A Note on Near-factor-critical Graphs

Kuo-Ching Huang ∗
Department of Financial and Computational Mathematics
Providence University
Shalu 43301, Taichung, Taiwan
Email:kchuang@gm.pu.edu.tw

Ko-Wei Lih †
Institute of Mathematics
Academia Sinica
Taipei 10617, Taiwan
Email:makwlih@sinica.edu.tw

May 19, 2014

Abstract

A near-factor of a finite simple graph G is a matching that saturates all vertices except one. A graph G is said to be near-factor-critical if the deletion of any vertex from G results in a subgraph that has a near-factor. We prove that a connected graph G is near-factor-critical if and only if it has a perfect matching. We also characterize disconnected near-factor-critical graphs.

Keywords: perfect matching, factor, near-factor, near-factor-critical, Tutte’s theorem

Mathematical Subject Classification (MSC) 2010: 05C70

1 Introduction

All graphs G considered in this note are finite and simple with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of G is called the order of G. A matching M of G is a subset of $E(G)$ such that no two edges in M share a common endpoint. A matching M saturates a vertex v of G, or v is said to be M-saturated, if v is an endpoint of some edge in M. Otherwise, v is said to be M-unsaturated. A matching M is called perfect if

∗Research supported by NSC (No. 102-2115-M-126-002).
†Research supported by NSC (No. 102-2115-M-001-010).
every vertex of G is M-saturated. A 1-factor is synonymous with a perfect matching. A near-factor is a matching that saturates all vertices except one.

Let $S \subseteq V(G)$. The subgraph of G obtained from G by deleting all vertices of S is denoted by $G \setminus S$. In particular, if S is a singleton $\{v\}$, we denote $G \setminus \{v\}$ by $G - v$. A graph G is said to be factor-critical if $G - v$ has a 1-factor for every $v \in V(G)$. A factor-critical graph is necessarily of odd order. This notion was first introduced by Gallai [1] and has been intensively studied, e.g. [3, 4]. We call a graph G near-factor-critical if $G - v$ has a near-factor for every $v \in V(G)$. A near-factor-critical graph G is necessarily of even order.

Li et al. [2] showed that, for a graph G with a vertex of degree one, G has a 1-factor if and only if G is near-factor-critical. They asked whether this result could be generalized to any connected graph G. In this note, we are going to give a positive solution to this question. Since the union of two disjoint odd cycles has no 1-factor and is near-factor-critical, the connectedness of G is essential for a generalization.

2 Main results

A component of a graph G is a maximal connected subgraph of G. An odd, or even, component is a component having odd, or even, number of vertices. The number of odd components is denoted by $o(G)$. If a graph G has a near-factor M, then there exists a unique M-unsaturated vertex in G and is denoted by $u(M)$.

Lemma 1 Let G be a connected graph. Suppose that, for $S \subseteq V(G)$, there is an odd component H of $G \setminus S$. For any vertex $v \notin V(H)$, if M is a near-factor of $G - v$ and $u(M) \notin V(H)$, then there is an edge of M joining a vertex of S with a vertex of H.

Proof. Since $u(M) \notin V(H)$, every vertex of H is M-saturated. Since $v \notin V(H)$, if each edge of M has zero or two endpoints in H, then H is of even order, a contradiction. By the connectedness of G, there must exist an edge of M having one endpoint in H and one endpoint in S.

Theorem 2 The following conditions are equivalent for a connected graph G.

1. G has a 1-factor.
2. $o(G \setminus S) \leq |S|$ for all $S \subseteq V(G)$.
3. G is near-factor-critical.

Proof. The equivalence between conditions 1 and 2 is the well-known Tutte’s Theorem [6]. It is clear that condition 1 implies condition 3. It remains to prove that condition 3 implies condition 2.
Suppose that condition 2 fails for G. Then there is a subset $S \subseteq V(G)$ such that $o(G \setminus S) > |S|$. Choose an arbitrary vertex $v \in S$. Then $G - v$ has a near-factor M. By Lemma 4, $G \setminus S$ has at least $o(G \setminus S) - 1$ odd components H such that there is an edge of M having one endpoint in H and one endpoint in S. Thus, $|S| \geq 1 + o(G \setminus S) - 1 = o(G \setminus S) > |S|$, a contradiction.

Theorem 3 Let G be a disconnected graph. Then G is near-factor-critical if and only if one of the following holds.

1. All components of G are even and each of them has a 1-factor.
2. There are only two components H_1 and H_2 of G and each of them is factor-critical.

Proof. The sufficiency is straightforward. We now prove the necessity. Suppose that there exist an even component F and an odd component H of G. Choose an arbitrary vertex v from F. Then $G - v$ has a near-factor M. Since both $F - v$ and H have odd number of vertices, each of them should contain an M-unsaturated vertex. This contradicts the uniqueness of $u(M)$. Therefore, G consists of either all even or all odd components. In the latter case, the number of odd components is even since the order of G is even.

Suppose that G consists of even components F_1, F_2, \ldots, F_p, where $p \geq 2$. Choosing an arbitrary vertex x of F_1, $G - x$ has a near-factor M_1. Since $F_1 - x$ is of odd order, $u(M_1)$ belongs to $F_1 - x$. Thus, M_1 restricted to F_i is a 1-factor of F_i for each $i \geq 2$. Similarly, F_1 can be argued to have a 1-factor if the vertex x was chosen from F_2.

Next, suppose that G consists of odd components H_1, H_2, \ldots, H_{2q} for some $q \geq 1$. Choosing an arbitrary vertex z of H_1, $G - z$ has a near-factor M_2 such that $u(M_2) \not\in V(H_1)$ since $H_1 - z$ is of even order. Each odd component H_j, $j \geq 2$, should contain an M_2-unsaturated vertex. It follows that $q = 1$ and $H_1 - z$ has a 1-factor. Similarly, $H_2 - z$ can be argued to have a 1-factor if the vertex z was chosen from H_2.

Remark. It follows from Theorems 2 and 3 that the time complexity for recognizing near-factor-critical graphs is dominated by the complexity for recognizing factor-critical graphs. The latter was determined in [3], using the well-known maximum matching algorithm of [5], to run in $O(n^{1/2}m)$ time, where $n = |V(G)|$ and $m = |E(G)|$.

References

[1] T. Gallai, Neuer Beweis eines Tutte’schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 135-139.

[2] X. Li, Y. Shi, M. Trinks, Polynomial reconstruction of the matching polynomial, arXiv:1404.3469, 2014.
[3] D. Lou, D. Rao, Characterizing factor critical graphs and an algorithm, Australas. J. Combin., 30 (2004), 51-56.

[4] L. Lovász, M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

[5] S. Micali, V. V. Vazirani, An $O(|V|^{1/2}|E|)$ algorithm for finding maximum matchings in general graphs, The 21st Annual Symposium on Foundations of Computer Science, Syracuse, NY, 1980, pp. 17-27.

[6] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc., 22 (1947), 107-111.