Chromosomal and molecular evidence for presence of Polyommatus (Agrodiaetus) poseidon (Lepidoptera, Lycaenidae) in Caucasus region

Vladimir A. Lukhtanov¹², Valentin V. Tikhonov³

¹ Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia ² Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia ³ North Caucasus Federal University, Pushkin str., 1, Stavropol 355009 Russia

Corresponding author: Vladimir A. Lukhtanov (lukhtanov@mail.ru)

Abstract
We show how combination of chromosomal and molecular markers can be applied for proper species identification in Agrodiaetus Hübner, 1822 blue butterflies. Using this approach we provide first evidence for presence of P. (A.) poseidon (Herrich-Schäffer, [1851]) in Georgia.

Keywords
Agrodiaetus, chromosome number, COI, karyotype, Lycaenidae, Polyommatus

Introduction
The blue butterfly subgenus Agrodiaetus Hübner, 1822 belongs to the genus Polyommatus Latreille, 1804 (Talavera et al. 2013). In the last years, this group become a model system for study of speciation and chromosome evolution (Lukhtanov et al. 2015, Vershinina et al. 2015). Despite this, its taxonomy is still poorly elaborated and identification of individual species is difficult due to their morphological similarity. Species within the subgenus are mostly uniform and exhibit few differences in
characters traditionally used in classification, such as wing pattern and/or aspects of the male and female genitalia (Lukhtanov et al. 2006, Vila et al. 2010). The genus was estimated to have originated very recently (Kandul et al. 2004) and, thus, many *Agrodiaetus* species may have not had sufficient time to acquire extensive genetic differences. In particular, COI barcode gap is low or even absent between numerous closely related species of *Polyommatus* (*Agrodiaetus*) (Wiemers and Fiedler 2007). In opposite to majority of other butterflies and moths (Lukhtanov 2014), many *Agrodiaetus* species have evolved distinctive karyotypes. They show one of the highest interspecific karyotypic diversities known in the animal kingdom with haploid chromosome numbers ranging from $n = 10$ to $n = 134$ (Lukhtanov et al. 2005). Therefore, karyotypic features provide important identification characters for many described species that are virtually indistinguishable by their morphology. However, it should be noted that in few cases the chromosome number may be identical in different species (see Results and Discussion).

Here we show how combination of chromosomal and molecular markers can be applied for proper species identification in *Agrodiaetus*. Using this approach we provide first evidence for presence of *P. (A.) poseidon* (Herrich-Schäffer, [1851]) in Georgia.

Material and methods

The samples used for molecular and chromosomal analysis were collected in Georgia (Akhaltsikhe, 41.60N, 43.06E, 1000 m alt., 18 July 2014, V. Lukhtanov et V. Tikhonov leg., samples 2014VL56, 2014VL57, 2014VL58, 2014VL62, 2014VL63, 2014VL64, 2014VL65, 2014VL68, 2014VL69, 2014VL70). The methods of DNA sequencing, chromosomal analysis and phylogenetic inference were described previously (Lukhtanov and Dantchenko 2002a, Lukhtanov et al. 2008, 2014, Vershinina and Lukhtanov 2010, Przybyłowicz et al. 2014). Additional samples of *Polyommatus* belonging to *P. (A.) poseidon* species complex (Kandul et al. 2007) were used for comparison.

Results and discussion

The species *P. (A.) poseidon* (= *Lycaena poseidon* var. *mesopotamica* Staudinger, 1892, synonymized with *P. poseidon* by Schurian et. 1992) is known to be an endemic of the Middle East sporadically distributed from Kütahya in West Turkey to Artvin in North-East Turkey (Hesselbarth et al. 1995). Phenotypically similar, but chromosomally distinct species *P. (A.) putnami* (Lukhtanov & Dantchenko, 2002) was described from East Turkey (provinces Erzurum and Ağrı) (Lukhtanov and Dantchenko 2002a). The last taxon is allopatric in distribution with *P. (A.) poseidon* and differs from *P. poseidon* by chromosome number and karyotype structure (Lukhtanov and Dantchenko 2002b). *P. (A.) poseidon* has relatively low haploid chromosome number (from n=19 on the south and east of the distributional range to n=21 in the north), all the chro-
Chromosomal and molecular evidence for presence of Polyommatus (Agrodiaetus) poseidon... 251

Males of P. (A.) poseidon have plesiomorphic (Kandul et al. 2004, Lukhtanov et al. 2005) blue colouration of the upper side of the wings with no specific morphological characters. Therefore their morphological discrimination from phenotypically similar P. (A.) caeruleus (Staudinger, 1871), P. (A.) damocles and P. (A.) damonides (Staudinger, 1899) is difficult. With respect to mitochondrial genes COI and COII it is very distant from P. (A.) poseidon and was shown to be a subspecies of P. (A.) damocles (Herrich-Schäffer, [1844]) (Lukhtanov et al. 2005, Kandul et al. 2007).

Figure 1. Polyommatus (Agrodiaetus) poseidon from Akhaltsikhe, Georgia. a male, upperside b male, underside.
et Eckweiler, 2001 and *P. (A.) pierceae* (Lukhtanov & Dantchenko, 2002) (Kandul et al. 2007, Lukhtanov et al. 2014).

A population of blue butterflies which were morphologically similar to *P. (A.) poseidon* (Fig. 1) was discovered near Akhaltsikhe in Georgia in 2013 by V.Tikhonov and I. Kostyuk. In 2014 the locality was visited again in order to collect material available for molecular and chromosomal study. Molecular analysis of this material revealed

Figure 2. Bayesian tree of the species close to *Polyommatus (Agrodiaetus) poseidon* inferred from COI sequences. Posterior probability values >50% are shown.

Figure 3. Male karyotype of *Polyommatus (Agrodiaetus) poseidon* from Georgia. a) sample 2014VL57, metaphase I, n = 19 b) sample 2014VL62, metaphase II, n = 19. Bar = 10 μm.
that COI barcodes were completely identical or nearly identical (barcode gap from 0 to 0.6%) in population from Akhaltsikhe and other populations of P. (A.) poseidon and P. (A.) putnami (Fig. 2).

The haploid chromosome number n=19 was found in MI and MII cells of three studied individuals (2014VL57, 2014VL58, 2014VL62) (Fig. 3). All chromosome elements formed a gradient size row. The karyotype contained no exceptionally large or small chromosomes. In this respect, the population from Akhaltstikhe is indistinguishable from populations of P. (A.) poseidon from Amasya (de Lesse 1963) and Artvin (Kandul and Lukhtanov 1997), but differs from P. (A.) putnami (n=26) (Lukhtanov and Dantchenko 2002b).

Thus, although in the studied case neither the DNA barcodes nor chromosomal numbers are species-specific characters, their combination clearly indicates that the population from Akhaltsikhe should be identified as P. (A.) poseidon. This is the first evidence of P. (A.) poseidon for Georgia and for Caucasus region at whole.

Acknowledgements

We thank Igor Kostyuk (Kiev State University) for participation in the trip to Georgia. The financial support for this study was provided by the grant from the Russian Science Foundation N 14-14-00541 to Zoological Institute of the Russian Academy of Sciences.

References

de Lesse H (1963) Variation chromosomique chez les Agrodiaetus [Lep. Lycaenidae]. Revue Française d’Entomologie 30(3): 182–189.

Eckweiler W, Häuser C (1997) An illustrated checklist of Agrodiaetus Hübner, 1822, a subgenus of Polyommatus Latreille, 1804 (Lepidoptera, Lycaenidae). Nachrichten des Entomologischen Vereins Apollo, Supplement 16: 113–168.

Hesselbarth G, Van Oorschot H, Wagener S (1995) Die Tagfalter der Türkei unter Berücksichtigung der angrenzenden Länder. Vol. 1-3. Selbstverlag S. Wagener, Bocholt, 1354 pp.

Kandul NP, Lukhtanov VA (1997) Karyotype variability and systematics of blue butterflies of the species groups Polyommatus (Agrodiaetus) poseidon and Polyommatus (Agrodiaetus) dama (Lepidoptera, Lycaenidae). Zoologichesky Zhurnal 76(1): 63–69.

Kandul NP, Lukhtanov VA, Dantchenko AV, Coleman JWS, Sekercioglu CH, Haig D, Pierce NE (2004) Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1-α: Karyotype diversification and species radiation. Systematic Biology 53(2): 278–298. doi: 10.1080/10635150490423692

Kandul NP, Lukhtanov VA, Pierce NE (2007) Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution 61(3): 546–559. doi: 10.1111/j.1558-5646.2007.00046.x
Larsen TB (1975) Chromosome numbers and notes on testicular morphology of some Lebanonese Rhopalocera (Insecta: Lepidoptera). Entomologica Scandinavica 6(3-4): 253–260. doi: 10.1163/187631275X00091

Lukhtanov VA (2014) Chromosome number evolution in skippers (Lepidoptera, Hesperiidae). Comparative Cytogenetics 8(4): 275–291 doi: 10.3897/CompCytogen.v8i4.8789

Lukhtanov VA, Dantchenko AV (2002a) Principles of highly ordered metaphase I bivalent arrangement in spermatocytes of Agrodiaetus (Lepidoptera). Chromosome Research 10(1): 5–20. doi: 10.1023/A:1014249607796

Lukhtanov VA, Dantchenko AV (2002b) Descriptions of new taxa of the genus Agrodiaetus Hübner, [1822] based on karyotype investigation (Lepidoptera, Lycaenidae). Atalanta 33(1/2): 81–107, 224–225.

Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE (2005) Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature 436(7049): 385–389. doi: 10.1038/nature03704

Lukhtanov VA, Shapoval NA, Anokhin BA, Saifitdinova AF, Kuznetsova VG (2015) Homoploid hybrid speciation and genome evolution via chromosome sorting. Proceedings of the Royal Society B: Biological Sciences 282(1807): 20150157. doi: 10.1098/rspb.2015.0157

Lukhtanov VA, Shapoval NA, Dantchenko AV (2008) Agrodiaetus shabkhuensis sp. n. (Lepidoptera, Lycaenidae), a cryptic species from Iran discovered by using molecular and chromosomal markers. Comparative Cytogenetics 2(2): 99–114.

Lukhtanov VA, Shapoval NA, Dantchenko AV (2014) Taxonomic position of several enigmatic Polyommatus (Agrodiaetus) species (Lepidoptera, Lycaenidae) from Central and Eastern Iran: insights from molecular and chromosomal data. Comparative Cytogenetics 8(4): 313–322. doi: 10.3897/CompCytogen.v8i4.8939

Lukhtanov VA, Vila R, Kandul NP (2006) Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data. Insect Systematics and Evolution 37(3): 325–334. doi: 10.1163/187631206788838563

Przybyłowicz Ł, Lukhtanov V, Lachowska-Cierlik D (2014) Towards the understanding of the origin of the Polish remote population of Polyommatus (Agrodiaetus) ripartii (Lepidoptera: Lycaenidae) based on karyology and molecular phylogeny. Journal of Zoological Systematics and Evolutionary Research 52(1): 44–51. doi: 10.1111/jzs.12040

Schurian KG, van Oorschot H, van den Brink H (1992) Polyommatus (Agrodiaetus) poseidon (H.-S.) und Polyommatus (Agrodiaetus) theresiae sp. nov. aus der Türkei (Lepidoptera: Lycaenidae). Nachrichten des Entomologischen Vereins Apollo 12(4): 217–232.

Talavera G, Lukhtanov VA, Pierce NE, Vila R (2013) Establishing criteria for higher-level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29: 166–192. doi: 10.1111/j.1096-0031.2012.00421.x

Tshikolovets V (2011) Butterflies of Europe & Mediterranean Area. Tshikolovets Publication, Pardubice, Czech Republic.

Vershinina AO, Anokhin BA, Lukhtanov VA (2015) Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers. Comparative Cytogenetics 9(2): 161–171. doi: 10.3897/CompCytogen.v9i2.4715

Vershinina AO, Lukhtanov VA (2010) Geographical distribution of the cryptic species Agrodiaetus aclethis aclethis, A. aclethis karacetinae and A. demavendi (Lepidoptera, Lycaenidae) revealed by cytogenetic analysis. Comparative Cytogenetics 4(1): 1–11. doi: 10.3897/compctygen.v4i1.21
Vila R, Lukhtanov VA, Talavera G, Gil-T F, Pierce NE (2010) How common are dot-like distribution ranges? Taxonomical oversplitting in Western European Agrodiaetus (Lepidoptera, Lycaenidae) revealed by chromosomal and molecular markers. Biological Journal of the Linnean Society 101: 130–154. doi: 10.1111/j.1095-8312.2010.01481.x

Wiemers M (2003) Chromosome differentiation and the radiation of the butterfly subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus) a molecular phylogenetic approach. Ph.D. Dissertation, University of Bonn, Bonn, Germany, 203 pp. http://hss.ulb.uni-bonn.de/2003/0278/0278.htm

Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4: 8. doi: 10.1186/1742-9994-4-8