Exclusive $\gamma^(*)\gamma$ processes

V.L. Chernyak

Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

Talk given at the Beijing Conference ”From ϕ to ψ", 13-16 October 2009, China

Abstract

A short review of experimental and theoretical results on the large angle cross sections $\gamma\gamma \rightarrow \text{two mesons}$ and the form factors $\gamma^*\gamma \rightarrow P = \{\pi, \eta, \eta'\}$ is given.

1. Introduction

The general approach to calculations of hard exclusive processes in QCD was developed in [1, 2]. In particular, the general formula for the leading power term of any hadron form factor $\gamma^* \rightarrow H_1 H_2$ has the form [1]:

$$\langle p_1, s_1, \lambda_1; p_2, s_2, \lambda_2 | J_\lambda | 0 \rangle = C_{12} \left(\frac{1}{\sqrt{q^2}} \right)^{|\lambda_1 + \lambda_2 | + (2n_{\text{min}} - 3)} ,$$

where n_{min} is the minimal number of elementary constituents in a given hadron, $n_{\text{min}} = 2$ for mesons and $n_{\text{min}} = 3$ for baryons; $s_{1,2}$ and $\lambda_{1,2}$ are the hadron spins and helicities, the current helicity $\lambda = \lambda_1 - \lambda_2 = 0, \pm 1$; the coefficient C_{12} is expressed through the integral over the wave functions of both hadrons.

It is seen that the behavior is independent of hadron spins, but depends essentially on their helicities, and the QCD helicity selection rules are clearly seen: the largest form factors occur only for $\lambda_1 = \lambda_2 = 0$ mesons and $\lambda_1 = -\lambda_2 = \pm 1/2$ baryons of any spins.

The QCD logarithmic loop corrections to (1) were first calculated in [2] (see also [3, 4, 5] for more details and [6] for a review).

2. $\gamma\gamma \rightarrow \overline{M}M$ large angle scattering

The QCD predictions for the leading terms of the large angle scattering cross sections $\gamma\gamma \rightarrow \text{two mesons}$ were considered in [7, 8] (see also [9] for the one-loop corrections).

![Feynman diagrams](image-url)
The expressions for the cross sections look as (the example in (2) is given for $\gamma\gamma \to K^+K^-$):

$$\frac{d\sigma(\gamma\gamma \to M^+M)}{d\cos \theta} = \frac{1}{32\pi W^2} \frac{1}{4} \sum_{\lambda_1 \lambda_2} |A_{\lambda_1 \lambda_2}|^2,$$

$$A^{(lead)}_{\lambda_1 \lambda_2}(W, \theta) = \frac{64\pi^2}{9W^2} \alpha \overline{\alpha}_s f_P^2 \int_0^1 dx \phi_P(x) \int_0^1 dy \phi_P(y) T_{\lambda_1 \lambda_2}(x, y, \theta),$$

$$T_{++} = T_{--} = \frac{1}{D} \left[\frac{(e_u - e_s)^2}{\sin^2 \theta} (1 - A) + e_u e_s \frac{A}{A^2 - B^2 \cos^2 \theta} + \frac{e_u^2 - e_s^2}{2} (x_u - y_s) \right],$$

where: $x_s + x_u = 1$, $e_u = 2/3$, $e_s = e_d = -1/3$, f_P are the couplings: $f_\pi \simeq 132\text{ MeV}$, $f_K \simeq 162\text{ MeV}$, $\phi_P(x)$ is the leading twist pseudoscalar meson wave function (= distribution amplitude), "X" is the meson momentum fraction carried by quark inside the meson.

Fig.2 Three different models for the leading twist pion wave function $\phi_\pi(x)$.

- Red line - asymptotic wave function $\phi_\pi^{asy}(x) = 6x(1-x)$.
- Blue line - CZ wave function (at the low scale normalization point $\mu_o \sim 1\text{ GeV}$): $\phi_\pi^{as}(x, \mu_o) = 30x(1-x)(2x-1)^2$.
- Black line - flat wave function $\phi_\pi(x, \mu_o \sim 1\text{ GeV}) = 1$.

Cross sections for **charged mesons**: $\gamma\gamma \to \pi^+\pi^-$, K^+K^- behave as:

$$\frac{d\sigma(\gamma\gamma \to \pi^+\pi^-)}{d\cos \theta} \sim \frac{f_\pi^4}{W^6 \sin^4 \theta},$$

and the angular distribution $\sim 1/\sin^4 \theta$ is only weakly dependent on the meson wave function form. But the absolute values of cross sections depend strongly on the form of $\phi_M(x)$ and are much larger for the wide wave functions.

For **neutral mesons**: $\gamma\gamma \to \pi^0\pi^0$, $\overline{K}_S K_S$, $\pi^0\eta$, $\eta\eta$ the coefficient of the formally leading term $\sim 1/W^6$ is very small, so that at present energies $W < 4\text{ GeV}$ such amplitudes are dominated by the first power correction in the amplitude and the energy behavior is much steeper:

$$\frac{d\sigma(\gamma\gamma \to \overline{K}_S K_S)}{d\cos \theta} \sim \frac{f_K^4}{W^{10}} \chi(\theta),$$

while, unlike (3), the angular dependence $\chi(\theta)$ and the overall coefficient in (4) are not predicted (at present) in a model independent way.

As the alternative approach to description of $\gamma\gamma \to \overline{M}M$ processes, the "handbag model" was used in [11]. The main dynamical assumption of the "handbag model" [11] is that at present energies $W \leq 4\text{ GeV}$ all $\gamma\gamma \to \overline{M}M$ amplitudes are still dominated by soft non-leading terms.
For all mesons, both charged and neutral, ”the standard handbag” contribution (Fig.3) gives: $d\sigma (\gamma \gamma \rightarrow \bar{M}M)/d\cos \theta \sim \text{const}/W^{10}$ [12]. This angular behavior $\sim \text{const}$ disagrees with all data $\sim 1/\sin^{4}\theta$, and the energy behavior disagrees with the data $\sim 1/W^{6}$ for charged mesons. \footnote{It was ”obtained” in [11] that the angular behavior of the standard handbag contribution from Fig.3a is $d\sigma/d\cos \theta \sim 1/\sin^{4}\theta$. Really, this ”result” is completely model dependent. The reason is that a number of special approximate relations were used in [11] at intermediate steps. All these relations are valid, at best, for the leading term only. But it turned out finally that their would be leading term gives zero contribution to the amplitude, and the whole answer is due to next corrections, which were not under control in [11]. Their result $\sim 1/\sin^{4}\theta$ is completely due to especially (and arbitrary) chosen form of the next to leading correction, while ignoring all others next to leading corrections of the same order of smallness. Therefore, there is no really model independent prediction of the angular dependence in [11]. So, it is not surprising that the explicit calculation in [12] gives different angular dependence.}

I expect that, in distinction with the standard contribution of Fig.3, the additional soft contributions like those in Fig.4 will give:

$$
\left(\frac{d\sigma (\gamma \gamma \rightarrow \bar{M}M)}{d\cos \theta} \right)_{\text{fig.3}} \sim \frac{1}{W^{10}}; \quad \left(\frac{d\sigma (\gamma \gamma \rightarrow \bar{M}M)}{d\cos \theta} \right)_{\text{fig.4}} \sim \frac{1}{W^{10} \sin^{4}\theta},
$$

in better qualitative agreement with data for neutral mesons. Unfortunately, such contributions are not yet calculated at present (and it well may be that they are too small in absolute values).

Now, about a comparison with the data. The Belle results for $\gamma \gamma \rightarrow \pi^{+}\pi^{-}$ and $\gamma \gamma \rightarrow K^{+}K^{-}$ [14] are presented in Fig.5.

\footnote{The reason for $R_{\text{exp}} \ll (f_{K}/f_{\pi})^{4}$ is that the leading twist pseudoscalar meson wave function $\phi_{P}(x)$ becomes narrower when the lighter u or d quarks are replaced with the heavier s quarks, and this opposite effect compensates those from $f_{K}/f_{\pi} > 1$, see [8].}
It is seen that they are compatible with the leading term QCD predictions $\sigma(\pi^+\pi^-) \sim 1/W^6$, and disagree with the handbag model predictions of much steeper behavior $\sim 1/W^{10}$.

The angular behavior measured by Belle [14] for $\pi^+\pi^-$ and K^+K^- is $\sim 1/\sin^4\theta$, also in agreement with QCD and in disagreement with the standard handbag model [12]. As for the absolute values of cross sections, the values predicted from (2) are much smaller than data for the pion (kaon) wave functions close to $\phi_{\text{asy}}(x)$, while predictions from (2) for the wide π and K wave functions like $\phi_{cz}(x)$ are in a reasonable agreement with data (see [12] for more details).

Now, let us compare with the Belle results for the neutral mesons. The results for the cross section $\gamma\gamma \rightarrow K_S^0K_S^0$ are published in [15], see Fig.6.

It is seen from Fig.6 that in the energy range $2.5 < W < 4\text{ GeV}$ the energy behavior $\sim 1/W^{10}$ in this neutral channel is much steeper in comparison with $\sim 1/W^6$ in the charged channel. This agrees with qualitative expectations from QCD that because the coefficient of the formally leading at sufficiently large W is very small, the first non-leading term dominates the $K_S^0K_S^0$-amplitude at present energies $W < 4\text{ GeV}$. Let us recall that the handbag model predicts the dominance of non-leading terms (and so the energy behavior $\sim 1/W^{10}$) for all mesons, both charged and neutral.

As for the angular distribution, the data are sufficiently well described by $\sim 1/\sin^4\theta$ [15]. Let us recall once more that "the standard handbag model" (Fig.3) predicts the flat angular distribution $\sim \text{const}$ [12] also for all mesons, but the qualitative expectation is that "the extended handbag model" (Fig.4) will give $\sim 1/\sin^4\theta$, see (5).

Finally, about the ratio $R = \sigma_0(K_S^0K_S^0)/\sigma_0(K^+K^-)$, see Fig.6b. In the $SU(3)$ flavor symmetry limit the standard (and extended) handbag model predicts $R = 0.08$ [11]. It is seen from Fig.6b that this ratio decreases rapidly with energy and becomes smaller than ~ 0.08 at $W > 2.7\text{ GeV}$, in disagreement with the handbag model. This is because the energy dependence of $\sigma_0(K^+K^-) \sim 1/W^6$ disagrees with the handbag model prediction $\sim 1/W^{10}$.

The QCD prediction is that at sufficiently large W, when the parametrically leading but having a small coefficient term will become dominant in the $K_S^0K_S^0$ amplitude, this ratio will become constant (see BL and BC lines in Fig.6b). It is seen from Fig.6b that the ratio R is already close to the leading term QCD predictions for $K_S^0K_S^0$ at $W \approx 4\text{ GeV}$.

The qualitative situation with other neutral modes, $\gamma\gamma \rightarrow \pi^0\pi^0$, $\pi^0\eta$, $\eta\eta$, $\eta'\eta'$, etc., is similar to those of $\gamma\gamma \rightarrow K_S^0K_S^0$. Recently, there appeared new data from the Belle Collaboration on cross sections $\gamma\gamma \rightarrow \pi^0\pi^0$ and $\gamma\gamma \rightarrow \pi^0\eta$ [15][17], see Figs.7,8 and Table 1. The QCD predictions for this range of energies are: $\sigma(\pi^+\pi^-) \sim 1/W^6$, $\sigma(\pi^0\pi^0) \sim \sigma(\pi^0\eta) \sim 1/W^{10}$, $R = \sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-) \sim$...
1/W^4. The handbag model prediction is: \(R = \sigma(\pi^0\pi^0)/\sigma(\pi^+\pi^-) = 1/2 \). As for the cross section \(\sigma(\gamma\gamma \to \pi^0\eta) \), it behaves ”normally”, \(\sim 1/W^{10} \), similarly to \(\sigma(\gamma\gamma \to K_SK_S) \), see Fig.8a. But as for \(\sigma(\gamma\gamma \to \pi^0\pi^0) \), it behaves ”abnormally”, see Fig.7. This last behavior agrees neither with QCD, nor with the handbag model.

3. Conclusions on the large angle cross sections \(\gamma\gamma \to \overline{MM} \)

1) The leading term QCD predictions \(d\sigma/d\cos\theta \sim 1/(W^6 \sin^4\theta) \) for charged mesons \(\pi^+\pi^- \), \(K^+K^- \) agree sufficiently well with data both in energy and angular dependence at energies \(W \gtrsim 3\text{ GeV} \). The absolute values of cross sections are in a reasonable agreement with data only for the wide \(\pi \) (K) wave functions, like \(\phi_{\gamma\gamma,\pi}(x) \) (see [8, 12] for more details). The asymptotic wave functions \(\phi_{\gamma\gamma,\pi}(x) \sim \phi_{\gamma\gamma,\pi}(x) \) predict much smaller cross sections. The handbag model predictions for charged mesons disagree with data in energy dependence.

2) For neutral mesons, the QCD leading terms have much smaller overall coefficients, so that the non-leading terms are expected to dominate at present energies \(W < 4\text{ GeV} \), and the energy dependence is steeper: \(\sigma(\overline{M}M) \sim 1/W^{10} \). This agrees with data on \(\sigma(K_SK_S) \) and \(\sigma(\pi^0\eta) \), while \(\sigma(\pi^0\pi^0) \) behaves ”abnormally” (may be due to contamination of data with the pure QED background).

3) Predictions of the ”standard handbag model” disagree with data either in energy and/or angular dependence, or in absolute values. However, it is not excluded that adding soft contributions from the 3-particle wave functions in the ”extended handbag model” (see Fig.4) can help to describe cross sections of neutral mesons at intermediate energies \(2.5\text{ GeV} < W < 4 \). Unfortunately, such contributions are not yet calculated at present (and it well may be that they are too small; besides, one has to remember that there are also power corrections due to the higher twist wave function components in the diagrams in Fig.1).

Process	n - experiment	W range (GeV)		cos \(\theta \)	Ref.	n - QCD	n - handbag
\(\pi^+\pi^- \)	7.9 ± 0.4 stat ± 1.5 syst	3.0 - 4.1	< 0.6	[14]	\(\sim 6 \)	\(\sim 10 \)	
\(K^+K^- \)	7.3 ± 0.3 stat ± 1.5 syst	3.0 - 4.1	< 0.6	[14]	\(\sim 6 \)	\(\sim 10 \)	
\(K^0_SK^0_S \)	10.5 ± 0.6 stat ± 0.5 syst	2.4 - 4.0	< 0.6	[15]	\(\sim 10 \)	\(\sim 10 \)	
\(\eta\pi^0 \)	10.5 ± 1.2 stat ± 0.5 syst	3.1 - 4.1	< 0.8	[17]	\(\sim 10 \)	\(\sim 10 \)	
\(\pi^0\pi^0 \)	8.0 ± 0.5 stat ± 0.4 syst	3.1 - 4.1	< 0.8	[16]	\(\sim 10 \)	\(\sim 10 \)	

Table 1: The value of ”n” in \(n_{\text{tot}} \sim (1/W)^n \) in various reactions fitted in the W and |cos \(\theta \)| ranges indicated.

Fig. 7 (a) Cross sections \(\sigma_o(\gamma\gamma \to \pi^0\pi^0) \) and \(\sigma_o(\gamma\gamma \to \pi^+\pi^-) \) for |cos \(\theta \)| < 0.6 [14, 13].
(b) Their ratio.

Fig. 8 a) W - dependence of cross sections \(\gamma\gamma \to \pi^0\pi^0 \) and \(\gamma\gamma \to \pi^0\eta \) (|cos \(\theta \)| < 0.8).

The curve is the fit: \(\sigma(\pi^0\eta) \sim W^{-n} \), \(n = 10.5 \pm 1.2 \pm 0.5 \) [10, 17].
b) W - dependence of the cross section ratio \(\sigma(\pi^0\pi^0)/\sigma(\pi^0\eta) \) (|cos \(\theta \)| < 0.8).
4. $\gamma^*\gamma \rightarrow P = \{\pi^0, \eta, \eta'\}$ form factors $F_{\gamma P}(Q^2)$

As was first obtained in [2] on the example of the pion form factor $F_\pi(Q^2)$ (see [3] for more details), the contributions from short and large distances factorize in $F_\pi(Q^2)$ at large Q^2, and the logarithmic evolution of $Q^2 F_\pi(Q^2)$ is determined by renormalization factors of operators with the same anomalous dimensions γ_π as in the deep inelastic scattering. So, the strict non-perturbative QCD prediction for $F_\pi(Q^2)$ in the formal limit $Q^2 \rightarrow \infty$ looks as [2] ($b_o = 11 - 2n_f/3, \mu_o \sim 1 GeV$):

$$F_\pi(Q^2) \rightarrow \frac{8\pi\alpha_s(Q^2))}{Q^2} \int f_{\pi}^2 \left(1 + O(\frac{\alpha_s(Q)}{\alpha_s(\mu_o)})^{\frac{50}{\pi}}\right) = \frac{32\pi^2 f_{\pi}^2}{b_o Q^2 \ln Q^2} \left(1 + O(\frac{\alpha_s(Q)}{\alpha_s(\mu_o)})^{\frac{50}{\pi}}\right).$$

This corresponds to the pion wave function $\phi_\pi(x, \mu \rightarrow \infty)$ evolving to its universal asymptotic form

$$\phi_\pi(x, \mu \gg 1 GeV) \rightarrow 6x(1-x) \left(1 + O(\frac{\alpha_s(\mu)}{\alpha_s(\mu_o)})^{\frac{50}{\pi}}\right),$$

independently of its form $\phi_\pi(x, \mu_o \sim 1 GeV)$ at low energy. As it is seen, the logarithmic evolution with increasing scale is very slow.

As for the form factor $F_{\gamma\pi}(Q^2) = F_{\gamma\pi}(Q^2 = -q^2, q^2 = 0)$, the QCD prediction [4] for its asymptotic behavior in the formal limit $Q^2 \rightarrow \infty$ looks as (see e.g. [5]):

$$Q^2 F_{\gamma\pi}(Q^2) = \frac{\sqrt{2}}{3} \int_0^1 dx \phi_\pi(x, \mu \sim Q) \left(1 + O(\alpha_s(Q))\right) = \sqrt{2} f_{\pi} \left(1 + O(\frac{\alpha_s(Q)}{\alpha_s(\mu_o)})^{\frac{50}{\pi}}\right).$$

For the η and η' mesons, the form factors $F_{\gamma\eta}$ and $F_{\gamma\eta'}$ look similarly to $F_{\gamma\pi}$. For instance, a simplified description of $|\eta\rangle, |\eta'\rangle$ states in the quark flavor basis looks as follows [19]:

$$|\pi^0\rangle \rightarrow |(\bar{u}u - \bar{d}d)/\sqrt{2}\rangle, \quad |n\rangle \rightarrow |(\bar{u}u + \bar{d}d)/\sqrt{2}\rangle, \quad |s\rangle \rightarrow |\bar{s}s\rangle,$$

$$|\eta\rangle = \cos \phi |n\rangle - \sin \phi |s\rangle, \quad |\eta'\rangle = \sin \phi |n\rangle + \cos \phi |s\rangle.$$

(7)

$$F_{\gamma\pi}(Q^2) = \frac{\sqrt{2}(e_u^2 - e_d^2)}{Q^2} f_{\pi} \int_0^1 \frac{dx}{x} \phi_\pi(x, \mu \sim Q) I_0; \quad F_{\gamma\eta}(Q^2) = \frac{\sqrt{2}(e_u^2 + e_d^2)}{Q^2} f_{\pi} \int_0^1 \frac{dx}{x} \phi_\pi(x, \mu \sim Q) I_0,$$

$$F_{\gamma s}(Q^2) = \frac{2e_u^2 f_{\sigma}}{Q^2} \int_0^1 \frac{dx}{x} \phi_s(x, \mu \sim Q) I_0; \quad I_0 = \left(1 + O(\alpha_s) + O(1/Q^2)\right), \quad Q^2 \gg 1 GeV^2.$$

(8)

Predictions for $F_{\gamma\pi}(Q^2)$ were given in a large number of theoretical papers, using many different models for the leading twist pion wave function $\phi_\pi(x, \mu)$. The previous data for $F_{\gamma\pi}(Q^2)$ [20, 21] covered the space-like region $0 < Q^2 < 8 GeV^2$. The recent data from BaBar [22, 23] extended this one to $Q^2 \lesssim 40 GeV^2$, see Fig.9. It is seen that $Q^2 F_{\gamma P}(Q^2)$ exceeds its asymptotic value $\sqrt{2} f_{\pi}$ (the dashed line in Fig.9) at $Q^2 \gtrsim 10 GeV^2$. Because the loop and leading power corrections are negative here, this shows that the leading twist pion wave function $\phi_\pi(x, \mu)$ is considerably wider.

3 Really, unlike $F_\pi(Q^2)$, the leading asymptotic behavior of $F_{\gamma\pi}(Q^2)$ can be directly obtained from the standard Wilson operator expansion of $J_\mu(z)J_\nu(0) \rightarrow \sum_n C_n(z)O_n(0)$ in (6) [18], as in calculations of the deep inelastic scattering. The only difference is that the forward matrix elements $\langle p|O_n|p\rangle$ are taken in the deep inelastic scattering, while these are $\langle p|O_n|0\rangle$ in the case $\gamma^*\gamma \rightarrow \pi.$
than $\phi_{\text{asy}}(x)$, while most theoretical models predicted $\phi_\pi(x, \mu) \simeq \phi_{\text{asy}}(x)$. The red curve in Fig.9 shows that, with power corrections of reasonable size, the wide leading twist pion wave function $\phi_{\text{BMS}}(x, \mu)$ obtained in [10] using the standard QCD sum rules, see Fig.2, is not in contradiction with data.\footnote{A number of papers with predictions for $F_{\gamma\pi}(Q^2)$ has been published, based on the model pion wave function $\phi_{\text{BMS}}(x)$ (BMS=Bakulev-Mikhailov-Stefanis) obtained from the "improved QCD sum rules" with non-local condensates (see the last paper [25] and references therein). This approach has been criticized in [13], as it is based on arbitrary strong dynamical assumptions which, as was shown in [13], don’t pass the direct QCD check. Moreover, within this approach, one has to introduce a number of arbitrary model functions for various non-local vacuum condensates (see e.g. [26]) and, in general, the results for $\phi_\pi(x)$ depend heavily on the model forms chosen for these functions (compare e.g. the results for $\phi_\pi(x)$ from [27] and [28]). Finally, the model pion wave function $\phi_{\text{BMS}}(x, \mu)$ obtained within this approach predicted the value of $F_{\gamma\pi}(Q^2)$ only slightly above those for the asymptotic wave function $\phi_\pi(x) = \phi_{\text{asy}}(x)$, see [29], and well below the recent BaBar data [23][24]. Besides, it is claimed in [25] that the data [20][21][23][24] are incompatible with $\phi_\pi(x, \mu) = \phi_{\text{BMS}}(x, \mu)$ (and are even in contradiction with the QCD factorization for any pion wave function with the end point behavior $\sim x(1-x)$ at $x \to 0, 1$). As it is seen from Fig.9 (red curve), this is not so.}

After the new BaBar data on $F_{\gamma\pi}(Q^2)$ [23] appeared, it was proposed in [28] that the large value of $Q^2 F_{\gamma\pi}(Q^2)$ is due to the flat pion wave function, $\phi_\pi(x, \mu \sim 1 \text{GeV}) \simeq 1$, as $Q^2 F_{\gamma\pi}(Q^2)$ grows $\sim \ln(Q^2/M^2)$ in this case and, taking $M \simeq m_\rho$ by hand, such a behavior fits well then these BaBar data. But in this case, because the wave functions of $|\pi\rangle$, $|n\rangle$ and $|s\rangle$ are qualitatively similar, see (7-8), the form factors $q^2 F_{\gamma\pi}(q^2)$ and $q^2 F_{\gamma\pi}(q^2)$ will also grow the same way, $\sim \ln(q^2/m_\rho^2)$ at $q^2 \gg 1 \text{GeV}^2$. These two form factors have been measured recently by the BaBar Collaboration [22] at $q^2 = 112 \text{GeV}^2$. It is seen from Table 2 and Fig.10 that with $\phi_n(x) \sim \phi_s(x) \simeq 1$ these two form factors will be too large. Besides, such flat wave functions will contradict the data on $\sigma(e^+e^- \rightarrow VP)$, see Fig.11.

Table 2. The values of form factors $|q^2 F_{\gamma\pi}(q^2)|$ (in GeV) at $q^2 = 112 \text{GeV}^2$ for various meson wave functions

| Wave functions | $|q^2 F_{\gamma\pi}(q^2)|$ | $|q^2 F_{\gamma\pi}(q^2)|$ | $|q^2 F_{\gamma\pi}(q^2)|$ | Ref. |
|----------------|-----------------|-----------------|-----------------|-----|
| $\phi_n(x) \simeq \phi_s(x) \simeq \phi_{\text{asy}}(x) = 6x(1-x)$ | 0.14 | 0.13 | 0.21 | |
| $\phi_n(x) \simeq \phi_s(x) \simeq \phi_{\text{BMS}}(x)$ | 0.22 | 0.21 | 0.33 | |
| $\phi_n(x) \simeq \phi_{\text{BMS}}(x); \phi_s(x) \simeq \phi_{\text{asy}}(x)$ | 0.22 | 0.24 | 0.29 | |
| $\phi_n(x) \simeq \phi_s(x) \simeq 1$ | 0.32 | 0.31 | 0.49 | |
| experiment | — | 0.23 ± 0.03 | 0.25 ± 0.02 | [22] |
Fig. 9 The form factor $\Phi \equiv Q^2 F_{\gamma\pi}(Q^2)$

Theory:

a) the logarithmic loop corrections are calculated (in part) at the NNLO \[29,30\];
b) only the part of the total power correction $\sim 1/Q^2$ is calculated at present in 31:

$$\delta \Phi_4 \simeq -\sqrt{f_s}(0.6 \text{ GeV}^2)/Q^2,$$

originating from the 2 - and 3 - particle asymptotic pion wave functions of twist 4 32.

It well may be that it is not even the main part of the total $\sim 1/Q^2$ correction, because:
i) the deviation of these 2 - and 3 - particle twist 4 pion wave functions from their asymptotic forms (i.e. the admixture of higher "partial waves") was estimated in 32 only for the first non-leading "partial wave", while second (and higher) "partial waves" neglected in 32 can be important, ii) there are also contributions $\sim 1/Q^2$ from the 4 - particle wave functions of twist 4, iii) moreover, the twist expansion breaks down at this level, so that the higher twist ≥ 6 terms also give contributions $\sim 1/Q^2$;
c) the power correction $\sim 1/Q^4$ is unknown.

Black line: $\phi_0(x) = \phi_{asy}(x), \quad \Phi \simeq \sqrt{f_s} \left[0.77 - (0.6 \text{ GeV}^2/Q^2) \right]$ $29,30,34$

Blue line: $\phi_0(x) = \phi_{as}(x), \quad \Phi \simeq \sqrt{f_s} \left[1.18 - (0.6 \text{ GeV}^2/Q^2) \right]$ $30,31$

Red line (the example with additional mild power corrections):

$\phi_0(x) = \phi_{as}(x), \quad \Phi \simeq \sqrt{f_s} \left[1.18 - (1.5 \text{ GeV}^2/Q^2) - (1.2 \text{ GeV}^2/Q^2)^2 \right]$.

Experiment: $20,21,23,24$

Fig. 10 Full points: $|q^2F_{\gamma\pi}(q^2)|$ (left) and $|q^2F_{\gamma\eta}(q^2)|$ (right) transition form factors at $q^2 = 112 \text{ GeV}^2$ 22.

White points: previous CLEO data at $2 \text{ GeV}^2 < (Q^2 = -q^2) < 20 \text{ GeV}^2$ 21.

Black lines: the form factors $|q^2F_{\gamma\pi}(q^2)|$, $|q^2F_{\gamma\eta}(q^2)|$ for the flat pseudoscalar wave function $\phi_P(x) \simeq 1$.

5. Conclusions on the form factors $F_P(Q^2)$, $P = \{\pi^0, \eta, \eta'\}$ and the leading twist wave functions $\phi_P(x)$ of pseudoscalar mesons

The flat leading twist pseudoscalar wave function $\phi_P(x) \simeq 1$:
a) predicts the form factors $F_{\gamma\eta}(q^2)$ and $F_{\gamma\eta'}(q^2)$ at $q^2 = 112 \text{ GeV}^2$ considerably larger than the BaBar results;
b) predicts the parametrical behavior of cross sections $\sigma(e^+e^- \rightarrow VP)$ at large s as: $\sigma(e^+e^- \rightarrow VP) \sim 1/s^2$, in contradiction with the data $\sigma(e^+e^- \rightarrow VP) \sim 1/s^4$ in the interval $\sim 8 \text{ GeV}^2 < s < 112 \text{ GeV}^2$.

The asymptotic leading twist pseudoscalar wave function $\phi_P(x) \simeq 6x(1-x)$:
a) predicts the form factors $F_{\gamma\pi}(Q^2)$, $F_{\gamma\eta}(Q^2)$ considerably smaller than data;
b) predicts branching of charmonium decays: $3P_0, 3P_2 \rightarrow \pi^+\pi^-, K^+K^-$, the pion and kaon electromagnetic form factors $F_{\pi,K}(q^2)$ at $q^2 = 10 - 15 \text{ GeV}^2$ much smaller than data, etc.
The CZ leading twist pion wave function \(\phi_\pi^{2s}(x, \mu \sim 1 \, \text{GeV}) = 30x(1-x)(2x-1)^2 \) leads to predictions which, it seems, are not in contradiction with all data available.

![Graphs showing cross sections for various processes](image)

Fig.11 Solid lines correspond to \(1/s^4\) dependence and dashed ones represent \(1/s^3\).

\[a) \sigma(e^+e^- \rightarrow \phi\eta) \quad b) \sigma(e^+e^- \rightarrow \phi\eta') \]
\[c) \sigma(e^+e^- \rightarrow \rho\eta) \quad d) \sigma(e^+e^- \rightarrow \rho\eta') \]

The measured cross sections:
- at \(\sqrt{s} \simeq 2.5, 2.75 \, \text{GeV}\) by BaBar \(^{33}\),
- at \(\sqrt{s} = 3.67 \, \text{GeV}\) by CLEO \(^{34}\),
- at \(\sqrt{s} = 10.58 \, \text{GeV}\) by BaBar \(^{33}\) and Belle \(^{36}\) for various processes.

BaBar measurements are represented by squares.

QCD predictions:
\[\sigma(e^+e^- \rightarrow VP) \sim 1/s^2 \] for the flat pseudoscalar wave function \(\phi_P(x) \sim 1\).

The form factors \(\gamma^* \rightarrow VP\) are highly sensitive to the end point behavior of the leading twist pseudoscalar wave function \(\phi_P(x)\), as they contain the factor \(I \sim \int_0^1 dx \phi_P(x)/x^2, \delta = O(\mu^2/Q^2) \)^{35}. So, \(I \sim \ln(Q^2/\mu^2)\) for \(\phi_P(x) \sim x(1-x)\), while it will be parametrically larger at \(\phi_P(x) \sim 1 : I \sim (Q^2/\mu^2)\). The data are in a reasonable agreement (with a logarithmic accuracy) with the \(\sigma \sim 1/s^4\) dependence corresponding the end point behavior \(\phi_P(x) \sim x(1-x)\), and are in contradiction with the behavior \(\sigma \sim 1/s^2\), corresponding to \(\phi_P(x) \sim 1\) at \(x \rightarrow 0, 1\).

Note added

After this talk has been given, there appeared the paper \(^{37}\) with updated ”predictions” of the handbag model for the \(\gamma\gamma \rightarrow MM\) cross sections. In comparison with the previous paper \(^{11}\), the main new element in \(^{37}\) is that the sizeable soft non-valence form factor \(R_{MM}^{nv}(s)\) is used now, in addition to the soft valence one, \(R_{MM}^{v}(s)\). \(^{35}\) Both functions, \(R_{MM}^{nv}(s)\) and \(R_{MM}^{v}(s)\), are parameterized then in arbitrary forms, with a large number of free parameters which are fitted to the data. \(^{35}\) It seems, the authors consider that nearly nothing is known about QCD, so that it is possible to proceed in such an arbitrary way.

As for the standard soft valence contributions to the cross sections and the soft valence form factors \(R_{MM}^{v}(s)\), these were estimated in \(^{12}\) with a help of the QCD light cone sum rules (see section 2 above) and were found much smaller (and with the behaviour \(\sim 1/s^4\)) than the values fitted in \(^{11}\) (and in \(^{37}\)). In addition, we would like to comment here in short on the non-valence contributions.

\(^{5}\) As for the ”prediction” of the angular behavior \(s \, d\sigma/d \cos \theta \sim |R_{MM}^{v}|^2/\sin^4 \theta\) in \(^{11}\), see footnote 1 and \(^{12}\).

\(^{6}\) The form factors \(R_{2\pi}^{s}(s)\) and \(R_{2\pi}^{v}(s)\) used in \(^{37}\) are: \(R_{2\pi}^{s}(s) = R_{2\pi}^{v}(s) + R_{2\pi}^{nv}(s)\), \(R_{2\pi}^{v}(s) = R_{2\pi}^{v}(s)\).
Two types of non-valence contributions are presented in Fig.12.

- Fig.12a The leading power non-valence one-loop correction.
- Fig.12b The contribution to the soft handbag form factor $R_{MM}(s)$.

It is worth noting that both non-valence contributions in Fig.12 are $SU(3)$-flavor singlets in the $SU(3)$-symmetry limit. So, they contribute equally to the amplitudes $\pi^+\pi^-$, $\pi^0\pi^0$, K^+K^-, \overline{K}^0K^0 and $\eta_8\pi^0$, and don’t contribute to $\eta_8\pi^0$.

The diagrams in Fig.12a constitute a small subset of all one-loop corrections to the leading power contributions from the Born diagrams like those shown in Fig.1. We only note here that if these leading power one-loop non-valence corrections to the Born contributions were really significant, this will contradict then the data \[15\] on K_SK_S, see Fig.6.

As for the soft non-valence handbag form factor $R_{MM}(s)$, it seems sufficient to say that it originates first from the Fig.12b two-loop (non-logarithmic) correction, so that: $R_{MM}(s)/R_{MM}(s) = O\left((\alpha_s(s)/\pi)^2\right) = O(10^{-2})$. Clearly, so small non-valence contribution will not help.

I am grateful to V.P. Druzhinin for explaining me details of various experimental results and G. Duplancic for providing me with the additional details of calculations performed in \[9\].

This work is supported in part by the RFBR grant 07-02-00361-a.

References

[1] V.L. Chernyak, A.R. Zhitnitsky, JETP Lett. 25 (1977) 510
[2] V.L. Chernyak, V.G. Serbo, A.R. Zhitnitsky, JETP Lett. 26 (1977) 594
[3] V.L. Chernyak, A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 544
 V.L. Chernyak, V.G. Serbo, A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 552
[4] A.V. Efremov, A.V. Radyushkin, Phys. Lett. B94 (1980) 245
 A.V. Efremov, A.V. Radyushkin, Teor. i Mathem. Fiz. 42 (1980) 147
[5] G.P. Lepage, S.J. Brodsky, Phys. Rev. D22 (1980) 2157
[6] V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112 (1984) 173-318
[7] S.J. Brodsky, G.P. Lepage, Phys. Rev. D24 (1981) 1808
[8] M. Benayoun, V.L. Chernyak, Nucl. Phys. B329 (1990) 285
[9] G. Duplancic, B. Nizic, Phys. Rev. Lett. 97 (2006) 142003
[10] V.L. Chernyak, A.R. Zhitnitsky, Nucl. Phys. B201 (1982) 492
[11] M. Diehl, P. Kroll, C. Vogt, Phys. Lett. B532 (2002) 99; hep-ph/0112274

\[7\] In particular, this non-valence one-loop correction was calculated, among all others, in \[9\]. Its contribution into $\sigma(\gamma\gamma \to K^+K^-)$ cross section (integrated over $|\cos\theta| < 0.6$, and with $\phi_K(x) = \phi_{asy}(x)$) is $<3\%$: $\delta\sigma_{nv}/\sigma \simeq (-\alpha_s(s)/3\pi) \sim -3\%$. I.e., its (average) contribution into the amplitude is: $\delta A^{nv}/A(K^+K^-) \simeq -1.5\%$. The amplitude $|A(K_SK_S)| \simeq 0.15|A(K^+K^-)|$, see BL and BC lines in Fig.6. So, the rough estimate of this non-valence one loop correction to the $A(K_SK_S)$ amplitude in (2) is: $|\delta A^{nv}/A(K_SK_S)| \simeq 10\%$.

In particular, this non-valence one-loop correction was calculated, among all others, in \[9\]. Its contribution into $\sigma(\gamma\gamma \to K^+K^-)$ cross section (integrated over $|\cos\theta| < 0.6$, and with $\phi_K(x) = \phi_{asy}(x)$) is $<3\%$: $\delta\sigma_{nv}/\sigma \simeq (-\alpha_s(s)/3\pi) \sim -3\%$. I.e., its (average) contribution into the amplitude is: $\delta A^{nv}/A(K^+K^-) \simeq -1.5\%$. The amplitude $|A(K_SK_S)| \simeq 0.15|A(K^+K^-)|$, see BL and BC lines in Fig.6. So, the rough estimate of this non-valence one loop correction to the $A(K_SK_S)$ amplitude in (2) is: $|\delta A^{nv}/A(K_SK_S)| \simeq 10\%$.

\[10\] $\delta\sigma_{nv}/\sigma \simeq (-\alpha_s(s)/3\pi) \sim -3\%$. I.e., its (average) contribution into the amplitude is: $\delta A^{nv}/A(K^+K^-) \simeq -1.5\%$. The amplitude $|A(K_SK_S)| \simeq 0.15|A(K^+K^-)|$, see BL and BC lines in Fig.6. So, the rough estimate of this non-valence one loop correction to the $A(K_SK_S)$ amplitude in (2) is: $|\delta A^{nv}/A(K_SK_S)| \simeq 10\%$.

\[11\] M. Diehl, P. Kroll, C. Vogt, Phys. Lett. B532 (2002) 99; hep-ph/0112274
[12] V.L. Chernyak, Phys. Lett. B640 (2006) 246, hep-ph/0605072

[13] V.L. Chernyak, Nucl. Phys. (Proc. Suppl.) 162 (2006) 161, hep-ph/0605327

[14] H. Nakazawa et al., Belle Collaboration, Measurement of the $\gamma\gamma \rightarrow \pi^+\pi^-$ and $\gamma\gamma \rightarrow K^+K^-$ processes at energies 2.4 – 4.1 GeV, Phys. Lett. B615 (2005) 39, hep-ex/0412058

[15] W.T. Chen et al., Belle Collaboration, A study of $\gamma\gamma \rightarrow K_S K_S$ production at energies of 2.4 – 4.0 GeV at Belle, Phys. Lett. B651 (2007) 15, hep-ex/0609042

[16] S. Uehara, Y. Watanabe et al., Belle Collaboration, High statistic measurement of neutral-pion pair production in two-photon collisions, Phys. Rev. D78 (2008) 052004, arXiv: 0805.3387 [hep-ex]; 0810.0655 [hep-ex]

[17] S. Uehara, Y. Watanabe et al., Belle Collaboration, High statistic study of $\eta\pi^0$ production in two-photon collisions, Phys. Rev. D80 (2009) 032001, arXiv: 0906.1464 [hep-ex]

[18] V.L. Chernyak, unpublished, 1976

[19] T. Feldmann, P. Kroll, B. Stech, Phys. Rev. D58 (1998) 114006

[20] H.J. Behrend et al., CELLO Collaboration, C. Phys. C49 (1991) 401

[21] V. Savinov et al., CLEO Collaboration, Measurements of the meson-photon transition form factors of light pseudoscalar mesons at large momentum transfer, Phys. Rev. D57 (1998) 33

[22] V.P. Druzhinin et al., BaBar Collaboration, Measurement of the η and η' transition form factors at $q^2 = 112 \text{GeV}^2$, Phys. Rev. D74 (2006) 012002, hep-ex/0605018

[23] V.P. Druzhinin et al., BaBar Collaboration, Measurement of the $\gamma\gamma^* \rightarrow \pi^0$ transition form factor, Phys. Rev. D80 (2009) 052002, arXiv: 0905.4778 [hep-ex]

[24] V.P. Druzhinin, Recent results on two-photon physics at BaBar, arXiv: 0909.3148 [hep-ex]

[25] S.V. Mikhailov, N.G. Stefanis, arXiv: 0910.3498 [hep-ph]

[26] A.P. Bakulev, A.V. Pimikov, Acta Phys. Polon., B37 (2006) 3627, hep-ph/0608288

[27] A.V. Radyushkin, Talk given at the Workshop ”Continuous Advances in QCD”, University of Minnesota, Minneapolis, Feb. 18-20, 1994. In Proc. ”Continuous advances in QCD”, pp. 238-248; Preprint CEBAF-TH-94-13; hep-ph/9406237

[28] A.V. Radyushkin, arXiv: 0906.0323 [hep-ph]

[29] P. Gosdzinsky, N. Kivel, Nucl. Phys. B521 (1998) 274

[30] B. Melic, D. Muller, K. Passek-Kumericki, Phys. Rev. D68 (2003) 014013

[31] A. Khodjamirian, Eur. Phys. J. C6 (1998) 33, hep-ph/9712451

[32] V.M. Braun, I.B. Filyanov, Z. Phys. 48 (1990) 239

[33] B. Aubert et. al., BaBar Collaboration, Phys. Rev. D76 (2007) 092005

[34] G.S. Adams et al., CLEO Collaboration, Phys. Rev. D73 (2006) 012002

[35] B. Aubert et. al., BaBar Collaboration, Phys. Rev. D74 (2006) 111103
[36] K. Belous, M. Shapkin et al., Belle Collaboration, Measurement of cross sections of exclusive $e^+e^- \rightarrow VP$ processes at $\sqrt{s} = 10.58\, GeV$, Phys. Lett. B681 (2009) 400, arXiv: 0906.4214

[37] M. Diehl, P. Kroll, arXiv: 0911.3317 [hep-ph]

[38] G. Duplancic, private communication