New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives

Zahra Alirezvani, Mohammad G. Dekamin,* and Ehsan Valiye

Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran

Supporting Information

ABSTRACT: A new nano-ordered 1,3,5-tris(2-hydroxyethyl) isocyanurate-1,3-propylene covalently functionalized MCM-41 (MCM-41-Pr-THEIC) was designed and prepared at room temperature through a simple procedure. According to various microscopic, spectroscopic, or thermal methods and techniques, the correlation of the catalytic performance of the hybrid mesoporous MCM-41-Pr-THEIC to its structural characteristics was fully confirmed. The new MCM-41-Pr-THEIC organosilica nanomaterials were successfully investigated as a solid mild nanocatalyst through hydrogen-bonding activation provided by its organic moiety, for the pseudo-four-component condensation of dimedone, aldehydes, and ammonium acetate or p-toluidine to afford the corresponding acridinedione derivatives under green conditions. Furthermore, the introduced nanocatalyst could be reused at least four times with negligible loss of its activity, indicating the good stability and high activity of the new hybrid organosilica.

INTRODUCTION

Organocatalysis has been emerged as an environmental and cost-effective alternative pathway to the traditional transition-metal catalysis for fine chemical synthesis especially in pharmaceutical industry over recent decades.1–9 Perfect homogeneous organocatalyst must be available through easy synthetic procedures and are often composed of nontoxic small organic compounds that can be easily degraded in the environment without significant waste generation.5,10–13 However, the usual workup remains a major drawback with tedious and costly procedures for separation of the homogeneous organocatalysts from the reaction mixture. On the other hand, heterogeneously catalyzed procedures have a valuable role in simplification of the processes and decreasing environmental concerns, including less corrosion, simple separation, catalysts recovery, and avoiding the usage of hazardous solvents.14–16 To achieve more sustainable catalytic processes by improving the yield and energy efficiency, recent contributions have also been focused on immobilized organocatalysts onto the surface of solid polymeric supports, in particular silica.17–24 The structure of the obtained organosilica materials is sufficiently attractive and tunable to combine the advantages of a silica matrix, including high surface area, thermal or mechanical stability, as well as chemical inertness with the properties of the grafted organic moieties.22,25–32 Hence, mesoporous silica-based materials (MCM) with very large specific surface areas (up to 2000 m² g⁻¹) and tunable pore radius from approximately 2–50 nm as well as mechanically stable structure have become a new possible candidate for sensors,33 adsorbents,34–36 drug-delivery systems,35,37,38 and CO₂ capture or transformation,39,40 as well as solid supports to immobilize homogeneous catalysts41–46 or directly use them as an ideal heterogeneous catalyst alone.47–53

On the other hand, multicomponent reactions (MCRs) have received great interest from synthetic, environmental, and economical points of view in recent years, especially for the synthesis of heterocycles with high diversity such as acridinedione derivatives.35,54–62 These tricyclic N-containing heterocycles have received a lot of interest as one of the most important classes of heterocyclic scaffolds in the biologically active molecules research. A series of acridinediones containing aromatic substituents are generally known as antibacterial or antiparasitic agents that are capable of intercalating into DNA base pairs.63 Furthermore, there are several pharmacological properties associated with these compounds, including antimalarial,64 antifungal,65 anticancer,66 or GCN5 inhibitor67 properties as well as selective fluoride-ion chemosensor68 and fluorescence enhancement.69 Due to the biological importance

Received: August 26, 2019
Accepted: October 28, 2019
Published: November 12, 2019

DOI: 10.1021/acsomega.9b02755
ACS Omega 2019, 4, 20618–20633
http://pubs.acs.org/journal/acsodf
of the acridinedione derivatives, synthesis of these compounds is an interesting research challenge for both organic and medicinal chemists.70,71 Literature survey shows that several modified methods for the pseudo-four-component Hantzsch-type condensation of aromatic aldehydes, dimedone, and different nitrogen sources, including urea, methyl amine, aniline, or ammonium acetate, have been reported using different catalytic systems by the traditional heating in organic solvents72 or under microwave irradiation.73,74 Recently, ZnII doped and immobilized on functionalized magnetic hydrotalcite,75 platinum nanoparticles supported on graphene oxide or its reduced form,76 carboxylic acid-functionalized multi-walled carbon nanotubes,77 TiO\textsubscript{2}-coated magnetite nanoparticle-supported sulfonic acid,78,79 sulfuric acid-modified...
poly(vinylpyrrolidone), 80 SnCl$_4$-functionalized nano-Fe$_3$O$_4$-encapsulated silica,13 Eu$_2$O$_3$-modified CeO$_2$ nanoparticles,81 Vitamin B$_1$, 82 morpholinium-based ionic liquids,68 and choline chloride:urea 83 have been described. Although various protocols for the synthesis of acridinedione derivatives have been reported, the use of solid mild materials with simpler experimental setup; lower toxicity, corrosion, or cost; and environmental tolerability is still in demand. At present, it is worth using highly thermally stable, cost-effective, and milder catalytic systems for different organic transformations. In continuation of our ongoing efforts toward expanding efficient and novel heterogeneous catalysts for different MCRs,$^{29,84−89}$ we wish herein to report the preparation and characterization of 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently functionalized MCM-41 (MCM-41-Pr-THEIC, 1) nanocatalyst and examination of its catalytic activity for the pseudo-four-component condensation reaction of dimedone (2), different aldehydes 3, and ammonium acetate (4a) or p-toluidine (4b) to afford the corresponding Hantzsch acridinedione derivatives 5−6 under mild conditions in high to excellent yields and short reaction times (Scheme 1). This nanocatalyst can be considered as a typical example of mild heterogeneous catalysts which activate the substrates and intermediates during the catalytic cycle through hydrogen bonding provided by its organic moiety as well as inorganic silica support whose polarity has been appropriately balanced. To the best of our knowledge, there is no report for the use of 1,3,5-tris(2-hydroxyethyl)isocyanurate grafted on the surface of MCM-41 by 1,3-propylene linker (MCM-41-Pr-THEIC) as a heterogeneous organocatalyst, for different MCRs including Hantzsch acridinedione derivatives 5 or 6.
RESULTS AND DISCUSSION

Characterization of the Covalently Modified Nano-Ordered MCM-41 Using 1,3-Dibromopropane and THEIC (MCM-41-Pr-THEIC, 1). Initially, the MCM-41-Pr-THEIC materials (1) were prepared by grafting of the 1,3,5-tris(2-hydroxyethyl)isocyanurate to the surface of the nano-ordered MCM-41 using 1,3-dibromopropane, as an appropriate and inexpensive linker (Scheme 1). The surface and bulk properties of the new catalyst were studied by several techniques such as Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), derivative thermogravimetry, energy-dispersive X-ray (EDX) spectroscopy, and CHN elemental analysis.

The preparation of the MCM-41-Pr-THEIC materials (1) and their structure were approved by FTIR spectroscopy. The FTIR spectra of MCM-41 (a), MCM-41-PrBr (b), MCM-41-Pr-THEIC (1, c), MCM-41-Pr-THEIC after four times of recycling (d), and THEIC (e) are compared in Figure 1. It is generally approved that high-intensity bands at 1180−1278 cm\(^{-1}\) are due to the asymmetrical Si−O external stretching vibrations and those at 1000−1100 cm\(^{-1}\) are due to the internal vibrations.90 Moreover, the signals appearing at 1689 and 1471 cm\(^{-1}\) are attributed to the stretching vibrations of the isocyanurate ring. Also, the observed characteristic bands at 3200−3400 cm\(^{-1}\) are attributed to the stretching vibration of the O−H bonds of both MCM-41 and THEIC.

The field emission scanning electron microscopy (FESEM) images illustrated in Figure 2a–f reveal the general morphology of MCM-41 and MCM-41-Pr-THEIC (1). As it can be found from the FESEM images of MCM-41-Pr-THEIC (1, Figure 2d–f), the morphological structure of the MCM-41-Pr-THEIC (1) materials is different from that of the pure MCM-41; moreover, the particles size of MCM-41-Pr-THEIC (1) is slightly higher than that of pure MCM-41 (12.1–16.5 nm). On the other hand, the transmission electron microscopy (TEM) images shown in Figure 3 confirms the presence of 1,3,5-tris(2-hydroxyethyl)isocyanurate grafted to the 1,3-propylene linker in the channels of the nanosized MCM-41-Pr-THEIC (1) sample compared to pure MCM-41.91,92

The thermal stability of the MCM-41-Pr-THEIC nanomaterials (1) was also investigated using the thermogravimetric analysis (TGA) technique (Figure 4). The TGA curve of the MCM-41-Pr-THEIC (1) shows three steps of weight loss. The 7% weight loss in the first step corresponds to desorption of physisorbed water or solvent molecules held in the pores of MCM-41-Pr-THEIC (1). Furthermore, the sharp 46% weight loss in the second step (between 200 and 400 °C) can be mainly attributed to the decomposition of 2-hydroxyethyl moiety existing in the structure of THEIC or 1,3-propylene linker in the nanomaterial 1 framework. On the other hand, the slight 13% weight loss at >400 °C was related to the decomposition of thermally stable isocyanurate ring located on the surface of MCM-41 channels.29,86,93,94 These results also indicate that 1,3,5-tris(2-hydroxyethyl)isocyanurate has been successfully grafted onto the surface of MCM-41.95

The CHN analysis of functionalized MCM-41 with THEIC 1 was also used to quantify the organic molecules anchored to its surface. The percentage of nitrogen was observed to be 2.46%. This means that loading of the 1,3,5-tris(2-hydroxyethyl)isocyanurate per gram of the MCM-41-Pr-THEIC (1) is about 0.59 mmol. Furthermore, EDX analysis of MCM-41-Pr-THEIC (1) clearly confirmed the presence of C, N, O, and Si (Figure 5). These findings, especially the presence of nitrogen and absence of halogen impurity in the composition of the nanomaterials 1, demonstrate grafting of the 1,3,5-tris(2-hydroxyethyl) isocyanurate onto the surface of the MCM-41 matrices. Indeed, EDX and CHN analyses show a good agreement with those data obtained in TGA as well as

Figure 3. TEM images of the MCM-41-Pr-THEIC (1) nanomaterials.

Figure 4. TGA of the MCM-41-Pr-THEIC (1) nanomaterials.
FESEM and TEM images, which strongly confirm the successful functionalization of inorganic MCM-41 by the 1,3,5-tris(2-hydroxyethyl)isocyanurate organic moiety.

On the other hand, Figure 6 shows the X-ray diffraction (XRD) patterns of MCM-41-Pr-THEIC (1). It is obvious that the characteristic highly ordered uniform hexagonal mesopores of MCM-41 still exist in the MCM-41-Pr-THEIC (1) nanomaterials (Figure 6, top). Furthermore, other peaks in the high-angle region of the XRD pattern can be attributed to the presence of 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently grafted through the 1,3-propylene linker onto the surface of MCM-41 (Figure 6, down).

As shown in Figure 7, the adsorption–desorption isotherm of the MCM-41-Pr-THEIC (1) sample corresponds to a type V isotherm with H2 hysteresis loop according to the classification of Brunauer, Deming, Deming, and Teller. It is generally accepted that there is a correlation between the shape of the hysteresis loop and the texture (e.g., pore size distribution, pore geometry, and connectivity) of a mesoporous material. Indeed, grafting of THEIC groups through 1,3-propylene linker onto the surface of pore walls of MCM-41 can block them, leading to the decrease of surface area and broad pore distribution.

Investigation of the Catalytic Activity of MCM-41-Pr-THEIC (1) for the Synthesis of Acridinediones 5–6. To evaluate the catalytic activity of MCM-41-Pr-THEIC (1) for the synthesis of acridinediones 5–6, the pseudo-four-component condensation of 4-chlorobenzaldehyde (3a, 1.0 mmol), dimedone (2, 2.0 mmol), and ammonium acetate (4a, 1.2 mmol) or p-toluidine (4b, 1.0 mmol) was investigated as the model reaction. In a systematic study, the effects of several crucial variables such as solvent and temperature, catalyst loading, and reaction time were studied. The results are summarized in Table 1. In the first step, to optimize the reaction conditions, a variety of solvents and temperatures were screened in the model reaction. In the absence of any solvent, the model reaction was slow and the yield of the desired product 9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5a) was low to moderate, even at 120 °C and after 1.5 h (Table 1, entry 1). The model reaction was then studied in solvents such as H2O, EtOH, MeOH, THF, EtOAc, CH3CN, EtOH/H2O (1:1), EtOH/H2O (2:1), and EtOH/H2O (1:2) using MCM-41-Pr-THEIC (1) 20 mg loading (entries 2–14). The results clearly indicated that the model reaction did not proceed substantially at room temperature (Table 1, entries 2, 8, and 10). Interestingly, higher yield of the desired product 5a was obtained in EtOH/H2O (1:2) under reflux conditions (Table 1, entry 15). Encouraged by this result, the model reaction was examined in EtOH/H2O (1:2) under reflux conditions using different amounts of catalyst loading (entries 15–19). To our delight, it was found that 15 mg of catalyst 1 was sufficient to promote the model reaction efficiently (entry 15). On the other hand, to demonstrate the synergic impact of hydroxyl functional groups of MCM-41 and 1,3,5-tris(2-hydroxyethyl) isocyanurate on the catalytic activity of nanomaterial 1, the
catalytic performances of MCM-41, MCM-41-PrBr, or 1,3,5-tris(2-hydroxyethyl) isocyanurate were also examined under the same reaction conditions (Table 1, entries 20–22). Indeed, the results strongly confirmed the role of all MCM-41-Pr-THEIC (1) components to promote the synthesis of acridinedione 5a. Therefore, MCM-41-Pr-THEIC (1, 15 mg) in EtOH/H2O (1:2, 2 mL) under reflux conditions as the optimized reaction conditions were developed to other aromatic aldehydes (3b−j) for the synthesis of a wide range of the desired products 5–6. The results are summarized in Table 2.

The obtained results showed that aldehydes 3 having an electron-donating group on their aromatic ring generally reacted faster or afforded higher yields compared to those with an electron-donating group. It is also significant that even ortho-substituted benzaldehydes, considering their intrinsic steric hindrance, afforded the desired products in high yields under optimized conditions. These observations strongly approve the appropriate catalytic activity of MCM-41-Pr-THEIC (1) to promote the Hantzsch pseudo-four-component reaction of different aldehydes 3, dimedone (2), and nitrogen sources 4a–b.

According to the obtained results, the above mechanism can be proposed for the synthesis of acridinediones 5–6 catalyzed by MCM-41-Pr-THEIC (1) through the MCR strategy (Scheme 2). In the first step, MCM-41-Pr-THEIC (1) activates the carbonyl functional group of both dimedone (2) and aldehydes 3, through hydrogen bonding made by hydroxyl groups of THEIC or silanol groups on the surface of MCM-41, to form the corresponding Knoevenagel intermediate (II). This intermediate is further activated by MCM-41-Pr-THEIC (1) to be involved for the next Michael addition of the enol form of dimedone 2. The next step comprises the formation of intermediate IV from the second equivalent of dimedone. Then, one of the keto functional groups in the intermediate IV is activated by MCM-41-Pr-THEIC (1) to react with the ammonia source 4 affording imine intermediate V. The cyclization between enamine and keto functional group, followed by proton transfer, and finally elimination of third H2O molecules affords the desired acridinediones 5–6.53,107−112 Indeed, the THEIC moiety attached by 1,3-propylene linker appropriately modifies the surface of MCM-41 for a prompt catalytic activity of MCM-41-Pr-THEIC nanomaterials (1). Moreover, the byproduct water molecules can be simply adsorbed on the surface of MCM-41-Pr-THEIC nanomaterials (1).

On the other hand, reusability of a heterogeneous catalyst is a significant feature for its industrial applications. Therefore, the recycled MCM-41-Pr-THEIC (1) was washed with acetone to remove any organic impurities and then heated in an oven to be reused in the model reactions for the next run. This procedure was repeated for three more consecutive runs.

Table 1. Optimization of Conditions in the Reaction of Dime done (2), 4-Chlorobenzaldehyde (3a), Ammonium Acetate (4a) or p-toluidine (4b) under Different Conditions

entry	catalyst	catalyst loading (mg)	solvent	temperature (°C)	time (min)	yield (%)	5a	yield (%)	6a
1	MCM-41-Pr-THEIC	20	EtOH	rt	120	90	76	80	
2	MCM-41-Pr-THEIC	20	MeOH	reflux	90	60	69		
3	MCM-41-Pr-THEIC	20	THF	reflux	180	50	58		
4	MCM-41-Pr-THEIC	20	EtOH	reflux	180	42	49		
5	MCM-41-Pr-THEIC	20	H2O	rt	120	56	62		
6	MCM-41-Pr-THEIC	20	H2O	reflux	180	38	45		
7	MCM-41-Pr-THEIC	20	H2O	reflux	90	70	78		
8	MCM-41-Pr-THEIC	20	EtOH/H2O (1:1)	rt	150	40	48		
9	MCM-41-Pr-THEIC	20	EtOH/H2O (1:1)	reflux	100	78	83		
10	MCM-41-Pr-THEIC	20	EtOH/H2O (2:1)	reflux	40	85	91		
11	MCM-41-Pr-THEIC	20	EtOH/H2O (2:1)	reflux	60	80	85		
12	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	35	89	92		
13	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	45	90	92		
14	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	60	82	86		
15	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	90	76	77		
16	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	120	57	65		
17	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	180	36	40		
18	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	60	76	84		
19	MCM-41-Pr-THEIC	20	EtOH/H2O (1:2)	reflux	60	70	79		
20	MCM-41-Pr	20	EtOH/H2O (1:2)	reflux	90	68	79		

*Reaction conditions: Dime done (2, 2 mmol), 4-chlorobenzaldehyde (3a, 1 mmol), ammonium acetate (4a, 1.2 mmol), or p-toluidine (4b, 1 mmol), MCM-41-Pr-THEIC (1), and solvent (2 mL). *Isolated yields.
Table 2. Scope of the Synthesis of 9-(aryl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione Derivatives 5a–j and 6a–j Catalyzed by MCM-41-Pr-THEIC (1) via the Pseudo-Four-Component Reaction Strategy

Entry	Aldehyde 3	Product 5-6	Time (min)	Yield (%)	Mp °C (Obs.)	Mp °C [Lit.]
1	4-ClC₆H₄	![image](5a.png)	45	91	243-245	243-245 97
2	C₆H₅	![image](5b.png)	55	87	275-276	272 98
3	4-NO₂C₆H₄	![image](5c.png)	50	80	300	302-304 99
4	3-NO₂C₆H₄	![image](5d.png)	60	82	293-295	294-296 100
5	4-CH₃OC₆H₄	![image](5e.png)	55	89	275	278-280 101
Entry	Aldehyde	Product 5-6	Time (min)	Yield (%)	Mp °C (Obs.)	Mp °C [Lit.]
-------	----------	-------------	------------	-----------	--------------	--------------
6	4-OHC₆H₄	![Image](5f)	70	78	>300	>300 ¹⁰²
7	4-CH₃C₆H₄	![Image](5g)	60	86	>300	>300 ⁹⁸
8	2-ClC₆H₄	![Image](5h)	60	90	261-263	263-264 ¹⁰³
9	4-OH-3-CH₃OC₆H₃	![Image](5i)	55	82	297	295-298 ¹⁰⁴
10	![Image](5j)	![Image](5j)	45	84	245	248-250 ⁹⁸
11	4-ClC₆H₄	![Image](6a)	45	92	271	273-275 ⁹⁷
Table 2. continued

Entry	Aldehyde 3	Product 5-6	Time (min)	Yield (%)^c	Mp °C (Obs.)	Mp °C [Lit.]
12	C₆H₅		60	85	267-268	265-267¹⁰⁵
13	4-NO₂C₆H₄		60	87	>300	>300¹⁰⁶
14	3-NO₂C₆H₄		60	81	285-287	285-287¹⁰⁵
15	4-CH₃OC₆H₄		50	86	237-239	241-243¹⁰⁶
16	4-OHC₆H₄		65	68	348	350-352¹⁰⁵
It was found that the reactivity of catalyst 1 for the Hantzsch pseudo-four-component synthesis of acridinedione derivatives 5a and 6a decreases slightly (approximately 8%) after five runs. The latest isolated yields of 5a or 6a after four times of catalyst recycling were 82 and 84%, respectively. To demonstrate the appropriate catalytic activity of the new hybrid heterogeneous nano-ordered catalyst MCM-41-Pr-THEIC (1), its performance has been compared to that of some recently reported catalytic systems for the synthesis of acridinedione derivatives 5a and 6a. The summarized results in Table 3 obviously show that some of the reported catalysts are homogeneous and cannot be reused. Furthermore, the present protocol provides better performance in terms of product yield, catalyst loading, reaction time, operational simplicity, and frequency of recycling compared to most of previously published catalytic systems.

CONCLUSIONS

In summary, we have developed a novel and powerful 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently functionalized nano-ordered MCM-41 (MCM-41-Pr-THEIC) as a robust and recoverable catalyst for the pseudo-four-component condensation of dimeredone, aldehydes, and ammonium acetate.

(Figure 8) It was found that the reactivity of catalyst 1 for the Hantzsch pseudo-four-component synthesis of acridinedione derivatives 5a and 6a decreases slightly (approximately 8%) after five runs. The latest isolated yields of 5a or 6a after four times of catalyst recycling were 82 and 84%, respectively.

To demonstrate the appropriate catalytic activity of the new hybrid heterogeneous nano-ordered catalyst MCM-41-Pr-THEIC (1), its performance has been compared to that of some recently reported catalytic systems for the synthesis of acridinedione derivatives 5a and 6a. The summarized results in Table 3 obviously show that some of the reported catalysts are homogeneous and cannot be reused. Furthermore, the present protocol provides better performance in terms of product yield, catalyst loading, reaction time, operational simplicity, and frequency of recycling compared to most of previously published catalytic systems.

CONCLUSIONS

In summary, we have developed a novel and powerful 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently functionalized nano-ordered MCM-41 (MCM-41-Pr-THEIC) as a robust and recoverable catalyst for the pseudo-four-component condensation of dimeredone, aldehydes, and ammonium acetate.
or p-toluidine to afford the acridinedione derivatives under extremely green conditions. The notable advantages of this method are clean reaction profiles, short reaction time, and high to quantitative yields without using precious or toxic metals and hazardous organic solvents, which makes it an improved and more practical alternative to the existing methods. Additionally, the catalyst could be simply separated and reused without apparent loss of its activity at least after four cycles. Due to the notable advantages of the MCM-41-Pr-THEIC nanocatalyst, its applications in other organic reactions are currently underway in our lab and would be reported in due course.

EXPERIMENTAL SECTION

Reagents and Apparatus. All chemicals were purchased from Merck or Aldrich with the highest purity available, and benzaldehyde was used as a freshly distilled sample. The morphological, structural, and compositional characterizations of the nanocatalyst 1 were properly carried out using FESEM TESCAN-MIRA3, EDX Numerix DXP-X10P, Philips CM30,
Shimadzu FTIR-8400S, TGA Bahr company STA 504, and CHN Elemental instruments. Characterization of introduced nanocatalyst 1 was performed by transmission electron microscopy (TEM, Philips CM30). A Shimadzu FTIR-8400S spectrometer and a Bruker DRX-500 Avance spectrometer (ambient temperature in DMSO-d$_6$) were used for recording FTIR, 1H NMR (500 MHz), and 13C NMR (125 MHz) spectra of products. The analytical thin-layer chromatography (TLC) experiments were performed using Merck 0.2 mm silica gel 60 F-254 Al-plates for observation progress of reactions. All melting points were determined using a digital Electrothermal 9100 capillary melting point apparatus. The isolated yields of products have been reported. All of the products, except 6a, were filtered and washed with toluene and EtOH several times to remove any excess of the linker. Next, dried white solids (1.0 g) were dispersed in dry toluene (30 mL). Then, the mixture was stirred continuously at room temperature for 18 h. After this time, the obtained solids were filtered and washed with toluene and EtOH several times. Finally, the residues were dried in a vacuum drying oven at 60 °C for 8 h. The schematic route for the preparation of MCM-41-Pr-THEIC (1) nanomaterials is shown in Scheme 1.

General Procedure for Preparation of the MCM-41-Pr-THEIC (1) Nanomaterials. In a 200 mL round-bottom flask, 1,3-dibromopropane (49 mmol, d = 1.98 g cm$^{-3}$, 5 mL) was added to a suspension containing MCM-41 (1.0 g) in dry toluene (30 mL). Then, the mixture was stirred continuously at room temperature for 18 h. After this time, the obtained solids were filtered and washed. The remaining solids were dried at 45 °C, and calcined at 550 °C for 45 h to remove the residual CTAB template.

Typical Procedure for Preparation of MCM-41. MCM-41 materials were prepared by direct hydrothermal synthesis according to a known procedure as follows: In a general procedure, dimethylamine (60 mmol, 2.70 g) was added to deionized water (42 mL) in a 200 mL beaker while the mixture was stirred at room temperature. Then, CTAB (4 mmol, 1.47 g) was added to the above solution to obtain a clear solution after stirring for 30 min. Tetraethyl orthosilicate (10 mmol, 2.10 g) was then added into the mixture with stirring. By dropwise addition of HCl solution (1 M), the pH of the mixture was adjusted to 8.5, to obtain a final precipitate. After 2 h stirring, white precipitates were obtained, which were filtered, washed with deionized water, dried at 45 °C, and calcined at 550 °C for 45 h to remove the residual CTAB template.

entry	catalyst	product	catalyst loading	conditions	time (min)	yield (%)	catalyst reuse times	reference
1	β-cyclodextrin monosulfonic acid	5a	30 mg	H$_2$O/60°C	120	91	5	113
2	ascorbic acid	5a	8.8 mg	solvent-free/80 °C	180	89	114	
3	SnCl$_4$-functionalized nano-Fe$_3$O$_4$-encapsulated silica	5a	25 mg	EtOH/reflux	15	93	4	13
4	TiO$_2$-coated magnetite nanoparticle-supported sulfonic acid	5a	10 mg	solvent-free/110 °C	40	95	78	
5	Fe$_3$O$_4$@TiO$_2$@O$_2$P$_2$([CH$_3$)$_2$NHSO$_3$]	5a	7 mg	solvent-free/90 °C	25	92	4	79
6	1-n-butyl-3-methylimidazolium bromide ([bmim][Br])	5a	10 mL (Excess)	90 °C	40	93	115	
7	Znn-doped and immobilized on functionalized magnetic hydroxocarbonate	5a	8 mg	solvent-free/70 °C	5	90	6	75
8	MCM-41-Pr-THEIC	5a	15 mg	EtOH/H$_2$O (1:2)/reflux	45	91	5	this work
9	1-n-butyl-3-methylimidazolium bromide ([bmim][Br])	6a	10 mL	90 °C	120	96	115	
10	carbon-based solid acid	6a	30 mg	100 °C solvent-free	30	88	3	116
11	fluorous silica gel-supported hafnium(IV) bis(perfluorocarbonsulfonyl) imide complex	6a	1 mol %	EtOH/H$_2$O (1:1)/reflux	390	66	3	117
12	polyvinylpolypyrrolidone-supported boron trifluoride	6a	100 mg	CH$_2$CN reflux	210	97	4	118
13	MCM-41-Pr-THEIC	6a	15 mg	EtOH/H$_2$O (1:2)/reflux	45	92	5	this work
(eluents: EtOAc:n-hexane, 1:3). After completion of the reaction, 96% EtOH (2 mL) was added and the mixture was heated to dissolve any solid products 5–6 and the solid catalyst I remained insoluble. The catalyst was then separated by filtration and n-hexane (one to three drops) was added to the filtrate and then allowed to cool over time to give pure crystals of the desired acridinedione derivatives 5–6. The separated catalyst was suspended in acetone (1 mL), stirred for 30 min, and then filtered off. The residue white powder was then heated in an oven at 60 °C for 1.5 h and reused for successive runs.

Selected Spectral Data. 9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5a). Mp: 243–245 °C; IR (KBr): υ 3277, 3205, 2929, 2870, 1663, 1508, 1397, 1223, 1171 cm⁻¹; ¹H NMR (500 MHz, DMSO-d₆): δ 0.85 (s, 6H), 1.96–1.99 (d, J = 12.8 Hz, 2H), 2.15–2.18 (d, J = 12.8 Hz, 2H), 2.30–2.33 (d, J = 14.9 Hz, 2H), 2.49–2.46 (d, J = 14.9 Hz, 2H), 4.77 (s, 1H, C–H₈benzyl), 7.15–7.20 (m, 4H, H aromatic), 9.33 (br s, 1H, N–H) ppm.

3,3,6,6-Tetramethyl-9-(p-tolyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (5f). Mp: 275 °C; IR (KBr): υ 3277, 3205, 3082, 2929, 2870, 1663, 1508, 1397, 1223, 1171 cm⁻¹; ¹H NMR (500 MHz, DMSO-d₆): δ 0.86 (s, 6H), 1.96–1.98 (d, J = 16.1 Hz, 2H), 2.14–2.17 (d, J = 16.1 Hz, 2H), 2.29–2.32 (d, J = 17.1 Hz, 2H), 2.44–2.41 (d, J = 17.1 Hz, 2H), 2.35 (s, 3H methyl), 4.37 (t, 1H, C–H₈benzyl), 6.71–6.69 (d, J = 8.4 Hz, 2H), 7.03–7.05 (d, J = 8.4 Hz, 2H), 9.24 (br s, 1H, N–H) ppm.

1H NMR (500 MHz, DMSO-d₆): δ 0.85 (s, 6H), 1.96–1.99 (d, J = 12.8 Hz, 2H), 2.15–2.18 (d, J = 12.8 Hz, 2H), 2.30–2.33 (d, J = 14.9 Hz, 2H), 2.49–2.46 (d, J = 14.9 Hz, 2H), 4.77 (s, 1H, C–H₈benzyl), 7.15–7.20 (m, 4H, H aromatic), 9.33 (br s, 1H, N–H) ppm.

FTIR spectra of MCM-41, MCM-41-Pr-THEIC, and THEIC; FESEM images of MCM-41 and MCM-41-Pr-THEIC; TEM images of MCM-41-Pr-THEIC; TGA of MCM-41-Pr-THEIC; XRD patterns of MCM-41 and MCM-41-Pr-THEIC; BET analysis of MCM-41-Pr-THEIC; CHN elemental analysis of MCM-41-Pr-THEIC; and FTIR, 1H NMR, and 13C NMR spectra of the selected products (PDF).

AUTHOR INFORMATION

Corresponding Author
*E-mail: mdekamin@iust.ac.ir. Tel.: +98-(0)21-77 240 284. Fax: +98-(0)21-7749 1204.

ORCID
Mohammad G. Dekamin: 0000-0002-7018-7363

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful for the financial support from The Research Council of Iran University of Science and Technology (IUST), Tehran, Iran (Grant No 160/18517). They also acknowledge the support of the Iran Nano-technology Initiative Council (INIC).

REFERENCES

(1) Wen-Zhao Zhang, S. N.; Luo, S. Practical Asymmetric Organocatalysis. In Green Techniques for Organic Synthesis and Medicinal Chemistry; Cue, W. Z. B. W., Ed.; Wiley-VCH, 2018.
(2) Wang, N.; Xu, J.; Lee, J. K. The importance of N-heterocyclic carbene basicity in organocatalysis. Org. Biomol. Chem. 2018, 16, 8230–8244.
(3) Jacobsen, E. N.; MacMillan, D. W. Organocatalysis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20618–20619.
(4) Shaikh, I. R. Organocatalysis: key trends in green synthetic chemistry, challenges, scope towards heterogenization, and importance from research and industrial point of view. J. Catal. 2014, 2014, 1–35.
(5) Basumatary, G.; Mohanta, R.; Bez, G. l-Proline Derived Secondary Aminothiourea Organocatalyst for Synthesis of Coumarin Derived Trisubstituted Methanes: Rate Enhancement by Bifunctional Catalyst over Cooperative Catalysis. Catal. Lett. 2019, No. 4.
(6) Xiong, X.; Yi, C.; Liao, X.; Lai, S. An Effective One-Pot Access to 2-Amino-4H-benzo[b]pyrans and 1,4-Dihydropyridines via 4a-Cyclo-dextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent. Catal. Lett. 2019, 149, 1690–1700.
(7) Ullah, M. S.; Itsuno, S. Synthesis of cinchona alkaloid squaramide polymers as bifunctional chiral organocatalysts for the enantioselective Michael addition of β-ketoesters to nitroolefins. Mol. Catal. 2017, 438, 239–244.
(8) Shinde, V. J.; Jeong, D.; Jung, S. Supramolecular amination via inclusion complex: Amino-doped β-cyclodextrin as an efficient supramolecular catalyst for the synthesis of chromeno pyrimido[1,2-b]indazol in water. J. Ind. Eng. Chem. 2018, 68, 6–13.
(9) Ahankar, H.; Ramazani, A.; Slepkoura, K.; Lis, T.; Joo, S. W. Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chem. 2016, 18, 3582–3593.
(10) Ferré, M.; Pleixats, R.; Man, M. W. C.; Cattoe, Y. J. X. C. G. Recyclable organocatalysts based on hybrid silicas. Green Chem. 2016, 18, 881–922.
(11) Savateev, A.; Antonietti, M. Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catal. 2018, 8, 9790–9808.
(12) Saravanan, S.; Khan, N.-u. H.; Kureshy, R. I.; Abdi, S. H.; Bajaj, H. C. Small Molecule as a Chiral Organocatalyst for Asymmetric Strecker Reaction. ACS Catal. 2013, 3, 2873–2880.
(13) Samonini, A.; Fouladgar, S. SnCl₄-functionalized nano-Fe₃O₄ encapsulated-silica particles as a novel heterogeneous solid acid for the synthesis of 1,4-dihydropyridine derivatives. RSC Adv. 2015, 5, 78483–78490.
(14) Argyle, M.; Bartholomew, C. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 2015, 5, 145–269.
(15) Vojvodic, A.; Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl. Sci. Rev. 2015, 2, 140–143.
(16) Hernandez, J. G.; Juristi, E. Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chem. Commun. 2012, 48, 5396–5409.
(17) Macquarrie, D. J.; Jackson, D. B. Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica. Chem. Commun. 1997, 1781–1782.
(18) Gong, Y.; Li, Y.; Wu, D.; Sun, Y. Multiphasic Acetalization and Alkylation on Organically Modified MSU-X Silica. Catal. Lett. 2001, 74, 213–216.
(19) Zhou, Z.; Meng, Q.; Seifert, A.; Wagener, A.; Sun, Y.; Ernst, S.; Thiel, W. R. Hybrid mesoporous materials containing covalently anchored N-phenylhexafluorosilane salts as organo catalysts. Microporous Mesoporous Mater. 2009, 121, 145–151.
(20) Pérez-Quintanilla, D.; Sánchez, A.; Sierra, I. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency. J. Colloid Interface Sci. 2016, 472, 126–134.
(21) Nakazawa, J.; Doi, Y.; Hikichi, S. Alkane oxidation reaction of homogeneous and heterogeneous metal complex catalysts with mesoporous silica-immobilized (2-pyrydylmethyl) amine type ligands. Mol. Catal. 2017, 443, 14–24.
(22) White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481–494.
(23) Yaghoubi, A.; Dekamin, M. G.; Arefi, E.; Karimi, B. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-Pr-SO3H): A new and highly efficient recoverable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives. J. Colloid Interface Sci. 2017, 505, 956–963.
(24) Xu, J.; Li, K.; Zhang, L.; Li, H.; Wang, T. SBA-15 Supported Silver Nanoparticles: Synthesis and Applications in Catalysis. Catalysts 2018, 8, No. 617.
(25) Phamik, A.; Tatsumi, T. Double organic modification by 3-chloropropyl and methyl groups on pure silica MCM-41 and Ti-MCM-41: efficient catalyst for epoxidation of cyclooctene. Catal. Lett. 2000, 66, 181–184.
(26) Rostamnia, S.; Doustkhah, E. Nanoporous silica-supported organocatalyst: A heterogeneous and green hybrid catalyst for organic transformations. RSC Adv. 2014, 4, 28238–28248.
(27) Kocaman, E.; Akarçay, Ö.; Bağlar, N.; Çelebi, S.; Uzun, A. Isobutene oligomerization on MCM-41-supported tungstophosphoric acid. Mol. Catal. 2018, 457, 41–50.
(28) Dekamin, M. G.; Arefi, E.; Yaghoubi, A. Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): A highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles. RSC Adv. 2016, 6, 86982–86988.
(29) Tamoradi, T.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Synthesis of polyhydroquinoline, 2, 3-dihydroquinazolin-4 (1H)-one, sulfide and sulfoxide derivatives catalyzed by new copper complex supported on MCM-41. Catal. Lett. 2018, 148, 857–872.
(30) Kumar, N.; Konova, P. M.; Naydenov, A.; Heikilä, T.; Salmi, I.; Martí del Rio, A.; Bag, J.; Sartorio, R. Understanding the influence of the immobilization procedure on the catalytic activity of aminopropylsilicas in C–C forming reactions. Appl. Catal. A, 2003, 246, 183–188.
(31) Macquarrie, D. J.; Maggi, R.; Mazzacani, A.; Sartori, G.; Sartorio, R. The influence of the immobilization procedure on the catalytic activity of aminopropylsilicas in C–C forming reactions. Tetrahedron 2012, 68, 922–930.
(32) Nowicki, J.; Jaroszewska, K.; Nowakowska-Bogdan, E.; Szmatała, M.; Ilowska, J. Synthesis of 2,4,4-trimethyl-2-H-dihydroquinoline (TMQ) over selected organosulfonic acid silica catalysts: Selectivity aspects. Mol. Catal. 2018, 454, 94–103.
(33) Kubiochová, L.; Peikertová, P.; Manulová Kutláková, K.; Jiráková, Ľ.; Slowik, G.; Obolová, L.; Cool, P. Catalytic activity of cobalt grafted on ordered mesoporous silica materials in N2O decomposition and CO oxidation. Mol. Catal. 2017, 437, 57–72.
(34) Sun, Z.; Cui, G.; Li, H.; Tian, Y.; Yan, S. Multifunctional dendritic mesoporous silica nanospheres loaded with silver nanoparticles as a highly active and recyclable heterogeneous catalyst. Colloid Surf., A 2016, 489, 142–153.
(35) Dekamin, M. G.; Mokhtari, Z. Highly efficient and convenient Streecker reaction of carbonyl compounds and amines with TMSN3 catalyzed by MCM-41 anchored sulfonic acid as a recoverable catalyst. Tetrahedron 2012, 68, 922–930.
(36) Yaghoubi, A.; Dekamin, M. G.; Karimi, B. Propylsulfonic Acid-Anchored Isocyanurate-Based Periodic Mesoporous Organosilica (PMO-ICS-PrSO3H): A Highly Efficient and Recoverable Nanoporous Catalyst for the One-Pot Synthesis of Substituted Polyhydroquinolines. Catal. Lett. 2017, 147, 2656–2663.
(37) Macquarrie, D. J.; Maggi, R.; Mazzacani, A.; Sartori, G.; Sartorio, R. Understanding the influence of the immobilization procedure on the catalytic activity of aminopropylsilicas in C–C forming reactions. Tetrahedron 2012, 68, 922–930.
(38) Rojas-Buzo, S.; García-García, P.; Correa, A. Ze-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane prepolymers. Catal. Sci. Technol. 2019, 9, 146–156.
(39) Edami, M.; Dekamin, M. G.; Motlagh, L.; Maleki, A. MCM-41 mesoporous silica: a highly efficient and recoverable catalyst for rapid synthesis of ε-aminonitriles and imines. Green Chem. Lett. Rev. 2018, 11, 36–46.
(40) Wang, Z.; Ling, H.; Shi, J.; Stampf, C.; Yu, A.; Hunger, M.; Huang, J. Acidity enhanced [Al] MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. J. Catal. 2018, 358, 71–79.
(41) Ferré, M.; Pleixats, R.; Man, M. W. C.; Cattoën, X. Recyclable organocatalysts based on hybrid silicas. Green Chem. 2016, 18, 881–922.
(52) Wagh, K. V.; Gajengi, A. L.; Rath, D.; Parida, K.; Bhanage, B. M. Sulphated Al-MCM-41: A simple, efficient and recyclable catalyst for synthesis of substituted aryl ketones/olefins via alcohols addition to alkynes and coupling with styrenes. *Mol. Catal.* 2018, 452, 46–53.

(53) Dekamin, M. G.; Peyman, S. Z.; Karimi, Z.; Javanshir, S.; Naimi-Jamal, M. R.; Barikani, M. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. *Int. J. Biol. Macromol.* 2016, 87, 172–179.

(54) Ganem, B. Strategies for Innovation in Multicomponent Reaction Design. *Acc. Chem. Res.* 2009, 42, 463–472.

(55) Cioc, R. C.; Ruijter, E.; Oru, R. V. A. Multicomponent reactions: advanced tools for sustainable organic synthesis. *Green Chem.* 2014, 16, 2958–2975.

(56) Shi, X. L.; Chen, Y.; Hu, Q.; Zhang, W.; Luo, C.; Duan, P. A potential industrialized fiber-supported copper catalyst for one-pot multicomponent CuAAC reactions in water. *J. Ind. Eng. Chem.* 2017, 53, 134–142.

(57) Palermo, V.; Sathicq, Å.G.; Constantieux, T.; Rodrigues, J.; Vásquez, P. G.; Romanelli, G. P. First Report About the Use of Micellar Keggin Heteropolyacids as Catalysts in the Green Multi-component Synthesis of Nifedipine Derivatives. *Catal. Lett.* 2016, 146, 1634–1647.

(58) Dekamin, M. G.; Eslami, M.; Maleki, A. Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. *Tetrahedron* 2013, 69, 1074–1085.

(59) Shi, X. L.; Chen, Y.; Hu, Q.; Wang, F.; Duan, P. An efficient, recyclable and large-scale fiber-supported Fe(II) catalytic system on a simple fixed-bed reactor verified in the Biginelli reactions. *J. Ind. Eng. Chem.* 2018, 60, 333–340.

(60) Kumari, M.; Jain, Y.; Yadav, P.; Laddha, H.; Gupta, R. Synthesis of Fe2O3-DOPA-Cu Magnetically Separable Nanocatalyst: A Versatile and Robust Catalyst for an Array of Sustainable Multicomponent Reactions under Microwave Irradiation. *Catal. Lett.* 2019, 149, 2180–2194.

(61) Aghahosseini, H.; Ramazani, A.; Šlepokura, K.; Lis, T. The first protection-free synthesis of magnetic bifunctional L-proline as a highly active and versatile artificial enzyme: Synthesis of imidazole derivatives. *J. Colloid Interface Sci.* 2018, 511, 222–232.

(62) Ghorbani-Choghamarami, A.; Mohammad, M.; Tamoradi, T.; Ghaderian, M. Covalent immobilization of Co complex on the surface of SBA-15: Green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. *Polyhedron* 2019, 158, 25–35.

(63) Sriviya, N.; Ramamurthy, P.; Shanmugasundaram, P.; Ramakrishnan, V. Synthesis, characterization, and electrochemistry of some acridine-1, 8-dione dyes. *J. Org. Chem.* 1996, 61, 5083–5089.

(64) Girault, S.; Grellier, P.; Berecibar, A.; Maes, L.; Mouray, E.; Lemiere, P.; Debreu, M.-A.; Davioud-Charvet, E.; Sergheraert, C. Antimalarial, antitrypansomal, and antileishmanial activities and cytotoxicity of bis (9-amino-6-chloro-2-methoxyacridines): influence of the linker. *J. Med. Chem.* 2000, 43, 2646–2654.

(65) Wainwright, M. Acridine—a neglected antibacterial chromophore. *J. Antimicrob. Chemother.* 2001, 47, 1–13.

(66) Gamage, S. A.; Spencer, J. A.; Atwell, G. J.; Finlay, G. J.; Baguley, M.; Islam, M.; Shafiq, Z.; Ludwig, R.; Hameed, A. Acridinediones as selective fluoride ion chemosensor: a detailed spectroscopic and quantum mechanical investigation. *RSC Adv.* 2018, 8, 1993–2003.

(67) Indirapiyadharshini, V. K.; Karunanithi, P.; Ramamurthy, P. Inclusion of Resorcinol-Based Acridinediones in Cycloexetrins: Fluorescence Enhancement. *Langmuir* 2001, 17, 4056–4060.

(68) Borhade, A. V.; Uphade, B. K.; Gadhave, A. G. Efficient, solvent-free synthesis of acridinediones catalyzed by CdO nanoparticles. *Res. Chem. Intermed.* 2015, 41, 1447–1458.

(69) Mahesh, P.; Guruswamy, K.; Diwakar, B. S.; Devi, B. R.; Murthy, Y. L. N.; Kollu, P.; Sri Venkata Narayan, P. Magnetically Separable Recyclable Nano-ferrite Catalyst for the Synthesis of Acridinediones and Their Derivatives under Solvent-free Conditions. *Chem. Lett.* 2015, 44, 136–138.

(70) Martin, N.; et al. Synthesis and conformational study of acridine derivatives related to 1, 4-dihydropyridines. *J. Heterocycl. Chem.* 1995, 32, 235–238.

(71) Sharma, D.; Bandana; Reddy, C. B.; Kumar, S.; Shil, A. K.; Guha, N. R.; Das, P. Microwave assisted solvent and catalyst free method for novel classes of α-enaminoester and acridinediones synthesis. *RSC Adv.* 2013, 3, 10335–10340.

(72) Tu, S. J.; Miao, C.-B.; Gao, Y.; Feng, Y.-J.; Feng, J.-C. Microwave-promoted prompt reaction of cinnamonitrile derivatives with S-, 5-dimethyl-1, 3-cyclohexanediene. *Chem. J. Phys.* 2002, 20, 703–706.

(73) Zarei, Z.; Akhlaghania, B. ZnII doped and immobilized on functionalized magnetic hydroxalate (Fe2O3/HIT-SMU-Tz:ZnII): a novel green and recyclable bi-functional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions. *New J. Chem.* 2017, 41, 15485–15500.

(74) Pamuk, H.; Aday, B.; Şen, F.; Kaya, M. Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. *RSC Adv.* 2015, 5, 49295–49300.

(75) Ulus, R.; Yıldız, Y.; Eriş, S.; Aday, B.; Şen, F.; Kaya, M. Functionalized Multi-Walled Carbon Nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives. *ChemistrySelect* 2016, 1, 3861–3865.

(76) Amoozadeh, A.; Golan, S.; Rahmani, S. TiO2-coated maghemite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. *RSC Adv.* 2015, 5, 45974–45982.

(77) Zolfilol, M. A.; Karimi, F.; Yarie, M.; Torabi, M. Catalytic application of sulfonic acid-functionalized titana-coated magnetic nanoparticles for the preparation of 1,8-dioxooctahydroacridines and 2,4,6-triarypyridines via anomerization-based oxidation. *Appl. Organomet. Chem.* 2018, 32, No. e4063.

(78) Saifei, H. R.; Saifei, M.; Shekouhy, M. Sulfuric acid-modified poly (vinylpyrrolidone)((PVP–SO4 H2SO4): a newly highly efficient, bio-degradable and reusable polymeric catalyst for the synthesis of acridinedione derivatives. *RSC Adv.* 2015, 5, 6797–6806.

(79) Kumar, P. S. V.; Suresh, L.; Vinodkumar, T.; Chandramouli, G. Eu2O3 modified CeO2 nanoparticles as a heterogeneous catalyst for an efficient green multicomponent synthesis of novel phenylidazeylenyl-acridinedione-carboxyl acid derivatives in aqueous medium. *RSC Adv.* 2016, 6, 91133–91140.

(80) Islam, M.; Sangshetti, J. N. A rapid and green method for expedient acridinedione synthesis via one-pot multi-component synthesis of acridinediones under microwave irradiation. *ACS Omega* 2021, 6, 7047–7064.

(81) Ulus, R.; Yıldız, Y.; Eriş, S.; Aday, B.; Şen, F.; Kaya, M. Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. *RSC Adv.* 2015, 5, 49295–49300.

(82) Amoozadeh, A.; Golan, S.; Rahmani, S. TiO2-coated maghemite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. *RSC Adv.* 2015, 5, 45974–45982.

(83) Ghosale, A.; Deka, D.; Mitra, A.; Kulkarni, P. G.; Muzumdar, M. K. Magnetite nanoparticles as an efficient and reusable magnetic solid phase catalyst for the synthesis of acridinediones and their dihydro derivatives. *ChemistrySelect* 2018, 3, 10450–10463.
(86) Dekamin, M. G.; Mehdipoor, F.; Yaghoubi, A.; Deshmukh, M. G.; Alirezavi, Z. Superparamagnetic silica core-shell hybrid attached to graphene oxide as a promising recoverable catalyst for expeditious synthesis of TMS-protected cyanohydrins. J. Colloid Interface Sci. 2018, 521, 232–241.

(87) Iskhan, M.; Dekamin, M. G.; Alirezavi, Z. Selective and efficient synthesis of xanthenedione and tetraketone derivatives catalyzed by ZnO nanorod-decorated graphene oxide. New J. Chem. 2018, 42, 14246–14262.

(88) Zholobenko, V.; Holmes, S.; Cundy, C.; Dwyer, J. Synthesis of MCM-41 materials: an in situ FTIR study. Microporous Mesopor. Mater. 1997, 11, 83–86.

(89) Schacht, S.; Janicke, M.; Schütt, F. Modeling X-ray patterns and TEM images of MCM-41. Microporous Mesoporous. Mater. 1998, 22, 485–493.

(90) Mello, M. B.; Phanom, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous. Mater. 2011, 143, 174–179.

(91) Dekamin, M. G.; Moghadam, F. M.; Saeidian, H.; Mallakpour, S. The Performance of Phthalimide-N-oxyl Anion. Monatsh. Chem. 2006, 137, 1591–1595.

(92) Moghadam, F. M.; Dekamin, M. G.; Koozehgari, G. R. A simple and efficient method for synthesis of isocyanurates catalyzed by potassium pyridine under solvent-free conditions. Lett. Org. Chem. 2005, 2, 724–738.

(93) Nheyvane, E. P. F.; Andrade, G. F.; Faria, J. A. Q. A.; Gomes, D. A.; Sousa, E. M. B. d. Biodegradable Polymers Grafted onto Multifunctional Mesoporous silica Nanoparticles for Gene Delivery. ChemEngineering 2018, 2, No. 24.

(94) Al-Othman, Z. A. A review: fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902.

(95) Alinezhad, H.; Tajbaksh, M.; Norouzi, M.; Bagheri, S.; Rakhtshah, J. Green and expeditious synthesis of 1, 8-dioxodecahydroacridines derivatives catalysed by proct pyridinium liquid ionic. J. Chem. Sci. 2013, 125, 1517–1522.

(96) Zhu, J.; Liu, R.; Du, C.; Li, L. B. Benztiazine-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of [small alpha]-amino nitriles and imines under mild conditions. ACS Omega 2018, 3, 12354–12357.

(97) Valiey, E.; Dekamin, M. G.; Alirezavi, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydroxyran[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 2019, 129, 407–421.

(98) Dekamin, M. G.; Azimoshan, M.; Ramezanli, L. Chitosan: A highly efficient and recoverable bio-polymer catalyst for the expeditious synthesis of [small alpha]-amino nitriles and imines under mild conditions. Green Chem. 2013, 15, 811–820.

(99) Koca-Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.; Merino, P. Asymmetric organocatalytic synthesis of γ-nitrocycloalkyl compounds through Michael and Domino reactions. Tetrahedron: Asymmetry 2010, 21, 2561–2601.

(100) Madankumar, N.; Pitchumani, K. β-Cyclodextrin Mono-sulphonic Acid Promoted Multicomponent Synthesis of 1, 8-Dioioacrydehydroacridines in Water. ChemistrySelect 2018, 3, 10886–10891.

(101) Sehout, I.; Boulcina, R.; Boumoud, B.; Boumoud, T.; Debache, A. Solvent-free synthesis of polyhydroquinoline and 1, 8-dioioacrydehydroacridine derivatives through the Hantzsch reaction catalyzed by a natural organic acid: A green method. Synth. Commun. 2017, 47, 1185–1191.

(102) Shi, D. Q.; Ni, S. N.; Shi, J. W.; Dou, G. L.; Li, X. Y.; Wang, X. S. An efficient synthesis of polyhydroquinoline derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid. J. Heterocycl. Chem. 2008, 45, 653–660.

(103) Davoodnia, A.; Khoshtehnezhad, A.; Tavakoli-Hoseini, N. Carbon-based solid acid as an efficient and reusable catalyst for the synthesis of 1, 8-dioioacrydehydroacridines under solvent-free conditions. Bull. Korean Chem. Soc. 2011, 32, 2243–2248.

(104) Hong, M.; Xiao, G. FSG-HF (NP2)4 catalyzed, environmentally benign synthesis of 1, 8-dioioacrydehydroacridines in water–ethanol. J. Fluorine Chem. 2012, 144, 7–9.

(105) Mokhtary, M.; Langroudi, S. A. M. Polyvinylpyrrolidone-supported boron trifluoride: a mild and efficient catalyst for the synthesis of 1, 8-dioioacrydehydroacridines. Monatsh. Chem. 2014, 145, 1489–1494.

NOTE ADDED AFTER ASAP PUBLICATION

This paper was published ASAP on November 12, 2019 with the image for Scheme 2 duplicated as Scheme 1. The corrected version was reposted on November 15, 2019.