Exciton condensate in semiconductor quantum well structures

Xuejun Zhu1, P. B. Littlewood2, Mark S. Hybertsen2, T. M. Rice2,3

1Department of Physics \& Astronomy, Rutgers University, Piscataway, New Jersey 08855
2AT\&T Bell Laboratories, Murray Hill, New Jersey 07974
3ETH-Honggerberg CH-8093, Zurich, Switzerland

Abstract

We propose that the exciton condensate may form in a well-controlled way in appropriately arranged semiconductor quantum well structures. The mean-field theory of Keldysh and Kopaev, exact in both the high density and the low density limits, is solved numerically to illustrate our proposal. The electron-hole pairing gap and the excitation spectrum of the exciton condensate are obtained. The energy scales of the condensate are substantial at higher densities. We discuss how such densities could be achieved experimentally by generating an effective pressure.

PACS numbers: 71.35.+z,73.20.Dz
The issue of Bose-Einstein condensation of excitons has been extensively studied, following the early suggestion by Keldysh and Kopaev [1–3]. In the intervening years, it continues to be a subject of considerable experimental and theoretical interest [4–10]. Until recently, much of the experimental work has been carried out on indirect semiconductors [1]. In view of the great advances made in our abilities to design and manufacture high quality artificial semiconductor quantum well (QW) structures, it appears opportune to investigate in some detail the possible exciton condensate states in direct gap semiconductors.

The crux of the matter lies in obtaining an exciton fluid at sufficiently high densities and low temperatures to realize a condensed phase. Recent experiments on Cu_2O [10] and on GaAs quantum wells in high magnetic fields [9] appear quite promising. However, detailed and unambiguous interpretation of these experiments has been difficult either because of the low density obtained in QWs (where it has been argued that disorder dominates the photoluminescence spectrum [8]) or because of non-equilibrium and/or time-dependence of the density [10]. Clearly it would be very desirable to be able to produce exciton fluids at controlled, and possibly higher, densities. This has two advantages: the energy scale of the condensate would be larger and the variation of key properties with density could be systematically examined. Other fundamental questions related to the dynamics of condensation, possible lasing action, superradiance and coupling to a coherent photon field could be studied experimentally under controlled conditions. Our proposal is to tailor the QW parameters in double well electron-hole systems so as to generate an effective pressure on part of the exciton fluid and thereby achieve the physical conditions necessary for a controlled formation of exciton condensates.

To this end, we set up and numerically solve the mean-field theory (MFT) proposed earlier by Keldysh and Kopaev [2,5,6], exact in both the high and low density limits, to obtain the total energy as a function of arbitrary densities for a variety of interlayer separation of the double layer QWs. The same MFT is also used to study the excitation properties of the proposed exciton droplet, which are crucial to its stability against small perturbations such as finite temperature, interface disorder, and complications arising from the band structure
of the underlying semiconductors. At $T = 0$ the exciton fluid for the idealized system is an insulating Bose-Einstein condensate at all densities, i.e., there exists a gap to all charged excitations. Hence it has been called an excitonic insulator.

We begin by examining the ideal two-dimensional (2D) electron-hole system, characterized by the following Hamiltonian:

$$
H_{eh} = \sum_i \frac{\vec{P}^2_{i,e}}{2m_e} + \sum_i \frac{\vec{P}^2_{i,h}}{2m_h} + \sum_{i<j} \frac{e^2}{\varepsilon |\vec{r}_{i,e} - \vec{r}_{j,e}|} + \sum_{i<j} \frac{e^2}{\varepsilon |\vec{r}_{i,h} - \vec{r}_{j,h}|} - \sum_{i,j} \frac{e^2}{\varepsilon \sqrt{|\vec{r}_{i,e} - \vec{r}_{j,h}|^2 + d^2}},
$$

(1)

where ε is the background dielectric constant. We ignore the electron-hole exchange in H_{eh}. We assume that the electron and the hole layers are infinitesimally thin, and that they are separated by a distance d. Within the mean-field theory described later and for s-wave pairing between an electron and a hole, spin degrees of freedom play no role other than changing the r_s by a factor of $\sqrt{2}$ at a given pair density n and will be ignored henceforth. In this work, the unit mass m is taken to be twice the reduced mass of the electron (m_e) and the hole (m_h), or $2/m = 1/m_e + 1/m_h$. The unit length is $a_{\text{a.u.}} = \varepsilon \hbar^2/mc^2$, and the energy unit is $Hartree = e^2/\varepsilon a_{\text{a.u.}}$. r_s is defined as $\pi r_s^2 a_{\text{a.u.}}^2 = 1/n$.

Two obvious limits of this system are: $r_s \rightarrow 0$ and $r_s \rightarrow \infty$. In the former high density limit, the pairing between the electrons and the holes is weak, and can be described in a BCS-like language where only properties near the Fermi surfaces are affected. In the latter low density limit, excitons are formed and they interact weakly. It has been realized that even in the latter limit, a BCS-like description is also appropriate. In fact, it is exact in the limit of $r_s = \infty$, where we have single isolated excitons.

Such a formulation is also valid for 2D, which we will use in this work. The variational ansatz for the ground state wavefunction, taking into account the pairing effects, is in the BCS form:

$$
|\Psi^0 >= \prod_k [u_k + v_k a^+_e a^+_h] |\text{vac} >,
$$

(2)

with $|u_k|^2 + |v_k|^2 = 1$. u_k and v_k are the variational parameters to be determined for the
present system, and $|vac>$ is the vacuum state in which the valence band is completely filled, $a_{e,k}^\dagger$ creates an electron in the conduction band, and $a_{h,k}^\dagger$ creates a hole in the valence band. As in BCS, this wavefunction does not preserve the particle number. The solutions are obtained most easily by going to the second quantized form and minimizing the free energy at a given chemical potential μ, $f = <h_{eh} - \mu <n>$, where lower cases are used to denote that the quantities are per unit volume. We find:

$$<h_{eh}> = \sum_k \epsilon_k v_k^2 - \sum_{k_1,k_2} \left(\frac{1}{2} V_{ee}^{k_1-k_2} v_{k_1}^2 v_{k_2}^2 + \frac{1}{2} V_{hh}^{k_1-k_2} v_{k_1}^2 v_{k_2}^2 + V_{eh}^{k_1-k_2} u_{k_1} v_{k_1} u_{k_2} v_{k_2} \right),$$

(3)

and $<n> = \sum_k v_k^2$. In Eq. 3, $V_{ee}^q = 2\pi/q$, $V_{hh}^q = 2\pi e^{-qd}/q$. $\epsilon_k = k^2/m$, the kinetic energy of an electron-hole pair, each with momentum \vec{k}. Notice that for $d \neq 0$ and in cases where the electrons and the holes are not separately neutralized by the respective dopants, (e.g., when they are created by optical pumping), the density-dependent Hartree term in the total energy needs to be included. At a fixed density, it increases energy/pair by $2d/r_s^2$ and μ by $4d/r_s^2$, without affecting the gap function Δ_k. Setting $\partial f/\partial v_{\vec{k}} = 0$ and considering only s-wave pairing in which case all quantities are functions of the magnitude of \vec{k}, we find in close analogy to the BCS algebra:

$$\xi_k = \epsilon_k - \mu - \sum_{k'} V_{ee}^{\vec{k}-\vec{k}'}(1 - \xi_{k'}/E_{k'}),$$

(4)

$$\Delta_k = \sum_{k'} V_{eh}^{\vec{k}-\vec{k}'} \Delta_{k'}/E_{k'},$$

(5)

$$E_{k}^2 = \xi_k^2 + \Delta_k^2,$$

(6)

E_k is identified as the pair excitation spectrum [13].

Eqs. 4-6 are coupled equations that must be solved self-consistently. Given a chemical potential μ, we wish to find the corresponding density parameter $r_s = \sqrt{1/(\pi n)}$ and the energy per pair $E_{pair} = <h_{eh} > / <n>$, Letting $k = tan(\beta)$, we set up a Gaussian-Quadrature grid for β and convert the above equations into a matrix form which can be solved iteratively [15]. Only the angular averages of the potentials V_{ee} and V_{eh} enter and the logarithmic singularities in the averaged quantities are treated separately [15]. The total energy per unit volume is:
\[< h_{eh} > = \frac{1}{2} \sum_{\vec{k}} \left[(\epsilon_k + \mu + \xi_k) \frac{1 - \xi_k/E_k}{2} - \Delta_k \frac{\Delta_k/E_k}{2} \right]. \] (7)

Shown in Fig. 1 are \(E^{\text{pair}} \) (solid lines) and \(\mu \) (dashed lines) as a function of \(r_s \) from the present MFT calculation, for \(d = 0 \) and \(d = 1.0 \). For large \(r_s \), \(E^{\text{pair}} \) and \(\mu \) approach the correct respective single exciton binding energy, largest at \(d = 0 \). For small \(r_s \), \(E^{\text{pair}} \) approaches the Hartree-Fock result, \(2/r_s^2 - 16/(3\pi r_s) + 2d/r_s^2 \), where the terms are the kinetic energy, the exchange energy and the Hartree energy, respectively. Indeed, the present MFT approach describes both limits correctly in a natural way, and is expected to provide a reasonable interpolation for intermediate densities.

It is interesting to examine the strength of the pairing effects and the excitation spectrum of the exciton fluid. At a given layer separation \(d \), the maximum in the gap function \(\Delta_k \) (or the minimum in the excitation energy \(E_k \)) first increases with \(r_s \), reaches a peak value, and then decreases with \(r_s \). Its \(k \)-dependence exhibits some interesting features as the chemical potential \(\mu \) crosses the bottom of the single-particle band \[15\]. As an illustration, we show for \(r_s = 2.66 \) and \(r_s = 5.90 \) \[16\] at \(d = 1.0 \) the gap function \(\Delta_k \) and the pair-excitation spectrum \(E_k \) as a function of \(k \) in Fig. 2.

First of all, \(E_k \) remains significant, in fact \(\sim 0.4 \) Hartree, or \(\sim 7 \) meV in GaAs QWs, at both of these densities. Secondly, we note that the gap function \(\Delta_k \) exhibits a variation with \(k \), instead of being sizable only very near \(k_F \) as in the BCS case. This is a direct result of the extended \(k \)-range of the attractive interaction \(V^{eh} \). Lastly, a comparison of the gap function at the two densities shows some qualitative differences between them. For the high density \(r_s = 2.66 \) case, the minimum pair-excitation energy in \(E_k \) is located very close in \(k \) to where the maximum in \(\Delta_k \) occurs, and both are close to, but not identical to \(k_F \). But for the low density \(r_s = 5.90 \) case, the maximum of \(\Delta_k \) is now at \(k \) very close to zero, and the minimum of \(E_k \) is at \(k \) smaller than \(k_F \) \[15\]. Although we have emphasized the similarities between the present electron-hole problem and the BCS superconductivity, there are essential differences even at the level of MFT \[15\].

Screening effects will reduce both the gap function \(\Delta_k \) and the minimum excitation
energy in \(E_k \). But we expect the calculated excitation energies to be qualitatively correct, since the very presence of the gap will make screening less effective on the energy scale of the gap itself. The basic gap structure of the excitation spectrum should certainly survive temperatures of a few \(K \).

In the mean-field theory, Fig. 1 shows that the interaction between the excitons is repulsive so that only the gas phase exists in equilibrium in the uniform, double QW electron-hole system [17]. Such systems have been utilized in some recent photoluminescence experiments, and suggestive results for Bose-Einstein condensation have been reported, but only in the presence of strong magnetic field at low densities [8,9]. We now show that an altered structure may induce an effective pressure on the exciton fluid and thereby stabilize higher densities.

We consider QW structures with a spatially varying well width, given by \(w = w(\vec{r}) \). Within the lowest subband approximation, the effects of \(w(\vec{r}) \) can be described by an effective in-plane potential \(V(\vec{r}) = V(w(\vec{r})) \). If \(dV/dr \ll V/d \), at equilibrium the exciton distribution throughout the QW \(n(\vec{r}) \) will be given by:

\[
\mu(n(\vec{r})) + V(\vec{r}) = \mu, \tag{8}
\]

where \(\mu \) is the chemical potential of the excitons in the QW, \(\mu(n) \) is the chemical potential of a uniform excitonic insulator at density \(n \). Since the kinetic energy in the \(z \)-direction depends rapidly on \(w \), changing \(w \) is a very effective way of controlling the local chemical potential \(\mu(n(\vec{r})) \), thereby controlling the local density \(n(\vec{r}) \).

This is illustrated schematically in Fig. 3, where the well-width on one side of the double QW is greater over a circle of radius \(R \) (the “cavity”) than that of the rest. Only one side needs to be adjusted, since charge-neutrality demands that the electron and hole densities be equal. A bias electric voltage is applied to spatially separate the electrons and the holes after optical pumping. Several nanoseconds after pumping, during which the electrons and the holes in the individual single layers have all recombined, we are left with a double-layer electron-hole system.

Notice that for large \(r_s \), the chemical potential \(\mu(n) \) remains very close to the single
exciton binding energy $|E_{ex}|$ for a wide range of density (see Fig. 1). Therefore, if the pumping intensity is not too great, the chemical potential of the excitons will remain at μ slightly larger (smaller in magnitude) than $-|E_{ex}|$. At equilibrium, the density inside the cavity n_{cav} will then be well approximated by $\mu(n_{cav}) = -|E_{ex}| + |\delta V|$. For GaAs/AlGaAs QWs, $m_h = 0.4$, $m_e = 0.067$, $\varepsilon = 13$, we find the present atomic units have length $a_{a.u.} = 59.8 \, \text{Å}$, and energy Hartree = 18.5 meV. As an example, we consider the case where the hole layer width is adjusted. In order to change the local chemical potential inside the cavity from $-|E_{ex}|$ to $\mu(r_s = 3.69)$ at $d = 1$ (a value between the two r_s’s considered earlier), the well-widths can be arranged to be: $w(\vec{r}) = 60 \, \text{Å}$ for $r > R$ and, $w(\vec{r}) = 73 \, \text{Å}$ for $r < R$. We note that, quite generally, any QW structure similar to that of Fig. 3 will serve to form an exciton droplet at a density largely controlled by the difference in the respective $w(\vec{r})$.

In order to obtain a Bose condensate excitonic insulator, the temperature must be sufficiently low and the lifetime of the excitons long enough. Currently attainable experimental conditions [8,9] satisfy the requirements: the lifetime can be extended to $\sim 100 \, \text{ns}$, due to the smaller electron-hole wavefunction overlap in the double layers; and consequently thermal and chemical equilibrium down to 1K temperatures can be reached. Even if some of the excitons may be trapped at the impurity centers invariably present, a droplet of high density fluid should still form, and be insensitive to the trapping. One significant advantage of our proposal is that the properties of the droplet, once formed, will be relatively independent of the pump power, which determines the average exciton density throughout the sample, but does not affect the equilibrium chemical potential by much. The excitonic, or the insulating nature, of the droplets could be established by careful monitoring of evolution of the luminescence spectrum edge with temperature [1]. The Bose-Einstein condensation is a more subtle and difficult issue to address due to the reduced dimensionality [18]. It may manifest itself in interesting ways by its coupling to the photon field [19].

To summarize, we propose that a large droplet of a high density excitonic insulator can be stablized in a suitably arranged quantum well structure where the electrons and the holes are spatially separated. The argument given is quite general, and the actual dimensions of
the quantum well structures, while affecting the density of the droplet, are not crucial to its formation. Such exciton droplets would be an example of the long sought-after high density Bose condensed phase of excitons, and allow one to examine the effects of coupling of a coherent electron-hole system with light, which may be itself coherent, as well as other interesting properties of the condensate.

ACKNOWLEDGMENTS

We thank Dr. Phil Platzman for useful discussions. XJZ thanks Dr. Alfredo Pasquarello and Dr. Stephen Fahy for encouragement during the course of this work. Work at Rutgers was supported by NSF through DMR92-21907.
REFERENCES

[1] For reviews on the electron-hole system, see, T. M. Rice, Solid State Phys., 32, 1 (1977); J. C. Hensel, T. G. Phillips, and G. A. Thomas, ibid., 88 (1977); Bose-Einstein Condensation, Eds. A. Griffin, D. W. Snoke, S. Stringari, (Cambridge, New York, 1994).

[2] L. V. Keldysh and Y. V. Kopaev, Fiz. Tverd. Tela 6, 2791 (1964) [Sov. Phys. Solid State 6, 2219 (1965)]; A. N. Kozlov and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 48, 1184 (1965) [Sov. Phys. JETP 21, 790 (1965)]; L. V. Keldysh and A. N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968) [Sov. Phys. JETP 27, 521 (1968)].

[3] We ignore the possible formation of bi-excitons in this work. It is disfavored by the strong dipole-dipole repulsion in the separate double-layer electron-hole system.

[4] E. Hanamura and H. Haug, Solid State Comm. 15, 1567 (1974); W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1 (1970).

[5] D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967).

[6] C. Comte and P. Nozieres, J. Phys. (Paris), 43, 1069 (1982); P. Nozieres and C. Comte, ibid., 1083 (1982); A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, eds. A. Pekalski and J. Przystawa, (Springer, Berlin, 1980).

[7] Y. E. Lozovik and V. I. Yudson, Pis’ma Zh. Eksp. Teor. Fiz. 22, 556 (1975) [JETP Lett. 22, 274 (1975)]; S. I. Shevchenko, Fiz. Nizk. Temp. 2, 505 (1976) [Sov. J. Low Temp. Phys. 2, 251 (1976)].

[8] T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev. Lett. 64, 3066 (1990); J. A. Kash, et al., ibid., 66, 2247 (1991); J. E. Golub, et al., Phys. Rev. B 45, 9477 (1992).

[9] L. V. Butov, et al., Phys. Rev. Lett. 73, 304 (1994).

[10] For recent work on Cu$_2$O, see, e.g., J. L. Lin and J. P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993); E. Fortin, S. Fafard, A. Mysyrowicz, ibid. 70, 3951 (1993); and references
When the individual layers have a finite width, the intra-layer interaction will also be changed. But as shown in [R. Price, X. Zhu, S. Das Sarma, P. M. Platzman, Phys. Rev. B, to appear], such changes are not important for the present systems at these widths.

Theoretically, two parallel, metallic plates, one with a Fermi surface of electrons and the other of holes, were considered qualitatively in Ref. [7] for possible superconductivity. It was argued in Refs. [4,5] that there is no superconductivity in such systems.

J. R. Schrieffer, *Theory of Superconductivity*, (Addison-Wesley, New York, 1964).

These equations differ from the usual BCS gap equations [13] by factors of two at several places, because here we are explicitly calculating the energy of an electron-hole pair, rather than of a single electron participating in pairing.

X. J. Zhu, P. B. Littlewood, M. S. Hybertsen, and T. M. Rice, unpublished.

Not including the spin-degeneracy, the densities are $1.3 \times 10^{11}/cm^2$ for $r_s = 2.66$, and $2.6 \times 10^{10}/cm^2$ for $r_s = 5.90$ for GaAs quantum wells.

Taking into account the dynamic screening effects will lower the energy. Variational Monte Carlo calculations suggest that if $E^{pair}(r_s)$ has a minimum at the so-called metallic densities of $r_s \sim 2 - 4$ for $d = 0$, it is very shallow $< 0.01Ryd$ (X. J. Zhu, M. S. Hybertsen, and P. B. Littlewood, unpublished). For $d \neq 0$, the presence of the Hartree term makes it unlikely for such a maximum density droplet phase to occur. For some non-variational work in 3D, see, A. P. Silin, Fiz. Tverd. Tela 19, 134 (1977) [Sov. Phys. Solid State 19, 77 (1977)]; R. Zimmermann, Phys. Stat. Sol. (b) 76, 191 (1976).

J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 181 (1973); P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

X. J. Zhu and P. B. Littlewood, unpublished.
FIGURES

FIG. 1. Energy per electron-hole pair (E_{pair}, solid lines) and the chemical potential (μ, dashed lines) of a double-layer electron-hole system as a function of r_s at separations $d = 0$ and $d = 1.0$.

FIG. 2. Gap function Δ_k and the pair-excitation energy E_k of the exciton droplet as a function of k for $r_s = 2.66$ (dashed lines) and for $r_s = 5.90$ (solid lines) at $d = 1.0$.

FIG. 3. Schematic diagram of the $GaAs/AlGaAs$ quantum well structure expected to contain the exciton droplet at chemical equilibrium.