Plane 5D worlds and simple compactification

David Solano1,2 and Rodrigo Alvarado1 *

1Escuela de Fisica, Universidad de Costa Rica
Cuidad Universitaria Rodrigo Facio, Montes de Oca, San Jose.
and
2Laboratorio Nacional de Nanotecnologia,
Centro Nacional de Alta Tecnologia.
1 km south from the U.S. Embassy
Pavas. San Jose, Costa Rica

November 9, 2018

Abstract

We obtain a new kind of exact solution to vacuum Einstein field equations that contain both Minkowsian world and a special 5D curved spacetime with particularly free structure. This special world is defined by an arbitrary function and a space of three parameters. We suggest that this solution could correct (in principle) certain aspects of the physics in flat spacetime.

*email: dsolano@efis.ucr.ac.cr, dsscr@yahoo.com; realmar@cariari.ucr.ac.cr
1 Introduction

The use of a fifth dimension in Theoretical Physics has been a common way to accomplish the unification of the gravitation and the other interactions since the seminal work of Nordström [1] and Kaluza [2]. The problem of recover the standard 4-D spacetime can be solve by the Klein’s mechanism [3], which explains how the additional coordinates are length-like and could be detected. The idea of extra-dimension compactification is necessary, there are also certain research oriented to the idea extra-coordinates are not physically real (Projective theories) [4]. There are also the Non-compactified theories, in which extra-dimensions are not necessarily length-like or compact (see [5] and references therein).

In recent years, higher dimensional theories of extended objects, like String Theory [6], provide a promising scheme to construct renormalizable quantum fields that unify all the interactions of Nature.

Since the exact solution found by Davidson and Owen in the mid-eighties [7], the dynamics of 5D-physics has been widely study since the late eighties by Wesson, and his collaborators in their Theory of Induced Matter [8]. Latter, Randall and Sundrum [9] proused a Brane-theory in 5D that explain the large hierarchy between the quantum gravity effect and the standard model. In [10] there an extensive review full of reference of Randall-Sundum Brane worlds principally applied to cosmology.

In the present work, the existence of solutions to the Einstein’s field equations when the metric tensor dependents only of a new extra-coordinate in plane symmetry are discussed. The anzatz followed in the present article is mainly based on [11], who showed that the compactification (vanishing) of one coordinate could happen for vacuum gravity for a static cylindrical world. The philosophy in the work is to discard a wide range of solutions because they do not represent asimptotically flat spacetimes. But we show in [12] that a large family of spacetimes can be constructed by using an internal freedom that Einstein’s field equation give for this specific symmetry and the Israel’s junction conditions.

2 Field equation and its solutions

Let be the following line element:

\[ds^2 = e^{\gamma(\eta)} dt^2 - e^{\tau(\eta)} dx^2 - e^{\mu(\eta)} dy^2 - e^{\nu(\eta)} dz^2 - e^{\rho(\eta)} d\eta^2 \]

where the new coordinate ” \eta ” is introduced. Here, all the functions
\(\gamma, \tau, \mu, \nu, \rho \) are only \(\eta \)-dependent. Notice that our procedure is similar in spirit to that of [14], only that we do not include a thin matter wall in energy-stress tensor proportional to a Dirac \(\delta \)-function.

Let us define the symbol \(()' \) as \(d/d\eta \). Then, the vacuum Einstein field equations \(R_{AB} = 0 \) are

\[
\begin{align*}
\gamma'' + \gamma'^2 - \gamma' \rho' + \gamma' (\tau' + \mu' + \nu') &= (2) \\
\tau'' + \tau'^2 - \tau' \rho' + \tau' (\gamma' + \mu' + \nu') &= (3) \\
\mu'' + \mu'^2 - \mu' \rho' + \mu' (\gamma' + \tau' + \nu') &= (4) \\
\nu'' + \nu'^2 - \nu' \rho' + \nu' (\gamma' + \tau' + \mu') &= (5) \\
2(\gamma'' + \tau'' + \mu'' + \nu'') - \rho'(\gamma' + \tau' + \mu' + \nu') + \gamma'^2 + \tau'^2 + \mu'^2 + \nu'^2 &= (6)
\end{align*}
\]

Let \(\chi = \gamma + \tau + \mu + \nu \), an arbitrary function where its square is naturally

\[
\chi^2 = \gamma^2 + \tau^2 + \mu^2 + \nu^2 + 2\gamma'(\tau' + \mu' + \nu') + 2\tau'(\mu' + \nu') + 2\mu' \nu' \quad (7)
\]

And now by summing \((2), (3), (4) \) and \((5) \) we get

\[
2\chi'' + \chi'^2 - \rho' \chi' = 0 \quad (8)
\]

which gives the integral

\[
\rho = \xi + 2 \ln(\chi') + \chi \quad (9)
\]

where \(\xi \) is a arbitrary constant. The value of \(\xi \) can be perfectly chosen as zero, because in \(g_{\eta \eta} = e^\rho = \chi^2 e^{\xi} \) the constant \(e^\xi \) is just an amplification parameter of the length element that only depends of the chosen unit system. According to \((8) \) and \((2) \) it is easy to see that:

\[
\gamma = A_0 \chi + B_0 \quad (10)
\]

Applying this procedure to equations \((3), (4) \) and \((5) \), we get

\[
\begin{align*}
\tau &= A_1 \chi + B_1 \\
\mu &= A_2 \chi + B_2 \\
\nu &= A_3 \chi + B_3
\end{align*} \quad (11, 12, 13)
\]

Without loss of generally, let us choose \(B_\alpha = 0, (\forall \alpha = 0, 1, 2, 3) \). Therefore, every metric function (except that one related to the extra-coordinate)
maintain a linear relation with χ. Finally, by using the relation in (8) in (6) we obtain the important relation:

$$\chi' (F - 1) = 0$$

(14)

where $F = A_0^2 + A_1^2 + A_2^2 + A_3^2$ is a real non-negative constant. Therefore, from (14) we must analyze the two separate cases:

Case: $F \neq 1$ This implies that necessary χ = constant. Hence, χ is only a scaling parameter, the 4-D Minkowskian space-time is recovered as we expected if $\chi = 0$:

$$ds^2 = dt^2 - (dx^2 + dy^2 + dz^2)$$

(15)

Case: $F = 1$ According to equation (14), the F parameter must be 1, or

$$A_0^2 + A_1^2 + A_2^2 + A_3^2 = 1$$

(16)

Since $\chi = \gamma + \tau + \mu + \nu$ by definition, it is clearly seen from equations (10) to (13) that

$$A_0 + A_1 + A_2 + A_3 = 1$$

(17)

Then, one can find a map $Q : \mathbb{R}^2 \to \mathbb{R}^4$ that describes the solution to the algebraic equations (16) and (17). For simplicity, let define $A_0 = u$ and $A_1 = v$ and then, the Q map that relates (u, v) with (A_0, A_1, A_2, A_3) is given by the parametrization

$$A = \begin{pmatrix}
A_0 \\
A_1 \\
A_2 \\
A_3
\end{pmatrix} = \begin{pmatrix}
u \\
u \\
-u - 1 + \sqrt{\Delta} \\
u + 1 + \sqrt{\Delta}
\end{pmatrix}$$

(18)

where $\Delta = -3(u^2 + v^2) + 2(u + v - uv) + 1$. The necessity of real integration constants restricts the domain of Q to the region of the uv-plane described by the ellipse: $\Delta (u, v) = -3(u^2 + v^2) + 2(u + v - uv) + 1 = 0$ and all its interior points (Figure 1).

One particularly simple solution is, for example: $A_0 = -\frac{1}{2}$, $A_1 = A_2 = A_3 = \frac{1}{2}$. Then, the line element under this conditions would be
Figure 1: The domain of Q: All the (u, v) points on the ellipse and inside it define the parametrization of the integration constants

\[ds^2 = e^{-\frac{1}{2}\chi}dt^2 - e^{\frac{1}{2}\chi}dx^2 - e^{\frac{1}{2}\chi}dy^2 - e^{\frac{1}{2}\chi}dz^2 - (\chi')^2e^{\chi}d\eta^2 \]

(19)

A formal classification of the spacetimes based on the behavior of the χ-function will be treated with exhaustive details in [12].

3 Conclusions

Let summarize these results here. We found a large class of exact solution to the field equation of Einstein gravity and discovered a new kind of freedom (maybe of mathematical nature) that they permit. A spacetime with the form [19] can be used to study quantum fields theories (QFT’s) is a curved spacetime that corrects the minkowkian plane world. Depending on the form of the arbitrary χ, we can construct a new special classically fluctuating spacetime that can correct (in principle) classical and quantum trajectories of particles [12]. In a more traditional stand, when we applied the conventional Kaluza-Klein unification of electromagnetism and gravitation, EM energy “fusses” with the gravitational one (that is locally undefined), in such way that Kaluza-Klein world could contain zero total energy [15].

We can call this non-trivial solution to Einstein equations R0X. The $R\theta$ is for Ricci flatness that every vaccum solution has. The “X” is for a specific
kind of the χ-function we choose for a spacetime. As we will discuss with extensive details in [15], if χ is a map $\chi : \mathbb{V} \to \mathbb{W}$, where $\mathbb{V}, \mathbb{W} \subset \mathbb{R}$ and the target set \mathbb{W} is finite ($\mathbb{W} = [0, a]$, $a \in \mathbb{R}$) and $\lim_{\eta \to \pm \infty} \chi = 0$, then it is easy to see from equation (19) that traditional flat world in 4D is recovered. Thus, when χ is a well-tempered function the extra-dimension disappears. We may suggest that this simple compactification procedure (far more easier that the Calabi-Yau one) can be use to formulate a consistent Brane theory that explain the large difference between the electro-weak and Planck scale.

Now, if the domain $\mathbb{V} = \mathbb{R} - \{S_n\}$, where $\{S_n\}$ is a finite set of point where χ is ill-defined, the R0X manifold would have a finite number of point where the Riemann tensor does not exist and thus the gravitational tidal forces would be infinite. As in [15] we show that under certain conditions R0X has exact solutions to the geodesic equations, R0X could be a ideal “laboratory” to explore certain proposal made in the past, such as the Penrose’s cosmic censorship conjecture [16]. Also, the study of new singularities could generated a rich arena for the recently developed Loop Quantum Gravity theory [17].

Acknowledgment. D S would like to thank Jorge A. Diaz and Ms. Eda Maria Arce for their kindness and hospitality at LANOTECH.

References

[1] G Nordström. Phys Zeits 15 (1914) 504.

[2] T Kaluza. Sitz Preuss Akad Wiss Phys Math K1

[3] O Klein. Zeits Phys 37 (1926) 895.

[4] E Schmutzer. A New 5-Dimensional Projective Unified Field Theory for Gravitation, Electromagnetism and Scalarism. In: Unified Field Theories of more than 4 dimensions, ed. V De Sabbata, E Schmutzer. World Scientific. Singapure. 1982.

[5] J M Overduin and P. S. Wesson. Phys Rep 283 (1997) 303.

[6] J P Polchinski. String Theory, Vols 1 and 2. Cambridge. 1998.

[7] A Davidson and DA Owen. Phys Lett 155B (1985) 247.

[8] P S Wesson et al. Int J Mod Phys. A11 (1996) 3247.
[9] L Randall and R Sundrum. Phys Rev Lett 83 (1999) 3370, online version: hep-th/9905221; Phys Rev Lett (1999) 83 4690, online version: hep-th/9906064.

[10] P Brax and C van de Bruck. Class Quant Grav 20 (2003) R201, on line version: Cosmology and Brane Worlds, hep-th/0303095.

[11] R Alvarado. Ciencia y Tecnologia 20 (1996) 145.

[12] D Solano. Planar curved spacetimes in N dimensions: General Properties and Definitions, (in preparation).

[13] W Israel. Nouvo Cimento 44 (1966) 4349. For a nice treatment of the topic of junction conditions, with extensive probes and illustrations, see C W Misner, K S Thorne, J A Wheeler. Gravitation. Freeman. New York. 1973. p. 551.

[14] A Vilenkin. Phys Lett B133 (1983) 177.

[15] D Solano and R Alvarado. Null energy Kaluza-Klein worlds. (in preparation.)

[16] R Penrose. Rev Nouvo Cim (1969) 1 252.

[17] C Rovelli. Quantum Gravity. Cambridge. 2004.