INTRODUCTION

In liquid biopsy, many blood RNA biomarkers have been increasingly proposed to the diagnosis, prognosis and treatment guidance of human diseases.1–3 However, the clinical translation of these RNA biomarkers has been hindered by the complex procedures of sample processing.4 Recent studies have suggested that several steps in blood RNA processing are likely to introduce technical variations, ranging from blood collection,5,6 leukocyte isolation method5,7 and preserved temperature5,7 to incubation time.8–11 Therefore, some standard operating procedures have been introduced in blood sample processing,12 including the use of commercial blood collection tubes, extraction kits.
portable devices and automated workstations.13-15 The standardization of these steps has greatly improved the whole procedure of blood sample processing, which may reduce technical noises and increase data reproducibility.12 However, the incubation time from blood draw to RNA extraction is hardly to be standardized due to the limitation of working time, location and other situations.10 The prolonged storage of blood samples has been observed to make substantial changes on the measured blood transcriptomes.8–11 For example, Dvinge et al. performed bulk RNA-seq of blood samples from four healthy donors, and found rapid transcriptional and post-transcriptional changes upon different blood incubation times at room temperature or cryopreservation.8 In addition, Massoni-Badosa et al. performed single-cell RNA-seq and single-cell ATAC-seq of human blood samples from two healthy donors and three leukaemia patients. They also concluded that ex vivo prolonged blood storage induced marked alterations of transcriptional profiles and chromatin accessibility at the single-cell level.9 Similarly, Savage et al. performed multi-omic profiling of human peripheral blood samples at different handling time points and investigated the effect of delayed blood processing on the multi-omic datasets, including targeted bulk PBMCs transcriptomics, PBMC single-cell transcriptomics, cell numbers and plasma proteomes.10 They found extensive changes of single-cell transcriptome and plasma proteome after 4 h incubation, while accumulating differences were observed for the targeted bulk transcriptomes and the number of immune cells during an overnight rest (18h) after blood draw.16 All these studies indicated that blood mRNA transcripts were sensitive to handing delays, which may confound the biological findings from blood mRNA expression experiments and the translation of blood mRNA signatures for disease management.8,9

To overcome this limitation, many recent studies have proposed blood circRNAs as a new kind of blood RNA biomarkers for human diseases.16 Unlike linear mRNAs, circRNAs have a unique circular structure that lacks free ends, poly(A) tails and 5’ caps.17 This makes circRNAs resistant to de-adenylation, decapping and exonucleases.17 Therefore, circRNAs are observed to be more stable than linear mRNA transcripts.15,19 Specifically, the median half-life of circRNAs was at least 2.5 times longer than that of their linear mRNA counterparts in mammary cells.18 Additionally, the expression levels of circRNAs in serum exosomes were stable for serum samples that were incubated at room temperature for up to 24h.19 These results hinted that blood circRNA expressions should be more robust than linear mRNAs under different blood incubation times. In contrast, Rochow et al. found gradually reduced expression values of circRNAs in kidney cancer tissue and cell lines with RIN (RNA integrity number) value reduction.20 They suggested that circRNAs were subjected to degradative processes in clinical samples, which was similar to linear mRNAs.20 The different conclusions made in previous studies make it difficult to predict how circRNAs will respond to blood incubation times in sample processing. Therefore, there is still an urgent need to investigate the effect of blood sample processing delays on circRNA expression profiles.

In this study, we measured the expression profiles of linear mRNAs, long non-coding RNAs (lncRNAs) and circRNAs, in human PBMC samples with varying blood incubation times in blood sample processing. We tried to answer the following two questions. First, what are the expression changes of human PBMC mRNAs, lncRNAs and circRNAs in blood samples at different incubation time points? Second, are there any differences between PBMC circRNA and linear RNA changes upon blood incubation time? This will help us gain some insights of circRNAs expression in human blood samples, which is especially important for advancing PBMC RNA biomarkers in liquid biopsy of human diseases.

2 MATERIALS AND METHODS

2.1 Blood collection, PBMC isolation and RNA extraction

We recruited three healthy donors from the First Affiliated Hospital of Nanjing Medical University. All individuals participated anonymously in consideration of privacy and security concerns. First, 30 millilitres peripheral blood samples were collected into six PAXgene Blood RNA Tubes (BD, NJ, USA) from each volunteer by venipuncture. These blood samples were immediately preserved at 4°C for 0 h, 2 h, 6 h, 12 h, 24 h and 48 h, respectively, before PBMCs isolation. Next, PBMCs were isolated by applying Ficol-Paque Premium (GE Healthcare, IL, USA) according to the manufacturer’s instructions. Then, total RNAs were extracted from PBMCs using the TRIzol reagent (Invitrogen, CA, USA) and purified with the mirVana RNA Isolation Kit (Ambion, MA, USA). Finally, 1% formaldehyde denaturing gel electrophoresis was used to monitor RNA degradation and contamination. The RNA integrity was measured by Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA).

This study was performed in accordance with the principles outlined in the Declaration of Helsinki.

2.2 RNA-seq library preparation and sequencing

A total amount of 3 μg RNA per sample were used as the starting material for library construction. First, ribosomal RNAs were removed from total RNAs by Epicentre Ribo-zeroTM rRNA Removal Kit (Epicentre, USA). Then, the remaining RNA samples were used for library construction by NEBNext Ultra™ Directional RNA Library Prep Kit (New England Lab, MA, USA). In total, we constructed 18 rRNA-depleted strand-specific RNA-seq libraries (6 RNA-seq libraries for each healthy donors). Finally, all these ribo-depleted RNA-seq libraries were sequenced on Illumina HiSeq X Ten platform (Illumina, CA, USA) using paired-end 150bp runs.

2.3 Expression quantification of PBMC RNA transcripts

For each RNA-seq dataset, we identified the expressed circRNA transcripts using CIRI-full21 with GRCh38 reference genome, Ensembl 94
gene annotation and the default parameters. Next, we constructed a reference library of expressed PBMC circular transcripts by combining the de novo constructed circular transcripts in annotated human genes from CIRI-full output and the known blood circRNA transcripts from isoCirc catalogue. Then, we quantified the expression values of both circular and linear RNA transcripts using AQUARIUM with the compiled reference library of circular transcripts, Ensembl 94 gene annotation and the default parameters. We chose to use AQUARIUM for RNA expression quantification, since we have observed its superior performance in estimating the expression values of both circular and linear RNAs at the transcript level. After calculating the transcripts per million (TPM) values for all linear and circular RNA transcripts in each RNA-seq dataset, we integrated all the expressed transcripts in 18 RNA-seq datasets. Finally, those lowly expressed transcripts (a transcript that has a TPM value smaller than one in more than four samples) were excluded for further analysis. For circRNAs, the transcripts whose biotypes of parental genes were not protein coding or IncRNAs based on Ensembl 94 gene annotation were further filtered out.

2.4 | Differential expression analysis

To investigate the transcriptome changes between different blood incubation time points, we imported the transcript expression profiles from AQUARIUM output using tximport and calculated the expression differences of both circular and linear RNA transcripts using DESeq2 with likelihood ratio test and apeglm shrinkage method. We chose DESeq2 for differential expression analysis, since it has better performance for alignment-free isoform quantification tools. Transcripts or genes with $|\log_2$(fold change)$| > 0.5$ and adjusted p-value < .05 were considered as significantly differential expression. Among them, some were further classified into newborn or degraded transcripts, which suggests the dynamic gain or loss of RNA transcripts upon incubation. We defined the transcripts with a TPM value larger than one in at least two replicated samples at a time point as the expressed transcripts of that time point. Transcripts that were expressed at the examined time points but not expressed at 0 h were defined as the newborn transcripts. Similarly, transcripts that were expressed at 0 h but not expressed at the examined time points were defined as the degraded transcripts.

To explore whether circRNA expression changes induced in the course of sample handling delay were caused by the alterations of cell populations in the blood samples, we ran Cell Fraction analysis module in CIBERSORTx to deconvolve immune cell subsets from PBMC samples using our bulk RNA-seq data. The proportions of 12 immune cell subsets in each PBMC sample at all six time points were estimated by using LM22 signature as the reference matrix. The statistical significance of the alterations of the proportion of each immune cell over incubation time was computed by Kruskal-Wallis test. To clarify whether the dynamic changes of circRNAs, mRNAs and IncRNAs were relevant to the viability of samples, we screened the mitochondrial RNAs (mtRNAs) from our RNA-seq data based on Ensembl 94 annotation, and then, we calculated the total expression of mtRNAs of three samples at each time point and performed multiple comparison of mtRNAs content by using ANOVA test.

2.5 | Differential alternative splicing analysis

Other than expression abundance, alternative splicing (AS) event can produce various RNA transcripts from one gene. To identify the changes of AS events between PBMC samples at different incubation time points, we first detected the AS events of linear mRNAs and circRNAs using rMATS-turbo and CIRI-AS, respectively. Both methods used a ratio value ($Ψ$) to estimate the inclusion possibility of a targeted exon. Next, we calculated the difference of $Ψ$ values ($ΔΨ$) between replicates at different incubation time points for each exon. Then, we used paired t-test to calculate the p-value of differential splicing events with $ΔΨ$, of which a stringent threshold, p-value < .05 and $|ΔΨ| ≥ .05$, was adopted to define significantly differential AS. Finally, the number of abnormal AS at each time course was normalized by dividing the total number of identified AS exons of CIRI-AS or rMATS-turbo.

2.6 | Functional enrichment analysis

To explore the biological functions of blood incubation-related transcripts, we performed the Gene Set Enrichment Analysis (GSEA) using gseGO() function and visualized the enriched gene sets using enrichplot() function in clusterProfiler package. Biological pathways (BP) that have p-value less than .05 were considered as significantly enriched.

3 | RESULTS

3.1 | Expression landscape of circular and linear RNA transcripts in human PBMC samples

Whole blood samples were collected from three healthy donors in anticoagulant blood collection tubes and were immediately incubated at 4°C for six scheduled time intervals, including 0 h, 2 h, 6 h, 12 h, 24 h and 48 h. PBMCs were subsequently isolated from these 18 samples, and total RNAs were extracted for transcriptome profiling. Although the RIN value decreases with the incubation time interval (Figure 1A), the quality of extracted RNAs was consistently good in all samples (Figure S1). The average RIN value of all these samples was at 9.3, and the sample with the lowest RNA quality had a RIN value at 7.8 (Figure 1A). These RNA samples were used for RNA-seq library construction and transcriptome profiling. For each RNA-seq data, circRNA transcripts were identified using a home-built computational pipeline (see Materials and Methods). Then, the expression of circRNAs, linear mRNAs and IncRNAs were quantified. RNA transcripts with low expression abundance in these
blood samples were further filtered. Additionally, 62 circular transcripts were excluded due to biotypes of corresponding genes not being protein coding or lncRNA, of which 58 were pseudogenes, 1 misc_RNA, 1 snoRNA and 2 TR genes (see Materials and Methods). Finally, a repertoire of expressed RNA transcripts in all these PBMC samples was constructed. In this PBMC transcriptome repertoire, 41,936 RNA transcripts were expressed in total. Among them, 5007 (11.9%) were circular transcripts, and 2709 (6.5%) were linear lncRNAs. The remaining 34,222 (81.6%) transcripts are coding mRNA transcripts (Figure 1B). As expected, the coding mRNA has the highest number of expressed transcripts (Figure 1B) and expression values (Figure 1D). Although lncRNAs have the smallest number of expressed transcripts, their expressed abundance (22.8%) is higher than that of circular transcripts, which account only 1.8% of the total expressed RNA transcripts (Figure 1D). This can be explained by the lowest mean expression value of circular RNA transcripts (Figure 1C), since most circRNAs were lowly expressed in mammalian samples.32

For exonic circRNAs (ecircRNAs), most were composed of no more than five exons (Figure 1E). Additionally, the length of most ecircRNAs is less than 1000 base pairs (Figure 1F). In general, this de novo constructed PBMC transcriptome has similar characteristics that were observed in previous studies.33,34

3.2 Dynamic expression changes of circular and linear RNA transcripts upon incubation

To quantify the effects of sample processing delays from blood collection to PBMC isolation on blood transcriptome, we first investigated the changes of expression levels of RNA transcripts, including mRNAs, lncRNAs and circRNAs, between the original transcriptome and those with processing delays. For each delayed
processing transcriptome, we used DESeq2 to identify the differentially expressed transcripts at each time point (2 h, 6 h, 12 h, 24 h, 48 h) against the first time point (0 h). In comparison with the transcriptome of immediate isolation (0 h), substantial transcriptome changes were observed in samples with handling delays (Figure 2A–C; Table S1). The number of dysregulated transcripts gradually increased with the time interval of sample processing (Figure 2A–C). This is consistent to the findings observed in previous studies of mRNA transcripts.8–10 Comparing different types of RNA transcripts, we found that circRNAs had the least number of transcripts that were dysregulated in prolonged handling procedures, while mRNAs had the largest number of induced changes (Figure 2A–C). This is still the case when the changes were normalized to the proportion of dysregulated transcripts by dividing the total number of transcripts in the class (Figure 2D). Taken together, our results suggested that blood handling delays within 12 h had relatively small effects on the expression abundance of linear RNA transcripts. However, linear RNA transcripts, both mRNAs and IncRNAs, experienced massive expression changes when the samples were handled beyond 12 h. In comparison, prolonged blood handling had the smallest effects on circRNA expressions, even for the samples with the time interval as long as 48 h. Additionally, we explored whether these expression changes were caused by the alterations of immune cell population over time. We observed no significant differences of cell proportion at six time points for almost all cell types, excluding the resting CD4 memory T cell (Figure S2). This suggests that the induced transcriptomic changes upon blood handling delay were not likely to be caused by cell population alteration. Meanwhile, we observed there was no statistical difference of total content of mtRNAs of three samples at each time point (Figure S3), indicating the dynamic changes were also not potential to be caused by viability of samples.

Next, we looked into the dynamic gain or loss of both linear and circular RNA transcripts upon incubation at different time points. For each incubation time point (2 h, 6 h, 12 h, 24 h and 48 h), we identified the newborn or degraded transcripts, and calculated the number and proportion of these transcripts. We observed that the number of newborn or degraded transcripts increased gradually with the incubation time (Figure 3A–C). Comparing different types of RNA transcripts, we found that circular transcripts had a smaller number of newborn and degraded transcripts than linear RNA transcripts (Figure 3A–C). This observation also exists when the dynamic gain or loss of RNA transcripts is normalized by the number of total transcripts in that class (Figure 3D). Furthermore, we found that the overlap of differential transcripts at certain time point with those in the previous time point was gradually increased as well (Figure S4). This indicates that the dynamic gain or loss of RNA transcripts is accumulated along the course of blood incubation.

FIGURE 2 Sample processing delay induced substantial transcriptome changes. The number of dysregulated circRNAs (A), mRNAs (B) and IncRNAs (C) at 2 h (yellow), 6 h (red), 12 h (green), 24 h (blue) and 48 h (turquoise) against the first time point (0 h) was shown. Adjusted p-value cut-offs of .05 and |log2 (fold change)| of 0.5 were indicated by dashed lines. The proportion of dysregulated transcripts at each time course (D) was also shown.
3.3 | Functional annotation of RNA dysregulation induced by blood handling delay

To deepen our understanding of the induced transcriptome changes resulting from prolonged incubation, we performed GSEA on dysregulated circRNA, mRNA and lncRNA genes at all five time points, respectively. While dysregulated lncRNA genes showed no significantly enriched BP, dysregulated circRNA and mRNA genes were enriched in several important BPs (Figure 4A,B). The enriched BPs of dysregulated circRNA genes upon incubation were mainly involved in three aspects (Figure 4A). First, several BPs that are related to signal transduction and communication were enriched, including ‘intracellular signal transduction’, ‘regulation of signal transduction’ and ‘regulation of cell communication’. Second, genes that are related to metabolic process are enriched, including ‘regulation of transcription, DNA templated’ and ‘positive regulation of nitrogen compound metabolic process’. Third, several development-related BPs were included, such as ‘cell differentiation’ and ‘cell development’. Unlike circRNAs, incubation-induced mRNA dysregulation showed distinct BPs, including co-translational protein targeting related pathways, nonsense-mediated decay (NMD) and immune response-related pathways (Figure 4B). This suggests that circRNAs and mRNAs may perform different biological functions in response to external stimulus during sample handling delays. CircRNAs are likely to trigger signal cascade by acting as indirect regulators, while mRNAs tend to transport functional proteins to cell membrane and induce immune response by acting as direct executors. The co-operation of circRNAs and mRNAs may mediate the structure morphogenesis, and even the apoptotic or death of blood cells.

3.4 | Potential causes that induce circRNA dysregulation during incubation

CircRNA expression is the product of the transcribed expression level of circRNA host gene and its proportion of back-splicing. Therefore, circRNA dysregulation during incubation can be caused by the dysregulated expression of its host gene and/or the dysregulated back-splicing efficiency. To differentiate these two factors, we surveyed the correlation of expression changes of circRNAs and their corresponding genes at two time points (24 h and 48 h). We found a strong positive correlation between the expression changes of circRNAs and their corresponding host genes (Figure 5A,B). The majority dysregulated circRNAs, named transcription-derived dysregulated circRNAs, were upregulated or downregulated owing to the upregulation or
downregulation of their corresponding parental genes (Figure 5A, red and green dots). Notably, there were still some splice-derived dysregulated circRNAs whose parental genes showed no significant expression changes (Figure 5A, purple and blue dots). The expression trends of representative circRNAs and their parental genes during incubation using TPM values, rather than fold change also confirmed the conclusions (Figure S5). GSEA analysis showed that biological functions of the host genes of splice-derived dysregulated circRNAs (Figure 5C) had clear differences with those of transcription-derived dysregulated circRNAs (Figure 5D). Interestingly, the splice-derived dysregulated
circRNA genes were enriched in several transcription-related pathways, such as ‘regulation of nucleic acid-templated transcription’ and ‘regulation of transcription by RNA Pol II’. This implied that the splice-derived dysregulated circRNA genes were more likely to interact with RNA Pol II at promoter region and regulate gene transcription.

3.5 | Alternative splicing of RNA transcripts during blood incubation

AS is one of the key processes of multi-exonic gene expression during pre-mRNA maturation, including skipped exon (ES), alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS) and retained intron (RI). Previous studies have found these events are common in circRNA formation as well.28,35 To gain insights of incubation-induced AS, we identified AS events of both circRNAs and mRNAs at each incubation time point and then performed differential alternative splicing analysis compared to the original time point (Figure 6). For linear mRNAs, we saw a gradual increase of all four AS events along the incubation course (Figure 6A). Comparing to linear mRNAs, circRNAs had a far smaller number of AS events upon blood incubation (Figure 6B). When normalized by the number of identified AS exons of each RNA type, the ratio of AS events occurred in circRNAs was still far lower than linear mRNAs (Figure 6B). This suggests that AS
events of circRNA transcripts were more tolerated to handing delays than linear mRNAs. We further compared the distribution of parental genes that experienced differential AS events and observed significantly different size between circRNAs and mRNAs (Figure S6A), which might be explained by the longer circRNAs than mRNAs (Figure S6C). However, the expression abundance of circRNAs with differential AS events is statistically similar to that of mRNAs (Figure S6B), although circRNAs with AS events are more likely to have higher expression abundances than mRNAs (Figure S6D). These results suggested that the differences in detecting AS events were less likely to be relevant to the size and abundance of linear RNAs and circRNAs.

4 | DISCUSSION

RNA expression in PBMCs or whole blood is important indicators of the host's immune status, and their aberrant expression is closely related to many disease conditions, creating favourable prospect for liquid biopsy. However, with accumulating evidences that blood transcriptome is sensitive to sample processing procedures, researchers have been concerning about the stability of blood RNAs and questioning robustness and reproducibility of RNA-based biomarkers. Encouragingly, circRNAs open up another promising biomarker potential for human diseases due to their high stability, abundance and specificity. However, knowledge remains elusive about the impact of prolonged incubation on the performance of circRNAs.

In this work, we first screened out dysregulated circRNAs, mRNAs and lncRNAs at six designed time points, and then compared the differences between circRNAs and linear mRNAs and lncRNAs. We observed gradual increase of expression value changes (Figure 2), transcript gain or loss (Figure 3) and differential alternative splicing (Figure 6) for linear mRNAs, lncRNAs and circular RNAs. Although some substantial changes have been observed for circRNA transcripts upon blood incubation, the variations of circRNA expressions were significantly smaller than those of linear mRNAs and lncRNAs. Our results suggested that the longest blood incubation time for linear mRNAs and lncRNAs at 4°C should be better controlled within 12h. For circRNAs, the longest blood incubation time can be maintained at least 48h. This not only convinced the higher stability and robustness of PBMC circRNAs over linear transcripts, but also emphasized the necessity of excluding preanalytical artifacts before making conclusions regarding linear mRNAs and lncRNAs. Our conclusion is consistent to the results proposed in several previous studies that circRNAs are more stable and have longer half-lives than linear mRNAs. In this study, we focused on the effect of sample processing delay on circRNA expression. To minimize the sample-inherent biases, such as disease duration or severity, we used peripheral blood samples from healthy donors rather than patients. Although our study contains a relatively smaller number of 18 samples from 3 participants, our emphasis is on the variation between groups rather than inter-individual variation. Therefore, it is appropriate to dissect expression changes of transcripts over time using three biological replicates at each time point. In contrast, Rochow et al. found gradually decreased circRNA expression values in clinical samples with RIN value reduction. This difference may be explained by the reduced RNA quality of clinical samples in their study, which may not be the case for the blood samples upon incubation (Figures 1A and S1). In another study, Savage et al. suggested that single cells were more active during sample incubation, and transcriptome alterations appeared earlier at the single-cell level. Therefore, it is interesting to further analyze the dynamic changes of circRNA expression and evaluate its robustness at the single-cell level.

In addition, we found that circRNA dysregulation was mainly derived from the dysregulated expression of their parental genes (Figure 5). However, GSEA analysis indicated that handling delay induced different changes between circRNA and mRNA transcripts (Figure 4), underscoring that circRNAs were not simple by-products of their linear counterparts. Specifically, splice-derived dysregulated circRNAs tended to perform their biological functions by interacting with Pol II (Figure 5C). Interestingly, some circRNAs have been experimentally validated to act as Pol II interactors. For example, circEIF3J and circBPTF can interact with U1 snRNP to form an RNA-protein complex, and then bind to Pol II at the promoter region to enhance the transcription of their parental genes. Ci-ankrd52 can also associate with Pol II to regulate the expression of its parental gene by modulating the elongation of Pol II. These suggest blood incubation can cause distinct circRNA changes, although these changes may be neglectable even for samples with 48h incubation.

Finally, AS events are the post-transcriptional process to diversify transcriptome and proteome by adjusting incorporated exons or introns, which are ubiquitous in the formation of mRNAs and circRNAs. Particularly, dysregulation of AS has been highly associated with human diseases, and is potential diagnostic biomarkers or therapeutics targets. Moreover, Dving et al. have proposed that sample incubation would induce isoform switch. Herein, we systematically investigated the effects of sample delays on four types of AS events for both circular RNAs and linear mRNAs. We found blood incubation resulted in profound impacts on AS of mRNAs, but not circRNAs (Figure 6). Therefore, it is imperative to take this technical bias into consideration when interpreting the results of differential AS analysis of blood mRNA transcripts. Meanwhile, we observed an enrichment of NMD-related genes in differentially expressed mRNAs upon blood incubation (Figure 4B). Couple with the extensive mRNA AS events, NMD could be a post-transcriptional mechanism in regulating gene expression upon incubation. Specifically, we proposed that dysregulated AS may create isoforms with premature termination codons and truncated proteins under environmental stress, and indirectly participate NMD-related pathways to accelerate cell death.

In summary, PBMC circRNAs have smaller transcriptome changes than mRNAs and lncRNAs upon sample processing delays, no matter the expression level or AS events. Therefore, circRNAs are superior to linear transcripts as the blood biomarker candidates, especially...
when the sample handling process of clinical blood samples cannot be normalized.

AUTHOR CONTRIBUTIONS

Guoxia Wen: Data curation (equal); formal analysis (equal); methodology (equal). Wanjun Gu: Conceptualization (equal); data curation (equal); formal analysis (equal); funding acquisition (equal); investigation (equal); project administration (equal).

ACKNOWLEDGEMENTS

This work was funded by grants from National Natural Science Foundation of China to WG (61571109) and from Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-C-202208).

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

DATA AVAILABILITY STATEMENT

The raw data of this study are available from the corresponding author upon reasonable request.

ORCID

Guoxia Wen https://orcid.org/0000-0001-6544-8242

REFERENCES

1. De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. *Trends Pharmacol Sci*. 2019;40:172-186.
2. Sole C, Arnaiz E, Manterola L, Otaegui D, Lawrie CH. The circulating transcriptome as a source of cancer liquid biopsy biomarkers. *Semin Cancer Biol*. 2019;58:100-108.
3. Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. *Expert Rev Mol Diagn*. 2018;18:133-145.
4. Byron SA, Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. *Nat Rev Genet*. 2016;17:257-271.
5. Debey S, Schoenbeck U, Hellmich M, et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. *Pharmacogenomics J*. 2004;4:193-207.
6. Franken C, Remy S, Lambrechts N, Hollander H, Den Hond E, Schoeters G. Peripheral blood collection: the first step towards gene expression profiling. *Biomarkers*. 2016;21:458-465.
7. Goods BA, Vahay JM, Steinschneider AF, Askenase MH, Samsing L, Christopher L. Blood handling and leukocyte isolation methods impact the global transcriptome of immune cells. *BMC Immunol*. 2018;19:30.
8. Dvinge H, Ries RE, Ilagan JO, Stirewalt DL, Meshinchi S, Bradley RK. Sample processing obscures cancer-specific alterations in leukemic transcriptomes. *PNAS*. 2014;111:16802-16807.
9. Massoni-Badosa R, Iacono G, Moutinho C, et al. Sampling time-dependent artifacts in single-cell genomics studies. *Genome Biol*. 2020;21:112.
10. Savage AK, Gutschow MV, Chiang T, et al. Multimodal analysis for human ex vivo studies shows extensive molecular changes from delays in blood processing. *iScience*. 2021;24:102404.
11. Baechler EC, Bhatiwalla FM, Karypis G, et al. Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. *Genes Immun*. 2004;5:347-353.
12. Genge PC, Roll CR, Heubeck AT, et al. Optimized workflow for human PBMC multomic immunosurveillance studies. *Star Protoc*. 2021;2:100900.
13. Lee JE, Kim YY. Impact of preanalytical variations in blood-derived biospecimens on Omics studies: toward precision biobanking? *Omnics*. 2017;21:499-508.
14. Grankvist K, Gomez R, Nybo M, Lima-Oliveira G, von Meyer A. Preanalytical aspects on short- and long-term storage of serum and plasma. *Diagnosis (Berl)*. 2019;6:51-56.
15. Wu DW, Li Y, Wang F. How long can we store blood samples: a systematic review and meta-analysis. *EBioMedicine*. 2017;24:277-285.
16. Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. *Protein Cell*. 2020;12:911-946.
17. Chen L-L. The expanding regulatory mechanisms and cellular functions of circular RNAs. *Nat Rev Mol Cell Biol*. 2020;21:475-490.
18. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ullitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. *Nucleic Acids Res*. 2016;44:1370-1383.
19. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. *Cell Res*. 2019;25:981-984.
20. Rochow H, Franz A, Jung M, et al. Instability of circular RNAs in clinical tissue samples impair their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality. *Theranostics*. 2020;10:9269-9279.
21. Zheng Y, Ji P, Chen S, Hou L, Zhao F. Reconstruction of full-length circular RNAs enables isoform-level quantification. *Genome Med*. 2019;11:2.
22. Xin R, Gao Y, Gao Y, et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. *Nat Commun*. 2021;12:266.
23. Wen G, Li M, Li F, Yang Z, Zhou T, Gu W. AQUARIUM: accurate quantification of circular isoforms using model-based strategy. *Bioinformatics*. 2021;37:4879-4881.
24. Sonescon C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. *F1000Res*. 2015;4:1521.
25. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol*. 2014;15:550.
26. Sahraei S, Mohiyuddin M, Sebra R, et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. *Nat Commun*. 2017;8:59.
27. Steen CB, Liu CL, Alizadeh AA, Newman AM. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. *Methods Mol Biol*. 2020;2117:135-157.
28. Shen S, Park JW, Lu ZX, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. *PNAS*. 2014;111:E5593-E5601.
29. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. *Nat Commun*. 2016;7:12060.
30. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles. *PNAS*. 2005;102:15545-15550.
31. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. *Omics*. 2012;16:284-287.
32. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. *Genome Biol*. 2014;15:409.
33. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015;10:e0141214.
34. Qian Z, Liu H, Li M, et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine. 2018;27:18-26.
35. Wang Y, Liu J, Huang BO, et al. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3:152-158.
36. Schnell A, Schmidl C, Herr W, Siska PJ. The peripheral and Intratumoral immune cell landscape in cancer patients: a proxy for tumor biology and a tool for outcome prediction. Biomedicine. 2018;6:25.
37. Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.
38. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256-264.
39. Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792-806.
40. Le KQ, Prabhakar BS, Hong WJ, Li LC. Alternative splicing as a biomarker and potential target for drug discovery. Acta Pharmacol Sin. 2015;36:1212-1218.
41. Kalyna M, Simpson CG, Syed NH, et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. 2012;40:2454-2469.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.