1	30
	0	50
	+1	70
X_2 ratio micro silica: ash : marble, %	20/60/20	10/60/30
	0/60/40	10
X_3 superplasticizer content by LWDC mass, %	0,5	1
	1	1,5
	0,5	0,5

Table 5. Planning matrix

Number of composition	X_0	X_1	X_2	X_3
1	+	+	-	+
2	+	-	-	+
3	+	+	+	+
4	+	-	+	+
5	+	+	-	-
6	+	-	-	-
7	+	+	+	-
8	+	-	+	-

Initially, the specific surface area and normal density of the LWDC were determined, adopted according to the planning matrix: and the compressive strength of cement stone at the age of 3, 7, 28 days of normal hardening (Table 6).

3. Results

In table 6 physical and mechanical properties of LWDC, determined by laboratory tests, are performed. Specific surface area of LWDC compositions were determined with PSH-12 in every case, according to variation of content during regression analysis, so as compressive strength of LWDC at age 3, 7, and 28 days of normal hardening and after thermal curing. Regression equations are obtained, which display influence of basic factors on output parameter – compressive strength at different ages. At table 7 values of basic criteria of evaluation of obtained model adequacy – Fischer and Student coefficients and dispersion of regression quotients.

Table 6. Technological, physical and mechanical properties of LWDC-based cement paste

№ composition	Specific surface area (cm2/g)	Standard consistency W/B (%)	Compressive strength at age, MPa	Thermal curing		
		3 days	7 days	28 days		
1	7120	20,5	31,57	44,83	58,5	43,95
2	7573	19,5	12,83	27,7	33,1	24,6
3	7558	21	16,73	24	34	28,95
4	7550	22	6,33	9,33	20,75	9,3
Table 7. Values of Fisher coefficients and variance of model adequacy

Type of index	3 days	7 days	28 days	Thermal curing
S^2_{ad}	10	12	26,4	4,5
F_{obs}	7,23	3,57	8,25	0,61
F_{table}	9,12	9,12	9,12	9,12
Model adequacy check		the model is adequate, because $F_{exp} < F_{tab}$		
Regression coefficient dispersion	0,17	0,42	0,4	0,92
Confidence interval	0,41	0,94	2,17	2,17
Student coefficient	2,36	2,36	2,36	2,36

Based on the results of the work, the regression equations for composite LWDCs are obtained:
- 3 days of normal conditions hardening:
 \[R_3 = 15,99 + 5,76x_1 - 4,65x_2 + 0,875x_3 \]

- 7 days of normal conditions hardening:
 \[R = 24,08 + 6,94x_1 - 7,64x_2 + 2,38x_3 \]

- 28 days of normal conditions hardening:
 \[R_{28} = 34,31 + 7,55x_1 - 7,53x_2 + 2,28x_3 \]

- after thermal curing:
 \[R_{prop} = R = 26,13 + 8,86x_1 - 6,59x_2 + 0,575x_3 \]

4. Discussion
As follows from the table, 3, LWDC has a standard consistency W/B from 19.5 to 26.5% compared with cement CEM II A / Z 32.5B, whose’ one is 28%.
Analyzing the data obtained from the regression equations, it can concluded that a significant contribution is made by micro silica on the output parameter (strength of the LWDC stone) in the quantitative corresponding contribution of X_1 (type of binder) for all hardening ages (3, 7, 28 days). Moreover, the significance of the contribution increases (pozzolanic activity) by 7 days and remains almost unchanged till 28 days. An analysis of the kinetics of hardening of the studied composite LWDC indicates 50% of the set of strength at the age of 3 days, 80% of the set of strength at the age of 7 days and after thermal curing. Having considered the regression equation at the age of 28 days of normal hardening, it can be said about the sufficient strength of the LWDC-30, given in addition that the actual content of the clinker component in terms of the LWDC is no more than 124%.
Reliability of the presented results was justified by calculating the confidence interval, checking the model for adequacy taking into account the Fisher coefficients (Table 7).

5. Conclusion
Basing on the foregoing, it can be concluded that the introduction of the technology for the production of LWDC can undoubtedly make a significant contribution to the implementation of the national project “Ecology”, by implementing the federal program “Implementation of the best available technologies”, at least, on the scale of the Irkutsk region and regions where solid fuel is a fundamental type. Thus, LWDC, no doubt, predicts a reliable future and widespread distribution.
Reference

[1] Skorohod M A 2016 State and improvement of the competitiveness of the cement market of the Eurasian Economic Union (EAEU) 9tn International Cement Conference. Non-Commercial organization Soyuzcement

[2] Chomaeva M N 2016 Ecological problems of the environmental impact of the chemical industry (on the example of cement production) National Security and Strategic Planning 2-1 pp 141-143

[3] Kunn Connenhall 2013 CEMBUREAU - cement and energy market in Europe and the world Cement and its application 3 pp 22-33

[4] Rickert J & Müller K 2011 Efficient composite cements - a contribution to reducing CO₂ emissions. (Alitinform International analytical review Cement. Concrete. Dry mixes 2 pp 28-49

[5] Karpenko N I and Yarmakovsky V N 1997 The main directions of resource conservation in the construction and operation of buildings Building materials 7 pp 12-21

[6] Yudovich B E, Dmitriev A M and Zubekhin S A 1997 Cements of low water demand - binders of a new generation Cement and its application 4 pp 15-18

[7] Khozin V G, Khokhryakov O V, Sibgatullin I R, Gizzatulin A R and Kharchenko I Ya 2014 Carbonate cements of low water demand - a green alternative to the cement industry in Russia Building materials 5 pp 76-82

[8] Tyuryukhanov K Yu and Pugin K G 2019 Impact of the surface of particles of moulding sand on the structural formation of asphalt concrete Proceedings of Universities. Investment. Construction, Real estate 9(3) pp 566–577

[9] Dobruskina M A, Petrov A V and Bat-Erdene Z 2019 Improving the technology of retaining walls in the Irkutsk region using gabion baskets Proceedings of Universities. Investment. Construction, Real estate 9(2) pp 312–323

[10] Moskvitin V A., Emelyanova N A. and Mashovich A Y 2019 Experimental studies of air permeability indicators of composite "Poroplast CF" Investment. Construction, Real estate 9(2) pp 342–353

[11] tenders for industrial and civil construction Investments. Construction. Real estate: New Technologies and Targeted Development Priorities IOP Conference Series: Materials Science and Engineering 667 012063

[12] Baranova A A and Bobrova A A 2019 Dispersed reinforcement of cellular and fine-grained concrete based on silica fume Proceedings of Universities. Investment. Construction. Real estate 9(4) pp 694–703

[13] Petrov A V and Efimova A K 2019 Nguyen Thanh Tung. Optimisation of technology used for restoring gas-ash concrete outdoor wall panels using modified structural and heat-insulating concrete Investment. Construction. Real estate 9(3) pp 542–549