Abstract. - The strictly nonrelativistic isospectral scheme based on the general Riccati solution and Darboux transformation function corresponding to excited states is presented on the following examples: the harmonic oscillator, the square well, and the hydrogen atom.

PACS 11.30.Pb - Supersymmetry.

Supersymmetric quantum mechanics (SUSY QM) is based on Riccati equations of the form

$$\frac{dy}{dz} + y^2 = \tilde{V}_1(z) + \epsilon ,$$

where $\tilde{V}_1(z)$ is the initial Schrödinger potential and $\epsilon < 0$ is the so-called factorization energy that for convenience we shall absorb in the potential, i.e., we shall redefine the initial potential as $V_1 = \tilde{V}_1 + \epsilon$. The SUSY partner Riccati equation will be

$$-\frac{dy}{dz} + y^2 = V_2(z) ,$$

where the partner potential $V_2(z)$ is Darboux ‘isospectral’ with respect to $V_1(z)$, i.e.

$$V_2(z) = V_1(z) - 2D^2[\ln(\psi(z))] ,$$

where $D = \frac{d}{dz}$ and ψ is a particular solution of the Schrödinger equation $D^2\psi - V_1\psi = 0$. The only difference between the spectra of V_2 and V_1 is that the energy level corresponding to the wavefunction $\psi(z)$ used as transformation function is missing from the spectrum of V_2.

1

International Center for Relativistic Astrophysics, Piazzale della Repubblica 10, 65100 Pescara, Italy
2 Brazilian Center for Research in Physics, R. Dr. Xavier Sigaud 150 Urca, 22290-180 Rio de Janeiro RJ, Brazil
3 Instituto de Física, Univ. de Guanajuato, Apdo Postal E-143, León, Gto, Mexico
In 1984, Mielnik introduced a SUSY QM scheme based on the general Riccati solution with application to the harmonic oscillator case \[2\]. In the latter approach, one gets a one-parameter family of Darboux strictly isospectral potentials with respect to \(V_1 \) given by

\[
V_1(z; \lambda) = V_1(z) - 2D^2[\ln(I(z) + \lambda)] ,
\]

where \(I(z) = \int_I^z \psi^2(x)dx \). Moreover,

\[
\psi(z, \lambda) = \frac{\sqrt{\lambda(\lambda + 1)} \psi(z)}{\int_I^z \psi^2(x)dx + \lambda}
\]

is the modulated Schrödinger mode implied by this scheme in which the Riccati integration constant \(\lambda \) is kept as a free parameter. The inferior limit \(l \) of the integral \(I(z) \) is zero for the radial problems, \(-\infty\) for the full-line problems, and \(-L/2\) for the square well case (see below). The factor \(\sqrt{\lambda(\lambda + 1)} \) is a normalization constant of the strictly isospectral SUSY modes that interestingly does not depend on the quantum numbers. In general, to get continuous solutions \(\psi(z, \lambda) \), one should avoid a zero denominator. This leads to conditions on the possible values of \(\lambda \). On the other hand, if one works with polynomial solutions, which is the usual case for the discrete spectrum of an exactly solvable quantum problem, there will be singularities in the logarithmic derivative of \(\psi \). SUSY partner potentials based on the \(n' \)th excited state of a Schrödinger discrete spectrum problem split in \(n+1 \) branches separated by the \(n \) singularities of the logarithmic derivative. Such problems have been considered by Robnik \[3\].

In the following, we focus on Robnik’s results from the perspective of the strictly isospectral scheme, namely instead of working with Eq. \((3)\) as Robnik did, we make use of Eqs. \((4)\) and \((5)\). This is also equivalent to saying that we work with factorization energies \(\epsilon = \epsilon_n \) in Eq. \((1)\) and \(\psi = \psi_n \) as transformation function in Eq. \((4)\), where \(\epsilon_n \) is an eigenvalue of the discrete spectrum of the exactly solvable problem and \(\psi_n \) is the corresponding eigenfunction. Our applications are the following.

\(\text{(i) The one-dimensional harmonic oscillator} \)

The initial potential is

\[
V_1(z) = z^2 - (2n + 1) ,
\]
for \(n \in 0, 1, 2, \ldots \). The wave functions are given in terms of the Hermite polynomials in the form:

\[
\psi_n = \frac{1}{\sqrt{2^{n!}\sqrt{\pi}}} H_n(z) \exp(-z^2/2)
\]

We present plots of Eqs. (4) and (5) corresponding to \(n = 2 \) and \(n = 3 \) in Figs. 1 and 2, respectively. The examination of the plots shows that there are no singularities in the one parameter family of potentials for the allowed range of the \(\lambda \) parameter. Instead, there are \(n + 1 \) wells, where \(n \) is the number of nodes of the excited state on which the strictly iso spectral SUSY construction is based. Thus, we have at our disposal a definite method of producing multiple-well oscillator potentials of exactly solvable type.

(ii) One-dimensional square well of length \(L \)

The initial potential is:

\[
V_1(z) = \begin{cases}
-\frac{\pi^2 n^2}{L^2} & \text{for } -L/2 \leq z \leq L/2, \\
\infty & \text{otherwise},
\end{cases}
\]

where \(n \) belongs to the set \(n = 1, 2, \ldots \). The wave functions within the well are:

\[
\psi_n = \sqrt{\frac{2}{L}} \cos\left(\frac{n\pi z}{L}\right) \quad \text{for odd } n,
\]

and:

\[
\psi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi z}{L}\right) \quad \text{for even } n.
\]

Plots of the strictly isospectral formulas for this case are given in Figs. 3 and 4 for an odd case and an even case, respectively.

(iii) The three-dimensional Kepler problem

The initial potential is

\[
V_1(z) = -\frac{2}{z} + \frac{l(l+1)}{z^2} - \frac{4}{(n_r + l + 1)^2},
\]

for \(n_r \) from the set \(n_r = 0, 1, 2, \ldots \), and where the centrifugal barrier has been also included.
Figure 1: The strictly isospectral potential and the deformed wavefunction (multiplied by 10 for the sake of visualization) obtained using the \(n = 2 \) excited state of the harmonic oscillator as Darboux transformation function.
Figure 2: The strictly isospectral potential and the deformed wavefunction (with the same scale factor of 10) obtained using the $n = 3$ excited state of the harmonic oscillator as Darboux transformation function.
Figure 3: The strictly isospectral potential and the deformed wavefunction \(\times 10 \) obtained using the \(n = 1 \) excited state of the square well as Darboux transformation function.
Figure 4: The strictly isospectral potential and the deformed wavefunction \(\times 10 \) obtained using the \(n = 2 \) excited state of the square well as Darboux transformation function.
The radial wave functions to be used as Darboux transformation functions are

\[R_{nl} = -\frac{2}{n^2} \sqrt{\frac{(n-l-1)!}{2n[(n+l)!]^3}} z^{l+1/2} e^{-z/2} L_{n+l}^{2l+1}(z) \]

(12)

where \(z = 2r/n \) and the Bohr radius has been chosen as unit.

In Figs. 5–6 and 7–8 we present the result of the strictly isospectral construction based on the hydrogen radial wavefunctions \(R_{30} \) and \(R_{21} \), respectively. For the employed range of the \(\lambda \) parameter, there is a small strictly isospectral effect extending in the Rydberg region till about 20 Bohr radii. On the other hand, although not shown in the plots, we can report that in the \(z = 0 \) nuclear region the effect can be as big as 25%.

We recall that for this case a similar approach has been used by Fernández [4]. However, his procedure cannot be applied to the \(l = 0 \) cases, whereas the way we use the strictly isospectral Darboux scheme covers the full hydrogen spectrum.

Finally, we notice that it is still an open issue to what definite physical situation the strictly isospectral scheme does apply. There are hints in the literature [5] indicating that \(\lambda \) can be used as a measure of confining effects on the quantum spectra.
Figure 5: The percentual difference \(100\left(\frac{V_1(z; \lambda) - V_1(z)}{V_1(z)}\right)\) between the strictly isospectral Coulomb potential and the Coulomb potential when the hydrogen radial state \(R_{30}\) is used as Darboux transformation function for four values of the parameter \(\lambda\).
Figure 6: The difference between the probability densities $\psi^2(z; \lambda) - \psi^2(z)$ for the same case as in Fig. 5.
Figure 7: The difference between the strictly isospectral Coulomb potential and the Coulomb potential \(V_1(z; \lambda) - V_1(z) \) when the hydrogen radial state \(R_{21} \) is used as Darboux transformation function for the same four values of the parameter \(\lambda \).
Figure 8: The difference between the probability densities \(\psi^2(z; \lambda) - \psi^2(z) \) for the same case as in Fig. 7.
Acknowledgements

We would like to thank Prof. R. Ruffini for hospitality at the ICRA center in Pescara. RK aknowledges Brazilian CAPES foundation for a grant.

References

[1] Witten E 1981 Nucl. Phys. B, 188 513. For a review, see for example, Rosu H C, Short survey of Darboux transformations, Proc. “Symmetries in Quantum Mechanics and Quantum Optics”, Burgos, Spain, Sept. 21-24, 1998, edited by Ballesteros A et al., (Serv. de Publ. Univ. Burgos, Burgos, Spain, 1999) 301-315 (quant-ph/9809056)

[2] Mielnik B 1984 J. Math. Phys. 25 3387. For recent applications, see Rosu H C 1996 Phys. Rev. A 54 2571; 1997 Phys. Rev. E 56 2269; Rosu H C and Reyes M A 1998 Phys. Rev. E 57 4850

[3] Robnik M 1997 J. Phys. A 30 1287; Robnik M and Liu J chao_dyn/9703006. See also, Fernandez D J, Hussin V, Mielnik B 1999 Phys. Lett. A 244 309

[4] Fernández D 1984 Lett. Math. Phys. 8 337

[5] Monthus C, Oshanin G, Comptet A, Burlatsky S 1996 Phys. Rev. E 54 231. Boya L J, Rosu H C, Seguí-Santonja A J, Socorro J, Vila F J 1998 J. Phys. A 31 8835