Mobile Phone Electromagnetic Fields Affecting the Hepatocytes in the White Leghorn Chicken Embryo: An Ultrastructural Study

Najam Siddiqi1*, Asem Shalaby2, Mohamed Abdullah Al Kindi2 and Fatima Al Ghafri2

1Department of Anatomy & Neurobiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman.
2Department of Pathology, Electron Microscope Laboratory, Sultan Qaboos University, Oman.
*Corresponding Author E-mail: najamsiddiqi@nu.edu.om

This study was designed to measure the adverse effects of electromagnetic waves on the hepatocytes in vivo. For this purpose, a developing chick embryo model was selected. 40 fertilized chick eggs were used. An egg incubator was used for egg development. In the exposed group, 20 fertilized eggs were exposed to mobile phone electromagnetic waves by placing a mobile phone inside the incubator in silent mode, while in the control, the mobile phone was removed. Mobile phone received calls from outside for 50 minutes in 24 hours. Liver was removed for electron microscopy. Control group revealed normal hepatocytes with big central nucleus, well-developed cristae in normal looking mitochondria, rounded nucleus, scattered ribosomes, few glycogen vacuoles and rough endoplasmic reticulum. Normal looking sinusoids lined by simple squamous epithelium and few Kupffer cells. Sinusoids were containing many nucleated RBC. On tenth day of development, exposed group revealed marked proliferation of mitochondria. At day 15, electron-dense mitochondria which were either swollen or dumbbell shaped and degenerated invisible cristae were apparent. Marked infiltration of fatty vacuoles and myelin-like figures in the cytoplasm, and derangement of classic hepatic lobule and sinusoids was observed. We conclude that electromagnetic waves affected the proliferation of hepatocytes in the chick embryo.

Keywords: Electromagnetic waves, hepatocyte, fatty change, mitochondria, lipid droplets, chick embryo

Smart phones have added a new dimension into our lives. We are more preoccupied with our mobiles than talking to persons seated next to us. Parents give mobiles to their two-year olds to play with instead of toys. Before traveling we make sure that the mobile charger is not left behind. Kids and teenagers spend more time playing with mobiles than playing outside. Do we know that we are risking our health if spending too much time with smart phones? Smart phones use electromagnetic waves which are now believed to be harmful to living cells. WiFi is connected through electromagnetic waves when in use during calling and downloading data from the internet1,2. Newly born are affected more due to the presence of larger number of embryonic stem cells3, 4,5,6,7. Now a days a newly born is exposed to these waves soon after birth and will continue until he dies. Prenatal and postnatal cell phone exposure leads to behavioral problems in children8,9.
Hypothesis of this research conducted at National University of Science and Technology, College of Medicine, is that the smart phone electromagnetic waves affect normal structure and function of liver cells in chick embryo model.

Objectives

To study the ultra-structure of the liver of the developing chick embryo in normal developing chick and compare it to liver exposed to mobile phone electromagnetic waves.

MATERIAL AND METHODS

Animal Experiment

Sohar poultry provided zero-day fertilized chicken eggs of breed ‘Cobb’ (Gallus gallus domesticus) for this experimental study. A strict pre-fixed inclusion and exclusion criteria was applied to these fertilized eggs. The chick embryo model was previously extensively used as an animal model to access the effects of electromagnetic waves. Egg incubator Model EH-35, Sino-PFE Company, China, was made available for this experiment (Fig. 1a). All the eggs were placed in such a way that the farthest egg was within a radius of 16cm from the mobile phone placed inside the incubator. The temperature was set at 37 degrees, humidity at 50-60% and automatic egg rotation at ten rotations per day. 20 eggs were placed at one time in the egg holders. The experiment was performed twice and the specimens were sent for histological and electron microscopy preparations. It was partially blinded. The two groups will be randomly allotted a number of 20 eggs; control group and the experimental group. One incubator was used carrying 20 eggs at a time; one wave consisted of an exposed group experiment and one wave of control group. The eggs were exposed electromagnetic waves of the mobile phone during egg development while eggs were not exposed to waves in the control group. The mobile company and mobile phone set used for this study was using 1800 MHz frequency, power of 0.47 W/kg body and SAR 1.10 w/KG (head). Electromagnetic exposure and strength was confirmed by using a TriField Meter, model 100XE (Fig. 1b).

Experimental Group

20 fertilized eggs were exposed to electromagnetic field inside the incubator when the mobile was rung from outside. To prevent noise interference, the mobile was kept in silent mode and vibration disabled. All the eggs were within one wavelength (approximately 16.5 cm) of the mobile phone electromagnetic waves. A schedule was made with calling times and duration. 10 calls were made each 24 hours; one-call duration was 5 minutes. Nights were calling free. 50 minutes of exposure were given s in 24 hours starting from day 1; total exposure time was 500 minutes at day 10 and 750 minutes at day 15. 10 eggs each were scarified at day 10 and 15. After making a small hole in the shell, it was carefully cut by scissors and the embryos were carefully dissected from the membranes after cutting the umbilical cord. Survivability was noticed by observing the beating heart and movements of limbs (Fig. 1c).

After exposure the abdominal cavity the liver was removed and fixed in 10% glutaraldehyde solution for EM preparation.

Control Group

Same experiment was repeated with 20 eggs but the mobile phone was not placed inside the
incubator. The eggs were sacrificed at days 10 and 15, liver specimens were removed, placed in 10% glutaraldehyde solution for electron microscopic preparation.

RESULTS

There was no mortality observed in all the groups at day 10 and 15.

Control Group
Electron microscopic findings both at day 10 and 15, revealed rows of hepatocytes forming hepatic lobules with lying in between the rows lined by simple squamous epithelium. (Fig.2). Hepatocytes well formed with a rounded nucleus in the center showing well developed chromatin. Nuclear double layered membrane with pores was clearly seen. Mitochondria with well-arranged cristae were also observed, surrounded by rough endoplasmic reticulum and free ribosomes. There were few glycogen vacuoles can been seen in the cytoplasm. Sinusoids can be seen in between the hepatocytes lined by simple squamous epithelium and Kupffer cells. Sinusoids were filled with RBCs.
having an oval nucleus. Canaliculi can also be seen in between the hepatocytes (Fig.3)

Exposed Group

Hepatocytes revealed marked increased in number of mitochondria at day 10, some of them were swollen and surrounded by rough endoplasmic reticulum (Fig.4a). At day 15, mitochondria became electron-dense, some were rounded while others were elongated and dumbbell shaped. Few mitochondria and cristae showed degeneration. A prominent layer of rough endoplasmic layer around the mitochondria could also be seen. A rounded central nucleus could be seen clearly. The double layered nuclear membrane was blurred and pores were not clearly seen (Fig.5b). Few myelin-like figures were observed in the cytoplasm at day 15

![Fig. 4.](image) a) Exposed group Day 10: Marked proliferation of mitochondria and infiltration of fat vacuoles in the cytoplasm of the hepatocytes. b) Mitochondria changed shape and become rounded, no change seen in the nuclei which remained rounded with intact bilaminar membrane

![Fig. 5.](image) Exposed group Day 15: a) marked infiltration of fat vacuoles was apparent, shape of the nucleus becomes slightly irregular, the double layer nuclear membrane cannot be seen clearly and pores were not seen. The canaliculi becomes widened (arrow) b) the mitochondria becomes dumbbell shaped (arrow) and myelin figures (short arrow) were seen
(Fig.5b). Lipid filled vacuoles increased in number from day 10 to day 15 and sinuses were dilated (Fig.5a).

DISCUSSIONS

Many studies used developing chick embryo to observe the effects of exposure of electromagnetic waves. Most of the studies studied gross morphological changes or histological effects on different tissues, however there are few ultrastructural studies. This is another study looking at the changes occurring inside the hepatocytes when exposed to radio waves. Liver is one of the organs which are affected very early in response to any external or internal stress. The radio waves are a source of external stress to the living cells. We have chosen day 10 and 15 day old chick embryo because most of the scientist has chosen these two days so it will be easy to compare with our study.

First observation was an increase number of mitochondria in the exposed group at both, day 10 and day 15. Oxidative stress induced by H2O2 in human lung is known to increase number of mitochondria and mtDNA. Electromagnetic wave exposure after 10 days affected the mitochondria which became swollen. Mitochondrial membrane permeability is dependent on interaction between ca+2 and ROS system, and an increased sympathetic activity is considered a primary cause of electromagnetic wave-induced calcium influx into the mitochondria. Mitochondria swelling is caused by free O+2 produced by ROS inside the mitochondria to invade the thiol protein which produces transition pores in the mitochondrial membrane to open and cause increase permeability. Attia et al. also reported mitochondrial in the study done on rat hepatocytes after electromagnetic exposure. Vovedovodskata reported that paramagnetic particles are naturally located in the mitochondria of liver cells which make the hepatocytes sensitive to magnetic field exposure and leading to modification of haemostasis by altering mitochondrial respiration in the hepatocytes. Moreover, Gorczynska and Węgrzynowicz reported that mitochondria are the most sensitive organale to stress-generating factors and observed mitochondrial swelling in such conditions.

Most of the mitochondria became elongated; dumbbell shaped, and showed the process of degeneration at day 15 in the exposed group. Rough endoplasmic reticulum and free ribosomes were seen surrounding the mitochondria. Mitochondria are known for free radicals production in human sperm after electromagnetic wave exposure. Oxidative DNA damage may be due to electron leakage from the mitochondrial electron transport chain.

Lipid Droplets

Second Significant Observation was increase number of lipid filled vacuoles in the cytoplasm of the hepatocytes in the exposed groups. Disturbances in lipid inclusions and fat metabolisms were reported to increase the cytoplasmic vacuolation. In any pathological conditions, blockage of gluconeogenesis due to free radicals disturbs lipids and protein metabolisms and cause cell damage. Rough endoplasmic reticulum surrounding the mitochondria may be damaged and fragmented and contributing in fat droplets accumulation.

Hepatocytes of the developing chick embryos revealed fatty changes after electromagnetic waves exposure which is due to oxidative stress when exposed to electromagnetic waves. The damage is dose dependent. Similar results were reported by Lahijani et al. Similar results were also reported by other authors in rats and rabbits. Radiation exposure may affect the breakdown of fat in the liver, similar to pregnancy, alcoholism, and malnutrition and poisoning. Fatty change is the initiation of damage to the hepatocytes, which is shown by an increase in the number of vacuoles filled with triglyceride fat. This is a sign of abnormal metabolism which may be due to an increase in Oxygen radicals species (ORS) production by the hepatocytes. Increase proliferation of mitochondria in hepatocytes and marked derangement of its internal structure in cardiac muscles is a sign of oxidative stress which was observed by other authors. Many authors have reported different effects of electromagnetic waves on the chick embryo which increases mortality of the developing chick embryo and resulted in malformations.

Nuclei

Control group revealed rounded nuclei at both day 10 and 15. On the other hand, in the
exposed group, it was circular at day 10, but at
day 15 the shape became oval or irregular but
no change was observed in chromatin. Double
layered nuclear membrane and pores was clearing
seen control groups, however, it has become
blurred and the pores were not clearly seen in the
exposed groups. Electromagnetic exposure leads
to a damage of pores in the nuclear membrane, or
it becomes irregular which may result in release of
nuclear material into the cytosol16.

Different theories believe that mobile
phone radiation produces reactive oxygen species
(ROS) and DNA damage which was observed in
human sperm. It also affects genes, cell membrane
function and signal transduction31, 32, 33. Rao et al
recently provided new evidence that radio waves
affect the plasma membrane34. Radio waves also
induce oxidative stress through NADH oxidase
enzyme stimulation, which may be a major cause
of various cellular adverse effects, observed
in in vitro studies35-42. As a consequence of
increased levels of free radicals, various cellular
and physiological processes can be damaged
including gene expression, release of calcium
from intracellular storage sites, cell growth, and
apoptosis. Many scientist reported radio wave
effects on genes resulting in signal transduction
which resulted in alterations in membrane structure
and function, and changes in metabolism associated
with free-radical production40-41, 42.

CONCLUSION

Electromagnetic wave exposure has
induced many changes to the hepatocytes of chick
embryo, especially mitochondria and nucleus, and
increased fat deposition in the cytosol suggesting
fatty change in the liver. Hence, it is scientifically
documented that these electromagnetic waves are
causing damage to living cells. Further studies
should be carried out to fully understand the
mechanism of this fatty change in hepatocytes
mitochondrial damage when exposed to RFW.

REFERENCES

1. Samkange-Zeeb F, Blettner M, Emerging aspects
 of mobile phone use. Emerg Health Threats J, 2:
 2-8(2009).
2. Blake LB, Lai H, Biological effects from
 exposure to electromagnetic radiation emitted by
cell tower base stations and other antenna arrays.
 Environ Rev; 18:369-397(2010).
3. Leitgeb N, Mobile phones: are children at higher
 risk? Wien Med Wochenschr. 158 (1-2):36-41
 (2008).
4. Kheifets L, Repacholi M, Saunders R, Van
deventer E. The sensitivity of children to
 electromagnetic fields. Pediatrics; 116:303-
 13(2005)
5. Maisch D, Children and mobile phones… Is there
 a health risks? Journal of Australian College of
 Nutritional and Environmental Medicine22:3-8
 (2003).
6. Najam Siddiqi, Thomas Heming, Effects of
 mobile phone radiofrequency waves (RFW)
 on embryonic stem cells. The FASEB
 Journal27:753.1(2013).
7. Schüz J, Mobile phone use and exposures in
 children. BioelectromagneticsSuppl7:S45-50
 (2005).
8. Abramson MJ, Benke GP, Dimitriadis C et al.
 Mobile telephone use in associated with changes
 in cognitive function in young adolescents.
 Bioelectromagnetics30:678-86(2009).
9. Divan HA, Kheifets L, Obel C, Olsen J, Prenatal
 and postnatal exposure to cell phone use and
 behavioral problems in children. Epidemiology.19
 (4):523-9(2008).
10. Ingole I., Ghosh SK, Exposure to radio frequency
 radiation emitted by cell phone and mortality in
 chick embryo (Gallus domesticus). Biomedical
 Research17:205-210(2006).
11. Juutilainen J, Harri M, Saali K et al. Effects of
 100 Hz magnetic fields with various waveforms
 on the development of chick embryo. Radiat
 Environ Biophys, 25:65-74 (1986).
12. Ubeda A., leal J, trillo MA et al. Pulse shape of
 magnetic fields influences chick embryogenesis.
 J Anat,137:513-536 (1983).
13. Najam Siddiqi, Muthusami John C, Mark
 Norrish, Thomas Heming, Development of chick
 embryo exposed to a low dose of electromagnetic
 waves. J Ayub Med Coll; 28:224-228 (2016).
14. Zareen N, Khan MY, Minhas LA, Dose
 related shifts in the developmental progress
 of chick embryo exposed to mobile phone
 induced electromagnetic fields. J Ayub Med
 Coll;21(1):130–4(2009).
15. Hsin-Chen LEE, Pen-Hui YIN, Ching-You LU,
 Chin-Wen CHI and Yau-Huei WEI, Increase
 of mitochondria and mitochondrial DNA in
 response to oxidative stress in human cells.
 Biochem J348; 425-432 (2000).
16. Lahijani MS, Tehrani DM, Sabouri E,
 Histopathology and ultrastructural studies on
 the effects of electromagnetic fields on
the liver of preincubated white Leghorn chicken embryo. Electromagnetic Biology and Medicine 28:391-413 (2009).

17. Attia AA, Yehia MA, Histological, ultrastructural and immunohistochemical studies of the low frequency electromagnetic field effect on thymus, spleen and liver of albino swiss mice. Pak J Bio Sci. 5(9):931-937 (2002).

18. Voyedovodskaianv, Burbayev DS, Blyumenfeld LA. Detection of new paramagnetic centers in native mitochondria and animal tissues by the EPR. Biofizika, 26: 1-5, (1981).

19. Gorczynska E and Wegrzynowicz R, Structural and functional changes in organelles of liver cells in rats exposed to magnetic fields, Env res, 55:188-198, (1991).

20. GeoffryN. DeIulissw, Rhiannon J. Newey, Bruce Angulo P. Nonalcoholic fatty liver disease. Med.- Electromagnetic Biology and Medicine 39:385-398 (1994).

21. V. King, R. John Aitken. Mobile phone radiation induces reaction oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE, 4: 1-9, (e6446)(2009).

22. Fredlund and colleagues. The influence of 50 Hz magnetic field on liver function. Rom J Physiol. 18: 113-122 (2006).

23. Ibrahim M, El-Ashry, Ali E. The influence of 50 Hz magnetic field on liver function. Rom J Physiol. 18: 113-122 (2006).

24. Tanant P, Lanubile R, Lacandula G, Dini L. Post-continuous whole body exposure of rabbits to 650 MHz electromagnetic fields: Effects on liver, spleen and brain. Biophysik, 44:51-59 (2005).

25. Ahmed M. Mohamadin, Ahmed A. Elberry, Amr D. Marree, Gehan M. Morsy, Fahad A. Al-Abbasi, Lycopene attenuates oxidative stress and heart lysosomal damage in isoproterenol induced cardiotoxicity in rats: A biochemical study, Pathophysiology 19: 121 (2012).

26. Ubeda A, Leal J, Trillo MA, Jimenez MA, Delgado JM, Pulse shape of magnetic fields influences chick embryogenesis. J Anat; 137: 513-536 (1983).

27. Ubeda A, Trillo MA, Chacon L, et al. Leal J, Chick embryo development can be irreversibly altered by early exposure to weak extremel-low-frequency magnetic fields. Bioelectromagnetics; 15:385-398 (1994).

28. Youbicier-Simo BJ, Lebecq JC, Giainis J, et al. Mortality of chicken embryos continuously exposed under GSM cell phone and validation of the effectiveness of a protective device. International conference on cell tower siting, Salzburg, Austria 233-235 (2000).

29. Al-Qudsi F, Azzouz S, Effects of electromagnetic radiation on chick embryo development. Life Science Journal 9: 983-991 (2012).

30. Farrell JM, Litovitz TL, Penafiel M, Montrose CJ, Doinov P, Barber M, Brown KM, Litovitz TA, The effect of pulsed and sinusoidal magnetic fields on the morphology of developing chick embryos. Bioelectromagnetics 18: 431-438 (1997).

31. Aitken RJ, Bennetts LE, Sawyer D, Wikelndt AM, King BV, Impact of radio frequency electromagnetic radiation on DNA integrity in the male germ line. Int J Androl, 28: 171-179 (2005).

32. Shang cheng Xu, Zhou Zhou, Lei Zhang, Zhengping Yu, et al., Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mtDNA in primary cultured neurons, Brain Research, 1311: 189-196 (2010).

33. Spadaro JA, Bergstrom WH, In vivo and in vitro effects of a pulsed electromagnetic field on net calcium flux in rat calvarial bone. Calcif Tissue Int 70: 496-502 (2002).

34. Rao VS, Tituskin IA, Moros EG, et. al. Non-thermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: elucidation of calcium pathways. Radiat Res, 169(3): 319-329 (2008).

35. SuleymanDasdag, Mehmet ZulkufAkdag, The link between radiofrequencies emitted from wireless technologies and oxidative stress, Journal of Chemical Neuroanatomy, 75: 85 (2016).

36. Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, AbegonaKer MP, Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain, Neurotoxicology, 51: 158-65 (2015).

37. Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress, and reduces sperm motility in rats. Clinics (Sao Paulo). 64(6):561-5 (2009).

38. MerhanMamdouHagy, Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats, Electromagnetic Biology and Medicine, 34:279-284 (2015).

39. Verschaeve L, Helinkinen P, Verheyen G, Van Gorp U, et al. Investigation of co-genotoxic effects of radiofrequency electromagnetic fields in vivo. Radiat Res, 165: 598-607 (2006).

40. Donato A, Ceci P, Cannavo A, Tomez F, Naro F. Low power microwave interaction with phospholipase C and D signal transduction
pathways in myogenic cells. Cell BiolInt; 28: 683–688(2004).

41. Lantow M, Schuderer J, Hartwig C, Simkó M, Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation. Radiat Res, 165: 88–94(2006).

42. Geoffrey N De Iuliis, Rhiannon J Newey, Bruce V King, R John Aitken, Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in Vitro. Plos one 4(7), e6446 (2009).