Ultrahigh resolution profiles lead to more detailed serum peptidome signatures of pancreatic cancer

Simone Nicolardia,1, Berit Velstrab,1, Bart J. Mertensc, Bert Bonsingb, Wilma E. Meskerb, Rob A.E.M. Tolleenaarb, André M. Deeldera, Yuri E.M. van der Burgta,*

a Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
b Department of Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
c Department of Medical Statistics and Bioinformatics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands

\section*{Article info}

Article history:
Received 28 August 2013
Received in revised form 18 November 2013
Accepted 12 December 2013

Keywords:
Pancreatic cancer
Mass spectrometry
Proteomics
Serum protein profiling
FTICR

\section*{Abstract}

Mass spectrometry-based (clinical) proteomics has been widely applied as a technology to find and validate disease-specific protein signatures. MALDI-based peptidome profiles provide a suitable platform for classification of body fluids or tissues, albeit at the cost of being unable to observe low abundant species. Here we show that a fully automated one-step solid-phase extraction serum sample cleanup in combination with fast MALDI acquisition and ultrahigh precision 15 T FTICR readout provides a powerful, fast and robust approach for obtaining biomarker signatures. This is exemplified for a cohort of pancreatic cancer patients. Specific “early cancer” symptoms such as pain, jaundice or weight loss are often not experienced, thus delaying diagnosis of the disease. Novel markers for early diagnosis of pancreatic cancer are therefore urgently needed. A total of 273 serum samples, distributed over a calibration and validation set, were processed and mass analyzed within a time frame of 24 h. In both sets sensitivity and selectivity values were well above 85%. In these “next-generation” MALDI peptidome profiles all species up to 9 kDa were isotopically resolved. Finally, it is noted that the low ppm mass accuracy of peptides and proteins observed between 1 and 9 kDa in the FTICR profiles facilitates sequence identifications.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-SA license.

1. Introduction

Pancreatic cancer (PC) is the fourth (females) and fifth (males) leading cause of cancer death in developed countries, with a relatively low annual incidence of 5.4 cases per 100,000 females and 8.2 cases per 100,000 males [1]. Patients often die within the first half year after diagnosis, or have an extremely poor prognosis with an overall five-year survival rate of less than 5% [2]. When surgical resection is possible, five-year survival rates improve to approximately 25%. Unfortunately, when the first symptoms appear most tumors...
are at an advanced stage and their surgical resection would not improve the prognosis [3,4]. Molecular biomarkers that detect PC at an early stage with high sensitivity and specificity would thus be highly beneficial. At the moment, the only used blood marker for detecting and following PC in the clinic is the mucin-associated carbohydrate antigen CA 19-9. This marker, however, often fails in detecting small, resectable cancers [5]. Consequently, like in other cancer biomarker studies, serum proteomics has become a popular approach to find new markers for PC, since blood is a rich and powerful source of biomarkers in general and samples can be collected in a minimally invasive way. The discovery of serum biomarkers is mainly performed by mass spectrometry (MS)-based proteomics methods [6]. One of these involves the comparison of serum protein profiles in a “case versus control” manner by matrix-assisted laser desorption/ionization – time of flight (MALDI-TOF) MS [7]. Such profiles (i.e. mass spectra) contain hundreds of features (or peaks), of which the presence and intensity can depend on the physiological and pathological condition of the individual. The statistical analysis of serum peptide and protein profiles obtained from both control and diseased individuals allows the identification of a set of features, or a so-called biomarker signature, that can be valuable in understanding the specific disease. Moreover, the biomarker signature may provide leads to further exploit diagnostic and therapeutic potential. Encouraging results have been obtained using profiling strategies [8–10]. Nevertheless, the route to clinically applicable protein assays faces various types of challenges [11,12]. With regard to the selected methodology, for MS-based peptide profiling approaches the problems can be categorized as follows. First of all, multiple profiling studies have shown to lack reproducibility and could not be validated. In this context, standardization of the protocols used for serum sample collection and for peptide and protein purification is pivotal [10,13,14]. The use of a fully automated high-throughput platform for sample processing based on solid-phase extraction (SPE) has been shown to minimize variation and to improve robustness of the method [15]. Secondly, previous MS-acquisitions such as performed on surface-enhanced laser desorption/ionization (SELDI) platforms were not robust and yielded poor accuracies. In addition, identification of peptides or proteins was cumbersome, or not possible at all in these early profiling studies. However, with current equipment these issues can be considered obsolete. The use of internal standards in combination with modern mass analyzers now allows precise quantitation and detailed characterization of peptides in high-throughput profiles [16,17]. Thirdly, similar peptide profiles were found for various diseases, implying that the features were not specific. On the other hand, it has been postulated that well-defined degradation of highly abundant proteins into peptides (“degradome”) can result in tumor-specific serum peptidome patterns [18].

Recently, we reported a protein profiling study for PC performed on a fully automated SPE-based serum processing platform [19]. Proteins were first isolated with weak cation exchange (WCX) magnetic beads (MBs) using a 96-channel liquid handling robot, followed by acquisition of linear mode MALDI-TOF profiles in the range of 1 to 12 kDa, and evaluation via linear discriminant analysis with double cross-validation. This resulted in a discriminating WCX-profile for PC with a sensitivity of 78% and a specificity of 89% in the calibration set with an area under the curve (AUC) of 90%. These results were validated with a sensitivity of 74% and a specificity of 91% (AUC 90%). However, an obvious disadvantage of low resolution MS profiles is the fact that (poly)peptides and proteins are measured as broad peaks, thus leading to one of the earlier mentioned problems on peak identification. In a second profiling study using the same PC cohort, serum samples were processed with reversed-phase (RP) C18 MBs, and resulting peptides were measured with high resolution reflectron mode MALDI-TOF MS yielding isotopically resolved profiles up to 4 kDa. For statistical evaluation, a list of 42 different peptides was compiled from which a discriminating profile for PC could be defined, with an area under the curve (AUC) of 92% (98%) a sensitivity of 76% (95%) and specificity of 91% (100%) in the calibration (validation) set. Although the identity of most of these peptides was known or elucidated, it became clear that multiple peptides still overlapped at the resolving power of approximately 11,000 [20]. The effect of increased resolving power was therefore further studied in MALDI-profiles obtained by Fourier transform ion cyclotron resonance (FTICR) MS, a platform that has proven to be extremely powerful for the analysis of complex mixtures, such as oil, organic matter and plasma [21–23]. With proper control, mass resolving powers higher than 100,000 (at m/z-value 1000 with 1 s transient) and low or sub-ppm mass measurement errors can be routinely obtained [24,25]. We have previously developed a MALDI-FTICR workflow on a commercially available platform equipped with a 15T magnet that allows high-throughput and fully automated profiling of human serum peptides and proteins with isotopic resolution up to 15,000 Da [26,27]. By following this approach, in comparison to high resolution TOF analyzers the spectrum alignment is more accurate and the quantification of peptides more robust due to the improved mass measurement precision. In this study this MALDI-FTICR workflow in combination with SPE-based sample cleanup with RPC18-functionalyzed MBs was applied for the analysis of a clinical cohort. Here, “next-generation” MALDI-FTICR peptide and protein profiles were generated using serum samples obtained from PC patients and control individuals (258 samples in total). Classification performances of both the calibration and validation set were compared to those previously obtained from the same PC cohort, either processed with different MBs or measured on a different mass analyzer. Discriminating peaks (i.e. a biomarker signature) defined from the calibration set were validated using an independent case–control group. Finally, the low ppm mass accuracy provided by the MALDI-FTICR platform narrows the search window for de novo identifications of peptides and proteins in the profiles.

2. Materials and methods

2.1. Patients and sample collection

For the calibration set, serum samples were obtained from 49 patients with PC prior to surgery, and from 110 (age- and gender-matched) healthy volunteers (“controls”) over a time
period ranging from October 2002 until December 2008 at the outpatient clinic of the Leiden University Medical Center (LUMC), the Netherlands. Healthy volunteers were partners or accompanying persons of included patients. For the validation set, serum samples were obtained from 39 patients and 75 healthy (age- and gender-matched) volunteers over a time period ranging from January 2009 until July 2010. Patients were selected candidates for curative surgery, thus no patients with primary irresectable tumors were included. All surgical specimens were examined according to routine histological evaluation and the extent of the tumor spread was assessed by TNM (TNM Classification of Malignant Tumors) classification. Informed consent was obtained from all subjects and the study was approved by the Medical Ethical Committee of the LUMC. All samples were collected and processed according to a previously reported standardized protocol [9].

Briefly, blood samples were drawn by antecubital venipuncture while the individuals, who had not been fasting prior to any invasive procedure, were seated. The samples were collected in an 8.5-cc Serum Separator Vacutainer Tube (BD Diagnostics, Plymouth, UK) and maximally within 4 h at room temperature were centrifuged at 1000 × g for 10 min. Serum samples were then distributed into sterile 500-µL barcode labeled polypropylene aliquots (TrakMate; Matrix TechCorp.) and stored at −80 °C. All serum samples were thawed on ice once and randomly placed in barcode labeled racks in an 8-channel Hamilton STAR® pipetting robot (Hamilton) for automated aliquoting into 60-µL daughter tubes. The aliquots were stored in 96-tubes racks at −80 °C until further sample processing. Samples from the calibration and the validation set were distributed over three 96-tubes racks as following: one full 96-tube rack for both the calibration and validation set were spotted onto three 96-well PCR plates. Then, 1 L of this mixture was spotted in quadruplicate onto the same MALDI-target plate. This SPE- and MALDI-spotting procedure requires approximately 3 h per plate of 96 samples.

2.3. MALDI-FTICR mass spectrometry and data processing

MALDI-FTICR experiments were performed on a Bruker 15 tesla solarix™ FTICR mass spectrometer equipped with a novel CombiSource (Bruker Daltonics). The MALDI-FTICR system was controlled by Compass solarixcontrol software and equipped with a Bruker Smartbeam-II™ laser system that operated at a frequency of 200 Hz. The ‘medium’ predefined shot pattern was used for the irradiation. Two acquisition settings, namely low-mass method (LM) and high-mass method (HM), respectively, were used to optimize both the sensitivity and resolving power in the mass range from 1013 to 3700 Da and in the mass range from 3500 to 10,000 Da, respectively. These methods were optimized as previously described with some modification [27]. For both methods, each mass spectrum was obtained from the sum of 10 scans of 150 laser shots each and using 512 K data points. Typically, the target plate offset was 100 V with the deflector plate set at 180 V. The ion funnels operated at 100 V and 6.0 V, respectively, with the skimmers at 15 and 5 V. The analyzer entrance was maintained at −7 V, and side kick technology was used to further optimize peak shape and signal intensity. The two acquisition settings differentiate for the trapping potentials (LM, 0.6 and 0.55 V; HM, 0.95 and 0.80 V), the required excitation power (LM, 25%; HM, 28%) and pulse time (LM, 10 µs; HM, 20 µs), the time of flight to the ICR cell (LM, 1.350 ms; HM, 2.700 ms) and the quadrupole filter mass (LM, m/z 1300; HM, m/z 2500). For each spotted sample, two duplicate spots were measured using the LM and the other two using the HM. Approximately 4.5 h were needed to measure 384 MALDI spots (i.e. originating from 96 different serum samples). DataAnalysis Software 4.0 SP 5 (Bruker Daltonics) was used for the visualization and the calibration of the spectra. Prior to the measurement of each MALDI plate the FTICR system was externally calibrated using a commercially available peptide mix and a protein mix (Bruker Daltonics). The spectra obtained using the LM were internally calibrated only when used for identification purposes. The m/z-values used for the internal calibration of the LM and the HM are reported in Table S1 in the Supplementary Material. Peaks were determined using the FTMS algorithm with a signal-to-noise threshold of 3 and using the centroid for peak position with a percentage height of 80.

Supplementary material related to this article can be found, in the online version, at doi:10.1016/j.trprot.2013.12.003.

2.4. Peak selection and quantification

Protein and/or peptide signals in RPC18 profiles were quantified as follows. First, based on visual inspection of the profiles, 457 and 670 peaks were selected for the LM and HM spectra, respectively, for further analysis. To this end, a so-called reference file was compiled for both types of profiles in such a way that for each selected peak the m/z-value, a peak number and an m/z-window were reported. In the LM profiles, this
m/z-window ranged from 0.015 to 0.166 Da while in the HM it ranged from 0.05 to 0.31 Da reflecting the peak width along the spectra. Then, the in-house developed Xtractor tool was used to determine the intensity of each user-defined peak. This open source tool generates uniform data (peak) arrays regardless of spectral content (http://www.msutils.org/Xtractor). MALDI-FTICR profiles were exported as XY (.xy) files, all containing m/z values with corresponding intensities. Although peptide and proteins were measured up to 10,000 Da using the HM method, the peak selection was limited to 9043.3 Da. The analysis of the spectra in the m/z-range from 9043.3 to 10,000 is on-going and the results will be presented in a separate study.

2.5. Statistical analysis

Peak intensities were transformed using the logarithmic function, followed by calculation of the mean of peak intensities obtained from replicate spectra. The intensities of isotope peaks belonging to the same peptide were further summed to reduce the number of features and time needed for further analysis. For each sample, 196 and 291 peak intensity values were obtained for the LM and HM, respectively, and were used to statistical analysis. To this end, logistic regression ridge shrinkage (LRRS) analysis was applied to the calibration sets (i.e. LM and HM data from the calibration set) in order to calibrate two diagnostic rules for the classification of the serum sample either as case or control. Each sample was assigned to the group for which the probability was higher. The prediction rules obtained from the application of LRRS on the calibration sets were applied to the validation sets (i.e. LM and HM data from the validation set). Thus, each sample was classified and the results were compared with known disease status. The classification probabilities assigned to each sample using the LM and HM data from the validation set were further combined. To this end, LRRS analysis was performed on the combination of the log transformed probabilities obtained for validation sets. This analysis involves the recalibration of the validated diagnostic rule. For each analysis error rate (error = the amount by which an observation differs from its expected value), sensitivity, specificity and area under the curve (AUC) were calculated. The error rates are based on the sensitivity and specificity values, assuming a prior class probability of 0.5 for each group. Receiver-operating characteristic (ROC) curves with the true-positive rate (sensitivity) were plotted in function of the false-positive rate (1-specificity) for different cut-off points of a parameter. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold. The area under the ROC curve (AUC) is a measure of how well a parameter can distinguish between groups (diseased/healthy). Univariate discriminate analysis was performed to determine which peak varied the most between case and control groups. This study was limited to peaks of which the absolute weighted discriminant coefficient was higher than 0.1 in the multivariate discriminant analysis used to calibrate the discriminant models. Finally, a t-test was performed on a selection of peaks for the calibration sets only.

3. Results

3.1. MALDI-FTICR-MS peptide and protein profiling

Serum samples of PC patients as well as control individuals were processed simultaneously using a previously described fully automated and standardized SPE-based RPC18-MB protocol [15]. Thus obtained MB eluates were spotted onto a MALDI target plate in quadruplicate. Two types of ultrahigh resolution peptide and protein profiles were then acquired applying an automated acquisition procedure on the MALDI-FTICR system (see Section 2). Two out of four spots were used to obtain a so-called low mass (LM) profile (m/z-values from 1013 to 3700) and the remaining two spots were used to generate a so-called high mass (HM) profile (m/z-values from 3500 to 10,000). In total, 273 serum samples were analyzed in this way, thus yielding 1092 profiles. A typical example of both an LM and HM MALDI-FTICR profile is depicted in Fig. 1A. It was verified that all peptides and (small) proteins were measured with isotopic resolution through all the spectra, with typical resolving powers varying from 130,000 (m/z 1039.6727) to 46,000 (m/z 3523.7664) in the LM spectra and from 150,000 (m/z 3680.8709) to 33,000 (m/z 9744.6054) in the HM spectra (as plotted in Fig. 2A). As a result, a large number of peptides or proteins that would overlap in high resolution MALDI-TOF MS were measured as distinct features by MALDI-FTICR MS. Two examples of resolved species are shown in Fig. 2B, one for the LM and one for the HM profiles. The ultrahigh resolving power allowed the accurate quantification of the selected peptides and proteins in all the spectra. After manual inspection of the profiles, 457 and 670 peaks for the LM and HM, respectively, were selected for statistical analysis. After taking into account isotopic peaks from the same species, 196 peptides remained from the 457 selected peaks in LM spectra and 291 peptides or proteins remained from the 670 selected peaks in HM spectra. Peptides and proteins were detected with signal intensities that typically ranged over two orders of magnitude. For example, Fibrinopeptide alpha chain (2–16) (at m/z-value 1465.6554) was often observed as the most intense peptide, and was 304 times more intense than Complement C4-A (1337–1350) (at m/z-value 1626.8459) detected with a signal-to-noise ratio (S/N) of 6.6, in a typical spectrum. Thus, peptides observed with low S/N were also evaluated. For example, the peptide identified as oxidized Fibrinogen beta chain (45–71) (m/z 2898.5334) (see Section 3.3) was observed in the spectra in the calibration set with an averaged S/N 9.6 with a standard deviation (SD) of 6.4, while the highly intense Complement C3f fragment peptide (at m/z-value 2021.1039) was observed with an averaged S/N of 2035 with an SD of 345. As a final remark, from 12 out of 1032 profiles the quality was insufficient for further statistical analysis, most likely because of failed MALDI spotting.

3.2. Statistical analysis

The signal intensities of all selected peaks were determined in all serum profiles using the Xtractor tool described in the Materials and methods section. As shown in Fig. 2A, the m/z-windows in the reference files were fine-tuned according to the resolving power calculated for each m/z-value. The
Fig. 1 – Ultrahigh resolution 15 T MALDI-FTICR peptide and protein profiles obtained from human serum after RPC18 magnetic bead-based SPE (upper panel). Using two different acquisition settings, optimized for the low-mass and high-mass range, peptides and proteins were isotopically resolved up to 10 kDa. For statistical analysis, logistic regression ridge shrinkage analysis was used to find changes in the peptide and protein profiles obtained from healthy individuals and pancreatic cancer patients. A weighted discriminant coefficient was assigned to each detected peptide or protein according to its discriminant property in the way that the higher the value of the discriminant coefficient the higher the case probability (middle panel). Identifications of the most discriminating peptides and proteins were based on previously reported peptide IDs or on accurate mass measurement of mass differences in the spectra (lower panel). Note that these identifications need further confirmation by MS/MS-data.
Fig. 2 – For each isotopically resolved peptide or protein signal a specific m/z-window was defined to allow accurate quantification. The m/z-window was based on the resolving power at a specific m/z-value (A) and in the case of overlapping species further optimized (B). Note that the resolving power at m/z 3500 is higher in the high-mass measurements (i.e. ~150,000) than in the low-mass measurements (i.e. ~46,000) as a result of the specific broadband frequency-sweep waveform that was used to excite the ions into the ICR cell.

The presence of different peptides with close masses was also taken into account as well as the mass measurement precision (see Fig. 2B). The optimization of this m/z-window allowed the accurate quantification of all peaks selected from the spectra. Thus obtained peak intensity values were then used for statistical analysis. To this end, a discriminate model was first calibrated and then validated using LRRS analysis on the calibration and validation sets, respectively. The ROC curves resulted from this analysis are shown in Fig. 3. Error rates of 0.136 and 0.104, sensitivities of 88% and 91% and specificities of 96% and 93% with AUC of 0.987 and 0.977 for the LM and HM validation sets, respectively. A sequential analysis was performed by sub-typing the PC cases into cases without any metastasis (i.e. regional lymph node-negative (LN−) and no distant metastasis (DM−)) versus cases that were lymph node-positives (LN+) and/or showed distant metastasis (DM+), based on TNM-classification summarized in Table 1. This sub-typing resulted in a box plot (see Fig. 3) with clear separation between controls and cases, and in addition good separation between cases with and without metastasis (Wilcoxon Mann–Whitney test with a p-value of 7.7293e−05 for controls versus “(LN−)and(DM−)”, and a p-value of 0.015844 for “(LN+)and/or(DM+)” versus “(LN−)and(DM−)”).

Patient characteristics, number of serum samples, and the results of the classification methods set are shown in Table 1. A logistic regression coefficient weighted by the standard deviation of the peak intensity was assigned to each peak as determined from multivariate analysis on the calibration set (i.e. the calibration of the discriminating rule). These discriminant weights denote the conditional effect...
associated with each peak, after taking into account the variation in expression across the other selected peaks. Thus, the higher the value of the discriminant weight the higher the case probability. Note that the reverse applies to control samples. The plots with the weighted discriminant coefficients versus the m/z-values are shown in Fig. 1B. A t-test was performed on peaks with absolute discriminant coefficients higher than 0.1 in the calibration set. A p-value smaller than 0.001 was considered as significant. Peaks that satisfied these criteria are reported in Table 3 with corresponding protein names, t-test values, standard deviations (SD), p-values, 95%-confidence interval and the weighted discriminant coefficients. Note that the p-values here reported ranged from 6.0×10^{-4} to 4.0×10^{-9} indicating a high statistical significance.

3.3. Serum peptide identification by accurate mass difference measurement

A list of serum peptides and proteins that are commonly observed in MALDI-TOF profiles obtained after RPC18-based sample cleanup has been compiled previously and this was used for statistical evaluations [9]. However, a number of peptides remained unidentifed in this list, and moreover in the current MALDI-FTICR ultrahigh resolution profiles many RPC18-MB serum eluate peaks are unknown. Likely, a large number of these degradome peptides originate from the same high abundant proteins after proteolytic cleavage as was reported earlier [18,28,29]. New peptide assignments were performed based on matching accurate mass measurements of m/z-differences between peaks in 15 T MALDI-FTICR
spectra with possible decreased or increased sequences ("degradome"). Thus, a search for consecutive mass differences corresponding to one amino acid was performed, starting from a previously identified peptide in the spectrum with relatively highest signal intensity. In this way, new peptides with one or more additional amino acids at the N-terminus or/and the C-terminus or modified peptides (i.e. oxidized, cysteinylated) were identified. Following this strategy, the accurate measurement of mass differences allowed the identification of peptides containing modifications such as oxidation cannot be uniquely characterized by the accurate measurement of mass differences. For this purpose additional MS/MS-experiments are needed to confirm the identifications and localize for instance modified amino acids in a "case–control" setting. Due to the relatively high biological variability of the serum peptidome (and proteome) a large number of samples are required for statistical evaluation. Thus, high-throughput analytical methodologies have been adopted in combination with MS, pioneered by SELDI-TOF platforms. In the same period, high-throughput robotic platforms with more flexible and user-defined sample preparation protocols were combined with MALDI-TOF read-out. Both low-resolution TOF-profiles with a wide m/z-range and high-resolution profiles with smaller m/z-windows were reported for proteins and peptides, respectively [7,30,31]. However, single- or even multi-step protein fractionations still yield highly complex samples and the low resolving powers in linear mode SELDI- or MALDI-TOF profiles do not allow accurate quantification of the profiled species. Peptides up to

Table 1 – Patient characteristics for the calibration and validation sets.

Stage	Calibration set	Validation set				
	HM [correct classif.]	LM [correct classif.]	Combination HM and LM	HM [correct classif.]	LM [correct classif.]	Combination HM and LM
No. of samples	46	45	39	35	63.4 (38–81)	62.8 (38–81)
Age median (min–max)	65.6 (41–80)	65.2 (41–80)	64.3 (38–81)	62.8 (38–81)		
Male	23 [16]	22 [17]	16	17 [15]	15 [11]	12
Female	23 [15]	23 [15]	17	22 [17]	20 [15]	15
Localization (pancreas)						
Head	38 [28]	36 [27]	33	35 [28]	31 [22]	23
Body	3 [1]	3 [2]	1	1 [1]	1 [1]	1
Tail	3 [1]	4 [2]	2	1 [1]	1 [1]	1
Unknown/other	2 [1]	2 [1]	1	2 [2]	2 [2]	2
Stage						
IA	7 [7]	7 [6]	7	2 [1]	2 [0]	0
IB	5 [3]	5 [3]	3	2 [2]	1 [1]	1
II A	3 [2]	3 [1]	2	3 [1]	3 [0]	1
II B	19 [13]	17 [14]	13	21 [18]	20 [17]	17
III	5 [3]	5 [4]	3	2 [2]	2 [2]	2
IV	7 [3]	8 [4]	5	9 [8]	7 [6]	6
Tumor differentiation						
Unknown (irresectable tumor)	12 [7]	11 [6]	7	11 [10]	10 [9]	9
Grade 1	10 [5]	11 [5]	6	6 [2]	6 [3]	3
Grade 2	11 [9]	11 [9]	9	15 [14]	13 [10]	10
Grade 3	13 [10]	12 [12]	11	7 [6]	6 [4]	5

m/z-value 2545.2883 both lack an alanine residue but differ at the site of mutation (i.e. Val35 Factor XIIIa (15–38) and Leu35 Factor XIIIa (15–38), respectively). It is emphasized that isobaric peptides containing modifications such as oxidation cannot be uniquely characterized by the accurate measurement of mass differences. For this purpose additional MS/MS-experiments are needed to confirm the identifications and localize for instance modified amino acids in the sequence. As a final remark, the accurate and precise MALDI-FTICR mass measurements will allow a reliable match between the MS/MS-data obtained using other MS techniques such as LC-ESI-MS/MS and the peptides observed in the MALDI-FTICR spectra.

4. Discussion

The past decade, MS-based profiling studies have been carried out to determine disease-specific serum peptidome signatures in a "case–control" setting. Due to the relatively high biological variability of the serum peptidome (and proteome) a large number of samples are required for statistical evaluation. Thus, high-throughput analytical methodologies have been adopted in combination with MS, pioneered by SELDI-TOF platforms. In the same period, high-throughput robotic platforms with more flexible and user-defined sample preparation protocols were combined with MALDI-TOF read-out. Both low-resolution TOF-profiles with a wide m/z-range and high-resolution profiles with smaller m/z-windows were reported for proteins and peptides, respectively [7,30,31]. However, single- or even multi-step protein fractionations still yield highly complex samples and the low resolving powers in linear mode SELDI- or MALDI-TOF profiles do not allow accurate quantification of the profiled species. Peptides up to
Protein name	Peptide sequence	Mass difference	Calculated m/z [M+H]+	Observed m/z [M+H]+	Mass measur. error (ppm)	MALDI-FTICR method
ITIH4 UniProt Q14624	M.NFRPGVLSRQLGLPPPVPDHAAYHPR.R	+ (NRF + 0.0033)	3141.6017	3141.6047	0.96	LM
	N.FRPVLSRQLGLPPPVPDHAAYHPR.R	+ (RF + 0.0009)	3027.5588	3027.5593	0.18	LM
	R.PGVLSSRQLGLPPPVPDHAAYHPR.R or R.PGVLSSRQLGLPPPVPDHAAYHPR.R	+ (R + 0.0004)	2880.4904	2880.4896	−0.26	LM
Thrombin light chain UniProt P00734	L.FEKKSLEDKTERELLESYIDGR	+ (FEKK − 0.0011)	2685.3730	2685.3720	−0.36	LM
	F.EKKSLEDKTERELLESYIDGR	+ (KK − 0.0005)	2409.2620	2409.2615	−0.19	LM
	E.KKLEDKTERELLESYIDGR	+ (K + 0.0004)	2281.1670	2281.1676	0.23	LM
	K.SLEDKTERELLESYIDGR	−	2153.0721	2153.0722	0.04	LM
	S.LEDKTERELLESYIDGR	− (S + 0.0012)	2066.0400	2066.0390	−0.53	LM
	D.KTERELLESYIDGR	− (SLED + 0.0001)	1708.8864	1708.8865	0.01	LM
Thrombin light chain UniProt P00734	TFGSGEADC(CysGly)GLRPLFEKSSL.EKTERELLESYIDGR	+ (G + 0.0032)	4265.0489	4265.0520	0.73	HM
	TFGSGEADC(CysGly)GLRPLFEKSSL.EKTERELLESYIDGR	−	4208.0275	4208.0274	−0.02	HM
	TFGSGEADC(CysGly)GLRPLFEKSSL.EKTERELLESYIDGR	− (R-Gly − 0.0001)	4108.9478	4108.9479	0.02	HM
	TFGSGEADCGLRPLFEKSSL.EKTERELLESYIDGR	−(Cysteinylation + 0.0010)	4089.0234	4089.0222	−0.27	HM
	TFGSGEADC(CysGly)GLRPLFEKSSL.EKTERELLESYIDGR	− (R + 0.0034)	4051.9263	4051.9297	0.82	HM
	TFGSGEADC(CysGly)GLRPLFEKSSL.EKTERELLESYIDGR	+ (G + 0.0032)	4265.0489	4265.0520	0.73	HM
Fibrinogen alpha chain UniProt P02671	K.SSSYSQFTSTSNSYRGSDFSTESKSY	−	5901.70298	5901.70641	0.58	HM
	K.SSSYSQFTSTSNSYRGSDFSTESKSY	−(V + 0.0010)	5802.63456	5802.6370	0.42	HM
Fibrinogen alpha chain UniProt P02671	K.SSSYSQFTSTSNSYRGSDFSTESKSY	−	5334.3536	5334.3572	0.67	HM
	K.SSSYSQFTSTSNSYRGSDFSTESKSY	−(GHA + 0.0002)	5069.2362	5069.2395	0.65	HM
	K.SSSYSQFTSTSNSYRGSDFSTESKSY	− (RGHA + 0.0099)	4913.1351	4913.1288	−1.28	HM
	K.SSSYSQFTSTSNSYRGSDFSTESKSY	− (RKHGA + 0.0005)	4785.0401	4785.0442	0.86	HM
Table 2 – (Continued)

Protein name	Peptide sequencea	Mass difference	Calculated m/z [M+H]+	Observed m/z [M+H]+	Mass measur. error (ppm)	MALDI-FTICR method
Platelet Factor 4 UniProt P02776	FASAEAEDEGDLQCCLCVKTTSQVRPRHITSLEVIKAPHCPTAQIAATLNGRKLQAPLYKKIJKLES	+(FASA + 0.0385)	8141.3692	8141.3932	2.94	HM
	KAPHCPTAQIAATLNGRKLQAPLYKKIJKLES	+(SA − 0.0027)	7923.2636	7923.2464	−2.17	HM
	S.EASEAEDEGDLQCCLCVKTTSQVRPRHITSLEVIKAPHCPTAQIAATLNGRKLQAPLYKKIJKLES	+(A + 0.0297)	7836.2316	7836.2468	1.93	HM
	A.EAEDEGDLQCCLCVKTTSQVRPRHITSLEVIKAPHCPTAQIAATLNGRKLQAPLYKKIJKLES	−	7765.1945	7765.1799	−1.88	HM
	A.EAEDEGDLQCCLCVKTTSQVRPRHITSLEVIKAPHCPTAQIAATLNGRKLQAPLYKKIJKLES	−(E + 0.0132)	7636.1518	7636.1240	−3.64	HM
	A.EAEDEGDLQCCLCVKTTSQVRPRHITSLEVIKAPHCPTAQIAATLNGRKLQAPLYKKIJKLES	−(EA + 0.068)	7565.1147	7565.0933	−2.83	HM
HMW Kininogen UniProt P01042	H.NLGHGHKHERDQGQHGHQ	−	1943.9080	1943.9071	−0.47	LM
	HNLGHGHKHERDQGQHGHQ	+(H + 0.0001)	2080.9669	2080.9661	−0.39	LM
Complement C3f fragment UniProt P01024	SSKITKHWESASLLR	−	2021.1039	2021.10398	0.04	LM
	SSKITKHWESASLLR	−(S + 0.0005)	1934.0719	1934.0715	−0.20	LM
	SSKITKHWESASLLR	+(S + 0.0013)	1847.0399	1847.03869	−0.63	LM
	SSKITKHWESASLLR	−(SSKITK HWESASLLR + 0.0003)	1367.7542	1367.75405	−0.14	LM
	SSKITKHWESASLLR	−(HKHWESASLLR or HKHWESASLLR + 0.0005)	1098.56907	1098.56968	0.56	LM
Factor XIIIa UniProt P00488	R.AVFPNSNAEDELPTVELEXG1VFPR.G	−	2602.3107	2602.3113	0.22	LM
	A.VFPNSNAEDELPTVELEXG1VFPR.G	−(A − 14.0141)	2545.2893	2545.2883	−0.38	LM
	A.VFPNSNAEDELPTVELEXG1VFPR.G	−(A − 0.0006)	2531.2736	2531.2735	−0.04	LM

a The sequences of previously identified peptides that are depicted in bold were used as a starting point in finding consecutive mass differences.
m/z-values of 4500 can be routinely analyzed with isotopic resolution using TOF-analysers in reflector mode, but at the cost of restricting the analyzed m/z-range and thus excluding proteins from the evaluation. Moreover, reflectron mode profiles still contain a significant number of overlapping peptides, as we previously demonstrated in ultrahigh resolution MALDI-FTICR profiles [20].

In this study the ultrahigh resolving power provided by a 15 T MALDI-FTICR system was exploited in terms of discriminative power of case–control peptidome profiles and identification of observed species. This is the first profiling study that reports on the application of such ultrahigh resolution profiles exemplified by a clinical cohort of serum samples from healthy individuals and PC patients. Aiming for cancer-specific peptide and protein signatures, these serum samples were first fractionated on a fully automated SPE-platform based on functionalized MBs and then profiled using a 15 T MALDI-FTICR mass spectrometer. In total, 487 peptides or small proteins (i.e. 196 and 291 in LM and HM spectra, respectively) were measured with isotopic resolution in the m/z-range 1–9 kDa and quantified with high accuracy and precision. The ultrahigh resolving power allowed the correct quantification of peptides or proteins that previously were observed to suffer from overlapping isotopic distributions in lower resolution profiles (see Fig. 2). Note that the total number of detectable peptides was higher, i.e. several peptides were detected only in few particular samples, probably due to a higher expression of a particular protein or an elevated protease activity.

Two different MALDI-FTICR acquisition methods, namely a low mass and a high mass method, were used to generate peptide and protein profiles from two independent groups of serum samples. A calibrated and validated discriminating rule built on the combination of the data obtained from the two MALDI-FTICR methods resulted in a sensitivity of 89% and a specificity of 100% with an AUC of 0.989. These results

Table 3 – Peptides present in MALDI-FTICR precision profiles with low p-values after comparative analysis of serum samples from pancreatic cancer patients and control individuals.
Observed m/z [M+H]

Low-mass MALDI-FTICR profiles
1206.5753
1211.6535
1263.5965
1348.7118
1350.6282
1449.0759
1561.7265
1616.6584
1626.8458
1698.7450
1718.9430
1786.8545
1994.9879
2685.3746
2768.2993
2898.5334
2931.2909
3190.4279
3206.4243
3261.4664

High-mass MALDI-FTICR profiles

Observed m/z	Protein name	t-Test	SD	p-Value	CI lower	CI upper	B-weighted
3679.8665	n.i.	–4.3	0.7	3.7E–05	–0.8	–0.3	0.14
3806.8902	n.i.	–4.2	0.7	5.4E–05	–0.7	–0.3	0.19
4051.9297	Thrombin light chain (328–363) (cysteinylated)	–5.8	2.8	4.4E–08	–3.8	–1.9	1.72
4108.9479	Thrombin light chain (328–363) (cysteinylated + Gly)	–4.6	1.5	7.6E–06	–1.8	–0.7	0.24
4394.0803	n.i.	3.8	1.6	2.1E–04	0.5	1.7	–0.62
4854.2768	Apolipoprotein CIIL2 (21–99)	–3.9	2.5	1.7E–04	–2.6	–0.8	0.28
4961.4906	FGA chain (529–574) or (513–558)	–4.5	2.9	1.3E–05	–3.3	–1.3	1.16
4979.4945	FGA chain (529–574) or (513–558) + 15.9952 Da	–5.0	2.1	1.7E–06	–2.6	–1.1	0.36
4985.4806	n.i.	–3.7	1.7	2.9E–04	–1.7	–0.5	–0.30
5802.6370	FGA chain (576–627)	–3.7	3.2	2.7E–04	–3.2	–1.0	0.62
6223.3096	n.i.	–4.5	1.4	1.2E–05	–1.6	–0.6	0.19
7151.4191	n.i.	–3.5	1.6	5.9E–04	–1.5	–0.4	0.11
8205.0930	Apolipoprotein CIIL (23–101)	–3.8	1.8	2.4E–04	–1.9	–0.6	0.88
8781.2819	Apolipoprotein-CII (21–99) + 15.9952 Da	3.8	2.8	1.8E–04	0.9	2.9	–1.19

* This species was observed as a doubly charged ion.
corroborate classification numbers from our previous MALDI-TOF studies [19,32]. The t-test analysis performed on the peptides with absolute discriminant weights higher than 0.1 resulted in the identification of 34 peptides that (i.e., p-value lower than 0.001) differentiate between case and control groups (see Table 3). The high precision and accuracy of the mass measurements allowed the identification of 26 of these peptides either by comparison with previously reported peptides or by accurate mass measurement of mass differences in the spectra (see Section 2). Application of the latter approach resulted in the identification of peptides generated through proteolysis of the same protein. In fact, starting from a previously identified peak (i.e., peptide) it was found that accurate measurement of the difference between that specific m/z-value and the m/z-value of a new peak matched to a similar peptide with either one amino acid more or less at the C- or the N-terminus, corresponding to the “overall” protein sequence. Thus, up to 8 new peptides could be identified starting from the fragment peptide K.SLEDKTERELLESYIDGR of thrombin light chain (UniProt P00734) (see Table 2). Nevertheless, the presence of isobaric peptides cannot be excluded and MS/MS experiments are required to further validate the identifications. In conclusion, using the two identification approaches described above, we are now able to further expand the total number of identified peptides, especially at higher m/z-values. Other MALDI-profiling methods that so far have been used for the characterization of human serum peptides were not suitable for the identification of high molecular weight peptides or proteins, because these lacked sensitivity and resolving power [28,29].

As a final remark, it should be noted that at this stage the peptidome profiles were not evaluated for the m/z-range from 9000 to 10,000. Here, both the high density of peaks and the relatively lower resolving power do not permit binning of the data points. The most abundant peaks present in this range were identified as apolipoprotein-CIII isoforms [33] and these data will be evaluated in a separate study using a different quantification method. In this study, we have shown that high quality human serum peptide and protein profiles can be generated using a standardized and robust protocol for the sample preparation and ultra-high resolution 15T MALDI-FTICR MS for the mass measurements. The use of this mass analyzer allowed the isotopic resolution and the accurate and precise mass measurement of a high number of peptides and small proteins in a wide m/z-range. Notably, recent innovation in ICR-cell technology potentially provides similar performance at a lower magnetic field strength [33]. The statistical analysis of profiles generated from a clinical cohort of samples allowed the discrimination between healthy individuals and PC patients with sensitivity and specificity comparable with those reported by other authors using MALDI-TOF MS. A total of 273 serum samples was processed and mass analyzed within a time frame of 24 h and the high quality of the data both facilitated the interpretation and evaluation of the generated profiles. These ultra-high resolution mass spectra represent a “next-generation” of MS-based peptidome profiles and provide a new tool for a more detailed description of the high-abundant proteins in clinical serum sample cohorts aiming for new diagnostic leads.

REFERENCES

[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin 2011;61:69–90.
[2] Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011. CA: Cancer J Clin 2011;61:22–36.
[3] Wong T, Howes N, Threadgold J, Smart HL, Lombard MG, Gilmore I, et al. Molecular diagnosis of early pancreatic ductal adenocarcinoma in high-risk patients. Panreatology 2001;1:486–509.
[4] Sener SF, Fremgen A, Menck HR, Winchester DP. Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the National Cancer Database. J Am Coll Surg 1999;189:1–7.
[5] Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 2007;33:266–70.
[6] Nilsson T, Mann M, Aebersold R, Yates JR, Bairroch A, Bergeron JMJ. Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 2010;7:681–5.
[7] Albrethsen J. The first decade of MALDI protein profiling: a lesson in translational biomarker research. J Proteomics 2011;74:765–73.
[8] de Noo ME, Tollenaar RA, Deelder AM, Bouwman LH. Current status and prospects of clinical proteomics studies on detection of colorectal cancer: hopes and fears. World J Gastroenterol 2006;12:6594–601.
[9] Velstra B, van der Burgt YE, Mertens BJ, Mesker WE, Deelder AM, Tollenaar RA. Improved classification of breast cancer peptide and protein profiles by combining two serum workup procedures. J Cancer Res Clin Oncol 2012;138:1983–92.
[10] Callesen AK, Vach W, Jergensen PE, Cold S, Mogensen O, Kruse TA, et al. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review. J Proteome Res 2008;7:1395–402.
[11] Beretta L. Proteomics from the clinical perspective: many hopes and much debate. Nat Methods 2007;4:785–6.
[12] Anderson NG. Adventures in clinical chemistry and proteomics: a personal account. Clin Chem 2010;56:154–60.
[13] Kinsinger CR, Apffel J, Baker M, Bian X, Borchers CH, Bradshaw R, et al. Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles). Proteomics Clin Appl 2011;5:580–9.
[14] Callesen AK, Christensen R, Madsen JS, Vach W, Zapico E, Cold S, et al. Reproducibility of serum protein profiling by systematic assessment using solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 2008;22:291–300.
[15] Bladergroen MR, Derks RJ, Nicolardi S, de Visser R, van Berloo S, van der Burgt YEM, et al. Standardized and automated solid-phase extraction procedures for high-throughput proteomics of body fluids. J Proteomics 2012;77:144–53.
[16] Percy A, Chambers A, Yang J, Domanski D, Borchers C. Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. Anal Bioanal Chem 2012;404:1089–101.
[17] Nicolardi S, Dalebout H, Bladergroen MR, Mesker WE, Tollenaar RAEM, Deelder AM, et al. Identification of human serum peptides in Fourier transform ion cyclotron resonance precision profiles. Int J Proteomics 2012;804036.
[18] Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 2006;116:271–84.

[19] Velstra B, Ronsing BA, Mertens BJ, van der Burgt YEM, Huijbers A, Vasen H, et al. Detection of pancreatic cancer using serum protein profiling. HPB 2012.

[20] Nicolardi S, Palmblad M, Dalebout H, Bladergroen M, Tollenaar RAEM, Deelder AM, et al. Quality control based on isotopic distributions for high-throughput MALDI-TOF and MALDI-FTICR serum peptide profiling. J Am Soc Mass Spectrom 2010;21:1515–25.

[21] Marshall J, Jankowski A, Furesz S, Kireeva I, Barker L, Dombrovsky M, et al. Human serum proteins preseparated by electrophoresis or chromatography followed by tandem mass spectrometry. J Proteome Res 2004;3:364–82.

[22] Hagman C, Ramström M, Håkansson P, Bergquist J. Quantitative analysis of tryptic protein mixtures using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2004;3:587–94.

[23] Hertkorn N, Ruecker C, Meringer M, Gugisch R, Frommberger M, Perdue EM, et al. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal Bioanal Chem 2007;389:1311–27.

[24] Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 1998;17:1–35.

[25] Scigelova M, Hornshaw M, Giannakopulos A, Makarov A. Fourier transform mass spectrometry. Mol Cell Proteomics 2011;10.

[26] Nicolardi S, van der Burgt YEM, Wuhrer M, Deelder AM. Mapping O-glycosylation of apolipoprotein C-III in MALDI-FTICR protein profiles. Proteomics 2013;13:992–1001.

[27] Nicolardi S, Palmblad M, Hensbergen PJ, Tollenaar RAEM, Deelder AM, van der Burgt YEM. Precision profiling and identification of human serum peptides using Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 2011;25:3457–63.

[28] Hortin GL. The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 2006;52:1223–37.

[29] Tiss A, Smith C, Menon U, Jacobs I, Timms JF, Cramer R. A well-characterised peak identification list of MALDI MS profile peaks for human blood serum. Proteomics 2010;10:3388–92.

[30] Villanueva J, Philip J, Entenberg D, Chaparro CA, Tanwar MK, Holland EC, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 2004;76:1560–70.

[31] Villanueva J, Philip J, Chaparro CA, Li Y, Toledo-Crow R, DeNoyer L, et al. Correcting common errors in identifying cancer-specific serum peptide signatures. J Proteome Res 2005;4:1060–72.

[32] Velstra B, Burgt Y, Mertens B, Mesker W, Deelder AM, Tollenaar R. Improved classification of breast cancer peptide and protein profiles by combining two serum workup procedures. J Cancer Res Clin Oncol 2012;138:1983–92.

[33] Nikolaev EN, Jertz R, Grigoryev A, Baykut G. Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7T. Anal Chem 2012;84:2275–83.