Efficient Conjugation of Aflatoxin M1 With Bovine Serum Albumin through Aflatoxin M1-(O-carboxymethyl) Oxime and Production of Anti-aflatoxin M1 Antibodies

Fatemeh Khademi 1; Masoud Mohammadi 2; Amir Kiani 3; Reza Haji Hosseini Baghdadabadi 2; Shahram Parvaneh 1; Ali Mostafaie 1

1 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
2 Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, IR Iran
3 School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, IR Iran

Corresponding author: Ali Mostafaie, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, IR Iran. Tel: +98-8314279923, Fax: +98-8314276477; E-mail: ammosta@kums.ac.ir

Received: December 14, 2013; Revised: April 27, 2014; Accepted: July 7, 2014

Background: Aflotoxins are the most extensively studied group of mycotoxins produced by molds, especially the Aspergillus group, which are highly toxic to animals and humans.

Objectives: Since immunoassay is a simple and rapid method for the analysis of many toxic substances in comparison to the chromatographic methods, it is necessary to produce specific and sensitive antibodies for detection of Aflatoxin M1 (AFM1). The current study was conducted to produce bioconjugate of Aflatoxin M1 (AFM1) with Bovine Serum Albumin (BSA) as well as to generate specific antibodies against AFM1 for immunoassay of the mycotoxin.

Materials and Methods: First, AFM1 was converted to AFM1-O-(O-carboxymethyl) oxime derivative. Then, AFM1-oxime was coupled with BSA and the product was assessed by UV-VIS spectrophotometry. In order to generate polyclonal antibodies against AFM1, rabbits were immunized with BSA-AFM1 conjugate. Produced antibodies were purified using ion exchange chromatography and BSA-Sepharose 4B affinity chromatography. The titers and specificity of the prepared antibody were determined by Enzyme-Linked Immunosorbent Assay (ELISA).

Results: The results indicated that coupling of AFM1 with O-(O-carboxymethyl) hydroxylamine hemihydrochloride was suitable and 12 moles of AFM1-oxime were successfully coupled to each mole of BSA. In addition, the titers and specificity of the prepared antibody were considerable compared to standard anti-AFM1 antibodies. The relative cross-reactivity of each toxin (relative to AFM1) with purified anti-AFM1 antibodies, as determined by the amount of aflatoxin necessary to cause 50% inhibition of enzyme activity, was 70, 105, 240, and 2500 ng/mL for AFB1, AFB2, AFG1, and AFG2, respectively.

Conclusions: The prepared antibody can be used for the development of an ELISA kit to assay AFM1 in milk and other biological fluids.

Keywords: Aflatoxin M1; Bovine Serum Albumin; Toxin Conjugate; ELISA

1. Background

Aflotoxins are the most extensively studied group of mycotoxins produced by molds, especially the Aspergillus group (Aspergillus parasiticus, A. flavus, A. nomius), which are highly toxic to animals and humans (1). Aflatoxin M1 (AFM1) is the main hepatic carcinogenic metabolite of aflatoxin B1 (AFB1) with weaker carcinogenicity compared to AFB1 (2, 3). AFM1 appears initially in animal tissues and biological fluids (milk and urine) after intake of foods contaminated with AFB1 and its subsequent conversion into AFM1 through hydroxylation (4, 5).

Considering that milk and dairy products constitute an essential component of human diets and AFM1 is heat-stable and remains by milk pasteurization, sterilization, or freezing, ingestion of dairy products is the primary route of AFM1 entering into the body. Therefore, early detection of AFM1 in dairy products may act as an appropriate alarm indicating the possibility of health hazard (6, 7). Many countries have performed studies about the incidence of AFM1 in milk and dairy products (8-10). Despite the fact that specific antibodies against AFM1 have been prepared and various immunoassays have been developed for detection of the toxins in food (11-20), there is still a need for a fast, reliable, and more sensitive analytical method for quantifying small amounts of AFM1.

There are a variety of chromatographic methods commonly used for the analysis of AFM1 and other aflatoxins in many different foods such as thin-layer chromatography (21), high-performance liquid chromatography (22, 23), immunoaffinity chromatography combined with high-performance liquid chromatography (24), and over-
pressured layer chromatography (25). Although these methods are sensitive, they are time-consuming and require complicated instrumentation (26, 27). Since immunoassay provides a simple and rapid method for the analysis of many toxic substances in comparison to the methods mentioned above (28, 29), it is necessary to design specific and sensitive antibodies for AFM$_1$ detection. In the present study, we describe efficient conjugation of AFM$_1$ to Bovine Serum Albumin (BSA) through AFM$_1$-(O-carboxymethyl) oxime derivative and we also attempt to produce rabbit anti-AFM$_1$ antibodies with proper specificity and purity. This antibody can then be used to develop an ultrasensitive ELISA kit for detection of AFM$_1$ in milk and other biological fluids.

2. Objectives

The current study was conducted to produce bioconjugate of AFM$_1$ with BSA as well as to generate specific antibodies against AFM$_1$ for immunoassay of the mycotoxin.

3. Materials and Methods

3.1. Preparation of AFM$_1$-(O-carboxymethyl) Oxime Derivative

Hsu and Chu (14) reported a useful method for coupling aflatoxin to protein. Here, we intend to describe a modification of the method proposed by Hsu and Chu. Since AFM$_1$ lacks a reactive group to conjugate with carrier proteins such as BSA, AFM$_1$ (Sigma, USA) was converted to AFM$_1$-(O-carboxymethyl) oxime (AFM$_1$-oxime) as follows: 152 μg of O-(Carboxymethyl) hydroxylamine hemihydrochloride (Sigma, USA) in 1 mL of deionized water was mixed with 100 μg of AFM$_1$ in 4 mL methanol, and then 1 mL of pyridine was added to the mixture. The mixture was refluxed for 3 hours and incubated at room temperature for an overnight. After reaction, the solvents were removed by rotary evaporator. The reaction product (AFM$_1$-oxime) was orange yellow in color, possessing a reactive carbonyl group and able to react with the amine groups of proteins.

The reaction product and aflatoxin standard were dissolved in chloroform and analyzed by thin-layer chromatography (TLC). TLC was performed by spotting the sample and aflatoxin standard near the base of a silica gel plate followed by developing the TLC plate in acetone-chloroform (1:9). In addition, the product of the reaction was analyzed by Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) using an ODS column (150 mm × 4.6 mm). AFM$_1$ at the concentration of 10 ppb in methanol (as standard), carboxymethyl hydroxylamine at the concentration of 10 ppb in water and AFM$_1$-oxime at the concentration of 10 ppb in methanol were prepared. About 20 μL of each sample and standard were injected into the HPLC system. Isocratic solution of methanol-acetonitrile was used as the mobile phase. Elution was monitored by a spectrophotometric detector (RF-551, Shimadzu, Kyoto, Japan) operated at excitation and emission wavelengths of 365 and 420 nm, respectively. The column oven temperature was kept constant at 35°C and the mobile phase was filtered, degassed and pumped at a flow rate of 2.2 mL/min.

3.2. Conjugation of AFM$_1$-(O-carboxymethyl) Oxime to Bovine Serum Albumin

One hundred microliter of AFM$_1$-oxime in 400 μL of 25% ethanol containing 6.5 mg EDS was mixed with 200 μg of BSA (Sigma, St. Louis, MO, USA) in 20 μL of 0.05 M sodium phosphate buffer (pH 7.2). The reaction mixture was stirred at room temperature for 48 hours in complete darkness. Two additional 6.5 mg portions of EDS were added to the reaction mixture during this period. After reaction, the mixture was dialyzed against deionized water for 24 hours, with 3 times water change, followed by centrifuging at 10000 × g for 10 minutes. The conjugation of AFM$_1$-oxime to BSA was analyzed by UV-VIS spectrophotometry against pure BSA.

3.3. Immunizations

Female rabbits, 6-8 weeks old, were obtained from Razi Institute (Tehran, Iran) and immunized with the AFM$_1$-BSA conjugate as follows: about 150 μL of AFM$_1$-BSA conjugate (500 μg/mL) was emulsified with equal volume of Complete Freund’s adjuvant (CFA, Sigma) for the first injection and Incomplete Freund’s adjuvant (IFA, Sigma) for the booster injections with 2-weeks intervals. The first injection was performed intradermally at 5 points on the animal’s back and sides. The booster injections were introduced intramuscularly. A normal rabbit was immunized with BSA as described previously. Starting at 3 or 4 weeks after the initial immunization, rabbits were bled on biweekly intervals and antibody titters were determined by an indirect ELISA. Rabbits were bled 3 weeks after final injection, the time when desirable titers of antibody were found. Antiserum was separated from the clot by centrifugation at 4000 × g (4°C) for 30 minutes and purified as follows.

3.4. Purification of IgG Fraction of Rabbit Serum

The serum was diluted thrice with PBS and half saturated (50%) with ammonium sulfate. The precipitated fraction was separated by centrifugation and dialyzed against 100 mM Tris-HCl buffer pH 7.8 and purified by a DEAE-Sephacel (Amersham Pharmacia Biotech) column equilibrated with the same buffer.

3.5. Affinity Chromatography With Bovine Serum Albumin Ligand

For further purification of BSA-AFM$_1$ antibody, the antibody produced against AFM$_1$ was negatively selected by a BSA-Sepharose 4B affinity column. In order to prepare affinity medium, CNBr-activated Sepharose 4B (Amersham Pharmacia Biotech) was swollen in adequate 1 mM HCl for two hours. For each milliliter of the swollen resin, 5 mg
of BSA in 0.1 M carbonate buffer, pH 8.5 containing 0.5 M NaCl was added and the mixture was stirred for 2 hours at RT. Residual active sites were blocked with 0.2 M glycine containing 0.5 M NaCl. The resin was washed thrice with alternate buffers (50 mM acetate buffer pH 4 and 50 mM carbonate buffer pH 9 containing 0.5 M NaCl), then loaded on to a column and equilibrated with phosphate buffered saline (PBS) pH 7.2. The purified IgG fraction at concentration of 5 mg/mL was applied to the column, and the column was washed with PBS till the absorbance of effluents reached zero at 280 nm. Finally, 3 column volumes of 0.1 M glycine with pH 2.7 were used to elute bound antibodies from the column.

3.6. Enzyme-linked Immunosorbent Assay

ELISA method was used to determine the titers of prepared antiserums and purified antibodies as well as the cross reaction of purified antibodies with other aflatoxins (AFB₆, AFB₁, AFB₂, AFG₁, AFG₂). The optimal dilution of antigen pre-coated on the microtiter plate was determined by a checkerboard test. One hundred microliter of antigen (AFM₁-BSA or BSA at 5 µg/mL in PBS) was coated for 2 hours at 37°C. After 3 times of washing with PBS containing 0.05% (v/v) Tween 20 (PBS-T), nonspecific sites were blocked with PBS-BSA 2% (w/v) for 2 hours followed by 2 washes with PBS-T. 100 µL of 1:10000 to 1:64000 dilutions of the antiserums, purified antibodies or standard antiserums were added to each well and incubated for 1 hour at 37°C. The plates were washed 5 times with PBS-T and 100 µL of 1:100000 dilutions of secondary antibodies (goat anti-rabbit IgG conjugated with HRP, prepared in our laboratory) was added to each well. Plates were incubated for 45 minutes at 37°C and after 5 times of washing, 100 µL of TMB substrate solution (Sigma, St. Louis, MO, USA) was added. After 20 minutes of incubation in a dark place, the reaction was stopped with 100 µL of 5% solution of sulfuric acid. Absorbance of wells was read by a plate reader (Stat Fax 2100, Awareness Technology Inc. Palm City, USA) at 450 nm.

3.7. Analytical Methods

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was performed using 12.5% separating and 4% stacking gels containing 0.1% SDS (30). Protein samples were heated in boiling water for 5 minutes and resolved at 50 V for 30 minutes and 150 V for 1 hour followed by Coomassie Blue R250 staining. The protein concentrations were determined by the method of Bradford (31) using BSA as the standard protein.

4. Results

4.1. Preparation of Aflatoxin M₁-(O-carboxymethyl) Oxime

In order to confirm the coupling of AFM₁ to O-(Carboxymethyl) hydroxylamine hemihydrochloride, the reaction product was analyzed by TLC and RP-HPLC. Analysis of the product by TLC plate developed in acetone-chloroform (1:9) yielded two spots, using UV detector (Figure 1). The minor spot in the upper part of the gel had the same Rf value as the standard aflatoxin (Figure 1 lane A), and the major spot with lower Rf value was the AFM₁-oxime derivative (Figure 1 lane B).

For further confirmation of the AFM₁, coupling to O-(Carboxymethyl) hydroxylamine hemihydrochloride, the standard aflatoxin and the reaction product at the concentrations of 10 ppb were injected into the RP-HPLC system and retention times were measured. Figure 2 A shows the pattern of standard aflatoxin (retention time 9 minutes, peak B). The other peaks in this Figure correspond to the solvent. Figure 2 B shows the pattern of reaction product, which includes a major peak (retention time 6 minutes, peak A) and a minor peak (peak B) that eluted at the same retention time as standard aflatoxin peak. Peak B, which is negligible, corresponds to the free aflatoxin. By injection of O-(Carboxymethyl) hydroxylamine into the HPLC system, no peak appeared, indicating that it lacks any absorbance at the wave length of 365 nm and emission wavelength of 420 nm. Therefore, the peak eluted at 6-minute retention time corresponds to the AFM₁-oxim conjugate (peak A in Figure 2 B).

4.2. Conjugation of Aflatoxin M₁-(O-carboxymethyl) Oxime to Bovine Serum Albumin

The UV spectrum of the reaction product from the wave length of 200 - 800 nm showed two peaks (Figure 3). The first peak at the wavelength of 280 nm corresponds to BSA. The peak at the wavelength of 365 nm corresponds to the coupled reaction product. The free AFM₁ molecule was separated from the reaction product by dialyzing against deionized water, so the peak at 365 nm corresponds to BSA-AFM₁ conjugate free of AFM₁ contaminants. The results obtained from spectrometric method indicated that about 12 moles of AFM₁-oxime were successfully coupled to 1 mole of BSA.

4.3. Preparation and Purification of Anti-AFM₁ Antibodies

After each injection of antigen (BSA-AFM₁) to rabbit, the anti-AFM₁ antibody levels of the sera were monitored using a designed indirect ELISA. According to the ELISA results, the antibody titers were relatively weak after first and second injections and desirable titers were obtained 2 weeks after the third injection. The highest titers were observed after the fourth injection. Rabbits were bled two weeks after the last injection, when the maximum titers of antibody (64000 times) were found and the antiserum was prepared. The titers of prepared anti-AFM₁ antiserum were compared to the antiserum of immunized rabbit with standard BSA-AFM₁ conjugate and it was found that the titers of prepared antiserum in this study were suit-
The purity of prepared antibodies was estimated by SDS-PAGE (Figure 4). Ammonium sulfate fractionation caused partial purification of the antibody (Figure 4, lane 6). The first peak obtained from ion exchange chromatography contained IgG fraction with high purity. Reducing SDS-PAGE of this fraction included two intense bands at the MW of 26-27 and about 50 KDa, corresponding to the light and heavy chains of IgG, respectively (Figure 4, lanes 1-2). In Figure 4, lanes 4 and 5 show the protein content of second and third peaks of ion exchange chromatography, respectively that have been eluted from the column, with equilibrium buffer containing 0.1 and 1 M NaCl. They contained other impurities in addition to some parts of IgG.

In order to increase the specificity of antibody against AFM₁ and excluding anti-BSA antibodies, we used BSA-Sepharose 4B affinity chromatography. An indirect ELISA, using BSA or BSA-AFM₁ (5 µg/mL) as the coated antigen, was conducted to ensure that the antibody produced against protein carrier was completely removed by the BSA-Sepharose 4B affinity chromatography. The results showed that the column unbound antibody is very reactive and specific against BSA-AFM₁ (OD; 1 at 1:32000 dilution) and not reactive to BSA at the same dilution. These findings clearly show that the column unbound antibody includes specific antibody against AFM₁ and was successfully separated from the anti-BSA antibody by the affinity chromatography using BSA ligand.

4.4. Determination of Antibody Specificity

Specificity of purified antibodies obtained from rabbits immunized with BSA-AFM₁ was determined by a competitive ELISA. The antibody used in the assay was the BSA-Sepharose 4B affinity purified antibody. Results showed that the purified antibodies have the highest affinity to AFM₁ in comparison to related aflatoxins. Concentrations required to decrease absorbance by 50% (or to displace the bound AFM₁-proxidase) in the presence of different aflatoxins were 1, 70, 105, 240, 2500 ng/mL for AFM₁, AFB₁, AFB₂, AFG₁, and AFG₂, respectively.

5. Discussion

In the present study, we described an optimized method for the preparation of BSA-AFM₁ conjugate through formation of AFM₁-(O-carboxymethyl) oxime derivative and polyclonal antibody against AFM₁. Aflatoxin M₁, like many other aflatoxins is an organic compound with low-molecular weight, which is not sufficiently immunogenic to elicit an immune response alone. The toxin can be made immunogenic by conjugation to a suitable carrier. Since AFM₁ also lacks a reactive group to conjugate with a macromolecule carrier (through derivatization), a free carboxylic group was introduced to the toxin molecule and AFM₁ was converted to AFM₁-(O-carboxymethyl) oxime (AFM₁-oxime) through the method described by Hsu and Chu (14) with some modifications. Notably, preparation of AFM₁-protein conjugates is expensive (AFM₁, €8000.00 per mg) and harmful to the operators. Therefore, we developed some modifications and could produce AFM₁-BSA conjugates only with 0.1 mg AFM₁. In our method by increasing of solvent volumes, the number of effective contacts between reactants decreased and the reaction was carried out over a longer period.

The results obtained from TLC showed that the product (AFM₁-oxime) has more polarity than aflatoxin due to its free carboxyl group and travels a shorter distance on the silica gel plate compared to nonpolar one. Thus, our findings indicate that the reaction progressed well towards the product. The amount of unreacted aflatoxin was negligible and separated from AFM₁-oxime conjugate by dialysis. Subsequently, AFM₁-oxime was conjugated to BSA. Results obtained from spectrometric method showed that 12 moles of AFM₁-oxime were coupled to 1 mole of BSA.

![Figure 1. Consideration of Coupling AFM₁ to O-(Carboxymethyl) Hydroxylamine Hemi Hydrochloride by TLC](image)

Lane A, standard aflatoxin; lane B, AFM₁-(O-carboxymethyl) oxime conjugate.
The titers of prepared antibody were comparable to common standard anti-AFM\textsubscript{1} antibodies. The antibodies obtained from rabbits immunized with BSA-AFM\textsubscript{1} were purified by ammonium sulfate fractionation and ion exchange chromatography. In order to remove anti-BSA antibodies and increase the specificity, we also used BSA-Sepharose 4B affinity chromatography. Since the purified antibody by ion exchange chromatography contains both antibodies against AFM\textsubscript{1} and BSA, the affinity chromatography using BSA ligand is a proper method for removing the antibody produced against the protein carrier. Results obtained from ELISA showed that the antibody resulting from affinity chromatography has proper affinity against BSA-AFM\textsubscript{1}, while the interaction of that with BSA at the same dilution is negligible. The findings clearly showed that the unbounded antibodies to the column included

Since immunoassay provides a simple and rapid method for the analysis of AFM_1 in comparison to high-performance liquid chromatography and thin-layer chromatography, it is necessary to produce antibody against AFM\textsubscript{1} with higher purity and specificity than those of the previous reports. The procedure of producing specific antibodies against aflatoxin M\textsubscript{1} has been described and many research groups have also developed several enzyme immunoassays for AFM\textsubscript{1} detection in milk and milk products (11-18).
a specific antibody for AFM₄ and was successfully separated from the anti-BSA antibodies by affinity chromatography using BSA ligand.

The specificity of purified antibody competition to AFM₄ was determined by direct ELISA with AFM₄-proxidase as the marker. The results showed that the purified antibodies necessary to cause 50% inhibition of enzyme activity were 70, 105, 240, 2500 ng/mL for AB₂₄, AB₂₅, AFG₂, and AFG₂, respectively. Thus, the inhibition of binding prepared anti-AFM₄ antibody to AFM₄ by different aflatoxins is negligible. The higher specificity of the prepared antibody against AFM₄ compared to previous reports is due to the proper conjugation and removal of the antibody produced against BSA by BSA-Sepharose 4B affinity chromatography.

In conclusion, we proposed a useful method for preparation of AFM₄-oxime and conjugation of AFM₄-BSA at a proper molar ratio. Moreover, we produced rabbit antibody against AFM₄ with high purity and specificity; this antibody can be used for development of ultrasensitive ELISA kits to assay AFM₄, in biological fluids.

Acknowledgements

We acknowledge the financial supports from Kermanshah University of Medical Sciences. We thank Ms Fariba Ghanbari for her technical assistance.

Authors’ Contributions

Fatemeh Khademi: Performing analytical methods, writing and revising the manuscript; Masoud Mohammadi: Contributing in all parts of the research; Amir Kiani and RezaHaji hosseini Baghdadabadi: TLC and paraphrasing the results; Shahram Parvaneh: Preparation and purification of antibody; Ali Mostalaei: Study concept and design.

Funding/Support

This study was supported by Medical Biology Research Center, Kermanshah University of Medical Sciences.

References

1. Kurtzman CP, Horn BW, Hesseltine CW. Aspergillus niger, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarill. Antonie Van Leeuwenhoek. 1987;53(3):247-58.
2. Won JJ, Hsieh DP. Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential. Proc Natl Acad Sci U S A. 1987;84(7):2241-4.
3. Cullen JM, Ruebner BH, Hsieh LS, Hyde DM, Hsieh DP. Carcinogenicity of dietary aflatoxin M₁ in male Fischer rats compared to aflatoxin B₁. Cancer Res. 1982;47(1):319-7.
4. Uwai4 AO, Bababunmi EA. The reduced mutagenicity of aflatoxin B₁ due to hydroxylation: observations on five Salmonella typhimurium tester strains. Cancer Lett. 1979;7(4):221-4.
5. Richard JL. Some major mycotoxins and their mycotoxocoses—an overview. Int J Food Microbiol. 2007;119(1-2):2-30.
6. Yaroglu T, Oruc HH, Tayar M. Aflatoxin M₁ levels in cheese samples from some provinces of Turkey. Food Control. 2005;16(10):883-5.
7. Unusan N. Occurrence of aflatoxin M₁ in UHT milk in Turkey. Food Chem Toxicol. 2006;4(4):1519-900.
8. Ghazani MH. Aflatoxin M₁ contamination in pasteurized milk in Tabriz (northwest of Iran). Food Chem Toxicol. 2005;4(7):1624-5.
9. Tekinseven KR, Eken HS. Aflatoxin M₁ levels in UHT milk and kashar cheese consumed in Turkey. Food Chem Toxicol. 2008;46(10):3287-9.
10. Montagna MT, Napoli C, De Giglio O, Iatta R, Barburti G. Occurrence of aflatoxin M₁ in dairy products in southern Italy. Int J Mol Sci. 2008;9(12):2846-21.
11. Harder WH, Chu FS. Production and characterization of antibody against aflatoxin M₁. Experientia. 1979;35(8):309-7.
12. Pestka JJ, Li Y, Harder WH, Chu FS. Comparison of radioimmuno- assay and enzyme-linked immunosorbent assay for determining aflatoxin M₁ in milk. J Assoc Off Anal Chem. 1981;64(2):294-301.
13. Woychik NA, Hindsill BD, Chu FS. Production and characterization of monoclonal antibodies against aflatoxin M₁. Appl Environ Microbiol. 1984;48(6):1096-9.
14. Hsu KH, Chu FS. Production and characterization of antibodies against aflatoxin in laying hens. Food Agric Immunol. 1992;4(3):283-91.
15. Thirumala-Devi K, Mayo MA, Hall AJ, Craufurd PQ, Wheeler TR, Walijar Y, et al. Development and application of an indirect competitive enzyme-linked immunosorbent assay for aflatoxin M₁ in milk and milk-based confectionery. J Agric Food Chem. 2002;50(4):933-7.
16. Maglisiolo M, Mirasoli M, Simoni P, Lelli R, Portansi O, Roda A. Development and validation of an ultrasensitive chemiluminescent enzyme immunoassay for aflatoxin M₁ in milk. J Agric Food Chem. 2005;53(3):3300-5.
17. Anfossi L, Calderara M, Baggiani C, Giovannoni C, Arletti E, Giraudi D. Development and application of solvent-free extraction for the detection of aflatoxin M₁ in dairy products by enzyme immunoassay. J Agric Food Chem. 2008;56(18):3852-7.
18. Wang JJ, Liu BH, Hsu YT, Yu FY. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immuno- chromatographic strip for detecting aflatoxin M₁ in milk. J Food Control. 2011;22(6):696-9.
19. Kanuno I, Bhand S. Fluorimetric immunoassay for multianalyte- sis of aflatoxins. J Anal Chem Methods. 2013;5:84964.
20. Li P, Zhang Y, Lei HT, Wang H, Xu Z, Shen Y, et al. Development of chemiluminescent enzyme immunoassay for the determination of aflatoxin M₁ in milk products. Food Agric Immunol. 2014;26(2):1-13.
21. Var I, Kabak B, Gök F. Survey of aflatoxin B₁ in helva, a traditional Turkish food. Food Chem. 2007;10(1):59-62.
22. Manetta AC, Di Giuseppe I, Giannarco M, Fusaro I, Simonella A, Gramenzi A, et al. High-performance liquid chromatography with post-column derivatisation and fluorescence detection for sensitive determination of aflatoxin M₁ in milk and cheese. J Chromatogr A. 2005;1083(1-2):219-22.
23. Cattaneo TM, Marimoni I, Barzaghi S, Cremenose K, Monti L. Testing the suitability of different high-performance liquid chroma- tographic methods to determine aflatoxin M₁ in a soft fresh Italian cheese. J Chromatogr A. 2013;1289(29):4738-45.
24. Calleri E, Marrubini G, Brusotti G, Massolini G, Caccilanza G. Development and integration of an immunofluorimetric monoligand for the on-line solid-phase extraction and HPLC determina- tion with fluorescence detection of aflatoxin B₁ in aqueous solutions. J Pharm Biomed Anal. 2007;44(2):396-403.
25. Moricz AM, Fater Z, Otta KH, Tyhak E, Mincsovics E. Overpres- sured layer chromatographic determination of aflatoxin B₁, B₂, G₁ and G₂ in red paprika. Microchem J. 2007;83(3):344-40.
26. De Saeger S, Sibanda L, Desmet A, Van Peteghem C. A collabora- tive study to validate novel field immunoassay kits for rapid my- cotoxin detection. Int J Food Microbiol. 2002;72(1-2):335-42.
27. Delmelle BS, De Saeger SM, Sibanda L, Barba-Vetro I, Van Pe- teghem CH. Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B₁ in pig feed. J Agric Food Chem. 2005;53(9):3648-54.
28. Edwards AJ, Durst RA. Flow-injection liposome immunoanaly- sis (FILIA) with electrochemical detection. Electroanal. 1995;7(9):338-45.
29. Piermarini S, Micheli I, Ammda NH, Palleschi G, Moscone D.
Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. *Biosens Bioelectron.* 2007;22(7):1434–40.

30. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature.* 1970;227(5259):680–5.

31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem.* 1976;72:248–54.