The Generalized Power Graph of a Finite Group

Xuanlong Ma, Ruiqin Fu
School of Science, Xi’an Shiyou University, Xi’an 710065, China
xuanlma@mail.bnu.edu.cn, rqfu@xsyu.edu.cn

Abstract. Graphs associated with groups and other algebraic structures have been actively investigated, since they have valuable applications in data mining. For a finite group G, let Γ_G be the graph with the non-identity elements of G as the vertex set, and two vertices are adjacent if they respectively lie in two conjugate proper subgroups of G. Γ_G is called the generalized power graph with respect to G. This paper explores how the graph theoretical properties of Γ_G can affect on the group theoretical properties of G.

1. Introduction
Graphs associated with groups and other algebraic structures have been actively investigated, since they have valuable applications (cf. [1]) and are related to automata theory (cf. [2, 3]), such as, Cayley graphs as classifiers for data mining (cf. [4]). Also, study of algebraic structures by graphs associated with them gives rise to many recent and interesting results in the literature. This field is relatively new, and over the years different types of graphs derived from a group have been defined, such as the prime graph [5], the non-commuting graph [6], the power graph, and of course Cayley graphs, which have a long history.

The non-commuting graph was first considered by Neumann [6] and this graph are studied by many authors. Recently, Erfanian et al. [7] introduced the relative n-th non-commuting graph of a finite group, which is a generalized non-commuting graph. The directed power graph of a semigroup was defined by Kelarev and Quinn [8]. Chakrabarty et al. [9] introduced the (undirected) power graph of a finite group.

Let G be a finite group with identity element e. The power graph P_G of G is a simple graph whose vertex set is G and two vertices x and y in G are adjacent if and only if $x=y^m$ or $y=x^m$ for some positive integer m. Moghaddamfar et al. [10] discussed the subgraph of P_G induced by $G \setminus \{e\}$, where e is the identity element of G. Now consider the graph Γ_G as follows: Take $G \setminus \{e\}$ as the vertex set and join two vertices if they respectively lie in two conjugate proper subgroups of G. For example, Fig. 1 is the generalized power graph of the quaternion group Q_8 with 8 elements and Fig. 2 is the generalized power graph of the symmetric group S_3 on 3 letters.

![Fig. 1 Q_8](image1)

![Fig. 2 S_3](image2)

By the definition, if G is non-cyclic then the subgraph of P_G induced by $G \setminus \{e\}$ is a subgraph of Γ_G. If G is a cyclic group with order n, then Γ_G has at least $\Phi(n)$ isolate vertices which are all generators of...
G (In fact, if n=2p for some prime p, then the number of the isolate vertices of Γ_G is $\Phi(n)+1$; otherwise it is $\Phi(n)$), and denoted by the set S, here Φ is the Euler totient function. In the case, the subgraph induced by $G \setminus \{e\} \setminus S$ is also a subgraph of Γ_G. So call Γ_G the generalized power graph of G. Let x, y $\in G \setminus \{e\}$. If $\langle x, y \rangle \neq G$, then x is adjacent to y in Γ_G. In general, x ~ y does not imply that $\langle x, y \rangle$ is a proper subgroup of G (an example is showed in Fig. 2, $\langle 1,2 \rangle \sim (1,3)$ but $\langle 1,2 \rangle \sim (1,3) = S_3$). However, if G is restricted on Dedekind group (G is called a Dedekind group if its every subgroup is normal, for example, every abelian group is Dedekind), then x and y are joined by an edge of Γ_G if and only if there exists a proper subgroup H of G such that x, y $\in H$.

This paper explores how the graph theoretical properties of Γ_G can affect on the group theoretical properties of G. Section 2 discusses the connectivity of generalized power graphs. In Section 3, all groups whose generalized power graphs are empty, bipartite, planar and complete are obtained.

2. The connectivity of Γ_G The exponent of group G is defined as the least common multiple of the orders of all elements of G, is denoted by exp(G). Denote by $\pi(n)$ the set of the prime divisors of a positive integer n. For convenience, write $\pi(G)$ and $\pi(x)$ instead of $\pi(|G|)$ and $\pi(|x|)$, respectively. In this section, for the groups G with $|\pi(G)|=1$ or 2, some sufficient and necessary conditions for which Γ_G is connected are given. It also shows that if $|\pi(G)|=3$ then Γ_G is connected.

Theorem 2.1 Let G be a p-group. Then Γ_G is connected if and only if G is non-cyclic and G is not isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.

Proof. First let Γ_G be connected. It is clear that G is not cyclic. Assume, to the contrary, that G is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Then exp(G)=p. Thus, for some non-identity element g of G, <g> is a maximal subgroup of G and hence Γ_G is constructed by some complete subgraphs isomorphic to K_p. Now let a, b $\in G$, and let $\Gamma_{<a>$} and $\Gamma_{$} be two distinct complete subgraphs of Γ_G induced by the subgroups <a> and , respectively. If there is an edge a ~ b between $\Gamma_{<a>$} and $\Gamma_{$}, where 1 $\leq i, j \leq p$, then $\langle a', b' \rangle$ is a proper subgroup of G, which is impossible since $\langle a' \rangle = <a>$ and $\langle b' \rangle = $. It follows that $\Gamma_G=\mathbb{Z}_p \times \mathbb{Z}_p$ is isomorphic to $(p+1)K_p$. Certainly, Γ_G is not connected, a contradiction.

Conversely, suppose that G is non-cyclic and is not isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Since H is self-conjugate for every proper subgroup H of G, the subgraph of Γ_G induced by H\{e\} is complete. If the Frattini subgroup of G, is non-trivial, then Γ_G is connected; if not, G is an elementary abelian p-group. Therefore G is isomorphic to $(\mathbb{Z}_p)^n$, where $n \geq 3$. In the case, it is easy to see that $\langle a, b \rangle$ is a proper subgroup of G for all a, b $\in G$. It means that Γ_G is complete.

Theorem 2.2 Let p and q be two distinct prime integers, G a group with $\pi(G)=[p, q]$. Then Γ_G is connected if and only if G is non-cyclic and has a proper subgroup S such that $\pi(S)=[p, q]$.

Proof. Suppose that Γ_G is connected. It is straightforward that G is non-cyclic. Since $\pi(G)=[p, q]$ there exist two elements x and y of G\{e\} such that $|x|=p$ and $|y|=q$. In view of the connectivity of Γ_G, there is a path: $x \sim v_1 \sim v_2 \sim \cdots \sim v_n \sim y$. Since x is adjacent to v_1, there exist two conjugate proper subgroups S and K in G such that $x \in S$ and $y \in K$. If $\pi(S)=[p, q]$, then this completes the proof. Thus, now assume that S is a p-group and next, consider the edge $v_1 \sim v_2$. Similarly, there is a proper subgroup S; of G, such that $v_i \in S$, and $\pi(S)=[p, q]$, where $1 \leq i \leq n$. This procedure shall prove the result.

Now suppose that G is non-cyclic and has a proper subgroup S such that $\pi(S)=\pi(G)$. Assume that x and y are two distinct vertices of Γ_G. Since $\pi(G)=[p, q]$, $\pi(x)$ has three probabilities: [p, q], [p] and [q], and so is $\pi(y)$. Without loss of generality, consider four cases.

Case 1. $\pi(x)=[p, q]$ and $\pi(y)=[p]$. Clearly, G has two Sylow p-subgroups P_1 and P_2 (here P_1 and P_2 could be equal) such that $x \in P_1$ and $y \in P_2$: particularly, P_1 and P_2 are conjugate in G. Thus x and y are joined by an edge of Γ_G.

Case 2. $\pi(x)=[p, q]$ and $\pi(y)=[q]$. Choose a p-subgroup P_0 of $\langle x \rangle$ and let v be a non-identity element of P_0. Case 1 shows that y ~ v. Note that $\langle x \rangle$ is a proper subgroup of G, $x \sim v$. So $x \sim v \sim y$, as desired.

Case 3. $\pi(x)=[p]$ and $\pi(y)=[q]$. Assume that x_1 and y_1 are two p-element and q-element of S respectively. Therefore $x_1 \sim y_1$. Case 1 means that $x_1 \sim x$ and $y_1 \sim y$. Thus there exists a path $x \sim x_1 \sim y_1 \sim y$, as required.
Case 4. \(\pi(x) = \{p, q\} \) and \(\pi(y) = \{p, q\} \). Clearly, there are p-element \(x_1 \) and q-element \(y_1 \), such that \(x_1 \sim x \) and \(y_1 \sim y \). Now Case 3 ends the proof.

Let \(P_i \) be the Sylow \(p_i \)-subgroup of \(G \), where \(p_i \) is prime for every \(1 \leq i \leq s \). \(\{P_1, P_2, \ldots, P_s\} \) is called a Sylow basis of \(G \) provided that \(P_i \not\subseteq P_j \) for all \(1 \leq i, j \leq s \). A well-known theorem of P. Hall shows that \(G \) is solvable if and only if \(G \) possesses a Sylow basis.

Theorem 2.3 Let \(G \) be a non-cyclic group such that \(|\pi(G)| = 3\). Then \(\Gamma_G \) is connected.

Proof. First assume that \(G \) is solvable. Let \(\pi(G) = \{p_1, p_2, p_3\} \) and let \(\{P_1, P_2, P_3\} \) be a Sylow basis of \(G \). Now choose \(x \) in \(G \setminus \{e\} \), if \(\pi(x) = \pi(G) \), then an argument similar to the one used in Theorem 2.2 ends the proof. Therefore, now assume that \(\pi(x) \) is a proper subset of \(\pi(G) \), and let \(y \) be any vertex of \(\Gamma_G \). If \(\pi(x) \cap \pi(y) \neq \emptyset \), then there exists at least a prime number \(p \in \pi(G) \), such that \(P_i \) and \(P_j \) are two \(p \)-subgroups of \(\langle x \rangle \) and \(\langle y \rangle \) respectively. Let \(u \) be a non-identity element belonging to \(P_i \) and let \(v \) be a non-identity element belonging to \(P_j \). Case 1 of Theorem 2.2 indicates that \(u \) and \(v \) is adjacent. So \(x \sim u \sim v \sim y \) is a path in \(\Gamma_G \), as required. Now suppose that \(\pi(x) \cap \pi(y) = \emptyset \). Then pick \(u, v \in G \setminus \{e\} \) such that \(u \in P_x \leq P_xP_y^h \) and \(v \in P_y \leq P_yP_x^h \), where \(P_x \) is a \(p \)-subgroup of \(\langle x \rangle \), \(P_y \) is a \(p \)-subgroup of \(\langle y \rangle \), \(P_x \) and \(P_y \) are Sylow \(p \)-subgroup and Sylow \(p \)-subgroup of \(G \) respectively, \(g, h \in G \) and \(1 \leq i, j \leq 3 \). Set now \(w \in P_y \} \{e\} \) and \(z \in P_x \{e\} \). Thus, as assuming that \(\{P_1, P_2, P_3\} \) is a Sylow basis, \(w \sim x \). It means that \(x \sim u \sim w \sim z \sim v \sim y \) is a path. It also follows that \(\Gamma_G \) is connected.

Now suppose that \(G \) is non-solvable. Corollary 4 of [11] tells us that, if \(G \) is a non-solvable group with \(|\pi(G)| = 3\), then one of the following groups is involved in \(G \): \(L_2(4) \), \(L_2(7) \), \(L_2(8) \), \(L_2(17) \), \(L_3(3) \). By GAP, it follows that the generalized power graphs of these groups above are connected. The proof is now complete.

3. Groups characterized by their generalized power graphs

In the section, all groups whose generalized power graphs are empty, bipartite, planar and complete are obtained.

Theorem 3.1 Let \(G \) be a group. Then \(\Gamma_G \) is empty if and only if \(G \) is isomorphic to one of the groups: \(Z_2 \times Z_2, Z_4, Z_p \) for some prime \(p \).

Proof. It is easy to check that each of the generalized power graphs of \(Z_2 \times Z_2, Z_4 \) and \(Z_p \) is empty, where \(p \) is a prime. Now \(\Gamma_G \) is empty. Let \(x \) be an isolate vertex of \(\Gamma_G \). If \(\langle x \rangle = G \) then \(G \) is cyclic. Thus, suppose now that \(\langle x \rangle \neq G \). Since both \(x \) and \(x^{-1} \) belong to \(\langle x \rangle \), \(|x| = 2 \). If there exists an element \(g \) in \(G \) such that \(\langle x \rangle \neq \langle x^g \rangle \), then \(\langle x \rangle \neq \langle x^{x^{-1}} \rangle \). Therefore, \(x \) is adjacent to \(x^{-1} \), a contradiction. It means that \(\langle x \rangle \) is normal in \(G \). On the other hand, clearly, \(\langle x \rangle \) is a maximal subgroup of \(G \). Thus, assume now that \(|G| = 2^p \), for some odd prime \(p \) and some integer \(n \). If \(G \) is a 2-group then \(|G| = 4 \). Otherwise, \(|G| = 2^p \) and so \(G \) is isomorphic to \(Z_2 \times Z_p \), which is a cyclic group. It means that \(G \) is isomorphic to \(Z_2 \times Z_2 \) or a cyclic group. If \(G \) is a cyclic group with order composite number, then \(n = 4 \). Now it follows that \(G \) is one of the groups: \(Z_2 \times Z_2, Z_4, Z_p \), where \(p \) is a prime.

Theorem 3.2 Let \(G \) be a group. Then \(\Gamma_G \) is bipartite if and only if \(G \) is isomorphic to one of the groups: \(Z_2 \times Z_2, Z_4, Z_6, Z_8, Z_9 \times Z_9, Z_{10} \), \(Z_2 \times Z_2, D_8, Q_8, Z_8, Z_4 \times Z_2, Z_9 \) for some prime \(p \).

Proof. The sufficiency is obvious. Now assume that \(\Gamma_G \) is a bipartite graph. It is well known that a graph is bipartite if and only if the graph contains no odd cycles. Thus, \(G \) has no proper subgraphs of order greater than or equal 4. If \(|\pi(G)| = 1\) then \(|G| = 2^2 \), \(2^3 \) or \(Z_p \), where \(p \) is prime. It is easy to verify that \(G \) is one group of the groups: \(Z_2 \times Z_2, Z_4, Z_6 \times Z_6, Z_8, Z_9 \times Z_9 \).

If \(|\pi(G)| = 2\) then the order of \(G \) equal to 6. Since \(\Gamma_3 \) contains a triangle induced by \(\{1, 2\}, \{1, 3\}, \{2, 3\}\), which is non-bipartite. So \(G \) is isomorphic to \(Z_{12} \), as desired.

Theorem 3.3 Let \(G \) be a group. Then \(\Gamma_G \) is planar if and only if \(G \) is isomorphic to one of the groups: \(Z_2 \times Z_2, Z_6, S_3, Z_9, Z_2 \times Z_2, Z_{15}, Z_{10}, Z_{25}, Z_2 \times Z_2, D_8, Q_8, Z_8, Z_4 \times Z_2, Z_9 \) for some prime \(p \).

Proof. First assume that \(\Gamma_G \) is planar. If there exists a proper subgroup \(H \) of \(G \) of order greater than or equal 6, then the subgraph of \(\Gamma_G \) induced by \(H \{e\} \) is isomorphic to the complete graph \(K_6 \{e\} \), which is a contradiction since \(K_6 \) is non-planar. It follows that the order of any proper subgroup of \(G \) must be less than or equal to 5. It follows that \(\pi(G) \) is a subset of \(\{2, 3, 5\} \) by Sylow theorems. Now consider three cases.
Case 1. $|\pi(G)|=3$. In this case, it is easy to see that $|G|=2^3\times 3^5$ or $2^3\times 3^5$. If $|G|=2^3\times 3^5$, then G has at least a normal Sylow subgroup P. By Burnside’s p^aq^b-theorem, it follows that G/P is solvable and so is G. Since solvable group possesses Hall π-subgroups for all sets π of primes of $\pi(G)$, G has at least a subgroup of order 15, a contradiction.

Now suppose that $|G|=2^3\times 3^5$. If G is simple, then G is isomorphic to A_5, the alternating group on 5 letters. It is well known that $\langle(3,4,5), (1,2)(4,5)\rangle$ is a subgroup of A_5 of order 6. Hence, It follows that Γ_G is non-planar. Thus now assume that G is not simple. Let H and P be a non-trivial normal subgroup and a Sylow 5-subgroup of G, respectively. Considering the subgroup HP, it is clear that $|HP|=5|H|$ if $H\cap P=1$. If HP is a proper subgroup of G, then $|HP|>5$, a contradiction; otherwise $G=HP$ and so $|H|=12$, a contradiction again. It means that $H\cap P=P$. If P is a proper subgroup of H, then, a contradiction as $|P|=5$. This implies $H=P$, that is, P is normal in G. It follows that G is solvable. Similarly as above, also a contradiction.

Case 2. $|\pi(G)|=2$. Obviously, $|G|=2^3\times 3^5, 2^3\times 3^5, 2^2\times 3^3$ or $2^2\times 3^5$. It is easy to verify that Γ_{DS_3}, $\Gamma_{D_{10}}$, Γ_{S_3} and $\Gamma_{Z_{15}}$ are planar. Also, it is easy to see that $\Gamma_{D_{12}}$ is non-planar since the subgraph induced by the set of all elements of order 2 is K_5.

Let $|G|=2^3\times 5$. Then, in view of Sylow theorem, the Sylow 5-subgroup P is normal in G. Let H be a subgroup of G of order 2. One can see from $(|H|, |P|)=1$ that $|HP|=10$, a contradiction.

Suppose that $|G|=2^3\times 5$. It is clear that G is isomorphic to one of the groups: $Z_{12}, Z_2\times Z_6, D_{12}, Q_{12}, A_4$.

If G is not isomorphic to A_4, then there exists at least a subgroup of G of order 6, which is impossible. Considering A_4, a fact is that A_4 has eight Sylow 3-subgroups, and they are conjugate each other in G. It is easy to see that K_5 is a subgraph of Γ_{A_4}, a contradiction.

Case 3. $\pi(G)|=1$. It is straightforward that in this case, G is isomorphic to one of $Z_2, Z_2\times Z_2, Z_3, Z_3\times Z_5, Z_2\times Z_8, D_6, Q_8, Z_2\times Z_2\times Z_2, Z_2\times Z_2, Z_2\times Z_2, Z_2, Z_2, Z_2$, where p is a prime. By checking, it is easy to see that the generalized power graph of $Z_2\times Z_2\times Z_2$ is isomorphic to K_8, which is non-planar, others are planar.

The proof of the converse is clear. The proof is now complete.

Denote by $d(G)$ the minimum possible size of all generating sets for G. Clearly, if $d(G)\geq 3$ for any group G, then Γ_G is complete.

Corollary 3.4 Let G be a Dedekind group. Then Γ_G is complete if and only if $d(G)\geq 3$.

By the fundamental theorem for finitely generated abelian groups, if G is isomorphic to $\langle r_1\rangle \times \langle r_2\rangle \times \cdots \times \langle r_s\rangle$, where $|r_i|$ is a divisor of $|r_j|$ for all $i=1, 2, \ldots, s-1$, then r_i is uniquely determined by G, and $d(G)\geq r_i$. Now, in view of Corollary 3.4, the following result is obtained.

Corollary 3.5 Let G be an abelian group. Then Γ_G is complete if and only if G is isomorphic to $\langle r_1\rangle \times \langle r_2\rangle \times \cdots \times \langle r_s\rangle$, where $|r_i|$ divides $|r_{i+1}|$ for all $i=1, 2, \ldots, s-1, s$ and $s\geq 3$.

Clearly, if a group G is isomorphic to a group H then Γ_G is isomorphic to Γ_H. However, the converse is not true in general. For example, it is easy to see that Q_8 and D_8 are not isomorphic, but their generalized power graphs are isomorphic. Moreover, Theorem 3.1 also presents an example, the generalized power graph of Z_8 is isomorphic to the generalized power graph of $Z_2\times Z_2$; however, Z_6 and $Z_2\times Z_2$ are clearly non-isomorphic. Now, using generalized power graphs, characterize all cyclic groups except for the group with order 4.

Theorem 3.6 Let G be a group and $n\neq 4$. Then Γ_G is isomorphic to the generalized power graph of Z_n if and only if G is isomorphic to Z_n.

Proof. The sufficiency follows trivially. Now suppose that G is isomorphic to the generalized power graph of Z_n. Then there exists at least a vertex x of Γ_G such that $\deg(x)=0$. It is clear that $|G|=n$. By the proof of Theorem 3.1, it follows that G is isomorphic to $Z_2\times Z_2$ or a cyclic group. Since $n\neq 4$, G is cyclic, as desired.

Finally, an applications of Theorem 3.6 is given.

Theorem 3.7 Let G be a group such that Γ_G contains an end-vertex, and R a group. Then Γ_G is isomorphic to Γ_R if and only if G is isomorphic to R.

Proof. The proof of the sufficiency is straightforward. In order to prove the necessity, assuming that \(x \) is an end-vertex of \(\Gamma_G \) and \(y \) is the one vertex of \(\Gamma_G \) such that \(x \sim y \) belongs to \(E(\Gamma_G) \). So there are two conjugate subgroups \(H \) and \(K \) such that \(x \in H \) and \(y \in K \).

It is easy to see that \(|x|=3 \) or \(2 \) by deg(\(x \))=1. If \(|x|=2 \) then \(|H|=2 \). Hence \(|K|=2 \) and so the order of \(y \) is also \(2 \). Thus, suppose now that \(|G|=2^r \), where \((2,r)=1 \). Since \(<x> \) is a maximal subgroup of \(G \), \(n=1 \). Since deg(\(x \))=1, \(<x> \) and \(<y> \) are two Sylow \(2 \)-subgroups of \(G \). While \(n_2=1 \) (mod 2), where \(n_2 \) is the number of all Sylow \(2 \)-subgroups of \(G \). Now the contradiction implies that \(|x|=3 \).

It is clear that \(<x> \) is a normal subgroup of \(G \). Now it follows that \(|G|=9 \) or \(3q \), where \(q \) is a prime number such that \(q \neq 3 \). If \(|G|=9 \), then \(G=Z_9 \) or \(Z_3 \times Z_3 \). Now let \(|G|=3q \). If \(q=2 \) then \(G=S_3 \) or \(Z_6 \). Otherwise, it follows from Sylow theorems that \(G \) is isomorphic to \(Z_3 \times Z_q \). It follows that \(G \) is one of the groups: \(S_3, Z_3 \times Z_3, Z_3p \) for some prime number \(p \).

If \(G=Z_{3p} \), then Theorem 3.6 completes the proof. If \(G=S_3 \), then \(R=Z_6 \) or \(S_3 \). Since the generalized power graph of \(S_3 \) has no isolate vertices, \(R=S_3 \), as desired. Similarly, if \(G \) is isomorphic to \(Z_3 \times Z_3 \), then \(R \) is also isomorphic to \(Z_1 \times Z_3 \), as desired.

4. Conclusion

In this paper, the generalized power graph of a finite group is introduced. Based on the results and discussions presented above, the conclusions are obtained as below:

1. Let \(G \) be a \(p \)-group. Then, \(\Gamma_G \) is connected if and only if \(G \) is non-cyclic and \(G \) is not isomorphic to \(Z_p \times Z_p \).

2. Let \(p \) and \(q \) be two distinct prime integers, and let \(G \) be a group with \(\pi(G)={p, q} \). Then, \(\Gamma_G \) is connected if and only if \(G \) is non-cyclic and has a proper subgroup \(S \) such that \(\pi(S)=\pi(G) \).

3. Let \(G \) be a non-cyclic group such that \(|\pi(G)|=3 \). Then \(\Gamma_G \) is connected.

4. All finite groups whose generalized power graphs are empty, bipartite, planar and complete were classified.

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant No. 11801441) and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0623).

References

[1] Abawajy J, Kelarev A V, et al. Rees semigroups of digraphs for classification of data[J]. Semigroup Forum, 2016, 92: 121-134.

[2] Kelarev A V. Graph Algebras and Automata[M]. New York: Marcel Dekker, 2003.

[3] Kelarev A V. Labelled Cayley graphs and minimal automata[J]. Australasian Journal of Combinatorics, 2004, 30: 95-101.

[4] Kelarev A V, Ryan J, et al. Cayley graphs as classifiers for data mining: The influence of asymmetries[J]. Discrete Mathematics, 2009, 309: 5360-5369.

[5] Williams J S. Prime graph components of finite groups[J]. Journal of Algebra, 1981, 69: 487-513.

[6] Neumann B H. A problem of Paul Erdős on groups[J]. Journal of the Australian Mathematical Society Series A, 1976, 21: 467-472.

[7] Erfanian A, Tolue B. Relative n-th non-commuting graphs of finite groups[J]. Bulletin of the Iranian Mathematical Society, 2013, 39: 663-674.

[8] Kelarev A V, Quinn S J. A combinatorial property and power graphs of groups[J]. Contribution to General Algebra, 2000, 12: 229-235.

[9] Chakrabarty I, Ghosh S, et al. Undirected power graphs of semigroups[J]. Semigroup Forum, 2009, 78: 410-426.

[10] Moghaddamfar A R, Rahbariyan S, et al. Certain properties of the power graph associated with a finite group[J]. Journal of Algebra and Its Applications, 2014, 13: 1450040, 18pp.

[11] Thompson J G. Non-solvable finite groups all of whose local subgroups are solvable[J]. Bulletin
of the American Mathematical Society, 1968, 74: 383-437.