Several factors need to be considered for a successful anterior cruciate ligament (ACL) reconstruction, such as preoperative planning, operation technique, and postoperative rehabilitation. Graft choice, fixation, preparation method, maturation, incorporation to host bone, and graft tension should also be considered to achieve a good outcome after an ACL reconstruction. Factors to consider when selecting a graft are the graft strength, graft fixation, fixation site healing, and donor site morbidity, as well as the effects of initial strength, size, surface area, and origin of the graft on its potential for weakening during healing. There are two types of graft for an ACL reconstruction, autograft or allograft. Several autografts have been introduced, including the bone-patellar tendon-bone, hamstring tendon, and quadriceps tendon-bone. On the other hand, each has its advantages and disadvantages. The recent increased use of allografts for an ACL reconstruction is the lack of donor site morbidity, decreased surgical time, diminished postoperative pain, and good availability of source. Despite this, there are no reports suggesting that an allograft may have a better long-term outcome than an autograft. Allografts have inherent disadvantages, including a longer and less complete course of incorporation, remodeling, biomechanically inferiority to autograft, the potential risk of an immunogenic reaction and disease transmission. Higher long-term failure rates and poorer graft maturation scores were reported for allografts compared to autografts. An autograft in an ACL reconstruction should remain the gold standard, although the allograft is a reasonable alternative. If adequate length and diameter of autograft can be obtained for an ACL reconstruction, an autograft with adequate graft fixation and postoperative rehabilitation should be chosen instead of an allograft to achieve better results.

Key words: anterior cruciate ligament, autografts, allografts, reconstruction
중 보상과 같은 부작용의 위험성이 적고, 질병 전파의 위험성 이 없는 등 많은 장점을 가지고 있지만 자가 공여부의 이환성 이 문제가 되고 공여부의 제한이 있는 단점이 있다. 현재 흔히 사용하고 있는 자가건으로 골-슬개건-골(bone-patellar tendon-bone), 슬관건(반견양건, 박건: hamstring tendon), 대퇴 사두건-골(단견양건, QT-B), 장경대 등이 있다. 동종건은 공여부 이환이 없고 원재료(source)가 다양하게 준비될 수 있는 장점이 있지만, 질병의 전파, 소독기술의 문제 및 그에 따른 이식건의 약화, 염증 반응 등의 부작용이 있다는 단점이 있다.2-4)

전 세계적인 이식건의 사용빈도를 보면 자가 슬관건 63%, 자가 골-슬개건-골 26%, 동종건 11%로 보고하고 있으며,5) 또 다른 보고로 보면 자가 슬관건 53.1%, 자가 골-슬개건-골 22.8%, 동종 건 13.5%로 보고되었다.6) 지역에 따라 미국은 동종건이 19%, 유럽 9%, 기타국가 7%로 보고되어 미국에서 동종건의 사용률이 상대적으로 높으며 슬관절의 일관된 안정성을 얻을 수 있다.5,7) 이식건의 종류

1. 자가 골-슬개건-골
자가 골-슬개건-골은 1980년대 이후 전방십자인대 재건술의 이식건으로서 "gold standard"로 인식되어 널리 사용되었다. 최대 인장 강도는 2,300 N (정상 전방십자인대, 1,725-2,160 N), 경도가 620 N/mm (정상 전방십자인대, 182-306 N/mm)로 강한 초기 고정력을 얻을 수 있고 골-골 치유의 짧은 치유기간을 가지며 슬관절의 일관된 안정성을 얻을 수 있다. 장점은 골-골 고정으로 강한 안정성으로 조기 재활을 할 수 있다는 점이다. 그러나 단점은 전방 슬관절 통증, 전방 슬관절 감각 이상, 무릎 꿇기 불가, 신전기전 감소 등 공여부 이환가 문제이다.8-10) 공여부 이환으로 인한 전방 슬관절 통증이 4%에서 14%까지 보고되어11) 최근에는 사용이 줄어들고 있으나 활동적이거나 강한 운동을 하는 경우 선택적으로 사용하고 있다.12)

2. 슬관건
자가 슬관건은 반견양건과 박건(gracilis tendon)을 네 가닥으로 만들고 사용한다. 최대 인장 강도는 4,300-4,590 N이며 경도는 861-950 N/mm이다.24,25) 건-골 고정방법이 개선되고 공여부 이환이 자가 골-슬개건-골보다는 상대적으로 적어서 최근 사용이 증가하고 있다. 슬관건 채취 후 3년에 수술 전 근력의 95%가 회복되고 신생건과 닮은 단단한 반흔 형성으로 재생된다고 한다.31) 단면적이 더 크고 관(tubular) 모양을 가지고 있어 이식 재료 적인 측면에서 골 터널 내에 이식건이 더 밀착되고 골 터널에 닿는 표면적이 보다 간접적인 골-골 치유(indirect-healing)가 된 다.24,25,32,33) 자가 골-슬개건-골보다 골 관절염의 발생빈도가 적은 장점을 가지고 있다.34-36) 대퇴골 후방 피질골이 수술 중 파괴되거나 풍부한 좌시의 성장판이 열린 소아, 무릎 꿇기를 요구하는 경우, 인대 보강술[augmentation], 이전에

이식건의 종류

1. 자가 골-슬개건-골
자가 골-슬개건-골은 자가 슬관 건을 이용한 전방십자인대 재건술의 이식건으로 "gold standard"로 인식되어 널리 사용되었다. 최대 인장 강도는 2,300 N (정상 전방십자인대, 1,725-2,160 N), 경도가 620 N/mm (정상 전방십자인대, 182-306 N/mm)로 강한 초기 고정력을 얻을 수 있고 골-골 치유의 짧은 치유기간을 가지며 슬관절의 일관된 안정성을 얻을 수 있다. 장점은 골-골 고정으로 강한 안정성으로 조기 재활을 할 수 있다는 점이다. 그러나 단점은 전방 슬관절 통증, 전방 슬관절 감각 이상, 무릎 꿇기 불가, 신전기전 감소 등 공여부 이환가 문제가 있다.8-10) 공여부 이환으로 인한 전방 슬관절 통증이 4%에서 14%까지 보고되어11) 최근에는 사용이 줄어들고 있으나 활동적이거나 강한 운동을 하는 경우 선택적으로 사용하고 있다.12)
신전 기전에 이상이 있는 경우 등에 사용할 수 있다. 그리고 신전 기능의 합병증이 적고 미용적으로 더 좋다.

그러나 슬관절의 결손에 따른 공여부 이환으로 슬관절 골절 및 내화통증의 10%~20% 감소가 따르며37-39) 간절적인 간-골 치유에 따른 터널 내 이식건의 고정력의 감소로 이식건이 길어질 수 있고 골 터널의 확장이 더 많다는 단점이 있다.20-22) 그리고 건의 길이와 크기가 다양하여 이식건이 불가능할 정도로 작은 경우가 있다. 또한 수술 후 감염의 위험이 높아서, 자가 건하게 수술 후 감염 위험성은 높지 않은 것으로 보고되고 있다.41-43)

자가 슬관절을 이용한 전방십자인대 재건술을 성공적으로 하기 위하여 다음과 같은 절차를 숙지해야 한다. 첫째, 골 터널을 정확하게 만들고 골 터널 내에 이식건이 매평바로(tight fitting) 고정해야 한다. 둘째, 이식건의 전체 길이 중 터널 내에 최소 2 cm 이상이 유지되도록 하여 초기 골-골 고정력을 높여야 한다.25-27) 셋째, 재활을 가공-골-골과 골 고정력이 초기에는 약하므로 무수 가속적으로 재활을 하며 이식건이 증가하 고 종종이 증가되며 골-골 터널의 확장이 발생할 수 있다.28-30)

저자의 자가 슬관절을 이용한 전방십자인대 재건술의 적응증은 일반인 대상으로 1차 재건술에 대부분 사용하며, 상대적으로 활동이 적은 운동선수에 적응할 수 있다.31-33)

3. 대퇴사두건-골

자가 대퇴사두건-골(자가 QT-B)은 한쪽 끝은 슬개골의 상부, 반대 끝은 대퇴사두건으로 구성된다.34) 최대 인장 강도가 2,352 N, 단면적이 61.9 mm², 두께가 8-9 mm로 자가 골-골과 골-골보다 더 크고 강하며35-37) 전방 슬관절 통증 및 꿇어앉을 때 불편함은 적다.38) 한쪽 끝이 건으로 되어 있어 골-골 고정으로 BPTB보다는 초기 고정력이 약하다. 최근 대퇴골 터널이 직사각형(rectangular shape)의 모양으로 재건할 때 사용하기 좋은 보고가 있다.39) 그리고 이 이식건은 재재건술 또는 다발성 인대 손상 시 사용 가능하다.

Chen 등35)는 QT-B를 이용한 전방십자인대 재건술 34예에 대하여 평균 6개월 추시 결과를 보고하였다. Lysholm 점수는 94% 우수 또는 매우 우수를 보였으며, 중등도 이상의 활동 복귀는 76%, 2 mm 미만의 관절 이환은 82%, International Knee Documentation Committee (IKDC) 정상 또는 거의 정상은 91%, 하지 신전 및 골격 근력은 정상 대비 80% 이상 회복은 94%와 91%라고 하였다.

이식건의 실패는 슬관절, QT-B, BPTB 사이에 차이가 없었다고 하였다. 수술 후 관절 운동 범위의 차이도 없었다고 하였다.40-42)

합병증으로 혈종 형성, 슬관절, 공여부 미용 문제를 보고되어 있으며33)

4. 동종건

동종건은 자가건의 대용으로 사용할 수 있으며 자가 골-골개골, 아킬레스건, 정천골건, 후경골건 등이 주로 사용되고 있다. 장점은 공여부 이환없이 수술 시기를 줄일 수 있으며 수술 후 통증 감소, 공여부 재환이 없으므로 적극적으로 사용할 수 있다는 점이다. 그러나 단점으로는 자가 조직이 아니므로 질병 전파의 위험이 높으며, 본체(host)에 이식건의 합체 incorportion, 재생성 기간이 길다는 단점이 있다.20-22) 그리고 면역학적으로 거부 반응의 가능성이 있으나 다행히 자가건에 비하여 수술 후 감염의 위험성은 높지 않은 것으로 보고되고 있다.41,42)

Bottoni 등43)는 48예의 자가 슬관절과 49예의 동종 건(tibialis posterior, TP)을 이용한 전방십자인대 재건술의 결과를 무작위 비교 임상 결과를 10년 추시하여 보고하였다. 이식건의 실패는 자가 슬관절이 8.3%, 동종 TP가 26.5%로 자가 이식건의 실패율이 더 낮다고 하였다. 그리고 IKDC, Tegner 활동 점수 등을 포함한 평균 임상점수는 차이가 없었다고 하였다.

Kraeutler 등44)는 자가 BPTB와 동종건을 이용한 5,182예의 대퇴골 터널이 직사각형의 모양으로 재건술을 할 때 사용하기 좋은 보고가 있었다. 그리고 재재건은 자가건에서 4.3%, 동종건에서 12.7배 많은 추가적인 실패가 많았다.

Pallis 등45)은 젊고 활동적인 미국 육군사관학교 생도를 대상으로 한 전향적 연구를 통해 동종건과 자가건을 사용한 전방십자인대 재건술의 실패율을 비교하였다. 120명(122예)의 생도를 대상으로, 여성은 38명, 남성은 82명이었으며, 이식건으로는 자가 BPTB 61예, 자가 슬관절 45예, 동종건 16예였다. 모두 20예에서 실패가 있었으며 실패율은 자가 BPTB가 11%, 동종건이 44%, 자가 슬관절이 13%었다. 추시 기간 동종건이 자가 BPTB보다 7.7배 많은 추가적인 실패가 많았다.

Wasserstein 등46)은 젊은 사람을 대상으로 전방십자인대 재건술을 연구한 논문 7편을 이용한 체계적 문헌고찰을 보고하였다. 자가건 788예, 동종건 228예였으며 평균나이는 21.7세, 남성은 64%, 추시기간은 24-51개월이었다. 이식건 실패율은 자가건이 9.6%, 동종건이 25%를 보였다고 하였다. 그러므로 동종건은 동종건보다는 전방십자인대 재건술의 실패율을 낮지만 더 나은 결과를 보였다. 그리고 재재건 등도 자가건에서 4.3%보다 동종건에서 12.7배의 실패가 많았다.

5. 혼합건

혼합건(hybrid graft)은 자가건의 크기가 적을 때 자가건과 동종 건을 혼합하여 이식하는 것이다. Li 등47)는 자가 슬관절, 32예의 자가 슬관절을 이용한 전방십자인대 재건술을 성공적으로 하기 위하여 다음과 같은 절차를 숙지해야 한다. 첫째, 골 터널을 정확하게 만들고 골 터널 내에 이식건이 매평바로(tight fitting) 고정해야 한다. 둘째, 이식건의 전체 길이 중 터널 내에 최소 2 cm 이상이 유지되도록 하여 초기 골-골 고정력을 높여야 한다.25-27) 셋째, 재활을 가공-골-골과 골 고정력이 초기에는 약하므로 무수 가속적으로 재활을 하며 이식건이 증가하고 종종이 증가되며 골-골 터널의 확장이 발생할 수 있다.28-30)
Adequate Graft Selection

32예의 방사선 조사 동종건(tibialis anterior, TA), 31예의 혼합건(TA+자가 반견건양건)을 이용한 전방십자인대 재건술 후 결과를 전향적으로 연구하여 발표하였다. 적혈구 침강 속도(erythrocyte sedimentation rate)와 C-반응성단백(C-reactive protein)은 동종건에서 더 높았으며 전방불안정성(KT-1000)은 동종건에서 더 증가되었고 Lachman 검사, 축 이동검사는 세 군에서 차이를 보이지 않았다. Lysholm 점수, Tegner 활동점수, IKDC 점수는 차이가 없었다고 하였다. 적혈구 침강 속도와 C-반응성단백은 동종건에서 더 높았으며 전방부정성이 KT-1000 관절계에서 더 높았다. 그러나 혼합건의 굽기가 자가건보다 더 굵지만 관찰결과를 통해 혼합건의 장단점은 불확실하다고 한다.64,65 Xu 등은 34예의 자가건과 42예의 혼합건을 이용한 비교에서 굽기가 작다면 자가건이 혼합건보다 더 좋은 결과를 보이며 순수 자가건이 이식건의 크기보다 더 중요하며 크기가 작을 때 동종건으로 보강하는 혼합건은 불필요하다고 하였다.

비교연구

다양한 이식건의 사용에 따른 결과를 비교한 논문이 많이 있다.54,67,68

1. 자가 슬관건과 자가골-슬관건-골 비교
이식건 실패 또는 재재건술, 슬관절 안정성, 근육 강도, 수상 전 활동 복귀, 임상결과, 골관절염, 통증, 감염, 터널 확장 등에 대하여 두 이식건을 비교하였다.

1) 이식건 실패/재재건술
자기 경실간이 높은 재재건술 비율을 보인다는 보고7,22,23,41,69와 차이가 없는 보고56,70,71이 있다. 그러나 두 이식건 모두의 실패율은 아주 낮기 때문에 거의 같다고 보며 이식건 실패의 위험성에 대한 합의(consensus)는 아직 없다.

2) 슬관절 안정성
두 군 모두 전방불안정성과 회전 불안정성에 대하여 차이가 없었다고 한다. 그러나 Xie 등71은 BPTB가 더 낮은 축 이동 검사를 보였다고 한다. Sadoghi 등은 BPTB에서 더 낮은 축 이동 검사를 보였다고 한다. Mohtadi 등은 슬관건이 이중, 단일 다방 슬관건보다 정적인 전방정성이 더 좋았으며 다른 임상 결과는 차이가 없었다고 하였다. 해부학적 이중 다방 슬관건의 해부학적 직각각 터널 슬관건의 비교에서도 임상적, 주관적인 결과에서 차이가 없었다고 하였다.70

3) 근육 강도
공여부의 위치에 따라 근력 결손이 영향을 받는다. 슬관건은 신전 근육의 더 큰 결손을 보이며, 근육 근력의 더 작은 결손을 보인다. 그러므로 전방십자인대 재건술 후 재활은 특히 사용된 이식건의 근육 강화 훈련 초점이 맞추여야 한다. 슬관건의 결손은 사용된 슬관건의 수와 비례하며 슬관근력의 결손은 특히 심부 굴곡에서 강조된다.75-77 그러므로 가능하면 박건을 보존하는 것이 좋으며 특히 심부 굴곡의 강점을 필요로 하는 운동(예, 발레, 유도등)에 중요하다.

4) 수상 전 활동으로 복귀
수상 전 활동으로 복귀에는 많은 요소가 영향을 끼친다. 그러나 어떤 이식건이 더 영향을 주는지는 불명확하다. 일부 메타분석 보고에는 BPTB가 슬관건보다 더 좋다는 보고가 있지만,71 양 군 간 차이가 없다는 보고가 있다.56,78

5) 임상결과
임상결과의 비교에서 IKDC, Lysholm 점수는 양 군 간 차이가 없으며,56,70,71 knee injury and osteoarthritis outcome score(KOOS)도 차이가 없었다고 하지만,74 양 군을 비교한 KOOS 메타분석 보고는 아직 없다.

6) 골관절염
전방십자인대 손상 후 골관절염의 예방은 전방십자인대 재건술 후의 가장 중요한 목적 중의 하나이다. 골관절염은 장기간 추적 조사에서 재건술 후 약 40%까지 보고되고 있다.79 골관절염의 위험성을 증가시키는 요소로는 만성 관절염의 상태 및 치료, 관절 연골 손상, 나이, 비만, 선택된 이식건 등이 관여한다.80,81 최근의 메타분석의 보고에 의하면 자가골-슬관건-골이 슬관건보다 슬관 대퇴관절뿐만 아니라 경 대퇴골 관절에 슬관절염의 발생률이 더 높다는 보고가 있다.82,83 그러나 대규모의 코호트 연구에서 이식건의 선택 자체가 골관절염의 예측 인자는 아니라는 보고가 있다.83,84 그래서 전방십사인대 재건술 후 골관절염 발생에 대하여 매우 많은 변수가 관여할 수 있다.

7) 통증
전방 슬관절 통증, 무릎 꿇기 통증은 전방십사인대 재건술 후 특히 슬관건 이용 시 혼란한 협병증 중의 하나이다.56,71,82,83 직업적, 운동 목적 또는 기도하기 위해 무릎 물기를 특히 필요로 하는 환자는 BPTB 사용을 피하는 것이 좋다.
8) 감염
양 군 모두 전반적인 감염률은 극히 낮다. 그러나 여러 메타분석 연구, 국가적 등록 사업 연구에서 슬관절의 감염 위험이 높다는 보고가 있으므로 이식건 조작 시 세심한 주의를 요한다.41-43)

9) 터널 확장
슬관절이 BPTB보다 터널 확장이 더 많다는 보고가 있다.84,85) 그러나 이식건 사용 시 대퇴 터널의 확장은 전방에서 주로 일어나므로 이식건을 좀 더 후방에 위치하도록 하면 슬관절 안정성에 도움이 된다고 보고하였다.86)

요약하면 두 가지 이식건(BPTB, 슬관건)은 성인에서 비슷한 효과를 보이며, 수술 후 슬관절 안정성과 근육 장도 및 활동 수준에 차이가 나타난다고 보인다. 자가 BPTB는 더 높은 최대 인장강도, 강직성, 고정력, 장기간의 성공률 등으로 젊고 활동성이 많이 요구되는 운동선수에 사용된다.

2. 대퇴사두건과 슬관건 비교
Sasaki 등67)은 생역학적 연구에서 대퇴사두건을 이용한 전방십자인대 재건술은 네 가닥 슬관건을 이용한 경우와 차이가 없었다고 하였다. 그리고 다른 비교 연구에서도 대퇴사두건 사용군에서 슬관절 안정성이 슬관건과 같거나 더 좋으며 외과적 임상에서도 더 좋은 결과를 보였다고 하였다. 또한 슬관절의 굴곡 근력 및 전방 안정성 차이가 없었다고 보고하였다.50,54)

3. 자가건과 동종건 비교
동종건과 자가건을 비교한 여러 연구 보고가 있다.57-59) 전용한 바와 같이 동종건은 자가건을 이용한 전방십자인대 재건술에 비해 제한성이 느껴져 장기간의 안정성 및 역학적 기능이 감소한다고 하였다. 대부분의 연구에서 자가건이 동종건과 결과가 같거나 더 좋다고 보고하였다.59-62)

저자의 선호방법
저자는 현재 1차 전방십자인대 재건술의 이식건으로 특별한 경우를 제외하고 반건양건만을 이용하여 전방십자인대 재건술에 사용하여 좋은 결과를 보고한 적이 있다. (Fig. 1-3).59,60) 슬관절의 굴곡 근력, 내회전력을 일부 보존할 수 있다. 이식건의 길이가 짧아 터널 내에 이식건의 고정이 약할 수 있을 것이라고 생각할 수 있으나 이식건의 길이로 최소 7 cm로 만들면 관절 내 이식건이 약 3 cm 전후이며 대퇴골 및 경골 터널 내에 1.5-2 cm 정도 이식건이 위치하면 건-골 차례에 문제가 없다는 연구를 바탕으로 평균 6년 이상의 추시 관찰상 슬관절의 전방 안정성에는 차이가 없었으며 수상 전 활동으로 복귀율은 80.2%로 보고한 적이 있다.

Figure 1. Anterior cruciate ligament reconstruction using four-strand single semitendinosus tendon. (A) Semitendinosus tendon harvesting technique with periosteum attachment. (B) Additional 2 cm periosteum was harvested.

Figure 2. (A) The semitendinosus tendon was harvested with 2 cm periosteum. (B) Four-strand semitendinosus tendon graft with a suspension device.
결 론

이식건을 선택할 때 고려해야 할 요소로는 이식건 실패(재재건술) 비율, 수상 전 수준으로 복귀율, 공여부 이환, 이식건의 강도, 고정 위치의 치유, 향후 퇴행성 관절염의 위험도, 수술 시간, 비용대비 효율, 동반된 합병증, 수술의사의 이식건 사용 경험이 등을 고려해야 한다.

그러므로 이식건을 선택할 때 가능하면 표준(gold standard)으로 자가건을 고려해야 한다. 그리고 동종건은 자가건의 대용이 될 수는 있지만 어떤 연구에서도 동종건이 자가건보다 더 좋은 결과를 보인다는 증거는 없다. 그러므로 동종건은 이전에 자가건을 재취해 사용할 수 없는 경우나 나이가 많아 활동이 적은 환자의 경우에 사용하는 것이 좋다.

CONFLICTS OF INTEREST

The author has nothing to disclose.

ORCID

Hee-Soo Kyung, https://orcid.org/0000-0002-2613-4811

REFERENCES

1. Daniel DM, Fritschy D. Anterior cruciate ligament injuries. In: DeLee JC, Drez D, ed. Orthopaedic sports medicine: principles and practice. Philadelphia: W.B. Saunders; 1994. 1313-61.
2. Mascarenhas R, Erickson BJ, Sayegh ET, et al. Is there a higher failure rate of allografts compared with autografts in anterior cruciate ligament reconstruction: a systematic review of overlapping meta-analyses. Arthroscopy. 2015;31:364-72.
3. Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med. 2015;43:641-7.
4. Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB. Revision risk after allograft anterior cruciate ligament reconstruction: association with graft processing techniques, patient characteristics, and graft type. Am J Sports Med. 2015;43:2696-705.
5. Chechik O, Amar E, Khashan M, Lador R, Eyal G, Gold A. An international survey on anterior cruciate ligament reconstruction practices. Int Orthop. 2013;37:201-6.
6. Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH. Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc. 2014;22:1467-82.
7. Gifstad T, Foss OA, Engebretsen L, et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med. 2014;42:2319-28.
8. Fu FH, Bennett CH, Ma CB, Menetrey J, Lattermann C. Current trends in anterior cruciate ligament reconstruction. Part II. Operative procedures and clinical correlations. Am J Sports Med. 2000;28:124-30.
9. Daluga D, Johnson C, Bach BR Jr. Primary bone grafting following graft procurement for anterior cruciate ligament insufficiency. Arthroscopy. 1990;6:205-8.
10. Breitfuss H, Fröhlich R, Povaciz P, Resch H, Wicker A. The tendon defect after anterior cruciate ligament reconstruction using the midthird patellar tendon--a problem for the patellofemoral joint? Knee Surg Sports Traumatol Arthrosc. 1996;3:194-8.
11. Berg EE. Intrinsic healing of a patellar tendon donor site defect after anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 1992;278:160-3.
12. Burks RT, Haut RC, Lancaster RL. Biomechanical and histological observations of the dog patellar tendon after removal
of its central one-third. Am J Sports Med. 1990;18:146-53.

13. Shelbourne KD, Patel DV, Martini DJ. Classification and management of arthrofibrosis of the knee after anterior cruciate ligament reconstruction. Am J Sports Med. 1996;24:857-62.

14. Kartus J, Magnusson L, Stener S, Brandsson S, Eriksson BI, Karlsson J. Complications following arthroscopic anterior cruciate ligament reconstruction. A 2-5-year follow-up of 604 patients with special emphasis on anterior knee pain. Knee Surg Sports Traumatol Arthrosc. 1999;7:2-8.

15. Mishra AK, Fanton GS, Dillingham MF, Carver TJ. Patellar tendon graft harvesting using horizontal incisions for anterior cruciate ligament reconstruction. Arthroscopy. 1995;11:749-52.

16. Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK. Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med. 2016;44:83-90.

17. Tachibana Y, Shino K, Mae T, Iuchi R, Take Y, Nakagawa S. Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft. Knee Surg Sports Traumatol Arthrosc. 2019;27:2680-90.

18. Tachibana Y, Mae T, Shino K, et al. Femoral tunnel enlargement after anatomic anterior cruciate ligament reconstruction: bone-patellar tendon-bone/single rectangular tunnel versus hamstring tendon / double tunnels. J Orthop Sci. 2018;23:1011-8.

19. Mae T, Shino K, Iuchi R, et al. Biomechanical characteristics of the anatomical rectangular tunnel anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft. J Orthop Sci. 2017;22:886-91.

20. Shino K, Mae T, Tachibana Y. Anatomic ACL reconstruction: rectangular tunnel/bone-patellar tendon-bone or triple-bundle/semitendinosus tendon grafting. J Orthop Sci. 2015;20:457-68.

21. Shino K, Nakata K, Nakamura N, Toritsuka Y, Nakagawa S, Horibe S. Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy. 2005;21:1402.

22. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M. Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the Danish registry of knee ligament reconstruction. Am J Sports Med. 2014;42:278-84.

23. Persson A, Fjeldsgaard K, Gjertsen JE, et al. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004-2012. Am J Sports Med. 2014;42:285-91.

24. To JT, Howell SM, Hull ML. Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy. 1999;15:379-87.

25. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am. 1999;81:549-57.

26. Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F. Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am. 2004;86:2143-55.

27. Gobbi A, Mahajan S, Zanazzo M, Tuy B. Patellar tendon versus quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a prospective clinical investigation in athletes. Arthroscopy. 2003;19:592-601.

28. Aune AK, Holm I, Risberg MA, Jensen HK, Steen H. Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with two-year follow-up. Am J Sports Med. 2001;29:722-8.

29. Gill SS, Turner MA, Battaglia TC, Leis HT, Balian G, Miller MD. Semitendinosus regrowth: biochemical, ultrastructural, and physiological characterization of the regenerate tendon. Am J Sports Med. 2004;32:1173-81.

30. Takeda Y, Kashiwaguchi S, Matsuura T, Higashida T, Minato A. Hamstring muscle function after tendon harvest for anterior cruciate ligament reconstruction: evaluation with T2 relaxation time of magnetic resonance imaging. Am J Sports Med. 2006;34:281-8.

31. Simonian PT, Harrison SD, Cooley VJ, Escabedo EM, Denecka DA, Larson RV. Assessment of morbidity of semitendinosus and gracilis tendon harvest for ACL reconstruction. Am J Knee Surg. 1997;10:54-9.
Adequate Graft Selection

32. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75:1795-803.

33. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy. 2001;17:461-76.

34. Xie X, Xiao Z, Li Q, et al. Increased incidence of osteoarthritis of knee joint after ACL reconstruction with bone-patellar tendon-bone autografts than hamstring autografts: a meta-analysis of 1,443 patients at a minimum of 5 years. Eur J Orthop Surg Traumatol. 2015;25:149-59.

35. Magnussen RA, Carey JL, Spindler KP. Does autograft choice determine intermediate-term outcome of ACL reconstruction? Knee Surg Sports Traumatol Arthrosoc. 2011;19:462-72.

36. Poehling-Monaghan KL, Salem H, Ross KE, et al. Long-term outcomes in anterior cruciate ligament reconstruction using bone-patellar tendon-bone autografts in patients: a systematic review of patellar tendon versus hamstring autografts. Orthop J Sports Med. 2017;5:2325967117709735.

37. Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrell FE Jr. Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med. 2004;32:1986-95.

38. Gifstad T, Sole A, Strand T, Uppheim G, Grøntvedt T, Droset JO. Long-term follow-up of patellar tendon grafts or hamstring tendon grafts in endoscopic ACL reconstructions. Knee Surg Sports Traumatol Arthrosoc. 2013;21:576-83.

39. Torry MR, Decker MJ, Jockel JR, Viola R, Steadman JR. Comparison of tibial rotation strength in patients' status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts. Clin J Sport Med. 2004;14:325-31.

40. Segawa H, Omori G, Tomita S, Koga Y. Bone tunnel enlargement after anterior cruciate ligament reconstruction using hamstring tendons. Knee Surg Sports Traumatol Arthrosoc. 2001;9:206-10.

41. Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT. Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med. 2013;41:1780-5.

42. Brophy RH, Wright RW, Huston LJ, Nwosu SK; MOON Knee Group, Spindler KP. Factors associated with infection following anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2015;97:450-4.

43. Bansal A, Lamplot JD, VandenBerg J, Brophy RH. Meta-analysis of the risk of infections after anterior cruciate ligament reconstruction by graft type. Am J Sports Med. 2018;46:1500-8.

44. Zantop T, Ferretti M, Bell KM, Brucker PU, Gilbertson L, Fu FH. Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med. 2008;36:2158-66.

45. Qi L, Chang C, Jian L, Xin T, Gang Z. Effect of varying the length of soft-tissue grafts in the tibial tunnel in a canine anterior cruciate ligament reconstruction model. Arthroscopy. 2011;27:825-33.

46. Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H. The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosoc. 2006;14:1086-93.

47. Majima T, Yasuda K, Tago H, Tanabe Y, Minami A. Rehabilitation after hamstring anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2002;397:370-80.

48. Fujimoto E, Sumen Y, Urabe Y, et al. An early return to vigorous activity may destabilize anterior cruciate ligaments reconstructed with hamstring grafts. Arch Phys Med Rehabil. 2004;85:298-302.

49. Hantes ME, Mastrokalos DS, Yu J, Paessler HH. The effect of early motion on tibial tunnel widening after anterior cruciate ligament replacement using hamstring tendon grafts. Arthroscopy. 2004;20:572-80.

50. Lee JK, Lee S, Lee MC. Outcomes of anatomic anterior cruciate ligament reconstruction: bone-quadriceps tendon graft versus double-bundle hamstring tendon graft. Am J Sports Med. 2016;44:2323-9.

51. Slone HS, Romine SE, Premkumar A, Xeroeganes JW. Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy. 2015;31:541-54.

52. Stäubli HU, Schatzmann L, Brunner P, Rincón L, Nolte LP. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med. 1999;27:27-34.

53. Chen CH, Chuang TY, Wang KC, Chen WJ, Shih CH. Ar-
throscopic anterior cruciate ligament reconstruction with quadriceps tendon autograft: clinical outcome in 4-7 years. Knee Surg Sports Traumatol Arthrosc. 2006;14:1077-85.

54. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J. Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med. 2017;45:1326-32.

55. Hurley ET, Calvo-Gurry M, Withers D, Farrington SK, Moran R, Moran CJ. Quadriceps tendon autograft in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy. 2018;34:1690-8.

56. Lund B, Nielsen T, Faunø P, Christiansen SE, Lind M. Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study. Arthroscopy. 2014;30:593-8.

57. Gorschewsky O, Klakow A, Pütz A, Mahn H, Neumann W. Clinical comparison of the autologous quadriceps tendon (BQT) and the autologous patella tendon (BPTB) for the reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2007;15:1284-92.

58. Barker JU, Drakos MC, Maak TG, Warren RF, Williams RJ 3rd, Allen AA. Effect of graft selection on the incidence of postoperative infection in anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38:281-6.

59. Bottoni CR, Smith EL, Shaha J, et al. Autograft versus allograft anterior cruciate ligament reconstruction: a prospective, randomized clinical study with a minimum 10-year follow-up. Am J Sports Med. 2015;43:2501-9.

60. Kraeutler MJ, Bravman JT, McCarty EC. Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med. 2013;41:2439-48.

61. Pallis M, Svoboda SJ, Cameron KL, Owens BD. Survival comparison of allograft and autograft anterior cruciate ligament reconstruction at the United States Military Academy. Am J Sports Med. 2012;40:1242-6.

62. Wasserstein D, Sheth U, Cabrera A, Spindler KP. A systematic review of failed anterior cruciate ligament reconstruction with autograft compared with allograft in young patients. Sports Health. 2015;7:207-16.

63. Li J, Wang J, Li Y, Shao D, You X, Shen Y. A prospective randomized study of anterior cruciate ligament reconstruction with autograft, γ-irradiated allograft, and hybrid graft. Arthroscopy. 2015;31:1296-302.

64. Abouljoud MM, Everhart JS, Sigman BO, Flanigan DC, Magnusson RA. Risk of retear following anterior cruciate ligament reconstruction using a hybrid graft of autograft augmented with allograft tissue: a systematic review and meta-analysis. Arthroscopy. 2018;34:2927-35.

65. Wang HD, Gao SJ, Zhang YZ. Hamstring autograft versus hybrid graft for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 2020;48:1014-22.

66. Xu H, Lin W, Jin G, et al. Graft choice for anatomic anterior cruciate ligament reconstruction: the comparison between thin autograft and thick hybrid graft. An observational study. Medicine (Baltimore). 2018;97:e11597.

67. Sasaki N, Farraro KE, Kim KE, Woo SL. Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction: a cadaveric study. Am J Sports Med. 2014;42:723-30.

68. Koga H, Zaffagnini S, Getgood AM, Muneta T. ACL graft selection: state of the art. J ISAKOS. 2018;3:177-84.

69. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res. 2017;475:2459-68.

70. Gabler CM, Jacobs CA, Howard JS, Mattacola CG, Johnson DL. Comparison of graft failure rate between autografts placed via an anatomic anterior cruciate ligament reconstruction technique: a systematic review, meta-analysis, and meta-regression. Am J Sports Med. 2016;44:1069-79.

71. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee. 2015;22:100-10.

72. Sadoghi P, Müller PE, Jansson V, van Griensven M, Kröpfl A, Fischmeister MF. Reconstruction of the anterior cruciate ligament: a clinical comparison of bone-patellar tendon-bone single bundle versus semitendinosus and gracilis double bundle technique. Int Orthop. 2011;35:127-33.

73. Mohtadi N, Chan D, Barber R, Oddone Paolucci E. A randomized clinical trial comparing patellar tendon, hamstring tendon, and double-bundle ACL reconstructions: patient-reported and clinical outcomes at a minimal 2-year follow-up. Clin J Sport Med. 2015;25:321-31.

74. Sasaki S, Tsuda E, Hiraga Y, et al. Prospective randomized
Adequate Graft Selection

75. Arden CL, Webster KE. Knee flexor strength recovery following hamstring tendon harvest for anterior cruciate ligament reconstruction: a systematic review. Orthop Rev (Pavia). 2009;1:e12.
76. Yosmaoglu HB, Baltaci G, Ozer H, Atay A. Effects of additional gracilis tendon harvest on muscle torque, motor coordination, and knee laxity in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19:1287-92.
77. Sharma A, Flanigan DC, Randall K, Magnussen RA. Does gracilis preservation matter in anterior cruciate ligament reconstruction? A systematic review. Arthroscopy. 2016;32:1165-73.
78. Mohtadi NG, Chan DS, Dainty KN, Whelan DB. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. 2011;2011:CD005960.
79. Øiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37:1434-43.
80. Jones MH, Spindler KP. Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction: data from the MOON cohort. J Orthop Res. 2017;35:1366-74.
81. Li RT, Lorenz S, Xu Y, Harner CD, Fu FH, Irgang JJ. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med. 2011;39:2595-603.
82. Li S, Chen Y, Lin Z, Cui W, Zhao J, Su W. A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone-patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament. Arch Orthop Trauma Surg. 2012;132:1287-97.
83. Poolman RW, Abouali JA, Conter HJ, Bhandari M. Overlapping systematic reviews of anterior cruciate ligament reconstruction comparing hamstring autograft with bone-patellar tendon-bone autograft: why are they different? J Bone Joint Surg Am. 2007;89:1542-52.
84. Hersekli MA, Akpinar S, Ozalay M, et al. Tunnel enlargement after arthroscopic anterior cruciate ligament reconstruction: comparison of bone-patellar tendon-bone and hamstring autografts. Adv Ther. 2004;21:123-31.
85. Samuelsson K, Andersson D, Karlsson J. Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy. 2009;25:1139-74.
86. Shimizu R, Adachi N, Ishifuro M, et al. Bone tunnel change develops within two weeks of double-bundle anterior cruciate ligament reconstruction using hamstring autograft: a comparison of different postoperative immobilization periods using computed tomography. Knee. 2017;24:1055-66.
87. Edgar CM, Zimmer S, Kakar S, Jones H, Schepsis AA. Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res. 2008;466:2238-46.
88. Scheffler SU, Schmidt T, Gangéy I, Dustmann M, Unterhauser F, Weiler A. Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy. 2008;24:448-58.
89. Krych AJ, Jackson JD, Hoskin TL, Dahm DL. A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy. 2008;24:292-8.
90. Victor J, Bellemans J, Witvrouw E, Govaers K, Fabry G. Graft selection in anterior cruciate ligament reconstruction—prospective analysis of patellar tendon autografts compared with allografts. Int Orthop. 1997;21:93-7.
91. Kleipool AE, Zijl JA, Willems WJ. Arthroscopic anterior cruciate ligament reconstruction with bone-patellar tendon-bone allograft or autograft. A prospective study with an average follow up of 4 years. Knee Surg Sports Traumatol Arthrosc. 1998;6:224-30.
92. Peterson RK, Shelton WR, Bomboy AL. Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: a 5-year follow-up. Arthroscopy. 2001;17:9-13.
93. Chang SK, Egami DK, Shaieb MD, Kan DM, Richardson AB. Anterior cruciate ligament reconstruction: allograft versus autograft. Arthroscopy. 2003;19:453-62.
94. Kustos T, Bálint L, Than P, Bárđos T. Comparative study of autograft or allograft in primary anterior cruciate ligament reconstruction. Int Orthop. 2004;28:290-3.
95. Kyung HS, Lee HJ, Oh CW, Hong HP. Comparison of results after anterior cruciate ligament reconstruction using a four-strand single semitendinosus or a semitendinosus and gracilis tendon. Knee Surg Sports Traumatol Arthrosc. 2015;23:3238-
43. Kyung HS, Baek SG, Lee BJ, Lee CH. Single-bundle anterior cruciate ligament reconstruction with semitendinosus tendon using the PINN-ACL CrossPin system: minimum 4-year follow-up. Knee Surg Relat Res. 2015;27:43-8.

97. Cohen SB, Yucha DT, Ciccotti MC, Goldstein DT, Ciccotti MA, Ciccotti MG. Factors affecting patient selection of graft type in anterior cruciate ligament reconstruction. Arthroscopy. 2009;25:1006-10.
성공적인 전방십자인대 재건술을 위한 적절한 이식건의 선택

경희수
경북대학교 의과대학 정형외과학교실

성공적인 전방십자인대 재건술을 얻기 위해 수술 전 계획, 수술수기, 수술 후 재활 등 여러 가지 요소가 관여한다. 그리고 좋은 결과를 얻기 위해서 수술 중 이식건의 선택, 고정, 처치 방법, 성숙, 본체골에 병합, 장력 등을 고려해야 한다. 이식건을 선택할 때 이식건의 강도, 이식건의 고정방법, 고정부위 치유, 공유 부위 이환, 이식건의 표면적 크기 등을 고려해야 한다. 이식건에는 자가건과 동종건의 두 가지가 있다. 자가 슬개건, 슬관건, 대퇴사두건 등 사용할 수 있는 자가건은 여러 가지가 있으며 각각의 장단점을 가지고 있다. 최근 국내에서 동종건의 사용빈도가 높아지고 있는데 공여부의 이환시 간이 짧고, 수술 시간이 짧고, 수술 후 통증이 적고, 재료가 다양하다는 장점이 있다. 하지만 동종건이 자가건보다 장기간 추적 결과가 더 좋다는 보고는 없다. 동종건은 골과의 합병이 오래 걸리고, 불완전할 경우 인대 재형성이 늦고, 생역학적으로 자가건보다 강도가 낮으며, 변형력의 외형성이 높고, 질병 전파의 가능성이 높고, 면역반응의 위험이 높고, 재료의 공여부가 다양하다는 장점이 있다. 그러므로 동종건은 자가건의 대용이 될 수 있지만 자가건을 사용할 수 없을 때, 여러 가지 인대 재건술이 필요한 경우를 제외하고 자가건을 사용하도록 하는 것이 좋다. 만약 적절한 크기와 굵기의 자가건을 얻을 수 있다면 자가건을 사용한 적절한 고정방법을 선택하고 수술 후 재활을 하여 동종건을 사용한 결과보다 우수한 결과를 얻을 것으로 생각된다.

색인단어: 전방십자인대, 자가건, 동종건, 재건술

접수일: 2020년 6월 12일 수정일: 2020년 10월 8일 게재확정일: 2020년 10월 10일

책임저자: 경희수
41944, 대구시 중구 동덕로 130, 경북대학교병원 정형외과
TEL 053-420-5636, FAX 053-422-6605, E-mail hskyung@knu.ac.kr, ORCID https://orcid.org/0000-0002-2613-4811