Identification of the Transcriptional Regulator NcrB in the Nickel Resistance Determinant of *Leptospirillum ferriphilum* UBK03

Tao Zhu¹, Jian Tian¹, Shuangyu Zhang, Ningfeng Wu*, Yunliu Fan

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China

Abstract

The nickel resistance determinant *ncrABCY* was identified in *Leptospirillum ferriphilum* UBK03. Within this operon, *ncrA* and *ncrC* encode two membrane proteins that form an efflux system, and *ncrB* encodes NcrB, which belongs to an uncharacterized family (DUF156) of proteins. How this determinant is regulated remains unknown. Our data indicate that expression of the nickel resistance determinant is induced by nickel. The promoter of *ncrA*, designated *pncrA*, was cloned into the promoter probe vector pPR9TT, and co-transformed with either a wild-type or mutant nickel resistance determinant. The results revealed that *ncrB* encoded a transcriptional regulator that could regulate the expression of *ncrA*, *ncrB*, and *ncrC*. A GC-rich inverted repeat sequence was identified in the promoter *pncrA*. Electrophoretic mobility shift assays (EMSA) and footprinting assays showed that purified NcrB could specifically bind to the inverted repeat sequence of *pncrA* in vitro; this was confirmed by bacterial one-hybrid analysis. Moreover, this binding was inhibited in the presence of nickel ions. Thus, we classified NcrB as a transcriptional regulator that recognizes the inverted repeat sequence binding motif to regulate the expression of the key nickel resistance gene, *ncrA*.

Introduction

Metals are essential cofactors for many enzymes in bacterial cells. Nevertheless, many metals become toxic at high ion concentrations, because unlike toxic organic compounds, metals cannot be degraded or modified [1]. The nickel ion, like other metal ions, is essential for bacterial metabolism and becomes toxic at high intracellular concentrations [2]. For example, *Escherichia coli* can endure the presence of no more than 2 mM Ni²⁺ in culture media [3]. Nickel resistance in bacteria is accomplished principally by an operon-encoded and energy-dependent specific efflux system that pumps Ni²⁺ out of the cell, thereby lowering the intracellular concentration [4,5]. Several nickel-resistant bacteria have been isolated from heavy metal-contaminated locations, and their nickel-resistance systems have been identified. Among these, the best characterized include CnrCBA (Co²⁺ and Ni²⁺ resistance) and NccCBA (Ni²⁺, Co²⁺, and Cd²⁺) of *Cupriavidus metallidurans* CH35 [6,7,8], the *nrc* and *nrc* determinant (Ni²⁺, Co²⁺, and Cd²⁺) of *Achromobacter xylosoxidans* 31A [9,10], and the CznCBA efflux system (Co²⁺, Zn²⁺, and Ni²⁺) of *Helicobacter pylori* [11]. A number of new efflux proteins have been identified; for example, RcnA of *E. coli* (Ni²⁺ and Co²⁺ resistance) [12,13], the cur-like operon of *Comamonas sp.* [14], and *mrdH* of *Pseudomonas putida* (Ni²⁺ and Co²⁺) [15].

In a previous study, we identified a metal-resistant bacterium, *L. ferriphilum* UBK03, and cloned its nickel resistance determinant, including the *ncrA, ncrB, ncrC*, and *ncrY* genes. *L. ferriphilum* is a genus of iron-oxidizing bacteria which play an important role in the industrial bioleaching and biooxidation [15,16,17,18]. The *ncrA* and *ncrC* genes encode two membrane proteins that together form an efflux system [3]. NcrB is a cytoplasmic, histidine-rich, 89-amino acid (aa) protein of unknown function (Pam accession no. PF02505) [19]. It contains a conserved 85-aa domain of unknown function (DUF), DUF156, which contains two conserved cysteines and one conserved histidine residue [20]. Similarity analysis revealed that the protein was widely distributed in bacteria [21]. NcrB has been proposed to be a regulator of gene expression [22].

As we know, some nickel responsive regulators (RcnR in *rcnR-cnrA* efflux system from *Escherichia coli* [12,23], NikR from *Helicobacter pylori* [24,25] and Nur from *Streptomyces coelicolor* [26]) have been well identified and characterized. However, the protein NcrB has no apparent sequence similarity to these known transcript regulators.

In this study, we aimed to elucidate the function of NcrB. Using various approaches, we determined that NcrB binds to an inverted repeat sequence within the *pncrA* promoter and represses transcription of *ncrA*, a key gene for bacterial resistance to nickel. Furthermore, NcrB-mediated transcriptional repression was inhibited in the presence of Ni²⁺.

Results

Induction of nickel resistance

The expression of most bacterial metal resistance systems is induced [27]. To investigate whether the nickel resistance
determinant of *L. ferriphilum* UBK03 [3] is also inducible, the effect of nickel on *E. coli* NR21 growth was assessed. When non-induced *E. coli* NR21 was exposed to 4 mM NiCl₂, there was a growth delay of 2 h compared with *E. coli* NR21 induced with 2 mM NiCl₂, although the growth yield was unaffected (Fig. 1).

RT-PCR was conducted to confirm that the nickel resistance system is inducible. The transcription of *ncrA*, *ncrB*, and *ncrC* was upregulated in the presence of Ni²⁺ (Fig. 2). Moreover, RT-QPCR revealed that the presence of Ni²⁺ in culture medium resulted in a 10-fold increase in *ncrC* transcription. These data suggest that Ni²⁺ induces transcription of the nickel resistance system.

Construction of promoter-lacZ fusion plasmids

Analysis of the sequence immediately upstream of *ncrA* and *ncrB* revealed the presence of two promoters (*pncrA* and *pncrB*, Fig. 3). These regions were inserted into the upstream of lacZ in pPR9TT, a low copy-number lacZ-based promoter probe plasmid [28] to construct the plasmids pPR-pncrA and pPR-pncrB. These two plasmids and pPR9TT (negative control) were transformed into *E. coli* JM109, respectively. No β-galactosidase activity was detected with pPR9TT in *E. coli* JM109 (data not shown), whereas about 9 Miller units of β-galactosidase activity were detected in with pPR-pncrA and pPR-pncrB (Fig. 4). These data indicate that pPR-pncrA and pPR-pncrB acted as the constitutive promoters in the absence of the nickel resistance genes (*ncrA*, *ncrB*, and *ncrC*).

Activity of the promoters with different nickel resistant genes

The promoter probe plasmids (pPR-pncrA and pPR-pncrB) and pNRABC, which contains the nickel resistance genes (*ncrA*, *ncrB*, and *ncrC*) [3], were co-transformed into *E. coli* JM109, and transformants were selected using 50 μg/mL ampicillin and 4 mM NiCl₂. Both *pncrA* and *pncrB* were induced in the presence of Ni²⁺. The results further suggested that NcrA, NcrB, or NcrC may contain a transcriptional regulator. Then, *E. coli* JM109 cells were transformed with the plasmid pPR-pncrA or pPR-pncrB alone, or co-transformed with the plasmid pNTA, pNTB, or pNTC (which contained the inserted mutations in *ncrA*, *ncrB*, or *ncrC* by tetracycline box insertion) [3]. Transformants were selected using 50 μg/mL ampicillin and 50 μg/mL tetracycline. Both promoters were constitutively active when co-transformed with mutated *ncrB*, but not with mutated *ncrA* or *ncrC* (Fig. 4). These data suggest that the NcrB protein functions as a transcriptional regulator to regulate the activity of *pncrA* and *pncrB*.

Interaction of NcrB with the promoter pncrA

The transcription start point of *ncrA* was localized at position 44 nt upstream of the potential start codon (ATG) of *ncrA* by the high-resolution S1 nuclease mapping (Figure 5D). As shown in Fig. 5D, a high GC content and inverted repeat sequence (p1p17) was identified at the downstream of the transcription start point. The possibility of a direct interaction of NcrB with the putative operator in *pncrA* was assessed in vitro by EMSA. The *ncrB* gene was ligated into the expression plasmid pET30a(+) and assessed by SDS-PAGE. The *pncrA* fragment was labeled using infrared dye-labeled M13 oligos and purified [29]. The EMSA results showed that NcrB caused a slower movement of labeled *pncrA*, indicating that NcrB binds to *ncrA* (Fig. 5A). Moreover, the large excess of competitor DNA [poly (dI-dC)] or M13 primer in the binding mix, NcrB–*pncrA* binding must be specific. Binding was significantly reduced in the presence of unlabeled *pncrA* or the 17-bp inverted repeat. Thus, NcrB could bind *pncrA* at the 17-bp inverted repeat region.

The DNase I footprinting experiment was also used to determine the binding sites of NcrB in the promoter region of *pncrA*. As shown in Fig. 5D, a protected region from positions −4 to +25 relative to the transcription start point of *ncrA* was detected. Moreover, the high GC content and inverted repeat

Figure 1. Growth curve of *E. coli* harboring pNR21 or pUC19 plasmid in medium containing the NiCl₂ either induced or not induced by NiCl₂. Filled triangles, *E. coli* harboring pUC19 (PUC) without induced; open triangles, *E. coli* harboring pUC19 (PUC) induced by 0.5 mM NiCl₂; Filled circles, NR21 without induced; open circles, NR21 induced by 2 mM NiCl₂. *E. coli* was grown at 37 °C containing 4 mM NiCl₂ (*E. coli* NR21) or 1 mM (*E. coli* PUC) and the optical density was monitored at 550 nm.

doi:10.1371/journal.pone.0017367.g001
sequence was also located at the protected region. These results indicated that the protein NcrB could bind to the 17-bp inverted repeat region in vitro.

In vivo binding of NcrB to promoter regions

A bacterial one-hybrid system [30,31] was used to test NcrB binding to promoter regions in vivo. For analysis of the NcrB binding site, the sequence of the promoter region (n32p43) was divided into three overlapping fragments (n32p6, n16p22, and p7p43), as shown in Fig. 3B. Five different overlapping fragments and the inverted repeat region (Fig. 3B) from pncrA were inserted respectively into the prey plasmid pH3U3, which has two reporter genes (yeast HIS3 and URA3). These plasmids were used to transform E. coli US0hisB-pyrF- cells, and transformants were screened in medium containing 4.5 mM 5-FOA, 30 µg/mL chloramphenicol, and 20 µg/mL tetracycline. All of the transformants were able to grow on YM plates containing 4.5 mM 5-FOA, indicating that the URA3 reporter gene in the prey plasmid was not expressed. Thus, these regions of pncrA did not self-activate reporter gene expression.

The ncrB gene was then inserted into the bait plasmid pB1H1, forming pB1H1-ncrB. This bait plasmid and the prey plasmids were used to co-transform E. coli US0hisB-pyrF- cells, and transformants were screened on His-selective plates [30,31] containing different concentration of 3-AT. Co-transformed strains containing either n16p22 or the inverted repeat region (p1p17) of pncrA in the prey plasmid were able to grow on 3-AT plates (Fig. 6). However, the strains that contained the n32p6 or p7p43 region, which did not contained an intact inverted repeat, were not capable of growth on 3-AT plates. These results indicate that NcrB binds directly to the 17-bp (G+C)-rich inverted repeat sequence (5'-ATCCCCCTGGGGGGAT-3') in the p1p17 region.

The effect of Ni²⁺ on the binding between NcrB and the inverted repeat region (p1p17)

To test its effect on the binding between NcrB and the inverted repeat region, Ni²⁺ was added to the bacterial one-hybrid system by adding 1 mM Ni²⁺ to the 3-AT selective screening medium plate. As shown in Fig. 7, the strains containing the promoter (n32p43) or inverted repeat region (p1p17) in the prey plasmid grew on the 3-AT selective medium plates, but could not grow on the 3-AT plates containing 1 mM Ni²⁺. The presence of 1 mM Ni²⁺ in the medium did not affect the growth of E. coli [3,9]. Thus, 1 mM Ni²⁺ could disrupt the binding between NcrB and the inverted repeat region (p1p17).

Discussion

In a previous report, we identified the metal-resistant bacterium L. ferriphilum UBK03 and cloned its nickel resistance determinant, which included ncrA, ncrB, ncrC, and ncrY. NcrA contains 10 transmembrane helices and is the foundation of the nickel resistance complex [3]. NcrC, similar to NcrA, is a membrane...
Identification of Transcriptional Regulator NcrB

protein belonging to the high-affinity nickel transport protein family (Pfam accession no. PF03824) and contributes significantly to nickel resistance, possibly by chelating nickel cations in the cytoplasm [13,21,32]. NcrB is a cytoplasmic, histidine-rich, 89-aa protein of unknown function (Pfam accession no. PF02583). It belongs to the DUF156 family (Pfam accession no. PF03824) and contributes significantly to nickel resistance determinant in L. ferriphilum UBK03. In the presence of low concentrations of Ni^{2+}, NcrB binds to the inverted repeat region of pncrD, thereby repressing its function. However, at high concentrations of Ni^{2+}, the repression by NcrB is removed, pncrA becomes active, and the ncrA nickel resistance gene is expressed.

Materials and Methods

Bacterial strains and culture conditions

Table 1 lists the strains and plasmids used in this study. The E. coli strains were grown aerobically in Luria-Bertani (LB) medium at 37°C with continuous shaking at 200 rpm. For selection of E. coli transformants, ampicillin and kanamycin were added to final concentrations of 100 and 50 µg/ml, respectively. As bacterial one-hybrid system selective media, His-selective (positive) NM medium and 5-FOA-selective (negative) YM medium were used as described previously [30]. Isopropyl-β-D-thiogalactoside (IPTG), o-nitrophenyl-β-D-galactopyranoside (ONPG), amino acids, 5-fluoro-ornotic acid (5-FOA), and 3-amino-triazole (3-AT) were purchased from Sigma (St. Louis, MO). Other reagents were of analytical grade and were purchased from JingKeHongDa Biotechnology Co., Ltd, China.

Effect of Ni^{2+} on E. coli NR21 and E. coli PUC

E. coli was cultivated overnight in LB with or without 2 mM Ni^{2+} (E. coli NR21) or 0.5 mM Ni^{2+} (E. coli PUC), diluted 100-fold into fresh LB medium containing 4 mM NiCl_{2} (E. coli NR21) or 1 mM (E. coli PUC) and grown at 37°C with shaking at 200 rpm. The optical density at 550 nm was monitored hourly for 13 h.

RT-PCR and quantitative RT-PCR (QRT-PCR)

The effect of Ni^{2+} on ncrA, ncrB, and ncrC expression was assessed by RT-PCR. Cells were grown in the presence or absence of 2 mM Ni^{2+}. Total RNAs were extracted using an RNAprep pure bacteria kit (Tiangen, China) according to the manufacturer’s instructions, and cDNA was synthesized from 4 µg of total RNA using Moloney murine leukemia virus reverse transcriptase (Tiangen, China) at 42°C for 50 min. PCR was performed for 30 cycles under the following conditions: denaturation at 94°C for 15 s, annealing at 55°C for 20 s, and extension at 72°C for 20 s. PCR products were analyzed by agarose gel electrophoresis. QRT-PCR was performed using a real-time PCR system (Bio-Rad). SYBR Green master mix (Toyoto, Japan) was used to amplify DNA under the following conditions: initial denaturation at 95°C for 3 min, followed by 40 amplification cycles (15 s at 95°C, 20 s at 55°C, and 20 s at 72°C). Melt curve data were collected using 10-s cycles (55°C for 80 cycles). Duplicate cycle threshold (CT) values were analyzed by the comparative 2^(-DDCt) method [34]. The relative amount of target mRNA was obtained by normalizing to an ampicillin resistance reference gene.

Bacterial one-hybrid analysis

Bacterial one-hybrid analysis was performed as described previously [30,31] with some modifications. High-efficiency electrocompetent XL1-blue E. coli cells were substituted for E. coli Trans10 (TransGen, China). The promoter ncrA (pncrA) and
its deletions were amplified by PCR with primers containing
Not I and Eco RI sites, and then cloned into the
Not I–Eco RI sites of the
reporter plasmid pH3U3.
NcrB was amplified by PCR and
inserted into the
Not I and Avr II sites of the bait plasmid pB1H1.
The constructs were verified by sequencing at the State Key
Laboratory of Crop Genetic Improvement, Chinese Academy of
Agricultural Sciences, Beijing, China. The two plasmids were
used to co-transform the selection strain US0 by electroporation
[31], and co-transformants were selected using medium that
contained 3-AT, chloramphenicol (30 \(\mu g/mL \)), kanamycin
(25 \(\mu g/mL \)), and tetracycline (20 \(\mu g/mL \)). Self-activation
experiments were performed using selective medium containing
4.5 mM 5-FOA, chloramphenicol (30 \(\mu g/mL \)), and tetracycline
(20 \(\mu g/mL \)).

![Figure 5. The interaction between NcrB and pncrA in vitro.](image)

Electromobility shift assays (A–B). (A) The pncrA fragment was incubated with His6-
tagged NcrB or the His6-tag at the indicated concentrations. Lane 1, no protein; lane 2, 0.2 \(\mu M \) NcrB; lane 3, 0.4 \(\mu M \) NcrB; lane 4, 0.8 \(\mu M \) NcrB; and lane 5, 1.6 \(\mu M \) NcrB; lane 6, 0.2 \(\mu M \) His6-tag; lane 7, 0.4 \(\mu M \) His6-tag; lane 8, 0.8 \(\mu M \) His6-tag; and lane 9, 1.6 \(\mu M \) His6-tag. (B) The fragment was incubated with both 0.8 \(\mu M \) NcrB and unlabeled competitor at the fold-concentrations indicated above the lanes. (C) Sequence of the promoter pncrA. The GC-rich inverted repeat sequence (bold), the transcription start site of ncrA (bold and underlined) and the potential translation initiation codon (bold and italic) are indicated along the sequences. (D) The transcription start site of ncrA and Dnase I footprint of NcrB on pncrA. Lane 1, the arrowhead indicates the transcription start point. Lane G, A, T and C indicate the nucleotide sequence ladders of pncrA. Lane 2 and 6, DNase I digestions as a control (No NcrB). Lanes 3–5, purified NcrB protein was added to the final concentration from (0.1 \(\mu M \), 0.2 \(\mu M \) and 0.4 \(\mu M \)).

Expression and purification of His-tagged NcrB protein

An ncrB-containing DNA fragment was amplified by PCR using plasmid pNR21 as the template and primers pET-ncrB_R and pET-
ncrB_F (Table S1). The PCR product was purified using a gel
extraction kit (TianGen, China), digested with
BamHI and
HindIII,
and ligated into pET-30a(+) vector. Insertion was confirmed by
sequencing. For protein expression, the plasmid was used to
transform
E. coli
BL21 (DE3) cells. Transformants were cultured in
LB medium (100 mL), and IPTG (final concentration, 1 mM) was
added when the A600 of the culture reached 0.6. After incubation for
12 h at 16°C, the cells were harvested by centrifugation and washed
with lysis buffer (20 mM Tris-HCl, pH 8.0). As the N-terminus
of recombinant NcrB was fused to a His6 tag, NcrB was purified
using a Ni-NTA His-bindTM resin column (Novagen, San Diego,
CA) according to the manufacturer's instructions. The column

![Figure 6. Physical interaction between pncrA and NcrB.](image)

A bacterial one-hybrid system was used to detect pncrA-protein
interactions. The growth rates of cells containing different bait/prey
combinations were examined under positive selection. Left panel: NM plate supplemented with 0.1% histamine and 1 mM NiCl2 as a control; Middle panel: NM plate supplemented with 2 mM 3-AT. Right panel: NM plate supplemented with 2.0 mM 3-AT and 1 mM NiCl2. Each population of cells was serially
diluted in ten-fold steps (from left to right) and plated.

![Figure 7. Inhibition of pncrA and NcrB binding in the presence of nickel.](image)

A bacterial one-hybrid system was used to detect n32p43 (pncrA)-protein and p1p17-protein interactions. Growth rates of cells
containing different bait/prey combinations were examined under
positive selection. Left panel: NM plate supplemented with 0.1% histamine and 1 mM NiCl2 as a control; Middle panel: NM plate supplemented with 2 mM 3-AT. Right panel: NM plate supplemented with 2.0 mM 3-AT and 1 mM NiCl2. Each population of cells was serially
diluted in ten-fold steps (from left to right) and plated.
CTquire. Purified protein was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein concentrations were quantified using a Bio-Rad protein assay kits II (Bio-Rad Laboratories (Beijing) Ltd. China).

Electrophoretic mobility shift assay (EMSA)

DNA fragments containing different promoter fragments were prepared by PCR using primers ProAF and ProAR (Table S1). The pncrA fragment was labeled using infrared dye-labeled M13 oligos and purified as described previously [29]. Each reaction mixture (20 μL) contained infrared dye-labeled probe and His-NcrB in buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 1 mM dithiothreitol, 0.25% Tween 20, 5 mM MgCl2 and 1 μM of poly(dI-dC). The mixture was incubated for 20 min at 37°C in the dark, followed by electrophoresis in an 8% non-denaturing polyacrylamide gel in 0.3x TBE buffer, at 80 V for 50 min with a mini-protein electrophoresis system. The mobility positions of the labeled products in the gel were detected using the Odyssey software package (LI-COR Biosciences UK Ltd., Cambridge, UK).

S1 nuclease protection analysis

Total RNAs of NR21 induced by 4 mM NiCl2 were extracted using an RNAprep pure bacteria kit (TianGen, China) according to the manufacturer’s instructions. The S1 nuclease protection analysis were performed as described previously [35,36]. The pncrA probe was prepared by PCR using the unlabeled primer pncrA-antisense and the 5’-end [γ-32P] ATP-labeled primer pncrA-map-R. A DNA sequencing ladder was generated using the same labeled primer with an final DNA cycle sequencing kit (Promega). The protected fragments were analyzed on a 6.0% polyacrylamide gel containing 7 M urea.

DNase I footprinting assays

In order to determine the NcrB binding sites in pncrA promoter region, DNase I footprinting assays were carried out as described previously [35,36]. The probe was prepared by labelling the 5’ end of pncrA antisense stand using primers pncrA-map-F and pncrA-map-R. The primer pncrA-map-R was 32P-labelled with T4 polynucleotide kinase before PCR. The footprinting reaction mixture contained 40 000 cpm of 32P-labelled DNA probe, different concentrations of His-NcrB, 10 mM Tris-HCl (pH 7.5), 2 mM DTT, 0.5 mg/mL calf BSA and 5% glycerol in a total volume of 50 μL. After incubation of the mixture at 25°C for 30 min, 0.4 U DNase I (Promega) was added to the binding mixture. It was further incubated at 25°C for 70 seconds and was stopped by the addition of 50 μL stop solution (20 mM EDTA, pH 8.0) and 100 ml phenol-chloroform (1:1, v/v). DNA fragments in the aqueous phase were precipitated by adding 10 μL ammonium acetate (3 M), 2 μL glycogen (10 mg/mL) and 2.5 vol ethanol, washed with 75% ethanol, dried and directly eluate was desalted with lysis buffer and stored at −20°C until required.

Strains and plasmids	Relevant genotype or characteristic(s)	Reference or source
E.coli		TransGen
Trans10	F- ΔlacI ΔlacZYAΔaraD151::Tn5 ΔΔlacX74::Km ΔKmRΔU10A [30,31]	Novagen
BL21(DE3)	F- ompT hsdS (rB − mB -) gal dcm lacY1(DE3)	[3]
US0	F’ episome bearing the lacIq repressor::hisB::AprrF	[3]
NR21	E.coli JM109 containing pNR21	[3]
PUC	E.coli JM109 containing pUC19	Promega

Plasmids

Plasmids	Relevant genotype or characteristic(s)	Reference or source
pNR21	4.0-kb HindIII fragment containing ncrA, ncrB, ncrC and ncrY from genomic DNA of strain U8K03, Amp’	[3]
pPR9TT	Broad-host range lacZ promoter probe vector; HK2 replicon; Amp’, Cm’	[28]
pPR-ncrA	pPR9TT containing insertion in promoter ncrA	This study
pPR-ncrB	pPR9TT containing insertion in promoter ncrA	This study
pNRABC	pNR21 containing insertion in ncrA, ncrB; promoter ncrA, and promoter ncrB	[3]
pNTA	pNR21 containing insertion in ncrA, Amp’, Te’	[3]
pNTB	pNR21 containing insertion in ncrB, Amp’, Te’	[3]
pNTC	pNR21 containing insertion in ncrC, Amp’, Te’	[3]
pET30a(+)	Km’, Expression vector	Novagen
ph3U3	Km’, pSC101 origin of replication	[30,31]
p81H1	Cm’, p15A origin of replication	[30,31]
pEASY-T3	Amp’, Cloning vector	TransGen
pET30-ncrB	BamHI-HindIII fragment containing ncrB inserted into pET30a(+), Km’	This study
p81H1-ncrB	NcoI fragment containing ncrB inserted into p81H1, Km’	This study
n32p43	NcrI-EcoRII fragment containing ncrA promoter region between positions −32 and +43 inserted into ph3U3	This study
n32p6	NcrI-EcoRII fragment containing ncrA promoter region between positions −32 and +6 inserted into ph3U3	This study
n16p22	NcrI-EcoRII fragment containing ncrA promoter region between positions −16 and +22 inserted into ph3U3	This study
p7p43	NcrI-EcoRII fragment containing ncrA promoter region between positions +7 and +43 inserted into ph3U3	This study
p1p17	NcrI-EcoRII fragment containing ncrA promoter region between positions +1 and +17 inserted into ph3U3	This study

Table 1. Bacterial strains and plasmids used in this study.
suspended in 10 ml of 90% formamide-loading gel buffer (10 mM Tris-HCl, pH 0.0, 20 mM EDTA, pH 8.0, 0.5% bromophenol blue, 0.5% xylene cyanol). Samples were then denatured at 95 °C for 10 min and 2 μL of each sample was loaded on a 6% polyacrylamide-urea gel. The sequence ladder was same to the ladder in the S1 nuclease protection analysis. After electrophoresis, the gels were dried and exposed to Kodak X-ray film.

Construction of pncrA-lacZ and pncrB-lacZ fusions

The plasmid pPR9TT was used to assess pncrA and pncrB function. The promoter regions ppr-pncrA_F, ppr-pncrA_R, ppr-pncrB_R, and ppr-pncrB_F (Table S1). The PCR-amplified DNA fragments were digested with XhoI and PstI and ligated into XhoI- and PstI-cleaved pPR9TT, yielding pPR-pncrA and pPR-pncrB. Correct gene insertion was confirmed by DNA sequencing, performed at the State Key Laboratory of Crop Genetic Improvement, Chinese Academy of Agricultural Sciences.

β-galactosidase assay

β-Galactosidase activity was measured as described by Miller [37] and expressed in Miller units. The data presented are the results from at least three independent experiments, with a standard deviation of 10%.

References

1. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews 27: 313–339.
2. Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27: 17–28.
3. Tuffin IM, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of the gels were dried and exposed to Kodak X-ray film.

Supporting Information

Table S1 Sequence of oligonucleotide primers used in this study. (DOC)

Figure S1 The leucine zipper structure of NcrB. The residues below the triangle were the leucines in the leucine zipper structure. (DOC)

Acknowledgments

The S1 nuclease protection analysis and DNase I footprinting assays were carried out in Prof. Huazong Tan’s Lab. We greatly thank Prof. Tan for the help. We thank Prof. Scot A Wolfe for Bacterial one-hybrid system. And we also thank Prof. Min Lin for the vector of pPR9TT.

Author Contributions

Conceived and designed the experiments: JT NW YF. Performed the experiments: TZ JT SZ. Analyzed the data: TZ JT NW. Contributed reagents/materials/analysis tools: TZ JT NW. Wrote the manuscript: TZ JT NW.
35. Yang H, Wang L, Xie Z, Tian Y, Liu G, et al (2007) The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol 63: 1064–1077.

36. Li R, Liu G, Xie Z, He X, Chen W, et al. (2010) PoY, a transcriptional regulator with ATPase activity, directly activates transcription ofpolRin polyoxin biosynthesis in Streptomyces cacaoi. Molecular Microbiology 75: 349–364.

37. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. NY: Cold Spring Harbor Laboratory Pr.