We study the production of dark matter and dark radiation after reheating in string inflation models where the Calabi-Yau has a fibred structure and the visible sector lives on D3 branes. We show how the interplay between different physical constraints from inflation, reheating, supersymmetry breaking and dark radiation, leads to distinct predictions for the nature of dark matter.

CONTENTS

I. Introduction 1
II. Non-thermal dark matter 2
III. Fibred Calabi-Yau Models 3
IV. Moduli decays and dark radiation 4
A. Canonical normalization 4
B. Decays to closed string axions 4
C. Decays to open string axions 5
D. Decays to Higgses 6
E. Dark radiation predictions 7
V. String inflation and dark matter 9
A. Kähler moduli inflation 9
B. Fibre Inflation 11
VI. Conclusions 12
Acknowledgments 12
References 12

I. INTRODUCTION

Recent advances in string phenomenology in type IIB compactifications have progressed in two complementary directions:

(i) Constructing specific compactifications that are phenomenologically promising: typically, these constructions incorporate moduli stabilization, have chiral matter, are broadly able to accommodate the gauge groups and matter content of the Minimal Supersymmetric Standard Model (MSSM) [1–6], and have at least a somewhat well-defined inflationary and reheating sector [7–9];

(ii) Proceeding along statistical lines, by drawing statistical conclusions about the distribution of important phenomenological quantities like the scale of supersymmetry breaking and the axion decay constant, from the ensemble of type IIB flux vacua [10–17].

Amongst various classes of models in the first direction, type IIB Large Volume flux compactifications are particularly well-developed. Two main inflationary scenarios emerge in this context: Kähler moduli inflation (KMI) [18, 19] and Fibre Inflation (FI) [20–22]. KMI is a small-field model where inflation is driven by a blow-up mode with a non-perturbative scalar potential. The Hubble scale during inflation is relatively low, \(H_I \approx 5 \times 10^8 \text{ GeV} \), and the tensor-to-scalar ratio is unobservable \(r \approx 10^{-10} \).

On the other hand, FI is a large field model characterized by \(H_I \approx 5 \times 10^{13} \text{ GeV} \) and \(r \approx 0.007 \), where the inflaton is a fibration bulk modulus with a perturbative scalar potential.

In these constructions the visible sector can live on either D7-branes wrapping 4-cycles in the geometric regime, or D3-branes at singularities. In the first case, the soft terms are around the gravitino mass, \(M_{1/2} \sim m_0 \sim m_{3/2} \), while in the second case the visible sector can be sequestered from the sources of supersymmetry breaking in the bulk, resulting in soft terms which can be hierarchically smaller than the gravitino mass [24, 25].

Reheating via the decay of the modulus with the smallest decay width has already been studied in both KMI and FI for several D-brane configurations which can realize an MSSM-like sector together with additional hidden sectors. In particular, reheating for KMI in the simplest Swiss-cheese LVS models has been studied in [26–28] for D3-branes in the ultralocal limit, in [29] for D3-branes in the local limit, and in [30, 31] for D7-branes. On the other hand, reheating for FI with the MSSM on D3-branes has been studied in [32], and in [33] for the D7-brane case. Each of these references analyzed in detail the constraints arising from the requirement to avoid an excessive production of ultra-light bulk axions that behave as dark
radiation. Moreover \[34-37\] studied the implications for non-thermal neutralino dark matter for KMI with the MSSM on D3-branes in the ultralocal limit. The constraints on the nature of dark matter for KMI with the visible sector on D7-branes has instead been analyzed in \[38\] for superheavy WIMPs and in \[39\] for the QCD axion realized as a closed string mode.

The largest production of dark radiation from the decay of the lightest modulus has been found in \[32\] for FI with the MSSM on D3-branes. This result relies on a particular expression of the moduli-dependence of the Giudice-Masiero contribution to the Kähler potential which determines an effective decoupling of the lightest modulus from the Higgs degrees of freedom. In this paper we will revisit this result by considering a more general moduli-dependence of the Giudice-Masiero term that allows to considerably reduce the production of dark radiation. In doing so, we shall follow the results of \[40\] which constrained the form of the Kähler potential by analogy with explicit toroidal computations.

We will then study the associated production of dark matter after reheating in FI. We will find that WIMPs are always overproduced, requiring a mechanism of R-parity breaking to make them unstable. In this case, a very promising dark matter candidate is instead the QCD axion realized as the phase of a charged open string field. The axion decay constant is around $f_{\text{axion}} \approx 10^{10}$ GeV, which can avoid isocurvature bounds and lead to dark matter in a rather natural way. We will extend our analysis also to fibred Calabi-Yau compactifications with KMI and the MSSM on D3-branes. The best case scenario to avoid dark radiation overproduction with the minimal tuning of the coefficient of the Giudice-Masiero interaction among the moduli and the Higgs, is the ultralocal limit. In this case, we will find that dark matter can be TeV-scale non-thermal neutralinos which are produced from the inflaton decay and then undergo annihilation.

Our analysis shows how UV correlations among different observables in string compactifications, like inflation, supersymmetry breaking and reheating, is very powerful to obtain clear predictions for the nature of dark matter. Moreover, we will see that avoiding dark radiation overproduction severely constrains the moduli-dependence of the Kähler metric for matter fields.

We will also point out that, contrary to what was claimed in previous studies \[27\], the moduli decay to open string axions can compete with the decay to bulk axions, and so lead to an additional source of dark radiation.

This paper is organized as follows. In Section II and Section III, we provide a brief review of non-thermal dark matter and fibred LVS models, respectively. In Section IV, we first derive the moduli couplings to closed and open string axions, as well as with other visible sector fields. We then derive the associated predictions for dark radiation and the reheat temperature. In Sections V A and V B, we study non-thermal dark matter candidates in KMI and FI, respectively, before presenting our conclusions in Section VI.

II. NON-THERMAL DARK MATTER

Before focusing on string models, we first briefly review non-thermal dark matter (DM) produced by heavy scalar decay \[41, 42\]. The lightest modulus, ϕ, dominates the energy density of the universe from the onset of its oscillations until its decay. The decay then produces a significant amount of entropy, diluting any previously existing DM particles to a negligible abundance. Depending on the reheat temperature of ϕ, T_{rh}, the DM particles produced by ϕ decay may fall into a few different scenarios depending on the DM freeze-out temperature $T_f \approx m_{\text{DM}}/20$ \[34\].

a. $T_{\text{rh}} \gtrsim T_f$. In this case, the DM may equilibrate. Due to the DM-DM annihilations, the DM abundance is simply given by that of the thermal scenario.

b. $T_{\text{rh}} \lesssim T_f$. Here, we have two sub-cases depending on the efficiency of the DM annihilations. More precisely, defining the critical abundance of the DM, Y^c_{DM}, as the attractor of the relevant Boltzmann equation, we have

$$Y_{\text{DM}} \approx \frac{H}{\langle \sigma \langle v \rangle \text{ann} \rangle} \bigg|_{T_{\text{rh}}}. \quad (1)$$

If the produced DM abundance is larger than the critical abundance, i.e. $Y_{\text{DM}} > Y^c_{\text{DM}}$, some annihilations still occur until the abundance reaches Y_{DM}, at which point the DM becomes too dilute to annihilate efficiently. We refer to this case as the annihilation scenario. In the annihilation scenario, the final DM abundance can be estimated by

$$Y^c_{\text{DM}} \approx \left(\frac{m_{\text{DM}}}{s} \right)_{\text{obs}} \langle \sigma \langle v \rangle \text{ann} \rangle \left(\frac{T_f}{T_{\text{rh}}} \right). \quad (2)$$

where $\langle \sigma \langle v \rangle \text{ann} \rangle_{T_f} \approx 3 \times 10^{-26}$ cm3s$^{-1}$ is the value needed in the thermal case \[43\] to match the observed DM abundance

$$\left(\frac{m_{\text{DM}}}{s} \right)_{\text{obs}} \approx 5 \times 10^{-10} \left(\frac{1 \text{ GeV}}{m_{\text{DM}}} \right). \quad (3)$$

The DM abundance in the annihilation scenario is thus enhanced by T_f/T_{rh} in comparison to the thermal case, and can accommodate thermally underproduced DM candidates, such as wino-like and higgsino-like DM. Since $T_{\text{rh}} \lesssim T_f \approx m_{\text{DM}}/20$, we must have $\langle \sigma \langle v \rangle \text{ann} \rangle_{T_f} < \langle \sigma \langle v \rangle \text{ann} \rangle_{T_{\text{rh}}}$ to reproduce the observed DM abundance.

If the produced DM abundance is lower than the critical abundance, i.e. $Y_{\text{DM}} < Y^c_{\text{DM}}$, then annihilations cannot occur significantly. We refer to this case as the branching scenario. The late-time DM abundance is given simply by the fraction of the light modulus abundance, Y_{ϕ}, that decays to DM

$$Y_{\text{DM}} = Y_{\phi} \cdot \text{Br}_{\text{DM}}. \quad (4)$$
If the branching ratio to DM is sufficiently low, the branching scenario can accommodate thermally overproduced DM, such as bino-like DM.

III. FIBRED CALABI-YAU MODELS

Fibred Calabi-Yau manifolds have been shown to be very promising for cosmological and phenomenological applications. The simplest setup involves three Kähler moduli. To settle notation for the rest of the paper, we briefly review this class of compactifications.

The first Kähler modulus we consider is $T_1 = \tau_1 + i\epsilon_1$. The scalar τ_1 parametrizes the dimensionless volume in string units of a K3 or T^4 fibre over a \mathbb{P}^1 base. The axionic modulus c_1 arises from the reduction of the 10D RR form C_4 on the K3 or T^4 divisor. The scalar component of the second modulus $T_2 = \tau_2 + i\epsilon_2$ controls the volume of the base of the fibration, while c_2 is the associated axion. The scalar component of the third modulus $T_3 = \tau_3 + i\epsilon_3$ parametrizes the size of a blow-up mode required to stabilize the volume at leading order, and c_3 is an additional closed string axion. The volume takes the form (for explicit Calabi-Yau models with this volume form see [11, 9, 44])

$$
\mathcal{V} = \sqrt{\tau_1 \tau_2} - \tau_3^{3/2}.
$$

The Kähler potential and the superpotential read

$$
K = K_{\text{tree}} + K_{\alpha'} + K_g,
W = W_0 + A_1 e^{-a_1T_1} + A_2 e^{-a_2T_2} + A_3 e^{-a_3T_3}.
$$

The tree-level Kähler potential is $K_{\text{tree}} = -2 \ln \mathcal{V}$ (setting $m_P = 1$) and it enjoys a well-known no-scale property which makes all Kähler moduli flat at semiclassical level. At this order of approximation, background 3-form fluxes freeze the complex structure moduli and the dilaton whose VEV sets the string coupling g_s which we assume to be in the weak coupling regime, i.e. $g_s \lesssim \mathcal{O}(0.1)$, to perturbation theory. The leading order α' correction is given by $K_{\alpha'} = -\xi / g_s^{3/2} \mathcal{V}$, where ξ is the Calabi-Yau Euler number, $\xi \sim \mathcal{O}(1)$, while for string loop corrections to K, given by K_g, we refer to [33]. The superpotential contains instead the tree-level flux-generated contribution W_0 (which is a tunable constant after complex structure and dilaton stabilization), and non-perturbative corrections for each of the three Kähler moduli, where the A_i’s are expected to be $\mathcal{O}(1)$ constants while $a_i = 2\pi / N_i$ with $N_i \in \mathbb{N}$.

In the large volume limit where the effective field theory is under control, $\tau_2 \gtrsim \tau_1 \gg \tau_3 > 1$, the leading order contribution to the potential for the Kähler moduli arises from $K_{\alpha'}$, and the T_3-dependent non-perturbative correction to W. This potential fixes τ_3, c_3 and the overall volume \mathcal{V} at

$$
\langle \tau_3 \rangle \simeq g_s^{-1},
\langle \mathcal{V} \rangle \simeq W_0 e^{a_3 / g_s},
\langle c_3 \rangle = \pi / a_3.
$$

The minimum is AdS and breaks supersymmetry spontaneously. There are several known mechanism to uplift it to Minkowski, among which anti-D3 branes [43], T-branes [46], or non-zero F-terms of the complex structure moduli [47]. At subleading order, K_g, (or higher order α' corrections [22, 48]), fix the direction orthogonal to the volume mode $u \equiv \tau_1 / \tau_2$ at [33]

$$
\langle u \rangle = \lambda g_s^2,
$$

where λ depends on the tunable coefficients of string loop corrections to K. Finally, tiny T_1 and T_2-dependent non-perturbative effects fix the two ultra-light axions c_1 and c_2 at $(c_i) = \pi / a_i$, $i = 1, 2$.

The gravitino mass takes the form (restoring appropriate powers of m_P)

$$
m_{3/2}^2 \simeq \kappa e^2 m_P^2,
$$

where $\kappa = W_0 / \mathcal{V} \ll 1$ and $\kappa \equiv g_s / (8\pi) \ll 1$ (10)

and the moduli mass spectrum is given by [26, 30, 50]

$$
m_{3/2}^2 \simeq m_{3/2}^2 \simeq (\ln 2) m_{3/2}^2 > m_{3/2}^2
$$

$$
m_{\mathcal{V}} \simeq \left(\frac{\epsilon}{g_s^{3/2} W_0 [\ln \mathcal{V}]^3} \right) m_{3/2}^2 \ll m_{3/2}^2
$$

$$
m_{c_i} \simeq \frac{\tau_3}{W_0} e^{-a_i \tau_3} m_{3/2}^2 \ll m_{3/2}^2 \forall i = 1, 2
$$

The visible sector lives on D3-branes at singularities which can give rise to a scenario of sequestered SUSY breaking [24]. The common gaugino masses, $M_{1/2}$, can then be estimated using the results of [25]

$$
M_{1/2} \simeq \frac{3\omega m_{3/2}^3}{2 \mathcal{V}^{3/2} \tau_3^2} \ll \mathcal{O} \left(\frac{m_{3/2}^3}{\mathcal{V}^{3/2}} (\ln \mathcal{V})^{3/2} \right)
$$

where ω is a tunable flux-dependent parameter. The μ-term, if generated by a Giudice-Masiero contribution to the Kähler potential, is expected to be approximately of order $M_{1/2}$ since it turns out to be $\mu \simeq \tilde{\omega} M_{1/2}$ where $\tilde{\omega}$ is another tunable flux-dependent parameter. On the other hand, the value of the common slepton and squark mass, denoted as m_0, depends on the exact moduli-dependence of the Kähler metric for matter fields. The so-called “local limit” is defined as the case where the physical Yukawas are independent of the volume only to leading order in V^{-1}, while the “ultralocal limit” is defined to be the case where the physical Yukawas are independent of the volume to any order in V^{-1} [25]. Consequently, the local limit leads to a split SUSY scenario, whereas the ultralocal case can give a standard MSSM-like spectrum

- local limit : $m_0 \simeq M_{1/2} \sqrt{\mathcal{V}} \gg M_{1/2}$
- ultralocal limit : $m_0 \simeq M_{1/2}.$
IV. MODULI DECAYS AND DARK RADIATION

As argued above, reheating is given by the decay of the lightest modulus, which in the case of fibred Calabi-Yaus is \(u \). This Kähler modulus can decay to visible sector fields on D3-branes at singularities, but also to the two ultra-light closed string axions \(c_1 \) and \(c_2 \) which behave as dark radiation.

The decay to SUSY scalars is kinematically forbidden in the local limit, whereas it is mass-suppressed in the ultra-local limit. Similarly, the decay to SM fermions, Higgsinos and gauginos is chirality suppressed. Moreover, the decay to SM gauge bosons is loop suppressed since the gauge kinetic function for D3-branes is controlled by the dilaton. The only relevant decay rates are therefore to Higgses via a Giudice-Masiero interaction term in \(K \), and to the closed string axions \(c_1 \) and \(c_2 \). We will also argue that, if the QCD axion is realized as the phase of a charged open string field, the lightest modulus decay into this mode should also be taken into account since it is not mass-suppressed.

Assembling all the results, we then provide constraints on the parameter space coming from observed upper bounds on the effective number of neutrino species \(N_{\text{eff}} \).

A. Canonical normalization

We begin by generalizing the volume form \[5 \] to

\[
\mathcal{V} = \tau_1^{n_1} \tau_2^{n_2} \tag{14}
\]

with the implicit constraint that \(n_1 + n_2 = 3 \). Notice that we ignored the blow-up mode \(\tau_3 \) given that it does not play any relevant role in reheating. This volume corresponds to a Kähler potential of the form

\[
\frac{K}{m_p} = -n_1 \ln(T_1 + \bar{T}_1) - n_2 \ln(T_2 + \bar{T}_2). \tag{15}
\]

The Kähler metric, \(K_{ij} = \partial_i \partial_j K \), is then given by

\[
K_{ij} = \frac{m_p^2}{4} \begin{pmatrix} \frac{n_1}{\tau_1} & 0 \\ 0 & \frac{n_2}{\tau_2} \end{pmatrix}. \tag{16}
\]

As expected, since the Kähler potential is separable, we have already a diagonal Kähler metric.

The kinetic term in the Lagrangian

\[
\mathcal{L} = K_{ij} \partial_i T^I \partial^\mu \bar{T}^J \equiv \frac{m_p^2}{4} \frac{n_1}{\tau_1} \partial_i \tau_i \partial^\mu \tau_i \tag{17}
\]

can then be put into canonical form with the field redefinitions

\[
\tau_i = \exp \left(\sqrt{\frac{2}{n_i}} \frac{\phi_i}{m_p} \right) \tag{18}
\]

where \(\phi_i \) are the new fields with canonical kinetic terms.

There is, however, still a degeneracy - the moduli \(\phi_i \) are, in general, not mass eigenstates. As we have seen in Section III, the Calabi-Yau volume is fixed by the leading order dynamics, and so the mass eigenstates are the volume mode and its transverse direction. The volume mode is given by

\[
\frac{\phi_V}{m_p} \propto \ln \mathcal{V} = \frac{1}{2} \ln (\tau_1^{n_1} \tau_2^{n_2}). \tag{19}
\]

Plugging in our field redefinitions, Eq. (18), into this expression and multiplying by an overall normalization constant, we have the volume mode in terms of \(\phi_1 \):

\[
\phi_V = \sqrt{\frac{n_1}{n_1 + n_2}} \phi_1 + \sqrt{\frac{n_2}{n_1 + n_2}} \phi_2. \tag{20}
\]

The transverse mode, \(\phi_u \), can then be constructed simply by orthogonality:

\[
\phi_u = - \sqrt{\frac{n_2}{n_1 + n_2}} \phi_1 + \sqrt{\frac{n_1}{n_1 + n_2}} \phi_2. \tag{21}
\]

We will also utilize the inverse of these transformations:

\[
\phi_1 = \sqrt{\frac{n_1}{n_1 + n_2}} \phi_V - \sqrt{\frac{n_2}{n_1 + n_2}} \phi_u \tag{22}
\]

\[
\phi_2 = \sqrt{\frac{n_2}{n_1 + n_2}} \phi_V + \sqrt{\frac{n_1}{n_1 + n_2}} \phi_u.
\]

B. Decays to closed string axions

We now discuss the moduli decays into closed string axions \(c_i \). We start by returning to the kinetic term \[17 \], which also contains the terms

\[
\mathcal{L} = K_{ij} \partial_i T^I \partial^\mu \bar{T}^J \equiv \frac{m_p^2}{4} \frac{n_1}{\tau_1} \partial_i \tau_i \partial^\mu \tau_i \tag{23}
\]

Applying the field redefinition \[18 \], expanding the exponential, and rescaling the axion fields by

\[
c_i = \sqrt{\frac{2}{n_i}} \frac{a_i}{m_p}, \tag{24}
\]

we obtain canonical kinetic terms for the axion fields \(a_i \) in addition to the interaction terms

\[
\mathcal{L} \supset - \sqrt{\frac{2}{n_i}} \frac{\phi_i}{m_p} \partial_\mu a_i \partial^{\mu} a_i. \tag{25}
\]

Applying now the transformations into the moduli mass eigenbasis, Eq. \[22 \], we arrive at

\[
\mathcal{L} \supset - \sqrt{\frac{2}{n_1}} \frac{\phi_V}{m_p} \left(\partial_\mu a_1 \partial^{\mu} a_1 + \partial_\mu a_2 \partial^{\mu} a_2 \right) - \sqrt{\frac{2}{n_2}} \frac{\phi_u}{m_p} \left(\sqrt{\frac{n_1}{n_2}} \partial_\mu a_2 \partial^{\mu} a_2 - \sqrt{\frac{n_2}{n_1}} \partial_\mu a_1 \partial^{\mu} a_1 \right) \tag{26}
\]
where we have explicitly used the constraint \(n_1 + n_2 = 3 \).

Focusing on the transverse mode, \(\phi_u \), we can now write down the total decay width to closed string axions (considering both axions to be massless)

\[
\Gamma(\phi_u \to aa) = \frac{1}{48\pi} \left(\frac{n_1^2 + n_2^2}{m_1 m_2} \right) \frac{m_3^3}{m_p^2} \equiv c_{hid} \Gamma_0 \tag{27}
\]

where we have defined

\[
c_{hid} \equiv \left(\frac{n_1^2 + n_2^2}{m_1 m_2} \right) \tag{28}
\]

to be the coefficient of hidden sector decays. We have also made the definition

\[
\Gamma_0 \equiv \frac{1}{48\pi} \frac{m_3^3}{m_p^2} \tag{29}
\]

for future convenience.

C. Decays to open string axions

Open string axions, which arise as the phase of charged matter fields acquiring a non-zero VEV, are more model-dependent than the closed string bulk axions we considered above. In [27], the modulus decay to open string axions was considered and claimed to be negligible. Here, we demonstrate that this is not necessarily the case - both within our fibred LVS scenario and the minimal LVS scenario considered in [27]. We begin by considering open string axions within the context of minimal LVS with only one bulk Kähler modulus corresponding to the volume mode. For matter fields, collectively denoted as \(C \), the relevant term in the Kähler potential is

\[
\frac{K}{m_P^2} \supset \frac{C}{T_b + \bar{T}_b} \tag{30}
\]

where \(T_b \) is the bulk modulus, corresponding to the choice \(n_1 = 3, n_2 = 0 \) in Eq. (15). We can then write down the Lagrangian for the canonical moduli after using Eq. (18)

\[
\mathcal{L} \supset \frac{m_P}{2\sqrt{6}} \phi_C \left(\partial C \square C + \bar{C} \square \bar{C} \right). \tag{31}
\]

The matter field can then be parameterized by \(C = \rho \exp(i\theta) \), where \(\rho \) is the radial component which acquires a VEV \(\langle \rho \rangle \neq 0 \) via D-term stabilization, while \(\theta \) is the phase field taking the role of the axion. Once \(\rho \) takes on its VEV, and after going to canonically normalized fields \(\tilde{\rho} \) and \(\tilde{\theta} \), defined as \(\rho = \sqrt{\langle \tilde{\rho} \rangle} \rho/m_P \) and \(\theta = \langle \tilde{\rho} \rangle \theta \), Eq. (31) gives

\[
\mathcal{L} \supset -\frac{1}{\sqrt{6}} \frac{\phi_C}{m_P} \partial_{\tilde{\rho}} \tilde{\rho} \partial_{\tilde{\theta}} \tilde{\theta}. \tag{32}
\]

Notice that the axion decay constant \(f_0 \) is set by \(\langle \tilde{\rho} \rangle \), i.e. \(f_0 = \langle \tilde{\rho} \rangle \). To put Eq. (32) in a more illuminating form, we can integrate by parts which gives us

\[
\mathcal{L} \supset \frac{1}{2\sqrt{6} m_P} \left[2 \phi_C \tilde{\rho} \square \tilde{\theta} - \tilde{\theta}^2 \phi_C \right]. \tag{33}
\]

The first term leads to a decay width which is mass suppressed, that was considered in [27]. However, the second term leads to a decay width proportional to \(\Gamma_0 \). Thus, the decay width into open string axions in minimal LVS is given by

\[
\Gamma \left(\phi_C \to \tilde{\theta} \tilde{\rho} \right) = \frac{1}{16} \Gamma_0. \tag{34}
\]

While this is not as significant as moduli decays to closed string axions, for the production of dark radiation, it slightly increases the tension for minimal LVS models which consider open string axions as the QCD axion. Notice moreover that the modulus decay width into the radial part is indeed mass suppressed since it arises from an interaction term of the form

\[
\mathcal{L} \supset 1 \frac{\phi_C}{m_P} \tilde{\rho} \square \tilde{\rho}. \tag{35}
\]

The decay to a bulk axion and an open string axion is also possible. This interaction comes also from expanding Eq. (30), leading to a Lagrangian of the form

\[
\mathcal{L} \supset \frac{1}{3} \frac{\phi_C}{m_P} \left(C \partial_{\tilde{\rho}} \bar{C} \partial_{\tilde{\rho}} \phi_C a_b - \bar{C} \partial_{\tilde{\theta}} C \partial_{\tilde{\theta}} \phi_C a_b \right). \tag{36}
\]

When \(\tilde{\rho} \) takes on its VEV, this becomes

\[
\mathcal{L} \supset \frac{2}{3} \left(\frac{\langle \tilde{\rho} \rangle}{m_P} \right) \frac{\phi_C}{m_P} \partial_{\tilde{\rho}} \tilde{\rho} \partial_{\tilde{\theta}} \phi_C a_b \tag{37}
\]

and although this term leads to a decay width proportional to \(\Gamma_0 \), it is also suppressed by \(\langle \tilde{\rho} \rangle/m_P \ll 1 \). Thus, we find the contributions from the \(\phi_C \to \tilde{\theta} a_b \) decay to be negligible.

We now consider open string axions within fibred LVS. In this scenario, we consider a general Kähler potential for matter fields of the form

\[
\frac{K}{m_P^2} \supset \frac{C}{(T_1 + T_2)^{x_1} (T_1 + T_2)^{x_2}} \tag{38}
\]

where \(x_1 \) and \(x_2 \) are constants which fix the moduli dependence of the matter Kähler metric. These constants are not entirely arbitrary, but rather primarily fixed by the brane configuration. Based on results from toroidal orientifolds - which have a similar volume scaling \(V = \sqrt{\tau_1 \tau_2} \) to the fibred Calabi-Yau case \(V = \sqrt{\tau_1 \tau_2} \) through the limit \(\tau_3 \to \tau_2 - \) in the case at hand where the matter fields live on D3-branes, [40] suggests two cases

- \(x_1 = 1 \) and \(x_2 = 0 \)
- \(x_1 = 0 \) and \(x_2 = 1 \).

Notice that both of them reproduce the scaling of Eq. (30).

Keeping for now the general form, we can utilize the field redefinitions from Eq. (18) and have the following Kähler potential

\[
\frac{K}{m_P^2} \supset \frac{1}{2} \frac{C}{T_2} \left(1 - x_1 \sqrt{\frac{2}{n_1 m_P}} \phi_1 - x_2 \sqrt{\frac{2}{n_2 m_P}} \phi_2 \right) \tag{39}
\]
after expanding the exponentials. The relevant interaction terms in the Lagrangian in terms of the moduli mass eigenbasis turn out to be
\[
\mathcal{L} \supset \frac{m_P}{2\sqrt{6}} \left(C \Box \bar{C} + \bar{C} \Box C \right) \phi_V
\]
\[
+ \frac{m_P}{2\sqrt{6}} \left(x_2 \sqrt{\frac{n_1}{n_2}} - x_1 \sqrt{\frac{n_2}{n_1}} \right) \left(C \Box \bar{C} + \bar{C} \Box C \right) \phi_u
\]
where we have explicitly used the constraints \(n_1 + n_2 = 3 \) and \(x_1 + x_2 = 1 \). Focusing on the transverse mode, \(\phi_u \), we can write down the interaction with the open string axion once the radial component acquires a VEV
\[
\mathcal{L} \supset \frac{1}{2\sqrt{6} m_P} \left(x_2 \sqrt{\frac{n_1}{n_2}} - x_1 \sqrt{\frac{n_2}{n_1}} \right) \left[2 \phi_u \Box \phi_u - \phi_u^2 \phi_u \right].
\]
Once again, the normalization of the kinetic terms gives \(\langle \dot{\rho} \rangle = \frac{f_B}{2} \). Specializing to \(n_1 = 1 \) and \(n_2 = 2 \), which reproduces the volume form \([5]\), the decay to open string axions is given by
\[
\Gamma \left(\phi_u \to \phi \phi \right) = \begin{cases}
\Gamma_0/8 & \text{for } x_1 = 1 \text{ and } x_2 = 0 \\
\Gamma_0/32 & \text{for } x_1 = 0 \text{ and } x_2 = 1.
\end{cases}
\]
Thus, we see an enhancement compared to the minimal LVS case if the Kähler metric depends on \(T_1 \), and a reduction if the Kähler metric depends on \(T_2 \). In this work, we focus on the case where \(x_1 = 0 \) and \(x_2 = 1 \), so that additional contributions to dark radiation are minimized.

D. Decays to Higgses

We analyze the Giudice-Masiero terms for separable moduli Kähler potentials by starting with the form
\[
\frac{K}{m_P^2} \supset \frac{1}{m_P^2} \left(H_u \bar{H}_u + H_d \bar{H}_d \right) \left(\frac{y_1}{\sqrt{2n_1 m_P}} \phi_1 + \frac{y_2}{\sqrt{2n_2 m_P}} \phi_2 \right)
\]
\[
+ \frac{1}{m_P^2} \left(H_d \bar{H}_d + H_u \bar{H}_u \right) \left(\frac{w_1}{\sqrt{2n_1 m_P}} \phi_1 + \frac{w_2}{\sqrt{2n_2 m_P}} \phi_2 \right)
\]
\[
+ \frac{1}{m_P^2} \left(Z H_u \bar{H}_u \right) \left(\phi_u \phi_u \right)
\]
\[
+ \frac{1}{m_P^2} \left(Z \bar{H}_u \bar{H}_d \right) \left(\phi_u \phi_u \right)
\]
\[
+ \frac{1}{m_P^2} \left(Z \bar{H}_d \bar{H}_u \right) \left(\phi_u \phi_u \right)
\]
\[
+ \frac{1}{m_P^2} \left(\bar{H}_u \bar{H}_u \right) \left(\phi_u \phi_u \right)
\]
where we assume \(Z \) is constant with respect to the \(T_i \). Moreover, making again an analog with the toroidal case and following \([30]\), we set \(y_1 + y_2 = w_1 + w_2 = 1 \). We also focus on cases where the Giudice-Masiero term has a Kähler metric of product form (i.e. assume that \(K_{H_u H_d} = \sqrt{K_{H_u} K_{H_d}}, \) so that \(k_i = (y_i + w_i)/2 \forall i = 1, 2 \). This leads to three possibilities
\begin{itemize}
\item \(k_1 = 1 \) and \(k_2 = 0 \)
\item \(k_1 = 0 \) and \(k_2 = 1 \)
\item \(k_1 = k_2 = 1/2 \).
\end{itemize}
We may now utilize the field redefinitions from Eq. \([18]\). After expanding the exponentials and going to canonically normalized Higgs fields defined by
\[
\hat{H}_u = \frac{H_u}{\sqrt{(T_1 + T_1)^y_1 (T_2 + T_2)^y_2}}
\]
\[
\hat{H}_d = \frac{H_d}{\sqrt{(T_1 + T_1)^w_1 (T_2 + T_2)^w_2}}.
\]
we obtain the following interaction terms
\[
K \supset - \frac{\hat{H}_u \bar{H}_u}{m_P} \left(y_1 \sqrt{\frac{2 n_1}{m_P}} \phi_1 + y_2 \sqrt{\frac{2 n_2}{m_P}} \phi_2 \right)
\]
\[
- \frac{\hat{H}_d \bar{H}_d}{m_P} \left(w_1 \sqrt{\frac{2 n_1}{m_P}} \phi_1 + w_2 \sqrt{\frac{2 n_2}{m_P}} \phi_2 \right)
\]
\[
- (Z \hat{H}_u \hat{H}_d + \text{h.c.}) \left(k_1 \sqrt{\frac{2 n_1}{m_P}} \phi_1 + k_2 \sqrt{\frac{2 n_2}{m_P}} \phi_2 \right).
\]
which generate the following contributions to the interaction Lagrangian
\[
\mathcal{L} \supset \frac{1}{\sqrt{6}} \left(\hat{H}_u \Box \bar{H}_u + \hat{H}_u \Box \hat{H}_u \right) \left(\frac{y_1}{\sqrt{2n_1 m_P}} \phi_1 + \frac{y_2}{\sqrt{2n_2 m_P}} \phi_2 \right)
\]
\[
+ \left(\hat{H}_d \Box \bar{H}_d + \hat{H}_d \Box \hat{H}_d \right) \left(\frac{w_1}{\sqrt{2n_1 m_P}} \phi_1 + \frac{w_2}{\sqrt{2n_2 m_P}} \phi_2 \right)
\]
\[
+ \frac{1}{m_P} \left(Z \hat{H}_u \hat{H}_d + \text{h.c.} \right) \left(\frac{k_1}{\sqrt{2n_1}} \phi_1 + \frac{k_2}{\sqrt{2n_2}} \phi_2 \right).
\]
We now move to the moduli mass eigenbasis using Eq. \([22]\)]
\[
\mathcal{L} \supset \frac{1}{\sqrt{6}} \left(\hat{H}_u \Box \bar{H}_u + \hat{H}_u \Box \hat{H}_u \right) \left(\frac{\phi_1}{m_P} \right)
\]
\[
+ \frac{1}{\sqrt{6}} \left(\hat{H}_d \Box \bar{H}_d + \hat{H}_d \Box \hat{H}_d \right) \left(\frac{\phi_2}{m_P} \right)
\]
\[
+ \frac{1}{\sqrt{6} m_P} \left(Z \hat{H}_u \hat{H}_d + \text{h.c.} \right) \left(\frac{\phi_1}{m_P} \right)
\]
\[
+ \frac{\alpha}{\sqrt{6} m_P} \left(\hat{H}_u \Box \bar{H}_u + \hat{H}_u \Box \hat{H}_u \right) \left(\frac{\phi_1}{m_P} \right)
\]
\[
+ \frac{\beta}{\sqrt{6} m_P} \left(\hat{H}_d \Box \bar{H}_d + \hat{H}_d \Box \hat{H}_d \right) \left(\frac{\phi_2}{m_P} \right)
\]
\[
+ \frac{\gamma}{\sqrt{6} m_P} \left(Z \hat{H}_u \hat{H}_d + \text{h.c.} \right) \left(\frac{\phi_1}{m_P} \right)
\]
where we have explicitly restored the constraints \(y_1 + y_2 = w_1 + w_2 = k_1 + k_2 = 1 \) and \(n_1 + n_2 = 3 \) and we made the definitions
\[
\alpha \equiv \left(y_2 \sqrt{\frac{n_1}{n_2}} - y_1 \sqrt{\frac{n_2}{n_1}} \right)
\]
\[
\beta \equiv \left(w_2 \sqrt{\frac{n_1}{n_2}} - w_1 \sqrt{\frac{n_2}{n_1}} \right)
\]
\[
\gamma \equiv \frac{1}{2} (\alpha + \beta) = \left(k_2 \sqrt{\frac{n_1}{n_2}} - k_1 \sqrt{\frac{n_2}{n_1}} \right).
\]
Focusing on the transverse mode, \(\phi_u \), we note that the final term will be dominant - the others will be suppressed by a factor of \(m_T^2/m_u^2 \). The dominant term is therefore proportional to the coefficient \(\gamma \) which for \(n_1 = 1 \) and \(n_2 = 2 \), reproducing Eq. 5, reduces to

\[
\gamma = \frac{1}{\sqrt{2}} (k_2 - 2k_1). \tag{48}
\]

It is worth stressing that this coefficient vanishes only for \(k_2 = 2k_1 \) which is however never the case for our options since it would be inconsistent with the results of \([40]\). The fact that \(\gamma \neq 0 \) is crucial to avoid dark radiation overproduction, contrary to the results of \([32]\) which considered \(k_1 = 1/3 \) and \(k_2 = 2/3 \). The intuitive reason why \(k_2 = 2k_1 \) would imply no interaction between \(\phi_u \) and the Higgses (at least at leading order) is that \(\phi_u \) is orthogonal to the volume mode and in this case the Kähler moduli dependence of the Giudice-Masiero term is orthogonal to the volume mode and in this case the

\[
\phi \text{ of } [40]. \tag{49}
\]

It is worth stressing that this coefficients vanishes only for \(k_2 = 2k_1 \) which is however never the case for our options since it would be inconsistent with the results of \([40]\). The fact that \(\gamma \neq 0 \) is crucial to avoid dark radiation overproduction, contrary to the results of \([32]\) which considered \(k_1 = 1/3 \) and \(k_2 = 2/3 \). The intuitive reason why \(k_2 = 2k_1 \) would imply no interaction between \(\phi_u \) and the Higgses (at least at leading order) is that \(\phi_u \) is orthogonal to the volume mode and in this case the Kähler moduli dependence of the Giudice-Masiero term is orthogonal to the volume mode and in this case the

\[
\phi \text{ of } [40] \tag{50}
\]

For the values of the volume which we will consider in this paper, \(V \lesssim \mathcal{O}(10^7) \) (that also keep soft terms above the TeV-scale), one has \(c_{\text{loop}}^2 (m_0/m_V)^4 \lesssim \mathcal{O}(0.01) \), showing that this decay channel can be neglected also in the local limit.

E. Dark radiation predictions

Let us now derive the prediction for the production of axionic dark radiation from the decay of the lightest modulus \(\phi_u \). The produced dark radiation can be parameterized by the effective number of neutrinos, \(\Delta N_{\text{eff}} \), given by \([24]\)

\[
\Delta N_{\text{eff}} = 3 \frac{\rho_{\text{hid}}}{\rho_{\text{neutrinos}}} = \frac{43 \rho_{\text{hid}}}{7 \rho_{\text{SM}}} = 43 \frac{f_{\text{hid}}}{1 - f_{\text{hid}}} \left(\frac{g_s(T_{\text{dec}})}{g_s(T_{\text{th}})} \right)^{1/3}, \tag{52}
\]

where \(g_s(T) \) is the number of relativistic degrees of freedom at a given temperature \(T \), while \(f_{\text{hid}} \) is the branching fraction into hidden sector particles (bulk axions) defined as

\[
f_{\text{hid}} \equiv \frac{\Gamma(\phi_u \to aa)}{\Gamma(\phi_u \to H_u H_d)}. \tag{53}
\]

The decay width into Higgses however depends on the SUSY breaking scale, and so we study the ultralocal and local limits separately.

Ultralocal limit: In the ultralocal limit, as can be seen from Eq. 13, the soft scalar masses scale as \(m_0 \sim M_{1/2} \sim m_V/\sqrt{V} \). This mass scale is lower than the mass of \(\phi_u \) since \(m_0/m_u \approx V^{-1/3} \ll 1 \), implying that all MSSM Higgs degrees of freedom are accessible in the decay of \(\phi_u \). Thus, taking the dominant decay term of Eq. 46, we can approximate the decay width into the Higgs sector as

\[
\Gamma(\phi_u \to H_u H_d) = \frac{2\gamma^2 Z^2}{48\pi} \frac{m_u^3}{m_T^2} \equiv c_{\text{vis}} \Gamma_0 \tag{54}
\]

where we defined

\[
c_{\text{vis}} \equiv 2Z^2 \gamma^2 \tag{55}
\]

as the approximate coefficient of visible sector decays. Thus the branching fraction into hidden sector degrees of freedom takes the form

\[
f_{\text{hid}} \approx \left[1 + 2Z^2 \left(\frac{k_2 n_1 - k_1 n_2}{n_1^2 + n_2^2} \right)^2 \right]^{-1}. \tag{56}
\]

In the upper plots of Fig. 1 and Fig. 2 we display the produced dark radiation in the \((n_1, Z) \) plane for the three different choices of \(k_1 \) and \(k_2 \) (where we also take \(n_2 = 3 - n_1 \)). Blank regions are in excess of the current \(2\sigma \) bound from Planck 2018 data \([52]\). For \(n_1 = 1 \), the best case scenario turns out to be \(k_1 = 1 \) and \(k_2 = 0 \) which requires \(Z \gtrsim 2.5 \) (where \(k_1 = 0 \) and \(k_2 = 1 \) would require \(Z \gtrsim 5 \), and \(k_1 = k_2 = 1/2 \) \(Z \gtrsim 10 \)). Again this result can be understood intuitively by recalling that \(\phi_u \) is the mode orthogonal to the volume, corresponding to the ratio of Kähler moduli \(u = \tau_1/\tau_2 \), and rewriting the moduli dependence of the Giudice-Masiero term in
Eq. (42) as a function of \mathcal{V} and u. It is then easy to check that the combination of k_1 and k_2 which gives the largest power of u ($u^{2/3}$), and so the strongest coupling of ϕ_u to Higgses, is $k_1 = 1$ and $k_2 = 0$.

The associated reheating temperature becomes

$$T_{rh} \simeq \left(\frac{4\Delta_{\text{vis}}(c_{\text{vis}} + c_{\text{hid}})}{\pi^2 g_{*}(T_{rh})} \right)^{1/4} \sqrt{\Gamma_0 m_P}$$

$$= \left(\frac{80Z^2}{\pi^2 g_{*}(T_{rh})} \right)^{1/4} \frac{|k_2|}{|n_2|} 2^{1/2} \sqrt{\Gamma_0 m_P}$$

$$\times \left[2Z^2(k_2n_1 - k_1n_2)^2 + n_1^2 + n_2^2 \right]^{1/4}. \quad (57)$$

As a benchmark example, we take $g_{*}(T_{rh}) \simeq 86.25$ and a typical value of the mass of ϕ_u for Kahler inflation models [18] which we will study in Section V A obtaining $m_u \simeq 2.5 \times 10^6$ GeV, as can be seen from Table II. The corresponding reheating temperature T_{rh} in GeV is shown in the lower plots of Fig. 1 and Fig. 2 in the (n_1, Z) plane. Blank regions again correspond to values which produce dark radiation above the current bounds. As f_{hid} is independent of m_u while T_{rh} depends on m_u only through Γ_0, we expect these plots to qualitatively describe a wide range of moduli masses.

Local limit: In the the local limit, as can be seen from Eq. (13), soft scalar masses scale as $m_0 \simeq M_{1/2} \sqrt{\mathcal{V}} \sim m_P / \sqrt{\mathcal{V}}^{1/2}$. Contrary to the ultralocal limit, in this case m_0 is above the mass of ϕ_u since $m_0/m_u \simeq \mathcal{V}^{1/6} > 1$, implying that some of the Higgs degrees of freedom are kinematically inaccessible for the light modulus ϕ_u. We must therefore consider only the decays into the light degrees of freedom, involving the SM Higgs and the three would-be Goldstone bosons. Following [53], we find the final term of Eq. (46) becomes

$$\mathcal{L} \simeq -\frac{\gamma Z}{2\sqrt{6} m_P} (|G^+|^2 - (H^0)^2 + (G^0)^2) \Phi_u \quad (58)$$

where G^0 and G^+ are the Goldstone bosons. The total decay width into light Higgs degrees of freedom is then given by

$$\Gamma(\phi_u \to H_u H_d) = \frac{1}{48\pi} \frac{5Z^2 \gamma^2 m_v^3}{m_P^2} \equiv c_{\text{vis}} \Gamma_0 \quad (59)$$

where we defined

$$c_{\text{vis}} \equiv \frac{5Z^2 \gamma^2}{32}. \quad (60)$$

We see that the reheating temperature and the branching fraction into hidden sector degrees of freedom can then be obtained from the ultralocal limit expressions, with the replacement $2Z^2 \to 5Z^2/32$. The minimum value of Z allowed by dark radiation constraints thus increases by a factor of about 3.6 in comparison to the ultralocal limit. With this scaling of Z, Fig. 1 and Fig. 2 describe
also the local limit. Hence in the local limit the best case scenario, corresponding to \(k_1 = 1 \) and \(k_2 = 0 \), requires \(Z \gtrsim 9 \). In terms of tuning needed to avoid dark radiation overproduction, the ultralocal limit seems therefore to be favored.

It is important to stress that the requirement to satisfy current observational bounds on \(\Delta N_{\text{eff}} \) without relying on unnaturally large values of \(Z \), constrains the form of the Kähler metric for matter fields both at leading order, selecting \(k_1 = 1 \) and \(k_2 = 0 \), and at subleading order by focusing on the ultralocal limit which needs a cancellation of the \(V \)-dependence of the physical Yukawas at all orders.

V. STRING INFLATION AND DARK MATTER

In this section we explore different options for the origin of dark matter depending on the value of \(V \) which, as can be seen from Eqs. (11) and (12), sets all the relevant mass scales, in particular the mass of the lightest modulus and the SUSY breaking scale. In a given string inflation model, \(V \) is in general fixed by matching the observed amplitude of density perturbations \(A_s \). We thus focus on two different string models where inflation is driven by a Kähler modulus: (i) Kähler moduli inflation [18] which is a small-field model characterized by \(V \sim 10^7 \) and a Hubble scale during inflation of order \(H_1 \sim 5 \times 10^{16} \) GeV; and (ii) Fibre inflation [20] that is a large-field model featuring \(V \sim 10^3 \) and \(H_1 \sim 5 \times 10^{13} \) GeV.

A. Kähler moduli inflation

In Kähler moduli inflation the role of the inflaton is played by a blow-up mode which is displaced away from the minimum where its non-perturbative potential becomes exponentially flat. We shall therefore focus on the volume form [3] and consider \(\tau_3 \) as the inflaton field. Explicit realizations of Kähler moduli inflation require actually the existence of an additional blow-up mode which we will however ignore since it acts just as a heavy spectator field which guarantees that \(V \) remains approximately constant during inflation. This is a small-field inflationary model since it predicts a very small tensor-to-scalar ratio at CMB horizon scales, \(r \sim 10^{-10} \). The observed amplitude of CMB scalar fluctuations fixes \(V \sim 10^7 \) corresponding to a relatively low Hubble scale during inflation, \(H_1 \approx m_V \sim 5 \times 10^8 \) GeV. Interestingly, in sequestered D3-brane models, this value of \(V \) can also correlate with TeV-scale soft terms for a mild tuning of background fluxes. In Table I we show a benchmark example motivated by the results of [38]. Note that no moduli suffer from the cosmological moduli problem which requires \(m_{\text{moduli}} \gtrsim 7.4 \times 10^4 \) GeV.

During inflation, the bulk moduli \(V \) and \(u \) are displaced from their minima due to inflationary dynamics [34] and are approximately frozen due to Hubble friction. At the end of inflation, as shown in [55], strong preheating effects lead to a violent production of inflaton quanta which eventually decay to either hidden sector gauge bosons on D7-branes wrapping the inflaton 4-cycle [38] or to lighter moduli and axions [39]. Later on, the bulk moduli \(\phi_V \) and \(\phi_u \) come to dominate the energy density of the universe, and their decay dilutes any previous relic. On the other hand, as can be seen from (11), the two bulk axions, \(a_1 \) and \(a_2 \), are in practice massless for \(V \approx 10^7 \), and so cannot behave as fuzzy dark matter. They can however be dark radiation produced from the decay of the lightest modulus \(\phi_u \) which determines the final reheating. The decay width into bulk axions has been derived in Eq. (27) and for \(n_1 \) and \(n_2 \) reduces to

\[
\Gamma(\phi_u \rightarrow aa) = \frac{5}{2} \Gamma_0. \tag{61}
\]

Using the results of Section IV E, we focus on the best case scenario where \(k_1 = 1 \) and \(k_2 = 0 \), so that the coupling of \(\phi_u \) to Higgses is maximized to avoid dark radiation overproduction. We now analyse the ultralocal and local limits separately.

Ultralocal limit

The decay width for \(\phi_u \) into Higgses in the ultralocal limit is given by Eq. (64) which for \(k_1 = 1 \) and \(k_2 = 0 \) becomes

\[
\Gamma(\phi_u \rightarrow H_u H_d) = 4 Z^2 \Gamma_0. \tag{62}
\]

The relative fraction to hidden sector radiation is then given by

\[
f_{\text{hid}} \approx \left(1 + \frac{8}{3} Z^2 \right)^{-1} \tag{63}
\]

while the reheat temperature is

\[
T_{\text{rh}} = 2 \sqrt{5} \left(\frac{Z^2 \left[1 + \frac{8}{3} Z^2 \right]}{\pi^2 g_*(T_{\text{rh}})} \right)^{1/4} \sqrt{\frac{\Gamma_0 m_p}{\lambda}}, \tag{64}
\]

\[
\begin{array}{|c|c|}
\hline
W_0 & 40 \\
V & 10^7 \\
g_s & 0.1 \\
\lambda & 2 \\
m_{s/2} & 6.1 \times 10^{11} \text{ GeV} \\
m_{1/2} & 1.7 \times 10^9 \text{ GeV} \\
m_{a3} & 7.5 \times 10^{14} \text{ GeV} \\
m_{a2} & 3.1 \times 10^5 \text{ GeV} \\
m_a & 2.5 \times 10^8 \text{ GeV} \\
\hline
\end{array}
\]

TABLE I. Benchmark spectrum for Kähler moduli inflation. The gaugino mass \(M_{1/2} \) is obtained from Table II with \(\omega = 0.01 \) and \(\tau_3 = 1.5 \).
Taking \(g_s(T_{rh}) \approx 86.25 \) and \(Z = 3 \) (which brings \(\Delta N_{\text{eff}} \) within current observational bounds), this gives

\[
T_{rh} = 18.7 \text{ GeV} \times \left(\frac{m_u}{2.5 \times 10^3 \text{ GeV}} \right)^{3/2}.
\] (65)

Branching scenario: Assuming the branching scenario occurs if \(T_{rh} \lesssim 70 \text{ MeV} \) \([44, 45]\), we see from Eq. (65) that it would require \(m_u \lesssim 6.0 \times 10^3 \text{ GeV} \), corresponding to a volume of order \(V \gtrsim 5 \times 10^8 \) (keeping the other benchmark values of Table I fixed) that in Kähler moduli inflation would yield an amplitude of scalar fluctuations below the observed value. Hence the branching scenario is not viable. However, if instead one were to extend the inflationary model to include additional fields responsible to generate the observed value of \(A_s \) in a way compatible with \(V \gtrsim 5 \times 10^8 \), the branching scenario might be potentially viable. Here, we assume this to be the case and provide a brief analysis of the branching scenario.

The required modulus abundance for \(T_{rh} \lesssim 70 \text{ MeV} \) and \(V \gtrsim 5 \times 10^8 \) can be estimated as

\[
Y_{\phi_u} = \frac{3T_{rh}}{4m_u} \lesssim 8.7 \times 10^{-8}.
\] (66)

Setting the DM abundance equal to the observed value, i.e. taking \(Y_{DM} = 5 \times 10^{-10} \text{ (1 GeV}/m_{DM}) \), and recalling Eq. 4 for the prediction of the final DM abundance in the branching scenario, we note that smaller values of \(m_{DM} \) require larger values of \(m_u \) to match the observed DM abundance for a given branching ratio. However, as \(m_{DM} \) decreases, the freeze-out temperature \(T_f \) decreases, while increasing \(m_u \) increases the reheat temperature \(T_{rh} \).

It is then imperative to check that \(T_{rh} \lesssim T_f \), as required to have a non-thermal abundance.

In Fig. 3 we plot contours of the DM branching ratio which reproduce the measured abundance for given modulus and DM masses. The lower bound on \(m_u \) is set by BBN constraints \(T_{rh} \gtrsim 3 \text{ MeV} \), while the upper bound on \(m_u \) is set by distinguishing the thermal and non-thermal cases. We adopt \(B_{TDM} \gtrsim 5 \times 10^{-3} \) as a lower bound on the branching ratio to dark matter.

Thus we see that the branching scenario in Kähler moduli inflation with a non-standard mechanism for the generation of the density perturbations is only potentially viable for DM masses between \(100 \text{ MeV} \lesssim m_{DM} \lesssim 3.3 \text{ GeV} \) and \(80 \text{ TeV} \lesssim m_u \lesssim 550 \text{ TeV} \).

Annihilation scenario: In the annihilation scenario we expect an enhancement to the DM abundance relative to the thermal case. To analyze this scenario, we fit the upper bound of the annihilation cross section in the \(bb \) channel to data from [43]. If we require Eq. 2 to match the DM abundance, since the annihilation scenario requires \(\langle \sigma_{ann} v \rangle_t \geq \langle \sigma_{ann} v \rangle_i \), we have an absolute lower bound on \(T_{rh} \) from DM overproduction in the case that the annihilation cross section matches the thermal value. The constraints due to DM overproduction bounds are displayed in Fig. 4, where the red shaded regions are excluded. We also show potentially excluded regions depending on the annihilation cross section for values \(3\langle \sigma_{ann} v \rangle_i \) (blue region), \(10\langle \sigma_{ann} v \rangle_i \) (green region), and \(30\langle \sigma_{ann} v \rangle_i \) (yellow region). These regions are excluded by DM overproduction if the annihilation cross section is between the thermal value and the given reference value, i.e. excluded if \(\langle \sigma_{ann} v \rangle_t \leq n\langle \sigma_{ann} v \rangle_i \) for \(n \in \{3, 10, 30\} \), but may still be allowed for larger cross sections (so long as they are consistent with upper bounds from data).

In the thermal case, the white region may also potentially overproduce DM, depending on the annihilation cross section. Furthermore, if one were to assume some model with multi-component DM, more stringent overproduction constraints may be expected.

For our benchmark value, which from Eq. (65) gives \(T_{rh} \approx 18.7 \text{ GeV} \), we see that we can have the annihilation scenario only for \(m_{DM} \gtrsim 400 \text{ GeV} \), while we are reduced to the thermal scenario if \(m_{DM} \lesssim 400 \text{ GeV} \). Furthermore, potential DM overproduction in the annihilation scenario may be slightly improved with some minor adjustments: decreasing \(\lambda \) by a factor of 3 and increasing \(g_s \approx 0.15 \) then increases the reheat temperature by a factor of roughly 3/2, easing the required annihilation cross section to match the observed DM abundance by a factor of roughly 2/3.

Local limit

In the local limit and in the best case scenario with \(k_1 = 1 \) and \(k_2 = 0 \), the decay of \(\phi_u \) into Higgs degrees of freedom is given by Eq. (59) and looks like

\[
\Gamma(\phi_u \rightarrow H_u H_d) \approx \frac{5}{16} Z^2 \Gamma_0.
\] (67)
Annihilation scenario: For the annihilation scenario in the local limit, our analysis for the ultralocal limit also applies. From Fig. 4 we see that we would expect the annihilation scenario only for \(m_{\text{DM}} \gtrsim 430 \text{ GeV} \), and the thermal scenario for \(m_{\text{DM}} \lesssim 430 \text{ GeV} \).

B. Fibre Inflation

Fibre inflation models feature a Calabi-Yau volume of the form \([9]\) where the role of the inflaton is played by the mode \(u \) orthogonal to the overall volume. This is a large-field inflationary model which predicts a tensor-to-scalar ratio at the edge of detectability, \(r \approx 0.007 \). Compared to Kähler moduli inflation, the Hubble scale during inflation is higher, \(H_I \approx m_u \sim 5 \times 10^{13} \text{ GeV} \), and value of the volume needed to match \(A_s \) is smaller, \(V \sim 10^3 \). In turn, even with sequestering, the scale of SUSY breaking turns out to be relatively high, \(M_{1/2} \sim 5 \times 10^{10} \text{ GeV} \). Table I shows a benchmark example with values motivated from [56] where these parameter choices were shown to reproduce the observed amplitude of the density perturbations.

\[
\begin{array}{|c|c|}
\hline
W_0 & 15 \\
\hline
\nu & 10^3 \\
\hline
\lambda & 0.1 \\
\hline
\hline
m_{3/2} & 2.3 \times 10^{13} \text{ GeV} \\
m_{1/2} & 6.3 \times 10^{13} \text{ GeV} \\
m_{\tau_3} & 9.5 \times 10^{14} \text{ GeV} \\
m_{\nu} & 2.0 \times 10^{14} \text{ GeV} \\
\hline
\end{array}
\]

TABLE II. Benchmark spectrum for Fibre inflation. The gaugino mass \(M_{1/2} \) is obtained from [12] with \(\omega = 0.01 \) and \(\tau_3 = 1.5 \).

Given that in this case the inflaton is the lightest Kähler modulus, there is no period of early matter domination and inflationary reheating transitions directly into a radiation dominated universe via the perturbative decay of \(\phi_u \). The decay width into the two ultra-light axions \(a_1 \) and \(a_2 \) is again given by Eq. (61). The decay rates into visible sector fields takes again the form \((62) \) and \((67) \) for the ultralocal and local limits respectively. However, in this case soft masses are around the intermediate scale, \(M_{1/2} \sim 10^{10-10^{11}} \text{ GeV} \), and so neutralino DM would be grossly overproduced in both thermal and non-thermal scenarios since naively \(\langle \sigma v \rangle \propto m_{\tilde{\chi}}^{-2} \) for WIMPs. We need therefore to focus on scenarios with R-parity breaking where neutralinos are unstable.

The origin of DM therefore has to be different. Ref. [57] argued that the potential of Fibre inflation is rich enough to be able to generate primordial black holes that can constitute all of DM in an appropriate mass range, with the associated production of detectable secondary gravity waves [58]. Given that this possibility...
On the other hand, in the ultralocal limit, the decay constant of the open string axion is in the right ballpark to behave as fuzzy dark matter, or the QCD axion realized as the phase of a charged open string field living on the visible sector D3-brane stack. However, strong constraints on the type of axion are imposed due to existing bounds on isocurvature perturbations for cases where the Peccei-Quinn symmetry is broken during inflation so that the axion is effectively massless and undergoes quantum fluctuations of order $H_I/(2\pi)$. More precisely, when an axion (which can be either the QCD axion or an ultra-light axion) saturates the DM relic abundance for a decay constant $f_a > H_I$ and an initial misalignment angle θ_i, the bound on the inflationary scale from the measured amplitude of isocurvature modes is

$$H_I \lesssim 1.4 \times 10^{-5} f_a \theta_i.$$

For $H_I \approx 5 \times 10^{13}$ GeV, this bound can be translated into a strong bound on f_a of the form $f_a \theta_i \gtrsim m_p$, implying that f_a has to be at least of order the Planck scale since $\theta_i \in [0, 2\pi]$. As shown in [53], each of the two bulk axions could be fuzzy dark matter with $f_{a1} \sim f_{a2} \sim m_p/\sqrt{2}$ which is definitely below m_p for $V \approx 10^3$. This implies that fuzzy dark matter is not allowed in Fibre inflation.

The other possibility is to look at the QCD axion. As shown in Section IV.C, the QCD axion can arise from the phase of a matter field living on the D3-brane stack. Its decay constant f_{QCD} is set by the VEV of the associated radial field that is stabilized by an interplay of D- and F-terms. As shown in [4], the value f_{QCD} depends on the level of sequestering of the visible sector from the source of SUSY breaking in the bulk. In particular, focusing on the benchmark mass spectrum of Tab. [1] we have

- **local limit**: $f_{QCD} \approx m_{3/2} \approx 10^{15}$ GeV
- **ultralocal limit**: $f_{QCD} \approx M_{1/2} \approx 5 \times 10^{10}$ GeV.

In the local limit, f_{QCD} is therefore above H_I, implying that this case is also ruled out by isocurvature bounds. On the other hand, in the ultralocal limit, $f_{QCD} < H_I$, and so during inflation the axion is heavy given that the Peccei-Quinn symmetry is not broken yet. Thus in this case the system if free from isocurvature bounds, and the decay constant of the open string axion is in the right energy regime to constitute all of dark matter.

The ultralocal limit seems therefore favored to describe dark matter. In this case Eq. (63) and Eq. (64) give again the branching ratio to hidden light degrees of freedom and the reheat temperature, respectively. Taking $g_s(T_{\text{re}}) = 106.75$ and $Z = 3$ (to avoid dark radiation overproduction), we have a relatively high reheat temperature of order

$$T_{\text{re}} \approx 4.07 \times 10^{10} \text{ GeV} \times \left(\frac{m_\mu}{4.4 \times 10^{13} \text{ GeV}}\right)^{3/2}.$$

VI. CONCLUSIONS

In this work, we have studied the production of dark matter and dark radiation after reheating in string inflation models with a fibred Calabi-Yau structure and the visible sector on D3-branes.

We have imposed several physical constraints, related to the need to match observed quantities, like the amplitude of the density perturbations generated during inflation and the dark matter density, or coming from the requirement to avoid the overproduction of dark radiation and isocurvature modes. The interplay between these different physical quantities is determined by the consistency of the underlying UV model which fixes also the scale of supersymmetry breaking, that determines the WIMP mass scale, and the decay constant of both closed and open string axions. We have seen that this UV correlation is very powerful in constraining the nature of dark matter.

In fact, choosing benchmark points preferred by cosmological data for each of our string inflation scenarios, we have found distinct predictions for the nature of dark matter which are compatible with current experimental bounds. In the case of K"ahler moduli inflation, we have found TeV-scale WIMPs which can easily reproduce the observed DM density in both the local and ultralocal limits. The case of Fibre inflation instead predicts open string axions as the DM candidate within the ultralocal limit, where isocurvature constraints exclude the local limit.

While we found that an excess of dark radiation is generic in fibred LVS models, we have shown that this can be compatible with the latest Planck measurements without any significant tuning. Let us also point out that Planck bounds on N_{eff} can be relaxed if local measurements of H_0 are assumed as a prior, and a small but non-zero amount of dark radiation could also be an intriguing effect to weaken the present H_0 tension [63]. Let us finally stress that our analysis involved KMI and FI for fibred Calabi-Yaus with the MSSM on D3-branes. We will instead leave the study of the case where the MSSM is on D7-branes for future work [64].

ACKNOWLEDGMENTS

We would like to thank Rouzbeh Allahverdi and Arthur Hebecker for helpful discussions. The work of KS is supported in part by DOE Grant DE-SC0009956.

[1] M. Cicoli, C. Mayrhofer, and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02, 062.

arXiv:1110.3333 [hep-th].
[39] A. Hebecker, J. Jaeckel, and M. Wittner, Axions in String Theory and the Hydra of Dark Radiation, (2022), arXiv:2203.08833 [hep-th]

[40] L. Aparicio, D. G. Cerdeno, and L. E. Ibanez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07, 099 [arXiv:0805.2943 [hep-ph]]

[41] G. Kane, K. Sinha, and S. Watson, Cosmological Moduli and the Post-Inflationary Universe: A Critical Review, Int. J. Mod. Phys. D 24, 1530022 (2015), arXiv:1502.07746 [hep-th]

[42] R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe 10.21105/astro.2006.16182 (2020), arXiv:2006.16182 [astro-ph.CO]

[43] A. Albert et al. (Fermi-LAT, DES), Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834, 110 (2017), arXiv:1611.03184 [astro-ph.HE]

[44] M. Cicoli, M. Kreuzer, and C. Mayrhofer, Toric K3-Fibred Calabi-Yau Manifolds with del Pezzo Divisors for String Compactifications, JHEP 02, 002, arXiv:1107.0383 [hep-th]

[45] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68, 046005 (2003), arXiv:hep-th/0301240

[46] M. Cicoli, F. Quevedo, and R. Valandro, De Sitter from T-branes, JHEP 03, 141 [arXiv:1512.04558 [hep-th]]

[47] D. Gallego, M. C. D. Marsh, B. Vercnocke, and T. Wrase, A New Class of de Sitter Vacua in Type IIB Large Volume Compactifications, JHEP 10, 193 [arXiv:1707.01095 [hep-th]]

[48] D. Ciupke, J. Louis, and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, JHEP 10, 094, arXiv:1505.03092 [hep-th]

[49] C. P. Burgess, M. Cicoli, M. Gomez-Reino, F. Quevedo, G. Tasinato, and I. Zavala, Non-standard primordial fluctuations and nongaussianity in string inflation, JHEP 08, 045, arXiv:1005.4840 [hep-th]

[50] M. Cicoli, V. A. Diaz, V. Guidetti, and M. Rummel, The 3.5 keV Line from Stringy Axions, JHEP 10, 192 [arXiv:1707.02987 [hep-th]]

[51] M. Cicoli, G. Tasinato, I. Zavala, C. P. Burgess, and F. Quevedo, Modulated Reheating and Large Non-Gaussianity in String Cosmology, JCAP 05, 039, arXiv:1202.4580 [hep-th]

[52] N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020) [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO]

[53] M. Cicoli and F. Muia, General analysis of dark radiation in sequestered string models, Journal of High Energy Physics 2015, 10.1007/jhep12(2015)152 (2015).

[54] M. Cicoli, K. Dutta, A. Maharana, and F. Quevedo, Moduli Vacuum Misalignment and Precise Predictions in String Inflation, JCAP 08, 006 [arXiv:1604.08512 [hep-th]]

[55] N. Barnaby, J. R. Bond, Z. Huang, and L. Kofman, Preheating After Modular Inflation, JCAP 12, 021, arXiv:0909.0503 [hep-th]

[56] M. Cicoli and G. A. Piovano, Reheating and dark radiation after fibre inflation, Journal of Cosmology and Astroparticle Physics 2019 (02).

[57] M. Cicoli, V. A. Diaz, and F. G. Pedro, Primordial Black Holes from String Inflation, JCAP 06, 034, arXiv:1803.02837 [hep-th]

[58] M. Cicoli, F. G. Pedro, and N. Pedron, Secondary GWs and PBHs in string inflation: formation and detectability, (2022), arXiv:2203.00021 [hep-th]

[59] M. Cicoli, V. Guidetti, N. Righi, and A. Westphal, Fuzzy Dark Matter candidates from string theory, JHEP 05, 107, arXiv:2110.02964 [hep-th]

[60] L. Visinelli and P. Gondolo, Dark Matter Axions Revisited, Phys. Rev. D 80, 035024 (2009), arXiv:0903.4377 [astro-ph.CO]

[61] Y. Akrami et al. (Planck), Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO]

[62] M. Gorghetto, E. Hardy, and G. Villadoro, More axions from strings, SciPost Phys. 10, 050 (2021), arXiv:2007.04990 [hep-ph]

[63] T. Brinckmann, J. H. Chang, and M. LoVerde, Self-interacting neutrinos, the Hubble parameter tension, and the cosmic microwave background, Phys. Rev. D 104, 063523 (2021), arXiv:2012.11830 [astro-ph.CO]

[64] M. Cicoli, K. Sinha, and R. Wiley Deal, Work in progress, .