Studies on utilization of pomegranate juice in the preparation of peanut chikki

Devhare PF, Kotecha PM, Godase SN and Chavan UD

DOI: https://doi.org/10.22271/chemi.2021.v9.i1v.11441

Abstract
Pomegranate juice mixed peanut chikki prepared by incorporation of different level of juice into chikki for sensory evaluation. 20 per cent juice mixed peanut chikki was selected for further study. The selected chikki were evaluated for sensory quality, chemical parameter etc. The protein content of pomegranate juice mixed peanut chikki was 14.19 per cent, fat content juice mixed chikki was 23.75 per cent. The crude fibers, carbohydrates, ash content of juice mixed chikki were 3.10, 51.01, 1 per cent respectively. The calcium, iron and total polphenol content in juice mixed chikki were obtained 86.49, 1.69, 31.28 mg/100g respectively. The value addition of pomegranate juice to chikki also increases the colour of chikki. The selected treatment of chikki was stored for 3 months in different packaging material such as PP and LDPE to study nutritional and storage stability of selected treatment of juice mixed peanut chikki. During storage study the chemical parameter such as moisture content of juice mixed peanut chikki was increased in both the packaging material, so that the texture of chikki became slightly soggy. The chemical parameter such as fat, protein, crude fibre, ash, calcium, iron, total polphenol etc. were decreased in both the packaging material and this might be due to increase in moisture content.

Keywords: Utilization, pomegranate, juice, preparation, chikki

Introduction
India with divergent food habits is having a number of traditional foods, including sweet products. Indian’s has more traditional foods with more nutrition and all the foods comes under the snacks, sweetmeats which are producing by local raw materials with more nutrition. In Indian traditional sweet snacks, chikki is one of the popular sweet. Chikki is mainly prepared by using jaggery as sweetener and roasted peanuts (Arachis hypogaea). Chikki is popular in rural population with attractive price compared with other confectionery products. Peanuts, which are rich source of protein and amino acids, can help in preventing malnutrition. Another important vitamin which is supplemented in the body by the intake of groundnuts is vitamin B3 (Brown et al., 2001) [4] to an extent of 13.525mg. Consumption of nuts has a positive effect on coronary heart diseases (Kelly and Sabate, 2006) [6].

Jaggery is obtained by concentrating sugarcane juice to solid or semi solid state. It is a natural sweetener having a sweet winy flavor (Shahi, 1999) [10] and contains protein, minerals and vitamins and is a potent source of iron and copper (Manay and Swamy, 2001) [8]. Though jaggery is the usual sweetener material, sugar is used as base in certain type of chikki. Jaggery is also useful in combating problems like cough and stomach ailments like indigestion, acidity and constipation. Consumption of jaggery is useful for those who are exposed to pollution on a regular basis like industrial workers. It has been lauded for its ability to help human body to fight off the ill effects of pollution.

In addition to the most common peanut chikki, several different variety of chikki is available in market. Variety of chikki is named depending upon the name of ingredient used, which includes the puffed or roasted bengal gram, sesame, puffed rice, beaten rice or khobra (desiccated coconut). These ingredients are used for preparation of different variety of chikki with different combination. Special chikki are made of cashews, almond and pistachios alone or in combination. It is very popular sweet item in both the rural and urban South Asia. Some also add glucose to chikki which are usual there. From a single flavour of jaggery and peanut, it just started. However, today there are different exotic flavours available in market (Kundu and Sarkar, 2017) [7]. Food bar, nut brittle etc are alternative name of chikki.
Pomegranate (*Punica granatum* L.) is the most historic fruit tree, belonging to family Punicaceae and is locally known as Anar. It is cultivated in the middle-east from several years and is found in Iran, Afghanistan, India and in other Mediterranean countries (Narzary et al., 2010). Pomegranate is known for its edible fruit also consumed in many processed forms such as beverages (wines and juices), as food products (jam, jellies, oil) and as extract in dietary supplements (Elfalleh et al., 2012). Many phytochemical constituents present in different parts of pomegranate plant makes it pharmacologically precious. Pomegranate fruit is berry-like with a leathery rind (husk or peel) enclosing many seeds surrounded by juicy arils. The husk is composed of two parts: pericarp and mesocarp (albedo). The edible part of the pomegranate fruit (50%) consists of 40 per cent arils and 10 per cent seeds. Arils contain 85 per cent water, 10 per cent total sugars and bioactive compounds such as phenolics and flavonoids, principally anthocyanins (Rafraf et al., 2017). Pomegranate peel comprises about 50 per cent of the total fruit weight and is an important source of minerals especially potassium, calcium, phosphorus, magnesium, and sodium; complex polysaccharides and high levels of diverse range of bioactive compounds such as phenolics, flavonoids, proanthocyanidin compounds and ellagitannin (ETs), such as punicalagins and its isomers, as well as lesser amounts of punicalin, gallagic acid, ellagic acid, and ellagic acid glycosides.

Materials and Methods

The experiment was conducted in the laboratory Department of Food Science and Technology, Post Graduate Institute at Mahatma Phule Krishi Vidyapeeth, Rahuri during the year 2019-2020.

Packaging material

The packaging materials like polypropylene (PP) and low density polyethylene (LDPE) were purchased from the local market.

Ingredients

The major ingredients for the preparation of product such as pomegranate fruits, peanuts, jaggery were purchased from local market and other chemicals were used from the laboratory store.

Method

Procedure for preparation of pomegranate juice mixed peanut chikki

Pomegranate juice mixed *chikki* were prepared by the procedure given by Sharanyarani and Chaturvedi (2014) with slight modification. The procedure of *chikki* were given in Fig.1.

Physico-chemical analysis of raw material and chikki

The method described in A.A.C.C. (2000) for determining moisture was used. The protein content of *chikki* was estimated by determining total nitrogen content using standard Micro-Kjeldhal method and fat content of the *chikki* estimated by the soxhlet method A.A.C.C (2000). The crude fiber content in the product was estimated by A.A.C. (2000). The carbohydrate content in the selected *chikki* were obtained by subtracting from 100, the sum of values of moisture, protein, fat, ash and crude fiber content per 100 g of the sample (Raghrumulu, et al., 1993). Calcium and iron were analyzed using atomic absorption spectrometry (AAS). The total polyphenols content of *chikki* was estimated by method given by (Bray and Thorpe 1954).

Packaging and storage of chikki

The selected treatment (*T*₂) of pomegranate juice mixed peanut *chikki* was packed in polypropylene (PP) and low density polyethylene (LDPE) and stored for 90 days. The samples were drawn at an interval of 30 days and evaluated for chemical and sensory quality.

Sensory evaluation of pomegranate juice mixed peanut chikki

Sensory evaluation of pomegranate juice mixed peanut *chikki* was carried on by 9 point hedonic scale. The average scores
of the ten judges for different quality characteristics viz. Colour and appearance, flavour, texture, taste and overall acceptability were recorded.

Statistical analysis
All experiments were carried out by using Factorial Completely Randomized Design (FCRD). The data obtained in the present investigation were analyzed for the statistical significance according to the procedure given by Rangaswamy (2010)\(^{13}\).

3. Results and Discussion

Table 2: Physico-chemical properties of peanut

Sr. No.	Physico-chemical constituent	Peanut
1.	Colour	Light brown
2.	Shape	Oblong
3.	1000 kernel weight (g)	365.45
4.	Moisture (%)	6.24
5.	Protein (%)	24.17
6.	Fat (%)	46.10
7.	Crude fiber (%)	3.07
8.	Ash (%)	2.27
9.	Carbohydrate (%)	18.15
10.	Calcium (mg/100 g)	128.52
11.	Iron (mg/100 g)	3.02

Each value represents the average of three determinations

Table 3: Physico-chemical properties of pomegranate juice

Sr. No.	Physical and Chemical constituents	Mean value (pomegranate juice)
1.	Total soluble solid (Brix)	15.10
2.	Acidity (%)	0.41
3.	pH	3.57
4.	Reducing sugars (%)	16.46
5.	Total sugars (%)	15.71
6.	Total polyphenols (mg/L)	1551

Table 4: Sensory evaluations of fresh pomegranate juice mixed peanut chikki

Treatments	Colour and appearance	Texture	Flavour	Taste	Overall acceptability
T\(_0\)	8.60	8.50	8.40	8.43	8.63
T\(_1\)	8.07	8.10	8.00	8.03	8.13
T\(_2\)	8.57	8.30	8.33	8.37	8.43
T\(_3\)	8.00	7.73	7.70	7.63	7.57
T\(_4\)	7.73	7.57	7.70	7.63	7.60
T\(_5\)	7.63	7.63	7.67	7.63	7.53
Mean	8.10	7.97	7.97	7.96	7.98
S.E. +	0.12	0.12	0.11	0.10	0.13
CD at 5%	0.38	0.36	0.34	0.32	0.39

*Maximum score out of 9
Where, T\(_2\) = 20% pomegranate juice mixed peanut chikki

The organoleptic evaluation of chikki prepared by different combination of pomegranate juice and peanuts were carried out. The chikki were prepared and presented to panel of ten judges for assessing the quality and acceptability of product. Organoleptic evaluation of chikki was carried out using a 9 point hedonic scale of sensory characteristics such as colour, texture, taste and overall acceptability. Treatment T\(_2\) i.e. 20% pomegranate juice mixed chikki was selected and kept for 90 days storage study. Chemical analysis and sensory evaluation was done at interval of 30 days.

Table 5: Chemical analysis of pomegranate juice mixed peanut chikki during storage

Parameters	Initial	Final	
Chemical constituent	T\(_0\)P\(_1\)	T\(_0\)P\(_1\)	T\(_0\)P\(_1\)
Moisture (%)	3.96	3.96	3.95
Protein (%)	14.17	14.17	14.14
Fat (%)	23.78	23.78	23.75
Crude fiber (%)	2.10	2.10	2.07
Carbohydrate (%)	51.04	51.04	50.94
Ash (%)	1.03	1.03	0.99
Calcium (mg/100g)	86.60	86.60	86.49
Iron (mg/100g)	1.73	1.73	1.66
Total polyphenol (mg/100g)	8.55	8.53	8.45

Whereas: T\(_0\) = control peanut chikki
T\(_1\) = (20% pomegranate juice)

The data in above table shows that moisture content increased for treatment T\(_0\) from 3.97 to 4% in PP and 3.96 to 3.97 per cent in LDPE was observed for 90 days of the storage. Treatment T\(_1\) showed increase in the moisture content 3.97 to 3.99 per cent in PP and 3.96 to 3.96 per cent in LDPE. It was observed that the protein decreased for control treatment T\(_0\) from 14.17 to 14.14 per cent in PP and from 14.17 to 14.15 per cent in LDPE was observed for 90 days of storage. Treatment T\(_1\) showed decrease in protein content from 14.17 to 14.16 per cent in PP and from 14.19 to 14.17 per cent in LDPE. The fat content decreased for treatment T\(_0\) from 23.78 to 23.75 per cent in PP and from 23.78 to 23.76 per cent in LDPE was observed for 90 days of storage. Treatment T\(_1\) showed 23.75 to 23.72 per cent decrease in PP and 23.75 to 23.73 per cent decrease in LDPE. The crude fibre content decreased for treatment T\(_0\) from 2.08 to 2.05 per cent in PP and from 2.10 to 2.07 per cent in LDPE was observed for 90 days of storage. The sample T\(_1\) showed crude fibre content 3.07 to 3.01 per cent in PP and from 3.08 to 3.04 per cent in LDPE. The carbohydrate content decreased for T\(_0\) from 51.02 to 50.91 per cent in PP and from 51.03 to 50.94 per cent in LDPE observed for 90 days of storage. The sample T\(_1\) showed carbohydrate content 50.99 to 50.87 per cent in PP and from 51.00 to 50.92 per cent in LDPE. The ash content decreased for treatment T\(_0\) from 0.97 to 0.95 per cent in PP and from 1.00 to 0.97 per cent in LDPE. The calcium content decreased for treatment T\(_0\) from 86.58 to 86.49 mg/100g in PP and from 86.59 to 86.50 mg/100g in LDPE was observed for 90 days of storage. The sample T\(_1\) showed calcium content 86.47 to 86.45 mg/100g in PP and from 86.48 to 86.45 mg/100 g in LDPE. The iron content decreased for treatment T\(_0\) from 1.71 to 1.60 mg/100 g in PP and 1.72 to 1.66 mg/100 g in LDPE was observed for 90 days. The sample T\(_1\) showed decrease from 1.66 to 1.58 mg/100 g in PP and from 1.67 to 1.62 mg/100 g in LDPE. It was observed that from the total polyphenol decreased for treatment T\(_0\) from 8.52 to 8.42 mg/100g in PP and 8.52 to 8.45 mg/100 g in LDPE was observed for 90 days. The sample T\(_2\) showed decrease from 31.27 to 31.19 mg/100 g in PP and from 31.28 to 31.20 mg/100 g in LDPE. The juice mixed peanut chikki (T\(_0\)) initial low microbial growth detected showed for 0 × 10\(^3\), 1 × 10\(^3\) cfu/g, respectively and Final count was taken at 90 days of storage study.
The growth of microorganism detected more showed the count 2 × 10^5 and 3 × 10^5 cfu/g respectively. The total cost of production for 1 kg pomegranate juice mixed peanut chikki was Rs 158.16 Rs/kg.

Changes in sensory parameters of pomegranate juice mixed peanut chikki during Storage

Pomegranate juice mixed peanut chikki (20% pomegranate juice) remained in good condition at ambient temperature during the entire storage period of 3 months. The chikki stored in low density polyethylene bags (LDPE) showed good quality than polypropylene (PP) during 3 months of storage. The overall acceptability for T1 treatment score decreases from 8.63 to 8.23 in PP and 8.70 to 8.47 in LDPE.

Conclusion

Pomegranate juice mixed peanut chikki prepared with 20% pomegranate juice, 80% peanut, 70% jaggery, 10% liquid glucose was the best over other combination of pomegranate juice mixed chikki. The selected treatment was best and it was fairly stable to storage period for chemical composition. The chikki remained in good condition during storage period of 3 month. The chikki stored in LDPE bags showed good quality than polypropylene (PP) during 3 month storage.

References

1. ACC. Official Methods of Analysis of AACC International, American Association of Cereal Chemists, Washington D.C 2000.
2. OAC. Official Methods of Analysis, 18th edition. Association of Official Analytical Chemist. Washington DC 2000, 454.
3. Bray HG, Thorpe WV. Analysis of phenolic compounds of interest in metabolism. Methods of Biochemical Analysis 1954, 27-52.
4. Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am. J Clin. Nutr 2001;73:673-686.
5. Elfalleh W, Hannachi H, Tili N, Yahia Y, Nasri N, Ferchichi A. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. Journal of Medicinal Plants Research 2012;6(32):4724-4730.
6. Kelly JH, Sabate J. Peanuts and cardiovascular Disease, British Journal of Nutrition 2006;96(2):61-67.
7. Kundu M, Sarkar A. Formulation of low cost nutritious product to fulfill the macronutrient and micronutrient deficiencies of the economically challenged population. International Journal of Home Science 2017;3(2):171-174.
8. Manay N, Swamy S. In: Food Fact and Principle 2nd edn New Age International Pvt. Ltd 2001, 410-424.
9. Narzary D, Rana TS, Ranade SA. Genetic diversity in inter-simple sequence repeat profiles across natural populations of Indian pomegranate (Punica granatum L.). Plant Biology 2010;2(5):806-813.
10. Shahi HN. Sustainability of jaggery and khandasari industry in India, Souvenir. Proc- National Seminar on Status Problems and Prospects of Jaggery and Khandasari Industry, Lucknow 1999, 15-20.
11. Sharanyarani D, Chaturvedi A. Development and evaluation of nutrient rich snack bars from grain amaranth. J Res. Angrau 2014;42(2):63-64.
12. Raghuramulu N, Nair MK, Kalyanasundaram S. In: A Manual of Laboratory Technique, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India 1993, 69-72.
13. Rangaswamy R. A Text book of Agricultural Statistics, Second edition and New Age International Publishers 2010, 234-458.