ON THE CONSTRUCTION OF ODD SUN SYSTEMS

MARCO BURATTI, ANITA PASOTTI, AND TOMMASO TRAETTA

Abstract. A k-cycle with a pendant edge attached to each vertex is called a k-sun. The existence problem for k-sun decompositions of K_v, with k odd, has been solved only when $k = 3$ or 5.

In this paper, we reduce this problem to the orders v in the range $2k < v < 6k$ and satisfying the obvious necessary conditions. Furthermore, we give a complete solution whenever k is an odd prime.

1. Introduction

We denote by $V(\Gamma)$ and $E(\Gamma)$ the set of vertices and the list of edges of a graph Γ, respectively. Also, we denote by $\Gamma + w$ the graph obtained by adding to Γ an independent set $W = \{\infty_i \mid 1 \leq i \leq w\}$ of $w \geq 0$ vertices each adjacent to every vertex of Γ, namely,

$$\Gamma + w := \Gamma \cup K_{V(\Gamma),W},$$

where $K_{V(\Gamma),W}$ is the complete bipartite graph with parts $V(\Gamma)$ and W. Denoting by K_v the complete graph of order v, it is clear that $K_v + 1$ is isomorphic to K_{v+1}.

We denote by $x_1 \sim x_2 \sim \ldots \sim x_k$ the path with edges $\{x_i, x_{i+1}\}$ for $2 \leq i \leq k$. By adding the edge $\{x_1, x_k\}$ when $k \geq 3$, we obtain a cycle of length k (briefly, a k-cycle) denoted by (x_1, x_2, \ldots, x_k). A k-cycle with further $v - k \geq 0$ isolated vertices will be referred to as a k-cycle of order v. By adding to (x_1, x_2, \ldots, x_k) an independent set of edges $\{\{x_i, x'_i\} \mid 1 \leq i \leq k\}$, we obtain the k-sun on $2k$ vertices (sometimes referred to as k-crown graph) denoted by

$$(x_1 \ x_2 \ \ldots \ x_{k-1} \ x_k \ \ x'_1 \ x'_2 \ \ldots \ x'_{k-1} \ x'_k),$$

whose edge-set is therefore $\{\{x_i, x_{i+1}\}, \{x_i, x'_i\} \mid 1 \leq i \leq k\}$, where $x_{k+1} = x_1$.

A decomposition of a graph K is a set $\{\Gamma_1, \Gamma_2, \ldots, \Gamma_t\}$ of subgraphs of K whose edge-sets between them partition the edge-set of K; in this case, we briefly write $K = \oplus_{i=1}^t \Gamma_i$. If each Γ_i is isomorphic to Γ, we speak of a Γ-decomposition of K. If Γ is a k-cycle (resp., k-sun), we also speak of a k-cycle system (resp., k-sun system) of K.

In this paper we study the existence problem for k-sun systems of K_v ($v > 1$). Clearly, for such a system to exist we must have

$$(*) \quad v \geq 2k \quad \text{and} \quad v(v - 1) \equiv 0 \pmod{4k}.$$

As far as we know, this problem has been completely settled only when $k = 3, 5$ [8, 10], $k = 4, 6, 8$ [12], and when $k = 10, 14$ or $2^i \geq 4$ [9]. It is important to notice

2010 Mathematics Subject Classification. 05B30, 05C51.
Key words and phrases. Graph decompositions, Cycle systems, Sun systems, Crown graph, Partial mixed differences.
that in [14] it is shown that condition (7) is sufficient whenever \(v \) is large enough with respect to \(k \). These results seem to suggest the following.

Conjecture 1. Let \(k \geq 3 \) and \(v > 1 \). There exists a \(k \)-sun system of \(K_v \) if and only if (7) holds.

Our constructions rely on the existence of \(k \)-cycle systems of \(K_v \), a problem that has been completely settled in [1, 4, 5, 11, 13]. More precisely, [4] and [11] reduce the problem to the orders \(v \) in the range \(k \leq v < 3k \), with \(v \) odd. These cases are then solved in [1, 13]. For odd \(k \), an alternative proof based on 1-rotational constructions is given in [5]. Further results on \(k \)-cycle systems of \(K_v \) with an automorphism group acting sharply transitively on all but at most one vertex can be found in [2, 6, 7, 15].

The main results of this paper focus on the case where \(k \) is odd. As in [11], we reduce the existence problem for a \(k \)-sun system of \(K_v \) to the range \(2k < v < 6k \). More precisely, we show the following.

Theorem 1.1. Let \(k \geq 3 \) be an odd integer and \(v > 1 \). Conjecture [7] is true if and only if there exists a \(k \)-sun system of \(K_v \) for all \(v \) satisfying the necessary conditions in (7) with \(2k < v < 6k \).

In Section 6, we construct \(k \)-sun systems of \(K_v \) for every odd prime \(k \) whenever \(2k < v < 6k \) and (7) holds. Therefore, as a consequence of Theorem 1.1, we solve the existence problem for \(k \)-sun systems of \(K_v \) whenever \(k \) is an odd prime.

Theorem 1.2. For every odd prime \(p \) there exists a \(p \)-sun system of \(K_v \) with \(v > 1 \) if and only if \(v \geq 2p \) and \(v(v-1) \equiv 0 \pmod{4p} \).

Both results rely on the difference methods described in Section 2. These methods are used in Section 3 to construct specific \(k \)-cycle decompositions of some subgraphs of \(K_{2k} + w \), which we then use in Section 4 to build \(k \)-sun systems of \(K_{4k} + n \). This is the last ingredient we need in Section 5 to prove Theorem 1.1.

Difference methods are finally used in Section 6 to construct \(k \)-sun systems of \(K_v \) for every odd prime \(k \) whenever \(2k < v < 6k \) and (7) holds.

2. Preliminaries

Henceforward, \(k \geq 3 \) is an odd integer, and \(\ell = \frac{k-1}{2} \). Also, given two integers \(a \leq b \), we denote by \([a, b]\) the interval containing the integers \(\{a, a+1, \ldots, b\} \). If \(a > b \), then \([a, b]\) is empty.

In our constructions we make extensive use of the method of partial mixed differences which we now recall but limited to the scope of this paper.

Let \(G \) be an abelian group of odd order \(n \) in additive notation, let \(W = \{\infty_u \mid 1 \leq u \leq w\} \), and denote by \(\Gamma \) a graph with vertices in \(V = (G \times [0, m-1]) \cup W \). For any permutation \(f \) of \(V \), we denote by \(f(\Gamma) \) the graph obtained by replacing each vertex of \(\Gamma \), say \(x \), with \(f(x) \). Letting \(\tau_g \), with \(g \in G \), be the permutation of \(V \) fixing each \(\infty_u \in W \) and mapping \((x, i) \in G \times [0, m-1] \) to \((x + g, i)\), we call \(\tau_g \) the translation by \(g \) and \(\tau_g(\Gamma) \) the related translate of \(\Gamma \).

We denote by \(Orb_G(\Gamma) = \{\tau_g(\Gamma) \mid g \in G\} \) the \(G \)-orbit of \(\Gamma \), that is, the set of all distinct translates of \(\Gamma \), and by \(Dev_G(\Gamma) = \bigcup_{g \in G} \tau_g(\Gamma) \) the graph union of all translates of \(\Gamma \). Further, by \(Stab_G(\Gamma) = \{g \in G \mid \tau_g(\Gamma) = \Gamma\} \) we denote the \(G \)-stabilizer of \(\Gamma \), namely, the set of translations fixing \(\Gamma \). We recall that \(Stab_G(\Gamma) \)
Proof. Let \(g_{\tau} \) to edge of translations preserve differences, we have that \(g \) of \(D \) take \(V \) graphs with vertices in \(h \) hence \(\Delta \) \(ij \) every the spanning subgraph of \(D \) \(m \) when follows:

\[
\Delta_{ij}\Gamma = \{a_{h+1} - a_h \mid x_h = (a_h, i), x_{h+1} = (a_{h+1}, j), 1 \leq h \leq k/s\}
\]

\[
\cup \{a_h - a_{h+1} \mid x_h = (a_h, j), x_{h+1} = (a_{h+1}, i), 1 \leq h \leq k/s\};
\]

(2) if \(\Gamma = \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_k \\ x'_1 & x'_2 & \cdots & x'_k \end{array} \right) \), then

\[
\Delta_{ij}\Gamma = \Delta_{ij}(x_1, x_2, \ldots, x_k) \cup \{a'_{h} - a_h \mid x_h = (a_h, i), x'_{h} = (a'_h, j), 1 \leq h \leq k/s\}
\]

\[
\cup \{a_h - a'_{h} \mid x_h = (a_h, j), x'_h = (a'_h, i), 1 \leq h \leq k/s\}.
\]

We notice that when \(s = 1 \) we find the classic concept of list of differences. Usually, one speaks of pure or mixed differences according to whether \(i = j \) or not, and when \(m = 1 \) we simply write \(\Delta \). This concept naturally extends to a family \(F \) of graphs with vertices in \(V \) by setting \(\Delta_{ij}F = \bigcup_{\Gamma \in F} \Delta_{ij}\Gamma \). Clearly, \(\Delta_{ij}\Gamma = -\Delta_{ji}\Gamma \), hence \(\Delta_{ij}F = -\Delta_{ji}F \), for every \(i, j \in [0, m - 1] \).

We also need to define the list of neighbours of \(\infty_u \) in \(F \), that is, the multiset \(N_{\infty}(\infty_u) \) of the vertices in \(V \) adjacent to \(\infty_u \) in some graph \(\Gamma \in F \).

Finally, we introduce a special class of subgraphs of \(K_{mn} \). To this purpose, we take \(V(K_{mn}) = G \times [0, m - 1] \). Letting \(D_{ii} \subseteq G \setminus \{0\} \) for every \(0 \leq i \leq m - 1 \), and \(D_{ij} \subseteq G \) for every \(0 \leq i < j \leq m - 1 \), we denote by

\[
\{D_{ij} \mid 0 \leq i \leq j \leq m - 1\}
\]

the spanning subgraph of \(K_{mn} \) containing exactly the edges \(\{(g, i), (g + d, j)\} \) for every \(g \in G \), \(d \in D_{ij} \), and \(0 \leq i \leq j \leq m - 1 \). The reader can easily check that this graph remains unchanged if we replace any set \(D_{ii} \) with \(\pm D_{ii} \).

The following result, standard in the context of difference families, provides us with a method to construct \(\Gamma \)-decompositions for subgraphs of \(K_{mn} + w \).

Proposition 2.1. Let \(G \) be an abelian group of odd order \(n \), let \(m \) and \(w \) be non-negative integers, and denote by \(F \) a family of k-cycles (resp., k-suns) with vertices in \((G \times [0, m - 1]) \cup \{\infty_u \mid u \in \mathbb{Z}_w\} \) satisfying the following conditions:

1. \(\Delta_{ij}F \) has no repeated elements, for every \(0 \leq i \leq j \leq m \);
2. \(N_{\infty}(\infty_u) = \{(g_{u, i}, i) \mid 0 \leq i < m, g_{u, i} \in G\} \) for every \(1 \leq u \leq w \).

Then \(\bigcup_{\Gamma \in F} \text{Orb}_G(\Gamma) = \{\tau_g(\Gamma) \mid g \in G, \Gamma \in F\} \) is a k-cycle (resp., k-sun) system of \(\{\Delta_{ij}F \mid 0 \leq i \leq j \leq m - 1\} + w \).

Proof. Let \(F^* = \bigcup_{\Gamma \in F} \text{Orb}_G(\Gamma) \), \(K = \langle \Delta_{ij}F \mid 0 \leq i \leq j \leq m - 1\rangle \), and let \(e \) be an edge of \(K + w \). We are going to show that \(e \) belongs to exactly one graph of \(F^* \).

If \(e \in E(K) \), by recalling the definition of \(K \) we have that \(e = \{(g, i), (g + d, j)\} \) for some \(g \in G \) and \(d \in \Delta_{ij}F \), with \(0 \leq i \leq j < m \). Hence, there is a graph \(\Gamma \in F \) such that \(d \in \Delta_{ij}\Gamma \). This means that \(\Gamma \) contains the edge \(e' = \{(g', i), (g' + d, j)\} \) for some \(g' \in G \), therefore \(e = \tau_{g-g'}(e') \in \tau_{g-g'}(\Gamma) \in F^* \). To prove that \(e \) only belongs to \(\tau_{g-g'}(\Gamma) \), let \(\Gamma' \) be any graph in \(F \) such that \(e \in \tau_{g-g'}(\Gamma'), \) for some \(x \in G \). Since translations preserve differences, we have that \(d \in \Delta_{ij}\tau_x(\Gamma') = \Delta_{ij}\Gamma' \). Considering that \(d \in \Delta_{ij}\Gamma \cap \Delta_{ij}\Gamma' \) and, by assumption, \(\Delta_{ij}F \) has no repeated elements, we
necessarily have that Γ' has no repeated elements, and considering that e' and $\tau_{-x}(\epsilon)$ are edges of Γ that yield the same differences, then $\tau_{-x}(\epsilon) = e' = \tau_{g-x}(\epsilon)$, that is, $\tau_{g-x}(\epsilon) = \epsilon$. Since G has odd order, it has no element of order 2, hence $g' - g + x = 0$, that is, $x = g - g'$, therefore $\tau_{g-g'}(\Gamma)$ is the only graph of F^* containing ϵ.

Similarly, we show that every edge of $(K + w) \setminus K$ belongs to exactly one graph of F^*. Let $\epsilon = \{\infty_u, (g, i)\}$ for some $u \in \mathbb{Z}_w$ and $(g, i) \in G \times [0, m - 1]$. By assumption, there is a graph $\Gamma \in F^*$ containing the edge $e' = \{\infty_u, (g_u, i)\}$ with $g_u, i \in G$. Hence, $\epsilon = \tau_{g-g_u}(e') \in \tau_{g-g_u}(\Gamma)$. Finally, if $\epsilon \in \tau_x(\Gamma')$ for some $x \in G$ and $\Gamma' \in F$, then $\{\infty_u, (g - x, i)\} = \tau_{-x}(\epsilon) \in \Gamma'$. Since by assumption $N_F(\infty_u)$ contains exactly one pair from $G \times \{i\}$, we necessarily have that $\Gamma = \Gamma'$ and $x = g - g_u, i$. Therefore, there is exactly one graph of F^* containing ϵ and this completes the proof.

Considering that $K_{mn} = \langle D_{ij} \mid 0 \leq i \leq j \leq m - 1 \rangle$ if and only if $\pm D_{ij} = G \setminus \{0\}$ for every $i \in [0, m - 1]$, and $D_{ij} = G$ for every $0 \leq i < j \leq m - 1$, the proof of the following corollary to Proposition 2.2 is straightforward.

Corollary 2.2. Let G be an abelian group of odd order n, let m and w be non-negative integers, and denote by F a family of k-cycles (resp., k-suns) with vertices in $(G \times [0, m - 1]) \cup \{\infty_u \mid u \in \mathbb{Z}_w\}$ satisfying the following conditions:

1. $\Delta_{ij} F = \begin{cases} G \setminus \{0\} & \text{if } 0 \leq i = j \leq m - 1; \\ G & \text{if } 0 \leq i < j \leq m - 1; \end{cases}$

2. $N_F(\infty_u) = \{(g_u, i) \mid 0 \leq i < m, g_u, i \in G\}$ for every $1 \leq u \leq w$.

Then $\bigcup_{\Gamma \in F} \text{Orb}_G(\Gamma)$ is a k-cycle (resp., k-sun) system of $K_{mn} + w$.

3. **Constructing k-cycle systems of $\langle D_{00}, D_{01}, D_{11} \rangle + w$**

In this section, we recall and generalize some results from [11] in order to provide conditions on $D_{00}, D_{01}, D_{11} \subseteq \mathbb{Z}_k$ that guarantee the existence of a k-cycle system for the subgraph $\langle D_{00}, D_{01}, D_{11} \rangle + w$ of $K_{2k} + w$, where $V(K_{2k}) = \mathbb{Z}_k \times \{0, 1\}$.

We recall that every connected 4-regular Cayley graph over an abelian group has a Hamilton cycle system [3] and show the following.

Lemma 3.1. Let $[a, b], [c, d] \subseteq [1, \ell]$. The graph $\langle [a, b], [c, d]\rangle$ has a k-cycle system whenever both $[a, b]$ and $[c, d]$ satisfy the following condition: the interval has even size or contains an integer coprime with k.

Proof. The graph $\langle [a, b], [c, d]\rangle$ decomposes into $\langle [a, b], [\varnothing, \varnothing]\rangle$ and $\langle [\varnothing, \varnothing], [c, d]\rangle$. The first one is the Cayley graph $\Gamma = \text{Cay}(\mathbb{Z}_k, [a, b])$ with further k isolated vertices, while the second one is isomorphic to $\langle [c, d], [\varnothing, \varnothing]\rangle$. Therefore, it is enough to show that Γ has a k-cycle system.

Note that Γ decomposes into the subgraphs $\text{Cay}(\mathbb{Z}_k, D_i)$, for $0 \leq i \leq t$, whenever the sets D_i between them partition $[a, b]$. By assumption, $[a, b]$ has even size or contains an integer coprime with k. Therefore, we can assume that for every $i > 0$ the set D_i is a pair of integers at distance 1 or 2, and D_0 is either empty or contains exactly one integer coprime with k. Clearly, $\text{Cay}(\mathbb{Z}_k, D_0)$ is either the empty graph or a k-cycle, and the remaining $\text{Cay}(\mathbb{Z}_k, D_i)$ are 4-regular Cayley graphs. Also, for every $i > 0$ we have that D_i is a generating set of \mathbb{Z}_k (since k is odd and D_i contains integers at distance 1 or 2), hence the graph $\text{Cay}(\mathbb{Z}_k, D_i)$ is connected. It
follows that each $\text{Cay}(Z_k, D_i)$, with $i > 0$, decomposes into two k-cycles, thus the assertion is proven. \hfill \Box

Lemma 3.2. There exists a k-cycle system of the graphs $\langle \{\ell\}, S \cup (S+1), \emptyset \rangle$ and $\langle \{\ell\}, (S+1) \cup (S+2), \emptyset \rangle$ whenever $S \subseteq \{2i-1 \mid 1 \leq i \leq \ell\}$.

Proof. The existence of a k-cycle system of $\Gamma = \langle \{\ell\}, S \cup (S+1), \emptyset \rangle$ has been proven in [111 Lemma 3] when $S \subseteq \{2i-1 \mid 1 \leq i \leq \ell\}$. Consider now the permutation f of $\mathbb{Z}_k \times \{0,1\}$ fixing $\mathbb{Z}_k \times \{0\}$ pointwise, and mapping $(i,1)$ to $(i+1,1)$ for every $i \in \mathbb{Z}_k$. It is not difficult to check that $f(\Gamma) = \langle \{\ell\}, (S+1) \cup (S+2), \emptyset \rangle$ which is therefore isomorphic to Γ, and hence it has a k-cycle system. \hfill \Box

Lemma 3.3. Let r, s and s' be integers such that $1 \leq s \leq s' \leq \min\{s+1, \ell\}$, and $0 < r \neq s + s' \pmod{2}$. Also, let $D \subseteq [0,k-1]$ be a non-empty interval of size $k - (s + s' + 2r)$. Then there is a cycle $C = (x_1, x_2, \ldots, x_k)$ of $\Gamma = \langle [1+\epsilon, s + \epsilon], [1+\epsilon, s' + \epsilon] + r, [1+\epsilon, s' + \epsilon] \rangle$, for every $\epsilon \in \{0,1\}$, such that $\text{Orb}(C)$ is a k-cycle system of Γ. Furthermore, if $u = 0$ or $u = 1 - \epsilon = 1 \leq s - 1$, then

1. $\text{Dev}(\{x_{2u}, x_{3-u}\})$ is a k-cycle with vertices in $\mathbb{Z}_k \times \{0\}$;
2. $\text{Dev}(\{x_{4u}, x_{5+u}\})$ is a k-cycle with vertices in $\mathbb{Z}_k \times \{1\}$.

Proof. Set $t = k - (s + s' + 2r)$ and let $\Omega = ([1+\epsilon, s + \epsilon], [0,t-1], [1+\epsilon, s' + \epsilon] + r)$. For $i \in [0,s+s'+1]$ and $j \in [0,t+r-1]$, let a_i and b_j be the elements of $\mathbb{Z}_k \times \{0,1\}$ defined as follows:

$$a_i = \begin{cases} \left(-\frac{i}{2}, 0 \right) & \text{if } i \in [0,s] \text{ is even}, \\ \left(-s - \epsilon + \frac{i}{2}, 0 \right) & \text{if } i \in [1,s] \text{ is odd}, \\ a_{s+1-i} + (0,1) & \text{if } i \in [s+1,2s+1], \\ (-s' - \epsilon, 1) & \text{if } i = s + s' + 1 > 2s + 1, \end{cases}$$

$$b_j = \begin{cases} \left(\frac{j}{2}, 0 \right) & \text{if } j \in [0,t+r-2] \text{ is even}, \\ \left(t - \frac{j}{2}, 1 \right) & \text{if } j \in [1,t-1] \text{ is odd}, \\ \left(t + \left\lfloor \frac{t-j}{2} \right\rfloor, 1 \right) & \text{if } j \in [t,t+r-2] \text{ is odd}, \\ a_{s+s'+1} & \text{if } j = t + r - 1. \end{cases}$$

Since the elements a_i and b_j are pairwise distinct, except for $a_0 = b_0$ and $a_{s+s'+1} = b_{t+r-1}$, then the union F of the following two paths is a k-cycle:

$$P = a_0 \sim a_1 \sim \ldots \sim a_{s+s'+1},$$
$$Q = b_0 \sim b_1 \sim \ldots \sim b_{t-1} \sim \infty_1 \sim b_t \sim \infty_2 \sim b_{t+1} \sim \ldots \sim \infty_r \sim b_{t+r-1}.$$

Since $\Delta_{0j}F = \Delta_{ij}P \cup \Delta_{ij}Q$, for $i, j \in \{0,1\}$, where

$$\Delta_{00}P = \pm[1+\epsilon, s + \epsilon], \quad \Delta_{01}P = \{0\}, \quad \Delta_{11}P = \pm[1+\epsilon, s' + \epsilon],$$
$$\Delta_{00}Q = \emptyset, \quad \Delta_{01}Q = [1, t-1], \quad \Delta_{11}Q = \emptyset,$$

and considering that $\text{N}_F(\infty_h) = \text{N}_Q(\infty_h) = \{b_{t+h-2}, b_{t+h-1}\}$ for every $h \in [1,r]$, Proposition 2.1 guarantees that $\text{Orb}(F)$ is a k-cycle system of Ω. Furthermore, if $u = 0$ or $u = 1 - \epsilon = 1 \leq s - 1$, then

$$\pm(a_{s-u} - a_{s-1}) = \pm(a_{s+u+2} - a_{s+u+1}) = \pm(u + \epsilon + 1,0).$$

Since k is odd, we have that $\text{Dev}(\{a_{s-u-1}, a_{s-u}\})$ and $\text{Dev}(\{a_{s+u+1}, a_{s+u+2}\})$ are k-cycles with vertices in $\mathbb{Z}_k \times \{0\}$ and $\mathbb{Z}_k \times \{1\}$, respectively.
If $D = [g, g + t - 1]$ is any interval of $[0, k - 1]$ of size t, and f is the permutation of $\mathbb{Z}_k \times \{0, 1\}$ fixing $\mathbb{Z}_k \times \{0\}$ pointwise, and mapping $(i, 1)$ to $(i + g, 1)$ for every $i \in \mathbb{Z}_k$, one can check that $C = f(F)$ is the desired k-cycle of $\Gamma = f(\Omega)$. □

Lemma 3.4.

1. Let ℓ be odd. If Γ is a 1-factor of K_{2k}, then $\Gamma + \ell$ decomposes into k cycles of length k, each of which contains exactly one edge of Γ. Furthermore, if $\Gamma = \langle \emptyset, \{d\}, \emptyset \rangle$, then there exists a k-cycle $C = (c_1, c_2, \ldots, c_k)$ of $\Gamma + \ell$, with $c_1 \in \mathbb{Z}_k \times \{0\}$ and $c_2 \in \mathbb{Z}_k \times \{1\}$, such that $\text{Dev}(\{c_1, c_2\}) = \Gamma$ and $\text{Orb}(C)$ is a k-cycle system of $\Gamma + \ell$.

2. Let ℓ be even. If Γ is a k-cycle of order $2k$, then $\Gamma + \ell$ decomposes into k cycles of length k, each of which contains exactly one edge of Γ. Furthermore, if $\Gamma = \langle \{d\}, \emptyset, \emptyset \rangle$ and d is coprime with k, then there exists a k-cycle $C = (c_1, c_2, \ldots, c_k)$ of $\Gamma + \ell$, with $c_1, c_2 \in \mathbb{Z}_k \times \{0\}$, such that $\text{Dev}(\{c_1, c_2\})$ is the k-cycle of Γ and $\text{Orb}(C)$ is a k-cycle system of $\Gamma + \ell$.

Proof. Permuting the vertices of K_{2k} if necessary, we can assume that Γ is the 1-factor $\Gamma_0 = \langle \emptyset, \{d\}, \emptyset \rangle$ when ℓ is odd, and the k-cycle $\Gamma_1 = \langle \{d\}, \emptyset, \emptyset \rangle$ (of order $2k$) when ℓ is even. For $h \in \{0, 1\}$, let $C_h = (c_{h,1}, c_{h,2}, \infty_1, c_3, \infty_2, c_4, \ldots, \infty_{\ell-1}, c_{\ell+1}, \infty_{\ell})$ be the k-cycle of $\Gamma_h + \ell$, where

$$c_{h,1} = (0, 1-h), \quad c_{h,2} = (h, \ell, 0), \quad \text{and} \quad c_j = \begin{cases} (\frac{j-1}{\ell}, 1) & \text{if } j \in [3, \ell+1] \text{ is odd}, \\ (\frac{j}{\ell}, 0) & \text{if } j \in [4, \ell+1] \text{ is even}. \end{cases}$$

Note that the sets $\Delta_h C_h$ are empty, except for $\Delta_0 C_0 = \{0\}$ and $\Delta_0 C_1 = \{\pm \ell\}$. Also, the two neighbours of ∞_u in C_h belong to $\mathbb{Z}_k \times \{0\}$ and $\mathbb{Z}_k \times \{1\}$, respectively. Hence, Proposition 2.1 guarantees that $\text{Orb}(C_h)$ is a k-cycle system of $\Gamma_h + \ell$, for $h \in \{0, 1\}$. We finally notice that $\text{Dev}(\{c_{h,1}, c_{h,2}\}) = \Gamma_h$ (up to isolated vertices) and this completes the proof. □

The following result has been proven in [11].

Lemma 3.5. Let $D \subseteq [1, \ell]$. The subgraph $\langle D, \{0\}, D \rangle$ of K_{2k} has a 1-factorization.

Remark 3.6. Considering the permutation f of $\mathbb{Z}_k \times \{0, 1\}$ such that $f(i, j) = (i, 1 - j)$, and a graph $\Gamma = \langle D_0, D_1, D_2 \rangle$, we have that $f(\Gamma) = \langle D_2, -D_1, D_0 \rangle$. Therefore, all the above lemmas continue to hold when we replace Γ by $f(\Gamma)$.

4. k-sun systems of $K_{4k} + n$

In this section we provide sufficient conditions for a k-sun system of $K_{4k} + n$ to exist, when $n \equiv 0, 1 \pmod{4}$. More precisely, we show the following.

Theorem 4.1. Let $k \geq 7$ be an odd integer and let $n = 0, 1 \pmod{4}$ with $2k < n < 10k$, then there exists a k-sun system of $K_{4k} + n$, except possibly when

- $k = 7$ and $n = 20, 21, 32, 33, 44, 45, 56, 57, 64, 65, 68, 69$,
- $k = 11$ and $n = 100, 101, 112, 113$.

To prove Theorem 4.1, we start by introducing some notions and prove some preliminary results. Let M be a positive integer and take $V(K_{2^2} M) = \mathbb{Z}_2 M \times [0, 2^2 - 1]$ and $V(K_{2^2} M + w) = V(K_{2^2} M) \cup \{\infty_h \mid h \in \mathbb{Z}_w\}$, for $i \in \{1, 2\}$ and $w > 0$.
Now assume that $w = 2u$, and let $x \mapsto \bar{x}$ be the permutation of $V(K_{4M} + 2u)$ defined as follows:

$$
\bar{x} = \begin{cases}
(a, 2 - j) & \text{if } x = (a, j) \in \mathbb{Z}_M \times \{0, 2\}, \\
(a, 4 - j) & \text{if } x = (a, j) \in \mathbb{Z}_M \times \{1, 3\}, \\
\infty_{h + u} & \text{if } x = \infty_h.
\end{cases}
$$

For any subgraph Γ of $K_{4M} + 2u$, we denote by $\bar{\Gamma}$ the graph (isomorphic to Γ) obtained by replacing each vertex x of Γ with \bar{x}.

Given a subgraph Γ of $K_{2M} + u$, we denote by $\Gamma[2]$ the spanning subgraph of $K_{4M} + 2u$ whose edge set is

$$
E(\Gamma[2]) = \{\{x, y\}, \{x, \bar{y}\}, \{\bar{x}, \bar{y}\}, \{x, y\} \in E(\Gamma) \}.
$$

and let $\Gamma^*[2] = \Gamma[2] \oplus I$ be the graph obtained by adding to $\Gamma[2]$ the 1-factor

$$
I = \{\{x, \bar{x}\} \mid x \in \mathbb{Z}_M \times \{0, 1\}\}.
$$

Note that, up to isolated vertices, $\Gamma[2]$ is the lexicographic product of Γ with the empty graph on two vertices.

The proof of the following elementary lemma is left to the reader.

Lemma 4.2. Let $\Gamma = \bigoplus_{i=1}^n \Gamma_i$ and let $w = \sum_{i=1}^n w_i$ with $w_i \geq 0$. If Γ and the Γ_is have the same vertex set (possibly with isolated vertices), then

1. $\Gamma + w = \bigoplus_{i=1}^n (\Gamma_i + w_i)$;
2. $\Gamma[2] = \bigoplus_{i=1}^n \Gamma_i[2]$;
3. $(\Gamma + w)[2] = \Gamma[2] + 2w$.

We start showing that if C is a k-cycle, then $C[2]$ decomposes into two k-suns.

Lemma 4.3. Let $C = (c_1, c_2, \ldots, c_k)$ be a cycle with vertices in $(\mathbb{Z}_M \times \{0, 1\}) \cup \{\infty_h \mid h \in \mathbb{Z}_u\}$ and let S be the k-sun defined as follows:

$$(1) \quad S = \left(\begin{array}{cccc}
s_1 & \cdots & s_{k-1} & s_k \\
\tilde{s_2} & \cdots & \tilde{s_{k-1}} & \tilde{s_1} \end{array} \right)$$

where $s_i \in \{c_i, \overline{c_i}\}$ for every $i \in [1, k]$. Then $C[2] = S \oplus \overline{S}$.

Proof. It is enough to notice that S contains the edges $\{s_i, s_{i+1}\}$ and $\{s_i, \overline{s_{i+1}}\}$, while \overline{S} contains $\{\overline{s_i}, \overline{s_{i+1}}\}$ and $\{s_i, \overline{s_{i+1}}\}$, for every $i \in [1, k]$, where $s_{k+1} = s_1$ and $\overline{s_{k+1}} = \overline{s_1}$. \hfill \Box

Example 4.4. In Figure 1 we have the graph $C_7[2]$ which can be decomposed into two 7-suns S and \overline{S}. The non-dashed edges are those of S, while the dashed edges are those of \overline{S}.

![Figure 1](image-url)
For every cycle $C = (c_1, c_2, \ldots, c_k)$ with vertices in $\mathbb{Z}_M \times \{0, 1\}$, we set

$$\sigma(C) = \left(\frac{c_1}{c_2} \cdots \frac{c_{k-1}}{c_k} \frac{c_k}{c_1} \right).$$

Clearly, $C[2] = \sigma(C) \oplus \overline{\sigma(C)}$ by Lemma 4.3.

Lemma 4.5. If $C = \{C_1, C_2, \ldots, C_t\}$ is a k-cycle system of $\Gamma + u$, where Γ is a subgraph of K_{2M}, and S_i is a k-sun obtained from C_i as in Lemma 4.3, then $S = \{S_i, S'_i | i \in [1, t]\}$ is a k-sun system of $\Gamma[2] + 2u$. In particular, if $C = \text{Orb}(C_1)$, then $\text{Orb}(S_1) \cup \text{Orb}(S'_1)$ is a k-sun system of $\Gamma[2] + 2u$.

Proof. By assumption $\Gamma + u = \oplus_{i=1}^t C_i$, where each C_i is a k-cycle. Also, by Lemma 4.2 we have that $\Gamma[2] + 2u = (\Gamma + u)[2] = \oplus_{i=1}^t C_i[2]$. Since $C_1[2] = S_i \oplus S'_i$ by Lemma 4.3, then S is a k-sun system of $\Gamma[2] + 2u$.

The second part easily follows by noticing that if $C_i = \tau_g(C_1)$ for some $g \in \mathbb{Z}_M$, then $C_i[2] = \tau_g(C_1[2]) = \tau_g(S_1) \oplus \tau_g(S'_1)$. □

The following lemma describes the general method we use to construct k-sun systems of $K_{4k} + n$. We point out that throughout this section we take $V(K_{2k}) = \mathbb{Z}_k \times \{0, 1\}$ and $V(K_{4k}) = \mathbb{Z}_k \times [0, 3]$.

Lemma 4.6. Let $K_{2k} = \Gamma_1 \oplus \Gamma_2$ with $V(\Gamma_1) = V(\Gamma_2) = V(K_{2k})$. If $\Gamma_1 + w_1$ has a k-cycle system and $\Gamma_2[2] + w_2$ has a k-sun system, then $K_{4k} + (2w_1 + w_2)$ has a k-sun system.

Proof. The result follows by Lemma 4.2. In fact, noting that $K_{4k} = K_{2k}[2] \oplus I$, where $I = \{\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}\}$, we have that

$$K_{4k} + (2w_1 + w_2) = (\Gamma_1[2] \oplus (\Gamma_2[2] \oplus I)) + 2w_1 + w_2 =
= (\Gamma_1[2] + 2w_1) \oplus (\Gamma_2[2] + w_2) = (\Gamma_1 + w_1)[2] \oplus (\Gamma_2[2] + w_2).$$

The result then follows by Lemma 4.3. □

We are now ready to prove the main result of this section, Theorem 4.1. The case $k \equiv 1 \pmod{4}$ is proven in Theorem 4.7, while the case $k \equiv 3 \pmod{4}$ is dealt with in Theorems 4.9, 4.10, 4.11, and 4.12.

Theorem 4.7. If $k \equiv 1 \pmod{4}$ and $n = 0 \equiv 1 \pmod{4}$ with $2k < n < 10k$, then there exists a k-sun system of $K_{4k} + n$.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \leq r \leq \ell$ and $\nu \in \{2, 3\}$. Note that $\ell \geq 4$ is even and r is odd, since $n = 0 \equiv 1 \pmod{4}$, $9 \geq k \equiv 1 \pmod{4}$. Considering also that $2k < n < 10k$, we have that $2 \leq q \leq 10 \leq k + 2r - 1$. Furthermore, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h | h \in \mathbb{Z}_{n-\nu}\} \cup \{\infty'_1, \infty'_2, \infty'_3\}$.

We start decomposing K_{2k} into the following two graphs:

$$\Gamma_1 = \langle \{2, \ell\}, [k - 2r - 2, k - 1], [2, \ell - 1]\rangle$$

and $\Gamma_2 = \langle \{1\}, [0, k - 2r - 3], \{1, \ell\}\rangle$.

We notice that Γ_1 further decomposes into the following graphs:

$$\langle [2, \ell - 1], \emptyset, \emptyset\rangle, \quad \langle \emptyset, \emptyset, [2, \ell - 1]\rangle, \quad \langle [\ell], [k - 2r - 2, k - 1], \emptyset\rangle,$$

each of which decomposes into k-cycles by Lemmas 3.1 and 3.2, hence Γ_1 has a k-cycle system $\{C_1, C_2, \ldots, C_\gamma\}$, where $\gamma = k + 2r - 2$. Note that this system is
non-empty, since $1 \leq q - 1 \leq \gamma$. Without loss of generality, we can assume that each cycle C_i has order $2k$ and

$$C_1 \text{ is a subgraph of } \langle [2, \ell - 1], \emptyset, \emptyset \rangle.$$

Now set $\Omega_1 = \Gamma_1 \setminus C_1$ and $\Omega_2 = \Gamma_2 \oplus C_1$. Letting $w_1 = (q - 2)\ell = \sum_{j=2}^{\gamma} w_{1,j}$, where $w_{1,j} = \ell$ when $j < q$, and $w_{1,j} = 0$ otherwise, by Lemma 4.2 we have that $\Omega_1 + w_1 = \sum_{i=2}^{\gamma} (C_i + w_{1,i})$. Therefore, $\Omega_1 + w_1$ has a k-cycle system, since each $C_i + w_{1,i}$ decomposes into k-cycles by Lemma 4.4. Setting $w_2 = n - 2w_1 = 2(2\ell + r) + \nu$ and considering that $K_{2k} = \Gamma_1 \oplus \Gamma_2 = \Omega_1 \oplus \Omega_2$, by Lemma 4.6 it is left to show that $\Omega_2^* + w_2$ has a k-sun system.

Set $\Gamma_3 = C_1$, and recall that $\Omega_2^*[2] = \Omega_2[2] \oplus I = \Gamma_2[2] \oplus \Gamma_2[2] \oplus I$, where I denotes the 1-factor $\{ \{ z, z \} \mid z \in \mathbb{Z}_k \times \{0, 1\} \}$ of K_{4k}. Hence,

$$\Omega_2^*[2] + w_2 = (\Gamma_2 + (\ell + r))[2] \oplus (\Gamma_3 + \ell)[2] \oplus (I + \nu)$$

by Lemma 4.2. Clearly, $\Gamma_2 = \Gamma_{2,1} \oplus \Gamma_{2,2}$ where $\Gamma_{2,1} = \langle \{1\}, [0, k - 2r - 3], \{1\} \rangle$ and $\Gamma_{2,2} = \langle \emptyset, \emptyset, \{ \ell \} \rangle$, hence $\Gamma_2 + (\ell + r) = (\Gamma_{2,1} + r) \oplus (\Gamma_{2,2} + \ell)$. By Lemmas 4.3 and 4.4 there exist a k-cycle $A = (x_1, y_1, a_2, y_2, a_3, . . . , y_q, a_1)$ of $\Gamma_{2,1} + r$ and a k-cycle $B = (y_1, y_2, b_3, . . . , b_k)$ of $\Gamma_{2,2} + \ell$ satisfying the following properties:

1. $\text{Orb}(A) \cup \text{Orb}(B)$ is a k-cycle system of $\Gamma_2 + (\ell + r)$;
2. $\text{Dev}(\{x_1, x_2\})$ is a k-cycle with vertices in $\mathbb{Z}_k \times \{0\}$;
3. $\text{Dev}(\{y_1, y_2\})$ and $\text{Dev}(\{a_1, a_2\})$ are k-cycles with vertices in $\mathbb{Z}_k \times \{1\}$.

Furthermore, denoted by (c_1, c_2, \ldots, c_k) the cycle in Γ_3, Lemma 4.4 guarantees that $\Gamma_3 + \ell$ has a k-cycle system $\{ F_1, F_2, \ldots, F_k \}$ such that

$$F_j = (c_j, c_{j+1}, f_{j,3}, f_{j,4}, \ldots, f_{j,k}) \text{ for every } j \in [1, k] \text{ (with } c_{k+1} = c_1).$$

Let $S = \{ S_1, S_2, S_3, S_4 \}$ and $S' = \{ S_3+2j, S_4+2j \mid j \in [1, k] \}$, where

$$S_1 = \{x_1, x_2, y_1, y_2, a_3, a_4, \ldots, a_k\}, \quad S_3 = \{y_1, y_2, b_3, b_4, \ldots, b_k\},$$

$$S_{3+2j} = \{c_j, c_{j+1}, f_{j,3}, f_{j,4}, \ldots, f_{j,k}\} \text{ for } j \in [1, k], \text{ and }$$

$$S_{2i} = \overline{S_{2i-1}} \text{ for } i \in [1, k + 2].$$

By Lemma 4.5 we have that $\bigcup_{S \in S} \text{Orb}(S)$ is a k-sun system of $(\Gamma_2 + (\ell + r))[2]$, and S' is a k-sun system of $(\Gamma_3 + \ell)[2]$. It follows by 3 that $\bigcup_{S \in S} \text{Orb}(S) \cup S'$ decomposes $(\Omega_2^*[2] + w_2) \setminus (I + \nu)$.

To construct a k-sun system of $\Omega_2^*[2] + w_2$, we first modify the k-suns in $S \cup S'$ by replacing some of their vertices with ∞_1', ∞_2', and possibly ∞_3' when $\nu = 3$. More precisely, following Table 1, we obtain T_i from S_i by replacing the ordered set V_i of vertices of S_i with V_i'. This yields a set M_i of `missing' edges no longer covered by T_i after this substitution, but replaced by those in N_i, namely

$$E(T_i) = (E(S_i) \setminus M_i) \cup N_i.$$

We point out that $T_{3+2j} = S_{3+2j}$, and $T_{4+2j} = S_{4+2j}$ when $\nu = 2$, for every $j \in [1, k]$. The remaining graphs T_i are explicitly given below, where the elements in bold are the replaced vertices.

$$T_1 = \begin{pmatrix} x_1 & \overline{x_2} & \infty_1' & \infty_2' & y_4 & a_5 & \ldots & a_{k-1} & a_k \\ \overline{x_2} & \overline{y_2} & \omega_5 & \omega_6 & \omega_7 & \ldots & \omega_k & \overline{x_1} \end{pmatrix}.$$
where, we recall,

\[T_2 = \begin{cases}
\begin{pmatrix} x_1 & x_2 & y_3 & y_4 & a_5 & \ldots & a_{k-1} & a_k \\
\infty_1 & \infty_2' & y_4 & a_5 & \ldots & a_k & x_1 \\
\infty_1 & \infty_2' & y_4 & a_5 & \ldots & a_k & x_1 \\
\infty_1 & \infty_2' & y_4 & a_5 & \ldots & a_k & x_1 \\
\end{pmatrix} & \text{if } \nu = 2, \\
\end{cases} \]

finally build the following 2 graphs:

\[T_3 = \begin{pmatrix} y_1 & y_2 & b_3 & \ldots & b_{k-1} & b_k & y_1 \\
\infty_4 & \infty_4' & b_4 & \ldots & b_k & y_1 \\
\infty_4 & \infty_4' & b_4 & \ldots & b_k & y_1 \\
\infty_4 & \infty_4' & b_4 & \ldots & b_k & y_1 \\
\end{pmatrix}, \quad T_4 = \begin{pmatrix} y_1 & y_2 & b_3 & \ldots & b_{k-1} & b_k \\
\infty_4 & b_4 & \ldots & b_k & y_1 \\
\infty_4 & b_4 & \ldots & b_k & y_1 \\
\infty_4 & b_4 & \ldots & b_k & y_1 \\
\end{pmatrix}, \quad T_{4+2j} = \begin{pmatrix} c_j & c_j+1 & f_{j,3} & \ldots & f_{j,k-1} & f_{j,k} & c_j \\
\infty_3 & \circ_3 & \circ_3 & \ldots & \circ_3 & \circ_3 \\
\infty_3 & \circ_3 & \circ_3 & \ldots & \circ_3 & \circ_3 \\
\infty_3 & \circ_3 & \circ_3 & \ldots & \circ_3 & \circ_3 \\
\end{pmatrix} \quad \text{for every } j \in [1,k]. \]

We notice that \(\bigcup_{i=1}^{4} \text{Dev}(N_i) \cup \bigcup_{i=5}^{2k+4} N_i = \{ \{ \infty_j', 0 \} \mid j \in [1,\nu], x \in \mathbb{Z}_k \times [0,3] \}. \)

By recalling (2) and (4)-(6), it is not difficult to check that \(G_1, G_2, \ldots, G_{2\nu+1} \) are 1-suns. Furthermore,

\[E(G_i) \cup \bigcup_{i=1}^{4} \text{Dev}(M_i) \cup \bigcup_{i=5}^{2k+4} M_i \cup E(I), \]

where, we recall, \(I \) denotes the 1-factor \(\{ \{ z, \overline{z} \} \mid z \in \mathbb{Z}_k \times \{0,1\} \} \) of \(K_{4k} \). Therefore, \(\bigcup_{i=1}^{4} \text{orb}(T_i) \cup \{ T_5, T_6, \ldots, T_{2k+4} \} \cup \{ G_1, G_2, \ldots, G_{2\nu+1} \} \) is a k-sun system of \(\Omega_2[2]+w_2 \), and this concludes the proof. \(\square \)

Example 4.8. By following the proof of Theorem 1.1, we construct a k-sun system of \(K_{4k} + n \) when \((k,n) = (9,21)\); hence \((\ell,q,r,\nu) = (4,2,1,3)\).

The graphs \(\Gamma_1 = \langle [2,4], [5,8],[2,3] \rangle \) and \(\Gamma_2 = \langle \{1\}, [0,4],[1,4] \rangle \) decompose the complete graph \(K_{18} \) with vertex-set \(\mathbb{Z}_9 \times \{0,1\} \). Also \(\Gamma_1 \) decomposes into the following 9-cycles of order 18, where \(i = 0,1 \):

\[C_{1+1} = ((0, i), (2, i), (8, i), (1, i), (3, i), (5, i), (7, i), (4, i), (6, i)), \]
\[C_{3+1} = ((0, i), (3, i), (6, i), (8, i), (5, i), (2, i), (4, i), (1, i), (7, i)), \]
\[C_{5+1} = ((4i, 0), (8 + 4i, 1), (1 + 4i, 0), (4i, 1), (2 + 4i, 0), (1 + 4i, 1), (3 + 4i, 0), (2 + 4i, 1), (4 + 4i, 0)), \]
\[C_{7+1} = ((8 + 4i, 0), (5 + 4i, 1), (4i, 0), (6 + 4i, 1), (1 + 4i, 0), (7 + 4i, 1), (2 + 4i, 0), (8 + 4i, 1), (3 + 4i, 0)), \]
\[C_9 = ((7, 0), (2, 0), (6, 0), (1, 0), (5, 0), (0, 0), (7, 1), (8, 0), (4, 1)). \]

Clearly, \(K_{18} = \Omega_1 \oplus \Omega_2 \), where \(\Omega_1 = \Gamma_1 \setminus C_1 \) and \(\Omega_2 = \Gamma_2 \oplus C_1 \).
Let $V(K_{36}) = \mathbb{Z}_9 \times [0, 3]$, and denote by I the 1-factor of K_{36} containing all edges of the form $\{(a, i), (a, i + 2)\}$, with $a \in \mathbb{Z}_9$ and $i \in \{0, 1\}$. Then,

$$K_{36} = K_{18}[2] \oplus I = \Omega_1[2] \oplus \Omega_2[2] \oplus I.$$

Considering that $(\Omega_2 + 9)[2] = \Omega_2[2] + 18$, we have

$$K_{36} + 21 = \Omega_1[2] \oplus (\Omega_2[2] + 18) \oplus (I + 3) = \Omega_1[2] \oplus (\Omega_2 + 9)[2] \oplus (I + 3).$$

Since the set $\{\sigma(C_i) \mid i \in [2, 9]\}$ is a 9-sun system of $\Omega_1[2]$, it is left to build a 9-sun system of $\Omega_2[2] + 18 \oplus (I + 3)$.

We start by decomposing $\Omega_2 + 9$ into 9-cycles. Since $\Omega_2 = \Gamma_{2,1} \oplus \Gamma_{2,2} \oplus \Gamma_3$ with $\Gamma_{2,1} = \langle \{1\}, [0, 4], \{1\}\rangle$, $\Gamma_{2,2} = \langle \emptyset, \emptyset, \{4\}\rangle$ and $\Gamma_3 = C_1$, then

$$\Omega_2 + 9 = (\Gamma_{2,1} + 1) \oplus (\Gamma_{2,2} + 4) \oplus (\Gamma_3 + 4).$$

Let $A = (x_1, x_2, y_3, y_4, a_5, \ldots, a_9)$ and $B = (y_1, y_2, b_3, \ldots, b_9)$ be the 9-cycles defined as follows:

$$\begin{align*}
(x_1, x_2, y_3, y_4) &= ((0, 0), (-1, 0), (-1, 1), (0, 1)), \\
(a_5, \ldots, a_9) &= (\infty_1, (2, 0), (3, 1), (1, 0), (4, 1)), \\
(y_1, y_2) &= ((0, 1), (4, 1)), \\
(b_3, \ldots, b_9) &= (\infty_2, (1, 0), \infty_3, (1, 1), \infty_4, (0, 0), \infty_5)
\end{align*}$$

One can easily check that $\text{Orb}(A)$ (resp., $\text{Orb}(B)$) decomposes $\Gamma_{2,1} + 1$ (resp., $\Gamma_{2,2} + 4$). Also, for every edge $\{c_j, c_{j+1}\}$ of C_1, with $j \in [1, 9]$ and $c_{10} = c_1$, we construct the cycle $F_j = (c_j, c_{j+1}, f_{j,3}, f_{j,4}, \ldots, f_{j,9})$, where

$$\begin{align*}
(f_{j,3}, f_{j,4}, \ldots, f_{j,9}) &= (\infty_6, (1, 0), \infty_7, (1, 1), \infty_8, (0, 0), \infty_9).
\end{align*}$$

One can check that $\{F_1, F_2, \ldots, F_9\}$ is a 9-cycle system of $\Gamma_3 + 4$. Therefore, $\mathcal{U}_1 = \text{Orb}(A) \cup \text{Orb}(B) \cup \{F_1, F_2, \ldots, F_9\}$ provides a 9-cycle system of $\Omega_2 + 9$.

i	$V_i \rightarrow V'_i$	M_i	N_i	ν
1	$(x_2, y_3) \rightarrow (\infty_1', \infty_2')$	$\{x_1, x_2\}, \{x_2, y_3\}$	$\{\infty_1', x_1\}, \{\infty_2', x_2\}$	2,3
2	$(x_2, y_3) \rightarrow (\infty_1', \infty_2')$	$\{y_3, y_4\}, \{y_3, y_4\}$	$\{\infty_1', y_4\}, \{\infty_2', y_4\}$	2
2	$(x_2, y_3, y_5) \rightarrow (\infty_1', \infty_2', \infty_3')$	$\{x_2, y_3\}, \{x_2, y_3\}$	$\{\infty_1', y_3\}, \{\infty_2', y_3\}, \{\infty_3', y_3\}$	3
3	$y_2 \rightarrow \infty_1'$	$\{y_1, y_2\}$	$\{\infty_1', y_1\}$	2,3
4	$y_2 \rightarrow \infty_1'$	$\{y_1, y_2\}$	$\{\infty_1', y_1\}$	2,3
3+2j	\emptyset	\emptyset	\emptyset	2
4+2j	\emptyset	\emptyset	\emptyset	2
4+2j	$c_{j+1} \rightarrow \infty_3'$	$\{c_j, c_{j+1}\}$	$\{\infty_3', c_j\}$	3

Table 1. From S_i to T_i.

ON THE CONSTRUCTION OF ODD SUN SYSTEMS

11
Since the set \(\{ C[2] \mid C \in \mathcal{U}_1 \} \) decomposes \((\Omega_2 + 9)[2]\), and each \(C[2] \) decomposes into two 9-suns, we can easily obtain a 9-sun system of \((\Omega_2 + 9)[2]\). Indeed, letting

\[
S_1 = \sigma(x_1, y_2, y_3, y_4, a_5, \ldots, a_9), \quad S_3 = \sigma(y_1, y_2, b_3, \ldots, b_9),
\]

\[
S_{3+2j} = \sigma(c_j, c_{j+1}, f_{j,3}, f_{j,4}, \ldots, f_{j,9}) \quad \text{for } j \in [1, 9], \quad \text{and}
\]

\[
S_{2i} = \overline{S_{2i-1}} \quad \text{for } i \in [1, 11],
\]

we have that \(A[2] = S_1 \oplus S_2, B[2] = S_3 \oplus S_4, \) and \(F_j[2] = S_{3+2j} \oplus S_{4+2j}, \) for every \(j \in [1, 9]. \) Therefore \(\mathcal{U}_2 = \bigcup_{i=1}^{4} \text{Orb}(S_i) \cup \{ S_5, S_6, \ldots, S_{22} \} \) is a 9-sun system of \(\Omega_2[2] + 18. \)

We finally use \(\mathcal{U}_2 \) to build a 9-sun system of \(\Omega_2[2] + 21 = (\Omega_2[2] + 18) \oplus (I + 3). \) By replacing the vertices of each \(S_i, \) as outlined in Table 1, we obtain the 9-sun \(T_i. \) The new 22 graphs, \(T_1, T_2, \ldots, T_{22}, \) are built in such a way that

\[
(a) \bigcup_{i=1}^{4} \text{Orb}(T_i) \cup \{ T_5, T_6, \ldots, T_{22} \} \text{ decomposes a subgraph } K \text{ of } \Omega_2[2] + 21;\]

\[
(b) (\Omega_2[2] + 21) \setminus K \text{ decomposes into seven 9-suns } G_1, G_2, \ldots, G_7.
\]

This way we obtain a 9-sun system of \(\Omega_2[2] + 21, \) and hence the desired 9-sun system of \(K_{36} + 21. \)

Theorem 4.9. Let \(k \equiv 3 \pmod{4} \geq 7 \) and \(n \equiv 0, 1 \pmod{4} \) with \(2k < n < 10k. \)

If \(n \not\equiv 2, 3 \pmod{k-1} \) and \(\left\lfloor \frac{n-4}{k-1} \right\rfloor \) is even, then there exists a \(k \)-sun system of \(K_{4k} + n \) except possibly when \((k, n) \in \{(7,64), (7,65)\}. \)

Proof. First, \(k \equiv 3 \pmod{4} \geq 7 \) implies that \(\ell \geq 3 \) is odd. Now, let \(n = 2(q\ell+r)+\nu \) with \(1 \leq r \leq \ell \) and \(\nu \in \{2,3\}. \) Note that \(q = \left\lfloor \frac{n-4}{k-1} \right\rfloor, \) hence \(q \) is even. Also, since \(2k < n < 10k, \) we have \(2 \leq q \leq 10. \) By \(q \) even and \(n \equiv 0, 1 \pmod{4} \) it follows that \(r \) is odd, and \(n \not\equiv 2, 3 \pmod{k-1} \) implies that \(r \not= \ell. \) To sum up,

\[
q \text{ is even with } 2 \leq q \leq 10, \quad \text{and } r \text{ is odd with } 1 \leq r \leq \ell - 2.
\]

As in the previous theorem, let \(V(K_{4k} + n) = (\mathbb{Z}_k \times [0,3]) \cup \{ \infty_h \mid h \in \mathbb{Z}_{n-\nu} \} \cup \{ \infty_1, \infty_2, \infty_3 \}. \)

We split the proof into two cases.

Case 1) \(q \leq 2r + 4. \) We start decomposing \(K_{2k} \) into the following two graphs:

\[
\Gamma_1 = \langle \{3, \ell\}, [k-2r-2, k], [3, \ell] \rangle \quad \text{and} \quad \Gamma_2 = \langle \{1, 2\}, [1, k-2r-3], \{1, 2\} \rangle.
\]

Since \(q \leq 2r+4, \) the graph \(\Gamma_1 \) can be further decomposed into the following graphs:

\[
\Gamma_{1,1} = \langle \{ \ell\}, [k-2r+q-3, k], \emptyset \rangle, \quad \Gamma_{1,2} = \langle [3, \ell - 1], \emptyset, [3, \ell] \rangle,
\]

\[
\Gamma_{1,3} = \langle \emptyset, [k-2r-2, k-2r+q-4], \emptyset \rangle.
\]

The first two graphs have a \(k \)-cycle system by Lemmas 3.2 and 3.3 while \(\Gamma_{1,3} \) decomposes into \((q-1) \) 1-factors, say \(J_1, J_2, \ldots, J_{q-1}. \) Setting \(w_1 = (q-1)\ell, \) by Lemma 4.2 we have that:

\[
\Gamma_1 + (q-1)\ell = \oplus_{i=1}^{q-1} (J_i + \ell) \oplus (\Gamma_{1,1} \oplus \Gamma_{1,2}).
\]

Hence \(\Gamma_1 + (q-1)\ell \) has a \(k \)-cycle system since each \(J_i + \ell \) decomposes into \(k \)-cycles by Lemma 3.3.
Letting \(w_2 = n - 2w_1 = 2(\ell + r) + \nu \) and recalling that \(K_{2k} = \Gamma_1 \mathbin{\oplus} \Gamma_2 \), by Lemma 4.6 it remains to construct a \(k \)-sun system of \(\Gamma_2^*[2] + w_2 \). We start decomposing \(\Gamma_2 \) into the following graphs:

\[
\Gamma_{2,0} = \langle \{1, 2\}, \{1, k - 2r - 4\}, \{1, 2\} \rangle \quad \text{and} \quad \Gamma_{2,1} = \langle \emptyset, \{k - 2r - 3\}, \emptyset \rangle.
\]

Recalling that \(\Gamma_2^*[2] = \Gamma_2^*[2] + I \), where \(I \) denotes the 1-factor \(\{\{z, \tau\} \mid z \in \mathbb{Z}_k \times \{0, 1\} \} \) of \(K_{4k} \), by Lemma 4.2 we have that

\[
\Gamma_2^*[2] + w_2 = (\Gamma_{2,1} + \ell)[2] \mathbin{\oplus} (\Gamma_{2,0} + r)[2] \mathbin{\oplus} (I + \nu).
\]

By Lemmas 3.3 and 3.4 there exist a \(k \)-cycle \(A = (x_1, x_2, x_3, y_4, y_5, a_7, \ldots, a_k) \) of \(\Gamma_{2,0} + r \) and a \(k \)-cycle \(B = (y, x, b_3, \ldots, b_k) \) of \(\Gamma_{2,1} + \ell \), satisfying the following properties:

- \(\text{Orb}(A) \cup \text{Orb}(B) \) is a \(k \)-cycle system of \(\Gamma_2 + (\ell + r) \);
- \(\text{Dev}(\{x_1, x_2\}) \) and \(\text{Dev}(\{x_2, x_3\}) \) are \(k \)-cycles with vertices in \(\mathbb{Z}_k \times \{0\} \);
- \(\text{Dev}(\{y_4, y_5\}) \) and \(\text{Dev}(\{y_5, y_6\}) \) are \(k \)-cycles with vertices in \(\mathbb{Z}_k \times \{1\} \);
- \(x \in \mathbb{Z}_k \times \{0\} \) and \(y \in \mathbb{Z}_k \times \{1\} \).

Set \(A' = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, \ldots, a_k) \) and \(B' = (y, x, b_3, \ldots, b_k) \) and let \(S = \{\sigma(A'), \sigma(A'), \sigma(B'), \sigma(B')\} \). By Lemma 4.4 we have that \(\bigcup_{S \in S} \text{Orb}(S) \) is a \(k \)-sun system of \((\Gamma_3 + (\ell + r)) \mathbin{\oplus} 2(\ell + r) = (\Gamma_2^*[2] + w_2) \mathbin{\setminus} (I + \nu) \).

To construct a \(k \)-sun system of \(\Gamma_2^*[2] + w_2 \) we proceed as in Theorem 4.7. We modify the graphs in \(S \) and obtain four \(k \)-suns \(T_1, T_2, T_3, T_4 \) whose translates between them cover all edges incident with \(\infty_1', \infty_2' \), and possibly \(\infty_3' \) when \(\nu = 3 \). Then we construct further \(2\nu + 1 \) \(k \)-suns \(G_1, \ldots, G_{2\nu + 1} \) to cover the missing edges. The reader can check that \(\bigcup_{i=1}^{4} \text{Orb}(T_i) \cup \{G_1, \ldots, G_{2\nu + 1}\} \) is a \(k \)-sun system of \(\Gamma_2^*[2] + w_2 \).

The graphs \(T_i \) are the following, where the elements in bold are the replaced vertices:

\[
T_1 = \begin{cases}
(x_1 \ x_2 \ x_3 \ \infty_1' \ y_5 \ y_6 \ a_7 \ \ldots \ a_{k-1} \ a_k) \\
(\infty_1' \ y_5 \ y_4 \ y_5 \ a_7 \ \ldots \ a_k \ a_1) \\
(x_1 \ x_2 \ x_3 \ \infty_2' \ y_5 \ y_6 \ a_7 \ \ldots \ a_k \ a_1) \\
(\infty_2' \ y_5 \ y_4 \ y_5 \ a_7 \ \ldots \ a_k \ a_1) \\
(\infty_1' \ y_5 \ y_4 \ y_5 \ a_7 \ \ldots \ a_k \ a_1) \\
(x_1 \ x_2 \ x_3 \ \infty_1' \ y_5 \ y_6 \ a_7 \ \ldots \ a_k \ a_3) \\
(\infty_1' \ y_5 \ y_4 \ y_5 \ a_7 \ \ldots \ a_k \ a_3) \\
(x_1 \ x_2 \ x_3 \ \infty_1' \ y_5 \ y_6 \ a_7 \ \ldots \ a_k \ a_3) \\
(\infty_1' \ y_5 \ y_4 \ y_5 \ a_7 \ \ldots \ a_k \ a_3)
\end{cases}
\]

if \(\nu = 2 \),

if \(\nu = 3 \),

if \(\nu = 2 \),

if \(\nu = 3 \),

if \(\nu = 2 \),

if \(\nu = 3 \).
The graphs G_i, for $i = [1, 2\nu + 1]$, are so defined:

$$G_1 = \text{Dev}(x_1 \sim x_2 \sim x_3), \quad G_2 = \text{Dev}(y_5 \sim y_4 \sim x_3),$$

$$G_3 = \text{Dev}(\langle x_1, x_2 \rangle \oplus \{x_3, y_4\}), \quad G_4 = \text{Dev}(\langle y_5, y_4 \rangle \sim y_5),$$

$$G_5 = \text{Dev}(\langle y_5 \sim y_6 \sim y_6 \rangle), \quad G_6 = \text{Dev}(\{x_2, x_3\} \oplus \{x, y\}),$$

$$G_7 = \text{Dev}(\{x_2, x_3\} \oplus \{x, y\}).$$

Case 2) $q \geq 2r + 6$. Note that this implies $r = 1$ and $q = 8, 10$. As before $K_{2k} = \Gamma_1 \oplus \Gamma_2$ where

$$\Gamma_1 = \langle [3, \ell], \{0\}, [k - 5, k - 1, [3, \ell]\rangle \quad \text{and} \quad \Gamma_2 = \langle \{1, 2\}, [1, k - 6], \{1, 2\rangle.$$

Since $(k, n) \neq (7, 64), (7, 65)$ then $(\ell, q) \neq (3, 10)$, hence the graph Γ_1 can be decomposed into the following graphs:

$$\Gamma_{1,1} = \langle \emptyset, [k - 5, k - 1], \emptyset \rangle \quad \Gamma_{1,2} = \langle \left[3, \frac{q - 2}{2}\right], \{0\}, \left[3, \frac{q - 2}{2}\right]\rangle$$

$$\Gamma_{1,3} = \langle \left[\frac{q}{2}, \ell\right], \emptyset, \left[\frac{q}{2}, \ell\right]\rangle .$$

The graph $\Gamma_{1,1}$ decomposes into five 1-factors J_1, \ldots, J_5, while by Lemma 3.2 $\Gamma_{1,2}$ decomposes into $(q - 5)$ 1-factors J'_1, \ldots, J'_{q-5}. Letting $w_1 = q\ell$, by Lemma 4.2 we have that

$$\Gamma_1 + w_1 = (\Gamma_{1,1} + 5\ell) \oplus (\Gamma_{1,2} + (q - 5)\ell) \oplus \Gamma_{1,3} = \oplus_{i=1}^{5}(J_i + \ell) \oplus \oplus_{i=1}^{q-5}(J'_i + \ell) \oplus \Gamma_{1,3}.$$

By Lemmas 3.4 and 3.1 each $J_i + \ell$, each $J'_i + \ell$ and $\Gamma_{1,3}$ decompose into k-cycles. Hence $\Gamma_1 + q\ell$ has a k-cycle system. Let now $w_2 = n - 2w_1 = 2 + \nu$. Note that a k-sun system of $\Gamma_2[2] + w_2$ can be obtained as in Case 1, where $\Gamma_{2,1}$ is empty.

Theorem 4.10. Let $k \equiv 3 \mod 4 \geq 11$ and $n \equiv 3 \mod 4$ with $2k < n < 10k$. If $\left[\frac{n-4}{k-1}\right]$ is even, and $n \equiv 2, 3 \mod k - 1$, then there is a k-sun system of $K_{4k} + n$, except possibly when $(k, n) \in \{(11, 112), (11, 113)\}$.

Proof. Let $n = 2(q\ell + r) + \nu$ with $1 \leq r \leq \ell$ and $\nu \in \{2, 3\}$. Clearly, $q = \left[\frac{n-4}{k-1}\right]$, hence q is even. Since $k \geq 11, 2k < n < 10k$ and $n \equiv 2, 3 \mod 2\ell$, we have that q is even with $2 \leq q \leq 10$ and $r = \ell \geq 5$ is odd.

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_h \mid h \in \mathbb{Z}_{n-k} \} \cup \{\infty'_{h}, \infty''_{h}, \infty'_{h}\}$.

We start decomposing K_{2k} into the following two graphs:

$$\Gamma_1 = \langle [3, \ell], [k - 3, k], [4, \ell]\rangle, \quad \Gamma_2 = \langle \{1, 2\}, [k - 4, \{1, 2\}, \{1, 2, 3\}\rangle.$$

If $q = 2, 4$, Γ_1 can be further decomposed into

$$\Gamma_{1,1} = \langle \emptyset, [k - 3, k - 4 + q], \emptyset \rangle, \quad \Gamma_{1,2} = \langle \emptyset, [k - 3 + q, k], \{\ell\} \rangle,$$

$$\Gamma_{1,3} = \langle [3, \ell], \emptyset, [4, \ell - 1] \rangle.$$

The graph $\Gamma_{1,1}$ decomposes into q 1-factors, say J_1, \ldots, J_q. Letting $w_1 = q\ell$, by Lemma 4.2 we have that

$$\Gamma_1 + w_1 = (\Gamma_{1,1} + w_1) \oplus \Gamma_{1,2} \oplus \Gamma_{1,3} = \oplus_{i=1}^{q}(J_i + \ell) \oplus \Gamma_{1,2} \oplus \Gamma_{1,3}.$$

Lemmas 3.4 and 3.1 guarantee that each $J_i + \ell$, $\Gamma_{1,2}$ and $\Gamma_{1,3}$ decompose into k-cycles, hence $\Gamma_1 + w_1$ has a k-cycle system. Suppose now $q \geq 6$. By
Let \((k, n) \not\in \{(11, 112), (11, 113)\}\), we have \((\ell, q) \neq (5, 10)\). In this case \(\Gamma_1\) can be further decomposed into
\[
\Gamma_{1,1} = \langle \varnothing, [k - 3, k - 1], \varnothing \rangle, \quad \Gamma_{1,2} = \left\langle \left[\ell + 3 - \frac{q}{2}, \ell \right], \{0\}, \left[\ell + 3 - \frac{q}{2}, \ell \right] \right\rangle,
\]
\[
\Gamma_{1,3} = \left\langle \left[3, \ell + 2 - \frac{q}{2} \right], \varnothing, \left[4, \ell + 2 - \frac{q}{2} \right] \right\rangle.
\]
The graph \(\Gamma_{1,1}\) can be decomposed into three 1-factors say \(J_1, J_2, J_3\), also by Lemma 3.5 the graph \(\Gamma_{1,2}\) can be decomposed into \((q - 3)\) 1-factors say \(J_1', \ldots, J_{q-3}'\). Set again \(w_1 = q\ell\), by Lemma 4.2 we have that
\[
\Gamma_1 + w_1 = (\Gamma_{1,1} + 3\ell) \oplus (\Gamma_{1,2} + (q - 3)\ell) \oplus \Gamma_{1,3} = \oplus_{i=1}^{3} (J_i + \ell) \oplus \oplus_{j=1}^{q-3} (J_j' + \ell) \oplus \Gamma_{1,3}.
\]
By Lemmas 3.4 and 3.1 we have that each \(J_i + \ell\), each \(J_j' + \ell\) and \(\Gamma_{1,3}\) decompose into \(k\)-cycles, hence \(\Gamma_1 + w_1\) has a \(k\)-cycle system. Hence for any value of \(q\) we have proved that there \(\Gamma_1 + w_1\) has a \(k\)-cycle system.

Now, setting \(w_2 = n - 2w_1 = 2\ell + \nu\) and recalling that \(K_{2k} = \Gamma_1 \oplus \Gamma_2\), by Lemma 4.6 it is left to show that \(\Gamma_2^*[2] + w_2\) has a \(k\)-sun system. Let \(r_1\) and \(r_2 \geq 2\) be an odd and an even integer, respectively, such that \(r_1 + r_2 = r = \ell\). Note that \(\Gamma_2\) can be further decomposed into
\[
\Gamma_{2,1} = \langle \{1\}, [1, k - 2r_1 - 2], \{1\} \rangle, \quad \Gamma_{2,2} = \langle \{2\}, [k - 2r_1 - 1, k - 4], \{2, 3\} \rangle.
\]
Recalling that \(\Gamma_2^*[2] = \Gamma_2[2] \oplus I\), where \(I\) denotes the 1-factor \(\{\{z, \varnothing\} \mid z \in Z_k \times \{0, 1\}\}\) of \(K_{2k}\), by Lemma 4.2 we have that
\[
\Gamma_2^*[2] + w_2 = \oplus_{i=1}^{2} (\Gamma_{2,i} + r_1)[2] \oplus (I + \nu).
\]
By Lemma 3.3 there is a \(k\)-cycle \(A = (y_1, y_2, x_3, x_4, a_5, \ldots, a_k)\) of \(\Gamma_{2,1} + r_1\) and a \(k\)-cycle \(B = (x_1, x_2, y_3, y_4, y_5, b_6, \ldots, b_k)\) of \(\Gamma_{2,2} + r_2\) such that
\[
(7) \quad \text{Orb}(A) \cup \text{Orb}(B) \text{ is a } k\text{-cycle system of } \Gamma_2 + \ell,
\]
\[
\text{Dev}(\{x_1, x_2\}) \text{ and } \text{Dev}(\{x_3, x_4\}) \text{ are } k\text{-cycles with vertices in } Z_k \times \{0\},
\]
\[
\text{Dev}(\{y_1, y_2\}), \text{Dev}(\{y_3, y_4\}) \text{ and } \text{Dev}(\{y_5, y_6\}) \text{ are } k\text{-cycles with vertices in } Z_k \times \{1\}.
\]
Set \(A' = (y_1, \overline{y_2}, x_3, \overline{x_4}, a_5, \ldots, a_k)\) and \(B' = (x_1, \overline{x_2}, y_3, \overline{y_4}, y_5, b_6, \ldots, b_k)\). Let \(S = \{\sigma(A'), \sigma(A'), \sigma(B'), \sigma(B')\}\), by Lemma 4.4 we have that \(\bigcup_{S \in S} \text{Orb}(S)\) is a \(k\)-sun system of \(\left(\Gamma_2 + \ell\right)[2] = \Gamma_2[2] + 2\ell = (\Gamma_2^*[2] + w_2) \setminus (I + \nu)\). To construct a \(k\)-sun system of \(\Gamma_2[2] + w_2\), we build a family \(T = \{T_1, T_2, T_3, T_4\}\) of \(k\)-suns by modifying the graphs in \(S\) so that \(\bigcup_{T \in T} \text{Orb}(T)\) covers all the edges incident with \(\varnothing'_1, \varnothing'_2\), and possibly \(\varnothing'_3\) when \(\nu = 3\). We then construct further \((2\nu + 1)\) \(k\)-suns \(G_1, G_2, \ldots, G_{2\nu+1}\) which cover the remaining edges exactly once. Hence, \(\bigcup_{T \in T} \text{Orb}(T) \cup \{G_1, G_2, \ldots, G_{2\nu+1}\}\) is a \(k\)-sun system of \(\Gamma_2^*[2] + w_2\).

The graphs \(T_1, \ldots, T_4\) and \(G_1, \ldots, G_{2\nu+1}\) are the following, where as before the elements in bold are the replaced vertices.

\[
T_1 = \left(\begin{array}{cccccc}
y_1 & \varnothing'_2 & x_3 & \overline{x_4} & a_5 & \ldots & a_{k-1} & a_k & y_1 \\
\varnothing_2 & \varnothing'_2 & x_3 & \overline{x_4} & a_5 & \ldots & a_k & \overline{y_1}
\end{array}\right),
\]
\[
T_2 = \left(\begin{array}{cccccc}
y_1 & \varnothing'_2 & x_3 & \overline{x_4} & a_5 & \ldots & a_{k-1} & a_k & y_1 \\
\varnothing_2 & \varnothing'_2 & x_3 & \overline{x_4} & a_5 & \ldots & a_k & \overline{y_1}
\end{array}\right),
\]

if \(\nu = 2\),
\[
T_3 = \left(\begin{array}{cccccc}
y_1 & \varnothing'_2 & x_3 & \overline{x_4} & a_5 & \ldots & a_{k-1} & a_k & y_1 \\
\varnothing_2 & \varnothing'_2 & x_3 & \overline{x_4} & a_5 & \ldots & a_k & \overline{y_1}
\end{array}\right),
\]

if \(\nu = 3\),
\[
T_3 = \left(\begin{array}{cccccccc}
\infty & x_1 & \infty & x_2 & y_3 & \infty & y_4 & y_5 & y_6 & \ldots & b_{k-1} & b_k & x_1 \\
\infty & y_3 & \infty & y_4 & y_5 & \infty & b_6 & b_7 & \ldots & b_k & x_1
\end{array} \right),
\]
\[
T_4 = \begin{cases}
\left(\begin{array}{cccccccc}
\infty & x_1 & \infty & x_2 & y_3 & \infty & y_4 & y_5 & y_6 & \ldots & b_{k-1} & b_k & x_1 \\
\infty & y_3 & \infty & y_4 & y_5 & \infty & b_6 & b_7 & \ldots & b_k & x_1
\end{array} \right) & \text{if } \nu = 2, \\
\left(\begin{array}{cccccccc}
\infty & x_1 & \infty & x_2 & y_3 & \infty & y_4 & y_5 & y_6 & \ldots & b_{k-1} & b_k & x_1 \\
\infty & y_3 & \infty & y_4 & y_5 & \infty & b_6 & b_7 & \ldots & b_k & x_1
\end{array} \right) & \text{if } \nu = 3.
\end{cases}
\]

\[
G_1 = \text{Dev}(y_1 \sim y_2 \sim x_3), \quad G_2 = \text{Dev}(\overline{y_2} \sim \overline{y_1} \sim y_2),
\]
\[
G_3 = \text{Dev}(y_3 \sim y_4 \sim y_3), \quad G_4 = \text{Dev}(\{x_1, x_2 \} + \{x_3, y_2\}),
\]
\[
G_5 = \begin{cases}
\text{Dev}(x_1 \sim x_2 \sim \overline{x_2}) & \text{if } \nu = 2, \\
\text{Dev}(x_1 \sim x_2 \sim \overline{y_3}) & \text{if } \nu = 3,
\end{cases}
\]
\[
G_6 = \text{Dev}(\overline{y_3} \sim \overline{x_2} \sim x_4), \quad G_7 = \text{Dev}(\overline{y_4} \sim \overline{y_3} \sim y_4).
\]

By recalling (7), it is not difficult to check that the graphs \(G_h\) are \(k\)-suns. \(\square\)

Theorem 4.11. Let \(k \equiv 3 \pmod{4} \geq 7\) and \(n \equiv 0, 1 \pmod{4}\) with \(2k < n < 10k\). If \(\left\lfloor \frac{n-4}{k-1} \right\rfloor\) is odd and \(n \not\equiv 0, 1 \pmod{4}\), then there is a \(k\)-sun system of \(K_{4k} + n\).

Proof. Let \(n = 2(q\ell + r) + \nu\) with \(1 \leq r \leq \ell\) and \(\nu \in \{2, 3\}\). Clearly, \(q = \left\lfloor \frac{n-4}{k-1} \right\rfloor\).

Also, we have that \(q \) and \(\ell \) are odd, and \(n \equiv 0, 1 \pmod{4}\); hence \(r\) is even. Furthermore, we have that \(2 \leq q \leq 10\), since by assumption \(2k < n < 10k\). Considering now the hypothesis that \(n \not\equiv 0, 1 \pmod{2\ell}\), it follows that \(r \neq \ell - 1\). To sum up,

\[
q \text{ is odd with } 3 \leq q \leq 9, \text{ and } r \text{ is even with } 2 \leq r \leq \ell - 3.
\]

As before, let \(V(K_{4k} + n) = (\mathbb{Z}_k \times [0, 3]) \cup \{\infty_j | h \in \mathbb{Z}_{n-r}\} \cup \{\infty_1', \infty_2', \infty'\}\).

We start decomposing \(K_{2k}\) into the following two graphs:

\[
\Gamma_1 = \langle [4, \ell], [k - 2r - 1, k], [3, \ell] \rangle \quad \text{and} \quad \Gamma_2 = \langle [1, 3], [1, k - 2r - 2], [1, 2] \rangle.
\]

Considering that \(3 \leq q \leq 9 \leq 2r + 5\), the graph \(\Gamma_1\) can be further decomposed into the following graphs:

\[
\Gamma_{1,1} = \langle [4, \ell], \emptyset, [3, \ell - 1] \rangle, \quad \Gamma_{1,2} = \langle \emptyset, [k - 2r - 4 + q, k], \{\ell\} \rangle,
\]

and \(\Gamma_{1,3} = \langle \emptyset, [k - 2r - 1, k - 2r - 5 + q], \emptyset \rangle\).

The first two have a \(k\)-cycle system by Lemmas 6.1 and 6.2 while \(\Gamma_{1,3}\) decomposes into \((q - 3)\) 1-factors, say \(J_1, J_2, \ldots, J_{q-3}\). Letting \(w_1 = (q - 3)\ell\), by Lemma 6.2 we have that

\[
\Gamma_1 + w_1 = \bigoplus_{i=1}^{q-3}(J_i + \ell) \oplus (\Gamma_{1,1} \oplus \Gamma_{1,2}).
\]

Therefore, \(\Gamma_1 + w_1\) has a \(k\)-cycle system, since each \(J_i + \ell\) decomposes into \(k\)-cycles by Lemma 6.4. Setting \(w_2 = n - 2w_1 = 2(3\ell + r) + \nu\) and recalling that \(K_{2k} = \Gamma_1 \oplus \Gamma_2\), by Lemma 4.6 it is left to show that \(\Gamma_2[2] + w_2\) has a \(k\)-sun system.

We start decomposing \(\Gamma_2\) into the following graphs:

\[
\Gamma_{2,0} = \langle [1, 3], [1, k - 2r - 5], [1, 2] \rangle, \quad \text{and} \quad \Gamma_{2,i} = \langle \emptyset, [k - 2r - 5 + i], \emptyset \rangle, \text{ for } 1 \leq i \leq 3.
\]
Recalling that $\Gamma'_2[2] = \Gamma_2[2] \oplus I$, where I denotes the 1-factor $\{z, \overline{z}\} | z \in \mathbb{Z}_k \times \{0, 1\}$ of K_{4k}, by Lemma 4.2 we have that

$$\Gamma'_2[2] + w_2 = \bigoplus_{i=1}^{3} (\Gamma_{2,i} + \ell)[2] + (\Gamma_{2,0} + r)[2] \oplus (I + \nu).$$

By Lemmas 5.3 and 5.4 there exist a k-cycle $A = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, \ldots, a_k)$ of $\Gamma_{2,0} + r$, a k-cycle $B_1 = (x_{1,0}, y_{1,1}, b_{1,2}, \ldots, b_{1,k-1})$ of $\Gamma_{2,1} + \ell$, and a k-cycle $B_i = (y_{i,0}, x_{i,1}, b_{i,2}, \ldots, b_{i,k-1})\Gamma_{2,i} + \ell$, for $2 \leq i \leq 3$, satisfying the following properties:

$$(9) \quad \text{Dev}(\{x_1, x_2\}) \text{ and } \text{Dev}(\{x_2, x_3\}) \text{ are } k\text{-cycles with vertices in } \mathbb{Z}_k \times \{0\},$$

$$(10) \quad x_{1,0}, x_{2,1}, x_{3,1} \in \mathbb{Z}_k \times \{0\}, y_{1,1}, y_{2,0}, y_{3,0} \in \mathbb{Z}_k \times \{1\};$$

$$(11) \quad \bigcup_{i=1}^{3} \text{Orb}(B_i) \cup \text{Orb}(A) \text{ is a } k\text{-cycle system of } \Gamma_2 + (3\ell + r).$$

Set $A' = (x_1, x_2, x_3, y_4, y_5, y_6, a_7, \ldots, a_k)$ and let $S = \{\sigma(A'), \overline{\sigma(A')}\} \cup \{\sigma(B_i), \overline{\sigma(B_i)} | 1 \leq i \leq 3\}$. By Lemma 4.2 we have that $\bigcup_{S \in S} \text{Orb}(S)$ is a k-suns system of $(\Gamma_{2} + (3\ell + r))[2] = \Gamma_{2}[2] + 2(3\ell + r) = (\Gamma_{2}^* + w_2) \setminus (I + \nu)$. To construct a k-sun system of $\Gamma_{2}^* + w_2$, we build a family $T = \{T_0, T_1, \ldots, T_7\}$ of k-sun systems by modifying the graphs in S so that $\bigcup_{T \in T} \text{Orb}(T)$ covers all the edges incident with ∞_1', ∞_2', and possibly ∞_3' when $\nu = 3$. We then construct further $(2\nu + 1)$ k-suns $G_1, G_2, \ldots, G_{2\nu+1}$ which cover the remaining edges exactly once. Hence, $\bigcup_{T \in T} \text{Orb}(T) \cup \{G_1, G_2, \ldots, G_{2\nu+1}\}$ is a k-sun system of $\Gamma_{2}^* + w_2$. The graphs T_0, \ldots, T_7 and $G_1, \ldots, G_{2\nu+1}$ are the following, where as before the elements in bold are the replaced vertices:

$T_0 = \left(\begin{array}{cccccccccccc}
\frac{x_1}{\infty_1} & \frac{x_2}{\infty_1} & \frac{x_3}{\infty_1} & \frac{y_4}{\infty_1} & \frac{y_5}{\infty_1} & \frac{y_6}{\infty_1} & a_7 & \ldots & a_{k-1} & a_k \\
\frac{x_2}{\infty_2} & \frac{\infty_2}{y_4} & \frac{\infty_2}{y_5} & \frac{\infty_2}{y_6} & \frac{a_7}{a_8} & \ldots & \frac{a_k}{a_k} & x_1
\end{array}\right)$

if $\nu = 2$,

if $\nu = 3$,

if $\nu = 2$,

if $\nu = 3$,
Recalling that Γ^*, by Lemma 4.6 it is left to show that Γ_2^* is a k-sun system of $K_{4k} + n$ except possibly when $(k, n) \not\in \{(11, 100), (11, 101)\}$.

Theorem 4.12. Let $k \equiv 3 \pmod{4} \geq 7$ and $n \equiv 0, 1 \pmod{4}$ with $2k < n < 10k$. If \(\left\lfloor \frac{n-4}{k} \right\rfloor \) is odd, and $n \equiv 0, 1 \pmod{4}$ and $\nu \in \{2, 3\}$. Reasoning as in the proof of Theorem 4.11 and considering that $n \equiv 0, 1 \pmod{2\ell}$ and $(k, n) \not\in \{(11, 100), (11, 101)\}$, we have that

\[q \text{ is odd with } 3 \leq q \leq 9, \quad r = \ell - 1 \geq 2, \quad \text{and } (\ell, q) \neq (5, 9). \]

As before, let $V(K_{4k} + n) = (\mathbb{Z}_k \times \{0, 3\}) \cup \{\infty_h \mid h \in \mathbb{Z}_n\} \cup \{\infty^*_1, \infty^*_2, \infty^*_n\}$.

We start decomposing K_{2k} into the following two graphs

\[\Gamma_1 = \langle \{3, \ell\}, \{0\}, \{3, \ell\} \rangle, \quad \text{and } \Gamma_2 = \langle \{1, 2\}, \{1, k - 1\}, \{1, 2\} \rangle. \]

Considering (12), we can further decompose Γ_1 into the following two graphs:

\[\Gamma_{1,1} = \langle \left[3, \frac{q+3}{2}\right], \{0\}, \left[3, \frac{q+3}{2}\right]\rangle, \quad \Gamma_{1,2} = \langle \left[\frac{q+5}{2}, \ell\right], \emptyset, \left[\frac{q+5}{2}, \ell\right]\rangle. \]

By Lemma 3.3, the graph $\Gamma_{1,1}$ decomposes into q 1-factors, say J_1, J_2, \ldots, J_q. Letting $w_1 = q\ell$, by Lemma 4.2 we have that

\[\Gamma_1 + w_1 = (\Gamma_{1,1} + w_1) \oplus \Gamma_{1,2} = \oplus_{i=1}^{q} (J_i + \ell) \oplus \Gamma_{1,2}. \]

Lemmas 3.3 and 3.1 guarantee that each $J_i + \ell$ and $\Gamma_{1,2}$ decompose into k-cycles, hence $\Gamma_1 + w_1$ has a k-cycle system. Let r_1 and r_2 be odd positive integers such that $r = \ell - 1 = r_1 + r_2$. Then, setting $w_2 = n - 2w_1 = 2(r_1 + r_2) + \nu$ and recalling that $K_{2k} = \Gamma_1 \oplus \Gamma_2$, by Lemma 4.6 it is left to show that $\Gamma_2^*[2] + w_2$ has a k-sun system.

We start decomposing Γ_2 into the following graphs:

\[\Gamma_{2,1} = \langle \{1\}, \{1, k - 2r_1 - 2\}, \{1\} \rangle \text{ and } \Gamma_{2,2} = \langle \{2\}, \{k - 2r_1 - 1, k - 1\}, \{2\} \rangle. \]

Recalling that $\Gamma^*_2[2] = \Gamma_2[2] \oplus I$, where I denotes the 1-factor $\{\{z, z\} \mid z \in \mathbb{Z}_k \times \{0, 1\}\}$ of K_{4k}, by Lemma 4.2 we have that

\[\Gamma^*_2[2] + w_2 = (\Gamma_{2,1} + r_1)[2] \oplus (\Gamma_{2,2} + r_2)[2] \oplus (I + \nu). \]
By Lemma 3.3 there is a k-cycle \(A = (y_1, y_2, x_3, x_4, a_5, \ldots, a_k) \) of \(\Gamma_{2,1} + r_1 \) and \(B = (x_1, x_2, y_3, y_4, b_5, \ldots, b_k) \) of \(\Gamma_{2,2} + r_2 \) such that

\[
\text{Orb}(A) \cup \text{Orb}(B) \text{ is a k-cycle system of } \Gamma_2 + r,
\]

\[
\text{Dev}(\{x_3, x_4\}) \text{ and } \text{Dev}(\{x_1, x_2\}) \text{ are k-cycles with vertices in } \mathbb{Z}_k \times \{0\},
\]

\[
\text{Dev}(\{y_1, y_2\}) \text{ and } \text{Dev}(\{y_3, y_4\}) \text{ are k-cycles with vertices in } \mathbb{Z}_k \times \{1\}.
\]

Set \(A' = (y_1, y_2, x_3, x_4, a_5, a_6, \ldots, a_k) \), \(B' = (x_1, x_2, y_3, y_4, b_5, b_6, \ldots, b_k) \) and let \(S = \{\sigma(A'), \sigma(A'), \sigma(B'), \sigma(B')\} \). By Lemma 4.3 we have that \(\bigcup_{S \in \mathcal{S}} \text{Orb}(S) \) is a k-sun system of \((\Gamma_2^2[2] + w_2) \setminus (I + v) \).

To construct a k-sun system of \(\Gamma_2^2[2] + w_2 \), we build a family \(\mathcal{T} = \{T_1, T_2, T_3, T_4\} \) of four k-suns, each of which is obtained from a graph in \(\mathcal{S} \) by replacing some of their vertices with \(\infty', \infty' \), and possibly \(\infty' \), and let

\[
G_1 = \text{Dev}(y_1 \sim y_2 \sim x_3), \quad G_2 = \text{Dev}(y_1 \sim y_2 \sim x_3),
\]

\[
G_3 = \text{Dev}(y_3 \sim y_4 \sim x_2), \quad G_4 = \text{Dev}(x_1 \sim x_2 \sim x_3),
\]

\[
G_5 = \begin{cases}
\text{Dev}(y_1 \sim x_2 \sim y_3) & \text{if } \nu = 2, \\
\text{Dev}(\{y_1, x_2\} \cup \{y_3, x_2\}) & \text{if } \nu = 3,
\end{cases} \quad G_6 = \text{Dev}(y_4 \sim y_3 \sim x_2),
\]

\[
G_7 = \text{Dev}(x_4 \sim x_3 \sim y_2).
\]

By Lemma 4.3, it is not difficult to check that the graphs \(G_h \) are k-suns. \(\square \)

5. It is sufficient to solve \(2k < v < 6k \)

In this section we show that if the necessary conditions in (4), for the existence of a k-sun system of \(K_v \), are sufficient for all \(v \) satisfying \(2k < v < 6k \), then they are sufficient for all \(v \). In other words, we prove Theorem (11).

We start by showing how to construct k-sun systems of \(K_{g \times h} \) (i.e., the complete multipartite graph with \(g \) parts each of size \(h \)) when \(h = 4k \).

Theorem 5.1. For any odd integer \(k \geq 3 \) and any integer \(g \geq 3 \), there exists a k-sun system of \(K_{g \times 4k} \).
Proof. Set $V(K_{g \times 2k}) = \mathbb{Z}_{2g} \times [0, 1]$ and let $K_{g \times 4k} = K_{g \times 2k}[2]$. In [11] Theorem 2] the authors proved the existence of a k-cycle system of $K_{g \times 2k}$. By applying Lemma 4.5 (with $\Gamma = K_{g \times 2k}$ and $u = 0$) we obtain the existence of a k-sun system of $K_{g \times 4k}$. \hfill \square

The following result exploits Theorem 5.1 and shows how to construct k-sun systems of K_{4kg+n}, for $g \neq 2$, starting from a k-sun system of $K_{4k} + n$ and a k-sun system of either K_n or K_{4k+n}.

Theorem 5.2. Let $k \geq 3$ be an odd integer and assume that both the following conditions hold:

1. there exists a k-sun system of either K_n or K_{4k+n};
2. there exists a k-sun system of $K_{1k} + n$.

Then there is a k-sun system of K_{4kg+n} for all positive $g \neq 2$.

Proof. Suppose there exists a k-sun system S_1 of K_n, also, by (2), there exists a k-sun system S_2 of $K_{4k} + n$. Clearly, $S_1 \cup S_2$ is a k-sun system of $K_{n+4k} = K_n \oplus (K_{4k} + n)$. Hence we can suppose $g \geq 3$. Let V, H and G be sets of size n, $4k$ and g, respectively, such that $V \cap (H \times G) = \emptyset$. Let S be a k-sun system of K_n (resp., K_{n+4k}) with vertex set V (resp., $V \cup (H \times \{x_0\})$) for some $x_0 \in G$). By assumption, for each $x \in G$, there is a k-sun system, say B_x, of $K_{4k} + n$ with vertex set $V \cup (H \times \{x\})$, where $V(K_{4k}) = H \times \{x\}$.

Also, by Theorem 5.1 there is a k-sun system C of $K_{g \times 4k}$ whose parts are $H \times \{x\}$ with $x \in G$. Hence the k-suns of B_x with $x \in G$ (resp., $x \in G \setminus \{x_0\}$), S and C form a k-sun system of K_{n+4kg} with vertex set $V \cup (H \times G)$. \hfill \square

We are now ready to prove Theorem 1.1.

Theorem 1.1. Let $k \geq 3$ be an odd integer and $v > 1$. Conjecture [4] is true if and only if there exists a k-sun system of K_v for all v satisfying the necessary conditions in [4] with $2k < v < 6k$.

Proof. The existence of 3-sun systems and 5-sun systems has been solved in [10] and in [8], respectively. Hence we can suppose $k \geq 7$ and $2k < v < 6k$.

We first deal with the case where $(k, v) \neq (7, 21)$. By assumption there exists a k-sun system of K_v, which implies $v(v-1) \equiv 0 \pmod{4}$, hence Theorem 4.4 guarantees the existence of a k-sun system of $K_{4k} + v$. Therefore, by Theorem 5.2 there is a k-sun decomposition of K_{4kg+v} whenever $g \neq 2$. To decompose K_{8k+v} into k-suns, we first decompose K_{8k+v} into $K_{4k} + v$ and $K_{4k} + (4k + v)$. By Theorem 5.2 (with $g = 1$), there is a k-sun system of K_{4k+v}. Furthermore, Theorem 4.4 guarantees the existence of a k-sun system of $K_{4k} + (4k + v)$, except possibly when $(k, 4k+v) \in \{(7, 56), (7, 57), (7, 64), (11, 100)\}$. Therefore, by Theorem 5.2 there is a k-sun decomposition of K_{8k+v} whenever $(k, 4k+v) \notin \{(7, 56), (7, 57), (7, 64), (11, 100)\}$. For each of these for cases we construct k-sun systems of K_{8k+v} as follows.
If $k = 7$ and $4k + v = 56$, set $V(K_{84}) = \mathbb{Z}_{83} \cup \{\infty\}$. We consider the following 7-suns

$$T_1 = \begin{pmatrix} 0 & -1 & 3 & -4 & 6 & -7 & 16 \\ 31 & 27 & 37 & 18 & 43 & 12 & 56 \end{pmatrix},$$

$$T_2 = \begin{pmatrix} 0 & -2 & 3 & -5 & 6 & -8 & 17 \\ 32 & 27 & 38 & 19 & 44 & 12 & 58 \end{pmatrix},$$

$$T_3 = \begin{pmatrix} 0 & -3 & 3 & -6 & 6 & -9 & 18 \\ 33 & 27 & 39 & 20 & 45 & 12 & \infty \end{pmatrix}.$$

One can easily check that $\bigcup_{i=1}^{3} \text{Orb}_{\mathbb{Z}_{83}}(T_i)$ is a 7-sun system of K_{84}.

If $k = 7$ and $4k + v = 57$, set $V(K_{85}) = \mathbb{Z}_{85}$. Let T_1 and T_2 be defined as above, and let T_3' be the graph obtained from T_3 replacing ∞ with 60. It is immediate that $\bigcup_{i=1}^{2} \text{Orb}_{\mathbb{Z}_{85}}(T_i) \cup \text{Orb}_{\mathbb{Z}_{85}}(T_3')$ is a 7-sun system of K_{85}.

If $k = 7$ and $4k + v = 64$, set $V(K_{92}) = (\mathbb{Z}_7 \times \mathbb{Z}_{13}) \cup \{\infty\}$. We consider the following 7-suns

$$T_1 = \begin{pmatrix} (0, 0) & (1, 1) & -(2, 1) & (3, 1) & -(4, 1) & (5, 1) & -(6, 1) \\ \infty & (-1, 1) & (2, 7) & (-3, 5) & -(3, 5) & (5, 7) & (6, 7) \end{pmatrix},$$

$$T_2 = \begin{pmatrix} (0, 0) & (1, 2) & -(2, 2) & (3, 2) & -(4, 2) & (5, 2) & -(6, 2) \\ (0, 10) & -(1, 8) & (2, 8) & (-3, 7) & -(3, 7) & (5, 8) & (6, 8) \end{pmatrix},$$

$$T_3 = \begin{pmatrix} (0, 0) & (1, 3) & -(2, 3) & (3, 3) & -(4, 3) & (5, 3) & -(6, 3) \\ (0, 12) & -(1, 9) & (2, 9) & (-3, 9) & -(3, 9) & (5, 9) & (6, 9) \end{pmatrix}.$$

$$T_4 = \text{Dev}_{\mathbb{Z}_7 \times \{0\}}((0, 0) \sim (4, 0) \sim (6, 8)), \quad T_5 = \text{Dev}_{\mathbb{Z}_7 \times \{0\}}((0, 0) \sim (6, 0) \sim (6, 8)).$$

One can easily check that $\bigcup_{i=1}^{3} \text{Orb}_{\mathbb{Z}_7 \times \mathbb{Z}_{13}}(T_i) \cup \bigcup_{i=4}^{5} \text{Orb}_{\mathbb{Z}_7 \times \{0\}}(T_i)$ is a 7-sun system of K_{92}.

If $k = 11$ and $4k + v = 100$, set $V(K_{144}) = (\mathbb{Z}_{11} \times \mathbb{Z}_{13}) \cup \{\infty\}$. We consider the following 11-suns

$$T_1 = \begin{pmatrix} (0, 0) & (1, 1) & -(2, 1) & (3, 1) & -(4, 1) & (5, 1) & -(6, 1) \\ \infty & (-1, 1) & (2, 7) & (-3, 7) & (4, 7) & (-5, 1) & (5, 5) \\ (7, 1) & -(8, 1) & (9, 1) & -(10, 1) \\ -(7, 7) & (8, 7) & -(9, 7) & (10, 7) \end{pmatrix},$$

$$T_2 = \begin{pmatrix} (0, 0) & (1, 2) & -(2, 2) & (3, 2) & -(4, 2) & (5, 2) & -(6, 2) \\ (0, 10) & -(1, 8) & (2, 8) & (-3, 8) & (4, 8) & (-5, 6) & (5, 7) \\ (7, 2) & -(8, 2) & (9, 2) & -(10, 2) \\ -(7, 8) & (8, 8) & -(9, 8) & (10, 8) \end{pmatrix},$$

$$T_3 = \begin{pmatrix} (0, 0) & (1, 3) & -(2, 3) & (3, 3) & -(4, 3) & (5, 3) & -(6, 3) \\ (0, 12) & -(1, 9) & (2, 9) & (-3, 9) & (4, 9) & (-5, 9) & (5, 9) \\ (7, 3) & -(8, 3) & (9, 3) & -(10, 3) \\ -(7, 9) & (8, 9) & -(9, 9) & (10, 9) \end{pmatrix},$$

$$T_4 = \text{Dev}_{\mathbb{Z}_{11} \times \{0\}}((0, 0) \sim (4, 0) \sim (6, 8)), \quad T_5 = \text{Dev}_{\mathbb{Z}_{11} \times \{0\}}((0, 0) \sim (6, 0) \sim (5, 8)), \quad T_6 = \text{Dev}_{\mathbb{Z}_{11} \times \{0\}}((0, 0) \sim (8, 0) \sim (8, 8)).$$

One can check that $\bigcup_{i=1}^{3} \text{Orb}_{\mathbb{Z}_{11} \times \mathbb{Z}_{13}}(T_i) \cup \bigcup_{i=4}^{6} \text{Orb}_{\mathbb{Z}_7 \times \{0\}}(T_i)$ is a 11-sun system of K_{144}.
It is left to prove the existence of a k-sun system of K_{4k+1} when $(k, v) = (7, 21)$ and for every $g \geq 1$. If $g = 1$, a 7-sun system of K_{49} can be obtained as a particular case of the following construction. Let p be a prime, $q = p^n \equiv 1 \pmod{4}$ and r be a primitive root of F_q. Setting $S = Dev_r(0 \sim r \sim r + 1)$ where $\langle r \rangle = \{jr \mid 1 \leq j \leq p\}$, we have that $\bigcup_{j=0}^{q^n} Orb_{q_j} \circ (r^j S)$ is a p-sun system of K_q.

If $g \geq 2$, we notice that $K_{28q+21} = K_{28(q-1)+49}$. Considering the 7-sun system of K_{49} just built, and recalling that by Theorem 4.1 there is a 7-sun system of $K_{28} + 49$, then Theorem 6.2 guarantees the existence of a 7-sun system of $K_{28(g-1)+49}$ whenever $g \neq 3$. When $g = 3$, a 7-sun system of K_{105} is constructed as follows.

Set $V(K_{105}) = Z_7 \times Z_{15}$. Let $S_{i,j}$ and T be the 7-suns defined below, where $(i, j) \in X = ([1, 3] \times [1, 7]) \setminus \{(1, 3), (1, 6)\}$, as follows:

$$S_{i,j} = \begin{pmatrix}
(0, 0) & (i, j/2) & (2i, j) & (3i, 0) & (4i, j) & (5i, 0) & (6i, j)
(i, -j/2) & (2i, 0) & (3i, 2j) & (4i, -j) & (5i, 2j) & (6i, -j) & (0, 2j)
(0, 0) & (0, 7) & (0, 2) & (0, 5) & (0, -1) & (0, 3) & (0, 1)
(2, 0) & (3, 7) & (1, 2) & (1, 8) & (1, 5) & (1, 0) & (1, 10)
\end{pmatrix},$$

$$T = \begin{pmatrix}
(0, 0) & (0, 7) & (0, 2) & (0, 5) & (0, -1) & (0, 3) & (0, 1)
(2, 0) & (3, 7) & (1, 2) & (1, 8) & (1, 5) & (1, 0) & (1, 10)
\end{pmatrix}. $$

One can check that $\bigcup_{(i,j)\in X} Orb_{[0] \times Z_{15}}(S_{i,j}) \cup Orb_{Z_7 \times Z_{15}}(T)$ is a 7-sun system of K_{105}. \hfill \square

6. Construction of p-sun systems, p prime

In this section we prove Theorem 6.2. Clearly in view of Theorem 6.1 it is sufficient to construct a p-sun system of K_v for any admissible v with $2p < v < 6p$. Hence, we are going to prove the following result.

Theorem 6.1. Let p be an odd prime and let $v(v-1) \equiv 0 \pmod{4p}$ with $2p < v < 6p$. Then there exists a p-sun system of K_v.

Since the existence of p-sun systems with $p = 3, 5$ has been proved in [10] and in [8], respectively, here we can assume $p \geq 7$.

It is immediate to see that by the necessary conditions for the existence of a p-sun system of K_v, it follows that v lies in one of the following congruence classes modulo $4p$:

1) $v \equiv 0, 1 \pmod{4p}$;
2) $v \equiv p, 3p + 1 \pmod{4p}$ if $p \equiv 1 \pmod{4}$;
3) $v \equiv p + 1, 3p \pmod{4p}$ if $p \equiv 3 \pmod{4}$.

If $v \equiv 0, 1 \pmod{4p}$ we present a direct construction which holds more in general for $p = k$, where k is an odd integer and not necessarily a prime.

Theorem 6.2. For any $k = 2t + 1 \geq 7$ there exists a k-sun system of K_{4k+1} and a k-sun system of K_{4k}.

Proof. Let C be the k-cycle with vertices in Z so defined:

$$C = \{0, -1, 1, -2, 2, -3, 3, \ldots, 1-t, t-1, -t, 2t\}.$$

Note that the list D_1 of the positive differences in Z of C is $D_1 = [1, 2t] \cup \{3t\}$. Consider now the ordered k-set $D_2 = \{d_1, d_2, \ldots, d_k\}$ so defined:

$$D_2 = [2t + 1, 3t - 1] \cup [3t + 1, 4t + 2].$$
Obviously $D_1 \cup D_2 = [1,2k]$. Let $\{c_1, c_2, \ldots, c_k\}$ be the increasing order of the vertices of the cycle C and set $\ell_r = c_r + d_r$ for every $r \in [1,k]$, with $r \neq \frac{k+1}{2}$ and $\ell_{t+1} = c_{t+1} - d_{t+1}$. It is not hard to see that $V = \{c_1, c_2, \ldots, c_k, \ell_1, \ell_2, \ldots, \ell_k\}$ is a set. Note also that the difference between the largest and the smallest element of V is $7t + 2$. Let S be the sun obtainable from C by adding the pendant edges $\{c_i, \ell_i\}$ for $i \in [1,k]$. Clearly, $\Delta S = \pm(D_1 \cup D_2) = \pm[1,2k]$. So we can conclude that if we consider the vertices of S as elements of Z_{4k+1}, the vertices are still pairwise distinct and $\Delta S = Z_{4k+1} \setminus \{0\}$. Then, by applying Corollary 2.2 (with $G = Z_{4k+1}, m = 1, w = 0$), it follows that $\text{Orb}_{Z_{4k+1}} S$ is a k-sun system of K_{4k+1}.

Now we construct a k-sun system of K_{4k}. Let S be defined as above and note that $d_k = 2k$. Let S^* be the sun obtained by S setting $\ell_k = \infty$. It is immediate that if we consider the vertices of S^* as elements of $Z_{4k-1} \cup \{\infty\}$, then Corollary 2.2 (with $G = Z_{4k-1}, m = 1, w = 1$) guarantees that $\text{Orb}_{Z_{4k-1}} S^*$ is a k-sun system of K_{4k}.

Example 6.3. Let $k = 2t+1 = 9$, hence $t = 4$. By following the proof of Theorem 6.2, we construct a 9-sun system of K_{37}. Taking $C = (0, -1, 1, -2, 2, -3, 3, -4, 8)$, we have that

$$\{d_1, d_2, \ldots, d_9\} = [9,11] \cup [13,18]$$

$$\{c_1, c_2, \ldots, c_9\} = \{-4, -3, -2, -1, 0, 1, 2, 3, 8\}.$$

Hence $\{\ell_1, \ell_2, \ldots, \ell_9\} = \{5, 7, 9, 12, 14, 16, 18, 20, 26\}$ and we obtain the following 9-sun S with vertices in Z_{37}:

$$S = \begin{pmatrix} 0 & -1 & 1 & -2 & 2 & -3 & 3 & -4 & 8 \\ 14 & 12 & 16 & 9 & 18 & 7 & 20 & 5 & 26 \end{pmatrix},$$

such that $\Delta S = Z_{37} \setminus \{0\}$. Therefore, $\text{Orb}_{Z_{37}} S$ is a 9-sun system of K_{37}.

From now on, we assume that p is an odd prime number and denote by Σ the following p-sun:

$$\Sigma = \begin{pmatrix} c_0 & c_1 & \ldots & c_{p-2} & c_{p-1} \\ \ell_0 & \ell_1 & \ldots & \ell_{p-2} & \ell_{p-1} \end{pmatrix}.$$

Lemma 6.4. Let p be an odd prime. For any $x, y \in Z_p$ with $x \neq 0$ and any $i, j \in Z_m$ with $i \neq j$ there exists a p-sun S such that $\Delta_{ii} S = \pm x$, $\Delta_{jj} S = y$, $\Delta_{ji} S = -y$ and $\Delta_{hk} S = \emptyset$ for any $(h,k) \in (Z_m \times Z_m) \setminus \{(i,i), (i,j), (j,i)\}$.

Proof. It is easy to see that $S = \text{Dev}_{Z_p \times \{0\}}((0,i) \sim (x,i) \sim (y + x,j))$ is the required p-sun.

We will call such a p-sun a sun of type (i,j). For the following it is important to note that if S is a p-sun of type (i,j), then $|\Delta_{ii} S| = 2$, $|\Delta_{jj} S| = 0$ and $|\Delta_{ij} S| = |\Delta_{ji} S| = 1$.

The following two propositions provide us p-sun systems of K_{mp+1} whenever $m \in \{3, 5\}$ and $p \equiv m - 2 \pmod 4$.

Proposition 6.5. Let $p \equiv 1 \pmod 4 \geq 13$ be a prime. Then there exists a p-sun system of K_{3p+1}.

Proof. We have to distinguish two cases according to the congruence of p modulo 12.

Case 1. Let $p \equiv 1 \pmod 12$.

If \(p = 13 \), we construct a 13-sun system of \(K_{40} \) as follows. Let \(S \) be the following 13-sun whose vertices are labelled with elements of \((\mathbb{Z}_{13} \times \mathbb{Z}_4) \cup \{ \infty \} \):

\[
S = \left\{ \begin{array}{c}
\infty & (2, 1) & (4, 2) & (8, 0) & (3, 1) & (6, 2) & (12, 0) \\
(0, 2) & (4, 1) & (8, 1) & (3, 2) & (6, 0) & (12, 1) & (11, 2) \\
(11, 1) & (9, 2) & (5, 0) & (10, 1) & (7, 2) & (1, 0) \\
(9, 0) & (5, 1) & (10, 2) & (7, 0) & (1, 1) & (2, 2) \\
\end{array} \right\},
\]

We have:

\[
\Delta_{12} S = \Delta_{21} S = \pm \{2, 3, 4, 6\}, \quad \Delta_{02} S = \Delta_{20} S = \pm \{1, 4, 5, 6\},
\]

\[
\Delta_{01} S = -\Delta_{10} S = \{1, -2, \pm 3, \pm 5\}, \quad \Delta_{00} S = \Delta_{22} S = \emptyset, \quad \Delta_{11} S = \pm \{2\}.
\]

Now it remains to construct a set \(T \) of edge-disjoint 13-suns such that

\[
\Delta_{12} T = \Delta_{21} T = \{0, \pm 1, \pm 5\}, \quad \Delta_{02} T = \Delta_{20} T = \{0, \pm 2, \pm 3\},
\]

\[
\Delta_{01} T = -\Delta_{10} T = \{0, -1, 2, \pm 4, \pm 6\}, \quad \Delta_{00} T = \Delta_{22} T = \mathbb{Z}_{13}^*, \quad \Delta_{11} T = \mathbb{Z}_{13}^* \setminus \{ \pm 2 \}.
\]

In order to do this it is sufficient to take, \(T = \{T^i_{01} \mid i \in [1, 4]\} \cup \{T^i_{02} \mid i \in [1, 2]\} \cup \{T^i_{10} \mid i \in [1, 3]\} \cup \{T^i_{12} \mid i \in [1, 2]\} \cup \{T^i_{20} \mid i \in [1, 3]\} \cup \{T^i_{21} \mid i \in [1, 3]\} \),

where:

\[
T^i_{01} = \text{Dev}_{\mathbb{Z}_{13} \times \{0\}}((0, 0) \sim (x_1, 0) \sim (y_i + x_1, 1)), \text{ where } x_1 \in [1, 4], y_i \in \pm \{4, 6\},
\]

\[
T^i_{02} = \text{Dev}_{\mathbb{Z}_{13} \times \{0\}}((0, 0) \sim (x_1, 0) \sim (y_i + x_1, 2)), \text{ where } x_1 \in [5, 6], y_i \in \pm \{2\},
\]

\[
T^i_{10} = \text{Dev}_{\mathbb{Z}_{13} \times \{0\}}((0, 1) \sim (x_1, 1) \sim (y_i + x_1, 0)), \text{ where } x_1 \in [1, 3, 4], y_i \in \{0, -1, 2\},
\]

\[
T^i_{12} = \text{Dev}_{\mathbb{Z}_{13} \times \{0\}}((0, 1) \sim (x_1, 1) \sim (y_i + x_1, 2)), \text{ where } x_1 \in [5, 6], y_i \in \{1\},
\]

\[
T^i_{20} = \text{Dev}_{\mathbb{Z}_{13} \times \{0\}}((0, 2) \sim (x_1, 2) \sim (y_i + x_1, 0)), \text{ where } x_1 \in [1, 3], y_i \in \{0, \pm 3\},
\]

\[
T^i_{21} = \text{Dev}_{\mathbb{Z}_{13} \times \{0\}}((0, 2) \sim (x_1, 2) \sim (y_i + x_1, 1)), \text{ where } x_1 \in [4, 6], y_i \in \{0, \pm 5\}.
\]

We have that \(T \cup \text{Orb}_{\mathbb{Z}_{13} \times \{0\}} S \) is a 13-sun system of \(K_{40} \).

Suppose now that \(p \geq 37 \). We proceed in a very similar way to the previous case. Let \(r \) be a primitive root of \(\mathbb{Z}_p \). Consider the \((\{\mathbb{Z}_p \times \mathbb{Z}_4\} \cup \{\infty\}) \)-labeling \(B \) of \(\Sigma \) so defined:

\[
B(c_0) = \infty, \quad B(c_i) = (r^i, i) \quad \text{for } 1 \leq i \leq p - 1
\]

\[
B(\ell_0) = (0, 2); \quad B(\ell_i) = \begin{cases}
(r^{i+1}, i) & \text{for } i \in [1, \frac{p-1}{3}] \text{ with } i \equiv 1 \pmod{3}, \\
(r^{i-1}, i) & \text{for } i \in [\frac{p+1}{2}, \frac{3p-27}{4}] \text{ with } i \equiv 1 \pmod{3}.
\end{cases}
\]

Letting \(S = B(\Sigma) \), it is immediate that the labels of the vertices of \(S \) are pairwise distinct. Note that

\[
|\Delta_{00} S| = |\Delta_{22} S| = 0, \quad |\Delta_{11} S| = \frac{p - 9}{2}, \quad |\Delta_{01} S| = |\Delta_{10} S| = \frac{5p + 7}{12},
\]

\[
|\Delta_{ij} S| = \frac{2p - 2}{3} \quad \text{for } (i, j) \in \{(0, 2), (1, 2), (2, 0), (2, 1)\}.
\]

Hence, reasoning as in previous case, we have to construct a set \(T \) of \(p \)-suns such that if \(i \neq j \) then \(\Delta_{ij} T = \mathbb{Z}_p \times \mathbb{Z}_4 \setminus \Delta_{ij} S \) is a set and also \(\Delta_{0i} T = \mathbb{Z}_p \times \mathbb{Z}_4 \setminus \Delta_{0i} S \) is a set. In particular, this implies that for any \(T, T' \in T \) we have \(\Delta_{ij} T \cap \Delta_{ij} T' = \emptyset \) and that \(|\Delta_{0i} T| = |\Delta_{22} T| = p - 1, \quad |\Delta_{11} T| = \frac{2p - 7}{4}, \quad |\Delta_{ij} T| = \frac{p-1}{2} \quad \text{for } (i, j) \in \{(0, 2), (1, 2), (2, 0), (2, 1)\} \), and \(|\Delta_{0i} T| = |\Delta_{10} T| = \frac{2p - 7}{4} \). In order to do this it is sufficient to take \(T \) as a set consisting of \(\frac{p-1}{2} \) sums of type \((0, 1) \), \(\frac{p-1}{12} \) sum of
type $(1, 0)$, $\frac{p+1}{3}$ suns of type $(1, 2)$, $\frac{p+2}{3}$ suns of type $(2, 0)$, $\frac{p-7}{6}$ suns of type $(2, 1)$, which exist in view of Lemma 6.4. We have that $\text{Orb}_{\mathbb{Z}_p \times \{0\}} S \cup T$ is a p-sun system of K_{3p+1}.

Case 2. Let $p \equiv 5$ (mod 12). Let r be a primitive root of \mathbb{Z}_p. Consider the $((\mathbb{Z}_p \times \mathbb{Z}_3) \cup \{\infty\})$-labeling B of Σ so defined:

$$B(c_0) = \infty; \quad B(c_i) = (r^i, i) \quad \text{for} \quad 1 \leq i \leq p-2; \quad B(c_{p-1}) = (1, 0);$$

$$B(\ell_0) = (0, 2); \quad B(\ell_1) = (r, 2); \quad B(\ell_i) = \begin{cases} (r^{i-1}, i+1) & \text{for} \quad i \in [2, \frac{p-1}{2}] \\ (r^{i+1}, i+2) & \text{for} \quad i \in [\frac{p+1}{2}, p-3] \end{cases}$$

$$B(\ell_{p-2}) = (1, 1); \quad B(\ell_{p-1}) = (1, 2);$$

except for $\frac{p-17}{6}$ values of $i \equiv 0$ (mod 3) with $i \in [3, \frac{p-1}{2}]$ for which we set $B(\ell_i) = (r^{i-1}, i)$ and $\frac{p-5}{12}$ values of $i \equiv 0$ (mod 3) with $i \in [\frac{p+1}{2}, p-5]$ for which we set $B(\ell_i) = (r^{i+1}, i)$. Letting $S = B(\Sigma)$, it is easy to see that the labels of the vertices of S are pairwise distinct. Note that

$$|\Delta_{00} S| = \frac{p-9}{2}, \quad |\Delta_{11} S| = |\Delta_{22} S| = 0, \quad |\Delta_{01} S| = |\Delta_{10} S| = \frac{p+1}{2},$$

$$|\Delta_{02} S| = |\Delta_{20} S| = \frac{7p+1}{12}, \quad |\Delta_{12} S| = |\Delta_{21} S| = \frac{2p-4}{3}.$$

Hence, we have to construct a set T of p-suns such that $|\Delta_{11} T| = |\Delta_{22} T| = p-1$, $|\Delta_{00} T| = \frac{p+1}{2}$, $|\Delta_{01} T| = |\Delta_{10} T| = \frac{p-1}{2}$, $|\Delta_{02} T| = |\Delta_{20} T| = \frac{5p-1}{12}$, and $|\Delta_{12} T| = |\Delta_{21} T| = \frac{5p+1}{12}$. In order to do this it is sufficient to take T as a set consisting of $\frac{p+2}{3}$ suns of type $(0, 1)$, $\frac{p-9}{12}$ suns of type $(1, 0)$, $\frac{p-7}{6}$ suns of type $(2, 0)$, and $\frac{p-5}{12}$ suns of type $(2, 1)$ which exist in view of Lemma 6.4. We have that $\text{Orb}_{\mathbb{Z}_p} S \cup T$ is a p-sun system of K_{3p+1}. □

Proposition 6.6. For any prime $p \equiv 3$ (mod 4) there exists a p-sun system of K_{5p+1}.

Proof. Set $p = 4n + 3$, and let $Y = [1, n]$ and $X = [n+1, 2n+1]$. Consider the following $((\mathbb{Z}_p \times \mathbb{Z}_5) \cup \{\infty\})$-labeling B of Σ defined as follows:

$$B(c_0) = (0, 0); \quad B(c_i) = (-1)^{i+1}(i, 1) \quad \text{for} \quad i \in [1, p-1];$$

$$B(\ell_0) = \infty; \quad B(\ell_y) = (-1)^y(y, -1) \quad \text{for} \quad y \in Y;$$

$$B(\ell_{2n+1}) = (-2n-1, 3); \quad B(\ell_{2n+2}) = (-2n-1, -3);$$

$$B(\ell_i) = (-1)^i(i, 3) \quad \text{for} \quad i \in [1, p-1] \setminus (Y \cup \{2n+1, 2n+2\}).$$

One can directly check that the vertices of $S = B(\Sigma)$ are pairwise distinct. Also, it is not hard to verify that ΔS does not have repetitions and that its complement in $(\mathbb{Z}_p \times \mathbb{Z}_5) \setminus \{(0, 0)\}$ is the set

$$D = \{ \pm(2x, 0) \mid x \in X \} \cup \{ \pm(2y, 4) \mid y \in Y \} \cup \{ \pm(0, 1) \}.$$

Clearly, D can be partitioned into $n+1$ quadruples of the form $D_x = \{ \pm(2x, 0), \pm(r_x, s_x) \}$ with $x \in X$ and $s_x \neq 0$. Letting

$$S_x = D_{\text{ev}_{\mathbb{Z}_p \times \{0\}}}(0, 0) \sim (2x, 0) \sim (r_x + 2x, s_x)$$

for $x \in X$, it is clear that $\Delta S_x = D_x$, hence $\Delta \{S_x \mid x \in X\} = D$. Therefore, Corollary 2.2 guarantees that $\bigcup_{x \in X} \text{Orb}_{\mathbb{Z}_p \times \mathbb{Z}_5}(S_x) \cup \text{Orb}_{\mathbb{Z}_p \times \mathbb{Z}_5}(S) = \bigcup_{x \in X} \text{Orb}_{\mathbb{Z}_p \times \mathbb{Z}_5}(S_x)$ is a p-sun system of K_{5p+1}. □
Example 6.7. Here, we construct a 7-sun system of K_{36} following the proof of Proposition 6.6. In this case, $Y = \{1\}$ and $X = \{2, 3\}$. Now consider the 7-sun S defined below, whose vertices lie in $(\mathbb{Z}_7 \times \mathbb{Z}_9) \cup \{\infty\}$:

$$S = \begin{pmatrix}
(0, 0) & (1, 1) & -(2, 1) & (3, 1) & -(4, 1) & (5, 1) & -(6, 1) \\
\infty & -(1, -1) & (2, 3) & (-3, 3) & -(3, 3) & (5, 3) & (6, 3)
\end{pmatrix}.$$

We have

$$\Delta S = \pm \{(1, 1), (3, 2), (5, 2), (0, 2), (2, 2), (4, 2), (6, 1), (2, 0), (4, 4), (6, -2), (1, -2), (3, 4), (5, 4)\}.$$

Hence ΔS does not have repetitions and its complement in $(\mathbb{Z}_7 \times \mathbb{Z}_9) \setminus \{(0, 0)\}$ is the set

$$D = \pm \{(4, 0), (6, 0), (2, 4), (0, 1)\}.$$

Now it is sufficient to take

$$S_2 = Dev_{\mathbb{Z}_7 \times \{0\}}((0, 0) \sim (4, 0) \sim (6, 4)) \quad S_3 = Dev_{\mathbb{Z}_7 \times \{0\}}((0, 0) \sim (6, 0) \sim (6, 5)).$$

One can check that $\bigcup_{x \in X} Orb_{0 \times \mathbb{Z}_9}(S_x) \cup Orb_{\mathbb{Z}_7 \times \mathbb{Z}_9}S$ is a 7-sun system of K_{36}.

We finally construct p-sun systems of K_{mp} whenever $p \equiv m \pmod{4}$.

Proposition 6.8. Let m and p be odd prime numbers with $m \leq p$ and $m \equiv p \pmod{4}$. Then there exists a p-sun system of K_{mp}.

Proof. For each pair $(r, s) \in \mathbb{Z}_p^* \times \mathbb{Z}_m$, let $B_{r,s} : V(\Sigma) \to \mathbb{Z}_p \times \mathbb{Z}_m$ be the labeling of the vertices of Σ defined as follows:

$$B_{r,s}(c_0) = (0, 0),$$
$$B_{r,s}(c_i) = B_{r,s}(c_{i-1}) + \begin{cases}
(r, s) & \text{if } i \in [1, m+1] \cup \{m+3, m+5, \ldots, p-1\}, \\
(r, -s) & \text{if } i \in \{m+2, m+4, \ldots, p-2\},
\end{cases}$$
$$B_{r,s}(\ell_i) = B_{r,s}(c_i) + \begin{cases}
(r, -s) & \text{if } i \in [0, m] \cup \{m+2, m+4, \ldots, p-2\}, \\
(r, s) & \text{if } i \in \{m+1, m+3, \ldots, p-1\}.
\end{cases}$$

Since $B_{r,s}$ is injective, for every $h \in \mathbb{Z}_m$ the graph $S^h_{r,s} = \tau_{(0,h)}(B_{r,s}(\Sigma))$ is a p-sun.

For $i, j \in \mathbb{Z}_m$, we also notice that $\Delta \{S^h_{r,s} \mid h \in \mathbb{Z}_m\} = \{\pm r\}$ whenever $i \neq j$. Otherwise, it is empty.

Letting S be the union of the following two sets of p-suns:

$$\{S^h_{r,1} \mid h \in \mathbb{Z}_m, r \in [1, (p + m - 2)/4]\},$$
$$\{S^h_{r,s} \mid h \in \mathbb{Z}_m, r \in [1, (p-1)/2], s \in [2, (m-1)/2]\},$$

it is not difficult to see that for every $i, j \in \mathbb{Z}_m$

$$\Delta_{ij}S = \begin{cases}
\emptyset & \text{if } i = j, \\
\pm \left[1, \frac{p+m-2}{4}\right] & \text{if } i-j = \pm 1, \\
\mathbb{Z}_p^* & \text{otherwise.}
\end{cases}$$

It is left to construct a set T of p-suns such that $\Delta_{ij}T = \mathbb{Z}_p \setminus \Delta_{ij}S$ whenever $i \neq j$, and $\Delta_{ii}T = \mathbb{Z}_p^* \setminus \Delta_{ii}S = \mathbb{Z}_p^*$. Therefore,

$$|\Delta_{ij}T| = \begin{cases}
p-1 & \text{if } i = j, \\
\frac{p-m-1}{2} + 1 & \text{if } i - j = \pm 1, \\
1 & \text{otherwise.}
\end{cases}$$
Proof of Theorem 6.1

We end this section by proving Theorem 6.1. One can check that \(\Delta_{ij} \) is an odd prime. In other words, the necessary conditions for the existence of a \(p \)-sun system of \(K_r \) are also sufficient whenever \(p \) is an odd prime. In other words, we end this section by proving Theorem 6.1.

\[\Delta_{ij} \{S_{r,1}^h, S_{r,1}^i, S_{r,1}^j} \} = \{ \pm r \} \] if \(i \neq j \), otherwise it is empty.

Therefore, letting \(S = \{ S_{r,1}^h \mid h \in Z_3, r \in [1, 3] \} \), we have that \(\Delta_{ij}S \) is non-empty only when \(i \neq j \), in which case we have \(\Delta_{ij}S = \pm [1, 3] \).

Now let \(T = \{ T_{hg} \mid h \in Z_3, g \in [1, 5] \} \) where \(T_{hg} \) is the 11-sun defined as follows:

\[T_{hg} = \{ (0, h) \sim (1, h) \sim (1, h+1) \}, \]

Note that each \(T_{hg} \) is an 11-sun of type \((h, h+1)\). Therefore we have that

\[\Delta_{ij}T = \begin{cases} \{ \pm[1, 5] \} & \text{if } 0 \leq i = j \leq 2, \\ \{0\} \cup [4, 7] & \text{otherwise.} \end{cases} \]

By Corollary 2.2 it follows that \(S \cup T \) is an 11-sun system of \(K_{33} \).

We are now ready to show that the necessary conditions for the existence of a \(p \)-sun system of \(K_r \) are also sufficient whenever \(p \) is an odd prime. In other words, we end this section by proving Theorem 6.1.

Proof of Theorem 6.1

If \(p = 3, 5 \) the result can be found in [10] and in [8], respectively. For \(p \geq 7 \), the result follows from Propositions [6.5, 6.6] and [6.8].

Acknowledgements

The authors gratefully acknowledge support from GNSAGA of Istituto Nazionale di Alta Matematica.

References

[1] B. Alspach, H. Gavlas, *Cycle decomposition of \(K_n \) and \(K_n-I \)*, J. Combin. Theory Ser. B 81 (2001), 77–99.
[2] A. Benini, A. Pasotti, *On the existence of elementary abelian cycle systems*, Graphs Combin. 25 (2009), 1–14.
[3] J.-C. Bermond, O. Favaron, M. Mahéo, *Hamiltonian decomposition of Cayley graphs of degree 4*, J. Combin. Theory Ser. B 46 (1989), 142–153.
[4] J.C. Bermond, C. Huang, G. Sotteau, *Balanced cycles and circuit designs: Even case*, Ars Combin. 5 (1978), 293–318.
[5] M. Buratti, *Rotational \(k \)-cycle systems of order \(v < 3k \); another proof of the existence of odd cycle systems*, J. Combin. Des. 11 (2003), 433–441.
[6] M. Buratti, *Existence of 1-rotational \(k \)-cycle systems of the complete graph*, Graphs Combin. 20 (2004), 41–46.
[7] M. Buratti, A. Del Fra, *Existence of cyclic \(k \)-cycle systems of the complete graph*, Discrete Math. 261 (2003), 113-125.
[8] C.-M. Fu, M.-H. Huang, Y.-L. Lin, On the existence of 5-sun systems, Discrete Math. 313 (2013), 2942–2950.
[9] C.-M. Fu, N.-H. Jhuang, Y.-L. Lin, H.-M. Sung, On the existence of k-sun systems, Discrete Math. 312 (2012) 1931–1939.
[10] C.-M. Fu, N.-H. Jhuang, Y.-L. Lin, H.-M. Sung, From Steiner triple systems to 3-sun systems, Taiwanese J. Math. 16 (2012), 531–543.
[11] D.G. Hoffman, C.C. Lindner, C.A. Rodger, On the construction of odd cycle systems, J. Graph Theory 13 (1989), 417–426.
[12] Z. Liang, J. Guo, Decomposition of complete multigraphs into crown graphs, J. Appl. Math. Comput. 32 (2010), 507–517.
[13] M. Sajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), 27–78.
[14] R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer. 15 (1976), 647–659.
[15] S.-L. Wu, M. Buratti, A complete solution to the existence problem for 1-rotational k-cycle systems of K_v, J. Combin. Des. 17 (2009), 283–293.

Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, I-06123 Perugia, Italy
E-mail address: buratti@dmi.unipg.it

DICATAM - Sez. Matematica, Università degli Studi di Brescia, Via Branze 43, I-25123 Brescia, Italy
E-mail address: anita.pasotti@unibs.it

DICATAM - Sez. Matematica, Università degli Studi di Brescia, Via Branze 43, I-25123 Brescia, Italy
E-mail address: tomaso.traetta@unibs.it