ON UNIVERSAL LIE NILPOTENT ASSOCIATIVE ALGEBRAS

PAVEL ETINGOF, JOHN KIM, AND XIAOGUANG MA

1. INTRODUCTION

Let A be an associative unital algebra over a field k. Let us regard it as a Lie algebra with bracket $[a,b] = ab - ba$, and consider the terms of its lower central series $L_i(A)$ defined inductively by $L_1(A) = A$ and $L_{i+1}(A) = [A,L_i(A)]$. Denote by $M_i(A)$ the two-sided ideal in A generated by $L_i(A)$: $M_i(A) = AL_i(A)A$, and let $Q_i(A) = A/M_i(A)$. Thus $Q_i(A)$ is the largest quotient algebra of A which satisfies the higher commutator polynomial identity $[\ldots [[a_1, a_2], a_3], \ldots, a_i] = 0$.

An algebra A is said to be Lie nilpotent of index i if $M_{i+1}(A) = 0$ (i.e. $A = Q_{i+1}(A)$). For example, Lie nilpotent algebras of index 1 are commutative algebras. Understanding Lie nilpotent algebras of higher indices is an interesting open problem. Many questions about Lie nilpotent algebras can be reduced to understanding the structure of universal Lie nilpotent algebras, i.e. algebras $Q_{n,i} := Q_i(A_n)$, where A_n is the free associative algebra in n generators, since any finitely generated Lie nilpotent algebra of index i is a quotient of $Q_{n,i+1}$.

The goal of this paper is to advance our understanding of the algebras $Q_{n,i}$ for $i \geq 2$ (in characteristic zero). The structure of these algebras for general i and n is unknown. The only algebras $Q_{n,i}$ whose structure has been known are $Q_{n,2}$, which is easily seen to be isomorphic to the polynomial algebra $k[x_1, \ldots, x_n]$, and $Q_{n,3}$, which, according to Feigin and Shoikhet, [FS], is isomorphic to the algebra of even polynomial differential forms in n variables, $k[x_1, \ldots, x_n] \otimes \wedge^{\text{even}}(dx_1, \ldots, dx_n)$, with product $a \ast b = ab + da \wedge db$.

The main result of the paper is an explicit description of the algebra $Q_{n,4}$. We also derive some properties of the algebras $Q_{n,i}$ for $i > 4$, and formulate some questions for future study which appear interesting.

Acknowledgements. This work arose out of the undergraduate research project of J.K. within the framework of the UROP program at MIT. The work of P.E. was partially supported by the NSF grant DMS-0504847. We are very grateful to B. Shoikhet, who suggested to us the problem to study $Q_{n,4}$ and proposed an approach to it; without his help this paper would not have appeared. We are also grateful to M. Artin for useful discussions, and to T. Schedler for help with computations using MAGMA (see the proof of Theorem 3.5).

2. THE ASSOCIATED GRADED ALGEBRA OF $Q_{n,i}$ UNDER THE LIE FILTRATION

Let A_n be the free algebra over \mathbb{C} in n generators x_1, \ldots, x_n ($n \geq 2$). The algebra A_n can be viewed as the universal enveloping algebra $U(\ell_n)$ of the free Lie algebra ℓ_n in n generators. Therefore, A_n has an increasing filtration (called the Lie filtration), defined by the condition that ℓ_n sits in degree 1, and the associated graded algebra $\text{gr}A_n$ under this filtration is the commutative algebra $\text{Sym}\ell_n$.

The algebra $Q_{n,i}$ is the quotient of $A_n = U(\ell_n)$ by the ideal $M_{n,i} := M_i(A_n)$. Hence, $Q_{n,i}$ inherits the Lie filtration from A_n, and one can form the quotient algebra $D_{n,i} = \text{gr} Q_{n,i} = \text{Sym} \ell_n / \text{gr} M_{n,i}$, which is commutative.

Let $\ell'_n = [\ell_n, \ell_n]$. Then we have a natural factorization

$$\text{Sym} \ell_n = \mathbb{C}[x_1, \ldots, x_n] \otimes \text{Sym} \ell'_n.$$

Let $\Lambda_{n,i}$ be the image of $\text{Sym} \ell'_n$ in $D_{n,i}$. Then the multiplication map

$$\theta : \mathbb{C}[x_1, \ldots, x_n] \otimes \Lambda_{n,i} \to D_{n,i}$$

is surjective.

Theorem 2.1.

(i) $\Lambda_{n,i}$ is a finite dimensional algebra with a grading by non-negative integers (defined by setting $\deg x_i = 1$), with $\Lambda_{n,i}[0] = k$.

(ii) The map θ is an isomorphism.

Proof. Statement (i) follows from the following theorem of Jennings:

Theorem 2.2 ([Jen], Theorem 2). *If A is a finitely generated Lie nilpotent algebra, then $M_2(A)$ is a nilpotent ideal.*

This implies that there exists N such that for any $a_1, \ldots, a_N \in M_2(A)$, $a_1 a_2 \cdots a_N = 0$. Taking $A = Q_{n,i}$, we see that for any $a_1, \ldots, a_N \in \ell'_n$, we have $a_1 a_2 \cdots a_N = 0$. Since $\Lambda_{n,i}$ is generated by the subspace $\ell'_n[<i]$ of ℓ'_n of degree $<i$, this implies that $\Lambda_{n,i}$ is finite dimensional, proving (i).

To prove (ii), let $v_j, j = 1, \ldots, d$, be a basis of $\Lambda_{n,i}$, and assume the contrary, i.e. that we have a nontrivial relation in $D_{n,i}$:

$$\sum_{j=1}^d f_j(x_1, \ldots, x_n)v_j = 0,$$

where $f_j \in \mathbb{C}[x_1, \ldots, x_n]$. Pick this relation so that the maximal degree D of f_j is smallest possible. This degree must be positive, since v_j are linearly independent over \mathbb{C}. Applying the automorphism g^t_i ($t \in \mathbb{C}$) of A_n acting by $g^t_i(x_i) = x_i + t$, $g^t_i(x_s) = x_s$, $s \neq i$, we get

$$\sum_{j=1}^d f_j(x_1, \ldots, x_s + t, \ldots, x_n)v_j = 0.$$

Differentiating this by t, we get

$$\sum_{j=1}^d \partial_{x_s} f_j(x_1, \ldots, x_n)v_j = 0.$$

This relation must be trivial, since it has smaller degree than D. Thus f_j must be constant, which is a contradiction. □

This shows that to understand the structure of the algebra $Q_{n,i}$, we need to first understand the structure of the commutative finite dimensional algebra $\Lambda_{n,i}$, which gives rise to the following question.

Question 2.3. What is the structure of $\Lambda_{n,i}$ as a $GL(n)$-module?
The answer to Question \(2.3\) has been known only for \(i = 2\), in which case \(\Lambda_{n,1} = \mathbb{C}\), and for \(i = 3\), in which case it is shown in [FS] that \(\Lambda_{n,1} = \wedge^{\text{even}}(\xi_1, \ldots, \xi_n)\), and hence is the sum of irreducible representations of \(GL(n)\) corresponding to the partitions \((1^{2r}, 0, \ldots, 0)\), \(0 \leq 2r \leq n\).

In this paper, we answer Question \(2.3\) for \(i = 4\). For \(i > 4\), the question remains open.

3. The multiplicative properties of the ideals \(M_i(A)\).

A step toward understanding of the structure of the algebras \(Q_i(A)\) is understanding of the multiplicative properties of the ideals \(M_i(A)\). In 1983, Gupta and Levin proved the following result in this direction.

Theorem 3.1 ([GL], Theorem 3.2). For any \(m, l \geq 2\) and any algebra \(A\), we have
\[
M_m(A) \cdot M_l(A) \subset M_{m+l-2}(A).
\]

Corollary 3.2. The space \(\mathcal{A} := Q_3(A) \oplus \oplus_{i \geq 3} M_i(A)/M_{i+1}(A)\) has a structure of a graded algebra, with \(Q_3(A)\) sitting in degree zero, and \(M_i(A)/M_{i+1}(A)\) in degree \(i - 2\) for \(i \geq 3\).

Remark 3.3. It is proved in [GL] that \([M_i(A), M_j(A)], M_k(A)\) \(\subset M_{i+j+k-3}(A)\), which implies that the algebra \(\mathcal{A}\) is Lie nilpotent of index 2.

It is interesting that the result of Theorem 3.1 can sometimes be improved. Namely, let us say that a pair \((m, l)\) of natural numbers is null if for any algebra \(A\),
\[
M_m(A)M_l(A) \subset M_{m+l-1}(A)
\]
(clearly, this property does not depend on the order of elements in the pair, and any pair \((1, m)\) is null).

Lemma 3.4. The pair \((m, l)\) is null if and only if the element
\[
[\ldots [x_1, x_2], \ldots, x_m] \cdot [\ldots [x_{m+1}, x_{m+2}], \ldots, x_{m+l}]
\]
is in \(M_{m+l-1}(A_{m+l})\).

Proof. By Theorem 3.1, a pair \((m, l)\) is null iff \(L_m(A)L_l(A) \subset M_{m+l-1}(A)\) for any \(A\). Clearly, this happens if and only if the statement of Lemma 3.4 holds, as desired.

Theorem 3.5. If \(l + m \leq 7\), then the unordered pair \((m, l)\) is null iff it is not \((2,2)\) or \((2,4)\).

Proof. The property of Lemma 3.4 was checked using the MAGMA program, and it turns out that it holds for \((2,3), (3,3), (2,5), (3,4)\), but not for \((2,2)\) and \((2,4)\).

Actually, it is easy to check by hand that the property of Lemma 3.4 does not hold for \((2,2)\), and here is a computer-free proof that it holds for \((2,3)\).

We need to show that in \(Q_{n,4}\), we have
\[
[x_i, x_j][x_k, [x_l, x_m]] = 0.
\]
To do so, define \(S(i, j, k, l, m) := [x_i, x_j][x_k, [x_l, x_m]] + [x_k, x_j][x_i, [x_l, x_m]].\) Then in \(Q_{n,4}\) we have
\[
S(i, j, k, l, m) = 0.
\]
Indeed, it suffices to show that in \(Q_{n,4}\)
\[
[x_i, x_j][x_k, [x_l, x_m]] + [x_i, [x_l, x_m]][x_k, x_j] = 0,
\]
which follows from the fact that in a free algebra we have
\[[a, b][c, d] + [a, d][c, b] = [[a, b], d] + a[d, [c, b]] - [[a, b], d]c, \]
where \(a = x_i, b = x_j, c = x_k, d = [x_l, x_m] \).

Now set
\[
R(i, j, k, l, m) = -\frac{1}{2}S(x_j, x_k, x_l, x_m, x_i) + \frac{1}{2}S(x_j, x_k, x_l, x_i, x_m) - \frac{1}{2}S(x_j, x_l, x_k, x_i, x_m) - \frac{1}{2}S(x_j, x_l, x_k, x_m, x_i) + \frac{1}{2}S(x_l, x_j, x_k, x_i, x_m) - \frac{1}{2}S(x_l, x_j, x_k, x_m, x_i).
\]

Then one can show by a direct computation that in \(A_n \) we have
\[[x_i, x_j][x_k, [x_l, x_m]] = \frac{1}{3}(R(i, j, m, l, k) - R(i, j, l, m, k)). \]

Therefore, we see that \([x_i, x_j][x_k, [x_l, x_m]] = 0 \) in \(Q_{n,4} \), as desired. \(\square \)

Further computer simulations by T. Schedler using MAGMA have shown that the pairs (2,6) and (4,4) are not null. This gives rise to the following conjecture:

Conjecture 3.6. A pair \((i, j)\) is null if and only if \(i\) or \(j\) is odd.

4. Description of \(Q_{n,4} \) by generators and relations

In [FS], Feigin and Shoikhet described the algebra \(Q_{n,3} \) by generators and relations. Namely, they proved the following result.

Theorem 4.1. \(Q_{n,3} \) is generated by \(x_i, i = 1, \ldots, n \), and \(y_{ij} = [x_i, x_j], 1 \leq i, j \leq n \), with defining relations
\[[x_i, y_{ij}] = 0, \]
and the quadratic relation
\[y_{ij}y_{kl} + y_{ik}y_{jl} = 0 \]
saying that \(y_{ij}y_{kl} \) is antisymmetric in its indices.

Corollary 4.2. The algebra \(\Lambda_{n,3} \) is generated by \(y_{ij} \) with defining relations
\[y_{ij} = -y_{ji}, \quad y_{ij}y_{kl} + y_{ik}y_{jl} = 0. \]

In this section we would like to give a similar description of the the algebras \(Q_{n,4}, \Lambda_{n,4} \). As we know, the algebra \(Q_{n,4} \) is generated by the elements \(x_i, y_{ij} \) as above, and also \(z_{ijk} = [y_{ij}, x_k], 1 \leq i, j, k \leq n \). Our job is to find what relations to put on \(x_i, y_{ij}, z_{ijk} \) to generate the ideal \(M_{n,4} \). This is done by the following theorem, which is our main result.
Theorem 4.3.
(i) The ideal $M_{n,4}$ is generated by the Lie relations

$$[x_i, z_{jkm}] = 0.$$

the quadratic relations

$$y_{ij} z_{kln} = 0,$$

and the cubic relations

$$y_{ij} y_{klm} + y_{ik} y_{jlp} = 0,$$

saying that $y_{ij} y_{klm}$ is antisymmetric in its indices.

(ii) The algebra $Λ_{n, 4}$ is generated by y_{ij}, z_{ijk} subject to the linear relations

$$y_{ij} = -y_{ji}, \quad z_{ijk} = -z_{jik}, \quad z_{ijk} + z_{jki} + z_{kij} = 0,$$

and the relations

$$y_{ij} z_{kln} = 0, \quad z_{ijp} z_{kln} = 0, \quad y_{ij} y_{klm} + y_{ik} y_{jlp} = 0.$$

Proof. Part (ii) follows from (i), so we need to prove (i). The relations $y_{ij} z_{kln} = 0$ follow from the fact that $M_2(A) M_3(A) \subset M_4(A)$ for any algebra A (Theorem 3.5). This fact also implies that $y_{ij} y_{klm}$ is antisymmetric, since by [FS], $y_{ij} y_{kl} + y_{ik} y_{jl} \in M_{n, 3}$.

Denote by B_n the quotient of A_n by the relations stated in part (i) of the theorem. We have just shown that there is a natural surjective homomorphism $η : B_n \rightarrow Q_{n, 4}$. We need to show that it is an isomorphism. For this, we need to show that for any $a, b, c, d \in B_n$, $[[[a, b], c], d] = 0$. For this, it suffices to show that $[[a, b], c]$ is a central element in B_n. But $[[a, b], c] = 0$ in $Q_{n, 3}$, which implies that $[[a, b], c]$ belongs to the ideal generated by z_{ijk} and $y_{ij} y_{kl} + y_{ik} y_{jl}$. But it is easy to see using the relations of B_n that all elements of this ideal are central in B_n, as desired. □

Let $K_{n, i}$ be the kernel of the projection map $Λ_{n, i+1} \rightarrow Λ_{n, i}$. We see that $K_{n, 3}$ is spanned by elements z_{ijk} and $y_{ij} y_{kl}$ modulo the antisymmetry relation. Therefore, we get

Corollary 4.4. As a $GL(n)$-module, $K_{n, 3}$ is isomorphic to the direct sum of two irreducible modules $F_{2, 1, 0, \ldots, 0}$ and $F_{2, 2, 0, \ldots, 0}$ corresponding to partitions $(2, 1, 0, \ldots, 0)$ and $(2, 2, 0, \ldots, 0)$.

This answers Question [2.3] for $i = 4$.

Proof. Let $V = \mathbb{C}^n$ be the vector representation of $GL(n)$. The span of z_{ijk} is the subrepresentation of $V^{\otimes 3}$ annihilated by $Id + (12)$ and $Id + (123) + (132)$ in $\mathbb{C}[S_3]$, so it corresponds to the partition $(2, 1, 0, \ldots, 0)$. The span of $y_{ij} y_{kl}$ is the representation $S^2(\wedge^2 V)/\wedge^4 V$, so it is the irreducible representation corresponding to the partition $(2, 2, 0, \ldots, 0)$. □

5. The W_n-module structure on $M_{n, i}/M_{n, i+1}$

Let $\mathfrak{g}_n = \text{Der}(Q_{n, 3})$ be the Lie algebra of derivations of $Q_{n, 3}$. Since every derivation of A_n preserves the ideals $M_{n, i}$, we have a natural action of $\text{Der}(A_n)$ on $M_{n, i}/M_{n, i+1}$ and a natural homomorphism $ϕ : \text{Der}(A_n) \rightarrow \mathfrak{g}_n$. This homomorphism is surjective, since a derivation of A_n is determined by any assignment of the images of the generators x_i.

The following theorem is analogous to results of [FS].
Theorem 5.1. The action of \(\text{Der}(A_n)\) on \(M_{n,i}/M_{n,i+1}\) factors through \(g_n\). Thus, \(g_n\) acts on the graded algebra \(\mathcal{A}\) preserving the grading and the product.

Proof. Let \(D : A_n \rightarrow A_n\) be a derivation such that \(D(A_n) \subset M_{n,3}\). Our job is to show that \(D(M_{n,i}) \subset M_{n,i+1}\) for \(i \geq 1\). For this, it suffices to show that for any \(a_1, \ldots, a_i \in A_n\) one has

\[
D[\ldots[a_1, a_2], \ldots, a_i] \in M_{n,i+1}.
\]

For this, it is enough to prove that if \(a_1, \ldots, a_i \in A_n\), and for some \(1 \leq k \leq i\), \(a_k \in M_{n,3}\), then

\[
[\ldots[a_1, a_2], \ldots, a_i] \in M_{n,i+1}.
\]

It is easy to show by induction using the Jacobi identity that we can rewrite \([\ldots[a_k, a_{m_1}], \ldots, a_{m_{i-1}}]\), where \(m_1, \ldots, m_{i-1}\) is a permutation of \(1, \ldots, k, \ldots, i\) (\(k\) is omitted). Thus we may assume without loss of generality that \(k = 1\). In this case, we have to show that for any \(b_1, b_2, b_3, b_4 \in A_n\), one has

\[
[\ldots[b_1, [b_2, b_3], b_4], a_2], \ldots, a_i] \in M_{n,i+1}.
\]

This reduces to showing that for any \(p, q \geq 0\) with \(p + q = i - 1\), and any \(a_1, \ldots, a_p, c_1, \ldots, c_q \in A_n\), we have

\[
\text{ad}(a_1) \cdots \text{ad}(a_p)(b_1) \cdot \text{ad}(c_1) \cdots \text{ad}(c_q)\text{ad}(b_4)\text{ad}(b_3)(b_2) \in M_{n,i+1}.
\]

But by Theorem 3.1 we have \(M_{n,p+1}M_{n,q+3} \subset M_{n,p+q+2} = M_{n,i+1}\), which implies the desired statement, since the first factor is in \(M_{n,p+1}\) and the second one in \(M_{n,q+3}\). \(\square\)

It is pointed out in [FS] that, since \(Q_{n,3}\) is the algebra of even differential forms on \(\mathbb{C}^n\) with the \(*\)-product, the Lie algebra \(W_n\) of polynomial vector fields on \(\mathbb{C}^n\) is naturally a subalgebra of \(g_n\). Therefore, we get the following corollary.

Corollary 5.2. There is a natural action of the Lie algebra \(W_n\) on the quotients \(M_{n,i}/M_{n,i+1}\), and therefore on the graded algebra \(\mathcal{A}\).

It is clear from Theorem 2.1 that as \(W_n\)-modules, the quotients \(M_{n,i}/M_{n,i+1}\) have finite length, and the composition factors are the irreducible modules \(F_D\) of tensor fields of type \(D\) (where \(D\) is a Young diagram) considered in [FS]. In fact, it follows from Theorem 2.1 that if \(\tilde{F}_D\) denotes the \(W_n\)-module of all polynomial tensor fields of type \(D\) (which is reducible and therefore differs from \(F_D\) if and only if \(D\) has only one column, which consists of \(< n\) squares), and if

\[
K_{n,i} = \oplus N_D F_D,
\]

where \(N_D \in \mathbb{Z}_+\) and \(F_D\) is the irreducible representation of \(GL(n)\) corresponding to \(D\), then in the Grothendieck group of the category of representations of \(W_n\) we have

\[
M_{n,i}/M_{n,i+1} = \sum N_D \tilde{F}_D.
\]

In particular, Corollary 4.3 implies that in the Grothendieck group,

\[
M_{n,3}/M_{n,4} = F_{2,1,0,\ldots} + F_{2,2,0,\ldots}.
\]

In fact, we can prove a stronger statement.
Proposition 5.3. One has an isomorphism of representations

\[M_{n,3}/M_{n,4} = F_{2,1,0,\ldots,0} \oplus F_{2,2,0,\ldots,0}. \]

Proof. Consider the subspace \(Y_n := L_3(A_n)/(M_{n,4} \cap L_3(A_n)) \subset M_{n,3}/M_{n,4}. \) By [FS], this is a \(W_n \)-subrepresentation. It is a proper subrepresentation, because \([x_1, x_2]^2 \in M_{n,3}/M_{n,4}, \) but it is not contained in \(Y_n, \) as its trace in a matrix representation of \(A_n \) can be nonzero. On the other hand, \(Y_n \) contains \([x_1, [x_1, x_2]] \neq 0, \) so \(Y_n \neq 0, \) and contains vectors of degree 3. This easily implies that \(Y_n = F_{2,1,0,\ldots,0}. \) On the other hand, let \(Z_n \) be the subrepresentation generated by the elements \(y_{ij}y_{kl} + y_{ik}y_{jl}. \) These elements are annihilated by \(\partial_{x_i}, \) so they generate a subrepresentation whose lowest degree is 4. Thus, \(Z_n = F_{2,2,0,\ldots,0}, \) and \(M_{n,3}/M_{n,4} = Y_n \oplus Z_n, \) as desired.

It would be interesting to determine the structure of the representations \(M_{n,i}/M_{n,i+1} \) when \(i > 3. \)

References

[FS] B. Feigin, B. Shoikhet, On \([A_n, A_n]/[A_n, [A_n, A_n]] \) and on a \(W_n \)-action on the consecutive commutators of free associative algebra, [math.QA/0610410v2].

[GL] N. Gupta, F. Levin, On the Lie ideals of a ring, Journal of Algebra, 81, 225-231, 1983.

[Jen] S. Jennings, On rings whose associated Lie rings are nilpotent, Bull. Amer. Math. Soc. 53, (1947). 593–597.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail address: etingof@math.mit.edu

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail address: kimjohn@mit.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail address: xma@math.mit.edu