Research Paper
Comparison of Salivary and Gingival Crevicular Fluid Periostin Levels in Chronic Periodontitis Patients and Healthy Subjects

Fatemeh Momeni, Afrooz Nakhostin, *Mojtaba Bayani

1. Student Research Center, Arak University Medical Sciences, Arak, Iran.
2. School of Dentistry, Arak University of Medical Sciences, Arak, Iran.
3. Department of Periodontics, Faculty of Dentistry, Arak University of Medical Sciences, Arak, Iran.

Citation: Momeni F, Nakhostin A, Bayani M. [Comparison of Salivary and Gingival Crevicular Fluid Periostin Levels in Chronic Periodontitis Patients and Healthy Subjects (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(1):72-81. https://doi.org/10.32598/JAMS.23.1.5710.2

ABSTRACT

Background and Aim: Periostin acts as a necessary protein in tissue development and has a key role in tooth-supporting tissues such as periodontal ligament. The effect of inflammation on reducing periostin level has been shown in some studies. The aim of this study was to compare the salivary and Gingival Crevicular Fluid (GCF) periostin levels in patients with chronic periodontitis and healthy peers.

Methods & Materials: In this matched case-control study, 106 participants (53 patients with chronic periodontitis and 53 healthy controls) were studied after signing informed consent form. They were matched for age, gender, weight, and Body Mass Index (BMI). The GCF and salivary samples were collected from all participants and were assessed using standard Enzyme-Linked Immunosorbent Assay (ELISA). The statistical analysis was conducted in Stata V. 11.

Ethical Considerations: This study was approved by the Research Ethics Committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1397.34).

Results: The salivary and GCF periostin levels was significantly lower in patients than in healthy subjects (P<0.001). Moreover, the periostin levels was significantly different based on periodontal parameters (P<0.001).

Conclusion: There is association between the incidence of chronic periodontitis and salivary and GCF periostin levels. Hence, the periostin may act as a potential biomarker for the diagnosis of chronic periodontitis and prevention of its progression.

Key words: Chronic periodontitis, Periostin, Gingival crevicular fluid, Saliva

Extended Abstract

Introduction

Periodontitis is an inflammatory disorder of the periodontium that affects the tooth-supporting tissues. It is characterized by loss of gingival adhesions and, in more advanced stages of the disease, alveolar bone resorption [1]. Periostin is a matriarchal protein secreted by periodontal ligament fibroblasts [3]. The role of periostin in tooth development is very important [4]. In some studies, the study of Gingival Crevicular Fluid (GCF) has also been proposed for measuring the presence of periodontitis [8]. Some studies have reported an association between the severity of periodontitis and periostin level [12-10]. Since contradictory results have reported for the relationship between them and also due to the lack of studies measured both salivary
and GCF periostin levels, this study aimed to examine GCF and salivary periostin levels in patients with chronic Periodontitis compared to controls.

Materials and Methods

This matched case-control study was conducted on 53 patients with chronic periodontitis and 53 healthy peers. Three periodontal parameters were evaluated and recorded for each patient: Bleeding on Probing (BOP) [3], Clinical Attachment Level (CAL) [13], and Probing Pocket Depth (PPD). All evaluations were performed by a periodontist. In patients, only one site was selected for sampling, while several sites were selected for sampling in controls to ensure that a sufficient amount of gingival fluid was collected. For sampling, an absorbent paper cone was inserted into the gingival crevice and left in position for one minute. After absorbing the fluid, we slowly removed the paper cone. The salivary sample was collected by using spitting method. All samples were evaluated by ELISA technique. Independent t-test at 95% confidence interval was used to investigate the difference between the mean levels of periostin in the two groups and also to compare the mean levels of periostin based on periodontal parameters.

Results

The distribution of age, sex, weight, and body mass index were the same in both groups, and there was no significant difference between them. However, there was a significant difference between the two groups in terms of BOP, CAL, and PPD (P<0.001). The mean periostin levels are shown in Table 1 based on periodontal parameters. As can be seen, mean periostin level was significantly higher in case of BOP <20%, CAL <1 mm, and PPD <3 mm (P<0.001). The mean GCF and salivary periostin levels in both groups are presented in Table 2. As can be seen, there is a significant difference in GCF and salivary periostin levels between study groups (P<0.001).

Discussion

The study simultaneously measured the GCF and salivary periostin levels of patients with chronic periodontitis compared to the healthy peers. Periostin plays a key role in the development of tooth-supporting tissues [17-15]. In a study conducted by Balli et al., and Rezaei et al., the serum and GCF periostin levels in patients with periodontitis were significantly lower than in the healthy group [10, 18]. This is consistent with our results. In another study, the GCF periostin levels of patients with chronic and aggressive periodontitis were compared with healthy people. The results showed the high GCF periostin levels of patients compared to control, where it was lower in patients aggressive Periodontitis compared to those with chronic Periodontitis [21]. In our study, both GCF and salivary periostin levels were lower in patients compared to controls. Periostin may act as a potential biomarker for the diagnosis of periodonti-

Parameters	Mean (pg/mL)	SD	P
BOP			
<20%	7.42	1.12	<0.001
>20%	3.71	0.98	
CAL			
<1 mm	6.19	1.53	<0.001
≥4 mm	2.5	1.01	
PPD			
<3 mm	6.12	1.49	<0.001
≥4 mm	1.99	0.84	

Table 2. The GCF and salivary periostin levels in the study groups

Variable	Samples	Patients	Controls	P
Salivary (pg/mL)	Mean±SD	140.35±23.7	459.8±83.5	<0.001
GCF (pg/mL)	Mean±SD	10.17±1.65	29.75±4.59	<0.001
tis. Therefore, in practice, it can probably be used to predict and thus prevent the progression of this disease.

Ethical Considerations

Compliance with ethical guidelines

This study was conducted after obtaining an ethical approval (Code: IR.ARAKMU.REC.1397.3) from the Research Ethics Committee of Arak University of Medical Sciences, and a written consent from the participants.

Funding

This study was financially supported by the Deputy for Research and Technology of Arak University of Medical Sciences.

Authors’ contributions

Scientific design and management: Mojtaba Bayani; Design and implementation: Afroz Nakhostin; Implementation of practical research process and writing: Mojtaba Bayani, Fatemeh Momeni.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the Deputy for Research of Arak University of Medical Sciences for their financial support.
بررسی مقایسه‌ای سطح پریوستین در بزاق و مایع شیار لثه افراد مبتلا به پریودنتیت مزمن و افراد سالم

فاصله مدتی‌1، افزور تختی‌2، مجتبی بیانی3

1. مرکز تحقیقات مدیریت بافت‌های بدنی و ارتباطات لیگامان پریودنتال، دانشگاه علوم پزشکی اراک، اراک، ایران
2. گروه پریودنتیک، دانشکده دندانپزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران
3. گروه دندانپزشکی ترمیمی و زیبایی، دانشکده دندانپزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران

پریودنتیکس به عنوان یک پروتئین ضروری در تکامل بافت‌های مختلف در بدن عمل می‌کند و همچنین دارای نقش کلیدی در مکانیسم‌های آنتی‌بیوتیک در بافت‌های حمایتکننده دندان از جمله لیگامان‌های پریودنتال است. تاکنون تأثیر وجود التهاب بر کاهش میزان پریوستین در برخی از مطالعات نشان داده شده است. هدف از مطالعه حاضر بررسی و مقایسه میزان پریوستین موجود در بزاق و مایع شیار لثه افراد مبتلا به پریودنتیت مزمن با افراد سالم است.

53 نفر در گروه مبتلا به پریودنتیت مزمن و 53 نفر در گروه سالم در این مطالعه مورد شناخته شدند و همسان نشان دهنده بین نسق در سن، جنسیت و وزن و شاخص توده بدنی بود. نمونه‌های مایع شیار لثه و بزاق از شرکت‌کنندگان دریافت و سپس توسط الایزا بررسی شد. تجزیه و تحلیل آماری توسط نرم‌افزار statA v.11 به تصویب کمیته اخلاق معاونت پژوهشی دانشگاه علوم پزشکی اراک رسیده است.

نقطهٔ کلیدی:

- بررسی مقایسه‌ای سطح پریوستین در بزاق و مایع شیار لثه افراد مبتلا به پریودنتیت مزمن و افراد سالم

یافته‌ها:

- نتایج حاصل از این مطالعه نشان داد که سطح پریوستین در بزاق و مایع شیار لثه افراد مبتلا به پریودنتیت مزمن قابل توجهی بوده و تفاوت معنی‌داری بین دو گروه مورد مطالعه مشاهده شد.

نتیجه‌گیری:

بنابراین، پریوستین می‌تواند به عنوان یک بیومارکر احتمالی برای تشخیص زودرس و پیشگیری از پیشرفت بیماری پریودنتیت مزمن در نظر گرفته شود.

کلیدواژه‌ها:

پریودنتیت مزمن، پریوستین، بزاق، مایع شیار لثه

مجله مرکز تحقیقات دانشجویی دانشگاه علوم پزشکی اراک، اراک، ایران

Transforming Growth Factor -β
بررسی و ثبت شد. درجه سانتی‌گراد نگهداری شدند. در مرحله بعد، نوارهای جاذب در لوله‌های حاوی محلول بافر پر شدند، آن‌ها را دور انداخته و دوباره نمونه گیری را انجام دادیم.

شیار لثه‌ای کاغذ را با دقت خارج کردیم تا از آلودگی با بزاق یک دقیقه در همان محل قرار داده شنده و پس از جذب مایع فرو برده و در جایی که با مقاومت کمی روبه‌رو شدیم، به مدت توانسته مایع شیار لثه را اندازه‌گیری کنیم. برای نمونه گیری، این کاغذ‌ها در شیار لثه پر شده‌اند. مقدار مایع در هر کاغذ جاذب با استفاده از دستگاه کالیبره‌سازی استریل گرفته شد. دندان‌های مورد نظر به منظور جلوگیری از آلودگی با بزاق توسط پروفیلاکس به وسیله رول پنبه‌ای از شیار لثه جدا گردید. برای جمع‌آوری نمونه، بدنه‌های کاغذ در معده درج شدند.

فاطمه مومنی و همکاران. بررسی مقایسه‌ی سطح پریوستین در بزاق و مایع شیار لثه‌ایِ افراد مبتلا به پریودنتیت مزمن و افراد سالم

2.Clinical Attachment Loss

برخی از مطالعات ارتباطی بین شدت بیماری‌های پریودنتال و میزان پریوستین در بزاق و مایع شیار لثه‌ای وجود دارد. بعضی از آن‌ها نشان داده‌اند که ارتباط بین پریودنتیت و میزان پریوستین در بزاق و مایع شیار لثه‌ای وجود دارد. در پژوهش حاضر، با توجه به نتایج متفاوت در خصوص ارتباط سطوح پریوستین با یکدیگر، بزرگ‌ترین مقدار پریوستین در بزاق و مایع شیار لثه‌ای می‌تواند روشی ارزشمند برای بررسی وجود و میزان پیشرفت بیماری‌های پریودنتال باشد.

برخی از مطالعات ارتباطی بین شدت بیماری‌های پریودنتال و میزان پریوستین در بزاق و مایع شیار لثه‌ای وجود دارد. بعضی از آن‌ها نشان داده‌اند که ارتباط بین پریودنتیت و میزان پریوستین در بزاق و مایع شیار لثه‌ای وجود دارد. در پژوهش حاضر، با توجه به نتایج متفاوت در خصوص ارتباط سطوح پریوستین با یکدیگر، بزرگ‌ترین مقدار پریوستین در بزاق و مایع شیار لثه‌ای می‌تواند روشی ارزشمند برای بررسی وجود و میزان پیشرفت بیماری‌های پریودنتال باشد.
نتایج میانگین پروپونتی سطح پریوستین در نمونه بزاق و مایع شیار

tabl شماره 1

نتایج میانگین پروپونتی سطح پریوستین در نمونه بزاق و مایع شیار

نتایج آزمون کولموگروف-اسمرفیک برای سنجش نمرات بیون

نتایج آزمون کولموگروف-اسمرفیک برای سنجش نمرات بیون
پریوستین نقشی کلیدی در تکامل بافت‌های حمایت‌کننده و همکاران انجام Balli. در مطالعه‌ای که [15-17] دندان دارد، سطوح سرمی و مایع شیار لثه‌ای پریوستین در بیماران مبتلا به پریودنتیت به طور معنی‌داری پایین‌تر از گروه سالم بود که نتایج مایع شیار لثه‌ای این مطالعه با نتایج مطالعه ما هم سوست. همچنین در مطالعه‌ای که رضایی و همکاران انجام داده‌اند، سطوح پریوستین بزاق در گروه بیماران مبتلا به پریودنتیت کمتر از افراد سالم بود که موافق با یافته‌های نتایج بزاق مطالعه حاضر بود. پریوستین به عنوان پروتئینی چندسلولی به طور معمول در ساختار لیگامان پریودنتال دیده می‌شود. ترکیب پریوستین را در فیبروبلاست‌های TGF-β1 تومور نکروز عامل انسان تحریک می‌کند، در صورتی که از عوامل [14] و [13] این پروسه را مهار می‌کند. اینترالین-α مهم دیگری در تنظیم پریوستین در لثه و فیبروبلاست‌های لیگامان پریودنتال هستند. مقادیر این دو سایتوکین در حضور بیماری‌های [20] پریودنتال افزایش می‌یابد که لیپولیکارید حاصل از باکتری‌های عامل ایجاد کننده، کاهش سطح [21] عفونت لثه تأثیری بر سطوح پریوستین ندارد. پریوستین در بیماران مبتلا به پریودنتیت می‌تواند به دو دلیل باشد: اولین دلیل وجود باکتری است. رقابت باکتری‌هایی است که باکتری‌های پریودنتیس تولیدی توسط تیرگی‌های هیپوکریاتیک لیگامان پریوختنی است. دومین دلیل کاملاً متفاوت تیروکریاتیک درمان پریودنتیت مزمن در مقایسه با گروه سالم
مناسب برای بررسی تشخیص ریوپراتیس پرویدنتیت مزمن و پیشگیری از پیشرفت آن در نظر گرفته شود.

مراقبات اخلاقی

این مقاله حاصل از کارگاه غیرانتفاعی دانشگاه علوم پزشکی اراک با کد اخلاقی IR.ARAKMU.REC.1397.34 است.

حامي مالي

محلی محترم تحقیقات و فناوری دانشگاه علوم پزشکی اراک تأمين مالی این پژوهش را بر هم داشته است.

مشارکت نويسندگان

تمام نويسندگان نتایج اخیر اعلام نمودار توضیحاتی را بر اساس پیشنهادات کمیته بین المللی ناشران مجلات پزشکی دارا بودند.

تعارض منافع

بدین وسیله نويسندگان تصريح مي كنند که هیچگونه تضاد منافع در خصوص پژوهش حاضر و چند ندارد.

تشکر و قدردانی

این مقاله هیچگونه حامی مالی مایل نیست است. بدین وسیله نویسندگان همکاری های دانشگاه علوم پزشکی اراک در انجام این پژوهش تشکر و قدردانی می شود.
References

[1] Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017; 3: 17038. [DOI:10.1038/nrdp.2017.38] [PMID]

[2] Scannapieco FA. Periodontal inflammation: From gingivitis to systemic disease? Comp Contin Educ Dent. 2004; 25(7 Suppl. 1):16-25. [PMID]

[3] Takayama I, Tanabe H, Nishiya T, To H, Amizuka N, Li M, et al. Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. J Cell Commun Signal. 2017; 11(1):5-13. [DOI:10.1007/s12079-016-0371-5] [PMID] [PMCID]

[4] Du J, Li M. Functions of periostin in dental tissues and its role in periodontal tissue regeneration. Adv Exp Med Biol. 2019; 1132:63-72. [DOI:10.1007/978-981-13-6657-4_7] [PMID]

[5] Ouanouki A, Lamy S, Annabi B. Periostin, a signal transduction intermediate in TGF-β-induced EMT in U-87MG human glioblastoma cells, and its inhibition by anthocyanidins. Oncotarget. 2018; 9(31):22023. [DOI:10.18632/oncotarget.25153] [PMID] [PMCID]

[6] Walker JT, McLeod K, Kim S, Conway SJ, Hamilton DW. Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res. 2016; 365(3):453-65. [DOI:10.1007/s00441-016-2426-6] [PMID] [PMCID]

[7] Chomyszyn-Gajewska M. [Evaluation of chosen salivary periodontal disease markers (Polish)]. Przegl Lek. 2010; 67(3):213-6. [PMID] [PMCID]

[8] Gupta S, Chhina S, Arora SA. A systematic review of biomarkers of gingival crevicular fluid: Their predictive role in diagnosis of periodontal disease status. J Oral Biol Craniofac Res. 2018; 8(2):98-104. [DOI:10.1016/j.jobcr.2018.02.002] [PMID] [PMCID]

[9] Deo V, Bhongade ML. Pathogenesis of periodontitis: Role of cytokines in host response. Dent Today. 2010; 29(9):60-2, 64-6; quiz 68-9. [PMID]

[10] Esfahrood ZR, Vardian ST, Yadegari Z, Adhim M, Saravi NSV. Periostin levels in saliva of patients with chronic periodontitis. J Indian Soc Periodontol. 2018; 22(1):25-7. [DOI:10.4103/jisp.jisp_239_17] [PMID] [PMCID]

[11] Kumasden S, Balasundaram A, Naik VK, Appukuttan DP. Gingival crevicular fluid periostin levels in chronic periodontitis patients following nonsurgical periodontal treatment with low-level laser therapy. Eur J Dent. 2016; 10(4):546-50. [DOI:10.4103/1305-7456.195179] [PMID] [PMCID]

[12] Padial-Molina M, Volk S, Taut A, Giannobile W, Rios H. Periostin is down-regulated during periodontal inflammation. J Dent Res. 2012; 91(11):1078-84. [DOI:10.1177/0022034512459655] [PMID] [PMCID]

[13] Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999; 4(3):1-6. [DOI:10.1902/annals.1999.4.1.1] [PMID]

[14] Navaeesh M. Methods for collecting saliva. Ann N Y Acad Sci. 1993; 694:72-7. [DOI:10.1111/j.1749-6632.1993.tb18343.x] [PMID]

[15] Padial-Molina M, Volk SL, Taut AD, Giannobile WW, Rios HF. Periostin is down-regulated during periodontal inflammation. J Dent Res. 2012; 91(11):1078-84. [DOI:10.1177/0022034512459655] [PMID] [PMCID]

[16] Kruzynska-Frejtag A, Wang L, Maeda M, Rogers R, Krug E, Hoffman S, et al. Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. Dev Dyn. 2004; 229(4):857-68. [DOI:10.1002/dvdy.10453] [PMID]

[17] Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindley A, et al. Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol. 2005; 25(24):11131-44. [DOI:10.1128/MCB.25.24.11131-11144.2005] [PMID] [PMCID]

[18] Rios HF, Ma D, Xie Y, Giannobile WV, Bonefeld LF, Conway SJ, et al. Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol. 2008; 79(8):1480-90. [DOI:10.1902/jop.2008.070624] [PMID] [PMCID]

[19] Balli U, Keles ZP, Avci B, Guler S, Cetinkaya BO, Keles GC. Assessment of periostin levels in serum and gingival crevicular fluid of patients with periodontal disease. J Periodontol Res. 2015; 50(6):707-13. [DOI:10.1111/jper.12254] [PMID]

[20] Horiiuchi K, Amizuka N, Takehita S, Takamatsu H, Katsuura M, Otake H, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res. 1999; 14(7):1239-49. [DOI:10.1359/jbmr.1999.14.7.1239] [PMID]

[21] Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A. 2010; 107(32):14170-5. [DOI:10.1073/pnas.1009426107] [PMID] [PMCID]

[22] Nakajima M, Honda T, Miyachi S, Yamazaki K. Th2 cytokines efficiently stimulate periostin production in gingival fibroblasts but periostin does not induce an inflammatory response in gingival epithelial cells. Arch Oral Biol. 2014; 59(2):93-101. [DOI:10.1016/j.archoralbio.2013.10.004] [PMID]
This Page Intentionally Left Blank