Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes

Richard Allen White III, Eric M. Bottos, Taniya Roy Chowdhury, Jeremy D. Zucker, Colin J. Brislawn, Carrie D. Nicora, Sarah J. Fansler, Kurt R. Glaesemann, Kevin Glass, Janet K. Jansson

Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA

ABSTRACT Soil metagenomics has been touted as the "grand challenge" for metagenomics, as the high microbial diversity and spatial heterogeneity of soils make them unamenable to current assembly platforms. Here, we aimed to improve soil metagenomic sequence assembly by applying the Moleculo synthetic long-read sequencing technology. In total, we obtained 267 Gbp of raw sequence data from a native prairie soil; these data included 109.7 Gbp of short-read data (~100 bp) from the Joint Genome Institute (JGI), an additional 87.7 Gbp of rapid-mode read data (~250 bp), plus 69.6 Gbp (>1.5 kbp) from Moleculo sequencing. The Moleculo data alone yielded over 5,600 reads of >10 kbp in length, and over 95% of the unassembled reads mapped to contigs of >1.5 kbp. Hybrid assembly of all data resulted in more than 10,000 contigs over 10 kbp in length. We mapped three replicate metatranscriptomes derived from the same parent soil to the Moleculo subassembly and found that 95% of the predicted genes, based on their assignments to Enzyme Commission (EC) numbers, were expressed. The Moleculo subassembly also enabled binning of >100 microbial genome bins. We obtained via direct binning the first complete genome, that of "Candidatus Pseudomonas sp. strain JK1-1" from a native soil metagenome. By mapping metatranscriptome sequence reads back to the bins, we found that several bins corresponding to low-relative-abundance Acidobacteria were highly transcriptionally active, whereas bins corresponding to high-relative-abundance Verrucomicrobia were not. These results demonstrate that Moleculo sequencing provides a significant advance for resolving complex soil microbial communities.

IMPORTANCE Soil microorganisms carry out key processes for life on our planet, including cycling of carbon and other nutrients and supporting growth of plants. However, there is poor molecular-level understanding of their functional roles in ecosystem stability and responses to environmental perturbations. This knowledge gap is largely due to the difficulty in culturing the majority of soil microbes. Thus, use of culture-independent approaches, such as metagenomics, promises the direct assessment of the functional potential of soil microorganisms. Soil is, however, a challenge for metagenomic assembly due to its high microbial diversity and variable evenness, resulting in low coverage and uneven sampling of microbial genomes. Despite increasingly large soil metagenome data volumes (>200 Gbp), the majority of the data do not assemble. Here, we used the cutting-edge approach of synthetic long-read sequencing technology (Moleculo) to assemble soil metagenome sequence data into long contigs and used the assemblies for binning of genomes.

KEYWORDS: de novo assembly, Moleculo, metagenomic assembly, metagenomic binning, soil metagenomics

Received 11 April 2016 Accepted 24 May 2016 Published 28 June 2016

Citation White RA, III, Bottos EM, Roy Chowdhury T, Zucker JD, Brislawn CJ, Nicora CD, Fansler SJ, Glaesemann KR, Glass K, Jansson JK. 2016. Moleculo long-read sequencing facilitates assembly and genomic binning from complex soil metagenomes. mSystems 1(3): e00045-16. doi: 10.1128/mSystems.00045-16.

Editor Morgan Langille, Dalhousie University

Copyright © 2016 White et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Janet K. Jansson, janet.jansson@pnnl.gov.

Moleculo long-read sequencing allows for genome reconstruction from complex soil ecosystems.
Soil metagenomics has been termed the "grand challenge," due to the complexity and diversity of the microbial communities in these ecosystems (1–4). Soils represent one of the most diverse ecosystems on the planet (1), with estimates of billions of microbial cells and ~100,000 unique bacterial and archaeal species in 1 g of soil (2). Analysis of existing soil metagenomic data has also resulted in high microbial genetic diversity estimates, equivalent to ~10^{12} genes per gram of soil (2). This high diversity represents an enormous challenge to metagenomics, due to low coverage obtained for individual populations, uneven sampling of microbes, and the large amount of sequence data acquired, often in short DNA fragments (~100 to 150 bp) (3, 4). It has been estimated that tera-base pairs (Tbp) of sequence data would be required to adequately sample a single gram of soil if using current metagenomic sequencing and assembly platforms (3–6).

To address this challenge of soil metagenome assembly and annotation, the Department of Energy’s Joint Genome Institute (JGI) initiated the Great Prairie Soil Metagenome Grand Challenge Initiative (1), which included native prairie and adjacent long-term agricultural soil locations in Wisconsin, Iowa, and Kansas. As a result of the JGI initiative, the two largest soil metagenomes published to date are from Iowa native prairie soil, containing 3.3 billion reads, or 257 Gbp of raw data, and from the adjacent cultivated soil ("continuous corn"), containing 1.8 billion reads or 141 Gbp (4). However, only nine sequences of >10 kbp could be assembled from the continuous corn, and none was >10 kbp from the native Iowa prairie soil assembly. Approximately 80% of the sequencing data could not be assembled, and less than 11% of the reads mapped to either the assembly from the continuous corn or from the native prairie soil (4). Thus, novel genomes, genes, and functional guilds have yet to be discovered among the vast microbial diversity present in soil ecosystems.

Of the JGI soil metagenomes resulting from the Grand Challenge project, the largest amount of sequence data was obtained from the Kansas native prairie (>1.3 Tbp). Therefore, we focused on Kansas native prairie soil as the target metagenome with the aim of further advancing sequencing and assembly approaches to attempt to tackle some of the challenges inherent to soil metagenomics.

A promising approach for improving metagenome analysis is de novo assembly. A de novo assembly approach provides error correction of short reads, connects fragmented protein-coding open reading frames (ORFs), reduces data volume, and enables higher-quality functional gene annotation and better phylogenetic taxonomic assignments than do gene-centric-based approaches (4). By comparison, unassembled short reads of <150 bp offer few solutions for annotation and phylogenetic approaches, as they are often too short for reliable analysis (7), and short read length alone can cause artifacts (8). De novo assembly is therefore often the first step in metagenomic analysis after data trimming and cleaning (9). However, this approach to metagenomics currently has three major caveats: (i) it does not capture long-range sequence contiguity, as community DNA is fragmented commonly to <1-kbp lengths (10); (ii) it masks individual strain-level genotypes due to pooling of community DNA (10); (iii) current assembly algorithms do not scale computationally for complex soil ecosystems due to the high diversity and large data volume (4).

In addition, due to the assembly issues associated with soil, it has been difficult to reconstruct genomes from complex soil metagenomes. However, genomes have been successfully binned from lower-complexity metagenomes, including acid mine drainage (11), deep aquifers (12), mat microcosms (13), wastewater bioreactors (14, 15), permafrost soil (16, 17), and the human gut (18). Recently, the complexity of soil was reduced after incubating samples under harsh treatment conditions (e.g., in the presence of heavy metals, salts, and ethanol), and this improved metagenome assembly and allowed for direct binning of genomes (19).

A promising alternative approach to address the challenges in soil metagenome assembly is to utilize Moleculo hybrid synthetic long reads generated via the high-throughput sequencing Illumina platform, also known as Illumina TruSeq long-read hybrid subassembly (20). The Moleculo technology can provide >8-kbp
subassembled contig lengths with 99.9% accuracy (20–22) and is summarized in Fig. S1A in the supplemental material. Recently, metagenomic studies conducted on sediments (23) and the human gut microbiome (24) have demonstrated that Moleculo alone, or hybrid assembly with short reads and Moleculo, can generate long contigs of >100 kbp.

The objectives of our study were (i) to evaluate whether the Moleculo technology alone would improve soil metagenome assembly and allow for genome binning from a complex soil ecosystem; (ii) to compare and contrast the Moleculo assemblies to metagenome assemblies from three different Illumina read-length formats, including short reads with 100-bp paired ends (here called short reads [SR]), rapid-mode reads of 250-bp paired ends (here called rapid mode reads [RMR]), and reads from Moleculo only, which were sequenced using rapid-mode reads of 250-bp paired ends and then subassembled; (iii) to reconstruct functionally active pathways by mapping metatranscriptome reads to the Moleculo assembly; (iv) to reconstruct functionally active genome bins by mapping metatranscriptome reads to the genome bins.

RESULTS

Moleculo subassembly provides long and accurate reads and improves assembly of complex metagenomes. We analyzed a combination of existing metagenome sequence data from native prairie soil that was previously collected at the Konza Prairie Station in Kansas and sequenced at the JGI. We also performed additional sequencing of fresh soils from three additional locations of the same Kansas native prairie (sites A, B, and C). We obtained approximately 300 million raw reads (69.7 Gbp of raw data) using the Moleculo technology and the majority were long, with 15,400 contigs of >9 kbp, 5,600 contigs of >10 kbp, and a total assembly of 775 Mbp on contigs of >1.5 kbp (Table 1; see also Fig. S1B in the supplemental material). The quality of the data obtained using Moleculo was on average Q30 (a Q30 score represents a probability of an incorrect base call of 1 in 1,000, or 99.9% accuracy), suggesting Sanger-like accuracy (see Fig. S1C). We also compared the Moleculo data to metagenome assemblies obtained using SR 100-bp paired-end data, previously generated at the JGI, and Illumina HiSeq RMR 250-bp paired-end reads (Table 1). The MegaHit assembler was used to assemble the data from the SR and RMR sequencing approaches, resulting in >30% overall read mappability to contigs of >1 kbp in length (Table 1) (25). The SR assembly resulted in 827 contigs of >9 kbp, 604 contigs of >10 kbp, and a total assembly of 520 Mbp on contigs of >1 kbp. The RMR assembly resulted in 936 contigs of >9 kbp, 584 contigs of >10 kbp, and a total assembly of 1.2 Gbp on contigs of >1 kbp. Moleculo had 98.6% overall read mappability or alignment to contigs of >1.5 kbp in length (as none was below 1.5 kbp), suggesting most of the read data were represented in contigs (Table 1). Among Moleculo-only contigs, 67% were >5 kbp; by comparison, <1.5% of either the RMR or SR assemblies were represented in contigs of >5 kbp (Table 1). In addition, Moleculo alone provided ~10 times more long contigs (>10 kbp) than either SR or RMR assemblies (Table 1).

TABLE 1 Assembly statistics for Moleculo-only, SR, RMR, and hybrid assembly contigs

Format	Data (Gbp)	Read length (bp)	No. of contigs	Size (Mbp)	No. of reads for bin size cutoff	Reads mapped (%)
Short read	109.7	100	315,254	520	196,254	1,593
Rapid mode read	87.7	250	743,563	1,200	462,165	1,577
Moleculo only	69.6	250	123,695	775	0	7,781
Hybrid	0.82	(>4-kb contigs)	109,623	820	0	7,915

"Moleculo only" indicates the subassembled contigs from the TruSeq synthetic long-read DNA library prep (Illumina). Values in the column for data size indicate the total raw data obtained with each format. Read lengths for short reads are in the HiSeq 100-bp paired-end format, whereas rapid mode reads and Moleculo-only reads were sequenced in the HiSeq rapid mode in the 250-bp paired-end format. Size represents the total assembly size, and "Reads mapped" data represent the total unassembled reads mapped to contigs of >1 kbp in length overall, determined using Bowtie2. The number of contigs of >5 kbp includes all contigs for the given length cutoff.
A hybrid assembly method was used to combine de Bruijn graph (i.e., MEGAHIT) (25), string graph (i.e., Illumina’s TruSeq long-read assembly app, v. 1.0), overlap consensus (i.e., CAP3) (26), and minimus2 (27, 28) to merge assembly contigs. SR and RMR were assembled with MEGAHIT, whereas Moleculo was assembled with the TruSeq long-read assembler. We pooled >4-kbp contigs from SR, RMR, and Moleculo, assembled them with CAP3, and completed a final contig merge with the minimus2 program. The resulting hybrid assembly had >10,000 contigs that were >10 kbp (Table 1).

Full-length rRNA gene sequences captured by Moleculo in native prairie soil metagenomes. The 16S sequences obtained from the Moleculo sequence assembly included representatives of the main bacterial taxonomic branches in the Kansas native prairie ecosystem, based on comparison to 16S rRNA PCR amplicon data. The majority (>95%) of the microbial diversity in the amplicon data was represented by 16 phyla and candidate phyla: Acidobacteria, Actinobacteria, Armatimonadetes (formerly OP10), Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, OD1 (candidate), Nitrospirae, TM7 (candidate), Planctomycetes, Proteobacteria, Tenericutes, Verrucomicrobia, and WS3 (candidate) (Fig. 1A), and we reconstructed full-length 16S rRNA gene sequences from 11 of these phyla (Fig. 1A). Armatimonadetes, Cyanobacteria, Tenericutes, OD1, and TM7 phyla were also detected by Moleculo but were not full length (Fig. 1A). Interestingly, both the RMR and Moleculo sequencing technologies captured the candidate SPAM (i.e., spring alpine meadow) phylum, whereas the amplicon data did not (Fig. 1A). In contrast, the amplicon data predicted a much higher Planctomycetes abundance than was represented in the Moleculo contigs (Fig. 1A), suggesting possible PCR bias in the primers for these groups. The Moleculo data also contained full-length 16S rRNA gene sequences from both abundant members (e.g., Acidobacteria, Actinobacteria, Proteobacteria, Verrucomicrobia) as well as rare members of the community (e.g., WS3, Crenarchaeota, Nitrospirae) (Fig. 1A).

It has been challenging to reconstruct full-length 16S rRNA gene sequences from complex metagenomes, with few successful examples to date (29). Here, we compared the RMR sequence assembly to the Moleculo subassembly for achievability of longer 16S rRNA gene sequences. The Moleculo assembly yielded double the number of positive 16S rRNA gene identifications (197) (Fig. 1B) than the RMR assembly, with an average sequence length of ~1,268 bp; 127 were full-length sequences of ~1,400 bp or greater (Fig. 1B). In contrast, RMR assembly captured only 89 assembled 16S rRNA sequences, with an average sequence length of ~597 bp, and only five sequences were obtained that were >1,400 bp (Fig. 1C).

Moleculo subassembly captures of enzyme functional potential in a complex soil community. The Moleculo metagenome annotation was completed by using Metapathways2 to generate a MetaCyc pathway genome database (ePDGB) with pathway tools for Kansas native prairie soil (30). Of the 354,863 genes in the Moleculo metagenome annotation, 112,704 (32%) were assigned an Enzyme Commission (EC) number, and of the 5,684 official EC enzymes, 1,461 (26%) were assigned to at least 1 gene in the Moleculo metagenome annotation. Of the 2,260 MetaCyc pathways identified from 2,600 organisms, 352 (16%) were predicted for the Moleculo metabolic annotation.

We annotated the functional potentials for enzymes in each of the four assemblies (SR, RMR, Moleculo only, and hybrid) by using the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/) and Clusters of Orthologous Groups (COG; http://www.ncbi.nlm.nih.gov/COG/) ontology assignments, and we obtained taxonomic assignments using RefSeq (http://www.ncbi.nlm.nih.gov/refseq/). We found that both the taxonomic and functional potentials among various assemblies were quite similar (Fig. 2A to C), although there were slightly more Actinobacteria in the RMR and SR assemblies than in the Moleculo-only and hybrid assemblies (Fig. 2A).

Three separate metagenomes were sequenced using RMR from three different sampling locations in the Kansas native prairie (soil locations A, B, and C). The RMR sequence reads from the different sampling locations were then mapped back to the
Moleculo contigs by using Bowtie2 (31); of those, 23.04% of location A, 21.34% of B, and 24.48% of C aligned to the Moleculo contigs. In all three soil locations, the top five most abundant enzyme activities (EC numbers) predicted from mapping to the Moleculo assembly were long-chain fatty acid coenzyme A (CoA) ligase activity (EC 6.2.1.3), adenylate cyclase activity (EC 4.6.1.1), DNA-dependent RNA polymerase (EC 2.7.7.6), NADH dehydrogenase (ubiquinone) activity (EC 1.6.5.3), and 3-oxoacyl-(acyl-carrier-protein) reductase (NADPH) activity (EC 1.1.1.100) (Fig. 3A). Of the 1,461 unique ECs that mapped to the Moleculo contigs, 1,374 (94%) were shared by soil metagenomes A, B, and C, with less than 1% being unique to just one of the A, B, and C metagenomes (Fig. 3B).

Metagenome data only reveal information about the metabolic potential of a system, but not all genes are expressed at any given time. Therefore, we sequenced RNA (i.e., metatranscriptomes) from Kansas soils A, B, and C by using the RMR format and found that 26 to 27% of the metatranscriptome sequencing (whole-community RNA-Seq) reads from each of the soil replicates could be mapped to the Moleculo assembly, suggesting that a quarter of the genes were expressed at the time of
sampling. Of the 1,461 EC numbers that were annotated in the Moleculo-only assembly, 1,391 (95%) were expressed in at least one soil sample and 1,252 (86%) were expressed in all three samples (Fig. 3D). Less than 2% of the expressed proteins with EC assignments were unique to any one of the three samples (Fig. 3D).

Moleculo subassembly provides genomic resolution via binning. We compared binning quality by using the resulting assemblies from the three assembly methods: SR, RMR, and Moleculo only. We obtained 129 genomic bins from the Moleculo-only data, based on matching 107 hidden Markov model (HMM) marker genes that cover ~95% of all bacteria, with an average marker count of 1.39 for each marker per bin using the MaxBin binning system (see Fig. S2 in the supplemental material) (32–34). The average completeness (the percentage of 107 HMM marker genes covered) was ~2% higher with Moleculo than with SR assemblies and ~16% higher than with RMR assemblies (Table 2). The RMR assembly resulted in more genome bins (225 bins) than either the Moleculo or SR assemblies, with 129 and 110 bins, respectively, for the 107 HMM genes (Table 2). Of the three assemblies, Moleculo had generally higher average genome completeness on fewer longer contigs.

Binning via use of MaxBin captured representative genome bins of all of the dominant phyla that were predicted from the 16S rRNA sequences obtained using the Moleculo assemblies. Phylogenetic identifications of 129 genomic bins obtained from Moleculo-only data included Proteobacteria (39 bins, or ~30%), Verrucomicrobia (29 bins, or ~22%), Actinobacteria (19 bins, or ~15%), Bacteroidetes (17 bins, or ~13%), Acidobacteria (13 bins, or ~10%), Firmicutes (10 bins, or ~8%), and Chloroflexi (2 bins, or ~1.5%) (Fig. 4A). All of the bins represented novel, previously undescribed bacteria, based on their sequence similarities to isolate genomes in databases (see Table S1 in the supplemental material). Among the proteobacterial bins, ~59% were most similar

![FIG 2](image-url) The predicted functional and taxonomic annotations and assignments for the four various assembly formats, including SR, RMR, Moleculo-only, and hybrid assembly contigs. (A) Bar graph of RefSeq taxonomic annotations. (B) Heat map of COG functional annotations. (C) Heat map of KEGG orthology (KO) functional annotations.
to representatives of nitrogen-fixing Alphaproteobacteria (i.e., Bradyrhizobium and Mesorhizobium). The 29 Verrucomicrobia bins were most closely related to a reference genome in the Spartobacteria class (see Table S1). The Actinobacteria bins were classified as Frankia, Solirubobacter, Nocardioides, and Geodematophilaceae (see Table S1). All the Acidobacteria bins had closest similarity to a reference genome candidate, uncultured Acidobacteriaceae bacterium KBS83 (see Table S1).

The genome bins contained a diversity of metabolic potential for metabolism of complex macromolecules and elemental cycling. Functional annotations of the bins suggested that all of them had diverse glucoside hydrolyases (GHs) and glycosyltransferases (GTs), predicted by CAZy notation (Fig. 4B). All bins also had high abundances

![Graphical representation of EC numbers](image)

FIG 3 MetaCyc EC annotation abundances for Kansas native prairie soil samples A, B, and C for metagenomes and metatranscriptomes mapped to Moleculo assembly. EC numbers and activities: 1.1.1.100, 3-oxoacyl-(acyl-carrier-protein) reductase; 1.6.5.3, NADH:ubiquinone reductase H⁺-translocating; 2.7.7.6, DNA-dependent RNA polymerase; 4.6.1.1, adenylylate cyclase; 6.2.1.3, long-chain fatty acid-CoA ligase. (A) The top five predicted EC number counts. (B) Venn diagram of the predicted EC counts. (C) The top five expressed EC number counts in the metatranscriptome data. (D) Venn diagram of the EC number counts from the mapped metatranscriptomes.

Method	No. of bins	Avg % abundance	Avg % completeness	Avg genome size (Mbp)	% G+C
Short read	110	37.91	38.69	4.03	63.44
Rapid mode	225	2.58	24.26	2.73	65.29
Moleculo only	129	82.53	40.81	4.65	57.82

*Moleculo only, short read, and rapid mode reads were obtained using MaxBin (32, 33). Abundance, percent completeness, genome size, and G+C content data are average results from the various assembly formats, calculated from the MaxBin resulting output statistics. Abundance was calculated as the average read map coverage across a bin. Completeness was calculated as a percentage of the number of unique hidden Markov marker genes (107 markers used here). For example, if a bin had 53 unique marker genes detected, that means roughly 50% genomic completeness, based on the 107 marker genes that cover 95% of all bacteria (34). Genome size is predicted by the grouped contigs per bin, based on the N₅₀ value and bin genome assembly size. G+C content was calculated per bin by using MaxBin (32, 33).
of predicted protein-coding ORFs for cycling of carbon through central carbohydrate metabolism and cellular respiration (Fig. 4B). The Acidobacteria and Bacteroidetes bins had higher abundances of GHs and genes related to monosaccharide utilization (Fig. 4B). The Bacteroidetes were also predicted to have more iron-related pathways than other bins (Fig. 4B), mainly from siderophores and transporters.

We obtained the first complete genome from a native complex soil by using metagenome binning. The genome bin is taxonomically related to the genus Pseudomonas (see Fig. S3 in the supplemental material), specifically, "Candidatus Pseudomonas sp. strain JKJ-1." Based on its full-length 16S rRNA gene sequence (1,531 bp), its closest relatives in the NCBI database include Pseudomonas fluorescens strain FW300-N2E3 (accession number CP012830; 89% identity). "Candidatus Pseudomonas sp. strain JKJ-1" is a complete genome of 6,408,606 bp, with 6,128 protein-coding open reading frames (see Fig. S4 in the supplemental material), 59 tRNAs, and 1 rRNA operon, based on RAST annotation (35).

DISCUSSION

Here, we successfully applied the Moleculo technology to address one of the biggest challenges facing metagenomics: the assembly of highly complex soil microbial communities (36). Using Moleculo sequencing alone, we obtained ~70 Gbp of data with more than 5,000 reads longer than 10 kbp, and >95% of the reads could be mapped back to subassembled data (~1.5 kbp in length). By comparison, using SR sequencing, assembly of the Iowa prairie soil, with >400 Gbp of data, provided only 9 contigs that
were >10 kbp, with only 10.72% of the reads mapping to contigs (4). Here, we found that via hybrid assembly of all of the existing sequence data from Moleculo, SR, and RMR technologies (~267 Gbp), more than 10,000 contigs were obtained that were >10 kbp in length. Thus, this represents the highest-quality and most extensive metagenome assembly of a soil microbial community to date.

Moleculo library preparation is currently more expensive (~10× more) than use of standard shotgun libraries. However, a single library sequenced using the Moleculo technology represents a reduction in the amount of sequencing throughput required to obtain longer contigs, with ~9× more >10-kbp contigs than with SR or RMR sequencing technologies. The hybrid assembly nearly doubles the number of long contigs that are >10 kbp compared to Moleculo alone and increases by ~17× the number compared to SR or RMR alone. Moleculo also provides a cost savings by reducing downstream assembly costs for complex metagenomes. Another benefit of Moleculo is lower DNA input requirements (~500 ng) and DNA molecule lengths of ~10 kbp, which is the average length obtained using standard protocols by the Earth Microbiome Project (EMP) (http://www.earthmicrobiome.org/). Currently, we recommend that for large studies with many samples, it would be appropriate to use standard metagenomic sequencing pipelines and then to add a smaller number of Moleculo libraries to facilitate assembly only for highly complex ecosystems in order to save costs. However, if cost is not an issue, incorporation of at least some Moleculo data will help improve assembly and facilitate binning for basically any environmental sample metagenome.

Chimeras and misassembled contigs are possible from metagenomic and/or metatranscriptomic assemblies. Although the Moleculo technology results in "excellent metagenomic assemblies" (37), the choice of assembler used for subassembling Moleculo reads matters more than the diversity or complexity of the sample when it comes to quality and potential for misassemblies (37, 38). Although there are few publications

FIG 5 Heat map of mRNA reads mapped to genome bins and phylum-level bin averages of transcriptional activity. (A) mRNA bin read abundances across the most highly transcriptionally active bins. (B) Grouped bins by phylum-level mRNA expression abundances, rescaled to abundances based on whole mRNA counts per metatranscriptome per bin, or averaged from all the bins in a phylum group.
to date describing use of the Moleculo technology, those that have been reported have found no evidence of chimeras (23) and few misassemblies in Moleculo contigs (23, 24). Sharon et al. (23) found no evidence of chimeras when mapping Moleculo subassembled contigs to a short-read-generated genomic bin and only two sequences were misassembled. Kuleshov et al. (24) also found low misassemblies from Moleculo technology, as “accuracy was high, with less than 0.5% of reads misassembled.” Kuleshov et al. (24) suggested that combining two complementary sequencing technologies, such as SR and/or RMR with Moleculo data, could enhance the overall quality of the assemblies, and this is supported by our findings.

This is the first successful demonstration of binning of hundreds of genomes from a highly complex soil type. We predict that even more complete genomes would have been obtained from lower-complexity samples or by adding additional Moleculo data for high-complexity samples. Assembly of the highly accurate long contigs from Moleculo resulted in 129 genome bins with a low marker gene average for each marker per bin. Many diverse phyla were represented in the genome bins, including a complete genome for a novel pseudomonad (“Candidatus Pseudomonas sp. strain JKJ-1”). The majority of bins were related to common soil microbes, including nitrogen-fixing Proteobacteria (i.e., Rhizobium), but many of the genomes represent phyla with few cultured representatives, including Verrucomicrobia and Acidobacteria. Of the Verrucomicrobia bins, the closest reference genome was from the Spartobacteria class, which represents a globally dominant soil group that is poorly understood (39). The Acidobacteria bins were classified to the closest known representative reference genome as a candidate uncultured Acidobacteriaceae bacterium KBS83, reflecting the paucity and likely microdiversity of genomes from this phylum. It has been suggested that Acidobacteria on average constitute 20% of all the bacteria in soil (40); however, with few cultured representatives, metagenome binning or single-cell genomics may be the best route to obtain genomes from within this phyla.

The majority of the metabolic predictions in the genome bins suggest that the carbon utilization pathways are very similar across the genomes. This is likely due to the diverse carbon profiles found in prairie soils that have originated from plant root exudates, decaying plant matter, or other organic material (41). These plant root exudates or other rhizosphere inputs likely shape the microbial composition and functional pathways carried out by the native prairie soil community (41).

We mapped metatranscriptome data to predict which of the genome bins represented active members of the soil ecosystem. Genome bins from Firmicutes, Proteobacteria, and Actinobacteria were the most transcriptionally active based on the high number of RNA-Seq reads that mapped to them. Interestingly, although Acidobacteria and Verrucomicrobia both had high relative abundances (on the DNA level) in the soils, the Verrucomicrobia bins showed little transcriptional activity (negligible mapping of RNA-Seq reads) whereas the Acidobacteria bins showed high transcriptional activity. Recent data, using propidium monoazide (PMA)-treated soil, suggest that on average 40% of the prokaryotic and fungal DNA in soil is relic DNA representing microbes that had previously lived in the soil but are not metabolically active (42). Upon PMA treatment and once relic DNA was removed, the number of Verrucomicrobia operational taxonomic units (OTUs) decreased (42). These data support our findings and suggest that the Verrucomicrobia represented by the genomic bins were dormant or relic DNA that had low activity at the time of sampling, in contrast to the Acidobacteria, which were highly transcriptionally active at the time of sampling.

Recovery of full-length 16S rRNA gene sequences from metagenomes has been regarded as an “outstanding challenge” (43), due to short error-prone reads and repetitive regions of rRNA that are troublesome for de novo assemblers. Here, by use of long-read Moleculo sequencing technology, we were able to reconstruct more than 100 full-length (~1.4-kbp) 16S rRNA gene sequences from complex soil metagenomes for the first time. The previous best example was from an oil reservoir metagenome, an environment with lower microbial diversity than soil, where 57 unique 16S rRNA gene sequences of approximately 960 bp in length were recovered (44). We noticed a higher
abundance of *Planctomycetes* in our 16S PCR amplicon data than in our metagenome assemblies. Our hypothesis is that because *Planctomycetes* and *Verrucomicrobia* are in the same PVC superphylum (*Planctomycetes-Verrucomicrobia-Chlamydiae*), the primers could amplify members that are hard to resolve in short paired-end reads (~250 bp) but that are possible to resolve in the longer sequences obtained in the metagenome assemblies. In addition, the candidate SPAM phylum evaded detection in our 16S amplicon analysis due to poor forward primer matches in those sequences, but it was detectable in the Moleculo assemblies. Moleculo is thus able to recover many 16S rRNA genes that are nearly or fully complete, directly from complex microbial samples such as soil, with less bias than amplicon-based sequencing.

Finally, Moleculo subassembly and/or hybrid assembly should provide a better scaffold for other database-dependent multi-omics data sets (e.g., metaproteomics and metatranscriptomics). The high-resolution database curated from Moleculo reads allows for near-genome-level annotation from a highly complex microbial community located in the Kansas native prairie and binning of hundreds of microbial genomes from a native prairie soil.

Given these results from a highly complex soil community, we anticipate and encourage the application of Moleculo technology as a broadly applicable approach for resolving highly complex microbial ecosystems across a range of sample types, to the genome scale.

MATERIALS AND METHODS

Site description and sample collection. Soil samples were collected from the upper 20 cm of soil at three watershed locations at the Konza Prairie Biological Station (KPBS), a long-term ecological research (LTER) site located in eastern Kansas, USA. Each soil collected represented a field replicate, here referred to as samples A, B, and C, and was shipped on ice to PNNL, where samples were immediately sieved (2 mm²) to remove root fragments, aliquoted into 50-g portions in Falcon tubes, immediately frozen under liquid nitrogen, and stored at −80°C until use.

Nucleic acid extraction (DNA and RNA). DNA and RNA were extracted using the PowerSoil DNA and RNA isolation kits, respectively, from MoBio (Carlsbad, CA, USA) in accordance with the manufacturer’s instructions. RNA was DNase treated using Turbo DNase (Life Technologies, Grand Island, NY, USA), and then samples were purified by phenol-chloroform extraction followed by ethanol precipitation. Samples were quantified using the Qubit Fluorometer 2.0 (Invitrogen, Carlsbad, CA, USA), quality checked using a NanoDrop apparatus (Thermo Fisher, Waltham, MA, USA) and Bioanalyzer Pico RNA and HighSens DNA chips (Agilent, Santa Clara, CA, USA).

16S rRNA I-Tag sequencing. Amplification of the V4 region of the 16S rRNA gene was performed in accordance with the Earth Microbiome Project recommendations (46–49), using primers 515f/926r, and sequencing was performed on an MiSeq sequencer (Illumina, San Diego, CA, USA). The QiIME pipeline (version 1.9.1) was used to demultiplex and quality filter data after sequencing. The VSEARCH (version 1.9.10) implementation of UCHIME pipeline (version 1.9.1) was used to demultiplex and quality filter data after sequencing. The VSEARCH (version 1.9.10) implementation of UCHIME de novo was used for chimera removal, followed by de novo OTU clustering (45–48). Of the total unique amplicons, ~22% were flagged as chimeric and were removed from any further analysis. Taxonomy annotation and tree building were completed with QiIME defaults, which make use of the Greengenes database (http://greengenes.lbl.gov), UCLUST (49), and FastTree2 (50).

Metagenome and metatranscriptome library preparation. Replicate metagenomes and metatranscriptomes were constructed in triplicate for Kansas soils A, B, and C. DNase-treated and purified RNA was reverse transcribed using the SuperScript VILO cDNA synthesis kit (Life Technologies, Grand Island, NY, USA), according to the manufacturer’s protocol, using a 1:1 mixture of 1 μM random hexamers/decamers. Second-strand synthesis was performed using the NEBNext mRNA second-strand synthesis module (NEB, Ipswich, MA, USA) with addition of 10 μM T4 gene 32 (NEB, Ipswich, MA, USA), according to the manufacturer’s protocol. Double-stranded cDNA was purified using AmpureXP beads (Beckman Coulter, Danvers, MA, USA) and then quantified and quality checked with Bioanalyzer high-sensitivity DNA chips (Agilent, Santa Clara, CA, USA). rRNA depletion was not performed, and RNA sequences were instead removed computationally using SortMeRNA (51).

Illumina library construction was completed as previously described (53, 54). Libraries were quantified by quantitative PCR on an StepOne Plus system (Applied Biosystems, Foster City, CA) using the KAPA library quantification kit (KAPA Biosystems, Wilmington, MA, USA) according to the manufacturer’s instructions. RMR technology was used to sequence metatranscriptomes and metagenomes from three separate locations in the Kansas native prairie (soils A, B, and C) using MiSeq (300-bp paired ends) and HiSeq (250-bp paired ends) technologies (Illumina, San Diego, CA, USA) for RNA and DNA, respectively.

Metagenome and metatranscriptome analysis. The paired-end shotgun reads for both metagenomics and metatranscriptomics analyses were overlapped and quality filtered as outlined in references 52 and 53. The resulting decontaminated (i.e., φX174) reads were then trimmed for quality at <Q25 by using the trimmomatic program (54). Short reads generated previously at JGI were 100-bp, paired-end
reads and were trimmed to ~80 bp. Rapid mode reads from replicate metagenomes and metatranscrip-
tomes from Kansas soils A, B, and C were trimmed to ~225 bp. Both SR and RMR, were assembled using
MEGAHIT (25) with mixed k-mers (21 to 121 k).

The contigs were annotated using MetaPathways2 as previously described (52, 53). Metatran-
scriptomes and metagenomes were mapped to assemblies and genome bins using Bowtie2 (31). The
gene counts per enzyme (EC number) and transcript reads per EC number were mapped onto the
Moleculo annotation metabolic pathways in the BioCyc framework (55). Full-length 16S rRNA gene
extraction from Moleculo and RMR contig data was completed within Metapathways2 by using LAST
(E value, <1E−7) annotations with the Greengenes database. 16S rRNA genes from Moleculo-only contigs
and RMR contigs were chimerica checked using the VSEARCH implementation of UCHIME de
novo, followed by UCHIME ref against the Greengenes database. Four sequences were initially
flagged as potential chimeras, but upon manual investigation we found that low-quality bases in the
reference database were the source of mismatches that spuriously inflated UCHIME scores and
flagged these reads as chimeric. The data analysis workflow is outlined in Fig. S5 in the supplemental
material.

Molecule long-hybrid-read subassembly library preparation and analysis. Our Molecule library
preparation and long-hybrid-read subassembly using Illumina standard protocols are outlined in Fig. S1
and S5 in the supplemental material and also in the original description of Moleculo (20). DNA from the
nine replicate extractions from the A, B, and C soil samples were pooled into a single long-hybrid library
prep, following the manufacturer’s protocol (Illumina). The resulting data were assembled on BaseSpace
by using the Illumina TruSeq long-read assembly app v1.0.

Combined assembly merge, genome binning, and genome bin annotation. After SR (~80-bp)
and RMR (~225-bp) reads were assembled with Megahit into contigs, they were pooled with the
Moleculo subassembled reads and further assembled using CAP3 (26). Pooled contigs from the various
formats were selected for >4-kbp contigs and then assembled with CAP3 and merged using minimus2
(21–24, 27, 28). Contigs of >1 kbp were binned using MaxBin (32–34) with 107 HMM marker genes and
then parsed using the R program. Genome bins were then quality checked with mapping reads using
Bowtie2. Annotation and metabolic reconstruction of contigs and genomic bins were completed using
Metapathways2 (30), the FOAM database (56), and hmmer3.1 (57) to obtain a list of KEGG ontology
numbers. The taxonomic and phylogenetic identifications of the genome bins were obtained using the
SpeciesWS Tetra Correlation Search (TCS) (58), and then cross-referenced annotations were obtained by
using Metapathways2 and FOAM.

MaxBin binning of short reads from JGI resulted in a novel ~99% complete genome based on
107 HMM markers; this genome was named “Candidatus Pseudomonas sp. strain JKJ-1.” Short and
Molecule subassembled contigs were mapped using Bowtie2 and then used for error correction.
Genome circulation and closure of “Candidatus Pseudomonas sp. strain JKJ-1” was completed by using
minimus2 and then finished with the EMBOSS union script followed by manual checking (59). The
genome was plotted using the CGviewer server with default parameters (60). The whole-genome-based
alignment tree was constructed in the Department of Energy Systems Biology Knowledge Base (KBase;
http://Kbase.us), using COG domains and FastTree2 (50). Annotation was conducted on the RAST Web
server with RAST gene calling based on FIGfam, release 70, and full metabolic reconstruction was
performed using ModelSEED (61).

Nucleotide sequence accession numbers. The RMR and Molecule-only 16S rRNA sequences have
been deposited in GenBank under accession numbers KX239231 to KX239311 and KX239037 to
KX239230. All other data have been deposited in the SRA under our manuscript title, with accession
numbers listed in Table S2 of the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/mSystems.00045-16.

- Figure S1, PDF file, 0.2 MB.
- Figure S2, PDF file, 2.8 MB.
- Figure S3, PDF file, 0.6 MB.
- Figure S4, PDF file, 0.6 MB.
- Figure S5, PDF file, 0.1 MB.
- Table S1, XLSX file, 0.01 MB.
- Table S2, XLSX file, 0.005 MB.

ACKNOWLEDGMENTS

This research was supported by the Microbiomes in Transition (MinT) Initiative LDRD Program at PNNL, a multiprogram national laboratory operated by Battelle for the Department of Energy (DOE) under contract DE-AC06-76RL01830. A portion of the research was conducted using PNNL Institutional Computing (PIC) at PNNL and at EMSL, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at PNNL.

We thank Ari Jumpponen and Charles W. Rice at Kansas State University for...
collecting the soil samples used in our study. We also thank Susannah Tringe, Alex Copeland, and their teams at the DOE JGI for providing the short-read sequence data through the Great Prairie Grand Challenge Sequencing Initiative at JGI and for their discussions regarding metagenome assembly. We thank William Nelson for comments on the draft manuscript. We further thank Yiyong (Ben) Liu at Washington State University Health Sciences, Spokane, WA, for performing the HiSeq rapid-mode sequencing and the Molecule library preparation.

FUNDING INFORMATION
The research in this study, including the efforts of Janet K. Jansson, was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830.

A portion of this work was conducted at the U.S. Department of Energy Joint Genome Institute, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

1. Jansson J. 2011. Towards “Tera-Terra”: terabase sequencing of terrestrial metagenomes. ASM Microbe 6:309–315. http://dx.doi.org/10.1128/microbe.6.309.1.
2. Prosser JI. 2015. Dispersing misconceptions and identifying opportunities for the use of “omics” in soil microbial ecology. Nat Rev Microbiol 13:439–446. http://dx.doi.org/10.1038/nrmicro3468.
3. Gans J, Wolinsky M, Dunbar J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390. http://dx.doi.org/10.1126/science.1112665.
4. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT. 2014. Tackling soil diversity with the assembly of complex metagenomes. Proc Natl Acad Sci USA 111:4904–4909. http://dx.doi.org/10.1073/pnas.1402564111.
5. Rodriguez-R LM, Konstantinidis KT. 2014. Estimating coverage in metagenomic data sets and what it matters. ISME J 8:2349–2351. http://dx.doi.org/10.1038/ismej.2014.76.
6. Rodriguez-R LM, Konstantinidis KT. 2014. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic data sets. Bioinformatics 30:629–635. http://dx.doi.org/10.1093/bioinformatics/btt584.
7. Wommack KE, Bhavsar J, Ravel J. 2008. Metagenomics: read length matters. Appl Environ Microbiol 74:1453–1463. http://dx.doi.org/10.1128/AEM.02181-07.
8. Zhang Q, Doak TG, Ye Y. 2012. Artificial functional difference between microbial communities caused by length difference of sequencing reads. Pac Symp Biocomput 2012:259–270. http://dx.doi.org/10.1142/9789814366496_0025.
9. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. 2008. A bioinformatician’s guide to metagenomics. Microb Mol Biol Rev 72:557–578. http://dx.doi.org/10.1128/MMBR.00009-08.
10. Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE. 2014. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2:e415. http://dx.doi.org/10.7717/peerj.415.
11. Tysoe GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43. http://dx.doi.org/10.1038/nature02340.
12. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW. 2015. Methane metabolism in the archael phylum Bathycarchaeota revealed by genome-centric metagenomics. Science 350:434–438. http://dx.doi.org/10.1126/science.aac7745.
13. Nelson WC, Mackato Y, Yu YW, Romine MF, Lindemann SR. 2016. Identification and resolution of microdiversity through metagenomic sequencing of parallel consortia. Appl Environ Microbiol 82:255–267. http://dx.doi.org/10.1128/AEM.02274-15.
14. Albertsen M, Hugenholtz P, Skarszewski A, Nielsen KL, Tyson GW, Nielsen PH. 2013. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538. http://dx.doi.org/10.1038/nbt.2579.
15. Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW, Hugenholtz P. 2015. First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking. PeerJ 3:e740. http://dx.doi.org/10.7717/peerj.740.
16. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371. http://dx.doi.org/10.1038/nature10576.
17. Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, Verberkmoes NC, Lee LH, Mavrommatis K, Jansson JK. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–212. http://dx.doi.org/10.1038/nature14238.
18. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahiti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146. http://dx.doi.org/10.1038/nmeth.3103.
19. Delmont TO, Eren AM, Maccario L, Prestat E, Eisen ÖC, Pelletier E, Le Paslier D, Simondon P, Vogel TM. 2015. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol 6:358. http://dx.doi.org/10.3389/fmicb.2015.00358.
20. Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, Koh W, Passarelli B, Fan HC, Mantalas GL, Palmeri KJ, Ishizuka KJ, Gissi C, Grigio NC, Ben-Slimo R, Corey DM, Penland L, White RA III, Weissman JL, Quake SR. 2013. The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2:e00569. http://dx.doi.org/10.7554/eLife.00569.
21. McCoy RC, Taylor RW, Blauwatkamp T, Kelley JL, Kertesz M, Pushkarev D, Petrov DA, Fiston-Lavric A. 2014. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS One 9:e106689. http://dx.doi.org/10.1371/journal.pone.0106689.
22. Li R, Hsieh CL, Young A, Zhang Z, Ren X, Zhao Z. 2015. Illumina synthetic long read sequencing allows recovery of missing sequences even in the “finished” C. elegans genome. Sci Rep 5:10814. http://dx.doi.org/10.1038/srep10814.
23. Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwatkamp T, Castelle CJ, Amirebrahimii M, Thomas BC, Bursttein D, Tringe SG, Williams KH, Banfield JF. 2015. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res 25:534–543. http://dx.doi.org/10.1101/gr.183012.114.
24. Kuleshov V, Jiang C, Zhou W, Jahanbani F, Batzoglou S, Snyder M. 2016. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat Biotechnol 34:64–69. http://dx.doi.org/10.1038/nbt.3416.
25. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomes via assembly de Bruijn graphs. Bioinformatics 31:1674–1676. http://dx.doi.org/10.1093/bioinformatics/btv033.
26. Huang X, Madan A. 1999. CAP3: a DNA sequence assembly program. Genome Res 9:868–877. http://dx.doi.org/10.1101/gr.9.9.868.
27. Sommer DD, Delcher AL, Salzberg SL, Pop M. 2007. minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64. http://dx.doi.org/10.1186/1471-2105-8-64.
28. Teangen TJ, Sommer DD, Anply FE, Koren S, Pop M. 2011. Next-generation sequence assembly with AMOS. Curr Protoc Bioinformatics Chapter 11:Unit 11.8. http://dx.doi.org/10.1002/0471250953.bi1108s33.
29. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. 2011. EMRIGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12:e44. http://dx.doi.org/10.1186/gb-2011-12-3-44.
30. Konwar KM, Hanson NW, Pagé AP, Hallam SJ. 2013. MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information. BMC Bioinformatics 14:202. http://dx.doi.org/10.1186/1471-2105-14-202.
31. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie2. Nat Methods 9:357–359. http://dx.doi.org/10.1038/nmeth.1923.
32. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. 2014. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26. http://dx.doi.org/10.1186/2049-2618-2-26.
33. Wu YW, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning method to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. http://dx.doi.org/10.1093/bioinformatics/btw638.
34. Wu D, Jospin G, Eisen JA. 2013. Systematic identification of genome families for use as “markers” for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 8. http://dx.doi.org/10.1371/journal.pone.0070703.
35. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formosa K, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using sub systems technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.
36. Nesme J, Achard V, Agathos SN, Bailey M, Baldrian P, Brunel F, Chateau-Delville F, Heulin T, Janson JK, Jurkevitch E, Kruus KL, Kyrpides NC, Logan WB, Moineau S, Naether A, Naegele V, Naulaers GP, Odelmann Y, Polle A, Reeder J, Richardson LM, Rogers Y, Ruffolo V, Stahl C, Textor M, Thomas BC, Thomas AJ, Watson P, Zaneveld J, de Bruijn NG, de Vel D, van de Putte L, van der Oost J, van den Dool H, van der Vossen E, Zhang X, Zhu L. 2016. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. bioRxiv. http://dx.doi.org/10.1101/043372.
37. Yuan C, Lei J, Cole J, Sun Y. 2015. Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics 31:1835–1843. http://dx.doi.org/10.1093/bioinformatics/btv231.
38. Hu P, Tom L, Singh A, Thomas BC, Baker BJ, Piceno YM, Andersen GL, Banfield JF. 2016. Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. mBio 7:e01669-15. http://dx.doi.org/10.1128/mBio.01669-15.
39. Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, Desai N, Eisen JA, Evers D, Field D, Feng W, Huson D, Jansson K, Knight R, Kolker E, Konstantindis K, Kostka J, Kyrpides N, Mackelprang RK, McHardy A, Quince C, Raes J, Sczyrba A, Shade A, Stevens R. 2010. Meeting report: the Terabase Metagenomics Workshop. Stand Genomic Sci 3:243–248. http://dx.doi.org/10.4549/sfg201343550.
40. Caporaso JG, Kuczynski J, Stombaugh J, BittNER K, Bushand FM, Costello EK, Fierer N, Peña AG, Goodrich JK, Jordan JJ, Hulttley GA, Kelley ST, Knights D, Koenig EJ, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pinnug M, Reeder J, Sevinsky J, Silvern L, Turner BM, Walters WA, Widmann D, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. http://dx.doi.org/10.1038/nmeth.f.1303.
41. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gornall, N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1616–1624. http://dx.doi.org/10.1038/ismej.2012.8.
42. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, ArpaDA A, Gilbert JAN, Jansson KJ, Caporaso JG, Fuhrman JA, Apprill AK, Knight R. 2015. Improved bacterial 16S rRNA gene (V4 and V4-S) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. http://dx.doi.org/10.1128/mSystems.00019-15.
43. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. http://dx.doi.org/10.1093/bioinformatics/btq461.
44. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—an approximately maximum-likelihood trees for large alignments. PLoS One 5:e99490. http://dx.doi.org/10.1371/journal.pone.0099490.
45. Lozupone C, Knight R, Kolker E, Konstantindis K, Kostka J, Kyrpides N, Knight R, de Bruijn NG, de Vel D, van der Oost J, van den Dool H, van der Vossen E, Zhang X, Zhu L. 2016. Genome-resolved metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front Microbiol 6:966. http://dx.doi.org/10.3389/fmicb.2015.00966.
46. Bolgar AM, Lohse M, Usadel B. 2014. trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. http://dx.doi.org/10.1093/bioinformatics/btu170.
47. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Kesseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Kard PJ. 2016. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480. http://dx.doi.org/10.1093/nar/gkw1164.
48. Presta E, David MM, Hulth J, Taa N, Lamendella R, Dvorjik N, Mackelprang RK, Myrold DD, Jumpsenn A, Tringe SG, Holmen E, Mavromatis K, Jansson JK. 2014. FOAM (functional ontology assign- ments for metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic Acids Res 42:e145. http://dx.doi.org/10.1093/nar/gku702.
49. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil transmembrane proteins. Nucleic Acids Res 41:e121. http://dx.doi.org/10.1093/nar/ gkt263.
50. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peoples J. 2016.
JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. http://dx.doi.org/10.1093/bioinformatics/btv681.

59. Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open software suite. Trends Genet 16:276–277. http://dx.doi.org/10.1016/S0168-9525(00)02024-2.

60. Grant JR, Stothard P. 2008. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184. http://dx.doi.org/10.1093/nar/gkn179.

61. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. http://dx.doi.org/10.1093/nar/gkt1226.