Low Mass Neutralino Dark Matter in the MSSM
with Constraints from $B_s \to \mu^+\mu^-$ and Higgs Search Limits

Daniel Feldman,1 Zuowei Liu,2 and Pran Nath3

1Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA
2C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA
3Department of Physics, Northeastern University, Boston, MA 02115, USA

The region of low neutralino masses as low as (5-10) GeV has attracted attention recently due to the possibility of excess events above background in dark matter detectors. An analysis of spin independent neutralino-proton cross sections of WIMPs off target nuclei. Specifically, the most recent five tower CDMS II result has reached the sensitivity of 3.8 \times 10$^{-44}$ cm2 at a mass of 70 GeV. These results have received attention in supersymmetric models of cold dark matter.

More recently CoGeNT has reported results that show some overlap with the parameter space where DAMA sees an excess of events. In the context of the minimal supersymmetric standard model (MSSM), with electroweak symmetry broken radiatively, it is interesting to ask whether neutralino dark matter can give rise to detectable events in the region where CoGeNT/DAMA see an excess. The reported excess occurs in the low mass region with neutralino mass as low as 5-10 GeV. Indeed light neutralinos with masses O(10) GeV have been entertained by several authors within the MSSM framework and light dark matter using different frameworks has also been investigated.

In this brief note we investigate the neutralino low mass region in MSSM under the Tevatron constraints from Higgs searches and on $B_s \to \mu^+\mu^-$. For the analysis here we choose the framework of radiative electroweak symmetry breaking (REWSB). It is found that cross sections as large as 10$^{-40}$ cm2 can be accommodated in MSSM within the REWSB framework. However, inclusion of sparticle mass limits from current experiments, as well as lower limits on the Higgs searches from the Tevatron, and the current experimental upper limit on $B_s \to \mu^+\mu^-$ significantly limit the allowed parameter space reducing $\sigma_{\text{SI}}(\chi p)$ to lie below $\sim 10^{-41}$ cm2 or even lower for neutralino masses around 10 GeV. These cross sections are an order of magnitude lower than the cross sections needed to explain the reported data in the recent dark matter experiments in the low neutralino mass region.

I. INTRODUCTION

Recent experimental results on the direct detection of dark matter have made very significant progress in increasing the sensitivity of detectors to probe the spin independent scattering cross sections of WIMPs off target nuclei. Specifically, the most recent five tower CDMS II result has reached the sensitivity of 3.8 \times 10$^{-44}$ cm2 at a mass of 70 GeV. These results have received attention in supersymmetric models of cold dark matter.

More recently CoGeNT has reported results that show some overlap with the parameter space where DAMA sees an excess of events. In the context of the minimal supersymmetric standard model (MSSM), with electroweak symmetry broken radiatively, it is interesting to ask whether neutralino dark matter can give rise to detectable events in the region where CoGeNT/DAMA see an excess. The reported excess occurs in the low mass region with neutralino mass as low as 5-10 GeV. Indeed light neutralinos with masses O(10) GeV have been entertained by several authors within the MSSM framework and light dark matter using different frameworks has also been investigated.

In this brief note we investigate the neutralino low mass region in MSSM under the Tevatron constraints from Higgs searches and on $B_s \to \mu^+\mu^-$. For the analysis here we choose the framework of radiative electroweak symmetry breaking of the electroweak symmetry with the aim of finding the parameter space of soft breaking that can generate spin independent neutralino proton cross sections which can lie in the range (10$^{-40}$ - 10$^{-41}$) cm2 needed to get compatibility with the data in the low neutralino mass experiments. The large spin independent neutralino proton cross sections of size O(10$^{-40}$) cm2 arise via t-channel Higgs exchange for large $\tan \beta$ which is typically required to be as large as 50 or larger. [Squark exchange in the s-channel can also produce competitive results if the lower limit on the masses is relaxed below the current experimental limits as will be evident in the discussion given in Sec.(II).] However, the large $\tan \beta$ region is precisely the region where the $B_s \to \mu^+\mu^-$ becomes large. It is known that the $B_s \to \mu^+\mu^-$ branching ratio has a $\tan \beta$ dependence, which grows as powers of $\tan \beta$ (the growth can vary from $\tan^2 \beta$ to $\tan^6 \beta$ depending on the part of the parameter space one is in). For this reason the $B_s \to \mu^+\mu^-$ experimental limits produce a very strong constraint in regions of the parameter space where $\tan \beta$ gets large which is what is needed to get a large spin independent neutralino proton cross section. We give now details of the analysis including the constraints from mass limits and from the $B_s \to \mu^+\mu^-$ branching ratio.

II. AN MSSM ANALYSIS WITH REWSB

The excess reported in DAMA and CoGeNT experiments requires a relatively large $\sigma_{\text{SI}}(\chi p)$, i.e.,

$$\sigma_{\text{SI}}(\chi p) \sim 10^{-40} \text{cm}^2, \quad m_{\text{WIMP}} \sim (5 - 10) \text{ GeV}. \quad (1)$$

We discuss now the possibility whether cross sections of the above size can arise in MSSM. The elastic spin independent cross section, $\sigma_{\text{SI}}(\chi p)$, in the MSSM is controlled dominantly by the Higgs exchange and by the squark exchange depending on the relative lightness of the scalars. For the Higgs or the squark exchange diagrams the cross section is maximized for large $\tan \beta$ and $\sigma_{\text{SI}}(\chi p)$ scales as

$$\sigma_{\text{SI}}(\chi p)_{\text{max}} \sim \frac{(g_Y g_2)^2|n_{11}n_{14}|^2}{4\pi M_W^2} \frac{|1, \tan^2 \beta|}{m_{\text{S}}} F_p, \quad (2)$$

$$|S = h, (S = \tilde{q} \text{ or } H)|. \quad (3)$$

Here $(n_{11} = \tilde{b}, n_{12} = \tilde{W}, n_{13} = \tilde{H}_1, n_{14} = \tilde{H}_2)$ stand for the bino, wino, and Higgsino components of the neutralino and F_p depends on the neutralino couplings to the proton. The
for $\sigma_{SI}(\chi p)$. Thus implementing micrOMEGAs and SuSpect \cite{21} we scan the parameter space consistent with REWSB and with GUT scale unification in the ranges $m_0 \leq 500$ GeV, $m_{1/2} \leq 200$ GeV, $|A_0/m_0| \leq 4$, the latter guided by constraints on charge and color breaking, with $\tan \beta \in (45, 60)$. We take the sign of μ to be positive and take the top quark mass to be 171 GeV. In the gaugino sector we assume $M_a/m_{1/2} = (1 + \Delta_a)$, for $a = 1, 2, 3$ where $\Delta_1 \in (-1, 0)$ and $\Delta_{2,3} \in (0, 1)$ where the ranges are guided in part by the restriction that the lightest chargino χ^\pm mass should be greater than 100 GeV. Beyond this, we require the lightest CP even Higgs to have a mass of 100 GeV or larger, and we require the squark and gluino mass to be larger than 300 GeV. To account for theoretical uncertainties in the large $\tan \beta$ region we take a broad range around the WMAP Ωh^2 value of the neutralino relic density so that $\Omega h^2 \in [0.08, 0.15]$.

An analysis of the $\sigma_{SI}(\chi p)$ under the constraints of radiative electroweak symmetry breaking but without the imposition of any sparticle mass limits is given in Fig. 1. Here one finds that the allowed parameter space does encompass the regions where CoGeNT and DAMA/LIBRA see excess events. However, in the analysis of Fig. 1 we have not imposed any sparticle mass limits or the $B_s \rightarrow \mu^+ \mu^-$ branching ratio constraint. In Fig. 2 we give an analysis of $\sigma_{SI}(\chi p)$ as a function of the neutralino mass with inclusion of the experimental sparticle mass limits. The points within the boxes are those that satisfy the relic density while the small circles do not. One finds that the maximal $\sigma_{SI}(\chi p)$ in the allowed parameter space is an order of magnitude below the CoGeNT region while some of the points in the allowed parameter space do lie in the DAMA/LIBRA region. Next, in the left panel of Fig. 3 we give a plot of $\sigma_{SI}(\chi p)$ vs the CP even Higgs mass M_H. Here we exhibit the parameter space constrained by the Tevatron data on the Higgs searches. Inclusion of this constraint reduces the size of $\sigma_{SI}(\chi p)$ to be no greater than $\sim 5 \times 10^{-42} \text{cm}^2$. We note that in the analysis of both Fig. 2 and the left panel of Fig. 3 we have not included the $B_s \rightarrow \mu^+ \mu^-$ constraint. We will see below that inclusion of the $B_s \rightarrow \mu^+ \mu^-$ constraint further reduces the maximally allowed size of $\sigma_{SI}(\chi p)$.

The CDF data give the following upper limit from the process $B_s \rightarrow \mu^+ \mu^-$ \cite{10}

$$Br(B_s \rightarrow \mu^+ \mu^-) < (5.8/4.7) \times 10^{-8} \quad (95/90\% CL).$$

We will see that these limits are quite constraining at large $\tan \beta$ specifically for regions where the spin independent cross sections get large. $B_s \rightarrow \mu^+ \mu^-$ has a leading $\tan^6 \beta$ dependence which is further modified by loop corrections \cite{15, 23} so that

$$B_s \rightarrow \mu^+ \mu^- \sim 1.92 \times 10^{-6} (\tan \beta)^6 (M_A/\text{GeV})^{-4}$$

$$\times \frac{(16\pi^2 \lambda)^2}{(1 + (\epsilon_0 + \epsilon_Y) \tan \beta)(1 + \epsilon_0 \tan \beta)^2}$$

where ϵ_0 and ϵ_Y are loop corrections (Eq. 5) is an approximate form for $B_s \rightarrow \mu^+ \mu^-$ and in the analysis we
have used the full form.). Eq. (10) exhibits the fact that a light SUSY Higgs boson and a large \(\tan \beta \) tend to enhance the \(B_s \to \mu^+\mu^- \) branching ratio which is subject to strong Tevatron limits. These Tevatron constraints are exhibited in the right panel of Fig. 3. Here the allowed region of the \(\sigma_{SI}(p) \) parameter space consistent with the upper limit on \(B_s \to \mu^+\mu^- \) does not fall within the region consistent with the region where CoGeNT or DAMA are sensitive to \(\sigma_{SI}(\chi p) \). As is easily seen very few parameter points lie in this region consistent with the \(B_s \to \mu^+\mu^- \) constraint and relatively large \(\sigma_{SI}(\chi p) \), and those that fall in the region consistent the \(B_s \to \mu^+\mu^- \) constraint have\(\sigma_{SI}(\chi p) \) which does not exceed \(\sim 5 \times 10^{-42} \text{ cm}^2 \).

The above result is found when fixing \(\Sigma_{eN} = 55 \text{ MeV} \) with \(\Sigma^{d} = 0.033, \Sigma^{u} = 0.023, \Sigma^{P = N} = 0.26, \Sigma^{d} = 0.042, \Sigma^{u} = 0.018 \), with the hadronic matrix elements \(\langle N|q\bar{q}|q\bar{q}|N \rangle = f^{N}_{q} M_{N} \). Of the above quantities, the largest uncertainties in the calculation of \(\sigma_{SI}(\chi p) \) arise from variations in the pion-sigma nucleon term, followed by uncertainties in the strange quark contribution (for a recent analysis see \[23\]). It is useful to illustrate the effects of these uncertainties. In the region of large \(\tan \beta \), (the region of interest here where the \(\sigma_{SI}(\chi p) \) can be enhanced) for the case of a light neutralino with mass of 7 GeV we find this can lead to an uncertainty as large as a factor of \(\sim 3 \) in the \(\sigma_{SI}(\chi p) \) over the window \(\Sigma_{eN} = 64 \pm 8 \text{ MeV} \). The uncertainty in \(\Sigma^{P = N} \) can generally lead to a factor of \(\sim 2 \). Taking into account the above, coupled with sparticle mass constraints and the WMAP constraint, we do not find any models that can fall in the Cogent preferred region. It should be noted that the very recent lattice QCD simulations from one group \[24\] may imply a further uncertainty (which could even lower the cross section). Further detailed analyses on such simulations need to be carried out.

We note that extending the parameter space of the models to include larger scalar masses will suppress \(B_s \to \mu^+\mu^- \) and of course weaken this constraint. However, heavy scalars will reduce the \(\sigma_{SI}(\chi p) \) and it is for this reason we have focused on the parameter space above. We discuss this further below.

III. DISCUSSION AND EXTENSIONS

We now discuss our findings further by extending the set of models. Thus it is also interesting to extend the parameter space to include a larger set of non-universalities. As a check on our conclusions, we have carried out an exhaustive scan of high scale supergravity models with non-universalities in various sectors. These include non-universalities in the gaugino (NUG) masses, non-universalities in the Higgs boson (NUH) masses, non-universalities in the third generation scalar (NU3) masses, and non-universalities in the trilinear couplings (NUA) in the third generation sector \(A_{s} \). \(s = \tilde{t}, \tilde{b}, \tilde{f} \). We utilize Monte Carlo simulations generating several million candidate models for the non-universal cases discussed above. Thus in total we investigate NUG, NUA, NUH, and NU3 simulating a total of 4 million candidate models. Specifically the parameter space considered in the Monte Carlo scans are as follows: \(0 < m_{0} / \text{GeV} < 1000, 1 < \tan \beta < 60, 169 < m_{t} / \text{GeV} < 173, 0 < m_{1} / \text{GeV} < 1000, 0 < m_{2} / \text{GeV} < 1000, 0 < \)}
$M_p/\text{GeV} < 1000, -5 < A_t/m_0 < 5, 0 < M_{H_u}/\text{GeV} < 1000, 0 < M_{H_d}/\text{GeV} < 1000$.

Within this rather large parameter space of high scale models and under the constraint of REWSB and other experimental constraints already discussed, our conclusions remain that of Sec. III. We note in passing that in the region of interest the μ parameter typically lies in the range 100 -300 GeV and the smaller μ's are associated with significant Higgsino components of the neutralino which enhance the σ_{SI}. However, σ_{SI} significantly larger than 10^{-42} cm2 still appear difficult to achieve even with the inclusion of non-universalities. Further, one finds that while the REWSB alone allows an LSP neutralino as low as even a GeV, the present mass bounds on the supersymmetric particles, along with the $B_s \to \mu^+\mu^-$ and WMAP constraints allow only a 20 GeV LSP in the models discussed in Sec. III. Inclusion of a lower limit on the $\tilde{\tau}$ mass of 98.8 GeV pushes the lower limit on the neutralino mass to about 30 GeV. Finally, we remark that for the LSP neutralino mass in the (20-40) GeV region, in SUGRA models with REWSB, the light neutralino masses are further constrained by direct detection experiments [18]. This constraint was not discussed in the detailed analysis of Ref. [2] which focused on collider bounds and cosmological bounds of light neutralinos.

IV. CONCLUSION

Recent results by CoGeNT and DAMA are sensitive to light neutralino masses in the (5 – 10)GeV region with spin independent cross sections in the region of 10^{-40} cm2. This relative largeness of the spin independent cross section, $\sigma_{SI}(\chi p)$, can be accommodated in the MSSM in the framework of radiative electroweak symmetry breaking. Inclusion of sparticle mass limits from current experiments, as well as lower limits on the Higgs searches from the Tevatron, and the current experimental upper limits on the $B_s \to \mu^+\mu^-$ branching ratio, significantly reduce the allowed parameter space. The residual parameter space with neutralino masses greater than 10 GeV has a drastically reduced $\sigma_{SI}(\chi p)$ which is not in excess of 10^{-42} cm2 and is significantly lower than the $\sigma_{SI}(\chi p)$ needed in the low neutralino mass regions of experiments presently probing low mass dark matter. Inclusion of all known constraints, both collider, satellite, and terrestrial direct detection constraints implies that a 10 GeV or lighter neutralino cannot accommodate the CoGeNT preferred region in models with only the MSSM spectra.

Acknowledgments: This research is supported in part by DOE grant DE-FG02-95ER40899 (Michigan Center for Theoretical Physics, (MCTP)), and NSF grants PHY-0653442 (Yang Institute for Theoretical Physics, (YITP), Stony Brook), and PHY-0757959 (Northeastern University).

[1] Z. Ahmed et al. [CDMS Collaboration], Phys. Rev. Lett. 102 (2009) 011301.
[2] Aprile, E, Phys. Rev. C79, 045807 (2009).
[3] V. N. Lebedenko et al., Phys. Rev. D 80, 052010 (2009).
[4] and Z. Ahmed [The CDMS Collaboration], arXiv:0912.3592 [astro-ph.CO].
[5] D. Feldman, Z. Liu and P. Nath, arXiv:0912.4217 [hep-ph]; M. Holmes and B. D. Nelson, arXiv:0912.4507 [hep-ph]; K. Cheung and T. C. Yuan, Phys. Lett. B 685, 182 (2010) arXiv:0912.4599 [hep-ph]; J. Hisano, K. Nakayama and M. Yamanaka, Phys. Lett. B 684, 246 (2010) arXiv:0912.4701 [hep-ph]; R. Allahverdi, B. Dutta and Y. Santoso, arXiv:0912.4329 [hep-ph]; X. G. He, T. Li, X. Q. Li, J. Tandean and H. C. Tsai, arXiv:0912.4722 [hep-ph]; M. Asano, et. al arXiv:0912.5361 [hep-ph]; I. Gogoladze, et. al arXiv:0912.5411 [hep-ph]; P. Nath et al. arXiv:1001.2693 [hep-ph]; X. Gao, Z. Kang and T. Li, arXiv:1001.3278 [hep-ph]; T. Cohen, D. Phalen and A. Pierce, arXiv:1001.3408 [hep-ph]; D. Feldman, G. Kane, R. Lu and B. D. Nelson, arXiv:1002.2430 [hep-ph].
[6] C. E. Aalseth et al. [CoGeNT collaboration], arXiv:1002.4703 [astro-ph.CO].
[7] R. Bernabei et al. [DAMA Collaboration], Eur. Phys. J. C 56, 333 (2008).
[8] A. Bottino, N. Fornengo and S. Scopel, Phys. Rev. D 67, 063519 (2003); D. Hooper and T. Plehn, Phys. Lett. B 562, 18 (2003); G. Belanger et al., JHEP 0403, 012 (2004); S. Profumo, Phys. Rev. D 78, 023507 (2008); E. Dudas, S. Lavignac and J. Parmentier, Nucl. Phys. B 808, 237 (2009).
[9] H. K. Dreiner, et. al Eur. Phys. J. C 62, 547 (2009).
[10] A. Bottino, et. al Phys. Rev. D 78, 083520 (2008).
[11] A. Bottino, et. al. arXiv:0912.4025 [hep-ph]; This Ref also includes an interpretation of the CDMS results [3].
[12] J. F. Gunion, D. Hooper and B. McElrath, Phys. Rev. D 73, 015011 (2006).
[13] J. L. Feng, J. Kumar and L. E. Strigari, Phys. Lett. B 670, 37 (2008); F. Petriello and K. M. Zurek, JHEP 0809, 047 (2008); S. Chang, et. alPhys. Rev. D 79, 043513 (2009).
[14] C. Savage, G. Gelmini, P. Gondolo and K. Freese, JCAP 0904, 010 (2009).
[15] S. R. Choudhury and N. Gaur, Phys. Lett. B 451, 86 (1999); K. S. Babu and C. Kolda, Phys. Rev. Lett. 84, 228 (2000); A. Dedes, et. al Phys. Rev. Lett. 87, 251804 (2001); R. Arnowitt, et. al Phys. Lett. B 538 (2002) 121; S. Baek, P. Ko, and W. Y. Song, JHEP 0303, 054 (2003);
J. K. Mizukoshi, X. Tata and Y. Wang, Phys. Rev. D 66, 115003 (2002); T. Ibrahim and P. Nath, Phys. Rev. D 67, 016005 (2003).

[16] D. Feldman, Z. Liu and P. Nath, Phys. Rev. Lett. 99, 251802 (2007); D. Feldman, Z. Liu and P. Nath, JHEP 0804, 054 (2008).

[17] D. Benjamin et al. [Tevatron New Phenomena & Higgs Working Group], [arXiv:1003.3363] [hep-ex]; CDF note 9071; V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 101, 071804 (2008) [arXiv:0805.2491] [hep-ex]; Phys. Rev. Lett. 97, 121802 (2006).

[18] D. Feldman, Z. Liu and P. Nath, Phys. Lett. B 662, 190 (2008).

[19] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100, 101802 (2008).

[20] U. Chattopadhyay, T. Ibrahim and P. Nath, Phys. Rev. D 60 (1999) 063505. J. R. Ellis, A. Ferstl and K. A. Olive, Phys. Lett. B 481, 304 (2000); M. S. Carena, D. Hooper and A. Vallinotto, Phys. Rev. D 75, 055010 (2007).

[21] G. Belanger, et. al Comput. Phys. Commun. 180, 747 (2009); A. Djouadi, J. L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007).

[22] E. Komatsu et al. [arXiv:1001.4538] [astro-ph.CO]. Astrophys. J. Suppl. 180, 330 (2009).

[23] A. J. Buras, et. al Phys. Lett. B 546, 96 (2002); M. S. Carena, A. Menon and C. E. M. Wagner, Phys. Rev. D 76, 035004 (2007).

[24] J. Giedt, A. W. Thomas and R. D. Young, Phys. Rev. Lett. 103, 201802 (2009).

[25] J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, 065026 (2008); AIP Conf. Proc. 1166, 103 (2009).