Further insights into the eco-epidemiology of American cutaneous leishmaniasis in the Belem metropolitan region, Pará State, Brazil

Lucas Pantoja Gonçalves[1], Thiago Vasconcelos dos Santos[1], Marliane Batista Campos[1], Luciana Vieira do Rêgo Lima[1], Edna Aoba Yassui Ishikawa[2], Fernando Tobias Silveira[1,2] and Patrícia Karla Santos Ramos[1]

Introduction: In the Belém Metropolitan Region (BMR), Pará State, Brazil, American cutaneous leishmaniasis (ACL) is endemic; however, very little is known regarding its causative agents. Therefore, we used our standard diagnostic approach combined with an RNA polymerase II largest subunit (RNAPOLII)-polymerase chain reaction (PCR) followed by analysis of restriction fragment length polymorphism (PCR-RFLP) to identify Leishmania spp. ACL agents in this region. Methods: Thirty-two Leishmania spp. isolates from patients with ACL in the BMR during 1995-2018 were analyzed. Leishmania spp. DNA samples were amplified using the primers RPOF2/RPOR2, and the 615-bp PCR products were subjected to enzymatic digestion using Hgal and TspRI endonucleases. Results: ACL etiological agents in the BMR comprised Leishmania (Viannia) lindenbergi (43.7%) followed by Leishmania (Viannia) lainsoni (34.4%), Leishmania (Leishmania) amazonensis (12.5%), and Leishmania (Viannia) braziliensis (9.4%). Conclusions: To our knowledge, the results of the study revealed for the first time that L. (V.) lindenbergi and L. (V.) lainsoni are the main ACL agents in BMR.

Keywords: American cutaneous leishmaniasis. Leishmania spp. Molecular characterization. PCR-RFLP. Amazonian Brazil.

INTRODUCTION

American cutaneous leishmaniasis (ACL) is a parasitic protozoan disease caused by different Leishmaninae parasites (Kinetoplastida: Trypanosomatidae) and is widely distributed in most Latin American countries. There are at least 15 recognized species within the subgenera Leishmania (Leishmania), L. (Viannia), and L. (Mundinia) that may give rise to human diseases1-2. Seven well-known Leishmania species have been identified as ACL agents in Brazil: Leishmania (V.) braziliensis, L. (V.) guyanensis, L. (V.) lainsoni, L. (V.) shawi, L. (V.) naiffi, L. (V.) lindenbergi, and L. (L.) amazonensis3. More recently, a new subspecies, L. (V.) shawi santarensis, as well as the first hybrid parasite, L. (V.) guyanensis// L. (V.) shawi shawi, have been found in the Brazilian Amazon4.

ACL behaves as a primary zoonosis of wild mammals in Brazil, and the transmission of Leishmania species occurs through the bites of infected females of different phlebotomine vectors (Diptera: Psychodidae)5-8. ACL has an occasional but endemic character in the Belém Metropolitan Region (BMR), Pará State, in the Brazilian Amazon that is mainly associated with three Leishmania species, including L. (L.) amazonensis9, L. (V.) lainsoni10, and L. (V.) lindenbergi11. Over the years, the BMR has experienced an increase in growth rate with intense urban construction and displacement of populations to areas neighboring secondary native forest areas, favoring human contact with the enzootic cycles of these Leishmania species.

The identification of potential ACL agents is a key step in surveillance strategies, and the existing knowledge and molecular tools available for the identification and characterization of Leishmania species must be improved and harmonized12. In this sense, species typing has evolved into a molecular approach. An overview of the different methods and targets currently available can be found elsewhere13.
Polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) has been widely applied to characterize New World *Leishmania* species, and has been focused on different targets of kinetoplast or genomic DNA. Due to the high inter/intraspecific diversity/polymerism in the parasites, these techniques do not usually show continental reproducibility, and regional-scale assays must be improved to validate established protocols. To this end, a set of targets that encode the genes of the RNA polymerase II largest subunit (RNAPOIILS; considered phylogenetically informative as defined by parsimony criteria) has been used to explore the relationships between *Leishmania* species. We used our standard diagnostic approach combined with the RNAPOIILS-PCR-RFLP assay (previously designed to identify Amazonian/Guianan *Leishmania* species) to identify *Leishmania* spp. that act as potential ACL agents in the BMR. These results provide crucial new insights into the eco-epidemiology of ACL in this region.

METHODS

Study area

The BMR comprises a cluster of socioeconomic integrated municipalities located in the northeastern Pará State, Brazil (Belém [the State capital], Ananindeua, Marituba, Benevides, Santa Izabel do Pará, Santa Bárbara do Pará, and Castanhal), with a resident population of approximately 2,505,242 inhabitants and a territorial area of 6.890 km². The landscape has an extensive alluvial plain, with a typically equatorial climate and average temperatures ranging from 24°C to 26°C and humidity above 80%. The annual precipitation is approximately 2500 mm, with a rainy season from January to June. The vegetation is mainly secondary forest, although some original remnants still cover ~31% of the region, which is composed of upland (terra firme), floodplain (várzea), and wetland (igapô) forests.

Surveying the ACL epidemiology in the BMR

Patients with ACL examined at the Ralph Lainson Leishmaniases Lab (with the BMR as the geographical local of presumed infection from 1995 to 2018) were also screened following our standard diagnostic approach comprising clinical-epidemiological investigation and laboratory diagnosis. The patients were diagnosed by parasitological demonstrations (Giemsa-stained smears of exudates from cutaneous lesions) and by the interpretation of the Montenegro skin test (inactivated promastigotes of *L. (V.) braziliensis* – MHOM/BR/17323 – 1×10⁷ parasites/mL), as previously described. In vitro/in vivo parasite isolation (inoculating exudates from cutaneous lesions in Difco B⁵ media and/or in the hind foot of *Mesocricetus auratus*) was also performed routinely. The ACL-confirmed cases received systemic therapy (mebumide antimoniate) at a dose of 12 mg Sb₅/kg/day in two series of 22 days, with an interval of 7-10 days between each series.

All *Leishmania* spp. isolates obtained from ACL cases of localized cutaneous leishmaniasis (LCL) clinical form originating from the BMR from 1995 to 2018 were included in the analysis. Of the 32 cultured samples, 16 were from the municipality of Belém, seven from Ananindeua, four from Benevides, three from Santa Izabel, one from Santa Bárbara do Pará, and one from Castanhal. No isolate was registered in the municipality of Marituba.

DNA extraction/quantification

DNA was extracted from positive culture samples using the commercial Reliaprep gDNA Tissue Miniprep System Kit (Promega, USA). After performing cell lysis using proteinase K, the samples were placed in a column surrounded by a silica membrane, and during centrifugation, the DNA adhered to the membrane. After several washes, the extracted DNA was eluted in 150 μL of elution buffer. DNA sample quantification was performed using a Qubit 2.0 fluorometer (Invitrogen, USA).

RNAPOIILS-PCR-RFLP

The methodology was adapted from Simon et al. with minor modifications. In brief, *Leishmania* DNA amplification was performed using the primers RPOF2 (5′-AGAACATGGCGCC-3′) and RPOR2 (5′-CGAGGGTACGTTTCTG-3′), which amplified a 615-bp fragment of the RNAPOIILS gene. The reaction was performed in a final volume of 50 μL containing 0.2 μM of each primer.
DNTP (dATP, dCTP, dGTP, and dTTP) (Quatro G), 0.01 μM of each primer (Invitrogen), 2.5 U of Taq DNA polymerase (Invitrogen), and 10 μL of extracted DNA (1 ng/μL). The reactions were performed in an Eppendorf (Mastercycler® personal) thermal cycler programmed for an initial denaturation temperature of 94°C for 5 min, followed by 40 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 1 min. The final extension step was maintained for 5 min at 72°C. The PCR products were applied to a 1% agarose gel and stained with Safe dye to confirm proper amplification.

A total of 15 μL of the PCR product was digested with 10 U of TspRI (New England Biolabs) (2 h at 65°C) or with 2 U of HgaI (New England Biolabs) endonucleases (2 h at 37°C), following the manufacturer's recommendations. Both digestions (HgaI and TspRI) were performed separately for each 15 μL of PCR product in a final volume of 20 μL. The digestion mixtures were individually applied to 3% agarose gels and stained with Safe dye (Kasvi) to confirm proper amplification.

Molecular characterization of Leishmania spp. isolates

The molecular characterization of Leishmania spp. isolates from patients with ACL in the BMR was based on the RNAPOIILS-PCR-RFLP analysis in accordance with previously published studies. The following WHO Leishmania reference strains preserved in the Ralph Lainson Leishmaniasis Lab (Instituto Evandro Chagas) cryobank that had been characterized were selected for this analysis: L. (L.) amazonensis (IFLA/BR/1967/PH8), L. (V.) braziliensis (MHOM/BR/1975/M2904), L. (V.) guyanensis (MHOM/BR/1975/M4147), L. (V.) naiffi (MDAS/BR/1979/M5533), L. (V.) lainsoni (MHOM/BR/1981/M6426), L. (V.) shawi (MCEB/BR/1984/M8408), and L. (V.) lindenbergi (MHOM/BR/1998/M15732)*. However, considering the known genetic diversity of some Leishmania species in the Brazilian Amazon, especially L. (V.) braziliensis and L. (V.) guyanensis, another strain of L. (V.) braziliensis (MHOM/BR/1975/M2903), which differs from the above reference strains, was included in this analysis as well as another strain of L. (V.) guyanensis (MHOM/BR/1997/M16342)(Table 1).

Molecular characterization through RNAPOIILS-PCR-RFLP analysis was based on the reactivity profile of the above WHO Leishmania reference strains for both TspRI and HgaI endonucleases. Therefore, TspRI digestion identified three subgroups (SGs): SG1 (no restriction site), corresponding to L. (L.) amazonensis; SG2, consisting of L. (V.) braziliensis; L. (V.) naiffi, L. (V.) lainsoni, L. (V.) lindenbergi, and L. (V.) shawi, while HgaI digestion identified six SGs: SG1 (no restriction site), corresponding to L. (L.) amazonensis; SG2, consisting of L. (V.) guyanensis, L. (V.) braziliensis (MHOM/BR/1975/M2904), and L. (V.) lindenbergi; SG3, consisting of L. (V.) naiffi; SG4, consisting of L. (V.) lainsoni; SG5, consisting of L. (V.) shawi; and SG6, consisting of L. (V.) braziliensis (MHOM/BR/1975/M2903). All seven reference strains could be distinguished from one another using the combined analysis of TspRI and HgaI digestion profiles, with the exception of L. (V.) braziliensis (MHOM/BR/1975/M2904) and L. (V.) lindenbergi (Table 1 and Figure 2).

RESULTS

Clinical and epidemiological features of ACL in the BMR

Thirty-two Leishmania spp. isolates were obtained within the historical series analyzed from cutaneous lesions of the LCL clinical form of patients with ACL. Most lesions (75%; 24/32) were single (ranging from 1 to 2) and localized to the arm and/or leg (81%; 26/32), with reactive Montenegro skin tests ranging at 5-32 mm. The ACL sample comprised patients with a mean age of 32.5 ±18.9 years, predominantly male (81%; 26/32), with histories of activities in forested areas (Table 2). All ACL-confirmed cases showed satisfactory treatment responses with no history of relapse for one year post-treatment.

Identification of Leishmania spp. isolates through RNAPOIILS-PCR-RFLP analysis

The RNAPOIILS-PCR-RFLP analysis of Leishmania spp. DNA products allowed the identification of 14 (43.7%) isolates of L. (V.) lindenbergi, 11 (34.4%) of L. (V.) lainsoni, four (12.5%) of L. (L.) amazonensis, and three (9.4%) of L. (V.) braziliensis (Table 2). The geographic distributions of the known presumptive contamination sites showed Leishmania species distributions (at the municipality level) as follows: Belém 16 (50%) [L. (V.) lindenbergi seven, L. (V.) braziliensis four, L. (V.)

Species	Host	WHO code	Locality	RNAPOIILS-PCR-RFLP profile
L. (V) braziliensis	Homo sapiens	MHOM/BR/1975/M2903	Parauapebas - PA	TspRI SG3 - Hgal SG6
L. (V) braziliensis	Homo sapiens	MHOM/BR/1975/M2904	Parauapebas - PA	TspRI SG3 - Hgal SG2*
L. (V) guyanensis	Homo sapiens	MHOM/BR/1975/M4147	Almeirim - PA	TspRI SG2 - Hgal SG2
L. (V) lainsoni	Homo sapiens	MHOM/BR/1997/M16342	Rio Preto da Eva - AM	TspRI SG2 - Hgal SG2
L. (V) lindenbergi	Homo sapiens	MHOM/BR/1981/M6426	Benevides - PA	TspRI SG3 - Hgal SG4
L. (V) naiffi	Dasypus novemcinctus	MDAS/BR/1979/M5533	Almeirim - PA	TspRI SG3 - Hgal SG3
L. (V) shawi	Sapajus apella	MCEB/BR/1984/M8408	Parauapebas - PA	TspRI SG3 - Hgal SG5
L. (V) lindenbergi	Homo sapiens	MHOM/BR/1996/M15729	Belém - PA	TspRI SG3 - Hgal SG2*
L. (L) amazonensis	Bichromomyia flaviscutellata	IFLA/BR/1967/PH8	Belém - PA	TspRI SG1 - Hgal SG1

L.: Leishmania; V.: Viannia; WHO: World Health Organization; PA: Pará State, Brazil; AM: Amazonas State, Brazil. *These different Leishmania species present the same RNAPOIILS-PCR-RFLP profile, requiring additional methods for unambiguous characterization.
WHO: World Health Organization; MST: Montenegro skin test; n.a.: not available.
(V.) lainsoni seven, L. (L.) amazonensis one, and L. (V.) braziliensis one], Ananindeua seven (21.8%) [L. (V.) lindenbergi three, L. (V.) lainsoni two, and L. (L.) amazonensis two], Benevides four (12.5%) [L. (V.) lindenbergi three and L. (V.) braziliensis one], Santa Izabel do Pará three (9.5%) [L. (V.) lainsoni two and L. (L.) amazonensis one], Santa Bárbara do Pará one (3.1%) [L. (V.) lindenbergi], and Castanhal one (3.1%) [L. (V.) braziliensis] (Figure 3).

The combined analysis of the TspRI and HgaI digestion profiles of the isolates of L. (V.) lindenbergi, L. (V.) lainsoni, and L. (L.) amazonensis presented the same RNAPOIILS-PCR-RFLP profiles as their respective WHO Leishmania reference strains. However, considering that the two L. (V.) braziliensis WHO Leishmania reference strains (MHOM/BR/1975/M2904 and MHOM/BR/1975/M2903) showed two distinct patterns upon HgaI digestion, all L. (V.) lindenbergi isolates could be distinguished from L. (V.) braziliensis MHOM/BR/1975/M2903, but not from the MHOM/BR/1975/M2904 strain. Likewise, all three isolates of L. (V.) braziliensis were identified based on the MHOM/BR/1975/M2903 RNAPOIILS-PCR-RFLP profile (Table 2). To clarify this ambiguous reactivity (TspRI and HgaI) between L. (V.) lindenbergi and L. (V.) braziliensis (MHOM/BR/1975/M2904), the biological behavior of experimentally infected hamsters was checked for all 14 isolates of L. (V.) lindenbergi after the parasite was isolated, which revealed that none of these isolates could produce apparent ulcerated cutaneous lesion at the “hamster” inoculation site (hindfoot), suggesting a typical behavior of L. (V.) lindenbergi infection and not of L. (V.) braziliensis infection.

DISCUSSION

DNA-based methods have been extensively used since the 1980s for the characterization of *Leishmania* spp. However, these methods are currently restricted to referral hospitals and research centers with well-equipped laboratories. Currently available techniques include direct sequencing of a PCR product, use of species-specific restriction sites via PCR-RFLP, PCR fingerprinting, random amplified polymorphic DNA, or high-resolution melting. Of these, only PCR-RFLP and sequence analysis coupled with the appropriate target in the genome are suitable for the discrimination of all *Leishmania* species. In many cases, a combination of different markers must be applied to achieve a definitive taxonomic resolution.

The characterization of *Leishmania* spp. has traditionally been performed in the Ralph Lainson Leishmaniases Lab (since the 1970s) using a combined methodology that takes into consideration the parasite’s behavior within experimentally infected invertebrate (phlebotomines) and vertebrate (hamsters) hosts in the Dfico B45 culture medium, but has been improved with the “gold standard” MLEE and IFAT-Mabs analyses. We extended the applicability of a simple and direct molecular tool that was originally proposed and recently revised for French Guiana and used it to identify (to date) the coexisting human-pathogenic dermatotropic *Leishmania* species in the BMR. This methodology has already been used to identify *Leishmania* isolates from patients with ACL in our immunopathology research laboratory as well as from phlebotomines. The sensitivity of RNAPOIILS-PCR-RFLP was 100%, as expected for isolates. High specificity was also presumed, since the RNAPOIILS-PCR-RFLP for *Leishmania* profiles is distinct from that for other microorganisms. For non-isolated samples, future steps will include the analysis of Giemsa-stained lesion imprint slides, which have a presumed sensitivity of approximately 90%, to improve sensitivity for *Leishmania* DNA detection. These samples can be preliminarily screened with markers targeting kDNA.

![FIGURE 3: Distribution of *Leishmania* species in the municipalities of the Belém Metropolitan Region.](image-url)
The RNAPOIILS-PCR-RFLP profiles of *L. (L.) amazonensis*, *L. (V.) braziliensis*, *L. (V.) guyanensis*, *L. (V.) lainsoni*, and *L. (V.) naiffi* have been published previously, although, to our knowledge, this is the first analysis of *L. (V.) shawi* and *L. (V.) lindenbergi*, thus, providing an extension of the species-specific distinction power of this methodology. The analysis of some *Leishmania* species with high polymorphic genetic potential can be challenging. In this sense, *L. (V.) guyanensis* from eastern and western Amazonia are antigenically distinct when analyzed by IFAT-Mabs, and a degree of intra-specific heterogeneity has been observed in distinct populations from French Guiana using a small subunit and internal transcribed spacer 1 in the rRNA genes-PCR-RFLP analysis. Despite these observations, no intra-specific variation was observed in the RNAPOIILS-PCR-RFLP analysis.

Additionally, in the present study, *L. (V.) braziliensis*, a widely distributed and potentially polymorphic species, revealed different RNAPOIILS-PCR-RFLP profiles of two samples from the same geographical area in the “Serra dos Carajás” southeastern region of the Pará State (*MHOM/BR/1975/2904* [Serra Norte N1] and *MHOM/BR/1975/2904* [Serra Norte H7]), with the profile of the former being indistinguishable from that of *L. (V.) lindenbergi*. This indicates a limitation of PCR-RFLP analysis when referring to an ecological region with a considerable genetic diversity of *Leishmania* parasites. This was also observed in another study in the Brazilian Amazon that failed to distinguish *L. (V.) lindenbergi* from *L. (V.) guyanensis* through hsp70 PCR-RFLP (with HaeIII digestion). In this scenario, the authors utilized 6-phosphoglucose dehydrogenase, glucose-6-phosphate dehydrogenase MLEE, the analysis of partial sequences of hsp70, isocitrate dehydrogenase, and mannose phosphate isomerase genes for final identification. However, in the present study, the biological behavior (experimental infection in “hamster”) of all 14 isolates of suspected *L. (V.) lindenbergi* when the parasite was isolated revealed that none of these isolates could produce conspicuous ulcerated cutaneous lesions at the inoculation site (footpad) of laboratory animals, thus, confirming the typical biological behavior of *L. (V.) lindenbergi* infection. Another point that contradicts this high number (14) of isolates being *L. (V.) braziliensis* is that in over 40 years of research at the BMR, we have never seen a case of mucocutaneous leishmaniasis originating from this region (Silveira, personal communication).

The present study represents the first systematic study to examine, mainly through molecular methods, the repertoire of *Leishmania* species occurring in this region, and to our knowledge, revealing for the first time that *L. (V.) lindenbergi* (43.7%) and *L. (V.) lainsoni* (34.4%) are the main ACL agents in the BMR, followed by *L. (L.) amazonensis* (12.5%) and *L. (V.) braziliensis* (9.4%). From an eco-epidemiological point of view, it is interesting to note that these *Leishmania* spp. enzootics in the BMR remain established in residual forest fragments with ecological conditions, such as the presence of phlebotomine potential vectors, which favor *Leishmania* life cycles. Clinical and socioeconomic data show ACL in the BMR as a predominantly accidental disease with an occupational/eco-touristic character, since it has mainly been associated with middle-aged men exposed to peri-urban forest environments. Occasional ACL cases of patients with no history of forest exposure (such as elderly housewives) have drawn attention to its potential for intra/peridomesticiliary transmission.

The adaptation of *L. (V.) lindenbergi* and *L. (V.) lainsoni* enzootic cycles to the current ACL ecological scenario in the BMR is interesting. These species are together responsible for the majority (81.3%) of all ACL cases examined in this study. While *L. (V.) lainsoni* has already been found in the Brazilian Amazon States of Pará, Amâparo, Rondônia, and Acre as well as in other South American countries/territories, such as Peru, Bolivia, Colombia, Suriname, French Guiana, and Ecuador, *L. (V.) lindenbergi* has, until recently, not been recorded outside its type-locality, the BMR. The first report of *L. (V.) lindenbergi* causing ACL occurred in Rondônia State, Brazilian western Amazon region. Underreporting of ACL due to this parasite is possible, since some methodologies currently employed for *Leishmania* identification may not distinguish this species from others. Therefore, increasing efforts to develop novel techniques for species identification in other Amazonian regions may expand our knowledge on the geographical range of *L. (V.) lindenbergi*.

In this study, we record the first three cases of ACL due to *L. (V.) braziliensis* in the BMR, with strains from the municipalities of Belém, Benevides, and Castanhal being compatible with the *MHOM/BR/1975/M2903* RNAPOIILS-PCR-RFLP profile, thus, distinct from that of *L. (V.) lindenbergi*. The ecological scenario of *L. (V.) braziliensis* is not yet well understood in this region, as the well-known vectors *Psychodopygus wellcomei/Psychodopygus complexus* have not yet been recorded in surveyed forest fragments in the BMR. Alternative transmission (most likely by other ‘psychodopygians’), thus, cannot be ruled out. *Psychodopygus davisi*, for instance, is a very active human-biting phlebotomine species present in the BMR that was found to be infected with *L. (V.) braziliensis* in the southern Pará State.

In summary, the results of this study provide a better understanding of the ACL epidemiological scenario in the BMR. Strong ecological transformations have occurred in this region over the years, although these changes do not appear to limit the enzootic cycles of the *Leishmania* species already identified here.

ETHICAL STANDARDS

Procedures involving humans were submitted and approved by the Comité de Ética em Pesquisa - CEP (Ethics in Research Committee), under protocol CAEE 95080418.0000.0019. Procedures involving access to stored material of non-human vertebrates were submitted and approved by the Comissão de Ética no Uso de Animais - CEUA (Ethics in Animal Use Commission), under protocol CEUA/IEC/SVS/MS n.42/2018.

ACKNOWLEDGMENTS

We wish to thank to Ghislaine Prévot and Marine Ginouvès (Département de Médecine, Université de Guyane, Cayenne, French Guiana) for their advice on the RNAPOIILS-PCR-RFLP training given to one of us (TVS). We are also grateful to the Ralph Lainson’s Leishmaniasis Lab team, in particular to Ana Camila Oliveira Alves and Adriá de Oliveira Castro for their technical support given to the molecular analysis; to Domingas Ribeiro Everdosa and João Batista Palheta da Luz for their technical support with the laboratory diagnosis of the patients; and to Raimundo Nonato Barbosa Pires for his technical support and curatorial care with the *Leishmania* cryobank.
FINANCIAL SUPPORT

This research was financially supported by the Instituto Evandro Chagas (Brazilian Ministry of Health) and by the Núcleo de Medicina Tropical (Universidade Federal do Pará, Brasil). LPG received scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (editals no.1/2017-PIBC/IEC/CNPq 2017-2018 and no.1/2016-PIBC/IEC/CNPq 2016-2017).

AUTHOR’S CONTRIBUTION

LPG: Original draft, Data collection, Conduction of experiments, Data analysis, Final draft; TVS: Study design/conception, Original draft, Data analysis, Final draft; MBC: Data collection, Data analysis, Final draft; EAYI: Data analysis, Final draft; FTS: Study design/conception, Data collection, Data analysis, Final draft; LVLR: Data analysis, Final draft; PKSR: Study design/conception, Original draft, Data collection, Conduction of experiments, Data analysis, Final draft.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as *Leishmania* and *Endotrypanum*. Parasitology. 2018;145(4):430-42.
2. Lainson R, Shaw JJ. New World Leishmaniasis, in Topley & Wilson’s Microbiology and Microbial Infections. John Wiley & Sons. 2010.
3. Silveira FT, Lainson R, Muller SFR, De Souza AAA, Corbett CEP. Leishmaniose tegumentar Americana, in Medicina Tropical e Infectologia na Amazônia, Leão RNQ, Editor. Belém, Brazil: Samaúma, 2013. pp.1203-44.
4. Jennings YL, de Souza AAA, Ishikawa EA, Shaw J, Lainson R, Silveira F. Phenotypic characterization of *Leishmania* spp. causing cutaneous leishmaniasis in the lower Amazon region, western Pará state, Brazil, reveals a putative hybrid parasite, *Leishmania (Viannia) guyanensis* × *Leishmania (Viannia) shawi shawi*. Parasite. 2014;21(39).
5. Lainson R, Shaw JJ, Silveira FT, Souza AAA, Braga RR, Ishikawa EAY. The dermal leishmaniasis of Brazil, with special reference to the eco-epidemiology of the disease in Amazonia. Mem Inst Oswaldo Cruz. 1994;89(3):435-43.
6. Lainson R, Shaw JJ. Evaluation, classification and geographical distribution, In The leishmaniases, biology and medicine, Peters W, Killick-Kendrick R, Editors. London: Academic Press. 1987; p.1-120.
7. Lainson R. The American leishmaniases: some observations on their ecology and epidemiology. Trans R Soc Trop Med Hyg. 1983;77(5):569-96.
8. Lainson R. The Neotropical *Leishmania* species: a brief historical review of their discovery, ecology and taxonomy. Rev Pan-Amaz Saude. 2010;1(2):13-32.
9. Lainson R, Shaw JJ. Leishmaniasis of the New World: taxonomic problems. Br Med Bull. 1972;28(1):44-8.
10. Silveira FT, Shaw JJ, Braga RR, Ishikawa E. Dermal leishmaniasis in the Amazon region of Brazil: *Leishmania (Viannia) lainsoni* sp. n., a new parasite from the State of Pará. Mem Inst Oswaldo Cruz. 1987;82(2):289-91.
11. Silveira FT, Ishikawa EAI, de Souza AAA, Lainson R. An outbreak of cutaneous leishmaniasis among soldiers in Belém, Pará State, Brazil caused by *Leishmania (Viannia) lindenbergi* n. sp., a new leishmanial parasite of man in the Amazon region. Parasite. 2002;9(1):43-50.
12. World Health Organization. Control of the Leishmaniases: Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, (WHO technical report series ; no. 949). 2010; 186pp.
13. Van der Auwerda G, Dujaudrin J-C. Species typing in dermal leishmaniasis. Clin Microbiol Rev. 2015; 28(2):265-94.
14. Akhoundi M, Downing T, Votýpka J, Kuhl K, Lukeš J, Cannel A, et al. *Leishmania* infections: Molecular targets and diagnosis. Mol Aspects Med. 2017;57:1-29.
15. García FCB, Santos SSR, Chociay MF, Medeiros ACR, Roselino AMF. Subsidiary methods for the diagnosis of American tegumentary leishmaniasis (ATL): comparison of sequencing of DNA and PCR-RFLP for identification of *Leishmania* species in skin samples. Anais Brasileiros de Dermatologia. 2005;80(suppl.3):S339-44.
16. Graça GC, Volpini AC, Romero GA, Oliveira Neto MP, Houb M, Porrozzi R, et al. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species. Mem Inst Oswaldo Cruz. 2012;107(5):664-74.
17. Monroy-Ostria A, Nasriddin A, Monteon VM, Guzmán-Brago C, Jaffe CL. ITS1 PCR-RFLP Diagnosis and characterization of *Leishmania* in clinical samples and from cses of human cutaneous leishmaniasis in states of the Mexican Southeast. Interdiscip Perspect Infect Dis. 2014;2014:1-6.
18. Montalvo AM, Fraga J, Maes I, Dujaudrin JC, Van der Auwerda G. Three new sensitive and specific heat-shock protein 70 PCR-RFLPs for global *Leishmania* species identification. Eur J Clin Microbiol Infect Dis. 2012;31(7):1453-61.
19. Simon S, Veron V, Carme B. *Leishmania* spp. identification by polymerase chain reaction-restriction fragment length polymorphism analysis and its applications in French Guiana. Diagn Microbiol Infect Dis. 2010;66(2):175-80.
20. Croan DG, Morrison DA, Ellis JT. Evolution of the genus *Leishmania* revealed by comparison of DNA and RNA polymerase gene sequences. Mol Biochem Parasitol. 1997;89(2):149-59.
21. IBGE - Estimativas da população residente para os municípios e para as unidades da federação brasileiros com data de referência em 1º de julho de 2017. 2017,11p.
22. Leão N, Alencar C, Veríssimo A. Belém Sustentável 2007. Belém, Brazil: Instituto do Homem e Meio Ambiente da Amazônia, 2008.
23. Silveira FT, Lainson R, Corbett CEP. Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by *Leishmania (Leishmania) amazonensis*. Mem Inst Oswaldo Cruz. 2005;100(5):525-34.
24. Vasconcelos dos Santos T, Prévot G, Ginouvès M, Duarte R, Silveira FT, Póvoa MM, et al. Ecological aspects of Phlebotomines (Diptera: Psychodidae) and the transmission of American cutaneous leishmaniasis agents in an Amazonian/ Guianan bordering area. Parasit Vectors. 2018;11(1):612.
25. Brasil - Ministry of Health. Secretar of Surveillance in Health. Department of Surveillance in Transmissible Diseases. 2017. Guide to surveillance of tegumentary leishmaniasis [in Portuguese]. 2nd ed. Brasília: Ministério da Saúde press; 189p.
26. Miles MA, Lainson R, Shaw JJ, Póvoa MM, de Souza AAA. Leishmaniasis in Brazil: XV. Biochemical distinction of *Leishmania mexicana amazonensis*, *Leishmania braziliensis braziliensis* and *Leishmania braziliensis guyanensis* - aetiological agents of cutaneous
leishmaniasis in the Amazon Basin of Brazil. Trans R Soc Trop Med Hyg. 1981;75(4):524-9.

27. Miles MA, Póvoa MM, de Souza AAA, Lainson R, Shaw JJ. Some methods for the enzymic characterization of Latin-American *Leishmania*, with particular reference to *Leishmania mexicana amazonensis* and subspecies of *Leishmania herti*. Trans R Soc Trop Med Hyg. 1980;74(2):243-52.

28. Shaw JJ, Ishikawa EA, Lainson R. A rapid and sensitive method for the identification of *Leishmania* with monoclonal antibodies using fluorescein-labelled avidin. Trans R Soc Trop Med Hyg. 1989;83(6):783-4.

29. Souza AAA, Barata IR, Silva MGS, Lima JAN, Jennings YLL, Ishikawa EAY, et al. Natural *Leishmania (Viannia)* infections of phlebotomines (Diptera: Psychodidae) indicate classical and alternative transmission cycles of American cutaneous leishmaniasis in the Guiana Shield, Brazil. Parasite. 2017;24:13.

30. SimonS, NacherM, CarmeB, BasurkoC, RogerA, AdenisA, et al. Cutaneous leishmaniasis in French Guiana: revising epidemiology with PCR-RFLP. Trop Med Health. 2017;45:5.

31. Campos MB, Lima LVdR, de Lima ACS, Vasconcelos dos Santos T, Ramos PKS, Gomes CMC, et al. Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to *Leishmania (V.) braziliensis* and *Leishmania (L.) amazonensis*. PLoS ONE. 2018;13(3):e0194383.

32. Romero GAS, Ishikawa E, Cupolillo E, Toaldo CB, Guerra MVF, Paes MG, et al. Identification of antigenically distinct populations of *Leishmania (Viannia) guyanensis* from Manaus, Brazil, using monoclonal antibodies. Acta Trop. 2002;82(01):25-9.

33. Rotureau B, Ravel C, Nacher M, Coupie P, Curtet I, Dedet JP, et al. Molecular Epidemiology of *Leishmania (Viannia) guyanensis* in French Guiana. J Clin Microbiol. 2006;44(2):468-73.

34. Cupolillo E, Brahim LR, Toaldo CB, de Oliveira-Neto MP, de Brito ME, Falqueto A, et al. Genetic polymorphism and molecular epidemiology of *Leishmania (Viannia) braziliensis* from different hosts and geographic areas in Brazil. J Clin Microbiol. 2003;41(7):3126-32.

35. Ishikawa EA, Silveira FT, Magalhães AL, Guerra Júnior RB, Melo MN, Gomes R, et al. Genetic variation in populations of *Leishmania* species in Brazil. Trans R Soc Trop Med Hyg. 2002;96(Suppl 1):S111-21.

36. Cantanhêde LM, Mattos CB, de Souza Ronconi C, Filgueira CPB, da Silva Júnior CF, Limeira C, et al. First report of *Leishmania (Viannia) lindenbergi* causing tegumentary leishmaniasis in the Brazilian western Amazon region. Parasite. 2019;26:30.

37. Ferreira JVS, Vasconcelos dos Santos T, Santos EM, Gorayeb IS. Phlebotomine sand flies (Diptera: Psychodidae) in forest fragments of Belém metropolitan area, Pará State, Brazil, with considerations on vectors of American cutaneous leishmaniasis agents. Rev Pan-Amaz Saude. 2014;5(2):29-35.

38. Sánchez-Uzcátegui YdV, Vasconcelos dos Santos T, Sulveira FT, Ramos PKS, Santos EJM, Póvoa MM. Phlebotomines (Diptera: Psychodidae) from a Urban Park of Belém, Pará State, Northern Brazil and Potential Implications in the Transmission of American Cutaneous Leishmaniasis. Journal of Medical Entomology. 2020;57(1): 281-8.

39. Silveira FT, Souza AA, Lainson R, Shaw JJ, Braga RR, Ishikawa EAY. Cutaneous leishmaniasis in the Amazon region: natural infection of the sandfly *Lutzomyia ubiquitans* (Psychodidae: Phlebotominae) by *Leishmania (Viannia) lainsoni* in Pará State, Brazil. Mem Inst Oswaldo Cruz. 1991;86(1):127-30.

40. Cantanhêde LM, da Silva Júnior CF, Ito MM, Felipin KP, Nicolete R, Salcedo JMV, et al. Further Evidence of an association between the presence of *Leishmania RNA Virus 1* and the mucosal manifestations in tegumentary leishmaniasis Patients. PLoS Negl Trop Dis. 2015;9(9):e0004079.

41. Tojal da Silva AC, Cupolillo E, Volpini AC, Almeida R, Romero GA. Species diversity causing human cutaneous leishmaniasis in Rio Branco, state of Acre, Brazil. Trop Med Int Health. 2006;11(9):1388-98.

42. Lucas CM, Franke ED, Cachay MI, Tejada A, Carrizales D, Kreutzer RD. *Leishmania (Viannia) lainsoni*: first isolation in Peru. Am J Trop Med Hyg. 1994;51(5):533-7.

43. Martinez E, Le Pont F, Mollinedo S, Cupolillo E. A first case of cutaneous leishmaniasis due to *Leishmania (Viannia) lainsoni* in Bolivia. Trans R Soc Trop Med Hyg. 2001;95(4):375-7.

44. Patino LH, Mendez C, Rodriguez O, Romero Y, Velandia D, Alvarado M, et al. Spatial distribution, *Leishmania* species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis. 2017;11(8):e0005876.

45. van der Meide WF, Jensema AJ, Akrum RA, Sabajo LO, Lai A Fat. *Leishmania amazonensis* in Suriname: a study performed in 2006. Am J Trop Med Hyg; 2008;79(2):192-7.

46. Kato H, Gomez EA, Martini-Robles L, Muzzio J, Velez L, Calvopiña M, et al. Geographic Distribution of *Leishmania* Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis. PLoS Negl Trop Dis. 2016;10(7):e0004844.

47. Souza AAA, Silveira FT, Lainson R, Barata IR, Silva MGS, Lima JAN, et al. The Phlebotominae fauna of Serra dos Carajás, Pará, Brazil, and its possible implication in the transmission of American tegumentary leishmaniasis. Rev Pan-Amaz Saude. 2010;1(1):45-51.