THE DISTRIBUTION OF TOTIENTS

KEVIN FORD

Dedicated to the memory of Paul Erdős (1913–1996)

ABSTRACT. This paper is a comprehensive study of the set of totients, i.e. the set of values taken by Euler’s φ-function. We first determine the true order of magnitude of \(V(x) \), the number of totients \(\leq x \). We also show that if there is a totient with exactly \(k \) preimages under \(\phi \) (a totient with “multiplicity” \(k \)), then the counting function for such totients, \(V_k(x) \), satisfies \(V_k(x) \gg_k V(x) \). Sierpiński conjectured that every multiplicity \(k \geq 2 \) is possible, and we deduce this from the Prime \(k \)-tuples Conjecture. We also make some progress toward an older conjecture of Carmichael, which states that no totient has multiplicity 1. The lower bound for a possible counterexample is extended to \(10^{190000000} \) and the bound \(\lim \inf_{x \to \infty} V_1(x)/V(x) \leq 10^{-5,000,000,000} \) is shown. Determining the order of \(V(x) \) and \(V_k(x) \) also provides a description of the “normal” multiplicative structure of totients. This takes the form of bounds on the sizes of the prime factors of a pre-image of a typical totient. One corollary is that the normal number of prime factors of a totient \(\leq x \) is \(c \log \log x \), where \(c \approx 2.186 \). Similar results are proved for the set of values taken by a general multiplicative arithmetic function, such as the sum of divisors function, whose behavior is similar to that of Euler’s function.

1 Introduction

Let \(\mathcal{V} \) denote the set of values taken by Euler’s \(\phi \)-function (totients), i.e.

\[
\mathcal{V} = \{1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, \ldots \}.
\]

Let

\[
\begin{align*}
\mathcal{V}(x) &= \mathcal{V} \cap [1, x], \\
V(x) &= |\mathcal{V}(x)|, \\
\phi^{-1}(m) &= \{n : \phi(n) = m\}, \\
A(m) &= |\phi^{-1}(m)|, \\
V_k(x) &= |\{m \leq x : A(m) = k\}|.
\end{align*}
\]

We will refer to \(A(m) \) as the multiplicity of \(m \). This paper is concerned with the following problems.

1. What is the order of \(V(x) \)?
2. What is the order of \(V_k(x) \) when the multiplicity \(k \) is possible?
3. What multiplicities are possible?
4. What is the normal multiplicative structure of totients?
1.1 The order of $V(x)$

The fact that $\phi(p) = p - 1$ for primes p implies $V(x) \gg x/\log x$ by the Prime Number Theorem. Pillai [28] gave the first non-trivial upper bound on $V(x)$, namely

$$V(x) \ll \frac{x}{(\log x)^{(\log 2)/e}}.$$

Using sieve methods, Erdős [8] improved this to

$$V(x) \ll \varepsilon \frac{x}{(\log x)^{1-\varepsilon}}$$

for every $\varepsilon > 0$. Upper and lower bounds for $V(x)$ were sharpened in a series of papers by Erdős [9], Erdős and Hall [11, 12], Pomerance [29], and finally by Maier and Pomerance [26], who showed that

$$(1.2) \quad V(x) = x \log x \exp\{(C + o(1))(\log x)^2\}$$

for a constant C defined below. Here $\log_k x$ denotes the kth iterate of the logarithm. Let

$$(1.3) \quad F(x) = \sum_{n=1}^{\infty} a_n x^n, \quad a_n = (n + 1) \log(n + 1) - n \log n - 1.$$

Since $a_n \sim \log n$ and $a_n > 0$, it follows that $F(x)$ is defined and strictly increasing on $[0, 1)$, $F(0) = 0$ and $F(x) \to \infty$ as $x \to 1^-$. Thus, there is a unique number ϱ such that

$$(1.4) \quad F(\varrho) = 1 \quad (\varrho = 0.542598586098471021959\ldots).$$

In addition, $F'(x)$ is strictly increasing, and

$$F'(\varrho) = 5.69775893423019267575\ldots$$

Let

$$(1.5) \quad C = \frac{1}{2\log |\varrho|} = 0.81781464640083632231\ldots$$

and

$$(1.6) \quad D = 2C(1 + \log F'(\varrho) - \log(2C)) - 3/2$$

$$= 2.17696874355941032173\ldots$$

Our main result is a determination of the true order of $V(x)$.

Theorem 1. We have

$$V(x) = \frac{x}{\log x} \exp\{C(\log_3 x - \log_4 x)^2 + D \log_3 x - (D + 1/2 - 2C) \log_4 x + O(1)\}.$$

1.2 The order of $V_k(x)$

Erdős [10] showed by sieve methods that if $A(m) = k$, then for most primes p, $A(m(p - 1)) = k$. If the multiplicity k is possible, then $V_k(x) \gg x/\log x$. Applying the machinery used to prove Theorem 1 we show that if there exists m with $A(m) = k$, then a positive proportion of totients have multiplicity k.

Theorem 2. For every $\varepsilon > 0$, if $A(d) = k$, then

$$V_k(x) \gg \varepsilon \frac{d^{-1-\varepsilon}}{x} V(x) \quad (x \geq x_0(d)).$$

Conjecture 1. For $k \geq 2$,

$$\lim_{x \to \infty} \frac{V_k(x)}{V(x)} = C_k.$$
Table 1 lists values of $V(x)$ and the ratios $V_k(x)/V(x)$ for $2 \leq k \leq 7$. Numerical investigations seem to indicate that $C_k \asymp 1/k^2$. In fact, at $x = 500,000,000$ we have $1.75 \leq V_k(x)/V(x) \leq 2.05$ for $20 \leq k \leq 200$. This data is very misleading, however. Erdős [8] showed that there are infinitely many totients for which $A(m) \geq m^{c_4}$ for some positive constant c_4. The current record is $c_4 = 0.7039$ [1]. Consequently, by Theorem 2 for infinitely many k we have

$$\frac{V_k(x)}{V(x)} \gg k^{-1/c_4+\varepsilon} \gg k^{-1.42} \quad (x > x_0(k)).$$

Erdős has conjectured that every $c_4 < 1$ is admissible.

We also show that most totients have “essentially bounded” multiplicity.

Theorem 3. Uniformly for $x \geq 2$ and $N \geq 2$, we have

$$\frac{|\{m \in \mathcal{F}(x) : A(m) \geq N\}|}{V(x)} = \sum_{k \geq N} \frac{V_k(x)}{V(x)} \ll \exp\left\{-\frac{1}{4}(\log_2 N)^2\right\}.$$

Remark. The proof of [14, Theorem 3] contains an error, and the corrected proof (in Sec. 7.1 below) gives the weaker estimate given in Theorem 3.

In contrast, the average value of $A(m)$ over totients $m \leq x$ is clearly $x/V(x) = (\log x)^{1+o(1)}$. The vast differences between the “average” behavior and the “normal” behavior is a result of some totients having enormous multiplicity.

A simple modification of the proof of Theorems 1 and 2 also gives bounds for totients in short intervals. A real number θ is said to be admissible if $\pi(x + x^\theta) - \pi(x) \gg x^\theta/\log x$ with x sufficiently large. Here, $\pi(x)$ is the number of primes $\leq x$. The current record is due to Baker, Harman and Pintz [2], who showed that $\theta = 0.525$ is admissible.

Theorem 4. If θ is admissible, $y \geq x^\theta$ and the multiplicity k is possible, then

$$V_k(x + y) - V_k(x) \asymp V(x + y) - V(x) \asymp \frac{y}{x+y}V(x+y).$$

Consequently, for every fixed $c > 1$, $V(cx) - V(x) \asymp cV(x)$.

Erdős has asked if $V(cx) \sim cV(x)$ for each fixed $c > 1$, which would follow from an asymptotic formula for $V(x)$. The method of proof of Theorem 1, however, falls short of answering Erdős’ question.

It is natural to ask what the maximum totient gaps are, in other words what is the behavior of the function $M(x) = \max_{v_1 \leq x}(v_i - v_{i-1})$ if v_1, v_2, \cdots denotes the sequence of totients? Can it be shown, for example, that for x sufficiently large, that there is a totient between x and $x + x^{1/2}$?

1.3 The conjectures of Carmichael and Sierpiński

In 1907, Carmichael [4] announced that for every m, the equation $\phi(x) = m$ has either no solutions x or at least two solutions. In other words, no totient can have multiplicity 1. His proof of this assertion was
flawed, however, and the existence of such numbers remains an open problem. In [5], Carmichael did show
that no number \(m < 10^{37} \) has multiplicity 1, and conjectured that no such \(m \) exists (this is now known as
Carmichael’s Conjecture). Klee [24] improved the lower bound for a counterexample to \(10^{400} \), Masai and
Valette [27] improved it to \(10^{10,000} \), and recently Schlafly and Wagon [34] showed that a counterexample
must exceed \(10^{4,000,000} \). An immediate corollary of Theorem 2 (take \(d = 1, k = 2 \) for the first part) is

Theorem 5. We have

\[
\limsup_{x \to \infty} \frac{V_1(x)}{V(x)} < 1.
\]

Furthermore, Carmichael’s Conjecture is equivalent to the bound

\[
\liminf_{x \to \infty} \frac{V_1(x)}{V(x)} = 0.
\]

Although this is a long way from proving Carmichael’s Conjecture, Theorem 5 show that the set of
counterexamples cannot be a “thin” subset of \(\mathcal{V} \). Either there are no counterexamples or a positive fraction
of totients are counterexamples.

The basis for the computations of lower bounds for a possible counterexample is a lemma of Carmichael
and Klee (Lemma 7.2 below), which allows one to show that if \(A(m) = 1 \) then \(x \) must be divisible by the
squares of many primes. Extending the method outlined in [34], we push the lower bound for a counterex-
ample to Carmichael’s Conjecture further.

Theorem 6. If \(A(m) = 1 \), then \(m \geq 10^{10^{10}} \).

As a corollary, a variation of an argument of Pomerance [30] gives the following.

Theorem 7. We have

\[
\lim_{x \to \infty} \inf \frac{V_1(x)}{V(x)} \leq 10^{-5,000,000,000}.
\]

The proof of these theorems motivates another classification of totients. Let \(V(x; k) \) be the number of
totients up to \(x \), all of whose pre-images are divisible by \(k \). A trivial corollary to the proof of Theorem 2 is

Theorem 8. If \(d \) is a totient, all of whose pre-images are divisible by \(k \), then

\[
V(x; k) \gg \varepsilon d^{-1-\varepsilon} V(x).
\]

Thus, for each \(k \), either \(V(x; k) = 0 \) for all \(x \) or \(V(x; k) \gg_k V(x) \).

In the 1950’s, Sierpiński conjectured that all multiplicities \(k \geq 2 \) are possible (see [31] and [10]), and
in 1961, Schinzel [32] deduced this conjecture from his well-known Hypothesis H. Schinzel’s Hypothesis H
[33], a generalization of Dickson’s Prime \(k \)-tuples Conjecture [7], states that any set of polynomials
\(F_1(n), \ldots, F_k(n) \), subject to certain restrictions, are simultaneously prime for infinitely many \(n \). Using a
much simpler, iterative argument, we show that Sierpiński’s Conjecture follows from the Prime \(k \)-tuples
Conjecture.

Theorem 9. The Prime \(k \)-tuples Conjecture implies that for each \(k \geq 2 \), there is a number \(d \) with \(A(d) = k \).

Shortly after [14] was published, the author and S. Konyagin proved Sierpiński’s conjecture uncondi-
tionally for even \(k \) [15]. The conjecture for odd \(k \) was subsequently proved by the author [16] using a variant of
Lemma 7.1 below.
1.4 The normal multiplicative structure of totients

Establishing Theorems 1 and 2 requires a determination of what a “normal” totient looks like. This will initially take the form of a series of linear inequalities in the prime factors of a pre-image of a totient. An analysis of these inequalities reveals the normal sizes of the prime factors of a pre-image of a typical totient. To state our results, we first define

\[L_0 = L_0(x) = \lfloor 2C(\log_3 x - \log_4 x) \rfloor. \]

In a simplified form, we show that for all but \(o(V(x)) \) totients \(m \leq x \), every pre-image \(n \) satisfies

\[\log_2 q_i(n) \sim \frac{\beta_i}{\beta_i \log_2 x} (1 - i/L_0) \log_2 x \quad (0 \leq i \leq L_0), \]

where \(q_i(n) \) denotes the \((i + 1)\)st largest prime factor of \(n \). For brevity, we write \(V(x; \mathcal{C}) \) for the number of totients \(m \leq x \) which have a pre-image \(n \) satisfying condition \(\mathcal{C} \). Also, let

\[\beta_i = \frac{\beta_i}{1 - i/L_0} \quad (0 \leq i \leq L_0 - 1). \]

Theorem 10. Suppose \(1 \leq i \leq L_0 \). (a) If \(0 < \varepsilon \leq \frac{i}{3L_0} \), then

\[V\left(x; \left| \frac{\log_2 q_i(n)}{\beta_i \log_2 x} - 1 \right| \geq \varepsilon \right) \ll V(x) \exp \left\{ -\frac{L_0(L_0 - i)}{4i} \varepsilon^2 + \log \left(\frac{i}{\varepsilon L_0} \right) \right\}. \]

(b) If \(\frac{i}{3L_0} \leq \varepsilon \leq \frac{1}{8} \), then

\[V\left(x; \left| \frac{\log_2 q_i(n)}{\beta_i \log_2 x} - 1 \right| \geq \varepsilon \right) \ll V(x) \exp \left\{ -\frac{1}{12}L_0 \varepsilon \right\}. \]

Using Theorem 10, we obtain a result about simultaneous approximation of \(q_1(n), q_2(n), \ldots \).

Theorem 11. Suppose \(L_0 = L_0(x) \), \(0 \leq g \leq \frac{1}{3} \sqrt{\frac{19}{\log L_0}} \) and \(0 \leq h \leq \frac{1}{2}L_0 \). The number of totients \(m \leq x \) with a pre-image \(n \) not satisfying

\[\left| \frac{\log_2 q_i(n)}{\beta_i \log_2 x} - 1 \right| \geq g \sqrt{\frac{i \log(L_0 - i)}{L_0(L_0 - i)}} \quad (1 \leq i \leq L_0 - h) \]

is

\[\ll V(x) \left(e^{-h/96} + e^{-\frac{1}{2}g^2 \log g} + e^{-\frac{1}{12}g \sqrt{\log L_0}} \right). \]

Notice that the intervals in (1.9) are not only disjoint, but the gaps between them are rather large. In particular, this “discreteness phenomenon” means that for any \(\varepsilon > 0 \) and most totients \(m \leq x \), no pre-image \(n \) has any prime factors \(p \) in the intervals

\[1 - \varepsilon \geq \frac{\log_2 p}{\log_2 x} \geq \varrho + \varepsilon, \quad \varrho - \varepsilon \geq \frac{\log_2 p}{\log_2 x} \geq \varrho^2 + \varepsilon, \quad \text{etc.} \]

This should be compared to the distribution of the prime factors of a normal integer \(n \leq x \) (e.g. Theorem 12 of [20]; see also subsection 1.5 below).

For a preimage \(n \) of a typical totient, we expect each \(q_i(n) \) to be “normal”, that is, \(\omega(q_i(n) - 1) \approx \log_2 q_i(n) \), where \(\omega(m) \) is the number of distinct prime factors of \(m \). This suggests that for a typical totient \(v \leq x \),

\[\Omega(v) \approx \omega(v) \approx (1 + \varrho + \varrho^2 + \cdots) \log_2 x = \frac{\log_2 x}{1 - \varrho}. \]

Theorem 12. Suppose \(\eta = \eta(x) \) satisfies \(0 \leq \eta \leq 1/3 \). Then

\[\# \left\{ m \in \mathcal{V}(x) : \left| \frac{\Omega(m)}{\log_2 x} - \frac{1}{1 - \varrho} \right| \geq \eta \right\} \ll \frac{V(x)}{(\log_2 x)^{\eta/10}}. \]
Consequently, if \(g(x) \to \infty \) arbitrarily slowly, then almost all totients \(m \leq x \) satisfy
\[
\left| \frac{\Omega(m)}{\log_2 x} - \frac{1}{1 - \varrho} \right| \leq \frac{g(x)}{\log_3 x}.
\]
Moreover, the theorem holds with \(\Omega(m) \) replaced by \(\omega(m) \).

Corollary 13. If either \(g(m) = \omega(m) \) or \(g(m) = \Omega(m) \), then
\[
\sum_{m \in r(x)} g(m) = V(x) \frac{\log_2 x}{1 - \varrho} \left(1 + O \left(\frac{1}{\log_3 x} \right) \right).
\]

By contrast, Erdős and Pomerance [13] showed that the average of \(\Omega(\phi(n)) \), where the average is taken over all \(n \leq x \), is \(\frac{1}{2}(\log_2 x)^2 + O((\log_2 x)^{3/2}) \).

1.5 Heuristic arguments

As the details of the proofs of these results are very complex, we summarize the central ideas here. For most integers \(m \), the prime divisors of \(m \) are “nicely distributed”, meaning the number of prime factors of \(m \) lying between \(a \) and \(b \) is about \(\log_2 b - \log_2 a \). This is a more precise version of the classical result of Hardy and Ramanujan [22] that most numbers \(m \) have about \(\log_2 m \) prime factors. Take an integer \(n \) with prime factorization \(p_0 p_1 \cdots \), where for simplicity we assume \(n \) is square-free, and \(p_0 > p_1 > \cdots \). By sieve methods it can be shown that for most primes \(p \), the prime divisors of \(p - 1 \) have the same “nice” distribution. If \(p_0, p_1, \ldots \) are such “normal” primes, it follows that \(\phi(n) = (p_0 - 1)(p_1 - 1) \cdots \) has about \(\log_2 n - \log_2 p_1 \) prime factors in \([p_1, n]\), about \(2(\log_2 p_1 - \log_2 p_2) \) prime factors in \([p_2, p_1]\), and in general, \(\phi(n) \) will have \(k(\log_2 p_{k-1} - \log_2 p_k) \) prime factors in \([p_k, p_{k-1}]\). That is, \(n \) has \(k \) times as many prime factors in the interval \([p_k, p_{k-1}]\) as does a “normal” integer of its size. If \(n \) has many “large” prime divisors, then the prime factors of \(m = \phi(n) \) will be much denser than normal, and the number, \(N_1 \), of such integers \(m \) will be “small”. On the other hand, the number, \(N_2 \) of integers \(n \) with relatively few “large” prime factors is also “small”. Our objective then is to precisely define these concepts of “large” and “small” so as to minimize \(N_1 + N_2 \).

The argument in [26] is based on the heuristic that a normal totient is generated from a number \(n \) satisfying
\[
\log_2 q_i(n) \approx g^i \log_2 x
\]
for each \(i \) (compare with (1.8)). As an alternative to this heuristic, assuming all prime factors of a pre-image \(n \) of a totient are normal leads to consideration of a series of inequalities among the prime factors of \(n \). We show that such \(n \) generate “most” totients. By mapping the \(L \) largest prime factors of \(n \) (excluding the largest) to a point in \(\mathbb{R}^L \), the problem of counting the number of such \(n \leq x \) reduces to the problem of finding the volume of a certain region of \(\mathbb{R}^L \), which we call the fundamental simplex. Our result is roughly
\[
V(x) \approx \frac{x}{\log x} \max_L T_L(\log_2 x)^L,
\]
where \(T_L \) denotes the volume of the simplex. It turns out that the maximum occurs at \(L = L_0(x) + O(1) \). Careful analysis of these inequalities reveals that “most” of the integers \(n \) for which they are satisfied satisfy (1.8). Thus, the heuristic (1.10) gives numbers \(n \) for which the smaller prime factors are slightly too large. The crucial observation that the \(L \)th largest prime factor \((L = L_0 - 1) \) satisfies \(\log_2 p_L \approx \frac{1}{2} \varrho^2 \log_2 x \) is a key to determining the true order of \(V(x) \).

In Section 2 we define “normal” primes and show that most primes are “normal”. The set of linear inequalities used in the aforementioned heuristic are defined and analyzed in Section 3. The principal result is a determination of the volume of the simplex defined by the inequalities, which requires excursions into linear algebra and complex analysis. Section 4 is devoted to proving the upper bound for \(V(x) \), and in section 5, the lower bound for \(V_k(x) \) is deduced. Together these bounds establish Theorems 1 and 2 as well
The distribution of the prime factors of a pre-image of a typical totient are detailed in Section 6, culminating in the proof of Theorems [10, 12] and Corollary [13].

In Section 7, we summarize the computations giving Theorem [6] present very elementary proofs of Theorems [7] and [9] prove Theorem [3] and discuss other problems about \(V(x; k) \). Lastly, Section 8 outlines an extension of all of these results to more general multiplicative arithmetic functions such as \(\sigma(n) \), the sum of divisors function. Specifically, we prove

Theorem 14. Suppose \(f : \mathbb{N} \to \mathbb{N} \) is a multiplicative function satisfying

\[
\{f(p) - p : p \text{ prime}\} \text{ is a finite set not containing 0,}
\]

\[
\sum_{h \text{ square-free}} \frac{h^\delta}{f(h)} \ll 1, \quad \text{for some } \delta > 0.
\]

Then the analogs of Theorems [4, 5, 8, 10] and [16] hold with \(f(n) \) replacing \(\phi(n) \), with the exception of the dependence on \(d \) in Theorems [2] and [8] which may be different.

Some functions appearing in the literature which satisfy the conditions of Theorem [14] are \(\sigma(n) \), the sum of divisors function, \(\phi^*(n) \), \(\sigma^*(n) \) and \(\psi(n) \). Here \(\phi^*(n) \) and \(\sigma^*(n) \) are the unitary analogs of \(\phi(n) \) and \(\sigma(n) \), defined by \(\phi^*(p^k) = p^k - 1 \) and \(\sigma^*(p^k) = p^k + 1 \) [6], and \(\psi(n) \) is Dedekind’s function, defined by \(\psi(p^k) = p^k + \frac{p^k}{p} \). Now consider, for fixed \(a \neq 0 \), the function defined by \(f(p^k) = (p + a)^k \) for \(p \geq p_0 := \min\{p : p + a \geq 2\} \) and \(f(p^k) = (p_0 + a)^k \) for \(p < p_0 \). Then the range of \(f \) is the multiplicative semigroup generated by the shifted primes \(p + a \) for \(p > 1 - a \).

Corollary 15. For a fixed nonzero \(a \), let \(V^{(a)}(x) \) be the counting function of the multiplicative semigroup generated by the shifted primes \(\{p + a : p + a \geq 2\} \). Then

\[
V^{(a)}(x) \ll_a \frac{x}{\log x} \exp\{C(\log_3 x - \log_4 x)^2 + D \log_3 x - (D + 1/2 - 2C) \log_4 x\}.
\]

One further theorem, Theorem [16], depends on the definition of the fundamental simplex, and is not stated until Section 6.

Acknowledgement: The author is grateful to Paul Pollack for carefully proofreading of the manuscript and for catching a subtle error in the proof of the lower bound in Theorem [1].

2 Preliminary lemmata

Let \(P^+(n) \) denote the largest prime factor of \(n \) and let \(\Omega(n, U, T) \) denote the total number of prime factors \(p \) of \(n \) such that \(U < p \leq T \), counted according to multiplicity. Constants implied by the Landau \(O \) and Vinogradov \(\ll \) and \(\gg \) symbols are absolute unless otherwise specified, and \(c_1, c_2, \ldots \) will denote absolute constants, not depending on any parameter. Symbols in boldface type indicate vector quantities.

A small set of additional symbols will have constant meaning throughout this paper. These include the constants \(\mathcal{V}, \mathcal{O}, C, D, a_i \), defined respectively in (1.1), (1.4), (1.5), (1.6), and (1.3), as well as the constants \(\mathcal{Z}, T_L, g_i \) and \(g_i^* \), defined in section 3. Also included are the following functions: the functions defined in (1.1), \(L_0(x) \) (1.7), \(F(x) \) (1.3); the functions \(Q(\alpha) \) and \(W(x) \) defined respectively in Lemma [2.1] and (2.5) below; and \(\mathcal{Z}(\xi), T_L(\xi), \mathcal{R}_L(\xi; x), R_L(\xi; x) \) and \(x_1(n; x) \) defined in section 3. Other variables are considered “local” and may change meaning from section to section, or from lemma to lemma.

A crucial tool in the proofs of Theorems [1] and [2] is a more precise version of the result from [26] that for most primes \(p \), the larger prime factors of \(p - 1 \) are nicely distributed (see Lemma [2.6] below). We begin with three basic lemmas.
Lemma 2.1. If $z > 0$ and $0 < \alpha < 1 < \beta$ then
\[
\sum_{k \leq \alpha z} \frac{z^k}{k!} < e^{(1-Q(\alpha))z}, \quad \sum_{k \geq \beta z} \frac{z^k}{k!} < e^{(1-Q(\beta))z},
\]
where $Q(\lambda) = \int_1^{\lambda} \log t \, dt = \lambda \log(\lambda) - \lambda + 1$.

Proof. We have
\[
\sum_{k \leq \alpha z} \frac{z^k}{k!} = \sum_{k \leq \alpha z} \left(\frac{1}{\alpha}\right)^k \alpha^k \sum_{k \leq \alpha z} \left(\frac{\alpha z}{k!}\right)^k < \left(\frac{e}{\alpha}\right)^{\alpha z} = e^{(1-Q(\alpha))z}.
\]
The second inequality follows in the same way. \hfill \Box

Lemma 2.2. The number of integers $n \leq x$ for which $\Omega(n) \geq \alpha \log_2 x$ is
\[
\ll_{\alpha} \begin{cases} x \log x)^{-Q(\alpha)} & 1 < \alpha < 2 \\ x \log x)^{1-\alpha \log_2 \log_2 x} & \alpha \geq 2. \end{cases}
\]

Proof. This can be deduced from the Theorems in Chapter 0 of [20]. \hfill \Box

Lemma 2.3. The number of $n \leq x$ divisible by a number $m \geq \exp\{(\log_2 x)^2\}$ with $P^+(m) \leq m^{2/\log_2 x}$ is
\[
\ll x/\log^2 x.
\]

Proof. Let $\Psi(x, y)$ denote the number of integers $\leq x$ which have no prime factors $> y$. For x large, standard estimates ([23], Theorem 1.1 and Corollary 2.3) give
\[
\Psi(z, z^{2/\log_2 x}) \ll z \exp\{-(\log_2 x \log_3 x)/3\}
\]
uniformly for $z \geq \exp\{(\log_2 x)^2\}$. The lemma follows by partial summation. \hfill \Box

We also need basic sieve estimates ([19], Theorems 4.1, 4.2).

Lemma 2.4. Uniformly for $1.9 < y < z \leq x$, we have
\[
|\{n \leq x : p | n \implies p \not\in (y, z)\}| \ll \frac{x \log y}{\log z}.
\]

Lemma 2.5. Suppose a_1, \ldots, a_h are positive integers and b_1, \ldots, b_h are integers such that
\[
E = \prod_{i=1}^h a_i \prod_{1 \leq i < j \leq h} (a_ib_j - a_jb_i) \neq 0.
\]
Then
\[
\#\{n \leq x : a_i n + b_i \text{ prime } (1 \leq i \leq h)\} \ll_h \frac{x(\log_2(|E| + 10))^h}{(\log z)^h}.
\]

Next, we examine the normal multiplicative structure of shifted primes $p - 1$.

Definition 1. When $S \geq 2$, a prime p is said to be S-normal if
\[
\Omega(p - 1, 1, S) \leq 2 \log_2 S \tag{2.1}
\]
and, for every pair of real numbers (U, T) with $S \leq U < T \leq p - 1$, we have
\[
|\Omega(p - 1, U, T) - (\log_2 T - \log_2 U)| < \sqrt{\log_2 S \log_2 T}. \tag{2.2}
\]

We remark that (2.1) and (2.2) imply that for an S-normal prime $p \geq S$,
\[
\Omega(p - 1) \leq 3 \log_2 p. \tag{2.3}
\]

This definition is slightly weaker than, and also simpler than, the definition of S-normal given in [14].
Lemma 2.6. Uniformly for \(x \geq 3 \) and \(S \geq 2 \), the number of primes \(p \leq x \) which are not \(S \)-normal is

\[
\ll \frac{x(\log x)^5}{\log x} (\log S)^{-1/6}.
\]

Proof. Assume \(x \) is sufficiently large and \(S \geq \log^{1000} x \), otherwise the lemma is trivial. Also, if \(\log S > (\log x)^6 \), then (2.1) implies that the number of \(p \) in question is

\[
\leq x \sum_{n \leq x} \frac{(3/2)^{\Omega(n) - 2 \log_2 S}}{n} \ll \frac{x}{(\log x)^3/2} (\log S)^{2 \log(3/2)} \ll \frac{x}{(\log x)(\log S)^{0.3}}.
\]

Next, assume \(\log S \leq (\log x)^6 \). By Lemmas 2.2 and 2.3, the number of primes \(p \leq x \) with either \(p < \sqrt{x} \), \(q := P^+(p - 1) \leq x^{2/\log_2 x} \), \(\Omega(p - 1) \geq 10 \log_2 x \) or \(p - 1 \) divisible by the square of a prime \(\geq S \), is \(O(x/\log^2 x) \). Let \(p \) be a prime not in these categories, which is also not \(S \)-normal. Write \(p - 1 = qb \). By (2.1) and (2.2), either (i) \(\Omega(b, 1, S) \geq 2 \log_2 S - 1 \) or (ii) for some \(S \leq U < T \leq x \), \(|\Omega(b, U, T) - (\log_2 T - \log_2 U)| \geq \sqrt{\log_2 S \log_2 T} + 1 \). By Lemma 2.5, for each \(b \), the number of \(q \) is

\[
\ll \frac{x}{\phi(b) \log^2(x/b)} \ll \frac{x(\log x)^3}{b \log^2 x}.
\]

If \(S \leq x \), the sum of \(1/b \) over \(b \) satisfying (i) is

\[
\ll \sum_{\Omega(b' \leq S} \frac{1}{b'} \prod_{S \leq p \leq x} \left(1 + \frac{1}{p} \right) \ll \frac{\log x}{\log S} \left(\frac{3}{2} \right)^{1-2 \log_2 S} \sum_{\Omega(b' \leq S} \frac{(3/2)^{\Omega(b')}}{b'} \ll (\log x)(\log S)^{1/2 - 2 \log(3/2)} \ll (\log x)(\log S)^{-0.3},
\]

and otherwise the sum is

\[
\ll \sum_{b' \leq x} \frac{1}{b'} \ll \left(\frac{3}{2} \right)^{1-2 \log_2 S} \sum_{b' \leq x} \frac{(3/2)^{\Omega(b')}}{b'} \ll \frac{(\log x)^{3/2}}{(\log S)^{2 \log(3/2)}} \ll \frac{\log x}{(\log S)^{0.3}}.
\]

Consider \(b \) satisfying (ii). In particular, \(S \leq x \). For positive integers \(k \), let \(t_k = e^{\lambda_k} \). For some integers \(j, k \) satisfying \(\log_2 S - 1 < j < k \leq \log_2 x + 1 \), we have

(2.4)

\[|\Omega(b, t_j, t_k) - (k - j + 1)| \geq \sqrt{(k - 1) \log_2 S} - 4,
\]

for otherwise if \(t_j \leq U \leq t_{j+1} \) and \(t_k \leq T < t_{k+1} \), then \(\Omega(b, t_{j+1}, t_k) \leq \Omega(b, U, T) \leq \Omega(b, t_j, t_{k+1}) \), implying (2.2). Now fix \(j \) and \(k \) and let \(h = \sqrt{(k - 1) \log_2 S} - 4 \). For any integer \(l \geq 0 \),

\[
\sum_{\Omega(b, t_j, t_k) = l} \frac{1}{b} \ll \prod_{p \leq t_j} \left(1 + \frac{1}{p} \right) \prod_{t_k < p \leq x} \left(1 + \frac{1}{p} \right) \frac{1}{l!} \left(\sum_{t_j < p \leq t_k} \frac{1}{p} \right)^l \ll e^{-k \log x} \frac{(k - j + 1)^l}{l!}.
\]

Summing over \(|l - (k - j + 1)| \geq h \) using Lemma 2.1, we see that for each pair \((j, k) \), there are

\[
\ll \frac{x(\log_2 x)^3}{\log x} e^{-(k-j)Q(\beta)}
\]

primes satisfying (ii), where \(\beta = 1 + \frac{h}{k - j + 1} \). Here we used the fact that \(Q(1 - \lambda) > Q(1 + \lambda) \) for \(0 < \lambda < 1 \). By the integral representation of \(Q(x) \), we have \(Q(1 + \lambda) \geq \frac{1}{2} \log(1 + \lambda) \). Also, \(h \geq 0.99 \sqrt{k \log_2 S} \geq 990 \).

If \(h \geq k - j + 1 \), then

\[
(k - j)Q(\beta) \geq \frac{h(k - j) \log 2}{2(k - j + 1)} \geq \frac{h \log 2}{4} \geq \frac{\log_2 S}{6},
\]
and if \(h < k - j + 1 \), then
\[
(k - j)Q(\beta) \geq \frac{(k - j) \log 2}{2} \left(\frac{h}{k - j + 1} \right)^2 \geq \frac{h^2}{3(k - j + 1)} \geq \frac{\log_2 S}{4}.
\]

As there are \(\leq (\log_2 x)^2 \) choices for the pair \((j, k)\), the proof is complete. \(\square \)

Lemma 2.7. There are \(O\left(\frac{x \log_2 x}{y}\right) \) numbers \(m \in \mathcal{V}(x) \) with either \(m \) or some \(n \in \phi^{-1}(m) \) divisible by \(d^2 \) for some \(d > Y \).

Proof. If \(\phi(n) \leq x \), then from a standard estimate, \(n \ll x \log_2 x \). Now \(\sum_{d > Y} z/d^2 \ll z/Y \). \(\square \)

Our next result says roughly that most totients have a preimage which is \(S \)-normal for an appropriate \(S \), and that neither the totient nor preimage has a large square factor or a large number of prime factors.

Definition 2. A totient \(m \) is said to be \(S \)-nice if

(a) \(\Omega(m) \leq 5 \log_2 m \),

(b) \(d^2|m \) or \(d^2|n \) for some \(n \in \phi^{-1}(m) \) implies \(d \leq S^{1/2} \),

(c) for all \(n \in \phi^{-1}(m) \), \(n \) is divisible only by \(S \)-normal primes.

Now let
\[
W(x) = \max_{2 \leq y \leq x} \frac{\log y}{y}.
\]

Lemma 2.8. Uniformly for \(x \geq 3 \) and \(2 \leq S \leq x \), the number of \(m \in \mathcal{V}(x) \) which are not \(S \)-nice is
\[
O\left(\frac{xW(x)(\log_2 x)^6}{\log x}(\log S)^{-1/6}\right).
\]

Proof. We may suppose \(S \geq \exp\{\log_2 x\}^{36} \), for otherwise the lemma is trivial. By Lemmas 2.2 and 2.7 the number of totients failing (a) or failing (b) is \(O(x/\log^2 x) \). Suppose \(p \) is a prime divisor of \(n \) for some \(n \in \phi^{-1}(m) \). If \(n = n' p \) then either \(\phi(n) = (p - 1)\phi(n') \) or \(\phi(n) = p\phi(n') \), so in either case \(\phi(n') \leq x/(p - 1) \). Let \(G(t) \) denote the number of primes \(p \leq t \) which are not \(S \)-normal. By Lemma 2.6 the number of \(m \) failing (c) is at most
\[
2 \sum_p V\left(\frac{x}{p - 1}\right) \ll \sum_p \frac{xW(x/(p - 1))}{(p - 1) \log x} \ll xW(x) \int_2^{x/2} \frac{G(t) dt}{t^2 \log(x/t)} \ll \frac{xW(x)(\log_2 x)^6}{\log x}(\log S)^{-1/6}. \quad \square
\]

3 The fundamental simplex

For a natural number \(n \), write \(n = q_1 q_2 \cdots \), where \(q_i \geq q_2 \geq \cdots \), \(q_i \) are prime for \(i \leq \Omega(n) \) and \(q_i = 1 \) for \(i > \Omega(n) \). For \(\mathcal{S} \subseteq [0, 1]^L \), let \(\mathcal{R}_L(\mathcal{S}; y) \) denote the set of integers \(n \) with \(\Omega(n) \leq L \) and
\[
\left(\frac{\max(0, \log_2 q_1)}{\log_2 y}, \ldots, \frac{\max(0, \log_2 q_L)}{\log_2 y}\right) \in \mathcal{S},
\]
where \(\max(0, \log_2 1) \) is defined to be 0. Also set
\[
R_L(\mathcal{S}; y) = \sum_{n \in \mathcal{R}_L(\mathcal{S}; y)} \frac{1}{\phi(n)}.
\]
Heuristically, \(R_L(\mathcal{S}; x) \approx (\log_2 y)^L \text{Vol}(\mathcal{S}) \). Our result in this direction relates \(R_L(\mathcal{S}; y) \) to the volume of perturbations of \(\mathcal{S} \). Specifically, letting \(\mathcal{S} + v \) denote the translation of \(\mathcal{S} \) by the vector \(v \), for \(\varepsilon > 0 \) let
\[
\mathcal{S}^{+\varepsilon} = \bigcup_{v \in [-\varepsilon, \varepsilon]^L} (\mathcal{S} + v), \quad \mathcal{S}^{-\varepsilon} = \bigcap_{v \in [-\varepsilon, \varepsilon]^L} (\mathcal{S} + v).
\]

Lemma 3.1. Let \(y \geq 2000 \), \(\varepsilon = 1/\log_2 y \) and suppose \(\mathcal{S} \subseteq \{ x \in \mathbb{R}^L : 0 \leq x_L \leq \cdots \leq x_1 \leq 1 \} \). Then
\[
(\log_2 y)^L \text{Vol}(\mathcal{S}^{-\varepsilon}) \ll R_L(\mathcal{S}; y) \ll (\log_2 y)^L \text{Vol}(\mathcal{S}^{+\varepsilon}).
\]

Proof. For positive integers \(m_1, \ldots, m_L \), let \(B(\mathbf{m}) = \prod_{i=1}^L (m_i - 1) \varepsilon, m_i \varepsilon \). If \(\mathcal{B} \) is the set of boxes \(B(\mathbf{m}) \) entirely contained in \(\mathcal{S} \), then the union of these boxes contains \(\mathcal{S}^{-\varepsilon} \). Moreover, for each box, \(m_1 > m_2 > \cdots > m_L \geq 1 \). For \(m \geq 1 \), there is at least one prime in \(I_m := [\exp(e^{-1}), \exp(e^m)] \), thus
\[
R_L(\mathcal{S}; y) \geq \sum_{B(\mathbf{m}) \in \mathcal{B}} \prod_{i=1}^L \sum_{m_i - 1 \leq p < m_i \leq \log_2 p} \frac{1}{p - 1}.
\]

For the second part, suppose \(\mathcal{S} \) is nonempty and let \(\mathcal{B} \) be the set of boxes \(B(\mathbf{m}) \) which intersect \(\mathcal{S} \), so that their union is contained in \(\mathcal{S}^{+\varepsilon} \). For \(B(\mathbf{m}) \in \mathcal{B} \), let \(j_m = |\{ i : m_i = m \}| \). Then
\[
R_L(\mathcal{S}; y) \leq \sum_{B(\mathbf{m}) \in \mathcal{B}} \prod_{m \geq 1} \sum_{j \geq 1} U(m, j_m), \quad U(m, j) = \sum_{r_1 \cdots r_j, r_i \in I_m} \frac{1}{\phi(r_1 \cdots r_j)}.
\]

Here each \(r_i \) is prime, except that when \(m = 0 \) we allow \(r_i = 1 \) also. We have \(U(0, j) \ll \sum_{p+ m \leq 13} 1/\phi(n) \ll 1 \). Now suppose \(m \geq 1 \) and let \(j = j_m \). For each \(r_1, \ldots, r_j \), write \(r_1 \cdots r_j = k h \), where \((k, h) = 1 \), \(k \) is squarefree and \(h \) is squarefull. Also let \(\ell = \omega(k) \). Setting
\[
t_m = \sum \frac{1}{\phi(h)}, \quad s_m = \sum_{p \in I_m} \frac{1}{p - 1} = 1 + O(e^{-m}),
\]
we have
\[
U(m, j) \ll s_m^j \ell! + t_m \sum_{\ell = 0}^{j-2} s_m^\ell \frac{j!}{\ell!} \ll s_m^j + t_m e^{s_m} \ll 1 + O(e^{-m}).
\]

We conclude that
\[
R_L(\mathcal{S}; y) \ll \sum_{B(\mathbf{m}) \in \mathcal{B}} \prod_{m \geq 1} (1 + O(e^{-m})) \ll |\mathcal{B}| \ll (\log_2 y)^L \text{Vol}(\mathcal{S}^{+\varepsilon}). \quad \Box
\]

Suppose \(\xi_i > 0 \) for \(0 \leq i \leq L - 1 \). Recall (1.3) and let \(\mathcal{S}_L^+(\xi) \) be the set of \((x_1, \ldots, x_L) \in \mathbb{R}^L \) satisfying
\[
\begin{align*}
(I_0) & \quad a_1 x_1 + a_2 x_2 + \cdots + a_L x_L \leq \xi_0, \\
(I_1) & \quad a_1 x_2 + a_2 x_3 + \cdots + a_L x_L \leq \xi_1 x_1, \\
\vdots & \quad \vdots \\
(I_{L-2}) & \quad a_1 x_{L-1} + a_2 x_L \leq \xi_{L-2} x_{L-2}, \\
(I_{L-1}) & \quad 0 \leq x_L \leq \xi_{L-1} x_{L-1}.
\end{align*}
\]
and let \(\mathcal{S}_L(\xi) \) be the subset of \(\mathcal{S}_L^+(\xi) \) satisfying \(0 \leq x_L \leq \cdots \leq x_1 \leq 1 \). Define
\[
T_L^+(\xi) = \text{Vol}(\mathcal{S}_L^+(\xi)), \quad T_L(\xi) = \text{Vol}(\mathcal{S}_L(\xi)).
\]
For convenience, let \(1 = (1, 1, \ldots, 1) \), \(\mathcal{S}_L = \mathcal{S}_L(1) \) (the “fundamental simplex”), \(T_L = \text{Vol}(\mathcal{S}_L) \), \(\mathcal{S}_L^* = \mathcal{S}_L^*(1) \), and \(T_L^* = \text{Vol}(\mathcal{S}_L^*) \). We first relate \(\mathcal{S}_L^*(\xi) \) to \(\mathcal{S}_L \). The next lemma is trivial.

Lemma 3.2. If \(\xi_i \geq 1 \) for all \(i \), and \(x \in \mathcal{S}_L(\xi) \), then \(y \in \mathcal{S}_L \), where \(y_i = (\xi_0 \cdots \xi_{i-1})^{-1} x_i \). If \(0 < \xi_i \leq 1 \) for all \(i \) and \(y \in \mathcal{S}_L \), then \(x \in \mathcal{S}_L(\xi) \), where \(x_i = (\xi_0 \cdots \xi_{i-1}) y_i \).

Corollary 3.3. Define \(H(\xi) = \xi_0^k \xi_1^{k-1} \cdots \xi_{L-2}^2 \xi_{L-1} \). We have \(T_L \leq T_L(\xi) \leq H(\xi) T_L \) when \(\xi_i \geq 1 \) for all \(i \), and \(H(\xi) T_L \leq T_L(\xi) \leq T_L \) when \(0 < \xi_i \leq 1 \) for all \(i \).

In applications, \(H(\xi) \) will be close to 1, so we concentrate on bounding \(T_L \).

Lemma 3.4. We have

\[
T_L^* \asymp T_L \asymp \frac{\theta^{L(L+3)/2}}{L!} \left(F'(\theta) \right)^L.
\]

Corollary 3.5. If \(H(\xi) \asymp 1 \), then

\[
T_L(\xi) \asymp T_L \asymp \frac{\theta^{L(L+3)/2}}{L!} \left(F'(\theta) \right)^L.
\]

Furthermore, if \(L = 2C(\log_3 x - \log_4 x) - \Psi \), where \(0 \ll \Psi \ll \sqrt{\log_3 x} \), then

\[
(\log_2 x)^2 T_L(\xi) = \exp \left\{ C(\log_3 x - \log_4 x)^2 + D \log_3 x - (D + 1/2 - 2C) \log_4 x \right. \\
- \left. \Psi^2/4C - (D/2C - 1)\Psi + O(1) \right\}.
\]

If \(L = [2C(\log_3 x - \log_4 x)] - \Psi > 0 \), then

\[
(\log_2 x)^2 T_L(\xi) \ll \exp \left\{ C(\log_3 x - \log_4 x)^2 + D \log_3 x - (D + 1/2 - 2C) \log_4 x \right. \\
- \left. \Psi^2/4C - (D/2C - 1)\Psi \right\}.
\]

Proof. The second and third parts follow from (1.5), (1.6) and Stirling’s formula. \(\square \)

To prove Lemma 3.4, we first give a variant of a standard formula for the volume of tetrahedra, then an asymptotic for a sequence which arises in the proof.

Lemma 3.6. Suppose \(v_0, v_1, \ldots, v_L \in \mathbb{R}^L \), any \(L \) of which are linearly independent, and

\[
(3.2) \quad v_0 + \sum_{i=1}^L b_i v_i = 0,
\]

where \(b_i > 0 \) for every \(i \). Also suppose \(\alpha > 0 \). The volume, \(V \), of the simplex

\[
\{ x \in \mathbb{R}^L : v_i \cdot x \leq 0 (1 \leq i \leq L), v_0 \cdot x \leq \alpha \}
\]

is

\[
V = \frac{\alpha^L}{L!(b_1 b_2 \cdots b_L) \det(v_1, \ldots, v_L)}.
\]

Proof. We may assume that \(\alpha = b_1 = b_2 = \cdots = b_L = 1 \), for the general case follows by suitably scaling the vectors \(v_i \). The vertices of the simplex are \(0, p_1, \cdots, p_L \), where \(p_i \) satisfies

\[
\begin{cases}
 p_i \cdot v_j = 0 & (1 \leq j \leq L, j \neq i) \\
 p_i \cdot v_0 = 1.
\end{cases}
\]

Taking the dot product of \(p_i \) with each side of (3.2) yields \(v_i \cdot p_i = -1 \), so \(p_i \) lies in the region \(\{ v_i \cdot x \leq 0 \} \). Also, \(0 \) lies in the half-plane \(v_0 \cdot x \leq \alpha \). The given region is thus an \(L \)-dimensional “hyper-tetrahedron” with volume \(|\det(p_1, \cdots, p_L)|/L! \) and \((p_1, \cdots, p_L)(v_1, \cdots, v_L)^T = -I \), where \(I \) is the identity matrix. Taking determinants gives the lemma. \(\square \)
Having $2L - 2$ inequalities defining \mathcal{J}_L creates complications estimating T_L, so we devise a scheme where only $L + 1$ inequalities are considered at a time, thus allowing the use of Lemma 3.6. The numbers b_i occurring in that lemma will come from the sequence $\{g_i\}$, defined by

$$g_0 = 1, \quad g_i = \sum_{j=1}^{i} a_j g_{i-j} \quad (i \geq 1).$$

Lemma 3.7. For every $i \geq 1$, $|g_i - \lambda g^{-i}| \leq 5$, where $\lambda = \frac{1}{gF'(g)}$.

Proof. Write $1 - F(z) = (1 - z/g)l(z)$ and $l(z) = \sum_{n=0}^{\infty} l_n z^n$. By (1.4),

$$l_n = g^{-m} \left(1 - \sum_{k=1}^{n} a_k g^k \right) = \sum_{k=1}^{\infty} g^k a_{n+k} > 0.$$

Next consider $k(z) = (1 - z)^2 l(z) = \sum_{n=0}^{\infty} k_n z^n$. We have $k_0 = 1$, $k_1 = l_1 - 2 = g^{-1} - a_1 - 2 < 0$ and

$$k_n = l_n - 2l_{n-1} + l_{n-2} - \sum_{k=1}^{\infty} g^k (a_{n+k} - 2a_{n+k-1} + a_{n+k-2}) < 0 \quad (n \geq 2).$$

Also, $k_n = O(1/n^2)$, and $\sum_{n \geq 1} k_n = -1$. Thus, $k(z)$ is analytic for $|z| < 1$, continuous on $|z| \leq 1$, and nonzero for $|z| \leq 1, z \neq 1$. Further,

$$\mathcal{R}k(z) \geq 1 + k_1 \mathcal{R}z - (1 + k_1) = |k_1| \mathcal{R}(1 - z),$$

so that for $|z| < 1$,

$$\frac{1}{l(z)} \leq \frac{|1-z|^2}{|k_1| \mathcal{R}(1 - z)} \leq \frac{1}{|k_1|} \max_{|z|=1} \frac{|1-z|^2}{\mathcal{R}(1 - z)} \leq \frac{2}{|k_1|} < 3.7.$$

Now let

$$e(z) = \sum_{n=0}^{\infty} \left(g_n - \lambda g^{-i} \right) z^n = \frac{1}{1 - F(z)} - \frac{\lambda}{1 - z/g} = \frac{1/l(z) - 1/l(g)}{1 - z/g}.$$

From the preceding arguments, we see that $e(z)$ is analytic for $|z| < 1$ and continuous on $|z| \leq 1$. By the maximum modulus principle, $\max_{|z|=1} |e(z)| \leq (3.7 + \lambda)/|1/g - 1| \leq 5$. By Cauchy’s integral formula, the Taylor coefficients of $e(z)$ are all bounded by 5 in absolute value. \hfill \square

Remark 1. The above proof is based on [17], and is much simpler than the original proof given in [14]. With more work, one can show that for $i \geq 1$, the numbers $g_i - \lambda g^{-i}$ are negative, increasing and have sum $-1 + \lambda/(1 - g) = -0.2938\ldots$

Proof of Lemma 3.4. The basic idea is that \mathcal{J}_L^* is only slightly larger than \mathcal{J}_L. In other words, the inequalities $1 \geq x_1 \geq \cdots \geq x_{L-1}$ are relatively insignificant. Set

$$\mathcal{V}_0 = \mathcal{J}_L^* \cap \{x_1 > 1\}, \quad \mathcal{V}_i = \mathcal{J}_L^* \cap \{x_i < x_{i+1}\} \quad (1 \leq i \leq L - 2)$$

and $V_i = \text{Vol}(\mathcal{V}_i)$. Evidently

$$T_L^* - \sum_{i=0}^{L-2} V_i \leq T_L \leq T_L^*.$$

Let e_1, \cdots, e_L denote the standard basis for \mathbb{R}^L, i.e. $e_i \cdot x = x_i$. For $1 \leq i \leq L - 2$, set

$$v_i = -e_i + \sum_{j=1}^{L-i} a_j e_{i+j}$$

(3.5)
and also
\[v_0 = \sum_{j=1}^{L} a_j e_j, \quad v_{L-1} = -e_{L-1} + e_L, \quad v_L = -e_L. \]

For convenience, define
\[g_i^* = 1, \quad g_i^* = g_i + (1 - a_1)g_{i-1} \quad (i \geq 1). \]

Thus, for \(1 \leq j \leq L - 2\), inequality \((I_j)\) may be abbreviated as \(v_j \cdot x \leq 0\). Also, inequality \((I_0)\) is equivalent to \(v_0 \cdot x \leq 1\) and \((I_{L-1})\) is represented by \(v_{L-1} \cdot x \leq 0\) and \(v_L \cdot x \leq 0\). By \((3.5)\), \((3.6)\) and \((3.7)\),
\[e_i = -\sum_{j=1}^{L-1} g_{j-i} v_j - g_{L-i}^* v_L. \]

It follows that
\[v_0 + \sum_{j=1}^{L-1} g_j v_j + g_L^* v_L = 0. \]

Since \(|\det(v_1, \ldots, v_L)| = 1\), Lemma 3.6 and \((3.8)\) give
\[T_L^* = \frac{1}{L!(g_1 \cdots g_{L-1})g_L^*}. \]

Lemma 3.7 now implies the claimed estimate for \(T_L^*\).

For the remaining argument, assume \(L\) is sufficiently large. We shall show that
\[\sum_{i=0}^{L-2} V_i < 0.61 T_L^*, \]
which, combined with \((3.4)\), \((3.9)\) and Lemma 3.7, proves Lemma 3.4.

Combining \(x_1 \geq 1\) with \(v_0 \cdot x \leq 1\) gives \(u \cdot x \leq 0\), where \(u = v_0 - e_1\). By \((3.7)\) and \((3.8)\),
\[u = \sum_{j=1}^{L-1} (g_{j-1} - g_j)v_j + (g_{L-1}^* - g_L^*)v_L. \]

Thus
\[v_0 + \frac{a_1}{1-a_1} u + \sum_{j=2}^{L} b_j v_j = 0, \]
where
\[b_j = g_j + \frac{a_1}{1-a_1}(g_j - g_{j-1}) \quad (2 \leq j \leq L - 1), \]
\[b_L = g_L^* + \frac{a_1}{1-a_1}(g_L^* - g_{L-1}^*). \]

Lemma 3.7 implies \(b_j > (9/7)g_j\) for large \(j\). In addition, \(|\det(u, v_2, \ldots, v_L)| = (1 - a_1)\). By Lemma 3.6
\[V_0 \ll \frac{1}{L!(b_2 b_3 \cdots b_L)} \ll \left(\frac{7}{9}\right)^L T_L^*. \]

We next show that
\[V_i = \frac{1}{(1-a_1)L!(g_1 \cdots g_{i-1})A_i B_i} \prod_{j=i+2}^{L-1} \left(\frac{1}{g_j + B_j h_{j-i}}\right) \frac{1}{g_L^* + B_i h_{L-i}^*}, \]
where
\[A_i = g_i + \frac{g_{i+1}}{1 - a_i}, \quad B_i = \frac{g_{i+1}}{1 - a_i}, \quad h_l = g_l - g_{l-1}, \quad h_l^* = h_l + (1 - a_1)h_{l-1}. \]

In \(\mathcal{U}_i \) we have \((I_i) \) and \(x_i \leq x_{i+1} \), hence
\[x_{i+1} \geq \frac{1}{1 - a_1}(a_2x_{i+2} + \cdots + a_{L-i}x_L) \geq a_2x_{i+2} + a_2x_{i+3} + \cdots + a_{L-i-1}x_L. \]

The condition \(v_{i+1} \cdot x = 0 \) is therefore implied by the other inequalities defining \(\mathcal{U}_i \), which means
\[V_i = \text{Vol}\{v_0 \cdot x \leq 1; v_j \cdot x \leq 0 (1 \leq j \leq L, j \neq i + 1); (e_i - e_{i+1}) \cdot x \leq 0\}. \]

We now deduce numerical estimates for \(V_i/T_L^* \). Using Lemma 3.6 plus explicit computation of \(g_i \) for small \(i \), gives \(A_i > 4 \) for all \(i \) and
\[g_j + B_ih_{j-i} > 1.44g_j \quad (i \text{ large}, \text{ say } i \geq L - 100), \]
\[g_j + B_ih_{j-i} > 1.16g_j \quad (i \geq 1, j \geq i + 2), \]
\[g_L^* + B_ih_{L-i}^* > 1.44g_L^* \quad (i < L - 2), \]
\[g_L^* + B_{L-2}h_{L-1}^* > 1.19g_L^*. \]

From these bounds, plus (3.9) and (3.12), it follows that
\[V_{L-2}/T_L^* < (4 \cdot 1.19)^{-1}, \]
\[V_i/T_L^* < (4 \cdot 1.44^{L-i-1})^{-1} \quad (L - 99 \leq i \leq L - 3), \]
\[V_i/T_L^* < (4 \cdot 1.44^{99} \cdot 1.16^{L-i-100})^{-1} \quad (1 \leq i \leq L - 100). \]

Combining these bounds with (3.11) yields
\[\sum_{i=0}^{L-2} V_i/T_L^* \leq O((4/5)^L) + \frac{1}{4} \left(\frac{1}{1.19} + \frac{1.44^{-2}}{1 - 1.44^{-1}} + \frac{1.44^{-99}}{1 - 1/1.16} \right) < 0.61, \]
which implies (3.10). This completes the proof of Lemma 3.4.

Important in the study of \(\mathcal{S}_L^* \) and \(\mathcal{S}_L^* \) are both global bounds on the numbers \(x_i \) (given below) as well as a determination of where “most” of the volume lies (given below in Lemma 3.10, Section 6).

Lemma 3.8. Let \(x_0 = 1 \). If \(x \in \mathcal{S}_L^* \), then \(x_i \geq g_{j-i}x_j \) for \(0 \leq i \leq j \leq L \). If \(x \in \mathcal{S}_L(\xi_i) \) and \(\xi_i \geq 1 \) for all \(i \), then \(x_j \leq 4.771\xi_1 \cdots \xi_{j-1}g^{j-i}x_i \) for \(0 \leq i < j \leq L \).

Proof. Fix \(i \) and note that the first inequality is trivial for \(j = i \). Assume \(k \leq i - 2 \) and it holds for \(j \geq k + 1 \). Then by (\(I_k \)) and the induction hypothesis,
\[x_k \geq \sum_{h=1}^{L-k} a_h x_{k+h} \geq \sum_{h=1}^{i-k} a_h g_{i-k-h} x_i = g_{i-k} x_i. \]

By Lemma 3.7, the maximum of \(g^{-i}/g_i \) is 4.7709 \ldots, occurring at \(i = 2 \). The second inequality follows by Lemma 3.7.
Careful analysis of \(\mathcal{S}_L \) reveals that most of the volume occurs with \(x_i \approx \frac{L^{i+1}}{L^i} \) for each \(i \), with the “standard deviation” from the mean increasing with \(i \). This observation plays an important role in subsequent arguments. For now, we restrict our attention to the variable \(x_L \), which will be useful in estimating sums over numbers \(n \), whose \(L \) largest prime factors lie in a specific set, and whose other prime factors are unconstrained. Results concerning the size of \(x_i \) for \(i < L \) will not be needed until section 6.

Lemma 3.9. Let \(L \geq 3 \), \(\alpha \geq 2\varepsilon > 0 \) and \(\xi_i \geq 1 \) for each \(i \). If \(x \in \mathcal{S}_L^*(\xi) \cap \{ x_L \geq \alpha \}^+ \), then \(y \in \mathcal{S}_L^* \cap \{ y_L \geq \alpha' \} \), where \(\alpha' = (\alpha - \varepsilon)/(\xi_0 \cdot \xi_{L-1}) \). \(\xi'_L - 1 \) and for \(1 \leq i \leq L - 2 \),

\[
y_i = \frac{x_i}{\xi_0 \cdot \xi_{i-1}}, \quad \xi'_i = \xi_i \left(1 + \frac{10g^{L-i}(1 + a_1 + \cdots + a_{L-i})\xi_0 \cdot \xi_{L-1}}{\alpha/\varepsilon} \right).
\]

Proof. By assumption, for some \(x' \in \mathcal{S}_L^*(\xi) \) with \(x'_L \geq \alpha \), \(|x_i - x'_i| \leq \varepsilon \) for all \(i \). By Lemma 3.8

\[
x_i \geq x'_i - \varepsilon \geq x'_i - \varepsilon \geq \frac{\theta^{L-x'_L}}{1000 \cdot \xi_{L-1}} \geq \frac{\theta^{L-\alpha}}{1000 \cdot \xi_{L-1}} \quad (i \leq L - 1).
\]

Hence, by \((I)_i\), if \(i \leq L - 2 \) then

\[
\sum_{j=1}^{L-i} a_j x_{i+j} \leq \sum_{j=1}^{L-i} a_j (x'_{i+j} + \varepsilon) \leq \xi_i x'_i + \varepsilon(a_1 + \cdots + a_{L-i}) \leq \xi'_i x_i.
\]

Lastly,

\[
x_{L-1} \geq x'_{L-1} - \varepsilon \geq \xi_{L-1} x'_L - \varepsilon \geq \xi_{L-1} \max(\varepsilon, x_L - 2\varepsilon) \geq \frac{x_L}{3\xi_{L-1}} = \frac{x_L}{\xi_{L-1}}.
\]

This shows that \(x \in \mathcal{S}_L^*(\xi') \) and \(x_L \geq \alpha - \varepsilon \). Finally, by Lemma 3.2, \(y \in \mathcal{S}_L^* \) and \(y_L \geq \alpha' \).

The next lemma shows that \(x_L \approx g^L/L \) for most of \(\mathcal{S}_L \), significantly smaller than the global upper bound given by Lemma 3.8

Lemma 3.10. (i) If \(\alpha \geq 0 \), then

\[
\text{Vol}(\mathcal{S}_L^* \cap \{ x_L \leq \alpha \}) \ll T_L \alpha L g^{-L}
\]

and

\[
\text{Vol}(\mathcal{S}_L^* \cap \{ x_L \geq \alpha \}) \ll e^{-\alpha L g L} T_L.
\]

(ii) If \(\alpha \geq 0 \), \(\xi_i \geq 1 \) for each \(i \), \(H(\xi) \leq 2 \) and \(\varepsilon \leq 10g^L/L \), then

\[
\text{Vol}(\mathcal{S}_L^*(\xi) \cap \{ x_L \geq \alpha \})^+ \ll e^{-C_0 \alpha L g L} T_L
\]

for some absolute constant \(C_0 > 0 \).

Proof. Consider first \(x \in \mathcal{S}_L^* \cap \{ x_L \leq \alpha \} \). Since \((x_1, \ldots, x_{L-1}) \in \mathcal{S}_L^* \), the volume is \(\leq \alpha T_{L-1}^* \). Applying Lemma 3.4 gives the first part of (i). Next, suppose \(x \in \mathcal{S}_L^* \cap \{ x_L \geq \alpha \} \). If \(\alpha > 1/L \), the volume is zero by Lemma 3.8. Otherwise, set \(y_i = x_i - \alpha g_{L-i} \) for each \(i \). We have \(y_{L-1} \geq y_L \geq 0 \), \(v_j \cdot y \leq 0 \) for \(1 \leq j \leq L - 2 \), and \(v_0 \cdot y \leq 1 - \alpha g_L \). By Lemmas 3.4 and 3.6 the volume of such \(y \) is \(\leq (1 - \alpha g_L)^L T_L \). The second part of (i) now follows.

For (ii), first suppose \(\alpha > 2 \varepsilon \). By Lemma 3.9 Corollary 3.3 and part (i),

\[
\text{Vol}(\mathcal{S}_L^*(\xi) \cap \{ x_L \geq \alpha \})^+ \ll H(\xi') \text{Vol}(\mathcal{S}_L^* \cap \{ y_L \geq \alpha' \}) \ll T_L e^{-\alpha' L g L},
\]

for some absolute constant \(C_0 > 0 \).
where α' is defined in Lemma 3.9. Since $H(\xi) \leq 2$, $H(\xi') \ll 1$ and hence $\alpha' \gg \alpha$. Next, assume $\alpha < 2\varepsilon$.

Without loss of generality suppose $\alpha = 0$, since $e^{-2\varepsilon \log L} \gg 1$ by Lemma 3.7, (3.6) and the assumed upper bound on ε. For x in question, let $r = \max\{i \leq L : x_i \geq 2\varepsilon\}$. Using Lemma 3.4 and part (i),

$$\Vol([\mathcal{S}_L^r(\xi) \cap \{x_L \geq \alpha\}]^{+\varepsilon}) \ll \sum_{r=0}^{L} (2\varepsilon)^{L-r} \Vol(\mathcal{S}_L^r((\xi_0, \ldots, \xi_{r-1}))) \ll T_L \sum_{h=0}^{L} (2\varepsilon)^{h} \left(\frac{T_L-h}{T_L} \right)^{h} \ll T_L. \quad \Box$$

4 The upper bound for $V(x)$

In this section, we prove that

$$(4.1) \quad V(x) \ll \frac{xZ(x)}{\log x}, \quad Z(x) = \exp\{C(\log_3 x - \log_4 x)^2 + D(\log_3 x) - (D + 1/2 - 2C) \log_4 x\}. \quad \text{We begin with the basic tools needed for the proof, which show immediately the significance of the set $\mathcal{S}_L(\xi)$. First, recall the definition of an S-normal prime (2.1)–(2.2). Also, factor each positive integer}$$

$$n = q_0(n)q_1(n) \cdots, \quad q_0(n) \geq q_1(n) \geq \cdots,$$

$q_i(n)$ is prime for $i < \Omega(n)$ and $q_i(n) = 1$ for $i \geq \Omega(n)$. Define

$$x_i(n; x) = \frac{\max(0, \log_2 q_i(n))}{\log_2 x}.$$

Lemma 4.1. Suppose y is sufficiently large, $k \geq 2$ and

$$1 \geq \theta_1 \geq \cdots \geq \theta_k \geq \frac{\log_2 S}{\log_2 y},$$

where $S \geq \exp\{(\log_2 y)^{36}\}$. Let $\log_2 E_j = \theta_j \log_2 y$ for each j. The number of S-nice totients $v \leq y$ with a pre-image satisfying

$$q_j(n) \geq E_j \quad (1 \leq j \leq k)$$

is

$$\ll y(\log y)^{A+B}(\log_2 y)(\log S)^{k\log k} + \frac{y}{(\log y)^2},$$

where

$$A = -\sum_{j=1}^{k} a_j \theta_j, \quad B = 4 \sqrt{\frac{\log_2 S}{\log_2 y}} \sum_{j=2}^{k+1} \theta_{j-1}^{1/2} j \log j.$$

Proof. Let $F = \min(E_1, y^{1/(20 \log_2 y)})$, $E_{k+1} = S$, and $\theta_{k+1} = \log_2 S/\log_2 y$. Let m be the part of v composed of primes in $(S, F]$. Then $m \leq F^{\Omega(v)} \leq y^{1/2}$. By Lemma 2.4, the number of totients with a given m is

$$\ll \frac{y}{m \log F} \leq \frac{y}{m}(\log y)^{\theta_{k+1} - \theta_1}(\log_2 y).$$

Let

$$\delta_j = \frac{\sqrt{\log_2 S \log_2 E_{j-1}}}{\log_2 y}$$

for each j. Since the primes $q_i(n)$ are S-normal, by (2.2)

$$\Omega(m, E_j, E_{j-1}) \geq j(\theta_{j-1} - \theta_j - \delta_j) \log_2 y =: R_j \quad (2 \leq j \leq k+1).$$
Therefore, the total number, N, of totients counted satisfies

$$N \ll y (\log y)^{\theta_{k+1} - \theta_1} (\log_2 y)^{k+1} \prod_{j=2}^{k+1} \sum_{r \neq R_j} \frac{t_j^r}{\prod_{i=1}^{r} r_j},$$

where

$$t_j = \sum_{E_j \leq p \leq E_{j-1}} \frac{1}{p} \leq (\theta_{j-1} - \theta_j) \log_2 y + 1 := s_j.$$

If $\delta_j \leq \frac{1}{2} (\theta_{j-1} - \theta_j)$, then

$$s_j \leq \frac{1}{\delta} \left(1 + \frac{3\delta_j}{\theta_{j-1} - \theta_j} \right)$$

and Lemma 2.1 implies

$$\sum_{r \geq R_j} \sum_{r \neq R_j} \frac{s_j}{r/l} \leq \left(\frac{\delta \cdot s_j}{R_j} \right) \leq (\log y)^{j(\theta_{j-1} - \theta_j - \delta_j)(1 - \log_j + 3\delta_j)/(\theta_{j-1} - \theta_j)}$$

$$\leq (\log y)^{(j - j \log_j)/(\theta_{j-1} - \theta_j) + (j \log_j + 2j)\delta_j}.$$

If $\delta_j > \frac{1}{2} (\theta_{j-1} - \theta_j)$, then the sum on r is

$$\leq e^{s_j} \leq e (\log y)^{(j - j \log_j)/(\theta_{j-1} - \theta_j) + (2j \log_j)\delta_j}.$$

Therefore,

$$N \ll y (\log y)^{A + B} (\log_2 y) (\log S)^{k+1}\log(k+1) - k \log k.$$

\[\square\]

Lemma 4.2. Recall definitions (1.3). Suppose $k \geq 2$, $0 < \omega < 1/10$ and y is sufficiently large (say $y \geq y_0$). Then the number of totients $v \leq y$ with a pre-image n satisfying

$$a_1 x_1(n; y) + \cdots + a_k x_k(n; y) \geq 1 + \omega$$

is

$$\ll y (\log_2 y)^6 W(y)(\log y)^{-1 - \omega^2/(600k^3 \log k)}.$$

Proof. Assume that

$$\omega^2 > 3600 \frac{\log_3 y}{\log_2 y} k^3 \log k,$$

for otherwise the lemma is trivial. Define S by

$$\log_2 S = \frac{\omega^2}{100k^3 \log k} \log_2 y,$$

so that $S \geq \exp\{ (\log_2 y)^{36} \}$. Let $U(y)$ denote the number of totients in question which are S-nice. By (4.4) and Lemma 2.8, the number of totients not counted by $U(y)$ is

$$\ll y(\log_2 y)^6 W(y)(\log S)^{-1/6} + \frac{y \log_2 y}{S} \ll y(\log_2 y)^6 W(y)(\log y)^{-1 - \omega^2/(600k^3 \log k)}.$$

Let $\varepsilon = \omega/10$, $\alpha = a_1 + \cdots + a_k < k \log k$, and suppose n is a pre-image of a totient counted in $U(y)$. Let $x_i = x_i(n; y)$ for $1 \leq i \leq k$. Then there are numbers $\theta_1, \ldots, \theta_k$ so that $\theta_i \leq x_i$ for each i, each θ_i is an integral multiple of ε/α, $\theta_1 \geq \cdots \geq \theta_k$, and

$$1 + \omega - \varepsilon \ll a_1 \theta_1 + \cdots + a_k \theta_k \ll 1 + \omega.$$
For each admissible k-tuple θ, let $T(\theta; y)$ denote the number of totients counted in $U(y)$ which have some pre-image n satisfying $x_i(n; y) \geq \theta_i$ for $1 \leq i \leq k$. Let j be the largest index with $\theta_j \geq \log_2 S / \log_2 y$. By Lemma 4.1,

$$T(\theta; y) \ll y(\log y)^{A+B}(\log_2 y)(\log S)^{k\log k} + y(\log y)^{-2},$$

where, by (4.5),

$$A = -\sum_{i=1}^{j} a_i \theta_i \leq -(1 + 0.9\omega) + \alpha \frac{\log_2 S}{\log_2 y}$$

and, by (4.4), (4.5) and the Cauchy-Schwartz inequality,

$$B \leq 4 \left(\frac{\log_2 S}{\log_2 y} (1 + \omega) \sum_{j=2}^{k+1} \frac{j \log^2 j}{a_j} \right)^{1/2} \leq 6 \left(\frac{k^3 \log k \log_2 S}{\log_2 y} \right)^{1/2} \leq \frac{3\omega}{5}.$$

Also

$$(\log S)^{2k \log k} = (\log y)^{\omega^2/(50k^2)} \leq (\log y)^{\omega/2000}.$$

Using (4.3), the number of vectors θ is trivially at most

$$\left(\frac{\alpha}{\epsilon} \right)^k \leq \left(\frac{10k \log k}{\omega} \right)^{k/2} \leq (\log_2 y)^{k/2} \leq (\log y)^{\omega^2/3000} \leq (\log y)^{\omega/30000}.$$

Therefore,

$$U(y) \leq \sum_{\theta} T(\theta; y) \ll y(\log y)^{-1-\omega/4},$$

which finishes the proof. \hfill \Box

Before proceeding with the main argument, we prove a crude upper bound for $V(x)$ to get things started using the method of Pomerance [29]. For a large x let $x' \leq x$ be such that $V(x') = x'W(x)/\log x'$. Let $v \leq x'$ be a totient with pre-image n. By Lemma 2.7 the number of v with $p^2|n$ for some prime $p > e^{\sqrt{\log x'}}$ is $O(x'/\log x')$. By Lemma 4.2 the number of v with $a_1 x_1(n; x') + a_2 x_2(n; x') > 1.01$ is $O(x'W(x')/(\log x')^{-1-c})$ for some $c > 0$. On the other hand, if $a_1 x_1(n; x') + a_2 x_2(n; x') \leq 1.01$, then $x_2(n; x') \leq 0.8$. Write $v = \phi(q_0 q_1) m$, so that $m \leq \exp\{(\log x')^{0.8}\} = p_0^2 | n$ and $p_1^2 | n$. Therefore,

$$W(x) \ll 1 + \frac{W(x)}{(\log x')^c} + \sum_{q_1} \sum_{m} \frac{1}{(q_1 - 1)m} \ll W(\exp\{(\log x')^{0.8}\}).$$

Iterating this inequality yields

$$W(x) \ll \exp\{9(\log_3 x)^2\}.$$

Lemma 4.3. We have

$$\sum_{\substack{v \leq y \leq \# \mathcal{P}^+ (v) \leq y}} \frac{1}{v} \ll W(y^{\log_2 y}) \log_2 y \ll \exp\{10(\log_3 y)^2\}.$$

Proof. Let $f(z)$ denote the number of totients $v \leq z$ with $\mathcal{P}^+(v) \leq y$, and set $y' = y^{\log_2 y}$. First suppose $z \geq y'$. If $v > z^{1/2}$, then $\mathcal{P}^+(v) < 2^{1/2} \log_2 y$, so Lemma 2.3 gives $f(z) \ll z/\log^2 z$. For $z < y'$, use the trivial bound $f(z) \ll V(z)$. The lemma follows from $\log_2 y' = \log_2 y + \log_3 y$, (4.6) and partial summation. \hfill \Box
Proof of (4.1). Let \(L = L_0(x) \) and for \(0 \leq i \leq L - 1 \), let
\[
\omega_i = \frac{1}{10000} \exp \left\{ -\frac{L - i}{40} \right\}, \quad \xi_i = 1 + \omega_i.
\]
Then \(H(\xi) \leq 1.1 \). Let \(v \) be a generic totient \(\leq x \) with a pre-image \(n \) satisfying \(n \geq x/\log x \) and \(\Omega(n) \leq 10 \log_2 x \), and set \(x_i = x_i(n; x) \) and \(q_i = q_i(n) \) for \(i \geq 0 \). By Lemma 2.2,
\[
V(x) \leq \sum_{j=0}^{L-2} M_j(x) + N(x) + O\left(\frac{x}{\log x} \right),
\]
where \(M_j(x) \) denotes the number of such totients \(\leq x \) with a pre-image satisfying inequality \((I_i)\) for \(i < j \) but not satisfying inequality \((I_j)\), and \(N(x) \) denotes the number of such totients with every pre-image satisfying \(x \in \mathcal{I}_j(\xi) \). By Lemma 4.2 (with \(\omega = \omega_0 \)) and (4.6), \(M_0(x) \ll x/\log x \). Now suppose \(1 \leq j \leq L - 2 \), and set \(k = L - j \). Let \(n \) be a pre-image of a totient counted in \(M_j(x) \), and set \(w = q_jq_{j+1} \cdots m = \phi(w) \). Since \((I_0)\) holds, \(x_2 \leq \xi_0/(a_1 + a_2) < 0.9 \). It follows that \(q_0 > x^{1/3} \), whence \(m < x^{2/3} \). By the definition of \(M_j(x) \) and (4.7),
\[
x_j \leq \xi_j^{-1} (a_1x_{j+1} + a_2x_{j+2} + \cdots) < \xi_{j-1}^{-1} (a_1x_{j} + a_2x_{j+1} + \cdots) \leq x_{j-1},
\]
whence \(q_{j-1} > q_j \) and \(\phi(n) = \phi(q_0 \cdots q_{j-1})m \). For each \(m \), the number of choices for \(q_0, \ldots, q_{j-1} \) is
\[
\ll \frac{x}{m \log x} R_{j-1}(\mathcal{I}_{j-1}(\xi_0, \ldots, \xi_{j-3}); x),
\]
where we set \(\mathcal{I}_0 = \{0\} \), \(\mathcal{I}_1 = [0, 1] \) and \(\mathcal{I}_2 = [0, 1]^2 \). Let \(f(y) \) be the number of \(m \leq y \). Define \(Y_j \) by \(\log_3 Y_j = k/20 + 1000 \). Since \(m \) is a totient, we have \(f(y) \ll V(y) \), but when \(y > Y_j \) we can do much better. First note that \(w \ll y \log_2 y \). By Lemma 2.3 the number of such \(w \) with \(P^+(w) < y^{1/\log_2 y} \) is \(O(y/(\log y)^3) \). Otherwise, we have \(q_j = P^+(w) \gg y^{1/\log_2 y} \) and
\[
x_j \geq \frac{\log_2 y - \log_3 y}{\log_2 x} \geq \log_2 y \left(1 - \frac{k/20 + 1000}{e^{k/20 + 1000}} \right).
\]
For \(0 \leq i \leq k \), let
\[
z_i = z_i(w; y) = \frac{\log_2 x}{\log_2 y} x_{i+j}.
\]
Since \((I_j)\) fails and \(y > Y_j \), it follows that
\[
a_1z_1 + \cdots + a_kz_k \geq \frac{\log_2 x}{\log_2 y} (1 + \omega_j) x_j \geq (1 + \omega_j/2).
\]
By Lemma 4.2 and (4.6), when \(y \geq \max(y_0, Y_j) \) we have
\[
f(y) \ll \frac{yW(y)(\log_2 y)^6}{\log y} \exp \left\{ -\frac{\omega_j^2}{600k^3 \log k} \log_2 y \right\} \ll \frac{y}{\log y(\log_2 y)^2}.
\]
By partial summation and Lemma 4.3
\[
\sum_{m} \frac{1}{m} \ll 1 + \sum_{m \leq Y_j} \frac{1}{m} \ll W(Y_j) \log_2 Y_j \ll \exp\{k^2/40 + O(k)\}.
\]
Therefore, by Lemma 3.1 Corollary 3.5 (with $\Psi = k + 1$) and Lemma 3.10 (ii) with $\alpha = 0$,
\[
M_j(x) \ll \frac{x}{\log x} R_{j-1}(\mathcal{Y}_{j-1}(\xi_0, \ldots, \xi_{j-1}); x) \exp\{k^2/40\}
\]
(4.8)

\[
\ll \frac{x}{\log x} T_{j-1}(\log_2 x)^{j-1} \exp\{k^2/40\}
\]
\[
\ll \frac{x}{\log x} \exp\{-k^2/4 - ((D + 1)/2C - 1)k\} Z(x).
\]

Thus
\[
\sum_{j=0}^{L-1} M_j(x) \ll \frac{x}{\log x} Z(x).
\]
(4.9)

Next, suppose n is a pre-image of a totient counted in $N(x)$. By Lemma 3.8 $xL \leq 5q^L \leq \frac{20 \log_4 x}{\log_2 x}$. If b is a nonnegative integer, let $N_b(x)$ be the number of totients counted in $N(x)$ with a pre-image $n > x/\log^2 x$ satisfying $b/\log_2 x \leq xL \leq (b + 1)/\log_2 x$. Let $w = q_{L+1} \cdots$ and $q = q_1 \cdots q_L w$. Since $x_2 < 0.9$ we have $q < x^{2/3}$. As $\phi(q) \geq \phi(q_1 \cdots q_L)\phi(w)$, for a fixed q the number of possibilities for q_0 is
\[
\ll \frac{x}{\log x} \frac{1}{\phi(q)} \leq \frac{x}{\log x} \frac{1}{\phi(q_1 \cdots q_L)\phi(w)}, \quad \nu = \phi(w).
\]

By Lemma 3.1 and Lemma 3.10 (ii),
\[
\sum \frac{1}{\phi(q_1 \cdots q_L)} \ll R_L(\mathcal{Y}_L(\xi) \cap \{xL \geq b/\log_2 x\}; x) \ll Z(x)e^{-C_0b/4}.
\]

By Lemma 4.3 and (4.6), $\sum \frac{1}{\nu} \ll \exp(10 \log^2 b)$. Combining these estimates gives
\[
N_b(x) \ll \frac{x}{\log x} Z(x) \exp\{-C_0b/4 + 10 \log^2 b\}.
\]

Summing on b gives $N(x) \ll \frac{x}{\log x} Z(x)$, which together with (4.9) gives (4.1). \qed

5 The lower bound for $V_\nu(x)$

Our lower bound for $V_\nu(x)$ is obtained by constructing a set of numbers with multiplicative structure similar to the numbers counted by $N(x)$ in the upper bound argument. At the core is the following estimate, which is proved using the lower bound method from [26].

Lemma 5.1. Let y be large, $k \geq 1$, $e^e \leq S \leq v_k \leq u_{k-1} < u_{k-2} < \cdots < u_0 < v_0 = y$, $v_1 \leq y^{1/10 \log_2 y}$, $l \geq 0$, $1 \leq r \leq y^{1/10}$, $\delta = \sqrt{\log_2 S/\log_2 y}$. Set $\nu_j = \log_2 v_j/\log_2 y$ and $\mu_j = \log_2 u_j/\log_2 y$ for each j. Suppose also that $\nu_j - 1 - \nu_j \geq 2\delta$ for $2 \leq j \leq k$, $1 \leq d \leq y^{1/100}$ and $P^+(d) \leq \nu_k$. The number of solutions of
\[
(p_0 - 1) \cdots (p_{k-1} - 1) f_1 \cdots f_l d = (q_0 - 1) \cdots (q_{k-1} - 1) e \leq y/r,
\]
in $p_0, \ldots, p_{k-1}, f_1, \ldots, f_l, q_0, \ldots, q_{k-1}, e$ satisfying

1. p_i and q_i are S-normal primes, neither $p_i - 1$ nor $q_i - 1$ is divisible by r^2 for a prime $r \geq v_k$;
2. $p_i \neq q_i$ and $u_i \leq P^+(p_i - 1), P^+(q_i - 1) \leq v_i$ for $0 \leq i \leq k - 1$;
3. $P^+(e f_1 \cdots f_l) \leq v_k$; $\Omega(f_i) \leq 10 \log_2 v_k$ for all i;
4. $p_0 - 1$ has a divisor $\geq y^{1/2}$ which is composed of primes $\geq v_1$.

is
\[
\ll \frac{y}{d} (c_4 \log_2 y)^{6 k} (k + 1)^{\Omega(d)} \log v_k)^{20(k + l) \log(k + l) + 1} \log y}^{-2 + \sum_{i=1}^{k-1} a_i \nu_i + E},
\]
where c_4 is a positive constant and $E = \delta \sum_{i=2}^{k} (i \log i + i) + 2 \sum_{i=1}^{k-1} (\nu_i - \mu_i)$.

Proof. We consider separately the prime factors of each shifted prime lying in each interval \((v_i, v_{i+1}]\). For \(0 \leq j \leq k - 1\) and \(0 \leq i \leq k\), let
\[
s_{i,j}(n) = \prod_{p \leq v_i} p^{a}, \quad s'_{i,j}(n) = \prod_{p \leq v_i} p^{a}, \quad s_i = df_1 \cdots f_t \prod_{j=0}^{k-1} s_{i,j} = e \prod_{j=0}^{k-1} s'_{i,j}.
\]

Also, for \(0 \leq j \leq k - 1\) and \(1 \leq i \leq k\), let
\[
t_{i,j} = \frac{s_{i-1,j}}{s_{i,j}}, \quad t'_{i,j} = \frac{s'_{i-1,j}}{s'_{i,j}}, \quad t_i = \prod_{j=0}^{k-1} t_{i,j} = \prod_{j=0}^{k-1} t'_{i,j}.
\]

For each solution \(\mathcal{A} = (p_0, \ldots, p_{k-1}, f_1, \ldots, f_t, q_0, \ldots, q_{k-1}, e)\) of (5.1), let
\[
\sigma_i(\mathcal{A}) = \{s_i; s_i,0, \ldots, s_i,k-1, f_1, \ldots, f_t; s'_i,0, \ldots, s'_i,k-1, e\};
\]
\[
\tau_i(\mathcal{A}) = \{t_i; t_i,0, \ldots, t_i,k-1, 1, \ldots, 1; t'_i,0, \ldots, t'_i,k-1, 1\}.
\]

Defining multiplication of \((2k + t + 2)\)-tuples by component-wise multiplication, we have
\[
(5.2) \quad \sigma_{i-1}(\mathcal{A}) = \frac{\sigma_i(\mathcal{A})}{\tau_i(\mathcal{A})}.
\]

Let \(\mathcal{G}_i\) denote the set of \(\sigma_i(\mathcal{A})\) arising from solutions \(\mathcal{A}\) of (5.3) and \(\mathcal{T}_i\) the corresponding set of \(\tau_i(\mathcal{A})\). By (5.2), the number of solutions of (5.1) satisfying the required conditions is
\[
|\mathcal{G}_0| = \sum_{\sigma \in \mathcal{G}_1} \sum_{\tau \in \mathcal{T}_1} \sum_{\sigma \tau \in \mathcal{G}_0} 1.
\]

We will apply an iterative procedure based on the identity
\[
(5.4) \quad \sum_{\sigma_{i-1} \in \mathcal{G}_{i-1}} \frac{1}{s_{i-1}} = \sum_{\sigma_i \in \mathcal{G}_i} \frac{1}{s_i} \sum_{\tau_i \in \mathcal{T}_i} \sum_{\sigma \tau_i \in \mathcal{G}_{i-1}} \frac{1}{t_i}.
\]

First, fix \(\sigma_1 \in \mathcal{G}_1\). By assumption (4) in the lemma, \(t_{1,0} \geq y^{1/2}\). Also, \(t_1 = t_{1,0} = t'_{1,0} = y/(rs_1)\), \(t_1\) is composed of primes \(> v_1\), and also \(s_1,0 t_1 + 1\) and \(s'_1,0 t_1 + 1\) are different primes. Write \(t_1 = t'_1 Q\), where \(Q = P^+(t_1)\). Since \(p_0 - 1\) is an \(S\)-normal prime, \(Q \geq t_1^{\Omega(t_1)} \geq y^{1/6 \log_2 y}\) by (2.3). Given \(t'_1\), Lemma 2.5 implies that the number of \(Q\) is \(O(y^{(\log_2 y)^6/2} Q s_1^{t'_1 \log_2 y})\). Using Lemma 2.4 to bound the sum of \(1/t'_1\), we have for each \(\sigma_1 \in \mathcal{G}_1\),
\[
(5.5) \quad \sum_{\tau_i \in \mathcal{T}_1} \frac{1}{t_i} \leq \frac{y^{(\log_2 y)^6}}{rs_1(\log y)^2 + v_1}.
\]

Next, suppose \(2 \leq i \leq k\), \(\sigma_i \in \mathcal{G}_i\), \(\tau_i \in \mathcal{T}_i\) and \(\sigma_i \tau_i \in \mathcal{G}_{i-1}\). By assumption (2),
\[
t_i = t_{i,0} \cdots t_{i,i-1} = t'_{i,0} \cdots t'_{i,i-1}.
\]

In addition, \(s_{i,i-1} t_{i,i-1} + 1 = p_{i-1}\) and \(s'_{i,i-1} t'_{i,i-1} + 1 = q_{i-1}\) are different primes. Let \(Q_1 = P^+(t_{i,i-1})\), \(Q_2 = P^+(t'_{i,i-1})\), \(b = t_{i,i-1}/Q_1\) and \(b' = t'_{i,i-1}/Q_2\).

We consider separately \(\mathcal{T}_{i,1}\), the set of \(\tau_i\) with \(Q_1 = Q_2\) and \(\mathcal{T}_{i,2}\), the set of \(\tau_i\) with \(Q_1 \neq Q_2\). First,
\[
\Sigma_1 := \sum_{\tau_i \in \mathcal{T}_{i,1}} \frac{1}{t_i} \leq \sum_{\tau_i \in \mathcal{T}_{i,1}} \frac{h(t)}{t} \max_{b,b'} \left\{ \sum_{Q_1} \frac{1}{Q_1} \right\},
\]
where \(h(t) \) denotes the number of solutions of \(t_{i,0} \cdots t_{i,i-2}b = t = t'_{i,0} \cdots t'_{i,i-2}b' \), and in the sum on \(Q_1 \), \(s_{i,j-1}bQ_1 + 1 \) and \(s'_{i,j-1}b'Q_1 + 1 \) are unequal primes. By Lemma 2.5 the number of \(Q_1 \leq z \) is \(\ll z(\log z)^{-3}(\log_2 y)^3 \) uniformly in \(b, b' \). By partial summation,

\[
\sum_{Q_1 \geq \mu_{i-1}} \frac{1}{Q_1} \ll (\log_2 y)^3(\log y)^{-2\mu_{i-1}}.
\]

Also, \(h(t) \) is at most the number of dual factorizations of \(t \) into \(i \) factors each, i.e. \(h(t) \leq i^{2\Omega(t)} \). By (2.2), \(\Omega(t) \leq i(\nu_{i-1} - \nu_i + \delta)\log_2 y =: I \). Also, by assumption (1), \(t \) is squarefree. Thus

\[
\sum_{t} \frac{h(t)}{t} \leq \sum_{j \leq I} \frac{j^{2j}H^j}{j!},
\]

where

\[
\sum_{\nu_i < \nu < \nu_{i-1}} \frac{1}{p} \leq (\nu_{i-1} - \nu_i)\log_2 y + 1 =: H.
\]

By assumption, \(\nu_{i-1} - \nu_i \geq 2\delta \), hence \(I \leq \frac{3}{2}H \leq \frac{3}{4}i^2H \). Applying Lemma 2.1 (with \(\alpha \leq \frac{3}{4} \)) yields

\[
(5.6) \quad \sum_{t} \frac{h(t)}{t} \leq \left(\frac{eH^2}{I} \right)^I \leq (ei)^I = (\log y)^{(i+\log i)(\nu_{i-1} - \nu_i+\delta)}.
\]

This gives

\[
\Sigma_1 \ll (\log_2 y)^3(\log y)^{-2\mu_{i-1}+(i+\log i)(\nu_{i-1} - \nu_i+\delta)}.
\]

For the sum over \(T_{i,2} \), set \(t_i = tQ_1Q_2 \). Note that

\[
tQ_2 = t_{i,0} \cdots t_{i,i-2}b, \quad tQ_1 = t'_{i,0} \cdots t'_{i,i-2}b',
\]

so \(Q_1|t_{i,0} \cdots t_{i,i-2}b' \) and \(Q_2|t_{i,0} \cdots t_{i,i-2}b \). If we fix the factors divisible by \(Q_1 \) and by \(Q_2 \), then the number of possible ways to form \(t \) is \(\ll i^{2\Omega(t)} \) as before. Then

\[
\Sigma_2 := \sum_{\tau_i \in \Omega_{i,2}} \frac{1}{t_i} \leq \sum_{t} \frac{i^{2\Omega(t)+2}}{t} \max_{b,b'} \sum_{Q_1,Q_2} \frac{1}{Q_1Q_2},
\]

where \(s_{i,j-1}bQ_1 + 1 \) and \(s'_{i,j-1}b'Q_2 + 1 \) are unequal primes. By Lemma 2.5 the number of \(Q_1 \leq z \) (respectively \(Q_2 \leq z \)) is \(\ll z(\log z)^{-2}(\log_2 y)^2 \). By partial summation, we have

\[
\sum_{Q_1,Q_2} \frac{1}{Q_1Q_2} = \sum_{Q_1} \frac{1}{Q_1} \sum_{Q_2} \frac{1}{Q_2} \ll (\log_2 y)^4(\log y)^{-2\mu_{i-1}}.
\]

Combined with (5.6) this gives

\[
\Sigma_2 \ll i^2(\log_2 y)^4(\log y)^{-2\mu_{i-1}+(i+\log i)(\nu_{i-1} - \nu_i+\delta)}.
\]

By assumption, \(i^2 \leq k^2 \leq (\log_2 y)^2 \). Adding \(\Sigma_1 \) and \(\Sigma_2 \) shows that for each \(\sigma_i \),

\[
(5.7) \quad \sum_{\tau_i \in \Omega_{i,1}} \frac{1}{t_i} \ll (\log_2 y)^6(\log y)^{-2\mu_{i-1}+(1+\log i+i)(\nu_{i-1} - \nu_i+\delta)}.
\]

Using (5.3) and (5.4) together with the inequalities (5.5) and (5.7), the number of solutions of (5.1) is

\[
\ll \frac{y}{\tau}(c_4 \log_2 y)^{6k}(\log y)^{-2\nu_i + \sum_{i=2}^{k}(\nu_{i-1} - \nu_i+\delta)(i+\log i+i)-2\mu_{i-1}} \sum_{\sigma_k \in \Omega_k} \frac{1}{s_k},
\]

where \(c_4 \) is some positive constant. Note that the exponent of \((\log y) \) is \(\leq -2 + \sum_{i=1}^{k-1} a_i \nu_i + E \).
It remains to treat the sum on σ_k. Given $s_k' = s_k/d$, the number of possible σ_k is at most the number of factorizations of s_k' into $k + l$ factors times the number of factorizations of ds_k' into $k + 1$ factors, which is at most $(k + 1)^{\Omega(d)(k + l)^{\Omega(s_k')}}$. By assumptions (1) and (3), $\Omega(s_k') \leq 10(k + l) \log_2 v_k$. Thus,

$$\sum_{s_k' \in \Omega_k} \frac{1}{s_k} \leq \frac{(k + 1)^{\Omega(d)(k + l)^{\Omega(s_k')}}}{d} \sum_{\lambda_k'} \frac{1}{s_k'} \ll \frac{(k + 1)^{\Omega(d)}(\log v_k)^{\Omega(s_k')}}{d}.$$

Lemma 5.2. If $\xi_i = 1 - \omega_i$, $\omega_i = \frac{1}{\log_2(y)}$ for each $i \leq L - 2$, then there is an absolute constant M_1 so that whenever $1 \leq A \leq (\log y)^{1/2}$, $M = [M_1 + 2C \log A]$ and $L \leq L_0(y) - M$, we have

$$(5.8) \quad R_L(\mathcal{F}; y) \gg (\log_2 y)^L T_L,$$

where \mathcal{F} is the subset of $\mathcal{F}_L(\xi)$ with the additional restrictions

$$(5.9) \quad x_{i+1} \leq (1 - \omega_i)x_i \quad (i \geq 1), \quad x_L \geq \frac{A}{\log_2 y}.$$

Proof. By Lemma 3.1 $R_L(\mathcal{F}; y) \gg (\log_2 y)^L \text{Vol}(\mathcal{F}^-\varepsilon)$. For $1 \leq i \leq L - 1$, put

$$\omega'_i = \frac{6(2 + (L - i) \log(L - i)) g^{L - i}}{100 + A}, \quad \xi'_i = 1 - \omega_i - \omega'_i.$$

Let \mathcal{F} be the subset of $\mathcal{F}_L(\xi'_i)$ with the additional restrictions $x_{i+1} \leq \xi'_i x_i$ for each i and $x_L \geq (200 + A)/\log_2 y$. Suppose $x \in \mathcal{F}$ and $|x'_i - x_i| \leq \varepsilon$ for each i. By Lemma 3.8

$$x'_i \geq x_i \geq 6 \frac{g^{L - i}}{A} x_L \geq \frac{g^{L - i}(A + 200)}{6 \log_2 y}.$$

Thus, for $0 \leq i \leq L - 1$,

$$x'_{i+1} \leq x_{i+1} + \varepsilon \leq \xi'_i(x'_i + \varepsilon) + \varepsilon \leq \left(\xi'_i + \frac{2\varepsilon}{x'_i}\right) x'_i \leq \xi_i x'_i$$

and

$$a_1 x'_{i+1} + \cdots + a_{L - i} x'_L \leq \xi'_i x_i + \varepsilon(a_1 + \cdots + a_{L - i}) \leq \xi'_i(x'_i + \varepsilon) + \varepsilon(1 + (L - i) \log(L - i)) \leq \xi_i x'_i.$$

Therefore, $x' \in \mathcal{F}$ and hence $\mathcal{F} \subseteq \mathcal{F}^-\varepsilon$. Make the substitution $x_i = (\xi'_0 \cdots \xi'_{i-1}) y_i$ for $1 \leq i \leq L$. By Lemma 3.2 $y_i \in \mathcal{F}' := \mathcal{F} \cap \{y_L \geq (A + 200)/\log_2 y\}$. By Lemma 3.10(i), if M_1 is large enough then

$$\text{Vol}(\mathcal{F}^-\varepsilon) \geq \text{Vol}(\mathcal{F}) \geq H(\xi') \text{Vol}(\mathcal{F}') \geq H(\xi') [T_L - O(A g^M T_L)] \geq T_L. \quad \square$$

Now we proceed to the lower bound argument for Theorems 1 and 2. Suppose $A(d) = \kappa$ and $\phi(d_i) = d_i (1 \leq i \leq \kappa)$. Assume throughout that $x \geq x_0(d)$. The variable k is reserved as an index for certain variables below. Define

$$M = M_2 + [(\log d)^{1/9}], M_2 \text{ is a sufficiently large absolute constant}$$
$$L = L_0(x) - M,$$
$$\xi_i = 1 - \omega_i, \quad \omega_i = \frac{1}{10(L_0 - i)^3} \quad (0 \leq i \leq L - 2).$$
Let \mathcal{B} denote the set of integers $n = p_0p_1 \cdots p_L > x^{9/10}$ with each p_i prime and
\begin{align}
(5.13) \quad \phi(n) &\leq x/d, \\
(5.14) \quad (x_1(n; x/d), \ldots, x_L(n; x/d)) &\in \mathcal{S}_L(\xi), \\
(5.15) \quad \log_2 p_i &\geq (1 + \omega_i) \log_2 p_{i+1} \quad (0 \leq i \leq L - 1), \\
(5.16) \quad p_L &\geq \max(d + 2, 17).
\end{align}

By Corollary 3.3 and Lemma 5.2 (with $y = x/d$, $A = \log_2 \max(d + 2, 17)$),
\begin{equation}
|\mathcal{B}| \gg \frac{x}{d \log(x/d)} (\log_2(x/d))^L T_L \gg \frac{x}{d \log x} (\log_2 x)^L T_L.
\end{equation}

Consider the equation
\begin{equation}
(5.18) \quad d\phi(n) = \phi(n_1),
\end{equation}
where $n \in \mathcal{B}$. Let $q_0 \geq q_1 \geq \cdots$ be the prime factors of n_1, and for $j \geq \Omega(n_1)$, put $q_j = 1$. If $n | n_1$, then none of the primes q_i ($0 \leq i \leq L$) occur to a power greater than 1, for otherwise (5.16) gives $\phi(n_1) \geq \phi(n)p_L > \phi(n)d$. Also, $P^+(d_i) < p_L$ for all i. Therefore $\phi(n_1) = \phi(n_1/n)\phi(n) = \phi(n)d$, which implies $n_1 = nd_i$ for some i. These we will call the trivial solutions to (5.18). We then have $A(d\phi(n)) = \kappa$ for each $n \in \mathcal{B}$ for which (5.13) has no non-trivial solutions, i.e. solutions with $n \nmid n_1$. In particular, for such n we have $\phi(n') \neq \phi(n)$ for $n' \neq n$ and $n' \in \mathcal{B}$.

The numbers n which give rise to non-trivial solutions are grouped as follows. For $0 \leq j \leq L$, let \mathcal{B}_j be the set of $n \in \mathcal{B}$ such that (5.18) holds for some n_1 with $q_i = p_i$ ($0 \leq i \leq j - 1$) and $p_j \neq q_j$, and such that (5.18) does not hold for any n_1 with $n \nmid n_1$ and $q_i = p_i$ ($0 \leq i \leq j$). We then have
\begin{equation}
(5.19) \quad V_\kappa(x) \geq |\mathcal{B}| - \sum_{j=0}^L |\mathcal{B}_j|.
\end{equation}

For $n \in \mathcal{B}_j$ with $j \geq 1$, write $n = p_0n_2n_3$, where $n_2 = p_1 \cdots p_{j-1}$ and $n_3 = p_j \cdots p_L$. When $j = 0$, set $n_3 = n$. If $q_{j-1} = q_j$, then $p_{j-1}|d\phi(n_3)$, which is impossible. Therefore $q_{j-1} > q_j$ and $\phi(n_1) = \phi(p_0 \cdots p_{j-1})\phi(q_j \cdots)$ and
\begin{equation}
(5.20) \quad d\phi(n_3) = \phi(n_4)
\end{equation}
has a nontrivial solution n_4 (that is, with $n_3 \nmid n_4$). In addition, all such solutions satisfy $P^+(n_4) \neq P^+(n_3)$. Fix j and let \mathcal{A}_j be the set of such n_3. It will be useful to associate a particular n_4 to each $n_3 \in \mathcal{A}_j$ as follows. Let $v = \phi(n_3)$ for some $n_3 \in \mathcal{A}_j$. If there is only one such n_3, then take n_4 to be the smallest nontrivial solution of (5.20). Otherwise, suppose there are exactly $k \geq 2$ members of \mathcal{A}_j, $n_{3,i}$ with $\phi(n_{3,i}) = v$ ($1 \leq i \leq k$). Take a permutation σ of $\{1, \ldots, k\}$ with no fixed point and associate $n_4 = d_1n_{3,\sigma(1)}$ with $n_{3,1}$. Since $i \neq \sigma(i)$, $n_{3,i} \nmid n_4$, so the associated n_4 is a nontrivial solution of (5.20). In addition, distinct $n_3 \in \mathcal{A}_j$ are associated with distinct n_4.

For x large, (5.14) and (5.15) imply $p_0 > x^{3/4}$. By the prime number theorem, for each fixed n_2n_3, the number of choices for p_0 is $O(x/(d\phi(n_2n_3) \log x))$. Hence
\begin{equation}
|\mathcal{B}_j| \ll \frac{x}{d \log x} \sum_{n_2} \frac{1}{\phi(n_2)} \sum_{n_3} \frac{1}{\phi(n_3)} (1 \leq j \leq L).
\end{equation}

Since $n_2 \in \mathcal{B}_{j-1}(\mathcal{A}_{j-1}; x)$ when $j \geq 2$, Lemma 5.2 gives
\begin{equation}
\sum_{n_2} \frac{1}{\phi(n_2)^{j-1}} \ll (\log_2 x)^{j-1} T_{j-1} (1 \leq j \leq L).
\end{equation}
To attack the sum on n_3, let $B_j(y)$ denote the number of possible n_3 with $\phi(n_3) \leq y$. In particular, $|\mathcal{B}_0| = B_0(x/d)$. When $j \geq 1$, by partial summation,

\[|\mathcal{B}_j| \ll \frac{x (\log_2 x)^{j-1} T_{j-1}}{d \log x} \left(\sum_{\log_3 \phi(n_3) \leq M/10} \frac{1}{\phi(n_3)} + \sum_{\log_3 y > M/10} \frac{B_j(y)}{y^2} \right). \tag{5.21} \]

If M_2 is large enough, then

\[\sum_{\log_3 \phi(n_3) \leq M/10} \frac{1}{\phi(n_3)} \leq \left(\sum_{\log_2 p \leq e^{M/10}+1} \frac{1}{p-1} \right)^{L-j+1} \leq e^{(L-j+1)M/9}. \tag{5.22} \]

We will show below that

\[B_j(y) \ll \frac{y}{\log y (\log_2 y)^2} \quad (\log_3 y \geq M/10, 0 \leq j \leq L). \tag{5.23} \]

In particular, $|\mathcal{B}_0| = B_0(x/d) \ll x/(d \log x)$. Combining (5.23) with (5.10), (5.21), Corollary 3.5 and (5.22), we obtain for $j \geq 1$,

\[
|\mathcal{B}_j| \ll \frac{x}{d \log x} (\log_2 x)^{j-1} \exp\{(L - j + 1)M/9\}
\ll \frac{x}{d \log x} (\log_2 x)^j T_L \exp\{(L - j + 1)(M/9 - M/2C - (L - j + 1)/4C)\}.
\]

Summing over j and using Corollary 3.5 (4.1), (5.17) and (5.19) gives

\[V_\kappa(x) \geq \left| \mathcal{B} \right| \gg d^{-1-\varepsilon} V(x). \]

This completes the proof of Theorem 2. The lower bound in Theorem 1 follows by taking $d = 1, \kappa = 2$.

We now prove (5.23). For $j \leq L - 2$, $p_j \leq y$, hence by (5.14),

\[\left(\frac{\log_2 p_{j+1}}{\log_2 y}, \ldots, \frac{\log_2 p_L}{\log_2 y} \right) \in \mathcal{S}_{L-j}((\xi_j, \ldots, \xi_{L-1})). \tag{5.24} \]

Thus, by Lemma 3.8 and (5.16) (and trivially when $j \geq L - 1$),

\[1 \leq \log_2 p_L \leq 3y^{L-j} \log_2 y, \]

which implies

\[h := \omega(n_3) = L - j + 1 \leq 2C \log_3 y + 3. \tag{5.25} \]

Next define

\[S = \exp \exp\{(\log_3 y)^{10}\}. \tag{5.26} \]

We remove from consideration those n_3 satisfying (i) $n_3 \leq y/\log^2 y$, (ii) $p^2|\phi(n_3)$ for some prime $p > \log^2 y$, (iii) there is some $m|n_3$ with $m > \exp((\log_2 y)^2)$ and $P^+(m) < m^{1/\log_2 y}$; (iv) n_3 is divisible by a prime which is not S-normal. If $p^2|\phi(n_3)$, then either $p^2|n_3$ or n_3 is divisible by two primes $\equiv 1 \pmod{p}$. Thus, the number of n_3 satisfying (ii) is

\[
\leq \sum_{p > \log^2 y} \left[\frac{y}{p^2} + y \left(\sum_{q < y, q \equiv 1 \pmod{p}} \frac{1}{q} \right)^2 \right] \ll \sum_{p > \log^2 y} \frac{y(\log_2 y)^2}{p^2} \ll \frac{y(\log_2 y)^2}{\log^2 y}
\]

by the Brun-Titchmarsh inequality and partial summation. By Lemma 2.3, the number of n_3 satisfying (iii) is $O(y/\log^2 y)$. By the Hardy-Ramanujan inequality [22], the number of integers $\leq t$ which have $h - 1$
prime factors is \(O(t(\log_2 t + O(1))^{h-2}/((h - 2)! \log t)) \) uniformly for \(h \geq 2 \). Thus, the number of \(n_3 \) satisfying (iv) is

\[
\ll \sum_{p \leq y \atop p \not\text{S-normal}} y \exp(2(\log_3 y)^2) \ll \frac{y}{(\log y)(\log_2 y)^2}
\]

by Lemma 2.6 and partial summation (if \(j = L \), then \(h = 1 \) and we use Lemma 2.6 directly).

For the remaining \(n_3 \), since \(\log_3 y \geq M/10 \), by (5.10) we have

\[
(5.27) \quad \log d \lesssim (10 \log_3 y)^9.
\]

Let \(n_4 \) be the unique number associated with \(n_3 \). As \(\phi(n_4) \ll dy \), we have \(n_4 \ll y(\log y)^{1/3} \). Now remove from consideration those \(n_3 \) with (v) \(p^2|n_4 \) or \(p^2|\phi(n_4) \) for some prime \(p > \log^2 y \). The number of such \(n_3 \) is \(O(y/\log^{3/2} y) \). Also remove from consideration those \(n_3 \) such that (vi) \(n_4 \) is divisible by a prime which is not \(S \)-normal. By the way we chose \(n_4 \), the only way this is possible is if \(d_1 \) has a prime factor which is not \(S \)-normal, or if \(\phi(n_3) \neq \phi(n_3) \) for \(n_3' \in \mathcal{A}_j, n_3' \neq n_3 \). The first case is not possible, since by (5.27), \(d_1 \ll d \log d \ll \log S \), hence for \(p|d_1, \Omega(p-1) \leq 2 \log p \leq 2 \log d_1 \leq \log_2 S + O(1) \). For \(n_3 \) in the latter category, the numbers \(\phi(n_4) \) are distinct totients. Hence, by Lemma 2.8 and (4.1), the number of such \(n_3 \) is

\[
\ll \frac{y(\log y)^6 W(y)}{\log y}(\log S)^{-1/6} \ll \frac{y}{\log y(\log_2 y)^2}.
\]

Let \(B^*_j(y) \) denote the number of remaining \(n_3 \) (those not satisfying any of conditions (i)–(vi) above), so that

\[
(5.28) \quad B_j(y) \ll \frac{y}{\log y(\log_2 y)^2} + B^*_j(y).
\]

If \(j \leq L - 1 \), then \(p_{j+1} \cdots p_L \leq p_j^h \), so by (5.10), (5.15), (5.25), and \(M \leq 10 \log_3 y \),

\[
\log_2(n_3/p_j) \leq \frac{\log_2 p_j}{1 + 10(\log M - 1)^3} + \log h \leq \log_2 y - 2 \log_3 y \leq \log_2 y - 10.
\]

In particular, since \(n_3 > y/\log^2 y \), this shows that

\[
(5.29) \quad p_j > y^{9/10}, \quad p_{j+1} < y^{1/(10 \log_2 y)}.
\]

When \(j = L \), the first inequality in (5.29) holds since \(n_3 > y/\log^2 y \), and the second inequality is vacuous. Note that \(p \) is \(S \)-normal for all \(p|n_3n_4 \), and hence by (2.2),

\[
(5.30) \quad P^+(p-1) \gtrsim (p-1)^{1/\Omega(p-1)} \gtrsim p^{1/(4 \log_2 y)}.
\]

We now group the \(n_3 \) counted in \(B^*_j(y) \) according to the sizes of \(P^+(p_i - 1) \). Let \(J \) be the largest index with \(\log_2 P^+(p_J - 1) < (\log_2 y)^{2/3} \). By (5.29), \(J \gtrsim j \). Set \(\varepsilon = 1/\log_2 y \). For each \(n_3 \), there are numbers \(\zeta_{j+1}, \ldots, \zeta_J \), each an integral multiple of \(\varepsilon \), and with \(\zeta_i - \varepsilon \leq \frac{\log_2 P^+(p_i - 1)}{\log_2 y} \leq \zeta_i \) for each \(i \). Also set \(\zeta_j = 1 \) and

\[
(5.31) \quad \zeta_{J+1} = \min \left(\frac{\zeta_J}{1 + \omega_J} + \frac{\log_3 y + \log 4}{\log_2 y}, (\log_2 y)^{-1/3} \right).
\]

By (5.30),

\[
(5.32) \quad \log_2 P^+(p_i - 1) \lesssim \zeta_{J+1} \quad (i > J).
\]

By (5.14) and (5.25),

\[
(5.33) \quad \sum_{i=1}^{J-j} a_i \zeta_{j+i} \lesssim 1 - \omega_j + h^2 \varepsilon \lesssim 1 - \omega_j/2.
\]
Let $\delta = \sqrt{\log_2 S / \log_2 y}$. We claim that

\begin{equation}
(5.34) \left| \log_2 P^+(p_i - 1) - \log_2 P^+(q_i - 1) \right| \leq (2(i - j) + 1)\delta \quad (j \leq i \leq J).
\end{equation}

To see this, fix i, let $k = i - j$ and

$\alpha = \frac{\log_2 P^+(p_i - 1)}{\log_2 y}, \quad \beta = \frac{\log_2 P^+(q_i - 1)}{\log_2 y}.$

By (2.2), if $\beta > \alpha + (2k + 1)\delta$, then

\begin{equation}
(k + 1)(\beta - \alpha - \delta) \leq \frac{\Omega(\phi(n), P^+(p_i - 1), P^+(q_i - 1))}{\log_2 y} \leq k(\beta - \alpha + \delta),
\end{equation}

a contradiction. Assuming $\beta < \alpha - (2k + 1)\delta$ likewise leads to a contradiction. This establishes (5.34). In particular, (5.34) implies that q_{j+1}, \ldots, q_J exist.

By (5.13), (5.25), (5.30) and $\log_3 y \geq M/10$, for $j \leq i \leq J$,

\begin{equation}
(5.35) \zeta_i \geq \frac{\log_2 p_i - \log_3 y - \log 4}{\log_2 y} \geq (1 + \omega_i)(\zeta_{i+1} - \epsilon) - \frac{\log_3 y + \log 4}{\log_2 y} \geq \zeta_{i+1} + \frac{\log_3 y}{10(M + h)^3} - 2\epsilon \log_3 y \geq \zeta_{i+1} + (\log_2 y)^{-0.35}.
\end{equation}

We make a further subdivision of the numbers n_i, counting separately those with $(p_j \cdots p_J, q_J \cdots q_J) = m$. Let $B_j(\zeta; m; y)$ be the number of n_i counted by $B_j^*(y)$ satisfying

\begin{equation}
y^{9/10} \leq p_j \leq y, \quad \zeta_i - \epsilon \leq \frac{\log_2 P^+(p_i - 1)}{\log_2 y} < \zeta_i \quad (j + 1 \leq i \leq J).
\end{equation}

Fix m, ζ and suppose n_3 is counted in $B_j(\zeta; m; y)$. Let $p_j \cdots p_J/m = p_{j_0} \cdots p_{j_{k-1}}$, where

\begin{equation}
j = j_0 < j_1 < \cdots < j_{k-1} \leq J.
\end{equation}

Let $\nu_0 = 1$, for $1 \leq i \leq k - 1$ let $\nu_i = \zeta_{j_i} + (2L + 1)\delta$, and for $0 \leq i \leq k - 1$ let $\mu_i = \nu_i - (4L + 2)\delta - \epsilon$. Also, put $\nu_k = \zeta_{J+1} + (2L + 3)\delta$. For brevity, for $0 \leq i \leq k - 1$ set $u_i = \exp[(\log y)^{\mu_i}]$ and for $0 \leq i \leq k$ set $v_i = \exp[(\log y)^{\nu_i}]$. By (5.32), $P^+(p_i - 1) \leq v_k$ for $i > J$. We also claim that $P^+(q_i - 1) \leq v_k$ for $i < J$. If not, then by the S-normality of the primes p_i and q_i,

\begin{equation}
(J - j + 2)(\nu_k - \zeta_{J+1} + \delta \log_2 y) \leq \Omega(\phi(n), \exp[(\log y)^{\zeta_{j+1}}], v_k) \leq (J - j + 1)(\nu_k - \zeta_{J+1} + \delta \log_2 y),
\end{equation}

a contradiction. Hence, $B_j(\zeta; m; y)$ is at most the number of solutions of

\begin{equation}
(5.36) \quad (p_{j_0} - 1) \cdots (p_{j_{k-1}} - 1)(p_{j+1} - 1) \cdots (p_L - 1)d = (q_{j_0} - 1) \cdots (q_{j_{k-1}} - 1)e \leq y/\phi(m),
\end{equation}

where $P^+((p_{j+1} - 1) \cdots (p_L - 1)e) \leq v_k$, and p_i, and q_i, are S-normal primes satisfying

\begin{equation}
(5.37) \quad u_i \leq P^+(p_i - 1), P^+(q_i - 1) \leq v_i \quad (0 \leq i \leq k - 1).
\end{equation}

By (5.29), $\phi(m) \leq y^{1/10}$. Also, $p_j - 1$ cannot be divisible by a factor $b > y^{1/9} \log_2 y$. Further, (5.35) and the definition of ν_k imply that $\nu_i - \nu_i \geq 2\delta$ for $2 \leq i \leq k$. By Lemma (5.1)

\begin{equation}
B_j(\zeta; m; y) \ll \frac{y}{\phi(m)}(c_4 \log_2 y)^{L+6}(L + 2)^{\Omega(d)\log v_k}^{20(1+L)^2}(\log y)^{-2+\sum_{i=1}^{k-1} a_i \zeta_i + E},
\end{equation}

where $E \ll \delta L^2 \log L$. By (5.33), the exponent of $\log y$ is at most $-1 - \nu_{j/2} + E$. By (5.27), $\Omega(d) \ll \log d \ll (\log_3 y)^9$, hence

\begin{equation}
B_j(\zeta; m; y) \ll \frac{y}{\phi(m)}(\log y)^{-1-\nu_{j/2}}\exp\{O((\log_2 y)^{2/3}(\log_3 y)^2)\}.
\end{equation}
Also,
\[\sum_{m} \frac{1}{\phi(m)} \leq (\log y + O(1))^{L-j} \ll \exp\{O((\log y)^2)\}. \]

The number of possibilities for \(\zeta \) is at most \(\varepsilon^{-L} \leq \exp\{2(\log y)^2\} \). Summing over all possible \(m \) and \(\zeta \), and applying \(\log y \geq M/10 \), we have
\[B^*_j(y) = \sum_{\zeta, m} B_j(\zeta; m; y) \leq \frac{y}{\log y} (\log y)^{-\omega_j/2 + (\log y)^{-1/4}} \]
\[\ll \frac{y}{\log y} \exp\left\{ -\frac{\log_2 y}{20(2C \log_3 y + M + 3)} + (\log_2 y)^{3/4} \right\} \]
\[\ll \frac{y}{\log y} \exp\{-(\log_2 y)^{9/10}\}. \]

Combining this with (5.28) completes the proof of (5.23).

6 The normal multiplicative structure of totients

The proofs of Theorems 1 and 2 suggest that for most totients \(m \leq x \), all the pre-images \(n \) of \(m \) satisfy \((x_1, x_2, \ldots, x_L) \in S_L(\xi) \) with \(L \) near \(L_0 \) and \(\xi \) defined as in section 4. We prove such a result below in Theorem 16, which is an easy consequence of Theorem 1 and the machinery created for its proof. From this, we deduce the normal size of the numbers \(q_i(n) \) and establish Theorems 10 and 11. Using these bounds, we deduce the normal order of \(\Omega(m) \) (Theorem 12 and Corollary 13).

Theorem 16. Suppose \(0 \leq \Psi < L_0(x) \), \(L = L_0 - \Psi \) and let
\[\xi_i = \xi_i(x) = 1 + \frac{1}{10000} e^{-(L_0-i)/40} \quad (0 \leq i \leq L-1). \]

The number of totients \(m \leq x \) with a pre-image \(n \) satisfying
\[(x_1(n; x), \ldots, x_L(n; x)) \notin S_L(\xi) \quad \text{or} \quad x_L(n; x) \leq \frac{2}{\log_2 x} \]

is \(\ll V(x) \exp\{-\Psi^2/4\} \).

Proof. As in Section 4, define \(M_j(x) \) to be the number of totients \(m \leq x \) with a pre-image satisfying \((I_i)\) for \(i < j \), but not satisfying \((I_j)\), where \(x = (x_1(n; x), \ldots, x_L(n; x)) \). By Theorem 1, Corollary 3.5 and (4.8), the number of totients \(m \leq x \) with a pre-image \(n \) satisfying \(x \notin S_L(\xi) \) is at most
\[\sum_{j \leq L-1} M_j(x) \ll \frac{x}{\log x} Z(x) e^{-\Psi^2/4} \ll V(x) e^{-\Psi^2/4}. \]

Now suppose that \(x \in S_L(\xi) \) and \(x_L \leq 2/\log_2 x \). Then \(q_L(n) \leq e^{\Psi^2} \). We can assume that \(x/\log x \leq n \leq 2x\log_2 x \) and that \(n \) is \(S \)-nice, where \(S = \exp\{((\log_2 x)^{100}) \}, \) the number of exceptions being \(\ll V(x)/\log_2 x \). By Lemma 2.2, we can also assume that \(\Omega(n) \leq 10\log_2 x \). Put \(p_i := q_i(n) \). Lemma 3.8 gives \(x_3 < 5p^3 < 0.9 \), and so \(p_2 \leq \exp(10(\log x)^{0.9}) \). Thus,
\[n/(p_0 p_1 p_2) = p_3 p_4 \cdots \leq \exp(10(\log_2 x)(\log x)^{0.9}) \ll x^{1/100} \]
and so \(p_0 \geq x^{1/4} \) for large \(x \). In particular, \(p_0^2 \nmid n \).

Suppose now that \(n \) has exactly \(L_0 - k + 1 \) prime factors \(> e^{\Psi^2} \), where we fix \(k > \Psi \). Then
\[v = (p_0 - 1)\phi(p_1 p_2 \cdots p_{L_0-k}) \]

for some integer w satisfying $P^+(w) \leq e^2$. Using the prime number theorem to estimate the number of choices for p_0 given $p_1 \cdots p_{L_0-k}$ and w, we obtain that the number of v of this form is

$$\ll x \log x \sum_{p_1, \ldots, p_{L_0-k}} \frac{1}{\phi(p_1 \cdots p_{L_0-k})} \sum_{w} \frac{1}{w} \ll \frac{x}{\log x} R_{L_0-k}(\xi_k; x),$$

since $p_1 \cdots p_{L_0-k} \in \mathcal{R}_{L_0-k}(\xi_k; x)$, where $\xi_k := (\xi_0, \ldots, \xi_{L_0-k-1})$. By Lemma 3.1 Corollary 3.5 and Lemma 3.10(ii),

$$R_{L_0-k}(\xi_k; x) \ll (\log_2 x)^{L_0-k} T_{L_0-k} \ll Z(x) \exp(-k^2/4C),$$

hence the number of totients is

$$\ll \frac{x}{\log x} Z(x) \exp(-k^2/4C) \ll V(x) \exp(-k^2/4C).$$

Summing over $k > \Psi$ gives the required bound.

We show below that for most of \mathcal{S}_L, $x_j \approx g_j^L(1 - j/L)$ for $1 \leq j \leq L$. Let $T^*_L(\mathcal{S}) = \text{Vol}(\mathcal{S}_L : \mathcal{R})$, recall definition (3.3) and Lemma 3.7. Define

$$\lambda_i = g^i g_i \quad (i \geq 0), \quad \lambda = \lim_{i \to \infty} \lambda_i = \frac{1}{g^{-1}(g)} < \frac{1}{3}.$$

By Lemma 3.7 and explicit calculation of g_i for small i, we have for large L

$$\frac{1}{5} \leq \lambda_i \leq \frac{1}{3}, \quad \frac{g_i g_{L-i}}{g_L} \leq \frac{1}{3}, \quad \frac{g_i g'_{L-i}}{g'_L} \leq \frac{1}{3}.$$

Lemma 6.1. Suppose $i \leq L - 2$, $\beta > 0$, $\alpha > 0$ and define θ by

$$\beta = \frac{\theta}{1 + \theta}.$$

If $\theta > 0$, then

$$T^*_L(x_i \leq \beta, x_L \geq \alpha) \ll T_L \frac{i (1 + \theta L/\theta)^i}{\theta L} e^{-L \log L}.$$

For $-\lambda_i \leq \theta \leq 0$,

$$T^*_L(x_i \geq \beta, x_L \geq \alpha) \ll T_L e^{-\frac{i}{2} L \log L} \exp \left\{ K i + \frac{\lambda_i}{1 - \lambda_i} L \theta + L (\theta - \log(1 + \theta)) \right\},$$

where $K = \frac{\lambda_i}{\lambda_i} + \log(1 - \lambda) = 0.0873 \ldots$. If $-i \lambda_i / L < \theta < 0$, then

$$T^*_L(x_i \geq \beta, x_L \geq \alpha) \ll T_L e^{-\frac{2L}{|\theta|} \log L} \frac{i}{|\theta| L} \exp \left\{ - \frac{L (L - i)}{2i} \right\}.$$

Proof. For each inequality, we show that the region in question lies inside a simplex for which we may apply Lemma 3.6. The volume is then related to T_L via Lemma 3.4. By Lemma 3.8, $x_L \leq 1/g_L$. Hence, we may assume $\alpha \geq 1/g_L$, else the volumes are all zero. Also by Lemma 3.8, $x_i \geq \alpha g_{L-i}$, so we may assume that $\beta > \alpha g_{L-i}$ in showing (6.6). Also, if $\beta \leq \alpha g_{L-i}$, then $T^*_L(x_i \geq \beta, x_L \geq \alpha) = T_L(x_L \geq \alpha)$ (i.e., doesn’t depend on β), while the right sides of (6.7) and (6.8) are each increasing in θ. Thus, for (6.7) and (6.8), we may assume also that $\beta > \alpha g_{L-i}$ as well.

All three inequalities are proved by a common method. Consider $x \in \mathcal{S}_L$ with $x_L \geq \alpha$ and let $y_j = x_j - \alpha g_{L-j}$ for each j. Then $v_j \cdot y = v_j \cdot x \leq 0 \ (1 \leq j \leq L)$ and $v_0 \cdot y \leq 1 - \alpha g_L$. Let $\xi = 1 - \alpha g_L$ and $\beta' = \beta - \alpha g_{L-i}$. Set $z_j = y_j - \beta' g_{L-j}$ for $j \leq i$ and $z_j = y_j$ for $j > i$. By (3.3),

$$v_j \cdot z \leq 0 \quad (1 \leq j \leq L, j \neq i),$$

$$v_i \cdot z \leq \beta',$$

$$v_0 \cdot z \leq \xi - \beta' g_i.$$
With these definitions, $x_i \leq \beta \iff z_i \leq 0$. Hence, for any $A \geq -g_i$, we have

$$v_0' \cdot z \leq \xi + A\beta', \quad v_0' = (v_0 + (g_i + A)v_i),$$

$$v_j \cdot z \leq 0 \quad (1 \leq j \leq L, j \neq i),$$

$$\pm e_i \cdot z \leq 0.$$

In the last inequality, we take $+$ for (6.7) and (6.8), and $-$ for (6.6). By (3.3), (3.7) and (3.8),

$$v_i' + \sum_{j \neq i} g_j v_j + Ae_i + \sum_{j=1}^{L-1} (g_j + Ag_{j-i})v_j + (g_L + Ag_L^*)v_L = 0.$$

To ensure that each vector on the left of (6.10) has a positive coefficient, we assume that $A > 0$ for proving (6.6), and $A < 0$ otherwise. We may also assume that $\xi - \beta'g_i > 0$, else the volume in question is zero by (6.9) (each coordinate of z is non-negative). By Lemma 3.6, together with (3.9), Lemma 3.7 and (6.4),

$$T_L(x_i \leq \beta, x_L \geq \alpha) \leq T_L^g \frac{g_i}{|A|} (\xi + A\beta')^L \prod_{i=1}^{L-1} \left(1 + A\frac{g_j - i}{g_j} \right)^{-1} \left(1 + A\frac{g_L - i}{g_L} \right)^{-1},$$

$$\leq T_L \frac{g_i}{|A|} (\xi + A\beta')^{L-1}.$$

Since $\beta \leq \alpha g_{\ell-i} \leq g_{\ell-i}/g_L$, if $A > 0$ then

$$\xi + A\beta' = (1 + A\beta) \left(1 - \alpha g_L \frac{1 + Ag_{\ell-i}/g_L}{1 + A\beta} \right) \leq (1 + A\beta)(1 - \alpha g_L) \leq (1 + A\beta)e^{-\alpha g_L}.$$

Taking $A = \frac{\theta}{\nu}$ gives (6.6). If $-g_i \leq A < 0$, then by (6.4),

$$\xi + A\beta' \leq (1 + A\beta) (1 - \alpha g_L (1 - g_{\ell-i}/g_L)) \leq (1 + A\beta)e^{-\frac{\theta}{\nu} \alpha g_L}.$$

For (6.7), we take $A = -g_i$, then use

$$(1 - \lambda_i)^{-L}(1 - \beta g_i)^L = \left(\frac{1 - \lambda_i}{1 + \theta\lambda_i} \right)^L \left(1 + \frac{\theta + i\lambda_i/L}{1 - \lambda_i} \right)^L \leq \left(\frac{1 - \lambda_i}{1 + \theta \lambda_i} \right)^L \exp \left\{ \frac{\theta L + i\lambda_i}{1 - \lambda_i} \right\}$$

$$\leq \exp \left\{ \frac{L(L - i)}{2} \theta^2 \sum_{j=1}^{\infty} (-\theta)^j \frac{L^j + iL^j - 1 + \cdots + i^j}{(j + 2i)^j} \right\}$$

and all summands in the sum on j are positive.

We apply Lemma 6.1 to determine the size of $q_i(n)$ when n is a pre-image of a “normal” totient. Recall that $V(x; \mathcal{E})$ is the number of totients $m \leq x$ with a pre-image n satisfying \mathcal{E}. An inequality we will use is

$$\sum_{v \in V \atop P^+(v) \leq y} \frac{1}{v} \ll e^{C(\log_3 y)^2},$$

coming from the first part of Lemma 4.3 and Theorem 1.

Lemma 6.2. Suppose x is large, $\beta > 0$, and $1 \leq i \leq L_0 = L_0(x)$. Define θ by $(1 + \theta)\beta = \theta^i (1 - i/L_0)$.

(a) If $0 < \theta \leq \frac{1}{3L_0}$, then $V(x; \frac{\log_2 q_i(n)}{\log_2 x} \leq \beta) \ll V(x) \frac{i}{\theta L_0} \exp \left\{ -\frac{L_0(L_0 - i)}{4i} \frac{i^2}{2} \theta^2 \right\}.$

(b) If $\frac{1}{3L_0} \leq \theta \leq \frac{1}{8}$, then $V(x; \frac{\log_2 q_i(n)}{\log_2 x} \leq \beta) \ll V(x)e^{-\theta L_0/13}$.

(c) If $-\frac{1}{3} \leq \theta < -0.29 \frac{1}{L_0}$, then $V \left(x; \frac{\log_2 q_i(n)}{\log_2 x} \geq \beta \right) \ll V(x)e^{6L_0/10}$.

(d) If $-\frac{i\lambda_i}{L_0} \leq \theta < 0$, then $V \left(x; \frac{\log_2 q_i(n)}{\log_2 x} \geq \beta \right) \ll V(x)\exp \left\{ -0.49 \frac{L_0(L_0-i)}{i} \theta^2 \right\}$.

Proof. Let A be a sufficiently large, absolute constant. We may assume that

$$A \leq i \leq L_0 - A, \quad |\theta| \geq A \left(\frac{i}{L_0(L_0-i)} \right)^{1/2}$$

for (a) and (d),

$$|\theta| \geq \frac{A}{L_0}$$

for (b) and (c),

for otherwise the claims are trivial. Put $\Psi = \left[|\theta|\sqrt{\frac{2L_0(L_0-i)}{i}} \right]$ for (a) and (d), and put $\Psi = \left[\sqrt{2|\theta|L_0} \right]$ for parts (b) and (c). Let $L = L_0 - \Psi$. By (6.15), for the range of θ given in each part, we have $i \leq L - 2$. Define ζ_i by (6.1). By Theorem 15, the number of totients $m \leq x$ with a preimage n satisfying $x \notin \mathcal{S}_L(\zeta_i)$, $x_L \leq \frac{x}{\log_2 x}$ or $m < \frac{x}{\log_2 x}$ is $O(V(x)e^{-\frac{L}{4} \theta^2})$. Let $\mathcal{S} = \mathcal{S}_L(\zeta_i) \cap \{ x_i \geq \beta \}$ for (a) and (b), and $\mathcal{S} = \mathcal{S}_L(\zeta_i) \cap \{ x_i \geq \beta \}$ for (c) and (d). As in the proof of (4.10), for $b \geq 2$ let $N_b(x)$ be the number of totients for which $n > \frac{x}{\log_2 x}, x \in \mathcal{S}$, and $\frac{b}{\log_2 x} \leq x_L < \frac{b+1}{\log_2 x}$. By the argument leading to (4.10) and using (6.14),

$$V \left(x; \frac{\log_2 q_i(n)}{\log_2 x} \leq \beta \right) \ll V(x)e^{-\frac{L}{4} \theta^2} + \frac{x}{\log_2 x} \sum_{b \geq 2} e^{C \log^2 b} R_L \left(\mathcal{S} \cap \{ x_L \geq \frac{b}{\log_2 x} \} ; x \right).$$

By Lemma 3.1

$$R_L \left(\mathcal{S} \cap \{ x_L \geq \frac{b}{\log_2 x} \} ; x \right) \ll (\log_2 x)^L \text{Vol} \left[\mathcal{S} \cap \{ x_L \geq \frac{b}{\log_2 x} \} \right]^{1+\varepsilon}, \quad \varepsilon = \frac{1}{\log_2 x}.$$

Let $\alpha = \frac{b}{\log_2 x}$. By Lemma 3.9 α', y_j and ζ_{i_j} defined here), $y_j \in \mathcal{S}_L \cap \{ x_j \geq \beta' \}$ and $y_L \geq \alpha'$, where

$$\beta' = \frac{\beta}{\zeta_0 \cdots \zeta_{i-1}} = \beta \left(1 - O \left(e^{-\left(L_0-i \right)/4} \right) \right).$$

By Lemma 3.2 and Corollary 3.3

$$\text{Vol} \left[\mathcal{S} \cap \{ x_L \geq \frac{b}{\log_2 x} \} \right]^{1+\varepsilon} \ll T_1^* \left(x_i \leq \beta', x_L \geq \alpha' \right).$$

Define θ' by $1 + \theta' = (1 + \theta) \zeta_0 \cdots \zeta_{i-1}$, so that $\beta'(1 + \theta') = \beta(1 - i/L)$. By (6.17), $\theta' - \theta = (1 + \theta)(\zeta_0 \cdots \zeta_{i-1} - 1) \ll e^{-\frac{\lambda_i}{L_0}}$. By (6.15), if A is large enough then

$$0 < \theta' - \theta \leq Ae^{-\frac{\lambda_i}{2L_0}} \left(L_0-i \right) \leq \frac{|\theta|}{1000}.$$

We now apply Lemma 6.1 (with θ, θ' replaced by β', θ'). For parts (a) and (b), (6.19) implies $0 < \theta' \leq \frac{t}{2}$ and we may apply (6.6). For (c), (6.19) implies $-\frac{t}{8} \leq \theta' \leq -0.288 \frac{1}{L_0}$ and we apply (6.7). For (d), (6.19) gives $-\frac{i\lambda_i}{L_0} \leq \theta' < 0$ and we apply (6.8). Combining these estimates with (6.18), we arrive at

$$R_L \left(\mathcal{S} \cap \{ x_L \geq \frac{b}{\log_2 x} \} ; x \right) \ll (\log_2 x)^L T_L B e^{-\frac{\lambda_i}{L_0} \theta' L} \left(\frac{L_0-i}{2i} \right)^2,$$

where

$$B = \begin{cases} \exp \left\{ Ki + \frac{L_0-i}{2i} \theta' L + L(\theta' - \log(1 + \theta')) \right\} & \text{for (a),(b)} \\ \exp \left\{ K\left(L_0-i \right) \theta' L \right\} & \text{for (c)} \\ \exp \left\{ \left(L_0-i \right) \theta' L \right\} & \text{for (d)}. \end{cases}$$
By (1.17) and Lemma 3.7, we have $\alpha' L g_L \gg \alpha L g^{-\ell L} \gg g^{-\Psi}$. Hence, for some absolute constant $C_1 > 0$,

$$
\sum_{a \geq 2} e^{C \log^2 b - \frac{2}{3} \alpha' L g_L} \ll g^{-\Psi} \sum_{k \geq 0} e^{C \log^2 ((k+1)g^{-\Psi}) - C_1 k} = \exp \left\{ \Psi^2 \frac{1}{4C} + O(\Psi) \right\}.
$$

Since Corollary 3.5 implies that $(\log_2 x)^2 T_L \ll Z(x) \exp \{-\Psi/(4C) + O(\Psi)\}$, inequalities (6.16) and (6.20) now imply

$$
V \left(x; \frac{\log_2 q_i(n)}{\log_2 x} \leq \beta \right) \ll V(x) \left[e^{-\frac{1}{4} \Psi^2} + B e^{O(\Psi)} \right].
$$

To complete part (a), observe that the absolute value of the summands in (6.13) (with θ replaced by θ') are decreasing. From the definition of Ψ and (6.19), we obtain $O(\Psi) \leq \frac{L_0(L_0-1)}{100} \theta^2 + O(1)$ and

$$
B \leq \exp \left\{ \left(\frac{L(L-i)}{i} \theta' \right)^2 \left(\frac{1}{2} + \frac{L+i}{3i} \theta' \right) \right\} \leq \exp \left\{ \frac{-5 (\theta')^2 L(L-i)}{18i} \right\}
$$

$$
\leq \exp \left\{ \frac{-0.27 L(L-i)}{i} \theta' \right\} \ll \exp \left\{ \frac{-0.26 L_0(L_0-i)}{i} \theta' \right\}
$$

this gives part (a) of the lemma. For (b), (6.19) implies $\theta' L/i \geq 0.33$, so $i \log(1 + \theta' L/i) \leq 0.08642 L \theta'$. Also, $\log(1 + \theta') \geq 0.9423 \theta'$. Therefore, $B \leq e^{-0.0781 L \theta' \theta} \leq e^{-0.077 L_0 \theta}$, whence $B e^{O(\Psi)} \ll e^{-\frac{1}{10} L_0 \theta}$. For (c), we use $\theta' - \log(1 + \theta') \leq 0.0683 \theta'$. If $i < 100$, $K_i = O(1)$ and $\frac{\lambda_i}{1 - \lambda_i} \geq 0.265$, and for $i > 100$, $K_i \leq 0.302 (L \theta')$ and $\frac{\lambda_i}{1 - \lambda_i} \geq 0.4781$. In either case, $B \ll e^{0.106 L \theta'}$ and therefore $B e^{O(\Psi)} \ll e^{-\frac{1}{10} L_0 \theta}$ by (6.19). Finally, part (d) follows from (6.19) by similar calculations to those in part (a).

\textbf{Proof of Theorem 10} Let $x_i = \frac{\log_2 q_i(n)}{\log_2 x}$. Consider first the case $0 \leq \varepsilon \leq \frac{1}{4 L_0}$. If $x_i \leq (1 - \varepsilon) \beta_i \leq \frac{1}{1 + \varepsilon}$, take $\theta = \varepsilon$ in Lemma 6.2 (a). If $x_i \geq (1 + \varepsilon) \beta_i$, take $\theta = -\frac{\varepsilon}{1 + \varepsilon} \in [-\varepsilon, -\frac{3}{4} \varepsilon]$. Use Lemma 6.2 (d) if $\theta \geq -\frac{1}{L_0}$ and Lemma 6.2 (c) otherwise. This yields the desired bounds, since in the latter case $\theta \geq -\frac{4i}{10(L_0-i)}$.

Next, assume $\frac{1}{4 L_0} < \varepsilon \leq \frac{1}{8}$. If $x_i \leq (1 - \varepsilon) \beta_i$, take $\theta = \varepsilon$ in Lemma 6.2 (b). If $x_i \geq (1 + \varepsilon) \beta_i$, take $\theta = -\frac{\varepsilon}{1 + \varepsilon} \in [-\varepsilon, -\frac{3}{8} \varepsilon]$ in Lemma 6.2 (c). We may do so since $\theta \leq -\frac{0.29}{L_0}$. □

\textbf{Proof of Theorem 11} Assume $g \geq 10$ and $h \geq 10$, for otherwise the conclusion is trivial. Let

$$
\varepsilon_i = g \sqrt{\frac{i \log \left(L_0 - i \right)}{L_0(L_0 - i)}} \quad (1 \leq i \leq L_0 - h)
$$

and let N_i be the number of totients $\leq x$ with a preimage satisfying $\frac{\log_2 q_i(n)}{\log_2 x} - 1 \geq \varepsilon_i$. First, suppose that $\varepsilon_i \leq \frac{1}{3 L_0}$, and let $k = L_0 - i$. We have $\frac{k}{\log k} \geq 4 g^2$, for if not, then $k < 4 g^2 \log L_0 < \frac{1}{2} L_0$ and consequently $\varepsilon_i > g \sqrt{\frac{\log k}{2 k}} > g^2 > 10$. By Theorem 10

$$
N_i \ll V(x) \exp \left[\frac{-g^2 \log(L_0 - i)}{4} + \frac{1}{2} \log \left(\frac{i(L_0 - i)}{g^2 L_0} \right) \right] \ll V(x)(L_0 - i)^{\frac{1}{2} - \frac{1}{4} g^2}.
$$

Summing over $i \leq L_0 - 4 g^2$ and using $g \geq 10$, we obtain

$$
\sum_{\varepsilon_i \leq \varepsilon_i / (3 L_0)} N_i \ll V(x)(4 g^2)^{\frac{1}{2} - \frac{1}{4} g^2} \ll V(x) g^{-\frac{1}{4} g^2}.
$$

Next, suppose that $\frac{i}{3 L_0} < \varepsilon_i \leq \frac{1}{8}$. Since $i \leq 9 g^2 \log(L_0 - i) / L_0 \leq 18 g^2 \log L_0$, Theorem 10 gives

$$
\sum_{i / (3 L_0) < \varepsilon_i \leq 1 / 8} N_i \ll V(x) g^2 \left(\log L_0 \right) e^{-\frac{9}{18} \sqrt{\log L_0}} \ll V(x) e^{-\frac{9}{18} \sqrt{\log L_0}}.
$$
Finally, if \(\varepsilon > \max (\frac{1}{3L_0}, \frac{1}{8}) \), then \(|\log q \cdot (n) - 1| \geq \varepsilon' := \max (\frac{1}{3L_0}, \frac{1}{8}) \). By Theorem 10,

\[
\sum_{\varepsilon_i > \max (i/(3L_0), 1/8)} N_i \ll V(x) \left(L_0 e^{-\frac{1}{108} L_0} + \sum_{i \leq L_0 - h} \exp \left[\frac{L_0 (L_0 - i)}{4i} \left(\frac{i}{3L_0} \right)^2 \right] \right) \ll V(x)e^{-\frac{10}{9\delta}}.
\]

(6.23)

Together, inequalities (6.21)–(6.23) give Theorem 11. \(\square \)

Proof of Theorem 12 Assume \(\eta \geq \frac{1000}{\log_3 x} \), for otherwise the theorem is trivial. Let \(\Psi = \Psi(x) = \left\lfloor \sqrt[3]{\eta \log_3 x} \right\rfloor \), \(L = L_0(x) - \Psi \), define \(\xi_i \) by (6.1) and set \(S = \exp \{ (\log_2 x)^{100} \} \). Let \(n \) be a generic pre-image of a totient \(m \leq x \), and set \(q_i = q_i(n) \) and \(x_i = x_i(n; x) \) for \(0 < i < L \). Also, define \(r = m \phi(q_0 \cdots q_L)r \). Let \(\varepsilon_i = \max (0.82\eta, \frac{1}{8\eta}) \). Let \(U \) be the set of totients \(m \leq x \) satisfying one of four conditions:

1. \((x_1, x_2, \ldots, x_L) \not\in \mathcal{Y}_L(\xi) \),
2. \(m \) is not \(S \)-nice,
3. \(\exists i \leq \frac{L_0}{8} : \left| \frac{x_i}{n} - 1 \right| \geq \varepsilon_i \),
4. \(\Omega(r) \geq (\log_2 x)^{1/2} \).

By Theorem 16 and Lemma 2.8 the number of totients \(m \leq x \) satisfying (1) or (2) is \(O(V(x)(\log_2 x)^{-\frac{1}{39}\eta}) \).

Theorem 10 implies that the number of totients satisfying (3) is

\[
\ll V(x) \left((\eta L_0) e^{-0.82\eta L_0/13} + \sum_{i \geq 2.46\eta L_0} e^{-i/39} \right) \ll V(x) e^{-\frac{1}{108}\eta L_0} \ll \frac{V(x)}{(\log_2 x)^{\eta/10}}.
\]

Consider now totients satisfying (4), but neither (1), (2) nor (3). By (3), \(q_1 \cdots q_L \leq x^{1/3} \). By Lemma 3.8

\[
\log_2 P^+(r) \leq x \log_2 x \leq 10 \eta L_0 \log_2 x \leq 20 \eta ^{-\Psi} \log_3 x < \exp (\sqrt{\log_3 x} - 3).
\]

By Lemma 2.3 the number of totients with \(r \geq R := \exp \{ \frac{1}{\log_2 x} \} \) is \(O(\frac{x}{\log_2 x}) \). Now suppose \(r < R \). Given \(q_1, \ldots, q_L \) and \(r \), the number of possibilities for \(q_0 \) is

\[
\ll \frac{x}{q_1 \cdots q_L r \log x}.
\]

Applying Lemma 3.1 followed by Lemmas 3.4 and 3.10 gives

\[
\sum \frac{1}{q_1 \cdots q_L} \ll R_L(\xi) \ll Z(x) e^{-\frac{1}{4}\Psi^2} \ll Z(x)(\log_2 x)^{-\frac{1}{39}\eta}.
\]

For \(r < y \leq R \), we have \(\Omega(r) \geq 10 \log_2 R \geq 10 \log_2 y \). Hence, the number of possible \(r < y \) is \(O(y/\log^2 y) \) by Lemma 2.2. Therefore, \(\sum_{r} 1/r = O(1) \) and we conclude that

\[
|U| \ll V(x)(\log_2 x)^{-\frac{1}{39}\eta}.
\]

Assume now that a totient \(m \not\in U \). Since every prime factor of a preimage \(n \) is \(S \)-normal,

\[
\Omega(m) = (1 + x_1 + \cdots + x_L) \log_2 x + O \left((\log_2 x)^{1/2} (\log_3 x)^{1/2} \right).
\]

Since (3) fails, Lemma 3.8 implies

\[
\sum_{1 \leq i \leq L} x_i \leq \sum_{1 \leq i \leq L_0/3} q_i(1 + 0.82\eta) + \sum_{L_0/3 < i \leq L} 5q_i^{[\frac{L_0}{3}]} \leq \frac{\eta}{1 - \eta} + 0.98\eta
\]

\[\frac{\eta}{1 - \eta} + 0.98\eta\]
and
\[
\sum_{1 \leq i \leq L} x_i \geq \sum_{i \leq L_0/3} \beta_i (1 - \varepsilon_i) \geq \sum_{i \leq L_0/3} \varrho^i (1 - 0.82\eta) - \sum_{i \geq 1} \frac{i \varrho^i}{L_0} - \sum_{i \geq 2.4L_0} \frac{i \varrho^i}{3L_0} \\
\geq \frac{\varrho}{1 - \varrho} (1 - 0.82\eta) - 4\varrho^{L_0/3 - 1} - \frac{5}{L_0} \geq \frac{\varrho}{1 - \varrho} - 0.98\eta.
\]

Therefore, if \(x \) is large then \(\Omega(m) - \frac{1}{\varrho} \log_2 x \ll 0.99\eta \log_2 x \) for \(m \not\in U \). This proves the first part of Theorem 12.

The second part follows easily, since a totient \(m \not\in U \) is \(S \)-nice and hence
\[
\Omega(m) - \omega(m) \leq \sum_{i=0}^L \Omega(q_i - 1, 1, S) + \Omega(r) \ll (\log_2 x)^{1/2}.
\]

Proof of Corollary 12 It suffices to prove the theorem with \(g(m) = \Omega(m) \). Divide the totients \(m \leq x \) into three sets, \(S_1 \), those with \(\Omega(m) \geq 10\log_2 x \), \(S_2 \), those not in \(S_1 \) but with \(|\Omega(m) - \log_2 x/(1 - \varrho)| \geq \frac{1}{10} \log_2 x \), and \(S_3 \), those not counted in \(S_1 \) or \(S_2 \). By Lemma 2.2, \(|S_1| \ll \frac{x}{\log^2 x} \) and by Theorem 12
\[
|S_2| \ll V(x)(\log_2 x)^{-1/30}.
\]

Therefore
\[
|S_3| = V(x)(1 - O((\log_2 x)^{-1/30}))
\]
and also
\[
\sum_{m \in S_1 \cup S_2} \Omega(m) \ll |S_1| \log x + |S_2| \log_2 x \ll V(x)(\log_2 x)^{2/3}.
\]

For each \(m \in S_3 \), let
\[
\varepsilon_m = \frac{\Omega(m)}{\log_2 x} - \frac{1}{1 - \varrho}
\]
and for each integer \(N \geq 0 \), let \(S_{3, N} \) denote the set of \(m \in S_3 \) with \(N \leq |\varepsilon_m| \log_3 x < N + 1 \). By Theorem 12, (6.25) and (6.26),
\[
\sum_{m \in \mathcal{V}(x)} \Omega(m) = O(V(x)\sqrt{\log_2 x}) + \sum_{0 \leq N \leq \frac{1}{10} \log_2 x} \sum_{m \in S_{3, N}} \Omega(m)
\]
\[
= \frac{\log_2 x}{1 - \varrho} |S_3| + O \left(V(x) \frac{\log_2 x}{\log_3 x} \sum_{N} (N + 1)e^{-N/10} \right)
\]
\[
= \frac{V(x) \log_2 x}{1 - \varrho} \left(1 + O \left(\frac{1}{\log_3 x} \right) \right). \quad \square
\]

7 The distribution of \(A(m) \)

7.1 Large values of \(A(m) \)

Proof of Theorem 3 First we note the trivial bound
\[
|\{m \leq x : A(m) \geq N\}| \ll \frac{x \log_2 x}{N} \ll V(x) \frac{\log x}{N},
\]
which implies the theorem when \(N \geq \log^2 x \). Suppose next that \(N < \log^2 x \). Suppose \(x \) is sufficiently large and set \(\Psi = [\log \log N] \) and \(L = L_0(x) - \Psi \). Note that \(\Psi < \frac{3}{4} L_0(x) \). Define \(\xi_i \) by (6.1). By Theorem 16 the number of totients \(m \leq x \) with a pre-image \(n \) satisfying \(x(n) \not\in \mathcal{I}(\xi) \) is \(O(V(x)e^{-\frac{\Psi}{4}x^2}) \) (here \(x(n) = (x_1(n; x), \ldots, x_L(n; x)) \)). For other totients \(m \), all preimages \(n \) satisfy \(x(n) \in \mathcal{I}(\xi) \). By Lemma
Lemma 7.1. \(x_L = x_L(n) \leq 1/g_L \). For integer \(b \in \{0, 1, \ldots, L - 1\} \), let \(N_b \) be the number of these remaining totients \(m \leq x \) with a preimage \(n \) satisfying

\[
\frac{b}{Lg_L} \leq x_L < \frac{b + 1}{Lg_L}.
\]

Put \(Y_b = \frac{b+1}{Lg_L} \log_2 x \). Write \(n = q_0 \cdots q_L t \), so that \(\log_2 P^+(t) \leq Y_b \), and let \(r = \phi(t) \). Also note that \(\log_2 Y_b \ll b^\delta \). As in the proof of (4.10), using Lemmas 3.1 and 3.10 together with (6.14) and Corollary 3.5 gives

\[
N_b(x) \ll \frac{x}{\log x} R_L(\mathcal{S}_L(\xi) \cap \{x \geq b/(Lg_L)\}; x) \sum_r \frac{1}{r} \ll \frac{x}{\log x} e^{-C_0 b} T_L e^{C(\log Y_b)^2} \ll V(x) \exp \left\{ -C_0 b + \Psi \log b + O(\Psi + \log^2 b) \right\}.
\]

Put \(b_0 = \left[\Psi^2/C_0 \right] \). The number of totients with \(x_L \geq b_0/(Lg_L) \) is therefore \(\ll V(x) e^{-\Psi^2 + O(\Psi \log \Psi)} \ll V(x) e^{-\frac{1}{2} \Psi^2} \). The remaining totients have all of their preimages of the form \(n = q_0 \cdots q_L t \) with \(\log_2 P^+(t) \leq Y_0 \). The number of such preimages is

\[
\ll \frac{x}{\log x} R_L(\mathcal{S}_L(\xi); x) \sum_{\log_2 P^+(t) \leq Y_0} \frac{1}{\phi(t)} \ll V(x) e^{-C_0 b - \frac{1}{2} \Psi^2 + Z_{b0}}.
\]

Hence, the number of totients \(m \) having at least \(N \) such preimages is

\[
\ll \frac{V(x)}{N} e^{-C_0 b - \frac{1}{2} \Psi^2 + Z_{b0}} \ll \frac{V(x)}{N^{1/2}}.
\]

7.2 Sierpiński’s Conjecture

Schinzel’s argument for deducing Sierpiński’s Conjecture for a given \(k \) from Hypothesis H requires the simultaneous primality of \(\gg k \) polynomials of degrees up to \(k \). Here we present a different approach, which is considerably simpler and requires only the simultaneous primality of three linear polynomials. We take a number \(m \) with \(A(m) = k \) and construct an \(l \) with \(A(lm) = k + 2 \). Our method is motivated by the technique used in Section 5 where many numbers with multiplicity \(\kappa \) are constructed from a single example.

Lemma 7.1. Suppose \(A(m) = k \) and \(p \) is a prime satisfying

(i) \(p > 2m + 1 \),

(ii) \(2p + 1 \) and \(2mp + 1 \) are prime,

(iii) \(dp + 1 \) is composite for all \(d/2m \) except \(d = 2 \) and \(d = 2m \).

Then \(A(2mp) = k + 2 \).

Proof. Suppose \(\phi^{-1}(m) = \{x_1, \ldots, x_k\} \) and \(\phi(x) = 2mp \). Condition (i) implies \(p \nmid x \), hence \(p \nmid (q - 1) \) for some prime \(q \) dividing \(x \). Since \((q - 1)/2mp \), we have \(q = dp + 1 \) for some divisor \(d \) of \(2m \). We have \(q > 2p \), so \(q^2 \nmid x \) and \(\phi(x) = (q - 1)\phi(x/q) \). By conditions (ii) and (iii), either \(q = 2p + 1 \) or \(q = 2mp + 1 \). In the former case, \(\phi(x/q) = m \), which has solutions \(x = (2p + 1)x_i \) \((1 \leq i \leq k) \). In the latter case, \(\phi(x/q) = 1 \), which has solutions \(x = q \) and \(x = 2q \). \(\square \)

Suppose \(A(m) = k \), \(m \equiv 1 \pmod{3} \), and let \(d_1, \ldots, d_j \) be the divisors of \(2m \) with \(3 \leq d_i < 2m \). Let \(p_1, \ldots, p_j \) be distinct primes satisfying \(p_i > d_i \) for each \(i \). Using the Chinese Remainder Theorem, let \(a \mod b \) denote the intersection of the residue classes \(-d_i^{-1} \mod p_i \) \((1 \leq i \leq j) \). For every \(h \) and \(i \), \((a + bh)d_i + 1 \) is divisible by \(p_i \), hence composite for large enough \(h \). The Prime \(k \)-tuples Conjecture implies that there are infinitely many numbers \(h \) so that \(p = a + bh, 2p + 1 \) and \(2mp + 1 \) are simultaneously prime. By Lemma 7.1, \(A(2mp) = k + 2 \). As \(p \equiv 2 \pmod{3} \), \(2mp \equiv 1 \pmod{3} \). Starting with \(A(1) = 2 \), \(A(2) = 3 \), and \(A(220) = 5 \), Sierpiński’s Conjecture follows by induction on \(k \).
k	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	
2	2	78	38640	153	13824	228	32316	303	509184
3	2	78	38640	153	13824	228	32316	303	509184
4	2	78	38640	153	13824	228	32316	303	509184
5	2	78	38640	153	13824	228	32316	303	509184
6	2	78	38640	153	13824	228	32316	303	509184
7	2	78	38640	153	13824	228	32316	303	509184
8	2	78	38640	153	13824	228	32316	303	509184

TABLE 2. Smallest solution to $A(m) = k$
Table 2 of [34] lists the smallest m, denoted m_k, for which $A(m) = k$ for $2 \leq k \leq 100$. We extend the computation to $k \leq 600$, listing m_k for $k \leq 600$ in Table 2.

7.3 Carmichael’s Conjecture

The basis for computations of lower bounds for a counterexample to Carmichael’s Conjecture is the following Lemma of Carmichael [5], as refined by Klee [24]. For short, let $s(n) = \prod_{p|n} p$ denote the square-free kernel of n.

Lemma 7.2. Suppose $\phi(x) = m$ and $A(m) = 1$. If $d|x$, $e|\frac{x/d}{s(x/d)}$ and $P = 1 + e\phi(d)$ is prime, then $P^2|x$.

From Lemma 7.2 it is easy to deduce $2^33^27^243^2|x$. Here, following Carmichael, we break into two cases: (I) $3^2 || x$ and (II) $3^3|x$. In case (I) it is easy to show that $13^2|x$. From this point onward Lemma 7.2 is used to generate a virtually unlimited set of primes P for which $P^2|x$. In case (I) we search for P using $d = 1, e = 6k$ or $d = 9, e = 2k$, where k is a product of distinct primes (other than 2 or 3) whose squares we already know divide x. That is, if $6k + 1$ or $12k + 1$ is prime, its square divides x. In case (II) we try $d = 9, e = 2k$ and $d = 27, e = k$, i.e. we test whether or not $6k + 1$ and $18k + 1$ are primes.

As in [34], certifying that a number P is prime is accomplished with the following lemma of Lucas, Lehmer, Brillhart and Selfridge.

Lemma 7.3. Suppose, for each prime q dividing $n - 1$, there is a number a_q satisfying $a_q^{n-1} \equiv 1$ and $a_q^{(n-1)/q} \neq 1 \pmod{n}$. Then n is prime.

The advantage of using Lemma 7.3 in our situation is that for a given P we are testing, we already know the prime factors of $P - 1$ (i.e. 2, 3 and the prime factors of k).

Our overall search strategy differs from [34]. In each case, we first find a set of 32 “small” primes P (from here on, P will represent a prime generated from Lemma 7.2 for which $P^2|x$, other than 2 or 3). Applying Lemma 7.2, taking k to be all possible products of 1, 2, 3 or 4 of these 32 primes yields a set S of 1000 primes P, which we order $p_1 < \cdots < p_{1000}$. This set will be our base set. In particular, $p_{1000} = 7964860353776413$ in case (I) and $p_{1000} = 78399428950769743507519$ in case (II). The calculations are then divided into “runs”. For run #0, we take for k all possible combinations of 1, 2 or 3 of the primes in S. For $j \geq 1$, run #j tests every k which is the product of p_j and three larger primes in S. Each candidate P is first tested for divisibility by small primes and must pass the strong pseudoprime test with bases 2, 3, 5, 7, 11 and 13 before attempting to certify that it is prime. There are two advantages to this approach. First, the candidates P are relatively small (the numbers tested in case (I) had an average of 40 digits and the numbers tested in case (II) had an average of 52 digits). Second, $P - 1$ has at most 6 prime factors, simplifying the certification process. To achieve $\prod P^2 > 10^{10^{10}}$, 13 runs were required in case (I) and 14 runs were required in case (II). Together these runs give Theorem 6 A total of 126,520,174 primes were found in case (I), and 104,942,148 primes were found in case (II). The computer program was written in GNU C, utilizing Arjen Lenstra’s Large Integer Package, and run on a network of 200MHz Pentium PCs running LINUX O/S in December 1996 (4,765 CPU hours total).

In 1991, Pomerance (see [30] and [25]) showed that

\[
\liminf_{x \to \infty} \frac{V_1(x)}{V(x)} \leq \frac{1}{2}.
\]

A modification of his argument, combined with the above computations, yields the much stronger bound in Theorem 7 Recall that $V(x;k)$ counts the totients $\leq x$, all of whose preimages are divisible by k.

Lemma 7.4. We have $V(x;a^2) \leq V(x/a)$.

Proof. The lemma is trivial when $a = 1$ so assume $a \geq 2$. Let n be a totient with $x/a < n \leq x$. First we show that for some integer $s \geq 0$, $a^{-s}n$ is a totient with an pre-image not divisible by a^2. Suppose
Lemma 7.5. If \(a^2 \nmid m \), take \(s = 0 \). Otherwise we can write \(m = a^t r \), where \(t \geq 2 \) and \(a \nmid r \). Clearly \(\phi(ar) = a^{2t}/r_n \), so we take \(s = t - 1 \). Next, if \(n_1 \) and \(n_2 \) are two distinct totients in \((x/a, x) \), then \(a^{-s_1}n_1 \neq a^{-s_2}n_2 \) (since \(n_1/n_2 \) cannot be a power of \(a \)), so the mapping from totients in \((x/a, x) \) to totients \(\leq x \) with a pre-image not divisible by \(a^2 \) is one-to-one. Thus \(V(x) - V(x; a^2) \geq V(x) - V(x/a) \). \(\square \)

The above computations show that if \(\phi(x) = n \) and \(A(n) = 1 \), then \(x \) is divisible by either \(a^2 \) or \(b^2 \), where \(a \) and \(b \) are numbers greater than \(10^{50,000} \). Suppose \(a \leq b \). By Lemma 7.4, we have

\[
V_1(x) \leq V(x/a) + V(x/b) \leq 2V(x/a).
\]

Lemma 7.5. Suppose \(a > 1, b > 0 \) and \(V_1(x) \leq bV(x/a) \) for all \(x \). Then

\[
\liminf_{x \to \infty} \frac{V_1(x)}{V(x)} \leq \frac{b}{a}.
\]

Proof. Suppose \(c = \liminf_{x \to \infty} \frac{V_1(x)}{V(x)} > 0 \). For every \(\varepsilon > 0 \) there is a number \(x_0 \) such that \(x \geq x_0 \) implies \(V_1(x)/V(x) \geq c - \varepsilon \). For large \(x \), set \(n = \lfloor \log(x/x_0)/\log a \rfloor \). Then

\[
V(x) = \frac{V(x)}{V(x/a)} \cdot \frac{V(x/a)}{V(x/a^2)} \cdots \frac{V(x/a^{n-1})}{V(x/a^n)} \cdot V(x/a^n) \\
\leq b^n \frac{V(x)}{V_1(x)} \frac{V(x/a)}{V_1(x/a)} \cdots \frac{V(x/a^{n-1})}{V_1(x/a^{n-1})} V(ax_0) \\
\leq b^n (c - \varepsilon)^{-n} (ax_0) = O(x^{-\log((c-\varepsilon)/b)/\log a}).
\]

This contradicts the trivial bound \(V(x) \gg x/\log x \) if \(c > \frac{b}{a} + \varepsilon \). Since \(\varepsilon \) is arbitrary, the lemma follows. \(\square \)

Theorem 7 follows immediately. Further improvements in the lower bound for a counterexample to Carmichael’s Conjecture will produce corresponding upper bounds on \(\liminf_{x \to \infty} V_1(x)/V(x) \). Explicit bounds for the \(O(1) \) term appearing in Theorem 11 (which would involve considerable work to obtain) combined with (7.2) should give a strong upper bound for \(\limsup_{x \to \infty} V_1(x)/V(x) \).

Next, suppose \(d \) is a totient, all of whose pre-images \(m_i \) are divisible by \(k \). The lower bound argument given in Section 5 shows that for at least half of the numbers \(b \in \mathcal{B} \), the totient \(\phi(b)d \) has only the pre-images \(bm_i \). In particular, all of the pre-images of such totients are divisible by \(k \) and Theorem 8 follows.

It is natural to ask for which \(k \) do there exist totients, all of whose pre-images are divisible by \(k \). A short search reveals examples for each \(k \leq 11 \) except \(k = 6 \) and \(k = 10 \). For \(k \in \{2, 4, 8\} \), take \(d = 2^{18} \cdot 257 \), for \(k \in \{3, 9\} \), take \(d = 54 = 2 \cdot 3^3 \), for \(k = 5 \) take \(d = 12500 = 4 \cdot 5^5 \), for \(k = 7 \), take \(d = 294 = 6 \cdot 7^2 \) and for \(k = 11 \), take \(d = 110 \). It appears that there might not be any totient, all of whose pre-images are divisible by 6, but I cannot prove this. Any totient with a unique pre-image must have that pre-image divisible by 6, so the non-existence of such numbers implies Carmichael’s Conjecture.

I believe that obtaining the asymptotic formula for \(V(x) \) will require simultaneously determining the asymptotics of \(V_k(x)/V(x) \) (more will be said in section 8) and \(V(x; k)/V(x) \) for each \(k \). It may even be necessary to classify totients more finely. For instance, taking \(d = 4, k = 4 \) in the proof of Theorem 2 (section 5), the totients \(m \) constructed have \(\phi^{-1}(m) = \{5n, 8n, 10n, 12n\} \) for some \(n \). On the other hand, taking \(d = 6, k = 4 \) produces a different set of totients \(m \), namely those with \(\phi^{-1}(m) = \{7n, 9n, 14n, 18n\} \) for some \(n \). Likewise, for any given \(d \) with \(A(d) = k \), the construction of totients in Section 5 may miss whole classes of totients with multiplicity \(k \). There is much further work to be done in this area.

8 Generalization to other multiplicative functions

The proofs of our theorems easily generalize to a wide class of multiplicative arithmetic functions with similar behavior on primes, such as \(\sigma(n) \), the sum of divisors function. If \(f : \mathbb{N} \to \mathbb{N} \) is a multiplicative
arithmetic function, we analogously define
\[\mathcal{Y}_f = \{ f(n) : n \in \mathbb{N} \}, \quad V_f(x) = |\mathcal{Y}_f \cap [1, x]|, \]
(8.1)
\[f^{-1}(m) = \{ n : f(n) = m \}, \quad A_f(m) = |f^{-1}(m)|, \quad V_{f,k}(x) = |\{ m \leq x : A_f(m) = k \}|. \]

We now indicate the modifications to the previous argument needed to prove Theorem 14. By itself, condition (1.11) is enough to prove the lower bound for \(V_f(x) \). Condition (1.12) is used only for the upper bound argument and the lower bound for \(V_{f,k}(x) \).

The function \(f(n) = n \), which takes all positive integer values, is an example of why zero must be excluded from the set in (1.11). Condition (1.12) insures that the values of \(f(p^k) \) for \(k \geq 2 \) are not too small too often, and thus have little influence on the size of \(V_f(x) \). It essentially forces \(f(h) \) to be a bit larger than \(h^{1/2} \) on average. It’s probable that (1.12) can be relaxed, but not too much. For example, the multiplicative function defined by \(f(p) = p - 1 \) for prime \(p \), and \(f(p^k) = p^{k-1} \) for \(k \geq 2 \) clearly takes all integer values, while
\[
\sum_{h \geq 4, \text{square-full}} \frac{1}{f(h)(\log_2 h)^2} \ll 1.
\]
Condition (1.12) also insures that \(A(m) \) is finite for each \(f \)-value \(m \). For example, a function satisfying \(f(p^k) = 1 \) for infinitely many prime powers \(p^k \) has the property that \(A(m) = \infty \) for every \(f \)-value \(m \).

In general, implied constants will depend on the function \(f(n) \). One change that must be made throughout is to replace every occurrence of “\(p - 1 \)” (when referring to \(\phi(p) \)) with “\(f(p) \)”, for instance in the definition of \(S \)-normal primes in Section 2. Since the possible values of \(f(p) - p \) is a finite set, Lemma 2.6 follows easily with the new definitions. The most substantial change to be made in Section 2, however, is to Lemma 2.7 since we no longer have the bound \(n/f(n) \ll \log_2 n \) at our disposal.

Lemma 2.7. The number of \(m \in \mathcal{Y}_f(x) \) for which either \(d^2|m \) or \(d^2|n \) for some \(n \in f^{-1}(m) \) and \(d > Y \) is \(O(x(\log_2 x)^K/Y^{2\delta}, \) where \(K = \max(p - f(p)). \)

Proof. The number of \(m \) with \(d^2|m \) for some \(d > Y \) is \(O(x/Y) \). Now suppose \(d^2|n \) for some \(d > Y \), and let \(h = h(n) \) be the square-full part of \(n \) (the largest squarefull divisor of \(n \)). In particular, \(h(n) > Y^2 \).

From the fact that \(f(p) \geq p - K \) for all primes \(p \), we have
\[f(n) = f(h) f(n/h) \gg \frac{f(h)n}{h} (\log_2 (n/h))^{-K}. \]

Thus, if \(f(n) \leq x \), then
\[\frac{n}{h} \left(\log_2 \frac{n}{h} \right) \ll \frac{x}{f(h)}. \]

Therefore, the number of possible \(n \) with a given \(h \) is crudely \(\ll x(\log_2 x)^K/f(h) \). By (1.12), the total number of \(n \) is at most
\[\ll x(\log_2 x)^K \sum_{h \geq Y^2} \frac{1}{f(h)} \ll x(\log_2 x)^K \sum_{h} \frac{h^\delta}{f(h)} \ll \frac{x(\log_2 x)^K}{Y^{2\delta}}. \]

Applying Lemma 2.7 in the proof of Lemma 2.8 with \(Y = S^{1/2} \) yields the same bound as claimed, since \(S > \exp\{ (\log_2 x)^{3\delta} \} \).

In Section 3, the only potential issue is with Lemma 3.1 but the analog of \(t_m \) is \(\ll \exp\{ -\delta e^{m-1} \} \).

The only modification needed in Section 4 comes from the use of \(\phi(ab) \geq \phi(a)\phi(b) \) in the argument leading to (4.10). If \(qL \not| w \), the existing argument is fine. If \(qL|w \), let \(j = \max\{ i \leq L : q_i < q_{i-1} \} \). Since \(q_{L-2} > qL \), \(j \in \{ L - 1, L \} \). Write \(f(q_1 \cdots q_L w) = f(q_1 \cdots q_{j-1}) f(w') \), where \(w' = q_j \cdots q_L w \) and \((x_1, \ldots, x_j) \in \mathcal{S}_j(\mathcal{H}_j^* (\{ \xi_1, \ldots, \xi_{j-1} \})) \). Put \(v = f(w') \), use the analog of (4.6) to bound \(\sum 1/v \), and otherwise follow the argument leading to (4.10).
In Section 5, there are several changes. For Lemma 5.1, the equation (5.1) may have trivial solutions coming from pairs \(p, p' \) with \(f(p) = f(p') \). We say a prime \(p \) is “bad” if \(f(p) = f(p') \) for some prime \(p' \neq p \) and say \(p \) is “good” otherwise. By (1.11) and Lemma 2.5, the number of bad primes \(\leq y \) is \(O(y/\log^2 y) \), so \(\sum_{p \text{ bad}} 1/p \) converges. In Lemma 5.1, add the hypothesis that the \(p_i \) and \(q_i \) are all “good”. Possible small values of \(f(p^k) \) for some \(p^k \) with \(k \geq 2 \) are another complication. For each prime \(p \), define

\[
Q(p) := \min_{k \geq 2} \frac{f(p^k)}{f(p)}.
\]

Introduce another parameter \(d \) (which will be the same \(d \) as in Theorem 2) and suppose \(L \leq L_0 - M \) where \(M \) is a sufficiently large constant depending on \(P_0 \) and \(d \). It follows from (1.12) and (8.2) that

\[
\sum_{Q(p) \leq d} \frac{1}{p} = O(d).
\]

In the definition of \(\mathcal{R} \), add the hypothesis that all primes \(p_i \) are “good” and replace (5.16) by \(Q(p_i) \geq \max(d + K + 1, 17) \) for every \(i \). Of course, (8.13) is changed to \(f(n) \leq x/d \). Fortunately, the numbers in \(\mathcal{R} \) are square-free by definition. Consider the analog of (5.18). Since \(Q(p_i) > d + K \) for each \(p_i \), if \(n|n_1 \) and one of the primes \(q_i \) \((0 \leq i \leq L) \) occurs to a power greater than 1, then \(\phi(n_1) > d\phi(n) \). Therefore, the \(L + 1 \) largest prime factors of \(n_1 \) occur to the first power only, which forces \(n_1 = nm_i \) for some \(i \) (the trivial solutions). For nontrivial solutions, we have at least one index \(i \) for which \(p_i \neq q_i \), and hence \(f(p_i) \neq f(q_i) \) (since each \(p_i \) is “good”). Other changes are more obvious. In (5.5), the phrase “\(rt + 1 \) and \(st + 1 \) are unequal primes” is replace by “\(rt + a \) and \(st + a' \) are unequal primes for some pair of numbers \((a, a') \) with \(a, a' \in \mathcal{P} \).” Here \(\mathcal{P} \) denotes the set of possible values of \(f(p) - p \). As \(\mathcal{P} \) is finite, this poses no problem in the argument. Similar changes are made in several places in the argument leading to (5.7).

Only small, obvious changes are needed for Theorem 16. The rest of Section 6 needs very little attention, as the bounds ultimately rely on Lemma 3.1 and the volume computations (which are independent of \(f \)).

It is not possible to prove analogs of Theorems 5–9 for general \(f \) satisfying the hypotheses of Theorem 14. One reason is that there might not be any “Carmichael Conjecture” for \(f \), e.g. \(A_\phi(3) = 1 \), where \(\sigma \) is the sum of divisors function. Furthermore, the proof of Theorem 9 depends on the identity \(\phi(p^2) = p\phi(p) \) for primes \(p \). If, for some \(a \neq 0 \), \(f(p) = p + a \) for all primes \(p \), then the argument of (15) shows that if the multiplicity \(k \) is possible and \(r \) is a positive integer, then the multiplicity \(rk \) is possible. For functions such as \(\sigma(n) \), for which the multiplicity 1 is possible, this completely solves the problem of the possible multiplicities. For other functions, it shows at least that a positive proportion of multiplicities are possible. If multiplicity 1 is not possible, and \(f(p^2) = p\phi(p) \), the argument in (16) shows that all multiplicities beyond some point are possible.

We can, however, obtain information about the possible multiplicities for more general \(f \) by an induction argument utilizing the next lemma. Denote by \(a_1, \ldots, a_K \) the possible values of \(f(p) - p \) for prime \(p \).

Lemma 7.1. Suppose \(A_f(m) = k \). Let \(p, q, s \) be primes and \(r \geq 2 \) an integer so that

1. (i) \(s \) and \(q \) are “good” primes,
2. (ii) \(mf(s) = f(q) \),
3. (iii) \(f(s) = rp \),
4. (iv) \(p \nmid f(p^b) \) for every prime \(\pi \), integer \(b \geq 2 \) with \(f(\pi^b) \leq mf(s) \),
5. (v) \(dp - a_i \) is composite for \(1 \leq i \leq K \) and \(d|m \) except \(d = r \) and \(d = rm \).

Then \(A_f(mrp) = k + A_f(1) \).

Proof. Let \(f^{-1}(m) = \{x_1, \ldots, x_k\} \) and suppose \(f(x) = mrp \). By condition (iv), \(p|f(\pi) \) for some prime \(\pi \) which divides \(x \) to the first power. Therefore, \(f(\pi) = dp \) for some divisor \(d \) of \(mr \). Condition (v) implies that the only possibilities for \(d \) are \(d = r \) or \(d = rm \). If \(d = r \), then \(f(\pi) = rp = f(p) \) which forces
\[\pi = s \] by condition (i). By conditions (ii) and (iii), we have \(f(x/s) = m \), which gives solutions \(x = sx_i \) \((1 \leq i \leq k) \). Similarly, if \(d = rm \), then \(\pi = q \) and \(f(x/q) = 1 \), which has \(A_f(1) \) solutions.

By the Chinese Remainder Theorem, there is an arithmetic progression \(\mathcal{A} \) so that condition (v) is satisfied for each number \(p \in \mathcal{A} \), while still allowing each \(rp + a_i \) and \(rpm + a_i \) to be prime. To eliminate primes failing condition (iv), we need the asymptotic form of the Prime \(k \)-tuples Conjecture due to Hardy and Littlewood \([21]\) (actually only the case where \(a_i = 1 \) for each \(i \) is considered in \([21]\); the conjectured asymptotic for \(k \) arbitrary polynomials can be found in \([3]\)).

Conjecture 2 (Prime \(k \)-tuples Conjecture (asymptotic version). Suppose \(a_1, \ldots, a_k \) are positive integers and \(b_1, \ldots, b_k \) are integers so that no prime divides \((a_1 n + b_1) \cdots (a_k n + b_k) \) for every integer \(n \). Then for some constant \(C(a, b) \), the number of \(n \leq x \) for which \(a_1 n + b_1, \ldots, a_k n + b_k \) are simultaneously prime is

\[
\sim C(a, b) \frac{x}{\log^k x} \quad (x \geq x_0(a, b)).
\]

Using \((1.12)\), we readily obtain \(|\{ x^b : f(x^b) \leq y, b \geq 2 \}| \ll y^{1-\delta} \). If \(s \) is taken large enough, the number of possible \(p \leq x \) satisfying condition (iv) (assuming \(r \) and \(m \) are fixed and noting condition (iii)) is \(o(x/\log^2 x) \). The procedure for determining the set of possible multiplicities with this lemma will depend on the behavior of the particular function. Complications can arise, for instance, if \(m \) is even and all of the \(a_i \) are even (which makes condition (ii) impossible) or if the number of “bad” primes is \(\gg x/\log^3 x \).

References

[1] R. C. Baker and G. Harman, *Shifted primes without large prime factors*, Acta Arith. 83 (1998), 331–361.
[2] R. C. Baker, G. Harman and J. Pintz, *The difference between consecutive primes. II.*, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532–562.
[3] P. T. Bateman and R. A. Horn, *A heuristic asymptotic formula concerning the distribution of prime numbers*, Math. Comp. 16 (1962), 363–367.
[4] R. D. Carmichael, *On Euler’s \(\phi \)-function*, Bull. Amer. Math. Soc. 13 (1907), 241–243.
[5] ———, *Note on Euler’s \(\phi \)-function*, Bull. Amer. Math. Soc. 28 (1922), 109–110.
[6] E. Cohen, *Arithmetical functions associated with the unitary divisors of an integer*, Math. Z. 74 (1960), 66–80.
[7] L. E. Dickson, *A new extension of Dirichlet’s theorem on prime numbers*, Messenger of Math. 33 (1904), 155–161.
[8] P. Erdős, *On the normal number of prime factors of \(p – 1 \) and some related problems concerning Euler’s \(\phi \)-function*, Quart. J. Math. Oxford 6 (1935), 205-213.
[9] ———, *Some remarks on Euler’s \(\phi \)-function and some related problems*, Bull. Amer. Math. Soc. 51 (1945), 540–544.
[10] ———, *Some remarks on Euler’s \(\phi \)-function*, Acta Arith. 4 (1958), 10–19.
[11] P. Erdős and R.R.Hall, *On the values of Euler’s \(\phi \)-function*, Acta Arith. 22 (1973), 201-206.
[12] ———, *Distinct values of Euler’s \(\phi \)-function*, Mathematika 23 (1976), 1–3.
[13] P. Erdős and C. Pomerance, *On the normal number of prime factors of \(\phi(n) \)*, Rocky Mountain J. of Math. 15 (1985), 343–352.
[14] K. Ford, *The distribution of totients*, Ramanujan J. (Paul Erdős memorial issue) 2 (1998), 67–151.
[15] K. Ford and S. Konyagin, *On two conjectures of Sierpinski concerning the arithmetic functions \(\sigma \) and \(\phi \)*, Number Theory in Progress (Zakopane, Poland, 1997), vol. II, de Gruyter (1999), 795-803.
[16] K. Ford, *The number of solutions of \(\phi(x) = m \)*, Annals of Math. 150 (1999), 283–311.
[17] K. Ford and K.-W. Lau, *Asymptotics of a recurrence sequence: Solution of Problem 10682*, Amer. Math. Monthly 107 (2000), 374–375.
[18] J. Friedlander, *Shifted primes without large prime factors*, in Number theory and applications (Banff, AB, 1988), Kluwer Acad. Publ., Dordrecht (1989), 393–401.
[19] H. Halberstam and H.-E. Richert, *Sieve Methods*, Academic Press, London, 1974.
[20] R. R. Hall and G. Tenenbaum, *Divisors*, Cambridge University Press, 1988.
[21] G. H. Hardy and J. E. Littlewood, *Some problems of Partitio Numerorum*: III. On the representation of a number as a sum of primes, Acta Math. 44 (1923), 1–70.
[22] G. H. Hardy and S. Ramanujan, *The normal number of prime factors of a number \(n \)*, Quart. J. Math. 48 (1917), 76–92.
[23] A. Hildebrand and G. Tenenbaum, *Integers without large prime factors*, J. Théor. Nombres Bordeaux 5 (1993), 411–484.
[24] V. Klee, *On a conjecture of Carmichael*, Bull. Amer. Math. Soc. 53 (1947), 1183–1186.
[25] Mattics, L. E., *A half step towards Carmichael’s Conjecture, Solution to Problem 6671*, Amer. Math. Monthly 100 (1993), 694–695.
[26] H. Maier and C. Pomerance, *On the number of distinct values of Euler’s ϕ-function*, Acta Arith. 49 (1988), 263–275.
[27] P. Masai and A. Valette, *A lower bound for a counterexample to Carmichael’s Conjecture*, Bollettino U.M.I. (6) 1 (1982), 313–316.
[28] S. Pillai, *On some functions connected with ϕ(n)*, Bull. Amer. Math. Soc. 35 (1929), 832–836.
[29] C. Pomerance, *On the distribution of the values of Euler’s function*, Acta Arith. 47 (1986), 63–70.
[30] ———, *Problem 6671*, Amer. Math. Monthly 98 (1991), 862.
[31] A. Schinzel, *Sur l’équation φ(x) = m*, Elem. Math. 11 1956, 75–78.
[32] ———, *Remarks of the paper “Sur certaines hypothèses concernant les nombres premiers”*, Acta Arith. 7 (1961/62), 1–8.
[33] A. Schinzel and W. Sierpiński, *Sur certaines hypothèses concernant les nombres premiers*, Acta Arith. 4 (1958), 185–208.
[34] A. Schlafly and S. Wagon, *Carmichael’s conjecture on the Euler function is valid below 10^{10,000}, Math. Comp. 63* (1994), 415–419.