Grain yield of common bean (*Phaseolus vulgaris* L.) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia

Tarekegn Yoseph Samago¹ · Endalkachew W. Anniye² · Felix D. Dakora³,⁴

Received: 19 July 2017 / Accepted: 27 November 2017 / Published online: 19 December 2017 © The Author(s) 2017. This article is an open access publication

Abstract

A field experiment was conducted to assess plant growth, symbiotic performance and grain yield of common bean in response to rhizobial inoculation and phosphorus application at Galalicha in Southern Ethiopia during the 2012 and 2013 cropping seasons under rain-fed conditions. The treatments consisted of 2 released common bean varieties (Hawassa Dume and Ibbado), 3 levels of *Rhizobium* inoculation (uninoculated, inoculated with strain HB-429 or GT-9) and 4 levels of phosphorus application (0, 10, 20 and 30 kg P ha⁻¹) using a split-split plot design with four replications. Here, phosphorus levels, *Rhizobium* inoculation and common bean varieties were assigned as main, sub- and sub-sub treatments, respectively. The results revealed marked varietal differences in plant growth, grain yield and symbiotic performance. Of the two common bean varieties studied, Hawassa Dume generally showed superior performance in most measured parameters in 2013. *Rhizobium* inoculation significantly (*p* ≤ 0.05) increased plant growth, symbiotic performance and grain yield. Applying *Rhizobium* strain HB-429 to bean crop respectively increased plant growth, %Ndfa, amount of N-fixed and grain yield by 19, 17, 54 and 48% over uninoculated control. Similarly, the application of 20 kg P ha⁻¹ to bean plants respectively resulted in 36, 20, 96 and 143% increase in plant growth, %Ndfa, N-fixed and grain yield when compared to the control. These results clearly indicate that plant growth, symbiotic performance and grain yield of common bean can be significantly increased by *Rhizobium* inoculation and phosphorus fertilization in Ethiopia. *Rhizobium* inoculants are a cheaper source of nitrogen than chemical fertilizers and when combined with moderate phosphorus application can markedly increase grain yield for resource-poor farmers.

Keywords δ¹⁵N · %Ndfa · N contribution · Reference plants · *Rhizobium* strain

1 Introduction

Organic and chemical fertilisers are the two main agricultural inputs applied to crops by large scale farmers in Africa. These fertilisers are however too expensive for resource-poor small-holder farmers in the continent (Ngetich et al. 2012; Fukuda et al. 2012). *N₂*-fixing legumes are a cheaper and more sustainable alternative to chemical N fertilizers for small-scale farmers in Africa. Nodulated legumes are known to contribute substantial amounts of symbiotic N to cropping systems (Belane and Dakora 2009, 2010; Naab et al. 2009; Nyemba and Dakora 2010; Sprent et al. 2010; Pule-Meulenberg et al. 2010; Mohale et al. 2014). The inclusion of nodulated grain legumes like common bean in cropping systems can improve crop yields and thus replenish soil N (Maina et al. 2011).
N\textsubscript{2} fixation in legumes is the second most important biological process after photosynthesis (Hayat et al. 2008; Unkovich et al. 2008), and contributes N to meet the legume’s N demand, as well as for succeeding crops (Peoples et al. 2009). Rhizobial strains including \textit{Rhizobium leguminosarum} biovar \textit{phaseoli} are therefore widely used as inoculants to improve growth, symbiotic performance and grain yield of common bean under both glasshouse and field conditions (Kellman et al. 2005). However, N\textsubscript{2} fixation by the common bean symbiosis is hardly adequate to meet plant growth and grain yield (Kabahuma 2013; Sánchez et al. 2014). This is due, in part, to susceptibility of the crop to nutritional and environmental constraints, its short maturity period, and the ineffectiveness of indigenous soil rhizobia (Kabahuma 2013). Pre-inoculation of seeds with elite rhizobial strains was shown to increase symbiotic performance and grain yield of common bean planted in farmers’ fields (Akter et al. 2014; Tabaro 2014). Percent N derived from fixation of atmospheric N\textsubscript{2} and N contribution have been estimated from the ^{15}N values of \textit{Rhizobium}-inoculated common bean (Bambara and Ndakidemi 2010a, b), and from farmers’ fields where no inoculants were applied (Nyemba and Dakora 2010).

Globally, low available P in many weathered tropical soils is a major constraint to common bean production (Lynch et al. 2009), as the P requirement of legumes is greater when compared to cereals (Silva et al. 2014). In Africa, the low P availability is exacerbated by soil degradation and inadequate fertilisation especially in small-holder agriculture, even though P supply to common bean has been shown to enhance nodulation, symbiotic efficiency and the uptake of mineral nutrients (Stamford et al. 2014; Mandri et al. 2012; Neila et al. 2014; Tajini and Drevon 2014). Furthermore, \textit{Rhizobium} inoculation when combined with P fertilisation has been found to increase nitrogenase activity, plant growth, grain yield and soil fertility (Fatima et al. 2007; Hayat et al. 2008). In fact, combining rhizobial inoculation with P fertilisation is known to further enhance symbiotic N\textsubscript{2} fixation and grain yield in nodulated legumes (Zafar-Allah et al. 2007; Bhuiyan et al. 2008; Bekere and Hailemariam 2012; Mfilinge et al. 2014).

P fertilisation of common bean in the field has also led to increased shoot biomass and root nodulation (Mourice and Tryphone 2012; Namugwanya et al. 2014). So far, however, there are no reports of bean response to rhizobial inoculation in combination with P fertilisation in Ethiopia. Therefore, the aim of this study was to assess the effect of \textit{Rhizobium} inoculation and P application on plant growth, symbiotic performance and grain yield of two common bean varieties grown at Galalicha in Southern Ethiopia.

2 Materials and methods

2.1 Site description

A field experiment was conducted at Galalicha in Southern Ethiopia during the main rainy season (August to November) of 2012 and 2013. The site is located in South West of Hawassa town between 06º 05’ 58” - 07º 02’ N latitude and 038º 18’ - 038º 19’ E longitude at an altitude of 1740–2000 m above sea level. The area respectively received a total rainfall of 744.1 and 756.8 mm during the 2012 and 2013 cropping seasons. Based on national meteorological data, the average yearly minimum and maximum temperatures were 14.2 and 27.0 °C in 2012 and 2013, respectively. The soil at study site was a sandy-loam with pH 7.0 and 6.4, organic carbon 3.3 and 4.1 mg g-1, total N 0.1 and 0.6 mg g-1, plant-available P 0.65 and 1.00 mg g-1, CEC 9.6 and 22.2 cmol kg-1, K 2.2 and 3.1 cmol kg-1, Ca 4.3 and 4.4 cmol kg-1 and Mg 0.8 and 0.9 cmol kg-1 in 2012 and 2013, respectively. In general, the soil analysis results indicated that the area is nutrient deficient to support the potential crop production.

2.2 Source of planting material

Seeds of \textit{Phaseolus vulgaris} L. varieties Hawassa Dume and Ibbado were obtained from the Hawassa Agricultural Research Centre, Hawassa, Ethiopia. The two common bean varieties were chosen based on their high grain yield, acceptability by farmers and seed availability. Hawassa Dume grows as an indeterminate semi-bush, takes about 85–110 days to physiological maturity, and has a dark-red seed coat pigmentation. In contrast, Ibbado grows as a determinate bush, takes 90–95 days to mature and has a speckled-red seed coat colour.

2.3 Experimental design and treatments

Seeds were planted in a split-split-plot design which had a total of 24 treatment combinations with four replicate plots for each treatment. The field plot treatments included: i) addition of 10, 20 and 30 kg P ha-1 to soils as triple super phosphate (TSP) by banding along planting rows to a depth of 15 cm to avoid direct contact with seeds at the time of planting, and ii) \textit{Rhizobium} inoculation of 1 kg seed with a peat based 10 g inoculant (Rice et al. 2001) containing 6.5×10^8 viable bacterial cells g-1 peat of \textit{Rhizobium leguminosarum} biovar \textit{phaseoli} strain HB-429 (National Soil Research Laboratories, Microbiology Unit, Addis Ababa, Ethiopia), or \textit{phaseoli} R1.bv. strain GT-9 (Soygro Pty Ltd., Potchefstroom, South Africa). These two rhizobial strains are used as commercial inoculants for common bean cultivation in Ethiopia and South Africa. Uninoculated plants and plants grown in zero-P soils were included as controls.
2.4 Rhizobium inoculation

Seed inoculation was done under shade in the field to reduce the bacterial cell death. Inoculated seeds were allowed to air-dry for a few minutes before planting. Two seeds were sown in each hole for both inoculated and uninoculated treatments. To avoid cross contamination, the uninoculated seeds were always planted first, followed by inoculated treatment. Soil ridges were made to separate inoculated and uninoculated treatments from each other in order to prevent cross contamination through rainwater movement. After sowing, the seeds were immediately covered with moist soil to avoid rhizobial cell death from desiccation. Planting was done using a spacing of 40 cm between rows and 10 cm between plants. Each experimental plot measured 2.4 m × 3.6 m (8.64 m²). Each year, field experiments were carried out during early August. Weeding was done manually by hoe at two weeks after seedling emergence, and three weeks later, if needed. To avoid cross contamination, weeding was done in the uninoculated plots first. Planting in 2013 was done in a field adjacent to the one used in 2012.

2.5 Plant sampling and processing

At early pod-setting, five common bean plants were randomly dug up from each plot, placed in paper bags and transported to the laboratory, where each plant was separated into roots, nodules and shoots. The shoots were oven-dried at 70 °C for 48 h, weighed, and finely ground (0.85 mm sieve size) for 15N isotopic analysis. Non-legume plant species concurrently sampled from inside the plots as done for legume were used as reference plants for determining soil mineral N uptake by bean plants and 15N/14N isotopic fractionation associated with N₂ fixation. In total, eight and twelve reference plants were sampled and processed for 15N analysis in 2012 and 2013, respectively (Table 1).

2.6 15N isotopic analysis and estimation of N-fixed and soil N uptake

Isotopic analysis was done at the University of Cape Town Stable Isotope Laboratory. About 2 to 3 mg finely ground shoot samples of bean and reference plants were weighed into aluminium capsules and fed onto a Thermo 2000 Elemental Analyzer coupled via a Thermo Conflo IV to a Thermo Delta V Plus stable light isotope mass spectrometer (Thermo Corporation, Bremen, Germany). An internal standard of Nasturtium spp. was included in every five runs to correct for machine error during isotopic analysis in 2012, while Merck Gel (δ¹⁵N = 6.8‰) was included as standard after every twelve runs in 2013.

The isotopic composition of plant samples was calculated as (Mariotti et al. 1981):

\[
\delta^{15}N(\%e) = \left(\frac{15N/14N}_{\text{sample}} - \frac{15N/14N}_{\text{standard}} \right) \times 1000
\]

Where \(15N/14N\)_{sample} and \(15N/14N\)_{standard} are respectively the abundance ratio of the sample and air (the International Atomic Energy Agency standard).

The N content of each plant sample was determined as the product of N concentration (obtained directly from mass spectrometer) and shoot dry matter (Peoples et al. 2009).

The percent N derived from the fixation of atmospheric N₂ (%Ndfa) by bean plants was calculated from the δ¹⁵N abundance of the legume species and that of the non-fixing reference plant as (Shearer and Kohl 1986; Unkovich et al. 2008):

\[
\%Ndfa = \frac{\delta^{15}N_{\text{ref}} - \delta^{15}N_{\text{leg}}}{\delta^{15}N_{\text{ref}} - B} \times 100
\]

Where, \(\delta^{15}N_{\text{ref}}\) is the ¹⁵N natural abundance of non-fixing reference plant shoots used in the experiment, and \(\delta^{15}N_{\text{leg}}\) is the ¹⁵N natural abundance of common bean shoots. The B

Table 1 The δ¹⁵N values of reference plants used for estimating soil N uptake or %Ndfa by common bean at Galalicha during 2012 and 2013 cropping seasons

Plant species	δ¹⁵N (%)^e
2012	
Ageratum conyzoides	+4.65
Amaranthus hybridus	+4.67
Datura stromanium	+4.80
Galinsonga parviflora cav	+5.62
Lepidium africanum	+4.08
Nicandra physalodes (L.) Scop.	+5.69
Raphanus raphanistrum	+6.81
Zea mays L.	+5.83
2013	
Achyranthes aspera	+4.92
Amaranthus palmeri	+4.74
Bidens pilosa	+6.47
Chenopodium ambrosioides	+4.06
Datura stramonium	+5.47
Erucastrum arabicum	+6.95
Lepidium africanum	+4.96
Leucus argentea	+5.58
Malva verticillata	+6.19
Parthenium hysterophorus	+4.43
Xanthium spinosum	+4.36
Zea mays L.	+7.27
value is the 15N natural abundance of the legume (common bean) relying exclusively on N$_2$ fixation for its N nutrition. The B value ($-0.482‰$) used to calculate %Nd$_{fa}$ in this study was obtained from Kimura et al. (2004). The combined mean δ^{15}N value of the total number of reference plant species sampled from each experimental site was used in estimating %Nd$_{fa}$ of that site for the year concerned.

The amount of N-fixed was calculated as (Maskey et al. 2001):

$$N_{\text{fixed}} = \%Nd_{fa} \times \text{legume biomass N}$$

Where legume biomass N was the N content of common bean shoots.

The soil N uptake was calculated by calculating the difference between total N and N-fixed.

2.7 Grain yield

At physiological maturity, the total number of plants were counted from the inner three rows of each plot to obtain a stand count. At harvest, ten plants were randomly removed from three inner rows of each plot (2.4 m \times 1.2 m = 2.88 m2). The pods were plucked, pooled, and grain removed from pods per plot, and weighed after air-drying to 11% moisture level as measured by a moisture meter (Model HOH-EXPRESS HE 50).

2.8 Statistical analysis

The data collected were statistically analysed using the general linear model procedure of Statistical Analysis Software (SAS 9.0, Institute, Inc., Cary, NC, USA). Data on plant growth (measured as shoot dry matter), symbiotic parameters and grain yield were analysed using a three-way ANOVA in order to assess the treatment effect of bean varieties, inoculant types and phosphorus levels. Where treatments differed statistically, the Duncan’s multiple range test was used to separate the means at $p \leq 0.05$. Correlation analysis was done using Pearson’s simple correlation coefficients to test the relationships between plant growth, symbiotic parameters and/or grain yield.

3 Results

3.1 Shoot δ^{15}N of reference plants

The results of the shoot δ^{15}N, whether minimum, maximum or combined mean of non-fixing reference plant species are presented in Table 1. In 2012, the δ^{15}N of reference plants ranged from +4.08 to +6.81, and in 2013 from +4.06 to +7.27. The combined mean δ^{15}N values of the reference plants used to estimate %Nd$_{fa}$ of bean were $+5.30‰$ and $+5.45‰$, respectively, in 2012 and 2013 (Table 2).

3.2 Effect of bean variety on plant growth, symbiotic performance and grain yield of common bean in 2012 and 2013

Plant growth measured (as shoot dry matter) was similar in 2012, but differed markedly between the two bean varieties in 2013 (Table 3). Shoot N concentration was similar for 2012 and 2013; N content was however higher in Hawassa Dume in 2013 but not 2012 (Table 3). Shoot δ^{15}N values were also similar in 2012, but lower in Hawassa Dume than Ibbado in 2013. As a result, %Nd$_{fa}$ values were similar in the two bean varieties in 2012, but differed in 2013, with Hawasss Dume obtaining more N from fixation. Symbiotic N contribution was significantly higher in Hawassa Dume in 2012 and 2013, while soil N uptake was similar for both varieties during the two cropping seasons (Table 3). The Hawassa Dume variety produced significantly more grain yield than Ibbado in 2012 (1.84 vs. 1.65 t.ha$^{-1}$) and 2013 (2.05 vs. 1.86 t.ha$^{-1}$).

3.3 Effect of *Rhizobium* inoculation on plant growth, symbiotic performance and grain yield of common bean in 2012 and 2013

In 2012, rhizobial inoculation increased shoot DM significantly over uninoculated plants, with strain HB-429 inducing greater plant growth than strain GT-9 (Table 3). A similar result was obtained in 2013. Although, *Rhizobium* inoculation had no effect on shoot N concentration in 2012 it increased it in 2013 relative to uninoculated control. N content was however higher in inoculated plants than uninoculated in 2012 despite having similar N levels (Table 3). Although bacterial inoculation showed no effect on shoot δ^{15}N in 2012, it decreased it in 2013 relative to uninoculated control. As a result, percent N derived from fixation was similar in 2012, but higher in inoculated plants in

Year	No of plants sampled per site (n)	δ^{15}N values (%e)	Mean ± SE	
	Minimum	Maximum		
2012	8	4.08	6.81	5.30 ± 0.31
2013	12	4.06	7.27	5.45 ± 0.31

The values include the minimum, maximum and mean during 2012 and 2013 cropping seasons.
Table 3 Plant growth, symbiotic performance and grain yield of common bean varieties in response to rhizobial inoculation and P application at Galalicha during the 2012 and 2013 cropping seasons

Treatments	Shoot dry matter g plant⁻¹	N concentration %	N content g plant⁻¹	δ¹⁵N %	Ndfa %	N-fixed kg ha⁻¹	Soil N uptake kg ha⁻¹	Grain yield (t ha⁻¹)
2012								
Variety								
Hawassa Dume	15.23 ± 0.43a	2.2 ± 0.04a	0.34 ± 0.01a	3.2 ± 0.04a	36 ± 0.98a	23 ± 1.38a	40 ± 1.65a	1.84 ± 0.11a
Ibbado	15.13 ± 0.34a	2.2 ± 0.04a	0.33 ± 0.01a	3.4 ± 0.06a	34 ± 1.18a	21 ± 1.10b	41 ± 1.36a	1.65 ± 0.09b
Rhizobium								
Uninoculated	14.03 ± 0.44c	2.2 ± 0.04a	0.30 ± 0.01c	3.5 ± 0.11a	33 ± 0.97a	18 ± 0.99c	38 ± 1.70b	1.34 ± 0.08b
HB-429	16.61 ± 0.47a	2.2 ± 0.07a	0.37 ± 0.02a	3.3 ± 0.04a	35 ± 1.83a	25 ± 2.13a	44 ± 2.19a	1.97 ± 0.13a
GT-9	14.89 ± 0.40b	2.2 ± 0.04a	0.32 ± 0.01b	3.1 ± 0.10a	36 ± 0.02a	21 ± 0.96b	39 ± 1.40b	1.93 ± 0.13a
Phosphorus								
0	12.57 ± 0.34c	2.0 ± 0.04c	0.25 ± 0.01d	3.5 ± 0.08a	32 ± 1.32b	15 ± 0.63b	32 ± 1.48c	0.98 ± 0.04c
10	13.95 ± 0.48b	2.0 ± 0.03c	0.28 ± 0.01c	3.4 ± 0.11a	33 ± 1.91b	17 ± 1.28b	35 ± 1.37c	1.72 ± 0.07b
20	16.80 ± 0.30a	2.5 ± 0.02a	0.42 ± 0.02a	3.4 ± 0.04a	35 ± 0.77a	27 ± 0.96a	51 ± 1.65a	2.12 ± 0.16a
30	17.33 ± 1.34a	2.2 ± 0.05b	0.38 ± 0.03b	3.1 ± 0.10b	38 ± 1.68a	27 ± 2.03a	43 ± 1.39b	2.18 ± 0.12a
2013								
Variety								
Hawassa Dume	16.20 ± 0.46a	2.4 ± 0.06a	0.39 ± 0.02a	2.5 ± 0.10b	50 ± 1.62a	38 ± 2.41a	35 ± 1.46a	2.05 ± 0.12a
Ibbado	15.48 ± 0.39b	2.3 ± 0.05a	0.36 ± 0.01b	3.0 ± 0.11a	41 ± 1.85b	28 ± 2.01b	37 ± 1.24a	1.86 ± 0.10b
Rhizobium								
Uninoculated	14.36 ± 0.43c	2.2 ± 0.07b	0.32 ± 0.02b	3.2 ± 0.10a	38 ± 1.61b	23 ± 1.68b	37 ± 1.84a	1.72 ± 0.06b
HB-429	17.21 ± 0.50a	2.4 ± 0.07a	0.41 ± 0.02a	2.6 ± 0.15b	49 ± 2.53a	39 ± 3.11a	38 ± 1.68a	2.59 ± 0.10a
GT-9	15.95 ± 0.53b	2.4 ± 0.06a	0.39 ± 0.02a	2.5 ± 0.11b	50 ± 1.92a	37 ± 2.68a	35 ± 1.47a	2.56 ± 0.07a
F-statistic								
Variety (V)	10.63**	3.70NS	9.40**	25.96***	25.97***	27.65***	1.98NS	24.90***
Rhizobium (R)	53.56***	3.46**	28.72***	13.77***	13.77***	23.29***	1.12NS	32.09***
Phosphorus (P)	57.49***	5.69**	24.88**	21.07**	21.07**	35.49**	13.03**	202.95***
V x R	0.33NS	2.08NS	2.63NS	0.31NS	0.31NS	2.79NS	1.26NS	3.14NS
V x P	2.68NS	1.75NS	2.92**	2.06NS	2.08NS	0.90NS	3.76	2.63NS
R x P	4.14**	1.32NS	2.04NS	2.04NS	2.00NS	2.97**	3.88**	1.34NS
V x R x P	1.07NS	0.44NS	0.77NS	0.96NS	0.96NS	1.17NS	0.56NS	2.63NS

Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation...
2013. However, the amounts of N-fixed differed in both 2012 and 2013, with the inoculated plants making a significantly greater N contribution than their uninoculated counterparts in both years. Soil N uptake by bean plants was greater with *Rhizobium* HB-429 inoculation in 2012, but similar for inoculated and uninoculated plants in 2013 (Table 3). Bean inoculation with the two rhizobial strains significantly increased grain yield (Table 3), as well as the number of pods per plant, number of seeds per pod, 100-seed weight and grain yield compared to uninoculated control (data not shown).

3.4 Effect of phosphorus supply on plant growth, symbiotic performance and grain yield of common bean in 2012 and 2013

Applying P to bean plants increased plant growth, shoot N concentration and N content in both 2012 and 2013, with greater N accumulation at the higher P levels (Table 3). However, P supply decreased δ¹⁵N value relatively to zero-P treatment in both 2012 and 2013 with the lowest δ¹⁵N being recorded at 30 kg P ha⁻¹. As a result, percent N derived from fixation increased from 32% at zero-P to 38% at 30 kg P ha⁻¹ in 2012 and 36% to 51% respectively in 2013. The amount of N-fixed also expectedly increased from 15 kg N ha⁻¹ at zero-P to 38 kg N ha⁻¹ at 30 kg P ha⁻¹ in 2012, and 19 to 44 kg N ha⁻¹ respectively in 2013 (Table 3). Soil N uptake and grain yield by bean plants also increased significantly with rising P supply.

3.5 Variety x *Rhizobium* interaction

The variety x *Rhizobium* interaction was significant for N concentration, N content and N-fixed in 2012 (Table 3). The results showed a consistently greater N concentration, N content and amount of N-fixed in Hawassa Dume over Ibbado when inoculated with strain HB-429, in contrast to the much lower N concentration and N content under uninoculated conditions (Fig. 1a, b and c). However, Ibbado outperformed Hawassa Dume in uninoculated plots in terms of shoot N concentration, N content and N-fixed. In contrast, strain GT-9 produced similar results with Hawassa Dume and Ibbado as host plants (Fig. 1a, b and c).

3.6 Variety x phosphorus interaction

The variety x phosphorus interaction was significant for shoot DM, soil N uptake and grain yield in 2012 and 2013, as well as for N concentration, N content, δ¹⁵N, %Ndfa and N-fixed in 2012 (Table 3). Analysis of *Rhizobium* x phosphorus interaction revealed greater shoot biomass accumulation by inoculated bean plants over their uninoculated counterparts at 0, 10 and 30 kg P ha⁻¹ treatments in 2012 and 2013 (Fig. 3aa and db). At 20 kg P ha⁻¹, the shoot biomass produced by uninoculated and strain GT-9 inoculated plants were similar in 2012 and 2013, but lower than Ibbado in zero-P control plants in 2012 and 2013 (Fig. 2c and e).

3.7 *Rhizobium* x phosphorus interaction

The *Rhizobium* x phosphorus interaction was significant for shoot DM, soil N uptake and grain yield in 2012 and 2013, as well as for N concentration, N content, δ¹⁵N, %Ndfa and N-fixed in 2012 (Table 3). Analysis of *Rhizobium* x phosphorus interaction revealed greater shoot biomass accumulation by inoculated bean plants over their uninoculated counterparts at 0, 10 and 30 kg P ha⁻¹ treatments in 2012 and 2013 (Fig. 3aa and db). At 20 kg P ha⁻¹, the shoot biomass produced by uninoculated and strain GT-9 inoculated plants were similar in 2012 and 2013, but lower than Ibbado in zero-P control plants in 2012 and 2013 (Fig. 2c and e).
greater at zero-P (Fig. 3e). As a result, %Ndfa values were higher with *Rhizobium* inoculation at 10 and 30 kg P ha\(^{-1}\), but lower at zero-P (Fig. 3f). Amount of N-fixed was greater with strain HB-429, followed by GT-9 when plants were fed 10, 20 and 30 kg P ha\(^{-1}\) (Fig. 3g). The N contribution by strain HB-429 was however much lower at zero-P. At zero-P, the inoculated plants took up more soil N than uninoculated, while at higher P levels, the uninoculated bean plants could take up the same or more soil N than strain HB-429 or GT-9 (Fig. 3h). In the two cropping seasons, *Rhizobium* inoculation alone significantly increased grain yield when compared to uninoculated plants at zero-P (Fig. 3i and j). In fact, inoculation with either strains resulted in markedly greater grain yield than uninoculated plants at 10, 20 and 30 kg P ha\(^{-1}\) in both 2012 and 2013 (Fig. 3i and j).

3.8 Correlation analysis

The correlation coefficients for pair-wise comparison of the degree of association between and among plant growth, symbiotic performance and grain yield of common bean in 2012 and 2013 are presented in Table 4. The analyses revealed a positive correlation between shoot dry matter and symbiotic parameters (%Ndfa and N-fixed) in 2012 and 2013. Similarly, the results showed strong relationships between all parameters analysed, and %Ndfa of plants. N-fixed was positively correlated with soil N uptake in both cropping seasons. However, %Ndfa was negatively correlated with \(\delta^{15}N\) values and soil N uptake in both cropping seasons. But more importantly, N-fixed and %Ndfa both correlated positively with grain yield, indicating the importance of N\(_2\) fixation in legume grain yield.

4 Discussion

The \(^{15}N\) natural abundance technique was used to evaluate N contribution by common bean grown at Galalicha in Southern Ethiopia. The combined mean \(\delta^{15}N\) values of eight and twelve reference plants (+5.30 and +5.45‰ in 2012 and 2013, respectively) were markedly greater than the highest \(\delta^{15}N\) of common bean plants sampled (Table 2). This thus permitted estimation of %Ndfa and amount of N-fixed for common bean in Ethiopia as reported for grain legumes elsewhere (Nyemba and Dakora 2010; Belane et al. 2013; Mohale et al. 2014).

Of the two bean varieties evaluated in this study, Hawassa Dume showed better nodulation (data not shown) and greater plant growth compared to Ibbado (Table 3). Common bean has a high P-demand for nodulation and optimal growth (Silva et al. 2014), and some varieties can tolerate low P than others from better P-use efficiency (Vadez and Drevon 2001), which in turn can enhance N\(_2\) fixation in common bean (Vadez et al. 1999). Ethiopian soils are however categorized as P-deficient (Halm 1977), with extractable, plant-available P at the study site ranging from 0.65 mg.kg\(^{-1}\) in 2012 to 1.00 mg.kg\(^{-1}\) in 2013. The better plant growth and symbiotic performance by Hawassa Dume over Ibbado could be attributed to differences in the mechanisms used to take up P from the rhizosphere. In fact, shoot P concentrations were found to be higher in Hawassa Dume due to greater acid phosphatase activity in the rhizosphere and organs when compared to Ibbado (data not shown). The superior performance of both bean varieties in 2013 over 2012 could be due to improved soil P availability in 2013, as well higher rainfall (754.4 mm in the 2013 vs 746.6 mm in 2012) as well as increased soil N levels.

Hawassa Dume was symbiotically more effective than Ibbado, measured here as lower shoot \(\delta^{15}N\) values, greater
Ndfa and larger amounts of N-fixed (23–38 kg N ha\(^{-1}\) for Hawassa Dume vs. 20–29 kg N ha\(^{-1}\) for Ibbado). Relative to N contribution by other grain legumes (Belane et al. 2013; Mohale et al. 2014; Mokgehle et al. 2014), N contribution by common bean in this study is quite low. However, when compared to the 5–31 kg N ha\(^{-1}\) estimated for this legume elsewhere in Africa (Ronner and Franke 2012), then the amount of N-fixed in this study is reasonably high. As a result of the known poor symbiotic performance of common bean (Kellman et al. 2005; Sánchez et al. 2014), soil N uptake by both varieties in this study was much higher than N-fixed (Table 3). There was thus a greater dependence on soil N for growth and grain yield by bean grown in Ethiopia. Generally, common bean has been recognized as a poor N\(_2\)-fixer (Nyemba and Dakora 2010; Kabahuma 2013; Sánchez et al. 2014). That notwithstanding, Hawassa Dume contributed much more symbiotic N and therefore, produced significantly greater grain yield when compared to Ibbado variety (Table 3).

Rhizobial inoculation is often done by farmers as an insurance against nodulation failure due to the presence of

![Fig. 3](image-url)

Table 4 Correlation (r) among plant growth, symbiotic performance and grain yield of common bean varieties grown at Galalicha in Ethiopia, during 2012 and 2013 cropping seasons

Parameters	Significance	2012 p value	2013 p value
Shoot dry matter vs. %Ndfa	0.20 *	0.54 ***	
Shoot dry matter vs. N-fixed	0.73 ***	0.84 ***	
Shoot dry matter vs. soil N uptake	0.80 ***	0.50 ***	
%Ndfa vs. \(\delta^{15}\)N	–1.00 ***	–1.00 ***	
%Ndfa vs. N-fixed	0.74 ***	0.83 ***	
%Ndfa vs. soil N uptake	–0.17 NS	–0.24 *	
%Ndfa vs. grain yield	0.29 **	0.50 ***	
N-fixed vs. \(\delta^{15}\)N	–0.74 ***	–0.83 ***	
N-fixed vs. soil N uptake	0.51 ***	0.27 ***	
N-fixed vs. grain yield	0.59 ***	0.70 ***	
abundant ineffective native rhizobia in agricultural soils. In this study, both common bean varieties responded positively to inoculation with *Rhizobium* strains HB-429 and GT-9 under Ethiopia conditions (Table 3), a finding consistent with previous reports (Trabelsi et al. 2011; Kawaka et al. 2014). The significantly increased plant growth, symbiotic performance and grain yield of the test bean varieties from inoculation with *Rhizobium* strains HB-429 and GT-9 together provide direct evidence for the poor symbiotic competitiveness and effectiveness of native rhizobia nodulating bean in Ethiopian soils, while affirming the symbiotic superiority of the introduced strain. The increased plant growth as a result of *Rhizobium* inoculation also resulted in greater grain yield (Table 3). This was evidenced in this study by the significantly positive correlation between percent N derived from fixation and bean grain yield, as well as significantly marked correlation between amount of N-fixed and grain yield (Table 4). *Rhizobium*-inoculated common bean plants accumulated significant amounts of symbiotic N when compared to uninoculated controls in both 2012 and 2013. This improved N nutrition from enhanced N supply via N₂ fixation by the introduced strains no doubt resulted in greater photosynthetic production for higher grain yield. These results are consistent with the findings of Kawaka et al. (2014), which showed that bean inoculation with an effective strain increased N nutrition and grain yield. These findings are also in agreement with those of Elkcoca et al. (2010) and Zafar-Allah et al. (2007), who reported a stimulatory effect of *Rhizobium* inoculation on growth and symbiotic performances of common bean.

In this study, the estimated amounts of N-fixed by *Rhizobium*-inoculated plants ranged from 20 to 31 kg N ha⁻¹, levels within the range (20 to 60 kg N ha⁻¹) reported for *Rhizobium*-inoculated common bean in Brazil (Da Silva et al. 1993). The amount of N-fixed with rhizobial inoculation of common bean in a study by Bambara and Ndakidemi (2010a, b) also ranged from 8.6 to 33 kg ha⁻¹. Here, the application of P to bean resulted in significant increases in plant growth, symbiotic performance and grain yield (Table 3), a finding consistent with the results of P fertilisation of common bean (Mourice and Tryphone 2012; Namugwanya et al. 2014). In Ethiopia, common bean varieties responded positively to exogenous P supply at a moderate 20 and 30 kg ha⁻¹. The similar response by bean plants to 20 or 30 kg P ha⁻¹ support the recommended rate of 20 kg P ha⁻¹ for common bean as optimal for plant growth and grain yield by the Extension Service (Turuko and Mohammed 2014). Also, the increased nodule number and nodule biomass (data not shown), as well as shoot dry matter (Table 3) with P supply to common bean, is consistent with the report by Pereira and Bliss (1987) and Olivera et al. (2007) for common bean.

The application of P to bean plants also resulted in decreased shoot δ¹⁵N values, an indication of higher N₂ fixation (Table 3) and this agrees with the findings of Chagas et al. (2010). However, there was a positive synergistic effect of *Rhizobium* inoculation and P-fertilisation on plant growth and symbiotic performance, as indicated by the lower shoot δ¹⁵N values, greater %Nd₆, and increased amount of N-fixed in plants treated to P and *Rhizobium* (Table 3). Even with P supply alone, there was a marked growth and symbiotic response in this study, thus indicating the need for P fertilisation of these P-deficient soils of Ethiopia before planting beans. The performance of correlation analysis found a strong and significant relationship between plant growth and symbiotic parameters, a result which supports the existence of a functional link between plant growth and symbiotic functioning in common bean (Belane and Dakora 2010; Nkote et al. 2013; Qureshi et al. 2013; Mohale et al. 2014). It is clear from those studies, as well as this one, that N₂ fixation is important for plant growth and grain yield of nodulated food legumes, and is a cheap substitute for the use of N fertilizers.

Taken together, the results obtained in this study have shown that rhizobial inoculation and P application (20 kg P ha⁻¹) can improve plant growth, symbiotic performance and grain yield of common bean varieties grown in the low-P soils of Ethiopia. The greater plant growth and enhanced N nutrition in *Rhizobium*-inoculated, P-fed plants translated into increased grain yield, an agronomic practice that could boost bean production in Ethiopia. The significant interactive effects of variety x *Rhizobium*, variety x phosphorus and *Rhizobium* x phosphorus further support the view that supplying these inputs to Ethiopian farmers can increase bean grain yield for food and nutritional security.

Acknowledgements This work was supported with grants from the Bill and Melinda Gates Foundation Project on Capacity Building in Legume Sciences in Africa, the South African Department of Science and Technology, the Tshwane University of Technology, the National Research Foundation in Pretoria, and the South African Research Chair in Agrochermurgy and Plant Symbioses. TYS is grateful for a competitive doctoral fellowship from the Bill and Melinda Gates Foundation Project on Capacity Building in Legume Sciences in Africa.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Akter Z, Pageni BB, Lupwayi NZ, Balasubramanian PM (2014) Biological nitrogen fixation and nifH gene expression in dry beans (*Phaseolus vulgaris* L.) Can J Plant Sci 94(2):203–212. https://doi.org/10.4141/cjps2013-200

Bambara S, Ndakidemi P (2010a) *Phaseolus vulgaris* response to *Rhizobium* inoculation, lime and molybdenum in selected low pH soil in western cape, South Africa. Afr J Agric Res 5:1804–1811
Bambara S, Ndakidemi PA (2010b) Effects of Rhizobium inoculation, lime and molybdenum on nitrogen fixation of nodulated Phaseolus vulgaris L. Afr J Microbiol Res 4:682–696

Bekere W, Hailermariam A (2012) Influence of inoculation methods and P levels on nitrogen fixation attributes and yield of soybean (Glycine max L. Merr.) at Haru, Western Ethiopia. Amer J Plant Nutr Fert Tech 2(2):45–55

Belane AK, Dakora FD (2009) Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana, using 15N natural abundance technique. Symbiosis 48(1-3):47–56. https://doi.org/10.1007/BF03179984

Belane AK, Dakora FD (2010) Symbiotic N2 fixation in 30 field-grown cowpea (Vigna unguiculata L. Walp.) genotypes in the upper west region of Ghana measured using 15N natural abundance. Biol Fertil Soils 46:191–198

Belane AK, Asiew J, Dakora FD (2013) Assessment of N2 fixation in 32 cowpea (Vigna unguiculata L. Walp.) genotypes grown in the field at Taung in South Africa, using 15N natural abundance. Afr J Biotecnol 10:11450–11458

Bhuiyan MMH, Rahman MM, Afronze F, Sutradhar GNC, Bhuiyan MSI (2008) Effect of phosphorus, molybdenum and Rhizobium inoculation on growth and nodulation of mungbean. J Soil Nat 2:25–30

Chagas E, Araujo AP, Alves BJR, Teixeira MG (2010) Seeds enriched in nitrogen and biological nitrogen fixation of common bean (Phaseolus vulgaris L.) Plant Soil 152(1):123–130. https://doi.org/10.1007/BF00016341

Elkoa E, Turun M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris cv. ‘Elkoa-05’). J Plant Nutr 33(14):2104–2119. https://doi.org/10.1080/01904167.2010.519084

Fatima Z, Zia M, Chaudhary MF (2007) Interactive effect of rhizobium strains and P on soybean yield, nitrogen fixation and soil fertility. Pak J Bot 39:255

Fukuda M, Noguno F, Nakamura S, Tobita S (2012) Effect of phosphorus, molybdenum and Rhizobium inoculation on growth and nodulation of mungbean. J Soil Nat 2:25–30

Hahn A (1977) Tentative soil fertility rating for available phosphorus. Ghana J Agric Sci 11:13–18

Hayat R, Ali S, Siddique MT, Chatha TH (2008) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pak J Bot 40:711–722

Kabahuma MK (2013) Enhancing biological nitrogen fixation in common bean (Phaseolus vulgaris L.). MS.c Dissertation, Iowa State University, Ames

Kawaka F, Dida MM, Opala PA, Ombori O, Maingi J, Osoro N, Muthini M, Amoging A, Mukaminega D, Muoma J (2014) Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. Int Sch Res Not 2014:1–8. https://doi.org/10.1155/2014/258497

Kellman AW, Hill GD, Mckenzie BA (2005) Variability in nodulation of Phaseolus vulgaris L. with different rhizobial strains. Agron NZ 35:57–65

Kimura SD, Schmidtko K, Tajima R, Yoshida K, Nakashima H, Rauber R (2004) Seasonal N uptake and N2 fixation by common and aziduki bean at various spacings. Plant Soil 258(1):91–101. https://doi.org/10.1023/B:PLSO.000016539.73233.3c

Lynch J, Rosas JC, Magalhaes Miguel I, Brown MK, Findeis J, Celestina Jochua I, Xerinda MSA (2009) Improving bean production in drought-prone, low fertility soils of Africa and Latin America-an integrated approach. Phase I-Pennsylvania State University as Lead University–Project

Maina F, Kihara J, Mokwunye U (2011) Fighting poverty in sub-Saharan Africa: the multiple roles of legumes in integrated soil fertility management

Mandri B, Drevon J-J, Bargaz A, Ouédraogo K, Faghire M, Plassard C, Payre H, Gholam C (2012) Interactions between common bean genotypes and rhizobia strains isolated from moroccan soils for growth, phosphatase and phytase activities under phosphorus deficiency conditions. J Plant Nutr 35(10):1477–1490. https://doi.org/10.1080/01904167.2012.689908

Mariotti A, Germon J, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62(3):413–430. https://doi.org/10.1007/BF02374143

Maskey S, Bhattachariya S, Peoples M, Herring D (2001) On-farm measurements of nitrogen fixation by winter and summer legumes in the hill and Terai regions of Nepal. Field Crop Res 70(3):209–221. https://doi.org/10.1016/S0378-4290(01)00140-X

Mfilinge A, Mtei K, Ndakidemi PA (2014) Effects of Rhizobium inoculation and supplementation with P and K on growth, leaf chlorophyll content and nitrogen fixation of bush bean varieties. Amer J Rev Comm 2(10):49–87

Mohale KC, Belane AK, Dakora FD (2014) Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Biol Fertil Soils 50:307–319

Mokghele SN, Dakora FD, Mathews C (2014) Variation in N2 fixation and N contribution by 25 groundnut (Arachis hypogaea L.) varieties grown in different agro-ecologies, measured using 15N natural abundance. Agric Ecosyst Environ 195:161–172

Mourice SK, Tryphone GM (2012) Evaluation of common bean (Phaseolus vulgaris L.) genotypes for adaptation to low phosphorus. ISRN agron 2012:9

Naab JB, Chimphango SMB, Dakora FD (2009) N2 fixation in cowpea plants grown in farmers’ fields in the upper west region of Ghana, measured using 15N natural abundance. Symbiosis 48(1-3):37–46. https://doi.org/10.1007/BF03179983

Namugwanya M, Tenywa JS, Obbonog E, Mubiru DN, Masamba TA (2014) Development of common bean (Phaseolus vulgaris L.) production under low soil phosphorus and drought in sub-Saharan Africa: a review. J Sust Dev 7:128–139

Neal A, Adnan B, Mustapha F, Manel B, Imen H, Boulbbata LT, Cherki G, Bouazziz S (2014) Phaseolus vulgaris-rhizobia symbiosis increases the phosphorus uptake and symbiotic N2 fixation under insoluble phosphorus. J Plant Nutr 37(5):643–657. https://doi.org/10.1080/01904167.2013.872275

Ngetch FK, Shiayana CA, Mugwe J, Mucheru-Muna M, Mugendi D (2012) The potential of organic and inorganic nutrient sources in Sub-Saharan African crop farming systems. In: Soil fertility improvement and integrated nutrient management–a global perspective. InTech, Rijeka

Nkot LN, Ngawa D, Ngakou A, Fankem H, Etoa FX (2013) Variation in nodulation and growth of groundnut (Arachis hypogaea L.) on oxisols from land use systems of the humid forest zone in southern Cameroon. Afr J Biotechnol 10:3996–4004

Nyemb RC, Dakora FD (2015) Evaluating N2 fixation by food grain legumes in farmers’ fields in three agro-ecological zones of Zambia, using 15N natural abundance. Biol Fertil Soils 46(5):461–470. https://doi.org/10.1007/s00374-010-0451-2

Olivera M, Tejeira N, Iribarna C, Ocaña A, Lluch C (2007) Effect of phosphorus on nodulation and nitrogen fixation by Phaseolus vulgaris. In: First international meeting on microbial phosphate solubilization. Springer, Netherlands, pp 157–160
Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation...

Stamford N, Santos P, Santos C, Freitas A, Diass LJR M (2007) Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Bioresour Technol 98(6):1311–1318. https://doi.org/10.1016/j.biortech.2006.04.037

Tabaro A (2014) Evaluation of effectiveness of rhizobia isolates from Rwandan soils on common bean (Phaseolus vulgaris L.). MSc. Dissertation, University of Nairobi

Tajini F, Drevon JJ (2014) Phosphorus use efficiency for symbiotic nitrogen fixation varies among common bean recombinant inbred lines under P deficiency. J Plant Nutr 37(4):532–545. https://doi.org/10.1080/01904167.2013.867981

Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77(1):211–222. https://doi.org/10.1111/j.1574-6941.2011.01102.x

Turuko M, Mohammed A (2014) Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris L.). World. J Agric Res 2:88–92

Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR. Monograph no 136, Canberra.

Vadez V, Lasso JH, Drevon J-J (1999) Variability in N2 fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P-use efficiency. Euphytica 106(3):231–242. https://doi.org/10.1023/A:1003512519558

Zafar-Allah M, Sifi B, L’Taief B, El Aouni M, Drevon J (2007) Rhizobial inoculation and P fertilization response in common bean (Phaseolus vulgaris L.) under glasshouse and field conditions. Exp Agric 43(01): 67–77. https://doi.org/10.1017/S0014479706004236

Peoples M, Brockwell L, Herridge D, Rochester I, Alves B, Urquiaga S, Boddey R, Dakora F, Bhattarai S, Maskey S (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17. https://doi.org/10.1007/BF03179980

Pereira P, Bliss F (1987) Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil 104(1):79–84. https://doi.org/10.1007/BF02370628

Pule-Meulenberg F, Belane AK, Krasova-Wade T, Dakora FD (2010) Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol 10(1):89. https://doi.org/10.1186/1471-2180-10-89

Qureshi ST, Bux H, Khan MR (2013) Symbiotic characterization of rhizobia Nodulating Cicer Arietinum L. Isolated from Pakistan. Intl J Agron Plant Prod 4:2912–2918

Rice W, Clayton G, Lupwayi N, Olsen P (2001) Evaluation of coated seeds as a Rhizobium delivery system for field pea. Can J Plant Sci 81(2):247–253. https://doi.org/10.4141/P00-062

Ronner E, Franke, A (2012) Quantifying the impact of the N2Africa project on biological nitrogen fixation. www.N2Africa.org

Sánchez AC, Gutiérrez RT, Santana RC, Urrutia AR, Fauvart M, Michiels J, Vanderleyden J (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur J Soil Biol 62:105–112. https://doi.org/10.1016/j.ejsobi.2014.03.004

Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

Silva DAD, Esteves JADF, Messias U, Teixeira A, Gonçalves JGR, Chiorato AF, Carbonell SAM (2014) Efficiency in the use of phosphorus by common bean genotypes. Sci Agric 71(3):232–239. https://doi.org/10.1590/S0103-90162014000300008

Sprent JI, Odee DW, Dakora FD (2010) African legumes – a vital but under-utilised resource. J Exp Bot 61(5):1257–1265. https://doi.org/10.1093/jxb/erp342

Stamford N, Santos P, Santos C, Freitas A, Diass LJR M (2007) Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Bioresour Technol 98(6):1311–1318. https://doi.org/10.1016/j.biortech.2006.04.037

Tabaro A (2014) Evaluation of effectiveness of rhizobia isolates from Rwandan soils on common bean (Phaseolus vulgaris L.). MSc. Dissertation, University of Nairobi

Tajini F, Drevon JJ (2014) Phosphorus use efficiency for symbiotic nitrogen fixation varies among common bean recombinant inbred lines under P deficiency. J Plant Nutr 37(4):532–545. https://doi.org/10.1080/01904167.2013.867981

Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77(1):211–222. https://doi.org/10.1111/j.1574-6941.2011.01102.x

Turuko M, Mohammed A (2014) Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris L.). World. J Agric Res 2:88–92

Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR. Monograph no 136, Canberra.

Vadez V, Lasso JH, Drevon J-J (1999) Variability in N2 fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P-use efficiency. Euphytica 106(3):231–242. https://doi.org/10.1023/A:1003512519558

Zafar-Allah M, Sifi B, L’Taief B, El Aouni M, Drevon J (2007) Rhizobial inoculation and P fertilization response in common bean (Phaseolus vulgaris L.) under glasshouse and field conditions. Exp Agric 43(01): 67–77. https://doi.org/10.1017/S0014479706004236

Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation... 255