Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation

Lorraine Ruzié-Hamilton a,⁎, Patricia L. Clay a, Ray Burgess a, Bastian Joachim b,c, Christopher J. Ballentine b, Grenville Turner a

a School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom
b Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
c Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

Abstract

The lack of a reliable database for heavy halogens (bromine and iodine) in terrestrial and extraterrestrial samples is mainly due to the analytical challenges of determining their very low abundances (<1 ppm) in the materials of interest. The neutron irradiation noble gas mass spectrometric (NI-NGMS) technique initially developed in the 1960s is the only viable technique currently capable of determining concentrations below 1 ppb of iodine for small (~10 mg) sample sizes. We describe in detail the analytical protocols and provide a comprehensive and transparent overview of the data reduction procedures in order to fully explore the uncertainties of the technique. We demonstrate how the capabilities of modern mass spectrometers used for Ar-Ar dating, can be readily extended to incorporate halogen measurements. A new and critical assessment of the use of standards is presented based on results from multiple irradiations, including a meteorite (Shallowater aubrite), scapolite minerals introduced by Kendrick (2012) and a novel internal calibration method based on using barium.

1. Introduction

Halogen are present as minor and trace elements in most geological samples. Studies of halogens have been applied to crustal and ore-forming fluids (e.g., Böhlke and Irwin, 1992a,b; Turner and Bannon, 1992; Ballentine et al., 2002; Kendrick and Burnard, 2013) and more recently, the determination of heavy halogens (bromine and iodine) in mantle-derived samples has provided important constraints on the origin and the recycling of the major volatile elements in the Earth (Burgess et al., 2002, 2009; Sumino et al., 2010; Kendrick et al., 2011, 2012a, 2013a,b). However, low concentrations of halogens in the materials of interest, together with the lack of available techniques for their low level detection, means that reliable abundance data are relatively sparse compared to other volatile elements. Whilst the electron micro-probe (EMP) can determine chlorine and fluorine abundances down to levels of 0.01 wt.% bromine and iodine abundances are <1 ppm in most minerals and rocks. Chlorine and bromine can be determined by instrumental neutron activation analysis (INAA) but require >100 mg-size samples (e.g., Heinrich et al., 1993). Similarly, ion chromatography analysis requires crush-leaching of gram-sized samples to extract halogens (e.g., Bottrell and Yardley, 1988). Recently, Heinrich et al. (2003) assessed the potential of Br and Cl quantification by LA-ICP-MS. However, the halogens tend to have low ionisation efficiencies leading to relatively low sensitivity. Using LA-ICP-MS for scapolite minerals, Hammerli et al. (2013) determined detection limits of about 8 ppm Br and >500 ppm for Cl. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) has been used with detection limits of 10 ppm for F and Cl (Joachim et al., 2015) and SIMS has attained limits of 0.6 ppm for Br and 0.035 ppm for I (Kusebauch et al., 2015).

An alternative technique for halogen determination is based upon extension of the ⁴₀Ar–⁴¹Ar technique (Merrin, 1965; Turner, 1965; Turner et al., 1971; Turner and Bannon, 1992; Böhlke and Irwin, 1992a,b; Irwin and Roedder, 1995). Although fairly routinely used for Cl, this technique has only recently become more widely adopted for Br and I following a revival in the 2000s by the Manchester Isotope Geochemistry and Cosmochemistry group (Johnson et al., 2000; Kendrick et al., 2001; Burgess et al., 2002). Kendrick (2012) summarises in detail the basic concepts of the neutron-irradiation noble gas technique. The author suggested the use of the mineral scapolite as a standard for halogen determinations to replace the existing meteorite standards (Shallowater or Bjurböle). Subsequently, Kendrick et al. (2013a) have revised the halogen values of the scapolite standards, reducing them by 22% and 27% for Br and I, respectively. This correction has been...
independently confirmed for Br by Hammerli et al. (2014) in scapolites, but no external standards or techniques have been used to verify I concentrations.

The introduction of scapolite standards has an impact on the way previous workers have reduced their data to estimate the halogen abundances in natural samples. We discuss the implications by describing different approaches to reduce the data. We compare results from five different irradiations using two different reactors. We introduce an alternative halogen standardisation method based on the barium content (when known independently) of irradiated samples, referred to from hereon as a barium calibration. Finally, the results obtained from the Shallowater meteorite and the barium correction are used to refine the I/Cl values of BB2/SP and BB1 scapolite standards of Kendrick et al. (2013a) and reduce their 2σ-errors from 23% (BB2/SP) and 15% (BB1) to 14% and 10%, respectively.

2. Method of investigation

2.1. General principle

The $^{40}\text{Ar} - ^{39}\text{Ar}$ technique is widely used for geological dating and can be adapted for a range of elements forming noble gas isotopes during $(n, p)$, $(n, \alpha)$, $(n, \beta)$ or neutron-induced fission reactions (Table 1; Turner, 1965). During neutron irradiation $^{39}\text{K}(n, p)^{39}\text{Ar}$ and $^{40}\text{Ca}(n, \alpha)^{40}\text{Ar}$ reactions are activated only by fast neutrons i.e. having energy $> 1$ MeV. In contrast, halogen-derived noble gas isotopes are produced by low energy thermal neutrons $(10^{-11} - 2.5 \times 10^{-8}$ MeV) and epithermal neutrons $(2.5 \times 10^{-8} - 1$ MeV). Halogen determinations are accessible through $(n, \gamma, \beta)$ reactions forming noble gas isotopes (Fig. 1; Table 1) in amounts readily detected by noble gas mass spectrometers.

Integrate neutron fluxes are typically in the range $10^{18} – 10^{19}$ n·cm$^{-2}$ with most halogen absorption reactions involving thermal and epithermal neutrons (Fig. 2) leading to conversion factors between $10^{-6}$ and $10^{-4}$ of the parent halogen atoms.

Using the approach of Chilian et al. (2006) for INAA, upon irradiating a sample containing an amount $m$ (grams) of an element, then the quantity of a given nuclide $X$ (moles) produced by a $(n, \gamma, \beta)$ reaction is given by:

$$X = \frac{m \cdot \sigma_{\text{th}} \cdot \theta \cdot Y \cdot \phi_{\text{th}} \cdot Q_o}{f}$$  \hspace{1cm} (1)

where $M_{\text{at}}$ is the atomic mass, $\theta$ is the isotopic abundance; $Y$ is the fractional yield for branched isotope decay; $\phi_{\text{th}}$ is the thermal neutron absorption cross section $(2200$ ms$^{-1})$; $Q_o = \sigma_{\text{epi}}/\sigma_{\text{th}}$ is the ratio of resonance integral to thermal neutron cross section, $f = \phi_{\text{th}}/\phi_{\text{epi}}$ with $\phi_{\text{th}}$ and $\phi_{\text{epi}}$ being the thermal and epithermal neutron fluxes, respectively (Table 2). The parameter $f$ is usually not known a priori and will vary with reactor and irradiation position; however it can be determined experimentally from standards. The proportion of epithermal neutron-induced isotope production can be estimated as $Q_o/(Q_o + f)$, or expressed by the F-factor as:

$$F = \frac{Q_o + f}{f}$$  \hspace{1cm} (2)

As an example, our irradiation MN2014b carried-out in the GRICIT Facility at the TRIGA reactor Oregon gave $f = 11.3 \pm 2.3$ (Table 2), with $Q_o = 11.9 \pm 0.3$ and $Q_o = 24.9 \pm 0.7$ (Table 2), this indicates that 51% of the $^{80}\text{Kr}$, and 69% of $^{128}\text{Xe}$ is formed by epithermal neutron absorption.

In contrast, nucleogenic production of $^{38}\text{Ar}$ from $^{37}\text{Cl}$ has a relatively low $Q_o$ value ($= 0.7 \pm 0.1$) and therefore is used to monitor the thermal neutron flux. Eq. (1) can be useful for irradiation planning if the epithermal/thermal fluence ratio of a reactor irradiation position has been previously characterised and remains relatively constant over time. However, Eq. (1) does not include the effects of neutron self-shielding on isotope production. Analytical formulae for correcting self-shielding effects in cylindrical samples (appropriate for samples irradiated in silica glass tubes) are given by Chilian et al. (2006, 2008, 2010). The effects of self-shielding are likely to be negligible for most samples used in $^{40}\text{Ar} - ^{39}\text{Ar}$ irradiations, because of their relatively low mass (usually $<0.01$ g) and the low concentrations of target elements (for halogens typically at ppb-ppm levels). Self-shielding effects should be considered when irradiating samples with high concentrations of halogens (e.g. halogen salts), in which self-shielding by epithermal neutrons at resonance peaks could be severe (Chilian et al., 2006). For example, using the method of Chilian et al. (2006), it is estimated that epithermal self-shielding of a 1g cylindrical (radius = 1 cm; height = 2 cm) sample of iodide salt (NaI or KI) could lead to an erroneous underestimate of 1 abundance from $^{128}\text{Xe}$ of up to 38%.

The halogen abundances in samples can be evaluated either from the derived neutron fluence, or from standards of known parent element.

![Fig. 1. Schematic example of neutron irradiation for $^{79}\text{Br}$. $^{79}\text{Br}$ can be either activated to radioactive $^{80m}\text{Br}^*$ or $^{80}\text{Br}^*$ (m = metastable state and g = ground state). $^{80m}\text{Br}$ decays to $^{80}\text{Br}$ during an isomeric transition (i.t.), which then decays to $^{80}\text{Se}$ (8.3%) or $^{80}\text{Kr}$ (91.7%).](image)

---

### Table 1

Summary of the neutron-induced reactions forming noble gas isotopes used in this study. Thermal neutron cross-sections are given for neutrons with energy of 0.0253 eV. Barn = $10^{-24}$ cm$^2$.

| Isotope | Isotopic abundance | Noble gas product | Neutron involved | Thermal cross section (barns) | Resonance integral (barns) | Yield |
|---------|--------------------|-------------------|-----------------|------------------------------|---------------------------|-------|
| $^{37}\text{Cl}$ | 0.2424 | $^{39}\text{Ar}$ | $^{37}\text{Cl}(n, \gamma)^{38}\text{Cl}(j)^{39}\text{Ar}$ | Thermal | 0.433 ± 0.006$^a$ | 0.30 ± 0.04$^a$ | 1 |
| $^{39}\text{K}$ | 0.9326 | $^{40}\text{Ar}$ | $^{39}\text{K}(n, p)^{40}\text{Ar}$ | Fast | 2.1 ± 0.1$^b$ | 1.1 ± 0.1$^b$ | 1 |
| $^{40}\text{Ca}$ | 0.9694 | $^{40}\text{Ar}$ | $^{40}\text{Ca}(n, \alpha)^{40}\text{Ar}$ | Fast | 0.43 ± 0.02$^a$ | 0.22 ± 0.02$^a$ | 1 |
| $^{80}\text{Br}$ | 0.5069 | $^{80}\text{Kr}$ | $^{80}\text{Br}(n, \gamma)^{80}\text{Br}(j)^{80}\text{Kr}$ | Thermal + epithermal | 10.89 ± 0.05$^b$ | 1296 ± 3.0$^b$ | 0.917 |
| $^{131}\text{Ba}$ | 1.0000 | $^{132}\text{Xe}$ | $^{131}\text{Ba}(n, \gamma)^{131}\text{Ba}(j)^{132}\text{Xe}$ | Thermal + epithermal | 7.87 ± 0.34$^c$ | 197.3 ± 10$^c$ | 1 |

$^a$ Data source: Pritchenko and Mughabghab (2012).

$^b$ See Supplementary data—Tables C1-C3-3.

$^c$ Dauenhauer and Krane (2012) and see section 4.3.
composition. We compare these methods and discuss implications in Section 4.

### 2.2. Samples and neutron irradiation

Irradiation standards used in this study include the hornblende age standard Hb3gr (Turner et al., 1971), three scapolite minerals (BB1, SP2 and BB2) previously described by Kendrick (2012) and the Shallowater aubrite meteorite, a commonly used I-Xe standard (Gilmour et al., 2006).

Prior to irradiation, each sample and monitor were wrapped in aluminum foil. They were placed in a quartz tube, evacuated and sealed to a maximum length of 6.5 cm using a flame. Hb3gr hornblendes were positioned in the bottom, middle and top of each quartz tube. Shallowater was positioned in the middle of the tube. Scapolite standards were placed at the bottom and top of each tube. This procedure has been used in five irradiations carried-out between 2012 and 2014 so that results can be directly compared. Sample batches MN2012b, MN2012f (both in 2012) and MN2013 (in 2013) were irradiated in the RODEO facility (High Flux Reactor, Petten, Netherlands) with a constant rotation during irradiation. In 2014, irradiations were carried-out in ICIT (MN2014a) and GRICIT (MN2014b) facilities of the TRIGA Reactor, Oregon State University (OSU). As the halogen-derived noble gas isotopes are produced by low energy thermal neutrons and epithermal neutrons, the irradiation cans were not Cd-shielded. The Petten irradiations were each irradiated continuously for 24 h duration. At OSU samples were irradiated for a few hour intervals each day over several weeks to give a total irradiation time of 278 and 205 h for MN2014a and MN2014b respectively. All the irradiation details are provided in Table 2.

### 2.3. Noble gas extraction and mass spectrometry

Noble gas isotopic measurements were made using either MS1, a custom built single focusing magnetic sector mass spectrometer.

---

**Table 2**

Details of the nuclear irradiations carried-out in the Petten high fluence reactor in 2012 and 2013 and Oregon State University reactor in 2014 (ICT and CRICIT).

| Irradiation | Reactor | Date        | Duration | # of Hb3gr |
|-------------|---------|-------------|----------|------------|
| MN2012b     | Petten  | 16/05/2012  | 24 h     | 33         |
| MN2012f     | Petten  | 24/07/2012  | 24 h     | 10         |
| MN2013      | Petten  | 26/07/2013  | 24 h     | 11         |
| MN2014a     | OSU-ICT | 30/04 to 01/08-2014 | 278.4 h | 16         |
| MN2014b     | OSU-GRICIT | 22/04 to 01/07-2014 | 205.1 h | 12         |

---

* Calculated from Eq. (A.17 - Supp. Data).

* Calculated from Eq. (A.21 - Supp. Data) (n·cm\(^{-2}\)).

* The epithermal fluence (n·cm\(^{-2}\)) has been calculated using Shallowater (Brazzle et al., 1999).

* \(f = \phi_{th} / \phi_{epi}\).

* Calculated from Eq. (A.18 - Supp. Data) (Turner, 1972).

* Calculated from Eq. (A.19 - Supp. Data) (Kelley et al., 1986).
argon, Kr and Xe are transferred onto a charcoal cold-noble gases (Ar, Kr, Xe) are gettered for a further 5 min (SEAS ST172). Samples are dropped into the furnace with an 1600 °C and 1700 °C). Samples are dropped into the furnace with an electron energy (eV) 110 87.40 Volume MS (cm³) 740 680 Argon sensitivity (cm³/A) 1.67 ⋅ 10⁻¹² 1.24 ⋅ 10⁻¹² Krypton sensitivity (cm³/A) 2.18 ⋅ 10⁻¹² 7.73 ⋅ 10⁻¹³ Xenon sensitivity (cm³/A) 1.84 ⋅ 10⁻¹² 9.45 ⋅ 10⁻¹³ 3. Determining abundances of K, Ca and Cl All measurements made on samples and irradiation standards are subject to the corrections outlined below. Argon data are corrected in order of instrumental background, mass discrimination, radioactive decay of 37Ar, and neutron interference reactions. These are conventional corrections applied for 40Ar−39Ar age dating (e.g. McDougall and Harrison, 1999) and a summary is provided for completeness in Supplementary section A. The irradiation parameters (J; α and β) are calculated using Hb3gr monitor. The hornblende Hb3gr was chosen as a monitor by Turner et al. (1971) due to is homogeneity in terms of composition and age. For this study we used the value determined by Schwarz and Tricloff (2007) of 1074.9 ± 3.5 Ma.

K, Ca and Cl (moles) are determined using Eqs. (3) to (5). Further details are provided in the Supplementary section A.

\[
K = (3.66 ± 0.03) \frac{39Ar}{J} \tag{3}
\]

\[
Ca = (3.57 ± 0.03) \frac{37Ar}{J} \tag{4}
\]

\[
Cl = (4.04 ± 0.04) \frac{38Ar}{J} \tag{5}
\]

4. Epithermal neutron production and Br, I and Ba abundances

Earlier studies showed that that absorption of epithermal neutrons at resonance peaks in the cross-sections of 79Br and 127I account for about 30% of 79Br and 40–50% of 127I Xe produced during irradiation (Böhlke and Irwin, 1992b; Johnson et al., 2000; Kendrick, 2012). Therefore the noble gas/parent halogen production ratios require calibration by analysing a standard with known concentrations of Br and I. Initially,
Turner (1965) used potassium iodide and potassium bromide to measure the integrated neutron fluence. Both Kr and Xe from these salts were measured by isotope dilution in that work. This approach was used until the end of the 1980s. However, self-shielding processes will almost certainly have impacted on the correction factors, as discussed earlier. To circumvent this effect a meteorite standard was introduced to calibrate the I-Xe system.

In the following section, we consider three different approaches to monitor noble gas isotope production from epithermal neutrons: the Shallowater aubrite (Johnson et al., 2000), scapolite minerals (Kendrick, 2012) and a novel technique based on barium in samples. In order to test the different corrections we use a set of six Mid-Ocean Ridge Basalt (MORB) samples irradiated in MN2012b that were analysed on both the ARGUS VI and MS1 mass spectrometers. Details about these samples can be found in the Supplementary data section B.

Noble gases are corrected for neutron-induced fission of \( ^{127}\text{I} \) (Kr and Xe; Supplementary data section A.8) and atmospheric contamination using natural isotopes least affected by the irradiation procedure (i.e. \( ^{39}\text{Ar}, ^{84}\text{Kr} \) and \( ^{138}\text{Xe} \)).

4.1. Meteorite standards

The Shallowater (SW; aubrite) and Bjurböle (BJU; L/LL4 ordinary chondrite) meteorites were adopted as iodine standards (e.g. Johnson et al., 2000) because they are commonly used in I-Xe dating. Determining the \( ^{128}\text{Xe}/^{129}\text{Xe} \) in the irradiated meteorite and comparing the result with the initial \( ^{128}\text{Xe}/^{129}\text{Xe} \) (Johnson et al., 2000), is used to quantify the \( ^{128}\text{Xe} \) produced during irradiation.

First the thermal neutron production ratio is calculated as:

\[
\frac{^{128}\text{Xe}}{^{129}\text{Xe}} = \frac{\phi_{\text{th}}}{Y_{128I}} \cdot \frac{Y_{128I} - \theta_{128I}}{\theta_{128I}} \tag{6}
\]

where \( \phi_{\text{th}} \) is determined from Hb3gr (Eq. A.21), using \( Y_{128I} = 0.94 \), \( \theta_{128I} = 6.16 \pm 0.04 \) b (Supplementary data -Table C.1) and \( \theta_{128I} = 1 \).

The total (thermal + epithermal) production ratio is calculated using the measured \( ^{128}\text{Xe}/^{129}\text{Xe} \) ratio and the initial \( ^{129}\text{Xe}/^{128}\text{Xe} \) in the meteorite standard according to,

\[
\frac{^{128}\text{Xe}}{^{129}\text{Xe}} = \frac{(128\text{Xe})}{Y_{128I} - \theta_{128I}} \tag{7}
\]

By dividing Eq. (6) by Eq. (7), we can estimate the iodine factor (\( F_I \)). This factor is used to determine the amount of \( ^{128}\text{Xe} \) produced from \( ^{127}\text{I} \) by epithermal neutrons.

Conventionally the \( ^{128}\text{Xe}/^{129}\text{Xe} \) ratio is obtained from the meteorite standard via the slope of concordant heating steps using an I-Xe isotope correlation diagram. The data from the meteorite typically shows discordant low temperature steps and concordant data for high temperature steps (e.g. Hohenberg, 1967 – Fig. 1).

Stepped heating of Shallowater was carried-out on the ARGUS VI using the CO\(_2\) fusion laser (Fig. 3). As the methodology for xenon measurements is new on the ARGUS VI mass spectrometer, we compared our analyses of Shallowater samples from the same irradiation using the RELAX mass spectrometer (S. Crowther - pers. comm.). RELAX (Refrigerator Enhanced Laser Analyser for Xenon) is an ultrasensitive resonance ionisation time-of-flight mass spectrometer with micro-channel plate detectors designed for the analyses of very small amounts of xenon (Gilmour et al., 1991, 1994; Crowther et al., 2008). The lower sensitivity of the ARGUS VI compared to RELAX for Xe results in fewer temperature steps despite larger sample sizes (2.5 mg versus 0.5 mg). However, for the same irradiation MN2014a (OSU), the \( ^{128}\text{Xe}/^{129}\text{Xe} \) ratios are in excellent agreement (0.646 \pm 0.042 - ARGUS VI and 0.654 \pm 0.014 (RELAX). For the Petten reactor, we can only compare Shallowater data for MN2013 (ARGUS VI) to a previous irradiation MN2012f (RELAX) however the \( ^{128}\text{Xe}/^{129}\text{Xe} \) value should be relatively constant over time for the same irradiation position within a reactor. Using the ARGUS VI we obtained a \( ^{128}\text{Xe}/^{129}\text{Xe} \) of 1.83 \pm 0.15 (1\( \sigma \)) for Shallowater and using RELAX we obtained a \( ^{128}\text{Xe}/^{129}\text{Xe} \) of 1.865 \pm 0.014 (1\( \sigma \)). To calculate the production of \( ^{80}\text{Kr} \) by epithermal neutrons, the epithermal fluence is calculated using the \( ^{128}\text{Xe} \) value obtained from Shallowater:

\[
\phi_{\text{epi}} = \frac{(128\text{Xe}/I)}{\phi_{\text{th}}} \tag{8}
\]

The amount of \( ^{80}\text{Kr} \) produced by \( ^{79}\text{Br} \) is given by,

\[
80\text{Kr}_{\text{Br}} = ^{79}\text{Br} \cdot Y_{79Br} \cdot \theta_{79Br} \cdot (\phi_{\text{th}} + \phi_{\text{epi}}) \tag{9}
\]

with \( \phi_{\text{th}} \) and \( \phi_{\text{epi}} \) given in Table 1 and Supplementary data – Tables C.1 and C.3. The correction factors (\( F_{79\text{Br}}, F_{81\text{Br}}, F_{127\text{I}} \) and \( F_{131\text{Ba}} \)) calculated using this method are shown in the Table 4 for all irradiations.

Fig. 3. Example of xenon isotope step heating measurements on ARGUS VI for Shallowater meteorite. Results are shown for the OSU reactor (MN2014a) and for the Petten reactor (MN2013). The regressions were calculated using Isoplot 4.1 (Ludwig, 2012). The lower error on the slope for the OSU irradiated sample is explained by the much larger sample size used.
The results for π and ω are presented in Table 6. In order to obtain a comparable set of corrections using different approaches, we apply a common notation of correction F-factors as follows. The production of noble gas proxy isotopes from thermal neutrons is given by:

\[
\begin{align*}
\frac{F_{\text{80KrBr}}}{F_{\text{38ArCl}}} & = \frac{\varphi_{\text{80Kr}} / \varphi_{\text{38Ar}}}{\varphi_{\text{Br}} / \varphi_{\text{Cl}}} \\
\frac{F_{\text{79Br}}}{F_{\text{38ArCl}}} & = \frac{\varphi_{\text{79Br}} / \varphi_{\text{38Ar}}}{\varphi_{\text{Br}} / \varphi_{\text{Cl}}}
\end{align*}
\]

Therefore the Br/Cl ratio in the sample produced by thermal neutrons is:

\[
\frac{\text{Br}}{\text{Cl}} = \frac{F_{\text{80KrBr}}}{F_{\text{38ArCl}}} \times \frac{\varphi_{\text{Br}} / \varphi_{\text{Cl}}}{\varphi_{\text{80Kr}} / \varphi_{\text{38Ar}}} \left(\text{wt. ratio}\right)
\]

Using halogen ratios is advantageous because it is independent of the sample mass. The correction factor is also independent of the value of the thermal fluence as this term is common to both the sample and standard and cancels out in Eq. (12).

4.2. Scapolite standards

Kendrick (2012) introduced scapolite (SP, BB2 and BB1) as a potential new standard for the analysis of Cl, Br and I. Subsequently, Kendrick et al. (2013a) irradiated the scapolite standards with a high thermal fluence making the correction for epithermal production negligible (<2%). Following the recommendation of Kendrick et al. (2013a) the revised halogen abundances of the scapolite standard values are given in Table 5.

In order to calculate halogen abundances in samples the halogen ratios measured in the scapolite minerals are equated to the halogen-derived noble gases formed during irradiation. The notations π and ω are proposed by Kendrick (2012), analogous to β and γ constants (Eqs. A.18 and A.19—Supplementary data):

\[
\begin{align*}
\text{Cl} &= \frac{\text{38ArCl}}{\text{38ArBr}} \times 48.228 / (\text{molar ratio}) \\
\text{Br} &= \frac{\text{38ArBr}}{\text{38ArCl}} \times 48.228 / (\text{molar ratio})
\end{align*}
\]

The concentrations of Cl, Br and I/Cl values for scapolites from the same irradiation, analysed on different mass spectrometers are similar (4.0 ± 0.4 wt.% — MS1 and 4.0 ± 0.3 wt.% — ARGUS VI) on both instruments, thus the discrepancies result from the determination of 80KrBr and 128XeI. We suggest that the difference is probably related to the mass spectrometer. On the ARGUS VI, Xe and Kr isotopes are analysed within 2 min and 4 min respectively following inlet, whereas on the MS1 Xe isotopic analysis does not begin until 12 min after that inlet, whereas on the MS1 Xe isotopic analysis does not begin until 12 min after that.

| Irradiation | MN2012b | MN2012f | MN2013 | MN2014a | MN2014b |
|-------------|---------|---------|--------|---------|---------|
| Reactor     | Petten  | SW*     | SW     | SW*     | SW*     |
| Method      | MS1     | RELAX   | MS1    | ARGUS   | RELAX   |
| # samples   | 4       | 1       | 5      | 1       | 1       |
| F(79Br)     | 1.30 ± 0.03 | 1.25 ± 0.02 | 1.42 ± 0.08 | 1.31 ± 0.01 | 2.60 ± 0.03 |
| F(38ArCl)   | 1.49 ± 0.05 | 1.42 ± 0.02 | 1.69 ± 0.13 | 1.50 ± 0.01 | 3.64 ± 0.02 |
| F(79Br)     | 1.62 ± 0.06 | 1.53 ± 0.06 | 1.87 ± 0.17 | 1.64 ± 0.14 | 4.36 ± 0.16 |
| F(153Ba)    | 1.63 ± 0.07 | 1.54 ± 0.06 | 1.82 ± 0.14 | 1.65 ± 0.05 | 4.43 ± 0.08 |

Table 4
Correction factors (F-values) for Br, I and Ba. These were calculated using the epithermal fluence estimated from Shallowater (SW) standards. SW values were obtained from a step at 1400 °C using a furnace, and SW are the slopes of the 132Xe/129Xe-128Xe/129Xe correlations obtained from multiple heating steps.

Table 5
Scapolite halogen and potassium data from Kendrick et al. (2013a). Errors are at 2σ.
therefore correct $^{131}\text{Xe}$ using $^{134}\text{Xe}_{\text{nf}}$ (Eq. A.25-Supplementary data): negligible.

Barium is routinely determined in geological samples, including Mid-Ocean Ridge Basalts (MORB) using a range of analytical techniques including EMP, ICPSM, XRF and ICPES. Since barium shows strong resonances in neutron absorption at epithermal neutron energies, the $^{131}\text{Xe}$ determinations provide an independent monitor of epithermal fluorescence in addition to the meteorite and scapolite standards. Barium has the added advantage of being determined in the same sample for which halogens are being measured, which helps to remove any uncertainties associated with neutron flux variations that may exist when using standards located up to a few cm’s from a sample’s position in an irradiation tube.

Turner (1965) analysed neutron-produced noble gas isotopes from trace elements including Ba. He noted that in meteorites $^{131}\text{Xe}$ is produced from reactions (n,$\gamma$) from both $^{130}\text{Te}$ and $^{130}\text{Ba}$. In principle, it is not possible to distinguish between $^{131}\text{Xe}$ produced from Te or Ba unambiguously (Turner, 1965). Meteorites contain relatively high levels of Te and the concentrations Te and Ba are often comparable. However in MORB samples Te shows low abundances of about 3 ± 1 ppb (Yi et al., 2000). In contrast Ba in MORB is consistently above 200 ppm (http://www.earthchem.org/petdb/). Thus, the contribution of $^{130}\text{Te}$ to the $^{131}\text{Xe}$ budget in irradiated in MORB samples is considered to be negligible.

$^{131}\text{Xe}$ can be produced from neutron induced fission of $^{235}\text{U}$, we therefore correct $^{131}\text{Xe}$ using $^{134}\text{Xe}_{\text{nf}}$ (Eq. A.25-Supplementary data):

$$^{131}\text{Xe} = ^{131}\text{Xe}_{\text{blk corrected}} = ^{131}\text{Xe}_{\text{nf}} / ^{134}\text{Xe}_{\text{nf}} - ^{133}\text{Xe}_{\text{nf}} / ^{134}\text{Xe}_{\text{nf}}$$

Table 6
Average values of noble gas-halogen correction factors calculated using scapolite standards (BB2/BB and BB1) for the four irradiations discussed in this study. FnX values are calculated using Eq. (14), $\pi$ is calculated using Eq. (10), $\omega$ is calculated using Eq. (11). Uncertainties are given at 1σ and represent the internal precision of each irradiation.

| Irradiation | MN2012b | MN2013 | MN2014a | MN2014b |
|-------------|---------|--------|---------|---------|
| Reactor     | Petten  | ARGUS  | ARGUS   | OSU-CIT |
| Mass-spec   | SP/BB   | SP/BB  | BB1     | SP/BB   |
| Type        | M1      | M1     | BB1     | BB1     |
| # samp.     | 7       | 1      | 1       | 0       |
| $\pi$       | 35.6 ± 2.2 | 34.5 ± 2.9 | 28.6 ± 1.2 | 72.7 ± 1.2 |
| $\pi^*$     | 10.9 ± 0.6 | 10.4 ± 0.9 | 8.5 ± 0.2 | 8.5 ± 0.3 |
| $\omega$    | 29.1 ± 3.6 | 23.3 ± 4.9 | 26.1 ± 2.3 | 26.1 ± 1.3 |
| $F_{79\text{Br}}$ | 1.67 ± 0.10 | 1.63 ± 0.10 | 1.41 ± 0.06 | 1.41 ± 0.06 |
| $F_{81\text{Br}}$ | 2.22 ± 0.13 | 2.14 ± 0.12 | 1.69 ± 0.04 | 1.69 ± 0.04 |
| $F_{81\text{I}}$ | 2.07 ± 0.15 | 2.14 ± 0.12 | 1.69 ± 0.04 | 1.69 ± 0.04 |

$4.3.\text{ Barium calibration}$

Barium is routinely determined in geological samples, including Mid-Ocean Ridge Basalts (MORB) using a range of analytical techniques including EMP, ICPSM, XRF and ICPES. Since barium shows strong resonances in neutron absorption at epithermal neutron energies, the $^{131}\text{Xe}$ determinations provide an independent monitor of epithermal fluorescence in addition to the meteorite and scapolite standards. Barium has the added advantage of being determined in the same sample for which halogens are being measured, which helps to remove any uncertainties associated with neutron flux variations that may exist when using standards located up to a few cm’s from a sample’s position in an irradiation tube.

Turner (1965) analysed neutron-produced noble gas isotopes from trace elements including Ba. He noted that in meteorites $^{131}\text{Xe}$ is produced from reactions (n,$\gamma$) from both $^{130}\text{Te}$ and $^{130}\text{Ba}$. In principle, it is not possible to distinguish between $^{131}\text{Xe}$ produced from Te or Ba unambiguously (Turner, 1965). Meteorites contain relatively high levels of Te and the concentrations Te and Ba are often comparable. However in MORB samples Te shows low abundances of about 3 ± 1 ppb (Yi et al., 2000). In contrast Ba in MORB is consistently above 2000 ppm (http://www.earthchem.org/petdb/). Thus, the contribution of $^{130}\text{Te}$ to the $^{131}\text{Xe}$ budget in irradiated in MORB samples is considered to be negligible.

$^{131}\text{Xe}$ can be produced from neutron induced fission of $^{235}\text{U}$, we therefore correct $^{131}\text{Xe}$ using $^{134}\text{Xe}_{\text{nf}}$ (Eq. A.25-Supplementary data):

$$^{131}\text{Xe} = ^{131}\text{Xe}_{\text{blk corrected}} = ^{131}\text{Xe}_{\text{nf}} / ^{134}\text{Xe}_{\text{nf}} - ^{133}\text{Xe}_{\text{nf}} / ^{134}\text{Xe}_{\text{nf}}$$

With $^{131}\text{Xe}/^{136}\text{Xe}_{\text{nf}} = 0.453 ± 0.013$ and $^{134}\text{Xe}_{\text{nf}}/^{136}\text{Xe}_{\text{nf}} = 1.246 ± 0.036$ (Ozima and Podosek, 2002). This correction accounts for between 1 and 3% of the measured $^{131}\text{Xe}$ in MORB samples. The Ba abundances are calculated following a similar approach as outlined above for Br (Eq. (9)) by substituting appropriate terms:

$$^{131}\text{Xe} = ^{130}\text{Ba} \cdot Y_{130\text{Ba}} \cdot \phi_{\text{th}} \cdot \sigma_{\text{th}} + \phi_{\text{epi}} \cdot \sigma_{\text{epi}}$$

There is uncertainty in the cross section values for Ba in the literature, and epithermal flux can be up to 23% higher using the values reported by Mughabghab (2006). As a consequence correction factors for Br and I are higher by up to 5% and 13%, respectively, and the sample concentrations of these elements will be therefore underestimated by the same amount. Here the different published cross-sections are reviewed in order to identify the most reasonable value for future studies.

A summary of all the cross section values for $^{136}\text{Ba}$ (n,$\gamma$) (published and in web-based compilations) are given in Supplementary data - Table C.4. The National Nuclear Data Center’s NUDAT compilation gives a thermal cross-section value of 11.3 ± 1.0 b (http://www.nndc.bnl.gov), based on combining the measured values for the production of the ground state (8.8 ± 0.9 b) and the isomeric state (2.5 ± 0.3 b) (Fig. 1). These two measurements were made in 1959 and 1967 respectively using equipment of very low resolution that was perhaps not able to correct for competing decays from the irradiated samples. A compilation by Mughabghab (2006) replaces these values with 7.7 ± 0.9 b and 0.98 ± 0.05 b for ground and isomeric states respectively, giving a combined total cross section of 8.7 ± 0.9 b (http://www.nndc.bnl.gov/atlas/atlasvalues.html). The origin of the ground state value is not given by Mughabghab (2006). However the isomeric cross section is from Heft’s (1968) measurement using high-resolution Ge detectors. In comparison, Heft’s ground state cross section is 6.52 ± 0.40 b.

**Fig. 4.** Halogen concentrations obtained for the same set of MORB samples analysed on the MS1 and ARGUS VI mass-spectrometers. The halogen data are corrected using scapolite standards run on each instrument. Chlorine and bromine show a very good agreement (better than 5%), iodine deviates ~15% from the 1:1 line. Deviations might be caused by sample heterogeneities.
Dauenhauer and Krane (2012) determined the isomeric cross section of 0.596 ± 0.037 b, which differs from Heft’s (1968) value due to changes in the accepted value of the gamma-ray branching from the isomeric level. Heft used a then-current value of 40% in his analysis whilst Dauenhauer and Krane (2012) used the now-current value of 55%. If we correct Heft’s ground state cross section for the 15% difference of the gamma-ray branching, the isomeric cross section of Dauenhauer and Krane (2012) and (Heft, 1968) would be identical. The ground state cross section of Dauenhauer and Krane (2012) (7.15 ± 0.34 b) is slightly larger than that of Heft (1968) because of their differing values of isomeric cross section. The effects of these corrections somewhat cancel out, so that the total cross section of 7.75 ± 0.34 b (Dauenhauer and Krane, 2012) and 7.48 ± 0.40 b (Heft et al., 1978) overlaps. Both are in substantial disagreement with the value of Mughabghab (2006) based on the early low-resolution measurements. We therefore choose to use the most recent value for the cross-section of 130Ba of 7.75 ± 0.34 b. For the resonant neutron cross section, the value proposed by Dauenhauer and Krane (2012) is 197.3 ± 10.0 b obtained by combining the ground state and the metastable state. This is 11% higher than the most recent values found in the database of Pritiachenko and Mughabghab (2012). This discrepancy remains unexplained although it is possible that the value for the metastable state has not been included in current databases. To maintain consistency, we use the resonant integral data of Dauenhauer and Krane (2012).

During the irradiation MN2012b, 38 MORB and Back-Arc Basin samples (unpublished results) were irradiated for which Ba concentrations have been published (http://www.earthchem.org/petdb/). By simply comparing the 131Xe-derived Ba data obtained from the MS1 spectrometer with literature values, without the corrections for the epithermal fluence, a correction factor of 2.18 ± 0.03 (Fig. 5) was obtained. We have calculated the epithermal fluence from the Ba data \[ \phi_{\text{epi}} = (2.97 ± 0.10) \times 10^{17} \text{n cm}^{-2} \] and calculated the correction factors for Br and I using Eq. (23): \[ F_{79\text{Br}} = 1.55 ± 0.02 \, (1\sigma), \, F_{81\text{Br}} = 1.91 ± 0.03 \, (1\sigma), \, F_{127\text{I}} = 2.16 ± 0.04 \, (1\sigma) \].

We use this new set of factors to correct the six MORB data (Castillo et al., 2002) and compare the final results to the ones obtained using the scapolite standards (Fig. 6 and Table B.1-Supplementary data section B). For bromine the barium-based calibration slightly overestimates the

---

**Fig. 5.** Barium calibration between MORB literature data (PETdb database) obtained by ICPMS, ICPES, EMP and XRF, and MS1 data in this study. The slope \( F_{130\text{Ba}} = 2.18 ± 0.03 \) demonstrates that 54% of 131Xe is produced by epithermal neutrons during irradiation.

**Fig. 6.** Comparison of the calibration of bromine and iodine concentrations using neutron fluences derived from barium versus direct calibration using scapolite standards. We show the 1:1 line with an envelope of 10% error for bromine and 5% error for iodine. Error bar is 1\( \sigma \).
abundances by 7.4%. In contrast the difference between barium and scapolite calibrations for I is 5%. We attribute this variation to the contrast in thermal/epithermal neutron cross sections ($Q_\alpha$) for target elements involved. Using the data in Table 1, $Q_\alpha$ values are very similar for $^{127}$I and $^{130}$Ba at 24.9 ± 0.7 and 25.5 ± 1.7 respectively, whereas $^{80}$Br has a much lower $Q_\alpha$ of only 11.9 ± 0.3. Therefore, $^{128}$Xe/I and $^{131}$Xe/Ba production rates should be similar and largely independent of the neutron energy distribution of the irradiation.

5. Cross-calibration of I/Cl ratio in scapolites (BB2/SP and BB1)

The scapolite Br and I abundances of Kendrick (2012) were subsequently revised by 22% and 27% respectively by Kendrick et al. (2013a). The authors attributed the revision to irradiation of samples in a strongly thermalized neutron flux, therefore negating the requirement to estimate the epithermal neutron contribution via inclusion of a meteorite standard. Bromine concentrations were subsequently confirmed using LA-ICPMS (Hammerli et al., 2014), whereas the I abundances in scapolites have not been cross-calibrated using an independent iodine standard.

The Shallowater aubrite step heating data, as well as the Ba correction, are used here to re-evaluate the I/Cl ratio for SP/BB2 ($n = 21$) and for BB1 ($n = 10$) standards irradiated between 2012 and 2014 (Tables 7A and 7B and Fig. 7).

Based on this, the new recommended I/Cl values are $1.19 \times 10^{-6}$ (s.t.d. ± 0.09–1σ or s.e.m. ± 0.02–1σ) for BB2/SP and $25.9 \times 10^{-6}$ for BB1 (s.t.d. ± 1.3–1σ or s.e.m. ± 0.4–1σ).

This brings BB1 and SP/BB2 scapolite standards to the same level of certainty as SY scapolites, not measured in that study. Despite this improvement, it seems clear that the correction based on Shallowater aubrite or the barium correction produce smaller errors as shown in the Supplementary data (Table B1) for the ALARCON set of samples.

6. Conclusion

The main findings of this study are summarised as follows.

1) We provide details of the analytical procedures for obtaining Ar, Kr and Xe isotope determinations using the ARGUS VI multicolonlector noble gas mass spectrometer. We compare the data obtained with our existing MS1 mass spectrometer to demonstrate the improvement in performance and data quality of the multicolonlector instrument.

2) The general principles and data reduction procedures are described in detail for the conversion of halogen-derived noble gas isotopes to halogen abundances. We show that the use of standards of known concentrations of each element is preferred, over direct calculation based on neutron flux determinations.

Table 7A
Re-determination of I/Cl ratio in BB2/SP standards. The calculated value is 8.5% lower than the value calculated by Kendrick et al. (2013a) and the error bar is reduced from 23% to 14% (2σ).

| Irradiation | Mass-spect. | Correction       | Sample name   | I/Cl $(10^{-6})$ | ± (10σ) |
|-------------|-------------|------------------|---------------|------------------|---------|
| MN2012      | MS1 Barium  | BB2_1            | 1.34          | 0.13             |
|             | MS1 Barium  | BB2_2            | 1.26          | 0.11             |
|             | MS1 Barium  | BB2_3            | 1.27          | 0.09             |
|             | MS1 Barium  | BB2_4            | 1.16          | 0.08             |
|             | MS1 Barium  | BB2_5            | 1.16          | 0.09             |
|             | MS1 Barium  | BB2_6            | 1.20          | 0.10             |
|             | MS1 Barium  | BB2_7            | 1.39          | 0.16             |
|             | ARGUS VI SW-MN2012 | BB2_8 | 1.20 | 0.08 |
| MN2013      | ARGUS VI SW-step heating | BB2_9 | 1.17 | 0.12 |
|             | ARGUS VI SW-step heating | BB2_10 | 1.18 | 0.12 |
|             | ARGUS VI SW-step heating | BB2_11 | 1.10 | 0.12 |
|             | ARGUS VI SW-step heating | BB2_12 | 1.10 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_13 | 1.24 | 0.08 |
|             | ARGUS VI SW-step heating | BB2_14 | 1.12 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_15 | 1.05 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_16 | 1.14 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_17 | 1.18 | 0.08 |
|             | ARGUS VI SW-step heating | BB2_18 | 1.16 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_19 | 1.08 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_20 | 1.10 | 0.07 |
|             | ARGUS VI SW-step heating | BB2_21 | 1.19 | 0.08 |
| Average (+stdev) | |               | 1.19 | 0.09 |
| Average (+s.e.m.) | |               | 1.19 | 0.02 |

Table 7B
Re-determination of I/Cl ratio in BB1 standards. The calculated value is the same as the value calculated by Kendrick et al. (2013a,b) and the error bar is reduced from 15% to 10% (2σ).

| Irradiation | Mass-spect. | Correction       | Sample name   | I/Cl $(10^{-6} \text{ wt.})$ | ± (10σ) |
|-------------|-------------|------------------|---------------|-----------------------------|---------|
| MN2013      | ARGUS VI SW-step heating | BB1_1 | 27.3 | 2.6 |
|             | ARGUS VI SW-step heating | BB1_2 | 28.0 | 2.6 |
|             | ARGUS VI SW-step heating | BB1_3 | 25.4 | 2.7 |
|             | ARGUS VI SW-step heating | BB1_4 | 23.8 | 1.0 |
|             | ARGUS VI SW-step heating | BB1_5 | 24.8 | 1.0 |
|             | ARGUS VI SW-step heating | BB1_6 | 25.7 | 1.0 |
|             | ARGUS VI SW-step heating | BB1_7 | 25.0 | 1.0 |
|             | ARGUS VI SW-step heating | BB1_8 | 26.9 | 1.7 |
|             | ARGUS VI SW-step heating | BB1_9 | 26.1 | 1.7 |
|             | ARGUS VI SW-step heating | BB1_10 | 26.6 | 1.7 |
| Average (+stdev) | |               | 25.9 | 1.3 |
| Average (+s.e.m.) | |               | 25.9 | 0.4 |
3) Step-heating of Shallowater meteorite standard is recommended to generate a correlation line on a plot of $^{129}$Xe/$^{132}$Xe vs. $^{128}$Xe/$^{132}$Xe and to obtain the $^{128}$Xe/$^{127}$I ratio for an irradiation.

4) A barium calibration, which is completely independent of other standards, shows excellent agreement with both Shallowater and the newly revised I/Cl ratio for scapolite standards for the determination of iodine. This correction can be used as an internal standard within each irradiation if Ba contents have been independently determined.

5) Scapolite standards are a very good standard for bromine and can also be used as an iodine standard, however we recommend to use Shallowater auribite or the barium calibration for iodine. The value of I/Cl ratio for BB2/SP scapolite has been revised downward by 8.5%. The new recommended value for BB2/SP is $(1.19 \pm 0.09) \times 10^{-6}$ (1σ). For BB1, we recommend a I/Cl ratio of $(25.9 \pm 1.3) \times 10^{-6}$ (1σ).

List of the constants

| Name          | Value    | Error | Unit          | Reference                      |
|---------------|----------|-------|---------------|--------------------------------|
| $^{40}$As/$^{39}$As | 298.56   | 0.31  | –             | Lee et al. (2006)               |
| $^{38}$As/$^{37}$As | 0.1880   | 0.04  | –             | Ozima and Podosek (2002)        |
| $^{108}$I/Cl | 10749    | 3.5   | Ma            | Schwarz and Trieloff (2007)     |
| $\lambda_1$  | 0.0576 × 10$^{-10}$ | 0.002 × 10$^{-10}$ | a$^{-1}$ | This study (Table A.2).          |
| $\lambda_2$  | 4.955 × 10$^{-10}$ | 0.013 × 10$^{-10}$ | a$^{-1}$ | Supp. Data.                      |
| $\lambda_{tot}$ | 5.531 × 10$^{-10}$ | 0.013 × 10$^{-10}$ | a$^{-1}$ | Supp. Data.                      |
| $K_{Br/Cl}$  | 1.247 × 10$^{-10}$ | 0.008 wt.% | Roddick (1983) |
| $Cl_{Br/Cl}$ | 7.45 × 10$^{-10}$ | 0.05 wt.% | Roddick (1983) |
| $Cl_{I/Br}$  | 0.283 × 10$^{-10}$ | 0.002 wt.% | Roddick (1983) |
| $M_{Cuc}$    | 40.078 g mol$^{-1}$ | 0.004 | IUPAC (2013)  |
| $M_{Cuc}$    | 39.083 g mol$^{-1}$ | 0.0001 | IUPAC (2013) |
| $M_{I}$      | 35.453 g mol$^{-1}$ | 0.0002 | IUPAC (2013) |
| $M_{I}$      | 126.90447 g mol$^{-1}$ | 0.0003 | IUPAC (2013) |
| $M_{Br}$     | 79.304 g mol$^{-1}$ | 0.001 | IUPAC (2013) |
| $M_{I}$      | 137.327 g mol$^{-1}$ | 0.007 | IUPAC (2013) |
| $40K/K$      | 1.17 × 10$^{-4}$ | 0.01 × 10$^{-4}$ | – | IUPAC (2013) |
| $Cl$/$Cl_{f}$ | 10$^{-4}$ | 10$^{-4}$ | – | IUPAC (2013) |

References

Ballentine, C.J., Burgess, R., Marty, B., 2002. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47, 539–614.

Böhleke, J.K., Irwin, J.J., 1992a. Laser microprobe analyses of CI, Br, I and K in fluids inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim. Cosmochim. Acta 56, 203–225.

Böhleke, J.K., Irwin, J.J., 1992b. Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: analyses of microstandards and synthetic inclusion in quartz. Geochim. Cosmochim. Acta 56, 187–201.

Bottrell, S.H., Yardley, B.W.D., 1988. The composition of a primary granite-derived ore fluid from S.W. England, determined by fluid inclusion analysis. Geochim. Cosmochim. Acta 52, 585–598.

Brazzle, R.H., Pravdivtseva, O.V., Meshik, A.P., Hohenberg, C.M., 1999. Verification and interpretation of the I-Xe chronometer. Geochim. Cosmochim. Acta 63, 739–760.

Burgess, R., Layzell, E., Turner, C., Harris, J.W., 2002. Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet. Sci. Lett. 197, 209–203.

Burgess, R., Cartigny, P., Harrison, D., Hobson, E., Harris, J., 2009. Volatil composition of micrococrystals and inclusions from the panda kimberlite, Canada: implications for chemical and isotopic heterogeneity in the mantle. Geochim. Cosmochim. Acta 73, 1779–1794.

Castillo, P.R., Hawkins, J.W., Lonsdale, P.F., Hilton, D.R., Shaw, A.M., Gascoclair, M.D., 2002. Petrology of Alarcon Rise lavas, Gulf of California: nascent intracontinental ocean crust. J. Geophys. Res. Solid Earth 107 E51–1–E51–15.

Chilian, C., St-Pierre, J., Kennedy, G., 2006. Dependence of thermal and epithermal neutron self-shielding on sample size and irradiation site. Nucl. Inst. Methods Phys. Res. A 564, 629–635.

Chilian, C., St-Pierre, J., Kennedy, G., 2008. Complete thermal and epithermal neutron self-shielding corrections for NAA using a spreadsheet. J. Radioanal. Nucl. Chem. 278, 745–749.

Chilian, C., Chambon, R., Kennedy, G., 2010. Neutron self-shielding with k0-NAA irradiations. Nucl. Inst. Methods Phys. Res. A 622, 429–432.

Crowther, S.A., Mohapatra, R.K., Turner, G., Blagburn, D.J., Kehm, K., Gilmour, J.D., 2008. Characteristics and applications of RELAX, an ultra-sensitive resonance ionization mass spectrometer for xenon. J. Anal. At. Spectrom. 23, 938–947.

Dauenhauer, A.Y., Krane, K.S., 2012. Neutron capture cross section of 110,112,134,136,138Ba. Phys. Rev. C 85.

Gilmour, J.D., Hewett, S.M., Lyon, I.C., Stringer, M., Turner, G., 1991. A resonance ionization mass spectrometer for xenon. J. Anal. At. Spectrom. 2, 589.

Gilmour, J.D., Lyon, I.C., Johnstone, W.A., Turner, G., 1994. RELAX: an ultra-sensitive, resonance ionization mass spectrometer for xenon. Rev. Sci. Instrum. 65, 617–625.

Gilmour, J.D., Pravdivtseva, O.V., Busfield, A., Hohenberg, C.M., 2006. The I-Xe chronometer and the early solar system. Meteorit. Planet. Sci. 41, 19–31.

Hammerl, J., Rusk, B., Spandler, C., Embs, P., Oliver, N.H.S., 2013. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources. Chem. Geol. 337, 338, 75–87.

Acknowledgements

We dedicate this work to the memory of our friend and colleague, Dr. Pete Burnard (CRPG-Nancy), who worked at the University of Manchester from 1987–1998.

We thank Dr. D. Chavrit for providing some back arc basalt barium data used in this paper. We are grateful to Dr. S. Crowther, who provided the data of Shallowater run on RELAX for the irradiations MN2012f and MN2014a. We thank Dave Hilton who provided the Alarcon samples. We would like to thank Doug Hamilton (Thermo Fisher Scientific) for advice on achieving Kr and Xe measurements on the ARGUS VI. We thank Jamie Gilmour for helpful insights and suggestion that improved the manuscript. Mark Kendrick and Hirochika Sumino are thanked for thorough reviews and suggestions that led to a much improved, more succinct manuscript.

This work was performed in the framework of the “NOBLE” (The Origin, Accretion and Differentiation of Extreme Volatiles in Terrestrial Planets) research project and funded by the European Research Council (ERC) grant No: 267692 under the European Commission Seventh Framework Programme (FP7). The ARGUS VI mass spectrometer is funded by Science and Technology Facilities Council grants ST/M001253/1/1 and ST/L002957/1 (UKCAN) at the University of Manchester.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2016.05.003.
Kendrick, M.A., Woodhead, C.O., Oliver, N.H.S., Ruik, B., 2014. Cl/Br of scapolite as a fluid tracer in the earth’s crust: insights into fluid sources in the Mary Kathleen Fold Belt, Mt. Isa Inlier, Australia. J. Metamorph. Geol. 32, 93–112.

Heft, R.E., 1968. In Conference on Computers in Activation Analysis, edited by R. Farmakes (American Nuclear Society, La GrangePark, IL, 1968).

Heft, R.E., 1978. A consistent set of nuclear-parameter values for absolute INAA. In: Farmakes, R. (Ed.), Proceedings of the Conference on Computers in Activation Analysis. American Nuclear Society, La Grange Park, pp. 495–510.

Heinrich, C.A., Bain, J.H.C., Fardy, J.J., Waring, C.L., 1993. Br/Cl geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted copper mineralization at Mount Isa, northern Australia. Geochim. Cosmochim. Acta 57, 2991–3000.

Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audotat, A., Gunther, D., Hattendorf, B., Bleiner, D., Guillong, M., Horn, I., 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 67, 3473–3497.

Hohenberg, C.M., 1967. I-Xe dating of the shallowater achondrite. Earth Planet. Sci. Lett. 3, 357–362.

Hohenberg, C.M., Kennedy, B.M., 1981. I-Xe dating: intercomparisons of neutron irradiations and reproducibility of the Bjarbölge standards. Geochim. Cosmochim. Acta 45, 251–256.

Irwin, J.J., Roedder, E., 1995. Diverse origins of fluids in magmatic inclusions at Bingham (Utah, USA), Butte (Montana, USA), St Austell (Cornwall, UK) and Ascension Island (mid-Atlantic, UK) indicated by laser microprobe analysis of Cl, Br, I, Ba + Te, U, Ar,Kr and Xe. Geochim. Cosmochim. Acta 59, 299–312.

Joachim, B., Pavley, A., Lyon, J.C., Marquardt, K., Henkel, T., Clay, P.L., Ruzié, L., Burgess, R., Ballentine, C.J., 2015. Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chem. Geol. 416, 65–78.

Johnson, L.H., Burgess, R., Turner, G., Milledge, H.J., Harris, J.W., 2000. Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim. Cosmochim. Acta 64, 717–732.

Kelley, S., Turner, G., Butterfield, A.W., Shepherd, T.J., 1986. The source and significance of argon isotopes in fluid inclusions from areas of mineralization. Earth Planet. Sci. Lett. 79, 303–318.

Kendrick, M.A., 2012. High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem. Geol. 292, 293–316.

Kendrick, M.A., Burnard, P., 2011. Noble gases and halogens in fluid inclusions: a journey through the Earth’s crust. In: Burnard, P. (Ed.), The Noble Gases as Geochemical Tracers. Springer-Verlag, Berlin Heidelberg, p. 391.

Kendrick, M.A., Burgess, R., Pattrick, R.A.D., Turner, G., 2001. Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem. Geol. 177, 351–370.

Kendrick, M.A., Scambelluri, M., Honda, M., Phillips, D., 2011. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 4, 807–812.

Kendrick, M.A., Kamenetsky, V.S., Phillips, D., Honda, M., 2012a. Halogen systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: a Macquarie Island case study. Geochim. Cosmochim. Acta 81, 82–93.

Kendrick, M.A., Woodhead, C.D., Kamenetsky, V.S., 2012b. Tracking halogens through the subduction cycle. Geology 40, 1075–1078.

Kendrick, M.A., Arculus, R.J., Burnard, P., Honda, M., 2013a. Quantifying brine assimilation by submarine magmas: examples from the Galapagos Spreading Centre and Lau Basin. Geochim. Cosmochim. Acta 123, 150–165.

Kendrick, M.A., Honda, M., Pettke, T., Scambelluri, M., Phillips, D., Guillani, A., 2013b. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 365, 86–96.

Kusebauch, C., John, T., Whitehouse, M.J., Klemme, S., Putnis, A., 2015. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochim. Cosmochim. Acta 170, 225–246.

Lee, J.Y., Marti, K., Severinghaus, J.P., Kawamura, K., Yoo, H.S., Lee, J.B., Kim, J.S., 2006. A re-determination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta 70, 4507–4512.

Ludwig, K.R., 2012. Isoplot, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 5 p. 75.

McDougall, I., Harrison, T.M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, Oxford.

Merrihue, C.M., 1965. Trace element determinations and potassium-argon dating by mass spectrometry of neutron-irradiated samples. Trans. Am. Geophys. Union 125.

Mugabghagh, S.F., 2006. Atlas of Neutron Resonances, Resonance Parameters and Neutron Cross Sections Z = 1–100. Elsevier, Amsterdam.

Ozima, M., Podosek, F.A., 2002. Noble Gas Geochemistry, second ed. Cambridge University Press, New york.

Pritychenko, B., Mugabghagh, S.F., 2012. Neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian averaged cross sections and astrophysical reaction rates calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 evaluated data libraries. Nucl. Data Sheets 113, 3120–3144. Pure and Applied Chemistry, April 2013. (ISSN: 1365-3075, 0033-4545) 85 (5), 1047–1078. http://dx.doi.org/10.1351/PAC-REP-13-03-02.

Roddick, J.C., 1983. High precision intercalibration of 40Ar/39Ar standards. Geochim. Cosmochim. Acta 47, 887-898.

Schwarz, W.H., Triebl, M., 2007. Intercomparison of 40Ar/39Ar age standards NL-25, HB33 grainblende, GA1550, SB-3, HD-81 biotite and BMt3/2 muscovite. Chem. Geol. 242, 218–231.

Sumino, H., Burgess, R., Mizukami, T., Wallis, S.R., Holland, G., Ballentine, C.J., 2010. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet. Sci. Lett. 294, 163–172.

Turner, G., 1965. Extinct iodine 129 and trace elements in chondrite. J. Geophys. Res. 70, 5433–5445.

Turner, G., 1972. 40Ar/39Ar age and irradiation history of the Apollo 15 anorthosite, 15415. Earth Planet. Sci. Lett. 14, 169–175.

Turner, G., Bannon, M.P., 1992. Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in southwest and northeast England. Geochim. Cosmochim. Acta 56, 227–241.

Turner, G., Huneke, J.C., Podosek, F.A., Wassburger, G.J., 1971. 40Ar/39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19–35.

Vi, W., Halliday, A.N., Alt, J.C., Lee, D.C., Rehkämper, M., Garcia, M.D., Langmuir, C.H., Su, Y., 2000. Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: implications for chalcophile element fractionation in the earth. J. Geophys. Res. Solid Earth 105, 18927–18948.