A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair

Sergio Velasco-Aviles1,2†, Nikiben Patel1,2†, Angeles Casillas-Bajo1,2, Laura Frutos-Rincón1,2, Enrique Velasco1,3, Juana Gallar1,2,3,4, Peter Arthur-Farraj5, Jose A Gomez-Sanchez†*, Hugo Cabedo1,2*

1Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain; 2Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; 3The European University of Brain and Technology-NeurotechEU, Alicante, Spain; 4RICORS en enfermedades inflamatorias, Sant Joan d’Alacant, Spain; 5John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom

Abstract The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5, and 7 but not Hdac9. Here, we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4, 5, and 7 are simultaneously removed, the myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.

Editor’s evaluation Analyzing Schwann cells which make myelin in the mammalian peripheral nervous system, the authors unravel how transcription factors can functionally substitute each other in the development of single/double/ and triple mutant mice. Functional redundancy and compensation is seen in many developmental systems, but has rarely been studied at that level of detail. The paper is thus of interest also to scientists beyond the field of glial cell biology.

Introduction During the postnatal development of the peripheral nervous system (PNS), immature Schwann cells ensheath large caliber axons of sensory and motor neurons and differentiate, forming myelin, a highly
specialized plasma membrane that increases nerve impulse velocity by allowing saltatory conduction (Jessen and Mirsky, 2005). Immature Schwann cells downregulate the transcription factor Jun (which negatively regulates myelination) and upregulate the expression of transcriptional regulators of myelination such as Krox-20 and Yy1 (Fazal et al., 2017; Monk et al., 2015; Parkinson et al., 2008). Jun is strongly reexpressed after nerve injury enabling trans-differentiation of Schwann cells into a repair phenotype that promotes axon regeneration and functional nerve repair (Arthur-Farraj et al., 2012; Gomez-Sanchez et al., 2015). After axon regeneration Schwann cells reestablish contact with them and downregulate Jun. This allows reexpression of Krox-20 and the consequent reactivation of a gene expression program aimed at remyelination of axons and reestablishment of nerve function (Stassart and Woodhoo, 2021). Activation of Gpr126, a G-protein-coupled receptor that increases intracellular levels of cAMP, is required for Schwann cell myelination and remyelination (Monk et al., 2009; Monk et al., 2011). We have recently shown that the prodifferentiating activity of cAMP is in part mediated by its ability to shuttle HDAC4 into the nucleus of Schwann cells (Gomis-Coloma et al., 2018). Nuclear HDAC4 recruits the complex NcoR1/HDAC3 and deacetylates histone three on the promoter of Jun, repressing its expression. At the same time HDAC4 promotes Krox-20 expression and activation of the myelination program (Velasco-Aviles et al., 2018). In vivo, Hdac5 is able to partially compensate for the loss of Hdac4 expression in Schwann cells and only the removal of both Hdac4 and Hdac5 from Schwann cells leads to an obvious myelination delay. Surprisingly by postnatal day 8, myelination in Hdac4/5 double knockout mice proceeds at the same pace as in wild-type nerves, suggesting that there is an additional compensatory mechanism permitting nerve myelination (Gomis-Coloma et al., 2018). Here, we show that the in vivo elimination of Hdac4 and Hdac5 from Schwann cells induces the overexpression of Hdac7 through a mechanism mediated by the transcription factor JUN. Notably, the removal of Hdac7 from Schwann cells in the absence of Hdac4 and Hdac5 produces a much longer delay in myelin development. This demonstrates that overexpressed Hdac7 can partially compensate for the absence of both Hdac4 and Hdac5 in myelinating Schwann cells. Interestingly, nonmyelinating Schwann cells in these triple knock-outs (KOs) misexpress melanocytic lineage genes and fail to properly segregate small caliber axons in the Remak bundles. We show that genetic compensation also plays a pivotal role during remyelination after nerve injury. Thus, and akin to what happens during development, remyelination is delayed when Hdac4 and Hdac5 are removed from Schwann cells. This delay is longer when Hdac7 is also removed, which has a profound impact on nerve impulse conduction during nerve regeneration. Importantly, remyelination in the Hdac4/5/7 triple KO also catches up, supporting the idea that an additional mechanism compensates for the absence of class Ila Hdcas. Strikingly, Hdac9, the only class Ila Hdac that is not normally expressed by Schwann cells, is de novo expressed in the nerves of the Hdac4/5/7 triple KO mice, induced by the transcription factor MEF2D. These genetic compensatory mechanisms, centering around transcription factors, allow Schwann cells to retain a class Ila Hdac gene dosage high enough to permit eventual myelination during development and remyelination after injury.

Results
Upregulation of Hdac7 permits developmental myelination in the absence of Hdac4 and Hdac5

We have previously shown that Hdac4 and Hdac5 redundantly contribute to activate the myelin transcriptional program in Schwann cells in vivo. However, although during postnatal development Jun levels remain high in the PNS of the Hdac4/5 double conditional knock out mice (Mpz-Cre^{−/−}; Hdac4^{flx/flx};Hdac5^{−/−}, hereafter called dKO), myelination proceeds normally after P8 and adult nerves are morphologically and functionally indistinguishable from those of wild-type mice (Gomis-Coloma et al., 2018). In muscle development class Ila Hdcas can compensate for each other (Potthoff et al., 2007b). In addition to Hdac4 and Hdac5, Schwann cells also express Hdac7 (Gomis-Coloma et al., 2018). To test if it can functionally compensate for the absence of Hdac4 and Hdac5, we measured the expression levels of Hdac7 in the nerves of dKO. As shown in Figure 1A, the expression of Hdac7 was substantially induced in the sciatic nerve of the dKO mice at P60 (325.1 ± 48.1%; p = 0.0034, n = 4), while Hdac9 expression remained residual. This is specific for the dKO, as minor or no changes at all were found in the single KOs (Figure 1—figure supplement 1A, B). Importantly, Hdac7 overexpression can be detected early during development (Figure 1—figure supplement 1C). These results
Figure 1. Myelin development is notably delayed in the tKO mice. (A) A 325.1 ± 48.1% (p = 0.0034) increase in the amount of mRNA for Hdac7 was found in the dKO nerves. No changes in the expression of HDAC9 were found. RT-qPCR with mouse-specific primers for Hdac7 was performed and normalized to 18S rRNA. The scatter plot, which include also the mean ± standard error (SE), shows the fold change in mRNA normalized to control littermates. Four to eight mice per genotype were used. Data were analyzed with the unpaired t-test. (B) Representative transmission TEM mages of P2, Figure 1 continued on next page
Figure 1 continued

P8, and P21 sciatic nerves of tKO mice (Mpz-Cre^{+/-};Hdac4^{flx/flx};Hdac5^{+/−};Hdac7^{flx/flx}) and the control (Mpz-Cre^{−/−};Hdac4^{flx/flx};Hdac5^{+/−};Hdac7^{flx/flx}) littermates. Scale bar: 5 μm. (C) No statistically significant differences were observed between the area of the tKO nerves and control littermates (P2: p = 0.5234; P8: p = 0.9279; P21: p = 0.9009). (D) The number of myelinated axons is notably decreased at P2 (208 ± 24 in tKO versus 1.160 ± 29 in controls; p ≤ 0.0001) and P8 (1.487 ± 197 in tKO versus 4.235 ± 129 in controls; p ≤ 0.0001). (E) g ratio was increased at P8 (0.80 ± 0.01 in the tKO versus 0.76 ± 0.01 in control; p = 0.0045). (F) The number of unmyelinated axons in a 1:1 relationship with Schwann cells was notably increased at P8 (3.187 ± 111 in the tKO versus 628 ± 21 in controls; p ≤ 0.0001). (G) The total number of sorted axons in a 1:1 relationship with Schwann cells is decreased at P2 (1.128 ± 90 in the tKO versus 2.131 ± 95 in the control; p = 0.0007). (H) The total number of Schwann cells (counted as nuclei) is increased at P8 (823 ± 37 in the tKO versus 476 ± 20 in controls; p ≤ 0.0001) and at P21 (503 ± 31 in the tKO versus 337 ± 32 in controls; p ≤ 0.0152). (I) In contrast, the number of myelinating Schwann cells is decreased at P2 (22 ± 1 in the tKO versus 134 ± 8 in controls; p ≤ 0.0001) and at P8 (1.53 ± 25 in the tKO versus 309 ± 11 in controls; p = 0.0013). (J) The percentage of myelinated axons is decreased at P2 (18.5 ± 3.7% in the tKO versus 54.6 ± 1.1% in controls; p ≤ 0.0001), P8 (31.6 ± 2.9% in the tKO versus 54.6 ± 1.1% in controls; p ≤ 0.0001) and, although much less, at P21 (97.9 ± 0.4% in the tKO versus 99.9 ± 0.0% in controls; p = 0.0135). For these experiments, three to four animals per genotype were used; unpaired t-test. (L) The same for P8. (M) The same for P21. For these experiments, four to five mice per genotype and age were used. Data were analyzed with the unpaired t-test. (N) A representative WB of protein extracts from tKO, control, and wild-type P8 nerves is shown. In the quantification, JUN protein increased in the tKO (2.88 ± 0.19 in the tKO versus 1.12 ± 0.071 in the control nerve; p = 0.004). Mpz protein was found decreased (0.55 ± 0.03 in the tKO versus 1.21 ± 0.09 in the control nerve; p = 0.0115) as was Mbp (0.62 ± 0.045 in the tKO versus 1.31 ± 0.100 in the control nerve; p = 0.012). We could not find changes in KROX-20. Densitometric analysis was done for seven to nine WB from the same number of mice and normalized to the WT. Data were analyzed with the one-way analysis of variance (ANOVA) Tukey’s test (*p < 0.05; **p < 0.01; ***p < 0.001; ns: no significant). See source data file one online (graphs source data) for more details.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Class Ila HDAC gene expression and removal from Schwann cells.

Figure supplement 2. Myelin development in the cKO4 mice sciatic nerves.

Figure supplement 3. Myelin development in the KO5 mice sciatic nerves.

Figure supplement 4. Myelin development in the cKO7 mice sciatic nerves.

Figure supplement 5. Myelin development in the dKO mice sciatic nerves.

suggest that the simultaneous elimination of Hdac4 and Hdac5 from Schwann cells activates a mechanism aimed to compensate for the drop in the gene dose of class Ila HDacs that upregulates threefold the expression of Hdac7. To test whether Hdac7 can functionally compensate to allow myelination in the absence of Hdac4/5, we generated a Hdac4/5/7 triple Schwann cell-specific conditional KO (genotype Mpz-Cre^{+/-};Hdac4^{flx/flx};Hdac5^{+/−};Hdac7^{flx/flx}, hereafter called tKO; Figure 1—figure supplement 1D—F). To study myelin development in these mice we evaluated a number of morphological parameters of sciatic nerves at P2, P8, and P21 using transmission electron microscopy (TEM) images. We also quantified the mRNA and protein levels for a number of negative and positive regulators of myelination. We previously separately analyzed Schwann cell gene expression in sciatic nerves of Hdac4 conditional KO mice (genotype Mpz-Cre^{−/−};Hdac4^{flx/flx}, referred to as cKO4) mice and global Hdac5 KO mice (referred to as KOS) (Gomis-Coloma et al., 2018). As additional controls, here we also performed a detailed morphological analysis of developing nerves in cKO4, KOS, dKO, and Hdac7 Schwann cell-specific conditional KO mice (Mpz-Cre^{+/-};Hdac7^{flx/flx} referred to as cKO7) (Figure 1—figure supplements 2–5). As is shown in Figure 1—figure supplements 2–4, morphological quantification showed that within the single mutants, only cKO4 showed a subtle, but consistent, delay in myelin development. In line with our previous results (Gomis-Coloma et al., 2018), the simultaneous elimination of Hdac4 and Hdac5 from Schwann cells produced a greater decrease in the percentage of myelinated axons at P2 that was almost normalized by P8 (Figure 1—figure supplement 5). Strikingly, the simultaneous elimination of Hdac4, 5, and 7 from Schwann cells produced a much more pronounced delay in myelin development (Figure 1B–J). Interestingly, expression of the negative regulators of myelination (including Jun) was notably increased from P2 to P21, which can explain the delay in the expression of myelin genes (Figure 1K–M) and in morphological parameters of myelin development in the tKO mice. Thus, our data demonstrate that Hdac7 upregulation can compensate for the absence of Hdac4 and Hdac5 allowing myelination to proceed, although with some delay. Interestingly, and although the coordinated removal of Hdac4, Hdac5, and Hdac7 produces a long
delay in myelination, myelin is finally formed and adult tKO nerves show almost normal myelination parameters (Figure 2A–D).

Defects in Remak Schwann cell differentiation in the tKO

Despite PNS myelination looks normal in the adult (p60) tKO mice, we found the Remak bundles profoundly altered in these nerves, with many axons not properly segregated (Figure 2E). Thus, there is a significant increase in the number of pockets with two to five axons and, although it is very rare to find pockets with more than five axons in the control (2.3%), an important number of axons are grouped together in packs of more than five in the tKO (16.5%), with some of them being in pockets of more than 30 axons. These defects are specific of the tKO, as no major changes were observed in the single neither the dKO nerves (Figure 2—figure supplement 1A).

Whole genome-wide transcriptome analysis showed 654 upregulated and 616 downregulated genes in the nerves of adult tKO (Figure 2F and source data file two online [RNA-seq source data]). Volcano plot shows that genes tended toward being more strongly upregulated than downregulated. Surprisingly, the most robustly upregulated gene is the tyrosinase-related protein one encoding gene (Tyrp1; Log FC = 6.03; FDR = 0), a melanocyte lineage-specific gene (Figure 2G, H). Additionally, the melanoma cell adhesion molecule Mcam and Ngfr genes are also highly induced in the sciatic nerves of the tKO. RT-qPCR confirmed the strong induction of Tyrp1 and Mcam in the sciatic nerves of the tKO (P60), but not in the single KOs neither dKO nerves (Figure 3A, B). Interestingly we also found increased the expression of Microphthalmia-associated transcription factor (Mitf) and the Endothelin B receptor (Ednrb), two other genes of the melanocytic lineage (Figure 3C, D). Importantly, the expression of all these genes increased from early in postnatal development (Figure 2—figure supplement 1B, C). Western blot analysis (Figure 3E, F) and confocal microscopy confirmed these findings and showed that the misexpression of melanocytic lineage markers is confined to the nonmyelin-forming Schwann cells of the Remak bundles (Figure 3G–K). Thus, our data suggest that class Ila HDACs are necessary to allow Schwann cell precursors (SCPs) to differentiate into Remak Schwann cells and properly segregate small size axons.

Remyelination kinetics after nerve injury depends on class Ila Hdac gene dose

The molecular mechanisms of Schwann cell remyelination share similarities to myelination during development, however there are also notable differences (Stassart and Woodhoo, 2021). Given the role of class Ila HDACs in myelination during development we asked whether they are also involved in remyelination after nerve injury. To address this, we first performed crush experiments in the sciatic nerves of 8-week-old cKO4 mice. As controls, we used Mpz-Cre−/−;Hdac4flx/flx littermates (Figure 4—figure supplement 1A–K). At 10 days postinjury (dpi), we found a small decrease in the percentage of myelinated axons, with an increase in the number of unmyelinated axons with a diameter >1.5 μm in a 1:1 relationship with the Schwann cells (Figure 4—figure supplement 1F–K). A small increase in the number of Schwann cell nuclei was also found at 20 and 30 dpi (Figure 4—figure supplement 1F). Also, subtle but significant changes in myelin protein gene expression were found in the cKO4 nerves (Figure 4—figure supplement 1L–N). Notably, myelin clearance was normal ruling out this as the cause of remyelination delay (Figure 4—figure supplement 1O). Thus, Hdac4 removal has as small impact on remyelination that is compensated for after 10 dpi.

Morphological analysis of remyelination in KOs mice and wild-type littermates (Hdac5−/−) showed no differences (Figure 4—figure supplement 2). Also, no notable differences in myelin protein gene expression (Figure 4—figure supplement 1L–N and Figure 4—figure supplement 2L–M) nor myelin clearance were found between both genotypes (Figure 4—figure supplement 1O and Figure 4—figure supplement 2N).

To explore whether there is also genetic compensation within class Ila Hdacs in Schwann cells after injury, we analyzed remyelination in the dKO crushed nerve. In this case, the percentage of myelinated axons at 10 days after crush (10 dpi) was notably decreased (15.5 ± 2.3% in the dKO versus 60.4 ± 4.8% in the control; p ≤ 0.0001) (Figure 4A, K). Total axon counts were similar between genotypes suggesting that this difference was not due to an axon regeneration defect (Figure 4G). At 20 dpi the difference between both genotypes was reduced and normalized at 30 dpi. A notable increase in the number of unmyelinated axons with a diameter >1.5 μm in a 1:1 relationship with the Schwann...
Figure 2. Characterization of the tKO. (A) Representative transmission TEM image of the sciatic nerve of an adult (P60) tKO mouse and a control littermate. Scale bar: 5 μm. (B) Scatter plot of g ratio versus axon diameter. 1100 axons of 4 different mice per genotype were used. No changes in g ratio were detected. (C) mRNA for Jun remains increased in the tKO by 2.6-fold (1.88 ± 0.19 x 10^{-4} au in the tKO versus 0.72 ± 0.05 x 10^{-4} au in controls; p = 0.003) whereas Mpz was slightly decreased (1.57 ± 0.13 x 10^{-2} au in the tKO versus 2.13 ± 0.05 x 10^{-2} au in controls; p = 0.027). RT-qPCR

Figure 2 continued on next page
with mouse-specific primers for the indicated genes was performed. Graph shows a scatter plot for the ΔCt (which include also the mean ± standard error [SE]) of the gene normalized to the housekeeping 18S. Five mice per genotype and age were used. Data were analyzed with the unpaired t-test.

(D) JUN and MPZ protein levels. A representative Western blot of protein extracts from wild-type (C57BL/6), control and tKO sciatic nerves is shown. The densitometric analysis of six to seven different experiments normalized to WT is also shown. Data were analyzed with the unpaired t-test. Only for JUN was detected consistent changes (2.04 ± 0.22 in the tKO versus 1.05 ± 0.04 in controls; p = 0.0003) at the protein level (**p < 0.01). (E) Failed segregation of the axons in the Remak bundles of the tKO. A representative high power TEM image is shown. Morphometric analysis shows that axon diameter distribution is preserved in the tKO, but the number of axons per Remak bundle and the distribution of axon per pocket is changed. Five hundred axons from four animals per genotype were counted. Mixed model analysis of variance (ANOVA) with Bonferroni post hoc test was used for comparisons. Scale bar: 1 μm. (F) Pie chart and DEG heatmap of the RNA-seq analysis of P60 showing the distribution of changed genes in the tKO.

(G) Volcano plot shows that the most robustly changed genes were upregulated. ENSEMBL indentification numbers for the 10 most robustly changed genes are shown. (H) List of the 35 most upregulated genes in the adult (P60) tKO classified by FDR. (I) List of the 35 most downregulated genes in the adult (P60) tKO classified by FDR (**p < 0.01; ***p < 0.001; ns: no significant). See source data file one online (graphs source data) for more details.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Characterizing the tKO mice.

This remyelination delay could be caused by an intrinsic problem in the capacity of Schwann cells to reactivate the myelination program, but could also be secondary to a failure in the ability of myelinating Schwann cells to acquire the repair phenotype and clear myelin debris in the distal stump. However, we did not favor the second explanation because markers of the Schwann cell repair phenotype, such as Bdnf and Olig1, in addition to Jun, are highly expressed in the dKO at 10 dpi (Figure 4L, N). Furthermore, we did not find any change in the number of intact myelin sheaths at 4 days after cut in the dKO, or in clearance of MPZ protein, suggesting no effect on the rate of demyelination (Figure 4—figure supplement 3A–B). Finally, repair program genes were normally upregulated in the dKO (Figure 4—figure supplement 3C). Together, our data show that the delay in remyelination of the dKO is due to an intrinsic defect of Schwann cells to activate the myelin transcriptional program and not a consequence of an altered reprogramming capacity to the repair phenotype or to delayed myelin clearance.

Since remyelination is only moderately delayed in the dKO, we asked whether Hdac7 was able to functionally compensate in a similar way as in development (previously, we established that cKO7 mice have no defects in myelin clearance, injury-induced gene expression or remyelination after an injury [Figure 5—figure supplement 1]). First, we found that tKO Schwann cells upregulate repair program genes after a cut injury (Figure 5—figure supplement 2) and interestingly some of them (Olig1 and Shh) appear to be overexpressed at some time points (Figure 5—figure supplement 2B, C), suggesting that the class IIa HDACs act as a brake on the initial induction of the Schwann cell repair phenotype. In line with this observation, myelin was more rapidly cleared in these mutants (Figure 5A–C). Surprisingly, we could not find changes in autophagy markers neither macrophages numbers (Figure 5—figure supplement 2G–I), suggesting these mechanisms are not responsible of the observed increased myelin clearance.

On assessment of tKO nerves after a crush injury (Figure 5D–N), strikingly, we could not find any myelinated axon profile in the four tKO sciatic nerves analyzed at 10 dpi. This is in contrast to the controls which showed myelin profiles in 73 ± 3.1% of axons (p ≤ 0.0001) (Figure 5N). At 20 dpi, the tKO still had only 19.2 ± 5.5% of the axons myelinated, whereas almost all large caliber axons were myelinated in the control (98.1 ± 0.2%; p = 0.0001). Moreover, at 30 dpi only 60.3 ± 6.1% of the axons were myelinated. Since remyelination is only moderately delayed in the dKO, we asked whether Hdac7 was able to functionally compensate in a similar way as in development (previously, we established that cKO7 mice have no defects in myelin clearance, injury-induced gene expression or remyelination after an injury [Figure 5—figure supplement 1]). First, we found that tKO Schwann cells upregulate repair program genes after a cut injury (Figure 5—figure supplement 2) and interestingly some of them (Olig1 and Shh) appear to be overexpressed at some time points (Figure 5—figure supplement 2B, C), suggesting that the class IIa HDACs act as a brake on the initial induction of the Schwann cell repair phenotype. In line with this observation, myelin was more rapidly cleared in these mutants (Figure 5A–C). Surprisingly, we could not find changes in autophagy markers neither macrophages numbers (Figure 5—figure supplement 2G–I), suggesting these mechanisms are not responsible of the observed increased myelin clearance.

On assessment of tKO nerves after a crush injury (Figure 5D–N), strikingly, we could not find any myelinated axon profile in the four tKO sciatic nerves analyzed at 10 dpi. This is in contrast to the controls which showed myelin profiles in 73 ± 3.1% of axons (p ≤ 0.0001) (Figure 5N). At 20 dpi, the tKO still had only 19.2 ± 5.5% of the axons myelinated, whereas almost all large caliber axons were myelinated in the control (98.1 ± 0.2%; p = 0.0001). Moreover, at 30 dpi only 60.3 ± 6.1% of the axons were myelinated. Since remyelination is only moderately delayed in the dKO, we asked whether Hdac7 was able to functionally compensate in a similar way as in development (previously, we established that cKO7 mice have no defects in myelin clearance, injury-induced gene expression or remyelination after an injury [Figure 5—figure supplement 1]). First, we found that tKO Schwann cells upregulate repair program genes after a cut injury (Figure 5—figure supplement 2) and interestingly some of them (Olig1 and Shh) appear to be overexpressed at some time points (Figure 5—figure supplement 2B, C), suggesting that the class IIa HDACs act as a brake on the initial induction of the Schwann cell repair phenotype. In line with this observation, myelin was more rapidly cleared in these mutants (Figure 5A–C). Surprisingly, we could not find changes in autophagy markers neither macrophages numbers (Figure 5—figure supplement 2G–I), suggesting these mechanisms are not responsible of the observed increased myelin clearance.

On assessment of tKO nerves after a crush injury (Figure 5D–N), strikingly, we could not find any myelinated axon profile in the four tKO sciatic nerves analyzed at 10 dpi. This is in contrast to the controls which showed myelin profiles in 73 ± 3.1% of axons (p ≤ 0.0001) (Figure 5N). At 20 dpi, the tKO still had only 19.2 ± 5.5% of the axons myelinated, whereas almost all large caliber axons were myelinated in the control (98.1 ± 0.2%; p = 0.0001). Moreover, at 30 dpi only 60.3 ± 6.1% of the axons were myelinated.
Figure 3. Melanocyte lineage markers are expressed by nonmyelinating Schwann cells of the Remak bundles in the sciatic nerves of the tKO. (A) mRNA for Tyrp1 is dramatically increased by 1.081-fold in the tKO (3.35 ± 0.71 × 10⁻⁴ au in the tKO versus 0.11 ± 0.05 × 10⁻⁶ au in controls; p = 0.0092) whereas no changes were found in the cKO4, cKO7 neither dKO sciatic nerves. (B) mRNA for Mcam is also upregulated (5.13-fold) in the tKO (7.39 ± 0.79 × 10⁻⁴ au in the tKO versus 1.44 ± 0.06 × 10⁻⁴ au in controls) with only minor or no changes at all for the other genotypes. The same although less marked

Figure 3 continued on next page
Among the most upregulated genes were the repair cell marker Mitf (P = 0.0031) in the tKO mice. At 60 dpi, myelination was only slightly delayed in the tKO (Figure 5N). Differences in g ratios followed the same pattern (Figure 5G). In the same line, we found a notable increase in the number of unmyelinated axons >1.5 μm at 10 dpi, that decreases slowly but progressively up to 60 dpi, when it approaches a similar number to the control (Figure 5H). Interestingly, most of these unmyelinated axons are in a 1:1 relationship with Schwann cells (Figure 5I), suggesting that the delay is in the transition from the promyelinating to the myelinating Schwann cell stage. We also found a notable increase in the number of Schwann cells per nerve section that was maintained after 60 dpi (Figure 5L), and an increase in the nerve area (Figure 5E). The increased number of Schwann cells is probably consequence of over-proliferation, as suggested by Ki67 staining (Figure 5—figure supplement 3). We also observed a decrease in the number of axons >1.5 μm at 20 and 30 dpi (Figure 5J), probably because the smaller diameter of the unmyelinated axons. Finally, the delay in remyelination was substantiated by Western blot. As shown in Figure 5O, JUN protein is clearly more abundant in the nerves of the tKO than in either control littermates or wild-types, both at 10 and 21 dpi. Conversely, the amount of MPZ protein is lower at 10 and 21 dpi. KROX-20 is also lower at 10 dpi in the tKO, but levels had recovered by 21 dpi.

To gain insight into the functional consequences of the remyelination delay in the tKO we performed nerve impulse conduction studies of the sciatic nerves after crush injury (see Material and methods). In uninjured nerves, we found no differences in voltage amplitude or nerve conduction velocity (NCV) between tKO and controls (Figure 6A–D) (curiously we observed a smaller amplitude and slower NCV for all genotypes when compared with wild-type nerves (Figure 6—figure supplement 1), probably due to the absence of Hdac5 in neurons). By contrast, at 40 dpi, whereas six of nine sciatic nerves of control mice showed a response when electrically stimulated at 8 V, only one of eight tKO responded (Figure 6E, F). The same distribution was found at 10 V. At 15 V, eight of nine control mice responded while only four of eight tKO responded. In the same line, the amplitude of the A-fiber component of the compound action potential (CAP) was decreased for 8, 10, and 15 V stimuli (Figure 6G). Regarding the component corresponding to C fibers, amplitude was also decreased for 8 and 10 V stimulation (Figure 6H). Moreover, NCV showed a statistically significant decrease when using 15 V stimuli (Figure 6I).

All together our data demonstrate that the kinetics of remyelination after nerve injury is directly correlated with class Ila Hdac gene dose.

Targets of class Ila HDACs in Schwann cells

To try to identify the genes regulated by class Ila HDACs we first performed a genome-wide transcriptomic analysis of the tKO remyelinating sciatic nerves after a crush injury and control littermates (source data file two online [RNA-seq source data]). At 1 dpi, 395 genes were upregulated and 274 downregulated in the tKO (Figure 5—figure supplement 4A and Figure 5—figure supplement 5A). Similar to the uninjured nerve analysis, the 10 most robustly changed genes were all upregulated. Interestingly, Tyrp1 and Mcam were also among the most upregulated genes. At 10 dpi, the number of dysregulated genes was notably increased, with 1227 transcripts upregulated and 1550 downregulated (Figure 5—figure supplement 4B and Figure 5—figure supplement 5A). Among the most robustly upregulated genes were the repair cell marker Bdnf (Arthur-Farraj et al., 2017; Jessen and
Figure 4. Remyelination is delayed in the nerves of the dKO mice. (A) Representative transmission TEM images of P60 sciatic nerves uninjured (UI) and 10, 20, and 30 days post crush (dpi) of dKO (Mpz-cre^{−/−}; Hda^{cre}ac^{−/−}; Hda^{cre}c^{−/−}) and the control (Mpz-cre^{−/−}; Hda^{cre}ac^{−/−}; Hda^{cre}c^{−/−}) littermates are shown. Scale bar: 5 μm. (B) No statistically significant differences were observed in the area of the dKO nerves and control littermates (UI: p = 0.804; 10 dpi: p = 0.195; 20 dpi: p = 0.559; 30 dpi: p = 0.0594). (C) The number of myelinated axons is notably decreased at 10 dpi (388 ± 55 in the dKO versus 1,889 ± 330...

Figure 4 continued on next page
in the control; \(p = 0.0005 \)). (D) \(g \) ratio was increased at 10 dpi \((0.989 \pm 0.003 \) in the dKO versus \(0.934 \pm 0.015 \) in control\([p = 0.002] \)) and at P21 \((0.776 \pm 0.003 \) in the dKO versus \(0.767 \pm 0.003 \) in control\([p = 0.043] \)). (E) The number of unmyelinated axons in a 1:1 relationship with Schwann cells was notably increased at 10 dpi \((2.969 \pm 203 \) in the dKO versus \(1.512 \pm 119 \) in controls; \(p = 0.0007 \)) and at 20 dpi \((224 \pm 25 \) in the dKO versus \(88 \pm 14 \) in controls; \(p = 0.0016 \)). (F) The total number of unmyelinated axons in a 1:1 relationship with Schwann cells is increased at 10 dpi \((2.148 \pm 155 \) in the dKO versus \(1.158 \pm 56 \) in the control; \(p = 0.0011 \)) at 20 dpi \((175 \pm 20 \) in the dKO versus \(68 \pm 12 \) in the control; \(p = 0.002 \)) and at 30 dpi \((63 \pm 17 \) in the dKO versus \(22 \pm 5 \) in the control; \(p = 0.043 \)). (G) No changes in the total axon number was found \((UI: p = 0.157; 10 \) dpi: \(p = 0.910; 20 \) dpi: \(p = 0.349; 30 \) dpi: \(p = 0.666 \)). (H) Neither in the total sorted axon number \((UI: p = 0.193; 10 \) dpi: \(p = 0.169; 20 \) dpi: \(p = 0.294; 30 \) dpi: \(p = 0.682 \)). (I) The total number of Schwann cells (counted as nuclei) was increased at 20 dpi \((861 \pm 34 \) in the dKO versus \(630 \pm 53 \) in controls; \(p = 0.0041 \)). (J) In contrast, the number of myelinating Schwann cells was found decreased at 10 dpi \((35 \pm 8 \) in the dKO versus \(164 \pm 37 \) in controls; \(p = 0.0032 \)). (K) The percentage of myelinated axons is decreased at 10 dpi \((15.5 \pm 2.3 \% \) in the dKO versus \(60.4 \pm 4.8 \% \) in controls; \(p < 0.0001 \)), 20 dpi \((96.6 \pm 0.4 \% \) in the dKO versus \(98.8 \pm 0.2 \% \) in controls; \(p = 0.0482 \)). For these experiment, three to six animals per genotype were used; unpaired \(t \)-test was applied for statistical analysis. (L) Expression of several negative regulators of myelination and repair. Schwann cell markers is enhanced at 10 dpi in the sciatic nerves of the dKO: \(\text{Jun} \) \((1.51\text{-fold}; p = 0.0056) \), \(\text{Gdnf} \) \((1.85\text{-fold}; p = 0.0025) \), \(\text{Bdnf} \) \((2.60\text{-fold}; p = 0.001) \), and \(\text{Olig1} \) \((1.60\text{-fold}; p = 0.008) \). (M) Expression of positive regulators and myelin genes is decreased at 10 dpi in the sciatic nerves of the dKO: \(\text{Krox-20} \) \((0.47\text{-fold}; p = 0.0068) \), \(\text{Prx} \) \((0.45\text{-fold}; p = 0.001) \), \(\text{Mpz} \) \((0.33\text{-fold}; p = 0.005) \), and \(\text{Mbp} \) \((0.33\text{-fold}; p = 0.012) \). RT-qPCR with mouse-specific primers for the indicated genes was performed and normalized to 18S rRNA. The scatter plot, which include also the mean \(\pm \) SE, shows the fold change of mRNA for each gene at 10 dpi normalized to the uninjured nerve. Five to eight mice per genotype were used. Data were analyzed with the unpaired t-test with Welch’s correlation. (N) A representative WB of protein extracts from dKO, control, KOS \(^{−/−} \) and wild-type nerves is shown. In the quantification, \(\text{JUN} \) protein remains higher in the dKO at 10 dpi \((1.72 \pm 0.17\text{-fold}; p = 0.012) \) and tend to equalize at 21 dpi. \(\text{MPZ} \) protein was found decreased by \(0.32 \) \((0.33\text{-fold}; p = 0.012) \) at 10 dpi (\(0.989 \pm 0.003 \) in the dKO versus \(0.934 \pm 0.015 \) in controls; \(p = 0.0025 \)). During remyelination of the dKO mice, we identified 1895 transcripts upregulated and 2450 downregulated in the tKO \((\text{Figure 5N}) \). At 20 dpi, we identified 1895 transcripts upregulated and 2450 downregulated in the tKO \((\text{Figure 5 figure supplement 4C and Figure 5—figure supplement 5A}) \). As before, the 10 most robustly changed genes were upregulated and among them we found again \(\text{Tyrp1} \), \(\text{Mcam} \), and \(\text{EdnrB} \) \(((\text{Figure 5 figure supplement 4C}) \). The negative regulator of myelination \(\text{Jun} \) was upregulated in the tKO from 1 dpi and remained increased up to 20 dpi \((\text{Figure 5 — figure supplement 5B}) \). A similar profile was shown for \(\text{Runx2} \), \(\text{Gdnf} \), \(\text{Ngfr} \), and \(\text{Sox2} \) \(((\text{Figure 5 figure supplement 5C–F}) \). \(\text{Pou3f1} \) was induced up to 10 dpi in both control and tKO nerves, to later \((20 \) dpi) be downregulated in the control \((20 \) dpi) but not in the tKO nerves \((\text{Figure 5 — figure supplement 5G}) \). By contrast, the master transcriptional regulator of myelination \(\text{Krox-20} \) was downregulated at 10 and 20 dpi in the tKO, when remyelination was highly active in the controls \((\text{Figure 5 — figure supplement 5H}) \). Probably as a consequence, early myelin genes such as \(\text{Drp2} \) and \(\text{Prx} \) were downregulated \((\text{Figure 5 — figure supplement 5I, J}) \). Other myelin protein genes that are expressed later, such as \(\text{Mpz} \), \(\text{Mbp} \), \(\text{Mag} \), \(\text{Pmp22} \), and \(\text{Plp} \) were also consistently downregulated \((\text{Figure 5 — figure supplement 5K–O}) \). Myelin is a specialized plasma membrane with a distinctive lipid composition particularly rich in cholesterol \((\text{Poitelon et al., 2020}) \). During remyelination of the tKO nerves we found several genes of the sterol branch of the mevalonate pathway downregulated \(((\text{Figure 5 — figure supplement 5P–R}) \). We also found downregulated genes encoding for enzymes involved in the elongation \((\text{Elov1}) \), transport \((\text{Pmp2}) \) and insertion of double bonds \((\text{Scd2} \) and \(\text{Fads1}) \) into fatty acids \((\text{Figure 5 — figure supplement 5S–V}) \). Interestingly, \(\text{Cers2} \) and \(\text{Ugt8a} \) were also downregulated. These genes are involved in the synthesis of sphingomyelin and galactosylceramide, respectively \((\text{Figure 5 — figure supplement 5W, X}) \), both abundant lipids in myelin \((\text{Poitelon et al., 2020}) \). Together our data show that class Ila HDACs are necessary to block negative regulators of myelination and induce the expression of genes encoding for myelin proteins and key enzymes for the biosynthesis of myelin lipids.
Figure 5. Remyelination is dramatically delayed in the tKO. (A) Myelin clearance is accelerated in the sciatic nerves of the tKO. A representative toluidine blue staining image of 4 days cut sciatic nerve of tKO and control mice is shown. The quantification of intact myelin sheaths shows a 0.55-fold change (p < 0.0001) in the tKO (150 ± 7 intact myelin sheaths in the dKO versus 274 ± 8 in controls; p < 0.0001). Seven to eight animals per genotype were used for the experiment. Data were analyzed with the unpaired t-test. Scale bar: 10 μm. (B) WB supports an accelerated myelin clearance in the...
The online version of this article includes the following figure supplement(s) for figure 5:

Supplement 1. The online version of this article includes the following figure supplement(s) for figure 5:

Supplement 2. The online version of this article includes the following figure supplement(s) for figure 5:

Supplement 3. The online version of this article includes the following figure supplement(s) for figure 5:

Supplement 4. The online version of this article includes the following figure supplement(s) for figure 5:

Supplement 5. The online version of this article includes the following figure supplement(s) for figure 5:

To learn which genes are direct targets of class IIa HDACs and which are regulated indirectly, we performed a chromatin immunoprecipitation assay with anti-HDAC4 coupled to massive sequencing (ChIP-Seq) in dbCAMP differentiated Schwann cells. We found 3.932 peaks, 67.27% of which were located in the proximal promoter regions of genes (≤1 kb from the transcription start site [TSS]) (Figure 7A). The localization of these peaks in the rat genome is shown in the source data file three online (ChIP-Seq peaks source data). Importantly, ChIP-Seq analysis confirmed our previous results (Gomis-Ccoloma et al., 2018) showing that HDAC4 binds to the promoters of Jun, Gdnf, and Runx2 (Figure 7B–E). Interestingly, HDAC4 also binds to the promoter region of Sox2 (Figure 7B, F), another negative regulator of myelination. We found also peaks for Id2 and Hey2 (Figure 7B) and source data file three online (ChIP-Seq peaks source data).

Here, we show that Pou3f1 is overexpressed in the PNS of the tKO during development (Figure 1K–M), and that it is not properly downregulated during remyelination (Figure 5—figure supplement 5G). Interestingly, we found three peaks of HDAC4 bound near the TSS of Pou3f1 (Figure 7B–G), a result that was confirmed by ChIP-qPCR (Figure 7H).

Regarding the melanocyte lineage, we found a clear peak of HDAC4 close the TSS of Mcam (Figure 7B), however, we did not detect peaks in Tyrp1 and Ednrb, suggesting that, while HDAC4...
Figure 6. Remyelination failure in the tKO hampered nerve impulse conduction.
(A) Sample recordings of compound action potential (CAP) in uninjured sciatic nerves of control and tKO mice showing the waveform components corresponding to myelinated (A-fibers) and unmyelinated (C) fibers.
(B, C) Waveform component of A-fibers (B) and C-fibers (C) showed similar amplitude in both genotypes for stimulation with pulses of increasing intensity (5, 8, 10, and 15 V).
(D) Nerve conduction velocity was also preserved in the tKO mice.
(E) Sample recordings of CAPs obtained in a control and a tKO sciatic nerve 40 days after nerve crushing.
(F) The number of nerves that responded with a detectable CAP after the stimulation with increasing intensity.
(G) Amplitude of CAP corresponding to A-fibers was significantly smaller in tKO than in control nerves for stimulation with 8, 10, and 15 V.
(H) Amplitude of C-fiber component was significantly smaller in tKO than in control nerves for stimulation with 8 and 10 V.
(I) Nerve conduction velocity was significantly reduced after injury in both genotypes, being significantly lower in tKO than in control nerves for stimulation at 15 V.
In this set of experiments, the whole length of a sciatic nerve was exposed from its proximal projection (L4 spinal cord) to its distal branches in deeply anesthetized mice.
Compound action potentials (CAPs) were evoked by electrical stimulation of increasing intensity (5, 8, 10, and 15 V, 0.03 ms pulse duration).
The maximum amplitude of the A- and C-fiber components of CAP electrical signal, and their mean nerve conduction velocity were measured.
Seven to 18 animals per genotype and condition were used. Mann–Whitney’s U was used for nonparametric paired comparisons and chi-squared test was used for statistical comparisons (*p < 0.05; **p < 0.01; ***p < 0.001; ns: no significant).
See source data file one online (graphs source data) for more details.

Figure 6 continued on next page
直接抑制Mcam的表达，这很可能间接导致Tyrp1和Ednrbr抑制。然而，另一种可能的解释是它通过使用替代启动子或增强子来实现这些基因的表达。

出人意料的是，我们还发现了在Mbp和Hmegr promoter区的峰值（Figure 7B），这两个基因在发育过程中高度表达。虽然这似乎与HDACs通常作为转录抑制因子的性质相矛盾，HDACs已被证明在其他组织中被定位到高度表达的基因的启动子或增强子。（Wang et al., 2009）

JUN binds to the promoter and induces the expression of Hdac7 gene in the PNS

正如我们所展示的，同时消除Hdac4和Hdac5在PNS中激活了一种机制来补偿在Schwann细胞中Hdac基因的缺损。这种机制通过三倍的表达来放大Hdac7，另一个成员这个家族中表达在这些细胞（Figure 1A）。但什么机制是涉及的？我们已经展示了Jun在发育PNS中的dKO小鼠中是高度表达的（Gomis-Coloma et al., 2018）。在这里，我们展示了Jun表达在发育过程中的remyelination过程中在dKO小鼠中仍然处于高水平（Gomis-Coloma et al., 2018）。有趣的是，我们发现在ENCODE（https://www.encodeproject.org/）中JUN绑定到Hdac7在A549细胞的编码区。因此，JUN可能会与Hdac7的诱导表达相关。为了测试这一假设，我们使用了ChiP-qPCR和找到，确实，正如之前在Schwann细胞中JUN所显示的那样，Hdac7的诱导表达是由JUN决定的（Figure 8A）。

我们随后在进化保守的JUN共识结合位点在proximal的promoter区域的小鼠Hdac7 gene (Figure 8—figure supplement 1)。为了验证其功能性，一个1.189 bp的片段被克隆到pGL3- luciferase constructs，该片段在HEK293细胞中被分化，促成了pGL3- luciferase construct的transfection (see Materials and methods)。1.189-promoter-Hdac7-pGL3 luciferase construct在HEK293细胞中被transfected，与pcDNA3 plasmid encoding for Jun, and luciferase activity measured 12 hr post-transfection. As shown in Figure 8B, this promoter fragment responded to JUN by increasing the luciferase activity by 3.4-fold over the control, which supports the idea that Hdac7 expression is regulated by JUN.

为了进一步验证这个在体外的假设，我们利用了转录子线（Mpz-CreERT2/Rosa26stop-Jun;Jun_cKO mice）或者在Schwann细胞中缺失Jun的突变体（Mpz-CreERT2/Junflx/flx mice）（Fazal et al., 2017）或者Jun缺失的Schwann细胞（Mpz-CreERT2/Junflx/flx mice）（Fazal et al., 2017; Parkinson et al., 2008; Figure 8C）。Jun过表达在Schwann细胞中诱导Hdac7表达的两倍（Figure 8D）。这是一个特定的影响，如果没有变化，可能会被Hdac4和Hdac5 mRNA（Figure 8E, F）。然而，Jun缺失并没有产生任何变化的表达在任何类Ila Hdcas，这表明它在这些Hdcas中的非必需性（Figure 8D–F）。因此，我们的数据清楚地表明JUN可诱导Hdac7在Schwann细胞的表达。进一步支持这个假说，我们发现Hdac7不是在dKO小鼠的Schwann细胞中过表达的。我们进一步验证了这一点，我们检测了Hdac7的过表达在Schwann细胞的dKO小鼠中。

有趣的是，我们检测到了Hdac4的峰值，位于Hdac7的promoter区（Figures 7B and 8H）在ChiP-seq实验中，这证明了Hdac4和Hdac5的过表达，从而维持了Hdac7的表达在basal level。同时消除Hdac4和Hdac5允许Jun的表达，这可以绑定到Hdac7 promoter区，这在无Hdac4和Hdac5的情况下，可以解释JUN对类Ila HDACs的抑制，增加该基因的转录的deacetylation。

Hdac9 is expressed de novo in the sciatic nerve of the tKO

尽管延迟显著，Schwann细胞在tKO小鼠中仍然能够发育出神经轴突，并在神经修复过程中。一个可能的解释是Hdac9，这是唯一一个在Schwann细胞中表达的类Ila Hdac。然而，我们已经发现了极低水平或不可检测水平的mRNA，而这种蛋白质在
Figure 7. HDAC4 binds to the promoter of pivotal genes for myelin development. Cultured rat Schwann cells were incubated with 1 mM dbcAMP to shuttle HDAC4 into the nucleus, and ChIP-Seq analysis performed on the crosslinked chromatin, with anti-HDAC4 antibody (A) 3.932 HDAC4 peaks were found in the rat genome. Most of these peaks (67.27%) were located in the promoter regions (≤1 kb from the TSS). (B) A table with the localization of some of these peaks (a complete list can be found in source data file three online [ChIP-Seq peaks source data]). (C–E) ChIP-Seq signal analysis Figure 7 continued on next page
confirmed our previous results (Gomis-Coloma et al., 2018) showing that HDAC4 binds to the promoters of Jun, Gdnf, and Runx2. (F) HDAC4 was also found bound to the promoter region of Sox2 (G). Three peaks (NA_peaks 2916, 2917, and 2918) near the TSS of Pou3f1 were also found. (H) The binding of HDAC4 to Pou3f1 gene was confirmed by ChIP-qPCR. Four different experiments from four distinct cultures were used. Data were analyzed with the Mann–Whitney test (*p < 0.05; **p < 0.01; ***p < 0.001; ns: no significant). See source data file one online (graphs source data) for more details.

Altogether our data support the view that in the tKO nerve, Mef2d is induced to activate the de novo expression of Hdac9 and maintain a sufficient class IIa Hdac gene dose to allow myelin formation during development and after nerve injury.

Discussion

Functional redundancies, the consequence of gene duplications, are found in most genomes, and are postulated to give robustness to organisms against mutations. However, it has been also predicted that redundancies are evolutionarily unstable and have only a transient lifetime. Despite of this, numerous examples exist of gene redundancies that have been conserved throughout dilated evolutionary periods (Kafri et al., 2006; Peng, 2019).
Figure 8. HDAC7 compensatory overexpression is induced by JUN. (A) ChIP-qPCR of dbcAMP treated rat Schwann cells with anti-JUN antibody showed that this transcription factor is bound to the promoter of Hdac7. Four different experiments from four distinct cultures were used. Data were analyzed with the Mann–Whitney test. (B) A 1.189 fragment of the mouse Hdac7 promoter containing a conserved JUN binding consensus sequence was PCR amplified and cloned into the pGL3 luciferase reporter vector. HEK293 cells were transfected with this construct and the pcDNA3 (empty vector) or pcDNA3 Jun. As is shown JUN induced the luciferase activity by 3.4 ± 0.22-fold (p < 0.0001; n = 10). Unpaired t-test with Welch’s correlation was used for statistical comparison. (C) Levels of mRNA for Jun in the nerves of Jun_OE and Jun_cKO mice. (D) Hdac7 expression is enhanced in the sciatic nerves of the Jun_OE mice (5.16 ± 0.46 × 10⁻⁵ in the Jun_OE versus 3.09 ± 0.29 × 10⁻⁵ in the WT; p = 0.005) but does not change in the Jun_cKO mice. (E) Hdac4 expression in sciatic nerves does not change in Jun_OE and Jun_cKO mice. (F) Hdac5 expression in sciatic nerves does not change in Jun_OE and Jun_cKO mice. (G) Removal of Jun from Schwann cells in the dKO (dKO;Jun_cKO genotype) prevents Hdac7 compensatory overexpression. Interestingly, Hdac9 expression is induced in these mice (see discussion). RT-qPCR with mouse-specific primers for the indicated genes was performed. The scatter plot, which include also the mean ± standard error (SE), shows the expression of each gene normalized to the housekeeping 18S. Four to five mice per genotype were used. Data were analyzed with the unpaired t-test with Welch’s correlation. (H) A peak of HDAC4 (NA_peak 3487) was found on the Hdac7 promoter in the ChIP-Seq experiment. (I) ChIP-qPCR confirmed that HDAC4 is bound to the promoter of Hdac7. Four different experiments from four distinct cultures were used. Data were analyzed with the Mann–Whitney test (*p < 0.05; **p < 0.01; ***p < 0.001; ns: no significant). See source data file one online (graphs source data) for more details.

Figure supplement 1. The proximal promoter region of the Hdac7 has a JUN consensus binding sequence.
Figure 9. MEF2D mediates Hdac9 de novo expression in the tKO. (A) Hdac9 expression is notably induced in the sciatic nerves of the adult (P60) tKO mice (6.48 ± 0.53 × 10^{-6} au the tKO versus 1.46 ± 0.28 × 10^{-6} in the control; p < 0.0001). Only minor changes were observed in the cKO4 and cKO7. Four to eight mice per genotype were used. Unpaired t-test was used for comparisons. (B) Hdac9 expression is increased from early postnatal development of the tKO nerve. At P2 we found 1.67 ± 0.13 × 10^{-6} au in the tKO versus 0.39 ± 0.03 × 10^{-6} in the controls (p < 0.0001) and at P8 we found 3.43 ± 0.52 × 10^{-6} au in the tKO versus 0.43 ± 0.07 × 10^{-6} in the controls (p < 0.0001).
Fluctuations in gene expression (noise) are a well-known phenomenon that has been described from bacteria to mammalian cells, and may have dramatic effects on fitness if they persist long enough (Raser, 2010). It has been suggested that some gene redundancies have been evolutionarily selected because they can reduce the harmful effects of gene expression noise (Kafri et al., 2006). Thus, the deleterious effect of the eventual decrease in the expression of a noisy gene pivotal for a determined biological process (such as differentiation) can theoretically be buffered by the expression of a redundant gene controlled by a different promoter.

Redundancies have been shown to be particularly relevant during development. One example is the couple Myod/Myf-5, which are master regulators of skeletal muscle development (Sabourin and Rudnicki, 2000). Similar to what happens with other redundant couples, Myf-5 expression has a linear response that strictly dependents on the Myod gene expression dosage, and can likely contribute to reduce gene expression noise allowing skeletal muscle differentiation (Kafri et al., 2006).

It has been shown that slow oxidative fiber gene expression in skeletal muscles depends on gene redundancy between class IIa Hdacs (Potthoff et al., 2007c). Here, we show that the activation of the myelin gene expression program by Schwann cells is also ensured by class IIa Hdac genes redundantly. Although the physiological role of genetic compensation within this family of proteins remains unknown, it is tempting to speculate that it could avoid potential fluctuations in class IIa Hdac gene dose ensuring Schwann cell differentiation and the proper myelination of the PNS.

But how is gene compensation regulated? Despite being documented many times in different organisms, our understanding of the underlying molecular mechanisms that control this process still remains limited (El-Brolosy and Stainier, 2017). Thus, genetic compensation of class I Hdacs has been previously described during myelin development (Jacob et al., 2011), although the mechanisms regulating this process have not been investigated. Here, we show that removal of Hdac4 and Hdac5 upregulates the compensatory overexpression of Hdac7 in Schwann cells allowing, although with delay, myelin formation both during development and after nerve injury. Our data strongly suggest that this compensatory overexpression is regulated by the transcription factor JUN. In support of this tenet, we show that JUN binds to and induces the overexpression of Hdac7 both in vitro and in vivo. Moreover, we also show Hdac7 is not overexpressed in the nerves of dKO mice that lack Jun expression in Schwann cells. Interestingly, we found that HDAC4 binds to the promoter of Hdac7 in differentiated Schwann cells, suggesting that other class Ia Hdacs contribute to maintain the expression of this gene at basal levels in normal nerves. In this scenario, the absence of Hdac4 and Hdac5
in the dKO nerves might allow JUN to bind and stimulate the compensatory expression of Hdac7 in Schwann cells (Figure 10).

We show that although Hdac9 is normally not expressed by Schwann cells it is robustly upregulated in the nerves of the tKO. Hdac9 is also upregulated, although much less, in the cKO7 and cKO4 mice. This support the idea that Hdac9 gene is de novo expressed in response to the drop of class Ila Hdacs gene dose to allow myelination. Interestingly, Hdac9 is also induced in the nerves dKO;Jun_cKO (Figure 8G), probably as a response to the drop of class Ila Hdacs in Schwann cells that cannot over-express Hdac7 because of the absence of Jun.

To investigate the mechanisms that activate the expression of Hdac9 in the tKO nerves we focused our attention in the MEF2 family of transcription factors, as they regulate Hdac9 expression in other tissues (Di Giorgio et al., 2020; Haberland et al., 2007). Interestingly, we found MEF2D overexpressed and bound to the HDC9 promoter in the tKO nerves.

It has been shown that MEF2 transcriptional activity is blocked by class Ila HDACs (Haberland et al., 2007). Thus, other class Ila HDACs can theoretically block the expression of Hdac9 in control nerves. However, in the tKO, no class Ila Hdac is expressed in Schwann cells and a free of repression MEF2D might be able to induce Hdac9 gene expression. Supporting this view, we found much more H3K9Ac associated with the Hdac9 promoter in the tKO nerves.

Taken together, our data suggest that, the overexpressed and unpressed promoter-bound MEF2D transcription factor, induces the de novo expression of Hdac9 in the Schwann cells of the tKO mice (Figure 10).

Although adult tKO nerves have morphologically normal myelin, RNA-seq analysis showed 1270 genes differently expressed, the most robustly changed genes being upregulated. This suggests a predominantly gene repressive function for class Ila HDACs in Schwann cells, as is the case for other cell types (Parra, 2015; Parra and Verdin, 2010). The most robustly upregulated gene in these mice was Tyrp1, a gene involved in the stabilization of tyrosinase and the synthesis of melanin. Strikingly, we did not find expression of the tyrosinase gene in these nerves, suggesting a different role for Tyrp1. In fact, our data show that Tyrp1 mRNA is not translated into protein (Figure 2—figure supplement 1D). It has been shown that Tyrp1 mRNA indirectly promotes melanoma cell proliferation by sequestering miR-16 (Gautron et al., 2021; Gilot et al., 2017). Whether Tyrp1 mRNA is also responsible for the increased cell proliferation of Schwann cells in the tKO nerve is something that needs to be clarified in the future.

It has been previously shown that a subgroup of melanocytes are formed from Schwann cell precursor cells (Adameyko et al., 2009). Because Mpz-Cre is already expressed by SCPs, our data points toward a role for class Ila HDACs in the repression of genes of the melanocytic lineage in these cells. Interestingly, it has been previously suggested that axonal derived signals repress SCP from going into the melanocytic lineage (Graham, 2009). Thus, our data suggest that these signals are not properly interpreted by tKO Schwann cells, precluding them to repress several melanocytic lineage genes. Notably, we found that melanocyte lineage genes are still expressed by the Remak Schwann cells of the adult tKO nerves. This misexpression could be in the origin of the alterations in the segregation of small size axons at the Remak bundles, a defect that remains during the whole life of the animal.

We also show that class Ila Hdacs removal delays remyelination after a nerve crush injury. Importantly, tKO Schwann cells are efficiently reprogramed into the repair phenotype and myelin clearance is even more efficient than in control nerves, ruling out a problem in debris removal as the cause of remyelination delay. Although we do not know why myelin clearance is accelerated, it is worthy to mention that no increased autophagy markers neither macrophage numbers could be found in the tKO nerves. If myelin clearance is accelerated because changes in the rate axon degeneration or in ovoid formation is something that needs to be clarified in future experiments.

Genome-wide transcriptomic analysis of the injured tKO nerves showed that the number of differentially expressed genes increases after crush, and is maximum at 20 dpi. Many genes are robustly upregulated, particularly at 1 and 20 dpi, supporting further the idea that the main role of class Ila HDACs in Schwann cells is to repress gene expression. This agrees with the role of this family of deacetylases in other contexts (Chang et al., 2004; Chang et al., 2006; Parra and Verdin, 2010) where they work mainly as corepressors of transcription factors such as MEF2 and RUNX2 (Bialek et al., 2004; Potthoff et al., 2007b; Vega et al., 2004). Importantly, among the upregulated genes in

DOI: https://doi.org/10.7554/eLife.72917
Figure 10. A graphical summary of the proposed model: In wild-type nerves (WT), the expression of Hdac4, Hdac5, and Hdac7 allows myelin formation and blocks the expression of Hdac9. The removal of Hdac5 (control) has no effects on myelination neither Hdac9 expression. In the nerves of the dKO, JUN induces the compensatory overexpression of HDac7, allowing delayed myelination but having no effect on Hdac9 gene expression. The simultaneous elimination of Hdac4, Hdac5, and Hdac7 (tKO) induces the overexpression of Mef2d, which binds to the promoter and induce the compensatory expression of Hdac9, which after a long delay induces myelination.
the tKO injured nerves we found Jun, Runx2, Gdnf, Ngfr, and Sox2, all expressed by nonmyelinating and repair Schwann cells. We also found Pou3f1 overexpressed in the tKO nerves. It has been shown that Pou3f1 overexpression delays PNS myelination (Ryu et al., 2007). Thus, Pou3f1 misexpression may also contribute to the delayed myelination of the tKO nerve both during development and after injury.

In a simplistic model, the failure of class Ila HDACs to downregulate Jun could indirectly induce the expression of other negative regulators of myelination controlled by this transcription factor. However, class Ila HDACs could also directly repress the expression of other negative regulators of myelination. To explore this idea, we performed a genome-wide mapping of genes that are direct targets of HDAC4. Importantly, we confirmed our previous results showing that HDAC4 binds to the promoters of Jun, Runx2, and Gdnf in Schwann cells (Gomis-Coloma et al., 2018). We found that HDAC4 also binds to the promoters of many other genes including other negative regulators of myelination such as Sox2, Id2, and Hey2. Interestingly, HDAC4 also binds to the promoter of Pou3f1. Thus, the direct repressive effect of class Ila HDACs is not circumscribed to Jun but is much wider, supporting the view that they work as a cAMP-regulated blocking hub for repressors of myelination.

Surprisingly, we found that HDAC4 is also bound to the promoter of Mbp and Hmgcr, two genes that are actively expressed during myelination. HDACs are usually bound to repressed genes and replaced by histone acetyl transferases (HATs) upon gene activation. However, it has been shown that class I HDACs are also bound, together with HAT, to the promoter regions of actively transcribed genes (Wang et al., 2009). Interestingly, the histones associated with these promoters are heavily acetylated, what makes these authors to propose that one function of HDACs is to remove the acetyl groups added by HATs in active genes to reset chromatin modification after gene activation. Although class Ila HDACs have no deacetylase activity, they recruit class I HDACs by forming a complex with NCO1 and SMRT. Thus, the possibility exists that class Ila and class I HADCs have a similar role when bound to the promoter of highly active genes in myelinating Schwann cells.

In summary, the data presented in this manuscript unveil responsive backup circuits mediated by the transcription factors JUN and MEF2D, that coordinate genetic compensatory mechanisms within class Ila Hdacs, aimed at repressing the expression of negative regulators of myelination to ensure differentiation of Schwann cells in response to cAMP, and the generation of the myelin sheath during development and after nerve injury.

Materials and methods

Animal studies

All animal work was conducted according to European Union guidelines and with protocols approved by the Comité de Bioética y Bioseguridad del Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche and Consejo Superior de Investigaciones Científicas (http://in.umh-csic.es/). Reference number for the approved protocol was 2017/VSC/PEA/00022 tipo 2.

To avoid suffering, animals were sacrificed by cervical dislocation. The Mpz-cre mouse line is described in Feltri et al., 1999. Mpz-cre−/− littermates were used as controls. Hdac4 floxed mice are described in Lehmann et al., 2018 and Potthoff and Olson, 2007a. The Hdac5 KO mouse line is described in Chang et al., 2004. Hdac7 floxed mice are described in Chang et al., 2006. The Jun_OE and Jun_cKO mouse lines are described in Fazal et al., 2017 and Parkinson et al., 2008. MGI ID can be found online (Key Resources Table). Experiments used mice of either sex on the C57BL/6 background.

Plasmids

The luciferase reporter plasmid was generated by cloning the mouse Hdac7 promoter into the Nhel site of pGL4 Luciferase reporter plasmid (Promega). The mouse Hdac7 promoter was amplified using Platinum SuperFi II DNA Polymerase (12361010, Thermo Fisher Scientific) and primers described online (Key Resources Table). The plasmid pCMV-Jun was a gift of Dr Marta Giralt (Universitat de Barcelona).
Reporter activity assays

HEK293 cells were transfected with the indicated constructs and then lysed. Their luciferase activity was determined with the Luciferase Assay System (Promega) using the manufacturer’s recommendations.

Cell cultures

Schwann cells were cultured from sciatic nerves of neonatal rats as described previously (Brockes et al., 1979) with minor modifications. We used P3–P4 Wistar rat pups. The sciatic nerves were cut out from just below the dorsal root ganglia and at the knee area. During the extraction and cleaning,

the nerves were introduced into a 35-mm cell culture dish containing 2 ml of cold Leibovitz’s F-15 medium (Gibco) placed on ice. The nerves were cleaned, desheathed, and placed in a new 35-mm cell culture dish containing Dulbecco’s Modified Eagle Medium (DMEM) with GlutaMAX and 4.5 g/l glucose (Gibco), with 1 mg/ml of collagenase A (Roche). Subsequently, they were cut into very small pieces using a scalpel and left in the incubator for 2 hr. Nerve pieces were homogenized using a 1-ml pipette, digestion reaction stopped with complete medium, and the homogenate poured through a 40 μm Falcon Cell Strainer (Thermo Fisher Scientific). We then centrifuged the homogenate at 210 × g for 10 min at room temperature and resuspended the pellet in complete medium supplemented with 10 μM of cytosine-β-D-arabinofuranoside (Sigma-Aldrich) to prevent fibroblast growth. The resuspended cells were then introduced into the poly-L-lysine-coated 35-mm cell culture dishes. After 72 hr, the medium was removed and cell cultures expanded in DMEM supplemented with 3% fetal bovine serum, 5 μM forskolin, and 10 ng/ml recombinant NRG1 (R&D Systems). Where indicated, cells were incubated in SATO medium (composed of a 1:1 mixture of DMEM and Ham’s F12 medium [Gibco] supplemented with ITS [1:100; Gibco]), 0.1 mM putrescine, and 20 nM of progesterone (Bottenstein and Sato, 1979). HEK 293 cells were obtained from Sigma-Aldrich (Cat# 85120602). The cells were grown in noncoated flasks with DMEM GlutaMAX, 4.5 g/l glucose (Gibco) supplemented with 100 U/ml penicillin, 100 U/ml streptomycin, and 10% bovine fetal serum. Cells were transfected with plasmid DNA using Lipofectamine 2000 (Thermo Fisher Scientific) following the manufacturer’s recommendations.

Nerve injury

Mice were anesthetized with 2% isoflurane. To study nerve regeneration and remyelination (axonal regrowth inside the distal stump) we performed a nerve crush injury model. Briefly, the sciatic nerve was exposed at the sciatic notch and crushed three times for 15 s with three different rotation angles using angled forceps. To study the repair Schwann cell phenotype activation and myelin clearance, we performed a nerve cut to avoid nerve regeneration inside the distal stump. In this case, the sciatic nerve was exposed and cut at the sciatic notch using scissors. The wound was closed using veterinary autoclips (AutoClip System). The nerve distal to the cut or crush was excised for analysis at various time points after euthanasia. Contralateral uninjured sciatic nerves were used as controls. For Western blotting and mRNA extraction we used the first 8 mm of the distal stump of crush injured nerves, and 1 or 3 cm of the control nerve, respectively. For electron microscopy we used the first 5.5 mm of the distal stump of crush or cut injured nerves.

Myelin clearance

Intact myelin sheaths were counted using transverse toluidine blue stained semithin sections (2 μm) of sciatic nerve at 5 mm from the nerve cut injury site. Whole nerve merged images were taken with a ×63 objective using a Leica Thunder Tissue Imager and quantified with ImageJ software.

mRNA detection and quantification by RT-qPCR

Total mRNA from uninjured or injured sciatic nerves was extracted using TRI reagent/chloroform (Sigma-Aldrich) and the mRNA was purified using a NucleoSpin RNA mini kit (Macherey-Nagel), following the manufacturer’s recommendations. RNA quality and concentration were determined using a nanodrop 2000 machine (Thermo). Genomic DNA was removed by incubation with RNase free DNase I (Thermo Fisher Scientific), and 500 ng RNA was primed with random hexamers (Invitrogen) and retrotranscribed to cDNA with Super Script II Reverse transcriptase (Invitrogen). Control reactions were performed omitting retrotranscriptase. qPCR was performed using an Applied Biosystems QuantStudio 3 Real Time PCR System and 5× PyroTaq EvaGreen qPCR Mix Plus (CMB). To avoid
genomic amplification, PCR primers were designed to fall into separate exons flanking a large intron wherever possible. A list of the primers used can be found online (Key Resources Table). Reactions were performed in duplicates of three different dilutions, and threshold cycle values were normalized to the housekeeping gene 18S. The specificity of the products was determined by melting curve analysis. The ratio of the relative expression for each gene to 18S was calculated by using the $2^{-\Delta\Delta CT}$ formula. Amplicons were of similar size (≈100 bp) and melting points (≈85°C). Amplification efficiency for each product was confirmed by using duplicates of three dilutions for each sample.

RNA sequencing analysis

Total RNA was isolated using the NucleoSpin RNA, Mini kit for RNA purification (Macherey-Nagel). The purified mRNA was fragmented and primed with random hexamers. Strand-specific first-strand cDNA was generated using reverse transcriptase in the presence of actinomycin D. The second cDNA strand was synthesized using dUTP in place of dTTP to mark the second strand. The resultant cDNA was then ‘A-tailed’ at the 3-end to prevent self-ligation and adapter dimerization. Truncated adaptors containing a T overhang were ligated to the A-tailed cDNA. Successfully ligated cDNA molecules were then enriched with limited cycle PCR (10–14 cycles). Libraries to be multiplexed in the same run were pooled in equimolar quantities. Samples were sequenced on the NextSeq 500 instrument (Illumina). Run data were demultiplexed and converted to fastq files using Illumina’s bcl2fastq Conversion Software version 2.18 on BaseSpace. Fastq files were aligned to the reference genome (Mouse [GRCm38/Ensembl release 95] and analyzed with Artificial Intelligence RNA-SEQ [A.I.R.] software from Sequentia Biotech [https://www.sequentiabiotech.com/]).

Antibodies

Immunofluorescence antibodies: JUN (Cell Signaling Technology, rabbit 1:800), Ki67 (Abcam, rabbit 1:100), L1 (Chemicon International, rat 1:50), MCAM (Origene, rabbit 1:200), MPZ (AvesLab, chicken 1:1000), NGFR (Thermo Fisher Scientific, mouse 1:100), SOX10 (R and D Systems, goat 1:100), donkey anti-goat IgG (H + L) Alexa Fluor 555 conjugate (Molecular Probes, 1:1000), donkey anti-rabbit IgG (H + L) Alexa Fluor 488 conjugate (Molecular Probes, 1:1000), donkey anti-chicken IgG (H + L) Alexa Fluor 488 conjugate (Jackson ImmunoResearch Labs, 1:1000), goat anti-rat IgG (H + L) Alexa Fluor 555 conjugate (Molecular Probes, 1:1000), Cy3 donkey anti-mouse IgG (H + L) (Jackson Immunoresearch, 1:500), and Cy3 donkey anti-rabbit IgG (H + L) (Jackson Immunoresearch, 1:500).

Antibodies used for Western blotting: CALNEXIN (Enzo Life Sciences, rabbit 1:1000), JUN (Cell Signaling Technology, rabbit 1:1000), GAPDH (Sigma-Aldrich, rabbit 1:5000), HDAC5 (Santa Cruz, mouse 1:500), KROX-20 (Millipore, rabbit 1:500), MCAM (Origene, rabbit 1:1000), MPZ (AvesLab, chicken 1:1000), NGFR (Covance, rabbit 1:1000), TYRP1 (Sigma-Aldrich, rabbit 1:1000), IgY anti-chicken HRP-linked (Sigma-Aldrich, 1:2000), IgG anti-mouse and IgG anti-rabbit HRP-linked (Cell Signaling Technology, 1:2000). A list of the antibodies used can be found online (Key Resources Table).

Immunofluorescence

For immunofluorescence, mice were sacrificed by cervical dislocation and fresh frozen tissue was embedded in OCT (Sakura, 4583). Cryosections were cut at 10 μm on Superfrost Plus slides (Thermo Scientific, J1800AMNZ). Sections were thawed and fixed with 4% paraformaldehyde (PFA) for 5 min at room temperature. Then, samples were washed 3× in phosphate-buffered saline (PBS) 1× and immersed in 50% acetone, 100% acetone and 50% acetone for 2 min each. Then samples were washed 3× in PBS 1× and blocked in 5% donkey serum 0.1% bovine serum albumin (BSA) in PBS for 1 hr. Samples were incubated with the appropriate primary antibodies diluted in blocking solution overnight at room temperature. A list of the antibodies used can be found online (Key Resources Table). Samples were washed and incubated with secondary antibodies and DAPI in blocking solution for 1 hr at room temperature. Samples were mounted in Fluoromont G. Images were obtained at room temperature using a confocal ultraspectral microscope (Vertical Confocal Microscope Leica SPEII) with a ×63 Leica objective and using Leica LAS X software. Images were analyzed with ImageJ software.

EM studies

Mice were sacrificed by cervical dislocation and sciatic nerve were exposed and fixed by adding fixative solution (2% PFA [15710, Electron Microscopy Sciences], 2.5% glutaraldehyde [16220, Electron
Microscopy Sciences), 0.1 M cacodylate buffer, pH = 7.3 (12300, Electron Microscopy Sciences) for 15 min. Afterwards, the nerve was removed and placed in same fixative solution overnight at 4°C. Then, the nerve was washed in 0.1 M cacodylate buffer 3× for 15 min each. Then, the nerve was osmi
cated by adding 1% osmium tetroxide, 0.1 M cacodylate buffer, pH = 7.3 for one and half hour at 4°C. Then, the nerve was washed 2× with dd H₂O for 15 min each. Samples were dehydrated by washing progressively in: 25% ethanol for 5 min, 50% ethanol for 5 min, 70% ethanol for 5 min, 90% ethanol for 10 min, 100% ethanol for 10 min (×4), propylene oxide for 10 min (×3). They were then changed into a 50:50 mixture of Agar 100 resin:propylene oxide for 1 hr at RT. The final change was into a 75:25 mixture of Agar 100 resin:propylene for 2 hr at RT. Nerves were blocked in resin and left shaking O/N at RT. These nerves were re-blocked the following day with fresh resin for 2 hr at RT. The nerves were finally embedded in fresh resin and left in the oven for 24 hr at 65°C. Transverse ultrathin sections from nerves were taken 5 mm from the sciatic notch and mounted on film (no grid bars). Images were taken using a Jeol 1010 electron microscope with a Gatan camera analyzed with ImageJ software.

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and immunoblotting

Sciatic nerves were homogenized at 4°C in RIPA buffer (PBS, 1% Nonidet P-40, 0.5% sodium deoxy
cholate, 0.1% sodium dodecyl sulfate SDS, and 5 mM EGTA) containing protease inhibitors (Mini Protease Inhibitor Cocktail; Sigma-Aldrich) and phosphatase inhibitors (Phosphatase Inhibitor Mini Tablets; Fisher Scientific). We homogenized the tissue using Bullet Blender Homogenizer BBX24-CE (Next Advance) and then sonicated for 4 min (30 s on/off) using a Bioruptor Pico (Diagenode). Protein concentrations were determined by the BCA method (Thermo Scientific). 10 μg of total protein was subjected to SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and blotted on to Protran nitrocel
lulose membrane (Amersham Biosciences). Membranes were blocked using 5% milk (Sigma-Aldrich) in TBS 1% and incubated for 16 hr at 4°C with the indicated primary antibody, washed and incubated with secondary antibodies, and developed with ECL Prime (Amersham). Antibodies used can be found online (Key Resources Table). We used an Amersham Imager 680 machine (Amersham) for visualization. Measurements from the proteins of interest were normalized to loading control GAPDH and/or CALNEXIN. When normalized to both loading controls, a mean between the normalization with GAPDH and the normalization with CALNEXIN was used for analysis. The whole membrane Western blot images are shown in source data file four online.

ChiP assays

ChiP: The ChiP assay was a modification of the method described by Jang et al., 2006. Schwann cell cultures were incubated in PBS/1% PFA for 10 min at room temperature, harvested by centrifugation (1000 × g, 5 min, 4°C) and washed with PBS. The pellet was resuspended in 1 ml of buffer A (50 mM HEPES–KOH, pH 8.1, 1 mM EDTA, 0.5 mM EGTA, 140 mM NaCl, 10% glycerol, 0.5% NP40, 0.25% Triton X-100, and protease inhibitors), homogenized, and sonicated (15 pulses of 30 s separated) in a Bioruptor Pico (diagenode). Chromatin was clarified by centrifugation at 17,000 × g for 3 min at room temperature. Protein concentration in the supernatant was quantified by the BCA method (Thermo Scientific). An aliquot was saved as input. The volume corresponding to 60–100 μg of protein was incubated with the corresponding antibody and Dynabeads Protein G (Life Technologies) overnight at 4°C to form immunocomplexes. For in vivo ChiP, freshly dissected uninjured and injured nerves were incubated in PBS/1% PFA for 10 min at room temperature and then lysed in 200 µl of buffer A, using Bullet Blender Homogenizer BBX24-CE (Next Advance). Nuclei were harvested by centrifugation (10,000 × g, 5 min, 4°C) and washed with 1 ml of buffer B (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 200 mM NaCl and protease inhibitors), and sonicated (15 pulses of 30 s separated) in a Bioruptor Pico (diagenode). Chromatin was clarified by centrifugation at 17,000 × g for 3 min at room temperature. Protein concentration in the supernatant was quantified by the BCA method (Thermo Scientific). An aliquot was saved as input. The volume corresponding to 200–300 μg of protein was incubated with the corresponding antibody and Dynabeads Protein G (Life Technologies) overnight at 4°C to form immunocomplexes. In both cases, immune complexes were centrifuged (500 × g, 3 min) and washed twice with 1 ml of ‘low-salt buffer’ (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, pH 8.1, 150 mM NaCl, and protease inhibitors; Roche), and then washed once with 1 ml of ‘high-salt buffer’. The whole membrane Western blot images are shown in source data file four online.
buffer’ (the same but with 500 mM NaCl) and washed three times with 1 ml of LiCl buffer (0.25 M LiCl, 1% IGEPAL, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris, pH 8.1, and protease inhibitors). Chromatin from immunocomplexes and input was eluted with 200 μl of 1% SDS, 0.1 M NaHCO3, and 200 mM NaCl and incubated at 65°C for 6 hr (to break the DNA–protein complexes). DNA was purified using a column purification kit (GE Healthcare) and submitted to 5× PyroTaq EvaGreen qPCR Mix Plus (CMB) qPCR with the indicated primers.

The ChIP-Seq experiment was performed following a single-end sequencing strategy. High-quality reads were aligned against the reference genome (Rattus norvegicus (Rnor_6.0)) with Minimap2 (https://github.com/lh3/minimap2, version Minimap2-2.17 [r941]; RRID: SCR_018550). Read duplicates from the PCR amplification step in the sequencing process were removed with Picard tools (https://broadinstitute.github.io/picard/, version 2.23.8; RRID: SCR_006525) and only uniquely mapped reads were kept in the alignments. The uniquely mapped reads were filtered with SAMtools (http://www.htslib.org/) filtering by mapping quality ≥30. MACS2 (https://github.com/macs3-project/MACS, version 1.11; RRID:SCR_013291) was used for peak calling and the results were filtered by −log10 FDR > 3. To enable a more informative functional interpretation of experimental data, we identified genes close to or having ChIP-Seq tags on their sequence. ChIPseeker (http://bioconductor.org/packages/release/bioc/html/ChIPseeker.html) was used for this step. Rattus norvegicus (Rnor_6.0) was selected as annotation database (https://bioconductor.org/packages/release/data/annotation/html/TxDb.Rnorvegicus.UCSC.rn6.refGene.html).

In vivo recording of CAP from mouse sciatic nerves
Mice were deeply anesthetized by intraperitoneal injection of 40 mg/kg ketamine and 30 mg/kg xylazine. The whole length of the right sciatic nerve was then exposed from its proximal projection into the L4 spinal cord to its distal branches innervating gastrocnemius muscles: tibial, sural, and common peroneal. Extracellular recording of CAPs was carried out by placing the proximal part of the sciatic nerve on an Ag/AgCl recording electrode with respect to a reference electrode (Ag/AgCl) placed inside the contralateral paw of the animal. For electrical stimulation, another electrode was placed in the distal part of the sciatic nerve just before its trifurcation. To avoid nerve desiccation and the consequent axonal death, the nerve was continuously lubricated with paraffin oil (Panreac). To selectively activate Aβ-, Aδ-, and C-fibers, we recorded CAPs evoked by graded electrical stimulations (5, 8, 10, and 15 V intensity, 0.03-ms pulse duration, Grass Instruments S88, A-M Systems) with an AC amplifier (DAM 50, World Precision Instruments) and digitalized and stored at 25 kHz in a computer using a CED micro-1401 interface and Spike2 v.7.01 software (both from Cambridge Electronic Design). In the CAPs, different waveform components corresponding to A- (β and δ) and C-fiber activation were easily distinguished by latency. The amplitude of the different components and the mean NCV were measured. The amplitude of each component was measured from the maximum negative to the maximum positive deflection (Sdrulla et al., 2015). For NCV measurement, we divided the distance between the stimulating and recording electrodes by the latency to the CAP component with the biggest amplitude (Vleggeert-Lankamp et al., 2004). The distance between the stimulating and recording electrodes was measured for each experiment using an 8/0 suture thread.

Statistics
Values are given as means ± standard error (SE). Statistical significance was estimated with the Student’s t-test with or without Welch’s correction, one-way analysis of variance ANOVA with Tukey’s multiple comparisons test, mixed ANOVA with Bonferroni’s multiple comparisons test, chi-squared test and the Mann–Whitney U-test. A p value <0.05 was considered statistically significant. For the parametric tests (t-test and ANOVA), data distribution was assumed to be normal (Gaussian), but this was not formally tested. Analysis was performed using GraphPad software (version 6.0). Statistics for each experiment are described in more detail in the legends to figures.

Acknowledgements
We would like to thank C Morenilla-Palao for advice in ChIP and other molecular biology experiments. We thank L Wrabetz and L Feltri for Mpz-Cre mice and E Olson for Hdac mice. We also thank P Morenilla-Ayala for technical assistance. We thank Prof Rhona Mirsky, University College London and
Shaline Fazal, University of Cambridge, for insightful comments on the manuscript. This work has been funded by grants from the Ministerio de Economía y Competitividad (BFU2016-75864R and PID2019-109762RB-I00), ISABIAL (UGP18-257 and UGP-2019-128) to H Cabedo, and Conselleria Educación Generalitat Valenciana (PROMETEO 2018/114) to J Gallar and H Cabedo. Predoctoral fellowships ACIF/2 017/169 from Generalitat Valenciana (to L Frutos-Rincón) and FPU16/00283 from Ministerio de Universidades are also acknowledged. The Instituto de Neurociencias is a ‘Center of Excellence Severo Ochoa’ (Ministerio de Economía y Competitividad SEV-2013-0317). The authors declare no competing financial interests.

Additional information

Funding

Funder	Grant reference number	Author
Ministerio de Economía y Competitividad	BFU2016-75864R	Hugo Cabedo
Ministerio de Economía y Competitividad	PID2019-109762RB-I00	Hugo Cabedo
ISABIAL	UGP18-257	Hugo Cabedo
ISABIAL	UGP-2019-128	Hugo Cabedo
Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana	PROMETEO 2018/114	Juaana Gallar, Hugo Cabedo
Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana	ACIF/2 017/169	Laura Frutos-Rincón
Ministerio de Educación, Cultura y Deporte	FPU16/00283	Enrique Velasco
Wellcome Trust	206634/Z/17/Z	Peter Arthur-Farraj

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Author contributions

Sergio Velasco-Aviles, Nikiben Patel, Conceptualization, Investigation; Angeles Casillas-Bajo, Investigation, Project administration; Laura Frutos-Rincón, Enrique Velasco, Investigation; Juaana Gallar, Funding acquisition, Supervision, Validation, Writing – original draft; Peter Arthur-Farraj, Resources, Supervision, Writing – review and editing; Jose A Gomez-Sanchez, Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Supervision, Validation, Writing – original draft, Writing – review and editing; Hugo Cabedo, Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Writing – original draft, Writing – review and editing

Author ORCIDs

Sergio Velasco-Aviles: http://orcid.org/0000-0002-9672-2264
Nikiben Patel: http://orcid.org/0000-0002-0129-7622
Laura Frutos-Rincón: http://orcid.org/0000-0002-0768-3735
Enrique Velasco: http://orcid.org/0000-0001-7299-0750
Juaana Gallar: http://orcid.org/0000-0002-3559-3649
Peter Arthur-Farraj: http://orcid.org/0000-0002-1239-9392
Jose A Gomez-Sanchez: http://orcid.org/0000-0002-6746-1800
Hugo Cabedo: http://orcid.org/0000-0002-1322-6290

Ethics

All animal work was conducted according to European Union guidelines and with protocols approved by the Comité; de Bioética y Bioseguridad del Instituto de Neurociencias de Alicante, Universidad
All data generated or analysed during this study are included in the manuscript and supporting file.

Data availability

References

Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Müller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usofskin D, Suter U, Birchmeier C, Ernfors P. 2009. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139:366–379. DOI: https://doi.org/10.1016/j.cell.2009.07.049, PMID: 19837037

Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M,icher GK, Mitter R, Greensmith L, Behrens A, Raivich G, Mirsky R, Jessen KR. 2012. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647. DOI: https://doi.org/10.1016/j.neuron.2012.06.021, PMID: 22920255

Arthur-Farraj PJ, Morgan CC, Adamowicz M, Gomez-Sanchez JA, Fazal SV, Beucher A, Razzaghi B, Mirsky R, Jessen KR, Aitman TJ. 2017. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury. Cell Reports 20:2719–2734. DOI: https://doi.org/10.1016/j.celrep.2017.08.064, PMID: 28903050

Blalek P, Kern B, Yang X, Schroock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G. 2004. A twist code determines the onset of osteoblast differentiation. Developmental Cell 6:423–435. DOI: https://doi.org/10.1016/s1534-5807(04)00058-9, PMID: 15030764

Bottenstein JE, Sato GH. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. PNAS 76:514–517. DOI: https://doi.org/10.1073/pnas.76.1.514, PMID: 284369

Brockes JP, Fields KL, Raff MC. 1979. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Research 165:105–118. DOI: https://doi.org/10.1016/0006-8993(79)90048-9, PMID: 371755

Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. 2004. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Molecular and Cellular Biology 24:8467–8476. DOI: https://doi.org/10.1128/MCB.24.19.8467-8476.2004, PMID: 15367668

Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN. 2006. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334. DOI: https://doi.org/10.1016/j.cell.2006.05.040, PMID: 16873063

Di Giorgio E, Dalla E, Franforte E, Paluvi H, Minisini M, Trevisanut M, Picco R, Brancolini C. 2020. Different class Ila HDACs repressive complexes regulate specific epigenetic responses related to cell survival in leiomyosarcoma cells. Nucleic Acids Research 48:646–664. DOI: https://doi.org/10.1093/nar/gkz1120, PMID: 31754707

El-Brolosy MA, Stainier DRY. 2017. Genetic compensation: A phenomenon in search of mechanisms. PLOS Genetics 13:e1006780. DOI: https://doi.org/10.1371/journal.pgen.1006780, PMID: 28704371

Fazal SV, Gomez-Sanchez JA, Wagstaff LJ, Musner N, Otto G, Janz M, Mirsky R, Jessen KR. 2017. Graded Elevation of c-Jun in Schwann Cells In Vivo: Gene Dosage Determines Effects on Development, Remyelination, Tumorigenesis, and Hypomyelination. The Journal of Neuroscience 37:12297–12313. DOI: https://doi.org/10.1523/JNEUROSCI.0986-17.2017, PMID: 29109239

Feltri ML, D’Antonio M, Previtali S, Fasolini M, Messing A, Wrabetz L. 1999. P0-Cre Transgenic Mice for Inactivation of Adhesion Molecules in Schwann Cells. Annals of the New York Academy of Sciences 883:116-123. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb08574.x, PMID: 29086916

Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR, Klein R, Raivich G, Behrens A. 2012. c-Jun in Schwann cells promotes axonal regeneration and
motoneuron survival via paracrine signaling. The Journal of Cell Biology 198:127–141. DOI: https://doi.org/10.1083/jcb.201205025, PMID: 22753894

Gautron A, Migault M, Bachelot L, Corre S, Galibert MD, Gilot D. 2021. Human TYRP1: Two functions for a single gene? Pigment Cell & Melanoma Research 34:836–852. DOI: https://doi.org/10.1111/pcmr.12951, PMID: 33305505

Gerber D, Pereira JA, Gerber J, Tan G, Dimitrieva S, Yángüez E, Suter U. 2021. Transcriptional profiling of mouse peripheral nerves to the single-cell level to build a sciatic nerve Atlases (SNATs). eLife 10:58591. DOI: https://doi.org/10.7554/eLife.58591

Gilot D, Migault M, Bachelot L, Journé F, Rogiers A, Donnou-Fournet E, Mogha A, Mouchet N, Pinel-Marie M-L, Mari B, Montier T, Corre S, Gautron A, Rambow F, El Hajj P, Ben Jouira R, Tartare-Deckert S, Marine J-C, Felden B, Ghanem G, et al. 2017. A non-coding function of TYRP1 mRNA promotes melanoma growth. Nature Cell Biology 19:1348–1357. DOI: https://doi.org/10.1038/ncb3623, PMID: 28991221

Gomez-Sanchez JA, Lujan R, Kessaris N, Richardson WD, Cabedo H. 2009. Sustained Axon–Glia Signaling Induces Schwann Cell Hyperproliferation, Remak Bundle Myelination, and Tumorigenesis. Journal of Neuroscience 29:11304–11315.

Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I, De Juan VG, Jefferies HBJ, Aspichueta P, Elortza F, Aransay AM, Martinez-Chantar ML, Baas F, Mato JM, Mirsky R, Woodhoo A, et al. 2015. Schwann cell autophagy, myelinogenesis, initiates myelin clearance from injured nerves. The Journal of Cell Biology 210:153–168. DOI: https://doi.org/10.1083/jcb.201503019, PMID: 26150392

Gomis-Coloma C, Velasco-Aviles S, Gomez-Sanchez JA, Casillas-Bajo A, Backs J, Cabedo H. 2018. Class IIa histone deacetylases link cAMP signaling to the myelin transcriptional program of Schwann cells. The Journal of Cell Biology 217:1249–1268. DOI: https://doi.org/10.1083/jcb.201611150, PMID: 29472387

Graham A. 2009. Melanocyte production: dark side of the Schwann cell. Current Biology 19:R1116–R1117. DOI: https://doi.org/10.1016/j.cub.2009.09.063, PMID: 20064420

Haberland M, Arnold MA, McAnally J, Phan D, Kim Y, Olson EN. 2007. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Molecular and Cellular Biology 27:518–525. DOI: https://doi.org/10.1128/MCB.01415-06, PMID: 17101791

Jacob C, Christen CN, Pereira JA, Somandin C, Baggioni A, Lötischer P, Ozelik M, Tricaud N, Meijer D, Yamaguchi T, Matthias P, Suter U. 2011. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nature Neuroscience 14:429–436. DOI: https://doi.org/10.1038/nn.2762, PMID: 21423190

Jang SW, LeBlanc SE, Roopra A, Wrabetz L, Svaren J. 2006. In vivo detection of Egr2 binding to target genes during peripheral nerve myelination. Journal of Neurochemistry 98:1678–1687. DOI: https://doi.org/10.1111/j.1471-4159.2006.04069.x

Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nature Reviews. Neuroscience 6:671–682. DOI: https://doi.org/10.1038/nrn1746, PMID: 16136171

Jessen KR, Mirsky R. 2019. The Success and Failure of the Schwann Cell Response to Nerve Injury. Frontiers in Cellular Neuroscience 13:1–14. DOI: https://doi.org/10.3389/fncel.2019.00033, PMID: 30804758

Kafri R, Levy M, Pilpel Y. 2006. The regulatory utilization of genetic redundancy through responsive backup circuits. PNAS 103:11653–11658. DOI: https://doi.org/10.1073/pnas.0604883103, PMID: 16861297

Lehmann LH, Jebsa HH, Kreussler MM, Horsch A, He T, Kronlage M, Dzwender M, Sramek V, Oehl U, Krebs-Haupenthal J, von der Lieth AK, Schmidt A, Sun Q, Ritterhoff J, Finke D, Völkers M, Jungmann A, Sauer SW, Thiel C, Nickel A, et al. 2018. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nature Medicine 24:62–72. DOI: https://doi.org/10.1038/nm.4452, PMID: 29227474

Ma KH, Hung HA, Svaren J. 2016. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. The Journal of Neuroscience 36:9135–9147. DOI: https://doi.org/10.1523/JNEUROSCI.1740-16.2016, PMID: 27581455

Materna SC, Sinha T, Barnes RM, Lammers van Buuren K, Black BL. 2019. Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Developmental Biology 445:170–177. DOI: https://doi.org/10.1016/j.ydbio.2018.12.002, PMID: 30521808

Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, Moens CB, Talbot WS. 2009. A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science (New York, N.Y.) 325:1402–1405. DOI: https://doi.org/10.1126/science.1173474, PMID: 19745155

Monk KR, Oshima K, Jörs S, Heller S, Talbot WS. 2011. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development (Cambridge, England) 138:2673–2680. DOI: https://doi.org/10.1242/dev.062224, PMID: 21613327

Monk KR, Feltri ML, Tavoglia C. 2015. New insights on Schwann cell development. Glia 63:1376–1393. DOI: https://doi.org/10.1002/glia.22852, PMID: 25921593

Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltre ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR. 2008. c-Jun is a negative regulator of myelination. The Journal of Cell Biology 181:625–637. DOI: https://doi.org/10.1083/jcb.200803013, PMID: 18490512

Parra M, Verdin E. 2010. Regulatory signal transduction pathways for class IIa histone deacetylases. Current Opinion in Pharmacology 10:454–460. DOI: https://doi.org/10.1016/j.coph.2010.04.004, PMID: 20447866

Parra M. 2015. Class IIa HDACs - new insights into their functions in physiology and pathology. The FEBS Journal 282:1736–1744. DOI: https://doi.org/10.1111/febs.13061, PMID: 25244360
Peng J. 2019. Gene redundancy and gene compensation: An updated view. *Journal of Genetics and Genomics* 46:329–333. DOI: https://doi.org/10.1016/j.jgg.2019.07.001, PMID: 31377237

Poitelon Y, Kopec AM, Belin S. 2020. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. *Cells* 9:812. DOI: https://doi.org/10.3390/cells9040812, PMID: 32230947

Potthoff MJ, Olson EN. 2007a. MEF2: a central regulator of diverse developmental programs. *Development (Cambridge, England)* 134:4131–4140. DOI: https://doi.org/10.1242/dev.008367, PMID: 17959722

Potthoff MJ, Olson EN, Bassel-Duby R. 2007b. Skeletal muscle remodeling. *Current Opinion in Rheumatology* 19:542–549. DOI: https://doi.org/10.1097/BOR.0b013e3282ebf761, PMID: 17917533

Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Richardson JA, Bassel-Duby R, Olson EN. 2007c. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. *The Journal of Clinical Investigation* 117:2459–2467. DOI: https://doi.org/10.1172/JCI31960, PMID: 17786239

Quintes S, Brinkmann BG, Ebert M, Fröb F, Kungl T, Arlt FA, Tarabykin V, Hylebroeck D, Meijer D, Suter U, Wegner M, Sereda MW, Nave KA. 2016. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. *Nature Neuroscience* 19:1050–1059. DOI: https://doi.org/10.1038/nn.4321, PMID: 27294512

Raser JM. 2010. Noise in Gene Expression: Science. *Science (New York, N.Y.)* 2010:2010–2014. DOI: https://doi.org/10.1126/science.1105891

Ryu EJ, Wang JYT, Le N, Baloh RH, Gustin JA, Schmidt RE, Milbrandt J. 2007. Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss. *The Journal of Neuroscience* 27:11552–11559. DOI: https://doi.org/10.1523/JNEUROSCI.5497-06.2007, PMID: 17959798

Sabourin LA, Rudnicki MA. 2000. Developmental Biology: Frontiers for Clinical Genetics The molecular regulation of myogenesis. *Clinical Genetics* 57:16–25. DOI: https://doi.org/10.1034/j.1399-0004.2000.570103.x, PMID: 10733231

Sdrulla AD, Xu Q, He SQ, Tiwari V, Yang F, Zhang C, Shu B, Schechter R, Raja SN, Wang Y, Dong X, Guan Y. 2015. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. *Pain* 156:1008–1017. DOI: https://doi.org/10.1097/j.pain.0000460353.15460.a3, PMID: 25974163

Stassart RM, Woodhoo A. 2021. Axo-glial interaction in the injured PNS. *Developmental Neurobiology* 81:490–506. DOI: https://doi.org/10.1002/dneu.22771, PMID: 32628805

Vega R, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN. 2004. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. *Cell* 119:555–566. DOI: https://doi.org/10.1016/j.cell.2004.10.024, PMID: 15537544

Vleeggeert-Lankamp CLAM, van den Berg RJ, Feirabend HKP, Lakke EAJF, Malessy MJA, Thomeer RTWM. 2004. Electrophysiology and morphometry of the Aalpha- and Abeta-fiber populations in the normal and regenerating rat sciatic nerve. *Experimental Neurology* 187:337–349. DOI: https://doi.org/10.1016/j.expneurol.2004.01.019, PMID: 15144860

Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K. 2009. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. *Cell* 138:1019–1031. DOI: https://doi.org/10.1016/j.cell.2009.06.049, PMID: 19698979
Appendix 1—key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (Mus musculus, male and female)	cKO4 mouse	Potthoff and Olson, 2007a	Hdac4<tm2.Tms>	C57BL/6 background, RRID: MGI:4418117
Strain, strain background (Mus musculus, male and female)	KO5 mouse	Chang et al., 2004	Hdac5<tm1.Tms>	C57BL/6 background, RRID: MGI:3693628
Strain, strain background (Mus musculus, male and female)	cKO7 mouse	Chang et al., 2006	Hdac7<tm1.Tms>	C57BL/6 background, RRID: MGI:3693622
Strain, strain background (Mus musculus, male and female)	Jun_OE mouse	Fazal et al., 2017	Gt(Rosa)26Sort<tm15(Jun)Rsky>	C57BL/6 background, RRID: MGI:6478892
Strain, strain background (Mus musculus, male and female)	Jun_cKO mouse	Behrens et al. (2002)	Jun<tm4.Wag>	C57BL/6 background, RRID: MGI:2445420
Strain, strain background (Mus musculus, male and female)	Mpz<Cre/+>	Jackson Laboratory	B6N.FVB-Tg(Mpz-cre)26Mes/J	C57BL/6 background, RRID: IMSR_JAX:017927
Antibody	anti- CANELXIN (rabbit polyclonal)	Enzo Life Sciences	Cat# ADI-SPA-860-D; RRID: AB_2038898	WB (1:1000)
Antibody	anti- JUN (rabbit monoclonal)	Cell Signaling	Cat# AB9165; RRID: AB_2130165	WB (1:1000), IF (1:800)
Antibody	anti- KROX-20 (rabbit polyclonal)	Millipore	Cat# AB1374; RRID: AB_271555	WB (1:500)
Antibody	anti- K67 (rabbit polyclonal)	Abcam	Cat# ab15580; RRID: AB_443209	IF (1:100)
Antibody	anti- F4/80 (rat monoclonal)	BioRad	Cat# MCA497GA; RRID: AB_323806	IF (1:100)
Antibody	anti- GAPDH (rabbit polyclonal)	Sigma-Aldrich	Cat# G9545; RRID: AB_796208	WB (1:5000)
Antibody	anti- HDAC4 (mouse monoclonal)	Sigma-Aldrich	Cat# H0163; RRID: AB_477042	ChIP (10 mg)
Antibody	anti- HDAC5 (mouse monoclonal)	Santa Cruz	Cat# sc-133106; RRID: AB_2116793	WB (1:1500)
Antibody	anti- IgG2a (mouse monoclonal)	Sigma-Aldrich	Cat# M7679; RRID: AB_1163540	ChIP (10 mg)
Antibody	anti- L1 (rat monoclonal)	Chemicon International	Cat# MAB272; RRID: AB_2133200	IF (1:50)
Antibody	anti- LC3B (rabbit polyclonal)	Sigma-Aldrich	Cat# L7543; RRID: AB_796155	WB (1:1000)
Antibody	anti- MCAM (rabbit monoclonal)	Origene	Cat# TA303592; RRID: AB_2143390	WB (1:1000), IF (1:200)
Antibody	anti- MPZ (chicken polyclonal)	AvesLab	Cat# PZ0, RRID: AB_2313561	WB (1:1000), IF (1:1000)

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Antibody	anti-p75NTR (NGFR) (rabbit polyclonal)	Covance	Cat# PRB-602C, RRID:AB_291707	WB (1:1000)
Antibody	anti-NGFR (mouse monoclonal)	Thermo Fisher Scientific	Cat# MAS-13314; RRID:AB_10982037	IF (1:100)
Antibody	anti-SOX10 (goat polyclonal)	R&D Systems	Cat# AF2864; RRID:AB_442208	IF (1:100)
Antibody	anti-TYRP1 (rabbit polyclonal)	Sigma-Aldrich	Cat# SAB102617; RRID:AB_10611135	WB (1:1000)
Antibody	anti-Rabbit IgG, HRP-linked (goat polyclonal)	Cell Signaling	Cat# 7074; RRID:AB_2099233	WB (1:2000)
Antibody	anti-Chicken IgY (IgG) (rabbit polyclonal)	Cell Signaling	Cat# 7076; RRID:AB_330924	WB (1:2000)
Antibody	Cy3 anti-Rabbit IgG (H + L) (donkey polyclonal)	Jackson Immuno Research Labs	Cat# 711-165-152; RRID:AB_2307443	IF (1:500)
Antibody	anti-Goat Alexa 555 Conjugated (donkey polyclonal)	Molecular Probes - Thermo Fisher	Cat# A21432; RRID:AB_2535853	IF (1:1000)
Antibody	anti-Rabbit Alexa 488 Conjugated (donkey polyclonal)	Molecular Probes - Thermo Fisher	Cat# A21206; RRID:AB_2535792	IF (1:1000)
Antibody	anti-Chicken Alexa 488 Conjugated (donkey polyclonal)	Jackson Immuno Research Labs	Cat# 703-545-155; RRID:AB_2340375	IF (1:1000)
Antibody	anti-Rat Alexa 488 Conjugated (donkey polyclonal)	Molecular Probes - Thermo Fisher	Cat# A21208; RRID:AB_141709	IF (1:1000)
Antibody	anti-Rat Alexa 555 Conjugated (goat polyclonal)	Molecular Probes - Thermo Fisher	Cat# A21434; RRID:AB_2340375	IF (1:1000)
Antibody	Cy3 anti-Mouse IgG (H + L) (donkey polyclonal)	Jackson Immuno Research Labs	Cat# 715-165-151; RRID:AB_2315777	IF (1:500)
Sequence-based reagent	18 S_F	Gomez-Sanchez et al., 2009	PCR primers	CGGCTACCACATCCAAGGAA
Sequence-based reagent	18 S_R	Gomez-Sanchez et al., 2009	PCR primers	GCTGGAATTACCGCGGCT
Sequence-based reagent	Bdnf_F	Ma et al., 2016	PCR primers	GGTTCAAAAGGCGGACGGGA
Sequence-based reagent	Bdnf_R	Ma et al., 2016	PCR primers	GCAGCCCTTCCCTGGTGAAC
Sequence-based reagent	Jun_F	Arthur-Farraj et al., 2012	PCR primers	CTTTCTACGAGCATGCCCCCT
Sequence-based reagent	Jun_R	Arthur-Farraj et al., 2012	PCR primers	GGTTCAGGTGAGACACCTT
Sequence-based reagent	Ednrb_F	NM_007904.4	PCR primers	CTGGCTCTGGAGGACCTT
Sequence-based reagent	Ednrb_R	NM_007904.4	PCR primers	GGGCACCAGGCTTACACT
Sequence-based reagent	Gdnf_F	Ma et al., 2016	PCR primers	TCTCGAGCAGGTCAAGGT
Sequence-based reagent	Gdnf_R	Ma et al., 2016	PCR primers	AAGAAGGTCGCAACCTT

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type	Designation	Source or reference	Identifiers	Additional information
Sequence-based reagent	Hdac4_F	NM_207225.2	PCR primers	GCGAGCACAGAGGTGAAGAT
Sequence-based reagent	Hdac4_R	NM_207225.2	PCR primers	CGCTGGAATAATGAGTGGTTC
Sequence-based reagent	Hdac5_F	NM_001077696.1	PCR primers	GGGTGGAGGTGGAGGTAG
Sequence-based reagent	Hdac5_R	NM_001077696.1 (20)	PCR primers	CCGTAGGCAGGGTGCCAT
Sequence-based reagent	Hdac7_F	NM_001204275.1	PCR primers	AGGAGCAAGAATCTCGGCAA
Sequence-based reagent	Hdac7_R	NM_001204275.1	PCR primers	ACTGTTCCTCAAGGGGCTGC
Sequence-based reagent	Hdac9_F	NM_001271386.1	PCR primers	CCCCTATGGGAATGTGGAG
Sequence-based reagent	Hdac9_R	NM_001271386.1	PCR primers	CAATGCATCAAATCCAGCAG
Sequence-based reagent	Hmgcr_F	Gomez-Sanchez et al., 2009	PCR primers	TGGATCGAAGGACGGAAGAAAG
Sequence-based reagent	Hmgcr_R	Gomez-Sanchez et al., 2009	PCR primers	GAATTACGTCAAACCATAAGCTCCG
Sequence-based reagent	Krox-20_F	NM_010118.3	PCR primers	ACCCCCTGGATCTCCCGATC
Sequence-based reagent	Krox-20_R	NM_010118.3	PCR primers	CAGGGTACCTGGGTGCAATG
Sequence-based reagent	Mbp_F	Gomez-Sanchez et al., 2009	PCR primers	ATCCAAGTACCTGAGCACAG
Sequence-based reagent	Mbp_R	Gomez-Sanchez et al., 2009	PCR primers	CCTGTCACCGCTAAAGAAGC
Sequence-based reagent	Mcam_F	NM_023061.2	PCR primers	GAAACGGCTACCCCATTCCT
Sequence-based reagent	Mcam_R	NM_023061.2	PCR primers	AGCCACTGAGACTGCAAATC
Sequence-based reagent	Me2a_F	NM_001033713.2	PCR primers	AGTAGCAGGAGACTCGAATTG
Sequence-based reagent	Me2a_R	NM_001033713.2	PCR primers	ATGCATCGTACACAGCTTCC
Sequence-based reagent	Me2c_F	Materna et al., 2019	PCR primers	GTGCTGTGCAGCTGTAGAT
Sequence-based reagent	Me2c_R	Materna et al., 2019	PCR primers	TCTGAGTTTGGTGCGCTTC
Sequence-based reagent	Mei2d_F	NM_001310587.1	PCR primers	GATCTGACAAATGCCCCAGG
Sequence-based reagent	Mei2d_R	NM_001310587.1	PCR primers	GCCAGCTGGTAATCTCTGTTG
Sequence-based reagent	MitF	NM_001113198.1	PCR primers	GAGCTCACAGCGTGATTTT
Sequence-based reagent	MitR	NM_001113198.1	PCR primers	TCCCTATGGGCTCCTTATG
Sequence-based reagent	Mpz_F	Gomez-Sanchez et al., 2009	PCR primers	ACCAGACATACTGTGCAG
Sequence-based reagent	Mpz_R	Gomez-Sanchez et al., 2009	PCR primers	AAGAGCAAACAGGAAATG

Appendix 1 Continued on next page
Sequence-based reagents

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Sequence-based reagent	Ngfr_F	Fontana et al., 2012	PCR primers	TGATGGAGTCGGGCTAATGTC
Sequence-based reagent	Ngfr_R	Fontana et al., 2012	PCR primers	AGATTCACTCCCTCCAACAAATGC
Sequence-based reagent	Olig1_F	Ma et al., 2016	PCR primers	AGCGATGATGTTGCTTGAGAT
Sequence-based reagent	Olig1_R	Ma et al., 2016	PCR primers	CTGGCTCTAAACAGGTGAGAT
Sequence-based reagent	Pou3f1_F	NM_011141.2	PCR primers	GAGCACCTCGAGAGGAGAT
Sequence-based reagent	Pou3f1_R	NM_011141.2	PCR primers	TGATGGCTGCTGTCTTGAAAC
Sequence-based reagent	Prx_F	NM_198048.2	PCR primers	AGTGCCCAAGCTGAACATCC
Sequence-based reagent	Prx_R	NM_198048.2	PCR primers	AGAACCTGACGTCAACAGGG
Sequence-based reagent	Runx2_F	NM_001146038.2	PCR primers	GTCTTCCACACGGGAGAC
Sequence-based reagent	Runx2_R	NM_001146038.2	PCR primers	GCCAGAGGAGAGTGAGAG
Sequence-based reagent	Sox2_F	Quintes et al., 2016	PCR primers	TCCAAAAACTAATACAAACACG
Sequence-based reagent	Sox2_R	Quintes et al., 2016	PCR primers	GAAGTGCAATTTGGAGTAAAA
Sequence-based reagent	Sox10_F	NM_011437.1	PCR primers	GAGCAAGCCGAGCTCAGAG
Sequence-based reagent	Sox10_R	NM_011437.1	PCR primers	GTGGAAGTGAGGGTACTGGTC
Sequence-based reagent	Shh_F	Ma et al., 2016	PCR primers	CAGCGACTTCTACCTACCTT
Sequence-based reagent	Shh_R	Ma et al., 2016	PCR primers	AGCGCTCTGATCAGTAGGAGAC
Sequence-based reagent	Tyrp1_F	NM_031202.3	PCR primers	CCGCTTTTCTCATCCGAC
Sequence-based reagent	Tyrp1_R	NM_031202.3	PCR primers	TCGAGACGTTTTTCCCCAGT
Sequence-based reagent	ChIP Hdac7 Promoter_F	ID_84582	PCR primers	CCCTCCACAATGACCTCCTT
Sequence-based reagent	ChIP Hdac7 Promoter_R	ID_84582	PCR primers	GTGATCCGCTATGACCTGT
Sequence-based reagent	ChIP Hdac9 Promoter_F	ID_687001	PCR primers	GCTGCAATCCTCGGGCAT
Sequence-based reagent	ChIP Hdac9 Promoter_R	ID_687001	PCR primers	GCCCAAGGCAGACAAATAGA
Sequence-based reagent	ChIP Pou3f1 Promoter_F	ID_192110	PCR primers	CAGAAGGAGAAGCGCATGAC
Sequence-based reagent	ChIP Pou3f1 Promoter_R	ID_192110	PCR primers	CTCCCAAGGCGCATAAAGC
Sequence-based reagent	Jun_FloxP_OE_F	Fazal et al., 2017	PCR primers	TGGCACAGCTTAAAGCAGAAA
Sequence-based reagent	Jun_FloxP_OE_R	Fazal et al., 2017	PCR primers	GCAATATGGTGAAAATAAC

Appendix 1 Continued on next page
### Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Sequence-based reagent | Jun _FloxP_cKO_F | Arthur-Farraj et al., 2012 | PCR primers | CCGCTAGCAGTC ACCTGGTACGGC
Sequence-based reagent | Jun _FloxP_cKO_F | Arthur-Farraj et al., 2012 | PCR primers | CTCATACAGTT CGCACAGGGCGGC
Sequence-based reagent | Hdac4 _FloxP_F | Gomis-Coloma et al., 2018 | PCR primers | ATCTGCCACACAGATATG
Sequence-based reagent | Hdac4 _FloxP_R | Gomis-Coloma et al., 2018 | PCR primers | CTTGTTAGAAC AAACCTCTG
Sequence-based reagent | Hdac5 _FloxP_F | Gomis-Coloma et al., 2018 | PCR primers | CAAGGCCTGG TG CATGCTGGCT
Sequence-based reagent | Hdac5 _FloxP_R | Gomis-Coloma et al., 2018 | PCR primers | CTGCCTCCCATG GGCAGGTCCT
Sequence-based reagent | Hdac5 _FloxP_LacZ | Gomis-Coloma et al., 2018 | PCR primers | GCCGGTGTGA AGGCAGGACG ACAGATTCG
Sequence-based reagent | Hdac7 _FloxP_F | Chang et al., 2006 | PCR primers | GTTCAGGGTC AGCAAGCCAGCTCT
Sequence-based reagent | Hdac7 _FloxP_R | Chang et al., 2006 | PCR primers | CCAGTGACCGAG CATCTGGAGAAG
Sequence-based reagent | Mpz-Cre_F | Feltri et al., 1999 | PCR primers | CCACACCTCT CTCATGGAC
Sequence-based reagent | Mpz-Cre_R | Feltri et al., 1999 | PCR primers | GCTGGGGCGA ATGTTGGCT
Commercial assay or kit | QIAquick PCR Purification Kit | Qiagen | Cat# 28,104 |
Commercial assay or kit | NucleoSpin RNA, Mini kit for RNA purification | Macherey-Nagel | Cat# 740955.50 |
Commercial assay or kit | Luciferase Assay System | Promega | Cat# E1500 |
Commercial assay or kit | Beta-Glo Assay System | Promega | Cat# E4720 |
Commercial assay or kit | Pierce BCA Protein Assay Kit | Thermo Scientific | Cat# 23,225 |
Commercial assay or kit | ECL Prime Western Blot Detection Reagent | Amersham | Cat# RPN223 |
Commercial assay or kit | ECL Western Blotting Analysis System | Amersham | Cat# RPN2109 |
Commercial assay or kit | Invitrogen Dynabeads Protein G | Life Technologies | Cat# 10,004D |
Commercial assay or kit | MasterMix qPCR RX | PyroTaq EvaGreen 5x | CMB | Cat# 08-24-00001 |
Chemical compound, drug | Agar 100 Resin | Agar Scientific | Cat# R1043 |
Chemical compound, drug | Dodecenyl Succinic Anhydride - DDSA | Agar Scientific | Cat# R1051 |
Chemical compound, drug | Methyl Nadic Anhydride - MNA | Agar Scientific | Cat# R1082 |
Chemical compound, drug | Benzyldimethylamine - BDMA | Agar Scientific | Cat# R1062 |
Chemical compound, drug | Paraformaldehyde 16% solution, EM grade | Electron Microscopy Sciences | Cat# 15,710 |

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Chemical compound, drug	Glutaraldehyde 25% solution, EM grade	Electron Microscopy Sciences	Cat# 16,220	Concentration: 2.5%
Chemical compound, drug	Sodium Cacodylate Trihydrate	Electron Microscopy Sciences	Cat# 12,300	Concentration: 0.1 M
Chemical compound, drug	Ethanol absolute	J.T. Baker	Cat# 8025	Concentration: various, see methods
Chemical compound, drug	Propylene Oxide, ACS Reagent	Electron Microscopy Sciences	Cat# 20,401	Concentration: various, see methods
Chemical compound, drug	Leibovitz’s L-15 Medium	Company	Cat# 11570396	Concentration: various, see methods
Chemical compound, drug	DMEM GlutaMAX Medium	Gibco	Cat# 11574516	Concentration: various, see methods
Chemical compound, drug	Forskolin	Gibco	Cat# F6886	Concentration: various, see methods
Chemical compound, drug	rhNRG1-beta1	Sigma-Aldrich	Cat# RYD-396-HB-050	Concentration: various, see methods
Chemical compound, drug	FBS - Fetal Bovine Serum	R&D Systems	Cat# 11550356	Concentration: various, see methods
Chemical compound, drug	Penicillin-Streptomycin	Fisher	Cat# 11548876	Concentration: various, see methods
Chemical compound, drug	DMEM Ham’s F12 Medium	Gibco	Cat# 11520396	Concentration: various, see methods
Chemical compound, drug	Insulin-Transferrin-Selenium	Gibco	Cat# 41400-045	Concentration: various, see methods
Chemical compound, drug	Putrescine	Gibco	Cat# P5780	Concentration: various, see methods
Chemical compound, drug	Progesterone	Sigma-Aldrich	Cat# P0130	Concentration: various, see methods
Chemical compound, drug	dbcAMP - Dibutylr cAMP sodium salt	Sigma-Aldrich	Cat# D0627	Concentration: various, see methods
Chemical compound, drug	LipoD293 DNA In Vitro Transfection Reagent	Sigma-Aldrich	Cat# SL100668	Concentration: various, see methods
Chemical compound, drug	Mini Protease Inhibitor Cocktail	Roche	Cat# 11836153001	Concentration: various, see methods
Chemical compound, drug	Phosphatase Inhibitor Mini Tablets	Fisher Scientific	Cat# 15691759	Concentration: various, see methods
Chemical compound, drug	RNase A	Fisher Scientific	Cat# 10618703	Concentration: various, see methods
Chemical compound, drug	Proteinase K	Sigma-Aldrich	Cat# 3115836001	Concentration: various, see methods
Chemical compound, drug	TRI Reagent	Sigma-Aldrich	Cat# T9424	Concentration: various, see methods
Chemical compound, drug	Chloroform	Sigma-Aldrich	Cat# 319,988	Concentration: various, see methods
Chemical compound, drug	DNasel RNase Free	Thermo Fisher Scientific	Cat# EN0521	Concentration: various, see methods
Chemical compound, drug	Deoxynucleotide Mix	Sigma-Aldrich	Cat# D7295	Concentration: various, see methods
Chemical compound, drug	Random Primers	Invitrogen	Cat# 48190-011	Concentration: various, see methods
Chemical compound, drug	DTT	Invitrogen	Cat# Y00147	Concentration: various, see methods

Appendix 1 Continued on next page
Appendix 1 Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Chemical compound, drug	RNaseOUT	Invitrogen	Cat# 10777-019	Concentration: various, see methods
Chemical compound, drug	RevertAid Reverse Transcriptase	Thermo Fisher Scientific	Cat# EP0441	Concentration: various, see methods
Software, algorithm	GraphPad Prism 9.0.0	GraphPad Prism	RRID: SCR_002798	
Software, algorithm	ImageJ	Open Source	RRID: SCR_003070	
Software, algorithm	QuantStudio 3 Real-Time PCR Systems Software	Applied Biosystems	RRID: SCR_018712	
Other	Bioruptor Pico sonication device	Diagenode	Cat# B01060010	Sonication device
Other	Bullet Blender Homogenizer BBX24-CE	Next Advance	Cat# BBX24-CE	Tissue Homogenizer
Other	Zirconium Oxide Beads	Next Advance	Cat# ZrOB05	For the homogenization of medium-tough tissue and cells
Other	Microplate Reader EZ Read 400	Biochrom	Cat# 12694795	96-well plate reader for Pierce BCA protein assay kit
Other	Nitrocellulose Membrane	Amersham Hybond ECL	Cat# RPN203D	Protein blotting membrane (pore size: 0.45 mm)
Other	Amersham Imager 600	Amersham	Cat# Amersham Imager 600	Western blot (chemiluminescence) developer
Other	4',6-diamidino-2-phenylindole (DAPI stain)	Thermo Fisher	Cat# D1306; RRID: AB_2609482	Blue-fluorescent nucleic acid stain IF (1:1000)