Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers

Martin Mikl*, Georgia Vendra*+ & Michael A. Kiebler++

Center for Brain Research, Department of Neuronal Cell Biology, Medical University of Vienna, Wien, Austria

Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain—unexpectedly—very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.

Keywords: RNA localization; β-actin; CaMKIIα; MAP2 mRNA; Staufen 2

EMBO reports (2011) 12, 1077–1084. doi:10.1038/embor.2011.149

INTRODUCTION

Several RNAs localize and get locally translated in growth cones of developing neurites and mature dendrites (Holt & Bullock, 2009; Martin & Ephrussi, 2009) and have key roles in the development and plasticity of the nervous system, as well as in learning and memory. The mechanism underlying the transport of RNAs to dendrites is unclear. RNAs associate with RNA-binding proteins (RBPs) to form ribonucleoprotein particles (RNPs), which are transported by molecular motors (Kiebler & Bassell, 2006). Several classes of neuronal RNPs have been purified and characterized by mass spectrometry and microarray analysis (Kanai et al, 2004; Anderson & Kedersha, 2006; Kiebler & Bassell, 2006; Martin & Ephrussi, 2009). On the basis of the large number of proteins and RNAs identified in various types of RNP, a hypothesis has been put forward that neurons might transport their RNAs in large and complex neuronal RNA granules containing various RNAs and RBPs, possibly including ribosomes (Krichevsky & Kosik, 2001; Kanai et al, 2004). This view has been reinforced by overexpression and microinjection experiments in mammalian cells including neurons, in which RNAs or RBPs form bright particles. In addition, homologous targeting elements have been identified, arguing for conserved mechanisms (Shan et al, 2003; Gao et al, 2008). For most localization pathways, however, we still lack essential information on the heterogeneity and complexity of RNPs (Holt & Bullock, 2009). Even in systems where mRNAs are found in an oligomeric state, this has been considered an early, intermediate step in the formation of large localization complexes (Chekulaeva et al, 2006; Besse et al, 2009; Martin & Ephrussi, 2009). In neurons, the assembly of dendritic mRNAs into ‘large’ RNPs and their subsequent co-transport to dendrites would imply that synapse-specific modifications associated with plasticity can only arise from on-site regulation of translation and not by selective delivery of each mRNA to individual synapses. We have recently investigated the localization of microinjected dendritically localized transcripts (Tübing et al, 2010). In that study, we observed that microtubule-associated protein 2 (MAP2) and calcium/calmodulin-dependent protein kinase II (CaMKIIα) RNAs appear to segregate into distinct neuronal RNA granules. Therefore, we decided to use novel assays to characterize in detail the RNA composition of neuronal RNPs. We now provide evidence that dendritic RNAs localize independently of each other in low copy numbers and are differentially affected by Staufen 2 (Stau2), as well as by synaptic activity, arguing for selective RNA transport to sites of demand.

RESULTS AND DISCUSSION

Neuronal mRNAs localize in distinct dendritic RNPs

To investigate whether different dendritic RNAs are found in the same or distinct particles, we performed double in situ hybridization (ISH). Simultaneous detection of RNAs with differentially labelled probes, followed by sequential antibody detection and signal amplification allowed us to co-visualize two mRNAs at particle resolution with high specificity and no cross-reactivity. As proof-of-principle, we performed double ISH against β-tubulin mRNA, which is highly expressed and enriched in the soma but found at very low abundance in dendrites, and MAP2 mRNA, which is expressed at lower levels but localizes in dendrites. The
different localization patterns are preserved in the double ISH illustrating the specificity of the signal and lack of cross-reactivity (Fig 1A). Building on our initial observation that MAP2 and CaMKIIα RNAs colocalized at low levels in dendrites of hippocampal neurons (Tübing et al, 2010), we here substantiate the initial hypothesis by testing additional pairs of candidate dendritic mRNAs and identify similarly infrequent colocalization events ranging from 5.7% (± 0.8) to 8.3% (± 0.7) (Fig 1A).
address whether this observation reflected cotransport of the respective mRNAs to dendrites or rather their stochastic colocalization, we analysed how often localizing and non-localizing RNAs are found in the same RNPs at proximal dendritic sites. As shown in Fig 1A, 6.6% (±1.0), 6.1% (±1.4) and 6.0% (±1.3) of proximal β-tubulin mRNA colocalize with MAP2, CaMKIIα and β-actin, respectively. This is not significantly different from the colocalization we observed between any two dendritic RNAs (Fig 1A). Our data indicate that RNAs rarely localize in the same dendritic RNPs, which might allow their differential regulation and selective delivery to individual synapses and consequently contribute to synapse-specific modifications and plasticity at the RNA level. Indeed, we found that MAP2 and β-actin mRNAs localize at distinct postsynaptic sites (Fig 1B). Preliminary results showed localization of CaMKIIα at synapses (data not shown). However, its relation to MAP2 or β-actin was not investigated. The age of the neurons or synaptic activity did not show any significant effect on colocalization between MAP2, CaMKIIα and β-actin (supplementary Fig S1B online), nor did it substantially interfere with their accumulation to dendrites.

As a positive control for colocalization, we performed double ISH using two probes targeting the same transcript (Fig 2). In this case, we could detect up to 55% of colocalization. The lack of 100% colocalization does not result from low hybridization
A

Labelled: cold 1:0 | Labelled: cold 1:1 | Labelled: cold 1:3

MAP2

β-actin

B

Number of detected particles (normalized to labelled: cold 1:0)
MAP2
![Graph](expected.png)

C

Average intensity of detected particles (normalized to labelled: cold 1:0)
MAP2
![Graph](expected.png)

D

Number of detected particles (normalized to labelled: cold 1:0)
Control
MAP2

Number of detected particles (normalized to labelled: cold 1:0)

Average intensity of detected particles (normalized to labelled: cold 1:0)

Control DHPG Glutamate
efficiency, as addition of the second probe (in this case labelled identically) in single ISH resulted in the expected increase in particle intensity (supplementary Fig S2C online; supplementary Methods online), indicating that most RNA molecules are bound by both probes. We rather attribute this to lower efficiency of the second detection. In double ISH experiments, we detected fewer particles of a given mRNA, whenever it was detected second (supplementary Fig S1C,D online). This suggests that the rates reported in double ISH experiments are an underestimate of colocalization. However, they are still much lower than those observed in the positive control, indicating that dendritic mRNAs are indeed mostly found in distinct RNPs. To confirm our observations by another approach, we tagged CaMKII mRNA with yellow fluorescent protein (YFP)—using the MS2 reporter system (Bertrand et al., 1998) consisting of CaMKII 3′-untranslated region fused to 24 × MS2 binding sites and MS2 coat protein (MCP)–YFP—and detected MAP2 by ISH (supplementary Fig S1E online). Consistent with our previous results, we found that only 9.1% (±1.5) of all YFP puncta contained MAP2 mRNA in contrast to 85.8% (±5.7) of all YFP puncta positive for CaMKII.

Dendritic RNPs contain from one to a few RNA molecules

To investigate whether many molecules of a given RNA localize together in single dendritic particles, we performed double ISH with probes that target the same sequence within one RNA and would therefore compete for binding. We predicted the following outcome: if the RNPs contained one RNA molecule, then only one of the probes would bind per particle and we would not observe any colocalization. If, conversely, the particles contained many RNA molecules, then both probes would bind to RNAs within the same particle, resulting in up to 100% colocalization. For this experiment, we used sets of probes targeting the same regions of CaMKII, MAP2 or β-actin, respectively, and detected colocalization rates of 10.5% (±1.2) for β-actin (Fig 2C), 14.4% (±1.8) or 13.7% (±1.2) for CaMKII (Fig 2A) and 15.3% (±1.7) or 28.8% (±2.1) for MAP2 (Fig 2B). When we used combinations of probes targeting non-overlapping sequences in the respective mRNAs, the observed colocalization rates—although not 100% because of limitations imposed by the second detection (see above and supplementary Fig S1D online)—were significantly higher: 51.2 (±2.4%) for CaMKII, 55.5 (±4.0%) for MAP2 and 35.3 (±1.1%) for β-actin (Fig 2). We obtained similar results with septin 7 (data not shown). Our findings indicate that these mRNAs are not present in ‘large’ complexes containing many molecules of each RNA. Normalization of the values obtained with two probes targeting the same sequence to the colocalization ratio of the respective positive control (see above) suggests that the average RNA content per particle ranges from one to two molecules (see supplementary Methods online).

To substantiate our results, we used a competition assay. Here, instead of two differentially labelled probes, we used labelled and non-labelled (termed ‘cold’) probes in the same hybridization mix. These target the same sequence and should compete for binding. If the particles contained one mRNA molecule, then either labelled or cold probe would bind to each particle and the number of observed particles would decrease to 50% in the case of equal amounts of cold and labelled probes or even further when using an excess of cold probe. The average intensity of the detected particles, however, should not be affected by the addition of the cold probe. If RNPs contained many copies of an RNA, then all particles would still be detected on the addition of the cold probe, but their signal intensity would be decreased to 50% for a 1:1 ratio of cold and labelled probe.

When we detected MAP2 and β-actin (Fig 3A), the number of detected particles was significantly reduced even with the addition of equal amounts of cold probe, confirming that these particles indeed contain a low number of RNA molecules (Fig 3B). Control competition experiments, in which probes with different labels and cold probes are shown to compete with each other with the same efficiency (supplementary Fig S2A online), confirm that labelled and cold probes bind to the target with the same efficiency. On the basis of the equal binding probabilities for each probe and the high efficiency of our method (supplementary Fig S2A,C online; supplementary Methods online), we calculated the expected numbers of detected particles on the assumption that they contain one, two, three, four or five RNA molecules. The observed values all fall around two molecules, indicating that dendritic particles contain very few molecules of a given mRNA (Fig 3B). Quantitative measurements of particle intensities (based on the linearity of detection, see supplementary Fig S2D online; supplementary Methods online) confirmed this conclusion (Fig 3C). As a negative control for competition, we used cold probe targeting a non-overlapping sequence on the same or another mRNA. In these cases, even the addition of a fivefold excess of cold probe did not interfere with binding of the labelled probe (supplementary Fig S2B online). Analysis of the distribution of single particle intensities suggests that the majority of MAP2 particles contain one molecule, with some particles containing two, three or more molecules, with decreasing frequency (supplementary Fig S2E online).

Our data argue that dendritic particles are not only more heterogeneous and less complex than previously thought, containing
Neuronal mRNAs are differentially affected by Staufen 2

Our data are consistent with the idea that dendritic RNAs localize in distinct RNPs, potentially involving different factors, such as RBPs. We therefore investigated whether Stau2, an RBP involved in dendritic spine morphogenesis, synapse formation and β-actin localization in dendrites (Goetze et al, 2006; Lebeau et al, 2011) also affects the localization of other neuronal mRNAs. In Stau2-deficient neurons, the number of dendritic MAP2 RNPs was decreased (Fig 4A,C). Interestingly, this does not seem to result from reduced transport to dendrites, as the cell body levels of MAP2 and β-actin were also substantially lower in Stau2 downregulated compared with wild-type neurons, which were either non-transfected (Fig 4A) or expressing a Stau2 mismatch short hairpin RNA (Fig 4B). In contrast to β-actin and MAP2, the cell body levels of CaMKII or septin 7 and their localization to dendrites were not impaired by Stau2 depletion (Fig 4A–C). This is in agreement with recent evidence that MAP2 colocalizes with Stau2 in hippocampal neurons (Lebeau et al, 2011), and that β-actin, but not CaMKII or septin 7, is highly enriched in Stau2 particles from rat brain (Maher-Laporte & DesGroseillers, 2010). We extended our analysis to non-localizing RNAs and found that the levels of z-tubulin, β-tubulin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were also significantly decreased, which could be explained by an effect of Stau2 on the stability of a broad range of target RNAs. Indeed, inhibition of transcription with actinomycin D resulted in a further decrease of MAP2 and β-actin levels in Stau2-deficient neurons (supplementary Fig S3D online), indicating that Stau2 affects the stability of these mRNAs.

Interestingly, Stau2 affects the composition of MAP2 but not of β-actin, septin 7 or CaMKII RNPs. We compared the average particle intensity in wild-type and Stau2-deficient hippocampal neurons (Fig 4D). Although there was no significant difference for β-actin, septin 7 or CaMKII, the intensity of MAP2 particles increased significantly in Stau2-deficient neurons (1.57 ± 0.08, normalized to mismatch short hairpin RNA). This indicates an increase in the RNA content of dendritic MAP2 RNPs in the absence of Stau2. To corroborate this conclusion, we detected MAP2 or β-actin in Stau2-deficient or wild-type neurons in the presence of equal amounts of cold probe and compared the competition effect with the untransfected control. For β-actin, we did not detect any obvious changes (supplementary Fig S3C online, right). Although there are no differences for mismatch transfected cells, MAP2 particle numbers were less affected by the addition of cold probe in Stau2-deficient neurons (supplementary Fig S3C online, left), arguing for a higher number of RNA molecules per particle. Taken together, the low number of RNA molecules in MAP2 RNPs seems to be neither stochastic nor merely a consequence of mRNA abundance, but instead subject to regulation. We suggest that there are mechanisms in the cell that tightly control RNP composition, preventing the formation of large complexes. In contrast to the increase in the average number of MAP2 RNA molecules per particle, colocalization of MAP2 with either CaMKII or β-actin RNA was not affected by Stau2 depletion (supplementary Fig S3D online).
Conclusions
In summary, we provide evidence that MAP2, CaMKIIα and β-actin localize in distinct RNPs. This suggests the possibility of their independent regulation and selective localization to sites of demand. Previous work (Gao et al., 2008) showed the coassembly of CaMKIIα, neurogranin and Arc in heterogeneous nuclear ribonucleoprotein (hnRNP) A2-containing RNPs and their multiplex dendritic targeting. Our findings that MAP2, CaMKIIα and β-actin are differentially regulated by Staufen2 suggests the existence of diverse pathways including (at least partly) distinct machineries for dendritic targeting. Moreover, we show that MAP2, CaMKIIα and β-actin RNPs contain a low number of RNA molecules. Interestingly, the amount of RNA in MAP2 RNPs is affected by synaptic activity. Our data support a model in which RNAs localize independently to synapses, where their expression can be individually regulated on-site. Such a mechanism would allow tight temporal and spatial control of expression in dendrites and synapse-specific plasticity. It would be interesting to investigate whether in other systems, for example, Drosophila embryos or oocytes, mRNAs that localize to the same intracellular compartment are transported in large, complex granules or independently in small localization complexes.

METHODS
In situ hybridization and competition assays. Single and double detection of RNAs byISH was performed as described (Tübing et al., 2010). To quantify the degree of colocalization, puncta in dendrites (from 10 μm from the cell body up to 75 μm) were counted manually. Colocalization rates were calculated as the ratio of overlapping signal to the number of particles of the less abundant colour in the investigated section of the dendrite. Linescan analysis was performed using Metamorph.

For competition, unlabelled in vitro transcribed probes targeting the same sequence as the labelled probe were added to the hybridization mix at equal amounts (1:1) to labelled probe or in threefold excess (1:3). Particles (10–75 μm from the cell body) were counted and used for fluorescence intensity measurements.

Statistical analysis. Typically, one representative dendrite per neuron was used for measuring ISH signal and assessing colocalization. Thus, dendrite numbers are usually numbers of cells analysed. Asterisks denote statistical significance as determined by using two-tailed Student’s t-test for the complete data set. All data were obtained from at least three independent experiments.

Supplementary information is available at EMBO reports online (http://www.emboreports.org).

ACKNOWLEDGEMENTS
We thank S. Thomas, J. Heraud, M. Tolino, P. Pfeiffer, J. Riefler and K. Wieczorek for excellent technical assistance in the preparation of neuronal cultures; B. Ritschka and P. Pfeiffer for assistance in experiments; D. Bredt, K. Czapilnski, J. Deshler, W. Sieghart, R. Singer, O. Steward and F. Tübing for reagents; G. Ammer, C. Cowan, J. Heraud and S. Hüttelmaier for insightful comments; and S. Butter for assistance in figure preparation. This work was supported by the Austrian Science Fund (FWF; SFB F4314-B09, P20583-B12, I127-B12), the European Science Foundation Program RNAQuality and a Human Frontier Science Program network (all to M.A.K.), and a Hochschuljubiläumsfonds (to G.V.).

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172: 803–808
Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2: 437–445
Besse F, Lopez de Quinto S, Marchand V, Trucco A, Ephrussi A (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23: 195–207
Chekulaeva M, Hentze MW, Ephrussi A (2006) Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 124: 521–533
Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280: 585–590
Gao Y, Tatavarty V, Korza G, Levin MK, Carson JH (2008) Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell 19: 2311–2327
Goetze B, Tuebing F, Xie Y, Dorostkar MM, Thomas S, Pehl U, Boehm S, Macchi P, Kiebler MA (2006) The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis. J Cell Biol 172: 221–231
Holt CE, Bullock SL (2009) Subcellular mRNA localization in animal cells and why it matters. Science 326: 1212–1216
Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43: 513–525
Kiebler MA, Bassell GJ (2006) Neuronal RNA granules: movers and makers. Neuron 51: 685–690
Krichevsky AM, Kosik KS (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32: 683–696
Larson DR, Singer RH, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19: 630–637
Lebeau G, Miller LC, Tartas M, McAdam R, Laplante I, Badeaux F, Desgroiselliers L, Sossin WS, Lacaille JC (2011) Staufen 2 regulates mGluR long-term depression and Map1b mRNA distribution in hippocampal neurons. Learn Mem 18: 314–326
Maher-Laporte M, DesGroiselliers L (2010) Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains. BMB Rep 43: 344–348
Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136: 719–730
Raj A, Peskin CS, Tranchina D, Vargas DS, Tyson S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4: e309
Shan J, Munro TP, Barbarese E, Carson JH, Smith R (2003) A molecular mechanism for mRNA trafficking in neuronal dendrites. J Neurosci 23: 8859–8866
Tübing F, Vendra G, Mikl M, Macchi P, Thomas S, Kiebler M (2010) Dendritically localized transcripts are sorted into distinct RNPs that display fast directional motility along dendrites of hippocampal neurons. J Neurosci 30: 4160–4170
Zenklusen D, Larson DR, Singer RH (2008) Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol 15: 1263–1271

This article is licensed under a Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License [http://creativecommons.org/licenses/by-nc-sa/3.0]