Polarized neutron scattering studies of magnetic excitations in iron-selenide superconductor $\text{Li}_{0.8}\text{Fe}_{0.2}\text{ODFeSe}$ ($T_c = 41$ K)

Die Hu¹, Yu Feng¹, Jitae T Park², Hongliang Wo¹, Qisi Wang¹, Frédéric Bourdarot³, Alexandre Ivanov⁴ and Jun Zhao¹,⁵,⁶,⁷, ∗

¹ State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
² Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85748 Garching, Germany
³ Université Grenoble Alpes, CEA, INAC, MEM MDN, F-38000 Grenoble, France
⁴ Institute Laue-Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
⁵ Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, People’s Republic of China
⁶ Shanghai Qi Zhi Institute, Shanghai, 200232, People’s Republic of China
⁷ Shanghai Research Center for Quantum Sciences, Shanghai 201315, People’s Republic of China

E-mail: zhaoj@fudan.edu.cn

Received 18 May 2021, revised 22 July 2021
Accepted for publication 12 August 2021
Published 1 September 2021

Abstract

We report polarized neutron scattering measurements of the low energy spin fluctuations of the iron-selenide superconductor $\text{Li}_{0.8}\text{Fe}_{0.2}\text{ODFeSe}$ below and above its superconducting transition temperature $T_c = 41$ K. Our experiments confirmed that the resonance mode near 21 meV is magnetic. Moreover, the spin excitations are essentially isotropic in spin space at $5 \leq E \leq 29$ meV in the superconducting and normal states. Our results suggest that the resonance mode in iron-based superconductors becomes isotropic when the influence of spin–orbit coupling and magnetic/nematic order is minimized, similar to those observed in cuprate superconductors.

Keywords: polarized, neutron, scattering, magnetic, excitations, iron

(Some figures may appear in colour only in the online journal)
of a spin-space isotropic resonance mode at the antiferromagnetic wavevector in hole- [6] and electron-doped [7] cuprate superconductors is consistent with this picture with a d-wave pairing gap function. In most iron pnictide superconductors, the resonance modes appear near the stripe antiferromagnetic wavevector, which is close to the wavevector connecting the electron pockets at the Brillouin zone corner and the hole pockets at the zone center [8–13]. This was explained as a spin exciton arising from the sign-reversed s-wave pairing between the nested electron and hole pockets [5].

However, the situation in iron-based superconductors seems more complicated than expected, as recent polarized neutron scattering measurements revealed that the resonance modes in most underdoped/optimally doped and even some overdoped iron pnictides are anisotropic in spin space [14–19], which challenged the general notion that the spin resonance is an isotropic triplet spin-exciton. One possible explanation for the anisotropy of the spin exciton could be related to adjacent magnetic/nematic order phases with moderate spin–orbit coupling [20, 21]. Alternatively, the resonance mode was attributed to magnonlike excitations similar to those of the magnetically ordered parent compounds, where spin–orbit coupling has been shown to lead to anisotropic magnon gaps [22, 23].

As yet all previous polarized neutron scattering studies have been focused on the iron-based superconductors with both electron and hole pockets [14–19, 24, 25]. The resonance modes have also been observed in electron-doped iron-selenide superconductors with no hole pockets [26–30], but the spin anisotropy in these materials remains to be explored. The recently synthesized electron-doped iron-selenide superconductor $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe} \ (T_c = 41 \text{ K})$ has attracted great interest as it has no hole pockets at the zone center but has a relatively high T_c (figure 1(a)) [31–34]. $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe}$ is ideal for polarized neutron scattering measurements as it is hitherto the only electron-doped iron-selenide superconductor that phase-pure and large-size single-crystalline samples can be grown. Previous unpolarized neutron scattering measurements on polycrystalline [35] and single crystalline ($\text{Li},\text{Fe})\text{OFeSe} [36]$ revealed that the resonance modes appear away from the stripe magnetic wavevector ($\pi,0$). This, together with the facts that $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe}$ does not exhibit magnetic or nematic order associated with the FeSe plane, suggests that the influence of the remnant static or quasi-static magnetic/nematic order should be minimized. Therefore, $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe}$ is ideally suitable for revealing the

Figure 1. (a) Crystal structure of $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe}$. FeSe layers and $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OD}$ layers stack alternately. (b) A schematic of the scattering geometry and definition of polarization in our experiment. The red ellipses represent the spin resonance of $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe}$ in the momentum space (one-Fe unit cell). (c) Magnetic susceptibility in the zero-field-cooled (ZFC) measurement in a magnetic field of $H = 10 \text{ Oe}$, indicating 100% exclusion of the external magnetic field. (d) Resistance as a function of temperature of $\text{Li}_{0.8}\text{Fe}_{0.2}\text{OFeSe}$ single crystal. A sharp superconducting transition is observed at $T_c = 41 \text{ K}$.

intrinsic properties of the resonance mode and their interplay with superconductivity.

In this paper, we use polarized neutron scattering to study the low energy spin fluctuations of single crystalline Li$_{0.8}$Fe$_{0.2}$O$_2$FeSe ($T_c = 41$ K) below and above T_c. Our experiments confirmed that the resonance mode near 21 meV is magnetic. Moreover, the spin excitations are isotropic in spin space below 29 meV within the error of the measurements in the superconducting and normal states. These results are in agreement with the scenario that the resonance mode is an isotropic spin-triplet exciton.

Li$_{0.8}$Fe$_{0.2}$O$_2$FeSe single crystals were synthesized by the hydrothermal ion-exchange method [37]. K$_x$Fe$_{2-y}$Se$_2$ single crystals were first grown using the flux method [30]. The starting materials were high-purity K pieces, Fe powder, and Se pieces with the nominal composition K$_{0.8}$Fe$_{2-y}$Se$_2$. The reaction mixtures were sealed in evacuated double-walled quartz ampoules and heated to 1030°C, and then slowly cooled to 730°C within 100 h before shutting off the heating power of the furnace. The obtained K$_x$Fe$_{2-y}$Se$_2$ single crystals show a superconducting transition temperature of ~ 31 K. Around 0.6 g of K$_x$Fe$_{2-y}$Se$_2$ single crystals were cut into thin plates with the widest faces perpendicular to the c direction before mixing with Fe powder (0.3 g), Li$_2$O (0.01 mol), selenourea (0.0075 mol) and lithium deuteroxide solution (~ 10 ml) in a Teflon-line steel autoclave. The autoclave was tightly sealed and heated to 120°C for 5 days, then naturally cooled down to room temperature. The obtained Li$_{0.8}$Fe$_{0.2}$O$_2$FeSe crystals were washed with deionized water using a Büchner flask with circulating pump. We note that deuteroxide was used during the growth to reduce the incoherent scattering from hydrogen atoms for the neutron scattering measurements.

Magnetic susceptibility and in-plane resistivity measurements on Li$_{0.8}$Fe$_{0.2}$O$_2$FeSe single crystals from the same batches as the neutron scattering crystals show a sharp superconducting transition temperature of 41 K [figures 1(c) and (d)], which indicates the high quality of the crystals. Refinement results from powder x-ray diffraction on grind single crystals are consistent with previous reports [34, 36].

Polarized neutron scattering experiment was carried out on IN22, CRG-CEA thermal triple-axis spectrometer at Institut Laue-Langevin (ILL) in Grenoble, France. The final neutron wavevector was fixed at $k_l = 2.664$ Å$^{-1}$. The Heusler monochromator and analyzer were used for the experiment. We coaligned ~ 4 g Li$_{0.8}$Fe$_{0.2}$O$_2$FeSe single crystals in the $(H, K, 0)$ scattering plane with a mosaicity of $\sim 3.4^\circ$. The flipping ratio, determined on the (100) nuclear Bragg reflection by the leakage of non-spin-flip (NSF) channel into spin-flip (SF) channel, approximates to $R = \sigma_y^{SF}/\sigma_y^{NSF} \approx 10$. No corrections were done for the instrumental polarization leakage. In this experiment we defined the neutron polarization directions as x, y, z with x parallel to Q, y perpendicular to Q and in the scattering plane, and z perpendicular to the scattering plane. In figure 1(b), the green arrows indicate the direction of neutron polarization and the red ellipses represent scattering signals in reciprocal space in one-Fe unit cell in Li$_{0.8}$Fe$_{0.2}$O$_2$FeSe adapted from reference [36]. In a neutron scattering process, only the scattering components perpendicular to the momentum transfer Q are probed. With current experimental geometry, the SF cross sections can be written as [38]:

$$\sigma_y^{SF} = M_y + M_z + BG$$

$$\sigma_y^{SF} = M_z + BG$$

Equation (1) shows the constant energy scans at 21 meV and 2 K near (0.5, 0.69, 0), where the resonance mode was observed in our previous unpolarized neutron scattering experiments [36]. It is shown that all three SF channels σ_x^{SF}, σ_y^{SF}, and σ_z^{SF} display well-defined peaks, which confirms that the resonance mode is magnetic. We note that the peaks in σ_x^{SF} and σ_z^{SF} exhibit nearly the same peak intensity. This immediately implies that the magnetic excitation at this energy is isotropic. In fact, based on equation (1), we can extract M_y and M_z from figure 2(a), which displays equal counts within the statistical error.

In order to determine the energy dependence of the spin excitation anisotropy, we measured the constant-Q scans for...
three SF cross sections σ_{SF}^x, σ_{SF}^y, and σ_{SF}^z from 5 meV to 29 meV at $Q = (0.5, 0.69, 0)$ in the superconducting ($T = 2$ K) and normal ($T = 45$ K) states. As shown in figure 3(a), scattering signals in all three SF channels exhibit a peak feature near 21 meV at 2 K, with σ_{SF}^x displaying the highest intensity. This is consistent with the Q-scans. On warming to 45 K above T_c, the peak at ~ 21 meV weakened while the relative intensities among three different cross sections remain essentially unchanged. With all 3 SF cross sections determined we can extract M_y and M_z below and above T_c. It is found that M_y and M_z have roughly the same intensity from 5 meV to 29 meV below and above T_c. This corroborates our conclusion that the spin fluctuations are isotropic in spin space. To elucidate the interplay between magnetic excitations and superconductivity, we plot in figures 3(c) and (f) the energy dependence of the intensity difference between the superconducting and normal states, which again revealed an essentially isotropic resonance mode.

The anisotropy of the resonance mode in iron pnictides has been attributed to the influence of the nearby magnetic/nematic order phase, as the anisotropic resonance excitations are rather similar to the spin wave excitations with anisotropic magnon gaps in the magnetically ordered parent compounds [22]. This is supported by the fact that the resonance mode in overdoped BaFe$_{1.85}$Ni$_{0.15}$As$_2$ ($T_c = 14$ K) becomes essentially isotropic in spin space [39]. On the other hand, recent polarized neutron scattering experiments have revealed anisotropic spin fluctuations even in overdoped Ba$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ [19], which suggests that the nearby magnetic/nematic order may not be the only reason causing the spin anisotropy. In fact, band structure calculations and measurements have revealed sizable band splitting due to spin–orbit coupling in many iron-based superconductors [40], which may induce anisotropic spin excitations even in overdoped samples. However, a close inspection of the band structure measurements and calculations show that the band splitting mainly occurs in the electron bands near the zone corner, while the band splitting in the electron bands near the zone center is less significant [20, 40, 41]. Since Li$_{0.8}$Fe$_{0.2}$OFeSe has no hole pockets near the zone center and the low energy spin fluctuations are likely only related to the electron pockets near the zone corner, the influence of the spin–orbit coupling to the low energy spin fluctuations is minimized. This naturally explains the absence of the anisotropy of the low energy spin fluctuations in Li$_{0.8}$Fe$_{0.2}$OFeSe.

To summarize, we present polarized neutron scattering studies of the low energy spin fluctuations in iron-selenide superconductor Li$_{0.8}$Fe$_{0.2}$OFeSe with only electron Fermi pockets. Our data unambiguously demonstrate that the resonance mode near 21 meV is magnetic. Moreover, contrary to the many iron pnictide superconductors with anisotropic low energy spin fluctuations, the low energy spin excitations in Li$_{0.8}$Fe$_{0.2}$OFeSe ($T_c = 41$ K) are isotropic in spin space within the accuracy of the measurements in both the superconducting and normal states. The diminished anisotropy of spin fluctuations is likely due to the absence of the static or quasi-static magnetic/nematic order and the weakened spin–orbit coupling effects on the electron pockets in Li$_{0.8}$Fe$_{0.2}$OFeSe. The observed isotropic resonance mode in Li$_{0.8}$Fe$_{0.2}$OFeSe...
is similar to those of cuprate superconductors, and is consistent with an isotropic spin-triplet exciton of the singlet Cooper pairs with a sign-reversed superconducting gap function.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11874119), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-07-E00018), the National Key R & D Program of the MOST of China (Grant No. 2016YFA0300203) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

Appendix A

A.1. Powder x-ray diffraction of Li0.8Fe0.2OFeSe

X-ray diffraction measurement at 300 K has been performed on the polycrystalline sample ground from the single crystals (figure A1). The refined lattice parameters $a = b = 3.786$ Å and $c = 9.312$ Å are consistent with previous reports [34, 36].

A.2. Fitting parameters of constant energy scans

Constant energy scans in figure 2 were fitted with Gaussian profiles on a slope background [table 1]:

$$ I = y_0 + bx + A \exp \left(-\left(x - x_0 \right)^2 / 2 \sigma^2 \right). \quad (A1) $$

ORCID iDs

Jitae T Park https://orcid.org/0000-0001-6565-0192
Qisi Wang https://orcid.org/0000-0002-8741-7559
Alexandre Ivanov https://orcid.org/0000-0002-5092-8937
Jun Zhao https://orcid.org/0000-0002-0421-8934

References

[1] Rossat-Mignod J, Regnault L P, Vettier C, Bourges P, Burlet P, Bossy J, Henry J Y and Lapertot G 1991 Physica C 185–189
[2] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[3] Steglich F and Wirth S 2016 Rep. Prog. Phys. 79 084502
[4] Eschrig M 2006 Adv. Phys. 55 47
[5] Dai P 2015 Rev. Mod. Phys. 87 855
[6] Headings N S, Hayden S M, Kulda J, Babu N H and Cardwell D A 2011 Phys. Rev. B 84 104513
[7] Zhao J et al 2011 Nat. Phys. 7 719
[8] Christianson A D et al 2008 Nature 456 930
[9] Lumsden M D et al 2009 Phys. Rev. Lett. 102 107005
[10] Chi S et al 2009 Phys. Rev. Lett. 102 107006
[11] Inosov D S et al 2010 Nat. Phys. 6 178
[12] Zhang C et al 2013 Phys. Rev. Lett. 111 207002
[13] Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, Bourret-Courchesne E, Hu J and Birgeneau R J 2013 Phys. Rev. Lett. 110 147003
[14] Steffens P et al 2013 Phys. Rev. Lett. 110 137001
[15] Lipscombe O J et al 2010 Phys. Rev. B 82 064515
[16] Li Y, Wang W, Song Y, Man H, Lu X, Bourdarot F and Dai P 2017 Phys. Rev. B 96 020404
[17] Wažer F, Lee C H, Kihou K, Steffens P, Schmalzl K, Qureshi N and Braden M 2017 Sci. Rep. 7 10307
[18] Zhang C L et al 2014 Phys. Rev. B 90 140502
[19] Qureshi N, Lee C H, Kihou K, Schmalzl K, Steffens P and Braden M 2014 Phys. Rev. B 90 100502
[20] Day R P et al 2018 Phys. Rev. Lett. 121 076401
[21] Scherer D D and Andersen B M 2018 Phys. Rev. Lett. 121 037205
[22] Qureshi N et al 2012 Phys. Rev. B 86 060410
[23] Ważer F et al 2019 npj Quantum Mater. 4 59
[24] Ma M, Bourges P, Sidis Y, Xu Y, Li S, Hu B, Li J, Wang F and Li Y 2017 Phys. Rev. X 7 021025
[25] Babkevich P et al 2011 Phys. Rev. B 83 180506
[26] Park J T et al 2011 Phys. Rev. Lett. 107 177005
[27] Taylor A E et al 2012 Phys. Rev. B 86 094528
[28] Wang M et al 2012 Phys. Rev. B 86 024502
[29] Friemel G, Liu W P, Goremychkin A E, Liu Y, Park J T, Sobolev O, Lin C T, Keimer B and Inosov D S 2012 Europhys. Lett. 99 67004
[30] Wang Q S et al 2016 Phys. Rev. Lett. 116 197004
[31] Pachmayr U et al 2015 Angew. Chem., Int. Ed. 54 293
[32] Zhao L et al 2016 Nat. Commun. 7 10608
[33] Niu X H et al 2015 Phys. Rev. B 92 060504
[34] Lu X F et al 2015 Nat. Mater. 14 325
[35] Davies N R, Rahn M C, Walker H C, Ewings R A, Woodruff D N, Clarke S J and Boothroyd A T 2016 Phys. Rev. B 94 144503
[36] Pan B et al 2017 Nat. Commun. 8 123
[37] Dong X L et al 2015 Phys. Rev. B 92 064515
[38] Squires G L 1978 Introduction to the Theory of Thermal Neutron Scattering (Cambridge: Cambridge University Press)
[39] Liu M et al 2012 Phys. Rev. B 85 214516
[40] Borisenko S V et al 2016 Nat. Phys. 12 311
[41] Liu D et al 2018 Phys. Rev. B 98 195137