Premotor Parkinson’s disease: Overview of clinical symptoms and current diagnostic methods

Michaela Kaiserova1, Zuzana Grambalova1, Sandra Kurcova2, Pavel Otruba2, Hana Prikrylova Vranova1, Katerina Mensikova1, Petr Kanovsky1

Parkinson’s disease (PD) is characterized by typical motor symptoms caused by degeneration of the substantia nigra. However, recent studies show that Lewy pathology in PD is not only present in the midbrain; it is a diffuse synucleinopathy affecting both the central and peripheral nervous system, spreading in a caudo-rostral pattern12. This widespread pathology results in a number of non-motor symptoms, some of which may be present for years before the development of the typical motor symptoms of PD.

The Movement Disorders Society proposed research diagnostic criteria for prodromal PD in 2015 (ref.13) and updated them in 2019 (ref.14). These criteria comprise symptoms with a predictive value for developing PD that has been documented in prospective studies. The criteria have been validated on the general population5, REM sleep behavior disorder patients8, and LRRK2 mutation carriers1; the criteria seem to be a promising tool in identifying PD in the premotor stage13,14.

The best known premotor symptoms of PD include hyposmia, REM sleep behavior disorder (RBD), constipation, and depression; other non-motor features are excessive daytime somnolence, orthostatic hypotension and symptomatic hypotension, erectile or urinary dysfunction, musculoskeletal symptoms, pain, and global cognitive deficit. In this review, we summarize currently available diagnostic methods for these symptoms. We also briefly summarize neuroimaging, polyneuropathy, peripheral markers, and cerebrospinal fluid biomarkers that may be used in the early diagnosis of PD.

Key words: Parkinson’s disease, premotor symptoms, diagnostic methods

INTRODUCTION

Parkinson’s disease (PD) is characterized by typical motor symptoms caused by degeneration of the substantia nigra. However, recent studies show that Lewy pathology in PD is not only present in the midbrain; it is a diffuse synucleinopathy affecting both the central and peripheral nervous system, spreading in a caudo-rostral pattern12. This widespread pathology results in a number of non-motor symptoms, some of which may be present for years before the development of the typical motor symptoms of PD.

The Movement Disorders Society proposed research diagnostic criteria for prodromal PD in 2015 (ref.13) and updated them in 2019 (ref.14). These criteria comprise symptoms with a predictive value for developing PD that has been documented in prospective studies. The criteria have been validated on the general population5, REM sleep behavior disorder patients8, and LRRK2 mutation carriers1; the criteria seem to be a promising tool in identifying PD in the premotor stage13,14.

The best known premotor symptoms of PD include hyposmia, REM sleep behavior disorder (RBD), constipation, and depression; other non-motor features are excessive daytime somnolence, orthostatic hypotension and symptomatic hypotension, erectile or urinary dysfunction, and global cognitive deficit. Pain, sometimes accompanied by musculoskeletal symptoms, may also occur in the premotor phase of PD.

The aim of this review is to summarize the currently available methods for diagnosing the premotor symptoms of PD which may help in the early diagnosis of PD.

Olfactory functions

Olfactory impairment is common in PD; its prevalence is estimated to be 50-90% (ref.15). Olfactory impairment often precedes motor symptoms by years; idiopathic olfactory loss is considered a risk factor for PD (ref.15-17). Questionnaires may be used as a screening instrument for olfactory dysfunction. Questions concerning olfactory function are usually part of more complex questionnaires, such as the Non-Motor Symptoms Questionnaire (NMSQest) (ref.18), the International Parkinson and Movement Disorder Society – Non-Motor Rating Scale (MDS-NMS) (ref.19), and the Non-Motor Symptoms Scale for Parkinson’s Disease (NMSS) (ref.20).

Many PD patients are unaware of their impairment and overestimate their ability to smell, which makes self-report questionnaires unreliable16,17,18. For this reason, a gold standard in daily practice are psychophysical tests19. These tests are based on the presentation of different odors to the subject. The test that was first developed and is still widely used due to its easy administration is the University of Pennsylvania Smell Identification Test (UPSIT). This test, developed in the United States, provides 40 odors; the subject is supposed to identify the odor by choosing the best result from the offered selection19,20. Cultural and social factors may be a limitation of this test, as some odors are not familiar in some countries. This possibility has led to several local adaptations of the test21-23. One shorter version of UPSIT is the National Health and Nutrition Examination Survey (NHANES) eight-item odor identification test (Pocket Smell TestTM) (ref.24). There is a twelve-item test, called the Brief Smell Identification Test (B-SIT) and also known as the Cross-Cultural Smell Identification Test (CC-SIT) (ref.25).
Another test, more popular in Europe, is the Sniffin’ Sticks test. This test is able to test all three olfactory qualities: odor-identification, odor-discrimination, and olfactory threshold. To find the olfactory threshold, 16 trios of sticks are used. In each trio, one stick is impregnated with n-butanol or 2-phenylethanol diluted in a solvent in a different concentration. The subject is supposed to identify this stick from among the other sticks containing only the solvent. For the odor-discrimination testing, 16 trios of sticks are also used. In each trio, two sticks are impregnated with the same odor and the third one is impregnated with a different odor. The subject is then required to identify the stick with the different odor. The last part of the test is focused on odor identification. Sixteen odors are given and the subject must choose one from four suggestions. The disadvantage of this validated test is that it is time consuming. However, some studies show that the odor-identification subtest may be equal to the whole test battery.

The Snap and Sniff® Threshold test (S&S-T) was recently developed for detecting olfactory thresholds. This test uses 20 smell wands; five contain no odorant, the others contain diluted 2-phenylethanol in increasing concentrations.

There are other smell tests, such as SMELL-S and SMELL-R that test olfactory sensitivity and olfactory resolution, fast Q-Sticks test presenting three odors in felt-tip pens, the Connecticut Chemosensory Clinical Research Center (CCCRC) identification test measuring odor-identification and threshold, the Smell Diskettes Test using eight different odors with a high degree of familiarity in Central Europe, the Barcelona Smell Test-24 (BAST-24) with 24 odors, a 4 min odor identity test with 12 odors in sticks, the European Test of Olfactory Capabilities (ETOC) testing odor-identification and threshold, validated in three European countries, the three-item Q-SIT (ref. 28), the Odor Stick Identification Test using 13 odors in microcapsules incorporated into a stable cream and encased like a lipstick, and the 16-item Scandinavian Odor Identification Test 29.

Psychophysical tests are non-invasive and easily available, and many are inexpensive and not time consuming, so they may be used to diagnose olfactory dysfunction in PD, even in the premotor phase. The limitation is that despite the high sensitivity for predicting PD, the specificity is low, because up to one in three elderly people have olfactory loss of various other etiologies. Therefore, smell tests alone are not sufficient to diagnose PD in the premotor phase. Additional tests of other premotor symptoms must be conducted.

An objective method to test olfactory function is electrophysiologic recording. In PD patients, olfactory event-evoked potentials (OERP) returned abnormal results. Electrophysiologic recordings are rarely used in clinical practice because of the complexity to perform them and economic aspects.

The sniff magnitude test may be an alternative to psychophysical tests in PD. This test is based on the reflex-like response to malodors by quantifying the decrease of inhalation when a malodorous stimulus is encountered. This test seems to be less sensitive than other measures, and does not give information on clinically relevant olfactory functions such as odor identification, differentiation, and threshold. It may nevertheless be a good alternative for investigating PD patients with dementia.

As mentioned above, current olfactory tests have low specificity for diagnosing premotor PD. To become more specific, recent PD studies have focused on other methods, such as biopsy of olfactory epithelium, measuring the olfactory bulb volume, and functional neuroimaging.

Olfactory bulb and olfactory mucosa biopsies are based on the recent finding that α-synuclein can be detected in peripheral tissues such as the gastrointestinal tract, salivary glands, skin, retina, heart, adrenal gland, and olfactory tissue. Positive α-synuclein staining of olfactory bulb specimens ranged from 8% to 100% for PD compared to 2-100% in a control group. This examination is invasive and not without risk and all studies published thus far were restricted to postmortem investigations. In vivo tests have been restricted to the olfactory mucosa. Witt et al. found no specific changes in the nasal mucosa of PD compared to patients who were hypomorphic for other reasons; moreover, α-synuclein was also observed in normosmic controls.

Olfactory bulb volume is possible to measure using a 1.5 Tesla MRI. Several studies showed a correlation between olfactory bulb volume and olfactory function. In PD, however, the results are not convincing. Some studies showed reduced olfactory bulb volume on both sides; other studies did not find any difference between PD patients and healthy controls. Hakyemez et al. even found increased olfactory bulb volume in Hoehn &Yahr stage 1 and 2. These different results indicate that additional studies will be needed to see whether the measurement of olfactory bulb volume may become a useful and reliable method for diagnosis of premotor PD.

Autonomic dysfunction

Autonomic dysfunction is present in early PD; some symptoms may precede the motor symptoms of the disease by many years. The most reliable autonomic premotor symptom is constipation; other symptoms are erectile and urinary dysfunction and orthostatic hypotension or symptomatic hypotension.

Constipation

The Movement Disorder Society (MDS) Task Force on Rating Scales for PD evaluated scales for gastrointestinal-related autonomic symptoms in PD that were used previously as outcome measures in studies with PD patients. Scales were rated as recommended if they were valid, reliable, and sensitive and had been used in clinical studies beyond the group that developed it. There was no recommended scale for constipation. The Rome III Criteria may be used to define constipation; however, this scale has not been validated for the PD population. Global scales addressing dysautonomia and nonmotor symptoms, including constipation, are used more often.
The Scales for Outcomes in PD-Autonomic (SCOPAUT) (ref.77) and the Nonmotor Symptoms Questionnaire for PD (NMSQuest) (ref.14) were recommended. The Nonmotor Symptoms Scale (NMSS) (ref.16) was also suggested.

Apart from questionnaires, laboratory tests may also detect gastrointestinal dysfunction. PD patients have prolonged colonic transit time (CCT) (ref.78,79); abnormal results may be present also in patients with no subjective constipation symptoms90,91. The most commonly used technique is measuring CCT using radio-opaque markers. A defined number of these markers is ingested, an abdominal x-ray is performed 24 h after the ingestion of the last capsule, and the estimated transit time is measured from the number of retained markers92,93. This simple method may have some potential in diagnosing prodromal PD; however, there are still no studies using this method in premotor PD.

Constipation in PD is probably caused not only by delayed CCT, but also by anorectal dysfunction, which can be measured by anorectal manometry or by defecography81,84. Published studies are mostly based on small patient samples and variable methodology84 so the possible use of these methods in diagnosing prodromal PD have to be established on future larger studies.

Erectile dysfunction

PD is associated with increased risk of sexual dysfunction and this dysfuncion may be present in the preclinical stage of PD (ref.85). Problems with sexual dysfunction are reported especially by men85,86. Studies dealing with sexual dysfunction in women have produced controversial results86,87. Erectile dysfunction has been found to be a risk factor of PD (ref.71,75) but the prevalence of erectile dysfunction in the non-parkinsonian population is also significant88,89 so this symptom must be evaluated carefully in context with other premotor symptoms. Questionnaires are currently preferred in diagnosing erectile dysfunction. One widely used questionnaire is the International Index of Erectile Function (IIEF) (ref.70,92). Another questionnaire concerning sexual dysfunction that has been used in PD studies is the Arizona Sexual Experience Scale (ASEX), an easily applicable five-item questionnaire93,94. The Female Sexual Function Index (FSFI) is focused on women95. Questions concerning sexual function are also a part of global scales addressing dysautonomia in PD – SCOPA-AUT (ref.77), NMSQuest (ref.14), and NMSS (ref.16).

Urinary dysfunction

Up to 71% of PD patients report lower urinary tract symptoms. Patients most commonly complain about storage symptoms, such as nocturia, urgency, and daytime frequency; up to 26% of men and 28% of women with PD experience urinary incontinence86. Voiding symptoms are less common, but may also occur in PD; patients have higher rates of difficulty initiating urination, poor stream, straining97. Questionnaires are a useful instrument for detecting urinary dysfunction in PD. There are global dysautonomia scales comprising urinary symptoms; these scales are mentioned above. Scales focused on urinary dysfunction that were used in the PD population are the American Urological Association Symptom Index (AUA-SI) (ref.98) and the International Prostate Symptom Score (I-PSS) (ref.99) for men and the short form of the Urogenital Distress Inventory (UDI-6) (ref.100) for women. Another questionnaire used in PD is the Overactive Bladder Questionnaire (OAB-q) (ref.101,102). This questionnaire has 36 items but there is also a short eight-item form.

Urodynamic studies use objective methods that assess the lower urinary tract function. In one study, urodynamic tests revealed abnormal findings in 82% of early and untreated PD patients; this was more than the questionnaire-based subjective symptoms of urinary dysfunction (64%) (ref.103). These findings suggest that urinary dysfunction in the early stages of PD may be asymptomatic or have little influence on quality of life, so the symptoms may be overlooked103.

Orthostatic hypotension and symptomatic hypotension

Orthostatic hypotension (OH) is defined as a sustained reduction of systolic blood pressure of at least 20 mmHg or diastolic blood pressure of 10 mm Hg within 3 min of standing or a head-up tilt to at least 60° on a tilt table104. It has been shown that OH may precede the motor symptoms of PD (ref.68,75,105,106). OH may be symptomatic or asymptomatic and the symptoms may vary across patients from lightheadedness, to dizziness, to pre-syncpe and syncope. Some patients report weakness, fatigue, cognitive slowing, leg buckling, visual blurring, neck pain, headache, and orthostatic dyspnea of chest pain104.

The MDS analyzed the scales and questionnaires for OH that were used in PD (ref.107). Most of them were larger scales or questionnaires globally assessing nonmotor and autonomic functions. Some scales detect OH-related symptoms and provide information on the severity and/or frequency. From these scales, the ones recommended with limitations were SCOPA – AUT (ref.77) and the Composite Autonomic Symptom Scale (COMPASS) with the orthostatic subsection108. The Non-Motor Symptoms Scale for Parkinson’s Disease (NMSS) (ref.16) was categorized as suggested because its use has not been reported outside the validation study that later changed109,110. The Orthostatic Grading Scale (OGS), a five-item questionnaire focused only on OH (ref.111) was also suggested because it needed to be validated on a PD population. Later the scale was validated on a group in Korea112.

There are scales that may be used as screening tools for OH but do not score the severity/frequency of orthostatic symptoms. The strongest clinimetric testing has been performed on the NMS Quest (ref.14).

An easily performed objective test for OH is a measurement of blood pressure after at least 5 min in a supine position and then after 1 and 3 min of standing113. The passive head-up tilt test (HUT) is recommended if the active standing test is negative and the patient history is suggestive of OH, and in patients with severe motor impairment where it is not possible to perform an active orthostatic test114. In cases where the supine-to-standing
test of HUT is difficult to perform, a seated-to-standing orthostatic test may be an alternative.115,116

REM sleep behavior disorder (RBD) and excessive daytime somnolence

RBD is considered to be one of the strongest clinical markers of prodromal neurodegenerative synucleinopathy.6,117-119 A definite diagnosis of RBD is determined according to the International Classification of Sleep Disorders-3 (ICSD-3) (ref.120), where polysomnography (PSG) plays an essential role. PSG remains the gold standard for diagnosis of RBD. However, questionnaires are still useful in clinical practice. Several screening questionnaires were developed for screening of RBD. A commonly used questionnaire is the 10-item RBD screening questionnaire (RBDSQ), validated on PD populations121-123. Another questionnaire focused solely on RBD is the Sleep Behavior Disorder Single Question Screen (RBD1Q) (ref.124).

Based on two studies, excessive daytime somnolence is considered a premotor feature of PD (ref.127,128). To assess daytime sleepiness, the Epworth sleepiness scale (ESS) was developed129 and has been used in PD populations130,132.

There are questionnaires used in PD that cover both nocturnal sleep disorders (including RBD) and excessive daytime sleepiness133. The Parkinson’s Disease Sleep Scale (PDSS) (ref.134), the revised version PDSS-2 (ref.135), and the Scales for Outcomes in PD-Sleep (SCOPA-Sleep) (ref.136) were designed and validated for PD populations. Questions on sleep disturbances including excessive daytime somnolence are included in general nonmotor questionnaires - NMSQuest (ref.137), NMSS (ref.138), and MDS-UPDRS Part I (ref.139).

Depression

Several studies have shown that depression increases the risk of PD (ref.140-141), but its sensitivity and specificity is low142. Depression rating scales used in PD studies were analyzed with estimations of the sensitivity and specificity of each test in PD populations142,143. Scales suitable for screening purposes are the 30-item and 15-item Geriatric Depression Scale (GDS-30, GDS-15) (ref.144,145), the Beck Depression Inventory (BDI) (ref.146), The Montgomery Åsberg Depression Rating Scale (MADRS) (ref.147), the Hamilton Rating Scale for Depression (HAM-D-17) (ref.148), and the Hospital Anxiety and Depression Scale (HADS) (ref.149). A crude screening instrument for depression is also the MDS-UPDRS Part I (ref.150). To measure the severity of depression, HAM-D-17, MADRS, BDI, or the Zung Self-Rating Depression Scale (SDS) (ref.151) may be used.

Cognitive deficit

Cognitive deficit was recently added to the prodromal symptom spectrum of PD (ref.9) on the basis of the results of three studies.152-154 The most frequent cognitive deficit is executive dysfunction, the second most frequent is memory; there can also be deficits in attention and visuospatial functions; and global cognitive impairment has also been described154. Detailed neuropsychological testing is a gold standard to assess the most commonly affected cognitive domains. This testing, however, is time consuming and not available in all settings. Therefore, global cognitive tests covering the most relevant cognitive domains were evaluated155. Three scales were recommended without caveats: the Mattis Dementia Rating Scale Second Edition (DRS-2) (ref.156), which takes about 20-30 min to administer and is divided into 5 subscales: Attention, Initiation/Perseveration, Construction, Conceptualization, and Memory. Another recommended scale was the Montreal Cognitive Assessment (MoCA) (ref.157), taking about 10 min to administer and assessing memory, visuospatial skills, attention and concentration, executive functions, language, conceptual thinking, calculations, and orientation. The last recommended test was the Parkinson’s Disease-Cognitive Rating Scale (PD-CRS) (ref.158), taking about 20 min to administer and covering both cortical functions, such as naming and copy drawing of a clock, and subcortical functions, including attention, working memory, verbal memory, visuconstruction, alternating, and action fluency. The widely used 30-point Mini-Mental State Examination (MMSE) (ref.159) was rated only as suggested for PD patients, as other cognitive scales have shown better capacity and sensitivity for detecting dementia in PD, and because MMSE does not adequately assess executive and visuospatial functions, which are characteristicity affected in PD and is also not sensitive to detecting early stages of cognitive deterioration.

Pain

Pain occurs early in the disease course, even as a pre-motor symptom of PD (ref.160-163). The MDS evaluated available ratings scales for pain that may be used in PD (ref.164). The only recommended scale for pain intensity rating was the King’s PD Pain Scale165. This scale encompasses seven pain domains seen in PD: musculoskeletal, chronic, fluctuation-related, nocturnal, orofacial, discoloration/swelling, and radicular pain. When assessing scales in terms of pain syndromic classification, the MDS evaluated the King’s PD Pain Scale as only suggested because it has not been adequately validated. The Douleur Neuropathique 4 (DN4) was recommended with caution due to lack of clinimetric data in PD (ref.166).

Small fiber neuropathy

Both large and small fiber neuropathy may be associated with PD (ref.167-169). There are reports that PD may be associated also with motor neuron disease170,171. A recent study suggested that small fiber pathology may precede the development of motor symptoms of PD (ref.172). Small fiber functions may be investigated bedside by responsiveness to heat, cold, and pain evoked by pinprick. There are also several specific neurophysiological and pathological techniques for detecting small fiber pathology, such as skin biopsy, quantitative sensory testing, quantitative sudomotor axon reflex test, corneal confocal microscopy, microneurography, and electrical and laser evoked potentials173.
Neuroimaging

Except for clinical features, several neuroimaging methods can help with the diagnosis of premotor PD. The wide range of imaging modalities can be divided into three groups\(^\text{176}\): targeting dopaminergic function in the basal ganglia using radio-labelled ligands, detected by single photon emission computed tomography (SPECT) or positron emission tomography (PET) (ref.\(^\text{175,176}\)); direct imaging of the substantia nigra by transcranial sonography detecting increased echogenicity of substantia nigra\(^\text{177,178}\) or brain MRI focusing on brainstem structures\(^\text{179,181}\); and imaging brain network activity with measuring metabolic activity, changes in blood oxygenation of regional cerebral blood flow\(^\text{172,182,183}\).

Peripheral markers

\(^{123}\)I-metaiodobenzylguanidine (MIBG) uptake is decreased in PD, indicating myocardinial postganglionic sympathetic denervation\(^\text{184}\) and seems to be promising in the diagnosis of premotor PD (ref.\(^\text{185,186}\)).

Detection of phosphorylated α-synuclein in skin biopsies seems to be a sensitive and specific marker of PD and also of premotor PD (ref.\(^\text{187,188}\)). Submandibular glands\(^\text{187,189}\) and gastrointestinal tract mucosa are also tested for α-synuclein in premotor PD (ref.\(^\text{187}\)). In one study, α-synuclein was found in the enteric mucosa in the same manner in the PD patients and the controls\(^\text{190}\).

Cerebrospinal fluid

Studies usually focus on biomarker candidates for distinguishing between PD and controls or on differentiating PD from other neurodegenerative disorders. The biomarkers may be divided into six categories\(^\text{191,192}\): A: Neurotransmitters and neuromodulators; Goldstein et al. found low CSF DOPA and/or low CSF 3,4-dihydroxyphenylacetic acid (DOPAC), the main neuronal metabolite of dopamine, in people with multiple risk factors for PD who subsequently developed clinical features of PD (ref.\(^\text{193}\)). B: Oxidative stress markers; mutations in DJ-1 gene/PARK7 are associated with PD; however, the results of the studies measuring CSF DJ-1 levels are not yet conclusive\(^\text{191}\). C: Inflammatory and immunological markers: several cytokines were found to be increased in PD, such as β2-microglobulin and IL-8 (ref.\(^\text{194}\)). IL-6 and IL-1-B were increased in cognitively impaired PD (ref.\(^\text{195}\)). D: Growth factors; in one study, brain-derived neurotrophic factor (BDNF) was found to be increased (ref.\(^\text{196}\)). E: Proteins involved in PD pathology; several proteins have been found to be increased in PD, such as gelsolin, the main protein of smooth muscle actin\(^\text{197}\). F: Other. Although many studies try to establish potential CSF biomarkers of PD, the application of CSF examination in the diagnosis of premotor PD is still limited. Only a few studies have focused on the premotor stages of PD; sampling techniques and analysis procedures differ across the studies, and the results are often conflicting. Larger longitudinal studies will be necessary to establish CSF biomarkers of premotor PD.

In conclusion, recent studies show that there are several non-motor symptoms with predictive value for the development of PD. They are currently being tested in research settings due to the lack of effective neuroprotective therapy. However, as soon as an adequate treatment is available, it will be a priority for clinicians to establish the diagnosis of PD in the early/premotor stages in order to preserve the patients’ quality of life.

Search strategy and selection criteria

We searched PubMed, Web of science and Google scholar using the keywords Parkinson’s disease, premotor symptoms, olfactory functions, autonomic dysfunction, constipation, erectile dysfunction, urinary dysfunction, orthostatic hypotension, REM sleep behavior disorder, depression, cognitive functions, pain, small fibre neuropathy, neuroimaging, cerebrospinal fluid.

Acknowledgement: This study was supported by a grant from the Ministry of Health of the Czech Republic – AZV NV18-04-00346; by the European Regional Development Fund – Project ENOCH (No. Z.02.1.01/0.0/0.0/16_019/000868); and by the Ministry of Health, Czech Republic Institutional Support 2020 – conceptual development of a research organization (FNOI, 0098892).

Author contributions: MK: manuscript writing, literature search; ZG, SK, PO, HPV, KM: manuscript revision; PK: critical reading, final approval.

Conflict of interest statement: The authors declare that they have no conflicts of interest.

REFERENCES

1. Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord 2012;27(5):597-607.
2. Braak H, Ghebremedhin E, Rub U, Bratza H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004;318(1):121-34.
3. Berg D, Postuma RB, Adler Ch, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L, Lang AE, Liebelt-Scarfone I, Litvan I, Marek K, Obeso J, Oertel W, Olano CW, Poewe W, Stern M, Deuschl G. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015;30(12):1600-11.
4. Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB. Disease MDSTFotDoPs. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2019;34(10):1464-70.
5. Mahlknecht P, Gasperi A, Willett P, Kiech S, Stockner H, Willett J, Rungger G, Sawires M, Nocker M, Rastner V, Mair KJ, Hotter A, Poewe W, Seppi K. Prodromal Parkinson’s disease as defined per MDS research criteria in the general elderly community. Mov Disord 2016;31(9):1405-8.
6. Fereshtehnejad SM, Montplaisir JY, Pelletier A, Gagnon JF, Berg D, Postuma RB. Validation of the MDS Research Criteria for Prodromal Parkinson’s Disease: Longitudinal Assessment in a REM Sleep Behavior Disorder (RBD) Cohort. Mov Disord 2017;32(6):865-73.
7. Mirelman A, Saunders-Pullman R, Alcalay RN, Shustak S, Thaler A, Gurevich T, Raymond D, Mejia-Santana H, Orbe Reilly M, Ozelius L, Clark L, Gana-Weisz M, Bar-Shira A, Orr-Utregre A, Bressman SB, Marder K, Giladi N, Consortium AL. Application of the Movement
70. Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD, Matthews PM, Jezzard P. Functional magnetic resonance imaging. J Neuroimaging 2012;22(4):527-52.

59. Frank RA, Gesteland RC, Bailie J, Rybalsky S, Seiden A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

58. Schrag A, Horsfall L, Walters K, Noyce A, Petersen I. Prediagnostic presentations of Parkinson's disease in primary care: a case-control study. Lancet Neurology 2015;14(1):57-64.

57. Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

56. Knudsen K, Haase AM, Fedorova TD, Bekker AC, Ostergard K, Krogh K, Borghammer P. Gastrointestinal Transit Time in Parkinson's Disease Using a Magnetic Tracking System. J Parkinsons Dis 2017;7(3):471-9.

55. Mukherjee S, Frid, C, Hertz B, de Moura LC, Bharucha AE, Rocca WA. Medical records documentation of constipation preceding Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

54. Schneider SA, Boettner M, Alexoudi A, Zorenkov D, Deuschl G, Wedel M. Constipation preceding Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

53. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

52. Reden J, Drač F, Frank RA, Hummel T. Correlation of clinical tests of olfaction in Parkinson's disease. J Neurosurg Arachnology 2016;27(4):927-31.

51. Ma LY, Li GL, Wang DX, Zhang MM, Kou WY, Feng T. Alpha-Synuclein in Peripheral Tissues in Parkinson's Disease. ACS Chem Neurosci 2019;10(2):812-23.

50. Schneider SA, Boettner M, Alexoudi A, Zorenkov D, Deuschl G, Wedel M. Constipation preceding Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

49. Klit H, Hummel T. Olfactory bulb volume in the clinical assessment of olfactory function. Rhinology 2009;47(1):3-9.

48. Postuma RB, Gagnon JF, Pelletier A, Montplaisir J. Prodomal autonomic symptoms and signs in Parkinson's disease and dementia with Lewy bodies. Mov Disord 2013;28(5):597-604.

47. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

46. Elnazer HY, Baldwin DS. Structured review of the use of the Arizona Sexual Experience Scale in clinical settings. Hum Psychopharmacol 2010;35(3):e2730.

45. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

44. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

43. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

42. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

41. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

40. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

39. Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016;87(7):710-7.

38. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

37. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

36. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

35. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

34. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

33. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

32. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

31. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.

30. El Habbal K, Hertsog C, Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCDPA-AUT. Mov Disord 2004;19(11):1306-12.
95. Rosen R, Brown C, Heiman J, Leiblum S, Meston C, Shabsigh R, Ferguson D, D’Agostino R, Jr. The Female Sexual Function Index (FSFI): a multidimensional self-report instrument for the assessment of female sexual function. J Sex Marital Ther 2000;26(2):191-208.

96. Sakakibara R, Tateno F, Yamamoto T, Uchiyama T, Yamanihi T. Urolological dysfunction in synucleinopathies: epidemiology, pathophysiology and management. Clin Auton Res 2018;28(1):83-101.

97. Sakakibara R, Shinotoh H, Uchiyama T, Sakuma M, Kashiwado M, Yoshimya M, Hattori T. Questionnaire-based assessment of pelvic organ dysfunction in Parkinson’s disease. Auton Neurosci 2001;92(2):276-285.

98. Barry MJ, Fowler Jr, J., O’Leary MP, Bruskewitz RC, Holtgrewe HL, Mebus WK, Cockett AT. The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol 1992;148(5):1549-57; discussion 64.

99. Araki I, Kuno S. Assessment of voiding dysfunction in Parkinson’s disease by the international prostate symptom score. J Neurol Neurosurg Psychiatry 2000;68(4):429-33.

100. Uebersax JS, Wyman JF, Shumaker SA, McClish DK, Fanti JA. Short forms to assess quality of life and symptom distress for urinary incontinence in women: the Incontinence Impact Questionnaire and the Urogenital Distress Inventory. Continence Program for Women Research Network. Neurourol Urodyn 1994;13(2):131-9.

101. Iacovelli E, Gilio F, Meco G, Fatapposta F, Vanacore N, Brusa L, Giacometti E, Gabriele M, Rubino A, Locaturo N, Iani C, Pichiorri F, Colosimo C, Carbone A, Palleuchi G, Ingelhoffer M. Bladder Symptoms Assessed with Overactive Bladder Questionnaire in Parkinson’s disease. Mov Disord 2010;25(9):1203-9.

102. Coyne K, Revicki D, Hunt T, Corey R, Hunt T, Kurfth, A, Abrams P. Psychometric validation of an overactive bladder symptom and health-related quality of life questionnaire: The OAB-q. Qual Life Res 2002;11(6):563-74.

103. Uchiyama T, Sakakibara R, Yamamoto T, Ito T, Yamaguchi C, Awa Y, Yanagisawa M, Higuchi Y, Sato Y, Ichikawa T, Yamanihi T, Hattori T, Kuwabara S. Urinary dysfunction in early and untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry 2011;82(12):1382-6.

104. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Atkinson EJ, O’Brien PC, Offord KP, Sandroni P. Evaluation of orthostatic hypotension: Relationship to autonomic symptoms. Mayo Clinic Proceedings 2005;80(3):330-4.

105. Goldstein DS. Orthostatic hypotension as an early finding in Parkinson’s disease. Mov Disord 2013;28(7):717-24.

106. Postuma RB, Arnulf I, Hogl B, Arnulf I, Ferini-Strambi L, Manni R, Miyamoto T, Oertel W, Dauvilliers Y, Yu YE, Pilgudheedu M, Sonka K, Pelletier A, Santamaria J, Frauscher B, Leu-Semenescu C, Umezura M, Terzaghi M, Miyamoto M, Unger MM, Carlander B, Fantini ML, Montplaisir JY. Risk factors for neurodegeneration in idiopathic rapid eye movement sleep disorder: a multicenter study. Ann Neurol 2015;77(5):830-9.

107. Iranzo A, Fernandez-Arcos A, Tolosa E, Serradell M, Molinuevo JL, Valdeoreola F, Gelpi E, Vilaseca I, Sanchez-Leu-Semenescu C, Yamanishi T, Umezura M, Santamaria J. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014(9):e89741.

108. Gao J, Huang X, Park Y, Hollenbeck A, Blair A, Schatzkin A, Chen H, Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep disorder: a 16-year update on a previously reported series. Sleep Med 2013;14(8):744-8.

109. Staieia MJ. International Classification of Sleep Disorders-Third Edition Highlights and Modifications. Chest 2014;145(5):1387-94.

110. Nomura T, Inoue Y, Koguma T, Umemura Y, Nakashima K. Utility of the REM sleep behavior disorder screening questionnaire (RBDSQ) in Parkinson’s disease patients. Sleep Med 2011;12(7):711-3.

111. Stiasny-Kolster K, Mayer G, Schafer S, Moller JC, Heinzel-Duff A, Di Serio C, Ferini-Strambi L. National validation and proposed revision of the REM sleep behavior disorder screening questionnaire—a new diagnostic instrument. Mov Disord 2007;22(16):2386-93.

112. Bushova J, Perinova P, Miletinnova E, Dusek P, Ruzicka E, Sonka K, Klemink D. Validation of the REM sleep behavior disorder screening questionnaire in the Czech population. BMC Neurol 2019;19(1):110.

113. Nomura T, Inoue Y, Koguma T, Kusumi M, Nakashima K. Validity of the Japanese version of the REM Sleep Behavior Disorder (RBDSQ) Screening Questionnaire for detecting probable RBD in the general population. Psychiatry Clin Neurosci 2015;69(8):477-82.

114. Marelli S, Rancocta PM, Giarrusso F, Calbiati A, Zucconi M, Oldani A, Di Serio C, Ferini-Strambi L. National validation and proposed revision of the REM sleep behavior disorder screening questionnaire (RBDSQ). J Neurol 2016;263(12):2470-5.

115. Postuma RB, Arnulf I, Hogl B, Arnulf I, Miyamoto T, Dauvilliers Y, Oertel W, Yu Ye, Pilgudheedu M, Sonka K, Pelletier A, Santamaria J, Frauscher B, Leu-Semenescu C, Umezura M, Terzaghi M, Miyamoto M, Unger MM, Carlander B, Fantini ML, Montplaisir JY. Risk factors for neurodegeneration in idiopathic rapid eye movement sleep disorder: a multicenter study. Mov Disord 2012;27(7):913-6.

116. Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, Curb JD, Petrovich H. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 2005;65(9):1442-6.

117. Gao J, Huang X, Park Y, Hollenbeck A, Blair A, Schatzkin A, Chen H, Epworth sleepiness scale. Sleep 1991;14(6):540-5.

118. Johns MW. A new method for measuring daytime sleepiness: the Epworth Sleepiness scale. Sleep 1991;14(6):540-5.

119. Hogl B, Seppi K, Brandauer E, Glatzl S, Frauscher B, Niedermuller U, Wenning G, Poewe W. Increased daytime sleepiness in Parkinson’s disease: a questionnaire survey. Mov Disord 2003;18(3):319-23.
131. Ghorayeb I, Loundou A, Auquier P, Davailiours Y, Bioulac B, Tison F. A nationwide survey of excessive daytime sleepiness in Parkinson's disease in France. Mov Disord 2007;22(11):1567-72.
132. Kumar S, Bhatia M, Behari M. Excessive daytime sleepiness in Parkinson's disease as assessed by Epworth Sleepiness Scale (ESS). Sleep Medicine 2003;4(3):339-42.
133. Zea-Sevilla MA, Martinez-Martín P. Rating scales and questionnaires for assessment of sleep disorders in Parkinson's disease: what they inform about? J Neurol (Vienna) 2014;121 Suppl 1:533-40.
134. Chaudhuri KR, Pal S, Dilmarco A, Whately-Smith C, Bridgman K, Mathew A, Rella FR, Forbes L, Trenkwalder C. The Parkinson's disease sleep scale: a new instrument for assessing sleep and nocturnal disability in Parkinson's disease. J Neurol Neurosurg Psychiatry 2002;73(6):629-35.
135. Trenkwalder C, Kohnen R, Hogl B, Metta V, Sixel-Doring F, Frauschner B, Hulsmann J, Martinez-Martín P, Chaudhuri KR. Parkinson's disease sleep scale—validation of the revised version PDSS-2. Mov Disord 2011;26(4):644-52.
136. Marinus J, Visser M, van Hilten JH, Lammers GJ, Stiggelbout AM. Assessment of sleep and sleepiness in Parkinson's disease. Sleep 2003;26(8):1049-54.
137. Gotz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martín P, Poewe W, Sampaio C, Stern MB, de Miel D, Dubois R, Dubois B, Hollenstein KM, Laxova J, Kluviesky J, Litykh AE, Lees A, Leurgans S, LeWitt PA, Nynhuys D, Olson CW, Rascoc O, Schrag A, Teresi JA, Hiltun JJ, LaPelle N, UPDRS MDS. Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov Disord 2008;23(15):2129-70.
138. Leentjens AF, Van den Akker M, Meetsmakers JF, Lousberg R, Verhey FR. Higher incidence of depression preceding the onset of Parkinson's disease: a register study. Mov Disord 2003;18(4):414-8.
139. Alonso A, Rodriguez LAG, Logroscino G, Hernan MA. Use of antide presses and the risk of Parkinson's disease: a prospective study. J Neurol Neurosurg Psychiatry 1960;23:56-62.
140. Fang F, Xu Q, Park Y, Huang XM, Hollenstein K, Blair A, Schatzkin A, Kame K, Chen HN. Depression and the Subsequent Risk of Parkinson's disease in the NIH-AARP Diet and Health Study. Mov Disord 2010;25(9):1157-62.
141. Gustafsson H, Nordstrom A, Nordstrom P. Depression and subsequent risk of Parkinson disease: A nationwide cohort study. Neurology 2015;84(24):2422-9.
142. Schrag A, Barone P, Brown RG, Leentjens AFG, McDonald WM, Starkstein S, Weintraub D, Poewe W, Rasco P, Sampaio C, Stebbins GT, Goetz CG. Depression rating scales in Parkinson's disease: Critique and recommendations. Mov Disord 2007;22(8):1077-92.
143. Goodarzi Z, Mrklas KJ, Roberts DJ, Jette N, Pringsheim T, Holroyd-Leduc J. Detecting depression in Parkinson disease: A systematic review and meta-analysis. Neurology 2016;87(4):413-22.
144. Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clinical Gerontologist: J Aging Health 1986;5(1-2):165-73.
145. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO. Development and Validation of a Geriatric Depression Screening Scale - a Preliminary-Report. J Psychiatric Res 1983;17(1):37-49.
146. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;14:561-71.
147. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979;134:382-9.
148. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62.
149. Zigmond AS, Sergeant JN. The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica 1983;67(6):361-70.
150. Zung WW. A Self-Rating Depression Scale. Arch Gen Psychiatry 1965;12:63-70.
151. Darweesh SKL, Wolters FJ, Postuma RB, Stricker BH, Hofman A, Koudstaal PJ, Ikram MK, Ikram MA. Association Between Poor Cognitive Functioning and Risk of Incident Parkinsonism The Rotterdam Study. Jama Neurology 2017;74(12):1431-8.
152. Schrag A, Anastasio Z, Ambler G, Noyce A, Walters K. Predicting diagnosis of Parkinson's disease: A risk algorithm based on primary care presentations. Mov Disord 2019;34(4):480-6.
153. Weintraub D, Chahine LM, Hawkins KA, Siderowf A, Eberly S, Oakes D, Seibyl J, Stern MB, Marek J, Jennings D, Investigators P. Cognition and the course of prodromal Parkinson's disease. Mov Disord 2017;32(11):1640-5.
154. Fongler S, Liebelt-Scarfone I, Brockmann K, Schaffer E, Berg D, Kalbe E. Cognitive Changes in Prodromal Parkinson's Disease: A Review. Mov Disord 2017;32(12):1655-66.
155. Skovranek M, Goldman JG, Jahanshahi M, Marras C, Rektorova I, Schmand B, van Duijn E, Goetz CG, Weintraub D, Stubbins GT, Martinez-Martín P, members of the MDSRRSC. Global scales for cognitive screening in Parkinson's disease: Critique and recommendations. Mov Disord 2018;33(3):208-18.
156. Mattis S. Dementia Rating Scale - a Preliminary-Report. J Psychiatr Res 1983;17(1):37-49.
157. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings J, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53(4):695-9.
158. Pagonabarra J, Kuliwicky J, Lleiaria G, Garcia-Sanchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord 2008;23(7):998-1005.
159. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12(3):189-98.
160. Blanchet PJ, Brefel-Courbon C. Chronic pain and pain processing in Parkinson’s disease. Neurol Prog Neuropsychopharmacol Biol Psychiatry 2018;87(7P1):B200-6.
161. Farnikova K, Krobot A, Kanovskys P. Musculoskeletal problems as an important manifestation of Parkinson's disease: a retrospective study. J Neurol Sci 2012;319(1-2):102-4.
162. O’ Sullivan SS, Williams DR, Gallagher DA, Massey LA, Silveira-Moriyama L, Lees AJ. Nonmotor symptoms as presenting complaints in Parkinson’s disease: A clinicopathological study. Mov Disord 2008;23(1):101-6.
163. Pont-Sunyer C, Hutter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D, Brucke T, Bayes A, Wenzel K, Infantane J, Zach H, Pirker W, Posada IJ, Alvarez R, Ispierto L, De Fabregues O, Callen A, Palasi A, Aguilar M, Marti MJ, Valdeleira F, Salamero M, Poewe W, Tolosa E. The onset of Nonmotor Symptoms in Parkinson's Disease (THE ONSET PD STUDY). Mov Disord 2015;30(2):229-37.
164. Perez-Lloret S, de Andrade DC, Lyons KE, Rodriguez-Blazquez C, Chaudhuri KR, Deuschl G, Crucu G, Sampaio C, Goetz CG, Schrag A, Martinez-Martín P, Stebbins G. MCRS. Rating Scales for Pain in Parkinson's disease: Critique and Recommendations. Mov Disord Clin Pract 2016;3(6):527-37.
165. Chaudhuri KR, Rizos A, Trenkwalder C, Rascol O, Pal S, Martino D, Carroll C, Paviour D, Falup-Pecurariu C, Kessel B, Silverdale M, Todorova A, Sauerbier A, Odin P, Antonini A, Martinez-Martin P, EUROPAR, Grp INMPs. King's Parkinson’s disease pain scale, the first scale for pain in PD: An international validation. Mov Disord 2015;30(12):1623-37.
166. Bouahassia D, Attal N, Alchaar H, Bouraye F, Brochet B, Bruxelle J, Cunin G, Fermanian J, Ginies P, Grun-Overdyking A, Jafari-Schuep H, Lanteri-Minet M, Laurent B, Mick G, Serrie A, Valade D, Vicaut E. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DNAH). Pain 2005;114(1-2):29-36.
167. Grambalova Z, Kaiserova M, Vastik M, Mensikova K, Otruba P, Zapletalova J, Dudek J, Kanovsky P. Peripheral neuropathy in Parkinson’s disease. Neuro Endocrinol Lett 2015;36(4):363-7.
168. Ouyang ZS, Wang L, Zhou Y, Wang Z, Zhang X. A nationwide survey of excessive daytime sleepiness in Parkinson’s disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021 Jun; 165(2):103-112.
Andersen AD, Binzer M, Stenager E, Gramsbergen JB. Cerebrospinal fluid biomarkers for Parkinson’s disease - a systematic review. Acta Neurol Scand 2017;135(1):34-56.

Dorsey ER, Agid Y, Litvan I, Poewe W, Park JJ, Seppi K. Parkinson’s disease: a clinical and analytical approach to the diagnosis. J Neurol Neurosurg Psychiatry 2015;86(9):962-9.

Jinmez-Jimenez FJ, Alonso-Navarro H, Garcia-Martin E, Agundez JA. Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease: a potential search for biomarkers for this disease. Front Cell Neurosci 2014;8:369.

Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat Disord 2018;50:108-12.

Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, Chung KA, Millard SP, Nutt JG, Montine TJ. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 2008;129(4):526-9.

Yu SY, Zuo LJ, Wang F, Chen ZJ, Hu Y, Wang YJ, Wang XM, Zhang W. Potential biomarkers relating pathophysiological, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: a cross-sectional study. BMC Neuro 2014;14:113.

Majbour NK, Askari JO, Hudstad E, Thomas MA, Vaikath NN, Elkuni N, van de Berg WJD, Tokuda T, Mollenhauer B, Berendse HW, El-Agnaf OMA. ESF total and oligomeric alpha-Synuclein along with TNF-alpha as risk biomarkers for Parkinson’s disease: a study in LRRK2 mutation carriers. Transl Neurodegener 2020;9(1):15.

Kaliva LV. Diagnostic biomarkers for Parkinson’s disease: focus on a-synuclein in cerebrospinal fluid. Parkinsonism Relat Disord 2019;59:21-5.

Compta Y, Valente T, Saura J, Iranzo A, Semenescu D, Toresson M, Gallea C, Quattrocchi G, Waites K, Zetterberg H, Kalia LV. Diagnostic biomarkers for Parkinson’s disease - a systematic review. Acta Neurol Scand 2017;135(1):25-29.

Barber TR, Klein JC, Mackay CE, Hu MTM. Imaging in Parkinson’s disease. Neuroimage Clin 2017;15:215-27.

Brooks DJ. Molecular imaging of dopamine transporters. Ageing Res Rev 2016;30:114-21.

Abbasi Gharibkandi N, Hosseinimehr SJ. Radiotracers for imaging of Parkinson’s disease. Eur J Med Chem 2019;166:75-89.

Li DH, He YC, Liu J, Chen SD. Diagnostic Accuracy of Transcranial Sonography of the Substantia Nigra in Parkinson’s disease: A Systematic Review and Meta-analysis. Scientific Reports 2016;6.

Tao AO, Chen GZ, Deng YB, Xu RF. Accuracy of Transcranial Sonography of the Substantia Nigra for Detection of Parkinson’s Disease: A Systematic Review and Meta-analysis. Ultrasound Med Biol 2019;45(3):628-640.

Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2014;85(Suppl 2):S732-41.

Sulzer D, Cassidy C, Horga G, Kang UJ, Fahn S, Casella L, Pezzoli G, Langley J, Hu XP, Zucca FA, Isaias IU, Zecca L. Neuronelamin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease. NPJ Parkinsons Disease 2018;4.

Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J Neural Transm 2017;124(8):915-64.

Dorsey ER, Agid Y, Litvan I, Poewe W, Park JJ, Seppi K. Parkinson’s disease: a clinical and analytical approach to the diagnosis. J Neurol Neurosurg Psychiatry 2015;86(9):962-9.

Magdalino NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, Bhatia K, Morris HR, Giunti P, Warner TT, de Silva R, Lees AJ, Zetterberg H. A panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of parkinsonian disorders. Neurology 2014;83(18):1785-92.

Magdalino NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, Bhatia K, Morris HR, Giunti P, Warner TT, de Silva R, Lees AJ, Zetterberg H. A panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of parkinsonian disorders. Neurology 2014;83(18):1785-92.

Prikrylova Vranova H, Mares J, Nevrly M, Stejskal D, Zapletalova J, Hulstik P, Kanovsky P. CSF markers of neurodegeneration in Parkinson’s disease. J Neural Transm (Vienna) 2018;124(4):423-431.

Abdollahi M, Aasly JO, Hustad E, Thomas MA, Vaikath NN, Elkuni N, van de Berg WJD, Tokuda T, Mollenhauer B, Berendse HW, El-Agnaf OMA. ESF total and oligomeric alpha-Synuclein along with TNF-alpha as risk biomarkers for Parkinson’s disease: a study in LRRK2 mutation carriers. Transl Neurodegener 2020;9(1):15.

Kaliva LV. Diagnostic biomarkers for Parkinson’s disease: focus on a-synuclein in cerebrospinal fluid. Parkinsonism Relat Disord 2019;59:21-5.

Compta Y, Valente T, Saura J, Segura B, Iranzo A, Serradell M, Junque C, Tolosa E, Valdeorios F, Munoz E, Santamaria J, Camara A, Fernandez M, Fortea J, Buongiorno M, Molinuevo JL, Bargallo N, Marti MJ. Correlates of cerebrospinal fluid levels of oligomeric and total-alpha-synuclein in premotor, motor and dementia stages of Parkinson’s disease. J Neurol 2015;262(2):294-306.

Prikrylova Vranova H, Mares J, Nevrly M, Stejskal D, Zapletalova J, Hulstik P, Kanovsky P. CSF markers of neurodegeneration in Parkinson’s disease. J Neural Transm (Vienna) 2018;124(4):423-431.

Hall S, Ohrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, Nilsson C, Hakan WD, Decraemer H, Nagga K, Minthon L, Lendos E, Vaxnejehlen M, Holmberg B, Zetterberg H, Blennow K, Hansson O. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 2012;69(11):1445-52.

Bostrom F, Nilsson C, Hakan WD, Decraemer H, Nagga K, Minthon L, Lendos E, Vaxnejehlen M, Holmberg B, Zetterberg H, Blennow K, Hansson O. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 2012;69(11):1445-52.

Alves G, Bronnick K, Aarsland D, Blennow K, Zetterberg H, Ballard C, Kurz MW, Andreasson U, Tynes OB, Larsen JP, Mulgeta E. CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: the Norwegian ParkWest study. J Neurol Neurosurg Psychiatry 2010;81(10):1080-6.

Magdalino NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, Bhatia K, Morris HR, Giunti P, Warner TT, de Silva R, Lees AJ, Zetterberg H. A panel of 9 cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015;86(11):1240-7.

Pikrylova Vranova H, Hulstik P, Vranova HP, Kanovsky P. Cerebrospinal fluid markers in the differential diagnosis of patients with dementia and Parkinson’s disease. Acta Neurol Scand 2014;130(2):59-72.

Prikrylova Vranova H, Hulstik P, Vranova HP, Kanovsky P. Cerebrospinal fluid markers in the differential diagnosis of patients with dementia and Parkinson’s disease. Acta Neurol Scand 2014;130(2):59-72.

Vilas D, Irango A, Bolos A, Aldecoa I, Berenguer J, Vilaseca I, Marti C, Serradell M, Lomena F, Alos L, Gaig C, Santamaria J, Gelpi E. Assessment of alpha-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurology 2016;15(7):708-18.

Chung SJ, Kim J, Lee HJ, Ryu HS, Kim K, Lee JH, Jung KW, Kim MJ, Kim YJ, Yun SC, Lee JY, Hong SM, Myung SJ. Alpha-synuclein in gastric and colonic mucosa in Parkinson’s disease: Limited role as a biomarker. Mov Disord 2016;31(2):241-9.

Andersen AD, Binzer M, Stenager E, Gramsbergen JB. Cerebrospinal fluid biomarkers for Parkinson’s disease - a systematic review. Acta Neurol Scand 2017;135(1):34-56.