ON HANKEL-TYPE OPERATORS WITH DISCONTINUOUS
SYMBOLS IN HIGHER DIMENSIONS

A.V. SOBOLEV

Abstract. We obtain an asymptotic formula for the counting function of the discrete
spectrum for Hankel-type pseudo-differential operators with discontinuous symbols.

1. Introduction

Consider on $L^2(a, b), 0 \leq a < b \leq \infty$ the integral operator of the form

\[(\Gamma_{a,b}(k)u)(x) = \int_a^b k(x + y)u(y)dy,\]

with some function $k = k(t), t > 0$. The operator $\Gamma_{0,\infty}(k)$ is called Hankel operator on
$L^2(0, \infty)$, see [9], p. 46. For $\Gamma_{a,b}(k)$ with $0 \leq a < b < \infty$ we use the term truncated
Hankel operator. The symbol $\mathcal{K} = \mathcal{K}(\xi), \xi \in \mathbb{R}$, of the operator $\Gamma_{0,\infty}(k)$ is defined (non-
uniquely) as a function such that its Fourier transform $\hat{\mathcal{K}}(t)$ coincides with $k(t)$ for all
$t > 0$. We are interested in the case, when the symbol $\mathcal{K}(\xi)$ is a bounded function
with jump discontinuities, which ensures that the operator $\Gamma_{0,\infty}(k)$ is not compact. The
leading example of such an operator is given by the Carleman kernel $k(t) = t^{-1}, t > 0$
(see [9], p. 54), for which one can choose

$$
\mathcal{K}(\xi) = \begin{cases}
-\pi i, \xi \leq 0, \\
\pi i, \xi > 0.
\end{cases}
$$

The operator $\Gamma_{a,b}(k)$ with this symbol is bounded for all a and $b, 0 \leq a < b \leq \infty$, and
$\|\Gamma_{a,\infty}(k)\| = \pi, a \geq 0$. If $a = 0$ and/or $b = \infty$, then $\Gamma_{a,b}(k)$ is not compact. Among other
results, H.S. Wilf investigated the asymptotics of the counting function of the discrete
spectrum of the truncated operator $\Gamma_{1,b}(k), k(t) = t^{-1}, as b \to \infty$ (see [14], Corollary 1).
He proved that the number of eigenvalues of $\Gamma_{1,b}(k)$ in the interval (λ, ∞) for any $\lambda \in
(0, \pi)$ is asymptotically equal to $C(\lambda) \log b$ as $b \to \infty$, with some explicit constant $C(\lambda)$.
H. Widom in [12], Theorem 4.3 derived a similar asymptotic formula for the truncated
Hilbert matrix (i.e. matrix with the entries $(j + k + 1)^{-1}, j, k = 0, 1, 2, \ldots$), as well as
for some more general Hankel matrices. Later, a good deal of attention became focused
on the asymptotics of the determinants of truncated Hankel (and Toeplitz) matrices, see e.g. [1], [2], [3] and [6].

The Hankel operator $\Gamma_{0,\infty}(k)$ can be rewritten in the form

$$(\Gamma_{0,\infty}(k)u)(x) = (\tilde{G}(k)u)(-x), \ x > 0,$$

where

$$(\tilde{G}(k)u)(x) = (1 - \chi(0,\infty)(x)) \int_{-\infty}^{\infty} k(y - x)\chi(0,\infty)(y)u(y)dy.$$

Here $\chi(0,\infty)$ denotes the characteristic function of the half-axis $(0, \infty)$. As A. Pushnitski and D. Yafaev [10] indicated to the author, in the scattering theory context it is natural to consider alongside $\Gamma_{0,\infty}(k)$ the symmetrised Hankel operator

$$(\tilde{G}(k) + \tilde{G}^*(k)).$$

In this note we study a multi-dimensional analog of the truncated symmetrised Hankel operator with a discontinuous symbol. It is defined in the following way. Let $\text{Op}_l^\alpha(a)$ and $\text{Op}_r^\alpha(a)$ be the standard “left” and “right” pseudo-differential operators with the smooth symbol $a = a(x, \xi), x, \xi \in \mathbb{R}^d, d \geq 1$, i.e.

$$(\text{Op}_l^\alpha a)u(x) = \left(\frac{\alpha}{2\pi}\right)^d \int \int e^{i\alpha(x-y)\xi} a(x, \xi)u(y)dyd\xi,$$

$$(\text{Op}_r^\alpha a)u(x) = \left(\frac{\alpha}{2\pi}\right)^d \int \int e^{i\alpha(x-y)\xi} a(y, \xi)u(y)dyd\xi,$$

for any function u from the Schwartz class on \mathbb{R}^d. If the symbol a depends only on ξ, then the above operators coincide with each other and we simply write $\text{Op}_\alpha(a)$. Here and below integrals without indication of the domain are assumed to be taken over the entire Euclidean space \mathbb{R}^d. The large constant $\alpha \geq 1$ can be thought of as a truncation parameter. The conditions imposed on the symbol a in the main Theorem 1 below ensure that the above operators are trace class for all $\alpha \geq 1$.

In order to introduce the jump discontinuities, let Λ, Ω be two domains in \mathbb{R}^d, and let $\chi_\Lambda(x), \chi_\Omega(\xi)$ be their characteristic functions. We use the notation

$$P_{\Omega,\alpha} = \text{Op}_\alpha(\chi_\Omega).$$

Define the operator

$$T_\alpha(a) = T_\alpha(a; \Lambda, \Omega) = \chi_\Lambda P_{\Omega,\alpha} \text{Op}_l^\alpha(a)P_{\Omega,\alpha}\chi_\Lambda,$$

and its off-diagonal version

$$G_\alpha(a) = G_\alpha(a; \Lambda, \Omega) = (1 - \chi_\Lambda)P_{\Omega,\alpha} \text{Op}_l^\alpha(a)P_{\Omega,\alpha}\chi_\Lambda.$$

The central object for us is the following Hankel-type self-adjoint operator

$$H_\alpha(a) = H_\alpha(a; \Lambda, \Omega) = G_\alpha(a; \Lambda, \Omega) + G_\alpha^*(a; \Lambda, \Omega),$$
which is a natural multi-dimensional analogue of the truncated symmetrised operator (2). Note the following elementary property of $H_\alpha(a)$. Let U be the unitary operator in $L^2(\mathbb{R}^d)$ defined by

$$U u = u \chi - u (1 - \chi), u \in L^2(\mathbb{R}^d),$$

so that $U^* = U$. Then $U^* H_\alpha(a) U = -H_\alpha(a)$. This implies, in particular, that the spectrum of $H_\alpha(a)$ is symmetric w.r.t. zero, i.e.

$$\dim \ker (H_\alpha(a) - \lambda) = \dim \ker (H_\alpha(a) + \lambda), \lambda \in \mathbb{R}. \tag{3}$$

Let g be a function analytic in a disk of a sufficiently large radius, such that $g(0) = 0$. In 1982 H. Widom in [13] conjectured an asymptotic formula for the trace $\text{tr} g(T_\alpha)$, $\alpha \to \infty$, which was subsequently proved in [11]. In order to state this result define for any symbol $b = b(x, \xi)$, any domains Λ, Ω and any C^1-surfaces S, P, the coefficients

$$\mathfrak{M}_0(b) = \mathfrak{M}_0(b; \Lambda, \Omega) = \frac{1}{(2\pi)^d} \int_{\Lambda} \int_{\Omega} b(x, \xi) d\xi dx, \tag{4}$$

$$\mathfrak{M}_1(b) = \mathfrak{M}_1(b; S, P) = \frac{1}{(2\pi)^{d-1}} \int_{S} \int_{P} b(x, \xi) |n_S(x) \cdot n_P(\xi)| dS_\xi dS_x, \tag{5}$$

where $n_S(x)$ and $n_P(\xi)$ denote the exterior unit normals to S and P at the points x and ξ respectively. Define also

$$\mathfrak{A}(g; b) = \frac{1}{(2\pi)^2} \int_0^1 \frac{g(bt) - tg(b)}{t(1-t)} dt. \tag{6}$$

Then, as conjectured in [13] and proved in [11],

$$\text{tr} g(T_\alpha(a)) = \alpha^d \mathfrak{M}_0(g(a); \Lambda, \Omega) + \alpha^{d-1} \log \alpha \mathfrak{M}_1(\mathfrak{A}(g; a); \partial \Lambda, \partial \Omega) + o(\alpha^{d-1} \log \alpha), \tag{7}$$

The aim of this note is to establish a similar trace formula for the operator $H_\alpha(a)$, see Theorem 1.

We use the standard notation \mathcal{S}_1 for the trace class operators, and \mathcal{S}_2 for the Hilbert-Schmidt operators, see e.g. [4]. The underlying Hilbert space is assumed to be $L^2(\mathbb{R}^d)$. By C, c (with or without indices) we denote various positive constants independent of α, whose precise value is of no importance.

Acknowledgment. The author is grateful to G. Rozenblum for discussions, and to A. Böttcher and A. Pushnitski for stimulating remarks. This work was supported in part by EPSRC grant EP/F029721/1.

2. Main result

2.1. Definitions and main results.**

To state the result define for any function $g = g(t), t \in \mathbb{R}$, such that $|g(t)| \leq Ct$, the integral

$$\mathfrak{U}(g; b) = \frac{2}{\pi^2} \int_0^1 \frac{g(bt)}{t\sqrt{1-t^2}} dt. \tag{8}$$
Denote by
\[g_{ev}(t) = \frac{g(t) + g(-t)}{2} \]
the even part of \(g \). Let \(\mathfrak{W}_1 \) be as defined in (5). The next theorem contains the main result of the paper:

Theorem 1. Let \(\Lambda, \Omega \subset \mathbb{R}^d, d \geq 2 \) be bounded domains in \(\mathbb{R}^d \) such that \(\Lambda \) is \(C^1 \) and \(\Omega \) is \(C^3 \). Let \(a = a(x, \xi) \) be a symbol satisfying the condition
\[
\max_{0 \leq n \leq d+2} \sup_{0 \leq m \leq d+2} |\nabla_x^n \nabla_\xi^m a(x, \xi)| < \infty,
\]
and having a compact support in both variables. Let \(g = g(t), t \in \mathbb{R} \) be a function such that \(g_{ev}(t) t^{-2} \) is continuous on \(\mathbb{R} \). Then
\[
\text{tr} g(H_\alpha(a)) = \alpha^{d-1} \log \alpha \ \mathfrak{W}_1(\mu(\chi_I; |a|); \partial \Lambda, \partial \Omega) + o(\alpha^{d-1} \log \alpha),
\]
as \(\alpha \to \infty \).

Note that the coefficient on the right-hand side of (10) is well-defined for any function \(g \) satisfying the conditions of Theorem 1. Note also that in view of (3), we have
\[
\text{tr} g(H_\alpha) = \text{tr} g_{ev}(H_\alpha).
\]

Remark 2. Denote by \(n_\pm(\lambda; \alpha) \) with \(\lambda > 0 \) the number of eigenvalues of the operator \(\pm H_\alpha(a) \) which are greater than \(\lambda \). In other words,
\[
n_\pm(\lambda; \alpha) = \text{tr} \chi_I(\pm H_\alpha(a)), \quad I = (\lambda, \|H_\alpha(a)\| + 1).
\]
Since the interval \(I \) does not contain the point 0, this quantity is finite. Due to (11), \(n_+(\lambda; a) = n_-(\lambda; a) \). In order to find the leading term of the asymptotics of \(n_\pm(\lambda; \alpha) \), \(\alpha \to \infty \), approximate the characteristic function \(\chi_I \) from above and from below by smooth functions \(g \). Then it follows from Theorem 1 that
\[
n_\pm(\lambda; \alpha) = \frac{1}{2} \alpha^{d-1} \log \alpha \ \mathfrak{W}_1(\mu(\chi_I; |a|)) + o(\alpha^{d-1} \log \alpha).
\]
A straightforward calculation shows that
\[
\mu(\chi_I; |a(x, \xi)|) = \begin{cases}
\frac{2}{\pi^2} \cosh^{-1} \frac{|a(x, \xi)|}{2\lambda}, & |a(x, \xi)| > 2\lambda; \\
0, & |a(x, \xi)| \leq 2\lambda.
\end{cases}
\]
The formula (12) can be viewed as a multi-dimensional analogue of the asymptotics derived for the Carleman kernel in [14], Corollary 1.

Theorem 1 will be derived from the following theorem, which is simply formula (10) for even polynomial functions \(g \):
Theorem 3. Let the domains $\Lambda, \Omega \subset \mathbb{R}^d$, $d \geq 2$ and the symbol $a = a(x, \xi)$ be as in Theorem 1. Then for $g_p(t) = t^p$, $p = 1, 2, \ldots$,

\begin{equation}
\text{tr} \, g_{2p}(H_\alpha(a)) = \alpha^{d-1} \log \alpha \, \mathcal{W}_1(\mathcal{U}(g_{2p}; |a|); \partial \Lambda, \partial \Omega) + o(\alpha^{d-1} \log \alpha),
\end{equation}

as $\alpha \to \infty$.

Once this theorem is proved, the asymptotics is extended to functions g satisfying the conditions of Theorem 1 with the help of an elementary trace estimate for $g(H_\alpha)$.

3. Auxiliary estimates

The proof relies on various trace class estimates, some of which were obtained in [11]. In these estimates we always assume that the symbols a and b satisfy the condition (9) and that the domains Λ, Ω are as in Theorem 1.

We begin with well known estimates for operators with smooth symbols:

Proposition 4. Let $d \geq 1$ and $\alpha \geq c$. Suppose that the symbols a, b satisfy (9). Then

$$\| \text{Op}_\alpha^l(a) \| + \| \text{Op}_\alpha^r(a) \| \leq C.$$

If, in addition, a and b are compactly supported in both variables, then

$$\| \text{Op}_\alpha^l(a) - \text{Op}_\alpha^r(a) \|_{\mathcal{E}_1} \leq C\alpha^{d-1},$$

$$\| \text{Op}_\alpha^l(a) \text{Op}_\alpha^l(b) - \text{Op}_\alpha^l(ab) \|_{\mathcal{E}_1} \leq C\alpha^{d-1}.$$

The above boundedness is a classical fact, and it can be found, e.g. in [5], Theorem B'_{11}, where it was established under smoothness assumptions weaker than (9). For the trace class estimates see e.g. [11], Lemma 3.12, Corollary 3.13.

The following estimates are for operators with discontinuous symbols.

Proposition 5. Suppose that the symbol a satisfies (9) and has a compact support in both variables. Assume that $\alpha \geq c$. Let $\text{Op}_\alpha(a)$ denote any of the operators $\text{Op}_\alpha^l(a)$ or $\text{Op}_\alpha^r(a)$. Then

$$\| [\text{Op}_\alpha(a), P_{\Lambda, \Omega}] \|_{\mathcal{E}_1} + \| [\text{Op}_\alpha(a), \chi_L] \|_{\mathcal{E}_1} \leq C\alpha^{d-1}.$$

See [11], Lemmas 4.3 and 4.5.

The next proposition is a crucial ingredient in our proof: Theorem 3 is derived from the following local version of the asymptotics (7).

Proposition 6. Suppose that the symbols a and b satisfy (9), and that b has a compact support in both variables. Then for $g_p(t) = t^p$, $p = 1, 2, \ldots$,

$$(14) \quad \text{tr} \, \big(\text{Op}_\alpha^l(b)g_p(T_\alpha(a)) \big) = \alpha^{d-1} \mathcal{W}_0(bg_p(a); \Lambda, \Omega) + \alpha^{d-1} \log \alpha \, \mathcal{W}_1(bA(g_p; a); \partial \Lambda, \partial \Omega) + o(\alpha^{d-1} \log \alpha),$$

as $\alpha \to \infty$.

Proposition 7. Suppose that the symbol \(a \) satisfies (9) and has a compact support in both variables. Assume that \(\alpha \geq 2 \). Then
\[
\| G_\alpha(a) \|_{S^2}^2 \leq C \alpha^{d-1} \log \alpha.
\]

See [11], Lemma 6.1, and also papers [7, 8] by D. Gioev.

4. Proof of Theorem 1

4.1. Polynomial functions, reduction to the operator \(T_\alpha \). We begin with studying the modulus of the operator \(G_\alpha(1) \), i.e. the operator \(| G_\alpha(1) | = \sqrt{G_\alpha^*(1) G_\alpha(1)} \).

Lemma 8. Suppose that the symbol \(b \) satisfies (9) and has a compact support in both variables. Then
\[
\text{tr } \text{Op}(b) g_p(G_\alpha^*(1) G_\alpha(1)) = \frac{1}{2} \alpha^{d-1} \log \alpha \ \mathcal{M}_1 \left(b \mathcal{M}(g_{2p}; 1); \partial \Lambda, \partial \Omega \right) + o(\alpha^{d-1} \log \alpha),
\]
as \(\alpha \to \infty \).

Proof. Denote \(G = G_\alpha(1) \) and \(T = T_\alpha(1) \). By inspection, \(G^* G = T - T^2 \), so \(g_p(G^* G) = h(T) \), with the polynomial \(h(t) = g_p(t - t^2) \). Thus one can use Proposition 6. Note that \(h(1) = 0 \), so that the first asymptotic coefficient in (14) vanishes, see (4). Let us find the second asymptotic coefficient, calculating \(\mathcal{A}(h; 1) \). Using (6) and (8) we get
\[
\mathcal{A}(h; 1) = \frac{2}{(2\pi)^2} \int_0^1 \frac{g_p(t - t^2)}{t(t - t)} dt = \frac{1}{\pi^2} \int_0^1 \frac{g_p(t^2)}{s \sqrt{1 - s^2}} ds = \frac{1}{2} \mathcal{M}(g_{2p}; 1).
\]
Thus, by Proposition 6,
\[
\text{tr } \left(\text{Op}_\alpha^l(b) h(T) \right) = \frac{1}{2} \alpha^{d-1} \log \alpha \ \mathcal{M}_1 \left(b \mathcal{M}(g_{2p}; 1); \partial \Lambda, \partial \Omega \right) + o(\alpha^{d-1} \log \alpha),
\]
which leads to the proclaimed formula. \(\square \)

Now we can prove the asymptotics for the operator \(H_\alpha(a) \):

Proof of Theorem 3. For any pair of operators \(B_1, B_2 \) we write \(B_1 \sim B_2 \) if
\[
\| B_1 - B_2 \|_{\mathfrak{S}_1} \leq C \alpha^{d-1}, \ \alpha \geq 1.
\]
Denote \(H = H_\alpha(a), G = G_\alpha(a) \), and note that \(g_{2p}(H) = g_p(H^2) \). Since \(G^2 = 0, (G^*)^2 = 0 \), it follows that
\[
H^2 = GG^* + G^* G.
\]
This sum is in fact an orthogonal sum of two operators acting on the mutually orthogonal subspaces \(L^2(\mathcal{C} \Lambda) \) and \(L^2(\Lambda) \), where \(\mathcal{C} \Lambda \) denotes the complement of \(\Lambda \). Moreover, the non-zero spectra of \(G^* G \) and \(GG^* \) are the same. Thus
\[
\text{tr } g_{2p}(H) = \text{tr } g_p(H^2) = 2 \text{tr } g_p(G^* G).
\]
Using Propositions 5 and 4, we conclude that

\[G \sim \text{Op}_\alpha^l(a) G_\alpha(1) \sim G_\alpha(1) \text{Op}_\alpha^l(a), \]

\[G^* \sim \text{Op}_\alpha^l(\overline{a}) G_\alpha^*(1) \sim G_\alpha^*(1) \text{Op}_\alpha^l(\overline{a}), \]

\[G^* G \sim \text{Op}_\alpha^l(|a|^2) G_\alpha^*(1) G_\alpha(1). \]

Thus referring again to Proposition 4, we obtain that

\[g_p(G^* G) \sim \text{Op}_\alpha^l(|a|^{2p}) g_p(G_\alpha^*(1) G_\alpha(1)). \]

Now it follows from Lemma 8 and formula (15) that

\[\text{tr} g_{2p}(H) = 2 \text{tr} \left(\text{Op}_\alpha^l(|a|^{2p}) g_p(G_\alpha^*(1) G_\alpha(1)) \right) + O(a^{d-1}) \]

\[= \alpha^{d-1} \log \alpha \mathcal{W}_1 \left(|a|^{2p} \mathcal{U}(g_{2p}; 1); \partial \Lambda, \partial \Omega \right) + o(\alpha^{d-1} \log \alpha). \]

Since \(|a|^{2p} \mathcal{U}(g_{2p}; 1) = \mathcal{U}(g_{2p}; |a|)\), this implies the asymptotics (13). The proof of Theorem 3 is now complete. \(\square\)

4.2. Proof of Theorem 1. By virtue of (11) we may assume that \(g = g_{ev}\). Since \(h(t) = t^{-2} g_{ev}(t)\) is continuous, for any \(\epsilon > 0\) there exists an even polynomial \(p = p(t)\) and a continuous function \(r = r(t)\) such that

\[g_{ev}(t) = p(t) + t^2 r(t), \quad \max_{t \in [-\|H_\alpha\|, \|H_\alpha\|]} |r(t)| \leq \epsilon. \]

In view of (13),

\[\text{tr} p(H_\alpha(a)) = \alpha^{d-1} \log \alpha \mathcal{W}_1 \left(\mathcal{U}(p; a) \right) + o(\alpha^{d-1} \log \alpha). \]

Moreover, by the definition (8),

\[|\mathcal{W}_1(\mathcal{U}(p; a)) - \mathcal{W}_1(\mathcal{U}(g_{ev}; a))| \leq C \epsilon. \]

Let us estimate the error term:

\[\| g_{ev}(H_\alpha(a)) - p(H_\alpha(a)) \|_{\mathcal{S}_1} \leq \| r(H_\alpha(a)) \| \| H_\alpha^2(a) \|_{\mathcal{S}_1} \]

\[\leq 2\epsilon \| G_\alpha(a) \|_{\mathcal{S}_2}^2 \leq C \epsilon \alpha^{d-1} \log \alpha, \]

where we have used Proposition 7. Collecting the above estimates together, we obtain

\[\limsup_{\alpha \to \infty} \frac{1}{\alpha^{d-1} \log \alpha} \left| \text{tr} g(H_\alpha(a)) - \alpha^{d-1} \log \alpha \mathcal{W}_1(\mathcal{U}(g_{ev}; a)) \right| \leq C \epsilon. \]

Since \(\epsilon > 0\) is arbitrary, the asymptotics (10) follows.
REFERENCES

1. E.L. Basor, Y. Chen, H. Widom, *Hankel determinants as Fredholm determinants. Random matrix models and their applications*, 2129, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001.

2. E.L. Basor, Y. Chen, H. Widom, *Determinants of Hankel matrices*, J. Funct. Anal. **179** (2001), no. 1, 214-234.

3. E.L. Basor, Y. Chen, *Perturbed Hankel determinants*, J. Phys. A **38** (2005), no. 47, 10101-10106.

4. M.Š. Birman and M. Z. Solomyak, *Spectral theory of self-adjoint operators in Hilbert space*, Reidel, 1987.

5. H.O. Cordes, *On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators*, J. Funct. Anal. **18** (1975), 115–131.

6. P. Deift, A. Its, I. Krasovsky, *Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities*, arXiv:0905.0443v2 [math.FA].

7. D. Gioev, *Generalizations of Szegő Limit Theorem: Higher Order Terms and Discontinuous Symbols*, PhD Thesis, Dept. of Mathematics, Royal Inst. of Technology (KTH), Stockholm, 2001.

8. D. Gioev, *Szegő Limit Theorem for operators with discontinuous symbols and applications to entanglement entropy*, (2006) IMRN, article ID 95181, 23 pages.

9. V. Peller, *Hankel operators and their applications*, Springer, 2003.

10. A. Pushnitski, D. Yafev, *Private communication*.

11. A. V. Sobolev, *Quasi-classical asymptotics for pseudo-differential operators with discontinuous symbols: Widom’s Conjecture*, arXiv:1004.2576v2 [math.SP] 2011.

12. H. Widom, *Hankel matrices*, Trans. Amer. Math. Soc. **121** (1966), 1–35.

13. H. Widom, *On a class of integral operators with discontinuous symbol*, Toeplitz centennial (Tel Aviv, 1981), pp. 477–500, Operator Theory: Adv. Appl., 4, Birkhäuser, Basel-Boston, Mass., 1982.

14. H.S. Wilf, *Dirichlet series and Toeplitz forms*, J. Math. Anal. Appl. **8**, no 1 (1964), 45–51.