Phylogeny, taxonomy and diversification events in the Caliciaceae

Maria Prieto1,2 · Mats Wedin1

Received: 21 December 2015 / Accepted: 19 July 2016 / Published online: 1 August 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Although the high degree of non-monophyly and parallel evolution has long been acknowledged within the mazaediate Caliciaceae (Lecanoromycetes, Ascomycota), a natural re-classification of the group has not yet been accomplished. Here we constructed a multigene phylogeny of the Caliciaceae-Physciaceae clade in order to resolve the detailed relationships within the group, to propose a revised classification, and to perform a dating study. The few characters present in the available fossil and the complex character evolution of the group affects the interpretation of morphological traits and thus influences the assignment of the fossil to specific nodes in the phylogeny, when divergence time analyses are carried out. Alternative fossil assignments resulted in very different time estimates and the comparison with the analysis based on a secondary calibration demonstrates that the most likely placement of the fossil is close to a terminal node rather than a basal placement in the Calicium clade. Our dating analysis show two successive events giving rise to main clades of mazaediate taxa within the Caliciaceae, in the Upper-Lower Cretaceous boundary and in the Paleocene. As a result of this study, Cyphelium is synonymized with Calicium, Acolium is resurrected, and the new genera Allocalicium and Pseudothelomma are described. Twelve new combinations are proposed: Acolium karelicum, Acolium marciatinum, Allocalicium adaequatatum, Calicium carolinianum, Calicium lecideinum, Calicium lucidum, Calicium notarisi, Calicium pinicola, Calicium trachyliodes, Pseudothelomma occidentale, Pseudothelomma ocellatum and Thelomma brumneum. A key for the mazaedium-producing Caliciaceae is included.

Keywords Allocalicium gen. nov. · Calicium fossil · Divergence time estimates · Lichens · Multigene · Pseudothelomma gen. nov

Introduction

Caliciaceae is one of several ascomycete groups characterized by producing prototunicate (thin-walled and evanescent) asci and a mazaedium (an accumulation of loose, maturing spores covering the ascoma surface). These are traits connected with passive dispersal of the ascospores. For a long time, Caliciaceae was classified together with all other mazaediate and otherwise similar fungi in the order Caliciales, a presumably monophyletic group among ascomycete fungi, until Tibell (1984) suggested that most of the group was a highly polyphyletic assemblage of taxa, which had developed a mazaedium and passive spore dispersal independently. Subsequent phylogenetic studies supported this view (Gargas and Taylor 1995; Gargas et al. 1995; Wedin and Tibell 1997; Lumbsch et al. 2004, 2009; Hibbett et al. 2007; Tehler et al. 2009; Prieto et al. 2013) showing that mazaediate fungi are clearly dispersed over the phylogenetic tree of Ascomycota.

The family Caliciaceae belongs to the Lecanoromycetes (Wedin and Tibell 1997), the largest class of lichenized Fungi (Kirk et al. 2008). Despite the substantial recent advances in the understanding of Lecanoromycetes evolution at both supraordinal level (e.g. Lumbsch et al. 2004; Wedin et al. 2005; Miadlikowska et al. 2006, 2014) and lower levels (i.e. family and genera, Baloch et al. 2010; Gaye et al. 2012;
Divakar et al. 2013; Singh et al. 2013; Otálora et al. 2014; Westberg et al. 2015; Resl et al. 2015) numerous groups are phylogenetically poorly understood and in great need of further study, and the otherwise well-known Caliciaceae is one of these. Caliciaceae forms a group with the non-mazaediate Physciaceae (Wedin et al. 2000, 2002). Although the Caliciaceae and Physciaceae have been suggested to form the suborder Physciineae in the Teloschistales (Miadlikowska et al. 2006; Hibbett et al., 2007; Kirk et al. 2008; Lumbsch and Huhndorf 2010), recent classifications tend to raise the Caliciaceae-Physciaceae group to ordinal level (Gaya et al. 2012) using the name Caliciaceae. The opinion on the family delimitation varies somewhat. If one prefers treating all Caliciaceae and Physciaceae as one family, the name Physciaceae was proposed for conservation (Wedin and Grube 2002) and should then be used. Recently, however, a two-family concept tends to be preferred (Gaya et al. 2012); Caliciaceae, which includes the non-mazaediate genera with Bacidia-type asci (the Buellia-group of Rambold et al. 1994; e.g. the buelliod genera, Dirinaria and Pyxine; Wedin et al. 2002; Miadlikowska et al. 2006, 2014; Gaya et al. 2012), together with all mazaediate genera in this group, and Physciaceae, which includes taxa belonging to the “Physcia-group” of Rambold et al. (1994), characterized by Leccanora-type asci. Within the Caliciaceae the recognition of two sub-families has recently been proposed (Gaya et al. 2012); Calicioideae and Buellioideae, but this was very preliminary, based on a small taxon sampling, and it was rather unclear what other taxa should be included in the two groups in addition to the sampled ones.

Tibell (2003) studied the generic delimitations in the mazaediate Caliciaceae based on combined ITS and LSU rDNA data, where many details on the relationships within this group were revealed. Five well-supported clades were identified and informally called the Tholurna-clade, Calicium glauceum-clade, Calicium hypereloides-clade, Calicium viride-clade and the Cyphelium tigillare-clade (in the ITS tree, the Acolium-clade was added, making a total of six clades). Perhaps the most interesting results were that both Calicium and Cyphelium in the sense of Tibell (1984) were found to be non-monophyletic. In the ITS tree, Cyphelium inquinans and C. karelicum (the Acolium-clade) formed a group with the monotypic Acroscyphus and Texosporium, and a clade of Calicium adaequatum and Tholurna dissimilis (the Tholurna-clade), but Cyphelium tigillare (type of Cyphelium) and C. notarisii did not belong within that group. Calicium species were further distributed in four of the six clades from the ITS tree. Tibell expanded these investigations in a larger paper on Himalayan Calicium species (Tibell 2006) using ITS rDNA sequences, where he identified four well-supported clades: clade I, including the Calicium glauceum and C. hypereloides clades of Tibell (2003), clade II, including Cyphelium s. str. and three species of Calicium, clade III, including the Calicium viride group (Calicium s. str.), and finally clade IV which includes the Acolium-clade, Tholurna-clade, and an odd Calicium species, C. nobile. These four clades have unclear relationships to each other, and most lack obvious phenotypic characteristics to delimit them.

It is clear that the natural relationships within the mazaediate Caliciaceae remain unresolved, and that several of the mazaediate genera as currently understood are non-monophyletic and thus unnatural. It is still unclear whether some of these mazaediate groups are more closely related to non-mazaediate groups within the Caliciaceae-Physciaceae clade (Caliciaceae sensu Gaya et al. 2012).

Adding a temporal dimension to the phylogeny may improve the phylogenetic reconstruction of phenotypic evolution, by detecting causal events or processes in the underlying phylogenetic diversity, and further by establishing a universal time-framework for biological classification that will facilitate studies in comparative evolution (Avise 2009). Divergence time estimation has become increasingly prominent in evolutionary biology, including in the study of several groups of Ascomycota (Amo de Paz et al., 2011; Gueidan et al. 2011; Prieto and Wedin 2013; Beimforde et al. 2014; Divakar et al. 2015; Gaya et al. 2015). Information used to calibrate a phylogenetic tree is obtained from three principal sources: (1) geological events; (2) estimates from independent molecular dating studies; and (3) the fossil record, which normally is the major source of calibration points (Forest 2009). There are, however, several major complications in fungal dating analyses, among which the scarcity of fossils (Berbee and Taylor 2010), the correct interpretation of the fossils available (Kaasalainen et al. 2015), and in particular the unclear assignment of fossils to specific nodes in the phylogeny (Forest 2009), are potential sources of errors.

One fossil belonging to Calicium was described from Baltic amber dating back 55–35 million years ago (Rikkinen 2003). The specimen is embedded in amber and is composed of a single detached ascoma with numerous spores. The ascoma consists of a smooth stalk with a broadly obconical capitulum and a well-developed mazaedium without any visible pruinum (something that could have been lost in the preservation process), and with apparently roughly ornamented spores. Although this fossil, in combination with other fossils, was used in several dated phylogenies as a calibration point (Prieto and Wedin 2013; Beimforde et al. 2014) and the assignment to Calicium is not disputed, the exact position within Calicium is uncertain as there is no distinct morphological trait suggesting a clear affinity to any group of extant species.

In the present study, we produce a multilocus phylogeny of the Caliciaceae-Physciaceae clade to generate a hypothesis of the natural relationships in this group, and to test current generic delimitations. We achieve this through phylogenetic analyses using five molecular markers including a broad taxon
sampling of the Caliciaceae-Physciaceae covering a wide range of groups of mazaedia-producing representatives and non-mazaedioid taxa from the Caliciaceae-clade. We conducted molecular dating analyses in order to understand the temporal framework of the evolution of the group. In this process, we performed different analyses with alternative positions of the Calicium fossil and compared with an analysis carried out with a secondary calibration as a way to evaluate the phylogenetic affinity of the Calicium fossil.

Material and methods

Taxon sampling

In this study we focused on the mazaediae members of the Caliciaceae; we also included members of the Physciaceae and the non-mazaediae members of the Caliciaceae (the Buellia-group of Rambold et al. 1994). One member of the Teloschistaceae was used as outgroup (Table 1).

Molecular techniques

DNA was extracted using DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s instructions. The following five regions were amplified: nuITS, nuLSU, mtSSU, and the protein coding genes β-tubulin and mcm7.

We amplified the nuITS with the primers ITS1F (Gardes and Bruns 1993) and ITS4 (White et al. 1990), and the nuLSU with LR0R (Rehner and Samuels 1994), LR3, LR3R, LR6, LR7 (Vilgalys and Hester 1990), PRI1 and PRI2 (Prieto et al. 2010) and nuLSU-155-5′ (Döring et al. 2000) in different combinations. We also designed some specific primers for the nuLSU region in order to avoid photobiont amplifications (LSU-JLT-1F: 5′-CTCAGTAAACGCGGAGTGAAG-3′, LSU-JLT-1R: 5′-TCCGGCACCTTAACCTCAC-3′ and LSU-JLT-2R: 5′-CCATCCGACCTACCTCACC-3′). The mtSSU region was amplified with mtSSU1 and mtSSU3R (Zoller et al. 1999). We used the primers Mcm7-709for and Mcm7-1348rev (Schmitt et al. 2009) for amplification of the Mmc7 region and in some cases we carried out a nested PCR using 1 μl of the PCR product and the internal primers Mmc7-CalicF and Mmc7-CalicR (Prieto et al. 2013). The protein coding β-tubulin was amplified using the primers Bt3-LM and Bt10-LM (Myllys et al. 2001).

PCR amplifications were performed using Illustra™ Hot Start Mix RTG PCR beads (GE Healthcare, UK) in a 25 μl volume, containing 3 to 6 μl of diluted genomic DNA, 10 μM of each primer and distilled water. Amplifications were performed using the following program: initial denaturation at 95 °C for 15 min, followed by 35 cycles of 95 °C for 45 s, 54–56 °C for 50 s, 72 °C for 1 min, followed by a final extension at 72 °C for 5 min. PCR products were subsequently purified using the enzymatic method Exo-sap-IT (USB Corporation, Santa Clara, California, USA) or when multiple bands were amplified, products were size-fractionated on a 1 % agarose gel run in TBE buffer, stained with GelRed™ (Biotium Inc.), visualized over a UV trans-illuminator, excised and purified using QIAquick spin columns (Qiagen). The purified PCR products were sequenced using the same amplification primers.

Sequences were assembled and edited using Sequencher v. 4.10.1. (Genes Codes Corporation, Ann Arbor) and deposited in GenBank (Table 1). Subsequently, sequences were aligned manually using MacClade 4.01 (Maddison and Maddison 2001) and translated to amino acids in the protein coding loci. Ambiguous regions (sensu Lutzoni et al. 2000) and introns were delimited manually and excluded from phylogenetic analyses. Additionally, we used Gblocks 0.91b (Castresana 2000) to identify the ambiguous regions. Since the Maximum Likelihood results were very similar between Gblocks and manually constructed matrices we used the latter for the rest of analyses.

Phylogenetic analyses

Each individual gene region was analysed using maximum likelihood-based inference (ML) as implemented in RAxML ver. 8.1.11 (Stamatakis 2014) with a GTRGAMMA model for tree inference. Bootstraping was performed with a GTRCAT model and 1000 replicates. In order to check for gene-tree incongruence we compared maximum likelihood bootstrap values (ML-BS) between the individual gene trees considering a conflict among clades when a supported clade (bootstrap support >70 %) for one marker was contradicted with significant support by another. Because no supported nodes were in conflict, the data were combined into a single concatenated data matrix.

The combined maximum likelihood (ML) analyses were run with 7 distinct partitions (nuITS, nuLSU, mtSSU, first and second codon positions of the mcm7 and β-tubulin and the third codon position of the mcm7 and β-tubulin), using a GTRGAMMA model of molecular evolution and rate heterogeneity with unlinked parameters and 1000 bootstrap replicates.

To select partitions and its optimal models of nucleotide substitution, we used PartitionFinder version 1.0.1 (Lanfear, 2012) with unlinked branch lengths option and the Akaike Information Criterion (AIC) for model selection. The GTR model (Rodriguez et al. 1990) with an estimated proportion of invariable sites and with a gamma distribution was selected for nuITS, nuLSU and mtSSU, first and second codon positions of the mcm7, while HKY (Hasegawa et al. 1985) and SYM (Zharkikh 1994) with an estimated proportion of invariable sites and
Table 1 Specimens used for the study, with GenBank accession numbers. Entries for newly obtained sequences are in boldface. Specimen data are given with collection number and location of voucher.

Species name	Voucher information	GenBank accession number	mtSSU	mcm7	nuITS	nuLSU	β-tubulin
Acolium inquinans	Wedin 6352 (UPS)	AY143404	JX000161	AY450583	AY453639	KX529023	
Acolium karelicum	Hermansson 16472 (UPS)	-	KX529045	KX512897	KX512879		
Acroscyphus sphaerophoroides	Obiermay 6077 (UPS)	KX512984	KX529029	KX512898	-	-	
Allocococcus adaequatum	Spribille 14143 (UPS)	KX512986	-	KX512906	KX512859	KX528996	
Amandinea coniops	Nordin 6113 (UPS)	KX512978	-	-	KX512865	KX528998	
Amandinea punctata	Wedin 2/3/96 (UPS)	KX512978	-	-	KX512899	AY340536	
Anaptychia ciliaris	Santesson 6429 (UPS)	AY143400	KX512905	KX143391	KX512894		
Anaptychia runcinata	Nordin 6113 (UPS)	KX512978	-	-	KX512881		
Baculifera remensa	Prieto (S)	KX512962	-	-	KX512900	KX528908	
Buellia badia	Westberg 09–079 (S)	KX512963	-	KX512900	KX512880	KX528908	
Buellia disciformis	Wedin 6155 (BM)	JX000116	JX000152	AY143392	JX000082		
Buellia dispersa	Ryan 21685 (S)	-	KX512903	-	-	-	
Buellia elegans	Hansen (S)	KX512993	-	KX512901	-	KX528988	
Buellia erubescens	Wetmore 95879 (S)	KX512969	-	KX512902	KX512874	KX529004	
Buellia frigida	Westberg (S)	KX512992	-	KX512903	KX512852		
Buellia tessellata	Teher 7323 (S)	-	KX512904	KX512885			
Calicium abietinum	Tibell 25061 (UPS)	KX512971	KX512904	KX512885			
Calicium adspersum	Prieto 3037 (S)	KX512949	KX512905	KX512895	KX529022		
Calicium chlorosporum	Tibell 25012 (UPS)	KX512956	KX512905	KX512895			
Calicium chlorosporum	Thor 20859 (UPS)	KX512955	-	-	KX512892		
Calicium corynellum	Prieto (S)	KX512985	KX512908	KX512855	KX528989		
Calicium denigratum	Prieto (S)	KX512965	KX512904	KX512885			
Calicium glaucellum	Wedin 8563 (S)	KX512980	KX512905	KX512895			
Calicium lecideinum	Prieto (S)	KX512961	KX512906				
Calicium lenticulare	Tibell 23284 (UPS)	KX512979	KX512903	KX512882	KX529009		
Calicium montanum	van den Boom 23445 (UPS)	-	KX512904	KX512885			
Calicium nobile	Tibell 21968 (UPS)	KX512988	KX512904	KX512885			
Calicium nobile	Tibell 23396 (UPS)	KX512987	KX512905	KX512872	KX529003		
Calicium notarisii	Prieto 3007 (S)	KX512960	KX512905	KX512883	KX529011		
Calicium pinicola 1	Lendemer & Knudsen 14982 (UPS)	KX512972	KX512904	KX512871	KX529015		
Calicium pinicola 2	Thor 19856 (UPS)	KX512991	KX512917	KX512887	KX529014		
Calicium quercinum	Tibell 22287 (UPS)	-	KX512918	KX512854			
Calicium salicinum	Prieto (S)	KX512982	KX512919	KX512861	KX528991		
Calicium rigidaire	Prieto 3038 (S)	JX000123	JX000162	JX000104	JX000088	KX529002	
Calicium trachylioides	Wedin 8517 (S)	-	KX529026	KX512858	KX528995		
Calicium verrucosum	Tibell 23198 (UPS)	KX512959	KX529058	KX512933	KX529018		
Calicium viride	Wedin 24/4 2000	AY584696	JX000153	HQ650703	AY340538	KX529013	
Dermatiscum fallax	Brusse 4944 (S)	-	KX512921	KX512866			
Dimelaena aurea	Lendemer 4193 (S)	KX512976	KX529036	KX512867	KX528999		
Dimelaena radiata	Nash 41396 (S)	-	KX512923	KX512884			
Diploptomma alboatrum	Prieto 3034 (S)	KX512966	KX529043	KX512924	KX528907		
Diploptomma venustum	Westberg 10–176 (S)	KX512968					
Dirinaria applanata	Seaward 7917 (S)	KX512990	-	KX512865			
Heteroderma speciosa	Wetmore (S)	KX512975	KX529037	KX512868	KX529000		
Heteroderma vulgaris	Frisch 11/Ug1226 (UPS)	KX512989					

224 Fungal Diversity (2017) 82:221–238
with a gamma distribution were selected for the third codon position of the mcm7 and for the first and second position of the β-tubulin, respectively. Bayesian inference was carried out through Markov Chain Monte Carlo (MCMC) sampling, as implemented in MrBayes 3.2.3 (Ronquist et al. 2011). The analyses consisted of two parallel searches, each with four chains, run for 10 M generations, and initiated with random starting trees. The chains were sampled every 1 K generations from the posterior distribution. A burn-in sample of 25,000 trees was discarded for each run. The remaining 150,000 trees (pooled from both independent runs) were used to assemble a majority rule consensus tree and to estimate branch lengths and Posterior Probabilities (PPs). To determine if the chains had converged, verify if mixing was appropriate, and choose a suitable burn-in, we plotted the log-likelihood values against the time generation with Tracer v.1.5.0 (Rambaut and Drummond 2007). We assumed stationarity of the chains when log-likelihood values reached the same stable equilibrium value for each independent run (Huelsenbeck and Ronquist 2001) and when average standard deviation of split frequencies across runs dropped below 0.01. We also tested the convergence with AWTY program (Nylander et al. 2008; Wilgenbusch et al. 2004). Maximum likelihood, Bayesian analysis and the selection of models were run on the CIPRES Science Gateway v. 3.3 (Miller et al. 2010).

Divergence time estimates and node calibration

We implemented a Bayesian Markov chain Monte Carlo algorithm for estimating divergence times using data from five gene loci using the BEAST v1.8.2 software package (Drummond et al. 2012). The tree topology and divergence times were estimated simultaneously.

We carried out nine different analyses with different positions of the fossil: A1 (clade A + B), A2 (clade B3), A3 (clade B), A4 (C. corynellum-C. viride), A5 (Calicium glaucellum-C. trabinellum), A6 (C. chlorosporum), A7 (clade B1), A8 (C. nobile-C.chlorosporum) (Fig. 1). For the analysis A9 we used a secondary calibration based on Prieto and Wedin (2013) using Scenario 2 (i.e. without the Alectoria succini fossil, which has recently been re-investigated by Kaasalainen et al. 2015 and identified as a plant remain), dating the ingroup node (Fig. 1) at 132–199 Mya.

In all cases, we had 7 different unlinked partitions (as in the ML analysis), with the GTR + I + G substitution model for each partition except for the third codon position of the mcm7 for which we selected a KKY + I + G model. We used the uncorrelated lognormal relaxed clock model, which allows rates of molecular evolution to be uncorrelated across the tree. We implemented a Yule tree prior.
Fig. 1 Best tree from RAxML with bootstrap support (ML-BS) and posterior probabilities (PP) obtained in the Bayesian analysis. The support values are ordered as ML-BS/PP. Supported clades by both analyses (ML-BS ≥ 70, pp. ≥ 0.95) are marked with black thicker branches and with grey thicker branches when the node is only supported by one of the two analyses. An asterisk over a branch indicates that this internode has a ML-BS value and PP of 100 %. Numbers within stars indicate the nodes used for fossil calibration and correspond to Scenarios shown in Tab. 2. Newly circumscribed genera are marked in the right part of the figure.

We constrained the calibration points (fossil calibrated node) with an exponential distribution dated at 35 Mya with mean = 20 and offset = 35. For the secondary calibration (analysis A9) we constrained the ingroup node with a uniform distribution with lower value of 132 Mya and upper value of 199 Mya (based on Scenario 2 from Prieto and Wedin 2013). For each analysis, we ran a first relaxed log-normal clock with default priors to estimate prior distributions to be used in a second analysis that was used to estimate priors for the final analysis. Distributions and parameters used for each analysis are specified in Table 2; priors not specified here were set to the default values.

BEAST analyses were run for 40 million generations, logging parameters and trees every 1000 generations. Convergence, mixing, and effective sample sizes (ESS) of parameters were checked using Tracer v1.5.0 (Rambaut and Drummond 2007). A burn-in of 1000 trees was removed from each analysis. The remaining trees were used to generate a maximum clade credibility tree with TreeAnnotator v1.8.2 (Drummond et al. 2012).

Results and discussion

A total of 227 sequences were generated for this study (Tab. 1). The combined data set consisted of 66 taxa and 3303 unambiguously aligned sites, 382 for the nuITS, 1021 for the nuLSU, 634 for the mtSSU, 693 for the β-tubulin and 573 for the mcm7. The maximum likelihood tree with bootstrap support and posterior probabilities from Bayesian analysis is depicted in Fig. 1. The nine divergence time analyses are compared in Table 2, and discussed below. Divergence time estimates of the analysis A9 (using secondary calibration) are shown in Fig. 2 with 95 % highest posterior density (HPD) for each node.

Phylogenetic results

This is the most complete taxon sampling conducted in a study of Caliciaceae s. str. to date, and it enables us to draw a number of conclusions and undertake several taxonomic changes that are now supported by a five-marker phylogeny (Fig. 1). The two families Physciaceae and Caliciaceae in the sense of Gaya et al. (2012) are recovered as monophyletic. Although this study does not focus on Physciaceae, the sampled genera in this family are monophyletic and the relationships between them are fully resolved. Among the non-mazaediate Caliciaceae, relationships are not fully resolved, probably due to the fact that Buellia s. lat. is a heterogeneous and species-rich group from which we included comparatively few representatives. Some well-supported results are worth noting. A clade comprising Diplostomma, Dirinaria and Pyxine (also present in Miadlikowska et al. 2014) is resolved. Buellia tesserata and B. dispersa form a group with a non-mazaediate Dimelaena, which deserves further study. The inclusion of Buellia frigida within Amandinea should also be investigated further. The genus Tetramelas, characterized by the pigmented parts of the spore wall consisting of a thick proper wall and a thin (less than half as thick as the proper wall) irregularly cracked perispore (Nordin 2004), is also monophyletic and closely related to B. elegans (as also suggested by Nordin and Tibell 2005) and B. erubescens.

None of the mazaediate genera within Caliciaceae are monophyletic as currently circumscribed (except monotypic genera). Traditionally, Calicium and Cyphelium have been distinguished mainly by the presence of stalked apothecia in Calicium and sessile or immersed apothecia in Cyphelium. Here we can see that representatives of these two genera are present in the two main clades within Caliciaceae, and none form a monophyletic group, thus demonstrating that presence/absence of a stalk does not characterize natural groups within this family, a fact already suggested by Tibell (2003). We find it useful to denominate the three clades with mazaediate representatives as clade A, B and C, respectively (Fig. 1). Clade A comprises the Calicium glaucellum and Calicium hyperelloides clades of Tibell (2003), but nested within this group is also Cyphelium pinicola. All members of this clade currently classified in Calicium are distinguished by having a thick, hyaline outermost part of the stalk (see e.g. Tibell 1975; p. 79, Fig. 16). Cyphelium pinicola has sessile ascomata, but already Tibell (1969) pointed out its isolated position among the European Cyphelium species, with quite different excipular and spore structure. Cyphelium pinicola is similar, however, in spore ornamentation (irregular cracks or areolae) to the other species of clade A.

Clade A form a well-supported monophyletic group together with clade B. Clade B comprises three distinct subclades. Subclade B1 includes Calicium adspersum, C. chlorosporum and C. nobile, which share the presence of a distinctive yellow pruina (rarely brown) on the lower surface of the capitulum and on the mazaedium, and distinctively ornamented spores with spirally arranged ridges. In the previous ITS phylogeny by Tibell (2006), C. nobile grouped at the base of Tibell’s Clade IV (the Tholurna dissimilis, Calicium adaequatum, Texosporium, Acrosyphus and the Acoliolum-clade group). Our results place this species in a more coherent
Table 2 Median (age) and range (95 % credibility intervals, CI) divergence time estimations (Mya) for main clades within the Caliciaceae—Physciaceae clade. Scenarios with the Calicium fossil at different positions (marked in Fig. 1) correspond to A1 (clade A + B), A2 (clade B3), A3 (clade B), A4 (C. corynelloid-C. viride), A5 (Calicium glauccellum-C. trabinellum), A6 (C. chlorosporum), A7 (clade B1), A8 (C. nobilis-C. chlorosporum) and A9 (analysis based on a secondary calibration). *Geologic time according with dates obtained in analysis A9. Priors used for final analysis are included for each scenario with distributions and parameters

	A1	A2	A3	A4	A5	
age	95 % CI	age	95 % CI	age	95 % CI	age
1. Outgroup—first split	61	44–86	123	78–190	84	55–139
2. Ingroup	53	42–72	107	72–159	72	50–116
3. Physciaceae	37	25–52	74	46–111	50	31–82
4. Caliciaceae	45	37–60	91	63–133	60	43–96
5. Clade A+B	38	35–96	76	53–109	50	38–79
6. Clade A	23	14–33	43	25–67	29	16–48
7. Clade B	31	24–42	63	46–91	41	36–64
8. Buellioid clade	35	25–47	70	47–104	46	30–74
9. Clade C	22	15–31	43	26–65	29	17–46

PRIORS

treeModel.rootHeight	lognormal	lognormal	lognormal	lognormal	lognormal
mean	73.32	129.03	89.67	1160.28	1160.28
stdev	19.61	38.82	25.93	339.62	339.62
tmra (outgroup)	lognormal	lognormal	lognormal	lognormal	lognormal
mean	63.33	111.56	76.98	1011.39	1011.39
stdev	15.69	23.94	20.74	289.18	289.18
uckl.mean	normal	normal	normal	normal	normal
mean	0.00392	0.00225	0.00323	0.002499	0.002499
stdev	0.000795	0.000418	0.000867	0.000738	0.000738

A6	A7	A8	A9	Geologic time*										
age	95 % CI													
1. Outgroup—first split	224–1047	333	142–645	115	69–209	145	96–213	224–1047	333	142–645	115	69–209	145	96–213
2. Ingroup	197–883	290	127–553	100	63–175	125	88–173	149	132–181					
3. Physciaceae	126–608	198	86–388	68	37–122	86	56–125	102	75–134					
4. Caliciaceae	216–181	246	109–474	84	53–146	106	75–146	126	103–156					
5. Clade A+B	132–602	203	87–389	70	46–120	87	61–122	103	80–131					
6. Clade A	70–367	117	46–236	41	20–75	50	30–76	60	38–84					
7. Clade B	104–491	166	72–321	58	39–98	72	51–101	85	62–108					
8. Buellioid clade	113–545	189	79–362	65	37–112	81	55–113	96	75–122					
9. Clade C	73–346	116	49–226	40	23–70	49	32–72	59	43–78					

PRIORS

treeModel.rootHeight	lognormal	lognormal	lognormal	lognormal	lognormal
mean	567.69	124.73	156.48	175.24	175.24
stdev	254.13	40.5	52.81	23.49	23.49
tmra (outgroup)	lognormal	lognormal	lognormal	lognormal	lognormal
mean	486.57	107.49	134.64	78	78
stdev	209.49	32.9	42.31	32.9	32.9
uckl.mean	normal	normal	normal	normal	normal
mean	0.000564	0.00234	0.00189	0.0016	0.0016
stdev	0.000214	0.000851	0.000582	0.00049	0.00049

*Geologic time according with dates obtained in analysis A9. Priors used for final analysis are included for each scenario with distributions and parameters.
position, which is supported by four single-marker phylogenies (β-tubulin missing), and by the concatenated analysis. It should be noted that *Calicium nobile* has one of the longest branches in the tree, but also that the position and identity was verified by two sequenced samples.

Subclade B2 includes *Cyphelium* s. str. (type *C. tigillare*) which is morphologically well-characterized, having immersed apothecia with a very thin excipulum, comparatively small, obovate to pyriform asci, smooth spores, and by growing on dry wood in comparatively exposed situations. Sister to *Cyphelium* s. str is *Calicium lenticulare*. Subclades B1 and B2 correspond to Clade II from Tibell (2006), which do not form a monophyletic group in our analysis.

Subclade B3 corresponds to Clade III from Tibell (2006) and includes the *Calicium viride* group (*Calicium* s. str.). This group is comparatively well characterized morphologically. *Calicium viride* (the type of *Calicium*) and the closely related *C. corynellum*, *C. salicinum*, and *C. quercinum*, all have comparatively large and sturdy, stalked ascomata and spores with distinct spiral ornamentation. This well-supported group also includes the non-stalked *Cyphelium lecideinum*, which shares the very distinct spiral spore ornamentation characteristic for subclade B3.

Clade C includes the *Acolium*-clade and the *Tholurna*-clade of Tibell (2003), and the rather odd *Calicium adaequatum*. This group corresponds to Tibell’s (2006) Clade IV, but contains also
all *Thelomma* species included here, although these do not form a monophyletic group. *Thelomma mammosum* (the type of *Thelomma*) and *T. santessonii* are closely related, and together with *T. californicum* and *T. siliceum* (not included here) these form a morphologically and chemically well-characterized group of saxicolous species growing in coastal areas, *Thelomma* s. str. They are closely related to *Texosporium sancti-jacobi*, and share the presence of immersed sessile ascomata with a laterally reduced exciple. *Texosporium*, however, is unique in having a distinct spore ornamentation formed by paraphyses that adhere to the surface of the spores (Tibell and von Hofsten 1968). *Texosporium* also has a unique ecology among mazaediate lichens, growing on dung, soil and detritus in grassland soil crust communities (McCune and Rosentreter 1992).

Thelomma ocellatum and *T. occidentale* are closely related species, which are morphologically and chemically very similar (Tibell 1976) and grow on dry wood in exposed locations. Thus, they are quite different from *Thelomma* s. str. and, group together with *Calicium adaequatum* and *Tholurna dissimilis*. *Tholurna dissimilis* produces radially protruding podetia, which carries apically situated ascomata. Tibell (1984) noted that *Tholurna* was not similar to the other species with podetia (*Acroscyphus*) in several characteristics, which is supported by our phylogeny. *Calicium adaequatum* is the only species with stalked ascomata within this clade, and Tibell (2003) commented on that *C. adaequatum* shared the presence of a campanulate capitulum with *Tholurna*, and a very similar strong surface ornamentation of the spores. Both species grow on twigs, and have actually a rather similar general appearance, forming small clumps of podetia or stalked ascomata. Several independent investigations have now suggested that *Calicium adaequatum* and *Tholurna* form a group, and we can here conclude that *Thelomma ocellatum* and *Th. occidentale* also belong to this group. It is difficult to argue for treating these four rather distinct taxa (*Calicium adaequatum*, *Tholurna*, and *Thelomma ocellatum + T. occidentale*) in one genus as the two first share few obvious unique morphological traits with the two latter. Including *C. adaequatum* in *Tholurna* is not an option as this genus would become paraphyletic. We thus suggest describing new genera for both *C. adaequatum*, and for the *Thelomma ocellatum + T. occidentale* group (see below).

Cyphelium sensu Tibell (1984) is very heterogeneous, with species ending up in four places in the tree. Already Tibell (1971) remarked that *Cyphelium* probably was heterogeneous, which was further supported by the early SSU rDNA based phylogeny by Wedin et al. (2000). Tibell suggested (Tibell 2003: 1415) that *Cyphelium inquinans* and *C. karelicum* should be recognized as a separate genus, for which the name *Acolium* (Ach.) S. Gray is available, but this has not been taken up. The recognition of *Acolium* is however clearly supported in our analysis. *Acolium* is a small group of species growing on wood or bark, and are further characterized by a dark excipulum that is strongly thickened at the base and ornamented spores. They have a distinct greyish-brownish thallus, sessile to somewhat immersed ascomata, and a grey pruina on the rim of the excipulum. *Acloium* forms a group with *Thelomma* s. str. and *Texosporium*. The core group of *Cyphelium* (*C. tigillare*, *C. trachylioides*, and *C. notarisii*) is a group of morphologically similar and closely related species growing on dry and exposed wood, which are characterized by immersed apothecia with a very thin excipulum and smooth spores. *Cyphelium* s. str. is nested within the majority of *Calicium*, in clade A + B, as are *Cyphelium pinicola* and *C. lecideinum*. *Cyphelium lucidum* is not included in our multigene phylogeny, but we have added the ITS sequences present in GenBank (EF551163, EF551164 and EF551165) to our ITS alignment and conducted a maximum likelihood analysis in order to check the position of the species. The resulting tree shows that *C. lucidum* is likely to be closely related to *Calicium adsersum* in Clade B1 although without support (results not shown).

Although there are some morphologically quite distinct subgroups within *Calicium* that could be given generic rank, we would still be left with a number of poorly characterized, potentially monotypic genera needing names. Accepting *Cyphelium* in any sense would make *Calicium* paraphyletic. We instead suggest including *Cyphelium* s. str. (the *Cyphelium tigillare*-group), *Cyphelium lecideinum*, *Cyphelium pinicola*, and *Cyphelium lucidum*, in *Calicium*. This results in a phylogenetically distinct *Calicium* that, however, is rather difficult to characterize morphologically. We finally note that the sub-family classification proposed by Gaya et al. (2012) becomes superfluous, as the Calicidiaceae now corresponds to the genus *Calicium* only.

Divergence time estimates

The phylogenetic assignment of fossils is frequently difficult as these may lack diagnostic characteristics for living clades, because the fossils are genuinely primitive or because derived characteristics are not preserved in the fossil (already noted by Hennig 1981). The additional problems of non-monophyletic extant taxa and parallel evolution of traits clearly also frequently prevents an unambiguous fossil assignment, as in the case present here. Although the fossil clearly belongs to *Calicium* (see Table 3 for a comparison with similar mazaediate genera), the relationship with a specific group within *Calicium* is not possible to infer based on the few visible characters that the fossil possesses. Thus, we instead wanted to explore the phylogenetic placements of the fossil, by comparing different alternative and arbitrary positions with a scenario based on a secondary calibration.

We obtained very different time estimates when using different alternative fossil positions and when using a secondary calibration. The credibility intervals of the alternative
Table 3 Discernable characters of the *Calicium* fossil described by Rikkinen (2003) and comparison with similar calicioid groups. Bold text denotes differences

Family	Genera	Lichenized	Thallus	Apothecia	Mazaeodium	Capitulum shape	Ascomata colour	Spore septation	Spore ornamentation	Spore shape
Fossil Caliciaceae	*Calicium*	? lichenized/epiastral	stalked	well developed	broadly obconical	short cylindrical to lenticular	black	1-septate	distinct	ellipsoidal
	Acolium	lichenicolous	sessile	well developed	cylindrical to bell-shaped	dark	1-septate	distinct	ellipsoidal	
	Allocalicium	lichenized	stalked	well developed	lenticular to obconical	black	1-septate	distinct	ellipsoidal	
	Calicium	lichenized/epiabstratic	stalked/sessile/immersed	lenticular to obconical	black	1-septate	distinct	ellipsoidal		
Coniochybaceae	*Chaenotheca*	lichenized	sessile	well developed	spherical to obconical	medium to pale brown	Non-septate	faint/smooth	spherical to ellipsoidal-cylindrical	
Microcaliciaceae	*Sclerophora*	lichenized/saprotrophic/lichenicolous	stalked/sessile	well developed	spherical to obconical	pale greenish/brownish	Non-septate	faint/smooth	spherical to ellipsoidal-cylindrical	
	Microcalicium	-	stalked	well developed	narrowly conical, spherical	1–7 septate	smooth	ellipsoidal		
	Chaenothecopsis	-	stalked/sessile	obvoid to lenticular	black to brownish	Non-septate (rarely septate)	smooth	ellipsoidal		
	Mycocalicium	saprotrophic/lichenicolous/algae-parasite	stalked	obvoid to lenticular	black	Non septate	smooth	ellipsoidal		
	Phaeocalicium	saprotrophic	stalked	obvoid to lenticular	black to dark brown	Non-septate or 1–3 septate	smooth	ellipsoidal/fusiform	fusiform	
	Stenocybe	saprotrophic	stalked	obvoid to lenticular	black or plumeous	3–7 septate	smooth	fusiform		
Sphinctrinaceae	*Sphinctrina*	lichenicolous	sessile/shortly stalked	spherical	black	Non-septate (rarely septate)	distinct	spherical		
estimates were in many instances non-overlapping (see Tab. 2
for selected nodes). The results obtained placing the fossil at
the base of clade A + B (A1), clade B3 (A2), clade B (A3) and
clade B1 (A7) resulted in younger ages (Tab. 2) than the anal-
ysis with the fossil placed in more terminal nodes as A4, A5
and A6. All these analyses differ considerably from the results
of other dating studies (Prieto and Wedin 2013; Beimforde
et al. 2014) which obtained much older or younger ages for
the crown of Caliciales (166 Mya in Scenario 2 from
Prieto and Wedin 2013 and ca. 160 Mya in Beimforde
et al. 2014) and from those obtained based on a sec-
ondary calibration (our analysis A9). Analysis A8 is the
most similar to the secondary calibration analysis sug-
gesting that the most likely placement of the fossil is
close to a terminal node and thus, a basal placement in
the Calicium clade can likely be rejected.

As the secondary calibration analysis is based on a previous
study with a robust fossil record using five fossil calibration
points (Prieto and Wedin 2013), we believe this analysis is
more reliable than any estimate based on one single fossil
only, thus justifying basing our discussion on the chronogram
resulting from this analysis (Fig. 2). In our dating analysis
based on a secondary calibration the split between the Caliciales sensu Gaya et al. 2012 (the Caliciales-
Physciaceae clade) and the Teloschistales took place in the
Middle Jurassic, around 171 Mya. The age for the
Physciaceae crown group in A9 is estimated at 102 Mya,
and the Caliciales crown group at 126 Mya, thus
comparable to the estimate in Prieto and Wedin (2013) and
estimates produced by independent studies in other li-
chen families (Amo de Paz et al., 2011; Beimforde
et al. 2014; Divakar et al. 2015; Gaya et al. 2015).
The age for the A + B clade (main mazaediate clade)
is estimated at 103 Mya (95 % HPD =80–131 Mya) with two
diversification events within the group; a first event at 85 Mya
giving rise to clade B, and a second event at 60 Mya giving
rise to clade A. This last event coincides with the time of
appearance of the mazaediate taxa included in the Buellioi cl
dale (clade C, 59 Mya).

The diversification of the Physciaceae during the Late
Cretaceous (102 Mya) in our secondary calibration analysis
(A9) is congruent with diversification dates for other li-
chen families as Teloschistaceae (98 Mya, Gaya et al. 2015) and
Parmeliaceae (109 Mya, Amo de Paz et al., 2011) while the
diversification of the Caliciales took place somewhat earlier,
during the Early Cretaceous (126 Mya). The mazaediate
clades arose during two different periods, at the Early-Late
Cretaceous boundary and in the Paleocene. The first event is
close to the Cretaceous thermal maximum (89–112 Mya)
where the diversification of the family Teloschistaceae was
recently suggested to have taken place (Gaya et al. 2015).
The second event took place close to the Paleocene–Eocene
Thermal Maximum, 55.8 million years ago (Röhl et al. 2000).
In this latter period two independent events took place, a di-
versification episode within the Calicium clade coincident
with an independent origin of the mazaediate clade within
the Buellia-clade (clade C).

The main diversification events of mazaediate taxa took
place during the Paleocene, Eocene and Oligocene as it has
been reported for taxa within the lichen family Parmeliaceae
(Divakar et al. 2015). The parallel, independent gains of the
mazaedium in the history of the Ascomycota have already
been demonstrated (Prieto et al. 2013). The appearance of
other mazaediate groups is congruent with the diversification
events found here. For example the Coniocybomycetes crown
classed is dated at 106 Mya and the Microcaliciales at 40 Mya (Prieto
and Wedin 2013). Thus, it is probable that around this time
climatic events on earth could have favored the inde-
pendent appearance of these groups of taxa character-
ized by the presence of a mazaedium. What external
factors could have promoted the appearance and diver-
sification of mazaediate groups? As most of the extant
species are epiphytes, growing on trunks or decorticated
stumps of both conifers and deciduous trees, one possi-
ble explanation could be the appearance and diversifica-
tion of conifers and angiosperms in the Early Mesozoic
and Early Cenozoic respectively (Leslie et al. 2012;
Magallón et al. 2015; Silvestro et al. 2015) and the
change of the landscape this must have produced.

We conclude that utilizing a fossil with a poorly understood
taxonomic affinity within the group under study is clearly
problematic. One way to improve the accuracy of molecular
time estimates is to use multiple fossil constraints (Graur and
Martin 2004; Hedges and Kumar 2004; Rutschmann et al.,
2007; Sauquet et al. 2012). However, the very small number
of well-preserved and identifiable lichen fossils is a limiting
factor in dating studies, and in our particular case there are
currently no more available fossils. Another approximation is
to use secondary calibrations, obtained from previous studies
(Graur and Martin 2004; Sauquet et al. 2012). In this study we
conclude that using such previously obtained dates gives us
results that are comparable with other dating studies, whereas
assigning the single relevant fossil to arbitrary placements
results in strongly deviant dates. By comparing the inferred
divergence dates with widely accepted dates (usually based on
a robust fossil record) we here provide insight into the role of
unreliable fossils in date estimates. Although this could be
seen as a circular argument, the use of secondary calibrations
can in reality serve as evaluation of the phylogenetic affinity
of a fossil. In our case we can discard several alternative
placements investigated, suggesting that the fossil is likely to
be member of a younger clade as the C. chlorosporum-C.
nobile and thus discarding its basal placement. This result will
contribute to future dating studies, since it provides a good
guide about which taxa to include in such studies and where to
place the fossil best.
Taxonomy

Acolium (Ach.) Gray, Nat. Arr. Brit. Pl. I: 482 (1821).

Type species: *Calicium tympanellum* Ach. (lectotype, designated by Tibell 1984) = *Acolium inquinans* (Sm.) A. Massal.

Ca 5 species: *Acolium chloroconium* Tuck., *A. inquinans* (Sm.) A. Massal., *A. karelicum* (Vain.) M. Prieto and Wedin, *A. marcianum* (B. de Lesd.) M. Prieto and Wedin, *A. sessile* (Pers.) Arnold.

New combinations in *Acolium*:

Acolium karelicum (Vain.) M. Prieto and Wedin, comb. nov. (MB 817532) Basionym: *Cyphelium lucidum* var. *karelicum* Vain., Acta Soc. Fauna Fl. Fenn. 57(I): 20 (1927).

Acolium marcianum (B. de Lesd.) M. Prieto and Wedin, comb. nov. (MB 817533) Basionym: *Cyphelium marcianum* B. de Lesd., Bull. Soc. Bot. France 55: 420 (1908).

Comments: This is a small group of former *Cyphelium* species predominantly growing on bark or wood. *Acolium* is characterized by a dark excipulum that is strongly thickened at the base. Species placed here have a distinct grey-brown thallus that is easily distinguished from the sister group *Acolium* by the dactyliform, fruticose thallus and the laterally reduced excipulum.

Calicium Pers., in Romer and Usteri, Ann. Bot. 7: 20 (1794).

Type species: *Calicium viride* Pers. (lectotype, designated by Fink, Contr. U.S. Nat. Herb. 14(1): 46, 1910).

At least 34 species: *C. abietinum* Pers., *C. adspersum* Pers., *C. carolinianum* (Tuck.) M. Prieto and Wedin, *C. chlorosporum* F. Wilson, *C. constrictum* Tibell, *C. corynethum* (Ach.) Ach., *C. denigratum* (Vain.) Tibell, *C. glaucellum* Ach., *C. hyperelloides* Nyl., *C. indicum* Tibell, *C. laevigatum* Tibell, *C. lecideinum* (Nyl.) M. Prieto and Wedin, *C. lucidum* (Th.Fr.) M. Prieto and Wedin, *C. martinellum* Tibell, *C. montanum* Tibell, *C. nobile* Tibell, *C. notarisii* (Tul.) M. Prieto and Wedin, *C. pinastri* Tibell, *C. pinicola* (Tibell) M. Prieto and Wedin, *C. pyriforme* Tibell, *C. quercinum* Pers., *C. robustellum* Nyl., *C. salicinum* Pers., *C. sequoiae* Williams and Tibell, *C. tenuisporum* Tibell, *Calicium tigillare* (Ach.) Pers., *C. trabinellum* Ach., *C. trachylioides* (Nyl. ex Branth and Rostr.) M. Prieto and Wedin, *C. tricolor* F. Wilson, *C. verrucosum* Tibell, *C. victorianum* (F. Wilson) Tibell, Tibell, *C. viride* Pers.

New combinations in *Calicium*:

Calicium carolinianum (Tuck.) M. Prieto and Wedin, comb. nov. (MB 817549) Basionym: *Acolium carolinianum* Tuck., Gen. lich. (Amherst): 237 (1872).

Calicium lecideinum (Nyl.) M. Prieto and Wedin, comb. nov. (MB 817534) Basionym: *Trachylia lecideina* Nyl., Mem. Soc. Sci. Nat. Cherbourg 3: 199 (1855).

Calicium lucidum (Th.Fr.) M. Prieto and Wedin, comb. nov. (MB 817535) Basionym: *Trachylia lucida* Th.Fr., Öfvers. K. VetenskAkad. Förh. 12: 18 (1855).

Calicium notarisii (Tul.) M. Prieto and Wedin, comb. nov. (MB 817538) Basionym: *Acolium notarisii* Tul., Ann. Sci. Nat., Bot., sér. 3 17: 81 (1852).

Calicium pinicola (Tibell) M. Prieto and Wedin, comb. nov. (MB 817536) Basionym: *Cyphelium pinicola* Tibell, Svensk Bot. Tidskr. 63: 477 (1969).

Calicium trachylioides (Nyl. ex Branth and Rostr.) M. Prieto and Wedin, comb. nov. (MB 817537) Basionym: *Spilomium trachylioides* Nyl. ex Branth and Rostr., Lichenes Daniae: 141 (1869).

Comments: *Calicium* in this emended version includes both species with stalked (*Calicium* in the traditional sense) and sessile or immersed ascomata. The stalked species differ from *Allocalicium* in the shape of the capitulum and the colour of the stalk. Although phylogenetically very distinct, we do not currently know of any morphological or chemical character that is unique for *Calicium* in our sense, and here, more work is needed. *Cyphelium* Ach. (type *Lichen tigillaris* Ach.) is a new synonym to *Calicium*. For more synonyms, see Tibell (1984). *Calicium carolinianum*, usually placed in *Thelomma*, was not considered closely related to *Thelomma* s. str. nor to the *T. ocellatum* group (*Pseudothelomma*, see below) by Tibell (1976), and we agree with him. Tibell (1976, 1984), however, points out similarities between *T. carolinianum* and species placed by him in *Calicium* and *Cyphelium*, and
we suggest placing it in *Calicium* until molecular investigations can clarify its position.

Texosporium Naďv., in Tibell and Hofsten, Mycologia 60: 557 (1968).

Type species: *Acolium sancti-jacobi* Tuck.

Comments: *Texosporium* grows on dung, soil and detritus in grassland soil crust communities, and differs from the related *Thelomma* by the ecology and the very distinct spore ornamentation formed by paraphyses that adhere to the surface of the spores (Tibell and von Hofsten 1968).

Thelomma A. Massal., Atti Reale Ist. Veneto Sci. Lett. Arti, ser 3, 5: 268 (1860).

Type species: *Cyphelium mammosum* Hepp, in Hartung 1857: 147 (1857).

Ca 5 species: *T. brunneum* (W.A. Weber) M. Prieto and Wedin, *T. californicum* (Tuck.) Tibell, *T. mammosum* (Hepp) A. Massal., *T. santessonii* Tibell, *T. siliceum* (Fée) Tibell.

New combination in *Thelomma*:

Thelomma brunneum (W.A. Weber) M. Prieto and Wedin, comb. nov. (MB 817539) Basionym: *Cyphelium brunneum* (Nyl.) M. Prieto and Wedin, Bryological 70: 199 (1967).

Comments: *Thelomma* differs from the related *Texosporium* by growing on rocks in Mediterranean areas, and by lacking the distinctive spore ornamentation that characterizes *Texosporium*. The newly described *Pseudothelomma* differs in having a thin cortex, lacking the granular crystals that intersperse the usually thick cortex in *Thelomma* and in the ecology as *Pseudothelomma* grows on decorticated wood. The generic placement of *Thelomma brunneum* needs verification from sequenced material. *Thelomma brunneum* was hitherto placed in *Cyphelium*, but as this genus is no longer available, *Thelomma* seems the best place as it share the ecology (growing on rocks in Mediterranean areas of North America).

Tholurna Norman, Flora (Regensburg) 44: 409 (1861).

Type species: *Tholurna dissimilis* (Norman) Norman.

Comments: *Tholurna* is a rare monospecific genus characterized by its cushion-like colonies, formed of dense clustered podetia carrying one ascoma each apically. The capitulum is campanulate, and the spores have a very distinctive ornamentation of spirally arranged ridges, two characters similar to *Allocalicium*.

New genera

Allocalicium M. Prieto and Wedin gen. nov. (MB 817540).

Type species: *Allocalicium adaequatum* (Nyl.) M. Prieto and Wedin.

Diagnosis: thallus immersed. Ascomata with olive brown stalks forming small clumps; capitulum campanulate and dark; spores 1-septate with a distinct ornamentation of spirally arranged ridges.

Etymology: Allo-, greek prefix meaning different or strange, which denotes a difference with *Calicium* while indicating an overall morphological similarity.

Description:

Thallus immersed. Ascomata distinctly stalked, 8–10 times as high as the diameter of the stalk, without pruina and with dark capitulum and pale grey to olive brown stalk. Capitulum cylindrical to distinctly bell-shaped. Excipulum 20–35 μm thick, with a distinct thickening in the upper part. Outermost part of the excipulum brown, consisting of isodiametric medium brown cells, 3–5 μm diam. Inner part of excipulum 10–17 μm thick, consisting of intertwined hyphae with swollen walls. Hypothecium medium brown, up to 40 μm high, consisting of intertwined, brown, walled hyphae. Stalk rather short to long, inner part of periclinally arranged but intertwined hyphae of thick walls; outermost layer medium brown with periclinally arranged brown hyphae. Stalk and excipulum 1+ dark blue. Asci cylindrical with unequally or sometimes biseriately arranged spores. Spores 1-septate, 9–11 × 4.5–5.5 μm, with a distinct ornamentation of spirally arranged ridges. Habitat: on thin branches of *Alnus incana*, *Populus* and *Salix* along streams and in well-lit situations in swampy areas with high humidity.

New combinations in *Allocalicium*:

Allocalicium adaequatum (Nyl.) M. Prieto and Wedin, comb. nov. (MB 817541) Basionym: *Calicium adaequatum* Nyl., Flora, Regensburg 52: 409 (1869).

Comments: *Allocalicium* is distinguished from the stalked species in the unrelated *Calicium* by the pale stalks, the dark cylindrical to distinctly bell-shaped capitulum, and the ecology. As already commented on, *Allocalicium* shares the campanulate form of the capitulum with the closely related *Tholurna*, and they both have very similar spore ornamentation.

Pseudothelomma M. Prieto and Wedin gen. nov. (MB 817542).

Type species: *Pseudothelomma ocellatum* (Körb.) M. Prieto and Wedin.

Diagnosis: thallus crustose, grey, with a thin cortex that lacks crystals. Ascomata immersed in verrucae, flat, sometimes with a green-(yellow) pruina on the mazaedia; exciple laterally thin; spores 1-septate. Chemical compounds: occasionally usnic acid (in thallus) and epanorin and rhizocarpic acid in the hymenium and mazaedium.

Etymology: the name of this new genus is based on the resemblance to *Thelomma* where the species have been included until now.

Description:

Thallus crustose, well developed, verrucose or subareolate, grey; one species with globular, short-stalked isidia in black patches on the thallus surface. Cortex thin, without granular crystals. Ascomata immersed in verrucae. Mazaedium black, flat, sometimes with a greenish or greenish-yellow pruina.
Excipulum not sclerotized, poorly developed laterally. Hypothecium blackish brown. Asci cylindrical, with uniseriately arranged spores, 1-septate, blackish-brown, constricted at the septum, with a slightly uneven surface. Chemistry: thallus K-, C-, KC-, PD-, medulla I- or I+ dark blue; occasionally usnic acid in the thallus, and epanoric and rhizocarpic acid in the hymenium and mazaedium. Habitat: on exposed dry lignum, particularly on wooden posts.

2 species: *Pseudothelomma ocellatum* (Körb.) M. Prieto and Wedin, *P. occidentale* (Herre) M. Prieto and Wedin.

New combinations in *Pseudothelomma*:

Pseudothelomma occidentale (Herre) M. Prieto and Wedin, comb. nov. (MB 817544) Basionym: *Cyphelium occidentale* Herre, Proc. Wash. Acad. Sci. 12: 62 (1910).

Pseudothelomma ocellatum (Körb.) M. Prieto and Wedin, comb. nov. (MB 817543) Basionym: *Acolium ocellatum* Körb., Parerga lichenol. 3: 285 (1861).

Comments: *Pseudothelomma* is a small, distinct group of species with immersed ascomata, growing on dry and exposed lignum. It differs from the otherwise similar *Acolium* by having a thin and non-sclerotized excipulum. It further differs from the likewise similar *Thelomma* by the ecology, and the thin, crystal-free cortex.

Key to mazaedium-producing Caliciaceae sensu Prieto & Wedin.

1 Fruticose lichens, forming proper podetia of thalline origin...2
1 Crustose lichens, with stalked, sessile or immersed apothecia...3
2 (1) Thallus stout, sparingly branched, pale greyish, ascomata immersed in branch-tips. Spores 2-celled with constricted septum, smooth. On rocks or epiphytic.................*Acroschyphus sphaerophoroides*
2 Thallus of radially protruding dark grey to brownish podetia, ascomata campanulate on apices of finger-like protrusions. Epiphytic on twigs........*Thulorna dissimilis*
3 (1) Apothecia stalked..4
3 Apothecia sessile or immersed..5
4 (3) Apothecia with a pale grey to pale olive stalk and a dark, cylindrical to campanulate capitulum. Epiphytic on twigs or thin branches..................*Allocacloc somium adaequatum*
4 Apothecia not with a pale stalk together with a dark, campanulate capitulum..................*Calicium pro parte*
5 (3) Spores smooth, apothecia immersed with a very thin excipulum (section). On dry wood or (rarely) bark..*Calicium (“Cyphelium” tigillare-group)*
5 Spores with a ± distinct ornamentation, apothecia immersed or sessile with a distinct excipulum which is thick, at least at the base. On bark, wood or rocks.........................6
6 (5) Spore ornamentation very distinct, formed by paraphyses that adhere to the surface of the spores. On dung, detritus or soil in grassland and soil crust communities.............................*Texosporium sancti-jacobi*
6 Spore ornamentation made up by ridges or surface cracks. On rock, bark, wood, or lichenicolous..................7
7 (6) On rock (*Thelomma californicum* occasionally on wood)...8
7 On bark or wood, or lichenicolous on *Pertusaria*..........................9
8 (7) Apothecia immersed in thallus verrucae.............*Thelomma*
9 Apothecia sessile.................................*Calicium lecideinum*
9 (7) Apothecia sessile to somewhat immersed, with a grey pruina on the rim of the excipulum, and a dark excipulum that is strongly thickened at the base (section). Thallus distinct, greyish-brownish. On wood or bark, or lichenicolous on *Pertusaria* spp.................................*Acolium*
10 (9) On dry and exposed wood, with immersed apothecia...10
10 On wood or bark, apothecia sessile...........*Calicium spp. (former Cyphelium spp)*
11 (10) Thallus verrucose, greyish, excipulum thin and hyaline throughout, asci cylindrical..................*Pseudothelomma*
11 Thallus smooth, areolate, dull reddish-brown, excipulum thick and ± sclerotized at the base, asci pyriform..*Calicium carolinianum*

Acknowledgments This research was supported by grants from the Swedish Research Council (VR 621–2009-5372 and VR 621–2012-3990) to MW. We are grateful for skilful lab assistance from the Molecular Systematics Laboratory at the Swedish Museum of Natural History. Kind assistance during fieldwork was provided by Janolov Hermansson. Ibai Olariaga and Martin Westberg are thanked for comments on the manuscript. This paper is dedicated to Leif Tibell for his life-long, groundbreaking work on mazaediate lichens.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Acharius E (1808) Förteckning på de i Sverige växande arter af lafvarnes familj. K Vetensk Acad Nya Handl 1808:259–283
Acharius E (1810) Lichenographia universalis. Gottingae, 696 pp
Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A (2011) Origin and diversification of major clades in Parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS One 6:e28161
Avise JC (2009) Timetrees: Beyond cladograms, phenograms, and phylograms. In: Hedges B, Kumar S (eds) Timetrees of Life. Oxford University Press, Oxford, UK, pp. 19–25

Baloch E, Lücking R, Lumbsch HT, Wedin M (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales. Taxon 59:1483–1494

Beimforde C, Feldberg K, Nylander S, Rikkinen J, Tuovila H, Dörfl H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014) Estimating the phanerozoice history of the Ascomycota lineages: Combining fossil and molecular data. Mol Phylogenet Evol 77:307–319

Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi – how close are we? Fungal Biology Rev 24:1–16

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

Clements FE, Shear CL (1931) The genera of Fungi. Wilson M W, New York, 456 pp

Divakar PK, Crespo A, Núñez-Zapata J, Flakus A, Simpson HJM, Elix JA, Lumbsch HT (2013) A molecular perspective on generic concepts in the Hypotrichyana clade (Parmeliaceae, Ascomycota). Phytotaxa 132:21–38

Divakar PK, Crespo A, Wedin M, Leavitt SD, Hawthorne DL, Myllys L, McCune B, Randlane T, Bjerke JW, Ohmura Y, Schmidt M, Boluda CG, Alors D, Roca-Valiente B, Del-Prado R, Ruhul C, Buarang K, Núñez-Zapata J, Amo de Paz G, Rico VJ, Molina MC, Elix JA, Esslinger TL, Transtad IK, Lindgren H, Ertz D, Gueidan C, Saag L, Mark K, Singh G, Dal Grande F, Parmenn S, Beck A, Benatti MN, Blanchon D, Candan M, Clerc P, Goward T, Grube M, Hodgkinson BP, Hur JS, Kantvilas G, Kirika PM, Lendemer J, Mattsson JE, Messuti ML, Miadlikowska J, Nelsen M, Ohlson JI, Pérez-Oterga S, Saag A, Simpson HJ, Sohrabi M, Thell A, Thor G, Truong C, Yah R, Upreti DK, Cubas P, Lumbsch HT (2015) Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytol 208:1217–1226. doi: 10.1111/nph.13553

Döring H, Clerc P, Grube M, Wedin M (2000) Mycobiont-specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenized ascomycetes. Lichenologist 32:200–204

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

Fink B (1911) The nature and classification of lichens, I. Mycologia 3:231–269

Forest F (2009) Calibrating the Tree of Life: fossils, molecules and evolutionary timescales. Ann Bot 104:789–794

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

Garrido H, Grace M, Grube M, Wedin M (2000) Mycobiont-specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenized ascomycetes. Lichenologist 32:200–204

Gargas A, Taylor JW (1995) Phylogeny of Discomycetes and early radiations of the the apothecial Ascomycotina inferred from SSU rDNA sequence data. Exp Mycol 19:7–15

Gargas A, DePriest PT, Grube M, tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268(5216):1492–1495

Gaya E, Högnaabba F, Holguin A, Molnar K, Fernández-Briese M, Stenroos S, Arup U, Söchting U, den Boom PV, Lücking R, Simpson HJM, Lutzoni F (2012) Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistaceae (Pezizomycotina, Ascomycota). Mol Phylogenet Evol 63:374–387

Gaya E, Fernández-Briese M, Vargas R, Lachlan RF, Gueidan C, Ramírez-Mejía M, Lutzoni F (2015) The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreens pigments and a bark-to-rock substrate shift. PNAS 112:11600–11605

Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20:80–86

Gueidan C, Ruibal C, De Hoog GS, Schneider H (2011) Rock–inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

Hasegawa M, Kishino H, Yano T (1985) Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

Hedges SB, Kumar S (2004) Precision of molecular time estimates. Trends Genet 20:242–247

Hennig W (1981) Insect phylogeny. John Wiley, New York

Hibbett D S, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Apte A, Bauern R, Bergerow D, Benny GL, Castleberry LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Kishino H, Köljalg U, Kurtzmann CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley- Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tilbell L, Unterreiner WA, Walker C, Wang Z, Weir A, Weiß M, White MM, Winka K, Yao Y-J, Zhang N (2007) A higher level phylogenetic classification of the Fungi. Mycol Res 111:509–547

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:774-775

Kaasalainen U, Heinrichs J, Krings M, Myllys L, Gräfenhorst H, Rikkinen J, Schmidt AR (2015) Alectoroidi morphology in Paleogene lichens: new evidence and re-evaluation of the fossil Alectoria succini Magdebrua. PLoS One 10(6):e0129526. doi:10.1371/journal.pone.0129526

Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s Dictionary of the Fungi, 10th edn. CABI, Wallingford, Oxon, UK

Lantear F, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

Leslie AB, Beaulieu MJ, RIM HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemispheric-scale differences in conifer evolutionary dynamics. PNAS 109:16217-16221

Lumbsch HT, Huhndorf SM (2010) Myconet Volume 14. Part One. Outline of Ascomycota. Fieldiana Life Earth Sci 1:1–42

Lumbsch HT, Schmitt M, Palice Z, Wiklund E, Ekman S, Wedin M (2004) Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Mol Phylogenet Evol 31:822–832

Lumbsch HT, Lücking R, Tilbell L (2009) Molecular data place Tylophoron as an additional calcicoid genus in the Arthoniales (Ascomycota). Bibl Lichenol 99:285–296

Lutzoni F, Wagner P, Reeb V, Zoller S (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst Biol 49:628–651

Maddison WP, Maddison DR (2001) MacClade: analysis of phylogeny and character evolution, version 4.01. Sinauer, Sunderland, Massachusetts

Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A meta-calibrated time-tree demonstrates the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453

McCune B, Rosentreter R (1992) Taxosporium sancti-jacobi, a rare western North American lichen. Bryologist 95:329–333

Miadlikowska J, Kauff H, Hofstetter V, Fraeker E, Grube M, Hafellner J, Reeb V, Hodkinson BP, Kukwa M, Lücking R, Hestmark G, Garcia Otalora M, Rauhut A, Büdel B, Scheidegger C, Timdal E, Stenroos
Wedin M, Wiklund E, Crewe A, Döring H, Ekman S, Nyberg Å, Schmitt I, Lumbsch HT (2005) Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycol Res 109:159–172
Westberg M, Millanes A, Knudsen K, Wedin M (2015) Phylogeny of Acarosporaceae (Lecanoromycetes, Ascomycota, Fungi) and the evolution of carbonized ascomata. Fungal Divers 73:145–158
White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., New York, pp. 315–322
Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. http://ceb.csit.fsu.edu/awty.
Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329
Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichenforming ascomycetes. Lichenologist 31:511–516