Macerated-Pineapple Core Crude Extract-derived Bromelain Has Low Cytotoxic Effect in NIH-3T3 Fibroblast

Dewi Liliany Margaretta1,2, Angliana Chow3, Yanni Dirgantara3, Melanie Sadono Djamil2,4,5, Ferry Sandra2,4,5,6,

1Department of Dental Material, Faculty of Dentistry, Trisakti University, Jl. Kyai Tapa No.260, Jakarta, Indonesia
2Postgraduate Program in Oral Biomedics, Faculty of Dentistry, Trisakti University, Jl. Kyai Tapa No.260, Jakarta, Indonesia
3Prodia Stem Cell Laboratory, Jl. Kramat 7 No.11, Jakarta, Indonesia
4Department of Biochemistry and Molecular Biology, Faculty of Dentistry, Trisakti University, Jl. Kyai Tapa No.260, Jakarta, Indonesia
5BioCORE Laboratory, Faculty of Dentistry, Trisakti University, Jl. Kyai Tapa No.260, Jakarta, Indonesia
6Prodia Clinical Laboratory, Prodia Tower, Jl. Kramat Raya No.150, Jakarta, Indonesia

*Corresponding author. E-mail: ferrysandra@gmail.com
Received date: Jan 6, 2015; Revised date: Feb 6, 2015; Accepted date: Feb 8, 2015

Abstract

BACKGROUND: Bromelain is a sulfhydryl proteolytic enzyme that can hydrolyze protein, protease or peptide. Bromelain can be found in pineapple stem, fruit and core. Bromelain is composed of 212 amino acid residues with cysteine-25 forming a polypeptide chain that can hydrolyze peptide bonds by H2O. In medicine, bromelain has been developed as antibiotic, cancer drug, anti-inflammatory agent and immunomodulator. In dentistry, bromelain has potential to reduce plaque formation on the teeth and to irrigate root canal.

METHODS: Pineapple core was dried for 3 days to get simplicia. Then simplicia was extracted with water solvent for 24 hours. After that, the macerated-pineapple core crude extract-derived bromelain (PCB) was separated by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) followed by Coomassie Brilliant Blue (CBB) staining to ensure the presence of bromelain. In cytotoxic test, NIH-3T3 fibroblast cultures were treated with extracts in various concentrations to for 24 or 48 hours. Number of fibroblasts was calculated using 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide (MTT) assay.

RESULTS: Pineapple core extraction using maceration method produced relative high yield (concentration: 1.5424 g/mL) of bromelain, which was confirmed by CBB staining results with the molecular weight of 33 kDa. Based on cytotoxic test results of PCB on NIH-3T3 fibroblasts, 24-hours-incubation LD50 was 95.7 g/L, while 48-hours-incubation LD50 was 51.1 g/L.

CONCLUSION: PCB has low cytotoxic effect in NIH-3T3 fibroblasts.

KEYWORDS: bromelain, pineapple, extract, cytotoxic, MTT

Indones Biomed J. 2015; 7(2): 101-6

Introduction

Bromelain can be found in various parts of pineapple, including stem, leaf, crown, peel, fruit and core.(1) However, the core yielded highest bromelain activity recovery of 106% and 5.2 purification fold.(1) Beneficial effects of bromelain are related to its multiple constituents. (2) Although primarily comprised of sulfhydryl-containing proteolytic enzymes, bromelain also contains escharase (2), peroxidase, acid phosphatase, glucosidas, cellulases, several protease inhibitors, glycoproteins, carbohydrates, and organically bound calcium.(3) Bromelain is made up of 212 amino acids and the molecular weight is 33 kDa. (4) Bromeline is also composed of several distinct cysteine proteolytic fractions ranging in size from 15 to 27 kDa.(5)
Bromelain was widely reported to have various active molecular properties. It can activate various innate immune cells including macrophages, dendritic cells, natural killer cells and CD4+ T cells. It can also induce apoptosis in skin tumors, breast cancer cells and gastrointestinal carcinoma cells and inhibit L-1 cells tumor growth. In addition, bromelain can inhibit human cytochrome P450 2C9 activity. In apoptosis induction, bromelain was reported to activate caspase cascades, cleavage of Poly Adenosine Diphosphate (ADP) Ribose Polymerase (PARP) and p53, overexpression of cytochrome C, attenuation of phosphorylated Akt and B Cell Lymphoma 2 (Bcl2), and removal of Mucin 1 (MUC1). In apoptosis induction, bromelain was reported to have anti-apoptosis activity by increasing phosphorylation of Akt and Forkhead Homeobox type O (FOXO) 3A. For anti-tumor and anti-inflammatory, Extracellular Signal-regulated Kinase 2 (ERK-2) Mitogen-activated Protein Kinases (MAPK) and p21ras was disrupted by of bromelain.

Bromelain are considered to have a range of beneficial properties as anti-inflammatory, analgesic actions, anti-oedematous, anti-thrombotic, anti-diarrheal, antibiotics, anti-tumor, skin debridement, digestive aid, musculoskeletal injuries, reduces the blood pressure level, prevents aggregation of blood platelets, activates plasmin, supports the oxidative burst and fibrinolytic effects. In humans, bromelain has been well documented to increase blood and urine levels of antibiotics and results in higher blood and tissue levels of tetracycline and amoxicillin when they are administered concurrently with bromelain.

NIH-3T3 Fibroblast Culture
NIH-3T3 fibroblasts were cultured using Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum (FBS), penicillin, streptomycin, and amphotericin B in a humidified, 37°C, 5% CO2 incubator. Upon reaching 80% confluency, fibroblasts were subcultured and propagated.

Cytotoxic Test
Cytotoxic test was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide (MTT) assay (Sigma) as described previously. The MTT assay provides a quantitative measurement of viable fibroblasts by determining the amount of formazan crystals produced by metabolically active fibroblasts. Briefly, 1x10^4 fibroblasts were seeded into each well of 96-well plates in medium containing active agent, 1:1,000 diluted hydrogen peroxide or medium merely. Fibroblasts were incubated for 24 hours, and the formazan crystals were quantified using a microplate reader at 570 nm. The percentage of cell viability was calculated using the following formula:

\[
\text{Cell Viability} = \frac{OD_{	ext{test}} - OD_{	ext{buffer}}}{OD_{	ext{control}} - OD_{	ext{buffer}}} \times 100
\]

where
- \(OD_{	ext{test}}\) is the optical density of the sample,
- \(OD_{	ext{buffer}}\) is the optical density of the blank (buffer control),
- \(OD_{	ext{control}}\) is the optical density of the positive control.

The results were expressed as mean ± standard deviation (SD) and analyzed using Student’s t-test. A p-value of less than 0.05 was considered statistically significant.

Methods

Extraction of Bromelain from Pineapple Core
Pineapples were collected from Bogor, Indonesia. Pineapples were peeled and its cores were collected. Pineapple cores were dried at 40°C for 3 days, weighed and milled. Extraction was performed using maceration method with water solvent in ratio of 1:10 for 24 hours at 4°C. The solvent was added 3 times in 24 hours, then filtered and evaporated with a rotary evaporator (Buchi Rotavapor R-124, Buchi, Flawil, Switzerland) at 40°C. Maceration results were stored in a refrigerator at 4°C.

Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) Staining
Macerated-pineapple core crude extract was mixed with loading buffer in a ratio of 4:1 and boiled for 1 minute. Ten μl of boiled mixtures were then separated by SDS-PAGE followed by CBB staining for 30 minutes, to ensure the presence of bromelain.

NIH-3T3 Fibroblast Culture
NIH-3T3 fibroblasts were cultured using Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum (FBS), penicillin, streptomycin, and amphotericin B in a humidified, 37°C, 5% CO2 incubator. Upon reaching 80% confluency, fibroblasts were subcultured and propagated.

Cytotoxic Test
Cytotoxic test was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide (MTT) assay (Sigma) as described previously. The MTT assay provides a quantitative measurement of viable fibroblasts by determining the amount of formazan crystals produced by metabolically active fibroblasts. Briefly, 1x10^4 fibroblasts were seeded into each well of 96-well plates in medium containing active agent, 1:1,000 diluted hydrogen peroxide or medium merely. Fibroblasts were incubated for 24 hours, and the formazan crystals were quantified using a microplate reader at 570 nm. The percentage of cell viability was calculated using the following formula:

\[
\text{Cell Viability} = \frac{OD_{	ext{test}} - OD_{	ext{buffer}}}{OD_{	ext{control}} - OD_{	ext{buffer}}} \times 100
\]

where
- \(OD_{	ext{test}}\) is the optical density of the sample,
- \(OD_{	ext{buffer}}\) is the optical density of the blank (buffer control),
- \(OD_{	ext{control}}\) is the optical density of the positive control.

The results were expressed as mean ± standard deviation (SD) and analyzed using Student’s t-test. A p-value of less than 0.05 was considered statistically significant.

Methods

Extraction of Bromelain from Pineapple Core
Pineapples were collected from Bogor, Indonesia. Pineapples were peeled and its cores were collected. Pineapple cores were dried at 40°C for 3 days, weighed and milled. Extraction was performed using maceration method with water solvent in ratio of 1:10 for 24 hours at 4°C. The solvent was added 3 times in 24 hours, then filtered and evaporated with a rotary evaporator (Buchi Rotavapor R-124, Buchi, Flawil, Switzerland) at 40°C. Maceration results were stored in a refrigerator at 4°C.

Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) Staining
Macerated-pineapple core crude extract was mixed with loading buffer in a ratio of 4:1 and boiled for 1 minute. Ten μl of boiled mixtures were then separated by SDS-PAGE followed by CBB staining for 30 minutes, to ensure the presence of bromelain.

NIH-3T3 Fibroblast Culture
NIH-3T3 fibroblasts were cultured using Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum (FBS), penicillin, streptomycin, and amphotericin B in a humidified, 37°C, 5% CO2 incubator. Upon reaching 80% confluency, fibroblasts were subcultured and propagated.

Cytotoxic Test
Cytotoxic test was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide (MTT) assay (Sigma) as described previously. The MTT assay provides a quantitative measurement of viable fibroblasts by determining the amount of formazan crystals produced by metabolically active fibroblasts. Briefly, 1x10^4 fibroblasts were seeded into each well of 96-well plates in medium containing active agent, 1:1,000 diluted hydrogen peroxide or medium merely. Fibroblasts were incubated for 24 hours, and the formazan crystals were quantified using a microplate reader at 570 nm. The percentage of cell viability was calculated using the following formula:

\[
\text{Cell Viability} = \frac{OD_{	ext{test}} - OD_{	ext{buffer}}}{OD_{	ext{control}} - OD_{	ext{buffer}}} \times 100
\]

where
- \(OD_{	ext{test}}\) is the optical density of the sample,
- \(OD_{	ext{buffer}}\) is the optical density of the blank (buffer control),
- \(OD_{	ext{control}}\) is the optical density of the positive control.

The results were expressed as mean ± standard deviation (SD) and analyzed using Student’s t-test. A p-value of less than 0.05 was considered statistically significant.
or 48 hours. Ten μl of 5 mg/ml MTT in phosphate buffer saline (PBS) was added to each well. The plate was then incubated for 4 hours, and then the medium was discarded and formazan crystals were dissolved in 100 μl of 0.1N HCl.

The absorbance of fibroblasts was measured at 570 nm by a microplate reader. Untreated fibroblasts were counted with a hemacytometer and used for interpolating the absorbance.

Figure 2. NIH-3T3 fibroblasts expression after treatment of PCB. NIH-3T3 fibroblasts were seeded on glass slides in 6-cm culture dish. NIH-3T3 fibroblasts were treated with 0 (A), 3.125 (B), 6.25 (C), 12.5 (D), 25 (E) and 50% (F) PCB in DMEM containing 2% FBS for 48 hours. Fibroblasts were documented with an inverted light microscope. G: Fibroblasts were incorporated with MTT, formazan crystals were formed in fibroblasts. White bar: 50 μm.
Results

Macerated-Pineapple Core Crude Extract-derived Bromelain (PCB)

One hundred pineapples weighed 30 kg, were collected. After skin peeling and fruit removal, 7 kg of core were obtained. After drying, 700 g of simplicia was obtained. After maceration with water solvent and evaporation, 131.1 g of crude extract with total volume of 85 mL (concentration: 1.5424 g/mL), was obtained. The extract was then diluted 1:10 for further purposes. Later on, macerated-pineapple core crude extract was examined for its content. We found that 33 kDa of bromelain in relative high yield contained in the extract, which was indicated by SDS-PAGE followed by CBB staining (Figure 1). Several possible cysteine proteolytic fractions of bromelain near to 19.2 kDa were observed as well.

Effect of PCB on NIH-3T3 Fibroblasts

Our results showed that by addition of PCB in NIH-3T3 fibroblast culture, number of NIH-3T3 fibroblasts were less when treated with higher concentration of bromelain (Figure 2). Highest fibroblast number was observed in 0% PCB, followed by 3.125% PCB, 6.25% PCB, 12.5% PCB, 25% PCB and 50% PCB respectively. By counting the fibroblast number with MTT assay for 24 hours, we found that the number for the group treated with 0% PCB was 11,088, while 3.125% PCB was 10,562; 6.25% PCB was 9,953; 12.5% PCB was 9,621; 25% PCB was 7,711; 50% PCB was 6,992 (Figure 3A&B). Meanwhile, for fibroblast number with MTT assay for 48 hours, we found that the number for the group treated with 0% PCB was 11,088, while 3.125% PCB was 10,179; 6.25% PCB was 9,396; 12.5% PCB was 8,650; 25% PCB was 6,600; 50% was 5,928 (Figure 4A&B).

LD$_{50}$ of PCB on NIH-3T3 Fibroblasts

Based on data from Figure 3, LD$_{50}$ in 24 hours was calculated. Percentage of PCB was converted to percentage of medium. Then graph of percentage of medium against number of fibroblast was made. A median line of $y=82.248x+2,425.5$ was obtained, y=number of fibroblast and x=percentage of medium. Therefore LD$_{50}$=100-x. We found that 24-hours LD$_{50}$ of PCB was 62.05%. This equaled to 62.05% x 1.5424 g/mL x 1/10 = 0.0957 g/mL or 95.7 g/L. Meanwhile LD$_{50}$ in 48 hours was calculated based on data Figure 4.

Discussion

We successfully produce high yield PCB with confirmed molecular weight. When PCB was added to NIH-3T3 fibroblast cultures for 24 hours, number of NIH-3T3 fibroblast was decreased slightly upon increasing PCB concentrations. Meanwhile additional decrease in number of NIH-3T3 fibroblast was obtained when the NIH-3T3 fibroblast culture was treated for 48 hours. After calculation, we found that 24-hours-incubation LD50 of PCB was 95.7 g/L and 48-hours-incubation LD50 of PCB was 51.1 g/L.

Acknowledgments

We would like to thank the Department of Chemistry, Faculty of Science, University of Lombok for providing the laboratory facilities and equipment. We would also like to thank the Ministry of Research, Technology and Higher Education, the Indonesia National Research and Innovation Agency. We would like to acknowledge the support of the National Biomedical Journal Committee.
PCB’s Cytotoxic Effect in NIH-3T3 Fibroblast (Margaretta DL, et al.)
Indones Biomed J. 2015; 7(2): 101-6

or teratogenic effects.(24) In human clinical test, side effects are generally not observed, however caution is advised if administering bromelain to individuals with hypertension since one report indicated individuals with pre-existing hypertension might experience tachycardia following high doses of bromelain.(25) Other experiments have previously shown that bromelain at high concentrations does not adversely affect cell viability, similarly, bromelain concentration of 50 mg/ml had no effect on the viability of chondrocytes.(26) Other experiments have previously shown that bromelain proteolytically removes certain cell surface molecules by cleavage of the peptide bond. (13,27,28)

PCB has low cytotoxic effect in NIH-3T3 fibroblasts, meanwhile there are many potential therapeutic benefits of bromelain. For example, bromelain exerts an anti-bacterial effect against potent periodontal pathogens, including Streptococcus mutans and Porphyromonas gingivalis.(21) Therefore, further studies in bacteria elimination should be pursued, whereas PCB could be useful to disrupt dental plaque formation disturbance and to irrigate root canal.

Figure 4. Effect of PCB on viability of NIH-3T3 fibroblasts for 48 hours. Ten thousand NIH-3T3 fibroblasts were seeded into each well of 96-well plates. NIH-3T3 fibroblasts were treated with 0, 3.125, 6.25, 12.5, 25 and 50% PCB in DMEM containing 2% FBS for 48 hours. Fibroblast viabilities were measured with MTT assay as described in Methods. A: Obtained absorbances were correlated with fibroblast density (1.0 fibroblast density equaled to 13,938 fibroblasts). B: Interpolated number of viable NIH-3T3 fibroblasts after treated with PCB in various concentrations for 48 hours.

PCB (%)	Fibroblast Number (x10^4)
0	1.325
3.125	6.25
12.5	25
50	

References

1. Bala M, Ismail NA, Mel M, Jami MS, Salleh HM, Amid A. Bromelain Production: Current Trends and Perspective. Arch Des Sci. 2012; 65: 369-99.
2. Amini A, Ehteda A, Masoomi Moghaddam S, Akhter J, Pillai K, Morris DL. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). Onco Targets Ther. 2013; 6: 403-9.
3. Hale LP, Greer PK, Trinh CT, James CL. Protease activity and stability of natural bromelain preparations. Int Immunopharmacol. 2005; 5: 783-93.
4. Gautam SS, Mishra SK, Dash V, Goyal AK, Rath G. Comparative study of extraction, purification and estimation of bromelain from stem and fruit of pineapple plant. Thai J Pharm Sci. 2010; 34: 67-76.
5. Juhasz B1, Thirunavukkarasu M, Pant R, Zhan L, Penumathsa SV, Secor ER Jr, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am J Physiol Heart Circ Physiol. 2008; 294: H1365-70.
6. Mahajan S, Chandra V, Dave S, Nanduri R, Gupta P. Stem bromelain-induced macrophage apoptosis and activation curtals Mycobacterium tuberculosis persistence. J Infect Dis. 2012; 206: 366-76.
7. Engwerda CR, Andrew D, Murphy M, Mynott TL. Bromelain activates murine macrophages and natural killer cells in vitro. Cell Immunol. 2001; 210: 5-10.
8. Karlson M, Hovden AO, Vogelsang P, Tysnes BB, Appel S. Bromelain activates murine macrophages and natural killer cells in vitro. Cell Immunol. 2001; 210: 5-10.
9. Secor ER Jr, Singh A, Guermsey LA, McNamara JT, Zhan L, Maulik N, et al. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro. Int Immunopharmacol. 2009; 9: 340-6.
10. Bhui K, Prasad S, George J, Shukla Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B. J Oral Biochem. 2012; 176: 789-93.
11. Beuth J, Braun JM. Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.). In Vivo. 2005; 19: 483-5.
12. Hidaka M, Nagata M, Kawano Y, Sekiya H, Kai H, Yamasaki K, et al. Regulation of CD4+ T cells in vitro. Int Immunopharmacol. 2009; 9: 340-6.
13. Mynott TL, Ladhamas A, Scarmato P, Engwerda CR. Bromelain, from pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in T cells. J Immunol. 1999; 163: 2568-75.
14. Tassig S.J., Batkin S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application, an update. J Ethnopharmacol. 1988; 27: 191-203.
15. Lotz-Winter H. On the pharmacology of Bromelain: an update with special regard to animal studies on dose-dependent effects. Planta Med. 1990; 56: 369-53.
16. Kelly G.S. Bromelain: a literature review and discussion of its therapeutic application. Alt Med. 1996; 1: 243-57.
17. MaurerHR, EckertK. BromelaininderkomplementärenTumortherapie. Z Onkol. 1999; 31: 66-73.
18. Tinozzi, Venegoni A. Effect of bromelain on serum and tissue levels of anoxicilllin. Drugs Exp Clin Res. 1978; 4: 39-44.
19. Knill-Jones RP, Pearce H, Betten J, Williams R. Comparative trial of
Nutrizyme in chronic pancreatic insufficiency. Br Med J. 1970; 4: 21-4.
20. Ahle NW, Hamlet MP. Enzymatic frostbite Eschar debridement by Bromelain. Ann Emerg Med. 1987; 16: 1063-5.
21. Praveen NC, Rajesh A, Madan M, Chaurasia VR, Hiremath NV, Sharma AM. In vitro Evaluation of Antibacterial Efficacy of Pineapple Extract (Bromelain) on Periodontal Pathogens. J Int Oral Health. 2014; 6: 96-8.
22. Widowati W, Tjandrawati M, Risidian C, Ratnawati H, Tjahjani S, Sandra F. The comparison of antioxidative and proliferation inhibitor properties of Piper betle L., Catharanthus roseus [L] G. Don, Dendrophoe petandra L., Curcuma mangga Val. extracts on T47D cancer cell line. Int Res J Biochem Bioinform. 2011; 1: 22-8.
23. Arung ET, Kusuma IW, Purwatiningsih S, Roh SS, Yang CH, Jeon S, et al. Antioxidant activity and cytotoxicity of the traditional Indonesian medicine Tahongai (Kleinhovia hospita L.) extract. J Acupunct Meridian Stud. 2009; 2: 306-8.
24. Taussig SJ, Yokoyama MM, Chinen A, Onari K, Yamakido M. Bromelain: a proteolytic enzyme and its clinical application. Hiroshima J Med Sci. 1975; 24: 185-93.
25. Gutfreund A, Taussig S, Morris A. Effect of oral bromelain on blood pressure and heart rate of hypertensive patients. Hawaii Med J. 1978; 37: 143-6.
26. Siengdee P, Nanvongpanit K, Pothacharoen P, Chomdej S, Mekchay S, Ong-Chai S. Effect of bromelain on cellular characteristics and expression of selected genes in canine in vitro chondrocyte culture. Vet Med. 2010; 11: 551-60.
27. Hale LP, Haynes BF. Bromelain treatment of human T cells removes CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules and markedly enhances CD2-mediated T cell activation. J Immunol. 1992; 149: 3809-16.
28. Engwerda CR, Andrew D, Ladhams A, Mynott TL. Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cell Immunol. 2001; 210: 66-75.