Metagenomic analysis of viruses in toilet waste from long distance flights-A new procedure for global infectious disease surveillance

Hjelmso, Mathis Hjort; Mollerup, Sarah; Jensen, Randi Holm; Pietroni, Carlotta; Lukjancenko, Oksana; Schultz, Anna Charlotte; Aarestrup, Frank M.; Hansen, Anders Johannes

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0210368

Publication date:
2019

Document license:
CC BY

Citation for published version (APA):
Hjelmso, M. H., Mollerup, S., Jensen, R. H., Pietroni, C., Lukjancenko, O., Schultz, A. C., ... Hansen, A. J. (2019). Metagenomic analysis of viruses in toilet waste from long distance flights-A new procedure for global infectious disease surveillance. PLoS ONE, 14(1), [e0210368]. https://doi.org/10.1371/journal.pone.0210368
Metagenomic analysis of viruses in toilet waste from long distance flights—A new procedure for global infectious disease surveillance

Mathis Hjort Hjelmsø, Sarah Mollerup, Randi Holm Jensen, Carlotta Pietroni, Oksana Lukjancenko, Anna Charlotte Schultz, Frank M. Aarestrup, Anders Johannes Hansen

1 Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark, 2 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark, 3 Division of Microbiology and Production, The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark

*mathishjelmsoe@gmail.com

Abstract

Human viral pathogens are a major public health threat. Reliable information that accurately describes and characterizes the global occurrence and transmission of human viruses is essential to support national and global priority setting, public health actions, and treatment decisions. However, large areas of the globe are currently without surveillance due to limited health care infrastructure and lack of international cooperation. We propose a novel surveillance strategy, using metagenomic analysis of toilet material from international air flights as a method for worldwide viral disease surveillance. The aim of this study was to design, implement, and evaluate a method for viral analysis of airplane toilet waste enabling simultaneous detection and quantification of a wide range of human viral pathogens. Toilet waste from 19 international airplanes was analyzed for viral content, using viral capture probes followed by high-throughput sequencing. Numerous human pathogens were detected including enteric and respiratory viruses. Several geographic trends were observed with samples originating from South Asia having significantly higher viral species richness as well as higher abundances of salivirus A, aichivirus A and enterovirus B, compared to samples originating from North Asia and North America. In addition, certain city specific trends were observed, including high numbers of rotaviruses in airplanes departing from Islamabad. Based on this study we believe that central sampling and analysis at international airports could be a useful supplement for global viral surveillance, valuable for outbreak detection and for guiding public health resources.
Introduction

Viral infectious diseases are a major burden on human society. Viral pathogens are a very diverse group with recognized species responsible for both gastroenteritis [1], respiratory tract infections [2], hepatitis [3], cancer [4], and numerous other syndromes collectively killing millions each year [5–7]. In addition, an increasing number of re-emerging viruses have been reported, including ebola virus (EboV) [8], SARS [9], MERS [10] and Zika virus [11], causing large and serious epidemics. Effective surveillance systems are critical for outbreak detection and corresponding timely implementation of public health interventions. Additionally, as international trade and travel increases, the need for global surveillance is growing, as viruses do not respect national borders [12,13]. Several transnational pathogen specific viral surveillance networks exist, including NoroNet (http://www.rivm.nl/en/Topics/N/NoroNet) and GISRS [14], covering noroviruses and influenza viruses, respectively. However, the surveillance of the vast majority of viral human pathogens is being organized at a regional or national level, with limited data sharing and cooperation. In addition, many developing countries do not have the infrastructure of doctors, reference laboratories, and health care bodies required for traditional pathogen surveillance, creating large black boxes on the global health map [15].

Several alternative solutions for disease surveillance have been explored, including drug sales [16] and Google search patterns [17], but consistency and sensitivity have been lacking [18,19]. Environmental surveillance has been used as a tool for monitoring the spread of polio for more than 50 years [20], and combined with high throughput metagenomic sequencing could be an attractive and cost effective surveillance strategy for viral pathogens [21]. Metagenomics is an unbiased detection technique allowing for both the detection of known pathogens as well as the discovery of novel viruses [22,23]. However, significant logistic challenges exist for implementing global environmental sampling and metagenomic analysis in a timeframe relevant for producing actionable information.

In 2017, 4 billion passengers travelled by airplane, and this number is expected to rise in the future [24]. This makes airports attractive control points for infectious diseases. In addition, international airports also allow for unique access to human fecal material from all over the world. The feasibility of using toilet waste for global disease surveillance was explored in a previous study, focusing on bacterial pathogens and antimicrobial resistance, with promising results [25]. In addition, this strategy would allow for a high degree of flexibility, with the option of increasing the sampling frequency of incoming airplanes from certain regions, which could be very valuable in outbreak situations.

The aim of this study was to produce and evaluate a method for viral analysis of airplane toilet waste enabling simultaneous detection and quantification of human viral pathogens.

Our protocol, including viral capture probes followed by metagenomic sequencing, was evaluated on airplane sewage from 19 long distance airliners.

Materials and methods

Sampling

Sampling was done as previously described [25]. Briefly, airplane toilets were sampled from 19 long distance flights arriving in Copenhagen between June and September 2013, from the nine cities: Bangkok, Beijing, Islamabad, Kangerlussuaq, Newark, Singapore, Tokyo, Toronto, and Washington DC, with permission from the airline (SAS) cleaning service. Three 0.5 L samples of toilet waste were obtained from each airplane, pooled, aliquoted, and stored at -80 °C until nucleotide extraction (Fig 1).
Nucleic acid extraction

Before extraction the highly basic airplane toilet waste (pH > 11) was pH adjusted to 7 using HCl (12M). 140 μl of airplane toilet waste was used as input for nucleic acid extraction. A positive and negative extraction control was included consisting of a mixture of 8E5 cells carrying one copy of proviral human immunodeficiency virus 1 (HIV-1) genome and human adenovirus (HadV) [26], and sterile molecular grade H₂O, respectively. DNA and RNA were co-extracted using the QIAamp Viral RNA Mini kit (Qiagen, Valencia CA, USA) according to protocol. The eluate was then split into a RNA and DNA fraction. The RNA fraction was treated with Turbo DNA-free Kit (Invitrogen, USA) to remove DNA, and the remaining RNA purified with the RNeasy MinElute Cleanup kit (Qiagen, Valencia CA, USA). The purified RNA was used as input for cDNA synthesis and subsequent PCR amplification as previously described [27]. Briefly, first strand cDNA synthesis was performed using the SuperScript III First-Strand Synthesis SuperMix (Invitrogen, Carlsbad, California) and 1 μL Primer A (50 μM) (5’-GTTCCTCCAGTCTCAGTCCNNNNNNNNNNNNNNN-3’) according to the manufacturer’s instructions. Second strand DNA synthesis was performed using Klenow Fragment exo-polymerase. Double stranded DNA products were PCR amplified using AmpliTaq Gold (Qiagen, Valencia CA, USA) as per manufacturer’s instruction using 0.8 μM Primer B (5’-GTTCCTCCAGTCTCAGTCC-3’) and the following conditions, 10 min at 95°C, 25 cycles of amplification (94°C for 30 s, 40°C for 30 s, 50°C for 30 s and 72°C for 1 min), and 1 cycle of elongation (72°C for 10 min). PCR products were purified using the MinElute PCR Purification Kit (Qiagen, Valencia CA, USA).

Library building, viral enrichment and sequencing

Double indexed sequencing libraries were produced using the Nextera DNA library prep kit (Illumina, CA, USA), with input consisting of a pool of 25 ng of DNA and 25 ng of amplified cDNA for each individual sample. In addition, a negative library control was included using sterile molecular grade H₂O. The libraries were then enriched for viral sequences using a custom SeqCap EZ probe library designed and synthesized by Roche Nimblegen (CA, USA). The probes were constructed from a reference list consisting of 2,339 viral sequences and genomes.
from viruses infecting vertebrates downloaded from Genbank in 2014 [28]. The capture reaction was done according to protocol except for the 2 x dilution of Hybridization component A, which allowed for a less stringent hybridization between sample DNA fragments and the viral capture probes, increasing the probe selectivity range [29]. Four to five Nextera libraries were pooled and run together in one capture reaction. After capture, the libraries were sequenced on an Illumina HiSeq 2500 producing 100 bp single-end reads.

Read processing and alignment

Bioinformatic analysis was done as previously described [27]. Briefly, the quality assurance was done using Cutadapt [30], trimming reads with a Phred score below 20, removing adapters and subsequent discarding reads shorter than 50 bp. Read assignment was done using the read-alignment software MGmapper (https://cge.cbs.dtu.dk/services/MGmapper/), which is based on the BWA-MEM algorithm run with default settings (ver. 0.7.7-r441) [31,32]. Reads were mapped to a series of freely available reference databases, covering viruses, bacteria and eukaryotes (S1 Table). Reads were mapped in best-mode, meaning that mapping was performed against all databases simultaneously, and later for each read the best hit among all alignments was chosen. A read was considered as a hit only if the alignment score (AS) was above 30 and was higher than the score from the second best alignment (XS). Throughout the mapping approach, only the most reliable hits were accepted i.e. reads were accepted provided that each read maps with an alignment length being at least 70% of the read length. As the single read mapping approach can be unspecific in cases where homologous regions are shared between database entries, virus hits were conservatively reported on the species level, to reduce the chance of misclassification. The raw Illumina sequences are publicly available at the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/data/view/PRJEB30546).

Statistics

To test for significant regional differences the 19 airplanes were divided into the three regions; North America (Toronto, Newark, Washington DC, and Kangerlussuaq), South Asia (Singapore, Bangkok, and Islamabad), and North Asia (Tokyo, and Beijing). The viral read counts per million (VRPM) were calculated by normalizing the read count for each specific virus relative to the total viral read count. This was done for each sample as follows: (read count virus A/total viral read count)\(^{*}10^{6}\). This normalization accounts for differences in sequencing depth, and removes the influence of variation in bacterial/human reads. As the data were not normally distributed, the non-parametric Kruskal-Wallis test was used to test for significant differences between the three regions. If \(p < 0.05\) additional pairwise Wilcoxon rank sum tests were performed with Bonferroni correction for multiple testing. Heatmaps were done using the R package pheatmap [33]. All statistics were done in R [34].

Results

The sequencing of the 19 airplane sewage samples produced an average of 19.4 million 100 bp single-end reads per sample. Around 50% of the reads did not map to any of the databases used in this study, which is in line with previous studies [27,35,36], whilst the majority of assigned reads mapped to bacterial databases (S1 Fig). Only an average of 0.24% of the reads mapped to viruses, and 0.01% to human viruses despite the use of the viral capture probes. The viral reads mapped to 287 different viral strains from the viral databases, but due to the high chance of misclassification using read aligners we conservatively agglomerated all reads on the species level. This resulted in a total of 104 viral species, from 31 different viral families (Fig 2).
Of these species 37 had a confirmed or suspected human host, 6 were parasite or animal viruses, 12 were plant viruses and 49 were bacteriophages.

Sequencing quality control

Sequencing reads mapping to HAdV, EboV and HIV were detected in the negative control and these species were conservatively removed from the dataset prior to further analysis [37]. The presence of a large number of reads mapping to EboV in the positive control were investigated by coverage analysis, elucidating that all reads mapped to the same short region of the EboV reference genome (S2 Fig). When blasting that region against the NCBI nr database, the top hits included both EboV and HIV-1, suggesting that the presence of EboV reads were a
product of misclassification during read assignment due to a homologous region shared by the two viruses.

In addition, the negative controls also had large numbers of bacterial *Thermus sp.* reads, most likely being a DNA contaminant of the used *Taq* polymerases as this protein was originally isolated from *Thermus aquaticus YT-1* [38], stressing the importance of the inclusion and analysis of negative controls to reduce false positives [39].

Evaluation of protocol for viral detection and quantification

Several viral families with human pathogens were detected in the airplane toilet waste including *Picornaviridae*, *Caliciviridae*, *Polyomaviridae*, *Reoviridae*, and *Picobirnaviridae*, with a total of 37 confirmed or putative human viral pathogens. However, more than 90% of the viral reads mapped to the viral families *Myoviridiae* and *Virgaviridae* (S3 Fig), consisting of bacteriophages and plant pathogens, respectively.

When studying patterns in the viral community composition, the sewage samples arriving from South Asia generally had higher abundances of caliciviruses, reoviruses and picornaviruses, resulting in the separate clustering of these samples in a PCA plot (Fig 3).

In addition, samples from South Asia also had significantly higher species richness than both North America and North Asia (t-test, \(p < 0.01\)) (Fig 4).

Several enteric viruses were detected in the sewage material, and they were generally more abundant in the samples from South Asia (Fig 5). This difference was statistically significant when compared with samples originating from North America for aichivirus A, salivirus A and enterovirus B (Fig 5A, 5C and 5G).

In this pilot study, we observed that some viruses were found consistently in samples from specific cities, for example rotavirus A in airplanes departing from Islamabad, which could suggest a high endemic presence. However, our findings are sensitive to stochastic events and transit passengers due to the low number of samples in this study, and replication is needed to confirm our observations.

Not only enteric viruses were detected in the sewage but also the respiratory rhinovirus A, and the latent skin infection gammaherpesvirus 4, better known as Epstein-Barr virus (Fig 2).

Some viruses were detected in all samples including human polyomavirus 2, better known as JC polyomavirus (JCV), and the veterinary pathogen porcine picobirnavirus (PBV) (Fig 2).

To study the sensitivity of the metagenomic approach, linear regression analysis was done on the reads mapping to the norovirus (NoV) GII genome together with qPCR generated genome copy numbers procured from a previous study using the same samples [25]. A strong association between the two factors was observed (\(R^2 = 0.58\)), indicating that our metagenomic analysis could be used as a semi-quantitative measure of viruses in the sample, although the qPCR method seemed to be more sensitive (S4 Fig).

Discussion

In this study, toilet waste from 19 airplanes was subjected to metagenomic virome analysis. Contamination of some of the samples, including the negative controls, with HAdV and HIV from the positive control were observed. This contamination could have happened in the laboratory, despite working in a dedicated viral clean lab [40], but is more likely a sequencing artifact [26,41]. Because of the large number of PCR cycles for cDNA amplification, library building, and capture, this type of analysis is very vulnerable to cross contamination, and the inclusion of negative controls should be considered obligatory [37]. False positives, as were identified in this study, are a big challenge for diagnostics and metagenomic surveillance surveys and have been reported previously in studies of both bacteria and viruses [42,43].
NoV GII quantification, using our metagenomics approach, showed good correlation with previous qPCR analysis (S4 Fig), suggesting that our protocol can be used for quantifying the viral burden in the sewage samples. A similar relationship was found in a previous study testing eight different viruses, further supporting the quantitative capabilities of viral metagenomics [22].

Despite the low number of samples in this study we observed regional differences in the viral community composition, with the samples originating from South Asia clustering separately from the ones from North America and North Asia (Fig 3). This finding is supported by a recent study detecting national differences in viral exposure [44]. The reason for this geographical difference is unknown to the authors, but could include factors such as diet, socioeconomic status, host factors, genetics, climate, drinking water quality, sanitary conditions and hygiene standards [45]. However, airplane passengers might not be accurate representatives of the residents in the city of origin, which should be considered in the interpretation.

Most of the detected viral human pathogens were enteric and generally were found in highest abundance in the airplanes coming from South Asia. Aichivirus A was one of these, and has been associated with a wide range of clinical illnesses including diarrhea, vomiting, fever, purulent conjunctivitis, and respiratory symptoms [46]. Furthermore, it has previously been detected in cases of gastroenteritis in Pakistani children and in Japanese airplane passengers returning home from South East Asia [47], supporting the notion of a high prevalence of aichi-virus in this region. Salivirus A, another member of the family Picornaviridae, was also prevalent in samples from South Asia. This virus has been associated with gastroenteritis [48] but its pathogenicity has not been fully resolved as other studies have found it in equal numbers in...
both healthy and sick children [49]. However, widespread occurrence of salivirus in humans has been confirmed [50,51] as well as previous detection in sewage [52].

Islamabad, the city of departure with highest rotavirus abundances, and the rest of Pakistan, have huge problems with rotavirus infections with millions of cases and an estimated 14,700 deaths of children below 5 years of age every year [53]. Intervention strategies include vaccination and in January 2017 (after the samples were collected) rotavirus vaccination became a part of the immunization program in Pakistan. We argue that airplane surveillance could be an excellent tool for producing directly comparable surveillance data across national borders, to identify areas with high occurrence of viral infection and disease, and guide public health intervention strategies. Enteric viruses cause high numbers of gastroenteritis globally and are responsible for hundreds of thousands of deaths each year in the developing world [53,54]. We believe that national comparisons, such as this pilot study, could help increase awareness in both local and international public health departments and lead to increased disease intervention efforts.

Human JCV was found in all airplane samples. JCV has been reported in all parts of the world with seroprevalence rates of 65–90% as well as a high rate of viral excreters through urine [55]. In addition, JCV has been proposed as a bioindicator for human fecal contamination [56], and this study confirms global high levels of JCV in human waste.
In this study, results from the viral analysis of airplane toilet material was finished several days after landing, too late to isolate infected passengers. However, future development in sequencing techniques might allow for analysis of air or toilet material during flight [57], allowing for screening and quarantine of passengers infected with high-risk viruses at the border [58].

Strengths and limitations

Limitations of this study include the low number of samples representing both individual cities and larger regions, making baseline values and trends sensitive to stochastic events. However, the intercontinental airplanes used in this study have room for 245–262 passengers, which in other contexts would be a quite respectable sample size, especially if sampling was done more frequently than in this study. Another limitation is the possibility of transit passengers, which could interfere with the signal from individual cities, especially in small sample studies such as this one. Airplane passengers might also not be representative of the average citizen in all countries, with could serve as a bias. It is also a limitation that we do not know the clinical history of the airplane passengers at the time of flight, which would have been very useful to validate our viral findings.

To enrich for pathogenic viruses, we used a custom library of viral capture probes targeting vertebrate pathogens. Viral capture probes have previously been showed to increase the
number of viral reads of up to 3 orders of magnitude [59], and by lowering the stringency of the probe hybridization, as was done in this study, viral sequences not included in the probe design can also be detected [29]. However, most viruses are still undiscovered and not present in current databases [60], and thus not included in the SeqCap probe design, which limits our analysis to only known and already sequenced viruses. Furthermore, the use of capture probes also increases the length of the sample processing with several days, and physical viral enrichment using filters and nucleases might be a faster and more appropriate alternative for real time surveillance [27]. As we use toilet waste in this protocol, we are limited to detecting viruses excreted in the feces or urine, missing important respiratory viruses such as influenza viruses. However, viral shedding in feces has been detected in emerging viral pathogens such as severe acute respiratory coronavirus (SARS-Cov) and ebola virus [61,62], suggesting that they may be possible targets of our protocol. Finally, environmental metagenomic studies, such as this one, with low abundances of target organisms and corresponding low read counts, are very vulnerable to read misclassifications [42]. This was also identified in this study, due to the inclusion of both positive and negative extraction controls. However, our method does not guarantee that no other cases of misclassification exist in our dataset and interpretations should therefore take this into account. One possible example is the presence of the veterinary porcine picobirnavirus in all of our airplane sewage samples, which based on the nature of our samples, is possibly a human strain with no representative in the viral databases. Porcine and human picobirnaviruses can be almost identical and require targeted approaches to discriminate [63]. Alternatively, the detected picobirnavirus could actually be a phage, as has been suggested in two recent publications based on the enrichment of functional prokaryotic ribosome binding sites in picobirnavirus genomes [64,65]. Assembly based bioinformatic methods have the potential to reduce the misclassification problem, increasing the specificity of viral assignment, but the low number of viral reads in our samples in combination with a focus on speed made this option unfeasible. However, assembly based assignment should be pursued in further studies of viral surveillance in environmental samples. As we used a reference based approach our results are also limited by the current state of viral sequence databases, including only a small part of the viral diversity.

Conclusion

In conclusion, our protocol was able to detect and quantify enteric, respiratory, and latent viruses in toilet waste from 19 international flights arriving in Copenhagen Airport using metagenomics. Several viruses were found in significantly higher quantities in samples arriving from South Asia, including salivirus A, aichivirus A and enterovirus B, and the samples from this region had a higher viral species richness. In addition, planes from certain cities were identified as having high amounts of rotaviruses and NoVs in samples taken months apart. However, an increase in sensitivity and specificity is needed before our approach can be implemented by public health professionals, which could be overcome by further development in nucleotide extraction and bioinformatics analysis. With improvements, surveillance of viral particles in airplane toilet waste using metagenomics could be a valuable addition to current surveillance efforts, producing global comparable surveillance data relevant for outbreak detection and implementation of public health interventions.

Supporting information

S1 Fig. Sequence read origin on the kingdom level from the individual airplane samples and experimental controls. Individual reads were mapped against the databases shown in S1 Table, and results from the multiple bacterial and viral databases added together before
plotting. NC = negative extraction control (H2O), PC = Positive control (HAdV and HIV), LibraryNC = library negative control (H2O).

S2 Fig. Coverage plot of the three viruses found in the positive control. Reads were mapped to the reference genomes (A) >NC_001405.1 Human adenovirus C, (B) >NC_001802.1 Human immunodeficiency virus 1, and (C) KC242800 gb Zaire ebolavirus isolate EBOV.

S3 Fig. Viral family abundances of the individual airplane samples and experimental controls. Only the 10 most abundant families are shown. NC = negative extraction control (H2O), PC = Positive control (HAdV and HIV), LibraryNC = library negative control (H2O).

S4 Fig. NGS and qPCR correlation. Correlation between Norovirus GII qPCR genome copies and NGS reads (Viral Reads Per Million). Both the qPCR and NGS data were log transformed prior to the plotting and linear regression analysis.

S1 Table. Overview of reference sequence databases and associated download information.

Acknowledgments
We thank Lasse Vinner for providing the virus capture probes used in this study, as well as Tom Sørensen and SAS cleaning service for assistance in obtaining samples.

Author Contributions
Conceptualization: Mathis Hjort Hjelmsø, Sarah Mollerup, Randi Holm Jensen, Carlotta Pietroni, Anna Charlotte Schultz, Frank M. Aarestrup, Anders Johannes Hansen.

Data curation: Mathis Hjort Hjelmsø, Sarah Mollerup, Oksana Lukjancenko.

Formal analysis: Mathis Hjort Hjelmsø, Sarah Mollerup, Oksana Lukjancenko.

Funding acquisition: Anna Charlotte Schultz, Frank M. Aarestrup, Anders Johannes Hansen.

Investigation: Mathis Hjort Hjelmsø, Sarah Mollerup, Randi Holm Jensen, Carlotta Pietroni, Oksana Lukjancenko.

Methodology: Mathis Hjort Hjelmsø, Sarah Mollerup, Randi Holm Jensen, Carlotta Pietroni, Oksana Lukjancenko.

Project administration: Mathis Hjort Hjelmsø, Anna Charlotte Schultz, Frank M. Aarestrup, Anders Johannes Hansen.

Resources: Anders Johannes Hansen.

Software: Sarah Mollerup, Oksana Lukjancenko.

Supervision: Anna Charlotte Schultz, Frank M. Aarestrup, Anders Johannes Hansen.

Visualization: Mathis Hjort Hjelmsø, Sarah Mollerup, Oksana Lukjancenko, Anders Johannes Hansen.

Writing – original draft: Mathis Hjort Hjelmsø.
Writing – review & editing: Mathis Hjort Hjelmso, Sarah Mollerup, Randi Holm Jensen, Carlotta Pietroni, Oksana Lukjancenko, Anna Charlotte Schultz, Frank M. Aarestrup, Anders Johannes Hansen.

References

1. Glass RI, Parashar UD, Estes MK. Norovirus gastroenteritis. N Engl J Med. 2009; 361: 1776–85. https://doi.org/10.1056/NEJMra0804575 PMID: 19864676

2. Nguyen-Van-Tam JS, Hampson AW. The epidemiology and clinical impact of pandemic influenza. Vaccine. 2003; 21: 1762–1768. https://doi.org/10.1016/S0264-410X(03)00699-0 PMID: 12686091

3. Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet. 2016; https://doi.org/10.1016/S0140-6736(16)30579-7 PMID: 27394647

4. Perz JF, Armstrong GL, Fanning LA, Hutin YJF, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006; 45: 529–538. https://doi.org/10.1016/j.jhep.2006.05.013 PMID: 16879891

5. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388: 1459–1544. https://doi.org/10.1016/S0140-6736(16)30124-1 PMID: 27733281

6. Tate JE, Burton AH, Bosch-Pinto C, Steele JD, Parashar UD, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. Elsevier; 2012; 12: 136–41. https://doi.org/10.1016/S1473-3099(11)70253-5

7. Gaunt ER, Harvala H, McIntyre C, Templeton KE, Simmonds P. Disease burden of the most commonly detected respiratory viruses in hospitalised patients calculated using the disability adjusted life year (DALY) model. J Clin Virol. 2011; 52: 215–221. https://doi.org/10.1016/j.jcv.2011.07.017 PMID: 21880543

8. WHO Ebola Response Team. Ebola Virus Disease in West Africa—The First 9 Months of the Epidemic and Forward Projections. N Engl J Med. 2014; 371: 1481–1495. https://doi.org/10.1056/NEJMoa1411100 PMID: 25244186

9. Chan PKS, Chan MCW. Tracing the SARS-coronavirus. J Thorac Dis. AME Publications; 2013; 5 Suppl 2: S118–21. https://doi.org/10.3978/j.issn.2072-1439.2013.06.19 PMID: 23977431

10. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. American Society for Microbiology; 2013; 87: 7790–2. https://doi.org/10.1128/JVI.01244-13 PMID: 23678167

11. Faria NR, Azevedo RD, Kramer MU, Souza R, Cunha MS, Hill SC. Zika virus in the Americas: early epidemiological and genetic findings. Science (80-). 2016; 352. https://doi.org/10.1126/science.aaf5036 PMID: 27013429

12. Tsiodras S, Baika A, Mentiis A, Iliopoulos D, Dedoukou X, Papamavrou G, et al. A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014. Euro Surveill. 2014; 19. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=207872

13. Centers for Disease Control and Prevention (CDC). First Confirmed Cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in the United States, Updated Information on the Epidemiology of MERS-CoV Infection, and Guidance for the Public, Clinicians, and Public Health Authorities—May 20. CDC MMWR. 2014;63. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6319a4.htm

14. Fidler DP, Gostin LO. The WHO Pandemic Influenza Preparedness Framework. JAMA. American Medical Association; 2011; 306: 200–201. https://doi.org/10.1001/jama.2011.960 PMID: 21750298

15. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. Nature Publishing Group; 2008; 451: 990–993. https://doi.org/10.1038/nature06356 PMID: 18288193

16. Socan M, Erculj V, Lajovic J. Early detection of influenza like illness through medication sales. Cent Eur Public Heal. 2012; 20: 156–162. https://www.ncbi.nlm.nih.gov/pubmed/22966744

17. Valdivia A, López-Alcalde J, Vicente M, Pichiule M, Ruiz M, Ordobas M. Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks—results for 2009–10. 2010; www.eurosurveillance.org

18. Todd S, Diggle PJ, White PJ, Fearne A, Read JM. The spatiotemporal association of non-prescription retail sales with cases during the 2009 influenza pandemic in Great Britain. BMJ Publishing Group; 2014; 4. https://doi.org/10.1136/bmjopen-2014-004869 PMID: 24780494
19. Lazer D, Kennedy R, King G, Vespiagnani A. The Parable of Google Flu: Traps in Big Data Analysis. Science (80-). 2014; 343: 1203–1205. https://doi.org/10.1126/science.1248506 PMID: 24626916

20. Logripippo GA, Berger B. Use of ion exchange resins in partial purification and concentration of poliomyelitis virus. J Lab Clin Med. Elsevier; 1952; 39: 970–973.

21. Furtak V, Roivainen M, Mirochnichenko O, Zagorodnyaya T, Laasmi M, Zaidi SZ, et al. Environmental surveillance of viruses by tangential flow filtration and metagenomic reconstruction. Eurosurveillance. European Centre for Disease Prevention and Control (ECDC); 2016; 21: 30193. https://doi.org/10.2807/1560-7917.ES.2016.15.30193 PMID: 27105043

22. Graf EH, Simmon KE, Tardif KD, Hymas W, Flygare S, Elbeck K, et al. Unbiased Detection of Respiratory Viruses by Use of RNA Sequencing-Based Metagenomics: a Systematic Comparison to a Commercial PCR Panel. J Clin Microbiol. American Society for Microbiology; 2016; 54: 1000–7. https://doi.org/10.1128/JCM.03060-15 PMID: 26818672

23. Bodewes R, van der Giessen J, Haagmans BL, Osterhaus ADME, Smits SL. Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. J Virol. 2013; 87: 7758–64. https://doi.org/10.1128/JVI.00568-13 PMID: 23616657

24. World-Bank. Air transport, passengers carried [Internet]. http://data.worldbank.org/indicator/IS.AIR.TP.PN

25. Nordahl Petersen T, Rasmussen S, Hasman H, Caree C, Baelum J, Charlotte Schultz A, et al. Metagenomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Sci Rep. Nature Publishing Group; 2015; 5: 11444. https://doi.org/10.1038/srep11444 PMID: 26161690

26. Jensen RH, Mollerup S, Mourier T, Hansen TA, Fridholm H, Nielsen LP, et al. Target-Dependent Enrichment of Virions Determines the Reduction of High-Throughput Sequencing in Virus Discovery. PLoS One. 2015; 10: e0122636. https://doi.org/10.1371/journal.pone.0122636 PMID: 25853649

27. Hjelmsø MH, Hellmér M, Fernandez-Cassi X, Timoneda N, Lukjancenko O, Seidel M, et al. Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing. Tang P, editor. PLoS One. Public Library of Science; 2017; 12: e0170199. https://doi.org/10.1371/journal.pone.0170199 PMID: 28099518

28. Mühlemann B, Jones TC, Damgaard P de B, Allentoft ME, Shevniina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature. Nature Publishing Group; 2018; 557: 418–423. https://doi.org/10.1038/s41586-018-0097-z PMID: 29743673

29. Vinner L, Mourier T, Friis-nielsen J, Gniadecki R, Dybkaer K, Rosenberg J, et al. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing. Nat Publ Gr. Nature Publishing Group; 2015; 1–13. https://doi.org/10.1038/srep13201 PMID: 26285800

30. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011; 17: 10. https://doi.org/10.14806/ej.17.1.200

31. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. Oxford University Press; 2010; 26: 589–95. https://doi.org/10.1093/bioinformatics/btp568 PMID: 20080505

32. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2010; 26: 589–95. https://doi.org/10.1093/bioinformatics/btp568 PMID: 20080505

33. Kaledin AS, Slusarenko AG, Gorodetskii SI. [Isolation and properties of DNA polymerase from extreme thermophilic bacteria Thermus aquaticus YT-1]. Biokhimia. 1980; 45: 644–51. http://www.ncbi.nlm.nih.gov/pubmed/7378495 PMID: 7378495

34. Salter SJ, Cox MJ, Turek EM, Calus WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014; 12: 87. https://doi.org/10.1186/s12915-014-0087-z PMID: 25387460
40. Deiner K, Walser J-C, Mächler E, Altermatt F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv. 2015; 183: 53–63. https://doi.org/10.1016/j.biocon.2014.11.018

41. Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012; 40: e3–e3. https://doi.org/10.1093/nar/gkr771 PMID: 22021376

42. Peabody MA, Van Rossum T, Lo R, Brinkman FSL. Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities. BMC Bioinformatics. 2015; 16: 362. https://doi.org/10.1186/s12859-015-0788-5 PMID: 26537885

43. Mee ET, Preston MD, Participants S, Minor PD, Schepelmann S, Huang X, et al. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing. Vaccine. 2016; 34: 2035–2043. https://doi.org/10.1016/j.vaccine.2015.12.020 PMID: 26709640

44. Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung’u T, et al. Comprehensive serological profiling of human populations using a synthetic human virome. Science (80-). 2015; 348. http://science.sciencemag.org/content/348/6239/aaa0698/tab-pdf

45. Pruss-Ustun A, Bartram J, Clasen T, Colford JM, Cummings O, Curtis V, et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Trop Med Int Heal. 2014; 19: 894–905. PMID: 24779548

46. Khamrin P, Maneekarn N, Okitsu S, Ushijima H. Epidemiology of human and animal kobuviruses. Virus-Disease. Springer India; 2014; 25: 195–200. https://doi.org/10.1007/s13337-014-0200-5 PMID: 25674585

47. Yamashita T, Sakae K, Kobayashi S, Ishihara Y, Miyake T, Mubina A, et al. Isolation of Cytopathic Small Round Virus (Aichi Virus) from Pakistani Children and Japanese Travelers from Southeast Asia. Microbiol Immunol. 1995; 39: 433–435. https://doi.org/10.1111/j.1348-0421.1995.tb02225.x PMID: 8551977

48. Shan T, Wang C, Cui L, Yu Y, Delwart E, Zhao W, et al. Picornavirus Salivirus/Klassevirus in Children with Diarrhea, China. Emerg Infect Dis. 2010; 16: 1303–1305. https://doi.org/10.3201/eid1608.100087 PMID: 20673331

49. Yu J, Ao Y, Liu N, Li L, Duan Z, Gray J. Salivirus in Children and Its Association with Childhood Acute Gastroenteritis: A Paired Case-Control Study. Chiu CY, editor. PLoS One. Public Library of Science; 2015; 10: e0130977. https://doi.org/10.1371/journal.pone.0130977 PMID: 26193371

50. Itta KC, Patil T, Kalal S, Ghargi KV, Roy S. Salivirus in children with diarrhoea, western India [Internet]. International Journal of Infectious Diseases. 2016. pp. 14–15. https://doi.org/10.1016/j.ijid.2016.09.015 PMID: 27658645

51. Santos N, Mendes GS, Silva RC, Pena GA, Rojas M, Amorim AR, et al. Salivirus and aichivirus A infections in children with gastroenteritis in Brazil [Internet]. Clinical Microbiology and Infection. 2015. https://doi.org/10.1016/j.cmi.2015.04.004 PMID: 25889358

52. Ng TFF, Marine R, Wang C, Simmonds P, Kapusinsky B, Bodhidatta L, et al. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol. 2012; 86: 12161–75. https://doi.org/10.1128/JVI.00869-12 PMID: 22933275

53. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, Agocs M, Serhan F, et al. Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000–2013. Clin Infect Dis. Oxford University Press; 2016; 62: S96–S105. https://doi.org/10.1093/cid/civ1013 PMID: 27059362

54. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. von Seidlein L, editor. PLOS Med. Public Library of Science; 2015; 12: e1001923 PMID: 26633896

55. Knowles WA. Discovery and Epidemiology of the Human Polyomaviruses BK Virus (BKV) and JC Virus (JCV). Polyomaviruses and Human Diseases. New York, NY: Springer New York; 2006. pp. 19–45. https://doi.org/10.1007/0-387-32957-9_2 PMID: 16626025

56. Alhamlan FS, Al-Qahtani AA, Al-Ahdal MN. Recommended advanced techniques for waterborne pathogen detection in developing countries [Internet]. Journal of Infection in Developing Countries. 2015. pp. 128–135. https://doi.org/10.3855/jidc.6101 PMID: 25699486

57. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. Nature Research; 2016; 530: 226–232. https://doi.org/10.1038/nature16996 PMID: 26840485

58. Mangili A, Vindenes T, Gendreau M. Infectious Risks of Air Travel. Microbiol Spectr. asm Pub2Web; 2015; 3. https://doi.org/10.1128/microbiolspec.IOL5-0009-2015 PMID: 26542037
59. Wylie TN, Wylie KM, Herter BN, Storch GA. Enhanced virome sequencing using targeted sequence capture. 2015; 1910–1920.

60. Simmonds P, Adams MJ, Benkő M, Breitbart M, Rodney Brister J, Carstens EB, et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat Publ Gr. 2017; https://doi.org/10.1038/nrmicro.2016.177 PMID: 28134265

61. Bibby K, Casson LW, Stachler E, Haas CN. Ebola Virus Persistence in the Environment: State of the Knowledge and Research Needs. Environ Sci Technol Lett. American Chemical Society; 2015; 2: 2–6. https://doi.org/10.1021/ez5003715

62. Wang XW, Li J, Guo T, Zhen B, Kong Q, Yi B, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital of the Chinese People’s Liberation Army. Water Sci Technol. 2005; 52: 213–21. http://www.ncbi.nlm.nih.gov/pubmed/16312970

63. Ganesh B, Masachessi G, Mladenova Z. Animal picobirnavirus. Virudisease. Springer; 2014; 25: 223–38. https://doi.org/10.1007/s13337-014-0207-y PMID: 25674589

64. Krishnamurthy SR, Wang D. Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses. Virology. Academic Press; 2018; 516: 108–114. https://doi.org/10.1016/J.VIROL.2018.01.006 PMID: 29346073

65. Boros Á, Polgár B, Pankovics P, Fenyvesi H, Engelmann P, Phan TG, et al. Multiple divergent picobirnaviruses with functional prokaryotic Shine-Dalgarno ribosome binding sites present in cloacal sample of a diarrheic chicken. Virology. Academic Press; 2018; 525: 62–72. https://doi.org/10.1016/J.VIROL.2018.09.008 PMID: 30245195