New enumeration formulas for alternating sign matrices and square ice partition functions

Arvind Ayyer Dan Romik

February 17, 2012

Abstract

The refined enumeration of alternating sign matrices (ASMs) of given order having prescribed behavior near one or more of their boundary edges has been the subject of extensive study, starting with the Refined Alternating Sign Matrix Conjecture of Mills-Robbins-Rumsey [21], its proof by Zeilberger [27], and more recent work on doubly-refined and triply-refined enumeration by several authors. In this paper we extend the previously known results on this problem by deriving explicit enumeration formulas for the “top-left-bottom” (triply-refined) and “top-left-bottom-right” (quadruply-refined) enumerations. The latter case solves the problem of computing the full boundary correlation function for ASMs. The enumeration formulas are proved by deriving new representations, which are of independent interest, for the partition function of the square ice model with domain wall boundary conditions at the “combinatorial point” $\eta = 2\pi/3$.

1 Introduction

1.1 Alternating sign matrices

An alternating sign matrix (ASM) of order n is an $n \times n$ square matrix with entries in $\{0, 1, -1\}$ such that in every row and every column, the sum of the entries is 1 and the non-zero terms appear with alternating signs; see Figure [1] for an example. From this seemingly innocuous definition a uniquely fascinating class of objects arises: originally discovered by Mills, Robbins and Rumsey in connection with their study of Dodgson’s condensation method for computing determinants, ASMs have since been found to have deep connections to many other topics of interest in combinatorics and statistical physics. Some places where ASMs make an unexpected
appearance are: the square ice model (a.k.a. the six-vertex model) [19, 20, 25, 27]; totally symmetric self complementary plane partitions [16, 22]; descending plane partitions [21]; domino tilings [11]; and the $O(1)$ loop model in a cylindrical geometry [9, 24].

1.2 Enumeration of alternating sign matrices

The current paper will be focused on one particular aspect of the study of ASMs, namely the problem of enumerating various naturally-occurring sets of ASMs of some fixed order n. This is a problem with a venerable history, starting with the seminal paper [21] of Mills, Robbins and Rumsey. Having defined ASMs and discovered the role that they play in the definition of the λ-determinant, a natural generalization of matrix determinants, Mills et al. considered the problem of finding the total number A_n of ASMs of order n. Based on numerical observations, they conjectured the formula

$$A_n = \frac{1! 4! 7! \cdots (3n - 2)!}{n!(n+1)! \cdots (2n-1)!} = \prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!} = \prod_{j=0}^{n-1} \frac{(3j+1)}{(2j)} = n^{n-1} \prod_{j=0}^{n-1} \frac{(3j+1)!}{(2j)!(n+j)!}.$$

(1.1)

Another natural enumeration problem concerned the so-called refined enumeration of ASMs. It is based on the trivial observation (an immediate consequence of the definition of ASMs) that the top row of an ASM contains a single 1 and no -1s. The position of the 1 in the top row is therefore an interesting parameter by which one may refine the total enumeration. Thus, for $1 \leq k \leq n$ Mills et al. defined

$$A_{n,k} = \# \text{ of ASMs of order } n \text{ with 1 in position } (1,k),$$

and conjectured that

$$A_{n,k} = \binom{n+k-2}{k-1} \frac{(2n-k-1)!}{(n-k)!} \prod_{j=0}^{n-2} \frac{(3j+1)!}{(n+j)!} = \prod_{j=0}^{n-1} \frac{(3j+1)}{(2j)} = n^{n-1} \prod_{j=0}^{n-1} \frac{(3j+1)!}{(2j)!(n+j)!}.$$

(1.2)
The conjectures (1.1) and (1.2) became the subject of intensive study by combinatorialists. The former became known as the Alternating Sign Matrix Conjecture, and the latter as the Refined Alternating Sign Matrix (RASM) Conjecture; both were eventually proved by Zeilberger [26, 27] (in the case of (1.2), building on techniques introduced by Kuperberg in [20]). A readable account of these developments can be found in the book by Bressoud [6].

1.3 Doubly-refined enumeration and beyond

By symmetry, the observation mentioned above concerning the behavior of the top row of an ASM applies not just to the top row but also to the bottom row and to the leftmost and rightmost columns. This lead Mills et al. to consider a doubly-refined enumeration involving two parameters, one for the position of the 1 in the top row and another for the corresponding position in the bottom row. Thus, for $1 \leq i, j \leq n$ we may denote

$$A_{n,i,j} = \# \text{ of ASMs of order } n \text{ with 1 in positions } (1,i), (n,j).$$

Mills et al. did not conjecture an explicit formula for $A_{n,i,j}$. However, they discovered that a different family of objects, namely the so-called totally symmetric self-complementary plane partitions (TSSCPPs), had a two-parameter refinement which they conjectured [22] is also given by the same family of numbers $(A_{n,i,j})_{1 \leq i,j \leq n}$. This was proved in recent years by Fonseca and Zinn-Justin [16]. Also fairly recently, Stroganov [25] derived an explicit formula for these “top-bottom” enumeration coefficients, expressing them in terms of the singly-refined coefficients $A_{n,k}$. His result states that, for $1 \leq i \leq j \leq n$,

$$A_{n,i,j} = A_{n,j-i} + \sum_{k=1}^{i-1} D_n(k, j - i + k), \quad (1.3)$$

where

$$D_n(s,t) = \frac{1}{A_{n-1}} (A_{n-1,s}(A_{n,s+1} - A_{n,s}) + A_{n-1,s}(A_{n,t+1} - A_{n,t})).$$

(To be a bit more precise, Stroganov proved that the numbers $A_n(i,j)$ satisfy the recurrence relation $A_n(i+1,j+1) - A_n(i,j) = D_n(i,j)$ for all $1 \leq i,j \leq n$; this immediately implies (1.3) by summation.) Stroganov also considered another natural doubly-refined enumeration, the “top-left” enumeration of ASMs with prescribed behavior in the top row and left column. For $1 \leq i,j \leq n$ denote as above

$$A_{n,TL} = \# \text{ of ASMs of order } n \text{ with 1 in positions } (1,i), (j,1).$$
Stroganov proved that the top-left coefficients \((A_{n}^{TL}(i,j))_{i,j}\) are related to the top-bottom coefficients \((A_{n}^{TB}(i,j))_{i,j}\) via the relations

\[
\begin{align*}
A_{n}^{TB}(i,j) &= A_{n}^{TL}(i, j + 1) + A_{n}^{TL}(i + 1, j) - A_{n}^{TL}(i + 1, j + 1) \quad (i, j \geq 2), \\
A_{n}^{TL}(2, 2) &= A_{n-1}.
\end{align*}
\]

(1.4)

It is not difficult to invert these relations and therefore to obtain an explicit formula for \(A_{n}^{TL}(i,j)\):

\[
A_{n}^{TL}(i,j) = \begin{cases}
A_{n-1} & \text{if } i = j = 1, \\
0 & \text{if } i = 1 < j \text{ or } j = 1 < i, \\
\frac{(i+j-4)}{i-2} A_{n-1} - \sum_{p=1}^{i-1} \sum_{q=1}^{j-1} \frac{(i+j-2-p-q)}{(i-1-p)} A_{n}^{TB}(p, q) & \text{if } i, j \geq 2.
\end{cases}
\]

(The derivation of this identity from (1.4) involves an elementary manipulation of generating functions and is omitted; however, note that this very interesting formula does not seem to have appeared previously in the literature.)

A further development of the theory of refined enumerations of ASMs came with the papers [14], [19]. In [14], Fischer and Romik introduced a new family of doubly-refined enumeration coefficients, which we will call here the “top-two” (or “top-top”) coefficients, since they enumerate ASMs based on their behavior in the top two rows. Let

\[
A_{n}^{TT}(i,j) = \frac{1}{j - i + 1} \times \#\{M = (m_{i,j})_{i,j=1}^{n} \in \text{ASM}_{n} \mid m_{1,i} + m_{2,i} = m_{1,j} + m_{2,j} = 1\},
\]

where we use the self-explanatory notation \(\text{ASM}_{n}\) to refer to the set of ASMs of order \(n\) (the division by \(j - i + 1\) is used to factor out the additional condition \(m_{1,k} = 1\) that can be — but isn’t — imposed on the matrix for any \(i \leq k \leq j\); see [14] for more details.) Fischer and Romik studied the problem of finding a formula for \(A_{n}^{TT}(i,j)\). They managed to derive a system of linear equations satisfied for each \(n\) by the coefficients \((A_{n}^{TT}(i,j))_{i,j}\), which, modulo a reasonable conjecture on the invertibility of the system, could be used to express them explicitly as ratios of determinants by Cramer’s rule. They also conjectured a more explicit but very complicated formula expressing \(A_{n}^{TT}(i,j)\) in terms of a hypergeometric summation. Finally, in the
paper [19], Karklinsky and Romik derived a much simpler explicit formula. They proved that, for \(1 \leq i < j \leq n\),

\[
A_{n}^{TT}(i, j) = \sum_{p=0}^{n-j} \sum_{q=0}^{p} (-1)^{q} \binom{p}{q} E_{n}(i + q, j + p),
\]

where

\[
E_{n}(s, t) = \frac{1}{A_{n-1}} \left(A_{n-1,t}(A_{n,s+1} - A_{n,s}) - A_{n-1,s}(A_{n,t+1} - A_{n,t}) \right).
\]

(Note the similarity in the definitions of \(D_{n}(s, t)\) and \(E_{n}(s, t)\), which differ only by a single sign; it is also easy to check that \(E_{n}(s, t) = D_{n}(s, n - t)\) by using the symmetry \(A_{n,k} = A_{n,n+1-k}\).) Another proof of this formula using different methods was given shortly afterwards by Fischer [12].

Going beyond the doubly refined enumeration, Fischer and Romik started developing a theory for the “\(k\)-tuply refined” enumeration of ASMs with prescribed behavior in the top \(k\) rows. For each \(k \geq 1\), they defined a family of coefficients \((A_{n}^{Tk}(j_{1}, \ldots, j_{k}))_{1 \leq j_{1} < \ldots < j_{k} \leq n}\) that encode this enumeration (the correct way to do it is to think about ASMs as complete monotone triangles; see [14]), and conjectured a generalization of the system of linear equations proved to hold for the top-two doubly-refined coefficients. That conjecture was later proved by Fischer [12]. Recently, Fischer also derived additional linear equations relating the “top-left-bottom” and “top-top-bottom” families of triply-refined enumeration coefficients [13]. However, these results left open the problem of deriving explicit, closed-form formulas to compute these coefficients.

1.4 New results: triply- and quadruply-refined enumeration

Our goal in this paper is to extend the known results on enumeration of alternating sign matrices with prescribed behavior at one or more of their boundary edges, to fully take into account the joint behavior with respect to all edges, thus effectively completing the study of this type of boundary enumeration.

We consider the triply-refined and quadruply-refined enumerations for ASMs with prescribed behavior in three (resp. four) of their boundary rows/columns. The triply refined enumeration coefficients, which we will refer to as “top-left-bottom” coefficients, are given for any \(1 \leq i, j, k \leq n\) by

\[
A_{n}^{TLB}(i, j, k) = \#\left\{ M = (m_{i,j})_{i,j=1}^{n} \in \text{ASM}_{n} \mid m_{1,i} = m_{j,1} = m_{n,k} = 1 \right\}.
\]
Similarly, the quadruply-refined “top-left-bottom-right” enumeration coefficients are defined for $1 \leq i, j, k, \ell \leq n$ by

$$A_{n}^{\text{TLBR}}(i, j, k, \ell) = \# \left\{ (m_{i,j})_{i,j=1}^{n} \in \text{ASM}_{n} \mid m_{1,i} = m_{j,1} = m_{n,k} = m_{\ell,n} = 1 \right\}.$$

We remark that in the statistical physics literature, the vector of enumeration coefficients measuring prescribed behavior along specific boundary edges (or in some situations the generating function of this vector) is often referred to as the **boundary correlation function**. Boundary correlation functions have been studied in great generality by others in the context of integrable systems [4, 5, 15, 23].

Our first main result is the following explicit formula relating the top-left-bottom coefficients to the usual singly-refined coefficients $(A_{n,k})_{k=1}^{n}$. It turns out to be most natural to express the formula as an identity between two multivariate generating functions.

Define (single-variable) generating functions $\alpha_{n}(t), \beta_{n}(t), \gamma_{n}(t)$ and $\delta_{n}(t)$ by

$$\alpha_{n}(t) = \sum_{k=1}^{n} A_{n,k} t^{k-1},$$

$$\beta_{n}(t) = \sum_{k=1}^{n-1} A_{n-1,k} t^{k} = t \alpha_{n-1}(t),$$

$$\gamma_{n}(t) = \sum_{k=1}^{n+2} \left(-2(n - k + 3)A_{n-1,k-3} + (5n - 4k + 6)A_{n-1,k-2}
ight. + \left. (n + 4k - 6)A_{n-1,k-1} - 2kA_{n-1,k} \right) t^{k-1},$$

$$\delta_{n}(t) = \sum_{k=1}^{n+3} \left(4(n + 4 - k)(n + 5 - k)A_{n-1,k-5} - 4(n + 4 - k)(5n + 11 - 4k)A_{n-1,k-4} + (240 - 172k + 32k^{2} + 120n - 52kn + 21n^{2})A_{n-1,k-3} - 2(80 - 80k + 20k^{2} + 42n - 20kn - 5n^{2})A_{n-1,k-2} + (64 - 84k + 32k^{2} - 4n - 12kn + n^{2})A_{n-1,k-1} - 4k(n - 5 + 4k)A_{n-1,k} + 4k(n + 1)A_{n-1,k+1} \right) t^{k-1},$$

and denote by $\Delta(t_{1}, \ldots, t_{k}) = \prod_{1 \leq i < j \leq k} (t_{i} - t_{j})$ the standard Vandermonde product of real numbers t_{1}, \ldots, t_{k}.
Theorem 1 (Triply refined boundary correlation function). The generating function of ASMs refined according to the positions of the 1s in the first row, leftmost column and last row satisfies

\[(1 - y + xy)(1 - z - yz) \left(\sum_{i=2}^{n} \sum_{j=2}^{n} \sum_{k=2}^{n} A_{n}^{TLB}(i, j, k)x^{i-2}y^{n-j-1}z^{n-k} \right) \]

\[= \rho_{n} \Delta(x, y, z)^{-1} \det \left(\begin{array}{ccc} (x - 1)^{2} \alpha_{n}(x) & (y - 1)^{2} \alpha_{n}(y) & (z - 1)^{2} \alpha_{n}(z) \\ (x - 1) \beta_{n}(x) & (y - 1) \beta_{n}(y) & (z - 1) \beta_{n}(z) \\ \gamma_{n}(x) & \gamma_{n}(y) & \gamma_{n}(z) \end{array} \right) \]

\[- (1 - y + xy) \sum_{i=2}^{n} A_{n-1,i-1}x^{i-2}z^{n-1} \]

\[- (1 - z + yz) \sum_{k=2}^{n} A_{n-1,k-1}y^{n-2}z^{n-k}, \]

\[(1.6)\]

where \(\rho_{n}\) is a constant given by

\[\rho_{n} = \frac{1}{8A_{n}^{2}(2n - 2)} \left(\frac{(n - 2)!(3n - 2)!}{(2n - 3)!(2n - 1)!} \right)^{2}. \]

\[(1.7)\]

Our next result gives an analogous expansion for the generating function of the quadruply refined enumeration coefficients \(A_{n}^{TLBR}(i, j, k, \ell)\). Naturally, the expressions become more complicated, but the result is structurally similar. It will be convenient to define the doubly refined generating function,

\[A_{n}^{TL}(x, y) = \sum_{i,j=2}^{n} A_{n}^{TL}(i, j)x^{i-2}y^{j-2}. \]

\[(1.8)\]

Note that \(A_{n}^{TL}(x, y)\) can be expressed up to a constant in terms of the functions \(\alpha_{n}\) and \(\beta_{n}\) defined in (1.5) by combining equations (32) and (33) of [25].

Theorem 2 (Full boundary correlation function). The generating function of ASMs refined according to the positions of the 1s in the first row, leftmost
column, last row and rightmost column satisfies

\[
\prod_{t=1}^{4}(1 - x_{t+1} + x_{t}x_{t+1}) \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} \sum_{k=2}^{n-1} \sum_{\ell=2}^{n-1} A_{n}^{\text{TLBR}}(i,j,k,\ell)x_{1}^{i-2}x_{2}^{n-1-j}x_{3}^{n-1-k}x_{4}^{\ell-2} \right)
\]

\[
= \sigma_{n} \Delta(x_{1},x_{2},x_{3},x_{4})^{-1} \times \det\left(\begin{array}{cccc}
(x_{1}-1)^{3}\alpha_{n}(x_{1}) & (x_{2}-1)^{3}\alpha_{n}(x_{2}) & (x_{3}-1)^{3}\alpha_{n}(x_{3}) & (x_{4}-1)^{3}\alpha_{n}(x_{4}) \\
(x_{1}-1)^{2}\beta_{n}(x_{1}) & (x_{2}-1)^{2}\beta_{n}(x_{2}) & (x_{3}-1)^{2}\beta_{n}(x_{3}) & (x_{4}-1)^{2}\beta_{n}(x_{4}) \\
(x_{1}-1)\gamma_{n}(x_{1}) & (x_{2}-1)\gamma_{n}(x_{2}) & (x_{3}-1)\gamma_{n}(x_{3}) & (x_{4}-1)\gamma_{n}(x_{4}) \\
\delta_{n}(x_{1}) & \delta_{n}(x_{2}) & \delta_{n}(x_{3}) & \delta_{n}(x_{4})
\end{array}\right) \\
- \sum_{t=1}^{n-2} \prod_{k=0}^{2}(1 - x_{t+k} + x_{t+k-1}x_{t+k}) x_{t-1}^{n-2} x_{t+1}^{n-3} A_{n-1}^{\text{TL}}(x_{t}, \frac{1}{x_{t+1}}) \\
- A_{n-2} (1 - x_{3} + x_{2}x_{3})(1 - x_{1} + x_{4}x_{1}) x_{2}^{n-2} x_{4}^{n-2} \\
- A_{n-2} (1 - x_{2} + x_{1}x_{2})(1 - x_{4} + x_{3}x_{4}) x_{1}^{n-2} x_{3}^{n-2},
\]

(1.9)

with the convention that \(x_{t} = x_{t-4}\) for \(5 \leq t \leq 8\). The constant \(\sigma_{n}\) is given by

\[
\sigma_{n} = \frac{1}{64A_{n}^{3}(2n-2)^{2}(2n-3)} \left(\frac{(n-2)!(3n-2)!}{(2n-3)!(2n-1)!} \right)^{3}.
\]

(1.10)

Note that the identities (1.6) and (1.9) make it possible to compute the coefficients \(A_{n}^{\text{TLB}}(i,j,k)\) and \(A_{n}^{\text{TLBR}}(i,j,k,\ell)\) in a computationally efficient manner using standard polynomial algebra. The Maple package \texttt{RefinedASM1234} accompanying this paper, which may be downloaded from the authors’ web pages, provides a demonstration of the practical application of these formulas.

The basis for our enumeration results is a new expression for the partition function of the square ice model with the so-called “domain wall” boundary conditions at a special value of the parameter known as the “crossing parameter”; see Theorem 5 below. This formula is of independent interest, both for its intrinsic theoretical value and because of its applicability to the problem of refined enumeration. In the next section we recall the basic facts about the square ice model and develop this new approach to the study of its partition function. In section 3 we apply these results to prove Theorems 1 and 2.
2 A new expression for the square ice partition function

The square ice model, also known as the six-vertex model, is a well known “exactly solvable model” from statistical physics [2]. The connection to ASMs appears when the model is considered with specific boundary conditions. We start with an $n \times n$ square lattice with $4n$ half-edges emanating from the boundary vertices. To the ith row, we associate a real-valued parameter x_i and similarly, to the jth column, we associate a parameter y_j. These are collectively called the spectral parameters, with the x_i’s referred to as the row parameters and the y_j’s termed the column parameters. A state, or configuration, of the model is an assignment of arrows to each edge (including the half-edges at the boundary) so that every vertex has two incoming and two outgoing edges. There are six types of vertices, depicted in Figure 2 below.

Figure 2: The six types of vertices in a square ice configuration.

Type 2 is the rotation by 180° of type 1, type 4 is the rotation by 180° of type 3, and type 3 is the vertical reflection of type 1. Types 5 and 6 are rather special because in both these cases, the two vertical (as also horizontal arrows) both point inwards or both point outwards. The domain wall boundary conditions (DWBC) correspond to the horizontal half-edges at the boundary pointing inwards and the vertical ones pointing outwards. See Figure 3 for an example.

The relevance of square ice to the study of ASMs comes from the well-known fact that configurations of the square ice model with domain wall boundary conditions are in bijection with alternating sign matrices. Given a square ice configuration satisfying the DWBC, it can be translated to an alternating sign matrix by replacing every vertex of types 1 through 4 with a zero, vertices of type 5 with -1’s and vertices of type 6 with 1’s. As an example, the configuration in Figure 3 maps to the ASM in Figure 11 under this bijection.

Fix six functions $X_t(x, y)$, $1 \leq t \leq 6$. Given a square ice configuration C
of order n, for each $1 \leq i, j \leq n$ we assign a weight $X_{t_{i,j}}(x_i, y_j)$ to the vertex (i, j), where $t_{i,j}$ is the type of the vertex at (i, j). We then define the weight of the configuration C to be the product of the weights of all the vertices,

$$w(C) = \prod_{1 \leq i,j \leq n} X_{t_{i,j}}(x_i, y_j). \quad (2.1)$$

Letting C_n denote the set of square ice configurations of order n, we define the partition function as the sum of the weights over all elements of C_n,

$$Z_n = \sum_{C \in C_n} w(C), \quad (2.2)$$

which depends on n, the spectral parameters as well as the functions $X_i(\cdot, \cdot)$. In general, computing Z_n is a hard problem, but something miraculous occurs when we set

$$X_1(x, y) = X_2(x, y) = \frac{\sin \left(\frac{\eta}{2} + x - y \right)}{\sin \eta},$$
$$X_3(x, y) = X_4(x, y) = \frac{\sin \left(\frac{\eta}{2} - x + y \right)}{\sin \eta}, \quad (2.3)$$
$$X_5(x, y) = X_6(x, y) = 1,$$
where η is a real-valued parameter, known as the crossing parameter. In this case, the partition function $Z_n = Z_n(\vec{x}; \vec{y})$ can be expressed in terms of the so-called Izergin-Korepin determinant $[18]$, namely as

$$Z_n(\vec{x}; \vec{y}) = (-1)^{\binom{n}{2}} \frac{1}{\sin^{n(n-1)}(\eta)} \prod_{1 \leq i,j \leq n} \frac{\sin (x_i - y_j + \frac{\eta}{2}) \sin (x_i - y_j - \frac{\eta}{2})}{\sin (x_i - x_j) \sin (y_i - y_j)}$$

$$\times \prod_{1 \leq i < j \leq n} \det_{i,j=1}^n M(\vec{x}; \vec{y}),$$

(2.4)

where $M(\vec{x}; \vec{y})$ is the $n \times n$ square matrix with entries given by

$$M(\vec{x}; \vec{y})_{i,j} = \frac{1}{\sin (x_i - y_j + \frac{\eta}{2}) \sin (x_i - y_j - \frac{\eta}{2})}, \quad (1 \leq i, j \leq n).$$

(2.5)

The partition function is clearly a trigonometric polynomial, which, by (2.4), is seen to be a symmetric function of the x_i’s and (independently) of the y_i’s. Moreover, it is not difficult to see from (2.2) that it is of degree at most $n - 1$ in each variable. A rather surprising fact about the partition function, shown by Stroganov [25], is that when the crossing parameter η is set at $\eta = 2\pi/3$, the partition function becomes completely symmetric in the variables $\{\cup x_i \cup y_i\}$. Stroganov used this insight to find yet another determinantal expression (essentially a Schur function, see [28, Section 2.5.6]) for the partition function, which led to an alternate proof of the Refined ASM Theorem and to the formulas (1.3), (1.4) for the “top-bottom” and “top-left” doubly refined enumerations.

From now on, we assume that the weights X_i are given by (2.3) and that $\eta = 2\pi/3$ (this point in the parameter space of the square ice model is sometimes referred to as the combinatorial point). Since the partition function is completely symmetric in the x and y variables, following Stroganov we use a uniform notation for the spectral parameters, viz. u_i for $i \in \{1, \ldots, 2n\}$. To avoid excessive clutter of notation, we reuse $Z_n = Z_n(\vec{u})$ to denote the partition function used in this way. We also use the notation $Z_n(u_1, \ldots, u_k, 0^{2n-k})$ for the partition function with the last $2n - k$ variables set to zero.
Let
\[
\begin{align*}
a(u) &= \frac{2}{\sqrt{3}} \sin \left(\frac{\pi}{3} + u \right), \\
b(u) &= \frac{2}{\sqrt{3}} \sin \left(\frac{\pi}{3} - u \right), \\
c(u) &= 1,
\end{align*}
\]
and note that the X_i may be expressed in terms of the functions $a(\cdot), b(\cdot)$ and $c(\cdot)$ as
\[
\begin{align*}
X_1(x, y) &= X_2(x, y) = a(x - y), \\
X_3(x, y) &= X_4(x, y) = b(x - y), \\
X_5(x, y) &= X_6(x, y) = 1 = c(x - y).
\end{align*}
\]
Note that $a(0) = b(0) = c(0) = 1$, so in particular when all the spectral parameters are set to 0, the weight of every square ice configuration is equal to 1, and we get that $Z_n(0^{2n}) = A_n$, the total number of ASMs of order n.

The following identities are easily proved and will be of use to us below:
\[
\begin{align*}
\sin(u) &= \frac{\sqrt{3}}{2} (a(u) - b(u)), \\
\cos(u) &= \frac{1}{2} (a(u) + b(u)), \\
\cos \left(\frac{\pi}{3} + u \right) &= \frac{1}{2} (-a(u) + 2b(u)), \\
\cos \left(\frac{\pi}{3} - u \right) &= \frac{1}{2} (2a(u) - b(u)), \\
\sin(u - v) &= \frac{\sqrt{3}}{2} (a(u)b(v) - b(u)a(v)), \\
\sin \left(\frac{\pi}{3} + u - v \right) &= \frac{\sqrt{3}}{2} (a(u)a(v) + b(u)b(v) - b(u)a(v)).
\end{align*}
\]
Now, following [25], let
\[
f_n(u) = \sin^{2n-1}(u) Z_n(u, 0^{2n-1}),
\]
and note that
\[
\begin{align*}
f_n(0) &= f'_n(0) = f''_n(0) = \ldots = f^{(2n-2)}_n(0) = 0, \\
f^{(2n-1)}_n(0) &= (2n - 1)! Z_n(0^{2n}) = (2n - 1)! A_n.
\end{align*}
\]
The function \(f_n(u) \) encodes information about the usual “top row” refined enumeration of ASMs: by a standard “first row expansion” (dividing square ice configurations into classes according to their first row, and noting that in the specialization \(Z_n(u, 0^{2n-1}) \) the contribution to the weight from all other rows is constant), we see that it may be written as

\[
f_n(u) = \sin^{2n-1}(u) \sum_{k=1}^{n} A_{n,k} a^{k-1}(u) b^{n-k}(u)
\]

(2.12)

(see [25, Section 4]). Stroganov also found a fairly simple explicit expansion for \(f_n \) as a trigonometric polynomial:

Lemma 3.

\[
f_n(u) = \kappa_n \sum_{m=0}^{n-1} \left(\frac{n - \frac{4}{3}}{m} \right) \left(\frac{n - \frac{2}{3}}{n - m - 1} \right) \sin \left((4 - 3n + 6m)u \right),
\]

(2.13)

where the constant \(\kappa_n \) is given by

\[
\kappa_n = \left(\frac{-3}{4} \right)^{n-1} \frac{A_{n-1}}{\binom{2n-2}{n-1}}.
\]

(2.14)

Proof. The formula (2.13) was proved by Stroganov (who used it to obtain a new derivation of the formula for \(A_{n,k} \)), except for the value of the constant \(\kappa_n \). To compute \(\kappa_n \), we set \(u = \pi/3 \) and evaluate \(f_n(\pi/3) \) in two ways. On the one hand, from (2.9) we have that

\[
f_n(\pi/3) = \sin^{2n-1}(\pi/3) \sum_{k=1}^{n} A_{n,k} a(\pi/3)^{k-1} b(\pi/3)^{n-k}
\]

\[
= \left(\frac{\sqrt{3}}{2} \right)^{2n-1} \frac{A_{n,n}}{\sqrt{3}} \frac{1}{\frac{3}{4}} \frac{1}{\frac{3}{4}} A_{n-1}
\]

(since \(a(\pi/3) = 1, b(\pi/3) = 0 \)); on the other hand, (2.13) gives

\[
f_n(\pi/3) = \kappa_n \sum_{m=0}^{n-1} \left(\frac{n - \frac{4}{3}}{m} \right) \left(\frac{n - \frac{2}{3}}{n - m - 1} \right) \sin \left(-\pi n + \frac{4\pi}{3} \right)
\]

\[
= (-1)^{n-1} \frac{\sqrt{3}}{2} \kappa_n \sum_{m=0}^{n-1} \left(\frac{n - \frac{4}{3}}{m} \right) \left(\frac{n - \frac{2}{3}}{n - m - 1} \right)
\]

\[
= (-1)^{n-1} \frac{\sqrt{3}}{2} \kappa_n \frac{2n - 2}{n-1},
\]

13
where the last step follows from the Chu-Vandermonde summation identity. Comparing the two expressions gives (2.14).

As a side remark, note that one can get a different expression for \(\kappa_n \) by again equating the two expressions (2.9) and (2.13) and taking the limit as \(u \to 0 \) (using L’Hôpital’s rule). This gives

\[
\kappa_n = (-1)^{n-1}(2n-1)!A_n \left(\sum_{m=0}^{n-1} \left(\frac{n}{3} \right) \left(\frac{n-2}{3} \right) \left(4 - 3n + 6m \right)^{2n-1} \right)^{-1}.
\]

The fact that this is equal to the right-hand side of (2.14) implies the following interesting identity.

Corollary 4. The summation identity

\[
\sum_{m=0}^{n} \left(\frac{n}{3} \right) \left(\frac{n+1}{3} \right) \left(1 - 3n + 6m \right)^{2n+1} = \left(\frac{4}{3} \right)^n \frac{(3n+1)!}{n!}. \tag{2.15}
\]

holds for all \(n \geq 1 \).

An independent proof of (2.15) was found by Amdeberhan [1].

Our next result will give a hint that the remarkable function \(f_n(u) \) also holds the key to higher order refined enumerations of ASMs, which are related to the \(k \)-variate specialization \(Z_n(u_1, \ldots, u_k, 0^{2n-k}) \).

Theorem 5 (Partition function formulas). The partition function with all but \(k \) variables set to zero can be written as

\[
Z_n(u_1, \ldots, u_k, 0^{2n-k}) = \zeta_{n,k} \det_{i,j=1}^{k} \left(\frac{d^{j-1}f_n(u_i)}{d u_i^{j-1}} \right) \prod_{i=1}^{k} \sin^{2n-k}(u_i) \prod_{1 \leq i < j \leq k} \sin(u_i - u_j), \tag{2.16}
\]

where the constant \(\zeta_{n,k} \) is given by

\[
\zeta_{n,k} = \frac{1}{A_n^{k-1} \prod_{j=1}^{k-1}(2n-j)^{k-j}}. \tag{2.17}
\]

In particular, taking \(k = 2n \) we get the expression

\[
Z_n(u_1, \ldots, u_{2n}) = \frac{1}{A_n^{2n-1}H(2n-1)} \det_{i,j=1}^{2n} \left(\frac{d^{j-1}f_n(u_i)}{d u_i^{j-1}} \right) \prod_{1 \leq i < j \leq 2n} \sin(u_i - u_j)^{-1} \tag{2.18}
\]

for the full partition function, where \(H(n) = \prod_{k=1}^{n} k^k \) is the hyperfactorial.
We note in passing that several different representations for the partition function have been found, see, e.g., [18, 7, 8, 17, 3].

The proof will require the following lemma.

Lemma 6. Let r_1, \ldots, r_N be distinct real numbers, and let $0 \leq k < N$. The solutions to the homogeneous system of linear equations

$$
\sum_{j_1=1}^{N} z_{j_1, \ldots, j_k} r_{j_1}^m = 0 \quad (1 \leq j_2, \ldots, j_k \leq N, \ 0 \leq m \leq N - k - 1), \quad (2.19)
$$

$$
z_{\sigma(j_1), \ldots, \sigma(j_k)} = \text{sgn}(\sigma) z_{j_1, \ldots, j_k} \quad (\sigma \in S_k), \quad (2.20)
$$

in the family of unknowns $(z_{j_1, \ldots, j_k})_{1 \leq j_1, \ldots, j_k \leq N}$, are determined up to a global multiplicative constant.

Proof. The anti-symmetry condition (2.20) implies that any variable z_{j_1, \ldots, j_k} where j_1, \ldots, j_k are not all distinct is 0. It will therefore be enough to show that for any two index vectors $(j_1, \ldots, j_k), (j'_1, \ldots, j'_k)$ where j_1, \ldots, j_k are distinct and j'_1, \ldots, j'_k are distinct, the ratio $z_{j_1, \ldots, j_k} / z_{j'_1, \ldots, j'_k}$ is determined uniquely by the equations. Furthermore, if we prove this claim in the case that the vectors $(j_1, \ldots, j_k), (j'_1, \ldots, j'_k)$ differ in only one position then the more general claim follows by successively replacing one index at a time (using anti-symmetry to permute the order of the indices). Again because of anti-symmetry, it suffices to show this when the vectors differ only in the first position. That is, we wish to determine the ratio $z_{j_1, j'_1, j_2, \ldots, j_k} / z_{j_1, j'_1, j_2, \ldots, j_k}$ where $j_1, j'_1, j_2, \ldots, j_k$ are distinct. Note that the equations (2.19) are equivalent to the assumption that for any polynomial $p(x)$ of degree $\leq N - k - 1$ we have the relation

$$
\sum_{\alpha=1}^{N} z_{\alpha, j_2, \ldots, j_k} p(r_{\alpha}) = 0. \quad (2.21)
$$

We apply this for the polynomial

$$
p(x) = \prod_{1 \leq \beta \leq N, \beta \neq j_1, j'_1, j_2, \ldots, j_k} (x - r_{\beta}).
$$

In this case, all the summands in (2.21) vanish except when $\alpha = j_1, j'_1$, so we get that

$$
p(r_{j_1}) z_{j_1, j_2, \ldots, j_k} + p(r'_{j'_1}) z_{j'_1, j_2, \ldots, j_k} = 0
$$

(where we know that $p(r_{j_1}), p(r'_{j'_1}) \neq 0$), which determines the ratio of the two variables $z_{j_1, j_2, \ldots, j_k} / z_{j'_1, j_2, \ldots, j_k}$, as claimed. \qed
Proof of Theorem 5. Define the function $g_{n,k}$ as

$$g_{n,k}(u_1,\ldots,u_k) = Z_n(u_1,\ldots,u_k,0^{2n-k}) \times \prod_{i=1}^{k} \sin^{2n-k}(u_i) \prod_{1 \leq i < j \leq k} \sin(u_i - u_j).$$

The proof is based on the observation that $g_{n,k}$ satisfies the following list of properties:

1. $g_{n,k}$ is a trigonometric polynomial in the u_i's of degree at most $3n - 2$ in each variable.
2. $g_{n,k}(\ldots,u_i + \pi,\ldots) = (-1)^n g_{n,k}(\ldots,u_i,\ldots)$.
3. $g_{n,k}(\ldots,u_i,\ldots) + g_{n,k}(\ldots,u_i + \frac{2\pi}{3},\ldots) + g_{n,k}(\ldots,u_i + \frac{4\pi}{3},\ldots) = 0$.
4. $g_{n,k}$ is divisible by $\sin^{2n-k}(u_i)$ for each i.
5. $g_{n,k}(\ldots,u_i,\ldots,u_j,\ldots) = -g_{n,k}(\ldots,u_j,\ldots,u_i,\ldots)$.

Property 1 follows from the fact that the partition function Z_n is a trigonometric polynomial of degree $\leq n - 1$ in each variable. Property 2 follows from the relation

$$Z_n(\ldots,u_i + \pi,\ldots) = (-1)^{n-1} Z_n(\ldots,u_i,\ldots)$$

satisfied by Z_n, which is a consequence of the fact that $a(u + \pi) = -a(u)$, $b(u + \pi) = -b(u)$, together with the observation that each row and column of a square ice configuration contain an odd number of vertices with weight c (translate this to the language of ASMs to see why). Property 3 is a consequence of the symmetry of Z_n in the variables u_1,\ldots,u_{2n} together with the following functional equation proved by Stroganov [25]:

$$F_n(u_1,\ldots) + F_n(u_1 + \frac{2\pi}{3},\ldots) + F_n(u_1 + \frac{4\pi}{3},\ldots) = 0,$$

where $F_n(u_1,\ldots,u_{2n})$ is defined by

$$F_n(u_1,\ldots,u_{2n}) = Z_n(u_1,\ldots,u_{2n}) \prod_{j=2}^{2n} \sin(u_1 - u_j).$$

Properties 4 and 5 are immediate from the definition of $g_{n,k}$.

We will now show that any function which satisfies these five properties is determined uniquely up to a normalization constant depending only on n.

16
and k. The idea is a generalization of Stroganov’s approach to the proof of the Refined ASM theorem [25]. Starting from the first property, we express $g_{n,k}$ in canonical form,

$$g_{n,k}(u_1, \ldots, u_k) = \sum_{a_1=-3n+2}^{3n-2} \cdots \sum_{a_k=-3n+2}^{3n-2} c_{a_1, \ldots, a_k} \exp \left(\sqrt{-1} \sum_{j=1}^{k} a_j u_j \right),$$

(2.25)

where the Fourier coefficients c_{a_1, \ldots, a_k} are to be determined.

Using the second property, we see that $c_{a_1, \ldots, a_k} = 0$ whenever some a_j does not have the same parity as n. Using the third property, $c_{a_1, \ldots, a_k} = 0$ whenever some a_i is divisible by 3. So we may rewrite (2.25) as

$$g_{n,k}(u_1, \ldots, u_k) = \sum_{a_1 \in I_n} \cdots \sum_{a_k \in I_n} c_{a_1, \ldots, a_k} \exp \left(\sqrt{-1} \sum_{j=1}^{k} a_j u_j \right),$$

where

$$I_n = \{ 2 - 3n \leq a \leq 3n - 2 : a \equiv n \, (\text{mod } 2), a \equiv 1, 2 \, (\text{mod } 3) \}. $$

Note that $|I_n| = 2n$. Now, the fourth property implies that

$$\left. \frac{\partial^m}{\partial u_1^m} \right|_{u_1=0} g_{n,k}(u_1, \ldots, u_k) = 0, \quad (0 \leq m \leq 2n - k - 1),$$

which translates to the equations

$$\sum_{a_1 \in I_n} c_{a_1, \ldots, a_k} a_1^m = 0 \quad (a_2, \ldots, a_k \in I_n, \ 0 \leq m \leq 2n - k - 1) \quad (2.26)$$

on the coefficients. Similarly, the anti-symmetry property 5 implies the corresponding anti-symmetry condition

$$c_{\sigma(a_1), \ldots, \sigma(a_k)} = \text{sgn}(\sigma) c_{a_1, \ldots, a_k} \quad (2.27)$$

on the coefficients, which holds for any permutation σ of the elements of I_n. But we now see that (2.26) and (2.27) are identical to the system of equations (2.19), (2.20) from Lemma [6] with the substitution $N = 2n$ and with r_1, \ldots, r_N denoting the elements of I_n. The conclusion of Lemma [6] guarantees that the coefficients c_{a_1, \ldots, a_k}, and hence the function $g_{n,k}$, are determined uniquely up to a multiplicative constant, which was our claim up to this point.
Next, we claim that

\[h_{n,k}(u_1, \ldots, u_k) = k \det_{i,j=1}^{d^{j-1}} f_n(u_i) \]

(2.28)

satisfies the same list of properties discussed above. First of all, \(f_n(u) \) is a trigonometric polynomial of degree \(3n - 2 \) in \(u \) and taking its derivatives cannot increase the degree, so \(h_n \) satisfies the first property. The second and third properties follow immediately from the equations

\[f_n(u + \pi) = (-1)^n f_n(u), \]

\[0 = f_n(u) + f_n \left(u + \frac{2\pi}{3} \right) + f_n \left(u + \frac{4\pi}{3} \right) \]

satisfied by \(f_n(u) \) (the first equation is again a consequence of (2.23), and the second equation is the special case \(u_2 = \ldots = u_{2n} = 0 \) of (2.24)).

The fourth property holds because the smallest factor of \(\sin(u) \) in a derivative of \(f_n \) is \(\sin^{2n-k}(u) \) in the \((k-1)\)th derivative. The fifth and last property is immediate. Thus, we have shown that \(g_n(u_1, \ldots, u_k) = \zeta_{n,k} h_n(u_1, \ldots, u_k) \) where \(\zeta_{n,k} \) is a proportionality constant.

It remains to prove the formula (2.17) for \(\zeta_{n,k} \). We shall do so by an induction on \(k \) for each fixed \(n \). We first note that \(\zeta_{n,1} = 1 \) by (2.9). We now evaluate \(\zeta_{n,k} \) by taking the limit of all \(u_i \)'s to zero in (2.16).

\[\frac{\zeta_{n,k}}{A_n} = \lim_{u_1, \ldots, u_k \to 0} \prod_{i=1}^{k} \sin^{2n-k}(u_i) \prod_{1 \leq i < j \leq k} \sin(u_i - u_j) \]

(2.29)

We compute the limit as an iterative limit, by taking the variables successively to 0; in fact, because of the inductive nature of the computation we only need to let \(u_k \to 0 \) since a recursive structure is revealed. To do this, we use L'Hôpital’s rule by taking the \((2n-k)\)th partial derivative of the numerator and denominator with respect to \(u_k \) and setting each to 0. Consider first the relevant terms in the numerator. We have to evaluate

\[\left. \frac{\partial^{2n-k}}{\partial u_k^{2n-k}} \right|_{u_k=0} \left(\sin^{2n-k}(u_k) \prod_{i=1}^{k-1} \sin(u_i - u_k) \right). \]

(2.30)

This multiple derivative will lead to a sum involving multinomial coefficients over all possible combinations of derivatives of the \(k \) terms inside in general.
However, since we are going to set \(u_k = 0 \) at the very end, the only term that contributes is the one where all \(2n - k \) derivatives act on \(\sin^{2n-k}(u_k) \). We thus obtain, after easy manipulations,

\[
(2n - k)! \prod_{i=1}^{k-1} \sin(u_i). \tag{2.31}
\]

We now consider the denominator. Since \(u_k \) is only present in the last row of the matrix, we can perform a cofactor expansion of the determinant using the last row. By (2.10), the only term that contributes after taking the \((2n - k) \)th derivative is the cofactor of the entry in position \((k, k)\), which leads to

\[
\left(\frac{d^{2n-1}}{du_k^{2n-1}} \bigg|_{u_k=0} f_n(u_k) \right) \times \det_{i,j=1}^{k-1} \left(\frac{d^{j-1} f_n(u_i)}{du_i^{j-1}} \right) = (2n - 1)!A_n \det_{i,j=1}^{k-1} \left(\frac{d^{j-1} f_n(u_i)}{du_i^{j-1}} \right) (\text{using } (2.11)).
\]

To summarize, we have shown that

\[
\frac{\zeta_{n,k}}{A_n} = \frac{(2n - k)!}{(2n - 1)!A_n} \lim_{u_1, \ldots, u_{k-1} \to 0} \frac{\prod_{i=1}^{k-1} \sin^{2n-k+1}(u_i) \prod_{1 \leq i < j \leq k-1} \sin(u_i - u_j)}{(2n - 1)!A_n \det_{i,j=1}^{k-1} \left(\frac{d^{j-1} f_n(u_i)}{du_i^{j-1}} \right)},
\]

\[
= \frac{(2n - k)!}{(2n - 1)!A_n} \zeta_{n,k-1}. \tag{2.32}
\]

It is easy to check that the expression on the right-hand side of (2.17) satisfies this.

When one is interested in refined enumeration formulas, one would like to compute \(Z_n(u_1, \ldots, u_k, 0^{2n-k}) \) for large \(n \) and fixed \(k \). In this case (2.16) is very useful because the order of the determinant is fixed. Note, however, that this formula would not be very practical to use if the computation of the derivatives of \(f_n \) were not efficient enough. As we shall see in the next section, for the purpose of deriving enumeration formulas we are interested in a representation of the derivatives \(f_n^{(m)}(u) \) not as a standard trigonometric polynomial (this would be immediate from (2.13)), but instead we
need a specific expansion involving products of powers of $a(u)$ and $b(u)$ factors, similarly to (2.12), with an additional factor consisting of a power of $\sin(u)$. We now show that there is an efficient recursive algorithm for the computation of such a representation.

Proposition 7. For $0 \leq m \leq 2n-1$, the mth derivative of f_n can be written as

$$f_n^{(m)}(u) = \sin^{2n-m}(u) \sum_{k=1}^{n+m} c_{n,m,k} a^{k-1} b^{n-k+m-1}(u), \quad (2.33)$$

where $c_{n,0,k} = A_{n,k}$, and for $m > 0$ we have the recurrence

$$c_{n,m,k} = \frac{1}{2} \left(-2k c_{n,m-1,k+1} + (n + 4k - 2m - 2)c_{n,m-1,k}
+ (5n - 4k + 2m + 2)c_{n,m-1,k-1} - 2(n - k + m + 1)c_{n,m-1,k-2} \right). \quad (2.34)$$

Proof. Since the argument of a and b will always be u, we will omit it in this proof. Starting with

$$f_n^{(m-1)}(u) = \sin^{2n-m}(u) \sum_{k} c_{n,m-1,k} a^{k-1} b^{n+m-1-k} \quad (2.35)$$

and differentiating, we get

$$f_n^{(m)}(u) = (2n - m) \sin^{2n-1-m}(u) \cos(u) \sum_{k} c_{n,m-1,k} a^{k-1} b^{n+m-1-k}$$

$$+ \sin^{2n-m}(u) \sum_{k} c_{n,m-1,k} \left[(k-1)a^{k-2}b^{n+m-1-k} \frac{2}{\sqrt{3}} \cos \left(\frac{\pi}{3} + u \right)
- (n + m - 1 - k)a^{k-1}b^{n+m-2-k} \frac{2}{\sqrt{3}} \cos \left(\frac{\pi}{3} - u \right) \right]. \quad (2.36)$$

Now we take out the common factor of $\sin^{2n-1-m}(u)$ and use the identities (2.8) to replace all trigonometric factors by sums of products of a’s and b’s. After simplifying and collecting terms, we get

$$f_n^{(m)}(u) = \frac{1}{2} \sin^{2n-1-m}(u) \sum_{k} c_{n,m-1,k} \left[-2(k-1)a^{k-2}b^{n-k+m+1}
+ (n - 2m - 2 + 4k)a^{k-1}b^{n+m-1-k}
+ (5n + 2m - 2 - 4k)a^{k}b^{n+m-1-k}
- 2(n + m - 1 - k)a^{k+1}b^{n+m-2-k} \right]. \quad (2.37)$$
which is another way of encoding \((2.34)\). Note that if we assume inductively that the range of values of \(k\) for which the coefficient \(c_{n,m-1,k}\) is nonzero is \(1 \leq k \leq n + m - 1\), then the range of \(k\)'s over which we should consider \(c_{n,m,k}\) is \(0 \leq k \leq n + m + 1\). However, the coefficient \(2k\) appearing in front of the factor \(c_{n,m-1,k+1}\) in \((2.34)\) ensures that \(c_{n,m,0} = 0\), and similarly the coefficient \(2(n - k + m + 1)\) of \(c_{n,m-1,k-2}\) ensures that \(c_{n,m,n+m+1} = 0\), so in fact we only get nonzero coefficients \(c_{n,m,k}\) when \(1 \leq k \leq n + m\). This explains the range of summation in \((2.33)\).

The proof of Proposition 7 suggests a new way of looking at the partition function \(Z_n\). The usual way of considering it as a trigonometric polynomial has been replaced by a polynomial in \(a\) and \(b\). This is in some sense simpler because the total degree of the polynomial is constant. Underlying this is a change-of-basis transformation in the space of trigonometric polynomials which has nice properties. This point of view deserves to be examined in more detail. In particular, one interesting open problem would be to find closed (non-recursive) formulas for the coefficients \(c_{n,m,k}\).

Note also that the recurrence \((2.34)\) is not quite as arbitrary as it might appear at first sight. The coefficients of \(c_{n,m-1,k}\) on the right-hand side obey a symmetry relation under the interchange \(k \leftrightarrow n + m + 1 - k\), namely

\[
-2k \leftrightarrow -2(n - k + m + 1), \quad (n + 4k - 2m - 2) \leftrightarrow (5n - 4k + 2m + 2).
\]

The significance of this observation is unclear to us at the moment.

3 Boundary behavior: triple and quadruple refinements

We will now prove Theorems 1 and 2. The idea is to equate the two formulas for the specialized partition function, one given by the definition in \((2.2)\), and the other by the determinant in \((2.16)\).

We now set the notation for use in the proofs. As mentioned before, we will consider \(f_n^{(m)}(u)\) to be a polynomial in \(a(u)\) and \(b(u)\). This polynomial turns out to be homogenous of degree \(3n - 2\). Therefore, it makes sense to consider it as a polynomial in the single variable \(t = a(u)/b(u)\). For convenience, we will use the same notation \(f_n^{(m)}(t)\) for the new function (where the derivative is still with respect to the variable \(u\)). From Proposition 7
and from (2.8), it follows easily that
\[
f^{(m)}_n(t) = \left(\frac{\sqrt{3}}{2}\right)^{2n-1-m} b^{3n-2} (u-1)^{2n-1-m} \sum_{k=1}^{n+m} c_{n,m,k} t^{k-1}. \tag{3.1}
\]

We will have at most four variables in the determinant we want to evaluate. In continuation with Theorem 5, we use \(u_i\) for the variables. Throughout the computation, let \(a_i\) (resp. \(b_i\)) be a shorthand for \(a(u_i)\) (resp. \(b(u_i)\)), and denote \(t_i = a_i/b_i\).

3.1 Triple refinement

Proof of Theorem 7 We will use Theorem 5 to calculate the number of ASMs where the 1 in the first row is in the \(i\)th column, the 1 in the first column is in the \(j\)th row, and the 1 in the last row is in the \(k\)th column. To relate the determinant in (2.16) to the generating function of the numbers \(A_{n}^{TLB}(i,j,k)\), we need to calculate a determinant of a matrix of size 3 of derivatives \(f^{(m)}_n(u_d)\), corresponding to \(m = 0, 1, 2\), expressing each of the derivatives in the form (3.1). Let us compute these derivatives; we shall see that the result will involve the functions \(\alpha_n(t), \beta_n(t), \gamma_n(t)\) from (1.5).

For \(m = 0\) we have
\[
f^{(0)}_n(t) = \left(\frac{\sqrt{3}}{2}\right)^{2n-1} b^{3n-2} (u-1)^{2n-1} \sum_{k=1}^{n} A_{n,k} t^{k-1}
\]
\[
= \left(\frac{\sqrt{3}}{2}\right)^{2n-1} b^{3n-2} (u-1)^{2n-1} \alpha_n(t).
\]

Something interesting happens while computing \(f^{(1)}_n(t)\). Applying the recurrence (2.34), we get
\[
f^{(1)}_n(t) = \frac{1}{2} \left(\frac{\sqrt{3}}{2}\right)^{2n-2} b^{3n-2} (u-1)^{2n-2}
\]
\[
\times \sum_{k=1}^{n+1} \left(-2kA_{n,k+1} + (n + 4k - 4)A_{n,k} + (5n - 4k + 4)A_{n,k-1} - 2(n - k + 2)A_{n,k-2}\right) t^{k-1}. \tag{3.2}
\]
Curiously, the coefficient of \(t^{k-1} \) in this expression simplifies to a constant (depending on \(n \) but not on \(k \)) times \(A_{n-1,k-1} \), because of the identity

\[
\frac{(n-2)!(3n-2)!}{(2n-3)!(2n-2)!} A_{n-1,k-1} = -2kA_{n,k+1} + (n+4k-4)A_{n,k}
+ (5n-4k+4)A_{n,k-1} - 2(n-k+2)A_{n,k-2}
\]

(which can be easily verified from [1.2] by elementary algebra). Thus we get that

\[
f_n^{(1)}(t) = \left(\frac{3}{4} \right)^{n-1} \frac{(n-2)!(3n-2)!}{2(2n-3)!(2n-2)!} b^{3n-2}(u)(t-1)^{2n-2} \beta_n(t). \quad (3.3)
\]

Unfortunately, this nice phenomenon does not persist for higher derivatives. For the second derivative, using [2.34] again, after a short computation we get

\[
f_n^{(2)}(t) = \left(\frac{\sqrt{3}}{2} \right)^{2n-3} \frac{(n-2)!(3n-2)!}{4(2n-3)!(2n-2)!} b^{3n-2}(u)(t-1)^{2n-3}
\times \sum_{k=1}^{n+2} \left(-2(n-k+3)A_{n-1,k-3} + (5n-4k+6)A_{n-1,k-2}
+ (n+4k-6)A_{n-1,k-1} - 2kA_{n-1,k} \right) t^{k-1}
\]

\[
= \left(\frac{\sqrt{3}}{2} \right)^{2n-3} \frac{(n-2)!(3n-2)!}{4(2n-3)!(2n-2)!} b^{3n-2}(u)(t-1)^{2n-3} \gamma_n(t). \quad (3.4)
\]

(The expression for \(\gamma_n(t) \) does not seem to simplify further.)

Let us now look at the denominator on the right-hand side of (2.16). In the case \(k = 3 \), it can be written (making use of [2.8] again) as

\[
\prod_{i=1}^{3} \sin^{2n-3}(u_i) \prod_{1 \leq i < j \leq 3} \sin(u_i - u_j)
\]

\[
= \left(\frac{3}{4} \right)^{3n-3} \prod_{i=1}^{3} b_i^{2n-3}(t_i - 1)^{2n-3} \prod_{1 \leq i < j \leq 3} b_i b_j (t_i - t_j)
\]

\[
= \left(\frac{3}{4} \right)^{3n-3} \prod_{i=1}^{3} b_i^{2n-1}(t_i - 1)^{2n-3} \prod_{1 \leq i < j \leq 3} (t_i - t_j).
\]
Combining this with the above computations, we find that in the case \(k = 3 \), (2.16) transforms into

\[
Z_n(u_1, u_2, u_3, 0^{2n-3}) = \rho_n(b_1b_2b_3)^{n-1} \Delta(t_1, t_2, t_3)^{-1} \\
\times \det \begin{pmatrix}
(t_1 - 1)^2 \alpha_n(t_1) & (t_2 - 1)^2 \alpha_n(t_2) & (t_3 - 1)^2 \alpha_n(t_3) \\
(t_1 - 1) \beta_n(t_1) & (t_2 - 1) \beta_n(t_2) & (t_3 - 1) \beta_n(t_3) \\
\gamma_n(t_1) & \gamma_n(t_2) & \gamma_n(t_3)
\end{pmatrix},
\]

(3.5)

where \(\rho_n = \frac{1}{8} \zeta_{n,3} \left(\frac{(n-2)!(3n-2)!}{(2n-3)!(2n-2)!} \right)^2 \) (which becomes (1.7) upon substituting the value of \(\zeta_{n,3} \) from (2.17)).

Now we move on to the left hand side of (2.16) with \(k = 3 \). Our goal is to use the original definition of \(Z_n(u_1, u_2, u_3, 0^{2n-3}) \) to represent it as a factor of \(b_1b_2b_3 \) times a generating function in \(t_1, t_2, t_3 \) expressed in terms of the coefficients \(A_n^{\text{TLB}} \). Equating this expression to (3.5) will give the theorem.

First, note that since \(Z_n \) is a symmetric function, we are free to choose which of the spectral parameters \(x_1, \ldots, x_n, y_1, \ldots, y_n \) each of the variables \(u_1, u_2, u_3 \) is chosen to stand for. Since we are interested in relating \(Z_n \) to the coefficients \(A_n^{\text{TLB}} \), the natural choice is to set \(x_1 = u_1, y_1 = u_2 \) and \(x_n = u_3 \); all other spectral parameters are of course set to 0. For this choice, the weight \(w(C) \) of each square ice configuration in the sum (2.2) is influenced only by the behavior of the configuration in the top and bottom rows and the leftmost column. In particular, we can divide the configurations into classes according to the position of the 1s in the top and bottom rows and leftmost column in the corresponding alternating sign matrix. Within each class, all configurations have the same weight.

Let \(C \in C_n \) be a square ice configuration, and denote by \(i, j, k \) the positions of the unique 1 in the top row, leftmost column and bottom row, respectively, of the corresponding ASM. There are three possible cases, each giving rise to a separate computation of the weight \(w(C) \).

1) \(i = j = 1, \ 2 \leq k \leq n \). The number of configurations of this type is \(A_n^{\text{TLB}}(1, 1, k) = A_{n-1,k-1} \), and the weight associated to such a configuration is given by

\[
w(C) = b_1^{n-1} a_2^{n-2} a_3^{n-k} b_3^{k-2} b(u_3 - u_2) \\
= b_1^{n-1} a_2^{n-2} a_3^{n-k} b_3^{k-2} (a_2a_3 + b_2b_3 - b_2a_3) \\
= (b_1b_2b_3)^{n-1} (1 - t_3 + t_2t_3) t_2^{n-2} t_3^{n-k}.
\]

(3.6)

These weights arise as follows: in the first row, the first vertex has weight \(c(u_1 - u_2) = 1 \), and the remaining \(n - 1 \) vertices have weight \(b(u_1) = b_1 \).
In the first column, the vertices in positions 2 through \(n - 1 \) have weight \(b(-u_2) = a(u_2) = a_2 \), and the last vertex has weight \(b(u_3 - u_2) \), which can be rewritten as \(a_2a_3 + b_2b_3 - b_2a_3 \) (using (2.8)). In the last row, the vertices in positions 2 through \(k - 1 \) have weight \(b(u_3) = b_3 \), the vertex in position \(k \) has weight \(c(u_3) = 1 \), and the vertices in positions \(k + 1 \) through \(n \) have weight \(a(u_3) = a_3 \).

2) \(2 \leq i \leq n, \ j = n, \ k = 1 \). The number of configurations is \(A_{n-1,i-1} \), and the weight is seen (using similar reasoning to that explained above) to be

\[
\begin{align*}
w(C) &= a_1^{i-2}b_1^{n-i}a_3^{n-1}b_3^{n-2}a(a_1 - u_2) \\
&= a_1^{i-2}b_1^{n-i}a_3^{n-1}b_3^{n-2}(a_1a_2 + b_1b_2 - b_1a_2) \\
&= (b_1b_2b_3)^{n-1}(1 - t_2 + t_1t_2)t_1^{i-2}t_3^{n-1}. \quad (3.7)
\end{align*}
\]

3) \(2 \leq i, \ k \leq n, \ 2 \leq j \leq n - 1 \). In this case the number of configurations is \(A^{TLB}_{n}(i,j,k) \). A short computation gives the weight of such a configuration as

\[
\begin{align*}
w(C) &= a_1^{i-2}b_1^{n-i}a_2^{n-j-1}b_2^{j-2}a_3^{n-k}b_3^{k-2}a(a_1 - u_2)b(u_3 - u_2) \\
&= a_1^{i-2}b_1^{n-i}a_2^{n-j-1}b_2^{j-2}a_3^{n-k}b_3^{k-2} \\
&\quad \times (a_1a_2 + b_1b_2 - b_1a_2)(a_2a_3 + b_2b_3 - b_2a_3) \\
&= (b_1b_2b_3)^{n-1}(1 - t_2 + t_1t_2)(1 - t_3 + t_2t_3)t_1^{i-2}t_2^{n-j-1}t_3^{n-k}.
\end{align*}
\]

Now all that is left to do is to combine the three cases to arrive at the partition function. We have

\[
\begin{align*}
\frac{1}{(b_1b_2b_3)^{n-1}}Z_n(u_1, u_2, u_3, 0^{2n-3}) &= (1 - t_3 + t_2t_3)\sum_{k=2}^{n} A_{n-1,k-1}t_2^{n-2}t_3^{n-k} \\
&\quad + (1 - t_2 + t_1t_2)^n\sum_{i=2}^{n} A_{n-1,i-1}t_1^{i-2}t_3^{n-1} \\
&\quad + (1 - t_2 + t_1t_2)(1 - t_3 + t_2t_3)\sum_{i=2}^{n} \sum_{j=2}^{n} \sum_{k=2}^{n} A^{TLB}_{n}(i,j,k)t_1^{i-2}t_2^{n-j-1}t_3^{n-k}.
\end{align*}
\]

Comparing this to the result (3.5) gives us just the equality of generating functions claimed in (1.6) (except with the variables \(x, y, z \) replaced by \(t_1, t_2, t_3 \)), and finishes the proof. \(\square \)
3.2 Quadruple refinement

Proof of Theorem 2 The strategy is the same as that of Theorem 1. Recall that
\[A^{\text{TLBR}}_n(i, j, k, \ell) = \# \{ (m_{i,j})_{i,j=1}^n \in \text{ASM}_n \mid m_{1,i} = m_{j,1} = m_{n,k} = m_{\ell,n} = 1 \} \]
(3.8)

As before, we will use Proposition 7 to calculate \(f^{(3)}_n \). Since the sum-
mand in the expansion of \(f^{(2)}_n(t) \) in (3.4) is quite complicated, we leave it
to the reader to verify that the recursive formula indeed yield a function propor-
tional to \(\delta_n(t) \) (1.5).
\[f^{(3)}_n(t) = \left(\frac{\sqrt{3}}{2} \right)^{2n-4} b^{3n-2}(u) (t-1)^{2n-4} \sum_{k=1}^{n+3} c_{n,3,k} t^{k-1}, \]
(3.9)
\[= \left(\frac{3}{4} \right)^{n-2} 8(2n-3)!(2n-2)! b^{3n-2}(u) (t-1)^{2n-4} \delta_n(t). \]

The denominator on the right-hand side of (2.16) in the case \(k = 4 \) can be written as
\[\prod_{i=1}^{4} \sin^{2n-4}(u_i) \prod_{1 \leq i < j \leq 4} \sin(u_i - u_j) \]
\[= \left(\frac{3}{4} \right)^{4n-5} 4^{4n-5} \prod_{i=1}^{4} b^{2n-4}(t_i - 1)^{2n-4} \prod_{1 \leq i < j \leq 4} b_i b_j (t_i - t_j) \]
\[= \left(\frac{3}{4} \right)^{4n-5} 4^{4n-5} \prod_{i=1}^{4} b^{2n-1}(t_i - 1)^{2n-4} \prod_{1 \leq i < j \leq 4} (t_i - t_j). \]

Combining the calculation of \(f^{(3)}_n(t) \) in (3.9) with those in (3.3) and (3.4),
we find that in the case \(k = 4 \), (2.16) transforms into
\[Z_n(u_1, u_2, u_3, u_4, 0^{2n-4}) = \sigma_n (b_1 b_2 b_3 b_4)^{n-1} \Delta(t_1, t_2, t_3, t_4)^{-1} \]
\[\times \det \left(\begin{array}{cccc}
(t_1-1)^3 \alpha_n(t_1) & (t_2-1)^3 \alpha_n(t_2) & (t_3-1)^3 \alpha_n(t_3) & (t_4-1)^3 \alpha_n(t_4) \\
(t_1-1)^2 \beta_n(t_1) & (t_2-1)^2 \beta_n(t_2) & (t_3-1)^2 \beta_n(t_3) & (t_4-1)^2 \beta_n(t_4) \\
(t_1-1) \gamma_n(t_1) & (t_2-1) \gamma_n(t_2) & (t_3-1) \gamma_n(t_3) & (t_4-1) \gamma_n(t_4) \\
\delta_n(t_1) & \delta_n(t_2) & \delta_n(t_3) & \delta_n(t_4)
\end{array} \right), \]
(3.10)
where \(\sigma_n = \frac{1}{64} \zeta_{n,4} \left(\frac{n-2)! (3n-2)!}{2n-3)! (2n-2)!} \right)^3 \), which is the same as the right-hand side of (1.10).

26
Now we compute the partition function $Z(u_1, u_2, u_3, u_4, 0^{2n-4})$ from the definitions. This time we will set the spectral parameters as $x_1 = u_1, y_1 = u_2, x_n = u_3$ and $y_n = u_4$. Let $C \in \mathcal{C}_n$ be a square ice configuration, and we will use the variables i, j, k, ℓ to denote the positions of the c-type vertices in the first row, leftmost column, last row and rightmost column, respectively. These correspond to the spectral parameters u_1, u_2, u_3, u_4. Remember that i and k are column parameters and j and l are row parameters. Now there are seven possible cases depending on the values of i, j, k, l.

1. $i = j = 1, k = \ell = n$. The number of such configurations is clearly A_{n-2}. The weight is given as follows: both the $(1,1)$ and the (n,n) vertices get a weight of $c(u_1 - u_2) = 1$ and $c(u_3 - u_4) = 1$ respectively. All other boundary vertices are of b-type. The other two corner vertices at $(1,n)$ and $(n,1)$ get a weight of $b(u_3 - u_2)$ and $b(u_1 - u_4)$ respectively. Therefore we have $n - 2$ factors of each of $b(u_1) = b_1, b(-u_2) = a_2, b(u_3) = b_3$ and $b(-u_4) = a_4$. Thus the total contribution to Z_n from such configurations is

$$A_{n-2}(b_1 b_2 b_3 b_4)^{n-2} b(u_3 - u_2) b(u_1 - u_4),$$

$$= A_{n-2}(b_1 b_2 b_3 b_4)^{n-2}(a_2 a_3 + b_2 b_3 - b_2 a_3) (a_1 a_4 + b_1 b_4 - b_1 a_1),$$

$$= A_{n-2}(b_1 b_2 b_3 b_4)^{n-1} (1 - t_3 + t_2 t_3)(1 - t_1 + t_4 t_1) (t_2 t_4)^{n-2}. \quad \text{(3.11)}$$

2. $i = j = n, k = \ell = 1$. The reasoning in this case is essentially identical to that of the case above. This time all boundary vertices except the ones at $(1,n)$ and $(n,1)$ are of a-type. We eventually obtain a total contribution of

$$A_{n-2}(b_1 b_2 b_3 b_4)^{n-1} (1 - t_2 + t_1 t_2)(1 - t_4 + t_3 t_4) (t_1 t_3)^{n-2}. \quad \text{(3.12)}$$

3. $i = j = 1, 1 < k, \ell < n$. The next four cases follow the same kind of reasoning as the one here. We describe this in detail and leave it to the reader to verify the next three cases by analogous reasoning. The number of configurations of this type is

$$A_{n}^{\text{TLBR}}(1, 1, k, \ell) = A_{n-1}^{\text{BR}}(k - 1, \ell - 1),$$

which is the number of ASMs of size $n - 1$ with a 1 in the bottom row at column $k - 1$ and a 1 in the rightmost column at row $\ell - 1$. The
weight associated to such a configuration is given by

\[
\begin{align*}
 w(C) &= b_1^2 a_2^{-2} a_3^{-2} a_4^{-1-k} b_3^{-2} a_4^{-1-k} b_4^{-1-\ell} b(u_3 - u_2) b(u_4 - u_3) a(2a_3 - b_3 b_2 - b_2 a_3) \\
 &= b_1^2 a_2^{-2} a_3^{-1-k} b_3^{-2} a_4^{-1-\ell}(a_2 a_3 + b_2 b_3 - b_2 a_3) \\
 &\times (a_1 a_4 + b_1 b_4 - b_4 a_1)(a_3 a_4 + b_3 b_4 - b_3 a_4) \\
 &= (b_1 b_2 b_3 b_4)^{n-1} t_2^{-2} t_4^{n-3}(1 - t_3 + t_2 t_3) \\
 &\times (1 - t_4 + t_3 t_4)(1 - t_1 + t_4 t_1).
\end{align*}
\]

(3.13)

These weights arise as follows: in the first row, the first vertex has weight \(c(u_1 - u_2) = 1\), the next remaining \(n - 1\) vertices have weight \(b(u_1) = b_1\) and the last vertex has weight \(b(u_1 - u_4)\). In the first column, the vertices in positions 2 through \(n - 1\) have weight \(b(-u_2) = a(u_2) = a_2\), and the last vertex has weight \(b(u_3 - u_2)\), which can be rewritten as \(a_2 a_3 + b_2 b_3 - b_2 a_3\) (using (2.8)). In the last row, the vertices in positions 2 through \(k - 1\) have weight \(b(u_3) = b_3\), the vertex in position \(k\) has weight \(c(u_3) = 1\), the vertices in positions \(k + 1\) through \(n - 1\) have weight \(a(u_4) = a_3\), and the last vertex has weight \(a(u_3 - u_4)\). In the last column, the vertices in positions 2 through \(\ell - 1\) have weight \(b(-u_4) = a_4\), the vertex in position \(\ell\) has weight \(c(u_4) = 1\) and the vertices in positions \(\ell + 1\) through \(n - 1\) have weight \(a(-u_4) = b_4\).

We now note that \(A_{n-1}^{BR}(k - 1, \ell - 1) = A_{n-1}^{TL}(n + 1 - k, n + 1 - \ell)\) by rotational symmetry. Using the generating function defined in (1.8), the sum over \(k, \ell\) after elementary manipulations is given by

\[
(b_1 b_2 b_3 b_4)^{n-1} t_2^{-2} t_4^{n-3}(1 - t_3 + t_2 t_3) \\
(1 - t_4 + t_3 t_4)(1 - t_1 + t_4 t_1) A_{n-1}^{TL} \left(t_3, \frac{1}{t_3} \right).
\]

4. \(j = n, k = 1, 1 < i, \ell < n\). There are \(A_{n-1}^{TR}(i - 1, \ell) = A_{n-1}^{TL}(n + 1 - i, \ell)\) such configurations and the weight of such a configuration is given by

\[
\begin{align*}
 w(C) &= (b_1 b_2 b_3 b_4)^{n-1} t_1^{-2} t_4^{n-3}(1 - t_2 + t_1 t_2) \\
 &\times (1 - t_2 + t_1 t_2)(1 - t_4 + t_3 t_4)(1 - t_1 + t_4 t_1).
\end{align*}
\]

(3.14)

The sum over \(i, \ell\) is now given by

\[
(b_1 b_2 b_3 b_4)^{n-1} t_3^{n-2} t_4^{n-3}(1 - t_2 + t_1 t_2) \\
(1 - t_4 + t_3 t_4)(1 - t_1 + t_4 t_1) A_{n-1}^{TL} \left(t_4, \frac{1}{t_4} \right).
\]

28
5. \(k = \ell = n, 1 < i, j < n \). There are \(A_{n-1}^{TL}(i, j) \) such configurations and the weight of such a configuration is given by
\[
w(C) = (b_1 b_2 b_3 b_4)^{n-1} t_1^{i-2} t_2^{n-1-j} t_3^{n-2} t_4^{n-2} \\
\quad \times (1 - t_2 + t_1 t_2)(1 - t_3 + t_2 t_3)(1 - t_1 + t_4 t_1)
\]
(3.15)
The sum over \(i, j \) is given by
\[
(b_1 b_2 b_3 b_4)^{n-1} t_4^{n-2} t_2^{n-3} (1 - t_3 + t_2 t_3) \\
\quad (1 - t_2 + t_1 t_2)(1 - t_1 + t_4 t_1) A_{n-1}^{TL} \left(t_1, \frac{1}{t_2} \right).
\]
(3.16)

6. \(i = n, \ell = 1, 1 < j, k < n \). There are \(A_{n-1}^{BL}(k, j - 1) = A_{n-1}^{TL}(k, n+1-j) \) such configurations and the weight of such a configuration is given by
\[
w(C) = (b_1 b_2 b_3 b_4)^{n-1} t_1^{i-1-j} t_2^{n-1-k} t_3^{n-1-k} \\
\quad \times (1 - t_2 + t_1 t_2)(1 - t_3 + t_2 t_3)(1 - t_4 + t_3 t_4)t_1^{n-2}.
\]
(3.17)
The sum over \(j, k \) is given by
\[
(b_1 b_2 b_3 b_4)^{n-1} t_1^{n-2} t_2^{n-3} (1 - t_3 + t_2 t_3) \\
\quad (1 - t_4 + t_3 t_4)(1 - t_2 + t_1 t_2) A_{n-1}^{TL} \left(t_2, \frac{1}{t_3} \right).
\]

7. \(1 < i, j, k, \ell < n \). The number of such matrices \(A_{n}^{TLB}(i, j, k, \ell) \) is the quantity we are ultimately interested in calculating. We describe in detail the weight of vertices in the first row. The weights of vertices in the first column, last row and last column are obtained by similar arguments. In the first row, the first vertex has weight \(a(u_1 - u_2) \), the next \(i - 2 \) vertices have weight \(a(u_1) = a_1 \), the \(i \)th vertex has weight \(c(u_1) = 1 \), the next \(n - i - 1 \) vertices have weight \(b(u_1) = b_1 \), and the last vertex has weight \(b(u_1 - u_4) \). The weight comes out to
\[
w(C) = a_1^{i-2} b_1^{n-i-1} a_2^{n-1-j} b_2^{j-2} a_3^{n-1-k} b_3^{k-2} a_4^{\ell-2} b_4^{n-1-\ell} \\
\quad \times a(u_1 - u_2)b(u_3 - u_2)b(u_1 - u_4)a(u_3 - u_4) \\
= a_1^{i-2} b_1^{n-i-1} a_2^{n-1-j} b_2^{j-2} a_3^{n-1-k} b_3^{k-2} a_4^{\ell-2} b_4^{n-1-\ell} \\
\quad \times (a_2a_3 + b_2b_3 - b_2a_3)(a_1a_4 + b_1b_4 - b_4a_1) \\
\quad \times (a_3a_4 + b_3b_4 - b_3a_4)(a_1a_2 + b_1b_2 - b_1a_2) \\
= (b_1 b_2 b_3 b_4)^{n-1} t_1^{i-2} t_2^{n-1-j} t_3^{n-1-k} t_4^{\ell-2} \\
\quad \times (1 - t_2 + t_1 t_2)(1 - t_3 + t_2 t_3)(1 - t_4 + t_3 t_4)(1 - t_1 + t_4 t_1).
\]
(3.17)
As in the triply-refined case, comparing the sum of the contributions from these seven cases to the result \((3.10) \) gives us the claimed identity \((1.9) \).

References

[1] T. Amdeberhan, private communication, 2012.

[2] R. J. Baxter, Exactly Solvable Models in Statistical Mechanics. Academic Press, 1982.

[3] R. E. Behrend, P. Di Francesco, P. Zinn-Justin, On the weighted enumeration of alternating sign matrices and descending plane partitions, *J. Combin. Theory Ser. A* 119 (2012), 331–363.

[4] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, Boundary polarization in the six-vertex model, *Phys. Rev. E* 65 (2002), 026126.

[5] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, Boundary correlation functions of the six-vertex model, *J. Phys. A: Math. Gen.* 35 (2002), 5525–5541.

[6] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge University Press, 1999.

[7] F. Colomo, A. G. Pronko, On some representations of the six vertex model partition function, *Phys. Lett. A* 315 (2003), 231–236.

[8] F. Colomo, A. G. Pronko, On the partition function of the six-vertex model with domain wall boundary conditions, *J. Phys. A* 37 (2004), 1987–2002.

[9] L. Cantini, A. Sportiello, Proof of the Razumov-Stroganov conjecture. *J. Combin. Theory Ser. A* 118 (2011), 1549–1574.

[10] N. M. Bogoliubov, A. G. Izergin, V. E. Korepin, Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, 1997.

[11] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, Alternating sign matrices and domino tilings. *J. Algebraic Combin.* 1 (1992), 111–132; 219–234.

[12] I. Fischer, Refined enumerations of alternating sign matrices: Monotone \((d,m)\)-trapezoids with prescribed top and bottom rows, *J. Alg. Comb* 33 (2011), 239–257.
[13] I. Fischer, Linear relations of refined enumerations of alternating sign matrices, *J. Combin. Theory Ser. A* **119** (2012), 556–578.

[14] I. Fischer, D. Romik, More refined enumerations of alternating sign matrices, *Adv. Math.* **222** (2009), 2004–2035.

[15] O. Foda, I. Preston, On the correlation functions of the domain wall six-vertex model, *J. Stat. Mech.* **2004** (2004), P11001.

[16] T. Fonseca, P. Zinn-Justin, On the doubly refined enumeration of alternating sign matrices and totally symmetric self-complementary plane partitions. *Electronic J. Combin.* **15** (2008), R81.

[17] W. Galleas, A new representation for the partition function of the six-vertex model with domain wall boundaries, *J. Stat. Mech.* **2011** (2011) P01013.

[18] A. G. Izergin, D. A. Coker, V. E. Korepin, Determinant formula for the six-vertex model, *J. Phys. A* **25** (1992), 4315–4334.

[19] M. Karklinsky, D. Romik, A formula for a doubly refined enumeration of alternating sign matrices, *Adv. Appl. Math.* **45** (2010), 28–35.

[20] G. Kuperberg, Another proof of the alternating sign matrix conjecture. *Internat. Math. Res. Notes* **1996** (1996), 139–150.

[21] W. H. Mills, D. P. Robbins, H. Rumsey, Alternating sign matrices and descending plane partitions. *J. Combin. Theory Ser. A* **34** (1983), 340–359.

[22] W. H. Mills, D.P. Robbins, H. Rumsey, Self-complementary totally symmetric plane partitions. *J. Combin. Theory Ser. A* **42** (1986), 277–292.

[23] K. Motegi, Boundary correlation functions of the six and nineteen vertex models with domain wall boundary conditions. *Physica A* **20** (2011), 3337–3347.

[24] A. V. Razumov, Yu. Stroganov, Combinatorial nature of the ground state vector of O(1) loop model. *Theor. Math. Phys.* **138** (2004), 333–337.

[25] Yu. Stroganov, Izergin-Korepin determinant at a third root of unity. *Theor. Math. Physics* **146** (2006), 53–62.
[26] D. Zeilberger, Proof of the alternating sign matrix conjecture. *Electronic J. Combin* 3 (1996), R13.

[27] D. Zeilberger, Proof of the refined alternating sign matrix conjecture. *New York J. Math.* 2 (1996), 59–68.

[28] P. Zinn-Justin, Six vertex, loop and tiling models: integrability and combinatorics. Habilitation thesis, arXiv:0901.0665v2.