INTRODUCTION

Bacteremia is existence of viable bacteria in blood which is normally free of bacteria (Ochei and Kolhatkar, 2000). It can happened in daily actions, like tooth brushing and some secondary medical processes, such as dental work (Forner et al., 2006) or by applying catheters and other foreign material to arteries and veins, including injection of drugs, and also during infections (Sligl et al., 2006). In the first state, it is a temporary and clinically benign status, where the host immune system ejects bacteria from blood. However, when immune mechanisms fail, or in the presence of anatomic trauma, turbulent cardiac blood flow, or foreign article, bacteremia may cause infection and sepsis. Bloodstream infection results due to imbalances in the complex interplay between the invading microorganism, and the host defense mechanisms (Christaki and Giamarellos-Bourboulis, 2014). Bacteremia differ from sepsis which is host response to microbial pathogens that causes significant rate of morbidity and mortality (Singer et al., 2016; Fan et al., 2016). Most patients with bacteremia achieve the criteria for sepsis. Infection that be discovered within the first 48 hours of hospitalization is defined as a community-acquired infection, whereas infection that occurs later during lying in hospital is known as hospital-acquired infection (Chris-
taki and Giamarellos-Bourboulis, 2014; Siegman-Igra et al., 2002). The epidemiology of bacteremia is altering with the aging of the population, shifts in healthcare, and progress in medicine, such as increased use of immunosuppressive treatment, intravascular devices, and invasive procedures Nielsen (2015). Dominant microorganisms in bacteremia alter greatly according to a geographic place, age, and sex of patients, and kind of bacteremia (Kirn and Weinstein, 2013; Moon et al., 2014).

MATERIALS AND METHODS

52 blood specimens were collected from incoming patients and those who lie in Hilla surgical hospital with a volume of 2-3 ml for each specimen, they were put in bottles containing brain- heart infusion broth (Himedia, India) and incubated at 37°C for 5-10 days. Samples were cultured after 24 h. and in the fourth and fifth days of incubation on blood agar; MacConkey agar; and chocolate agar for 24-48 h. at 37°C. The isolated bacterial species were identified according to macro and micro characters, in addition to biochemical tests like IMVIC set and catalase test (Forbes et al., 2007). Antibiotics susceptibility test was conducted by a well diffusion assay according to the Kirby-Bauer method. The following antibiotics were used: amikacin; amoxicillin-clavulanic acid; azithromycin; aztreonam; cefotaxime; ceftriaxone; chloramphenicol; ciprofloxacin; clindamycin; daptomycin; erythromycin; imipenem; tetracyclin; and vancomycin. Diameters of inhibition zones were measured and bacterial isolates were assorted as sensitive; intermediate; or resistant (CLSI, 2013).

RESULTS AND DISCUSSION

Out of 52 blood samples, 22 samples (i.e., 42.30% of total samples) did not give growth of any bacterial species, while the rest 30 samples (57.69%) recorded growth of one or more of bacterial species. Where three samples yielded common growth of two bacterial species, one of them was for Pseudomonas sp. with Staphylococcus sp., the other was for Pseudomonas sp. with E. coli, whereas the third one has given the growth of Staphylococcus sp. together with Streptococcus pneumonia. The other samples have given the growth of only one bacterial species. A total of 33 bacterial isolates were recorded, most of them (16 isolates) were belonged to Staphylococcus spp., followed by E. coli (6 isolates), then Pseudomonas sp.(5 isolates), Streptococcus sp. (2 isolates), and one isolate for each of Staphylococcus aureus, Streptococcus pneumonia, Acinetobacter sp., and Listeria monocytogenes. Accordingly, the majority of bacteremia cases (66.66%) caused by Gram-positive bacteria.

Daptomycin antibiotic had good antibacterial activity against most the isolates of staphylococci, where 14 isolates of which (i.e., 93.33%) were sensitive (Table 1). It was followed by chloramphenicol and ciprofloxacin, with percent of 68.75% and 56.25%, respectively. The percentage of isolates that were sensitive to clindamycin and vancomycin was only 6.25%, that is mean most of the staphylococci isolates were resistant to these two antibiotics.

The single S. aureus isolate was sensitive for five out of seven antibiotics, except of ciprofloxacin and clindamycin. All streptococci isolates, of which S. pneumoniae, were sensitive to tetracycline, while they were resistant to daptomycin. 50% of E. coli isolates were resistant and the other 50% were sensitive to the same antibiotic, except for chloramphenicol, where only one isolate was resistant. The five isolates of Pseudomonas sp. were sensitive for imipenem, whereas four of them (80%) were resistant to amikacin and 60% resistant to both of clindamycin and ciprofloxacin. Acinetobacter sp.isolate was resistant to most of the used antibiotics, except of amikacin and imipenem. Also, Listeria monocytogenes isolate was had high resistance to antibiotics.

Coagulase-negative staphylococci (CoNS) was the most prevalent bacteria among patients. The dominance of CoNS with high resistance to antibiotics and disinfectants in addition to its ability to produce biofilm has been increased markedly with the development of medicine, especially the increasable usage of antibiotics and using of foreign instruments like catheters. Multiple resistant strains of S. epidermidis, and S. haemolyticus have been recorded in neonates ICU; they had the ability to produce biofilms and were responsible for infections in premature babies (Foka et al., 2006). S. epidermidis group consider a widespread cause of septicemia associated with health- care (Sievert et al., 2009).

On the other hand, S. aureus isolate was sensitive for most of the antibiotics except of ciprofloxacin and clindamycin. A somewhat similar result was found by (Ansari et al., 2012), where most S. aureus isolates were sensitive to the used antibiotics.

S. aureus is a popular cause of both community-acquired and hospital-acquired bacteremia and infection may be progressed to many of the complications that it is difficult to be diagnosed early. The mortality rate among patients with SAB can reach to 10-30% (Hal et al., 2012).

In the current study, all streptococci, including S. pneumonia, were sensitive to tetracycline, whereas
they revealed resistance to daptomycin. Viridans streptococci are normal flora in the mouth; they can cause transient bacteremia after eating; teeth brushing, or flossing. It was found that the main route for the entrance of group A streptococci is skin and soft tissues (Morales et al., 2006).

Half of E. coli isolates were sensitive, whereas the other half were resistant to the same antibiotic. In a study conducted by Ansari and others, 47% of E. coli isolates were sensitive to ciprofloxacin (Ansari et al., 2012). It was found that E. coli represents half of the pathogens isolated from community-acquired bacteremia patients (Moon et al., 2014).

All the five isolates of Pseudomonas were sensitive to imipenem, whereas four of them (80%) were resistant to amikacin and 60% were resistant to both of clindamycin and ciprofloxacin. In a previous study (Ewaid et al., 2020), Pseudomonas had been isolated from 13% of blood specimens taken after oral surgical procedures (Ansari et al., 2012). Bacteremia resultant of Pseudomonas may not be recognized from that caused by other Gram-negative bacteria, so patients infected with Pseudomonas may have inactive antibacterial therapy, in addition, delay in starting efficient antibacterial therapy was associated with higher mortality with a rate reached to 39% (Kang et al., 2003).

CONCLUSIONS

When antibiotics sensitivity test was accomplished, most Staphylococcus spp. were sensitive for daptomycin and had high resistance to both of vancomycin and clindamycin, whereas Staphylococcus aureus was sensitive for most the used antibiotics. Half of E. coli isolates were sensitive, while the second half

Table 1: Species of isolated bacteria and the number of resistant isolates.

Species	Antibiotics	No.
Listeria monocytogenes	Amikacin	1
Acinetobacter sp.	Aztreonam	2
Pseudomonas sp.	Aztreonam	3
E. coli	Aztreonam	4
S. pneumonia	chloramphenicol	5
Staphylococcus spp.	clindamycin	6
S. aureus	Ceftriaxone	7
S. pneumonia	Cefotaxime	8
E. coli	Cefotaxime	9
S. pneumonia	Daptomycin	10
S. aureus	erythromycin	11
S. pneumonia	Imipenem	12
E. coli	Tetracyclin	13
S. pneumonia	vancomycin	14
were resistant to the used antibiotics. Imipenem inhibited the growth of all Pseudomonas isolates, whereas 80% of them were resistant to amikacin.

REFERENCES

Ansari, R. S. A., Baqai, H., Mehdi, G., Sahito, G. A. S. 2012. Incidence of bacteremia and antibiotic sensitivity associated with oral surgical procedures. J Pak Dent Assoc, 21(4):228–234.

Christaki, E., Giamarellos-Bourboulis, E. J. 2014. The complex pathogenesis of bacteremia. Virulence, 5(1):57–65.

CLSI 2013. Performance standards for antimicrobial susceptibility testing. M100-S23, 33. Twenty third informational supplement.

Doughari, H. J., Ndakidemi, P. A., Human, I. S., Benade, S. 2011. The Ecology, Biology and Pathogenesis of Acinetobacter spp.: An Overview. Microbes and Environments, 26(2):101–112.

Ewaid, S., Abed, S., Al-Ansari, N. 2019a. Water Footprint of Wheat in Iraq. 11(3):535–535.

Ewaid, S., Abed, S., Al-Ansari, N. 2019b. Water Footprint of Wheat in Iraq. 11(4), 756.

Ewaid, S. H., Abed, S. A. 2017. Water quality index for Al-Gharraf River, southern Iraq. The Egyptian Journal of Aquatic Research, 43(2):117–122.

Ewaid, S. H., Abed, S. A., Al-Ansari, N. 2020. Assessment of Main Cereal Crop Trade Impacts on Water and Land Security in Iraq. Agronomy. 10(1):98–98.

Fan, S. L., Miller, N. S., Lee, J., Remick, D. G. 2016. Diagnosing sepsis - The role of laboratory medicine. Clinica Chimica Acta, 460:203–210.

Foka, A., Chini, V., Petinaki, E., Kolonitsiou, F., Nastassiou, E. D., Dimitracopoulos, G., Spiliopoulou, I. 2006. Clonality of slime-producing methicillin-resistant coagulase-negative staphylococci disseminated in the neonatal intensive care unit of a university hospital. Clinical Microbiology and Infection, 12(12):1230–1233.

Forbes, B., Sahm, D., W. A. 2007. Bailey and Scotts Diagnostic Microbiology. Mosby, USA. 12th ed.

Forner, L., Larsen, T., Kilian, M., Holmstrup, P. 2006. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. Journal of Clinical Periodontology, 33(6):401–407.

Hal, S. J. V., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., Gosbell, I. B. 2012. Predictors of Mortality in Staphylococcus aureus Bacteremia. Clinical Microbiology Reviews, 25(2):362–386.

Kang, C., Kim, S., Kim, H., Park, S., Choe, Y., Oh, M., Choe, K. 2003. Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clinical Infectious Diseases, 37(6):745–751.

Kirn, T. J., Weinstein, M. P. 2013. Update on blood cultures: how to obtain, process, report, and interpret. Clinical Microbiology and Infection, 19(6):513–520.

Manchanda, V., Sinha, S., Singh, N. 2010. Multidrug-resistant Acinetobacter. Journal of Global Infectious Diseases, 2(3):291–304.

Moon, H. W., Ko, Y. J., Park, S., Hur, M., Yun, Y. M. 2014. Analysis of community- and hospital-acquired bacteremia during a recent 5-year period. Journal of Medical Microbiology, 63(Pt_3):421–426.

Morales, V., Navarro, S., Lletí, S., Alonso, M., Bellés, P., Aldeguer, L., Otero, J., M., G. S. 2006. Group A streptococcal bacteremia: outcome and prognostic factors. Rev Esp Quimioter, 19(4):367–375.

Nielsen, S. L. 2015. The incidence and prognosis of patients with bacteremia. Dan Med J, 62(7).

Ochei, J., Kolhatkar, A. 2000. Pus abscess and wound drain. In Medical Laboratory Science: Theory and Practice, pages 622–622. Tata McGraw-Hill publishing company limited.

Saavedra, L., Bellomio, A., Hebert, E. M., Minahk, C., Suarez, N., Sesma, F. 2012. Listeria: Epidemiology, pathogenesis and novel potential treatments. Listeria Infections: Epidemiology, Pathogenesis and Treatment. pages 67–98.

Sievert, D. M., Ricks, P., Edwards, J. R., Schneider, A., Patel, J., Srinivasan, A., Fridkin, S. 2009. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention. Infection Control & Hospital Epidemiology, 34(1):1–14.

Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Angus, D. C. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, (8):801–810.
Sligl, W., Taylor, G., Brindley, P. G. 2006. Five years of nosocomial Gram-negative bacteremia in a general intensive care unit: epidemiology, antimicrobial susceptibility patterns, and outcomes. International Journal of Infectious Diseases, 10(4):320–325.