Efficacy of treatment and survival rate of foals with pneumonia: Retrospective comparison of rifampin/azithromycin and rifampin/tulathromycin

Denise Arnold-Lehna¹, Monica Venner², Londa J. Berghaus³, Roy Berghaus⁴ and Steeve Giguère³

1 Equine Clinic, School of Veterinary Medicine, Hannover, Germany
2 Veterinary Clinic, Destedt, Germany
3 Large Animal Medicine, University of Georgia, Athens, GA, USA
4 Department of Population Health, University of Georgia, Athens, GA, USA

Summary: Rhodococcus equi (R. equi), a Gram-positive facultative intracellular pathogen is one of the most common causes of pneumonia in foals. The retrospective study compares the efficacy of rifampin/azithromycin versus rifampin/tulathromycin for the treatment of R. equi pneumonia in foals. Weekly medical data of foals born in the seasons 2012 to 2016 (i.e. five foaling seasons) that developed pneumonia were collected and analysed. Foals 21 days of age or older with a pulmonary consolidation of more than 1 cm (abscess score ≥ 1 cm) were enrolled for participation in the study. All foals meeting the criteria for inclusion were listed in a spreadsheet and 330 foals affected with pneumonia each year were randomly selected by an online research randomizer. Foals with incorrect or missing data and those that were included in previous treatment studies were excluded from the analysis, resulting in a total enrolment of 1544 foals with pneumonia. The farm established a screening program in 2003 in order to detect foals in the early course of pneumonia, so all foals were examined once weekly starting at the age of two weeks until four and a half months of age. A physical examination of the respiratory tract, body temperature, haematology and an ultrasonographic examination of the lungs were included. Sonography areas with visible consolidation were measured and added to calculate an “abscess score” which represents the extent of pulmonary damage. Weekly medical data were analysed retrospectively. The risk of therapy failure, which means either death or worsening of pneumonia requiring that the foal be switched to another therapy, showed in a univariate comparison of the two treatments, that there was a higher incidence of treatment failure in foals treated with RIF/AZM (32/353, 9.1 %) than in foals that were treated with RIF/TUL (19/406, 4.7 %; Pearson’s χ², P = 0.016). In a Kaplan-Meier analysis, there was also a significant difference between the two treatments with respect to their survival functions (Log-rank test, P = 0.045; Figure 1). The incidence of mortality due to R. equi pneumonia was higher in foals that were treated with RIF/AZM (8/353, 2.3 %) than in those that were treated with RIF/TUL (0/406, 0.0 %; Fisher’s exact test, P = 0.002). After adjusting for year, age of foals at the beginning of treatment, and abscess score at the beginning of treatment, the risk of treatment failure was not significantly lower for foals that were treated with RIF/TUL compared to those that were treated with RIF/AZM [Hazard Ratio (95 % CI) = 0.75 (0.38, 1.5)]. Age of foals was negatively associated with treatment failure, with the risk of failure decreasing by 30 % for every one-month increase in age at the beginning of treatment [HR (95 % CI) = 0.70 (0.54, 0.91)]. Abscess score was positively associated with treatment failure, with the risk of failure increasing by 4 % for every one cm increase in score [HR (95 % CI) = 1.04 (1.01, 1.07)]. Year was also associated with the risk of treatment failure but it did not meet the proportional hazards assumption, so the model was adjusted for the effects of year by stratification. In conclusion Rifampin/tulathromycin is an effective therapy against mild to moderate R. equi pneumonia in foals as this treatment has similar survival rates compared to rifampin/azithromycin. In terms of costs and dosage form, the combination of tulathromycin with rifampin is an adequate therapeutic option for the treatment of foals with R. equi pneumonia.

Keywords: antibiotics, foal, pneumonia, Rhodococcus equi

Citation: Arnold-Lehna D., Venner M., Berghaus L. J., Berghaus R., Giguère S. (2019) Efficacy of treatment and survival rate of foals with pneumonia: Retrospective comparison of rifampin/azithromycin and rifampin/tulathromycin. Pferdeheilkunde 35, 423–430; DOI 10.21836/PEM20190504

Correspondence: PD Dr. Monica Venner, Equine Clinic, Trift 4, 38162 Destedt, Germany; mvenner@gmx.de

Received: June 20, 2019 | Accepted: July 17, 2019

Introduction

Rhodococcus equi (R. equi), a Gram-positive facultative intracellular pathogen is one of the most common causes of pneumonia in foals, in particular those between one and six months of age. Although R. equi can be cultured from the environment of many stables, the clinical disease in foals is endemic at some farms, sporadic at others, and unrecognized at many (Cohen 2014). On farms where the disease is endemic, costs associated with morbidity and mortality attributable to R. equi may be very high. The treatment of abscessing pneumonia in foals is challenging due to the emergence of resistant strains of the bacterium against standard antimicrobial drugs and the lack of alternatives for efficient treatment or preven-
tions above the minimum inhibitory concentration required to inhibit the growth of 90% of all organisms (MIC90) for R. equi in the pulmonary compartments (Epithelial Lining fluid (ELF), Bronchoalveolar Lavage Cells (BALC)) (Berlin et al. 2017). The antimicrobial effect of rifampin against R. equi acts bacteriostatic, time-dependent and is additionally characterized by a long post-antibiotic effect (Giguère et al. 2012).

Tulathromycin (TUL), a novel long-acting macrolide antibiotic of the triamilide group was introduced for treatment of bacterial respiratory infections of cattle and swine in 2004 (Benchaoiu et al. 2004, Traeder and Grothes 2004). A single injection provides seven days of therapeutic concentrations in lung tissues of these species. After intramuscular administration, TUL is rapidly and nearly completely absorbed from the injection site. It is widely distributed and accumulates in lung tissue, but the plasma concentrations and the lung tissue concentrations are far below the MIC for R. equi, which brings into question the value of TUL as an alternative to treat pneumonia caused by R. equi in foals (Villarino et al. 2013). But as shown by in vitro studies, TUL accumulates also in leukocytes and macrophages to concentrations several times above the serum levels. Its elimination is extremely slow with half-lives of 4–6 days (Benchaoiu et al. 2004, Gáler et al. 2004, Nowakowski et al. 2004). Results of a recent study reconfirmed that TUL is as effective as standard treatment with RIF/AZM (Rutenberg et al. 2017). The only observed side effect in a recent study were 12 minor (< 5 cm) swellings developed at the injection site after a total of 279 injections of TUL (Venner et al. 2007). So it is recommended to change injection site. Further advantages of TUL are the lower price, the small injection volume and the convenient frequency of administration (only a single injection per week).

The objectives of the present study are to evaluate the comparative efficacy and survival rate of foals with pneumonia and treated with RIF/AZM versus RIF/TUL.

Materials and methods

Study population

The study was a retrospective analysis of data from a German breeding farm during 2012 to 2016. The farm has a history of endemic foal pneumonia attributable to R. equi. This pathogen was isolated from tracheobronchial aspirations of 39% (17/44) to 54% (118/217) of foals with ultrasonographic evidence of pneumonia in multiple studies performed at the farm (Venner et al. 2007a, Venner et al. 2007b, Kilian 2008, Lämmer 2010, Hagist 2016). In addition, postmortem examination of 24 foals from the same farm confirmed the presence of R. equi in lung tissue of all foals with ultrasonographic lesions (Weimar 2006).

Study design and criteria for inclusion in the treatment study

Foals 21 days of age or older with an abscess score ≥ 1 cm (definition explained below) were enrolled for participation in the study. All foals born in the seasons 2012 to 2016 (i.e. five foaling seasons) meeting criteria for inclusion were listed in a spreadsheet, and 330 foals affected with pneumonia each year were randomly selected by an online research random-
Efficacy of treatment and survival rate of foals with pneumonia
D. Arnold-Lehna et al.

The recorded variables are summarized in Table 1.

Data analysis

Data were screened for aberrant values using range and logic checks. Foals with data errors that could not be corrected were excluded from the analysis. The distributions of continuous variables were graphically assessed using histograms and normal probability plots. Univariate comparisons of categorical variables were performed using Pearson’s χ² test, or Fisher’s exact test if expected counts were less than five. The Mann-Whitney test was used to compare treatment groups with respect to continuous variables, and the Kaplan-Meier method with the log rank test was used for univariate comparisons of survival functions.
Multivariable survival analyses were performed using the Cox proportional hazards model. Variables considered for inclusion in the multivariable analyses were year, sex, age, abscess score, clinical score, and WBC count. A manual backward elimination procedure was used for model selection, beginning with a maximum model that contained main effects for all variables that had $P < 0.20$ in the univariate analysis. Non-significant predictors were eliminated from the maximum model in a stepwise manner until only variables having $P < 0.05$ remained. Treatment was included as a predictor in all models regardless of its significance, and all two-way interactions with the treatment variable were evaluated. If the removal of any variable resulted in greater than a 10% change to the estimated hazard ratio for treatment, that variable was considered an important confounder, and it was retained in the final model. Continuous variables were assessed as both continuous and categorical predictors, with Akaike’s information criterion being used to determine which form of the predictor provided the best fit. The proportional hazards assumption was assessed by evaluating the slope of the scaled Schoenfeld residuals, and by evaluating the significance of an interaction between each of the covariates and a function of time. Variables that failed to meet the proportional hazards assumption were included in the analysis by allowing them to interact with a function of time in an extended Cox model, or they were included in the analysis as a stratification variable. Data were further screened for outliers and influential observations using index plots of the deviance residuals and delta-beta values.

All statistical tests assumed a two-sided alternative hypothesis, and values of $P < 0.05$ were considered significant. Analyses were performed using commercially available statistical software (Stata version 15.1, StataCorp LLC, College Station, TX).

Results

Records of 1,544 foals were included in the study, with the number of foals for each of the five years ranging between 297 and 319. Seven hundred sixty-one (49.3%) foals were fillies, and 783 (50.7%) were colts. Seven hundred sixty-one (49.3%) foals were female and 319 (31.9) were male. Of the foals that were treated, 353 (44.9%) received rifampin and azithromycin (RIF/AZM) as their first treatment, 406 (51.7%) received rifampin and tulathromycin (RIF/TUL), and 27 (3.4%) received a different drug treatment combination. Of the foals receiving RIF/AZM did have a higher median abscess score ($P < 0.001$) but not by sex ($P = 0.52$; Table 2). At the beginning of treatment, foals receiving RIF/AZM did not differ from foals receiving RIF/TUL with respect to age ($P = 0.32$), clinical score ($P = 0.31$), or WBC count ($P = 0.20$), but foals receiving RIF/AZM did have a higher median abscess score ($P < 0.001$; Table 3).

Treatment failure was defined as a worsening clinical condition that required switching to a different drug treatment protocol, or death due to R. equi pneumonia. In a univariate comparison of the two treatments, there was a higher incidence of treatment failure in foals treated with RIF/AZM (8/353, 2.3%) than in foals treated with RIF/TUL (0/406, 0.0%; Fisher’s exact test, $P = 0.002$).

Results of a multivariable Cox regression analysis for treatment failure are summarized in Table 4. After adjusting for year, age of foals at the beginning of treatment, and abscess score at the beginning of treatment, the risk of treatment failure was not significantly lower for foals treated with RIF/TUL compared to those treated with RIF/AZM [Hazard Ratio (95% confidence interval): 1.00 (0.23, 4.41), $P = 0.99$]. There was also a significant difference between the two treatments with respect to their survival functions (Log-rank test, $P = 0.045$; Figure 1). The incidence of mortality due to R. equi pneumonia was higher in foals treated with RIF/AZM (8/353, 2.3%) than in those treated with RIF/TUL (0/406, 0.0%; Fisher’s exact test, $P = 0.002$).

Table 2	Number (%) of foals treated with rifampin and azithromycin (RIF/AZM) or rifampin and tulathromycin (RIF/TUL) by year and sex.		
Year	RIF/AZM (n = 353)	RIF/TUL (n = 406)	\hat{P}
2012	33 (18.2)	148 (81.8)	< 0.001
2013	138 (63.9)	78 (36.1)	
2014	36 (30.5)	82 (69.5)	
2015	98 (56.3)	76 (43.7)	
2016	48 (68.6)	22 (31.4)	

Sex	RIF/AZM (n = 353)	RIF/TUL (n = 406)	\hat{P}
Female	163 (47.8)	178 (52.2)	0.519
Male	190 (45.5)	228 (54.5)	

\hat{P}-value for Pearson’s χ^2 test

Table 3	Clinical characteristics of foals treated with rifampin and azithromycin (RIF/AZM) or rifampin and tulathromycin (RIF/TUL) at the beginning of treatment.		
Age (days)	RIF/AZM (n = 353)	RIF/TUL (n = 406)	\hat{P}
Mean (SD)	106 (38)	105 (30)	0.320
Median (Min, Max)	109 (26, 231)	106 (33, 205)	
Abscess score (cm)	15.8 (9.8)	11.7 (4.4)	< 0.001
Mean (SD)	13.5 (0.64)	11.0 (0.30)	
Median (Min, Max)	2 (0.6)	2 (0.6)	
Clinical score	0.313		
Mean (SD)	2.2 (1.1)	2.1 (1.1)	
Median (Min, Max)	2 (0.6)	2 (0.6)	
WBC count $\times 10^3$ (cells/µL)	15.0 (4.7)	15.0 (4.4)	0.198
Median (Min, Max)	14.3 (4.2, 34.7)	14.8 (3.8, 23.4)	

\hat{P}-value for the Mann-Whitney test
Efficacy of treatment and survival rate of foals with pneumonia D. Arnold-Lehna et al.

Pferdeheilkunde – Equine Medicine 35 (2019)

Figure 2.

If foals required a second round of treatment for pneumonia after the end of the initial treatment period, they were considered to have had a recurrence. In a univariate comparison of the two treatments, there was a higher incidence of recurrence in foals treated with RIF/AZM (59/349, 16.9%) than in foals that were treated with RIF/TUL (28/399, 7.0%; Pearson's χ²; P < 0.001). In a Kaplan-Meier analysis, there was also a significant difference between the two treatments with respect to their survival functions (Log rank test, P < 0.001; Figure 2).

Results of a multivariable Cox regression analysis for recurrence of pneumonia are summarized in Table 5. After adjusting for year and age of the foals at the end of their initial treatment period, the risk of recurrence was 54% lower in foals treated with RIF/TUL compared to foals that were treated with RIF/AZM [HR (95% CI) = 0.46 (0.28, 0.76)]. Age of foals was negatively associated with recurrence, with the risk of recurrence decreasing by 65% for every one-month increase in age. The proportional hazards assumption was not met for year, so, the model was adjusted for the effects of year by stratification.

Discussion

As results of previous studies have shown, RIF alone is insufficient as an R. equi therapy thus it should not be used alone due to emerging resistant strains (Prescott and Nicholson 1984, Nordmann and Ronco 1992, Giguère et al. 2010, Berghaus et al. 2013). The combination of RIF with a macrolide antibiotic has proved to be very effective in in vitro studies as well as in foals with natural infection with R. equi (Sweeney 1987, Giguère et al. 2012, Hildebrandt 2015, Rutenberg 2017). The efficacy of several macrolides has been evaluated in the treat-

Variable	Coefficient (SE)	Hazard Ratio (95% CI)	P
Treatment	Reference	Reference	0.401
RIF/AZM	–0.287 (0.343)	0.75 (0.38, 1.5)	0.009
Age (months) at beginning of treatment	–0.355 (0.135)	0.70 (0.54, 0.91)	0.007
Abscess score (cm) at beginning of treatment	0.040 (0.015)	1.04 (1.01, 1.07)	0.007

*Stratified by year; †Wald P-value
ment of R. equi pneumonia in foals in recent years. RIF/TUL appears to be an appropriate therapy of foals with R. equi pneumonia due to several reasons. From the antibiotics used in this study, TUL is the only drug licensed for veterinary use. In terms of the drug cascade, it should be the first choice of the veterinarian before using drugs only licensed for human medicine. Additionally, the therapy interval with injections every seven days is simple to manage, and is well tolerated by the foals (Venner et al. 2007). Minor side effects observed are rare and most of the time self-limiting. Furthermore TUL itself is less expensive than azithromycin and, because it is given parenterally, it is less likely to contaminate the environment after concomitant and consecutive administration in foals. Mol. Pharm. 13, 1089–1099; DOI: 10.1021/acs.molpharmaceut.5b00907

Berlin S., Kirschbaum A., Speckermann L., Oswald S., Keiser M., Lumpe S., Ullrich A., Grube M., Hasan M., Venner M., Siegmund W. (2016) Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals. Vet. Microbiol. 160, 217–229; DOI 10.1016/j.vetmic.2013.07.006

Cohen N. D. (2014) Rhodococcus equi Fetal Pneumonia. Vet. Clin. North Am. Equine Pract. 30, 609–622; DOI 10.1016/j.cveq.2014.08.010

Davis J. L., Gardner S. Y., Jones S. L., Schwabenton B. A., Papich M. G. (2002) Pharmacokinetics and lung tissue concentrations of rifampicin in swine. J. Vet. Pharmacol. Ther. 27, 203–210; DOI 10.1111/j.1365-2885.2004.00586.x

Berghaus L. J., Gigüère S., Guldbech K. (2013) Mutant prevention concentration and mutant selection window for 10 antimicrobial agents against Rhodococcus equi. Vet. Microbiol. 166, 670–675; DOI 10.1016/j.vetmic.2013.07.006

Davies J. (2004) Antimicrobial therapy. Equine Clinical Pharmacology. Bertone J. J., Horspool L. J. I. Saunders Ltd., Philadelphia. First Edition, 13–47; DOI 10.1016/0787-0720-2484-9.50005-7

Gäler D., Hessong S., Beato B. Risk J., Inskeep P., Weerasinghe C., Schneider R. P., Langer C., LaPerle J., Renouf D., Bessire A., Espaillot E., Rachka R., Ragan C., Boettner W., Murphy T., Keller D., Benchoua H., Nowakowski M. A. (2004) An Analytical Method for the Analysis of Tulathromycin, an Equilibrating Triamilide, in Bovine and Porcine Plasma and Lung. J. Agr. Food Chem. 52, 2179–2191; DOI 10.1021/jf0493152

Gaynor M., Mankin A. S. (2003) Macrolide antibiotics: binding site, mechanism of action, resistance. Curr. Top. Med. Chem. 3, 949–961; DOI 10.2174/156720103503452159

Gigüère S., Berghaus L. J., Lee E. A. (2015) Activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Vet. Microbiol. 178, 275–278; DOI 10.1016/j.vetmic.2015.05.019

Gigüère S., Lee E., Williams E., Cohen N. D., Chaffin M. K., Halbert N., Martens R. J., Franklin R. P., Clark C. C., Slovis N. M. (2010) Determination of the prevalence of antimicrobial resistance to macrolide antimicrobials or rifampin in Rhodococcus equi isolates and treatment outcome in foals infected with antimicrobial-resistant isolates of R equi. J. Am. Vet. Med. Assoc. 237, 74–81; DOI 10.2460/javma.237.1.74

Gigüère S., Lee E. A., Guldbech K. M., Berghaus L. J. (2012) In vitro synergy, pharmacodynamics, and postantibiotic effect of 11 antimicrobial agents against Rhodococcus equi. Vet. microbiol. 160, 207–213; DOI 10.1016/j.vetmic.2012.05.031

Conflict of interest

The authors declare that there is no conflict of interest.

References

Burton A. J., Gigüère S., Sturgill T. S., Berghaus L. J., Slovis N. M., Whitman J. L., Levering C., Kuskie K. R., Cohen N. D. (2013) Macrolide- and Rifampin-Resistant Rhodococcus equi on a Horse Breeding Farm, Kentucky, USA. Emerg. Infect. Dis. 19, 282; DOI 10.3201/aid1902.121210

Benchoua H., Nowakowski M., Sherington J., Rowan T. G., Sunderland S. J. (2004) Pharmacokinetics and lung tissue concentrations of tulathromycin in swine. J. Vet. Pharmacol. Ther. 27, 203–210; DOI 10.1111/j.1365-2885.2004.00586.x

Gigüère S., Lee E. A., Guldbech K. M., Berghaus L. J. (2012) In vitro synergy, pharmacodynamics, and postantibiotic effect of 11 antimicrobial agents against Rhodococcus equi. Vet. microbiol. 160, 207–213; DOI 10.1016/j.vetmic.2012.05.031

Footnotes

1 https://www.randomizer.org

2 Esaote Tringa Linear, Milano Italy.
Giguère, S., Jacks, S., Roberts, G. D., Hernandez, J., Long, M. T., Ellis, C. (2004) Retrospective Comparison of Azithromycin, Clarithromycin, and Erythromycin for the Treatment of Foals with Rhodococcus equi Pneumonia. J. Vet. Intern. Med. 18, 568–573; DOI 10.1111/j.1939-1676.2004.tb02587.x

Hagist, C. (2016) Genotypierung von Rhodococcus equi Stämmen aus Deutschland, isoliert bei Fohlen und anderen Tierarten. Diss. Med. Vet. Hannover, 134

Hildebrand, F., Venner, M., Giguère, S. (2015) Efficacy of Gamithromycin for the Treatment of Foals with Mild to Moderate Bronchopneumonia. J. Vet. Intern. Med 29, 333–338; DOI 10.1111/jvim.12504

Hillidge, C. J. (1987) Use of erythromycin-rifampin combination in treatment of Rhodococcus equi pneumonia. Vet. Microbiol. 14, 337–342; DOI 10.1016/0378-1135(87)90121-0

Hoffman, A. M., Viel, L., Prescott, J. F., Rosendal, S., Kloos, J. (1993) Association of microbiologic flora with clinical, endoscopic, and pulmonary cytologic findings in foals with distal respiratory tract infection. Am. J. Vet. Res. 54, 1615–1622

Kilian, K. (2008) Vergleichende Untersuchungen zum Nachweis von Rhodococcus equi in der Atemluft, im Tracheobronchialsekret und im Kot von Fohlen. Diss. Med. Vet. Hannover, 128

Knottenbelt, D. C., Malalana, F. (2015) Part 3 – Index of Drugs Used in Equine Medicine. Saunders Equine Formulary. Knottenbelt D. C., Malalana F., W. B. Saunders. Second Edition, 60–257; DOI 10.1016/B978-0-7020-5109-8.00003-1

Lämmer, M. (2010) Nachweis von Rhodococcus equi in Kot und Tracheobronchialsekret bei Fohlen: Vergleichende Untersuchung zwischen gesunden Fohlen und Fohlen mit Lungenabszessen. Diss. Med. Vet. Hannover, 116

McCracken, J. L., Slovis, N. M. (2009) Use of thoracic ultrasound for the prevention of Rhodococcus equi pneumonia on endemic farms. Proc. Am. Assoc. Equine Pract. 55, 38–44

Muscatello G. (2012) Rhodococcus equi pneumonia in the foal – Part 1: Pathogenesis and epidemiology. Vet. J. 192, 20–26; DOI 10.1016/j.tvjl.2011.08.014

Muscatello G. (2012) Rhodococcus equi pneumonia in the foal – Part 2: Diagnostics, treatment and disease management. Vet. J. 192, 27–33; DOI 10.1016/j.tvjl.2011.08.009

Nordmann, P., Ronco, E. (1992) In-vitro antimicrobial susceptibility of Rhodococcus equi. J. Antimicrob. Chemother 29, 383–393; DOI 10.1093/jac/29.4.383

Nowakowski, M. A., Inskeep, P. B., Risk, J. E., Skagervee, T. L., Benchaour, H. A., Meinert, T. R., Sherington, J., Sunderland, S. J. (2004) Pharmacokinetics and lung tissue concentrations of tulathromycin, a new triamilide antibiotic, in cattle. Vet. Therapeutics. 5, 60–74.