Macronutrient management for the cultivation of Soybean (Glycine max L.): A review

P Saranraj1, P Sivasakthivelan2, A R M Al-Tawaha3, R Bright1, Imran4, Amanullah4, A R Al-Tawaha5, D Thangadurai7, J Sangeetha7, A Rauf8, S Khalid4, W Al Sultan9, Z S Safari10, A Z Qazizadah11, N A Zahid12, S N Sirajuddin13

1Department of Microbiology, Sacred Heart College (Autonomous), Tirupattur, Tamil Nadu, India
2Department of Agricultural Microbiology, Faculty of Agriculture Annamalai University, Chidambaram – 608 002, Tamil Nadu, India.
3Department of Biological Sciences, Al - Hussein Bin Talal University, Maan, Jordan.
4Department of Agronomy, the University of Agriculture, Peshawar, Pakistan
5Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
6Department of Botany, Karnataka University, Dharwad, 580003, Karnataka, India
7Department of Environmental Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
8Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
9ICAR-Central
10Department of plant protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
11Department of Horticulture, Faculty of Agriculture, Helmand University, Helmand, Afghanistan
12Department of horticulture, faculty of agriculture, Parwan University, Parwan, Afghanistan
13Department of Horticulture, Faculty of Plant Sciences, Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan
14Faculty of Animal Science, Universitas Hasanuddin, Perintis Kemerdekaan Street, Km. 10 Makassar, Indonesia

Email: abdel-al-tawaha@ahu.edu.jo

Abstract. The review is focused on management of macronutrients for cultivating Soybean. Soybean is an important crop in the world because the only reliable plant-based source of complete protein, comparable to meat and eggs, is from soya protein. Soybean yield is crucial for meeting protein malnutrition and edible oil needs. The wide variation in Rhizobial cell counts and nodule mass in beans are likely related to variation is Physico-chemical conditions of the soil.
1. Introduction

Soybean Glycine max is a pulse crop of great global importance. It provides 43.3% protein and 19.5% oil, which makes it a "miracle bean". Soybean is indigenous to China and was introduced to India in the 1950s [1]. Soybean is a high nutritional value legume, and its beans contain up to 30% of proteins. They provide all the essential amino acids except methionine. Soybean is also used as a protein supplement for animal feed [2]. It has been estimated that the soybean plant requires up to 80 kg of assimilable nitrogen to produce a ton of pod, accounting for 240 kg/ha on average. Nitrate or ammonia becomes available in soil by organic nitrogen mineralization, chemical fertilization, and biological nitrogen fixation. The later process is essential for nitrogen incorporation into the biosphere. The conversion of atmospheric nitrogen into ammonium conducted by microorganisms bearing the enzyme nitrogenase is an intrinsic non-contaminating process that prevents soil impoverishment [3]. At the same time, high concentrations of nitrate or ammonium in soil inhibit the nitrogen biological fixation. Soybean has a significant importance due to its high protein and oil concentration in its pods. Because atmospheric N2 is abundant, no eukaryotic organism is able to assimilate it, as the bond is too strong [4]. However, in nitrogen-deficient soils, much of soybean's nitrogen requirement can be met through the symbiotic association with bacteria called rhizobia, which belong to the species Bradyrhizobium japonicum and Bradyrhizobium elkanii [5].

2. Nitrogen management in soybean

Soybean, can fix atmospheric nitrogen in symbiotic association with Bradyrhizobium japonicum. Thus, soybean has a rich nitrogen content, which is delivered to the seedling stage, while biologically fixed nitrogen looks after the crop needs under favourable conditions. Therefore, in low-nitrogen soils, nitrogen deficiency rarely occurs, but when it does, it results in BNF failure and in soil-nitrogen deficiency. To alleviate nitrogen deficiency that arises between the depletion of seed nitrogen and nodule formation, 20 kg N/ha is a recommended starter dose. It is critical in sandy loam soils where nitrogen content is low. Temperatures of 30°C in the topsoil profile of 10 cm could delay nodule development [6].

The significant nitrogen requirement of soybeans has been recognized, instructing the use of nitrogen fertilizer to increase soybean yield. Even though soybean is a legume, it has been found to readily incorporate soil inorganic nitrogen, and this leads to net nitrogen removal from soil. In a mature soybean plant, 40 to 75% of the nitrogen may be in the residual soil inorganic nitrogen and soil mineralization characteristics [7]. It appears that soybean needs this soil-derived total plant nitrogen component to achieve high yields. The renewed attention on soybean nitrogen metabolism, together with other physiological aspects of soybean nitrogen use, has maintained interest in improving nitrogen supply and use in hopes of increasing yield and grain protein. Depending on the amount of nitrogen available from the soil and the conditions for nodule development, the ratio of nitrogen supplied from these two sources can vary widely. Symbiotic fixation can range from 25% to 75% when it comes to the supply of nitrogen to plants [8]. The least expensive method of supplying adequate nitrogen to soybeans is to inoculate the seeds when planting. If soybean has not been grown on the site, inoculation is required. In such a situation, soil application of a bioinoculant may yield greater yield potential than the application of bioinoculant to seeds. For previously grown soybean fields, inoculants for either seed or soil application provide adequate nitrogen for the crop. N fixation can meet a significant part of the nitrogen demand of the crop. The article by Shibles [7] discusses soybean's two different ways of acquiring nitrogen: inorganic nitrogen through the soil and symbiotic nitrogen fixation. It is fascinating to learn how nitrate supply negatively affects Bradyrhizobium infection and symbiotic nitrogen fixation (that is, delayed infection and reduced nodulation and nitrogen fixation in response to increased soil nitrate). It's a big challenge to increase total plant nitrogen through fertilization, because of this nitrogen acquisition interrelationship.

3. Phosphorous management in soybean

Soybean is an accomplished crop even under low levels of soil phosphorus. Phosphorus is critical for soybean crop growth and is almost absent from most soybean cropland. Most legume fertilization methods rely on phosphorus for intensive nitrogen fixation. Therefore, phosphorus has an essential role in energy transformation and root growth, as well as nitrogen fixation. Because of moisture stress,
phosphorus fertilization may reduce the phosphorus available for uptake, causing poor biomass production and reduced phosphorus uptake. Phosphorus fertilization is usually more needed in acidic soils due to higher phosphorus fixation. Other phosphorus sources (rock phosphate excluded) are equally effective in soybeans. Rock phosphate is a bad source of phosphorus in neutral to alkaline soils, but a good source in acidic soils [9]. Usually, it is not an issue to fertilize the soil with phosphorus at subsoil levels. Nandini [10] has found that sources and evaluated levels of phosphorus affect the productivity of soybean. These treatments used four phosphorus sources (single superphosphate, diammonium phosphate, single super phosphate + phosphate solubilizing bacteria, diammonium phosphate + phosphate solubilizing bacteria), with one absolute control. Total phosphorus uptake was maximized with the treatment of SSP + PSB. The SSP+PSB treatment greatly benefits the agronomic efficiency, physiological efficiency, and P use efficiency. However, phosphorous recovery was greater in the DAP+PSB system due to a higher stover yield and higher phosphorus uptake. Consequently, the efficiency fractions rise until 60 kg P$_2$O$_5$ ha$^{-1}$ and decline at 80 kg P$_2$O$_5$ ha$^{-1}$[11].

4. Potassium management in Soybean

Potassium is a limited requirement for soybean and ranged from 14.3 to 57.7 kg /t of grain. Potassium is seldom needed in clay soil for soybean production. Potassium application before planting is the most efficient method [12]. Determine fertilization requirements such as potassium and phosphorus for soybeans based on soil test values. Therefore the rate of application of low-nutrient soils is 50-70 kg P2O5/ha and 60-100 kg K2O/ha with grain yield of 2.5-2.7 tonnes per hectare, a low-fertility soil would recommend 40-60 kg of P$_2$O$_5$/ha and a moderate-fertility soil would recommend 100-150 kg of K2O/ha. In soil with high clay content, application rates will be higher. P2O5/ha and K2O/ha were recommended for each additional tonne of grain yield. for clay soils, an extra 10-15 kg P$_2$O$_5$/ha and 20-30 kg K$_2$O/ha were recommended with each additional tonne of grain yield [13]. Because the completion of the High Dam in Aswan stopped the deposition of Nile silt rich in potassium bearing minerals on agricultural fields, the use of potassium fertilization in agriculture has become increasingly important [14]. In addition, Nile alluvial soils that have a high clay content and are highly potassic can have a high potassium fixing capacity. While a high Kex level might be present, there may not be enough potassium for various crops due to this [15]. In general, in plants and animals, macronutrients play an important role in different biochemical pathways; thus, they are needed to survive and grow considerably. These also stimulate the growth and yield of numerous crops [16-22]. They also play an significant role in the growth of crop. Based on their roles, macronutrients like N, P and K were graded as primary macronutrients. Plants and their productivity in many parts of the world are restricted by environmental factors like salinity and drought, mineral deficiency [23-30]. Many of these studies concluded that low productivity is primarily related to management practices in dryland agriculture [31-55]. Research has shown important ties between humidity, fertilizer applications, plant populations and planting dates [56-71]. Numerous studies indicate that the availability of nutrients is important for plant growth, especially in the case of weeds that influence and inhibit the growth of crops that compete with the crop for the nutrients in the soil [72-92]. On the other hand, soil organic matter is essential to crop production and sustainable soil fertility [92-107].

5. Conclusions

Soybean is a high nutritional value legume; its beans contain up to 30 % of proteins. They provide all the essential amino acids except methionine. This deficiency can be compensated by diet combinations with cereals as recommended in classical dietary procedures. Soybean is also used as a protein supplement for animal feed. In the last years, the world soybean production surpassed 250 million tons, led by US, Brazil, Argentina, China, India, Paraguay and Canada. In Cuba, soybean production recently arose as an economic policy priority, in order to substitute pod import, with a remarkable rise in the number of areas destined to soybean crops and the introduction of mechanized sowing. It has been estimated that the soybean plant requires up to 80 kg of assimilable nitrogen to produce a ton of pod, accounting for 240 kg/ha on average.
References

[1] Appunu C, Sen D, Singh M K and Dhar B 2007 Variation in symbiotic performance of *Bradyrhizobium japonicum* strains and soybean cultivars under field conditions *J. Cent. Euro. Agri.* 9 185–90

[2] Clive J 2010 *Global Status of Commercialized Biotech/GM Crops* (New York: International Service for de Acquisition of Agriculture Biotechnology Applications (ISAAA)

[3] Singh M S 2005 Effect of *Bradyrhizobium* inoculation on growth, nodulation and yield attributes of soybean - A Review *Agri. Rev.* 26 305–8

[4] Oldroyd G E, Murray J D, Poole P S and Downie J A 2011 The rules of engagement in the legume - *Rhizobial* symbiosis *Ann. Rev. Gen.* 45 119–44

[5] Hungria M, Chueire L M O, Megias M, Lamrabet Y, Probanza A, Gutierrez Manero F J and Campo R J 2006 Genetic diversity of indigenous tropical fast-growing *Rhizobia* isolated from soybean nodules *Plant Soil* 288 343–56

[6] Brechenmacher L, Kim M Y, Benitez M, Li M, Joshi T, Calla B, Lee M P, Libault M, Vodkin L O, Xu D, Lee S H, Clough S J and Stacey G 2008 Transcription profiling of soybean nodulation by *Bradyrhizobium japonicum* *Mol. Plant Micro. Int.* 21 631–45

[7] Shibles R M 1998 Soybean nitrogen acquisition and utilization *North Central Extension-Industry Soil Fertility Conference* (St. Louis: Potash & Phosphate Brookings Inst) pp 5–11

[8] Varco J J 1999 Nutrition and Fertility Requirements *Soybean Production in the Midsouth* Heatherly L G and Hodges H F (Boca Raton: CRC Press)

[9] Yasari E 2012 Micronutrients impact on soybean (*Glycine max*) qualitative and quantitative traits *Int. J. Biol.* 4 112–8

[10] Nandini D K 2012 Response of soybean (*Glycine max* (L.) Merrill) to sources and levels of phosphorus *J. Agri. Sci.* 4 12–20

[11] Ndakidemi P A, Dakora F D, Nkonya E M, Ringo D and Mansoor H 2006 Yield and economic benefits of common bean (*Phaseolus vulgaris*) and soybean (*Glycine max*) inoculation in northern Tanzania *Aust. J. Exp. Agri.* 46 571–7

[12] Ferguson R B, Shapiro C A, Dobermann A R and Wortmann C S 2006 *Fertilizer Recommendations for Soybeans* (Neb Guide University: Lincoln Extension Publications)

[13] Roy R N, Finck A, Blair G J and Tandon H L S 2006 Plant Nutrition for Food Security A Guide for Integrated (Rome: Nutrient Management Food and Agriculture Organization of the United Nations)

[14] Abdel Hadi A H 2004 Country report on Egyptian Agriculture *Proceedings of the IPI workshop on Potassium and Fertigation Development in West Asia and North Africa Region* (Switzerland: International Potash Institute) pp 58–73.

[15] El-Fouly M M and El-Sayed A A 1997 Potassium status in soils and crops, recommendations and present use in Egypt *Food Security in the WANA Region, the Essential Need for Balanced Fertilization* (Switzerland: International Potash Institute) pp 50–65.

[16] Turk M A, Tawaha A M, Taifor H, Al-Ghzawi A, Musallam I W, Maghaireh G A, Al-Omari Y I 2003. Two row barley response to plant density, date of seeding and rate and method of phosphorus application in the absence of moisture stress *Asian J. Plant Sci.* 2 180–3

[17] Turk M A, Tawaha A M, Samara N and Latifa N 2003 The response of six row barley (*Hordeum vulgare* L.) to nitrogen fertilizer application and weed control methods in the absence of moisture stress *Pakistan J. Biol. Sci.* 2 101–8
[18] Turk M A, Hameed K M, Aqeel A M And Tawaha A M 2003 Nutritional status of durum wheat grown in soil supplemented with olive mills by products Agrochimica. 47 209–19
[19] Turk M A and Tawaha A M 2001 Influence of rate and method of phosphorus placement to Garlic (Allium sativum L.) in a Mediterranean environment J. Appl. Hortic. 3 115–16
[20] Tawaha A M and Turk M A 2002 Lentil (Lens culinaris Medic.) productivity as influenced by rate and method of phosphate placement in a Mediterranean environment Acta Agron. Hungarica. 50 197–201
[21] Turk A M and Tawaha A M 2002 Impact of seeding rate, seeding date, rate and method of phosphorus application in faba (Vicia faba L. Minor) in the absence of moisture stress. Biotechnol. Agron. Soci. Environ. 6 171–8
[22] Turk A M and Tawaha A M 2002 Response of winter wheat to applied N with or without ethrel spray under irrigation planted in semi-arid environments Asian J. Plant Sci. 1 464–6
[23] Al-Tawaha A M, Seguin P, Smith D L And Bonnell B 2007 Effects of irrigation on isoflavone concentrations of soybean grown in southwestern Québec J. Agron. Crop Sci. 193 238–46
[24] Al-Rifaee M K and Al-Tawaha A M 2005 Doubling chickpea yield by shifting from spring to winter sowing using ascochyta blight resistant lines under typical mediterranean climate Biosci. Res. 2 80–5
[25] AL-Jamali A F, Turk M A and Tawaha A M 2002 Effect of Ethephon spraying at three developmental stages of barley planted in arid and semi-arid Mediterranean locations. J. Agron. Crop Sci. 188 254–9
[26] Turk A M and Tawaha A M 2002 Seed germination and seedling growth of two barley cultivars under moisture stress Res. Crop. 3 467–72
[27] Turk M A, Tawaha A M, Nikus O and Rifaee M 2003 Response of six-row barley to seeding rate with or without ethrel spray in the absence of moisture stress Int. J. Agric. Biol. 4 416–8
[28] Othman Y, Al-Karaki G, Al-Tawaha A R, and Al-Horani A 2006 Variation in germination and ion uptake in barley genotypes under salinity conditions World J. Agric. Sci. 2 11–5.
[29] Turk M A, Tawaha A R M and Lee K D 2004 Seed germination and seedling growth of three lentil cultivars under moisture stress Asian J. Plant Sci. 3 394–7
[30] Musallam I W, Al-Karaki G, Ereifej K and Tawaha A M 2004 Chemical composition of faba bean genotypes under rainfed and irrigation conditions Int. J. Agric. Biol. 6 359–62
[31] Turk A M and Tawaha A M 2002 Onion (Allium cepa L.) as influenced by rate and method of phosphorus placement Crop Research, 23 105–7
[32] Turk M A and Tawaha A M 2001 Common vetch (Vicia sativa L.) productivity as influenced by rate and method of phosphate fertilization in a mediterranean environment Agric. Mediterrar. 131 108–11
[33] Tawaha A M and Turk M A 2001 Effects of dates and rates of sowing on yield and yield components of Narbon vetch under semi-arid condition Acta Agron. Hungarica. 49 103–5.
[34] Sulpanjani A, Yang M S, Tawaha A R M And Lee K D 2005 Effect of Magnesium application on yield, mineral contents and active components of Chrysanthemum coronarium L. under Hydroponics Conditions Biosci. Res. 2 73–9
[35] Lee K D, Sulpanjani, Tawaha A M and Min Yang S 2005 Effect of Phosphorus application on yield, mineral contents and active components of Chrysanthemum coronarium L Biosci. Res. 2 118–24
[36] Lee K D, Turk M A and Tawaha A M 2005 Nitrogen fixation in rice based farming system. Biosci. Res. 2 130–8
[37] Nikus O, Nigussie M, and Al Tawaha A M 2005 Agronomic performance of maize varieties under irrigation In Awash Valley, Ethiopia Biosci. Res. 2 26–30
[38] Abera T, Feyisa D, Yusuf H, Nikus O, Al-Tawaha A M 2005 Grain yield of maize as affected by biogas slurry and N-P fertilizer rate at Bako, Western Oromiya, Ethiopia Biosci. Res. 2 31–8
[39] Supanjani, Tawaha A M, Min Yang M S, and Lee K D 2005 Role of calcium in yield and medicinal quality of Chrysanthemum coronarium L J. Agron. 4 188–92
[40] Supanjani, Tawaha A M, Yang M S, Lee Y D 2005 Calcium effects on yield, mineral uptake and terpene components of hydroponic chrysanthemum coronarium L Res. J. Agric. Biol. Sci. 1 146–51

[41] Nikus O, Abebe G, Takele A, Harrun H, Chanyalew S, Al Tawaha A M, and Mesfin T 2005 Yield response of tef (Eragrostis tef (Zucc.) Trotter) to NP fertilization in the semi arid zones of the central rift valley in Ethiopia Eur. J. Sci. Res. 4 49–60

[42] Lee K D, Tawaha A R M and Supanjani 2005 Antioxidant status stomatal resistance and mineral composition of hot pepper under salinity and boron stress Biosci. Res. 2 148–54

[43] Tawaha A M, Turk M A, Lee K D, Supanjani, Nikus O, Al-Rifaie M, Sen R 2005 Awnless barley response to Crop Management under Jordanian Environ. Biosci. Res. 2 125–9

[44] Abebe G, Assefa T, Harrun H, Mesfine T, and Al-Tawaha A M 2005 Participatory selection of drought tolerant maize varieties using mother and baby methodology: A case study in the semi arid zones of the central rift valley of ethiopia World J. Agric. Sci. 1 22–7

[45] Assefa T, Abebe G, Fininsa C, Tesso B and Al-Tawaha A M 2005 Participatory Bean Breeding with Women and Small Holder Farmers in Eastern Ethiopia World J. Agric. Sci. 1 28–35

[46] Yang M S, Tawaha A M, and Lee Y D 2005 Effects of ammonium concentration on the yield, mineral content and active terpene components of Chrysanthemum coronarium L. in a hydroponic system Res. J. Agric. Biol. Sci. 1 170–5

[47] Tawaha A R M, Turk M A, and Lee K D 2005 Adaptation of chickpea to cultural practices in a Mediterranean type environment. Res. J. Agric. Biol. Sci. 1 152–7.

[48] Mesfine T, Abebe G, and Al-Tawaha A M 2005 Effect of reduced tillage and crop residue ground cover on yield and water use efficiency of sorghum (Sorghum bicolor (L.) Moench) under semi-arid conditions of Ethiopia World J. Agric. Sci. 1 152–60

[49] Abebe G, Sahile G, and Al-Tawaha A M 2005 Evaluation of potential trap crops on Orobanche soil seed bank and tomato yield in the central rift valley of Ethiopia World J. Agric. Sci. 1 148–51

[50] Abebe G, Sahile G, and Al-Tawaha, A.M. 2005. Effect of soil solarization on Orobanche soil seed bank and tomato yield in the central rift valley of Ethiopia World J. Agric. Sci. 1 143–7.

[51] Abebe G, Hattar B and Al-Tawaha A M 2005 Nutrient availability as affected by manure application in cowpea (Vigna unguiculata (L.) Walp on calcareous soils J. Agric. Soc. Sci. 1 1–6

[52] Zheng W J, Tawaha A M and Lee K D 2005 In situ hybridization analysis of mcMT1 gene expression and physiological mechanisms of Cu-Tolerant in (Festuca rubra cv Merlin) Biosci. Res. 1 121–6

[53] Al-Tawaha A M, Turk M A, Lee K D, Zheng W Z, Ababneh M, Abebe G and Musallam I W 2005 Impact of fertilizer and herbicide application on performance of ten barley genotypes grown in Northeastern part of Jordan Int. J. Agric. Biol. 7 162–6

[54] Zaitoun S T, Al Ghzawi A, Shannag H K and Al-Tawaha A M 2006 Comparative study on the pollination of strawberry by bumble bees and honeybees under plastic house conditions in Jordan valley J. Food, Agric. Environ. 2 237–40

[55] Assaf T A, Hameed K M, Turk M A and Tawaha A M 2006 Effect of soil amendment with olive mill by-products under soil solarization on growth and productivity of faba bean and their symbiosis with mycorrhizal fungi World J. Agric. Sci. 2 21–8

[56] Turk M A, Al-Jamali A F and Tawaha A M 2002 Effect of seeding rate and ethrel spray on the morphology and the yield traits of irrigated faba bean (Vicia faba (L) major) Crop Res 23 305–7

[57] Al-Tawaha A M, Seguin P, Smith D L and Beaulieu C 2006. Foliar application of elicitors alters isoflavone concentrations and other seed characteristics of field-grown soybean. Can. J. Plant Sci. 86 677–84

[58] Seguin P, Bodo R and Al-Tawaha A M 2007 Soybean isoflavones: Factors affecting concentrations in seeds Advances in Medicinal Plant Research ed S N Acharya and J E Thomas (Kerala: Research Signpost) pp 65–81

[59] Al-Tawaha A R M and Al-Ghzawi A L A 2013 Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.) Res. Crop. 14 489–91.
[60] Al-Tawaha A M and Ababneh F 2012 Effects of site and exogenous application of yeast extract on the growth and chemical composition of soybean International Conference on Agricultural, Environment and Biological Sciences pp 52–4.

[61] Turk A M and Tawaha A M 2002 Response of six-row barley to seeding rate and weed control methods under moisture stress Agric. Medittr. 132 208–14

[62] Turk A M and Tawaha A M 2002 Irrigated winter barley response to seeding rates and weed control methods under Mediterranean environments Bulg. J. Agric. Sci. 8 175–80

[63] Turk A M and Tawaha A M 2002 Effect of sowing rates and weed control methods on winter wheat under Mediterranean environment Pakistan J. Agron. 1 25–7

[64] Turk A M Tawaha A M 2002 Inhibitory effects of aqueous extracts Black mustard (Brassica nigra L.) on germination and growth of wheat Pakistan J. Biol. Sci. 5 278–80

[65] Turk A M and Tawaha A M 2002 Effect of dates of sowing and seed size on yield and yield components of local faba bean under semi-arid condition Legum. Res. 25 301–2

[66] Turk M A and Tawaha A M 2001 Faba bean (Vicia faba L.) response to seeding rate seeding date, rate and method of phosphorus application in Mediterranean type environments. Bulg. J. Agric. Sci. 7 615–21

[67] Turk A M and Tawaha A M 2002 Response of winter wheat to seeding rate with or without Ethrel spray under irrigation Bulg. J. Agric. Sci. 8 37–42

[68] Turk A M and Tawaha A M 2002 Effect of variable sowing ratios and sowing rates of bitter vetch on the herbage yield of barley-bitter vetch mixed cropping Asian J. Plant Sci. 1 467–9

[69] Tawaha A M and Turk M A 2002 Effect of dates and rates of sowing on yield and yield components of Lentil (Lens culinaris Medik.) under semi arid conditions. Pakistan J. Biol. Sci. 5 531–2

[70] Tawaha AM, Turk MA and Maghaireh GA 2001 Morphological and yield traits of awnless barley as affected by date and rate of sowing under Mediterranean condition Res. Crop. 22 311–3

[71] Al-Rifaee M K, Al-Yassin A, Haddad N N and Al-Tawaha A M 2007 Evaluation of chickpea breeding lines by examining their responses to sowing date at two Mediterranean climatic locations Am. J. Sustain. Agric. 1 19

[72] Turk M A and Tawaha A M 2003 Weed control in cereals in Jordan Crop Prot 22 239–46

[73] Turk A M and Tawaha A M 2002 Response of sorghum genotypes to weed management under Mediterranean conditions 2 Bulgarian Journal of Agronomy 1 31–3

[74] Turk A M and Tawaha A M 2002 Awnless barley (Hordeum vulagre L.) response to hand weeding and 2,4-D application at two growth stages under Mediterranean environment. Weed Biol. Manag. 2 163–8

[75] Turk M A and Tawaha A M 2003 The response of wild oats (Avena fatua L.) to sowing rate and herbicide application African J. Range Forage Sci. 20 239–42

[76] Tawaha A M, Turk M A and Maghaereh G A 2002 Response of barley to herbicide versus mechanical weed control under semi-arid conditions J. Agron. Crop Sci. 188 106–12

[77] Tawaha A M, and Turk M A 2002 Response of Tetragonolobus palaestinus Boiss to several frequencies of hand weeding Acta Agron. Hungarica 50 91–3

[78] Turk A M and Tawaha A M 2002 Crop-weed competition studies in garlic (Allium sativum L.) under irrigated condition Res. Crop. 23 321–3

[79] Turk A M and Tawaha A M 2002 Lentil response to several frequency of hand weeding. Indian J. Agric. Res. 36 137–40

[80] Tawaha A M and Turk M A 2001 Crop-weed competition studies in fava bean (Vicia faba L.) under rainfed conditions Acta Agron. Hungarica. 49 299–303

[81] Turk M A and Tawaha A M 2001 Wheat response to 2,4-D application at two growths stages under semi-arid conditions Acta Agron. Hungarica. 49 387–91

[82] Turk A M and Tawaha A M 2001 Effect of time and frequency of weeding on growth, yield and economics of chickpea and lentil Res. Crop. 2 103–7

[83] Tawaha A R, Turk M A and Maghaereh G A 2001 Field pea response to several frequencies of hand weeding under Mediterranean environment Res. Crop. 22 161–3
[84] Turk M A and Tawaha A M 2003 Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.) Crop Prot. 22 673–7
[85] Turk M A, and Tawaha A R M 2002 Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Pakistan J. Agron. 1 28–30
[86] Tawaha A M and Turk M A 2003 Allelopathic effects of black mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). J. Agron. Crop Sci. 189 298–303.
[87] Alu'datt M H, Ali I, Ereifej K, Alhamad M., Al-Tawaha A R. and Rababah T 2010 Optimization, characterization and quantification of phenolic compounds in olive cake. Food. Chemis. 123 117–22
[88] Turk M A, Shatnawi M K, and Tawaha A M 2003 Inhibitory effects of aqueous extracts of black mustard on germination and growth of alfalfa. Weed Biol. Manag. 3 37–40
[89] Turk A M and Tawaha A M 2002 Inhibitory effects of aqueous extract Black mustard on germination and growth of lentil. Pakistan J. Agron. 1 28–30
[90] AL-TAWAHA A R M and Nidal O D A T 2010 Use of sorghum and maize allelopathic properties to inhibit germination and growth of wild barley (Hordeum spontaneum). Not. Bot. Horti Agrobot. Cluj-Napoca. 38 124–7
[91] Turk A M and Tawaha A M 2002 Onion (Allium cepa L.) as influenced by rate and method of phosphorus placement Crop Research 23 105–7.
[92] Kiyym A M A, Turk M, and Tawaha A R 2007 Effect of plant density and nitrogen rate on essential oils of marjoram under mediterranean conditions. Pak. J. Sci. Ind. Res 50 383–8.
[93] Hammek, Turk M, Assaf T, and Al-Tawaha M A L 2008 Effects of application of olive mill by-products on chickpea yield and their symbiosis with mycorhizal fungi under arid conditions. Int.J.Plant Prod 2 341–52.
[94] Al-Kiyyam M A, Turk M, and Tawaha A R 2007 Effect of plant density and nitrogen rate on essential oils of marjoram under mediterranean conditions. J. Am. J. Agric. Environ. Sci. 3 153–8
[95] Hani N B, Al-Ramamneh E A D, Haddad M., Al-Tawaha A R, and Al-Satari Y 2019 The impact of cattle manure on the content of major minerals and nitrogen uptake from 15N isotope-labeled ammonium sulphate fertilizer in maize (Zea mays L.) plants Pak. J. Bot. 51 185–9
[96] Amanullah, Khan N, Khan M I, Khalid S, Iqbal A and Al-Tawaha A M 2019 Wheat biomass and harvest index increases with integrated use of phosphorus, zinc and beneficial microbes under semi-arid climates. J. Microbiol. Biotechnol. food Sci. 9 242–7
[97] Al-Taey D K, Al-Shareefi M J, Mijwel A K, Al-Tawaha A R and Al-Tawaha A R 2019 The beneficial effects of bio-fertilizers combinations and humic acid on growth, yield parameters and nitrogen content of broccoli grown under drip irrigation system. Bulg. J. Agric. Sci 25 959–6
[98] Khalid S, Khan H A, Arif M., Altawaha A R, Adnan M, Fahad S, and Parmar B 2019 Organic matter management in cereals based system: Symbiosis for improving crop productivity and soil health Sustainable Agriculture Reviews Ed (Berlin: Springer) pp 67-92
[99] Singh B, Upadhyay A K, Al-Tawaha T W, Al-Tawaha A R, and Sirajuiddin S N 2020 Biofertilizer as a tool for soil fertility management in changing climate IOP Conf. Ser. Earth Environ. Sci. 492 012158
[100] Al-Tawaha A R, Al-Karaki G N, Al –Tawaha A R, Sirajuiddin S N, Makhdumeh I, Wahab P E M, Refat A, Youssef, Al Sultan W, Massadeh A 2018 Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulg. J. Agric. Sci. 24 791–8
[101] Hayyawi W A, Al-Juthery, Kahraman H, Habeeb, Altaee F J K, D K A Al-Taey , Al-Tawaha A R M 2018 Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Biosci. Reserch 15 3988–97.
[102] Al-Ghzawi A L A, Al Khateeb W, Rjoub A, Al-Tawaha A R M, Musallam I, and Al Sane K O 2019 Lead toxicity affects growth and biochemical content in various genotypes of barley (Hordeum vulgare L.) Bulg. J. Agric. Sci. 25 55–61.
[103] Al-Juthery H W, Habeeb K H, Altaee F J K, AL-Taey D K, and Al-Tawaha A R M 2018 Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat Biosci. Res. 15 3976–85.

[104] Ananthi T, Amanullah M M, and Al-Tawaha A R M S 2017 A review on maize-legume intercropping for enhancing the productivity and soil fertility for sustainable agriculture in India Adv. Environ. Biol. 11 49–64.

[105] Turk M A, Assaf T A, Hameed K M, and Al-Tawaha A M 2006 Significance of mycorrhizae World J. Agric. Sci. 2 16–20

[106] Al-Tawaha A R and Al-Tawaha A R M 2017 Response of soybean plants to exogenous application of yeast extract: Growth and chemical composition Am. J. Sustain. Agric. 11 31–6

[107] Al-Tawaha A R M, Jahan N, Odat N, Al-Ramamneh E A D, Al-Tawaha A R, Rauf A R A, Wadyan M (2020). Growth, yield and biochemical responses in barley to DAP and chitosan application under water stress J. Ecol. Eng. 21 86–93