Supplementary Materials

Discovery of Natural Dimeric Naphthopyrones as Potential Cytotoxic Agents Through ROS-mediated Apoptotic Pathway

Kuo Xu 1,4, Chuanlong Guo 1,2,†, Jie Meng 1,4, Haiying Tian 5, Shuju Guo 1,* and Dayong Shi 1,3,*

1 Chinese Academy of Sciences Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; xukuoworld@126.com (K.X.); gcl_cpu@126.com (C.G.); mengjie@qibebt.ac.cn (J.M.)
2 Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
3 State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
4 College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China;
5 Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China;
13623810925@126.com
* Correspondence: guoshuju@qdio.ac.cn (S.G.); shidayong@qdio.ac.cn (D.S.); Tel.: +86-532-82898741 (S.G.); +86-532-82898719 (D.S.)
† These authors contributed equally to this work.

Table of Contents

NO.	Contents	Page
Figure S1	The UV spectrum of 1 in MeOH	S4
Figure S2	The ECD spectrum of 1 in MeOH	S4
Figure S3	The HR-ESI-MS data of 1	S5
Figure S4	The IR spectrum (KBr) of 1	S5
Figure S5	The 1H NMR spectrum (600 MHz) of 1 in DMSO-d6	S6
Figure S6	The 13C NMR spectrum (150 MHz) of 1 in DMSO-d6	S6
Figure S7	The HSQC spectrum (600 MHz) of 1 in DMSO-d6	S7
Figure S8	The HMBC spectrum (600 MHz) of 1 in DMSO-d6	S7
Figure S9	The HR-ESI-MS data of 2	S8
Figure S10	The 1H NMR spectrum (600 MHz) of 2 in DMSO-d6	S8
Figure S11	The 13C NMR spectrum (150 MHz) of 2 in DMSO-d6	S9
Figure S12	The HR-ESI-MS data of 3	S9
Figure S13	The 1H NMR spectrum (600 MHz) of 3 in acetone-d6	S10
Figure S14	The 13C NMR spectrum (150 MHz) of 3 in acetone-d6	S10
Figure S15	The HR-ESI-MS data of 4	S11
Figure S16	The 1H NMR spectrum (600 MHz) of 4 in acetone-d6	S11
Figure S17	The 13C NMR spectrum (150 MHz) of 4 in acetone-d6	S12
Figure S18	The HR-ESI-MS data of 5	S12
Figure S19	The 'H NMR spectrum (600 MHz) of 5 in CDCl₃	S13
Figure S20	The ¹³C NMR spectrum (150 MHz) of 5 in CDCl₃	S13
Figure S21	The HR-ESI-MS data of 6	S14
Figure S22	The 'H NMR spectrum (600 MHz) of 6 in acetone-d₆	S14
Figure S23	The ¹³C NMR spectrum (150 MHz) of 6 in acetone-d₆	S15
Figure S24	The HR-ESI-MS data of 7	S15
Figure S25	The 'H NMR spectrum (600 MHz) of 7 in acetone-d₆	S16
Figure S26	The ¹³C NMR spectrum (150 MHz) of 7 in acetone-d₆	S16
Figure S27	The HR-ESI-MS data of 8	S17
Figure S28	The 'H NMR spectrum (600 MHz) of 8 in acetone-d₆	S17
Figure S29	The ¹³C NMR spectrum (150 MHz) of 8 in acetone-d₆	S18
Figure S30	The HR-ESI-MS data of 9	S18
Figure S31	The 'H NMR spectrum (600 MHz) of 9 in acetone-d₆	S19
Figure S32	The ¹³C NMR spectrum (150 MHz) of 9 in acetone-d₆	S19
Figure S33	The HR-ESI-MS data of 10	S20
Figure S34	The 'H NMR spectrum (600 MHz) of 10 in acetone-d₆	S20
Figure S35	The ¹³C NMR spectrum (150 MHz) of 10 in acetone-d₆	S21
Figure S36	The HR-ESI-MS data of 11	S21
Figure S37	The 'H NMR spectrum (600 MHz) of 11 in acetone-d₆	S22
Figure S38	The ¹³C NMR spectrum (150 MHz) of 11 in acetone-d₆	S22
Figure S39	The HR-ESI-MS data of 12	S23
Figure S40	The ECD spectrum of 12 in MeOH	S23
Figure S41	The 'H NMR spectrum (600 MHz) of 12 in acetone-d₆	S24
Figure S42	The ¹³C NMR spectrum (150 MHz) of 12 in acetone-d₆	S24
Figure S43	The HR-ESI-MS data of 13	S25
Figure S44	The 'H NMR spectrum (600 MHz) of 13 in acetone-d₆	S25
Figure S45	The ¹³C NMR spectrum (150 MHz) of 13 in acetone-d₆	S26
Figure S46	The HR-ESI-MS data of 14	S26
Figure S47	The 'H NMR spectrum (600 MHz) of 14 in DMSO-d₆	S27
Figure S48	The ¹³C NMR spectrum (150 MHz) of 14 in DMSO-d₆	S27
Figure S49	The HR-ESI-MS data of 15	S28
Figure S50	The 'H NMR spectrum (600 MHz) of 15 in acetone-d₆	S28
Figure S51	The ¹³C NMR spectrum (150 MHz) of 15 in acetone-d₆	S29
Figure S52	The HR-ESI-MS data of 16	S29
Figure S53	The 1H NMR spectrum (600 MHz) of 16 in acetone-d_6	S30
Figure S54	The 13C NMR spectrum (150 MHz) of 16 in acetone-d_6	S30
Figure S55	The HR-ESI-MS data of 17	S31
Figure S56	The 1H NMR spectrum (600 MHz) of 17 in acetone-d_6	S31
Figure S57	The 13C NMR spectrum (150 MHz) of 17 in acetone-d_6	S32
Figure S58	The HR-ESI-MS data of 18	S32
Figure S59	The 1H NMR spectrum (600 MHz) of 18 in acetone-d_6	S33
Figure S60	The 13C NMR spectrum (150 MHz) of 18 in acetone-d_6	S33
—	General procedure for ECD calculations of compounds 1 and 12	S34–S36
—	Analytical HPLC spectra for all isolated compounds (1–18)	S37–S54
Figure S1. The UV spectrum of 1 in MeOH

Figure S2. The ECD spectrum of 1 in MeOH
Figure S3. The HR-ESI-MS data of 1

Figure S4. The IR spectrum (KBr) of 1
Figure S5. The 1H NMR spectrum (600 MHz) of 1 in DMSO-d_6.

Figure S6. The 13C NMR spectrum (150 MHz) of 1 in DMSO-d_6.
Figure S7. The HSQC spectrum (600 MHz) of 1 in DMSO-d_6.

Figure S8. The HMBC spectrum (600 MHz) of 1 in DMSO-d_6.
Figure S9. The HR-ESI-MS data of 2

Figure S10. The 1H NMR spectrum (600 MHz) of 2 in DMSO-d_6
Figure S11. The 13C NMR spectrum (150 MHz) of 2 in DMSO-d_6

Figure S12. The HR-ESI-MS data of 3
Figure S13. The 1H NMR spectrum (600 MHz) of 3 in acetone-d_6

Figure S14. The 13C NMR spectrum (150 MHz) of 3 in acetone-d_6
Figure S15. The HR-ESI-MS data of 4

Figure S16. The 1H NMR spectrum (600 MHz) of 4 in acetone-d_6
Figure S17. The 13C NMR spectrum (150 MHz) of 4 in acetone-d_6

Figure S18. The HR-ESI-MS data of 5
Figure S19. The 1H NMR spectrum (600 MHz) of 5 in CDCl$_3$.

Figure S20. The 13C NMR spectrum (150 MHz) of 5 in CDCl$_3$.
Figure S21. The HR-ESI-MS data of 6

Figure S22. The 1H NMR spectrum (600 MHz) of 6 in acetone-d_6
Figure S23. The 13C NMR spectrum (150 MHz) of 6 in acetone-d_6.

Figure S24. The HR-ESI-MS data of 7.
Figure S25. The 1H NMR spectrum (600 MHz) of 7 in acetone-d_6

Figure S26. The 13C NMR spectrum (150 MHz) of 7 in acetone-d_6
Figure S27. The HR-ESI-MS data of 8

Figure S28. The 1H NMR spectrum (600 MHz) of 8 in acetone-$_d_6$
Figure S29. The 13C NMR spectrum (150 MHz) of 8 in acetone-d_6.

Figure S30. The HR-ESI-MS data of 9.
Figure S31. The 1H NMR spectrum (600 MHz) of 9 in acetone-d_6

Figure S32. The 13C NMR spectrum (150 MHz) of 9 in acetone-d_6
Figure S33. The HR-ESI-MS data of 10

Figure S34. The 1H NMR spectrum (600 MHz) of 10 in acetone-d_6
Figure S35. The 13C NMR spectrum (150 MHz) of 10 in acetone-d_6.

Figure S36. The HR-ESI-MS data of 11.
Figure S37. The 1H NMR spectrum (600 MHz) of 11 in acetone-d_6

Figure S38. The 13C NMR spectrum (150 MHz) of 11 in acetone-d_6
Figure S39. The HR-ESI-MS data of 12

Figure S40. The ECD spectrum of 12 in MeOH
Figure S41. The 1H NMR spectrum (600 MHz) of 12 in acetone-d_6

Figure S42. The 13C NMR spectrum (150 MHz) of 12 in acetone-d_6
Figure S43. The HR-ESI-MS data of 13

Figure S44. The 1H NMR spectrum (600 MHz) of 13 in acetone-d_6
Figure S45. The 13C NMR spectrum (150 MHz) of 13 in acetone-d_6.

Figure S46. The HR-ESI-MS data of 14.
Figure S47. The 1H NMR spectrum (600 MHz) of 14 in DMSO-d_6

Figure S48. The 13C NMR spectrum (150 MHz) of 14 in DMSO-d_6
Figure S49. The HR-ESI-MS data of 15

Figure S50. The 1H NMR spectrum (600 MHz) of 15 in acetone-d_6
Figure S51. The 13C NMR spectrum (150 MHz) of 15 in acetone-d_6.

Figure S52. The HR-ESI-MS data of 16.
Figure S53. The 1H NMR spectrum (600 MHz) of 16 in acetone-d_6

Figure S54. The 13C NMR spectrum (150 MHz) of 16 in acetone-d_6
Figure S55. The HR-ESI-MS data of 17

Figure S56. The 1H NMR spectrum (600 MHz) of 17 in acetone-d_6
Figure S57. The 13C NMR spectrum (150 MHz) of 17 in acetone-d_6.

Figure S58. The HR-ESI-MS data of 18.
Figure S59. The 1H NMR spectrum (600 MHz) of 18 in acetone-d_6

Figure S60. The 13C NMR spectrum (150 MHz) of 18 in acetone-d_6
General procedure for ECD calculations

In general, conformational analyses of compounds 1 and 12 are carried out via systematic searching in the WaveFunction Spartan 14 (version 1.1.4) using the MMFF94 force field. Conformers with Boltzmann distribution over 1% are chosen as the beginning for ECD calculations. Ground-state geometries are optimized at the B3LYP/6-311+G(d,p) level in gas phase by the Gaussian 16 program (Gaussian Inc., Wallingford, CT, USA). All quantum computations are performed on an IBM cluster machine located at the High Performance Computing Center of Peking Union Medical College. The energies, oscillator strengths, and rotational strengths (velocity) of the first 50 electronic excitations are calculated using the TD-DFT methodology at the B3LYP/6-311+G(d,p) level in methanol. The ECD spectra are simulated by the overlapping Gaussian function (half the bandwidth at 1/e peak height, 0.25 eV). By comparison of the calculated and experimental ECD spectra, the absolute configurations of these compounds are established.

Table 1. The 3D conformers of 1 and 12 with Boltzmann distribution over 1%.

Compounds no.	3D Conformers	ΔG (kcal/mol)	Population (%)	
1	![3D conformer of 1](image1)	0.00	79.7	
2	![3D conformer of 12](image2)	5.92	7.3	
		![Image](image1.png)		
---	---	---	---	---
3	![Image](image2.png)	6.73	5.3	
4	![Image](image3.png)	7.48	3.9	
5	![Image](image4.png)	8.39	0.027	
6	![Image](image5.png)	10.54	1.1	
12	![Image](image6.png)	0.00	100.0	
References:

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ó.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Rev. C 01; Gaussian, Inc., Wallingford CT, 2009.

2. Stephens, P. J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 2010, 22, 229–233.
Analytical HPLC spectra for all isolated compounds (1–18)
Shimadzu LCsolution 分析报告

样品信息

- **样品名称**: Compound 16
- **样品浓度**: 1
- **样品体积**: 20 μL
- **溶剂**: 乙醇

操作条件

- **溶剂**: 乙醇
- **流动相**: 水:乙醇=10:90
- **检测波长**: 254 nm
- **检测条件**: 210nm

数据处理

- **数据处理**: 2019-07-18 15:27:05

图表

- **UV Chromatogram**: Compound 16

分析器	A	B
1	19.28	20.03
2	19.28	20.03
3	19.28	20.03
4	19.28	20.03
5	19.28	20.03

表格

分析器	A	B
1	19.28	20.03
2	19.28	20.03
3	19.28	20.03
4	19.28	20.03
5	19.28	20.03

绘图

- **UV Chromatogram**: Compound 16

- **UV Chromatogram**: Compound 16
—— Shimadzu LCsolution 分析报告 ——

样品信息

样品名称：Compound 17

数据生成日期：2019-3-7

数据来源：11:34:58

图谱

Compound 17 E: HPLC谱图 (C20%甲醇-THF) 10000

1 检测器 A 流速1 / 35mm

峰表

峰号 峰面积 A (mm²) 峰面积 B (mm²) 峰面积 C (mm²) 峰面积 D (mm²)

1 15995 1123 0.3 0.002
2 126 1123 0.72 0.003
3 10.25 1123 0.725 0.003
4 10.25 1123 0.725 0.003

总计 119675 1123 0.725 0.003

图谱

Compound 17 S: UPLC谱图 (C20%甲醇-THF) 10000

1 检测器 A 流速1 / 35mm

峰表

峰号 峰面积 A (mm²) 峰面积 B (mm²) 峰面积 C (mm²) 峰面积 D (mm²)

1 1531 1000 99.0 0.002
2 1531 1000 99.0 0.002
3 1531 1000 99.0 0.002
4 1531 1000 99.0 0.002

总计 119675 1123 0.725 0.003
