SKÚSENOSTI Z TESTOVANIA TRATE PRE OVEROVANIE TEORETICKÝCH MODELOV

EXPERIENCE IN RAILWAY TRACK TESTING FOR VALIDATION OF THEORETICAL DYNAMIC ANALYSIS

Príspevok prezentuje niektoré experimentálne prístupy dynamického testovania konštrukcie trate. Charakteristiky závislostí zataženie - priehyb trate sú dôležité pri práci s trate, posuzovanie prevádzkyschopnosti trate, ale aj ako vstupné dáta pre počítačovú simuláciu dynamickej odcvy trate a dynamické interakcie vozidlo/trat. Výsledky teoretických analýz dynamiky trate musia byť zvážované a porovnavané so získanými experimentálnymi výsledkami. Prezentované výsledky testovania trate pre overovanie modelových dynamických modelov poskytujú užitočné údaje kvalitatívnej povahy pre hodnotenie dynamického chovania konštrukcie železničného zvršku.

1. Úvod

Zavádzanie vyšších prevádzkových rýchlostí a vyšších nápravových zatažení kolajových vozidiel je výsledkom prirodzeného vývoja v železničnej doprave a tento trend bude zrejme pokračovať ďalej. V tomto kontexte je nutná úzka spolupráca stavebných inžinierov podieľajúcich sa na riešení problému dynamiky sústavy vozidlo/trat. Konštrukcia železničnej trate musí vykazovať vysoký stupeň presnosti jej geometrického usporiadania a tomu odpovedajúci stupeň údržby. Nové kolajové vozidlá, najmä pre prevádzku zvýšenými rýchlosťami, nesmú generovať veľké dynamické sily. Prevádzka s vysokými rýchlosťami, resp. sťažkými vozidlami musí byť zaistená na vysoké nároky bezpečnosti a odpovedajúcim normám komfortu jazdy.

Základným krokom riešenia naznačených problémov je poznanie dynamickej interakcie vozidlo/trat, hodnotenie dynamického chovania komponentov konštrukcie trate (kolajníc, podvalov, štrkového lôžka, systémov pružného upevnenia) a toho, ako prevádzku zváženého rýchlostí, nesmú generovať velké dynamické sily. Prevádzka s rýchlosťami musí byť zainteresovaného na vysokých úrovniach bezpečnosti a odpoveďom normám komfortu jazdy.

S týmto účelom bol na našom pracovisku vypracovaný program teoretického a experimentálneho výskumu dynamického chovania vozidlo/trat, ktorý obsahuje:

- Rozvoj teoretických metód riešenia a matematických výpočtových modelov.
- Počítačovú simuláciu dynamického interakcie vozidlo/trat a predpoveď dynamických sil, deformácií a napätostí v konštrukcii zvršku a železničného spodku.
- Merania v trati a experimentálne overovanie teoretických modelov.

The objective of this paper is to present some experimental approaches in dynamic testing of the railway track structure. The load-deflection track characteristics are particularly important in the design, in the evaluation of serviceability of concrete-sleepers tracks, and to improving data for computer modelling of the track dynamic behaviour and the dynamic vehicle/track interaction analyses. Thus, results of theoretical dynamic analyses of the track structure must be verified and compared with obtained experimental results. The herein presented track testing for validation of dynamic analyses can give many useful indications concerning the evaluation of the superstructure behaviour.

1. Introduction

The commercial necessity for higher speed and greater axle loads has been established and this trend will probably continue. In this context, close cooperation between civil and mechanical engineers is essential. Track must have a high standard of alignment and maintenance quality must be improved accordingly. New vehicles, particularly those for high-speed operation, must not generate excessive track forces. These high speeds or heavily laden vehicles must operate with high levels of safety and with existing or improved standards of comfort.

The basic step for solving the indicated problems is identification of dynamic interaction vehicle and track structure and a prediction of the dynamic behaviour of the track components (rails, sleepers, ballast, fastening systems etc.) and their long term behaviour. With this purpose a program of theoretical and experimental works in our workplace studying the interaction of vehicle and track has been undertaken and it comprises:

- Development of theoretical methods and mathematical models
- Computer simulation and calculations to predict dynamic forces, deformations and stresses in the superstructure and substructure
- In situ measurements on track structure and experimental validation of the theoretical models

* Prof. Ing. Milan Moravčík, CSc, Department of Structural Mechanics, Faculty of Civil Engineering, University of Žilina, Komenského 52, 010 26 Žilina, Slovak Republic.
Obr. 1. Výpočtové modely trate vo vertikálnom smere
Fig. 1 Models of track structure in vertical direction
Static and dynamic laboratory tests for the track structure members (sleepers, fastening systems, pads, sleeper ballast interaction etc.).

A number of quasi-static and dynamic computer models have been developed for the track structure behaviour under vertical and horizontal loads which include either separate components representing rails, fasteners, sleepers, and subgrade or total characteristics of the track. In the standard track analysis, the rail has been modelled as an elastic beam on an elastic Winkler foundation. At present, the Finite Elements Approach (FEA) is applied and the track (rail) is modelled as an elastic beam on the discrete supports. The resulting equations of motion of rail are

\[
[m][\ddot{v}] + [c][\dot{v}] + [k][v] = [P]
\]

where \([m],[c],[k]\) are the mass, damping and stiffness matrices, and \([v]\) is the nodal displacement vector.

In this notation a general set of equation for the description of the response of a track structure may be written analogous of those of a single-degree of freedom structure. Time domain solution of the problem is presented in [4, 5], where the numerical algorithm consisting of the finite element procedure to model the track structure and the time-step integration to calculate the response.

Figure 1 shows the used physical modelling of the track component in vertical direction corresponding to the application of the FEA, Eq. (1). The mechanical properties of track structure are modelled by a set of springs and dampers in one or two layers, see Fig. 1.

The characteristics of springs and dampers can be determined by the laboratory load tests of track components, or the field measurement in the typical track condition. The load - deflection track characteristics are particularly important in the design, use of modern concrete-sleepers track, and to provide data for computer modelling of the track dynamic behaviour and the dynamic vehicle/track interaction. Thus, the theoretical dynamic analyses of track structure can be compared with the gained experimental results. The track testing presented herein for validation of theoretical dynamic analysis can give many useful indications concerning the evaluation of superstructure performances.

The objective of this study is just the signal analysis of track structure at passing trains and investigation of what information can be obtained from the measurement and analysis of response. The dynamic deflection and vertical acceleration time histories give a base information about overall characteristics of dynamic response of the track. The frequency analysis gives the additional helpful and comprehensive information about a vibration of track. The paper presents just some approaches and results in the vertical dynamic testing of railway track, both the mid frequency domain and a higher frequency domain, 0 - 800 Hz.
Synchrónne meranie zrýchlenia akcelerometrami na koľajnici, synchrónne meranie priehybov koľajníc a podvalov pomocou merania dynamickej odozvy trate:

In our workplace two techniques for the dynamic response of trains. Results of these measurements may be used to assess the short-term dynamic behaviour of the track at an observed section and to give the state parameters of the vehicle/track system in certain time.

In this section, some experimental practices and some obtained results will be shown to demonstrate the dynamic behaviour of track structure - the rails, the sleepers, and the ballast respectively, at passages of trains. Results of these measurements may be used to assess the short-term dynamic behaviour of the track at an observed section and to give the state parameters of the vehicle/track system in certain time.

In our workplace two techniques for the dynamic response of the track structure are applied:

- The deflection measurement of the rail, the sleepers using the displacement transducers set with the rail and the sleepers.
- The acceleration measurement using accelerometers set with the rail, the sleeper and with the ballast.

Arrangement of the vertical displacement transducers of Bosh type and accelerometers of KS 50, BK 4500, and BK 3806 type and the corresponding block diagram are shown in Fig. 3. Moving vehicles generate deflection, stresses, and forces in the track components (rails, sleepers, ballast) that are generally greater than those caused by the same vehicle load applied statically or moving at low speed. The dynamic amplification δ generally has a stochastic character and can be defined as a ratio of the maximum dynamic deflection of a quantity Y_{dyn} (Y = rail deflection v_R, sleeper deflection v_S) to the static deflection of a quantity Y_{stat}.

\[
\delta = \frac{Y_{dyn}}{Y_{stat}}
\]

The passage of each wheelset induces a peak of the observed quantity Y_{dyn} and the results may be treated statistically. Thus, histograms can be constructed and exploited for statistic expected values of the dynamic coefficient for the rail deflection v_R and the sleeper deflection v_S.

Accuracy of measurement of the relative deflections (transducers D_R and D_S in Fig. 2) of the rail and the sleepers in practice is not easy. The fundamental difficulty is fixed datum against which the deflections are measured. When a train passes the measured place, the ballast and ground nearby the track deflects and vibrates, so that we do not have a stable platform for measurement. Acceptable results have been obtained using the displacement measuring transducers of

![Diagram](image)

Fig. 2 Feedback between dynamic and long term track behaviour
Výsledky merania sa získali použitím snímačov priehybu Bosh osadených na tuhých 6 m dlhých ocelových konzolách, fixovaných v pieskovom lôžku na dĺžke 2 m. Hodnoty priehybov v_R a v_S získané meraním dávajú priamo dynamický súčiniteľ δ prejazdu lokomotívy a charakteristických podvozkov vagónov v meranom mieste trate.

Použitie snímačov zrychlenia (akcelerométry AR, AS, AB na obr. 3) na meranie kmitania komponentov zvršku je atraktívne, nakoľko nevyžaduje pevnú meraciu základňu.

2.1 Dynamické priehyby koľajnice a podvalu

Skutočné prevádzkové zataženie trate zahŕňa postupnosť opakovaných dynamických impulsov, ktoré všetky závisia od Bosh type that made measurement against a fixed 6 m long console beam imbedded in 2 m long sand bed. The obtained values of the vertical displacements can be used to determine the dynamic amplification δ resulting from the passage of railway vehicles (locomotive and characteristic coach bogies) over the tested track section.

Using accelerometers (transducers AR, AS, AB in Fig. 3) to measure the dynamic track response (vibration of the track components) is very attractive, since no fixed datum is required and different frequency response can also be measured.

2.1 Rail and sleeper dynamic deflections

The actual loading of a track line section will consist of a mix of many different wheel loads, which are defined by the individual
Zmeny týchto parametrov majú za následok zmenu v odozve a v rozdeleňi dynamického zataženia a tiež zmenu rozdelenia príchynov koľajnice a podvalov. Dynamické príchyny koľajnice a podvalov v danom tratovom úseku závisia od:

car weights, speed, track quality, etc. Variations of these parameters will result in a variation in the response and in a distribution of dynamic loads and equally corresponding distribution of the rail and sleeper deflections. Rail and sleeper dynamic deflections at each individual track section depend, in general on:

Obr. 4. Časový priebeh dynamických príchynov koľajnice a podvalov: • prejazd celého vlaku • prejazd lokomotívy a prvého vozňa
Fig. 4 Time domain representation of the rail and sleeper dynamic deflection - passenger train: • passage of the whole train • passage of the locomotive and the first coach.
2. Zrýchnenia kolajnic a podvalov

Kmitanie trate pri prejazde vlakov môže byť popísané vzhľadom na interaktívne sily, zrýchlenia, rýchlosti alebo pohyby trate obyčajne v časovej oblasti. Táto dynamická odvetvia trate vo vertikálnom smere má charakteristický priebeh, obr. 4. Z amplitúd dynamických priehybov kolajnic a podvalov možno hodnotiť a oceňovať:
- Dynamicky sučítiteľ, vztah (2).
- Približné hodnoty vertikálnych dynamických sil, vzťah (3).
- Stupeň poškodenia, degradácie konštrukcie zvršku.
- Vplyv rýchlostí na dynamickú odozvu.
- Funkčnosť systému pružného upevnenia kolajnic.

Dynamické priehyby kolajnic a podvalov priamo súvisia s ich dynamickým zatažením. Aplikáciou základných postupov lineárnej mechaniky možno získať približné hodnoty dynamických sil

\[P_{dyn} = P_{st} \cdot \frac{V_{dyn}}{V_s} = k \cdot V_{dyn} \]

(3)

kde: \(P_{st} \) je vertikálna tuhosta trate (N/m²) v sledovanom úseku.

Vzhľadom na zataženie konštrukcie trate môžeme všeobecne konštatovali, že kolajnice a podvaly sú zatažované opakovaným dynamickým zatažením rôzového charakteru s charakteristickým tvorom, podobným priehybohm na obr. 4. Z amplitúd dynamických priehybov kolajnic a podvalov možno hodnotiť a oceňovať:
- Dynamicky sučítiteľ, vztah (2).
- Približné hodnoty vertikálnych dynamických sil, vzťah (3).
- Stupeň poškodenia, degradácie konštrukcie zvršku.
- Vplyv rýchlostí na dynamickú odozvu.
- Funkčnosť systému pružného upevnenia kolajnic.

2.2. Zrýchnenia kolajnic a podvalov

Kmitanie trate pri prejazde vlakov môže byť popisané vzhľadom na interaktívne sily, zrýchlenia, rýchlosti alebo pohyby trate obyčajne v časovej oblasti. Táto dynamická odvetvia trate vo vertikálnom smere má charakteristický priebeh, obr. 6 - 10, ktorý môže byť charakterizovaný ako nestacionárny náhodný signál s časovo premennou strednou kvadratickou hodnotou.

Transformácia takýchto signálov do frekvenčnej oblasti dáva spektra zrýchlení, ktoré dajú informácie o vertikálnom kmitaní kolajnic a podvalov, ako aj obraz o koncentrácií energie kmitania a jej rozdielení ako funkcie frekvencie. Naše merania potvrdili, že tieto deje zahŕňajú širokú frekvenčnú oblasť. Obr. 6 - 10 prezentujú takéto signály, ktoré musia byť adekvátny analizované. Pokiaľ tradičná spektrálna analýza založená na Fourierovej transformácii (FT), alebo digitálnom filtrovaní je dobre aplikovateľná na stacionárne signály, analýza nestacionárnych signálov musí zohľadňovať spektrálne informácie v čase. Jednou z vhodných techniek, ktorá bola aplikovaná pri analýze záznamov zrýchlení kolajnic a podvalov, je technika vyberu úsekov (window function), ktorou sa vyberá časť záznamu zahŕňajúce charakteristické javy celkového záznamu.

3. Analýza zrýchlenia trate vo vertikálnom smere

Jadrom analýzy získaných záznamov zrýchlenia kmitania je ich frekvenčná analýza, ktorá dáva základné informácie o frek-
venčnej skladbe kmitania trate. Zaznamenané časové priehyby zrychlenia sú diskretizované na časové postupnosti

\[[a(n)]: \ 0 \leq n \leq N - 1 \]

(4)
kde: \(N \) je dĺžka diskrétnych hodnôt - dĺžka záznamu

Analyzátor typu BK 2032 [3], ktorý bol použitý pre analýzu získaných záznamov, vykonáva Diskrétnu Fourierovu transformáciu (DFT) pomocou algoritmu verzie Radix 2 (\(N = 2^n \)), kde \(m = 7, 8, 9, 10, 11 \), ktorým prislúcha počet vzoriek \(N = 128, 256, 512, 1024, 2048 \). Algoritmus DFT pre vybraný počet vzoriek \(N \) dáva idéntický výsledok ako FFT tohto záznamu.

Každá časová funkcia sa najskôr transformuje do komplexného spektra. Stredné kvadratické hodnoty amplitúd sú priemerované, aby sa získali antospektrá analyzovaného signálu. Všetky ďalšie funkcie sa získavajú z týchto antospektier, resp. zo vzájomného spektra dvoch synchronných záznamov, najmä:

- Okamžité spektrá.
- Zosilnené spektrá.
- Frekvenčná a impulzová odozva.
- Koherencia.
- Korelácia apod.

Príklady podrobnej analýzy použitím analyzátoru BK 2032 [3] sú prezentované na obr. 6 - 10. Pravdepodobne najdôležitejšia funkcia praktického významu je frekvenčná odozvová funkcia

\[[a(n)]: \ 0 \leq n \leq N - 1 \]

(4)

where the sequence of \(N \) discrete samples is a length of record.

The used BK Analyser Type 2032 [3] develops Fast Fourier Transformation (FFT) as a calculation procedure for obtaining the Discrete Fourier Transformation (DFT). The advantages of the FFT can be achieved in a variety of ways but a particular version of a Radix 2 algorithm (\(N = 2^n \)) is used in BK Analyser, where \(m = 7, 8, 9, 10, 11 \), and corresponding number of discrete samples \(N = 128, 256, 512, 1024, 2048 \). As has just been shown, the FFT algorithm produces identical results to direct application of the DFT and thus, the analysed record and results are a finite number \(N \) representing one period of an infinitely long periodic signal.

For each signal, the time function is first transformed to a complex spectrum. The squared amplitudes of a number of such instantaneous spectra are next averaged to give the autospectrum for that particular signal. All other functions in the diagram are calculated on these two autospectra (channel „A“ and channel „B“) and the cross spectrum:

- Instantaneous spectrum
- Enhanced spectrum
- Frequency and impulse response
- Coherence
- Correlation, etc.

Figures 6 - 10 show examples of more comprehensive analysis by using the BK Analyser Type 2032 [3]. Probably the most important function of these is Frequency Response Function (FRF), that represents the ratio of output \(b(t) \) to input \(a(t) \) in the frequency domain, and thus characterise physical system. In our case it is a resilient fastening system

Obr. 5. Aplikácia FRF na systéme pružného upevnenia kolajnica - podval
Fig. 5 Application of the FRF to the fastening system rail/sleeper
Keď mechanický systém je charakterizovaný funkciou impulzovej odozvy $h(t)$, potom odozva $b(t)$ sa získala konvolučnou $a(t)$ a $h(t)$:

$$ b(t) = a(t) * h(t) $$ \hskip 5em (5)

Aplikáciou konvolučného teóremu dostaneme

$$ B(f) = A(f) \cdot H(f) $$ \hskip 5em (6)

kde: $H(f)$ je Fourierová transformácia $h(t)$. FRF potom získame za pomernu

$$ H(f) = \frac{B(f)}{A(f)} $$ \hskip 5em (7)

V praktickej analýze sa vyššie uvedené vzťahy využívajú aj v modifikovanej forme:

$$ H_1(f) = \frac{B(f)}{A(f)} \cdot A^*(f) = \frac{G_{ah}(f)}{G_{at}(f)} $$ \hskip 5em (8)

alebo:

$$ H_2(f) = \frac{B(f)}{A(f)} \cdot B^*(f) = \frac{G_{bh}(f)}{G_{bt}(f)} $$ \hskip 5em (9)

V zosilnenom analytickej signále H_1 sa získá ako pomern zosilnených signálov $G_a(k)$ a $G_T(k)$:

$$ H_1(k) = \frac{G_a(k)}{G_T(k)} $$ \hskip 5em (10)

Priejady analýzy vertikálneho zrychlenia kmitania kolajnic a podvalov s využitím B&K analyzátora typu 2032 [3]. sú ukázané na obr. 6 - 10.

4. Záver

Dynamické chovanie kolajnic, podvalov a systému pružného upevnenia bol analizovaný ako proces odozvy týchto komponentov pri všeobecne neznámom buďení pri prejazde vlakov. Získané záznamy umožňujú určovať dominančné frekvencie na kolajnicách, podvalov a v štrkovom lôžku a tým hodnotiť dynamické vlastnosti týchto konštrukčných prvkov trate. Hlavné zdroje vertikálnych interakcií s kolajnicami sú všeobecne známe. Tieto dynamické sily sú prenásané konštrukciou trate, pričom poškodzujú jej komponenty.

Získané záznamy vertikálnych zrychlení komponentov trate majú typicky nestacionárny priebeh - predstavujú signály s časovo premenou strednou kvadratickou hodnotou, ktoré musia byť adekvatne analizované. Spektrál získané analýzou týchto signálov zohľadňujú širokú oblasť frekvencií, ktoré všeobecne závisia od:

rail/sleeper, that represents one of the most important elements in the permanent way structure, see Fig. 5.

When the system is characterised by its impulse response $h(t)$, and the output signal $b(t)$ is the convolution of the input signal $a(t)$ with function $h(t)$, thus:

$$ b(t) = a(t) * h(t) $$ \hskip 5em (5)

By the convolution theorem, it follows that

$$ B(f) = A(f) \cdot H(f) $$ \hskip 5em (6)

where $H(f)$ is the Fourier transform of $h(t)$. Thus, the FRF can be obtained from:

$$ H(f) = \frac{B(f)}{A(f)} $$ \hskip 5em (7)

In practice, there are found to be advantages in modifying Eqn. (7) in various ways, for example:

$$ H_1(f) = \frac{B(f)}{A(f)} \cdot A^*(f) = \frac{G_{ah}(f)}{G_{at}(f)} $$ \hskip 5em (8)

or a version known as $H_2(f)$:

$$ H_2(f) = \frac{B(f)}{A(f)} \cdot B^*(f) = \frac{G_{bh}(f)}{G_{bt}(f)} $$ \hskip 5em (9)

In Dual Signal Enhancement mode, H_1 is the complex ratio of the Enhanced Spectra $G_E(k)$ and $G_T(k)$, that is:

$$ H_1(k) = \frac{G_E(k)}{G_T(k)} $$ \hskip 5em (10)

Figures 6 - 10 show examples of more comprehensive analysis by using the B&K Analyser Type 2032 [3].

4. Conclusions

The dynamic behaviour of rails and sleepers under passage of the trains has been analysed in time and frequency domain. It is a process of determining the response of the track structure as a mechanical system due to same generally unknown excitation at passing trains. It enables distinct frequency components to be related to the rails, the sleepers, and the ballast and thus identify the dynamic structure of the track vibration and sources of the vibration, respectively. The major causes of increases in the vertical force between the rail and the wheel and the major dynamic sources are generally known. These dynamic forces are transmitted to the track structure, damage its components and can be appreciated indirect just by the dynamic response under passage of trains.

The measured vertical acceleration represents typical non-stationary signals with the time-varying mean square value that must be adequately analysed. The corresponding spectra of these signals cover a wide range of frequencies. Dominant frequencies are depending in general on:

* the track characteristics (track geometry, quality, stiffness, and track structural components).

KOMUNIKÁCIE / COMMUNICATIONS 1/99 • 47
Obr. 6. Analýza vertikálneho zrychlenia koľajnica a podvalu - prejazd celého osobného vlaku

Fig. 6 Analysis of the vertical rail and sleeper acceleration - passage of the whole passenger train

Obr. 7. Analýza prejazdu lokomotívy rýchlosť 96 km/h

Fig. 7 Analysis of the locomotive passage, speed 96 km/h
Obr. 8. Analyza prejazdu 1. podvozku lokomotívy, rýchlosť 96 km/h
Fig. 8 Analysis of the 1st locomotive bogie passage, speed 96 km/h

Line: Žilina - Varsa / Passenger train / 6.97 / v = 96 km/h ~ 26.6 m/s
Passage of the characteristic coach bogies

Trials:
- BK 4500, f = 2000 Hz / RAIL
- BK 4500, f = 2000 Hz / SLEEPER

Obr. 9. Analyza prejazdu charakteristických podvozkov vagónov, rýchlosť 96 km/h
Fig. 9 Analysis of the characteristic coach bogies passage, speed 96 km/h
Line: Žilina - Varia / Passenger train / 6. 9'97 / 96 km/h = 26.6 m/s
Passage of the characteristic coach begins.

Transducer: BK 4500, f = 2000 Hz / RAIL

Transducer: BK 4500, f = 2000 Hz / SLEEPER

Obr. 10. Analýza prejazdu podvozka vagóna, rýchlosť 96 km/h
Fig. 10 Analysis of the one characteristic coach bogie passage, speed 96 km/h
• characteristics of the track (geometrical, quality, height of the track, type of construction of the track)
• characteristics of the rail vehicles (unsprung, unprunged mass of the wheelset)
• geometric parameters of the track (loading, speed, braking)
• and in our measurements they have reached levels:
• rail acceleration 0 - 400 ms\(^{-2}\) and more in extreme cases
• sleeper acceleration 0 - 60 ms\(^{-2}\).

The frequency range of particular interest of the track structure can be taken above about 20 Hz, where track dynamics become increasingly important and vehicle dynamics less important. Problems with the running surfaces of wheel and rail and with track components are caused primarily by vertical forces up to about 1000 - 1500 Hz. Forces transmitted through the track structure into the ground structure are most significant up to frequencies about 500 Hz. Problems of vehicle dynamics occur largely at frequencies of less than 20 Hz.

Frequency Response Functions obtained from the auto and cross spectra of analysed signals give a picture about vibration of track components and about the transfer of dynamic forces by track components. They confirm that dynamic forces are transmitted through the track in particular by the higher frequency components:
• 0 - 400 Hz for locomotives
• 0 - 200 Hz for bogies of coaches.

Comparison results of the dynamic response measurements with the theoretical ones showed that the track response can be predicted by the linear interaction vehicle/track mathematical model fairly well, but for real track conditions the comprehensive information about the reliability of superstructure and the real dynamic track behaviour better results gives the properly realised response measurement.

References
[1] RANDALL, R. B., TECH, B.: Frequency analysis, B&K, 1987.
[2] TUMA, J.: Spracování signálu získaných z mechanických systémů řízením FFT, Sdelovací technika, Praha 1997.
[3] Dual Channel Signal Analyser Type 2032, B&K Manual.
[4] MORAVČÍK, M.: Dynamic interaction vehicle-track for low and mid frequencies, Proceedings 60\(^{th}\) Anniversary of the Faculty of Civil Engineering at the STU Bratislava, Vol.1, p. 59-64.
[5] MORAVČÍK, M., SICÁR, M.: Effect of the vertical track stiffness on its dynamic response. Engineering Transaction, PAN Warsaw (in printing).
[6] MORAVČÍK, M.: Experience in railway track testing for validation of theoretical dynamic analysis. Procc. Communications on the edge of the millenniums, EDIS Žilina 1998, p. 381-386.