Understanding the role of serotonin in psychiatric diseases
[version 1; peer review: 3 approved]

Donatella Marazziti

Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Via Roma, 67, 56100 Pisa, Italy

Abstract
Serotonin (5-HT) continues to attract researchers’ interest after almost a century. However, despite these efforts, its role has not yet been fully elucidated. It is now evident that 5-HT does not modulate single functions but rather a multiplicity of activities and behaviors present in both normal and several pathological conditions in a less deterministic way than previously assumed. This article aims to briefly review some of the latest advancements in the general role of 5-HT in psychiatry, particularly in depression, and offer the author’s personal reflections.

Keywords
psychiatric disorders, serotonin, pathophysiology, depression

Open Peer Review

Approval Status

1	2	3
✔	✔	✔

version 1
23 Feb 2017

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. David Yew, Chinese University of Hong Kong, Shatin, Hong Kong
2. Berend Olivier, Utrecht University, Utrecht, The Netherlands
3. Johan Lundberg, Karolinska Institutet, Stockholm, Sweden

Any comments on the article can be found at the end of the article.
Introduction

Serotonin (5-HT) is really puzzling. Originally discovered in the blood and in entero-cromaffin cells and first thought to be a vasoconstrictor agent, 5-HT was also described after about twenty years in the central nervous system (CNS), where it is now considered to represent one of the most diffuse, most influential, and probably most investigated neurotransmitters. However, in spite of decades of research all over the world, its nature remains elusive and its role is still surrounded by mystery.

Undoubtedly, the amount of data relative to 5-HT has permitted investigators to describe several aspects of its distribution, physiology, receptor subtypes, mode of functioning, and modulation of different activities in both the CNS and the periphery, including appetite, sleep, mood, sexuality, aggression/impulsivity, biological rhythms, motor control, memory, learning, neuronal degeneration, and gastrointestinal motility and vasoconstriction. In addition, a rich literature shows the involvement of 5-HT in a series of disorders, including almost every neuropsychiatric domain. Indeed, all psychiatric disorders seem to be related to 5-HT dysfunctions, and many, if not all, psychotropic drugs used to treat psychopathological conditions interfere more or less directly with the 5-HT system. However, as we analyze the evolution of hypotheses related to the involvement of 5-HT in the pathophysiology of psychiatric disorders, it is evident that the original enthusiasm based on classic theories, which now appears quite simplistic, has dampened.

Discussion

The investigation of the neurobiology of depression is a clear example of this process and how old theories should be re-conceptualized on the basis of the latest findings. In the 1970s, depression was believed to be due to a deficit of 5-HT neurotransmission. Taken together, convergent data from studies on tryptophan depletion, cerebrospinal fluid levels of 5-hydroxyindolacetic acid, neuroendocrine challenges, autopsy, and peripheral models of presynaptic serotonergic neurons, like platelets, seemed to support the presence of a reduced functioning of the 5-HT system in depression. Interestingly, if we critically analyze those findings, it is evident that negative results were also present since the beginning but were mostly neglected. Moreover, attempts were made to encompass them in the defect hypothesis through rather complicated explanations, sometimes involving the 5-HT transporter (SERT) and one or more of the 5-HT receptor subtypes (of which there are now 14) discovered and characterized throughout the years. Similarly, the function of the genes or genetic polymorphisms that have been continually proposed in depression in the last two decades was not always confirmed subsequent and led to less conclusive or inconclusive hypotheses. In any case, all of these activities have promoted the synthesis and introduction into clinical practice of selective 5-HT re-uptake inhibitors (SSRIs), which represent one of the most successful psychopharmacological advancements and are still among the most widely prescribed drugs.

Currently, both clinicians and investigators realize the shortcomings of the previous findings and developments, and new data are considered more realistic but are taken with more caution.

First, there is clear-cut evidence of serotonergic dysfunctions in different psychopathological disorders (depression, anxiety disorders, eating disorders, schizophrenia, impulse control disorders, autism, and aggressive behaviors, just to mention the main ones), and, as just noted, several drugs with main activities on 5-HT, such as SSRIs, are reasonably effective therapeutic agents in all of these conditions. There has been a significant advancement not only in SSRIs but also in the field of psychosis, in which the development of second-generation antipsychotics targets specific 5-HT receptor subtypes. Unfortunately, the 5-HT dysfunctions widely described with different tools are not detected in all patients, and the nonresponse rate to serotonergic drugs is still quite significant (around 50% of the cases), and only 30% reach effective remission. Furthermore, no real achievement has been made in terms of possible predictors of response or prompt identification of individuals more prone to relapses in all the conditions related to 5-HT neurotransmission. However, more recent research has suggested changes in central 5-HT1B receptor binding, and the associated peripherally available biomarker p11 has been shown to be associated with response to both SSRIs and cognitive behavioral treatment of depression.

Second, it is clear that the level of “core” serotonergic dysfunction in the disorders where it has been described (or supposed to be present) should be considered still unknown, as it might result from one or more different processes, such as defective synthesis, release, re-uptake, catabolism, or metabolism of 5-HT per se, or from aberrations in one or more of the 14 receptors.

Third, if (as suggested by some authors) decreased 5-HT functioning played a minimal or no role in depression or could be even hyperfunctioning, it should be questioned whether 5-HT represents just one of the final, and not the main, factors in the neurological chain of events underlying those psychopathological symptoms attributable to this neurotransmitter.

It is not our intention to disregard the efforts and incredible achievements in the field of 5-HT that have inspired generations of researchers and continue to enliven them everywhere. However, we have to recognize that, without a doubt, the impact of the 5-HT hypothesis on the pathophysiology of psychiatric disorders has been quite robust, a sort of paradigm, according to Kuhn’s theory that may be in need of an update, including newer data suggesting 5-HT to be not the one but rather one of many important parts of the CNS that are involved in the pathophysiology of depression. We cannot exclude tout court that 5-HT is involved in the depressive psychopathology (for example, 30% of depressed patients reach remission from SSRI treatment) or exempt ourselves from exploring other working models. According to the recently emerging role of 5-HT in brain development, it is suggested that early alterations of this process, following environmental stressors or genetic liability, impair brain circuits, pathways, and differentiation and constitute a sort of basic “vulnerability” toward a greater risk of developing psychopathology. In this case, subsequent life events should act through epigenetic mechanisms acting on stress response and emotion regulation. Of interest, both SERT-5 allele carriers and sensory processing sensitivity are associated with greater sensitivity to environmental stimuli.
in humans39. Long-follow-up studies and impact of stressors in childhood and adolescence, together with studies on human DNA methylation or acetylation, should be planned to explore epigenetic mechanisms more thoroughly. It would also be interesting to ascertain whether different types of stressors (familial, emotional, and environmental) should produce different biochemical effects on the 5-HT system, why some individuals become ill and others do not, and what the individual factors promoting resilience are.

Other recent biological hypotheses on the role of 5-HT in depression (and perhaps in all other disorders where serotonergic alterations have been detected) highlight how this neurotransmitter is part of a more complex network including even the immune system and the whole body26,30 or might play a more general role in the energy homeostasis through modulation of mitochondria activity31.

In any case, all research in the 5-HT field might benefit from a deeper knowledge of more precise anatomical data in humans. Undoubtedly, the latest functional magnetic resonance imaging approaches linking brain circuits to SERT-gene polymorphism, emotional processing, and pharmacological challenges appear extremely helpful and promising in this sense34–36.

Conclusions
The precise role of 5-HT in psychiatric disorders remains elusive after decades of intensive research. Currently, two main notions are widely accepted in this field. One is that the serotonergic dysfunctions cannot be related to distinct nosological entities but rather to symptoms/dimensions shared by different conditions11. The second, related to the first, is that the 5-HT hypothesis of psychopathology has become less casual and tends to be more comprehensive, albeit cautious. Therefore, currently, different elements are taken into account when considering the role of 5-HT: its relationships with other neurotransmitters, neuropeptides, and neurotrophins32 and how it may regulate emotions, cognition, motivation, and behaviors to produce different clinical pictures according to individual vulnerability due to genetic load, life events, and environmental stressors35.

In 1998, John Greden had already written about 5-HT that “much we have learned” but that there is “So much to discover”33. After twenty years, we are strongly convinced that “the best is yet to come”, again to quote Greden33. That is, 5-HT continues (and probably will continue for a long time) to represent a “hot” topic in neuropsychiatry, a real challenge for research, and a “never-ending story”34,35 that hopefully will permit us to disentangle one of the most fascinating mysteries of our nature and lead to really innovative pharmacological and psychosocial interventions effective in a broad range of psychiatric disorders.

Abbreviations
5-HT, serotonin; CNS, central nervous system; SERT, serotonin transporter; SSRI, selective serotonin re-uptake inhibitor.

Competing interests
The author declares that she has no competing interests.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References
1. Keppel Hesselink MK. The history of serotonin, part 1. In Serotonin 1A receptors in depression and anxiety. Edited by SM Stahl, Raven Press, New York, 1992; 25–29. Reference Source
2. Carlsson A: Perspectives on the discovery of central monoaminergic neurotransmission. Annu Rev Neurosci. 1987; 10: 19–40. PubMed Abstract | Publisher Full Text
3. Greengard P: The neurobiology of slow synaptic transmission. Science. 2001; 294(5544): 1024–30. PubMed Abstract | Publisher Full Text
4. Olivier B: Serotonin and aggression. Ann NY Acad Sci. 2004; 1036: 382–92. PubMed Abstract | Publisher Full Text
5. Clark L, Roiser JP, Cools R, et al.: The role of platelet/lymphocyte serotonin transporter in depression and beyond. Curr Drug Targets. 2013; 14(5): 522–30. PubMed Abstract | Publisher Full Text
6. Davies SJ, Ekerl M, Nutt DJ: Anxiety—bridging the heart/mind divide. J Psychopharmacol. 2010; 24(5): 633–8. PubMed Abstract | Publisher Full Text
7. Deakin JF: Depression and antisocial personality disorder: two contrasting disorders of SHT function. J Neural Transm Suppl. 2003; (64): 79–93. PubMed Abstract | Publisher Full Text
8. Coppen A: The biochemistry of affective disorders. Br J Psychiatry. 1967; 113(504): 1237–64. PubMed Abstract | Publisher Full Text
9. Albert PR, Benkelfat C: The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos Trans R Soc Lond, B, Biol Sci. 2013; 368(1615): 20120535. PubMed Abstract | Publisher Full Text | Full Text
10. Blier P, El Mansari M: Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond, B, Biol Sci. 2013; 368(1615): 20120536. PubMed Abstract | Publisher Full Text | Full Text
11. Marazziti D, Landi P, Baroni S, et al.: The role of platelet/lymphocyte serotonin transporter in depression and beyond. Curr Drug Targets. 2013; 14(5): 522–30. PubMed Abstract | Publisher Full Text
12. Hung AS, Tsui TY, Lam JC, et al.: Serotonin and its receptors in the human CNS with new findings - a mini review. Curr Med Chem. 2011; 18(34): 5281–8. PubMed Abstract | Publisher Full Text
13. Rudnick G: Serotonin transporters—structure and function. J Membr Biol. 2006; 213(2): 101–10. PubMed Abstract | Publisher Full Text
14. Marazziti D, Rossi A, Giannaccini G, et al.: Presence and characterization of the serotonin transporter in human resting lymphocytes. Neuropsychopharmacology. 1998; 19(2): 154–9. PubMed Abstract | Publisher Full Text
15. Murthy NV, Selvaraj S, Cowen PJ, et al.: Serotonin transporter polymorphisms (SLC6A4 insertion/deletion and rs25531) do not affect the availability of 5-HTT to (“C) DASB binding in the living human brain. Neuroimage. 2010; 52(1): 50–4. PubMed Abstract | Publisher Full Text
16. Booij L, Tremblay RE, Szyf M, et al.: Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology. J Psychiatry Neurosci. 2015; 40(1): 5–18. PubMed Abstract | Publisher Full Text | Full Text | F1000 Recommendation

Page 4 of 6
17. Stahl MS: Essential psychopharmacology. Neuroscientific basis and practical applications. 3rd ed. New York: Cambridge University Press; 2008. Reference Source
18. Trivedi MH, Hollander E, Nudd D, et al.: Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. J Clin Psychiatry. 2008; 69(2): 246–58. PubMed Abstract | Publisher Full Text
19. Svenningsson P, Berg L, Matthews D, et al.: Preliminary evidence that early reduction in p11 levels in natural killer cells and monocytes predicts the likelihood of antidepressant response to chronic citalopram. Mol Psychiatry. 2014; 19(9): 962–4. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
20. Lacasse JR, Leo J: Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med. 2005; 2(12): e392. PubMed Abstract | Publisher Full Text | Free Full Text
21. Andrews PW, Bhanwar A, Lee KF, et al.: Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev. 2015; 51: 164–88. PubMed Abstract | Publisher Full Text | F1000 Recommendation
22. Krishnan V, Nestler EJ: The molecular neurobiology of depression. Nature. 2008; 455(7215): 894–902. PubMed Abstract | Publisher Full Text | Free Full Text
23. Brummelte S, McGlone E, Bonnin A, et al.: Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience. 2017; 342: 212–31. PubMed Abstract | Publisher Full Text | Free Full Text
24. Benninghoff J, van der Ven A, Schloesser RJ, et al.: The complex role of the serotonin transporter in adult neurogenesis and neuroplasticity. A critical review. World J Biol Psychiatry. 2012; 13(4): 240–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation
25. Homberg JR, Schubert D, Asan E, et al.: Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci Biobehav Rev. 2016; 71: 472–83. PubMed Abstract | Publisher Full Text | F1000 Recommendation
26. Maes M, Yirmiya R, Noraberg J, et al.: The inflammatory & neurodegenerative (iAND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009; 24(1): 27–53. PubMed Abstract | Publisher Full Text
27. van Praag HM: Can stress cause depression? World J Biol Psychiatry. 2005; 6(Suppl 2): 5–22. PubMed Abstract | Publisher Full Text
28. Hai A, Cai LX, Lee T, et al.: Molecular fMRI of Serotonin Transport. Neuron. 2016; 92(4): 754–65. PubMed Abstract | Publisher Full Text | F1000 Recommendation
29. Raab K, Kirsch P, Mier D: Understanding the impact of 5-HTTLPR, antidepressants, and acute tryptophan depletion on brain activation during facial emotion processing: A review of the imaging literature. Neurosci Biobehav Rev. 2016; 71: 176–97. PubMed Abstract | Publisher Full Text | F1000 Recommendation
30. Tiger M, Ruck C, Forsberg A, et al.: Reduced 5-HT1A receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder. Psychiatry Res. 2014; 223(2): 164–70. PubMed Abstract | Publisher Full Text | F1000 Recommendation
31. Manuzzi D: What came first: dimensions or categories? Br J Psychiatry. 2001; 178(5): 478–9. PubMed Abstract | Publisher Full Text
32. Riet W, Barsky AJ, Bingel U, et al.: Rethinking psychopharmacotherapy: The role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev. 2016; 60: 51–64. PubMed Abstract | Publisher Full Text | F1000 Recommendation
33. Greden JF: Serotonin: how much do we have learned! So much to discover. Biol Psychiatry. 1998; 44(5): 309–12. PubMed Abstract | Publisher Full Text
34. Manuzzi D: Depression and serotonin: a never ending story. Curr Drug Targets. 2013; 14(5): 513. PubMed Abstract | Publisher Full Text
35. Olivier B: Serotonin: a never-ending story. Eur J Pharmacol. 2015; 753: 2–18. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Johan Lundberg
 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

 Competing Interests: No competing interests were disclosed.

2. Berend Olivier
 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands

 Competing Interests: No competing interests were disclosed.

3. David Yew
 School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong

 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

F1000Research