Supersymmetric Grand Unified Theories: Two Loop
Evolution of Gauge and Yukawa Couplings

V. Barger, M. S. Berger, and P. Ohmann

Physics Department, University of Wisconsin, Madison, WI 53706, USA

ABSTRACT

We make a numerical study of gauge and Yukawa unification in supersymmetric grand unified models and examine the quantitative implications of fermion mass ansätze at the grand unified scale. Integrating the renormalization group equations with $\alpha_1(M_Z)$ and $\alpha_2(M_Z)$ as inputs, we find $\alpha_3(M_Z) \simeq 0.111(0.122)$ for $M_{SUSY} = m_t$ and $\alpha_3(M_Z) \simeq 0.106(0.116)$ for $M_{SUSY} = 1$ TeV at one-loop (two-loop) order. Including b and τ Yukawa couplings in the evolution, we find an upper limit $m_t \lesssim 200$ GeV from Yukawa unification. For given $m_t \lesssim 175$ GeV, there are two solutions for β, one with $\tan \beta > m_t/m_b$, and one with $\sin \beta \simeq 0.78(m_t/150$ GeV). Taking a popular ansatz for the mass matrices at the unified scale, we obtain a lower limit on the top quark mass of $m_t \gtrsim 150(115)$ GeV for $\alpha_3(M_Z) = 0.11(0.12)$ and an upper limit on the supersymmetry parameter $\tan \beta \lesssim 50$ if $\alpha_3(M_Z) = 0.11$. The evolution of the quark mixing matrix elements is also evaluated.
I. INTRODUCTION

There is renewed interest in supersymmetric grand unified theories (GUTs) [1] to explain gauge couplings, fermion masses and quark mixings [2-3]. Recent measurements of the gauge couplings at LEP and in other low energy experiments [10,11] are in reasonably good accord with expectations from minimal supersymmetric GUTs with the scale of supersymmetry (SUSY) of order 1 TeV or below [2]. Supersymmetric GUTs are also consistent with the non-observation to date of proton decay [12]. In addition to the unification of gauge couplings [13], the unification of Yukawa couplings has been considered to predict relations among quark masses [14-16]. With equal b-quark and τ-lepton Yukawa couplings at the GUT scale, the m_b/m_τ mass ratio is explained by SUSY GUTs [4,15]. With specific ansätze for the GUT scale mass matrices (e.g. zero elements, mass hierarchy, relations of quark and lepton elements), other predictions have been obtained from quark masses and mixings that are consistent with measurements [4,6,7,17,18]. The consideration of fermion mass relationships has a long history [19,20] and includes single relations and mass matrices (“textures”) without evolution [21,22], and single relations and mass matrices with evolution [23].

Our approach is to explore supersymmetric GUTs first with the most general assumptions, and then proceed to add additional GUT unification constraints to obtain more predictions at the electroweak scale. The renormalization group equations (RGEs) used here are for the supersymmetric GUTs [24,25] with the minimal particle content above the supersymmetry scale and the standard model RGEs [26] below the supersymmetry scale. In §II we explore the running of the gauge couplings in the supersymmetric model at the two-loop level and compare the results to those obtained at the one-loop level. Rather than try to predict the scale of supersymmetry (M_{SUSY}) which may be sensitive to unknown and model dependent effects like particle thresholds at the GUT scale, we choose two values of M_{SUSY} to illustrate the general trends that occur. We also investigate the effects of the Yukawa couplings on the gauge coupling running which enter at two loops [17] and have often been neglected in the past. In §III we explore the unification of Yukawa coupling constants. First
we consider the one-loop analytic solutions which can be obtained by neglecting the bottom quark and tau Yukawa couplings λ_b and λ_τ relative to λ_t in the RGEs. This serves as a useful standard for comparison with the two-loop results for smaller values of $\tan \beta \ll m_t/m_b$, and many of the general features of the solutions to the RGEs are already present at this stage. We then investigate the two-loop RGE evolution of the Yukawa couplings including the effects of λ_b, λ_τ, and λ_t. Analytic solutions are not available for the two-loop evolution, so we integrate the RGEs numerically. In §IV we investigate relations between Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and the ratios of quark masses. We investigate two popular ansätze \cite{6,7,16} for Yukawa coupling matrices at the GUT scale. Both of these ansätze agree with all existing experimental data, and this agreement is preserved at the two-loop level. We also integrate the two-loop evolution equations for certain CKM matrix elements and quark mass ratios in §IV. The two loop RGEs for both the minimal supersymmetric model and the standard model are given in the appendix.

II. GAUGE COUPLING UNIFICATION

A consistent treatment to two loops in the running of the gauge couplings involves the gauge couplings g_i and the largest Yukawa couplings λ_t, λ_b and λ_τ. From general expressions \cite{24,23} that are summarized in the appendix, we obtain the evolution equations

$$\frac{dg_i}{dt} = \frac{g_i}{16\pi^2} \left[b_i g_i^2 + \frac{1}{16\pi^2} \left(\sum_{j=1}^{3} b_{ij} g_i^2 g_j^2 - \sum_{j=t,b,\tau} a_{ij} g_i^2 \lambda_j^2 \right) \right], \quad (1)$$

$$\frac{d\lambda_t}{dt} = \frac{\lambda_t}{16\pi^2} \left[- \sum c_i g_i^2 + 6 \lambda_t^2 + \lambda_b^2 \right] + \frac{1}{16\pi^2} \left(\sum \left(c_i b_i + c_i^2 / 2 \right) g_i^4 + g_1^2 g_2^2 + \frac{136}{45} g_1^2 g_3^2 + 8 g_2^2 g_3^2 + \lambda_t^2 \left(\frac{6}{5} g_1^2 + 6 g_2^2 + 16 g_3^2 \right) + \frac{2}{5} \lambda_b^2 g_1^2 - \left\{ 22 \lambda_t^4 + 5 \lambda_t^2 \lambda_b^2 + 5 \lambda_b^4 + \lambda_b^2 \lambda_\tau^2 \right\} \right], \quad (2)$$

$$\frac{d\lambda_b}{dt} = \frac{\lambda_b}{16\pi^2} \left[- \sum c'_i g_i^2 + \lambda_t^2 + 6 \lambda_b^2 + \lambda_\tau^2 \right]$$
\[+ \frac{1}{16\pi^2} \left(\sum \left(c_i' b_i + c_i'^2/2 \right) g_i^4 + g_1^2 g_2^2 + \frac{8}{3} g_1^2 g_3^2 + 8 g_2^2 g_3^2
+ \frac{4}{5} \lambda_1^2 g_1^2 + \lambda_2^2 \left(\frac{2}{5} g_1^2 + 4 g_2^2 + 16 g_3^2 \right) + \frac{6}{5} \lambda_2^2 g_1^2
- \left\{ 22 \lambda^4_b + 5 \lambda^2_1 \lambda^2_b + 3 \lambda^2_b \lambda^2_2 + 3 \lambda^4_b + 5 \lambda^4_2 \right\} \right), \] (3)

\[\frac{d\lambda_\tau}{dt} = \frac{\lambda_\tau}{16\pi^2} \left[- \sum c_i'' g_i^2 + 3 \lambda_2^2 + 4 \lambda_2^2 \right]
+ \frac{1}{16\pi^2} \left(\sum \left(c_i'' b_i + c_i''^2/2 \right) g_i^4 + \frac{9}{5} g_1^2 g_2^2
+ \lambda_2^2 \left(-\frac{2}{5} g_1^2 + 16 g_3^2 \right) + \lambda_2^2 \left(\frac{6}{5} g_1^2 + 6 g_2^2 \right) \right.
- \left\{ 3 \lambda_1^2 \lambda_2^2 + 9 \lambda_2^4 + 9 \lambda_2^2 \lambda_2^2 + 10 \lambda_2^4 \right\} \right], \] (4)

The various coefficients in the above expressions are also given in the appendix. The variable is \(t = \ln(\mu/M_G) \) where \(\mu \) is the running mass scale and \(M_G \) is the GUT unification mass. The renormalization group equations of dimensionless parameters like the gauge couplings and Yukawa couplings are independent of the dimensionful soft-supersymmetry breaking parameters.

We begin with the recent values of \(\alpha_{em} \) and \(\sin^2 \hat{\theta}_W \) at scale \(M_Z = 91.17 \) GeV given in the 1992 Particle Data Book [11,27]

\[(\alpha_{em})^{-1} = 127.9 \pm 0.2, \] (5a)
\[\sin^2 \hat{\theta}_W = 0.2326 \pm 0.0008, \] (5b)

where \(\hat{\theta}_W \) refers to the weak angle in the modified minimal subtraction \(\overline{\text{MS}} \) scheme [28]. These values correspond to electroweak gauge couplings of

\[\alpha_1(M_Z)^{-1} = 58.89 \pm 0.11, \] (6a)
\[\alpha_2(M_Z)^{-1} = 29.75 \pm 0.11, \] (6b)

For simplicity we initially set the supersymmetric scale \(M_{SUSSY} \) equal to the top quark mass \(m_t \) and set all Yukawa contributions in Eq. (1) to zero. Then evolving \(\alpha_1 \) and \(\alpha_2 \) from scale \(M_Z \) up to scale \(m_t \), we have
\[\alpha_1(m_t)^{-1} = \alpha_1(M_Z)^{-1} + \frac{53}{30\pi} \ln(M_Z/m_t), \quad (7a) \]
\[\alpha_2(m_t)^{-1} = \alpha_2(M_Z)^{-1} - \frac{11}{6\pi} \ln(M_Z/m_t), \quad (7b) \]

We use the value \(M_Z = 91.17 \) GeV, neglecting its experimental uncertainty.

Next, for a grid of \(\alpha_G \) and \(M_G \) values, we evolve from the GUT scale down to the chosen \(m_t \) scale and retain those GUT scale inputs for which Eqs. (6) and (7) are satisfied. We use the two-loop SUSY GUT unification condition \(\alpha_G = \alpha_1(M_G) = \alpha_2(M_G) \). For the acceptable GUT inputs we also evolve the strong coupling \(\alpha_3(M_G) = \alpha_G \) down to scale \(m_t \) and then use 3-loop QCD to further evolve it to scale \(M_Z \). The three-loop expression
\[\alpha_3(\mu)^{-1} = -\frac{b_0}{2} \ln \left(\frac{\mu^2}{\Lambda^2} \right) + \frac{b_1}{b_0} \ln \left(\ln \frac{\mu^2}{\Lambda^2} \right) - 2 \frac{b_2}{b_0} \left[\ln \left(\ln \frac{\mu^2}{\Lambda^2} \right) - \left(\frac{b_0 b_2}{b_1^2} - 1 \right) \right] \left(\ln \frac{\mu^2}{\Lambda^2} \right)^{-1}, \quad (8) \]
with the \(b_i \) given in Ref. [29], is iteratively solved to find \(\Lambda \) from \(\alpha_3(m_t) \). Eq. (8) is then evaluated for \(\mu = M_Z \) to obtain \(\alpha_3(M_Z) \). The resulting values for \(\Lambda \) for two representative values of \(\alpha_3(M_Z) \) are given in Table 1.
We also investigate the effects of taking a supersymmetry scale higher than m_t. Below M_{SUSY}, the RGE are similar to the non-supersymmetric standard model. A linear combination of the Higgs doublets is integrated out of the theory at M_{SUSY} leaving the orthogonal combination $\Phi_{(SM)} = \Phi_d \cos \beta + \tilde{\Phi}_u \sin \beta$ coupled to the fermions in a way that depends on $\tan \beta$\cite{4,30,31}; this combination results from the assumption that the three soft-supersymmetry breaking parameters in the Higgs potential can be equated to M_{SUSY}.

We use the two-loop RGEs\cite{26} for the standard model, matching the couplings at M_{SUSY}. Taking a single SUSY scale is an idealized situation since in general the supersymmetric particle spectrum is spread over a range of masses\cite{4}. Without further assumptions we cannot predict this spectrum. Given that such uncertainties exist, the predicted range for α_3 should be taken to be representative only.

The ranges of α_{G}^{-1} and M_G parameters obtained from the procedure outlined above are presented in Fig. 1 for one-loop and two-loop evolution with the choices $M_{SUSY} = m_t$ and $M_{SUSY} = 1$ TeV. The shaded regions denote the allowed GUT parameter space. The two-loop values obtained for α_G and M_G are higher than the one-loop values and consequently $\alpha_3(M_Z)$ is higher for the two-loop evolution. Note that raising the SUSY scale from m_t to 1 TeV lowers M_G and α_G; hence $\alpha_3(M_Z)$ decreases as well.

Figure 2 shows the corresponding results of the two-loop evolution over the full range of μ. We find the ranges for $\alpha_3(M_Z)$ with $m_t = 150$ GeV shown in Table 2.

$\alpha_3(M_Z)$	$\Lambda^{(5)}$	$\Lambda^{(4)}$	$\Lambda^{(3)}$
0.11	129.1	188.3	225.0
0.12	233.4	320.2	360.0

Table 1: The QCD parameter $\Lambda^{(n_f)}$ in MeV, where n_f is the number of active flavors.
M_{SUSY}	one-loop	two-loop
$m_t = 150$ GeV	0.1112 ± 0.0024	0.1224 ± 0.0033
1 TeV	0.1065 ± 0.0024	0.1161 ± 0.0028

Table 2: Ranges obtained for $\alpha_3(M_Z)$ from the input values α_{em} and $\sin^2 \hat{\theta}_W$.

The two-loop values of $\alpha_3(M_Z)$ are about 10% larger than the one-loop values. The effect of the higher SUSY scale is to lower $\alpha_3(M_Z)$ by about 5%.

Inclusion of Yukawa couplings in the two-loop evolution also lowers the value of $\alpha_3(M_Z)$ somewhat. For example setting $\lambda_t = \lambda_b = \lambda_\tau = 1$ at the GUT scale, we obtain a two-loop value of $\alpha_3(M_Z) = 0.1189 \pm 0.0031$ for $M_{SUSY} = m_t$.

The effects on the gauge couplings of including the Yukawa couplings in the evolution are rather small for Yukawa couplings in the perturbative regime, justifying their neglect in most previous analyses; for large values of $\tan \beta$ the changes in the gauge couplings due to inclusion of Yukawa couplings can be a few percent.

The experimental situation regarding the determination of α_3 is presently somewhat clouded [10], with deep inelastic scattering determinations in the range of the one-loop calculations in Table 2 and LEP determinations similar to the two-loop results of Table 2.

There are other uncertainties not taken into account here, due to threshold corrections from the unknown particle content at the heavy scale [32,34], which can also change the α_3 values obtained above. These corrections are model-dependent so we have not attempted to include such contributions. However recent analysis have shown that the constraints from non-observation of proton decay greatly reduce the potential uncertainties from GUT thresholds [17,35].
III. YUKAWA UNIFICATION

A. One-loop analytic results

The unification of Yukawa couplings first introduced by Chanowitz, Ellis and Gaillard [14] has been reconsidered recently [4,6,7,17,30]. The GUT scale condition $\lambda_b(M_G) = \lambda_\tau(M_G)$ leads to a successful prediction for the mass ratio m_b/m_τ, provided that a low energy supersymmetry exists [4]. The b to τ mass ratio is given by

$$\frac{m_b}{m_\tau} = \frac{\eta_b}{\eta_\tau} R_{b/\tau}(m_t),$$

(9)

where

$$R_{b/\tau}(m_t) \equiv \frac{\lambda_b(m_t)}{\lambda_\tau(m_t)} = \frac{m_b(m_t)}{m_\tau(m_t)},$$

(10)

is the b to τ ratio of running masses at scale m_t and

$$\eta_f = \frac{m_f(m_f)}{m_f(m_t)} \quad \text{if} \quad m_f > 1\text{GeV},$$

(11)

$$\eta_f = \frac{m_f(1\text{GeV})}{m_f(m_t)} \quad \text{if} \quad m_f < 1\text{GeV},$$

(12)

is a scaling factor including both QCD and QED effects in the running mass below m_t. We have determined the η_f scaling factors to three-loop order in QCD and one-loop order in QED. The QCD running of the quark mass is described by

$$m_q(\mu) = \hat{m}_q(2b_0\alpha_3)^{\gamma_0/b_0} \left[1 + \left(\frac{\gamma_1}{b_0} - \frac{\gamma_0 b_1}{b_0^2} \right) \alpha_3 \right. + \left. \frac{1}{2} \left[\left(\frac{\gamma_1}{b_0} - \frac{\gamma_0 b_1}{b_0^2} \right)^2 + \left(\frac{\gamma_2}{b_0} + \frac{\gamma_0 b_2}{b_0^2} - \frac{b_1 \gamma_1 + b_2 \gamma_0}{b_0^2} \right) \right] \alpha_3^2 + \mathcal{O}(\alpha_3^3) \right],$$

(13)

where the anomalous dimensions γ_0, γ_1 and γ_2 are given in Ref. [36]. The scale-invariant mass \hat{m}_q cancels in the ratio in Eq. (11). The one-loop QED running from scale μ' to scale μ introduces modifications

$$m_f(\mu) = m_f(\mu') \left(\frac{\alpha(\mu)}{\alpha(\mu')} \right)^{\gamma_0/b_0\alpha_3^{QED}} \mu_0^{QED},$$

(14)
where the QED beta function and anomalous dimension are given by

\[b_0^{QED} = \frac{4}{3} \left(3 \sum Q_u^2 + 3 \sum Q_d^2 + \sum Q_e^2 \right), \]

\[\gamma_0^{QED} = -3Q_f^2, \]

and the sums run over the active fermions at the relevant scale. The dependence of the QCD-QED scaling factors \(\eta \) on \(\alpha_3(M_Z) \) is shown in Figure 3; these factors increase as \(\alpha_3(M_Z) \) increases.

We note that the physical top mass is related to the running mass by

\[m_t^{phys} = m_t(m_t) \left[1 + 4\frac{\alpha_3(m_t)}{3\pi} + O(\alpha_3^2) \right]. \]

(17)

The effects of the top quark Yukawa \(\lambda_t \) can be studied semi-analytically at one-loop neglecting the effects of the bottom and tau Yukawa couplings \(\lambda_b \) and \(\lambda_\tau \) in Eqs. (1) and (2), which is a valid approximation for small to moderate \(\tan \beta \) (i.e. \(\tan \beta \lesssim 10 \)). Following Ref. [6] we find

\[\frac{m_b}{m_\tau} = y \frac{\eta^{1/2}}{x \eta_t}, \]

(18)

where \(x(\mu), y(\mu), \eta(\mu) \) defined by

\[x(\mu) = \left(\frac{\alpha_G}{\alpha_1(\mu)} \right)^{1/6} \left(\frac{\alpha_G}{\alpha_2(\mu)} \right)^{3/2}, \]

\[y(\mu) = \exp \left\{ -\frac{1}{16\pi^2} \int_{\mu}^{M_G} \frac{\lambda_t^2(\mu')d\ln \mu'}{\mu} \right\}, \]

\[\eta(\mu) = \prod_{i=1,2,3} \left(\frac{\alpha_G}{\alpha_i(\mu)} \right)^{c_i/b_i}, \]

are to be evaluated at \(\mu = m_t \) in Eq. (18). Henceforth \(x, y, \eta \) shall be understood as being evaluated at scale \(m_t \) when an argument is not explicitly specified. Typical values of these quantities obtained in Ref. [8] are \(x = 1.52, y = 0.75 - 0.81, \eta = 10.3 \) for a bottom mass given by the Gasser-Leutwyler (GL) QCD sum rule determination \(m_b = 4.25 \pm 0.1 \text{ GeV} \) taken within its 90% confidence range and \(\alpha_3 = 0.111 \). The quantity \(y \) gives the scaling from \(M_G \) to \(m_t \) that arises from a heavy quark, beyond the scaling due to the gauge couplings.
The factor \(y(m_t) \) is constrained to lie in a narrow range of values by Eq. (18). The integral in Eq. (20) is crucial in explaining the \(m_b/m_\tau \) ratio. In fact if \(\lambda_t \) is neglected then \(y = 1 \) and the \(m_b/m_\tau \) ratio is found to be too large.

For a given value of \(m_t \), there exist two solutions for \(\tan \beta \). This fact can be understood qualitatively by studying the one-loop RGE for \(R_{b/\tau} \equiv \lambda_b/\lambda_\tau \).

\[
\frac{dR_{b/\tau}}{dt} = \frac{R_{b/\tau}}{16\pi^2} \left(-\sum d_i g_i^2 + \lambda_t^2 + 3\lambda_b^2 - 3\lambda_\tau^2 \right). \tag{22}
\]

For small \(\tan \beta \) the bottom and tau Yukawas do not play a significant role in the RGE, and any particular value for \(m_b/m_\tau \) is obtained for a unique value of \(\lambda_t(m_t) \), which corresponds to a linear relationship between \(m_t \) and \(\sin \beta \),

\[
\frac{m_t}{\sin \beta} = \frac{v}{\sqrt{2}} \lambda_t(m_t) = \pi v \sqrt{\frac{2\eta}{3I}} \left[1 - y^{12} \right]^{1/2}, \tag{23}
\]

where \(v = 246 \text{ GeV} \) and

\[
I = \int_{m_t}^{M_G} \eta(\mu') d\ln \mu'. \tag{24}
\]

The numerical value for \(I \) from Ref. [18] is 113.79 for \(m_t = 170 \text{ GeV} \). For large \(\tan \beta \), where the effects of \(\lambda_b \) and \(\lambda_\tau \) on the running Yukawa couplings can be substantial, an increase in \(\lambda_b \) can be compensated in the RGE by a decrease in \(\lambda_t \). Hence, for increasing \(\tan \beta \), the correct prediction for \(m_b/m_\tau \) is obtained for decreased values of the top quark Yukawa. Thus there is a second solution to the RGE for \(R_{b/\tau} \) with a large value of \(\tan \beta \). The inclusion of the two-loop effects does not alter these observations.

The one-loop RGE for \(R_{s/\mu} \equiv \lambda_s/\lambda_\mu \)

\[
\frac{dR_{s/\mu}}{dt} = \frac{R_{s/\mu}}{16\pi^2} \left(-\sum d_i g_i^2 \right). \tag{25}
\]

is similar to Eq. (22), except that it receives no contribution from the dominant Yukawa couplings \(\lambda_t, \lambda_b, \) and \(\lambda_\tau \). When the value \(R_{s/\mu}(M_G) = 1/3 \) is assumed at the GUT scale, the prediction at the electroweak scale is

\[
\frac{m_s}{m_\mu} = \frac{1}{3} \frac{\eta^{1/2} \eta_s}{x \eta_\mu}. \tag{26}
\]

10
Notice that this equation does not include the scaling parameter y because the top quark Yukawa does not affect the running of the second generation quarks and leptons. This relation for m_s/m_μ is in good agreement with the experimental values, but it is not as stringent as the m_b/m_τ relation due to the sizable uncertainty in the strange quark mass. The result $m_s/m_\mu = 1.54$ was obtained in Ref. [18], to be compared with the GL determination $m_s/m_\mu = 1.66 \pm 0.52$.

A popular strategy is to relate the mixing angles in the CKM matrix to ratios of quark masses, taking into account the evolution from the GUT scale in non-SUSY [40] or SUSY [41] models. For example, one popular GUT scale ansatz is $|V_{cb}| \approx \sqrt{m_c/m_t}$ which requires a GUT boundary condition on $R_{c/t} \equiv \lambda_c/\lambda_t$ of

$$\sqrt{R_{c/t}(M_G)} = |V_{cb}(M_G)|,$$

(27)

The one-loop SUSY RGE for $R_{c/t}$ is

$$\frac{dR_{c/t}}{dt} = - \frac{R_{c/t}}{16\pi^2} \left[3\lambda_t^2 + \lambda_b^2 \right].$$

(28)

The corresponding one-loop SUSY RGE for the running CKM matrix element $|V_{cb}|$ is [41],

$$\frac{d|V_{cb}|}{dt} = - \frac{|V_{cb}|}{16\pi^2} \left[\lambda_t^2 + \lambda_b^2 \right],$$

(29)

The pure gauge coupling parts of the RGEs are not present in Eqs. (28) and (29) since $R_{c/t}$ and V_{cb} are ratios of elements from the up quark Yukawa matrix and the down quark Yukawa matrix.

Neglecting the non-leading effects of λ_b, the one-loop results of Ref. [6] at the electroweak scale obtained from evolution are

$$|V_{cb}(m_t)| = |V_{cb}(M_G)| y^{-1} R_{c/t}(m_t) = R_{c/t}(M_G) y^{-3},$$

(30)

or equivalently using Eq. (27)

$$|V_{cb}(m_t)| = \sqrt{ym_c/\eta_c m_t}.$$

(31)
Since y is already well constrained by the b-mass relation of Eq. (18) (for the one-loop value of $\alpha_3(M_Z) = 0.111$), Eq. (31) requires that m_t must be large in order that $|V_{cb}|$ falls in the experimentally allowed range $0.032 - 0.054$ (and even then $|V_{cb}|$ is found to be at the upper limit of its allowed range). If, however, we use a larger value of $\alpha_3(M_Z)$ indicated by the two-loop equations, say 0.12, then η_c increases by about 14%, as shown in Figure 3. Furthermore the increased values of the scaling parameters η and η_b require about a 9% decrease in y to explain the m_b/m_τ ratio in Eq. (18). The resulting $|V_{cb}|$ is reduced by about 12% and is then closer to its central experimental value. Of course, a consistent treatment at the two-loop level requires the two-loop generalization of Eq. (31) obtained by solving the full set of RGEs. One of the questions we will address subsequently is for what values of m_t and $\tan \beta$ can the $|V_{cb}|$ and the m_b/m_τ constraints be realized simultaneously.

The predictions above are all based upon the assumption that the couplings remain in the perturbative regime during the evolution from the GUT scale down to the electroweak scale. Otherwise it is not valid to use the RGEs which are calculated order by order in perturbation theory. One can impose this perturbative unification condition as a constraint. For m_b at the lower end of the GL QCD sum rule range $4.1 - 4.4$ GeV the top quark Yukawa coupling at the GUT scale, $\lambda_t(M_G)$, becomes large, as can be demonstrated from analytic solutions to the one-loop RGEs in the approximation that λ_b and λ_τ are neglected compared to λ_t (valid for small to moderate $\tan \beta$).

The top quark Yukawa at the GUT scale is given by

$$\lambda_t(M_G)^2 = \frac{4\pi^2}{3I} \left[\frac{1}{y^{12}} - 1 \right].$$

Taking $\alpha_3(M_Z) = 0.111$ and $m_b = 4.25$ GeV and $m_t = 170$ GeV gives $\lambda_t(M_G) = 1.5$. Larger values of $\alpha_3(M_Z)$ lead to increased η_b via Eq. (11) giving smaller y in Eq. (18) and a correspondingly larger value of $\lambda_t(M_G)$. The quantity $\lambda_t(M_G)$ is plotted versus $\alpha_3(M_Z)$ in Figure 4. Larger values of $\alpha_3(M_Z) \approx 0.12$ can yield $\lambda_t(M_G) > 3$ that cast the perturbative unification in doubt. Keeping the gauge couplings fixed and varying m_b, one sees that smaller values of m_b also yield larger values of $\lambda_t(M_G)$.

12
The scaling parameter y is manifestly less than one by Eq. (20) since $\lambda^2 > 0$ in the region $m_t < \mu < M_G$. This implies an upper limit on m_b in Eq. (18) of

$$\frac{m_b}{m_\tau} \lesssim \frac{\eta^{1/2}}{\eta_\tau} \times \eta_b. \quad (33)$$

B. Two-loop numerical results

When the two-loop RGEs are considered, analytic solutions must be abandoned, but the same qualitative behavior is found in the numerical solutions. Furthermore, there is now the possibility that the bottom quark Yukawa coupling at the GUT scale becomes non-perturbative for large values of $\tan \beta$. In our analysis we solve the two-loop RGEs of Eqs. (1-4) numerically [42], retaining all Yukawa couplings from the third generation.

First we choose a value of $\alpha_3(M_Z)$ that is consistent with experimental determinations and the preceding one-loop or two-loop evolution of the gauge couplings in the absence of Yukawa couplings. Specifically we take $\alpha_3(M_Z) = 0.11$ or $\alpha_3(M_Z) = 0.12$, to bracket the indicated $\alpha_3(M_Z)$ range. For each particular $\alpha_3(M_Z)$ we consider a range of values for $\tan \beta$ and $m_b(m_b)$. For each choice of $\alpha_3(M_Z)$, $\tan \beta$, m_b we choose an input value of m_t. The Yukawa couplings at scale m_t are then given by

$$\lambda_t(m_t) = \frac{\sqrt{2}m_t(m_t)}{v \sin \beta}, \quad \lambda_b(m_t) = \frac{\sqrt{2}m_b(m_b)}{\eta_b v \cos \beta}, \quad \lambda_\tau(m_t) = \frac{\sqrt{2}m_\tau(m_\tau)}{\eta_\tau v \cos \beta}, \quad (34)$$

and the $\alpha_i(m_t)$ are determined by Eqs. (7) and (8) from the central values in Eq. (6) We take $m_\tau = 1.784$ GeV. The running of the vacuum expectation value v between the fermion mass scales is negligible for the range of fermion masses considered here [5]. Starting at the scale m_t, we integrate the RGEs to the GUT scale, defined to be the scale at which $\alpha_1(\mu)$ and $\alpha_2(\mu)$ intersect. We then check to see if the equality $\lambda_b(M_G) = \lambda_\tau(M_G)$ holds to within 0.01%. If the b and τ Yukawas satisfy this condition, the solution is accepted. If not, we choose another value of m_t and repeat the integration. Since our primary motivation here is to study the influence of the $\alpha_3(M_Z)$ value on the Yukawa couplings, we do not enforce the requirement that $\alpha_3(M_G)$ is equal to $\alpha_1(M_G)$ and $\alpha_2(M_G)$. Nevertheless the equality of α_1, α_2, and α_3 at M_G is typically violated by $\lesssim 4\%$ (2%) for $\alpha_3(M_Z) = 0.11$ (0.12). Such discrepancies could easily exist from threshold effects at the GUT scale [34,35].
We also explore the effects of taking the SUSY scale above m_t. We proceed as described above, integrating the following two-loop standard model RGEs numerically from the top mass to the SUSY scale:

\[
\frac{dg_i}{dt} = \frac{g_i}{16\pi^2} \left[b_i^{SM} g_i^2 + \frac{1}{16\pi^2} \left(\sum_{j=1}^{3} b_{ij}^{SM} g_i g_j^2 - \sum_{j=t,b,\tau} a_{ij}^{SM} g_i^2 \lambda_j^2 \right) \right], \tag{35}
\]

\[
\frac{d\lambda_t}{dt} = \frac{\lambda_t}{16\pi^2} \left[\left(- \sum c_i^{SM} g_i^2 + \frac{3}{2} \lambda_t^2 - \frac{3}{2} \lambda_b^2 + Y_2(S) \right) \right]
 + \frac{1}{16\pi^2} \left(\frac{1187}{600} g_1^4 - \frac{23}{4} g_2^4 - 108 g_3^4 - \frac{9}{20} g_1^2 g_2^2 + \frac{19}{15} g_1^2 g_3^2 + 9 g_2^2 g_3^2
 + \left(\frac{223}{80} g_1^2 + \frac{135}{16} g_2^2 + 16 g_3^2 \right) \lambda_t^2 - \left(\frac{43}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) \lambda_b^2
 + \frac{5}{2} Y_4(S) - 2 \lambda \left(3 \lambda_t^2 + \lambda_b^2 \right)
 + \frac{3}{2} \lambda_t^4 - \frac{5}{4} \lambda_t^2 \lambda_b^2 + \frac{11}{4} \lambda_b^4
 + Y_2(S) \left(\frac{5}{4} \lambda_t^2 - \frac{9}{4} \lambda_b^2 \right) - \chi_4(S) + \frac{3}{2} \lambda^2 \right), \tag{36}
\]

\[
\frac{d\lambda_b}{dt} = \frac{\lambda_b}{16\pi^2} \left[\left(- \sum c_i^{SM} g_i^2 + \frac{3}{2} \lambda_b^2 - \frac{3}{2} \lambda_t^2 + Y_2(S) \right) \right]
 + \frac{1}{16\pi^2} \left(- \frac{127}{600} g_1^4 - \frac{23}{4} g_2^4 - 108 g_3^4 - \frac{27}{20} g_1^2 g_2^2 + \frac{31}{15} g_1^2 g_3^2 + 9 g_2^2 g_3^2
 - \left(\frac{79}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) \lambda_t^2 + \left(\frac{187}{80} g_1^2 + \frac{135}{16} g_2^2 + 16 g_3^2 \right) \lambda_b^2
 + \frac{5}{2} Y_4(S) - 2 \lambda \left(\lambda_t^2 + 3 \lambda_b^2 \right)
 + \frac{3}{2} \lambda_t^4 - \frac{5}{4} \lambda_b^2 \lambda_t^2 + \frac{11}{4} \lambda_b^4
 + Y_2(S) \left(\frac{5}{4} \lambda_t^2 - \frac{9}{4} \lambda_b^2 \right) - \chi_4(S) + \frac{3}{2} \lambda^2 \right), \tag{37}
\]

\[
\frac{d\lambda_{\tau}}{dt} = \frac{\lambda_{\tau}}{16\pi^2} \left[\left(- \sum c_i^{SM} g_i^2 + \frac{3}{2} \lambda_{\tau}^2 + Y_2(S) \right) \right]
 + \frac{1}{16\pi^2} \left(\frac{1371}{200} g_1^4 - \frac{23}{4} g_2^4 + \frac{27}{20} g_1^2 g_2^2 \right). \tag{38}
\]
\[
\frac{d\lambda}{dt} = \frac{1}{16\pi^2} \left\{ \frac{9}{4} \left(\frac{3}{25} g_1^4 + \frac{2}{5} g_1^2 g_2^2 + g_4^2 \right) - \left(\frac{9}{5} g_1^2 + 9 g_2^2 \right) \lambda + 4 Y_2(S) \lambda - 4 H(S) + 12 \lambda^2 \right\} \\
+ \frac{1}{16\pi^2} \left\{ -78 \lambda^3 + 18 \left(\frac{3}{5} g_1^2 + 3 g_2^2 \right) \lambda^2 + \left(-\frac{73}{8} g_2^4 + \frac{117}{20} g_1^2 g_2^2 + \frac{1887}{200} g_1^4 \right) \lambda \right. \\
+ \left. \frac{305}{8} g_2^6 - \frac{867}{120} g_1^2 g_2^4 - \frac{1677}{200} g_1^4 g_2^2 - \frac{3411}{1000} g_1^6 \right\} \\
- \frac{8}{5} g_1^2 (2 \lambda_4^4 - \lambda_0^4 + 3 \lambda_2^4) - \frac{3}{2} g_2^4 Y_2(S) + 10 \lambda Y_4(S) \\
+ \frac{3}{5} g_1^2 \left[-\frac{57}{10} g_1^2 + 21 g_2^2 \right] \lambda_4^2 + \left(\frac{3}{2} g_1^2 + 9 g_2^2 \right) \lambda_6^2 \\
+ \left(-\frac{15}{2} g_1^2 + 11 g_2^2 \right) \lambda_7^2 \\
- 24 \lambda^2 Y_2(S) - \lambda H(S) + 6 \lambda \lambda_2 \lambda_6^2 \\
+ 20 \left[3 \lambda_4^6 + 3 \lambda_6^6 + \lambda_7^6 \right] \\
- 12 \left[\lambda_4^4 \lambda_6^2 + \lambda_2^2 \lambda_6^4 \right] \right\},
\]

Here

\[
Y_2(S) = 3 \lambda_4^2 + 3 \lambda_6^2 + \lambda_7^2,
\]

\[
Y_4(S) = \frac{1}{3} \left[3 \sum c_i^{SM} g_i^2 \lambda_4^2 + 3 \sum c_i^{SM} g_i^2 \lambda_6^2 + \sum c_i^{SM} g_i^2 \lambda_7^2 \right],
\]

\[
\chi_4(S) = \frac{9}{4} \left[3 \lambda_4^4 + 3 \lambda_6^4 + \lambda_7^4 - \frac{2}{3} \lambda_4^2 \lambda_6^2 \right],
\]

\[
H(S) = 3 \lambda_4^4 + 3 \lambda_6^4 + \lambda_7^4,
\]

and the coefficients \(a^{SM}, b^{SM} \) and \(c^{SM} \) are given in the appendix along with the full matrix structure.
The initial values for $\alpha_3(M_Z)$, m_b and m_t are chosen as before; in addition we are required to specify the initial value of the quartic Higgs coupling λ at scale m_t. The Yukawa couplings at scale m_t are

$$
\lambda_t(m_t) = \frac{\sqrt{2} m_t(m_t)}{v}, \quad \lambda_b(m_t) = \frac{\sqrt{2} m_b(m_b)}{\eta_b v}, \quad \lambda_t(m_t) = \frac{\sqrt{2} m_\tau(m_\tau)}{\eta_\tau v},
$$

(44)

and the $\alpha_i(m_t)$ are given by Eqs. (6)-(8). After integrating to the SUSY scale we require that the matching condition

$$
\lambda(M_{\overline{\text{SUSY}}}) = \frac{1}{4} \left(\frac{3}{5} g_1^2(M_{\overline{\text{SUSY}}}^+) + g_2^2(M_{\overline{\text{SUSY}}}^+) \right) \cos^2 2\beta, \tag{45}
$$

is satisfied to within 0.1%. This condition [4,31] results from integrating out the heavy Higgs doublet at M_{SUSY}. Below this scale only a Standard Model Higgs remains with its quartic coupling given by Eq. (45). We also apply the matching conditions

$$
g_1(M_{\overline{\text{SUSY}}}^-) = g_1(M_{\overline{\text{SUSY}}}^+), \tag{46}
$$

$$
\lambda_t(M_{\overline{\text{SUSY}}}^-) = \lambda_t(M_{\overline{\text{SUSY}}}^+) \sin \beta, \tag{47}
$$

$$
\lambda_b(M_{\overline{\text{SUSY}}}^-) = \lambda_b(M_{\overline{\text{SUSY}}}^+) \cos \beta, \tag{48}
$$

$$
\lambda_\tau(M_{\overline{\text{SUSY}}}^-) = \lambda_\tau(M_{\overline{\text{SUSY}}}^+) \cos \beta. \tag{49}
$$

If Eq. (45) is not satisfied we choose another input value of $\lambda(m_t)$ and repeat the process. We allow $\tan \beta$ to span a wide grid of values. After obtaining a satisfactory value of λ that meets the boundary condition above, we integrate the two-loop SUSY RGEs to the GUT scale, defined by the equality $\alpha_1(M_G) = \alpha_2(M_G)$. At the GUT scale we require $\lambda_b(M_G) = \lambda_\tau(M_G)$ to within 0.1%. If this condition is not met, we repeat the entire process, choosing other initial values for m_t and λ.

The parameter β also runs in going from the SUSY scale to the electroweak scale [31]. However this effect is small and we neglect it here.

In Figure 5 the resulting contours of constant m_b are given in the $m_t, \tan \beta$ plane [17] for the choices of $\alpha_3(M_Z) = 0.11$ and 0.12 and the supersymmetry scales $M_{\text{SUSY}} = m_t$ and 1 TeV. The contours shown are $m_b = 4.1, 4.25, 4.4$ GeV (corresponding to the central value of
m_b and its 90% confidence range from the GL QCD sum rule determination) and m_b = 5.0 GeV (representing a typical constituent b-quark mass value). For a given m_b and m_t ≤ 175 GeV, there is a high solution and a low solution for tan β as anticipated in §IIIa. Thus, once m_t is experimentally known and the choice of m_b resolved by other considerations (such as the CKM matrix elements addressed subsequently), the assumption of Yukawa unification at the GUT scale will select two possible values for tan β. For example for m_t = 150 GeV and m_b = 4.25 GeV, the solutions with α_3(M_Z) = 0.11 are

\[\tan \beta = 1.35 \quad \text{or} \quad \tan \beta = 56. \quad (50) \]

For m_t ≤ 175 GeV the low solution is well-approximated by

\[\sin \beta = 0.78 \left(\frac{m_t}{150 \text{ GeV}} \right). \quad (51) \]

Such knowledge of tan β would greatly simplify SUSY Higgs analyses [43]. Without imposing any other constraints, the top quark mass m_t can be arbitrarily small.

The plots rise very steeply for the maximal value of m_t. This results because the linear relation exhibited in Eq. (23) and in the plot in Ref. [18] between m_t and sin β is mapped into a vertical line for sufficiently large tan β (∼ 10). The deviation of these contours from being strictly vertical results from the contributions of λ_b and λ_τ to the Yukawa coupling evolution.

An upper limit on m_t is determined entirely by the m_b/m_τ ratio. We find the m_t upper limits shown in Table 3 for the two choices of α_3(M_Z). It is interesting that the predicted upper limit for m_t coincides with that allowed by electroweak radiative corrections [11].

M_{SUSY}	α_3(M_Z)	
0.11	0.12	
m_t	187	193
1 TeV	192	199
Table 3: Maximum values of $m_t(m_t)$ in GeV consistent with the 90% confidence levels of the $m_b(m_b)$ values of GL.

Our contours of m_b/m_τ in Fig. 5 have about a 10% higher m_b than those given in Ref. [17], presumably because they employed the one-loop QCD results for the scaling factors η_f with the two-loop expression for α_3 rather than the three-loop QCD for both η_f and α_3 that we use here.

As $\alpha_3(M_Z)$ gets larger, smaller values of y are needed to obtain the correct m_b/m_τ ratio. In turn larger values of $\lambda_t(\mu)$ are needed via Eq. (20). For $\alpha_3(M_Z) \approx 0.12$ and $m_b \lesssim 4.2$ GeV, the value of $\lambda_t(\mu)$ near the GUT scale can be driven into the nonperturbative regime. In Figure 6 we show the values of $\lambda_t(M_G)$ and $\lambda_b(M_G)$ obtained for the solutions in Fig. 5. Fixed points in the quark Yukawa couplings exist at $\lambda \approx 1$, so a Yukawa coupling only slightly larger than the fixed point at the scale m_t can diverge as it is evolved to the GUT scale. For large values of the Yukawa couplings the two-loop contributions to the RGEs contribute a fraction x of the one-loop contributions when

$$\lambda_t = \sqrt{\frac{6(16\pi^2 x)}{22}} \approx 6.5\sqrt{x},$$

(52)

$$\lambda_b = \sqrt{\frac{7(16\pi^2 x)}{28}} \approx 6.3\sqrt{x},$$

(53)

as can be deduced from Eqs. (2) and (3). When $x \approx 1$ we are clearly in the nonperturbative regime. If we adopt the criteria that the two-loop effects always be less than a quarter of the one-loop effects, then λ_t and λ_b are nonperturbative when they remain below 3.3 and 3.1 respectively all the way to the GUT scale. This is true for all of the curves presented in Figure 6, except for the $m_b = 4.1$ GeV contours for $\alpha_3(M_Z) = 0.12$; hence the exact position of this contour cannot be predicted with accuracy.

In Figure 7 we show the evolution of the Yukawa couplings from the SUSY scale to the GUT scale. The nonperturbative regime for the case discussed above occurs only near the GUT scale.
In some SO(10) GUT models the top quark Yukawa coupling λ_t is unified with the λ_b and λ_τ at the GUT scale. Imposing this constraint selects a unique value for $\tan \beta$ and m_t. This solution is given by the intersection of $\lambda_t(M_G)$ and $\lambda_b(M_G)$, which occurs for large $\tan \beta \gtrsim 50$: see Fig. 6.

One could also consider the unification of the Yukawa couplings at some scale other than that at which the gauge couplings unify \cite{4,17}. Since $R_{b/\tau}$ increases as it evolves from the GUT scale to the electroweak scale, Yukawa unification at a scale larger than the gauge coupling unification scale gives a larger m_b/m_τ ratio.

The authors of Ref. \cite{4} predict the light physical Higgs mass rather precisely. However this prediction is related to their assumption (and the one we use here) that the heavy Higgs doublet is integrated out at M_{SUSY}. This means that the heavy physical Higgs bosons have masses $M_H \approx M_A \approx M_{H^\pm} \approx M_{SUSY} >> M_Z$, which requires that the light Higgs mass is close to its upper limit. The relation of $\sin \beta$ to m_t then fixes the one-loop corrections to the light Higgs mass.

IV. FERMION MASS ANSATZ

By assuming an ansatz for Yukawa matrices at the GUT scale and evolving these matrices down to the electroweak scale, predictions can be obtained for the quark and lepton masses and the CKM matrix elements \cite{4,6,7,16}. Much work has been done on individual relations such as $|V_{ud}| \approx \sqrt{m_s/m_d}$ and $|V_{cb}| \approx \sqrt{m_c/m_t}$ which are imposed at the GUT scale as described in §III. Recently interest has been revived in models that involve several such relations, leading to a number of predictions for quark masses and CKM matrix elements at the electroweak scale \cite{4,6,8}. The relations evolve according to RGEs, and the main effects are determined by the largest couplings. For moderate values of $\tan \beta$ (i.e. $\tan \beta \lesssim 10$), these are the gauge couplings g_i and the top quark Yukawa coupling λ_t. For large values of $\tan \beta (\approx m_t/m_b)$ the effects of λ_b and λ_τ can also be significant. Various individual relations at the GUT scale such as $|V_{cb}| \approx \sqrt{m_c/m_t}$ can be satisfied for certain choices of these Yukawa
couplings. The remarkable aspect of these fermion mass ansätze is that many relations can be made to work at one time. We shall concentrate in this section on two predictive ways of generating mixing between the second and third generations which put those mixing contributions entirely in the up quark Yukawa matrix [4,16] or entirely in the down quark Yukawa matrix [7].
A. The HRR/DHR Model

Harvey, Ramond and Reiss [16] proposed that the Yukawa matrices at the GUT scale have the form

\[
U = \begin{pmatrix}
0 & C & 0 \\
C & 0 & B \\
0 & B & A
\end{pmatrix}, \\
D = \begin{pmatrix}
0 & F e^{i\phi} & 0 \\
F e^{-i\phi} & E & 0 \\
0 & 0 & D
\end{pmatrix},
\]

\[E = \begin{pmatrix}
0 & F & 0 \\
F & -3E & 0 \\
0 & 0 & D
\end{pmatrix}.
\]

These matrices incorporate both Fritzsch zeros [20] and the Georgi-Jarlskog relation [21] between down quark and charged lepton matrix elements. This relative factor of three has been realized in Higgs models with certain vacuum breaking patterns. HRR obtained the above ansatz using a 10 and three 126 Higgs multiplets in an SO(10) GUT model to obtain various relationships between CKM matrix elements and quark masses. The GUT ansatz of Eqs. (54) and (55) is also the basis for the recent RGE analysis by Dimopoulos, Hall and Raby [6]. Henceforth we shall refer to this ansatz as the HRR/DHR model. It yields the relation \(|V_{cb}| = \sqrt{\lambda_c / \lambda_t}\) at the GUT scale.

Renormalization group evolution generates non-zero entries in the above Yukawa matrices and also splits \(B_1 \equiv U_{23}\) and \(B_2 \equiv U_{32}\) to give the matrices at the electroweak scale of the form

\[
U = \begin{pmatrix}
0 & C & 0 \\
C & \delta_u & B_1 \\
0 & B_2 & A
\end{pmatrix}, \\
D = \begin{pmatrix}
0 & F e^{i\phi} & 0 \\
F e^{-i\phi} & E & \delta_d \\
0 & 0 & D
\end{pmatrix},
\]

\[E = \begin{pmatrix}
0 & F' & 0 \\
F' & -3E' & 0 \\
0 & 0 & D'
\end{pmatrix}.
\]
The quantities A, D and D' are equivalent to λ_t, λ_b and λ_τ respectively up to subleading corrections in the mass matrix diagonalization. The one-loop solutions [4] to leading order in the hierarchy can be obtained analytically neglecting λ_b and λ_τ. The one-loop results for the CKM elements at the scale m_t are

$$|V_{us}| = \left[\frac{\eta_u m_d + \eta_d m_u}{\eta_d m_s} + 2 \sqrt{\frac{\eta_u \eta_d m_u m_d}{\eta_d m_s m_c}} \cos \phi \right]^{1/2},$$ \hspace{1cm} (58)

$$|V_{cb}| = \sqrt{\frac{y_m c m_t}{\eta_c m_t}},$$ \hspace{1cm} (59)

$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\eta_u m_u}{\eta_u m_c}},$$ \hspace{1cm} (60)

where $\eta_i(m_t)$ is defined by Eq. (11) and $y(m_t)$ by Eq. (20). The angle ϕ is a priori arbitrary.

The down-type quark masses are related to the corresponding lepton masses by

$$m_d = \eta_d^{1/2} \frac{\eta_d}{\eta_e} 3 m_e,$$ \hspace{1cm} (61)

$$m_s = \eta_s^{1/2} \frac{\eta_s}{\eta_\mu} m_\mu,$$ \hspace{1cm} (62)

$$m_b = \eta_b^{1/2} \frac{\eta_b}{\eta_\tau} m_\tau.$$ \hspace{1cm} (63)

Using the general expressions for the two-loop RGEs given in the appendix and keeping only terms unsuppressed by the hierarchy, one obtains Eqs. (1)–(4) as well as

$$\frac{d B_1}{d t} = B_1 \frac{16 \pi^2}{16 \pi^2} \left[\left(- \sum c_i g_i^2 + 6 \lambda_t^2 + \frac{\lambda_t \lambda_b \delta_d}{B_1} \right) + \frac{1}{16 \pi^2} \left(\sum \left(c_i b_i + c_i^2 / 2 \right) g_i^4 + g_1^2 g_2^2 + \frac{136}{45} g_1^2 g_3^2 + 8 g_2^2 g_3^2 + \lambda_t^2 \left(\frac{6}{5} g_1^2 + 6 g_2^2 + 16 g_3^2 \right) + \frac{2}{5} \lambda_t \lambda_b \delta_d g_1^2 \right) \right. \nonumber$$

$$\left. - \left\{ 22 \lambda_t^4 + 5 \lambda_t^2 \lambda_b^2 + \lambda_t \lambda_b \lambda_\tau \lambda_\tau \right\} \right],$$ \hspace{1cm} (64)

$$\frac{d B_2}{d t} = B_2 \frac{16 \pi^2}{16 \pi^2} \left[\left(- \sum c_i g_i^2 + 6 \lambda_t^2 + \lambda_b^2 \right) + \frac{1}{16 \pi^2} \left(\sum \left(c_i b_i + c_i^2 / 2 \right) g_i^4 + g_1^2 g_2^2 + \frac{136}{45} g_1^2 g_3^2 + 8 g_2^2 g_3^2 + \lambda_t^2 \left(\frac{6}{5} g_1^2 + 6 g_2^2 + 16 g_3^2 \right) + \frac{2}{5} \lambda_b^2 g_1^2 \right) \right. \nonumber$$

$$\left. - \left\{ 22 \lambda_t^4 + 5 \lambda_t^2 \lambda_b^2 + 5 \lambda_b^4 + \lambda_b^2 \lambda_\tau \right\} \right],$$ \hspace{1cm} (65)
by VL at any scale U up to λ/B. Notice that since 1 model in the mass m in particular equal to its value at the GUT scale ($B_u V_d \delta_{\lambda/L}$). We define a "running" CKM matrix by diagonalizing the Yukawa matrices $d\delta_u/dt = \delta_u/16\pi^2 \left(- \sum c_i g_i^2 + 3\lambda_t^2 + \frac{3\lambda_t B_1 B_2}{\delta_u} + \frac{\lambda_b \delta_d B_2}{\delta_u} \right) + \frac{1}{16\pi^2} \left(\sum \left(\frac{c_i b_i + c_i^2/2}{g_i^4 + g_i^2 g_2^2 + \frac{136}{45} g_1^2 g_3^2 + 8g_2 g_3^2} \right) + \lambda_t^2 \left(\frac{4}{5} g_1^2 + 16g_2^2 \right) + \frac{\lambda_t B_1 B_2}{\delta_u} \left(\frac{2}{5} g_i^2 + 6g_2^2 \right) + \frac{2}{5} \lambda_b \delta_d B_2 g_i^2 \right) - \left\{ 9\lambda_t^4 + 3\lambda_t^2 \lambda_b^2 + \frac{\lambda_t B_1 B_2}{\delta_u} \left(13\lambda_t^2 + 2\lambda_b^2 \right) + \frac{\lambda_b \delta_d B_2}{\delta_u} \left(5\lambda_b^2 + \lambda_t^2 \right) \right\} \right),
(66)

d\delta_d/dt = \delta_d/16\pi^2 \left(- \sum c_i' g_i^2 + 6\lambda_b^2 + \lambda_t^2 + \frac{\lambda_t \lambda_b B_1}{\delta_d} \right) + \frac{1}{16\pi^2} \left(\sum \left(c_i' b_i + c_i'^2/2 \right) g_i^4 + g_i^2 g_2^2 + \frac{8}{9} g_1^2 g_3^2 + 8g_2 g_3^2 \right) + \lambda_b^2 \left(\frac{2}{5} g_i^2 + 6g_2^2 + 16g_3^2 \right) + \frac{6}{5} \lambda_t^2 g_i^2 + \frac{4}{5} \lambda_t \lambda_b B_1 g_i^2 \right) - \left\{ 22\lambda_b^4 + 5\lambda_t^2 \lambda_b^2 + 3\lambda_b^2 \lambda_t^2 + 3\lambda_t^4 + \frac{\lambda_t \lambda_b B_1}{\delta_d} \left(5\lambda_b^2 \right) \right\} \right) \right). \tag{67}

Notice that since $1/B_2 d B_2/dt = 1/\lambda_d d \lambda_t/dt$, the ratio B_2/λ_t is constant over all scales and is in particular equal to its value at the GUT scale ($B_{2G}/\lambda_t(M_{G})$).

With these RGEs we can include the additional experimental constraints from the charm mass m_c and the CKM matrix element $|V_{cb}|$ to determine the allowed region of the HRR/DHR model in the $m_t, \tan \beta$ plane. An analysis at the one-loop level neglecting λ_b and λ_t relative to λ_t was presented in Ref. [18].

The Yukawa matrices are diagonalized by unitary matrices $V_u^L, V_u^R, V_d^L, V_d^R$ so that $U^{diag} = V_u^L U V_u^{R\dagger}$ and $D^{diag} = V_d^L D V_d^{R\dagger}$. The CKM matrix is then given by $V_{CKM} = V_u^L V_d^{L\dagger}$. We define a "running" CKM matrix by diagonalizing the Yukawa matrices U and D at any scale t. We find that λ_c/λ_t and $|V_{cb}|$ are described in terms of the Yukawa matrices by

$$R_{c/t} \equiv \frac{\lambda_c}{\lambda_t} = \left(\frac{B_1 B_2}{\lambda_t^2} - \frac{\delta_u}{\lambda_t} \right), \tag{68}$$

$$|V_{cb}| = \frac{B_1}{\lambda_t} - \frac{\delta_d}{\lambda_b}, \tag{69}$$

23
with

$$\frac{m_c}{m_t} = \eta_c R_{c/t}(m_t).$$

(70)

To leading order in the mass hierarchy, the ratio $R_{c/t}$ is given by the ratio of eigenvalues of the 2×2 submatrix of U in the second and third generations while V_{cb} is given by the difference in the rotation angles needed to rotate away the upper right hand entry in the submatrices of U and D. Given that the mass hierarchies exist, there is a simple iterative numerical procedure for diagonalizing the mass matrices U and D and obtaining the CKM matrix. We have checked that the corrections to the above formulas from contributions subleading in the mass hierarchy are small.

It is straightforward to derive the resulting renormalization group equations from Eqs. (64)-(67)

$$\frac{dR_{c/t}}{dt} = -\frac{R_{c/t}}{16\pi^2} \left[\left(\frac{3}{2} \lambda_t^2 - \frac{3}{2} \lambda_b^2 \right) + \frac{1}{16\pi^2} \left(\lambda_t^2 \left(\frac{2}{5} g_1^2 + 6 g_2^2 \right) + \frac{2}{5} \lambda_b^2 g_1^2 - \left(13 \lambda_t^4 + 2 \lambda_t^2 \lambda_b^2 + 5 \lambda_b^4 + \lambda_b^2 \lambda_t^2 \right) \right) \right],$$

(71)

$$\frac{d|V_{cb}|}{dt} = -\frac{|V_{cb}|}{16\pi^2} \left[\lambda_t^2 + \lambda_b^2 \right]$$

$$+ \frac{1}{16\pi^2} \left(\frac{4}{5} \lambda_b^2 g_1^2 + \frac{2}{5} \lambda_b^2 g_1^2 - \left(5 \lambda_t^4 + 5 \lambda_b^4 + \lambda_b^2 \lambda_t^2 \right) \right],$$

(72)

The corresponding evolution equations in the Standard Model are given by

$$\frac{dR_{c/t}}{dt} = -\frac{R_{c/t}}{16\pi^2} \left[\left(\frac{3}{2} \lambda_t^2 - \frac{3}{2} \lambda_b^2 \right) + \frac{1}{16\pi^2} \left(\lambda_t^2 \left(\frac{223}{80} g_1^2 + \frac{135}{16} g_2^2 + 16 g_3^2 \right) - \lambda_b^2 \left(\frac{43}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) - 2 \lambda (3 \lambda_t^2 + \lambda_b^2) \right.$$

$$\left. - \left(\frac{21}{4} \lambda_t^4 + \frac{17}{4} \lambda_t^2 \lambda_b^2 - \frac{13}{2} \lambda_t^4 + \frac{9}{4} \lambda_t^2 \lambda_b^2 - \frac{5}{4} \lambda_b^2 \lambda_t^2 \right) \right) \right],$$

(73)

$$\frac{d|V_{cb}|}{dt} = \frac{|V_{cb}|}{16\pi^2} \left[\left(\frac{3}{2} \lambda_t^2 + \frac{3}{2} \lambda_b^2 \right) + \frac{1}{16\pi^2} \left(\lambda_t^2 \left(\frac{79}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) + \lambda_b^2 \left(\frac{43}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) + 2 \lambda (\lambda_t^2 + \lambda_b^2) \right) \right].$$
\[-\left(\frac{13}{2}\lambda_t^4 + \frac{11}{2}\lambda_b^2\lambda_t^2 + \frac{13}{2}\lambda_b^4 + \frac{5}{4}\lambda_t^2\lambda_t^2 + \frac{5}{4}\lambda_b^2\lambda_t^2\right)\right]\] (74)

The evolution equations in Eqs. (73)-(74) are obtained from the two-loop RGEs of the standard model given in Ref [26] and in the appendix.

In the supersymmetric model $|V_{cb}|$ increases with the running from the GUT scale to the electroweak scale [41]; this is evident at the two-loop level in Eq.(72). The opposite behavior occurs in Eq. (74) for the nonsupersymmetric Standard Model where $|V_{cb}|$ decreases as the running mass decreases [40]. Fig. 8 shows the running of $|V_{cb}|$ for the cases $M_{SUSY} = m_t$ and 1 TeV. In contrast to $|V_{cb}|$ the ratio $R_{c/t}$ increases monotonically as the running mass decreases in both the Standard Model and supersymmetric model cases.

We stress that Eqs. (73) and (74) are the correct evolution equations regardless of the fermion mass ansatz at the GUT scale. Changing the ansatz just changes the boundary conditions at the GUT scale (terms subleading in the mass hierarchy differ between models, but this is a negligible effect). In a model for which the relationship $|V_{cb}| = \sqrt{\lambda_c/\lambda_t}$ holds (as in the HRR/DHR model), this boundary condition is $\sqrt{R_{c/t}(M_G)} = |V_{cb}(M_G)|$. In Giudice’s model, to be described below, the mixing between the second and third generations arises in the down quark Yukawa matrix alone, and so in his model $R_{c/t}$ and $|V_{cb}|$ are unrelated at the GUT scale.

In our analysis of the CKM constraints we proceed as in the discussion of the calculation for Figure 5. We numerically solve the two-loop RGEs as given by Eqs. (1)-(4),(71)-(72) for the case $M_{SUSY} = m_t$. As before, we consider the representative choices $\alpha_3(M_Z) = 0.11$ and $\alpha_3(M_Z) = 0.12$. For each $\alpha_3(M_Z)$ choice, we consider a grid of $\tan \beta$ values, holding $|V_{cb}(m_t)|$ and m_c fixed. We then choose input values for m_t and m_b (given $\alpha_3(M_Z)$, $\tan \beta$, $|V_{cb}|$, m_c) in terms of which all running parameters are uniquely specified at m_t: $\lambda_t(m_t)$, $\lambda_b(m_t)$ and $\lambda_\tau(m_t)$ are given by Eq. (34), $\alpha_i(m_t)$ are determined by Eqs. (7) and (8) using the central values in Eq. (6) $R_{c/t}$ is given by Eq. (70), and $|V_{cb}|$ at scale m_t is an input. After integrating the RGEs from m_t to M_G we check the constraints

$$\lambda_b(M_G) = \lambda_\tau(M_G) ,$$ (75a)
If either of these conditions is not satisfied to within 0.2%, we choose another input value for m_t and m_b and repeat the integration.

We also carry out the RGE calculations with a SUSY scale at 1 TeV. This is done exactly as described in the previous section. In addition to the other parameters, we choose an input value for the quartic Higgs coupling λ at scale m_t. We then integrate the two-loop standard model RGEs to the SUSY scale and require that Eq. (45) hold to within 0.1%. For such solutions we apply the other appropriate boundary conditions (given by Eqs. (46)-(49)) and integrate the two-loop SUSY RGEs to the GUT scale, where we require that $\lambda_b(M_{G}) = \lambda_{\tau}(M_{G})$ and $\sqrt{R_{c/t}(M_{G})} = |V_{cb}(M_{G})|$ to within 0.2%. In our calculation we require that m_b, m_c and $|V_{cb}|$ be within the experimentally determined 90% confidence levels of the quark mass determinations of GL ($4.1 < m_b < 4.4$ GeV, $1.19 < m_c < 1.35$ GeV) and the recent Particle Data Book value for $|V_{cb}| (0.032 < |V_{cb}| < 0.054)$.

In Fig. 9 the contours of constant $|V_{cb}|$ are shown in the $m_t, \tan \beta$ plane for a fixed $m_c = 1.27$ GeV. In Figs. 10 and 11 we show the contours obtained by applying only the constraint in Eq. (75a) as in Fig. 5 along with the contours obtained by applying both Eqs. (75a) and (75b) for fixed m_c as in Fig. 9. In Fig. 10 the value of m_c is fixed at 1.27 GeV and contours of $|V_{cb}|$ are shown. In Fig. 11 $|V_{cb}|$ is fixed at its maximum allowed experimental value of $|V_{cb}| = 0.054$ (at 90% C.L.) and three values of m_c are plotted (corresponding to the central m_c value and the 90% C.L. values from GL).

For large $\tan \beta$ the effects of including λ_b and λ_{τ} in the RGEs increase $|V_{cb}|$. In order to satisfy $|V_{cb}| < 0.054$, the maximum allowed value of $\tan \beta$ for $\alpha_3(M_Z) = 0.11$ is about 50(60) for $M_{SUSY} = m_t(1$ TeV); see Fig. 11. For this value of $\alpha_3(M_Z)$ the HRR/DHR model predicts that $|V_{cb}|$ still lies at the upper end of its allowed 90% confidence level range when the effects of λ_b and λ_{τ} at large $\tan \beta$ are included in the two-loop RGEs; see Fig. 10. Allowing m_b to become larger than the narrow window $m_b = 4.1 - 4.4$ GeV requires bigger $|V_{cb}|$ which is unacceptable. The higher b mass contour $m_b = 5$ GeV is not consistent with
the GUT scale ansatz for $\alpha_3(M_Z) = 0.11$. The largest consistent values of m_b are given in Table 4.

M_{SUSY}	$\alpha_3(M_Z)$
0.11	0.12

| m_t | 4.56 | 5.28 |
| 1 TeV | 4.70 | 5.33 |

Table 4: Maximum values of $m_b(m_b)$ in GeV consistent with the 90% confidence levels of $|V_{cb}|$ and $m_c(m_c)$.

With $\alpha_3(M_Z) = 0.12$, $|V_{cb}|$ can be much closer to its central value, enhancing the plausibility of the HRR/DHR model, with the only caveat being that low m_b ($\lesssim 4.2$ GeV) values produce $\lambda_t(M_G)$ values which are close to being non-perturbative for most values of $\tan \beta$: see Figs. 6b, 6d. Notice that the dominant effect of taking the larger value of $\alpha_3(M_Z)$ indicated by two-loop evolution is to increase the QCD-QED scaling factor η_c, thereby allowing $|V_{cb}|$ to be smaller and in better agreement with experiment.

Imposing the constraints on m_b, m_c and $|V_{cb}|$ also gives the lower limits on the top quark mass since the $|V_{cb}|$ contours in the smaller $\tan \beta$ region are steeper and eventually cross the m_b/m_τ contours. These lower limits on m_t are summarized in Table 5.

M_{SUSY}	$\alpha_3(M_Z)$	
0.11	0.12	
m_t	155 (1.45)	118 (0.75)
1 TeV	151 (1.16)	116 (0.64)

Table 5: Minimum values of $m_t(m_t)$ (tan β) in GeV consistent with the 90% confidence levels of $m_b(m_b)$, $|V_{cb}|$ and $m_c(m_c)$.

27
The constraints on m_b/m_t, $|V_{cb}|$ and m_c completely determine the allowed region in the $m_t, \tan \beta$ plane of the HRR/DHR model. Other constraints such as the ϵ parameter for CP violation in the neutral kaon system, B mixing or the lighter quark masses affect only the other parameters in the model [18].

If the Yukawa unification is assumed to occur at a scale higher than the gauge couplings, then the predicted value for $|V_{cb}|$ will be lower [4] and easier to reconcile with the experimental data.

B. The Giudice Model

Giudice has proposed a different Yukawa mass ansatz [7] of the form

$$
U = \begin{pmatrix}
0 & 0 & b \\
0 & b & 0 \\
b & 0 & a
\end{pmatrix},
D = \begin{pmatrix}
0 & f e^{i\phi} & 0 \\
0 & f e^{-i\phi} & d \overline{nd} \\
0 & nd & c
\end{pmatrix},
$$

$$
E = \begin{pmatrix}
0 & f & 0 \\
f & -3d & \overline{nd} \\
0 & \overline{nd} & c
\end{pmatrix}
$$

This model uses a geometric mean relation $m_c^2 = m_u m_t$ at the GUT scale to eliminate one parameter in the up quark Yukawa matrix. The down quark Yukawa matrix must then generate the mixing between the second and third generations to get a value for $|V_{cb}|$ that agrees with experiment. Giudice sets the parameter n in the above mass matrices to be two. We see no a priori reason to suppose that this parameter must be an integer and treat it as a free parameter.

We find the generalized one-loop solutions (neglecting λ_b and λ_r in the RGEs)

$$
|V_{us}| = 3 \sqrt{\frac{m_e}{m_\mu}} \left(1 - \frac{25 m_e}{2 m_\mu} + \frac{4n^2 m_\mu \eta_r}{9 m_\tau \eta_\mu}\right),
$$

$$
|V_{cb}| = \frac{n}{3y} \frac{m_\mu \eta_r}{m_\tau \eta_\mu} \left(1 - \frac{m_e}{m_\mu} + \frac{(n^2 - 3) m_\mu \eta_r}{9 m_\tau \eta_\mu}\right),
$$

$$
|V_{ub}| = \frac{y^2 m_c}{\eta_c m_t},
$$
\[m_u = y^3 \eta_u \frac{m_e^2}{m_t}, \quad (81) \]

\[m_d = \frac{\eta^{1/2} \eta_d}{x} \frac{3m_e}{m_\mu} \left(1 - 8 \frac{3m_e}{m_\mu} + \frac{4n^2 m_\mu \eta_\tau}{9 m_\tau \eta_\mu} \right), \quad (82) \]

\[m_s = \frac{\eta^{1/2} \eta_s}{x} \frac{m_\mu}{m_\tau} \frac{3}{3} \left(1 + 8 \frac{m_e}{m_\mu} - \frac{4n^2 m_\mu \eta_\tau}{9 m_\tau \eta_\mu} \right), \quad (83) \]

\[m_b = y^{1/2} \eta_b \frac{m_\tau}{x \eta_\tau} m_\tau. \quad (84) \]

Notice that at one-loop level to leading order in the mass hierarchy the running \(|V_{cb}|\) is related to the strange and bottom Yukawa couplings by

\[|V_{cb}(\mu)| = nR_{s/b}(\mu) \equiv n \frac{\lambda_s(\mu)}{\lambda_b(\mu)}. \quad (85) \]

Eqs. (78)-(84) can be compared to Eqs. (58)-(63) for the HRR/DHR model, except that we have retained the highest non-leading order corrections only for the Giudice model. When \(n = 2 \) the predicted value of \(|V_{cb}|\) agrees well with the experimental value. On the other hand \(|V_{us}|\) is just at the lower limit of its 90\% confidence level. The overall situation can be improved somewhat by allowing \(n \) to be slightly larger than two.

The leading term in Eq. (78) can be recognized as the Oakes relation \([19]\) between the Cabibbo angle and the quark masses, \(\tan \theta_c \approx \sqrt{m_d/m_s} \), supplemented by the Yukawa unification relation \(m_d/m_s = 9m_e/m_\mu \). Notice that this relation involving the first and second generations does not run, so the prediction of the Cabibbo angle is insensitive to the size of the gauge and Yukawa couplings. The two-loop effects for the most part increase \(\alpha_3 \) and hence the QCD scaling factors \(\eta_\mu \). The influence of two-loop contributions in the running of the Yukawas is small.

For \(\tan \beta \approx 10 \), \(\lambda_b \) and \(\lambda_\tau \) can be neglected in the RGEs; then the relation for \(m_u \) in Eq. (81) implies an upper limit on \(m_t \) \([7]\). However further solutions for \(m_b/m_\tau \) are possible with large \(\tan \beta \), as can be seen in Figure 5. In the allowed \(m_b/m_\tau \) band at large \(\tan \beta \) the predicted value for \(m_u \) from Eq. (81) is still satisfactory, since \(m_t \) is in the same range as found for the small \(\tan \beta \) solutions.

The CP-violating phase is not very well constrained in the Giudice model since the
phase does not enter in the well-measured CKM elements; in fact the phase can assume almost any non-zero value within its zero to 2π range. Correspondingly CP asymmetries to be measured in B decays are not very constrained in the model [44]. In contrast, the CP-violating phase in the HRR/DHR model is almost uniquely determined by $|V_{us}|$ and the CP-violating asymmetries are predicted precisely. This remain the case at the two-loop level. In the HRR/DHR scheme the dependence on $\alpha_3(M_Z)$ cancels out in quark mass ratios, and since the constraint on the phase arises from the first and second generation mixing angles, there is no dependence of the phase on λ_t.

V. CONCLUSION

We have investigated unification scenarios in supersymmetric grand unified theories using the two-loop renormalization group equations. Our primary conclusions are the following:

(1) Given the experimentally determined values for α_1 and α_2 at M_Z, the RGEs predict $\alpha_3 \simeq 0.111(0.122)$ at one-loop (two-loop) for $M_{SUSY} = m_t$ and $\alpha_3 \simeq 0.106(0.116)$ for $M_{SUSY} = 1$ TeV. Including the Yukawa couplings in the two-loop evolution of the gauge couplings decreases $\alpha_3(M_Z)$ by only a few percent. Thus the values of $\alpha_3(M_Z) \simeq 0.12$ obtained experimentally at LEP II are also theoretically preferred if GUT scale thresholds effects or intermediate scales are not important.

(2) For any fixed value of $\alpha_3(M_Z)$ and m_b there are just two allowed solutions for $\tan \beta$ for a given top mass if $m_t \lesssim 180$ GeV; the larger solution has $\tan \beta > m_t/m_b$ and the smaller solution is $\sin \beta \simeq 0.78(m_t/150\text{GeV})$. Allowing for some uncertainty in $\alpha_3(M_Z)$, m_b and M_{SUSY}, these unique solutions for $\tan \beta$ at given m_t become a narrow range of values. For $m_t \approx 180 - 200$ GeV the value of $\tan \beta$ changes rapidly with m_t.

(3) With λ_b, λ_t unification we find an upper limit $m_t \lesssim 200$ GeV on the top quark mass by requiring the successful prediction of the m_b/m_t ratio; we also obtain lower limits $m_t \gtrsim 150$ GeV (115 GeV) for $\alpha_3(M_Z) = 0.11(0.12)$ from evolution constraints on m_b, m_c and $|V_{cb}|$. These lower limits are only mildly sensitive to M_{SUSY}.

30
The effects of raising M_{SUSY} is to decrease both α_G and M_G and to decrease the values of $\alpha_3(M_Z)$ that yields successful unification. Also the allowed band for the m_b/m_τ ratio in the $m_t, \tan \beta$ plane is shifted towards slightly higher top masses. This in turn slightly reduces the prediction for $|V_{cb}|$ in models that utilize the relation $\sqrt{\lambda_c(M_G)/\lambda_t(M_G)} = |V_{cb}(M_G)|$.

In the HRR/DHR model we find an upper limit on the supersymmetry parameter $\tan \beta \lesssim 50(60)$ for $M_{SUSY} = m_t(1\text{TeV})$ if $\alpha_3(M_Z) \simeq 0.11$; for $\alpha_3(M_Z) = 0.12$ the solutions at large $\tan \beta$ extend into the region for which $\lambda_b(M_G)$ is non-perturbative.

For the value $\alpha_3(M_Z) \simeq 0.12$ indicated by the two-loop RGEs, the agreement of the $|V_{cb}|$ prediction of the HRR/DHR ansatz with experiment is improved. In fact for $\alpha_3(M_Z) = 0.12$ and $M_{SUSY} = 1\text{ TeV}$ the central values for $|V_{cb}|$ and the mass ratio m_b/m_τ almost coincide in the $m_t, \tan \beta$ plane; see Fig. 10d. This result is more general than the HRR/DHR ansatz, and occurs for any model with the GUT scale relation $|V_{cb}| = \sqrt{\lambda_c/\lambda_t}$.

With $\alpha_3(M_Z) \simeq 0.12$ a large top Yukawa coupling is needed to achieve the correct m_b/m_τ ratio, and the theory is in some jeopardy of having a non-perturbative $\lambda_t(M_G)$ if m_b is smaller than about 4.2 GeV.

GUT unification of λ_τ, λ_b and λ_t can be realized for $\tan \beta \gtrsim 50$.

The predictions for the CP asymmetries in the HRR/DHR model are largely unaffected by our two-loop analysis.

We have found new solutions to the Giudice model for large $\tan \beta$. These results require the inclusion of λ_b and λ_τ in the RGEs, and therefore could not be obtained in Giudice’s analytic treatment at one-loop.

ACKNOWLEDGMENTS

One of us (VB) thanks Pierre Ramond for a discussion. One of us (MB) thanks Greg Anderson for a discussion. We thank Tao Han for his participation in the initial stages of this project. This research was supported in part by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation, in part by
the U.S. Department of Energy under contract no. DE-AC02-76ER00881, and in part by
the Texas National Laboratory Research Commission under grant no. RGFY9173. Further
support was also provided by U.S. Department of Education under Award No. P200A80214.
PO was supported in part by an NSF Graduate Fellowship.

VI. APPENDIX

To consider a specific ansatz for Yukawa matrices at the GUT scale at the two-loop level
requires knowledge of the RGEs. These can be derived from formal expressions that exist
in the literature \[25\]. For the supersymmetric model with two Higgs doublets, the one-
and two-loop RGEs can be written for general Yukawa matrices as

\[
\frac{dg_i}{dt} = \frac{g_i}{16\pi^2} \left[b_i g_i^2 + \frac{1}{16\pi^2} \left(\sum_{j=1}^{3} b_{ij} g_j^2 g_i^2 - \sum_{j=U,D,E} a_{ij} g_i^2 \text{Tr}[Y_j Y_j^\dagger] \right) \right],
\]

(86)

with \(Y_U \equiv U \), etc.

\[
\frac{dU}{dt} = \frac{1}{16\pi^2} \left[-\sum c_i g_i^2 + 3UU^\dagger + DD^\dagger + \text{Tr}[3UU^\dagger] \right]
+ \frac{1}{16\pi^2} \left(\sum (c_i b_i + c_i^2/2) g_i^4 + g_1^2 g_2^2 + \frac{136}{45} g_1^2 g_3^2 + 8g_2^2 g_3^2
+ \left(\frac{2}{5} g_1^2 + 6g_2^2 \right)UU^\dagger + \frac{2}{5} g_1^2 DD^\dagger + \left(\frac{4}{5} g_1^2 + 16g_3^2 \right)\text{Tr}[UU^\dagger]
- 9\text{Tr}[UU^\dagger UU^\dagger] - 3\text{Tr}[UU^\dagger DD^\dagger] - 9UU^\dagger \text{Tr}[UU^\dagger]
- \text{DD}^\dagger \text{Tr}[3DD^\dagger + EE^\dagger] - 4(UU^\dagger)^2 - 2(DD^\dagger)^2 - 2UU^\dagger DD^\dagger \right] U,
\]

(87)

\[
\frac{dD}{dt} = \frac{1}{16\pi^2} \left[-\sum c'_i g_i^2 + 3DD^\dagger + UU^\dagger + \text{Tr}[3DD^\dagger + EE^\dagger] \right]
+ \frac{1}{16\pi^2} \left(\sum (c'_i b_i + c'_i^2/2) g_i^4 + g_1^2 g_2^2 + \frac{8}{9} g_1^2 g_3^2 + 8g_2^2 g_3^2
+ \left(\frac{4}{5} g_1^2 + 6g_2^2 \right)DD^\dagger + \frac{4}{5} g_1^2 UU^\dagger + \left(-\frac{2}{5} g_1^2 + 16g_3^2 \right)\text{Tr}[DD^\dagger]
+ \frac{6}{5} g_1^2 \text{Tr}[EE^\dagger]
- 9\text{Tr}[DD^\dagger DD^\dagger] - 3\text{Tr}[DD^\dagger UU^\dagger] - 3\text{Tr}[EE^\dagger EE^\dagger] - 3UU^\dagger \text{Tr}[UU^\dagger]
- 3DD^\dagger \text{Tr}[3DD^\dagger + EE^\dagger] - 4(DD^\dagger)^2 - 2(UU^\dagger)^2 - 2DD^\dagger UU^\dagger \right] D,
\]

(88)
\[
\frac{dE}{dt} = \frac{1}{16\pi^2} \left[-\sum c_i'' g_i^2 + 3EE^\dagger + \text{Tr}[3DD^\dagger + EE^\dagger] \right] \\
+ \frac{1}{16\pi^2} \left(\sum \left(c_i'' b_i + c_i''^2 / 2 \right) g_i^4 + \frac{9}{5} g_i^2 g_2^2 \\
+ 6g_2^2EE^\dagger + \left(-\frac{2}{5} g_1^2 + 16g_3^2 \right) \text{Tr}[DD^\dagger] + \frac{6}{5} g_1^2 \text{Tr}[EE^\dagger] \\
- 9\text{Tr}[DD^\dagger DD^\dagger] - 3\text{Tr}[DD^\dagger UU^\dagger] - 3\text{Tr}[EE^\dagger EE^\dagger] \\
- 3EE^\dagger \text{Tr}[3DD^\dagger + EE^\dagger] - 4(EE^\dagger)^2 \right) \] E, \tag{89}
\]

where

\[
b_i = \left(\frac{33}{5}, 1, -3 \right), \tag{90}
\]
\[
c_i = \left(\frac{13}{15}, 3, \frac{16}{3} \right), \tag{91}
\]
\[
c'_i = \left(\frac{7}{15}, 3, \frac{16}{3} \right), \tag{92}
\]
\[
c''_i = \left(\frac{9}{5}, 3, 0 \right), \tag{93}
\]
\[
d_i = c'_i - c''_i, \tag{94}
\]

\[
b_{ij} = \begin{pmatrix}
\frac{199}{25} & \frac{27}{5} & \frac{88}{5} \\
\frac{9}{5} & 25 & 24 \\
\frac{11}{5} & 9 & 14
\end{pmatrix}, \tag{95}
\]

and

\[
a_{ij} = \begin{pmatrix}
\frac{26}{5} & \frac{14}{5} & \frac{18}{5} \\
6 & 6 & 2 \\
4 & 4 & 0
\end{pmatrix}. \tag{96}
\]

These equations agree with those in the last paper in Ref. [25] for the case where the Yukawa matrices are diagonal, if the following minor corrections are made: (1) \(b_{31} \) should be decreased by a factor three; (2) the parenthesis in the second term of \(\gamma_{H_2}^{(2)} \) should come before the \(\alpha_2^2 \); (3) the first term of \(\gamma_{\tau}^{(2)} \) should have a factor \(\alpha_1^2 \) instead of \(\alpha_2^2 \).

The two-loop RGEs for the standard model are [26]
\[\frac{dg_i}{dt} = \frac{g_i}{16\pi^2} \left[b_i^{SM} g_i^2 + \frac{1}{16\pi^2} \left(\sum_{j=1}^{3} b_{ij}^{SM} g_i g_j^2 - \sum_{j=U,D,E} a_{ij}^{SM} g_i^2 \text{Tr}[Y_j Y_j^\dagger] \right) \right], \] (97)

\[\frac{dU}{dt} = \frac{1}{16\pi^2} \left[-\sum_i c_i^{SM} g_i^2 + \frac{3}{2} UU^\dagger - \frac{3}{2} DD^\dagger + Y_2(S) \right]
+ \frac{1}{16\pi^2} \left(\frac{187}{600} g_1^4 - \frac{23}{4} g_2^4 - 108 g_3^4 - \frac{9}{20} g_1^2 g_2^2 + \frac{19}{15} g_1^2 g_3^2 + g_2^2 g_3^2
+ \left(\frac{223}{80} g_1^2 + \frac{135}{16} g_2^2 + 16 g_3^2 \right) UU^\dagger - \left(\frac{43}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) DD^\dagger
+ \frac{5}{2} Y_4(S) - 2\lambda \left(3UU^\dagger + DD^\dagger \right)
+ \frac{1}{2} (UU^\dagger)^2 - DD^\dagger UU^\dagger - \frac{1}{4} UU^\dagger DD^\dagger + \frac{11}{4} (DD^\dagger)^2
+ Y_2(S) \left(\frac{5}{4} DD^\dagger - \frac{9}{4} UU^\dagger \right) - \chi_4(S) + \frac{3}{2} \chi^2 \right] U, \] (98)

\[\frac{dD}{dt} = \frac{1}{16\pi^2} \left[-\sum_i c_i^{SM} g_i^2 + \frac{3}{2} DD^\dagger - \frac{3}{2} UU^\dagger + Y_2(S) \right]
+ \frac{1}{16\pi^2} \left(-\frac{127}{600} g_1^4 - \frac{23}{4} g_2^4 - 108 g_3^4 - \frac{27}{20} g_1^2 g_2^2 + \frac{31}{15} g_1^2 g_3^2 + g_2^2 g_3^2
- \left(\frac{79}{80} g_1^2 - \frac{9}{16} g_2^2 + 16 g_3^2 \right) UU^\dagger + \left(\frac{187}{80} g_1^2 + \frac{135}{16} g_2^2 + 16 g_3^2 \right) DD^\dagger
+ \frac{5}{2} Y_4(S) - 2\lambda \left(UU^\dagger + 3DD^\dagger \right)
+ \frac{1}{2} (DD^\dagger)^2 - UU^\dagger DD^\dagger - \frac{1}{4} DD^\dagger UU^\dagger + \frac{11}{4} (UU^\dagger)^2
+ Y_2(S) \left(\frac{5}{4} UU^\dagger - \frac{9}{4} DD^\dagger \right) - \chi_4(S) + \frac{3}{2} \chi^2 \right] D, \] (99)

\[\frac{dE}{dt} = \frac{1}{16\pi^2} \left[-\sum_i c_i^{SM} g_i^2 + \frac{3}{2} EE^\dagger + Y_2(S) \right]
+ \frac{1}{16\pi^2} \left(\frac{1371}{200} g_1^4 - \frac{23}{4} g_2^4 + \frac{27}{20} g_1^2 g_2^2
+ \left(\frac{387}{80} g_1^2 + \frac{135}{16} g_2^2 \right) EE^\dagger + \frac{5}{2} Y_4(S) - 6\lambda EE^\dagger
+ \frac{1}{2} (EE^\dagger)^2 - \frac{9}{4} Y_2(S) EE^\dagger - \chi_4(S) + \frac{3}{2} \chi^2 \right] E, \] (100)
\[
\frac{d\lambda}{dt} = \frac{1}{16\pi^2} \left\{ \frac{9}{4} \left(\frac{3}{25}g_1^4 + \frac{2}{5}g_1^2g_2 + g_2^2 \right) - \left(\frac{9}{5}g_1^2 + 9g_2^2 \right) \lambda + 4Y_2(S)\lambda - 4H(S) + 12\lambda^2 \right\} \\
+ \frac{1}{16\pi^2} \left(-78\lambda^3 + 18 \left(\frac{3}{5}g_1^2 + 3g_2^2 \right) \lambda^2 + \left(\frac{73}{8}g_2^4 + \frac{117}{20}g_1^2g_2 + \frac{1887}{200}g_1^4 \right) \lambda \\
+ \frac{305}{8}g_2^6 - \frac{867}{120}g_1^2g_2^4 - \frac{1677}{200}g_1^4g_2^2 - \frac{3411}{1000}g_1^6 \\
- 64g_2^3\text{Tr}[(UU^\dagger)^2 + (DD^\dagger)^2] \\
- \frac{8}{5}g_1^2\text{Tr}[2(UU^\dagger)^2 - (DD^\dagger)^2 + 3(EE^\dagger)^2] - \frac{3}{2}g_2^4Y_2(S) + 10\lambda Y_4(S) \\
+ \frac{3}{5}g_1^2 \left[\left(-\frac{57}{10}g_1^2 + 21g_2^2 \right) \text{Tr}[UU^\dagger] + \left(\frac{3}{2}g_1^2 + 9g_2^2 \right) \text{Tr}[DD^\dagger] \\
+ \left(-\frac{15}{2}g_1^2 + 11g_2^2 \right) \text{Tr}[EE^\dagger] \right] \\
- 24\lambda^2Y_2(S) - \lambda H(S) + 6\lambda\text{Tr}[UU^\dagger DD^\dagger] \\
+ 20\text{Tr} \left[3(UU^\dagger)^3 + 3(DD^\dagger)^3 + (EE^\dagger)^3 \right] \\
- 12\text{Tr} \left[UU^\dagger(UU^\dagger + DD^\dagger)DD^\dagger \right] \right\},
\]

where

\[
b_i^{SM} = \left(\frac{41}{10}, -\frac{19}{6}, -7 \right),
\]

\[
c_i^{SM} = \left(\frac{17}{20}, \frac{9}{4}, 8 \right),
\]

\[
c_i^{\prime SM} = \left(\frac{1}{4}, \frac{9}{4}, 8 \right),
\]

\[
c_i^{\prime\prime SM} = \left(\frac{9}{4}, \frac{9}{4}, 0 \right),
\]

\[
Y_2(S) = \text{Tr}[3UU^\dagger + 3DD^\dagger + EE^\dagger],
\]

\[
Y_4(S) = \frac{1}{3} \left[3 \sum c_i^{SM} g_i^2 \text{Tr}[UU^\dagger] + 3 \sum c_i^{SM} g_i^2 \text{Tr}[DD^\dagger] + \sum c_i^{\prime SM} g_i^2 \text{Tr}[EE^\dagger] \right],
\]

\[
\chi_4(S) = \frac{9}{4} \text{Tr} \left[3(UU^\dagger)^2 + 3(DD^\dagger)^2 + (EE^\dagger)^2 - \frac{2}{3}UU^\dagger DD^\dagger \right],
\]

\[
H(S) = \text{Tr} \left[3(UU^\dagger)^2 + 3(DD^\dagger)^2 + (EE^\dagger)^2 \right],
\]

\[
b_{ij}^{SM} = \begin{pmatrix}
\frac{199}{50} & \frac{27}{10} & \frac{44}{5} \\
\frac{9}{10} & \frac{35}{6} & 12 \\
\frac{11}{10} & \frac{9}{2} & -26
\end{pmatrix},
\]

35
and

$$a_{ij}^{SM} = \begin{pmatrix} \frac{17}{10} & \frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & \frac{3}{2} & \frac{1}{2} \\ 2 & 2 & 0 \end{pmatrix}. \quad (111)$$

These renormalization group equations are those given in the classic papers of Machacek and Vaughn after replacing $H \rightarrow U^\dagger$, $F_D \rightarrow D^\dagger$, $F_L \rightarrow E^\dagger$, and making the following corrections to Eq. (101) mentioned in the paper of Ford, Jack and Jones [26]: (1) The λg_2^2 term in the one-loop beta function has a coefficient 9 instead of 1. (2) The $\lambda g_1^2 g_2^2$ term in the two-loop beta function has a coefficient $+117/20$ instead of $-117/20$. (3) The λg_1^4 in the two-loop beta function has a coefficient $+1887/200$ instead of $-1119/200$.

36
REFERENCES

[1] For review and references see e.g. R. Mohapatra, *Unification and Supersymmetry*, 2nd Edition, Springer-Verlag (1992); G. G. Ross, *Grand Unified Theories*, Addison-Wesley (1984).

[2] U. Amaldi, Wim de Boer, and H. Furstenau, Phys. Lett. **B260**, 447 (1991); J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. **B260** 131 (1991); P. Langacker and M. Luo, Phys. Rev. **D44**, 817 (1991).

[3] U. Amaldi, et al., Phys. Rev. **D36**, 1385 (1987); G. Costa, J. Ellis, G. L. Fogli, D. V. Nanopoulos and F. Zwirner, Nucl. Phys. **B297**, 244 (1988); J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. **B249**, 442 (1990); S. Kelley, J. L. Lopez, D. V. Nanopoulos, H. Pois and K. Yuan, Phys. Lett. **B273**, 423 (1991); F. Anselmo, L. Cifarelli, A. Petermann and A. Zichichi, CERN preprint CERN-PPE-91-123 (1991); J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. **B287**, 95 (1992).

[4] H. Arason, D. J. Castaño, B. Keszthelyi, S. Mikaelian, E. J. Piard, P. Ramond and B. D. Wright, Phys. Rev. Lett. **67**, 2933 (1991), P. Ramond, University of Florida preprint UFIFT-92-4; H. Arason, D. J. Castaño, E. J. Piard and P. Ramond, University of Florida preprint UFIFT-92-8.

[5] H. Arason, D. J. Castaño, B. Keszthelyi, S. Mikaelian, E. J. Piard, P. Ramond and B. D. Wright, University of Florida preprint UFIFT-91-33 (1991).

[6] S. Dimopoulos, L. J. Hall and S. Raby, Phys. Rev. Lett. **68**, 1984 (1992); Phys. Rev. **D45**, 4192 (1992).

[7] G. F. Giudice, University of Texas preprint UTTG-5-92 (1992).

[8] B. R. Greene, K. H. Kirklin, P. J. Miron and G. G. Ross, Nucl. Phys. **B292**, 606 (1987); J. L. Lopez and D. V. Nanopoulos, Phys. Lett. **B251**, 73 (1990); J. A. Casas and C. Muñoz, Nucl. Phys. **B322**, 189 (1990), F. del Aguila, M. Masip and L. A. C. P. da
Mota, CERN preprint CERN-TH.6233/91 (1991); K. S. Babu and Q. Shafi, Bartol Research Institute preprint BA-92-27 (1992).

[9] G. G. Ross and R. G. Roberts, Nucl. Phys. B377, 571 (1992); R. Arnowitt and P. Nath, Phys. Rev. Lett. 69, 725 (1992); S. Kelley, J. L. Lopez, D. V. Nanopoulos, H. Pois and K. Yuan, CERN preprint CERN-TH.6498/92 (1992).

[10] See e.g. S. Bethke and S. Catani, CERN-TH.6484/92 (1992); S. Bethke, talk at XXVI Int. Conf. on HEP, Dallas (1992).

[11] Particle Data Book, Phys. Rev. D45 (1992).

[12] J. Ellis, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. B202, 43 (1982); R. Arnowitt and P. Nath, Northeastern University preprint NUB-TH-3051-92 (1992); J. L. Lopez, D. V. Nanopoulos and A. Zichichi, CERN preprint CERN-TH.6554/92 (1992); J. Hisano, H. Murayama and T. Yanagida, Phys. Rev. Lett. 69, 1014 (1992); Tohoku University preprint TU-400 (1992).

[13] H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438 (1974); H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974); S. Dimopoulos and H. Georgi, Nucl. Phys. B293, 150 (1981); N. Sakai, Z. Phys. C11, 153 (1981).

[14] M. Chanowitz, J. Ellis and M. Gaillard, Nucl. Phys. 128, 506 (1977); A. Buras, J. Ellis, M. Gaillard and D. Nanopoulos, Nucl. Phys. 135, 66 (1978).

[15] M. B. Einhorn and D. R. T. Jones, Nucl. Phys. 196, 475 (1982); J. Ellis, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. 202, 43 (1982).

[16] J. Harvey, P. Ramond and D. B. Reiss, Phys. Lett. B92, 309 (1980); Nucl. Phys. B199, 223 (1982).

[17] S. Kelley, J. L. Lopez and D. V. Nanopoulos, Phys. Lett. B274, 387 (1992); J. Ellis, S. Kelley, D. V. Nanopoulos, Nucl. Phys. B373, 55 (1992).
[18] V. Barger, M. S. Berger, T. Han and M. Zralek, Phys. Rev. Lett. 68, 3394 (1992).

[19] R. J. Oakes, Phys. Lett. B29, 683 (1969).

[20] H. Fritzsch, Phys. Lett. B70, 436 (1977); Phys. Lett. B73, 317 (1978); Nucl. Phys. B155, 189 (1979).

[21] H. Georgi and C. Jarlskog, Phys. Lett. B86, 297 (1979).

[22] B. Stech, Phys. Lett. B130, 189 (1983); M. Shin, Phys. Lett. B145 285 (1984); M. Gronau, R. Johnson and J. Schechter, Phys. Rev. Lett. 54, 2176 (1985); H. Fritzsch, Phys. Lett. B166, 423 (1986); M. Soldate, M. H. Reno and C. T. Hill, Phys. Lett. B179, 95 (1986); R. Johnson, J. Schechter and M. Gronau., Phys. Rev. D33, 2641 (1987); M. Tanimoto and A. Takatsu, Phys. Rev. D34, 1474 (1986); F. del Aguila, G. L. Kane and M. Quiros, Phys. Lett. B196, 531 (1987); C. H. Albright, C. Jarlskog and B. Lindholm, Phys. Lett. B199, 553 (1987); Phys. Rev. D38, 872 (1988); M. Gronau, R. Johnson and J. Schechter, Phys. Lett. B201, 151 (1988); C. H. Albright, Phys. Lett. B224, 213 (1989); H. P. Nilles, M. Olechowski and S. Pokorski, Phys. Lett. B228, 406 (1989); X. G. He and W. S. Hou, Phys. Rev. D41, 1517 (1990); P. Kaus and S. Meshkov, Phys. Rev. D42, 1863 (1990); C. H. Albright, Phys. Lett. B246, 451 (1990); D. Ng and Y. J. Ng, Mod. Phys. A6, 2243 (1991); J. L. Rosner and M. Worah, Enrico Fermi Institute preprint EFI92-12 (1992).

[23] B. Pendleton and G. G. Ross, Phys. Lett. B98, 291 (1981); N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B158, 295 (1979); C. T. Hill, Phys. Rev. D24, 691 (1981); E. A. Paschos, Z. Phys. C26, 235 (1984); J. W. Halley, E. A. Paschos and H. Usler, Phys. Lett. B155, 107 (1985); J. Bagger, S. Dimopoulos and E. Masso, Nucl. Phys. B253, 397 (1985); M. Tanimoto, T. Hayashi, R. Najima and S. Wakaizumi, Prog. Theor. Phys. 76, 1098 (1986); K. S. Babu and E. Ma, Europhysics Lett. 3, 437 (1987); M. Tanimoto, Y. Suetake and K. Seuba, Phys. Rev. D36, 2119 (1987); C. H. Albright and M. Lindner, Phys. Lett. B213, 347 (1988); Z. Phys. C44, 673 (1989); E. M. Freire,
G. Lazarides and Q. Shafi, Mod. Phys. Lett. A5, 2453 (1990); G. Cvetic and C. S. Kim, Dortmund University preprint DO-TH-92-08 (1992).

[24] K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 67, 1889 (1982).

[25] D. R. T. Jones and L. Mezincescu, Phys. Lett. B136, 242 (1984); P. West, Phys. Lett. B137, 371 (1984); A. Parkes and P. West, Phys. Lett. B138, 99 (1984); D. R. T. Jones and L. Mezincescu, Phys. Lett. B138, 293 (1984); J. E. Björkman and D. R. T. Jones, Nucl. Phys. B259, 533 (1985).

[26] M. E. Machacek and M. T. Vaughn, Nucl. Phys. B222, 83 (1983); Nucl. Phys. B236, 221 (1984); Nucl. Phys. B249, 70 (1985); M. Fischler and J. Oliensis, Phys. Lett. B119, 385 (1982); Phys. Rev D28, 2027 (1983); I. Jack, J. Phys. A16, 1083 (1983); I. Jack and H. Osborn, J. Phys. A16, 1101 (1983); I. Jack, Phys. Lett. B147, 405 (1984); I. Jack and H. Osborn, Nucl. Phys. B249, 472 (1985); C. Ford, I. Jack and D. R. T. Jones, NSF-ITP-92-21 (1992).

[27] P. Langacker, University of Pennsylvania preprint UPR-0492T (1992).

[28] A. Sirlin, Nucl. Phys. B332, 20 (1990); P. Langacker, Phys. Rep. 72, 185 (1981); A. Buras, Rev. Mod. Phys. 52, 199 (1980); G. ’t Hooft, Nucl. Phys. B61, 455 (1973).

[29] W. Marciano, Phys. Rev. D29, 580 (1984).

[30] A. Giveon, L. J. Hall and U. Sarid, Phys. Lett. B271, 138 (1991).

[31] H. E. Haber and R. Hempfling, Santa Cruz preprint SCIPP-91/33 (1992).

[32] S. Weinberg, Phys. Lett. B91, 51 (1980).

[33] L. J. Hall, Nucl. Phys. B178, 75 (1981).

[34] R. Barbieri and L. J. Hall, Phys. Rev. Lett. 68, 752 (1992).

[35] K. Hagiwara and Y. Yamada, KEK-TH-331 (1992); A. E. Faraggi, B. Grinstein and
S. Meshkov, SSCL-Preprint-126 (1992).

[36] O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov, Phys. Lett. **B93**, 429 (1980);
S. G. Gorishny, A. L. Kateav and S. A. Larin, Sov. J. Nucl. Phys. **40**, 329 (1984);
S. G. Gorishny et al., Mod. Phys. Lett. **A5**, 2703 (1990).

[37] R. Tarrach, Nucl. Phys. **B183**, 384 (1981).

[38] In the notation of Ref. [1], these parameters are $y^{-1} = (\lambda_t(M_G)/\lambda_t)^{1/6}\eta^{1/12}$. In the notation of Ref. [7], $y = \xi$ and $x = (\gamma_D/\gamma_E)^{-1}\eta^{1/2}$.

[39] J. Gasser and H. Leutwyler, Phys. Rep. **87**, 77 (1982). Referred to as GL in the text.

[40] E. Ma and S. Pakvasa, Phys. Lett. **B86**, 43 (1979), Phys. Rev. **D20**, 2899 (1979);
K. Sasaki, Z. Phys. **C32**, 149 (1986); B. Grzadkowski and M. Lindner, Phys. Lett. **B193**, 71 (1987); M. Olechowski and S. Pokorski, Phys. Lett. **B257**, 388 (1991).

[41] K. S. Babu, Z. Phys. **C35**, 69 (1987); B. Grzadkowski and M. Lindner, Phys. Lett. **B198**, 64 (1987); See also the last paper of Ref. [40].

[42] CERN library integration routine DDEQMR based on the algorithm in N. Lance, *Numerical Methods for High Speed Computers*, Iliffe and Sons, London (1960), 56.

[43] V. Barger, M. S. Berger, A. L. Stange and R. J. N. Phillips, Phys. Rev. **D45**, 4128 (1992); V. Barger, K. Cheung, A. L. Stange and R. J. N. Phillips, Madison preprints MAD/PH/696, MAD/PH/704 (1992); H. Baer, M. Bisset, C. Kao and X. Tata, Phys. Rev. **D46**, 1067 (1992); J. F. Gunion, R. Bork, H. E. Haber and A. Seiden, Santa Cruz preprint SCIPP-91-34 (1991); J. F. Gunion, H. E. Haber and C. Kao, University of California-Davis preprint UCD-91-32 (1991); J. F. Gunion and L. H. Orr, University of California-Davis preprint UCD-91-10 (1991); H. E. Haber, R. Hempfling and Y. Nir, Santa Cruz preprint SCIPP-91-40 (1992); Z. Kunszt and F. Zwirner, ETH preprint ETH-TH-91-7 (1991).
[44] S. Dimopoulos, L. J. Hall and S. Raby, Lawrence Berkeley Lab preprint LBL-31431 (1992); U. Sarid and Y. Nir, Lawrence Berkeley Lab preprint LBL-32563, (1992).
Figures

Fig. 1. Allowed GUT parameter space for $m_t = 150$ GeV with (a) $M_{SUSY} = m_t$ (one-loop RGE) (b) $M_{SUSY} = m_t$ (two-loop RGE) (c) $M_{SUSY} = 1$ TeV (one-loop RGE) (d) $M_{SUSY} = 1$ TeV (two-loop RGE) versus the running mass scale μ. The shaded region denotes the range of GUT coupling and mass consistent with the 1σ ranges of $\alpha_1(M_Z)$ and $\alpha_2(M_Z)$; the curves for $\alpha_3(\mu)$ represent extrapolations from the GUT parameters. We have omitted the contributions from Yukawa effects here which depend on $\tan \beta$.

Fig. 2. Gauge coupling unification with two-loop evolution for (a) $M_{SUSY} = m_t$ (b) $M_{SUSY} = 1$ TeV taking $m_t = 150$ GeV and neglecting Yukawa couplings; μ is the running mass scale.

Fig. 3. The QCD-QED scaling factors η_f of Eq. (11) are shown for $f = s, c, b$ versus $\alpha_3(M_Z)$, assuming running quark masses $m_f(m_f)$ of $m_t = 170$ GeV, $m_b = 4.25$ GeV, $m_c = 1.27$ GeV.

Fig. 4. The top Yukawa coupling at the GUT scale determined at the one-loop level is plotted versus $\alpha_3(M_Z)$ for $m_t = 170$ GeV and $m_b = 4.25$ GeV.

Fig. 5. Contours of constant m_b in the $m_t, \tan \beta$ plane obtained from the RGEs with (a) $M_{SUSY} = m_t, \alpha_3(M_Z) = 0.11$; (b) $M_{SUSY} = m_t, \alpha_3(M_Z) = 0.12$; (c) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.11$; (d) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.12$. The shaded band corresponds to the 90% confidence level range of m_b from Ref. 39 ($m_b = 4.1 - 4.4$ GeV); the dotted curve corresponds to $m_b = 5.0$ GeV. The curves shift to higher m_t values for increasing $\alpha_3(M_Z)$ or increasing M_{SUSY}.
Fig. 6. The Yukawa couplings $\lambda_t(M_G)$ and $\lambda_b(M_G) = \lambda_\tau(M_G)$ at the GUT scale with (a) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.11$; (b) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.12$; (c) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.11$; (d) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.12$. The Yukawa couplings become larger for higher $\alpha_3(M_Z)$ or higher M_{SUSY}. The perturbative condition $\lambda \lesssim 3.3$ from Eq. (52) is satisfied except for the lowest b mass value $m_b = 4.1$ GeV for $\alpha_3(M_Z) = 0.12$. The solid dots denote $\lambda_\tau = \lambda_b = \lambda_t$ unification.

Fig. 7. Two-loop evolution of the Yukawa couplings (a) $\lambda_t(\mu)$ (b) $\lambda_b(\mu)$, $\lambda_\tau(\mu)$ from low energies to the GUT scale for the case $\alpha_3(M_Z) = 0.12$ and $M_{SUSY} = 1$ TeV. We take $\tan \beta = 20$ and the values of $m_t = 198$, 197, 196, 181 GeV specified by the $m_b = 4.1, 4.25, 4.4, 5.0$ GeV contours in Fig 5d.

Fig. 8. Two-loop evolution of the quark Yukawa ratio $R_{c/t} \equiv \lambda_c/\lambda_t$ and the CKM matrix element $|V_{cb}|$ for (a) $M_{SUSY} = m_t$ and (b) $M_{SUSY} = 1$ TeV. We have taken $\alpha_3 = 0.11$, $\tan \beta = 5$ and have chosen the top and bottom quark masses such that $\sqrt{R_{c/t}(M_G)} = |V_{cb}(M_G)|$ and $m_c = 1.27$ GeV: (a) $|V_{cb}(m_t)| = 0.054$, $m_t = 180$ GeV, $m_b = 4.33$ GeV; (b) $|V_{cb}(m_t)| = 0.050$, $m_t = 189$ GeV, $m_b = 4.14$ GeV.

Fig. 9. Contours for constant $|V_{cb}|$ at fixed $m_c = 1.27$ GeV in the $m_t, \tan \beta$ plane obtained from the RGEs with (a) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.11$; (b) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.12$.

Fig. 10. Comparison of contours for constant $|V_{cb}|$ and constant m_b in the $m_t, \tan \beta$ plane from the RGEs, taking $m_c = 1.27$ GeV, for (a) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.11$; (b) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.12$; (c) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.11$; (d) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.12$. The shaded band indicates the region where the 90% confidence limit is satisfied for
m_b. The right-most contours are discontinued when $\lambda_t(M_G)$ exceeds 6.

Fig. 11. Comparison of contours for constant m_c and constant m_b in the m_t, tan β plane from the RGEs, taking $|V_{cb}|$ equal to its upper limit 0.54, for (a) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.11$; (b) $M_{SUSY} = m_t$, $\alpha_3(M_Z) = 0.12$; (c) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.11$; (d) $M_{SUSY} = 1$ TeV, $\alpha_3(M_Z) = 0.12$. The shaded band indicates the region where 90% confidence limits are satisfied for all three constraints: m_b, m_c and $|V_{cb}|$. An X marks the lower limit of this shaded band and corresponds to the values in Table 5.