Floristic Diversity in the Lake Cluster of Pokhara Valley, Central Nepal

Hom Nath Pathak, Bharat Babu Shrestha, Dinesh Raj Bhuju and Prabin Bhandari

1Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
2Prithvi Narayan Multiple Campus, Tribhuvan University, Pokhara, Nepal
3Resources Himalaya Foundation, Kathmandu, Nepal
4State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 10009 China
5University of Chinese Academy of Sciences, Beijing, 100049 China

homnpathak@gmail.com

ABSTRACT

Wetlands support exceptionally high biodiversity and provide valuable ecosystem services, yet they are among the most threatened habitats due to anthropogenic activities. Conservation and management planning of wetlands requires, among others, a comprehensive floristic account. In this study, we prepared a checklist of the flowering plants found in the wetlands of the Lake Cluster of Pokhara Valley (LCPV), a Ramsar site of Nepal, located in a rapidly urbanizing capital city of Gandaki Province in Central Nepal. Voucher specimens were collected from the study sites through multiple visits during the monsoon (June-August) and autumn (September-November) seasons. Species were categorized based on their life forms (Raunkiaer’s classification) and native distribution range (native, naturalized, invasive). Ethno-botanical uses of the plant species were compiled from the published literature. We identified 230 plant species belonging to 70 families and 177 genera. Asteraceae (25 species), Poaceae (22 species), Fabaceae (18 species), Cyperaceae (16 species), and Lamiaceae (11 species) were species-rich families. Therophytes (30%) were the dominant life form followed by Hemicryptophytes (27%). Among 230 species, 183 species were native and 47 species naturalized; among the naturalized species, 21 species were invasive. Most of the plant species (61%) have medicinal values while others have food (24%) and fodder values (13%).

Keywords: invasive alien species, Ramsar site, Raunkiaer’s life form, wetland flora
INTRODUCTION

Wetlands are areas of marsh, fen, peatland, or sea, whether natural or artificial, permanent or temporary, with fresh, brackish, or saltwater that is stagnant or flowing, including areas of marine water not exceeding six meters in depth at low tide (Ramsar Convention Secretariat, 2013). Wetlands are also called nature’s supermarkets as they provide diverse goods and services to mankind and kidney of nature as they purify and filter water (Mandal & Mukherjee, 2012). For example, 21 ethnic communities out of 101 in Nepal depend on wetland resources for their subsistence (Lamsal et al., 2014). Wetlands are among the most productive life support systems in the world which are also immensely important for mankind as they provide humanity the freshwater supply, food and construction materials, and biodiversity, flood control, groundwater recharge, and climate change mitigation (Halls, 1997, https://www.ramsar.org). Wetlands that are the habitat of threatened species and provide valuable ecosystem services are designated as a Ramsar site under the Ramsar Convention on Wetlands (https://www.ramsar.org/). There are over 2400 Ramsar sites in the world including 10 sites in Nepal. The total area covered by all Ramsar sites in the world exceeds 2.5 million square kilometers (https://www.ramsar.org/about/wetlands-of-international-importance-ramsar-sites). Ramsar sites in Nepal occupy 605.61 square kilometers (MoFE, 2018a).

Wetlands support exceptionally high biodiversity and provide habitats to both water and land organisms (Denny, 1994). Floral diversity constitute a major resource in wetlands. A prerequisite to understanding the ecosystem type and biodiversity pattern of the region is a knowledge of the floral diversity of any region (Singh et al., 2017). Such floristic data will be useful for tracking changes in the pattern of vegetation in the future. In Nepal, the analysis of wetland flora is limited. A specific gap exists for the floristic studies in LCPV. Ethno-botanical studies of plants and plant products are essential for proper management of plant resources, in addition to the flora research (Cunningham, 2001).

Lake Cluster of Pokhara Valley (LCPV) is the most recently declared Ramsar site of Nepal (MoFE, 2018b). The LCPV includes nine lakes located in Pokhara Metropolitan, a rapidly urbanizing city of touristic attraction in Central Nepal. This study was carried out to prepare a checklist of the flowering plants found in the LCPV and analyzes their
taxonomic diversity, life forms, biogeographic status, and ethnobotanical uses. The results of this study are useful for the management and conservation planning of the LCPV.

Study area

The study was carried out in the Lake Cluster of Pokhara Valley (LCPV) which includes nine lakes located within Pokhara Metropolitan City, central Nepal (fig. 1). The Valley is located between 27°55'-28°23' N latitude and 83°48'-84°11' E longitude, with an area of 133.41 sq. km in Pokhara Metropolitan City (Shrestha & Kshetri, 2008). Pokhara is one of the most popular tourist destinations in Nepal, and a provincial capital of Gandaki Province. Of the nine lakes (table. 1), Phewa, Begnas, Rupa, and Deepang are visited by tourists frequently for natural beauty, fishing, and boating. The lakes and other water bodies are important sources of drinking water, fishery, irrigation, and hydropower (MoFE, 2018b). Besides they provide recreational, religious, spiritual, and inspirational values to local people and tourists.

Table 1. General information on the Lake Cluster of Pokhara Valley (MoFE, 2018b).

SN	Attributes	Phewa	Begnas	Rupa	Dipang	Maidi	Kamal pokhari	Gunde	Neureni	Khaste
1	Ward number	6	31	33	27	28	13	26	26	26
2	Area occupied by water (Km²)	4.33	3.13	1.11	0.14	0.007	0.013	0.08	0.027	0.13
3	Catchment area (Km²)	119.39	18.6	26.02	2.39	1.6	1.35	0.61	0.18	2.69
4	Lowest elevation (m asl)	763	647	580	687	672	822	741	742	739
Fig. 1. Lake Cluster of Pokhara Valley, Kaski District, Gandaki Province, Nepal. (Numerical values in Pokhara Metropolitan City map represent different lakes: 1. Phewa, 2. Begnas, 3. Rupa, 4. Khaste, 5. Maida, 6. Deepang, 7. Kamalpokhari, 8. Gunde, 9. Niuren).}

Fig. 2. Ombrothermic diagram of the climatic data between 2010 to 2019 at Begnas and Pokhara airport.
Pokhara Valley lies in a subtropical region dominated by *Schima-Castanopsis* vegetation, while small patches of the riverine forest dominated by *Acacia catechu, Alnus nepalensis, Pandanus furcatus* are also found in the gorges of Seti and other associated rivers. The minimum temperature was recorded at 6.5°C at the Begnas weather station and 7°C at the Pokhara airport. Similarly, the maximum temperature recorded at Begnas was 33°C and 31.4°C at the airport. The mean annual temperatures were 22.3°C and 21.8°C, respectively at Begnas and the airport. Similarly, average annual precipitation was 3201 mm and 3515 mm at Begnas and Pokhara airport respectively (fig. 2). Dry periods are from mid-November to mid-February and the wet periods from mid-February to mid-November. The extreme wet periods extend between March to October and peak in June/July.

MATERIALS AND METHODS

Specimen collection and identification

Lakes of LCPV were visited for six times from June 2018 to December 2020, representing two different seasons: monsoon (June-August) and autumn (September-November) because they are the peak flowering seasons of the wetland flora. Voucher specimens of flowering plant species were collected along the shore, inside the lakes, and around the lakes. The free-floating and submerged species growing within the territory of the lakeshore were collected following Haynes (1974). The collected specimens were pressed and dried using newspaper and herbarium pressure. The prepared specimens were identified consulting regional and national floras (Grierson & Long, 1983-2001; Wu *et al.*, 1994-2008; Watson *et al.*, 2011). During the identification process, the collected samples were also cross-checked with the specimens available at the National Herbarium and Plant Laboratories (KATH) and Tribhuvan University Central Herbarium (TUCH). For some doubtful species, expert views were also considered. The nomenclature of the families followed APG-IV (Angiosperm Phylogeny Group, version IV) (Chase *et al.*, 2016), while the nomenclature of the genera and species followed Roskov *et al.* (2020). Identified specimens were deposited in TUCH and KATH.

Species categorization and ethnobotanical use

Habits of the species (herb, shrub or tree; annual or perennial) were determined based on field observations of the flora (Grierson & Long, 1983-2001, Wu *et al.*, 1994-2008, Watson *et al.*, 2011). The life forms of the identified species were classified following
Raunkiaer’s classification as Phanerophytes (Perennating buds from aerial parts more than 2m from the soil surface), Chamaephytes (Perennating buds on aerial parts less than 2m from the soil surface), Hemicryptophytes (Buds at ground level), Cryptophytes (Buds below ground or water), and Therophytes (Plants that survive unfavourable conditions as seeds) (Kent, 2012). The native ranges were extracted from Wu et al. (1994-2008) and Plants of the World Online (2020) (http://www.plantsoftheworldonline.org/); for some species with uncertain native range, experts’ advice was also solicited. Continents (e.g. Europe, Americas) of the native distribution range of the naturalized alien species were identified. Some of the naturalized alien species were categorized as ‘invasive’ following the list of invasive alien plants of Nepal by Shrestha (2019). International Union for Conservation of Nature (IUCN) threatened categories were identified for each species (www.iucnredlist.org). The collected plant species were compared with the list of species reported by the Ministry of Forests and environment (MoFE, 2018b) from the LCPV. Ethnobotanical uses of the collected plant species in Nepal were obtained from the following references: Manandhar (2002), Sah et al. (2002), Bishokarma et al. (2005), Baral & Kurmi (2006), Acharya (2009), Joshi & Joshi (2009), Kunwar et al. (2010), Niroula & Singh (2011), Lamsal et al. (2014), Kunwar et al. (2015), Adhikari et al. (2019), Budha-Magar et al. (2020), Bhatt & Kunwar, (2020), and Sharma et al. (2020).

Uses of the plant species were grouped into the following categories: medicines, food, forage, fodder, fiber yielders, rituals plants, fish poisons, timber yielders, fuel-woods, ornamentals, dye yielders, construction materials, green manures, hedge plants, tannin yielders, soaping agents and fermenting agents. Use percent was calculated by dividing the number of times the plant used (e.g. as medicine) by total plant species enumerated (e.g. 216) multiplied by hundred. Due to multiple uses of single plant species, a sum of the percentage values of the different use categories was more than 100%.

RESULTS AND DISCUSSION

Altogether 230 flowering plant species were collected belonging to 177 genera and 70 families from the LCPV (Appendix I). Among them, 168 species were dicots and 62 species monocots. Out of 177 genera, 34 genera had two or more than two species while the rest of others was represented by a single species. Asteraceae (25 species), Poaceae (22 species), Fabaceae (18 species), Cyperaceae (16 species) and Lamiaceae (11 species) were the species-rich families (table 2). Analysis of the floristic composition
of the LCPV revealed Asteraceae and Poaceaeae as the dominant families, which agree with the general floral composition of Nepal (Press et al., 2000). Poaceae was also reported as a dominant family in the wetlands of other parts of Nepal (e.g. Chitwan by Dangol et al., 2014). In Nepal, the analysis of wetland flora is limited. Sah et al. (2002) reported altogether 401 plant species belonging to 264 genera under 84 families from the Ghodaghodi lake area. Altogether 115 species belonging to 45 families were recorded from the wetland flora of Rupandehi district (Sharma et al., 2019). A total of 108 plant species were recorded from the wetland and periphery of Raja-Rani Tal, Morang (Sharma et al., 2020). Dangol et al. (2014) documented 117 plant species belonging to 39 families and 92 genera in the area of Rampurghol, Chitwan. Compared to the list of 436 plant species reported in the management plan of the LCPV (MoFE, 2018b), this research revealed the presence of 155 additional plant species suggesting that previous floristic studies of the LCPV are far from complete. Regarding habits, 167 species were herbs, 38 shrubs and 25 trees. Out of the total, 76 were annuals and 154 perennials.

Table 2. Number of species recorded from the Lake Cluster of Pokhara Valley that belong to different families.

S.N.	Family	Number of species
1.	Asteraceae	25
2.	Poaceae	22
3.	Fabaceae	18
4.	Cyperaceae	16
5.	Lamiaceae	11
6.	Polygonaceae, Rubiaceae	8
7.	Malvaceae	6
8.	Acanthaceae, Euphorbiaceae, Moraceae, Orchidaceae	5
9.	Amaranthaceae, Commelinaceae, Rosaceae, Solanaceae, Urticaceae	4
10.	Hypericaceae, Phyllanthaceae,	3
11.	Apocynaceae, Araceae, Boraginaceae, Caryophyllaceae, Convolvulaceae,	2
	Dioscoreaceae, Fagaceae, Lauraceae, Linderniaceae, Lythraceae,	
	Melastomataceae, Myrtaceae, Oleaceae, Onagraceae, Oxalidaceae,	
	Plantaginaceae, Pontederiaceae, Primulaceae, Vitaceae	
12.	Remaining 32 families	1
The IUCN red list category of the plant species were attempted to find. Out of the 230 species, 67 plant species were under the Least Concern category and the rest of the others (163 species) were not assessed to any threat category. None of the plants were government protected. However, the ecosystems maintained by these plant species are the habitat of several threatened animal species (MoFE, 2018b).

The majority of the species were native (183 species) while 47 species were naturalized alien species. Out of them, 21 naturalized species were invasive (table 3). Though the flora of LCPV was dominated by the native species, the presence of naturalized species contributing to one-fifth of the total flora recorded during the present study could not be underestimated. Furthermore, globally worst invasive species such as *Eichornia crassipes*, *Chromolaena odorata*, *Lantana camara* and *Mikania micrantha* (Lowe *et al.*, 2000) had already invaded LCPV. The majority of the naturalized species (81%) and all of the invasive alien species were native of the Americas (fig. 3, table 3). The dominance of the American native plant species in the naturalized flora has been also reported at the national level (Bhattarai *et al.*, 2012).

Fig. 3. Number of naturalized species with their place of origin.
Table 3. Floristic diversity of invasive alien plant species in Lake Cluster of Pokhara Valley. RC- Raunkiaer’s life form classification: He-hemicryptophyte, Ch-Chamaephytes, Th-Therophyte, Cr-Cryptophyte, Ph-Phanerophyte; Uses: Me-Medicine, Fr-forage, Fd-fodder, Gm-green manure.

SN	Latin name	Family	Native range	Collection sites	RC	Herb (H)/ Shrub (S)	Annual (A)/ Perennial (P)	Uses	References for uses
1	*Ageratina adenophora* (Spreng.) R.M.King & H.Rob.	Asteraceae	Mexico	Rupa	Ch	H	P	Me	Acharya (2009), Adhikari et al. (2019), Budhamagar et al. (2020)
2	*Ageratum conyzoides* L.	Asteraceae	Mexico	Kamal pokhari	Th	H	A	Me, Fr	Lamsal et al. (2014), Kunwar et al. (2010), Bhatt et al. (2020)
3	*Ageratum houstonianum* Mill.	Asteraceae	Mexico to Central America	Maida	Th	H	A	Me	Baral et al. (2006), Joshi et al. (2009)
4	*Alternanthera philoxeroides* (Mart.) Griseb.	Amaranthaceae	Trinidad to N. Argentina	Phewa	He	H	P		
5	*Amaranthus spinosus* L.	Amaranthaceae	Mexico to Tropical America	Rupa	Th	H	A	Fd, Me, Fr	Manandhar (2002), Joshi et al. (2009)
6	*Bidens pilosa* L.	Asteraceae	Tropical & Subtropical America	Khaste	Th	H	A	Fd, Me, Fr	Manandhar (2002), Baral et al. (2006), Sharma et al. (2020)
Chromolaena odorata (L.) R.M.King & H.Rob.	Eichhornia crassipes (Mart.) Solms	Galinsoga quadriradiata Ruiz & Pav.	Ipomoea carnea subsp. fistulosa (Mart. ex Choisy) D.F.Austin	Lantana camara L.	Mesosphaerum suaveolens (L.) Kunth	Mikania micrantha	Mimosa pudica L.		
--	-----------------------------------	-----------------------------------	---	-----------------	---------------------------------	----------------	----------------		
Chromolaena	Eichhornia	Galinsoga	Ipomoea carnea	Lantana camara	Mesosphaerum	Mikania	Mimosa		
Floristic Diversity in the Lake Cluster of Pokhara Valley, Central Nepal	Pathak et al.	10	Joshi et al. (2009), Sah et al. (2002)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Sharma et al. (2020)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2010)		
Phewa	Phewa	Khaste	Phewa	Rupa	Phewa	Phewa	Phewa		
Chromolaena	Eichhornia	Galinsoga	Ipomoea carnea	Lantana camara	Mesosphaerum	Mikania	Mimosa		
Floristic Diversity in the Lake Cluster of Pokhara Valley, Central Nepal	Pathak et al.	10	Joshi et al. (2009), Sah et al. (2002)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Sharma et al. (2020)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2010)		
Phewa	Phewa	Khaste	Phewa	Rupa	Phewa	Phewa	Phewa		
Chromolaena	Eichhornia	Galinsoga	Ipomoea carnea	Lantana camara	Mesosphaerum	Mikania	Mimosa		
Floristic Diversity in the Lake Cluster of Pokhara Valley, Central Nepal	Pathak et al.	10	Joshi et al. (2009), Sah et al. (2002)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Sharma et al. (2020)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2010)		
Phewa	Phewa	Khaste	Phewa	Rupa	Phewa	Phewa	Phewa		
Chromolaena	Eichhornia	Galinsoga	Ipomoea carnea	Lantana camara	Mesosphaerum	Mikania	Mimosa		
Floristic Diversity in the Lake Cluster of Pokhara Valley, Central Nepal	Pathak et al.	10	Joshi et al. (2009), Sah et al. (2002)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2015)	Sharma et al. (2020)	Manandhar (2002), Baral et al. (2006), Kunwar et al. (2010)		
Phewa	Phewa	Khaste	Phewa	Rupa	Phewa	Phewa	Phewa		
No.	Species Name	Family	Subtropical America	Manandhar (2002), Baral et al. (2006)	Manandhar (2002), Bishwakarma (2005), Baral et al. (2006)	Manandhar (2002), Sah et al. (2002)			
-----	---------------------------------------	---------	---------------------	---------------------------------------	---	-------------------------------------			
15	Oxalis latifolia Kunth	Oxalidaceae	Tropical & Subtropical America			Phewa Th H Cr			
16	Parthenium hysterophorum L.	Asteraceae	Tropical & Subtropical America			Phewa Th H Cr			
17	Pistia stratiotes L.	Araceae	South America			Phewa Th H Cr			
18	Senna occidentalis (L.) Link	Fabaceae	Tropical & Subtropical America			Phewa Th H Cr			
19	Senna tora (L.) Roxb.	Fabaceae	Central America			Phewa Th H Cr			
20	Spermacoce alata Aubl.	Rubiaceae	N. America to South America and W. Brazil			Phewa Th H Cr			
21	Xanthium strumarium L.	Asteraceae	Colombia to Peru and Brazil			Phewa Th H Cr			
The life form of dominant plant species is one of the basic physiognomic attributes (Beard, 1978), which show the plant-environment interaction, and it helps to understand the micro and macroclimate under which plant species flourish (Khan et al., 2018). The vegetation in our study area ranged from phanerophytes to therophytes with the dominance of therophytes and hemicryptophytes (fig. 4). The hemicryptophytes and cryptophytes constituted the species of the herb. The chamaephytes observed were mainly woody shrub species while the phanerophytes constituted the trees and the associated epiphytes and climbers, growing in the adjoining areas of wetlands. Hydrophytes (a component of Cryptophytes) constituted 10 species; common among them were *Trapa natans*, *Eichhormia crassispes*, *Pistia stratiotes*, *Hydrilla verticillata*, *Leersia hexandra* and *Ludwigia adscendens*. Such dominancy of hydrophytes was also reported from a study in wetlands of Central Nepal (Burlakoti & Karmacharya, 2004).

![Raunkiaer's life forms](image-url)

Fig. 4. Percentage of native and naturalized aline plant species in each life form.
Values inside the bars represents the number of species.

A review of the previous studies revealed that about 71% (166 species) of the flowering plants recorded in the LCPV have one or more use values (table 4). Most of them (59%) were used as medicines, followed by food (25%) and forage and fodder (13%). This suggests that the LCPV provides important provisioning services to the people living in the landscape surrounding the LCPV. A similar type of research was reported by Sah et al. (2002) in the Ghodaghodi lake area and Dangol (2014) in Rampur Ghol, Chitwan.
Table 4. Uses of the plant species reported from the LCPV. Uses of the species have been compiled from the previous studies (See Appendix I and II for details).

S.N.	Use category	Number of species	Percentage of species
1.	Medicinal uses	141	61.30
2.	Food value	57	24.78
3.	Fodder and forage	31	13.47
5.	Fiber yielders	8	3.47
6.	Rituals plants	4	1.73
7.	Fish poisons	4	1.73
8.	Timber yielders	3	1.30
9.	Fuelwood	2	0.86
10.	Ornamental plants	2	0.86
11.	Dye yielders	2	0.86
12.	Use in construction	2	0.86
13.	Green manure	1	0.43
14.	Hedge plant	1	0.43
15.	Tannin yielders	1	0.43
16.	Soaping agent	1	0.43
17.	Fermenting agent	1	0.43

This study gives an insight into floral diversity in the LCPV, their biogeography, as well as their uses. Most of the species were native, perennial, and Therophytes. The LCPV provides habitat for several plant species with medicinal values. The presence of several invasive alien plant species, some of them being globally worst, suggests that the wetland habitats of LCPV have been degrading. Management responses to plant invasions, together with other drives of degradation, will help to restore the habitats and ensure the continuous supply of ecosystem services. This will provide both economic as well as conservation benefits.
ACKNOWLEDGEMENTS

We are thankful to Keshab Raj Rajbhandari (National Herbarium and Laboratories, KATH), Sangeeta Rajbhandary (Central Department of Botany, Tribhuvan University, CDB TU), Suresh Kumar Ghimire (CDB, TU), Deepak Pant (CDB, TU), Yadu Paudel, Hem Raj Paudel (National Herbarium and Plant Laboratories, Godawari, KATH), Ganga Datt Bhatt (KATH), and Reeta Chhetri (KATH) for their help in plant identification. We are also thankful to Subhash Khatri (KATH) for providing facilities at KATH to compare the herbarium specimens. This research was made possible from the fellowship awarded to the first author (HNP) from the Rector’s office, Tribhuvan University, Nepal.

REFERENCES

ACHARYA, K P (2009) Utilization and status of plant resources in northern Part of Pokhara Valley, Central Nepal. *Ethnobotanical leaflets* 13:116-122.

ADHIKARI, M; THAPA, R; KUNWAR, R M; DEVKOTA, H P; POUDEL, P (2019) Ethnomedicinal Uses of Plant Resources in the Machhapuchchhre Rural Municipality of Kaski District, Nepal. *Medicines* 6(2), 69. DOI: 10.3390/medicines6020069

BARAL, S R; KURMI, P P (2006) *A compendium of medicinal plants in Nepal.* Rachana Sharma, Kathmandu, Nepal.

BHATT, M D; KUNWAR, R M (2020) Distribution pattern and ethnomedicinal uses of plants in Kanchanpur district, Far-Western Nepal. *Ethnobotany Research and Applications* 20: 1-21.

BHATTARAI, K R, MÅREN, I E, SUBEDI, S C (2014) Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. *Journal of Mountain Science* 11(3): 688-696. DOI: 10.1007/s11629-013-2821-3.

BISHOKARMA, B K; KINSEY, C K; DANGOL, D. R; CHAUDHARY, P (2005) Folk use of plant resource at Madi valley of Chitwan District, Nepal. *Banko Janakari* 15(2): 28-33.

BUDHA-MAGAR, S; BHANDARI, P; GHIMIRE, S K (2020) Ethno-medicinal survey of plants used by Magar (Kham) community, Rolpa district, Western Nepal. *Ethnobotany Research and Applications* 19: 1-29.
CHASE, M W; CHRISTENHUSZ, M J M; FAY, M F; BYNG, J W; JUDD, W S; SOLTIS, D E, ... STEVENS, P F (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181(1): 1-20.

CUNNINGHAM, A B (2001) *Applied ethnobotany: people, wild plant use and conservation*. Earthscan, London, United Kingdom.

DANGOL, D R; GAUTAM, B; OLI, B B (2014) Wetland plants and their local uses: Observations from Rampur Ghol, Chitwan, Nepal. *Journal of Natural History Museum* 28:142-159.

DENNY, P (1994) Biodiversity and wetlands. *Wetlands Ecology and Management*, 3(1): 55-611.

GRIERSON, AJC ; LONG, DG (1983-2001) *Flora of Bhutan*. Royal Botanic Garden, Edinburgh, United Kingdom.

HALLS, A J E (1997) Wetlands, biodiversity and the Ramsar convention: the role of the convention on wetlands in the conservation and wise use of biodiversity. In *Ramsar Convention Bureau*, Gland, Switzerland (Vol. 13).

HAYNES, R R (1984) Techniques for collecting aquatic and marsh plants. *Annals of the Missouri Botanical Garden* 71(1): 229-231.

JOSHI, A R; JOSHI, K (2009) Indigenous Uses of Wetland Plant Diversity of two Valleys (Kathmandu and Pokhara) in Nepal. *Ethnobotany* 21: 11-17

KENT, M (2012) *Vegetation description and data analysis A practical approach*. Wiley Blackwell, A John Wiley & Sons, Ltd, Publication, Oxford, UK

KHAN, W; KHAN, S M; AHMAD, H; ALQARAWI, A A; SHAH, G M; HUSSAIN, M; ABD-ALLAH, E (2018) Life forms, leaf size spectra, regeneration capacity and diversity of plant species grown in the Thandiani forests, district Abbottabad, Khyber Pakhtunkhwa, Pakistan. *Saudi Journal of Biological Sciences* 25(1): 94-100.

KUNWAR, R M; ACHARYA, R P; CHOWDHARY, C L; BUSSMANN, R W (2015) Medicinal plant dynamics in indigenous medicines in far-west Nepal. *Journal of Ethnopharmacology* 163: 210-219.
KUNWAR, R M; BURLAKOTI, C; CHOWDHARY, C L; BUSSMANN, R W (2010) Medicinal plants in far-west Nepal: Indigenous uses and pharmacological validity. *Medicinal and Aromatic Plant Science and Biotechnology* 4(1): 28-42.

LAMSAL, P; PANT, K P; KUMAR, L; ATREYA, K (2014) Diversity, uses, and threats in the Ghodaghodi Lake Complex, a Ramsar site in western lowland Nepal. *ISRN Biodiversity*, Article ID 680102. DOI:10.1155/2014/680102.

LAMSAL, P; PANT, K P; KUMAR, L; ATREYA, K (2014) Sustainable livelihoods through conservation of wetland resources: a case of economic benefits from Ghodaghodi Lake, western Nepal. *Ecology and Society* 20(1): 10. http://dx.doi.org/10.5751/ES-07172-200110.

LOWE, S; BROWNE, M; BOUDJELAS, S; DE POORTER, M (2000) *100 of the world's worst invasive alien species: a selection from the global invasive species database* (Vol. 12). Invasive Species Specialist Group, Auckland, New Zealand.

MANANDHAR, N P (2002) *Plants and people of Nepal*. Timber Press, USA.

MANDAL, S K; MUKHERJEE, A (2012) Diversity of Dicotyledonous plants in Wetlands of Puruliya District, West Bengal. In MAITI, G G; MUKHERJEE, S K (eds). *Multidisciplinary Approaches in Angiosperm Systematics*. University of Kalyani, Kalyani, WB, India; pp 403-9.

MoFE (2018a) *National Ramsar Strategy and Action Plan, Nepal (2018-2024)*. Ministry of Forest and Environment, Government of Nepal, Kathmandu, Nepal.

MoFE (2018b) *Integrated Lake Basin Management Plan of Lake Cluster of Pokhara Valley, Nepal (2018-2023)*. Ministry of Forests and Environment, Kathmandu, Nepal.

NIROULAL, B; SINGH, K L B (2011) Aquatic plant resources of Betana wetland, Morang, Nepal. *Our Nature* 9(1): 146-155.

PRESS, J R; SHRESTHA, K K; SUTTON, D A (2000) *Annotated checklist of the flowering plants of Nepal*. Natural History Museum Publications, UK (updated online version: http://www.efloras.org/flora_page.aspx?flora_id=110, accessed date. 29 January 2021)
RAMSAR CONVENTION SECRETARIAT (2013) *The Ramsar Convention Manual: a guide to the Convention on Wetlands (Ramsar, Iran, 1971).* 6th eddition. Ramsar Convention Secretariat, Gland, Switzerland.

ROSKOV, Y; OWER, G.; ORRELL, T; NICOLSON, D; BAILLY, N; KIRK, P.M; BOURGOIN, T; DEWALT, R.E; DECOCK, W; NIEUKERKEN, E; PENEV, L; EDS. (2020) *Species 2000 & ITIS Catalogue of Life, 2020-09-01 Beta.* Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858. (accessed date: November 05, 2020).

SAH, J P; SINGH, R L; BHATTA, N (2002) Floristic diversity and use of plants in Ghodaghodi Lake Area, Nepal. *Journal of Natural History Museum* 21: 243–266.

SHARMA K; SAUD D S; JOSHI N (2019) Wetland flora of Rupandehi district, Nepal. *Journal of Plant Resources* 17(1): 58-68.

SHARMA, K; SAUD, D S; BHATTARAI,K R; DHAKAL, S; KHADKA, M K (2020) Wetland Plants and their Ethnobotanical Uses in Raja-Rani Tal, Letang, Morang, Nepal *Journal of Plant Resources* 18(1): 135-142.

SHRESTHA, B B; SHRESTHA, U B; SHARMA, K P; THAPA-PARAJULI, R B; DEVKOTA, A; SIWAKOTI, M (2019) Community perception and prioritization of invasive alien plants in Chitwan-Annapurna Landscape, Nepal. *Journal of Environmental Management* 229: 38-47.

SINGH, A; BALODI, K N; NAIITHANI, S; SRIVASTAVA, A; SINGH, A; KWON-NDUNG, E H (2017) Vascular plant diversity with special reference to the invasion of alien species on the Doon University Campus, Dehradun, India. *International Journal of Biodiversity and Conservation* 9(3): 56–76. DOI: 10.5897/ijbc2016.1035

WATSON, M F; MKIYAMA, S; IKEDA, H; PENDRY, C; RAJBHANDARI, K R; SHRESTHA, K K eds. (2011) *Flora of Nepal*, Vol. 3. The Royal Botanic Garden Edinburgh, UK.

WU, Z; RAVEN, P H; HONG, D (1994-2008) *Flora of China.* Vol.4,8,11,13,14,16,18, 19,20,22,24,25. Science Press (Beijing) and Missouri Botanical Garden Press, St. Louis, USA.
APPENDIX 1. Checklist of plant species reported from the Lake Cluster of Pokhara Valley.

SN	Family	Latin name	IUCN categ	N/E	D/M	NRR	RC	H/S	A/P	Use value	References for uses	Wetland	Coll. Num.				
1	Acanthaceae	*Justicia gendarussa* Burm. f.	N/D	1	He	Sh			P	Me		Phewa	F 131				
2	Acanthaceae	*Justicia simplex* D.Don	N/D	1	He	He	P		Me	1, 2	Niureni	140					
3	Acanthaceae	*Lepidagathis incurva* Buch.-Ham. ex D.Don	N/D	1	He	He	P		Fd	1, 2	Maidi	M104					
4	Acanthaceae	*Strobilanthes atropurpurea* Nees	N/D	1	He	He	P		Me	1, 2	Dipang	92					
5	Acanthaceae	*Thunbergia fragrans* Roxb.	N/D	1	He	He	P					Phewa	4				
6	Acoraceae	*Acorus calamus* L.	LC	N	M	1	Cr	He	P	Me	1, 2, 3, 7, 9, 11, 14	Rupa	R152				
7	Amaranthaceae	*Alternanthera philoxeroides* (Mart.) Griseb.	E/D	1	He	He	P				Phewa	152					
8	Amaranthaceae	*Alternanthera sessilis* (L.) R.Br. ex DC.	LC	E	D	1	He	He	P	Fd, Me, Fr	1, 2, 4, 7, 9, 12, 14, 15	Phewa	70				
9	Amaranthaceae	*Amaranthus spinosus* L.	E/D	1	Th	He	A		Fd	Me	1, 4	Rupa	R124				
10	Amaranthaceae	*Dysphania ambrosioides* (L.) Mosyakin & Clements	E/D	1	He	He	P		Fd, Me	Fr	1, 2	Niureni	N 267				
11	Amaryllidaceae	*Crinum amoenum* Ker Gawl. ex Roxb.	N/M	1	Cr	He	P		Me	1, 2	Phewa	153					
12	Apiaceae	*Centella asiatica* (L.) Urb.	LC	N	D	1	He	He	P	Me, Fd	1, 4, 5, 6, 7, 9, 12, 14	Phewa	154				
13	Apocynaceae	*Cryptolepis buchananii* Schult. ex Roem. & Schult.	N/D	1	Ph	Sh	P		Me, Fo	Fi	1, 2	Gunde	G117				
14	Apocynaceae	*Ichnocarpus frutescens* (L.) W.T.Aiton	N/D	1	Ph	Sh	P		Fd, Me	Fi	1, 2	Maidi	M151				
15	Araceae	*Colocasia fallax* Schott	LC	N	M	1	Cr	He	P			Rupa	R229				
No.	Family	Species	Synonyms	Subspecies	Map	P	M	He	D	E	Cr	Th	A	P			
-----	-----------------	--	---	------------	-----	---	---	----	---	----	----	----	---	---	---	---	---
16	Araceae	Pistia stratiotes L.															
17	Araceae	Aponogeton peltatus (Wall. ex DC.)															
18	Araceae	Aponogeton lirioideus (L.) Kuntze															
19	Araceae	Aponogeton peltatus (Wall. ex DC.)															
20	Araceae	Aponogeton lirioideus (L.) Kuntze															
21	Araceae	Aponogeton peltatus (Wall. ex DC.)															
22	Araceae	Aponogeton lirioideus (L.) Kuntze															
23	Araceae	Aponogeton peltatus (Wall. ex DC.)															
24	Araceae	Aponogeton lirioideus (L.) Kuntze															
25	Araceae	Aponogeton peltatus (Wall. ex DC.)															
26	Araceae	Aponogeton lirioideus (L.) Kuntze															
27	Araceae	Aponogeton peltatus (Wall. ex DC.)															
28	Araceae	Aponogeton lirioideus (L.) Kuntze															
29	Araceae	Aponogeton peltatus (Wall. ex DC.)															
30	Araceae	Aponogeton lirioideus (L.) Kuntze															
31	Araceae	Aponogeton peltatus (Wall. ex DC.)															
32	Araceae	Aponogeton lirioideus (L.) Kuntze															
33	Araceae	Aponogeton peltatus (Wall. ex DC.)															
No.	Family	Species	Author	Th	He	Me	Fr	P									
-----	---------------	--	---------------	----	----	----	----	----									
34	Asteraceae	Parthenium hysterophorum L.															
35	Asteraceae	Pseudognaphalium affine (D.Don) Anderb.															
36	Asteraceae	Sonchus arvensis L.															
37	Asteraceae	Sonchus asper (L.) Hill															
38	Asteraceae	Synedrella nodiflora (L.) Gaertn.															
39	Asteraceae	Tridax procumbens L.															
40	Asteraceae	Sonchus arvensis L.															
41	Balsaminaceae	Impatiens insignis DC.															
42	Balsaminaceae	Orychophragmus virginicus (Vahl) Harris															
43	Bignoniaceae	Xanthium strumarium L.															
44	Boraginaceae	Drymaria cordata (L.) Willd. ex Roem. & Schult.	N														
45	Boraginaceae	Drymaria cordata (L.) Willd. ex Roem. & Schult.	N														
46	Brassicaceae	Cynoglossum wallichii G. Don															
47	Caryophyllaceae	Caryophyllum maritimum Cham.															
48	Caryophyllaceae	Caryophyllum maritimum Cham.															
49	Commelinaceae	Commelina paludosa Blume															
50	Commelinaceae	Commelina paludosa Blume															
51	Commelinaceae	Commelina paludosa Blume															
52	Commelinaceae	Commelina paludosa Blume															
Page	Section	Title	Authors	Journal	Volume	Year	Page	Location									
------	---------	--	--	---------	--------	------	------	----------									
53	Commelinaceae	*Murdannia nudiflora* (L.) Brenan	N M 1 Th He A	Begnas	B145												
54	Convolvulaceae	*Ipomoea carnea* subsp. *fistulosa* (Mart. ex Choisy) D.F. Austin	E D 1 Ch He P Me He, Me	Phewa	101												
55	Convolvulaceae	*Ipomoea purpurea* (L.) Roth	E D 1 Ch He P Me He, Me, Fo	Phewa	K100												
56	Costaceae	*Helleborus speciosus* (L.Koeng) S.R.Dutta	E D 1 Ch He P Me He, Me	Phewa	168												
57	Costaceae	*Solenolaterifolia* Lour.	E D 1 Ch He P Me He, Me	Phewa	R128												
58	Costaceae	*Actinocirca reptans* (L.) Goeh.	E D 1 Ch He P Me He, Me	Phewa	169												
59	Costaceae	*Carex criocarpa* Wahlb.	E D 1 Ch He P Me He, Me	Phewa	169												
60	Costaceae	*Carex alba* (Steud.) Kuntze	E D 1 Ch He P Me He, Me	Phewa	169												
61	Costaceae	*Carex breviglumis* (Reichb.) Hasse.	E D 1 Ch He P Me He, Me	Phewa	169												
62	Costaceae	*Carex scirpoides* (L.) Kunte	E D 1 Ch He P Me He, Me	Phewa	169												
63	Costaceae	*Carex tenuiflora*	E D 1 Ch He P Me He, Me	Phewa	169												
64	Costaceae	*Carex tenuis*	E D 1 Ch He P Me He, Me	Phewa	169												
65	Costaceae	*Carex platystylis* R.Br.	E D 1 Ch He P Me He, Me	Phewa	169												
66	Costaceae	*Eleocharis congesta* D.Don	E D 1 Ch He P Me He, Me	Phewa	169												
67	Costaceae	*Filicaeae dichotoma* (L.) Wahl	E D 1 Ch He P Me He, Me	Phewa	169												
68	Costaceae	*Schoenoplectella juncoides* (Reckb.) Lye	E D 1 Ch He P Me He, Me	Phewa	169												
69	Costaceae	*Schoenoplectella lateriflora* (J.F.Gmel.) Lye	E D 1 Ch He P Me He, Me	Phewa	169												
70	Costaceae	*Schoenoplectella nigropelliculosa*	E D 1 Ch He P Me He, Me	Phewa	169												
No.	Family	Species	Locality	Growth Form	Date	Phenology	Travel	Notes									
-----	----------	--	----------	-------------	------	-----------	--------	-----------									
71	Cyperaceae	*Schoenoplectiella mucronata* (L.) J.Jung & H.K.Choi	LC N M 1 Cr He P	Fi, Fo	1, 4, 14	Rupa	R198										
72	Cyperaceae	*Scleria biflora* Roxb.	LC N M 1 Cr He P	Fo	1, 2	Khaste	K102										
73	Cyperaceae	*Scleria levis* Retz.	N M 1 Cr He P	Me, Fo, Cm, Fd, Fr, Me	1, 2	K109											
74	Dioscoreaceae	*Dioscorea bulbifera* L.	N D 1 He He P	1, 2	Rupa	R103											
75	Dioscoreaceae	*Dioscorea pubera* Blume	N D 1 He He P	Niuren	182												
76	Dipterocarpaceae	*Shorea robusta* Gaertn.	LC N D 1 Ph Tr P	Me, Ti, Tag	1, 2, 13	Maidi	191										
77	Eriocaulaceae	*Eriocaulon nepalense* Prescott ex Bong.	LC N M 1 Th He A Me 1	Phewa	P226												
78	Euphorbiaceae	*Alchornea mollis* (Benth.) Müll.Arg.	N D 1 Ch Sh P	Maidi	M124												
79	Euphorbiaceae	*Euphorbia hirta* L.	N D 1 Th He A Me 2	Phewa	185												
80	Euphorbiaceae	*Euphorbia pulcherrima* Willd. ex Klotzsch	LC N D 1 Ch Sh P	Me, Or	1	Rupa	R104										
81	Euphorbiaceae	*Falconeria insignis* Royle	N D 1 Ph Tr P	Me, Fp	1, 2	Begnas	B24										
82	Euphorbiaceae	*Macaranga denticulata* (Blume) Müll.Arg.	LC N D 1 Ph Tr P	Me, Fo	1, 2	Phewa	184										
83	Fabaceae	*Aeschynomene indica* L.	LC N D 1 He Sh P	Me	2	Gunde	G68										
84	Fabaceae	*Bauhinia purpurea* L	Lc N D 1 Ph Tr P	Fo, Cm, Fd, Fr, Me	1, 2	Rupa	R61										
85	Fabaceae	*Chamaecrista leschenaultiana* (DC.) O.Deg.	N D 1 He He P	Phewa	41												
86	Fabaceae	*Chamaecrista rotundifolia* (Pers.) Greene	E D 1 He He P	Phewa	46												
87	Fabaceae	*Crotalaria alata* D.Ddon	N D 1 He Sh P	Me	1	Khaste	187										
88	Fabaceae	*Crotalaria pallida* Aiton	N D 1 He Sh P	Dipang	93												
Page	Fabaceae	Fagaceae	Gesneriaceae	Hydrocharitaceae	Hypericaceae												
------	----------	----------	-------------	----------------	-------------												
89	Crotalaria sessiliflora L.	Castanopsis indica (J.Roxb. ex Lindl.) A.DC.	Aeschynanthus parviflorus (D.Don) Spreng.	Hydrocharis verticillata (L.f.) Royle	Hypericum japonicum Thunb.												
90	Desmodium concinum DC.																
91	Desmodium heterocarpum (L.) DC.																
92	Desmodium laxiflorum DC.																
93	Desmodium multiflorum DC.																
94																	
95																	
96																	
97																	
98																	
99																	
100																	
101																	
102																	
103																	
104																	
105																	
No.	Genus	Species	Authority	Location	Dominance	Frequency	Phenology	Ecological	Notes								
-----	------------------------	-------------------------------------	-------------------------	----------------	-----------	-----------	-----------	------------	-------------								
106	Hypericum	podocarpoides	N.Robson ex Buch.-Ham.	Begnas	P	D	1	Tr									
107	Hypericum	uralam	D. Don ex Buch.-Ham.	Begnas	Me	D	1	Ch									
108	Juncus	prismatocarpus	R.Br. ex D. Don	Rupa	Me	F, Fo	1, 2	P									
109	Juncus	bracteatum	Wall. ex Walp.	Phewa	Me	F	1	He									
110	Lamiaceae	Hypericum podocarpoides	N.Robson ex Buch.-Ham.	Begnas	P	D	1	Tr									
111	Lamiaceae	Hypericum uralum	Buch.-Ham. ex D. Don	Maidi	Me	F, Fo	1, 2	P									
112	Lamiaceae	Clerodendrum bracteatum	Wall. ex Walp.	Rupa	Me	F	1	He									
113	Lamiaceae	Colebrookia oppositifolia	Sm.	Phewa	Me	F	1	He									
114	Lamiaceae	Melissa arillaris	(Benth.) Balch.	Rupa	Me	F	1	He									
115	Lamiaceae	Ocimum gratissimum	L.	Nai reni	Me	Fo, Me	1, 2	P									
116	Lamiaceae	Ocimum tenuiflorum	L.	Phewa	Me	F	1	He									
117	Lamiaceae	Mesosphaerum suaveolens	L.	Phewa	Me	F	1	He									
118	Lamiaceae	Melissa arillaris	(Benth.) Balch.	Phewa	Me	F	1	He									
119	Lamiaceae	Melissa arillaris	(Benth.) Balch.	Phewa	Me	F	1	He									
120	Lauraceae	Plectranthus mollis	Aiton ex Spreng.	Phewa	Me	F	1	He									
121	Lauraceae	Plectranthus arborescens	Aiton ex Spreng.	Phewa	Me	F	1	He									
122	Lentibulariaceae	Utricularia australis	R.Br.	Gunde	P	Me	1, 2	Ph									
123	Linaceae	Reinwardtia indica	Dumort.	Gunde	P	Me	1, 2	Ph									
124	Linderniaceae	Torenia asiatica	L.	Gunde	P	Me	1, 2	Ph									
Family	Species	Genus	Code														
-------------------	----------------------------------	------------------------	------														
Linderniaceae	Bonaya ciliata (Colesm. Spreng.)	A Me, Fd, 2, 14	109														
Lythraceae	Cuphea procumbens	A Me, Fd, 2, 14	109														
	Woodfordia fruticosa (L.) Kurz	A Me, Fd, 2, 14	109														
	Magnolia campaca (L.) Baill. ex Pierre	A Me, Fd, 2, 14	109														
	Abelmoschus rosi-sinensis L.	A Me, Fd, 2, 14	109														
	Sida acuta	A Me, Fd, 2, 14	109														
	Sida rhombifolia L.	A Me, Fd, 2, 14	109														
	Urena lobata L.	A Me, Fd, 2, 14	109														
	Osbeckia nepalensis Hook.	A Me, Fd, 2, 14	109														
	Osbeckia stellata Buch.-Ham. ex D.Don	A Me, Fd, 2, 14	109														
	Toona ciliata M. Roem.	A Me, Fd, 2, 14	109														
	Ficus benjamina L.	A Me, Fd, 2, 14	109														
	Ficus racemosa L.	A Me, Fd, 2, 14	109														
	Ficus religiosa L.	A Me, Fd, 2, 14	109														
	Ficus sarmentosa Buch.-Ham. ex Sm.	A Me, Fd, 2, 14	109														
No.	Family	Species	Genus	Common Name	Species Code	District	Lake	Species Code	District	Lake							
-----	----------------------	--	-------------------------------	-------------------	--------------	---------	------	--------------	---------	------							
144	Moraceae	Morus indica	M. indica	Indigo Plum	IC	1, 2	Phewa										
145	Myrtaceae	Syzygium cumini	S. cumini	Jackfruit	IC	1, 2	Phewa										
146	Myrtaceae	Syzygium cumini	S. cumini	Jackfruit	IC	1, 2	Phewa										
147	Myrtaceae	Syzygium cumini	S. cumini	Jackfruit	IC	1, 2	Phewa										
148	Nyctaginaceae	Nyctagine violacea	N. violacea	Nightshade	IC	1, 2	Phewa										
149	Nyctaginaceae	Nyctagine violacea	N. violacea	Nightshade	IC	1, 2	Phewa										
150	Olacaceae	Olea europaea	O. europaea	Olive	IC	1, 2	Phewa										
151	Olacaceae	Olea europaea	O. europaea	Olive	IC	1, 2	Phewa										
152	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
153	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
154	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
155	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
156	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
157	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
158	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
159	Orchidaceae	Orchis mascula	O. mascula	Lady’s Tresses	IC	1, 2	Phewa										
160	Oxalidaceae	Oxalis corniculata	O. corniculata	Oxalis	IC	1, 2	Phewa										
Page	Family	Genus	Species	Authority	Location	Collection											
------	--------	-------	---------	-----------	----------	------------											
161	Oxalidaceae	Oxalis	latifolia		Kamal pokhari	Rupa lake											
166	Pentaphyllaceae	Eurya	cerasifolia	(D. Don) Kobuski	Rupa	Phewa											
167	Phyllanthaceae	Phyllanthus	urinaria	L.	Bhadgaon	Khaste											
168	Phyllanthaceae	Phyllanthus	virgatus	G.Forst	Kamal pokhari	Phewa											
169	Plantaginaceae	Limnophila	chinensis	(Osbeck) Merr.	Kamal pokhari	Phewa											
170	Plantaginaceae	Limnophila	sessiliflora	Blume	Kamal pokhari	Phewa											
172	Poaceae	Cymbopogon	pendulus	(Nees ex Steud.) W.Watson	Kamal pokhari	Phewa											
173	Poaceae	Digitaria	dichotoma	(Retz.) Koeler	Kamal pokhari	Phewa											
174	Poaceae	Eleusine	indica	(L.) Gaertn.	Kamal pokhari	Phewa											
175	Poaceae	Eragrostis	atrorivens	(Desf.) Trin. ex Steud.	Kamal pokhari	Phewa											
176	Poaceae	Eragrostis	tenella	(L.) P.Beauv. ex Roem. & Schult.	Kamal pokhari	Phewa											
177	Poaceae	Eragrostis	unioloides	(Retz.) Nees ex Steud.	Kamal pokhari	Phewa											
178	Poaceae	Imperata	cylindrica	(L.) P.Beauv.	Kamal pokhari	Phewa											
179	Poaceae	Leersia	hexandra	Sw.	Kamal pokhari	Phewa											
No.	Family	Species Name and Author	Distribution	Location													
-----	-----------------	-------------------------	-------------	-----------													
180	Poaceae	*Sacciolepis indica* (L.) Chase	N	Khaste													
181	Poaceae	*Phewa*	M	Phewa													
182	Poaceae	*Oryza rufipogon* Griff.	M	Phewa													
183	Poaceae	*Pennisetum densiflorum* L.	M	Phewa													
184	Poaceae	*Panicum miliaceum* Poir.	M	Phewa													
185	Poaceae	*Paspalum dilatatum* Poir.	E	Phewa													
186	Poaceae	*Paspalum scrobiculatum* L.	M	Phewa													
187	Poaceae	*Setaria pumila* (Poir.) Roem. & Schult.	M	Phewa													
188	Poaceae	*Sporobolus fertilis* Steud.	M	Phewa													
189	Poaceae	*Themeda triandra* Forssk.	M	Phewa													
190	Polygonaceae	*Polygonum plebejum* R.Br.	M	Phewa													
191	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
192	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
193	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
194	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
195	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
196	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
197	Polygonaceae	*Polygonum perfoliatum* (L.) H.Gross	M	Phewa													
No.	Family	Species Name	Genera	Specific Name	Hosts	Collection Sites	District										
-----	----------------------	--	--------------	---------------	-------	-----------------	----------										
198	Polygonaceae	*Koenigia campanulata* (Hook.fil.) T.M. Schust. & Reveal	N M 1 He	Me, Fo		Niuren Ci	95										
199	Pontederiaceae	*Eichhornia crassipes* (Mart.) Solms	E M 1 Cr	He		Phewa Po	31										
200	Pontederiaceae	*Pontederia hastata* L.	N M 1 Cr	He		Gunde Pu	122										
201	Potamogetonaceae	*Potamogetoncrispus* L	N M 1 Cr	He		Kamal Po	355										
202	Primulaceae	*Maesa macrophylla* Wall. ex Roxb.	N D 1 Ph	Sh		Rupa R162											
203	Primulaceae	*Maesa chisia* D Don	N D 1 Ch	Sh		Maidi M83											
204	Ranunculaceae	*Ranunculus sceleratus* L.	LC N D Th	Th		Kamal Po	28										
205	Rosaceae	*Rubus ellipticus* Sm.	LC N D 1 Ch	Sh		Phewa 366											
206	Rosaceae	*Rubus kumaonensis* Balakr.	N D 1 Ch	Sh		Maidi M119											
207	Rosaceae	*Potentilla indica* (Andr.) Wolf	N D 1 He	He		Maidi M120											
208	Rosaceae	*Pyracantha crenulata* (D.Don) M.Roem.	N D 1 Ch	Sh		Rupa R64											
209	Rubiaceae	*Dimetia scandens* (Roxb.) R.J.Wang	N D 1 He	He		Begnas B25											
210	Rubiaceae	*Exallage auricularia* (L.) Bremek.	N D 1 He	He		Gunde G231											
211	Rubiaceae	*Galium aparine* L.	N D 1 Th	He		Phewa 130											
212	Rubiaceae	*Knoxia sumatrensis* (Retz.) DC.	N D 1 He	He		Phewa 367											
213	Rubiaceae	*Mussaenda frondosa* L.	N D 1 Ch	Sh		Maidi M84											
214	Rubiaceae	*Oldenlandia corymbosa* L.	LC N D 1 Th	He		Rupa R167											
215	Rubiaceae	*Scleromitrion verticillatum* (L.) R.J.Wang	N D 1 He	He		Khaste 206											
216	Rubiaceae	*Spermacoce alata* Aubl.	E D 1 He	He		Phewa 40											
	Family	Species & Authors	Cr	N	D	H	S	T	A/P	Redlist	Abbreviations						
---	----------------	--	----	---	---	---	---	---	-----	---------	--						
217	Solanaceae	*Datura metel* L.															
218	Solanaceae	*Solanum nigrum* L.															
219	Solanaceae	*Solanum torvum* Sw.															
220	Solanaceae	*Solanum virginianum* L.															
221	Theaceae	*Schima wallichii* (DC.) Korth.															
222	Trapaceae	*Trapa natans* L.															
223	Urticaceae	*Boehmeria virgata* (G.Forst.) Guill.															
224	Urticaceae	*Gonostegia hirta* (Blume ex Hassk.) Miq.															
225	Urticaceae	*Pilea scripta* (Buch.-Ham. ex D.Don) Wedd.															
226	Urticaceae	*Pouzolzia zeylanica* (L.) Benn. & R.Br.															
227	Verbenaceae	*Lantana camara* L.															
228	Vitaceae	*Cissus javana* DC.															
229	Vitaceae	*Leea asiatica* (L.) Ridsdale															
230	Zingiberaceae	*Hedychium ellipticum* Buch.-Ham. ex Sm.															

Abbreviations: N/E-Native exotic; RC-Raunkiaer’s classification, i.e. Ph-Phanerophyte, Ch-Chamaephyte, Cr-Cryptophyte, He-Hemicryptophyte, Th-Therophyte; H/S/T-Herb, shrub or tree; A/P-Annual/Perennial. Native range reference (NRR): 1 (POWO, www.plantsoftheworldonline.org/), 2 (Weeds of Australia, www.weeds.org.au), 3(www.eflora.org), 4(GRIIS, www.griis.org); Redlist categories are LC (Least concerned); D/M-Dicots & Monocots; IUCN categ-IUCN threatened categories.
Appendix II

Code	References
1	MANANDHAR, N P (2002) *Plants and people of Nepal*. Timber press.
2	BARAL, S R; KURMI, P P(2006)*A compendium of medicinal plants in Nepal*. Kathmandu, Nepal: Rachana Sharma.
3	BISHOKARMA, B K; KINSEY, C K, DANGOL, D R; CHAUDHARY, P (2005) Folk use of plant resource at Madi valley of Chitwan District, Nepal. *Banko Janakari* 15(2):28-33.
4	JOSHI, A R; JOSHI, K (2009) Indigenous Uses of Wetland Plant Diversity of two Valleys (Kathmandu and Pokhara) in Nepal. *Ethnobotany* 21: 11-17
5	ACHARYA, KP(2009) Utilization and status of plant resources in northern Part of Pokhara Valley, Central Nepal. *Ethnobotanical leaflets* 2009(1): 13.
6	LAMSAL, P; PANT, K P; KUMAR, L; ATREYA, K (2014) Diversity, uses, and threats in the Ghodaghodi Lake Complex, a Ramsar site in western lowland Nepal. ISRN Biodiversity, 2014.
7	ADHIKARI, M; THAPA, R; KUNWAR, R M; DEVKOTA, H P; POUDEL, P (2019) Ethnomedicinal Uses of Plant Resources in the Machhapuchchhre Rural Municipality of Kaski District, Nepal. *Medicines* 6(2): 69.
8	KUNWAR, R M; BURLAKOTI, C; CHOWDHARY, C L; BUSSMANN, R W(2010) Medicinal plants in farwest Nepal: Indigenous uses and pharmacological validity. *Med Aromat Plant Sci Biotechnol* 4(1): 28-42.
9	SAH, J P; SINGH, R L; BHATTA, N (2002) Floristic diversity and use of plants in Ghodaghodi lake area.*Nepal. J Nat Hist Mus* 21(1-4): 243-66.
10	CONSERVA, L M; JESU COSTA FERREIRA, J (2012) Borreria and Spermacoce species (Rubiaceae): A review of their ethnomedicinal properties, chemical constituents, and biological activities. *Pharmacognosy reviews* 6(11): 46.
11	BUDHA-MAGAR, S; BHANDARI, P; GHIMIRE, S K (2020) Ethnomedicinal survey of plants used by Magar (Kham) community, Rolpa district, Western Nepal. *Ethnobotany Research and Applications*, 19:1-29.
12	BHATT, M. D; KUNWAR, R. M. (2020). Distribution pattern and ethnomedicinal uses of plants in Kanchanpur district, Far-Western Nepal. *Ethnobotany Research and Applications* 20:1-21.
13	KUNWAR, R M; ACHARYA, R P; CHOWDHYARY, C L; BUSSMANN, R W (2015) Medicinal plant dynamics in indigenous medicines in farwest Nepal. *Journal of Ethnopharmacology* 163: 210-219.
14	NIROULA, B; SINGH, K L B (2011) Aquatic plant resources of Betana wetland, Morang, Nepal. *Our Nature*, 9(1): 146-155.
15	SHARMA, K; SAUD, D S; BHATTARAI K R; DHAKAL, S; KHADKA, M K (2020) Wetland Plants and their Ethnobotanical Uses in Raja-Rani Tal, Letang, Morang, Nepal. *J. Pl. Res.* 18(1):135-142