SUPPLEMENTARY MATERIALS AND METHODS:

Study subjects and skin samples

Skin biopsies were obtained from 11 volunteers under a protocol approved by The Rockefeller University’s Institutional Review Board. Written, informed consent was obtained from all subjects and the study adhered to the Declaration of Helsinki Principles. All volunteers underwent a rigorous screening process, including medical history, physical examination, complete blood count/blood chemistries, and point-of-care HIV test to ensure they were overall healthy and not on any medication which could interfere with immune reactions. Each volunteer was sensitized to 0.4% DPCP (in a topical gel formulation) on his/her right upper arm and 0.04% DPCP on his/her left lower arm. These concentrations were chosen to ensure effective sensitization while minimizing uncomfortable inflammatory reactions on the arms. Previous work has demonstrated that 0.4% but not 0.04% DPCP is consistently able to induce sensitization in immunocompetent individuals.\(\text{(Levis et al., 2006)}\) Two weeks later, effective sensitization was confirmed by noting induration at the application sites (all subjects were successfully sensitized) and then two challenge applications of 0.04% DPCP were applied to the subject’s left upper thigh. Also at this visit, two placebo applications (identical formulation but without DPCP) were applied to the subject’s right upper thigh. Each application of placebo or DPCP gel was 0.2 mL (80 µg for the 0.04% concentration) placed on a 2.5 x 2.5 cm square area bandage which the subject was instructed to leave on for 24 hours before removal and washing. Three days after these challenge applications, one 6 mm full thickness punch biopsy was taken of a DPCP-treated site and an identical biopsy was taken of a placebo-treated site (day 3 biopsies). Subjects were then observed at 7 and 14 days post-challenge to determine when the DPCP-
induced inflammation was resolving, based on clinical scoring of erythema and induration. At that time (14 days post-challenge), another pair of biopsies was taken, but of the two sites not biopsied at 3 days post-challenge (Figure S1). Six of 11 volunteers were brought back 4-8 months after challenge application for another biopsy of a DPCP-treated site, which clinically no longer exhibited any signs of inflammation. Ultrasound images were acquired using DermaScan C ultrasound scanner (Cortex Technology, Hadsund, Denmark). In these images, dermal inflammation is visualized as a dark zone (brackets) under epidermis and the thickness of this zone correlates with the extent of inflammation/induration. (Kelly et al., 1998) (Hoffmann et al., 1994)

RNA extraction, quantification, and microarray

Total RNA was extracted using the miRNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol with on-column DNase digestion. The amount of RNA was assessed by NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE). The quality of extracted RNA was examined using Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA). RNA was hybridized to HGU133 Plus 2.0 chips (Affymetrix, Santa Clara, CA) to measure relative gene expression.

Statistical analysis

Microarray data were analyzed using R/Bioconductor packages (http://www.r-project.org). The Harshlight package (Suárez-Fariñas et al., 2005) was used to scan Affymetrix chips for spatial artifacts. Expression values were obtained using the GCRMA algorithm. Genes with low variation and low expression in most samples were filtered out prior to the analysis. Batch effect
due to hybridization date was adjusted using ComBat. (Johnson et al., 2007) Principal Components Analysis (PCA) was used to represent the high dimensionality of the data along the directions of maximal variance. To identify differentially expressed genes, we fit a mixed effect model with treatment (placebo/DPCP) and day (3/14) as fixed effects and a random intercept for each patient. Hypotheses of interest were tested using contrasts in R’s limma package framework. The p values resultant from the moderated paired Student’s t-tests were adjusted for multiple hypotheses using the Benjamini-Hochberg procedure, which controls for the false discovery rate. The data discussed in this publication have been deposited in the National Center for Biotechnology Information’s Gene Expression Omnibus (GSE accession number GSE52360, http://www.ncbi.nlm.nih.gov/geo/). Ingenuity Pathway Analysis (www.ingenuity.com) was used to determine canonical pathways significantly linked to various gene sets.

Quantitative RT-PCR

Pre-amplification quantitative RT-PCR technique was used for measuring various genes in total RNA extracted from skin biopsy samples according to the company’s instructions. Briefly, 5 ng of total RNA was subjected to first-strand cDNA synthesis using High Capacity cDNA Reverse Transcription kits (Applied Biosystems, Carlsbad, CA). The resulting cDNA was subjected to 14 cycles of pre-amplification using TaqMan PreAmp Master Mix Kit (Applied Biosystems) with desired pooled assay mix. The Gene Amp PCR System 9700 (Applied Biosystems) was used for the pre-amplification reaction with the following thermal cycler conditions: 10 min at 95°C and 14 cycles of 15 seconds at 95°C followed by 4 min at 60°C. 12.5 µl of pre-amplified cDNA was then used for quantitative RT-PCR reaction using TaqMan Gene Expression Master Mix (Applied Biosystems). The 7900HT Fast Real-Time PCR System was used for PCR
reactions, and the thermal cycler conditions were as follows: 2 minutes at 50°C, 5 minutes at 95°C, and 40 cycles of 15 seconds at 95°C followed by 60 seconds at 60°C. Data were analyzed by the Applied Biosystems PRISM 7700 software (Sequence Detection Systems, ver. 1.7) and normalized to human acidic ribosomal protein (hARP) housekeeping gene. All assays were from Applied Biosystems and inventoried assays used in this study were as follows: IFNG (Hs00989291_m1), IL2 (Hs00174114_m1), IL2RA (Hs00907779_m1), IL13 (Hs00174379_m1), IL9 (Hs00914237_m1), IL17A (Hs00174383_m1), IL22 (Hs01574154_m1), Foxp3 (Hs01085834_m1), IL10 (Hs00961622_m1), CTLA4 (Hs03044418_m1), PDCD1 (PD1) (Hs01550088_m1), CD274 (PDL1) (Hs01125301_m1), PDCD1LG2 (PDL2) (Hs01057777_m1), IDO1 (Hs00984148_m1), and LAG3 (Hs00158563_m1). For RPLP0/hARP, a custom primer/probe set was used (Forward: CGCTGCTGAACATGCTCAA, Reverse: TGTCGAACACCTGCTGGATG, Probe: 6-FAM-TCCCCCTTCTCCTTTGGCTGG-TAMRA).

Immunohistochemistry

Frozen sections of skin biopsies were dried at room temperature and then fixed for 2 minutes in acetone. Next, the samples were blocked with 10% normal serum of the species in which the secondary antibody was made and then the samples were incubated overnight at 4°C with the appropriate primary antibody. Biotin-labeled secondary antibodies (Vector Laboratories, Burlingame, CA) were amplified with avidin-biotin complex (Vector Laboratories) and developed with chromogen 3-amino-9-ethylcarbazole (Sigma Aldrich, St. Louis, MO) to produce a red color indicative of positive staining. The number of positive cells per mm was counted.
manually per field using computer-assisted image analysis (NIH Image 6.1; http://rsb.info.nih.gov/nih-image).

Primary antibodies used in this study are as follows (all are mouse monoclonal unless stated otherwise): CD3 (BD Biosciences, Clone SK7, IgG1, 1:100 dilution), CD8 (BD Biosciences, Clone HIT8a, IgG1, 1:100), CD11c (BD Biosciences, Clone B-ly6, IgG1, 1:100), DC-LAMP (Beckman Coulter, Clone 104.G4, IgG1, 1:50), Langerin (Beckman Coulter, Clone DCGM4, IgG1, 1:100), Foxp3 (Abcam, Clone 236A/E7, IgG1, 1:20), Granulysin (Acris Antibodies, Clone B-R32, IgG2b, 1:100), XCR1 (rabbit polyclonal, LifeSpan Biosciences, Inc., IgG, 1:100).

Immunofluorescence

Frozen sections of skin biopsies were dried at room temperature and then fixed with acetone. Next, the samples were blocked with 10% normal goat serum (Vector Laboratories) for 30 minutes. Primary antibody was incubated overnight at 4°C and amplified with the appropriate secondary antibody for 30 minutes. For co-localization, sections were then co-stained overnight with a second antibody, and amplified with the appropriate secondary antibody for 30 minutes. Images were acquired using the appropriate filters of a Zeiss Axioplan 2 wide-field fluorescence microscope (Thornwood, NY) with a Plan Neofluar 20 × 0.7 numerical aperture lens and a Hamamatsu Orca Er-cooled charge-coupled device camera (Bridgewater, NJ), controlled by METAVUE software (MDS Analytical Technologies, Downington, PA). Images in each figure are presented both as single-color stains (green and red) located above the merged image, so that localization of two markers on similar or different cells can be appreciated. Cells that co-express the two markers in a similar location are yellow in color. A white line denotes the
dermoepidermal junction. Dermal collagen fibers gave green autofluorescence, and antibodies conjugated with a fluorochrome often gave background epidermal fluorescence.
REFERENCES:

Hoffmann, K, Feldmann, S, Dirschka, T, et al. (1994). Sonographic quantification of the type IV reaction after intradermal application of recall antigens. *Skin Pharmacol* 7: 291–9.

Johnson, WE, Li, C, Rabinovic, A (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics* 8: 118–27.

Kelly, DA, Walker, SL, McGregor, JM, et al. (1998). A single exposure of solar simulated radiation suppresses contact hypersensitivity responses both locally and systemically in humans: quantitative studies with high-frequency ultrasound. *J Photochem Photobiol B* 44: 130–42.

Levis, WR, Holzer, AM, Leonard, LK (2006). Topical diphenylcyclopropenone as a measure of immune competence in HIV-seropositive subjects. *J Drugs Dermatol* 5: 853–8.

Suárez-Fariñas, M, Pellegrino, M, Wittkowski, KM, et al. (2005). Harshlight: a “corrective make-up” program for microarray chips. *BMC Bioinformatics* 6: 294.

Tomlinson, GS, Cashmore, TJ, Elkington, PTG, et al. (2011). Transcriptional profiling of innate and adaptive human immune responses to mycobacteria in the tuberculin skin test. *Eur J Immunol* 41: 3253–60.
Figure S1. Schematic of DPCP sensitization and challenge schedule. Subjects were sensitized with DPCP at two sites on their arms at Day 0 followed by challenge and placebo applications at Day 14. At Day 17 (3 days post-challenge), one pair of biopsies was taken and a second pair was taken at Day 28 (14 days post-challenge) when the inflammation induced by DPCP was seen to be clinically resolving. Dark green, light green, and blue squares indicate sensitization, challenge, and placebo applications, respectively. A red X is used to represent a biopsy taken.
Figure S2. DPCP day 14 reactions include many unique genes and XCR1+ DCs not present in day 3 reactions. (a) Venn diagram showing up- and down-regulated probesets (red and green, respectively) in day 3 and day 14 reactions. (b) Immunohistochemistry for XCR1 and (c) immunofluorescence for XCR1 (red)/CD11c (green) on representative placebo-treated (left), DPCP day 3 (middle) and DPCP day 14 (right) samples. Scale bar = 100 µm.
Figure S3. Granulysin co-localizes with CD3+ (both CD8+ and CD8−) and CD11c+ cells.

Immunofluorescence staining of granulysin with (a) CD3 (green), (b) CD8 (red), and (c) CD11c (red). Left panels are placebo-treated samples, middle panels and DPCP day 3 samples, and right panels are DPCP day 14 samples. Shown is a representative subject (subject 013). Scale bar = 100 µm.
Figure S4. Correlations of immunohistochemistry cell counts with immune activation markers by RT-PCR. Shown are scatter plots of (a) CD3+ and (b) CD11c+ cell counts with normalized gene expression measures of IFNγ (top), IL-2 (middle), and IL-2RA (bottom). Only DPCP day 3 and day 14 samples are plotted. *p*-values for all correlations were >0.27 so none reached statistical significance.
Figure S5. RT-PCR and histological analysis of subjects whose CD3+ or CD11c+ infiltrates decrease from 3 days to 14 days post-DPCP challenge (subgroup B, n=6). (a) RT-PCR analysis for IFNγ (left panel), IL-2 (middle panel), and IL-2RA (right panel). Shown are normalized
expression values for each subject individually to highlight that almost all samples have decreased expression of these genes at day 14 compared to day 3. (b-f) H&E (b) and immunohistochemical analysis of samples for (c) CD3, (d) CD11c, (e) DC-LAMP, and (f) Langerin. For all histological images, left panels show placebo reactions, middle panels show DPCP day 3 reactions, and right panels show DPCP day 14 reactions. Shown is a representative subject (subject 015). For immunohistochemical stains, line graphs indicate subgroup-wide average cell counts for placebo, DPCP day 3, DPCP day 14, and DPCP late samples. Asterisks indicate $p<0.05$ when compared to placebo. Scale bar = 100 µm.
Figure S6. Subjects in subgroup B globally have more negative regulatory genes at day 3 than subjects in subgroup A. Heat map of negative regulatory genes for all DPCP samples. Each column represents one sample arranged first by subgroup then by sample type with there being 5 subjects in subgroup A and 6 in subgroup B. DPCP day 3 samples are highlighted as underneath the black bars.
Figure S7. Subjects in subgroup B show resolution of clinical inflammation more quickly than subjects in subgroup A. Plots of ultrasound measurements of extents of inflammatory reactions as reflected by dermal thickness (see Figure 1) versus time for subjects in subgroup A (top) and subjects in subgroup B (bottom). Each subject is shown as an individual line.
Figure S8. Comparison of DPCP day 3 vs placebo day 3 reactions to PPD 48 hr vs 6 hr reactions (data from (Tomlinson et al., 2011)). Venn diagram shows 1,187, 780, and 1,017 upregulated genes uniquely in DPCP, in both DPCP and PPD, and uniquely in PPD, respectively (downregulated gene numbers are 1,690, 24, and 112). Tables underneath Venn diagram show selected genes from each section of the Venn diagram.
Supplemental Table 1. Demographics and clinical scoring of inflammatory reactions induced by DPCP in all subjects (n=11)

Subject ID	Gender	Age	Race	Subgroup	day 3 \(^1\)	day 14 \(^1\)	Score	Score
001	M	55	White	B	4/4 (1.19)	2/1 (0.20)	8	3
006	M	52	Black	A	2/2 (0.30)	0/1 (0.18)	4	1
008	F	42	Asian	B	3/2 (0.66)	1/1 (0.19)	5	2
009	M	58	White	B	2/2 (0.21)	1/0 (0.18)	4	1
012	M	44	White	A	3/2 (0.30)	2/1 (0.10)	5	3
013	F	46	Black	A	3/3 (0.76)	2/1 (0.36)	6	3
014	M	20	Asian	A	3/3 (0.36)	2/0 (0.15)	6	2
015	M	55	Black	B	2/2 (0.21)	1/0 (0.12)	4	1
016	F	29	Black	A	3/1 (0.24)	1/0 (0.18)	4	1
020	M	43	Black	B	3/3 (0.87)	1/1 (0.24)	6	2
021	M	40	Black	B	4/4 (1.51)	2/2 (0.24)	8	4

Average

5.5 2.1

\(p = 7.8 \times 10^{-8} \) for DPCP day 3 vs day 14 score comparison (paired two-tailed Student's \(t \)-test).

\(^1\)Erythema/induration (0-4 scale for each) - scores are sums of these two measures. In parentheses are the quantifications of the extent of inflammation as measured by ultrasound (in mm, see Figure 1).
Supplemental Table 2. Expression of negative regulator genes in DPCP day 3 vs. placebo samples

Probe	Symbol	Description	FCH	p	FDR
207526_s_at	IL1RL1	interleukin 1 receptor-like 1	42.8	5.3E-11	2.1E-09
227458_at	CD274	CD274 molecule	34.6	1.9E-12	1.3E-10
236341_at	CTLA4	associated protein 4	21.6	3.7E-11	1.5E-09
207238_s_at	PTPRC	receptor type, C	18.0	1.6E-12	1.2E-10
206341_at	IL2RA	interleukin 2 receptor, alpha	17.9	4.7E-14	6.3E-12
210146_x_at	LILRB2	member 2	12.5	3.6E-08	5.4E-07
222062_at	IL27RA	interleukin 27 receptor, alpha	12.3	9.9E-13	7.6E-11
217192_s_at	PRDM1	ZNF domain	11.1	8.7E-12	4.6E-10
215719_x_at	FAS	superfamily, member 6)	9.3	7.8E-07	7.6E-06
205926_at	IL27RA	interleukin 27 receptor, alpha	8.3	5.9E-11	2.3E-09
Probe ID	Description	Log2 Ratio	Log10(p-value)1	Log10(p-value)2	
-----------------	---	------------	-----------------	-----------------	
204780_s_at	FAS (TNF receptor superfamily, member 6)	8.0	2.6E-05	1.6E-04	
242743_at	interleukin 4 receptor	8.0	7.6E-13	6.2E-11	
242809_at	interleukin 1 receptor-like 1 (leukocyte immunoglobulin-like receptor, subfamily B)	6.6	1.5E-06	1.3E-05	
207697_x_at	LILRB2 member 2	6.6	1.2E-13	1.4E-11	
212588_at	PTPRC receptor type, C	6.5	2.8E-08	4.3E-07	
216252_x_at	FAS (TNF receptor superfamily, member 6)	6.3	9.4E-08	1.2E-06	
230052_s_at	NFKBID B-cells inhibitor, delta	6.2	1.0E-07	1.3E-06	
211336_x_at	LILRB1 member 1	5.2	4.8E-16	1.5E-13	
212587_s_at	PTPRC receptor type, C	5.1	6.5E-13	5.5E-11	
207104_x_at	LILRB1 like receptor, subfamily B	5.1	3.0E-17	1.6E-14	
(with TM and ITIM domains),

Gene ID	Symbol	Description	Log2FC	Raw P	Adjusted P
211269_s_at	IL2RA	interleukin 2 receptor, alpha	5.1	2.8E-08	4.4E-07
204781_s_at	FAS	Fas (TNF receptor superfamily, member 6)	4.7	3.4E-06	2.7E-05
1552480_s_at	PTPRC	receptor type, C	4.5	9.0E-08	1.2E-06
203233_at	IL4R	interleukin 4 receptor	4.4	1.2E-10	4.0E-09
206060_s_at	PTPN22	protein tyrosine phosphatase, non-receptor type 22	4.3	7.6E-06	5.5E-05
223834_at	CD274	CD274 molecule	3.8	5.7E-09	1.1E-07
235458_at	HAVCR2	hepatitis A virus cellular receptor 2	3.8	6.6E-07	6.6E-06
231794_at	CTLA4	cytotoxic T-lymphocyte-associated protein 4	3.4	1.6E-09	3.7E-08
227900_at	CBLB	ubiquitin protein ligase B	3.3	1.8E-04	8.3E-04
220418_at	UBA4H3A	domain containing A	3.3	3.0E-05	1.8E-04
202643_s_at	TNFAIP3	induced protein 3	3.2	1.0E-08	1.8E-07
240070_at	TIGIT	T cell immunoreceptor with	3.0	2.9E-05	1.8E-04
Probe	Gene Symbol	Description	Log2 Fold Change	Adjusted p-value 1	Adjusted p-value 2
----------	-------------	--	------------------	---------------------	---------------------
201537_s_at	DUSP3	dual specificity phosphatase 3	3.0	4.8E-11	1.9E-09
		PR domain containing 1, with			
228964_at	PRDM1	ZNF domain	2.9	3.4E-06	2.7E-05
201538_s_at	DUSP3	dual specificity phosphatase 3	2.9	3.6E-10	1.1E-08
		lectin, galactoside-binding,			
203236_s_at	LGALS9	soluble, 9	2.7	3.5E-07	3.8E-06
		programmed cell death 1			
224399_at	PDCD1LG2	ligand 2	2.7	1.3E-07	1.7E-06
		nuclear factor of kappa light			
		polypeptide gene enhancer in			
241889_at	NFKBID	B-cells inhibitor, delta	2.6	6.5E-06	4.8E-05
		zinc finger CCCH-type			
223506_at	ZC3H8	containing 8	2.6	5.6E-04	2.2E-03
		itchy E3 ubiquitin protein			
209744_x_at	ITCH	ligase	2.6	3.8E-07	4.1E-06
		phosphoprotein associated with glycosphingolipid			
225622_at	PAG1	microdomains 1	2.6	3.4E-05	2.0E-04
		itchy E3 ubiquitin protein			
217094_s_at	ITCH	ligase	2.4	1.1E-05	7.8E-05
224211_at	FOXP3	forkhead box P3	2.4	1.2E-05	7.9E-05
243196_s_at	TRAFD1	TRAF-type zinc finger	2.3	4.0E-05	2.3E-04
Probe Set ID	Description	Fold Change	P-value 1	P-value 2	
-------------	-------------	-------------	----------	----------	
228996_at	RC3H1	2.3	5.5E-05	3.0E-04	
219364_at	DHX58	2.3	5.3E-07	5.4E-06	
202763_at	CASP3	2.2	1.8E-05	1.1E-04	
236539_at	PTPN22	2.2	6.9E-05	3.7E-04	
202644_s_at	TNFAIP3	2.2	1.4E-06	1.3E-05	
205298_s_at	BTN2A2	2.2	3.7E-04	1.6E-03	
217513_at	MILR1	2.1	6.0E-06	4.4E-05	
205299_s_at	BTN2A2	2.0	3.9E-05	2.2E-04	
242497_at	TRAFD1	1.8	4.1E-04	1.7E-03	
234066_at	IL1RL1	1.8	7.5E-03	2.0E-02	
235668_at	PRDM1	1.8	3.0E-06	2.4E-05	
Gene Symbol	Description	Log2 FC	P value 1	P value 2	
--------------	---	---------	-----------	-----------	
1555628_at	HAVCR2 receptor 2	1.8	6.7E-04	2.6E-03	
209682_at	Cbl proto-oncogene, E3	1.8	6.1E-05	3.3E-04	
209354_at	TNFRSF14 tumor necrosis factor receptor	1.8	3.2E-06	2.6E-05	
227354_at	PAG1 phosphoprotein associated with glycosphingolipid	1.7	7.0E-02	1.3E-01	
209743_s_at	ITCH itchy E3 ubiquitin protein ligase	1.7	4.4E-03	1.3E-02	
35254_at	TRAFD1 TRAF-type zinc finger domain containing 1	1.7	1.7E-05	1.1E-04	
1555629_at	HAVCR2 receptor 2	1.7	2.4E-04	1.1E-03	
202837_at	TRAFD1 domain containing 1	1.6	5.5E-05	3.0E-04	
235057_at	ITCH itchy E3 ubiquitin protein ligase	1.6	2.7E-02	6.0E-02	
1554285_at	HAVCR2 receptor 2	1.6	5.4E-04	2.2E-03	
225626_at	PAG1 phosphoprotein associated with glycosphingolipid	1.5	2.3E-02	5.2E-02	
ProbeID	Gene Symbol	Description	Log2 Fold Change	p-value (FDR)	
------------------	-------------	--	------------------	---------------	
201536_at	DUSP3	dual specificity phosphatase 3	1.5	3.2E-04	
		nuclear factor of kappa light polypeptide gene enhancer in		1.4E-03	
1553042_a_at	NFKBID	B-cells inhibitor, delta programmed cell death 1	1.5	3.0E-03	
				9.4E-03	
220049_s_at	PDCD1LG2	ligand 2	1.4	5.4E-03	
		cytotoxic T-lymphocyte-		1.5E-02	
221331_x_at	CTLA4	associated protein 4	1.3	4.8E-04	
		cytotoxic T-lymphocyte-		2.0E-03	
234362_s_at	CTLA4	associated protein 4	1.3	4.6E-03	
		protein tyrosine phosphatase, non-receptor type 22		1.3E-02	
208010_s_at	PTPN22	(lymphoid)	1.3	2.4E-03	
		cytotoxic T-lymphocyte-		7.8E-03	
234895_at	CTLA4	associated protein 4	1.1	4.9E-02	
		ring finger and CCCH-type		9.7E-02	
225893_at	RC3H1	domains 1	1.1	7.0E-01	
				7.8E-01	
224859_at	CD276	CD276 molecule	0.9	4.4E-01	
				5.6E-01	
236235_at	ITCH	itchy E3 ubiquitin protein	0.8	2.6E-01	
				3.7E-01	
239101_at	ITCH	ligase	0.7	1.5E-02	
		itchy E3 ubiquitin protein		3.6E-02	
Probe ID	Description	FCH	FDR	FDR	
-----------	---	-----	-----------	-----------	
1559583_at	CD276 molecule	0.6	8.5E-02	1.5E-01	
	V-set domain containing T				
219768_at	VTCN1 cell activation inhibitor 1	0.3	8.1E-05	4.2E-04	
	GTP binding protein				
	overexpressed in skeletal muscle				
204472_at	GEM muscle	0.3	1.1E-05	7.6E-05	

FCH, fold change; FDR, false discovery rate.