Mini-Review

Cytokines in Context

Carl Nathan and Michael Sporn
Beatrice and Samuel A. Seaver Laboratory, Division of Hematology-Oncology, Department of Medicine, Cornell University Medical College, New York, New York 10021; and the Laboratory of Chemoprevention, National Cancer Institute, Bethesda, Maryland 20892

In the last ten years, an avalanche of new information has flattened much of the conceptual framework erected in the first three decades of cytokine research. This article briefly reviews the concepts that collapsed, then attempts to begin replacing them. We see cytokines as specialized symbols in a language of intercellular communication, whose meaning is controlled by context (Sporn and Roberts, 1988, 1990; Nathan, 1990; Kenyon and Kamb, 1989). To illustrate control by context, we summarize new evidence that the response of cells to cytokines can be markedly affected by the extracellular matrix in which most cells are normally embedded.

Legacy: Concepts Crushed by Complexity
Immunologists often date the start of the cytokine era from the description of lymphocyte-derived mediators or "lymphokines" (Dumonde et al., 1969) in the late 1960s (David, 1966; Bloom and Bennett, 1966). However, the roots go much farther back. Nerve growth factor was discovered in 1951 (Levi-Montalcini and Hamburger), and interferon, whose relevance to immunology is indisputable, was discovered in 1954 (Nagano and Kojima). As this illustrates, until recently, investigators in each of four different areas—immunology (interleukins), virology (interferons), hematology (colony-stimulating factors), and cell biology (peptide growth factors)—have worked in relative isolation from parallel developments in the other areas. In this article, we will refer to all of the above polypeptide regulatory factors as "cytokines" (Bigazzi et al., 1975), an enlarged term that took root in immunologic parlance as the perception spread that interferons, colony-stimulating factors (CSFs), and growth factors play a central role in immunology (see Table I). Nonetheless, the persistent legacy of the historical isolation is a terminologic imbued with defunct assumptions, notably that a cytokine functions largely within the category in which it came to light; arises chiefly from one type of cell; has a principal action reflected in its name; can be categorized as either a stimulator or an inhibitor; and has a set of additional actions that are related to each other in some obvious way.

By the standards of those concepts, cytokine research is in chaos. Most cytokines arise from seemingly unrelated types of cells. Most have bioactivities so diverse as to seem unrelated; these usually include the ability both to promote and inhibit cellular proliferation and differentiation. Most activities manifest by a given cytokine can be exerted by others. Many cytokines that subserve familiar functions postnatally play different or unknown roles embryologically. Given the amino acid sequence of a cytokine and any of its actions, we cannot predict when or where it will do what else. This last point is an operational definition of the inadequacy of current concepts.

Meaning in Context: Messages from Matrix
We define a cytokine as a soluble (glyco)protein, nonimmunoglobulin in nature, released by living cells of the host, which acts nonenzymatically in picomolar to nanomolar concentrations to regulate host cell function. Cytokines make up the fourth major class of soluble intercellular signaling molecules, alongside neurotransmitters, endocrine hormones, and autacoids. The physiologic importance of cytokines is no less than that of the other classes.

We suggest that a central role of cytokines is to control the (re)modeling of tissues, be it developmentally programmed, constitutive, or unscathed. Unscheduled remodeling is that which accompanies inflammation, infection, wounding, and repair (Vlassara et al., 1988). In the immune system, the relevant tissues are not just those within fixed organs like lymph nodes, thymus, marrow, and spleen, but also the transient cell assemblages that can infiltrate any organ that is wounded, infected, or inflamed. From this perspective, it is not surprising that a given tissue may exert a profound influence on how cells within it respond to cytokines. Recent evidence documents at least seven types of interaction between cytokines and cell matrix.

Adherence to Matrix Induces Cells to Make Cytokines
This has been clearly demonstrated with monocytes and macrophages. Adherence to fibronectin induces transcription of granulocyte-macrophage (GM)-CSF (Thorens et al., 1987), and CSF-I (Eierman et al., 1989); adherence to collagen induces IL-1 (Dayer et al., 1986) and TNF-α (Eierman et al., 1989); interaction with proteins (postulated to include matrix proteins) that have been modified with advanced glycosyla-
Cytokines Induce Cells to Alter Matrix

TGF-β markedly stimulates deposition of type I collagen into normal rat kidney cell matrix, which may account for its ability to inhibit growth of these cells in monolayer. Exogenous type I collagen mimics, and collagenase abolishes, this anti-proliferative action of TGF-β (Nugent and Newman, 1989). Effects of TGF-β on collagen deposition can be ascribed, in part, to repression of interstitial collagenase and the reciprocal induction of tissue inhibitor of metalloproteinases (Stetler-Stevenson et al., 1990); conversely, other cytokines, such as EGF and FGF, are potent inducers of metalloproteinases, which alter matrix (Edwards et al., 1987). IL-6 also induces tissue inhibitor of metalloproteinases in human chondrocytes, synoviocytes and fibroblasts (Lotz and Guerne, 1991).

Cytokines Affect Cell Adhesion Receptors

TGF-β increases the expression of α1β1, α2β1, α3β1, and α5β1 integrins in fibroblasts (Heino et al., 1989), the CD11a/CD18 integrin in monocytic leukemia cells, and the αvβ3 integrin in fibroblasts and osteosarcoma cells (Ignotz et al., 1989). IL-1β enhances β1 integrin expression in osteosarcoma cells (Dedhar, 1989). IFN-γ enhances macrophage binding to laminin (Shaw and Mercurio, 1989), an effect that may be mediated by enhanced function of the α6β1 integrin associated with its phosphorylation (Shaw et al., 1990b). GM-CSF and TNF-α induce neutrophils and monocytes to shed one type of adhesion receptor, the LAM-1 or VLA-1, which may account for its ability to inhibit growth of these cells in monolayer. Exogenous type I collagen mimics, and collagenase abolishes, this anti-proliferative action of TGF-β (Nugent and Newman, 1989). Effects of TGF-β on collagen deposition can be ascribed, in part, to repression of interstitial collagenase and the reciprocal induction of tissue inhibitor of metalloproteinases (Stetler-Stevenson et al., 1990); conversely, other cytokines, such as EGF and FGF, are potent inducers of metalloproteinases, which alter matrix (Edwards et al., 1987). IL-6 also induces tissue inhibitor of metalloproteinases in human chondrocytes, synoviocytes and fibroblasts (Lotz and Guerne, 1991).
cells (Mourad et al., 1990). Pretreatment of monocytes with IFN-γ depresses the binding capacity of their receptors for complement component C3bi (comprised of the CD11b/CD18 β2 family integrins), but this effect is promptly reversed when the cells are plated on fibronectin (Wright et al., 1986).

In an important variation on this theme, similar to that noted above, the place of cytokine receptors is taken by antigen receptors. Thus, activation of T lymphocytes via the CD3 component of the antigen receptor is enhanced synergistically by binding of matrix proteins to β2 integrins (Carrerra et al., 1988; Wacholz et al., 1989; Van Senevere et al., 1990), interaction with collagen (Dang et al., 1990), or binding to fibronectin, laminin or vitronectin via β1 integrins (Nojima et al., 1990; Shimizu et al., 1990a,b; Roberts et al., 1991). In contrast, the matrix protein tenascin seems to inhibit rather than augment the activation of T cells (Ruegg et al., 1989).

Underlying Mechanisms

What signals from matrix induce cells to make and respond to cytokines? These are new questions. To answer them is emerging as a major goal in cytokine and cell adhesion research. To date, several mutually compatible mechanisms have received experimental support.

(a) Engagement of adhesion receptors alone by their ligands or by anti-receptor antibodies (we will refer to both means of engaging receptors as "ligation") may trigger second messenger responses. For example, spreading of cells on fibronectin can induce intracellular alkalinization (Ingber and Folkman, 1989b). Lympocytes whose CD1α/CD18 integrins are cross-linked by antibodies have responded with increases in intracellular Ca²⁺ and accumulation of inositol triphosphate (Pardi et al., 1989). A preliminary report involving a single time point showed a higher ratio of inositol mono-, di-, and tetrakis-phosphate (but not inositol triphosphate) in baby hamster kidney cells that had spread on fibronectin-coated plastic compared with those remaining rounded on uncoated plastic (Breuer and Wagener, 1989). However, the mechanisms underlying these infrequently described responses are far from clear. Adhesion receptors have not been

Some Cytokine Receptors Can Promote Cell–Cell Adhesion

EGF receptors can promote the binding of hematopoietic cells to bone marrow stromal cells expressing the transmembrane form of the ligand, pro-TGF-α (Anklesaria et al., 1990). The cytokine remains anchored in the membrane of the producer cell, enabling close interaction with the responder cell, a process termed "juxtacrine secretion."
shown to be linked to phospholipases nor associated with kinase activity.

(b) Ligation of adhesion receptors may interact synergistically with ligation of cytokine receptors to induce changes in the levels of second messengers. To our knowledge, the one example reported to date involves the dependence of the neutrophil respiratory burst on simultaneous ligation of TNF-α receptors and β2 integrins. This response is mediated, in part, by a fall in cAMP (Nathan and Sanchez, 1990). In experiments on platelets that did not involve cytokines, glycoprotein IIb/IIIa (a β3 family integrin) was required for epinephrine to activate phospholipases (Bang et al., 1986) and for thrombin to induce a subset of tyrosine phosphorylation reactions (Ferrell and Martin, 1989). In each of these examples, the biochemical basis for the interdependence of the two receptor systems remains a mystery.

(c) Ligation of some adhesion receptors might mimic ligation of cytokine receptors, or regulate the cellular response to ligation of cytokine receptors, by virtue of a physical association between both types of receptors. For example, a physical if not functional association has been demonstrated for intercellular adhesion molecule-1 and the IL-2 receptor (Burton et al., 1990).

(d) Complexes formed by some matrix proteins with cytokines (for example, glycosaminoglycans with basic FGF) may have higher affinity for specific receptors than do the cytokines themselves (Yaron et al., 1991).

(e) Alteration of cell shape by interaction with the matrix may activate stretch-sensitive ion channels, or transduce other mechanochemical signals in ways that remain to be defined (Ingber and Folkman, 1989a,b).

(f) Interaction of cells with the extracellular matrix promotes reorganization of the cytoskeleton. The cytoskeleton can control the number of cytokine receptors on the plasma membrane (Ding et al., 1990a), the secretion of cytokines (Ding et al., 1990b), ribosome function, and gene transcription (reviewed in Ingber and Folkman, 1989a; Ding et al., 1990a).

Conclusion

The extracellular matrix of a cell reflects its metabolic history. As a relatively stable entrap of past experiences, the matrix furnishes the cell with a rudimentary memory useful in responding appropriately to incoming stimuli. Elsewhere it was suggested that cytokines can be viewed as symbols in an intracellular language (Spor and Roberts, 1988, 1990). Here we suggest that the extracellular matrix is part of the same language. In semantics, language itself is regarded as "time-binding," that is, a mechanism for recording past experience (Korzybski, 1958). The participation of the extracellular matrix in the language of intercellular communication is one way that multicellular organisms can use past experience to help determine how their cells respond to cytokines. The amount of information potentially stored in the specific array of carbohydrate moieties in the macromolecules of the matrix may exceed that in the genome (Rademacher et al., 1988). Thus, interactions with matrix enable cytokines to elicit adaptive responses that are rich in complexity to a degree not available to prokaryotes or unicellular eukaryotes.

The physiologic target of cytokines has conventionally been regarded as the individual responding cell. We propose a shift in perspective, such that the targets of cytokines are seen as tissues. Individual cells are seen not as targets but as mediators of cytokine action. In this view, cytokines are intercellular signaling proteins whose physiologic role is to coordinate the modeling and remodeling of tissues—developmentally programmed, constitutive, and unscheduled. This shift in perspective leads to a corresponding shift in predictions regarding the major determinants of cytokine action. For example, as we argue above, the effects of cytokines can be profoundly influenced by reciprocal interactions of responding cells with the extracellular matrix.

In homeostasis, cytokines act vicinally in surface-bound or diffusible form. In pathologic states, cytokines may circulate to act beyond the organ of origin. A combined requirement for diffusible (cytokine) and nondiffusible (matrix) signals may be an important mechanism for localizing the responses of cells to a cytokine that is widely distributed. Similarly, the ability of matrix to present cytokines in either an active or inactive form may contribute to the spatial control that a tissue can exert over the cytokine responses of cells within it. Finally, the ability to produce a cytokine either in diffusible, cell surface-bound, or matrix-bound forms may give a cell some control over that cytokine's sphere of influence (Rathjen et al., 1990). Since matrix can present cytokines, and since binding of cells to matrix proteins can both induce cytokines and synergize with them, it is possible that the apparent induction of cell differentiation by matrix proteins alone (Ingber and Folkman, 1989a,b; Grant et al., 1989) may sometimes result from the combined action of matrix proteins with cytokines acting in an autocrine or paracrine manner. Thus, combined control of cell function by matrix proteins and cytokines may be a widespread phenomenon.

A shift in emphasis from the actions of cytokines on individual cells to their actions on tissues raises the difficult problem of how to study cytokine actions in vitro. Experiments with isolated cell populations exposed to cytokines in vitro have led to the description of countless, often contradictory bioactivities, among which it is difficult to discern those of physiologic and pathophysiologic relevance. Ad hoc criteria include the magnitude of a given effect and the potency with which it is induced, its robustness as experimental conditions are varied (reflected in the ease of its confirmation), and the existence of countereffects that can be construed as regulatory. However, definitive evidence for the physiologic relevance of a given action of a cytokine requires tests in intact organisms. Here, the cardinal criterion is the association of natural or induced states of cytokine deficiency with pathologic effects, and the reversal of these effects with cytokine repletion (e.g., Nathan et al., 1986; Kodama et al., 1991). A secondary criterion is the association of natural or induced states of cytokine excess with therapeutic or pathologic effects, and their correction with depletion. Obviously, such tests are difficult to carry out. A major practical problem is how to conduct tests of cytokine action in vitro that can best inform the design of studies in vivo, if not predict their outcome. Perhaps experiments with cytokines in vitro will yield physiologically more relevant information as investigators take increasingly into account the extracellular milieu of the responding cells.
We thank S. Wright and A. Roberts for critical review.

Preparation of this article was supported by National Institutes of Health grants CA-43610 and CA-45218.

Received for publication 20 February 1991.

References

Akselrod, P., J. Teissido, M. Laiho, J. H. Pierce, J. S. Greenberger, and J. Massagut. 1990. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor alpha to epidermal growth factor receptors promotes cell proliferation. Proc. Natl. Acad. Sci. USA. 87:3289–3293.

Arnaout, M. A., E. A. Wang, S. C. Clark, and C. A. Steif. 1986. Human recombinant cysteine-macrophage-colony-stimulating factor increases cell-to-cell adhesion and surface expression of adhesion-promoting surface glycoproteins on mature granulocytes. J. Clin. Invest. 78:597–601.

Baird, A., and P. Bohlen. 1990. Fibroblast growth factors. In Peptide Growth Factors and Their Receptors. M. B. Sporn and A. B. Roberts, editors. Springer-Verlag, Berlin. Vol. 1. pp. 369–418.

Banga, H. S., E. R. Simons, L. F. Brass, and S. E. Rittenhouse. 1986. Activation of phospholipas A2 and C in human platelets exposed to epinephrine: roles of phospholipase A2 and dual role of epinephrine. Proc. Natl. Acad. Sci. USA. 83:9197–9201.

Beltvilaia, M. P., S. Stengel, M. A. Gimbrone, Jr., and B. Seed. 1989. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science (Wash. DC). 243:1160–1165.

Bigazzi, P. E., T. Yoshida, P. A. Ward, and S. Cohen. 1975. Production of lymphokine-like factors (cytokines) by simian virus 40-infected and simian virus 40-transformed cells. Am. J. Pathol. 80:69–78.

Bloom, B. R., and B. Bennett. 1966. Mechanism of a reaction in vitro associated with delayed type hypersensitivity. Science (Wash. DC). 153:80–82.

Breuer, D., and C. Wagener. 1989. Activation of the phosphatidilinositol cycle in spreading cells. Exp. Cell Res. 182:659–663.

Burton, J., C. K. Goldman, P. Rao, M. Moos, and T. A. Waldmann. 1990. Association of intercellular adhesion molecule 1 with the multichain high-affinity IgE receptor. Proc. Natl. Acad. Sci. USA. 87:7329–7333.

Carreras, A. C., M. Rincon, P. Sanchez-Madrid, M. Lopez-Botet, and M. O. de Landazuri. 1988. Triggering of co-mitogenic signals in T cell proliferation by anti-LFA-1 (CD18, CD11a), LFA-3, and CD7 monoclonal antibodies. J. Immunol. 141:1918–1924.

Dang, N. H., Y. Torimoto, K. S. Schlossman, and C. Morimoto. 1990. Human CD4 helper T cell activation: functional involvement of two distinct cell receptors, I F7 and VLA integrin family. J. Exp. Med. 172:649–652.

Dayer, J.-M., S. Ricard-Blum, M.-T. Kanfraann, and D. Herbage. 1986. Type 208–212.

Davies, R. J. 1966. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sci. USA. 56:72–77.

Dedhar, S. 1989. Regulation of expression of the cell adhesion receptors, integrins, by epidermal growth factor. J. Cell Biol. 108:607–608.

Dekel, S. 1989. Regulation of expression of the cell adhesion receptors, integrins, by transforming growth factor-beta. Regulation of vitronectin receptor and LFA-1. J. Biol. Chem. 264:389–392.

Dey, I. E., D. J. Folkman. 1989a. How does extracellular matrix control cell morphology? J. Cell Biol. 108:803–805.

Dey, I. E., D. J. Folkman. 1989b. Mechanochanical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330.

DiGia, M. C., E. Prusty, J. F. Prangieni, E. J. Crague, Jr., C. Lechene, and M. A. Schwartz. 1990. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J. Cell Biol. 110:1803–1811.

Jänike, R., and D. N. Mannel. 1990. Distinct tumor cell membrane constituents activate human mycocytes for tumor necrosis factor synthesis. J. Immunol. 144:1144–1150.

Kalchek, C., Y. A. Barde, H. Thoenen, and N. M. LeDouarin. 1987. In vivo effect of brain-derived neurotrophic factor on the survival of developing dorsal root ganglion cells. EMBO (Eur. Mol. Biol. Organ.) J. 6:2871–2873.

Kaplan, G., and G. Gaudenack. 1982. In vitro differentiation of human monoocytes. Differences in monocyte phenotypes induced by cultivation on glass or on collagen. J. Cell. Exp. 156:1101–1114.

Kenyon, C., and A. Kamb. 1989. Cellular dialogs during development. Cell. 59:607–608.

Kodama, H., A. Yamasaki, M. Nose, S. Niida, Y. Ohgane, M. Abe, M. Kumegawa, and T. Suda. 1991. Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J. Exp. Med. 173:269–272.

Korzybski, A. 1958. Science and Sanity. An Introduction to Non-Aristotelian Logic. Colletti, Inc., New York. pp. 283–312.

Lotz, M., and P.-A. Guerne. 1991. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinase-1/erythroid potentiating activity (TIMP-1/EPA). Proc. Natl. Acad. Sci. USA. 88:4964–4968.

Madrid, J., H. P. Kiessling, R. S. Geha, and T. Chatila. 1990. Engagement of major histocompatibility class II molecules by monoclonal antibodies: role of glycoproteins lib/Ilia and dual role of epinephrine. J. Cell Biol. 110:1803–1811.

Eierman, D. F., C. E. Johnson, and J. S. Haskill. 1989. Human monocyte inflammatory mediator gene expression is selectively regulated by adherence substrates. J. Immunol. 142:1970–1976.

Ferraro, J. E., Jr. and G. S. Martin. 1989. Tyrosine-specific protein phosphorylation is regulated by glycosphingomine lyase in platelets. Proc. Natl. Acad. Sci. USA. 86:2234–2238.

Gordon, M. Y., G. P. Rile, S. M. Watt, and M. F. Greaves. 1987. Compartimentalization of a haemopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature (Lond.). 326:403–405.

Graet, D. S., K.-I. Tashiro, B. Segui-Reali, Y. Yamada, G. R. Martin, and H. K. Kleinman. 1989. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell. 58:933–943.

Griffin, J. D., O. Sperti, T. J. Ernst, M. P. Belvin, H. B. Levine, Y. Kanakura, and T. F. Tedder. 1990. Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on neutrophils, monocytes, and their precursors. J. Immunol. 145:576–584.

Heino, J., R. A. Ignozzi, M. E. Himler, C. Crouse, and J. Massagué. 1989. Regulation of cell adhesion receptors by transforming growth factor-beta. Concomitant regulation of integrins that share a common alpha subunit. J. Biol. Chem. 264:380–388.

Hildreth, A. K., T. T. Preisssinger, G. Muller-Berghaus, and J. Tescenachner. 1989. A novel beta-endorphin binding protein. Complement 5 protein (= vitronectin) exhibits specific non-opioid binding sites for beta-endorphin upon interaction with heparin or surfaces. J. Biol. Chem. 264:15429–15434.

Ignozzi, R. A., J. Heino, and J. Massagué. 1989. Regulation of cell adhesion receptors by transforming growth factor beta. Regulation of vitronectin receptor and LFA-1. J. Biol. Chem. 264:389–392.

Ingram, D. E., and J. Folkman. 1989. How does extracellular matrix control cell morphogenesis? J. Cell Biol. 108:803–805.

Ingram, D. E., and J. Folkman. 1989. Mechanochanical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330.

Ingram, D. E., D. J. Folkman. 1989b. Mechanochanical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330.

Ingram, D. E., D. J. Folkman. 1989b. Mechanochanical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330.
