Contribution of Agricultural Investments to Stabilizing International Rice Price Volatility under Climate Change – Simulation for eight ASEAN countries –

Tatsuji KOIZUMI1* and Hideki KANAMARU
Climate, Energy and Tenure Division, Food and Agriculture Organization of the United Nations (FAO)
(Viale delle Terme di Caracalla, 00153, Rome, Italy)

Abstract
The role of agricultural investment growth in alleviating climate risks to rice production systems and rice markets was examined using a partial equilibrium model. The Rice Economy Climate Change (RECC) model covers the rice markets in 15 countries and regions. The rice yield in each economy is estimated from minimum and maximum temperatures, precipitation, and agricultural investments. The rice area harvested is estimated from rice and wheat producer prices and precipitation. We examine how future agricultural investments will affect the world rice market. The volatility of international rice prices in the baseline is expected to increase during 2010/12 to 2030 with climate change. However, a constant increase in agricultural investments in eight ASEAN countries will contribute to reducing international rice price volatility. In particular, investments in Thailand and Vietnam are most important for stabilizing international rice prices under future climate change conditions.

Introduction
There is a growing consensus about global warming and that our planet will continue to warm up as concentrations of greenhouse gases increase in the future (IPCC 2013). The increase in global mean surface temperatures for 2081-2100 relative to 1986-2005 is projected to be between 0.3°C to 4.8°C, depending on Representative Concentration Pathways (RCPs). Agricultural production will be affected by this climate change in many different ways, including changes in yield and area harvested. However, considerable debate continues on how harmful or beneficial climate change will be for a particular crop in a particular location.

Many studies have been made on how future climate change could impact global agricultural and rice production. Peng et al. (2004) examined how higher night temperature affected rice yield. Welch (2010) examined how minimum and maximum temperatures impacted the rice yields in tropical/subtropical Asia. Lobel (2007) examined the changes in diurnal temperature range and national cereal yield. Moreover, Furuya and Koyama (2005) examined the relationship between climate change and world food markets.

Food price volatility in recent years has hurt millions of people, undermining both nutritional status and food security. After remaining at historic lows for decades, food prices have become significantly higher and more volatile since 2007. Price volatility has a strong impact on food security, because it affects household income and purchasing power (FAO 2011). The volatility of world sugar prices is a crucial problem. FAO (2011) concluded that investment could reduce food price volatility through increased productivity and improved technical management of production and risk, especially in the face of climate change.

None of these studies, however, has examined how agricultural investment would impact international rice price volatility. This study is the first to evaluate how future climate change will affect world rice price volatility.

This study was supported by FAO and the Assessments of Climate Change Impacts and Mapping of Vulnerability to Food Insecurity under Climate Change (AMICAF) Project, funded by the Government of Japan.

Present address:
1 Policy Research Institute of Japan's Ministry of Agriculture, Forestry and Fisheries. (3-1-1 Kasumigaseki Chiyoda-ku, Tokyo 100-0013 Japan)
*Corresponding author: e-mail tatsuji_koizumi410@maff.go.jp
Received 23 April 2015; accepted 15 October 2015.
The purpose of this study is to conduct policy simulations for alleviating climate risks to rice production systems and rice markets, by utilizing a partial equilibrium model.

Structure of the RECC model

The Rice Economy Climate Change (RECC) model covers the rice markets in 15 countries and regions (Thailand, Vietnam, Indonesia, Malaysia, the Philippines, Cambodia, Lao PDR, Myanmar, China, Japan, South Korea, India, USA, EU27, and the rest of the world). The base year is 2010 (3-year average for 2010-2012). Each country’s market consists of production, consumption, exports, imports, and ending stock up to the year 2030. The RECC model includes equations for projecting the rice yield and area harvested affected by climate change (Fig. 1). We applied an Error Correction Model (ECM) to this study in order to evaluate the long-run equilibrium relationships among economic variables.

Paddy rice yield equation depends on the annual averages of minimum temperature, maximum temperature, precipitation, lagging investments in land development and agricultural machinery & equipment, and time trend as follows:

\[\ln \left(\frac{Y_{t,c}}{Y_{t-1,c}} \right) = a_1 \ln \left(\frac{T_{\text{min},t,c}}{T_{\text{min},t-1,c}} \right) + a_2 \ln \left(\frac{T_{\text{max},t,c}}{T_{\text{max},t-1,c}} \right) + a_3 \ln \left(\frac{\text{PRC}_{t,c}}{\text{PRC}_{t-1,c}} \right) + a_4 \ln \left(\frac{\text{LD}_{t-1,c}}{\text{LD}_{t-2,c}} \right) + a_5 \ln \left(\frac{\text{AME}_{t-1,c}}{\text{AME}_{t-2,c}} \right) + a_6 \ln \left(\frac{T_t}{T_{t-1}} \right) \]

where, \(Y \) is paddy rice yield, \(T_{\text{min}} \) is minimum temperature, \(T_{\text{max}} \) is maximum temperature, \(\text{PRC} \) is precipitation, \(\text{LD} \) denotes investments in land development, \(\text{AME} \) denotes investments in agricultural machinery/equipment, \(T \) is time trend, \(t \) is time, \(c \) are countries/region, and \(a_1-a_6 \) are parameters. Tables A1-1 and A1-2 list these estimated parameters. The planted area equation for paddy rice depends on the producer prices of rice and wheat, precipitation, lagging investments in land development, and time trend as follows:

\[\ln \left(\frac{\text{APW}_{t,c}}{\text{APW}_{t-1,c}} \right) = a_7 \ln \left(\frac{\text{RP}_{t,c}}{\text{RP}_{t-1,c}} \right) + a_8 \ln \left(\frac{\text{WP}_{t,c}}{\text{WP}_{t-1,c}} \right) + a_9 \ln \left(\frac{\text{PRC}_{t,c}}{\text{PRC}_{t-1,c}} \right) + a_{10} \ln \left(\frac{\text{LD}_{t-1,c}}{\text{LD}_{t-2,c}} \right) + a_{11} \ln \left(\frac{T_t}{T_{t-1}} \right) \]

where, \(\text{APW} \) is the planted area of rice, \(\text{RP} \) is the domestic rice price, \(\text{WP} \) is the domestic wheat price, \(a_7 \) is the own domestic price elasticity of rice, \(a_8 \) is the substitute price elasticity, and \(a_9-11 \) are other parameters. Tables A2-1 and A2-2 list these estimated parameters. The harvested area is derived from the difference between the planted area and abandoned area.

\[\text{AHW}_{t,c} = \text{APW}_{t,c} - \text{ABD}_{t,c} \]

Fig. 1. Structure of the RECC model in the case of Thailand
where, AHW is harvested area and ABD is abandoned area. Paddy rice production is calculated by multiplying the area harvested and the yield of paddy rice.

$$QPRP_{t,c} = AHW_{t,c} \times Y_{t,c}$$ \hspace{1cm} (4)

where, $QPRP$ denotes paddy rice production. Milled rice production is calculated by multiplying paddy rice production and the milling rate from paddy to milled rice. Table A3 lists the milling rates.

$$QPR_{t,c} = QPRP_{t,c} \times MIL_{t,c}$$ \hspace{1cm} (5)

where, QPR is milled rice production and MIL is the milling rate. Per capita rice consumption depends on income, domestic prices for rice, wheat and corn, and time trend. Rice consumption is calculated by multiplying the per capita rice consumption and the country’s population.

$$\ln (PQCR_{t,c} / PQR_{t-1,c}) = a_{12} \ln (PCGD_{t,c} / PCD_{t-1,c}) + a_{13} \ln (RP_{t,c} / RP_{t-1,c}) + a_{14} \ln (WP_{t,c} / WP_{t-1,c}) + a_{15} \ln (CGP_{t,c} / CGP_{t-1,c}) + a_{16} \ln (T_t / T_{t-1})$$ \hspace{1cm} (6)

$$QCR_{t,c} = PQCR_{t,c} \times POP_{t,c}$$ \hspace{1cm} (7)

where, $PQCR$ is the per capita consumption of rice, $PCGD$ is per capita GDP, CGP is the domestic corn price, QCR is rice consumption, POP is population, a_{12} is income elasticity, a_{13} is the own domestic price elasticity of rice, a_{14} and a_{15} are substitute price elasticity, and a_{16} is parameter. Tables A4-1 and A4-2 list these estimated parameters. For net rice exporting countries, rice imports depend on the international rice price, rice production, domestic rice price, and time trend. Rice exports are calculated by the exportable domestic market balance deficit remaining after the domestic market has been satisfied as follows:

$$\ln (EXR_{t,c} / EXR_{t-1,c}) = a_{21} \ln (IRP_{t,c} / IRP_{t-1,c}) + a_{22} \ln (QPR_{t,c} / QPR_{t-1,c}) + a_{23} \ln (RP_{t,c} / RP_{t-1,c}) + a_{24} \ln (T_t / T_{t-1})$$ \hspace{1cm} (8)

$$EXR_{t,c} = QPR_{t,c} - QCR_{t,c} + IMR_{t,c} - (ESR_{t,c} - ESR_{t-1,c})$$ \hspace{1cm} (9)

where, IMR is rice imports, IRP is the international rice price, EXR denotes rice exports and ESR the ending stocks of rice, and a_{21}-a_{24} are parameters. Table A5 lists the estimated parameters. For net rice importing countries, rice imports depend on the international rice price, rice production, domestic rice price, and time trend. Rice imports are calculated by the exportable domestic market balance deficit remaining after the domestic market has been satisfied as follows:

$$\ln (EXR_{t,c} / EXR_{t-1,c}) = a_{25} \ln (DP_{t,c} / DP_{t-1,c}) + a_{26} \ln (T_t / T_{t-1})$$ \hspace{1cm} (10)

$$\ln (RP_{t,c} / RP_{t-1,c}) = a_{27} \ln (IRP_{t,c} / IRP_{t-1,c}) + a_{28} \ln (T_t / T_{t-1})$$ \hspace{1cm} (11)

$$\sum IMR_{t,c} = \sum EXR_{t,c}$$ \hspace{1cm} (12)

Data for regression

Historical annual minimum/maximum temperatures and precipitation data are derived from CRU TS. 3.2 (University of East Anglia). For larger countries, the values for grids that correspond to the major rice producing areas in each country are averaged (West Java, Central Java, East Java, and Banten for Indonesia; Hunan, Hubei, and Jiangxi for China; Louisiana and Arkansas for the USA; West Bengal, Andhra Pradesh, Orissa, Chhattisgarh, and Tamil Nadu for India; Nueva Ecieja for the Philippines). For other countries, the values for all grids that cover the entire territory are spatially averaged. Historical planted area, yield, production, per capita consumption, imports, exports, and ending stock data for rice are derived from PSM & D (USDA). We define the rice producer price as the domestic rice price in this study. We also define wheat and corn producer prices as domestic wheat and corn prices. These producer prices are derived from FAOSTAT (FAO), and the data are used for regression in time-series analysis.
Simulations of the world rice market

1. Baseline assumptions

The baseline outlook adopts a set of assumptions for the general economy, agricultural policies, and technological changes without any policy shocks during the outlook period. The climate variables (minimum/maximum temperatures, precipitation) in each country and region are exogenous to the model. All climate variables for both the baseline outlook and policy scenario come from climate change projections by the Bergen Climate Model, version 2 (BCM2), a global climate model under the A2 greenhouse gas emissions scenario. Spatially averaged climate variables for each country are computed the same way as the historical climate data used for regression (see the previous section). The standard deviations of minimum and maximum temperatures in most of the countries1 are projected to increase during the decades from 1990-2010 to 2010-2030 (Figs. 2 and 3). The standard deviations of precipitation in Thailand, Vietnam, Lao PDR, India, China, and Japan are projected to increase during the same periods (Fig. 4), while those in other countries are projected to decrease. Table A9 lists the standard deviation data of minimum/maximum temperatures and precipitation in detail.

Population data for all countries were taken from the 2010 Revision (medium variant) of World Population Prospects, United Nations (2013). Per capita real GDP was also treated as an exogenous variable, and GDP growth rate assumptions were based on World Economic Outlook 2013 (IMF 2013) and USDA Agricultural Projections to 2022 (USDA 2013). These GDP growth rates are available up to the year 2022. This study assumes no growth in GDP from 2022 to 2030. International wheat and corn prices are derived from OECD-FAO Agricultural Outlook 2013-2022 (OECD-FAO 2013). Table A10 lists the exogenous variables for per capita GDP growth rate, population, international wheat and corn prices, and others.

We also assumed that current agricultural policies will continue in all countries throughout the outlook period. Following generally adopted procedures, we assumed that historical rates of technological innovation would continue. The model does not take into account any new WTO agricultural agreements. Agricultural investments (land development, machinery & equipment) are exogenous variables for the baseline outlook.

1 Bangladesh, with its 6% share of world rice production (calculated from FAOSTAT (FAO)), is considered to represent the “rest of the world” that accounted for 20% of total production in 2010-2012. Italy, with its 0.2% share of world rice production, is considered to represent the EU that accounted for 0.3% of total production in 2010-12 (calculated from FAOSTAT (FAO)).
Fig. 3. Standard deviation of annual maximum temperature

Fig. 4. Standard deviation of annual precipitation
We assumed zero (0) abandoned areas in all countries and regions, and a constant milling rate in all countries and regions during the outlook period.

Land development is the result of actions that lead to major improvements in the quantity, quality or productivity of land, or which prevent its deterioration. Activities such as clearing and contouring the land, digging wells, and creating watering holes are integral to land improvement. The concept of land development for the database of capital stock in agriculture includes field land improvements undertaken by farmers, such as marking boundaries and digging irrigation channels, as well as other activities undertaken by the government and other local bodies, such as work related to irrigation, soil conservation, and flood control structure. Categorized as a capital stock of agricultural investment in FAOSTAT, land development can be used not only for rice but also for other crops in the USA, EU27, China, and India. However, we assume that land development will be mainly used for rice production in eight ASEAN countries. Thus, we utilized it for simulation for those eight ASEAN countries.²

We assume that the current growth rate of agricultural investments from 2000 to 2007 in each country will continue during the outlook period (2010/12 to 2030). The growth rates of investments in land development in Vietnam and Lao PDR from 2000 to 2007 were 2.3% and 2.0%, respectively, which appear to be too high (Table 1). Instead, we applied the growth rates from 1985 to 1995 for these countries (1.0% and 1.2%, respectively) to the outlook period. The growth rates of investments in agricultural machinery & equipment in China and India from 2000 to 2007 were 8.1% and 8.4%, respectively (Table 2). We applied the growth rate from 1990 to 2007 for China (4.2%) and that from 1985 to 1995 for India (5.9%) to the outlook period.

The growth rates of investments in land development in the eight ASEAN countries ranged from -0.1% to 1.9%, and those of machinery & equipment ranged from -0.1% to 1.0%.

2. Policy scenarios

This study applied alternative scenarios to the baseline outlook. This study produces outlooks under three policy scenarios as listed in Table 3. In policy scenario 1, we hypothesize that the growth rate of investments in land development and agricultural machinery & equipment in the eight ASEAN countries will increase by 2.0% and 1.0% per annum from 2010/12 to 2030, respectively. In policy scenario 2, we also hypothesize that the growth rate of investments in land development and in agricultural machinery & equipment in Thailand will increase by 2.0% and 1.0% per annum from 2010/12 to 2030, respectively. In policy scenario 3, we also hypothesize that the growth rate of investments in land development and in agricultural machinery & equipment in Vietnam will increase by 2.0% and 1.0% per annum from 2010/12 to 2030, respectively.

Results

1. Baseline outlook

Under the baseline assumptions, world rice production and consumption are expected to increase at a rate of 1.2% per annum from 2010/12 to 2030 (Tables 4 and 5). World rice exports and imports are expected to increase at a rate of

2 Thailand, Vietnam, Indonesia, the Philippines, Malaysia, Cambodia, Lao PDR and Myanmar.

Table 1. Growth rates of investments in land development (Baseline outlook)

Country	1975-1985	1985-1995	1975-2007	1990-2007	2000-2007	2008-2030 (Projection)
Thailand	2.8%	0.9%	1.4%	0.8%	0.9%	0.9%
Vietnam	2.9%	1.0%	2.2%	2.0%	2.3%	1.0%
Indonesia	0.7%	-0.4%	1.1%	1.3%	1.9%	1.9%
Cambodia	3.0%	4.7%	2.4%	0.3%	0.3%	0.3%
Lao PDR	2.9%	1.2%	2.6%	3.0%	2.0%	1.2%
Myanmar	0.3%	1.1%	1.0%	1.7%	1.7%	1.7%
Malaysia	1.9%	2.4%	1.3%	0.3%	-0.1%	-0.1%
The Philippines	2.1%	0.1%	0.5%	-0.4%	0.5%	0.5%
China	1.1%	1.1%	0.9%	0.8%	1.1%	1.1%
India	1.1%	1.2%	0.9%	0.8%	-0.1%	-0.1%
Japan	-0.6%	-0.7%	-0.6%	-0.6%	-0.6%	-0.6%
Korea	0.1%	-0.7%	-0.4%	-0.9%	-0.7%	-0.7%
Italia (EU27)	0.0%	0.5%	1.0%	1.3%	-0.3%	-0.3%
USA	0.8%	0.3%	0.3%	0.0%	-0.1%	-0.1%
Bangladesh	1.6%	2.9%	2.0%	1.8%	1.6%	1.6%

(The rest of the world)
1.9% per annum during the same period (Tables 6 and 7). World rice ending stocks are expected to increase at a rate of 0.3% per annum during the same period (Table 8). The international rice price (5% broken milled white rice, Thailand’s nominal price quota) was 550.8 USD/ton in 2010/12, but is expected to be 956.4 USD/ton in 2030 (Table 9). The coefficient of variation (CV) of international rice price from 2010/12 to 2030 is 0.142325.

2. Impacts of agricultural investments on the world rice market

Outlooks were made using various agricultural investment scenarios in selected countries for a comparison against the baseline outlook. These agricultural investments...
Table 5. World rice consumption (Baseline outlook)

	2010-12	2015	2020	2025	2030	Growth rate (2010/12-2030)
World	468,706	500,719	537,445	569,370	593,579	1.2%
Thailand	12,198	13,132	14,652	16,309	18,089	2.2%
Vietnam	21,085	22,289	23,866	25,239	26,406	1.3%
Indonesia	43,446	46,554	51,399	55,881	59,790	1.8%
Malaysia	2,717	2,853	2,997	3,074	3,091	0.7%
Cambodia	3,478	3,686	4,038	4,095	3,897	0.6%
Lao PDR	1,450	1,644	1,983	2,354	2,741	3.6%
Myanmar	10,167	10,497	10,934	11,067	10,931	0.4%
The Philippines	12,157	13,458	15,690	16,628	16,368	1.7%
India	93,418	98,819	107,311	115,052	121,213	1.5%
China	130,595	141,974	145,576	146,394	145,251	0.6%
Japan	8,514	8,489	8,388	8,264	8,133	-0.3%
Korea	4,603	4,622	4,613	4,625	4,631	0.03%
USA	3,911	4,044	4,216	4,335	4,407	0.7%
EU27	2,602	2,686	2,877	2,996	3,047	0.9%

Table 6. World rice exports (Baseline outlook)

	2010-12	2015	2020	2025	2030	Growth rate (2010/12-2030)
World	36,626	41,496	43,123	45,976	51,689	1.9%
Thailand	8,453	11,877	11,998	13,706	16,011	3.6%
Vietnam	7,444	6,633	8,185	9,642	11,575	2.5%
Indonesia	2	2	2	2	2	0.4%
Malaysia	0	0	0	0	2	-
Cambodia	878	868	814	1,108	1,805	4.1%
Lao PDR	0	0	0	0	0	-
Myanmar	739	726	1,476	2,552	3,630	9.2%
The Philippines	0	0	0	0	0	-
India	7,179	10,436	9,778	8,208	7,555	0.3%
China	365	500	647	758	888	5.1%
Japan	173	200	200	200	200	0.8%
Korea	30	3	3	3	3	0.0%
USA	3,363	2,426	2,318	2,130	2,397	-1.9%
EU27	168	227	290	330	387	4.7%

Table 7. World rice imports (Baseline outlook)

	2010-12	2015	2020	2025	2030	Growth rate (2010/12-2030)
World	36,879	41,496	42,866	45,498	51,689	1.9%
Thailand	517	341	204	119	69	-10.6%
Vietnam	583	549	542	559	570	-0.1%
Indonesia	1,800	1,973	2,744	3,131	2,169	1.0%
Malaysia	1,021	1,195	1,324	1,427	1,416	1.8%
Cambodia	5	5	6	6	6	1.0%
Lao PDR	22	141	7	10	725	21.3%
Myanmar	0	0	0	0	0	-
The Philippines	1,543	2,057	3,187	3,155	1,746	0.7%
India	100	100	100	100	100	0.0%
China	1,656	4,289	6,862	3,820	3,343	4.0%
Japan	853	768	768	768	768	-0.6%
Korea	393	499	578	664	753	3.7%
USA	612	606	603	603	602	-0.1%
EU27	1,008	1,107	1,414	1,571	1,608	2.6%
can be considered climate change adaptation measures. Under policy scenario 1, world rice production and consumption are expected to increase by 2.7%, and world rice exports and imports are expected to increase by 18.8%, compared with the baseline outlook in 2030 (Table 10). Consequently, the international rice price is expected to decrease by 19.4%, compared with the baseline outlook in 2030.

Using policy scenario 2, rice production in Thailand is expected to increase by 29.6% and its exports are expected to increase by 62.8%, compared with the baseline outlook in 2030. Accordingly, world rice production and consumption are expected to increase by 1.3%, and world rice exports and imports are expected to increase by 13.9%, compared with the baseline outlook in 2030. Consequently, the international rice price is expected to decrease by 10.2%, compared with the baseline outlook in 2030.

The results of policy scenario 3 show rice production in Vietnam is expected to increase by 9.8% and its exports are expected to increase by 32.4%, compared with the baseline outlook in 2030.

Table 8. World rice ending stocks (Baseline outlook)

	2010-12	2015	2020	2025	2030	Growth rate (2010-12-2030)
World	158,635	155,420	157,191	161,989	166,281	0.3%
Thailand	13,000	12,688	12,797	13,195	13,530	0.2%
Vietnam	3,157	3,276	3,500	3,744	4,005	1.3%
Indonesia	5,933	5,839	5,944	6,173	6,379	0.4%
Malaysia	233	239	250	263	277	1.0%
Cambodia	178	147	129	124	116	-2.3%
Lao PDR	57	58	60	62	65	0.7%
Myanmar	361	372	392	413	436	1.0%
The Philippines	3,026	3,037	3,133	3,269	3,400	0.7%
India	22,833	19,077	16,974	16,389	15,505	-2.1%
China	83,947	84,524	87,425	91,333	95,178	0.7%
Japan	2,562	2,877	3,204	3,453	3,647	2.0%
Korea	1,523	1,549	1,614	1,693	1,773	0.8%
USA	1,260	1,166	1,127	1,136	1,133	-0.6%
EU27	470	475	493	516	539	0.8%

Table 9. International and domestic rice prices (Baseline outlook)

	Unit	2010-12	2022	2030
International rice price	USD/ton	550.8	834.9	956.4
Domestic rice price, Thailand	USD/ton	205.0	247.3	263.0
Domestic rice price, Indonesia	USD/ton	251.9	306.5	326.7
Domestic rice price, Malaysia	USD/ton	203.7	213.3	216.6
Domestic rice price, Cambodia	USD/ton	164.9	210.3	227.7
Domestic rice price, Lao PDR	USD/ton	179.8	211.8	223.4
Domestic rice price, Myanmar	2010/12=100	100.0	109.5	112.7
Domestic rice price, The Philippines	USD/ton	240.8	267.6	277.6
Domestic rice price, India	USD/ton	178.9	269.2	294.8
Domestic rice price, China	USD/ton	254.3	277.6	285.7
Domestic rice price, South Korea	USD/ton	1,627.5	1,670.8	1,685.2
Domestic rice price, USA	USD/ton	207.6	294.2	329.5
Domestic rice price, Italy	USD/ton	392.7	557.5	625.0

Table 10. Impact on the world rice market (Scenario 1/Baseline: 2030)

	Changing rate
World Rice Production	2.7%
World Rice Export	18.8%
World Rice Consumption	2.7%
World Rice Import	18.8%
World Rice Ending Stocks	5.0%
International Rice Price	-19.4%

Table 11. Impact on the world rice market (Scenario 2/Baseline: 2030)

	Changing rate
World Rice Production	1.3%
Thailand	29.6%
World Rice Export	13.9%
Thailand	62.8%
World Rice Consumption	1.3%
World Rice Import	13.9%
World Rice Ending Stocks	2.4%
International Rice Price	-10.2%
line outlook in 2030 (Table 12). Accordingly, world rice production and consumption are expected to increase by 0.5%, and world rice exports and imports are expected to increase by 5.2%, compared with the baseline outlook in 2030. Consequently, the international rice price is expected to decrease by 4.0%, compared with the baseline outlook in 2030.

The coefficient of variation (CV) of the international rice price from 2010/12 to 2030 is 0.142325 in the baseline outlook. As a result of policy scenarios, the CV is calculated to be 0.08188 during the simulation period (under policy scenario 1), 0.11154 (under policy scenario 2), and 0.130578 (under policy scenario 3) as shown in Fig. 5.

Conclusion

We conducted policy simulations for alleviating climate risks to rice production systems and rice markets by utilizing a partial equilibrium model. We examined how future agricultural investments will impact the world rice market, especially the volatility of international rice prices, by factoring in future climate change. The simulation results suggest that a constant increase in agricultural investment in eight ASEAN countries will contribute to reducing international rice price volatility, by taking into account climate change. The same investment increase in Thailand and Vietnam will also contribute to reducing international rice price volatility. We conclude that a constant increase of agricultural investments in the eight ASEAN countries, especially Thailand and Vietnam, has a crucial role in stabilizing international rice prices as rice production becomes increasingly affected by climate change.

Some uncertainties remain regarding the baseline and policy scenario simulation results. The first issue is the uncertain GDP growth rates after 2016 in each country and region. The second issue is the uncertain future rice policies of the main exporters, especially Thailand and Vietnam. The third issue is that climate change projections carry large uncertainties and strongly depend on the emission scenarios, choice of climate models, and other factors. These uncertainties pose limitations for this study. This study applied specified assumptions to baseline and scenarios outlooks. We need to apply other macro assumptions and climate change projections to baseline and scenarios outlooks. Rice consumption is increasing in Africa and the Middle East, especially in countries such as Nigeria, Madagascar, Egypt, and Iran. However, the RECC model does not cover these countries due to a lack of reliable climate and agricultural investment data. We will incorporate these countries into the RECC model after collecting reli-

Table 12. Impact on the world rice market (Scenario 3/Baseline: 2030)

	Changing rate
World Rice Production	0.5%
Vietnam	9.8%
World Rice Export	5.2%
Vietnam	32.4%
World Rice Consumption	0.5%
World Rice Import	5.2%
World Rice Ending Stocks	0.9%
International Rice Price	-4.0%

Fig. 5. The coefficient of variation (CV) of international rice price (2010/12-2030)
Agricultural Investment to Stabilizing Rice Price Volatility Under Climate Change

Rice ending stocks can depend not only on domestic rice price but also on domestic production. We will incorporate domestic production into the explanatory variable of rice ending stocks. We plan to address these issues in future studies.

References

Food and Agricultural Organization (FAO) (2011) The State of Food Security in the world, How does international policy volatility affect domestic economics and food security? Food and Agricultural Organization (FAO): FAOSTAT, FAO statistic databases. http://faostat.fao.org/
Furuya, J. and Koyama, O. (2005) Impacts of Climate Change on World Agricultural Product Markets: Estimation of Macro Yield Functions. JARQ 39(2), 121-134.
International Monetary Fund (2013) World Economic Outlook Database. http://www.imf.org/external/pubs/ft/weo/2014/01/weodata/index.aspx
Intergovernmental Panel on Climate Change (IPCC) (2013) The Physical Science Basis. Working Group I Contribution to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.
Lobloll, D. B. (2007) Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology. 145: 229-238.
OECD-FAO (2013) OECD-FAO Agricultural Outlook 2013-2022. OECD-FAO.
Peng, S. et al. (2004) Rice yields decline with higher night temperature from global warming. Agricultural Sciences. Vol. 101. No. 27, 9971-9975.
United Nations (2011) World Population Prospects, the 2010 Revision. http://esa.un.org/unpd/wpp/
United States Department of Agriculture (USDA): PS&D. https://apps.fas.usda.gov/psdonline/psdQuery.aspx
United States Department of Agriculture (USDA) (2013) USDA Agricultural Projections to 2022. http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce131.aspx
Welch, J. R. et al. (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Sustainability Science, 107(33): 14562-14567.
Appendix

Table A1-1. Estimation of parameters (Yield)

	Thailand t statistics	Vietnam t statistics	Indonesia t statistics	Cambodia t statistics	Lao PDR t statistics	Myanmar t statistics	Malaysia t statistics	The Philippines t statistics
a1. Minimum Temperature	-0.1611	-0.3718	-0.2674	-0.6206	-0.3719	-1.0485	-0.2526	-0.1784
(t-1/t-2)								
a2. Maximum Temperature	0.0663	-0.0671	-0.1350	-0.0947	-			
(t-1/t-2)								
a3. Precipitation	0.0218	-0.2229	0.0249	0.7207	0.0270	-1.6721	-0.0662	-0.0389
(t/t-1)								
a4. Land development	0.4594	1.4489	0.2711	1.1538	0.0067	0.1555	0.0241	0.5807
(t-1/t-2)								
a5. Agricultural	0.0146	0.9006	0.2081	1.8007	0.1079	2.4504	0.4187	0.4784
machinery & equipment	(t-1/t-2)							
a6. Time trend	0.0150	12.7355	0.0258	17.2002	0.0057	5.6358	0.0252	6.2837
(t-1)								
Constant	0.3252	7.0356	0.3589	5.7797	1.1015	2.2580	-0.6342	-2.6606
Dummy 1	-	-	-	0.0093	-1.5409 (1984)	-	-0.0295	-1.4860 (2001)
Dummy 2	-	-	-	-0.0368	-0.0408 (1984)	-	-0.0397	-0.3925 (1997)
Dummy 3	-	-	-	0.0078	-5.3925 (1997)	-	-	-
Sample	1988-2008	195-2008	193-2006	1900-2008	1998-2007	1995-2009	1995-2008	1998-2011
R-squared	0.9108	0.9139	0.9108	0.9404	0.9439	0.9292	0.9245	0.9106
Adjusted R-squared	0.8812	0.9688	0.8803	0.7696	0.7757	0.9700	0.8364	0.8340
Durbin-Watson stat	2.0577	1.8365	1.4699					

Table A1-2. Estimation of parameters (Yield)

	China t statistics (Year for dummy)	India t statistics (Year for dummy)	Japan t statistics (Year for dummy)	Korea t statistics (Year for dummy)	USA t statistics (Year for dummy)	EU27 t statistics (Year for dummy)	Bangladesh t statistics (The rest of the world)	t statistics
a1. Minimum Temperature	-0.1380	-0.7577	-0.6434	-0.8077	-0.4569	-0.1086	-0.1000	-0.1278
(t-1)								
a2. Maximum Temperature	-	-	-	0.8039	1.6315	0.2544	0.2711	-
(t-1)								
a3. Precipitation	0.0052	0.1053	0.1234	1.2655	-0.2091	-1.2291	-0.0859	-1.0385
(t-1/t-2)								
a4. Land development	0.4846	1.3065	0.6718	0.6689	0.2264	0.5599	1.9611	0.6775
(t-1/t-2)								
a5. Agricultural	0.0662	0.5367	0.2873	1.0359	0.2144	0.5699	1.3004	2.4631
machinery & equipment	(t-1/t-2)							
a6. Time trend	0.1596	2.2152	0.0109	6.3151	0.1307	2.3489	0.8143	2.9045
(t-1)								
Constant	1.2290	4.7471	0.3272	1.1488	1.3853	6.7998	-1.2256	-1.1828
Dummy 1	0.0417	1.6380	(1998)	-0.3106	-8.3535 (1993)	-0.0690	-2.0021	(2007)
Dummy 2	-	-	-	-0.0974	-2.7154 (2003)	-	-	-1.0468 (2000)
Dummy 3	-	-	-	-	-	-	-	-1.245 (2004)
Sample	1990-2008	1968-2008	1990-2008	1990-2008	2000-2009	1976-2008	195-2009	1998-2008
R-squared	0.8310	0.8303	0.9148	0.9388	0.9342	0.9342	0.7087	0.8705
Adjusted R-squared	0.7215	0.7576	0.8060	0.7245	0.9100	0.5340	0.9712	
Durbin-Watson stat	1.6660	1.9774	2.0726	1.6634	1.7806	1.4137		
Table A2.1. Estimation of parameters (Planted Area)

	Thailand	t statistics	Vietnam (Year for dummy)	t statistics	Indonesia	t statistics	Cambodia	t statistics	Laos (Year for dummy)	t statistics	Myanmar	t statistics	Malaysia	t statistics	The Philippines	t statistics
a7, Domestic rice price (t-1)	0.0119	0.5399	0.0131	0.3278	0.0513	1.7849	0.1234	1.0936	0.0142	0.1661	0.0528	1.7499	0.0156	1.0936	0.0113	0.0273
a8, Domestic wheat price (t-1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a9, Precipitation (t-1)	-0.1071	-2.6265	0.0225	0.0410	0.0747	4.4689	0.0737	-0.4043	0.0572	1.4174	-0.0020	-0.0246	0.0538	1.6562	0.0291	0.6665
a10, Land Development (t-1:2)	0.8361	1.0316	0.0247	1.0581	0.0699	1.2660	0.4878	0.1271	0.4357	0.9555	0.1581	3.5235	0.1475	0.6486	0.0008	0.1796
a11, Time trend (t-1)	0.0066	0.3116	0.4658	27.3775	0.0040	3.5503	0.2512	5.2993	-0.0441	-1.0065	0.0245	13.2558	0.0567	2.4343	0.5094	11.2071
Constant	9.4150	82.159	1.5616	64.589	9.1610	108.96	6.5050	10.647	10.6998	75.816	14.934	90.736	6.1984	50.752	6.4106	58.72
Dummy 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dummy 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dummy 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample	1989-2011	1996-2011	1991-2010	1992-2007	1995-2006	1999-2008	2000-2009	2001-2010	1985-2011	1988-2011	1985-2011	1988-2011				
R-squared	0.8772	0.8576	0.9198	0.7873	0.8680	0.9641	0.6943	0.9541	0.6943	0.9541	0.6943	0.9541				
Adjusted R-squared	0.8539	0.9176	0.7873	0.8680	0.9641	0.6943	0.9541	0.6943	0.9541	0.6943	0.9541	0.6943				
Durbin-Watson stat	2.3143	1.7557	1.6663	2.0455	1.8120	1.4480	2.3386									

Table A2.2. Estimation of parameters (Planted Area)

	China	t statistics (Year for dummy)	India	t statistics (Year for dummy)	Japan	t statistics (Year for dummy)	Korea	t statistics (Year for dummy)	USA	t statistics (Year for dummy)	EU27	t statistics (Year for dummy)	Bangladesh (The rest of the world)	t statistics		
a7, Domestic rice price (t-1)	0.0577	2.7739	0.0780	2.9637	0.1139	1.6432	0.0428	1.1259	0.1406	2.3120	0.0674	5.5356	0.0246	1.3504		
a8, Domestic wheat price (t-1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a9, Precipitation (t-1)	0.0013	0.0241	0.0322	0.6852	-0.0374	-0.6515	-0.0234	-1.1267	-0.1297	-1.5262	0.0469	1.2877	-0.0232	-0.9629		
a10, Land Development (t-1:2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a11, Time trend (t-1)	-0.0078	-2.9243	0.0008	0.7961	-0.1592	-3.9888	-0.0125	-17.0489	0.0198	10.5436	-0.0089	-0.8593	0.0081	9.4538		
Constant	10.123	101.03	9.9797	50.790	6.9958	10.619	6.7901	24.348	8.3078	226.62	11.882	145.95	8.9877	88.517		
Dummy 1	0.0450	1.8314	0.0697	-3.3116	0.1900	1.1910	0.0341	2.0476	0.2417	-3.1107	0.4384	0.1581	-0.0020	-2.8315	0.0790	-
Dummy 2	-0.0911	-3.2807	0.0320	1.4068	0.0000	-0.0063	0.0241	2.0109	0.0511	2.0783	0.0112	-0.0451	-0.0020	-2.8315	0.0790	-
Dummy 3	0.0332	1.2192	0.0452	2.0016	0.0042	-0.0063	-0.0020	-3.1107	0.0511	2.0783	0.0112	-0.0451	-0.0020	-2.8315	0.0790	-
Sample	1991-2010	1974-2004	1995-2010	1995-2010	1985-2011	1985-2011	1992-2011	1992-2011	1999-2011	1999-2011						
R-squared	0.8539	0.8886	0.9310	0.9719	0.8710	0.8297	0.8610									
Adjusted R-squared	0.8539	0.8886	0.9310	0.9719	0.8710	0.8297	0.8610									
Durbin-Watson stat	1.4328	1.7080	1.8165	2.0813	1.8003	1.5918	1.5345									
Table A3. Milling rates

Country	Milling rate
Thailand	0.6600
Viet Nam	0.6251
Indonesia	0.6332
Cambodia	0.6403
Lao PDR	0.6309
Myanmar	0.6401
Malaysia	0.6499
The Philippines	0.6307
China	0.6999
India	0.6668
Japan	0.7281
Korea	0.7441
USA	0.6915
EU27	0.6936
Bangladesh	0.6401

Table A4-1. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Thailand	t-statistics	0.0070	-1.0770
Vietnam	t-statistics	0.0119	0.5508
Indonesia	t-statistics	0.0785	2.6335
Cambodia	t-statistics	0.3433	3.7847
Lao PDR	t-statistics	0.0594	0.5818
Myanmar	t-statistics	0.1414	6.0049
Malaysia	t-statistics	0.0951	0.8481
The Philippines	t-statistics	0.7148	0.9874

Table A4-2. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6499	2.0565

Table A4-3. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
China	t-statistics	0.0513	0.9434
India	t-statistics	0.0636	0.2292
Japan	t-statistics	-0.1326	-0.8858
Korea	t-statistics	-0.1002	-3.0231
USA	t-statistics	0.1655	1.7185
EU27	t-statistics	0.0741	1.0361
The Philippines	t-statistics	0.8771	3.7631

Table A4-4. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6401	2.0565

Table A4-5. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
China	t-statistics	0.0513	0.9434
India	t-statistics	0.0636	0.2292
Japan	t-statistics	-0.1326	-0.8858
Korea	t-statistics	-0.1002	-3.0231
USA	t-statistics	0.1655	1.7185
EU27	t-statistics	0.0741	1.0361
The Philippines	t-statistics	0.8771	3.7631

Table A4-6. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6401	2.0565

Table A4-7. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
China	t-statistics	0.0513	0.9434
India	t-statistics	0.0636	0.2292
Japan	t-statistics	-0.1326	-0.8858
Korea	t-statistics	-0.1002	-3.0231
USA	t-statistics	0.1655	1.7185
EU27	t-statistics	0.0741	1.0361
The Philippines	t-statistics	0.8771	3.7631

Table A4-8. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6401	2.0565

Table A4-9. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
China	t-statistics	0.0513	0.9434
India	t-statistics	0.0636	0.2292
Japan	t-statistics	-0.1326	-0.8858
Korea	t-statistics	-0.1002	-3.0231
USA	t-statistics	0.1655	1.7185
EU27	t-statistics	0.0741	1.0361
The Philippines	t-statistics	0.8771	3.7631

Table A4-10. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6401	2.0565

Table A4-11. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
China	t-statistics	0.0513	0.9434
India	t-statistics	0.0636	0.2292
Japan	t-statistics	-0.1326	-0.8858
Korea	t-statistics	-0.1002	-3.0231
USA	t-statistics	0.1655	1.7185
EU27	t-statistics	0.0741	1.0361
The Philippines	t-statistics	0.8771	3.7631

Table A4-12. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6401	2.0565

Table A4-13. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
China	t-statistics	0.0513	0.9434
India	t-statistics	0.0636	0.2292
Japan	t-statistics	-0.1326	-0.8858
Korea	t-statistics	-0.1002	-3.0231
USA	t-statistics	0.1655	1.7185
EU27	t-statistics	0.0741	1.0361
The Philippines	t-statistics	0.8771	3.7631

Table A4-14. Estimation of parameters (Per Capita Consumption)

Country	Parameter	Estimate	t-statistics
Bangladesh	t-statistics	0.6401	2.0565
Table A5. Estimation of parameters (Imports)

	Thailand	t statistics	Vietnam	t statistics (Year for dummy)	Cambodia	t statistics (Year for dummy)	USA	t statistics
a17, International Rice Price (t/t-1)	-1.6886	-0.4651	-0.1934	-2.2069	-0.9879	-3.1612	-0.0647	-0.7593
a18, Domestic Production (t/t-1)	-1.1475	-0.0451	-0.1265	-2.8750	1.1747	5.9048 (2006)	3.0756	2.7117 (1997)
a19, Domestic Rice Price (t/t-1)	-0.3350	-0.0841	1.2123	5.3627	1.2143	1.5921	3.1087	11.2972
a20, Time Trend (t/t-1)	3.7137	3.7672	1.5759	16.4130	1.0078	3.4920	0.0696	12.9809
Constant	-0.7775	0.4686	1.1233	3.7627	1.2143	1.5921	3.1087	11.2972
Dummy 1	-	-	0.1670	5.9048 (2006)	-1.8724	-5.3617 (1996)	-	-
Dummy 2	-	-	-0.2768	-8.2282 (2009)	-0.6415	-1.7531 (2009)	-	-
Dummy 3	-	-	-	-	1.8703	5.1046 (2004)	-	-
Sample	2005-2012		2003-2010		1991-2006		1991-2010	
R-squared	0.8752		0.9692		0.9335		0.9344	
Adjusted R-squared	0.7504		0.9867		0.8892		0.9221	
Durbin-Watson stat	1.8936		2.2773		1.6027		1.6884	

Table A6. Estimation of parameters (Exports)

	China	t statistics (Year for dummy)	EU27	t statistics (Year for dummy)
a21, International Rice Price (t/t-1)	-1.6886	-0.4651	1.5213	2.7334
a22, Domestic Production (t/t-1)	-1.1475	-0.0451	0.8788	0.1211
a23, Domestic Rice Price (t/t-1)	-0.3350	-0.0841	-	-
a24, Time Trend (t/t-1)	3.7137	3.7672	1.5759	16.4130
Constant	-0.7775	0.4686	1.1233	3.7627
Dummy 1	-	-	0.1670	5.9048 (2006)
Dummy 2	-	-	-0.2768	-8.2282 (2009)
Dummy 3	-	-	-	-
Sample	1995-2005		1991-2006	
R-squared	0.9190		0.9335	
Adjusted R-squared	0.7849		0.8892	
Durbin-Watson stat	1.7263		1.6027	

Table A7-1. Estimation of parameters (Ending Stocks)

	Thailand	t statistics	Vietnam	t statistics (Year for dummy)	Indonesia	t statistics (Year for dummy)	Cambodia	t statistics (Year for dummy)	LAO PDR	t statistics (Year for dummy)	Myanmar	t statistics (Year for dummy)	Malaysia	t statistics (Year for dummy)	The Philippines	t statistics (Year for dummy)
a25, Domestic rice price (t/t-1)	-0.6304	-0.0223	-0.3582	-0.3452	-1.6599	-1.9302	-0.0892	-0.3290	-0.0582	-0.2847	-0.4235	-1.637	-0.5792	-1.249		
a26, Time Trend (t/t-1)	1.0461	0.9772	0.7560	0.9535	-0.1847	0.7944	0.5706	0.4942	8.2391	1.2148	11.1136	6.697	7.8814	1.5990		
Constant	3.9436	1.6430	3.5462	2.8534	8.1256	7.6643	0.0529	0.4042	12.8305	13.6315	11.5650	4.2570	19.9873	3.4846		
Dummy 1	-	-	-0.6992	-3.1066 (1995)	-0.3341	-0.9144 (2004)	0.0747	0.3122 (2007)	0.2262	-1.5801 (1999)	3.5385	1.3543 (2001)	1.5113	4.663 (1995)		
Dummy 2	-	-	0.1578	0.396 (1997)	-0.4890	-2.5066 (2003)	-	-0.0927	-3.5456	0.0770	4.5121	0.0460	-1.5949 (1998)	-1.0068		
Dummy 3	-	-	-	-	-	-	-	-0.6530	-2.8101	0.6443	-0.5689	-2.5169 (1999)	-0.6562 (2010)			
Sample	1995-2011		1995-2011		1999-2011		2005-2011		1990-2010		2002-2011	1985-2011	1993-2010	1990-2010		
R-squared	0.8819		0.9412	0.7034	0.9583	0.9339	0.8963	0.7769	0.9284	0.8950						
Adjusted R-squared	0.8547		0.9145	0.5668	0.9666	0.9091	0.9034	0.7769	0.9284	0.8950						
Durbin-Watson stat	1.7862		1.8915	0.0210	1.9088	1.7918	1.8707	1.4289	2.0751							
Table A7-2. Estimation of parameters (Ending Stocks)

Country	t statistics (Year for dummy)	EU27	t statistics (Year for dummy)	Bangladesh	t statistics (Year for dummy)										
a25, Domestic rice price (t/t-1)	-0.6124	-2.4058	-0.0779	-2.7813	-2.0823	-2.8179	-1.2966	-3.7565	-0.6549	-2.3590	-0.1281	-1.4628	-0.0144	-0.0240	
a26, Time Trend (t/t-1)	-1.1123	-0.8464	1.1715	4.3277	2.3637	7.4218	0.9245	4.4672	-1.2793	-6.3793	0.1299	6.8302	0.5250	1.9448	
Dummy 1	-0.2704	-1.5177	0.5520	2.1534	2.2659	3.8279	0.5887	2.7632	-0.1181	-0.4649	-0.1345	-2.3475	-2.0149	-2.3553	
Dummy 2	- -	0.6302	2.6234	(2001)	1.8143	2.8601	(2003)	-	0.2546	1.3023	(2001)	0.1323	2.5677	(2005)	-0.9985
Dummy 3	- -	-0.496	-1.6543	(2005)	-	-	-	-	-	-	-	-	0.6334	1.4023	(2010)
Sample	1995-2011	1996-2011	1991-2011	1995-2011	1991-2011	1995-2011	1991-2011	1991-2011	1991-2011	1991-2011	1991-2011	1991-2011	1991-2011	1991-2011	
R-squared	0.8707	0.7866	0.8780	0.7278	0.5084	0.7281	0.3929	1.4164	0.1110	0.8433	0.2911	4.5701			
Adjusted R-squared	0.8276	0.6444	0.8257	0.6441	0.8495	0.6441	0.8495	0.6441	0.8495	0.8249	0.5669				
Durbin-Watson stat	1.3271	1.6683	1.4540												

Table A8-1. Estimation of parameters (Price Transmission)

Country	t statistics (Year for dummy)	t statistics (Year for dummy)	t statistics (Year for dummy)	Lao PDR	t statistics (Year for dummy)	Malaysia	t statistics (Year for dummy)	The Philippines	t statistics (Year for dummy)			
a27, International Rice Price (t/t-1)	0.4513	3.6687	0.4714	1.9679	0.5851	2.5157	0.3929	1.4164	0.1110	0.8433	0.2911	4.5701
a28, Time Trend (t/t-1)	0.1081	14.6742	0.0668	1.1774	-0.0614	-1.1024	-0.3474	-4.9017	0.0637	1.8553	0.0273	5.6230
Dummy 1	3.8474	62.5078	5.0545	42.2685	4.9607	40.3529	5.3025	41.8154	5.0151	69.1149	0.5072	1.8611
Dummy 2	- -	-0.6222	-2.7267	(2001)	- -	-0.4360	-2.4035	(1991)	- -	- -	- -	- -
Dummy 3	- -	0.3401	2.3377	(2010)	- -	0.3937	2.9461	(1998)	- -	- -	- -	- -
Sample	2000-2010	1991-2010	1991-2007	1991-2007	0.7517	0.9361	0.6988	0.9330	0.9227			
R-squared	0.9005	0.6530	0.6027	0.0859	0.5912	0.5669						
Adjusted R-squared	0.9080	1.4621	1.6179	1.3126	1.5412	1.9866						
Durbin-Watson stat	2.0829	1.4621	1.6179	1.3126	1.5412	1.9866						

Table A8-2. Estimation of parameters (Price Transmission)

Country	t statistics (Year for dummy)	t statistics (Year for dummy)	t statistics (Year for dummy)	USA	t statistics (Year for dummy)	EU27	t statistics (Year for dummy)				
a27, International Rice Price (t/t-1)	0.2112	0.7995	0.9819	3.5492	0.0631	0.3977	0.8376	4.3356	0.8423	2.3282	
a28, Time Trend (t/t-1)	0.3610	4.9854	0.0147	0.2156	0.1881	4.4513	-0.0137	-0.2921	-0.3049	-3.3535	
Dummy 1	4.5854	27.2061	4.9687	35.9738	6.9394	69.7888	2.7992	29.4166	6.3002	34.9585	
Dummy 2	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -	
Dummy 3	- -	- -	- -	- -	- -	0.5425	5.6099	(2008)	-0.4194	-1.5210	(2002)
Sample	1992-2010	1991-2007	1992-2010	1991-2010	1991-2010	1991-2010	1991-2010	1991-2010	1991-2010		
R-squared	0.7747	0.6134	0.7661	0.7764	0.6462	1.3787					
Adjusted R-squared	0.6880	0.5242	0.6761	0.7764	0.6462	1.3787					
Durbin-Watson stat	1.8276	1.6663	2.0443	1.4387	1.4387	1.4387					
Table A9. Standard deviation of climate data

Minimum temperature (Unit: Degrees C)	Source	1961-1990 (Historical)	1990-2010 (Historical)	2010-2030 (Projection: Exogenous Variable)
Thailand		0.3023	0.2686	0.3160
Viet Nam		0.3048	0.2972	0.2756
Indonesia		0.4175	0.1866	0.2139
Malaysia		0.2998	0.1891	0.1978
Cambodia		0.2980	0.2743	0.2502
Lao PDR		0.3358	0.3217	0.3062
Myanmar		0.3107	0.3579	0.4281
The Philippines		0.3162	0.2841	0.2268
Bangladesh (The rest of world)		0.3908	0.4287	0.4562
India		0.3306	0.2462	0.2909
China		0.3393	0.3984	0.4068
Japan		0.4825	0.3699	0.6292
South Korea		0.5218	0.4937	0.4980
USA		0.4754	0.5012	0.5153
Italy (EU27)		0.3297	0.4155	0.4809
Maximum temperature (Unit: Degrees C)		0.3194	0.4151	0.6696
Thailand		0.2810	0.3457	0.5141
Viet Nam		0.4377	0.2223	0.2268
Indonesia		0.2631	0.1907	0.1779
Malaysia		0.2996	0.3123	0.5095
Cambodia		0.3152	0.4404	0.6812
Lao PDR		0.3360	0.3360	0.5518
Myanmar		0.4429	0.3474	0.2740
The Philippines		0.3226	0.4352	0.5882
Bangladesh (The rest of world)		0.2932	0.2694	0.4550
India		0.4405	0.5046	0.6706
China		0.4657	0.4414	0.5486
Japan		0.5685	0.4980	0.5281
South Korea		0.5184	0.6092	0.9436
USA		0.4032	0.3987	0.6428
Italy (EU27)				
Precipitation (Unit: mm)				
Thailand		114.3	134.1	198.0
Viet Nam		169.5	165.8	169.2
Indonesia		452.5	465.5	225.2
Malaysia		248.8	369.3	145.2
Cambodia		173.8	230.2	215.6
Lao PDR		166.4	181.9	213.8
Myanmar		218.4	128.8	145.0
The Philippines		383.0	344.0	213.1
Bangladesh (The rest of world)		293.2	256.8	227.5
India		102.4	113.1	144.7
China		161.1	123.8	162.8
Japan		165.5	183.2	228.8
South Korea		213.8	265.2	121.6
USA		184.9	186.4	165.8
Italy (EU27)		97.6	93.8	86.4
Table A10. Exogenous variables

Per capita GDP growth rate	Unit	2010-12	2022	2030
Thailand	USD (2005 base)	3,205	5,255	5,255
Vietnam	USD (2005 base)	868	1,531	1,531
Indonesia	USD (2005 base)	1,632	2,697	2,697
Malaysia	USD (2005 base)	6,260	8,673	8,673
Cambodia	USD (2005 base)	620	1,206	1,206
Lao PDR	USD (2005 base)	667	1,196	1,196
Myanmar	USD (2005 base)	1,016	1,709	1,709
The Philippines	USD (2005 base)	1,341	1,842	1,842
Bangladesh	USD (2005 base)	542	861	861
China	USD (2005 base)	1,117	2,180	2,180
Japan	USD (2005 base)	3,123	6,898	6,898
South Korea	USD (2005 base)	36,389	41,761	41,761
USA	USD (2005 base)	42,669	52,310	52,310
EU27	USD (2005 base)	34,144	41,621	41,621

Population	Unit	2010-12	2022	2030
Thailand	thousand	69,473	72,409	73,321
Viet Nam	thousand	87,767	97,547	101,483
Indonesia	thousand	242,273	266,281	279,659
Malaysia	thousand	28,864	33,866	37,266
Cambodia	thousand	14,313	16,211	17,363
Lao PDR	thousand	6,268	7,199	7,754
Myanmar	thousand	48,351	52,290	54,331
The Philippines	thousand	94,893	113,080	126,321
Bangladesh	thousand	150,617	170,432	181,863
India	thousand	1,241,335	1,415,729	1,523,482
China	thousand	1,347,017	1,390,778	1,393,076
Japan	thousand	126,443	123,990	120,218
South Korea	thousand	48,371	49,978	50,335
USA	thousand	313,084	342,164	361,680
EU27	thousand	515,000	627,782	679,798

Domestic rice price, Japan	USD/ton	OECD-FAO Agricultural Outlook 2013-2022 (OECD-FAO 2013)	2010-12	2022
		199.1	184.7	184.7

Rice export, Japan	1,000 ton	OECD-FAO Agricultural Outlook 2013-2022 (OECD-FAO 2013)	2010-12	2022
		173.0	200.0	200.0

Rice import, Japan	1,000 ton	OECD-FAO Agricultural Outlook 2013-2022 (OECD-FAO 2013)	2010-12	2022
		853.0	768.0	768.0

International wheat price	USD/ton	OECD-FAO Agricultural Outlook 2013-2022 (OECD-FAO 2013)	2010-12	2022
		313	274	274

International corn price	USD/ton	OECD-FAO Agricultural Outlook 2013-2022 (OECD-FAO 2013)	2010-12	2022
		285	241	241

Note: The international wheat price is for No. 2 hard red winter wheat (ordinary protein), USA f.o.b. Gulf ports. International corn prices are for No. 2 yellow corn, USA f.o.b. Gulf ports.