Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities

Mitsuru Shibayama

May 11, 2014

Abstract

It is a big problem to distinguish between integrable and non-integrable Hamiltonian systems. We provide a new approach to prove the non-integrability of homogeneous Hamiltonian systems with two degrees of freedom. The homogeneous degree can be chosen from real values (not necessarily integer). The proof is based on the blowing-up theory which McGehee established in the collinear three-body problem. We also compare our result with Molares-Ramis theory which is the strongest theory in this field.

1 INTRODUCTION

Let $H : \mathcal{D} \to \mathbb{R}$ be a smooth function where \mathcal{D} is an open set in \mathbb{R}^{2k}. The Hamiltonian system is defined by the ordinary differential equations

$$
\frac{dq_j}{dt} = \frac{\partial H}{\partial p_j}(p, q), \quad \frac{dp_j}{dt} = -\frac{\partial H}{\partial q_j}(p, q) \quad (j = 1, \ldots, k)
$$

(1)

where $(p, q) = (p_1, \ldots, p_k, q_1, \ldots, q_k) \in \mathcal{D}$. The function H is called the Hamiltonian and k is called the degrees of freedom.

A function $F : \mathcal{D} \to \mathbb{R}$ is called the first integral of (1) if F is conserved along each solution of (1). For two functions $F, G : \mathcal{D} \to \mathbb{R}$, the Poisson bracket is the function defined by

$$
\{F, G\} = \sum_{j=1}^{k} \frac{\partial F}{\partial q_j} \frac{\partial G}{\partial p_j} - \frac{\partial F}{\partial p_j} \frac{\partial G}{\partial q_j}.
$$

A function $F : \mathcal{D} \to \mathbb{R}$ is a first integral of (1) if and only if $\{F, H\}$ is identically zero. Hamiltonian system (1) is called integrable if there are k first integrals $F_1(= H), F_2, \ldots, F_k$ such that dF_1, \ldots, dF_k are linearly independent in an open dense set of \mathcal{D} and that $\{F_i, F_j\} = 0$ for any $i, j = 1, \ldots, k$.

1
The dynamics of the integrable systems are well understood because of the Liouville-Arnold theorem (see [1], Chapter 10) while the dynamics of the non-integrable Hamiltonian systems may be chaotic. Therefore it is important to distinguish between integrable and non-integrable Hamiltonian systems.

This problem have been studied for quite long time. Bruns [2] proved that in the 3-body problem there is no algebraic first integral which is independent from the known ones. After that, Poincaré [4] proved that the perturbed Hamiltonian systems there is no analytic first integral depending analytically on a parameter. Then by applying it to the restricted 3-body problem, he proved the non-existence of an analytic first integral depending analytically on a mass parameter.

Another theory in this field was originated by Kovalevskaya [3]. By studying the property of singularities she discovered a new integrable case in the rigid body model. As a development of her approach, Ziglin [5, 6] established the theory of singularity for proving the non-integrability. By applying the Ziglin analysis, Yoshida [7] provided a criterion for the non-integrability of the homogeneous Hamiltonian systems. Morales-Ruiz & Ramis [8, 9] extended the Ziglin analysis by applying the Differential Galois theory (Picard-Vessiot theory). The Morales-Ramis theory is the strongest in this field now.

Our purpose is to prove the non-integrability of Hamiltonian systems from a new approach. We consider a Hamiltonian system of 2 degrees of freedom with a homogeneous potential of degree $\beta \in \mathbb{R}$. Its Hamiltonian is represented by

$$H(p, q) = \frac{1}{2} \|p\|^2 + U(q) \quad ((p, q) \in \mathbb{R}^2 \times (\mathbb{R}^2 \setminus \{0\})).$$ (2)

Here U is a real-meromorphic function on $\mathbb{R}^2 \setminus \{0\}$ and satisfies the homogeneous property:

$$U(\lambda q) = \lambda^\beta U(q) \quad (q \in \mathbb{R}^2 \setminus \{0\}, \lambda > 0).$$

Let $V(\theta) = U(\cos \theta, \sin \theta)$.

Theorem 1. Assume the following 6 properties:

1. the homogeneous degree β is a real number excluding -2 and 0:

$$\beta \in \mathbb{R}\setminus\{-2, 0\};$$

2. there are three critical points θ_l of V:

$$\frac{\partial V}{\partial \theta}(\theta_l) = 0, \quad \theta_{-1} < \theta_0 < \theta_1, \quad (l = -1, 0, 1);$$

3. the function V is negative between θ_{-1} and θ_1:

$$V(\theta) < 0 \quad (\theta \in [\theta_{-1}, \theta_1]);$$

4. the derivative of V does not vanish between these critical points:

$$\frac{\partial V}{\partial \theta}(\theta) \neq 0 \quad (\theta \in (\theta_{-1}, \theta_0) \cup (\theta_0, \theta_1));$$
5. the second derivative of V is negative at critical points $\theta_{\pm 1}$:

$$\frac{\partial^2 V}{\partial \theta^2}(\theta_{\pm 1}) < 0;$$

6. at critical point θ_0, the following inequality satisfies:

$$-\frac{1}{8}(\beta + 2)^2V(\theta_0) < \frac{\partial^2 V}{\partial \theta^2}(\theta_0).$$

Then the Hamiltonian system of (2) has no real-meromorphic first integral independent from H.

![Figure 1: Function $V(\theta)$](image)

Above we used the word “real-meromorphic”. We call a real function $f(p, q)$ real-meromorphic if and only if $f(p, q)$ is analytic in all but possibly a discrete subset of $\mathbb{R}^2 \times (\mathbb{R}^2 \setminus \{0\})$ and these exceptional points must be poles.

Remark 1. The case of $\theta_1 = \theta_{-1} + 2\pi$ is allowed in assumption 2. These two critical points are essentially identical. In this case, just two critical points of V are necessary.

Remark 2. In the case of $\beta = -2$, the Hamiltonian system is integrable. Because a function

$$G(p, q) = (q \cdot p)^2 - 2\|q\|^2H(p, q)$$

is a first integral. Hence this case does not need to be studied.

Remark 3. In the case of $V(\theta) > 0$ on $[\theta_{-1}, \theta_1]$, if V is analytic in the complex domain $\mathbb{C}^2 \setminus \{(0, 0)\}$, V can be replaced by changing coordinates with $(P, Q) = (\sqrt{-1}p, \sqrt{-1}q)$, and then the new equations satisfy the assumption 2 of this theorem.

If V is a constant, the system is integrable. Hence we need to consider the non-constant functions. Generically there are several critical points of V and the graph is convex at some of them. The assumption 1-5 of this theorem is not strong, and only assumption 6 is a little strong.
This paper is organized as follows. In Section 2 we introduce the McGehee’s blowing-up technique for the homogeneous Hamiltonian systems. We prove our theorem in Section 3 by using the McGehee’s technique. We present two applications of the theorem in Section 4. In the final section we compare our theorem with the Morales-Ramis theorem.

2 MCGEHEE’S BLOWING UP TECHNIQUE

McGehee [10] established a blowing-up technique for the triple collision singularity in the collinear three-body problem. We can easily extend the technique for the general homogeneous Hamiltonian systems [2].

We first consider the case of $\beta < 0$. The McGehee coordinates (r, θ, v, w) are defined by

$$q = r(\cos \theta, \sin \theta),\quad p = r^{\beta/2}(v(\cos \theta, \sin \theta) + w(-\sin \theta, \cos \theta))$$

and the time variable t is changed into τ according to $dt = r^{1-\beta/2}d\tau$. The map $(r, \theta, v, w) \mapsto (p, q)$ are analytic in \{(r, \theta, v, w) \mid r > 0, \theta \in \mathbb{R}/2\pi\mathbb{Z}, v, w \in \mathbb{R}\}. Then the equations become

$$\frac{dr}{d\tau} = rv$$

$$\frac{d\theta}{d\tau} = w$$

$$\frac{dv}{d\tau} = -\frac{\beta}{2}v^2 + w^2 - \beta V(\theta)$$

$$\frac{dw}{d\tau} = -\left(\frac{\beta}{2} + 1\right)vw - \frac{\partial V}{\partial \theta}(\theta).$$

In these coordinates the total energy is

$$h = r^\beta \left(\frac{v^2 + w^2}{2} + V(\theta)\right).$$

Fix the energy constant at any non-zero value ($h \neq 0$).

The point $q = 0$ is singularity of the differential equations, but $r = 0$ is not singular in these differential equations [3]-[7]. It is sufficient to consider the three equations [1], [3] and [5], since these equations are independent from r and since r can be obtained from [7].

The set

$$\mathcal{M} = \left\{(\theta, v, w) \in \mathbb{R}/2\pi\mathbb{Z} \times \mathbb{R} \times \mathbb{R} \mid \frac{v^2 + w^2}{2} + V(\theta) = 0\right\}$$

is invariant. In the case of the n-body problem, \mathcal{M} is called the collision manifold. Orbits converge to \mathcal{M} as $r \to 0$.
In the case that \(\beta > 0 \), we can discuss similar argument by letting \(R = r^{-1} \).
The equation (3) becomes
\[
\dot{R} = -Rv
\]
and the total energy is
\[
H = R^{-\beta} \left(\frac{v^2 + w^2}{2} + V(\theta) \right).
\]
The equations can be extended to \(R = 0 \). Orbits converge to the invariant set \(\mathcal{M} \) as \(R \to 0 \). It is sufficient to consider the three equations (4), (5) and (6).

The flow on \(\mathcal{M} \) is gradient-like if \(\beta \neq -2 \). This means that the \(v \)-component is monotone along each solution excluding equilibrium points since all orbits on \(\mathcal{M} \) satisfy
\[
\frac{dv}{dt} = \left(\frac{\beta}{2} + 1 \right) w^2 \begin{cases}
\geq 0 & (\beta > -2) \\
\leq 0 & (\beta < -2)
\end{cases}
\]

If \(\theta_c \) is a critical point of \(V \), i.e. \(\frac{\partial V}{\partial \theta}(\theta_c) = 0 \), \((\theta, v, w) = (\theta_c, \pm \sqrt{-2V(\theta_c)}, 0)\) are equilibrium points of (4), (5), (6). The linearized equations of (4), (5), (6) at \((\theta, v, w) = (\theta_c, \pm \sqrt{-2V(\theta_c)}, 0)\) are
\[
\frac{d}{dt} \begin{pmatrix} \delta \theta \\ \delta v \\ \delta w \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & \mp \beta \sqrt{-2V(\theta_c)} & 0 \\ -\frac{\partial^2 V}{\partial \theta^2}(\theta_c) & 0 & \mp \left(\frac{\beta}{2} + 1 \right) \sqrt{-2V(\theta_c)} \end{pmatrix} \begin{pmatrix} \delta \theta \\ \delta v \\ \delta w \end{pmatrix}.
\]
The eigenvalues of the coefficient matrix are \(\lambda_1 = \mp \beta \sqrt{-2V(\theta_c)} \), \(\lambda_2 \) and \(\lambda_3 \) where \(\lambda_2 \) and \(\lambda_3 \) are the roots of equation
\[
\lambda^2 \pm \left(\frac{\beta}{2} + 1 \right) \sqrt{-2V(\theta_c)} \lambda + \frac{\partial^2 V}{\partial \theta^2}(\theta_c) = 0.
\]
The eigenspace corresponding to \(\lambda_1 \) is perpendicular to \(\mathcal{M} \) at the equilibrium point and the eigenspace corresponding to \(\lambda_2 \) and \(\lambda_3 \) is tangent to \(\mathcal{M} \).

3 PROOF OF THEOREM 1

Assume that \(\Phi(p, q) \) is a real-meromorphic first integral of (2). From the homogeneous property if \((p(t), q(t))\) is a solution, so is \((c^\beta p(c^{\beta - 2} t), c^\beta q(c^{\beta - 2} t))\) for any constant \(c > 0 \). Then \(\Phi(c^\beta p, c^\beta q) \) is also an first integral.

The point \((p, q) = (0, 0)\) may be an essential singularity of \(\Phi \). Consider the Laurent series at this point:
\[
\Phi(p, q) = \sum_{k_1, k_2, k_3, k_4 \in \mathbb{Z}} a_{k_1 k_2 k_3 k_4} p_1^{k_1} p_2^{k_2} q_1^{k_3} q_2^{k_4}.
\]

Then we get
\[
\Phi(c^\beta p, c^\beta q) = \sum_{k_1, k_2, k_3, k_4 \in \mathbb{Z}} a_{k_1 k_2 k_3 k_4} c^{\beta(k_1 + k_2) + 2(k_3 + k_4)} p_1^{k_1} p_2^{k_2} q_1^{k_3} q_2^{k_4}.
\]
We gather the terms according to the power of c

$$\Phi(c^\beta p, c^2 q) = \sum_{\omega \in \Omega} c^\omega f_\omega(p, q) \quad (10)$$

where

$$\Omega = \{ \beta(k_1 + k_2) + 2(k_3 + k_4) \mid k_j \in \mathbb{Z}, a_{k_1k_2k_3k_4} \neq 0 \}$$

and

$$f_\omega(p, q) = \sum_{\beta(k_1 + k_2) + 2(k_3 + k_4) = \omega} a_{k_1k_2k_3k_4} p_1^{k_1} p_2^{k_2} q_1^{k_3} q_2^{k_4}.$$

By substituting bc for c of (10), we get

$$\Phi(b^\beta c^\beta p, b^2 c^2 q) = \sum_{\omega \in \Omega} b^\omega c^\omega f_\omega(p, q), \quad (11)$$

and by substituting c, p and q for b, $c^\beta p$, $c^2 q$ of (10), we get

$$\Phi(b^\beta c^\beta p, b^2 c^2 q) = \sum_{\omega \in \Omega} b^\omega c^\omega f_\omega(p, q) \quad (12).$$

These equations (11) and (12) deduce

$$\sum_{\omega \in \Omega} b^\omega f_\omega(c^\beta p, c^2 q) = \sum_{\omega \in \Omega} b^\omega c^\omega f_\omega(p, q).$$

Therefore we get

$$f_\omega(c^\beta p, c^2 q) = c^\omega f_\omega(p, q).$$

Moreover since

$$\frac{d}{dt} \Phi(c^\beta p, c^2 q) = \sum_{\omega \in \Omega} c^\omega \frac{d}{dt} f_\omega(p, q) = 0$$

for any c, each $f_\omega(p, q)$ is a first integral.

Therefore we can assume that the first integral Φ satisfies

$$\Phi(c^\beta p, c^2 q) = c^\rho \Phi(p, q) \quad (13)$$

for some constant ρ.

From here we focus the case of $-2 < \beta < 0$. Let

$$\Psi(r, \theta, v, w) = \Phi(r^{-\beta/2}(v \cos \theta - w \sin \theta), r^{-\beta/2}(v \sin \theta + w \cos \theta), r \cos \theta, r \sin \theta).$$

From the property (13), Ψ can be written by

$$\Psi(r, \theta, v, w) = r^{\rho/2} \Psi(1, \theta, v, w).$$

The function $\Psi(1, \theta, v, w)$ is real-meromorphic of (θ, v, w). Note that we do not need analyticity at $r = 0$ because of $r = 1.$
We denote the equilibrium points by
\[D_l^\pm = (\theta_l, \pm \sqrt{-2V(\theta_l)}, 0) \quad (l = -1, 0, 1). \]
We also use local coordinates \((\theta, w, z)\) near \(D_l^-\) where
\[z = \frac{v^2 + w^2}{2} + V(\theta). \]
The transformation \(\{(\theta, v, w) \mid \theta \in \mathbb{R}/2\pi\mathbb{Z}, v < 0, w \in \mathbb{R}\} \rightarrow \{(\theta, z, w) \mid \theta \in \mathbb{R}/2\pi\mathbb{Z}, z \geq \frac{v^2}{2} + V(\theta)\}\) is real-analytic. The surface \(\mathcal{M}\) corresponds to the plane \(z = 0\). In these coordinates, the energy is represented by
\[h = r^\beta z. \]
Define a function \(g\) on a neighborhood by
\[g(\theta, z, w) = \Psi(1, \theta, -\sqrt{2z - w^2 - 2V(\theta)}, w) \]
which is real-meromorphic where the coordinates work. Because \(\Psi\) is real-meromorphic, we can consider the Laurent series of \(g\) at \(z = 0\) with respect to \(z\):
\[g = \sum_{k=\nu}^\infty \gamma_k(\theta, w)z^k \]
where \(\nu\) is an integer and \(\gamma_\nu(\theta, w)\) is not identically zero. Hence the first integral is represented by
\[\Psi\left((\frac{h}{2})^{\frac{\beta}{2}}, \theta, -\sqrt{2z - w^2 - 2V(\theta)}, w\right) = \left(\frac{h}{2}\right)^{\frac{\beta}{2}} \sum_{k=\nu}^\infty \gamma_k(\theta, w)z^k = : \Xi(\theta, w, z). \]
If \(\Phi\) depends only on \(H\), \(\Xi\) is a constant function. From here the proof varies according to \(\nu - \frac{\beta}{23} < 0\).

The case of \(\nu - \frac{\beta}{23} < 0\). Take any \(P \in W^s(D_0^-) \setminus \mathcal{M}\) near \(D_0^-\). Let \(a = \Xi(P)\). We take a small neighborhood of \(P\)
\[B_\varepsilon = \{Q \in \mathbb{R}^3 \mid |P - Q| < \varepsilon\} \quad (0 < \varepsilon \ll 1), \]
such that for any \(Q \in B_\varepsilon\),
\[a - 1 \leq \Xi(Q) \leq a + 1 \quad (14) \]
is satisfied. Let \(\varphi_\tau(\theta, z, w)\) be the flow of the differential equations. Since the first integral is conserved along each orbit, (14) holds in
\[N_\varepsilon = \{\varphi_\tau(Q) \mid \tau \geq 0, Q \in B_\varepsilon\}. \]
From the continuity, (14) also holds its closure \(\overline{N_\varepsilon}\). This set \(\overline{N_\varepsilon}\) includes the unstable manifold \(W^u(D_0^-)\) of \(D_0^-\), and \(W^u(D_0^-)\) is an open set of \(\mathcal{M}\). The \(z\)-component converges to zero as \(Q\) goes close to \(\mathcal{M}\). Hence \(\gamma_\nu\) must be zero on \(W^u(D_0^-)\). From the analyticity, \(\gamma_\nu\) is identically zero. This contradicts the assumption for \(\gamma_\nu\).
Figure 2: A solution converging to D_0^-

Figure 3: The stable manifold of D_1^-
The case of $\nu - \frac{\rho^2}{\beta} > 0$. Consider the case of $V(\theta_1) \leq V(\theta_{-1})$. The other case is essentially same. Take any $Q \in W^s(D^-_1) \backslash \mathcal{M}$. The first integral has a value c along the orbit passing Q:

$$\Xi(\varphi_\tau(Q)) = c \quad (\tau \in \mathbb{R}).$$

The z-component of $\varphi_\tau(Q)$ converges to 0 as τ diverges to infinity, then c must be 0. Therefore $\Xi(Q)$ is zero for all $Q \in W^s(D^-_1) \backslash \mathcal{M}$. The closure of $W^s(D^-_1) \backslash \mathcal{M}$ includes $W^s(D^-_1)$. Because of the continuity, $\Xi(Q)$ is zero on $W^s(D^-_1)$. We can write the function Ξ as

$$\Xi(\theta, w, z) = \left(\frac{h}{z}\right)\nu^\nu \sum_{k=0}^{\infty} \gamma_{k+\nu}(\theta, w)z^k.$$

Therefore

$$\sum_{k=0}^{\infty} \gamma_{k+\nu}(\theta, w)z^k = \gamma_\nu(\theta, w) + \gamma_{\nu+1}(\theta, w)z + \cdots = 0$$

satisfies on $W^s(D^-_1) \backslash \mathcal{M}$. From the continuity, $\gamma_\nu = 0$ on $W^s(D^-_1) \cap \mathcal{M}$.

Since $\frac{\partial^3 V}{\partial \theta^3}(\theta_1) < 0$, the equilibrium point D^-_1 is hyperbolic and $\lambda_2 \lambda_3 < 0$. Hence there are stable and unstable manifolds with dimension 1 on \mathcal{M}. The dynamics near the equilibrium point D^-_0 is stable focus and the flow on \mathcal{M} is gradient-like with respect to the v-component. Hence $W^u(D^-_1)$ twins around D^-_0 and Ξ is equal to zero on the spiral curve. γ_ν is also zero there. Therefore from analyticity $\gamma_\nu(\theta, w) \equiv 0$. This is a contradiction.

The case of $\nu - \frac{\rho^2}{\beta} = 0$. In this case γ_ν is a first integral for the flow on \mathcal{M}. From the similar argument as the previous case, γ_ν is a constant c. $\Xi - c$ is also a first integral. If $\Xi - c$ is not identically zero, $\Xi - c$ has zero point of finite degree at $z = 0$. This is reduced to the case of $\nu - \frac{\rho^2}{\beta} > 0$. This completes the proof for $-2 < \beta < 0$.

The proof for the other β is essentially same. We survey the cases.

Consider the case of $\beta < -2$.

The case of $\nu - \frac{\rho^2}{\beta} < 0$. γ_ν must be zero $W^u(D^-_1)$. One branch of $W^u(D^-_{\pm 1})$ twins around D^-_0.

The case of $\nu - \frac{\rho^2}{\beta} > 0$. γ_ν must be zero $W^s(D^-_1)$. Since $W^s(D^-_0)$ is an open set of \mathcal{M}, γ_ν must be a zero function.

The case of $\nu - \frac{\rho^2}{\beta} = 0$. γ_ν must be constant $W^{s/u}(D^-_1)$. If Ξ is not constant function, this case can be reduced to the case of $\nu - \frac{\rho^2}{\beta} > 0$.

Finally consider the case of $\beta > 0$.

9
The case of $\nu + \frac{\rho}{2\alpha} < 0 \gamma_\nu$ must be zero $W^s(D^-_0)$. One branch of $W^s(D_{\pm 1}^-)$ twins around D^-_0.

The case of $\nu + \frac{\rho}{2\alpha} > 0 \gamma_\nu$ must be zero $W^u(D^-_0)$. Since $W^u(D^-_0)$ is an open set of \mathcal{M}. γ_ν must be a zero function.

The case of $\nu + \frac{\rho}{2\alpha} = 0 \gamma_\nu$ must be constant $W^{s/u}(D^-_0)$. If Ξ is not constant function, this case can be reduced to the case of $\nu + \frac{\rho}{2\alpha} > 0$.

4 APPLICATION

The Isosceles Three-Body Problem In the planar isosceles three-body problem, we can take the centre of gravity as the origin and the symmetric axis as the y-axis, and assume that the equal masses are located at

$$(x, y) \quad \text{and} \quad (-x, y)$$

and the other mass m_3 is located at

$$(0, -2\alpha^{-1}y)$$

in the inertial coordinate system, where $\alpha = m_3/m$(Figure 4).

![Figure 4: The planar isosceles three-body problem](image)

By rescaling it, the Hamiltonian is represented by

$$H(p, q) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{q_1} - \frac{4\alpha^{3/2}}{\sqrt{\alpha q_1^2 + (\alpha + 2)q_2^2}}.$$

By applying Theorem 1 we obtain:
Theorem 2. If \(\alpha < \frac{55}{4} \), the isosceles three-body problem has no real-meromorphic first integral independent from \(H \).

In fact, it is known that the dynamics is complex in the case of \(\alpha < \frac{55}{4} \). For example there are infinitely many heteroclinic orbits\(^{11, 12}\).

Yoshida’s Example Consider the Hamiltonian

\[
H(p, q) = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{4}(q_1^4 + q_2^4) + \frac{\varepsilon}{2}q_1^2q_2^2,
\]

(15)

which was written on Yoshida’s paper\(^\text{[13]}\). As we stated at Remark\(^\text{3}\) we can consider the Hamiltonian

\[
G(p, q) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{4}(q_1^4 + q_2^4) - \frac{\varepsilon}{2}q_1^2q_2^2
\]

(16)

instead of \(H \). By applying Theorem\(^\text{1}\) we obtain:

Theorem 3. If \(\varepsilon < -\frac{1}{8} \) or \(\varepsilon > \frac{25}{7} \), the Hamiltonian system\(^\text{[16]}\) has no real-meromorphic first integral independent from \(G \).

From Theorem\(^\text{3}\) and Remark\(^\text{3}\) we obtain:

Theorem 4. If \(\varepsilon < -\frac{1}{8} \) or \(\varepsilon > \frac{25}{7} \), the Hamiltonian system\(^\text{[15]}\) has no meromorphic first integral independent from \(H \).

5 COMPARISON WITH THE MORALES-RAMIS THEORY

We call a configuration \(c \in \mathbb{R}^2 \) the Darboux point of \(U \) if \(\nabla U(c) = c \). Consider the Hessian matrix of \(U \) at \(c \) and call its eigenvalues Yoshida coefficients at \(c \). Since \(U \) is homogeneous with degree \(\beta \), we can easily show that one of Yoshida coefficients is \(\beta - 1 \). As computed by Sansaturio et al\(^\text{[14]}\), the other (non-trivial) Yoshida coefficient is represented by

\[
\lambda = \beta^{-1}V(\theta_c)^{-1}\frac{\partial^2 V}{\partial \theta^2}(\theta_c) + 1
\]

in the polar coordinates where \(\frac{\partial V}{\partial \varphi}(\theta_c) = 0 \).

In our theorem the assumption 6 can be written as

\[
-\frac{1}{8}(\beta + 2)^2 > (\lambda - 1)\beta,
\]

by using \(\lambda \). Then, in other words, if an integrable Hamiltonian system satisfies the assumption 1-5, the Yoshida coefficients at each Darboux point satisfy

\[
-\frac{1}{8}(\beta + 2)^2 \leq (\lambda - 1)\beta.
\]

(17)
The Morales-Ramis theorem gave a list of the Yoshida coefficient which integral systems can have. We have compared the inequality (17) and the Morales-Ramis’ list. The integrable list given by Morales-Ramis is included in our region (17) for $\beta \in \mathbb{Z}\setminus\{\pm 2, 0\}$. For example, in the case of $\beta = -1$, from the Moreles-Ramis theorem, the Yoshida coefficient of an integrable system must be in

$$\left\{-\frac{1}{2}p(p-3) \mid p \in \mathbb{Z}\right\} = \{1, 0, -2, -5, -9, \ldots\}.$$

According to our theorem, the Yoshida coefficient of an integrable system must be no more than $9/8$ if the other assumptions 1-5 are satisfied.

In the example of the isosceles three-body problem, the Morales-Ramis theory guarantees the non-existence of meromorphic first integral for any α. In the Yoshida’s example, Morales-Ramis theory guarantees the non-existence of meromorphic first integral excluding $\varepsilon = 0, 1, 3$. The same result have been obtained through the Ziglin analysis [13]. It is known that these exceptional three cases are actually integrable.

We compare our theorem with the Morales-Ramis theory in several viewpoints.

Homogeneous degree Our theorem can be applied to the case of any real number β excluding $-2, 0$ while the result from an application [8] of Morales-Ramis theory can be apply to the case of any integer excluding $\beta = -2, 0, 2$. The case of $\beta = -2$ does not need to be studied since the systems are integrable as we stated at Remark 2. Our theorem alone can be applied to the case of $\beta = 2$. Neither show anything in the case of $\beta = 0$.

Degrees of freedom Our theorem can be applied to two degrees of freedom while Morales-Ramis theory can be applied to any degrees of freedom.

Yoshida coefficients In the case of integer β except 0, ± 2, the assumption which is imposed in the Morales-Ramis theory is wider than ours for proving the non-integrability.

Class of functions Our function class of first integrals is bigger. We prove the non-existence of first integral which is *meromorphic as a real function* in $\mathbb{R}^2 \times (\mathbb{R}^2\setminus\{(0,0)\})$, while M-R theory prove the non-existence of first integrals which is *meromorphic as a complex function*. Moreover only our class of functions allows essential singularities at the exceptional points: $q = 0, q = \infty, p = \infty$.

Proof methods Proofs are quite different. Our proof is simpler and based on dynamics (the behavior of stable and unstable manifolds), the proof of Morales-Ramis theory is far from the theory of the dynamics since that is based on the
complex analysis and the differential Galois theory.

Acknowledgement The author is supported by the Sumitomo Foundation, Grant for Basic Science Research Projects No. 111153.

References

[1] Arnoł'd, V. I., *Mathematical Methods of Classical Mechanics*, Springer, 2nd ed. 1989.

[2] Bruns, H., Über die Integrale des Vielkörper-Problems, *Acta Math.*, 1887, vol. 11, no. 1-4, pp. 25–96.

[3] Kovalevskaya, S., Sur Le Problème De La Rotation D’Un Corps Solide Autour D’Un Point Fixe, *Acta Math.*, 1889, vol. 12, no. 1, pp. 177–232.

[4] Poincaré, H., *New methods of celestial mechanics*. Vol. 1. American Institute of Physics, 1993.

[5] Ziglin, S. L., Bifurcation of Solutions and the Nonexistence of First Integrals in Hamiltonian Mechanics. I. *Funktsional. Anal. i Prilozhen.*, 1982, vol. 16, no. 3, pp. 30-41, 96.

[6] Ziglin, S. L., Bifurcation of Solutions and the Nonexistence of First Integrals in Hamiltonian Mechanics. II. *Funktsional. Anal. i Prilozhen.*, 1983, vol. 17, no. 1, pp. 8–23.

[7] Yoshida, H., A Criterion for the Non-existence of an Additional Integral in Hamiltonian Systems with a Homogeneous Potential, *Physica*, 1987, vol. 29D, no. 1-2, pp. 128–142.

[8] Morales-Ruiz, J. J., *Differential Galois Theory and Non-Integrability of Hamiltonian Systems*, Birkhaeuser Basel, 1999.

[9] Morales-Ruiz, J. J., and Ramis, J. P., A Note on the Non-Integrability of Some Hamiltonian Systems with a Homogeneous Potential, *Methods Appl. Anal.*, 2001, vol. 8, no. 1, pp. 113–120.

[10] McGehee, R., Triple Collision in the Collinear Three-Body Problem *Invent. Math.*, 1974, vol. 27, pp. 191–227.

[11] Moeckel, R., Heteroclinic phenomena in the isosceles three-body problem, *SIAM J. Math. Anal.*, 1984, vol. 5, no. 5, 857–876.

[12] Shibayama, M., Yagasaki, K., Heteroclinic connections between triple collisions and relative periodic orbits in the isosceles three-body problem. *Nonlinearity*, 2009, vol. 22, no. 10, 2377–2403.
[13] Yoshida, H., Existence of Exponentially Unstable Periodic Solutions and the Non-Integrability of Homogeneous Hamiltonian Systems, *Physica* 1986, vol. 21D, no. 1, pp. 163–170.

[14] Sansaturio, M. E., Vigo-Aguir, I., and Ferrándiz, J. M., Non-Integrability of Some Hamiltonian Systems in Polar Coordinates. *J. Phys. A: Math. Gen.*, 1997, vol. 30, no. 16, pp. 5869–5876.