Mg–Sc 形状記憶合金の加工熱処理による集合組織形成と超弾性特性に及ぼす影響

山 岸 奎 佑1，* 安 藤 大 輔1 須 藤 祐 司1 小 川 由 希 子2

1東北大学大学院工学研究科知能テクノロジー専攻
2国立研究開発法人物質・材料研究機構 構造材料研究拠点

Keywords: Mg–Sc shape memory alloy, texture, superelasticity

1. 緒 言

Mg 合金は、軽量で高比強度であり自動車部材や PC の筐体として使われるなど、軽量構造材料として幅広い応用が期待されている。また生体適合性を有することから医療用材料としての応用も期待される。しかし、Mg の有する六方密充填 (hcp) 構造に由来する変形の異方性により、室温での加工性に劣る。そこで Mg 合金の加工性向上を目指し、結晶構造を等方的体心立方 (bcc) 構造に変える取り組みが Mg–Li 合金においてなされてきた。Mg–Li 2 元系合金は、Li 量を 12.5 mass% 以上することで bcc 単相が得られ、優れた延性を示すことが報告されている1)。一方で、Mg–Li 2 元系合金は強度が低く、また hcp (α)/bcc (β) および α+β の相境界線が粗そな結晶形状に対してしばしばに立ており、Ti 合金のような熱処理を用いた組織制御による機械特性の向上は望めず、耐食性にも課題を残している1, 2)

我々の研究グループは、Mg–Sc 合金を Mg–Li 合金と同様に、bcc 構造する jamais 構造相と熱弾性型マルテンサイト変態し、形状記憶効果や超弾性効果を示すことが知られている2)。我々の研究グループは、Mg–Sc 合金も Ti 合金と同様に、bcc 單相の相境界線が粗そな結晶形状に対してしばしばに立ており、Ti 合金のような熱処理を用いた組織制御による機械特性の向上は望めず、耐食性にも課題を残している1, 2)

我々の研究グループは、Mg–rich の領域において bcc 構造が得られるもう一つの合金である Mg–Sc 合金に注目し研究を行ってきた。Mg–Sc 合金は Mg–rich 組成において、Ti 合金のように、熱処理により低相の α 相と高温相の β 相間で相変態が可能であり、適切な熱処理により得られた α+β 二相合金では、300 MPa 以上的引張強度および 29% 程度の引張伸長を示す3)。更に、β 単相合金も 250 MPa を越える引張強度と 25% の破断伸長を示すなどの、優れた機械的特性を有する3)。また、合金元素を適切に制御した Ti 合金においては、焼入れにより室温に近い条件で bcc 単相が得られる4)。更に、室温においても超弾性効果が得られることが報告されている4)。更に、室温においても超弾性効果が得られることが報告されている4)。
<011>方位に配向した強烈な再結晶集合組織が形成される乾燥した強烈な再結晶集合組織が形成される。Ti系形状記憶合金においては、現象論的解析から<011>方位に最大の引張超弾性ひずみが得られることが知られており、再結晶集合組織を形成することで微細な結晶粒を有する多結晶試料においても優れた超弾性特性が得られる。一方、Mg-Sc合金においては、β単相で冷間加工後
にβ化熱処理で得られる再結晶集合組織については報告されていない。また、制御延性鋼やオーステナイト鋼では、相変態相による結晶方位関係に基づき、加工集合組織を退相的
に引き継いだ変態集合組織が用いられる。一般に、α相を呈するMg合金においては加工により底面集合組織が形成されることが知られているが、等軸なα+β二相組織を有するMg-Sc合金のα相もまた、冷間圧延により底面集合組織が形成されることが知られている。それ故、圧延により形成したα相の底面集合組織を利用したβ相変態集合組織の形成も期待できる。
そこで本研究では、Mg-Sc合金における様々な加工熱処理によるβ相集合組織の形成について調べるとともに、室温での超弾性特性に及ぼす集合組織の影響を調査した。

2. 実験方法
2.1 試料作製
本研究では、株式会社オーエステックおよびHunan Oriental Scandium株式会社より提供いただいたMg-Sc合金インゴットを用いた。実際の試料の平均組成は元素組成EPSMAよりMg-18.5at% Scであった。インゴットよりブロック状の試料を切り出し、650℃にて厚さ15mmから5mm程度まで熱間圧延を行った。600℃×24hの均質化熱処理を行った。その後、次節で示すような加工熱処理により集合組織の形成を試みた。

2.2 加工熱処理
2.2.1 α単相加工
初めに600℃×30minのα単相化熱処理後に水中に焼き入れを行ってβα相を得た。次に、500℃×2hの熱処理を施し焼き入れを行うことでα単相試料を得た。ここで、1度β相化した後にα相化したのは、β→α相変態によりα相集合組織が弱化し、初期配向を極大ランダム化するためである。このようにして得られたα単相試料にFig.1(a)-(e)に示した加工熱処理プロセス（Thermomechanical Process: TMP1-5）を施した。以下に、TMP1-3における冷間加工条件を記す。

TMP1：途中焼純を行わず40%の冷間圧延を実施。

TMP2：20%の冷間圧延と500℃×15minの途中焼純を繰り返すことにより68%の圧延を実施。

TMP3：冷間圧延を行わせ。

ここで、いずれの場合も、1パスごとの圧延率は2%程度とした。最後に、得られた各圧延材を600℃×10minの溶体化熱処理後水中に焼き入れることでβ単相試料を得た。ここでの溶体化熱処理の際には、α相を十分に再結晶させた後にβ相相化するために690℃まで室温(25℃程度)から5h

かけて昇温(2.2℃/min)させた。高、40%の冷間圧延を施し
たα単相試料が再結晶に要する時間は、例えば500℃では
10min程度であり、5hの昇温時間はα相の再結晶に十分な
時間であると考えられる。

2.2.2 β単相加工
初めに600℃×5minの溶体化熱処理および水中への焼き
入れによりβ単相試料を得た。Fig.1(d)に示した加工熱処理プロセスTMP4を施した。以下にTMP4における冷間加工条件を記す。

TMP4：20%の冷間圧延を行い、690℃×5minの途中焼純
を行った後、再度20%の冷間圧延を行うことで
トータル35%の圧延を実施。

ここで、本合金は、β相の結晶粒径が150μm程度と比較的
粗大であり冷間圧延の際に粒界が存を生じたため、35%程度
が冷間圧延限界であった。高、α単相の場合と同様に1パス
ごとの圧延率は2%程度とした。このようにして得られた試
料を690℃×10minの溶体化熱処理後水中に焼き入れる
ことでβ単相試料を得た。

2.3 集合組織
電子線後方散乱回折(EDS)法により集合組織を評価し
た。試料表面はSIC研磨紙およびダイヤモンドペーストによ
り鏡面化した後、エッチング液により化学研磨を行った。また、結晶粒径が 25 μm 程度のα相相試料においては 2 μm ステップにておよそ 450 μm × 1300 μm の範囲を、150 μm 程度の結晶粒径を有するβ相相試料においては 4 μm ステップにておよそ 900 μm × 2600 μm の範囲を測定した。いずれの場合も測定は異なる 2 ヶ所で行い、両者の平均より結晶点および逆結晶点を得た。

2.4 超弾性特性

室温にて引張負荷解除サイクル試験により行った。その後、Nサイクルは (N = 1, 2, 3, ...) に N%のひずみ量となるまで応力を負荷し、その後応力が 0 となるまで除荷するサイクルを 5%の予ひずみとなるまで繰り返し、ひずみ速度は 10−3 s−1 で一定とした。また試験片は、幅 4 mm、厚さ 0.5 mm とし標点間距離は 15 mm とした。

3. 実験結果および考察

3.1 変態集合組織

Fig. 2 に、α相相にて(a) 40%および(b) トータルで 68%の冷間圧延を施した後の ND 方向の結晶方位を表す逆結晶図マップと (0001)極点図を示した。比較のためFig. 2(c)には冷間圧延を行わなかったα相相化ままでの結果も示している。尚、Fig. 2(d)に示すように、NDは圧延面法線方向、RDは圧延方向、TDは圧延垂直方向である。ここで、EBSDにおいてIQ値の高い結果を得るために、40%圧延材および68%圧延材はいずれも測定の前に500°C × 15 min の焼純処理を行った。Fig. 2(e)には、逆結晶点図における結晶方位のカラーボードを示したステレオ投影三角形を示した。また、Fig. 3 にそれぞれの条件で得られたα相相試料のNDおよびRDに関する逆結晶点を示した。Fig. 2(c)およびFig. 3 により、压延前のα相相試料は比較的ランダムな方位を有しており、本合金においても過去の報告19)と同様に、β→α相変態によりα相のランダム配向化が達成されていることがわかる。また、40%の冷間圧延を行うことで (0001)面が圧延面へ平行に配向する傾向がみられ(Fig. 2(a)), 従来のMg合金と同様に圧延により底面集合組織が形成されることが確認できる。更に圧下率を大きくし、トータルで68%の冷間圧延を行った試料ではその強度値から、より顕著な底面集合組織が形成される傾向がみられた(Fig. 2(b)). 一方、Fig. 3 に示す RDに関する逆結晶点図から分かるように、圧延面内には特定の結晶配向性は見られない。

Fig. 4 に、TMP1を施したβ相相試料のNDに関する(a)逆結晶点図マップおよび(b)逆結晶点図を示した。Fig. 4(b)より、β相変態集合組織は、圧延面において (011)面が平行となるような結晶配向を有していることがわかる。なお、Fig. 4(a)に示した逆結晶点図マップ上では信頼性指数(Confidence Index: CI)値が 0.1 以下と低い点については黒点表示しており、これらはいずれも焼き入れの際に形成した板状のマルテンサイト相 (Fig. 4(c)の中矢印) によって生じている。Fig. 5 に、TMP1、TMP2およびTMP3のそれぞれの条件から得られたNDおよびRDに関するβ相の逆結晶点図をまとめた。Fig. 5より、

α相の冷間圧延を行う TMP1およびTMP2処理を施した試料においては、β相の (011)面が圧延面に平行に配向する傾向が観察され、その傾向は圧下率の増加に伴いより強くなっており、α相での冷間加工により形成された集合組織を引き継いでいることが示唆される。事実、α相にて冷間加工を行わなかったTMP3処理試料では、(011)面がNDに配向
40% cold-rolling in TMP1

68% total cold-rolling in TMP2

No cold-rolling

Fig. 3 Inverse pole figures of the α	ext{-}phase in ND and RD obtained after 40% cold rolling in TMP1 followed by subsequent annealing at 500°C for 15 min, 68% total cold rolling in TMP2 followed by subsequent annealing at 500°C for 15 min and without cold rolling (TMP3).

Fig. 4 (a) An IPF map and (b) an inverse pole figure in ND of the sample after TMP1. (c) SEM image in high magnification.

Burgers の関係に従い、α→β 相変態が進行し、その結果、(011) 面が圧延面に平行になるように配向した β 相変態集合組織が得られる傾向にあると考えられる。一方、Fig. 3 より、α 単相で加工したいずれの試料においても、RD を第一に [010] から [211] にかけて広く傾けつつ傾向がわかる。つまり、圧下率を増大させても RD を特定の方位に向かわらず、β 相の変態集合組織もまた RD を特定の配向を持たない、ランダム配向を引き続きていると考えられる。以上をまとめると、α 単相試料を冷間圧延した後に得られる β 相の変態集合組織は、[011] が圧延面に平行となるように配向する傾向にあるが、RD を任意の結晶方位 <uvw> に固定した、[011]<uvw> タイプの集合組織が形成される。即ち、板材の引張負荷方向となる RD や TD といった面内方向を特定の方位に固定しないため、変態集合組織に超弾性特性の向上は期待できないと言える。

3.2 再結晶集合組織

Fig. 6 に、TMP4 時に施した β 相試料の (a) ND、(b) RD および (c) TD に関する逆極点図マップおよび逆極点図を示した。これより、β-Mg–Sc 合金は冷間圧延および溶体化熱処理(β 相化処理)により、およそ [111]<011> 再結晶集合組織を示すことがわかる。特に、RD を<011> 方位、TD では<113> 方位が配向する傾向にある。冷間圧延によって RD への<011> 配向する傾向は、bcc–Ti 系や bcc–Cu 系合金の [121]<011> 再結晶集合組織[21,22]や炭素鋼の [111]<011> 再結晶集合組織[23]など他の bcc 合金においても報告があり、本合金においてもこれらの合金系と同様に冷間圧延により RD への<011> 配向することが確認された。一方で、再結晶集合
一方、Mg–Sc合金のbcc構造/斜方晶構造間の熱弾性マルテンサイト変態において、引張変形により得られる変態ひずみのβ相結晶方位依存性より、011方位では約8.8%、113方位では約6.2%の変態ひずみが得られると予測されている23). 即ち、RD方向およびTD方向の引張超弾性特性を評価することで、TMP4により得られた再結晶集合組織の超弾性特性とどの程度影響を及ぼすのかを知ることができる。

3.3 超弾性特性

Fig. 7(a)に、TMP4処理を施したβ相板材試料のRDおよびTD方向へ引張サイクル試験により得られた応力-歪み曲線を示した。ここで、ε_{FS}、ε_{f}、ε_{r}、ε_{d}は、それぞれIsサイクル目の超弾性ひずみ、ひずみ、残留ひずみおよび弾性ひずみである。Fig. 7(a)より、<011>配向の傾向が強いRD試料の方が、<113>配向の傾向が強いTD試料よりも見かけ上の降伏応力、即ち、マルテンサイト相を誘起する応力が低いことが分かる。このマルテンサイト変態誘起応力の違いは、引張負荷方向の結晶配向の違いから説明できる。即ち、クラジウス-クライベリの関係によれば、マルテンサイト変態誘起応力は変態ひずみ量の増大に伴い低下する。β相の方位依存性から、大きな変態ひずみを示す<011>方位を有する傾向が強いRDの方が、<113>方位の傾向が強いTDよりもマルテンサイト変態誘起応力は低下すると考えられる。このような結晶配向の違いによるマルテンサイト変態誘起応力の変化は、Ti系13, 14, 26)やCu系27)の形状記憶合金でも見られる。Fig. 7(b)には、得られた超弾性ひずみ量を予ひずみ量に対してプロットした。Fig. 7(b)より、RDの方がTDよりも若干であるが良好な超弾性効果を示すことが分かる。変態ひずみの方位依存性から予測される超弾性ひずみ量の優劣とその傾向は一致する。但し、両者の超弾性ひずみの
差は0.2％程度と僅かであり，RD試料においても得られた超塑性ひずみはおよそ0.65％に留まっている。これは，冷間加工性の低さに由来して得られた再結晶後に集団組織の強度が弱いためであり，本合金における再結晶後に集団組織の形成は，超塑性の大幅な向上につながらないと言える。再結晶後に集団組織を強化する形成するためには，より結晶粒の微細化による冷間加工性の向上が望まれる。既報のMg-Sc 2元系状態図27より，本合金のβトランスミス度は約650℃程度，同様に温度は約720℃とβ単相化可能な温度範囲は狭く，高点直下でのβ単相化は，例えば短時間で150μm程度まで結晶粒径が粗大化してしまう。それ故，第3元素添加による結晶粒径のビン止めなどによる，冷間加工性の向上，それによる集団組織の発達は今後の課題である。

一方で，集団組織の発達がそれほど強くなくても良好な超塑性歪みを示す合金は存在する25。つまり，本研究の結果は，Mg-Sc合金においては塑性歪みが容易に導入されてしまうことを示している。一般的に，結晶粒内拘束の発生によってマルテンサイト変態誘起応力は上昇し，それがすべりの臨界応力をを超えてしまい，塑性歪みが導入され超弾性歪みは劣化する9,10。本Mg-18.8at%Sc合金のピッカーキー硬さは100HV程度であり，すべき変形の臨界応力が他の超塑性合金に比して低いため，非常に小さな超塑性歪みしか得られなかったと考えられる。従って，Mg-Sc 2元系合金における室温での超塑性特性の向上には，集団組織の発達や結晶径制御と共に，第3元素添加などによるβ相の高強度化が必要である。

4. 結論

本研究では，Mg-18.8at%Sc 2元系合金の加工熱処理による集団組織形成について調査を行った。初期組織をα単相として冷間圧延を行った場合には，圧延率の増加に伴いより顕著に底面集団組織が形成することが分かった。この試料をβ単相化することで，両相間に成り立つBurgersの関係に従い，(011)面が圧延面と平行に配向するような変態集団組織が形成した。一方で，α相の冷間圧延ではRDやTDへ特定の結晶方位が向くことはなく，それによりβ相の変態集団組織もまたRDやTDへ特定の結晶配向は示さなかった。

初期組織をβ単相として冷間圧延を行った場合には，トータルで35％の圧延を行うことで微弱な(111)<011>再結晶集団組織が得られた。その強度はランダム配向に比して2程度と弱く，変態ひずみの方位依存性から最大の超塑性ひずみが得られると予測されるRDにおいても，その超塑性ひずみは0.65％に留まった。これは，この合金のβ相結晶粒径が比較的粗大であり，大きな冷間圧延を施せないことに起因する。それ故，第3元素添加による結晶粒径のビン止めなどにより結晶粒を微細化し，冷間加工性の向上が達成されれば，集団組織の発達による超塑性特性の向上が期待できる。一方で，得られた結果は，Mg-Sc 2元系合金では塑性歪みが導入され易いことを示しており，室温における超塑性特性の向上には，第3元素添加などによるβ相の高強度化が必要であることを見示す。

文献

1) H.-T. Son, Y.-H. Kim, D.-W. Kim, J.-H. Kim and H.-S. Yu: J. Alloy. Compd. 564 (2013) 130-137.
2) C. Zhang, X. Huang, M. Zhang, L. Gao and R. Wu: Mater. Lett. 62 (2008) 2177-2180.
3) Y. Ogawa, D. Ando, Y. Sutou, K. Yoshimi and J. Koike: Mater. Sci. Eng. A 670 (2016) 335-341.
4) K. Endoh, M. Tahara, T. Inamura and H. Hosoda: Mater. Sci. Eng. A 784 (2017) 72-76.
5) H. Y. Kim and S. Miyazaki: Mater. Trans. 56 (2015) 625-634.
6) J. Fu, A. Yamamoto, H.Y. Kim, H. Hosoda and S. Miyazaki: Acta Biomater. 17 (2015) 56-67.
7) Y. Ogawa, D. Ando, Y. Sutou and J. Koike: Science 353 (2016) 368-370.
8) K. Yamagishi, Y. Ogawa, D. Ando, Y. Sutou and J. Koike: Scr. Mater. 168 (2019) 114-118.
9) Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma and K. Ishida: Acta Mater. 53 (2005) 4121-4133.
10. Y. Sutou, T. Omori, R. Kainuma and K. Ishida: Acta Mater. 61 (2013) 3842–3850.
11. T. Omori, M. Okano and R. Kainuma: APL Mater. 1 (2013) 032103.
12. T. Inamura, R. Shimizu, H.Y. Kim, S. Miyazaki and H. Hosoda: Mater. Sci. Eng. C 61 (2016) 499–505.
13. H.Y. Kim, T. Sasaki, K. Okatsu, J.I. Kim, T. Inamura, H. Hosoda and S. Miyazaki: Acta Mater. 54 (2006) 423–433.
14. Y. Fukui, T. Inamura, H. Hosoda, K. Wakashima and S. Miyazaki: Mater. Trans. 45 (2004) 1077–1082.
15. R.K. Ray and J.J. Jonas: Int. Mater. Rev. 35 (1990) 1–36.
16. T. Yutori and R. Ogawa: Tetsu-to-Hagané 65 (1979) 1747–1755.
17. S.H. Park, S.-G. Hong and C.S. Lee: Mater. Sci. Eng. A 578 (2013) 271–276.
18. M.Z. Bian, A. Tripathi, H. Yu, N.D. Nam and L.M. Yan: Mater. Sci. Eng. A 639 (2015) 320–326.
19. Y. Ogawa, D. Ando, Y. Sutou and J. Koike: Scr. Mater. 128 (2017) 27–31.
20. W.G. Burgers: Physica 1 (1934) 561–586.
21. D. Ando, Y. Ogawa, T. Suzuki, Y. Sutou and J. Koike: Mater. Lett. 161 (2015) 5–8.
22. Y. Ogawa, D. Ando, Y. Sutou and J. Koike: Mater. Trans. 57 (2016) 1119–1123.
23. Y. Sutou, T. Omori, R. Kainuma, N. Ono and K. Ishida: Metall. Mater. Trans. A 33 (2002) 2817–2824.
24. M. Takahashi and A. Okamoto: Tetsu-to-Hagané 61 (1975) 2246–2262.
25. Y. Ogawa, D. Ando, Y. Sutou, H. Somekawa and J. Koike: Shap. Mem. Superelasticity 4 (2018) 167–173.
26. H. Hosoda, Y. Kinoshita, Y. Fukui, T. Inamura, K. Wakashima, H.Y. Kim and S. Miyazaki: Mater. Sci. Eng. A 438–440 (2006) 870–874.
27. B.J. Beaudry and A.H. Daane: J. Less–Common Met. 18 (1969) 305–308.