Effect of intravenous fluid warming devices on intraoperative core temperature during maintenance fluid therapy: a prospective randomized controlled trial

Jeong Wook Park¹,², Ki Tae Jung¹,³, Bo Hyun Jang¹,², Sang Hun Kim¹,³

¹Department of Anesthesiology and Pain Medicine, Chosun University Hospital, ²Department of Medicine, Graduate School of Chosun University, ³Department of Anesthesiology and Pain Medicine, Chosun University, School of Medicine, Gwangju, Korea

Background: We investigated the effects of intravenous fluid warmers on intraoperative core temperatures at low flow rates during the maintenance fluid therapy. Methods: We conducted a prospective, non-blinded, randomized controlled trial in 99 patients, scheduled for elective spinal fusion surgery with more than 3 hours of general anesthesia. They were randomly distributed into groups using Mega Acer Kit (group M: n=30), Ranger (group R: n=32), or ThermoSens (group T: n=32). The infused flow rate of the fluid was determined as one-third of the preoperative fluid deficit (4–2–1 rules) during fasting times, and the third space loss during surgery (2 mL/kg), per hour. The primary outcome was intraoperative final and lowest esophageal temperature (Teso_Final, lowest Teso). Results: Teso_Final, lowest Teso, and intraoperative Teso were not significantly different between groups (p=0.512, and p=0.393, p=0.066, respectively). However, the temperature change from baseline Teso to Teso_Final was significantly different between the groups (p=0.044), which of group M were significantly lower than group T (p=0.033). After adjustment with baseline Teso, the differences of least squares means showed the significant differences between groups M and T at 2.5 hours (p=0.020) and 3 hours (p=0.006). Conclusions: The Mega Acer Kit, Ranger, and ThermoSens have a similar effect on intraoperative core temperatures with the low flow rates, but The Mega Acer Kit is more effective at controlling core temperature than the ThermoSens if the fluid infusion time is over 2.5 hours.

Keywords: Body temperature changes; Heating/instrumentation; Hypothermia; Intravenous infusions; Maintenance flow rate

INTRODUCTION

Due to the inhibition of normal thermoregulation, intraoperative hypothermia commonly develops within the first 40 minutes of anesthesia [1]. It may also lead to delayed recovery and postoperative complications such as surgical wound infections, coagulopathy, and cardiac events [2]. It has been previously reported that patients with postoperative hypothermia have a four-fold increase in mortality as well as a two-fold rise in complication rates compared to normothermic patients [3]. Therefore, it is important to monitor and maintain the intraoperative core temperature. It is also recommended to warm intravenous fluids, with infusion volumes greater than 500 mL, to 37°C using fluid
warming devices to prevent or treat inadvertent perioperative hypothermia in adults [1,4,5].

A number of fluid-warming devices have been used to prevent or treat hypothermia. The effectiveness of these devices has been investigated for rapid infusions of large volumes in patients when severe or moderate perioperative hypothermia was expected or developed. The devices were found to be helpful in maintaining body temperature, while reducing hypothermia-related morbidity and complications [3,6-8].

Unfortunately, patients may still develop perioperative hypothermia after intravenous maintenance fluid therapy with low to moderate flow rates, which can be prevented by warming the intravenous fluid during infusion [9]. However, these fluid warmers are generally not used in cases requiring low to moderate flow rates, and there are very few relevant studies [10,11].

In our hospital, the Mega Acer Kit, the 3M Ranger Blood/Fluid Warming System, and the ThermoSens are commonly applied for the prevention and treatment of hypothermia. The Mega Acer Kit has a unique heating mechanism, distinct from that of ThermoSens and Ranger. Specifically, the Mega Acer Kit is made up of a heated and humidified circuit, regulating the fluid warming function with a convective warming system that can warm the fluid directly using heated convective air currents [12,13]. In contrast, ThermoSens and Ranger employ a dry heat technology. While the ThermoSens uses plastic cassettes in contact with a heating plate [10,14], the Ranger uses a flat plastic sheet in contact with a counter-current metal heating plate [15].

Some authors, in previous experimental studies, have suggested that these intravenous fluid warmers achieve optimal fluid warming performance at a device-specific flow rate. This optimal performance is achieved at a low to moderate flow rate (<860 mL/h) using the Mega Acer Kit, and at a high flow rate (>1,140 mL/h) using the Ranger as well as the ThermoSens with shorter tubing [16,17]. Therefore, we hypothesized that the Mega Acer Kit would have a more effective fluid warming performance with low flow rates, resulting in smaller drops in the intraoperative core temperature and the lower core temperature (final as well as lowest), compared to the other devices in this clinical study.

Overall, we investigated whether these fluid warmers were effective at reducing the loss of core temperature and the incidence of hypothermia (<36.0°C) during low flow rate intravenous maintenance fluid therapy for the treatment of preoperative and intraoperative fluid deficits. Moreover, we also assessed whether the fluid warming performance of each device was adequate at these flow rates.

MATERIALS AND METHODS

This prospective, randomized, controlled and non-blind trial was approved by the Institutional Review Board of Chosun University Hospital Korea (date of first registration: 28/03/2016, registration number: CHOSUN 2016-02-003-001) and was registered at the Clinical Trial Registry of Korea (CRIS: https://cris.nih.go.kr/, date of first registration: 01/07/2016, registration number: KCT0001957).

Written informed consent was obtained from each participant and a legal surrogate. This study was conducted in accordance with the tenets of the Declaration of Helsinki, 1964 and all subsequent revisions.

The study included patients who were scheduled to undergo elective spinal fusion surgery with at least 3 h of general anesthesia at our institution, with the American Society of Anesthesiologists (ASA) Physical Status classification I or II. The patients identified as suitable for this study were asked to participate in this trial, which took place from June 2016 to September 2017. Patients with a preoperative body temperature abnormality (below 36°C or above 38°C), thyroid disease, diabetes, hypertension, brain tumors, coagulopathy, and emergent situations were excluded.

Randomization and masking

Ninety nine patients were assigned sequential numbers in order of enrollment and were randomly distributed into three groups to receive intravenous warming fluid through either the Mega Acer Kit (Ace Medical, Seoul, Korea) without humidification (Group M), the 3M Ranger Blood/Fluid Warming System (Ranger: Arizant Healthcare Inc., MN, USA) with a standard flow disposable set (Group R), or the ThermoSens Warming Unit (ThermoSens: Sewoon Medical Company, Seoul, Korea) with a sterile single use blood & fluid warmer set (Group T). Assignments were made through a computer-generated random number table, prepared prior to start of the study, with the random permuted block method (1:1:1 allocation ratio and a block size of 3). Although
patients were blinded to the study devices, the investigators were not.

Procedures
Patients were transported to the operating room following premedication with intramuscular midazolam (0.05 mg/kg). Prior to anesthesia induction, standard patient monitoring devices were used to obtain electrocardiograms, non-invasive blood pressure, end-tidal partial pressure of carbon dioxide, and peripheral oxygen saturation. Tympanic membrane temperature (T_{tym}) was then measured using ThermoScan (IRT4020: Braun GmbH, Kronberg, Germany).

The distal esophageal temperature (T_{eso}) was measured using an esophageal stethoscope with a temperature sensor (DeRoyal Industries, Inc., Powell, USA) after intravenous anesthesia induction with propofol, remifentanil, and Rocuronium. All patients received the mechanical ventilation via the Mega Acer Kit without humidification. While we did not control the intraoperative management of anesthetic induction-related hypotension (above 20% decrease or 90 mmHg of baseline systolic blood pressure), we did allow for fluid loading less than 0.5 mL/kg and drug therapy with phenylephrine (100 µg) or ephedrine (5 mg), repeated as necessary before operating each device. The patient’s fluid line was then switched with the prepared fluid line attached to each study device. The infused flow rate of fluid (mL/h) of each device was determined as one-third of the preoperative fluid deficit during fasting times (calculated with “4-2-1” formula based on weight and fasting time) and 2 mL/kg (replacement of fluid deficit due to third space loss during surgery as anticipated with minimal to moderate tissue trauma), per hour [9].

Intravenous fluid warmer setting
In order to calibrate the devices, each was set to a warming temperature of 41°C and preheated for 10 minutes for Group M, 5 minutes for Group R and with no preheating for Group T. The infusion set was primed with normal saline hung at a height of 1 m from the warming device and attached to a roller pump (TE-171, Terumo Corp., Tokyo, Japan) [9]. The outlet fluid temperature (T_{out}) was measured at an outlet point, which was at 76 cm from each device [9]. The distance of the intravenous line from each device to the patients was 131 cm, and the warming fluid was delivered to the patients through this intravenous line exposed to ambient room temperature (Fig. 1) [16]. Two PT 100 temperature probes, as per IEC 751 standard [response time: t_0.63=32 s (Vair=2 m/s), accuracy: ±0.4% of reading±0.3°C: KRGA-50, Kimo Instruments, Edenbridge, UK], were connected to a Kistock Datalogger (KTH350: Kimo Instruments, Edenbridge, UK). The probes were inserted at the inlet and outlet points of each fluid warming device.

Data collection
The fluid temperatures at the inlet and outlet points of each fluid warmer (T_{pin}, T_{pout}), distal esophageal and tympanic membrane temperatures (T_{eso} and T_{tym}), and room temperature (T_r) were recorded using the Kistock Datalogger before and immediately after anesthesia induction (baseline), and then at 30-min intervals for 3 h of device operation.

The age, sex, ASA physical status, height, weight, body mass index (BMI), urine output, estimated blood loss (EBL),
and infusion rates of intravenous fluid were also noted. If a patients’ blood loss exceeded the maximal allowable blood loss [body weight (kg) × average blood volume (75 mL/kg for men or 65 mL/kg for women) × (initial hemoglobin (g/dL) - 8.0) of hemoglobin (g/dL) / initial hemoglobin (g/dL)] or if they demonstrated hemodynamic instability requiring additional fluid infusion and blood transfusion, they were excluded from the data analysis. In this study, the minimum permitted hemoglobin level was set at 8.0 g/dL as the reference point for transfusion.

We recorded the final and lowest T tym and T eso (T tym_Final, T eso_Final, T tym_Lowest, and T eso_Lowest) values as well as their differences from the baseline values (ΔT tym_Final, ΔT eso_Final, ΔT tym_Lowest, ΔT eso_Lowest). We defined the heating capability for each device as the difference of T pm 0.5 h after operating the warming device and before anesthesia induction. We classified the T eso_Final and the T eso_Lowest using grade 1 (T eso ≥36.0 °C), grade 2 (35.0°C ≤T eso <36.0°C), and grade 3 (T eso <35.0°C), and noted the incidences.

Sample size and statistical analyses

The primary outcomes of this study were the T eso_Final and the lowest T eso, and the secondary outcome was the incidence of hypothermia (grades 2 and 3). The necessary sample size calculations for one-way ANOVA were completed using G*Power software (ver. 3.1.9.1, Heinrich-Heine-Universität Düsseldorf, Germany), where the level of statistical significance was set as α=0.05 and β=0.1, with a large effect size of 0.4 (defined by Cohen for one-way ANOVA analysis) that was based on assumptions, as there were no data to calculate the effect size [18]. The study required a total of 84 patients; thus, we enrolled 99 patients, allowing for a dropout rate of approximately 15%.

SPSS (Windows ver. 24.0, IBM Corp., Armonk, NY, USA) was used for all statistical analyses. Categorical variables were presented as number (percentage) of patients (n [%]), and continuous variables were reported as means (95% confidential intervals [CI] or medians (interquartile range [IQR]).

The normality of probability distribution was analyzed with the Kolmogorov-Smirnov test and Shapiro-Wilk test. The continuous normally distributed variables were analyzed with one-way ANOVA followed by Scheffe’s post-hoc test in the presence of a homogeneity of variance according to Levene’s test. If the variables had non-homogeneity, we performed the Games-Howell post-hoc test. The continuous variables with non-normal probability test were analyzed with the Kruskal-Wallis test followed by pairwise-comparisons. Nominal variables were analyzed with the χ² or Fisher’s exact test. The repeated measured variables were analyzed with repeated measures analysis of variance (ANOVA). In addition, the T eso between groups were also compared using linear mixed modeling with restricted maximum likelihood estimation, the specifying fixed effects (group, time, other confounders, and group-by-time interaction), and the correlation structure modeled by a first-order autoregressive (AR1) covariance matrix. This analysis was conducted separately for detection of potential confounders, which had a significant association with the baseline T eso (T eso_Base) (p<0.02). After adjustment with T eso_Base, the comparison of the group-by-time least squares means by time in T eso was further evaluated using a mixed effects model with Bonferroni correction. p-values<0.05 were considered statistically significant.

RESULTS

Study population

A total of 99 patients were enrolled in the study. However, as the surgery was completed early in three patients and was canceled in another two patients, these patients were excluded, leaving 94 for the final data analysis (Fig. 2). There were no patients who had more than the maximal allowable blood loss and hemodynamic instability requiring additional fluid infusion and blood transfusion.

Importantly, no statistically significant differences were observed in demographic data, intraoperative EBL, urine output, or infusion rate (Table 1). The mean infused flow rate (mL/h) of each device was 380.3 (362.2–398.4), 392.5 (371.7–413.3), 404.3 (384.6–424.0) in groups M, R, and T, respectively (p=0.220). No significant difference in the room temperature (T r) was observed between the three groups throughout the study period (Fig. 3A).

Performance of the intravenous fluid warmers

There was no significant difference in T pm throughout the study period between the three groups, except for T pm before and 3 h after operating the warming device in group M, where there was a significant difference compared with
that of group T (p=0.020, p=0.017, respectively) (Fig. 3B). We observed a significant differences in the T_{Pout} values between the three groups throughout the study period ($p<0.001$), and T_{Pout} was the highest in group M, followed by group T, and lowest in group R (Fig. 3C). The heating capability for groups M, R, and T were 13.6°C, 7.3°C, and 8.0°C, respectively.

Table 1. Demographic and intraoperative data

	Group M (n=30)	Group R (n=32)	Group T (n=32)
Age (yr)	60.3 (54.8-65.8)	64.3 (60.2-68.4)	64.6 (61.6-67.6)
Sex (male/female)	10/20	9/23	11/21
Height (cm)	157.0 (153.0-162.3)	155.0 (153.0-164.5)	158.0 (152.0-167.3)
Weight (kg)	58.6 (54.8-62.5)	61.3 (58.8-65.7)	63.8 (59.6-68.0)
BMI (kg/m²)	23.2 (22.2-24.1)	24.4 (23.1-25.7)	24.9 (23.6-26.2)
ASA physical status	15/15	11/21	11/21
EBL (mL)	300.0 (100.0-300.0)	300.0 (225.0-500.0)	300.0 (200.0-300.0)
Surgical time (min)	215.0 (200.0-255.0)	240.0 (207.5-322.3)	230.0 (211.3-277.5)
Urine output (mL)	450.0 (200.0-825.0)	450.0 (300.0-700.0)	400.0 (212.5-600.0)
Infusion rate (mL/h)	380.3 (362.2-398.4)	392.5 (371.7-413.3)	404.3 (384.6-424.0)

The values are expressed as mean (95% confidential intervals), median (interquartile range), or number of patients. There were no significant differences between groups. ASA: American Society of Anesthesiologists, BMI: body mass index, EBL: Estimated blood loss. *median (interquartile range). $p<0.05$ was considered to indicate statistical significance.
Temperatures of the tympanic membrane and distal esophagus

There were no statistically significant differences in the values of T_{tym} and T_{es} between the groups throughout the study period (Fig. 4A and B). The $T_{\text{tym_Final}}$, $T_{\text{es_Final}}$, $T_{\text{tym_Lowest}}$, and $T_{\text{es_Lowest}}$ were not significantly different between the groups ($p=0.820$, $p=0.512$, $p=0.965$, $p=0.393$, respectively) (Table 2). Nevertheless, the temperature change from baseline T_{es} to $T_{\text{es_Final}}$ ($\Delta T_{\text{es_Final}}$) was significantly different between the groups ($p=0.044$), while the $T_{\text{tym_Final}}$, $T_{\text{tym_Lowest}}$, and $T_{\text{es_Lowest}}$ ($\Delta T_{\text{tym_Final}}$, $\Delta T_{\text{tym_Lowest}}$, and $\Delta T_{\text{es_Lowest}}$) were not significantly different between the groups ($p=0.383$, $p=0.496$, $p=0.076$, respectively) (Table 2). $\Delta T_{\text{es_Final}}$ of group M was also significantly lower than that of group T ($p=0.033$).

In the final linear mixed modeling, the time of assessment, group (groups M, R, and T), $T_{\text{es_Base}}$ ($p<0.001$), and group-by-time interaction were included as the fixed effects. There was a significant overall correlated fixed effect in time ($p<0.001$), $T_{\text{es_Base}}$ ($p<0.001$), and group-by-time interaction ($p=0.017$) as potentially important predictors of the dependent variable. After adjustment with $T_{\text{es_Base}}$, the group-by-time interactions showed significant differences in all groups ($p<0.001$), and they were significantly different at 2.5 ($p=0.025$) and 3 hours ($p=0.007$) after device operation. The overall least squares mean values showed no significant differences between groups after Bonferroni correction. Within each time, the differences of least squares means showed significant differences between groups M and T at 2.5 ($p=0.020$) and 3 hours ($p=0.006$) after operating the devices. (Fig. 4C).

Incidence of intraoperative hypothermia

The incidence of intraoperative hypothermia, based on the $T_{\text{es_Final}}$ and $T_{\text{es_Lowest}}$, was not significantly different between the three groups ($p=0.964$, $p=0.877$) (Table 3). The incidences of hypothermia $<36.0^\circ\text{C}$ based on the $T_{\text{es_Lowest}}$ were 73.3%, 78.1%, and 78.1% ($p=0.877$), while those of
DISCUSSION

Here, we demonstrated that, at the flow rate necessary for intraoperative maintenance fluid therapy, none of the devices, Mega Acer Kit, Ranger, nor ThermoSens, showed
sufficient performance in reducing the loss of intraoperative core temperature. However, the Mega Acer Kit and Ranger were more effective at controlling the core temperature than ThermoSens after 2.5 hours, despite the absence of a statistically significant difference in the incidence of intraoperative hypothermia (<36°C). In addition, in terms of heating capability, the Mega Acer Kit was more effective than Ranger and ThermoSens, but none of them delivered normothermic (37°C) fluid to patients.

Most studies with the Mega Acer Kit, ThermoSens, or Ranger using low to moderate flow rates, similar to this study, were performed to investigate the performance in a laboratory setting [9,10,12-14,16,19], and only a few were performed to evaluate their clinical effects on core temperature changes [12,13]. Importantly, they demonstrated that the Mega Acer Kit was effective in maintaining the intraoperative core temperature at above 35°C, which was significantly higher in groups using the Mega Acer Kit compared to groups using the Ranger throughout the study period [12,13]. The maximal losses of intraoperative core temperature were found to be -0.5±0.5°C and -1.4°C from baseline values to the end of surgery when using the Mega Acer Kit and the Ranger respectively, before operation of each device. Therefore, in the analysis with linear mixed modeling, we found that the $\Delta T_{\text{eso-Base}}$ was a factor influencing the intraoperative T_{eso} changes with time, and that the patients with lower $T_{\text{eso-Base}}$ showed a greater decrement in intraoperative T_{eso}. After adjustment with $T_{\text{eso-Base}}$, we also found that the Mega Acer Kit group showed a significant difference compared with the ThermoSens group at 2.5 and 3 hours.

Table 3. Incidence of intraoperative hypothermia based on the final and lowest distal esophageal temperatures

Parameter	Group M (n=30)	Group R (n=32)	Group T (n=32)	p value (1 vs. 2 and 3 / 1 vs. 2 vs. 3)
$T_{\text{eso-Final}}$				
1: $T_{\text{eso}} \geq 36.0°C$	10 (33.3%)	10 (31.3%)	11 (34.4%)	0.964 / 0.586
2 and 3: $T_{\text{eso}} < 36.0°C$	20 (66.7%)	22 (68.8%)	24 (75.6%)	
2: 35.0°C ≤ T_{eso} < 36.0°C	18 (60.0%)	19 (59.4%)	15 (46.9%)	
3: T_{eso} < 35.0°C	2 (6.7%)	3 (9.4%)	6 (18.8%)	
$T_{\text{eso-Lowest}}$				0.877 / 0.916
1: $T_{\text{eso}} \geq 36.0°C$	8 (26.7%)	7 (21.9%)	7 (21.9%)	
2 and 3: $T_{\text{eso}} < 36.0°C$	24 (73.3%)	26 (78.1%)	24 (78.1%)	
2: 35.0°C ≤ T_{eso} < 36.0°C	19 (63.3%)	22 (68.8%)	20 (62.5%)	
3: T_{eso} < 35.0°C	3 (10.0%)	3 (9.4%)	5 (15.6%)	

The values are expressed as numbers of patients (%). There were no significant differences between the groups. T_{eso}: distal esophageal temperature, $T_{\text{eso-Final}}$: final T_{eso}, $T_{\text{eso-Lowest}}$: lowest T_{eso}. Grade 1: T_{eso} ≥ 36.0°C, grade 2: 35.0°C ≤ T_{eso} < 36.0°C, grade 3: T_{eso} < 35.0°C.
after device use.

Second, the final delivered fluid temperature can influence the change in intraoperative T_{es}. Ideally, fluids at approximately 37°C should be delivered to the patient for prevent intraoperative hypothermia [20,21]. The final delivered fluid temperature was decreased significantly through increase in the length of the extended tube [15,22,23], despite some fluid warmers being able to warm the intravenous fluid up to 37°C [12,14]. At low and moderate flow rates, the ThermoSens, the Ranger, and other warmers with similar technology could not deliver normothermic fluid (37°C) at a tubing distance greater than 75 cm [24-26]. The Mega Acer Kit was also unsuccessful in delivering fluid temperatures greater than 35°C above a tubing distance of 75 cm at 300-1,000 mL/h [9,12]. Relatedly, this study further showed that the final delivered fluid temperature was not 37°C in the clinical setting, when a long extended tube was used.

Third, the presence of a covering on the extended tubing line can also influence the change in intraoperative T_{es}, by increasing the final delivered fluid temperature. In an experimental study [9], which had a similar study design, it was found that when covering the extended tube with a drape, the delivered fluid temperature was slightly higher than that in this study when using tubing at 76 cm from the device with 440 mL/h for 60 minutes. Therefore, if we had covered the extended tube in our study, the delivered fluid temperature would have been higher.

The present study had some limitations. First, we could not confirm which of the devices were more effective at reducing the decrease of core temperature and the incidence of hypothermia, because there was no group that did not use the fluid warmer as the control group. Second, we did not control the factors explained as reasonable causes of higher incidences of hypothermia.

In conclusion, the Mega Acer Kit, Ranger, and ThermoSens, alone, did not sufficiently reduce the loss of intraoperative core temperature during intravenous maintenance fluid therapy to effectively maintain the intraoperative temperature at $\geq 36^\circ$C. The heating capability of the Mega Acer Kit was greater than that of Ranger and ThermoSens, but neither delivered normothermic (37°C) fluid to patients. However, after adjustment of the core temperature following induction of anesthesia, the Mega Acer Kit was more effective for the management of core temperature than the ThermoSens at over 2.5 hours after device use. For this reason, we may expect to find evidence that the Mega Acer Kit is more beneficial than the Ranger and the ThermoSens as an intraoperative warming device at lower flow rates, if the loading fluid is warm, with shorter extended tubing and a covering on the fluid line. Therefore, after controlling the influencing factors, further studies are needed to verify the efficacy of intravenous fluid warmers on core temperature.

ACKNOWLEDGMENTS

This study was supported by research funds from Chosun University (Dong-gu, Gwangju, Korea), 2018.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. National Collaborating Centre for Nursing and Supportive Care. The management of inadvertent perioperative hypothermia in adults. London: Royal College of Nursing; 2008.
2. Reynolds L, Beckmann J, Kurz A. Perioperative complications of hypothermia. Best Pract Res Clin Anaesthesiol 2008;22:645-57.
3. Billeter AT, Hohmann SF, Druen D, Cannon R, Polk HC Jr. Unintentional perioperative hypothermia is associated with severe complications and high mortality in elective operations. Surgery 2014;156:1245-52.
4. Camus Y, Delva E, Cohen S, Lienhart A. The effects of warming intravenous fluids on intraoperative hypothermia and postoperative shivering during prolonged abdominal surgery. Acta Anaesthesiol Scand 1996;40:779-82.
5. Sessler DI. Mild perioperative hypothermia. N Engl J Med 1997;336:1730-7.
6. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 2008;108:71-7.
7. Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly S, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA 1997;277:1127-34.
8. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of wound infection and tem-
perature group. N Engl J Med 1996;334:1209-15.

9. Kim DJ, Kim SH, So KY, An TH. Mega Acer Kit® is more effective for warming the intravenous fluid than Ranger® and ThermoSens® at 440 ml/h of infusion rate: an experimental performance study. Korean J Anesthesiol 2017;70:456-61.

10. Kim HJ, Yoo SM, Jung JS, Lee SH, Sun K, Son HS. The laboratory performance of the enFLOW®, buddy lite™, and ThermoSens® fluid warmers. Anaesthesia 2015;70:205-8.

11. John M, Ford J, Harper M. Peri-operative warming devices: performance and clinical application. Anaesthesia 2014;69: 623-38.

12. Jung KT, Kim SH, So KY, So HJ, Shim SB. Clinical evaluation of a newly designed fluid warming kit on fluid warming and hypothermia during spinal surgery. Korean J Anesthesiol 2015;68:462-8.

13. Kim E, Lee SY, Lim YJ, Choi JY, Jeon YT, Hwang JW, et al. Effect of a new heated and humidified breathing circuit with a fluid-warming device on intraoperative core temperature: a prospective randomized study. J Anesth 2015;29:499-507.

14. Kim HJ, Yoo SM, Son HS, Ahn CB, Shin YS, Chung JH, et al. Evaluation of the performance and safety of a newly developed intravenous fluid warmer. Artif Organs 2015;39:591-6.

15. Turner M, Hodzovic I, Mapleson WW. Simulated clinical evaluation of four fluid warming devices*. Anaesthesia 2006;61: 571-5.

16. Seo HJ, Kim SH, An TH, Kim DJ. Experimental comparison of performances of Mega Acer Kit, Ranger and ThermoSens according to flow rates and distances. J Clin Monit Comput 2018;32:1127-34.

17. Satoh J, Yamakage M, Wasaki SI, Namiki A. Performance of three systems for warming intravenous fluids at different flow rates. Anaest Intensive Care 2006;34:46-50.

18. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39: 175-91.

19. Zoremba N, Bruells C, Rossaint R, Breuer T. Heating capabilities of small fluid warming systems. BMC Anesthesiol 2018;18:98.

20. Bieberich MT, Van Duren AP. Thermal control and design considerations for a high-performance fluid warmer. Biomed Instrum Technol 2003;37:103-12.

21. Schnoor J, Macko S, Weber I, Rossaint R. The air elimination capabilities of pressure infusion devices and fluid-warmers. Anaesthesia 2004;59:817-21.

22. Bissonnette B, Paut O. Active warming of saline or blood is ineffective when standard infusion tubing is used: an experimental study. Can J Anaesth 2002;49:270-5.

23. Horowitz PE, Delagarza MA, Pulaski JJ, Smith RA. Flow rates and warming efficacy with Hotline and Ranger blood/fluid warmers. Anesth Analg 2004;99:788-92.

24. Presson RG Jr, Bezruczko AP, Hillier SC, McNiece WL. Evaluation of a new fluid warmer effective at low to moderate flow rates. Anesthesiology 1993;78:974-80.

25. Lee SH, Kim HK, Park SC, Kim ES, Kim TK, Kim CS. The effect of infusion rate and catheter length on the temperature of warming fluid. Korean J Anesthesiol 2010;58:31-7.

26. Patel N, Knapke DM, Smith CE, Napora TE, Pinchak AC, Hagen JF. Simulated clinical evaluation of conventional and newer fluid-warming devices. Anesth Analg 1996;82:517-24.