Thielavins: tuned biosynthesis and LR-HSQMBC for structure elucidation

Zeinab Y. Al Subeh1 · Huzefa A. Raja1 · Amanda Maldonado2 · Joanna E. Burdette2 · Cedric J. Pearce3 · Nicholas H. Oberlies1

Received: 10 September 2020 / Revised: 16 December 2020 / Accepted: 20 December 2020 / Published online: 25 January 2021
© The Author(s), under exclusive licence to the Japan Antibiotics Research Association 2021

Abstract

A series of thielavins I, V, and Q (1–3) and the previously undescribed thielavin Z8 (4) were isolated from cultures of a fungal Shiraia-like sp. (strain MSX60519) that were grown under a suite of media and light conditions, with enhanced biosynthesis noted using rice as a substrate with 12:12 h light:dark cycles. Conversely, oatmeal medium and continuous white light-emitting diode light exposure negatively affected the production of these compounds, at least by strain MSX60519. The structure of 4 was determined using NMR spectroscopic data and mass fragmentation patterns. Of note, the utility of LR-HSQMBC and NOESY NMR experiments in the structural elucidation of these hydrogen-deficient natural products was demonstrated. Compounds 1–4 exhibited cytotoxic activity at the micromolar level against human breast, ovarian, and melanoma cancer cell lines.

Introduction

Recently, we evaluated the effect of different fermentation conditions, including varying both culture media and light exposure, on the biosynthesis of perylenequinones, specifically hypocrellins and hypomycins, by the fungus Shiraia-like sp. (strain MSX60519) [1, 2]. We showed that the production of these fungal metabolites could be tuned based on media and light exposure. For instance, continuous light-emitting diode (LED) exposure led to enhanced production of hypocrellins on rice medium vs hypomycins on oatmeal medium [1]. Previously, those classes of secondary metabolites had not been reported from the same fungus, and it was interesting to see how their biosynthesis could be modulated.

As a part of follow-up work, the production of non-perylenequinone secondary metabolites by cultures grown on rice and incubated under 12:12 h light:dark cycles was observed. As described herein, these minor constituents were identified as thielavins I (1), V (2), and Q (3), along with the previously undescribed thielavin Z8 (4). Thielavins are a group of polyphenolic fungal secondary metabolites composed of two or more monocyclic aromatic units linked by ester bonds. A wide-range of biological properties have been reported for thielavins, and these include antimicrobial [3, 4], antihyperglycemic [5, 6], antifouling [7], cytotoxic [8–10], and herbicidal activities [11]; inhibition of prostaglandin biosynthesis [12, 13]; and inhibition of indoleamine 2,3-dioxygenase [14]. Given the distinct conditions used to generate 1–4 and the broad range of biological activities, we felt compelled to explore these compounds further.

Despite the description of many thielavins and thielavin-like secondary metabolites since their discovery in 1981 [12, 15], various challenges are associated with their structure elucidation. This is due to the sparsity of 1H–1H coupling, the low hydrogen to carbon ratio, and the abundance of fully-substituted carbons (e.g., ranging from 16 to 19 in 1–4). Data derived from standard COSY and HMBC NMR experiments may not be enough to derive the full...
structural assignments of these compounds, leading to at least some incorrect assignments in the literature [3, 16]. As such, the sequence of aromatic units in thielavins have been assigned based on MS fragmentation patterns [7, 8, 17], and the chemical shifts of ester carbonyls were arbitrarily assigned for most thielavins [5, 7, 8]. Given the prominence of NMR spectroscopy for establishing molecular connectivity [18, 19], the isolated thielavins (1–4) were used to test the power of a relatively new NMR experiment, i.e., long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC), coupled with NOESY experiments, to assign the full structures of these hydrogen-deficient compounds.

Result and discussion

There were a few key goals with these studies. First, we were intrigued with the ability to tune the biosynthesis of distinct fungal metabolites by varying the media and the light source when fermenting *Shiraia*-like sp. (strain MSX60519). In addition, while thielavins are known in the literature, their structure elucidation by NMR can be challenging, especially due to the relatively low number of hydrogens. As such, we strove to evaluate the usefulness of LR-HSQMBC NMR experiments, coupled with NOESY experiments, to fully assign the structures of these molecules. Finally, the biological activity of 1–4 was evaluated against a suite of human cancer cell lines.

The effect of growth medium and light on the production of thielavins

The *Shiraia*-like sp. (strain MSX60519) was grown on three different grain-based media: rice, Cheerios [20], and breakfast oatmeal (old fashioned Quaker oats). As previously described [1], these cultures were incubated under three different light conditions in triplicates: 12:12 h light:dark cycles, continuous LED light, and complete darkness. The relative abundances of 1–4 (Fig. 1) were evaluated using UPLC-HRESIMS data from the resulting extracts. Cultures grown on rice medium under 12:12 h light:dark cycles showed the highest abundance of 1–4 (Fig. 2), suggesting rice as the best medium for the production of thielavins, while oatmeal medium showed the lowest abundance of these compounds. On the other hand, exposure to continuous LED light negatively affected the biosynthesis of thielavins, regardless of culture media (Fig. 2). Interestingly, the production of three distinct classes of compounds (i.e., hypocrellins, hypomycins, and thielavins) from *Shiraia*-like sp. was affected differently by the culture medium and light exposure [1]. Enhanced production of hypocrellins was observed in cultures grown on rice and incubated under light:dark cycles or continuous LED light, while hypomycins preferred oatmeal medium and LED light incubation [1]. The optimal growth conditions for enhanced production of thielavins have not been reported extensively in the literature, and with this study, thielavins showed higher abundance in rice-fermentation cultures incubated with regular light:dark cycles. While it is well appreciated that secondary metabolite production in fungi is sensitive to fermentation conditions [21], biosynthesis experiments with strain MSX60519 were particularly notable in this regard.

Structure elucidation of 1–4

Compound 1 was obtained as white amorphous powder. The HRESIMS and NMR data of 1 suggested that it belonged to the thielavin class of natural products (Figs. S1, S2 and Table S1), which our team had studied previously [8]. For instance, key features apparent in the 13C NMR spectrum included the presence of two ester carbonyl moieties, 18 aromatic carbons, and 8 aryl methyls. In addition, the HMBC correlations exhibited by methyl groups and aromatic hydrogens (Fig. S3) suggested that 1 was thielavin I, which was reported previously from the fungus *Chaetomium carinthiacum* [5]. However, the collected and reported 1H and 13C NMR data did not align perfectly (Table S2), possibly due to differences in referencing based on residual solvent signals. Moreover, as discussed below, we were able to more fully assign the structure, and those data are reported in comparison to the literature, to facilitate the identification of this compound in the future (see Tables S1 and S2).

While these oligomeric molecules may appear relatively simple, there are several challenges to assigning their structures completely. To start, the structural similarities between the aromatic units within and/or between thielavins...
results in only subtle differences, typically the presence, absence, or variable position of a methyl moiety. This is compounded by the fact that they are hydrogen deficient, and this renders the COSY NMR spectrum (and even coupling constants from the 1H NMR spectrum) of limited value due to the lack of 1H–1H coupling. Moreover, even with typical heteronuclear experiments, insufficient HMBC correlations could lead to erroneous structural assignments, as was the case with thielavins Q and R [3, 16].

To address these challenges, the usefulness of the LR-HSQMBC NMR experiment was evaluated. As the name indicates, LR-HSQMBC is a recently developed NMR experiment that provides long-range correlation data across 4-, 5-, and even 6-bond heteronuclear couplings [22], and it has been used to enhance the structure elucidation of hydrogen-deficient molecules [23–25]. The LR-HSQMBC spectrum of 1 (Fig. S4) showed correlations of H-5, H3-10, H3-8′, and H3-9′ with the carbonyl at C-7 (δ_C 171.2), which confirmed the connection between rings A and B (Fig. 3). The connection between rings B and C was supported by the LR-HSQMBC correlations of H3-10′, H3-7′, and H3-9′ with the carbonyl at C-7′ (δ_C 169.5). Thus, the LR-HSQMBC experiment of 1 confirmed the sequence of the rings and the assignment of the two separate carbonyl moieties (i.e., C-7 and C-7′) (Table S1); this was further evidence that the assignments for this compound reported previously could be improved (Table S2) [5]. In addition, the HRESIMS fragmentation data of 1 were supportive of the sequence of the rings (Fig. S14).

Compound 2 was a white powder with a molecular formula $\text{C}_{27}\text{H}_{28}\text{O}_8$ as deduced by HRESIMS (Fig. S1). 1H and 13C NMR spectra collected in CD$_3$OD, identified 2 as...
thielavin V (Fig. S5), which was reported previously from a Setophoma sp. [17]. Thielavin V (2) differs from 1 by the lack of a 9′-CH$_3$ and the presence of an extra aromatic hydrogen at the 6′ position. Table S3 compares the collected and literature NMR data of 2, and the HRESIMS fragmentation data of 2 were supportive of this structural assignment (Fig. S14).

Compound 3 was isolated as a white amorphous powder. The molecular formula of 3 was deduced by HRESIMS data (Fig. S1) and 1D and 2D NMR data (Figs. S6 and S8), indicating that 3 matched the structure of thielavin Q. This was first reported in 2011, and the structure was later revised in 2013 based on new HMBC correlations [3, 16].

The previously reported 1H and 13C NMR data of thielavin Q (3) were measured in two different solvents (CD$_3$OD for 1H and a 9.75–0.25 mixture of CDCl$_3$/CD$_3$OD for 13C). Herein, we report the 1H and 13C NMR data for 3 in CDCl$_3$ for more convenient identification of this compound in the future (Table S1). In addition, the HRESIMS fragmentation data were supportive of this structural assignment (Fig. S14).

The molecular formula of 4 was deduced as C$_{26}$H$_{32}$O$_8$ by HRESIMS data (Fig. S1), suggesting the same index of hydrogen deficiency (i.e., 14) as observed for 1–3. The 1H and 13C NMR data of 4 indicated nine aryl methyls, one aromatic hydrogen, and four hydroxy groups (Table 1 and Fig. S9). The two chelated and exchangeable hydrogens at δ_H 11.59 (2-OH) and 11.42 (2′-OH) suggested a hydroxy group β to each ester (i.e., C-7 and C-7′). The HMBC correlations of three methyl groups [H$_3$-8 (δ_H 2.18) to C-2, C-3, and C-4; H$_3$-9′ (δ_H 2.23) to C-4, C-5, and C-6; and H$_3$-10 (δ_H 2.67) to C-1, C-5, and C-6] and the two hydroxys [2′-OH (δ_H 11.59) to C-1, C-2, and C-3; and 4-OH (δ_H 5.30) to C-3, C-4, and C-5] indicated the presence of a 2,4-dioxygenated-3,5,6-trimethylbenzoyl ring (i.e., ring A). Similarly, the HMBC correlations of three methyl groups [H$_3$-8′ (δ_H 2.13) to C-2′, C-3′, and C-4′; H$_3$-9′ (δ_H 2.14) to C-4′, C-5′, and C-6′; and H$_3$-10′ (δ_H 2.70) to C-1′, C-5′, and C-6′] and a chelated hydroxy [2′-OH (δ_H 11.42) to C-1′, C-2′, and C-3′] confirmed the structure of ring B as a 2′,4′-dioxygenated-3′,5′,6′-trimethylbenzoyl moiety (Figs. 4 and S11). The third aromatic ring (i.e., ring C) was found to have three methyl groups attached to C-2′, C-5′, and C-6′ based on HMBC correlations (Fig. 4), in addition to the oxygenated carbon at C-1′ and a hydroxylated carbon at C-3′. The oxygenated C-4′ in ring B was linked with C-1 in ring A through an ester linkage, while another ester bond formed the connection of ring B at C-1′ with ring C at C-1′. The LR-HSQMBC spectrum of 4 showed four-bond heteronuclear couplings of H$_3$-10 and H$_3$-10′ with the C-7 and C-7′ carbonyls, respectively (Figs. S12 and S13). However, the correlations of CH$_3$-8′, -9′, -7′, and -9′ with the ester linkages was not very clear, which might be attributed to the paucity of sample, relative to what was used for the same experiment on 1. Compound 4 was ascribed the trivial name thielavin Z$_8$.

In the literature, NOESY NMR data were not typically collected for thielavins, probably because these molecules

Table 1	1H (700 MHz) and 13C (175 MHz) NMR data of 4 in CDCl$_3$.						
no.	Ring A		no.	Ring B		no.	Ring C
δ_c, type	δ_H		δ_c, type	δ_H		δ_c, type	δ_H
1	104.6, C	1′	110.3, C	1″	148.4, C		
2	161.5, C	2′	160.7, C	2″	114.0, C		
3	107.8, C	3′	117.0, C	3″	152.0, C		
4	158.0, C	4′	152.9, C	4″	115.0, C		
5	115.7, C	5′	138.4 or 138.5	5″	120.8, C		
6	138.4 or 138.5, C	6′	121.4, C	6″	136.0, C		
7	170.5, C	7′	170.5, C	7″	9.8, CH$_3$		
8	8.2, CH$_3$	2.18, s	8′	10.0, CH$_3$	2.13, s	8″	20.1, CH$_3$
9	12.2, CH$_3$	2.23, s	9′	13.7, CH$_3$	2.14, s	9″	12.8, CH$_3$
10	19.5, CH$_3$	2.67, s	10′	19.6, CH$_3$	2.70, s	3′-OH	4.62, s
2-OH	11.59, s	2′-OH	11.42, s				
4-OH	5.30, s						
lack asymmetric centers. However, NOESY experiments can be used to facilitate the structure elucidation of these compounds, as shown for 3 and 4 (Fig. 5). The NOESY spectra of these two compounds showed intra- and inter-ring correlations among the methyl groups, aromatic hydrogens, and/or hydroxy groups attached to rings A, B, and C (Figs. S15 and S16), confirming the positions of the aromatic substituents in 3 and 4 (Fig. 5). Compound 4, for instance, showed NOESY correlations between 2-OH/H3-8, H3-8/4-OH, 4-OH/H3-9, and H3-9/H3-10 in ring A. Similar correlations were exhibited by the substituents attached to rings B and C (Fig. 5). On the other hand, inter-ring NOESY correlations between H3-10/H3-8′ and H3-10′/H3-7″ in 4 confirmed the sequence of rings A, B, and C, and these conclusions were confirmed via MS fragmentation patterns (Fig. S14). Overall, while somewhat non-traditional, NOESY correlations can be used as an orthogonal means for confirming the structures of thielavins.

Cytotoxic activities of thielavins 1–4

The cytotoxic activities of 1–4 were evaluated against three cancer cell lines, including MDA-MB-231 (human breast cancer), OVCAR3 (human ovarian cancer), and MDA-MB-435 (human melanoma cancer). Compounds 1–4 exhibited moderate cytotoxic activities, ranging between 8 and 24 μm (Table 2). The difference between 1 and 2 is only a single methyl group in ring C, suggesting this may improve cytotoxicity in the latter, albeit only slightly.

Table 2 IC50 (μm) values of 1–4 against three human cancer cell lines

Compound	MDA-MB-231	OVCAR3	MDA-MB-435
1	24.1	10.6	12.4
2	8.9	4.5	7.8
3	13.8	14.7	18.6
4	14.3	8.2	18.1
Taxol	0.6	1.8	0.3

This study brought to light three new aspects to the thielavin literature. First, we showed the effect of culture medium and light exposure on the production of thielavins by Shiraia-like sp., suggesting that fermentation on rice under 12:12 h light:dark cycles enhanced biosynthesis of these compounds. We also expanded the number of thielavins by the identification of thielavin Z8 (4). Perhaps more importantly, we showed how LR-HSQMBC and NOESY NMR experiments can be used in a mutually supportive manner to enhance the structural assignments of these hydrogen deficient molecules.

Materials and methods

General experimental procedures

Ultraviolet (UV) spectra were measured using a Varian Cary 100 Bio UV–Vis spectrophotometer (Varian Inc.). 1D and 2D NMR data were obtained using an Agilent 700 MHz NMR spectrometer equipped with a cryoprobe, or a JEOL ECA-500 NMR spectrometer operating at 500 MHz, or a JEOL ECS-400 spectrometer operating at 400 MHz that is equipped with a high-sensitivity JEOL Royal probe and a 24-slot autosampler. Residual solvent signals were used for referencing the NMR spectra. UPLC-HRESIMS data for the culture extracts and the pure compounds 1–4 were collected via a Thermo Fisher Scientific Q Exactive Plus mass spectrometer equipped with an electrospray ionization source and connected to a Waters Acquity UPLC system with a BEH Shield RP18 column (Waters, 1.7 μm; 50 × 2.1 mm) that was heated to 40 °C. The mobile phase consisted of CH3CN-H2O (0.1% formic acid) using a gradient system of 15:85–100:0 over 10 min at a flow rate of 0.3 ml min⁻¹. MS data were collected from m/z 150 to 2000, while alternating between positive and negative modes. Analytical and preparative HPLC experiments were carried out using a Varian Prostar HPLC system equipped with ProStar 210...
Thielavin V (2)

Compound 2 was isolated as a white amorphous powder; ^1^H NMR (500 MHz, CD$_3$OD) and ^1^C NMR (125 MHz, CD$_3$OD) (see Table S1); HRESIMS m/z 481.1844 [M + H]$^+$ (calcd. for C$_{23}$H$_{29}$O$_8$, 481.1862).

Thielavin Q (3)

Compound 3 was isolated as a white amorphous powder; UV (MeOH) λ_{\max} (log ε) 315 (3.69), 276 (4.13), 217 (4.44), 211 (4.38) nm; ^1^H NMR (CDCl$_3$, 700 MHz) and ^1^C NMR (CDCl$_3$, 175 MHz) (see Table S1); HRESIMS m/z 495.1999 [M + H]$^+$ (calcd. for C$_{29}$H$_{33}$O$_8$, 495.2156).

Thielavin Z$_8$ (4)

Compound 4 was isolated as a white amorphous powder; UV (MeOH) λ_{\max} (log ε) 320 (3.75), 278 (4.16), 217 (4.55) nm; ^1^H NMR (CDCl$_3$, 700 MHz) and ^1^C NMR (CDCl$_3$, 175 MHz) (see Table 1); HRESIMS m/z 509.2156 [M + H]$^+$ (calcd. for C$_{20}$H$_{35}$O$_8$, 509.2175).

Cytotoxicity assay

To evaluate the cytotoxic activity of 1–4, human melanoma cancer cells MDA-MB-435, human breast cancer cells MDA-MB-231, and human ovarian cancer cells OVCAR3, were purchased from the American Type Culture Collection (Manassas, VA). The cell line was propagated at 37°C in 5% CO$_2$ in RPMI 1640 medium, supplemented with fetal bovine serum (10%), penicillin (100 units ml$^{-1}$), and streptomycin (100 µg ml$^{-1}$). Cells in log phase growth were harvested by trypsinization followed by two washes to remove all traces of enzyme. A total of 5000 cells were seeded per well of a 96-well flat-bottom plate (Microtest 96, Falcon) and incubated overnight (37°C in 5% CO$_2$). Samples dissolved in DMSO were then diluted and added to the appropriate wells. The cells were incubated in the presence of test substance for 72 h at 37°C and evaluated for viability with a commercial absorbance assay (CellTiter-Blue Cell Viability Assay, Promega Corp, Madison, WI) that measured viable cells. IC$_{50}$ values are expressed in µm relative to the solvent (DMSO) control; taxol (paclitaxel) was used as a positive control.

Data availability

^1^H NMR, ^1^C NMR and (+)-HRESIMS data for compounds 1–4. 2D NMR data (HSQC and HMBC) for the new compound (4). MS fragmentation patterns of 1–4. LR-HSQMBC NMR for 1 & 4 and NOESY NMR for 3 & 4. The 1D and 2D NMR spectra for 1–4 were deposited in Harvard Dataverse and can be freely accessed through https://doi.org/10.7910/DVN/QF3WOJ.

Acknowledgements

This research was supported by the National Institutes of Health via the National Cancer Institute (P01 CA125066). We thank Dr Tamam El-Elimat, Dr Laura Flores-Bocanegra, and Tyler Graf for helpful suggestions.
Compliance with ethical standards

Conflict of interest NHO declares that he is a member of the Scientific Advisory Board of Mycosynthetix, Inc.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Al Subeh ZY, et al. Enhanced production and anticancer properties of photoactivated perylenequinones. J Nat Prod. 2020;83(8):2490–500.
2. Al Subeh ZY, et al. Correction to enhanced production and anticancer properties of photoactivated perylenequinones. J Nat Prod. 2020; https://doi.org/10.1021/acs.jnatprod.0c01289.
3. de Medeiros LS, Murgu M, de Souza AQL, Rodrigues-Fo E. Antimicrobial depsides produced by Cladosporium uredinicola, an endophytic fungus isolated from Psidium guajava fruits. Helv Chim Acta. 2011;94:1077–84.
4. Take Y, Inouye Y, Nakamura S, Allaudeen HS, Kubo A. Comparison of the inhibitory properties of antibiotics on human immunodeficiency virus and avian myeloblastosis virus reverse transcriptases and cellular DNA polymerases. J Antiemb. 1989;42:107–15.
5. Sakemi S, et al. Thielavins as glucose-6-phosphatase (G6Pase) inhibitors: producing strain, fermentation, isolation, structural elucidation and biological activities. J Antiemb. 2002;55:941–51.
6. Rivera-Chávez J, González-Andrade M, del Carmen González M, Glenn AE, Mata R. Thielavins A, J and K: α-glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora. Planta Med. 2013;79:198–205.
7. Han Z, et al. Thielavins W-Z, new antifouling thielavins from the marine-derived fungus Thielavia sp. UST030930-004. Mar Drugs. 2017;15:128.
8. Ayers S, et al. Thielavin B methyl ester: a cytotoxic benzoate trimer from an unidentified fungus (MSX 55526) from the Order Sordariales. Tetrahedron Lett. 2011;52:5733–5.
9. Kinghorn AD, et al. Discovery of anticancer agents of diverse natural origin. Anticancer Res. 2016;36:5623–37.
10. Togashi K, Ko HR, Ahn JS, Osada H. Inhibition of telomerase activity by fungus metabolites, CRM646-A and thielavin B. Biosci Biotechnol Biochem. 2001;65:651–3.
11. Rojas IS, Lotina-Hennsen B, Mata R. Effect of lichen metabolites on thylakoid electron transport and photophosphorylation in isolated spinach chloroplasts. J Nat Prod. 2000;63:1396–9.
12. Kitahara N, Endo A, Furuya K, Takahashi S. Thielavin A and B: new inhibitors of prostaglandin biosynthesis produced by Thielavia terricola. J Antiemb. 1981;34:1562–8.
13. Kitahara N, Haruyama H, Hata T, Takahashi S. The structures of thielavins A, B and C. Prostaglandin synthetase inhibitors from fungi. J Antiemb. 1983;36:599–600.
14. Jang J-P, et al. Inhibition of indoleamine 2,3-dioxygenase by thielavin derivatives from a soil fungus, Coniochaeta sp. 10F058. J Antiemb. 2014;67:331–3.
15. Matsumoto K, et al. Isolation and biological activity of thielocins: novel phospholipase A2 inhibitors produced by Thielavia terricola RF-143. J Antiemb. 1995;48:106–12.
16. de Medeiros LS, Murgu M, de-Souza AQL, Rodrigues-Fo E. Erratum: antimicrobial depsides produced by Cladosporium uredinicola, an endophytic fungus isolated from Psidium guajava fruits. Helv Chim Acta. 2013;96:1406–7.
17. de Medeiros LS, et al. Dereplication-guided isolation of depsides thielavins S-T and lecanorins D-F from the endophytic fungus Setophoma sp. Phytochemistry. 2015;111:154–62.
18. Elvashberg M. Identification and structure elucidation by NMR spectroscopy. Trends Anal Chem. 2015;69:88–97.
19. Keifer PA. NMR spectroscopy in drug discovery: tools for combinatorial chemistry, natural products, and metabolism research. Prog Drug Res. 2000;55:137.
20. Du L, King JB, Cichewicz RH. Chlorinated polyketide obtained from a Daldinia sp. treated with the epigenetic modifier suberylalanilide hydroxamic acid. J Nat Prod. 2014;77:2454–8.
21. Bills GF, Gloer JB. Biologically active secondary metabolites from the fungi. Microbiol Spectr. 2016;4. FUNK-0009-2016. https://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0009-2016.
22. Williamson RT, Buevich AV, Martin GE, Parella T. LR-HSQMBC: a sensitive NMR technique to probe very long-range heteronuclear coupling pathways. J Org Chem. 2014;79:3887–94.
23. Tran TD et al. NMR characterization of rearranged staurosporine aglycone analogues from the marine sponge Damiria sp. Magn Reson Chem. 2019; https://doi.org/10.1002/mrc.4932.
24. Chan STS, et al. Characterization and synthesis of Eudistidine C, a bioactive marine alkaloid with an intriguing molecular scaffold. J Org Chem. 2016;81:10631–40.
25. Motiram-Corral K, Nolis P, Parella T, Sauri J. LR-HSQMBC versus LR selHSQMBC: enhancing the observation of tiny long-range heteronuclear NMR correlations. J Nat Prod. 2020;83:1275–82.