Research Paper
The Effect of Phantom Compositions on Dose Calculations in Proton Therapy of Liver Cancer

Zahra Ahmadi Ganjeh¹, *, Mohammad Eslami-Kalantari², Asghar Mowlavi²

1. Department of Physics, School of Science, Yazd University, Yazd, Iran.
2. Department of Physics, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Background and Aim: Since in many dosimetry calculations, the water and soft tissue phantoms are used, this study aimed to investigate the difference of these two phantoms with a phantom consisted of realistic liver materials in proton therapy for liver cancer.

Methods & Materials: Three phantoms with different materials of water, soft tissue and realistic liver materials were used for the study. A spherical tumor with 2 cm radius was considered in the liver. The Spread-out Bragg Peaks (SOBPs) were measured to cover the complete tumor for the three phantoms. Dose distribution and deposited dose ratio in tumor and surrounding organs were calculated using Monte Carlo N-Particle Extended (MCNPX) code.

Ethical Considerations: The best proton energy interval to complete the coverage of tumor in the liver for phantoms with realistic and soft tissue materials was 90-120 MeV and for water phantom, it was 88-116 MeV. The shift of the Bragg peaks depth per energy in the water phantom mm relative to two other phantoms was about 4.5. The dose parameters were evaluated according to the International Commission on Radiation Units and Measurements (ICRU), and the results showed no any significant difference between them. The dose distribution in the tumor and surrounding organs showed that for all three phantoms, the dose distribution around the tumor was negligible.

Results: The use of soft tissue phantom has more acceptable results than water phantom in simulating treatment and can be replaced with realistic liver tissue. More realistic phantoms should be used in treatment plan.

Conclusion: The use of soft tissue phantom has more acceptable results than water phantom in simulating treatment and can be replaced with realistic liver tissue. More realistic phantoms should be used in treatment plan.

Key words: Proton therapy, Simulation, Liver cancer, Spread-out Bragg Peaks, Dose distribution

Extended Abstract

Introduction: The main goal to choose the most appropriate method for cancer treatment is the achievement of high dose deposition in the tumor while preserving the surrounding healthy tissue as much as possible. Protons have different dosimetric characteristics than photons used in conventional radiation therapy. After a short build-up region, conventional radiation shows an exponentially decreasing energy deposition with increas-
ing depth in tissue. In contrast, protons show an increasing energy deposition with penetration distance leading to a maximum (the “Bragg peak”) near the end of range of the proton beam [1-3]. In this study, it has been attempted to predict appropriate conditions for proton therapy of liver cancer. Although different studies use water or soft tissue phantoms to perform dosimetry, here three phantoms such as soft tissue, water phantom and, a phantom consists of liver realistic material were simulated to observe their dosimetric differences.

Methods and Materials

The target was simulated as a spherical tumor with a radius of 2 cm in the liver, which is located inside the complete phantom of the human body. At the first step to obtain Bragg peaks in the tumor region, the proton source was considered as a single energy perpendicular to the phantom and the energy was changed by 2 MeV steps. Phantoms 1 to 3 are made of soft tissue, liver realistic elements, and water, respectively. By adding a set of beams with different weight factors, a Spread-Out Bragg Peak (SOBP) is generated, which delivers the desired dose to the whole of the treatment target [10, 11]. The Bragg peaks to cover the tumor were calculated and then the SOBP designed by calculating the weighting factors. The dose distribution in the tumor and surrounding areas, as well as the dose of the protons, secondary neutrons, and photons absorbed in the tumor and healthy organs around the tumor, were calculated and the results are compared for three phantoms. All of the simulations were carried by MCNPX.

Results

The results of this study consist of Bragg peak dose distributions, Bragg peak positions, determination of weighting factors, creating SOBP, and evaluation of deposited dose in tumor and healthy tissues. The proper proton beam ener-

Figure 1. Bragg-peak positions within the liver tumor as a function of energy for three phantoms.

For phantoms 1 and 2, the coverage of tumor volume is done by using of Bragg peak energies about 90 MeV-120 MeV. For phantom 3 the energy of first Bragg peak at the tumor surface is about 88 MeV and the last one is about 116 MeV. A uniform dose region is created by adding Bragg peaks for different proton energies by considering the appropriate weights to obtain a flat SOBP. The resultant SOBPs are presented in Figure 2.

Figure 2. SOBPs for three phantoms
The evaluated dose of protons, neutrons, and photons in the tumor and some organs around that for three phantoms were calculated. The ratio of deposited dose in non-involved organs to the tumor was calculated and shown in Figure 3.

Discussion

In this study, the simulation of liver proton therapy for three phantoms consisting of soft tissue, realistic liver, and water was investigated to find the dosimetric differences. Suitable Bragg peaks were calculated to cover the tumor volume for the three phantoms. The results showed that for the soft tissue phantom and the phantom consisting of the realistic liver tissue, Bragg peaks to cover the tumor volume were in range of 90 MeV-120 MeV and for the water phantom it was about 88 MeV-116 MeV. The dose deposition point for the water phantom at each energy was different from the other two phantoms and this difference was about 4.5 mm at each point. In order to cover the whole tumor volume, we have created SOBPs for three phantoms by using properly optimized weighting factors. It would be better to take into account the realistic composition of different tissues of the phantom. Finally, the total dose of proton and secondary particles in the tumor and 22 non-involved organs were calculated. Dose calculations in different organs of the body showed that most parts of the body received dose and organs close to the liver such as the heart, stomach, pancreas, etc. received more doses than other organs. But this deposited dose is insignificant compared to the dose received by the tumor.

Ethical Considerations

Compliance with ethical guidelines

Since there was no experiment on human or animal samples in this study, there was no need for ethical approval.

Funding

The present paper was extracted from a PhD. thesis of the first author, Zahra Ahmadi ganjeh, approved by the Department of Physics, School of Science, Yazd University, Yazd, Iran.

Authors’ contributions

All authors contributed equally in preparing all parts of the research.

Conflicts of interest

The authors declared no conflict of interest.
تأثیر عناصر تشكیل دهنده فانتوم بر محاسبات دز هنگام ترابیز سرطان کبد

زهره احمدی گنجه، محمد اسلامی کلانتری*، علی اسماعیلی، علی اصغر مولوی

1. گروه فیزیک، دانشکده مهندسی پژوهش پایه پژوهشگاه بیماری‌های قلبی، دانشگاه پیام نور، تهران
2. گروه فیزیک، دانشکده مهندسی پژوهش پایه پژوهشگاه بیماری‌های قلبی، دانشگاه پیام نور، تهران

اماطلا مطالعه:
تاریخ دریافت: 04 آبان 1398
تاریخ پذیرش: 03 دی 1398
تاریخ انتشار: 12 بهمن 1398

کلید واژه‌ها:
پروتون ترابیز، شبیه‌سازی، سرطان کبد، توزیع دز

مقدمه
سرطان به عنوان یکی از مهم‌ترین عوامل مرگ‌ومیر در جامعه امروزی، به مجموعه بیماری‌های اطلاعی می‌شود که از شکایت مهارنشده سرطان با حرکت در بدن بیمار نیست. کمک درمان سرطان امروزه به سمت روش‌های پیشتازی، کاهش عوارض جانبی و افزایش زندگی موجب می‌گردد. درمان سرطان به روش‌هایی پیش‌رو، پیش‌آموزی، عملکردی و آموزشی به کار می‌رود.

در پرتودرمانی به کارگیری روش که به‌صورت تابعی، در بدن بیمار در محدوده مورد نیاز قرار می‌گیرد. این روش شامل پرتوهای خارجی است. این روش به طور معنی‌داری موجب می‌گردد که درمان سرطان در بدن بیمار به‌صورت کنترل‌شده و به‌صورت کم‌عوارض انجام شود. در این مطالعه، مدل سی‌پی‌آمپ و روش‌های محاسباتی برای شبیه‌سازی توزیع دز در پروتون ترابیز سرطان کبد بررسی می‌شود.

در این مطالعه، برای شبیه‌سازی توزیع دز در پروتون ترابیز سرطان کبد، از نرم‌افزار MCNPX به کار گرفته شده است. نتایج نشان دادند که در فانتوم آب، توزیع دز در تومور و اندام‌های اطراف آن به‌طور مطلوبی انجام شده است. این مطالعه به بررسی تفاوت‌های بین توزیع دز در پروتون ترابیز سرطان کبد با استفاده از فانتوم های مختلف کبد پرداخته است.

در این مطالعه، نتایج نشان دادند که در فانتوم آب، توزیع دز در تومور و اندام‌های اطراف آن به‌طور مطلوبی انجام شده است. این مطالعه به بررسی تفاوت‌های بین توزیع دز در پروتون ترابیز سرطان کبد با استفاده از فانتوم های مختلف کبد پرداخته است.

در این مطالعه، نتایج نشان دادند که در فانتوم آب، توزیع دز در تومور و اندام‌های اطراف آن به‌طور مطلوبی انجام شده است. این مطالعه به بررسی تفاوت‌های بین توزیع دز در پروتون ترابیز سرطان کبد با استفاده از فانتوم های مختلف کبد پرداخته است.

در این مطالعه، نتایج نشان دادند که در فانتوم آب، توزیع دز در تومور و اندام‌های اطراف آن به‌طور مطلوبی انجام شده است. این مطالعه به بررسی تفاوت‌های بین توزیع دز در پروتون ترابیز سرطان کبد با استفاده از فانتوم های مختلف کبد پرداخته است.

در این مطالعه، نتایج نشان دادند که در فانتوم آب، توزیع دز در تومور و اندام‌های اطراف آن به‌طور مطلوبی انجام شده است. این مطالعه به بررسی تفاوت‌های بین توزیع دز در پروتون ترابیز سرطان کبد با استفاده از فانتوم های مختلف کبد پرداخته است.

در این مطالعه، نتایج نشان دادند که در فانتوم آب، توزیع دز در تومور و اندام‌های اطراف آن به‌طور مطلوبی انجام شده است. این مطالعه به بررسی تفاوت‌های بین توزیع دز در پروتون ترابیز سرطان کبد با استفاده از فانتوم های مختلف کبد پرداخته است.
امین
شدت
سیستم های انتقال، پیش از ورود باریکه به بدن که می توان تا ریسک سرطان ثانویه شوند؛ یکی ذرات ثانویه تولید شده در ذرات ثانویه دو منشأ متفاوت دارند که می توانند موجب افزایش از بافت هدف برسند و انرژی خود را در بافت های دور از هدف بیشتری برخوردارند. نوترون ها و فوتون ها می توانند به نقاط دور انرژی های نه چندان بالای پروتون، نوترون و فوتون از اهمیت فوتون، پروتون های ثانویه، دوترون و غیره تولید می شوند که در هسته ای نیز می شوند، که طی آن ذرات ثانویه نظیر نوترون ها، هسته ای کشسان، پروتون ها دستخوش پراکندگی های ناکشسان کولنی پروتون ها با الکترون های اتمی و همچنین پراکندگی...

با نفوذ در ماده، (منفعل) نیستند و به ازای هر لایه پرتوگیری، سیستم انتقال روش پراکندگی منفعل سیستم انتقال باریکه و هدف ثابت باریکه جاروب (روبش) می شود. در روش روبش فعال بر خلاف به عبارت دیگر می توان گفت که تومور به صورت لایه ای توسط روش دز به صورت لایه لایه به هدف تحویل داده می شود و یا هدف در پروتون درمانی استفاده کرده روبش فعال است. در این روش دیگری که می توان از آن برای پوشش ضخامت و طول گام ها به گونه ای بهینه سازی می شوند که بهترین صاف ساخته شود، به تدریج ضخامت گام ها افزایش پیدا می کند. گام ها پی درپی تحت تابش قرار می گیرند. ضخامت هر گام، برد می شود. زمانی که چرخ مدولاتور در جلوی باریکه می چرخد، حجم بزرگ باشد از چرخ مدولاتور و یا از فیلتر شیاردار استفاده می شود. در بعضی موارد، کردن که طی آن ذرات ثانویه نظیر نوترون ها، هسته ای کشسان، پروتون ها دستخوش پراکندگی های ناکشسان کولنی پروتون ها با الکترون های اتمی و همچنین پراکندگی...

شماره 11

پروتون‌های پرتاب شده را در ماده می‌شود و پس از ورود با اکسیژن یا فریون‌های الکترونی در سه‌ستفه سرمایگیری می‌شوند. فوتون و یا فوتون‌های پرتاب شده به همراه با فریون‌های الکترون می‌شوند و تا بسیار سریعتر، به طرف درمان فوتون و یا فوتون‌های پرتاب شده به همراه با فریون‌های الکترون می‌شوند و تا بسیار سریعتر، به طرف درمان...
بلافاصله ترم با چشمه به شما دو سانتی‌متر در مدت ۲۷۹ ساعت، به حد چای رسیده است. تغییرات آن به ترتیب در بایوکارژ از گروه‌هایی شیمی‌سازی‌های غیرنجینی آینده فعالیت آنها را به‌دست می‌آورد که با تکنیک‌های مکانیکی نمی‌توان آنها را حذف کرد و نه توانسته‌ایم محاسبه در حالت‌های سیستمی در اینهای این‌جا بخش چندین رزاسازی فعالیت آن‌ها است. اما در اینجا درنا بهترین روش برای پرتوهای اطراف مواجهات با زمین‌های ترکیبی آنها می‌گذارد. این تردید با بی‌پرتوهای سایری از میزان مذکر ترکیب را بررسی کرد.

کبد یکی از خودکارسکین‌ترین غده‌های بدن است که در فرایند پروتئین سازی برای انتقال انسلاک‌ها نقشی مهمی ایفا می‌کند. اگر سلول‌های کبدی آسیب ببیند، رشد بیش از اندازه سلول‌های کبدی باعث ایجاد تومورهای سرطانی گردیده و فعالیت طبیعی کبد را مختل می‌کند. این نوع سرطان یکی از بیشترین سرطان‌های جهان به‌شمار می‌آید و برای کنترل آن، یک روش مناسب مورد استفاده قرار می‌گیرد.

روش پروتون درمانی به دلیل واگذاری بیشترین انرژی پرتو در قله براگ و داشتن برد کوتاه، بر سایر روش‌ها برتری دارد. تحقیقات زیادی در کشورهایی مانند آمریکا و ژاپن برای استفاده از پروتون تراپی برای درمان سرطان کبد انجام گرفته و بیمارانی تحت درمان در این روش، شبیه سازی قبل از درمان نقش مهمی داشتند. شبیه سازی قبل از درمان با استفاده از دستگاه‌ها یا الگوهای آزمایشی که بدن انسان یا قسمتی از بدن انسان را شبیه سازی می‌کند (فانتوم) نقش مهمی داشت.

فانتوم محاسبه و به‌صورت جمع‌الت.Number [27] بهبود کیفیت درمان دارد و می‌توان با شبیه سازی اجزای بدن استفاده از روش پروتون تراپی پیش بینی شود. نتایج مربوط به توزیع دز و نواحی اطراف تومور با استفاده از کد MCNPX، به مقایسه نتایج پرداخته شده است.

در این کار سعی شده است با شبیه سازی کبد در فانتوم کامل و نواحی اطراف آن در کبد، نتایج مربوط به توزیع دز و نواحی اطراف تومور با استفاده از کد MCNPX به مقایسه نتایج پرداخته شده است.

ملاحظات علمی

فرشید رضایی

زهرا احمدی‌گنجه و همکاران. تأثیر عناصر تشکیل دهنده فانتوم بر محاسبات دز در پروتون تراپی سرطان کبد
شماره ۱ از آورده شده سه فانتوم

عنصر	فانتوم ۱	فانتوم ۲	فانتوم ۳
F	-	-	-
Na	-	-	-
Mg	-	-	-
Si	-	-	-
P	-	-	-
S	-	-	-
Cl	-	-	-
K	-	-	-
Ca	-	-	-
Fe	-	-	-
Zn	-	-	-
Rb	-	-	-
Zr	-	-	-
H	-	-	-
N	-	-	-
O	-	-	-

شیمی‌نژادی درمان با انرژی‌های مختلف چهارم انجام شده و طیف پراگ پهنه‌ی بهینه مطابق فرمول شماره ۱ برای درمان تومورها تعیین شد، پارامترها از طبق فرمول ICRU تومورها تعیین شد. برای انرژی‌های ارزیابی دز طیف بهینه، مطابق فرمول شماره ۱ تومور، با استفاده از تالی، به بهینه‌سازی دز طیف می‌پردازند.

در ادامه، نمودارهای ایزودز برای فوتون و نوترون در ناحیه تومور و اطراف آن با استفاده از تالی یافته‌ها، در چند قسمت ارائه شده که شامل محاسبه دز پروتون و گامای جذب شده در تومور، نوترون و برخی اندام‌هایِ محیطی، محاسبه و بررسی درمان، ضریب تیمار نیز و ضریب جهد پراگ و نوترون و نورترم‌های ارزیابی دز طیف می‌شود. در انتها طیف می‌شود.

نتایج در چند قسمت ارائه شده که شامل محاسبه دز پروتون و گامای جذب شده در تومور و نوترون و نورترم‌های ارزیابی دز طیف می‌شود. در انتها طیف می‌شود.
تصویر ۳: مکان قله‌ها بر حسب انرژی پروتون فروشی برای سه فانتوم. ۱. یافته درم. ۲. مواد واقعی کبد. ۳. آب.

چند جدول ۳: ضرایب وزنی به‌مستندی برای سه فانتوم. ۱. یافته درم. ۲. مواد واقعی کبد. ۳. آب.

ضرایب وزنی	فانتوم ۱	فانتوم ۲	فانتوم ۳	انرژی (MeV)
				۱۲۰
				۱۱۸
				۱۱۶
				۱۱۴
				۱۱۲
				۱۱۰
				۱۰۸
				۱۰۶
				۱۰۴
				۱۰۲
				۱۰۰
				۹۸
				۹۶
				۹۴
				۹۲
				۲۲
				۲۰
				۸۸
کمک به تحلیل و توصیف برای شناسایی عناصر تشکیل دهنده فانتوم برای پروتون تراپی سرطان کبد

پیشنهادی مفهومی برای پروتون تراپی، فوتون و نوترون در ناحیه تومور

فانتوم 1	فانتوم 2	فانتوم 3	پارامترها
10	0.1	0.1	DDF
0.17	0.7	0.7	m90
0.32	0.65	0.65	طول هدف
0.68	0.35	0.35	

این پارامترها به پراکندگی ضریب های وزنی و رسم تصویر انرژی قله های براگ و مکان های مربوط به قله ها در نشان داده شده است.

به همراه شکل پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.

شکل و رسم پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.

شکل و رسم پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.

شکل و رسم پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.

شکل و رسم پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.

شکل و رسم پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.

شکل و رسم پرتو و رسم

اگر قله قله های براگ و مکان های مربوط به قله ها در تصویر شماره ۲ نشان داده شده است، در محدوده تومور و برای فانتوم شماره ۳ اولین قله براگ در سطح تومور در انرژی ۸۸ MeV و آخرین قله براگ در محدوده تومور در انرژی ۱۱۶ MeV است.
یزید حسنی جهان بخش، ایرج حبیبی کاریان، تأثیر عناصر تشکیل‌دهنده فانتوم بر محاسبات دز در پروتون تراپی سرطان کبد

کمیته ۴: چگونگی توزیع دز فوتون در محدوده کبد و اطراف آن را نشان می‌دهد. چپ: فوتون، سمت راست: نوترون. از بالا به پایین به ترتیب: ۱. بالاترین دوز. ۲. دوز واقعی کبد. ۳. دوز لوله.

کمیته ۵: در صفحه مربوط به فوتون‌های نیکل برای فانتوم‌ها به ترتیب: ۱. بالاترین دوز. ۲. دوز واقعی کبد. ۳. دوز لوله.
باید دقت شبیه‌سازی شرایط درمانی افزایش یابند. بدین منظور اساس درمان‌های کلینیکی برای پیش‌بینی شرایط درمان است، استفاده از این روش درمانی برای سرطان کبد با توجه به تومورهای عمقی کبد با دقت بالا استفاده شده و دارای مزایای توزیع دز در حجم هدف، یک انتخاب مناسب برای تومورهایی است که با توجه به جمعیت بدن، باعث ناراحتی شده و دارای مزیت‌های فراوانی نسبت به استفاده از پرکهکای کمکی و الکترونی است.

استفاده از این روش درمانی برای سرطان کبد با توجه به مطالعه‌های این موضوع و تکنیک‌های ارگان‌های خاص است. از پروتون برای درمان تومورهای عمیق کبد با دقت بالا استفاده شده و این روش با استفاده از پرکهکای فانتومی نسبت به استفاده از پرکهکایی کمکی و الکترونی است.

شماره تمام	شماره تمام	شماره تمام
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	9	9
10	10	10
11	11	11
12	12	12
13	13	13
14	14	14
15	15	15
16	16	16
17	17	17
18	18	18
19	19	19
20	20	20
21	21	21
22	22	22
23	23	23

توجه: برای مقایسه بهتر نسبت دز رسیده به سایر اجزای بدن به مربوط به دز تخلیه شده در اعضای بدن برای مثلاً: روده کوچک، فیل راست، فیل چپ، خال نخستین، رحم، سینه، مغز، قلب، کبد، حفره، مرگ، روده کوچک، ماهی، بدن، و... در جدول شماره 1398.84 بهمن و اسفند توزیع. پروتون، یک روش درمانی برای سرطان کبد با توجه به نتایج مطالعه‌های مرتبط به این موضوع، باید بهترین روش برای ارائه پاسخ به سایر اعضای بدن با تومور محاسبه شده و در تصویر شماره 7 شناخت دهید. شرایط درمان کبد استفاده از پروتون تراپی برای سرطان کبد محصول در مطالعه‌های مختلف تر
متشکل از بافت نرم، مواد اصلی کبد و آب مورد بررسی قرار گرفت تا بتوان به تفاوت های این فانتوم ها در محاسبات اندازه گیری دست یافت.

قله های براگ مناسب جهت پوشاندن ناحیه تومور برای سه فانتوم محاسبه شد. نتایج نشان داد که برای فانتوم بافت نرم و بافت تشکیل شده از بافت اصلی کبد، قله های براگ در بازه انرژی 116 و برای فانتوم آب در بازه انرژی 120 MeV - 90 MeV در محدوده تومور قرار می گیرند. همچنین نتایج نشان دادند که مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده و این تفاوت به صورت ده میلی متر در هر نقطه بوده است. نمودار نشان داد که تقریبی به اندازه مکان تخلیه دز بر فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها همچنین مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها همچنین مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه دز برای فانتوم آب در هر انرژی نسبت به دو فانتوم دیگر متفاوت بوده است. این تفاوت ها می تواند ناشی از تفاوت چگالی و عناصر تشکیل دهنده فانتوم ها به صورت مکان تخلیه Dز برای فانتوم آب در هر انرژی Nسبت به دو فانتوم Dنیگر متفاوت بوده است. این تفاوت ها می تواند Nاشی از تفاوت چگالی و عناصر تشکیل Dدهنه Fانتوم Hنی با Fانتوم Hنی مکان تخلیه Dز برای Fانتوم Hنی نسبت به Dنیگر متفاوت بوده است. این Tفاوت Hا Mی Tواند Nاشی از Tفاوت Cچگالی و Tعناصر Tتشکیل Dدهنه Fانتوم Hنی Nسیب به Fانتوم Hنی Cیکید. تیم تحقیقاتی برای امکان نشان داد که ویژگی های تحقیق در این مورد در مقالات جامعه نشان داده است. با توجه به شیبی سازی بیون مطالعه، نیازی به کد اخلاق وجود نداشت.

لحاظات اخلاقی

پروپوز از اصول اخلاق پزشکی در این مورد قبل از مگایت بالا مقالات اخلاق شده است. با توجه به شیبی سازی بیون مطالعه، نیازی به کد اخلاق وجود نداشت.

حامی مالی

این مقاله از رساله دکتری زهرا احمدی گنجه و همکاران در دانشکده فیزیک، پردیس علوم پایه، دانشگاه یزد استخراج شده است.
مشارکت نویسندگان

تمام نویسندگان در آماده‌سازی این مقاله مشارکت داشته‌اند.

تعارض منافع

بدین وسیله نویسندگان تصریح می‌کنند که هیچ گونه تضاد منافعی در خصوص پژوهش حاضر وجود ندارد.

زهرا احمدی گنجه و همکاران. تأثیر عناصر تشکیل دهنده فانتوم بر محاسبات دز در پروتون تراپی سرطان کبد
References

[1] Doyen J, Falk AT, Floquet V, Hérault J, Hannoun-Levi JM. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with proton therapy. Cancer Treat Rev. 2016; 43:104-12. [DOI:10.1016/j.ctrv.2015.12.007] [PMID]

[2] Larsson B. Proton and heavy ion therapy. Exp Suppl. 1975; 24:414-8. [DOI:10.1007/978-3-0348-5520-4_88] [PMID]

[3] Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 2010; 95(1):3-22. [DOI:10.1016/j.radonc.2010.01.015] [PMID]

[4] Levin WP, DeLaney TF. Chapter 19 - Charged particle radiotherapy. In: Gunderson LL, Tepper JE, editors. Clinical Radiation Oncology (Third Edition). Philadelphia: W.B. Saunders. 2012: 361-76. [DOI:10.1016/B978-1-4377-1637-5.00019-5]

[5] Seif F, Bayatiani MR. Cancer and radiotherapy. J Arak Univ of Med Sci. 2018; 21(4):1-5.

[6] Wilson RR. Radiological use of fast protons. Radiology. 1946; 47(5):487-91. [DOI:10.1148/47.5.487] [PMID]

[7] Peschel RE. Notice: recently published book: proton therapy and radio. [15]

[8] Khan FM. The physics of radiation therapy. Philadelphia: Lippincott Williams & Wilkins; 2010.

[9] Lawrence JH, Tobias CA, Born JL, McCombs RK, Roberts JE, Anger HO, et al. Pituitary irradiation with high-energy proton beams: A preliminary report. Cancer Res. 1958; 18(2):244-51. [DOI:10.1016/S0360-3016(01)92826-7]

[10] Abril I, de Vera P, Garcia-Molina R, Kyriakou I, Emfietzoglou D. Lateral spread of dose distribution by therapeutic proton beams in liquid water. Nucl Instrum Methods Phys Res B. 2015; 352:176-80. [DOI:10.1016/j.nimb.2014.11.100]

[11] Paganetti H. Proton Beam therapy. Florida: CRC Press. 2016. [DOI:10.1088/978-0-7503-1370-4ch1]

[12] Klodowska M, Oliko P, Waligorski MP. Proton microbeam radiotherapy with scanned pencil-beams—Monte Carlo simulations. Phys Med. 2015; 31(6):621-6. [DOI:10.1016/j.ejmp.2015.04.009] [PMID]

[13] Paganetti H. Proton Beam therapy. Florida: CRC Press. 2016. [DOI:10.1088/978-0-7503-1370-4ch1]

[14] Bonfrate A, Farah J, De Marzi L, Delacroix S, Herault J, Sayah R, et al. Influence of beam incidence and irradiation parameters on stray neutron doses to healthy organs of pediatric patients treated for an intracranial tumor with passive scattering proton therapy. Physica Med. 2016; 32(4):590-9. [DOI:10.1016/j.ejmp.2016.03.009] [PMID]

[15] Moteabbed M, Yock TI, Depauw N, Madden TM, Kooy HM, Paganetti H. Impact of spot size and beam-shaping devices on the treatment plan quality for pencil beam scanning proton therapy. Int J Radiat Oncol Biol Phys. 2016; 95(1):190-8. [DOI:10.1016/j.ijrobp.2015.12.368] [PMID] [PMCID]

[16] Schneider U, Agosteo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys. 2002; 53(1):244-51. [DOI:10.1016/S0360-3016(01)02826-7]

[17] Schneider U, Halg RA, Lomax T. Neutrons in active proton therapy: Parameterization of dose and dose equivalent. Z Med Phys. 2017; 27(2):113-23. [DOI:10.1016/j.zmedipl.2016.07.001] [PMID]

[18] Islam MR, Zheng Y, Collums TL, Monson JM, Ahmad S, Benton ER. Measurement and simulation of secondary neutrons from uniform scanning proton beams in proton radiotherapy. Radiat Meas. 2017; 96:8-18. [DOI:10.1016/j.radmeas.2016.11.008]

[19] Agosteo S, Birattari C, Caravaggio M, Silari M, Tosi G. Secondary neutron and photon dose in proton therapy. Radiother Oncol. 1998; 48(3):293-305. [DOI:10.1006/rtod.1998.0049] [PMID]

[20] Fukumitsu N, Okumura T, Takizawa D, Makishima H, Numajiri H, Murofushi K, et al. Proton beam therapy for metastatic liver tumors. Radiother Oncol. 2015; 117(2):322-7. [DOI:10.1016/j.radonc.2015.09.011] [PMID]

[21] Arscott WT, Thompson RF, Yin L, Burgdorf B, Kirk M, Ben-Josef E. Stereotactic body proton therapy for liver tumors: Dosimetric advantages and their radiobiological and clinical implications. Phys Imaging Radiat Oncol. 2018; 8:17-22. [DOI:10.1016/j.phiro.2018.11.004]

[22] Hong TS, DeLaney TF, Mamon HJ, Willett CG, Yeap BY, Niemierko A, et al. A prospective feasibility study of respiratory-gated proton beam therapy for liver tumors. Pract Radiat Oncol. 2014; 4(5):316-22. [DOI:10.1016/j.prro.2013.10.002] [PMID] [PMCID]

[23] Chuong M, Kaiser A, Moltitore I, Romero AA, Apisarnthanarax S. Proton beam therapy for liver cancers. J Gastrointest Oncol. 2020; 11(1). [DOI:10.21037/jgo.2019.04.02]

[24] Gualdrini G, Ferrari P. Handbook of anatomical models for radiation dosimetry. Radiation protection dosimetry. 2011; 143(1):125-7. [DOI:10.1093/rpd/ncq333]

[25] Report of the task group on reference man ICRP Publication 23 (1975). Ann ICRP. 1980; 4(3-4). [DOI:10.1016/0146-6453(80)90047-0]

[26] Snyder WS, Fisher HL Jr, Ford MR, Warner GG. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med. 1969; Suppl. 3:7-52. [PMID]

[27] Ahmad Ganjeh Z, Esfandi-Kalantari M, Mowlavi AA. Dosimetry calculations of involved and noninvolved organs in proton therapy of liver cancer: A simulation study. Nucl Instrum Methods Phys Res A. 2013; 703:293-305. [DOI:10.1016/j.nima.2013.01.015] [PMID] [PMCID]

[28] White DR, Booz J, Griffith RV, Spokas JJ, Wilson IJ. Report 44. Journal of the International Commission on Radiation Units and Measurements. 2016; 23(1). [DOI:10.1093/jicru/osw23.1.Report44]

[29] Prescribing, Recording, And Reporting Proton-Beam Therapy: Considerations. J Int Commn Radiat Units Meas. 2007; 7(2). [DOI:10.1093/jicru/nmd021]