MINERALOGICAL AND GEOCHEMICAL CHARACTERISTICS OF PARTICLE PM\textsubscript{10} IN TIKVEŠ AREA AND THEIR INFLUENCE IN THE ENVIRONMENT

Ivan Boev1, Trajče Stafilov2*

1Faculty of Natural and Technical Sciences, “Goce Delčev” University, 2000 Štip, Republic of Macedonia
2Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, Republic of Macedonia

trajcest@pmf.ukim.mk

In this work the results of investigation of the geochemical and mineralogical characteristics of particulate matters below 10 μm (PM\textsubscript{10}) collected from Tikveš area, Republic of Macedonia, are presented. For that purpose, PM\textsubscript{10} samples were collected from the city of Kavadarci and from the area close to the ferronickel smelter plant. As well as the concentration of PM\textsubscript{10}, the chemical content and mineral phases of dust samples and their relations to some anthropogenic sources are investigated. Determination of the content of various elements was performed by using inductively coupled plasma–mass spectrometry (ICP-MS). Scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) was used for the determination of mineralogical phase content. From the obtained results, it can be concluded that the concentration of PM\textsubscript{10} in the vicinity of the ferronickel smelter is much higher than those from the city of Kavadarci. It was found that PM\textsubscript{10} samples collected close to the ferronickel smelter plant have a higher content of some elements present in higher concentrations in the ore processed in the ferronickel smelter plant (Fe, Ni, Cu, Zn, Ag, Cr) than those from the town of Kavadarci, showing their anthropogenic origin. The investigations performed by applying electron microscopy (SEM-EDS) unequivocally confirmed the results obtained using X-ray diffraction and ICP-MS. Namely, mineral phases present in the particulates were found to be those which are present in the ore used in the process in the metallurgical plant, including chlorite, amphibole, pyroxene, magnetite, chromites, quartz, calcite or plagioclase clay minerals.

Key words: PM\textsubscript{10}; Tikveš area; Republic of Macedonia; air pollution; chemical characterization; mineralogical characteristics

МИНЕРАЛОШКИ И ГЕОХЕМИСКИ КАРАКТЕРИСТИКИ НА ЧЕСТИЧКИТЕ PM\textsubscript{10} ВО ОБЛАСТА НА ТИКВЕШ И НИВНО ВЛИЯНИЕ ВРЗ ЖИВОТНАТА СРЕДИНА

Во овој труд се презентирани резултатите од истражувањата на геохемиските и минералошките карактеристики на цврстите честички под 10 μm (PM\textsubscript{10}) земени во областа на Тиквеш, Република Македонија. Примероци од PM\textsubscript{10} се земени во градот Кавадарци и во околната на топилницата за фероникел. Освен определување на концентрацијата на PM\textsubscript{10}, истражуван е и хемискиот состав и минералните фази во примероците на прав и нивнот однос со некои антропогени извори. Опредељуването на содржината на различни елементи е извршено со примена на масена спектрометрија со индуктивно спретнат плазма – масс спектрометрија (ICP-MS). За определување на минералошките фази е приметен скенирачки електронски микроскоп со енергетски дисперзивен спектроскопија (SEM-EDS). Од добиените резултати може да се заклучи дека концентрацијата на PM\textsubscript{10} во околната на топилницата за фероникел е многу повисока од онаа во градот Кавадарци. Утврдено е дека во примероците од PM\textsubscript{10} земени во близина на топилницата за фероникел содржина на некои елементи чија содржина е висока и во рудата која се прераобува во топилницата (Fe, Ni, Cu, Zn, Ag, Cr), е повисока во споредба со примероците земени од градот Кавадарци, што указува на нивното антропогено потекло. Истражувањата извршени со примена
Particulate matters that are the product of anthropogenic sources are extremely hazardous substances. They are increasingly present in the environment, affecting the quality of air, water, soil and plant products. To define the origin and characteristics of particles, very different terms are used [1]. Particulate matters (PM) are used for the determination of air pollution with fine particles, mainly those with a size below 10 μm (PM$_{10}$), but those below 2.5 μm (PM$_{2.5}$) are also useful for air pollution monitoring.

The finest metallurgical gases consist of condensed volatile ingredients that are of molecular size, although they are often quickly grouped into long chains. The secondary particles are generated in the atmosphere because of photochemical reactions between the primary gases. The real distribution of particle size in the atmosphere is a result of several competitive processes including condensation, sedimentation, evaporation, aggregation, conversion of gas into particles etc. Therefore, it can be expected that their distribution will be very variable [2, 3].

Particles as air pollutants are either emitted into the air or can be formed in air. They spend some time in the air before being deposited from the air naturally or artificially. The particles are deposited on the surface by three main mechanisms: sedimentation, Brown diffusion and impaction [4, 5]. Each of these mechanisms is effective for a different size range of particles [4, 5].

Due to specific characteristics, dust shows a wide range of harmful effects on the human organism. Practically every dust at higher concentrations and longer periods of exposure have fibrogenic properties leading to disruption of the functions of the human respiratory system. Certain types of dust are toxic and have harmful influences to the inner human organs (stomach, liver, kidneys, etc.), while others have irritating effects and damage the skin and eyes of exposed workers. However, toxic and irritation effects, compared with harmful effects on the respiratory system are almost negligible and can be controlled (both in terms of their prevention and medical terms). For these reasons, the emphasis is for defining the physiological effects of dust is to commence a study of the adverse effects that occur in the human respiratory system. The nasal and oral routes through which people breathe merge in the trachea, and from there lead to the bronchus through the throat [6-10].

In this study, a detailed mineralogical and geochemical determination of particulate matters below 10 μm (PM$_{10}$) collected in Tikveš area, Republic of Macedonia, was performed. The quality of the environment in the Tikveš area, as well as in the city Kavadarci is affected by several important factors: industrialization of the area, usage of fertilizers in the agriculture and local infrastructure. The highest impact on the environment in the area was registered after the ferronickel smelter plant started production. This impact is manifested differently in various environmental media.

2. MATERIALS AND METHODS

2.1. General characteristics of the investigated area

Among the valleys in Macedonia, Tikveš valley stands out in particular as a separate geographic entity with its own geomorphological and anthropogeographical characteristics [11]. With an area of 2120 km2, this valley occupies a substantial part of the territory of Republic of Macedonia. It is bounded to the south by the Mariovo-Magelanian Mountains, ranging up to 1700 m. Other mountains are Konečka Mt. on the east and Dren and Babuna on the west. The Tikveš valley is cut by the Vardar river on its north side and on the west side by the Crna Reka river, while the Luda Mara river passes through the middle of the valley (Fig. 1).

The climate has a major influence on the development of vines and other crops, as well as in the production and quality of agricultural products. It controls the air temperature, sunlight, humidity and air currents present in the given area. Each of these factors has a specific effect, and the overall result of their influence could be seen in the growth of the vine, the degree of ripening of the grapes and the creation of high quality ingredients which passes into the wine.
The Tikveš valley is an area where two zonal climates, continental and Mediterranean, intersect and influence the local climate [12]. The influence of the continental climate spreads from the north and continues along the Vardar and Bregalnica rivers. As a result of its impact, there are brief very cold periods. The Mediterranean climate in turn flows in from the south and the Aegean Sea into the Vardar river valley, and because of its influence there are beneficial winters with relatively high temperatures. The impact of the local mountain climate is limited and greater expression does not occur. Under the influence of these climate impacts, a special modified Mediterranean climate developed in this region. As a result, the Tikveš region is rich with diverse flora.

Most of the Tikveš region is an area with a small amount of rainfall, with the area in the vicinity of the village of Gradsko being considered the area with the least rainfall per square meter in the Republic of Macedonia. The average rainfall in Kavadarc is 484 mm. In Kavadarc, the most arid summer months (July and August) have an average monthly amount of 23 to 27 mm. The average annual days with precipitation in Kavadarc range from 63 to 112 days. If the total amount of rainfall is divided by the number of rainy days, the average is 5 mm on a rainy day.

2.2. The quality of the environment in Tikveš area

The quality of the environment in the Tikveš area, as well as in the city of Kavadarci is affected by several factors: industrialization of the area, use of fertilizers in the agriculture and communal infrastructure. The highest impact on the environment in the area was registered after 1982 when the ferronickel smelter plant was started with the production with an annual processing of about 1.5 million tons of laterite type nickelous ore. Starting in 2005, in total, about 900,000 tons of ore was retrieved from the Ržanovo mine annually (southern parts of Kožuf Mountain), and the smelter plant has since begun processing ore originating from Albania, Turkey, Indonesia and Guatemala. Data concerning the composition (chemical and mineralogical) of these types of ores are presented in several publications [13–16]. The operation of this plant effects changes in the composition (mineralogical) of urban dust in the Tikveš valley. This factory processes a laterite nickelous ores, with a yearly capacity of 2 million tons of ore and the smelter plant capacity of about 16,000 tons of nickel in the form of ferro-nickel per year.

Based on studies of mineral associations, as well as the major mineral phases, the major nickel-bearing minerals in the ores include magnetite, hematite, clinohlore, talc, sepiolite, magnesioriebeckite,
lizardite, antigorite, actinolite, tremolite, chrysotile, dolomite, phlogopite, stilpnomelane, muscovite, quartz, albite, pyrite, maghemite, pirotine, digenite and millerite. Only five of the mentioned minerals are constantly present: magnetite, hematite, clinochlore, talc and magnesioriebeckite [15].

Based on these processes, it can be concluded that, during the processing of nickel ore, a certain amount of dust is generated and emitted into the air in the Tikveš region. Legal norms existing in the Republic of Macedonia specify 50 μg m⁻³ or less. It must be noted that the emission of dust, as observed from a factory producing nickel, in fact exceeds this limit [17–19].

2.3. Sampling

The dust samples (particulate matters, PM₁₀) were collected in 2012 by the standard procedures by setting up two mobile stations, one in the area of the village of Vozarci (near the iron ferronickel smelter plant) and the other in the urban part of the town of Kavadarci. Ten samples were collected in the area of the village of Vozarci, and 13 from the urban part of Kavadarci.

The sampling device consists of three integral, conductive plastic cassette sampling heads, with a design that does not allow a significant spilling around the filter. The sampling head consists of a cylindrical protective casing and filter holder with an auxiliary filter. The protective layer of the filter holder is made of stainless material. The filter should be tight so that no significant leakage occurs around the filter at various pressures up to approximately 50 kPa with a flow from 8 to 30 l/min. Within 2 minutes of the start of sampling, the flow should be adjusted to 2 l/min per square centimeter. The volume of 1000 liters per square centimeter of effective filter area was passed through the filters in a sampling period of about 8 hours.

2.4. Chemical analysis

For the digestion of dust samples, open wet digestion with a mixture of acids was applied. The digestion was carried out in this order: precisely measured mass of dust samples (0.500 g) with the accuracy of 0.0001 g was placed in teflon vessels. After this, 5 ml HNO₃ was added, until brown vapors came out of the vessels. For the total digestion of inorganic components, 5–10 ml HF and 2 ml of HClO₄ were added. After cooling the vessels for 15 min, 2 ml of HCl and 5 ml of H₂O were added and the vessels were cooled, before digests were quantitatively transferred to 50 ml calibrated flasks [19].

Determination of the concentration of investigated elements was performed by the method of mass spectrometry with inductively coupled plasma (ICP-MS), using the Agilent model 7500 in the laboratory of the Goce Delčev University from Štip [20].

2.5. Determination of mineral phases

For the determination of the phase and mineralogical content of PM₁₀ collected from Kavadarci and Vozarci areas, the filters were cut and mounted on 25 millimeter Cambridge-style SEM stubs using double sided carbon tape, and graphite coated to prevent charging. The coated samples were analyzed by Quanta 650F SEM, fitted with a Back-scattered electron detector (BSED) and a Bruker 5030 X-ray detector. The Esprit Quantax 1.9 EDS Analysis System was used to determine the elemental composition of particulate matter. Point analysis was used to characterize the samples in high-vacuum mode, using an accelerating voltage of 15 kV and a spot size of 6. Back-scattered electron (BSE) images of selected fields of view were taken to examine SEM-based characteristics [21]. The SEM-EDS analyses were performed at the Actlabs from Ancaster, Ontario.

3. RESULTS AND DISCUSSION

3.1. Distribution of PM₁₀

The results of the concentrations of PM₁₀ show that the concentration of PM₀ in the vicinity of the village Vozarci (close to the ferronickel smelter) was much higher than in the urban area of the city of Kavadarci [20]. It was found that the average concentration of PM₁₀ determined in the vicinity of the village of Vozarci is 630 μm/m³, while in the area of the city of Kavadarci it is 210 μm/m³ measured in the same 12 days period [20]. The distribution of PM₁₀ collected in the vicinity of the village of Vozarci for the period of 24 hours is shown in Figure 2. From the obtained diagrams it can be concluded that the emissions of particulate matter PM₁₀ during a 24 hour period is highly variable and ranges from 50 μg/m³ to 800 μg/m³. The average concentration of PM₁₀ is from 100 to 300 μg/m³, while in some short periods, the concentration increases to over 500 μg/m³. It is obvious that the concentration of PM₁₀ in this area is up to 10 times higher than the maximal permitted concentration of 50 μg/m³, according to the national regulation [22].
Fig. 2. Daily distribution of PM$_{10}$ particulate matter in the Tikveš area
3.2. Macro- and microelements distribution

The results obtained for the content of 36 elements in PM$_{10}$ samples collected from the urban part of Kavadarci and the village of Vozarci, close to the smelter plant are presented in Table 1. In comparison of the results for the content of nickel in PM$_{10}$, it can be seen that its content is much higher in dust samples collected close to the ferronickel smelter plant than in those collected in the city of Kavadarci. The higher content of Al and Fe was also found in the samples from the village of Vozarci. Slightly increased contents were also found for some other elements (Cu, Mn, Pb, Zn) in PM$_{10}$ from Vozarci compared with those from Kavadarci [20]. In general, it was found that the total content of the analyzed elements (Al, Fe, P, B, Ba, Ti, Cr, Mn, Pb, Bi, Ni, Cu, Zn, Ga, Sr) is higher in PM$_{10}$ from Vozarci than in those from Kavadarci. These differences are especially expressed for the contents of aluminum, iron, manganese, barium and nickel (Table 1).

Table 1

Element	PM$_{10}$ from the city of Kavadarci	PM$_{10}$ from the vicinity of the village of Vozarci						
	Mean	Median	Min	Max	Mean	Median	Min	Max
Ag	<5	<5	<5	<5	<5	<5	<5	<5
Al	4649	2911	1679	13140	25262	22364	13727	44755
As	15	14.5	12	17	31	16	5	141
B	5008	5045	1225	8675	27577	1405	228	7747
Ba	612	197	10	4145	10302	3722	558	26391
Be	<5	<5	<5	<5	<5	<5	<5	<5
Bi	<5	<5	<5	<5	<5	<5	<5	<5
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ca	427	67	8	4563	86	78	35	144
Co	<10	<10	<10	<10	33	27	11	63
Cr	1000	958	750	1440	<10	<10	<10	<10
Cs	<10	<10	<10	<10	337	376	10	930
Cu	1505	971	307	2855	2341	1709	1309	6409
Fe	23226	22887	1136	71783	1081	802	481	2450
Ga	22	19	10	46	71	64	27	126
Ge	<10	<10	<10	<10	<10	<10	<10	<10
K	48	37	1	115	55	37	4	160
Li	97	65	37	272	71	62	12	168
Mg	394	132	97	3212	600	570	377	1009
Mn	323	249	40	1144	1272	297	11	8247
Mo	<10	<10	<10	<10	<10	<10	<10	<10
Na	1473	1608	687	2159	1046	989	788	1621
Ni	1896	917	288	9571	5904	5821	2270	11510
P	6107	1244	94	60202	1928	1902	65	6437
Pb	139	54	5	442	<10	<10	<10	<10
Pd	<10	<10	<10	<10	276	231	2	927
Rb	28	27	12	53	36	28	4	98
Sb	118	118	13	222	68	68	68	68
Sn	<10	<10	<10	<10	<10	<10	<10	<10
Sr	161	151	55	484	444	464	224	745
Th	<10	<10	<10	<10	<10	<10	<10	<10
Ti	161	151	55	484	725	572	193	1453
Tl	<5	<5	<5	<5	<10	<10	<10	<10
U	7	6	2.5	15	10	9	8	15
V	21	10	10	45	48	48	28	68
Zn	1007	871	287	1847	921	1037	329	5646

Maced. J. Chem. Chem. Eng. 35 (2), xx-xx (2016)
The results show that the presence of Mg, Li, Th, Na, Ca, U, Sr, Ti and V which have lithogenic origin is almost identical in the samples from both locations due to the similar geological structure. The increased presence of Rb, K, Cs, Fe, P, Ba, Mn, Ni, Cr, Co, Zn, Sn, Pb, Cu, Mo, Cd, As, Ag, Sb in dust from Vozarci could be considered of anthropogenic origin due to the increased presence in the ore processed in the smelter plant [16–19, 21, 23, 24].

3.3. Mineralogical characterization

By the application of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction, mineralogical phases in the PM\textsubscript{10} samples were also determined. By using SEM-EDS it was found that the PM\textsubscript{10} particles contain several alumosilicate phases, including quartz, illite, plagioclase, and possibly amphibole/pyroxene and chlorite [21, 25, 26]. In some of the PM\textsubscript{10} particles, a high content of Ca was observed on and around clay minerals is probably due to the presence of calcium carbonate. The particles of manganochromite and stainless steel were also observed in the samples as well. From the back-scattered electron (BSE) images and EDS spectra the following minerals were determined: manganochromite, stainless steel, metals, metal oxides, and metal oxyhydroxides. Minor particles of nickel were found associated with metal oxides and stainless steel. Also, metals, metal oxides, and metal oxyhydroxides were found with clay minerals. Hydrated phases, observed to be volatile under the electron beam, presumably produced water vapor or carbon dioxide as an effect of heating. Minor nickel was found associated with metal oxides. All of these minerals are present in the ore processed in the ferro-nickel smelter plant situated in this area. We can conclude that the content of these particles in the analyzed samples come from human activities in the ferro-nickel metallurgical plant.

Beside the application of SEM-EDS, all of the PM\textsubscript{10} collected samples were analyzed by X-ray diffraction method. X-ray diffractograms for 25 PM\textsubscript{10} samples were also recorded. X-ray diffractograms for some of the samples are presented in Figures 3–8. The most abundant minerals in each sample are listed in each figure. It was found that the most present minerals in PM\textsubscript{10} from Tikveš area are: actinolite, albite, anhydride, anorthite, antigorite, augite, barite, bassanite, biotite, calcite, clinochlore, dolomite, fluorite, gypsum, halloysite, hematite, microcline, muscovite, quartz, tremolite, etc.

The investigations performed by applying electron microscopy (SEM-EDS technique) unequivocally confirmed the results obtained by X-ray diffraction and the results from the determination of chemical composition of PM\textsubscript{10} particles with the application of ICP-AES and ICP-MS. From the results performed with all of the applied techniques, it can be concluded that the presence of specified mineral phases that have typically anthropogenic origin are registered as well as the mineral phases that have lithogenic origin or the origin of the present geological structure.

Therefore, it can be concluded that the urban dust with a sizes below 10 µm (PM\textsubscript{10}) in the Tikveš area originated from lithogenic and anthropogenic processes. The phase composition of PM\textsubscript{10} particles from Tikveš area consists of mineral phases which have anthropogenic origin, confirmed by the high content of Fe, Ni, Cu, Zn, Ag, Cr (present in higher content in the ore processed in the ferro-nickel smelter), and by the presence of the minerals like: chlorite, amphibole, pyroxene, magnetite, chromites, Ag-minerals, metallic forms of Mn-Cr, Cu-Zn (also present in the ore processed in the smelter plant). The lithogenic origin of the part of PM\textsubscript{10} is confirmed by the presence of minerals such as quartz, calcite, plagioclase and clay.

5. CONCLUSION

In this work, the results of the mineralogical and geochemical characteristics of particles PM\textsubscript{10} from Tikveš area, Republic of Macedonia, and their influence on the quality of the environment are presented. For that purpose, PM\textsubscript{10} samples are collected from the city of Kavadarsi and from the area close to the ferro-nickel smelter. The concentration of PM\textsubscript{10}, the chemical content and mineral phases of the dust samples and their relation to some anthropogenic sources are investigated. The investigations performed by applying electron microscopy (SEM-EDS) unequivocally confirmed the results obtained using X-ray diffraction and the results from the determination of chemical composition of particles PM\textsubscript{10} with the application of the ICP-AES and ICP-MS. From the results obtained by all of the applied techniques, it can be concluded that the presence of specified mineral phases that have a typically anthropogenic origin are registered as well as the mineral phases that have a lithogenic origin or an origin in the present geological structure. Therefore, it can be concluded
that the urban dust with a sizes below 10 μm (PM$_{10}$) in the Tikveš area originated from lithogenic and anthropogenic processes. The phase composition of PM$_{10}$ particles from Tikveš area consists of mineral phases which have anthropogenic origin, confirmed by the high content of Fe, Ni, Cu, Zn, Ag, Cr (present in higher content in the ore processed in the ferronickel smelter), and by the presence of the minerals like: chlorite, amphibole, pyroxene, magnetite, chromites, Ag-minerals, metallic forms of Mn-Cr, Cu-Zn (also present in the ore processed in the smelter plant).

Fig. 3. X-ray diffractogram of PM$_{10}$ (sample No. 2)

Fig. 4. X-ray diffractogram of PM$_{10}$ (sample No. 4)
Mineralogical and geochemical characteristics of particle PM\textsubscript{10} in Tikve\v{s} area and their influence in the environment

Fig. 5. X-ray diffractogram of PM\textsubscript{10} (sample No. 8)

Fig. 6. X-ray diffractogram of PM\textsubscript{10} (sample No. 10)
Fig. 7. X-Ray diffractogram of PM$_{10}$ (sample No. 20)

Fig. 8. X-ray diffractogram of PM$_{10}$ (sample No 29)
REFERENCES

[1] R. M. Harrison, Measurement of the concentration of air pollutants, in: Air Pollution and Health, S. T. Holgate, J. M. Samet, H. S. Koren, R. L. Maynard (Eds.), Academic Press, London, 1999.

[2] D. S. Lee, A. Garland, A. A. Fox, Atmospheric concentrations of trace elements in urban areas of the United Kingdom, Atmospheric Environment, 28, 2691–2713 (1994). DOI:10.1016/1352-2310(94)00442-1.

[3] R. Gehrig, B. Buchmann, Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data, Atmospheric Environment, 37, 2571–2580 (2003). DOI:10.1016/S1352-2310(03)00221-8.

[4] T. Godish, Air Quality, 4th edition, Lewis Publishers, Boca Raton, 2004.

[5] P. A. Baron, K. Willeke, Aerosol fundamentals. In: P. A. Baron, K. Willeke (Eds.), Aerosol Measurement: Principles, Techniques and Applications, 2nd edition, New Jersey, Wiley Interscience, 2005.

[6] D. W. Dockery, C. A. Pope, Acute respiratory effects of particulate air pollution, Annual Review of Public Health, 15, 107–132 (1994).

[7] J. Schwartz, Air pollution and daily mortality: a review and metaanalysis, Environmental Research, 64, 36–52 (1994). DOI:10.1006/erns.1994.1005.

[8] U. Ackermann-Liebrich, P. Leuenberger, J. Schwartz, C. Schindler, C. Monn, G. Bolognini, J. P. Borgard, O. Brändli, G. Domenighetti, S. Eslasser, L. Grize, W. Karrer, R. Keller, H. Keller-Wossidlo, N. Künzli, B. W. Martin, T. C. Medici, A. P. Perruchoud, M. H. Schöni, J. M. Tschopp, B. Villiger, B. Wüthrich, J. P. Zellweger, E. Zemp, Lung function and long term exposure to air pollutants in Switzerland, American Journal for Respiratory Critical Care Medicine, 155, 122–129 (1997). DOI: 10.1164/ajrccm.155.1.9001300.

[9] C. Braun-Fahrländer, J. C. Vuille, F. H. Sennhauser, U. Neu, T. Künzle, L. Grize, M. Gassner, C. Minder, C. Schindler, H. S. Varonier, B. Wüthrich, Respiratory health and long-term exposure to air pollution in Swiss schoolchildren, American Journal for Respiratory Critical Care Medicine, 155, 1042–1049 (1997). DOI: 10.1164/ajrccm.155.3.9116984.

[10] C. A. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Kreowski, K. Ito, G. D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of American Medical Association, 287(9), 1132–1141 (2002).

[11] C. Hristov, M. Karajovanović, M. Stračkov, Basic Geological Map of SFRJ, sheet Kavadarci, M 1:100 000 (map&interpreter) Federal Geological Survey, Beograd, 1965, 62 pp.

[12] A. Lazarevski, Climate in Macedonia, Kultura, Skopje, 1993.

[13] B. Boev, T. Ivanova, Mineralogy of the magnetites in the Ržanovo Fe-Ni deposit, Republic of Macedonia, Geologica Macedonica, 12, 51–66 (1998).

[14] B. Boev, V. Bermane, Phase composition of the slag of the Feni Industry metallurgical plant and its impact on the environment, 3rd International Workshop on UNESCO-IGCP Project “Antropogenic Efects on the Human Environments in Tertiary Basins in the Mediterranean”, pp. 57–67, Stip, 2005.

[15] B. Boev, G. Jovanovski, P. Makreski, Minerals from Macedonia. XX. Geological setting, lithologies, and identification of the minerals from Ržanovo Fe-Ni deposit, Turkish Journal of Earth Sciences, 18, 631–652 (2009). DOI:10.3906/yer-0710-11.

[16] T. Stafilov, R. Šajin, B. Boev, J. Cvetković, D. Mukaetov, M. Andrejevska, S. Lešitkova, Distribution of some elements in surface soil over the Kavadarci Region, Republic of Macedonia, Environmental Earth Sciences, 61, 1515–1530 (2010). DOI:10.1007/s12665-010-0467-9.

[17] K. Baćeva, T. Stafilov, R. Šajin, C. Tănăsela, S. Ilić Popov, Distribution of chemical elements in attic dust in the vicinity of a ferronickel smelter plant, Fresenius Environmental Bulletin, 20(9), 2306–2314 (2011).

[18] K. Baćeva, T. Stafilov, R. Šajin, Monitoring of air pollution with heavy metals in the vicinity of ferronickel smelter plant by deposited dust, Macedonian Journal of Ecology and Environment, 1(1–2), 17–24 (2012).

[19] T. Stafilov, R. Šajin, B. Boev, J. Cvetković, D. Mukaetov, M. Andrejevska, Geochemical Atlas of Kavadarci and the Environs, Faculty of Science, Ss. Cyril and Methodius University, Skopje, 2008.

[20] I. Boev, O. Spasovski, D. Mirakovski, E. Karakaseva, Geochemistry and origin of particles PM-10 in the area of Tikveš, Republic of Macedonia, Geologica Macedonica, 28(2), 139–148 (2014).

[21] B. Boev, T. Stafilov, K. Baćeva, A. Šorša, I. Boev, Influence of a nickel smelter plant on the mineralogical composition of attic dust in the Tikveš valley, Republic of Macedonia. Environmental Science and Pollution Research, 20(6), 3781–3787 (2013). (DOI:10.1007/s11356-012-1318-x).

[22] Low on the quality of ambient air, Official Gazetete of the Republic of Macedonia, No. 100, 6.8.2012.

[23] W. Salomons, Environmental impact of metals derived from mining activities: Processes, predictions, preventions, Journal of Geochemical Exploration, 52, 5–23 (1995). DOI:10.1016/0375-6745(94)00039-E.

[24] S. Dudka, C. D. Adriano, Environmental impacts of metal ore mining and processing: A review, Journal of Environmental Quality, 26, 590–602 (1997). DOI:10.2134/jeq1997.00472425002600003003.x.

[25] I. Boev, T. Šijakov-Ivanova, D. Mirakovski, Scanning electron microprobe characterization of air filters from the Kavadarci town and Tikveš valley, Geologica Macedonica, 27(1), 13-24 (2013).

[26] A. H. Falkovich, E. Ganor, Z. Levin, P. Formenti, Y. Rudich, Chemical and mineralogical analysis of individual mineral dust particles. Journal of Geophysical Research, 106, 18029–18036 (2001). DOI: 10.1029/2000JD900430.