ON O-OPERATORS ON MODULES OVER LIE ALGEBRAS

APURBA DAS
Department of Mathematics and Statistics,
Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
Email: apurbadas348@gmail.com

Abstract. The notion of O-operators on modules over Lie algebras generalize Rota-Baxter operators. They also generalize Poisson structures on Lie algebras in the presence of modules. Motivated from Poisson structures, we define gauge transformations and reductions of O-operators. Next we consider compatible O-operators on modules over Lie algebras. We define ON-structures which give rise to hierarchy of compatible O-operators. Finally, we also introduce generalized complex structures and holomorphic O-operators on modules over Lie algebras and show how they incorporate O-operators.

2020 MSC classification: 17B10, 17B56, 17B38, 17B40
Keywords: O-operators, Gauge transformations, Reductions, Compatible O-operators, ON-structures, Generalized complex structures, Holomorphic O-operators.

1. Introduction

The notion of Rota-Baxter operators on associative algebras was introduced by G. Baxter [4] and G.-C. Rota [18] in 1960’s in their study of the fluctuation theory of probability and combinatorics. In last twenty years, Li Guo made significant contributions in Rota-Baxter algebras. See for instance [10,11]. More precisely, a Rota-Baxter operator (of weight 0) on an associative algebra A is a linear map $R : A \to A$ that satisfies $R(a)R(b) = R(R(a)b + aR(b))$, for $a, b \in A$. Rota-Baxter operators are algebraic abstraction of integral operators. An importance of these operators are shown by Connes and Kreimer in the algebraic approach of renormalization in quantum field theory [5]. Such operators are also useful in the study of dendriform algebras and splitting of operads [1]. Rota-Baxter operators can also defined in a Lie algebra [2,3]. Let $(\mathfrak{g}, [,]) be a Lie algebra. A linear map $R : g \to g$ is called a Rota-Baxter operator (of weight 0) if R satisfies

$$[R(x), R(y)] = R([R(x), y] - [R(y), x]), \text{ for } x, y \in g.$$

The notion of generalized Rota-Baxter operators on bimodules over associative algebras was introduced by K. Uchino motivated from Poisson structures [19]. Their Maurer-Cartan characterizations, cohomology and deformation theory are studied in [8]. Generalized Rota-baxter operators in the context of Lie algebras was previously appeared in the work of Kupershmidt by the name of O-operators [14]. Let $(\mathfrak{g}, [,])$ be a Lie algebra and (M, \bullet) be \mathfrak{g}-module. A linear map $T : M \to \mathfrak{g}$ is called an O-operator on M over \mathfrak{g} if it satisfies

$$[T(m), T(n)] = T(T(m) \bullet n - T(n) \bullet m), \text{ for } m, n \in M.$$

It turns out that M carries a Lie algebra structure with bracket $[m, n]^T := T(m) \bullet n - T(n) \bullet m$.

In this paper, we study O-operators in the context of Lie algebras from Poisson geometric perspectives. In Section 2 we first recall the Chevalley-Eilenberg cohomology (CE cohomology) of Lie algebras and Nijenhuis operators. Section 3 begins with O-operators. Given an O-operator T and a ‘suitable’ 1-cocycle $B : \mathfrak{g} \to M$ in the CE cohomology of \mathfrak{g} with coefficients in M, we construct a new O-operator $T_B : M \to \mathfrak{g}$,
called the gauge transformation of T by B. This construction is inspired from the gauge transformation of Poisson structures introduced by Ševera and Weinstein [21] (see also [7]). The \mathcal{O}-operators T and T_B induce isomorphic Lie algebra structures on M (Proposition 3.7). In the next, we generalize the Marsden-Ratiu Poisson reduction theorem [20] to \mathcal{O}-operators. Given an \mathcal{O}-operator $T : M \to \mathfrak{g}$, a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and a suitable subspace $E \subset \mathfrak{g}$, we construct under certain conditions, a new \mathcal{O}-operator over the Lie algebra $\mathfrak{h}/(E \cap \mathfrak{h})$ (cf. Theorem 3.10).

In the classical formulation of biHamiltonian mechanics, Poisson structures come up with Nijenhuis tensors suitably compatible with Poisson structures [17]. Such structures are called Poisson-Nijenhuis (PN) structures [13]. It turns out that there is a hierarchy of compatible Poisson structures. These notions and subsequent results has been extended to the context of associative \mathcal{O}-operators by introducing \mathcal{ON}-structures [16]. In Section 4 we first introduce compatible \mathcal{O}-operators on modules over Lie algebras and study its relation with associated (pre-)Lie structures. In Section 5 we study Poisson-Nijenhuis structures in the context of \mathcal{O}-operators on Lie algebras. A Nijenhuis structure on M over \mathfrak{g} consists of a pair (N, S) of linear maps $N \in \text{End}(\mathfrak{g})$ and $S \in \text{End}(M)$ that generates an infinitesimal deformation of the dual \mathfrak{g}-module M^* (Definition 5.4). We introduce \mathcal{ON}-structures on M over \mathfrak{g} as a triple (T, N, S) in which T is an \mathcal{O}-operator, (N, S) a Nijenhuis structure on M over \mathfrak{g} satisfying some compatibility relations (Definition 5.7). We show that for each $k \geq 0$, the linear maps $T_k := N^k \circ T : M \to \mathfrak{g}$ are \mathcal{O}-operators which are pairwise compatible (Theorem 5.12).

In the next, we consider strong Maurer-Cartan equation in a twilled Lie algebra (matched pair of Lie algebras). We show that a solution of the strong MC equation in a twilled Lie algebra induces an \mathcal{ON}-structure (Theorem 6.6), hence, a hierarchy of compatible \mathcal{O}-operators (Corollary 6.7). Conversely, we prove that an \mathcal{ON}-structure in which the \mathcal{O}-operator is invertible induces a solution of the strong Maurer-Cartan equation in a certain twilled Lie algebra (Theorem 6.8).

In [12] Hitchin introduced a notion of generalized complex structure unifying both symplectic and complex structures. A generalized complex structure has an underlying Poisson structure. Motivated from this, in Section 7, we introduce generalized complex structure on M over the Lie algebra \mathfrak{g} as a linear map $J : \mathfrak{g} \oplus M \to \mathfrak{g} \oplus M$ of the form

$$J = \begin{pmatrix} N & T \\ \sigma & -S \end{pmatrix},$$

satisfying $J^2 = -\text{id}$ and some integrability condition (Definition 7.1). In Theorem 7.2, we gave a characterization of a generalized complex structure J in terms of its structure components.

In Section 8, we introduce holomorphic r-matrices as Lie algebra analog of holomorphic Poisson structures [15]. Finally, using a characterization of holomorphic r-matrices, we end this paper by introducing holomorphic \mathcal{O}-operators. Deformations of Lie algebra \mathcal{O}-operators are studied in [22] from cohomological perspectives. In a forth coming paper, we aim to study cohomology and deformations of holomorphic \mathcal{O}-operators motivated from holomorphic Poisson geometry.

All vector spaces and linear maps in this paper are over a field of characteristic 0 unless otherwise stated.

2. Lie algebras and Nijenhuis tensors

Let $\mathfrak{g} = (\mathfrak{g}, [,])$ be a Lie algebra. A \mathfrak{g}-module (also called a representation of \mathfrak{g}) consists of a vector space M together with a bilinear map (called the action)

$$\cdot : \mathfrak{g} \times M \to M, \ (x, m) \mapsto x \cdot m \quad \text{satisfying} \quad [x, y] \cdot m = x \cdot (y \cdot m) - y \cdot (x \cdot m), \quad \text{for} \ x, y \in \mathfrak{g}, m \in M.$$

Thus it follows that the Lie algebra \mathfrak{g} is a module over itself with the action given by $x \cdot y = [x, y]$, for $x, y \in \mathfrak{g}$. It is called the adjoint representation of \mathfrak{g}. The dual vector space \mathfrak{g}^* also carries a \mathfrak{g}-module structure with the action given by $\langle x \cdot \alpha, y \rangle = -\langle \alpha, [x, y] \rangle$, for $x, y \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^*$.
Let \((\mathfrak{g}, [\, , \])\) be a Lie algebra and \((M, \bullet)\) be a \(\mathfrak{g}\)-module. Then the direct sum \(\mathfrak{g} \oplus M\) carries a Lie bracket
\[
[(x, m), (y, n)] := ([x, y], x \bullet n - y \bullet m),
\]
for \((x, m), (y, n) \in \mathfrak{g} \oplus M\). This is called the semi-direct product and often denoted by \(\mathfrak{g} \ltimes M\).

Let \(\mathfrak{g}\) be a Lie algebra and \((M, \bullet)\) be a \(\mathfrak{g}\)-module. The Chevalley-Eilenberg (CE) cohomology of \(\mathfrak{g}\) with coefficients in \(M\) is given by the cohomology of the cochain complex \((C^n_{CE}(\mathfrak{g}, M), \delta_{CE})\) where \(C^n_{CE}(\mathfrak{g}, M) := \text{Hom}(\wedge^n \mathfrak{g}, M)\), for \(n \geq 0\) and \(\delta_{CE}: C^n_{CE}(\mathfrak{g}, M) \to C^{n+1}_{CE}(\mathfrak{g}, M)\) given by

\[
(\delta_{CE}f)(x_1, \ldots, x_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i+1} x_i \cdot f(x_1, \ldots, \hat{x}_i, \ldots, x_{n+1})
+ \sum_{i<j} (-1)^{i+j} f([x_i, x_j], x_1, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{n+1}),
\]

for \(f \in C^n_{CE}(\mathfrak{g}, M)\) and \(x_1, \ldots, x_{n+1} \in \mathfrak{g}\).

2.1. **Definition.** Let \((\mathfrak{g}, [\, , \])\) be a Lie algebra. A Nijenhuis operator on \(\mathfrak{g}\) is a linear map \(N : \mathfrak{g} \to \mathfrak{g}\) satisfying
\[
[Nx, Ny] = N([Nx, y] + [x, Ny] - N[x, y]), \text{ for } x, y \in \mathfrak{g}.
\]
If \(N\) is a Nijenhuis operator on \(\mathfrak{g}\), then the deformed bracket
\[
[x, y]_N := [Nx, y] + [x, Ny] - N[x, y]
\]
is a new Lie bracket on \(\mathfrak{g}\) and \(N : (\mathfrak{g}, [\, , \]) \to (\mathfrak{g}, [\, , \])\) is a morphism of Lie algebras.

We have more interesting results about Nijenhuis operators [13].

2.2. **Proposition.** Let \(N\) be a Nijenhuis operator on the Lie algebra \(\mathfrak{g}\). Then for all \(k, l \in \mathbb{N}\),

(i) \(N^k\) is a Nijenhuis operator on \(\mathfrak{g}\), hence, \((\mathfrak{g}, [\, , \])_{N^k}\) is a Lie algebra.

(ii) \(N^l\) is a Nijenhuis operator on the Lie algebra \((\mathfrak{g}, [\, , \])_{N^k}\). Moreover, the deformed brackets \([\, , \]_{N^k})N\text{ and } [\, , \]_{N^{k+l}} coincide, Hence \(N^l\) is a Lie algebra morphism from \((\mathfrak{g}, [\, , \])_{N^{k+l}}\) to \((\mathfrak{g}, [\, , \])_{N^k}\).

(iii) The Lie brackets \([\, , \]_{N^k} and \([\, , \]_{N^l}\) on \(\mathfrak{g}\) are compatible in the sense that any linear combinations of them is also a Lie bracket on \(\mathfrak{g}\).

3. **\(O\)-operators**

In this section, we first recall \(O\)-operators and some basic properties of that [2,3]. Then we define gauge transformations and reductions of \(O\)-operators.

3.1. **Definition.** Let \(\mathfrak{g}\) be a Lie algebra and \((M, \bullet)\) be a \(\mathfrak{g}\)-module. An \(O\)-operator on \(M\) over the Lie algebra \(\mathfrak{g}\) is a linear map \(T : M \to \mathfrak{g}\) satisfying
\[
[T(m), T(n)] = T(T(m) \bullet n - T(n) \bullet m), \text{ for } m, n \in M.
\]
Let \(T\) be an \(O\)-operator on \(M\) over \(\mathfrak{g}\). Then \(M\) carries a Lie algebra structure with bracket
\[
[m, n]^T := T(m) \bullet n - T(n) \bullet m, \text{ for } m, n \in M.
\]
We denote this Lie algebra by \(M^T\). Moreover, \(\ker(T) \subset M^T\) is a subalgebra, called the isotropy subalgebra. This is in fact an ideal. The image of \(T\), \(\text{im}(T) \subset \mathfrak{g}\) is also a subalgebra.

3.2. **Proposition.** A linear map \(T : M \to \mathfrak{g}\) is an \(O\)-operator on \(M\) over \(\mathfrak{g}\) if and only if the graph
\[
\text{Gr}(T) := \{(T(m), m) | m \in M\} \subset \mathfrak{g} \oplus M
\]
is a subalgebra of the semi-direct product \(\mathfrak{g} \ltimes M\).
Let \(\mathfrak{g} = (\mathfrak{g}, [\cdot, \cdot]) \) be a Lie algebra. Then one can extend the Lie bracket on \(\mathfrak{g} \) to the full exterior algebra \(\wedge \mathfrak{g} = \oplus_{n \geq 0} \wedge^n \mathfrak{g} \) by the following rules

\[
[P, Q] = -(-1)^{(p-1)(q-1)}[Q, P],
\]

\[
[P, Q \wedge R] = [P, Q] \wedge R + (-1)^{(p-1)q}Q \wedge [P, R], \quad \text{for } P \in \wedge^p \mathfrak{g}, \quad Q \in \wedge^q \mathfrak{g} \quad \text{and} \quad R \in \wedge^r \mathfrak{g}.
\]

3.3. Definition. An element \(r \in \wedge^2 \mathfrak{g} \) is called a classical r-matrix (or a solution of the classical Yang-Baxter equation) if \(r \) satisfies \([r, r] = 0 \).

Classical r-matrices are Lie algebra analog of Poisson structures [14]. There is a close connection between classical r-matrices and \(\mathcal{O} \)-operators.

3.4. Lemma. An element \(r \in \wedge^2 \mathfrak{g} \) is a classical r-matrix if and only if the induced map \(r^\sharp : \mathfrak{g}^* \to \mathfrak{g} \), \(\alpha \mapsto r(\alpha, \cdot) \) is an \(\mathcal{O} \)-operator on the coadjoint representation \(\mathfrak{g}^* \) over the Lie algebra \(\mathfrak{g} \).

3.1. Gauge transformations. Gauge transformations of Poisson structures by suitable closed 2-forms was defined by Severa and Weinstein [21]. Since \(\mathcal{O} \)-operators are generalization of Poisson structures, we may define gauge transformations of \(\mathcal{O} \)-operators. We proceed as follows.

Let \(\mathfrak{g} \) be a Lie algebra and \(M \) be a \(\mathfrak{g} \)-module. Let \(L \subset \mathfrak{g} \ltimes M \) be a Lie subalgebra of the semi-direct product. For any linear map \(B : \mathfrak{g} \to M \), we define a subspace

\[
\tau_B(L) := \{(x, m + B(x)) \mid (x, m) \in L\} \subset \mathfrak{g} \oplus M.
\]

3.5. Proposition. The subspace \(\tau_B(L) \subset \mathfrak{g} \oplus M \) is a Lie subalgebra of the semi-direct product \(\mathfrak{g} \ltimes M \) if and only if \(B \) is a 1-cocycle in the cohomology of the Lie algebra \(\mathfrak{g} \) with coefficients in \(M \).

Proof. For any \((x, m), (y, n) \in L\), we have

\[
[(x, m + B(x)), (y, n + B(y))] = ([x, y], x \cdot (n + B(y)) - y \cdot (m + B(x)))
\]

\[
= ([x, y], x \cdot n - y \cdot m + x \cdot B(y) - y \cdot B(x)).
\]

It is in \(\tau_B(L) \) if and only if \(x \cdot B(y) - y \cdot B(x) = B([x, y]) \), or, equivalently, \(B \) is a 1-cocycle in the cohomology of \(\mathfrak{g} \) with coefficients in \(M \). \(\diamond \)

Let \(T : M \to \mathfrak{g} \) be an \(\mathcal{O} \)-operator on \(M \) over the Lie algebra \(\mathfrak{g} \). Consider the graph \(\text{Gr}(T) := \{(T(m), m) \mid m \in M\} \subset \mathfrak{g} \ltimes M \) which is a Lie subalgebra of the semi-direct product. For any \(1 \)-cocycle \(B : \mathfrak{g} \to M \), we consider the deformed subalgebra \(\tau_B(\text{Gr}(T)) \subset \mathfrak{g} \ltimes M \). The question is whether this subalgebra is the graph of a linear map from \(M \) to \(\mathfrak{g} \)?

If the linear map \(\text{id}_M + B \circ T : M \to M \) is invertible, then \(\tau_B(\text{Gr}(T)) \) is the graph of the linear map \(T \circ (\text{id}_M + B \circ T)^{-1} : M \to \mathfrak{g} \). In such a case, the \(1 \)-cocycle \(B \) is called \(T \)-admissible. Therefore, by Proposition 3.2, the linear map \(T \circ (\text{id}_M + B \circ T)^{-1} : M \to \mathfrak{g} \) is an \(\mathcal{O} \)-operator on \(M \) over the Lie algebra \(\mathfrak{g} \). This \(\mathcal{O} \)-operator is called the gauge transformation of \(T \) associated with \(B \), and denoted by \(T_B \).

3.6. Remark. (i) \(\text{im}(T) = \text{im}(T_B) \).

(ii) If \(T \) is invertible then \(T_B \) is so, and

\[
T_B^{-1} = (\text{id}_M + B \circ T) \circ T^{-1} = T^{-1} + B.
\]

3.7. Proposition. The Lie algebra structures on \(M \) induced from \(\mathcal{O} \)-operators \(T \) and \(T_B \) are isomorphic.

Proof. Consider the invertible linear map \(\text{id}_M + B \circ T : M \to M \). Then for any \(m, n \in M \), we have

\[
[(\text{id}_M + B \circ T)(m), (\text{id}_M + B \circ T)(n)]^{T_B}
\]

\[
= T_B(\text{id}_M + B \circ T)(m) \cdot (\text{id}_M + B \circ T)(n) - T_B(\text{id}_M + B \circ T)(n) \cdot (\text{id}_M + B \circ T)(m)
\]

\[
= T(m) \cdot n + T(m) \cdot BT(n) - T(n) \cdot m - T(n) \cdot BT(m)
\]

\[
= T(m) \cdot n - T(n) \cdot m + B([T(m), T(n)])
\]

\[
= [m, n]^T + B \circ T([m, n]^T) = (\text{id}_M + B \circ T)([m, n]^T).
\]

4 APURBA DAS
and Definition.

restricted to N.

hand side vanishes as $(\ref{3.2.})$.

Proof. $(\ref{3.2.})$.

\[E\]

\[T\]

\[\pi\]

\[\square\]

Hence the proof.

3.8. Remark. Gauge transformations of \mathcal{O}-operators (generalized Rota-Baxter operators of Uchino $[19]$) on bimodules over associative algebras can be defined in a similar manner. Moreover, these two constructions of gauge transformations are related by the standard skew-symmetrization from associative algebras to Lie algebras.

3.2. Reductions. In this subsection, we extend the well-known Marsden-Ratiu Poisson reduction theorem $[20]$ to \mathcal{O}-operators. In the classical case, this reduction theorem allows one, under certain conditions, to construct a new Poisson structure on the quotient N/F, N being a submanifold of a Poisson manifold M and F the foliation associated with an integrable distribution $E \cap TN$ with E a vector subbundle of TM restricted to N.

Let g be a Lie algebra and M be a g-module. Let $T : M \to g$ be an \mathcal{O}-operator on M over the Lie algebra g. Suppose $h \subset g$ is a Lie subalgebra, $E \subset g$ a subspace satisfying the property that the quotient $h/E \cap h$ is a Lie algebra and the projection $\pi : h \to h/E \cap h$ is a morphism of Lie algebras.

Let $N \subset M$ be an h-module. Define a subspace

\[(E \cap h)_N^0 := \{n \in N| x \cdot n = 0, \forall x \in E \cap h\} \subset N.\]

Then $(E \cap h)_N^0$ is a $h/E \cap h$-module with the action given by $|h| \cdot n = h \cdot n$.

3.9. Definition. Let g be a Lie algebra and $T : M \to g$ be an \mathcal{O}-operator on a g-module M. A triple (h, E, N) as above is said to be reducible if there is an \mathcal{O}-operator $\overline{T} : (E \cap h)_N^0 \to h/E \cap h$ such that for any $m, n \in (E \cap h)_N^0$, we have $\overline{T}(m) \cdot n = T(m) \cdot n$.

The Marsden-Ratiu reduction theorem for \mathcal{O}-operators can be stated as follows.

3.10. Theorem. Let g be a Lie algebra and M be a g-module. Let $T : M \to g$ be an \mathcal{O}-operator on M over the Lie algebra g. If $T((E \cap h)_N^0) \subset h$ then (h, E, N) is reducible.

Proof. For any $m, n \in (E \cap h)_N^0$, we claim that $T(m) \cdot n \in (E \cap h)_N^0$. This follows as for any $x \in E \cap h$, we have

\[x \cdot (T(m) \cdot n) = [x, T(m)] \cdot n - T(m) \cdot (x \cdot n).\]

First observe that $\pi[x, T(m)] = [\pi(x), \pi T(m)] = 0$. Hence $[x, T(m)] \in E \cap h$. Therefore, the first term of the right hand side vanishes as $[x, T(m)] \in E \cap h$ and $n \in (E \cap h)_N^0$. The second term of the right hand side vanishes as $x \in E \cap h$ and $n \in (E \cap h)_N^0$. Therefore, we get $T(m) \cdot n \in (E \cap h)_N^0$. We define $\overline{T} : (E \cap h)_N^0 \to h/E \cap h$ by $\overline{T}(m) := |T(m)|$ the class of $T(m)$. Then we have

\[\overline{T}(m, \overline{T}(n)) = ||T(m)||, |T(n)|| = ||T(m), T(n)||.\]

On the other hand

\[\overline{T}(T(m) \cdot n - \overline{T}(n) \cdot m) = \overline{T}([T(m)] \cdot n - |T(n)| \cdot m) = \overline{T}(T(m) \cdot n - T(n) \cdot m) = |T(T(m) \cdot n - T(n) \cdot m)| = ||T(m), T(n)||.\]

Hence \overline{T} is an \mathcal{O}-operator on $(E \cap h)_N^0$ over the Lie algebra $h/E \cap h$. Moreover $\overline{T}(m) \cdot n = |T(m)| \cdot n = T(m) \cdot n$. Hence the triple (h, E, N) is reducible.

As consequences, we obtain the followings.

(i) Let $T : M \to g$ be an \mathcal{O}-operator and $h \subset g$ be a Lie subalgebra. If $N \subset M$ is an h-submodule and $T(N) \subset h$, then the restriction $T : N \to h$ is an \mathcal{O}-operator on N over h.

(ii) Let $T : M \to g$ be an \mathcal{O}-operator and $E \subset g$ be an ideal. Then E^0_M is an g/E-module and the map $\overline{T} : E^0_M \to g/E$, $m \mapsto |T(m)|$ is an \mathcal{O}-operator on E^0_M over g/E satisfying $\overline{T}(m) \cdot n = T(m) \cdot n$, for $m, n \in E^0_M$.

4. Compatible \mathcal{O}-operators

4.1. Definition. Two \mathcal{O}-operators $T_1, T_2 : M \to \mathfrak{g}$ on M over the Lie algebra \mathfrak{g} are said to be compatible if their sum $T_1 + T_2 : M \to \mathfrak{g}$ is also an \mathcal{O}-operator.

Note that the condition in the above definition is equivalent to

$$[T_1(m), T_2(n)] + [T_2(m), T_1(n)] = T_1(T_2(m) \cdot n - T_2(n) \cdot m) + T_2(T_1(m) \cdot n - T_1(n) \cdot m). \quad (3)$$

This also implies that for any $\mu, \lambda \in \mathbb{K}$, the linear combination $\mu T_1 + \lambda T_2$ is an \mathcal{O}-operator.

If two Poisson structures are compatible and one of them is non-degenerate (i.e., obtained from a symplectic structure) then one can construct a Nijenhuis tensor on the manifold [23]. Since \mathcal{O}-operators are generalization of Poisson structures, one can extend this result in our result.

4.2. Proposition. Let $T_1, T_2 : M \to \mathfrak{g}$ be two \mathcal{O}-operators on M over the Lie algebra \mathfrak{g}. If T_1, T_2 are compatible and T_2 is invertible then $N = T_1 \circ T_2^{-1} : \mathfrak{g} \to \mathfrak{g}$ is a Nijenhuis operator on the Lie algebra \mathfrak{g}. Conversely, if T_1, T_2 are both invertible and N is a Nijenhuis tensor then T_1, T_2 are compatible.

Proof. Let T_1, T_2 be compatible and T_2 invertible. For any $x, y \in \mathfrak{g}$, there exists (unique) elements $m, n \in M$ such that $T_2(m) = x$ and $T_2(n) = y$. Then

$$[Nx, Ny] - N([Nx, y] + [x, Ny]) + N^2[x, y]$$

$$= [NT_2(m), NT_2(n)] - N([NT_2(m), T_2(n)] + [T_2(m), NT_2(n)]) + N^2[T_2(m), T_2(n)]$$

$$= [T_1(m), T_1(n)] - N([T_1(m), T_1(n)] + [T_2(m), T_1(n)]) + N^2[T_2(m), T_2(n)]$$

$$= T_1(T_1(m) \cdot n - T_1(n) \cdot m) - NT_1(T_2(m) \cdot n - T_2(n) \cdot m) - NT_2(T_1(m) \cdot n - T_1(n) \cdot m)$$

$$+ N^2T_2(T_2(m) \cdot n - T_2(n) \cdot m) \quad (as T_1, T_2 are \mathcal{O}-operators and by (3))$$

$$= 0.$$

Conversely, if N is a Nijenhuis tensor then for all $m, n \in M$,

$$[NT_2(m), NT_2(n)] = N([NT_2(m), T_2(n)] + [T_2(m), NT_2(n)]) - N^2[T_2(m), T_2(n)].$$

This implies that

$$T_1(T_1(m) \cdot n - T_1(n) \cdot m) = N([T_1(m), T_1(n)] + [T_2(m), T_1(n)]) - NT_1(T_2(m) \cdot n - T_2(n) \cdot m).$$

Since N is invertible, we may apply N^{-1} to both sides to get the identity (3). Hence T_1 and T_2 are compatible.

4.1. Compatible pre-Lie algebras. In this subsection, we recall pre-Lie algebras and their relation with \mathcal{O}-operators. We show that compatible \mathcal{O}-operators give rise to compatible pre-Lie algebras.

4.3. Definition. A (left) pre-Lie algebra is a vector space L together with a linear map $\square : L \otimes L \to L$ satisfying

$$(x \square y) \square z - x \square (y \square z) = (y \square x) \square z - y \square (x \square z), \quad \text{for } x, y, z \in L.$$

In this case, \square is called a pre-Lie product on L.

The connection between \mathcal{O}-operators and pre-Lie algebras is given by the following [2].

4.4. Proposition. Let $T : M \to \mathfrak{g}$ be an \mathcal{O}-operator on M over the Lie algebra \mathfrak{g}. Then the product $\square_T : M \otimes M \to M, \ m \square_T n = T(m) \cdot n$ is a pre-Lie product on M.

4.5. Definition. Two pre-Lie products \square_1 and \square_2 on a vector space L are said to compatible if for all $\mu, \lambda \in \mathbb{K}$, the sum $\mu \square_1 + \lambda \square_2$ is also a pre-Lie product on L.
This is equivalent to
\[
(x \square_1 y) \square_2 z - x \square_1 (y \square_2 z) + (x \square_2 y) \square_1 z - x \square_2 (y \square_1 z)
= (y \square_1 x) \square_2 z - y \square_1 (x \square_2 z) + (y \square_2 x) \square_1 z - y \square_2 (x \square_1 z).
\]

4.6. Proposition. Let \(T_1, T_2 : M \to \mathfrak{g}\) be two compatible \(\mathcal{O}\)-operators on \(M\) over the Lie algebra \(\mathfrak{g}\). Then the pre-Lie products \(\square_{T_1}\) and \(\square_{T_2}\) on \(M\) are compatible.

5. \(\mathcal{O}^N\)-structures

In this section, we study Nijenhuis structure on a module over a Lie algebra. Then we introduce \(\mathcal{O}^N\)-structures and show that an \(\mathcal{O}^N\)-structure induces a hierarchy of compatible \(\mathcal{O}\)-operators.

5.1. Nijenhuis structures on modules over Lie algebras. Let \(\mathfrak{g}\) be a Lie algebra and \(M\) be a \(\mathfrak{g}\)-module. An infinitesimal deformation of the \(\mathfrak{g}\)-module \(M\) is given by sums
\[
[x, y]_t = [x, y] + t[x, y]_1 \quad \text{and} \quad x \bullet_t m = x \bullet m + t x \bullet_1 m, \quad \text{for } x, y \in \mathfrak{g}, m \in M,
\]
where \([\ , \]_1\) is a skew-symmetric bracket on \(\mathfrak{g}\) and \(\bullet_1 : \mathfrak{g} \times M \to M\) is a bilinear map such that \((\mathfrak{g}, [\ , \]_t)\) is a Lie algebra and \(\bullet_1\) defines a \((\mathfrak{g}, [\ , \]_t)\)-module on \(M\). Thus it follows that the following identities are hold: for \(x, y, z \in \mathfrak{g}\) and \(m \in M\),
\[
[x, [y, z]_t] + [y, [z, x]_t] + [z, [x, y]_t] = 0,
\]
\[
[x, y]_t \bullet_t m = x \bullet (y \bullet m) - y \bullet (x \bullet m).
\]

These two conditions are equivalent to the following identities
\[
[x, [y, z]]_1 + [y, [z, x]]_1 + [z, [x, y]]_1 = 0, \quad (4)
\]
\[
[x, [y, z]]_1 + [y, [z, x]]_1 + [z, [x, y]]_1 = 0, \quad (5)
\]
\[
[x, y]_1 \bullet_1 m = x \bullet_1 (y \bullet_1 m) - y \bullet_1 (x \bullet_1 m), \quad (6)
\]
\[
[x, y]_1 m + [x, y]_1 \bullet_1 m = x \bullet_1 (y \bullet_1 m) - y \bullet_1 (x \bullet_1 m) + x \bullet_1 (y \bullet m) - y \bullet_1 (x \bullet m). \quad (7)
\]

The condition (4) implies that \([\ , \]_1\) is a 2-cocycle of the Lie algebra \(\mathfrak{g}\) with coefficients in itself. The condition (5) says that \([\ , \]_1\) is a Lie bracket on \(\mathfrak{g}\) and (6) says that \(\bullet_1\) defines a \((\mathfrak{g}, [\ , \]_t)\)-module structure on \(M\). Finally (7) is equivalent to the fact \((M, \bullet + \bullet_1)\) is a module for the Lie algebra \((\mathfrak{g}, [\ , \]_t)\) for \(t = 1\).

5.1. Definition. Let \(([\ , \]_t, \bullet_t)\) and \(([\ , \]'_t, \bullet'_t)\) be two infinitesimal deformations of a \(\mathfrak{g}\)-module \(M\). They are said to be equivalent if there exist linear maps \(N \in \text{End}(\mathfrak{g})\) and \(S \in \text{End}(M)\) such that \((\text{id}_\mathfrak{g} + tN, \text{id}_M + tS)\) is a homomorphism from the \((\mathfrak{g}, [\ , \]_t)\)-module \((M, \bullet_t)\) to the \((\mathfrak{g}, [\ , \]_t)\)-module \((M, \bullet'_t)\), i.e. the followings hold
\[
(\text{id}_\mathfrak{g} + tN)[x, y]_t = ([\text{id}_\mathfrak{g} + tN]x, [\text{id}_\mathfrak{g} + tN]y)_t, \quad (\text{id}_M + tS)(x \bullet'_t m) = ([\text{id}_M + tS]x) \bullet_t ([\text{id}_M + tS]m).
\]

An infinitesimal deformation \(([\ , \]_t, \bullet_t)\) of the \(\mathfrak{g}\)-module \(M\) is said to be trivial if it is equivalent to the undeformed one \(([\ , \] = [\ , \], \bullet = \bullet)\). Thus an infinitesimal deformation \(([\ , \]_t, \bullet_t)\) is trivial if and only if there exists \(N \in \text{End}(\mathfrak{g})\) and \(S \in \text{End}(M)\) satisfying
\[
[x, y]_1 = [Nx, y] + [x, Ny] - N[x, y], \quad (8)
\]
\[
N[x, y]_1 = [Nx, Ny], \quad (9)
\]
\[
x \bullet_1 m = Nx \bullet m + x \bullet S m - S(x \bullet m), \quad (10)
\]
\[
S(x \bullet_1 m) = N(x) \bullet S(m), \quad \text{for } x, y \in \mathfrak{g} \text{ and } m \in M. \quad (11)
\]

It follows from (8) and (9) that \(N\) is a Nijenhuis tensor for the Lie algebra \(\mathfrak{g}\). Similarly, from (10) and (11), we get that
\[
N(x) \bullet S(m) = SN(x) \bullet m + x \bullet S(m) - S(x \bullet m). \quad (12)
\]
Thus, in a trivial infinitesimal deformation, N is a Nijenhuis tensor for the Lie algebra \mathfrak{g} and satisfying the identity (12). In fact, any such operators N, S generate a trivial infinitesimal deformation of the \mathfrak{g}-module M.

5.2. Theorem. Let \mathfrak{g} be a Lie algebra and M be a \mathfrak{g}-module. Let $N \in \text{End}(\mathfrak{g})$ be a Nijenhuis operator on \mathfrak{g} and $S \in \text{End}(M)$ satisfies the condition (12). Then $([\cdot\ , \cdot]\circ \cdot)$ is a trivial infinitesimal deformation of the \mathfrak{g}-module M where

$$[x,y] = [x,y] + t([Nx,y] + [x,Ny] - N[x,y]) \quad \text{and} \quad x \circ m = x \circ m + t(Nx \circ m + x \circ Sm - S(x \circ m)),$$

for $x, y \in \mathfrak{g}, m \in M$.

Proof. It is a routine calculation to verify that the identities (4)-(7) holds. Hence $([\cdot\ , \cdot]\circ \cdot)$ is a deformation of the \mathfrak{g}-module M. Finally, the conditions (8)-(11) of the triviality of a deformation suggests that $([\cdot\ , \cdot]\circ \cdot)$ is trivial.

Note that the conditions that N is a Nijenhuis tensor and S satisfies the identity (12) can be expressed simply by the following result.

5.3. Proposition. Let \mathfrak{g} be a Lie algebra and M be a \mathfrak{g}-module. A linear map $N \in \text{End}(\mathfrak{g})$ is a Nijenhuis tensor on \mathfrak{g} and a linear map $S \in \text{End}(M)$ satisfies the identity (12) if and only if $N \oplus S : \mathfrak{g} \oplus M \to \mathfrak{g} \oplus M$ is a Nijenhuis operator on the semi-direct product Lie algebra $\mathfrak{g} \ltimes M$.

5.4. Definition. Let \mathfrak{g} be a Lie algebra and M be a \mathfrak{g}-module. A pair (N, S) consisting of linear maps $N \in \text{End}(\mathfrak{g})$ and $S \in \text{End}(M)$ is called a Nijenhuis structure on M if N and S^* generate a trivial infinitesimal deformation of the dual \mathfrak{g}-module M^*.

Note that the condition of the above definition is equivalent to the fact that N is a Nijenhuis tensor on \mathfrak{g} and

$$N(x) \circ S(m) = S(N(x) \circ m) + x \circ S^2(m) - S(x \circ S(m)),$$

for $x \in \mathfrak{g}, m \in M$. (13)

Let $N : \mathfrak{g} \to \mathfrak{g}$ be a Nijenhuis operator on the Lie algebra \mathfrak{g}. Then (N, N^*) is a Nijenhuis structure on the coadjoint module \mathfrak{g}^*.

5.5. Proposition. Let (N, S) be a Nijenhuis structure on a \mathfrak{g}-module M. Then the pairs (N^i, S^i) are Nijenhuis structures on the \mathfrak{g}-module M, for all $i \in \mathbb{N}$.

Let (N, S) be a Nijenhuis structure on a \mathfrak{g}-module M. Consider the deformed Lie algebra $(\mathfrak{g}, [\cdot\ , \cdot]_N)$. We define a map $\circ : \mathfrak{g} \times M \to M$ by

$$x \circ m = N(x) \circ m - x \circ S(m) + S(x \circ m).$$

5.6. Proposition. The map $\circ : \mathfrak{g} \times M \to M$ defines a representation of the Lie algebra $(\mathfrak{g}, [\cdot\ , \cdot]_N)$ on M.

Proof. Since (N, S) is a Nijenhuis structure on the \mathfrak{g}-module M, the sum $N \oplus S^* : \mathfrak{g} \oplus M^* \to \mathfrak{g} \oplus M^*$ is a Nijenhuis tensor on the semi-direct product Lie algebra $\mathfrak{g} \ltimes M^*$. The deformed bracket is given by

$$[(x, \alpha), (y, \beta)]_{N \oplus S^*} = [(N \oplus S^*)(x, \alpha), (y, \beta)] + [(x, \alpha), (N \oplus S^*)(y, \beta)] - (N \oplus S^*)[[x, \alpha), (y, \beta)]$$

$$= ([Nx, y] + [x, Ny] - N[x, y], N(x) \circ \beta - y \circ S^*(\alpha) + x \circ S^*(\beta) - N(y) \circ \alpha - S^*(x \circ \beta) + S^*(y \circ \alpha))$$

This shows that (M^*, \circ) is a module over the Lie algebra $(\mathfrak{g}, [\cdot\ , \cdot]_N)$. Hence the dual (M, \circ) is also a module over $(\mathfrak{g}, [\cdot\ , \cdot]_N)$.

Note that, we may define a bracket $[\cdot\ , \cdot]_T^\mathfrak{g} : M \times M \to M$ by using the representation given in the above proposition

$$[m, n]_T^\mathfrak{g} := T(m) \circ n - T(n) \circ m.$$
5.2. ON-structures. Let $T : M \rightarrow \mathfrak{g}$ be an O-operator on M over the Lie algebra \mathfrak{g}. Consider the Lie algebra structure on M with the bracket $[\cdot , \cdot]^T$ given in (2). Next, let (N, S) be a Nijenhuis structure on M over the Lie algebra \mathfrak{g}. Then one can deform the bracket $[\cdot , \cdot]^T$ by the linear map $S \in \text{End}(M)$ and obtain a new bracket

$$[m, n]^T_S = [S(m), n]^T + [m, S(n)]^T - S([m, n]^T), \text{ for } m, n \in M.$$

5.7. Definition. Let $T : M \rightarrow \mathfrak{g}$ be an O-operator and (N, S) be a Nijenhuis structure on M over the Lie algebra \mathfrak{g}. The triple (T, N, S) is said to be an ON-structure on M over the Lie algebra \mathfrak{g} if the following conditions hold:

- (i) $N \circ T = T \circ S$,
- (ii) $[m, n]^{N \circ T} = [m, n]^T_S$, for $m, n \in M$.

Here the bracket $[\cdot , \cdot]^{N \circ T}$ is defined similar to (2) where T is replaced by $N \circ T$. If (T, N, S) is an ON-structure, then by the first condition of the above definition, we have

$$[m, n]^T_S + [m, n]^T = 2[m, n]^{NT}.$$

Hence by the second condition of the above definition, we get $[m, n]^T_S = [m, n]^T$.

5.8. Theorem. Let (T, N, S) be an ON-structure on M over the Lie algebra \mathfrak{g}. Then

- (i) T is an O-operator on (M, \circ) over the deformed Lie algebra $(\mathfrak{g}, [\cdot , \cdot]_N)$.
- (ii) $N \circ T$ is an O-operator on M over the Lie algebra \mathfrak{g}.

Proof. (i) For any $m, n \in M$, we have

$$T([m, n]^T) = T([m, n]^T_S) = T([Sm, n]^T + [m, Sn]^T - S[m, n]^T)$$

$$= [TS(m), T(n)] + [T(m), TS(n)] - TS[m, n]^T$$

$$= [NT(m), T(n)] + [T(m), NT(n)] - N[T(m), T(n)] \text{ (as } TS = NT)$$

$$= [T(m), T(n)]_N.$$ \hspace{1cm} (14)

(ii) By (14) and the fact that N is a Nijenhuis tensor, we have

$$NT([m, n]^{NT}) = NT([m, n]^T_S) = N([Tm, Tn]_N) = [NT(m), NT(n)].$$

Hence $N \circ T$ is an O-operator on M over the Lie algebra \mathfrak{g}. \hspace{1cm} \Box

In a Poisson-Nijenhuis manifold (M, π, N), it is known that the Poisson structures π and $N\pi$ are compatible [13]. Here we prove an O-operator version of the above result.

5.9. Proposition. Let (T, N, S) be an ON-structure on M over the Lie algebra \mathfrak{g}. Then T and $N \circ T$ are compatible O-operators.

Proof. For any $m, n \in M$, we have

$$[m, n]^{T+N \circ T} = [m, n]^T + [m, n]^{N \circ T} = [m, n]^T + [m, n]^T_S.$$

Hence

$$(T + N \circ T)([m, n]^{T+N \circ T})$$

$$= T([m, n]^T) + T([m, n]^T_S) + (N \circ T)([m, n]^T) + (N \circ T)([m, n]^T_S)$$

$$= T([m, n]^T) + T([Sm, n]^T + [m, Sn]^T - S[m, n]^T) + (N \circ T)([m, n]^T) + (N \circ T)([m, n]^T_S)$$

$$= T([m, n]^T) + T([Sm, n]^T + [m, Sn]^T) + (N \circ T)([m, n]^{N \circ T})$$

$$= [Tm, Tn] + ([TS(m), T(n)] + [T(m), TS(n)]) + [NT(m), NT(n)]$$

(as T and $N \circ T$ are O-operators)

$$= [(T + NT)(m), (T + NT)n] \text{ (as } TS = NT).$$
This shows that the sum $T + N \circ T$ is an O-operator on M over \mathfrak{g}. Hence the proof. \hfill \Box

In the next proposition, we construct an ON-structure from compatible O-operators.

5.10. **Proposition.** Let $T_1, T_2 : M \to \mathfrak{g}$ be two compatible O-operators on M over the Lie algebra \mathfrak{g}. If T_2 is invertible then $(T_2, N = T_1 \circ T_2^{-1}, S = T_2^{-1} \circ T_1)$ is an ON-structure, for $i = 1, 2$.

Proof. We know from Proposition 4.2 that $N = T_1 \circ T_2^{-1}$ is a Nijenhuis tensor on the Lie algebra \mathfrak{g}. We will now prove that $S = T_2^{-1} \circ T_1$ satisfies (13) to make the pair (N, S) a Nijenhuis structure on M over the Lie algebra \mathfrak{g}.

Since T_1 and T_2 are compatible O-operators, we have
\[
[T_1(m), T_2(n)] + [T_2(m), T_1(n)] = T_1(T_2(m) \cdot n - T_2(n) \cdot m) + T_2(T_1(m) \cdot n - T_1(n) \cdot m).
\]

Since $T_1 = T_2 \circ S$,
\[
[T_2S(m), T_2(n)] + [T_2(m), T_2S(n)] = T_2S(T_2(m) \cdot n - T_2(n) \cdot m) + T_2(T_2S(m) \cdot n - T_2S(n) \cdot m).
\]

On the other hand, T_2 is an O-operator implies that
\[
[T_2S(m), T_2(n)] + [T_2(m), T_2S(n)] = T_2(T_2S(m) \cdot n - T_2(n) \cdot m) + T_2S(m) \cdot n - T_2S(n) \cdot m).
\]

From (15) and (16) and using the fact that T_2 is invertible, we get
\[
S(T_2(m) \cdot n - T_2(n) \cdot m) = T_2(m) \cdot S(n) - T_2(n) \cdot S(m).
\]

By replacing n by $S(n)$,
\[
T_2(m) \cdot S^2(n) - S(T_2(m) \cdot S(n)) = -S(T_2S(n) \cdot m) + T_2S(n) \cdot S(m).
\]

As $T_1 = T_2 \circ S$ and T_2 are O-operators,
\[
T_2 \circ S([m, n]^{T_2 \circ S}) = [T_2S(m), T_2S(n)] = T_2([S(m), S(n)]^{T_2}).
\]

The invertibility of T_2 implies that $S([m, n]^{T_2 \circ S}) = [S(m), S(n)]^{T_2}$, or, equivalently,
\[
S(T_2S(m) \cdot n - T_2S(n) \cdot m) = T_2S(m) \cdot S(n) - T_2S(n) \cdot S(m).
\]

Finally, from (18) and (19), we get
\[
T_2(m) \cdot S^2(n) - S(T_2(m) \cdot S(n)) = T_2S(m) \cdot S(n) - S(T_2S(m) \cdot n).
\]

Substitute $x = T_2(m)$, using $T_2S = NT_2$ and the invertibility of T_2,
\[
x \cdot S^2(n) - S(x \cdot S(n)) = N(x) \cdot S(n) - S(N(x) \cdot n).
\]

Hence the identity (13) follows. Thus, the pair (N, S) is a Nijenhuis structure on M over \mathfrak{g}.

Next, observe that $N \circ T_2 = T_2 \circ S = T_1$. Moreover,
\[
[m, n]^{T_2 S} - [m, n]^{T_2 \circ S} = T_2(m) \cdot S(n) - T_2(n) \cdot S(m) - S(T_2(m) \cdot n - T_2(n) \cdot m) = 0 \text{ (by (17)).}
\]

Hence $(T_2, N = T_1 \circ T_2^{-1}, S = T_2^{-1} \circ T_1)$ is an ON-structure on M over \mathfrak{g}. \hfill \Box

Let (T, N, S) be an ON-structure on M over the Lie algebra \mathfrak{g}. For any $k \geq 0$, we define $T_k := T \circ S^k = N^k \circ T$. The next lemma is analogous to the similar result for Poisson-Nijenhuis structures [13].

5.11. **Lemma.** For all $k, l \geq 0$, we have
\[
T_k([m, n]^{T_{S^{k+l}}}) = [T_k(m), T_k(n)]_{N^l},
\]
\[
[m, n]^{T_{S^{k+l}}} = [m, n]^{T_{S^{k+l}}} = S^k([m, n]^{T_l}).
\]

5.12. **Theorem.** Let (T, N, S) be an ON-structure on M over the Lie algebra \mathfrak{g}. Then for all $k \geq 0$, the linear maps T_k are O-operators. Moreover, for all $k, l \geq 0$, the O-operators T_k and T_l are compatible.
Proof. We have from (20) and (21) that
\[T_k([m,n]^{Tk}) = T_k([m,n]^{Tk}) = [T_k(m), T_k(n)] \]
which shows that \(T_k \) is an \(\mathcal{O} \)-operator on \(M \) over \(g \). To prove the second part, we first observe that
\[[m,n]^{Tk+Tk+1} = [m,n]^{Tk} + [m,n]^{Tk+1} = [m,n]^{Tk} + [m,n]^{Tk}_{S^k} \] (by (21)). Hence
\[
(T_k + T_{k+1})([m,n]^{Tk+Tk+1}) \\
= T_k([m,n]^{Tk}) + T_k([m,n]^{Tk}_{S^k}) + T_{k+1}([m,n]^{Tk}) + T_{k+1}([m,n]^{Tk}_{S^k}) \\
= [T_k(m), T_k(n)] + [T_k([S](m), n)^{Tk} + [m, S^l(n)]^{Tk} - S^l([m,n]^{Tk}) + T_k \circ S^l([m,n]^{Tk}) + T_{k+1}([m,n]^{Tk}_{S^k}) \\
= [T_k(m), T_k(n)] + [T_{k+1}(m), T_k(n)] + [T_k(m), T_{k+1}(n)] + [T_{k+1}(m), T_{k+1}(n)] \\
= [(T_k + T_{k+1})(m), (T_k + T_{k+1})(n)].
\]
This shows that \(T_k + T_{k+1} \) is an \(\mathcal{O} \)-operator. Hence \(T_k \) and \(T_{k+1} \) are compatible. \(\square \)

We have mentioned earlier that classical r-matrices are Lie algebra analog of Poisson structures. Here we mention Lie algebra analog of Poisson-Nijenhuis structures and their relation with ON-structures.

5.13. Definition. Let \(g \) be a Lie algebra. A pair \((r, N)\) consisting of a classical r-matrix and a Nijenhuis tensor on \(g \) is called a PN-structure on \(g \) if they satisfy
\[
\triangleright \; N \circ r^2 = r^2 \circ N^*, \\
\triangleright \; [\alpha, \beta]_{N \circ r^2} = [\alpha, \beta]_{N^*}^r, \text{ for all } \alpha, \beta \in g^*.
\]

The next result generalizes Lemma 3.4 in the realm of Poisson-Nijenhuis structures.

5.14. Proposition. Let \((r, N)\) be a pair consisting of an element \(r \in \wedge^2 g \) and a linear map \(N \) on \(g \). Then \((r, N)\) is a PN-structure on \(g \) if and only if the triple \((r^2, N^*)\) is an ON structure on the coadjoint representation \(g^* \) over the Lie algebra \(g \).

Thus, by Theorem 5.8, Proposition 5.9 and Theorem 5.12, we obtain the following.

5.15. Corollary. Let \((r, N)\) be a PN-structure on a Lie algebra \(g \). Then \(r_N \in \wedge^2 g \) defined by \((r_N)^2 := N \circ r^2\) is a classical r-matrix. Moreover, the classical r-matrices \(r \) and \(r_N \) are compatible in the sense that their linear combinations are also classical r-matrices.

5.16. Corollary. Let \((r, N)\) be a PN-structure on a Lie algebra \(g \). Then for all \(k \geq 0 \), the elements \(r_k \in \wedge^2 g \) defined by \((r_k)^2 := N^k \circ r^2\) are classical r-matrices. Moreover, the classical r-matrices \(r_k \) and \(r_l \) are pairwise compatible.

6. Strong Maurer-Cartan equation on a twilled Lie algebra and ON-structures

In this section, we construct a twilled Lie algebra from an \(\mathcal{O} \)-operator. Then we associate an ON-structure to any solution of the strong Maurer-Cartan equation on that twilled Lie algebra.

Let \(g \) be a Lie algebra and \(a, b \subseteq g \) be two subspaces satisfying \(g = a \oplus b \).

6.1. Definition. A triple \((g, a, b)\) is called a twilled Lie algebra if \(a \) and \(b \) are Lie subalgebras of \(g \). We also denote a twilled Lie algebra by \(a \bowtie b \).

Let \((g, a, b)\) be a twilled Lie algebra. Then there are Lie algebra representations \(\bullet_1 : a \times b \rightarrow b \) and \(\bullet_2 : b \times a \rightarrow a \) given by the following decomposition
\[
[x, u] = x \bullet_1 u - u \bullet_2 x, \text{ for } x \in a, u \in b.
\]
Consider the semi-direct product Lie algebra associated to the action \(\bullet_2 \). Let \(\mu_2 \) denote the corresponding multiplication map.
Note that the graded vector space $C^*_{CE}(\mathfrak{g}, \mathfrak{g}) = \oplus_{n \geq 2} C_{CE}^{n+1}(\mathfrak{g}, \mathfrak{g}) = \oplus_{n \geq 0} \text{Hom}(\wedge^{n+1} \mathfrak{g}, \mathfrak{g})$ carries a graded Lie algebra structure with the Nijenhuis-Richardson bracket $\{P, Q\} = P \odot Q - (-1)^{|P||Q|} Q \odot P$, for $P \in C^{p+1}(\mathfrak{g}, \mathfrak{g})$, $Q \in C^{q+1}(\mathfrak{g}, \mathfrak{g})$, where $P \odot Q$ is given by

$$(P \odot Q)(x_1, \ldots, x_{p+q+1}) = \sum_{\tau \in S(h^{q+1}, p)} \text{sgn}(\tau) P(Q(x_{\tau(1)}, \ldots, x_{\tau(q+1)}), x_{\tau(q+2)}, \ldots, x_{\tau(p+q+1)}).$$

Consider the graded space $C^*_{CE}(\mathfrak{a}, \mathfrak{b}) = \oplus_{n \geq 0} C_{CE}^n(\mathfrak{a}, \mathfrak{b}) = \oplus_{n \geq 0} \text{Hom}(\wedge^n \mathfrak{a}, \mathfrak{b})$ with the Chevalley-Eilenberg differential $d_{CE} : C^n_{CE}(\mathfrak{a}, \mathfrak{b}) \rightarrow C^{n+1}_{CE}(\mathfrak{a}, \mathfrak{b})$ for the representation of the Lie algebra \mathfrak{a} on $(\mathfrak{b}, \bullet_1)$. This graded space also carries a graded Lie algebra structure via the derived bracket (see [24])

$$[P, Q]_{\mu_2} := (-1)^{|P|} \{[\mu_2, P], Q\}, \text{ for } P \in C^p_{CE}(\mathfrak{a}, \mathfrak{b}), \ Q \in C^q_{CE}(\mathfrak{a}, \mathfrak{b}). \quad (22)$$

This two structures are compatible in the sense that $(C^*_{CE}(\mathfrak{a}, \mathfrak{b}), d_{CE}, [\ , \]_{\mu_2})$ is a dgLa [24].

6.2. **Definition.** Let $\mathfrak{a} \bowtie \mathfrak{b}$ be a twilled Lie algebra. An element $\Omega \in C^1_{CE}(\mathfrak{a}, \mathfrak{b})$ is called a solution of the Maurer-Cartan equation if it satisfies

$$d_{CE} \Omega + \frac{1}{2} [\Omega, \Omega]_{\mu_2} = 0.$$

It is called a solution of the strong Maurer-Cartan equation if $d_{CE} \Omega = \frac{1}{2} [\Omega, \Omega]_{\mu_2} = 0$.

6.3. **Lemma.** Let $\mathfrak{a} \bowtie \mathfrak{b}$ be a twilled Lie algebra and $\Omega \in C^1_{CE}(\mathfrak{a}, \mathfrak{b})$. Then

(i) Ω is a solution of the Maurer-Cartan equation if and only if Ω satisfies

$$[\Omega(x), \Omega(y)] + x \bullet_1 \Omega(y) - y \bullet_1 \Omega(x) = \Omega(\Omega(x) \bullet_2 y - \Omega(y) \bullet_2 x) + \Omega([x, y]), \text{ for } x, y \in \mathfrak{a}. \quad (23)$$

(ii) Ω is a solution of the strong Maurer-Cartan equation if and only if Ω satisfies (23) and

$$\Omega([x, y]) = x \bullet_1 \Omega(y) - y \bullet_1 \Omega(x).$$

Proof. Note that

$$(d_{CE} \Omega)(x, y) = x \bullet_1 \Omega(y) - y \bullet_1 \Omega(x) - \Omega([x, y]).$$

From the definition of the bracket (22), it is easy to see that

$$[\Omega, \Omega]_{\mu_2}(x, y) = 2([\Omega(x), \Omega(y)] - \Omega(\Omega(x) \bullet_2 y) + \Omega(\Omega(y) \bullet_2 x)).$$

Hence the result follows from the definition of the (strong) Maurer-Cartan equation. \hfill \square

Next, let $T : M \rightarrow \mathfrak{g}$ be an \mathcal{O}-operator on M over the Lie algebra \mathfrak{g}. Consider the Lie algebra M^T. Then it has been shown in [22] that the map $\mathfrak{w} : M \times \mathfrak{g} \rightarrow \mathfrak{g}$ given by

$$m \mathfrak{w} x = [T(m), x] + T(x \bullet m), \text{ for } m \in M, x \in \mathfrak{g}$$

defines a representation of the Lie algebra M^T on the vector space \mathfrak{g}.

Consider the direct sum $\mathfrak{g} \oplus M^T$ with the bracket

$$[(x, m), (y, n)]^T = ([x, y] + m \mathfrak{w} y - n \mathfrak{w} x, x \bullet n - y \bullet m + [m, n]^T).$$

Hence by Proposition 6.3, we have the following.

6.4. **Theorem.** The vector space $\mathfrak{g} \oplus M^T$ with the above bracket $[\ , \]^T$ is a twilled Lie algebra (denoted by $\mathfrak{g} \bowtie M^T$). A linear map $\Omega : \mathfrak{g} \rightarrow M$ is a solution of the strong Maurer-Cartan equation on the twilled Lie algebra $\mathfrak{g} \bowtie M^T$ if and only if Ω satisfies

$$\Omega[x, y] = x \bullet \Omega(y) - y \bullet \Omega(x), \quad (24)$$

$$[\Omega(x), \Omega(y)]^T = \Omega(\Omega(x) \mathfrak{w} y - \Omega(y) \mathfrak{w} x), \text{ for } x, y \in \mathfrak{g}. \quad (25)$$
It follows from (25) that Ω is an O-operator on the module g over the Lie algebra MT. Thus, Ω induces a new Lie algebra structure on g, denoted by g^{Ω}, the corresponding Lie bracket $[,\,]^{\Omega}$ is given by

$$[x,y]^{\Omega} = \Omega(x) \triangleright y - \Omega(y) \triangleright x, \text{ for } x,y \in g.$$

This Lie algebra has a representation on M given by $x \triangleright m = [\Omega(x), m]^T + \Omega(m \triangleright x)$, for $x \in g$, $m \in M$. Therefore, we may define a new bracket on $g \oplus M$ by

$$[(x,m), (y,n)]^{\Omega} := (m \triangleright y - n \triangleright x + [x,y]^{\Omega}, x \triangleright n - y \triangleright m + [m,n]^T).$$

6.5. **Theorem.** Let $\Omega : g \to M$ be a solution of the strong Maurer-Cartan equation on the twilled Lie algebra $g \bowtie MT$. Then

(i) $(g \oplus M, [\, \,]^{\Omega})$ is a Lie algebra (we denote the corresponding twilled Lie algebra by $g^{\Omega} \bowtie MT$).

(ii) T is a solution of the strong Maurer-Cartan equation on the twilled Lie algebra $MT \bowtie g^{\Omega}$.

(iii) T is an O-operator on the module (M, \cdot^{Ω}) over the Lie algebra g^{Ω}.

Proof. (i) It follows from a direct verification and by using Theorem 6.4.

(ii) To prove that T is a solution of the strong Maurer-Cartan equation on the twilled Lie algebra $MT \bowtie g^{\Omega}$, by Theorem 6.4, one needs to verify that

$$T([m,n]^T) = m \triangleright T(n) - n \triangleright T(m) \text{ and } [Tm,Tn]^{\Omega} = T(T(m) \cdot^{\Omega} n - T(n) \cdot^{\Omega} m).$$

Observe that

$$T([m,n]^T) = [Tm,Tn] = [Tm,Tn] + T(T(n) \cdot m) - [Tn,Tm] - T(T(m) \cdot n)$$

$$= m \triangleright T(n) - n \triangleright T(m).$$

On the other hand,

$$[Tm,Tn]^{\Omega} = \Omega T(m) \triangleright T(n) - \Omega T(n) \triangleright T(m)$$

$$= [T\Omega T(m), T(n)] + T(T(n) \cdot^{\Omega} T(m)) - [T\Omega T(n), T(m)] - T(T(m) \cdot^{\Omega} T(n))$$

$$= [T\Omega T(m), T(n)] - [T\Omega T(n), T(m)] - T\Omega[T(m), T(n)] \quad (\text{by } (24))$$

$$= [T\Omega T(m), T(n)] - [T\Omega T(n), T(m)] - T\Omega(m \triangleright T(n) - n \triangleright T(m))$$

$$= T([T\Omega T(m), n]^T + \Omega(n \triangleright T(m)) - [T\Omega T(n), m]^T - \Omega(m \triangleright T(n)))$$

$$= T(T(m) \cdot^{\Omega} n - T(n) \cdot^{\Omega} m).$$

(iii) By a direct calculation, one can show that

$$T(T(m) \cdot^{\Omega} n - T(n) \cdot^{\Omega} m) = T(T\Omega T(m) \cdot n - T(n) \cdot T\Omega T(m)) - T(T(n) \cdot m + T(m) \cdot T\Omega T(n) - T(T(m) \cdot T\Omega T(n))).$$

Hence

$$T(T(m) \cdot^{\Omega} n - T(n) \cdot^{\Omega} m) = [T\Omega T(m), T(n)] + T(T(n) \cdot^{\Omega} T(m)) - [T\Omega T(n), T(m)] - T(T(m) \cdot^{\Omega} T(n))$$

$$= T\Omega T(m) \triangleright T(n) - T\Omega T(n) \triangleright T(m) = [T(m), T(n)]^{\Omega}. $$

This proves that T is an O-operator on the module (M, \cdot^{Ω}) over g^{Ω}.

We are now in a position to prove our main result of this section.

6.6. **Theorem.** Let $T : M \to g$ be an O-operator on a module M over the Lie algebra g. If $\Omega : g \to M$ is a solution of the strong Maurer-Cartan equation on the twilled Lie algebra $g \bowtie MT$ then $(T, N = T \circ \Omega, S = \Omega \circ T)$ is an ON-structure on the module M over the Lie algebra g.

\[\square \]
Proof. For any \(x, y \in \mathfrak{g} \), we have
\[
[T\Omega(x), T\Omega(y)] = T[(\Omega x, \Omega y)^T] = T\Omega(\Omega(x) \triangleright y - \Omega(y) \triangleright x) \quad \text{(by (25))}
\]
\[
= T\Omega([T\Omega(x), y] + T(y \cdot \Omega(x)) + [x, T\Omega(y)] - T(x \cdot \Omega(y)))
\]
\[
= T\Omega([T\Omega(x), y] + [x, T\Omega(y)] - T\Omega[x, y]) \quad \text{(by (24))}.
\]
This shows that \(N = T\Omega \) is a Nijenhuis tensor on \(\mathfrak{g} \). We will now show that \((N, S)\) is a Nijenhuis structure on the module \(M \). First observe that
\[
\Omega T(T(m) \cdot n - T(n) \cdot m) = \Omega[Tm, Tn] = T(m) \cdot \Omega Tn - T(n) \cdot \Omega T(m) \quad \text{(by (24)).} \quad (26)
\]
On the other hand, by taking \(y = T(n) \) in (25), we get
\[
[\Omega x, \Omega T(n)]^T = \Omega([T\Omega(x), T(n)] + T(T(n) \cdot \Omega(x)) - [T\Omega T(n), x] - T(x \cdot \Omega T(n))],
\]
or,
\[
T\Omega(x) \cdot \Omega T(n) - T\Omega T(n) \cdot \Omega(x) = T\Omega(x) \cdot \Omega T(n) - T(n) \cdot \Omega T(x) + \Omega T(T(n) \cdot \Omega(x)) - T\Omega T(n) \cdot \Omega(x) + x \cdot \Omega T\Omega T(n) - \Omega T(x \cdot \Omega T(n)).
\]
By (26) and (27), we get
\[
T\Omega(x) \cdot \Omega T(n) - \Omega T(T\Omega(x) \cdot n) = x \cdot \Omega T\Omega T(n) - \Omega T(x \cdot \Omega T(n)).
\]
This is just equation (13) for \(N = T\Omega \) and \(S = \Omega T \). Therefore \((N, S)\) is a Nijenhuis structure on the \(\mathfrak{g}\)-module \(M \).

We also have \(T \circ S = N \circ T = T \circ \Omega \circ T \). Finally, a direct calculation shows that
\[
[m, n]_S - [m, n]_T \circ S = T(m) \cdot S(n) - T(n) \cdot S(m) - S(T(m) \cdot n - T(n) \cdot m)
\]
\[
= T(m) \cdot \Omega T(n) - T(n) \cdot \Omega T(m) - \Omega T(T(m) \cdot n - T(n) \cdot m) = 0 \quad \text{(by (26)).}
\]
Hence \((T, N, S)\) is a Nijenhuis structure on \(M \) over \(\mathfrak{g} \).

Thus, in view of Theorem 5.8, Proposition 5.9 and Theorem 5.12, we get the following.

6.7. Corollary. Let \(T \) be an \(\mathcal{O} \)-operator on \(M \) over the Lie algebra \(\mathfrak{g} \). If \(\Omega : \mathfrak{g} \to M \) is a solution of the strong Maurer-Cartan equation on the twilled Lie algebra \(\mathfrak{g} \bowtie M^T \), then for all \(k \geq 0 \), \(T_k := (T \circ \Omega)^k \circ T \) are \(\mathcal{O} \)-operators on \(M \) over \(\mathfrak{g} \) and they are pairwise compatible.

In the above theorem, we show that given an \(\mathcal{O} \)-operator \(T \), a solution \(\Omega \) of the strong Maurer-Cartan equation on the twilled Lie algebra \(\mathfrak{g} \bowtie M^T \) leads to an \(\mathcal{O}\mathcal{N} \)-structure \((T, N = T \circ \Omega, S = \Omega \circ T)\) on \(M \). The converse of the above theorem holds true provided \(T \) is invertible.

6.8. Theorem. Let \((T, N, S)\) be an \(\mathcal{O}\mathcal{N} \)-structure on \(M \) over the Lie algebra \(\mathfrak{g} \), in which \(T \) is invertible. Then \(\Omega := T^{-1} \circ N = S \circ T^{-1} : \mathfrak{g} \to M \) is a solution of the strong Maurer-Cartan equation on the twilled Lie algebra \(\mathfrak{g} \bowtie M^T \).

Proof. Since \(N = T \circ \Omega \) is a Nijenhuis tensor,
\[
[T\Omega(x), T\Omega(y)] = T\Omega([T\Omega(x), y] + [x, T\Omega(y)] - T\Omega[x, y]).
\]
On the other hand,
\[
\Omega(x) \triangleright y - \Omega(y) \triangleright x = [T\Omega(x), y] + T(y \cdot \Omega(x)) - [T\Omega(y), x] - T(x \cdot \Omega(y))
\]
\[
= [T\Omega(x), y] + [x, T\Omega(y)] - T\Omega[x, y].
\]
Since \(T \) is an \(\mathcal{O} \)-operator we have
\[
T([\Omega(x), \Omega(y)]^T) = [T\Omega(x), T\Omega(y)] = T\Omega(\Omega(x) \triangleright y - \Omega(y) \triangleright x).
\]
Hence the equation (25) follows as \(T \) is invertible.
On the other hand, from \([m, n]_S^T = [m, n]^{TS}\) with \(S = \Omega \circ T\), we deduce that
\[
\Omega T(T(m) \bullet n - T(n) \bullet m) = T(m) \bullet \Omega T(n) - T(n) \bullet \Omega T(m).
\]
In other words,
\[
\Omega[T(m), T(n)] = T(m) \bullet \Omega T(n) - T(n) \bullet \Omega T(m).
\]
Hence the equation (24) follows by taking \(T(m) = x\) and \(T(n) = y\). Therefore, \(\Omega\) is a solution of the strong Maurer-Cartan equation by Theorem 6.4.

\[\square\]

7. Generalized complex structures

In this section, we introduce generalized complex structures on a module over a Lie algebra. When one consider the coadjoint module \(\mathfrak{g}^\ast\) of a Lie algebra \(\mathfrak{g}\), one get generalized complex structures on \(\mathfrak{g}\).

Let \(\mathfrak{g}\) be a Lie algebra and \(M\) be a \(\mathfrak{g}\)-module. Consider the semi-direct product Lie algebra \(\mathfrak{g} \ltimes M\) with the bracket given in (1). Let \(J : \mathfrak{g} \oplus M \to \mathfrak{g} \oplus M\) be a linear map. Then \(J\) must be of the form
\[
J = \begin{pmatrix} N & T \\ \sigma & -S \end{pmatrix}, \tag{28}
\]
for some linear maps \(N : \text{End}(\mathfrak{g}), S \in \text{End}(M)\), \(T : M \to \mathfrak{g}\) and \(\sigma : \mathfrak{g} \to M\). These linear maps are called structure components of \(J\). The reason behind considering the linear map as \(-S\) (instead of \(S\)) will be clear from Proposition 7.11.

7.1. Definition. A generalized complex structure on \(M\) over the Lie algebra \(\mathfrak{g}\) is a linear map \(J : \mathfrak{g} \oplus M \to \mathfrak{g} \oplus M\) satisfying the following conditions
(i) \(J\) is almost complex: \(J^2 = \text{id}\,
(ii) integrability condition: \([Ju, Jv] - [u, v] - J([Ju, v] + [u, Jv]) = 0\), for \(u, v \in \mathfrak{g} \oplus M\).

In [6] Crainic gives a characterization of generalized complex manifolds. A similar theorem in our context reads as follows.

7.2. Theorem. A linear map \(J : \mathfrak{g} \oplus M \to \mathfrak{g} \oplus M\) of the form (28) is a generalized complex structure on \(M\) over the Lie algebra \(\mathfrak{g}\) if and only if its structure components satisfy the following identities:
\[
N T = T S, \tag{29}
\]
\[
N^2 + T \sigma = - \text{id}, \tag{30}
\]
\[
S \sigma = \sigma N, \tag{31}
\]
\[
S^2 + \sigma T = - \text{id}, \tag{32}
\]
\[
T([m, n]^\mathfrak{T}) = [T m, T n], \tag{33}
\]
\[
S([m, n]^\mathfrak{T}) = T m \bullet S n - T n \bullet S m, \tag{34}
\]
\[
[N x, T m] - N [x, T m] = T(N x \bullet m - x \bullet S m), \tag{35}
\]
\[
\sigma [T m, x] - T m \bullet \sigma x = x \bullet m + N x \bullet S m - S(N x \bullet m - x \bullet S m), \tag{36}
\]
\[
[N x, N y] - [x, y] - N([N x, y] + [x, N y]) = T(x \bullet \sigma y - y \bullet \sigma x), \tag{37}
\]
\[
N x \bullet \sigma y - N y \bullet \sigma x - \sigma([N x, y] + [x, N y]) = - S(x \bullet \sigma y - y \bullet \sigma x). \tag{38}
\]

Proof. The condition \(J^2 = -\text{id}\) is same as
\[
\begin{pmatrix} N^2(x) + N T(x) + T \sigma(x) - TS(m) \\ \sigma N(x) + \sigma T(m) - S \sigma(x) + S^2(m) \end{pmatrix} = \begin{pmatrix} -x \\ -m \end{pmatrix}.
\]
This is equivalent to the identities (29)-(32). Next consider the integrability condition of \(J\). For \(u = m, v = n \in M\), we get from the integrability criteria that (33) and (34) holds. For \(u = x \in \mathfrak{g}\) and \(v = m \in M\), the integrability is equivalent to (35) and (36). Finally, for \(u = x, v = y \in \mathfrak{g}\), we get the identities (37) and (38). \[\square\]
7.3. **Remark.** Note that the condition (33) implies that the map $T: M \to \mathfrak{g}$ is an \mathcal{O}-operator on M over \mathfrak{g}. The condition (34) is equivalent to the fact that
\[
\text{Gr}((T, S)) = \{(T(m), S(m))| m \in M\} \subset \mathfrak{g} \oplus M
\]
is a subalgebra of the semi-direct product $\mathfrak{g} \ltimes M$.

The above Theorem ensures the following examples of generalized complex structures on modules over Lie algebras.

7.4. **Example.** (Opposite g.c.s.) Let $J = \begin{pmatrix} N & T \\ \sigma & -S \end{pmatrix}$ be a generalized complex structure on M over \mathfrak{g}. Then $\mathcal{J} = \begin{pmatrix} N & -T \\ -\sigma & -S \end{pmatrix}$ is also a generalized complex structure called the opposite of J.

7.5. **Example.** Let $T: M \to \mathfrak{g}$ be an invertible \mathcal{O}-operator on M over \mathfrak{g}. Then $J = \begin{pmatrix} 0 & T \\ -T^{-1} & 0 \end{pmatrix}$ is a generalized complex structure on M over \mathfrak{g}.

7.6. **Definition.** A complex structure on a Lie algebra \mathfrak{g} is a linear map $I: \mathfrak{g} \to \mathfrak{g}$ satisfying $I^2 = -\text{id}$ and
\[
[x, y] - [x, y] - I([x, y] + [x, Iy]) = 0, \text{ for } x, y \in \mathfrak{g}.
\]

7.7. **Definition.** Let \mathfrak{g} be a Lie algebra and M be a \mathfrak{g}-module. A complex structure on M over the Lie algebra \mathfrak{g} is a pair (I, I_M) of linear maps $I \in \text{End}(\mathfrak{g})$ and $I_M \in \text{End}(M)$ satisfying the followings
\begin{itemize}
 \item I is a complex structure on \mathfrak{g},
 \item $I_M^2 = -\text{id}$ and
 \[
 I(x) \bullet I_M(m) = x \bullet m - I_M(I(x) \bullet m + x \bullet I_M(m)) = 0, \text{ for } x \in \mathfrak{g}, m \in M.
 \] (39)
\end{itemize}

7.8. **Proposition.** A pair (I, I_M) is a complex structure on M over the Lie algebra \mathfrak{g} if and only if $I \oplus I_M: \mathfrak{g} \oplus M \to \mathfrak{g} \oplus M$ is a complex structure on the semi-direct Lie algebra $\mathfrak{g} \ltimes M$.

Proof. The linear map $I \oplus I_M$ is a complex structure on the semi-direct product $\mathfrak{g} \ltimes M$ if and only if $(I \oplus I_M)^2 = -\text{id}$ (equivalently, $I^2 = -\text{id}$ and $I_M^2 = -\text{id}$) and
\[
[(Ix, I_M m), (Iy, I_M m)] - [(x, m), (y, n)] - (I \oplus I_M)((Ix, I_M m), (y, n)) + [(x, m), (Iy, I_M n)]) = 0,
\]
or, equivalently,
\[
(Ix, I_M m) - [x, y] - I([Ix, I_M m] + [x, Iy]), Ix \bullet I_M m - Iy \bullet I_M n - (x \bullet n - y \bullet m)
- I_M(Ix \bullet n - y \bullet I_M m + x \bullet I_M n - Iy \bullet m)) = 0.
\]
The last identity is equivalent to the fact that I is a complex structure on \mathfrak{g} and the identity (39) holds. In other words (I, I_M) is a complex structure on M over the Lie algebra \mathfrak{g}.

7.9. **Example.** Let (I, I_M) be a complex structure on M over the Lie algebra \mathfrak{g}. Then $J = \begin{pmatrix} I & 0 \\ 0 & I_M \end{pmatrix}$ is a generalized complex structure on M over \mathfrak{g}. Note that here $S = -I_M$.

Next we consider generalized complex structures on Lie algebras and show that they are related to generalized complex structures on coadjoint modules. Let \mathfrak{g} be a Lie algebra. Consider the coadjoint representation \mathfrak{g}^\ast and the corresponding semi-direct Lie algebra $\mathfrak{g} \ltimes \mathfrak{g}^\ast$ with the bracket
\[
[(x, \alpha), (y, \beta)] = ([x, y], \text{ad}_x^\ast \beta - \text{ad}_y^\ast \alpha).
\]
The direct sum $\mathfrak{g} \oplus \mathfrak{g}^\ast$ also carries a non-degenerate inner product given by $\langle (x, \alpha), (y, \beta) \rangle = \frac{1}{2}(\alpha(y) - \beta(x))$.

7.10. **Definition.** A generalized complex structure on \mathfrak{g} consists of a linear map $J: \mathfrak{g} \oplus \mathfrak{g}^\ast \to \mathfrak{g} \oplus \mathfrak{g}^\ast$ satisfying
(0) orthogonality: \(\langle J u, J v \rangle = \langle u, v \rangle \),
(i) almost complex: \(J^2 = -\text{id} \),
(ii) integrability: \([J u, J v] - [u, v] - J([J u, v] + [u, J v]) = 0 \), for \(u, v \in \mathfrak{g} \oplus \mathfrak{g}^* \).

Note that the orthogonality condition (0) implies that \(J \) must be of the form
\[
J = \begin{pmatrix} N & r^z \\ \sigma & -N^* \end{pmatrix},
\]
for some \(N \in \text{End}(\mathfrak{g}) \), \(r \in \wedge^2 \mathfrak{g} \) and \(\sigma \in \wedge^2 \mathfrak{g}^* \). However the conditions (i) and (ii) of the definition imposes some relations between structure components of \(J \) which are listed in [6].

Thus, a generalized complex structure on \(\mathfrak{g} \) can also be considered as a triple \((N, r, \sigma)\) such that the linear map \(J \) of the form (40) is almost complex and satisfies the integrability condition. If a Lie algebra \(\mathfrak{g} \) admits a generalized complex structure then \(\mathfrak{g} \) must be even dimensional. See [9] for the argument.

7.11. Proposition. Let \(\mathfrak{g} \) be a Lie algebra. A triple \((N, r, \sigma)\) is a generalized complex structure on \(\mathfrak{g} \) if and only if the linear map \(J = \begin{pmatrix} N & r^z \\ \sigma & -N^* \end{pmatrix} \) is a generalized complex structure on the coadjoint module \(\mathfrak{g}^* \) over the Lie algebra \(\mathfrak{g} \).

8. Holomorphic r-matrices and holomorphic O-operators

Let \(\mathfrak{g} \) be a Lie algebra and \(J : \mathfrak{g} \to \mathfrak{g} \) be a complex structure on \(\mathfrak{g} \). Consider the complexified vector space \(\mathfrak{g}_C = \mathfrak{g} \otimes \mathbb{C} \). The map \(J \) extends to \(\mathfrak{g}_C \) linearly by \(J(x \otimes c) = J(x) \otimes c \), for \(x \in \mathfrak{g}, c \in \mathbb{C} \). Note that \(J \) satisfies \(J^2 = -\text{id} \). Hence it has eigen values \(\pm i \). The corresponding eigen spaces are
\[
(\pm i)-\text{eigen space} = \mathfrak{g}_C^{(1,0)} = \{ v \in \mathfrak{g}_C \mid J(v) = \pm iv \} = \{ x \otimes 1 - Jx \otimes i \mid x \in \mathfrak{g} \},
\]
\[
(\mp i)-\text{eigen space} = \mathfrak{g}_C^{(0,1)} = \{ v \in \mathfrak{g}_C \mid J(v) = \mp iv \} = \{ x \otimes 1 + Jx \otimes i \mid x \in \mathfrak{g} \}.
\]

Note that the Lie bracket on \(\mathfrak{g} \) induce induce Lie brackets on both \(\mathfrak{g}_C^{(1,0)} \) and \(\mathfrak{g}_C^{(0,1)} \).

8.1. Definition. A holomorphic r-matrix on a complex Lie algebra \((\mathfrak{g}, J)\) is a holomorphic bisection \(r \) (i.e. \(r \in \wedge^2 \mathfrak{g}^{(1,0)} \)) such that \(\overline{\partial} r = 0 \) satisfying \([r, r] = 0 \).

Since \(\wedge^2 \mathfrak{g}_C = \wedge^2 \mathfrak{g} + i \wedge^2 \mathfrak{g} \), we may write any element \(r \in \wedge^2 \mathfrak{g}_C \) by \(r = r_R + i r_I \). Here \(r_R \) and \(r_I \) are bisections in the real Lie algebra \(\mathfrak{g} \) by forgetting the complex structure. Then it has been shown in [15] that \(r \in \wedge^2 \mathfrak{g}^{(1,0)} \) if and only if \(r^*_R = r^*_I \circ J^* \). Moreover, the proves the following.

8.2. Theorem. [15, Theorem 2.7] Let \((\mathfrak{g}, J)\) be a complex Lie algebra. Then the followings are equivalent:
(i) \(r = r_R + i r_I \in \wedge^2 \mathfrak{g}^{(1,0)} \) is a holomorphic r-matrix,
(ii) \((r_I, J) \) is a PN-structure on \(\mathfrak{g} \) and \(r^*_R = r^*_I \circ J^* \),
(iii) the endomorphism \(J = \begin{pmatrix} J & r^*_I \\ 0 & -J^* \end{pmatrix} \) is a generalized complex structure on \(\mathfrak{g} \) and \(r^*_R = r^*_I \circ J^* \).

The above characterizations of holomorphic r-matrices allows us to introduce holomorphic O-operators.

Let \((\mathfrak{g}, J)\) be a complex Lie algebra and \((M, J_M)\) be a representation over it.

8.3. Definition. A holomorphic O-operator on \(M \) over the complex Lie algebra \((\mathfrak{g}, J)\) consists of a pair of linear maps \((T_R, T_I) : M \to \mathfrak{g} \) satisfying the properties that \((T_I, J, J_M)\) is an O\(\mathcal{N}\)-structure on \(M \) over the Lie algebra \(\mathfrak{g} \) and \(T_R = T_I \circ J_M \).

8.4. Remark. It follows from the above definition that both \(T_R \) and \(T_I \) are O-operators in real sense and they are related by \(T_R = T_I \circ J_M = J \circ T_I \).

Finally, by Theorem 8.2, we have following.

8.5. Proposition. Let \((\mathfrak{g}, J)\) be a complex Lie algebra. Then \(r = r_R + i r_I \) is a holomorphic r-matrix if and only if \((r^*_R, r^*_I)\) is a holomorphic O-operator on \(\mathfrak{g}^* \) over the complex Lie algebra \((\mathfrak{g}, J)\).
Acknowledgements. The research is supported by the fellowship of Indian Institute of Technology (IIT) Kanpur. The author thanks the Institute for support.

REFERENCES

[1] M. Aguiar, Pre-Poisson algebras, *Lett. Math. Phys.* 54 (2000), no. 4, 263-277.
[2] C. Bai, A unified algebraic approach to the classical Yang-Baxter equation, *J. Phys. A* 40 (2007), no. 36, 11073-11082.
[3] C. Bai, L. Guo and X. Ni, Generalizations of the classical Yang-Baxter equation and \mathcal{O}-operators, *J. Math. Phys.* 52 (2011) 063515.
[4] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, *Pacific J. Math.* 10 (1960), 731-742.
[5] A. Connes and D. Kreimer, Renormalization in quatum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, *Comm. Math. Phys.* 210 (2000), no. 1, 249-273.
[6] M. Crainic, Generalized complex structures and Lie brackets, *Bull. Braz. Math. Soc. (N.S.)* 42 (2011), no. 4, 559-578.
[7] A. Das, Gauge transformations of Jacobi structures and contact groupoids, *Math. Phys. Anal. Geom.* 22 (2019), no. 2, Art. 11, 24 pp.
[8] A. Das, Deformations of associative Rota-Baxter operators, arXiv preprint, arXiv:1909.08320, 2019.
[9] M. Gualtieri, Generalized complex geometry, Oxford University D.Phil. thesis, 107 pages, arXiv:math/0401221 (math).
[10] L. Guo and W. Keigher, Baxter algebras and shuffle products, *Adv. Math.* 150 (2000) 117-149.
[11] L. Guo, An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, 4. *International Press, Somerville, MA; Higher Education Press, Beijing*, 2012.
[12] N. Hitchin, Generalized Calabi-Yau manifolds, *Q. J. Math.* 54 (2003), no. 3, 281-308.
[13] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, *Ann. Inst. H. Poincaré Phys. Théor.* 53 (1990), no. 1, 35-81.
[14] B. A. Kupershmidt, What a classical r-matrix really is, *J. Nonlinear Math. Phys.* 6 (1999), no. 4, 448-488.
[15] C. Laurent-Gengoux, M. Stiénon and P. Xu, Holomorphic Poisson manifolds and holomorphic Lie algebroids, *Int. Math. Res. Not. IMRN* 2008, Art. ID rnn 088, 46 pp.
[16] J. Liu, C. Bai and Y. Sheng, Compatible \mathcal{O}-operators on bimodules over associative algebras, *J. Algebra* 532 (2019), 80-118.
[17] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno, S 19, Univ. degli studi di Milano, 1984.
[18] G.-C. Rota, Baxter algebras and combinatorial identit ies, I, II, *Bull. Amer. Math. Soc.* 75 (1969), 325-329; *ibid.* 75 (1969) 330-334.
[19] K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators, *Lett. Math. Phys.* 85 (2008), no. 2-3, 91-109.
[20] J. E. Marsden and T. Ratiu, Reduction of Poisson manifolds, *Lett. Math. Phys.* 11 (1986), no. 2, 161-169.
[21] P. Ševera and A. Weinstein, Poisson geometry with a 3-form background, *Progr. Theoret. Phys. Suppl.* No. 144 (2001), 145-154.
[22] R. Tang, C. Bai, L. Guo and Y. Sheng, Deformations and their controlling cohomologies of \mathcal{O}-operators, *Comm. Math. Phys.* 368 (2019), no. 2, 665-700.
[23] I. Vaisman, Complementary 2-forms of Poisson structures, *Compositio Math.* 101 (1996), no. 1, 55-75.
[24] Th. Voronov, Higher derived brackets and homotopy algebras, *J. Pure Appl. Algebra* 202 (2005), no. 1-3, 133-153,