AN APOCALYPSE-FREE FIRST-ORDER LOW-RANK OPTIMIZATION ALGORITHM WITH AT MOST ONE RANK REDUCTION ATTEMPT PER ITERATION∗

GUILLAUME OLIKIER† AND P.-A. ABSIL†

Abstract. We consider the problem of minimizing a differentiable function with locally Lipschitz continuous gradient over the real determinantal variety, and present a first-order algorithm designed to find stationary points of that problem. This algorithm applies steps of a retraction-free descent method proposed by Schneider and Uschmajew (2015), while taking the numerical rank into account to attempt rank reductions. We prove that this algorithm produces a sequence of iterates the accumulation points of which are stationary, and therefore does not follow the so-called apocalypses described by Levin, Kileel, and Boumal (2022). Moreover, the rank reduction mechanism of this algorithm requires at most one rank reduction attempt per iteration, in contrast with the one of the P2GDR algorithm introduced by Olikier, Gallivan, and Absil (2022) which can require a number of rank reduction attempts equal to the rank of the iterate in the worst-case scenario.

Key words. Convergence analysis · Stationarity · Low-rank optimization · Determinantal variety · First-order method · Tangent cones · QR factorization · Singular value decomposition.

AMS subject classifications. 14M12, 65K10, 90C26, 90C30, 40A05.

1. Introduction. As in [7], we consider the problem

\[
\min_{X \in \mathbb{R}^{m \times n}_{\leq r}} f(X)
\]

of minimizing a differentiable function \(f : \mathbb{R}^{m \times n} \to \mathbb{R} \) with locally Lipschitz continuous gradient over the determinantal variety [4, Lecture 9]

\[
\mathbb{R}^{m \times n}_{\leq r} := \{ X \in \mathbb{R}^{m \times n} | \text{rank } X \leq r \},
\]

\(m, n, \) and \(r \) being positive integers such that \(r < \min\{m, n\} \). This problem appears in several applications such as matrix equations, model reduction, matrix sensing, and matrix completion; see, e.g., [11, 3] and the references therein. As problem (1) is, in general, intractable [1], our goal is to find a stationary point of this problem, i.e., a zero of the stationarity measure

\[
s(\cdot; f, \mathbb{R}^{m \times n}_{\leq r}) : \mathbb{R}^{m \times n}_{\leq r} \to \mathbb{R} : X \mapsto \| P_{T_{\mathbb{R}^{m \times n}_{\leq r}}(X)}(-\nabla f(X)) \|
\]

that returns the norm of any projection of \(-\nabla f(X)\) onto the tangent cone to \(\mathbb{R}^{m \times n}_{\leq r} \) at \(X \); the notation is introduced in Section 2. Indeed, by [5, Lemmas A.7 and A.8], the correspondence

\[
\mathbb{R}^{m \times n}_{\leq r} \to \mathbb{R}^{m \times n} : X \mapsto P_{T_{\mathbb{R}^{m \times n}_{\leq r}}(X)}(-\nabla f(X))
\]

depends on \(f \) only through its restriction \(f|_{\mathbb{R}^{m \times n}_{\leq r}} \), and, by [10, Theorem 6.12] and [5, Proposition A.6], if \(X \in \mathbb{R}^{m \times n}_{\leq r} \) is a local minimizer of \(f|_{\mathbb{R}^{m \times n}_{\leq r}} \), then \(s(X; f, \mathbb{R}^{m \times n}_{\leq r}) = 0 \).

∗This work was supported by the Fonds de la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk Onderzoek – Vlaanderen under EOS Project no 30468160.
†ICTEAM Institute, UCLouvain, Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium (guillaume.olikier@uclouvain.be, pa.absil@uclouvain.be).
To the best of our knowledge, the second-order method given in [5, Algorithm 1] and the first-order method given in [7, Algorithm 2], dubbed P2GDR, are the only two algorithms in the literature that provably converge to stationary points of (1). Other algorithms, such as [11, Algorithm 3], known as P2GD, and [11, Algorithm 4], which we call RFDR because it is a retraction-free descent method, can fail as they can produce a feasible sequence $(X_i)_{i \in \mathbb{N}}$ that converges to some point X with the property that $\lim_{i \to \infty} s(X_i; f, \mathbb{R}^{m \times n}_r) = 0 < s(X; f, \mathbb{R}^{m \times n}_r)$. Such a triplet $(X, (X_i)_{i \in \mathbb{N}}, f)$ is called an apocalypse and the point X, which necessarily satisfies $\text{rank} X < r$, is said to be apocalypse [5, Definition 2.7].

P2GDR is P2GD equipped with a rank reduction mechanism. On the one hand, this mechanism ensures the apocalypse-free property. On the other hand, as mentioned in [7, §6], it can generate a significant computational overhead in some situations. Indeed, its for-loop can consider up to r rank reductions of the current iterate to each of which the P2GD map [7, Algorithm 1] is applied. This is further discussed in Section 7.

In this paper, we introduce a first-order algorithm on $\mathbb{R}^{m \times n}_{\leq r}$ (Algorithm 3), called RFDR, that is apocalypse-free, in the sense that every accumulation point of the generated sequence is a stationary point (Theorem 6.2), which also implies that $s(\cdot; f, \mathbb{R}^{m \times n}_r)$ goes to zero along every convergent subsequence (Corollary 6.3). RFDR is RFDR equipped with a rank reduction mechanism. RFDR presents two advantages over P2GDR, which is the only other known apocalypse-free first-order optimization algorithm on $\mathbb{R}^{m \times n}_{\leq r}$. First, it inherits the advantage that RFD has over P2GD, namely being retraction-free; in other words, the updates are performed along a straight line. Second, its rank reduction mechanism is more efficient than the one of P2GDR because it ensures the apocalypse-free property by performing at most one rank reduction attempt per iteration (compare Algorithm 2 with [7, Algorithm 3]).

This paper is organized as follows. After introducing the notation in Section 2, we define in Section 3 the restricted tangent cone to $\mathbb{R}^{m \times n}_r$, the descent direction used by RFDR is the projection of the negative gradient onto that closed cone. In Section 4, we analyze the iteration map of RFDR (Algorithm 1) under the assumption of local Lipschitz continuity of ∇f. We introduce the RFDR algorithm in Section 5, analyze its convergence properties in Section 6, and compare its computational cost with the one of P2GDR in Section 7. Section 8 contains concluding remarks.

2. Notation. In this section, we introduce the notation used throughout the paper. This is the same notation as in [7] to which we refer for a more complete review of the background material. The real vector space $\mathbb{R}^{m \times n}$ is endowed with the Frobenius inner product $\langle \cdot, \cdot \rangle$, $\| \cdot \|$ denotes the Frobenius norm, and, for all $X \in \mathbb{R}^{m \times n}$ and all $\rho \in (0, \infty)$, $B(X, \rho)$ and $B[X, \rho]$ respectively denote the open ball and the closed ball of center X and radius ρ in $\mathbb{R}^{m \times n}$. Given a nonempty subset S of $\mathbb{R}^{m \times n}$, the tangent cone to S at $X \in S$ is denoted by $T_S(X)$, the distance from $X \in \mathbb{R}^{m \times n}$ to S is denoted by $d(X, S)$, and the projection of $X \in \mathbb{R}^{m \times n}$ onto S is denoted by $P_S(X)$. For every $\underline{r} \in \{0, \ldots, \min\{m, n\}\}$,

$$\mathbb{R}^{m \times n}_{\underline{r}} := \{X \in \mathbb{R}^{m \times n} \mid \text{rank} X = \underline{r}\}$$

is the smooth manifold of $m \times n$ rank-\underline{r} real matrices, and, if $\underline{r} \geq 1$,

$$\text{St}(\underline{r}, n) := \{U \in \mathbb{R}^{n \times \underline{r}} \mid U^\top U = I_{\underline{r}}\}$$
is a Stiefel manifold. We also write \(\mathbb{R}_{\leq}^{m \times n} := \mathbb{R}_{\min \{m, n\}}^{m \times n} \). The singular values of \(X \in \mathbb{R}^{m \times n} \) are denoted by \(\sigma_1(X) \geq \cdots \geq \sigma_{\min \{m, n\}}(X) \geq 0 \).

3. The restricted tangent cone to the determinantal variety. In this section, we define the restricted tangent cone to \(\mathbb{R}_{\leq}^{m \times n} \) (Definition 3.1) and prove that the descent direction introduced in \([11, \S 3.4]\) is the projection of the negative gradient onto that closed cone (Proposition 3.2). Throughout this section, we define the restricted tangent cone to \(\mathbb{R}_{\leq}^{m \times n} \) (Definition 3.1) and prove that the descent direction introduced in \([11, \S 3.4]\) is the projection of the negative gradient onto that closed cone (Proposition 3.2). Throughout this section, \(r \in \{1, \ldots, r\}, X \in \mathbb{R}_{\leq}^{m \times n}, U \in \text{St}(r, m), U_\perp \in \text{St}(m - r, m), V \in \text{St}(r, n), V_\perp \in \text{St}(n - r, n), \) \(\text{im} \ U = \text{im} \ X, \text{im} \ U_\perp = (\text{im} \ X)^\perp, \text{im} \ V = \text{im} \ X^\top, \) and \(\text{im} \ V_\perp = (\text{im} \ X^\top)^\perp \).

The set introduced in the following definition is a closed cone contained in

\[
T_{\mathbb{R}_{\leq}^{m \times n}}(X) = \left\{ [U \ U_\perp] \begin{bmatrix} A & B \\ C & D \end{bmatrix} [V \ V_\perp]^\top \mid A \in \mathbb{R}^{r \times \ell}, B \in \mathbb{R}^{r \times n - \ell}, C \in \mathbb{R}^{m - \ell \times r}, D \in \mathbb{R}^{m - \ell \times n - \ell} \right\}.
\]

Definition 3.1. The restricted tangent cone to \(\mathbb{R}_{\leq}^{m \times n} \) at \(X \) is

\[
\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(X) := \left\{ [U \ U_\perp] \begin{bmatrix} A & B \\ C & D \end{bmatrix} [V \ V_\perp]^\top \mid A \in \mathbb{R}^{r \times \ell}, B \in \mathbb{R}^{r \times n - \ell}, C \in \mathbb{R}^{m - \ell \times r}, D \in \mathbb{R}^{m - \ell \times n - \ell}, B = 0_{r \times n - \ell} \text{ or } C = 0_{m - \ell \times r} \right\}.
\]

Furthermore,

\[
\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(0_{m \times n}) := T_{\mathbb{R}_{\leq}^{m \times n}}(0_{m \times n}) = \mathbb{R}_{\leq}^{m \times n}.
\]

The following proposition can be compared to \([7, \text{Proposition 2.7}]\).

Proposition 3.2. Let \(Z \in \mathbb{R}^{m \times n} \) be written as

\[
Z = [U \ U_\perp] \begin{bmatrix} A & B \\ C & D \end{bmatrix} [V \ V_\perp]^\top
\]

with \(A = U^\top ZV, B = U^\top ZV_\perp, C = U_\perp^\top ZV, \) and \(D = U_\perp^\top ZV_\perp. \) Then,

\[
P_{\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(X)}(Z) = \begin{cases}
[U \ U_\perp] \begin{bmatrix} A & B \\ 0_{m - \ell \times \ell} & P_{\mathbb{R}_{\leq}^{m \times n - \ell}}(D) \end{bmatrix} [V \ V_\perp]^\top & \text{if } \|B\| > \|C\|, \\
[U \ U_\perp] \begin{bmatrix} A & B \\ 0_{m - \ell \times \ell} & \cdot \\ C & P_{\mathbb{R}_{\leq}^{m \times n - \ell}}(D) \end{bmatrix} [V \ V_\perp]^\top & \text{if } \|B\| = \|C\|, \\
[U \ U_\perp] \begin{bmatrix} A & B \\ 0_{m \times \ell - n} & \cdot \\ C & \cdot \end{bmatrix} [V \ V_\perp]^\top & \text{if } \|B\| < \|C\|.
\end{cases}
\]

Moreover,

\[
\|P_{\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(X)}(Z)\| \geq \|P_{\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(X)}(Z)\| \geq \frac{1}{\sqrt{2}} \|P_{\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(X)}(Z)\|
\]

and, for all \(\tilde{Z} \in P_{\tilde{T}_{\mathbb{R}_{\leq}^{m \times n}}(X)}(Z), \)

\[
\langle Z, \tilde{Z} \rangle = \|\tilde{Z}\|^2.
\]
Furthermore,

\begin{equation}
\|Z\| \geq \|P_{\tilde{T}_{\mathbb{R}^{m\times n}_{\leq r}}(X)}(Z)\| \geq \sqrt{\frac{r - \ell}{\min\{m, n\} - \ell}} \|Z\|.
\end{equation}

Proof. We prove only (4) as (5) and (6) are given in [11, §3.4] and (7) in [11, (3.7)]. Let \(\tilde{Z} \in \tilde{T}_{\mathbb{R}^{m\times n}_{\leq r}}(X) \). Then,

\[\tilde{Z} = [U \ U_\perp] \begin{bmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix} [V \ V_\perp]^T \]

for some \(\tilde{A} \in \mathbb{R}^{\ell \times \ell}, \tilde{B} \in \mathbb{R}^{\ell \times n - \ell}, \tilde{C} \in \mathbb{R}^{m - \ell \times \ell}, \) and \(\tilde{D} \in \mathbb{R}^{m - \ell \times n - \ell} \) such that \(\tilde{B} = 0_{\ell \times n - \ell} \) or \(\tilde{C} = 0_{m - \ell \times \ell} \). Thus,

\[
\|Z - \tilde{Z}\|^2 = \left\| \begin{bmatrix} A - \tilde{A} & B - \tilde{B} \\ C - \tilde{C} & D - \tilde{D} \end{bmatrix} \right\|^2
= \|A - \tilde{A}\|^2 + \|B - \tilde{B}\|^2 + \|C - \tilde{C}\|^2 + \|D - \tilde{D}\|^2
\geq 0 + \min\{\|B\|, \|C\|\}^2 + d(\tilde{D}, \mathbb{R}^{m - \ell \times n - \ell})^2.
\]

Therefore,

\[
d(Z, \tilde{T}_{\mathbb{R}^{m\times n}_{\leq r}}(X))^2 \geq \min\{\|B\|, \|C\|\}^2 + d(\tilde{D}, \mathbb{R}^{m - \ell \times n - \ell})^2,
\]

a bound which is reached only by (4).

In practice, the projection onto \(T_{\mathbb{R}^{m\times n}_{\leq r}}(X) \) can be computed thanks to [11, Algorithm 2]. This does not rely on \(U_\perp \) and \(V_\perp \), which are huge in the frequently encountered case where \(r \ll \min\{m, n\} \). The practical computation of the projection onto \(\tilde{T}_{\mathbb{R}^{m\times n}_{\leq r}}(X) \) is described in [11, §3.4] and does not rely on \(U_\perp \) and \(V_\perp \) either. We discuss the practical implementation and the computational cost in Section 7.

4. The RFD map. In this section, we analyze Algorithm 1—which corresponds to the iteration map of RFD [11, Algorithm 4] except that the initial step size for the backtracking procedure is chosen in a given bounded interval—under the assumption that \(f \) is differentiable with \(\nabla f \) locally Lipschitz continuous. This serves as a basis for the convergence analysis conducted in Section 6 since the RFD map (Algorithm 1) is used as a subroutine by the RFDR map (Algorithm 2). The analysis conducted in this section is to RFD as the analysis conducted in [7, §3] is to P2GD, although it is simpler since RFD does not require any retraction as \(X + \alpha G \in \mathbb{R}^{m\times n} \) for all \(X \in \mathbb{R}^{m\times n}_{\leq r} \), all \(\alpha \in (0, \infty) \), and all \(G \in \tilde{T}_{\mathbb{R}^{m\times n}_{\leq r}}(X) \).
Let us recall that, since ∇f is locally Lipschitz continuous, for every closed ball $B \subset \mathbb{R}^{m \times n}$,
\[
\text{Lip}(\nabla f) := \sup_{B} \frac{\|\nabla f(X) - \nabla f(Y)\|}{\|X - Y\|} < \infty,
\]
which implies, by [6, Lemma 1.2.3], that, for all $X, Y \in B$,
\[
|f(Y) - f(X) - \langle \nabla f(X), Y - X \rangle| \leq \frac{\text{Lip}_B(\nabla f)}{2} \|Y - X\|^2. \tag{8}
\]

Proposition 4.1. Let $X \in \mathbb{R}^{m \times n}$ and $\bar{a} \in (0, \infty)$. Let $B \subset \mathbb{R}^{m \times n}$ be a closed ball such that, for all $G \in P_{T_{\mathbb{R}^{m \times n}}(X)}(-\nabla f(X))$ and all $\alpha \in [0, \bar{a}]$, $X + \alpha G \in B$; an example of such a ball is $B[X, \bar{a} s(X; f, \mathbb{R}^{m \times n})]$. Then, for all $G \in P_{T_{\mathbb{R}^{m \times n}}(X)}(-\nabla f(X))$ and all $\alpha \in [0, \bar{a}]$,
\[
f(X + \alpha G) \leq f(X) + \|G\|^2 \alpha \left(-1 + \frac{\text{Lip}_B(\nabla f)}{2} \alpha \right). \tag{9}
\]

Proof. The example $B[X, \bar{a} s(X; f, \mathbb{R}^{m \times n})]$ is correct by the first inequality of (5). The inequality (9) is based on (8) and (6):
\[
f(X + \alpha G) - f(X) \leq \langle \nabla f(X), (X + \alpha G) - X \rangle + \frac{\text{Lip}_B(\nabla f)}{2} \|(X + \alpha G) - X\|^2
\]
\[
= -\alpha \|G\|^2 + \frac{\text{Lip}_B(\nabla f)}{2} \alpha^2 \|G\|^2.
\]

Let us make two remarks concerning the preceding proposition. First, the existence of a ball B crucially relies on the upper bound \bar{a} required by Algorithm 1. Second, in contrast with [7, (8)], the upper bound (9) does not depend on the curvature of a fixed-rank manifold. In particular, (9) does not involve any singular value. This fundamental difference is the reason why RFDR is apocalypse-free while requiring at most one rank reduction attempt per iteration, whereas P^2GDR can require up to r attempts.

Observe that the $\frac{1}{2}$ factor in the sufficient decrease condition of the following result does not appear in the Armijo condition given in [7, Corollary 3.2].
COROLLARY 4.2. Every $\tilde{X} \in \text{RFD}(X; f, r, \alpha, \bar{\alpha}, \beta, c)$ satisfies the sufficient decrease condition

$$f(\tilde{X}) \leq f(X) - \frac{1}{2} c \alpha s(X; f, \mathbb{R}_{\leq r}^{m \times n})^2$$

for some $\alpha \in \left[\min\{\alpha, 2\beta \frac{1-c}{Lip_B(\nabla f)}\}, \bar{\alpha}\right]$, where B is any closed ball as in Proposition 4.1. Moreover, the number of iterations in the while loop is at most

$$\max\left\{0, \left\lfloor \ln \left(\frac{2\beta (1-c)}{\alpha_0 \cdot Lip_B(\nabla f)}\right) / \ln \beta \right\rfloor\right\},$$

where α_0 is the initial step size chosen in line 1.

Proof. For all $\alpha \in (0, \infty)$,

$$f(X) + \|G\|^2 \alpha \left(1 - \frac{\text{Lip}_B(\nabla f)}{2} \alpha\right) \leq f(X) - c\|G\|^2 \alpha \iff \alpha \leq 2 \frac{1-c}{\text{Lip}_B(\nabla f)}.$$

Since the left-hand side of the first inequality is an upper bound on $f(X + \alpha G)$ for all $\alpha \in (0, \bar{\alpha}]$, the condition for the while loop to stop is necessarily satisfied if $\alpha \in (0, \min\{\alpha, 2\beta \frac{1-c}{Lip_B(\nabla f)}\}]$. Therefore, either the initial step size chosen in $[\alpha, \bar{\alpha}]$ satisfies that condition or the while loop ends with α such that $\frac{\alpha}{\beta} > 2 \frac{1-c}{\text{Lip}_B(\nabla f)}$. The sufficient decrease condition (10) then follows from the second inequality of (5). The upper bound (11) follows from the same observation.

5. The proposed algorithm. We now introduce a first-order optimization algorithm on $\mathbb{R}_{\leq r}^{m \times n}$ called RFDR. The iteration map of this algorithm, called the RFDR map, is defined as Algorithm 2. Given $X \in \mathbb{R}_{\leq r}^{m \times n}$ as input, the RFDR map applies the RFD map (Algorithm 1) to X, thereby producing a point \tilde{X}, but also, if $\sigma_r(X)$ is positive but smaller than some threshold $\Delta \in (0, \infty)$, to a projection \hat{X} of X onto $\mathbb{R}_{r-1}^{m \times n}$, then producing a point \hat{X}^R, and outputs the point among \tilde{X} and \hat{X}^R that decreases f the most.

Algorithm 2 RFDR map

Require: $(f, r, \alpha, \bar{\alpha}, \beta, c, \Delta)$ where $f : \mathbb{R}_{\leq r}^{m \times n} \rightarrow \mathbb{R}$ is differentiable with ∇f locally Lipschitz continuous, $r < \min\{m, n\}$ is a positive integer, $0 < \alpha \leq \bar{\alpha} < \infty$, $\beta, c \in (0, 1)$, and $\Delta \in (0, \infty)$.

Input: $X \in \mathbb{R}_{\leq r}^{m \times n}$ such that $s(X; f, \mathbb{R}_{\leq r}^{m \times n}) > 0$.

Output: a point in $\text{RFD}(X; f, r, \alpha, \bar{\alpha}, \beta, c, \Delta)$.

1: Choose $\tilde{X} \in \text{RFD}(X; f, r, \alpha, \bar{\alpha}, \beta, c)$;
2: if $\sigma_r(X) \in (0, \Delta]$ then
3: Choose $\hat{X} \in P_{r-1}^{m \times n}(X)$;
4: Choose $\hat{X}^R \in \text{RFD}(\hat{X}; f, r, \alpha, \bar{\alpha}, \beta, c)$;
5: Return $Y = \arg\min_{\{\tilde{X}, \hat{X}^R\}} f$.
6: else
7: Return \tilde{X}.
8: end if

The RFDR algorithm is defined as Algorithm 3. It produces a sequence along which f is strictly decreasing. As announced in the second remark following Proposition 4.1, it turns out that the mere monitoring of the rth singular value of the iterates is enough to make the algorithm apocalypse-free, which we prove in the next section.
The assumptions of [9, Theorem 10], which we do below. The following proposition states that the second assumption is satisfied.

6. Convergence analysis. The purpose of this section is to prove Theorem 6.2. To this end, we use the abstract framework proposed in [9, §1.3]. Indeed, the problem considered in this paper can be formulated as follows: find $X \in \mathbb{R}^{m \times n}_{< r}$ such that $s(X; f, \mathbb{R}^{m \times n}_{< r}) = 0$. It is thus a particular instance of [9, Abstract Problem 1] where the Banach space is $\mathbb{R}^{m \times n}$, its closed subset is $\mathbb{R}^{m \times n}_{< r}$, and “desirable” means stationary. Moreover, RFDR (Algorithm 3) is a particular instance of [9, Algorithm Model 9] where the “stop rule” is f and the “search function” is the RFDR map (Algorithm 2).

Thus, to prove Theorem 6.2, it suffices to verify that RFDR satisfies the two assumptions of [9, Theorem 10], which we do below.

The first assumption is that the objective function f is continuous at each non-desirable point or bounded from below on $\mathbb{R}^{m \times n}_{< r}$. It is thus satisfied since f is continuous. The following proposition states that the second assumption is satisfied.

\textbf{Proposition 6.1.} For every $X \in \mathbb{R}^{m \times n}$ such that $s(X; f, \mathbb{R}^{m \times n}_{< r}) > 0$, there exist $\varepsilon(X), \delta(X) \in (0, \infty)$ such that, for all $X \in B(X, \varepsilon(X)) \cap \mathbb{R}^{m \times n}_{< r}$ and all $Y \in \text{RFDR}(X; f, r, \alpha, \beta, c, \Delta)$,

\begin{equation}
 f(Y) - f(X) \leq -\delta(X).
\end{equation}

\textbf{Proof.} Let $X \in \mathbb{R}^{m \times n}$ be such that $s(X; f, \mathbb{R}^{m \times n}_{< r}) > 0$. This proof constructs $\varepsilon(X)$ and $\delta(X)$ based on the sufficient decrease condition (10) given in Corollary 4.2. This requires to derive local lower and upper bounds on $s(\cdot; f, \mathbb{R}^{m \times n}_{< r})$ around X. It first considers the case where rank $X = r$, in which the construction essentially relies on the continuity of $s(\cdot; f, \mathbb{R}^{m \times n}_{< r})$ on $B(X, \sigma_r(X)) \cap \mathbb{R}^{m \times n}_{< r}$. Then, it focuses on the case where rank $X < r$, in which the bounds on $s(\cdot; f, \mathbb{R}^{m \times n}_{< r})$ follow from the bounds (14) on ∇f thanks to (7). If rank $X < r$, then the second inequality of (7) readily gives a lower bound on $s(X; f, \mathbb{R}^{m \times n}_{< r})$. This is not the case if rank $X = r$, however. This is where the rank reduction mechanism comes into play. It considers a projection \hat{X} of X onto $\mathbb{R}^{m \times n}_{< r-1}$, and the second inequality of (7) gives a lower bound on $s(\hat{X}; f, \mathbb{R}^{m \times n}_{< r})$. The inequality (12) is then obtained from (15) which follows from the continuity of f at \hat{X}.

Let us first consider the case where rank $X = r$. On $B(X, \sigma_r(X)) \cap \mathbb{R}^{m \times n}_{< r} = B(X, \sigma_r(X)) \cap \mathbb{R}^{m \times n}_{< r}, s(\cdot; f, \mathbb{R}^{m \times n}_{< r})$ coincides with the norm of the Riemannian gradient of the restriction of f to the smooth manifold $\mathbb{R}^{m \times n}$, which is continuous. In particular, there exists $\rho(X) \in (0, \sigma_r(X))$ such that $s(B(X, \rho(X)) \cap \mathbb{R}^{m \times n}_{< r}, f, \mathbb{R}^{m \times n}_{< r}) \subseteq \left\{ \frac{1}{2} s(X; f, \mathbb{R}^{m \times n}_{< r}), \frac{3}{2} s(X; f, \mathbb{R}^{m \times n}_{< r}) \right\}$. Let $\bar{\rho}(X) := \rho(X) + \frac{3}{2} \alpha s(X; f, \mathbb{R}^{m \times n}_{< r}), \varepsilon(X) :=$.

\textbf{Algorithm 3 Iterative RFDR}

\textbf{Require:} $(X_0, f, r, \alpha, \beta, c, \Delta)$ where $X_0 \in \mathbb{R}^{m \times n}_{< r}$, $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is differentiable with ∇f locally Lipschitz continuous, $r < \min\{m, n\}$ is a positive integer, $0 < \alpha \leq \alpha < \infty$, $\beta, c \in (0, 1)$, and $\Delta \in (0, \infty)$.

1: $i \leftarrow 0$
2: \textbf{while} $s(X_i; f, \mathbb{R}^{m \times n}_{< r}) > 0$ \textbf{do}
3: \hspace{1em} Choose $X_{i+1} \in \text{RFDR}(X_i; f, r, \alpha, \beta, c, \Delta)$;
4: \hspace{1em} $i \leftarrow i + 1$
5: \textbf{end while}
Thus, given \(X \) as input, the RFDR map considers \(\hat{X} \in P_{\mathbb{R}^{m \times n}}(X) \subset B[X, 2\varepsilon(X)] \cap \mathbb{R}^{m \times n} \) and \(\hat{X}^R \in \text{RFD}(\hat{X}; f, r, \tilde{\alpha}, \tilde{\beta}, c) \), where the inclusion holds because

\[
\|\hat{X} - X\| \leq \|\hat{X} - X\| + \|X - X\| \leq \sigma_r(X) + \varepsilon(X) \leq 2\varepsilon(X).
\]
As $X, \hat{X} \in B[X, \rho_f(X)]$, we have

$$f(\hat{X}) \leq f(X) + 2\delta(X). \tag{15}$$

Since $B[\hat{X}, \alpha s(\hat{X}, f, \mathbb{R}_{\leq r}^{m \times n})] \subseteq B[X, \rho(X)]$, Corollary 4.2 applies to $\hat{X} \in X$. The inclusion holds because, for all $Z \in B[\hat{X}, \alpha s(\hat{X}, f, \mathbb{R}_{\leq r}^{m \times n})]$,

$$\|Z - X\| \leq \|Z - \hat{X}\| + \|\hat{X} - X\| \leq \alpha s(X, f, \mathbb{R}_{\leq r}^{m \times n}) + 2\varepsilon(X) \leq \alpha \|\nabla f(\hat{X})\| + \Delta \leq \rho(X),$$

the last inequality following from (14). Thus, for all $Y \in \text{RFDR}(X; f, r, \alpha, \beta, c, \Delta)$,

$$f(Y) \leq f(\hat{X}) \leq f(X) - 3\delta(X) \leq f(X) - \delta(X),$$

where the second inequality follows from (10), the third from the second inequality of (7), the fourth from (14) and (13), and the fifth from (15). Let us now consider the case where rank $X < r$. Let $\hat{X} \in \text{RFDR}(X; f, r, \alpha, \beta, c)$. Since $B[\hat{X}, \alpha s(X, f, \mathbb{R}_{\leq r}^{m \times n})] \subseteq B[X, \rho(X)]$, Corollary 4.2 applies to \hat{X} with $B[X, \rho(X)]$. The inclusion holds because, for all $Z \in B[\hat{X}, \alpha s(X, f, \mathbb{R}_{\leq r}^{m \times n})]$,

$$\|Z - X\| \leq \|Z - \hat{X}\| + \|\hat{X} - X\| \leq \alpha s(X, f, \mathbb{R}_{\leq r}^{m \times n}) + \varepsilon(X) < \alpha \|\nabla f(X)\| + \Delta \leq \rho(X),$$

the last inequality following from (14). Thus, for all $Y \in \text{RFDR}(X; f, r, \alpha, \beta, c, \Delta)$,

$$f(Y) \leq f(\hat{X}) \leq f(X) - 3\delta(X) \leq f(X) - \delta(X),$$

where the second inequality follows from (10), the third from the second inequality of (7), and the fourth from (14) and (13).

We have thus proven the following.

Theorem 6.2. Consider the sequence constructed by RFDR (Algorithm 3). If this sequence is finite, then its last element is stationary, i.e., is a zero of the stationarity measure $s(:, f, \mathbb{R}_{\leq r}^{m \times n})$ defined in (3). If it is infinite, then each of its accumulation points is stationary.

Corollary 6.3. Let $(X_i)_{i \in \mathbb{N}}$ be a sequence produced by RFDR (Algorithm 3). The sequence has at least one accumulation point if and only if $\lim inf_{i \to \infty} \|X_i\| < \infty$.
For every convergent subsequence \((X_{i_k})_{k \in \mathbb{N}}\), \(\lim_{k \to \infty} s(X_{i_k}; f, \mathbb{R}^{m \times n}_{\leq r}) = 0\). If \((X_i)_{i \in \mathbb{N}}\) is bounded, which is the case notably if the sublevel set \(\{X \in \mathbb{R}^{m \times n} \mid f(X) \leq f(X_0)\}\) is bounded, then \(\lim_{i \to \infty} s(X_i; f, \mathbb{R}^{m \times n}_{\leq r}) = 0\), and all accumulation points have the same image by \(f\).

Proof. The “if and only if” statement is a classical result. The two limits follow from [7, Proposition 2.12]. The final claim follows from the argument given in the proof of [9, Theorem 65].

7. **Practical implementation and computational cost.** In this section, we compare the computational cost of the \(P^2\)GDR map [7, Algorithm 3] with the one of the RFDR map (Algorithm 2). The comparison is conducted based on detailed implementations of these algorithms involving only evaluations of \(f\) and \(\nabla f\) and some operations from linear algebra:

1. matrix multiplication;
2. thin QR factorization with column pivoting (see, e.g., [2, Algorithm 5.4.1]);
3. small scale (truncated) SVD, i.e., the smallest dimension of the matrix to decompose is at most \(2r\);
4. large scale truncated SVD, i.e., truncated SVD that is not small scale.

Let us recall that, in this list, only the (truncated) SVD cannot be executed within a finite number of arithmetic operations.

Detailed implementations of the \(P^2\)GDR and RFDR maps are provided as Algorithms 6 and 8, respectively. They both use Algorithm 4, which is a detailed implementation of the \(P^2\)GD, \(P^2\)GDR, RFD, and RFDR maps in the case where their input is \(0_{m \times n}\), as a subroutine. They also rely on Algorithms 5 and 7, which are detailed implementations of the \(P^2\)GD and RFD maps, respectively. All those algorithms work with low-rank representations of the involved matrices as much as possible. In the rest of the section, we analyze the computational cost of the five algorithms mentioned in this paragraph.

Algorithm 4 involves one evaluation of \(\nabla f\) (in line 1), at most

\[
1 + \max \left\{ 0, \left| \frac{2\beta(1-c)}{\alpha \operatorname{Lip}_B[0_{m \times n}, \alpha s(0_{m \times n}; f, \mathbb{R}^{m \times n}_{\leq r})](\nabla f)} / \ln \beta \right| \right\}
\]

evaluations of \(f\) (in the while loop), and one large scale truncated SVD (in line 1). The upper bound (16) follows from (11).

Algorithm 4 Detailed \(P^2\)GD, \(P^2\)GDR, RFD, and RFDR maps given zero as input

Require: \((f, r, \alpha, \beta, c)\) where \(f : \mathbb{R}^{m \times n} \to \mathbb{R}\) is differentiable with \(\nabla f\) locally Lipschitz continuous, \(r < \min\{m, n\}\) is a positive integer, \(\alpha \in (0, \infty)\), \(\beta, c \in (0, 1)\), and \(s(0_{m \times n}; f, \mathbb{R}^{m \times n}_{\leq r}) > 0\).

Output: \((\hat{U}, \hat{\Sigma}, \hat{V})\) where \(\hat{U}\hat{\Sigma}\hat{V}^\top \in \mathbb{R}^{m \times n}\) is an SVD, \(\hat{r} \in \{1, \ldots, r\}\), and \(\hat{U}\hat{\Sigma}\hat{V}^\top \in \mathbb{P}^2\text{GD}(0_{m \times n}; f, r, \alpha, \alpha, \beta, c) = \mathbb{RFD}(0_{m \times n}; f, r, \alpha, \alpha, \beta, c) = \mathbb{RFDR}(0_{m \times n}; f, r, \alpha, \beta, c, \Delta)\).

1: Compute a truncated SVD \(U\Sigma\hat{V}^\top \in \mathbb{R}^{n \times n}\) of \(-\nabla f(0_{m \times n})\);
2: \(s \leftarrow \|\Sigma\|_2^2\);
3: while \(f(\alpha U\Sigma\hat{V}^\top) > f(0_{m \times n}) - c \alpha s\) do
4: \(\alpha \leftarrow \alpha \beta\);
5: end while
6: \(\hat{\Sigma} \leftarrow \alpha \Sigma\);
Algorithm 5 Detailed P²GD map (based on [11, Algorithms 2 and 3])

 Require: \((f, r, \alpha, \beta, c)\) where \(f : \mathbb{R}^{m \times n} \to \mathbb{R}\) is differentiable with \(\nabla f\) locally Lipschitz continuous, \(r < \min\{m, n\}\) is a positive integer, \(\alpha \in (0, \infty)\), and \(\beta, c \in (0, 1)\).

 Input: \((U, \Sigma, V)\) where \(U \Sigma V^\top \in \mathbb{R}^{m \times n}\) is an SVD, \(r \in \{1, \ldots, r\}\), and \(s(U \Sigma V^\top; f, \mathcal{R}^{m \times n}) > 0\).

 Output: \((\tilde{U}, \tilde{\Sigma}, \tilde{V})\) where \(\tilde{U} \tilde{\Sigma} \tilde{V}^\top \in \mathbb{R}^{m \times n}\) is an SVD, \(\tilde{r} \in \{1, \ldots, \tilde{r}\}\), and \(\tilde{U} \tilde{\Sigma} \tilde{V}^\top \in \mathbb{R}^{m \times n}\) satisfies \(\tilde{r} = \frac{\|\tilde{\Sigma}\|_2^2 + \|R_1\|^2 + \|R_2\|^2}{\|\tilde{\Sigma}\|_2^2} > 0\).

\[
\begin{aligned}
\text{1: } & \tilde{G} \leftarrow -\nabla f(U \Sigma V^\top); \quad \tilde{G}_1 \leftarrow U^\top \tilde{G}; \quad \tilde{G}_2 \leftarrow \tilde{G} V; \quad \tilde{G} \leftarrow \tilde{G}_1 V; \quad \tilde{G}_2 \leftarrow \tilde{G} V^\top; \\
\text{2: } & \text{Compute QR factorizations with column pivoting } \hat{G}_2 - \hat{G}_1 = U_{\perp} R_1 \text{ and } \hat{G}_1^\top - \hat{G}_2 = V_{\perp} R_2 \text{ where } U_{\perp} \in \text{St}(r_1, m), V_{\perp} \in \text{St}(r_2, n), R_1 \in \mathbb{R}^{r_1 \times r_1}, \text{ and } R_2 \in \mathbb{R}^{r_2 \times r_2}; \\
\text{3: } & s \leftarrow \|\tilde{G}\|^2 + \|R_1\|^2 + \|R_2\|^2; \\
\text{4: } & \text{if } \tilde{r} = r \text{ then} \\
\text{5: } & \text{Compute a truncated SVD } \hat{U} \tilde{\Sigma} \hat{V}^\top \in \mathbb{R}^{r_{\tilde{U}} \times r_{\tilde{U}} + r_{\tilde{V}} + r_{\tilde{V}}} \text{ of } \left[\begin{array}{c} \Sigma + \alpha \hat{G} R_2 \alpha R_1 \\ 0_{r_1 \times r_2} \end{array} \right]; \\
\text{6: } & \text{while } f([U \perp \hat{U}] \tilde{U} \tilde{\Sigma} \hat{V}^\top [V \perp \tilde{V}]^\top) > f(U \Sigma V^\top) - c \alpha \beta \text{ do} \\
\text{7: } & \alpha \leftarrow \alpha \beta; \\
\text{8: } & \text{Compute a truncated SVD } \hat{U} \tilde{\Sigma} \hat{V}^\top \in \mathbb{R}^{r_{\tilde{U}} \times r_{\tilde{U}} + r_{\tilde{V}} + r_{\tilde{V}}} \text{ of } \left[\begin{array}{c} \Sigma + \alpha \hat{G} R_2 \alpha R_1 \\ 0_{r_1 \times r_2} \end{array} \right]; \\
\text{9: } & \text{end while} \\
\text{10: } & \hat{\Sigma} \leftarrow \Sigma; \quad \hat{U} \leftarrow [U \perp \hat{U}] \hat{U}; \quad \hat{V} \leftarrow [V \perp \tilde{V}] \tilde{V}; \\
\text{11: } & \text{else} \\
\text{12: } & \hat{G} \leftarrow \hat{G} - U \hat{G}_1 + (\hat{G}_1 - \hat{G}_2) V; \\
\text{13: } & \text{if } \hat{G} = 0_{m \times n} \text{ then} \\
\text{14: } & \text{Repeat lines 5 to 10;} \\
\text{15: } & \text{else} \\
\text{16: } & \text{Compute a truncated SVD } U_{\perp} \Sigma V_{\perp}^\top \in \mathbb{R}^{m \times n} \text{ of } \tilde{G} \in \mathbb{R}^{m \times n} \text{ of } \left[\begin{array}{c} \Sigma \alpha R_2 \alpha R_1 \\ 0_{r_1 \times r_2} \end{array} \right]; \\
\text{17: } & s \leftarrow s + \|\Sigma\|_2^2; \quad r_0 \leftarrow \text{rank } \Sigma; \\
\text{18: } & \text{Compute QR factorizations with column pivoting } [U_{\perp} \hat{U}_{\perp}] = \left[\begin{array}{c} I_{r_1} R_{1,1} \\ 0_{r_0 \times r_1} \end{array} \right] \text{ and } [V_{\perp} \tilde{V}_{\perp}] = \left[\begin{array}{c} I_{r_2} R_{2,1} \\ 0_{r_0 \times r_2} \end{array} \right] \text{ where } \hat{U}_{\perp} \in \text{St}(r_1, m), \tilde{V}_{\perp} \in \text{St}(r_2, n), R_{1,1} \in \mathbb{R}^{r_1 \times r_0}, R_{1,2} \in \mathbb{R}^{r_1 \times r_0}, R_{2,1} \in \mathbb{R}^{r_2 \times r_0}, \text{ and } R_{2,2} \in \mathbb{R}^{r_2 \times r_0}; \\
\text{19: } & \text{Compute a truncated SVD } \hat{U} \tilde{\Sigma} \hat{V}^\top \in \mathbb{R}^{r_{\hat{U}} \times r_{\hat{U}} + r_{\hat{V}} + r_{\hat{V}}} \text{ of } \left[\begin{array}{c} \Sigma + \alpha \hat{G} R_2 \alpha R_1 \\ 0_{r_1 \times r_2} \end{array} \right]; \\
\text{20: } & \text{while } f([U \perp \hat{U}] \hat{U} \tilde{\Sigma} \hat{V}^\top [V \perp \tilde{V}]^\top) > f(U \Sigma V^\top) - c \alpha \beta \text{ do} \\
\text{21: } & \alpha \leftarrow \alpha \beta; \\
\text{22: } & \text{Compute a truncated SVD } \hat{U} \tilde{\Sigma} \hat{V}^\top \in \mathbb{R}^{r_{\hat{U}} \times r_{\hat{U}} + r_{\hat{V}} + r_{\hat{V}}} \text{ of } \left[\begin{array}{c} \Sigma + \alpha \hat{G} R_2 \alpha R_1 \\ 0_{r_1 \times r_2} \end{array} \right]; \\
\text{23: } & \text{end while} \\
\text{24: } & \hat{\Sigma} \leftarrow \Sigma; \quad \hat{U} \leftarrow [U \perp \hat{U}] \hat{U}; \quad \hat{V} \leftarrow [V \perp \tilde{V}] \tilde{V}; \\
\text{25: } & \text{end if} \\
\text{26: } & \text{end if}
Algorithm 5 involves one evaluation of ∇f (in line 1), at most

\begin{align}
(17) & \quad 1 + \max \left\{ 0, \left\lfloor \frac{\beta(1-c)}{\alpha c^\infty \beta [X,\alpha s(X;f,C_r^{m\times n})](X;f,\alpha)} \right\rfloor \right\}
\end{align}

evaluations of f and small scale truncated SVDs (in the while loop that is executed), several matrix multiplications, at most 4 QR factorizations with column pivoting (in lines 2 and 18), and at most one large scale truncated SVD (in line 16). The upper bound (17) follows from [7, Corollary 3.2]. Let us point out that, if $\hat{G}_1 = \hat{G}_2$ or $\hat{G}_2 = \hat{G}_1$ in line 2, then r_1 or r_2 is zero and empty matrices appear in the algorithm.

Based on the analysis of Algorithms 4 and 5, we analyze Algorithm 6. As mentioned in Section 1, in the worst case, i.e., if the input has rank r and its largest singular value is smaller than or equal to Δ, then Algorithm 6 calls Algorithm 5 r times and Algorithm 4 once. Besides matrix multiplications, this requires $r + 1$ evaluations ∇f, at most (16) plus r times (17) evaluations of f, at most $4r - 2$ QR factorizations with column pivoting, at most r times (17) small scale truncated SVDs, and r large scale truncated SVDs.

Algorithm 6 Detailed P^2GDR map

Require: $(f, r, \alpha, \beta, c, \Delta)$ where $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is differentiable with ∇f locally Lipschitz continuous, $r < \min\{m, n\}$ is a positive integer, $\alpha \in (0, \infty)$, $\beta, c \in (0, 1)$, and $\Delta \in (0, \infty)$.

Input: (U, Σ, V) where $U \Sigma V^\top \in \mathbb{R}^{m \times n}$ is an SVD, $\bar{r} \in \{1, \ldots, r\}$, and $s(U \Sigma V^\top; f, C_r^{m \times n}) > 0$.

Output: $(\hat{U}, \hat{\Sigma}, \hat{V})$ where $\hat{U} \hat{\Sigma} \hat{V}^\top \in \mathbb{R}^{m \times n}$ is an SVD, $\tilde{r} \in \{1, \ldots, \bar{r}\}$, and $\hat{U} \hat{\Sigma} \hat{V}^\top \in P^2\text{GDR}(U \Sigma V^\top; f, r, \alpha, \beta, c, \Delta)$.

1: $\{U, \Sigma, V\} \leftarrow \text{Algorithm 5}(\Sigma, U, V; f, r, \alpha, \beta, c)$;
2: $r_\Delta \leftarrow |\{j \in \{1, \ldots, \bar{r}\} : |\Sigma(j, j)| > \Delta\}|$;
3: for $j \in \{1, \ldots, \bar{r} - r_\Delta\}$ do
4: if $j < \bar{r}$ then
5: $(\tilde{U}^{R}, \tilde{\Sigma}^{R}, \tilde{V}^{R}) \leftarrow \text{Algorithm 5}(\Sigma(1: \bar{r} - j, 1: \bar{r} - j), U(:, 1: \bar{r} - j), V(:, 1: \bar{r} - j); f, r, \alpha, \beta, c)$;
6: else
7: $(\tilde{U}^{R}, \tilde{\Sigma}^{R}, \tilde{V}^{R}) \leftarrow \text{Algorithm 4}(f, r, \alpha, \beta, c)$;
8: end if
9: if $f(\tilde{U}^{R} \tilde{\Sigma}^{R} (\tilde{V}^{R})^\top) < f(\hat{U} \hat{\Sigma} \hat{V}^\top)$ then
10: $(\hat{U}, \hat{\Sigma}, \hat{V}) \leftarrow (\tilde{U}^{R}, \tilde{\Sigma}^{R}, \tilde{V}^{R})$;
11: end if
12: end for

Algorithm 7 involves one evaluation of ∇f (in line 1), at most

\begin{align}
(18) & \quad 1 + \max \left\{ 0, \left\lfloor \frac{2\beta(1-c)}{\alpha \text{Lip}_{\beta \infty}(X;f,C_r^{m \times n})(\nabla f)} \right\rfloor \right\}
\end{align}
evaluations of f (in the while loop that is executed), several matrix multiplications, one small scale SVD (in line 8 or 20), and at most one large scale truncated SVD (in line 15). The upper bound (18) follows from (11).
Let us mention that, if one is only interested in the RFD map, then the SVD computed in line 8 or 20 is not necessary; it can be replaced, e.g., by a QR factorization with column pivoting. However, Algorithm 7 uses an SVD because it is a subroutine of Algorithm 8 which requires an SVD as input.

Algorithm 7

Detailed RFD map via SVDs (based on [11, Algorithms 2 and 4])

Require: $(f, r, α, β, c)$ where $f : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is differentiable with ∇f locally Lipschitz continuous, $r < \min\{m, n\}$ is a positive integer, $α \in (0, \infty)$, and $β, c \in (0, 1)$.

Input: $(U, Σ, V)$ where $UΣV^T ∈ \mathbb{R}^{m \times n}$ is an SVD, $r ∈ \{1, \ldots, r\}$, and $s(UΣV^T; f, [r]) > 0$.

Output: $(\hat{U}, \hat{Σ}, \hat{V})$ where $\hat{U}Σ\hat{V}^T ∈ \mathbb{R}^{m \times n}$ is an SVD, $\hat{r} ∈ \{1, \ldots, r\}$, and $\hat{U}Σ\hat{V}^T ∈ \text{RFD}(UΣV^T; f, r, α, β, c)$.

1. $\hat{G} ← −\nabla f(UΣV^T); \hat{G}_1 ← U^T\hat{G}; \hat{G}_2 ← \hat{G}V; s_1 ← ∥\hat{G}_1∥^2; s_2 ← ∥\hat{G}_2∥^2;
2. if $s_1 ≥ s_2$ then
 3. $\hat{X}_2 ← Σ\hat{V}^T$;
 4. if $\hat{r} = r$ then
 5. while $f(U(\hat{X}_2 + α\hat{G}_1)) > f(UΣV^T) − cα s_1$ do
 6. $α ← αβ$;
 7. end while
 8. Compute an SVD $\hat{U}Σ\hat{V}^T ∈ \mathbb{R}^{r \times n}$ of $\hat{X}_2 + α\hat{G}_1$;
 9. $\hat{U} ← U\hat{U}$;
10. else
 11. $\hat{G} ← \hat{G} − U\hat{G}_1 + (U(\hat{G}_1V) − \hat{G}_2)V^T$;
 12. if $\hat{G} = 0_{m \times n}$ then
 13. Repeat lines 5 to 9;
 14. else
 15. Compute a truncated SVD $\hat{U}_⊥Σ\hat{V}_⊥^T ∈ \mathbb{R}^{m \times n}$ of $\hat{G} ∈ \mathbb{R}^{m \times n}$
 $s_1 ← s_1 + ∥Σ∥^2; r_0 ← \text{rank} Σ$;
 16. while $f((U \hat{U}_⊥\hat{X}_2 + α\hat{G}_1)\hat{V}_⊥^T) > f(UΣV^T) − cα s_1$ do
 17. $α ← αβ$;
 18. end while
 19. Compute an SVD $\hat{U}Σ\hat{V}^T ∈ \mathbb{R}^{r_0 \times n}$ of $\hat{X}_2 + α\hat{G}_1$;
 20. $\hat{U} ← [U \hat{U}_⊥]\hat{U}$;
 21. end if
22. end if
23. else
24. end if
25. Repeat mutatis mutandis lines 3 to 23 with s_1 replaced by s_2;
26. end if

In the worst case, i.e., if the input has rank r and its smallest singular value is smaller than or equal to $Δ$, then, assuming that $r > 1$, Algorithm 8 calls Algorithm 7 twice. Besides matrix multiplications, this requires two evaluations of ∇f, at most two times (18) evaluations of f, two small scale SVDs, and one large scale truncated SVD.
Algorithm 8 Detailed RFDR map

Require: \((f, r, \alpha, \beta, c, \Delta)\) where \(f: \mathbb{R}^{m \times n} \to \mathbb{R}\) is differentiable with \(\nabla f\) locally Lipschitz continuous, \(r < \min\{m, n\}\) is a positive integer, \(\alpha \in (0, \infty)\), \(\beta, c \in (0, 1)\), and \(\Delta \in (0, \infty)\).

Input: \((U, \Sigma, V)\) where \(U\Sigma V^T \in \mathbb{R}^{m \times n}\) is an SVD, \(r \in \{1, \ldots, r\}\), and \(s(U\Sigma V^T; f, \mathbb{R}^{m \times n}_r) > 0\).

Output: \((\tilde{U}, \tilde{\Sigma}, \tilde{V})\) where \(\tilde{U}\tilde{\Sigma}\tilde{V}^T \in \mathbb{R}^{m \times n}\) is an SVD, \(\tilde{r} \in \{1, \ldots, \tilde{r}\}\), and \(\tilde{U}\tilde{\Sigma}\tilde{V}^T \in\) RFDR\((U\Sigma V^T; f, r, \alpha, \alpha, \beta, c, \Delta)\).

1: \((\tilde{U}, \tilde{\Sigma}, \tilde{V}) \leftarrow\) Algorithm 7\((U, \Sigma, V; f, r, \alpha, \beta, c)\);
2: if \(r = \tilde{r}\) and \(\Sigma(r, r) \leq \Delta\) then
3: if \(r > 1\) then
4: \((\tilde{U}^R, \tilde{\Sigma}^R, \tilde{V}^R) \leftarrow\) Algorithm 7\((U(:, 1 : r - 1), \Sigma(1 : r - 1, 1 : r - 1), V(:, 1 : r - 1); f, r, \alpha, \beta, c)\);
5: else
6: \((\tilde{U}^R, \tilde{\Sigma}^R, \tilde{V}^R) \leftarrow\) Algorithm 4\((f, r, \alpha, \beta, c)\);
7: end if
8: if \(f(\tilde{U}^R\tilde{\Sigma}^R\tilde{V}^R) < f(\tilde{U}\tilde{\Sigma}\tilde{V}^T)\) then
9: \((\tilde{U}, \tilde{\Sigma}, \tilde{V}) \leftarrow (\tilde{U}^R, \tilde{\Sigma}^R, \tilde{V}^R)\);
10: end if
11: end if

Table 7.1 summarizes the operations required by Algorithms 6 and 8 in the case where \(r > 1\), the input has rank \(r\), and its largest singular value is smaller than or equal to \(\Delta\). We observe that Algorithm 6 requires more of each operation, except perhaps the evaluation of \(f\), than Algorithm 8.

Operation	Algorithm 6 (P^2GDR)	Algorithm 8 (RFDR)
evaluation of \(f\)	up to (16) + \(r \cdot (17)\)	up to \(2 \cdot (18)\)
evaluation of \(\nabla f\)	\(r + 1\)	2
QR factorization with c. p.	up to \(4r - 2\)	0
small scale (truncated) SVD	\(r\) times (17)	2
large scale truncated SVD	\(r\)	1

Table 7.1

Operations required by Algorithms 6 and 8 in the case where \(r > 1\), the input has rank \(r\), and its largest singular value is smaller than or equal to \(\Delta\).

8. Conclusion. We close this work with three concluding remarks.

1. As in [5] and [7], everything said in this paper remains true if \(f\) is only defined on an open subset of \(\mathbb{R}^{m \times n}\) containing \(\mathbb{R}^{m \times n}_{\leq r}\).

2. We stated in Section 1 that RFD can follow apocalypses. It can indeed be verified that RFD follows the apocalypses described in [5, §2.2] and [8, §3.2]. In fact, for these two instances of (1), RFD and RFDR respectively produce the same sequences of iterates as P^2GD and P^2GDR. The main reason is that, for each of the two instances, if \((X_i)_{i \in \mathbb{N}}\) denotes the sequence produced by P^2GD or P^2GDR, then, for all \(i \in \mathbb{N}\),

\[
P_{\mathbb{R}^{m \times n}_{\leq r}}(X_i)(-\nabla f(X_i)) = P_{\mathbb{R}^{m \times n}_{\leq r}}(X_i)(-\nabla f(X_i)).
\]
3. As RFD, RFDR requires the computation of at most one large scale truncated SVD per iteration. An open question is whether it is possible to design a first-order optimization algorithm on $\mathbb{R}^{m \times n}_{\leq r}$ offering the same convergence properties as RFDR without involving any large scale truncated SVD.

REFERENCES

[1] N. Gillis and F. Glineur, *Low-Rank Matrix Approximation with Weights or Missing Data Is NP-Hard*, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 1149–1165, https://doi.org/10.1137/110820361.

[2] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, USA, 4th ed., 2013.

[3] W. Ha, H. Liu, and R. F. Barber, *An Equivalence between Critical Points for Rank Constraints Versus Low-Rank Factorizations*, SIAM Journal on Optimization, 30 (2020), pp. 2927–2955, https://doi.org/10.1137/18M1231675.

[4] J. Harris, *Algebraic Geometry*, vol. 133 of Graduate Texts in Mathematics, Springer-Verlag New York, 1992.

[5] E. Levin, J. Kileel, and N. Boumal, *Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy*, Mathematical Programming, (2022), https://doi.org/10.1007/s10107-022-01851-2.

[6] Y. Nesterov, *Lectures on Convex Optimization*, vol. 137 of Springer Optimization and Its Applications, Springer, Cham, 2nd ed., 2018.

[7] G. Olikier, K. A. Gallivan, and P.-A. Absil, *An apocalypse-free first-order low-rank optimization algorithm*, (2022), https://arxiv.org/abs/2201.03962v1.

[8] G. Olikier, K. A. Gallivan, and P.-A. Absil, *Comparison of an apocalypse-free and an apocalypse-prone first-order low-rank optimization algorithm*, Tech. Report UCL-INMA-2022.02, 2022, https://arxiv.org/abs/2202.09107v1.

[9] E. Polak, *Computational Methods in Optimization*, vol. 77 of Mathematics in Science and Engineering, Academic Press, 1971.

[10] R. T. Rockafellar and R. J.-B. Wets, *Variational Analysis*, vol. 317 of Grundlehren der mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg, 1998. Corrected 3rd printing 2009.

[11] R. Schneider and A. Uschmajew, *Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Lojasiewicz Inequality*, SIAM Journal on Optimization, 25 (2015), pp. 622–646, https://doi.org/10.1137/140957822.