Abstract: Heme iron and nonheme dimanganese catalases protect biological systems against oxidative damage caused by hydrogen peroxide. Rubredoxins are ferritine-like nonheme diiron proteins, which are structurally and mechanistically distinct from the heme-type catalase but similar to a dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme reaction, non-heme structural and functional models were carried out by the use of mononuclear [FeIII(L1-L4)(solvent)]2ClO4 (1–4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4′-methyl-2-pyridyl-imino)isoindoline, L3 = 1,3-bis(4′-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5′-chloro-2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-peroxo [FeIII(µ-O)(µ-1,2-O2)(L1-L4)]2(Solv)22+ (5–8) complexes are known and well-characterized. All the complexes displayed catalase-like activity, which provided clear evidence for the formation of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2 was also investigated and based on kinetic and mechanistic studies a plausible mechanism, including a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex, which shows a catalase-like reaction.

Keywords: catalase mimics; peroxide; diiron-peroxo complexes; structure/activity; kinetic studies

1. Introduction

Nonheme manganese catalases (MnCAT), as alternatives to the heme-containing catalases, contain a binuclear active sites and deplete hydrogen peroxide in cells through a ping-pong mechanism interconverting between Mn2(II,II) and Mn2(III,III) states in a two-electron catalytic cycle [1,2]. Manganese catalase enzymes such as Lactobacillus plantarum (LPC) [3,4], Thermus thermophilus (TTC) [5,6], Thermophilum album (TAC) [7], and Pyrobaculum calidifontis VA1 (PCC) [8] have been isolated and characterized from both bacteria and archaea. Despite their large numbers and importance, few catalase enzyme structures are known and they can also be sub-divided into two groups, each with a different active site.

Among them both LPC and TTC have a dimanganese catalytic core with Glu3His2 ligands coupled by two single-atom solvent bridges (Scheme 1A) [4,9]. In contrast to the above structure, the cyanobacterial manganese catalase (KatB) from Anabaena shows a markedly different active site with canonical Glu4His2 coordination geometry and two terminal water molecules (Scheme 1B). However, it closely resembles the active site of the ferritin-like rubredoxin (RBR), which is a nonheme diiron protein [10]. The Mn-Mn distances (~3.8 Å) in KatB are similar to that was observed for the iron-containing ribonucleotide reductase R2 (3.6–3.7 Å), but much shorter distances have been found for LPC and TTC (3.0–3.1 Å). The H2O2 binds terminally to one of the Mn center in LPC/TTC, while in...
KatB and RBR, the symmetrical active sites and the relatively long M-M distances favor its \(\mu\)-1,2 binding mode [11]. These enzymes, coupled with superoxide dimutates (SOD), are responsible for the full detoxification of \(O_2^{\bullet+}\) through the formation of \(H_2O_2\) and its redox disproportionation into water and dioxygen. \(H_2O_2\) can also be classified as a ROS particle, since it readily reacts with reduced transition metals and results in highly reactive \(HO^\bullet\) radical via Fenton-like reactions. Many rationally designed synthetic biomimetics are being developed against oxidative stress to treat various diseases, including Alzheimer’s, cancer, aging, neurodegenerative, inflammatory and heart diseases [12–21]. The identification and study of the structure of the above enzymes can greatly contribute to the design of new catalase mimetics for potential therapeutic use. The structural and functional investigations on low molecular-weight copper, manganese and iron containing model compounds that are focused mainly on the effect of the used metals and their ligand environment (donor sites) on redox potential and through it on reactivity. Based on the literature data, various Schiff base, aminopyridine and azamacrocyclic derivatives have proven to be the most popular and practical ligands [12–21]. Considering the reactivity of manganese catales (KatB) toward \(H_2O_2\), including a ping-pong mechanism interconverting between Mn\(_{2(II,II)}\) and Mn\(_{2(III,III)}\) states in a two-electron catalytic cycle, a similar interaction with \(H_2O_2\) has not been reported for diiron(III) peroxo intermediates which may be proposed in the catalytic cycles of RBR. Progress in recent years has made a number of diiron(III)-peroxo complexes available that can be generated by stoichiometric amount of \(H_2O_2\) [22–27]. Therefore, the opportunity has arisen to investigate both electrophilic and nucleophilic reactivity towards various substrates, such as phenols, \(N,N\)-dimethylanilines, and various aldehydes, respectively [25,26]. The differences in reactivity observed in the investigated systems, as well as the stability of the peroxo intermediates can in principle be explained by the disproportionation of \(H_2O_2\) as a competing process. Clarification of the relationship between catalase-like activity and catalytic oxidation is an important factor in the design and development of high efficiency catalytic systems. In addition, the investigation of the metal-based disproportionation of \(H_2O_2\) may help us to understand the nature of the catalytically active species present both, in the enzymatic and biomimetic systems. We have reported that the \([Fe^{II}(L_1)(solvent)_3](ClO_4)_2\) (1) is an efficient catalyst for the oxidation of thioanisoles and benzyl alcohols by the use of \(H_2O_2\) as cooxidant, where a metastable green species (5) with a Fe\(^{III}(\mu-1,2-O_2)Fe^{III}\) core was observed and characterized by UV-Vis, EPR, rRaman, and X-ray absorption spectroscopic measurements [24]. The reactivity of 5 was also published both in nucleophilic (deformylation of aldehydes) and electrophilic (oxidation of phenols) reactions [27].

As a possible functional model of RBR, we recently investigated the reactivity of the peroxo adduct \(\text{Fe}_2(\mu-O_2)(\text{MeBzim-Py})_4(\text{CH}_3\text{CN})]^+\) (MeBzim-Py = (2-(2′-pyridyl)-\(N\)-methylbenzimidazole) with \(H_2O_2\) and found direct kinetic and computational evidence for the formation of low-spin oxoiron(IV) via dissociation process [22,23]. As a continuation of this study, the previously reported and fully characterized \(\text{Fe}^{III}_2(\mu-O)(\mu-1,2-O_2)(\text{IndH}_2)(\text{Solv})_2]^+\) (\(\text{IndH} = L_1 = 1,3\)-bis(2-pyridyl-imino)-isoindolines) [24,25] and their substituted isoindolin-containing derivatives \((L_2–L_4, 2–4)\) were chosen as model compounds, in which the dissociation of the diiron(III) core can be ruled out due to the \(\mu\)-oxo-bridge, and investigated its reactivity towards \(H_2O_2\) to gain insight into the mechanism of RBR enzymes (Scheme 2).
Scheme 1. Binding mode of H$_2$O$_2$ in nonheme dimanganese and diiron enzymes.

Scheme 2. Structural formulae for the ligands and their complexes used in the disproportionation reaction of H$_2$O$_2$.

2. Results and Discussions

In view of the above results, further studies were planned to elucidate the mechanism of both the diiron(III)-peroxo formation and its decay mediated by H$_2$O$_2$. Complex 5 from its precursor complex 1 can be generated even at room temperature by the use of excess of H$_2$O$_2$ in CH$_3$CN. Its formation and decay process was followed as an increase and decrease in absorbance at 690 nm ($\varepsilon = 1500$ M$^{-1}$ cm$^{-1}$ per Fe ion and assuming 100% conversion), which can be assigned as a charge transfer between FeIII and the O$_2$$^{2-}$ ligand (Figure 1a) [24]. Similar spectral feature can be observed for the complexes 6–8: 691 nm ($\varepsilon = 1404$ M$^{-1}$ cm$^{-1}$), 692 nm ($\varepsilon = 1460$ M$^{-1}$ cm$^{-1}$), and 693 nm ($\varepsilon = 1308$ M$^{-1}$ cm$^{-1}$), respectively. It is worth noting that the green species (5), after decomposition, can be regenerated 2–3 times by adding additional H$_2$O$_2$ without significant decrease on the yields (Table 1, Figure 1b and inset in Figure 2a). Similar behavior and yields were observed for 6, but much lower values were obtained for 7 and 8. These results are consistent with the stability and/or the reactivity of the intermediates at high concentrations of added water, providing further information for the possible role of the binding water during the formation of the reactive oxidant.

Preliminary kinetic studies were performed at 20 °C to establish the role of the observed diiron(III)-peroxo intermediates in the catalytic disproportionation reaction of H$_2$O$_2$. The formation and decomposition of 5 in the presence of H$_2$O$_2$ was monitored by following the rise and fall of its visible chromophore (Tables 2 and 3), as well as the appearance of the dioxygen formed by gas volumetric methods (Figure 2b). Dioxygen formation started...
after a short lag phase during which the peroxo-adduct (5) accumulated. The lag phase was followed by a linear dioxygen formation period during which time 5 decomposed rapidly and the dioxygen formation ceased. The yield of dioxygen, TON (turnover number = mol H₂O₂/mol catalyst) and the TOF (turnover frequency = mol H₂O₂/mol catalyst/h) values were determined to be Yield = 85%, TON = 10.4 and TOF = 288 h⁻¹ as a result of volumetric method via the measurements of dioxygen evolution from the reaction mixture ([H₂O₂]₀ = 0.243 M and [1] = 0.002 M) at 20 °C in CH₃CN. Similar values were obtained for the complexes 2, 3 and 4 under the same conditions (Table 4). The results clearly indicate that diiron-peroxo intermediates play a key role in the formation of the reactive species responsible for the H₂O₂ oxidation.

Figure 1. (a) Characteristic UV-Vis spectra of FeIII₂(μ-1,2-O₂)(L₁–4)(Solv)₂²⁺ (5–8) intermediates in CH₃CN. (b) Dependence of the yield of peroxo complexes (5–8) on the number of cycles. [Fe]₀ = 2 mM, [H₂O₂]₀ = 24 mM (4×) in CH₃CN at 20 °C.

Table 1. Dependence of the yield of peroxo complexes (5–8) and the evolved oxygen (parentheses) on the number of cycles. [Fe]₀ = 2 mM, [H₂O₂]₀ = 24 mM (4×) in CH₃CN at 20 °C.

Cycles	Yield (5)/%	Yield (6)/%	Yield (7)/%	Yield (8)/%
I	100 (95)	100	100	100
II	91 (92)	87	48	43
III	73 (78)	70	39	20
IV	61 (64)	53	31	13
V	41 (27)	36	26	12

2.1. Kinetic Studies on the Formation of Diiron-Peroxo Complexes (5–8)

Detailed kinetic studies on the reaction of 1 (2 mM) with H₂O₂ (24–98 mM) were carried out in CH₃CN at 15 °C, and the formation of the green species 5 was followed by UV-vis spectroscopy as an increase in absorbance at 690 nm under pseudo-first-order conditions (excess of H₂O₂) (Table 2). At constant [H₂O₂]₀ = 2 mM, the formation of 5 exhibits a first-order dependence, and the first-order rate constants show a good linear dependence with [H₂O₂]₀ (Figure 3a), affording the second-order rate constant k₂ = 0.93 M⁻¹ s⁻¹ at 15 °C and 1.09 M⁻¹ s⁻¹ at 20 °C. These values are about 5–6 times smaller than those obtained for [FeIV(MeBzim-Py)]²⁺ (5.5 M⁻¹ s⁻¹), [FeIV(MeBzim-Py)]²⁺ (6.6 M⁻¹ s⁻¹) and [FeIV(TBA)]²⁺ (6.54 M⁻¹ s⁻¹) complexes under the same conditions at 20 °C [23,26]. It is worth noting that adding large volumes of water (~0.5 M) resulted in nearly twice the rate of the diiron-peroxo formation. Furthermore, a kinetic isotope effect (KIE) of 2.99 and 3.07
were observed for the formation of 6 and 7, when the experiments were carried out in the presence of added H$_2$O or D$_2$O. This value may represent the result of much more multiple effects compared to the elemental step, but clearly indicate the key role of the water during the diiron-peroxo complex formation.

Table 2. Kinetic data for the formation of intermediates 5, 6, 7 and 8 in CH$_3$CN.

Nr.	Complex	T/°C	[1–4]$_0$/mM	[H$_2$O$_2$]$_0$/M	k_{obs}10$^{-2}$ s$^{-1}$	k_2/M$^{-1}$ s$^{-1}$
1	1	15	2	0.0243	2.12	0.87 ± 0.03
2	1	15	2	0.0367	3.15	0.86 ± 0.04
3	1	15	2	0.0489	4.07	0.83 ± 0.03
4	1	15	2	0.0734	6.76	0.92 ± 0.04
5	1	15	2	0.0979	9.04	0.92 ± 0.03
6	2	15	2	0.0243	4.45	1.83 ± 0.09
7	2	15	2	0.0367	5.83	1.58 ± 0.05
8	2	15	2	0.0489	8.44	1.72 ± 0.06
9	2	15	2	0.0734	10.5	1.43 ± 0.04
10	2	15	2	0.0979	14.45	1.48 ± 0.04
11	3	15	2	0.0243	9.22	3.79 ± 0.15
12	3	15	2	0.0367	12.64	3.44 ± 0.13
13	3	15	2	0.0489	16.95	3.46 ± 0.14
14	3	15	2	0.0734	24.61	3.35 ± 0.14
15	3	15	2	0.0979	31.07	3.17 ± 0.11
16	4	15	2	0.0243	9.25	3.81 ± 0.15
17	4	15	2	0.0367	13.17	3.59 ± 0.14
18	4	15	2	0.0489	18.48	3.78 ± 0.16
19	4	15	2	0.0734	27.07	3.69 ± 0.15
20	4	15	2	0.0979	35.83	3.66 ± 0.15
In the next step, we investigated the effect of the ligand modification by introducing electron withdrawing (Cl) or electron releasing (CH$_3$) substituents on the pyridine arms in the fourth and fifth positions with emphasis on the redox potential and Lewis acidity of the precursor complex. Since the redox potential of the substituted complexes can be measured under the same conditions, it can be used as excellent reactivity descriptor. On the cyclic voltammogram of the Fe(II)-isoindoline complexes (1–4) irreversible reduction and oxidation peaks can be recognized within the range of -440 to $+1160$ mV (vs. Fc/Fc$^+$). The huge peak separations ($\Delta E = E_{pa} - E_{pc}$, Table 4) indicates the irreversibility of the redox processes and suggests chemical reactions coupled to the electrode reaction. The results, obtained at the scan rate of 100 mV/s, show that oxidation potential is mainly influenced by the electronic properties of the ligands, since the anodic peak potentials (E_{pa}) of the complexes are increasing in the order of electron releasing ability of the substituent on the pyridine moiety (Figure 4). The E_{pa} spans a 128 mV range from 655 mV (1) to 783 mV (4), which is not too large but informative, in terms of the effect of the substituents. However, the fact that the anodic peak of complex 1 can be found at lower potentials than it could be expected according to electronic effects, suggest that steric effects are also influencing the oxidation reactions. One can assume that the steric effect of the methylated and chlorinated ligands can cause an anodic shift in the oxidation peak potential of the complexes.
Figure 3. (a) Formation of diiron-peroxo (5–8) complexes. Plots of k_{obs} against H_2O_2 concentration to determine a second-order rate constant. [1–4]$_0$ = 2 mM, in CH$_3$CN at 15 °C. (b) Dependence of the formation rate of peroxo-diiron complexes (5–8) on the oxidation potential (E_{pa}) of the [FeII(L$_1$–4)(solvent)$_3$](ClO$_4$)$_2$ (1–4) complexes.

The four iron complexes, 1–4 have been compared to investigate the effect of the various aryl substituents. Figure 3a shows the results of the activity for the precursor complexes (1–4) during the formation of their appropriate diiron-peroxo intermediates (5–8). This demonstrates only small differences exist, based on the first-order rate constants obtained under the same conditions. It was found that complex 4 with 5-chloropyridyl side chains is the most reactive complex with k_{obs} of 3.66 M$^{-1}$ s$^{-1}$, whilst complex 1 with unsubstituted side chains was proved to be the least active with k_{obs} of 0.93 M$^{-1}$ s$^{-1}$ at 15 °C. Based on the CV data, we have got a clear evidence that the formation rate of the diiron-peroxo species (k_2) increases almost linearly with the redox potential (E_{pa}) for FeII/FeIII of the precursor complex (Figure 3b). In summary, the higher the redox potentials of FeII/FeIII redox couple the higher is the activity of the precursor complex towards to H_2O_2. Complexes with 4- and 5-chloro-pyridine side chains (3 and 4), whose metal sites are electron-deficient are faster in their reaction with H_2O_2 than electron-rich derivatives 1 and 2 with more Lewis basic side chains.

Table 4. Rate constants, electrochemical data and activation parameters for the formation of FeIII_2(μ-O)(μ-1,2-O$_2$)(L$_1$–L$_4$)(Solv)$_2$^{2+} (5–8) complexes and their catalase-like reactions.

	1 (5)	2 (6)	3 (7)	4 (8)
E_{pa}(FeII/FeIII)/mV vs. Fc/Fc$^+$	655	683	765	783
E_{pc}(FeII/FeIII)/mV vs. Fc/Fc$^+$	–90	–223	–155	–143
ΔE/mV	745	905	920	925
yield/%	85	100	92	85
TON ([S]/[Fe])	10.4	12.2	11.3	10.4
TOF ([S]/[Fe]/h)	288	418	354	234
k_2(cat)/10$^{-2}$ M$^{-1}$ s$^{-1}$ (15 °C)	1.52	3.05	19.9	23.8
E_A/kJ mol$^{-1}$	72.3	55.9	57.5	55.5
ΔS^\ne/J mol$^{-1}$ K$^{-1}$	–37.7	–88.1	–65.9	–71.4
ΔH^\ne/kJ mol$^{-1}$	70	53.5	55	53.1
ΔG^\ne/kJ mol$^{-1}$	81	78.9	74	73.7
k_{decay}/10$^{-2}$s$^{-1}$ (15 °C)	0.13	0.15	1.22	1.41
k_{form}/M$^{-1}$ s$^{-1}$ (15 °C)	0.93	1.43	3.16	3.66

Figure 3a shows the results of the activity for the precursor complexes (1–4) during the formation of their appropriate diiron-peroxo intermediates (5–8). This demonstrates only small differences exist, based on the first-order rate constants obtained under the same conditions. It was found that complex 4 with 5-chloropyridyl side chains is the most reactive complex with k_{obs} of 3.66 M$^{-1}$ s$^{-1}$, whilst complex 1 with unsubstituted side chains was proved to be the least active with k_{obs} of 0.93 M$^{-1}$ s$^{-1}$ at 15 °C. Based on the CV data, we have got a clear evidence that the formation rate of the diiron-peroxo species (k_2) increases almost linearly with the redox potential (E_{pa}) for FeII/FeIII of the precursor complex (Figure 3b). In summary, the higher the redox potentials of FeII/FeIII redox couple the higher is the activity of the precursor complex towards to H_2O_2. Complexes with 4- and 5-chloro-pyridine side chains (3 and 4), whose metal sites are electron-deficient are faster in their reaction with H_2O_2 than electron-rich derivatives 1 and 2 with more Lewis basic side chains.
s (complexes (various aryl substituents. Figure 3a shows the results of the activity for the precursor constants obtained under the same conditions. It was found that complex metal sites are electron-deficient are faster in their reaction with H2O2 than electron-rich species. A kinetic isotope effect (KIE) of 1.73 and 1.66 were observed for the decay of H2O or D2O. These results indicate the key role of the water during the reaction of H2O2 into O2 and H2O was tested in CH3CN by UV-vis spectroscopy as a decrease in absorbance at 690 nm under pseudo-first-order conditions (excess of H2O2). The four iron complexes, [FeII(L1–4)(solvent)3](ClO4)2 complexes (1–4) (5 mM in acetonitrile, supporting electrolyte: tetrabutylammonium-perchlorate (0.1 M), scan rate: 100 mV/s).

2.2. Catalase-Like Activity of Peroxo-Diiron Complexes

The ability of the in situ generated diiron-peroxo species (5) to mediate the disproportionation reaction of H2O2 into O2 and H2O was tested in CH3CN by UV-vis spectroscopy as a decrease in absorbance at 690 nm under pseudo-first-order conditions (excess of H2O2) (Table 3). The initial rate of decay of diiron-peroxo species was measured as a function of the complex and substrate concentrations in CH3CN. At constant [H2O2]0 = 300 mM, the disproportionation reaction shows first-order kinetic behavior on [H2O2]0 and [FeII]0 at 15 °C. Based on the CV data, we have got a clear evidence that the formation of their appropriate diiron-peroxo intermediates (kcat/KM) = 79 ± 4 M−1 s−1 was obtained from either k1/[H2O2]0 or k1/[5]0. This value is much smaller than that was found for the analogue [Mn(L1)]2+ complex (k′1s kcat/KM) = 29.63 × 10−3 s−1 in protic solution, where MnIV(O) intermediate was proposed as reactive species [29]. A kinetic isotope effect (KIE) of 1.73 and 1.66 were observed for the decay of 6 and 7, when the experiments were carried out in the presence of added H2O or D2O. These results indicate the key role of the water during the diiron-peroxo mediated disproportionation reaction.

In the next step, we investigated the effect of the ligand modification by introducing electron donating (-CH3) and electron withdrawing (-Cl) phenyl-ring substituents. The substituted ligand-containing diiron-peroxo intermediates 5, 6, 7 and 8 show an increasing rate in the listed order (Figure 6a). It was found that complex 8 with 5-chloropyridine side chains is the most efficient oxidant with the fastest rate k2 = 23.8 × 10−2 M−1 s−1, while complexes 5 and 6 with unsubstituted and 4-methylpyridine side chains are the less efficient oxidants with k2 = 1.52 × 10−2 M−1 s−1 and k2 = 3.05 × 10−2 M−1 s−1, respectively. These results give clear evidence that substituents affect the redox potential and the catalase activity of the complexes. Table 4 and Figure 6b show that the redox potentials (Epa) of the complexes and their activity increase with increasing electron-withdrawing ability of the substituent.
Figure 5. 5-mediated disproportionation of H₂O₂ in CH₃CN at 25 °C. (a) Dependence of the reaction rate (V_i) for H₂O₂ oxidation on the diiron-peroxo complex 5 concentration. [H₂O₂]₀ = 300 mM (b) Dependence of the reaction rate (V_i) for H₂O₂ oxidation on the H₂O₂ concentration. [5]₀ = 1 mM.

Figure 6. Peroxo-diiron complexes-mediated disproportionation of H₂O₂ in CH₃CN at 15 °C. (a) Dependence of the reaction rate (V_i) for H₂O₂ oxidation on the diiron-peroxo complex 5–8 concentration. [H₂O₂]₀ = 24 mM (b) Dependence of the decay rate of peroxo-diiron complexes (5–8) on the oxidation potential (E_pa) of the [Fe^{III}(L₁–₄)(solvent)](ClO₄)₂ (1–4) complexes.

Based on the temperature dependence of the reactivity of diiron-peroxo complexes (Figure 7a), the experimentally determined the difference between ΔG° values was 7.3 kJ mol⁻¹. Significantly lower free activation energy value was obtained for the 8-mediated disproportionation of H₂O₂ in comparison to 5. The calculated Gibbs energy values correlate very well with the reaction rates (Figure 7b). The values of ΔH° were lower than ΔH° in the investigated temperature range, indicating an enthalpy-controlled reactions. As a result of a compensation effect increasing activation enthalpies are offset by increasingly positive entropies yielding ΔH° = 81 kJ mol⁻¹ at the intercept (Figure 8), which value is a little bit higher than that was obtained for the conversion alkylperoxo-iron(III) intermediates to oxoiron(IV) through O-O bond homolysis (ΔH° = 61.3 kJ mol⁻¹) [30].
3. Experimental

3.1. Materials and Methods

The ligands 1,3-bis(2′-pyridylimino)isoindolines (L₁ = indH, L₂ = 4Me-indH, L₃ = 4Cl-indH, L₄ = 5Cl-indH) and their complexes (1–4) were prepared according to published procedures [31]. All manipulations were performed under a pure argon atmosphere using standard Schlenk-type inert-gas techniques. Solvents used for the reactions were purified by literature methods and stored under argon. The starting materials for the ligand are commercially available and they were purchased from Sigma Aldrich. The UV-visible spectra were recorded on an Agilent 8453 diode-array spectrophotometer using quartz cells. IR spectra were recorded using a Thermo Nicolet Avatar 330 FT-IR instrument (Thermo Nicolet Corporation, Madison, WI, USA), Samples were prepared in the form of KBr pellets. Microanalyses elemental analysis was done by the Microanalytical Service of the University of Pannonia.

3.2. Characterization of Ligands and Their Complexes

indH: FT-IR (ATR) ν = 3199 (w), 3061 (w), 1622 (s), 1606 (m), 1577 (s), 1550 (s), 1454 (s), 1427 (s), 1373 (m), 1306 (m), 1259 (s), 1217 (s), 1139 (m), 1097 (m), 1042 (m), 991 (w), 885 (w), 1427 (s), 1373 (m), 1306 (m), 1259 (s), 1217 (s), 1139 (m), 1097 (m), 1042 (m), 991 (w), 885 (w), 850 (w), 801 (m), 752 (w), 724 (w), 697 (m).
875 (w), 859 (w), 839 (w), 808 (m), 792 (s), 783 (s), 769 (s), 737 (s), 708 (m), 696 (s), 689 (s), 627 (w). UV/Vis (DMF): $\lambda_{\text{max}} ($log ε) = 317 (3.09), 332 (3.18), 348 (3.21), 368 (3.28), 386 (3.34), 410 (3.11) nm.

4Me-ind: FT-IR (ATR) ν = 3209 (w), 3049 (w), 1645 (m), 1627 (s), 1591 (s), 1541 (m), 1460 (s), 1408 (w), 1364 (m), 1281 (m), 1242 (s), 1186 (m), 1132 (w), 1114 (w), 1101 (m), 1036 (m), 997 (w), 929 (m), 848 (m), 783 (s), 769 (s), 737 (s), 708 (m), 696 (s), 689 (s), 627 (w). UV/Vis (DMF): $\lambda_{\text{max}} ($log ε) = 316 (2.99), 332 (3.08), 348 (3.12), 366 (3.18), 387 (3.11) nm.

4Cl-ind: FT-IR (ATR) ν = 3213 (w), 1743 (w), 1637 (m), 1624 (m), 1565 (s), 1539 (m), 1359 (m), 1309 (m), 1281 (w), 1219 (m), 1184 (w), 1089 (m), 1040 (m), 989 (m), 895 (s), 877 (s), 804 (m), 779 (m), 735 (s), 701 (s) 687 (m), 656 (w). UV/Vis (DMF): $\lambda_{\text{max}} ($log ε) = 315 (3.16), 332 (3.27), 348 (3.29), 367 (3.31), 385 (3.35), 409 (3.12) nm.

5Cl-ind: FT-IR (ATR) ν = 3317 (w), 3228 (w), 1745 (m), 1633 (s), 1572 (s), 1470 (m), 1447 (s), 1359 (m), 1311 (m), 1256 (w), 1244 (w), 1228 (m), 1217 (m), 1184 (w), 1105 (s), 1034 (s), 1007 (m), 997 (w), 929 (w), 860 (w), 779 (s), 714 (m), 621 (m). C$_{24}$H$_{20}$Cl$_{2}$FeN$_{8}$O$_{8}$ (675.22): calcd. C 42.69, H 2.99, Cl 10.15, N 16.60; found C 42.82, H 2.93, Cl 10.11, N 16.42. UV/Vis (CH$_{3}$CN): $\lambda_{\text{max}} ($log ε) = 315 (3.36), 329 (3.45), 345 (3.48), 365 (3.56), 382 (3.61), 406 (3.37) nm.

2: FT-IR (ATR) ν = 3456 (w), 1734 (w), 1665 (m), 1654 (s), 1587 (s), 1572 (s), 1540 (m), 1470 (m), 1359 (m), 1311 (m), 1256 (w), 1244 (w), 1228 (m), 1217 (m), 1184 (w), 1089 (m), 1040 (m), 989 (m), 895 (s), 877 (s), 804 (m), 779 (m), 735 (s), 701 (s) 687 (m), 656 (w). UV/Vis (DMF): $\lambda_{\text{max}} ($log ε) = 315 (3.16), 332 (3.27), 348 (3.29), 366 (3.18), 387 (3.21), 411 (2.98) nm.

3: FT-IR (ATR) ν = 3323 (w), 1728 (w), 1654 (m), 1626 (s), 1614 (m), 1593 (w), 1554 (w), 1524 (s), 1485 (s), 1467 (m), 1433 (m), 1373 (w), 1304 (w), 1262 (w), 1207 (m), 1055 (s), 929 (w), 860 (w), 779 (s), 714 (m), 621 (m). C$_{24}$H$_{20}$Cl$_{2}$FeN$_{8}$O$_{8}$ (706.29): calcd. C 44.21, H 3.85, Cl 10.04, N 15.87; found C 43.99, H 3.64, Cl 9.58, N 15.79. UV/Vis (CH$_{3}$CN): $\lambda_{\text{max}} ($log ε) = 315 (3.36), 328 (3.58), 345 (3.62), 365 (3.71), 383 (3.76), 406 (3.50) nm.

4: FT-IR (ATR) ν = 3323 (w), 3228 (w), 3173 (w), 1724 (w), 1670 (m), 1628 (m), 1564 (m), 1543 (m), 1516 (s), 1483 (m), 1460 (s), 1362 (w), 1306 (w), 1228 (w), 1205 (m), 1090 (s), 1051 (s), 910 (m), 867 (w), 823 (w), 744 (s), 710 (s), 621 (m). C$_{24}$H$_{20}$Cl$_{4}$FeN$_{8}$O$_{8}$ (747.13): calcd. C 38.58, H 2.83, Cl 18.98, N 15.00; found C 38.81, H 3.04, Cl 18.63, N 15.39. UV/Vis (CH$_{3}$CN): $\lambda_{\text{max}} ($log ε) = 328 (3.10), 345 (3.09), 363 (3.04), 383 (2.99), 406 (2.71) nm.

3.3. Cyclic Voltammetry

Cyclic voltammetry experiments were performed on a Radiometer Analytical PGZ-301 potentiostat with a conventional three-electrode configuration, consisting of a glassy carbon working electrode (ID = 3 mm), a platinum wire auxiliary electrode, and Ag/AgCl reference electrode. Potentials are referenced to the Fc/Fc$^{+}$ redox couple. Ferrocene was added as an internal standard at the end of the experiments. Procedure for the cyclic voltammetry experiment: 0.05 mmol of 1–4 was dissolved in 10 mL dry acetonitrile, containing 349.1 mg (1 mmol) of tetrabutylammonium-perchlorate, which served as supporting electrolyte. The solution was bubbled with argon to remove dissolved gas residuals and to ensure inert atmosphere during measurements. The working electrode was wet polished on 0.5 µm
alumina slurry or emery paper grade 500, after each measurement. Cyclic voltammograms were recorded with a scan rate of 100 mV s⁻¹.

3.4. Generation of Diiron-Peroxo Complexes (5-8)

Precursor complexes (1-4) were dissolved in 1.5 mL acetonitrile and added 4 equivalent H₂O₂ in different temperature (0, 5, 10 15 °C) and the reactions were followed with UV-Vis spectroscopy at 680 nm, the cuvette length was 1 cm.

3.5. Diiron-Peroxo-Mediated Disproportionation of H₂O₂

Reactions were carried out by mixing the substrate (H₂O₂) with the in situ generated complex 5-8 (1 mM) in 1.5 mL acetonitrile in different temperature (0, 5, 10 15 °C) and the reactions were followed with UV-Vis spectroscopy at 680 nm, the cuvette length was 1 cm. To ensure the reliability of the measurements, 2–3 parallel measurements were performed.

Catalytic reactions were carried out at 20 °C in a 30 cm³ reactor containing stirring bar under air. In a typical experiment the complex was dissolved dissolved in 20 cm³ CH₃CN, and the flask was closed with a rubber septum. H₂O₂ was injected by syringe through the septum. The reactor was connected to a graduated burette filled with oil, and the evolved dioxygen was measured volumetrically at time intervals of 2 s.

4. Conclusions

In summary, the results of the reaction kinetics and CV measurements are shown in Table 4. Based on these data the following reaction mechanism, including the diiron-peroxo complex formation, and its reaction with H₂O₂, was proposed (Scheme 3). We obtained clear evidence for the role of the peroxo-intermediate in diiron catalase mimics. We also found that the higher the redox potentials of the Fe³⁺/Fe²⁺ redox couple, the higher the catalase-like activity, and the complexes with electron-deficient metal sites are significantly more reactive. It can be explained by their electrophilic character. The results obtained may contribute to the elucidation of the mechanism of both dimanganase and diiron-containing catalase enzymes.

![Scheme 3](image-url)

Scheme 3. Proposed mechanism for the formation of Fe³⁺₂(μ-O)(μ-1,2-O₂)(L₁-L₄)₂(Solv)₂⁺ (5-8) complexes and their catalase-like reactions.
Author Contributions: Conceptualization, J.K.; resources, D.L.-B., P.T., F.V.C., S.K. and B.G., writing—original draft preparation, J.K.; writing—review and editing, J.K. All authors have read and agreed to the published version of the manuscript.

Funding: Financial support of the GINOP-2.3.2-15-2016-00049 (J.K.) and TKP2020-IKA-07 (J.K. and D.L.-B.) are gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not available.

References
1. Beyer, W.F.; Fridovich, I. Catalases-with and without heme. Basic Life Sci. 1988, 49, 651–661. [PubMed]
2. Nicholls, P.; Fita, I.; Loewen, P.C. Enzymology and structure of catalases. Adv. Inorg. Chem. 2001, 51, 51–106. [CrossRef]
3. Kono, Y.; Fridovich, I. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J. Biol. Chem. 1983, 258, 6015–6019. [CrossRef]
4. Barynin, V.V.; Whittaker, M.M.; Antonyuk, S.V.; Lamzin, V.S.; Harrison, P.M.; Artyymiuk, P.I.; Whittaker, J.W. Crystal Structure of Manganese Catalase from Lactobacillus plantarum. Structure 2001, 9, 725–738. [CrossRef]
5. Antonyuk, S.V.; Melik-Adman, V.R.; Popov, A.N.; Lamzin, V.S.; Hempstead, P.D.; Harrison, P.M.; Artyymiuk, P.I.; Barynin, V.V. Three-dimensional structure of the enzyme dimanganese catalase from Thermus thermophilus at 1 Å resolution. Crystallogr. Rep. 2000, 45, 105–113. [CrossRef]
6. Barynin, V.V.; Grebenko, A.I. T-catalase is nonheme catalase of the extremely thermophilic bacterium Thermus thermophilus HB8. Dokl. Akad. Nauk SSSR 1986, 286, 461–464.
7. Allgood, G.S.; Perry, J.J. Characterization of a manganese-containing catalase from the obligate thermophile Thermococcus caldivalentis. J. Bacteriol. 1986, 168, 563–567. [CrossRef] [PubMed]
8. Amo, T.; Atomi, H.; Imanaka, T. Unique Presence of a Manganese Catalase in a Hyperthermophilic Archaeon, Pyrobaculum caldivalentis VA1. J. Bacteriol. 2002, 184, 3305–3312. [CrossRef] [PubMed]
9. Whittaker, J.W. Non-heme manganese catalase—the “other” catalase. Arch. Biochem. Biophys. 2012, 525, 111–120. [CrossRef]
10. Cardenas, J.P.; Quatrini, R.; Holmes, D.S. Aerobic Lineage of the Oxidative Stress Response Protein Rubrythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment. Front. Microbiol. 2016, 7, 1822–1831. [CrossRef] [PubMed]
11. Bihani, S.C.; Chakravarty, D.; Ballal, A. KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function. Free Radic. Biol. Med. 2019, 136, 118–129. [CrossRef]
12. Signorella, S.; Palopoli, C.; Ledesma, G. Rationally designed mimics of antioxidant mananoenzymes: Role of structural features in the quest for catalysts with catalaseand superoxide dismutase activity. Coord. Chem. Rev. 2018, 365, 75–102. [CrossRef]
13. Wu, A.J.; Penner-Hahn, J.E.; Pecoraro, V.L. Structural, Spectroscopic, and Reactivity Models for the Manganese Catalases. Chem. Rev. 2004, 104, 903–938. [CrossRef] [PubMed]
14. Tovmasyan, A.; Maia, C.G.C.; Weitner, T.; Carballal, S.; Sampaio, R.S.; Lieb, D.; Ghazaryan, R.; Ivanovic-Burmazovic, I.; Radi, R.; Reboucas, J.S.; et al. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic. Biol. Med. 2015, 86, 308–321. [CrossRef] [PubMed]
15. Batinic-Haberle, L.; Tovmasyan, A.; Spasojevic, I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins—from superoxide dismutation to HO-driven pathways. Redox Biol. 2015, 5, 43–65. [CrossRef]
16. Kaizer, J.; Baráth, G.; Speier, G.; Réglier, M.; Giorgi, M. Synthesis, structure and catalase mimics of novel homoleptic manganese(II) complexes of 1,3-bis(2-pyridylimino)isoindoline, Mn(4R-ind)2 (R = H, Me). Inorg. Chem. Commun. 2007, 10, 292–294. [CrossRef]
17. Kaizer, J.; Krixli, B.; Speier, G.; Párkányi, L. Synthesis, structure, and catalase-like activity of a novel manganese(II) complex: Dichloro[1,3-bis(2′-benzimidazolylimino)isoindoline]manganese(II). Polyhedron 2009, 28, 933–936. [CrossRef]
18. Kaizer, J.; Csay, T.; Kövári, P.; Speier, G.; Párkányi, L. Catalase mimics of a manganese(II) complex: The effect of axial ligands and pH. J. Mol. Catal. A Chem. 2008, 280, 203–209. [CrossRef]
19. Krixli, B.; Garda, Z.; Sólyom, B.; Tírccs, G.; Kaizer, J. Formation, stability and catalase-like activity of mononuclear manganese(II) and oxomanganese(IV) complexes in protic and aprotic solvents. NJC 2020. [CrossRef]
20. Stadtmann, E.R.; Berlett, B.S.; Chock, P.B. Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc. Natl. Acad. Sci. USA 1990, 87, 384–388. [CrossRef]
21. Krixli, B.; Sólyom, B.; Speier, G.; Kaizer, J. Stability and Catalase-Like Activity of a Mononuclear Non-Heme Oxoiron(IV) Complex in Aqueous Solution. Molecules 2019, 24, 3236. [CrossRef]
22. Szávuly, M.I.; Surducan, M.; Nagy, E.; Surányi, M.; Speier, G.; Silaghi-Dumitrescu, R.; Kaizer, J. Functional models of nonheme enzymes: Kinetic and computational evidence for the formation of oxoiron(IV) species from peroxo-diiron(III) complexes, and their reactivity towards phenols and H2O2. Dalton Trans. 2016, 45, 14709–14718. [CrossRef] [PubMed]
23. Pap, J.S.; Draksharapu, A.; Giorgi, M.; Browne, W.R.; Kaizer, J.; Speier, G. Stabilisation of mu-peroxido-bridged Fe(III) intermediates with non-symmetric bidentate N-donor ligands. Chem. Commun. 2014, 50, 1326–1329. [CrossRef] [PubMed]
24. Pap, J.S.; Cranswick, M.A.; Balogh-Hergovich, É.; Baráth, G.; Giorgi, M.; Rohde, G.T.; Kaizer, J.; Speier, G.; Que, L., Jr. An Iron(II)[1,3-bis(2′-pyridylimino)isoindoline] Complex as a Catalyst for Substrate Oxidation with H2O2—Evidence for a Transient Peroxodiiron(III) Species. Eur. J. Inorg. Chem. 2013, 3858–3866. [CrossRef]
25. Kripli, B.; Csendes, F.V.; Török, P.; Speier, G.; Kaizer, J. Stoichiometric Aldehyde Deformylation Mediated by Nucleophilic Peroxo-diiron(III) Complex as a Functional Model of Aldehyde Deformylating Oxygenase. Chem. Eur. J. 2019, 25, 14290–14294. [CrossRef]
26. Török, P.; Unjaroen, D.; Csendes, F.V.; Giorgi, M.; Browne, W.R.; Kaizer, J. A nonheme peroxy-diiron(III) complex exhibiting both nucleophilic and electrophilic oxidation of organic substrates. Dalton Trans. 2021, 50, 7181–7185. [CrossRef] [PubMed]
27. Kripli, B.; Szávuly, M.; Csendes, F.V.; Kaizer, J. Functional models of nonheme diiron enzymes: Reactivity of the mu-oxo-mu-1,2-peroxo-diiron(III) intermediate in electrophilic and nucleophilic reactions. Dalton Trans. 2020, 49, 1742–1746. [CrossRef] [PubMed]
28. Oloo, W.N.; Fielding, A.J.; Que, L., Jr. Rate determining water assisted O-O bond cleavage of a Fe(III)-OOH intermediate in a bioinspired nonheme iron-catalyzed oxidation. J. Am. Chem. Soc. 2013, 135, 6438–6441. [CrossRef]
29. Meena, B.I.; Kaizer, J. Design and Fine-Tuning Redox Potentials of Manganese(II) Complexes with Isoindoline-Based Ligands: H2O2 Oxidation and Oxidative Bleaching Performance in Aqueous Solution. Catalysts 2020, 10, 404. [CrossRef]
30. Jensen, M.P.; Payeras, A.M.I.; Fiedler, A.T.; Costas, M.; Kaizer, J.; Stubna, A.; Münck, E.; Que, L., Jr. Kinetic Analysis of the Conversion of Nonheme (Alkylperoxo)iron(III) Species to Iron(IV) Complexes. Inorg. Chem. 2007, 46, 2398–2408. [CrossRef]
31. Csonka, R.; Speier, G.; Kaizer, J. Isoindoline-derived ligands and applications. RSC Adv. 2015, 5, 18401–18419. [CrossRef]