Ferricyanide immobilized within organically modified MCM-41; application for electrocatalytic reduction of hydrogen peroxide

Reza Ojani · Jahan-Bakhsh Raoof · Shahla Fathi

Abstract Carbon paste electrode modified with aminated Mobil Catalytic Material Number 41 (MCM-41) was prepared and used for immobilization of K₃[Fe(CN)]₆ in acidic medium, and then electrochemical behavior of modified electrode containing ferricyanide was studied in detail, including pH-dependence and scan rate effect. Cyclic voltammetry studies showed that the electrode reaction is a surface-controlled process at the scan rate range from 5 to 60 mV s⁻¹. Also, the electrocatalytic behavior of modified electrode toward the reduction of H₂O₂ is reported and the effect of pH on catalytic peak current was discussed. According to experimental results, with increasing solution pH, the catalytic effect of this modified electrode is decreased. Catalytic reduction current of H₂O₂ increases linearly with its concentration. It has been demonstrated that ferricyanide immobilized on the aminated MCM-41 is a stable catalyst for the electrocatalytic reduction of H₂O₂.

Keywords Carbon paste electrode · Electrocatalytic reduction · Ferricyanide · Hydrogen peroxide · MCM-41

Introduction

Highly ordered three-dimensional mesoporous materials with a pore size from 10 to 100 Å are already technologically important for a variety of applications as catalysts, molecular sieves, and adsorbents. Mesoporous crystalline material Mobil Catalytic Material Number 41 (MCM-41) exhibits extremely high surface area and well-defined pore size, as well as high thermal stability, the synthesis of which was first reported by researchers of Mobil Oil [1, 2]. These materials were prepared by the sol–gel process in the presence of a quaternary ammonium surfactant template and characterized by a cylindrical regular mesopores of monodispersed diameter from 2 to 10 nm [3–6]. Such great porosity and uniform structure provide a very attractive and convenient technique for immobilization of different catalysts.

The internal surfaces of these solids have a large number of silanol groups. Reaction of these silanol groups with various alkoxysilanes has widely been exploited for preparing functionalized MCM-41 by covalent grafting with various organic moieties [7–9]. Functionalized MCM-41 have gained application in the field of electroanalytical chemistry in recent years, such as preconcentration analysis [10, 11], electrocatalysis [12, 13], bioelectrochemistry [14–16], and gas sensors [17–20].

Designing chemically modified electrodes for electrocatalysis [21–24] has been extensively developed because it provides an elegant way to facilitate (accelerate) charge transfer processes. This contributes to decrease the over-potentials often required to perform electrochemical transformations, as well as to increase the intensity of the corresponding voltammetric responses. Until now, electrocatalytic studies with mesoporous silica-based materials are only beginning to be explored [12, 13]. Li et al. [12] have encapsulated 1:12 phosphomolybdic acid in the mesopore channels of MCM-41 materials grafted with amine groups. After incorporation into carbon paste electrodes (CPEs), these materials were found to be efficient catalysts for the reduction of ClO₃⁻ and BrO₃⁻ species, the electrocatalytic
properties of 4,4′-bipyridinium units covalently attached to MCM-41 silica walls were also described with respect to the oxidation of 1,4-dihydrobenzoquinone [13].

In the field of electrocatalysis, we have demonstrated the suitability of some modified electrodes for electrocatalytic determination of ascorbic acid [25], hydrazine [26], L-cysteic acid [27], nitrite [28, 29], and carbohydrates [30]. In this work, we used aminated MCM-41 for encapsulation of ferricyanide and used this material for electrocatalytic reduction of H₂O₂.

Experimental

Apparatus

Electrochemical experiments were performed on 746VA Trace Analyzer Metrohm potentiostat with a Metrohm voltammetry cell in a three electrode configuration. An Ag/AgCl was used as reference electrode and a platinum wire was the auxiliary electrode. Working electrode was carbon paste modified with aminated MCM-41. X-ray powder diffraction data were obtained on a Siemens D5005 diffractometer (German) using Cu Ka radiation.

Chemicals

Pure silica MCM-41 was synthesized by a literature method [31] and was characterized by its X-ray diffraction (XRD) pattern. The grafting reagent 3-aminopropyl triethoxysilane (APTES, Merck) was used without further modification. The electrolyte solutions were HCl and 0.1 M phosphate buffer in pH ranges of 0–1 and 1.5–5, respectively. All other chemicals were of analytical grade and the solutions were prepared with doubly distilled water.

Modification of MCM-41

Amine-functionalized MCM-41 was prepared according to a method in the literature [12]; typically, 0.5 g of MCM-41 was mixed with a chloroform solution of APTES (50 mL, 0.1 M) and stirred at room temperature for 8 h. The modified MCM-41[MCM-41(m)] was filtered and washed with chloroform, and then dried in air. Scheme 1 shows the structure of MCM-41 and MCM-41(m).

Electrode preparation, electrochemical procedures

CPE containing MCM-41(m) was obtained by the homogeneous mixing of graphite particles and MCM-41(m) in a 6:1 mass ratio, and then paraffin oil was added drop wise until a uniformly wetted paste was obtained. A portion of prepared paste was packed into the end of a glass tube with a copper wire as electrical contact. The surface of paste was smoothed on a piece of paper. Then, electrode was immersed in a stirring 1 mM solution of ferricyanide in 1 M HCl for 3 h and washed by stirring in 1 M HCl for 1 h and twice in water. This electrode was studied after reaching a constant current
Results and discussion

Characterization of modified MCM-41

The physico-chemical characteristics of MCM-41 and MCM-41(m) are as expected from previous studies [31]. X-ray diffractogram of MCM-41 (Fig. 1a) shows one main correlation reflection at a 2θ angle of 2.2° and two weaker reflections at higher 2θ angles. The XRD pattern of MCM-41(m) (Fig. 1b) shows a weaker peak at the same 2θ angles, which is due to decreasing channels’ space.

Electrochemical behavior of modified electrode

Electrochemical behavior of modified electrode was performed for bare CPE and carbon paste containing unmodified MCM-41 (MCM-41/CPE).

Electrochemical behavior of MCM-41/CPE was studied in pH range 1 to 5. As can be seen in Fig. 3, with an increasing pH, the ΔEp (Ep - Ep) increased, and the anodic and cathodic peak currents decreased; such behavior is different from what is seen for ferricyanide in solution in our previous work [28]. With increasing pH values (replacement of H+ by bulky cations relating to the buffer salts), slower penetration (charge propagation) of bulkier cations to the active centers, as well as decreasing protonation degree of amine groups and, therefore, decreasing electrostatic interaction between amine groups and ferricyanide ions, should, most likely, be the reason for the decrease in rate of charge transfer and peak currents. It must be noted that, when electrode transferred again to pH 1 solution, the low pH voltammogram was restored.

The effect of scan rate on electrochemistry of the modified electrode is shown in Fig. 4. With an increasing scan rate, the anodic peak potential of ferricyanide shifted to a more positive value and the cathodic peak potential shifted in a negative direction (quasireversible behavior). Inset a of Fig. 4 shows the plot of Ep vs Log ν for anodic and cathodic peaks. As can be seen at high potential scan rates, the values of Ep are proportional to the Log ν with the
slopes equal to $2.3RT/\alpha nF$ and $2.3RT/(1-\alpha) nF$ for the cathodic and anodic peaks, respectively, indicated by Laviron [32]. Using the slopes of plots, the value of α was determined as 0.49. Also, peak current value of ferricyanide increased linearly with the increasing scan rate in the range of 5–60 mV s$^{-1}$ (inset b of Fig. 4), indicating a surface-controlled process.

Electrocatalytic reduction of H$_2$O$_2$

In experiments, we found that the carbon paste modified with ferricyanide-MCM-41(m) has a catalytic effect on the reduction of hydrogen peroxide. As is known, the electro-reduction of H$_2$O$_2$ requires a large overpotential; no obvious response is observed in the range of +0.7 to −0.3 V on CPE or MCM-41(m)/CPE in 1 M HCl solution containing H$_2$O$_2$ (Fig. 5a and b). However, by use of ferricyanide-MCM-41(m)/CPE, upon addition of H$_2$O$_2$ to the solution, the shape of the cyclic voltammogram of modified electrode changes dramatically with an increase of the reduction current in potential of 0.3 V (compare Fig. 5c and d). This behavior is typical of that expected for mediated reduction as follows:

\begin{equation}
2[Fe(CN)$_6$]^{3-} \rightarrow 2[Fe(CN)$_6$]^{4-} \quad E \quad (1)
\end{equation}

\begin{equation}
2[Fe(CN)$_6$]^{4-} + H_2O_2 + 2H^+ \rightarrow 2[Fe(CN)$_6$]^{3-} + 2H_2O \quad C' \quad (2)
\end{equation}

The effect of pH on catalytic current was investigated. As can be seen in Fig. 6, with increasing pH, the catalytic effect of the modified electrode decreased, which can be attributed to the fact that oxidizing strength of H$_2$O$_2$
depends strongly on pH, and at acidic conditions, hydrogen peroxide acts as a powerful oxidant agent. Also, ferro/ferricyanide will be protonated to some extent, and this may affect the catalytic cycle as well. Therefore, HCl 1 M (pH 0.0) was selected as the optimum medium for determination of H₂O₂. It must be noted that, in this pH, adding of supporting electrolyte such as KCl and KNO₃ has no effect on cyclic voltammograms (not shown) because of the high concentration of protons. Figure 7 shows cyclic voltammetric curves for the H₂O₂ sensor in 1 M HCl. As can be seen, the reduction current increases linearly with increasing H₂O₂ in the concentration range of 1 to 30 mM. It is of great importance to mention that the oxidative peak did not disappear after the onset of the reductive catalysis. Such behavior was previously reported for H₂O₂ reduction on cytochrome c immobilized on the nanometer-scale nickel oxide surfaces on the GC electrode [33]. This phenomenon could be attributed to the fact that most of the adsorbed ferricyanide is probably not catalytically active.

Stability of the modified electrode

After using the modified electrode for electrocatalytic reduction of H₂O₂, and also after storage for a week of modified electrode at room temperature, it could retain the direct electrochemistry of the immobilized ferricyanide upon the continuous cyclic voltammetric sweep in acidic medium. Storage period of a week in room temperature did not change the currents for the direct electron transfer and the responses to H₂O₂.

In this work, a modified CPE containing organically modified MCM-41 [MCM-41(m)] was used as a support for immobilization of ferricyanide. The electrochemical behavior of this modified electrode was studied in different pH values and in different potential sweep rates. Results show that the behavior of ferricyanide immobilized in pores of MCM-41(m), especially its pH-dependent electrochemical behavior, is different from the behavior of ferricyanide in aqueous solution. This modified electrode has many advantages, such as fast response, good chemical and mechanical stability, and clean determination of H₂O₂ without leaching of ferricyanide to the analyte solution. Introducing MCM-41(m) in CPE provides an efficient strategy for the study of electron transfer of ferricyanide and the development of biosensors.
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Keita B, Nadjo L (1989) Mater Chem Phys 22:77
2. Keita B, Belhouori A, Nadjo L (1991) J Electroanal Chem 314:345
3. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710
4. Moller K, Bein T (1998) Chem Mater 10:2950
5. Sayari A, Hamoudi S (2001) Chem Mater 13:3151
6. Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403
7. Brunel D, Cauvel A, Fajula F, Direnzo F (1995) Stud Surf Sci Catal 97:173
8. Mereier L, Pinnavia TJ (1997) Adv Mater 9:500
9. Diaz JF, Balkus KJ, Bedioui F, Kurshev V, Kevan L (1997) Chem Mater 9:61
10. Walcartus A, Luthi N, Blin JL, Su BL, Lamberts L (1999) Electrochim Acta 44:4601
11. Walcartus A, Etienne M, Sayen S, Lebeau B (2003) Electroanalysis 15:414
12. Li L, Li W, Sun C (2002) Electroanalysis 14:368
13. Domenech A, Alvaro M, Ferrer B, Garcia H (2003) J Phys Chem B 107:12781
14. Liu B, Hu R, Deng J (1997) Analyst 122:821
15. Cosnier S, Gondran C, Senillou A, Grätzel M, Vlachopoulos N (1997) Electroanalysis 9:1387
16. Cosnier S, Senillou A, Grätzel M, Comte P, Vlachopoulos N, Renault NJ, Martelet C (1999) J Electroanal Chem 469:176
17. Li G, Kawi S (1999) Sens Actuat B 59:1
18. Yamada T, Zhou HS, Uchida H, Tomita M, Ueno Y, Honma I (2002) Microporous Mesoporous Mater 54:269
19. Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E (2001) Sens Actuat B 76:299
20. Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E, Pivin JC (2001) J Eur Ceram Soc 21:1985
21. Murray RW (1981) Philos Trans R Soc Lond A 302:253
22. Zak J, Kuwana T (1983) J Electroanal Chem 150:645
23. Malinauskas A (1999) Synth Met 107:75
24. Podlovchenko BI, Andreev VN (2002) Russ Chem Rev 71:837
25. Ojani R, Raooef JB, Zamani S (2005) Electroanalysis 17:1740
26. Raooef JB, Ojani R, Ramine M (2007) Electroanalysis 19:597
27. Raooef JB, Ojani R, Ramine M (2006) Electroanalysis 18:1722
28. Ojani R, Raooef JB, Zarei E (2006) Electrochim Acta 52:753
29. Ojani R, Raooef JB, Zarei E (2008) Electroanalysis 20:379
30. Ojani R, Raooef JB, Afagh PS (2004) J Electroanal Chem 571:1
31. Zanjanchi MA, Asgari Sh (2004) Solid State Ionics 171:277
32. Laviron E (1979) J Electroanal Chem 101:19
33. Bayandori-Moghadam A, Ganjali MR, Dinavend R, Razavi T, Suboury AA, Moosavi-Movahedi AA, Norouzi P (2008) J Electroanal Chem 614:83